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Résumé

Un champ projectif à poids est un quotient champêtre P(a) = (An −
{0})/Gm, où l’action de Gm est avec des poids a ∈ Z

n

>0
. Des examples sont:

le champ compactifié de modules de courbes elliptiques P(4, 6) et le champs
classifiant de µm-torseurs Bµm = P(m). Nous définissons des hauteurs sur
ces champs. Les hauteurs généralisent la hauteur näıve d’une courbe et le
discriminant absolu d’un torseur. Nous utilisons les hauteurs pour compter
des points rationnels. Nous trouvons le comportement asymptotique pour le
nombre de points rationnels de hauteur borne.

Mots clefs: Conjecture de Manin, Points rationnels, Champ projectif à
poids, Formule de Poisson.



Abstract

A weighted projective stack is a stacky quotient P(a) = (An − {0})/Gm,
where the action of Gm is with weights a ∈ Z

n

>0
. Examples are: the com-

pactified moduli stack of elliptic curves P(4, 6) and the classifying stack of
µm-torsors Bµm = P(m). We define heights on the weighted projective
stacks. The heights generalize the naive height of an elliptic curve and the
absolute discriminant of a torsor. We use the heights to count rational
points. We find the asymptotic behaviour for the number of rational points
of bounded heights.

Keywords: Manin conjecture, Rational points, Weighted projective stack,
Poisson formula.
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CHAPTER 1

INTRODUCTION EN FRANÇAIS

1.1. Notation

La notation suivante sera utilisée tout au long de la thèse. Par F nous
désignerons un corps de nombres (que l’on peut fixer pour l’article entier).
SoitMF , M

0
F , M

∞
F , MR

F etMC
F l’ensemble des places, places finies, places

infinies, places réeles et places complexes de F , respectivement. Pour
v ∈ MF , nous désignerons par Fv la completion v-adique de F . Pour
v ∈ M0

F , soit Ov l’anneau des entiers de Fv, fixons une uniformisante
πv ∈ Fv et soit |·|v la valeur absolue sur Fv normalisée par |πv|v = [Ov :
πvOv]−1. Pour v ∈ MR

F , on désigne par |·|v la valeur absolue habituelle
et pour v ∈ MC

F par |·|v le carré de la valeur absolue habituelle. Les
normalisations sont choisies pour que la formule du produit soit valide,
c’est-à-dire pour chaque x ∈ F , on a

∏

v∈MF

|x|v = 1.

On note OF l’anneau des entiers de F et pour un sous-ensemble fini
S ⊂ M0

F , on note OF,S l’anneau des S-entiers. Lorsque v ∈ M∞
F , on

notera par nv le degré [Fv : R]. On note par AF l’anneau des adèles de F
et A×

F le groupe des idèles.
Pour un vecteur x ∈ Rn, on notera |x| la somme x1 + · · ·+ xn.

1.2. Conjecture de Manin-Peyre

Rappelons une conjecture due à Manin et Peyre sur le comportement
asymptotique du nombre de points rationnels de ”taille” bornée.
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1.2.1. — Une des questions fondamentales de la géométrie diophanti-
enne est l’étude du nombre de solutions aux équations algébriques. La
conjecture de Manin-Peyre traite d’une telle question. Il prédit le nom-
bre de points rationnels sur les variétés algébriques de hauteur bornée,
quand il y en a ”beaucoup”. Rappelons-le brièvement.

Soit X une variété de Fano sur un corps de nombres F et soit K−1
X son

fibré anticanonique. On crôıt que la condition de Fano, c’est-à-dire que
K−1
X est positif, rend, après éventuellement passage à une extension de F ,

les points rationnels de Zariski denses en X. Une métrique adélique sur
K−1
X est un choix de métriques pour chaque fibré en droites topologiques

K−1
X (Fv)→ X(Fv) pour v dans l’ensemble des places MF de F , avec une

“condition de compatibilité”. Le choix d’une métrique adelique sur K−1
X

produit deux choses. Premièrement, il donne une hauteur, c’est-à-dire
une fonction H : X(F ) → R>0 qui vérifie la propriété de Northcott :
pour chaque B > 0, l’ensemble {x ∈ X(F )|H(x) ≤ B} est fini. Ceci, en
substance, généralise la notion classique de la hauteur sur l’espace projec-
tif Pn lorsque F = Q, qui est donné par H(x) = max |xj|, où x sont des
coordonnées entières qui satisfont gcd(x) = 1. La hauteur sert de “taille”
d’un point rationnel. Deuxièmement, le choix de la métrique adélique
produit une mesure ωH sur l’espace adélique X(AF ) :=

∏
v∈MF

X( Fv)

(voir [47]). Soit τH la valeur ωH(X(F )), où la fermeture X(F ) est prise
dansX(AF ). La question suivante est posée par Peyre dans [47] et raffine
la question originale posée par Manin :
Conjecture 1.2.1.1. — Supposons que les points rationnels X(F )
soient Zariski-denses dans X. Alors il existe une sous-variété fermée
Z ( X, telle que l’on a

|{x ∈ (X − Z)(F )|H(x) ≤ B}| ∼B→∞ ατHB log(B)rk(Pic(X))−1,

où α = α(X) est une constante positive reliée à l’emplacement de K−1
X

dans le cône ample de X et rk(Pic(X)) est le rang du Groupe Picard
de X.

On supprime une sous-variété fermée pour éviter les sous-variétés dites
“accumulatrices”, qui contiennent plus de points que le reste de la variété.
La conjecture a été réglée dans de nombreux cas différents. La preuve

pour le cas de Pn est donnée par Schanuel dans [53], bien avant même que
la conjecture ne soit formulée. D’autres cas connus importants de la con-
jecture sont les variétés toriques ([3]), les compactifications équivariantes
de groupes de vecteurs ([18]), certaines familles de surfaces Châtelet
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([23], [26]), etc. La version de 2.2.1.1 admet des contre-exemples (eg [4],
[35]). Il existe une version pour laquelle il n’existe pas de contre-exemples
connus : au lieu de supprimer les sous-variétés fermées, on supprime les
ensembles “minces” (un ensemble mince est un sous-ensemble de l’image
de l’ensemble des points rationnels V (F ) pour un morphisme de variétés
V → X, qui, au voisinage du point générique de V, est quasi-fini et
n’admet aucune section). Pour une étude sur la conjecture de Manin-
Peyre, nous renvoyons le lecteur à [16].

1.2.2. — Différentes méthodes sont disponibles pour aborder la ques-
tion : torseurs universels, méthode du cercle, analyse harmonique, séries
d’Eisenstein, etc. Nous rappelons brièvement la méthode d’analyse
harmonique, d’abord utilisé dans [2] par Batyrev et Tschinkel pour
prouver la conjecture de Manin-Peyre sur les compactifications de tores
anisotropes et développé plus tard dans [3], [17], [18], [20] , etc. pour
régler des exemples plus généraux et nouveaux. Soit X une variété
torique et soit T son tore. Soit H la hauteur donnée par une métrique
adélique sur le fibré du fibré anti-canonique. On compte les points
rationnels de T (le diviseur à l’infini X − T peut cependant accumuler
des points). On a que T (F ) est discret dans le tore adélique T (AF ).

On étend H|T (F ) à une “hauteur” sur T (AF ). Soit Ĥ(s, χ) la trans-
formée de Fourier de H−s (où s est un nombre complexe) au caractère
χ : T (AF ) → S1 qui s’annule à T (F ). La transformée globale est

un produit d’Euler des transformées locales Ĥv(s, χv) pour v ∈ MF .
Les transformées locales sont des intégrales d’Igusa (voir [19]) et nous
pouvons soit donner des formules exactes soit prouver certaines bornes.

Ensuite, la transformée de Fourier globale Ĥ(s, χ) devient un produit
de L-fonctions et une partie facile à analyser.

La formule de Poisson (7.1.1.4) donne Z(s) =
∫
(T (AF )/T (F ))∗

Ĥ(s, χ)dχ,

où dχ est une mesure de Haar convenablement normalisée sur le groupe
des caractères (T (AF )/T (F ))

∗. Il existe des méthodes pour analyser les
intégrales du côté droit, par ex. méthode des “fonctions M -contrôlées”
de [17].

On obtient le pôle et une extension méromorphe de Z, qui, par des
résultats taubériens, donne l’asymptotique recherchée pour le nombre de
points rationnels de T de hauteur bornée.
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1.3. Conjecture de Manin-Peyre pour les champs

Dans cette thèse, nous avons l’intention d’étendre la conjecture de
Manin-Peyre aux champs algébriques.

Nous présentons deux motivations.

1.3.1. — Une hauteur näıve HN d’une courbe elliptique E/Q est définie
comme suit : écrivez l’équation de E sous la forme Y 2 = X3 + AX + B
, où (A,B) ∈ Z2 a la propriété que pour chaque nombre premier p on a
p4|A =⇒ p6 ∤ B et définit HN(E) := max(|A3|, |B2|). Faltings, dans sa
preuve de la conjecture de Mordell [27], définit différentes notions d’une
hauteur d’une courbe elliptique appelée une hauteur de Faltings instable
et une hauteur de Faltings stable. Pour la hauteur näıve et la hauteur
instable de Faltings, il s’avère que si B > 0, il n’y a qu’un nombre fini
de classes d’isomorphismes de courbes elliptiques de hauteur au plus B.
Il n’est pas difficile de compter des courbes elliptiques sur Q de hauteur
näıve bornée (et, comme nous le verrons plus tard, il est possible de
le faire sur n’importe quel corps de nombres F ). Pour le cas F = Q,
Hortsch dans [31] trouve le comportement asymptotique pour le nombre
de classes d’isomorphismes de courbes elliptiques et de hauteur de Falting
instable bornée. Les deux asymptotiques sont similaires aux asympto-
tiques apparaissant dans la conjecture de Manin-Peyre. Cependant, il
y a une distinction : les courbes elliptiques sur un corps de nombres ne
sont pas parametrisées par une variété, mais par un champ algébrique.
Le champ est généralement désignée parM1,1.

1.3.2. — Nous présentons un autre exemple où l’on compte des points
rationnels sur des champs algébriques. Malle dans [37] conjecture ce qui
suit :
Conjecture 1.3.2.1 (Malle, [37]). — Soit G un groupe de permu-
tation transitif fini non trivial et soit F un corps de nombres. On dit
que Gal(K/F ) = G si K/F est une extension telle que le groupe de Ga-
lois de sa clôture de Galois est isomorphe à G en tant que groupe de
permutation. Il existe c(F,G) > 0, tel que

|{K/F |Gal(K/F ) = G,∆(K/F ) ≤ B}| ∼ c(F,G)Ba(G) log(B)b(F,G)−1,

lorsque B → ∞, où ∆ est le discriminant absolu d’une extension, et
a(G) et b(F,G) sont des invariants explicites de G et de F et G, respec-
tivement.
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La prédiction est prouvée pour certains cas comme le cas des groupes
abéliens ([59]), d’autres familles de groupes (eg [57], [22]) et elle admet
des contre-exemples ([33]). Un objet que l’on compte dans la question de
Malle détermine un point sur le champ BG (c’est le champ algébrique qui
parametrise les G-torseurs). Ainsi, la conjecture de Malle aussi, peut être
étudiée comme comptant des points rationnels sur un champ algébrique.
De plus, les prédictions des conjectures de Manin et Malle semblent sim-
ilaires. Les similitudes ont déjà été observées par Yasuda dans [60] et
par Ellenberg, Satriano et Zureick-Brown dans un ouvrage à parâıtre. La
raison des similitudes des prédictions peut être cachée dans la géométrie
du champ BG correspondant.

1.3.3. — Le but de notre travail est de formuler et d’étudier la con-
jecture de Manin-Peyre dans le contexte des champs algébriques. Plus
précisément, nous allons le faire pour les champs projectifs à poids. Si
n ≥ 1 est un entier et a ∈ Zn>0, le champ projectif à poids P(a) est le
quotient “champêtre” du schéma An−{0} par le schéma en groupes Gm,
où l’action est donnée par t · x := (tajxj)j. Lorsque tous les poids aj
sont égaux à 1, alors P(a) est l’espace projectif Pn−1. On a des coor-
données homogènes sur les champs projectifs à poids : un point rationnel
sur P(a) est donné par n-tuple d’éléments de F et deux n-tuples x et
x′ représentent le même point s’il existe t ∈ F× tel que tajxj = x′j pour
j = 1, . . . , n.

Le champ de modules des courbes elliptiquesM1,1 est un sous-champ
ouvert du champ P(4, 6) (le champ P(4, 6) est le champ qui parametrise
des courbes de genre 1 ayant au pire des singularités ordinaires). Un autre
exemple est donné par le champ Bµm (où µm = Spec

(
F [X]/(Xm−1)

)
est

le schéma de groupe de m-ièmes racines de l’unité), qui est précisément
le champ projectif à poids P(m). Le champ P(a) est lisse, propre et
torique : elle contient le tore champêtre T (a) = Gn

m/Gm. Sa similitude
avec les variétés toriques en fait un excellent candidat pour étudier la
conjecture de Manin-Peyre sur lui.

1.4. Principaux résultats

Nous énonçons les principaux résultats de notre thèse. Notre objec-
tif est de fournir une théorie similaire à celle des points rationnels sur
les variétés, plutôt de donner des preuves ad-hoc de certains cas. Le
développement de la théorie occupe une partie importante de notre thèse.
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SiX est un champ et R un anneau, afin de distinguer la catégorieX(R)
et l’ensemble des classes d’isomorphisme des objets de cette catégorie, on
écrit [X(R)] pour ce dernier. Soit F un corps de nombres.

1.4.1. — Expliquons d’abord que le comptage de points rationnels sur
le champ projectif à poids P(a) est essentiellement différent du comp-
tage de points rationnels sur l’espace projectif à poids P(a). Rappelons
que l’espace projectif à poids P(a) est le quotient (An − {0})/Gm dans
la catégorie des schémas pour la même action que ci-dessus. Notons j
le morphisme canonique j : P(a) → P(a). Le schéma P(a) est une
variété torique, et notons T (a) ∼= Gn−1

m son tore. Un isomorphisme de

groupes Zn/aZ ∼−→ Zn−1× (Z/ gcd(a)Z) induit un isomorphisme de tores
champêtres

T (a)×T (gcd(a)) ∼= Gn−1
m ×T (gcd(a)) = T ({1}n−1×{gcd(a)}) ∼−→ T (a)

= j−1(T (a)).

Ainsi, un point rationnel x ∈ [T (a)(F )] est uniquement déterminé par
la paire

(j(x),x′) ∈ T (a)(F )× [j−1(x)(F )] ∼= T (a)(F )× [T (gcd(a))(F )]

= T (a)(F )× [P(gcd(a))(F )].

Si gcd(a) = 1, alors P(gcd(a)) est le schéma à un point. Il résulte de

ce qui précède que le morphisme j induit une bijection [T (a)(F )]
∼−→

T (F ). D’après [44, Proposition 6.1], l’homomorphisme de tiré en arrière
j∗Q : Pic(P(a))Q → Pic(P(a))Q des groupes de Picard rationnels est un
isomorphisme. Il s’ensuit que compter les points rationnels de T (a) cor-
respond à compter les points rationnels de P(a) par rapport à une hauteur
provenant d’un certain fibré un droites rationnel. Lorsque gcd(a) > 1,
l’ensemble [P(gcd(a))(F )] est infini (Corollaire 4.6.2.2), et on voit que
compter les points rationnels de (du tore champêtre de) P(a) n’est pas
la même chose que de compter les points rationnels de (du tore de) P(a).

1.4.2. — Au chapitre 4, nous définissons une notion de hauteur quasi-
torique sur l’ensemble des points rationnels P(a). C’est une fonction
H : [P(a)(F )] → R≥0 et on établit un résultat de finitude sur le
nombre de points rationnels de hauteur bornée (“propriété de North-
cott faible”). Une hauteur dépend de la choix d’un fibré en droites sur le

champ P(a) = An/Gm (où l’action est canoniquement étendue) et d’une
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“métrique adélique”. Pour v ∈ MF , on définit des espaces topologiques
[P(a)(Fv)] := (F n

v −{0})/F×
v , où l’action est induite à partir de l’action

de Gm sur An − {0}. L’espace produit
∏

v∈MF
[P(a)(Fv)] est un bon

analogue de “l’espace adélique” d’une variété. Dans le chapitre 5, on
définit une mesure ωH sur l’espace produit

∏
v∈MF

[P(a)(Fv)] et on pose
τH = ωH(

∏
v∈MF

[P(a)(Fv)]). Nous montrons que :
Thèorème (Théorème 8.2.2.12, Proposition 8.3.2.3)

Soit H une hauteur quasi-torique. On a ce

|{x ∈ [P(a)(F )]|H(x) ≤ B}| ∼B→∞
τH
|a|B.

Pour un type particulier de hauteur quasi-torique (que dans notre tra-
vail on appelle hauteur torique), le résultat a été établi dans [12]. Pour
les autres hauteurs, le résultat est nouveau.

On établit en outre que les points rationnels de P(a) sont équidistribués
dans

∏
v∈MF

[P(a)(Fv)] dans le sens suivant. Soit i : [P(a)(F )] →∏
v∈MF

[P(a)(Fv)] l’application diagonale. Si W ⊂ ∏
v∈MF

[P(a)(Fv)]
est un sous-ensemble ouvert tel que ω(∂W ) = 0, dans le théorème
8.3.2.2, on prouver que

lim
B→∞

|{x ∈ [P(a)(F )]|i(x) ∈ W et H(x) ≤ B}|
|{x ∈ [P(a)(F )]|H(x) ≤ B}| =

ωH(W )

τH
.

1.4.3. — Énonçons le deuxième résultat principal de notre travail.
On suppose que n = 1 et que m ∈ Z>1. On compte les µm-torseurs
sur F (c’est-à-dire, les points rationnels de P(m)) du discriminant
borné. Au chapitre 9, nous définissons une notion de hauteur quasi-
discriminante. C’est une fonction H : [P(m)(F )] → R≥0 qui satisfait
la propriété faible de Northcott, et est essentiellement différente d’une
hauteur quasi-torique (on ne peut pas la normaliser de telle façon que les
quotients des deux hauteurs sont des fonctions bornées sur [P(m)(F )]).
Les normalisations sont prises de telle sorte que Hm(1−1/r), où r est
le plus petit nombre premier de m, est essentiellement le discriminant
absolu ∆ d’un µm- torseur (c’est-à-dire que les composantes locales de
Hm(1−1/r) ne sont différentes des composantes locales du discriminant
absolu ∆ qu’en un nombre fini de places, par conséquent Hm(1−1/r)/∆
est borné sur [P(m)(F )]). Comme ci-dessus, un choix de la hauteur
quasi-discriminante H définit une mesure ωH sur

∏
v∈MF

[P(m)(Fv)] et
on pose τH = ωH(

∏
v∈MF

[P(m)(Fv)]). Nous montrons que
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Thèorème (Corollaire 9.2.5.9). — Soit H une hauteur quasi-
discriminante. On a que

|{x ∈ [P(m)(F )]|H(x) ≤ B}| ∼B→∞
1

(r − 2)!
· τH
m
· B log(B)r−2.

On montre à nouveau une propriété d’équidistribution des points ra-
tionnels dans l’espace

∏
v∈MF

[P(m)(Fv)] (Théorème 9.2.6.1). La pro-
priété d’équidistribution est utilisée pour prouver qu’une proportion pos-
itive de µm-torseurs de hauteur quasi-discriminante bornée sont des corps
et que, si m n’est pas un nombre premier, une proportion positive ne sont
pas des corps. De plus, lorsque 4 ∤ m ou lorsque i =

√
−1 ∈ F , on est en

mesure de donner une formule pour la proportion de champs (Théorème
9.2.7.3).

Supposons que F contienne toutes les m-ième racines de l’unité. En
particulier, on a que 4 ∤ m ou que i ∈ F . Nous avons que µm = Z/mZ.
Dans ce cas, l’asymptotique pour le nombre de µm = Z/mZ-torseurs de
discriminant borné qui sont des corps, a déjà été donnée par Wright dans
[59]. L’avantage de notre méthode est que nous sommes en mesure de
modifier le discriminant à un nombre fini de places.

1.5. Aperçu de la thèse

Donnons un aperçu de notre travail.

1.5.1. — Nous discutons d’une différence entre les hauteurs sur les
variétés et sur les champs. Soit X une variété propre sur F et soit L un
fibrés en droites sur X. Il est bien connu qu’un choix d’un OF,S-modèle
de (X,L) (où S est un ensemble fini de places finies de F ) munit L
avec une métrique pour chaque place finie qui n’est pas dans S. Nous
munissons le fibré en droites L aux places restants avec une métrique, et
on obtient une métrique adélique sur L, et donc une hauteur sur X(F ).
Dans la construction de la métrique pour les places finies qui ne sont

pas dans S, on utilise le critère valuatif de proprété qui donne que tout Fv-
point deX s’étend à unOv-point du modèle. Cependant, ce n’est pas vrai
pour les champs (par exemple, seuls les points de P(4, 6) correspondant
à des courbes ayant de bonnes réductions à v s’étendent aux Ov-points).

Le critère valuatif de proprété pour des champs donne seulement qu’un
point Fv s’étend jusqu’à un A-point du modèle, où A est la normalisation
deOv dans une extension finie de Fv. Telles extensions intégrales donnent
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lieu à des hauteurs stables (c’est-à-dire, la hauteur d’un F -point reste la
même lorsque le point est considéré comme un K-point, où K/F est
une extension finie). Un desavantage des hauteurs stables est qu’elles ne
satisfont pas à la ✭✭ propriété faible de Northcott ✮✮ (Définition 4.6.1.1),

comme on le voit dans le cas de P(4, 6). À savoir, la hauteur stable de
deux F -courbes elliptiques qui ne sont pas isomorphes sur F est la même
si elles ont le même j-invariant. Pour une courbe elliptique fixe E, il
existe une infinité de telles courbes elliptiques (elles sont construites en
effectuant des torsions quadratiques à E).

1.5.2. — Au chapitre 3, nous rappelons plusieurs résultats sur les
champs, en mettant l’accent sur les stacks projectifs à poids. On in-
troduit aussi le champ P(a) = An/Gm (pour l’extension canonique
de l’action de Gm sur An − {0}). Ainsi, on a des immersions ouvertes

T (a) ⊂ P(a) ⊂ P(a). Le champ P(a) n’est pas séparé (Lemme
3.2.2.6), donc pas propre, mais elle satisfait la propriété que tous
ses points rationnels s’étendent aux points entiers, et résout donc le
problème du manque de points entiers de ci-dessus. Cette propriété
sera utilisée au chapitre 4 pour produire des hauteurs instables sur les
champs projectifs à poids.

Les travaux de Moret-Bailly de [40] fournissent une notion d’espace
topologique associé à l’ensemble des (classes d’isomorphismes de) R-
points d’un champs, lorsque R est un certain type d’anneau local.
L’association est fonctoriale, c’est-à-dire que pour un morphisme
X → Y de champs, l’application induite [X(R)] → [Y (R)] est continue.
Une liste d’autres propriétés que la construction satisfait est donnée
dans [15]. Nous prouvons la proposition suivante qui nous permet de
comprendre cette topologie pour certains champs quotients :
Proposition 1.5.2.1. — Supposons que X soit un champ quotient
Y/G, avec G special (ses torseurs sont localement triviaux, par Hilbert
90, un exemple est fourni par G = Gm). On a que [X(R)] est le quotient
topologique Y (R)/G(R).

Ainsi, on a par exemple que [P(a)(Fv)] = (F n
v − {0})/F×

v et
[T (a)(Fv)] = (F×

v )
n/F×

v , où l’action de F×
v = Gm(Fv) est l’induite de

l’action de Gm sur An − {0} et Gn
m, respectivement. Dans la dernière

partie du chapitre, nous parlons de l’espace adélique du tore T (a). Nous
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le définissons comme le produit restreint

[T (a)(AF )] :=
∏′

v∈MF

[T (a)(Fv)]

par rapport au sous-groupes compacts et ouverts [T (a)(Ov)] ⊂
[T (a)(Fv)]. En utilisant les résultats de Česnavičius de [14] sur la
cohomologie des adèles, nous montrons que [T (a)(AF )] a des propriétés
similaires au tore adélique Gn

m(AF ) (par exemple l’image des points
rationnels [T (a)(F )] pour l’application diagonale est discrète).

1.5.3. — Nous commençons le chapitre 4 en rappelant des faits sur les
fibres en droites sur les champs, en particulier que les fibrés en droites sur
le champ quotient Y/G correspondent à des fibrés en droites G-linearisés

sur le schéma Y . Les groupes de Picard Pic(P(a)) et Pic(P(a)) sont
calculés. Ensuite, nous définissons les métriques sur les fibrés en droites
comme suit. Soit v une place de F , soit X un champ Fv-algébrique et
soit L un fibré en droites sur X. Nous définissons une Fv-metric on L
comme étant la donné fourniée par Fv-métriques “compatibles” sur y∗L
pour chaque morphisme y : Y → X avec Y un Fv-schema (par une Fv-
métrique sur un fibré en droites sur un schéma Fv, nous entendons un
choix “continu” de normes sur toutes les Fv-fibrés). Notre métrique n’est
pas forcement stable. Pour les champ quotients X = Y/G, lorsque G
est supposé être un groupe algébrique spécial, nous relions le groupe des

fibrés en droites Fv-métrisés P̂icv(Y/G) avec le groupe P̂ic
G
v (Y ) des fibrés

en droites Fv-métrisés sur X qui sont munis par une G-linéarisation et
tels que la métrique est G-invariant :
Proposition 1.5.3.1 (Proposition 4.3.4.5). — Soit G un schéma
en groupes spécial de type fini sur Fv agissant sur localement de type fini

Fv-schéma Y . L’homomorphisme canonique P̂icv(Y/G) → P̂icGv (Y ) est

injectif, et est un isomorphisme si P̂icv(Y/G)→ Pic(Y/G) est surjectif.
Le champ P(a) = (An − {0})/Gm satisfait cette condition sur

l’existence de Fv-métriques sur chacun de ses fibrés en droites (Lemme
4.3.6.3). Par conséquent, comme Pic(An − {0}) est trivial, on en déduit
que pour définir une Fv-métrique sur un fibré en droites sur P(a), il
suffit à définir une métrique Gm-invariante sur la Gm-linéarisation cor-
respondante du fibré trivial sur An − {0}. Une telle métrique est définie
par la norme de la section 1 et la condition sur les linéarisations donne
une condition d’“homogénéité” à la fonction F n

v −{0} → R>0,x 7→ ||1||x.
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Supposons qu’un fibré en droites L sur P(a) soit muni d’une Fv-
métrique pour chaque v ∈ MF , sous réserve d’une condition de compat-
ibilité qui permet aux normes d’une section être multiplié à n’importe
quel x ∈ [P(a)(F )] (voir la condition dans la définition 4.4.1.1). Nous
pouvons définir des hauteurs en multipliant les inverses de ces normes
pour chaque v. La généralité, laisse la possibilité d’existence de hau-
teurs “essentiellement différentes” sur les mêmes fibres en droites, c’est-
à-dire des hauteurs telles que leurs quotients ne sont pas des fonctions
bornées sur l’ensemble [P(a)(F )]. Des exemples sont : les hauteurs
stables mentionnées, les hauteurs quasi-toriques (nous allons les expli-
quer maintenant) et dans le cas n = 1 les hauteurs quasi-discriminantes
(elles seront expliquées dans le dernier chapitre). Les hauteurs quasi-
toriques sont les hauteurs qui proviennent des familles de métriques qui
se présentent de la manière suivante pour presque chaque place : étendre
un Fv-point du champ P(a) à un Ov-point et utilisez la méthode clas-
sique (déjà discutée dans 2.5.1) pour obtenir une métrique (une petite

modification, cependant, doit être faite, car P(a) n’est pas séparé et
donc le Ov-extension d’un Fv-point n’est pas unique. Contrairement aux
hauteurs stables, les hauteurs quasi-toriques satisfont à la propriété faible
de Northcott :
Theorem 1.5.3.2 (Théorème 4.6.8.2). — Soit H une hauteur quasi-
torique sur P(a). Soit ǫ > 0. On a qu’il existe C > 0 tel que

|{x ∈ [P(a)(F )]|H(x) ≤ B}| ≤ CB1+ǫ.

L’idée de la preuve est d’estimer séparément la hauteur finie et la
hauteur infinie. La limite supérieure de la cardinalité dans le théorème
est nécessaire pour assurer la convergence de la série zêta de hauteur
correspondante. L’affirmation de 1.5.3.2 reste valide même lorsque les
métriques à un nombre fini des places sont autorisées à avoir des singu-
larités ”logarithmiques” le long de diviseurs rationnels (voir le corollaire
4.7.1.3). La preuve de cette version découle immédiatement de 1.5.3.2,
après avoir établi une estimation de la hauteur singulière de la forme :
HSing ≥ CH log−η(H), où C, η > 0, ce que nous faisons dans la proposi-
tion 4.7.1.2.

1.5.4. — Dans le chapitre 5, nous munissons les espaces topologiques
associés aux R-points par des mesures. En particulier, nous définissons
des mesures sur [P(a)(Fv)] (qui dépendent du choix des métriques) et
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sur [T (a)(Fv)] (qui ne dépendent pas du choix de métrique). Les mesures
sont utilisées pour définir la constante de Peyre τH .
La dernière partie du chapitre est consacrée à la définition des mesures

sur le “tore adélique” [T (a)(AF )] et le nombre de Tamagawa du tore
champêtre T (a). On établit que
Proposition 1.5.4.1 (Proposition 5.4.4.4). — On a l’égalité
Tam(T (a)) = 1.

Lorsque a = 1, c’est le résultat classique que le nombre de Tama-
gawa d’un tore scindé est 1. La preuve de la proposition 1.5.4.1 utilise
les caractéristiques d’Euler-Poincaré d’Oesterlé de complexes de groupes
abéliens localement compacts qui sont munis de mesures de Haar.

1.5.5. — Le chapitre 6 étudie characteurs du “tore adélique” [T (a)(AF )].
On introduit des normes “discrètes” et des normes “infinies” de ces car-
actères. On établit un résultat de finitude sur le nombre de caractères
χ ∈ [T (a)(AF )]

∗ qui s’annulent sur [T (a)(F )] et sur certains sous-
groupes de bornée l’une ou l’autre de ces normes. Dans la dernière
partie de ce chapitre nous rappelons les estimations de Rademacher
sur L fonctions de caractères. Les résultats de ce chapitre seront utilisés
au chapitre 7 pour prouver que la transformée de Fourier d’une fonction
hauteur est intégrable.

1.5.6. — Au chapitre 7 nous adaptons la méthode d’analyse har-
monique de Batyrev et Tschinkel de [3] à notre situation. Nous
supposons que les métriques sont lisses. La première partie du chapitre
est consacrée au calcul de la transformée de Fourier de la hauteur locale
en une place finie v. Pour presque tous les v, nous pouvons donner la
formule exacte qui s’avère être le produit de fonctions locales L de car-
actères et d’autres facteurs. Ensuite, pour une place infinie v, en utilisant
les hypothèses de régularité, nous prouvons des estimés appropriés de la
transformée de Fourier dans les deux normes de caractères. La preuve
de cette affirmation est une adaptation de l’idée de Chambert-Loir et
Tchinkel de [18] et [20], où les auteurs appliquent l’intégration par
parties par rapport aux champs de vecteurs invariants. La transformée
de Fourier globale s’écrit donc comme un produit de L fonctions et d’une
partie sur laquelle nous avons un contrôle.

1.5.7. — Au chapitre 8 nous utilisons la théorie de [17] pour analyser
la fonction zêta de hauteur.
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L’accent est mis sur le tore champêtre T (a) ⊂ P(a). De l’estimé
du théorème 1.5.3.2, on déduit que la fonction hauteur zêta Z(s) :=∑

x∈[T (a)(F )]H(x)−s converge et définit une fonction holomorphe de s

dans le domaine ℜ(s) > 1. La formule de Poisson donne que

Z(s) =

∫

([T (a)(AF )]/[T (a)(F )])∗
Ĥ(s, χ)dχ

chaque fois que les expressions des deux côtés convergent. Les estimés
du chapitre 6 et du chapitre 7 et la “similarité” de la transformée de
Fourier globale de la hauteur avec L fonctions, donnent la convergence de
l’intégrale à droite pour ℜ(s) > 1. De plus, la preuve impliquera que s 7→
Z(s) a une extension méromorphe dans un domaine ℜ(s) > 1 − δ, pour
un certain δ > 0. Les estimés de Rademacher impliquent que Z satisfait
les conditions de croissance nécessaires pour les théorèmes taubériens.
Le résidu de Z à 1 est également calculé. En conséquence, les théorèmes
taubériens donnent le comportement asymptotique du nombre de points
rationnels de la hauteur au plus B :
Theorem 1.5.7.1 (Théorème 8.2.2.12, Proposition 8.3.2.3)

Soit H une hauteur quasi-torique. On a ce

{x ∈ [P(a)(F )]|H(x) ≤ B} ∼ τH
|a|B,

quand B tend vers +∞.
La constante 1

|a| a la même interprétation que dans le cas des variétés

(voir Remarque 8.3.2.7) et l’asymptotique reste la même quand on

compte les points rationnels de P(a) (car [P(a)(F )] − [P(a)(F )] est
un ensemble à un point). Ainsi le théorème 1.5.7.1 peut être compris
comme la conjecture de Manin-Peyre est vraie pour les champs projec-
tifs à poids P(a). La dernière partie du chapitre est consacrée à la
compréhension l’équidistribution des points rationnels du champ P(a).
L’idée est de trouver le comportement asymptotique du nombre de
points rationnels de hauteur bornée qui sont demandés pour un nom-
bre fini de places v à appartenir à certains sous-ensembles ouverts
de l’espace v-adique du champ (par exemple, disons que la valuation
2-adic est paire). Une manière élégante de formuler cette question a
été donnée par Peyre dans [47], en utilisant la mesure ωH ci-dessus
: si W ⊂ ∏

v∈MF
[P(a)(Fv)] est un sous-ensemble ouvert de frontière
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négligeable, on s’attend à ce que :

lim
B→∞

|{x ∈ [P(a)(F )]|i( xxx) ∈ W et H(x) ≤ B}|
|{x ∈ [P(a)(F )]|H(x) ≤ B}| =

ωH(W )

τH
,

où i : [P(a)(F )] → ∏
v∈MF

[P(a)(Fv)] est l’application diagonale. Si
cela est vrai pour chaque W , alors nous disons que les points rationnels
sont équidistribués. Nous prouvons que :
Théorème 1.5.7.2 (Théorème 8.3.2.2). — Les points rationnels
de P(a) sont équidistribués dans l’espace

∏
v∈MF

[P(a)(Fv)] .

1.5.8. — Au chapitre 9, nous utilisons nos méthodes pour étudier une
question similaire à la conjecture de Malle. On trouve l’asymptotique
pour le nombre de µm-torseurs sur F du discriminant absolu borné.
Lorsque F contient toutes les m-ième racines de 1, cette question est
la conjecture de Malle pour le groupe cyclique Z/mZ, mais il faut en-
lever les torseurs qui ne sont pas des corps et il peut y en avoir une
proportion positive (le comptage des extensions cycliques a été couvert
par le cas de l’abélienne groupes de [59]). Les µm-torseurs sur F sont
parametrisés par le champ algébrique Bµm = T (m) = P(m).

Nous utilisons le langage des hauteurs développé précédemment. On
parle de hauteurs quasi-discriminantes, qui sont similaires aux discrim-
inants, à la différence que les composantes locales de ces hauteurs aux
nombres finis de places peuvent être différentes des composantes locales
du discriminant. Notons qu’une hauteur quasi-discriminante n’est pas
une hauteur quasi-torique, car les composantes locales des deux hau-
teurs sont différentes à presque tous les places. On va définir une mesure
ωH sur

∏
v∈MF

[P(m)(Fv)] et on va poser τH = ωH(
∏

v∈MF
[P(m)(Fv)]).

La méthode de la preuve est une adaptation de la méthode d’analyse
harmonique ci-dessus. Il y a quelques simplifications, car les espaces lo-
caux [T (m)(Fv)] sont finis, et des modifications dues à la différence avec
les hauteurs quasi-toriques. Finalement, nous prouvons la convergence
de la série zêta des hauteurs et utilisons la formule de Poisson comme
précédemment. Dans le but d’avoir une formule plus élégante, nous in-
diquons ici l’asymptotique finale pour les hauteurs qui sont “essentielle-

ment” ∆
1

m(1−1/r) , où r est le plus petit nombre premier de m (c’est-à-dire
que pour presque tous les places, la composante locale de H cöıncide avec

la composante locale de ∆
1

m(1−1/r) ).
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Théorème 1.5.8.1 (Corollaire 9.2.5.9). — Soit H une hauteur
quasi-discriminante. On a que

|{x ∈ [P(m)(F )]|H(x) ≤ B}| = τH
(r − 2)!m

B log(B)r−2.

L’asymptotique rappelle beaucoup celle de la conjecture de Manin-
Peyre. Comme dans le cas des hauteurs quasi-toriques, nous sommes ca-
pables de prouver une propriété d’équidistribution correspondante dans∏

v∈MF
[P(m)(Fv)]. Nous terminons le chapitre par la preuve qu’il ex-

iste une proportion positive de µm-torseurs qui sont des corps. Ceci est
prouvé en trouvant un sous-ensemble ouvert W ⊂∏v∈MF

[P(m)(Fv)] de
volume positif tel que tous les µm-torseurs qu’il contient sont des corps.
De plus, lorsque 4 ∤ m ou lorsque i =

√
−1 ∈ F , nous donnons une

formule exacte pour cette proportion.

1.6. Questions et remarques

Discutons de quelques questions qui découlent naturellement de notre
travail.

1.6.1. — La conjecture de Manin-Peyre a été prouvée pour toutes les
variétés toriques lisses. On aimerait savoir à quelle généralité la preuve
s’applique à d’autres champs toriques (c.f. [28]). Nous ne savons pas ce
qui se passe lorsque le “tore champêtre” n’est pas scindé, c’est-à-dire pas
un quotient de deux tores scindés. La conjecture de Manin-Peyre pour
les variétés toriques a également été prouvée pour le cas des corps de
fonctions ([11]). Nous aimerions savoir quelle est la situation pour des
champs toriques.

1.6.2. — Il serait intéressant de comprendre à quelles autres champs
on peut développer une théorie des hauteurs et l’utiliser pour compter
des points rationnels. Des exemples de tels champs pourraient être : le
champMg qui parametrise les courbes du genre g, le champ de variétés
abéliennes principalement polarisées Ag, etc.

1.6.3. — On pourrait se demander s’il existe un champ X avec suff-
isamment de points entiers, tel que Bµm ⊂ X et tel que le discriminant
se présente comme une hauteur induite par un OF,S-modèle de X et un
fibré en droites dessus (ici S est un ensemble fini de places). Nous voudri-
ons savoir alors si le résultat du théorème 1.5.8.1 peut être réinterprété
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comme cette conjecture de Manin-Peyre est vraie pour X. On peut alors
se demander comment la prédiction de la conjecture de Malle se compare
à la prédiction de la conjecture de Manin-Peyre. La même question peut
être posée pour n’importe quel (schéma en) groupe(s) fini G.

1.6.4. — Une notion différente de hauteur sur un champ, définie par
des fibrés vectoriels, a été proposée par Ellenberg, Satriano et Zureick-
Brown dans un travail à venir. Leur hauteur n’est pas additive dans les
fibrés vectoriels. Nous aimerions savoir comment cette notion se compare
à notre notion de la hauteur.

1.6.5. — Un contre-exemple à la conjecture de Malle a été construit
par Klüners dans [33]. Les contre-exemples connus dans la conjecture
de Manin-Peyre sont évités si l’on permet de supprimer les “ensembles
minces”. Nous aimerions savoir si la suppression des “ensembles minces”
corrige la prédiction de Malle.



CHAPTER 2

INTRODUCTION

2.1. Notation

The following notation will be used throughout the thesis. By F we
will denote a number field (which one may fix for the whole article). Let
MF , M

0
F , M

∞
F , MR

F and MC
F be the set of places, finite places, infinite

places, real places and complex places of F , respectively. For v ∈ MF

we let Fv be the v-adic completion of F . For v ∈M0
F , let Ov be the ring

of integers of Fv, let us fix an uniformizer πv ∈ Fv and let |·|v be the
absolute value on Fv normalized by |πv|v = [Ov : πvOv]−1. For v ∈ MR

F ,
we let |·|v be the usual absolute value and for v ∈ MC

F we let |·|v be the
square of the usual absolute value. The normalizations are chosen so that
the product formula is valid i.e. for every x ∈ F , one has

∏

v∈MF

|x|v = 1.

By OF we denote the ring of the integers of F and for a finite subset
S ⊂ M0

F , we denote by OF,S the ring of S-integers. When v ∈ M∞
F , we

will denote by nv the degree [Fv : R]. We denote by AF the ring of the
adeles of F and by A×

F the group of ideles.
For a vector x ∈ Rn, we will denote by |x| the sum x1 + · · ·+ xn.

2.2. Manin-Peyre conjecture

Let us recall a conjecture due to Manin and Peyre on the asymptotic
behaviour of the number of rational points of bounded “size”.
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2.2.1. — One of the fundamental questions in Diophantine geometry
is the study of the number of solutions to algebraic equations. The
conjecture of Manin-Peyre deals with a such a question. It predicts the
number of the rational points on algebraic varieties of bounded height,
when there are “a lot” of them. Let us briefly recall it.

Let X be a Fano variety over a number field F and let K−1
X be its

anticanonical bundle. The Fano condition, i.e. that K−1
X is positive, is

believed to make, after possibly passing to an extension of F , rational
points Zariski dense in X. An adelic metric on K−1

X is a choice of metrics
for every topological line bundle K−1

X (Fv)→ X(Fv) for v in the set of the
places MF of F , subject to certain compatibility conditions. A choice of
an adelic metric on K−1

X produces two things. Firstly, it gives a height,
i.e. a function H : X(F ) → R>0 which satisfies the Northcott property:
for every B > 0, the set {x ∈ X(F )|H(x) ≤ B} is finite. This in essence,
generalizes the classical notion of the height on the projective space Pn

when F = Q, which is given by H(x) = max |xj|, where x are integer
coordinates which satisfy gcd(x) = 1. The height serves as a “size” of
a rational point. Secondly, the choice of the adelic metric produces a
measure ωH on the adelic space X(AF ) :=

∏
v∈MF

X(Fv) (see [47]). Let

τH be the value ωH(X(F )), where the closure X(F ) is taken in X(AF ).
The following question is asked by Peyre in [47] and refines the original
question posed by Manin:
Conjecture 2.2.1.1. — Suppose that the rational points X(F ) are
Zariski-dense in X. Then there exist a closed subvariety Z ( X, such
that one has

|{x ∈ (X − Z)(F )|H(x) ≤ B}| ∼B→∞ ατHB log(B)rk(Pic(X))−1,

where α = α(X) is a positive constant connected to the location of K−1
X

in the ample cone of X and rk(Pic(X)) is the rank of the Picard group
of X.

One removes a closed subvariety to avoid so-called “accumulating”
subvarieties, which contain more points than the rest of the variety.

The conjecture has been settled in many different cases. The proof for
the case of Pn is given by Schanuel in [53], long before the conjecture
was even formulated. Other important known cases of the conjecture are
toric varieties ([3]), equivariant compactifications of vector groups ([18]),
certain families of Châtelet surfaces ([23], [26]), etc. The version from
2.2.1.1 does admit counterexamples (e.g. [4], [35]). There exists a version
for which no known counterexamples exist: instead of removing closed
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subvarieties, one removes “thin” sets (a thin set is a subset of the image
of the set of rational points V (F ) for a morphism of varieties V → X,
which, in a neighbourhood of the generic point of V, is quasi-finite and
admits no section). For a survey on Manin-Peyre conjecture, we refer
the reader to [16].

2.2.2. — Different methods are available to tackle the question: univer-
sal torsors, circle method, harmonic analysis, Eisenstein series, etc. We
briefly recall the harmonic analysis method, firstly used in [2] by Batyrev
and Tschinkel to prove Manin-Peyre conjecture on compactifications of
anisotropic tori and later developed in [3], [17], [18], [20], etc. to settle
more general and new examples. Let X be a toric variety and let T be its
torus. LetH be the height given by an adelic metric on the anti-canonical
line bundle. We count the rational points of T (the divisor at the infinity
X −T may, however, accumulate points). We have that T (F ) is discrete
in the adelic torus T (AF ). We extend H|T (F ) to a “height” on T (AF ).

We let Ĥ(s, χ) be the Fourier transform of H−s (where s is a complex
number) at the character χ : T (AF )→ S1 which vanishes at T (F ). The

global transform is an Euler product of local transforms Ĥv(s, χv) for
v ∈ MF . The local transforms are Igusa integrals (see [19]) and we can
either give exact formulas for them or prove certain bounds. Then global

Fourier transform Ĥ(s, χ) turns out to be a product of L-functions and
a part that is easy to analyse.

The Poisson formula (7.1.1.4) gives Z(s) =
∫
(T (AF )/T (F ))∗

Ĥ(s, χ)dχ,

where dχ is suitably normalized Haar measure on the group of the char-
acters (T (AF )/T (F ))

∗. There are methods to analyse the integrals on
the right hand side, e.g. method of “controlled M -functions” from [17].

One obtains the pole and a meromorphic extension of Z, which, by
Tauberian results, gives the wanted asymptotic for the number of rational
points of T of bounded height.

2.3. Manin-Peyre conjecture for stacks

In this thesis, we are intending to extend the conjecture of Manin-Peyre
to the algebraic stacks.

We present two motivations.

2.3.1. — A naive height HN of an elliptic curve E/Q is defined as fol-
lows: write the equation of E as Y 2 = X3 +AX +B, where (A,B) ∈ Z2
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has the property that for every prime p one has that p4|A =⇒ p6 ∤ B
and set HN(E) := max(|A3|, |B2|). Faltings, in his proof of Mordell
conjecture [27], defines different notions of a height of an elliptic curve
called unstable Faltings height and stable Faltings height. For the naive
height and the unstable Faltings height, it turns out that if B > 0, there
are only finitely many isomorphism classes of elliptic curves of height at
most B. It is not hard to count elliptic curves over Q of bounded naive
height (and, as we will see later, it is possible to do so over any number
field F ). For the case F = Q, Hortsch in [31] finds the asymptotic be-
haviour for the number of the isomorphism classes of elliptic curves and
bounded unstable Faltings height. Both asymptotics are similar to the
asymptotics appearing in Manin-Peyre conjecture. However, there is a
distinction: the elliptic curves over a number field are not classified by a
variety, but by an algebraic stack. The stack is usually denoted byM1,1.

2.3.2. — We present another example where one counts rational points
on algebraic stacks. Malle in [37] conjectures the following:
Conjecture 2.3.2.1 (Malle, [37]). — Let G be a non-trivial finite
transitive permutation group and let F be a number field. We say that
Gal(K/F ) = G if K/F is an extension such that the Galois group of its
Galois closure is isomorphic to G as a permutation group. There exists
c(F,G) > 0, such that

|{K/F |Gal(K/F ) = G,∆(K/F ) ≤ B}| ∼ c(F,G)Ba(G) log(B)b(F,G)−1,

when B →∞, where ∆ is the absolute discriminant of an extension, and
a(G) and b(F,G) are explicit invariants of G and of F and G, respec-
tively.
The prediction is proved for some cases like the case of abelian groups

([59]), some other families of groups (e.g. [57], [22]) and it admits
counter-examples ([33]). An object that one counts in Malle’s question
determines a point on the stack BG (this is the algebraic stack which
classifies G-torsors). Thus, Malle conjecture too, can be studied as count-
ing rational points on an algebraic stack. Moreover, the predictions of
Manin and Malle conjectures appear similar. The similarities have al-
ready been observed by Yasuda in [60] and by Ellenberg, Satriano and
Zureick-Brown in a forthcoming work. The reason for the similarities
of the predictions may be hidden in the geometry of the corresponding
BG-stack.
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2.3.3. — The goal of our work is to formulate and investigate the con-
jecture of Manin-Peyre in the context of algebraic stacks. More precisely,
we are going to so for the weighted projective stacks. If n ≥ 1 is an in-
teger and a ∈ Zn>0, the weighted projective stack P(a) is the “stacky”
quotient of the scheme An − {0} by the group scheme Gm, where the
action is given by t · x := (tajxj)j. When all the weights aj are equal
to 1, then P(a) is the projective space Pn−1. One has homogenous co-
ordinates on the weighted projective stacks: a rational point on P(a) is
given by n-tuple of elements of F and two n-tuples x and x′ represent the
same point if there exists t ∈ F× such that tajxj = x′j for j = 1, . . . , n.
The moduli stack of elliptic curves M1,1 is an open substack of the

stack P(4, 6) (the stack P(4, 6) itself is the classifying stack of the curves
of genus 1 having at worst ordinary singularities). Another example is
given by the stack Bµm (where µm = Spec

(
F [X]/(Xm−1)

)
is the group

scheme of m-th roots of unity), which is precisely the weighted projective
stack P(m). The stack P(a) is smooth, proper and toric: it contains the
stacky torus T (a) = Gn

m/Gm. Its similarity with toric varieties makes it
a great candidate to study the Manin-Peyre conjecture on it.

2.4. Principal results

We state principal results of our thesis. Our goal is to provide a theory
similar to the one for the rational points on varieties, rather to give ad-
hoc proofs of certain cases. The development of the theory occupies a
significant part of our thesis.

If X is a stack and R a ring, in order to distinguish between the cate-
gory X(R) and the set of isomorphism classes of objects of this category,
we write [X(R)] for the latter. Let F be a number field.

2.4.1. — Let us firstly explain when counting rational points on the
weighted projective stack P(a) is essentially different from counting
rational points on the weighed projective space P(a). Recall that the
weighted projective space P(a) is the quotient (An − {0})/Gm in the
category of schemes for the same action as above. Let us denote by j
the canonical morphism j : P(a) → P(a). The scheme P(a) is a toric
variety, and let us denote by T (a) ∼= Gn−1

m its torus. An isomorphism of

groups Zn/aZ ∼−→ Zn−1× (Z/ gcd(a)Z) induces an isomorphism of stacky
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tori

T (a)×T (gcd(a)) ∼= Gn−1
m ×T (gcd(a)) = T ({1}n−1×{gcd(a)}) ∼−→ T (a)

= j−1(T (a)).

Hence, a rational point x ∈ [T (a)(F )] is uniquely determined by the
pair

(j(x),x′) ∈ T (a)(F )× [j−1(x)(F )] ∼= T (a)(F )× [T (gcd(a))(F )]

= T (a)(F )× [P(gcd(a))(F )].

If gcd(a) = 1, then P(gcd(a)) is the one point scheme. It follows from

above that the morphism j induces a bijection [T (a)(F )]
∼−→ T (F ).

According to [44, Proposition 6.1], the pullback homomorphism j∗Q :
Pic(P(a))Q → Pic(P(a))Q of the rational Picard groups is an isomor-
phism. It follows that counting rational points of T (a) corresponds to
counting the rational points of P(a) with respect to a height coming from
a certain rational line bundle. When gcd(a) > 1, the set [P(gcd(a))(F )]
is infinite (Corollary 4.6.2.2), and we see that counting the rational points
of (the stacky torus of) P(a) is not the same as the counting the rational
points of (the torus of) P(a).

2.4.2. — In Chapter 4, we define a notion of quasi-toric height on the
set of rational points P(a). It is a function H : [P(a)(F )]→ R≥0 and we
establish a finiteness result on the number of rational points of bounded
height (“weak Northcott property”). A height depends on the choice of a

line bundle on the stack P(a) = An/Gm (where the action is canonically
extended) and an “adelic metric” on it. For v ∈MF , we define topological
spaces [P(a)(Fv)] := (F n

v − {0})/F×
v , where the action is induced from

the action of Gm on An − {0}. The product space
∏

v∈MF
[P(a)(Fv)]

is a good analogue of the “adelic space” of a variety. In Chapter 5, we
define a measure ωH on the product space

∏
v∈MF

[P(a)(Fv)] and we set
τH = ωH(

∏
v∈MF

[P(a)(Fv)]). We prove that:
Theorem (Theorem 8.2.2.12, Proposition 8.3.2.3)

Let H be a quasi-toric height. One has that

|{x ∈ [P(a)(F )]|H(x) ≤ B}| ∼B→∞
τH
|a|B.
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For a particular type of quasi-toric height (that in our work is called
toric height), the result has been established in [12]. For the other
heights, the result is new.

We establish furthermore that the rational points of P(a) are equidis-
tributed in

∏
v∈MF

[P(a)(Fv)] in the following sense. Let i : [P(a)(F )]→∏
v∈MF

[P(a)(Fv)] be the diagonal map. If W ⊂∏v∈MF
[P(a)(Fv)] is an

open subset such that ω(∂W ) = 0, in Theorem 8.3.2.2, we prove that

lim
B→∞

|{x ∈ [P(a)(F )]|i(x) ∈ W and H(x) ≤ B}|
|{x ∈ [P(a)(F )]|H(x) ≤ B}| =

ωH(W )

τH
.

2.4.3. — Let us state the second principal result of our work. We
suppose that n = 1 and that m ∈ Z>1. We count µm-torsors over F
(i.e the rational points of P(m)) of bounded discriminant. In Chap-
ter 9, we define a notion of quasi-discriminant height. It is a function
H : [P(m)(F )]→ R≥0 which satisfies the weak Northcott property, and
is essentially different from a quasi-toric height (one cannot normalize
it so that the quotients of the two heights are bounded functions on
[P(m)(F )]). The normalizations are taken so that Hm(1−1/r), where r
is the least prime of m, is essentially the absolute discriminant ∆ of a
µm-torsor (i.e. the local components of Hm(1−1/r) are different from the
local components of the absolute discriminant ∆ at only finitely many
places, consequently Hm(1−1/r)/∆ is bounded on [P(m)(F )]). As above,
a choice of the quasi-discriminant height H defines a measure ωH on∏

v∈MF
[P(m)(Fv)] and we set τH = ωH(

∏
v∈MF

[P(m)(Fv)]). We prove
that
Theorem (Corollary 9.2.5.9). — Let H be a quasi-discriminant
height. One has that

|{x ∈ [P(m)(F )]|H(x) ≤ B}| ∼B→∞
1

(r − 2)!
· τH
m
· B log(B)r−2.

Again we prove an equidistribution property of rational points in the
space

∏
v∈MF

[P(m)(Fv)] (Theorem 9.2.6.1). The equidistribution prop-
erty is used to prove that a positive proportion of µm-torsors of bounded
quasi-discriminant height are fields and that, if m is not a prime, a
positive proportion are not fields. Moreover, when 4 ∤ m or when
i =
√
−1 ∈ F , we are able to give a formula for the proportion of fields

(Theorem 9.2.7.3).
Suppose that F contains all m-th roots of unity. In particular, one has

that 4 ∤ m or that i ∈ F . We have that µm = Z/mZ. In this case, the
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asymptotics for the number of µm = Z/mZ-torsors of bounded discrim-
inant which are fields, has already been given by Wright in [59]. The
advantage of our method is that we are able to modify the discriminant
at finitely many places.

2.5. Overview of the thesis

Let us make an overview of our work.

2.5.1. — Let us discuss a difference between heights on varieties and
stacks. Let X be a proper F -variety and let L be a line bundle on X.
It is well known that a choice of an OF,S-model of (X,L) (where S is a
finite set of finite places of F ) endows L with a metric for every finite
place not in S. Endowing the line bundle L at the remaining places with
a metric, gives an adelic metric on L, and hence a height on X(F ).

In the construction of the metric for the finite places not in S, one uses
the valuative criterion of properness which gives that every Fv-point of X
extends to an Ov-point of the model. However, this is not true for stacks
(e.g. only the points of P(4, 6) corresponding to curves having good
reductions at v do extend to Ov-points).

The valuative criterion of properness for stacks gives only that an Fv-
point extends to an A-point of the model, where A is the normalization of
Ov in a finite extension of Fv. Such integral extensions give rise to stable
heights (i.e. the height of an F -point stays the same when the point is
looked as a K-point, where K/F is a finite extension). A drawback of the
stable heights is that they do not satisfy the “weak Northcott property”
(Definition 4.6.1.1), as one sees in the case of P(4, 6). Namely, the stable
height of two F -elliptic curves which are not isomorphic over F is the
same if they have the same j-invariant. For a fixed elliptic curve E,
there are infinitely many such elliptic curves (they are constructed by
performing quadratic twists to E).

2.5.2. — In Chapter 3, we recall several results about stacks, with the
focus on the weighted projective stacks. We also introduce the stack
P(a) = An/Gm (for the canonical extension of the action of Gm on

An−{0}). Thus, one has open immersions T (a) ⊂P(a) ⊂P(a). The

stack P(a) is not separated (Lemma 3.2.2.6), hence not proper, yet it
exhibits the property that all of its rational points extend to integral
points, and hence resolves the problem of lack of the integral points from
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above. This property will be used in Chapter 4 to produce unstable
heights on the weighted projective stacks.

Work of Moret-Bailly from [40] provides a notion of a topological space
associated to the set of (isomorphism classes of) R-points of stacks,
when R is a certain kind of topological local ring. The association is
functorial, that is, for a morphism X → Y of stacks, the induced map
[X(R)] → [Y (R)] is continuous. A list of other properties that the con-
struction satisfies is given in [15]. We prove the following proposition
that enables us understand this topology for certain quotient stacks:
Proposition 2.5.2.1. — Suppose that X is a quotient stack Y/G,
with G special (its torsors are locally trivial, by Hilbert 90, an example
is provided by G = Gm). One has that [X(R)] is the topological quotient
Y (R)/G(R).

Thus, one has for example that [P(a)(Fv)] = (F n
v − {0})/F×

v and
[T (a)(Fv)] = (F×

v )
n/F×

v , where the action of F×
v = Gm(Fv) is the in-

duced from the action of Gm on An − {0} and Gn
m, respectively. In the

last part of the chapter, we speak about the adelic space of the torus
T (a). We define it to be the restricted product

[T (a)(AF )] :=
∏′

v∈MF

[T (a)(Fv)]

with the respect to the compact and open subgroups [T (a)(Ov)] ⊂
[T (a)(Fv)]. Using the results of Česnavičius from [14] on cohomology
of the adeles, we prove that [T (a)(AF )] has similar properties to the
adelic torus Gn

m(AF ) (e.g. the image of the rational points [T (a)(F )] for
the diagonal map is discrete).

2.5.3. — We start Chapter 4 by recalling facts about line bundles on
stacks, in particular that the line bundles on the quotient stack Y/G
correspond to G-linearized line bundles on the scheme Y . The Picard
groups Pic(P(a)) and Pic(P(a)) are calculated. Then, we define metrics
on line bundles as follows. Let v be a place of F , let X be an Fv-algebraic
stack and let L a line bundle on X. We define an Fv-metric on L to be
the data given by “compatible” Fv-metrics on y∗L for every morphism
y : Y → X with Y an Fv-scheme (by an Fv-metric on a line bundle over
an Fv-scheme, we mean a “continuous” choice of norms on all Fv-fibers).
Our metric does not need to be stable. For quotient stacks X = Y/G,
when G is assumed to be a special algebraic group, we relate the group
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of Fv-metrized line bundles P̂icv(Y/G) with the group P̂icGv (Y ) of Fv-
metrized line bundles on X which are endowed with a G-linearization
and such that the metric is G-invariant:
Proposition 2.5.3.1 (Proposition 4.3.4.5). — Let G be a special
locally of finite type Fv-group scheme acting on locally of finite type Fv-

scheme Y . The canonical homomorphism P̂icv(Y/G) → P̂icGv (Y ) is in-

jective, and is an isomorphism if P̂icv(Y/G)→ Pic(Y/G) is surjective.
The stack P(a) = (An − {0})/Gm satisfies this condition on the ex-

istence of Fv-metrics on every of its line bundles (Lemma 4.3.6.3). Con-
sequently, as Pic(An − {0}) is trivial, we deduce that to define an Fv-
metric on a line bundle on P(a), it suffices to define a Gm-invariant
metric on the corresponding Gm-linearization of the trivial line bundle
on An − {0}. Such metric is defined by the norm of the section 1 and
condition on the linearizations gives a “homogeneity” condition to the
function F n

v − {0} → R>0,x 7→ ||1||x.
Suppose that a line bundle L on P(a) is endowed with an Fv-metric

for every v ∈MF , subject to a compatibility condition which allows that
the norms of a section can be multiplied at any x ∈ [P(a)(F )] (see the
condition in Definition 4.4.1.1). We can define heights by multiplying
the inverses of these norms for every v. The generality, leaves possibility
of existence of “essentially different” heights on the same line bundles,
i.e. heights such that their quotients are not bounded functions on the
set [P(a)(F )]. Examples are: the mentioned stable heights, the quasi-
toric heights (we are going to explain them now) and in the case n = 1
the quasi-discriminant heights (they will be explained in the last chap-
ter). Quasi-toric heights are the heights, which come from the families
of metrics which arise in the following way for almost every place: ex-
tend an Fv-point of the stack P(a) to an Ov-point and use the classical
method (already discussed in 2.5.1) to get a metric (a smaller modifica-

tion, however, must be done, because P(a) is not separated and thus
an Ov-extension of an Fv-point is not unique). Contrary to the stable
heights, the quasi-toric heights do satisfy the weak Northcott property:
Theorem 2.5.3.2 (Theorem 4.6.8.2). — Let H be a quasi-toric
height on P(a). Let ǫ > 0. One has that there exists C > 0 such that

|{x ∈ [P(a)(F )]|H(x) ≤ B}| ≤ CB1+ǫ.

The idea of the proof of is to separately estimate the finite and the
infinite height. The upper bound for the cardinality in the theorem is
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needed to provide convergence of the corresponding height zeta series.
The claim of 2.5.3.2 stays valid even when metrics at finitely many places
are allowed to have “logarithmic” singularities along rational divisors
(see Corollary 4.7.1.3). The proof of that version follows immediately
from 2.5.3.2, after establishing an estimate for the singular height of the
form: HSing ≥ CH log−η(H), where C, η > 0, which we do in Proposition
4.7.1.2.

2.5.4. — In Chapter 5, we endow the topological spaces associated toR-
points with measures. In particular, we define measures on [P(a)(Fv)]
(which depend on the choice of the metrics) and on [T (a)(Fv)] (which
do not depend on the choice of metrics). The measures are used to define
Peyre’s constant τH .

The last part of the chapter is dedicated to the definition of the mea-
sures on the “adelic torus” [T (a)(AF )] and the Tamagawa number of
the stacky torus T (a). We establish that
Proposition 2.5.4.1 (Proposition 5.4.4.4). — One has that
Tam(T (a)) = 1.

When a = 1, this is the classical result that the Tamagawa number of
a split torus is 1. The proof of Proposition 2.5.4.1 uses Oesterlé’s Euler-
Poincaré characteristics of complexes of locally compact abelian groups
which are endowed with Haar measures.

2.5.5. — Chapter 6 studies characters of the “adelic torus” [T (a)(AF )].
We introduce “discrete” norms and “infinity” norms of these characters.
One establish a finiteness result on the number of the characters χ ∈
[T (a)(AF )]

∗ which vanish on [T (a)(F )] and on certain subgroups of
bounded either of these norms. In the last part of this chapter we recall
estimates of Rademacher on L functions of characters. The results of this
chapter will be used in Chapter 7 to prove that the Fourier transform of
a height function is integrable.

2.5.6. — In Chapter 7 we adapt the method of harmonic analysis of
Batyrev and Tschinkel from [3] to our situation. We assume the metrics
are smooth. The first part of the chapter is dedicated to the calculation
of the Fourier transform of the local height at a finite place v. For
almost all v, we can give the exact formula which turns out to be the
product of local L functions of characters and other factors. Then, for
infinite v, using the smoothness assumptions, we prove suitable decays
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of the Fourier transform in the two norms of characters. The proof for
this claim is an adaptation of the idea of Chambert-Loir and Tchinkel
from [18] and [20], where the authors apply integration by parts with the
respect to invariant vector fields. The global Fourier transform, hence,
writes as the product of L functions and a part over which we have a
control.

2.5.7. — In Chapter 8 we use the theory of [17] to analyse height zeta
function.

The accent is on the stacky torus T (a) ⊂ P(a). From the estimate
of Theorem 2.5.3.2, one deduces that the height zeta function Z(s) :=∑

x∈[T (a)(F )]H(x)−s converges and defines a holomorphic function of s in

the domain ℜ(s) > 1. Poisson formula gives that

Z(s) =

∫

([T (a)(AF )]/[T (a)(F )])∗
Ĥ(s, χ)dχ

whenever the expressions on both hand side converge. The estimates
from Chapter 6 and Chapter 7 and the “similarity” of the global Fourier
transform of the height with L functions, give the convergence of the
integral on the right hand side for ℜ(s) > 1. Moreover, the proof will
imply that s 7→ Z(s) has a meromorphic extension to a domain ℜ(s) >
1−δ, for some δ > 0. The estimates of Rademacher imply that Z satisfies
the growth conditions needed for Tauberian theorems. The residue of Z
at 1 is also calculated. As a consequence, Tauberian theorems give the
asymptotic behaviour of the number of rational points of the height at
most B:
Theorem 2.5.7.1 (Theorem 8.2.2.12, Proposition 8.3.2.3)

Let H be a quasi-toric height. One has that

{x ∈ [P(a)(F )]|H(x) ≤ B} ∼ τH
|a|B,

when B tends to +∞.
The constant 1

|a| has the same interpretation as in the case of varieties

(see Remark 8.3.2.7) and the asymptotic stays the same when one counts

rational points of P(a) (because [P(a)(F )]− [P(a)(F )] is a one point
set). Thus Theorem 2.5.7.1 can be understood as that Manin-Peyre’s

conjecture is true for weighted projective stacks P(a). The last part
of the chapter is dedicated to the understanding equidistribution of the
rational points of the stack P(a). The idea is to find the asymptotic
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behaviour for the number of rational points of bounded height which are
required for finitely many places v to belong to certain open subsets of
the v-adic space of the stack (e.g. say that the 2-adic valuation is even).
An elegant way to phrase this question has been given by Peyre in [47],
using the measure ωH from above: if W ⊂∏v∈MF

[P(a)(Fv)] is an open
subset of negligible boundary, one expects that:

lim
B→∞

|{x ∈ [P(a)(F )]|i(x) ∈ W and H(x) ≤ B}|
|{x ∈ [P(a)(F )]|H(x) ≤ B}| =

ωH(W )

τH
,

where i : [P(a)(F )]→∏
v∈MF

[P(a)(Fv)] is the diagonal map. If this is
true for every such W , then we say that the rational points are equidis-
tributed. We prove that:
Theorem 2.5.7.2 (Theorem 8.3.2.2). — The rational points
of P(a) are equidistributed in the space

∏
v∈MF

[P(a)(Fv)].

2.5.8. — In Chapter 9, we use our methods to study a question similar
to Malle conjecture. We find the asymptotic for the number of µm-torsors
over F of bounded absolute discriminant. When F contains allm-th roots
of 1, this question is the Malle conjecture for the cyclic group Z/mZ, but
one needs to remove the torsors which are not fields and there may be
a positive proportion of them (the counting of the cyclic extensions has
been covered by the case of the abelian groups from [59]). The µm-torsors
over F are classified by the algebraic stack Bµm = T (m) = P(m).
We use the language of heights developed earlier. We speak about

quasi-discriminant heights, which are similar to the discriminants, with
the difference that the local components of these heights at the finitely
many places may be different from the local components of the discrim-
inant. Let us note that a quasi-discriminant height is not a quasi-toric
height, as the local components of the two heights are different at almost
every place. We will define a measure ωH on

∏
v∈MF

[P(m)(Fv)] and we
will set τH = ωH(

∏
v∈MF

[P(m)(Fv)]).
The method of the proof is an adaption of the above harmonic analysis

method. There are some simplifications, as the local spaces [T (m)(Fv)]
are finite, and modifications because of the difference with quasi-toric
heights. Eventually, we prove the convergence of the height zeta series
and use Poisson’s formula as before. For the purpose of having more
elegant formula, here we state the final asymptotic for heights that are

“essentially” ∆
1

m(1−1/r) , where r is the least prime of m (that is for almost
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all places the local component of H coincides with the local component

of ∆
1

m(1−1/r) ).
Theorem 2.5.8.1 (Corollary 9.2.5.9). — Let H be a quasi-
discriminant height. One has that

|{x ∈ [P(m)(F )]|H(x) ≤ B}| = τH
(r − 2)!m

B log(B)r−2.

The asymptotic is very reminiscent of the one from Manin-Peyre con-
jecture. As in the case of quasi-toric heights, we are able to prove
a corresponding equidistribution property in

∏
v∈MF

[P(m)(Fv)]. We
end the chapter by the proof that there is a positive proportion of
µm-torsors which are fields. This is proven by finding an open subset
W ⊂ ∏v∈MF

[P(m)(Fv)] of positive volume such that all of µm-torsors

contained in it are fields. Moreover, when 4 ∤ m or when i =
√
−1 ∈ F ,

we give an exact formula for this proportion.

2.6. Questions and Remarks

Let us discuss some questions that arise naturally from our work.

2.6.1. — The conjecture of Manin-Peyre has been proved for all smooth
toric varieties. We would like to know to what generality the proof applies
to other toric stacks (c.f. [28]). We do not know what happens when the
“stacky torus” is not split, i.e. not a quotient of two split tori. Manin-
Peyre conjecture for toric varieties has also been proved for the case of
function fields ([11]). We would like to know what is the situation for
toric stacks.

2.6.2. — It would be interesting to understand to what other stacks
one can develop a theory of heights and use it to count rational points.
Examples of such stacks could be: the stack Mg which classifies the
curves of genus g, the stack of principally polarized abelian varieties Ag,
etc.

2.6.3. — One could ask whether there exists a stack X with enough
integral points, such that Bµm ⊂ X and such that the discriminant
arises as a height induced by an OF,S-model of X and a line bundle on
it (here S is a finite set of places). We would like to know then whether
the result of Theorem 2.5.8.1 can be reinterpreted as that Manin-Peyre
conjecture is true for X. We may then ask how the prediction of Malle
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conjecture compares with the prediction of Manin-Peyre conjecture. The
same question can be asked for any finite group (scheme) G.

2.6.4. — A different notion of a height on stack, defined by vector
bundles, has been proposed Ellenberg, Satriano and Zureick-Brown in
a forthcoming work. Their height is not additive in the vector bundles.
We would like to know how this notion compares with our notion of the
height.

2.6.5. — A counterexample to Malle conjecture has been constructed
by Klüners in [33]. The known counterexamples in the conjecture of
Manin-Peyre are avoided if one allows removing “thin sets”. We would
like to know whether removing “thin sets” fixes the prediction of Malle.





CHAPTER 3

WEIGHTED PROJECTIVE STACKS

A weighted projective stack is a stacky quotient P(a) := (An −
{0})/Gm, where the action of Gm is weighted with the weights a1, . . . , an,
where a1, . . . , an are positive integers. In the first part of this chapter we
will recall several properties of such stacks. It turns out that the weighted
projective stacks are proper, however, not all of its rational point extends
to an integral point. This is a fundamental feature that enables one to
define heights. The stack P(a) := An/Gm (that by the abuse of the
terminology we may also call a weighted projective stack) has enough of
integral points in this sense. The second part of the chapter is dedicated
to the topological spaces associated to weighted projective stacks.

3.1. Weighted projective stacks

In this section we recall several facts about stacks and weighted pro-
jective stacks.

3.1.1. — In this paragraph we recall some generalities on quotient
stacks. We follow [56].

Let Z be a scheme. Let X be a Z-scheme and let a : G×Z X → X be
a left Z-action of locally of finite presentation flat Z-algebraic group G
onX. Denote by p2 the projection to the second coordinateG×ZX → X.
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One has a commutative diagram

(3.1.1.1)

G×Z X G×Z X

X,

u

a
p2

where the morphism u is given by (g, x) 7→ (g, a(g, x)). The morphism u
is an automorphism as its inverse is provided by (g, x) 7→ (g, a(g−1, x)),
hence, the morphism a is surjective, flat and locally of finite presentation.
We write X/G for the quotient stack ([56, Tag 044O]). Recall that if V

is a Z-scheme a 1-morphism x : V → X/G is given by a GV -equivariant
morphism x̃ : T → XV , where T is a GV -torsor. A 2-morphism θ : x→ y
of 1-morphisms x : V → X/G and y : V → X/G corresponding to GV -
equivariant morphisms from GV -torsors x̃ : T → X and ỹ : R → X,
respectively, is given by a morphism θ : R → T of GV -torsors such that
x̃ = ỹ ◦ θ.

In the following proposition we recall some of the properties of a quo-
tient stack. Let q : X → X/G be the quotient 1-morphism, i.e. the one

given by the trivial GX-torsor G ×Z X p2−→ X and the GX-equivariant
morphism GX = G×Z X a−→ X.
Proposition 3.1.1.2. — 1. For every 1-morphism x : V → X/G

over Z with V a scheme, which is given by GV -equivariant morphism
x̃ : T → X, where T is a GV -torsor, the diagram

T X

V X/G.

x̃

q

x

is 2-commutative 2-cartesian ([56, Section 04UV]).
2. The morphism q : X → X/G is surjective, flat, representable and

locally of finite presentation [56, Lemma 06FH].
3. The stack X/G is algebraic ([56, Theorem 06FI]).
4. The stack X/G is smooth over Z if X is smooth over Z ([56, Lemma

0DLS]).
5. If Y is a Z-scheme, we let XY /GY be the quotient stack for the

induced Y -action aY : GY ×Y XY → XY . The canonical 1-morphism
XY /GY → (X/G)×Z Y is an equivalence ([56, Lemma 04WX]).
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Let ∆X/G be the diagonal morphism of X/G → Z. The following
lemma will be quoted several times:
Lemma 3.1.1.3. — The diagram

(3.1.1.4)

G×Z X X ×Z X

X/G (X/G)×Z (X/G).

a×p2

q◦p2 q×Zq

∆X/G

is 2-commutative 2-cartesian.
Proof. — In this proof p1 and p2 denote the obvious projections, while
Id stands for the identity 1-morphism. The diagram

G×Z X X ×Z X X

X X ×Z (X/G) X/G
Γq

p2

p2

(a,p2)

(IdX ,q)

p2

q

is 2-commutative. By (1) of Proposition 3.1.1.2, its big subdiagram is
2-cartesian. The diagram

X ×Z X X

X ×Z (X/G) X/Gp2

(IdX ,q)

p2

q

is 2-commutative and 2-cartesian. It follows that

(3.1.1.5)

G×Z X X ×Z X

X X ×Z (X/G)

(IdX ,q)

Γq

p2

(a,p2)

is 2-commutative and 2-cartesian. The diagram

X X ×Z (X/G) X

X/G (X/G)×Z (X/G) X/G

q

∆X/G

Γq

(q,IdX/G)

p1

p2

q



42 CHAPTER 3. WEIGHTED PROJECTIVE STACKS

is 2-commutative. Its big subdiagram is 2-cartesian, because the hori-
zontal maps are the identity 1-morphisms. The diagram

X ×Z (X/G) X

(X/G)×Z (X/G) X/G

(q,IdX/G)

p1

p2

q

is 2-commutative and 2-cartesian, hence the diagram

(3.1.1.6)

X X ×Z (X/G)

X/G (X/G)×Z (X/G)

(q,IdX/G)

∆X/G

q

Γq

is 2-commutative and 2-cartesian. The diagram in the statement
is the big subdiagram of the diagram that one gets by merging 2-
commutative and 2-cartesian diagrams (3.1.1.5) and (3.1.1.6), hence
itself is 2-commutative and 2-cartesian. The statement is proven.

We say that affine algebraic group G is special (Serre, Section 4.1
in [54]) if every G-torsor Y → W , with W and Y schemes, is locally
trivial for the Zariski topology on W . Hilbert 90 theorem states that the
general linear groups GLd, for d ≥ 1 are special (see e.g. [38, Lemma
4.10, Chapter III]).
Lemma 3.1.1.7. — Suppose G is a flat, locally of finite presentation
special algebraic group. Let R be a local Z-ring. For every 1-morphism
of Z-stacks x : SpecR→ X/G, there exists a 2-commutative 2-cartesian
square

(3.1.1.8)

GR X

Spec(R) X/G,

x̃

q

x

with x̃ being G-equivariant morphism.
Proof. — As R is local and G special, every G-torsor over SpecR is
isomorphic to the trivial one. Now the claim follows from part (1) of
Proposition 3.1.1.2.
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One can also see that in the situation of Lemma 3.1.1.7, the category
(X/G)(R) is equivalent to the following category: its objects are GR-
equivariant morphisms GR → XR and a morphism t : (x : GR → XR)→
(y : GR → XR) is an element t ∈ GR(R) such that x = y ◦ t, when t is
seen as a morphism t : GR → GR by multiplication to the left. We will
often by the abuse of notation write (X/G)(R) for the latter category.

3.1.2. — In this paragraph we work over Spec(Z). Let n ≥ 1 be an
integer. Let a ∈ Zn≥1. The smooth group scheme Gm acts on An via the
formula:

(3.1.2.1) a : Gm × An → An (t,x) = (tajxj)j.

We will often write t · x instead of a(t,x). Note that An − {0} ⊂ An

and Gn
m = (A1 − {0})n ⊂ An are Gm-invariant open subschemes for this

action. We have, hence, induced actions of Gm on Gn
m and on An − {0}.

Lemma 3.1.2.2. — 1. The morphism

(a, p2) : Gm × An → An × An

is of finite presentation and affine (hence separated and quasi-
compact by [56, Lemma 01S7]).

2. The morphisms

(a|Gm×(An−{0}), p2) : Gm × (An − {0})→ (An − {0})× (An − {0})
and

(a|Gm×Gn
m
, p2) : Gm ×Gn

m → Gn
m ×Gn

m

induced from Gm-invariant open subschemes An − {0} ⊂ An and
Gn
m ⊂ An, respectively, are finite.

Proof. — 1. The morphism (a, p2) is of finite presentation as both a
and p2 are of finite presentation (see Diagram (3.1.1.1) in Proposi-
tion 3.1.1.2). The morphism (a, p2) is affine because it is a morphism
of affine schemes.

2. Let us verify that (a|Gm×(An−{0}), p2) is proper. It is affine, hence
separated, and of finite type, as it is the base change of the affine and
finite type morphism Gm×An → An×An along the open immersion
(An−{0})× (An−{0})→ An×An. We use the valuative criterion
for finite type morphism with Noetherian target to be universally
closed [56, Lemma 0CM5]. Let R be a discrete valuation ring, vR
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its valuation and K its fraction field. Consider a diagram

Spec(K) Gm × (An − {0})

Spec(R) (An − {0})× (An − {0}).

(t,z)

(x,y)

It follows that z = y ∈ (An − {0})(R) and that t · z = x. There
exists i such that vR(zi) = vR(yi) = 0. We have that 0 ≤ vR(xi) =
vR(t

aizi) = aivR(t) and hence vR(t) ≥ 0. There exists k such that
vR(xk) = 0. We have 0 = vR(xk) = vR(t

akzk) = akvR(t) + vR(zk) ≥
akvR(t) and hence vR(t) ≤ 0. We deduce vR(t) = 0 i.e. t ∈ Gm(R).
We deduce (t, z) ∈ (Gm×(An−{0}))(R) and the valuative criterion
is verified. It follows that (a|Gm×(An−{0}), p2) is universally closed
and we deduce that it is proper. It is affine, and we deduce that it
is also finite. Now, the morphism (a|Gm×Gn

m
, p2) is the base change

of the finite morphism (a|Gm×(An−{0}), p2) along the open immersion
Gn
m ×Gn

m → (An − {0})× (An − {0}), hence is finite.

Definition 3.1.2.3. — We define quotient stacks for the actions from
above:

P(a) := An/Gm,

P(a) := (An − {0})/Gm,

T (a) := Gn
m/Gm.

The first two stacks we may call weighted projective stacks.
The Gm-equivariant open immersions Gn

m ⊂ An−{0}, An−{0} ⊂ An

induce 1-morphisms of stacks T (a)→P(a) and P(a)→P(a) by [56,
Lemma 046Q], which are open immersions by [56, Lemma 04YN].

Lemma 3.1.2.4. — The stacks T (a), P(a) and P(a) satisfy the fol-
lowing:

1. They are smooth algebraic stacks.
2. They are quasi-compact.
3. Their diagonals for the canonical morphisms to Spec(Z) are rep-

resentable and affine (hence, separated and quasi-compact). The
diagonals of T (a) and P(a) are further finite.

4. They are of finite presentation.
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Proof. — 1. This claim follows from parts (3) and (4) of Proposition
3.1.1.2.

2. The quotient 1-morphisms qa : An → An/Gm = P(a), qa|An−{0} :
(An − {0}) → P(a) and qa|Gn

m
: Gn

m → T (a) are surjective by
Proposition 3.1.1.2 and as An,An−{0} and Gn

m are quasi-compact,

we deduce by [56, Lemma 04YC] that P(a), P(a) and T (a) are
quasi-compact.

3. All three diagonals are representable, because all three stacks are al-
gebraic. Let us prove that the diagonal morphism ∆

P(a)
: P(a)→

P(a)×P(a) is affine. By Lemma 3.1.1.3, we have a 2-commutative
2-cartesian square

Gm × An An × An

P(a) P(a)×P(a).

q◦p2

(a,p2)

(q,q)

∆
P(a)

The 1-morphism (q, q) : An × An → P(a) ×P(a) is surjective,
flat and locally of finite presentation and the morphism (a, p2) :
Gm×An → An×An is affine by Lemma 3.1.2.2. It follows from [56,
Lemma 06TY] that ∆

P(a) is affine. Let us prove that the diagonal

∆P(a) : P(a) → P(a) ×P(a) is finite. By Lemma 3.1.1.3, we
have a 2-commutative 2-cartesian square

Gm × (An − {0}) (An − {0})× (An − {0})

P(a) P(a)×P(a).

q◦p2

(a,p2)

(q,q)

∆P(a)

The 1-morphism

(q|An−{0}, q|An−{0}) : (An − {0})× (An − {0})→P(a)×P(a)

is surjective, flat and locally of finite presentation and the morphism
(a, p2) : Gm×(An−{0})→ (An−{0})×(An−{0}) is finite by 3.1.2.2.
It follows from [56, Lemma 06TY] that ∆P(a) is finite. Now, one
has that the diagonal ∆T (a) is just the base changes of ∆P(a) along
the open immersion T (a) ⊂ P(a), hence is finite by [56, Lemma
045C].
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4. Recall that of finite presentation means quasi-compact, quasi-
separated and locally of finite presentation. We have seen in (1)

and (2) that T (a), P(a) and P(a) are smooth, thus locally
of finite presentation, and quasi-compact. By (3), the diagonals
∆T (a),∆P(a) and ∆

P(a) are quasi-compact and separated, thus

quasi-separated by [56, Lemma 050E], i.e. T (a),P(a) and P(a)

are quasi-separated. We deduce that T (a), P(a) and P(a) are
all of finite presentation.

Proposition 3.1.2.5. — The stack P(a) is proper.
Proof. — Recall that a proper 1-morphism is a 1-morphism which is
of finite type, separated and universally closed. In Lemma 3.1.2.4, we
have verified that P(a) is of finite presentation, hence of finite type [56,
Lemma 06Q5], and of finite diagonal, hence separated.

We will now apply the valuative criterion for separated 1-morphisms
with target locally Noetherian algebraic stacks to be universally closed
[56, Lemma 0CQM], to the 1-morphism P(a) → SpecZ. Let again R
be a discrete valuation ring, let K be its field of fractions, let vR
be its valuation and πR its uniformizer. We pick an object x in the
groupoid P(a)(K) and we prove that there exists a finite extension K ′

of K and a valuation ring R′ ⊂ K ′ such that mR = mR′ ∩K, where mR

and mR′ are maximal ideals of R and R′ respectively, and such that the
restriction xK′ ∈P(a)(K ′), is in the essential image of the functor

P(a)(R′)→P(a)(K ′).

Let x̃ : (Gm)K → (An − {0})K be the (Gm)K-equivariant morphism

given by x. We set ℓ := lcm(a). Let us set K ′ = K(π
1/ℓ
R ) and let R′

be the integral closure of R in K ′. By [56, Lemma 09EV], one has that

R′ = R[π
1/ℓ
R ], that R′ is a discrete valuation ring, and that π

1/ℓ
R is a

uniformizer of R′. Thus the maximal ideal of R′ is given by (π
1/ℓ
R ) and its

intersection with R is precisely the maximal ideal (πR) of R. We extend

canonically vR to R′ and K ′. We set k = −minj
vR(x̃j(1))

aj
, where x̃j(1) is

the j-th coordinate of x̃(1), so that ℓk ∈ Z. Note that one has that

πkR · x̃(1) = (π
ajk
R x̃j(1))j ∈ (An − {0})(R′),
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because for every index i one has

vR(π
aik
R x̃i(1)) = −aimin

j

(
vR(x̃j(1))

aj

)
+ aivR(x̃i(1)) ≥ 0

and because for the index i such that x̃i(1)
ai

is minimal one has that

vR(π
aik
R x̃i(1)) = 0.

We define a (Gm)R′-equivariant morphism by

z̃ : (Gm)R′ → (An − {0})R′ 1 7→ πkR · x̃(1),
and z̃ defines a morphism z : Spec(R′) → P(a). One has that πkR =

(π
1/ℓ
R )kℓ ∈ K ′ and thus πkR defines by the multiplication a morphism

(Gm)K′ → (Gm)K′ which satisfies z̃ = x̃ ◦πkR. It follows that zK′ and xK′

are isomorphic. The valuative criterion is verified and P(a)→ Spec(Z) is
universally closed. It follows that the algebraic stack P(a) is proper.

3.2. Models with enough integral points

In this section, we will define models of stacks which admit ”enough
integral points” in order to define unstable heights on stacks.

3.2.1. — In this paragraph we define models of stacks.
Definition 3.2.1.1. — Let X be a finite presentation algebraic stack
over a number field F and let OF ⊂ A ⊂ F be a ring. A model of X
over Spec(A) is a finite presentation A-algebraic stack X endowed with

a 1-isomorphism x : XF
∼−→ X.

A base change of a 1-morphism of finite presentation is of finite pre-
sentation [56, Lemma 06Q4]. We deduce that if (X , x : XF

∼−→ X) is a
model of X over Spec(A), for some OF ⊂ A ⊂ F , then for every A′ such

that A ⊂ A′ ⊂ F , one has that (XA′ , x : XF
∼−→ X) is a model of X.

The model is unique in the following sense.
Lemma 3.2.1.2. — Let X be a finite presentation F -algebraic stack.
Let S1 and S2 be finite sets of finite places of F . Let (Y , y : YF

∼−→ X)

and (Z , z : ZF
∼−→ X) be models of X over OF,S1 and OF,S2, respectively.

There exists a finite set S ⊃ S1∪S2 of finite places of F , a 1-isomorphism
of stacks f : YOF,S

∼−→ ZOF,S
and a 2-isomorphism y

∼−→ z ◦ fF .
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Proof. — Fix 1-inverses y−1 : X → YF and z−1 : X → ZF . We set
S0 = S1 ∪S2 and T0 = Spec(OF,S0). For every finite subset Λ ⊃ S0 of the
set of finite places of F , we set TΛ = Spec(OF,Λ). The schemes TΛ form
an inverse system and

lim←−
Λ

TΛ = Spec(lim−→
Λ

OF,Λ) = Spec(F ).

Set Y0 := YOF,S0
and Z0 := ZOF,S0

, and for finite subset Λ ⊃ S0 of finite
places of F , we set YΛ := Y0 ×T0 TΛ and ZΛ := Z0 ×T0 TΛ. Note that
by the definition of the model and by the fact that the base change of
finite presentation 1-morphism is of finite presentation, the stack Y0 is
quasi-compact and quasi-separated and the stack Z0 is locally of finite
presentation. We have verified the conditions of [51, Proposition B2]. It
follows that there exists finite subset S ′ ⊃ S0 of the set of finite places
of F , a 1-morphism of stacks f ′ : YS′ → ZS′ and a 2-isomorphism f ′

F
∼−→

z−1 ◦ y. Hence, there exists a 2-isomorphism y
∼−→ z ◦ f ′

F . For every finite
subset Λ ⊃ S0, we set f ′

Λ : YOF,Λ
= YΛ → ZΛ = ZOF,Λ

for the base
change morphism f ′ ×OF,S′ OF,Λ. For every finite subset Λ ⊃ S0 of the
set of finite places of F , the stacks YΛ and ZΛ are of finite presentation,
thus by [51, Proposition B3], there exists Λ big enough such that f ′

Λ

is a 1-isomorphism. We set S = Λ and f = f ′
Λ. One clearly has that

f ′
F = fF , thus there exists a 2-isomorphism y

∼−→ z ◦ fF . The statement
follows.

Example 3.2.1.3. — The pair (P(a)OF
, IdP(a)F ) is a model over

Spec(OF ) of the stack P(a)F = (An − {0})F/(Gm)F . Indeed, it follows
from 3.1 that

P(a)F = (An − {0})F/(Gm)F = ((An − {0})OF
/(Gm)OF

)F = P(a)F

and from Lemma 3.1.2.4 and from [56, Lemma 06Q4] that P(a)OF
=

P(a)×ZOF is of finite presentation. An analogous argument shows that

P(a)F = An
F/(Gm)F admits a model (P(a), Id

P(a)F
) over Spec(Z).

3.2.2. — We propose the following definitions to have sufficiently Ov-
integral points to define unstable heights on stacks.
Definition 3.2.2.1. — Let v be a finite place of F and let OF ⊂ A ⊂
Ov be a ring. Let X be a finite presentation A-algebraic stack. We say
that X has enough Ov-integral points if the canonical functor X(Ov) →
X(Fv) is essentially surjective.
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Definition 3.2.2.2. — Let X be an F -algebraic stack of finite presen-
tation. Let S be a finite set of finite places of F and (X , x) be a model
of X. We say that (X , x) has enough integral points, if for every finite
place v of F which is not in S, the stack XOv has enough Ov-integral
points.

Note that in the situation of Definition 3.2.2.2, the property ”has
enough integral points” is in fact a property of X . It follows that
if (Y , y) is another model of X such that there exists an equivalence

X
∼−→ Y , then (Y , y) admits has enough integral points. For v not in S,

every Fv-point ”extends” to an Ov-point of X in the following sense:
the functor

X (Ov) = XOv(Ov)→X (Fv) = XFv(Fv) = XF (Fv)
x(Fv)−−−→ XFv(Fv)

= X(Fv)

is essentially surjective (this follows from the fact that x(Fv) : XF (Fv)→
XFv(Fv) is an equivalence).
Lemma 3.2.2.3. — Suppose for some index i, one has ai > 1. Let v
be a finite place of F . The Ov-stack P(a)Ov does not have enough Ov-
integral points.
Proof. — We prove that the point x : qaFv

(Fv)(πv, . . . , πv) ∈P(a)Fv(Fv)
is not in the essential image of the canonical functor P(a)Ov(Ov) →
P(a)Fv(Fv). The group scheme Gm is special and let x̃ : (Gm)Fv

:
(Gm)Fv → (An − {0})Fv be the (Gm)Fv -equivariant morphism defined

by x. If y ∈P(a)Fv(Fv), an isomorphism x
∼−→ y is given by an element

t ∈ Gm(Fv) such that x̃ = ỹ ◦ t, where ỹ : (Gm)Fv → (An − {0})Fv is the
(Gm)Fv -equivariant morphism given by y and t is seen as a morphism
(Gm)Fv → (Gm)Fv by multiplication. It follows that if y is isomorphic
to x, then

ỹ(1) ∈ {x̃(t)|t ∈ Gm(Fv)} = {t · x̃(1)|t ∈ Gm(Fv)}
= {(tajπv)j|t ∈ Gm(Fv)}.

On the other side, if y is the image of an Ov-point for the canonical
morphism P(a)Ov(Ov) → P(a)Fv(Fv), it follows that ỹ extends to a
(Gm)Ov -equivariant morphism (Gm)Ov → (An−{0})Ov and in particular
that ỹ(1) ∈ (An − {0})Ov(Ov). We will show that the sets

(An − {0})Ov(Ov) = {(zj)j ∈ Onv |∃j : v(zj) = 0}
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and

{(tajπv)j|t ∈ Gm(Fv)}
are disjoint. Suppose that (ta1πv, . . . , t

anπv) ∈ (An − {0})Ov(Ov) for
some t ∈ Gm(Fv). One has v(taiπv) = aiv(t) + 1 ≥ 0 and as ai > 1,
we deduce v(t) ≥ 0. Now for every index j one has v(tajπv) = ajv(t) +
1 > 0, a contradiction with the assumption that (ta1πv, . . . , t

anπv) ∈
(An − {0})(Ov). We deduce that x is not in the essential image of
P(a)Ov(Ov) → P(a)Fv(Fv) and consequently P(a)Ov does not have
enough Ov-points.
Corollary 3.2.2.4. — Suppose for some index i, one has ai > 1. For
any finite subset S of the set of the finite places of F , there exists no
model (X , x) of P(a)F over Spec(OF,S) such that the following condition
is satisfied: there exists a finite place v 6∈ S such that the stack X has
enough Ov-points.
Proof. — Suppose there exists finite set S of finite places of F and a
model (X , x) of P(a)F such that for every finite place v 6∈ S one has
that X has enough Ov-integral points. By Lemma 3.2.1.2, we can in-
crease S if needed and find a 1-isomorphism f : X

∼−→ P(a)OF,S
and a

2-isomorphism x
∼−→ IdP(a)F ◦fF = fF . Let f−1 : P(a)OF,S

→ X be an
inverse to f . By Lemma 3.2.2.3, for every finite v 6∈ S, one has that

X (Ov)
f(Ov)−−−→P(a)OF,S

(Ov) = P(a)Ov(Ov)→P(a)F (F )
f−1
F (F )−−−−→XF (F )

is not essentially surjective. We obtain a contradiction and the claim
follows

Proposition 3.2.2.5. — The stack P(a)OF
= An

OF
/(Gm)OF

is a

model of P(a)F which for every v ∈M0
F has enough Ov-integral points.

Proof. — Let x ∈P(a)Fv
(Fv) and let x̃ : (Gm)Fv → An

Fv
be the (Gm)Fv -

equivariant morphism defined by x. Let v ∈M0
F . By the fact that all aj

are positive, there exists k ∈ Z such that for every j = 1, . . . , n one has
that v(x̃j(1) + ajk) > 0. The (Gm)Fv -equivariant morphism given by

(Gm)Fv → An
Fv

1 7→ πkv · x̃(1)
is isomorphic to x̃ and is the base change of the (Gm)Ov -equivariant
morphism

x̃Ov
: (Gm)Ov → An

Ov
1 7→ πkv · x̃(1)
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along SpecFv → SpecOv. The (Gm)Ov -equivariant morphism defines a

morphism xOv
: SpecOv → P(a)Ov

. By construction we have xOv ×Z

Fv ∼= x.

The stacks P(a) are not proper because they are not separated as the
following lemma shows.
Lemma 3.2.2.6. — Let v be a finite place of F . Let OF ⊂ A ⊂ Ov be
a ring. The canonical morphism P(a)A → Spec(A) is not separated.
Proof. — By the fact that property of being separated is stable for a base
changes, one can assume that A = Ov. We will verify that the diagonal
∆

P(a)Ov

: P(a)Ov
→P(a)Ov

×Ov P(a)Ov
is not proper. The diagram

(Gm)Ov × An
Ov

An
Ov
× An

Ov

P(a)Ov
P(a)Ov

×Ov P(a)Ov
.

(q◦p2)Ov

(a,p2)Ov

(q,q)Ov

∆
P(a)Ov

is 2-commutative 2-cartesian. By the fact that being proper is stable for a
base change, it suffices to see that (a, p2)Ov

: (Gm)Ov×An
Ov
→ An

Ov
×An

Ov

is not proper. We verify that the valuative criterion of properness [56,
Lemma 0BX5] is not satisfied for the finite type and quasi-separated
morphism (a, p2)Ov . The diagram

Spec(Fv) (Gm)Ov ×Ov A
n
Ov

Spec(Ov) An
Ov
×Ov A

n
Ov

(πv ,(1)j)

(a,p2)Ov

((π
aj
v )j ,(1)j)

does not admit admit an arrow Spec(Ov)→ (Gm)Ov ×Ov A
n
Ov

so that the
diagram commutes. Indeed if (t,x) : Spec(Ov) → (Gm)Ov ×Ov A

n
Ov

was
a such an arrow, then x = (1)j and v(t) = 0. One has that a ◦ (t, (1)j) =
(π

aj
v )j, thus v(t

a1) = a1v(t) = 0 6= a1 = v(πa1v ), a contradiction. It follows
that (a, p2)Ov is not proper, and hence that ∆

P(a)Ov
is not proper, i.e.

that P(a) is not separated.
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3.3. Topology on R-points of stacks

We recall a definition, originally due to Moret-Bailly in [40], of a topol-
ogy that one can put on R-points of a stack. Let R be a local topological
ring that satisfies the following conditions:

(a) the group of units Gm(R) is open in R,

(b) the inverse map Gm(R)
x 7→x−1

−−−−→ Gm(R) is continuous, when
Gm(R) ⊂ R is endowed with the subspace topology.

We will call such a ring “topologically suitable”. The principal examples
are R = Fv for v ∈MF or R = Ov for v ∈M0

F .

3.3.1. — The following proposition is given in [21]. We consider
schemes that are locally of finite type over a suitable ring R.
Proposition 3.3.1.1 (Conrad, [21, Proposition 3.1])

Let R be a topologically suitable ring. There exists a unique way to
topologize Y (R) for every scheme Y locally of finite type over R subject to
the requirements of functoriality, carrying closed (open) immersions into
embeddings (open embeddings) of topological spaces, compatibility with
fiber products, and giving Y (R) the usual topology when Y is the affine
line over R. One also has that if Y is separated and R is Hausdorff, then
Y (R) is Hausdorff and that if R is Hausdorff and locally compact, then
Y (R) is locally compact.

The following suffices to make Y (R) compact.
Lemma 3.3.1.2. — Suppose R is a topologically suitable ring.

1. Suppose R is compact. If Y is an R-scheme of finite type, then
Y (R) is compact.

2. (Conrad, [21, Corollary 5.7]) Suppose R is a local field. If Y is a
proper R-scheme, then Y (R) is compact.

Proof. — We prove (1). Take a finite Zariski open covering {Ui}i of Y
with Ui affine. Every affine scheme Ui is a closed subscheme of an affine
space Ani . We deduce that Ui(R) is a closed subset of a compact set
Ani(R) = Rni , hence is compact. Now, the sets {Ui(R)}i cover Y (R),
because R is local, and thus Y (R) is compact.

A direct consequence of Proposition 3.3.1.1 is the following corollary.
Corollary 3.3.1.3. — Let R be a topologically suitable locally compact
Hausdorff ring. Suppose G is a locally of finite type algebraic group.
Then G(R) is locally compact group. If G is commutative, then G(R)
is commutative. If a : G × Y → Y is an action to the left of G on a
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locally of finite type scheme Y , then a(R) : G(R) × Y (R) → Y (R) is a
continuous action of G(R) on Y (R).

3.3.2. — As in the case of schemes, we work only with stacks that are
locally of finite type. If X is an algebraic stack and R a ring by [X(R)] we
denote the set of isomorphism classes of objects in the groupoid X(R).
For x ∈ X(R) we denote by [x] its image in [X(R)]. The following
definition is firstly given by Moret-Bailly in [40, Definition 2.2] for stacks
with separated and quasi-compact diagonals. Česnavičius gives it for
stacks without such hypothesis.
Definition 3.3.2.1 (Česnavičius,[15, Section 2.4])

Let R be a topologically suitable ring. Let X be a locally of finite
type R-algebraic stack of separated diagonal. We endow [X(R)] with the
finest topology such that for every 1-morphism f : Y → X, with Y a
locally of finite type R-scheme, the maps [f(R)] are continuous.

The following lemma follows from properties of the finest topology.
Lemma 3.3.2.2. — A subset U ⊂ [X(R)] is open if and only if for
every 1-morphism f : Y → X of algebraic stacks, with Y locally of finite
type R-scheme, the preimage [f(R)]−1(U) is open in Y (R). Let T be a
topological space. A map h : X(R) → T is continuous if and only if for
every 1-morphism g : Y → X of algebraic stacks, with Y locally of finite
type R-scheme, the composite map h ◦ g(R) is continuous.
Proof. — Those are consequences of [7, Chapter I, §2, n0 4, Proposition
4] and [7, Chapter I, §2, n0 4, Proposition 6].

We recall some of properties which are proven in [15] and which we
are going to use.
Proposition 3.3.2.3 (Česnavičius,[15, Corollary 2.7])

Let f : X → W be a 1-morphism of R-stacks that are locally of finite
type, where R is a topologically suitable ring.

1. The induced map on R-points [f(R)] : [X(R)]→ [W (R)] is contin-
uous.

2. Suppose f is an open immersion. Then [f(R)] : [X(R)] → [W (R)]
is an open immersion.

3. Suppose R is Hausdorff and f is a closed immersion. Then the map
[f(R)] : [X(R)]→ [W (R)] is a closed immersion.

4. Let R′ another topologically suitable ring. Let h : R→ R′ a contin-
uous ring homomorphism. The canonical map [X(R)]→ [X(R′)] is
continuous.
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3.3.3. — Let us study the topological spaces [(Y/G)(R)], when the al-
gebraic group G is special (see 3.1).
Proposition 3.3.3.1. — Let R be a topologically suitable ring. Let
G = (G,m, e) be a flat locally of finite presentation R-algebraic group.
Let Y be a locally of finite type R-scheme endowed with an action of G
and let π : Y → Y/G be the quotient morphism.

1. The map [π(R)] : Y (R) → [(Y/G)(R)] is G(R)-invariant and con-
tinuous.

2. Assume G is special. The map [π(R)] is surjective and open. The
canonical continuous map

[π(R)] : Y (R)/G(R)→ [(Y/G)(R)]

induced from G(R)-invariant map [π(R)] is a homeomorphism.

Proof. — 1. We prove that [π(R)] is continuous and G(R)-invariant.
– The fact that the map [π(R)] is continuous follows from the
functoriality (Claim (1) in Proposition 3.3.2.3).

– By Proposition 3.1.1.2, the diagram

G×R Y Y

Y (Y/G),

a

π

p2 π

where a is the action, is 2-commutative. It follows that if
(g, x) ∈ (G×R X)(R), then

[π(R)](a(R)(g, x)) = [π(R)](p2(R)(g, x)) = [π(R)(x)].

Thus [π(R)] is G(R)-invariant.
2. We assume that G is special.

– We establish that [π(R)] is surjective. Let x : SpecR→ Y/G
be a 1-morphism of algebraic stacks. As G is special, by
Lemma 3.1.1.7, one has the following 2-commutative diagram

GR Y

SpecR Y/G.

x̃

π

x
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By 2-commutativity, it follows that SpecR
π◦x̃◦eR−−−−→ Y/G and

SpecR
x−→ Y/G are 2-isomorphic. We deduce that [x] is the

image of [π(R)(x̃(eR))] and it follows that [π(R)] is surjective.

– Let us verify that [π(R)] is a bijection. Denote by q the
quotient map Y (R) → Y (R)/G(R). One has that [π(R)] =

[π(R)] ◦ q. The map [π(R)] is surjective because [π(R)] is sur-

jective. Let us verify that [π(R)] is injective. Suppose x, y are

such that [π(R)(x)] = [π(R)(y)]. Let x′, y′ ∈ Y (R) be lifts
of x, y, respectively. We have that [π(R)](x′) = [π(R)](y′),
hence, π(R)(x′) and π(R)(y′) are isomorphic in the groupoid
(Y/G)(R). This means precisely that there exists g ∈ G(R)
such that the GR-equivariant morphisms x̃ : GR → Y, eR 7→ x′

and ỹ : GR → Y, eR 7→ y′ satisfy x̃ = ỹ ◦ g, where g ∈ G(R) is
seen as a morphism GR → GR via the left multiplication. As
ỹ is GR-equivariant, we deduce x

′ = x̃(eR) = g · ỹ(eR) = g · y′.
This means that x = q(x′) = q(g · y′) = q(y′) = y. It follows

that [π(R)] is injective and hence bijective.
– We establish that the map [π(R)] is open. Let V ⊂ Y (R) be
an open subset, we are going to prove that [π(R)](V ) is open
in [(Y/G)(R)]. By Definition 3.3.2.1, we need to establish
that if s : W → Y/G is a 1-morphism of stacks with W
a scheme, then [s(R)]−1([π(R)](V )) is open in W (R). Set

W̃ := W ×Y/G Y and set s̃ : W̃ → Y to be the base change
morphism. The following diagram is commutative:

W̃ (R) Y (R) Y (R)/G(R)

W (R) [(Y/G)(R)]

s̃(R)

πW (R)

s(R)

[π(R)]

q

[π(R)]

The morphism πY : W̃ → W is a G-torsor, hence, as G is
special, it is locally Zariski trivial onW . Let ∪i∈IUi be an open
covering of W , such that for all i, the morphism πW |π−1

W (Ui)
is

a trivial G-torsor. For all i, the map πi : π(W )−1(Ui)(R) →
Ui(R) decomposes as π(W )−1(Ui)(R)

∼−→ Ui(R) × G(R) →
Ui(R), where the first morphism comes from an isomorphism

of G-torsors π(W )−1(Ui)
∼−→ Ui×G and the second map is the
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projection, and, hence, πi is open and surjective. As ∪i∈IUi(R)
is a covering of W (R), the map πW (R) is open and surjective.
We have that

πW (R)−1(s(R)−1([π(R)](V ))) = s̃(R)−1([π(R)]−1([π(R)](V )))

= s̃(R)−1(q−1(q(V ))),

where the last equality follows from the fact that [π(R)] is a
bijection. It follows that πW (R)−1(s(R)−1([π(R)](V ))) is open

in W̃ (R), as q is open and continuous and s̃(R) is continuous.
Finally, we get that

πW (R)(πW (R)−1(s(R)−1([π(R)](V )))) = [s(R)]−1([π(R)])

is open in W (R). We deduce that [π(R)](V ) and hence [π(R)]
are open. As [π(R)] is open and continuous bijection, it fol-

lows that [π(R)] is a homeomorphism. The statement is now
proven.

By Hilbert 90 theorem, the algebraic group Gm is special. We can
establish that:
Corollary 3.3.3.2. — Let R be a topologically suitable ring.

1. The map (An − {0})(R)→ [P(a)(R)] is Gm(R)-invariant, contin-
uous and open, and the induced map

(An − {0})(R)/Gm(R)
∼−→ [P(a)(R)]

is a homeomorphism.
2. The map

Gn
m(R) = (A1 − {0})n(R)→ [T (a)(R)]

is a Gm(R)-invariant, continuous and open map and the induced
map

(3.3.3.3) Gn
m(R)/Gm(R)→ [T (a)(R)]

is a homeomorphism.
3. The inclusion [T (a)(R)] ⊂ [P(a)(R)] is an open embedding.

Proof. — The first two claims are direct consequences of Proposition
3.3.3.1. The last claim is a consequence of Proposition 3.3.2.3.
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3.3.4. — To say more about spaces [T (a)(R)] and [P(R)], we will need
additional assumptions on R. In [15, Section 2.12], Česnavičius defines
a notion of proper-closed ring: it is a topologically suitable ring R such
that for every proper morphism f : X → Y of finite type R-schemes, the
induced continuous map f(R) : X(R) → Y (R) is closed. The following
examples are presented: a local field or the ring of integers Ov in the
completion Fv for a finite place v.
Proposition 3.3.4.1. — Let R be a proper-closed integral domain.
(e.g. the completion Fv for some v ∈ MF or the ring of integers Ov
in the completion Fv for some v ∈M0

F ).

1. The topological actions Gm(R) × (An − {0})(R) → (An − {0})(R)
and Gm(R) × Gn

m(R) → Gn
m(R), deduced from the actions Gm ×

(An−{0})→ (An−{0}) and Gm×Gn
m → Gn

m by Corollary 3.3.1.3,
are proper.

2. The map Gm(R) → Gn
m(R), t 7→ (taj)j is proper, and the subgroup

Gm(R)a = {(taj)j|t ∈ Gm(R)} is a closed subgroup of Gn
m(R). The

canonical map Gn
m(R) → Gn

m(R)/Gm(R)a = [T (a)(R)] is Gm(R)-
invariant, continuous, open and surjective, and the induced map

(3.3.4.2) Gn
m(R)/G

n
m(R)→ Gn

m(R)/Gm(R)a = [T (a)(R)]

is a homeomorphism.
3. Suppose R is locally compact (e.g. the completion Fv for some
v ∈ MF or the ring of integers Ov in the completion Fv for some
v ∈ M0

F ), then [P(a)(R)] and [T (a)(R)] are locally compact and
Hausdorff.

Proof. — 1. As R is proper-closed and as Gm × (An − {0}) → (An −
{0})×(An−{0}) is proper (Lemma 3.1.2.2), it follows that the map

(3.3.4.3) Gm(R)× (An − {0})(R)→ (An − {0})(R)× (An − {0})(R)
is closed. Let us verify that it’s fibers are finite. Suppose that (t,x)
is a preimage of (y, z). This means that x = z and that t · x = y.
Let i be an index such that xi 6= 0. As R is an integral domain,
there are only finitely many elements t ∈ R for which taixi = zi.
We deduce that the map (3.3.4.3) has finite fibers. Now, it follows
from [7, Chapter III, §10, n0 2, Theorem 1], that the map (3.3.4.3)
is proper. We deduce from [7, Chapter III, §4, n0 1, Example 2],
that the restriction of the action of Gm(R) to the Gm(R)-invariant
subset Gn

m(R) ⊂ (An − {0})(R) is proper. The claim is proven.
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2. By (1) the action of Gm(R) on Gn
m(R) is proper. Thus by [7, Chap-

ter III, §4, n0 2, Proposition 4], the induced map t 7→ t · (1)j =
(taj)j is proper and its image Gm(R)a is closed in Gn

m(R). The
map is Gn

m(R) → Gn
m(R)/Gm(R)a is continuous, open and sur-

jective, because it is a quotient map. It follows that the induced
map [T (a)(R)] = Gn

m(R)/Gm(R)→ Gn
m(R)/Gm(R)a is continuous,

open and surjective. Moreover, note that for t ∈ Gm(R) and x ∈
Gn
m(R) one has that the image of t · x = (taj)jx in Gn

m(R)/Gm(R)a
coincides with the image of x in Gn

m(R)/Gm(R)a. Observe that if
x,y ∈ Gn

m(R) have the same image in Gn
m(R)/Gm(R)a, then there

exists (taj)j ∈ Gm(R)a such that (taj)jx = y, hence t · x = y. It
follows that the induced map Gn

m(R)/G
n
m(R)→ Gn

m(R)/Gm(R)a is
injective. We deduce that it is a homeomorphism.

3. The action of Gm(R) on (An−{0})(R) and Gn
m(R) is proper, hence

the spaces [P(a)(R)] and [T (a)(R)] are Hausdorff by [7, Chapter
III, §4, n0 2, Proposition 3]. It follows from Proposition 3.3.1.1 that
the spaces (An−{0})(R) and Gn

m(R) are locally compact. Now, by
[7, Chapter III, §4, n0 5, Proposition 9] imply that [P(a)(R)] and
[T (a)(R)] are locally compact.

We finish the paragraph by establishing that [P(a)(Ov)], [T (a)(Ov)]
and [P(Fv)] are compact and that [T (a)(Fv)] is paracompact. First, we
prove the following lemma.
Lemma 3.3.4.4. — Let v be a place of F . If v is finite, we define

Da
v := (Ov)n − (πa1v Ov × · · · × πanv Ov)

and if v is infinite we define

Da
v := {x ∈ F n

v | ||x||max = 1},
where ||x||max = maxj(|xj|v).
1. Suppose v is finite. The set Da

v is an open, a closed and a compact
subset of F n

v − {0}.
2. Suppose v is finite and let x ∈ F n

v −{0}. The set {k ∈ Z|πkv ·x ∈ Onv }
is non-empty and we define

rv(x) := inf{k ∈ Z|πkv · x ∈ Onv }.

One has that π
rv(x)
v · x ∈ Da

v .
3. Suppose v is infinite. The set Da

v is a compact subset of F n
v − {0}.
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4. Suppose v is infinite and let x ∈ F n
v − {0}. There exists t ∈ F×

v

such that ||t · x||v,max = 1.

Proof. — 1. The subset Da
v writes as

Da
v = (Ov)n ∩ (πa1v Ov × · · · × πanv Ov)c.

As (Ov)n and (πa1v Ov×· · ·×πanv Ov)c are a ball and a complement of
a ball in F n

v , they are both open and closed subsets of F n
v . Hence,

the subset Da
v is both open and closed in F n

v and, as F n
v − {0} is

open in F n
v , also in F n

v − {0}. Moreover, Da
v is a closed subset of

(Ov)n, hence Da
v is compact.

2. As all aj are strictly positive, there exists a positive integer ℓ such
that for all j one has ajℓ > −v(xj). For such ℓ one has πℓv · x ∈ Onv ,
thus {k ∈ Z|πkv · x ∈ Onv } is non-empty. Suppose that π

rv(x)
v · x ∈

(πa1v Ov × · · · × πanv Ov). One has that

πrv(x)−1
v · x = π−1

v · (πrv(x)v · x) ∈ π−1
v · (πa1v Ov × · · · × πanv Ov) = Onv ,

a contradiction. The claim follows.
3. The set Da

v is a sphere for the norm ||·||v,max in the finite dimensional
Fv-vector space F

n
v , hence is compact.

4. The function

F×
v → R>0 t 7→ ||t · x||v,max

is continuous. From the fact that all aj are strictly positive it follows
that

lim
|t|v→0

||t · x||v,max = 0

and that

lim
|t|v→∞

||t · x||v,max = +∞.

We deduce that there exists t ∈ F×
v such that t · x ∈ Da

v .

When R = Fv, where v is a place of F , one can say the following.
Proposition 3.3.4.5. — Let v ∈MF . One has that:

1. the space [P(a)(Fv)] is compact;
2. the space [T (a)(Fv)] is paracompact;
3. the spaces [P(a)(Ov)] and [T (a)(Ov)] are compact.

Proof. — 1. Suppose firstly that v ∈ M0
F . It follows from Lemma

3.3.4.4 that the restriction of the quotient map [qa(Fv)] to Da
v is
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surjective and that Da
v is compact. We deduce that [P(a)(Fv)] is

compact.
2. The group Gn

m(R) is locally compact and (Gn
m(R))a is its closed

subgroup. The quotient [T (a)(R)] = Gn
m(R)/(Gm(R))a is para-

compact by [7, Chapter III, §4, n0 6, Proposition 13].
3. The spaces (An − {0})(Ov) and Gn

m(Ov) are compact by Lemma
3.3.1.2. Therefore the corresponding quotients by Gm(Ov) are com-
pact.

3.3.5. — The last paragraph of this section is dedicated to the group
structure of [T (a)(R)].

If R is a proper-closed integral domain, by Proposition 3.3.4.1, one has
a homeomorphism of topological spaces [T (a)(R)] = Gn

m(R)/G
n
m(R) →

Gn
m(R)/Gm(R)a (induced fromGm(R)-invariant homomorphismGn

m(R)→
Gn
m(R)/Gm(R)a). We will transfer the structure of an abelian group

to [T (a)(R)] using the inverse of this isomorphism and we may write
[T (a)(R)] = Gn

m(R)/(Gm(R)a). If, furthermore, R is assumed to be
locally compact, then [T (a)(R)] is a locally compact abelian group.
Lemma 3.3.5.1. — 1. Suppose that h : R → R′ is a morphism of

rings. The canonical map [T (a)(h)] : [T (a)(R)] → [T (a)(R′)] is
a homomorphism.

2. Suppose that R → R′ is an injective morphism of rings. The
canonical map [T (a)(R)] → [T (a)(R′)] is injective if and only if
Gm(R)a = Gm(R)

n ∩Gm(R
′)a.

3. Suppose that h : R → R′ is a continuous map of topologically suit-
able rings. The canonical map [T (a)(h)] : [T (a)(R)]→ [T (a)(R′)]
is a continuous homomorphism.

4. Suppose that R→ R′ is an open embedding of proper-closed integral
domains, then the canonical map [T (a)(R)]→ [T (a)(R′)] is open.

Proof. — 1. The map [T (a)(R)] → [T (a)(R′)] is the induced map
from Gm(R)a-invariant homomorphism

(3.3.5.2) Gn
m(R)→ Gn

m(R
′)→ [T (a)(R′)],

hence is a homomorphism.
2. The kernel of the map (3.3.5.2) is given by Gm(R

′)a∩Gn
m(R) and it

contains Gm(R)a. The induced map [T (a)(R)]→ [T (a)(R′)] from
Gm(R)a-invariant map (3.3.5.2) is injective if and only if Gm(R

′)a∩
Gn
m(R) = Gm(R)a.
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3. The map [T (a)(R)] → [T (a)(R′)] is continuous by Proposition
3.3.2.3 is a homomorphism by (1).

4. By [15, Section 2.2, parts (vii) and (x)], the inclusion Gn
m(R) →

Gn
m(R

′) is continuous and open. The map [T (a)(R)]→ [T (a)(R′)]
is the induced map from the Gm(R)a-invariant, continuous and open
map (3.3.5.2), thus is open.

Lemma 3.3.5.3. — Let v ∈M0
F . One has that

Gm(Fv)a ∩Gn
m(Ov) = (Gm(Ov))a.

Proof. — It is obvious that Gm(Ov)a ⊂ Gm(Fv)a ∩ Gn
m(Ov) and let us

prove the inverse inclusion. Let x ∈ Gm(Fv)a∩Gn
m(Ov). This means that

there exists t ∈ Gm(Fv) such that for every j one has taj = xj and that
xj ∈ Gm(Ov). We deduce v(taj) = ajv(t) = xj = 0, and as aj > 0 we get
v(t) = 0. It follows that t ∈ Gm(Ov) and hence x ∈ Gm(Ov)a.
We are ready to prove that:

Proposition 3.3.5.4. — Let v ∈ M0
F . The map [T (a)(Ov)] →

[T (a)(Fv)], induced from (Ov)a-invariant map qav |(O×
v )n, is continuous,

injective and open homomorphism and induces an identification of
[T (a)(Ov)] with an open and compact subgroup of [T (a)(Fv)].
Proof. — By applying (1), (3) and (4) of Lemma 3.3.5.1 to the inclusion
Ov → Fv, we obtain that [T (a)(Ov)]→ [T (a)(Fv)] is a continuous and
open homomorphism. Lemma 3.3.5.3 gives that Gm(Fv)a ∩ Gn

m(Ov) =
(Gm(Ov))a and thus by (2) of Lemma 3.3.5.1, the map [T (a)(Ov)] →
[T (a)(Fv)] is injective. Moreover, by Proposition 3.3.4.5, the topological
group [T (a)(Ov)] is compact by Proposition 3.3.4.5. The claim is proven.

Lemma 3.3.5.5. — Let aZ denotes the subgroup {(ajx)j|x ∈ Z} of Zn.
The homomorphism

(3.3.5.6) (F×
v )

n → Zn → Zn/(aZ),

where the first homomorphism is given by x 7→ (v(xj))j and the second
homomorphism is the quotient one, is (F×

v )a-invariant. The kernel of
the induced homomorphism [T (a)(Fv)]→ Zn/(aZ) is [T (a)(Ov)].
Proof. — Note that the image of (taj)j ∈ (F×

v )a in Zn under the map
(F×

v )
n → Zn from above is (v(taj))j = (ajv(t))j, and the image of

(ajv(t))j in Zn/(aZ) under the quotient homomorphism is 0. Thus the
homomorphism (3.3.5.6) is F×

v -invariant. The kernel of (F×
v )

n → Zn is



62 CHAPTER 3. WEIGHTED PROJECTIVE STACKS

the subgroup (O×
v )

n ⊂ (F×
v )

n. The kernel of the induced homomorphism
[T (a)(Fv)] → Zn/(aZ) is the image of (O×

v )
n (as (O×

v )
n is the kernel

of (F×
v )

n → Zn) under the quotient map. We have the following “snake
diagram”:

0

1 (O×
v )a (F×

v )a aZ 0

1 (O×
v )

n (F×
v )

n Zn 0

[T (a)(Ov)] [T (a)(Fv)] Zn/aZ.

Snake lemma gives that

1→ [T (a)(Ov)]→ [T (a)(Fv)]→ Zn/a(Z)→ 0

is exact. The statement follows

We add another fact that will be used later. When n = 1, the spaces
[T (a)(Fv)] is finite and discrete (finiteness and the fact that (F×

v )m ⊂ F×
v

is closed imply that (F×
v )m is open, hence discreteness follows):

Lemma 3.3.5.7 ([42, Corollary 5.8, Chapter II])
Suppose n = 1 and that a = a1 ∈ Z≥1. The space [T (a)(Fv)] =

F×
v /(F

×
v )a is discrete and of the cardinality is a

|a|v |µa(Fv)|, where |µa(Fv)|
is the number of a-th roots of 1 in Fv.

3.4. Adelic situation

We define “adelic space” [T (a)(AF )] of the stack T (a). It is defined
as a restricted product of [T (a)(Fv)] with the respect to open subgroups
[T (a)(Ov)] ⊂ [T (a)(Fv)] for v ∈M0

F . It turns out that [T (a)(AF )] is a
locally compact abelian group.

3.4.1. — Let us recall some facts on restricted product homomor-
phisms.
Lemma 3.4.1.1. — Let I be a set. Suppose for every i ∈ I we are
given locally compact abelian groups Gi and Hi and for every i ∈ I ′,
where I ′ ⊂ I is a subset of finite complement, we are given open and
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compact subgroups G′
i ⊂ Gi and H

′
i ⊂ Hi. Suppose for i ∈ I we are given

continuous homomorphism φi : Gi → Hi such that for every i ∈ I ′ one
has φi(G

′
i) ⊂ H ′

i. Let us set G :=
∏′

i∈I
Gi, with the respect to the open

and compact subgroups (G′
i ⊂ Gi)i∈I′ and let us set H :=

∏′

i∈I
Hi, with

the respect to the open and compact subgroups (H ′
i ⊂ Hi)i∈I′

1. The topological groups G and H are locally compact.
2. The canonical inclusion G ⊂∏i∈I Gi is continuous.
3. The image of G ⊂∏i∈I Gi under

∏
i∈I φi lies in H. We let φ : G→

H be the homomorphism induced by
(∏

i∈I φi
)
.

4. The homomorphism φ : G→ H is continuous.
5. One has that ker(φ) =

(∏
i ker(φi)

)
∩G.

6. Suppose for every i ∈ I ′ one has φi(G
′
i) = H ′

i. Suppose further
that for every i ∈ I, the homomorphism φi is surjective (respec-
tively, open, isomorphism of topological groups). Then the homo-
morphism φ is surjective (respectively, open, isomorphism of topo-
logical groups).

Proof. — 1. Let (xi)i ∈ G. There exists a subset I1 ⊂ I ′ such that
I ′ − I1 is finite and such that for all i ∈ I1 one has xi ∈ G′

i. For
i ∈ I ′ − I1, one can pick a compact neighbourhood Ui of xi in Gi,
because Gi is locally compact. Then

∏
i∈I′−I1 Ui ×

∏
i∈I1 G

′
i is a

compact neighbourhood of (xi)i in G. It follows that G is locally
compact, and the same is true for H.

2. A basis open subset of
∏

i∈I Gi writes as
∏

i∈S Ui ×
∏

i∈I−S Gi,
where S is finite. Its preimage in G is given by

⋃

T is finite
T⊃S

∏

i∈S
Ui ×

∏

i∈T−S
Gi ×

∏

i∈I−T
G′
i,

hence is open. It follows that the canonical inclusion is continuous.
3. Suppose (xi)i ∈ G. There exists a subset I1 ⊂ I ′ such that I ′ − I1

is finite and such that for all i ∈ I1 one has xi ∈ G′
i. For i ∈ I1, we

have φi(xi) ∈ H ′
i, hence (φi(xi))i ∈ H.

4. It suffices to verify that the preimage under φ of a basis open subset
of H is open in G. A basis open subset of H is given by

∏
i∈J Ui ×∏

i∈I−J H
′
i, for some finite subset J ⊂ I containing I − I ′ and some

open subsets Ui ⊂ Hi for i ∈ J . We establish that every point
(xi)i ∈ φ−1

(∏
i∈J Ui ×

∏
i∈I−J H

′
i

)
admits an open neighbourhood

contained in φ−1
(∏

i∈J Ui×
∏

i∈I−J H
′
i

)
. There exists a subset I1 ⊂
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I ′ such that I ′ − I1 is finite and such that for all i ∈ I1 one has
xi ∈ G′

i. We note that
∏

i∈(J∩I)−I1

φ−1
i (Ui)×

∏

i∈I−I1−J
φ−1
i (H ′

i)×
∏

i∈I1

G′
i

is an open neighbourhood of (xi)i contained in φ−1
(∏

i∈J Ui ×∏
i∈I−J H

′
i

)
. The set φ−1

(∏
i∈J Ui ×

∏
i∈I−J H

′
i

)
is thus open and it

follows that φ is continuous.
5. Let (xi)i ∈ G. One has that 0 = φ((xi)i) = (φi(xi))i if and only if
xi ∈ ker(φi) for every i ∈ I, i.e. if and only if (xi)i ∈

∏
i ker(φi). It

follows that ker(φ) =
(∏

i ker(φi)
)
∩G.

6. Let us suppose that for every i ∈ I ′ one has φi(G
′
i) = H ′

i.
(a) Suppose φi are surjective and let (xi)i ∈ H. There exists

I1 ⊂ I ′ such that I ′ − I1 is finite and such that xi ∈ H ′
i for

every i ∈ I1. As φi(G
′
i) = H ′

i for every i ∈ I1, we can pick
yi ∈ G′

i such that φi(yi) = xi. As maps φi are surjective for
every i ∈ I − I1, we can pick yi ∈ Gi such that φi(yi) = xi for
every i ∈ I − I1. It follows that (yi)i is an element of G such
that φ((yi)i) = (xi)i. Hence, φ is surjective.

(b) Suppose φi are open. It suffices to prove that the image of a
basis open subset of G is open in H. A basis open subset of G
is given by

∏
i∈J Ui ×

∏
i∈I−J G

′
i, for some finite subset J ⊂ I

such that J ⊃ I−I ′ and some open subsets Ui ⊂ Gi. We have
that

φ
(∏

i∈J
Ui ×

∏

i∈I−J
G′
i

)
=
∏

i∈J
φi(Ui)×

∏

i∈I−J
φi(G

′
i)

=
∏

i∈J
φi(Ui)×

∏

i∈I−J
H ′
i

is open in H. It follows that φ is open.
(c) Suppose φi are isomorphisms of topological groups. It follows

from above that φ is injective, surjective, continuous and open.
Thus φ is an isomorphism of topological groups.

3.4.2. — Let n ≥ 1 be an integer and let a ∈ Zn>0. We define an “adelic
space” of the stack T (a).



3.4. ADELIC SITUATION 65

Let A×
F be the group of ideles of F , that is, it is the restricted product

∏′

v∈MF

F×
v ,

with the respect to the family of open and compact subgroups

(O×
v ⊂ F×

v )v∈M0
F
.

It follows from Lemma 3.4.1.1 that the group A×
F is locally compact.

Definition 3.4.2.1. — We define

[T a(AF )] :=
∏′

v∈MF

[T a(Fv)],

where the restricted product is taken with the respect to the family of
compact and open subgroups

([T a(Ov)] ⊂ [T a(Fv)])v∈M0
F
.

For v ∈MF , let q
a
v : (F×

v )
n → (F×

v )
n/(F×

v )a = [T (a)(Fv)] be the quo-
tient morphism. By Proposition 3.3.5.4, for every v ∈ M0

F , one has that
qav ((O×

v )
n) = [T (a)(Ov)] is an open and compact subgroup of [T (a)(Fv)].

Lemma 3.4.1.1 provides a homomorphism

qaAF
=
( ∏

v∈MF

qav
)
: (A×

F )
n → [T (a)(AF )].

We apply Lemma 3.4.1.1 to our situation and we get the following lemma.
Lemma 3.4.2.2. — The abelian topological group [T (a)(AF )] is lo-
cally compact. The map qaAF

=
(∏

v∈MF
qav
)
: (A×

F )
n → [T (a)(AF )] is

continuous, open and surjective. The kernel of qaAF
is the group (A×

F )a =

{(xaj)j|x ∈ A×
F} (in particular (A×

F )a ⊂ (A×
F )

n is closed).
Proof. — The abelian topological group [T (a)(AF )] is locally compact
by Lemma 3.4.1.1. For every v ∈MF , the quotient map qav is continuous,
open and surjective. By Lemma 3.4.1.1, one has that qaAF

is continuous,
open and surjective. For v ∈ MF , one has that ker(qav ) = (F×

v )a and
Lemma 3.4.1.1 gives that the kernel of qaAF

is given by

ker(qaAF
) =

(∏

v

ker(qav )
)
∩ (A×

F )
n =

(∏

v

(F×
v )a
)
∩ (A×

F )
n

By Lemma 3.3.5.3, for x ∈ F×
v one has that (xaj)j ∈ (O×

v )a if and only
if x ∈ O×

v . It follows that for x ∈
(∏

v F
×
v

)
, one has that (xaj)j ∈ (A×

F )a
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if and only if x ∈ A×
F . We deduce that

ker(qaAF
) =

(∏

v

(F×
v )a
)
∩ (A×

F )
n = (A×

F )a.

For v ∈ MF , let iv : F× → F×
v be the canonical inclusion. The

homomorphism

(F×)n
inv−→ (F×

v )
n → [T (a)(Fv)]

is F×-invariant, and one deduces a homomorphism [T (a)(iv)] :
[T (a)(F )] → [T (a)(Fv)]. Let i : F× → A×

F be the product map
i =

∏
v∈MF

iv. It is well known that the image of F× is discrete in A×
F

(see e.g. [49, Theorem 5-11]). The homomorphism

(F×)n
i−→ (A×

F )
n

qa
AF−−→ [T (a)(AF )]

is (F×)-invariant and we deduce homomorphism [T (a)(i)] : [T (a)(F )]→
[T (a)(AF )]. For every v, the homomorphism

(F×
v )

n
x 7→((x)v ,(1)w∈MF−{v})−−−−−−−−−−−−−→ (A×

F )
n → [T (a)(AF )]

is F×
v -invariant, and we deduce a homomorphism [T (a)(Fv)] →

[T (a)(AF )].
Lemma 3.4.2.3. — The map [T (a)(i)] coincides with the product map∏

v[T (a)(iv)] : [T (a)(F )]→∏
v[T (a)(Fv)].

Proof. — For every v ∈MF , the following diagram is commutative

(F×)n (F×
v )

n (A×
F )

n

[T (a)(F )] [T (a)(Fv)] [T (a)(AF )]

inv

[T (a)(iv)]

for every v ∈ MF . It follows that the map [T (a)(i)] coincides with the
product map

∏
v[T (a)(iv)] : [T (a)(F )]→∏

v[T (a)(Fv)].

Definition 3.4.2.4. — We define [T (a)(AF )]1 to be the image of
(A1

F )
n in [T (a)(AF )] under the map qaAF

.
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3.4.3. — In this paragraph we suppose that n = 1 and that a = a1 ≥ 2.
The following proposition is due to Česnavičius:

Proposition 3.4.3.1. — One has that:

1. [14, Proposition 4.12] The image

[T (a)(i)]([T (a)(F )]) ⊂ [T (a)(AF )]

is discrete, closed and cocompact.
2. [14, Lemma 4.4] The group X

1(F, µa) := ker([T (a)(i)]) is finite.

Proof. — Let R be a local ring. Kummer exact sequence

1→ µa → Gm
t 7→ta−−−→ Gm → 1

provides a long exact sequence

H0
fppf(R,Gm)

t 7→ta−−−→ H0
fppf(R,Gm)→ H1

fppf(R, µa)→ H1
fppf(R,Gm).

By Hilbert 90 theorem, the group H1
fppf(R,Gm) is trivial. We deduce an

identification of abelian groups H1
fppf(R, µa) and R

×/(R×)a = [T (a)(R)].

It follows that the space T (a)(AF ) is precisely the space H1(A∈MF
F , µa)

from [14, Section 3]. Moreover, with these identifications, the map
[T (a)(i)] becomes the map loc1(µa) in the notation of [14]. We are
thus in the situations of the mentioned statements of [14].

Lemma 3.4.3.2. — One has that

[T (a)(AF )]1 = [T (a)(AF )].

Proof. — We will establish that any (xv)v ∈ [T (a)(AF )] admits a lift
in A1

F for the map qaAF
=
∏

v q
a
v : A×

F → [T (a)(AF )]. It follows from

Lemma 3.4.2.2 that there exists a lift (yv)v ∈ A×
F of (xv)v. We set A :=∏

v∈MF
|yv|v ∈ R>0. Let w ∈M∞

F . Set z = A1/nw ∈ F×
w , so that |z|w = A.

One has that ((yv)v 6=w, (ywz
−1)w) ∈ A1

F , because

|ywz−1|w
∏

v 6=w
|yv| = |z−1|w

∏

v

|yv|v = A−1 · A = 1.

We note that z−1 = A−1/nv = (A−1/anv)a, hence z−1 ∈ (F×
w )a. Now one

has that

qaAF
((yv)v 6=w, ywz

−1) = ((qav(yv))v 6=w, (q
a
w(ywz

−1))w)

= ((xv)v 6=w, (q
a
w(yw))w)

= (xv)v.
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Thus ((yv)v 6=w, (ywz
−1)w) is a lift of (xv)v lying in A1

F . It follows that
[T (a)(AF )] = qaAF

(A1
F ) = [T (a)(AF )]1.

3.4.4. — If A is an abelian group written additively, we will write aA for
the subgroup {(ajm)j|m ∈ A} of An. If the group is written multiplica-
tively, then we will use notation Aa to be consistent with earlier notation.
In this paragraph we construct an isomorphism A/dA×An−1 ∼−→ An/aA,
where d := gcd(a).

Let n ≥ 1 be an integer and let a ∈ Zn>0. For j = 1, . . . , n, we set

bj1 :=
aj
d
.

There exists a matrix E = (bji)ji ∈ SL(n,Z) which has (bj1)
t
j for the first

column (see e.g. [50]).
Lemma 3.4.4.1. — 1. The kernel of the homomorphism

(3.4.4.2) Zn E−→ Zn → Zn/aZ,

where the second homomorphism is the quotient homomorphism, is
the subgroup dZ× {0}n−1 ⊂ Zn.

2. The homomorphism

E : (Z/dZ)× Zn−1 = Zn/(dZ× {0}n−1)
∼−→ Zn/aZ,

induced from aZ-invariant homomorphism 3.4.4.2, is an isomor-
phism. Let A be an abelian group. Let us write EA and EA for the
tensor products E⊗ZA and E⊗ZA, respectively. The following di-
agram C(A) is commutative, its horizontal sequences are exact and
its vertical arrows are isomorphisms of abelian groups:

(3.4.4.3)

dA× {0}n−1 An (A/dA)× An−1 0

aA An An/aA 0.

EA EA EA

Moreover, if A → B is a homomorphism of abelian groups, the
canonical homomorphisms provide a morphism of diagrams C(A)→
C(B).

Proof. — 1. Obviously, the kernel of (3.4.4.2) coincides with E−1(aZ),
thus the kernel is a free abelian group of the rank 1. Moreover, it
contains the vector (d, 0, . . . , 0)t. We deduce that the generator of
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the kernel of the homomorphism (3.4.4.2) is given by (k, 0, . . . , 0)t

for some k|d. One has that

E · (k, 0, . . . , , 0)t = (kbj1)
t
j = (kaj/d)

t
j ∈ aZ,

hence d|k, hence d = ±k. We deduce that the kernel of the homo-
morphism (3.4.4.2) is precisely the subgroup dZ× {0}n−1 ⊂ Zn.

2. The homomorphism E is evidently an isomorphism. By (1), the
following diagram is commutative, its horizontal sequences are exact
and its vertical arrows are isomorphisms:

(3.4.4.4)

dZ× {0}n−1 Zn (Z/dZ)× Zn−1 0

aZ Zn Zn/aZ 0

E E E

The diagram (3.4.4.3) is obtained by tensoring the diagram (3.4.4.4)
by A. Thus the diagram (3.4.4.3) is commutative, its horizontal se-
quences are exact and its vertical arrows are isomorphisms. More-
over, the morphism of diagrams C(A)→ C(B) is deduced by func-
toriality of the tensor product.

3.4.5. — In this paragraph we prove that the isomorphisms EF×
v

and

EF×
v
are continuous and that they preserve the compact open subgroups

from before.
Lemma 3.4.5.1. — The following claims are valid:

1. Let v ∈ MF . The homomorphism EF×
v
: (F×

v )
n → (F×

v )
n is an iso-

morphism of abelian topological groups. The homomorphism EF×
v
:

[T (d)(Fv)] × (F×
v )

n−1 → [T (d)(Fv)] is an isomorphism of abelian
topological groups.

2. Let v ∈M0
F . One has that

EF×
v
((O×

v )
n) = (O×

v )
n

and that

EF×
v
([T (d)(Ov)]× (O×

v )
n−1) = [T (a)(Ov)].

Proof. — 1. We have seen in Lemma 3.4.4.1 that the homomorphisms
EF×

v
and EF×

v
are isomorphisms of abelian groups. The map EF×

v
:
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(F×
v )

n → (F×
v )

n is given by

x 7→
( n∏

i=1

x
bji
i

)
j

and is continuous and open. It follows that EF×
v
is an isomorphism

of topological groups. Moreover, by Lemma 3.4.4.1, the map EF×
v

is the induced map from (F×
v )d × {1}n−1-invariant map

(F×
v )

n
E

F×
v−−→ (F×

v )
n → [T (a)(Fv)],

thus is continuous and open. It follows that EF×
v
is an isomorphism

of topological groups.
2. Let v ∈ M0

F and let x ∈ (O×
v )

n. The j-th coordinate of EF×
v
(x)

is equal to
∏n

i=1 x
bji
i and is an element of O×

v , thus EF×
v
(x) is an

element of (O×
v )

n. We have established EF×
v
((O×

v )
n) ⊂ (O×

v )
n. Let

E−1 = (cji)ji. For y ∈ (F×
v )

n, one has that E−1

F×
v
(y) =

∏n
j=1 y

bji
i and

it follows that E−1(y) ∈ (O×
v )

n, hence E−1((O×
v )

n) ⊂ (O×
v )

n. We
deduce EF×

v
((O×

v )
n) = (O×

v )
n. Now one has that

EF×
v
([T (d)(Ov)]× (O×

v )
n−1) = EF×

v
(qdv × Id(F×

v )n−1((O×
v )

n))

= qav (EF×
v
((O×

v )
n−1))

= qav ((O×
v )

n)

= [T (a)(Ov)].

3.4.6. — We will now use properties given in Lemma 3.4.5.1 to define
maps (A×

F )
n → (A×

F )
n and [T (d)(AF )]× (A×

F )
n−1 → [T (a)(AF )].

Lemma 3.4.6.1. — The following claims are valid

1. The map
(∏

v∈MF
EF×

v

)
: (
∏

v(F
×
v )

n) → ∏
v(F

×
v )

n is precisely the

map E ⊗Z (
∏

v F
×
v ). The map

(∏
v∈MF

EF×
v

)
: (
∏

v([T (d)(Fv)] ×
(F×

v )
n−1))→∏

v[T (a)(Fv)] is precisely the map E ⊗Z (
∏

v F
×
v ).

2. One has that
(∏

v∈MF
EF×

v

)
((A×

F )
n) ⊂ (A×

F )
n. Moreover, the in-

duced homomorphism

EA×
F
: (A×

F )
n → (A×

F )
n

is an isomorphism of topological abelian groups.
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3. One has that
(∏

v∈MF
EF×

v

)
([T (d)(AF )]× (A×

F )
n−1) ⊂ [T (a)(AF )].

Moreover, the induced homomorphism

EA×
F
: ([T (d)(AF )]× (A×

F )
n−1)→ [T (a)(AF )]

is an isomorphism of abelian topological groups.

Proof. — 1. One has that E and E are homomorphisms of finitely
presented Z-modules, thus tensoring by E and E commutes with
the direct products. The claim follows

2. For every v ∈M0
F , Lemma 3.4.5.1 gives that EF×

v
is a continuous ho-

momorphism which satisfies that EF×
v
((O×

v )
n) = (O×

v )
n, and hence

by Lemma 3.4.1.1, it follows that
( ∏

v∈MF

EF×
v

)
((A×

F )
n) ⊂ (A×

F )
n.

Moreover, by Lemma 3.4.5.1 the maps EF×
v

are isomorphisms of
abelian topological groups, thus by Lemma 3.4.1.1 the homomor-
phism

(∏
v∈MF

EF×
v

)
: (A×

F )
n → (A×

F )
n is an isomorphism of abelian

topological groups.
3. For every v ∈ M0

F , Lemma 3.4.5.1 gives that EF×
v

is a continuous

homomorphism which satisfies that EF×
v
([T (d)(Ov)]× (O×

v )
n−1) =

[T (a)(Ov)], and hence by Lemma 3.4.1.1, it follows that
( ∏

v∈MF

EF×
v

)
([T (d)(AF )]× (A×

F )
n−1
)
⊂ [T (a)(AF )].

Moreover, by Lemma 3.4.5.1 the maps EF×
v

are isomorphisms of
abelian topological groups, thus by Lemma 3.4.1.1 the homomor-
phism

(∏
v∈MF

EF×
v

)
: [T (d)(AF )] × (A×

F )
n−1 → [T (a)(AF )] is an

isomorphism of abelian topological groups.

Lemma 3.4.6.2. — The following claims are valid:

1. One has that EA×
F
((A1

F )
n) = (A1

F )
n.

2. One has that EA×
F
([T (d)(AF )]1 × (A1

F )
n−1) = [T (a)(AF )]1.

Proof. — 1. Let (xjv)v ∈ (A1
F )

n. The j-th coordinate of its image

under EA×
F
=
∏

v EF×
v
is (
∏n

k=1 x
bjk
kv )v and one has

∏

v

∣∣
n∏

k=1

x
bjk
kv

∣∣
v
=

n∏

k=1

∏

v∈MF

|xkv|bjkv = 1.
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It follows that EA×
F
((A1

F )
n) ⊂ (A1

F )
n. Let E−1 = (cji)ji ∈ SLn(Z).

For j = 1, . . . , n, the j-th coordinate of E−1

A×
F

(xjv)v = (E−1

F×
v
(xjv))v is

equal to
∏n

k=1 x
cjk
kv and one has

∏

v∈MF

∣∣
n∏

k=1

x
cjk
kv

∣∣
v
=

n∏

k=1

∏

v∈MF

|xkv|cjkv = 1

It follows that E−1

A×
F

(A1
F )

n) ⊂ (A1
F )

n. We deduce that EA×
F
((A1

F )
n) =

(A1
F )

n.
2. The diagram

(A×
F )

n (A×
F )

n

[T (d)(AF )]× (A×
F )

n−1 [T (a)(AF )]

qd
AF

×Id
(A×

F
)n−1

E
A
×
F

E
A
×
F

qa
AF

is commutative by Lemma 3.4.4.1. One has that [T d(AF )]1 ×
(A1

F )
n−1 and [T (a)(AF )]1 are images of (A1

F )
n in [T (d)(AF )] ×

(A×
F )

n−1 and in [T (a)(AF )] under the surjective maps qdAF
×Id(A×

F )n−1

and qaAF
, respectively. The claim now follows from (1).

3.4.7. — We will now study the kernel and the image of the map
[T (a)(i)] when n ≥ 2 and a ∈ Zn≥1.
Lemma 3.4.7.1. — One has that

EF×

(
X

1(F, µd)× {0}n−1
)
= EF×

(
ker([T (d)(i)])× {0}n−1

)

= ker([T (a)(i)])

is finite.
Proof. — By Lemma 3.4.4.1, the following diagram is commutative and
the vertical arrows are isomorphisms:

[T (d)(F )]× (F×)n−1 [T (d)(AF )]× (A×
F )

n−1

[T (a)(F )] [T (a)(AF )].

[T (d)(i)]×in−1

[T (a)(i)]

EF×
E

A
×
F
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We deduce that

EF×(ker([T (d)(i)]× in−1]) = ker([T (a)(i)]).

The map in−1 : (F×)n−1 → (A1
F )

n−1 given by the diagonal inclusion
is injective, hence the kernel of [T (d)(i)] × in−1 is precisely the group
ker([T (d)(i)]) × {0}n−1 = X

1(F, µd) × {0}n−1. Finiteness of the Tate-
Shafarevich group has been established in [52, Lemma 1.2]. The claim
is proven

Proposition 3.4.7.2. — The image [T (a)(F )] under [T (a)(i)]
lies in [T (a)(AF )]1. Moreover, the subgroup [T (a)(i)]([T (a)(F )]) ⊂
[T (a)(AF )]1 is discrete, closed and cocompact.
Proof. — The following diagram is commutative by the definition of
[T (a)(i)(F )]:

(F×)n (A×
F )

n

[T (a)(F )] [T (a)(AF )]

in

qa
AF

[qa(F )]

[T (a)(i)]

The image under in of F×n is contained in (A1
F )

n. We deduce that

[T (a)(i)]([T (a)(F )]) = (qaAF
◦in)(F×n) ⊂ qaAF

(((AF )
1)n) = [T (a)(AF )]1.

The map EA×
F
is an isomorphism of abelian topological groups. Thus the

subgroup [T (a)(i)]([T (a)(F )]) = E
−1

A×
F
(([T (d)(i)] × in−1)([T (d)(F )] ×

(F×)n−1)) is discrete, closed and cocompact in [T (a)(AF )]1 =

E
−1

A×
F
([T (d)(AF )]1 × (A1

F )
n−1) if and only the subgroup

[T (d)(i)]× in−1)([T (d)(F )]× (F×)n−1) ⊂ [T (d)(AF )]1 × (A1
F )

n−1

is discrete, closed and cocompact. The subgroup (F×)n ⊂ (A1
F )

n is
discrete, closed and cocompact by [49, Theorem 5-15]. Recall that
by Lemma 3.4.3.2 one has that [T (d)(AF )]1 = [T (d)(AF )]. Now, by
Proposition 3.4.3.1, one has that [T (d)(i)]([T (d)(F )]) ⊂ [T (d)(AF )]1 =
[T (d)(AF )] is discrete, closed and cocompact. We deduce that

[T (d)(F )]× (F×)n−1 ⊂ [T (d)(AF )]1 × ((AF )
1)n

is discrete, closed and compact. The statement follows.
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3.4.8. — In this paragraph we establish some more basic properties of
[T (a)(AF )].
Lemma 3.4.8.1. — For v ∈MF , the groups F

×
v are countable at infin-

ity (i.e. are countable unions of compact subsets). The groups A×
F , A

1
F ,

[T (a)(AF )] and [T (a)(AF )]1 are countable at infinity.
Proof. — For v ∈MF −v ∈MC

F , one has that F
×
v is the countable union

of of compact balls:

F×
v =

⋃

q∈Q 6=0

B
(
q,
|q|v
2

)

and for v ∈ MC
F one has that F×

v = C − {0} is the countable union of
compact balls

F×
v =

⋃

q∈Q 6=0

B
(
q,
|q|
2

)
.

For finite subset S ⊂MF , it follows that
∏

v∈S F
×
v is countable at infinity.

It follows that the group A×
F , which writes as the countable union

A×
F =

⋃

M∞
F ⊂S⊂MF

S finite

∏

v∈S
F×
v ×

∏

v∈MF−S
O×
v ,

is countable at infinity. The group A1
F is countable at infinity as it is

a closed subgroup of A×
F . The group (A×

F )
n and the group (A1

F )
n are

countable at infinity, as finite products of groups which are countable at
infinity. Finally, the groups [T (a)(AF )] and [T (a)(AF )]1 are countable
at infinity, as they admit surjective continuous maps from groups which
are countable at infinity.

Lemma 3.4.8.2. — The maps A×
F → (A×

F )
n, A1

F → (A1
F )

n and R>0 →
Rn
>0 given by t 7→ (taj)j are proper.

Proof. — The morphism

Gm → Gn
m t 7→ (taj)j,

is the base change along Gn
m × {1} → Gn

m × Gn
m of the morphism

Gm × Gn
m

(a,p2)−−−→ Gn
m × Gn

m which is proper by Lemma 3.1.2.2, hence
itself is proper. By [21, Proposition 4.4], for a proper morphism of sepa-
rated schemes X → Y , the induced topological map X(AF )→ Y (AF ) is
proper. We deduce that the map A×

F = Gm(AF ) → Gn
m(AF ) = (A×

F )
n is

proper. One has that the preimage of (A1
F )

n under the map A×
F → (A×

F )
n

is A1
F , thus by [7, Chapter I, §10, n0 1, Proposition 3] the map A1

F →
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(A1
F )

n is proper. Note that under the identification log : R>0
∼−→ R, the

homomorphism t 7→ (taj)j becomes t 7→ (ajt)j. As for every j one has
aj > 0, the latter morphism is proper. The statement is proven.

Let us write |·| for the map A×
F → R>0 given by |(xv)v| =

∏
v∈MF

|xv|v,
and by |·|n the product map (A×

F )
n → Rn

>0. We recall that in Lemma
3.4.2.2 we have established that the map

qaAF
: (A×

F )
n → [T (a)(AF )] (xv)v 7→ (qav (xv))v

is open, continuous and surjective. The image of (A1
F )

n under qaAF
we

have denoted by [T (a)(AF )]1. Let qaR>0
: Rn

>0 → Rn
>0/(R>0)a be the

quotient map. The map

qaR>0
◦ |·|n : (A×

F )
n → Rn

>0/(R>0)a

is (A×
F )a-invariant, and let

(3.4.8.3) |·|a : [T (a)(AF )]→ Rn
>0/(R>0)a

be the induced map.
Lemma 3.4.8.4. — In the commutative diagram

1 1 1

1 (A1
F )a (A×

F )a (Rn
>0)a 1

1 (A1
F )

n (A×
F )

n Rn
>0 1

1 [T (a)(AF )]1 [T (a)(AF )] Rn
>0/(R>0)a 1

1 1 1

|·|n

qa
AF

qa
AF

|·|n

qa
R>0

|·|a

,

where the maps that are not named are either canonical inclusions or the
canonical maps to singletons, all horizontal and all vertical sequences are
exact.

Proof. — – One has an exact sequence 1 → A1
F → A×

F

|·|−→ R>0 →
1 and its n-th product with itself is the second horizontal exact
sequence, which is therefore exact.
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– We establish that the first horizontal sequence is exact. We establish
that the map |·|n|(A×

F )a
: (A×

F )a → (R>0)a is surjective. An element

in (R>0)a is of the form (raj)j. One can find (xv)v ∈ A×
F such

that
∏

v |xv|v = r. Then one has ((xv)
aj
v ) ∈ (A×

F )a satisfies that
its image under |·|n is precisely (raj)j. To establish the exactness
at (A×

F )a, let ((yv)
aj
v ) ∈ ker(|·|n) and we observe that one must have

for j = 1, . . . , n that
∏

v |y
aj
v |v =

(∏
v |yv|v

)aj = 1. As aj > 0, we
deduce (yv)v ∈ A1

F . We conclude the first horizontal sequence is
exact.

– The third vertical sequence is exact by the definition.
– We establish that the second vertical sequence is exact. That the
map qaAF

is surjective is proven in Lemma 3.4.2.2. We prove that

its kernel is (A×
F )a. Suppose xv ∈ ker qaAF

= ker
(∏

v∈MF
qav
)
. Then

for every v ∈ MF one has that xv ∈ ker qav and for almost every v,
one has xv ∈ (O×

v )
n. Hence, for every v ∈MF , there exists yv ∈ F×

v

such that for almost every v one has that yv ∈ O×
v and such that

for every v one has (y
aj
v ) = xv. We deduce x = (y

aj
v )j ∈ (A×

F )a.
Suppose now z ∈ (A×

F )a and pick y ∈ A×
F such that (yaj)j = z.

We have for every v ∈ MF that qav (zv) = qav (y
aj
v ) = 1 and hence

qaAF
(z) = 1. We have established that the kernel of qaAF

is (A×
F )a and

we deduce the exactness of the second vertical sequence.
– The map qaAF

|(A1
F )n : (A1

F )
n → [T (a)(AF )]1 is surjective and its

kernel is ker qaAF
|(A1

F )n = ker qaAF
∩ (A1

F )
n = (A1

F )a. We deduce that
the first vertical sequence is exact.

– The long exact sequence deduced from applying Five lemma on the
first two horizontal sequences contains the third horizontal sequence
and the statement is proven.

3.4.9. — We end the chapter, by observing that as in the classical sit-
uation, the short exact sequence

{1} → [T (a)(AF )]1 → [T (a)(AF )]
|·|a−→ (Rn

>0/(R>0)a)→ {1}
splits and we give its section.

The exact sequence

1→ A1
F → A×

F

|·|−→ R>0 → 1
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admits for a section the map

σ : R>0 → A×
F x 7→ ((ρv(x)

1
r1+r2 )v∈M∞

F
, (1)v∈M0

F
),

where, for v ∈ M∞
F , we define ρv : R>0 → F×

v by x 7→ x1/nv , and r1
and r2 are the number of real and complex places of F , respectively. We
deduce an isomorphism :

(3.4.9.1) A1
F × R>0

∼−→ A×
F (x, r) 7→ xσ(r).

The map
|·|n : (A×

F )
n → (R>0)

n (xj)j 7→ (|xj|)j
admits a section

σn : Rn
>0 → (A×

F )
n (xj)j 7→ (σ(xj))j.

Note that σn((R>0)a) ⊂ (A×
F )a and let σa : Rn

>0/(R>0)a be the map
induced from (R>0)a-invariant map qaAF

◦ σn : Rn
>0 → [T (a)(AF )]. The

map σa is a section to the map |·|a : [T (a)(AF )]→ Rn
>0/(R>0)a and we

deduce an isomorphism
(3.4.9.2)

[T (a)(AF )]1 × Rn
>0/(R>0)a

∼−→ [T (a)(AF )] (x, r) 7→ xσa(r).

The image [T (a)(i)]([T (a)(F )]) is contained in [T (a)(AF )]1 by Proposi-
tion 3.4.7.2. The isomorphism (3.4.9.2) induces, hence, an identification
that may be used implicitly

(3.4.9.3)
(
[T (a)(AF )]1/[T (a)(i)]([T (a)(F )])

)
×
(
Rn/(R>0)a

)
∼−→ [T (a)(AF )]/[T (a)(i)]([T (a)(F )]).





CHAPTER 4

QUASI-TORIC HEIGHTS

In this chapter we define heights on weighted projective stacks. A
height on a stack can be stable or unstable. Stable means that any two
rational points of stack that are C-isomorphic have same heights. Stable
heights feature a drawback: they are not “weak Northcott heights”, i.e.
there may exist B > 0 such that there are infinitely many rational points
of the stack having the height less than B (see Corollary 4.6.2.2 for an
example). Hence, such heights cannot be used to count rational points.
We start the chapter by recalling several facts on the line bundles on

the weighted projective stacks. We make a formalism of unstable met-
rics and unstable heights in sections 4.3 and 4.4. Examples of unstable
heights are quasi-toric heights and quasi-discriminant heights (the latter
one appears in the last chapter of this article).

A quasi-toric height is a height arising from a model with enough in-
tegral points (see 4.5) of the stack P(a). We prove in 4.6, that they
are weak Northcott heights. These heights will be used in the following
chapters to make an estimate of Manin-Peyre for the number of rational
points. The last section of the chapter is dedicated to the proof that
quasi-toric heights admitting logarithmic singularities are weak North-
cott heights.

4.1. Line bundles on a quotient stack

In the next paragraphs, we recall that line bundles on quotient stacks
correspond to G-linearizations of line bundles on presentations. We use
this to determine the line bundles on P(a) and on P(a). Let Z be a
scheme.
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4.1.1. — Let X be a Z-algebraic stack. By a line bundle on X we
mean a quasi-coherent OX-module L for which there exists a faithfully
flat 1-morphism of finite presentation f : X ′ → X and an isomorphism
f ∗L ∼= OX′ .

We give another presentation of line bundles. The category of X-
schemes is the category the objects of which are pairs (T, t), where T
is a Z-scheme and t : T → X is a 1-morphism over Z. A morphism
of X-schemes (T ′, t′)→ (T, t) is a pair (f, f#), where f : T ′ → T is a Z-

morphism and f# : t′
∼−→ t ◦ f . The composition of (g, g#) : (T ′′, t′′) →

(T ′, t′) and (f, f#) : (T ′, t′) → (T, t) is defined to be the pair consisting
of g ◦ f and the 2-morphism:

t′′
g#−→ t′ ◦ g g(f#)−−−→ t ◦ f ◦ g = t ◦ (f ◦ g).

The big fppf site of X (see [45, Exercise 9.F]) is defined to be the cate-
gory of X-schemes endowed with the Grothendieck topology defined by
coverings:

{(Ti, ti)→ Y }i is a covering of Y, if
∐

i

Ti → Y is surjective and fppf.

We write Xfppf for this site. Then a line bundle L on X is simply an
fppf-locally trivial quasi-coherent sheaf on Xfppf.

4.1.2. — We recall the definition of a linearization of a module on a
scheme (see e.g. [41, Definition 1.6, Section 3, Chapter 3] for the case of
line bundle).
Definition 4.1.2.1 (Stacks Project, [56, Definition 03LF])

Let Y be a Z-scheme and let a : G× Y → Y be a Z-algebraic action
of a Z-group scheme G = (G,mG, eG) to the left on Y . Denote by p2 :
G× Y → Y the second projection.

1. A G-linearized quasi-coherent OY -module is a pair (M,ψ) where M

is a quasi-coherent OY -module and ψ : p∗2M
∼−→ a∗M is an isomor-

phism of quasi-coherent OY -modules which satisfies the following
cocycle condition

(p2 ◦ (mG × IdY ))
∗M = (p2 ◦ p23)∗M (a ◦ (p23))∗M = (p2 ◦ (IdG×a))∗M

(a ◦ (mG × IdY ))
∗M (a ◦ (IdG×a))∗M,

p∗23ψ

(mG×IdY )∗ψ (IdG ×a)∗ψ

=
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where p23 : G×G×Y → G×Y is the projection obtained by forgetting
the first coordinate. We also say that ψ is a G-linearization of M .

2. A morphism ℓ : (M1, ψ1)→ (M2, ψ2) of G-linearized quasi-coherent
OY -modules is an isomorphism of OY -modules ℓ : M1 → M2 such
that the following diagram is commutative

a∗M1 p∗2M1

a∗M2 p∗2M2.

a∗ℓ

ψ1

ψ2

p∗2ℓ

3. The tensor product of G-linearized quasi-coherent OY -modules is
defined by

(M,ψ)⊗ (M ′, ψ′) := (M ⊗M ′, ψ ⊗ ψ′).

4. The trivial G-linearized quasi-coherent OY -modules is the one given
by the pair (OY , IdOG×ZY

).

The inverse of a morphism ℓ : (M,ψ)→ (M ′, ψ′) is the morphism given
by the isomorphism ℓ−1 :M ′ →M . One verifies easily that G-linearized
quasi-coherent OY -modules and their morphisms form a category, which
is a Picard category (see [24, Exposé XVIII, Definition 1.4.2]) with re-
spect to ⊗.

4.1.3. — In this paragraph we are going to discuss linearizations of the
trivial line bundle. Let Y be a Z-scheme endowed with a left Z-action of
a Z-group scheme G. If ψ is a G-linearization of the trivial line bundle
on Y , using that a∗OY = OG×ZY and that p∗2OY = OG×ZY , we deduce
that ψ ∈ O∗

G×ZY
. The cocycle condition translates as

(4.1.3.1) ψ(g′g, x) = ψ(g′, g · x)ψ(g, x) g, g′ ∈ G, x ∈ Y.
The following things are immediate for G-linearizations of the trivial line
bundle on Y .

– A morphism ℓ : (OY , ψ1)→ (OY , ψ2) of G-linearizations is given by
an element ℓ ∈ O∗

Y such that

ℓ(g · x)ψ1(g, x) = ℓ(x)ψ2(g, x) g ∈ G, x ∈ Y.
– The trivial G-linearization of the trivial line bundle is the G-
linearization given by (g, x) 7→ 1.
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– If ℓ1 : (OY , ψ1) → (OY , ψ2) and ℓ2 : (OY , ψ2) → (OY , ψ3) are
morphisms, the morphism ℓ2 ◦ ℓ1 : (OY , ψ1)→ (OY , ψ3) is given by
l2l1 ∈ O∗

Y .
– If ψ1 are ψ2 are two G-linearizations of the trivial line bundle, the G-
linearization of the trivial line bundle ψ1 ⊗ ψ2 is given by

(g, x) 7→ ψ1(g, x)ψ2(g, x).

– The inverse of the isomorphism ℓ : (OY , ψ1)→ (OY , ψ2) is given by
the element ℓ−1 ∈ O∗

Y .

By abuse of the terminology, we will speak about morphisms or tensor
products of G-linearizations of the trivial line bundle, when if fact we
mean the morphisms or tensor products of corresponding G-linearized
line bundles. We have that G-linearizations of OY form a Picard cate-
gory PicG(OY ). We let PicG(OY ) be the abelian group formed by the
isomorphism classes of objects of PicG(OY ). Let G∨ be the group of
characters of G. One has a homomorphism

G∨ → PicG(OY )
given by associating to χ ∈ G∨ the isomorphism class of the Gm-
linearization of OY
(4.1.3.2) (g, x) 7→ χ(g).

Lemma 4.1.3.3. — 1. Suppose that Pic(Y ) = 0. One has that
PicG(Y ) = PicG(OY ).

2. Suppose that there are no non-constant morphisms Y → Gm. Any
two isomorphic G-linearizations of OY are identical. The homo-
morphism (4.1.3.2) is an isomorphism.

Proof. — 1. It suffices to prove that (L, ψ) ∈ PicG(Y ) is isomorphic
to an element (OY , ψ) ∈ PicG(OY ). As the Picard group of Y is

trivial, one can find an isomorphism of line bundles ℓ : OY ∼−→ L.
One readily verifies that θ : (a∗ℓ)−1 ◦ ψ ◦ (p∗2ℓ) is a linearization of
OY . Now, we have an isomorphism (ℓ, (a∗ℓ)−1 ◦ψ ◦ (p∗2ℓ)) : (L, ψ)→
(OY , θ). It follows that PicG(Y ) = PicG(OY ).

2. An isomorphism ℓ : (OY , ψ1)
∼−→ (OY , ψ2) is given by an element

ℓ ∈ O∗
Y such that

ℓ(gx)ψ1(g, x) = ℓ(x)ψ2(g,x) ∀g ∈ G, ∀x ∈ Y.
As ℓ is a constant morphism and ℓ(x) = ℓ(gx) 6= 0 for every g
and x, we get that ψ1 = ψ2. We also get that the homomorphism
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(4.1.3.2) is injective. Let us prove the second claim. As there are
no non-constant morphisms Y → Gm, for fixed g, the morphism
ψ(g,−) : Y → Gm is constant. Set χ(g) := ψ(g, x) for some x ∈ Y .
The cocycle condition (4.1.3.1) gives that χ(g′g) = χ(g′)χ(g) for
every g, g′ ∈ G, i.e. χ is a character of G. It follows that (4.1.3.2)
is surjective, and hence is an isomorphism.

4.1.4. — Let now Y be a Z-scheme and G a flat, locally of finite pre-
sentation Z-algebraic group scheme. Suppose we are given an action
a : G× Y → Y . We are going to recall that the category of line bundles
on the quotient stack Y/G is equivalent to the category of line bundles
on Y endowed with a G-linearization.

Let q : Y → Y/G be the quotient 1-morphism. Let M be a OY/G-
module. Note that the pullback module q∗M is G-linearized as follows.
Let t : q ◦ a ∼−→ q ◦ pr2 be a 2-morphism making the diagram

G×Z Y Y

Y Y/G

pr2

a

q

q

2-commutative. We have an isomorphism

pr∗2(q
∗M) = (q ◦ pr2)∗M t∗M−−→ (q ◦ a)∗M = a∗(q∗M),

where t∗M is the isomorphism given by [56, Lemma 06WK]. We omit the
proof that the cocycle condition from 4.1.2.1 is satisfied. If ℓ :M → M ′

is a morphism of OY/G-modules, then a morphism of G-linearized OY -
modules is provided by q∗ℓ. We have, hence, a functor F from the cate-
gory of OY/G-modules to the category of G-linearized OY -modules given
by F : M 7→ (M, t∗M). One can verify that t∗(M ⊗M ′) = t∗M ⊗ t∗M ′

and we deduce that the functor is an additive functor. According to [56,
Proposition 06WT], F is an equivalence of categories. We consider the
restriction of F on the category of the line bundles on Y . It is immediate
that if L is a line bundle on Y/G then F(Y ) is a G-linearized line bundle
on Y .
Proposition 4.1.4.1. — The above functor F induces an additive
([24, Exposé XVIII, Definition 1.4.2]) equivalence of the Picard category
Pic(Y/G) of the line bundles on Y/G and the Picard category PicG(Y )
of G-linearized line bundles on Y .
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Proof. — By [56, Proposition 06WT] the functor F is fully faithful,
thus the restricted functor F|Pic(Y/G) is an equivalence to its image

in PicG(Y ). It suffices therefore to verify that an object (L, ψ) ∈
PicG(Y/G) is isomorphic to an object in the image of F |Pic(Y/G). It
follows from [56, Proposition 06WT] that there exists a OY/G-moduleM
such that F(M) ∼= (L, ψ). Let us prove M is locally fppf trivial. The
pullback π∗M is a line bundle, thus, there exists Zariski open covering
y : Y ′ → Y such that y∗π∗M is locally trivial. It follows that for the fppf
covering π ◦ y : Y ′ → Y one has (π ◦ y)∗M ∼= OY ′ .

If X is an algebraic stack, we denote by Pic(X) the Picard group of X.
We denote by PicG(Y ) the abelian group the elements of which are iso-
morphism classes of objects in PicG(Y ), and the addition of which is
defined by the tensor product in PicG(Y ). Functor F induces a homo-
morphism Pic(Y/G) → PicG(Y ). Proposition 4.1.4.1 gives that it is an
isomorphism.

4.1.5. — Let φ : G1 → G2 be a homomorphism of flat, locally of finite
type Z-group schemes. Let aX : G1 ×Z X → X and aY : G2 ×Z Y → Y
be Z-actions on Z-schemes X and Y. Suppose f : X → Y is a mor-
phism of Z-schemes and suppose furthermore that the following diagram
is commutative:

G1 ×Z X G2 ×Z Y

X Y.

(φ,f)

aX

f

aY

We say that f is φ-equivariant. We construct an additive functor of
Picard categories PicG2(Y ) → PicG1(X) as follows. Let (L, ψ) ∈
PicG2(Y ). Denote by prX : G1 ×Z X → X and prY : G2 ×Z Y → Y
the projections to the second coordinate. The linearization on f ∗L is
provided by the isomorphism

(φ, f)∗ψ : (prX)
∗(f ∗L) = (φ, f)∗(prY )

∗L
(φ,f)∗ψ−−−−→ (φ, f)∗a∗YL = a∗X(f

∗L).

If ℓ : (L, ψ) → (L′, ψ′) is a morphism in PicG2(Y ), then f ∗ℓ is a mor-
phism of (f ∗L, (φ, f)∗ψ)→ (f ∗L′, (φ, f)∗ψ). It is a straightforward verifi-
cation that this construction provides a functor PicG2(Y )→PicG1(X),
and it is moreover an additive functor. The induced map PicG2(Y ) →
PicG1(X) is thus a homomorphism.
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Lemma 4.1.5.1. — Let f : X/G1 → Y/G2 be the morphism of quo-
tient stacks given by [56, Lemma 046Q]. The following diagram is 2-
commutative:

(4.1.5.2)

PicG2(Y ) PicG1(X)

Pic(Y/G2) Pic(X/G1).

The diagram

(4.1.5.3)

PicG2(Y ) PicG1(X)

Pic(Y/G2) Pic(X/G1).

is commutative.
Proof. — Fix 2-isomorphisms tX : qX ◦ prX ∼−→ qX ◦ aX , tY : qY ◦
prY

∼−→ qY ◦ aY and tf : qY ◦ f ∼−→ f ◦ qX that make corresponding
diagrams 2-commutative. Let L ∈ Pic(Y/G2). The image of L in
PicG2(Y ) is (q∗YL, t

∗
YL) and the image of (q∗YL, t

∗
YL) in PicG1(X) is

(f ∗q∗YL, (φ, f)
∗t∗YL). The image of L in Pic(X/G1) is f

∗
L, and the im-

age of f
∗
L in PicG1(X) is (q∗Xf

∗
L, t∗X(f

∗
L)). It suffices to verify that

the two images under the composite functors of L in PicG1(X) are iso-
morphic. In fact, we will verify that

t∗fL : f ∗q∗YL = (qY ◦ f)∗L ∼−→ (f ◦ qX)∗L = q∗Xf
∗
L

is an isomorphism (f ∗q∗YL, (φ, f)
∗t∗YL)

∼−→ (q∗Xf
∗
L, t∗Xf

∗
L). For that we

need to verify the commutativity of the following diagram:

pr∗Xf
∗q∗YL a∗Xf

∗q∗YL

pr∗Xq
∗
Xf

∗
L a∗Xq

∗
Xf

∗
L

t∗Xf
∗
L

pr∗X t
∗
fL

(φ,f)∗t∗Y L

a∗X t
∗
fL

This is true as in fact

(tf ∗ aX) ◦ (tY ∗ (φ, f)) = (f ∗ tX) ◦ (tf ∗ prX),
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as one verifies in a straightforward way, where ∗ is the operation given
by the structures of 2-categories (if a is 1-morphism compozable with 1-
morphisms i and j and b : i→ j a 2-morphism, then b∗a is a 2-morphism
i ◦ a → j ◦ a, and analogously for the composability on the other side).
Therefore the diagram (4.1.5.2) is 2-commutative, and hence the diagram
(4.1.5.3) is commutative.

4.2. Picard group of a weighted projective stack

We are going to calculate Picard groups of weighted projective stacks.
Let Z be a scheme. All the schemes and stacks are understood to be

over Z. Let n ≥ 1 and let a ∈ Zn≥1.

4.2.1. — We calculate the Picard group of P(a) and of P(a). Propo-
sition 4.1.4.1 gives that the canonical homomorphisms

Pic(P(a))→ PicGm(An)

and

Pic(P(a))→ PicGm(An − {0})
are isomorphisms.
Proposition 4.2.1.1. — Let n ≥ 1 be an integer and let a ∈ Zn≥1.

1. One has that

Pic(P(a)) ∼= Z

and a generator of Pic(P(a)) is given by the isomorphism class of
line bundles defined by the Gm-linearization of OAn :

ψ : Gm × An → Gm (t,x) 7→ t.

2. Suppose that n ≥ 2. One has that

Pic(P(a)) ∼= Z

and a generator of Pic(P(a)) is given by the isomorphism class of
line bundles defined by the Gm-linearization of OAn−{0} :

ψ : Gm × (An − {0})→ Gm (t,x) 7→ t.

3. Suppose that n = 1. One has that

Pic(P(a)) ∼= Z/aZ
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and a generator of Pic(P(a)) is given by the isomorphism class of
line bundles defined by the Gm-linearization of OA1−{0} :

ψ : Gm × (A1 − {0})→ Gm (t, x) 7→ t.

Proof. — Let us prove the first two statements. We have that
Pic(An) = Pic(An − {0}) = 0 and thus by Lemma 4.1.3.3, one
has equalities of abelian groups PicGm(An) = PicGm(OAn) and
PicGm(An − {0}) = PicGm(OAn−{0}). There are no non-constant mor-
phisms An → Gm (respectively, non-constant morphisms An − {0} →
Gm) and thus by Lemma 4.1.3.3 any two Gm-linearization of OAn

(respectively, of OAn−{0}) are identical. Moreover, by the same

lemma, the homomorphisms G∨
m → PicGm(OAn) = PicGm(An) and

G∨
m → PicGm(OAn−{0}) = PicGm(An − {0}) given by

χ 7→ ((t,x) 7→ χ(t))

are isomorphisms. The group G∨
m is the infinite cyclic group with genera-

tor t 7→ t, therefore the isomorphism class of the linearization (t,x) 7→ t of
the trivial line bundle is a generator of the group of the Gm-linearizations
of the trivial line bundle (in both cases). The first two claim follow.

Let us prove the third claim. One has that Pic(A1−{0}) = 0, thus by
Lemma 4.1.3.3, one has an equality of abelian groups PicGm(A1−{0}) =
PicGm(OA1−{0}). We study the latter group. Let P̃ic

Gm

(OA1−{0}) be the
group of Gm-linearizations of OA1−{0}. We will split the proof into two

parts. First, we prove that P̃icGm(OA1−{0}) is isomorphic to Z and that
its generator is given by (t, x) 7→ t. Then we will prove that the canonical

surjective homomorphism P̃ic
Gm

(OA1)−{0} → PicGm(OA1−{0}) has for the
kernel the subgroup generated by the Gm-linearization (t, x) 7→ ta.

The cocycle condition ψ(t′t, x) = ψ(t′, t · x)ψ(t, x) implies that the
degree of ψ in x must be zero i.e. ψ(t,−) : (A1 − {0}) → Gm is a
constant morphism. Set χ(t) := ψ(t, x) for some x ∈ A1 − {0}. The
cocycle condition gives χ(t′t) = χ(t′)χ(t), i.e. χ is a character of Gm. It
follows that the homomorphism

G∨
m → P̃icGm(OA1−{0}) χ 7→

(
(t, x) 7→ χ(t)

)

is surjective. This homomorphism is evidently injective, hence is an
isomorphism. The group G∨

m is isomorphic to Z and its generator is

given by t 7→ t, thus P̃icGm(OA1−{0}) is isomorphic to Z and its generator
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is given by (t, x) 7→ t. Let us now prove the second claim. Let ℓ :
(OA1−{0}, (t, x) 7→ tk) → (OA1 , (t, x) 7→ 1) be an isomorphism of Gm-
linearizations of OA1−{0}. This means that ℓ : A1 − {0} → Gm is a
morphism such that for every t ∈ Gm and every x ∈ A1 − {0} one has
that ℓ(t ·x)tk = ℓ(x) i.e. ℓ(tax) = ℓ(x)t−k. Thus the degree of the rational
function ℓ must be (−k)/a. It follows that if (t, x) 7→ tk and (t, x) 7→ 1
are isomorphic, then k ≡ 0 (mod a). Let us see that if a|k, then the Gm-
linearizations (t, x) 7→ tk and (t, x) 7→ 1 are isomorphic. Indeed if one
sets ℓ(x) = x−k/a, we have that

ℓ(t · x)tk = (t · x)(−k)/atk = (tax)(−k)/atn1 = x(−k)/atn2 = ℓ(x).

The second claim follows. We deduce that PicGm(A1 − {0}) =
PicGm(OA1−{0}) ∼= Z/nZ that its generator is given by the isomor-
phism class of the Gm-linearization of the trivial line bundle (t, x) 7→ t.

As Pic(P(a))
∼−→ PicGm(A1 − {0}) is an isomorphism by Proposition

4.1.4.1, the statement follows.

Definition 4.2.1.2. — Let O(1) be the isomorphism class of line bun-

dles on P(a) given by the linearization of the trivial line bundle

ψ : Gm × An → Gm (t,x) 7→ t.

For k ∈ Z, we write O(k) for O(1)⊗k. By abuse of notation, we may also
write O(k) for a line bundle in the corresponding isomorphism class of
line bundles.
Definition 4.2.1.3. — Let O(1) be the isomorphism class of line bun-
dles on P(a) given by the linearization of the trivial line bundle

ψ : Gm × (An − {0})→ Gm (t,x) 7→ t.

For k ∈ Z, we write O(k) for O(1)⊗k. By abuse of notation, we may also
write O(k) for a line bundle in the corresponding isomorphism class of
line bundles.

When n = 1 one has that O(a) = O(0) = OP(a). For b ∈ Zn, we
denote |b| := b1 + · · ·+ bn.

Definition 4.2.1.4. — We say that a line bundle on P(a) with iso-
morphism class O(|a|) is anti-canonical. We may write (K

P(a))
−1 =

O(|a|).
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4.3. Metric on a line bundle on a stack

In this section we define metrics on line bundles on algebraic stacks.

4.3.1. — Let v be a place of F . We present a definition of an Fv-metric
on a line bundle on a stack.
Definition 4.3.1.1. — Let X be a locally of finite type Fv-algebraic
stack and let L be a line bundle on X. An Fv-metric ||·|| is the following
data:

– for every 1-morphism of stacks x : Spec(Fv) → X we give a norm
||·||x on L(x) := x∗L.

– for every 2-morphism x
∼−→ y of 1-morphisms x : Spec(Fv) → X

and y : Spec(Fv)→ X, the canonical morphism L(x)→ L(y) is an
isometric isomorphism.

– for every 1-morphism f : U → X over Fv, with U locally of finite
type Fv-scheme and every section s of f ∗L over U , the map

U(Fv)→ R≥0 z 7→ ||s(z)||f◦z
is continuous.

An Fv-metrized line bundle is a pair (L, ||·||) of a line bundle L and an
Fv-metric on L.

Let v be a place of F and let X be a locally of finite type Fv-algebraic
stack.

– A morphism r : (L, ||·||) → (L′, ||·||′) of Fv-metrized line bundles
onX is an isomorphism of line bundles r : L→ L′ which is isometric
i.e. for every x ∈ X(Fv), the morphism r(x) : L(x) → L′(x) is
isometric.

– The trivial line bundle can be endowed with the following metric: set
||1||x = 1 for each 1-morphism x : Spec(Fv)→ X. The correspond-
ing Fv-metrized line bundle will be called the trivial Fv-metrized
line bundle.

– One defines the tensor product of Fv-metrized line bundles on X as
follows: let (L, ||·||) ⊗ (L′, ||·||′) be Fv-metrized line bundles on X,
endow L ⊗ L′ with the metric ||·|| ⊗ ||·||′ defined by ||·||x ⊗ ||·||′x
for every 1-morphism x : Spec(Fv) → X (it is immediate that one
indeed gets a metric on L⊗ L′).

Lemma 4.3.1.2. — Let X be an algebraic stack and let L be a line
bundle on X.
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1. Suppose ||·|| is an Fv-metric on L. For every x ∈ X(Fv), let ||·||−1
x

be the metric on L−1(x) defined by

||·||−1
x (λ) := ||ℓ||−1

x ,

for 0 6= ℓ ∈ L(x) and λ ∈ L−1(x) such that λ(ℓ) = 1. The metrics
||·||−1

x on L−1(x) for x ∈ X(Fv) define an Fv-metric ||·||−1 on L−1.
2. Suppose ||·|| is an Fv-metric on L⊗m where m is a positive integer.

For every x ∈ X(Fv) and every ℓ ∈ L(x) let m
√
||ℓ||

x
be the metric

on L(x) defined by

m
√
||·||x(ℓ) := m

√
||ℓm||x.

The metrics m
√
||·||

x
on L(x) for x ∈ X(Fv) define an Fv-metric

m
√
||·|| on L.

Proof. — 1. Suppose that x
∼−→ y is a 2-morphism, where x, y ∈ X(Fv).

The induced linear map L(x)→ L(y) is isometric, and it follows that
L−1(x)→ L−1(y) is isometric. Let now g : U → X be a 1-morphism,
with U is a locally of finite type Fv-scheme and let s ∈ g∗L(U).
The map U(Fv) → R>0 given by z 7→ ||s(z)||−1 is precisely the
composition of the map

U(Fv)→ R>0 z 7→ ||s(z)||g◦x
and the map R>0 → R>0, x 7→ x−1 and is thus continuous. It follows
that ||·||−1 is an Fv-metric on L−1.

2. Suppose that x
∼−→ y is a 2-morphism, where x, y ∈ X(Fv). The

induced map L⊗m(x) → L⊗m(y) is isometric, and it follows that
L(x) → L(y) is isometric. Let now g : U → X be a 1-morphism,
with U is a locally of finite type Fv-scheme and let s ∈ g∗L(U).

The map U(Fv) → R>0 given by z 7→ m
√
||s(z)|| is precisely the

composition of the map

U(Fv)→ R>0 z 7→ ||ℓm||g◦x
and the map m

√· : R>0 → R>0 and is thus continuous. It follows
that m

√
||·|| is an Fv-metric on L.

One sees that the category P̂icv(X) of Fv-linearized line bundles is a
Picard category. The abelian group of isomorphism classes of objects in

this category will be denoted by P̂icv(X). By abuse of terminology, we

may call an element of P̂icv(X) an Fv-metrized line bundle.
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For topological spaces A,B, let us denote by C 0(A,B) the set of con-
tinuous functions from A to B. If B is a topological abelian group, then
C 0(A,B) carries a structure of an abelian group.
Lemma 4.3.1.3. — Let v be a place of F and let X be a locally of
finite type Fv-algebraic stack. If f : [X(Fv)] → R>0 is a continuous
function, then setting ||ℓ||fx := |ℓ(x)|vf([x]), for ℓ ∈ OX(x) = Fv, defines
an Fv-metric ||·||f on OX . The sequence

0→ C
0([X(Fv)],R>0)→ P̂icv(X)→ Pic(X)

where the first homomorphism is given by f 7→ (OX , (||·||f ) and where
the second homomorphism is the one that forgets the metric, is exact.
Proof. — Let us verify that ||·||f is a metric on OX . Let us verify that

for any 2-morphism x
∼−→ y, where x, y : Spec(Fv)→ X are 1-morphisms

of algebraic stacks, the induced linear map OX(x) =−→ Fv
=−→ OX(y) is

an isometry. This is true because ||1||fx = f([x]) = f([y]) = ||1||fy . We
now verify the last condition of Definition 4.3.1.1. Let r : V → X be
a 1-morphism with V a locally of finite type Fv-scheme and let s be a
section over V of r∗OX = OV i.e. a morphism s : V → A1. The map

V (Fv)→ R>0 z 7→ ||s(z)||r◦z
coincides with the map

V (Fv)→ R>0 z 7→ |s(z)|vf([r(z)])
and is thus is continuous. We have verified that ||·||f is a metric on OX .
It is evident that the composite homomorphism

C
0([X(Fv)],R>0)→ P̂icv(X)→ Pic(X)

is the zero homomorphism. Let (L, ||·||) be in the kernel of P̂icv(X) →
Pic(X). We verify that (L, ||·||) is in the image of C 0([X(Fv)],R>0) →
P̂icv(X). Obviously, L = OX in Pic(X). By the fact that a 2-morphism

x
∼−→ y induces an isometry OX(x) =−→ Fv

=−→ OX(y), it follows that
[X(Fv)]→ R>0 [x] 7→ ||1||x

is a well defined function. We verify it is continuous. For every 1-
morphism g : U → X, with U locally of finite type Fv-scheme, the
function

U(Fv)
[g(Fv)]−−−−→ [X(Fv)]

[x] 7→||1||x−−−−−→ R>0

is continuous as it coincides with the map

U(Fv)→ R>0 x 7→ ||1||g(x),
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which is continuous by the definition of an Fv-metric. We deduce from
Lemma 3.3.2.2 that the map [x] 7→ ||1||x is a continuous function. It
follows that (L, ||·||) = (OX , ||·||) is in the image of C 0([X(Fv)],R>0)→
P̂icv(X). The statement is proven.

4.3.2. — Let v be a place of F . Suppose g : Y → X is a 1-morphism of
locally of finite type Fv-algebraic stacks. Let (L, ||·||L) be an Fv-metrized
line bundle on X. We define the pullback metric on g∗L. Suppose
x : Spec(Fv) → Y is an Fv-point of Y . For a section ℓ ∈ (g∗L)(x) =
x∗(g∗L) = (g ◦ x)∗L = L(g(x)), we set g∗||ℓ||x := ||ℓ||g◦x.
Lemma 4.3.2.1. — Let g : Y → X be a 1-morphism of locally of finite
type Fv-algebraic stacks.

1. If (L, ||·||) is an Fv-metrized line bundle on X. The pair (g∗L, g∗||·||)
is an Fv-metrized line bundle on Y .

2. If (L, ||·||) is the trivial Fv-metrized line bundle on X, then
(g∗L, g∗||·||) is the trivial Fv-metrized line bundle on Y .

3. If
r : (L, ||·||)→ (L′, ||·||′)

is a morphism of Fv-metrized line bundles on X, then g∗r is iso-
metric.

4. The functor g∗ : P̂icv(X)→ P̂icv(Y ) given by

(L, ||·||) 7→ (g∗L, g∗||·||)
r : (L, ||·||)→ (L′, ||·||′) 7→ g∗r

is an additive functor.
5. Let f : Y → X be another 1-morphism and let t : g

∼−→ f be a
2-isomorphism. Let (L, ||·||) be an Fv-metrized line bundle on X.

The canonical isomorphism t∗L : g∗L
∼−→ f ∗L is an isometry.

Proof. — 1. Let us verify that g∗||·|| is an Fv-metric on g∗L. Let y :

Spec(Fv)→ Y be such that there exists a 2-morphism x
∼−→ y. The

canonical morphism

(g∗L)(x) = x∗(g∗L) = (g ◦ x)∗L = L(g(x))→ L(g(y)) = (g∗L)(y)

is an isometric isomorphism, as such is L(g(x)) → L(g(y)). Let
h : U → Y be a 1-morphism of algebraic stacks with U locally of
finite type Fv-scheme. Pick s ∈ (h∗(g∗L))(U) = ((g◦h)∗L)(U). The
map

U(Fv)→ R≥0 z 7→ g∗||s(z)||h◦z
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is continuous, because it coincides with the continuous map

U(Fv)→ R≥0 z 7→ ||s(z)||g◦(h◦z).
2. One has that g∗OX = OY . Let x ∈ Y (Fv). One has that

g∗||1||x = ||1||g(x) = 1.

The claim follows.
3. Let x ∈ Y (Fv). The linear map (g∗r)(x) : (g∗L′)(x)→ (g∗L′)(g(x))

is isometric as it coincides with the isometric linear map L(g(x))→
L′(g(x)). It follows that g∗r is isometric.

4. Let x ∈ Y (Fv) and pick ℓ ∈ (g∗L)(x) = L(g(x)) and ℓ′ ∈ (g∗L′)(x) =
L′(g(x)). We have that

g∗||ℓ||x · g∗||ℓ′||′x = ||ℓ||g(x) · ||ℓ′||′g(x).
It follows that g∗(||·||)⊗ g∗(||·||′) = g∗(||·|| ⊗ ||·||′). It follows that g
is an additive functor.

5. Let y be an Fv-point of Y . The isomorphism t : g
∼−→ f induces the

isomorphism (t ∗ y) : g ◦ y ∼−→ f ◦ y. The linear map t∗L is precisely

the linear map g∗L(y) = L(g(y))
(t∗y)∗L−−−−→ L(f(y)) = f ∗L(y) and is

thus an isometry by the definition of an Fv-metric. The claim is
proven.

The lemma provides a group homomorphism P̂icv(X)→ P̂icv(Y ) that
we also denote by g∗.

4.3.3. — In this paragraph we study Fv-metrics which are invariant for
an action of an algebraic group.

Let v be a place of F . Let G be a locally of finite type Fv-algebraic
group acting on a locally of finite type Fv-schemeX. By Corollary 3.3.1.3,
one gets a topological action G(Fv)×X(Fv)→ X(Fv).
Definition 4.3.3.1. — Let L be a G-linearized line bundle on X. An
Fv-metric ||·|| on L is said to be G-invariant if for every t ∈ G(Fv) and
every x ∈ X(Fv), one has that the linear map L(x)→ L(t·x) given by the
linearization is an isometric isomorphism. The Fv-metrized line bundle
(L, ||·||) will be said to be G-invariant.

Let us introduce the category of G-invariant Fv-metrized line bundles.

– A morphism ℓ : (L, ||·||)→ (L′, ||·||′) of G-invariant Fv-metrized line
bundles is a morphism of G-linearized line bundles ℓ : L→ L′ which
is isometric.
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– The trivial G-invariant Fv-metrized line bundle is the trivial G-
linearized line bundle endowed with the metric: ||1||x = 1 for every
x : Spec(Fv)→ X (it is immediate the metric is G-invariant).

– A morphism of G-invariant Fv-metrized line bundles is a morphism
of corresponding G-linearized line bundles which is an isometry.

– The tensor product of two G-invariant Fv-metrized line bundles is
a G-invariant Fv-metrized line bundle.

The G-invariant Fv-metrized line bundles form a Picard category that

we denote by P̂icGv (X). Let P̂icGv (X) be the abelian group given by the

isomorphism classes of objects of P̂icGv (X). One has a homomorphism
of abelian groups

P̂icGv (X)→ PicG(X)

which forgets the structure of Fv-metrized line bundle. One also has a

canonical morphism P̂icGv (X) → P̂icv(X) by simply forgetting that Fv-
metrized line bundle is G-invariant.
If E is a topological group acting on a topological space A, we denote

by C 0
E(A,B) the set of E-invariant continuous functions A → B. If B

has a structure of a topological abelian group, then C 0
E(A,B) carries

a structure of an abelian group. The map C 0(A/E,B) → C 0(A,B)
induces an isomorphism

C
0(A/E,B)

∼−→ C
0
E(A,B).

Lemma 4.3.3.2. — If f ∈ C 0
G(Fv)

(X(Fv),R>0) then setting

||ℓ||fx := |ℓ(x)|vf(x)
for every x ∈ X(Fv) and every ℓ ∈ OX(x) = Fv, defines an Fv-metric
||·||f on OX which is G-invariant for the trivial G-linearization of OX .
The sequence

0→ C
0
G(Fv)(X(Fv),R>0)→ P̂icGv (X)→ PicG(X),

where C 0
G(Fv)

(X(Fv),R>0)→ P̂icGv (X) is given by f 7→ (OX , IdOG×X
, ||·||f ),

is exact.
Proof. — Lemma 4.3.1.3 gives that ||·||f is a metric onOX . Moreover, for

every x ∈ X(Fv) and every t ∈ G(Fv), the linear map OX(x) =−→ Fv
=−→

OX(t · x) given by the trivial G-linearization, is an isometry, because

||1||fx = f(x) = f(t · x) = ||1||ft·x. It follows that the Fv-metric ||·||f
is G-invariant.
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The composite homomorphism C 0
G(Fv)

(X(Fv),R>0) → P̂icGv (X) →
P̂ic(X) is the zero homomorphism. To complete proof, it suffices to ver-

ify that if (L, ||·||) is in the kernel of P̂icGv (X)→ P̂ic(X), then (L, ||·||) is
in the image of C 0

G(Fv)
(X(Fv),R>0)→ P̂icGv (X). Obviously, L is the triv-

ialG-linearized line bundle (OX , IdOG×X
). For every x ∈ X(Fv) and every

t ∈ Gm(Fv), the canonical linear map Fv = OX(x) =−→ OX(t · x) = Fv,
given by the trivial G-linearization, is isometry and maps 1 ∈ OX(x) to
1 ∈ OX(t · x), thus the function x 7→ ||1||x is G-invariant. It follows
that (L, ||·||) = (OX , IdOG×X

) is the image of x 7→ ||1||x for the homo-

morphism C 0
G(Fv)

(X(Fv),R>0)→ P̂icGv (X) from above. The statement is
proven.

In the rest of paragraph we study G-invariant Fv-metrics on the triv-

ial line bundle. Let us denote by P̂icGv (OX) the full subcategory of

P̂icGv (X) given by G-invariant Fv-metrized line bundles (L, ψ, ||·||) such
that L = OX . It is immediate that P̂icGv (OX) is a Picard category. Let

P̂icGv (OX) be the abelian group formed by isomorphism classes of objects

of P̂icGv (OX). The canonical inclusion

(4.3.3.3) P̂icGv (OX)→ P̂icGv (X)

is an equality, if Pic(X) = 0.
Lemma 4.3.3.4. — Let ψ : G ×X → Gm be a G-linearization of the
trivial line bundle on X. An G-invariant Fv-metric ||·|| satisfies that
x 7→ (||1||x)−1 is a continuous function and that for every x ∈ X(Fv) and
every t ∈ G(Fv) one has

(||1||t·x)−1 = |ψ(t, x)|v(||1||x)−1.

Conversely, let f : X(Fv) → R>0 be a continuous function such that for
every x ∈ X(Fv) and every t ∈ G(Fv) one has f(t · x) = |ψ(t, x)|vf(x).
Then setting ||1||x := (f(x))−1 for every x ∈ X(Fv) defines a G-invariant
Fv-metric on the G-linearized line bundle (OX , ψ).
Proof. — The function x 7→ (||1||x)−1 is continuous as ||·|| is an Fv-
metric. For x ∈ X(Fv) and t ∈ G(Fv), the linear map Fv = OX(x) →
OX(t · x) = Fv, induced from the G-linearization ψ, is given by multi-
plication by ψ(t, x). Now, the fact that ||·|| is G-invariant gives that for
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every x ∈ X(Fv) and every t ∈ G(Fv) one has that

||1||x = ||ψ(t, x)||t·x = |ψ(t, x)|v||1||t·x,
i.e.

(||1||t·x)−1 = |ψ(t, x)|v(||1||x)−1.

Suppose now f : X(Fv) → R>0 is a continuous function such that for
every x ∈ X(Fv) and every t ∈ G(Fv) one has f(t · x) = |ψ(t, x)|vf(x).
For every x ∈ X(Fv), set ||1||x = (f(x))−1. The function x 7→ ||1||x
is continuous and hence defines an Fv-metric on OX . We have that
Fv = OX(x)→ OX(t · x) = Fv maps 1 to ψ(t, x) and thus

(||1||t·x)−1 = f(t · x) = |ψ(t, x)|vf(x) = |ψ(t, x)|v(||1||x)−1.

4.3.4. — In this paragraph we compare the Fv-metrized line bundles
on the quotient X/G and G-linearized Fv-metrized line bundles on the
scheme X.

Let v be a place of F and let X be a locally of finite type Fv-scheme.
Let G be a locally of finite presentation Fv-group scheme acting on X.
The quotient stack X/G is an algebraic stack by Proposition 3.1.1.2 and
locally of finite type by [56, Lemma 06FM].
Lemma 4.3.4.1. — Let q : X → X/G be the quotient morphism. Let
F : Pic(X/G)→PicG(X) be the equivalence defined in 4.1.4.

1. Let ||·|| be an Fv-metric on L ∈ Pic(X/G). The Fv-metric q∗||·||
on q∗L makes F(L) a G-invariant Fv-metrized line bundle that we

denote F̂(L).
2. If ℓ : (L, ||·||)→ (L′, ||·||) is a morphism of Fv-metrized line bundles,

then F(ℓ) : F̂(L) → F̂(L′) is an isometry, thus a morphism of G-

invariant Fv-metrized line bundles. In this case we set F̂(ℓ) :=
F(ℓ).

3. If L is the trivial Fv-metrized line bundle on X/G, then F̂(L) is the
trivial G-invariant Fv-metrized line bundle.

4. The functor F̂ : P̂ic(X/G)→ P̂icGv (X) is an additive functor.

Proof. — 1. Let x ∈ X(Fv) and t ∈ G(Fv). The map (q∗L)(x) →
(q∗L)(t · x) given by the G-linearization defining F(L) coincides
with the linear map (q∗L)(x) = L(q(x))→ L(q(t · x)) = (q∗L)(t · x)
given by the isomorphism q(x)

∼−→ q(t · x). The map L(q(x)) →
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L(q(t · x)) is an isometry by the definition of an Fv-metric, hence is
(q∗L)(x)→ (q∗L)(t · x) is an isometry. The claim follows.

2. The morphism F(ℓ) identifies with the morphism q∗ℓ, which is iso-
metric by the third part of Lemma 4.3.2.1.

3. The G-linearized line bundle defining F̂(OX/G) is the trivial G-
linearized line bundle. Moreover, the Fv-metrized line bundle defin-

ing F̂(OX/G) is precisely the trivial Fv-metrized line bundle by

Lemma 4.3.2.1. It follows that F̂(OX/G) is the trivial G-invariant
Fv-metrized line bundle.

4. Let (L, ||·||) and (L′, ||·||′) be two Fv-metrized line bundles on X/G.

The G-linearized line bundle defining F̂((L, ||·||) ⊗ (L′, ||·||′)) is
the G-linearized line bundle F(L ⊗ L′) = F(L) ⊗ F(L′). The

Fv-metrized line bundle defining F̂((L, ||·||) ⊗ (L′, ||·||′)) is pre-
cisely the Fv-metrized line bundle (q∗(L ⊗ L′), q∗(||·|| ⊗ ||·||′)) =

(q∗L⊗ q∗L′, q∗||·||⊗ q∗||·||′). It follows that F̂ is an additive functor.

If follows from Lemma 4.3.4.1, that we have a homomorphism of
abelian groups

(4.3.4.2) P̂icv(X/G)→ P̂icGv (X).

The map X(Fv)→ [(X/G)(Fv)] is G(Fv)-invariant by Proposition 3.3.3.1
and thus if f ∈ C 0([(X/G)(Fv)],R>0) its pullback along [q(Fv)] is an
element of C 0

G(Fv)
(X(Fv),R>0).

Lemma 4.3.4.3. — The following diagram is commutative:

0 C 0([(X/G)(Fv)],R>0) P̂icv(X/G) Pic(X/G)

0 C 0
G(Fv)

(X(Fv),R>0) P̂icGv (X) PicG(X).

Proof. — The diagram

P̂icv(X/G) Pic(X/G)

P̂icGv (X) PicG(X)
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is commutative by the construction of (4.3.4.2). Let q : X → X/G be
the quotient 1-morphism. We prove the commutativity of

(4.3.4.4)

C 0([(X/G)(Fv)],R>0) P̂icv(X/G)

C 0
G(Fv)

(X(Fv),R>0) P̂icGv (X)

Let f ∈ C 0([(X/G)(Fv)],R>0). Its image in C 0
G(Fv)

(X(Fv),R>0) is f ◦
[q(Fv)]. The image of f ◦ [q(Fv)] in P̂icGv (X) is (OX , IdOG×X

, ||·||f◦[q(Fv)]),

where ||·||f◦[q(Fv)] is defined by ||1||f◦[q(Fv)]
x = f([q(Fv)](x)) for x ∈ X(Fv).

The image of f in P̂icv(X/G) is the Fv-metrized line bundle (OX , ||·||f ),
where ||·||f is defined by ||1||fy = f(y) for y ∈ [X/G](Fv). The im-

age of (OX , ||·||f ) in P̂icGv (X) is the G-invariant Fv-metrized line bundle

(OX , IdOG×X
, q∗||·||f ). Note that q∗||1||fx = ||1||f[q(Fv)](x)

= f([q(Fv)](x)),

i.e. q∗||·||f = ||·||f◦[q(Fv)]. We deduce the commutativity of the diagram
4.3.4.4. The statement is proven.

We give a conditions for the homomorphism (4.3.4.2) to be injective
or an isomorphism.
Proposition 4.3.4.5. — Let v be a place of F . Let G be a special
locally of finite type Fv-group scheme acting on locally of finite type
Fv-scheme X. The homomorphism (4.3.4.2) is injective. If moreover

P̂icv(X/G)→ Pic(X/G) is surjective, then the homomorphism (4.3.4.2)
is an isomorphism.
Proof. — Consider the diagram from Lemma 4.3.4.3. Both horizontal
sequences are exact by Lemma 4.3.3.2 and Lemma 4.3.1.3. Obvi-
ously, the first vertical homomorphism is an isomorphism. As G is
special, one can identify [(X/G)(Fv)] with the topological quotient
X(Fv)/G(Fv) using Proposition 3.3.3.1. Thus, the second verti-
cal homomorphism, given by pulling back continuous functions on
[X/G(Fv)] = X(Fv)/G(Fv) to X(Fv), is an isomorphism. The fourth
vertical homomorphism is an isomorphism by Proposition 4.1.4.1. By

4-lemma, we deduce that P̂icv(X/G) → P̂icGv (X) is injective. Suppose

that P̂icv(X/G) → Pic(X/G) is surjective. The following diagram is
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commutative.

0 C 0([(X/G)(Fv)],R>0) P̂icv(X/G) Pic(X/G) 0

0 C 0
G(Fv)

(X(Fv),R>0) P̂icGv (X) PicG(X) E,

where E is the quotient of PicG(X) by the image of P̂icGv (X). Obviously,
the first and the fifth vertical homomorphisms are an isomorphism and
a monomorphism, respectively. Again, the second and the fourth ver-
tical homomorphisms are isomorphisms. By 5-lemma, we deduce that

P̂icv(X/G)→ P̂icGv (X) is an isomorphism.

4.3.5. — We give some conditions that will make P̂icv(X) → Pic(X)
surjective for an algebraic stack X. Let v be a place of F . We are going
to construct Fv-metrics on line bundles on algebraic stacks, by pulling
back metrics on line bundles on schemes.
Lemma 4.3.5.1. — Let X be a locally of finite type Fv-algebraic stack
satisfying the following condition: for every line bundle L on X, there
exist positive integer m, a 1-morphism to a locally of finite type Fv-
scheme g : X → Z and a line bundle L′ on Z which is in the image of

the canonical homomorphism P̂icv(Z)→ Pic(Z), such that L⊗m = g∗(L′).

Then P̂icv(X)→ Pic(X) is surjective.
Proof. — The line bundle L′ admits an Fv-metric, hence L⊗m = g∗(L′)
admits an Fv-metric by Lemma 4.3.2.1. It follows that L admits an
Fv-metric by Lemma 4.3.1.2. The statement follows.

Remark 4.3.5.2. — In the case Z is a separated scheme, then every
line bundle on Z admits an Fv-metric. Indeed Z(Fv) is locally compact
and Hausdorff topological space. Moreover, it is a finite union of para-
compact spaces (if U is an open affine subset of Z, then U(Fv) is a closed
subspace of F n

v , thus paracompact). By [7, Chapter I, §9, n0 10, Propo-
sition 18], we deduce that Z(Fv) is paracompact. By [8, Chapter IX, §4,
n0 4, Proposition 4], the space Z(Fv) is normal. By [8, Chapter IX, §4,
n0 3, Theorem 3], one can find a partitions of unity subordinated to every
locally finite open covering and one can use them to construct metrics in
a usual way.
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Remark 4.3.5.3. — The following is true. A locally of finite type Fv-
stack X of finite diagonal, that admits a separated good moduli space

p : X → X (see [1, Definition 1.2]), satisfies that P̂ic(X) → Pic(X) is
surjective. Indeed, by the fact that the diagonal of X is finite and by [1,
Section 2], every line bundle L on X admits a multiple L⊗m which is a
pullback of a line bundle on X . We can endow L⊗m with the pullback of
a metric on the line bundle on X , and we can endow L with the “m-th
root” metric by Lemma 4.3.1.2.

4.3.6. — We will prove that every line bundle on P(a)Fv admits an
Fv-metric without using remarks from 4.3.5. Let us firstly prove the
following lemma.
Lemma 4.3.6.1. — Let ℓ be a positive integer divisible by lcm(a). Con-
sider the morphism

J(ℓ) : An − {0} → An − {0}
x 7→ (x

ℓ/aj
j )j.

Endow the first An−{0} with the Gm-action with the weights a1, . . . , an,
that is t ·a x = (tajxj)j, and the second An−{0} with the Gm-action with
the weights 1, . . . , 1, that is t ·1 x = (txj)j.

1. The morphism J(ℓ) is t 7→ tℓ-equivariant, that is

J(ℓ)(t ·a x) = tℓ ·1 (J(ℓ)(x)) ∀t ∈ Gm, ∀x ∈ An − {0}.
The diagram

(4.3.6.2)

An − {0} An − {0}

P(a) Pn−1.

qa

J(ℓ)

J(ℓ)

q1

is 2-commutative, where J(ℓ) is given by [56, Lemma 046Q].

2. The pullback J(ℓ)
∗
(O(k)) for k ∈ Z is the line bundle O(ℓk).

Proof. — 1. One has that

J(ℓ)(t ·a x) = J(ℓ)((tajxj)j) = (tℓx
ℓ/aj
j )j

= tℓ ·1 J(ℓ)(x) ∀t ∈ Gm, ∀x ∈ An − {0}.
The 2-commutativity of the diagram (4.3.6.2) follows from the uni-

versal property of J(ℓ), see [56, Lemma 0436].
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2. By Lemma 4.1.5.1, the pullback J(ℓ)
∗O(k) is the line bundle deter-

mined by the pullback linearization J(ℓ)∗ψ of the trivial line bundle,
where ψ : (t,x) 7→ tk is the Gm-linearization of OAn−{0} that defines
O(k). One has that

(J(ℓ))∗ψ = ψ(φ(t), J(ℓ)(x)) = φ(t)k = tℓk.

It follows that J(ℓ)
∗
(O(k)) = O(ℓk).

Lemma 4.3.6.3. — The canonical morphism P̂icv(P(a)Fv) →
Pic(P(a)Fv) is surjective. The canonical homomorphism

(4.3.6.4) P̂icv(P(a)Fv)→ P̂ic
Gm

Fv
((An − {0})Fv)

is an isomorphism.
Proof. — Let ℓ be an integer divisible by lcm(a). By Lemma 4.3.6.1,

one has that J(ℓ)
∗
(O(1)) = O(ℓk). We deduce that every line bundle

on P(a) admits a non-zero power which is a pullback of a line bundle on
Pn−1. The line bundle O(1) on Pn−1 admits a metric, e.g. one can endow
it with the Fubiny-Study metric. It follows from Lemma 4.3.5.1, that

P̂icv(P(a)) → Pic(P(a)) is surjective. Proposition 4.3.4.5 now gives
that the homomorphism (4.3.6.4) is an isomorphism.

Let us dedicate the end of this paragraph to a dictionary given by
Lemma 4.3.3.4 for the case of weighted projective stacks.
Definition 4.3.6.5. — Let v ∈MF , let d ∈ C and let f : F n

v − {0} →
R≥0 be a function. We say that f is a-homogenous of weighted degree d
if for every x ∈ F n

v − {0} and every t ∈ F×
v one has

f(t · x) = |t|dvf(x).
Lemma 4.3.6.6. — Let v be a place of F and let k be an integer.
If ||·|| is an Fv-metric on the line bundle O(k) on P(a)Fv , the pull-
back metric (qaFv

)∗||·|| on OAn−{0} is Gm-invariant and the function f||·|| :
x 7→ (qaFv

)∗||1(x)|| is an a-homogenous continuous function F n
v − {0} →

R>0 of weighted degree k. Conversely, let f : F n
v − {0} → R>0 be

an a-homogenous continuous function of weighted degree k. Then set-
ting ||1(x)||′ := (f(x))−1 defines a Gm-invariant Fv-metric on the Gm-
linearized line bundle (OAn−{0}, (t,x) 7→ tk). Furthermore, there exists a
metric ||·||f on O(k) such that (qaFv

)∗||·|| = ||·||′.
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Proof. — The line bundle O(k) is given by the linearization ψ : (t,x) 7→
tk of OAn−{0}. Let ||·|| be an Fv-metric on O(k). The pullback metric
(qaFv

)∗||·|| is Gm-invariant by Lemma 4.3.4.1. By Lemma 4.3.3.4, the
function x 7→ (qaFv

)∗||1(x)|| is continuous and satisfies that

((qaFv
)∗||1(t · x)||)−1 = |tk|v((qaFv

)∗||1(x)||)−1,

i.e. it is a-homogenous continuous of weighted degree k. Let us prove the
converse claim. Note that Lemma 4.3.3.4 gives that ||·||′ is an Gm(Fv)-
invariant metric on (OAn−{0}, (t,x) 7→ tk). By Lemma 4.3.6.3, there exists
an Fv-metric ||·|| on O(k) such that (qaFv

)∗||·|| = ||·||′. The statement is
proven.

Remark 4.3.6.7. — By allowing that f takes value 0, we allow “sin-
gular” metrics.

4.4. Heights on P(a)(F )

In this section we will define heights on P(a)(F ). An obvious approach
is to define heights to be pullbacks of heights for some morphism to a
scheme. However, such heights exhibit a drawback, they do not satisfy
the weak Northcott property and hence are not suitable for countings.
For the purpose of counting, we define quasi-toric heights, for which in
4.6 we establish that they satisfy the weak Northcott property.

4.4.1. — In this paragraph we define heights on stacks. We give a con-
dition that will enable us to define heights. It is not a “very restrictive”
condition, as we discuss in Remark 4.4.1.5.
Definition 4.4.1.1. — Let k ∈ Z. For v ∈ MF , let fv : F n

v − {0} →
R≥0 be an a-homogenous function of weighted degree d and let us set

Ev := {x ∈ F n
v − {0}|∀j |xj|v = 1 or xj = 0.}

We say that a family (fv)v is generalized adelic if for almost every v ∈
M0

F , one has that

f |Ev = 1.

We use the language of a-homogenous continuous functions to define
heights.
Lemma 4.4.1.2. — Let (fv)v∈MF

be a generalized adelic family of a-
homogenous functions fv : F

n
v −{0} → R≥0 of weighted degree d ∈ Z. For

x ∈ P(a)(F ), let us denote by x̃ : (Gm)Fv → (An − {0})Fv the induced
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(Gm)Fv-equivariant morphism defined by x. For every x ∈P(a)(F ), the
product

(4.4.1.3) H((fv)v)(x) :=
∏

v∈MF

fv(x̃(1))

is a finite product. Moreover, if x
∼−→ y is a 2-isomorphism, then

H((fv)v)(x) = H((fv)v)(y).
Proof. — Let x ∈P(a)(F ). If x̃j(1) 6= 0, then for almost every v ∈M0

F

one has |x̃j(1)|v = 1. We conclude that for almost all v ∈ M0
F , one has

x̃(1) ∈ Ev. As (fv)v is generalized adelic, we deduce that the product

(4.4.1.3) is indeed finite. Let now x
∼−→ y be a 2-isomorphism, it is given

by an element t ∈ Gm(Fv) such that t · x̃(1) = ỹ(1). By the product
formula, one has that
∏

v∈MF

fv(ỹ(1)) =
∏

v∈MF

fv(t · x̃(1)) =
∏

v∈MF

|t|kvfv(x̃(1)) =
∏

v∈MF

fv(x̃(1)).

Definition 4.4.1.4. — Let (fv)v be a generalized adelic family of a-
homogenous continuous functions F n

v −{0} → R≥0 of weighted degree k.

1. The function that associates to x ∈P(a)(F ) the value of the prod-
uct (4.4.1.3), we call the resulting height defined by the family (fv)v
and we denote it by H((fv)v).

2. For x ∈ [P(a)(F )], we define H((fv)v)(x) by setting it to be
H((fv)v)(y) where y ∈P(a)(F ) is such that the isomorphism class
of y is x.

When there is no confusion, we call it simply the height.
Remark 4.4.1.5. — The condition that fv|Ev = 1 for almost all v is not
a strong one. For x ∈ F n

v − {0}, it can happen that there is no t ∈ F×
v

such that t · x ∈ Ev. This means that the condition does not impose
anything on the value of fv at x. The weakness of the condition enable
us to have essentially different heights. Soon we will give much more
restricting conditions on fv to produce so called “quasi-toric heights”.
In Chapter 9 another restrictive condition is given and the heights we
produce are “essentially” discriminants (of F -algebras).

When two families consist of functions which are non-vanishing at
every place and which coincide at almost ever places, the resulting heights
can be compared as follows.
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Lemma 4.4.1.6. — Let d ∈ Z, and let (fv : F n
v − {0} → R>0)v and

(f ′
v : F n

v − {0} → R>0)v be two generalized adelic degree d families of
a-homogenous functions. Suppose that for almost all v ∈ MF , one has
that fv = f ′

v. There exist C1, C2 > 0 such that for every x ∈ P(a)(F )
one has that

C1 <
H((fv)v)(x)

H((f ′
v)v)(x)

< C2.

Proof. — For v ∈MF , the function

F n
v − {0} → R>0 y 7→ fv(y)

f ′
v(y)

is Gm(Fv)-invariant, thus descends to a positive valued function on
[P(a)(Fv)], which is compact by Proposition 3.3.4.5. We deduce
that for every v ∈ MF , there exist Cv,1, Cv,2 > 0 such that for every
y ∈ F n

v − {0} one has that

Cv,1 <
fv(y)

f ′
v(y)

< Cv,2.

Let us write H for H((fv)v) and H
′ for H((f ′

v)v). Let y ∈ F n
v − {0} be

a lift of x. Let S be the finite set of places, for which fv 6= f ′
v. For every

v 6∈ S, one has that fv = f ′
v. We deduce that

H(x)

H ′(x)
=
∏

v∈S

fv(x̃)

f ′
v(x̃)

<
∏

v∈S
Cv,2

and that ∏

v∈S
Cv,1 <

∏

v∈S

fv(x̃)

f ′
v(x̃)

=
H(x)

H ′(x)
.

The statement is proven.

4.4.2. — In this paragraph, we define stable heights on P(a)(F ), where
a ∈ Zn≥1. These heights are pullbacks of the heights on varieties. Such
height H satisfies that if x,y ∈ P(a)(F ) are such that xK ∼= yK for
some extension K/F , then H(x) = H(y). The definition of the height
can hence be naturally carried to any F -point of P(a). They are called
“stable” because the height of an F -point stays invariant when regarding
this point as a K-point of [P(a)]. We will see later in 4.6, that such
heights do not always satisfy the weak Northcott property.
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If v ∈MF and ||·|| is an Fv-metric on the line bundle O(k) on P(a)Fv ,
for some k ∈ Z, we will denote by f||·|| : F n

v − {0} → R>0 the a-
homogenous function of weighted degree k given by Lemma 4.3.6.6.

If r ≥ 0 is an integer, let us denote by ||·||v,max the metric on O(1) on Pr

given by the 1-homogenous continuous function f#
v : F n

v −{0} → R>0 of
weighted degree 1

f#
v : x 7→ max

j
(|xj|v).

By a stable Fv-metric on a line bundle L on locally of finite type Fv-
scheme Z, we mean a metric which is the restriction of a metric on the
analytic line bundle Lan on the analytic space Zan

Fv
. The metric ||·||v,max

on the line bundle O(1) on the projective space is stable.
Definition 4.4.2.1. — Let X be a locally of finite type Fv-algebraic
stack and let L be a line bundle on X. An Fv-metric ||·|| on L is said
to be stable, if there exist an integer m 6= 0, a locally of finite type Fv-
scheme Z, an Fv-metrized line bundle (L′, ||·||′) on Z with ||·||′ stable and
a 1-morphism of algebraic stacks g : X → Z such that (L⊗m, ||·||⊗m) =
g∗(L′, ||·||′).

Recall that an adelic metric on the line bundle O(1) on Pn−1 is a
collection of metrics (||·||v)v, where each ||·||v is a stable metric on the
line bundle O(1) on Pn−1

Fv
, and for almost all v, one has ||·||v = ||·||v,max.

Definition 4.4.2.2. — Let k be an integer. Let (fv)v be a general-
ized adelic family of a-homogenous continuous functions of weighted de-
gree k. We say that (fv)v is stable if there exists an integer ℓ 6= 0, an
integer r ≥ 0, an adelic metric (||·||v)v on the line bundle O(1) on Pr

and a 1-morphism of algebraic stacks h : P(a) → Pr such that the line
bundle O(ℓk) is the pullback line bundle h∗O(1) and such that for ev-
ery v one has that f ℓv = fh∗||·||v . In this case, we also say that the height
H = H((fv)v) is stable.

A fundamental property of the stable heights is that the height of two
points, which become isomorphic after passing to an extension, is the
same.
Lemma 4.4.2.3. — Let k be an integer, let (fv)v be a stable generalized
adelic family of a-homogenous continuous functions of weighted degree k.
Let H = H((fv)v) be the corresponding height. Let x,y ∈ P(a)(F ) be

such that there exists an extension K/F and an isomorphism x|K ∼−→ yK
in P(a)(K). Then H(x) = H(y).
Proof. — There exists an ℓ 6= 0, an integer r ≥ 0, an adelic metric (||·||v)v
on the line bundle O(1), a 1-morphism of algebraic stacks g : P(a)→ Pr
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such that O(ℓk) = g∗O(1) and such that for each v one has f ℓv = fg∗||·||v .
Let HPn−1 be the height on Pn−1(F ) given by (||·||v)v. For x ∈P(a)(F )
that

H(x)ℓ =
∏

v

fv(x̃(1))
ℓ =

∏

v

fg∗||·||v(x̃(1)) =
∏

v

(g∗||1(x)||v)−1

=
∏

v

||1(g(x)||−1
v = HPn−1(g(x)).

The image of xK in Pn−1(K) is precisely g(x)K and the image of yK
in Pn−1(K) is precisely g(x)K . The existence of an isomorphism xK

∼−→
yK gives that g(x)K = g(y)K . It follows that g(x) = g(y), and hence

H(x) = HPn−1(g(x)) = HPn−1(g(y)) = H(y).

We give an example of a stable family.
Lemma 4.4.2.4. — For v ∈ MF , the functions fv : F

n
v − {0} → R>0

given by x 7→ max(|xj|1/ajv ) are continuous and a-homogenous of weighted
degree 1. The family (fv)v is generalized adelic and stable. Moreover, the
resulting height Hmax = H((fv)) satisfies for every x ∈ P(a)(F ) that
H(x) ≥ 1.
Proof. — It is evident that fv is continuous and that fv(t · x) =

maxj(|tajxj|1/ajv ) = |t|vmaxj(|xj|1/ajv ) = |t|vfv(x), and thus for every
v ∈ MF one has that fv is a continuous a-homogenous function of
weighted degree 1. Moreover, for every v ∈ MF , one has that if
y ∈ Ev = {x ∈ F n

v − {0}| |xj|v = 1 or xj = 0}, then fv(y) = 1. Thus,
the family (fv)v is generalized adelic.

We will verify that (fv)v is stable. Let v ∈ MF , an Fv-metric on
OAn−{0} identifies with a continuous function g : F n

v − {0} → R>0 by
setting g(x) = ||1(x)||−1, where x ∈ F n

v − {0} and 1(x) is the value of
1 ∈ Γ(An − {0},OAn−{0}) at x. Let us set ℓ = lcm(a). Consider the
morphism J(ℓ) : An − {0} → An − {0} given by

J(ℓ) : x 7→ (x
ℓ/aj
j )j.
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In Lemma 4.3.6.1, we have established that J(ℓ) is (t 7→ tℓ)-invariant
and that J(ℓ)∗O(1) = O(ℓ). Moreover, the following diagram is 2-
commutative:

An − {0} An − {0}

P(a) Pn−1.

qa

J(ℓ)

J(ℓ)

q1

By Lemma 4.3.2.1, it follows that the diagram

P̂icv(An − {0}) P̂icv(An − {0})

P̂icv(P(a)) P̂icv(Pn−1)

(qaFv
)∗

J(ℓ)
∗

J(ℓ)∗

(q1Fv
)∗

is commutative. Hence, the image of the Fv-metrized line bundle

(O(k), ||·||v,max) under (q
a
Fv
)∗ ◦ J(ℓ)∗ identifies with

J(ℓ)∗(q1Fv
)∗(O(k), ||·||v,max) = (OAn−{0}, J(ℓ)

∗(q1Fv
)∗||·||v,max)

= (OAn−{0},x 7→ J(ℓ)∗(x 7→ max
j
|xj|v))

= (OAn−{0},x 7→ max
j

(|xj|ℓ/ajv ))

= (OAn−{0},x 7→ fv(x)
ℓ).

The Gm-invariant Fv-linearized line bundle (OAn−{0},x 7→ fv(x)
ℓ) is pre-

cisely the image of J(ℓ)
∗
(O(1), ||·||v,max) = (O(k), J(ℓ)∗||·||v,max) under

the pullback (qaFv
)∗, so that f ℓv = fJ(ℓ)∗||·||v,max . It follows that the family

(fv)v is stable.
Finally, let us prove the estimate H(x) ≥ 1. Let x ∈ P(a)(F ) and

let x̃ be the Gm-equivariant F -morphism Gm → An − {0} given by x.

Let i be an index such that x̃(1)i 6= 0. Let K = F
(

ai

√
x̃i(1)

)
. For

v ∈ MF , the absolute value |·|v on F admits a unique extension to K.
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By the product formula, we get that

H(x) =
∏

v∈MF

max
j

(|x̃j(1)|1/ajv )

=
∏

v∈MF

| ai
√
x̃i(1))|vmax

j

(∣∣∣∣
x̃j(1)

( ai

√
x̃j(1))aj

∣∣∣∣
1/aj

v

)

=
∏

v∈MF

max
j

(∣∣∣∣
x̃j(1)

( ai

√
x̃j(1))aj

∣∣∣∣
1/aj

v

)

≥ 1.

4.4.3. — In this paragraph we present an example of a height on P(a)
which is intrinsic to stacks. We will call them quasi-toric heights. In 4.6,
we are going to show that they satisfy the weak Northcott property (i.e.
for every B > 0, there are only finitely many points in [P(a)(F )] which
have the height less than B). In Lemma 3.3.4.4, we have introduced the
set Da

v = Onv − (πa1v Ov)× · · · × (πanv Ov). For v ∈M0
F , we have defined in

Lemma 3.3.4.4 a function rv : F
n
v − {0} → Z by

rv(x) = inf{k ∈ Z|πkv · x ∈ Onv }
and we have established that for every x ∈ F n

v − {0} that
πrv(x)v · x ∈ Da

v .

Lemma 4.4.3.1. — Let v ∈M0
F .

1. For every x ∈ F n
v − {0}, one has that

rv(x) = sup
j=1,...,n
xj 6=0

⌈
− v(xj)

aj

⌉
.

2. For every t ∈ F×
v and every x ∈ F n

v − {0}, one has that

rv(t · x) = rv(x)− v(t).
3. For every k ∈ Z one has that

{x ∈ F n
v − {0}|rv(x) = k} = π−k

v · Da
v .

4. Let k ∈ Z. Suppose that for u ∈ Gm(Fv) one has u · (πkv · Da
v )∩ (πkv ·

Da
v ) 6= ∅, then v(u) = 0.
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5. The function

f#
v : F n

v − {0} → R>0 x 7→ |πv|−rv(x)v

is a-homogenous of weighted degree 1 and is locally constant.

Proof. — 1. For every index j such that xj 6= 0, one has that π
ajk
v xj ∈

Ov if and only if k ≥ −v(xj)

aj
. We conclude

rv(x) =

⌈
sup

j=1,...,n
xj 6=0

−v(xj)
aj

⌉
= sup

j=1,...,n
xj 6=0

⌈
− v(xj)

aj

⌉
.

2. We observe that

rv(t·x) = sup
j=1,...,n
xj 6=0

⌈
−v(t

ajxj)

aj

⌉
= sup

j=1,...,n
xj 6=0

⌈
−v(xj) + ajv(t)

aj

⌉
= rv(x)−v(t).

3. We verify the claim for k = 0. Pick x ∈ Da
v . For every index j one

has v(xj) ≥ 0 and there exists an index i such that xi 6∈ πaiv Ov, i.e.
such that v(xi) < ai. This implies that

0 ≥ rv(x) = sup
j=1,...,n
xj 6=0

⌈
− v(xj)

aj

⌉
≥ 0.

Pick now x ∈ F n
v − {0} such that rv(x) = 0. This means that for

every j such that xj 6= 0, one has that

−v(xj)
aj

≤ 0,

hence that v(xj) ≥ 0, and that there exists an index i such that

−1 < −v(xi)
ai

≤ 0,

i.e. such that 0 ≤ v(xi) < ai. We deduce that x ∈ Onv and that
x 6∈ πa1v Ov × · · · × πanv Ov, i.e. one has x ∈ Da

v . Let now k 6= 0 be an
integer. It follows from (1) and the case k = 0 that

{x ∈ F n
v − {0}|rv(x) = k} = {x ∈ F n

v − {0}|rv(πkv · x) = 0}
= {x ∈ F n

v − {0}|πkv · x ∈ Da
v}

= π−k
v · Da

v .
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4. We have that

∅ 6= π−k
v · (u · (πkv · Da

v ) ∩ (πkv · Da
v )) = (u · Da

v ) ∩ Da
v .

If v(u) > 0, then (u ·Da
v ) ⊂ πa1v Ov×· · ·×πanv Ov and hence (u ·Da

v )∩
Da
v = ∅, a contradiction. Suppose v(u) < 0, then (u·Da

v ) ⊂ π−a1
v Ov×

· · · × π−an
v Ov −Onv , and hence u · Da

v ∩Da
v = ∅, a contradiction. We

deduce v(u) = 0.
5. Let t ∈ F×

v . One has that

f#
v (t · x) = |πv|−rv(t·x)v = |πv|−rv(x)+1

v = |πv|v · f#
v (x),

hence f#
v is a-homogenous. We have seen in Lemma 3.3.4.4 that Da

v

is open and closed in F n
v , and hence in F n

v − {0}. Hence, the sets
πkv · Da

v are open and closed in F n
v − {0} for every k ∈ Z. It follows

that rv is locally constant, so is f#
v .

Definition 4.4.3.2. — Let v ∈ M0
F . We call the a-homogenous func-

tion f#
v : F n

v − {0} → R>0 of weighted degree d ∈ Z given by

fv : x 7→
{
|πv|−drv(x)v if v ∈M0

F ,

(maxj(|xj|1/ajv ))d if v ∈M∞
F ,

the toric a-homogenous function of weighted degree d.
We remark that when a = 1, for every v ∈MF , the toric 1-homogenous

function of weighted degree 1 is given by f#
v : x 7→ maxj(|xj|v).

Definition 4.4.3.3. — Let (fv : F
n
v − {0} → R≥0)v be a family of a-

homogenous continuous functions of weighted degree d. We say that the
degree of the family (fv)v is d.

1. We say that (fv)v is quasi-toric if for almost all v ∈ M0
F , the func-

tion fv is toric.
2. We say that (fv)v is toric if for every v one has that fv = f#

v , where
f#
v is the toric a-homogenous function of weighted degree d.

For every v ∈ M0
F , as Ev ⊂ Da

v , one has that f#
v |Ev = 1. Thus every

quasi-toric family (fv)v is automatically generalized adelic.
Definition 4.4.3.4. — Let (fv)v be a quasi-toric family of a-
homogenous continuous functions of a fixed weighted degree. We say
that the resulting height H((fv)v) is quasi-toric. If (fv)v is furthermore
assumed to be toric, we say that H is toric and may be denoted by H#.
Example 4.4.3.5. — We present a formula for the toric height in the
case F = Q. Let d be a strictly positive integer. Let x ∈ [P(a)(Q)]
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and let x̃ ∈ Zn be a lift of x which satisfies x ∈ Da
p for every prime p.

Then for every prime p, one has that f#
p (x̃) = 1. It follows that the toric

height defined by the degree d toric family satisfies:

H#(x) = (max(|x̃j|1/aj))d.

When n = 2 and a = (4, 6), the toric height defined by the degree 12
toric family is sometimes called naive height (e.g. [13]).
Remark 4.4.3.6. — Quasi-toric heights are not stable. In fact, we will
verify in 4.6, that quasi-toric heights satisfy the weak Northcott property,
while the stable heights do not .
Lemma 4.4.3.7. — For v ∈ MF , let f#

v be the toric a-homogenous
function of weighted degree 1.

1. For every v ∈ MF and every y ∈ F n
v − {0}, one has that f#

v (y) ≥
max(|yj|1/ajv ).

2. For every x ∈ P(a)(F ) one has that H#(x) ≥ Hmax(x) ≥ 1,

where Hmax is the height given by (y 7→ max(|yj|1/ajv ))v.

Proof. — For v ∈ M∞
F , we recall that f#

v (y) = max(|yj|1/ajv ). Let v ∈
M0

F . For every y ∈ Da
v one has that

rv(y) ≥ sup
j=1,...,n
xj 6=0

(−v(yj)
aj

)
=: rmax

v (y)

and thus

fv(y) = |πv|−rv(y)v ≥ |πv|−r
max
v (y)

v ≥ (max(|yj|1/ajv ).

The function y 7→ f#
v (y)(max(|yj|1/ajv ))−1 is Gm(Fv)-invariant. As by

Lemma 4.4.3.1 any z ∈ F n
v − {0} writes us t · y, where y ∈ Da

v it follows

that f#
v (z) ≥ (max(|zj|1/ajv ) for every z ∈ F n

v − {0}. The first claim is
proven.
Now let x ∈ P(a)(F ) and let x̃ : Gm → An − {0} be the Gm-

equivariant morphism over F defined by x. We have that

H#(x) =
∏

v∈MF

f#
v (x̃(1)) ≥

∏

v∈MF

max
j

(|x̃(1)|1/ajv ) = Hmax(x) ≥ 1,

by Lemma 4.4.2.4. The second claim is proven.
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4.4.4. — We dedicate this paragraph to state and prove a lemma that
will be used latter for the proof of Proposition 4.7.1.2. It is motivated
by [30, Theorem B.2.5].

Let K be a field and let a ∈ Zn>0. Let us define weighted de-
grees of polynomials in K[X1, . . . , Xn]. For j = 1, . . . , n, we define
a-weighted degree (or simply weighted degree) of polynomial Xj by

setting dega(Xj) = aj. For a monomial cXd1
1 · · ·Xdn

n , where c ∈ R,

we define dega(cX
d1
1 · · ·Xdn

n ) = a · d. Finally, if P =
∑

iQi, with Qi

monomials, we define dega(P ) = maxi(dega(Qi)).
Definition 4.4.4.1. — We say that a polynomial P ∈ K[X1, . . . , Xn]
is a-homogenous if it is a sum of monomials of the same a-weighted
degree.
Lemma 4.4.4.2. — Let P be an a-homogenous polynomial of weighted
degree d ≥ 1.

1. For t ∈ Gm and x ∈ An, one has that P (t · x) = tdP (x).
2. Let Q be an a-homogenous polynomial of weighted degree k ≥ 0. The

polynomial PQ is an a-homogenous polynomial of weighted degree
d+ k.

3. Let {P1, . . . , Pm} ∈ Fv[X1, . . . , Xn] be a set of non-constant a-
homogenous polynomials. The closed subscheme Z({P1, . . . , Pm}) ⊂
An, given by the common zero set of P1, . . . , Pm is Gm-invariant
for the action of Gm on An with weights a1, . . . , an. The open
subscheme D(P1) ⊂ An, given by the locus where P1 does not vanish
is Gm-invariant for the same action of Gm on An.

Proof. — 1. Let t ∈ Gm and let CXm1
1 · · ·Xmn

n be a monomial. For
x ∈ An, we have that

CXm1
1 · · ·Xmn

n (t · x) = Cta1m1
1 xm1

1 · · · tanmn
n xmn

n = ta·mXm1
1 · · ·Xmn

n (x).

Now, P can be written as sum
∑

iCiX
m1,i

1 · · ·Xmn,i
n where for each i

one has a ·mi = d and we deduce that P (t · x) = tdP (x).
2. The product PQ is a sum of monomials CXm1

1 · · ·Xmn
n ·DXr1

1 · · ·Xrn
n ,

with a ·m = d and a · r = k. It follows that PQ is a-homogenous
of weighted degree a(m+ r) = k + d.

3. For every x ∈ An and every i ∈ {1, . . . ,m}, we have that Pi(t ·x) =
tdPi(x) = 0 if and only if Pi(x) = 0. The claim follows.

Definition 4.4.4.3. — Let {P1, . . . , Pm} ⊂ F [X1, . . . , Xn] be a set of
non-constant a-homogenous polynomials. We define Z({P1, . . . , Pm}) to
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be the substack of P(a) defined by the Gm-invariant closed subscheme
Z(P1, . . . , Pm) − {0} ⊂ An − {0}. We define D(P1) to be the substack
of P(a) defined by the Gm-invariant open subscheme D(P1) ⊂ An−{0}.

It follows from [56, Lemma 04YN] that Z({P1, . . . , Pk}) is a closed
substack of P(a) and that D(P1 · · ·Pm) is an open substack of P(a).

Let Q1, . . . , Qr+1 be a-homogenous polynomials of the same weighted
degree d. The morphism

J(Q1, . . . , Qr+1) : (An−Z({Q1, . . . , Qr+1}))→ Ar+1−{0} x 7→ (Qi(x))i

is t 7→ td-equivariant (see 4.1.5 for the terminology), when the left scheme
is endowed with the action t ·a x = (tajxj)j of Gm and the right scheme
is endowed with the action t ·1 x = (txj)j. Let us denote by

(4.4.4.4) J(Q1, . . . , Qr+1) : P(a)→ Pr

the 1-morphism of stacks induced by [56, Lemma 046Q].
We state our lemma:

Lemma 4.4.4.5. — Let P1, . . . , Pr+1 ∈ F [X1, . . . , Xn] be a-homogenous
polynomials of the same weighted degree d. Let J(P1, . . . , Pr+1) :
(P(a) − Z(P1, . . . , Pr+1)) → Pr be the 1-morphism given by the
t 7→ td-equivariant morphism (P1, . . . , Pr+1) : (An − {0}) → (An − {0})
(see 4.1.5). Let H# be the toric height on [P(a)(F )] defined by
the toric degree d family. There exists C > 0 such that for all
x ∈ [(P(a)− Z(P1, . . . , Pr+1))(F )] one has that

CH#(x) ≥ HPr(φ(x)),

where HPr is the toric height defined by the toric degree 1 family on Pr.
Proof. — The strategy from the proof of [30, Theorem B.2.5] applies
here. Let us denote byXm the monomialXm1

1 , . . . , Xmn
n , wherem ∈ Zn≥0.

We denote by w(a, d) the number of m ∈ Zn≥0 for which a ·m = d, this is
precisely the number of monomials which have a-weighted degree equal
to d. For i ∈ {1, . . . , r + 1}, we write

Pi =
∑

a·m=d

Ai,mX
m,

where the sum runs over m ∈ Zn≥0 for which a ·m =
∑n

j=1 ajmj = d. For

v ∈ MF , we denote by |Pi|v = maxm |Ai,m|v. For almost all v, one has
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that |Pi|v = 1. For k ∈ Z, we set

εv(k) :=

{
k if v ∈M∞

F ,

1 if v ∈M0
F .

We note that for any v ∈MF , any k ≥ 1 and any z1, . . . , zk ∈ F , one has
that

|z1 + · · ·+ zk|v ≤ εv(r)max(|z1|v, . . . , |zk|v).
For x ∈ [P(a)(F )], let x̃ ∈ F n

v −{0} be a lift of x. For i ∈ {1, . . . , r+1}
and v ∈MF , we deduce that

|Pi(x̃)|v =
∣∣∑

a·m
Ai,mx̃

m1
1 · · · x̃mn

n

∣∣
v

≤ ε(w(a, d))(max
m
|Ai,m|v)(max

m
|x̃m1

1 · · · x̃mn
n |v)

≤ ε(w(a, d))|Pi|vmax
m

( n∏

ℓ=1

max
j

(|x̃j|1/ajv )aℓmℓ
)

= ε(w(a, d))|Pi|vmax
j

(|x̃j|1/ajv )a·m

= ε(w(a, d))|Pi|vmax
j

(|x̃j|1/ajv )d.

Set Cv = ε(w(a, d))maxi |Pi|v. For almost all v, one has that Cv = 1 and
we set C =

∏
v Cv. Let us define

rv : F
n
v − {0} → Z y 7→ sup

j=1,...,n
xj 6=0

⌈
− v(yj)

aj

⌉

and

rmax
v : F n

v − {0} → Q y 7→ sup
j=1,...,n
yj 6=0

(v(yj)
aj

)
.

One has that

f#
v (y) = |πv|−drv(y)v ≥ |πv|−dr

max
v (y)

v = max
j

(|yj|1/ajv |v)d.

We deduce that

max
i

(|Pi(x̃)|v) ≤ Cvmax
j

(|yj|1/ajv )d ≤ Cvf
#
v (x̃).
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By multiplying this inequality for all v we obtain that for every x ∈
[(P(a)− Z(P1, . . . , Pn))(F )] one has that

HPr(J(P1, . . . , Pr+1)(x)) =
∏

v∈MF

(max
i

(|Pi(x̃)|v)) ≤
∏

v

Cvf
#
v (x̃)

= CH#(x).

The claim is proven.

4.4.5. — We establish several facts on “local heights” that will be
needed in 4.6.

Let (fv : F n
v − {0} → R>0)v be a generalized adelic family

of a-homogenous continuous function of weighted degree |a|. Let
H = H((fv)v) be the corresponding height on [P(a)(F )]. For v ∈ MF ,
t ∈ F×

v and x ∈ (F×
v )

n one has that

fv(t · x)
n∏

j=1

|tajxj|−1
v = |t||a|v fv(x)

n∏

j=1

|t|−ajv |xj|−1
v = fv(x)

n∏

j=1

|xj|−1
v

i.e. for v ∈MF , the continuous function

(4.4.5.1) (F×
v )

n → R>0, x 7→ fv(x)
n∏

j=1

|xj|−1
v

is (F×
v )a-invariant. Let Hv : [T (a)(Fv)] → R>0 be the function in-

duced from (Fv)a-invariant function (4.4.5.1). For x ∈ [T (a)(F )], we
write Hv(x) for what is technically Hv([T (a)(iv)](x)), where [T (a)(iv)] :
[T (a)(F )] → [T (a)(Fv)] is the induced homomorphism from (F×)a-
invariant homomorphism

(F×)n →֒ (F×
v )

n → [T (a)(Fv)].

Lemma 4.4.5.2. — Let x ∈ [T (a)(F )]. One has that H(x) =∏
vHv(x).
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Proof. — Let x̃ ∈ (F×)n be a lift of x. By using the product formula,
one gets that

∏

v∈MF

Hv(x) =
∏

v∈MF

(
fv(x̃)

n∏

j=1

|x̃j|−1
v

)

=
( ∏

v∈MF

fv(x̃)
) ∏

v∈MF

n∏

j=1

|x̃j|−1
v

= H(x)

Lemma 4.4.5.3. — Let v ∈MF and suppose that fv = f#
v is the toric

a-homogenous function of weighted degree 1. Let x ∈ [T (a)(F )]. One
has that H#

v (x) ≥ 1.
Proof. — Suppose v ∈ M0

F . It follows from Lemma 4.4.3.1 that there
exists a lift x̃ of [T (a)(iv)](x) lying in Da

v . By using that f#
v |Da

v
= 1 and

that Da
v ⊂ (Ov)n, we obtain

H#
v (x) = f#

v (x̃)
n∏

j=1

|x̃j|−1j
v =

n∏

j=1

|x̃j|−1j
v ≥ 1.

Suppose now v ∈M∞
F . Let x̃ ∈ (F×

v )
n be a lift of x. One has that

H#
v (x) = f#

v (x̃)
n∏

j=1

|x̃j|−1
v

=
(
max
k

(|x̃k|1/akv )
)|a| n∏

j=1

|x̃j|−1
v

=
n∏

j=1

(
max
k=1,...,n

(|x̃k|1/akv )
)aj(|x̃j|1/ajv

)−aj

≥
n∏

j=1

(
max
k

(|x̃k|1/akv )
)aj(max

k
(|x̃k|1/akv )

)−aj

= 1.
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4.5. Metrics induced by models

We use models with enough integral points to define metrics. We
establish that the toric metric comes from models of weighted projective
stacks from 3.2.

4.5.1. — We use Ov-points of P(a) to define Fv-metrics.

Let v ∈ M0
F . By an Ov-extension of x ∈ P(a)(Fv) we mean a pair

(y, t) where y ∈P(a)(Ov) and t : yFv

∼−→ x is a 2-isomorphism. Let Sx

be the set of Ov-extensions of x ∈ P(a)(Fv). Proposition 3.2.2.5 gives

that the set Sx is non-empty for any x ∈P(a)(Fv).

For x ∈ P(a)(Fv) (respectively, x ∈ P(a)(Ov)), we will denote by x̃
the canonical (Gm)Fv -equivariant morphism x̃ : (Gm)Fv → An

Fv
(respec-

tively, the canonical (Gm)Ov -equivariant morphism x̃ : (Gm)Ov → An
Ov
)

induced by x. One has that qa ◦ x̃(1) = x.

If L is a line bundle on P(a), a 2-isomorphism t : x
∼−→ x′, where

x,x′ ∈P(a)(Fv), induces a linear map L(t) : L(x)
∼−→ L(x′).

Definition 4.5.1.1. — Let L be a line bundle on P(a). Let x ∈
P(a)(Fv) and let ℓ ∈ L(x). We define

||ℓ||x := sup
(y,t)∈Sx

{inf{|a|v | a ∈ F×
v : ℓ ∈ a(L(t)(y∗L))}}.

We calculate these metrics.
Lemma 4.5.1.2. — Let x ∈ P(a)(Fv). Let k be an integer and let
f#
v : F n

v − {0} → R>0 be the a-homogenous toric function of weighted
degree k. Let ℓ ∈ O(k)(x) = Fv. One has that

||ℓ||x := f#
v (x̃(1))

−1|ℓ|v.

Proof. — If t : x′ → x′′ is a 2-isomorphism in P(a)(Fv), the induced

linear map O(k)(t) : Fv = O(k)(x′)
∼−→ O(k)(x′′) = Fv is the linear map
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x 7→ tkx. It follows that:

||ℓ||x = sup
(y,t)∈Sx

{inf{|a|v | a ∈ F×
v : ℓ ∈ atk(y∗O(k))}}

= sup
(y,t)∈Sx

{inf{|a|v | a ∈ F×
v : ℓ ∈ atk((ỹ(1))∗(qaOv

)∗O(k))}}

= sup
(y,t)∈Sx

{inf{|a|v | a ∈ F×
v : ℓ ∈ atk((ỹ(1))∗OAn)}}

= sup
(y,t)∈Sx

{inf{|a|v | a ∈ F×
v : ℓ ∈ atkOv}}

= sup
(y,t)∈Sx

{inf{|a|v | a ∈ F×
v : 1 ∈ aℓ−1tkOv}}

= sup
(y,t)∈Sx

{|t|−kv |ℓ|v}

= |ℓ|v sup
(y,t)∈Sx

{|t|−kv }.

Note that if (y, t) ∈ Sx, then as t−1 · x̃(1) = ỹ(1) ∈ Onv , it follows from
Lemma 4.4.3.1 that v(t−1) ≥ rv(x̃(1)), with the equality if and only if
ỹ(1) ∈ Da

v . We deduce that

sup
(y,t)∈Sx

{|t|−kv } = |πv|−krv(x̃(1))v = f#
v (x̃(1))

−1.

The claim follows.

We can deduce that:
Corollary 4.5.1.3. — Let v be a finite place of F and let k be an
integer. The metrics ||·||x from Definition 4.5.1.1 on O(k)(x) for x ∈
P(a)(Fv) define an Fv-metric ||·|| on O(k)|P(a)Fv

. The Fv-metric ||·|| is
the induced Fv-metric from the function x 7→ f#

v (x) by Lemma 4.3.3.4.
Proof. — For x ∈ P(a)(Fv), let us pick ℓ = 1 ∈ O(k)(x). By Lemma
4.5.1.2, we obtain that ||1||x = f#

v (x̃)
−1 for every x ∈ P(a)(Fv). As

f#
v : F n

v − {0} → R>0 is continuous (Lemma 4.4.3.1) and satisfies that
f#
v (t · x) = |t|kvf#

v (x), we deduce that ||·|| is the induced Fv-metric from
the function f#

v using Lemma 4.3.6.6.

4.6. Finiteness property of quasi-toric heights

We say that a height is a weak Northcott height if on some non empty
open substack U ⊂ P(a) one has that for every B > 0 there are only
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finitely many points in [U (F )] having the height less than B. We estab-
lish that quasi-toric heights are not weak Northcott heights. We improve
it further for heights that are degenerate if the singularities of fv at cer-
tain places v are “logarithmic” along a rational divisor. Let a ∈ Zn≥1.

4.6.1. — We define weak Northcott heights.
Definition 4.6.1.1. — Suppose (fv : F

n
v − {0} → R≥0)v is a general-

ized adelic family of continuous a-homogenous functions. We say that the
corresponding height H((fv)v) is a weak Northcott height if there exists a
non empty open substack U ⊂P(a) for every B > 0, the set

{x ∈ [U (F )]|H((fv)v)(x) < B}
is finite.
Remark 4.6.1.2. — For varieties, it is possible to define heights of its
algebraic points and to normalize them so that an L-point (where L/F
is a finite extension) has the same height viewed as an K-point (where
K/L is a finite extension). Then Northcott theorem at its full strength
guarantees a finiteness on a open subvariety of the number of algebraic
points of bounded degree and bounded height. However, for stacks the
heights which are possible to be normalized in the above way (we will
call them stable heights) fail to satisfy even the above “weak” Northcott
property as we will see shortly. All the “useful” heights are not stable
(i.e. the height of an F -point may changes when the same point is looked
as a K-point). For that reason the “strong” Northcott theorem does not
have a meaningful analogy in the setting of stacks.

4.6.2. — We give heights which are not weak Northcott heights.
Lemma 4.6.2.1. — Suppose n = 1 and a ∈ Z≥2. The set [P(a)(F )]
is infinite.
Proof. — One has that [P(a)(F )] = [T (a)(F )] = F×/(F×)a, where
(F×)a is the subgroup given by the non-zero a-th powers in F×. There
are infinitely many non-zero principal prime ideals in OF (because there
are only finitely many prime ideals in Z which ramify in OF ). For any
of those principal prime ideals p, let bp ∈ F× be a generator. Note
that for any principal prime ideals p1, p2 one has that bp1b

−1
p2
6∈ (F×)a,

because a ∤ vp1(bp1b
−1
p2
) = 1, where vp1 is the valuation corresponding to

p1. It follows that the images in F×/(F×)a of different bp are different.
It follows that [P(a)(F )] = F×/(F×)a is infinite.

Corollary 4.6.2.2. — Suppose that n = 1 and a ∈ Z≥2.
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1. There are no non empty open substacks of the stack P(a).
2. Let (fv)v be a stable generalized adelic family of a-homogenous func-

tions Fv − {0} → R>0. For every x, y ∈ P(a)(F ) one has that
H((fv)v)(x) = H((fv)v)(y). The height H = H((fv)v) is not a
weak Northcott height.

Proof. — 1. Let U ⊂P(a) be a non empty open substack. Its preim-
age (qa)−1(U ) for the Gm-invariant quotient 1-morphism qa : Gm →
P(a) is a non empty Gm-invariant open subscheme of Gm. Let
r ∈ (qa)−1(U )(F ). Suppose that Gm− (qa)−1(U ) is non empty and
let z be a geometric point of Gm − (qa)−1(U )(F ). There exists a
finite extension K of F such that z and all a-th roots of zr−1 are
defined over K. Then, if t ∈ K − {0} is an a-th root of zr−1, one
has that t · r = z, a contradiction with the fact that (qa)−1(U )
is Gm-invariant. It follows that (qa)−1(U ) = Gm and hence that
U = P(a). The statement follows.

2. Let x, y ∈ P(a)(F ) and let x̃, ỹ : (Gm)Fv → (A1 − {0})Fv be the
two (Gm)Fv -equivariant morphisms defined by x and y. Let K =

F ( a
√
x̃(1)ỹ(1)−1). Note that for t := a

√
x̃(1)ỹ(1)−1 one has tax = y,

thus xK ∼= yK . By Lemma 4.4.2.3, one has that for every x, y ∈
P(a)(F ) one has H(x) = H(y). Thus for every z, w ∈ [P(a)(F )]
one has H(z) = H(w). Let B > H(w), where w ∈ [P(a)(F )]. By
Lemma 4.6.2.1, the set {z|z ∈ [P(a)(F )] and H(z) < B} is infinite.
Thus H is not a weak Northcott height.

4.6.3. — We dedicate the next paragraphs to the proof that the toric
heights are weak Northcott heights. By the property of the boundedness
of the quotients (Lemma 4.4.1.6), it is then immediate that any quasi-
toric height is a weak Northcott height.

Let Div(F ) be the group of fractional ideals of F . We define

Div(F )a := {(xaj)j| x ∈ Div(F )}.
In this paragraph we will give an estimate to the number of elements of
the abelian group Div(F )n/Div(F )a of bounded “height”. This will be
useful, as in the next paragraph, we relate the finite part of the height
on T (a)(F ) with the “height” on Div(F )n/Div(F )a. If v ∈ M0

F , for a
fractional ideal x of OF we define v(x) by setting it to be the exponent
of the prime ideal corresponding to v, in the prime factorization of x.
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We define set

Div(F )a−prim := {x ∈ Div(F )n|x ⊂ OnF and ∀v ∈M0
F , ∃j : v(xj) < aj}.

Lemma 4.6.3.1. — 1. Let us define

rv : Div(F )
n → Z x 7→ sup

j=1,...,n
xj 6=0

⌈−v(xj)
aj

⌉
.

Let x ∈ Div(F )n. The fractional ideal

y = y(x) :=
∏

v∈M0
F

mrv(x)
v ,

where mv is the maximal ideal corresponding to v ∈ M0
F , satisfies

that

(xjy(x)
aj)j ∈ Div(F )a−prim.

2. The restriction of the quotient map

qDiv(F ),a : Div(F )n → Div(F )n/Div(F )a

to Div(F )a−prim is a bijection Div(F )a−prim
∼−→ Div(F )n/Div(F )a.

Proof. — 1. Let v ∈M0
F . For every j one has that

v(xjy
aj) = v(xj) + ajrv(x) ≥ 0.

Let i be the index such that −v(xi)
ai

is maximal, then rv(x) < 1 +
−v(xi)
ai

. We deduce that

v(xiy
ai) = v(xi) + airv(x) < ai.

Hence, (xjy
aj)j is an element of Div(F )a−prim.

2. We prove the surjectivity of qDiv(F ),a. Let z ∈ Div(F )n/Div(F )a
and let z̃ ∈ Div(F )n be a lift of z. Then (z̃jy(z)

aj)j is a lift of z
belonging to Div(F )a−prim. Let us prove the injectivity. Suppose
that the elements x, r ∈ Div(F )a−prim are lying above the same
element in Div(F )n/Div(F )a. Then there exists t ∈ Div(F ) such
that xj = tajrj for j = 1, . . . , n. We need to establish that t = (1).
Suppose on the contrary t 6= (1). One can choose v such that v(t) 6=
0. If v(t) > 0, then for every j one has

v(xj) = ajv(t) + v(rj) ≥ aj · 1 + 0 = aj,
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which is a contradiction with the fact that x is primitive. If v(t) < 0,
then there exists j such that aj > v(rj), which gives that

v(xj) = ajv(t) + v(rj) < aj − aj = 0,

which is a contradiction with the fact that x is primitive. We deduce
that t = (1), and hence x = r. Therefore qDiv(F ),a|Div(F )a−prim

is
injective. The claim is proven.

For every x ∈ Div(F )n/Div(F )a, let us denote by x̃ the unique lift
of x lying in Div(F )a−prim. For x ∈ Div(F )n/Div(F )a, we set

HIdeal(x) :=
n∏

j=1

N(x̃j)

where N is the ideal norm.
Lemma 4.6.3.2. — For m ∈ Z≥1, there exists Cm > 0 such that for
every B > 0 one has that

{y ∈ Div(F )m≥0|
n∏

j=1

N(yj) ≤ B} ≤ CmB log(1 +B)m−1,

where Div≥0(F ) = {y ∈ Div(F )|y ⊂ OF}.
Proof. — We will use the following result: there exists C1 > 0 such that

|{y ∈ Div(F )|y ⊂ OF , N(y) ≤ B}| ≤ C1B.

This is proven in [32, Pages 145-150]. We use induction on m. Let
m ≥ 2. For k ≥ 1, we set

g(k) =
∣∣{x ∈ Div≥0(F )

m−1|
m−1∏

j=1

N(xj) = k
}∣∣.
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For B ≥ 1, using Abel’s summation formula, we get that there exists
C ′
m, Cm > 0 such that

|{y ∈ Div≥0(F )
m|

m∏

j=1

N(yj) ≤ B}|

=
∑

y∈Div≥0(F )m

N(ym)≤B/
∏m−1

j=1 N(yj)

1

≤
∑

(yj)
m−1
j=1 ∈Div≥0(F )m−1

∏m−1
j=1 N(yj)≤B

C1B∏m−1
j=1 N(yi)

= C1B

⌊B⌋∑

k=1

g(k)

k

= C1B

(
1

⌊B⌋

⌊B⌋∑

j=1

g(k) +

⌊B⌋−1∑

j=1

(1
j
− 1

j + 1

) j∑

k=1

g(k)

)

≤ 2C1Cm−1 log(⌊B⌋+ 1)m−2 + C1B

⌊B⌋−1∑

j=1

(1
j
− 1

j + 1

)
Cm−1j log(j + 1)m−2

≤ 2C1Cm−1 log(B + 1)m−2 + C1Cm−1B

⌊B⌋−1∑

j=1

log(j + 1)m−2

j

≤ C ′
m log(B + 1)m−2 + C ′

mB log(⌊B⌋)m−2

⌊B⌋−1∑

j=1

1

j + 1

≤ C ′
m log(B + 1)m−2 + C ′

mB log(⌊B⌋) log(⌊B⌋+ 1)m−1

≤ CmB log(B + 1)m−1.

The statement follows.

We can estimate the number of elements of Div(F )n/aDiv(F ) having
HIdeal less than B.
Corollary 4.6.3.3. — There exists C > 0 such that for any B > 0,
one has

|{x ∈ Div(F )n/aDiv(F )|HIdeal(x) ≤ B}| ≤ CB log(1 +B)n−1.
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Proof. — By Lemma 4.6.3.2, there exists Cn > 0 such that:

|{x ∈ Div(F )n/Div(F )a|HIdeal(x) < B}|

= |{y ∈ Diva−prim(F )|
n∏

j=1

N(yj) < B}|

≤ |{y ∈ Div(F )n|y ⊂ OnF ,
n∏

j=1

N(yj) < B}|

≤ CnB log(1 +B)n−1.

The statement is proven.

4.6.4. — For v ∈ MF , we let f#
v : F n

v − {0} → R>0 be the toric a-
homogenous function of weighted degree |a|. Let H# be the correspond-
ing toric height on [P(a)(F )]. For v ∈ MF , we let H#

v to be the “local
heights” from 4.4.5 i.e. the functions [T (a)(Fv)] → R>0 induced from
F×
v -invariant maps

(F×
v )

n → R>0, x 7→ f#
v (x)

n∏

j=1

|xj|−1
v .

In this paragraph we relate
∏

v∈M0
F
H#
v and HIdeal. For x ∈ F×, let us

denote by I(x) ∈ Div(F ) the fractional ideal xOF . We denote by In the
product homomorphism (F×)n → Div(F )n. Note that if x ∈ (F×)a =
{(xaj)j|x ∈ F×}, then In(x) ∈ Div(F )a. We denote by I the induced
homomorphism

(4.6.4.1) I : [T (a)(F )] = (F×)n/(F×)a → Div(F )n/Div(F )a

from (F×)a-invariant map

F×n x 7→In(x)−−−−−→ Div(F )n → Div(F )n/Div(F )a,

where the second homomorphism is the quotient homomorphism.
Lemma 4.6.4.2. — Let x ∈ [T (a)(F )]. One has that

HIdeal(I(x)) =
∏

v∈M0
F

H#
v (x).
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Proof. — Let x̃ ∈ (F×)n be a lift of x. It follows from Lemma 4.6.3.1
that

In(x̃)(y(In(x̃))aj)j = (I(x̃j)
∏

v∈M0
F

(majrv(I
n(x̃))

v )j,

where mv is the maximal ideal corresponding to v ∈ M0
F , is the unique

lift of I(x) lying in Div(F )a−prim. We can calculate (if 0 6= I ∈ Div(F ),
we write v(I) for the exponent of the prime ideal corresponding to v in
the prime factorization of I):

HIdeal(I(x)) =
n∏

j=1

N

(
I(x̃j)

∏

v∈M0
F

(πajrv(I
n(x̃))

v Ov ∩ OF )
)

=
n∏

j=1

N

( ∏

v∈M0
F

πv(I(x̃j))+ajrv(I
n(x̃))

v Ov ∩ OF
)

=
n∏

j=1

∏

v∈M0
F

|πv|−(v(I(x̃j))+ajrv(I
n(x̃)))

v

=
∏

v∈M0
F

n∏

j=1

|πv|−(v(x̃j)+ajrv(x̃))
v

=
∏

v∈M0
F

|πv|−|a|rv(x̃)
v

n∏

j=1

|πv|−v(x̃j)v

=
∏

v∈M0
F

fv(x̃)
n∏

j=1

|x̃j|−1
v

=
∏

v∈M0
F

H#
v (x).

4.6.5. — In this paragraph we study the kernel of the homomorphism I

defined in 4.6.4. Let U be the group of units of F and let Ua :=
{(uaj)j|u ∈ U}. As Ua = (F×)a ∩ Un, we have a canonical identifica-
tion of Un/Ua with a subgroup of [T (a)(F )]. Note that U ⊂ ker(I) and
thus Un ⊂ ker(In). It follows that

Un/Ua ⊂ ker(I).
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We prove the following fact:
Lemma 4.6.5.1. — Let d = gcd(a). One has that

(ker(I) : (Un/Ua)) = |Cl(F )[d]|,

where Cl(F )[d] is the d-torsion subgroup of the class group Cl(F ).
Proof. — The following “snake diagram” is commutative

1 1 1

U Un ker(I)

F× (F×)n [T (a)(F )] 1

0 Div(F ) Div(F )n Div(F )n/Div(F )a

Cl(F ) Cl(F )n coker(I)

0 0 0,

t 7→(ajt)j

IInI

t 7→(taj )j

t 7→(taj )j

t 7→(ajt)j

where Cl(F ) is the class group of F . All vertical and horizontal sequences
are exact. The snake lemma provides an exact sequence

U
t 7→(taj )j−−−−−→ Un → ker(I)

σ−→ Cl(F )
t 7→(ajt)j−−−−−→ Cl(F )n → coker(I).

It follows that ker(σ) = Im
(
Un → ker(I)

)
= Un/Ua. The kernel of

Cl(F )→ Cl(F )n t 7→ (ajt)j

is given by the subgroup Cl(F )[d]. We deduce that

|Cl(F )[d]| = | Im(σ)| = | ker(I)/ ker(σ)| = (ker(I) : (Un/Ua)).
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4.6.6. — In this paragraph for fixed x ∈ [T (a)(F )], we bound the
number of elements u ∈ Un/Ua for which

∏
v∈M∞

F
H#
v (ux) < B.

We define an auxiliary function h∞ : (RM∞
F )n → R by

h∞ : (yv)v 7→
∑

v∈M∞
F

a ·
(

max
k=1,...,n

(
yv,k
ak
− yv,j

aj

))
j
.

We define a homomorphism

ρ : F× → RM∞
F x 7→ log(|x|v),

and a homomorphism

ρn : (F×)n → (RM∞
F )n x 7→ (ρ(xj))j.

Lemma 4.6.6.1. — Let x ∈ [T (a)(F )] and let x̃ ∈ (F×)n be a lift
of x. We have that

log

( ∏

v∈M∞
F

H#
v (x)

)
= h∞(ρn(x̃)).

Proof. — For v ∈M∞
F , we have that

log(H#
v (x)) = log

(
max
k

(|x̃k|1/akv )|a|
n∏

j=1

|x̃j|−1
v

)

= log
( n∏

j=1

max
k

(|x̃k|1/akv )aj |x̃j|−1
v

)

= log
( n∏

j=1

max
k

(|x̃k|aj/akv )|x̃j|−1
v

)

= log
( n∏

j=1

max
k

(|x̃k|aj/akv |x̃j|−1
v )
)

=
n∑

j=1

log
(
max
k

( |x̃k|1/akv

|x̃j|1/ajv

)aj)

=
n∑

j=1

aj max
k

(
log(|x̃k|v)

ak
− log(|x̃j|v)

aj

)

= a ·
(
max
k

(
log(|x̃k|v)

ak
− log(|x̃j|v)

aj

))
j
.
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We deduce:

log
( ∏

v∈M∞
F

H#
v (x)

)
=
∑

v∈M∞
F

a ·
(
max
k

(
log(|x̃k|v)

ak
− log(|x̃j|v)

aj

))
j

= h∞(ρ(x̃)).

Lemma 4.6.6.2. — For j = 1, . . . , n, let us define a homomorphism
αj : (RM∞

F )n → (RM∞
F )n by

αj : (yi)i 7→
(yi
ai
− yj
aj

)
i
.

Set α =
∏n

j=1 αj : (R
M∞

F )n → (RM∞
F )n

2
.

1. One has that

ker(α) =
{
(ajy)j|y ∈ RM∞

F
}
.

2. Let K > 0 and let (yj)j ∈ (RM∞
F )n be such that h∞(y) < K. One

has that

α(y) ∈
∏

i,j

[−K
ai

,
K

aj

]M∞
F

.

3. Suppose L is a lattice of RM∞
F . Then α(Ln) is contained in a lattice

of (RM∞
F )n

2
.

Proof. — 1. For k, ℓ ∈ {1, . . . , n}, one has that

ker(αℓ) = {
(aiyℓ
aℓ

)
i
|yℓ ∈ RM∞

F } = {(aiy)i|y ∈ RM∞
F }

= {
(aiyk
ak

)
j
|yk ∈ RM∞

F } = ker(αk).

Therefore

ker(α) =
n⋂

j=1

ker(αj) = ker(α1) = {(ajy)j|y ∈ RM∞
F }.

2. Let ℓ ∈ {1, . . . , n}. Note that from

h∞(y) =
∑

v∈M∞
F

a ·
(
max
k

(
yv,k
ak
− yv,j

aj

))
j
< K,
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it follows that for every i ∈ {1, . . . , n} and every w ∈M∞
F , one has

that

aℓ

(
yw,i
ai
−yw,ℓ
aℓ

)
≤ aℓmax

k

(
yv,k
ak
−yv,ℓ
aℓ

)
≤
∑

v∈M∞
F

a·
(
max
k

(
yv,k
ak
−yv,j
aj

))
j
< K,

and hence that
yw,i
ai
− yw,ℓ

aℓ
<
K

aℓ
.

Similarly, for every i ∈ {1, . . . , n} and every w ∈M∞
F , one has that

yw,ℓ
aℓ
− yw,i

ai
<
K

ai
.

We deduce that

yi
ai
− yj
aj
∈
[
− K

ai
,
K

aℓ

]

v∈M∞
F

and hence that

αℓ((yi)i) =
(yi
ai
− yℓ
aℓ

)
i
∈
[
− K

ai
,
K

aℓ

]

v,i

.

Finally, it follows that

α((yi)i) = (αj((yi)i))j ∈
∏

i,j

[
− K

ai
,
K

aj

]M∞
F

.

3. Let (yj)j ∈ Ln. Then for every i, j one has

yi
ai
− yj
aj
∈ L∏n

j=1 aj
.

We deduce

αj(y) =
(yi
ai
− yj
aj

)
i
∈
(

L∏n
j=1 aj

)n

i=1

.

It follows that

α(Ln) = (αj(L
n))j ⊂

(
L∏n
j=1 aj

)n2

ℓ=1

.

The claim is proven.
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Let us set

W :=
{
(wv)v ∈ RM∞

F |
∑

v

wv = 0
}

For u ∈ U, we have that

ρ(u) = (log |u|v)v ∈ W,

and hence for u ∈ Un, we have that ρn(u) = (ρ(uj))j ∈ W n.
Lemma 4.6.6.3. — The following claims are valid:

1. The homomorphism ρn is of finite kernel and its image is a lattice
of W n.

2. One has that W n ∩ ker(α) = {(ajw)j|w ∈ W}.
3. One has that rk(ker(α ◦ (ρn|Un))) ≤ r1 + r2 − 1, where r1 is the

number of the real and r2 is the number of complex places of F .
4. One has that Ua ⊂ ker(α ◦ (ρn|Un)) and the map β : Un/Ua →

(RM∞
F )n

2
, induced from Ua-invariant map α ◦ (ρn|Un), is of finite

kernel.
5. The image β(Un/Ua) is contained in a lattice of (RM∞

F )n
2
.

Proof. — 1. By Dirichlet’s unit theorem, one has that ker(ρ|U) is fi-
nite and that ρ(U) is a lattice of W . It follows that ker(ρn|Un) =
ker(ρ|U)n is finite and that ρn(Un) = ρ(U)n is a lattice of W n.

2. By Lemma 4.6.6.2 one has that ker(α) = {(ajy)j|y ∈ RM∞
F } and

thus

W n ∩ ker(α) = W n ∩ {(ajy)j|y ∈ RM∞
F } = {(ajw)j|w ∈ W}.

3. By (1), the kernel of ρn|ker(α◦ρn|Un ) : ker(α ◦ ρn|Un) → W n is finite.
It suffices therefore to show that the image ρn(ker(α ◦ ρn|Un)) is of
rank no more than r1 + r2 − 1. The image ρn(ker(α ◦ ρn|Un)) is
contained in ker(α) and by (1), it is also contained in the lattice
ρn(Un) of W n, thus

ρn(ker(α ◦ ρn|Un)) ⊂ ρn(Un) ∩ ker(α) = ρn(Un) ∩W n ∩ ker(α).

The rank of the intersection of the lattice ρn(Un) of W n and the
vector subspace ker(α)∩W n of W n cannot be more than dim(W n∩
ker(α)) = dim({(ajw)j|w ∈ W}) = r1 + r2 − 1. The claim follows.

4. Let (uaj)j ∈ Ua, where u ∈ U . We have that

ρn((uaj)j) = (ajρ(u))j ∈ ker(α).
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We deduce Ua ⊂ ker(α ◦ (ρn|Un)). Let us establish that Ua is of
finite index in ker(α ◦ (ρn|Un)). The map

U → Un u 7→ (uaj)j

is of finite kernel and thus

rk(Ua) = rk(U) = r1 + r2 − 1 ≥ rk(ker(α ◦ (ρn|Un))).

We conclude that rk(Ua) = r1 + r2 − 1 = rk(ker(α ◦ (ρn|Un))), and
hence is Ua of finite index in ker(α◦(ρn|Un)). Now, it follows that the
homomorphism β, which is precisely the composite homomorphism

β : Un/Ua → Un/ ker(α ◦ (ρn|Un)) →֒ (RM∞
F )n

2

,

is of finite kernel. The claim is proven.
5. One has that β(Un/Ua) = α(ρ(Un)). By Lemma 4.6.6.2 one has

that α(ρn(Un)) is contained in a lattice of (RM∞
F )n

2
. The statement

follows.

We now prove the principal result of the paragraph.
Lemma 4.6.6.4. — There exists C > 0 such that for every x ∈
[T (a)(F )] and every B > 2, one has that

{u ∈ Un/Ua|H#
∞(ux) < B} ≤ C

(
log(B)

)n2(r1+r2).

Proof. — For x ∈ [T (a)(F )], let x̃ ∈ (F×)n be a lift of x and for u ∈
Un/Ua, let ũ ∈ Un be a lift of u. For B > 1, by Lemma 4.6.6.1, one has

{u ∈ Un/Ua|H#
∞(ux) < B} = {u ∈ Un/Ua|h∞(ρn(ũx̃)) < B}

= {u ∈ Un/Ua|h∞(ρn(x̃) + ρn(ũ)) < log(B)}.

(4.6.6.5)
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Further, by using Lemma 4.6.6.2 and the fact that ker(β) is finite (Lemma
4.6.6.3), we obtain for every B > 1 that

|{u ∈ Un/Ua|h∞(ρn(x̃) + ρ(ũ)) < log(B)}|

=
∣∣{u ∈ Un/Ua|α(ρn(x̃) + ρn(ũ)) ∈

[− log(B)

ai
,
log(B)

ai

]
v,i,j

}∣∣

=
∣∣{u ∈ Un/Ua|α(ρn(ũ)) ∈ −α(ρn(x̃)) +

[− log(B)

ai
,
log(B)

ai

]
v,i,j

}∣∣

=
∣∣{u ∈ Un/Ua|β(u) ∈ −α(ρn(x̃)) +

[− log(B)

ai
,
log(B)

aj

]
v,i,j
}
∣∣

= | ker(β)| ·
∣∣{β(Un/Ua) ∩

(
− α(ρn(x̃)) +

[− log(B)

ai
,
log(B)

aj

]
v,i,j

)
}
∣∣.

(4.6.6.6)

As β(Un/Ua) is a subgroup (Lemma 4.6.6.3) of a lattice of (RM∞
F )n

2
,

there exists C ′ > 0 such that

∣∣∣∣β(Un/Ua) ∩
(
− α(ρ(x̃)) +

[− log(B)

ai
,
log(B)

aj

]
v,i,j

)
}
∣∣∣∣

≤ C ′
∏

i,j

( log(B)

ai
+

log(B)

aj

)r1+r2

≤ C ′
∏

i,j

(
log(B1/ai+1/aj)

)r1+r2

= C ′(1/ai + 1/aj
)n2(r1+r2)( log(B)

)n2(r1+r2).

(4.6.6.7)

for every B > 2. By combining estimates (4.6.6.5), (4.6.6.6) and (4.6.6.7)
we deduce that there exists C > 0 such that for every B > 2 one has
that

{u ∈ Un/Ua|H#
∞(ux) < B} ≤ C

(
log(B)

)n2(r1+r2).

4.6.7. — In this paragraph we prove that quasi-toric heights are weak
Northcott heights. We will establish that on the open substack T (a)
there are only finitely many isomorphism classes of rational points of
bounded height. We also give an upper estimate for the number of ra-
tional points.
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Proposition 4.6.7.1. — Let (fv : F
n
v − {0} → R>0)v be a quasi-toric

family of a-homogenous functions of weighted degree |a|. The resulting
height H = H((fv)v) is a weak Northcott height. There exists C > 0 such
that for every B > 0 one has

∣∣{x ∈ [T (a)(F )]|H(x) < B
}∣∣ < CB log(2 +B)n

2(r1+r2)+n−1.

Proof. — Let (f#
v )v be the family of toric a-homogenous continuous func-

tions of weighted degree |a|. We firstly prove the statement for the
family (fv = f#

v )v. Recall that I : [T (a)(F )] → Div(F )n/Div(F )a
is the induced homomorphism from Div(F )a-invariant homomorphism
(F×)n → Div(F )n → Div(F )n/Div(F )a. We set

H#
0 (x) :=

∏

v∈M0
F

H#
v (x)

H#
∞(x) :=

∏

v∈M∞
F

H#
v (x).

Recall that for every v ∈ MF we have H#
v (x) ≥ 1. Using this fact and

Lemma 4.6.4.2, for B > 0 we deduce that

∣∣{x ∈ [T a(F )]|H#(x) < B
}∣∣

≤
∣∣{x ∈ [T (a)(F )]|H#

0 (x) < B,H#
∞(x) < B

}∣∣
≤
∣∣{x ∈ T (a)(F )|HIdeal(I(x)) < B,H#

∞(x) < B
}∣∣.

(4.6.7.2)

For y ∈ Div(F )n/Div(F )a, let ỹ ∈ Div(F )n be a lift of y. We have that

∣∣{x ∈ [T (a)(F )]|HIdeal(I(x)) < B,H#
∞(x) < B

}∣∣
=
∣∣{(y, z) ∈ (Div(F )n/Div(F )a)×ker(I)|HIdeal(y) < B,H#

∞(zỹ) < B}
∣∣

and thus by the estimate (4.6.7.2) we get that

(4.6.7.3)
∣∣{x ∈ [T (a)(F )]|H(x) < B

}∣∣
≤
∣∣{(y, z) ∈ (Div(F )n/Div(F )a)×ker(I)|HIdeal(y) < B,H#

∞(zỹ) < B
}∣∣.

Recall from 4.6.5, that Un/Ua ⊂ ker(I). Let δ be a set theoretical section
to the quotient map ker(I) → ker(I)/(Un/Ua). By Lemma 4.6.5.1, the
group ker(I)/(Un/Ua) is finite, thus is δ(ker(I)/(U

n/Ua)) finite. By using
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the estimate from Lemma 4.6.6.4, we deduce that there exists C0 > 0
such that for every y ∈ Div(F )n/Div(F )a and every B > 0 one has

|{z ∈ ker(I)|H#
∞(zỹ) < B}|

≤
∣∣{(u,d) ∈ (Un/Ua)× δ(ker(I)/(Un/Ua))

∣∣H#
∞(udỹ) < log(B)

}∣∣

≤
∑

d∈δ(ker(I)/(Un/Ua))

|{u ∈ Un/Ua|H#
∞(udỹ) < log(B)}|

≤ C0(log(B + 2))n
2(r1+r2).

(4.6.7.4)

Corollary 4.6.3.3 gives that there exists C1 > 0 such that for every B > 0
one has that

|{y ∈ Div(F )n/aDiv(F )|HIdeal(y) < B}| ≤ C1B log(1 +B)n−1.

We deduce that for every B > 0 one has
∣∣{x ∈ T

a(F )|H(x) < B
}∣∣

≤
∣∣{(y, z)|(y, z) ∈ (Div(F )n/Div(F )a)× ker(I);

HIdeal(y) < B,H#
∞(zỹ) < B

}∣∣

≤
∣∣{y ∈ Div(F )n/Div(F )a|HIdeal(y) < B

}∣∣( log(B)
)n2(r1+r2)

≤ C0C1B log(1 +B)n−1 log(2 +B)n
2(r1+r2)

≤ CB log(2 +B)n
2(r1+r2)+n−1,

for some C > 0.
Let (fv)v now be any quasi-toric family of a-homogenous continuous

functions of weighted degree |a|. By Lemma 4.4.1.6, there exists C ′ > 0
such that

H#(x) < C ′H(x) ∀x ∈ F n
v − {0}.

We deduce that

|{x ∈ [T (a)(F )]|H(x) < B}| ≤ |{x ∈ [T (a)(F )]|H#(x) < C ′B}|
≤ C(C ′B) log(2 + C ′B)n

2(r1+r2)+n−1

= C ′′B log(2 +B)n
2(r1+r2)+n−1

for C ′′ ≫ 0 and every B > 0. The statement is proven.
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4.6.8. — In this paragraph we prove that the finiteness result is in fact
valid on the whole of P(a) and not only on the open substack T (a) ⊂
P(a). Again, we give an upper estimate on the number of rational points
of bounded height. For j ∈ {1, . . . , n}, we will denote by {j}c, the set
{1, . . . , n} − {j}. For j ∈ {1, . . . , n}, we denote by pj : An → ∏

i∈{j}c A
1

the canonical projection and by dj the closed immersion

dj :
∏

i∈{j}c
A1 → An (xi)i 7→ ((xi)i 6=j, (0)j).

By abuse of notation, we will shorten pj(Z) and write simply pj. The
morphisms dj are Gm-equivariant when

∏
i∈{j}c A

1 is endowed with the
action of Gm given by

t · (xi)i = (taixi)i.

For every j, one has that d−1
j (An − {0}) =

(∏
i∈{j}c A

1
)
− {0}. We

deduce Gm-equivariant morphisms

dj|(∏i∈{j}c A1)−{0} :
( ∏

i∈{j}c
A1
)
− {0} → An − {0}.

Let dj denotes the induced closed immersion of stacks P(pj(a))→P(a)
from the Gm-equivariant morphism dj|(∏i∈{j}cA

1)−{0}.

Lemma 4.6.8.1. — Let j ∈ {1, . . . , n}.
1. Let v ∈ MF and let f : F n

v − {0} → R>0 be an a-homogenous
continuous function of weighted degree b ∈ Z≥0. The function
f ◦ (dj(Fv)) : (

∏
i∈{j}c Fv) − {0} → C is pj(a)-homogenous, con-

tinuous and of weighted degree b. Moreover, if f is the toric a-
homogenous function of weighted degree b, then f ◦ (dj(Fv)) is the
toric a-homogenous of weighted degree b.

2. Let (gv : F
n
v −{0} → R≥0)v be a quasi-toric family of a-homogenous

continuous functions of weighted degree b and let H = H((gv)v) be
the corresponding height. The family gv ◦ dj(Fv) is a degree b quasi-
toric family of pI(Z)(a)-homogenous continuous functions and the
corresponding height Hj = H((gv ◦ dI(Fv))v) satisfies that

Hj = H ◦ (dj(F )).
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3. Let i : T (a)→P(a) be the inclusion induced by the Gm-invariant
subscheme Gn

m ⊂ An − {0}. The map

( n∐

j=1

[dj(F )]
∐

[i(F )]
)
:

n∐

j=1

[P(pj(Z)(a))(F )]
∐

[T (a)(F )]→ [P(a)(F )]

is surjective.

Proof. — 1. The function f ◦dj(Fv) is continuous, as it coincides with
the restriction f |(∏i∈{j}c Fv)−{0} and f is continuous. Let t ∈ F×

v and

let (xi)i∈{j}c ∈ (
∏

i∈{j}c Fv)− {0}. We have that

f(dj(Fv)(t · (xi)i∈{j}c)) = f(dj(Fv)((t
aixi)i∈{j}c))

= f((taixi)i∈{j}c , (0)j)

= |t|bvf((xi)i∈{j}c , (0)j)
= |t|bv(f ◦ dj(Fv))((xi)i∈{j}c),

thus f ◦dj(Fv) is pj(a) homogenous of weighted degree b. Suppose f
is the toric a-homogenous of weighted degree b, that is

f(y) = |πv|−b·r
a
v (y)

v , where rav (y) = sup
j=1,...,n
yj 6=0

⌈−v(yj)
aj

⌉
,

if v is finite and

f(y) = ( max
j=1,...,n

(|yj|1/ajv ))−b

if v is infinite. Suppose v is finite. Let x ∈ (
∏

i∈{j}c Fv)− {0}. One

has that dj(Fv)(x) = ((xi)i∈{j}c , (0)j) and that

(rav ◦ (dj(Fv)))(x) = sup
i∈{j}c
xi 6=0

⌈−v(xi)
ai

⌉
=: rp

j(a)(x),

because the j-th coordinate of dj(Fv)(x) is zero. It follows that the
function f ◦ (dj(Fv)) given by

x 7→ f(dj(Fv)(x)) = |πv|−b·r
a
v (dj(Fv)(x))

v = |πv|−b·r
pj(a)
v (x)

v

is toric.
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Suppose v is infinite. The toric pj(a)-homogenous function of
weighted degree b is the function

f ′ : (
∏

i∈{j}c
Fv)− {0} → R>0 x 7→ max

i∈{j}c
(|xi|1/aiv ).

For x ∈ (
∏

i∈{j}c Fv)− {0}, we have that

f(dj(Fv)(x)) = max
i∈{j}c

(
|xi|1/aiv

)
= f ′(x),

because the j-th coordinate of dj(Fv)(x) is zero. The claim follows.
2. By (1), for every v ∈ MF , the function gv ◦ dI(Fv) is a continuous
pI(Z)(a)-homogenous of weighted degree b and if gv is toric, then
gv ◦ dj(Fv) is toric of the same weighted degree. It follows that
the family (gv ◦ dj(Fv))v is quasi-toric of the degree b. Let y ∈
[P(pj(a))(Fv)] and let ỹ ∈ (

∏
i∈{j}c F ) − {0} be a lift. Then

dj(F )((ỹi)i∈{j}c) is a lift of dj(F )(y). We have that

Hj(y) =
∏

v∈MF

(gv◦dj(Fv))(ỹ) =
∏

v∈MF

gv(d
j(F )(ỹ)) = H((gv)v)(y) = H(y).

The claim follows.
3. Let x ∈ [P(a)(F )] and let x̃ ∈ F n−{0} be a lift of x. If x̃ ∈ (F×)n,

then x ∼= [i(F )(qa(F )(x̃))], where qa is the quotient 1-morphism
Gn
m → T (a). Suppose at least one coordinate, say the j-th coordi-

nate, of x̃ is equal to zero. Then,

x̃ = dj(F )((x̃i)i∈{j}c)

and so
x ∼= dj(q

pj(a)((x̃i)i∈{j}c)),

where qp
j(a) :

(
(
∏

i∈{j}c A
1) − {0}

)
→ P(pj(a)), is the quotient 1-

morphism. The claim follows.

Theorem 4.6.8.2. — Let n ≥ 1 be an integer and let a ∈ Zn>0. Let
(fv : F

n
v −{0} → R>0)v be a quasi-toric family of a-homogenous functions

of weighted degree |a| and let H = H((fv)v).

1. There exists C > 0 such that for every B > 0 one has that

|{x ∈ [P(a)(F )]− [T (a)(F )]|H(x) ≤ B}|

< CB
|a|−mini ai

|a| log(2 +B
|a|−mini ai

|a| )n
2(r1+r2)+n−1.
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2. There exists C > 0 such that for every B > 0 one has that

|{x ∈ [P(a)(F )]|H(x) ≤ B}| < CB log(2 +B)n
2(r1+r2)+n−1.

Proof. — We prove the both statements simultaneously. We apply the
induction on n. When n = 1, one has that P(a) = T (a). Thus the first
claim is trivial and the second is proven in Proposition 4.6.7.1.

Suppose that the both claims are true for some n − 1 ≥ 0 and let us
prove them for n. The map

( n∐

j=1

[dj(F )]
∐

[i(F )]
)
:

n∐

j=1

[P(pj(Z)(a))(F )]
∐

[T (a)(F )]→ [P(a)(F )]

is surjective by Lemma 4.6.8.1. For j = 1, . . . , n, by Lemma 4.6.8.1, one
has that

Hj = H((fv ◦ (dj(Fv)))v) = H ◦ dj, where Hj := H((fv ◦ (dj(Fv)))v).
We deduce that

(4.6.8.3) |{x ∈ [P(a)(F )]|H(x) ≤ B}|

≤ |{x ∈ [T (a)(F )]|H(x) ≤ B}|+
n∑

j=1

|{x ∈ [P(pj(a))(F )]|Hj(x) ≤ B}|.

For j = 1, . . . , n, by Lemma 4.6.8.1, the height Hj is defined by degree
|a| quasi-toric family. The family

(gv ◦ (dj(Fv))
|pj(a)|

|a| )v

is quasi-toric of degree |pj(a)| and the resulting height H ′ = H((gv ◦
(dj(Fv))

|pj(a)|
|a| )v) is related to Hj as follows

H ′ = (Hj)
|pj(a)|

|a| .

By the induction hypothesis, we deduce that for every j = 1, . . . , n there
exists Cj > 0 such that for every B > 1 one has that

|{x ∈ [P(pj(a))(F )]|Hj(x) ≤ B}|

= |{x ∈ [P(pj(a))(F )]|Hj(x)
|pj(a)|

|a| ≤ B
|pj(a)|

|a| }|

= |{x ∈ [P(pj(a))(F )]|H ′(x) ≤ B
|pj(a)|

|a| }|

≤ CjB
|pj(a)|

|a| log(2 +B
|pj(a)|

|a| )n
2(r1+r2)+n−1.
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It follows that

|{x ∈ [P(a)(F )]− [T (a)(F )]|H(x) ≤ B}|
= |{x ∈ [P(a)(F )]|H(x) ≤ B}| − |{x ∈ [T (a)(F )]|H(x) ≤ B}|

≤
n∑

j=1

|{x ∈ [P(pj(a))(F )]|Hj(x) ≤ B}|

≤
n∑

j=1

CjB
|pj(a)|

|a| log(2 +B
|pj(a)|

|a| )

≤ C ′′B
|a|−mini ai

|a| log(2 +B
|a|−mini ai

|a| )

for C ′′ ≫ 0. Thus the first claim is proven for n. By Proposition 4.6.7.1,
there exists C ′ > 0 such that

(4.6.8.4) |{x ∈ [T (a)(F )]|H(x) ≤ B}| < C ′B log(2 +B)n
2(r1+r2)+n−1.

By combining the estimates (4.6.8.3), (4.6.8.4) and the first claim, we get
that there exists C > 0 such that for every B > 1 one has that

|{x ∈ [P(a)(F )]|H(x) ≤ B}| ≤ CB log(2 +B)n
2(r1+r2)+n−1.

The statement is proven.

Remark 4.6.8.5. — In Chapter 8, we establish that

|{x ∈ [P(a)(F )]|H(x) ≤ B}| ∼ CB,

for some C > 0.

4.7. Weak Northcott property for singular heights

In this section we allow finitely many fv to take values in 0 but we re-
quire that f−1

v admits a “logarithmic singularity” over a rational divisor.
We establish that corresponding heights are weak Northcott heights.

4.7.1. — In this paragraph we study heights that are obtained when v-
adic metric is singular. We require the singularities to be “logarithmic”
over a rational divisor. We establish a finiteness result on the number of
points of bounded height outside of the divisor.
Definition 4.7.1.1. — Let P ∈ F [X1, . . . , Xn] be a non-constant a-
homogenous polynomial and let S be a finite set of places. A collection of
continuous Gm(Fv)-invariant functions gv : D(P )(Fv)→ R>0 for v ∈ S,
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will be said to be logarithmically suitable if the following condition is sat-
isfied: there exists a set {Qi}i of non-constant a-homogenous polynomials
Qi ∈ F [X1, . . . , Xn] such that Qi and P have no common factors of de-
gree at least 1, such that Z({Qi}i) = {0} and such that for every v ∈ S
and every i there exist αv,i, βv,i > 0 such that

gv(x) ≤ αv,imax

(
− log

( |P (x)|dega(Q)/ deg
a
(P )

v

|Qi(x)|v

)βv,i
, 1

)

for every x ∈ D(PQi)(Fv).
By the quasi-compactness of the scheme An, one can always ask for

the set {Qi}i to be finite.
For v ∈MF , let f

#
v : F n

v −{0} → R>0 be the v-adic toric a-homogenous
continuous function of weighted degree d ≥ 1. Let P ∈ F [X1, . . . , Xn] be
a non-constant a-homogenous polynomial. Let S be a finite set of places
and let (gv)v be a logarithmically suitable family of continuous Gm(Fv)-
invariant functions. For v ∈ S we define fv : F

n
v − {0} → R≥0 by

fv(x) :=

{
f#
v g

−1
v (x) if x ∈ D(P )(Fv),

0 if x ∈ Z(P )(Fv).
and for v ∈ MF − S we let fv = f#

v . For every v ∈ MF , the function
fv : F

n
v −{0} → R≥0 is an a-homogenous continuous function of weighted

degree d ≥ 1. We define height H = H((fv)v) and H# = H((f#
v ))

on P(a)(F ). We recall that for every x ∈ P(a)(F ), one has that
H#(x) ≥ 1 by Lemma 4.4.3.7.

Motivated by [55, Proposition 2.1], we establish that:
Proposition 4.7.1.2. — There exist C, β > 0 such that for all x ∈
D(P )(F ) one has

H(x) ≥ CH#(x) log(1 +H#(x))−β.

Proof. — For x ∈ D(P )(F ), let x̃ : Gm → An − {0} be the Gm-
equivariant morphism over F defined by x. For simplicity we will write x̃
for x̃(1).

There exists a finite set of non-constant a-homogenous polynomi-
als {Qi}i which have no common factors with Pv of degree at least 1
such that Z({Qi}i) = {0}, and such that for every v ∈ S and every i,
there exist αi,v, βi,v such that

gv(x) ≤ αi,vmax

(
− log

( |P (x)|dega(Q)/ deg
a
(P )

v

|Qi(x)|v

)βi,v
, 1

)
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for every x ∈ D(PQi)(Fv). Fix an index i. For x ∈ D(QiP )(F ), using
the fact that fv = f#

v for v 6∈ S we deduce that

H(x) =
∏

v∈MF

fv(x̃)

=
∏

v∈MF

f#
v (x̃)

∏

v∈S
gv(x̃)

−1

≥ H#(x)
∏

v∈S
α−1
v,i max

(
− log

( |P (x̃)|dega(Qi)/ dega(P )
v

|Qi(x̃)|v

)
, 1

)−βv,i

≥ H#(x)
∏

v∈S
α−1
v,i max

(
log

( |Qi(x̃)|v
|P (x̃)|dega(Qi)/ dega(P )

v

)
, 1

)−βv,i

= H#(x)
∏

v∈S
α−1
v,i log

(
max

( |Qi(x̃)|v
|P (x̃)|dega(Qi)/ dega(P )

v

)
, e

)−βv,i

≥ αiH
#(x)

∏

v∈S
log

(
max

( |Qi(x̃)|v
|P (x̃)|dega(Qi)/ dega(P )

v

)
, e

)−βv,i
,

where α =
∏

v∈S α
−1
v,i . For two polynomials A,B ∈ F [X1, . . . , Xn] of

the same weighted degree, we denote by J(A,B) : P(a) → P1, the 1-
morphism of stacks given by Lemma 4.4.4.4. Lemma 4.4.4.5 gives that
for every v ∈ S, there exists γv > 1 such that for every x ∈ D(QiP )(F )
one has that :

max

( |Qi(x̃)|v
|P (x̃)|dega(Qi)/ dega(P )

v

, e

)
≤ emax

( |Qi(x̃)|v
|P (x̃)|dega(Qi)/ dega(P )

v

, 1

)

≤ emax

( |Qi(x̃)|dega(P )
v

|P (x̃)|dega(Qi)
v

, 1

)1/ deg
a
(P )

≤ e
∏

v∈MF

max

( |Qi(x̃)|dega(P )
v

|P (x̃)|dega(Qi)
v

, 1

)1/ deg
a
(P )

= eHP1(J(Q
deg

a
(P )

i , P deg
a
(Qi))(x))1/ dega(P )

≤ γvH
#(x)dega(Qi).
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For v ∈ S let us set δv = max(log(γv), dega(Qi)). We have for every
x ∈ D(QiP )(F ) that

H(x) ≥ αiH
#(x)

∏

v∈S
log(γvH

#(x)dega(Qi))−βv,i

= αiH
#(x)

∏

v∈S

(
log(γv) + dega(Qi) log(H

#(x))
)−βv,i

≥ αiH
#(x)

∏

v∈S
δ−βv,iv

(
1 + log(H#(x))

)−βv,i

= CiH
#(x) log(1 +H#(x))−βi ,

where we have set Ci = αi
∏

v∈S δ
−βv,i
v and βi =

∑
v∈S βv,i. We have that⋃

iD(QiP ) = D(P ). Thus for C = miniCi and β = max βi we get

H(x) ≥ CH# log(1 +H#(x))−β,

for every x ∈ D(P )(F ).

Corollary 4.7.1.3. — Let (fv)v be as above and let H be the corre-
sponding height. The height H is a weak Northcott height. Moreover, for
every ǫ > 0, there exists C = C(ǫ) > 0 such that for every B > 1 one
has that

|{x ∈ [D(P )(F )]|H(x) ≤ B}| ≤ CB1+ǫ

and that

|{x ∈ [D(P )(F )] ∩ ([P(a)(F )]− [T (a)(F )])|H(x) ≤ B}|

≤ CB
(1+ǫ)(|a|−minj aj)

|a| .

Proof. — By Proposition 4.7.1.2, there exist C ′, N > 0, such that for
every x ∈ [D(P )(F )] one has that

H(x) ≥ C ′H#(x) log(1 +H#(x))−N .

and thus there exists A > 0 and ǫ
1+ǫ

> δ > 0 such that

H(x) ≥ AH#(x)1−δ ∀x ∈ [D(P )(F )].
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Using Theorem 4.6.8.2, one has hence that there exists C > 0 such that

|{x ∈ [D(P )(F )]|H(x) ≤ B}|
≤ |{x ∈ [D(P )(F )]|AH#(x)1−δ ≤ B}|
= |{x ∈ [D((P )(F ))]|H#(x) ≤ A−1/(1−δ)B1/(1−δ)}|
≤ A−1/(1−δ)B1/(1−δ) log(2 + A−1/(1−δ)B1/(1−δ))n

2(r1+r2)+n−1

≤ CB1+ǫ

and such that

|{x ∈ [D(P )(F )] ∩ ([P(a)(F )]− [T (a)(F )])|H(x) ≤ B}|
≤ |{x ∈ [D(P )(F )]|AH#(x)1−δ ≤ B}|
= |{x ∈ [D((P )(F ))] ∩ ([P(a)(F )]− [T (a)(F )])|H#(x) ≤ A− 1

1−δB
1

1−δ }|

≤ (A−1B)
(|a|−minj aj)

(1−δ)|a| log(2 + (A−1B)
|a|−minj aj

(1−δ)|a| )n
2(r1+r2)+n−1

≤ CB
(1+ǫ)(|a|−minj aj)

|a| .

The statement is proven.





CHAPTER 5

MEASURES

Let n ≥ 1 be an integer. Let a ∈ Zn>0. Recall that P(a) is the quotient
stack for the action

Gm × (An − {0})→ An − {0} t · x = (tajxj)j.

The open subscheme Gn
m ⊂ An − {0} is Gm-invariant for this action

and T (a) is defined to be the quotient Gn
m/Gm. In this chapter we

define measures on [P(a)(Fv)] and [T (a)(Fv)] for v ∈ MF . We use
these measures to define Peyre’s constant as in [47]. Later in the section
we define a Haar measure on the adelic space [T (a)(AF )] and we define
and calculate the corresponding Tamagawa number.

5.1. Quotient measures

5.1.1. — We make several conventions on measures that will be used
throughout the chapter. Let X be a locally compact topological space.
Let C 0

c (X,C) be the set of continuous compactly supported functions
on X. We endow C 0

c (X,C) with the uniform convergence topology. By
a measure on X [9, Chapter III, §1, n0 3, Definition 2], we mean a con-
tinuous linear functional µ : C 0

c (X,C)→ C .
Let µ be a measure on X. Let L1(X,µ) be the Banach space of ab-

solutely µ-integrable complex valued functions modulo negligible func-
tions [9, Chapter IV, §3, n0 4, Definition 2]. By abuse of the termi-
nology, we may call an element f ∈ L1(X,µ) a function and for a
function g : X → C which is µ-absolutely integrable we may write
g ∈ L1(X,µ). For f ∈ L1(X,µ), we denote by

∫
X
fµ the integral of f
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against µ [9, Chapter IV, §4, n0 1, Definition 1]. If U ⊂ X is a sub-
set, such that 1U,X ∈ L1(X,µ), we write µ(U) for µ(1U,X) (where 1U,X
stands for the characteristic function of U in X, written sometimes as
1U). Such U will be said to be µ-measurable.

5.1.2. — We recall some facts about quotient measures from [10, Chap-
ter VII, §2]. Let X be a locally compact Hausdorff topological space.
Let G be a locally compact topological group acting on the right on X
continuously and properly (that is the action X ×G→ X is continuous
and proper). The quotient topological space X/G is separated [7, Chap-
ter III, §2, n0 2, Proposition 3] and locally compact [7, Chapter I, §10,
n0 4, Proposition 10].

Let dg be a left Haar measure on G. Let ∆G : G → R>0 be the
modular function of G (we recall the definition of the modular function:
according to [10, Chapter VII, §1, n0 1, Formula (11)], for every h ∈ G,
the association A 7→ dg(Ah), for dg-measurable subset A of G, is a left
Haar measure onG, hence, by the unicity of the Haar measure there exists
a unique positive real number ∆G(h) such that for every dg-measurable
subset A of G, one has that dg(Ag) = ∆G(g)dg(A); further, it does not
depend on the choice of the Haar measure dg).
Proposition 5.1.2.1 ([10, Chapter VII, §2, n0 2, Proposition 1])

For x ∈ X/G, let x̃ ∈ X be a lift of x. Let φ : X → C be a
compactly supported continuous function. For every y ∈ X, one has that
g 7→ φ(yg) ∈ L1(G,C). Moreover, for x ∈ X/G, the value of

∫
G
φ(x̃g)dg

does not depend on the choice of x̃. The function φ∗ : x 7→
∫
G
φ(x̃g)dg is

continuous and compactly supported.
Proposition 5.1.2.2 ([10, Chapter VII, §2, n0 2, Proposition 4])

1. Let µ be a measure on X such that for every µ-measurable U one has
that µ(Ug) = ∆G(g)µ(U) (such measures will be called G-invariant
measures). There exists a unique measure µ/dg on X/G such that
for every compactly supported function φ : X → C one has that

∫

X

φµ =

∫

X/G

(φ∗)(µ/dg).

2. Let µ′ be a measure on X/G. There exists a unique G-invariant
measure µ on X such that µ/dg = µ′.

Let π : X → X/G be the quotient map. We quote some more propo-
sitions from [10].
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Proposition 5.1.2.3 ([10, Chapter VII, §2, n0 4, Proposition 8])
Suppose that X/G is paracompact. Let λ > 0. There exists a con-

tinuous function k : X → R≥0, the support of which has a compact
intersection with the preimage under π of any compact of X/G and such
that for any x ∈ X one has that

∫

G

k(xg)dg = λ.

Of course, when X/G is compact, the condition on the support of k
becomes that it is compact.
Lemma 5.1.2.4. — Let f : X → C be a continuous G-invariant func-
tion. Let f : X/G → C be the function induced from f . One has that
(fµ)/dg = (f)(µ/dg).
Proof. — Let φ : X → C be a compactly supported continuous function.
The function φf is compactly supported. Let x ∈ X/G and let x̃ ∈ X
be its lift. One has that

(φ · f)∗(x) =
∫

G

φf(x̃g)dg =

∫

G

φ(x̃g)f(x̃g)dg = f(x)

∫

G

φ(x̃g)dg

= ((φ∗) · f)(x).

It follows that: (φ · f)∗ = φ∗ · f . We deduce that:
∫

X/G

(φ∗)(fµ/dg) =

∫

X

(φ)(fµ)

=

∫

X

(φf)µ

=

∫

X/G

((φ · f)∗)(µ/dg)

=

∫

X/G

(φ∗f)(µ/dg)

=

∫

X/G

(φ∗)((f)(µ/dg)).

It follows that (fµ/dg) = (f)(µ/dg).

Proposition 5.1.2.5 ([10, Chapter VII, §2, n0 4, Proposition 9])
Let us suppose that X/G is paracompact. Let k : X → R≥0 be a

continuous function, the support of which has compact intersection with
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the preimage under π of any compact of X/G and such that for every
x ∈ X one has ∫

G

k(xg)dg = 1.

Then for any function h : X/G→ C one has that h ∈ L1(X/G, µ/dg) if
and only if k · (h ◦ π) ∈ L1(X,µ) and if h ∈ L1(X/G, µ/dg) then

∫

X/G

(h)(µ/dg) =

∫

X

k · (h ◦ π)µ.

5.1.3. — We recall the notion of the quotient measure when we have
inclusion of locally compact abelian groups.

Let G is an abelian locally compact Hausdorff topological group. The
action of G × G → G of G on G given by the multiplication is proper

(because the induced map G × G (mG,p2)−−−−→ G × G is a homeomorphism,
where mG is the multiplication map and p2 the projection to the second
coordinate). Thus if A a closed subgroup, the action of A on G, given
by the restriction of the action of G, is proper by [7, Chapter III, §4,
n0 1, Example 1]. Let dg be a Haar measure on G and let da be a
Haar measure on A. By [10, Chapter VII, §2, n0 7, Proposition 10], the
quotient measure dg/da is a Haar measure on G/A.

5.1.4. — In this paragraph we recall the theory of [43] on the Euler
characteristics of complexes of locally compact abelian groups endowed
with Haar measures.

A homomorphism of topological groups is said to be strict (see [7,
Chapter III, §2, n0 8, Definition 1]), if the induced homomorphism to its
image is open. By [8, Chapter IX, §5, n0 3, Corollary of Proposition 6],
any morphism ρ : A → B of locally compact abelian groups which are
countable at infinity is strict if and only if the induced homomorphism
A/ ker(ρ)→ Im(ρ) is an isomorphism. Consider a complex C• of locally
compact abelian groups which are countable at infinity

· · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 · · ·
such that the following conditions are satisfied:

– the homomorphisms dn are continuous for every n ∈ Z,
– the complex is bounded and of finite homology (i.e. ker(dn)/ Im(dn+1)
is a finite group for every n ∈ Z.)
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Using this conditions, Oesterlé establishes that the homomorphisms dn
are strict. Suppose that for every n ∈ Z, we are given a Haar measure
λn on Cn and that for almost all n the measure λn is normalized by
λn(Cn) = 1. For every n ∈ Z, let us choose Haar measures νn and θn on
ker(dn) and Im(dn), respectively. Let αn be the volume of the finite set
ker(dn)/ Im(dn+1) for the quotient measure νn/θn+1. Let βn > 0 be the
unique real number such that λn/νn = βnθn (after identifying Cn/ ker(dn)
and Im(dn) via the isomorphism induced from dn). Oesterlé defines the
number

χ(C•) = χ(C•, (λn)n) :=
∏

n∈Z
(αnβn)

(−1)n ,

which does not depend on the choice of νn and θn. We may say that C•
is of trivial measure Euler-Poincaré characteristic if χ(C•) = 1.
Lemma 5.1.4.1 (Oesterlé, [43, Examples 2 and 3])

The following claims are valid:

1. Suppose that every Cn is compact. Then

χ(C•) =
∏

n∈Z
λn(Cn)

(−1)n .

2. Suppose that every Cn is discrete and that λn are counting measures.
One has that

χ(C•) =
∏

n∈Z
[ker(dn) : Im(dn+1)]

(−1)n .

Proposition 5.1.4.2 (Oesterlé, [43, Proposition 1, n0 4])
Consider a bicomplex

...
...

· · · Cn,m−1 Cn−1,m−1 · · ·

· · · Cn,m Cn−1,m · · ·

...
...

d′n,m−1

d′n,m

d′′n,m d′′n−1,m

of locally compact abelian groups endowed with Haar measures, such that
Cn,m is the trivial group for |n|+ |m| big enough and such that for every
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n ∈ Z and every m ∈ Z, the complexes Cn,• and C•,m satisfy the above
conditions. One has that

∏

n∈Z
χ(Cn,•)

(−1)n =
∏

m∈Z
χ(C•,m)

(−1)m .

We end the paragraph by a lemma that will be used on several occa-
sions.
Lemma 5.1.4.3. — Let ǫ : H → G be a proper continuous homomor-
phism of locally compact Hausdorff abelian topological groups. Let dg and
dh be Haar measures on G and H. Consider the left action of H on G

H ×G→ G h · g = ǫ(h)g.

1. The action is continuous and proper. The quotient G/H identifies
with the quotient group G/ǫ(H).

2. The group K := ker(ǫ) is compact and let dk be the probability Haar
measure on K. We have an equality of measures on ǫ(H):

ǫ∗(dh) = dh/dk.

3. The subgroup ǫ(H) is closed in G. The measure dg/dh is the quo-
tient Haar measure dg/ǫ∗(dh).

4. Suppose that H and G are countable at infinity. The exact sequence
1→ K → H → G→ G/H → 1 is of trivial measure Euler-Poincaré
characteristics, when the measures on K, H, G and G/H are dk,
dh, dg and dg/dh.

Proof. — 1. The continuity of the group action follows from the conti-
nuity of the multiplication by an element in G. The action is proper,
as one has a Cartesian diagram

G×H G×G

H G,

p2

(g, h) 7→ (g, gǫ(h))

ǫ

where the right vertical homomorphism is given by (g1, g2) 7→ g−1
1 g2.

The canonical homomorphism G→ G/ǫ(H) is continuous and open
and induces a continuous and open map G/H → G/ǫ(H). The map
is bijective because one has an equality of sets G/H = G/ǫ(H).
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We deduce a topological identification G/H = G/ǫ(H). The claim
follows.

2. The map ǫ is proper and it follows that K is a compact sub-
group of H. The quotient space ǫ(H) = H/ ker(ǫ) is paracom-
pact [9, Chapter III, §4, n0 6, Proposition 13]. Note that the con-
stant function H → C given by h 7→ 1, satisfies the condition that
its support (i.e. the whole of H) has compact intersection with
the preimage ǫ−1(A) for every compact A ⊂ ǫ(H), because ǫ is
proper. Now, by Proposition 5.1.2.5, for every r : ǫ(H) → C with
r ∈ L1(ǫ(H), dh/dk) we have∫

ǫ(H)

(r)(dh/dk) =

∫

H

(r ◦ ǫ) · 1dh =

∫

H

(r ◦ ǫ)dh,

which means precisely that ǫ∗(dh) = dh/dk.
3. The subgroup ǫ(H) is closed as ǫ is a proper map. Let φ : G/H →

C be a compactly supported function. By [10, Chapter VII, §2,
n0 1, Proposition 2], there exists a compactly supported continuous
function Φ : G→ C, such that for any x ∈ G/H and any lift x̃ ∈ G
of x, we have

φ(x) =

∫

H

Φ(hx̃)dh.

Note that

φ(x) =

∫

ǫ(H)

Φ(hx̃)ǫ∗(dh).

We have that∫

G/H

(φ)(dg/dh) =

∫

G

Φ dg =

∫

G/ǫ(H)

(φ)(dg/ǫ∗(dh)).

It follows that dg/dh = dg/ǫ∗(dh) as claimed.
4. The short exact sequences

1 K H ǫ(H) 1

1 ǫ(H) G G/H 1

are of trivial measure Euler-Poincaré characteristics by (2) and (3).
Thus 1 → K → H → G → G/H → 1 is of trivial measure Euler-
Poincaré characteristics.
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5.2. Measures on [P(a)(Fv)]

For v ∈MF , the abelian locally compact group F×
v acts on F n

v −{0} by
t·x = (tajxj)j. This action is proper by Proposition 3.3.4.1. By Corollary
3.3.3.2, the quotient (F n

v −{0})/F×
v identifies with [P(a)(Fv)]. The goal

of this section is to define measures on [P(a)Fv(Fv)] = [P(a)(Fv)] for
v ∈ MF . The topological spaces [P(a)(Fv)] are Hausdorff and compact
by Proposition 3.3.4.5. Let us denote by qav the quotient maps F n

v −{0} →
[P(a)(Fv)] for v ∈MF .

5.2.1. — In this paragraph, we define measure on Fv.
For v ∈MF , let dxv be the Haar measure on Fv normalized by

– dxv(Ov) = 1 if v is finite,

– dxv is the Lebesgue measure on Fv ∼= R if v is real,

– dxv = 2dxdy on Fv ∼= C ∼= R2 if v is complex.

For v ∈ MF , let d
∗xv be the Haar measure dxv

|xv |v on F×
v . For v ∈ M0

F , it

satisfies that

d∗xv(O×
v ) =

∫

O×
v

1d∗xv =

∫

O×
v

1dxv = 1− |πv|v.

When v is real, the measure d∗xv identifies with the measure

d∗x :=
dx

|x|
on R× and when v is complex, the measure d∗xv identifies with the mea-
sure

2dxdy

x2 + y2

on C2 − {0} ∼= R2 − {0}. Let us set
Fv,1 := {x ∈ Fv| |x|v = 1},

so that Fv,1 = {±1} when v is real and

Fv,1 = S1 = {(x, y) ∈ R2|x2 + y2 = 1}
when v is complex. Recall that we have set nv = 1 if v is a real place
and let nv = 2 if v is complex. The exact sequence

{1} → Fv,1
iFv,1−−→ F×

v

x 7→|x|v−−−−→ R>0 → {1},



5.2. MEASURES ON [P(a)(Fv)] 153

where iFv,1 is the inclusion map, admits a section

ρv : R>0 → F×
v r 7→ r1/nv .

The section induces a continuous isomorphism

(5.2.1.1) ρ̃v : R>0 × Fv,1 → F×
v (r, z) 7→ ρv(r)z.

The inverse of this homomorphism is given by

(5.2.1.2) F×
v → R>0 × Fv,1 x 7→ (|x|v, xρv(|x|v)−1)

and is also continuous. We deduce that ρ̃v is an isomorphism of topolog-
ical groups. Let us set λv,1 to be the counting measure on {±1} when v
is real and let us set λv,1 to be the Haar measure on Fv,1 normalized by
λv,1(Fv,1) = 2π when v is complex.
Lemma 5.2.1.3. — Let v ∈ M∞

F . One has that and that (ρ̃v)∗
(
dr ×

λv,1
)
= dxv|F×

v
and that (ρ̃v)∗

(
d∗r × λv,1

)
= d∗xv.

Proof. — We will firstly verify that (ρ̃v)∗
(
d∗r× λv,1

)
= d∗xv. Suppose v

is real. Both measures are Haar measures on F×
v , so it suffices to check

their equality on a single Borel subset of F×
v
∼= R×, and we will verify it

on [1, 2]. We have that [1, 2] = ρ̃v({1} × [1, 2]) and

d∗xv([1, 2]) = d∗x([1, 2]) = 1 · d∗x([1, 2])
= λv,1({1}) · d∗r([1, 2])
=
(
λv,1 × d∗r

)
({1} × [1, 2])

=
(
(ρ̃v)∗

(
d∗r × λv,1

))
(ρ̃v({1} × [1, 2])).

Suppose v is complex. Note that λv,1 is the pushforward measure for the
map [0, 2π[→ S1 given by

θ 7→ eiθ = (cos(θ), sin(θ)).

Hence, the map

S1 × R>0 → R2 − {0} (z, r) 7→ zr1/2

is measure preserving if and only if the map

[0, 2π[×R>0 → R2 − {0} (θ, r) 7→ (r1/2 cos(θ), r1/2 sin(θ))

is measure preserving. The corresponding Jacobian matrix is
(
−r1/2 sin(θ) 1

2
r−1/2 cos(θ)

r1/2 cos(θ) 1
2
r−1/2 sin(θ)

)
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and its determinant equals −1
2
. It follows that

dxdy = (ρ̃v)∗(|−1/2
∣∣drdθ) = (ρ̃v)∗((1/2)drdθ),

and hence that

d∗xv =
2dxdy

x2 + y2
= (ρ̃v)∗

(
2 · (1/2)drdθ

r

)
= (ρ̃v)∗(d

∗rdθ).

We have proven that (ρ̃v)∗
(
d∗r × λv,1

)
= d∗xv.

Let us now verify that (ρ̃v)∗
(
dr × λv,1

)
= dxv|F×

v
. One has that

|ρ̃v(r, z)|v = r for every (r, z) ∈ R>0 × Fv,1. For a Borel subset U ⊂ F×
v ,

one has that

dxv|F×
v
(U) =

∫

U

|xv|vd∗xv =
∫

U

|ρ̃v(r, z)|v(ρv)∗(d∗r × λv,1)

=

∫

ρ̃−1
v (U)

r (d∗r × λv,1)

=

∫

ρ̃−1
v (U)

dr × λv,1

= (dr × λv,1)(U).
It follows that dxv|F×

v
= (ρ̃v)∗(dr × λv,1). The statement is proven.

We will often write dx and d∗x for dxv and d
∗xv, respectively.

5.2.2. — In this paragraph we will define compactly supported contin-
uous functions kav : F n

v − {0} → R≥0 which satisfy that their integrals
in every orbit for the weighted action of Gm(Fv) on F

n
v − {0} are equal

to 1. These functions will enable us to use Proposition 5.1.2.5.
For every v ∈M0

F , recall that

Da
v = {y ∈ (Ov)n|∃j : v(yj) < aj} = (Ov)n − πa1v Ov × · · · × πanv Ov

and set

kav :=
1Da

v ,F
n
v −{0}

1− |πv|v
.

Lemma 5.2.2.1. — Let v ∈M0
F and let x ∈ F n

v −{0}. The function kav
is compactly supported, locally constant and one has that

∫

F×
v

kav (t · x)d∗t = 1.
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Proof. — We have seen in Lemma 3.3.4.4 that the subset Da
v is open,

closed and compact subset of F n
v − {0}. We conclude that 1Da

v
is locally

constant and compactly supported, hence is such kav . In Lemma 4.4.3.1
we have defined rv : F

n
v − {0} → Z by

rv(y) = sup
j=1,...,n
yj 6=0

⌈
− v(yj)

aj

⌉
.

One has that

t · x ∈ Da
v ⇐⇒ x ∈ t−1 · Da

v ⇐⇒ x ∈ t−1πrv(x)v · (π−rv(x)
v · Da

v ).

Lemma 4.4.3.1 gives that x ∈ π−rv(x)
v · Da

v and that if (u · (π−rv(x)
v · Da

v ))∩
(π

−rv(x)
v ·Da

v ) 6= ∅ then v(u) = 0. We conclude v(t−1π
rv(x)
v ) = 0 and hence

{t|t · x ∈ Da
v} = {t|v(t) = rv(x)}.

We deduce

d∗t{t ∈ F×
v |t · x ∈ Da

v} = d∗t(πrv(x)v O×
v ) = 1− |πv|v.

One has further that∫

F×
v

kav (t · x)d∗t =
∫

F×
v

1Da
v
(t · x)

1− |πv|v
d∗t =

d∗t({t ∈ F×
v |t · x ∈ Da

v})
1− |πv|v

= 1.

The claim is proven.

The following auxiliary lemma will be used in the definition of kav for v
infinite.
Lemma 5.2.2.2. — Let aG1 and aG2 be continuous actions of topolog-
ical groups G1 and G2 on a topological space X. Suppose the actions are
permutable, that is for every g1 ∈ G1, every g2 ∈ G2 and every x ∈ X
one has g1g2x = g2g1x.

1. The map

aG1×G2
: G1 ×G2 ×X → X

(g1, g2, x) 7→ g1(g2x)

defines a continuous action of G1 ×G2 on X.
2. There exists a continuous action of G2 on X/G1 such that

g2 · [x]G1 = [g2x]G1

for every x ∈ X, where [x]G1 is the image of x in X/G1 for the
quotient map.
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3. The canonical map X/G1 → X/(G1×G2) is open, continuous, sur-
jective and G2-invariant. The induced map (X/G1)/G2 → X/(G1×
G2) is a homeomorphism.

Proof. — 1. The map aG1×G2 factorizes as aG2 ◦ (IdG1 ×aG1) thus is
continuous. If eG1 , eG2 are neutral elements of G1 and G2, respec-
tively, by definition one has (eG1 , eG2) · x = eG1eG2x = x. Moreover,
if (g1, g2) and (g′1, g

′
2) are elements of G1 × G2, then for x ∈ X one

has

(g1g
′
1, g2g

′
2)x = (g1g

′
1)(g2g

′
2x) = g1((g

′
1(g2g

′
2x))) = g1(g2(g

′
1g

′
2x))

= (g1, g2)(g
′
1, g

′
2)x.

We deduce that aG1×G2 is a continuous action of G1 ×G2 on X.
2. This is proven in [7, Chapter III, §4, n0 4, Remark to Proposition

11].
3. The map X/G1 → X/(G1 × G2) is the induced map from G1-

invariant continuous, open and surjective map X → X/(G1 × G2),
thus itself is continuous, open and surjective. If g2 ∈ G2 and x ∈ X,
one has that

[g2 · [x]G1 ]G1×G2 = [[g2x]G1 ]G1×G2 = [g2x]G1×G2 = [x]G1×G2 ,

where [·]G1×G2 is the image in X/(G1 × G2). Hence, X/G1 →
X/(G1 × G2) is continuous. Suppose now elements [x]G1 and [y]G1

have the same image in X/(G1 × G2). This means precisely that
there exists (g1, g2) ∈ G1 × G2 such that (g1, g2) · x = g1g2x = y.
We deduce that

[y]G1 = [g2g1x]G1 = [g2x]G1 = g2[x]G1 ,

i.e. [x]G1 and [y]G2 are in the same orbit of G2. We deduce that the
induced map ((X/G1)/G2)→ (X/(G1×G2)) is bijective. It follows
that it is a homeomorphism.

Lemma 5.2.2.3. — Let v ∈M∞
F . There exists a continuous compactly

supported function kav : F n
v − {0} → R≥0, which is Fv,1-invariant and

such that for every x ∈ F n
v − {0} one has that

∫

R>0

kav (ρv(t) · x)d∗t =
1

λv,1(Fv,1)
,
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where ρv : R>0 → F×
v is given by ρv : r 7→ r1/nv . Such function satisfies

furthermore for every x ∈ F n
v − {0} that∫

F×
v

kav (t · x)d∗t = 1.

Proof. — The isomorphism (5.2.1.1)

ρ̃v : R>0 × Fv,1 ∼−→ F×
v (r, x) 7→ ρv(r)x

satisfies (ρ̃v)∗(d
∗r × λv,1) = d∗xv by Lemma 5.2.1.3. It induces a topo-

logical action of R>0 × Fv,1 on F n
v − {0}. Moreover, as Fv,1 = {1} × Fv,1

is a closed subgroup of R>0 × Fv,1, by [7, Chapter III, §4, n0 1, Example
1] the restriction of this action to Fv,1 is continuous and proper. Let
qv,1 : F n

v − {0} → (F n
v − {0})/Fv,1 be the corresponding quotient map,

by [7, Chapter III, §4, n0 1, Proposition 2], the map qv,1 is proper. Let
R>0 acts on F n

v − {0} via the identification R>0 = R>0 × {1}. Lemma
5.2.2.2 provides an action of R>0 on (F n

v − {0})/Fv,1 which satisfies

r · qv,1(x) = qv,1(r · x) = qv,1(ρv(r) · x),
for r ∈ R>0 and x ∈ F n

v − {0}. Moreover, the canonical map
(F n

v − {0})/Fv,1 → [P(a)(Fv)] induces an identification ((F n
v −

{0})/Fv,1)/R>0
∼−→ [P(a)(Fv)]. As [P(a)(Fv)] is compact, hence

paracompact, Proposition 5.1.2.3 gives that there exists a continuous
compactly supported function k′ : (F n

v − {0})/Fv,1 → R≥0 such that for
every y ∈ (F n

v − {0})/Fv,1, we have that
∫

R>0

k′(r · y)d∗r = 1

λv,1(Fv,1)
.

Let us set kav = k′ ◦ qv,1. As qv,1 is proper and Fv,1-invariant, the map kav
is compactly supported and Fv,1-invariant. Let x ∈ F n

v − {0}, we have
that ∫

R>0

kav (ρv(r) · x)d∗r =
∫

R>0

kav (r · x)d∗r

=

∫

R>0

k′(qv,1(r · x))d∗r

=

∫

R>0

k′(r · qv,1(x))d∗r

=
1

λv,1(Fv,1)
,
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and that
∫

F×
v

kav (t · x)d∗t =
∫

R>0×Fv,1

kav ((r, z) · x)d∗rdλv,1(z)

=

∫

Fv,1

dλv,1(z)

∫

R>0

kav (r · (z
aj
j xj)j)d

∗r

=

∫

Fv,1

1

λv,1(Fv,1)
dλv,1

= 1.

The statement is proven.

5.2.3. — The goal of this paragraph is to give several equivalent con-
ditions that make f−1dx1 . . . dxn a measure on F n

v − {0}, where f is an
a-homogenous function of weighted degree |a|.

Let v ∈ MF . We will use the following conventions a · ∞ = ∞ for
a ∈ R>0 and ∞−1 = 0. If t ∈ Gm(Fv), we will see it as a function
t : F n

v − {0} → F n
v − {0} given by its action on F n

v − {0}. We say that
a function f : F n

v −{0} → C∪ {∞} is a-homogenous of weighted degree

|a| if f(t · x) = |t||a|v f(x) for every t ∈ F×
v and every x ∈ F n

v − {0}.
Lemma 5.2.3.1. — Let f : F n

v −{0} → C∪{∞} be an a-homogenous
function of weighted degree |a| such that

dx1 . . . dxn({x ∈ F n
v − {0}|f(x) = 0}) = 0.

Let φ ∈ C 0
c (F

n
v −{0},C). One has that φf−1 ∈ L1(F n

v −{0}, dx1 . . . dxn)
if and only if for every t ∈ F×

v one has that (φ ◦ t−1)f−1 ∈ L1(F n
v −

{0}, dx1 . . . dxn) and if φf−1 ∈ L1(F n
v − {0}, dx1 . . . dxn) then

∫

Fn
v −{0}

φf−1dx1 . . . dxn =

∫

Fn
v −{0}

(φ ◦ t−1)f−1dx1 . . . dxn

for every t ∈ F×
v .

Proof. — Let t ∈ Gm(Fv). The action of t on F n
v − {0} is given by

the multiplication to the left by the diagonal matrix Dt which has the
diagonal vector (ta1 , . . . , tan). By using the formula for the change of the
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coordinates, we get that∫

Fn
v −{0}

(φ ◦ t−1)f−1dx1 . . . dxn

=

∫

Fn
v −{0}

| det(Jac(Dt))|v(φ ◦ t−1)(t · x)fv(t · x)−1dx1 . . . dxn

=

∫

Fn
v −{0}

|t|a||vφ(x) · |t|−|a|
v f(x)−1dx1 . . . dxn

=

∫

Fn
v −{0}

φf−1dx1 . . . dxn,

if one, and hence every, integral converges absolutely. The statement
follows.

The following lemma will be needed to treat the case v ∈M∞
F .

Lemma 5.2.3.2. — Suppose v ∈ M∞
F . Let ρv : R>0 → F×

v be the
map r 7→ r1/nv .

1. Consider the map A : (F×
v )

n → (F×
v )

n given by

A : x 7→ ((ρv(|xn|aj/anv )xj)
n−1
j=1 , xn).

One has that

|xn|
|a|
an

−1A∗(dx1 . . . dxn) = dx1 . . . dxn.

2. Let f : F n
v − {0} → C ∪ {∞} be an a-homogenous function of

weighted degree |a| such that

dx1 . . . dxn({x ∈ F n
v − {0}|f(x) = 0}) = 0.

Let φ : F n
v − {0} → C be a compactly supported continuous func-

tion. One has that φf−1 ∈ L1(F n
v − {0}, dx1 . . . dxn) if and only

if f−1|(F×
v )n−1×Fv,1

∈ L1((F×
v )

n−1 × Fv,1, dx1 . . . dxn × λv,1) and if

φf−1 ∈ L(F n
v − {0}, dx1 . . . dxn) then

(5.2.3.3)∫

Fn
v −{0}

φf−1dx1 . . . dxn = an

∫

Fv,1

dλv,1(z)

∫

R>0

φ
(
ρv(t) · ((xj)n−1

j=1 , z)
)
d∗t×

×
∫

(F×
v )n−1

f(x1, . . . , xn−1, z)
−1dx1 . . . dxn−1.

Proof. — 1. Suppose that v is real. The function defined by A is
smooth. The Jacobian of A is given by the diagonal matrix having
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for the diagonal vector ((ρv(|xn|aj/anv ))n−1
j=1 , 1). The v-adic absolute

value of the determinant of the Jacobian is equal to

∣∣
n−1∏

j=1

ρv(|xn|aj/anv )
∣∣
v
=

n−1∏

j=1

∣∣ρv(|xn|aj/anv )
∣∣
v
=

n−1∏

j=1

|xn|aj/anv = |xn|
|a|
an

−1
v .

Thus, by the formula for the change of variables we get that

|xn|
|a|
an

−1
v A∗(dx1 . . . dxn) = dx1 . . . dxn.

Suppose now that v is complex. We use identification Fv = R2 as in
paragraph 5.2.1 and let y and r be coordinates of R2. The measure
dxv becomes 2dydr. The function A : (R2 − {0})n → (R2 − {0})n
in the new coordinates is given by

A(y, r) =
(
(yj · (r2n + y2n)

aj/(2an))n−1
j=1 , yn, (rj · (r2n + y2n)

aj/(2an))n−1
j=1 , rn

)

and is smooth (because the locus rn = yn = 0 is outside of the
domain of the definition). Its Jacobian is an upper triangular matrix
having for the diagonal vector

(
((r2n + y2n)

aj/(2an))n−1
j=1 , 1, ((r

2
n + y2n)

aj/(2an))n−1
j=1 , 1

)
.

Its determinant is
n−1∏

j=1

((r2n + y2n)
aj/(2an)) ·

n−1∏

j=1

((r2n + y2n)
aj/(2an)) =

n−1∏

j=1

(r2n + y2n)
aj/an

= (r2n + y2n)
(|a|−an)/an .

By the formula for the change of variables, we get that

(r2n + y2n)
(|a|−an)/anA∗(dy1 · · · dyndr1 · · · drn) = dy1 · · · dyndr1 · · · drn.

Multiplying both hand sides by 2n and using that r2n + y2n = |xn|v
gives that

|xn|
|a|
an

−1
v A∗(dx1 . . . dxn) = dx1 . . . dxn,

as claimed
2. Let us define B,C : (F×

v )
n → (F×

v )
n by

B : x 7→ (xjρv(|xn|−aj/anv ))j,

C : x 7→ ((xj)
n−1
j=1 , xnρv(|xn|v)−1).
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Note that for x ∈ (F×
v )

n, one has that

B(A(x)) = B((xjρv(|xn|aj/anv ))n−1
j=1 , xn) = ((xj)

n−1
j=1 , xnρv(|xn|−1)) = C(x)

and that

A(x) = ((ρv(|xn|
aj
an
v )xj)

n−1
j=1 , xn) = ρv(|xn|

1
aj
v ) · ((xj)n−1

j=1 , xnρv(|xn|v)−1)

= ρv(|xn|
1
an
v ) · C(x).

For every x ∈ F n
v − {0}, we have that

fv(x) = |xn||a|/anv fv
((
xjρv(|xn|−aj/anv )

)
j

)
= fv(B(x)),

by the fact that fv is a-homogenous of weighted degree |a|. Let φ ∈
C 0
c (F

n
v −{0},C). By using that dx1 . . . dxn(F

n
v −{0}− (F×

v )
n) = 0,

because F n
v − {0} − (F×

v )
n is contained in a finite union of hyper-

planes of (Fv)
n, and the part (1), we get that:

∫

Fn
v −{0}

φf−1
v dx1 . . . dxn

=

∫

(F×
v )n

φf−1
v dx1 . . . dxn

=

∫

(F×
v )n
|xn|−|a|/an

v φ · (f−1
v ◦B)dx1 . . . dxn

=

∫

(F×
v )n
|xn|−1

v φ · (f−1
v ◦B)A∗(dx1 . . . dxn)

=

∫

(F×
v )n
|xn ◦ A|−1

v (φ ◦ A)(f−1
v ◦ (B ◦ A))dx1 . . . dxn

=

∫

(F×
v )n
|xn|−1

v (φ ◦ A)fv((xj)n−1
j=1 , xnρv(|xn|−1

v ))−1dx1 . . . dxn

=

∫

(F×
v )n

(φ ◦ A)fv((xj)n−1
j=1 , xnρv(|xn|−1

v ))−1dx1 . . . dxn−1d
∗xn

=

∫

(F×
v )n

φ(ρv(|xn|1/anv ) · C(x))fv(C(x))−1dx1 . . . dxn−1d
∗xn.

if one (and hence every) integral converges absolutely. It follows
from Lemma 5.2.1.3 that the map

ρ̃−1
v : F×

v → R>0 × Fv,1 x 7→ (|x|v, xρv(|x|v)−1)
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satisfies that (ρ̃−1
v )∗d

∗x = d∗r×λv,1. The last integral is hence equal
to

∫

Fv,1×R>0

∫

(F×
v )n−1

φ(ρv(r
1/aj) · ((xj)n−1

j=1 , z))×

× fv((xj)n−1
j=1 , z)

−1dx1..dxn−1d
∗rdλv,1(z).

Note that setting uan = r gives d∗r = and
∗u and thus the last

integral becomes
(5.2.3.4)

an

∫

Fv,1×R>0

∫

(F×
v )n−1

φ(ρv(u) · ((xj)n−1
j=1 , z))

fv((xj)
n−1
j=1 , z)

dx1 . . . dxn−1d
∗udλv,1(z).

By Fubini theorem, we get that the integral (5.2.3.4) is equal to

(5.2.3.5) an

∫

Fv,1

dλv,1(z)

∫

R>0

φ(ρv(u · ((xj)n−1
j=1 , z)))d

∗u×

×
∫

(F×
v )n−1

fv((xj)
n−1
j=1 , z)

−1dx1 . . . dxn−1.

For every ((xj)j, z) ∈ (F×
v )

n−1 × Fv,1, the map R>0 → C given
by u 7→ φ(ρv(u) · ((xj)j, z)) is compactly supported, because φ is
compactly supported, the map y 7→ y ·((xj)j, z) is proper (the action
of F×

v on (F×
v )

n is proper by Proposition 3.3.4.1, thus by [7, Chapter
III, §4, n0 2, Proposition 4], the map y 7→ y ·((xj)j, z) is proper) and
ρv : r 7→ r1/nv is proper. It follows that∫

R>0

φ(ρv(u) · ((xj)j, z))d∗u

converges absolutely. It follows that the integral (5.2.3.5) converges
absolutely if and only if

∫
Fv,1

dλv,1(z)
∫
(F×

v )n
fv((xj)

n−1
j=1 , z)

−1dx1 . . . dxn−1

converges absolutely. The statement follows.

In the following proposition, we give equivalent conditions to the con-
dition that f−1dx1 . . . dxn is a measure on F n

v − {0}.
Proposition 5.2.3.6. — Let f : F n

v − {0} → C ∪ {∞} be an a-
homogenous function of weighted degree |a| such that

dx1 . . . dxn({x ∈ F n
v − {0}|f(x) = 0}) = 0.

The following are equivalent:
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1. For every φ ∈ C 0
c (F

n
v − {0},C) one has that φf−1 ∈ L1(F n

v −
{0}, dx1 . . . dxn) and that

C
0
c (F

n
v − {0},C)→ C φ 7→

∫

Fn
v −{0}

φ · f−1dx1 . . . dxn

is a measure on F n
v − {0}.

2. For every compactly supported function φ : F n
v − {0} → C one has

that φf−1 ∈ L1(F n
v −{0}, dx1 . . . dxn) and that there exists a unique

measure ωv on [P(a)(Fv)] such that

(5.2.3.7)

∫

Fn
v −{0}

φf−1dx1 . . . dxn =

∫

[P(a)(Fv)]

dωv(y)

∫

F×
v

φ(t · ỹ)d∗t,

where ỹ is a lift on an element y ∈ [P(a)(Fv)].
3. One has that kav ·f−1 ∈ L1(F n

v −{0}, dx1 . . . dxn), where the function
kav is defined in 5.2.2.

4. If v ∈ M0
F , one has that f−1|Da

v
∈ L1(Da

v , dx1 . . . dxn). If v ∈ M∞
F ,

one has that f−1|(F×
v )n−1×Fv,1

∈ L1((F×
v )

n−1 × Fv,1, dx1 . . . dxn−1 ×
λv,1).

If any of the conditions is satisfied, one has that

(5.2.3.8) ωv([P(a)(Fv)]) =

∫

Fn
v −{0}

kavf
−1dx1 . . . dxn

Moreover, if v ∈ M0
F , both quantities in the equality (5.2.3.8) are equal

to
1

1− |πv|v

∫

Da
v

f−1dx1 . . . dxn

and are equal to

an
λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

f−1dx1 . . . dxn−1 × λv,1

if v ∈M∞
F .

Proof. — Note that the implication (1) =⇒ (2) follows from Proposi-
tion 5.1.2.2. Facts that [P(a)(Fv)] is compact, hence paracompact, and
that for every x ∈ F n

v −{0} one has that the equality
∫
F×
v
kav (t ·x)dt∗ = 1

is valid (Lemma 5.2.2.1 and Lemma 5.2.2.3), enable us to apply Propo-
sition 5.1.2.5 and we get that (2) =⇒ (3) and that if the condition (2)
is satisfied, then

ωa
v ([P(a)(Fv)]) =

∫

Fn
v −{0}

kavf
−1dx1 . . . dxn.
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(3) =⇒ (4). Suppose v is a finite place. As kavf
−1 =

1Da
v
·f−1

1−|πv |v , we

deduce that the restriction of x 7→ f(x)−1 to Da
v is dx1 . . . dxn-absolutely

integrable and that
∫

Fn
v −{0}

kavf
−1dx1 . . . dxn =

1

1− |πv|v

∫

Da
v

f−1dx1 . . . dxn.

Suppose v is infinite. By Lemma 5.2.3.2 one has that

f−1|(F×
v )n−1×Fv,1

∈ L1((F×
v )

n−1 × Fv,1, dx1 . . . dxn−1 × λv,1)

and that
∫

Fn
v −{0}

kavf
−1dx1 . . . dxn

= an

∫

Fv,1

dλv,1(z)

∫

R>0

kav (ρv(u) · ((xj)j, z))d∗u×

×
∫

(F×
v )n−1

f(x1, . . . , xn−1, z)
−1dx1 . . . dxn−1.

We have by Lemma 5.2.3.2 that
∫

R>0

kav (ρv(u) · ((xj)j, z))d∗u =
1

λv,1(Fv,1)
,

for every ((xj)j, z) ∈ (F×
v )

n−1 × Fv,1. It follows that
∫

Fn
v −{0}

kavf
−1dx1 . . . dxn =

an
λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

f−1dx1 . . . dxn−1×λv,1.

The implication is proven.
(4) =⇒ (1). If φ : F n

v − {0} → C is compactly supported, we
set ||φ||sup := supx∈Fn

v −{0} |φ(x)|. Suppose firstly v ∈ M0
F and let φ ∈

C 0
c (F

n
v −{0},C). It follows from Lemma 4.4.3.1 that ∪t∈Gm(Fv)(t · Da

v ) =
F n
v − {0}. As supp(φ) is compact, there exists a finite set {t1, . . . , tm}

such that (∪mi=1(ti · Da
v )) ⊃ supp(φ). For x ∈ Da

v and t ∈ Gm(Fv) one

has that f(t · x)−1 = |t|−|a|
v f(x)−1. Thus from the fact that f−1|Da

v
∈

L1(Da
v , dx1 . . . dxn), it follows that f−1|t·Da

v
∈ L1(t · Da

v , dx1 . . . dxn) and
hence that

f−1|∪m
i=1(ti·Da

v ) ∈ L1(∪mi=1(ti · Da
v ), dx1 . . . dxn).
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We deduce that φf−1 ∈ L1(F n
v − {0}, dx1 . . . dxn) and that

∣∣∣∣
∫

Fn
v −{0}

φf−1dx1 . . . dxn

∣∣∣∣ ≤
∫

sup(φ)

||φ||supf−1dx1 . . . dxn

≤ ||φ||sup
∫

(∪m
i=1(ti·Da

v ))

f−1dx1 . . . dxn.

It follows furthermore that φ 7→
∫
Fn
v −{0} φf

−1dx1 . . . dxn is a bounded,

hence a continuous operator, i.e. f−1dx1 . . . dxn is a measure on F n
v −{0}.

Suppose now v ∈M∞
F . For any φ ∈ C 0

c (F
n
v −{0},C), one has by Lemma

5.2.3.2 that φf−1 ∈ L1(F n
v − {0}, dx1 . . . dxn). We will use [10, Chapter

III, §1, n0 3, Proposition 6] to prove the continuity of the operator φ 7→∫
Fn
v −{0} φf

−1dx1 . . . dxn. By the mentioned proposition, it suffices to pick

a sequence of compacts {Kα}α, the interiors of which cover F n
v −{0} and

to establish that for every α there exists Mα > 0 such that∣∣∣∣
∫

Fn
v −{0}

φf−1dx1 . . . dxn

∣∣∣∣ ≤Mα||φ||sup

for φ ∈ C 0
c (F

n
v − {0},C) with supp(φ) ⊂ Kα. We set

Kα := {x ∈ F n
v − {0}|∀j : α−1 ≤ |xj|v ≤ α} for α ∈ Z≥2.

Let ξα ∈ C 0
c (F

n
v − {0},R≥0) such that ξα(x) ≥ 1 for every x ∈ Kα. For

every x ∈ F n
v − {0}, the map R>0 → R≥0 given by r 7→ ξα(ρv(r) · x)

is compactly supported, because ξα is compactly supported, the map
y 7→ y · x is proper (the action of F×

v on (F×
v )

n is proper by Proposition
3.3.4.1, thus by [7, Chapter III, §4, n0 2, Proposition 4], the map y 7→ y ·x
is proper) and ρv : r 7→ r1/nv is proper. Let φ ∈ C 0

c (F
n
v − {0},C) with

supp(φ) ⊂ Kα. We have that
∣∣∣∣
∫

R>0

φ(ρv(r) · ((uj)n−1
j=1 , z))d

∗r

∣∣∣∣

≤
∫

R>0

||φ||sup · ξα(ρv(r) · ((uj)n−1
j=1 , z))d

∗r

≤ ||φ||sup
∫

R>0

ξα(ρv(t) · ((uj)n−1
j=1 , z))d

∗t

≤ ||φ||sup||ξα||sup
∫

supp(r 7→ξα(ρv(r)·x))
1d∗t

= ||φ||supC(α),
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for every x ∈ F n
v − {0}. We deduce from Lemma 5.2.3.2 that

∫

Fn
v −{0}

φf−1dx1 . . . dxn

= an

∫

Fv,1

dλv,1(z)

∫

R>0

φ
(
ρv(t) · ((xj)n−1

j=1 , z)
)
d∗t×

×
∫

(F×
v )n−1

f(x1, . . . , xn−1, z)
−1dx1 . . . dxn−1

≤ ||φ||supC(α)
∫

(F×
v )n−1×Fv,1

f−1dx1 . . . dxn−1λv,1.

By [9, Chapter III, §1, n0 3, Proposition 6] the operator

C
0
c (F

n
v − {0},C)→ C φ 7→

∫

Fn
v −{0}

φf−1dx1 . . . dxn

is continuous. We conclude that f−1dx1 . . . dxn is a measure. The state-
ment is proven.

When f satisfies the equivalent conditions of Proposition 5.2.3.6, the
measure f−1dx1 . . . dxn is F×

v -invariant by Lemma 5.2.3.1.
Example 5.2.3.9. — Suppose f is continuous and f(x) ∈ C−{0} for
every x ∈ F n

v − {0}. From the fact that a product of a measure and a
continuous function is a measure [9, Chapter III, §1, n0 4], it follows that
f−1dx1 . . . dxn is a measure and hence f satisfies the equivalent conditions
of Proposition 5.2.3.6.

5.2.4. — Proposition 5.2.3.6 provides a measure ωv on [P(a)(Fv)].
Definition 5.2.4.1. — Let v ∈MF and let fv : F

n
v − {0} → C ∪ {∞}

be an a-homogenous function of weighted degree |a| such that

dx1 . . . dxn({x|fv(x) = 0}) = 0

and such that f−1
v dx1 . . . dxn is a measure on F n

v −{0}. We define ωv to
be the quotient measure

ωv := (f−1
v dx1 . . . dxn)/d

∗x

on [P(a)(Fv)].
Recall from Corollary 3.3.3.2 that [T (a)(Fv)] is the open subset of

[P(a)(Fv)] given by the image of qav ((F
×
v )

n). We prove that the comple-
ment of the open subset [T (a)(Fv)] ⊂ [P(a)(Fv)] is ωv-negligible.



5.2. MEASURES ON [P(a)(Fv)] 167

Lemma 5.2.4.2. — Let fv be as in Definition 5.2.4.1. One has that

ωv([P(a)(Fv)]− [T (a)(Fv)]) = 0.

Proof. — The preimage (qav )
−1([P(a)(Fv)] − [T (a)(Fv)]) is dx1 . . . dxn-

negligible. Now, [9, Chapter II, §2, n0 3, Proposition 6] gives that
ωv([P(a)(Fv)]− [T (a)(Fv)]) = 0.

We explain how to do the integration against ωv.
Lemma 5.2.4.3. — Let v ∈ MF . Let fv be as in Definition 5.2.4.1.
Let h : [P(a)(Fv)] → C be a function. Suppose v ∈ M0

F . Then h ∈
L1([P(a)(Fv)], ωv) if and only if (h ◦ qav ) · f−1

v |Da
v
∈ L1(Da

v , dx1 . . . dxn)
and if h ∈ L1([P(a)(Fv)], ωv), then

∫

[P(a)(Fv)]

hωv =
1

1− |πv|v

∫

Da
v

(h ◦ qav )f−1
v dx1 . . . dxn.

Suppose v ∈M∞
F . Then h ∈ L1([P(a)(Fv)], ωv) if and only if

(h ◦ qav ) · f−1
v |(F×

v )n−1×Fv,1
∈ L1((F×

v )
n−1 × Fv,1, dx1 . . . dxn−1 × λv,1)

and if h ∈ L1([P(a)(Fv)], ωv), then
∫

[P(a)(Fv)]

hωv =
an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

(h ◦ qav )f−1
v dx1 . . . dxn−1 × λv,1.

Proof. — As [P(a)(Fv)] is compact and hence paracompact, by Propo-
sition 5.1.2.5, one has that h ∈ L1([P(a)(Fv)], ωv) if and only if kav · (h ◦
qav ) ∈ L1(F n

v − {0}, f−1
v dx1 . . . dxn), and if h ∈ L1([P(a)(Fv)], ωv) then

∫

[P(a)(Fv)]

hωv =

∫

Fn
v −{0}

kav · (h ◦ qav )f−1
v dx1 . . . dxn.

The function qav is F×
v -invariant, hence is such h−1 ◦ qav . It follows that

(h−1 ◦qav ) ·fv is an a-homogenous function of weighted degree |a|. The set
where it vanishes coincides with the set where fv vanishes, thus this set
is dx1 . . . dxn-negligible. We apply Proposition 5.2.3.6 for the function
(h−1 ◦qav ) ·fv. It follows that kav · ((h◦qav )f−1

v ) ∈ L1(F n
v −{0}, dx1 . . . dxn)

if and only if

(h ◦ qav ) · f−1
v |Da

v
∈ L1(Da

v , dx1 . . . dxn)

if v is finite, and if and only if

(h ◦ qav ) · f−1
v |(F×

v )n−1×Fv,1
∈ L1((F×

v )
n−1 × Fv,1, dx1 . . . dxn−1 × λv,1)
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if v is infinite. Moreover, Proposition 5.2.3.6 gives that if

kav · (h ◦ qav )f−1
v ∈ L1(F n

v − {0}, dx1 . . . dxn),
then∫

Fn
v −{0}

kav (h ◦ qav )f−1
v dx1 . . . dxn =

1

1− |πv|v

∫

Da
v

(h ◦ qav )f−1
v dx1 . . . dxn.

if v is finite, and

an
λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

(h ◦ qav )f−1
v dx1 . . . dxn−1 × λv,1.

if v is infinite. The statement follows.

5.3. Peyre’s constant

In this section from a quasi-toric family of a-homogenous functions
of weighted degree |a|, we will define a measure on the product space∏

v∈MF
[P(a)(Fv)], and Peyre’s constant of the stacks P(a) and P(a).

5.3.1. — In this paragraph, we calculate the volume ωv for v ∈ M0
F

from Definition 5.2.4.1 when the function fv is toric.
Let v ∈M0

F . As in 4.4.3, we set rv : F
n
v − {0} → R>0 for the function

rv(x) = sup
j=1,...,n
xj 6=0

⌈
− v(xj)

aj

⌉
.

Let f#
v : F n

v −{0} → R>0 be the toric a-homogenous function of weighted
degree |a|. Recall that this means

f#
v (x) = |πv|−|a|rv(x)

v .

In Lemma 4.4.3.1, we have established that rv|Da
v
= 0, thus f#

v |Da
v
= 1,

where Da
v = (Ov)n − (πa1v Ov × · · · × πanv Ov). For v ∈ M0

F and s ∈ C, we
denote

ζv(s) =
1

1− |πv|sv
.

Lemma 5.3.1.1. — Let v ∈ M0
F and let f#

v : F n
v − {0} → R>0 be

the toric a-homogenous function of weighted degree |a|. Let ω#
v be the

measure on [P(a)(Fv)] that is given by

((f#
v )

−1dx1 . . . dxn)/d
∗x.
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One has that

ω#
v ([P(a)(Fv)]) =

ζv(1)

ζv(|a|)
.

Proof. — By applying Lemma 5.2.4.3 and using the fact that f#
v |Da

v
= 1,

we get that
∫

[P(a)(Fv)]

1ω#
v =

1

1− |πv|v

∫

Da
v

(f#
v )

−1dx1 . . . dxn = ζv(1)

∫

Da
v

dx1 . . . dxn.

In turn one has that

dx1 . . . dxn(Da
v ) = 1−

n∏

j=1

dx(πajv Ov) = 1− |πv||a|v = ζv(|a|)−1,

and the claim follows.

Remark 5.3.1.2. — We will generalize the calculation of Lemma
5.3.1.1 in Lemma 7.2.1.1, when will be calculating the Fourier transform
of a local toric height at a non-archimedean place.

5.3.2. — Let us calculate the volume ωv([P(a)(Fv)]) when v ∈ M∞
F

and the function fv = f#
v is the toric a-homogenous function of weighted

degree |a|.
Recall that the toric a-homogenous function of weighted degree |a| is

the function

f#
v : F n

v − {0} → R>0 x 7→ max
j=1,...,n

(|xj|1/ajv )|a|.

Lemma 5.3.2.1. — Let v ∈ M∞
F and let f#

v : F n
v − {0} → R>0 be

the toric a-homogenous function of weighted degree |a|. Let ω#
v be the

measure on [P(a)(Fv)] that is given by

((f#
v )

−1dx1 . . . dxn)/d
∗x.

One has that

ω#
v ([P(a)(Fv)]) = 2n−1|a|

if v is real, and that

ω#
v ([P(a)(Fv)]) = (2π)n−1|a|

if v is complex.
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Proof. — Lemma 5.2.4.3 gives that:

ω#
v ([P(a)(Fv)])

=
an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

(f#
v )

−1dx1 . . . dxn−1 × λv,1

=
an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

max
j=1,...,n

(|xj|1/ajv )−|a|dx1 . . . dxn−1 × λv,1

=
an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

max( max
j=1,...,n−1

(|xj|1/ajv ), 1)−|a|dx1 . . . dxn−1 × λv,1

=
an

λv,1(Fv,1)

∫

Fv,1

λv,1

∫

(F×
v )n−1

max( max
j=1,...,n−1

(|xj|1/ajv ), 1)−|a|dx1 . . . dxn−1

= an

∫

(F×
v )n−1

max( max
j=1,...,n−1

(|xj|1/ajv ), 1)−|a|dx1 . . . dxn−1.

Lemma 5.2.1.3 gives that the homomorphism

ρ̃v : R>0 × Fv,1 → F×
v (r, z) 7→ ρv(r)z,

where ρv(r) = r1/[Fv :R], satisfies that (ρ̃v)∗(dr × λv,1) = dx|F×
v
. One has

that |ρ̃v(r, z)|v = r and we deduce that

ω#
v (P(a)(Fv))

= an

∫

(F×
v )n−1

max( max
j=1,...,n−1

(|xj|1/ajv ), 1)−|a|dx1 . . . dxn−1

= an

∫

(R>0×Fv,1)n−1

max( max
j=1,...,n−1

(|ρ̃v(rjz)|1/ajv ), 1)−|a|dr1 . . . drn−1 ⊗ λ⊗(n−1)
v,1

= an

∫

Fn−1
v,1

λ
⊗(n−1)
v,1

∫

Rn−1
>0

max( max
j=1,...,n−1

(r
1/aj
j ), 1)−|a|dr1 . . . drn−1

= an(λv,1(Fv,1))
n−1

∫

Rn−1
>0

max( max
j=1,...,n−1

(r
1/aj
j ), 1)−|a|dr1 . . . drn−1.

Let us evaluate the last integral. Define V0 := {x ∈ Rn−1
>0 |∀i : xi ≤ 1}.

For i = 1, . . . , n− 1, define

Vi := {x ∈ Rn−1
>0 |x1/aii = max

j
(x

1/aj
j )}.
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For every i, j ∈ {0, . . . , n − 1} with i 6= j, one has that Vi ∩ Vj is
dr1 . . . drn−1-negligible. Thus
∫

Rn−1
>0

max(max
j

(r
1/aj
j ), 1)−|a|dr1 . . . drn−1

=
n−1∑

i=0

∫

Vi

max(max
j

(r
1/aj
j ), 1)−|a|dr1 . . . drn−1

=

∫

V0

1dr1 . . . drn−1 +
n−1∑

i=1

∫

Vi

r
−|a|/ai
i dr1 . . . drn−1

= 1 +
n−1∑

i=1

∫ ∞

1

( n−1∏

j=1
j 6=i

∫ r
aj/ai
i

0

1drj

)
· r−|a|/ai

i dri

= 1 +
n−1∑

i=1

∫ ∞

1

( n−1∏

j=1
j 6=i

r
aj/ai
i

)
r
−|a|/ai
i dri

= 1 +

∫ ∞

1

r
−1−an/ai
i dri

= 1 +
n−1∑

i=1

ai
an

=
|a|
an
,

where the third equality follows from Fubini theorem. We deduce that

ω#
v ([P(a)(Fv)]) = anλv,1(Fv,1)

n−1 |a|
an

= λv,1(Fv,1)
n−1|a|.

Thus if v is real one has that

ω#
v ([P(a)(Fv)]) = 2n−1|a|

and if v is complex, one has that

ω#
v ([P(a)(Fv)]) = (2π)n−1|a|.
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5.3.3. — We define Peyre’s constant for stack P(a) for quasi-toric fam-
ilies (fv)v.

We will define a measure on the product space

∏

v∈MF

[P(a)(Fv)].

The space
∏

v∈MF
[P(a)(Fv)] is compact and Hausdorff, as for every

v ∈ MF by Proposition 3.3.4.5 and by Proposition 3.3.4.1, the spaces
[P(a)(Fv)] are compact and Hausdorff. Let (fv : F

n
v − {0} → R≥0)v∈MF

be a quasi-toric family of |a|-homogenous functions of weighted degree
|a| such that for every v, one has that the set {x ∈ F n

v − {0}|fv(x) = 0}
is dx1 . . . dxn-negligible and that f−1

v dx1 . . . dxn is a measure on F n
v −{0}.

For every v ∈MF , we set ωv = (f−1
v dx1 . . . dxn)/d

∗x. Using measures ωv,
we define a product measure on

∏
v∈MF

[P(a)(Fv)] (by [9, Chapter III,

§4, n0 6, Proposition 9] we indeed get a measure on the product).
Definition 5.3.3.1. — We define a measure ω = ω((fv)v) on∏

v∈MF
[P(a)(Fv)] by

|µgcd(a)(F )|∆(F )−
n−1
2 Res(ζF , 1)

⊗

v∈M0
F

(
ζv(1)

−1ωv
) ⊗

v∈M∞
F

ωv.

We set

τ = τ((fv)v) = ω
( ∏

v∈MF

[P(a)(Fv)]
)
,

where ∆(F ) is the absolute discriminant of F .
We explain how ω changes, when the quasi-toric family is changed.

Lemma 5.3.3.2. — Let S be a finite set of places and for v ∈ S, let
hv : [P(a)(Fv)] → R>0 be a continuous function. For v ∈ MF − S, we
set hv = 1. Let us denote by h :

∏
v∈MF

[P(a)(Fv)] → R>0 the function
⊗v∈MF

hv. One has that

ω((hvfv)v) = h−1ω((fv)v).

Proof. — For v ∈MF , it follows directly from Lemma 5.1.2.4 that

(((hv ◦qav ) ·fv)−1dx1 . . . dxn)/d
∗x = (h−1

v )((f−1
v dx1 . . . dxn)/d

∗x) = h−1
v ωv.
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It follows that the measure ω(((hv,η ◦ qav ) · fv)v) on
∏

v∈MF
[P(a)(Fv)]

defined by the quasi-toric family ((hv ◦ qav ) · fv)v satisfies that

ω(((hv ◦ qav ) · fv)v)

=
|µgcd(a)(F )|
∆(F )

n−1
2

Res(ζF , 1)
∏

v∈M0
F

(
ζv(1)

−1h−1
v ωv

) ∏

v∈M∞
F

h−1
v ωv

= h−1ω.

We give another expression for τ .
Lemma 5.3.3.3. — Let S be the finite set of places v for which fv is
not toric. One has that

τ((fv)v)

=
Res(ζF , 1)|µgcd(a)(F )|

∆(F )
n−1
2 ζF (|a|)

∏

v∈S∩M0
F

ζv(|a|)ωv([P(a)(Fv)])

ζv(1)
×

×
∏

v∈M∞
F

ωv([P(a)(Fv)]).

Proof. — Lemma 5.3.1.1 gives that for every v ∈M0
F − S one has

ωv([P(a)(Fv)])ζv(1)
−1 = ζv(|a|)−1

and thus:

τ((fv)v)|µgcd(a)(F )|−1∆(F )
n−1
2

= Res(ζF , 1)
∏

v∈S∩M0
F

ωv([P(a)(Fv)])

ζv(1)
×

×
∏

v∈M0
F−S

ζv(|a|)−1 ×
∏

v∈M∞
F

ωv([P(a)(Fv)])

=
Res(ζF , 1)

ζ(|a|)
∏

v∈S∩M0
F

(
ζv(|a|)ωv([P(a)(Fv)])

ζv(1)

)
×
∏

v∈M∞
F

ωv([P(a)(Fv)]).
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5.4. Haar measure on [T (a)(Fv)]

Let F×
v acts on (F×

v )
n by t · x = (tajxj)j. This action is proper by

Proposition 3.3.4.1. The quotient for this action is [T (a)(Fv)] by Corol-
lary 3.3.3.2 and is locally compact by Proposition 3.3.4.1. By Corollary
3.3.3.2, one has that the map [T (a)(Fv)] → [P(a)(Fv)], induced from
F×
v -invariant map (F×

v )
n →֒ F n

v − {0} → [P(a)(Fv)] is an open embed-
ding. By Proposition 3.3.4.1, the map

ǫ : F×
v → (F×

v )
n t 7→ (taj)j

is proper, its image (F×
v )a := ǫ(F×

v ) = {(taj)j|t ∈ F×
v }, is a closed sub-

group of (F×
v )

n and one has an identification [T (a)(Fv)] = (F×
v )

n/(F×
v )a.

Using this identification, we endow [T (a)(Fv)] with a structure of a topo-
logical group (which is necessary abelian). The goal of this section is to
define a Haar measure on [T (a)(Fv)] and relate it with the measure ωv
on [P(a)(Fv)].

5.4.1. — Let v ∈ MF . We are going to define a Haar measure on
[T (a)(Fv)].

By the fact that a product of a continuous function and a measure is
a measure [9, Chapter III, §1, n0 4], one has that

C
0
c ((F

×
v )

n,C)→ C φ 7→
∫

(F×
v )n

φ ·
n∏

j=1

|xj|−1
v dx1 . . . dxn

is a measure on (F×
v )

n. The function

F n
v − {0} → R≥0 x 7→

n∏

j=1

|xj|v

is a-homogenous of weighted degree |a| and the set where it vanishes
is given by {x ∈ F n

v − {0}|∃j : xj = 0}, thus this set is dx1 . . . dxn-
negligible (because it is contained in a finite union of hyperplanes in
(Fv)

n.) It follows from Lemma 5.2.3.1 that
n∏

j=1

|xj|−1
v dx1 . . . dxn = d∗x1 . . . d

∗xn

is F×
v -invariant measure on F×

v .
Definition 5.4.1.1. — We define a measure µv on [T (a)(Fv)] by

µv := (d∗x1 . . . d
∗xn)/d

∗xv.
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By Lemma 5.1.4.3 the measure µv is a Haar measure on [T (a)(Fv)].
Lemma 5.4.1.2. — Let v ∈ MF . Let fv : F n

v − {0} → R≥0 be a
continuous a-homogenous function of weighted degree |a| such that

f−1
v dx1 . . . dxn

is a measure on F n
v −{0} (this in particular implies that dx1 . . . dxn({x|fv(x) =

0}) = 0). Let Hv : [T (a)(Fv)] → R≥0 be the function given by the con-
tinuous F×

v -invariant function

x 7→ fv(x)
n∏

j=1

|xj|−1
v .

1. One has that µv({y|Hv(y) = 0}) = 0.
2. One has an equality of the measures µv = (Hv)(ωv|[T (a)(Fv)]).

Proof. — 1. By the definition of Hv one has that {y|Hv(y) = 0} =
qav ({x ∈ (F×

v )
n|fv(x) = 0}). Note that as dx1 . . . dxn({x|fv(x) =

0}) = 0, it follows that the set {x ∈ (F×
v )

n|fv(x) = 0} is dx1 . . . dxn-
negligible and thus d∗x1 . . . d

∗xn-negligible. Hence, by [10, Chapter
VII, §2, n0 3, Proposition 6], one has that µv(q

a
v ({x ∈ (F×

v )
n|f(x) =

0})) = 0.
2. Observe that

d∗x1 . . . d
∗xn =

n∏

j=1

|xj|−1
v dx1 . . . dxn = fv(x)

n∏

j=1

|xj|−1
v fv(x)

−1dx1 . . . dxn

= (Hv ◦ qav )f−1
v dx1 . . . dxn.

Now Lemma 5.1.2.4 gives precisely that

µv = (d∗x1 . . . d
∗xn)/d

∗x = Hv(f
−1
v dx1 . . . dxn)/d

∗x = Hvωv.

Lemma 5.4.1.3. — Let h : [T (a)(Fv)] → C be a function. Suppose
v ∈ M0

F . One has that h ∈ L1([T (a)(Fv)], µv) if and only if (h ◦ qav ) ∈
L1((F×

v )
n ∩ Da

v , d
∗x1 . . . d

∗xn), and if h ∈ L1([T (a)(Fv)], µv), one has
that: ∫

[T (a)(Fv)]

hµv =
1

1− |πv|v

∫

(F×
v )n∩Da

v

(h ◦ qav )d∗x1 . . . d∗xn.

Suppose v ∈ M∞
F . One has that h ∈ L1([T (a)(Fv)], µv) if and

only if (h ◦ qav ) ∈ L1((F×
v )

n−1 × Fv,1, d
∗x1 . . . d

∗xn−1 × λv,1), and if
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h ∈ L1([T (a)(Fv)], µv), one has that:

an
λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

(h ◦ qav )d∗x1 . . . d∗xn−1 × λv,1.

Proof. — Let f#
v : F n

v − {0} → R>0 be the toric a-homogenous func-
tion of weighted degree |a|. Let H#

v : [T (a)(Fv)] → R>0 be the
induced function from F×

v -invariant function (F×
v )

n → R>0 given by
x 7→ f#

v (x)
∏n

j=1 |xj|v. It follows from Lemma 5.4.1.2, that one has

an equality of the measures µv = H#
v ω

#
v |[T (a)(Fv)]. We deduce that

h ∈ L1([T (a)(Fv)], µv) if and only if hH#
v ∈ L1([T (a)(Fv)], ω

#
v ), and

as by Lemma 5.2.4.2 one has ω#
v ([P(a)(Fv)] − [T (a)(Fv)]) = 0, if

and only if hH#
v ∈ L1([P(a)(Fv)], ω

#
v ). Moreover, it follows that if

h ∈ L1([T (a)(Fv)], µv), then
∫

[T (a)(Fv)]

hµv =

∫

[P(a)(Fv)]

(hH#
v )ω

#
v .

Suppose v ∈M0
F . Recall that by Lemma 4.4.3.1 one has that f#

v |Da
v
=

1. By Lemma 5.2.4.3, one has that hH#
v ∈ L1([P(a)(Fv)], ω

#
v ) if and

only if

(((hH#
v )◦qav )(f#

v )
−1)|Da

v
= (h◦qav )(H#

v ◦qav )|Da
v
= (h◦qav )(|x1|−1

v · · · |xn|−1
v )|Da

v

is an element of L1(Da
v , dx1 . . . dxn). Moreover, Lemma 5.2.4.3 gives that

if hH#
v ∈ L1([P(a)(Fv)], ω

#
v ) then

∫

[P(a)(Fv)]

hH#
v ω

#
v =

1

1− |πv|v

∫

Da
v

(h ◦ qav )|x1|−1
v · · · |xn|−1

v dx1 . . . dxn.

As dx1 . . . dxn(Da
v − (Da

v ∩ (F×
v )

n)) = 0, (because Da
v − (Da

v ∩ (F×
v )

n) is
contained in a finite union of hyperplanes of F n

v ,) the last integral is equal
to

1

1− |πv|v

∫

(F×
v )n∩Da

v

(h ◦ qav )d∗x1 . . . d∗xn.

It follows that one has h ∈ L1([T (a)(Fv)], µv) if and only if (h ◦ qav ) ∈
L1((F×

v )
n ∩ Da

v , d
∗x1 . . . d

∗xn) and if h ∈ L1([T (a)(Fv)], µv), then
∫

[T (a)(Fv)]

hµv =
1

1− |πv|v

∫

(F×
v )n

(h ◦ qav )d∗x1 . . . d∗xn.
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Suppose that v ∈ M∞
F . By Lemma 5.2.4.3, one has that hH#

v ∈
L1([P(a)(Fv)], ω

#
v ) if and only if

((hH#
v ) ◦ qav )(f#

v )
−1 = ((h ◦ qav ) · (H# ◦ qav ))(f#

v )
−1 = (h ◦ qav )

n−1∏

j=1

|xj|−1
v

is an element of L1((F×
v )

n−1×Fv,1, dx1 . . . dxn−1×λv,1) i.e. if and only if

(h ◦ qav ) ∈ L1((F×
v )

n−1 × Fv,1, d∗x1 . . . d∗xn−1λv,1).

Moreover, Lemma 5.2.4.3 gives that if hH#
v ∈ L1([P(a)(Fv)], ω

#
v ) then

∫

[P(a)(Fv)]

hH#
v ω

#
v

=
an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

(h ◦ qav )
n−1∏

j=1

|xj|−1
v dx1 . . . dxn−1 × λv,1

=
an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

(h ◦ qav )d∗x1 . . . d∗xn−1 × λv,1.

5.4.2. — Recall that for v ∈ M0
F by Proposition 3.3.5.4, the group

[T (a)(Ov)] identifies with the image of O×n
v in [T (a)(Fv)] for the quo-

tient homomorphism (F×
v )

n → [T (a)(Fv)] and that with this identifica-
tion, becomes open and compact subgroup of [T (a)(Fv)]. We calculate
the volume of [T (a)(Ov)] against µv.
Lemma 5.4.2.1. — Let v ∈M0

F . The Haar measure µv is normalized
by

µv([T (a)(Ov)]) = (1− |πv|v)n−1 = ζv(1)
−(n−1)

.
Proof. — Let us firstly establish that (qav )

−1([T (a)(Ov)])∩Da
v = (O×

v )
n.

One has that

(qav )
−1([T (a)(Ov)])−1 =

⋃

t∈Gm(Fv)

t · (O×
v )

n.

Note that if u ∈ (O×
v )

n, then for every index j one has v(tajuj) = ajv(t)+
v(uj) = ajv(t). Now if v(t) > 0 it follows that t · u ∈∏n

j=1(π
aj
v Ov), thus
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t · u 6∈ Da
v and if v(t) < 0 then t · u 6∈ Onv , thus t · u 6∈ Da

v . We have
obtained if v(t) 6= 0, then (t · O×n

v ) ∩ Da
v = ∅ and hence,

Da
v ∩ (qav )

−1([T (a)(Ov)]) = Da
v ∩

⋃

t∈Gm(Fv)

t · O×n
v = Da

v ∩ O×n
v = O×n

v .

We deduce that one has equality of functions

(1(qav )
−1([T (a)(Ov)]))|(F×

v )n∩Da
v
= 1(O×

v )n .

Now, we can calculate µv([T (a)(Ov)]). One has by Lemma 5.4.1.3 that
∫

[T (a)(Fv)]

1[T (a)(Ov)]µv =
1

1− |πv|v

∫

(F×
v )n∩Da

v

1(qav )
−1([T (a)(Ov)])d

∗x1 . . . d
∗xn

=
1

1− |πv|v

∫

(F×
v )n

1(O×
v )nd

∗x1 . . . d
∗xn

=
1

1− |πv|v

(∫

F×
v

1O×
v
d∗x

)n

= (1− |πv|v)n−1.

The statement follows.

5.4.3. — Let us dedicate this paragraph to the definition of a Haar mea-
sure on [T (a)(AF )]. Let n ∈ Z>0 and let a ∈ Zn>0. We set [T (a)(AF )]
to be the “adelic space” of T (a), i.e.

[T (a)(AF )] =
∏′

v∈MF

[T (a)(Fv)],

where the restricted product is taken with respect to the sequence of the
open and compact subgroups for [T (a)(Ov)] ⊂ [T (a)(Fv)] for v ∈M0

F .
Proposition 5.4.3.1. — Let I be a set and let I ′ be a subset such that
I − I ′ is finite. For i ∈ I, let Gi be a locally compact abelian group
endowed with a Haar measure dgi. For i ∈ I ′, let Hi be an open and
compact subgroup of Gi such that dgi(Hi) = 1. Set G to be the restricted

product
∏′

i∈I
Gi with respect to the subgroups Hi ⊂ Gi for i ∈ I ′.

1. [10, Chapter VII, §1, n0 5, Proposition 5] Let S be a finite subset
of I containing I − I ′. Set

GS :=
∏

i∈S
Gi ×

∏

i∈I−S
Hi.
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The measure ⊗

i∈S
dgi

⊗

i∈I−S
(dgi|Hi

)

is a Haar measure on GS.
2. [49, Proposition 5.5] There exists a unique Haar measure dg on G

such that for every finite subset S ⊂ I which contains I − I ′ one
has that

dg|GS
=
⊗

i∈S
dgi

⊗

i∈I−S
(dgi|Hi

).

The measure dg will be called the restricted product Haar measure
and, by the abuse of the notation, may be denoted as dg = ⊗dgi. We
present a way how to calculate the integral of a function.
Proposition 5.4.3.2 ([49, Proposition 5-6]). — In the situation of
Proposition 5.4.3.1, let fi ∈ L1(Gi, dgi) be a continuous complex valued
function such that there exists a finite subset I ′′ ⊂ I ′ with I ′− I ′′ is finite
such that fi|Hi = 1 for every i ∈ I ′′. The function

f : (xi)i 7→
∏

i

fi(xi)

is continuous. Suppose that

∏

i

∫

Gi

fidgi

converges. Then f ∈ L1(G) and
∫

G

fdg =
∏

i

∫

Gi

fidgi.

For v ∈M0
F , we have established in Lemma 5.4.2.1 that µv([T (a)(Ov)]) =

ζv(1)
−(n−1). We will apply Proposition 5.4.3.1 to define a Haar measure

on [T (a)(AF )].
Definition 5.4.3.3. — Let µAF

be the restricted product measure

µAF
=
⊗

v∈M0
F

ζv(1)
(n−1)µv ⊗

⊗

v∈M∞
F

µv.

The group A×
F acts on (A×

F )
n via the proper homomorphism (xv)v 7→

((x
aj
v )j)v (Lemma 3.4.8.2) and one has an identification [T (a)(AF )] =
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(A×
F )

n/(A×
F ) (Lemma 3.4.8.4 together with Lemma 5.1.4.3). Endow A×

F

with the Haar measure

d∗xAF
:=
⊗

v∈M0
F

ζv(1)d
∗xv ⊗

⊗

v∈M∞
F

d∗xv.

Let d∗xAF
:= d∗x⊗nAF

be the product Haar measure on (A×
F )

n.
Lemma 5.4.3.4. — One has the following equality of the measures on
[T (a)(AF )] = (A×

F )
n/A×

F :

µAF
= d∗xAF

/d∗xAF
.

Proof. — The quotient measure d∗xAF
/d∗xAF

is a Haar measure on
[T (a)(AF )] by Lemma 5.1.4.3. Therefore, it suffices to verify the
equality on a single non-trivial compactly supported function on
[T (a)(AF )] which takes non-negative values. For v ∈ M0

F we set
φv = 1(O×

v )n : (F×
v )

n → C and for v ∈ M∞
F , we let φv : (F

×
v )

n → R≥0 be
a non-trivial continuous function with compact support. The function
φ =

⊗
v φv is continuous by Proposition 5.4.3.2 and compactly supported

(its support is the set
∏

v∈M0
F
(O×

v )
n ×∏v∈M∞

F
supp(φv)). For v ∈ MF

and y ∈ [T (a)(Fv)], let ỹ ∈ (F×
v )

n be a lift of y and for y ∈ [T (a)(AF )],
let ỹ ∈ (A×

F )
n be a lift of y. For v ∈M0

F we define

φ∗
v : [T (a)(Fv)]→ R≥0 y 7→ ζv(1)

∫

F×
v

φv(x · ỹ)d∗x

and for v ∈M∞
F we define

φ∗
v : [T (a)(Fv)]→ R≥0 y 7→

∫

F×
v

φv(x · ỹ)d∗x,

the functions are well defined, continuous compactly supported and of
non-negative values by Proposition 5.1.2.1. By the definition we have
that (d∗x)⊗n/d∗x = µv and thus (d∗x)⊗n/(ζv(1)d

∗x) = ζv(1)
−1µv. Now

by Proposition 5.1.2.2, one has that
∫

(F×
v )n

(φ)(d∗x)⊗n =

∫

[T (a)(Fv)]

(µv/ζv(1))

(
y 7→

∫

F×
v

φ(x · ỹ)ζv(1)d∗x
)

=

∫

[T (a)(Fv)]

(φ∗)(µv/ζv(1))

= ζv(1)
−1

∫

[T (a)(Fv)]

φ∗µv.
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If v ∈M0
F , let us prove that

φ∗
v = 1[T (a)(Ov)].

Indeed, if z 6∈ (qav )
−1([T (a)(Ov)]), then φv(x · z) = 0 for every x ∈ F×

v ,
thus φ∗

v(q
a
v (z)) = 0. If z ∈ (qav )

−1([T (a)(Ov)], then x · z ∈ (O×
v )

n if and
only if v(x) = v(z1)/a1, and thus d∗x({x ∈ F×

v |x ·z ∈ (O×
v )

n}) = ζv(1)
−1,

and hence ζv(1)
∫
F×
v
φv(x · z)d∗x = 1. It follows that φ∗

v = 1[T (a)(Ov)].
We also define

φ∗ : [T (a)(AF )]→ C y 7→
∫

A×
F

φ(xAF
· ỹ)d∗xAF

,

by Proposition 5.1.2.1 it is well defined and continuous function. We
are going to verify that the two measures coincide on φ∗. For every
y ∈ [T (a)(AF )], one has that

φ∗(y) =

∫

A×
F

φ(xAF
· ỹ)d∗xAF

=
∏

v∈M0
F

ζv(1)

∫

[T (a)(Fv)]

φv(x · ỹv)d∗x×
∏

v∈M∞
F

∫

[T (a)(Fv)]

φv(x · ỹv)d∗x

=
∏

v∈MF

φ∗
v(yv),

i.e. φ∗ = ⊗v∈MF
φ∗
v. By Proposition 5.1.2.2, we have that

∫

[T (a)(AF )]

(φ∗)(d∗xAF
/d∗xAF

) =

∫

(A×
F )n

φd∗xAF
.
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On the other side, one has that
∫

[T (a)(AF )]

φ∗µAF

=

∫

[T (a)(AF )]

(
⊗v φ∗

v

)
µAF

=
∏

v∈M0
F

ζv(1)
n−1

∫

[T (a)(Fv)]

φ∗
vµv ×

∏

v∈M∞
F

∫

[T (a)(Fv)]

φ∗
vµv

=
∏

v∈M0
F

ζv(1)
n

∫

(F×
v )n

φvd
∗x1 . . . d

∗xn ×
∏

v∈M∞
F

∫

(F×
v )n

φvd
∗x1 . . . d

∗xn

=

∫

(A×
F )n

(⊗vφv)d∗xAF

=

∫

(A×
F )n

φd∗xAF
.

We have verified that the Haar measures d∗xAF
/d∗x and µAF

satisfy that

(d∗xAF
/d∗x)(φ∗) = µAF

(φ∗) > 0,

thus d∗xAF
/d∗x = µAF

. The statement is proven.

5.4.4. — In this paragraph we define and calculate the Tamagawa num-
ber of the “stacky torus” T (a).
Denote by µR the quotient measure (d∗x)⊗n/d∗x on the quotient

Rn
>0/R>0 for the action of R>0 via the proper map t 7→ (taj)j. By 5.1.4.3

the quotient identifies with the quotient group Rn
>0/(R>0)a and µR is a

Haar measure on it.
Definition 5.4.4.1. — We define µ1 to be the Haar measure on
[T (a)(AF )1] normalized by the condition µ1 ⊗ µR = µAF

for the identifi-
cation

[T (a)(AF )]1 × (Rn
>0/(R>0)a) = [T (a)(AF )]

given by the isomorphism (3.4.9.2).
We can write µ1 as a quotient measure:

Lemma 5.4.4.2. — The measure µ1 identifies with the measure
d∗x1

AF
/d∗x1AF

on [T (a)(AF )]1 = (A1
F )

n/A1
F , where the action is given by
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the proper morphism

A1
F → (A1

F )
n (xv) 7→ ((xajv )j)v.

Proof. — We have the following bicomplex (we have written the corre-
sponding measures next to the groups)

K1 K2 K3

(A1
F , dx

1
AF

) (A×
F , d

∗xAF
) (R>0, d

∗x)

((A1
F )

n, (dx1AF
)⊗n) ((A×

F )
n, d∗xAF

) (Rn
>0, (d

∗x)⊗n)

([T (a)(AF )]1, µ1) ([T (a)(AF )], µAF
) ((Rn/(R>0)a, (d

∗x)⊗n/d∗x),

where K1, K2 are K3 are the corresponding kernels, which are com-
pact by Lemma 3.4.8.2, endowed with the probability Haar measures, all
terms that are not drawn and corresponding measures are assumed to
be the trivial groups endowed with the probability Haar measures. All
horizontal sequences and the last vertical sequence are of trivial measure
Euler-Poincaré characteristic. By Lemma 5.4.3.4, the second vertical
sequence is of trivial measure Euler-Poincaré characteristic. By Proposi-
tion 5.1.4.2, it follows that the first vertical sequence is of trivial measure
Euler-Poincaré characteristic. The statement follows.

For every space X, we denote by countX the counting measure on X.
Proposition 3.4.7.2 gives that the image of [T (a)(F )] under the map
[T (a)(i)] (which is induced map from the canonical inclusion (F×)n →
(A×

F )
n) is contained in [T (a)(AF )]1 and that, moreover, it is discrete,

closed and cocompact subgroup of [T (a)(AF )]1.
The kernel of the map of discrete groups

F× → (F×)n t 7→ (taj)j

is the finite group µgcd(a)(F ). We endow [T (a)(F )] = (F×)n/F× with
the unique Haar measure which makes the complex

1→ µgcd(a)(F )→ F× → (F×)n → [T (a)(F )]→ 1
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to have trivial measure Euler-Poincaré characteristics. This measure
is precisely 1

|µgcd(a)(F )| count[T (a)(F )] . The kernel of the homomorphism

[T (a)(i)] : [T (a)(F )] → [T (a)(i)]([T (a)(F )]) is the finite group
|X1(F, µgcd(a))|. We endow the discrete group [T (a)(i)]([T (a)(F )])
with the pushforward measure of the measure 1

|µgcd(a)(F )| count[T (a)(F )] on

[T (a)(F )]. This measure is precisely the measure

|X1(F, µgcd(a))|
|µgcd(a)(F )|

count[T (a)(i)]([T (a)(F )]) .

Definition 5.4.4.3. — We define a Haar measure on the quotient
[T (a)(AF )]1/[T (a)(i)]([T (a)(F )]) by

µ1 := µ1/

( |X1(F, µgcd(a))|
|µgcd(a)(F )|

count[T (a)(i)]([T (a)(F )])

)
.

We define

Tam(T (a))

:= Res(ζF , 1)
−(n−1)∆(F )−

n−1
2 µ1([T (a)(AF )]1/[T (a)(i)]([T (a)(F )])),

where ∆(F ) is the absolute discriminant of F .
Proposition 5.4.4.4. — One has that

Tam(T (a)) = 1.

Proof. — Consider the following bicomplex (where λa stands for the map
t 7→ (taj)j, whatever the domain is; K1, K2 and K3 are the corresponding
kernels and E is the corresponding quotient; and every term that is not
drawn is assumed to be the trivial group):

1 µgcd(a)(F ) K2 K3

1 F× A1
F (A1

F/F
×)

1 (F×)n (A1
F )

n (A1
F )

n/(F×)n

X
1(F, µgcd(a)) [T (a)(F )] [T (a)(AF )]1 E,

λa λa λa
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Endow every finite group in the bicomplex with the probability Haar
measure. The group K2 is compact by Lemma 3.4.8.2, we endow it
with the probability Haar measure. The group K3 is compact, as it
is a closed subgroup of the compact group A1

F/F
× and we endow it

with the probability Haar measure. Endow the discrete groups F× and
(F×)n with the counting measures. Endow A1

F , (A
1
F )

n and [T (a)(AF )]1
with the measure d∗x1AF

, (d∗x1AF
)⊗n and µ1, respectively. Finally, endow

(A1
F/F

×), (A1
F )

n/(F×)n and E with the unique Haar measures so that the
corresponding rows are of trivial measure Euler-Poincaré characteristics,
that is (A1

F/F
×) and (A1

F )
n/(F×)n are endowed with the corresponding

quotient measures, while E is endowed with the measure µ1. We apply
Proposition 5.1.4.2. The measure Euler-Poincaré characteristics of every
row is 1. The measure Euler-Poincaré characteristics of the first three
columns is 1. Proposition 5.1.4.2 gives that the measure Euler-Poincaré
characteristics of the fourth column is 1. It follows from Part (2) of
Lemma 5.1.4.1 that

µ1(E) = µ1([T (a)(AF )]1/[T (a)(i)]([T (a)(F )]))

=
d∗x1AF

(A1
F/F

×)n

d∗x1AF
(A1

F/F
×)

= d∗x1AF
(A1

F/F
×)n−1

= (Res(ζF , 1)∆(F )
1
2 )n−1,

where we have used that d∗x1AF
(A1

F/F
×) = Res(ζF , 1)∆(F )

1
2 (see e.g.

[58, Page 116]). We obtain that

Tam(T (a)) = 1.

Remark 5.4.4.5. — When a = 1, the result is a classical result that
the Tamagawa number of a split torus is 1 ([46, Theorem 3.5.1]).
Remark 5.4.4.6. — When n = 1, Oesterlé has calculated in [43,
Proposition 2] the volume of the fundamental domain for the action
of the subgroup [T (a)(i)([T (a)(F )])] on [T (a)(AF )]. The volume of
the fundamental domain is not 1, because Oesterlé has used a different
normalization of the Haar measure.





CHAPTER 6

ANALYSIS OF CHARACTERS OF
[T (a)(AF )]

In this chapter, we will study the characters of [T (a)(AF )]. Later in
the chapter, we recall several facts on the estimates of L-functions.

6.1. Characters of A×
F

We are going to define two “norms” for Hecke characters and we are
going to compare them for the characters vanishing on certain compact
subgroups. Later we establish that there are only finitely many characters
vanishing on such subgroup of bounded “norm”. The analogues for the
characters of [T (a)(AF )] are stated and proven in 6.2.

6.1.1. — In this paragraph we recall several facts about characters of
locally compact topological groups.

If G is a locally compact topological group, by a character of G we
mean a continuous homomorphism G → S1. Let G∗ be the group of
characters of G ([5, Chapter II, §1, n0 1, Definition 2]). The group G∗

is locally compact by [5, Chapter II, §1, n0 1, Corollary 2]. A morphism
of topological groups φ : G → G′ induces a continuous homomorphism
φ∗ : (G′)∗ → G∗, φ∗(χ) = χ ◦ φ (see [5, Chapter II, §1, n0 7]). If A is a
subset of G, by A⊥ we denote the subgroup of G∗ given by the characters
vanishing on A.
Proposition 6.1.1.1 ([5, Chapter II, §1, n0 7, Theorem 4])

Let G be a commutative Hausdorff locally compact group. Let i : G1 →
G be the inclusion of a closed subgroup G1 into G. Let G2 = G/G1 and
let p : G→ G2 be the quotient map. In the sequence

G∗
2

p∗−→ G∗ i∗−→ G∗
1,
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the homomorphism p∗ is an isomorphism of G∗
2 onto G

⊥
1 and i∗ is a strict

homomorphism G∗ → G∗
1 of kernel G⊥

1 (it follows that G⊥
1 is closed).

Occasionally, we may identify G∗
2 with its image G⊥

1 under the ho-
momorphism p∗. Recall also that if G = H1 × · · ·Hn, the canonical
homomorphism G∗ → (H1)∗× · · ·× (Hn)∗ is an isomorphism of topolog-
ical groups ([5, Chapter II, §1, n0 7, Corollary 5]) and we may identify
G∗ with (H1)∗ × · · · × (Hn)∗ using this isomorphism.

6.1.2. — We define two “norms” of Hecke characters and we compare
them. For v ∈M∞

F , in 5.2.1 we have defined

Fv,1 = {x|x ∈ F×
v : |x|v = 1}.

We have furthermore established that

ρ̃v : R>0 × Fv,1 ∼−→ F×
v (r, z) 7→ ρv(r)z,

where ρv : R>0 → F×
v is defined by ρv(r) = r1/nv , is an isomorphism of

abelian topological groups. For a character χv ∈ (F×
v )

∗, we set m(χv) to
be the unique real number m such that the character χv ◦ ρ̃v : R>0 → S1

is given by r 7→ rim. If v is a real place, we set ℓ(χv) to be 0 ∈ Z if the
character χv ◦ ρ̃v : Fv,1 → S1 is the trivial character, otherwise we set
ℓ(χv) = 1 ∈ Z (the only reason why we let ℓ have values in Z for v real
is to speak of norms of vectors). If v is a complex place, we set ℓ(χv) to
be the unique integer ℓ such that χv ◦ ρ̃v : Fv,1 → S1 is given by z 7→ zℓ.
Let A×

F be the group of ideles of F and let A1
F be the subgroup of A×

F

given by (xv)v which satisfy that
∏

v |xv|v = 1. For a character χ ∈ (A×
F )

∗,
let us define

||χ||discrete := max
v∈M∞

F

(||ℓ(χv)||),

||χ||∞ := max
v∈M∞

F

(||m(χv)||).

Let K0
max be the topological group

∏
v∈M0

F
O×
v . For an open subgroup

K ⊂ K0
max, we let AK be the subgroup of (A1

F )
∗ given by the characters

vanishing on F× (technically we mean i(F×)) and on the compact sub-
group K ×∏v∈M∞

F
{1} ⊂ (A1

F )
∗. By the abuse of notation, we may write

sometimes K for what is technically K ×∏v∈M∞
F
{1}. The group K0

max

is compact, therefore, the subgroup K is of finite index in K0
max.

The following lemma will be used on several occasions:
Lemma 6.1.2.1. — Let G be an abelian group and let A and B be two
subgroups such that A ⊂ B.
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1. Let H ⊂ G be a subgroup. The homomorphism B/A → (B +
H)/(A + H) induced from A-invariant homomorphism B → (B +
H)/(A+H) is surjective.

2. Suppose G is a topological group and that (B : A) is finite. Then
(A⊥ : B⊥) is finite and (A⊥ : B⊥) ≤ (B : A).

Proof. — 1. We have the following commutative diagram, with first
two horizontal and all three vertical sequences exact:

0 A B B/A 0

0 A+H B +H (B +H)/(A+H) 0

(A+H)/A (B +H)/B E 0,

where E = coker((B/A) → (B + H)/(A + H)). By snake lemma,
the third horizontal sequence is exact. By the second isomorphism
theorem, the homomorphism (A + H)/A → (B + H)/B identifies
with the homomorphism H/(H ∩ A) → H/(H ∩ B) induced from
the inclusion (H∩A) ⊂ (H∩B), hence is surjective and thus E = 0.
It follows that B/A→ (B +H)/(A+H) is surjective.

2. The kernel of the homomorphism

A⊥ → HomZ(B, S
1) χ 7→ χ|B

is the subgroup B⊥. We deduce an injective homomorphism

(6.1.2.2) A⊥/B⊥ → HomZ(B, S
1).

The image of the homomorphism (6.1.2.2) is contained in the
subgroup of HomZ(B, S

1) given by the homomorphisms which
vanish on A, i.e. in the image of the canonical homomorphism
HomZ(B/A, S

1)→ HomZ(B, S
1). It follows that

(A⊥ : B⊥) ≤ |HomZ(B/A, S
1)| = (B : A).

Corollary 6.1.2.3. — One has that

(K0
max : K) ≥ ((F×K0

max) : (F
×K)) ≥ (AK : AK0

max
).
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Proof. — To obtain the first inequality, we apply Lemma 6.1.2.1 for G =
A1
F , A = K, B = K0

max and H = F×. It follows that the homomorphism
from Lemma 6.1.2.1

K0
max/K → (F×K0

max/F
×K)

is surjective, thus (K0
max : K) ≥ ((F×K0

max) : (F×K)). The second
inequality is the case of Lemma 6.1.2.1 for G = A1

F , A = F×K and
B = F×K0

max.

Lemma 6.1.2.4. — Let K ⊂ K0
max be an open subgroup. The group AK

is finitely generated and its rank is at most r2, where r2 is the number of
complex places of F .
Proof. — The group AK0

max
is the group of Hecke characters (A1

F/F
×)→

S1 which are unramified at the finite places of F and we deduce that the
kernel of the homomorphism

φ : AK0
max
→

∏

v∈M∞
F

(Fv,1)
∗ χ 7→

∏

v∈M∞
F

χv|Fv,1

is given by the unramified Hecke characters (A1
F/F

×)→ S1, hence is fi-
nite (they are canonically identified with the characters of A1

F/(F
×Kmax),

where the subgroup Kmax ⊂ A1
F is given by the norm 1 elements at ev-

ery place; the group A1
F/(F

×Kmax) is finite by [49, Theorem 5-18] and
hence its character group is finite). The group (

∏
v∈M∞

F
(Fv,1)

∗) is finitely

generated and of rank r2, because F
∗
v,1 is of order 2 if v is real and is an

infinite cyclic group if v is complex. It follows that

rk(AK0
max

) = rk(Im(φ)) ≤ r2.

By Corollary 6.1.2.3, one has that AK0
max

is of finite index in AK , thus
one has that rk(AK) = rk(AK0

max
) ≤ r2. The statement is proven.

The following lemma will be used in the proof of Proposition 6.1.2.6
Lemma 6.1.2.5. — Let K be an open subgroup of K0

max. Consider the
homomorphism

ℓC : (A1
F/F

×)∗ → ZM
C
F χ 7→ (ℓ(χv))v∈MC

F

The group ker(ℓC) ∩ AK is finite.
Proof. — Firstly, let us establish that ker(ℓC)∩AK0

max
is finite. The group

ker(ℓC) (respectively, the group AK0
max

) is the group of Hecke characters
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(A1
F/F

×)→ S1 which are unramified at the complex (respectively, at the
finite) places of F . Hence, the kernel of the map

ker(ℓC) ∩ AK0
max
→

∏

v∈MR
F

(Fv,1)
∗ χ 7→

∏

v∈MR
F

χv|Fv,1

is given by the unramified Hecke characters (A1
F/F

×) → S1, therefore
is finite. As F ∗

v,1 is a cyclic group of order 2, the group
∏

v∈MR
F
(Fv,1)

∗ is

finite and we conclude that ker(ℓC)∩AK0
max

is finite. Now let us establish
that ker(ℓC)∩AK0

max
is of finite index in ker(ℓC)∩AK . By applying snake

lemma to the “snake” diagram:

1

1 ker(ℓC) ∩ AK0
max

AK0
max

lC(AK0
max

) 1

1 ker(ℓC) ∩ AK AK ℓC(AK) 1

E AK/AK0
max
,

ℓC

ℓC

where E = (ker(ℓC) ∩ AK)/(ker(ℓ
C) ∩ AK0

max
) we get an exact sequence

1→ E → AK/AK0
max
.

By Corollary 6.1.2.3, one has that AK/AK0
max

is finite, thus E = (ker(ℓC)∩
AK)/(ker(ℓ

C) ∩ AK0
max

) is finite. Using the fact that ker(ℓC) ∩ AK0
max

is
finite, we deduce that ker(ℓC) ∩ AK is finite.

The main proposition of this paragraph is the following one.
Proposition 6.1.2.6. — For every open subgroup K ⊂ K0

max, there
exists a constant C = C(K) > 0 such that

||χ||∞ ≤ C||χ||discrete
for all χ ∈ AK.
Proof. — Let K be an open subgroup of K0

max. Let ℓC : (A1
F/F

×)∗ →
ZM

C
F = Zr2 be as in Lemma 6.1.2.5. To simplify notation, in the rest of the

proof we will write ℓC for ℓC|AK
. The abelian group ℓC(AK) is finitely gen-

erated and free, let us pick χ1, . . . , χk ∈ AK such that ℓC(χ1), . . . , ℓ
C(χk)
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is a basis of ℓC(AK). Obviously, k ≤ |MC
F | = r2. One has an isomorphism

Zk → ℓC(AK) (d1, . . . , dk) 7→ d1ℓ
C(χ1) + · · ·+ dkℓ

C(χk).

One can pick a section to the surjective homomorphism ℓC : AK →
ℓC(AK), we obtain an induced splitting

ℓC(AK)⊕ ker(ℓC)
∼−→ AK .

We deduce an isomorphism

(6.1.2.7) Zk ⊕ ker(ℓC)
∼−→ AK .

A character χ ∈ AK writes as χ = p2(χ)χ
q1(p1(χ))
1 · · ·χqk(p1(χ))k . Let us

firstly estimate ||χ||∞ for χ ∈ AK . The group ker(ℓC) is finite by Lemma
6.1.2.5 and let r be its order. For every χ ∈ ker(ℓC) one has that

0 = (m(1v))v = (m(χrv))v = (rm(χv))v,

hence m(χv) = 0 for every v ∈ M∞
F . Now, we can make the following

estimate for every character χ ∈ AK :

||χ||∞ = max
v∈M∞

F

|m(χv)|

= max
v∈M∞

F

|m((p2(χ))v) +m(χ1v)q1(p1(χ)) + · · ·m(χkv)qk(p1(χ))|

= max
v∈M∞

F

|m(χ1v)q1(p1(χ)) + · · ·m(χkv)qk(p1(χ))|

≤ max
v∈M∞

F ,i=1,...,k
|m(χiv)| max

i=1,...,k
|qi(p1(χ))|

= C0 max
i=1,...,k

|qi(p1(χ))|,

where we have shortened C0 = maxv∈M∞
F ,i=1,...,k |m(χiv)|. Let us now

estimate ||χ||∞ for χ ∈ AK . For every χ ∈ AK we have that:

||χ||discrete = max
v∈M∞

F

|ℓ(χv)|

≥ max
v∈MC

F

|ℓ(χv)|

= max
v∈MC

F

|ℓ
(
(p2(χ))vχ

q1(p1(χ))
1v · · ·χqk(p1(χ))kv

)
|

= max
v∈MC

F

|ℓ((p2(χ))v) + q1(p1(χ))ℓ(χ1v) + · · ·+ qk(p1(χ))ℓ(χkv)|

= max
v∈MC

F

|q1(p1(χ))ℓ(χ1v) + · · ·+ qk(p1(χ))ℓ(χkv)|.



6.1. CHARACTERS OF A×
F 193

Tensoring the injective map ℓC|Zk with the flat Z-module R gives an
injective map Rk → Rr2 . The pullback of the norm (xv)v∈MC

F
7→ maxv |xv|

on Rr2 along this map is given by

x 7→ max
v∈MC

F

|x1ℓ(χ1v) + · · · xkℓ(χk,v)|,

and is a norm on Rk. One can find, hence, a constant C1 > 0 such that

C1 max
v∈MC

F

|x1ℓ(χ1v) + · · ·+ xkℓ(χk,v)| ≥ max
i=1,...,k

|xk|

for every x ∈ Rk. Thus for every χ ∈ AK one has that

C1||χ||discrete ≥ max
i=1,...,k

|qk(p1(χ))|.

Let us now prove the wanted inequality. We set C = C1C0. For every
χ ∈ AK , we have that

C||χ||discrete ≥ C0C1||χ||discrete ≥ C0 max
i=1,...,k

|qi(p1(χ))| ≥ ||χ||∞.

The statement is proven.

6.1.3. — In this paragraph, we bound the number of characters χ for
which ||χ||discrete is bounded.
Lemma 6.1.3.1. — Let hF = |Cl(F )| be the class number of F . For
every open subgroup K ⊂ K0

max and any C > 0, there are no more than

hF (K
0
max : K)2r1(2C + 1)r2

characters χ ∈ AK for which ||χ||discrete ≤ C (recall that r1 and r2 are
the numbers of real and complex places of F , respectively).
Proof. — Let K ⊂ K0

max be an open subgroup. For v ∈ MC
F , we define

ℓ̃(χv) := ℓ(χv), and for v ∈MR
F we define ℓ̃(χv) ∈ Z/2Z by

ℓ̃(χv) :=

{
0 if χv|Fv,1 is the trivial character on Fv,1
1 otherwise.

(6.1.3.2)

(The difference between ℓ and ℓ̃ is of technical nature, recall that we have
defined ℓ(χv) ∈ Z for v ∈MR

F .) For a character χ ∈ AK , the r1+r2-tuple
given by (ℓ(χv))v∈M∞

F
∈ (Z/2Z)r1 ×Zr2 will be called the signature of χ.

Let us estimate the number of characters with fixed signature. Let
(ℓv)v∈M∞

F
∈ (Z/2Z)r1 × Zr2 be a signature of some character δ ∈ AK .

Then the characters in AK having (ℓv)v∈M∞
F

for the signature are in a
bijection with the characters in AK having (0)v∈M∞

F
for the signature.
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Indeed, a bijection between the two sets is given by χ 7→ χδ−1. The
group of χ ∈ AK having (0)v∈M∞

F
for signature is given by the subgroup

(F×(K ×∏v∈M∞
F
Fv,1))

⊥ of (A1
F )

∗. Lemma 6.1.2.1 gives that

(K0
max : K) ≥

((
F×(K0

max ×
∏

v∈M∞
F

Fv,1)
)
:
(
F×(K ×

∏

v∈M∞
F

Fv,1)
))

≥
(
(F×(K ×

∏

v∈M∞
F

Fv,1))
⊥ : (F×(K0

max ×
∏

v∈M∞
F

Fv,1))
⊥
)
.

The group (F×(K0
max ×

∏
v∈M∞

F
Fv,1))

⊥ is the group of the unramified

Hecke characters (A1
F/F

×)→ S1 and its order is hF . It follows that the
number of characters χ ∈ AK having (0)v∈M∞

F
for the signature is

|(F×(K ×
∏

v∈M∞
F

Fv,1))
⊥| ≤ hF (K

0
max : K).

Let us estimate the number of signatures when ||·||discrete is bounded.
Note that if for C > 0 and a character χ ∈ AK one has ||χ||discrete < C,
then the signature of χ lies in (Z/2Z)r1 × ([−C,C]r2 ∩ Zr2). Thus the
number of signatures can be bounded by 2r1(2C + 1)r2 .
It follows that the number of characters χ ∈ AK such that
||χ||discrete ≤ C is bounded by hF (K

0
max : K)2r1(2C + 1)r2 . The

statement is proven.

6.2. Results for the characters of [T (a)(AF )]

Let n ≥ 1 be an integer and let a ∈ Zn≥1. We make analogous estimates
to those in 6.1 for characters of [T (a)(AF )]. The results are simple
consequences of the corresponding results in 6.1

6.2.1. — In this paragraph we explain our notation and define “norms”
for the characters of [T (a)(AF )] and compare them for characters van-
ishing on certain compact subgroups of [T (a)(AF )]. In this paragraph,
we discuss local characters.

Recall that the subgroups (F×
v )a ⊂ (F×

v )
n and (A×

F )a ⊂ (A×
F )

n are
closed by Proposition 3.3.4.1 and Lemma 3.4.2.2, respectively. Recall
that [T (a)(Fv)] identifies with the quotient group (F×

v )
n/(F×

v )a by
Proposition 3.3.4.1. Recall that [T (a)(AF )] identifies with the quotient
group (A×

F )
n/(A×

F )a by Lemma 3.4.2.2.
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Lemma 6.2.1.1. — The subgroup (F×
v )

⊥
a is the subgroup

{(χj)j|
∏

j

χ
aj
j = 1}

of ((F×
v )

∗)n. Moreover, (F×
v )

⊥
a is closed in ((F×

v )
∗)n, and it is the image

of the pullback homomorphism [T (a)(Fv)]
∗ → ((F×

v )
n)∗. The subgroup

(A×
F )

⊥
a is the subgroup {(χj)j|

∏
j χ

aj
j = 1} of ((A×

F )
∗)n. Moreover, (A×

F )
⊥
a

is closed in ((A×
F )

∗)n, and it is the image of the pullback homomorphism
[T (a)(AF )]

∗ → ((A×
F )

∗)n.
Proof. — Note that if χ = (χ1, . . . , χn) is a character of ((F×

v )
∗)n which

vanishes on (F×
v )a = {(taj)j|t ∈ F×

v }, then for every t ∈ F×
v , one has that

1 = χ1(t
a1) · · ·χn(tan) = χ1(t)

a1 · · ·χn(t)an .

The first claim follows. The facts that (F×
v )

⊥
a is closed and that it is the

image of the pullback homomorphism follow from Proposition 6.1.1.1.
Analogous argument shows the claims about (A×

F )
⊥
a .

Let v be a place of F. For j ∈ {1, . . . , n}, we let δjv : F
×
v → (F×

v )
n be

the inclusion

x 7→ ((x)j, (1)i 6=j).

If χ ∈ [T (a)(Fv)]
∗ is a character we let χ(j) be the character χ ◦ qav ◦ δj :

F×
v → S1. The lemma from above gives that

∏n
j=1(χ

(j))aj = 1 for every

χ ∈ [T (a)(Fv)]
∗. We define m(χ) := (m(χ(j)))j and ℓ(χ) = (ℓ(χ(j)))j.

If χ is a character of [T (a)(AF )], for j ∈ {1, . . . , n}, we will denote by
δjAF

the inclusion x 7→ ((x)j, (1)i 6=j) and by χ(j) the character χ◦qaAF
◦δjAF

:

A×
F → S1. The lemma from above gives that

∏n
j=1(χ

(j))aj = 1 for every

χ ∈ [T (a)(AF )]
∗. Moreover, it is immediate that

χ|[T (a)(i)]([T (a)(F )]) = 1 =⇒ for j = 1, . . . , n one has χ(j)|i(F×) = 1.

For a character χ ∈ [T (a)(AF )]
∗, we denote by χv the restriction

χ|[T (a)(Fv)].
Remark 6.2.1.2. — Let χ be a character of [T (a)(AF )]. A priori

the notation χ
(j)
v can make confusion as it may design (χ(j))|F×

v
and

(χ|[T (a)(Fv)])
(j). The commutativity of the following diagram shows that
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no confusion arises:

F×
v A×

F

(F×
v )

n (A×
F )

n

[T (a)(Fv)] [T (a)(AF )].

qav qa
AF

δj
AFδjv

Namely, for a character χ, the character (χ(j))v is the pullback of χ for
the composite by the two vertical homomorphisms on the right and the
most upper horizontal homomorphism, while (χv)

(j) is the pullback for
the lowest horizontal and then two left vertical homomorphisms.

For a character χ ∈ [T a(AF )]
∗, let us define

||χ||discrete := max
v∈M∞

F

(||ℓ(χv)||),

||χ||∞ := max
v∈M∞

F

(||m(χv)||).

Note that

||χ||discrete = max
v∈M∞

F

(||ℓ(χv)||) = max
v∈M∞

F

(
max
j=1,...,n

(|ℓ(χ(j)
v )|)

)

= max
j=1,...,n

(
max
v∈M∞

F

|ℓ(χ(j)
v )|
)

= max
j=1,...,n

||χ(j)||discrete;

and analogously

||χ||∞ = max
j=1,...,n

||χ(j)||∞.

Lemma 6.2.1.3. — Suppose that n = 1 and a1 = a ∈ Z≥1. For every
χ ∈ [T (a)(AF )]

∗, one has that ||χ||discrete ≤ 1 and that ||χ||∞ = 0.
Proof. — Let χ ∈ [T (a)(AF )]

∗. To simplify notation, in this proof we
write χ̃ for χ(1). For every χ ∈ [T (a)(AF )]

∗, one has that χa = 1. It
follows that

(0)v∈M∞
F

= (m(1))v∈M∞
F

= (m((χ̃v)
a))v∈M∞

F
= (am((χ̃v)))v∈M∞

F
,

hence (m(χ̃av))v∈M∞
F

= (0)v∈M∞
F
, and thus ||χ̃||∞ = 0. We obtain that

||χ||∞ = ||χ̃||∞ = 0.
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We have that

||χ||discrete = ||χ̃||discrete ≤ max(1, max
v∈MC

F

(ℓ(χv))).

For every v ∈ MC
F , one has that 0 = ℓ(1) = ℓ(χ̃a) = aℓ(χ̃v), hence

ℓ(χ̃v) = 0. We deduce that ||χ||discrete ≤ 1.

6.2.2. — In this paragraph we present analogous results to those of 6.1
for the characters of [T (a)(AF )].
Let Ka

max be the topological group given by

Ka
max :=

∏

v∈M0
F

[T (a)(Ov)].

For an open subgroup K of Ka
max, we let AK be the subgroup of

[T (a)(AF )1]
∗ given by the characters vanishing on [T (a)(i)]([T (a)(F )])

and on K ×∏v∈M∞
F
{1} (we may simply write K for what is technically

K×∏v∈M∞
F
{1}). The group Ka

max is compact, therefore, the subgroup K

is of finite index in Ka
max. We present another corollary of Lemma 6.1.2.1.

Corollary 6.2.2.1. — Let K ⊂ Ka
max be an open subgroup. One has

that

(Ka
max : K) ≥ ([T (a)(i)]([T (a)(F )])Ka

max : [T (a)(i)]([T (a)(F )])K)

≥ (AK : AK0
max

).

Proof. — The left inequality follows from Lemma 6.1.2.1 for G =
[T (a)(AF )]1, A = K, B = Ka

max and H = [T (a)(i)]([T (a)(F )]). The
right inequality follows from Lemma 6.1.2.1 for G = [T (a)(AF )]1,
A = [T (a)(i)]([T (a)(F )])K and B = [T (a)(i)]([T (a)(F )])Ka

max.

Note that

qaAF

(
(K0

max)
n
)
= (qav ((O×

v )
n))v = ([T (a)(Ov)])v = Ka

max.

If K ⊂ Ka
max is an open subgroup, let us set

K̃ =
n⋂

j=1

(δjAF
)−1(qaAF

|(K0
max)

n)−1(K),

it is an open subgroup of K0
max. For a character χ ∈ AK , one has that

χ(j)|K̃ = (χ ◦ qaAF
◦ δjAF

)|K̃ = 1.

The following statements are simple corollaries of corresponding state-
ments for characters of A1

F .
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Corollary 6.2.2.2. — The group AK is finitely generated and of rank
at most nr2.
Proof. — Recall that by Lemma 6.1.2.4, the abelian group AK̃ is finitely
generated and of rank at most r2. The image of AK under the injective
homomorphism

[T (a)(AF )]
∗
1 → ((A1

F )
n)∗ = ((A1

F )
∗)n χ 7→ χ ◦ qaAF

= (χ(j))j

lies in (AK̃)
n. It follows that AK is finitely generated and of rank at most

nr2.

Corollary 6.2.2.3. — For every compact group K ⊂ Ka
max, there ex-

ists a constant C = C(K) > 0 such that for all χ ∈ AK one has that

||χ||∞ ≤ C||χ||discrete.
Proof. — Proposition 6.1.2.6 gives that there exists constant C =

C(K̃) > 0 such that for every χ ∈ AK̃ one has that

||χ||∞ ≤ C||χ||discrete.
For χ ∈ AK we deduce that:

||χ||∞ = max
j=1,...,n

||χ(j)||∞ ≤ C max
j=1,...,n

||χ(j)||0 = C||χ||discrete.

It follows that C(K) = C(K̃) is the wanted constant.

Corollary 6.2.2.4. — For every open subgroup K ⊂ Ka
max and every

C > 0, there are no more than

(hF (K
0
max : K̃)2r1(2C + 1)r2)n

characters χ ∈ AK for which ||χ||discrete ≤ C.
Proof. — Let K ⊂ Ka

max be an open subgroup. Lemma 6.1.3.1 gives that
for every C > 0, there are no more than

hF (K
0
max : K̃)2r1(2C + 1)r2

characters in AK̃ having ||χ||discrete ≤ C. A character χ ∈ AK is com-

pletely determined by the characters χ(j) ∈ AK̃ for j = 1, . . . , n. It
follows that there are no more than

(hF (K
0
max : K̃)2r1(2C + 1)r2)n

characters χ ∈ AK having ||χ||discrete = maxj(||χ(j)||discrete) ≤ C.

By Lemma 6.2.1.3, we have that when n = 1 and a = a1 ∈ Z≥1, we
have that ||χ||discrete ≤ 1. We deduce that
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Corollary 6.2.2.5. — Suppose that n = 1 and that a = a1 ∈ Z≥1. For
every open subgroup K ⊂ Ka

max, the group AK is finite.

6.3. Estimates of Rademacher

In this section we recall some bounds on the growth of L functions of
Hecke characters in vertical strips. If v ∈M0

F , for s ∈ C and χv ∈ (F×
v )

∗,
one defines

Lv(s, χv) :=
1

1− |πv|svχv(πv)
,

and one writes ζv(s) for Lv(s, 1). For a character χ = (χv)v : A×
F → S1,

we set
L(s, χ) :=

∏

v∈M0
F

Lv(s, χv),

and we denote
ζF (s) = L(s, 1).

6.3.1. — In this paragraph we restrict ourselves to the characters of A1
F .

The corresponding estimates for the characters of A×
F will be established

in 6.3.2.
Rademacher in [48, Theorem 5] establishes that the growth of the L-

function of a character in vertical strip is moderate (i.e. bounded by
a polynomial). As the notation there is cumbersome, let us quote the
variant given as [39, Theorem 14.A, Chapter III] as part (1) of the next
theorem. Part (2) is [48, Theorem 3].
Theorem 6.3.1.1. — Let 0 < η ≤ 1

2
and let χ =

∏
v χv :

(A1
F/F

×) → S1 be a Hecke character. Let cond(χ) be the conduc-
tor ideal of χ. We set dF = NF/Q(discF/Q).

1. (Moreno, [39, Theorem 14.A, Chapter III]) Suppose χ is not the
trivial character. One has that

|L(s, χ)| ≤ ζF (1+η)

(
dFNF/Q(cond(χ))

(2π)[F :Q]

∏

v∈M∞
F

|1 + s+m(χv)|nv

) 1+η−ℜ(s)
2

in the strip −η ≤ ℜ(s) ≤ 1 + η.
2. (Rademacher, [48, Theorem 3]) One has that

∣∣∣∣
ζF (s)(1− s)

1 + s

∣∣∣∣ ≤ 3ζF (1 + η)[F :Q]

(
dF

( |1 + s|
2π

)[F :Q]) 1+η−ℜ(s)
2
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in the strip −η ≤ ℜ(s) ≤ 1 + η.

The following proposition is a corollary of Theorem 6.3.1.1. A similar
version, but only for unramified Hecke characters, has been invoked in
the analysis of height zeta functions in [2, Theorem 3.2.3], [17, Corollary
4.2.3], etc. As our metrics at infinite places are not invariant for the
maximal compact subgroups, we present the following version.
Proposition 6.3.1.2. — Let K ⊂ K0

max =
∏

v∈M0
F
O×
v be an open

subgroup. For every ǫ > 0, there exist C = C(ǫ) > 0 and δ = δ(ǫ) > 0
such that the following conditions are satisfied whenever ℜ(s) ≥ 1− δ :
1. for every non trivial Hecke character χ : (A1

F/F
×) → S1 which

vanishes on K ⊂ K0
max one has

(6.3.1.3) |L(s, χ)| ≤ C
(
(1 + |ℑ(s)|)(1 + ||χ||∞)

)ǫ
;

2. one has

(6.3.1.4)

∣∣∣∣
(s− 1)ζF (s)

s

∣∣∣∣ ≤ C(1 + |ℑ(s)|)ǫ.

Proof. — We may assume that 1
6
> ǫ > 0. We set

C = 27ζF
(
1 +

ǫ

[F : Q]

)[F :Q]
d

1
[F :Q]

F (K0
max : K)

1
[F :Q] .

We are going to verify that C and δ = ǫ
2[F :Q]

verify the above conditions.

Let us prove the estimates (6.3.1.3) and (6.3.1.4) in the domain ℜ(s) >
4
3
. For a non-trivial character χ one can estimate

|L(s, χ)| ≤ ζF (ℜ(s)) ≤ ζF
(4
3

)
≤ ζF

(
1 +

ǫ

[F : Q]

)
≤ C.

One also has∣∣∣∣
(s− 1)L(s, 1)

s

∣∣∣∣ ≤
∣∣∣∣1−

1

s

∣∣∣∣ζF
(
4

3

)
≤ 7

4
ζF

(
4

3

)
≤ 7

4
ζF (1 +

ǫ

[F : Q]
) ≤ C.

It follows that the estimates (6.3.2.2) and (6.3.2.3) are satisfied in the
domain ℜ(s) > 4

3
.

Now we prove the estimates (6.3.1.3) and (6.3.1.4) in the domain 1−
1

2[F :Q]
ǫ < ℜ(s) < 4

3
. Let us set η(s) = 1

[F :Q]
ǫ+ ℜ(s)− 1, we have that

0 <
ǫ

2[F : Q]
< η(s) <

1

6[F : Q]
+

4

3
− 1 ≤ 1

2
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and that −η(s) ≤ 0 ≤ ℜ(s) < 1 + η(s). We will apply Theorem 6.3.1.1
for s and η = η(s). The following estimate will be used: for every s in
the domain 1− 1

2[F :Q]
< ℜ(s) < 4

3
one has

(6.3.1.5) 1 + |s| ≤ 1 + |ℜ(s)|+ |ℑ(s)| < 3(1 + |ℑ(s)|).
Let us firstly prove the estimate for the non-trivial characters. Using

the first part of Theorem 6.3.1.1, we deduce that for every χ 6= 1 in the
domain 1− ǫ

2[F :Q]
< ℜ(s) < 4

3
one has

|L(s, χ)|

≤ |ζF (1 + η(s))|[F :Q]

(
dFNF/Q(cond(χ))

(2π)[F :Q]

∏

v∈M∞
F

|1 + s+m(χv)|nv

) ǫ
2[F :Q]

≤ ζF (1 +
ǫ

2[F : Q]
)[F :Q]×

×
(
dFNF/Q(cond(χ))

∏

v∈M∞
F

(1 + |s|)2(1 + |m(χv)|)2
) ǫ

2[F :Q]

≤ ζF (1 +
ǫ

2[F : Q]
)[F :Q]×

×
(
d
1/2
F NF/Q(cond(χ))

1/2
∏

v∈M∞
F

3(1 + |ℑ(s)|)(1 + |m(χv)|)
) ǫ

[F :Q]

≤ ζF (1 +
ǫ

2[F : Q]
)[F :Q]×

× ((dFNF/Q(cond(χ)))
1

2[F :Q]3((1 + |ℑ(s)|)(1 + ||χ||∞)))ǫ.

Moreover, as χv vanishes at Kv, we have

NF/Q(cond(χ)) ≤
∏

v∈M0
F

(O×
v : Kv) ≤ (K0

max : K),

whereKv is the image inO×
v of the v-adic projection ofK. The inequality

(6.3.1.3) now follows from the observation that

ζF (1 +
ǫ

2[F : Q]
)[F :Q]

(
(dF · (K : K0

max))
1

2[F :Q]3
)ǫ

≤ 27ζF
(
1 +

ǫ

[F : Q]

)[F :Q]
d

1
[F :Q]

F (K0
max : K)

1
[F :Q] = C.
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Let us now consider the trivial character. When ℜ(s) > 1 − ǫ
2[F :Q]

> 1
2
,

one has that

(6.3.1.6)

∣∣∣∣
3s

s− 1

∣∣∣∣ ≥
|s|+ 1

|s− 1| ≥
∣∣∣∣
s+ 1

s− 1

∣∣∣∣.

Using the second part of Theorem 6.3.1.1 and the inequality (6.3.1.6),
we deduce that

∣∣∣∣
(s− 1)ζF (s)

s

∣∣∣∣ ≤ 9ζF (1 +
ǫ

2[F : Q]
)[F :Q]d

ǫ/[F :Q]
F 3ǫ(1 + ||ℑ(s)||)ǫ

(2π)ǫ

≤ C(1 + |ℑ(s)|)ǫ.
The proposition is proven.

6.3.2. — We will now present a bound on the growth in the vertical
strips of the L-function of a general Hecke character χ : (A×

F/F
×)→ S1.

In the equality (3.4.9.1), we have established an identification:

A1
F × R>0

∼−→ A×
F .

For a character χ ∈ (R>0)
∗ we denote by m(χ) the unique real number m

such that χ(x) = xim for every x ∈ R>0. For a character χ ∈ (A×
F )

∗ we
denote by χ0 the restriction χ|A1

F
and we write m(χ) for m(χ|R>0) so that

χ = χ0|·|im(χ).
For a character χ : A×

F → S1, one has that

L(s, χ) = L(s, χ0|·|im(χ)) =
∏

v∈M0
F

Lv(s, (χ0)v|·|im(χ)
v )

=
∏

v∈M0
F

1

1− |πv|sv(χ0)v(πv)|πv|im(χ)
v

=
∏

v∈M0
F

1

1− |πv|s+im(χ)
v (χ0)v(πv)

= L(s+ im(χ), χ0).

The following proposition deduces easily from Proposition 6.3.1.2.
Corollary 6.3.2.1. — Let K ⊂ K0

max be an open subgroup. For every
ǫ > 0, there exist C = C(ǫ) > 0 and δ = δ(ǫ) > 0 such that the following
conditions are satisfied if provided that ℜ(s) ≥ 1− δ :
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1. for every non trivial Hecke character χ : (A×
F/F

×)→ S1 with χ0 6= 1
which vanishes on K ⊂ K0

max one has

(6.3.2.2) |L(s, χ)| ≤ C
(
(1 + |ℑ(s)|)(1 + ||χ0||∞)(1 + |m(χ)|)

)ǫ
;

2. for every Hecke character χ : (A×
F/F

×) → S1 with χ0 = 1 one has
that

(6.3.2.3)

∣∣∣∣
(s+ im(χ)− 1)L(s, χ)

s+ im(χ)

∣∣∣∣ ≤ C((1 + |ℑ(s)|)(1 + |m(χ)|)ǫ.

Proof. — Let ǫ > 0 and let C = C(ǫ) and δ = δ(ǫ) > 0 be given by
Proposition 6.3.1.2.

1. Let χ : A×
F → S1 be a Hecke character which vanishes on K such

that χ0 6= 1. Then χ0 vanishes on K and Proposition 6.3.1.2 gives
that

L(s, χ) = L(s+ im(χ), χ0) ≤ C((1 + |ℑ(s) +m(χ)|)(1 + ||χ0||∞))ǫ

≤ C((1 + |ℑ(s)|)(1 + |m(χ)|)(1 + ||χ0||∞))ǫ.

2. Let χ : A×
F → S1 be a Hecke character with χ0 = 1. Proposition

6.3.1.2 gives that∣∣∣∣
(s+ im(χ)− 1)L(s, χ)

s+ im(χ)

∣∣∣∣ =
∣∣∣∣
(s+ im(χ)− 1)L(s+ im(χ), 1)

s+ im(χ)

∣∣∣∣

=

∣∣∣∣
(s+ im(χ)− 1)ζF (s+ im(χ))

s+ im(χ)

∣∣∣∣
≤ C((1 + |ℑ(s) +m(χ)|))ǫ
≤ C((1 + |ℑ(s)|)(1 + |m(χ)|))ǫ.





CHAPTER 7

FOURIER TRANSFORM OF THE
HEIGHT FUNCTION

In this chapter we analyse the Fourier transform of the height function,
when the functions fv are smooth. Let n be a positive integer and let
a ∈ Zn>0 if n ≥ 2 and a = a1 ∈ Z>1 if n = 1. As before, we use notation
f#
v for the toric a-homogenous function F n

v − {0} → R>0 of weighted
degree |a|. For v ∈ M0

F , we have established in Lemma 4.4.3.1 that f#
v

is locally constant i.e. smooth. Let (fv : F
n
v − {0} → R>0)v be a degree

|a| quasi-toric a-homogenous family of smooth functions. Let S be the
union of the set consisting of the finite places v at which fv is not toric
and the set of the infinite places. Let H = H((fv)v) be the corresponding
height on [P(a)(F )]. If v ∈ MF , for a character χv ∈ [T (a)(Fv)]

∗ and

j ∈ {1, . . . , n}, we denote by χ
(j)
v the character F×

v → S1 given by

x 7→ χv(q
a
v ((1)k=1,...,n

k 6=j
, (x)k)).

7.1. Local transform

In this section we study local Fourier transform.

7.1.1. — In the first paragraph we recall several facts from abstract
harmonic analysis.

Let G be an abelian locally compact group and let dg be a Haar mea-
sure on G. For f ∈ L1(G) and χ ∈ G∗, we denote the Fourier transform
of f by

f̂(χ) :=

∫

G

(fχ)(dg)∗.
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By (dg)∗ or by dg∗ we denote the dual measure on the character group
G∗ (see [5, Chapter II, §1, n0 3, Definition 4]). It is characterized by
the following property: it is the unique Haar measure on G∗ such that
Fourier inversion formula ([5, Chapter II, §1, n0 4, Proposition 4]) is
valid

(7.1.1.1) f(x) =

∫

G∗

χ(g)f̂(χ)(dg∗(χ))

for every x ∈ G.
Lemma 7.1.1.2 ([5, Chapter II, §1, n0 8, Proposition 9])

Let H be a closed subgroup of G and let dh be a Haar measure on H.
The dual measure (dg/dh)∗ on (G/H)∗ = H⊥ of the measure dg/dh on
B/A satisfies that

(dg)∗/((dg/dh)∗) = (dh)∗.

Lemma 7.1.1.3 ([5, Chapter II, §1, n0 9, Proposition 11])
The group G∗ is compact if and only if G is discrete. If dg is the

counting measure on G, then (dg)∗ is normalized by (dg)∗(G∗) = 1.
Proposition 7.1.1.4 ([5, Chapter II, §1, n0 8, Proposition 8])

Let H be a closed subgroup of an abelian locally compact group G. Let
dh and dg be Haar measures on H and G, respectively. Let f ∈ L1(G).
We suppose that

1. the restriction of the Fourier transform f̂ |H⊥ is an element of
L1(H⊥) = L1((G/H)∗),

2. for every x ∈ G, one has that (h 7→ f(xh)) ∈ L1(H),
3. the function x 7→

∫
H
f(xh)dh is a continuous function G→ C.

Then Poisson formula is valid:
∫

H

f(h)dh =

∫

H⊥

(f̂ )(dg/dh)∗.

7.1.2. — In this paragraph we define height pairing.
For v ∈MF , s ∈ Cn, t ∈ F×

v and x ∈ (F×
v )

n one has that

fv(t · x)
a·s
|a|

n∏

j=1

|tajxj|−sjv = |t|a·sv fv(x)
a·s
|a|

n∏

j=1

|t|−ajsjv |xj|−sjv

= fv(x)
a·s
|a|

n∏

j=1

|xj|−sjv
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i.e. for v ∈MF and s ∈ Cn, the continuous function

(7.1.2.1) (F×
v )

n → C, x 7→ fv(x)
a·s
|a|

n∏

j=1

|xj|−sjv

is (F×
v )a-invariant. Let Hv(s,−) : [T (a)(F )] → C be the function

induced from (Fv)a-invariant function (7.1.2.1). For x ∈ [T (a)(F )],
we write Hv(s,x) for what is technically Hv(s, [T (a)(iv)](x)), where
[T (a)(iv)] : [T (a)(i)(F )] → [T (a)(i)(Fv)] is the induced homomor-
phism from (F×)a-invariant homomorphism

(F×)n →֒ (F×
v )

n → [T (a)(Fv)].

Lemma 7.1.2.2. — Let s ∈ Cn.

1. Suppose that x ∈ [T (a)(Ov)]. One has that H#
v (s,x) = 1.

2. Let (xv)v ∈ [T (a)(AF )]. The product

H(s,x) :=
∏

v∈MF

Hv(s,x)

is a finite product.
3. Let x ∈ [T (a)(F )]. One has that

H(x)
a·s
|a| = H(s, [T (a)(i)](x))

(recall that [T (a)(i)] : [T (a)(F )]→ [T (a)(AF )] is the map induced
from (F×)a-invariant map

F×n → (A×
F )

n → [T (a)(AF )],

where the first map is the diagonal inclusion and the second map is
the quotient map).

Proof. — 1. Let x̃ ∈ (O×
v )

n be a lift of x. One has that (O×
v )

n ⊂ (Onv−∏n
j=1 π

aj
v Ov) and thus by Lemma 4.4.3.1, one has f#

v |(O×
v )n = 1. We

deduce that

H#
v (x) = f#

v (x̃)
a·s
|a|

n∏

j=1

|x̃j|−sjv = 1.

2. By definition of [T (a)(AF )] for almost every v ∈ MF one has
that xv ∈ [T (a)(Ov)]. For almost every v, hence, one has that
Hv(s,xv) = H#

v (s,xv) = 1. Thus the product defining H(s,x) is a
finite product.
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3. Let x̃ ∈ F×n be a lift of x. Recall from Lemma 3.4.2.3 that v-
th coordinate of [T (a)(i)](x) is [T (a)(iv)](x). Using the product
formula, we get that

H(s, [T (a)(i)](x)) =
∏

v

Hv(s, [T (a)(iv)](x))

=
∏

v

(
fv(x̃)

a·s
|a|

n∏

j=1

|x̃j|−sjv

)

=

(∏

v

fv(x̃)
a·s
|a|

)∏

v

n∏

j=1

|x̃j|−sjv

=
∏

v

f#
v (x̃)

a·s
|a|

= H(x)
a·s
|a| .

We may write H(s,x) for what is technically H(s, [T (a)(i)](x)).

7.1.3. — In this paragraph we establish that the functions H−1
v (s,−)

are integrable and that their Fourier transforms are holomorphic and
bounded in s.

Let v ∈ MF . In Definition 5.4.1.1, we have defined a Haar measure
on [T (a)(Fv)] = (F×

v )
n/(F×

v )a by (d∗x1 . . . d
∗xn)/d

∗x. If v ∈ M0
F , we

have established in Lemma 5.4.2.1 that µv([T (a)(Ov)]) = ζv(1)
−n+1.

For s ∈ Cn and a character χv ∈ [T (a)(Fv)]
∗ we define formally

Ĥv(s, χv) :=

{
ζv(1)

n−1
∫
[T (a)(Fv)]

Hv(s,−)−1χvµv if v ∈M0
F ,∫

[T (a)(Fv)]
Hv(s,−)−1χvµv if v ∈M∞

F .

In this paragraph, we are going to prove that this integral converges
absolutely when s ∈ Ω>0 and that it is a holomorphic function of s in
this domain. The following result, in a bit weaker form, has been given
as Lemma 8.3 in [18]
Lemma 7.1.3.1. — Let B > 0. For every ǫ > 0, the integral

(7.1.3.2)

∫

{x∈Fv | |x|v≤B}
|x|s−1

v dxv
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converges absolutely and uniformly in the domain s ∈ R>ǫ + iR. The
function that associates to s the value of the integral (7.1.3.2) is holo-
morphic in the domain R>0 + iR.
Proof. — Suppose v ∈ M0

F . Let r be the largest integer satisfying that
(|πv|−1

v )r ≤ B. For every ǫ > 0 and every s ∈ R>ǫ + iR, we have that

∫

{x∈Fv | |x|v≤B}
|x|s−1

v dxv =
r∑

k=−∞

∫

|x|v=(|πv |−1
v )k
|x|s−1

v dx

=
r∑

k=−∞

∫

|x|v=(|πv |−1
v )k
|πv|−k(s−1)

v dx

=
r∑

k=−∞
|πv|−k(s−1)

v dx(π−k
v Ov)

=
r∑

k=−∞
|πv|−ksv

=
∞∑

k=−r
|πv|ksv

= |πv|−rsv

∞∑

k=0

|πv|ksv .

The last series converges absolutely and uniformly in the domain R>ǫ+iR.
Moreover, s 7→ |πv|−rsv

∑∞
k=0 |πv|ksv = |πv |−rs

v

1−|πv |sv
is a holomorphic function in

the domain R>0 + iR. Suppose v is a real place. For every ǫ > 0, we
have that

∫

|x|v≤B
|x|s−1

v dxv =

∫

|x|≤B
|x|s−1dx = 2

∫ B

0

xs−1dx

converges absolutely and uniformly for s ∈ R>ǫ + iR. Moreover,

s 7→ 2

∫ B

0

xs−1dx = 2
xs

s

∣∣∣∣
x=B

x=0

= 2
Bs

s



210 CHAPTER 7. FOURIER TRANSFORM OF THE HEIGHT FUNCTION

is a holomorphic function in s in the domain R>0 + iR. Suppose v is a
complex place. For every ǫ > 0, we have that

∫

|x|v≤B
|x|s−1

v dxv =

∫

x2+y2≤B
(x2 + y2)s−12dxdy

=

∫ 2π

0

∫

r2≤B
r2(s−1)2rdrdφ

= 4π

∫ √
B

0

r2s−1dr

converges absolutely and uniformly for s ∈ R>ǫ + iR. Moreover,

s 7→ 4π

∫ √
B

0

r2s−1dr = 4π
r2s

2s

∣∣∣∣

√
B

r=0

=
2πBs

s

is a holomorphic function in s in the domain R>0 + iR. The statement
is proven.

For y ∈ Rn, we define

Ω>y := {s ∈ Cn|ℜ(s) > y}.

Proposition 7.1.3.3. — For every χv ∈ [T (a)(Fv)]
∗, the integral

defining Ĥv(s, χv) converges absolutely in the domain s ∈ Ω>0. More-
over, for every compact K ⊂ Ω>0, there exists C(K) > 0 such that for
every s ∈ K and every χv ∈ [T (a)(Fv)]

∗, one has that

|Ĥv(s, χv)| ≤ C(K).

Proof. — As our characters are assumed unitary (that is with the
values in S1), by the triangle inequality, it suffices to prove the
statement when χv = 1. Let K ⊂ Ω>0 be a compact. Let ωv
be the quotient measure f−1

v dx1 . . . dxn/d
∗x on (F n

v − {0})/F×
v =

[P(a)(Fv)] (see Definition 5.2.4.1). By Lemma 5.4.1.2, one has an
inequality of the measures Hv(1,−)ωv|[T (a)(Fv)] = µv. We deduce
that Hv(s,−)−1 ∈ L1([T (a)(Fv)], µv) if and only if Hv(s,−)−1 ∈
L1([T (a)(Fv)], Hv(1,−)ωv), i.e. if and only if

Hv(s,−)−1Hv(1,−) ∈ L1([T (a)(Fv)], ωv).
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Moreover, if Hv(s,−)−1 ∈ L1([T (a)(Fv)], µv), then
∫

[T (a)(Fv)]

Hv(s,−)−1µv =

∫

[T (a)(Fv)]

Hv(s,−)−1Hv(1,−)ωv

=

∫

[P(a)(Fv)]

Hv(s,−)−1Hv(1,−)ωv,

where the last equality follows from the fact that ωv([P(a)(Fv)] −
[T (a)(Fv)]) = 0, which we have established in Lemma 5.2.4.2.
In 5.2.2, we have defined a compactly supported function kav :
F n
v − {0} → R≥0 which satisfies that for every x ∈ F n

v − {0}
one has that

∫
F×
v
kav (t · x)d∗t = 1. Proposition 5.1.2.5 gives that

Hv(s,−)−1Hv(1,−) ∈ L1([P(a)(Fv)], ωv) if and only if

((Hv(s,−)−1Hv(1,−)) ◦ qav ) · kav

=
(
fv(x)

−a·s
|a|

n∏

j=1

|xj|sjv · fv(x)
n∏

j=1

|xj|−1
)
· kav

= fv(x)
1−a·s

|a|

n∏

j=1

|xj|sj−1
v · kav

∈ L1(F n
v − {0}, dx1 . . . dxn),

and that if Hv(s,−)−1Hv(1,−) ∈ L1([P(a)(Fv)], ωv), then
∫

[P(a)(Fv)]

Hv(s,−)−1Hv(1,−)ωv

=

∫

Fn
v −{0}

fv(x)
1−a·s

|a|

n∏

j=1

|xj|sj−1
v · kav · f−1

v dx1 . . . dxn

=

∫

supp(kav )

fv(x)
−a·s
|a|

n∏

j=1

|xj|sj−1
v · kavdx1 . . . dxn.

For every s ∈ K, the function x 7→ fv(x)
−a·ℜ(s)

|a| kav (x) is non vanishing
and continuous, moreover it can be uniformly bounded for s ∈ K and
x ∈ supp(kav ). Moreover, as kav is compactly supported, there exists
B > 0, such that

supp(kav ) ⊂ {∀j : |xj|v ≤ B}.
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It follows from Lemma 7.1.3.1 that the integral
∫

|x|v≤B

n∏

j=1

|xj|sj−1
v dx1 . . . dxn =

n∏

j=1

(∫

|x|v≤B
|x|sj−1

v dx

)

converges absolutely and uniformly for ℜ(s) ∈ K. Hence,
∫

supp(kav )

fv(x)
−a·s
|a|

n∏

j=1

|xj|sj−1
v · kavdx1 . . . dxn

=

∫

[P(a)(Fv)]

Hv(s,−)−1Hv(1,−)ωv

=

∫

[T (a)(Fv)]

Hv(s,−)−1µv

converges absolutely and uniformly for ℜ(s) ∈ K. The statement is
proven

Corollary 7.1.3.4. — The function s 7→ Ĥv(s, χv) is holomorphic.
Proof. — We apply the Morera’s criterion. Let ∆ ⊂ Ω>0 be a tri-
angle. By Proposition 7.1.3.3, the function Hv(s,−)−1 is absolutely

µv-integrable and the function Ĥv(−,−) can be uniformly bounded on
∆× [T (a)(Fv)]

∗, we deduce that
∫

∆

Ĥv(s, χv)ds =

∫

∆

ζv(1)
n−1

∫

[T (a)(Fv)]

Hv(s,−)−1χvµvds,

where if v ∈ M∞
F one sets ζv(1) = 1, converges absolutely. By using

Fubini’s theorem, we get that∫

∆

∫

[T (a)(Fv)]

Hv(s,−)−1χvµvds =

∫

[T (a)(Fv)]

∫

∆

Hv(s,−)−1χvdsµv = 0.

By Morera’s criterion, s 7→ Ĥv(s, χv) is holomorphic.

7.2. Calculations in non-archimedean case

We establish some properties of the local transform in the non-
archimedean case. Firstly we treat the case when fv is the toric
a-homogenous function of weighted degree |a| and give the exact value
of the integral in Lemma 7.2.1.1.
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7.2.1. — In this paragraph we calculate the Fourier transform at the
finite places v when fv = f#

v is toric.
Let v ∈M0

F . Let f
#
v : F n

v −{0} → R>0 be the toric a-homogenous func-
tion of weighted degree |a| (see Definition 4.4.3.2). Recall from Lemma
4.4.3.1, that f#

v |Da
v
= 1, where Da

v = Onv −
∏n

j=1 π
aj
v Ov.

When v ∈M0
F , we observe that

χ(j)
v |[T (a)(Ov)] = 1 =⇒ χ(j)

v |O×
v
= 1 for j = 1, . . . , n.

Lemma 7.2.1.1. — Let v ∈ M0
F and let f#

v : F n
v − {0} → R>0 be the

toric a-homogenous function of weighted degree |a|. Let s ∈ Ω>0 and let
χv ∈ [T (a)(Fv)]

∗ be a character. We have that

Ĥ#
v (s, χv) :=





∏n
j=1 Lv(sj, χ

(j)
v )

ζv(a · s)
if χv|[T (a)(Ov)] = 1,

0 otherwise.

(7.2.1.2)

Proof. — By applying Lemma 5.4.1.3, we have that
∫

[T (a)(Fv)]

H#
v (s,−)−1χµv

= ζv(1)

∫

(F×
v )n∩Da

v

f#
v (x)

−a·s
|a|

n∏

j=1

|xj|sjv χ(j)
v (xj) d

∗x1 . . . d
∗xn

= ζv(1)

∫

(F×
v )n∩Da

v

n∏

j=1

|xj|sj−1
v χ(j)

v (xj) dx1 . . . dxn.

We calculate the last integral as the difference of the integrals

of
∏n

j=1 |xj|
sj−1
v χ

(j)
v (xj) over (Ov)n ∩ (F×

v )
n = (Ov − {0})n and(∏n

j=1 π
aj
v Ov

)
∩ (F×

v )
n =

∏n
j=1(π

aj
v Ov − {0}) :

∫

(F×
v )n∩Da

v

n∏

j=1

|xj|sj−1
v χ(j)

v (xj) dx1 . . . dxn

=

∫

(Ov−{0})n

n∏

j=1

|xj|sj−1
v χ(j)

v (xj)dx1 . . . dxn

−
∫
∏n

j=1(π
aj
v Ov−{0})

( n∏

j=1

|xj|sjv χ(j)
v (xj)

)
dx1 . . . dxn.
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Let us integrate over (Ov − {0})n. We have that
(7.2.1.3)∫

(Ov−{0})n

n∏

j=1

|xj|sj−1
v χ(j)

v (xj)dx1 . . . dxn =
n∏

j=1

∫

Ov−{0}
χ(j)
v (x)|x|sj−1

v dx.

When ℜ(s) > 0, we have that
∫

Ov−{0}
χ(j)
v (x)|x|sd∗x =

∞∑

r=0

∫

πr
vO×

v

χ(j)
v (x) · |x|sd∗x

=
∞∑

r=0

∫

O×
v

χ(j)
v (πrvx) · |πrvx|svd∗x

=
∞∑

r=0

χ(j)
v (πv)

r|πv|rsv
∫

O×
v

χ(j)
v (x)d∗x.

The integral of a non trivial character of compact group for a Haar mea-
sure on the group is 0, while it is the volume of the group if the character

is trivial. We deduce that, in the case χ
(j)
v |O×

v
6= 1 one has that

∫

Ov−{0}
χ(j)
v (x)|x|sd∗x = 0,

otherwise
∫

Ov−{0}
χ(j)
v (x)|x|svd∗x =

∞∑

r=0

∫

πr
vO×

v

χ(j)
v (x)|x|svd∗x

=
∞∑

r=0

χ(j)
v (πrv)|πv|rsv d∗x(πrvO×

v )

= d∗x(O×
v )

∞∑

r=0

(χ(j)(πv)|πv|sv)r

=
1− |πv|v

1− χ(j)
v (πv)|πv|sv

= ζv(1)
−1Lv(s, χ

(j)).

The integral over (Ov − {0})n is hence

n∏

j=1

(1− |πv|v)Lv(s, χ(j)
v ) = ζv(1)

−n
n∏

j=1

Lv(s, χ
(j)).
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Let us calculate the integral of
∏n

j=1 |xj|
sj−1
v χ

(j)
v (xj) over

∏n
j=1(π

aj
v Ov −

{0}). The v-adic absolute value of the determinant of the Jacobian of
the map

(Ov − {0})n → (πajv Ov − {0})j x 7→ (πajv xj)j

is equal to |πv||a|v . Using the formula for the change of variables and the

fact that
∏n

j=1(χ
(j)
v )aj = 1, we get that

∫
∏n

j=1(π
aj
v Ov−{0})

( n∏

j=1

|xj|sjv χ(j)
v (xj)

)
dx1 . . . dxn

=

∫

(Ov−{0})n
|πv||a|v

( n∏

j=1

|πajv xj|sj−1
v χ(j)

v (πajv xj)
)
dx1 . . . dxn

= |πv||a|+a·(s−1)
v

n∏

j=1

χ(j)
v (πv)

aj

∫

(Ov−{0})n

( n∏

j=1

|xj|sj−1
v χ(j)

v (xj)
)
dx1 . . . dxn

= |πv|a·sv
∫

(Ov−{0})n

( n∏

j=1

|xj|sj−1
v χ(j)

v (xj)
)
dx1 . . . dxn

= |πv|a·sv
n∏

j=1

∫

Ov−{0}
|x|sj−1

v χ(j)
v (x)dx

= |πv|a·sv ζv(1)
−n

n∏

j=1

Lv(sj, χ
(j)
v ).

We deduce that

∫

(F×
v )n∩Da

v

n∏

j=1

|xj|sj−1
v χ(j)

v (xj) dx1 . . . dxn = 0
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if χ|[T (a)(Ov)] 6= 1 and
∫

(F×
v )n∩Da

v

n∏

j=1

|xj|sj−1
v χ(j)

v (xj) dx1 . . . dxn

= ζv(1)
−n

n∏

j=1

L(sj, χ
(j)
v )− ζv(1)−n|πv|a·sv

n∏

j=1

Lv(sj, χ
(j)
v )

= ζv(1)
−nζv(a · s)−1

n∏

j=1

Lv(sj, χ
(j)
v ),

if χ|[T (a)(Fv)] = 1. Finally, it follows that

Ĥ#
v (s, χ) = ζv(1)

(n−1) · ζv(1)
∫

(F×
v )n∩Da

v

n∏

j=1

|xj|sj−1
v χ(j)

v (xj) dx1 . . . dxn = 0

if χ|[T (a)(Ov)] 6= 1 and

Ĥ#
v (s, χ) = ζv(1)

n−1 · ζv(1)1
∫

(F×
v )n∩Da

v

n∏

j=1

|xj|sj−1
v χ(j)

v (xj) dx1 . . . dxn

= ζv(a · s)
n∏

j=1

Lv(sj, χ̃
(j)
v )

if χv|[T (a)(Ov)] = 1. The statement is proven.

7.2.2. — Let v ∈ M0
F . When fv is assumed to be smooth, we estab-

lish in Lemma 7.2.2.2 that, whenever χv 6∈ [T (a)(Fv)]
∗, there exists a

compact and open subgroup Kv ⊂ [T (a)(Ov)] such that Ĥv(s, χv) = 0.
The following lemma will be used.

Lemma 7.2.2.1. — Let v ∈ M0
F and let fv : F n

v − {0} → R>0 be a
locally constant a-homogenous function of weighted degree b ≥ 0. There
exists an open and compact subgroup Λv ⊂ (F×

v )
n such that for every

(λj)j ∈ Λv and every (xj)j ∈ F n
v − {0} one has that

fv((λjxj)j) = fv(x).

Proof. — We set as before Da
v := (Onv ) − (πa1v Ov) × · · · × (πanv Ov). By

Lemma 3.3.4.4, the set Da
v ⊂ F n

v − {0} is open and compact subset of
F n
v − {0}. There exists a finite set {B(xi, di)}i ⊂ Da

v of open balls in
F n
v − {0}, where di > 0, which cover Da

v and such that for every i, the
restriction fv|B(xi,di) is constant. The open balls in F n

v − {0} are also
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closed and hence compact. For every i and every y ∈ B(xi, di), the set
of (λj)j ∈ (F×

v )
n such that (λjyj)j ∈ B(xi, di) is an open neighbourhood

of 1 ∈ (F×
v )

n and thus contains an open subgroup Λiy ⊂ (F×
v )

n. For

every i, the open sets {Λiy ·y}y∈B(xi,di) form an open covering of B(xi, di)

and there exists a finite set of points yi1, . . . ,y
i
mi
∈ B(xi, di) such that

{Λi
yi
e
·yie}e=1,...,mi

is an open covering of B(xi, di). Now Λv := ∩i∩mi
e=1Λ

i
yi
e

is an open subgroup of (F×
v )

n satisfying that for any x ∈ Da
v and any

(λj)j ∈ Λv, one has fv((λjxj)j) = fv(x). Let y ∈ F n
v −{0} and (λj)j ∈ Λv.

By Lemma 3.3.4.4, there exists t ∈ F×
v such that t · y ∈ Da

v . We have

|t||a|v fv((λjyj)j) = fv((t
ajλjyj)j) = fv((λjt

ajyj)) = fv((t
ajyj)j) = |t||a|v fv(y),

and the statement follows.

Lemma 7.2.2.2. — Let s ∈ Ω>0. Let v ∈ M0
F and let fv : F n

v −
{0} → R≥0 be locally constant a-homogenous function of weighted degree
|a|. There exists a compact open subgroup Kv of [T (a)(Fv)] such that

Ĥv(s, χ) = 0, for any character χ ∈ [T (a)(Fv)]
∗ not vanishing on Kv.

Moreover, if fv = f#
v is toric, one can choose Kv = [T (a)(Ov)].

Proof. — By Lemma 7.2.2.1, there exists an open and compact subgroup
Λv ⊂ (F×

v )
n such that fv is Λv-invariant. Let us set Kv := qav (Λv ∩

O×n
v ) ⊂ [T (a)(Fv)]. It is open and compact subgroup of [T (a)(Fv)].

Let x ∈ [T (a)(Fv)] and let x̃ ∈ (F×
v )

n be a lift of x. Let y ∈ Kv and let
ỹ ∈ Λ ∩ O×n

v be a lift of y. We have that

Hv(s,yx) = fv((ỹjx̃j)j)
a·s
|a|

n∏

j=1

|ỹjx̃j|−sjv = fv(x̃)
a·s
|a|

n∏

j=1

|x̃j|sj = Hv(s,x).

Therefore x 7→ Hv(s,x), and hence x 7→ Hv(s,x)
−1 are invariant for

the open and compact subgroup qav (Λv ∩O×n
v ) ⊂ [T (a)(Fv)]. We deduce

that for any χv ∈ [T (a)(Fv)]
∗ which does not vanish on Kv one has

Ĥv(s, χv) = 0. Moreover, in the case fv is toric, by Lemma 7.2.1.1, one

has that Ĥv(s, χv) = 0 for every χv not vanishing on [T (a)(Ov)].

7.3. Product of transforms over finite places

Using the results from local analysis, we establish some growth prop-
erties on the product of transforms over all finite places.

The assumption on a is that a ∈ Zn>0 if n ≥ 2, and a = a ∈ Z>1 if
n = 1. As before fv are assumed to be locally constant for v ∈M0

F .
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7.3.1. — For a character χ ∈ [T (a)(AF )]
∗ and any s ∈ Ω>0, we set

Ĥfin(s, χ) :=
∏

v∈M0
F

Ĥv(s, χv).

One has following proposition.
Proposition 7.3.1.1. — Let a ∈ Zn>0 if n ≥ 2 and let a = a1 ∈ Z>1

if n = 1. For every character χ ∈ [T (a)(AF )]
∗, the infinite product

Ĥfin(s, χ) converges for s ∈ Ω>1 and defines a holomorphic function in
the domain Ω>1. There exists a unique holomorphic function φfin(−, χ)
on Ω> 2

3
such that one has an equality of meromorphic functions in the

domain Ω> 2
3
:

Ĥfin(s, χ) = φfin(s, χ)
n∏

j=1

L(sj, χ
(j)).

Moreover, for every compact K ⊂ Rn
> 2

3

, there exists C(K) such that

|φfin(s, χ)| ≤ C(K) for every character χ ∈ [T (a)(AF )]
∗, provided that

ℜ(s) ∈ K.
Proof. — Let S be the union of the set of finite places v for which fv
is not toric and the set of the infinite places. By Corollary 7.1.3.4, for
every character χ ∈ [T (a)(AF )]

∗, the function

Ω>0 → C s 7→
∏

v∈S∩M0
F

Ĥv(s, χv)

is holomorphic. For every character χ ∈ [T (a)(AF )]
∗ and every v ∈

M0
F − S, the functions

s 7→
n∏

j=1

Lv(sj, χ
(j)
v ) =

n∏

j=1

1

1− |πv|sjv χ(j)
v (πv)

and

s 7→ ζv(a · s) =
1

1− |πv|a·sv
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are holomorphic and non vanishing in the domain Ω>0. We deduce that
for every s ∈ Ω>1 and every χ ∈ [T (a)(AF )]

∗, the product
∏

v∈M0
F−S

Ĥv(s, χv) =
∏

v∈M0
F−S

Ĥ#
v (s, χv)

=
∏

v∈M0
F−S

∏n
j=1 Lv(sj, χ

(j)
v )

ζv(a · s)

converges to ∏n
j=1 L(sj, χ

(j)
v )

ζF (a · s)
∏

v∈S∩M0
F

∏n
j=1 Lv(sj ,χ

(j)
v )

ζv(a·s)

.

We conclude that for s ∈ Ω>1 and χ ∈ [T (a)(AF )]
∗, the product

Ĥfin(s, χ) converges to

( ∏

v∈S∩M0
F

Ĥv(s, χv)

)
·

∏n
j=1 L(sj, χ

(j)
v )

ζF (a · s)
∏

v∈S∩M0
F

∏n
j=1 Lv(sj ,χ

(j)
v )

ζv(a·s)

and using holomorphicity of s 7→ Ĥv(s, χv) for s ∈ Ω>0, that the resulting
function is holomorphic in s in the domain Ω>1. Let us establish the
meromorphic extension to the domain Ω> 2

3
. We set

φfin(s, χ) :=
1

ζF (a · s)
∏

v∈S∩M0
F

Ĥv(s, χv)ζv(a · s)∏n
j=1 Lv(sj, χ

(j))
.

If s ∈ Ω> 2
3
, then ℜ(a · s)> 4

3
(because if n ≥ 2 then a ∈ Zn>0 and if

n = 1 then a ∈ Z>1). Using the fact that the function ζF is holomor-
phic and without zeros in the domain Ω> 4

3
, we deduce that the func-

tion s 7→ ζF (a · s)−1 is holomorphic in the domain Ω> 2
3
. We have al-

ready seen that for v ∈ M0
F ∩ S, the function s 7→

(∏n
j=1 Lv(sj, χ

(j)
v

)−1
,

the function s 7→ ζv(a · s) and s 7→ Ĥv(s, χv) are holomorphic in the
domain s ∈ Ω>0. It follows that φfin(−, χ) is holomorphic in the do-
main Ω> 2

3
and is the unique holomorphic function which satisfies that

Ĥfin(−, χ) = φfin(−, χ)
∏n

j=1 L(sj, χ
(j)) in this domain.

Let K ⊂ Rn
> 2

3

be a compact. By Proposition 7.1.3.3, for every v ∈
S ∩M0

F , there exists C1 > 0 such that for every s ∈ K + iRn and every
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χ ∈ [T (a)(AF )]
∗, one has |Ĥv(s, χv)| ≤ C1. One has that

(7.3.1.2)

∣∣∣∣
1

∏n
j=1 Lv(sj, χ

(j)
v )

∣∣∣∣ =
n∏

j=1

∣∣∣(1− χ(j)
v (πv)|πv|sjv )

∣∣∣ ≤
n∏

j=1

2 = 2n

for every s ∈ Ω> 2
3
. Note that for v ∈ S ∩M0

F , we have

∣∣ζv(a · s)
∣∣ =

∣∣∣∣
1

1− |πv|a·sv

∣∣∣∣ ≤
1

1− |πv|v
= ζv(1),

whenever s ∈ Ω> 2
3
. Finally, for s ∈ Ω> 2

3
, one has ℜ(a · s) > 4

3
, and we

have

(7.3.1.3)

∣∣∣∣
1

ζF (a · s)

∣∣∣∣ ≤
1

ζF (ℜ(a · s))
≤ 1

ζF (
4
3
)
.

We conclude that for s ∈ K + iRn and χ ∈ [T (a)(AF )]
∗ one has

|φfin(s, χ)| =
1

ζF (a · s)
∏

v∈S∩M0
F

Ĥv(s, χv)ζv(a · s)∏n
j=1 Lv(sj, χ

(j))

≤ (2nC1ζv(1))
|S∩M0

F |

ζF
(
4
3

) .

We have proven that φfin is uniformly bounded for χ ∈ [T (a)(AF )]
∗ when

ℜ(s) ∈ K. The proof is completed.

7.4. Calculations in archimedean case

The goal of this section is to analyse the Fourier transforms of local
heights at the infinite places.

7.4.1. — In this paragraph we recall some facts about integration by
parts. Let v ∈M∞

F .
Consider the vector field

∂

∂xv
:=

{
∂
∂x
, if v is real

∂
∂z
, if v is complex

(7.4.1.1)

defined on Fv.
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Lemma 7.4.1.2. — Let v ∈ M∞
F . Let f, g : F×

v → C be smooth
functions. We suppose that lim|xv |v→∞ fg(xv) = 0 and that the functions

F×
v → C given by xv 7→ ∂f(xv)

∂xv
g(xv) and xv 7→ f(xv)

∂g(xv)
∂xv

are absolutely

dxv-integrable. If v is real, we suppose further that limxv→0 fg(xv) exists
and is a finite real number. One has that

∫

Fv

∂f

∂xv
gdxv = −

∫

Fv

f
∂g

∂xv
dxv.

Proof. — Suppose v is real. By applying the integration by parts, we get
that
∫

Fv

∂f

∂xv
gdxv

=

∫

R

∂f

∂x
gdx

=

∫

R>0

∂f

∂x
gdx+

∫

R<0

∂f

∂x
gdx

= 0− lim
x→0

fg(x)−
∫

R>0

f
∂g

∂x
dx+ lim

x→0
fg(x)− 0−

∫

R<0

f
∂g

∂x
dx

= −
∫

R
f
∂g

∂x
dx.

Suppose v is complex. By Fubini’s theorem we have

∫

Fv

∂f

∂xv
gdxv

=

∫

R2

(
∂f(x+ iy)

∂x
− i∂f(x+ iy)

∂y

)
g(x+ iy)dxdy

=

∫

R
dy

∫

R

∂f(x+ iy)

∂x
g(x+ iy)dx−

∫

R
dx

∫

R
i
∂f(x+ iy)

∂y
g(x+ iy)dy.

(7.4.1.3)

For every y ∈ R, by the conditions of our lemma, one has that

lim
x→±∞

∂f(x+ iy)

∂x
g(x+ iy) = lim

x→±∞

∂g(x+ iy)

∂x
f(x+ iy) = 0.

Using that z 7→ ∂f(z)
∂z

g(z) and of z 7→ f(z)∂g(z)
∂xv

are absolutely −idzdz =

2dxdy-integrable, we deduce that x 7→ ∂f(x+iy)
∂x

g(x + iy) and x 7→ f(x +
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iy)∂g(x+iy)
∂x

are absolutely integrable for almost every y. For such y, one
gets

∫

R

∂f(x+ iy)

∂x
g(x+ iy)dx = −

∫

R
f(x+ iy)

∂g(x+ iy)

∂x
dx.

Similarly, for almost every x ∈ R one has that
∫

R

∂f(x+ iy)

∂y
g(x+ iy)dy = −

∫

R
f(x+ iy)

∂g(x+ iy)

∂y
dy.

We deduce that the last integral of the equality (7.4.1.3) is equal to

= −
∫

R
dy

∫

R
f(x+ iy)

∂g(x+ iy)

∂x
dx+

∫

R
dx

∫

R
if(x+ iy)

∂g(x+ iy)

∂y
dy

= −
∫

R2

f

(
∂g

∂x
− i∂g

∂y

)
dxdy

= −
∫

Fv

f
∂g

∂xv
dxv.

Note that

(7.4.1.4)
∂ xv

|xv |v
∂xv

= 0

whenever xv 6= 0 (indeed, when v is real, one has that xv
|xv | is a piecewise

constant function and when v is complex, one has that
∂ xv

|xv |v

∂xv
= ∂(z−1)

∂z
=

0).
Let ∇ be the vector field on Fv given by xv∂

∂xv
.

Corollary 7.4.1.5. — Let v ∈ M∞
F . Suppose that f, g : Fv → C are

continuous functions the restrictions of which to F×
v are smooth. Sup-

pose further that lim|xv |v→∞ fg(xv) = lim|xv |v→0 fg(xv) = 0 and that the
functions ∇(f)g, f∇(g) : F×

v → C are absolutely d∗xv-integrable. One
has that ∫

F×
v

∇(f)gd∗xv = −
∫

F×
v

f∇(g)d∗xv.

Proof. — We will apply the previous lemma for f and xv
|xv |v g. We note

that if v is real, then

lim
xv→0

fg(xv)
xv
|xv|

= lim
x→0

fg(x)
x

|x| = 0.
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By applying the fact (7.4.1.4), we get that
∂( xv

|xv |v
g)

∂xv
= xv

|xv |v
∂g
∂xv

. It follows

from the conditions of the lemma that the functions F×
v → C given by

xv 7→ ∂f(xv)
∂xv

xvg(xv)
|xv |v and xv 7→ xvf(xv)

|xv |v
∂g(xv)
∂xv

are absolutely dxv-integrable,

and that lim|xv |v→∞
xv ·fg(xv)

|xv |v = 0. Using Lemma 7.4.1.2, we get that

∫

F×
v

∇(f)gd∗xv =
∫

F×
v

∂f

∂xv

xv
|xv|v

gdxv

= −
∫

F×
v

f
∂( xv

|xv |v · g)
∂xv

dxv

= −
∫

F×
v

f
xv
|xv|v

· ∂g
∂xv

dxv

= −
∫

F×
v

f∇(g)d∗xv.

7.4.2. — In this paragraph we define and prove properties of auxiliary
functions hj, which will used in 7.4.3 to perform desired integration by

parts. For k ∈ {1, . . . , n}, let ∇k be the vector field on F n
v given by xkv∂

∂xkv
.

We start with the following lemma.
Lemma 7.4.2.1. — Let U ⊂ F n

v − {0} be an open and F×
v -invariant

subset. Let g : U → C be a smooth, a-homogenous function of weighted
degree s ∈ C (that is whenever t ∈ F×

v , one has g(t · w) = |t|svg(w) for
every w ∈ U). Let k ∈ {1, . . . , n}. The function ∇k(g) : U → C is a
smooth a-homogenous function of weighted degree s.
Proof. — Let w ∈ U and let t ∈ F×

v . Suppose v is real. We have

xkv∂g

∂xkv
(t ·w) =

xk∂g

∂xk
(t ·w)

= taiwk lim
ǫ→0

g((takwk + ǫ)k, (t
ajωj)j 6=k)− g((tajwj)j)
ǫ

= takwk lim
ǫ→0

|t|sg((wk + ǫ/tak)k, (wj)j 6=k)− |t|sg((wj)j)
ǫ

= takwk
|t|s ∂g

∂xk
(w)

tak

= |t|sv∇k(g)(w).



224 CHAPTER 7. FOURIER TRANSFORM OF THE HEIGHT FUNCTION

It follows that for v real, the function ∇k(g) is a-homogenous and of
weighted degree s. Moreover, it is smooth. Suppose that v is complex.
We have that:

xkv∂g

∂xkv
((tajwj)j) =

zk∂g

∂zk
((tajwj)j) =

takwk
2

(
∂g

∂xk
− i ∂g

∂yk

)
(t ·w).

We have that

∂g((tajwj)j)

∂xk
= lim

ǫ→0

g((takwk + ǫ)k, (t
ajwj)j 6=k)− g(t ·w)

ǫ

= lim
ǫ→0

|t|2s
(
g((wk + ǫ/tak)k, (wj)j 6=k)− g(w)

)

ǫ

= lim
ǫ→0

|t|2s|t|−ak
(
g((wk + ǫ/tak)k, (wj)j 6=k)− g(w)

)

(ǫ/tak)

= t−ak |t|2s ∂g
∂xk

(w).

Similarly,

∂g((tajwj)j)

∂yk
= lim

ǫ→0

g((takwk + iǫ)k, (t
ajwj)j 6=k)− g(t ·w)

ǫ

= lim
ǫ→0

|t|2s
(
g((wk + iǫ/tak)k, (wj)j 6=k)− g(w)

)

ǫ

= lim
ǫ→0

|t|2st−ak
(
g((wk + iǫ/tak)k, (wj)j 6=k)− g(w)

)

(ǫ/tak)

= t−ak |t|2s ∂g
∂xk

(w).

We deduce that:

xkv∂g

∂xkv
(t ·w) =

takwk
2

(
∂g

∂xk
− i ∂g

∂yk

)
(t ·w)

=
wk|t|2s

2

(
∂g

∂xk
− i ∂g

∂yk

)
(w)

=
wk|t|sv
2

(
∂g

∂xk
− i ∂g

∂yk

)
(w)

= |t|sv∇k(g)(w).

It follows that for v complex, the function ∇k(g) is a-homogenous and of
weighted degree s. Moreover, it is smooth. The statement is proven.
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Recall that fv : F
n
v − {0} → R>0 is smooth a-homogenous function of

weighted degree |a|. For j = 1, . . . , n, let hj : F n
v − {xj = 0} → R be

given by
x 7→ − log

(
|xj|vfv(x)−aj/|a|).

Note that

hj(t·x) = − log(|taj |v|xj|vfv(t·x)−aj/|a|) = − log(|xj|vfv(x)−aj/|a|) = hj(x)

for every t ∈ F×
v and every x ∈ F n

v − {xj = 0}.
Lemma 7.4.2.2. — Let k, j ∈ {1, . . . , n}. The function ∇k(hj) extends
to a smooth F×

v -invariant function F
n
v − {0} → R.

Proof. — By Lemma 7.4.2.1, ∇k(hj) is smooth and F×
v -invariant on the

domain (Fv)
n − {xj = 0}. When xj 6= 0, we have that

∇k(hj) = ∇k(log(f
aj/|a|
v ))−∇k(log(|xj|v))

As fv is smooth and non-vanishing, the function ∇k(log(f
aj/|a|
v )) is a

smooth function defined of F n
v − {0}. By Lemma 7.4.2.1, we have for

t ∈ F×
v and y ∈ F n

v − {0} that

∇k(log(f
aj/|a|
v ))(t · y) = ∇k(f

aj/|a|
v )(t · y)

f
aj/|a|
v (t · y)

=
|t|ajv ∇k(f

aj/|a|
v )(y)

|t|ajv faj/|a|v (y)

= ∇k(log(f
aj/|a|
v ))(y),

i.e. ∇k(log(f
aj/|a|
v )) is F×

v -invariant. For a real place v, we have that

∇k(log(|xk|v)) =
x∂(log(|x|))

∂x
= 1,

and for a complex place v, we have that

∇k(log(|xk|v)) =
z∂ log(|z|2)

∂z
= 1.

We deduce that

∇k(log(|xj|v)) =
{
1, if k = j

0, otherwise.
(7.4.2.3)

Therefore ∇k(log |xj|v) extends to a smooth F×
v -invariant function F

n
v −

{0} → R. Now, we deduce that the function

∇k(hj) = ∇k(log(f
aj/|a|
v ))−∇k(log(|xj|v))

extends to F×
v -invariant and smooth function F n

v − {0} → R>0. The
statement is proven.
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Continuous F×
v -invariant functions F

n
v − {0} → R descend to contin-

uous functions on the compact [P(a)(Fv)]. We deduce that:
Corollary 7.4.2.4. — Let k ∈ {1, . . . , n} and let N ≥ 1 be an integer.
The functions ∇N

k (hj) are bounded.

7.4.3. — In this paragraph we derivate the pullback of the function
Hv(s,−) for the quotient map (F×

v )
n → [T (a)(Fv)] using the vector

fields ∇k. For s ∈ Cn, let us set H̃v(s,−) = Hv(s,−) ◦ qav : (F×
v )

n → C.
We have that

H̃v(s,x) = fv(x)
a·s
|a|

n∏

j=1

|xj|−sjv =
n∏

j=1

exp(sjhj(x))

for x ∈ (F×
v )

n−1 and s ∈ Cn.
Lemma 7.4.3.1. — Let k ∈ {1, . . . , n− 1}. For every N ∈ Z>0, there
exists an isobaric polynomial PN ∈ R[{Xj,d} 1≤j≤n

1≤d≤N
] which is of weighted

degree N (where the degree of Xj,d is d) such that

∇N
k (H̃v(s,−)−1) = H̃v(s,−)−1PN((sj∇d

k(hj)) 1≤j≤n
1≤d≤N

)

for every s ∈ Cn.
Proof. — Let s ∈ Cn. For every x ∈ (F×

v )
n, we have that

H̃v(s,x)
−1 = exp

(
−

n∑

j=1

sjhj(x)

)
,

and hence that

∇k

(
H̃v(s,x)

−1
)
= exp

(
−
∑

j

sjhj(x)
) n∑

j=1

xk∂hj
∂xk

= H̃v(s,x)
−1

n∑

j=1

sj∇k(hj)(x).

We deduce that when N = 1, we can take P1((Xj,d)j,d) =
∑n

j=1Xj,1.
Suppose the statement is true for some N and let us verify it for N + 1.
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We have

∇N+1
k (H̃v(s,−)−1)

= ∇k

(
H̃v(s,−)−1PN((sj∇d

khj)j,d)
)

= H̃v(s,−)−1 ·
( n∑

j=1

sj∇k(hj)

)
PN((sj∇d

khj)j,d)

+ H̃v(s,−)−1∇k(PN((sj∇d
khj)j,d)

= H̃v(s,−)−1 ·
(( n∑

j=1

sj∇k(hj)
)
PN((sj∇d

khj)j,d) +∇k

(
PN((sj∇d

khj)j,d)
))
.

Let δ : R[{Xj,d} 1≤j≤n
1≤d≤N

] → R[{Xj,d} 1≤j≤n
1≤d≤N+1

] be the R-linear map given

by

Xq1
j1,d1
· · ·Xqr

jr,dr
7→

r∑

e=1

qe
Xje,de+1

Xje,de

(
Xq1
j1,d1
· · ·Xqr

jr,dr

)
qe ∈ Z≥0.

Note that if Q ∈ R[{Xj,d} 1≤j≤n
1≤d≤N

] is isobaric of weighted degree N ,

then δ(Q) is isobaric of weighted degree N + 1. As the polynomial(∑n
j=1Xj,1

)
PN((Xj,d)j,d) is isobaric of weighted degree N + 1, the

polynomial

PN+1 =
( n∑

j=1

Xj,1

)
PN + δ(PN)

is isobaric of weighted degree N + 1 and from above one has that:

H̃v(s,−)−1 = H̃v(s,−)−1PN+1((sj∇d
khj) 1≤j≤n

1≤d≤N+1
).

The statement is proven.

7.4.4. — In this paragraph we calculate several limits that will enable
us to perform integration by parts as in Corollary 7.4.1.5 in paragraph
7.4.6. The developed theory, along with the theory of 7.4.5 and 7.4.6,
is ultimately used to prove Proposition 7.4.6.5 on the decay of Fourier
transforms in the “discrete” and the “infinite” norms of a character.
Throughout the paragraph one assumes that n ≥ 2, because the following
lemma is not valid when n = 1. Proposition 7.4.6.5 will, however, also
be valid in the case n = 1 and will follow independently from the rest of
the theory.
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Lemma 7.4.4.1. — Suppose that n ≥ 2. Let us fix (xj)
n
j=1
j 6=k
∈ (F×

v )
n−1

and let s ∈ Ω>0. One has that

lim
xk→0

H̃v(s,x)
−1 = 0,

lim
|xk|v→∞

H̃v(s,x)
−1 = 0.

Proof. — We have

lim
xk→0

H̃v(s,x)
−1 = lim

xk→0

n∏

j=1

|xj|sjv fv(x)
−a·s
|a|

= lim
xk→0

n∏

j=1

|xj|sjv fv((xj)j 6=k, (0)k)−
a·s
|a| = 0.

Let us calculate the other limit. For every xk ∈ F×
v , we have that

fv(x) = fv(|xk|1/(nvak)
v · (xj|xk|−aj/(nvak)

v )j)

= |xk||a|/(ak)v fv((xj|xk|−aj/(nvak)
v )j)

and hence that

fv(x)
a·s
|a| = |xk|

a·s
ak
v fv

(
(xj|xk|−aj/(nvak)

v )j
)a·s

|a| .

Thus

lim
|xk|v→∞

H̃v(x)
−1

= lim
|xk|v→∞

(
fv(x)

−a·s
|a|

n∏

j=1

|xj|sjv
)

= lim
|xk|v→∞

(
|xk|

−a·s
ak
v fv

(
(xj|xk|−aj/(nvak)

v )j
)−a·s

|a|

n∏

j=1

|xj|sjv
)

= lim
|xk|v→∞

(
|xk|

aksk−a·s

ak
v fv

(
(xj|xk|−aj/(nvak)

v )j
)−a·s

|a|

n∏

j=1
j 6=k

|xj|sjv
)
.

Note that lim|xk|v→∞ |xk|
aksk−a·s

ak
v = 0. Let us define

Bk := {y ∈ F n
v − {0}|∀j|yj|v ≤ 1 and |yk|v = 1}.
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The set Bk is compact. As fv is strictly positive, there exists ǫ1 > 0 such

that fv(y) > ǫ1 for every y ∈ Bk. We deduce that f
−a·s

|a|
v is bounded above

by ǫ
−a·ℜ(s)/|a|
1 on Bk. For |xk|v ≫ 0, one has (xj|xk|−aj/(nvak)

v )j ∈ Bk. We
conclude that

lim
|xk|v→0

H̃v(s,x)
−1 = 0.

By using the formula given in Lemma 7.4.3.1 and the fact that the func-
tions ∇d

k(hj) are bounded, we obtain immediately the following corollary
.
Corollary 7.4.4.2. — Suppose that n ≥ 2. Let s ∈ Ω>0, let N ≥ 0
and let k ∈ {1, . . . , n}. Let us fix (xj)

n
j=1
j 6=k
∈ (F×

v )
n−1. One has that

lim
|xk|v→∞

∇N
k (H̃v(s,x)

−1) = 0,

lim
xk→0

∇N
k (H̃v(s,x)

−1) = 0.

7.4.5. — In this paragraph we present several formulas for the deriva-
tion with ∇k, that will be used in 7.4.6. Let v ∈M∞

F .
Lemma 7.4.5.1. — If s is a complex number, one has that ∇(xv 7→
|xv|sv) = s|xv|s in the domain xv ∈ F×

v .
Proof. — If v is real then

∇(|xv|sv) =
x∂|x|s
∂x

= xs|x|s−1sgn(x) = s|x|s = s|xv|sv.

If v is complex, then

∇(|xv|sv) =
z∂(|z|2s)
∂z

= sz|z|2(s−1)z = s|z|2s = s|xv|sv.

We set Fv,1 := {x| |x|v = 1}. We have established in 5.2.1 an identifi-
cation

ρ̃v : R>0 × Fv,1 ∼−→ F×
v (r, z) 7→ ρv(r)z,

where ρv : R>0 → F×
v is defined by ρv(r) = r1/nv . For a character

χv ∈ (F×
v )

∗, we have set m(χv) to be the unique real number m such
that the character χv|R>0 is given by r 7→ rim. If v is a real place, we set
ℓ(χv) to be 0 if the character χvFv,1 is the trivial character, otherwise we
set ℓ(χv) = 1. If v is a complex place, we have set ℓ(χv) to be the unique
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integer ℓ such that χv|Fv,1 is given by z 7→ zℓ. Let χ ∈ [T (a)(Fv)]
∗ be a

character. We set χ̃v := χv ◦ qav . We note that the function χ̃v : (F
×
v )

n →
C is given by

x 7→
n∏

j=1

|xj|im(χ
(j)
v )/nv

v (xj|xj|−1/nv
v )ℓ(χ

(j)
v ),

If χv ∈ [T (a)(Fv)]
∗ is a character, we set

(7.4.5.2) m(χv) := (m(χ(j)
v ))j ∈ Rn

and

(7.4.5.3) ℓ(χv) := (ℓ(χ(j)
v ))j ∈ Zn,

where χ
(j)
v is given by

x 7→ χv(q
(a)
v ((1)k=1,...,n

k 6=j
, (x)k=j)).

It follows from the definition that

m(χv) ∈M :=
{
x ∈ Rn|

n∑

j=1

ajxj = 0
}
.

Lemma 7.4.5.4. — Let k ∈ {1, . . . , n}. Suppose χv ∈ [T (a)(Fv)]
∗ is

a character. We set d(k, χv) = (1− 1
nv
)ℓ(χ

(k)
v ) + im(χ

(k)
v ). One has that

∇k(χ̃v) = d(k, χv) · χ̃v.
Proof. — If k 6= j, then we have that

∇k(|xj|im(χ
(j)
v )

v ) = 0

and that

∇k((xj|xj|−1/nv
v )ℓ(χ

(j)
v )) = 0.

By using this and the product rule, we obtain that:

∇k

( n∏

j=1

|xj|im(χ
(j)
v )

v

(
xj|xj|−1/nv

v

)ℓ(χ(j)
v )
)

= ∇k(x
ℓ(χ

(k)
v )

k |xk|im(χ
(k)
v )−ℓ(χ(k)

v )/nv
v )

n∏

j=1
j 6=k

|xj|im(χ
(j)
v )

v

(
xj|xj|−1/nv

v

)ℓ(χ(j)
v )
.
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One has that

∇k(x
ℓ(χ

(k)
v )

k |xk|im(χ
(k)
v )−ℓ(χ(k)

v )/nv
v )

= ℓ(χ(k)
v )x

ℓ(χ
(k)
v )

k |xk|
im(χ

(k)
v )− ℓ(χ

(k)
v )

nv
v

+
(
im(χ(k)

v )− ℓ(χ
(k)
v )

nv

)
x
ℓ(χ

(k)
v )

k |xk|
im(χ

(k)
v )− ℓ(χ

(k)
v )

nv
v

=

(
(1− 1

nv
)ℓ(χ(k)

v ) + im(χ(k)
v )

)
x
ℓ(χ

(k)
v )

k |xk|im(χ
(k)
v )−ℓ(χ(k)

v )/nv
v

= d(k, χv) · χ̃v.
It follows that

∇k(χ̃v) = ∇k

( n∏

j=1

|xj|im(χ
(j)
v )

v

(
xj|xj|−1/nv

v

)ℓ(χ(j)
v )
)

= d(k, χv) ·
n∏

j=1

|xj|im(χ
(j)
v )

v

(
xj|xj|−1/nv

v

)ℓ(χ(j)
v )

= d(k, χv) · χ̃v.
The statement is proven.

7.4.6. — In this paragraph we make the wanted estimates on the ab-
solute value of the Fourier transform. We use the integration by parts
with respect to the vector fields ∇k.
Lemma 7.4.6.1. — Suppose that n ≥ 2. Let k ∈ {1, . . . , n−1}, let s ∈
Ω>0 and let N be a non-negative integer. The function ∇N

k (H̃v(s,−)−1) :
(F×

v )
n−1×Fv,1 → C is absolutely dx1 . . . dxn−1×λv,1-integrable. Moreover,

if χv ∈ [T (a)(Fv)]
∗ is a character, one has that

Ĥv(s, χv) · (−d(k, χv))N

=
an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

∇N
k (H̃v(s,−)−1)χ̃vd

∗x1 . . . d
∗xn−1λv,1.

Proof. — Without loss of the generality, we can suppose that k = 1.
Suppose N = 0. Proposition 7.1.3.3 gives that the integral defining the

Fourier transform Ĥv(s, χv) converges absolutely. Now, it follows from
Lemma 5.4.1.3 that (where qav : (F×

v )
n → [T (a)(Fv)] is the quotient
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map)

(Hv(s,−)−1χv) ◦ qav = H̃v(s,−)−1χ̃v

∈ L1((F×
v )

n−1 × Fv,1, d∗x1 . . . d∗xn−1λv,1)

and that

Ĥ(s, χv) =
an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

H̃v(s,−)−1χ̃vd
∗x1 . . . d

∗xn−1λv,1.

The statement is thus true when N = 0 and we suppose it is true for
N − 1, where N ≥ 1. By Proposition 7.4.3.1, we have that

∇N
1 (H̃v(s,−)−1) = H̃v(s,−)−1PN((sj∇d

1hj)j,d).

By Corollary 7.4.2.4, the functions ∇r
k(hj) are bounded. It follows that

∇N
1 (H̃v(s,−)−1) ∈ L1((F×

v )
n−1 × Fv,1, d∗x1 . . . d∗xn−1λv,1).

Using the induction hypothesis and the fact that ∇1(χ̃) = d(1, χv) · χ̃v
from Lemma 7.4.5.4, we obtain that:

Ĥv(s, χv) · (−d(1, χv))N

= Ĥv(s, χv) · (−d(1, χv))N−1(−d(1, χv))

=
−d(1, χv)an
λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

∇N−1
1 (H̃v(s,−)−1)χ̃v d

∗x1 . . . d
∗xn−1λv,1

=
−an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

∇N−1
1 (H̃v(s,−)−1)∇1(χ̃v) d

∗x1 . . . d
∗xn−1λv,1.

The last integral, by Fubini theorem, writes as

∫

(F×
v )n−2×Fv,1

⊗n−1
j=2d

∗xj ⊗ dλv,1(u)×

×
∫

F×
v

∇N−1
1

(
H̃v(s, (xj)

n−1
j=1 , u)

−1
)
∇1(χ̃v((xj)

n−1
j=1 , u))d

∗x1.

As∇N−1
1 (H̃v(s,−)−1) : (F×

v )
n−1×Fv,1 → C is absolutely d∗x1 . . . d

∗xn−1λv,1-
integrable, we deduce that for almost every ((xj)

n−1
j=2 , u) ∈ (F×

v )
n−2×Fv,1,

we have ∇N−1
1 (H̃v(s,−, (xj)n−1

j=2 , u)
−1) is absolutely d∗x-integrable. Now,

for such ((xj)
n−1
j=2 , u) ∈ (F×

v )
n−2×Fv,1, Lemma 7.4.4.2 and Lemma 7.4.5.4
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give that the functions x1 7→ ∇N−1
1 H̃v(s, (xj)j)

−1 and x1 7→ χ̃v((xj)j) sat-
isfy the conditions of Corollary 7.4.1.5 and we can apply the integration
by parts with the respect to ∇1. We get that:
∫

F×
v

∇N−1
1

(
H̃v(s, (xj)

n−1
j=1 , u)

−1
)
∇1

(
χ̃v((xj)

n−1
j=1 , u)

)
d∗x1

= −
∫

F×
v

∇N
1

(
H̃v(s, (xj)

n−1
j=1 , u)

−1
)
χ̃v((xj)

n−1
j=1 , u)d

∗x1,

and hence that
∫

(F×
v )n−1×Fv,1

∇N−1
1 (H̃v(s,−)−1)∇1(χ̃v) d

∗x1 . . . d
∗xn−1λv,1

= −
∫

(F×
v )n−1×Fv,1

∇N
1 (H̃v(s,−)−1)χ̃vd

∗x1 . . . d
∗xn−1λv,1.

Finally, we deduce that

Ĥv(s, χv) · (−d(1, χv))N

=
−an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

∇N−1
1 (H̃v(s,−)−1)∇1(χ̃v) d

∗x1 . . . d
∗xn−1λv,1

=
an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

∇N
1 (H̃v(s,−)−1)χ̃vd

∗x1 . . . d
∗xn−1λv,1.

The statement is proven.

The integration by parts from the last lemma enables us to make the
following estimate:
Lemma 7.4.6.2. — Let v ∈ M∞

F . Suppose that n ≥ 2. Let k ∈
{1, . . . , n−1} and let N be a positive integer. Let K ⊂ Rn

>0 be a compact.
There exists C = C(k,N,K) > 0 such that for every character χv ∈
[T (a)(Fv)]

∗ and every s ∈ K + iRn, one has that

|d(k, χv)|N · |Ĥv(s, χv)| ≤ C(1 + ||ℑ(s)||)N .
Proof. — It follows from Lemma 7.4.6.1 that

|d(k, χv)|N |Ĥv(s, χv)| ≤
an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

|∇N
k (H̃v(s,−)−1)|d∗x1 . . . d∗xn−1λv,1.
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By Lemma 7.4.3.1 there exists an isobaric polynomial PN of weighted
degree N such that

∇N
k (H̃v(s,−)−1) = H̃v(s,−)−1PN((sj∇d

k(hj))j,d).

Moreover, by Corollary 7.4.2.4 the functions ∇d
k(hj) are bounded, and

we deduce that there exists C ′ > 0 such that

|PN((sj∇d
khj(x))j,k) ≤ C ′(1 + ||ℑ(s)||)N

for every x ∈ F n
v − {0} and every s ∈ K + iRn. It follows that

|d(k, χv)|N |Ĥv(s, χv)| ≤
C ′an

λv,1(Fv,1)

∫

(F×
v )n−1×Fv,1

∣∣H̃v(s,−)−1
∣∣d∗x1 · · · d∗xn−1λv,1

≤ (1 + ||ℑ(s)||)N C ′an
λv,1(Fv,1)

∫

[T (a)(F )]

|H(s,−)−1|µv

≤ (1 + ||ℑ(s)||)N C ′an
λv,1(Fv,1)

∫

[T (a)(F )]

|H(s,−)−1|µv

= (1 + ||ℑ(s)||)N C ′an
λv,1(Fv,1)

Ĥ(ℜ(s), 1)

for every s ∈ K + iRn and every χv ∈ [T (a)(Fv)]
∗. Proposition 7.1.3.3

gives that there exists A > 0, such that |Ĥv(s, χv)| ≤ A for every s ∈
K + iRn and every χv ∈ [T (a)(Fv)]

∗. We set C = C′anA
λv,1(Fv,1)

. It follows

that for every s ∈ K + iRn and every χv ∈ [T (a)(Fv)]
∗ one has that

|d(k, χv)|N |Ĥv(s, χv)| ≤ C(1 + ||ℑ(s)||)N .

Lemma 7.4.6.3. — Let v ∈ M∞
F . Suppose that n ≥ 2. Let k ∈

{1, . . . , n−1} and let N be a positive integer. Let K ⊂ Rn
>0 be a compact.

There exists C = C(k,N,K) > 0 such that for every character χv ∈
[T (a)(Fv)]

∗ and every s ∈ K + iRn, one has that

(|ℓ(χ(k)
v )|+ |m(χ(k)

v )|)N |Ĥv(s, χv)| ≤ C(1 + ||ℑ(s)||)N .
Proof. — Lemma 7.4.6.2 gives that there exists C ′ > 0 such that

(7.4.6.4) |d(k, χv)|N · |Ĥv(s, χv)| ≤ C ′(1 + ||ℑ(s)||)N

for every s ∈ K + iRn and every χv ∈ [T (a)(Fv)]
∗. Proposition 7.1.3.3

gives that there exists A > 0, such that |Ĥv(s, χv)| ≤ A for every s ∈
K + iRn and every χv ∈ [T (a)(Fv)]

∗. We prove the claim of the lemma
with C = 4N max(C ′, A). Let s ∈ K+ iRn and let χv ∈ [T (a)(Fv)]

∗. We
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suppose first that v is complex or that v is real and that ℓ(χ
(k)
v ) = 0.

This condition implies that
∣∣∣∣
(
1− 1

nv

)
ℓ(χ(k)

v )

∣∣∣∣ ≥
1

2
|ℓ(χ(k)

v )|.

We obtain that

|d(k, χv)| =
∣∣∣∣(1−

1

nv

)
ℓ(χ(k)

v ) + im(χ(k)
v )

∣∣∣∣

≥ 1

2
|ℓ(χ(k)

v ) + im(χ(k)
v )|

≥ |ℓ(χ
(k)
v )|+ |m(χ

(k)
v )|

4
.

From the inequality (7.4.6.4), we deduce that

(|ℓ(χ(k)
v )|+ |m(χ

(k)
v )|)N

4N
|Ĥv(s, χv)| ≤ |d(k, χv)| · |Ĥv(s, χv)|

≤ C ′(1 + ||ℑ(s)||)N ,

and hence that

(|ℓ(χ(k)
v )|+|m(χ(k)

v )|)N |Ĥv(s, χv)| ≤ 4NC ′′(1+||ℑ(s)||)N ≤ C(1+||ℑ(s)||)N .

The claim is proven in the case v is complex or v is real and ℓ(χ
(k)
v ) = 0.

We suppose now that v is real and that ℓ(χ
(k)
v ) = 1. One has that

d(k, χ) = im(χ
(k)
v ) and rewriting the inequality (7.4.6.4) gives that

|m(χ(k)
v )|N · |Ĥv(s, χv)| ≤ C ′(1 + ||ℑ(s)||)N .

Suppose that |m(χ
(k)
v )| ≤ 1. Then one has that

(|ℓ(χ(k)
v )|+ |m(χ(k)

v )|)N · |Ĥv(s, χv)| = (1 + |m(χ(k)
v )|)N · |Ĥv(s, χv)|

≤ 2N · |Ĥv(s, χv)|
≤ 2NA

≤ C

≤ C(1 + ||ℑ(s)||)N .
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Suppose that |m(χ
(k)
v )| > 1. Then one has that

(|ℓ(χ(k)
v )|+ |m(χ(k)

v )|)N · |Ĥv(s, χv)| = (1 + |m(χ(k)
v )|)N · |Ĥv(s, χv)|

≤ 2N |m(χ(k)
v )|N · |Ĥv(s, χv)|

≤ 2NC ′(1 + ||ℑ(s)||)N

≤ C(1 + ||ℑ(s)||)N .

The claim is thus verified also for the case v is real and ℓ(χ
(k)
v ) = 1. The

statement of the lemma is proven.

We are ready to prove:
Proposition 7.4.6.5. — Let v ∈ M∞

F and let K ⊂ Rn
>0 be a compact.

For every integer N > 1, there exists C = C(N) > 0 such that for every
s ∈ K + iRn and every χv ∈ [T (a)(Fv)]

∗ one has

|Ĥv(s, χv)| ≤
C(1 + ||ℑ(s)||)N

((1 + ||m(χv)||)(1 + ||ℓ(χv)||))N/(2(n−1))
.

Proof. — Let us first suppose that n ≥ 2.We have already seen in Propo-
sition 7.1.3.3 that there exists A > 0 such that

|Ĥv(s, χv)| ≤ A

for every χv ∈ [T (a)(Fv)] and every s ∈ K+ iRn. Using this and Lemma
7.4.6.3 we get that there exists M > 0 such that

(7.4.6.6)
∏

k∈{1,..,n−1}
|ℓ(χ(k)

v )|+|m(χ
(k)
v )|=0

|Ĥv(s, χv)|×

×
∏

k∈{1,..,n−1}
|ℓ(χ(k))

v |+|m(χ
(k)
v )|6=0

(|ℓ(χ(k)
v )|+ |m(χ(k)

v )|)N |Ĥv(s, χv)|

≤M(1 + ||ℑ(s)||)N(n−1)

for every χv ∈ [T (a)(Fv)] and every s ∈ K + iRn. Using the fact that

a1m(χ(1)
v ) + · · ·+ anm(χ(n)

v ) = 0

we deduce that

||m(χv)|| ≤ max
(

max
j=1,...,n−1

|m(χ(j)
v )|, a1|m(χ(1)

v )|+ · · ·+ an−1|m(χ(n−1)
v )|

)
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and hence there exists an index o(χv) ∈ {1, . . . , n− 1} such that

(7.4.6.7) (n− 1) ·max
j
aj · |m(χ(o(χv))

v )| ≥ ||m(χv)||.

In an analogous way, we conclude that there exists index r(χv) ∈
{1, . . . , n− 1} such that

(7.4.6.8) (n− 1) ·max
j
aj · |ℓ(χ(r(χv))

v )| ≥ ||ℓ(χv)||.

Using the arithmetic-geometric inequality and the estimates (7.4.6.7) and
(7.4.6.8), we conclude that there exists D > 0 such that

(7.4.6.9) D
∏

|l(χ(k)
v )|+|m(χ

(k)
v )|6=0

(|ℓ(χ(k)
v )|+ |m(χ(k)

v )|)N

≥ max(||ℓ(χv)||N/2||m(χv)||N/2, ||m(χv)||N/2, ||ℓ(χv)||N/2).

Combining the estimates (7.4.6.9) and (7.4.6.6) and taking the n− 1-th
root gives

(7.4.6.10)

|Ĥv(s, χv)|max(||ℓ(χv)||·||m(χv)||, ||m(χv)||, ||ℓ(χv)||)N/(2(n−1))

≤ (MD)1/(n−1)(1 + ||ℑ(s)||)N

for every s ∈ K + iRn and every χv ∈ [T (a)(Fv)]
∗.

For every χv ∈ [T (a)(Fv)]
∗ with ℓ(χv) = (0)j and ||m(χv)|| ≤ 1 and

every s ∈ K + iRn, one has that

|Ĥv(s, χv)| ≤
2N/(2(n−1))A

(1 + ||m(χv)||)N/(2(n−1)

≤ 2N/(2(n−1))A(1 + ||ℑ(s)||)N
((1 + ||ℓ(χv)||)(1 + ||m(χv)||))N/(2(n−1))

.

For every χv ∈ [T (a)(Fv)]
∗ for which ℓ(χv) 6= (0)j and for which

||m(χv)|| ≤ 1 and for every s ∈ K + iRn one has

|Ĥv(s, χv)| ≤
(MD)1/(n−1)(1 + ||ℑ(s)||)N

||ℓ(χv)||N/(2(n−1))

≤ 22N/(2(n−1))(MD)1/(n−1)(1 + ||ℑ(s)||)N
((1 + ||ℓ(χv)||)(1 + ||m(χv)||))N/(2(n−1))

.
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For every χv ∈ [T (a)(Fv)]
∗ with ℓ(χv) = (0)j and ||m(χv)|| > 1 and

every s ∈ K + iRn, one has that

|Ĥv(s, χv)| ≤
(DM)1/(n−1)(1 + ||ℑ(s)||)N
||m(χv)||N/(2(n−1))

≤ 2N/(2(n−1))(MD)1/(n−1)(1 + ||ℑ(s)||)N
((1 + ||ℓ(χv)||)(1 + ||m(χv)||))N/(2(n−1))

.

For every χv ∈ [T (a)(Fv)]
∗ with ℓ(χv) 6= (0)j and ||m(χv)|| > 1 and

every s ∈ K + iRn, one has that

|Ĥv(s, χv)| ≤
(MD)1/(n−1)(1 + ||ℑ(s)||)N

||ℓ(χv)||N/(2(n−1))||m(χv)||N/(2(n−1))

≤ 22N/(2(n−1))(MD)1/(n−1)(1 + ||ℑ(s)||)N
((1 + ||m(χv)||)(1 + ||ℓ(χv)||))N/(2(n−1))

Therefore C = 22N/(2(n−1)) max((MD)1/(n−1), A) satisfies the wanted con-
dition. Hence, the claim is valid when n ≥ 2.

Suppose now that n = 1. In this case, one has that m(χv) = 0 and
that ||ℓ(χv)|| ≥ 1. The claim follows from the boundness of the Fourier
transform (Proposition 7.1.3.3).

7.4.7. — In 6.1.2 and in 6.2.1, we have defined norms of the characters
of A×

F and of [T (a)(AF )]
∗, respectively. In this paragraph we give a

corollary of Proposition 7.4.6.5 and we write it in terms on the norms.
For a character χ ∈ (A×

F )
∗, we have defined:

||χ||discrete = max
v∈M∞

F

(||ℓ(χv)||),

||χ||∞ = max
v∈M∞

F

(||m(χv)||).

For a character χ ∈ [T a(AF )]
∗, we have defined

||χ||discrete = max
v∈M∞

F

(||ℓ(χv)||),

||χ||∞ = max
v∈M∞

F

(||m(χv)||).

Proposition 7.4.6.5 implies that:
Corollary 7.4.7.1. — Let K ⊂ Rn

>0 be a compact and let N be a
positive integer. There exists C > 0 such that for every χ ∈ [T (a)(AF )]

∗
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and every s ∈ K + iRn one has

∏

v∈M∞
F

|Ĥv(s, χv)| ≤
C(1 + ||ℑ(s)||)N(r1+r2)

((1 + ||χ||discrete)(1 + ||χ||∞))N/(2(n−1))
.

Proof. — We have that

(1 + ||χ||discrete) ≤
∏

v∈M∞
F

(1 + ||ℓ(χv)||)

and that
(1 + ||χ||∞) ≤

∏

v∈M∞
F

(1 + ||m(χv)||).

It follows from Proposition 7.4.6.5 that there exists C1 > 0 such that for
every χ ∈ [T (a)(AF )]

∗ one has that

∏

v∈M∞
F

|Ĥv(s, χv)| ≤
∏

v∈M∞
F

C1(1 + ||ℑ(s)||)N
((1 + ||m(χv)||)(1 + |ℓ(χv)||))N/(2(n−1))

≤ Cr1+r2
1 (1 + ||ℑ(s)||)N(r1+r2)

(
(1 + ||χ||discrete)(1 + ||χ||∞)

)N/(2(n−1)
.

The statement is proven.

7.5. Global transform

Using the results of 7.3, 7.4 and 6.3, we obtain estimates for the global
Fourier transform.

Let µAF
be the Haar measure on [T (a)(AF )] given by Definition 5.4.3.3

µAF
=
⊗

v∈M0
F

ζv(1)
n−1µv ⊗

⊗

v∈M∞
F

µv.

7.5.1. — In this paragraph we are going to present a Haar measure on
the dual group (Rn

>0/(R>0)a)
∗. Let us set

M =M(a) := {x ∈ Rn|a · x = 0},
λa : R>0 → (R>0)a x 7→ (xaj)j.

The subspace M is the kernel of the surjective linear map Rn → R,x 7→
a·x and we will identify Rn/M with R (for this identification the quotient
map Rn → Rn/M becomes x 7→ a · x).
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Lemma 7.5.1.1. — Let dm be the unique Lebesgue measure onM such
that

(dx1 . . . dxn)
/
dm = dx.

1. For A > 0, let us define

θnA : Rn → Rn x 7→ (Axj)j.

We have that (θnA|M)∗(dm) = A−(n−1)dm, i.e. for any dm-
integrable function f , one has that

∫

M

fdm =
1

An−1

∫

M

f ◦ θnA|Mdm.

2. The homomorphism

ξ : R→ (R>0)
∗ t 7→ |·|2iπt

is an isomorphism and one has ξ∗(dx) = d∗x. The homomorphism

ξn : Rn → (Rn
>0)

∗ x 7→
n∏

j=1

|prj(·)|2iπxj ,

where prj : Rn → R is the projection to the j-th coordinate, is an
isomorphism and one has ξn∗ (dx1 . . . dxn) = d∗x1 . . . d

∗xn.
3. Let (R>0)

⊥
a be the group of characters of (Rn

>0)
∗ which are trivial on

(R>0)a. One has that ξn(M) = (R>0)
⊥
a = (Rn

>0/(R>0)a)
∗.

4. The isomorphism ξn|M :M
∼−→ (Rn

>0/(R>0)a)
∗ from (2) satisfies

(ξn|M)∗
(
dm
)
=
(
d∗x1 . . . d

∗xn/(λa)∗(d
∗x)
)∗
.

Proof. — For a, b > 0, we have that d∗x([a, b]) = log b − log a. The
homomorphism exp : R→ R>0 is an isomorphism, for which, hence, one
has that (exp)∗dx = d∗x. In the proof, using the isomorphism exp, we
identify R and R>0 and the corresponding measures dx and d∗x.

1. For A > 0, let θ1A : R → R be the map x 7→ Ax. We observe that
(θnA)∗(dx1 · · · dxn) = A−ndx1 . . . dxn and that (θ1A)∗(dx) = A−1dx.
Now, in the commutative diagram

{0} M Rn R {0}

{0} M Rn R {0}

θnA|M θn

x 7→a·x

θ1A

x 7→a·x
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the vertical maps are isomorphisms, and we deduce

A−1dx = (θ1A)∗(dx) = (θnA)∗(dx1 . . . dxn)/(θ
n
A|M)∗dm

= A−ndx1 . . . dxn/(θ
n
A|M)∗dm.

This gives (θnA|M)∗dm = A−(n−1)dm. For every dm-integrable func-
tion f one has that∫

M

fdm =

∫

M

(f ◦ (θnA|M))(θnA|M)∗dm = A−n+1

∫

M

f ◦ (θnA|M)dm.

2. With this identification, the first claim is given in [5, Chapter II, §1,
n0 9, Corollary 1 of Proposition 11]. The second claim we deduce
by the fact that the dual of a finite product of Haar measures is the
product of the duals.

3. The isomorphism expn : Rn → (R>0)
n identifies a(R) = {(ajx)j|x ∈

R} with (R>0)a. Let 0 6= x ∈ a(R) and let 0 6= x ∈ R such that
ajx = xj for every j. For every y ∈M , we have that

ξn(y)(x) = exp

( n∑

j=1

2iπyjxj

)
= exp

(
2iπx

n∑

j=1

ajyj

)
.

Hence, ξn(y) ∈ (a(R))⊥ if and only if y ∈M and the claim follows.
4. The dual sequence of the short exact sequence

0→ R>0

i(R>0)a
◦λa−−−−−−→ Rn

>0 → Rn
>0/(R>0)a → 0

is the short exact sequence sequence

0→ (Rn
>0/(R>0)a)

∗ → Rn x 7→a·x−−−−→ R→ 0.

Lemma 7.1.1.2 gives

dx1 . . . dxn
/(
d∗x1 . . . d

∗xn/(λa)∗(d
∗x)
)∗

= dx.

By definition dx1 . . . dxn/dm = dx. Now, the commutativity of the
diagram

{0} M Rn R {0}

{1} (Rn
>0/(R>0)a)

∗ Rn R {0},

ξnM ξn

x 7→a·x

ξ

gives that

(ξn|M)∗(dm) = (d∗x1 . . . d
∗xn/(λa)∗(d

∗x))∗.
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For a character χ ∈ (R>0)
∗, we denote by m(χ) the unique real

number m such that χ is given by x 7→ xim. For a character
χ ∈ (Rn

>0/(R>0)a)
∗ we write

m(χ) := (m(χ(j)))j ∈M,

where χ(j) is the pullback character R>0 given by the composite homo-
morphism

R>0

x 7→((1)i 6=j ,x)−−−−−−−→ Rn
>0 → Rn

>0/(R>0)a.

It follows from Lemma 7.5.1.1, that

(Rn
>0/(R>0)a)

∗ →M χ 7→m(χ)

is an isomorphism and we write |·|im for the unique character of
(Rn

>0/(R>0)a)
∗ such that its image under the isomorphism is m. Let

x̃ ∈ Rn
>0 be a lift of x ∈ (Rn

>0/(R>0)a). We observe that

ξn(m)(x) =
n∏

j=1

x̃
i2πmj

j

and that

|x|im =
n∏

j=1

x̃
imj

j .

In other words

(7.5.1.2) ξn(m) = |·|i2πm.

7.5.2. — In this paragraph we estimate the global Fourier transform of
the height.
In the equality 3.4.9.1, we have established an identification

A×
F

∼−→ A1
F × R>0.

For a character χ ∈ (A×
F )

∗ we write m(χ) for m(χ|R>0). In the equality
3.4.9.2, we have established an identification

[T (a)(AF )]
∼−→ [T (a)(AF )]1 × (Rn

>0/(R>0)a).

For (xv)v ∈ [T (a)(AF )], let (x̃v)v ∈ (A×
F )

n be its lift. The morphism to
the second coordinate is given by

x 7→ qR>0

(( ∏

v∈MF

|x̃jv|v
)
j

)
,
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where qR>0
: Rn

>0 → Rn
>0/(R>0)a is the quotient map. For a character

χ ∈ [T (a)(AF )]
∗, we write m(χ) for m(χ|Rn

>0/(R>0)a). We write |·|i·m for
the unique character χ ∈ [T (a)(AF )]

∗ which satisfies χ|[T (a)(AF )]1 = 1
and χ|Rn

>0/(R>0)a = |·|im. For (xv)v ∈ [T (a)(AF )], one has that

|(xv)v|im =
n∏

j=1

∣∣∣∣
∏

v∈MF

|x̃jv|v
∣∣∣∣
imj

=
n∏

j=1

∏

v∈MF

|x̃jv|imj
v .

Lemma 7.5.2.1. — 1. For every m ∈M , one has that

H(s, ·)|·|i·m = H(s+ im, ·).

2. Let χ ∈ [T (a)(AF )]
∗. Whenever the quantities on the both hand

sides converge, one has that

Ĥ(s, χ) = Ĥ(s+ im, χ0).

Proof. — 1. Let (xv)v ∈ [T (a)(AF )] and let (x̃v)v ∈ (A×
F )

n be its lift.
By using that m ∈M , we get that

H(s, (xv)v)|(xv)v|im =
∏

v∈MF

Hv(s,xv)
n∏

j=1

|x̃jv|imj

=
∏

v∈MF

((
fv(x̃v)

−a·s
|a|

n∏

j=1

|x̃j|sjv
) n∏

j=1

|x̃jv|imj

)

=
∏

v∈MF

(
fv(x̃v)

−a·s
|a|

n∏

j=1

|x̃j|sj+imj
v

)

= H(s+ im, (xv)v),

as claimed.
2. It follows from (1) that

H(s, ·)χ = H(s+ im, ·)χ0|·|im(χ) = H(s+ im, ·)χ0.
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Now, one has that

Ĥ(s, χ) =

∫

[T (a)(AF )]

H(s, ·)χµAF

=

∫

[T (a)(AF )]

H(s, ·)χ0| · |im(χ)µAF

=

∫

[T (a)(AF )]

H(s+ im(χ), χ0)µAF

= Ĥ(s+ im(χ), χ0),

whenever every quantity converges. The claim is proven.

Given a character χ ∈ [T (a)(AF )]
∗, let us denote by χ0 the character

χ|[T (a)(AF )]1 . For every s ∈ Cn, Lemma 7.5.2.1 gives that
Lemma 7.5.2.2. — 1. For every χ ∈ [T (a)(AF )]

∗, the product

Ĥ(s, χ) :=
∏

v∈MF

Ĥv(s, χv)

converges when s ∈ Ω>1.
2. Let K ⊂ Ka

max :=
∏

v∈M0
F
[T (a)(Ov)] be an open subgroup. For

every χ ∈ [T (a)(AF )]
∗ vanishing on K, the function

s 7→ Ĥ(s, χ)
∏

χ
(j)
0 =1

sj + im(χ(j))− 1

sj + im(χ(j))

extends to a holomorphic function in the domain Ω> 2
3
. Moreover,

there exists 1
3
> δ > 0 such that for any compact in the domain

K ⊂ Rn
>1−δ and any positive integer N , there exists C(K, N) > 0

such that for any χ ∈ [T (a)(AF )]
∗ which vanishes on K and any

s ∈ K + iRn one has that

(7.5.2.3)

∣∣∣∣Ĥ(s, χ)
∏

χ
(j)
0 =1

sj + im(χ(j))− 1

sj + im(χ(j))

∣∣∣∣

≤ C(K, N)(1 + ||ℑ(s)||)N(r1+r2)+1(1 + ||m(χ)||)
(1 + ||χ||discrete)N/2(n−1)−1((1 + ||χ||∞))N/2(n−1)−1

.

Proof. — 1. Suppose s ∈ Ω>1. For every χ ∈ [T (a)(AF )]
∗, by

Proposition 7.3.1.1, one has that the product
∏

v∈M0
F
Ĥv(s, χv)
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converges absolutely and by Corollary 7.4.7.1, one has that

s 7→ ∏
v∈M∞

F
Ĥv(s, χv) is holomorphic in the domain Ω>0. The

claim follows.
2. By Proposition 7.3.1.1, there exists a unique holomorphic function
φ(·, χ) : Ω> 2

3
→ C such that

Ĥ(s, χ)

= Ĥ(s+ im(χ), χ0)

= φfin(s+ im(χ), χ0)
n∏

j=1

L(sj + im(χ(j)), χ
(j)
0 )

∏

v∈M∞
F

Ĥv(s+ im(χ), χ0v).

The function s 7→∏
v∈M∞

F
Ĥv(s+ im(χ), χ0v) is holomorphic in the

domain Ω>0 by Corollary 7.4.7.1. Recall that L(·, χ0) is an entire
function for every 0 6= χ0 ∈ A1

F , while L(·, 1) is a meromorphic
function with the single pole at 1 and no other poles. Therefore,
the function

s 7→
∏

χ
(j)
0 =1

sj + im(χ(j))− 1

sj + im(χ(j))
L(sj+im(χ(j)), χ

(j)
0 )

∏

χ
(j)
0 6=1

L(sj+im(χ(j)), χ
(j)
0 )

extends to a holomorphic function in the domain Ω> 2
3
. Hence

s 7→ Ĥ(s+ im(χ), χ0)
∏

χ
(j)
0 =1

sj + im(χ(j))− 1

sj + im(χ(j))

extends to a holomorphic function in the domain Ω>1−δ. By Propo-
sition 6.3.1.2, there exists 1

3
> δ > 0 and C2 > 0 such that

∣∣∣∣
∏

χ
(j)
0 =1

sj + im(χ(j))− 1

sj + im(χ(j))
L(sj + im(χ(j)), χ

(j)
0 )

∏

χ
(j)
0 6=1

·L(sj + im(χ(j)), χ
(j)
0 )

∣∣∣∣

≤ C2

( n∏

j=1

(1 + |ℑ(sj)|)(1 + ||χ(j)
0 ||∞)(1 + |m(χ(j))|)

)1/n

≤ C2(1 + ||ℑ(s)||)(1 + ||χ0||∞)(1 + ||m(χ)||)

provided that ℜ(sj) > 1 − δ for j = 1, . . . , n. Let N be an integer
and let K ⊂ Rn

>1−δ be a compact. Proposition 7.3.1.1 gives that
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there exists C1 > 0 such that |φfin(s, χ)| ≤ C1 for every s ∈ K+ iRn.
By Lemma 7.4.7.1, there exists C3 > 0 such that

∏

v∈M∞
F

|Ĥv(s+im(χ), χ0v)| ≤
C3(1 + ||ℑ(s)||)N(r1+r2)

(1 + ||χ||discrete)N/(2(n−1))(1 + ||χ||∞)N/(2(n−1))

for every s ∈ K + iRn and every χ ∈ [T (a)(AF )]
∗ which vanishes

on K. By Corollary 6.2.2.3, there exists C4 > 1 such that

1 + ||χ0||∞
1 + ||χ0||discrete

≤ C4.

We deduce that for every s ∈ K + iRn and every χ ∈ [T (a)(AF )]
∗

which vanishes on K, one has
∣∣∣∣Ĥ(s+ im(χ), χ0)

∏

χ
(j)
0 =1

sj + im(χ(j))− 1

sj + im(χ(j))

∣∣∣∣ =
∣∣∣∣φfin(s+ im(χ), χ0)×

×
∏

χ
(j)
0 =1

sj + im(χ(j))− 1

sj + im(χ(j))

n∏

j=1

L(sj+im(χ(j)), χ
(j)
0 )

∏

v∈M∞
F

Ĥv(s+im(χ), χ0v)

∣∣∣∣

≤ C1C2C3(1 + ||ℑ(s)||)N(r1+r2)+1(1 + ||χ0||∞)(1 + ||m(χ)||)
((1 + ||χ0||discrete)(1 + ||χ||∞))N/(2(n−1))

≤ C1C2C3C4(1 + ||ℑ(s)||)N(r1+r2)+1(1 + ||m(χ)||)
(1 + ||χ0||discrete)N/(2(n−1))−1(1 + ||χ0||∞)N/(2(n−1))

.

The claim follows.

Note that if χ1, χ2 ∈ [T (a)(AF )]
∗ are two characters then

||χ1χ2||∞ = max
v∈M∞

F

||m(χ1vχ2v)||

= max
v∈M∞

F

||m(χ1v) +m(χ2v)||

≤ max
v∈M∞

F

||m(χ1v)||+ max
v∈M∞

F

||m(χ2v)||

= ||χ1||∞ + ||χ2||∞.
Now, if χ0 = χ|·|−im for χ ∈ [T (a)(AF )]

∗ and m ∈ M , using the in-
equality

1

1 + |x+ y| ≤
1 + |x|
1 + |y| x, y ∈ C,
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we can deduce that

(7.5.2.4)
1

1 + ||χ||∞
=

1

1 + ||χ0|·|−im||∞
≤ 1 + ||χ0||∞

1 + ||m|| .

We can establish the following corollary:
Corollary 7.5.2.5. — Let K ⊂ Ka

max be an open subgroup. For every
α > 0 there exist β = β(α) > 0 and δ = δ(α) > 0 such that for every
compact K ⊂ Rn

>1−δ, one has that there exists C = C(α,K) > 0 such that
for every s ∈ K + iRn and every χ ∈ T (a)(AF )

∗ which vanishes on K
one has
∣∣∣∣Ĥ(s, χ)

∏

χ
(j)
0 =1

sj + im(χ(j))− 1

sj + im(χ(j))

∣∣∣∣ ≤
C(1 + ||ℑ(s)||)β

((1 + ||χ0||discrete)(1 + ||m(χ)||))α .

Proof. — Firstly, let C1 > 0 be such that for every χ0 ∈ AK one has

1 + ||χ0||∞
1 + ||χ0||discrete

≤ C1,

such C1 exists by Corollary 6.2.2.3. Let N be an integer bigger than
2(n− 1)(2α + 2) and let β > N(r1 + r2) + 1. Let δ be given by Lemma
7.5.2.2. It follows from this lemma and from the estimate (7.5.2.4) that
for every compact K ⊂ Rn

>1−δ, there exists C(K, N) such that for every
χ ∈ [T (a)(AF )]

∗ which vanishes on K and every s ∈ K + iRn one has
∣∣∣∣Ĥ(s, χ)

∏

χ
(j)
0 =1

sj + im(χ(j))− 1

sj + im(χ(j))

∣∣∣∣

≤ C(K, N)(1 + ||ℑ(s)||)N(r1+r2)+1(1 + ||m(χ)||)
(1 + ||χ0||discrete)

N
2(n−1)

−1(1 + ||χ||∞)
N

2(n−1)

≤ C(K, N)(1 + ||ℑ(s)||)β(1 + ||m(χ)||)
((1 + ||χ0||discrete)(1 + ||χ||∞))2α+1

.

≤ C(1 + ||ℑ(s)||)β(1 + ||χ0||∞)α+1

(1 + ||χ0||discrete)2α+1(1 + ||m(χ)||)α

≤ CCα+1
1 (1 + ||ℑ(s)||)β

((1 + ||χ0||)(1 + ||m(χ)||))α .

The claim follows.
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7.5.3. — For an open subgroup K ⊂ Ka
max =

∏
v∈M0

F
[T (a)(Ov)], we

denote by AK the subgroup of [T (a)(AF )]
∗
1 given by the characters that

vanish on [T (a)(i)(F )]K. In this paragraph we explain that one can
sum transforms over the characters of AK . The following lemma will be
used.
Lemma 7.5.3.1. — Suppose X is a discrete set. Let f : X → R≥0 be
such that there exists A > 0 and d > 0 such that for every B > 0 one has

|{x ∈ X|f(x) ≤ B}| ≤ ABd.

Let ǫ > 0. The series ∑

x∈X

1

(1 + f(x))N

and the series ∑

x∈X
f(x)>0

1

f(x)N

converge for N > d+ ǫ.
Proof. — For every i ∈ Z≥1, let us set

w(i) = |{x ∈ X|i− 1 ≤ f(x) < i}|.
Let B ≥ 1 be an integer. By Abel’s summation formula, for N > d + ǫ
we have that

∑

x∈X
f(x)≤B

1

(1 + f(x))N
≤

B+1∑

i=1

w(i)

iN

=
1

(1 + B)N

B+1∑

r=1

w(r) +
B∑

i=1

( 1
iN
− 1

(i+ 1)N
) i∑

j=1

w(j)

≤ ABd

(1 + B)N
+

B∑

i=1

( 1
iN
− 1

(1 + i)N
)
Aid

≤ A+
B∑

i=1

Aid
2N iN−1

iN(i+ 1)N

≤ A+
B∑

i=1

2NA

iN+1−d

≤ A+ 2NAζ(N + 1− d).
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(we have used that (1+i)N−iN ≤ 2N iN−1). It follows that
∑

x∈X
1

(1+f(x))N

converges uniformly for N > d + ǫ. Moreover, for N > d + ǫ, one has
that

∑

x∈X
f(x)>0

1

f(x)N
=

∑

x∈X
1>f(x)>0

1

f(x)N
+
∑

x∈X
f(x)>1

1

f(x)N

≤
∑

x∈X
1>f(x)>0

1

f(x)N
+
∑

x∈X
f(x)>1

2

(1 + f(x))N
.

As the sum
∑

x∈X
1>f(x)>0

1
f(x)N

is a finite sum and as the sum
∑

x∈X
f(x)>1

2
(1+f(x))N

converges uniformly for N > d + ǫ, we deduce that
∑

x∈X
f(x)>0

1
f(x)N

con-

verges uniformly for N > d+ ǫ. The statement is proven.

We set

Ĥ∗(s, χ) := Ĥ(s, χ)
n∏

j=1

sj + im(χ(j))− 1

sj + im(χ(j))
.

Definition 7.5.3.2. — We define formally

gK(s) :=
∑

χ0∈AK

Ĥ(s, χ0)

and

g∗K(s) :=
∑

χ0∈AK

Ĥ∗(s, χ0).

Proposition 7.5.3.3. — Let K ⊂ Ka
max be an open subgroup and let

α > 0. There exist δ = δ(α) > 0 and β = β(α) > 0 such that the
following conditions are satisfied:

1. The series

(7.5.3.4) g∗K(s) :=
∑

χ0∈AK

Ĥ∗(s, χ0)

converges absolutely and uniformly on compacts in the domain
Ω>1−δ and the function s 7→ g∗K(s) is holomorphic in the domain
Ω>1−δ.

2. For every compact K ⊂ Ω>1−δ one has that there exists C =
C(α,K) > 0 such that for every s ∈ K+ iRn and every m ∈M one
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has that

|g∗K(s+ im)| ≤ C(1 + ||ℑ(s)||)β
(1 + ||m||)α .

Proof. — Let α > 0. By Corollary 7.5.2.5, there exist 1
3
> δ > 0 and

β > 0 such that for any compact K ⊂ Rn
>1−δ there exists C > 0 such

that for every s ∈ K+ iRn, every χ0 ∈ AK and every m ∈M one has for
χ = χ0|·|im that:

∣∣∣∣Ĥ(s+ im, χ0)
∏

χ
(j)
0 =1

sj + imj − 1

sj + imj

∣∣∣∣ =
∣∣∣∣Ĥ(s, χ0|·|im)

∏

χ
(j)
0 =1

sj + im(χ(j))− 1

sj + im(χ(j))

∣∣∣∣

≤ C(1 + ||ℑ(s)||)β
((1 + ||χ0||discrete)(1 + ||m||))α

.

(7.5.3.5)

We prove that the series (7.5.3.4) converges absolutely and uniformly on
compacts of Ω>1−δ. Let G ⊂ Ω>1−δ be a compact set and let C(G) > 0
be such that for every s ∈ G one has ||ℑ(s)|| < C(G). Let K ⊂ Rn

>1/2

be a compact such that G ⊂ K + iRn. Note that for j = 1, . . . , n and
s ∈ K + iRn one has that ∣∣∣∣

sj − 1

sj

∣∣∣∣ ≤ 3.

Given α > nr2 + 1, it follows from the estimate (7.5.3.5) that for every
χ0 ∈ AK and every s ∈ G one has that

∣∣∣∣Ĥ(s, χ0)
n∏

j=1

sj − 1

sj

∣∣∣∣ ≤
∣∣∣∣
C(α,K)(1 + ||ℑ(s)||)β
(1 + ||χ0||discrete)α

∏

χ(j) 6=1

3

∣∣∣∣

≤ (1 + C(G))βC(α,K)3n
(1 + ||χ0||discrete)α

.

(7.5.3.6)

Now, by Corollary 6.2.2.4, there exists B > 0 such that for every A > 0
one has that |{χ0 ∈ AK | ||χ0||discrete < A}| ≤ BAnr2 . The set AK is
discrete (Lemma 6.1.2.4), and therefore the estimate (7.5.3.6) and Lemma
7.5.3.1 give that the series

∑
χ0∈AK

1
(1+||χ0||)α converges. We deduce that

the series (7.5.3.4) converges absolutely for every s ∈ G. Moreover, for
M > 0 one has that if ||χ0||discrete > M , then

|Ĥ(s, χ0)| ≤
C(G)βC(α,K)3n

(1 +M)α



7.5. GLOBAL TRANSFORM 251

for every s ∈ G, and, hence, the convergence is uniform on compacts. As

for every χ0 ∈ AK , the function s 7→ Ĥ(s, χ0)
∏n

j=1
sj−1

sj
is holomorphic

in the domain Ω>1−δ, we deduce that s 7→ g∗K(s) is holomorphic in the
domain Ω>1−δ. Let K ⊂ Rn

>1−δ be a compact. For every s ∈ K+ iRn and
every m ∈M , it follows from the estimate (7.5.3.5) that

|g∗K(s+ im)| =
∣∣∣∣
∑

χ0∈AK

Ĥ(s+ im, χ0)
n∏

j=1

sj +mj − 1

sj +mj

∣∣∣∣

≤ C(1 + ||ℑ(s)||)β
(1 + ||m||)α

∑

χ0∈AK

1

(1 + ||χ0||discrete)α
.

The statement follows.

The function s 7→ ∏n
j=1

sj−1

sj
does not vanish in the domain Ω>1. We

deduce that in this domain the series defining

gK(s) = g∗K(s)
n∏

j=1

sj
sj − 1

converges absolutely. Therefore s 7→ gK(s) is a holomorphic function in
this domain.





CHAPTER 8

ANALYSIS OF HEIGHT ZETA
FUNCTIONS

8.1. Analysis of M-controlled functions

In this section we adapt the analysis of [17] to our needs. We recall
the definition of M -controlled functions and establish properties of their
integrals.

8.1.1. — Let d ≥ 1 be an integer and U ⊂ Rd an open subset. For a
vector subspace M ⊂ Rd, we say that a function f : U + iRd → C is
M -controlled if for every α > 0, there exists β > 0 such that for any
compact K ⊂ U, there exists C(K) > 0 such that for every m ∈ M and
every s ∈ Cn with ℜ(s) ∈ K, one has

(8.1.1.1) |f(s+ i ·m)| ≤ C(K)(1 + ||ℑ(s)||)β
(1 + ||m||)α .

Remark 8.1.1.2. — Note that if f is M -controlled, then f is M -
controlled in the sense of [17, Section 4.3]. There, the condition is that
there exists a family of linear forms (ℓj)j in V

∗ such that the ℓj|M form a
basis of M and such that there exists β′ > 0 and 1 > ǫ > 0 for which for
any compact K ⊂ U there exists C ′(K) > 0 such that for every m ∈ M
one has

(8.1.1.3) |f(s+ i ·m)| ≤ C ′(K)(1 + ||ℑ(s)||)β′

(1 + ||m||)1−ǫ
1∏

(1 + |ℓj(s+m|))
if provided ℜ(s) ∈ K. We verify that our condition is stronger. The
inequality

1

1 + |x+ y| ≤
1 + |x|
1 + |y| x, y ∈ C
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gives that
1 + |ℓj(s)|

1 + |ℓj(s+m)| ≥
1

1 + |ℓj(m)| .

Now there exist C0, C1 > 0 such that
∏

ℓj

(1 + |ℓj(s)|) ≤ C0(1 + ||ℑ(s)||)dimM

and
1∏

ℓj
(1 + |ℓj(m)|) ≥

C1

(1 + ||m||)dimM
,

provided that ℜ(s) ∈ K. Hence, if f satisfies our condition it satisfies
the estimate (8.1.1.3).

The following result is given as Lemma 3.1.6 in [17].
Lemma 8.1.1.4 (Chambert-Loir, Tschinkel, [17, Lemma 3.1.6])

Let q : Rn → Rk be a surjective map and let M ⊂ Rn be its kernel.
For s ∈ Cn, let s̃ ∈ Cn be such that qC(s̃) = s. Endow M with the unique
Lebesgue measure dm such that (dx1 . . . dxn)/dm = dx1 . . . dxk. Suppose
that f : U + iRk → C is an M-controlled holomorphic function. The
integral

1

(2π)n−k

∫

M

f(s̃+ im)dm

converges for every s ∈ U + iRn and the value of

SM(f) : s 7→ 1

(2π)n−k

∫

M

f(s̃+ im)dm

does not depend on the choice of s̃ and the resulting map SM(f) : q(U)+
iRk → C is holomorphic and {0}-controlled.
Remark 8.1.1.5. — The original Lemma 3.1.6 has been simplified by
assuming M ′ =M (with the notation as in 3.1.6 in [17]).

The following result is Theorem 3.1.14 in [17].
Theorem 8.1.1.6 (Chambert-Loir, Tschinkel, [17, Theorem
3.1.14])

Let q : Rn → Rk be a surjective linear map such that q(Rn
≥0) = Rk

≥0

and let M = ker q. Let f : Ω>0 → C be a holomorphic function
such that there exists an open ball B ⊂ Rn centred at 0 such that
s 7→ f(s)

∏n
j=1

sj
sj+1

extends to an M-controlled holomorphic function on

(B + iRn) ∪ Ω>0. Then there exists an open neighbourhood B′ of 0 in

Rk such that SM(f)
∏k

j=1
sj
sj+1

extends to a holomorphic {0}-controlled
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function in the domain (B′ + iRk) ∪ (Rk
>0 + iRk). Moreover, if one has

for every x ∈ Rn
>0 that

lim
s→0+

(
sn

n∏

j=1

xj
)
f(sx) = a,

for some 0 6= a ∈ R, then one has for every x′ ∈ Rk
>0 that

lim
s→0+

(
sk

k∏

j=1

x′j
)
SM(f)(sx′) = a.

Remark 8.1.1.7. — The original statement of Theorem 8.1.1.6 is
somewhat simplified here. With notation as in Theorem 3.1.14 of [17],
we have supposed that M = M ′ and C = Λ = Rn

≥0. We have also

added the condition q(Rn
≥0) = Rk

≥0 in order to make calculations of
the characteristic functions of cones ([17, Section 3.1.7]) simple. For
every k ∈ Z≥1, the cone Rk

>0 is simplicial and its characteristic function
(according to [17, Section 3.1.7]) is given by

Ω>0 → C s 7→ 1∏n
j=1 sk

.

8.2. Height zeta function

We define and prove holomorphicity of a height zeta function. Let
(fv : F

n
v − {0} → R>0)v be a quasi-toric family of weighted degree d.

8.2.1. — We define height zeta functions.
Definition 8.2.1.1. — For s ∈ Cn we formally define series

◦

Z((fv)v)(s) =
◦

Z(s) :=
∑

x∈[T (a)(F )]

H(s,x)−1

and
Z((fv)v)(s) = Z(s) :=

∑

x∈[P(a)(F )]

H(s,x)−1

Proposition 8.2.1.2. — Let (fv : F n
v − {0} → R>0)v be a degree

|a| quasi-toric family of a-homogenous functions. For s ∈ Ω>0 we set

H(s,−) := H
a·s
|a| . Let 1

2
> ǫ > 0. The height zeta function series defining

Z(s) and
◦

Z(s) converge absolutely and uniformly in the domain Ω>1+ǫ,
and defines a holomorphic function in this domain.



256 CHAPTER 8. ANALYSIS OF HEIGHT ZETA FUNCTIONS

Proof. — By Theorem 4.6.8.2, one has that there exists C > 0 such that

|{x ∈ [P(a)(F )]|H(x) ≤ B}| ≤ CB1+ǫ/2

for every B > 0. Note that if s ∈ Ω>1+ǫ then one has that a·ℜ(s)
|a| > 1+ǫ >

1 + ǫ/2. Thus by Lemma 7.5.3.1, we have that the series
∑

x∈[P(a)(F )]

H(s,x)−1 =
∑

x∈[P(a)(F )]

H(x)−
a·s
|a|

converges absolutely and uniformly in the domain Ω>1+ǫ. It follows that
the function Z is holomorphic in this domain. One has that

Z(s) =
◦

Z(s) +
∑

x∈([P(a)(F )]−[T (a)(F )])

H(s,x).

Let δ > 0 be such that (1 + δ)(|a| − minj aj)/|a| ≤ max(1/2, 1 − ǫ).
Theorem 4.6.8.2 gives that there exists C ′(δ) > 0 such that

|{x ∈ ([P(a)(F )]− [T (a)(F )])|H(x) ≤ B}|
≤ C ′(δ)B(1+δ)(|a|−minj aj)/|a|.

Note that if s ∈ Ω>max(1/2,1−ǫ), then
a·ℜ(s)
|a| > max(1/2, 1 − ǫ). Lemma

7.5.3.1 gives that
∑

x∈([P(a)(F )]−[T (a)(F )])

H(s,x) =
∑

x∈([P(a)(F )]−[T (a)(F )])

H(x)−
a·ℜ(s)

|a|

converges absolutely and uniformly in the domain s ∈ Ω>max(1/2,1−ǫ). It
follows that the function defined by the series is holomorphic. Conse-

quently, the series defining
◦

Z also converges absolutely and uniformly in
the domain s ∈ Ω>1+ǫ and defines a holomorphic function in this domain.
The statement is proven.

8.2.2. — The goal of this paragraph is to apply Poisson formula to
understand the analytic behaviour of the height zeta series.
We suppose n ≥ 1 is an integer and a ∈ Zn>0 if n ≥ 2 and a = a ∈ Z>1

if n = 1. Recall that in Definition 8.2.1.1 for s ∈ Cn, we have defined
formally

◦

Z(s) =
∑

x∈T (a)(F )

H(x)−
a·s
|a|
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and in Proposition 8.2.1.2, we have established that there exists γ > 0
such that the series converges absolutely and uniformly for any s ∈ Ω>γ

and defines a holomorphic function in this domain.
For v ∈ S (that is the finite places v for which fv is not toric), by

Lemma 7.2.2.2, one can take an open subgroup Kv ⊂ [T (a)(Ov)], such
that if χv ∈ [T (a)(Fv)]

∗ does not vanish at Kv, then Ĥv(s, χv) = 0
for every s ∈ Ω>0. We set Kv = [T (a)(Ov)] for v ∈ M0

F ∩ S. Let us set
K =

∏
v∈M0

F
Kv and let AK be the group of characters [T (a)(AF )]1 → S1

which vanish on [T (a)(i)]([T (a)(F )]) and on K. By Corollary 6.2.2.2,
the group AK is a finitely generated abelian group.

In Definition 7.5.3.2, we have defined gK(s) =
∑

χ0∈AK
Ĥ(s, χ0). Recall

that M = {x ∈ Rn : a · x = 0}. By Proposition 7.5.3.3 one has that
gK(1 + s) converges absolutely and uniformly in the domain Ω>0, that
s 7→ gK(1 + s) is M -controlled and holomorphic function in the domain
Ω>0 and that there exists δ > 0 such that s 7→ gK(1 + s)

∏n
j=1

sj
sj+1

extends to a holomorphic M -controlled function in the domain Ω>−δ.
The following lemma will be used to determine the exact constant in

Poisson formula.
Lemma 8.2.2.1. — The measure (µAF

/ count[T (a)(i)]([T (a)(F )]))
∗ on

([T (a)(AF )]/[T (a)(i)]([T (a)(F )]))∗

=
(
[T (a)(AF )]1/[T (a)(i)]([T (a)(F )])

)∗ × (Rn
>0/(R>0)a)

∗

(the identification follows from the identification (3.4.9.3) and Lemma
7.1.1.2) satisfies that

(µAF
/ count[T (a)(i)]([T (a)(F )]))

∗

=
1

E(a)
count([T (a)(AF )]1/[T (a)(i)]([T (a)(F )]))∗ ×(d∗ra)∗,

where

E(a) :=
|X1(F, µgcd(a))|Res(ζF , 1)n−1∆(F )

n−1
2

|µgcd(a)(F )|
.

and where we write d∗ra for the measure (d∗r1 . . . d
∗rn)/(λa)∗(d

∗r) on
Rn
>0/(R>0)a.

Proof. — Let µ1 be the Haar measure on [T (a)(AF )]1 normalized by
µAF

/µ1 = d∗ra. For the above identification, one has that

µAF
/ count[T (a)(i)]([T (a)(F )]) = µ1/ count[T (a)(i)]([T (a)(F )])×d∗ra.
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We denote µ̃1 := µ1/ count[T (a)(i)]([T (a)(F )]) . This measure satisfies

µ̃1 =
|X1(F, µgcd(a))|
|µgcd(a)(F )|

µ1,

where µ1 is the measure from Definition 5.4.4.3. Proposition 5.4.4.4 gives
that

µ̃1([T (a)(AF )]1/[T (a)(i)]([T (a)(F )]))

=
|X1(F, µgcd(a))|
|µgcd(a)(F )|

µ1([T (a)(AF )]1/[T (a)(i)]([T (a)(F )]))

=
|X1(F, µgcd(a))|Res(ζF , 1)n−1∆(F )

n−1
2

|µgcd(a)(F )|
= E(a).

Using Lemma 7.1.1.3, we obtain that

µ̃1
∗ =

1

E(a)
count[T (a)(AF )]1/[T (a)(i)]([T (a)(F )])∗ .

The statement follows.

Proposition 8.2.2.2. — For every s ∈ Ω>0, both sides of

◦

Z(1+ s) =
|X1(F, µgcd(a))|

E(a)

∫

M

gK(1+ s+ i ·m)dm

converge and the equality is valid.
Proof. — By Lemma 3.4.7.1, the kernel of the map [T (a)(F )] →
[T (a)(AF )] is isomorphic to the finite group X

1(F, µgcd(a)). Using this
and the fact that

H(x)−
a·s
|a| = H(s,T (a)(i)(x))

(Lemma 7.1.2.2), we deduce that

◦

Z(1+ s) = |X1(F, µgcd(a))|
∑

x∈[T (a)(i)]([T (a)(F )])

H(1+ s,x)−1.

Poisson formula (Proposition 7.1.1.4) applied to the inclusion

[T (a)(i)]([T (a)(F )]) ⊂ [T (a)(AF )]
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gives that
∑

x∈[T (a)(i)]([T (a)(F )])

H(1+ s,x)−1

=

∫

([T (a)(AF )]/[T (a)(i)]([T (a)(F )]))∗
Ĥ(1+s,−)(µAF

/ count[T (a)(i)]([T (a)(F )]))
∗,

for every s for which the both sides converge and, hence,

◦

Z(1+ s) = |X1(F, µgcd(a))|×

×
∫

[T (a)(AF )]/[T (a)(i)]([T (a)(F )])∗
Ĥ(1+s,−)(µAF

/ count[T (a)(i)]([T (a)(F )]))
∗,

for every s that the both sides converge. By Lemma 7.5.1.1, the homo-
morphism

ξn : Rn → (Rn
>0)

∗ x 7→
(
r 7→

n∏

j=1

r
2iπxj
j

)

induces an isomorphism ξn|M : M → (R>0/(R>0)a)
∗, which satisfies

(ξn|M)∗dm = (d∗ra)
∗. Now, Lemma 8.2.2.1 and Fubini theorem give

that
◦

Z(s)

=
|X1(F, µgcd(a))|

E(a)

∫

M

∑

χ0∈[T (a)(AF )]1/[T (a)(i)]([T (a)(F )])∗

Ĥ(s, χ0ξ
n(m))dm.

Lemma 7.5.2.1 gives Ĥ(1+s, χ0ξ
n(m)) = Ĥ(1+s+2iπm, χ0).Moreover,

it follows from Lemma 7.2.2.2 that Ĥ(1 + s + 2iπ, χ0) = 0, for every
χ0 ∈ [T (a)(AF )]1/[T (a)(F )]∗ − AK . We deduce that

∑

χ0∈([T (a)(AF )]1/[T (a)(i)]([T (a)(F )]))∗

Ĥ(1+ s, χ0ξ
n(m))

=
∑

χ0∈AK

Ĥ(1+ s+ 2iπm, χ0)

= gK(1+ s+ 2iπm).

Therefore,

◦

Z(1+ s) =
|X1(F, µgcd(a))|

E(a)

∫

M

gK(1+ s+ 2iπm)dm.
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We introduce

GK(1+ s) :=

∫

M

gK(1+ s+ 2iπm)dm,

which, if the integral converges, by Part (1) of Lemma 7.5.1.1, is the
same as

GK(1+ s) =
1

(2π)n−1

∫

M

gK(1+ s+ i ·m)dm

The function s 7→ gK(1+ s) is M -controlled and so the integral defining
GK converges for s ∈ Ω>0 by Lemma 8.1.1.4. By Proposition 8.2.1.2, the

series defining
◦

Z(1+ s) converges for s ∈ Ω>0. We get

◦

Z(1+ s) =
|X1(F, µgcd(a))|

E(a)
GK(1+ s)

=
|X1(F, µgcd(a))|

E(a)

∫

M

gK(1+ s+ i ·m)dm

in the domain Ω>0. The claim is proven.

Proposition 8.2.2.3. — Let n ≥ 1. Let a ∈ Zn≥1 if n ≥ 2 and let
a = a ≥ 2 if n = 1. For every x ∈ Rn

>0 one has that

lim
s→0+

( n∏

j=1

sxj
)
· gK(1+ sx) =

∆(F )
n−1
2 Res(ζF , 1)

n−1τ

|µgcd(a)(F )|
.

Proof. — Let x ∈ Rn
>0. The series defining

gK(1+ sx) =
∑

χ0∈AK

Ĥ(1+ sx, χ0)

converges absolutely and uniformly when s > 0, so we can exchange the
limit and the sum, we get:
(8.2.2.4)

lim
s→0+

( n∏

j=1

sxj
)
· gK(1+ sx) =

∑

χ0∈AK

lim
s→0+

( n∏

j=1

sxj
)
Ĥ((1 + sxj)j, χ0).

By Proposition 7.3.1.1, we have that for every χ0 ∈ AK , there exists a
holomorphic function φ(−, χ0) : Ω> 2

3
→ C such that one has an equality

of the meromorphic functions

Ĥ(s, χ0) = φ(s, χ0)
n∏

j=1

L(sj, χ
(j)
0 )

∏

v∈M∞
F

Ĥv(s, χ0v)



8.2. HEIGHT ZETA FUNCTION 261

for s ∈ Ω>1. Suppose χ0 6= 1. There exists index k such that χ
(k)
0 6= 1,

and the function s 7→ L(s, χ
(k)
0 ) is entire. For j 6= k, we have that

lim
s→0+

sxjL(1 + sxj, χ
(j)
0 ) = lim

s→0+
sxjζF (1 + sxj)

exists. We conclude that

lim
s→0+

( n∏

j=1

sxj
)
Ĥ((1 + sxj)j, χ0)

= lim
s→0+

φ((1 + sxj)j, χ0)
n∏

j=1

sxjL(1 + sxj, χ
(j)
0 )

∏

v∈M∞
F

Ĥv((1 + sxj)j, χ0v)

= 0.

Therefore, the only surviving term in the sum on the right hand side of
the equality (8.2.2.4) is, hence, for χ0 = 1. Lemma 7.2.1.1 gives for every
v ∈M0

F − S (that is for every finite v such that fv is toric) that

Ĥv((1 + sxj)j, 1) = ζv(a · (1 + sxj)j)
−1

n∏

j=1

ζv(1 + sxj).

Hence we have

Ĥ((1 + sxj)j, 1)
n∏

j=1

ζF (1 + sxj)
−1

=
∏

v∈M0
F

(
Ĥv((1 + sxj)j, 1)

n∏

j=1

ζv(1 + sxj)
−1

)
×
∏

v∈M∞
F

Ĥv((1 + sxj)j, 1)

=
∏

v∈S∩M0
F

(
Ĥv((1+sxj)j, 1)

n∏

j=1

ζv(1+sxj)
−1

) ∏

v∈M0
F−S

ζv(a·(1+sxj)j)−1×

×
∏

v∈M∞
F

Ĥv((1 + sxj)j, 1).

When s > 0, one has ℜ(a · (1+ sxj)j) > 1 (because a ∈ Zn≥1 if n ≥ 2 and
a = a ∈ Zn≥2 if n = 1), and thus the product

∏
v∈M0

F−S ζv(a · (1+sxj)j)−1

converges to

ζF (a · (1 + sxj)j)
−1

∏

v∈S∩M0
F

ζv(a · (1 + sxj)j).
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We deduce

(8.2.2.5) Ĥ((1 + sxj)j, 1)

=

( n∏

j=1

ζF (1 + sxj)

) ∏

v∈S∩M0
F

(
Ĥv((1 + sxj)j, 1)

n∏

j=1

ζv((1 + sxj)j)
−1

)
×

× ζF (a · (1+ sxj)j)−1

( ∏

v∈S∩M0
F

ζv(a · (1+ sxj)j)
) ∏

v∈M∞
F

Ĥv((1+ sxj)j, 1)

We will calculate the limit of the last product multiplied by
∏n

j=1 sxj,
when s goes to zero. One has that

(8.2.2.6) lim
s→0+

( n∏

j=1

sxj
)
ζF (1 + sxj) = Res(ζF , 1)

n.

Now we calculate:

(8.2.2.7)

lim
s→0+

∏

v∈S∩M0
F

(
Ĥv((1+sxj)j, 1)

n∏

j=1

ζv(1+sxj)
−1

)
×
∏

v∈M∞
F

Ĥv((1+sxj)j, 1)

=
∏

v∈S∩M0
F

(
Ĥv(1, 1)ζv(1)

−n
)
×
∏

v∈M∞
F

Ĥv(1, 1).

By Lemma 5.4.1.2, for v ∈M0
F we have that

Ĥv(1, 1) = ζv(1)
n−1

∫

[T (a)(Fv)]

Hv(1,−)−1µv

= ζv(1)
n−1ωv([T (a)(Fv)])

= ζv(1)
n−1ωv([P(a)(Fv)]),

where we have used that ω([P(a)(Fv)]− [T (a)(Fv)]) = 0 which we have
established in Lemma 5.2.4.2. For v ∈M∞

F we have that

Ĥv(1, 1) =

∫

[T (a)(Fv)]

Hv(1,−)−1µv = ωv([P(a)(Fv)]).

We conclude that the product on the right hand side of the equality
(8.2.2.7) is equal to

(8.2.2.8)
∏

v∈S∩M0
F

ζv(1)
−1ωv([P(a)(Fv)])×

∏

v∈M∞
F

ωv([P(a)(Fv)]).
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Finally, we can calculate
(8.2.2.9)

lim
s→0+

ζF (a·(1+sxj)j)−1
∏

v∈S∩M0
F

ζv(a·(1+sxj)j) = ζF (|a|)−1
∏

v∈S∩M0
F

ζv(|a|).

Using the facts (8.2.2.6), (8.2.2.8) and (8.2.2.9), we conclude

lim
s→0+

( n∏

j=1

sxj
)
Ĥ((1 + sxj)j, 1)

=
Res(ζF , 1)

n

ζF (|a|)
∏

v∈S∩M0
F

ζv(|a|)ωv(P(a)(Fv))

ζv(1)
×
∏

v∈M∞
F

ωv(P(a)(Fv)).

Using the formula given in Lemma 5.3.3.3 for τ we deduce that the last
number is

Res(ζF , 1)
n−1τ |µgcd(a)(F )|−1∆(F )

n−1
2 ,

as claimed.

Theorem 8.2.2.10. — There exists γ > 0 such that the series series
defining
(8.2.2.11)
◦

Z((s)j) =
∑

x∈[T (a)(F )]

H(x)−s = |X1(F, µgcd(a))|
∑

x∈[T (a)(i)]([T (a)(F )])

H((s)j,x)
−1

converges for s ∈ R>γ + iR and the function that associates to s the

value of
◦

Z((s)j) is holomorphic in the domain ℜ(s) > γ. There exists

1 > δ > 0 such that the function s 7→
◦

Z((s)j) extends to a meromorphic
function in the domain ℜ(s) > 1− δ with the only pole at s = 1 which is
simple, and such that for every compact K ⊂ R>1−δ there exists C(K) > 0
and β(K) > 0 such that

∣∣∣∣
s− 1

s
Z((s)j)

∣∣∣∣ ≤ C(K)(1 + |ℑ(s)|)β(K)

if provided ℜ(s) ∈ K. We have further that

lim
s→1

(s− 1)
◦

Z((s)j) =
τ

|a| .

Proof. — Let us firstly establish the convergence and holomorphicity.
We have seen in Proposition 8.2.1.2 that there exists γ > 0 such that

the series defining
◦

Z(s) converges absolutely for s ∈ Ω>γ and defines a
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holomorphic function in this domain. We deduce that the series defining
◦

Z((s)j) converges in the domain R>γ + iR. The function s 7→ Z((sj)j)
is holomorphic as it this the composition of the holomorphic map R>γ +
iR→ Ω>γ which is given by s 7→ (s)j and the holomorphic map Ω>γ → C
which is given by s 7→

◦

Z(s).
Let us now prove the meromorphic extension and the bound. The

facts that s 7→ gK(1 + s) is holomorphic for s ∈ Ω>0 and that s 7→
gK(1+ s)

∏n
j=1

sj
sj+1

is M -controlled in the domain Ω>−δ′ for some δ′ > 0

(Proposition 7.5.3.3), enable us to apply Theorem 8.1.1.6. We apply this
theorem for the map Rn → R,x 7→ a · x and the function

s 7→ |X
1(F, µgcd(aj)j)|
E(a)

gK(1+ s+ im).

We get that

s 7→
◦

Z((1 + s)j) =
|X1(F, µgcd(a))|
E(a)(2π)n−1

∫

M

gK((1 + s+mj)j)dm

=
|X1(F, µgcd(aj)j)|

E(a)
SM(gK)(|a|+ |a| · s)

is holomorphic in the domain ℜ(s) > 0 and that there exists 1 > δ > 0

such that s
s+1

◦

Z((1 + s)j) extends to a holomorphic functions for ℜ(s) >
−δ and is {0}-controlled in this domain. This means that for every
compact K ⊂ R>−δ, there exist C(K), β(K) > 0 such that

∣∣∣∣
s

◦

Z((1 + s)j)

s+ 1

∣∣∣∣ ≤ C(K)(1 + |ℑ(s)|)β(K)

provided that ℜ(s) ∈ K. Pick a compact K ⊂ R>1−δ. For every s with
ℜ(s) ∈ K, one has that
∣∣∣∣
s− 1

s

◦

Z(s)

∣∣∣∣ =
∣∣∣∣
(s− 1)

◦

Z((1 + (s− 1))j)

(s− 1) + 1

∣∣∣∣ ≤ C(K − 1)(1 + |ℑ(s)|)β(K−1),

where K − 1 = {x− 1|x ∈ K}.
Let us calculate the limit. By Proposition 8.2.2.3, for every x ∈ Rn

>0

one has

lim
s→0+

sngK(1 + sx)
n∏

j=1

xj = Res(ζF , 1)
n−1|µgcd(a)(F )|−1∆(F )

n−1
2 τ.
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Now, the second part of Theorem 8.1.1.6 gives that for every x > 0 one
has that

lim
s→0+

s
◦

Z((1 + sx)j) = lim
s→0+

|X1(F, µgcd(a))|
E(a)

sxSM(gK)(|a|+ |a|sx)

=
|X1(F, µgcd(a))|

E(a)
lim
s→0+

sxSM(gK)(|a|+ |a| · sx)

=
|X1(F, µgcd(a))|
|a|E(a) lim

s→0+
|a|sxSM(gK)(|a|+ |a| · sx)

=
|X1(F, µgcd(a))|
|a|E(a) lim

s→0+
sngK(1 + sx)

n∏

j=1

xj

=
|X1(F, µgcd(a))|Res(ζF , 1)n−1∆(F )

n−1
2 τ

|a| · E(a) · |µgcd(a)(F )|
=

τ

|a| ,

where the last equality follows directly from the definition of E(a) =
|X1(F,µgcd(a))|Res(ζF ,1)

n−1∆(F )
n−1
2

|µgcd(a)(F )| (see Lemma 8.2.2.1). We deduce that the

function s 7→
◦

Z((1 + s)j) admits a pole of order 1 at 0, which is simple
and

Res(s 7→
◦

Z((1 + s)j), 1) =
τ

|a| .

The statement follows.

By using the Tauberian result given as [17, Theorem A1] we deduce
the following theorem.
Theorem 8.2.2.12. — Let (fv)v be a quasi-toric degree |a| family of
a-homogenous smooth functions. One has that

{x ∈ [P(a)(F )]|H(x) ≤ B} ∼ τ

|a|B,

when B tends to +∞.
Proof. — We first establish the following fact

{x ∈ [T (a)(F )]|H(x) ≤ B} ∼ τ

|a|B.

LetW ⊂ [T (a)(F )] be the set of points for whichH(x) < 1, it is finite by

Corollary 4.7.1.3. We define
◦

ZT (a)(F )−W ((s)j) =
∑

x∈T (a)(F )−W H(x)−s.



266 CHAPTER 8. ANALYSIS OF HEIGHT ZETA FUNCTIONS

It follows from Theorem 8.2.2.10 that the series defining
◦

ZT (a)(F )−W ((s)j)
converges absolutely in the domain R>γ + iR and that there exists δ > 0

such that the function s 7→
◦

ZT (a)(F )−W extends meromorphically to the
domain ℜ(s) > 1−δ and has one and only one pole in this domain which
is moreover simple with the residue

Res(
◦

ZT (a)(F )−W , 1) =
τ

|a| .

By the absolute convergence of the defining series and the fact that we
are summing only for those x for which H(x) ≥ 1, the function s 7→
◦

ZT (a)(F )−W ((s)j) is decreasing on ]γ,+∞[. Let us pickK = [1−δ/2, γ+1].
It follows from Theorem 8.2.2.10 and the triangle inequality, that there
exists C(K), β(K) > 0 such that for ℜ(s) ∈ K one has that
∣∣∣∣
(s− 1)

◦

ZT (a)(F )−W ((s)j)

s

∣∣∣∣ ≤
∣∣∣∣
s− 1

s

∣∣∣∣
∑

x∈W

∣∣H(x)−s
∣∣+C(K)(1+|ℑ(s)|)β(K).

The function s 7→
∣∣ s−1
s

∣∣∑
x∈W

∣∣H(x)−s
∣∣ is bounded for s ∈ K+iR, say by

A > 0. By the fact that
◦

ZT (a)(F )−W is decreasing on ]γ,+∞[ we deduce
that for ℜ(s) > 1− δ/2 one has that
∣∣∣∣
(s− 1)

◦

Z(s)(γ + 1)

s

∣∣∣∣ ≤ (A+ C(K) +
◦

ZT (a)(F )−W (γ + 1))(1 + |ℑ(s)|)β.

Therefore,
◦

ZT (a)(F )−W satisfies the conditions we need for the Tauberian
theorem. Our claim for the rational points of T (a) follows from the
direct application of the theorem.

Let us now prove the statement of the theorem. By Theorem 4.6.8.2,
we have that there exists A > 0 such that for every B > 0 one has that

{x ∈ [P(a)(F )]− [T (a)(F )]|H(x) ≤ B}
≤ AB|a|−minj aj log(2 +B|a|−minj aj |a|)n2(r1+r2)+n−1.

Thus the statement follows.

8.3. Equidistribution of rational points

We study the “equidistribution” of the set of rational points of a
weighted projective stack in its adelic space.
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8.3.1. — In this paragraph we recall what do we mean by the equidis-
tribution. Let X be a compact topological space and let µ be a measure
on X. Let U be a subset of X. Let H : U → R>0 be a function such
that for every B > 0, one has that {x ∈ U |H(x) ≤ B} is finite. We say
that U is equidistributed in (X,µ), (or simply in X) with respect to H
if for any open µ-measurable subset W ⊂ X such that µ(∂W ) = 0 one
has that

lim
B→∞

|{x ∈ U ∩W |H(x) ≤ B}|
|{x ∈ U |H(x) ≤ B}| → µ(W )

µ(X)
.

8.3.2. — Let n ∈ Z≥1 and let a ∈ Zn>0. We establish that the rational
points of P(a) are equidistributed in the space

∏
v∈MF

[P(a)(Fv)].
If v ∈MF , we say that a function f : [P(a)(Fv)]→ C is smooth if its

pullback F n
v − {0} → C is smooth. If A ⊂ C is open, the sets of smooth

functions [P(a)(Fv)]→ A will be denoted by C ∞([P(a)(Fv)], A).
Lemma 8.3.2.1. — Let v ∈MF .

1. There exists a unique structure of a v-adic manifold on [P(a)(Fv)]
such that for an open subset A ⊂ [P(a)(Fv)] and f ∈ C 0(A,C)
one has that f ∈ C ∞(A,C) if and only if f is smooth in the usual
sense (i.e. f is locally constant if v ∈ M0

F and f is an infinitely
differentiable function if v ∈M∞

F ).
2. Let fv : F n

v − {0} → R>0 be an a-homogenous continuous func-
tion and let ωv := (f−1

v dx1 . . . dxn)/d
∗x be the induced measure on

[P(a)(Fv)]. Let W ⊂ [P(a)(Fv)] be an open subset such that
ωv(∂W ) = 0. Let ǫ > 0. There exist smooth functions h, g :
[P(a)(Fv)]→ R>0 such that

0 ≤ h ≤ 1W ≤ g and

∫

[P(a)(Fv)]

(g − h)ω < ǫ.

Proof. — 1. We have seen in Proposition 3.3.4.1, that the action

F×
v × (F n

v − {0})→ (F n
v − {0}) (t,x) 7→ (tajxj)j

is proper, i.e. the canonical morphism F×
v × (F n

v − {0}) → (F n
v −

{0}) × (F n
v − {0}) is proper. Let e : F×

v → (F×
v )a be given by

e(t) = (taj)j. The group (Fv)a = {(taj)j|t ∈ F×
v } acts on F n

v −{0} by
the component-wise multiplication. The two actions are compatible
in the following sense: t · x = e(t)x. Now the proper morphism
F×
v × (F n

v − {0})→ (F n
v − {0})× (F n

v − {0}) factorizes as

F×
v ×(F n

v −{0})
(e,IdFn

v −{0})−−−−−−−→ (F×
v )a×(F n

v −{0})→ (F n
v −{0})×(F n

v −{0}).
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The first morphism is surjective, hence by [7, Chapter I, §10,
n0 1Proposition 5], the second morphism is proper, i.e. the action
of (F×

v )a on F n
v −{0} is proper. By [6, Paragraph 6.2.3] we deduce

that the quotient [P(a)(Fv)] = (F n
v −{0})/F×

v = (F n
v −{0})/(F×

v )a
carries a unique structure of a compact v-adic manifold and with
this structure, the smooth functions in our sense are precisely the
smooth functions on the v-adic manifold [P(a)(Fv)].

2. To prove the statement, we use the existence of bump functions
on v-adic manifolds. First, we recall the proof for this statement
when v ∈M0

F and when v ∈M∞
F we refer the reader to [36, Lemma

2.15]. Let K be a compact of [P(a)(Fv)]. If U ⊃ K is open, for
every x ∈ K, there exists an open and closed neighbourhood Nx of x
contained in U (because every point in the spaces F r

v for r ≥ 0 has a
basis of its neighbourhoods given by open and closed balls). By the
compacity of K, there exist x1, . . . ,xℓ such that N :=

⋃
Nxℓ
⊃ K.

Moreover, N ⊂ U is open and closed, thus 1N is a bump function
which extends the function 1K.

Now let us prove the claim. For every open U ⊃ W, there exists
a smooth function gU : [P(a)(Fv)]→ [0, 1] such that gU |W = 1 and
supp(gU) ⊂ U . For every compact K ⊂ W there exists a smooth
function hK : K → [0, 1] such that hK |K = 1 and supp(hK) ⊂ W .
For every ǫ > 0, by the regularity of ω and the fact that ω(∂W ) =
0, there exists open U ⊃ W and a compact K ⊂ W such that
ω(U)− ω(K) < ǫ. It follows that
∫

[P(a)(Fv)]

(gU − hK)ω ≤
∫

[P(a)(Fv)]

1U−Kω = ω(U)− ω(K) < ǫ.

Let (fv : F n
v − {0} → R>0)v be a quasi-toric degree |a|-family of

a-homogenous smooth functions. Let H = H((fv)v) be the resulting
height on [P(a)(F )] and let ω = ω((fv)v) be the resulting mea-
sure on

∏
v∈MF

[P(a)(Fv)]. The goal of the rest of the paragraph is
to establish that the set [P(a)(i)]([P(a)(F )]) is equidistributed in∏

v∈MF
[P(a)(Fv)]. We will write i for the map [P(a)(i)] The following

theorem is motivated by [47, Proposition 3.3].
Theorem 8.3.2.2 (“Equidistribution of rational points”)

The set i([P(a)(F )]) is equidistributed in
∏

v∈MF
[P(a)(Fv)] with re-

spect to H.
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Proof. — In the case n = 1 and a1 = 1, the statement is trivially true.
In the rest of the proof we suppose that n ≥ 1 and that a ∈ Zn>0 if n ≥ 2
and that a = a1 ∈ Z>1 if n = 1. The proof is adaptation of the proof of
[47, Proposition 3.3]. We split it in several parts.

1. In the first part we establish that the asymptotic for counting points
of [P(a)(F )] equals to |X1(F, µgcd(a))| times the asymptotic for
counting the points of i([P(a)(F )]). By Theorem 8.2.2.12, one has
that

|{x ∈ [T (a)(F )]|H(x) ≤ B}| ∼B→∞
ω(
∏

v∈MF
[P(a)(Fv)])

|a| B.

It follows from Proposition 3.4.3.1 that

|{x ∈ i([T (a)(F )])|H(x) ≤ B}| ∼B→∞
ω(
∏

v∈MF
[P(a)(Fv)])

|X1(F, µgcd(a))| · |a|
B.

It follows from Theorem 4.6.8.2, that for every B > 0 there exists
C ′ > 0 such that

|{x ∈ i([P(a)(F )]− [T (a)(F )])|H(x) ≤ B}|

≤ C ′B
|a|−minj aj

|a| log(2 +B)n
2(r1+r2)+n−1.

We deduce that

|{x ∈ i([P(a)(F )])|H(x) ≤ B}| ∼B→∞
ω(
∏

v∈MF
[P(a)(Fv)])

|X1(F, µgcd(a))| · |a|
B.

2. We are going to prove the claim for the open subsets W ⊂∏
v∈MF

[P(a)(Fv)] of the form

W =
∏

v∈SW

Wv ×
∏

v∈MF−SW

[P(a)(Fv)],

where S is a finite set and for v ∈ S the set Wv ⊂ [P(a)(Fv)] is
open satisfying that ωv(∂Wv) = 0 (we will call such open subset
elementary). For v ∈ SW , by Lemma 8.3.2.1 there exist smooth
functions gv, hv : Wv → R>0 such that

0 ≤ hv ≤ 1Wv ≤ gv ≤ 1 and

∫

Wv

(gv − hv)ωv ≤
ǫωv([P(a)(Fv)])

8|SW |
.

Let us set η = ǫ/4. For v ∈ S, we define hv,η = (1 − η)hv + η and
gv,η = (1−η)gv+η and for v ∈MF−S, we define hv,η = gv,η = 1. We
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define hη =
∏

v∈MF
hv,η and gη =

∏
v∈MF

gv,η. For x ∈ [P(a)(F )],
let x̃ ∈ F n − {0} be a lift of x. Observe that

H(((h−1
v,η ◦ qav ) · fv)v)(x) =

∏

v∈MF

((h−1
v,η ◦ qav ) · fv)(x̃)

=
∏

v∈MF

h−1
v,η(q

a
v (x̃))fv(x̃)

=

( ∏

v∈MF

h−1
v,η(x)

)
H(x)

= hη(i(x))
−1 ·H(x)

for x ∈ [P(a)(F )]. By Lemma 5.3.3.2, one has that ω(((h−1
v,η ◦ qav ) ·

fv)v) = hηω. SimilarlyH(((g−1
v,η◦qav )·fv)v) = gv([P(a)(iv)](x))

−1H(x)
for x ∈ [P(a)(F )] and

ω(((g−1
v ◦ qav ) · fv)v) = gηω.

Now, it follows from (1) that for the quasi-toric degree |a| families
of smooth functions ((h−1

v,η ◦ qav ) · fv)v and ((g−1
v,η ◦ qav ) · fv)v we have

that

|{x ∈ i([P(a)(F )])|H(x) ≤ hη(x) · B}|
= |{x ∈ i([P(a)(F )])|H(((h−1

v ◦ qav ) · fv)v)(x) ≤ B}|

∼B→∞

∫
∏

v∈MF
[P(a)(Fv)]

hηω

|X1(F, µgcd(a))| · |a|
B.

and that

|{x ∈ i([P(a)(F )])|H(x) ≤ gη(x)B}|

∼B→∞

∫
∏

v∈MF
[P(a)(Fv)]

gηω

|X1(F, µgcd(a))| · |a|
B.

Using (1), we deduce that

|{x ∈ i([P(a)(F )])|H(x) ≤ hη(x)B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}| ∼B→∞

∫
∏

v∈MF
[P(a)(Fv)]

hηω

ω
(∏

v∈MF
[P(a)(Fv)]

)
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and analogously for gη. Thus, there exists B0 > 0 such that if
B > B0, one has that

∫
∏

v∈MF
[P(a)(Fv)]

hηω

ω
(∏

v∈MF
[P(a)(Fv)]

) − ǫ

8

≤
|{x ∈ i([P(a)(F )])|H(x) ≤ B

∏
v∈SW

((1− η)1Wv + η)}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

≤
∫
∏

v∈MF
[P(a)(Fv)]

gηω

ω
(∏

v∈MF
[P(a)(Fv)]

) + ǫ

8
.

It follows that

ω(W )

ω(
∏

v∈MF
[P(a)(Fv)])

− ǫ

8

≤
|{x ∈ i([P(a)(F )])|H(x) ≤ B

∏
v∈SW

((1− η)1Wv + η)}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

≤ ω(W )

ω(
∏

v∈MF
[P(a)(Fv)])

+
ǫ

4

One has that

lim
B→∞

|{x ∈ i([P(a)(F )])|H(x) ≤ ηB}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}| = η =

ǫ

4
.

For B ≫ 0, we deduce that

− ǫ
8
≤
|{x ∈ i([P(a)(F )])|H(x) ≤ B

∏
v∈SW

((1− η)1Wv + η)}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

− ω(W )

ω(
∏

v∈MF
[P(a)(Fv)])

≤ |{x ∈ W |H(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}| +

|{x ∈ i([P(a)(F )])|H(x) ≤ ηB}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

− ω(W )

ω(
∏

v∈MF
[P(a)(Fv)])

≤ |{x ∈ W |H(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}| −

ω(W )

ω(
∏

v∈MF
[P(a)(Fv)])

+
ǫ

2

≤ ǫ

4
+
ǫ

2
.
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Thus the claim follows for elementary open subsets W ⊂∏
v∈MF

[P(a)(Fv)].
3. We prove claim for every W which is a finite union of elementary

open subsets of
∏

v∈MF
[P(a)(Fv)]. The collection of the elementary

open subsets of
∏

v∈MF
[P(a)(Fv)] is stable for finite intersections.

Suppose the claim is valid for every union of k elementary open sets.
Let V1, . . . , Vk+1 be elementary open sets, we have that

|{x ∈ ⋃k
j=1 Vj ∪ Vk+1|H(x) ≤ B}|

|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

=
|{x ∈ ⋃k

j=1 Vj|H(x) ≤ B}|+ |{x ∈ Vk+1|H(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

−
|{x ∈ ⋃k

j=1(Vj ∩ Vk+1)|H(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

∼B
ω
(⋃k

j=1 Vj
)
+ ω(Vk+1)− ω

(⋃k
j=1(Vj ∩ Vk+1)

)

ω
(∏

v∈MF
[P(a)(Fv)]

)

=
ω
(⋃k+1

j=1 Vj
)

ω
(∏

v∈MF
[P(a)(Fv)]

) .

It follows by the induction, that the claim is valid for W
which is a union of finitely many elementary open subsets of∏

v∈MF
[P(a)(Fv)].

4. Let us now prove the claim for a general open subset W with
ω(∂W ) = 0. We shall first establish that for every ǫ > 0, there
exist W ′ and W ′′ which are finite unions of the elementary open
subsets of

∏
v∈MF

[P(a)(Fv)], such that W ′ ⊂ W ⊂ W ′′ and such
that ω(W ′′ −W ′) < ǫ. For v ∈ MF , open sets of [P(a)(Fv)] with
negligible boundary form a basis of the topologies of [P(a)(Fv)]
(the collection of such open sets contains the images of open balls
in F n

v −{0}, and the open balls in F n
v −{0} form a basis of the topolo-

gies and have negligible boundaries). It follows that the elementary
open subsets form a basis of the topology of

∏
v∈MF

[P(a)(Fv)]. Let

ǫ > 0. The space W is a compact, thus can be covered by the
finitely many elementary open sets of volume no more than ǫ2. We
let W ′′ be the union of these sets. By the inner regularity of ω (e.g.
[29, Theorem 2.5.13]), there exists a compact set K ⊂ W such that
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ω(W )− ω(K) < ǫ/2. Cover the set K by finitely many elementary
open subsets lying completely in W . We let W ′ be the union of this
sets. Clearly, W ′ ⊂ W ⊂ W ′′. By using that ω(∂W ) = 0 we get
that

ω(W ′′ −W ′) ≤ ω(W ′′ −W ) + ω(W −W ′)

≤ ω(W ′′ − (W ∪ ∂W )) + ω((W ∪ ∂W )−W ′)

≤ ω(W ′′ −W ) + ω(W −W ′)

< ǫ.

Now, for δ > 0, one has that there exists B1 > 0 such that if B > B1,
then:

ω(W ′)

ω
(∏

v∈MF
[P(a)(Fv)]

) − δ ≤ |{x ∈ W ′|H(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

≤ |{x ∈ W |H(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}| .

and that

|{x ∈ W |H(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}| ≤

|{x ∈ W ′′|H(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

≤ ω(W ′′)

ω
(∏

v∈MF
[P(a)(Fv)]

) + δ.

It follows that

|{x ∈ W |H(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}| ∼B→∞

ω(W )

ω
(∏

v∈MF
[P(a)(Fv)]

) .

The statement is proven.

We deduce the following proposition (it is analogous to parts (a) and
(b) of [47, Proposition 3.3])
Proposition 8.3.2.3. — The following claims are valid:

1. Let f :
∏

v∈MF
[P(a)(Fv)] → C be a step function (the sum is as-

sumed to be finite)
∑
λi1Wi

, where Wi are open sets with negligible
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boundaries. One has that

lim
B→∞

∑
x∈[P(a)(F )] f(x)

|{x ∈ [P(a)(F )]|H(x) ≤ B}|

= lim
B→∞

∑
x∈i([P(a)(F )]) f(x)

|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

=

∫
∏

v∈MF
[P(a)(Fv)]

fω

ω
(∏

v∈MF
[P(a)(Fv)]

) .

2. For every continuous function f :
∏

v∈MF
[P(a)(Fv)] → C, the

equality from (1) is valid
3. The asymptotic formula from Theorem 8.2.2.12 is valid for any

quasi-toric degree |a| family of a-homogenous functions (gv : F n
v −

{0} → R>0)v.

Proof. — For the first two claims, the proofs of the corresponding claims
in [47, Proposition 3.3] work here. For the third one, we make minor
modifications.

1. By Theorem 8.3.2.2, the equality is valid for the characteristic func-
tions of open sets with negligible boundaries. Clearly, the equality
stays valid for any step function (the sum is assumed to be finite)∑

i λi1Wi
, where Wi are open sets with negligible boundaries, as-

sumed to be pairwise disjoint. We verify that the same equality
stays valid for a step function

∑
i λi1Wi

, where Wi are open sets
with negligible boundaries (not assumed pairwise disjoint). For ev-
ery point x ∈ ∏v∈MF

[P(a)(Fv)], let A(x) be the set of the in-
dices i for which x ∈ Wi. We let WA(x) =

⋂
i∈A(x)Wi. The function∑

i λi1Wi
coincides with the function

∑

A(x)

( ∑

i∈A(x)
λi

)
1WA(x)

,

where the sum is taken over all subsets that appear as A(x) for some
x ∈∏v∈MF

[P(a)(Fv)]. A finite intersection of open sets with negli-
gible boundary is an open set with negligible boundary (because the
boundary of an intersection is contained in the union of the bound-
aries), thus the sets WA(x) are open sets with negligible boundary.
Hence, the equality stays valid for described step functions.
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2. The open sets with negligible boundaries form a basis of the compact
topological space

∏
v∈MF

[P(a)(Fv)]. Now, any continuous function
f :

∏
v∈MF

[P(a)(Fv)] → C can be approached uniformly by step
functions

∑
i λi1Wi

, where Wi are open sets with negligible bound-
aries. The claim follows.

3. Let (gv : F n
v − {0} → R>0)v be a quasi-toric degree |a| family of

a-homogenous functions and let Hg be the resulting height. Let S ′

be the finite set of places for which fv 6= gv. For v ∈ S ′ and for
x ∈ [P(a)(Fv)], let x̃ ∈ F n

v − {0} be a lift of x. The function

h :
∏

v∈MF

[P(a)(Fv)]→ R>0 (xv)v 7→
∏

v∈S′

fv(x̃v)

gv(x̃v)
,

does not depend on the choices of x̃v, is a continuous function (be-
cause fv and gv are of the same weighted degree and are continuous
functions F n

v −{0} → R>0). Note that when x ∈ i([P(a)(F )]), one
has that

h(x) =
H(x)

Hg(x)
,

because for every v, one can take x̃v to be a fixed element in (F×)n.
By Theorem 8.3.2.2, for every open W with negligible boundary,
one has that

(8.3.2.4) lim
B→∞

|{x ∈ i(∏v∈MF
[P(a)(Fv)])|H(x) ≤ 1WB}|

|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

=

∫
∏

v∈MF
[P(a)(Fv)]

1Wω

ω
(∏

v∈MF
[P(a)(Fv)]

) .

The same equality is valid when 1W is replaced by a step function∑
i λi1Wi

, where Wi are open with the negligible boundaries. Let
ǫ > 0, there exists a step function

∑
i λi1Wi

, with Wi open with the
negligible boundaries, such that 0 ≤ h −∑i λi1Wi

≤ ǫ. It follows
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that

|{x ∈ i([P(a)(F )])|Hg(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

=
|{x ∈ [P(a)(F )]|H(x) ≤ h(x)B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

≤ |{x ∈ i([P(a)(F )])|H(x) ≤ (ǫ+
∑

i λi1Wi
)B}|

|{x ∈ i([P(a)(Fv)])|H(x) ≤ B}|

=B→∞

∫
∏

v∈MF
[P(a)(Fv)]

(ǫ+
∑

i λi1Wi
)ω

ω
(∏

v∈MF
[P(a)(Fv)]

)

= ǫ+

∫
∏

v∈MF
[P(a)(Fv)]

(
∑

i λi1Wi
)ω

ω
(∏

v∈MF
[P(a)(Fv)]

) .

Similarly,

|{x ∈ i([P(a)(F )])|Hg(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

=
|{x ∈ [P(a)(F )]|H(x) ≤ h(x)B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

≥ |{x ∈ [P(a)(F )]|H(x) ≤ (
∑

i λi1Wi
)B}|

|{x ∈ i([P(a)(F )])|H(x) ≤ B}|

=B→∞

∫
∏

v∈MF
[P(a)(Fv)]

(
∑

i λi1Wi
)ω

ω
(∏

v∈MF
[P(a)(Fv)]

) .

By decreasing ǫ, we deduce that

lim
B→∞

|{x ∈ i([P(a)(F )])|Hg(x) ≤ B}|
|{x ∈ i([P(a)(F )])|H(x) ≤ B}| =

∫
∏

v∈MF
[P(a)(Fv)]

hω

ω
(∏

v∈MF
[P(a)(Fv)]

) .

It follows from Lemma 5.3.3.2 that∫
∏

v∈MF
[P(a)(Fv)]

hω = ω((gv)v)
( ∏

v∈MF

[P(a)(Fv)]
)
.

Finally, Theorem 8.2.2.12 gives that

lim
B→∞

|{x ∈ i([P(a)(F )])|H(x) ≤ B}|
B

=
ω
(∏

v∈MF
[P(a)(Fv)]

)

|a| ,
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thus

lim
B→∞

|{x ∈ i([P(a)(F )])|Hg(x) ≤ B}|
B

=
ω((gv)v)

(∏
v∈MF

[P(a)(Fv)]
)

|a|

as claimed.

Remark 8.3.2.5. — Suppose that (f#
v )v is the toric degree |a| family

of a-homogenous functions. Using the expression for τ from Lemma
5.3.3.3 and the formula for the volumes ωv([P(a)(Fv)]) for v ∈ M∞

F

from Lemma 5.3.2.1, we get that

τ =
Res(ζF , 1)|µgcd(a)(F )|(2n−1|a|)r1((2π)n−1|a|)r2

∆(F )
n−1
2 ζF (|a|)

=
Reg(F )hF2

r1(2π)r2

∆(F )
1
2

|µgcd(a)(F )|2(n−1)r1(2π)(n−1)r2 |a|r1+r2
∆(F )

n−1
2 wF ζF (|a|)

=
hF

ζF (|a|)

(
2r1(2π)r2√

∆(F )

)n
|a|r1+r2Reg(F )|µgcd(a)(F )|

wF
.

Here, Reg(F ) is the regulator of F and wF the number of roots of unity
in F . Hence,

|{x ∈ [P(a)(F )]|H#(x) ≤ B}|

∼B→∞
hF

ζF (|a|)

(
2r1(2π)r2√

∆(F )

)n
|a|r1+r2−1Reg(F )|µgcd(a)(F )|

wF
B.

The counting result in this case has been obtained by Bruin and Najman
([12, Theorem 3.7]). They used the method of Deng from [25], which
is similar to the original method of Schanuel from [53] for the case of
rational points of the projective space.
Remark 8.3.2.6. — Theorem 8.2.2.10 and Theorem 8.2.2.12 give that
the closed substack Z ({X1 · · ·Xn}) ⊂ P(a) given by the Gm-invariant
closed subscheme Z(X1 · · ·Xn) ⊂ An − {0}, is not an “accumulating”
substack (see [47, Definition 1.3] for the terminology).
The same estimate as in Theorem 8.2.2.12 is true for the rational points

of the stack P(a) (because the stack P(a)−P(a) has only one rational
point).
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Remark 8.3.2.7. — For L ∈ Pic(P(a)) ⊗Z R = Pic(P(a))R and
λ ∈ R, we define a measure θL on the set

HL(λ) = {y ∈ Pic(P(a))∗R|y(L) = λ} =





R if L = 0 and λ = 0,{
λ
L

}
if L 6= 0

∅ if L = 0 and λ 6= 0.

,

by setting it to be the Lebesgue measure, the Haar measure which is
normalized by θL

({
λ
L

})
= 1

L
and by θ0(∅) = 1, respectively. We define

α = α(P(a)) = θ|a|({y > 0} ∩ H|a|(1)) = θ|a|
( 1

|a|
)
=

1

|a| .

(This definition is [47, Definition 2.4] for the case rk(Pic) = 1). Thus
the leading constant in the asymptotics of Theorem 8.2.2.12 and in Part
(3) of Proposition 8.3.2.3, writes as ατ , as predicted by Peyre in [47] for
Fano varieties.



CHAPTER 9

NUMBER OF µm-TORSORS OF
BOUNDED DISCRIMINANT

In this chapter F will be a number field andOF its ring of integers. The
goal of this chapter is to give the asymptotic behaviour for the number of
µm-torsors over F of bounded discriminant, where m ≥ 2 is an integer.
We are going to use the language of heights on weighted projective stacks
from 4.

9.1. Calculations of the discriminant

In this section we will be calculating the discriminants of µm-torsors
over Fv where v is a finite place of F , where m ≥ 2 is an integer.

9.1.1. — We use [42] as principal reference for the definition and basic
properties of discriminants. Let R be a Dedekind domain and let K be
its field of fractions. Let L be a finite extension of K. Let R′ be the
integral closure of R in L. If x1, . . . , xn is a basis of L over K, we set

∆(x1, . . . , xn) := det((Tr(xixj))ij),

where Tr : L→ K is the trace map. We say that ∆ is the discriminant of
the basis x1, . . . , xn. We define ∆(R′, R) to be the ideal of R generated
by all ∆(x1, . . . , xn) when x1, . . . , xn range over all bases of L/K which
are contained R′. By the abuse of notation, we may write ∆(L/K) for
∆(R′/R) if R and R′ are understood from the context.
Proposition 9.1.1.1 ([42, Corollary 2.10, Chapter III])

For a tower of fields K ⊂ L ⊂M one has that:

∆(M/K) = ∆(L/K)[M :L]NL/K(∆(M/L)).
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Proposition 9.1.1.2 ([42, Corollary 2.12, Chapter III])
Suppose that L/K is unramified. One has that ∆(L/K) = (1).
Let D(L/K) denotes the different ideal ([42, Definition 2.1, Chap-

ter III]). The following statement is true for any tamely ramified primes
([42, Definition 7.6, Chapter II]), but for our needs the following version
suffices (clearly, it makes primes automatically tamely ramified):
Proposition 9.1.1.3 ([42, Theorem 2.6]). — Suppose that p is a non-
zero prime ideal of R such that R/p is a finite field of characteristic
coprime to [L : K] and let q be a prime of R′ lying over p. One has
that vq(D(L/K)) = eq|p − 1 where vq(D(L/K)) is the exponent of q in
the prime factorisation of the ideal D(L/K) and eq|p is the degree of the
ramification of the prime ideal p in q.

If A = K1×· · ·×Kr be a product of finite separable extensions Ki/K,
we define ∆(A/K) :=

∏
i∆(Ki/K). The following proposition is given

in [42, Corollary 2.11, Chapter III] when A is a field, nonetheless, it is
true when A is a finite product of finite extensions of F .
Proposition 9.1.1.4. — Let A/F be a finite product of finite exten-
sions of F . Let v ∈M0

F . One has that

v(∆(A/F )) = v

(
∆
(
(A⊗F Fv)/Fv

))
.

Proof. — Let A = K1 × · · · ×Kr, with Ki/F finite extensions of F . For
every i, by [42, Corollary 2.11, Chapter III], one has that

v(∆(Ki/F )) = v

(∏

wi|v
∆(Kwi/Fv)

)
,

where wi are places of Ki lying above v. For every i, by [42, Proposition
8.3, Chapter II], one has that

∏

wi|v
Kwi = Ki ⊗F Fv

and hence ∏

wi|v
∆(Kwi/Fv) = ∆(Ki ⊗F Fv).

We deduce that

v(∆(Ki/F )) = v

(
∆(Ki ⊗F Fv/Fv)

)
.
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Hence,

v(∆(A/F )) = v

( r∏

i=1

∆(Ki/F )

)
= v

( r∏

i=1

∆
(
(Ki ⊗F Fv)/Fv

))

= v

(
∆
(
(A⊗F Fv)/Fv

))
.

The statement is proven.

9.1.2. — Let again m ≥ 2 be an integer and let v ∈ M0
F be such that

v(m) = 0. In this paragraph we calculate the discriminant of a µm-torsor
over Fv. We have not found a reference for these calculations.
Lemma 9.1.2.1. — Let n be an integer such that v(n) = 0. Let n

√
πv

be a formal n-th root of the uniformizer πv. One has that

∆
(
Fv( n
√
πv)/Fv

)
= πn−1

v Ov.
Proof. — Let us write K for Fv( n

√
πv). By Eisenstein’s criterion, the

polynomial Xn − πv is irreducible. It follows that the degree of the ex-
tension K/Fv is equal to n and that the elements n

√
πv,

n
√
π2
v , . . . ,

n
√
πn−1
v

do not belong to Ov. We deduce that ( n
√
πv) ∩ Ov = (πv). Thus the

degree of the ramification of πv in K is at least n and hence is equal to n
(because the degree of the extension is n). Proposition 9.1.1.3 gives that
(D(K/Fv)) = ( n

√
πv)

n−1. We deduce that

∆(K/Fv) = NK/Fv(D(Fv( n
√
πv)/Fv))

= NK/Fv((
n
√
πv)

n−1)

= NK/Fv((
n
√
πv))

n−1

As NK/Fv(πv) = (πnv ), it follows that NK/Fv(( n
√
πv)) = (πv), and hence

∆(Fv( n
√
πv)/Fv) = ∆(K/Fv) = NK/Fv((

n
√
πv))

r−1 = (πv)
r−1.

The statement is proven.

Lemma 9.1.2.2. — Let a ∈ F×
v and let n be an integer such that

v(n) = 0. We set d = gcd(v(a), n). Let n
√
a be an n-th root of a (lying

in an algebraic closure of Fv). One has that

∆(Fv(
n
√
a)/Fv) = π[Fv( n√a):Fv ](1−d/n)

v Ov.
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Proof. — Let us set r = v(a) and d = gcd(v(a), n). We write a = πrvu
for some u ∈ O×

v . There exist integers b, c such that br + cn = d so that

(πrvu)
b(πcv)

n = πdvu
′ for some u′ ∈ O×

v . Let π
1/(n/d)
v and u1/n be formal

n/d-th and 1/n-th roots of πv and u, respectively. We have the following
towers of extensions:

Fv(πv
1/(n/d), u1/n)

Fv(a
1/n) Fv(πv

1/(n/d))

Fv

Let us set M = Fv(πv
1/(n/d), u1/n), K = Fv(a

1/n) and L = Fv(π
1/(n/d)
v ).

The extensions M/K and M/L are unramified because v(n) = 0. Now,
Proposition 9.1.1.1 gives that

∆(K/Fv)
[M :K] = ∆(L/Fv)

[M :L].

One has that

[K : Fv] · [M : K] = [L : Fv] · [M : L] = (n/d)[M : L],

thus

∆(K/Fv) = ∆(L/Fv)
[M :L]/[M :K] = ∆(L/Fv)

(d/n)[K:Fv ].

Recall that by Lemma 9.1.2.1, one has that

∆(L/Fv) = ∆(Fv(π
1/(n/d)
v )/Fv) = π(n/d)−1

v Ov,
thus

∆(K/Fv) = π[K:Fv ]·(d/n)((n/d)−1)
v Ov = π[K:Fv ](1−d/n)

v Ov
= π[F ( n√a):Fv ](1−d/n)

v Ov.

Proposition 9.1.2.3. — Let a ∈ F×
v . Let m ≥ 2 be an integer such

that v(m) = 0. Let us set d = gcd(v(a),m). One has that

∆
(
(Fv[X]/(Xm − a))/Fv

)
= πd−mv Ov.

Proof. — Let Xm−a =
∏ℓ

j=1 bj(X), be the composition of Xm−a into a

product of irreducible unitary polynomials (repetitions are allowed). For
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every j = 1, . . . , ℓ, let ηj be a root of bj(X) so that Fv(bj) are fields and
the homomorphism

Fv[X]/(Xm − a)→
( ℓ∏

j=1

Fv(ηj)
)

induced from the homomorphism

F [X]→
ℓ∏

j=1

Fv(bj) X 7→ (bj)j,

is an isomorphism. For every j, one has that ηmj = a and by 9.1.2.2, we
have that

∆(Fv(ηj)/Fv) = πdeg(bj)(1−(d/m))
v Ov.

We deduce that

∆((Fv[X]/(Xm − a))/Fv) =
ℓ∏

i=1

(πdeg(bj)(1−d/m)
v Ov) = πm(d/m−1)

v Ov

= πd−mv Ov.

9.1.3. — In this paragraph, we define the heights that will be used for
the counting. The following notation will be used in the rest of the
Chapter: m ≥ 2 will be a fixed integer, r will be the smallest prime of m
and α(m) := m2 −m2/r. We will use the terminology from 4.4.
Lemma 9.1.3.1. — For v ∈M0

F , let us define f∆
v : F×

v → R>0 by

f∆
v (y) = |y|1/mv

(
N
(
∆
(
(Fv[X]/(Xm − y))/Fv

))1/α(m)
)
,

where N stands for the ideal norm. For v ∈M∞
F , we set f∆

v (y) = |y|1/mv .

1. For every v ∈ MF , the function f∆
v is m-homogenous and of

weighted degree 1.
2. For every v ∈M0

F , the function f∆
v is locally constant.

3. Let v ∈M0
F such that v(m) = 0. For every y ∈ F×

v , one has that

f∆
v (y) = |y|1/mv |πv|(gcd(v(y),m)−m)/α(m)

v = |πv|v(y)/m+(gcd(v(y),m)−m)/α(m)
v .

For every y ∈ O×
v , one has that f∆

v (y) = 1.
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Proof. — 1. The function y 7→ |y|1/mv ism-homogenous of weighted de-
gree 1. It follows that for v ∈M∞

F one has that fv is m-homogenous
of weighted degree 1. Let v ∈ M0

F and let t ∈ F×
v . The image of

the ideal (Xm − y) under the isomorphism

Fv[X]→ Fv[X] X 7→ t−1X

is the ideal (t−mXm−y) = (Xm−tmy). It follows that Fv[X]/(Xm−
y) and Fv[X]/(Xm − tmy) are isomorphic, hence the norms of the
corresponding discriminants are the same. It follows that

y 7→
(
N
(
∆
(
(Fv[X]/(Xm − y))/Fv

)))1/α(m)

is F×
v -invariant. We deduce that fv is m-homogenous of weighted

degree 1. The claim is proven.

2. The function y 7→
(
N
(
∆
(
(Fv[X]/(Xm − y))/Fv

)))1/α(m)
is (F×

v )m-
invariant by (1). The subgroup (F×

v )m ⊂ F×
v is of the finite index in

F×
v by Lemma 3.3.5.7, thus open in F×

v by [42, Exercice 4, Chapter
II]. The function y 7→ |y|v is invariant for the open subgroup O×

v ⊂
F×
v . We deduce that fv is invariant for the open subgroup (F×

v )m ∩
O×
v of F×

v . It follows that fv is locally constant.
3. As v(m) = 0, Proposition 9.1.2.3 gives that

∆
(
(Fv[X]/(Xm − y))/Fv

)
= πm−gcd(v(y),m)

v Ov.
We deduce that for every y ∈ F×

v one has that

f∆
v (y) = |y|1/mv

(
N
(
∆
(
(Fv[X]/(Xm − y))/Fv

)))1/α(m)

= |y|1/mv |πv|(gcd(v(y),m)−m)/α(m)
v

= |πv|v(y)/m+(gcd(v(y),m)−m)/α(m)
v .

If y ∈ O×
v , one has that

f∆
v (y) = |y|1/mv |πv|(gcd(v(y),m)−m)/α(m)

v = 1.

The claim is proven.

Definition 9.1.3.2. — Let v ∈ MF and let k ∈ Z. Let f∆
v be as in

Lemma 9.1.3.1.

– The function x 7→ (f∆
v (x))

k will be called the discriminant m-
homogenous function of weighted degree k.
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– A degree k family (fv : F×
v → R≥0)v of m-homogenous continuous

functions, will be said to be quasi-discriminant if for almost all v,
one has that fv = (x 7→ (f∆

v (x))
k). It follows from Lemma 9.1.3.1

that quasi-discriminant families are generalized adelic (see Defini-
tion 4.4.1.1) and the resulting height H = H((fv)v) on P(m)(F )
will be said to be quasi-discriminant height.

– If for every v ∈ MF one has that fv = (x 7→ (f∆
v (x))

k), then the
family (fv)v will be said to be the discriminant degree k family. The
resulting height H∆ = H((fv)v) will be said to be the discriminant
height.

As usual, we will write H for the resulting heights on the set of the
isomorphism classes [P(m)(F )].
Remark 9.1.3.3. — Note that by Lemma 9.1.3.1 and by Lemma
4.4.3.1, a “quasi-discriminant” and a “quasi-toric” family are different
notions.
Remark 9.1.3.4. — The calculations from Proposition 9.1.2.3 and
Lemma 9.1.3.1 may be well known, however we have not found an ade-
quate reference.
Lemma 9.1.3.5. — Let (f∆

v )v be the discriminant degree 1 family ofm-
homogenous continuous functions and let H∆ be the resulting height. Let
y ∈ F×. One has that

H∆(qm(y)) = N

(
∆
(
F [X]/(Xm − y))/F

))1/α(m)

,

where qm : (A1 − {0})→P(m) is the quotient 1-morphism.
Proof. — By the product formula, one has that

H∆(y) =
∏

v∈MF

f∆
v (y)

=

( ∏

v∈M∞
F

|y|1/mv

) ∏

v∈M0
F

|y|1/mv N

(
∆
(
(Fv[X]/(Xm − y))/Fv

)) 1
α(m)

=
∏

v∈M0
F

N

(
∆
(
(Fv[X]/(Xm − y))/Fv

)) 1
α(m)

.
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Proposition 9.1.1.4 gives that

∏

v∈M0
F

N

(
∆
(
(Fv[X]/(Xm − y))/Fv

)) 1
α(m)

= N

(
∆
(
(F [X]/(Xm − y))/F

)) 1
α(m)

.

We deduce that

H∆(y) = N

(
∆
(
(F [X]/(Xm − y))/F

))1/α(m)

.

9.1.4. — In this paragraph, we prove the weak Northcott property. Our
proof does not involve Hermite-Minkowski theorem ([42, Theorem 2.13])
and relies on a comparison with toric heights that we establish in Lemma
9.1.4.3.

Let (fv : F×
v → R>0)v be a degree 1 quasi-discriminant family of m-

homogenous functions and let H = H((fv)v). For v ∈MF , let Hv be the
function Hv : [T (m)(Fv)] → R>0 induced from F×

v -invariant function

F×
v → R>0, y 7→ |y|−1/m

v fv(y) (we have studied such functions in 4.4.5
for a general generalized adelic family). If fv = f∆

v , we may write H∆
v

for Hv. By Lemma 4.4.5.2, one has that if x ∈ [T (m)(F )], then

(9.1.4.1) H(x) =
∏

v∈MF

Hv([T (m)(iv)](x)),

where for v ∈ MF , the map [T (m)(iv)] : [T (m)(F )] → [T (m)(Fv)] is
the induced map from the F×

v -invariant inclusion iv : (F
×)n → (F×

v )
n.

Lemma 9.1.4.2. — The following claims are valid:

1. Suppose that v(m) = 0. For y ∈ F×
v , one has that

H∆
v (q

m
v (y)) = |πv|(gcd(v(y),m)−m)/α(m)

v .

The function H∆
v : [T (m)(Fv)]→ R>0 is [T (m)(Ov)]-invariant. If

x ∈ [T (m)(Ov)], then H∆
v (x) = 1.

2. Suppose that v ∈M∞
F . One has that H∆

v = 1.

Proof. — 1. As v(m) = 0, by Lemma 9.1.3.1, one has that

H∆
v (q

m
v (y)) = |y|−1/m

v f∆
v (y) = |πv|(gcd(v(y),m)−m)/α(m)

v
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for y ∈ F×
v . Let us prove that H∆

v is [T (m)(Ov)]-invariant. Let
x ∈ [T (m)(Fv)] and let u ∈ [T (m)(Ov)]. Let x̃ and ũ be its lifts in
F×
v and O×

v , respectively. We have that

H∆
v (x) = |πv|(gcd(v(x̃),m)−m)/α(m)

v = |πv|(gcd(v(ũx̃),m)−m)/α(m)
v = H∆

v (xu).

It follows that H∆
v is [T (m)(Ov)]-invariant. Suppose that x ∈

[T (m)(Ov)] = qm(O×
v ). Then x̃ can be taken in O×

v . Thus

H∆
v (x) = |πv|(gcd(v(x̃),m)−m)/α(m)

v = 1.

2. The function f∆
v is the function x 7→ |x|1/mv . The function H∆

v is the

induced function from the constant function x 7→ |x|−1/m
v f∆

v (x) = 1,
hence H∆

v = 1.

Lemma 9.1.4.3. — There exists C > 0 such that for every
x ∈ [T (m)(F )] one has that

CH∆(x) ≥ H#(x)
1

α(m) ,

where H# is the height defined by the degree 1 toric family (f#
v )v of m-

homogenous functions.
Proof. — For v ∈MF , let H

∆
v be the function induced from F×

v -invariant

function y 7→ |y|−1/m
v f∆

v (y) and let H#
v be the function induced from F×

v -

invariant function y 7→ |y|−1/m
v f#

v (y). Recall that for v ∈ M∞
F , by the

definitions of f∆
v and f#

v (see Lemma 9.1.3.1 and Definition 4.4.3.2), one
has f∆

v = f#
v , thus by Lemma 9.1.4.2, one has that H∆

v = H#
v = 1. Using

this and using Lemma 4.4.5.2, for x ∈ [T (m)(F )], we get that

H∆(x) =
∏

v∈M0
F

H∆
v ([T (m)(iv)](x))

H#(x) =
∏

v∈M0
F

H#
v ([T (m)(iv)](x)),

where the maps [T (m)(iv)] : [T (m)(F )]→ [T (m)(Fv)] are the induced
maps from (F×)m-invariant inclusions iv : (F×)n → (F×

v )
n. For every

finite v such that v(m) = 0, by the finiteness of the space [T (m)(Fv)]
one has that there exists Cv > 0 such that for every x ∈ [T (m)(Fv)] one
has that

H∆
v (x) ≥ CvH

#
v (x)

1/α(m).
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Let v ∈ M0
F be such that v(m) = 0. By Lemma 9.1.3.1, one has for

y ∈ F×
v that

H∆
v (q

m
v (y)) = |πv|−(m−gcd(m,v(y)))/α(m)

v .

On the other side, by Lemma 4.4.3.1, one has for y ∈ F×
v that

H#
v (q

m
v (y)) = |πv|

−(
v(y)
m

−⌊ v(y)
m

⌋)
v .

For every k ∈ Z one has that

m− gcd(k,m) ≥ k

m
−
⌊
k

m

⌋

(if k is divisible by m, then the quantities on both hand sides are equal
to zero, and if k is not divisible by m, then the quantity on the left hand
side is at least 1, hence is bigger than the quantity on the right hand
side). We deduce that

H∆
v ≥ (H#

v )
1/α(m).

It follows that

H∆ ≥
( ∏

v(m) 6=0

Cv

)
(H#

)1/α(m)
.

The statement is proven.

Proposition 9.1.4.4. — Let (fv : F×
v → R>0)v be a degree 1

quasi-discriminant family of m-homogenous functions. The height
H = H((fv)v) is a weak Northcott height. Moreover, for every B > 0,
there exists C > 0 such that

|{x ∈ [P(m)(F )]|H(x) < B}| < CBmα(m).

Proof. — Let (f∆
v : F×

v → R>0)v be the discriminant degree 1 family
of m-homogenous functions. The families (f∆

v )v and (fv)v are degree 1
families of m-homogenous continuous functions and for almost all v one
has f∆

v = fv (because (fv)v is quasi-discriminant), thus by Lemma 4.4.1.6,
there exists a constant C1 > 0 such that C1H

∆ ≤ H(y) for every y ∈
[P(m)(F )]. Let (f#

v : F×
v → R>0)v be the toric family of m-homogenous

functions of weighted degree 1 and let H# = H((f#
v )v) be the resulting

height. Lemma 9.1.4.3 gives that there exists C2 > 0 such that

H∆(y) ≥ C2H
#(y)1/α(m),
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for every y ∈ [P(m)(F )]. Now, for every B > 0, one has that

|{x ∈ [P(m)(F )]|H(x) < B}|
≤ |{x ∈ [P(m)(F )]|C1H

∆(x) < B}|
≤ |{x ∈ [P(m)(F )]|C2C1(H

#(x))1/α(m) < B}|
= |{x ∈ [P(m)(F )]|H#(x) < C−1

2 C−1
1 Bα(m)}|.

Theorem 8.2.2.12 implies that there exists C3 > 0 such that

|{x ∈ [P(m)(F )]|H#(x) < C−1
0 C−1

1 Bα(m)}| < C3C
−1
2 C−m

1 Bmα(m)

for every B > 0 (recall that in 8.2.2.12, the degree of the toric family
is m and our toric family is of the degree 1). Thus for every B > 0, we
have that

|{x ∈ [P(m)(F )]|H(x) < B}| ≤ C3C
−1
2 C−m

1 Bmα(m).

The statement is proven.

Remark 9.1.4.5. — In the next sections we establish the precise
asymptotic behaviour of |{x ∈ [P(m)(F )]|H(x) < B}| when B →∞.

9.2. Analysis of height zeta function

The goal of this section is to establish the asymptotic behaviour of
|{x ∈ [P(m)(F )]|H(x) ≤ B}. Using the “Tauberian dictionary”, the
task translates into the study the convergence of the height zeta series.
For that purpose we use Fourier analysis.

Let (fv : F
×
v → R>0)v be a quasi-discriminant degree m family of m-

homogenous functions. For v ∈ MF , we will denote by f∆
v the discrimi-

nant m-homogenous function of weighted degree m. In the entire section
we will denote by S the finite set

S := {v ∈M0
F |fv 6= f∆

v or v(m) 6= 0}.

9.2.1. — In this paragraph we study the local Fourier transform of a
local height.

Let v ∈ MF . Let qmv : F×
v → (F×

v )/(F
×
v )m = [P(m)(Fv)] =

[T (m)(Fv)] be the quotient map. By Lemma 5.2.3.1, the measure d∗x
on F×

v is F×
v -invariant for the action t · y = tmy of F×

v on F×
v . We set µv

to be the quotient Haar measure d∗x/d∗x on [T (m)(Fv)] (see Definition
5.4.1.1). Recall that the sets [T (m)(Fv)] are finite by Lemma 3.3.5.7,
hence µv([T (m)(Fv)]) are finite positive numbers.
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Lemma 9.2.1.1. — The Haar measure µv is normalized by

µv([T (m)(Fv)]) = m.

Proof. — Suppose that v ∈ M0
F . Recall from Proposition 3.3.5.4 that

[T (m)(Ov)] identifies with the open and compact subgroup qmv (O×
v )

of [T (m)(Fv)] and is of index m by Lemma 3.3.5.5. By Lemma
5.4.2.1, the measure µv is normalized by µv([T (m)(Ov)]) = 1 i.e. by
µv([T (m)(Fv)]) = m. Suppose that v ∈ M∞

F . One has by Lemma
5.4.1.3 that ∫

[T (m)(Fv)]

1µv =
m

λv,1(Fv)

∫

Fv,1

1λv,1 = m.

If χ ∈ [T (m)(Fv)]
∗ is a character, we denote by χ̃ the pullback char-

acter (qmv )
∗(χ) : F×

v → S1. Lemma 6.2.1.1 gives that χ̃m = 1 and that
χ 7→ χ̃ is an isomorphism of [T (m)(Fv)]

∗ to the closed subgroup (Fv)
⊥
m ⊂

(F×
v )

∗. For a complex number s and a character χ ∈ [T (m)(Fv)]
∗ we

define formally

Ĥv(s, χ) :=

∫

[T (m)(Fv)]

H−s
v χµv.

Lemma 9.2.1.2. — Let v ∈MF .

1. For every s ∈ C one has that H−s
v ∈ L1([T (m)(Fv)], µv). For every

χ ∈ [T (m)(Fv)]
∗, one has that s 7→ Ĥv(s, χ) is an entire function.

Moreover, for every compact K ⊂ R, there exists C(K) > 0 such

that for every s ∈ K + iR, one has that Ĥv(s, χ) ≤ C.
2. Suppose that v ∈M0

F − S. Let s ∈ C and let χ ∈ [T (m)(Fv)]
∗ be a

character. One has that

Ĥ∆
v (s, χ) :=

{∑m−1
j=0 |πv|

(s(m2−m gcd(j,m)))/α(m)
v χ̃(πjv) if χv|[T m(Ov)] = 1,

0 otherwise.

(9.2.1.3)

3. Suppose that v ∈M∞
F . For every s ∈ C and every χ ∈ [T (m)(Fv)]

∗,
one has that

Ĥv(s, χ) :=

{
m if χv = 1,

0 otherwise.
(9.2.1.4)

Proof. — 1. The group [T (m)(Fv)] is finite by Lemma 3.3.5.7. More-
over, µv is a Haar measure on [T (m)(Fv)], hence a non-zero multiple
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of the counting measure. It follows that H−s
v ∈ L1([T (m)(Fv)], µv).

Let χ ∈ [T (m)(Fv)]
∗ be a character. For every x ∈ [T (m)(Fv)],

one has that s 7→ Hv(x)
−sχ(x) is an entire function. We deduce

that s 7→ Ĥv(s, χ) is an entire function. Moreover, for every s ∈ C,
by the triangle inequality, one has that |Ĥv(s, χ)| ≤ Ĥv(ℜ(s), 1).
For every compact K ⊂ R, by the fact that µv is a multiple of the
counting measure, there exists C ′(K) > 0 such that if ℜ(s) ∈ K
then

|Ĥv(s, χ)| ≤ Ĥ(ℜ(s), 1) ≤ C ′(K) sup
y∈K

∑

x∈[T (m)(Fv)]

Hv(x)
−y.

The claim is proven.
2. It follows from Lemma 9.1.4.2 that

[T (m)(Ov)]→ C x 7→ (H∆
v (x))

−s

is [T (m)(Ov)]-invariant. We deduce that if χ|[T (m)(Ov)] 6= 1, then

Ĥ∆
v (s, χ) =

∫

[T (m)(Fv)]

(H∆
v )

−sχµv = 0.

Suppose that χ|[T (m)(Ov)] = 1. It follows that χ̃|O×
v

= 1. The

function (H∆
v )

−s is [T (m)(Ov)]-invariant, hence ((H∆
v )

−s ◦ qav ) =
x 7→ (|x|−1

v f∆
v (x))

−s is [T (m)(Ov)]-invariant. Using Lemma 5.4.1.3,
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we get that

Ĥ∆
v (s, χ) =

∫

[T (m)(Fv)]

(H∆
v )

−sχµv

= ζv(1)

∫

F×
v ∩Dm

v

((H∆
v )

−s ◦ qav ) · (χ ◦ qav )d∗x

= ζv(1)

∫

F×
v ∩Dm

v

(|x|−1
v f∆

v (x))
−sχ̃(x)d∗x

= ζv(1)

∫

F×
v ∩Dm

v

(|πv|(m gcd(v(x),m)−m2)/α(m)
v )−sχ̃(x)d∗x

= ζv(1)
m−1∑

j=0

∫

πj
vO×

v

|πv|s(m
2−m gcd(v(x),m))/α(m)

v χ̃(x)d∗x

= ζv(1)
m−1∑

j=0

|πv|s(m
2−m gcd(j,m))/α(m)

v χ̃(πjv) · d∗x(πjvO×
v )

=
m−1∑

j=0

|πv|s(m
2−m gcd(j,m))/α(m)

v χ̃(πjv).

The claim is proven.
3. For every s ∈ C, the function (H∆

v )
−s is the constant function 1.

Thus for χ ∈ [T (m)(Fv)]
∗ such that χv 6= 1 one has that Ĥv(s, χ) =

0. Suppose that χ = 1. We have that
∫

[T (m)(Fv)]

(H∆
v )

−sµv =

∫

[T (m)(Fv)]

1µv = m

by Lemma 9.2.1.1.

9.2.2. — We will compare the Fourier transform of the local “discrim-
inant” height with a product of certain local L-functions.
Lemma 9.2.2.1. — Let v ∈M0

F − S. Let s ∈ C with ℜ(s) > 0 and let
χ ∈ [T (m)(Fv)]

∗. One has that

∣∣∣∣
Ĥ∆
v (s, χ)∏r−1

j=1 Lv(s, χ̃
mj/r)

∣∣∣∣ ≤
(
ζv
(
ℜ(s)(1 + 1/α(m))

)

ζv
(
2ℜ(s)(1 + 1/α(m))

)
)2r−1rm3

.
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Proof. — Suppose first χ|[T (m)(Ov)] 6= 1. Lemma 9.2.1.2 gives that

Ĥ∆
v (s, χ) = 0, hence the inequality is trivially verified. Suppose now

that χ|[T (m)(Ov)] = 1. As v ∈M0
F − S, Lemma 9.2.1.2 gives that

Ĥ∆
v (s, χ) =

m−1∑

j=0

|πv|s(m
2−m gcd(j,m))/α(m)

v χ̃(πjv).

We have that:

∣∣∣∣
Ĥ∆
v (s, χ)∏r−1

j=1 Lv(s, χ̃
mj/r)

∣∣∣∣

=

∣∣∣∣
m−1∑

j=0

|πv|s(m
2−m gcd(j,m))/α(m)

v χ̃(πjv)

∣∣∣∣ ·
∣∣∣∣
r−1∏

j=1

(1− |πv|svχ̃mj/r(πv))
∣∣∣∣

=

∣∣∣∣
(m−1∑

j=0

|πv|s(m
2−m gcd(j,m))/α(m)

v χ̃(πjv)

) r−1∏

j=1

(1− |πv|svχ̃(πmj/rv ))

∣∣∣∣.

(9.2.2.2)

Whenever gcd(m, j) = m/r, we have m2 − m gcd(m, j) = m2 −
m gcd(m, j) = α(m), and we rewrite the last sum as:

m−1∑

j=0

|πv|s(m
2−m gcd(j,m))/α(m)

v χ̃(πjv)

= 1 +
∑

gcd(j,m)=m
r

|πv|svχ̃(πjv) +
∑

gcd(m,j)<m
r

|πv|s(m
2−m gcd(m,j))/α(m)

v χ̃(πjv)

= 1 + |πv|sv
( r−1∑

j=1

χ̃(π
mj
r
v )

)
+

∑

gcd(m,j)<m
r

|πv|s(m
2−m gcd(j,m))/α(m)

v χ̃(πjv).

Now, we expand the last product of the equality (9.2.2.2) and collect the
terms: ∣∣∣∣

Ĥ∆
v (s, χ)∏r−1

j=1 Lv(s, χ̃
mj/r)

∣∣∣∣ =
∣∣∣∣1 +

m2r∑

k=1

Ak(χ̃)|πv|sk/α(m)
v

∣∣∣∣.

It is clear that

A1(χ̃) = A2(χ̃) = · · · = Aα(m)−1(χ̃) = 0,

and one also has that
Aα(m)(χ̃) = 0,
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because every χ̃(π
mj
r
v ) appears exactly twice in the expanded product

with the different signs. Moreover, each Ak(χ̃) is a sum of no more than
2r−1m numbers of the absolute value 1, thus for every k = 1, . . . ,m2r, one
can estimate that |Ak(χ̃)| ≤ 2r−1m. Now, using the triangle inequality
and the fact that |πv|v < 1 we deduce that

∣∣∣∣
Ĥ∆
v (s, χ)∏r−1

j=1 Lv(s, χ̃
mj/r)

∣∣∣∣ =
∣∣∣∣1 +

m2r∑

k=1

Ak(χ)|πv|sk/α(m)
v

∣∣∣∣

≤ 1 + 2r−1m
m2r∑

k=α(m)+1

|πv|ℜ(s)k/α(m)
v

≤ 1 + 2r−1m(m2r − α(m)− 1)|πv|ℜ(s)(α(m)+1)/α(m)
v

≤ 1 + 2r−1m3r|πv|ℜ(s)(1+(1/α(m)))
v

≤ (1 + |πv|ℜ(s)(1+(1/α(m)))
v )2

r−1m3r

=

(
ζv
(
ℜ(s)(1 + (1/α(m)))

)

ζv(2ℜ(s)(1 + (1/α(m)))
)
)2r−1m3

.

The statement is proven.

9.2.3. — In this paragraph we study the global Fourier transform.
Let [T (m)(AF )] be the restricted product

[T (m)(AF )] =
∏′

v∈MF

[T (m)(Fv)],

where the restricted product is taken with the respect to the open
and compact subgroups [T (m)(Ov)] ⊂ [T (m)(Fv)] for v ∈ M0

F . Let
[T (m)(i)] : [T (m)(F )] → [T (m)(AF )] be the diagonal map. If
(xv)v ∈ [T (m)(AF )], by Lemma 9.1.4.2, the product

H(x) :=
∏

v∈MF

Hv(x)

is finite. By Proposition 5.4.3.2, the function H : [T (m)(AF )]→ R>0 is
continuous. By the equality (9.1.4.1), for x ∈ [T (m)(F )], one has that

(9.2.3.1) H(x) = H([T (m)(i)](x)).
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For v ∈ MF , let Kv be the maximal subgroup of the finite group
[T (m)(Fv)] such that Hv is Kv-invariant. By Lemma 9.1.4.2, for every
v ∈M0

F − S, one has that Kv ⊃ [T (m)(Ov)].
Lemma 9.2.3.2. — Let x ∈ [T (m)(AF )]. We denote by Sx the finite
set of places of F given by the union of the set M∞

F , of the set of places v
for which v(x) 6= 0 and of the set of the places v for which Hv is not
[T (m)(Ov)]-invariant. Let us set

C(x) :=
∏

v∈Sx

maxz∈[T (Fv)]Hv(z)

minz∈[T (Fv)]Hv(z)
.

For every y ∈ [T (m)(AF )], one has that

C(x)−1H(y) ≤ H(xy) ≤ C(x)H(y).

Proof. — For v ∈ MF − Sx, one has that Hv(x) = 1. For v ∈ Sx, let us
set

Cv(x) :=
maxz∈[T (Fv)]Hv(z)

minz∈[T (Fv)]Hv(z)

so that C(x) =
∏

v∈Sx
Cv(x). For every y ∈ [T (m)(AF )], one has that

H(xy) =
∏

v∈MF

Hv(xy)

=
∏

v∈Sx

Hv(xy) ·
∏

v∈MF−Sx

Hv(xy)

≤
∏

v∈Sx

Cv(x)Hv(y) ·
∏

MF−Sx

Hv(y)

= C(x)H(y).

Analogously, one verifies that C(x)−1H(xy) ≤ H(y).
For z ∈ R, recall that Ω>z is the “tube”:

Ω>z := R>z + iR ⊂ C.

Lemma 9.2.3.3. — Let χ ∈ ([T (i)]([T (m)(F )]))⊥.

1. Suppose χ does not vanish on K. Then for every s ∈ C, one has

that Ĥ(s, χ) = 0.
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2. Suppose χ vanishes on K. For s ∈ Ω
>

α(m)
α(m)+1

, the product

∏

v∈M0
F

Ĥv(s, χv)∏r−1
j=1 Lv(s, χ̃

mj/r)

converges uniformly on compacts in the domain Ω
>

α(m)
α(m)+1

. The func-

tion

γ(−, χ) : s 7→
∏

v∈M0
F

Ĥv(s, χv)∏r−1
j=1 Lv(s, χ̃

mj/r)
,

is a holomorphic function Ω
>

α(m)
α(m)+1

→ C which satisfies that for

every compact K ⊂ R
>

α(m)
α(m)+1

there exists C = C(K) > 0 such that

|γ(s, χ)| ≤ C,

for s ∈ K + iR.
3. One has that γ(1, 1) > 0.

Proof. — 1. Let v ∈M0
F such that χv|Kv 6= 1. By Lemma 9.2.1.2, one

has that Ĥv(s, χv) = 0 for every s ∈ C. It follows that Ĥ(s, χ) = 0.
2. For v ∈M0

F , let us denote by

γv(s, χv) :=
Ĥv(s, χv)∏r−1

j=1 Lv(s, χ̃
mj/r)

.

For every v ∈ M0
F , the function γv(−, χv) is an entire function,

because by Lemma 9.2.1.2, the function Ĥv(s, χv) is an entire func-
tion and because for j = 1, . . . , r−1, the function (Lv(s, χ̃

mj/r))−1 =
(1 − |πv|svχ̃mj/r(|πv|v)) is an entire function. Moreover, by Lemma
9.2.2.1, for v ∈M0

F − S, there exists a positive integer A such that

(9.2.3.4) |γv(s, χ)| ≤
(
ζv
(
ℜ(s)(1 + 1

α(m)
)
)

ζv
(
2ℜ(s)(1 + 1

α(m)
)
)
)A

.

For every y > α(m)/(α(m) + 1), the product

∏

v∈M0
F−S

(
ζv
(
y(1 + 1

α(m)
)
)

ζv
(
2y(1 + 1

α(m)
)
)
)A
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converges uniformly in the domain R
>

α(m)
(α(m)+1)

to

(
ζ(y
(
1 + 1

α(m)
)
)

ζ
(
2y(1 + 1

α(m)
)
) ×

∏

v∈S

ζv
(
2y(1 + 1

α(m)
)
)

ζv
(
y(1 + 1

α(m)
)
)
)A

.

It follows that the product

∏

v∈M0
F−S

γv(s, χv)

converges absolutely and uniformly in the domain s ∈ Ω
>

α(m)
α(m)+1

.

We deduce that the product γ(s, χ) =
∏

v∈M0
F
γv(s, χv) converges

absolutely and uniformly in the domain s ∈ Ω
>

α(m)
α(m)+1

. Moreover,

γ(−, χ) : Ω
>

α(m)
α(m)+1

→ C is a holomorphic function and it satisfies

that

|γ(s, χ)|

≤
(
ζ
(
ℜ(s)(1 + 1

α(m)
)
)

ζ
(
2ℜ(s)(1 + 1

α(m)
)
) ×

∏

v∈S

ζv
(
2ℜ(s)(1 + 1

α(m)
)
)

ζv
(
ℜ(s)(1 + 1

α(m)
)
)
)A
×
∏

v∈S
|γv(s, χ)|.

We deduce that for a compact K ⊂ R>1/(α(m)+1) one has that

|γ(s, χ)| ≤ sup
y∈K

((
ζ
(
y(1 + 1

α(m)
)
)

ζ
(
2y(1 + 1

α(m)
)
)×
∏

v∈S

ζv
(
2y(1 + 1

α(m)
)
)

ζv
(
y(1 + 1

α(m)
)
)
)A∏

v∈S
γv(y, χ)

)
.

The statement is proven.
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3. For v ∈M0
F − S, one has that

γv(1, 1) =
Ĥv(1, 1)

ζv(1)r−1

=

(m−1∑

j=0

|πv|(m
2−m gcd(j,m))/α(m)

v

)
(1− |πv|v)r−1

=

(
1 + (r − 1)|πv|v +O(|πv|

m2−m2/r+1
α(m)

v )

)
×

×
(
1− (r − 1)|πv|v +O(|πv|2v)

)

=

(
1− (r − 1)2|πv|2v +O(|πv|

m2−m2/r+1
α(m)

v )

)
,

where by O(|πv|kv) is meant a quantity that for all v is bounded by
a constant (independent of v) times |πv|kv . For every v ∈ M0

F , one

has that Ĥv(1, 1) =
∫
[T (m)(Fv)]

H−1
v µv > 0, because H−1

v is strictly

positive and µv is a Haar measure on a finite group, hence

γv(1, 1) =
Ĥv(1, 1)

ζv(1)r−1
> 0.

It follows that

γ(1, 1) =
∏

v∈M0
F

γv(1, 1) > 0.

9.2.4. — In this paragraph we estimate the global Fourier transform.
In the equality 3.4.9.1, we have provided an identification A1

F ×R>0
∼−→

A×
F . If χ is a character of [T (m)(AF )] = A×

F/(A
×
F )m, then χ̃ is of order

dividing m, thus χ̃|R>0 = 0. Recall that by Lemma 3.4.3.2, one has that
[T (m)(AF )] = [T (m)(AF )]1.

Let K0
max :=

∏
v∈M0

F
[T (m)(Ov)]. The group K0

max, as well as its any

open subgroupK, is compact. By Corollary 6.2.2.5, for an open subgroup
K ⊂ K0

max :=
∏

v∈M0
F
[T (a)(Ov)], one has that

AK := (K[T (m)(i)]([T (m)(F )]))⊥
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is finite. We are ready to estimate the global Fourier transform. Let µAF

be the restricted product measure

µAF
=
⊗

v∈MF

µv

on [T (a)(AF )] (as in Definition 5.4.3.3). For s ∈ C and a character
χ ∈ [T (m)(AF )]

∗, we define formally

Ĥ(s, χ) =

∫

[T (m)(AF )]

H−sχµAF
.

Lemma 5.4.3.2 gives that if the product
∏

v∈MF
Ĥv(s, χv) converges, then

Ĥ(s, χ) =
∏

v∈MF

Ĥv(s, χv).

Lemma 9.2.4.1. — For χ ∈ AK let us define d(χ) = 0 if χm/r 6= 1

and d(χ) = r − 1, otherwise. For every χ ∈ AK, the function Ĥ(s, χ) is
holomorphic in the domain s ∈ Ω>1. Moreover, there exists δ > 0 such
that (

s− 1

s

)d(χ)
Ĥ(s, χ)

extends to a holomorphic function in the domain Ω>1−δ and such that for
every compact K ⊂ R>1−δ there exists C = C(K) > 0, such that

∣∣∣∣
(
s− 1

s

)d(χ)
Ĥ(s, χ)

∣∣∣∣ ≤ C(K)(1 + |ℑ(s)|)

for every χ ∈ AK .

Proof. — Set γv(s, χv) =
Ĥv(s,χv)∏r−1

j=1 Lv(s,χ̃mj/r)
for v ∈M0

F . By Lemma 9.2.3.3,

for every χ ∈ AK , the product
∏

v∈M0
F
γv(s, χv) converges absolutely and

uniformly on the compacts in the domain Ω
>

α(m)
α(m)+1

to a holomorphic

function γ(−, χ) : Ω
>

α(m)
α(m)+1

→ C and, moreover as AK is finite, for every

compact K ⊂ R
>

α(m)
α(m)+1

, there exists C0 > 0 such that |γ(s, χ)| ≤ C0 for

every χ ∈ AK and every s ∈ K + iR.
Let us define K̃ := (qm|K0

max
)−1(K). It is an open subgroup of finite

index of the compact group K0
max, hence K̃ is of the finite index in K0

max.
Note that if χ|K = 1, then χ̃|K̃ = 1. Now, by Proposition 6.3.1.2, we get
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that there exist 1
α(m)+1

> δ > 0 and C > 0, such that for every χ ∈ AK

one has that
( r−1∏

j=1
χ̃mj/r=1

s− 1

s

)( r−1∏

j=1

L(s, χ̃mj/r)

)

=

( r−1∏

j=1
χ̃mj/r=1

(s− 1)L(s, χ̃mj/r)

s

)( r−1∏

j=1
χ̃mj/r 6=1

L(s, χ̃mj/r)

)

extends to a holomorphic function in the domain Ω>1−δ and satisfies the
inequality

∣∣∣∣
( r−1∏

j=1
χ̃mj/r=1

s− 1

s

)( r−1∏

j=1

L(s, χ̃mj/r)

)∣∣∣∣ ≤ C(1 + |ℑ(s)|)

in this domain. We deduce that in the domain Ω>1−δ one has that

Ĥ(s, χ) =
∏

v∈M0
F

Ĥv(s, χv)×
∏

v∈M∞
F

Ĥv(s, χv)

=

( ∏

v∈M0
F

γv(s, χ)
r−1∏

j=1

Lv(s, χ̃
mj/r
v )

)
×
∏

v∈M∞
F

Ĥv(s, χ)

converges to γ(s, χ)
∏r−1

j=1 L(s, χ̃
mj/r)

∏
v∈M∞

F
Ĥv(s, χ). Moreover, using

Lemma 9.2.1.2, if K ⊂ R>1−δ is a compact, we deduce that there exists
C > 0 such that
∣∣∣∣
( r−1∏

j=1
χ̃mj=1

s− 1

s

)
Ĥ(s, χ)

∣∣∣∣

=

∣∣∣∣
( r−1∏

j=1
χ̃mj=1

s− 1

s

)
γ(s, χ)

( r−1∏

j=1

L(s, χ̃mj/r)

)
×
∏

v∈M∞
F

Ĥv(s, χ)

∣∣∣∣

= |γ(s, χ)|
( r−1∏

j=1
χ̃mj/r=1

s− 1

s
L(s, 1)

)( r−1∏

j=1
χ̃mj/r 6=1

|L(s, χ̃mj/r)|
)∣∣∣∣

∏

v∈M∞
F

Ĥv(s, χ)

∣∣∣∣

≤ C(1 + |ℑ(s)|).
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To complete the proof, it suffices to see that for every χ ∈ AK , one has
that

(9.2.4.2) |{j| 0 ≤ j ≤ r − 1 and χ̃mj/r = 1}| = d(χ).

Suppose that χm/r = 1. For every j ∈ {1, . . . , r − 1} one has that
χ̃mj/r = ((qmAF

)∗χ)mj/r = (qmAF
)∗(χmj/r) = 1, hence

|{j| 0 ≤ j ≤ r − 1 and χ̃mj/r = 1}| = r − 1 = d(χ).

Suppose that χm/r 6= 1. Suppose that for some j ∈ {1, . . . , r − 1} one
has that

χ̃mj/r = ((qmAF
)∗χmj/r) = 1.

Let k ∈ {1, . . . , r− 1} be such that kj = 1+ ℓr for some ℓ ∈ Z>0. Then,

1 = χ̃mjk/r = χ̃(mℓr+1)/r = χ̃mℓχ̃m/r = χ̃m/r,

because χ̃mℓ = (qmAF
)∗(χℓ) = 1 (because [T (m)(AF )] is an m-torsion

group).This is a contradiction. We deduce that

|{j| 0 ≤ j ≤ r − 1 and χ̃mj/r = 1}| = 0 = d(χ).

In either of the two cases, we obtain that the equality (9.2.4.2) is valid.
We deduce that

∣∣∣∣
(
s− 1

s

)d(χ)
Ĥ(s, χ)

∣∣∣∣ ≤ C(1 + |ℑ(s)|)

The statement is proven.

9.2.5. — In this paragraph we define the height zeta function, establish
its convergence and the meromorphic extension of the function it defines.
For s ∈ C, we define formally

Z(s) :=
∑

x∈[T (m)(F )]

H(x)−s.

The following lemma verifies some of the conditions that are needed to be
satisfied in order to apply Poisson formula. We will write i([T (m)(F )])
for [T (m)(i)]([T (m)(F )]).
Lemma 9.2.5.1. — The following claims are valid.

1. Let ǫ > 0. For s ∈ Ω>α(m)+ǫ, the series defining Z(s) converges
absolutely and uniformly. The function s 7→ Z(s) is holomorphic in
the domain Ω>α(m).
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2. Let s ∈ Ω>α(m). For every x ∈ [T (m)(AF )], the series

∑

y∈i([T (m)(F )])

H(xy)−s

converges absolutely. The function

x 7→
∑

y∈i([T (m)(F )])

H(xy)−s

is continuous.

Proof. — 1. It follows from Proposition 9.1.4.4 that there exists C1 >
0 such that for every B > 0 one has that

|{y ∈ [P(m)(F )]|H(y) < B}| < C1B
α(m)

(recall that in Proposition 9.1.4.4 we had a quasi-discriminant de-
gree 1 family, while now it is a degree m quasi-discriminant de-
gree m family). Now, it follows from Lemma 7.5.3.1, that the series
defining Z(s) converges absolutely and uniformly for s ∈ Ω>α(m)+ǫ.
Thus Z is holomorphic in the domain Ω>α(m)+ǫ, and by decreasing
ǫ we deduce that Z is holomorphic in the domain Ω>α(m).

2. For x ∈ [T (m)(AF )], we denote by Sx the finite set of places
of F given by the union of the set M∞

F , of the set of places v
for which v(x) 6= 0 and of the set of the places v for which Hv

is not [T (m)(Ov)]-invariant. Let us set Ux,v := {xv} ⊂ [T (m)(Fv)]
(where xv is the v-adic component of x). We define

Ux =
∏

v∈Sx

Ux,v ×
∏

v∈M0
F−Sx

[T (m)(Ov)].

We are going to prove that the series converges absolutely and uni-
formly on Ux. For every x′ ∈ Ux and every y ∈ i([T (m)(F )]), it
follows from Lemma 9.2.3.2, that there exists C(x) > 0 such that

∣∣H(x′y)−s
∣∣ = H(x′y)−ℜ(s) ≤ C(x)−ℜ(s)H(y)−ℜ(s).

The kernel of the homomorphism [T (m)(F )] → [T (m)(AF )] is
X

1(F, µm) by Proposition 3.4.3.1. As
∑

y∈i([T (m)(F )])H(y)−s =
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Z(s)
|X1(F,µm)| converges absolutely, it follows that∑

y∈i([T (m)(F )])

∣∣H(x′y)−s
∣∣ =

∑

y∈i([T (m)(F )])

H(x′y)−ℜ(s)

≤ C(x)−ℜ(s) Z(ℜ(s))
|X1(F, µm)|

,

and hence the series
∑

y∈[T (m)(F )]H(x′y)−s converges abso-

lutely and uniformly in the domain x′ ∈ Ux. It follows that
x′ 7→∑

y∈i([T (m)(F )])H(x′y)−s is continuous on Ux. We deduce that

x 7→∑
y∈i([T (m)(F )])H(xy)−s is continuous on [T (m)(AF )].

Let Ξ ⊂ [T (m)(AF )]
∗ be the group of the characters χ which satisfy

that χm/r = 1. Note that Ξ⊥ is given by

[T (m)(AF )]m/r = {xm/r|x ∈ [T (m)(AF )]}.
For an open subgroup K ⊂ K0

max =
∏

v∈M0
F
[T (m)(Ov)], we denote by

ΞK = AK ∩ Ξ. By Corollary 6.2.2.5, the subgroups AK are finite, thus
discrete, hence the groups ΞK are finite and discrete. To simplify nota-
tion, in the rest of the paragraph we may write [T (m)(F )] for what is
technically [T (m)(i)]([T (m)(F )]).
Lemma 9.2.5.2. — The following claims are valid:

1. For every open subgroup K ⊂ K0
max, the group Ξ⊥

K is the ker-
nel of the homomorphism [T (m)(AF )] → Ξ∗

K , which is in-
duced from the inclusion ΞK ⊂ [T (m)(AF )]

∗. Moreover, it is
open, closed and of index |ΞK | in [T (m)(AF )]. One has that
Ξ⊥
K = [T (m)(F )]K[T (m)(AF )]m/r.

2. The group Ξ⊥
∞ :=

⋂
Ξ⊥
K , where the intersection is over all open

subgroups K of K0
max, identifies with the closure

[T (m)(F )][T (m)(AF )]m/r ⊂ [T (m)(AF )].

3. Let K ⊂ K0
max be an open subgroup and let f be a K-invariant

continuous complex valued function lying in L1([T (m)(AF )], µAF
).

One has that
1

|ΞK |
∑

χ∈ΞK

f̂(χ) =

∫

Ξ⊥
K

fµAF
.

4. There exists a unique Haar measure µ⊥
∞ on Ξ⊥

∞ such that for every
open subgroup K ⊂ K0

max, any K-invariant continuous function
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f : [T (m)(AF )]→ C one has that f ∈ L1(Ξ⊥
K , |ΞK |µAF

) if and only
if f ∈ L1(Ξ⊥

∞, µ
⊥
∞) and if f ∈ L1(Ξ⊥

K , |ΞK |µAF
), then

∫

Ξ⊥
∞

fµ⊥
∞ = |ΞK |

∫

Ξ⊥
K

fµAF
.

Proof. — 1. The claim that Ξ⊥
K is the kernel of the homomorphism

[T (m)(AF )] → Ξ∗
K follows from Proposition 6.1.1.1. The same

proposition gives that the homomorphism [T (m)(AF )] → Ξ∗
K is

surjective. The group Ξ∗
K is finite and discrete, of order |ΞK |, thus

Ξ⊥
K is an open, closed and of index |ΞK |, as claimed. Clearly,

Ξ⊥
K = ([T (m)(F )]⊥K⊥ ∩ [T (m)(AF )]

⊥
m/r)

⊥

= [T (m)(F )]K[T (m)(AF )]m/r.

The subgroup [T (m)(F )]K ⊂ [T (m)(AF )] is closed (because
it is a product of a discrete subgroup [T (m)(F )] and a com-
pact subgroup K in [T (m)(AF )]), hence, is equal to A⊥

K =

(([T (m)(F )]K)⊥)⊥ = [T (m)(F )]K, which is of the finite index in
[T (m)(AF )]. It follows that the subgroup

[T (m)(F )]K[T (m)(AF )]m/r ⊂ [T (m)(AF )]

is closed, as it contains A⊥
K as a finite index subgroup. The claim

follows.
2. First, let us observe that [T (m)(F )][T (m)(AF )]m/r ⊂ Ξ⊥

∞, be-
cause Ξ⊥

∞ is a closed subgroup of [T (m)(AF )] and because for every
compact and open K ⊂ [T (m)(AF )] one has that

[T (m)(F )][T (m)(AF )]m/r ⊂ [T (m)(F )][T (m)(AF )]m/rK = Ξ⊥
K .

Let now

y ∈ [T (m)(AF )]− ([T (m)(F )])[T (m)(AF )]m/r.

The open subgroups of K0
max form a basis of neighbourhoods of

1 ∈ [T (m)(AF )], thus there exists an open subgroup K ⊂ K0
max

such that yK ∩ ([T (m)(F )])[T (m)(AF )]m/r = ∅. Hence,

y 6∈ ([T (m)(F )][T (m)(AF )]m/r)K = Ξ⊥
K .

It follows that y 6∈ Ξ⊥
∞ and the claim is proven.
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3. We apply the Poisson formula for the inclusion ΞK ⊂ [T (m)(AF )]
∗,

where ΞK is endowed with the counting measure and [T (m)(AF )]
∗,

with the dual measure µ∗
AF

of the measure µAF
. Every x ∈

[T (m)(AF )] will be regarded as a character of [T (m)(AF )]
∗ by the

evaluation map. By (1), the group Ξ⊥
K identifies with the kernel

of the homomorphism [T (m)(AF )] → Ξ∗
K , given by x 7→ x|ΞK

,
and is an open subgroup of index |ΞK | in [T (m)(AF )]. The
dual measure of the measure countΞK

on the dual group Ξ∗
K is

given by 1
|ΞK | · countΞ∗

K
, thus we have an equality of measures on

([T (m)(AF )]
∗/ΞK)

∗ = Ξ⊥
K :

(µ∗
AF
/ countΞK

)∗ = |ΞK | · µAF
|Ξ⊥

K
.

The Fourier transform of χ 7→ f̂(χ) at the character x, by the
Fourier inversion formula (7.1.1.1), is equal to f . By the finite-

ness of ΞK and the continuity of χ 7→ f̂(χ) ([5, Chapter II, §1,
n0 2, Proposition 2]), the conditions (2) and (3) of Poisson formula
(Proposition 7.1.1.4) are satisfied, and applying it gives that

∑

χ∈ΞK

f̂(χ) = |ΞK |
∫

Ξ⊥
K

fµAF
,

as claimed.
4. For an open subgroup K ⊂ K0

max, let dk be the probability Haar
measure on K. For every K, using the fact that the product subset
of a closed subset and a compact subgroup is closed ([7, Chapter
III, §4, n0 1, Corollary 1 of Proposition 1]) and that Ξ⊥

K is closed
(1), we get that

Ξ⊥
∞K = ([T (m)(F )])[T (m)(AF )]m/rK

= ([T (m)(F )])[T (m)(AF )]m/rK

= ([T (m)(F )])[T (m)(AF )]m/rK

= Ξ⊥
K .

. Let us denote by gK the canonical morphism

gK : Ξ⊥
∞ ×K → Ξ⊥

∞K = Ξ⊥
K (y, k) 7→ yk.

The group [T (m)(AF )] is countable at infinity by Lemma 3.4.8.1.
For every open K ⊂ K0

max, it follows from [10, Chapter VII, §2,
n0 9, Corollary of Proposition 13] that there exists a unique Haar
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measure µ⊥K
∞ on Ξ⊥

∞ such that for every continuous positive valued
function f on Ξ⊥

K one has that f ∈ L1(Ξ⊥
K , |ΞK |µAF

) if and only if
f ◦ gK ∈ L1(Ξ⊥

∞ ×K,µ⊥K
∞ × dk) and if f ∈ L1(Ξ⊥

K , |ΞK |µAF
) then

|ΞK |
∫

Ξ⊥
K

fµAF
= b(K)

∫

Ξ⊥
∞×K

(f ◦ gK)µ⊥K
∞ dk,

for some b(K) > 0. We deduce that if f ∈ L1(Ξ⊥
K , |ΞK |µAF

) is
moreover assumed to be K-invariant, then

|ΞK |
∫

Ξ⊥
K

fµAF
= b(K)

∫

Ξ⊥
∞

fµ⊥K
∞ .

We now prove that the measures b(K)µ⊥K
∞ are independent

of the choice of K. First, we prove it for open subgroups
of K ′ ⊂ K (such subgroups are compact and of finite index
in K). Let h : [T (m)(AF )] → R≥0 be a K-invariant function in
L1([T (m)(AF )], µAF

). Using (3) and the fact that for a character

χ ∈ Ξ⊥
K′ which is not trivial on K, one has that ĥ(χ) = 0 (because

h is K ′-invariant), we deduce that

b(K)

∫

Ξ⊥
∞

hµ⊥K
∞ = |ΞK |

∫

Ξ⊥
K

hµAF
=
∑

χ∈ΞK

ĥ(χ) =
∑

χ∈ΞK′

ĥ(χ)

= |ΞK′ |
∫

Ξ⊥
K′

hµAF
= b(K ′)

∫

Ξ⊥
∞

hµ⊥K′

∞ .

As b(K)µ⊥K
∞ and b(K ′)µ⊥K′

∞ are Haar measures on Ξ⊥
∞, it follows

that b(K)µ⊥K
∞ = b(K ′)µ⊥K′

∞ . Now we prove the claim for general
K ′. As for any open subgroup K ′ ⊂ K0

max, we have that K ∩K ′ is
open in K and K ′, we deduce

b(K)µ⊥K
∞ = b(K ∩K ′)µ⊥K∩K′

∞ = b(K ′)µ⊥K′

∞ .

Thus µ⊥
∞ := b(K)µ⊥K

∞ is the wanted measure.

Denote by j : Ξ⊥
∞ →

∏
v∈MF

[P(m)(Fv)] the canonical inclusion. Note

that j is the composite of the closed embedding Ξ⊥
∞ →֒ [T (m)(AF )]

and the canonical inclusion [T (m)(AF )] →֒
∏

v∈MF
[T (m)(Fv)] =∏

v∈MF
[P(m)(Fv)]. The later map is continuous by Lemma 3.4.1.1,

hence j is continuous.
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For any compactly supported continuous φ :
∏

v∈MF
[P(m)(Fv)] →

R≥0, it follows from Lemma 9.2.4.1 that the limit

lim
s→1+

(s−1)r−1

∫

Ξ⊥
∞

(φ◦ j)H−sµ∞ = lim
s→1+

(s−1)r−1|ΞK |
∫

Ξ⊥
K

(φ◦ j)H−sµAF
,

where K ⊂ K0
max is open, exists and is a non-negative number. It follows

that

C
0
c

( ∏

v∈MF

[P(m)(Fv)],R≥0

)
→ R≥0 φ 7→ lim

s→1+
(s−1)r−1

∫

Ξ⊥
∞

(φ◦j)H−sµ∞

is a non-negative linear form, hence by [9, Chapter III, §1, n0 6, Theorem
1] extends to a measure on

∏
v∈MF

[P(m)(Fv)]

Definition 9.2.5.3. — Let (fv : F
×
v → R>0)v be a quasi-discriminant

degree m family of m-homogenous functions. We define a measure ω on∏
v∈MF

[P(m)(Fv)] by

ω = ω((fv)v) = |µm(F )| lim
s→1+

(s− 1)r−1j∗(H
−sµ∞).

We set

τ = τ((fv)v) = ω(
∏

v∈MF

[P(m)(Fv)]).

Lemma 9.2.5.4. — Assuming the conditions of Definition 9.2.5.3, the
following claims are valid

1. One has that

lim
s→1+

(s− 1)r−1Ĥ(s, 1) = lim
s→1+

(s− 1)r−1

∫

[T (m)(AF )]

H−sµAF
> 0.

2. One has that τ > 0.

Proof. — 1. Recall that Ĥv(s, 1) = m for every v ∈ M∞
F by Lemma

9.2.1.2. Now, by Lemma 9.2.3.3, one has that

Ĥ(s, 1) = γ(s, 1)mr1+r2

r−1∏

j=1

L(s, 1) = γ(s, 1)mr1+r2ζ(s)r−1,
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where γ(−, 1) is a holomorphic function in the domain Ω
>

α(m)
α(m)+1

and

γ(1, 1) > 0. Thus

lim
s→1+

(s− 1)r−1Ĥ(s, 1) = γ(1, 1)mr1+r2 lim
s→1+

(s− 1)r−1ζ(s)r−1

= γ(1, 1)mr1+r2 Res(ζ, 1)r−1

> 0.

2. Let K ⊂ K0
max be an open subgroup such that H = H((fv)v) is K-

invariant. By Lemma 9.2.5.2 one has that

ω
( ∏

v∈MF

[P(m)(Fv)]
)
= |µm(F )| lim

s→1+
(s− 1)r−1

∫

Ξ⊥
∞

H−sµ∞

= |µm(F )| lim
s→1+

(s− 1)r−1|ΞK |
∫

Ξ⊥
K

H−sµAF
.

Let {x1 . . . x|ΞK |} be a set of elements of [T (m)(AF )] such that for
any i 6= j ∈ {1, . . . , |ΞK |}, one has that xix

−1
j 6∈ Ξ⊥

K . Using Lemma
9.2.3.2, we obtain that for s > 1, one has that∫

[T (m)(AF )]

H−sµAF
=
∑

i

∫

Ξ⊥
K

H(xiy)
−sdµAF

(y)

≤
∑

i

C(xi)
−s
∫

Ξ⊥
K

H−sµAF
,

for certain C(xi) > 0. It follows that

0 < lim
s→1+

(s− 1)r−1

∫

[T (m)(AF )]

H−sµAF

= lim
s→1+

(s− 1)r−1
∑

i

C(xi)
−s
∫

Ξ⊥
K

H−sµAF

≤
(∑

i

C(xi)
−1
)
lim
s→1+

(s− 1)r−1

∫

Ξ⊥
K

H−sµAF
,

and hence that lims→1+(s− 1)r−1
∫
Ξ⊥
K
H−sµAF

> 0. We deduce that

τ = |µm(F )| lim
s→1+

(s− 1)r−1|ΞK |
∫

Ξ⊥
K

H−sµAF
> 0,

as claimed.
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Theorem 9.2.5.5. — There exists δ > 0, such that Z extends to a
meromorphic function in the domain s ∈ Ω>1−δ with the only pole in
this domain at 1 which is of order r− 1 and such that for every compact
K ⊂ R>1−δ one has that there exists C(K) > 0 such that

∣∣∣∣
(
s− 1

s

)r−1

Z(s)

∣∣∣∣ ≤ C(K)(1 + |ℑ(s)|)r−1

if provided ℜ(s) ∈ R>1−δ. The principal value at the pole s = 1 is equal
to

τ

m
.

Proof. — By the equality (9.2.3.1), one has thatH(x) = H([T (m)(i)](x))
and by Proposition 3.4.3.1 the group ker([T (m)(i)]) = X

1(F, µm) is
finite. It follows that formally one has that

(9.2.5.6) Z(s) = |X1(F, µm)|
∑

x∈[T (m)(i)]([T (m)(F )])

H(x)−s.

By Lemma 9.2.5.1 for every ǫ > 0, the series defining Z(s) converges ab-
solutely and uniformly to a holomorphic function in the domain Ω>α(m)+ǫ

and it follows from 9.2.4.1 that for s ∈ Ω>1 the sum on the right hand side
converges and is a holomorphic function in s in this domain. Thus, the
equality (9.2.5.6) is valid in Ω>1 as an equality of holomorphic functions.
We apply Poisson formula (Proposition 7.1.1.4) to the inclusion

[T (m)(i)]([T (m)(F )]) ⊂ [T (m)(AF )]

(we have already verified the conditions (2) and (3) of Proposition 7.1.1.4
in Lemma 9.2.5.1). We have formally

∑

x∈[T (m)(i)]([T (m)(F )])

H(x)−s

=

∫

([T (m)(i)]([T (m)(F )]))⊥
Ĥ(s, χ)(µAF

/ count[T (m)(i)]([T (m)(F )]))
∗.

We use Lemma 8.2.2.1 to understand the measure

(µAF
/ count[T (m)(i)]([T (m)(F )]))

∗.

A volume of a subset of (R>0)m = R>0 when (R>0)m is endowed with the
pushforward measure of the measure d∗r for the map R>0 → R>0, x 7→
mx is 1/m times it was for the measure d∗r. Thus the Haar measure d∗rm
from Lemma 8.2.2.1 is normalized by (d∗rm)(R>0/(R>0)m) = m. Hence,
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the dual measure of d∗rm satisfies that (d∗rm)
∗((R>0/(R>0)m)

∗) = 1
m
.

Now, Lemma 8.2.2.1 gives that

(µAF
/ count[T (m)(i)]([T (m)(F )]))

∗

=
|µm(F )|

m|X1(F, µm)|
count([T (m)(AF )]1/[T (m)(i)]([T (m)(F )]))∗ .

Whenever χ 6∈ AK , we have by Lemma 9.2.3.3 that Ĥ(s, χ) = 0. We
deduce that formally one has
(9.2.5.7)

Z(s) =
|X1(F, µm)| · |µm(F )|

m|X1(F, µm)|
∑

χ∈AK

Ĥ(s, χ) =
|µm(F )|
m

∑

χ∈AK

Ĥ(s, χ).

For every χ ∈ AK , by Lemma 9.2.4.1 one has that s 7→ Ĥ(s, χ) is a
holomorphic function in the domain Ω>1. As the group AK is finite,

we deduce that s 7→ ∑
χ∈AK

Ĥ(s, χ) is a holomorphic function in the

domain Ω>1. It follows that the equality (9.2.5.7) is valid as an equality
of holomorphic functions in the domain Ω>1. Moreover, the equality
(9.2.5.7) is valid as an equality of the maximal meromorphic extensions
of the functions from the both hand sides. Moreover, Lemma 9.2.4.1
gives that there exists δ > 0 such that

(
s− 1

s

)d(χ)
Ĥ(s, χ)

extends to a holomorphic function in the domain Ω>1−δ and that for
every compact K ⊂ R>1−δ there exists C ′(K) > 0, such that

∣∣∣∣
(
s− 1

s

)d(χ)
Ĥ(s, χ)

∣∣∣∣ ≤ C ′(K)(1 + |ℑ(s)|)

for every χ ∈ AK (here d(χ) = r− 1 if χm/r = 1 otherwise d(χ) = 0). By
the finiteness of AK and the fact that d(χ) ≤ r − 1, we deduce that

∑

χ∈AK

(
s− 1

s

)r−1

Ĥ(s, χ) =

(
s− 1

s

)r−1 ∑

χ∈AK

Ĥ(s, χ)

extends to a holomorphic function in the domain Ω>1−δ and such that
for every compact K ⊂ R>1−δ there exists C(K) > 0, such that

∣∣∣∣
(
s− 1

s

)r−1 ∑

χ∈AK

Ĥ(s, χ)

∣∣∣∣ ≤ C(K)(1 + |ℑ(s)|).
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We deduce that Z extends to a meromorphic function in the domain
s ∈ Ω>1−δ with the only possible pole at s = 1 in this domain which is
of order at most r − 1. Moreover, for every compact K ⊂ R>1−δ one has
that ∣∣∣∣

(
s− 1

s

)r−1

Z(s)

∣∣∣∣ ≤ C(K)(1 + |ℑ(s)|)r−1

if provided ℜ(s) ∈ K.
The last part of the proof we dedicate to the proving that Z indeed has

a pole at 1, that this pole is of order exactly r− 1 and to the calculation
of the principal value. We calculate the limit

lim
s→1+

(
s− 1

s

)r−1 ∑

χ∈AK

Ĥ(s, χ) =
∑

χ∈AK

lim
s→1+

(
s− 1

s

)r−1

Ĥ(s, χ).

Recall that by ΞK we have denoted the subgroup of χ ∈ AK such that
χm/r = 1. If χ ∈ AK − ΞK , then by Lemma 9.2.4.1, one has that

s 7→ Ĥ(s, χ) is holomorphic in the domain Ω>1−δ, and thus

lim
s→1+

(
s− 1

s

)r−1

Ĥ(s, χ) = 0.

We deduce that

lim
s→1+

(
s− 1

s

)r−1 ∑

χ∈AK

Ĥ(s, χ) =
∑

χ∈ΞK

lim
s→1+

(
s− 1

s

)r−1

Ĥ(s, χ)

Using Lemma 9.2.5.2, we have that

(9.2.5.8)
∑

χ∈ΞK

Ĥ(s, χ) = |ΞK |
∫

Ξ⊥
K

H−sµAF
=

∫

Ξ⊥
∞

H−sµ⊥
∞

whenever the quantities on both hand sides converge. By the fact that
H−s is absolutely integrable over [T (m)(AF )] for s ∈ Ω>1 and by Lemma
9.2.5.2, we deduce that the equality (9.2.5.8) is valid in the domain Ω>1.
Moreover, the equality (9.2.5.8) is valid, as an equality of the meromor-
phic functions on the domain Ω>1−δ. We deduce that

lim
s→1+

(
s− 1

s

)r−1 ∫

Ξ⊥
∞

H−sµ⊥
∞.
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We recognize this quantity from Definition 9.2.5.3 as
ω(

∏
v∈MF

[P(m)(Fv)])

|µm(F )| ,

and hence

lim
s→1+

(
s− 1

s

)r
Z(s) = lim

s→1+
(s− 1)r−1Z(s)

=
|µm(F )|
m

∑

χ∈AK

Ĥ(s, χ)

=
|µm(F )| · ω(

∏
v∈MF

[P(m)(Fv)])

|µm(F )|m

=
ω(
∏

v∈MF
[P(m)(Fv)])

m

=
τ

m
.

The statement is proven.

In Theorem 9.2.5.5, we have verified the conditions of the Tauberian
result [17, Theorem A1]. We deduce that:
Corollary 9.2.5.9. — Let (fv : F×

v → R>0)v be a quasi-discriminant
degree m family of m-homogenous functions and let H be the resulting
height on [P(m)(F )]. One has that

|{x ∈ [P(m)(F )]|H(x) ≤ B}| ∼ τ

(r − 2)! ·mB log(B)r−2,

when B →∞.
If for every v one has that fv = f∆

v , where f
∆
v is the discriminant m-

homogenous functions of weighted degree m, then by 9.1.3.5, we get for
y ∈ [P(m)(F )] that

H∆(y) = N

(
∆
(
F [X]/(Xm − ỹ))/F

))m/α(m)

,

where ỹ is a lift of y. Let us write |∆|(y) for H∆(y)α(m)/m. It is precisely
the norm of the discriminant of a torsor corresponding to y. We deduce
that:
Corollary 9.2.5.10. — One has that

|{x ∈ [P(m)(F )]| |∆|(x) ≤ B}|

∼B→∞
rr−2τ∆

mr−1(r − 1)r−2 · (r − 2)!
B

m
α(m) log(B)r−2,
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where τ∆ = τ((f∆
v )v).

9.2.6. — In this paragraph we explain the equidistribution of rational
points in

∏
v∈MF

[P(m)(Fv)]. We will write i for the map [P(m)(i)].
Theorem 9.2.6.1. — The set i([P(m)(F )]) is equidistributed in∏

v∈MF
[P(m)(Fv)] with respect to H.

Proof. — The proof follows the proof of Theorem 8.3.2.2 with some mod-
ifications and simplifications. Corollary 9.2.5.9, together with the fact
that ker(i) = X

1(F, µm) from Proposition 3.4.3.1, gives that

|{x ∈ i([P(m)(F )])|H(x) ≤ B}|

∼B→∞
ω(
∏

v∈MF
[P(m)(Fv)])

(r − 2)!m|X1(F, µm)|
B log(B)r−2.

We say that an open subset W is elementary if W writes as W =∏
v∈MF

Wv, where Wv ⊂ [P(m)(F )] is open, and for almost all v, one
has that Wv = [P(m)(Fv)]. As for every v, the spaces [P(m)(Fv)] are
finite and discrete by Lemma 3.3.5.7, we deduce that W is open and
closed, hence ∂W = ∅. We prove that for every elementary W , one has
that

|x ∈ W |H(x) ≤ B}|
|x ∈ i([P(m)(F )]|H(x) ≤ B}| ∼B→∞

ω(W )

ω(
∏

v∈MF
[P(m)(Fv)])

.

For v ∈ MF , we define gv = 1Wv = hv. Let ǫ > 0 and set η = ǫ/4. For
v ∈ MF , we set gη,v = (1 − η)1Wv + η and hη,v = gη,v. The proof that
H((fv ·(g−1

v ◦qmv ))v) = g−1
η H is identical to the proof of the corresponding

claim in Part (2) proof of Theorem 8.3.2.2. Let us establish that

ω((fv · (g−1
η,v ◦ qmv ))v) = g−1

η ω.

For a compactly supported continuous function φ :
∏

v∈MF
[P(m)(Fv)]→

C we say that it is decomposable, if it can be written as ⊗v∈MF
φv, where

for almost all v one has that φv = 1. Let φ : [P(m)(Fv)] → R≥0 be
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decomposable. One has that

ω((fv · (g−1
η,v ◦ qmv ))v)(φ)

= lim
s→1+

(s− 1)r−1

∫

Ξ⊥
∞

(φ)H(((fv · (g−1
η,v ◦ qmv ))v))−sµ⊥

∞

= lim
s→1+

(s− 1)r−1

∫

Ξ⊥
∞

(φg−sη )H−sµ⊥
∞

≥ lim
s→1+

(s− 1)r−1

∫

Ξ⊥
∞

(φg−1
η )H−sµ⊥

∞

= ω(φg−1
η ),

where the only inequality follows from the fact that g−sη ≥ g−1
η (which is

true because gη takes values in the interval ]0, 1[). On the other side, for
every δ > 1, by taking in the limit only those s contained in the domain
]1, δ[, we deduce that

ω((fv · (g−1
η,v ◦ qmv ))v)(φ) ≤ lim

s→1+
(s− 1)r−1

∫

Ξ⊥
∞

φg−δη H−sµ⊥
∞

= ω(φg−δη ).

From the fact that ω is a measure, it follows that limδ→1+ ω(φg
−δ) =

ω(φg−1), and hence that

(9.2.6.2) ω((fv · (g−1
η,v ◦ qmv ))v)(φ) = ω(φg−1

η )

for any non-negative decomposable function φ. Clearly, any real valued
decomposable function is a difference of two non-negative decomposable
functions, and the equality (9.2.6.2) is hence valid for all real valued de-
composable functions. Any decomposable φ writes as φ1 + iφ2, for some
decomposable real valued functions φ1 and φ2. The equality (9.2.6.2) is
thus valid for any decomposable φ. Moreover, the equality (9.2.6.2) is
valid for finite sums of decomposable functions. The finite sums of de-
composable continuous compactly supported functions are dense in the
set C 0

c (
∏

v∈MF
[P(m)(Fv)],C) by [9, Chapter III, §4, n0 5, Lemma 3],

hence ω((fv · (g−1
η,v ◦ qmv ))v) = g−1

η ω. To prove the claim for the elemen-
tary open subset W , we use the same steps as in the part (2) of Theo-
rem 8.3.2.2, with the only change in the function of B (that is replace
ω(

∏
v∈MF

[P(a)(Fv)])

|X1(F,µgcd(a))|·|a| B with
ω(

∏
v∈MF

[P(a)(Fv)])

(r−2)!m|X1(F,µm)| B log(B)r−2).
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We have hence established the claim for every elementary subset of
[P(m)(F )]. The rest of the proof is identical to the proofs of parts (3)
and (4) in the proof of Theorem 8.3.2.2.

9.2.7. — In the last paragraph, we prove that µm-torsors which are
fields are of positive proportion among all µm torsors of bounded quasi-
discriminant height.
Proposition 9.2.7.1. — There exists A(m, (fv)v) > 0 such that for
B ≫ 0, one has that

|{x ∈ [P(m)(F )]| x is a field, H(x) ≤ B}| ≥ A(m, (fv)v)B log(B)r−2.

Proof. — Let w be a finite place of F which does not extend the place 2
of Q. Let us denote by wm the canonical map

[T (m)(Fv)]→ Z/mZ,

given in Lemma 3.3.5.5. Recall that if ỹ ∈ F×
w is a lift of y ∈ [T (m)(Fw)],

then the image of w(ỹ) under the quotient map Z → Z/mZ is wm(y).
We let

W = {y ∈ [P(m)(Fw)] : wm(y) = 1} ×
∏

v∈MF−{w}
[P(m)(Fv)].

The set {y ∈ [P(m)(Fv)]|wm(y) = 1} is open and closed in the finite dis-
crete set [P(m)(Fv)], thus W is open and closed in

∏
v∈MF

[P(m)(Fv)].
Hence, ∂W = ∅. We prove two claims that will imply the statement of
the proposition.

1. Let us prove that if x ∈ [P(m)(F )] satisfies that i(x) ∈ W, then x
is a field. One has that x is field if and only if Xm− x̃ is irreducible,
where x̃ ∈ F× is a lift of x. By [34, Theorem 9.1, Chapter VI],
this is true if and only if x̃ is not an element of (F×)p for p prime
divisor of m and if 4|m, then also x̃ 6∈ −4(F×)4. Let us write
iv : [P(m)(F )] = [T (m)(F )]→ [T (m)(Fv)] = [P(m)(Fv)] for the

map induced from (F×
v )m-invariant map F× → F×

v

qm−→ [T (m)(Fv)].
For every prime p|m, one has that p ∤ 1 = wm(iv(x)) = w(x̃),
hence x̃ 6∈ (F×)p. One has that 2 ∤ 1 = wm(iv(x)) = w(x̃), thus
x̃ 6∈ (−4F×)4. It follows that x is a field.
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2. Let us prove that W has a strictly positive volume. By Lemma
9.2.1.2, one has that

Ĥw(s, 1) =
m−1∑

j=0

|πv|
s(m2−m gcd(j,m))

α(m)
v ,

for s > 0. Hence, Ĥw(−, 1) does not vanish for s > 0. Using Lemma
9.2.5.4, we deduce that

lim
s→1+

(s− 1)r−1

∫

[T (m)(AF )]
wm=1

H−s
w µAF

= lim
s→1+

(s− 1)r−1Ĥ(s, 1)

∫
wm=1

H−s
w µw

Ĥw(s, 1)

= lim
s→1+

(s− 1)r−1Ĥ(s, 1)

∫
wm=1

H−1µw

Ĥw(s, 1)

is positive. By Lemma 9.2.5.2 one has that

ω(W ) = |µm(F )| lim
s→1+

(s− 1)r−1

∫

Ξ⊥
∞

wm=1

H−sµ∞

= |µm(F )| lim
s→1+

(s− 1)r−1|ΞK |
∫

Ξ⊥
K

wm=1

H−sµAF
.

Let {x1 . . . x|ΞK |} be a set of representatives of classes of ΞK in
[T (m)(AF )]. Using Lemma 9.2.3.2, we obtain that for s > 1, one
has that∫

[T (m)(AF )]
wm=1

H−sµAF
=
∑

i

∫

Ξ⊥
K

wm=1

H(xiy)
−sdµAF

(y)

≤
∑

i

C(xi)
−s
∫

Ξ⊥
K

wm=1

H−sµAF
,

for certain C(xi) > 0. It follows that

0 < lim
s→1+

(s− 1)r−1

∫

[T (m)(AF )]
wm=1

H−sµAF

≤ lim
s→1+

(s− 1)r−1
∑

i

C(xi)
−s
∫

Ξ⊥
K

wm=1

H−sµAF

=
(∑

i

C(xi)
−1
)
lim
s→1+

(s− 1)r−1

∫

Ξ⊥
K

wm=1

H−sµAF
,
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and hence that lims→1+(s − 1)r−1
∫

Ξ⊥
K

wm=1

H−sµAF
> 0. We deduce

that

ω(W ) = |µm(F )| lim
s→1+

(s− 1)r−1|ΞK |
∫

Ξ⊥
K

wm=1

H−sµAF
> 0,

as claimed.

Now, as ω(∂W ) = 0, by Theorem 9.2.6.1, when B →∞, one has that

|{x ∈ [P(m)(F )]| x is a field, H(x) ≤ B}|
≥ |{x ∈ [P(m)(F )]|i(x) ∈ W}|

∼B→∞
ω(W )

m
B log(B)r−2.

The statement follows.

Let us give the precise asymptotics for the number of fields of bounded
height under the condition that 4 ∤ m. For a divisor d|m, we denote by
jd the homomorphism

jd : [T (d)(F )]→ [T (m)(F )]

induced from (F×)d-invariant homomorphism

F× → F× → [T (m)(F )] y 7→ [qm(F )](ym/d),

where [qm(F )] : F× → [T (m)(F )] is the quotient map. The map jd

induces an isomorphism [T (d)(F )] → [T (m)(F )]d/m, where, as usual
[T (m)(F )]d denotes the subgroup given by d-th powers of the elements
of [T (m)(F )]. For v ∈MF and d|m we set

f ∗d
v =

((
y 7→ |y|1−

m
d

v

)
· (fv ◦ (x 7→ x

m
d ))

)(1− 1
r

)
/
(
1− 1

q

)

,

where q is the smallest prime of d.
Lemma 9.2.7.2. — Let d be a divisor of m and let q be the smallest
prime of d. The following claims are valid:

1. The family (f ∗d
v )v is a quasi-discriminant degree d family of d-

homogenous functions.
2. One has equality of functions [T (d)(F )]→ R≥0:

H((fv)v) ◦ jd =
(
H((f ∗d

v )v)
)(1− 1

q
)/(1− 1

r
)
.
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Proof. — 1. Let t, x ∈ F×
v . For v ∈MF , one has that

f ∗d
v (t · x) = f ∗d

v (tdx) = |tdx|1−
m
d

v fv(t
mx

m
d ) = |td|1−

m
d

v |x|1−
m
d

v |t|mv fv(x
m
d )

= |t|dvf ∗d
v (x).

It follows that f ∗d
v is d-homogenous of weighted degree d. For almost

all v, the function fv is the discriminant m-homogenous function of
the weighted degree m. Recall from Lemma 9.1.3.1 that for v finite
such that v(m) = 0, this means that

fv(y) = |y|v|πv|
m gcd(v(y),m)−m2

α(m)
v

for every y ∈ F×
v . A direct calculation gives that

(
f ∗d
v (y)

)(1− 1
q
)/(1− 1

r
)
= |y|1−

m
d

v fv(y
m
d ) = |y|1−

m
d

v · |y|
m
d
v |πv|

m gcd((m/d)v(y),m)−m2

α(m)
v

= |y|v|πv|
(m/d)m gcd(v(y),d)−m2

m2(1− 1
r )

v

= |y|v|πv|
(1/d) gcd(v(y),d)−1

1− 1
r

v

= |y|v|πv|
d gcd(v(y),d)−d2

d2(1− 1
r )

v

= |y|v|πv|
d gcd(v(y),d)−d2

α(d)
·
1− 1

q

1− 1
r

v ,

i.e.

f ∗d
v (y) = |y|v|πv|

d gcd(v(y),d)−d2

α(d)
v .

In other words f ∗d
v is the discriminant d-homogenous function of

the weighted degree d. It follows that (f ∗d
v )v is a quasi-discriminant

degree d family of d-homogenous functions.
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2. Let x ∈ [T (d)(F )] and let x̃ ∈ F× be its lift. One has that x̃
m
d ∈ F×

is a lift of jd(x) ∈ [T (m)(F )]. Hence,

H((fv)v)(j
d(x)) =

∏

v∈MF

fv(x̃
m
d )

=

( ∏

v∈MF

|x̃|1−
m
d

v

)
·
∏

v∈MF

fv(x̃
m
d )

=
∏

v∈MF

|x̃|1−
m
d

v fv(x̃
m
d )

=
∏

v∈MF

(f ∗d
v (x̃))(1−

1
q
)/(1− 1

r
)

= (H((f ∗d
v ))(x))(1−

1
q
)/(1− 1

r
).

We deduce that

H((fv)v) ◦ jd =
(
H((f ∗d

v )v)
)(1− 1

q
)/(1− 1

r
)
,

as claimed.

Theorem 9.2.7.3. — Suppose that 4 ∤ m or that i =
√
−1 ∈ F . One

has that

|{x ∈ [P(m)(F )]| x is a field, H(x) ≤ B}| ∼B→∞ C(m, (fv)v)B log(B)r−2,

where

C(m, ((fv)v)) =

(∑
d|m
r|d
d · µ(d) · τ((f ∗(m/d)

v )v)

)

(r − 2)!m
,

and µ stands for the Möbius function (here, the sum is taken over divi-
sors d of m, which are divisible by the prime r).
Proof. — We introduce notation

[T (m)(F )]0 = {x ∈ [T (m)(F )]|x is a field}.
For x ∈ [T (m)(F )], let x̃ ∈ F× be its lift. Suppose for instant that 4 ∤ m.
It follows from [34, Theorem 9.1, Chapter VI] that x ∈ [T (m)(F )] is a
field if and only if x̃ is not an element of (F×)p = {yp|y ∈ F×} for
primes p|m. Suppose now that 4|m, by the hypothesis i ∈ F , hence
−4(F×)4 ⊂ (F×)2. Therefore the same conclusion of [34, Theorem 9.1,
Chapter VI] applies.
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We deduce that x is a field if and only if x 6∈ [T (m)(F )]p = {yp|y ∈
[T (m)(F )]} for primes p|m, i.e. we can write

[T (m)(F )]0 = [T (m)(F )]−
⋃

p prime
p|m

[T (m)(F )]p.

We are going to use the inclusion-exclusion principle. For that purpose,
we verify that for positive integers k, ℓ such that gcd(k, ℓ) = 1, one has
that

[T (m)(F )]k ∩ [T (m)(F )]ℓ = [T (m)(F )]kℓ.

Indeed, the inclusion “⊃” is clear and let us prove the reverse inclusion.
Write u1k+ u2ℓ = 1. If y ∈ [T (m)(F )]k ∩ [T (m)(F )]ℓ, then there exists
y′ and y′′ such that y = (y′)k and y = (y′′)ℓ. Thus

y = yu1k+u2ℓ = yu1kyu2ℓ = (y′′)ℓu1k(y′)ku2ℓ = ((y′′)u1(y′)u2)kℓ,

and the claim is verified. We deduce that for B > 0 one has that:

∣∣{x ∈
⋃

p prime
p|m

[T (m)(F )]p|H(x) ≤ B
}∣∣

=
∑

j≥1
p1<···<pj primes of m

(−1)j+1|{x ∈ [T (m)(F )]p1···pj |H(x) ≤ B}|,

and thus that
∣∣{x ∈ [T (m)(F )]0|H(x) ≤ B

}∣∣
=
∣∣{x ∈ [T (m)(F )]|H(x) ≤ B

}∣∣

−
∑

j≥1
p1<···<pj primes of m

(−1)j+1|{x ∈ [T (m)(F )]p1···pj |H(x) ≤ B}|.

Using the Möbius function µ, we write the last equality as

∣∣{x ∈ [T (m)(F )]0|H(x) ≤ B
}∣∣

=
∑

d|m
µ(d)

∣∣{x ∈ [T (m)(F )]d|H(x) ≤ B}
∣∣.
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We write r(k) for the smallest prime of an integer k. Lemma 9.2.7.2 for
d|m gives that

{x ∈ [T (m)(F )]d|H(x) ≤ B}
= {x ∈ [T (m/d)(F )]|(H((f ∗(m/d)

v )v)(j
m
d (x)))(1−

1
r(m/d)

)/(1− 1
r
) ≤ B}

= {x ∈ [T (m/d)(F )]|(H((f ∗(m/d)
v )v)(j

m
d (x)))) ≤ B(1− 1

r
)/(1− 1

r(m/d)
)}

Now, it follows from Corollary 9.2.5.9 that

|{x ∈ [T (m)(F )]d|H((f ∗(m/d)
v )v)(x) ≤ B}|

∼B→∞
τ((f

∗(m/d)
v )v)

(r(m/d)− 2)!(m/d)
B(1− 1

r
)/(1− 1

r(m/d)
) log(B(1− 1

r
)/(1− 1

r(m/d)
))r(m/d)−2,

where τ((f
∗(m/d)
v )v) = ω((f

∗(m/d)
v )v)(

∏
v∈MF

[P(m/d)(Fv)]). Thus, for a
divisor d|m for which r(m/d) > r, the term |{x ∈ [T (m)(F )]d|H(x) ≤
B}| does not influence the leading constant. We deduce that

|{x ∈ [T (m)(F )]0|H(x) ≤ B}|

=

(∑
d|m
r|d
d · µ(d) · τ((f ∗(m/d)

v )v)

)

(r − 2)!m
B log(B)r−2.

The theorem has been proven.

Remark 9.2.7.4. — When m is not a prime the proof of Theorem
9.2.7.3 gives that there exists a positive proportion of µm-torsors, which
are not fields. Indeed, let d > 1 be a divisor of m such that r|(m/d). We
have that any x ∈ [P(m)(F )]d is not a field. It follows from above that

|{x ∈ [P(m)(F )]d|H(x) ≤ B}|
= |{x ∈ [P(m/d)(F )]|H((f ∗(m/d)

v )v)(x) ≤ B}|

∼B→∞
d · τ((f ∗(m/d)

v )v
(r − 2)!m

B log(B)r−2.

Remark 9.2.7.5. — Suppose that F contains all m-th roots of 1 (in
particular if 4|m then i ∈ F , so Theorem 9.2.7.3 applies and gives the
leading constant). One has that µm = Z/mZ. The result of Theorem
9.2.7.3 has been established by Wright in [59]: he finds the asymptotic
behaviour for the number of abelian extensions. The proof there also
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gives the precise leading constant, however, we find it is difficult to com-
pare it with our constant.
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Chapitres 5 à 10. Hermann, Paris, 1974.

[9] Bourbaki, N. Integration. I. Chapters 1–6. Elements of Mathe-
matics (Berlin). Springer-Verlag, Berlin, 2004. Translated from the
1959, 1965 and 1967 French originals by Sterling K. Berberian.

[10] Bourbaki, N. Integration. II. Chapters 7–9. Elements of Mathe-
matics (Berlin). Springer-Verlag, Berlin, 2004. Translated from the
1963 and 1969 French originals by Sterling K. Berberian.
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Tome 3. Lecture Notes in Mathematics, Vol. 305. Springer-Verlag,
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[35] Le Rudulier, C. Points algébriques de hauteur bornée sur la droite
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