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Résumé

Un champ projectif a poids est un quotient champétre #(a) = (A" —
{0})/G,, ou I'action de G,, est avec des poids a € ZZ,. Des examples sont:
le champ compactifié de modules de courbes elliptiques Z?(4, 6) et le champs
classifiant de p,,-torseurs B, = &(m). Nous définissons des hauteurs sur
ces champs. Les hauteurs généralisent la hauteur naive d’une courbe et le
discriminant absolu d’un torseur. Nous utilisons les hauteurs pour compter
des points rationnels. Nous trouvons le comportement asymptotique pour le
nombre de points rationnels de hauteur borne.

Mots clefs: Conjecture de Manin, Points rationnels, Champ projectif a
poids, Formule de Poisson.



Abstract

A weighted projective stack is a stacky quotient #(a) = (A" — {0})/G,,,
where the action of G,, is with weights a € ZZ,. Examples are: the com-
pactified moduli stack of elliptic curves Z(4,6) and the classifying stack of
fm-torsors By, = Z(m). We define heights on the weighted projective
stacks. The heights generalize the naive height of an elliptic curve and the
absolute discriminant of a torsor. =~ We use the heights to count rational
points. We find the asymptotic behaviour for the number of rational points
of bounded heights.

Keywords: Manin conjecture, Rational points, Weighted projective stack,
Poisson formula.
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CHAPTER 1

INTRODUCTION EN FRANGCAIS

1.1. Notation

La notation suivante sera utilisée tout au long de la these. Par F' nous
désignerons un corps de nombres (que 'on peut fixer pour I'article entier).
Soit Mp, M2, Mg, My et MS I’ensemble des places, places finies, places
infinies, places réeles et places complexes de F', respectivement. Pour
v € Mp, nous désignerons par F, la completion v-adique de F'. Pour
v € MY, soit O, anneau des entiers de F,, fixons une uniformisante
o € F, et soit ||, la valeur absolue sur F, normalisée par |m,|, = [O, :
7,0,] L. Pour v € M, on désigne par ||, la valeur absolue habituelle
et pour v € My par |-|, le carré de la valeur absolue habituelle. Les
normalisations sont choisies pour que la formule du produit soit valide,
c’est-a-dire pour chaque x € F', on a

IT Iz =1.

vEMp

On note O l'anneau des entiers de F' et pour un sous-ensemble fini
S C M}, on note Opgs lanneau des S-entiers. Lorsque v € M, on
notera par n, le degré [F, : R]. On note par Ar anneau des adeles de F
et A% le groupe des ideles.

Pour un vecteur x € R"™, on notera |x| la somme x; + - - - + x,,.

1.2. Conjecture de Manin-Peyre

Rappelons une conjecture due a Manin et Peyre sur le comportement
asymptotique du nombre de points rationnels de ”taille” bornée.
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1.2.1. — Une des questions fondamentales de la géométrie diophanti-
enne est I’étude du nombre de solutions aux équations algébriques. La
conjecture de Manin-Peyre traite d’une telle question. Il prédit le nom-
bre de points rationnels sur les variétés algébriques de hauteur bornée,
quand il y en a "beaucoup”. Rappelons-le brievement.

Soit X une variété de Fano sur un corps de nombres F et soit Ky' son
fibré anticanonique. On croit que la condition de Fano, c¢’est-a-dire que
K)_(l est positif, rend, apres éventuellement passage a une extension de F',
les points rationnels de Zariski denses en X. Une métrique adélique sur
K;(l est un choix de métriques pour chaque fibré en droites topologiques
KN (F,) — X(F,) pour v dans I'ensemble des places My de F, avec une
“condition de compatibilité”. Le choix d’une métrique adelique sur K)}l
produit deux choses. Premierement, il donne une hauteur, c¢’est-a-dire
une fonction H : X(F) — R.g qui vérifie la propriété de Northcott :
pour chaque B > 0, I'ensemble {z € X (F)|H(x) < B} est fini. Ceci, en
substance, généralise la notion classique de la hauteur sur I’espace projec-
tif P" lorsque F' = Q, qui est donné par H(x) = max |z;|, ol x sont des
coordonnées entieres qui satisfont gcd(x) = 1. La hauteur sert de “taille”
d’un point rationnel. Deuxiemement, le choix de la métrique adélique
produit une mesure wy sur 'espace adélique X (Ar) := [[ ¢, X( F0)

(voir [47]). Soit 7y la valeur wy (X (F)), ou la fermeture X (F) est prise
dans X (Ap). La question suivante est posée par Peyre dans [47] et raffine
la question originale posée par Manin :

Conjecture 1.2.1.1. — Supposons que les points rationnels X (F)
sotent Zariski-denses dans X. Alors il existe une sous-variété fermée
Z C X, telle que l'on a

o € (X = Z)(F)|H(z) < BY ~p e ary Blog(ByXPE1,

ot a = a(X) est une constante positive reliée a l'emplacement de Ki*
dans le cone ample de X et tk(Pic(X)) est le rang du Groupe Picard
de X.

On supprime une sous-variété fermée pour éviter les sous-variétés dites
“accumulatrices”, qui contiennent plus de points que le reste de la variété.

La conjecture a été réglée dans de nombreux cas différents. La preuve
pour le cas de P™ est donnée par Schanuel dans [53], bien avant méme que
la conjecture ne soit formulée. D’autres cas connus importants de la con-
jecture sont les variétés toriques ([3]), les compactifications équivariantes
de groupes de vecteurs ([18]), certaines familles de surfaces Chatelet
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([23], [26]), etc. La version de admet des contre-exemples (eg [4],
[35]). 11 existe une version pour laquelle il n’existe pas de contre-exemples
connus : au lieu de supprimer les sous-variétés fermées, on supprime les
ensembles “minces” (un ensemble mince est un sous-ensemble de I'image
de I'ensemble des points rationnels V (F') pour un morphisme de variétés
V — X, qui, au voisinage du point générique de V| est quasi-fini et
n’admet aucune section). Pour une étude sur la conjecture de Manin-
Peyre, nous renvoyons le lecteur a [16].

1.2.2. — Différentes méthodes sont disponibles pour aborder la ques-
tion : torseurs universels, méthode du cercle, analyse harmonique, séries
d’Eisenstein, etc. Nous rappelons brievement la méthode d’analyse
harmonique, d’abord utilisé dans [2] par Batyrev et Tschinkel pour
prouver la conjecture de Manin-Peyre sur les compactifications de tores
anisotropes et développé plus tard dans [3], [17], [18], [20] , etc. pour
régler des exemples plus généraux et nouveaux. Soit X une variété
torique et soit 1" son tore. Soit H la hauteur donnée par une métrique
adélique sur le fibré du fibré anti-canonique. On compte les points
rationnels de T' (le diviseur & l'infini X — T peut cependant accumuler
des points). On a que T(F) est discret dans le tore adélique T(Ar).
On étend H|ppy a une “hauteur” sur T'(Ap). Soit ﬁ](s,x) la trans-
formée de Fourier de H~* (ou s est un nombre complexe) au caractere
X : T(Ar) — S' qui s'annule & T(F). La transformée globale est
un produit d’Euler des transformées locales IS-\IU(S,XU) pour v € Mp.
Les transformées locales sont des intégrales d’Igusa (voir [19]) et nous
pouvons soit donner des formules exactes soit prouver certaines bornes.
Ensuite, la transformée de Fourier globale H (s, x) devient un produit
de L-fonctions et une partie facile a analyser. R

La formule de Poisson (7.1.1.4) donne Z(s) = [ .y ey 1(8, X)dx;
ou dy est une mesure de Haar convenablement normalisée sur le groupe
des caracteres (T'(Ap)/T(F))*. 1l existe des méthodes pour analyser les
intégrales du coté droit, par ex. méthode des “fonctions M-controlées”
de [17].

On obtient le pole et une extension méromorphe de Z, qui, par des
résultats taubériens, donne ’'asymptotique recherchée pour le nombre de
points rationnels de 1" de hauteur bornée.
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1.3. Conjecture de Manin-Peyre pour les champs

Dans cette these, nous avons l'intention d’étendre la conjecture de
Manin-Peyre aux champs algébriques.
Nous présentons deux motivations.

1.3.1. — Une hauteur naive Hy d’une courbe elliptique E/Q est définie
comme suit : écrivez I’équation de E sous la forme Y? = X? + AX + B
, oil (A, B) € Z? a la propriété que pour chaque nombre premier p on a
pi|A = pS 1 B et définit Hy(E) := max(|A3|,|B?|). Faltings, dans sa
preuve de la conjecture de Mordell [27], définit différentes notions d’une
hauteur d’une courbe elliptique appelée une hauteur de Faltings instable
et une hauteur de Faltings stable. Pour la hauteur naive et la hauteur
instable de Faltings, il s’avere que si B > 0, il n’y a qu'un nombre fini
de classes d’isomorphismes de courbes elliptiques de hauteur au plus B.
Il n’est pas difficile de compter des courbes elliptiques sur Q de hauteur
naive bornée (et, comme nous le verrons plus tard, il est possible de
le faire sur n’importe quel corps de nombres F'). Pour le cas F' = Q,
Hortsch dans [31] trouve le comportement asymptotique pour le nombre
de classes d’isomorphismes de courbes elliptiques et de hauteur de Falting
instable bornée. Les deux asymptotiques sont similaires aux asympto-
tiques apparaissant dans la conjecture de Manin-Peyre. Cependant, il
y a une distinction : les courbes elliptiques sur un corps de nombres ne
sont pas parametrisées par une variété, mais par un champ algébrique.
Le champ est généralement désignée par M ;.

1.3.2. — Nous présentons un autre exemple ou 'on compte des points
rationnels sur des champs algébriques. Malle dans [37] conjecture ce qui
suit :

Conjecture 1.3.2.1 (Malle, [37]). — Soit G un groupe de permu-
tation transitif fini non trivial et soit F' un corps de nombres. On dit
que Gal(K/F) = G si K/F est une extension telle que le groupe de Ga-
lois de sa cloture de Galois est isomorphe a G en tant que groupe de
permutation. Il eziste ¢(F,G) > 0, tel que

{K/F|Gal(K/F)=G,A(K/F) < B} ~ ¢(F,G)B"% log(B)*F)-1,

lorsque B — o0, ou A est le discriminant absolu d’une extension, et
a(G) et b(F,G) sont des invariants explicites de G et de F' et G, respec-
tivement.
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La prédiction est prouvée pour certains cas comme le cas des groupes
abéliens ([59]), d’autres familles de groupes (eg [57], [22]) et elle admet
des contre-exemples ([33]). Un objet que I'on compte dans la question de
Malle détermine un point sur le champ BG (c’est le champ algébrique qui
parametrise les G-torseurs). Ainsi, la conjecture de Malle aussi, peut étre
étudiée comme comptant des points rationnels sur un champ algébrique.
De plus, les prédictions des conjectures de Manin et Malle semblent sim-
ilaires. Les similitudes ont déja été observées par Yasuda dans [60] et
par Ellenberg, Satriano et Zureick-Brown dans un ouvrage a paraitre. La
raison des similitudes des prédictions peut étre cachée dans la géométrie
du champ BG correspondant.

1.3.3. — Le but de notre travail est de formuler et d’étudier la con-
jecture de Manin-Peyre dans le contexte des champs algébriques. Plus
précisément, nous allons le faire pour les champs projectifs a poids. Si
n > 1 est un entier et a € Z2, le champ projectif a poids &(a) est le
quotient “champétre” du schéma A™ — {0} par le schéma en groupes G,,,
ou l'action est donnée par t - x := (t%x;);. Lorsque tous les poids a;
sont égaux a 1, alors Z?(a) est l'espace projectif P*~!. On a des coor-
données homogenes sur les champs projectifs a poids : un point rationnel
sur Z(a) est donné par n-tuple d’éléments de F' et deux n-tuples x et
x' représentent le méme point s’il existe t € F* tel que t%x; = 2 pour
j=1,...,n.

Le champ de modules des courbes elliptiques M ; est un sous-champ
ouvert du champ Z(4,6) (le champ (4, 6) est le champ qui parametrise
des courbes de genre 1 ayant au pire des singularités ordinaires). Un autre
exemple est donné par le champ By, (0l p,, = Spec (F[X]/(X™—1)) est
le schéma de groupe de m-iémes racines de 1'unité), qui est précisément
le champ projectif a poids &(m). Le champ Z(a) est lisse, propre et
torique : elle contient le tore champétre 7 (a) = G, /G,,. Sa similitude
avec les variétés toriques en fait un excellent candidat pour étudier la
conjecture de Manin-Peyre sur lui.

1.4. Principaux résultats

Nous énoncons les principaux résultats de notre these. Notre objec-
tif est de fournir une théorie similaire a celle des points rationnels sur
les variétés, plutot de donner des preuves ad-hoc de certains cas. Le
développement de la théorie occupe une partie importante de notre these.
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Si X est un champ et R un anneau, afin de distinguer la catégorie X (R)
et ’ensemble des classes d’isomorphisme des objets de cette catégorie, on
écrit [X (R)] pour ce dernier. Soit F' un corps de nombres.

1.4.1. — Expliquons d’abord que le comptage de points rationnels sur
le champ projectif & poids &?(a) est essentiellement différent du comp-
tage de points rationnels sur I'espace projectif a poids P(a). Rappelons
que l'espace projectif a poids P(a) est le quotient (A" — {0})/G,, dans
la catégorie des schémas pour la méme action que ci-dessus. Notons j
le morphisme canonique j : &#(a) — P(a). Le schéma P(a) est une
variété torique, et notons T'(a) = G ! son tore. Un isomorphisme de
groupes Z"/aZ — 7" ' x (Z/ ged(a)Z) induit un isomorphisme de tores
champeétres

T(a)x 7 (ged(a)) = Gy ' x 7 (ged(a)) = 7 ({1}" ' x{ged(a)}) = T (a)
=j ! (T(a)).

Ainsi, un point rationnel x € [7(a)(F)] est uniquement déterminé par
la paire

((x),x) € T(a)(F) x [j7(x)(F)] = T(a)(F) x [7 (ged(a)) (F)]
= T(a)(F) x [#Z(ged(a))(F)].
Si ged(a) = 1, alors Z(ged(a)) est le schéma a un point. Il résulte de
ce qui précede que le morphisme j induit une bijection [7(a)(F)] =
T(F). D’apres [44] Proposition 6.1}, 'homomorphisme de tiré en arriere
jg © Pic(P(a))q — Pic(#(a))q des groupes de Picard rationnels est un
isomorphisme. Il s’ensuit que compter les points rationnels de 7 (a) cor-
respond a compter les points rationnels de P(a) par rapport a une hauteur
provenant d’un certain fibré un droites rationnel. Lorsque ged(a) > 1,
ensemble [P (ged(a))(F)] est infini (Corollaire [4.6.2.2)), et on voit que
compter les points rationnels de (du tore champétre de) &?(a) n’est pas
la méme chose que de compter les points rationnels de (du tore de) P(a).

1.4.2. — Au chapitre [} nous définissons une notion de hauteur quasi-
torique sur 'ensemble des points rationnels &(a). C’est une fonction
H : [Z(a)(F)] — Rso et on établit un résultat de finitude sur le
nombre de points rationnels de hauteur bornée (“propriété de North-
cott faible”). Une hauteur dépend de la choix d’un fibré en droites sur le

champ Z(a) = A"/G,, (ou 'action est canoniquement étendue) et d’'une
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“métrique adélique”. Pour v € Mg, on définit des espaces topologiques
[P (a)(F,)] == (F—{0})/F), ou I'action est induite & partir de I'action
de Gy, sur A" — {0}. L’espace produit [] ., [ (a)(F,)] est un bon
analogue de “Iespace adélique” d’une variété. Dans le chapitre [5 on
définit une mesure wy sur espace produit [ [, [Z(a)(F},)] et on pose
Tn = Wi ([ [yenr,. [Z(a)(F,)]). Nous montrons que :

Théoréme (Théoréme [8.2.2.12, Proposition [8.3.2.3))

Soit H une hauteur quasi-torique. On a ce

{x € [2(a)(F)||H(x) < BY| ~5n %B.

Pour un type particulier de hauteur quasi-torique (que dans notre tra-
vail on appelle hauteur torique), le résultat a été établi dans [12]. Pour
les autres hauteurs, le résultat est nouveau.

On établit en outre que les points rationnels de &?(a) sont équidistribués
dans [[,cp,[2(a)(F,)] dans le sens suivant. Soit 7 : [P(a)(F)] —
[Loerr, [22(a)(F,)] application diagonale. Si W C [[,cp.,. [2(a)(F)]
est un sous-ensemble ouvert tel que w(0W) = 0, dans le théoreme

B:3:2.2] on prouver que
i WX € [Z@)(F)]Jix) € Wet H(x) < B} _ wn(W)
Byoc {x € [Z(a)(F)]|H (x) < B}| TH

1.4.3. — Enoncons le deuxiéme résultat principal de notre travail.
On suppose que n = 1 et que m € Z-,. On compte les p,,-torseurs
sur F' (c’est-a-dire, les points rationnels de &?(m)) du discriminant
borné. Au chapitre [9, nous définissons une notion de hauteur quasi-
discriminante. C’est une fonction H : [Z2(m)(F)] — Rs qui satisfait
la propriété faible de Northcott, et est essentiellement différente d’une
hauteur quasi-torique (on ne peut pas la normaliser de telle fagon que les
quotients des deux hauteurs sont des fonctions bornées sur [Z2(m)(F)]).
Les normalisations sont prises de telle sorte que H™ Y7 ol r est
le plus petit nombre premier de m, est essentiellement le discriminant
absolu A d’'un p,,- torseur (c’est-a-dire que les composantes locales de
H™1=1/7) ne sont différentes des composantes locales du discriminant
absolu A qu’en un nombre fini de places, par conséquent H™1~1/7) /A
est borné sur [Z(m)(F)]). Comme ci-dessus, un choix de la hauteur
quasi-discriminante H définit une mesure wy sur [[, ¢, [Z(m)(F,)] et
on pose Tay = Wi ([ [,epr, [Z2(m)(F,)]). Nous montrons que
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Théoréme (Corollaire (9.2.5.9). — Soit H wune hauteur quasi-
discriminante. On a que

1
(r—2)!

On montre a nouveau une propriété d’équidistribution des points ra-
tionnels dans Uespace [],c5,.[Z2(m)(F,)] (Théoreme . La pro-
priété d’équidistribution est utilisée pour prouver qu’une proportion pos-
itive de p,,,-torseurs de hauteur quasi-discriminante bornée sont des corps
et que, si m n’est pas un nombre premier, une proportion positive ne sont
pas des corps. De plus, lorsque 4 1 m ou lorsque i = v/—1 € F, on est en
mesure de donner une formule pour la proportion de champs (Théoreme
9.2.7.3).

Supposons que F' contienne toutes les m-ieme racines de 'unité. En
particulier, on a que 4 t m ou que i € F'. Nous avons que p,, = Z/mZ.
Dans ce cas, 'asymptotique pour le nombre de pu,, = Z/mZ-torseurs de
discriminant borné qui sont des corps, a déja été donnée par Wright dans
[59]. L’avantage de notre méthode est que nous sommes en mesure de
modifier le discriminant a un nombre fini de places.

{z € [2(m)(F)]|H(z) < BY| ~poee =L Blog(B) .

1.5. Apercu de la these

Donnons un aperc¢u de notre travail.

1.5.1. — Nous discutons d’une différence entre les hauteurs sur les
variétés et sur les champs. Soit X une variété propre sur F' et soit L un
fibrés en droites sur X. Il est bien connu qu'un choix d’'un Ops-modele
de (X,L) (ou S est un ensemble fini de places finies de F') munit L
avec une métrique pour chaque place finie qui n’est pas dans S. Nous
munissons le fibré en droites L aux places restants avec une métrique, et
on obtient une métrique adélique sur L, et donc une hauteur sur X (F).

Dans la construction de la métrique pour les places finies qui ne sont
pas dans S, on utilise le critére valuatif de proprété qui donne que tout F,-
point de X s’étend a un O,-point du modele. Cependant, ce n’est pas vrai
pour les champs (par exemple, seuls les points de Z?(4,6) correspondant
a des courbes ayant de bonnes réductions a v s’étendent aux O,-points).

Le critere valuatif de proprété pour des champs donne seulement qu’un
point F), s’étend jusqu’a un A-point du modele, ou A est la normalisation
de O, dans une extension finie de F;,. Telles extensions intégrales donnent
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lieu a des hauteurs stables (c’est-a-dire, la hauteur d'un F-point reste la
méme lorsque le point est considéré comme un K-point, ou K/F est
une extension finie). Un desavantage des hauteurs stables est qu’elles ne
satisfont pas a la « propriété faible de Northcott » (Définition [4.6.1.1)),
comme on le voit dans le cas de Z(4,6). A savoir, la hauteur stable de
deux F-courbes elliptiques qui ne sont pas isomorphes sur F' est la méme
si elles ont le méme j-invariant. Pour une courbe elliptique fixe F, il
existe une infinité de telles courbes elliptiques (elles sont construites en
effectuant des torsions quadratiques a E).

1.5.2. — Au chapitre nous rappelons plusieurs résultats sur les
champs, en mettant 'accent sur les stacks projectifs a poids. On in-
troduit aussi le champ Z(a) = A"/G,, (pour l'extension canonique

de l'action de G,, sur A" — {0}). Ainsi, on a des immersions ouvertes

T(a) C H(a) C H(a). Le champ Z(a) n'est pas séparé (Lemme
, donc pas propre, mais elle satisfait la propriété que tous
ses points rationnels s’étendent aux points entiers, et résout donc le
probleme du manque de points entiers de ci-dessus. Cette propriété
sera utilisée au chapitre [] pour produire des hauteurs instables sur les
champs projectifs a poids.

Les travaux de Moret-Bailly de [40] fournissent une notion d’espace
topologique associé a l’ensemble des (classes d’isomorphismes de) R-
points d’un champs, lorsque R est un certain type d’anneau local.
L’association est fonctoriale, c’est-a~-dire que pour un morphisme
X — Y de champs, 'application induite [X (R)] — [Y(R)] est continue.
Une liste d’autres propriétés que la construction satisfait est donnée
dans [15]. Nous prouvons la proposition suivante qui nous permet de
comprendre cette topologie pour certains champs quotients :
Proposition 1.5.2.1. — Supposons que X soil un champ quotient
Y/G, avec G special (ses torseurs sont localement triviaux, par Hilbert
90, un exemple est fourni par G = G,,). On a que [X(R)] est le quotient
topologique Y (R)/G(R).

Ainsi, on a par exemple que [Z(a)(F,)] = (F' — {0})/E) et
[T (a)(F,)] = (F))"/F), ou l'action de F} = G,,(F,) est I'induite de
l'action de G,, sur A" — {0} et G}, respectivement. Dans la derniere

m?

partie du chapitre, nous parlons de I'espace adélique du tore 7 (a). Nous
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le définissons comme le produit restreint

(T (@A) = [[ [7(a)(F)]

vEMp

par rapport au sous-groupes compacts et ouverts [Z(a)(O,)] C
(7 (a)(F,)]. En utilisant les résultats de Cesnavicius de [14] sur la
cohomologie des adeles, nous montrons que |7 (a)(Ap)] a des propriétés
similaires au tore adélique G, (Ar) (par exemple I'image des points
rationnels [ (a)(F')] pour lapplication diagonale est discrete).

1.5.3. — Nous commengons le chapitre [f] en rappelant des faits sur les
fibres en droites sur les champs, en particulier que les fibrés en droites sur
le champ quotient Y/G correspondent a des fibrés en droites G-linearisés
sur le schéma Y. Les groupes de Picard Pic(#(a)) et Pic(Z?(a)) sont
calculés. Ensuite, nous définissons les métriques sur les fibrés en droites
comme suit. Soit v une place de F, soit X un champ F,-algébrique et
soit L un fibré en droites sur X. Nous définissons une F,-metric on L
comme étant la donné fourniée par F,-métriques “compatibles” sur y*L
pour chaque morphisme y : Y — X avec Y un F,-schema (par une F-
métrique sur un fibré en droites sur un schéma F},, nous entendons un
choix “continu” de normes sur toutes les F,-fibrés). Notre métrique n’est
pas forcement stable. Pour les champ quotients X = Y/G, lorsque G
est supposé étre un groupe algébrique spécial, nous reli/orE le groupe des

fibrés en droites F,-métrisés P/’i\cv(Y/ G) avec le groupe Pic?(Y) des fibrés
en droites F,-métrisés sur X qui sont munis par une G-linéarisation et
tels que la métrique est G-invariant :
Proposition 1.5.3.1 (Proposition . — Soit G un schéma
en groupes spécial de type fini sur F, agissant sur localementile\type fini
F,-schéma Y. L’homomorphisme canonique P/’i\cv(Y/G) — PicS(Y) est
injectif, et est un isomorphisme si lsi\CU(Y/G) — Pic(Y/G) est surjectif.
Le champ Z(a) = (A" — {0})/G,, satisfait cette condition sur
I'existence de F,-métriques sur chacun de ses fibrés en droites (Lemme
4.3.6.3)). Par conséquent, comme Pic(A™ — {0}) est trivial, on en déduit
que pour définir une F,-métrique sur un fibré en droites sur &(a), il
suffit a définir une métrique G,,-invariante sur la G,,-linéarisation cor-
respondante du fibré trivial sur A™ — {0}. Une telle métrique est définie
par la norme de la section 1 et la condition sur les linéarisations donne
une condition d’“homogénéité” a la fonction F' — {0} — R.o, x — |[|1]|x-
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Supposons qu'un fibré en droites L sur Z(a) soit muni d'une F-
métrique pour chaque v € My, sous réserve d’une condition de compat-
ibilité qui permet aux normes d’une section étre multiplié a n’importe
quel x € [Z(a)(F)] (voir la condition dans la définition [4.4.1.1). Nous
pouvons définir des hauteurs en multipliant les inverses de ces normes
pour chaque v. La généralité, laisse la possibilité d’existence de hau-
teurs “essentiellement différentes” sur les mémes fibres en droites, c’est-
a-dire des hauteurs telles que leurs quotients ne sont pas des fonctions
bornées sur l'ensemble [Z?(a)(F')]. Des exemples sont : les hauteurs
stables mentionnées, les hauteurs quasi-toriques (nous allons les expli-
quer maintenant) et dans le cas n = 1 les hauteurs quasi-discriminantes
(elles seront expliquées dans le dernier chapitre). Les hauteurs quasi-
toriques sont les hauteurs qui proviennent des familles de métriques qui
se présentent de la maniere suivante pour presque chaque place : étendre
un F,-point du champ #(a) a un O,-point et utilisez la méthode clas-
sique (déja discutée dans pour obtenir une métrique (une petite
modification, cependant, doit étre faite, car &?(a) n’est pas séparé et
donc le O,-extension d’un F,-point n’est pas unique. Contrairement aux
hauteurs stables, les hauteurs quasi-toriques satisfont a la propriété faible
de Northcott :

Theorem 1.5.3.2 (Théoréme[4.6.8.2]). — Soit H une hauteur quasi-
torique sur Z(a). Soit € > 0. On a qu’il existe C' > 0 tel que

{x € [Z(a)(F)]|H(x) < B} < OB

L’idée de la preuve est d’estimer séparément la hauteur finie et la
hauteur infinie. La limite supérieure de la cardinalité dans le théoreme
est nécessaire pour assurer la convergence de la série zéta de hauteur
correspondante. L’affirmation de [I.5.3.2] reste valide méme lorsque les
métriques a un nombre fini des places sont autorisées a avoir des singu-
larités "logarithmiques” le long de diviseurs rationnels (voir le corollaire
. La preuve de cette version découle immédiatement de ,
apres avoir établi une estimation de la hauteur singuliere de la forme :
Hging > CHlog "(H), ou C,n > 0, ce que nous faisons dans la proposi-
tion L T.1.2

1.5.4. — Dans le chapitre [3, nous munissons les espaces topologiques
associés aux R-points par des mesures. En particulier, nous définissons
des mesures sur [Z(a)(F,)] (qui dépendent du choix des métriques) et
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sur [7 (a)(F,)] (qui ne dépendent pas du choix de métrique). Les mesures
sont utilisées pour définir la constante de Peyre 7.

La derniere partie du chapitre est consacrée a la définition des mesures
sur le “tore adélique” [Z (a)(Ap)] et le nombre de Tamagawa du tore
champétre .7 (a). On établit que
Proposition 1.5.4.1 (Proposition |5.4.4.4). — On a [égalité
Tam(.7 (a)) = 1.

Lorsque a = 1, c’est le résultat classique que le nombre de Tama-
gawa d’'un tore scindé est 1. La preuve de la proposition [1.5.4.1] utilise
les caractéristiques d’Euler-Poincaré d’Oesterlé de complexes de groupes
abéliens localement compacts qui sont munis de mesures de Haar.

1.5.5. — Le chapitre[f]étudie characteurs du “tore adélique” [.7 (a)(Ap)].
On introduit des normes “discretes” et des normes “infinies” de ces car-
acteres. On établit un résultat de finitude sur le nombre de caracteres
X € [Z(a)(Ar)]* qui s'annulent sur [7(a)(F)] et sur certains sous-
groupes de bornée I'une ou l'autre de ces normes. Dans la derniere
partie de ce chapitre nous rappelons les estimations de Rademacher
sur L fonctions de caracteres. Les résultats de ce chapitre seront utilisés
au chapitre [7] pour prouver que la transformée de Fourier d’une fonction
hauteur est intégrable.

1.5.6. — Au chapitre [7] nous adaptons la méthode d’analyse har-
monique de Batyrev et Tschinkel de [3] & notre situation. Nous
supposons que les métriques sont lisses. La premiere partie du chapitre
est consacrée au calcul de la transformée de Fourier de la hauteur locale
en une place finie v. Pour presque tous les v, nous pouvons donner la
formule exacte qui s’avere étre le produit de fonctions locales L de car-
acteres et d’autres facteurs. Ensuite, pour une place infinie v, en utilisant
les hypotheses de régularité, nous prouvons des estimés appropriés de la
transformée de Fourier dans les deux normes de caracteres. La preuve
de cette affirmation est une adaptation de 1'idée de Chambert-Loir et
Tchinkel de [18] et [20], ou les auteurs appliquent l'intégration par
parties par rapport aux champs de vecteurs invariants. La transformée
de Fourier globale s’écrit donc comme un produit de L fonctions et d'une
partie sur laquelle nous avons un controle.

1.5.7. — Au chapitre |§ nous utilisons la théorie de [17] pour analyser
la fonction zéta de hauteur.
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L’accent est mis sur le tore champétre 7 (a) C Z(a). De l'estimé
du théoreme , on déduit que la fonction hauteur zéta Z(s) :=
> xel7(ay(ry H (%)™ converge et définit une fonction holomorphe de s
dans le domaine R(s) > 1. La formule de Poisson donne que

~

Z(s) = H(s, x)dx

/(['7(3)(AF)]/['7(‘1)(F)])*

chaque fois que les expressions des deux cotés convergent. Les estimés
du chapitre [0 et du chapitre [7] et la “similarité” de la transformée de
Fourier globale de la hauteur avec L fonctions, donnent la convergence de
I'intégrale a droite pour R(s) > 1. De plus, la preuve impliquera que s —
Z(s) a une extension méromorphe dans un domaine $(s) > 1 — §, pour
un certain 0 > 0. Les estimés de Rademacher impliquent que Z satisfait
les conditions de croissance nécessaires pour les théoremes taubériens.
Le résidu de Z a 1 est également calculé. En conséquence, les théoremes
taubériens donnent le comportement asymptotique du nombre de points
rationnels de la hauteur au plus B :

Theorem 1.5.7.1 (Théoréme [8.2.2.12, Proposition (8.3.2.3))

Soit H une hauteur quasi-torique. On a ce

{x € [Z(a)(F)]|H(x) < B} ~ %B,

quand B tend vers +oo.

La constante ﬁ a la méme interprétation que dans le cas des variétés
(voir Remarque [8.3.2.7) et l'asymptotique reste la méme quand on
compte les points rationnels de & (a) (car [Z(a)(F)] — [Z(a)(F)] est
un ensemble & un point). Ainsi le théoreme peut étre compris
comme la conjecture de Manin-Peyre est vraie pour les champs projec-
tifs a poids &(a). La derniere partie du chapitre est consacrée a la
compréhension [’équidistribution des points rationnels du champ Z(a).
L’idée est de trouver le comportement asymptotique du nombre de
points rationnels de hauteur bornée qui sont demandés pour un nom-
bre fini de places v a appartenir a certains sous-ensembles ouverts
de l'espace v-adique du champ (par exemple, disons que la valuation
2-adic est paire). Une maniere élégante de formuler cette question a
été donnée par Peyre dans [47], en utilisant la mesure wpy ci-dessus
st W] [Z(a)(F,)] est un sous-ensemble ouvert de frontiere

vEMFE
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négligeable, on s’attend a ce que :

i (X € [Z@)(EF)][i zaz) € W et H(x) < B} _ wn(W)
B0 {x e [Z(a)(F)]|H(x) < B}| TH

ou i : [Z(@)(F)] = [len,[Z(a)(F,)] est application diagonale. Si
cela est vrai pour chaque W, alors nous disons que les points rationnels
sont équidistribués. Nous prouvons que :

Théoréme 1.5.7.2 (Théoréme (8.3.2.2). — Les points rationnels
de P (a) sont équidistribués dans Uespace [ [ e, [P (a)(Fy)] -

1.5.8. — Au chapitre [0 nous utilisons nos méthodes pour étudier une
question similaire a la conjecture de Malle. On trouve l'asymptotique
pour le nombre de p,,-torseurs sur F' du discriminant absolu borné.
Lorsque F' contient toutes les m-ieme racines de 1, cette question est
la conjecture de Malle pour le groupe cyclique Z/mZ, mais il faut en-
lever les torseurs qui ne sont pas des corps et il peut y en avoir une
proportion positive (le comptage des extensions cycliques a été couvert
par le cas de l'abélienne groupes de [59]). Les p,,-torseurs sur F' sont
parametrisés par le champ algébrique B, = 7 (m) = Z(m).

Nous utilisons le langage des hauteurs développé précédemment. On
parle de hauteurs quasi-discriminantes, qui sont similaires aux discrim-
inants, a la différence que les composantes locales de ces hauteurs aux
nombres finis de places peuvent étre différentes des composantes locales
du discriminant. Notons qu'une hauteur quasi-discriminante n’est pas
une hauteur quasi-torique, car les composantes locales des deux hau-
teurs sont différentes a presque tous les places. On va définir une mesure
wir sur [ ear, [Z2(m)(F,)] et on va poser 7y = wi ([ [,cpr, [ (M) (F)]).

La méthode de la preuve est une adaptation de la méthode d’analyse
harmonique ci-dessus. Il y a quelques simplifications, car les espaces lo-
caux [7 (m)(F,)] sont finis, et des modifications dues a la différence avec
les hauteurs quasi-toriques. Finalement, nous prouvons la convergence
de la série zéta des hauteurs et utilisons la formule de Poisson comme
précédemment. Dans le but d’avoir une formule plus élégante, nous in-
diquons ici 'asymptotique finale pour les hauteurs qui sont “essentielle-
ment” AW, ou 7 est le plus petit nombre premier de m (c’est-a-dire
que pour presque tous les places, la composante locale de H coincide avec
la composante locale de AW)
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Théoréme 1.5.8.1 (Corollaire [9.2.5.9). — Soit H une hauteur
quasi-discriminante. On a que
TH r—2
{z € [Z(m)(F)]|H(x) < B}| = mBlog(B) :
L’asymptotique rappelle beaucoup celle de la conjecture de Manin-
Peyre. Comme dans le cas des hauteurs quasi-toriques, nous sommes ca-
pables de prouver une propriété d’équidistribution correspondante dans
[Toens, [Z(m)(F,)]. Nous terminons le chapitre par la preuve qu’il ex-
iste une proportion positive de p,,-torseurs qui sont des corps. Ceci est
prouvé en trouvant un sous-ensemble ouvert W C [, ., [Z(m)(F,)] de
volume positif tel que tous les u,,-torseurs qu’il contient sont des corps.
De plus, lorsque 4 f m ou lorsque i = v/—1 € F, nous donnons une
formule exacte pour cette proportion.

1.6. Questions et remarques

Discutons de quelques questions qui découlent naturellement de notre
travail.

1.6.1. — La conjecture de Manin-Peyre a été prouvée pour toutes les
variétés toriques lisses. On aimerait savoir a quelle généralité la preuve
s’applique a d’autres champs toriques (c.f. [28]). Nous ne savons pas ce
qui se passe lorsque le “tore champétre” n’est pas scindé, c¢’est-a-dire pas
un quotient de deux tores scindés. La conjecture de Manin-Peyre pour
les variétés toriques a également été prouvée pour le cas des corps de
fonctions ([11]). Nous aimerions savoir quelle est la situation pour des
champs toriques.

1.6.2. — 1l serait intéressant de comprendre a quelles autres champs
on peut développer une théorie des hauteurs et 'utiliser pour compter
des points rationnels. Des exemples de tels champs pourraient étre : le
champ M, qui parametrise les courbes du genre g, le champ de variétés
abéliennes principalement polarisées A, etc.

1.6.3. — On pourrait se demander s’il existe un champ X avec suff-
isamment de points entiers, tel que Bu,, C X et tel que le discriminant
se présente comme une hauteur induite par un Opg-modele de X et un
fibré en droites dessus (ici S est un ensemble fini de places). Nous voudri-
ons savoir alors si le résultat du théoreme [1.5.8.1| peut étre réinterprété
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comme cette conjecture de Manin-Peyre est vraie pour X. On peut alors
se demander comment la prédiction de la conjecture de Malle se compare
a la prédiction de la conjecture de Manin-Peyre. La méme question peut
étre posée pour n’importe quel (schéma en) groupe(s) fini G.

1.6.4. — Une notion différente de hauteur sur un champ, définie par
des fibrés vectoriels, a été proposée par Ellenberg, Satriano et Zureick-
Brown dans un travail a venir. Leur hauteur n’est pas additive dans les
fibrés vectoriels. Nous aimerions savoir comment cette notion se compare
a notre notion de la hauteur.

1.6.5. — Un contre-exemple a la conjecture de Malle a été construit
par Kliiners dans [33]. Les contre-exemples connus dans la conjecture
de Manin-Peyre sont évités si 'on permet de supprimer les “ensembles
minces”. Nous aimerions savoir si la suppression des “ensembles minces”
corrige la prédiction de Malle.



CHAPTER 2

INTRODUCTION

2.1. Notation

The following notation will be used throughout the thesis. By F we
will denote a number field (which one may fix for the whole article). Let
Mp, M2, Mg, ME and Mg be the set of places, finite places, infinite
places, real places and complex places of F', respectively. For v € Mg
we let F, be the v-adic completion of F. For v € MY, let O, be the ring
of integers of F), let us fix an uniformizer m, € F, and let ||, be the
absolute value on F, normalized by |7,|, = [0, : m,0,]7L. For v € M},
we let ||, be the usual absolute value and for v € Mg we let |-|, be the
square of the usual absolute value. The normalizations are chosen so that
the product formula is valid i.e. for every x € F', one has

IT Izl =1
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By Or we denote the ring of the integers of F' and for a finite subset
S C MY, we denote by Orgs the ring of S-integers. When v € Mp°, we
will denote by n, the degree [F, : R]. We denote by Ag the ring of the
adeles of F' and by A7 the group of ideles.

For a vector x € R", we will denote by |x| the sum z; + - -+ + x,,.

2.2. Manin-Peyre conjecture

Let us recall a conjecture due to Manin and Peyre on the asymptotic
behaviour of the number of rational points of bounded “size”.
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2.2.1. — One of the fundamental questions in Diophantine geometry
is the study of the number of solutions to algebraic equations. The
conjecture of Manin-Peyre deals with a such a question. It predicts the
number of the rational points on algebraic varieties of bounded height,
when there are “a lot” of them. Let us briefly recall it.

Let X be a Fano variety over a number field F' and let Ky' be its
anticanonical bundle. The Fano condition, i.e. that K)_(1 is positive, is
believed to make, after possibly passing to an extension of F', rational
points Zariski dense in X. An adelic metric on K" is a choice of metrics
for every topological line bundle Ky'(F,) — X (F,) for v in the set of the
places Mp of F, subject to certain compatibility conditions. A choice of
an adelic metric on K3' produces two things. Firstly, it gives a height,
i.e. a function H : X(F) — R.o which satisfies the Northcott property:
for every B > 0, the set {x € X (F)|H(z) < B} is finite. This in essence,
generalizes the classical notion of the height on the projective space P™
when F' = Q, which is given by H(x) = max |x;|, where x are integer
coordinates which satisfy ged(x) = 1. The height serves as a “size” of
a rational point. Secondly, the choice of the adelic metric produces a
measure wy on the adelic space X (Ap) := [],cp, X (F) (see [47]). Let

Ty be the value wy (X (F)), where the closure X (F) is taken in X (Ap).
The following question is asked by Peyre in [47] and refines the original
question posed by Manin:

Conjecture 2.2.1.1. — Suppose that the rational points X (F') are
Zariski-dense in X. Then there exist a closed subvariety Z C X, such
that one has

{z € (X — Z)(F)|H(z) < B}| ~p_s00 a7y Blog(B)*Fet))—1

where a = (X)) is a positive constant connected to the location of Ky'
in the ample cone of X and rk(Pic(X)) is the rank of the Picard group
of X.

One removes a closed subvariety to avoid so-called “accumulating”
subvarieties, which contain more points than the rest of the variety.

The conjecture has been settled in many different cases. The proof for
the case of P" is given by Schanuel in [53], long before the conjecture
was even formulated. Other important known cases of the conjecture are
toric varieties ([3]), equivariant compactifications of vector groups ([18]),
certain families of Chatelet surfaces ([23], [26]), etc. The version from
2.2.1.1does admit counterexamples (e.g. [4], [35]). There exists a version
for which no known counterexamples exist: instead of removing closed
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subvarieties, one removes “thin” sets (a thin set is a subset of the image
of the set of rational points V(F') for a morphism of varieties V' — X
which, in a neighbourhood of the generic point of V, is quasi-finite and
admits no section). For a survey on Manin-Peyre conjecture, we refer
the reader to [16].

2.2.2. — Different methods are available to tackle the question: univer-
sal torsors, circle method, harmonic analysis, Eisenstein series, etc. We
briefly recall the harmonic analysis method, firstly used in [2] by Batyrev
and Tschinkel to prove Manin-Peyre conjecture on compactifications of
anisotropic tori and later developed in [3], [17], [18], [20], etc. to settle
more general and new examples. Let X be a toric variety and let T" be its
torus. Let H be the height given by an adelic metric on the anti-canonical
line bundle. We count the rational points of 7" (the divisor at the infinity
X — T may, however, accumulate points). We have that T'(F') is discrete
in the adelic torus T'(Ar). We extend H|pp) to a “height” on T'(Ap).

We let H(s,y) be the Fourier transform of H~* (where s is a complex
number) at the character y : T(Ar) — S* which vanishes at T'(F). The
global transform is an Euler product of local transforms [/ﬂ(s, Xov) for
v € Mp. The local transforms are Igusa integrals (see [19]) and we can
either give exact formulas for them or prove certain bounds. Then global
Fourier transform H (s, x) turns out to be a product of L-functions and
a part that is easy to analyse. R

The Poisson formula (7.1.1.4) gives Z(s) = ‘f(T(AF)/T(F))* H(s, x)dx,
where dy is suitably normalized Haar measure on the group of the char-
acters (T'(Ap)/T(F))*. There are methods to analyse the integrals on
the right hand side, e.g. method of “controlled M-functions” from [17].

One obtains the pole and a meromorphic extension of Z, which, by
Tauberian results, gives the wanted asymptotic for the number of rational
points of T" of bounded height.

2.3. Manin-Peyre conjecture for stacks

In this thesis, we are intending to extend the conjecture of Manin-Peyre
to the algebraic stacks.
We present two motivations.

2.3.1. — A naive height Hy of an elliptic curve F/Q is defined as fol-
lows: write the equation of F as Y? = X3+ AX + B, where (A, B) € Z*
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has the property that for every prime p one has that p*|A = p°{ B
and set Hy(E) := max(|A43|,|B?|). Faltings, in his proof of Mordell
conjecture [27], defines different notions of a height of an elliptic curve
called unstable Faltings height and stable Faltings height. For the naive
height and the unstable Faltings height, it turns out that if B > 0, there
are only finitely many isomorphism classes of elliptic curves of height at
most B. It is not hard to count elliptic curves over Q of bounded naive
height (and, as we will see later, it is possible to do so over any number
field F). For the case F' = Q, Hortsch in [31] finds the asymptotic be-
haviour for the number of the isomorphism classes of elliptic curves and
bounded unstable Faltings height. Both asymptotics are similar to the
asymptotics appearing in Manin-Peyre conjecture. However, there is a
distinction: the elliptic curves over a number field are not classified by a
variety, but by an algebraic stack. The stack is usually denoted by M ;.

2.3.2. — We present another example where one counts rational points
on algebraic stacks. Malle in [37] conjectures the following:

Conjecture 2.3.2.1 (Malle, [37]). — Let G be a non-trivial finite
transitive permutation group and let F' be a number field. We say that
Gal(K/F) =G if K/F is an extension such that the Galois group of its
Galois closure is isomorphic to G as a permutation group. There exists

c(F,G) >0, such that
{K/F|Gal(K/F) = G,A(K/F) < B} ~ ¢(F,G)B% log(B)*"&-1,

when B — 0o, where A is the absolute discriminant of an extension, and
a(G) and b(F,G) are explicit invariants of G and of F and G, respec-
tively.

The prediction is proved for some cases like the case of abelian groups
([59]), some other families of groups (e.g. [57], [22]) and it admits
counter-examples ([33]). An object that one counts in Malle’s question
determines a point on the stack BG (this is the algebraic stack which
classifies G-torsors). Thus, Malle conjecture too, can be studied as count-
ing rational points on an algebraic stack. Moreover, the predictions of
Manin and Malle conjectures appear similar. The similarities have al-
ready been observed by Yasuda in [60] and by Ellenberg, Satriano and
Zureick-Brown in a forthcoming work. The reason for the similarities
of the predictions may be hidden in the geometry of the corresponding
BG-stack.
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2.3.3. — The goal of our work is to formulate and investigate the con-
jecture of Manin-Peyre in the context of algebraic stacks. More precisely,
we are going to so for the weighted projective stacks. If n > 1 is an in-
teger and a € Z%,, the weighted projective stack Z?(a) is the “stacky”
quotient of the scheme A™ — {0} by the group scheme G,,, where the
action is given by ¢t - x := (t%x;);. When all the weights a; are equal
to 1, then Z2(a) is the projective space P"~!. One has homogenous co-
ordinates on the weighted projective stacks: a rational point on Z(a) is
given by n-tuple of elements of I’ and two n-tuples x and x’ represent the
same point if there exists ¢ € I such that t%z; =2’ for j =1,...,n.

The moduli stack of elliptic curves M, is an open substack of the
stack Z2(4,6) (the stack Z(4, 6) itself is the classifying stack of the curves
of genus 1 having at worst ordinary singularities). Another example is
given by the stack By, (where j,, = Spec (F[X]/(X™—1)) is the group
scheme of m-th roots of unity), which is precisely the weighted projective
stack Z(m). The stack &(a) is smooth, proper and toric: it contains the
stacky torus 7 (a) = GJ',/G,,. Its similarity with toric varieties makes it
a great candidate to study the Manin-Peyre conjecture on it.

2.4. Principal results

We state principal results of our thesis. Our goal is to provide a theory
similar to the one for the rational points on varieties, rather to give ad-
hoc proofs of certain cases. The development of the theory occupies a
significant part of our thesis.

If X is a stack and R a ring, in order to distinguish between the cate-
gory X (R) and the set of isomorphism classes of objects of this category,
we write [X(R)] for the latter. Let F' be a number field.

2.4.1. — Let us firstly explain when counting rational points on the
weighted projective stack &?(a) is essentially different from counting
rational points on the weighed projective space P(a). Recall that the
weighted projective space P(a) is the quotient (A" — {0})/G,, in the
category of schemes for the same action as above. Let us denote by j
the canonical morphism j : #(a) — P(a). The scheme P(a) is a toric
variety, and let us denote by T'(a) & G™! its torus. An isomorphism of
groups Z"/aZ = 7! x (Z/ ged(a)Z) induces an isomorphism of stacky
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tori
T(a)x 7 (ged(a) = G x 7 (ged(a) = T({1}" " x{ged(a)}) = 7 (a)
= (T (a)).

Hence, a rational point x € [Z(a)(F')] is uniquely determined by the
pair

I

(7(x),x) € T(a)(F) x [j7(x)(F)] = T(a)(F) x [7 (ged(a))(F)]
T

= T(a)(F) x [2(ged(a)) ()],
If ged(a) = 1, then &?(ged(a)) is the one point scheme. It follows from
above that the morphism j induces a bijection [ (a)(F)] = T(F).
According to [44, Proposition 6.1], the pullback homomorphism jg :
Pic(P(a))g — Pic(#(a))g of the rational Picard groups is an isomor-
phism. It follows that counting rational points of 7 (a) corresponds to
counting the rational points of P(a) with respect to a height coming from
a certain rational line bundle. When ged(a) > 1, the set [Z?(ged(a))(F)]
is infinite (Corollary , and we see that counting the rational points
of (the stacky torus of) &(a) is not the same as the counting the rational
points of (the torus of) P(a).

2.4.2. — In Chapter 4] we define a notion of quasi-toric height on the
set of rational points Z(a). It is a function H : [Z(a)(F)] — Rso and we
establish a finiteness result on the number of rational points of bounded
height (“weak Northcott property”). A height depends on the choice of a
line bundle on the stack #(a) = A"/G,, (where the action is canonically
extended) and an “adelic metric” on it. For v € Mg, we define topological
spaces [Z(a)(F,)] == (F' — {0})/F), where the action is induced from
the action of G, on A" — {0}. The product space [,y [Z(a)(F),)]
is a good analogue of the “adelic space” of a variety. In Chapter [5 we
define a measure wy on the product space [[,c5,.[Z(a)(F,)] and we set
T = Wi ([ [ e, [Z(a)(F),)]). We prove that:

Theorem (Theorem Proposition

Let H be a quasi-toric height. One has that

[{x € [2(a)(F)]|H(x) < B} ~poo %B.
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For a particular type of quasi-toric height (that in our work is called
toric height), the result has been established in [12]. For the other
heights, the result is new.

We establish furthermore that the rational points of &?(a) are equidis-
tributed in [ [, ¢, [Z?(a)(F),)] in the following sense. Let i : [#(a)(F')] —
[Loerr, [Z2(a)(F),)] be the diagonal map. If W C [],c,,, [Z(a)(F,)] is an
open subset such that w(OW) = 0, in Theorem [8.3.2.2] we prove that
. Hxe[Z@E)i(x) € Wand H(x) < B}| _ wu(W)

s (x € [2(a)(F)]|Hx) < BY| -

2.4.3. — Let us state the second principal result of our work. We
suppose that n = 1 and that m € Z~;. We count pu,,-torsors over F
(i.e the rational points of &(m)) of bounded discriminant. In Chap-
ter [0 we define a notion of quasi-discriminant height. It is a function
H : [Z(m)(F)] — Rsq which satisfies the weak Northcott property, and
is essentially different from a quasi-toric height (one cannot normalize
it so that the quotients of the two heights are bounded functions on
[22(m)(F)]). The normalizations are taken so that H™!~1/") where r
is the least prime of m, is essentially the absolute discriminant A of a
fim-torsor (i.e. the local components of H™(~1/") are different from the
local components of the absolute discriminant A at only finitely many
places, consequently H™1=1/") /A is bounded on [Z2(m)(F)]). As above,
a choice of the quasi-discriminant height H defines a measure wy on
HhveMF[gz(m)(Fv)] and we set 7y = wu([[,cpr, [Z(m)(F,)]). We prove
that

Theorem (Corollary [9.2.5.9). — Let H be a quasi-discriminant
height. One has that

1

(r—2)!

Again we prove an equidistribution property of rational points in the
space [[,en, [Z2(m)(F,)] (Theorem [9.2.6.1)). The equidistribution prop-
erty is used to prove that a positive proportion of p,,-torsors of bounded
quasi-discriminant height are fields and that, if m is not a prime, a
positive proportion are not fields. Moreover, when 4 { m or when
i = +/—1 € F, we are able to give a formula for the proportion of fields
(Theorem [9.2.7.3).

Suppose that F' contains all m-th roots of unity. In particular, one has
that 4 f m or that ¢ € F. We have that u,, = Z/mZ. In this case, the

{z € [2(m)(F)]|H(z) < B} ~pe 2L Blog(B)' .
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asymptotics for the number of p,, = Z/mZ-torsors of bounded discrim-
inant which are fields, has already been given by Wright in [59]. The
advantage of our method is that we are able to modify the discriminant
at finitely many places.

2.5. Overview of the thesis

Let us make an overview of our work.

2.5.1. — Let us discuss a difference between heights on varieties and
stacks. Let X be a proper F-variety and let L be a line bundle on X.
It is well known that a choice of an Opg-model of (X, L) (where S is a
finite set of finite places of F') endows L with a metric for every finite
place not in S. Endowing the line bundle L at the remaining places with
a metric, gives an adelic metric on L, and hence a height on X (F').

In the construction of the metric for the finite places not in S, one uses
the valuative criterion of properness which gives that every F,-point of X
extends to an O,-point of the model. However, this is not true for stacks
(e.g. only the points of #(4,6) corresponding to curves having good
reductions at v do extend to O,-points).

The valuative criterion of properness for stacks gives only that an F,-
point extends to an A-point of the model, where A is the normalization of
O, in a finite extension of F),. Such integral extensions give rise to stable
heights (i.e. the height of an F-point stays the same when the point is
looked as a K-point, where K/ F is a finite extension). A drawback of the
stable heights is that they do not satisfy the “weak Northcott property”
(Definition , as one sees in the case of #(4,6). Namely, the stable
height of two F-elliptic curves which are not isomorphic over F' is the
same if they have the same j-invariant. For a fixed elliptic curve F,
there are infinitely many such elliptic curves (they are constructed by
performing quadratic twists to E).

2.5.2. — In Chapter [3, we recall several results about stacks, with the
focus on the weighted projective stacks. We also introduce the stack
P(a) = A"/G,, (for the canonical extension of the action of G,, on
A™ —{0}). Thus, one has open immersions 7 (a) C #(a) C Z(a). The
stack Z(a) is not separated (Lemma , hence not proper, yet it
exhibits the property that all of its rational points extend to integral

points, and hence resolves the problem of lack of the integral points from
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above. This property will be used in Chapter [4| to produce unstable
heights on the weighted projective stacks.

Work of Moret-Bailly from [40] provides a notion of a topological space
associated to the set of (isomorphism classes of) R-points of stacks,
when R is a certain kind of topological local ring. The association is
functorial, that is, for a morphism X — Y of stacks, the induced map
[X(R)] = [Y(R)] is continuous. A list of other properties that the con-
struction satisfies is given in [15]. We prove the following proposition
that enables us understand this topology for certain quotient stacks:
Proposition 2.5.2.1. — Suppose that X is a quotient stack Y/G,
with G special (its torsors are locally trivial, by Hilbert 90, an example
is provided by G = G,,). One has that [ X (R)] is the topological quotient
Y(R)/G(R).

Thus, one has for example that [Z(a)(F,)] = (FI — {0})/F) and
[T (a)(F,)] = (F))"/F), where the action of F* = G,,(F,) is the in-
duced from the action of G,, on A" — {0} and G, respectively. In the
last part of the chapter, we speak about the adelic space of the torus
T (a). We define it to be the restricted product

(T (@)(An) = [[ [7(a)(F)]

vEMp

with the respect to the compact and open subgroups [7(a)(O,)] C
[.7 (a)(F,)]. Using the results of Cesnavicius from [14] on cohomology
of the adeles, we prove that [7(a)(Ar)] has similar properties to the
adelic torus G, (Ar) (e.g. the image of the rational points [.7 (a)(F")] for
the diagonal map is discrete).

2.5.3. — We start Chapter {] by recalling facts about line bundles on
stacks, in particular that the line bundles on the quotient stack Y/G
correspond to G-linearized line bundles on the scheme Y. The Picard
groups Pic(Z(a)) and Pic(A(a)) are calculated. Then, we define metrics
on line bundles as follows. Let v be a place of F', let X be an F,-algebraic
stack and let L a line bundle on X. We define an F,-metric on L to be
the data given by “compatible” F,-metrics on y*L for every morphism
y:Y — X with Y an F,-scheme (by an F,-metric on a line bundle over
an F,-scheme, we mean a “continuous” choice of norms on all F,-fibers).
Our metric does not need to be stable. For quotient stacks X = Y/G,
when G is assumed to be a special algebraic group, we relate the group
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of F,-metrized line bundles F/’i\cv(Y/ G) with the group Pic?(Y) of F,-
metrized line bundles on X which are endowed with a G-linearization
and such that the metric is G-invariant:

Proposition 2.5.3.1 (Proposition . — Let G be a special
locally of finite type F,-group scheme acting on locally ofjin\ite type F,-
scheme Y. The canonical homomorphism Igi\cv(Y/G) — Pic%(Y) is in-
jective, and is an isomorphism if lgi\cv(Y/G) — Pic(Y/G) is surjective.

The stack Z(a) = (A" — {0})/G,, satisfies this condition on the ex-
istence of F,-metrics on every of its line bundles (Lemma [4.3.6.3). Con-
sequently, as Pic(A™ — {0}) is trivial, we deduce that to define an F,-
metric on a line bundle on &(a), it suffices to define a G,,-invariant
metric on the corresponding G,,-linearization of the trivial line bundle
on A" — {0}. Such metric is defined by the norm of the section 1 and
condition on the linearizations gives a “homogeneity” condition to the
function F)' — {0} = R, x — [[1]|x.

Suppose that a line bundle L on Z(a) is endowed with an F,-metric
for every v € My, subject to a compatibility condition which allows that
the norms of a section can be multiplied at any x € [Z?(a)(F)] (see the
condition in Definition . We can define heights by multiplying
the inverses of these norms for every v. The generality, leaves possibility
of existence of “essentially different” heights on the same line bundles,
i.e. heights such that their quotients are not bounded functions on the
set [Z(a)(F)]. Examples are: the mentioned stable heights, the quasi-
toric heights (we are going to explain them now) and in the case n = 1
the quasi-discriminant heights (they will be explained in the last chap-
ter). Quasi-toric heights are the heights, which come from the families
of metrics which arise in the following way for almost every place: ex-
tend an F,-point of the stack #(a) to an O,-point and use the classical
method (already discussed in to get a metric (a smaller modifica-
tion, however, must be done, because &?(a) is not separated and thus
an O,-extension of an F,-point is not unique). Contrary to the stable
heights, the quasi-toric heights do satisfy the weak Northcott property:
Theorem 2.5.3.2 (Theorem [4.6.8.2). — Let H be a quasi-toric
height on P (a). Let € > 0. One has that there exists C' > 0 such that

[{x € [Z(a)(M)|H(x) < B} < CB™".

The idea of the proof of is to separately estimate the finite and the
infinite height. The upper bound for the cardinality in the theorem is
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needed to provide convergence of the corresponding height zeta series.
The claim of 2.5.3.2] stays valid even when metrics at finitely many places
are allowed to have “logarithmic” singularities along rational divisors
(see Corollary . The proof of that version follows immediately
from [2.5.3.2] after establishing an estimate for the singular height of the
form: Hg;,g > CH log™"(H), where C,n > 0, which we do in Proposition
INAW))

2.5.4. — In Chapter[5] we endow the topological spaces associated to R-
points with measures. In particular, we define measures on [Z(a)(F,)]
(which depend on the choice of the metrics) and on [7(a)(F,)] (which
do not depend on the choice of metrics). The measures are used to define
Peyre’s constant 74.

The last part of the chapter is dedicated to the definition of the mea-
sures on the “adelic torus” [7(a)(Ar)] and the Tamagawa number of
the stacky torus .7 (a). We establish that
Proposition 2.5.4.1 (Proposition . — One has that
Tam(7 (a)) = 1.

When a = 1, this is the classical result that the Tamagawa number of
a split torus is 1. The proof of Proposition [2.5.4.1] uses Oesterlé’s Euler-
Poincaré characteristics of complexes of locally compact abelian groups
which are endowed with Haar measures.

2.5.5. — Chapter|[6|studies characters of the “adelic torus” [7 (a)(Af)].
We introduce “discrete” norms and “infinity” norms of these characters.
One establish a finiteness result on the number of the characters y €
(7 (a)(Ar)]* which vanish on [Z7(a)(F)] and on certain subgroups of
bounded either of these norms. In the last part of this chapter we recall
estimates of Rademacher on L functions of characters. The results of this
chapter will be used in Chapter [7] to prove that the Fourier transform of
a height function is integrable.

2.5.6. — In Chapter [7] we adapt the method of harmonic analysis of
Batyrev and Tschinkel from [3] to our situation. We assume the metrics
are smooth. The first part of the chapter is dedicated to the calculation
of the Fourier transform of the local height at a finite place v. For
almost all v, we can give the exact formula which turns out to be the
product of local L functions of characters and other factors. Then, for
infinite v, using the smoothness assumptions, we prove suitable decays
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of the Fourier transform in the two norms of characters. The proof for
this claim is an adaptation of the idea of Chambert-Loir and Tchinkel
from [18] and [20], where the authors apply integration by parts with the
respect to invariant vector fields. The global Fourier transform, hence,
writes as the product of L functions and a part over which we have a
control.

2.5.7. — In Chapter |8 we use the theory of [I7] to analyse height zeta
function.

The accent is on the stacky torus 7 (a) C Z(a). From the estimate
of Theorem [2.5.3.2] one deduces that the height zeta function Z(s) :=
> xe(7(a) () H (%) 7% converges and defines a holomorphic function of s in

the domain R(s) > 1. Poisson formula gives that

~

Z(s) = / H(s, x)dx
(7 (@) (Ap)]/[7 (@) (F)])*

whenever the expressions on both hand side converge. The estimates
from Chapter [6] and Chapter [7] and the “similarity” of the global Fourier
transform of the height with L functions, give the convergence of the
integral on the right hand side for R(s) > 1. Moreover, the proof will
imply that s — Z(s) has a meromorphic extension to a domain R(s) >
1—0, for some 6 > 0. The estimates of Rademacher imply that Z satisfies
the growth conditions needed for Tauberian theorems. The residue of Z
at 1 is also calculated. As a consequence, Tauberian theorems give the
asymptotic behaviour of the number of rational points of the height at
most B:
Theorem 2.5.7.1 (Theorem [8.2.2.12, Proposition (8.3.2.3))

Let H be a quasi-toric height. One has that

{x € [2(a)(F)]|H(x) < B} ~ %B,

when B tends to +00.
The constant % has the same interpretation as in the case of varieties

(see Remark [8.3.2.7) and the asymptotic stays the same when one counts
rational points of & (a) (because [Z(a)(F)] — [Z(a)(F)] is a one point
set). Thus Theorem [2.5.7.1| can be understood as that Manin-Peyre’s

conjecture is true for weighted projective stacks &?(a). The last part
of the chapter is dedicated to the understanding equidistribution of the
rational points of the stack &?(a). The idea is to find the asymptotic
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behaviour for the number of rational points of bounded height which are
required for finitely many places v to belong to certain open subsets of
the v-adic space of the stack (e.g. say that the 2-adic valuation is even).
An elegant way to phrase this question has been given by Peyre in [47],
using the measure wy from above: if W C [, [Z(a)(F,)] is an open
subset of negligible boundary, one expects that:

lim H{x € [Z(a)(F)]|i(x) € W and H(x) < B}  wu(W)

o0 [{x € [Z(a)(F)]|H(x) < B} TH
where i : [Z(a)(F)] = [l en,[Z(a)(Fy)] is the diagonal map. If this is
true for every such W, then we say that the rational points are equidis-
tributed. We prove that:

Theorem 2.5.7.2 (Theorem [8.3.2.2). — The rational points
of Z(a) are equidistributed in the space [],cy [Z(a)(F))].

2.5.8. — In Chapter [9] we use our methods to study a question similar
to Malle conjecture. We find the asymptotic for the number of y,,-torsors
over F' of bounded absolute discriminant. When F' contains all m-th roots
of 1, this question is the Malle conjecture for the cyclic group Z/mZ, but
one needs to remove the torsors which are not fields and there may be
a positive proportion of them (the counting of the cyclic extensions has
been covered by the case of the abelian groups from [59]). The p,,-torsors
over I are classified by the algebraic stack Bu,, = 7 (m) = £(m).

We use the language of heights developed earlier. We speak about
quasi-discriminant heights, which are similar to the discriminants, with
the difference that the local components of these heights at the finitely
many places may be different from the local components of the discrim-
inant. Let us note that a quasi-discriminant height is not a quasi-toric
height, as the local components of the two heights are different at almost
every place. We will define a measure wy on [],c, [Z7(m)(F,)] and we
will set 75 = Wi ([ [,cpr, [ (M) (F)))-

The method of the proof is an adaption of the above harmonic analysis
method. There are some simplifications, as the local spaces |7 (m)(F,)]
are finite, and modifications because of the difference with quasi-toric
heights. Eventually, we prove the convergence of the height zeta series
and use Poisson’s formula as before. For the purpose of having more
elegant formula, here we state the final asymptotic for heights that are

1
“essentially” Am(=1/"  where r is the least prime of m (that is for almost
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all places the local component of H coincides with the local component
of AmT17m),
Theorem 2.5.8.1 (Corollary [9.2.5.9). — Let H be a quasi-
discriminant height. One has that
TH r—2
{z € [Z(m)(F)][H(x) < B}| = e 2)!m310g(3) :

The asymptotic is very reminiscent of the one from Manin-Peyre con-
jecture. As in the case of quasi-toric heights, we are able to prove
a corresponding equidistribution property in [] ¢, [Z2(m)(F,)]. We
end the chapter by the proof that there is a positive proportion of
[tm-torsors which are fields. This is proven by finding an open subset
W C Iyen, [Z(m)(F,)] of positive volume such that all of p,,-torsors

contained in it are fields. Moreover, when 4 1 m or when i = /—1 € F,
we give an exact formula for this proportion.

2.6. Questions and Remarks

Let us discuss some questions that arise naturally from our work.

2.6.1. — The conjecture of Manin-Peyre has been proved for all smooth
toric varieties. We would like to know to what generality the proof applies
to other toric stacks (c.f. [28]). We do not know what happens when the
“stacky torus” is not split, i.e. not a quotient of two split tori. Manin-
Peyre conjecture for toric varieties has also been proved for the case of
function fields ([I1]). We would like to know what is the situation for
toric stacks.

2.6.2. — It would be interesting to understand to what other stacks
one can develop a theory of heights and use it to count rational points.
Examples of such stacks could be: the stack M, which classifies the
curves of genus g, the stack of principally polarized abelian varieties A,
ete.

2.6.3. — One could ask whether there exists a stack X with enough
integral points, such that Bu,, C X and such that the discriminant
arises as a height induced by an Opg-model of X and a line bundle on
it (here S is a finite set of places). We would like to know then whether
the result of Theorem can be reinterpreted as that Manin-Peyre
conjecture is true for X. We may then ask how the prediction of Malle
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conjecture compares with the prediction of Manin-Peyre conjecture. The
same question can be asked for any finite group (scheme) G.

2.6.4. — A different notion of a height on stack, defined by vector
bundles, has been proposed Ellenberg, Satriano and Zureick-Brown in
a forthcoming work. Their height is not additive in the vector bundles.
We would like to know how this notion compares with our notion of the
height.

2.6.5. — A counterexample to Malle conjecture has been constructed
by Kliiners in [33]. The known counterexamples in the conjecture of
Manin-Peyre are avoided if one allows removing “thin sets”. We would
like to know whether removing “thin sets” fixes the prediction of Malle.






CHAPTER 3

WEIGHTED PROJECTIVE STACKS

A weighted projective stack is a stacky quotient Z(a) := (A" —
{0})/G,,,, where the action of G,, is weighted with the weights a1, . .., a,,
where a1, ..., a, are positive integers. In the first part of this chapter we
will recall several properties of such stacks. It turns out that the weighted
projective stacks are proper, however, not all of its rational point extends
to an integral point. This is a fundamental feature that enables one to
define heights. The stack &(a) := A"/G,, (that by the abuse of the
terminology we may also call a weighted projective stack) has enough of
integral points in this sense. The second part of the chapter is dedicated

to the topological spaces associated to weighted projective stacks.

3.1. Weighted projective stacks

In this section we recall several facts about stacks and weighted pro-
jective stacks.

3.1.1. — In this paragraph we recall some generalities on quotient
stacks. We follow [56].

Let Z be a scheme. Let X be a Z-scheme and let ¢ : G xz X — X be
a left Z-action of locally of finite presentation flat Z-algebraic group G
on X. Denote by ps the projection to the second coordinate Gx z X — X.
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One has a commutative diagram

u

GXZX GXZX

S

(3.1.1.1) ’

where the morphism w is given by (g, z) — (g,a(g,z)). The morphism u
is an automorphism as its inverse is provided by (g, z) — (g,a(g™ !, x)),
hence, the morphism a is surjective, flat and locally of finite presentation.

We write X/G for the quotient stack ([56], Tag 0440]). Recall that if V'
is a Z-scheme a l-morphism z : V' — X/G is given by a Gy-equivariant
morphism z : T'— Xy, where T is a Gy-torsor. A 2-morphism 0 : z — y
of 1-morphisms z : V' — X/G and y : V' — X/G corresponding to Gy-
equivariant morphisms from Gy-torsors z : T — X and y : R — X,
respectively, is given by a morphism 6 : R — T of Gy-torsors such that
T=yodb.

In the following proposition we recall some of the properties of a quo-
tient stack. Let g : X — X/G be the quotient 1-morphism, i.e. the one
given by the trivial Gx-torsor G xz X 2 X and the G x-equivariant
morphism Gy = G xz X 5 X.

Proposition 3.1.1.2. — 1. For every 1-morphism xz : 'V — X/G
over Z with'V a scheme, which is given by Gy -equivariant morphism
z:T — X, where T is a Gy-torsor, the diagram

T % 4 X

b

vV —/— X/G.

is 2-commutative 2-cartesian ([56], Section 04UV]).

2. The morphism q : X — X/G 1is surjective, flat, representable and

locally of finite presentation [56l, Lemma 06FH].

The stack X/G is algebraic ([56l, Theorem 06FI] ).

4. The stack X/G is smooth over Z if X is smooth over Z ([56) Lemma
0DLS]).

5. If Y is a Z-scheme, we let Xy /Gy be the quotient stack for the
mduced Y -action ay : Gy Xy Xy — Xy. The canonical 1-morphism
Xy /Gy = (X/G) xzY is an equivalence ([56, Lemma 04WX] ).

co



3.1. WEIGHTED PROJECTIVE STACKS 41

Let Ax/q be the diagonal morphism of X/G — Z. The following
lemma will be quoted several times:
Lemma 3.1.1.3. — The diagram

Gxy, X — 2P X%, X

(3.1.1.4) lquQ quZq
X/G —— (X/G) xz (X/G).

1S 2-commutative 2-cartesian.
Proof. — In this proof p; and p, denote the obvious projections, while
Id stands for the identity 1-morphism. The diagram

Gxy X —9P 0 X5, X — 2 X

pzl l(ldx ,q) lq

X —— X %z (X/G) — X/G

is 2-commutative. By (1) of Proposition [3.1.1.2] its big subdiagram is

2-cartesian. The diagram

Xx, X —2 4 X

l(ldx ,q) lq

X xz (X/G) — X/G
is 2-commutative and 2-cartesian. It follows that

Gxy X P o ox 7 X
(3.1.1.5) le l(ldx ?
X —, X xz (X/@G)
is 2-commutative and 2-cartesian. The diagram

X ——— X %z (X/)G) —5— X

q
lq <q,IdX/G>l lq

X/G 5 (X/G) xz (X/G) —5 X/C
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is 2-commutative. Its big subdiagram is 2-cartesian, because the hori-
zontal maps are the identity 1-morphisms. The diagram

(QvIdX/G)l lq

(X/G) xz (X/G) —5—> X/G
is 2-commutative and 2-cartesian, hence the diagram

X F—q> X Xz (X/G)
(3.1.1.6) lq (qvldxwl
X/G 5 (X/G) %7 (X/G)

is 2-commutative and 2-cartesian. The diagram in the statement
is the big subdiagram of the diagram that one gets by merging 2-

commutative and 2-cartesian diagrams (3.1.1.5) and (3.1.1.6), hence

itself is 2-commutative and 2-cartesian. The statement is proven. O

We say that affine algebraic group G is special (Serre, Section 4.1

n [54]) if every G-torsor Y — W, with W and Y schemes, is locally
trivial for the Zariski topology on W. Hilbert 90 theorem states that the
general linear groups GLg, for d > 1 are special (see e.g. [38, Lemma
4.10, Chapter IIIJ).
Lemma 3.1.1.7. — Suppose G is a flat, locally of finite presentation
special algebraic group. Let R be a local Z-ring. For every 1-morphism
of Z-stacks x : Spec R — X/G, there exists a 2-commutative 2-cartesian
square

GR#X

(3.1.1.8) | lq

Spec(R) —— X/,

with T being G-equivariant morphism.

Proof. — As R is local and G special, every G-torsor over Spec R is
isomorphic to the trivial one. Now the claim follows from part (1) of
Proposition [3.1.1.2 O
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One can also see that in the situation of Lemma the category
(X/G)(R) is equivalent to the following category: its objects are Gg-
equivariant morphisms Gr — Xp and a morphism ¢ : (z: Gg — Xg) —
(y : Gg — Xpg) is an element t € Gr(R) such that x = y o t, when ¢ is
seen as a morphism t : Gg — Gg by multiplication to the left. We will
often by the abuse of notation write (X/G)(R) for the latter category.

3.1.2. — In this paragraph we work over Spec(Z). Let n > 1 be an
integer. Let a € Z%,. The smooth group scheme G, acts on A" via the
formula:

(3.1.2.1) a: Gy x A" — A" (t,x) = (t“2;);.

We will often write ¢ - x instead of a(f,x). Note that A™ — {0} C A"
and G", = (A! — {0})" C A" are G,,-invariant open subschemes for this
action. We have, hence, induced actions of G,, on G, and on A" — {0}.
Lemma 3.1.2.2. — 1. The morphism

(a,p2) : G X A" — A™ x A"

is of finite presentation and affine (hence separated and quasi-
compact by [56l, Lemma 0157]).
2. The morphisms

(alxan (01 72) : G X (A" = {0}) = (A" = {0}) x (A" — {0})
and
<a|Gm><G77}“p2) . Gm X G% — G:Ln % G:Ln

induced from G,,-invariant open subschemes A™ — {0} C A" and
Gl C A", respectively, are finite.

Proof. — 1. The morphism (a,py) is of finite presentation as both a
and py are of finite presentation (see Diagram in Proposi-
tion. The morphism (a, py) is affine because it is a morphism
of affine schemes.

2. Let us verify that (a|g,,x@an—{o}),P2) is proper. It is affine, hence
separated, and of finite type, as it is the base change of the affine and
finite type morphism G,, x A" — A™ x A" along the open immersion
(A" —{0}) x (A" —{0}) — A™ x A™. We use the valuative criterion
for finite type morphism with Noetherian target to be universally
closed [56], Lemma 0CM5]. Let R be a discrete valuation ring, vg



44 CHAPTER 3. WEIGHTED PROJECTIVE STACKS

its valuation and K its fraction field. Consider a diagram

Spec(K) _w G x (A™ —{0})

| |

Spec(R) ¥ (A™ — {0}) x (A" — {0}).

It follows that z = y € (A" — {0})(R) and that ¢t -z = x. There
exists 4 such that vg(z;) = vg(y;) = 0. We have that 0 < vg(z;) =
vg(t¥z;) = a;ugr(t) and hence vg(t) > 0. There exists k such that
vr(zr) = 0. We have 0 = vg(xy) = vr(t*2) = axvr(t) + vr(zk) >
arvgr(t) and hence vg(t) < 0. We deduce vg(t) = 01i.e. t € G, (R).
We deduce (t,z) € (G,,, x (A" —{0}))(R) and the valuative criterion
is verified. It follows that (a|g,,x(an—{o}),P2) is universally closed
and we deduce that it is proper. It is affine, and we deduce that it
is also finite. Now, the morphism (a|g,,xgr ,p2) is the base change
of the finite morphism (alg,, x(an—{0}), p2) along the open immersion
G x G — (A™ — {0}) x (A" —{0}), hence is finite.

O

Definition 3.1.2.3. — We define quotient stacks for the actions from
above:

P(a) = A" /G,
P (a) = (A" = {0}) /G,
I (a) =G} /G,,.

The first two stacks we may call weighted projective stacks.

The G,,-equivariant open immersions G, C A" — {0}, A" — {0} C A"
induce 1-morphisms of stacks .7 (a) — Z(a) and #(a) — H(a) by [56],
Lemma 046Q)], which are open immersions by [56, Lemma 04YN].

Lemma 3.1.2.4. — The stacks 7 (a), Z(a) and F(a) satisfy the fol-
lowing:

1. They are smooth algebraic stacks.

2. They are quasi-compact.

3. Their diagonals for the canonical morphisms to Spec(Z) are rep-
resentable and affine (hence, separated and quasi-compact). The
diagonals of 7 (a) and P (a) are further finite.

4. They are of finite presentation.
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Proof. — 1. This claim follows from parts (3) and (4) of Proposition
o 1. 1.2
2. The quotient 1-morphisms ¢* : A" — A"/G,, = Z(a), ¢*|ar—{0} :

(A" — {0}) —» Z(a) and ¢*|gr : G}, — T (a) are surjective by
Proposition 3.1.1.2|and as A", A" — {0} and G, are quasi-compact,

we deduce by [56l, Lemma 04YC]| that #(a), #(a) and 7 (a) are

quasi-compact.

. All three diagonals are representable, because all three stacks are al-

gebraic. Let us prove that the diagonal morphism Az H(a) —
P (a)x H(a) is affine. By Lemmal3.1.1.3 we have a 2-commutative

2-cartesian square

G, x A" — @) An o AR

qoml (qvq)l

P(a) —— Z(a) x Y(a).

2 (a)

The 1-morphism (gq,q) : A" x A" — P(a) x H(a) is surjective,
flat and locally of finite presentation and the morphism (a,psy) :

Gy, X A™ — A™ x A" is affine by Lemma [3.1.2.2 It follows from [56
Lemma 06TY] that Am is affine. Let us prove that the diagonal

Ap@ @ P(a) = P(a) x H(a) is finite. By Lemma [3.1.1.3] we

have a 2-commutative 2-cartesian square

G x (A" — {0}) 222 (A" — {0}) x (A" — {0})

-

(q,q)l
P (a) > P(a) x P (a).

Ao (a)

The 1-morphism
(qlan—10y, @lan—goy) + (A" = {0}) x (A" = {0}) = Z(a) x F(a)

is surjective, flat and locally of finite presentation and the morphism
(a,p2) : Gy x (A"—{0}) — (A"—{0})x (A"—{0}) is finite by [3.1.2.2]
It follows from [56], Lemma 06TY| that Ay is finite. Now, one
has that the diagonal A () is just the base changes of A5, along
the open immersion .7 (a) C £(a), hence is finite by [56, Lemma
045C].
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4. Recall that of finite presentation means quasi-compact, quasi-
separated and locally of finite presentation. We have seen in (1)
and (2) that J(a), #(a) and Z(a) are smooth, thus locally
of finite presentation, and quasi-compact. By (3), the diagonals

A7), Ap@n) and A% are quasi-compact and separated, thus
quasi-separated by [56], Lemma 050E], i.e. 7 (a), #(a) and &(a)

are quasi-separated. We deduce that 7 (a), Z(a) and Z(a) are
all of finite presentation.

U

Proposition 3.1.2.5. — The stack &(a) is proper.
Proof. — Recall that a proper 1-morphism is a 1-morphism which is
of finite type, separated and universally closed. In Lemma [3.1.2.4] we
have verified that & (a) is of finite presentation, hence of finite type [56],
Lemma 06Q5], and of finite diagonal, hence separated.

We will now apply the valuative criterion for separated 1-morphisms
with target locally Noetherian algebraic stacks to be universally closed
[56, Lemma 0CQM], to the 1-morphism &(a) — SpecZ. Let again R
be a discrete valuation ring, let K be its field of fractions, let vy
be its valuation and mg its uniformizer. We pick an object x in the
groupoid Z(a)(K) and we prove that there exists a finite extension K’
of K and a valuation ring R’ C K’ such that mp = mpz N K, where mp
and mp are maximal ideals of R and R’ respectively, and such that the
restriction xx € & (a)(K’), is in the essential image of the functor

P(a)(R') — P(a)(K').

Let X : (G)xk — (A™ — {0})k be the (G,,)k-equivariant morphism
given by x. We set ¢ := lem(a). Let us set K’ = K(Wll%/é) and let R’
be the integral closure of R in K’. By [56, Lemma 09EV], one has that
R = R[T[']l{ Z], that R’ is a discrete valuation ring, and that W;/ “is a
uniformizer of R'. Thus the maximal ideal of R’ is given by (71'11%/ ‘) and its
intersection with R is precisely the maximal ideal (7g) of R. We extend
canonically vg to R and K’. We set k = — min; @, where 7;(1) is

the j-th coordinate of X(1), so that ¢k € Z. Note that one has that

k- X(1) = (n7"7;(1)); € (A" — {0})(R),
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because for every index ¢ one has

) + aon(@(1) > 0

and because for the index 7 such that 5@—(1) is minimal one has that

vr(T4*7;(1)) = 0.
We define a (G,,) g-equivariant morphism by
2 (Gu)r — (A" = {0} 1 7 - X(1),

and z defines a morphism z : Spec(R') — Z(a). One has that 7f =

(71']1%/ Z)M € K’ and thus 7% defines by the multiplication a morphism
(G — (G) kg which satisfies z = X o7k It follows that zx and x
are isomorphic. The valuative criterion is verified and &(a) — Spec(Z) is
universally closed. It follows that the algebraic stack & (a) is proper. []

3.2. Models with enough integral points

In this section, we will define models of stacks which admit ”enough
integral points” in order to define unstable heights on stacks.

3.2.1. — In this paragraph we define models of stacks.

Definition 3.2.1.1. — Let X be a finite presentation algebraic stack
over a number field F' and let Op C A C F be a ring. A model of X
over Spec(A) is a finite presentation A-algebraic stack 2 endowed with
a 1-isomorphism z : Zp = X.

A base change of a 1-morphism of finite presentation is of finite pre-

sentation [56, Lemma 06Q4]. We deduce that if (2,2: 2F — X) is a
model of X over Spec(A), for some O C A C F, then for every A’ such
that A C A’ C F, one has that (24,7 : 2% — X) is a model of X.
The model is unique in the following sense.
Lemma 3.2.1.2. — Let X be a finite presentation F'-algebraic stack.
Let S1 and Sy be finite sets of finite places of F. Let (¥ ,y: % — X)
and (Z,z : 2 = X) be models of X over Org, and O, , respectively.
There exists a finite set S O S1USy of finite places of F', a 1-isomorphism
of stacks [ : %oy = Z0rs and a 2-isomorphism y = zo fp.
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Proof. — Fix l-inverses y ! : X — % and 27! : X — Z%. We set
So = S1USy and Ty = Spec(Op.s, ). For every finite subset A D Sy of the
set of finite places of F', we set Ty = Spec(Opa). The schemes Ty form
an inverse system and

Wm Ty = Spec(lim Opa) = Spec(F).
A A

Set Yy = @OF,SO and Z;, := gOF,sov and for finite subset A D Sy of finite
places of F', we set Yp := Yy xq, Ty and Z, := Zy X1, Tp. Note that
by the definition of the model and by the fact that the base change of
finite presentation 1-morphism is of finite presentation, the stack Yj is
quasi-compact and quasi-separated and the stack Z; is locally of finite
presentation. We have verified the conditions of [51], Proposition B2]. It
follows that there exists finite subset S” O Sy of the set of finite places
of F', a 1-morphism of stacks f’: Yo — Zg and a 2-isomorphism f}. =
2z~ oy. Hence, there exists a 2-isomorphism y — z o f5.. For every finite
subset A D Sy, we set fy @ %o, = Ya — Zn = Zo,, for the base
change morphism f’ XOp g Op . For every finite subset A D Sy of the
set of finite places of F', the stacks Yy and Z, are of finite presentation,
thus by [51, Proposition B3|, there exists A big enough such that f}
is a 1-isomorphism. We set S = A and f = f). One clearly has that
fr = fr, thus there exists a 2-isomorphism y — z o fr. The statement
follows. O]

Example 3.2.1.3. — The pair (Z(a)o,,lds@),) is a model over
Spec(Op) of the stack Z(a)p = (A" — {0})r/(G,)r. Indeed, it follows
from [B.1] that

Z(@)r = (A" = {0})r/(Gn)r = (A" = {0} ox/(Gm)oy)r = P(a)r

and from Lemma [3.1.2.4] and from [56, Lemma 06Q4] that Z(a)p, =
P (a) xz Op is of finite presentation. An analogous argument shows that

Z(a)p = AL /(Gy,)r admits a model (£ (a), Ide) over Spec(Z).

3.2.2. — We propose the following definitions to have sufficiently O,-
integral points to define unstable heights on stacks.

Definition 3.2.2.1. — Let v be a finite place of F and let O C A C
O, be a ring. Let X be a finite presentation A-algebraic stack. We say
that X has enough O,-integral points if the canonical functor X(O,) —
X(F,) is essentially surjective.
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Definition 3.2.2.2. — Let X be an F-algebraic stack of finite presen-
tation. Let S be a finite set of finite places of F' and (2, x) be a model
of X. We say that (Z",z) has enough integral points, if for every finite
place v of F which is not in S, the stack Zo, has enough O,-integral
points.

Note that in the situation of Definition [3.2.2.2] the property "has
enough integral points” is in fact a property of 2. It follows that
if (#,y) is another model of X such that there exists an equivalence
2 = % then (%, y) admits has enough integral points. For v not in S,
every F,-point "extends” to an O,-point of 2 in the following sense:
the functor

2(0,) = Zo,(0,) = Z(F,) = X5, (F) = Zr(F) 22 Xp (F,)
= X(Fv)

is essentially surjective (this follows from the fact that x(F,) : Z%(F,) —
Xg, (F,) is an equivalence).

Lemma 3.2.2.3. — Suppose for some index i, one has a; > 1. Let v
be a finite place of F'. The O,-stack & (a)op, does not have enough O, -
integral points.

Proof. — We prove that the point x : ¢4 (F,)(my,...,m,) € Z(a)p, (F,)
is not in the essential image of the canonical functor (a)e,(0,) —
P(a)p,(F,). The group scheme G,, is special and let X : (G,,)p, :
(Gn)r, — (A™ = {0})g, be the (G,,)r,-equivariant morphism defined
by x. If y € 2(a),(F,), an isomorphism x — y is given by an element
t € G, (F,) such that x =y ot, where y : (G,,)p, — (A" — {0})p, is the
(Gn) p,-equivariant morphism given by y and ¢ is seen as a morphism
(Gn)r, = (Gy,)p, by multiplication. It follows that if y is isomorphic
to x, then

y(1) e {x(D)[t € Gm(Fy)} = {t-X(1)]t € G (F)}
= {(tYm);]t € G (F)}-
On the other side, if y is the image of an O,-point for the canonical
morphism #(a)e,(0,) - Z(a)g,(F,), it follows that y extends to a

(Gn)o,-equivariant morphism (G,,)o, — (A" —{0})ep, and in particular
that y(1) € (A" — {0})o,(O,). We will show that the sets

(A" = {0})o,(0v) = {(2)); € O}[3j : v(z) = 0}
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and

{(#%m);lt € G (F2)}

are disjoint. Suppose that (t*'7,,...,t"7w,) € (A" — {0})o,(O,) for
some t € G,,(F,). One has v(t%m,) = av(t) +1 > 0 and as a; > 1,
we deduce v(t) > 0. Now for every index j one has v(t%m,) = a;v(t) +
1 > 0, a contradiction with the assumption that (t*'m,,...,t"m,) €
(A" — {0})(O,). We deduce that x is not in the essential image of
Z(a)o,(0,) — P(a)g,(F,) and consequently &(a)p, does not have
enough O,-points. m

Corollary 3.2.2.4. — Suppose for some index i, one has a; > 1. For
any finite subset S of the set of the finite places of F, there exists no
model (2", x) of Z(a)r over Spec(Ops) such that the following condition
is satisfied: there exists a finite place v € S such that the stack 2 has
enough O,-points.

Proof. — Suppose there exists finite set S of finite places of F' and a
model (27, z) of #(a)r such that for every finite place v ¢ S one has
that 2" has enough O,-integral points. By Lemma [3.2.1.2) we can in-
crease S if needed and find a l-isomorphism f : 2" = Z(a)o, and a
2-isomorphism z = Idg(a), ofr = fr. Let ! : P(a)o,, — Z be an
inverse to f. By Lemma for every finite v € S, one has that

e (F)

2(0,) L% P(a)o, ,(0,) = P(a)o,(0,) = P(a)r(F) 2 (F)

is not essentially surjective. We obtain a contradiction and the claim
follows O

Proposition 3.2.2.5. — The stack P(a),. = Ap,./(Gn)op is a

model of 2 (a)r which for every v € MY has enough O,-integral points.
Proof. — Let x € va(Fv) and let X : (G,,)p, — A%, be the (G,,)p,-
equivariant morphism defined by x. Let v € M}. By the fact that all a;
are positive, there exists k € Z such that for every j = 1,...,n one has

that v(Z;(1) + ajk) > 0. The (G,,)F,-equivariant morphism given by
(Gu)r, — AR 1= v x(1)

is isomorphic to X and is the base change of the (G,,)o,-equivariant
morphism

i(/)v : (Gm)OU —> A%u 1 '_> 7]—5: * i(]_)
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along Spec F,, — Spec O,. The (G,,)o,-equivariant morphism defines a
morphism xp, : Spec O, = Z(a), . By construction we have xp, xz

v

F, = x. ]

The stacks &?(a) are not proper because they are not separated as the
following lemma shows.
Lemma 3.2.2.6. — Let v be a finite place of F. Let Op C A C O, be
a ring. The canonical morphism & (a), — Spec(A) is not separated.
Proof. — By the fact that property of being separated is stable for a base
changes, one can assume that A = O,. We will verify that the diagonal
Ag . 1 P(@)y, = P(a)y, Xo, £ (a)y, is not proper. The diagram

(a) Oy v v

(Gu)o, x A —2P2%0 , pn o pn

(quz)ovl (q,q)ovl

P(a)o, pe—— Z(a)o, Xo, #(a)g,-
a)o

v

is 2-commutative 2-cartesian. By the fact that being proper is stable for a
base change, it suffices to see that (a,p2)o, : (Gm)o, X Ap, — AP X AR
is not proper. We verify that the valuative criterion of properness [56],
Lemma 0BX5] is not satisfied for the finite type and quasi-separated
morphism (a,ps)e,. The diagram

Spec(F,) Ly (Gm)o, X0, AB,

l l(avpz)ov

S eCOv G—>An X UA“
pec( )<(mﬂ>]~,<1>j> Ov 700 220,

does not admit admit an arrow Spec(O,) = (G.,)o0, X0, Ap, so that the
diagram commutes. Indeed if (t,x) : Spec(O,) — (Gm)o, X0, A, was
a such an arrow, then x = (1); and v(¢) = 0. One has that ao (¢, (1);) =
(m”);, thus v(t") = a1v(t) = 0 # a; = v(7™), a contradiction. It follows
that (a,p2)e, is not proper, and hence that A%OU is not proper, i.e.

that Z2(a) is not separated. O
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3.3. Topology on R-points of stacks

We recall a definition, originally due to Moret-Bailly in [40], of a topol-
ogy that one can put on R-points of a stack. Let R be a local topological
ring that satisfies the following conditions:

(a) the group of units G,,(R) is open in R,

(b) the inverse map G,,(R) G (R) is continuous, when
Gm(R) C R is endowed with the subspace topology.

=zt

We will call such a ring “topologically suitable”. The principal examples
are R =F, for v € Mp or R =0, for v € MY.

3.3.1. — The following proposition is given in [21]. We consider
schemes that are locally of finite type over a suitable ring R.
Proposition 3.3.1.1 (Conrad, [21] Proposition 3.1])

Let R be a topologically suitable ring. There exists a unique way to
topologize Y (R) for every scheme 'Y locally of finite type over R subject to
the requirements of functoriality, carrying closed (open) immersions into
embeddings (open embeddings) of topological spaces, compatibility with
fiber products, and giving Y (R) the usual topology when Y is the affine
line over R. One also has that if Y is separated and R is Hausdorff, then
Y (R) is Hausdorff and that if R is Hausdorff and locally compact, then
Y (R) is locally compact.

The following suffices to make Y (R) compact.
Lemma 3.3.1.2. — Suppose R is a topologically suitable ring.

1. Suppose R is compact. If Y is an R-scheme of finite type, then
Y (R) is compact.

2. (Conrad, [21] Corollary 5.7]) Suppose R is a local field. If Y is a
proper R-scheme, then Y (R) is compact.

Proof. — We prove (1). Take a finite Zariski open covering {U;}; of Y’
with U; affine. Every affine scheme U; is a closed subscheme of an affine
space A™. We deduce that U;(R) is a closed subset of a compact set
A" (R) = R™, hence is compact. Now, the sets {U;(R)}; cover Y (R),
because R is local, and thus Y'(R) is compact. O

A direct consequence of Proposition is the following corollary.
Corollary 3.3.1.3. — Let R be a topologically suitable locally compact
Hausdorff ring. Suppose G is a locally of finite type algebraic group.
Then G(R) is locally compact group. If G is commutative, then G(R)
1s commutative. If a : G XY — Y is an action to the left of G on a
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locally of finite type scheme Y, then a(R) : G(R) x Y(R) — Y(R) is a
continuous action of G(R) on Y (R).

3.3.2. — As in the case of schemes, we work only with stacks that are
locally of finite type. If X is an algebraic stack and R a ring by [X (R)] we
denote the set of isomorphism classes of objects in the groupoid X (R).
For z € X(R) we denote by [z] its image in [X(R)]. The following
definition is firstly given by Moret-Bailly in [40], Definition 2.2] for stacks
with separated and quasi-compact diagonals. Cesnavicius gives it for
stacks without such hypothesis.

Definition 3.3.2.1 (Cesnaviéius,[15] Section 2.4])

Let R be a topologically suitable ring. Let X be a locally of finite
type R-algebraic stack of separated diagonal. We endow [X (R)] with the
finest topology such that for every 1-morphism f Y — X, with'Y a
locally of finite type R-scheme, the maps [f(R)] are continuous.

The following lemma follows from properties of the finest topology.
Lemma 3.3.2.2. — A subset U C [X(R)] is open if and only if for
every 1-morphism f Y — X of algebraic stacks, with Y locally of finite
type R-scheme, the preimage [f(R)]"'(U) is open in Y(R). Let T be a
topological space. A map h : X(R) — T is continuous if and only if for
every 1-morphism g :' Y — X of algebraic stacks, with' Y locally of finite
type R-scheme, the composite map h o g(R) is continuous.

Proof. — Those are consequences of [7, Chapter I, §2, n’4, Proposition
4] and [7, Chapter I, §2, n° 4, Proposition 6]. O

We recall some of properties which are proven in [15] and which we
are going to use.
Proposition 3.3.2.3 (Cesnavicius,[15], Corollary 2.7])
Let f: X — W be a 1-morphism of R-stacks that are locally of finite
type, where R is a topologically suitable ring.
1. The induced map on R-points [f(R)] : [X(R)] — [W(R)] is contin-
Uous.
2. Suppose f is an open immersion. Then [f(R)] : [X(R)] — [W(R)]
1S AN Open 1UMMEersion.
3. Suppose R is Hausdorff and f is a closed immersion. Then the map
[f(R)] : [X(R)] = [W(R)] is a closed immersion.
4. Let R’ another topologically suitable ring. Let h: R — R’ a contin-
uous ring homomorphism. The canonical map [X(R)] — [X(R')] is
continuous.
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3.3.3. — Let us study the topological spaces [(Y/G)(R)], when the al-
gebraic group G is special (see .
Proposition 3.3.3.1. — Let R be a topologically suitable ring. Let
G = (G,m,e) be a flat locally of finite presentation R-algebraic group.
Let'Y be a locally of finite type R-scheme endowed with an action of G
and let m: Y — Y/G be the quotient morphism.
1. The map [7(R)] : Y(R) — [(Y/G)(R)] is G(R)-invariant and con-
tinuous.
2. Assume G is special. The map [r(R)] is surjective and open. The
canonical continuous map

[m(R)] : Y(R)/G(R) = [(Y/G)(R)]

induced from G(R)-invariant map [7(R)] is a homeomorphism.

Proof. — 1. We prove that [7(R)] is continuous and G(R)-invariant.
— The fact that the map [7(R)] is continuous follows from the

functoriality (Claim (1) in Proposition [3.3.2.3)).
— By Proposition [3.1.1.2] the diagram

GxpYy ——Y

b

Yy ——— (Y/G),

where a is the action, is 2-commutative. It follows that if
(9,7) € (G xgr X)(R), then

[r(R)](a(R)(g, ) = [7(R)](p2(R)(g, %)) = [7(R)(z)].

Thus [7(R)] is G(R)-invariant.
2. We assume that G is special.
— We establish that [r(R)] is surjective. Let z : Spec R — Y/G
be a 1-morphism of algebraic stacks. As G is special, by
Lemma one has the following 2-commutative diagram

GRL)Y

l |

Spec R —— Y/G.
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By 2-commutativity, it follows that Spec R ot Y/G and
Spec R = Y/G are 2-isomorphic. We deduce that [z] is the
image of [1(R)(Z(eg))] and it follows that [7(R)] is surjective.
Let us verify that [7(R)] is a bijection. Denote by ¢ the
quotient map Y (R) — Y (R)/G(R). One has that [7(R)] =
[7(R)] og. The map [r(R)] is surjective because [7(R)] is sur-
jective. Let us verify that [w(R)] is injective. Suppose z,y are
such that [7(R)(z)] = [r(R)(y)]. Let «/,3' € Y(R) be lifts
of z,y, respectively. We have that [7(R)]|(2") = [7(R)](v/),
hence, m(R)(2") and w(R)(y') are isomorphic in the groupoid
(Y/G)(R). This means precisely that there exists g € G(R)
such that the Gr-equivariant morphisms = : Ggp — Y, ep +— 2’
and §y: Gr — Y, er — o satisfy ¥ =y o g, where g € G(R) is
seen as a morphism G — G via the left multiplication. As
y is G g-equivariant, we deduce 2’ = Z(eg) = g-yler) =g V.
This means that x = ¢(z') = q(g-v') = q(y/) = y. It follows

that [m(R)] is injective and hence bijective.
We establish that the map [7(R)] is open. Let V' C Y(R) be
an open subset, we are going to prove that [7(R)](V) is open
in [(Y/G)(R)]. By Definition [3.3.2.1) we need to establish
that if s : W — Y/G is a l-morphism of stacks with W
a scheme, then [s(R)]7!([r(R)](V)) is open in W(R). Set
W =W Xy,gY and set s : W — Y to be the base change
morphism. The following diagram is commutative:

7 5(R)

Y(R) —X— Y(R)/G(R)

(1) | RO /7
()

W(R) ——= [(V/G)(R)

The morphism 7y : W — Wis a G-torsor, hence, as G is
special, it is locally Zariski trivial on W. Let U;c;U; be an open
covering of W, such that for all 7, the morphism WW|7rV’V1(Ui) is
a trivial G-torsor. For all ¢, the map =; : #(W) Y (U;)(R) —
U;(R) decomposes as m(W) 2 (U;)(R) = U;(R) x G(R) —
Ui(R), where the first morphism comes from an isomorphism
of G-torsors m(W)~1(U;) = U; x G and the second map is the
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projection, and, hence, 7; is open and surjective. As U;cU;(R)
is a covering of W(R), the map my (R) is open and surjective.
We have that

mw (R) ™ (s(R) " ([w(R)](V))) = 3(R) " ([m(R)] " ([=(R)](V)))
=5(R)" (g (a(M))),
where the last equality follows from the fact that [7(R)] is a
bijection. It follows that myw (R) ™" (s(R)~'([r(R)](V))) is open

in W(R), as ¢ is open and continuous and s(R) is continuous.
Finally, we get that

mw (R)(mw (R) ™ (s(R) " ([m(R)](V)))) = [s(R)] " ([x(R)])
is open in W(R). We deduce that [7(R)](V') and hence [7(R)]
are open. As [m(R)] is open and continuous bijection, it fol-

lows that [7(R)] is a homeomorphism. The statement is now
proven.

]

By Hilbert 90 theorem, the algebraic group G, is special. We can
establish that:
Corollary 3.3.3.2. — Let R be a topologically suitable ring.

1. The map (A™ — {0})(R) — [Z(a)(R)] is G,,(R)-invariant, contin-
wous and open, and the induced map

(A" = {0})(R)/Gm(R) = [#(a)(R)]

1s a homeomorphism.
2. The map

G(R) = (A" = {0})"(R) = [7(a)(R)]

is a Gy, (R)-invariant, continuous and open map and the induced
map

(3.3.3.3) G (R)/Gn(R) — [7(a)(R)]
1s a homeomorphism.
3. The inclusion [T (a)(R)] C [Z(a)(R)] is an open embedding.

Proof. — The first two claims are direct consequences of Proposition
3.3.3.1] The last claim is a consequence of Proposition [3.3.2.3] O
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3.3.4. — To say more about spaces [.7 (a)(R)] and [Z(R)], we will need
additional assumptions on R. In [I5, Section 2.12], Cesnavicius defines
a notion of proper-closed ring: it is a topologically suitable ring R such
that for every proper morphism f : X — Y of finite type R-schemes, the
induced continuous map f(R) : X(R) — Y (R) is closed. The following
examples are presented: a local field or the ring of integers O, in the
completion F), for a finite place v.

Proposition 3.3.4.1. — Let R be a proper-closed integral domain.
(e.g. the completion F, for some v € Mg or the ring of integers O,

in the completion F, for some v € MY).

1. The topological actions G,,(R) x (A" — {0})(R) — (A" — {0})(R)
and G, (R) x GI'(R) — GI(R), deduced from the actions G, X
(A" —{0}) — (A" —{0}) and G,, x G, — G, by Corollary[3.3.1.5,
are proper.

2. The map G,,(R) = G}, (R),t — (t%); is proper, and the subgroup
Gm(R)a = {(t%);|t € Gu(R)} is a closed subgroup of GI'(R). The
canonical map G (R) — G (R)/G,,(R)a = [7(a)(R)] is G,,(R)-

wmvariant, continuous, open and surjective, and the induced map
(3.3.4.2) G, (R)/Gy(R) = G, (R)/Gn(R)a = [7 (a)(R)]

1s a homeomorphism.

3. Suppose R is locally compact (e.g. the completion F, for some
v € Mp or the ring of integers O, in the completion F, for some
v € M2), then [Z(a)(R)] and |7 (a)(R)] are locally compact and
Hausdorff.

Proof. — 1. As R is proper-closed and as G,,, x (A" — {0}) — (A" —
{0}) x (A" —{0}) is proper (Lemma|3.1.2.2)), it follows that the map

(3.3.4.3) Gu(R) x (A" = {0})(R) = (A" = {0})(R) x (A" = {0})(R)

is closed. Let us verify that it’s fibers are finite. Suppose that (¢, x)
is a preimage of (y,z). This means that x = z and that t - x = y.
Let i be an index such that z; # 0. As R is an integral domain,
there are only finitely many elements ¢ € R for which t%x; = z;.
We deduce that the map has finite fibers. Now, it follows
from [7, Chapter III, §10, n° 2, Theorem 1], that the map
is proper. We deduce from [7, Chapter III, §4, n°1, Example 2],
that the restriction of the action of G,,(R) to the G,,(R)-invariant
subset GI'(R) C (A" — {0})(R) is proper. The claim is proven.
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2. By (1) the action of G,,(R) on G, (R) is proper. Thus by [7, Chap-
ter III, §4, n°2, Proposition 4], the induced map ¢t — ¢ - (1); =
(t%); is proper and its image G,,(R)a is closed in G} (R). The
map is GI'(R) — G (R)/G,,(R). is continuous, open and sur-
jective, because it is a quotient map. It follows that the induced
map [ (a)(R)] = G (R)/Gn(R) — G (R)/G(R)a is continuous,
open and surjective. Moreover, note that for ¢t € G,,(R) and x €
G? (R) one has that the image of ¢ - x = (t%),;x in G},(R)/G,,(R)a
coincides with the image of x in G}, (R)/G,,(R)a. Observe that if
x,y € G (R) have the same image in G, (R)/G,,(R)a, then there
exists (t%); € G,,(R)a such that (t%);x =y, hence t - x =y. It
follows that the induced map GI'(R)/G!'(R) — G (R)/Gm(R)a is
injective. We deduce that it is a homeomorphism.

3. The action of G,,(R) on (A" —{0})(R) and G, (R) is proper, hence
the spaces [Z(a)(R)] and [7 (a)(R)] are Hausdorff by [7, Chapter
111, §4, n° 2, Proposition 3]. It follows from Proposition that
the spaces (A" — {0})(R) and G, (R) are locally compact. Now, by
[7, Chapter III, §4, n°5, Proposition 9] imply that [Z(a)(R)] and
[7 (a)(R)] are locally compact.

[

We finish the paragraph by establishing that [#?(a)(O,)], [7 (a)(O,)]
and [Z(F,)] are compact and that [.Z (a)(F,)] is paracompact. First, we
prove the following lemma.

Lemma 3.3.4.4. — Let v be a place of F. If v s finite, we define

Di = (0,)" — (1O x -+ x 1" Oy)

v
and if v is infinite we define
D = {x € FJ[ |[X[[max = 1},
where ||X||max = max;(|z;|,).

1. Suppose v is finite. The set D% is an open, a closed and a compact
subset of F* — {0}.

2. Suppose v is finite and let x € F*—{0}. The set {k € Z|n*-x € O"}
1s non-empty and we define

ro(x) := inf{k € Z|7rf -x €O}

One has that 7™ - x € Ds.
3. Suppose v is infinite. The set D? is a compact subset of F' — {0}.
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4. Suppose v is infinite and let x € F!' — {0}. There exists t € F¢
such that ||t - X||p max = 1.

Proof. — 1. The subset D3 writes as
D = (0,)" N (1 Oy X -+ - x m"O,)".

As (O,)" and (71O, x - - - x ¢ O,)¢ are a ball and a complement of
a ball in F?, they are both open and closed subsets of F'. Hence,
the subset D2 is both open and closed in F' and, as F' — {0} is
open in F", also in F — {0}. Moreover, D? is a closed subset of
(O,)", hence D? is compact.

2. As all a; are strictly positive, there exists a positive integer ¢ such
that for all j one has a;¢ > —v(x;). For such £ one has 7 -x € O",
thus {k € Z|r" - x € O} is non-empty. Suppose that "™ - x €

(7 Oy X - -+ x " O,). One has that

ﬂ_;‘v(x)*l . X — 7.[.;1 . (ﬂ-zv(X) . X) e 7-‘-;1 . (73101; X ... X WZ”O,U) prng OZ})

a contradiction. The claim follows.

3. The set D2 is a sphere for the norm |||, max in the finite dimensional
F,-vector space I, hence is compact.

4. The function

Ff =Ryt [t X]|omax
is continuous. From the fact that all a; are strictly positive it follows
that
lim ||t . X||v,max =0
[t|o—0
and that

lim ||t - X||ymax = +00.
[t]o—00

We deduce that there exists t € F) such that ¢ - x € D3.

When R = F,, where v is a place of F', one can say the following.
Proposition 3.3.4.5. — Let v € Mp. One has that:
1. the space [Z(a)(F,)] is compact;
2. the space [T (a)(F,)] is paracompact;
3. the spaces [Z(a)(O,)] and [T (a)(O,)] are compact.
Proof. — 1. Suppose firstly that v € M2. It follows from Lemma
3.3.4.4] that the restriction of the quotient map [¢*(F,)] to D2 is
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surjective and that D2 is compact. We deduce that [Z(a)(F),)] is
compact.

2. The group GJ,(R) is locally compact and (GJ,(R))a is its closed
subgroup. The quotient [Z (a)(R)] = GL(R)/(G,,(R))a is para-
compact by [7, Chapter ITI, §4, n° 6, Proposition 13].

3. The spaces (A" — {0})(0,) and G}, (O,) are compact by Lemma
Therefore the corresponding quotients by G,,(O,) are com-
pact.

[

3.3.5. — The last paragraph of this section is dedicated to the group
structure of [ (a)(R)].
If R is a proper-closed integral domain, by Proposition [3.3.4.1] one has
a homeomorphism of topological spaces [7 (a)(R)] = GI(R)/G}(R) —
G (R)/Gum(R)a (induced from G, (R)-invariant homomorphism G, (R) —
G (R)/Gm(R)a). We will transfer the structure of an abelian group
o [Z(a)(R)] using the inverse of this isomorphism and we may write
[ (a)(R)] = GI(R)/(G,,(R)a). If, furthermore, R is assumed to be
locally compact, then [7 (a)(R)] is a locally compact abelian group.
Lemma 3.3.5.1. — 1. Suppose that h : R — R’ is a morphism of
rings. The canonical map [7 (a)(h)] : [T (a)(R)] — [T (a)(R')] is
a homomorphism.

2. Suppose that R — R' is an injective morphism of rings. The
canonical map [ (a)(R)] — [Z (a)(R')] is injective if and only if
Gm(R)a = Gn(R)"NGp(R)a.

3. Suppose that h : R — R’ is a continuous map of topologically suit-
able rings. The canonical map [7 (a)(h)] : [T (a)(R)] — [Z (a)(R')]
18 a continuous homomorphism.

4. Suppose that R — R’ is an open embedding of proper-closed integral
domains, then the canonical map [ (a)(R)] — [T (a)(R')] is open.

Proof. — 1. The map [Z(a)(R)] — [Z (a)(R')] is the induced map
from G,,,(R)a-invariant homomorphism
(3.3.5.2) Gr(R) — Gl (R') — [Z(a)(R')],

hence is a homomorphism.

2. The kernel of the map (3.3.5.2)) is given by G,,(R')a NG, (R) and it
contains G,,(R)a. The induced map [7 (a)(R)] — [ (a)(R')] from

G (R)a-invariant map ((3.3.5.2)) is injective if and only if G, (R")a N
G (R) = Gpn(R)a-
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3. The map [T (a)(R)] — [Z(a)(R')] is continuous by Proposition
is a homomorphism by (1).

4. By [15] Section 2.2, parts (vii) and (x)], the inclusion GI,(R) —
G (R') is continuous and open. The map [7 (a)(R)] — [T (a)(R')]
is the induced map from the G,,(R),-invariant, continuous and open

map (13.3.5.2), thus is open.
[

Lemma 3.8.5.3. — Let v € M. One has that
Gm(Fv>a N G21<0v) = (Gm(ov)>a~

Proof. — It is obvious that G,,(O,)a C G (F,)a NG (O,) and let us
prove the inverse inclusion. Let x € G,,,(F},)aNGP(O,). This means that
there exists t € G,,,(F,) such that for every j one has t% = z; and that
z; € G, (O0,). We deduce v(t%) = a;v(t) = x; =0, and as a; > 0 we get
v(t) = 0. It follows that t € G,,(O,) and hence x € G,,,(O,)a. O

We are ready to prove that:
Proposition 3.8.5.4. — Let v € M. The map [T (a)(O,)] —
(7 (a)(F))], induced from (O,)a-invariant map q3|px ., s continuous,
injective and open homomorphism and induces an identification of
(7 (a)(O,)] with an open and compact subgroup of |7 (a)(F,)].
Proof. — By applying (1), (3) and (4) of Lemmato the inclusion
O, — F,, we obtain that [.7 (a)(O,)] — [7(a)(F,)] is a continuous and
open homomorphism. Lemma [3.3.5.3 gives that G,,(F,)a N G (O,) =
(G (Oy))a and thus by (2) of Lemma [3.3.5.1, the map [7(a)(O,)] —
[7 (a)(F),)] is injective. Moreover, by Proposition |3.3.4.5] the topological
group [7 (a)(O,)] is compact by Propositionclaim is proven.
0

Lemma 3.3.5.5. — Let aZ denotes the subgroup {(a;z);|x € Z} of Z™.
The homomorphism

(3.3.5.6) (FX)" = 7" — 7"/ (aZ),

where the first homomorphism is given by x — (v(x;)); and the second
homomorphism is the quotient one, is (F,))a-invariant. The kernel of
the induced homomorphism [T (a)(F,)] — Z"/(aZ) is [T (a)(O,)].

Proof. — Note that the image of (t%); € (F,))a in Z" under the map
(F) )" — Z™ from above is (v(t%)); = (a;v(t));, and the image of
(a;v(t)); in Z™/(aZ) under the quotient homomorphism is 0. Thus the
homomorphism is F*-invariant. The kernel of (F)" — Z" is
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the subgroup (O)™ C (F*)". The kernel of the induced homomorphism
(7 (a)(F,)] — Z™/(aZ) is the image of (O)" (as (OF)™ is the kernel
of (F))™ — Z™) under the quotient map. We have the following “snake
diagram”:

0
| s (0 —— (FX)a  aZ . 0
I <0£>" — <Fle>n Tz 0
)(Oy)] —— [9(3)(1%)] — anaz.

[7 (a)(
Snake lemma gives that
1= [T (a)0,)] = [T (a)(F,)] — Z"/a(Z) — 0
is exact. The statement follows O
We add another fact that will be used later. When n = 1, the spaces
[7 (a)(F),)] is finite and discrete (finiteness and the fact that (£),, C Ff
is closed imply that (F)),, is open, hence discreteness follows):
Lemma 3.3.5.7 (|42}, Corollary 5.8, Chapter I1])
Suppose n = 1 and that a = a; € Z>y. The space [T (a)(F,)] =
FX/(F)), is discrete and of the cardinality is ﬁWa(FU)L where |1 (F,)|
1s the number of a-th roots of 1 in F,.

3.4. Adelic situation

We define “adelic space” [.7 (a)(Ar)] of the stack .7 (a). It is defined
as a restricted product of |7 (a)(F;,)] with the respect to open subgroups
(7 (a)(O,)] C [Z(a)(F,)] for v € M2. Tt turns out that [T (a)(Ar)] is a
locally compact abelian group.

3.4.1. — Let us recall some facts on restricted product homomor-
phisms.
Lemma 3.4.1.1. — Let I be a set. Suppose for every i € I we are

given locally compact abelian groups G; and H; and for every i € I,
where I' C I is a subset of finite complement, we are given open and
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compact subgroups G, C G; and H] C H;. Suppose fori € I we are given
continuous homomorphism ¢; : G; — H; such that for every i € I' one

/
has ¢;(G;) C H]. Let us set G := H - G;, with the respect to the open
1€

/
and compact subgroups (G C G;)iep and let us set H = H - H;, with
the respect to the open and compact subgroups (H! C H;)er

1.
2.
3.

S G

The topological groups G and H are locally compact.

The canonical inclusion G C [[,c; Gi is continuous.

The image of G C [[;c; Gi under [[,c; ¢; lies in H. We let ¢ : G —
H be the homomorphism induced by (Hig (bi).

The homomorphism ¢ : G — H 1is continuous.

One has that ker(¢) = (], ker(¢;)) N G.

Suppose for every i € I' one has ¢;(G;) = H]. Suppose further
that for every i € I, the homomorphism ¢; is surjective (respec-
tively, open, isomorphism of topological groups). Then the homo-
morphism ¢ is surjective (respectively, open, isomorphism of topo-
logical groups).

Proof. — 1. Let (z;); € G. There exists a subset I; C I’ such that

I' — I is finite and such that for all i € I; one has z; € G.. For
1 € I' — I, one can pick a compact neighbourhood U; of x; in G,
because G; is locally compact. Then [[;c;,_; Ui X [[;c;, G is a
compact neighbourhood of (z;); in G. It follows that G is locally
compact, and the same is true for H.

. A basis open subset of [[..;Gi writes as [[..q Ui X [lic;_g G

where S is finite. Its preimage in G is given by

U HUix H G, % H G,

T is finite 1€S 1€T—-S iel-=T
o8

hence is open. It follows that the canonical inclusion is continuous.

. Suppose (x;); € G. There exists a subset [; C I’ such that I’ — I

is finite and such that for all ¢ € I; one has x; € G. For i € I}, we
have ¢;(x;) € H, hence (¢;(z;)); € H.

. It suffices to verify that the preimage under ¢ of a basis open subset

of H is open in G. A basis open subset of H is given by [[,., U; x
[Lic;_, Hj, for some finite subset J C I containing / — I’ and some
open subsets U; C H; for i« € J. We establish that every point
(zi)i € ¢ (I1ics Ui X ILicr_s H!) admits an open neighbourhood
contained in gb_l(HieJ Ui x [ Tier—s Hl’) There exists a subset [; C
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I’ such that I’ — I; is finite and such that for all ¢ € I; one has
x; € G. We note that

[T otwyx [T o=
iE(JﬂI)—Il iel—I1—J el

is an open neighbourhood of (z;); contained in ¢~ ([],c; Ui x
[Tic;—s HY). The set ¢~ ([T,c; Ui x [1;e;—, H{) is thus open and it
follows that ¢ is continuous.

. Let (z;); € G. One has that 0 = ¢((x;);) = (¢i(z;)); if and only if

z; € ker(¢;) for every i € I, i.e. if and only if (x;); € [, ker(¢;). It
follows that ker(¢) = ([T, ker(¢;)) N G.

6. Let us suppose that for every ¢ € I’ one has ¢;(G}) = H]|.

(a) Suppose ¢; are surjective and let (x;); € H. There exists
I, C I' such that I’ — I is finite and such that x; € H] for
every i € I1. As ¢;(G}) = H! for every i € I, we can pick
y; € G% such that ¢;(y;) = z;. As maps ¢, are surjective for
every i € I — I, we can pick y; € G; such that ¢;(y;) = z; for
every i € I — [;. It follows that (y;); is an element of G such
that ¢((vi)i;) = (z;);. Hence, ¢ is surjective.

(b) Suppose ¢; are open. It suffices to prove that the image of a
basis open subset of (G is open in H. A basis open subset of G
is given by [[,c; Ui x [I;c;_, Gj, for some finite subset J C I
such that J D I —I'" and some open subsets U; C G;. We have

that
¢<HUz’ X H G;) = H¢i(Ui) X H 0i(G?)
ieJ iel—J icJ iel—J
icJ iel—J

is open in H. It follows that ¢ is open.

(c) Suppose ¢; are isomorphisms of topological groups. It follows
from above that ¢ is injective, surjective, continuous and open.
Thus ¢ is an isomorphism of topological groups.

m

3.4.2. — Let n > 1 be an integer and let a € Z%,. We define an “adelic
space” of the stack .7 (a).
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Let A% be the group of ideles of F, that is, it is the restricted product

T =

vEMp

with the respect to the family of open and compact subgroups

(O; - FX)UEM%'

v

It follows from Lemma [3.4.1.1| that the group A is locally compact.
Definition 3.4.2.1. — We define

!/
EatIESN | REAN
vEME
where the restricted product is taken with the respect to the family of
compact and open subgroups

([5‘1(0”)] - [93<Fv)])veM2-
For v € Mg, let @@ : (E))" — (E))"/(F))a = [7(a)(F,)] be the quo-

tient morphism. By Proposition [3.3.5.4] for every v € M2, one has that
@((0)™) = [Z (a)(O,)] is an open and compact subgroup of [7 (a)(F,)].

Lemma [3.4.1.1] provides a homomorphism

= ([[ &) : a5 = [T (@)ar).
vEMp

We apply Lemma[3.4.1.1] to our situation and we get the following lemma.
Lemma 3.4.2.2. — The abelian topological group [T (a)(Ag)] is lo-
cally compact. The map ¢} = (HUGMF @) - (AR — [T (a)(Ap)] is
continuous, open and surjective. The kernel of q3 _ is the group (Afp)a =
{(x%);|x € AL} (in particular (AF)a C (AR)™ is closed).
Proof. — The abelian topological group [.7 (a)(Ar)] is locally compact
by Lemma [3.4.1.1] For every v € Mp, the quotient map ¢3 is continuous,
open and surjective. By Lemma [3.4.1.1} one has that ¢} is continuous,
open and surjective. For v € Mp, one has that ker(¢?) = (F))a and

Lemma gives that the kernel of ¢} is given by
ker(qf,) = (] [ ker(e2)) n(AR)" = (T T(#)a) N (AF)"

v

By Lemma [3.3.5.3, for z € F* one has that (2%); € (O))a if and only
if z € OF. It follows that for x € ([, F,*), one has that (x%); € (Aj)a
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if and only if x € A%. We deduce that

ker(g3,) = (JJ(F)a) N (AF)" = (Af)a.

v

]

For v € Mp, let i, : F* — F) be the canonical inclusion. The
homomorphism

()" & (B = [T (a)(F)]

is F*-invariant, and one deduces a homomorphism [7(a)(i,)]
(7 (a)(F)] — [Z(a)(F,)]. Let i : F* — AZ be the product map
i = [loear, io- It is well known that the image of F'* is discrete in Aj
(see e.g. [49 Theorem 5-11]). The homomorphism

E L (AR 25 (7(a)(Ap)

is (F*)-invariant and we deduce homomorphism [.7 (a)(i)] : [7 (a)(F)] —
7 (a)(Ap)]. For every v, the homomorphism

XH((X)U’(I)U)EMF_{/U})

(£

(AR)" = [7(a)(Ar)]

is F-invariant, and we deduce a homomorphism [Z (a)(F,)] —
(7 (a)(Ar)].

Lemma 3.4.2.3. — The map [T (a)(i)] coincides with the product map
[L[Z(2)(@)] : [7(2)(F)] = [1[7 (@) (F)].

Proof. — For every v € Mg, the following diagram is commutative

n

(P s (R ———— (A"

L 1

)
17(a)(F) "2 7 (a)(F,)] —— [ (a)(Ar)]

for every v € Mp. It follows that the map [.7 (a)(i)] coincides with the
product map [[,[.7(a)(i)] : [7 (2)(F)] = TL,[7 (a)(Fy)]. O

Definition 3.4.2.4. — We define [T (a)(Ar)]; to be the image of
(Ap)" in [T (a)(AF)] under the map ¢3, .
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3.4.3. — In this paragraph we suppose that n = 1 and that a = a; > 2.
The following proposition is due to Cesnavicius:
Proposition 3.4.3.1. — One has that:

1. [14), Proposition 4.12] The image
[ (@)(D)([Z(a)(F)]) C [7(a)(Ar)]
18 discrete, closed and cocompact.
2. [14, Lemma 4.4] The group I (F, u,) := ker([Z (a)(i)]) is finite.
Proof. — Let R be a local ring. Kummer exact sequence

1—>,ua—>Gmﬂ>Gm—>1

provides a long exact sequence
t—t®
Hfi’)pf(R7 GW) —'—>__> Hfi’)pf(R7 Gm) — Hflppf(R7 /J“a) — Hflppf(R7 Gm)
By Hilbert 90 theorem, the group Hflppf(R, G,y) is trivial. We deduce an

identification of abelian groups Hg (R, j1,) and R*/(R*)a = [7 (a)(R)].
It follows that the space .7 (a)(Ap) is precisely the space H'(ASM" 1u,)
from [14, Section 3]. Moreover, with these identifications, the map
[.7(a)(i)] becomes the map loc'(u,) in the notation of [14]. We are
thus in the situations of the mentioned statements of [14]. O

Lemma 3.4.3.2. — One has that
[T (a)(Ap)h = [7 (a)(Ap)].

Proof. — We will establish that any (x,), € [Z(a)(Ar)] admits a lift
in A for the map ¢f = [[,q¢ : Ay — [Z(a)(Ap)]. It follows from
Lemma that there exists a lift (y,), € Ay of (z,),. We set A :=
[Loens, [Yolo € Rog. Let w € Mp°. Set z = Al/ne ¢ X so that |z, = A.
One has that ((4v)vrw, (Ywz™ " )w) € AL, because

|ywzilyw H ’yv’ = ‘z71|w H ‘yv|v =A" A=1
vFEW v
We note that 27! = A=1/m = (A=1/a)e hence ' € (F),. Now one
has that
qu((yv)v;éw,ywz_l) = ((qg(yv))v?éwv (qu(ywz_l))w)
((#0)vws (@ (Yuo) )
= (Zy)o-
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a lift of (z,), lying in AL. Tt follows that

Thus ((yv)v;éwy(yw ) ) is
~ 7 (@) -

[T (a)(Ar)] = g4, (A)

3.4.4. — If Ais an abelian group written additively, we will write aA for
the subgroup {(a;m);|m € A} of A™. If the group is written multiplica-
tively, then we will use notation A, to be consistent with earlier notation.

In this paragraph we construct an isomorphism A/dA x A"t = A" /aA,
where d := ged(a).

Let n > 1 be an integer and let a € Z%,. For j = 1,...,n, we set
a/,
bjl = E]

There exists a matrix E = (bj;);; € SL(n, Z) which has (b;1)} for the first
column (see e.g. [50]).
Lemma 3.4.4.1. — 1. The kernel of the homomorphism

(3.4.4.2) 7" 57— 70 jaZ,

where the second homomorphism is the quotient homomorphism, is
the subgroup dZ x {0}"~1 C Z".
2. The homomorphism

E:(Z)dZ) x 2" = Z™/(dZ x {0}" ') & Z"/aZ,

induced from aZ-invariant homomorphism 18 an 1somor-
phism. Let A be an abelian group. Let us write E4 and E 4 for the
tensor products E @z A and E @z A, respectively. The following di-
agram C(A) is commutative, its horizontal sequences are exact and
its vertical arrows are isomorphisms of abelian groups:

dA x {0}1 > A" y (A/dA) x A1 —— 0
(3.4.4.3) E“‘l E’{ E“‘l

aA > A" » A" /JaA —— 0.

Moreover, if A — B is a homomorphism of abelian groups, the
canonical homomorphisms provide a morphism of diagrams C'(A) —
C(B).

Proof. — 1. Obviously, the kernel of coincides with E~1(aZ),
thus the kernel is a free abelian group of the rank 1. Moreover, it
contains the vector (d,0,...,0)". We deduce that the generator of
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the kernel of the homomorphism (3.4.4.2)) is given by (k,0,...,0)"
for some k|d. One has that

E-(k,0,...,,0)" = (kbj)} = (ka;/d)" € aZ,

hence d|k, hence d = +k. We deduce that the kernel of the homo-
morphism is precisely the subgroup dZ x {0}"~1 c Z".

2. The homomorphism E is evidently an isomorphism. By (1), the
following diagram is commutative, its horizontal sequences are exact
and its vertical arrows are isomorphisms:

dZ x {0} > 7" y (Z)dZ) x 7" —— 0
(3.4.4.4) El El 5|

aZ > 2" » 2" /al, —— 0

The diagram ([3.4.4.3)) is obtained by tensoring the diagram (|3.4.4.4))
by A. Thus the diagram (3.4.4.3]) is commutative, its horizontal se-

quences are exact and its vertical arrows are isomorphisms. More-
over, the morphism of diagrams C'(A) — C(B) is deduced by func-
toriality of the tensor product.

[]

3.4.5. — In this paragraph we prove that the isomorphisms Epx and
EFUX are continuous and that they preserve the compact open subgroups
from before.
Lemma 3.4.5.1. — The following claims are valid:
1. Let v € Mp. The homomorphism Epx : (F))" — (F,))" is an iso-
morphism of abelian topological groups. The homomorphism EFUX :
(T (d)(F,)] x (F)" ' — [Z(d)(F,)] is an isomorphism of abelian
topological groups.
2. Let v € M%. One has that

Ep:((O)") = (0;)"

v v

and that
Ep([7(d)(0,)] x (0)"™1) = [7(a)(0,)].
Proof. — 1. We have seen in Lemma that the homomorphisms

Epx and EFUX are isomorphisms of abelian groups. The map Epx :
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(E )™ — (F))™ is given by

n
X (H xfji)j
i=1

and is continuous and open. It follows that E.x is an isomorphism
of topological groups. Moreover, by Lemma |[3.4.4.1 the map EFUX
is the induced map from (F*)4 x {1}"!-invariant map

(X (B (T (@) (R))

v

thus is continuous and open. It follows that EFUX is an isomorphism
of topological groups.

- Let v € Mp and let x € (O;)". The j-th coordinate of Ex(x)

is equal to [/, 2" and is an element of O, thus Epx(x) is an
element of (O)". We have established Epx((O;)") C (O;)". Let
E~' = (¢;;);i- Fory € (F))™, one has that E;} (y) = [, y” and
it follows that E~'(y) € (O)", hence E~'((O)") C (OF)". We
deduce Epx((O;)") = (OF)". Now one has that

Ep([7(d)(00)] x (0)") = Epx (g % 1d )01 ((O)"))

;)

v

I
S

&
0|

X
—~
—~

]

3.4.6. — We will now use properties given in Lemma [3.4.5.1| to define
maps (Ap)" — (AR)" and [T (d)(Ap)] x (AR)"™! — [7(a)(Ap)].
Lemma 3.4.6.1. — The following claims are valid

1. The map (lens, Erx) + (T, (FS)™) = TL(F,)™ is precisely the

map E @z ([T, FY). The map ([Tep, Epx) : ([T (L7 (d)(F)] x
(FO"™ 1) = 11,17 (@) (F,)] is precisely the map E @z ([], F.).

2. One has that (HveMF Ep)((AF)") € (Af)™. Moreover, the in-

duced homomorphism
e (M) — (AF)"

15 an isomorphism of topological abelian groups.
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3. One has that ([T,cp, Epx ) (7 (d)(Ap)] x (AF)"™) C [7 (a)(Ap)].
Moreover, the induced homomorphism
Bap t (T(@(A0)] % (A5 = [7 () (Ar)
s an isomorphism of abelian topological groups.
Proof. — 1. One has that F and E are homomorphisms of finitely
presented Z-modules, thus tensoring by E and E commutes with
the direct products. The claim follows

2. For every v € MY, Lemmal3.4.5.1|gives that F Fx 18 a continuous ho-
momorphism which satisfies that Epx((O,)") = (O;)", and hence

by Lemma it follows that
(I Ew)(@p)m c (Af)™

vEMp

Moreover, by Lemma [3.4.5.1] the maps Eyx are isomorphisms of
abelian topologlcal groups, thus by Lemma [B.4.1.1] the homomor-
phism (HveMF Epx) : (AF)™ = (AF)™ is an isomorphism of abelian
topological groups.

3. For every v € MY, Lemma gives that EFUX is a continuous
homomorphism which satisfies that E .« ([.7(d)(O,)] x (OX)"1) =
|7 (a)(O,)], and hence by Lemma it follows that

(TI Er) (7 (@)(AR)] x (AR)") C [ (a)(AR)).

vEMFp

Moreover, by Lemma [3.4.5. 1] the maps E px are isomorphisms of
abelian topological groups, thus by Lemma [3.4.1.1 the homomor-
bt (1L o B« () ()| % (AT 5 [T @] b o

isomorphism of abelian topological groups.

[]

Lemma 3.4.6.2. — The following claims are valid:
1. One has that EA;((A};)”) = (AL)™.
2. One has that EA;([ﬂ(d)(AF)]l x (AL)"1) = [Z(a)(Ar)]:.
Proof. — 1. Let (zj,)» € (AL)". The j-th coordinate of its image
under Eyx = ][, Epx is ([, 277%), and one has

v k=1

k=1veEMp
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It follows that EA;((A},)”) C (Ap)™. Let E7' = (¢ji); € SL,(Z).

For j =1,...,n, the j-th coordinate of E;Xl(xjv)v = (EFi (x)y))y 18
F

equal to []p_, #2¥ and one has

[T ITTe], =TI T o =1

veEMp k=1 k=1veMpg

It follows that £ (Al )") C (AL)™. We deduce that EA;((A})”) =
(Ag)".
2. The diagram

() L
ngxId(A;)nill F qul
(7 (@)(Ap)] x (AR)" —F—— [ (a)(Ap)]

is commutative by Lemma . One has that [T4(Afp)]; x
(AL)"1 and [Z(a)(AF)]; are images of (AL)" in [9( J(AR)] x
(A7) 'and in [7 (a)(Ap)] under the surjective maps ¢f xId ()1
and g3, respectively. The claim now follows from (1).

]

3.4.7. — We will now study the kernel and the image of the map
|7 (a)(i)] when n > 2 and a € Z%,
Lemma 3.4.7.1. — One has that

Epx (ml(F, fa) X {0}”_1) = Epx (ker([ﬂ(d)(i)]) X {0}”_1)
= ker([7 (a)(1)])
is finite.

Proof. — By Lemma [3.4.4.1] the following diagram is commutative and
the vertical arrows are isomorphisms:

(TN x (P e [T()(Ar)] % (A7)

—~

17 (a)(F)] — 229 [7(a)(Ap)].
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We deduce that
Epx(ker([7(d)(i)] x ")) = ker([7 () (2))).

The map ! : (F*)" ! — (AL)""! given by the diagonal inclusion

is injective, hence the kernel of [7(d)(i)] x "' is precisely the group
ker([Z(d)(7)]) x {0}t = IIT'(F, pg) x {0}"!. Finiteness of the Tate-
Shafarevich group has been established in [52] Lemma 1.2]. The claim
is proven [

Proposition 3.4.7.2. — The image [T (a)(F)] under [T (a)(i)]
lies in [T (a)(Ar)]1. Moreover, the subgroup [7 (a)(i)]([7 (a)(F)]) C
[T (a)(Ap)]y is discrete, closed and cocompact.

Proof. — The following diagram is commutative by the definition of
(7 (a) (i) (F)]:
(P ———— (AF)"
)] ot
7 @)(F)] 73, 17 (a) (Ap)]

The image under i of F*" is contained in (A})". We deduce that
(7 (@) O[T (a)(F)]) = (gh,.0")(F™") C g, ((Ap))") = [ (a)(Ap)h.

The map EA; is an isomorphism of abelian topological groups. Thus the
——1

subgroup [ (a)(0)|([7 (a)(F)]) = E,x ([ (d)(0)] x " )([T (d)(F)] x
(_Fxl)"*l)) is discrete, closed and cocompact in [Z(a)(Ar)]; =
Eyx([7(d)(Ap))y x (AR)") if and only the subgroup

(7 (d)(@)] x " ) ([T (d)(F)] x (F*)") C [T (d)(Ap)l x (Ap)"

is discrete, closed and cocompact. The subgroup (F*)* C (AL)" is
discrete, closed and cocompact by [49, Theorem 5-15]. Recall that
by Lemma one has that [ (d)(Ar)]y = [Z(d)(Ar)]. Now, by
Proposition [3.4.3.1} one has that [.7(d)(i)|([.7 (d)(F)]) C [T (d)(Ar)]1 =
(7 (d)(AF)] is discrete, closed and cocompact. We deduce that

(T (d)(F)] x (F*)"F C [T (d)(Ap)h x ((Ap)")"

is discrete, closed and compact. The statement follows. O
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3.4.8. — In this paragraph we establish some more basic properties of
(7 (a)(Ap)].

Lemma 3.4.8.1. — Forv € My, the groups F,* are countable at infin-
ity (i.e. are countable unions of compact subsets). The groups A%, A},
[T (a)(Ar)] and [T (a)(AFr)]1 are countable at infinity.

Proof. — For v € Mp—v € Mg, one has that F* is the countable union
of of compact balls:

q€Qx0
and for v € ME one has that F* = C — {0} is the countable union of

compact balls
lq|
X _
Fr = l | B(q, 2).
q€Q0

For finite subset S C Mp, it follows that [ [, ¢ F}* is countable at infinity.
It follows that the group Ay, which writes as the countable union

si= U TIE~ I o
Mg CSCMp veS vEMp—S
S finite
is countable at infinity. The group AL is countable at infinity as it is
a closed subgroup of A%. The group (A})" and the group (AL)" are
countable at infinity, as finite products of groups which are countable at
infinity. Finally, the groups [7 (a)(Ar)| and [ (a)(AF)]; are countable
at infinity, as they admit surjective continuous maps from groups which
are countable at infinity. O

Lemma 3.4.8.2. — The maps A} — (AF)", AL — (AL)" and Ryq —
RZ, given by t — (t%); are proper.
Proof. — The morphism

G — G}, t— (t%);,
is the base change along G x {1} — G x G of the morphism

a,p2

G, x G, {apa), G', x G}, which is proper by Lemma [3.1.2.2] hence
itself is proper. By [21], Proposition 4.4], for a proper morphism of sepa-
rated schemes X — Y, the induced topological map X (Ar) — Y (Ap) is
proper. We deduce that the map Ay = G,,(Ap) — G (Ap) = (AF)" is
proper. One has that the preimage of (AL)" under the map Ay — (AF)"
is AL, thus by [7, Chapter I, §10, n°1, Proposition 3] the map AL —
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(AL)"™ is proper. Note that under the identification log : Ry — R, the
homomorphism ¢ + (¢%); becomes t — (a;t);. As for every j one has
a; > 0, the latter morphism is proper. The statement is proven. O

Let us write |- for the map Ag — Rug given by |(2y)s] = [ocar, [0 lo,

and by |-|* the product map (Ax)" — RZ,. We recall that in Lemma
we have established that the map

G (AR)" = [T (a)(AFp)] (X0)o = (g5 (X0))s
is open, continuous and surjective. The image of (A})" under qq, we
have denoted by [7(a)(Ap)]i. Let ¢§_ : RZ; — RZ;/(Rso)a be the
quotient map. The map
TR, © [-|"  (AR)" = R/ (Rx0)a

is (A} )a-invariant, and let

(3.4.8.3) o+ [ (a)(Ar)] = RLy/(Rxo)a

be the induced map.

Lemma 3.4.8.4. — In the commutative diagram
1 1 1

1 —— (AL —— (AX)" > RY, v 1
U B g

2 2 2

1 — [Z(@)(Ar)), — [T (@)(Ar)] 3 R/ (Rog)a — 1

2 2 2

1 1 1

where the maps that are not named are either canonical inclusions or the
canonical maps to singletons, all horizontal and all vertical sequences are
exact.

Proof. —  — One has an exact sequence 1 — AL — AX u> Ry —

1 and its n-th product with itself is the second horizontal exact
sequence, which is therefore exact.
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— We establish that the first horizontal sequence is exact. We establish

that the map \'|”\(A;)a : (AF)a = (Rsp)a is surjective. An element

in (Rsg)a is of the form (r*);. One can find (z,), € Aj such
that [], |z.,], = 7. Then one has ((z,),’) € (A})a satisfies that
its image under |-|* is precisely (r%);. To establish the exactness
at (AR)a, let ((y,)v’) € ker(]-|") and we observe that one must have
for j = 1,...,n that [T, [vs"|s = (IT, ve]o)™ = 1. As a; > 0, we
deduce (y,), € A}. We conclude the first horizontal sequence is
exact.

The third vertical sequence is exact by the definition.

We establish that the second vertical sequence is exact. That the
map ¢j,. is surjective is proven in Lemma (3.4.2.21 We prove that
its kernel is (Aj)a. Suppose x, € kerq?, = ker ([],c), ¢3)- Then
for every v € My one has that x, € ker¢3 and for almost every v,
one has x, € (O,))". Hence, for every v € Mp, there exists y, € F
such that for almost every v one has that y, € O, and such that
for every v one has (y»’) = x,. We deduce x = (y37); € (A})a.
Suppose now z € (Ay), and pick y € Ay such that (y%), = z.
We have for every v € Mp that ¢2(z,) = ¢*(ys’) = 1 and hence
qi,(z) = 1. We have established that the kernel of ¢§ _is (Aj)a and
we deduce the exactness of the second vertical sequence.

The map ¢}, |ty (Ap)" — [T (a)(Ar)]1 is surjective and its
kernel is ker ¢f  [a1)» = kergi, N (Ap)" = (Ak)a. We deduce that
the first vertical sequence is exact.

The long exact sequence deduced from applying Five lemma on the
first two horizontal sequences contains the third horizontal sequence

and the statement is proven.
O

3.4.9. — We end the chapter, by observing that as in the classical sit-
uation, the short exact sequence

{1} = [Z @A = [7 (@)(Ar)] 2% (R2/(Rao)a) — {1}

splits and we give its section.

The exact sequence

1—>A}—>A§ﬂ>R>O—>1
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admits for a section the map
1
0 :Rog = AL 2 ((po(2) 772 Jvenszes (Dvemy),

where, for v € M, we define p, : Rug — FX by o = x'/™ and r,
and 1 are the number of real and complex places of F', respectively. We
deduce an isomorphism :

(3.4.9.1) AL xRyg = A% (x,7) = x0(r).
The map

"2 (AR)" = (Rs0)” ()5 = (1)
admits a section

o" 1RY = (AR)"  (x5); = (o(x5));
Note that 0"((Rs0)a) C (AR)a and let 0® : R2;/(Rs)a be the map
induced from (Rsq)a-invariant map ¢3 o o" : RZy — [T (a)(Ap)]. The
map o® is a section to the map ||, : [7(a)(Ap)] = RZ,/(Rs0)a and we
deduce an isomorphism
(3.4.9.2)

(7 (a)(Ap)l1 x RL,/(Ro0)a = [ (a)(Ar)] (x,1) = x0%(r).
The image [7 (a)(4)]([.7 (a)(F')]) is contained in [.7 (a)(A )]s by Proposi-
tion 3.4.7.2L The isomorphism ((3.4.9.2)) induces, hence, an identification
that may be used implicitly

(3.4.9.3) ([7(@)(AR)/[7 (@OI(7 (@)(F)])) x (R"/(Rs0)a)
= [7(a)(Ap)]/[7 () (D)]([7 (a)(F)]).







CHAPTER 4

QUASI-TORIC HEIGHTS

In this chapter we define heights on weighted projective stacks. A
height on a stack can be stable or unstable. Stable means that any two
rational points of stack that are C-isomorphic have same heights. Stable
heights feature a drawback: they are not “weak Northcott heights”, i.e.
there may exist B > 0 such that there are infinitely many rational points
of the stack having the height less than B (see Corollary for an
example). Hence, such heights cannot be used to count rational points.

We start the chapter by recalling several facts on the line bundles on
the weighted projective stacks. We make a formalism of unstable met-
rics and unstable heights in sections and [4.4. Examples of unstable
heights are quasi-toric heights and quasi-discriminant heights (the latter
one appears in the last chapter of this article).

A quasi-toric height is a height arising from a model with enough in-
tegral points (see of the stack &(a). We prove in , that they
are weak Northcott heights. These heights will be used in the following
chapters to make an estimate of Manin-Peyre for the number of rational
points. The last section of the chapter is dedicated to the proof that
quasi-toric heights admitting logarithmic singularities are weak North-
cott heights.

4.1. Line bundles on a quotient stack

In the next paragraphs, we recall that line bundles on quotient stacks
correspond to G-linearizations of line bundles on presentations. We use

this to determine the line bundles on &?(a) and on #(a). Let Z be a
scheme.
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4.1.1. — Let X be a Z-algebraic stack. By a line bundle on X we
mean a quasi-coherent Ox-module L for which there exists a faithfully
flat 1-morphism of finite presentation f : X’ — X and an isomorphism
L= 0Ox.

We give another presentation of line bundles. The category of X-
schemes is the category the objects of which are pairs (7', t), where T
is a Z-scheme and t : T" — X is a l-morphism over Z. A morphism
of X-schemes (T",t') — (T,t) is a pair (f, f#), where f: T — T is a Z-
morphism and f# : ¢ = t o f. The composition of (g,g*) : (T",t") —
(T', ") and (f, f#) : (T",t') — (T,t) is defined to be the pair consisting
of g o f and the 2-morphism:

t” itlog 9(f#) tOng:tO(ng)-
The big fppf site of X (see [45, Exercise 9.F]) is defined to be the cate-
gory of X-schemes endowed with the Grothendieck topology defined by
coverings:

{(T;,t;) = Y}, is a covering of Y, if HTZ — Y is surjective and fppf.

We write Xg,¢ for this site. Then a line bundle L on X is simply an
fppf-locally trivial quasi-coherent sheaf on Xg,p.

4.1.2. — We recall the definition of a linearization of a module on a
scheme (see e.g. [41l Definition 1.6, Section 3, Chapter 3] for the case of
line bundle).
Definition 4.1.2.1 (Stacks Project, [56, Definition 03LF])

LetY be a Z-scheme and let a : G XY =Y be a Z-algebraic action
of a Z-group scheme G = (G, mg,eq) to the left on Y. Denote by ps :
G XY — Y the second projection.

1. A G-linearized quasi-coherent Oy -module is a pair (M, ) where M
is a quasi-coherent Oy -module and ¢ : psM = a*M is an isomor-
phism of quasi-coherent Oy -modules which satisfies the following
cocycle condition
* * 2 ’d} * *
(p2 0 (mg x Idy))*M = (pa 0 pag)*M T2y (ao(p3))*M = (pzo (Idg xa))*M
l(mc dey)*w l(IdG ><a)*1/)
(ao(mg xIdy))*M — > (ao (Idg xa))*M,
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where pag : GXGXY — GXY is the projection obtained by forgetting
the first coordinate. We also say that ¢ is a G-linearization of M.

2. A morphism € : (My,11) — (Ma, 1)) of G-linearized quasi-coherent
Oy -modules is an isomorphism of Oy-modules ¢ : My — My such
that the following diagram is commutative

U1
a* M pa My
a*ﬁl lp;f
CL*MQ p;MQ

2

3. The tensor product of G-linearized quasi-coherent Oy-modules is

defined by
(M) @ (M', ') := (M @ M', ¢ @4)/).
4. The trivial G-linearized quasi-coherent Oy -modules is the one given
by the pair (Oy,ldog, ).
The inverse of a morphism ¢ : (M, ) — (M’,1)') is the morphism given
by the isomorphism ¢~! : M’ — M. One verifies easily that G-linearized
quasi-coherent Oy-modules and their morphisms form a category, which

is a Picard category (see [24, Exposé XVIII, Definition 1.4.2]) with re-
spect to ®.

4.1.3. — In this paragraph we are going to discuss linearizations of the
trivial line bundle. Let Y be a Z-scheme endowed with a left Z-action of
a Z-group scheme G. If 1 is a G-linearization of the trivial line bundle
on Y, using that a* Oy = Og«,y and that p;O0y = Ogy,y, we deduce
that ¢ € O,y The cocycle condition translates as

(4.1.3.1) V(g'g,x) =U(g', g x)(g, ) 9.9 €G,xeY.

The following things are immediate for G-linearizations of the trivial line
bundle on Y.

— A morphism ¢ : (Oy, 1) — (Oy, 1) of G-linearizations is given by
an element ¢ € O3 such that

U(g - )19, ) = L(x)(g, x) geG zeY.

— The trivial G-linearization of the trivial line bundle is the G-
linearization given by (g, z) — 1.
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—If b+ (Oy, 1) = (Oy,¢2) and by 1 (Oy,th2) — (Oy,1h3) are
morphisms, the morphism ¢ 0 £1 : (Oy, 1) — (Oy,13) is given by
loly € OF.

— If ¢y are ¢/, are two G-linearizations of the trivial line bundle, the G-
linearization of the trivial line bundle 1 ® 15 is given by

(g,CL’) = ¢1(g’x)¢2(gvx)'

— The inverse of the isomorphism ¢ : (Oy, 1) — (Oy,1») is given by
the element ¢~ € O%.

By abuse of the terminology, we will speak about morphisms or tensor
products of G-linearizations of the trivial line bundle, when if fact we
mean the morphisms or tensor products of corresponding G-linearized
line bundles. We have that G-linearizations of Oy form a Picard cate-
gory Zic®(Oy). We let Pic”(Oy) be the abelian group formed by the
isomorphism classes of objects of ;@icG((’)y). Let GV be the group of
characters of G. One has a homomorphism

GY — Pic“(Oy)

given by associating to y € G the isomorphism class of the G,,-
linearization of Oy

(4.1.3.2) (9. %) = x(9).

Lemma 4.1.3.3. — 1. Suppose that Pic(Y) = 0. One has that
Pic“(Y) = Pic%(Oy).

2. Suppose that there are no non-constant morphisms ¥ — G,,. Any
two isomorphic G-linearizations of Oy are identical. The homo-
morphism 18 an isomorphism.

Proof. — 1. It suffices to prove that (L,¢) € Zic®(Y) is isomorphic
to an element (Oy,v) € Zic”(Oy). As the Picard group of Y is
trivial, one can find an isomorphism of line bundles ¢ : Oy = L.
One readily verifies that 0 : (a*f)™! o ¢ o (p3f) is a linearization of
Oy. Now, we have an isomorphism (¢, (a*f) Lo o (p3l)) : (L,v) —
(Oy, ). 1t follows that Pic%(Y) = Pic“(Oy).

2. An isomorphism ¢ : (Oy,v;) = (Oy, 1) is given by an element
¢ € Oy such that

U(gx)i(g,z) = £(x)1h2(g, %) Vg € G,Vx €Y.

As ¢ is a constant morphism and ((z) = {(gx) # 0 for every g
and z, we get that ¢, = 1y. We also get that the homomorphism
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(4.1.3.2)) is injective. Let us prove the second claim. As there are
no non-constant morphisms Y — G,,, for fixed g, the morphism
¥(g,—) 1Y = G,, is constant. Set x(g) := ¢(g,z) for some z € Y.
The cocycle condition gives that x(¢'g) = x(¢')x(g) for
every g,9" € G, i.e. x is a character of G. It follows that
is surjective, and hence is an isomorphism.

[]

4.1.4. — Let now Y be a Z-scheme and G a flat, locally of finite pre-
sentation Z-algebraic group scheme. Suppose we are given an action
a:GxY —Y. We are going to recall that the category of line bundles
on the quotient stack Y/G is equivalent to the category of line bundles
on Y endowed with a G-linearization.

Let ¢ : Y — Y/G be the quotient 1-morphism. Let M be a Oy/q-
module. Note that the pullback module ¢* M is G-linearized as follows.
Let t:goa = qopry be a 2-morphism making the diagram

Gx,Y ——Y
Pml ql
Y —— Y/G
2-commutative. We have an isomorphism
* * * *M * * *
pri(q"M) = (gopra)"™M == (goa)*M = a’(¢"M),

where t* M is the isomorphism given by [56, Lemma 06 WK]. We omit the
proof that the cocycle condition from is satisfied. If £: M — M’
is a morphism of Oy/g-modules, then a morphism of G-linearized Oy-
modules is provided by ¢*¢. We have, hence, a functor F from the cate-
gory of Oy g-modules to the category of G-linearized Oy-modules given
by F : M +— (M,t*M). One can verify that t*(M @ M') = t*M @ t*M’
and we deduce that the functor is an additive functor. According to [56],
Proposition 06W'T], F is an equivalence of categories. We consider the
restriction of F on the category of the line bundles on Y. It is immediate
that if L is a line bundle on Y/G then F(Y') is a G-linearized line bundle
onY.

Proposition 4.1.4.1. — The above functor F induces an additive
(|24, Exposé XVIII, Definition 1.4.2]) equivalence of the Picard category
Pic(Y/G) of the line bundles on Y /G and the Picard category Pic®(Y)

of G-linearized line bundles on Y .
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Proof. — By [56l, Proposition 06WT| the functor F is fully faithful,
thus the restricted functor F|z.(yv/¢) is an equivalence to its image
in Zic®(Y). It suffices therefore to verify that an object (L,v) €
2ic(Y/G) is isomorphic to an object in the image of F|zicv/c). It
follows from [56], Proposition 06WT] that there exists a Oy,/g-module M
such that F(M) = (L,v). Let us prove M is locally fppf trivial. The
pullback 7*M is a line bundle, thus, there exists Zariski open covering
y:Y' = Y such that y*7* M is locally trivial. It follows that for the fppf
covering moy : Y’ — Y one has (mroy)*M = Oy. O

If X is an algebraic stack, we denote by Pic(X) the Picard group of X.
We denote by Pic®(Y) the abelian group the elements of which are iso-
morphism classes of objects in Zic”(Y), and the addition of which is
defined by the tensor product in Zic”(Y). Functor F induces a homo-
morphism Pic(Y/G) — Pic“(Y). Proposition gives that it is an

isomorphism.

4.1.5. — Let ¢ : G; — G5 be a homomorphism of flat, locally of finite
type Z-group schemes. Let ax : Gy xz X — X and ay : Go xzY =Y
be Z-actions on Z-schemes X and Y. Suppose f : X — Y is a mor-
phism of Z-schemes and suppose furthermore that the following diagram

1s commutative:

G1 XzX ﬂ) Gg Xzy

axl lay

Xﬁy

We say that f is ¢-equivariant. We construct an additive functor of
Picard categories Picg,(Y) — Picg,(X) as follows. Let (L,¢) €
Picg,(Y). Denote by prx : Gy xz X — X and pry : Gy xz Y = Y
the projections to the second coordinate. The linearization on f*L is
provided by the isomorphism

@ 1) 5 () (L) = (6. 1)" () L 2255 (6, f)ay L = ax(f°L).
If ¢:(L,¢) — (L',9") is a morphism in Picg,(Y), then f* is a mor-
phism of (f*L, (¢, f)*¢) — (f*L, (¢, f)*1). It is a straightforward verifi-
cation that this construction provides a functor Zice,(Y) = Picg, (X),
and it is moreover an additive functor. The induced map Picg,(Y) —
Picg, (X) is thus a homomorphism.
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Lemma 4.1.5.1. — Let f : X/G, — Y/Gy be the morphism of quo-
tient stacks given by [56l, Lemma 046Q)|. The following diagram is 2-
commutative:

Pic?(Y) —— Pic™(X)

(4.1.5.2) [ [

Pic(Y/Gsy) —— Pic(X/Gy).
The diagram

Pic?2(Y) ——— Pic“!(X)

(4.1.5.3) T T

Pic(Y/Gy) —— Pic(X/Gy).

18 commutative.

Proof. — Fix 2-isomorphisms tx : ¢x o prx — qx o ax, ty : qy o
pry — gy oay and t; @ gy o f = f o gx that make corresponding
diagrams 2-commutative. Let L € Pic(Y/G3). The image of L in
Pic?(Y) is (¢ L,t5 L) and the image of (¢5L,t5L) in Zic™ (X) is
(f*qtL, (¢, f)*t5-L). The image of L in Pic(X/Gy) is f L, and the im-
age of [ L in Pic™(X)is (¢ f L, t%(f L)). Tt suffices to verify that
the two images under the composite functors of L in Zic®(X) are iso-
morphic. In fact, we will verify that

L f*qyL=(ay o /)L = (foax)'L=ax[ L

is an isomorphism (f*¢i-L, (¢, )t L) = (¢ f L,t%f L). For that we
need to verify the commutativity of the following diagram:

* Lk ok (¢’f)*t*L * * ok
prx/iey L — axf gy L

lpr;(t";[/ a}t’}Ll

prxaxf L —— axaxf L
7L

This is true as in fact

(tgxax)o (ty * (¢, f)) = (f *tx) o (ts* prx),
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as one verifies in a straightforward way, where * is the operation given
by the structures of 2-categories (if a is 1-morphism compozable with 1-
morphisms ¢ and j and b : ¢ — 7 a 2-morphism, then bxa is a 2-morphism
ioa — joa, and analogously for the composability on the other side).
Therefore the diagram (4.1.5.2)) is 2-commutative, and hence the diagram
(4.1.5.3)) is commutative. O

4.2. Picard group of a weighted projective stack

We are going to calculate Picard groups of weighted projective stacks.
Let Z be a scheme. All the schemes and stacks are understood to be
over Z. Let n > 1 and let a € ZY,.
4.2.1. — We calculate the Picard group of #(a) and of #(a). Propo-
sition [4.1.4.1| gives that the canonical homomorphisms

Pic(P(a)) — Pictn (A")

and
Pic(2(a)) — Pic®" (A" — {0})
are isomorphisms.
Proposition 4.2.1.1. — Let n > 1 be an integer and let a € Z%,.
1. One has that

Pic(P(a) = Z

and a generator of Pic(Z(a)) is given by the isomorphism class of
line bundles defined by the G,,-linearization of Opn :

PG, x A" = G, (t,x) — t.
2. Suppose that n > 2. One has that
Pic(Z(a)) = Z

and a generator of Pic(Z(a)) is given by the isomorphism class of
line bundles defined by the Gy, -linearization of Oan_go) -

Y Gy x (A" —{0}) = G, (t,x) — t.
3. Suppose that n = 1. One has that
Pic(Z(a)) 2 Z/aZ
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and a generator of Pic(Z(a)) is given by the isomorphism class of
line bundles defined by the Gy,-linearization of Og1_goy :

Y : G x (A= {0}) = G, (t,x) = t.

Proof. — Let us prove the first two statements.  We have that
Pic(A") = Pic(A" — {0}) = 0 and thus by Lemma [4.1.3.3] one
has equalities of abelian groups Pic®"(A") = Pic®"(Opn) and
Pic®" (A" — {0}) = Pic®"(Opn_gy). There are no non-constant mor-
phisms A" — G,, (respectively, non-constant morphisms A" — {0} —
G,,) and thus by Lemma any two G,,-linearization of Oyn
(respectively, of Ogn_goy) are identical. =~ Moreover, by the same
lemma, the homomorphisms GY, — Pic®"(Ogn) = Pic®"(A") and
GY, — Pic®" (Opn_q0) = Pic®" (A" — {0}) given by

x = ((1x) = x(t))

are isomorphisms. The group G/, is the infinite cyclic group with genera-
tor t — t, therefore the isomorphism class of the linearization (¢,x) — t of
the trivial line bundle is a generator of the group of the G,,-linearizations
of the trivial line bundle (in both cases). The first two claim follow.

Let us prove the third claim. One has that Pic(A! —{0}) = 0, thus by
Lemma , one has an equality of abelian groups Pic®(A' — {0}) =

N(Gm
Pic®" (Ox1_(oy). We study the latter group. Let Pic ~ (Op1_;0)) be the
group of Gy,-linearizations of Op1_goy. We will split the proof into two

parts. First, we prove that PiCGm(OAI_{O}) is isomorphic to Z and that
its generator is given by (¢, z) — t. Then we will prove that the canonical

surjective homomorphism Pic " (Ot gy — Pic®™(Op1_10y) has for the
kernel the subgroup generated by the G,,-linearization (¢, z) — t*.

The cocycle condition ¢(t't,x) = ¥(t',t - x)1(t, x) implies that the
degree of ¥ in x must be zero i.e. ¥(t,—) : (Al — {0}) — G, is a
constant morphism. Set x(t) := 9 (t,z) for some z € A — {0}. The
cocycle condition gives x(t't) = x(¢')x(t), i.e. x is a character of G,,. It
follows that the homomorphism

—~—

G — Pich(OAL{O}) X ((t, x) X(t))

is surjective. This homomorphism is evidently injective, hence is an
isomorphism. The group G, is isomorphic to Z and its generator is

given by ¢ — t, thus PicG’”(OAl_{O}) is isomorphic to Z and its generator
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is given by (t,z) — t. Let us now prove the second claim. Let ¢ :
(Opi_qoy, (t,x) = t*) = (O, (t,x) +— 1) be an isomorphism of G-
linearizations of O1_gpy. This means that ¢ : A’ — {0} — G,, is a
morphism such that for every t € G,, and every z € A — {0} one has
that £(t-2)t* = ((z) i.e. £(t*x) = {(z)t~*. Thus the degree of the rational
function ¢ must be (—k)/a. It follows that if (t,z) — t* and (t,2) — 1
are isomorphic, then £ = 0 (mod a). Let us see that if a|k, then the G,,-
linearizations (t,z) + t* and (t,z) ~ 1 are isomorphic. Indeed if one
sets ((z) = 7%/, we have that

0t - 2)th = (t- )R otk = (gag) "R egm — =R agne — p(g),

The second claim follows. We deduce that Pic®m(A' — {0}) =
PiCGm(OAI_{O}) & 7Z/nZ that its generator is given by the isomor-
phism class of the G,,-linearization of the trivial line bundle (¢, z) > ¢.
As Pic(2(a)) = Pic®(A! — {0}) is an isomorphism by Proposition
[4.1.4.1] the statement follows. O

Definition 4.2.1.2. — Let O(1) be the isomorphism class of line bun-

dles on P(a) given by the linearization of the trivial line bundle
VG, X A" = Gy, (t,x) — t.

For k € Z, we write O(k) for O(1)®%. By abuse of notation, we may also
write O(k) for a line bundle in the corresponding isomorphism class of
line bundles.

Definition 4.2.1.3. — Let O(1) be the isomorphism class of line bun-
dles on P(a) given by the linearization of the trivial line bundle

VG, x (A" —={0}) = G, (t,x) = t.

For k € Z, we write O(k) for O(1)®*. By abuse of notation, we may also
write O(k) for a line bundle in the corresponding isomorphism class of
line bundles.

When n = 1 one has that O(a) = O(0) = Og). For b € Z", we
denote |b| := by + -+ + by.
Definition 4.2.1.4. — We say that a line bundle on &(a) with iso-
morphism class O(|a|) is anti-canonical. We may write (Km)_1 =

O([al).
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4.3. Metric on a line bundle on a stack

In this section we define metrics on line bundles on algebraic stacks.

4.3.1. — Let v be a place of F. We present a definition of an F,-metric
on a line bundle on a stack.

Definition 4.3.1.1. — Let X be a locally of finite type F,-algebraic
stack and let L be a line bundle on X. An F,-metric ||-|| is the following
data:

— for every 1-morphism of stacks x : Spec(F,) — X we give a norm
||l on L(z) := 2*L.

— for every 2-morphism x = y of 1-morphisms x : Spec(F,) — X
and y : Spec(F,) — X, the canonical morphism L(x) — L(y) is an
isometric isomorphism.

— for every 1-morphism f : U — X over F,, with U locally of finite
type F,-scheme and every section s of f*L over U, the map

U(F,) — Rxg z = |[s(2)|[ o2

18 continuous.

An F,-metrized line bundle is a pair (L,||-||) of a line bundle L and an
F,-metric on L.

Let v be a place of F' and let X be a locally of finite type F,-algebraic
stack.

— A morphism r : (L, ||-|]) = (L',]|]]') of F,-metrized line bundles
on X is an isomorphism of line bundles » : L — L’ which is isometric
i.e. for every x € X(F,), the morphism r(z) : L(z) — L'(x) is
isometric.

— The trivial line bundle can be endowed with the following metric: set
|1]]o = 1 for each 1-morphism z : Spec(F,) — X. The correspond-
ing F,-metrized line bundle will be called the trivial F,-metrized
line bundle.

— One defines the tensor product of F,-metrized line bundles on X as
follows: let (L, [|-]|) ® (L', ]|-]|") be F,-metrized line bundles on X,
endow L ® L' with the metric ||-|| ® ||-||" defined by ||-||. @ ||||%
for every 1-morphism x : Spec(F,) — X (it is immediate that one
indeed gets a metric on L ® L').

Lemma 4.3.1.2. — Let X be an algebraic stack and let L be a line
bundle on X.
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1. Suppose |||| is an F,-metric on L. For every x € X(F,), let ||-||."

be the metric on L™ (x) defined by

11210 = ez,
for 0 # ¢ € L(x) and X € L™ (z) such that \({) = 1. The metrics
2" on L=(z) for x € X(F,) define an F,-metric ||-||~* on L.

. Suppose ||-|| is an F,-metric on L®™ where m is a positive integer.

For every v € X(F,) and every £ € L(x) let X/||{|| be the metric

on L(x) defined by
VIO = YT
The metrics R/||||, on L(x) for v € X(F,) define an F,-metric

/|| on L.

Proof. — 1. Suppose that = y is a 2-morphism, where z,y € X (F,).

The induced linear map L(xz) — L(y) is isometric, and it follows that
L7Y(z) — L~ '(y) is isometric. Let now g : U — X be a 1-morphism,
with U is a locally of finite type F,-scheme and let s € g*L(U).
The map U(F,) — Rso given by z — [|s(z)||7! is precisely the
composition of the map

U(F,) — Ry Z = HS(Z)HQOJC

and the map Rsg — Ry, z — 27! and is thus continuous. It follows
that ||-||7! is an F,-metric on L.

. Suppose that x = y is a 2-morphism, where x,y € X(F,). The

induced map L®"(x) — L®™(y) is isometric, and it follows that
L(z) — L(y) is isometric. Let now ¢ : U — X be a l-morphism,
with U is a locally of finite type F,-scheme and let s € g*L(U).
The map U(F,) — Ry given by z — 3%/||s(2)]| is precisely the

composition of the map
U(F,) = R z2 = [0 |goa

and the map %/ : Ryy — Ry and is thus continuous. It follows
that %/|||| is an F,-metric on L.
m

One sees that the category Q/Z\icv(X ) of F,-linearized line bundles is a
Picard category. The abelian group of isomorphism classes of objects in
this category will be denoted by Pic,(X). By abuse of terminology, we

may call an element of lgi\cv(X ) an F,-metrized line bundle.
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For topological spaces A, B, let us denote by (A, B) the set of con-

tinuous functions from A to B. If B is a topological abelian group, then
%°(A, B) carries a structure of an abelian group.
Lemma 4.3.1.3. — Let v be a place of F and let X be a locally of
finite type F,-algebraic stack. If f : [X(F,)] = Rso is a continuous
function, then setting ||¢||2 = [€(z)],f([z]), for £ € Ox(z) = F,, defines
an F,-metric ||-]|/ on Ox. The sequence

0 — C°([X(F,)], Rso) — Picy(X) = Pic(X)

where the first homomorphism is given by f — (Ox,(||-||Y) and where
the second homomorphism is the one that forgets the metric, is exact.

Proof. — Let us verify that ||-||/ is a metric on Ox. Let us verify that
for any 2-morphism x = y, where z,y : Spec(F,) — X are 1-morphisms
of algebraic stacks, the induced linear map Ox(z) — F, — Ox(y) is
an isometry. This is true because |[1]|Z = f([z]) = f([y]) = [|1[|]. We
now verify the last condition of Definition £.3.1.1 Let r : V. — X be
a 1l-morphism with V' a locally of finite type F,-scheme and let s be a
section over V of 7*Ox = Oy i.e. a morphism s:V — A'. The map

V(F,) = Ry z = |15(2)]]roz
coincides with the map
V(E) =R 20 [s(2)|of([r(2)])
and is thus is continuous. We have verified that ||-||/ is a metric on Ox.
It is evident that the composite homomorphism
€°([X(F,)], Rs0) — Picy(X) — Pic(X)
is the zero homomorphism. Let (L, ||-||) be in the kernel of f/)i\cv(X) —
Pic(X). We verify that (L, ||-||) is in the image of €°([X(F,)], Rso) —
Pic,(X). Obviously, L = Ox in Pic(X). By the fact that a 2-morphism
r = y induces an isometry Ox(z) — F, — Ox(y), it follows that
[X(F)] = Reo [2] = 1]

is a well defined function. We verify it is continuous. For every 1-
morphism g : U — X, with U locally of finite type F,-scheme, the

function
[)—|[1]|2

u(F,) 25 (x (k)

is continuous as it coincides with the map

U(F,) — Ryy z = |1 g(2)

R0
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which is continuous by the definition of an F,-metric. We deduce from
Lemma (3.3.2.2| that the map [z] — ||1]|, is a continuous function. It
follows that (L,||-]|) = (Ox,||-|]) is in the image of €°([X(F,)], Rs0) —

Pic,(X). The statement is proven. O

4.3.2. — Let v be a place of F'. Suppose g : Y — X is a 1-morphism of
locally of finite type F,-algebraic stacks. Let (L, ||-||z) be an F,-metrized
line bundle on X. We define the pullback metric on ¢g*L. Suppose
z : Spec(F,) — Y is an F,-point of Y. For a section ¢ € (¢*L)(z) =
a*(g"L) = (g o x)"L = L(g(x)), we set g"[|{[|; := [[{]]go-
Lemma 4.3.2.1. — Let g: Y — X be a 1-morphism of locally of finite
type F,-algebraic stacks.
1. If (L, ||-||) is an F,-metrized line bundle on X. The pair (g*L, g*||-||)
1s an F,-metrized line bundle on Y .
2. If (L,||-||) is the trivial F,-metrized line bundle on X, then
(9" L, g*||"||) is the trivial F,,-metrized line bundle on'Y .
3. If
o (L[ = (1)
1s a morphism of F,-metrized line bundles on X, then g*r is iso-

metric. - -
4. The functor g* : Pic,(X) — Pic,(Y) given by

(L, [[-I) = (g"L, g*[I-11)
r (LD = (LS ) = gt
s an additive functor.
5. Let f 'Y — X be another 1-morphism and let t : ¢ = f be a
2-isomorphism. Let (L,||-||) be an F,-metrized line bundle on X.
The canonical isomorphism t*L : g*L = f*L is an isometry.
Proof. — 1. Let us verify that ¢g*||-|| is an F,-metric on ¢g*L. Let y :

Spec(F,) — Y be such that there exists a 2-morphism = = y. The
canonical morphism

(¢°L)(z) = 2"(¢"L) = (g o x)"L = L(g(x)) — L(g(y)) = (9" L)(y)
is an isometric isomorphism, as such is L(g(z)) — L(g(y)). Let
h : U — Y be a 1l-morphism of algebraic stacks with U locally of
finite type F,-scheme. Pick s € (h*(¢*L))(U) = ((goh)*L)(U). The
map
U(F,) = Rxg 2= g |[8(2)]|nos
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is continuous, because it coincides with the continuous map
U(F,) = Rxg z = |[5(2)]go(hoz)-
2. One has that ¢*Ox = Oy. Let € Y (F,). One has that

gl = Mg = 1.
The claim follows.

3. Let x € Y(F,). The linear map (¢*r)(z) : (¢*L")(z) — (¢*L")(g9(z))
is isometric as it coincides with the isometric linear map L(g(x)) —
L'(g(x)). It follows that g*r is isometric.

4. Let x € Y(F,) and pick ¢ € (¢*L)(z) = L(g(x)) and ¢’ € (¢*L')(z) =
L'(g(z)). We have that

g e - g 111 = Mellg) - 11150
It follows that ¢*(||-||) ® ¢*(||||") = g*(|||]| ®||-]|"). It follows that g
is an additive functor.
5. Let y be an F,-point of Y. The isomorphism ¢ : ¢ = f induces the
isomorphism (t xy) : goy — foy. The linear map t*L is precisely
(txy)”*

the linear map g"L(y) = L(g(y)) ~=— L(f(y)) = J*L(y) and is
thus an isometry by the definition of an F,-metric. The claim is
proven.

]

The lemma provides a group homomorphism Pic, (X) — lsi\cv(Y) that
we also denote by g*.

4.3.3. — In this paragraph we study F,-metrics which are invariant for
an action of an algebraic group.

Let v be a place of F. Let G be a locally of finite type F,-algebraic
group acting on a locally of finite type F,-scheme X. By Corollary[3.3.1.3]
one gets a topological action G(F,) x X (F,) = X(F,).

Definition 4.3.3.1. — Let L be a G-linearized line bundle on X. An
F,-metric ||-|| on L is said to be G-invariant if for every t € G(F,) and
every x € X(F,), one has that the linear map L(x) — L(t-x) given by the
linearization s an isometric isomorphism. The F,-metrized line bundle
(L, ||]|) will be said to be G-invariant.
Let us introduce the category of G-invariant F,-metrized line bundles.
— A morphism ¢ : (L, ||-|]) — (L, ||-||) of G-invariant F,-metrized line
bundles is a morphism of G-linearized line bundles ¢ : L — L' which
1s 1sometric.
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— The trivial G-invariant F,-metrized line bundle is the trivial G-
linearized line bundle endowed with the metric: ||1||, = 1 for every
x : Spec(F,) — X (it is immediate the metric is G-invariant).

— A morphism of G-invariant F,-metrized line bundles is a morphism
of corresponding G-linearized line bundles which is an isometry.

— The tensor product of two G-invariant F,-metrized line bundles is
a G-invariant F,-metrized line bundle.

The G-invariant F,-metrized line bundles form a Picard category that
we denote by Zic(X). Let Pic?(X) be the abelian group given by the

isomorphism classes of objects of Z2icS(X). One has a homomorphism
of abelian groups
Pic%(X) — Pic%(X)

which forgets the structure of F,-metrized line bundle. One also has a

canonical morphism PicS(X) — P/’i\cv(X ) by simply forgetting that F,-
metrized line bundle is G-invariant.

If E is a topological group acting on a topological space A, we denote
by €R(A, B) the set of E-invariant continuous functions A — B. If B
has a structure of a topological abelian group, then %n(A, B) carries
a structure of an abelian group. The map ¢°(A/E,B) — ¢°(A, B)

induces an isomorphism
¢°(A/E,B) = €2(A, B).
Lemma 4.3.3.2. — If f € Cfg(Fv)(X(Fv),Rw) then setting

[1e[[7 = [€(2)of (x)
for every x € X(F,) and every { € Ox(z) = F,, defines an F,-metric
||| on Ox which is G-invariant for the trivial G-linearization of Ox.
The sequence

0 = €0y (X (F,), Reg) = Picf(X) — Pic%(X),

where €5, (X (F,), Rso) — PicC (X) is given by f — (Ox,1dog, +, |III),
15 ezact.

Proof. — Lemmagives that ||-||/ is a metric on Ox. Moreover, for
every * € X(F,) and every t € G(F,), the linear map Ox(r) — F, —
Ox(t - z) given by the trivial G-linearization, is an isometry, because
||, = f(x) = ft-x) = |[1||{,. Tt follows that the F,-metric |||/
is G-invariant.
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—

The composite homomorphism €5, \ (X (1), Rso) — Pic¢(X) —
P/’i\c(X ) is the zero homomorphism. To complete proof, it suffices to ver-
ify that if (L, ||||) is in the kernel of Pic?(X) — Pic(X), then (L, ||-||) is
in the image of %g(Fv)(X(Fv), R.¢) — PicY(X). Obviously, L is the triv-
ial G-linearized line bundle (Ox, Idep,,, ). For every x € X (F),) and every
t € G,(F,), the canonical linear map F, = Ox(z) = Ox(t-z) = F,,
given by the trivial G-linearization, is isometry and maps 1 € Ox(z) to
1 € Ox(t- z), thus the function = +— |[1||, is G-invariant. It follows
that (L, ||-]|) = (Ox,1do,, ) is the image of x — ||1]|, for the homo-

morphism %GO( ) (X (F0), Rso) — Pic%(X) from above. The statement is
proven. ]

In the rest of paragraph we study G-invariant F,-metrics on the triv-
ial line bundle. Let us denote by @zc (Ox) the full subcategory of
gzc\( X) given by G-invariant F, metr1zed line bundles (L, v, ||-]|) such
that L = Ox. It is immediate that 3320 (Ox) is a Picard category. Let
P1C ((’) x) be the abelian group formed by isomorphism classes of objects

of 3220 (Ox). The canonical inclusion

/\

(4.3.3.3) PIC (Ox) — Pic%(X)

is an equality, if Pic(X) = 0.

Lemma 4.3.3.4. — Let ¢y : G x X — G,, be a G-linearization of the
trivial line bundle on X. An G-invariant F,-metric ||-|| satisfies that
x — (|[1|]2)~" s a continuous function and that for every x € X(F,) and
every t € G(F,) one has

(1l]e2) ™" = ot 2) o (([1]]2)

Conversely, let f: X(F,) — Rsq be a continuous function such that for
every x € X(F,) and every t € G(F,) one has f(t-x) = |(t, )|, f(x).
Then setting ||1||. :== (f(x))~* for every x € X (F,) defines a G-invariant
F,-metric on the G-linearized line bundle (Ox, ).

Proof. — The function = + (||1||z)~! is continuous as ||-|| is an F,-
metric. For z € X(F,) and t € G(F,), the linear map F, = Ox(z) —
Ox(t-x) = F,, induced from the G-linearization 1, is given by multi-
plication by v (t, z). Now, the fact that ||-|| is G-invariant gives that for
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every z € X (F,) and every t € G(F,) one has that
le = ([ 2)lew = [ ) ol 1],

ie.

(o)™ = Joo(t 2) (11 ])
Suppose now f : X(F,) — R.y is a continuous function such that for
every © € X(F,) and every t € G(F,) one has f(t-z) = |¢(t, z)|.f(2).
For every z € X(F,), set |[1]|. = (f(z))~!. The function z > ||1||,

is continuous and hence defines an F,-metric on Ox. We have that
F,=0Ox(x) - Ox(t-x) = F, maps 1 to ¢(t,z) and thus

(1lea)™ = f(t-2) = [t 2)]of(2) = [t 2) L (111]]) 7
O

4.3.4. — In this paragraph we compare the F,-metrized line bundles
on the quotient X/G and G-linearized F,-metrized line bundles on the
scheme X.

Let v be a place of F' and let X be a locally of finite type F),-scheme.
Let G be a locally of finite presentation F,-group scheme acting on X.
The quotient stack X/G is an algebraic stack by Proposition and
locally of finite type by [56, Lemma 06FM].

Lemma 4.3.4.1. — Let q: X — X/G be the quotient morphism. Let
F: Pic(X/G) = Pic®(X) be the equivalence defined in .

1. Let ||-|| be an F,-metric on L € Pic(X/G). The F,-metric ¢*||-||
on ¢*L makes F(L) a G-invariant F,-metrized line bundle that we
denote F(L).

2. If € (L,|||)) = (L, ]|]]) is @ morphism of F,-metrized line bundles,
then F(0) : F(L) — F(L') is an isometry, thus a morphism of G-
invariant F,-metrized line bundles. In this case we set .7?(6) =
F(L).

3. If L is the trivial F,-metrized line bundle on X /G, then F(L) is the
trivial G-invariant F,-metrized line bundle.

4. The functor F : Q/Z\ZC(X/G) — Pic%(X) is an additive functor.
Proof. — 1. Let x € X(F,) and t € G(F,). The map (¢*L)(z) —
(¢*L)(t - x) given by the G-linearization defining F(L) coincides
with the linear map (¢*L)(z) = L(q(z)) — L(q(t-z)) = (¢*L)(t - z)
given by the isomorphism ¢(z) = ¢(t - ). The map L(q(z)) —
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L(q(t-x)) is an isometry by the definition of an F,-metric, hence is
(¢*L)(z) = (¢*L)(t - ) is an isometry. The claim follows.

2. The morphism F(¢) identifies with the morphism ¢*¢, which is iso-
metric by the third part of Lemma [£.3.2.1}

3. The G-linearized line bundle defining F(Ox/q) is the trivial G-
linearized line bundle. Moreover, the F,-metrized line bundle defin-
ing F (Ox/q) is precisely the trivial F,-metrized line bundle by
Lemma . It follows that F (Ox/¢) is the trivial G-invariant
F,-metrized line bundle.

4. Let (L, ||-|]) and (L', ||-]|") be two F,-metrized line bundles on X/G.

The G-linearized line bundle defining F((L,|||]) ® (I, ]|]]")) is
the G-linearized line bundle F(L ® L) = F(L) ® F(L'). The
F,-metrized line bundle defining F((L,||-||) ® (L, ||-||')) is pre-
cisely the F,-metrized line bundle (¢*(L @ L), ¢*(||']| @ I|-||')) =
(Lo L, ¢ ||| @ ¢||||'). It follows that F is an additive functor.

[

If follows from Lemma [4.3.4.1] that we have a homomorphism of
abelian groups

(4.3.4.2) Bie, (X/G) — Pic%(X).

The map X (F,) — [(X/G)(F,)] is G(F,)-invariant by Proposition [3.3.3.1]
and thus if f € €°([(X/G)(F,)],Rs) its pullback along [¢(F,)] is an
(

element of CKG(F V(X (Fy), Roo).
Lemma 4.3.4.3. — The following diagram is commutative:

0 —— CU(X/G)(F,)],Rsg) —— PICU(X/G) — Pic(X/G)

| | l |

—

0 —— Gy (X(F), Rag) — Picf (X) —— Pic(X).
Proof. — The diagram

Pic,(X/G) — Pic(X/G)

l |

—

Pic%(X) —— Pic%(X)
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is commutative by the construction of (4.3.4.2). Let ¢ : X — X/G be
the quotient 1-morphism. We prove the commutativity of

GO([(X/G)(F,)], Rsg) — Pic,(X/G)
(4.3.4.4) l l

—

ng(Fv)(X(Fv)aR>0) —— Picf(X)

Let f € €°([(X/G)(F,)],Rsp). Its image in ng(Fv)(X(Fv>7R>O) is fo

—

[q(F,)]. The image of fo[q(F,)] in Pic,UG(X) is (Ox,Idog, «» |[-][felatF)ly,
where ||-||f°l(%) is defined by |[1|[2°4) = £([q(F,)](z)) for z € X(F,).

The image of f in Pic,(X/G) is the F,-metrized line bundle (Ox, ||-||¥),
where |||/ is defined by [[1]|] = f(y) for y € [X/G](F,). The im-

age of (Ox,||-||) in PicY(X) is the G-invariant F,-metrized line bundle
(Ox,1dog, . a*||IY)- Note that ¢*|[1[[ = |[1[[{, sy = F(a(E)]()),

ie. ¢*||-||F = |||, We deduce the commutativity of the diagram
4.3.4.41 The statement is proven. O

We give a conditions for the homomorphism to be injective
or an isomorphism.
Proposition 4.3.4.5. — Let v be a place of F. Let G be a special
locally of finite type F,-group scheme acting on locally of finite type
F,-scheme X. The homomorphism is injective. If moreover
ﬁi}v(X/G) — Pic(X/G) is surjective, then the homomorphism
1S an isomorphism.
Proof. — Consider the diagram from Lemma [4.3.4.3] Both horizontal
sequences are exact by Lemma and Lemma [£.3.1.3]  Obvi-
ously, the first vertical homomorphism is an isomorphism. As G is
special, one can identify [(X/G)(F,)] with the topological quotient

X(F,)/G(F,) using Proposition [3.3.3.1,  Thus, the second verti-
cal homomorphism, given by pulling back continuous functions on

[X/G(F,)] = X(F,)/G(F,) to X(F),), is an isomorphism. The fourth
vertical homomorphism is an isomorphism by Proposition {.1.4.1] By

4-lemma, we deduce that PICU<X /G) — Pic%(X) is injective. Suppose
that Ple(X /G) — Pic(X/QG) is surjective. The following diagram is
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commutative.

0 — G(((X/G)(F)], Rao) — Picy(X/G) — Pic(X/G) —>

R

—

0 — CYp) (X (F,),Rsg) — Picf(X) — Pic%(X) —

Y

where E is the quotient of Pic”(X) by the image of Pic%(X). Obviously,
the first and the fifth vertical homomorphisms are an isomorphism and
a monomorphism, respectively. Again, the second and the fourth ver-
tical homomorphisms are isomorphisms. By 5-lemma, we deduce that

ﬁi\cv(X/G) — PicY(X) is an isomorphism. O

4.3.5. — We give some conditions that will make Pic,(X) — Pic(X)
surjective for an algebraic stack X. Let v be a place of F'. We are going
to construct F,-metrics on line bundles on algebraic stacks, by pulling
back metrics on line bundles on schemes.

Lemma 4.3.5.1. — Let X be a locally of finite type F,-algebraic stack
satisfying the following condition: for every line bundle L on X, there
exist positive integer m, a 1-morphism to a locally of finite type F,-
scheme g : X — Z and a lme/\bundle L' on Z which is in the image of
the canonical homomorphism Pic,(Z) — Pic(Z), such that L™ = g*(L’).
Then PAicv(X) — Pic(X) is surjective.

Proof. — The line bundle L' admits an F,-metric, hence L™ = g*(L')
admits an F,-metric by Lemma It follows that L admits an
F,-metric by Lemma [4.3.1.2] The statement follows. O

Remark 4.3.5.2. — In the case Z is a separated scheme, then every
line bundle on Z admits an F,-metric. Indeed Z(F,) is locally compact
and Hausdorff topological space. Moreover, it is a finite union of para-
compact spaces (if U is an open affine subset of Z, then U(F,) is a closed
subspace of F™, thus paracompact). By [7, Chapter I, §9, n° 10, Propo-
sition 18], we deduce that Z(F;,) is paracompact. By [8, Chapter IX, §4,
n’ 4, Proposition 4], the space Z(F,) is normal. By [8, Chapter IX, §4,
n° 3, Theorem 3], one can find a partitions of unity subordinated to every
locally finite open covering and one can use them to construct metrics in
a usual way.
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Remark 4.3.5.3. — The following is true. A locally of finite type F)-
stack X of finite diagonal, that admits a separated /good moduli space
p: X — X (see [1], Definition 1.2]), satisfies that Pic(X) — Pic(X) is
surjective. Indeed, by the fact that the diagonal of X is finite and by [,
Section 2], every line bundle L on X admits a multiple L®™ which is a
pullback of a line bundle on X. We can endow L®™ with the pullback of
a metric on the line bundle on X', and we can endow L with the “m-th

root” metric by Lemma [4.3.1.2]

4.3.6. — We will prove that every line bundle on &?(a)g, admits an
F,-metric without using remarks from [£.3.5] Let us firstly prove the
following lemma.

Lemma 4.3.6.1. — Let { be a positive integer divisible by lem(a). Con-
sider the morphism

J(0) : A" — {0} — A" — {0}
X > (:L‘ﬁ/aj)j.
Endow the first A" — {0} with the G,,-action with the weights ay, . . ., ay,,
that ist-ax = (t%x;);, and the second A" — {0} with the G,,-action with
the weights 1,...,1, that is t -1 x = (tz;);.
1. The morphism J({) is t — t*-equivariant, that is
JO)(t-ax)=t"1 (J(O)(x)) VteG,,VxecA™ —{0}.
The diagram

A" = {0} = A" — {0}

(4.3.6.2) qal lql

Pla) — 1O prt,

is 2-commutative, where J(€) is given by [56], Lemma 046Q)].
2. The pullback J(0) (O(k)) for k € Z is the line bundle O(Lk).

Proof. — 1. One has that

a; Y4 ag
Ot -ax) = J(O((t95);) = (¢,
=t J0)(x) VteG,,VxecA" - {0}.
The 2-commutativity of the diagram (4.3.6.2)) follows from the uni-

versal property of J(¢), see [56l, Lemma 0436].
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2. By Lemma , the pullback J(¢) O(k) is the line bundle deter-
mined by the pullback linearization J(¢)"1) of the trivial line bundle,
where ¢ : (t,x) > t* is the G,,-linearization of Oxn_{y that defines
O(k). One has that

(J(0) ¥ = p((t), J(O)(x)) = o(t)" = .

It follows that J(€) (O(k)) = O(¢k).
O

Lemma 4.3.6.3. — The canonical morphism P/’i\cv(t@(a)pv) —
Pic(Z(a)p,) is surjective. The canonical homomorphism

(43.6.4) Pic,(2(a)r,) = Picy, (A" — {0})r,)

1 an isomorphism.

Proof. — Let ¢ be an integer divisible by lem(a). By Lemma {4.3.6.1]
one has that (E)*(O(l)) = O(lk). We deduce that every line bundle

on &(a) admits a non-zero power which is a pullback of a line bundle on
P!, The line bundle O(1) on P"~! admits a metric, e.g. one can endow
iE\ with the Fubiny-Study metric. It follows from Lemma [4.3.5.1, that
Pic,(Z(a)) — Pic(Z(a)) is surjective. Proposition gives
that the homomorphism (4.3.6.4)) is an isomorphism. O]

Let us dedicate the end of this paragraph to a dictionary given by
Lemma for the case of weighted projective stacks.
Definition 4.3.6.5. — Let v € Mp, let d € C and let f : F' — {0} —
R>¢ be a function. We say that f is a-homogenous of weighted degree d
if for every x € F' — {0} and every t € F.* one has

Ft-x) = [t]1f(x).

Lemma 4.3.6.6. — Let v be a place of F and let k be an integer.
If ||| is an F,-metric on the line bundle O(k) on Z(a)g,, the pull-
back metric (q2,)*||-|| on Opn_goy is Gy -invariant and the function f . :
x = (¢ )*[|1(x)|| is an a-homogenous continuous function F) — {0} —
R.o of weighted degree k. Conversely, let f : FI' — {0} — Ryq be
an a-homogenous continuous function of weighted degree k. Then set-
ting ||1(x)|]" == (f(x))"! defines a G,-invariant F,-metric on the G,,-
linearized line bundle (Opn_oy, (t,x) > t*). Furthermore, there ezists a
metric ||-||; on O(k) such that (qf, )*[|-{| = ||]I"
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Proof. — The line bundle O(k) is given by the linearization 1 : (t,x) —
t* of Opn_goy. Let ||| be an F,-metric on O(k). The pullback metric
(¢2)*II']| is Gyp-invariant by Lemma (4.3.4.1, By Lemma (4.3.3.4] the

function x — (g%, )*||1(x)|| is continuous and satisfies that

((az,)" 11t - x) D~ = [tMu((az,) G,
i.e. it is a-homogenous continuous of weighted degree k. Let us prove the
converse claim. Note that Lemma gives that ||-]|" is an G,,(F)-
invariant metric on (Oan_go}, (¢, x) — t*). By Lemma4.3.6.3} there exists
an F,-metric ||-|| on O(k) such that (¢ )*||-|| = [|-||". The statement is
proven. 0

Remark 4.3.6.7. — By allowing that f takes value 0, we allow “sin-
gular” metrics.

4.4. Heights on Z(a)(F)

In this section we will define heights on &?(a)(F"). An obvious approach
is to define heights to be pullbacks of heights for some morphism to a
scheme. However, such heights exhibit a drawback, they do not satisfy
the weak Northcott property and hence are not suitable for countings.
For the purpose of counting, we define quasi-toric heights, for which in
[4.6] we establish that they satisfy the weak Northcott property.

4.4.1. — In this paragraph we define heights on stacks. We give a con-
dition that will enable us to define heights. It is not a “very restrictive”
condition, as we discuss in Remark [4.4.1.5]

Definition 4.4.1.1. — Let k € Z. Forv € Mp, let f, : F' — {0} —
R>¢ be an a-homogenous function of weighted degree d and let us set

E, ={xe€F—{0}Vj|zjl, =1 orz; =0.}

We say that a family (f,), is generalized adelic if for almost every v €
MY, one has that
fle, = 1.

We use the language of a-homogenous continuous functions to define
heights.
Lemma 4.4.1.2. — Let (f,)vem, be a generalized adelic family of a-
homogenous functions f, : FI'—{0} — Rxq of weighted degree d € Z. For
x € HP(a)(F), let us denote by X : (G,)p, — (A" — {0})g, the induced
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(Gn) B, -equivariant morphism defined by x. For every x € Z(a)(F), the
product

(4.4.1.3) H((f)o)(x) = [] f.(x1)

vEMp

is a finite product. Moreover, if X = y is a 2-isomorphism, then
H((£)0)69) = H((£).)(3).

Proof. — Let x € Z(a)(F). If 7;(1) # 0, then for almost every v € M},
one has |7;(1)], = 1. We conclude that for almost all v € M}, one has
x(1) € E,. As (f,), is generalized adelic, we deduce that the product
is indeed finite. Let now x — y be a 2-isomorphism, it is given
by an element t € G,,(F,) such that ¢ - x(1) = y(1). By the product
formula, one has that

II o) =11 re-x@)= IT win&Ew) = T L&)

’L)GMF ’UEMF ’UEMF ’UEMF

]

Definition 4.4.1.4. — Let (f,), be a generalized adelic family of a-
homogenous continuous functions F' — {0} — R>q of weighted degree k.

1. The function that associates to x € P (a)(F) the value of the prod-
uct , we call the resulting height defined by the family (f,),
and we denote it by H((f,)y)-
2. For x € [Z(a)(F)], we define H((f,)»)(X) by selting it to be
H((fv)o)(y) wherey € Z(a)(F) is such that the isomorphism class
of y is x.
When there is no confusion, we call it simply the height.
Remark 4.4.1.5. — The condition that f,|g, = 1 for almost all v is not
a strong one. For x € F" — {0}, it can happen that there is no t € F*
such that ¢t - x € E,. This means that the condition does not impose
anything on the value of f, at x. The weakness of the condition enable
us to have essentially different heights. Soon we will give much more
restricting conditions on f, to produce so called “quasi-toric heights”.
In Chapter [9 another restrictive condition is given and the heights we
produce are “essentially” discriminants (of F-algebras).
When two families consist of functions which are non-vanishing at
every place and which coincide at almost ever places, the resulting heights
can be compared as follows.
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Lemma 4.4.1.6. — Let d € Z, and let (f, : F' — {0} — R.o), and
(fl « F — {0} — Ryg)y be two generalized adelic degree d families of
a-homogenous functions. Suppose that for almost all v € Mg, one has
that f, = fl. There exist C1,Cy > 0 such that for every x € & (a)(F)
one has that

H((fo))(x)
C, < —/—————< (.
S H() )
Proof. — For v € Mg, the function
fo(y)

F)—{0} — Ryg y—

fi(y)

is G,,(F,)-invariant, thus descends to a positive valued function on
[Z(a)(F,)], which is compact by Proposition . We deduce
that for every v € Mp, there exist C,1,C,2 > 0 such that for every
y € F" — {0} one has that

fo(y)
fi(y)

Let us write H for H((f,),) and H' for H((f!),). Let y € F* — {0} be
a lift of x. Let S be the finite set of places, for which f, # f/. For every
v € S, one has that f, = f/. We deduce that

HE) 11
i~ L g < L6

01,71 < < O»U,Q.

and that
fo(x) _ H(x)
Cv,l < — = .
vgg 1; Li(x) H'(x)
The statement is proven. O

4.4.2. — In this paragraph, we define stable heights on &?(a)(F’), where
a € Z%,. These heights are pullbacks of the heights on varieties. Such
height H satisfies that if x,y € £(a)(F) are such that x; = yyx for
some extension K/F, then H(x) = H(y). The definition of the height
can hence be naturally carried to any F-point of #(a). They are called
“stable” because the height of an F-point stays invariant when regarding
this point as a K-point of [Z(a)]. We will see later in that such
heights do not always satisfy the weak Northcott property.
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If v € Mp and |||| is an F,-metric on the line bundle O(k) on Z(a)p,,
for some k € Z, we will denote by fj | @ F} — {0} — Ry the a-
homogenous function of weighted degree k given by Lemma [4.3.6.6]

If r > 0 is an integer, let us denote by |||y max the metric on O(1) on P"
given by the 1-homogenous continuous function f# : F" — {0} — R.q of
weighted degree 1

ff DX > mjax(|xj|v).

By a stable F,-metric on a line bundle L on locally of finite type F,-

scheme Z, we mean a metric which is the restriction of a metric on the
analytic line bundle L*" on the analytic space Z3'. The metric ||-||ymax
on the line bundle O(1) on the projective space is stable.
Definition 4.4.2.1. — Let X be a locally of finite type F,-algebraic
stack and let L be a line bundle on X. An F,-metric ||-|| on L is said
to be stable, if there exist an integer m # 0, a locally of finite type F,-
scheme Z, an F,-metrized line bundle (L', ||-||") on Z with ||-||' stable and
a 1-morphism of algebraic stacks g : X — Z such that (L™, ||-||®™) =
g (L)

Recall that an adelic metric on the line bundle O(1) on P"! is a
collection of metrics (||-||,),, where each ||-||, is a stable metric on the
line bundle O(1) on P}, and for almost all v, one has |||}, = ||||o,max-
Definition 4.4.2.2. — Let k be an integer. Let (f,), be a general-
1zed adelic family of a-homogenous continuous functions of weighted de-
gree k. We say that (f,), is stable if there exists an integer { # 0, an
integer v > 0, an adelic metric (||-||,), on the line bundle O(1) on PT
and a 1-morphism of algebraic stacks h : & (a) — P" such that the line
bundle O(Lk) is the pullback line bundle h*O(1) and such that for ev-
ery v one has that f* = Tne). - In this case, we also say that the height
H = H((fy)v) is stable.

A fundamental property of the stable heights is that the height of two
points, which become isomorphic after passing to an extension, is the
same.

Lemma 4.4.2.3. — Let k be an integer, let (f,), be a stable generalized
adelic family of a-homogenous continuous functions of weighted degree k.
Let H = H((f,),) be the corresponding height. Let x,y € & (a)(F) be
such that there exists an extension K/F and an isomorphism x| — yx
in Z(a)(K). Then H(x) = H(y).

Proof. — There exists an ¢ # 0, an integer r > 0, an adelic metric (||-][,)»
on the line bundle O(1), a 1-morphism of algebraic stacks g : Z(a) — P”
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such that O(¢k) = ¢g*O(1) and such that for each v one has f = fy« .-
Let Hpn-1 be the height on P"~!(F) given by (||-||s),. For x € 2 (a)(F)
that

Hx)" =[] &) =] forin &) = [T 11GN)
=11t (g®)1;" = Hpa1(9(x)).

The image of xx in P""1(K) is precisely g(x)x and the image of yg
in P"~(K) is precisely g(x)x. The existence of an isomorphism xy —
vk gives that g(x)x = g(y)k. It follows that g(x) = ¢g(y), and hence

H(x) = Hpn1(g9(x)) = Hpn1(g(y)) = H(y).

We give an example of a stable family.

Lemma 4.4.2.4. — Forv € Mg, the functions f, : FI' — {0} — Ry
given by X — max(\xjﬁ/aj) are continuous and a-homogenous of weighted
degree 1. The family (f,), is generalized adelic and stable. Moreover, the
resulting height H™> = H((f,)) satisfies for every x € Z(a)(F) that
H(x) > 1.

Proof. — Tt is evident that f, is continuous and that f,(t - x) =
maxj(\t“jxjﬁ/aj) = |t|, maxj(\:vj\ql,/a") = |t|,fo(x), and thus for every
v € Mp one has that f, is a continuous a-homogenous function of
weighted degree 1. Moreover, for every v € Mp, one has that if
y € B, ={x € F} —{0}| |zj|, = 1 or x; = 0}, then f,(y) = 1. Thus,
the family (f,), is generalized adelic.

We will verify that (f,), is stable. Let v € Mp, an F,-metric on
Oan_qoy identifies with a continuous function g : ' — {0} — R by
setting g(x) = ||1(x)||™!, where x € F" — {0} and 1(x) is the value of
1 € I'(A" — {0}, 0pn_q0}) at x. Let us set £ = lem(a). Consider the
morphism J(¢) : A" — {0} — A™ — {0} given by

J(0) 1 x — (a:ﬁ/aj)j.



4.4. HEIGHTS ON 2(a)(F) 107

In Lemma [4.3.6.1) we have established that J(¢) is (¢t — t)-invariant
and that J(£)*O(1) = O(¢). Moreover, the following diagram is 2-
commutative:

By Lemma |4.3.2.1] it follows that the diagram

Pic, (A" — {0}) —— Pic,(A" — {0})

J(0)
T(@v)* (q}%)f
Pic,(2(a)) +22 Pic, (P 1)

is commutative. Hence, the image of the F,-metrized line bundle
(O(k), |||v,max) under (g% )* o J(£) identifies with

J(0)(a5,) " (OF), |]vmax) = (Onn—go3, J(O)" (a5, )| lo;max)

(
= (O3 J(E)" (x> ma )
= (Oan—{o3, X > max(\:v [/%9)

= (

Opn_fo},X fv(x)f).

The G,,-invariant F-linearized line bundle (Ogn_0y, X fo(x)%) is pre-

cisely the image of J(€) (O(1),||/lomax) = (Ok), J() ||| lomax) under
the pullback (g% )*, so that fi = f1(0)*||lo.max- 1t follows that the family
(fy)v is stable.

Finally, let us prove the estimate H(x) > 1. Let x € £(a)(F) and
let X be the G,,-equivariant F-morphism G,, — A" — {0} given by x.
Let ¢ be an index such that X(1); # 0. Let K = F(%/2,(1)). For
v € Mp, the absolute value |-|, on F' admits a unique extension to K.
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By the product formula, we get that

Hx)= ]] max(|; (1)],/)

vEMp

= [ 17 Mm)max (’%

1/%’)

vEMFE
(1 1/a;
— H max( xj( ) )
vEMp I (al xj(1>)aj v
> 1

]

4.4.3. — In this paragraph we present an example of a height on &?(a)
which is intrinsic to stacks. We will call them quasi-toric heights. In [4.6]
we are going to show that they satisfy the weak Northcott property (i.e.
for every B > 0, there are only finitely many points in [#(a)(F')] which
have the height less than B). In Lemma we have introduced the
set D2 = O — (71 0,) X - -+ X (79 O,). For v € M}, we have defined in

Lemma a function r, : F" — {0} — Z by
r,(x) = inf{k € Z|7¥ - x € O"}
and we have established that for every x € F' — {0} that
) x € D2
Lemma 4.4.3.1. — Let v € MY.
1. For every x € F" — {0}, one has that

_ete]

2. For every t € F* and every x € F* — {0}, one has that
ro(t - x) = ry(x) — v(t).
3. For every k € Z one has that
{x € 7 — {0}ru(x) = k} = m,* - D

4. Let k € Z. Suppose that for u € G,,(F,) one has u- (7% -D2)N (7k-

D2) # 0, then v(u) = 0.
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5. The function
fE—{0} 5 Ry x> |ml, "™

is a-homogenous of weighted degree 1 and is locally constant.

Proof. — 1. For every index j such that x; # 0, one has that ngkxj €
O, if and only if k& > —@ We conclude
J

2. We observe that

(%)= s [—M} - s [—M] — 1 (x)—0(t)

3. We verify the claim for £ = 0. Pick x € D3. For every index j one
has v(z;) > 0 and there exists an index ¢ such that z; ¢ 720,, i.e.
such that v(z;) < a;. This implies that

0> r,(x) = supn [_%J;JW > 0.

Pick now x € F} — {0} such that r,(x) = 0. This means that for
every j such that x; # 0, one has that

—v(z;)

a;

§O7

hence that v(x;) > 0, and that there exists an index i such that

) <,
Q;

i.e. such that 0 < v(x;) < a;. We deduce that x € O and that
X €m0, X - xmenO,, i.e. one has x € Di. Let now k # 0 be an
integer. It follows from (1) and the case k = 0 that

{x € E} —{0}|ry(x) = k} = {x € F} = {0}|ry(m; - x) = 0}
={x¢€ FJ‘—{O}|7T§-X€DZ‘}

_ _—k a
=, - Dj.

-1<
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4. We have that
0w - (u-(my-D3)N (7 - D)) = (u-Dy) N Dy

If v(u) > 0, then (u-D2) C 7O, % - - - x 7O, and hence (u-D?)N
D2 = (), a contradiction. Suppose v(u) < 0, then (u-D2) C 7, O, X
s x O, — O and hence u - D2 ND2 = (), a contradiction. We
deduce v(u) = 0.

5. Let t € F,. One has that

ff(t ‘X)) = ’ﬂ'v’;m(t.x) = |7Tv|;m(x)+1 = |mo]o - ff(X),

hence f# is a-homogenous. We have seen in Lemma|3.3.4.4{ that D?
is open and closed in F', and hence in F" — {0}. Hence, the sets
7% . D2 are open and closed in F" — {0} for every k € Z. It follows

that r, is locally constant, so is f7.
]

Definition 4.4.3.2. — Let v e M%. We call the a-homogenous func-
tion f# : F" — {0} — Rsq of weighted degree d € 7 given by

—dry(x .
fv:X|—> |7TU'U ( )1/(1. Zf’UEM?p,
(max;(Jz; /)T if v e M,

the toric a-homogenous function of weighted degree d.

We remark that when a = 1, for every v € Mp, the toric 1-homogenous
function of weighted degree 1 is given by f# : x — max;(|z;],).
Definition 4.4.3.8. — Let (f, : FI' — {0} — Rx¢), be a family of a-
homogenous continuous functions of weighted degree d. We say that the
degree of the family (f,), is d.

1. We say that (f,), is quasi-toric if for almost all v € M%, the func-
tion f, is toric.

2. We say that (f,), is toric if for every v one has that f, = f¥, where

17 is the toric a-homogenous function of weighted degree d.

For every v € MY, as E, C D2, one has that f#|g, = 1. Thus every
quasi-toric family (f,), is automatically generalized adelic.
Definition 4.4.3.4. — Let (f,), be a quasi-toric family of a-
homogenous continuous functions of a fized weighted degree. We say
that the resulting height H((f,),) is quasi-toric. If (fy,), is furthermore
assumed to be toric, we say that H is toric and may be denoted by H .
Example 4.4.3.5. — We present a formula for the toric height in the
case F' = Q. Let d be a strictly positive integer. Let x € [#(a)(Q)]



4.4. HEIGHTS ON 2(a)(F) 111

and let x € Z" be a lift of x which satisfies x € Dj for every prime p.
Then for every prime p, one has that f#(X) = 1. It follows that the toric
height defined by the degree d toric family satisfies:

H#(x) = (max(|7;V*))".

When n = 2 and a = (4,6), the toric height defined by the degree 12
toric family is sometimes called naive height (e.g. [13]).

Remark 4.4.3.6. — Quasi-toric heights are not stable. In fact, we will
verify in[4.6] that quasi-toric heights satisfy the weak Northcott property,
while the stable heights do not .

Lemma 4.4.8.7. — For v € Mp, let f be the toric a-homogenous
function of weighted degree 1.

1. For every v € Mp and every y € F™ — {0}, one has that f#(y) >
1/a;
max(|y; /).
2. For every x € P(a)(F) one has that H? (x) > H™(x) > 1,
where H™ is the height given by (y — max(|yj\11,/aj))v.
Proof. — For v € M, we recall that f#(y) = max(|yj|11,/aj). Let v €

M?. For every y € D? one has that

_U(yj)> . max(y>

and thus
fv(y) = ’m’;rv(y) > ‘%‘;r;nax(y) > (maX(‘yj‘llj/aj).

The function y — ff(y)(maxﬂyjﬁ/aj))_l is G, (F,)-invariant. As by
Lemma any z € F' — {0} writes us ¢ -y, where y € D2 it follows
that f#(z) > (max(|zj]11,/aj) for every z € F' — {0}. The first claim is
proven.

Now let x € Z(a)(F) and let X : G,, — A" — {0} be the G,,-

equivariant morphism over F' defined by x. We have that

H*(x) = [] &) > ] mjaX(lfi(l)li/“j) = H™™(x) = 1,

vEMp UEMF

by Lemma [£.4.2.4l The second claim is proven. O
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4.4.4. — We dedicate this paragraph to state and prove a lemma that
will be used latter for the proof of Proposition .7.1.2] It is motivated
by [30, Theorem B.2.5].

Let K be a field and let a € ZZ%;,. Let us define weighted de-
grees of polynomials in K[X;,...,X,]. For j = 1,...,n, we define
a-weighted degree (or simply weighted degree) of polynomial X; by
setting deg,(X;) = a;. For a monomial ¢X{"--- X% where ¢ € R,
we define deg,(cX{" .- X%) = a-d. Finally, if P = 3, Q;, with Q;
monomials, we define deg,(P) = max;(deg,(Q;)).

Definition 4.4.4.1. — We say that a polynomial P € K[X;,...,X,]
is a-homogenous if it is a sum of monomials of the same a-weighted
degree.

Lemma 4.4.4.2. — Let P be an a-homogenous polynomial of weighted
degree d > 1.

1. Fort € G, and x € A", one has that P(t-x) = t*P(x).

2. Let () be an a-homogenous polynomial of weighted degree k > 0. The
polynomial P(Q) is an a-homogenous polynomial of weighted degree
d+ k.

3. Let {Py,...,P,} € F,[Xy,...,X,] be a set of non-constant a-
homogenous polynomials. The closed subscheme Z({Py,...,Py}) C
A" given by the common zero set of Pi,..., P, is G, -invariant
for the action of G,, on A" with weights ay,...,a,. The open
subscheme D(Py) C A™, given by the locus where Py does not vanish
15 G, -itnvariant for the same action of G,, on A".

Proof. — 1. Let t € G,,, and let CX{" --- X" be a monomial. For
x € A", we have that

CXT o X0 (4. x) = CIM g™ L fOnmn g &m0 (),

n

. mi.; Mn 4 .
Now, P can be written as sum » ., C; X, " - - - Xy, ™" where for each i

one has a-m; = d and we deduce that P(t-x) = t¢P(x).

2. The product PQ is a sum of monomials C X" --- X™.DX]* ... X
with a-m = d and a-r = k. It follows that P() is a-homogenous
of weighted degree a(m +r) = k + d.

3. For every x € A" and every i € {1,...,m}, we have that P,(t-x) =
t1P;(x) = 0 if and only if P;(x) = 0. The claim follows.

[

Definition 4.4.4.83. — Let {Py,...,P,} C F[Xy,...,X,] be a set of
non-constant a-homogenous polynomials. We define Z({ P, ..., Py,}) to
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be the substack of P(a) defined by the G,,-invariant closed subscheme
Z(Py,...,P,) — {0} ¢ A» —{0}. We define D(Py) to be the substack
of Z(a) defined by the G,,-invariant open subscheme D(Py) C A" —{0}.
It follows from [56, Lemma 04YN] that Z({P,..., P;}) is a closed
substack of #(a) and that D(P; --- P,,) is an open substack of #(a).
Let @q,...,Q,+1 be a-homogenous polynomials of the same weighted
degree d. The morphism

J(Q1, ., Q1) (A"—Z({Q1, ..., Qra})) = A {0} x— (Qi(x));

is t — td-equivariant (see for the terminology), when the left scheme
is endowed with the action t -5 x = (t%x;); of G,, and the right scheme
is endowed with the action ¢ -3 x = (tx;);. Let us denote by

(4.4.4.4) J(Q1,...,Qr11): P(a) =P’

the 1-morphism of stacks induced by [56], Lemma 046Q).

We state our lemma:
Lemma 4.4.4.5. — Let Py, ..., P..1 € F[Xy,...,X,] be a-homogenous
polynomials of the same weighted degree d. Let J(Py,...,P.)
(H(a) — Z(Py,...,P11)) — P be the 1-morphism given by the
t — tl-equivariant morphism (P, ..., Pyq) @ (A" — {0}) — (A" — {0})
(see [4.1.5). Let H* be the toric height on [P (a)(F)] defined by
the toric degree d family. There exists C > 0 such that for all
x e [(H(a)—Z(Py,...,P1))(F)] one has that

CH#(x) > Hpr(¢(x)),

where Hpr is the toric height defined by the toric degree 1 family on P".
Proof. — The strategy from the proof of [30, Theorem B.2.5] applies
here. Let us denote by X™ the monomial X{"*, ..., X" where m € ZZ,,.
We denote by w(a, d) the number of m € Z2, for which a-m = d, this is
precisely the number of monomials which have a-weighted degree equal
tod. Forie {l,...,r+ 1}, we write

Pi = Z_d Ai,me7

where the sum runs over m € Z%, for which a-m = Z?zl a;m; = d. For
v € Mp, we denote by |P;|, = maxm |A;ml|,. For almost all v, one has
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that |P;|, = 1. For k € Z, we set

k ifve M,
ey(k) = 1 ! g
1 ifve M.
We note that for any v € Mg, any kK > 1 and any z1,..., 2z, € F', one has
that
|21+ - 4 2k|o < gp(r) max(| 21y, - - -y |2k]0)-

For x € [Z(a)(F)], let x € F} —{0} be a lift of x. Fori e {1,...,r+1}
and v € Mp, we deduce that

|P(X)|, = ‘ZAi’mfam .. .ggnh
a-m
-

< e(w(a,d))(max |A; mly,) (max |27 - 2" |,)
< e(w(a,d))| P, max( | | max(|5j|11/aj)a"m“)
m j
=1

= e(w(a, d))| |, max(|z;[,/* )™
J

J

v

Set C, = e(w(a, d)) max; | P;|,. For almost all v, one has that C,, = 1 and
we set C' =[], C,. Let us define

ry s F) — {0} = Z yH‘Supn[—v(yj)—‘

and

roa s B —{0} - Q y —  sup (U(yj)).
=1
One has that
FE@y) = [moly ) >y |70 = max(Jy; [,/ ],) ¢,
j

We deduce that

max(| P (X)],) < C, max(|y;|t/*)* < C,f#(%).
4 J
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By multiplying this inequality for all v we obtain that for every x €
(Z(a) — Z(P,...,P,))(F)] one has that

Her(J(Pr,... Pryn)(x)) =[] (max(IP)]) < []CofF®)

vEMp

= CH?(x).

The claim is proven. O

4.4.5. — We establish several facts on “local heights” that will be
needed in [4.6]

Let (f, : F}) — {0} — R.g), be a generalized adelic family
of a-homogenous continuous function of weighted degree |a|. Let
H = H((f,)») be the corresponding height on [#?(a)(F)]. For v € Mg,
t € F) and x € (F))" one has that

Folt-3) [T w0t = 1o o) [T Il sl = fo(x) [T sl
j=1 j=1 j=1
i.e. for v € Mp, the continuous function
(4.4.5.1) (FX)" = Ry, x = fo(x) [ ] a1y
j=1

is (F))a-invariant. Let H, : [Z(a)(F,)] — Rso be the function in-
duced from (F,)a-invariant function ([£.4.5.1). For x € [7 (a)(F)], we
write H,(x) for what is technically H,([7 (a)(i,)](x)), where [.7 (a)(i,)] :
(7 (a)(F)] — [Z(a)(F,)] is the induced homomorphism from (F*),-

invariant homomorphism

Lemma 4.4.5.2. — Let x € [Z(a)(F)]. One has that H(x) =
[1, Ho(x).
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Proof. — Let x € (F*)™ be a lift of x. By using the product formula,
one gets that

IT 2. = ] (fv(i)H\ijl)

vEMFp vEMF
=(II r®) II IT@L"
vEMEp vEMp j=1
= H(x)

]

Lemma 4.4.5.3. — Let v € My and suppose that f, = f¥ is the toric
a-homogenous function of weighted degree 1. Let x € [7(a)(F)]. One
has that H¥ (x) > 1.

Proof. — Suppose v € MY. Tt follows from Lemma that there
exists a lift X of [7 (a)(i,)](x) lying in D2. By using that f7|pa = 1 and
that D2 C (O,)", we obtain

v (x) = fF& 7L =] FLY > 1
Jj=1 j=1
Suppose now v € M. Let x € (F)™ be a lift of x. One has that
HE () = £ [ 17
j=1

n

- la ~

= (max((7/) " T] 171"
j=1

=1,...,
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4.5. Metrics induced by models

We use models with enough integral points to define metrics. We

establish that the toric metric comes from models of weighted projective
stacks from [3.2]

4.5.1. — We use O,-points of & (a) to define F,-metrics.

Let v € M%. By an O,-extension of x € #(a)(F,) we mean a pair

(y,t) where y € Z(a)(0,) and t : yp, — x is a 2-isomorphism. Let Sy
be the set of O,-extensions of x € #(a)(F,). Proposition |3.2.2.5| gives

that the set Sx is non-empty for any x € Z(a)(F,).

For x € #(a)(F,) (respectively, x € Z(a)(0,)), we will denote by x
the canonical (Gy,)r,-equivariant morphism X : (G,,)r, — A%, (respec-
tively, the canonical (G,)o,-equivariant morphism X : (G,,)o, — Ap,)
induced by x. One has that ¢* o X(1) = x.

If L is a line bundle on Z(a), a 2-isomorphism t : x — x’, where

x,x € P(a)(F,), induces a linear map L(t) : L(x) = L(x').
Definition 4.5.1.1. — Let L be a line bundle on P(a). Let x €
P(a)(F,) and let £ € L(x). We define

I|[¢||x == sup {inf{lal, |a € F): e a(L(t)(y"L))}}.

(y,t)eSx

We calculate these metrics.
Lemma 4.5.1.2. — Let x € P(a)(F,). Let k be an integer and let
f# : F* — {0} — Rsq be the a-homogenous toric function of weighted
degree k. Let { € O(k)(x) = F,. One has that

1] = SF (1) 7€

Proof. — If t : X’ — x" is a 2-isomorphism in Z(a)(F,), the induced
linear map O(k)(t) : F, = O(k)(x') = O(k)(x") = F, is the linear map
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x — tFx. Tt follows that:
I10||x = sup {inf{|a|,|a € EF) ¥l € atk(y*O(k;))}}

(y:t)€Sx

= sup {inf{lal,|a € F €€ at*((3(1))"(¢d,) OK)}}
(y,t)€Sx

= sup {inf{la|, |a € F} : € at*((1))*Ox)}}
(y,t)€Sx

= sup {inf{la|, |a € FX: (€ at*O,}}
(y,t)eSx

= sup {inf{la|, |a € F*:1cal't*O,}}
(y,t)ESx

= sup {Jt], "¢}
(y,t)eSx

= ¢}, sup {[t],*}.

(y,t)ESx

Note that if (y,t) € Sx, then as t71 - x(1) = y(1) € OF, it follows from

Lemma [4.4.3.1] that v(¢t™!) > r,(X(1)), with the equality if and only if
y(1) € D3. We deduce that

sup {[t];*} = |m [, W) = fEE(1)

(y,t)€Sx
The claim follows. O

We can deduce that:

Corollary 4.5.1.3. — Let v be a finite place of F' and let k be an
integer. The metrics ||-||x from Definition on O(k)(x) for x €
P(a)(F,) define an Fy-metric ||-|| on O(k)| 2y, - The F,-metric ||-|| is
the induced F,-metric from the function x — f#(x) by Lemma .

Proof. — For x € Z(a)(F,), let us pick £ = 1 € O(k)(x). By Lemma
we obtain that [[1||x = f#(X)™! for every x € £(a)(F,). As
ff : F;L — {0} — Ry is continuous (Lemma and satisfies that
f#(t-x) = |t|"f#(x), we deduce that ||-|| is the induced F,-metric from
the function f# using Lemma [4.3.6.6] O

4.6. Finiteness property of quasi-toric heights

We say that a height is a weak Northcott height if on some non empty
open substack % C Z(a) one has that for every B > 0 there are only
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finitely many points in [% (F')] having the height less than B. We estab-
lish that quasi-toric heights are not weak Northcott heights. We improve
it further for heights that are degenerate if the singularities of f, at cer-
tain places v are “logarithmic” along a rational divisor. Let a € ZZ,.

4.6.1. — We define weak Northcott heights.

Definition 4.6.1.1. — Suppose (f, : F' — {0} — Rxg), is a general-
ized adelic family of continuous a-homogenous functions. We say that the
corresponding height H((f,),) s a weak Northcott height if there exists a
non empty open substack % C Z(a) for every B > 0, the set

{x e [Z(F)H((f.)0)(x) < B}

is finite.

Remark 4.6.1.2. — For varieties, it is possible to define heights of its
algebraic points and to normalize them so that an L-point (where L/F
is a finite extension) has the same height viewed as an K-point (where
K/L is a finite extension). Then Northcott theorem at its full strength
guarantees a finiteness on a open subvariety of the number of algebraic
points of bounded degree and bounded height. However, for stacks the
heights which are possible to be normalized in the above way (we will
call them stable heights) fail to satisfy even the above “weak” Northcott
property as we will see shortly. All the “useful” heights are not stable
(i.e. the height of an F-point may changes when the same point is looked
as a K-point). For that reason the “strong” Northcott theorem does not
have a meaningful analogy in the setting of stacks.

4.6.2. — We give heights which are not weak Northcott heights.
Lemma 4.6.2.1. — Suppose n =1 and a € Z>y. The set [P (a)(F)]
15 infinite.

Proof. — One has that [Z(a)(F)] = [7(a)(F)] = F*/(F*),, where
(F*), is the subgroup given by the non-zero a-th powers in F*. There
are infinitely many non-zero principal prime ideals in O (because there
are only finitely many prime ideals in Z which ramify in O). For any
of those principal prime ideals p, let b, € F* be a generator. Note
that for any principal prime ideals py, pp one has that by, b, Vg (FX),,

because a { vy, (bp,by,') = 1, where v, is the valuation corresponding to
pi. It follows that the images in F*/(F*), of different b, are different.

It follows that [Z(a)(F)] = F*/(F*), is infinite. O
Corollary 4.6.2.2. — Suppose that n =1 and a € Z>,.



120 CHAPTER 4. QUASI-TORIC HEIGHTS

1. There are no non empty open substacks of the stack P (a).
2. Let (fy)s be a stable generalized adelic family of a-homogenous func-
tions F, — {0} — Rsg. For every x,y € P(a)(F) one has that

H((fv)v)(x) = H((fv)v)(Y) The height H = H((fv)v) is not a
weak Northcott height.

Proof. — 1. Let % C Z(a) be a non empty open substack. Its preim-
age (¢*)~1 (%) for the G,,-invariant quotient 1-morphism ¢ : G,,, —
A (a) is a non empty Gp,-invariant open subscheme of G,,. Let
r € (q¢*)"(%)(F). Suppose that G,, — (¢*)"*(% ) is non empty and
let z be a geometric point of G, — (¢*)" (% )(F). There exists a
finite extension K of F such that z and all a-th roots of zr—! are
defined over K. Then, if t € K — {0} is an a-th root of 2r~!, one
has that ¢ - r = z, a contradiction with the fact that (¢%)~'(%)
is G,,-invariant. It follows that (¢*)~'(%) = G,, and hence that
U = P(a). The statement follows.

2. Let z,y € Z(a)(F) and let 7,7 : (G,)p, — (A — {0})r, be the
two (G,,)p,-equivariant morphisms defined by = and y. Let K =
F({/z(1)y(1)~1). Note that for t :== {/z(1)y(1)~! one has t*x =y,
thus zx = yx. By Lemma [4.4.2.3] one has that for every x,y €
P(a)(F) one has H(x) = H(y). Thus for every z,w € [Z(a)(F)]
one has H(z) = H(w). Let B > H(w), where w € [Z(a)(F')]. By
Lemmald.6.2.1] the set {z|z € [#(a)(F)] and H(z) < B} is infinite.
Thus H is not a weak Northcott height.

[

4.6.3. — We dedicate the next paragraphs to the proof that the toric
heights are weak Northcott heights. By the property of the boundedness
of the quotients (Lemma , it is then immediate that any quasi-
toric height is a weak Northcott height.

Let Div(F) be the group of fractional ideals of F'. We define

Div(F), := {(2%);| « € Div(F)}.

In this paragraph we will give an estimate to the number of elements of
the abelian group Div(F")"/ Div(F'), of bounded “height”. This will be
useful, as in the next paragraph, we relate the finite part of the height
on 7 (a)(F) with the “height” on Div(F)"/Div(F),. If v € MY, for a
fractional ideal z of Op we define v(z) by setting it to be the exponent
of the prime ideal corresponding to v, in the prime factorization of x.
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We define set
Div(F)a_prim = {x € Div(F)"|x C O and Yv € My, 3j : v(x;) < a;}.
Lemma 4.6.3.1. — 1. Let us define

ry i Div(F)" — Z X — sup (_U(Z‘j)]
Jj=1,...,n a.]
;70

Let x € Div(F)". The fractional ideal
y=y(x) =[] mp®,

0
veEMp

where m,, is the maximal ideal corresponding to v € MY, satisfies
that

(z;y(x)*); € Div(F)a-prim-
2. The restriction of the quotient map
Iiv(F),a : Div(F)" — Div(F)"/ Div(F),

to Div(F)a—prim 15 a bijection Div(F)a_prim — Div(F)"/ Div(F),.
Proof. — 1. Let v € M. For every j one has that

v(xy) = v(x;) + ajry(x) > 0.

x;)

Let i be the index such that % is maximal, then r,(x) < 1+
#:“) We deduce that

v(ziy™) = v(xg) + airy(x) < a;.

Hence, (x;y%); is an element of Div(F")a—prim-

2. We prove the surjectivity of ¢piv(r)a. Let z € Div(F)"/Div(F)a,
and let z € Div(F')" be a lift of z. Then (Z;y(z)%); is a lift of z
belonging to Div(F)a—prim. Let us prove the injectivity. Suppose
that the elements x,r € Div(F)a_pim are lying above the same
element in Div(F)"/ Div(F')a. Then there exists t € Div(F') such
that z; = t%r; for j = 1,...,n. We need to establish that ¢t = (1).
Suppose on the contrary ¢ # (1). One can choose v such that v(t) #
0. If v(t) > 0, then for every j one has

v(z;) = ajv(t) +o(r;) > a;-1+0=aqy,



122 CHAPTER 4. QUASI-TORIC HEIGHTS

which is a contradiction with the fact that x is primitive. If v(t) < 0,
then there exists j such that a; > v(r;), which gives that

v(x;) = aju(t) +v(rj) < aj —a; =0,

which is a contradiction with the fact that x is primitive. We deduce
that t = (1), and hence x = r. Therefore gpiv(r)alDiv(F)a_ i 19
injective. The claim is proven.

]

For every x € Div(F)"/Div(F)a, let us denote by x the unique lift
of x lying in Div(F)a—prim- For x € Div(F)"/ Div(F),, we set

Hygeal(X) := H N(z;)
j=1
where NN is the ideal norm.

Lemma 4.6.3.2. — For m € Z>,, there exists C,, > 0 such that for
every B > 0 one has that

{y € Div(F)Z| [[ N(y) < B} < CuBlog(1+ B)™,

Jj=1

where Divso(F) = {y € Div(F)|y C Or}.
Proof. — We will use the following result: there exists C; > 0 such that

{y € Div(F)|y € Or, N(y) < B} < C1B.

This is proven in [32 Pages 145-150]. We use induction on m. Let
m > 2. For k > 1, we set

g(k) = |{x € Divso(F)™ | 1:[ N(z;) = k}|.
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For B > 1, using Abel’s summation formula, we get that there exists
C! ., Cy > 0 such that

m

[{y € Divzo(F)"| [ [ N(y;) < B}
j=1
= 2.
y€D1V>0(F)
N(ym)<B/ TS N(y))

B T

) 175 N(w)

(yj );n:zleDinO(F)mfl j=1 i
[1725! N(y;)<B

|B] gk
-y 4
LB] [B]-1

1 1
( Zg ; E_F);g(k))
1511 1 1

< m—2 - ; y m—2
2C,Cyo_1log(|B| +1)" 2+ C1B Z 1 7) O log(j + 1)

1 1
< 2C,Cyyqlog(B+1)""2 + C,C,, 1B Z w
J=1
R
< log(B + 1" + Ol Blog(|B))™2 Y ——
— J+ 1
< C! log(B+1)"? + C! Blog(|B|)log(|B] +1)™!

< C,,Blog(B+1)™ .
The statement follows. O]

We can estimate the number of elements of Div(F")"/aDiv(F') having
Higea less than B.

Corollary 4.6.3.3. — There exists C > 0 such that for any B > 0,
one has

[{x € Div(F)"/aDiv(F)| Hieal(x) < B}| < CBlog(1 + B)"*
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Proof. — By Lemma [4.6.3.2] there exists ), > 0 such that:
{x € Div(F)"/ Div(F)a| Higea(x) < B}|

n

= {y € Diva_prim(F)| HN(yj) < B}|

Jj=1

< |{y € Div(F)"ly c Op, [[ N(y;) < B}

j=1

< C,Blog(l+ B)" 1.

The statement is proven. O

4.6.4. — For v € Mp, we let f# : F" — {0} — R.( be the toric a-
homogenous function of weighted degree |a|. Let H# be the correspond-
ing toric height on [Z(a)(F)]. For v € Mg, we let H¥ to be the “local
heights” from i.e. the functions [7(a)(F,)] — Rso induced from

F-invariant maps
(F7)" = Ro, x = fEE) [ 1wl
j=1

In this paragraph we relate HveM% H7 and Higea. For xz € F*| let us

denote by J(z) € Div(F') the fractional ideal xOp. We denote by J" the
product homomorphism (F*)* — Div(F)". Note that if x € (F*), =
{(z%);|z € F*}, then 3"(x) € Div(F),. We denote by J the induced
homomorphism

(4.6.4.1) J:[T()(F)] = (F*)"/(F*)a — Div(F)"/Div(F)a
from (F*),-invariant map

x—J"(x)

xn Div(F)" — Div(F)"/ Div(F)a,

where the second homomorphism is the quotient homomorphism.
Lemma 4.6.4.2. — Let x € [7(a)(F)]. One has that

Higeat(3(x)) = H H#(x).

UEM?;
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Proof. — Let x € (F*)" be a lift of x. It follows from Lemma [4.6.3.1

that
T®) (X)), = (3@) [] (mprC ),
vGM?;
where m, is the maximal ideal corresponding to v € M2, is the unique
lift of J(x) lying in Div(F)a—prim- We can calculate (if 0 # I € Div(F),
we write v([) for the exponent of the prime ideal corresponding to v in
the prime factorization of I):

Higea (3(x) =H ( ) [ @ ®o, m0F>>
Jj=1 vEM%
_ < H ﬂ_v(i](zj +a;ry (I (X) OvaF>
Jj=1 vGMO

H || (VO Fasre(7(X))
J=lveM?

— H |7.‘_U| vmj +a]rvx
UEMOJ

1

= H |7TU|;|aT”(i)ﬁ |7Tv|;1’(5j)
=1

veM%

= H fv(i> H |5j|;1

UEM?;.

= I m#x)

UEM%

U

4.6.5. — In this paragraph we study the kernel of the homomorphism
defined in [£.6.4, Let U be the group of units of F' and let U,
{(u¥);lu € U}. As Uy = (F*)a N U™, we have a canonical identifica-
tion of U™ /U, with a subgroup of [.7 (a)(F')]. Note that U C ker(J) and
thus U™ C ker(J™). It follows that

U™ /U, C ker(3).

[l
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We prove the following fact:
Lemma 4.6.5.1. — Let d = ged(a). One has that

(ker(3) = (U™ /Ua)) = |CLF)|d]],

where C1(F)[d] is the d-torsion subgroup of the class group CI(F').

Proof. — The following “snake diagram” is commutative
1 1 1
b (t%); .
U > U > ker(7J)
Y, + +
F~ (F*)" ——— [T (a)(F)] ——— 1
J Jn J
0 —— Div(F) "% Diy(F)* —— Div(F)"/ Div(F)a

i
S
i
S
)
S

where CI(F) is the class group of . All vertical and horizontal sequences
are exact. The snake lemma provides an exact sequence

t— (%)

U—2U" = ker(3) % CI(F)

t—(ajt);

CI(F)"™ — coker (7).

It follows that ker(c) = Im (U™ — ker(J)) = U™ /U,. The kernel of
CI(F) — CI(F)" t— (a;t);

is given by the subgroup CI(F')[d]. We deduce that

| CUF) (]| = | ()| = | kex(3)/ ker(o)] = (ker(3) : (U"/Ta)).
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4.6.6. — In this paragraph for fixed x € [Z(a)(F)], we bound the
number of elements u € U" /U, for which HveM;o H#(ux) < B.

We define an auxiliary function hy, : (RM7)" — R by

hoo : (Yo)o Z a- (kgiaxn (yv’k - yv—j))]

7777 a a;
vEMS® k J

We define a homomorphism
p: F*X=RYE e log(|xfy),
and a homomorphism
pr(E) = RYE) xe (p(x5));

Lemma 4.6.6.1. — Let x € [T (a)(F)] and let X € (F*)" be a lift
of x. We have that

o (T #£60)) = ol 50
veEMg
Proof. — For v € Mp°, we have that

log(H (x)) = log (max(|ze[,/**)* T ] 17l;")

j=1

= tog ([ ma((7elt/o)* |5,1,")

j=1

= log (] [/ )171,")

j=1

= log ([T max(l/*(71,)

j=1
n ~ 11/ag \ a;
= tow (e (25
j=1 F xj|v !
. 1 T v 1 ~’v
30 (28] _ (1)
g k ag Qj
log(|x log(|z;
o (e (8] _ ()
k ag Q5 J
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We deduce:
10g T v log fAfU
log ([T )= > a-(mgx( () _ log((3 >>)j
veMp? veEMp® k j
— hao(p(3)).

O
Lemma 4.6.6.2. — For j = 1,...,n, let us define a homomorphism
aj + (RMF)® — (RMF)" by

e (YYD
a; : (yi)i = (ai aj)i,

Set a =[]}, aj : (RMF)" — (RM)n?,

1. One has that
ker(ar) = {(a;y);ly € R¥# }.
2. Let K > 0 and let (y;); € (RMF)" be such that hoo(y) < K. One

has that
_K K1MF
CK(Y) € |i 7_:| .
H a; CLj

ihj

3. Suppose L is a lattice of RMF . Then a(L™) is contained in a lattice
of (RMF ),
Proof. — 1. For k,¢ € {1,...,n}, one has that

ker(ay) = {(a;};)i’yg e RM7} = {(a;y)ily € RV}

a; 0o
= {(“Y%) |yx € RMF} = ker(a).
ay,

Therefore

ker(a) = ﬂ ker(a;) = ker(ay) = {(a;y);ly € RMF}.

Jj=1

2. Let £ € {1,...,n}. Note that from

- Yu k yv,‘
hoo(y) = Z a~(m]§1x(ak —a—j]))j<K,
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it follows that for every i € {1,...,n} and every w € My®, one has
that
az(M—M) < aymax (%,k_M) < Z a-( max (M—yv—])) < K,
a; ay k ag Qy By k ag a; J
F

and hence that
yw,i _ M < 5
a; Ay Qy

Similarly, for every ¢ € {1,...,n} and every w € M®, one has that

w w,t K
U_y_’<

Qyp a; Qi
We deduce that
Vi Vi | KK
a; a; (i Qg | yepree
and hence that
Y Yy K K
i)i)=(\———). e | ——,— :
ag((y ) ) (ai W)z [ a; azLJ
Finally, it follows that
K KM%
a((yi)i) = (o((yi)i); € H [_ a; a_} '
i

i,
3. Let (y;); € L™. Then for every i, j one has
i j L
Yi Vi =
a; 4 Hj:l aj

We deduce

It follows that
n n L "
L") = ey, © ()
J

The claim is proven.
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Let us set

W= {(wy)s € RM;O|ZwU =0}

For u € U, we have that

p(u) = (log [ul,), € W,

and hence for u € U", we have that p"(u) = (p(u;)); € W™.
Lemma 4.6.6.3. — The following claims are valid:

1.

2.
3.

/.

5.

The homomorphism p™ is of finite kernel and its image is a lattice
of W™,

One has that W™ Nker(a) = {(a;w);|lw € W}.

One has that rk(ker(a o (p"|gn))) < 71 + ro — 1, where ry is the
number of the real and ry is the number of complex places of F'.
One has that U, C ker(a o (p™|yn)) and the map B : U™ /Uy —
(RMEN induced from Un-invariant map « o (p"|yn), is of finite
kernel.

The image B(U"/Uy) is contained in a lattice of (RMF)"

Proof. — 1. By Dirichlet’s unit theorem, one has that ker(p|y) is fi-

4.

nite and that p(U) is a lattice of W. It follows that ker(p"|yn) =
ker(p|y)™ is finite and that p™(U™) = p(U)™ is a lattice of W™.

. By Lemma [4.6.6.2| one has that ker(a) = {(a;y),;ly € RMF} and

thus
W™ Nker(a) = W" N {(a;);ly € RYF} = {(a;w);|lw € W}.

. By (1), the kernel of p"|ker(acpn|ym) © ker(a o p™|gn) — W™ is finite.

It suffices therefore to show that the image p™(ker(c o p"|yn)) is of
rank no more than r; + 7o — 1. The image p"(ker(a o p™|yn)) is
contained in ker(a) and by (1), it is also contained in the lattice

p"(U™) of W™, thus
p"(ker(ao p"|gn)) C p"(U™) Nker(a) = p™(U™) N W™ Nker(a).

The rank of the intersection of the lattice p™(U™) of W™ and the
vector subspace ker(a) NWW™ of W cannot be more than dim(W"™nN
ker(a)) = dim({(a;w);|w € W}) =11 4+ ry — 1. The claim follows.
Let (u%); € U,, where u € U. We have that

p((u");) = (a;p(w)); € ker(a).
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We deduce U, C ker(ao (p™|yn)). Let us establish that U, is of
finite index in ker(a o (p™|yn)). The map

Uu—u" u = (u");
is of finite kernel and thus

rk(Ua) = tk(U) =1y + 719 — 1 > rk(ker(a o (p"

vn)))-

We conclude that rk(U,) = 1 + 19 — 1 = rk(ker(a o (p™|yn))), and
hence is U, of finite index in ker(ao(p"|y=)). Now, it follows that the
homomorphism 3, which is precisely the composite homomorphism

B:U" Uy — U™/ ker(ao (p"|yn)) — (RMF)™,

is of finite kernel. The claim is proven.

5. One has that (U"/U,) = a(p(U™)). By Lemma one has
that a(p™(U™)) is contained in a lattice of (RM7)"*. The statement
follows.

[

We now prove the principal result of the paragraph.
Lemma 4.6.6.4. — There exists C' > 0 such that for every x €
(7 (a)(F)] and every B > 2, one has that

{u e U™/ U|H (ux) < B} < C(log(B))" "7,

Proof. — For x € [7(a)(F)], let x € (F*)" be a lift of x and for u €
U™ /U,, let u € U™ be a lift of u. For B > 1, by Lemma [4.6.6.1} one has

(4.6.6.5)
{u € U"/U,|H% (ux) < B} = {u € U"/U,|hso(p"(0X)) < B}
={u € U"/Ua|hee(p"(x) + p"(u)) <log(B)}.
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Further, by using Lemmal4.6.6.2/and the fact that ker(/) is finite (Lemma

4.6.6.3|), we obtain for every B > 1 that
(4.6.6.6)
" i~ o/~ —log(B) log(B
~ [{u e U"Uulalr @) + (@) € [BE) LBy
" o~ o~ —log(B) log(B
= [{n € U"/Uula(" @) € ~a(p ) + [P, LEE)
 [fu e U /U18(w) € —a(pr () + [22E) 8By
i j
a; ’ aj :|’U,Z,j)}‘
As B(U™/U,) is a subgroup (Lemma [4.6.6.3) of a lattice of (RM#)"*,
there exists C’ > 0 such that
5(U /Ua) N ( - Oé(p(X)) + [ a; ) aj j|v,i,j)}

[{u € U"/Ua| oo (p" () + p(@)) < log(B)}]
}v,i,j}|
—log(B) log(B)
= |ker(8)] - {BU"/Ua) N (= ap"(X)) + [—log(B) log(B)
(4.6.6.7)
—log(B) log(B)

< O/H (log(B) + log(B))TH-Tz

a; a;
irj ‘ J

< C'TT (tog(B/at1/asyy e
(]
=C'(1/a; + 1/aj)n2(r1+r2)(10g(B))n2(”+T2).
for every B > 2. By combining estimates (4.6.6.5)), (4.6.6.6)) and (4.6.6.7))

we deduce that there exists C' > 0 such that for every B > 2 one has
that

{u e U"/U|H (ux) < B} < C(log(B))" "2
O

4.6.7. — In this paragraph we prove that quasi-toric heights are weak
Northcott heights. We will establish that on the open substack 7 (a)
there are only finitely many isomorphism classes of rational points of
bounded height. We also give an upper estimate for the number of ra-
tional points.
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Proposition 4.6.7.1. — Let (f, : FI' — {0} — Rq), be a quasi-toric
family of a-homogenous functions of weighted degree |a|. The resulting
height H = H((f,),) is a weak Northcott height. There exists C > 0 such
that for every B > 0 one has

[{x € [7(a)(F)]|H(x) < B}| < CBlog(2 + B)"(n+ra+n=l,

Proof. — Let (f#), be the family of toric a-homogenous continuous func-
tions of weighted degree |a|. We firstly prove the statement for the
family (f, = f#),. Recall that 3 : [Z(a)(F)] — Div(F)"/Div(F)a
is the induced homomorphism from Div(F),-invariant homomorphism
(F*)™ — Div(F)" — Div(F)"/ Div(F)a. We set

Hi(x) = ] #fx)

veM%

H?(x) := H H#(x).

veEME®

Recall that for every v € Mg we have H¥(x) > 1. Using this fact and
Lemma [4.6.4.2 for B > 0 we deduce that

(4.6.7.2)
{x € [72(F)]|H”(x) < B}
[{x € [7(a)(F)]|H{ (x) < B, HZ(x) < B}|
{x € 7 (a)(F)|Huea(3(x)) < B, HE(x) < B}|.

For y € Div(F)"/ Div(F)a, let y € Div(F)™ be a lift of y. We have that

<
<

[{x € [7(a)(F)]|Huea(I(x)) < B, HZ(x) < B}|
= |{(y,z) € (Div(F)"/ Div(F)a)xker(3)|Huea(y) < B, HZ (zy) < B}|
and thus by the estimate (4.6.7.2)) we get that

(4.6.7.3) |{x € [Z(a)(F)||H(x) < B}
< {(y.2) € (Div(F)"/ Div(F)a) xker(J)|Huea(y) < B, HZ(zy) < B}|.

Recall from m, that U™ /U, C ker(J). Let § be a set theoretical section
to the quotient map ker(J) — ker(J)/(U"/U,). By Lemma [4.6.5.1, the
group ker(J) /(U™ /U,) is finite, thus is 6 (ker(J) /(U™ /U,)) finite. By using
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the estimate from Lemma 4.6.6.4) we deduce that there exists Cy > 0
such that for every y € Div(F)"/ Div(F'), and every B > 0 one has

(4.6.7.4)
{z € ker(J)|HZ (25) < B}
< [{(u,d) € (U"/Ua) x 3(ker(3)/(U" /Ua))|HE (udy) < log(B)}|
< > {u € U"/Ua|HZ (udy) < log(B)}|
ded(ker(3)/(U™/Ua))
< Co(log(B + 2))"(mtr2),

Corollary gives that there exists C'; > 0 such that for every B > 0

one has that
[{y € Div(F)"/aDiv(F)| Hueu(y) < B}Y| < C1Blog(1 + B)" ™.
We deduce that for every B > 0 one has
{x € 7%(F)|H(x) < B}
< {(y.2)|(y,2) € (Div(F)"/ Div(F)a) x ker(J);
Huea(y) < B, HZ (zy) < B}‘
< [{y & Div(F)"/ Div(F)al Hiaea(y) < B}|(log(B))" "™
< CyCyBlog(1 + B)" log(2 + B)" r1+72)
< CBlog(2 + B)¥ (n+r2)+n-1

for some C' > 0.
Let (f,)», now be any quasi-toric family of a-homogenous continuous

functions of weighted degree |a|. By Lemma [4.4.1.6] there exists C’ > 0
such that

H#(x) < C'H(x) vx € " — {0}.
We deduce that
{x € [7(a)(F)]|H(x) < BY| < |{x € [7(a)(F)]|H(x) < C'B}|
< O(C/B) 10g(2 + C”B)n2(7’1+r2)+n—1
= C"Blog(2 + B)n2(7"1+T2)+n71

for C” > 0 and every B > 0. The statement is proven. O
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4.6.8. — In this paragraph we prove that the finiteness result is in fact
valid on the whole of &(a) and not only on the open substack 7 (a) C
Z(a). Again, we give an upper estimate on the number of rational points
of bounded height. For j € {1,...,n}, we will denote by {j}°, the set
{L,...,n} = {j}. For j € {1,...,n}, we denote by p? : A" — [, A'
the canonical projection and by d; the closed immersion

di: ] A — A (@i)i = ((%)i5, (0);).
ie{j}e

By abuse of notation, we will shorten p/(Z) and write simply p’. The
morphisms d; are G,-equivariant when [] Al is endowed with the
action of G,, given by

ief{j}e

t- (xz)z = (t“lxz)z

For every j, one has that d;'(A" — {0}) = (Hie{j}c A') — {0}. We

deduce G,,-equivariant morphisms

il e a0y - (] AY) —{0} = A” —{o}.

ie{j}e

Let d; denotes the induced closed immersion of stacks 2 (p/(a)) — Z(a)
from the G,,-equivariant morphism dj’(nie{j}c Al)—{0}-
Lemma 4.6.8.1. — Let j € {1,...,n}.

1. Let v € Mp and let f : F' — {0} — Rso be an a-homogenous
continuous function of weighted degree b € Zso. The function
fo(di(Fy)) = (Tiegyye Fv) — {0} — Cois P’ (a)-homogenous, con-
tinuous and of weighted degree b. Moreover, if f is the toric a-
homogenous function of weighted degree b, then f o (d;(F,)) is the
toric a-homogenous of weighted degree b.

2. Let (g, : F' —{0} = R>¢), be a quasi-toric family of a-homogenous
continuous functions of weighted degree b and let H = H((gy),) be
the corresponding height. The family g, o d;(F,) is a degree b quasi-
toric family of pr(Z)(a)-homogenous continuous functions and the
corresponding height HY = H((g, o d;(F,)),) satisfies that

1 = H o (4,(F)).
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3. Leti: T (a) — Z(a) be the inclusion induced by the G,,-invariant
subscheme G}t C A" —{0}. The map

([Tl TTEE) - [Ti2@ @) @) E) 17 @)(F)] = [2(2)(F)]

j=1 j=1
18 surjective.

Proof. — 1. The function fod;(F),) is continuous, as it coincides with
the restriction f|(1—h€{j}c F,)—{oy and [ is continuous. Let t € F* and

let (2)iegjye € ([Licgjye Fo) — {0} We have that

Jdi(F) (- (za)iegiye)) = f(di(Fo) (1" T:)ieqsye))
= f((t"z:)icgjye, (0);)
= [t15f ((z:)iegsye, (0);)
= [t5(f o d;(Fo))((z)iegsye),

thus fod;(F,) is p’(a) homogenous of weighted degree b. Suppose f
is the toric a-homogenous of weighted degree b, that is

fy) = |m|, "), where r2(y) = sup —v(yj)w’

if v is finite and

fy) = (max (Jy;l,/*))™"
if v is infinite. Suppose v is finite. Let x € (J];c(;yc £v) — {0}. One
has that d;(F,)(x) = ((2;)iegs}e, (0);) and that

(1% o (d;(F.))(x) = sup [ﬂ} P (),
T

because the j-th coordinate of d;(F),)(x) is zero. It follows that the
function f o (d;(F},)) given by

Pj (a) (x)

x > f(dj(Fy) (%)) = o], "GO0 = [0

1s toric.
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Suppose v is infinite. The toric p’(a)-homogenous function of
weighted degree b is the function

( H F,) — {0} = Ry x > max (|z] /).
i€file ebr
For x € (J[;c(jyc £v) — {0}, we have that

F(d;(F)(x)) = max (Jily/*) = 1" (),

because the j-th coordinate of d;(F,)(x) is zero. The claim follows.

2. By (1), for every v € Mp, the function g, o d;(F,) is a continuous
p1(Z)(a)-homogenous of weighted degree b and if g, is toric, then
gy © d(F,) is toric of the same weighted degree. It follows that
the family (g, o d/(F,)), is quasi-toric of the degree b. Let y €
(2(p(a))(F,)] and let y € ([[icq;y F) — {0} be a lift. Then
& (F)((W)iegjye) is a lift of di(F)(y). We have that

H(y) = [] (go0d’(F = [I 9(@(F)F)) = H((g.).)(y) = H(y).

vEMp vEMp

The claim follows.
3. Let x € [#(a)(F)] and let x € F"—{0} be a lift of x. If x € (F*)",

~

then x = [i(F)(¢®(F)(X))], where ¢* is the quotient 1-morphism
G, — 7 (a). Suppose at least one coordinate, say the j-th coordi-
nate, of X is equal to zero. Then,

X = d;(F)((Zi)iegjye)
and so _

x 2 dj(q” @ ((@)iegsye).
where ¢”’®) : ((TLiegj-AY) — {0}) = 2(p/(a)), is the quotient 1-
morphism. The claim follows.

[]

Theorem 4.6.8.2. — Let n > 1 be an integer and let a € Z%,. Let
(fo: F"—{0} = R.q), be a quasi-toric family of a-homogenous functions
of weighted degree |a| and let H = H((f,)v)-

1. There exists C' > 0 such that for every B > 0 one has that

{x € [Z(a)(F)] - [7(2)(F )]lH( ) < B}|
< CB ]og(2 + B I\X:\nl = )”2(T1+r2)+n—1‘
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2. There exists C' > 0 such that for every B > 0 one has that
{x € [2(a)(F)]|H(x) < B}| < CBlog(2 + B)" (n+ra)tn-1,

Proof. — We prove the both statements simultaneously. We apply the
induction on n. When n = 1, one has that &(a) = 7 (a). Thus the first
claim is trivial and the second is proven in Proposition [4.6.7.1]

Suppose that the both claims are true for some n — 1 > 0 and let us
prove them for n. The map

n n

([T e - [Tz @ @ @) )] 7 @)F)] = [2(a)(F)]

j=1 j=1
is surjective by Lemma [£.6.8.1] For j =1,...,n, by Lemma[4.6.8.1] one
has that

Hj = H((fv © (dj(Fv)))v) =H oaj) where Hj = H((fv © (dj(Fv>))v)~
We deduce that
(4.6.8.3) |{x € [Z(a)(F)||H(x) < B}|

<[{xe[F@F)]H(x) < B}I+Z {x € [2(p(a))(F)]|H (x) < B}|.

For j = 1,...,n, by Lemma 4.6.8.1] the height H7 is defined by degree
|]a] quasi-toric family. The family

(g0 0 (d;(F,) T,

is quasi-toric of degree [p/(a)| and the resulting height H' = H((g, o

(d;(F,)) e )o) is related to H as follows
e (Hj)lpjl*g?)‘

By the induction hypothesis, we deduce that for every 7 = 1,...,n there
exists C; > 0 such that for every B > 1 one has that
{x € [Z2(¥(a))(F)]|H (x) < B}|
Ip? (=) Ip? (2]

=|{xe[Z@(@)E)|H (x) = < B =}

7 (a)]
al }
lp? (a 7 (a)|
fal

= [{x € [2(F () (M| H'(x) < B
S CJ’BJ log(2 + B Tl )"2(T1+r2)+n71.
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It follows that
{x € [Z(a)(F)] — [ (a)(F)]|H(x) < B}
=[x e [Z(a)(F)][H(x) < B} — {x € [7(a)(F)]|H(x) < B}|

< Z {x € [2(p(a))(F)]|H (x) < B}

1p7 (a)|

" v (a)]
<> B log(2+ B R

j=1

|a] —min; a;

|a] —min; a;
<C"B" R log(24+ BT )

for C” > 0. Thus the first claim is proven for n. By Proposition 4.6.7.1]
there exists C’ > 0 such that

(4684) [{x € [Z(@)(F))|H(x) < BY| < C'Blog(2 + By 172+,

By combining the estimates (4.6.8.3)), (4.6.8.4) and the first claim, we get
that there exists C' > 0 such that for every B > 1 one has that

{x € [2(a)(F)]|H(x) < B}| < CBlog(2 + B)"™ (=1,
The statement is proven. O
Remark 4.6.8.5. — In Chapter [§, we establish that
{x € [Z(a)(F)]|H(x) < B} ~ CB,

for some C' > 0.

4.7. Weak Northcott property for singular heights

In this section we allow finitely many f, to take values in 0 but we re-
quire that f, ! admits a “logarithmic singularity” over a rational divisor.
We establish that corresponding heights are weak Northcott heights.

4.7.1. — In this paragraph we study heights that are obtained when v-
adic metric is singular. We require the singularities to be “logarithmic”
over a rational divisor. We establish a finiteness result on the number of
points of bounded height outside of the divisor.

Definition 4.7.1.1. — Let P € F[Xy,...,X,] be a non-constant a-
homogenous polynomial and let S be a finite set of places. A collection of
continuous G, (F,)-invariant functions g, : D(P)(F,) — Ry forv € S,



140 CHAPTER 4. QUASI-TORIC HEIGHTS

will be said to be logarithmically suitable if the following condition is sat-
isfied: there exists a set {Q;}; of non-constant a-homogenous polynomials
Q; € F[Xy,...,X,] such that Q; and P have no common factors of de-
gree at least 1, such that Z({Q;};) = {0} and such that for every v € S
and every i there exist o ;, By > 0 such that

|P<X)’dega(Q)/dega(P) Bo,i
gv(x) < o, max ( — log ( Y ) , 1)
Qi(%)]w

for every x € D(PQ;)(F,).

By the quasi-compactness of the scheme A" one can always ask for
the set {Q;}; to be finite.

Forv € Mp, let f# : F"—{0} — Ry be the v-adic toric a-homogenous
continuous function of weighted degree d > 1. Let P € F[Xy,..., X,] be
a non-constant a-homogenous polynomial. Let S be a finite set of places
and let (g,), be a logarithmically suitable family of continuous G, (F,)-
invariant functions. For v € S we define f, : F' — {0} — R>( by

f (X) ._ fjégzjl(x) if x € D<P)(Fv)v
0 if x € Z(P)(F,).

and for v € My — S we let f, = f¥. For every v € Mp, the function
fo i E'—{0} — Rsq is an a-homogenous continuous function of weighted
degree d > 1. We define height H = H((f,),) and H* = H((f¥))
on Z(a)(F). We recall that for every x € (a)(F), one has that
H#(x) > 1 by Lemma[4.4.3.7]

Motivated by [55] Proposition 2.1], we establish that:
Proposition 4.7.1.2. — There exist C, 3 > 0 such that for all x €
D(P)(F) one has

H(x) > CH*(x)log(1 + H*(x))™".

Proof. — For x € D(P)(F), let x : G,, — A™ — {0} be the G,,-
equivariant morphism over F' defined by x. For simplicity we will write x
for x(1).

There exists a finite set of non-constant a-homogenous polynomi-
als {Q;}; which have no common factors with P, of degree at least 1

such that Z({Q;};) = {0}, and such that for every v € S and every 1,
there exist «;,, i, such that

deg,(Q)/ deg,(P)\ Biw
|P<X)’Ug( )/ deg, ( )) 1)
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for every x € D(PQ;)(F,). Fix an index i. For x € D(Q;P)(F), using
the fact that f, = f# for v ¢ S we deduce that

Hx)= ] 1.5

UGMF
= 1[I #®][]s®
vEMp vES
# . |P( >|dega(Ql)/dega(P) _511,1'
e << ) )
1o SR
~ 7/81)2'
# -1 ’Q1<X)’U ,
X) HSO{’UJ' max <10g (lp(§)|dega(Ql)/dega(P) ’ 1
ve v
~ _/B’U [3
T Q). |
x) Hga log (max (’ P (30) |8 (@ dega () €
ve v
~ _51)1'
. Q). |
Z OQH (X) Hslog (maX (|P( )‘dega Q )/dega(P) 76 ’
ve
where @ = Hvesa For two polynomials A, B € F[X;,...,X,] of

the same weighted degree, we denote by J(A, B) : #(a) — P!, the 1-

morphism of stacks given by Lemma [£.4.4.4] Lemma gives that
for every v € S, there exists 7, > 1 such that for every x € D(Q;P)(F)

one has that :

|Qi(X)] ) e) < emax< |Qi(X)] 1)

tax <|P(§) |gega(Qi)/dega(P ! |P(§)|gega(Qi)/dega(P) )

|Qi(§)|gega(1)) ' 1/ dega(P)
- ‘P(i) |dega(Qi) ’

deg, (P)
<e H max(le(X) i 1

‘dega(Q )

> 1/ deg, (P)

UGMF
= eHp1 (F(Q%a(P) | pieza(Q)) (x))1/ dega(P)
< %H#( )dega(Q)
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For v € S let us set 6, = max(log(y,),deg,(Q;)). We have for every
x € D(Q,;P)(F) that

H(x) > a;H* (x) [ [ log(y, H# (x)38a(@))~Fe

veSs

= o, H (x) [ | (log(r) + deg, (Q:) log(H* (x))) ™"

vES

> OéiH# (x) H 5;5714' (1 + log(H# (X))) —Bu,i
veES

= C;H*(x)log(1 + H#(x)) ™%,

where we have set C; = o [[,cq 00 Pvi and Bi =Y pes Bui- We have that
U; D(Q;P) = D(P). Thus for C' = min; C; and = max f3; we get

H(x) > CH*log(1 + H*(x)) ™",
for every x € D(P)(F). O
Corollary 4.7.1.8. — Let (f,), be as above and let H be the corre-
sponding height. The height H is a weak Northcott height. Moreover, for

every € > 0, there exists C = C(e) > 0 such that for every B > 1 one
has that

[{x € [D(P)(F)]|H(x) < B}| < CB'**

and that

[{x € [D(P)(F)] N ([Z(a)(F)] — [7(a)(F)])|H(x) < B}
(1+€)(Ja] ~min; a;)

<CB al

Proof. — By Proposition [4.7.1.2] there exist C', N > 0, such that for
every X € [D(P)(F)] one has that

H(x) > C'H*(x)log(1 + H#(x))™
and thus there exists A > 0 and IL—i-e > ¢ > 0 such that

H(x) > AH# (x)'7° vx € [D(P)(F)].
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Using Theorem |4.6.8.2 one has hence that there exists C' > 0 such that
{x € [D(P)(F)]|H(x) < B}|
< [{x € [D(P)(M)|AH*(x)'~* < B}
= |{x € [D((P)(F)|H"(x) < A~V B0y
< A~V/(1=9) p1/(1-9) log(2 + A—1/(1—5)B1/(1—6))n2(r1+r2)+n—1
< OB
and such that
{x € [DP)(F)] N ([Z(a)(F)] - [7(a)(F)])|H(x) < B}|
< [{x € [D(P)(F)]|AH*(x)'~* < B}
= [{x € [D(P)F)] N ([2(a)(F)] - [ 7 (a)(F)))|H#(x) < A" 75 B3}
(la|—min; a;) |a|—min; a;

< (A7'B) ol log(2 4 (A7 B) G=aar ) (ritra) et

(1+e)(\a\—minj aj)

< CB fal

The statement is proven. O






CHAPTER 5

MEASURES

Let n > 1 be an integer. Let a € Z2,. Recall that ?(a) is the quotient
stack for the action

G x (A" —{0}) — A" — {0} t-x=(tYz;),.

The open subscheme GI', C A™ — {0} is G,,-invariant for this action
and 7 (a) is defined to be the quotient GJ:,/G,,. In this chapter we
define measures on [Z(a)(F,)] and [T (a)(F,)] for v € Mp. We use
these measures to define Peyre’s constant as in [47]. Later in the section
we define a Haar measure on the adelic space [7 (a)(Ar)] and we define
and calculate the corresponding Tamagawa number.

5.1. Quotient measures

5.1.1. — We make several conventions on measures that will be used
throughout the chapter. Let X be a locally compact topological space.
Let €°(X,C) be the set of continuous compactly supported functions
on X. We endow €2°(X,C) with the uniform convergence topology. By
a measure on X [9, Chapter IIT, §1, n° 3, Definition 2], we mean a con-
tinuous linear functional p : €2(X,C) — C .

Let 1 be a measure on X. Let L'(X, u) be the Banach space of ab-
solutely p-integrable complex valued functions modulo negligible func-
tions [9, Chapter IV, §3, n4, Definition 2]. By abuse of the termi-
nology, we may call an element f € L'(X,u) a function and for a
function g : X — C which is p-absolutely integrable we may write
g € L'(X,p). For f e L'Y(X,p), we denote by [, fu the integral of f
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against p [9, Chapter IV, §4, n°1, Definition 1]. If U C X is a sub-
set, such that 1y x € LY(X, pn), we write u(U) for u(lyx) (where 1y x
stands for the characteristic function of U in X, written sometimes as
1y). Such U will be said to be u-measurable.

5.1.2. — We recall some facts about quotient measures from [10, Chap-
ter VII, §2]. Let X be a locally compact Hausdorff topological space.
Let G be a locally compact topological group acting on the right on X
continuously and properly (that is the action X x G — X is continuous
and proper). The quotient topological space X/G is separated [7], Chap-
ter 111, §2, n°2, Proposition 3] and locally compact [7, Chapter I, §10,
n" 4, Proposition 10].

Let dg be a left Haar measure on GG. Let Ag : G — Ry be the
modular function of G (we recall the definition of the modular function:
according to [10, Chapter VII, §1, n°1, Formula (11)], for every h € G,
the association A — dg(Ah), for dg-measurable subset A of G, is a left
Haar measure on GG, hence, by the unicity of the Haar measure there exists
a unique positive real number Ag(h) such that for every dg-measurable
subset A of G, one has that dg(Ag) = Ag(g)dg(A); further, it does not
depend on the choice of the Haar measure dg).

Proposition 5.1.2.1 ([10, Chapter VII, §2, n° 2, Proposition 1])
For x € X/G, let T € X be a lift of x. Let ¢ : X — C be a

compactly supported continuous function. For everyy € X, one has that

g — ¢(yg) € L'(G,C). Moreover, for x € X/G, the value of [, ¢(Tg)dyg

does not depend on the choice of T. The function ¢* : x +— fG o(zg)dg is

continuous and compactly supported.

Proposition 5.1.2.2 ([10, Chapter VII, §2, n°2, Proposition 4])

1. Let p be a measure on X such that for every p-measurable U one has
that W(Ug) = Ag(g)(U) (such measures will be called G-invariant
measures). There exists a unique measure pu/dg on X/G such that
for every compactly supported function ¢ : X — C one has that

/X o1 = /X ) ufds).

2. Let i/ be a measure on X/G. There ezists a unique G-invariant
measure j1 on X such that p/dg = p'.

Let 7 : X — X/G be the quotient map. We quote some more propo-
sitions from [10].
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Proposition 5.1.2.3 ([10, Chapter VII, §2, n°4, Proposition 8])

Suppose that X/G is paracompact. Let X > 0. There ezists a con-
tinuous function k : X — Rsq, the support of which has a compact
intersection with the preimage under m of any compact of X/G and such
that for any v € X one has that

/Gk(:cg)dg =\

Of course, when X/G is compact, the condition on the support of k
becomes that it is compact.
Lemma 5.1.2.4. — Let f : X — C be a continuous G-invariant func-
tion. Let f : X/G — C be the function induced from f. One has that
(fr)/dg = (f)(u/dg).
Proof. — Let ¢ : X — C be a compactly supported continuous function.
The function ¢f is compactly supported. Let z € X/G and let 7 € X
be its lift. One has that

/(bfa:gdg—/d)xg (Zg)d /qﬁwg
- f)(2).
It follows that: (¢ - f)* = ¢* - f. We deduce that:

/ (%) (fufdg) = / @)(f1)
X/G X
- /X (6f)u
- / (6~ £))(11/dg)
X/G
- / (& F)(u/dg)
X/G
- / &)((F) (1) dg)).
X/G
It follows that (fu/dg) = (f)(u/dg). O

Proposition 5.1.2.5 ([10, Chapter VII, §2, n°4, Proposition 9])
Let us suppose that X/G is paracompact. Let k : X — Rsq be a
continuous function, the support of which has compact intersection with



148 CHAPTER 5. MEASURES

the preimage under w of any compact of X/G and such that for every

xz € X one has
/ k(xzg)dg = 1.
G

Then for any function h : X/G — C one has that h € L'(X/G, u/dg) if
and only if k- (how) € LY X, n) and if h € LY X/G, u/dg) then

/ Winfdg) = [ ko

5.1.3. — We recall the notion of the quotient measure when we have
inclusion of locally compact abelian groups.

Let GG is an abelian locally compact Hausdorff topological group. The
action of G x G — G of G on G given by the multiplication is proper

(because the induced map G x G M) G x G is a homeomorphism,

where m¢ is the multiplication map and p, the projection to the second
coordinate). Thus if A a closed subgroup, the action of A on G, given
by the restriction of the action of G, is proper by [7, Chapter III, §4,
n’ 1, Example 1]. Let dg be a Haar measure on G and let da be a
Haar measure on A. By [10, Chapter VII, §2, n°7, Proposition 10], the
quotient measure dg/da is a Haar measure on G//A.

5.1.4. — In this paragraph we recall the theory of [43] on the Euler
characteristics of complexes of locally compact abelian groups endowed
with Haar measures.

A homomorphism of topological groups is said to be strict (see [T,
Chapter 111, §2, n°8, Definition 1]), if the induced homomorphism to its
image is open. By [8, Chapter IX, §5, n°3, Corollary of Proposition 6],
any morphism p : A — B of locally compact abelian groups which are
countable at infinity is strict if and only if the induced homomorphism
A/ ker(p) — Im(p) is an isomorphism. Consider a complex C, of locally
compact abelian groups which are countable at infinity

dn dn
e Oy 50 Cy - -

such that the following conditions are satisfied:

— the homomorphisms d,, are continuous for every n € Z,
— the complex is bounded and of finite homology (i.e. ker(d,)/Im(d, 1)
is a finite group for every n € Z.)
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Using this conditions, Oesterlé establishes that the homomorphisms d,,
are strict. Suppose that for every n € 7Z, we are given a Haar measure
A, on C, and that for almost all n the measure )\, is normalized by
A (Cy) = 1. For every n € Z, let us choose Haar measures v, and 6,, on
ker(d,) and Im(d,), respectively. Let «, be the volume of the finite set
ker(d,)/Im(d,1) for the quotient measure v,/60,+1. Let 8, > 0 be the
unique real number such that A\, /v, = /5,0, (after identifying C,,/ ker(d,,)
and Im(d,) via the isomorphism induced from d,). Oesterlé defines the

number
X(Co) = X(Co, (An)n) = H(O‘nﬁn)(_l)na
nez
which does not depend on the choice of v, and 6,,. We may say that C,
is of trivial measure Euler-Poincaré characteristic if x(C,) = 1.
Lemma 5.1.4.1 (Oesterlé, [43 Examples 2 and 3])
The following claims are valid:

1. Suppose that every C,, is compact. Then

x(Co) = [ Aa(C)"
nez
2. Suppose that every C,, is discrete and that \,, are counting measures.
One has that

X(Co) = [ ]lker(dy) : Im(dpyr)] D"

nel

Proposition 5.1.4.2 (Oesterlé, [43, Proposition 1, n°4])
Consider a bicomplex

d/

n,m—1

i Cn,m—l ;> Cn—l,m—l —_—

1/ 1
dn,m dn—l,m
d/

n,m

i — On,m On—l,m —_—

of locally compact abelian groups endowed with Haar measures, such that
Ch.m 18 the trivial group for |n|+ |m| big enough and such that for every



150 CHAPTER 5. MEASURES

n € Z and every m € Z, the complexes C,, o and C,,, satisfy the above
conditions. One has that

H X(Cn,->(71)n = H X(Co,m)(il)m-

nez meZ

We end the paragraph by a lemma that will be used on several occa-
sions.
Lemma 5.1.4.3. — Let e : H — G be a proper continuous homomor-
phism of locally compact Hausdorff abelian topological groups. Let dg and
dh be Haar measures on G and H. Consider the left action of H on G

HxG—d h-g=e(h)g.

1. The action is continuous and proper. The quotient G/H identifies
with the quotient group G/e(H).

2. The group K := ker(€) is compact and let dk be the probability Haar
measure on . We have an equality of measures on e(H):

e.(dh) = dh/dk.

3. The subgroup e(H) is closed in G. The measure dg/dh is the quo-
tient Haar measure dg/e.(dh).

4. Suppose that H and G are countable at infinity. The exact sequence
1—- K — H—G— G/H — 1 is of trivial measure Euler-Poincaré
characteristics, when the measures on K, H, G and G/H are dk,
dh, dg and dg/dh.

Proof. — 1. The continuity of the group action follows from the conti-
nuity of the multiplication by an element in G. The action is proper,
as one has a Cartesian diagram

Gxﬂ@ﬁﬁ+@%wDGxG

D2

H G,

€

where the right vertical homomorphism is given by (g1, g2) — g7 " .
The canonical homomorphism G — G/¢(H) is continuous and open
and induces a continuous and open map G/H — G/e¢(H). The map
is bijective because one has an equality of sets G/H = G/e(H).
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We deduce a topological identification G/H = G/e(H). The claim
follows.

. The map € is proper and it follows that K is a compact sub-
group of H. The quotient space ¢(H) = H/ker(e) is paracom-
pact [9, Chapter III, §4, n®6, Proposition 13]. Note that the con-
stant function H — C given by h + 1, satisfies the condition that
its support (i.e. the whole of H) has compact intersection with
the preimage ¢ !(A) for every compact A C €(H), because € is
proper. Now, by Proposition [5.1.2.5] for every r : e(H) — C with
r € LY(e(H),dh/dk) we have

/E(H)(r)(dh/dk:) Z/H(Toe)'ldh=/H(roe)dh,

which means precisely that e,(dh) = dh/dk.

. The subgroup €(H) is closed as € is a proper map. Let ¢ : G/H —
C be a compactly supported function. By [10, Chapter VII, §2,
n° 1, Proposition 2], there exists a compactly supported continuous
function ® : G — C, such that for any x € G/H and any lift 7 € G
of x, we have

o(x) = /H & (hx)dh.
Note that
o(x) :/ O (hz)e,(dh).
e(H)
We have that

dg/dh) = O dg = dg/e.(dh)).
/G/Hw)( g/dh) /G g /G/G(H)<¢>< g/ e.(dh)

It follows that dg/dh = dg/e.(dh) as claimed.
. The short exact sequences

1 > K > H >y e(H) —— 1

1 —— €(H) > G > G/H — 1

are of trivial measure Euler-Poincaré characteristics by (2) and (3).
Thus 1 - K - H - G — G/H — 1 is of trivial measure Euler-
Poincaré characteristics.

[l
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5.2. Measures on [Z(a)(F,)]

For v € Mp, the abelian locally compact group F,* acts on F'—{0} by
t-x = (t%x;);. This action is proper by Proposition[3.3.4.1] By Corollary
3.3.3.2] the quotient (F —{0})/F. identifies with [#(a)(F,)]. The goal
of this section is to define measures on [Z(a)g, (F,)] = [#(a)(F,)] for
v € Mp. The topological spaces [Z?(a)(F,)] are Hausdorff and compact
by Proposition[3.3.4.5 Let us denote by ¢ the quotient maps F/'—{0} —
(P (a)(F,)] for v € Mp.

5.2.1. — In this paragraph, we define measure on F,,.
For v € My, let dx, be the Haar measure on F, normalized by

— dz,(O0,) = 1 if v is finite,
— dx, is the Lebesgue measure on F, = R if v is real,

— dx, = 2dzdy on F, = C = R? if v is complex.
For v € Mp, let d*z, be the Haar measure ‘gfrv on FX. For v € My, it
satisfies that

d*x,(0)) = / 1d*z, = / ldz, =1 —|myls.
o5 o

v

When v is real, the measure d*z, identifies with the measure
dx
d'r = —
|z

on R* and when v is complex, the measure d*z, identifies with the mea-

sure
2dxdy

on C? — {0} @ R? — {0}. Let us set
Fo1:={x € F,||z|, =1},
so that F},; = {£1} when v is real and
Foi=8"={(,y) e R*|z* +4* =1}

when v is complex. Recall that we have set n, = 1 if v is a real place
and let n, = 2 if v is complex. The exact sequence

F,

vty px 2l 01,

1} > F,, -
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where ip, , is the inclusion map, admits a section
po i Rog — B s /e
The section induces a continuous isomorphism
(5.2.1.1) P Rog X Fyp — F (r,2) = py(r)z.
The inverse of this homomorphism is given by
(5.2.1.2) FY —Rog X Fyq z = (|2]y, py(J2]y) ™)

and is also continuous. We deduce that p, is an isomorphism of topolog-
ical groups. Let us set A, to be the counting measure on {£1} when v
is real and let us set A, ; to be the Haar measure on F, ; normalized by
A1 (Fy1) = 2m when v is complex.
Lemma 5.2.1.3. — Let v € M. One has that and that (p,).(dr x
)\v,l) = dx,|px and that (ﬁv)*(d*r X )\v,l) = d*z,.
Proof. — We will firstly verify that (ﬁv)*(d*r X )\v,l) = d*z,. Suppose v
is real. Both measures are Haar measures on F, so it suffices to check
their equality on a single Borel subset of F, = R*, and we will verify it
n [1,2]. We have that [1,2] = p,({1} x [1,2]) and
d*z,([1,2]) = d*=([1,2]) = 1-d*z([1, 2])
Aoa({1}) - d*r([1,2])
= (Ao x d'r) ({1} x [1,2])
= ((Bo)«(d™r x A1) ) (2o ({1} x [1,2])).

Suppose v is complex. Note that A, ; is the pushforward measure for the
map [0, 27[— S* given by

0 e = (cos(#),sin(0)).
Hence, the map
St x Ryg — R? — {0} (z,7) — zrt/?
is measure preserving if and only if the map
[0, 27[xRso — R? — {0} (0,7) — (r'/% cos(6),7/?sin(h))

is measure preserving. The corresponding Jacobian matrix is

—r1/2sin(0)  $r=1/2cos(0)
r/2cos(0)  $r~/?sin(6)
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and its determinant equals —%. It follows that
dady = (p,)«(|—1/2|drd) = (p,).((1/2)drdo),
and hence that
N 2dzdy -
o= 55— G

224y

2. (1/2)drdd

) = G-t

We have proven that (ﬁv)*(d*r X )\UJ) = d*xz,.

Let us now verify that (p,).(dr x A1) = diy|px. One has that
|pu(1, 2)|, = 1 for every (r,z) € Ryg X F, 1. For a Borel subset U C F*,
one has that

0y |y (U) = / 2 lod'z, = / Py 2)o(p)a (&7 X Au)

= / r(d'r X A1)
Ay (U)

= / dr x >\v,1
v (U)

= (dr x A1) (U).
It follows that dz,|px = (pu)«(dr X A, 1). The statement is proven. [

We will often write dx and d*x for dx, and d*z,, respectively.

5.2.2. — In this paragraph we will define compactly supported contin-
uous functions k2 : F' — {0} — R>o which satisfy that their integrals
in every orbit for the weighted action of G,,(F,) on F' — {0} are equal
to 1. These functions will enable us to use Proposition [5.1.2.5

For every v € MY, recall that

DI ={y € (0,)"3) :v(y;) < a;} = (O)" =73 Oy X -+ x 3" O,

and set

ja . 1Darr—{0)
v 1-— ”/Tv’v

Lemma 5.2.2.1. — Letv € M} and let x € F"'—{0}. The function k?
15 compactly supported, locally constant and one has that

/ E3(t-x)d't = 1.
Py
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Proof. — We have seen in Lemma that the subset D2 is open,
closed and compact subset of F;' — {0}. We conclude that 1pa is locally
constant and compactly supported, hence is such k3. In Lemma
we have defined r, : F* — {0} — Z by

One has that
t-xeD? «= xect 1. D = xect g (7. Da),

v

Lemma [4.4.3.1| gives that x € m, ™ . D2 and that if (u- (7, "™ - D)) N
(ry ™) . D2) £ () then v(u) = 0. We conclude v(t'73"™) = 0 and hence

{t|t -x € D3} = {t|v(t) = ry(x)}.
We deduce
d't{t € FX|t-x € D2} = d*t(7"™0) =1 — |1,
One has further that

1pa(t- d*t({t € FX|t- D2
/ ki(t~x)d*t:/ Loglt ) X)d*t: Ate Fft-xeDi})
ES F,

'UX 1 - |7T’U|U ]- - ’ﬂ-vlv

The claim is proven. O

The following auxiliary lemma will be used in the definition of k3 for v
infinite.
Lemma 5.2.2.2. — Let ag, and ag, be continuous actions of topolog-
ical groups G and G on a topological space X. Suppose the actions are
permutable, that is for every g, € Gy, every go € Gy and every x € X
one has g1gox = g2g1x.

1. The map
aG1XG2IG1XG2XX—>X
(91, 92, ) = g1(ga)

defines a continuous action of Gy x Gy on X.
2. There exists a continuous action of Gy on X /Gy such that

92 - [7]a, = [g27]c,

for every x € X, where [x|g, is the image of x in X/G1 for the
quotient map.
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3. The canonical map X/Gy — X/(G1 X Gg) is open, continuous, sur-
jective and Gy-invariant. The induced map (X/G1)/Gy — X/(G1 X

Gs) is a homeomorphism.

Proof. — 1. The map ag, xq, factorizes as ag, o (Idg, Xag,) thus is
continuous. If eq,, eq, are neutral elements of Gy and G, respec-
tively, by definition one has (eq,, eq,) - ¢ = eg,ec,2 = x. Moreover,
if (g1, 92) and (g1, g5) are elements of Gy x Gy, then for x € X one
has

(91915 9295)7 = (9191)(92952) = 91((91(92952))) = 91(92(91957))
= (91,92)(9/1795)55-

We deduce that ag, xg, is a continuous action of G; x Gy on X.

2. This is proven in [7, Chapter ITI, §4, n°4, Remark to Proposition
11].

3. The map X/G; — X/(Gy x G3) is the induced map from G-
invariant continuous, open and surjective map X — X/(G; x G3),
thus itself is continuous, open and surjective. If g € Gy and z € X,
one has that

[92 ’ [:C]Gl]GHXGz - [[ng]Gl]GIXG2 = [ng]G1><G2 = [x]GHXsz

where [-]g,xg, is the image in X/(G; x G3). Hence, X/G; —
X/(Gy x G3) is continuous. Suppose now elements [z]g, and [y]q,
have the same image in X/(G; x Gs). This means precisely that
there exists (g1,92) € G1 X Go such that (g1,¢92) - * = g1g2x = V.
We deduce that

We, = [2017]6, = [927]a, = g2[7]a,

i.e. [z]g, and [y, are in the same orbit of G3. We deduce that the
induced map ((X/G1)/G2) — (X/(G1 x G2)) is bijective. It follows
that it is a homeomorphism.

[l

Lemma 5.2.2.3. — Letv € Mp°. There exists a continuous compactly
supported function k3 : F' — {0} — R, which is F,-invariant and
such that for every x € F)' — {0} one has that

/]R K2 (pu(t) - 3)d"t = —

/\U,I(Fv,l) ’
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where p, : Rog — FX is given by p, : v — r'/™ . Such function satisfies
furthermore for every x € F' — {0} that

/ E2(t-x)d"t = 1.
FX
Proof. — The isomorphism ([5.2.1.1])

po:Rog x Fyy = F (ryx) — py(r)zx

satisfies (py)«(d*r x Ay1) = d*z, by Lemma It induces a topo-
logical action of Ryy x F,,; on F)' —{0}. Moreover, as F,,; = {1} x F,;
is a closed subgroup of R. X F, 1, by [7, Chapter III, §4, n° 1, Example
1] the restriction of this action to F,; is continuous and proper. Let
qo1 @ F' — {0} — (F —{0})/F,1 be the corresponding quotient map,
by [7, Chapter III, §4, n° 1, Proposition 2], the map g, is proper. Let
R acts on F)' — {0} via the identification Ryy = Ry¢ x {1}. Lemma
provides an action of R.g on (F" — {0})/F, 1 which satisfies

o (X) = qua(r-x) = qui(po(r) - x),
for r € Ryp and x € F! — {0}. Moreover, the canonical map
(F — {0})/Fo1 — [Z(a)(F,)] induces an identification ((F) —
[0})/Fu)/Rog = [P(a)(R)]. As [2(a)(F,)] is compact, hence
paracompact, Proposition [5.1.2.3| gives that there exists a continuous

compactly supported function &' : (F —{0})/F,1 — Rs¢ such that for
every y € (F" —{0})/F,1, we have that

1
E(r-y)dr=————.
/]R>0 (r-y) Av1(Fon)

Let us set k2 = k' 0 q,1. As ¢, is proper and F), ;-invariant, the map k2
is compactly supported and F, ;-invariant. Let x € F) — {0}, we have
that

/R>0 Ko (po(r) - x)d’r =/ k(- x)d'r

R>o

-/ Kl )

= / K (r-qa(x))dr
R>o
1

AU,I(F’UJ)?
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and that

/ E3(t - xd*t—/ r,z) - X)d rdA,1(2)
Fy ome

dva z/ k(- (27 x;);)d*r
R>o

Fv 1
= d)\m
F,1 >\v 1
=1.
The statement is proven. O
5.2.3. — The goal of this paragraph is to give several equivalent con-

ditions that make f~'dz; ...dz, a measure on F" — {0}, where f is an
a-homogenous function of weighted degree |a|.

Let v € Mp. We will use the following conventions a - co = oo for
a € Rygand co™! = 0. If t € G,,(F,), we will see it as a function
t: F?—{0} — F} — {0} given by its action on F — {0}. We say that
a function f : F)' — {0} — CU {oo} is a-homogenous of weighted degree
la| if f(t-x) = \t]La|f(x) for every t € F* and every x € F' — {0}.
Lemma 5.2.83.1. — Let f : F' — {0} - CU {00} be an a-homogenous
function of weighted degree |a| such that

dry ... dr,({x € F' —{0}|f(x) =0}) =0.

Let ¢ € €°(F" —{0},C). One has that pf~+ € L*(F" —{0},dz; ...dx,)
if and only if for every t € F)X one has that (pot ') f~1 € LY (F" —
{0},dxy ... dx,) and if of ' € LY(F" —{0},dx, ... dz,) then

/ of Ydxy .. dx, = / (pot ™) ftdxy ... dx,
Fp—{0} Fp—{0}

7 7

for every t € F.

Proof. — Let t € G,,(F,). The action of ¢ on F' — {0} is given by
the multiplication to the left by the diagonal matrix D; which has the
diagonal vector (¢*,...,t% ). By using the formula for the change of the
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coordinates, we get that

/ (pot ™) f tdxy ... dx,
Fp—{0}
- / [ det(Jac(D) (@ 0 =)t - %) fo(t - x)"das . ..,
Fp—{0}

_ / 190, () - [E 7 F(x) s . - dy
Fr—{0}

= / of Ydxy ... dx,
Fp—{0}

if one, and hence every, integral converges absolutely. The statement
follows. u

The following lemma will be needed to treat the case v € M.
Lemma 5.2.3.2. — Suppose v € Mp°. Let p, : Ry — F) be the
map r — rl/mo,

1. Consider the map A : (F))" — (E))"™ given by
Arx— ((pv(|xn|gj/a")xj)?=_llaxn)'
One has that
|xn|%_1A*(dx1 coodzy) =dzy .. dxy,.

2. Let f: F' — {0} — CU{oo} be an a-homogenous function of
weighted degree |a| such that

dry...dz,({x € F) — {0}|f(x) =0}) =0.

Let ¢ : F' — {0} — C be a compactly supported continuous func-
tion. One has that ¢f~' € LY(F" — {0},dxy ...dz,) if and only
if fHmrymixm,, € LHE)™ % Foaday .. de, x Ayy) and if
of ' e L(F"—{0},dz; ...dz,) then

(5.2.3.3)
/ of Yy .. dx, = an/ d/\m(z)/ qﬁ(pv(t) . ((mj)?:_ll, z))d*tx
Fn—{0} Fya Rso

X / flzy,... xn1,2) tday .. do,_;.
(FSyn—1

Proof. — 1. Suppose that v is real. The function defined by A is
smooth. The Jacobian of A is given by the diagonal matrix having
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for the diagonal vector ((pv(\xn\aj/ “))iZ1,1). The v-adic absolute

value of the determinant of the Jacobian is equal to

n—1 n—1 n—1 @_1
T pollzalze’®)|, = T 1po(lzale®)], = T lwal/™ = |zali
j=1 j=1 j=1

Thus, by the formula for the change of variables we get that

lal _
|z, |0 1A*(dx1 coodzy) =dzy .. dxy,.

Suppose now that v is complex. We use identification F, = R? as in
paragraph and let y and r be coordinates of R?. The measure
dz, becomes 2dydr. The function A : (R? — {0})" — (R* — {0})"
in the new coordinates is given by

Aly,r) = ((g - (rh 4+ yp) /)il g, (g - (2 4 )/ o)l )
and is smooth (because the locus r, = y, = 0 is outside of the
domain of the definition). Its Jacobian is an upper triangular matrix
having for the diagonal vector

(i A+ y) /P32l 1 (4 )/ P ) 321 1),

Its determinant is

n—1
[0 + 2y Gemy
7=1

n—1

n—1
(/) = [T+l
1

<.
I

= (Tn + yn)(|a| an)/an'
By the formula for the change of variables, we get that
(r2 + ‘%21)(Ial—an)/anA*(agy1 oo dypdry -+ - dry) = dyy - - - dyndry - - - dry,

Multiplying both hand sides by 2" and using that 72 + y2 = |z,],
gives that

lal

|z o 1A*(dx1 coodry) =dxy .. dxy,

as claimed
2. Let us define B,C' : (F))" — (F))" by

B:xw— (xjpv(|$n|;aj/an))jv
Crx = ()10, wnpo(|zals) 7).
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Note that for x € (F*)", one has that

B(A(x)) = B((z;pu(|znl3/))i2) 2n) = ()72, Tnpo(|2a] ™)) = C(x)
and that

a; 1

Alx) = ((pv(‘wn‘ﬁ)x])?:_lljxn) = pv("%n’?) ) (($j)?;1laxnpv(’$n’v)_l)

= pol|anls™) - O(x).
For every x € F" — {0}, we have that

F0) = 2750 £ (50 (], 7o) ) = F(B(x)).

by the fact that f, is a-homogenous of weighted degree |a|. Let ¢ €
€O(F"—{0},C). By using that dz; ...dx,(F"—{0} — (F)") = 0,
because F' — {0} — (F))" is contained in a finite union of hyper-
planes of (F,)", and the part (1), we get that:

/ gbf;ldxl...dxn
Fp—{o}
:/ of; tdxy .. . dx,
(F)m

= / |xn|;|a\/an¢_ (fv_l OB)dl’l...dI‘n
(FZ)"
=/ lzn|oto - (f, Lo B)A,(dxy .. . dx,,)
(FX)n
=/ |z, 0 Al (90 A)(f, ' o (Bo A))day ... dx,
(FX )
- [FX) |$n’;1(¢ © A)fv(<xj);l;1la mnpv“xn’;l))ildl'l e d:Cn
= / (0 A)fol(x)1=], anpol|zaly ) Hday . .. day_1d 2,
(F5)m

:/( ) O(pul|aal/ ™) - Cx)) fo(C(x)) " 2y ... dwyrd .
F)n

if one (and hence every) integral converges absolutely. It follows
from Lemma [5.2.1.3| that the map

ﬁ;l : FUX — ]R>O X Fv,l T (|Z)’J|U,[Epv(|$|v)_l)
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satisfies that (p,!).d*z = d*r x A\, 1. The last integral is hence equal

/FMX]&O /(F,Ux)nl D(po(r/ ) - () )X

X fv((a:j)j L 2) Yy da, o dird), 1 (2).

Note that setting u® = r gives d*r = a,d*u and thus the last
integral becomes
(5.2.3.4)

. n—1
/ / ((963)] = Z>)dx1 oo dzpad ud, 1 (2).
Fy1xRxo fv i )j b Z)

By Fubini theorem, we get that the integral (5.2.3.4]) is equal to

(5.2.35) a, /F Dn(2) | Bloulu- ()10 2)))d ux

R>o
[ e
(va )n—l

For every ((z;);,2) € (F))" ! x F,1, the map R.y — C given
by u — ¢(p,(u) - ((x});,2)) is compactly supported, because ¢ is
compactly supported, the map y — y-((z;);, #) is proper (the action
of ) on (F,)™ is proper by Proposition , thus by [7, Chapter
I11, §4, n° 2, Proposition 4], the map y — y-((x;);, 2) is proper) and
pv 7 — Y™ is proper. It follows that

; P(pu(u) - ((75);,2))d"u

converges absolutely. It follows that the integral (5.2.3.5]) converges
absolutely if and only if [, | dAy1(2) [ fol(@)j=1, 2) " dar . dwny
converges absolutely. The statement follows.

O

In the following proposition, we give equivalent conditions to the con-
dition that f~'dx; ...dz, is a measure on F" — {0}.
Proposition 5.2.3.6. — Let f : F" — {0} — C U {oo} be an a-
homogenous function of weighted degree |a| such that

dry ... dr,({x € F' —{0}|f(x) =0}) =0.

The following are equivalent:
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1. For every ¢ € €°(F" — {0},C) one has that ¢f~' € L'Y(F" —
{0},dxy ...dx,) and that

€2 (F" —{0},C) — C ¢ ¢- fdwy ... dv,
Fp—{0}
is a measure on F' — {0}.
2. For every compactly supported function ¢ : F)' — {0} — C one has
that of~' € LY(F" —{0},dx, .. .dx,) and that there exists a unique
measure w, on [P (a)(F,)] such that

(5.2.3.7) / of tdry ... dx, = / dw,(y) o(t-y)d't,
Fp—{0} [Z(a)(Fv)] S

where 'y is a lift on an element y € [P (a)(F,)].

3. One has that k2- f~1 € LY(F"—{0},dz; ... dz,), where the function
k2 is defined in[5.2.2]

4. If v € M}, one has that f~pa € LY(D?,dxy ... dx,). If ve My,
one has that f_1|(FUX)"*1va,1 € L'(FX)" ! x Fyy,dry...de,_1 X

Av1)-
If any of the conditions is satisfied, one has that
(5.2.3.8) ([P (@)(F,)]) = / K ey . de,
Fp—{0}

Moreover, if v € MY, both quantities in the equality are equal

to
1

_ Yz ... dx,
1= |myly Da

and are equal to

Qn

% fidry . dr, X Mg
)\U,I(FQ)J) /(FUX)"IXFvJ
if v e Mpe.

Proof. — Note that the implication (1) = (2) follows from Proposi-
tion [5.1.2.2] Facts that [#?(a)(F,)] is compact, hence paracompact, and
that for every x € F" — {0} one has that the equality fva k2(t-x)dt* =1
is valid (Lemma [5.2.2.1} and Lemma , enable us to apply Propo-
sition [5.1.2.5| and we get that (2) = (3) and that if the condition (2)
is satisfied, then

WA([P(a)(F,)]) = /F o k2 flde, ... de,.
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. . 1pa-f~!
(3) = (4). Suppose v is a finite place. As k2f~! = i%{lv ,

deduce that the restriction of x — f(x)™! to D? is dx; . . . dx,-absolutely
integrable and that

we

1
/ kff_ldxl...dacn = — Yy ... da,.
Fp—{0} 1 —|myly Jpa

Suppose v is infinite. By Lemma [5.2.3.2| one has that
fﬁl‘(va)"_lXFvJ S Ll(<FUX)n71 X Fv,bdxl .. .da:n,l X )\U,l)

and that

/ k;‘f’ldxl ...dxy,
Fp—{0}

o [ i) [ k) ()2
F,1 R>o
X / flxy, .. w1, 2) Moy .. da, .
(va)nil
We have by Lemma [5.2.3.2| that

/R k2 (po(u) - ((2));, 2))d"u = 1

>\v,1<Fv,1)’
for every ((z;);,2) € (F)})" ' x F,;. It follows that

an

ksf_ldxl B dmn = —/ f_ldﬂfl e dxn—l XAU,I'
/FJL—{O} )‘v,l (Fv,l) (F)n=1xFy 1

The implication is proven.

4) = (1).If ¢ : F}) — {0} — C is compactly supported, we
set [|¢llsup = SUDxepn_qoy [#(x)]. Suppose firstly v € M and let ¢ €
CO(F" —{0},C). Tt follows from Lemma that Useg,,(r)(t - D3) =
F — {0}. As supp(¢) is compact, there exists a finite set {t1,...,tn}
such that (U™, (t; - D2)) D supp(¢). For x € D2 and t € G,,(F,) one
has that f(¢t-x)"! = ||,/ f(x)~. Thus from the fact that [ Hpa €
LY (D2, dx; .. .dx,), it follows that f~'|.pa € L*(t- D2, dx; ...dx,) and
hence that

f_llu?ll(ti'Dﬁ) € Ll(Uﬁl(tz’ : Dg), dry... dl’n)
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We deduce that ¢f~t € LY(F™ — {0},dx; ...dx,) and that

/ of tdxy .. dx,| < / ||| |supf ey . .. dxy,
Fp—{0} sup(e)

< H(bHsup/ fﬁldxl ...dx,.
(U2, (t:-D3))

It follows furthermore that ¢ +— f Fr—{0} ¢ftdx, ...dx, is a bounded,
hence a continuous operator, i.e. f~'dz;...dz, is a measure on F"—{0}.

Suppose now v € M. For any ¢ € €°(F"—{0},C), one has by Lemma
5.2.3.2 that ¢f ! € LY(F» — {0}, dx; ...dx,). We will use [10, Chapter
111, §1, n° 3, Proposition 6] to prove the continuity of the operator ¢ —
| I f~tdz; ...dxz,. By the mentioned proposition, it suffices to pick
a sequence of compacts { K, }a, the interiors of which cover F* — {0} and
to establish that for every a there exists M, > 0 such that

‘/ of dry ... dr,| < My|9||sup
n—{0}

for ¢ € €°(F™ — {0}, C) with supp(¢) C K,. We set
K, ={xeF'—{0}Vj: a ! <z, <a} for a € Z>,.

Let &, € €°(F" — {0}, R5g) such that &,(x) > 1 for every x € K,. For
every x € I — {0}, the map R.y — R given by r — &, (pu(r) - X)
is compactly supported, because &, is compactly supported, the map
y — y - X is proper (the action of F on (F)" is proper by Proposition
3.3.4.1, thus by [7, Chapter IIT, §4, n° 2, Proposition 4], the map y +— y-x
is proper) and p, : r — r¥/™ is proper. Let ¢ € €°(F" — {0},C) with
supp(¢) C K,. We have that

Spo(r) - ((u;)j=i, 2))d"r

R>o

< [ il €alonlr) - ()t
<l [ &) - (=t 20t

< 116l lsup €alsup / Ld+t

supp(r—>&a (pv(r)-x))
= H(bHsupC(Oé)a
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for every x € F' —{0}. We deduce from Lemma [5.2.3.2| that

/ of Ydxy ... dx
Fr—{0}

—an [ i) [ o(oult) ()it ) e
Fy1 R>o
X / flzy,..  xn_1,2) tdoy .. do,_y
(Fx)n—l

< |6]|supC () / fHday . drg A
(F)n=1xFy 1
By [9, Chapter III, §1, n° 3, Proposition 6] the operator

€2 (F" —{0},C) = C ¢ of tdvy ... dx
Fp—{0}
is continuous. We conclude that f~dz; ...dz, is a measure. The state-
ment is proven. 0

When f satisfies the equivalent conditions of Proposition [5.2.3.6] the
measure f'dx; ...dx, is F*-invariant by Lemma [5.2.3.1}
Example 5.2.3.9. — Suppose f is continuous and f(x) € C — {0} for
every x € F" — {0}. From the fact that a product of a measure and a
continuous function is a measure [9, Chapter III, §1, n®4], it follows that

ftdx, ...dx, is a measure and hence f satisfies the equivalent conditions
of Proposition [5.2.3.6|

5.2.4. — Proposition [5.2.3.6 provides a measure w, on [Z(a)(F,)].
Definition 5.2.4.1. — Let v € Mp and let f, : F' — {0} — CU {00}
be an a-homogenous function of weighted degree |a| such that

dxy...dr,({x|f,(x) =0}) =0

and such that f,'dxy ...dx, is a measure on F* —{0}. We define w, to
be the quotient measure

wy = (f dwy .. dwy,) /d*x

on [Z(a)(F,)].

Recall from Corollary [3.3.3.2 that [.7(a)(F,)] is the open subset of
[Z(a)(F,)] given by the image of ¢2((F*)™). We prove that the comple-
ment of the open subset [ (a)(F,)] C [Z(a)(F,)] is w,-negligible.
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Lemma 5.2.4.2. — Let f, be as in Definition[5.2.4.1. One has that
wy([Z(a)(F)] = [7(a)(F,)]) = 0.

Proof. — The preimage (¢%) ' ([Z(a)(F,)] — [7(a)(F,)]) is dz; .. .dx,-
negligible. Now, [9, Chapter II, §2, n°3, Proposition 6] gives that
wy([Z(a)(F)] — [7(a)(F)]) = 0. O

We explain how to do the integration against w,.
Lemma 5.2.4.3. — Let v € Mp. Let f, be as in Definition [5.2.4.1]
Let h : [Z(a)(F,)] — C be a function. Suppose v € Mp. Then h €
LY([2(a)(F,)],w,) if and only if (ho %) - f, |ps € L}(D2,dzy ... dz,)
and if h € L*([2(a)(F,)],wy), then

1
/ hwv:—/ (ho@®)f, 'dxy ... dx,.
12 (a) ()] L= |molo Jps

Suppose v € M. Then h € L'([2(a)(F,)],w,) if and only if
(h o q:?) : fv_1|(FUX)”_1><Fv,1 € Ll((FvX)n_l X Fv,l, dﬂ?l N dxn—l X )\ul)
and if h € L' ([2(a)(F,)],wy), then

/ (h o qg)f;ld.fﬁl R dxn,l X )\%1.
(F)n=1xFy 1

L 2= 5
Wy = ——
(P(a)(Fy)] Ao1(Fyr)

Proof. — As [#(a)(F,)] is compact and hence paracompact, by Propo-
sition [5.1.2.5] one has that h € L'([2(a)(F,)],w,) if and only if k2 - (ho
q) e LY(F" — {0}, f, 7 'dwy ... dzy,), and if h € LY([22(a)(F,)],w,) then

/ hw, :/ k2 (hog®)f, tday ... do,.
[Z(a)(Fv)] Fp—{0}

The function ¢? is F*-invariant, hence is such h™' o ¢. It follows that
(h~tog?)- f, is an a-homogenous function of weighted degree |a|. The set
where it vanishes coincides with the set where f, vanishes, thus this set

is dzq ...dx,-negligible. We apply Proposition [5.2.3.6| for the function
(h=toq?)- f,. Tt follows that k- ((hog?®)f,; ') € LY(F"—{0},dz; ... dz,)
if and only if

(hog?) - [, pa € LY (D2, dxy ... duy)
if v is finite, and if and only if

(o g2) - fy M myninr,, € LNES)"™ X Fypyday . dany X A1)
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if v is infinite. Moreover, Proposition [5.2.3.6| gives that if
K2 (hog®)f,t € LNF" — {0}, dx, ...dx,),
then

/ k2(hog®) f, tdxy ... dv, =
Fp—{0}

if v is finite, and

1

1- |7Tv|v Dpa

(hog®) f; dz, ... dx,.

Qp
)\U,I(Fv,l)

if v is infinite. The statement follows. O

/ (h o qs)fv_ldl’l c.. dl‘n_l X )\1}71.
(F)=1xFy 1

5.3. Peyre’s constant

In this section from a quasi-toric family of a-homogenous functions
of weighted degree |a|, we will define a measure on the product space
[Toen, [Z(a)(F,)], and Peyre’s constant of the stacks &(a) and &(a).

5.3.1. — In this paragraph, we calculate the volume w, for v € MY
from Definition [5.2.4.1] when the function f, is toric.
Let v € M2, As in{4.4.3, we set r, : F" — {0} — Ry for the function

1))

Let f# : F"—{0} — R be the toric a-homogenous function of weighted
degree |a|. Recall that this means

F00 = Il
In Lemma (4.4.3.1} we have established that r,|pa = 0, thus f#|pa =1,

where D2 = (0,)" — (72O, x -+ x 19 0,). For v € M and s € C, we

denote
1

Co(s) = T mp

Lemma 5.8.1.1. — Let v € M2 and let f¥ : F" — {0} — Ryg be
the toric a-homogenous function of weighted degree |a|. Let wi* be the
measure on [P (a)(F,)] that is given by

(fH) Yday ... dxy)/d z.
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One has that

Wi a = G(1)
H(raE) = 20

Proof. — By applying Lemma|5.2.4.3| and using the fact that f#|pa = 1,
we get that

1
/ 1”# PR (ff)_ldld--'dxn = Cv(l)/ dxy ...dx,.
[#(@)(F.)] 1 —[mly Jpa s

In turn one has that

day ...dz,(D2) =1 [[de(z20,) =1 — |z |2 = ¢,(Ja]) 7",

j=1
and the claim follows. O
Remark 5.3.1.2. — We will generalize the calculation of Lemma

5.3.1.1]in Lemma [7.2.1.1] when will be calculating the Fourier transform
of a local toric height at a non-archimedean place.

5.3.2. — Let us calculate the volume w,([Z?(a)(F,)]) when v € M
and the function f, = f# is the toric a-homogenous function of weighted
degree |a|.

Recall that the toric a-homogenous function of weighted degree |a| is
the function

ff cEY—{0} = Rog X = max (|xj]11)/aj)|a|.
j= n

.....

Lemma 5.8.2.1. — Let v € M and let f¥ : F" — {0} — Roq be
the toric a-homogenous function of weighted degree |a|. Let wi# be the
measure on [P (a)(F,)] that is given by

(fF) 'dwy ... dxy)/d x.
One has that
w#([2(a)(F,)]) =2"al
if v is real, and that

Wi ([2(@)(F,)]) = (27)" " a|

if v is complex.
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Proof. — Lemma [5.2.4.3| gives that:
Wil ([2(a)(F)))

Qn

- —/ (f#) Yy . .. dwn_y X Ao
(F )" 1><Fqu1

)\U,I(F’U,l>

_ O 1/a;\~|al

= — max (|x;|/% dry...dT,—1 X A1
S e () XA

a

= —"/ max( max (|z;|/%), 1) ®lday .. dx, 1 x Ay
)\v ( Yyn—1xFy 1 7j=1,...,n—1

= / Avi / Jmax(_max (ja;],/), 1) de . de

U l v 1 Fyq =1,...,n—1

= an/ max( max (|z;|1/%), 1) ldz, ... dz, ;.
(FUX)n_l ‘]:1,.4.,77,—1

Lemma [5.2.1.3| gives that the homomorphism
po:Rog X Fpy — Ff (r,2) = py(r)z,

where p,(r) = r"/Fv B satisfies that (py).(dr x Ay1) = dz|px. One has
that |p,(r, 2)|, = r and we deduce that

Wi (2(a)(F))
= an/ max(. max (|xj|11)/&j)7 1)_|aldl‘1 o dl’n_l
(F)n—1 Jj=1,..,n—1

i=1,..n—1

= an/ max( max  (|p,(r;2)|Y/%), 1)~ *ldr, .. dr, ®)\®” 2
(R>O><F’U 1) 1 =

= an/ Af?ﬁ”l)/ max( max (rjl./aj), D-Bldry . dr,
Fﬁ;l ’ Rnfl

7=1,....n—1

= a,( M1 (F,1))" " / max( max (rjl./aj), D~Rldry . dr,_y.

Rgal j:l,,..,n—l

Let us evaluate the last integral. Define V; := {x € RZ;'|Vi : #; < 1}.
Fori=1,...,n—1, define
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For every i,5 € {0,...,n — 1} with ¢ # j, one has that V; NV} is
dry . ..dr,_1-negligible. Thus

/ max(max(r;/aj), D~Rlar . dr,_y
R

n—1 Vi
>0

n—1
= Z/ max(max(r;/aj), D7Rldry L dr, g
i=0 Vi !
n—1
= / 1dT1 . drn,1 + Z/ T;‘al/aidrl o d{’ﬁnfl
Vo i=1 Y Vi
n—1 .00 ,n—1 r(_lj/ai
=1+ Z/ (H/ Wj) e,
i=1 71 j=170

J#i
n—1 o sn—1
=1 —1—2/ (Hr?j/ai)ri—h/aidri
i=1 V1 j=1
J#
:1—|—/ ! an /i gy,
1
n—1 a
=1+ il
an
=1
_
an,’

where the third equality follows from Fubini theorem. We deduce that

wf([@(a)(Fv)]) = an}‘v,1<FﬂJ71)n71E = )‘v,l(Fv,I)n71|a|‘

n

Thus if v is real one has that

Wi ([Z(@)(F)]) = 2" al

(%

and if v is complex, one has that

Wi ([Z(a)(F)]) = (2m)" " al.

v
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5.3.3. — We define Peyre’s constant for stack ?(a) for quasi-toric fam-
ilies (fy)o-

We will define a measure on the product space

[ (z@E).

vEMp

The space [[,cp,.[Z(a)(F,)] is compact and Hausdorff, as for every
v € Mp by Proposition [3.3.4.5( and by Proposition |3.3.4.1] the spaces
[Z(a)(F,)] are compact and Hausdorff. Let (f, : F' — {0} — Rx¢)venr,
be a quasi-toric family of |a-homogenous functions of weighted degree
|a| such that for every v, one has that the set {x € F" — {0}|f,(x) = 0}
is dry ... dz,-negligible and that f,'dx,...dz, is a measure on F"—{0}.
For every v € Mp, we set w, = (f; 'dz; ...dz,)/d*z. Using measures w,,
we define a product measure on ], [Z(a)(F,)] (by [9, Chapter III,
§4, n’ 6, Proposition 9] we indeed get a measure on the product).

Definition 5.3.3.1. — We define a measure w = w((f,),) on

[Len, [Z(2)(F)] by

geata)(F)AF) T Res(Cr, 1) R) (G0 w) R wee

veM?, veMER
We set

r=7((f)) =w( [T [2@(F),

vEMp

where A(F) is the absolute discriminant of F.

We explain how w changes, when the quasi-toric family is changed.
Lemma 5.3.3.2. — Let S be a finite set of places and for v € S, let
hy © [Z(a)(F,)] = Rsg be a continuous function. For v € Mp — S, we
set h, = 1. Let us denote by h : [] (Z(a)(F,)] — Rsq the function
Quemphy. One has that

vEMp

w((h/’UfU)’U) = h_1w<(f’l))’l))

Proof. — For v € Mp, it follows directly from Lemma that

(((hyog®) - fo) *dxy ... dxy,)/d*x = (R ) ((f, day ... dxy,) /d*x) = hy tw,.
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It follows that the measure w(((hvy 0 q3) - fo)o) on [[,cp [P (a)(F))]
defined by the quasi-toric family ((h, o ¢2) - f,), satisfies that

w(((hy o C]S) “ fo)v)
- |Ngcd(a)(F)| os —1p,-1,, w
el T (ot T

UGMO veEM®

= hlw.
O

We give another expression for 7.
Lemma 5.3.3.3. — Let S be the finite set of places v for which f, is
not toric. One has that

~((£.),)
_ ReslCr Dl (D) - Gllan(Z(@)(F)
AE)TCrllal) s G()
< 1 w(Z@(E)

Proof. — Lemma gives that for every v € M2 — S one has
wo([Z(@)(F))G (1) = Go(lal) ™

and thus:
7((fo)o) | Hgeaia) (F)| P A(F) T
wy([Z(a)(F,))])
= Res(Cp, 1) UGEMO AORE.
H Cv |a| X H wv v )
UEMO S veEMp
- RGS(CF,l) gv(’a’)wv([@(a)(Fv)]> X w a
- Reler HM( = ) 1;[00 ([2(@)(F).
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5.4. Haar measure on [ (a)(F,)]

Let F acts on (F)" by t-x = (t%x;);. This action is proper by
Proposition The quotient for this action is [ (a)(F,)] by Corol-
lary and is locally compact by Proposition [3.3.4.1] By Corollary
[3.3.3.2] one has that the map [7 (a)(F,)] — [Z(a)(F,)], induced from
F)-invariant map (F))" — F' — {0} — [Z?(a)(F,)] is an open embed-
ding. By Proposition the map

e: B — (F))" t— (1Y),
is proper, its image (F)a 1= €(F)) = {(t%);|t € F;)}, is a closed sub-
group of (F)" and one has an identification [.7 (a)(F,)] = (F,))"/(F))a.
Using this identification, we endow [.7 (a)(F},)] with a structure of a topo-
logical group (which is necessary abelian). The goal of this section is to
define a Haar measure on [.7(a)(F,)] and relate it with the measure w,

on [Z(a)(F,)].

5.4.1. — Let v € Mp. We are going to define a Haar measure on
[7 (a)(F)]-

By the fact that a product of a continuous function and a measure is
a measure [9, Chapter III, §1, n°4], one has that

QEQ = on [ o []lal don da,
()™ j=1

is a measure on (F)™. The function

F" — {0} = Rz x = [ ] Izl
j=1

is a-homogenous of weighted degree |a| and the set where it vanishes
is given by {x € F — {0}|3j : «; = 0}, thus this set is dx...dx,-
negligible (because it is contained in a finite union of hyperplanes in

(F,)™.) It follows from Lemma [5.2.3.1] that

n
H |xj|;1dx1 codr, =d'xy .. d Ty,
=1

is F‘-invariant measure on F .
Definition 5.4.1.1. — We define a measure w, on [7(a)(F,)] by

fy = (d*xq ... d*xy,)/d" x,.
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By Lemma [5.1.4.3| the measure p, is a Haar measure on [.7 (a)(F,)].
Lemma 5.4.1.2. — Let v € Mp. Let f, : ' — {0} — Rxp be a

continuous a-homogenous function of weighted degree |a| such that

fv’ldxl ..odxy,

is a measure on F'—{0} (this in particular implies that dzxy . . . dz,({x|f,(x) =

0}) =0). Let H, : [7(a)(F,)] — Rxq be the function given by the con-
tinuous F,-invariant function

x e fo() [ ] Il
j=1

1. One has that p,({y|H,(y) = 0}) = 0.
2. One has an equality of the measures ju, = (H,)(wy|[7(a)F,)])-

Proof. — 1. By the definition of H, one has that {y|H,(y) = 0} =
@({x € (F)"|f,(x) = 0}). Note that as dz; ...dz,({x|f,(x) =
0}) = 0, it follows that the set {x € (F))"|f,(x) =0} is dx . ..dx,-
negligible and thus d*z; ... d*z,-negligible. Hence, by [10, Chapter
VII, §2, n° 3, Proposition 6], one has that u,(¢*({x € (F))"|f(x) =
0})) =

2. Observe that
d'xy...d'z, = H \z,],  day ... dx, H 2|5t fo(x) My . . . dxy
=1

= (H,o qv)fv Yoy ... dx,.
Now Lemma gives precisely that
po = (d*xy ... d*z,) /d*x = H,(f,  dxy . .. dx,) /d*x = Hyw,.
m

Lemma 5.4.1.3. — Let h : [T (a)(F,)] — C be a function. Suppose
v € MY. One has that h € L'([7(a)(F,)], 1y) if and only if (ho ¢?) €
LY(EX)" N D2 d*xy...d*x,), and if h € LY ([T (a)(F,)], 1), one has
that:

1

/ hjty = ——— / (hogd'z, ...d"z,.
17 (a)(F)] 1 —|7olo J(pzynnpa

Suppose v € M. One has that h € LY([7(a)(F,)], ) if and
only if (hoq?) € L'(F )" ' x Fy1,d*zy...d*xn—1 X N\y1), and if
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h e LM[Z(a)(F,)], ), one has that:

Qn

/\v,l (F'UJ)

Proof. — Let f# : F* — {0} — R be the toric a-homogenous func-
tion of weighted degree |a|. Let H¥ : [Z(a)(F,)] — Rso be the
induced function from F*-invariant function (F*)" — Ry given by
x = fF) [T, 7], Tt follows from Lemma |5.4.1.2, that one has

an equality of the measures p, = H¥w¥|(7@ymr). We deduce that
h € LN[7(a)(F,)], u,) if and only if hH? € LY([7(a)(F,)],w?), and
as by Lemma one has w#([2(a)(F,)] — [Z7(a)(F,)]) = 0, if
and only if hH? € L'([#(a)(F,)],w’). Moreover, it follows that if
h € LY([7 (a)(F,)], 1v), then

[ = [l
(7 (a)(Fyv)] [Z(a)(Fy)]

Suppose v € Mp. Recall that by Lemma 4.4.3.1] one has that f#|pa =
1. By Lemma [5.2.4.3, one has that hH? € L'([2(a)(F,)],w’) if and
only if
(RHT)oq))(fI) o = (hog))(H 0q})|pg = (hogy)(Jza ]y -+ |zaly ) g

is an element of L!'(D? dx; . ..dz,). Moreover, Lemma [5.2.4.3| gives that
if hHY € LY([Z(a)(F,)],w?) then

/ (h ] qg)d*l'l . d*.flfnfl X )\v,l-
(FX)n=1xFy 1

1
/ thwf:—/ (hog®)|a|; "t |z, tday . . . da,.
[2(a)(Fy)] 1 - | v|v Da
As dxy...dz, (D2 — (D3N (F))")) = 0, (because D2 — (D2 N (F))") is
contained in a finite union of hyperplanes of F,) the last integral is equal
to
1

1 —[myly (F)nnDa

It follows that one has h € L'([7(a)(F,)], y) if and only if (h o ¢?) €
LY(EX)"ND2, d*zy ...d*x,) and if h € L'([F(a)(F,)], tt), then

(hog)d'zy...d" xy.

1

/ hi, = ——— (hog®)d 'z ...d" x,.
[7 () (F)] L= [molu Sy
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Suppose that v € M. By Lemma [5.2.4.3, one has that hH¥ €
LY([Z2(a)(F,)],w?) if and only if

(RHF) o g2)(fF) " = ((hog®) - (H¥ o @) (fF) " = (hogd) HI%I !

is an element of L'((F))" ™! x F, 1,dxy...dx, 1 X A\, 1) i.e. if and only if
(h o qﬁ) S L1<<F,U><>n_1 X F’U,17 d*xl c. d*'rn—l)\'u,l)-
Moreover, Lemma [5.2.4.3| gives that if hH? € L'([2(a)(F,)],w) then

/ hHF
(2 (a)(FV))]

Qn

n—1
= — (h o q;i) |$’U_1d,f1 e d$n_1 X /\v,l
)\v,l(Fu,l) /(va)n—l X Fy 1 ]1_[1 ’
Qp,

= — (hogd)d'wy...d Tp1 X Ay 1.
)\v,l(Fv,l) /(va)nlevJ

[]

5.4.2. — Recall that for v € M2 by Proposition , the group
[7 (a)(O,)] identifies with the image of O™ in [ (a)(F,)] for the quo-
tient homomorphism (£,)" — [ (a)(F,)] and that with this identifica-
tion, becomes open and compact subgroup of [7 (a)(F,)]. We calculate
the volume of [ (a)(O,)] against fi,.

Lemma 5.4.2.1. — Let v € MY. The Haar measure p, is normalized
by

1([7 (2)(0L)]) = (1 — |m]o)" ™t = G(1) "™

Proof. — Let us firstly establish that (¢2)~'([.7 (a)(O,)])ND2 = (O1)".
One has that

@) N(T@o) "= J t o)

tEGm (Fv)

Note that if u € (O;)", then for every index j one has v(t*%u;) = a;v(t)+
v(u;) = ajv(t). Now if v(t) > 0 it follows that ¢t -u € H?Zl(m‘fj O, ), thus



178 CHAPTER 5. MEASURES

t-u ¢ D2 and if v(t) < 0 then t-u ¢ OF, thus t - u € D2. We have
obtained if v(t) # 0, then (¢ - Of") N D = () and hence,
Din@) (T @©O))=Din |J t- O =Din0;" = 05"
tEGm (Fy)

We deduce that one has equality of functions

(L) 117 @©@n) | ymeme = Liox)n-
Now, we can calculate 1, ([.7 (a)(O,)]). One has by Lemma [5.4.1.3| that
1 * *
/ Li7@)0nt = 1L 1) 1((7@)ond T - .. d*Ty
[7(a)(Fy)] 1Tolo J(m)mpa

1
1 —_ |7TU|’U (FUX)" (O'u)

1 / )"
= 1,<d"x
1— |7TU|,U ( va Oy

= (1 - |7Tv|v)n_1-

The statement follows. O]

5.4.3. — Let us dedicate this paragraph to the definition of a Haar mea-
sure on [7 (a)(Ap)]. Let n € Z>o and let a € Z%,. We set [ (a)(Ap)]
to be the “adelic space” of 7 (a), i.e.

(T (@)(ar)] = [[ 7)),

vEMp

where the restricted product is taken with respect to the sequence of the
open and compact subgroups for [ (a)(O,)] C [Z (a)(F,)] for v € M.
Proposition 5.4.3.1. — Let I be a set and let I’ be a subset such that
I — I is finite. For i € I, let G; be a locally compact abelian group
endowed with a Haar measure dg;. For i € I', let H; be an open and
compact subgroup of G; such that dg;(H;) = 1. Set G to be the restricted

!/
product H o G; with respect to the subgroups H; C G; fori e I'.

1. [10, Chapter VII, §1, n°5, Proposition 5] Let S be a finite subset
of I containing I — I'. Set

Gs = HGz X H Hz

€S iel-S
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The measure
®in ® (dgilm,)
i€S icel—S

is a Haar measure on Gg.
2. [49, Proposition 5.5| There ezists a unique Haar measure dg on G
such that for every finite subset S C I which contains I — I' one

has that
dglas = Q) dgs Q) (dgi

ieS iel-S

The measure dg will be called the restricted product Haar measure

and, by the abuse of the notation, may be denoted as dg = ®dg;. We
present a way how to calculate the integral of a function.
Proposition 5.4.3.2 (|49, Proposition 5-6]). — In the situation of
Proposition let f; € L'(G;,dg;) be a continuous complex valued
function such that there exists a finite subset 1" C I' with I' — 1" is finite
such that f;|H; = 1 for every i € I". The function

fo(w)i— Hfi(ﬂfi)

is continuous. Suppose that

Hﬂﬁ%

converges. Then f € L'(G) and

Lﬂwﬂjéﬁ@r

For v € MY, we have established in Lemma/5.4.2.1|that p,([.7 (a)(O,)]) =
Co(1)~=D . We will apply Proposition [5.4.3.1] to define a Haar measure
on |7 (a) (Ar)].

Definition 5.4.3.3. — Let jy,. be the restricted product measure

= ® Cv(l)(nil),uv@) ® -

veEMS veEMP

The group A} acts on (A7)" via the proper homomorphism (z,), —

T
((z¥");)y (Lemma [3.4.8.2) and one has an identification [7 (a)(Af)]
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(A7)"/(A%) (Lemma |3.4.8.4] together with Lemma |5.1.4.3). Endow A7

with the Haar measure

d'zp, = ® G(V)d 'z, ® ® d*z,.

vEMY, vEM

Let d*x4, = d*z}" be the product Haar measure on (Aj)".
Lemma 5.4.3. 4 — One has the following equality of the measures on

7 (@)(Ar)] = (AR /A
Hap = d*xAF/d*‘/L‘AF’

Proof. — The quotient measure d*x,,/d*z,, is a Haar measure on
(7 (a)(Ar)] by Lemma [5.1.4.3] Therefore, it suffices to verify the
equality on a single non-trivial compactly supported function on
[7 (a)(Ar)] which takes non-negative values. For v € MY we set
Po = Lioxyn + (F))" = C and for v € M, we let ¢, : (F)" — Rxg be
a non-trivial continuous function with compact support. The function

= ), ¢» is continuous by Proposition and compactly supported
(its support is the set HveM%((’)vX)” X HveM;o supp(¢,)). For v € Mp
andy € [7(a)(F,)], lety € (F))" be alift of y and for y € [7(a)(Ar)],
let y € (A})" be a lift of y. For v € MY we define

A
G T@EN >Ry G [ e
and for v € M we define

¢, [T @F)] 2Ry [ ¢u(z-y)de
EY
the functions are well defined, continuous compactly supported and of
non-negative values by Proposition [5.1.2.1] By the definition we have
that (d*z)®"/d*r = p, and thus (d*z)®"/(¢,(1)d*z) = (1) . Now
by Proposition [5.1.2.2, one has that

[ o= [ em)(ye [ oegcne)
- /ma)(m<¢*><uu/<v<1>>
=67 /ma)(Fv)] o



5.4. HAAR MEASURE ON [7(a)(F,)] 181

If v € MY, let us prove that

by = Li7(a)(00))-

Indeed, if z & (¢®)"([7 (a)(O,)]), then ¢,(z - z) = 0 for every z € F,

thus ¢%(¢2(z)) = 0. If z € (¢&) ([T (a)(O,)], then z - z € (OF)" if and

only if v(z) = v(z1) /a1, and thus d*x({x € F*|z-z € (0})"}) = (. (1),

and hence (,(1) [x ¢u(x - z)d*z = 1. It follows that ¢} = 17 @)0,)-
We also define

O HT@AN STy [ den Do

by Proposition [5.1.2.1] it is well defined and continuous function. We

are going to verify that the two measures coincide on ¢*. For every
y € [7(a)(Ap)], one has that

o (y)= [ ¢(xap - y)d Ta,
Ag
— H Q,(l)/ Go(T - Yo )d T X H / bz -y, )d*x
veM?, (7 (a)(Fv)] vEME® (7 (a)(Fv)]
= H ¢:(YU>a
'UGMF

le. ¢ = Quem,@;,- By Proposition |5.1.2.2] we have that

/ (P )Nd"xp, /d way) = / Ppd* Xy, .
17 (a) (4 p)]

(A"
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On the other side, one has that

/ ¢* Hap
[7(a)(AF)]

= / ( Ry (b;k)):uAF
[7(a)(Ap)]

=Hcv“1/ wva/

vEMY, [7(a)(Fv)] veMS® a)(Fy )]
= H Cv / ¢vd x1...d"x, X H / ¢vd*x1 d*z
UEMO F”X ”UGMOO
:/ (Rvo)d™Xp
(Ap)n

(Af)™

We have verified that the Haar measures d*x,,./d*z and p,,. satisfy that
(d*XAF/d*x)<¢*> = Hap (¢*> >0,

thus d*x,,./d*x = ua,. The statement is proven. ]

5.4.4. — In this paragraph we define and calculate the Tamagawa num-
ber of the “stacky torus” .7 (a).
Denote by pr the quotient measure (d*x)®"/d*x on the quotient
RZ,/Rsq for the action of R via the proper map ¢ — (t%);. By m
the quotient identifies with the quotient group R%,/(Rso)a and pg is a
Haar measure on it.
Definition 5.4.4.1. — We define py to be the Haar measure on
[7 (a)(AF)1] normalized by the condition p1y @ pir = pa, for the identifi-
cation

[7(a)(Ar)]1 X (RYg/(R>0)a) = [7(a)(AF)]
given by the isomorphism .

We can write i as a quotient measure:
Lemma 5.4.4.2. — The measure py identifies with the measure
d'xy [d*zy on [T (a)(Ap)|y = (Ap)" /AL, where the action is given by
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the proper morphism
Ap — (Ap)" (@) = ((237);)o-

Proof. — We have the following bicomplex (we have written the corre-
sponding measures next to the groups)

K1 > K2 > Kg

~ v <~

(Ap,dry, ) ——— (Aj, d*za,) > (Rso, d* )

~ v N

((Ap)", (doy,)*") — (AR)" d"Xp,) ——— (R’;o’(é*w)@”)

~ v 2

([7 (@) (Ap), ) — ([9(3)(AF)],MAF) — ((R"/(R>0)a, (d*2)®" /d"x),

where K, Ky are K3 are the corresponding kernels, which are com-
pact by Lemma|3.4.8.2) endowed with the probability Haar measures, all
terms that are not drawn and corresponding measures are assumed to
be the trivial groups endowed with the probability Haar measures. All
horizontal sequences and the last vertical sequence are of trivial measure
Euler-Poincaré characteristic. By Lemma [5.4.3.4] the second vertical
sequence is of trivial measure Euler-Poincaré characteristic. By Proposi-
tion [5.1.4.2] it follows that the first vertical sequence is of trivial measure
Euler-Poincaré characteristic. The statement follows. O]

For every space X, we denote by countyx the counting measure on X.
Proposition [3.4.7.2| gives that the image of [Z(a)(F')] under the map
[7 (a)(i)] (which is induced map from the canonical inclusion (F*)" —

(AF)™) is contained in [7(a)(Ar)]; and that, moreover, it is discrete,
closed and cocompact subgroup of [.7 (a)(Ar)];.
The kernel of the map of discrete groups
F* — (F)" t— ("),
is the finite group figcq(a)(F). We endow [7(a)(F)| = (F*)"/F* with
the unique Haar measure which makes the complex

1 = pgedaa)(F) = F* = (F*)" = [T (a)(F)] = 1
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to have trivial measure Euler-Poincaré characteristics. This measure
is precisely mcoun‘c[ 7@)(F) - The kernel of the homomorphism
ged(a

(7 (@)@)] = [T(@F)] = [Z(@@)([7(a)(F)]) is the finite group
|LI'(F, pgeda))|.  We endow the discrete group [7(a)(i)]([7 (a)(F)])

with the pushforward measure of the measure T count[z(a)(r) on

[.7 (a)(F)]. This measure is precisely the measure
[T (F, pgea(a))]
|Hgca(a) (F)]
Definition 5.4.4.3. — We define a Haar measure on the quotient
(7 (a)(Ap)]1/[7 (2)()]([7 (a)(F)]) by
T (F, Hged(a))]
ol (S

count(z (a)(a))([7 (a)(F))) -

= COUNt (7 (a) (i) (|7 (a)(F)]) ) ‘

We define
Tam(.7 (a))
= Res(Cr, 1) " VA(R) 2 (7 () (A1 /[7 () (0)]([7 (2) (F)),

where A(F) is the absolute discriminant of F'.
Proposition 5.4.4.4. — One has that

Tam(7 (a)) = 1.

Proof. — Consider the following bicomplex (where A, stands for the map
t — (t%);, whatever the domain is; K3, K5 and K3 are the corresponding
kernels and FE is the corresponding quotient; and every term that is not
drawn is assumed to be the trivial group):

I ————— figeda) (F) y Ky » K5
] —m—— FX y AL y (AL/F>)
Aa Aa Aa
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Endow every finite group in the bicomplex with the probability Haar
measure. The group K, is compact by Lemma [3.4.8.2] we endow it
with the probability Haar measure. The group K3 is compact, as it
is a closed subgroup of the compact group AL/F* and we endow it
with the probability Haar measure. Endow the discrete groups F* and
(F*)™ with the counting measures. Endow AL, (AL)" and [Z (a)(AFr)];
with the measure d*zy . (d*z},)®" and p, respectively. Finally, endow
(AL/F*), (AL)"/(F*)" and E with the unique Haar measures so that the
corresponding rows are of trivial measure Euler-Poincaré characteristics,
that is (AL/F>) and (AL)"/(F*)" are endowed with the corresponding
quotient measures, while F is endowed with the measure ;. We apply
Proposition [5.1.4.2] The measure Euler-Poincaré characteristics of every
row is 1. The measure Euler-Poincaré characteristics of the first three
columns is 1. Proposition [5.1.4.2| gives that the measure Fuler-Poincaré
characteristics of the fourth column is 1. It follows from Part (2) of

Lemma (.1.4.7] that
m(E) =m([7 (a)(Ap)l1/[7 (@) ()T (a)(F)]))

_ ), (B3P

= Tl (AL/F)

— &'a, (P

= (Res(Cr, DA(F) )",
where we have used that d*z} (AL/F*) = Res(Cr, )A(F)? (see e.g.
[58] Page 116]). We obtain that

Tam(7 (a)) = 1.

]

Remark 5.4.4.5. — When a = 1, the result is a classical result that
the Tamagawa number of a split torus is 1 ([46], Theorem 3.5.1]).
Remark 5.4.4.6. — When n = 1, Oesterlé has calculated in [43]
Proposition 2] the volume of the fundamental domain for the action
of the subgroup [ 7 (a)(i)([7 (a)(F)])] on [T (a)(AFr)]. The volume of
the fundamental domain is not 1, because Oesterlé has used a different
normalization of the Haar measure.






CHAPTER 6

ANALYSIS OF CHARACTERS OF
[T (a)(Ar)]

In this chapter, we will study the characters of 7 (a)(Ar)]. Later in
the chapter, we recall several facts on the estimates of L-functions.

6.1. Characters of A

We are going to define two “norms” for Hecke characters and we are
going to compare them for the characters vanishing on certain compact
subgroups. Later we establish that there are only finitely many characters
vanishing on such subgroup of bounded “norm”. The analogues for the
characters of [7 (a)(Ap)] are stated and proven in[6.2]

6.1.1. — In this paragraph we recall several facts about characters of
locally compact topological groups.

If G is a locally compact topological group, by a character of G we
mean a continuous homomorphism G — S!. Let G* be the group of
characters of G ([5, Chapter II, §1, n° 1, Definition 2]). The group G*
is locally compact by [5, Chapter II, §1, n° 1, Corollary 2]. A morphism
of topological groups ¢ : G — G’ induces a continuous homomorphism
o* = (G')* — G*,¢*(x) = x 0 ¢ (see [B, Chapter II, §1, n°7]). If A is a
subset of G, by A+ we denote the subgroup of G* given by the characters
vanishing on A.

Proposition 6.1.1.1 ([5, Chapter II, §1, n°7, Theorem 4])

Let G be a commutative Hausdorff locally compact group. Leti: G; —
G be the inclusion of a closed subgroup Gy into G. Let Gy = G/Gy and
let p: G — Gy be the quotient map. In the sequence

Gy 5 Gt 5 Gy,
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the homomorphism p* is an isomorphism of G35 onto Gi and i* is a strict
homomorphism G* — G5 of kernel G1 (it follows that Gi is closed).

Occasionally, we may identify G% with its image Gi under the ho-
momorphism p*. Recall also that if G = H; x --- H,, the canonical
homomorphism G* — (H')* x -+ x (H™)* is an isomorphism of topolog-
ical groups ([5, Chapter II, §1, n°7, Corollary 5]) and we may identify
G* with (H')* x -+ x (H™)* using this isomorphism.

6.1.2. — We define two “norms” of Hecke characters and we compare
them. For v € Mpz°, in we have defined

Fou={alz € F} :Ja], = 1}.
We have furthermore established that
po:Rog x Fyy = F (r,z) = pu(r)z,

where p, : Rug — FX is defined by p,(r) = r/™ is an isomorphism of
abelian topological groups. For a character y, € (F.)*, we set m(x,) to
be the unique real number m such that the character x, o p, : Ry — S?
is given by r — ™. If v is a real place, we set £(x,) to be 0 € Z if the
character x, o p, : F,1 — S' is the trivial character, otherwise we set
l(xy) = 1 € Z (the only reason why we let ¢ have values in Z for v real
is to speak of norms of vectors). If v is a complex place, we set £(x,) to
be the unique integer ¢ such that x, o p, : F,; — S* is given by z +— z°.

Let A} be the group of ideles of F' and let AL be the subgroup of A%
given by (x,), which satisfy that [ [, |z,|, = 1. For a character x € (Aj)*,
let us define

||| discrete := max (|[€(xw)]|),

veEMg
[Ixloo == Urgﬁ;,g(\lm(xv)l\)-
Let Kglax be the topological group HUE ) O, . For an open subgroup
K C K?,., we let 2, be the subgroup of (A})* given by the characters

vanishing on F* (technically we mean i(F*)) and on the compact sub-
group K X HueM;O{l} C (A}L)*. By the abuse of notation, we may write

sometimes K for what is technically K x [] . M;o{l}. The group K?, .

is compact, therefore, the subgroup K is of finite index in K2, .
The following lemma will be used on several occasions:

Lemma 6.1.2.1. — Let G be an abelian group and let A and B be two

subgroups such that A C B.
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1. Let H C G be a subgroup. The homomorphism B/A — (B +
H)/(A+ H) induced from A-invariant homomorphism B — (B +
H)/(A+ H) is surjective.

2. Suppose G is a topological group and that (B : A) is finite. Then
(AL : B1Y) is finite and (A+: BY) < (B : A).

Proof. — 1. We have the following commutative diagram, with first
two horizontal and all three vertical sequences exact:

0 > A > B » BJA — 0

| | |

00— A+H—B+H — (B+H)/(A+H) —

L

(A+H)/JA — (B+ H)/B

> 0,

where E = coker((B/A) — (B + H)/(A+ H)). By snake lemma,
the third horizontal sequence is exact. By the second isomorphism
theorem, the homomorphism (A + H)/A — (B + H)/B identifies
with the homomorphism H/(H N A) — H/(H N B) induced from
the inclusion (HNA) C (HNB), hence is surjective and thus £ = 0.
It follows that B/A — (B + H)/(A + H) is surjective.

2. The kernel of the homomorphism

AJ' —>H0mZ(B,Sl) X’—)X‘B
is the subgroup B+. We deduce an injective homomorphism
(6.1.2.2) A*+/B*+ — Homg(B, S"Y).

The image of the homomorphism is contained in the
subgroup of Homgz(B,S') given by the homomorphisms which
vanish on A, i.e. in the image of the canonical homomorphism
Homgz(B/A, S') — Homgz(B, S'). Tt follows that

(At BY) < |Homgz(B/A,SY)| = (B : A).

Corollary 6.1.2.3. — One has that
(Kpax - K) > (F*KDy) : (FXK)) > (A Ago ).

max max
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Proof. — To obtain the first inequality, we apply Lemma/6.1.2.1|for G =
AL A=K, B=K?, _ and H = F*. It follows that the homomorphism

max

from Lemma [6.1.2.7]
K/ K = (F* K/ FK)
is surjective, thus (K°,  : K) > ((F*K?,) : (F*K)). The second

max max F
inequality is the case of Lemma [6.1.2.1| for G = AL, A = F*K and
B =F*K? m

max*

Lemma 6.1.2.4. — Let K C K2, be an open subgroup. The group A
15 finitely generated and its rank is at most ro, where ry is the number of
complex places of F.

Proof. — The group Axo _is the group of Hecke characters (Ap/F*) —
S which are unramified at the finite places of F' and we deduce that the

kernel of the homomorphism

¢ Ay, — ] For) x—= I wlr.

veEME® veEMg®

is given by the unramified Hecke characters (AL/F*) — S' hence is fi-
nite (they are canonically identified with the characters of AL /(F* K ax),
where the subgroup K., C Al is given by the norm 1 elements at ev-
ery place; the group AL/(F*Kp.y) is finite by [49, Theorem 5-18] and
hence its character group is finite). The group (J], . Mge (Fy1)*) is finitely
generated and of rank 7y, because Fy, is of order 2 if v is real and is an
infinite cyclic group if v is complex. It follows that

rk(Apo ) =1k(Im(¢)) < 7y.

By Corollary [6.1.2.3), one has that 2Axo is of finite index in %A, thus
one has that rk(x) = rk(Ago ) < 9. The statement is proven. O

The following lemma will be used in the proof of Proposition [6.1.2.6
Lemma 6.1.2.5. — Let K be an open subgroup of K°. . Consider the
homomorphism

ax”’

(C: (A/FX) =2 X = (L0w))veng

The group ker(£%) N A is finite.
Proof. — Firstly, let us establish that ker(ﬂc)ﬂQlKgﬂ .. is finite. The group
ker(€%) (respectively, the group Axo ) is the group of Hecke characters
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(AL/F*) — S' which are unramified at the complex (respectively, at the
finite) places of F'. Hence, the kernel of the map

ker(fc) NR:Ago — H (Fyn)” X H XU|F1;,1

’UGM}{% UEM%

is given by the unramified Hecke characters (AL/F*) — S therefore
is finite. As F};; is a cyclic group of order 2, the group [],. ME (Fya)* is
finite and we conclude that ker(¢®) N2xo is finite. Now let us establish
that ker(¢€) NAgo_is of finite index in ker(¢) NA. By applying snake
lemma to the “snake” diagram:

1

|

1 — ker(£%) N Agy  —— Ao —— IC(Ao ) — 1

max

! J |

1 — ker({%) N Ak > Ax £ @) —— 1

| |

rF— QLK/Q[KO

max ’

where E = (ker((“) N 2Ax)/(ker(¢) N Axo ) we get an exact sequence
1—F— QlK/QlKo

max

By Corollary (6.1.2.3] one has that A /o is finite, thus E = (ker(¢£©)N
A )/ (ker(€%) N Ao ) is finite. Using the fact that ker(¢%) N Ago s
finite, we deduce that ker(¢) N A is finite. O

The main proposition of this paragraph is the following one.
Proposition 6.1.2.6. — For every open subgroup K C K°

maxs there
exists a constant C' = C(K) > 0 such that

||XHOO S CHXHdiScrete

for all xy € A.

Proof. — Let K be an open subgroup of K° . Let (€ : (AL/F*)* —
ZMF = 772 be as in Lemma . To simplify notation, in the rest of the
proof we will write £€ for £€|y,.. The abelian group ¢€(2lx) is finitely gen-

erated and free, let us pick x1, ..., xx € Ak such that £€(x1),..., C(xr)
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is a basis of £C(A%). Obviously, k < |[M5| = ro. One has an isomorphism
ZF — (*(Ak) (dy, .oy di) = dil®(xa) + -+ dil™(xi)

One can pick a section to the surjective homomorphism ¢ : Ax —
(C(Ax), we obtain an induced splitting

(C(Ax) @ ker(£C) = A
We deduce an isomorphism
(6.1.2.7) ZF @ ker(£°) = .
A character y € i writes as y = pg(X)Xgl(pl(X)) . -XZ’“(’“(X)). Let us

firstly estimate ||x||s for x € k. The group ker(¢%) is finite by Lemma
6.1.2.5) and let 7 be its order. For every y € ker(¢®) one has that

0= (m(1y))y = (M(xy))o = (rm(xv))w,

hence m(y,) = 0 for every v € M. Now, we can make the following
estimate for every character xy € RAg:

[IXlloo = max |m(x,)]

veEMg

= Ug\z}%(o Im((p2(X))v) + m(x1) @ (P1(X)) + - m(Xko ) @r (P1(X))]

= max [m(x10)q1(p1(0) + - 10tk ) gk (p1 (X))

veMp

< . .
< e Im(xiv)] max i (p1(X))]

.....

,,,,,

estimate ||x||o for x € Ax. For every x € Ak we have that:
HXHdiscrete = vrél]\%%(o ’€<Xv)|
> max [{(x,)]
UEM}(;

= max [¢((p2(0))ox$, " - X 0))

C
veEME

= max |[(((p2(X))v) + q1(p1(X))(x10) + - + G(Pr (X)) Xk |

UGM}‘;

= max |1 (p1(x))¢(x10) + - - + k. (P1 (X)) (Xko) |-

C
veEME
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Tensoring the injective map (®|, with the flat Z-module R gives an
injective map R* — R"2. The pullback of the norm (), ME P MaXy [Ty )|
on R™ along this map is given by

x — max |z10(x10) + - Tl (Xkw)]s
vGMg

and is a norm on R¥. One can find, hence, a constant C; > 0 such that

Cy max [x10(X1v) + -+ + Tel(Xrw)| > max |x
UEM% i=1,...,k

for every x € R*. Thus for every y € A one has that

C1llx|laiscrete > Jmax, @k (p1(x))]-
Let us now prove the wanted inequality. We set C' = C1Cy. For every
x € Ag, we have that

CHXHdiscrete 2 CoclHXHdiscrete 2 CO iirllaxk ’qz(pl(X)N 2 HXHOO

The statement is proven. ]

6.1.3. — In this paragraph, we bound the number of characters y for
which ||x/||discrete 15 bounded.
Lemma 6.1.3.1. — Let hp = |CI(F)| be the class number of F. For

every open subgroup K C KO and any C > 0, there are no more than

hp(K°, . @ K)2(2C + 1)

max

characters x € U for which ||x||dgiscrete < C (recall that ri and ry are
the numbers of real and complex places of F, respectively).
Proof. — Let K C K°__be an open subgroup. For v € M, we define

max

U(x») == l(xy), and for v € M} we define ((x,,) € Z/27Z by

(6.1.3.2) Z(Xv) _ 0 if Xv|Fv:1 is the trivial character on F, ;
1 otherwise.

(The difference between ¢ and 7 is of technical nature, recall that we have
defined ¢(,) € Z for v € MR.) For a character y € g, the r; +ry-tuple
given by (£(xu))vemse € (Z/2Z)™ x Z™ will be called the signature of x.

Let us estimate the number of characters with fixed signature. Let
(Co)vemze € (Z/2Z)" X Z™ be a signature of some character § € .
Then the characters in 2y having (¢, ),enrge for the signature are in a
bijection with the characters in x having (0)yeppe for the signature.
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Indeed, a bijection between the two sets is given by x — xd~*. The
group of x € A having (0),enze for signature is given by the subgroup
(F*(K x HveM;:o F,1))* of (AL)*. Lemma[6.1.2.1] gives that

(Kglax:K) (FXKronaxXHFful FXKXHFvl )

veEMZ veEMZ
> ((FX(KX II Bt (P (D x [ Fon)) )
veEMp® veEME®

max

Hecke characters (AL/F*) — S! and its order is hp. It follows that the
number of characters x € g having (0),enree for the signature is

(K x [ Fo))'| € he(KSy : K).

max
oo
veEME

The group (F*(Kjax % [Toenrs F,1))* is the group of the unramified

Let us estimate the number of signatures when ||-||giscrete 18 bounded.
Note that if for C' > 0 and a character y € 20k one has ||x/||dgiscrete < C,
then the signature of x lies in (Z/2Z)™ x ([-C,C|™* N Z™). Thus the
number of signatures can be bounded by 2" (2C' + 1)

It follows that the number of characters xy € g such that
l[X||discrete < €' is bounded by hp(K°, : K)2(2C + 1)™. The

statement is proven. ]

6.2. Results for the characters of |7 (a)(Ar)]

Let n > 1 be an integer and let a € Z%,;. We make analogous estimates
to those in for characters of [ (a)(Ar)]. The results are simple
consequences of the corresponding results in

6.2.1. — In this paragraph we explain our notation and define “norms”
for the characters of |7 (a)(Ar)] and compare them for characters van-
ishing on certain compact subgroups of [7 (a)(Ar)|. In this paragraph,
we discuss local characters.

Recall that the subgroups (F)), C (F))" and (Aj)a C (Af)" are
closed by Proposition and Lemma [3.4.2.2 respectively. Recall
that [7(a)(F,)] identifies with the quotient group (F.))"/(F))a by
Proposition [3.3.4.1] Recall that [7 (a)(Ar)| identifies with the quotient

group (A%)"/(A%)a by Lemma |3.4.2.2,
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Lemma 6.2.1.1. — The subgroup (FX)} is the subgroup

a

{04 H X; =1}

of (F))*)™. Moreover, ()t is closed in ((FX)*)", and it is the image
of the pullback homomorphism [T (a)(F,)]* — ((F,))")*. The subgroup
(AR)a is the subgroup {(x;);| IT; ;" = 1} of ((Ap)*)". Moreover, (Ap)y

is closed in ((A})*)™, and it is the image of the pullback homomorphism
(7 (2)(Ap)]" — ((AF)")"™.

Proof. — Note that if x = (x1,...,Xx») is a character of ((#.°)*)" which
vanishes on (F) ), = {(t%);|t € F*}, then for every t € F, one has that

(2

L=t xat™) = () - x(t)

The first claim follows. The facts that (F¥)} is closed and that it is the
image of the pullback homomorphism follow from Proposition [6.1.1.1]
Analogous argument shows the claims about (A})71. O

Let v be a place of F. For j € {1,...,n}, we let 6/ : F* — (F)" be
the inclusion

z = ()5, (1)igg)-

If y € [7(a)(F,)]* is a character we let x\) be the character y o ¢2 047 :
Fy — S'. The lemma from above gives that []7_,(x/"))% = 1 for every
X € [Z(a)(F,)]". We define m(x) := (m(x"")); and £(x) = (((x"));.

If x is a character of [7 (a)(Ap)], for j € {1,...,n}, we will denote by
&%, the inclusion « — ((2);, (1)i%;) and by x9) the chargcter XOqR, 00,
AX — S'. The lemma from above gives that H?zl(xm)“j = 1 for every
X € [7(a)(Ap)]*. Moreover, it is immediate that

X‘[?(a)(i)]([ﬂ(a)(F)]) =1 = for j = 1, ..., one has X(j)|i(F><) =1.

For a character x € [Z(a)(Ap)]*, we denote by x, the restriction

X7 @)-

Remark 6.2.1.2. — Let x be a character of [ (a)(Ar)]. A priori
the notation y can make confusion as it may design (X9)|px and
(X7 (@(F)?. The commutativity of the following diagram shows that
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no confusion arises:

FX — A%

5%l lfsigp

Ry ——— (A7)

v
3l lqu

(
(7 (a)(F,)] —— [7(a)(Ar)].

Namely, for a character x, the character (x¥)), is the pullback of y for
the composite by the two vertical homomorphisms on the right and the
most upper horizontal homomorphism, while (Xv>(j) is the pullback for
the lowest horizontal and then two left vertical homomorphisms.

For a character x € [72(Ap)|*, let us define

HXHdiscrete ‘= Inax (HE(XU)H)7

veEMp®
Il 3= ma (i)
Note that
e = 1 (0D = s (a2 )
_ ()
o, (g )

-----

and analogously

Lemma 6.2.1.3. — Suppose that n =1 and a; = a € Z>,. For every
X € [T (a)(Ap)]*, one has that || x||aiscrete < 1 and that ||x|| = 0.
Proof. — Let x € [Z(a)(Ar)]*. To simplify notation, in this proof we
write X for Y. For every x € [Z(a)(Ar)]*, one has that x* = 1. It
follows that

(0)verrze = (m(1))verrze = (M((X0)"))verrpe = (@m((Xov)))Jverrg
hence (m(X;))venmze = (0)venrge, and thus [|X||e = 0. We obtain that
[IXloe = [IXIloe = 0.
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We have that

HXHdlscrete - ||X‘|dlscrete S maX<]- m]?;lx(€<X’U)>)

For every v € My, one has that 0 = (1) = /(X*) = al(X,), hence
0(Xy) = 0. We deduce that ||x||aiscrete < 1. O
6.2.2. — In this paragraph we present analogous results to those of
for the characters of [ (a)(AFr)].

Let K2 _ be the topological group given by

K= ][ [Z(@)(0).

vGMO

For an open subgroup K of K2, ., we let i be the subgroup of
[7 (a)(AF)1]* given by the characters vanishing on [.7 (a)()]([7 (a)(F)])
and on K x [, M;o{l} (we may simply write K for what is technically

K x]],e Moo{l}) The group K2 is compact, therefore, the subgroup K

max

is of finite index in & 2 - We present another corollary of Lemma [6.1.2.1]
Corollary 6.2.2.1. — Let K C K2, be an open subgroup. One has

that -
(Khax 1 K) = ([Z7 (@) @ON([7 (@) (F)) Kfax - [ 7 (@) O([7 (a)(F)]) K)
> (Ag : ™Ago ).

max

Proof. — The left inequality follows from Lemma for G =
[7(a)(Ap)li, A = K, B = K§,, and H = [7(a)(i)|([7 (a)(F)]). The

right inequality follows from Lemma for G = [T (a)(Ap)|,
A=[7 (@07 (a)(F))K and B = [7(a)()]([7 (a)(F)) K. O

Note that
i (Ka)™) = (@2((0;)")e = ([T (@)(O0)])y = K
If K C K2

2 .x 1s an open subgroup, let us set

K= ﬂ 0h) M (i ) THED,

it is an open subgroup of K?. .. For a character x € 2, one has that

DNg=(xod, o0, )z =
The following statements are simple corollaries of Corresponding state-
ments for characters of AL.
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Corollary 6.2.2.2. — The group A is finitely generated and of rank
at most nry.

Proof. — Recall that by Lemma([6.1.2.4] the abelian group 24 is finitely
generated and of rank at most r,. The image of 2, under the injective
homomorphism

F@@) > (AW = (8D x o xodh, = (V)
lies in (Az)™. It follows that A is finitely generated and of rank at most
nro. O

Corollary 6.2.2.3. — For every compact group K C K2_ ., there ex-

ists a constant C' = C(K) > 0 such that for all x € Ax one has that

||XHOO S C”XHdiScrete-

Proof. — Proposition [6.1.2.6] gives that there exists constant C' =
C(K) > 0 such that for every x € 2z one has that

||XHOO S OHXHdiscrete-
For x € Ui we deduce that:

..........

It follows that C'(K) = C(K) is the wanted constant. O

Corollary 6.2.2.4. — For every open subgroup K C K2, and every
C > 0, there are no more than

(hp(K°, .+ K)2™(2C +1)2)"

max

characters x € Uy for which ||x||discrete < C.
Proof. — Let K C K2_ be an open subgroup. Lemma|6.1.3.1|gives that

max
for every C' > 0, there are no more than

he(K° . : K)2'1(2C 4 1)

max

pletely determined by the characters yV) & Az for j = 1,...,n. It
follows that there are no more than

(hp(KC, . : K)2™(2C +1)™2)"

max

characters in 2z having ||x||discrete < C. A character x € g is com-

characters y € A having ||x||aiscrete = max; (|| XY ]| diserete) < C. O

By Lemma [6.2.1.3] we have that when n = 1 and a = a; € Z>;, we
have that ||x||discrete < 1. We deduce that
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Corollary 6.2.2.5. — Suppose that n =1 and that a = ay € Z>,. For
every open subgroup K C K¢, , the group 2y is finite.

max’

6.3. Estimates of Rademacher

In this section we recall some bounds on the growth of L functions of
Hecke characters in vertical strips. If v € M2, for s € C and x, € (F)})*,

one defines ]

Lv(S, Xv) "= )
T T mltm)
and one writes (,(s) for L,(s,1). For a character x = (x,), : AF — S,

we set
L(3>X> = H Lv(57Xv)7

veM%

and we denote
CF(S) = L(S, 1)

6.3.1. — In this paragraph we restrict ourselves to the characters of AlL.
The corresponding estimates for the characters of A} will be established
in(6.3.2

Rademacher in [48] Theorem 5] establishes that the growth of the L-
function of a character in vertical strip is moderate (i.e. bounded by
a polynomial). As the notation there is cumbersome, let us quote the
variant given as [39, Theorem 14.A, Chapter I1I] as part (1) of the next
theorem. Part (2) is [48, Theorem 3].
Theorem 6.8.1.1. — Let 0 < n < 5 and let x = [[, xo
(AL/F*) — S be a Hecke character. Let cond(x) be the conduc-

tor ideal of x. We set dp = Np/g(discr/q)-

1. (Moreno, [39, Theorem 14.A, Chapter III]) Suppose x is not the
trivial character. One has that

05,01 = 1) (NI TT s i)™

14+n—R(s)
2

in the strip —m < R(s) <1+ n.
2. (Rademacher, [48, Theorem 3]) One has that

Cr(s)(1 = s) : :Q]( (|1+s\)““@1)

1+n—R(s)
2
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in the strip —m < R(s) <1+ n.

The following proposition is a corollary of Theorem A similar
version, but only for unramified Hecke characters, has been invoked in
the analysis of height zeta functions in |2, Theorem 3.2.3], [17, Corollary
4.2.3], etc. As our metrics at infinite places are not invariant for the
maximal compact subgroups, we present the following version.
Proposition 6.3.1.2. — Let K C K° _ = HveM% O be an open
subgroup. For every ¢ > 0, there exist C = C(e) > 0 and § = 6(e) > 0
such that the following conditions are satisfied whenever R(s) > 1— 4 :

1. for every non trivial Hecke character x : (AL/F*) — S which
vanishes on K C KQ,. one has

max

(6.3.1.3) [L(s, )| < C((1L+ 1)) (1 + |[x]l00))
2. one has
(6.3.1.4) “_{gﬂ < C(1+[3(s)))".

Proof. — We may assume that % > e > 0. We set

)T (R, - Ky

€
C=27(p(1+

A g
We are going to verify that C' and 0 = F Fa] verify the above conditions.

Let us prove the estimates (/6.3.1.3)) and (6.3.1.4) in the domain R(s) >
‘51. For a non-trivial character y one can estimate

IL(s, )] < Cr(R(s) < Cr(35) < Cr(1+

One also has
(s —1)L(s,1)

S

-

1 4 7 4 7 €
5 CF(E) < ZlgF(g) < ZCF(1+ [FQ]) < C.

It follows that the estimates (6.3.2.2) and (6.3.2.3) are satisfied in the

domain R(s) > 3

Now we prove the estimates ((6.3.1.3)) and ( in the domain 1 —

Z[FQE<§R( s) < 5. Let us set n(s) = [FQ]G—l—i)?( ) 1, we have that
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and that —n(s) <0 < R(s) < 1+ n(s). We will apply Theorem [6.3.1.1
for s and n = n(s ) The following estimate will be used: for every s in

the domain 1 — FQ] < R(s) < 3 one has
(6.3.1.5) IL+]s] <1+ \5}?(5)| +[3(s)| < 3(1 4+ [S(s)])-

Let us firstly prove the estimate for the non-trivial characters. Using
the first part of Theorem | we deduce that for every x # 1 in the

domain 1 — 57 < R(s) < 3 one has
L (s, x)|
o [ drN d .
- KF(HW(S))“FQ]( - Z?;()([fg] ! 11 \1+s+m(xv)|”v> h
vEME
€ [F:Q]
st omg) *
X (dFNF/Q(CODd(X)) H <1+’3‘)2(1+|m(xy)|)2) 3[FQ]
veEME®
; [F:Q]
s+ omg)
(d/NF/@ (cond(x))"* ] 3(1+18(s)D(1 +|m<xv>\>) b
veEMp®

< (r(1+ 2[F€: Q])[Fr(@]x

X ((drNpjg(cond(x))) TFA3((1 + [S(s) (1 +[Ix))"
Moreover, as x, vanishes at K,, we have
Nrpjgleond(x)) < [ (0 : Ky) < (KD, K),
UEMO

where K, is the image in O of the v-adic projection of K. The inequality
(6.3.1.3) now follows from the observation that

m)m@] ((dr - (K K}y))Fa3)°

Cr(l+

€ [F:Q] 17l [ 70 i
<27 1+ d K. K)FO = C.
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Let us now consider the trivial character. When R(s) > 1
one has that

2[F:Q] >

(6.3.1.6)

3s |s|]+1 _ |s+1
s—1| " |s=1] — |s—1]|

Using the second part of Theorem [6.3.1.1] and the inequality (6.3.1.6)),

we deduce that

e/[F": €
(s=DGr()| < ge 1+ rardi 23 L+ IS)I)°
s r 2[F - Q] (27)¢
< C(1+[S(s)])".
The proposition is proven. O
6.3.2. — We will now present a bound on the growth in the vertical

strips of the L-function of a general Hecke character x : (A} /F*) — S'.
In the equality (3.4.9.1f), we have established an identification:

AL x Rog 55 AZ.

For a character x € (R-¢)* we denote by m(x) the unique real number m
such that x(z) = 2" for every z € R.,. For a character xy € (Ax)* we
denote by xo the restriction x|41 and we write m(x) for m(x|r.,) so that
X = Xol [0,

For a character x : A% — S, one has that

L(s,x) = L(s, xol- ") = T Lu(s, (xo)ul X))

vEMO

1
- H im(x)

UEM% - |7TU|:Z(X0) (7.‘—1)>|7Tfu|

- 1I 1
1— |7Tv|f;+im(X)(

veMY

The following proposition deduces easily from Proposition [6.3.1.2
Corollary 6.8.2.1. — Let K C K, be an open subgroup. For every

€ > 0, there exist C = C(€) > 0 and § = 0(e) > 0 such that the following
conditions are satisfied if provided that R(s) > 1—¢:

X0)o(my)
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1. for every non trivial Hecke character x : (A% /F*) — S with xo # 1

which vanishes on K C K9 one has

(6.32.2)  |L(s,x)| < C(A+IS(s))(X + [1xolloe) (1 + [m(x)]))
2. for every Hecke character x : (A%/F*) — S' with xo = 1 one has
that
(s +im(x) = 1)L(s, x)
s +im(x)
Proof. — Let € > 0 and let C' = C(¢) and § = d(e) > 0 be given by
Proposition [6.3.1.2]

1. Let x : AX — S* be a Hecke character which vanishes on K such
that yo # 1. Then x, vanishes on K and Proposition [6.3.1.2] gives
that

L(s,x) = L(s +im(x), xo0) < C((1 +[S(s) + mO)D (1 + [[xo0lle0))
< O+ [S(s)DA 4 [mO)N M+ [xolleo)) -

2. Let x : AY — S! be a Hecke character with o = 1. Proposition
6.3.1.2 gives that

(s +im(x) = L(s,x) ‘
s +im(x)

(6.3.2.3) <O+ S(s)D( + m(x)])"

(s +im(x) — 1)L(s +im(x),1) ‘
s +im(x)

(s + im(x) — DCr(s +im(x)) ‘
s +im(x)

< C((+[S(s) +m)))*

<C







CHAPTER 7

FOURIER TRANSFORM OF THE
HEIGHT FUNCTION

In this chapter we analyse the Fourier transform of the height function,
when the functions f, are smooth. Let n be a positive integer and let
acZl,ifn>2and a=a; €Zs if n =1. As before, we use notation
f# for the toric a-homogenous function F* — {0} — R.q of weighted
degree |a|. For v € MY, we have established in Lemma that f#
is locally constant i.e. smooth. Let (f, : " — {0} — R+g), be a degree
|a] quasi-toric a-homogenous family of smooth functions. Let S be the
union of the set consisting of the finite places v at which f, is not toric
and the set of the infinite places. Let H = H((f,),) be the corresponding
height on [Z(a)(F)]. If v € Mp, for a character x, € [ 7 (a)(F,)]* and

j€{l,...,n}, we denote by X&” the character F* — S! given by

7.1. Local transform

In this section we study local Fourier transform.

7.1.1. — In the first paragraph we recall several facts from abstract
harmonic analysis.

Let G be an abelian locally compact group and let dg be a Haar mea-
sure on G. For f € L'(G) and x € G*, we denote the Fourier transform
of f by

oo = / (F)(dg)".
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By (dg)* or by dg* we denote the dual measure on the character group
G* (see [5, Chapter II, §1, n°3, Definition 4]). It is characterized by
the following property: it is the unique Haar measure on G* such that
Fourier inversion formula ([5, Chapter II, §1, n°4, Proposition 4]) is
valid

(7.1.1.1) flx) = / X(9)F () (dg* (x))

for every x € G.
Lemma 7.1.1.2 (|5, Chapter II, §1, n°8, Proposition 9])

Let H be a closed subgroup of G and let dh be a Haar measure on H.
The dual measure (dg/dh)* on (G/H)* = H* of the measure dg/dh on
B/A satisfies that

(dg)*/((dg/dh)*) = (dh)".
Lemma 7.1.1.3 (|5, Chapter II, §1, n°9, Proposition 11])

The group G* is compact if and only if G is discrete. If dg is the
counting measure on G, then (dg)* is normalized by (dg)*(G*) =1
Proposition 7.1.1.4 ([5, Chapter II, §1, n°8, Proposition 8])

Let H be a closed subgroup of an abelian locally compact group G. Let
dh and dg be Haar measures on H and G, respectively. Let f € L*(Q).
We suppose that

1. the restriction of the Fourier transform ﬂHL 1s an element of
LVHY) = L(G/H)),

2. for every x € G, one has that (h — f(zh)) € L*(H),

8. the function x — [, f(xh)dh is a continuous function G — C.

Then Poisson formula is valid:
[ fwin= [ (Fdg/any
H HL

7.1.2. — In this paragraph we define height pairing.
Forve Mp,s € C", t € F) and x € (F)" one has that

as
a

a-s

151, = [1]2° ()

v

fv<t ' X)

n n

2], % |,
1

J=1 J
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i.e. for v € Mg and s € C", the continuous function

(7.1.2.1) (FX)" = C, x = fo(x)% [ |zl

J=1
s (F))a-invariant. Let H,(s,—) : [Z(a)(F)] — C be the function
induced from (F,)a-invariant function (7.1.2.1). For x € [T (a)(F)],
we write H,(s,x) for what is technically H,(s,[Z (a)(i,)](x)), where
(T (a)(iy)] : [T (a)(@)(F)] — [Z(a)(i)(F,)] is the induced homomor-
phism from (F*),-invariant homomorphism

(F7)" = ()" = [T (a)(F)].
Lemma 7.1.2.2. — Lets € C™.

1. Suppose that x € [ 7 (a)(O,)]. One has that H¥ (s,x) = 1.
2. Let (%), € [7(a)(Ap)|. The product

X) 1= H H,(s,x)

vEMpE

s a finite product.
3. Let x € [7(a)(F)]. One has that

a-s

H(x)*= = H(s,[7(a)(1)](x))

(recall that |7 (a)(i)] : [T (a)(F)] — [7(a)(AFr)] is the map induced
from (F*)a-invariant map

FX = (Ap)" — [T (a)(Ar)],
where the first map 1is the diagonal inclusion and the second map is
the quotient map).

Proof. — 1. Let x € (O))" be a lift of x. One has that (OX)" C (Or—
=1.

[T, 7y’ O,) and thus by Lemma[4.4.3.1| one has f#] We
deduce that

n
HY (x ﬁH\%W =

J=1

2. By definition of [7(a)(Afp)] for almost every v € Mp one has
that x, € [T ( 1(Oy)]. For almost every v, hence, one has that
H,(s,x,) = H¥(s,x,) = 1. Thus the product deﬁmng H(s,x) is a
finite product.
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3. Let x € F*" be a lift of x. Recall from Lemma [3.4.2.3] that v-
th coordinate of [7(a)(i)](x) is [7(a)(iy)](x). Using the product
formula, we get that

We may write H(s,x) for what is technically H(s,[.7 (a)(i)](x)).

7.1.3. — In this paragraph we establish that the functions H, (s, —)
are integrable and that their Fourier transforms are holomorphic and
bounded in s.

Let v € Mp. In Definition [5.4.1.1] we have defined a Haar measure
on [T (a)(F,)] = (F)"/(F)})a by (d*zy...d*x,)/d*z. If v € MY, we
have established in Lemma that u,([7(a)(O,)]) = ( (1)L
For s € C" and a character x, € [7(a)(F,)]* we define formally

CU(l)nil Jn[y(a)(pv)} H’U(S, _)71X’U,U“U lf v E MFO"
f[y(a)(Fv)} Hy(s, =) Xobt it v e Mpe.

I/—L,(S, Xo) 1= {

In this paragraph, we are going to prove that this integral converges
absolutely when s € 2. and that it is a holomorphic function of s in
this domain. The following result, in a bit weaker form, has been given
as Lemma 8.3 in [18]

Lemma 7.1.3.1. — Let B > 0. For every e > 0, the integral

(7.1.3.2) / |z|5 da,,
{2€F,| [2,<B}
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converges absolutely and uniformly in the domain s € R, + iR. The
function that associates to s the value of the integral 15 holo-
morphic in the domain R<y + R.

Proof. — Suppose v € Mp. Let r be the largest integer satisfying that
(|7l 1)" < B. For every € > 0 and every s € Ry + iR, we have that

/ 2|5 dw, = Z/ |(L‘|f)_1dl‘
{z€Fy| |zly<B} |zlo=(|moly ")

k=—o00
SO R
k=—00 x"u |7r’v|'u
— Z |7V da (7 O,)
k=—0o0
T
= Z ‘Wv‘;ks
k=—o0
o
= Z |7TU|ES
k=—r

oo
= |myl," Z ]7@]55.
k=0

The last series converges absolutely and uniformly in the domain R . +7R.

Moreover, s+ |m,|,"* Eiio |7rv|zlfs - h”;r?v\v

the domain R.g + ¢R. Suppose v is a real place. For every € > 0, we

have that
B
/ 2|5~ da,, :/ 2|5 1o = 2/ ¥
|z|v<B |z|<B 0

converges absolutely and uniformly for s € R.,. + iR. Moreover,

B s
s>—>2/ Sld:z:—?—
0

is a holomorphic function in

=B B
=2—
S

z=0
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is a holomorphic function in s in the domain Ry + ¢R. Suppose v is a
complex place. For every ¢ > 0, we have that

/ 2|5~ dx, = / (z° + y*)* ' 2dxdy
lzlo<B z?+y?<B
2
= / / T2(S_1)2Td7‘d¢
0 r2<B
\/E

= 47T/ r®=tdr
0

converges absolutely and uniformly for s € R.. + iR. Moreover,

VB T2$
S 47r/ r25 Y dr = dr—
0 2s

VB B 2r B*®

r=0 s

is a holomorphic function in s in the domain R+ + ¢{R. The statement
is proven. O

For y € R", we define
oy = {s € C"[R(s) > y}.

Proposition 7.1.3.3. — For every x, € [7(a)(F,)|*, the integral
defining ﬁv(s,xv) converges absolutely in the domain s € <. More-
over, for every compact K C <, there exists C(K) > 0 such that for
every s € K and every x, € [7 (a)(F,)]*, one has that

|H(s, x0)| < C(K).

Proof. — As our characters are assumed unitary (that is with the
values in S'), by the triangle inequality, it suffices to prove the
statement when y, = 1. Let K C (.9 be a compact. Let w,
be the quotient measure f,'dr...dz,/d*z on (F" — {0})/F; =
(Z(a)(F,)] (see Definition [5.2.4.1). By Lemma [5.4.1.2) one has an
inequality of the measures H,(1, —)wy|(7(a)(F) = Ho- We deduce
that H,(s,—)"' € LY[T(a)(F,)], i) if and only if H,(s,—)"' €
LY([7(a)(F,)], H,(1, —)w,), i.e. if and only if

H,(s,—) "' Hu(1,—) € LY([T (a)(F})], wo)-
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Moreover, if H,(s, =)' € LY([7(a)(F,)], tt»), then

/ Hy(s, —) 'y = / Hols, =) Hy(1, =)y
[T (a)(Fy)] [T (a)(Fy)]

= / Hv(sv_)_le(]-)_)wvv
[Z(a)(Fy)]

where the last equality follows from the fact that w,([Z?(a)(F,)] —
[7(a)(F,)]) = 0, which we have established in Lemma [5.2.4.2]
In [5.2.2l we have defined a compactly supported function A3

F" — {0} — Ry which satisfies that for every x € FI — {0}
one has that fFUX ka(t - x)d*t = 1. Proposition gives that

H,(s,—)'H,(1,—) € L'([Z?(a)(F},)],w,) if and only if
((HU(S, _)_1Hv(17 _)) © qg) ’ ks

= (fv(x)

n n

ol |85 . I
H|xj|v fU<X>H|x]| ) v
7=1 j=1

= fo) R [ fasl - k2
j=1
e L'(F"—{0},dz, ...dx,),

and that if H,(s,—)'H,(1,-) € L'([#(a)(F,)],w,), then

/ Hyls, =) Ho(1, =)o,
[Z(a)(Fy)]

= / fv(X)l_EHWﬂff—l k2 f ey . dy,
FZL*{O} 7=1

=/ fu(x)ﬁ]_[\ar:j\zf1 k3dxy .. day,.
supp(k%) j=1

For every s € K, the function x fv(x)_%@kfj(x) is non vanishing
and continuous, moreover it can be uniformly bounded for s € K and
x € supp(k?). Moreover, as k2 is compactly supported, there exists
B > 0, such that

supp(ky) C {Vj : [z;], < B}
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It follows from Lemma [7.1.3.1] that the integral

x5 Vde (/ x|%~ lda:)
LU@H' R | (G

7j=1

converges absolutely and uniformly for R(s) € K. Hence,

/ Fo) T T gl ke . d,
supp(k2) j=1

_ / Hyls, =) Hy(1, — )
(Z(a)(Fu)]

- / Hv(su _)_lluv
(7 (a)(Fv)]

converges absolutely and uniformly for R(s) € K. The statement is
proven O

Corollary 7.1.3.4. — The function s — ﬁv(s,xv) is holomorphic.

Proof. — We apply the Morera’s criterion. Let A C Q.o be a tri-
angle. By Proposition , the function H,(s,—)"! is absolutely
T integrable and the function H, (—,—) can be uniformly bounded on

A x [T (a)(F,)]*, we deduce that

/H S, Xu ds—/Cv ) 1/ Hv(s,—)’lxvuvds,
(a)(Fv)]

where if v € Mp® one sets (,(1) = 1, converges absolutely. By using
Fubini’s theorem, we get that

/ / Hv(S, _)_IXv,uvdS - / / HU(S7 _>_1XUdS,uv = 0.
A V[T (a)(F)] [7(a)(Fv)] J A

By Morera’s criterion, s — f-jv(s, Xv) is holomorphic. O

7.2. Calculations in non-archimedean case

We establish some properties of the local transform in the non-
archimedean case. Firstly we treat the case when f, is the toric
a-homogenous function of weighted degree |a| and give the exact value
of the integral in Lemma [7.2.1.1}
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7.2.1. — In this paragraph we calculate the Fourier transform at the
finite places v when f, = f# is toric.

Let v € MY, Let f7# : F*—{0} — R be the toric a-homogenous func-
tion of weighted degree |a| (see Definition Recall from Lemma
, that f#|pa = 1, where D2 = OF — H] 1 m‘,”(’)

When v € M%, we observe that

X z@on =1 = xP|ox =1for j=1,....n

Lemma 7.2.1.1. — Let v € MY and let f# : F" — {0} — R.q be the
toric a-homogenous function of weighted degree |a|. Let s € Q¢ and let
Xo € [T (a)(F,)]* be a character. We have that

_ IT5 Lu(s;, 1) el y
(7.2.1.2) H# (s, x,) = C(a-s) U Xoll7(2)(00)] =
0 otherwise.

Proof. — By applying Lemma [5.4.1.3] we have that

/ Hf(sa _)_IX,U“U
[7 (a)(Fy)]

:gv(1)/ FEE) T T 21539 () des . d
(F)"nD2 H 2

= (,(1 / T Y (7) xi)dry...de,.
W [ Tl ) e

'uj 1
We calculate the last integral as the difference of the integrals
of T, [y ™0 (x)) over (O N (B = (O, — {0})" and
(ITj= m’0.) N ( F)" = 1= (m’ Oy —{0}) :

/ H 2515 XD () day . . . day,
/ H|x 157U (2)dxy . . day,
©

B0 ey

—/ N H]xj| ))dzy ... dz,.
H?:l (my? Ou—{0})

J=1



214 CHAPTER 7. FOURIER TRANSFORM OF THE HEIGHT FUNCTION

Let us integrate over (O, — {0})". We have that
(7.2.1.3)

25157 ) () dy / x)|z|5 da.
/o {0})nH H 0, {o}

When R(s) > 0, we have that

zl*d*x = / zl*d*x
[ @ Z ) et
= Z / (w0 - [l
—Zx e / 9 (@)d"z.
ox

v

The integral of a non trivial character of compact group for a Haar mea-
sure on the group is 0, while it is the Volume of the group if the character

is trivial. We deduce that, in the case X | ox # 1 one has that

[ W@ltae=o
Ou—{0}

otherwise

z|;d'r = / x|od
[ e Z Dlet;
—va Dl (i 0;)

o0

= d'z(0Oy) Z(X(j)(ﬂ'v)’ﬂ'vlf;)r
r=0
1 - |7Tv|v

L=t () ol
= Guo(1) " Lo(s,XY).
The integral over (O, — {0})" is hence

TT0 -~ Imol)Losn®) = 0~ T Lolsx )
7j=1

Jj=1
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Let us calculate the integral of [,_, E - (])(ZL‘]) over [[_ (T’ O, —
{0}). The v-adic absolute value of the determinant of the Jacobian of
the map

Oy —{0})" = (m7 0y = {0}); x> (ma);

is equal to |7r1,|‘ | Using the formula for the change of variables and the
fact that J[j_ ( ))ai =1, we get that

/ N H |z x ))d: ... dz,

j:1(7rvj Ou_{o}) j=1

- / ol (T Iras 9 (x5 5) )i . di,
(Oy—{0})™ j=1

n

= fm e [ () /

j=1 (O, —{0}H)™

|7rU]aS/ ;|57 x;))dzy ... dx,
Ou—{0H" H ) 1

7j=1

|m,|“H / 2l (2)de

= |m[3°G(1 HL (55, x)

H|IJ|SJ Y9 (x))dwy ... day,
7j=1

We deduce that

/(F) . H\lesj XD (x;) day ... dw, =0
nm a
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if X7 @0, # 1 and

/(F ynAD [T il =% () davy . .
UX nnpa

v j:l

D7 T 2G5 x9) = () w3 T ] LoCssox?)
7j=1

7j=1
:CU( CU a- S IHL'U S]aXv 9
7=1

if X|(7(a)(r,)) = 1. Finally, it follows that

~

Hf(sw X) = Cv(l)(n_l) ’ Cv(l)/ H |l’ |S] Xv (l‘]) de’l d =0

(F )ana ,_1

if th(a)(@“)] 75 1 and

Hf(& X) - Cv(l) gv / . H |5U |s] ) dl’l d$n

vjl

=Gofa-s) [T Lo(s. X)
j=1
if Xo|(7(a)0,)] = 1. The statement is proven. O

7.2.2. — Let v € MY. When f, is assumed to be smooth, we estab-
lish in Lemma that, whenever x, ¢ [ (a)(F),)]*, there exists a
compact and open subgroup K, C [7(a)(0,)] such that H,(s, y,) = 0.
The following lemma will be used.

Lemma 7.2.2.1. — Let v € M2 and let f, : F" — {0} — Ryg be a
locally constant a-homogenous function of weighted degree b > 0. There
exists an open and compact subgroup A, C (F))" such that for every
(N\j); € Ay and every (z;); € F)' — {0} one has that

fv(O‘jxj)j) = fv(x>'
Proof. — We set as before D2 := (OF) — (711 O,) X -+ x (7¢~O,). B
Lemma [3.3.4.4] the set D2 C F' — {0} is open and compact subset of
F™ — {0}. There exists a finite set {B(x;,d;)}; C D2 of open balls in
— {0}, where d; > 0, which cover D2 and such that for every i, the
restriction f,|p(x,q,) is constant. The open balls in F' — {0} are also
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closed and hence compact. For every i and every y € B(x;,d;), the set
of (X)); € (F))™ such that (\;y;); € B(x;,d;) is an open neighbourhood
of 1 € (F))" and thus contains an open subgroup A} C (F))". For
every i, the open sets {A’y -¥ }yeB(xi,4;) form an open covering of B(x;, d;)
and there exists a finite set of points yi,...,y. € B (Xz, d;) such that
{A;Zl -¥.}e=1.. m, is an open covering of B(x;,d;). Now A, := N; N, AZ
is an open subgroup of (F)" satisfying that for any x € D? and any
(Aj); € Ay, one has f,((\jz;);) = fu(x). Lety € F'—{0} and( i)j € Ay
By Lemma [3.3.4.4 m there exists t € F,* such that ¢t -y € D3. We have

12 £ ((Ngy)5) = Fol (89 N05)5) = Fol(Nt95)) = Fu((t95);) = [E12 fu(y),
and the statement follows. O

Lemma 7.2.2.2. — Lets € Qsg. Let v € MY and let f, : F' —
{0} — R>q be locally constant a-homogenous function of weighted degree
|al. There exists a compact open subgroup K, of [ (a)(F,)] such that
Hy(s,x) = 0, for any character x € [T (a)(F,)]* not vanishing on K,.
Moreover, if f, = f¥ is toric, one can choose K, = [7 (a)(0,)].

Proof. — By Lemmal7.2.2.T] there exists an open and compact subgroup
A, C (F))" such that f, is A,-invariant. Let us set K, = ¢2(A, N
O;") C [T (a)(F,)]. It is open and compact subgroup of [.7 (a)(F},)].
Let x € [7(a)(F,)] and let x € (F°)" be a lift of x. Let y € K, and let
y € ANOS" be a lift of y. We have that

Hy(s,yx) = fu(( yjmj j ?‘ H ’yjfjhj = fu(X ﬁ H |mj| = (s, x).

J=1 J=1

Therefore x — H,(s,x), and hence x — H,(s,x)! are invariant for
the open and compact subgroup ¢2(A, NOX") C [7 (a)(F,)]. We deduce
that for any x, € [Z(a)(F,)]* which does not vanish on K, one has

f[v(s,xv) = 0. Moreover, in the case f, is toric, by Lemma [7.2.1.1} one
has that H,(s, x,) = 0 for every x, not vanishing on [.7 (a)(O,)]. O

7.3. Product of transforms over finite places

Using the results from local analysis, we establish some growth prop-
erties on the product of transforms over all finite places.

The assumption on a is that a € Z%; if n > 2, and a = a € Z-, if
n = 1. As before f, are assumed to be locally constant for v € M.
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7.3.1. — For a character x € [7(a)(Ar)]* and any s € Q-(, we set

Hea(s.x) == ] Hols,x0).

0
veME,

One has following proposition.

Proposition 7.3.1.1. — Leta € Z%, if n > 2 and let a = a1 € Z>,
if n = 1. For every character x € [7(a)(Ar)]*, the infinite product
E[ﬁn(S,X) converges for s € Q<1 and defines a holomorphic function in
the domain Q1. There exists a unique holomorphic function ¢g,(—, x)
on Q>§ such that one has an equality of meromorphic functions in the
domain Q.

2 !
3

n

Ho (s, %) = daa(s,x) [ L(sj. 7).

Jj=1

Moreover, for every compact K C RY,, there exists C(K) such that
3

|pan(s, X)| < C(K) for every character x € |7 (a)(Ap)]*, provided that

R(s) € K.

Proof. — Let S be the union of the set of finite places v for which f,

is not toric and the set of the infinite places. By Corollary for
every character y € [.7 (a)(Ap)]*, the function

Q>0 — C S — H ﬁv(& XU)

vGSﬂM%

is holomorphic. For every character x € [T (a)(Ar)]* and every v €
M}, — S, the functions

and
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are holomorphic and non vanishing in the domain 2-,. We deduce that
for every s € Q- and every x € [7(a)(Ap)]*, the product

II Aosox)= [ Hfsx)

UEM%—S vGM%—S

converges to
HJ . L(SJ, (]))
Ty Lo(s;x$)
Cr(a-s) HueSmMg ]lc“v(—asj)

We conclude that for s € Q. and x € [Z(a)(Ap)]*, the product
Hgn (s, x) converges to

~ H] 1 L(sj, (j))
H Hv(saxv) H‘f L (s-x<j))
vESNMY, (r(a-s) HUESmMg _Jflgv(a.s])’

and using holomorphicity of s — f]v(s, Xov) fors € 5, that the resulting
function is holomorphic in s in the domain 2-;. Let us establish the
meromorphic extension to the domain Q>g . We set

, o(8, Xo)Cu(a - s)
¢ﬁn(S7X) : ve!;[MO H] IL (Sj7 G )) .

If s € Q.2, then R(a-s)>3 (because if n > 2 then a € Z%; and if

n =1 then a € Z+,). Usmg the fact that the function (r is holomor-

phic and without zeros in the domain Q>§, we deduce that the func-
1

tion s — (p(a-s)”
ready seen that for v € Mp N S, the function s — (T]7; Lu(s;, Xq()])) :

the function s — (,(a-s) and s — H,(s, x,) are holomorphic in the
domain s € Q.. It follows that ¢g,(—,x) is holomorphic in the do-
main € 2 and is the unique holomorphic function which satisfies that

ﬁﬁn( ,X) = Ptin(—> X) H] 1 L(sj,x & )) in this domain.
Let K C ]R” be a compact. By Proposition [7.1.3.3] for every v €

SN MY, there ex1sts C1 > 0 such that for every s € K 4+ ¢R" and every

is holomorphic in the domain Q>§. We have al-
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Y € [Z(a)(Ap)]*, one has |H,(s, x,)| < Cy. One has that

(1—x 7rv )| |37)
'H] 1L<SJ7XU ‘ H‘

Note that for v € SN M2, we have

(7.3.1.2)

[ <1

for every s € Q>§.

1

1 - ‘Wv‘ghs

1

1= |myle

G(a-s)| = ‘ _ o),

whenever s € Q>§. Finally, for s € Q>§, one has R(a-s) > —, and we

have
1 1 1
7.3.1.3 < < .
(7349 Gra9)| = Gl 9) = ()
We conclude that for s € K +iR™ and y € [f(a) (Ap)]* one has
(s: X Cv(a s)
|¢ﬁn(sa X)|
eaw L T Lo

_ @G )
@)

We have proven that ¢g, is uniformly bounded for y € [7 (a)(Afr)]* when
R(s) € K. The proof is completed. O

7.4. Calculations in archimedean case

The goal of this section is to analyse the Fourier transforms of local
heights at the infinite places.

7.4.1. — In this paragraph we recall some facts about integration by
parts. Let v € Mp°.
Consider the vector field

o {8%, if v is real

(7.4.1.1)

ox, 0

5, if v is complex

defined on F,,.
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Lemma 7.4.1.2. — Let v € Mp. Let f,g : F — C be smooth
functions. We suppose that limy,|,e0 fg(2,) = 0 and that the functions

F} — C given by x, — %ﬁ”)g(af;v) and x, — f(xv)%i”) are absolutely
dx,-integrable. If v is real, we suppose further that lim,, o fg(x,) exists

and 1s a finite real number. One has that

F’U

Proof. — Suppose v is real. By applylng the integration by parts, we get
that

of
; 8xvgdﬂlsv
af
= R%gdaz
= d:c —|—/ gdx
R>o R<0
N _ 9y : a0 dg
=0 hm fg(z) - fa$dx + glﬂlir(l] fg(xz)—0 - f@:z:d

/fagdx

Suppose v is complex. By Fubini’s theorem we have

(7.4.1.3)

dz,
/aa:v”

/<8f(x+iy) Zaf(g;iy))g(x—i—ly)dxdy

/ /0f:c—|—zy a:—i—zydx—/dx/ 8f:r+zy (x+ iy)dy.

For every y € R, by the conditions of our lemma, one has that

. Of(z +1y) dg(z + iy)
xEIﬁI:lOO oz g( * Zy) o mgljlzloo ox

flx +iy) =0.

Using that z — a( Lg(2) and of z — f(z )aT'z are absolutely —idzdz =
2dzdy-integrable, we deduce that x +— Mg(w +iy) and x — f(z +
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zy)M;”w are absolutely integrable for almost every y. For such y, one
gets
of(x+1 g(x + ?
/—f( y)g( x +1iy)d /fx+z y)d.
R ax

Similarly, for almost every z € R one has that

of (x +iy) . L Og(z +1iy)
[ iy =~ [ i

We deduce that the last integral of the equality (7.4.1.3)) is equal to
0 ’ 0 ’
R R R

R ox dy
dg .0g
=— —= —i— |dxd
/sz<8.a: Zay) vy
dg
- _ =7 dz,
F faxv v
]
Note that
(7.4.1.4) m =0
4.1 oz,
whenever z, # 0 (indeed, when v is real, one has that |m”| is a piecewise
constant function and when v is complex, one has that IITT = 6%—:) =

0).
Let V be the vector field on F, given by %3.
Corollary 7.4.1.5. — Let v € Mp°. Suppose that f,g : I, — C are
continuous functions the restrictions of which to F are smooth. Sup-
pose further that lim,, |, oo fg(2y) = limig,|,—0 f9(2,) = 0 and that the
functions V(f)g, fV(g) : F) — C are absolutely d*x,-integrable. One
has that
V(flgd'z, =— [ [V(g)dx
pots Fy

Proof. —
that if v is real, then

lim fg(z,) =

||

hm fo(z)— —

]
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Ty

P
By applying the fact ((7.4.1.4)), we get that ('(;;’:L” 9 _ \ZJIU g It follows

from the conditions of the lemma that the functions £, — C given by

Ty 8{;(;”)3”%5? and z, — %%ﬂcf) are absolutely dz,-integrable,
and that limj,, |, oo %g'(f”) = 0. Using Lemma [7.4.1.2] we get that
of x,
\V4 d*l’v == dxv
. (f)g e O ool
(|%\ g)
— _ Ty |v d Y
/va / 0x,
dg
— d "
f |mv| 8% .

]

7.4.2. — In this paragraph we define and prove properties of auxiliary

functions h;, which will used in [7.4.3] to perform desired integration by

parts. For k € {1,...,n}, let V; be the vector field on F given by £ x’““
We start with the followmg lemma.

Lemma 7.4.2.1. — Let U C F — {0} be an open and F)-invariant

subset. Let g : U — C be a smooth, a-homogenous function of weighted

degree s € C (that is whenever t € F), one has g(t - w) = |t|Sg(w) for

every w € U). Let k € {1,...,n}. The function Vi(g9) : U — C is a

smooth a-homogenous function of weighted degree s.

Proof. — Let w € U and let t € F*. Suppose v is real. We have

(t-W =

09
8:1:k

xkvag

(t-w)

g((t"™* wy, + €)g, (FYw))jzr) — g((EYw;);)
[t g((wy + €/t )k, (w))26) — [E7g((w;);)

81‘ kv

=t% Wi lim
e—0

= t“’“wk lim
e—0 €
0,
[
= ran

= \t!ivk( )(W).
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It follows that for v real, the function Vi (g) is a-homogenous and of
weighted degree s. Moreover, it is smooth. Suppose that v is complex.
We have that:

TroOg WGap) - _ 299 W) ) = LWk 99 _ ;99
T ((tYw;);) = 01 ((t"w;);) = 5 <8xk Zayk (t-w).
We have that

Og((t“rw;);) _ o 9((E%wy + €, (t9w;)jzn) — g(t - W)

oxy, e—0 €
i (9((w + €/t )i, (wy) 1) — g(w))
e—0 €
o I g+ €/ 1)) — g()
e—0 (e/to)
_ 9y
— ap|4|2s I
e ),
Similarly,
Og((trwy);) _ . g((t™wy + ie)y, (tw;)j0k) — gt - W)
Yy e—0 €
— lim 1% (g((wr + 1€/t ), (W) j26) — g(W))
e—0 €
o I g+ et ) () ) — ()
¢—0 (e/tor)
- 9y
— pak||2s I
e ()

We deduce that:

Ty _ ™y (99 9y
(t-w)= 5 (8xk zayk>(t w)

8x;ﬂ,
2s
— wi|¢] ( 99 —q ag)(w)

2 8a7k 8yk

_ weltly (99 _ 99 (w)
2 8$k 0yk

= [t13Vi(g)(w).

It follows that for v complex, the function Vi(g) is a-homogenous and of
weighted degree s. Moreover, it is smooth. The statement is proven. [
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Recall that f, : " — {0} — R.¢ is smooth a-homogenous function of
weighted degree |a|. For j =1,...,n, let h; : F' — {z; = 0} — R be
given by

x > —log (|j]ufu(x)”/ ™).
Note that
hi(tx) = —log(|t% |u ;] fu(t-x) /) = —log(|Ja;l. fu(x) /™) = hy(x)
for every t € F* and every x € F} — {z; = 0}.
Lemma 7.4.2.2. — Letk,j € {1,...,n}. The function Vi(h;) extends
to a smooth F)-invariant function F' — {0} — R.

Proof. — By Lemma |7.4.2.1} V(h;) is smooth and F,‘-invariant on the
domain (F,)" — {z; = 0}. When z; # 0, we have that

Vi(hy) = Vi(log(f2/1)) = Vi (log(|z1.,))
As f, is smooth and non-vanishing, the function V(log( fffj/ ‘al)) is a
smooth function defined of F)' — {0}. By Lemma [7.4.2.1] we have for
te FX andy € F' — {0} that
Vil £ y) VR ()
fo e - y) i 2™ ()
= Vi(log(f7/*))(y),

ie. Vk(log(fgmal)) is F*-invariant. For a real place v, we have that

_ dlog(J«]))

Villog(fe/P)(t - y) =

V(1 v =1,
wllog(auly) = T
and for a complex place v, we have that
Villog(la)) = 208D
k10g\|Tk|v)) = 92 = L
We deduce that
1, ifk=y

0, otherwise.

(7.4.23) Vi(log(|z;1.)) = {

Therefore Vi (log|z;|,) extends to a smooth F,*-invariant function F' —
{0} — R. Now, we deduce that the function

Vi(hy) = Vi(log(f;7/1*)) — Vi (log(|z;1.))
extends to F‘-invariant and smooth function F' — {0} — R.,. The
statement is proven. ]
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Continuous F,‘-invariant functions F* — {0} — R descend to contin-
uous functions on the compact [Z(a)(F,)]. We deduce that:
Corollary 7.4.2.4. — Letk € {1,...,n} and let N > 1 be an integer.
The functions V¥ (h;) are bounded.

7.4.3. — In this paragraph we derivate the pullback of the function
H,(s,—) for the quotient map (F))" — [Z(a)(F,)] using the vector

fields Vi. For s € C", let us set H,(s,—) = Hy(s,—) o q?: (E))" — C.
We have that

n

Hy(s,%) = 100 ™ [T sl = [T exp(sss(0)

=1

for x € (F)"! and s € C".

Lemma 7.4.3.1. — Letk € {1,...,n—1}. For every N € Z~q, there

exists an isobaric polynomial Py € R[{X,a}1<j<n]| which is of weighted
1<d<N

degree N (where the degree of X; 4 is d) such that

for every s € C".
Proof. — Let s € C". For every x € (F))", we have that

fiy(s,%)7 = exp ( - Z sjhj<x>),

and hence that

Vi (ﬁv(sv X>_1) = &Xp ( B Z thj(X)) Z xgi:%

n
J Jj=1

= H,(s,x)"" Z s, Vi(h;)(x).

We deduce that when N = 1, we can take P ((X,q4)ja) = Z?:l Xj1.
Suppose the statement is true for some N and let us verify it for N + 1.
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We have
V{C\H—l(ﬁ[v(sv _)_1)
= Vi (Hy(s, )" Pn((5;V¢h));0))
-1, <Zsjvk(hj))PN((sjVihj)j,d)

+ Hy(s, =) 'Vi(Py((5;,Vh;);a)

= ﬁv(s, —)_1 . <(Zsjvk(h ))PN((SJV h )] d) + vk(PN((S]V h )j d>)>

j=1

Let 0 : R{X,a}1<j<n] = R{X,a} 1<j<n | be the R-linear map given
1<

<d<N 1<d<N+1
by
T .]E d€+1 T
Xitan - Xila, = Z X, (Xra - X5 a,) ¢e € Z>0.
Note that if @ € R[{ X;a} 1§j§n] is isobaric of weighted degree N,
1<d<N

then §(Q) is isobaric of weighted degree N + 1. As the polynomial
(Z?:1 X;1)Pn((Xja)ja) is isobaric of weighted degree N + 1, the
polynomial

Py = Z 1PN+5PN)

is isobaric of weighted degree N + 1 and from above one has that:
Hy(s, =)™ = Hy(s, =) " Prya((;Vihy) 1<j<n ).
1<d<N+1
The statement is proven. 0

7.4.4. — In this paragraph we calculate several limits that will enable
us to perform integration by parts as in Corollary in paragraph
[7.4.6l The developed theory, along with the theory of [7.4.5 and [7.4.6]
is ultimately used to prove Proposition [7.4.6.5| on the decay of Fourier
transforms in the “discrete” and the “infinite” norms of a character.
Throughout the paragraph one assumes that n > 2, because the following
lemma is not valid when n = 1. Proposition [7.4.6.5 will, however, also
be valid in the case n = 1 and will follow independently from the rest of
the theory.
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Lemma 7.4.4.1. — Suppose that n. > 2. Let us fix (z;)}_, € (F;)"!

J#k
and let s € Q~q. One has that
lim H,(s,x)"' =0,

zp—0

lim H,(s,x)"' =0.

|2k |0 —r00
Proof. — We have

—a-s

lim H,(s,x)"" = limOH 25157 fo(x) Tal
Tp—r ‘7

x—0

a-s

= lim H"T]'v fol(@5) 0, (0)i) 1o = 0.

z—0

Let us calculate the other limit. For every x; € F,*, we have that

fo(x) = follzk ‘1/ o) '(%’xklva]/ nvak))y)
= |$k|Lal/(ak)fv((l‘j|xk|vaj/(nvak))j)
and hence that

as a-s

Foo) = = faa® fo (g, o/ 0o ) T

Thus
lim lfflv(x)*1
| |v—o00
n
—as
~ tm (60 Tl )
|Zg|»—>00 o
J=1
—a-s
= lim ‘xk‘v fv((xj\xk‘vag/ nyag) \a\ H’x]’éﬁ
|zg|o—>00
akSk—a'S
—  lim ‘Ik|v ay fv((xj|xk| aj/( TLv(lk) \a\ H|x |SJ
|zk|v—>00

j#’f
LSk —a-s

Note that limjg, |, o0 |Zk|e “* = 0. Let us define
By = {y € £ — {0}Vjly;|, <1 and |yx|, = 1}.
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The set By is compact. As f, is strictly positive, there exists €; > 0 such

that f,(y) > ¢ for every y € Bj,. We deduce that f, far is bounded above
by e; * /12l on B For |ak], > 0, one has (z;]zkls ™/ ")), € By. We
conclude that

lim H,(s,x)"" = 0.

\a:k|v—>0

[l
By using the formula given in Lemmal[7.4.3.T]and the fact that the func-

tions V¢{(h;) are bounded, we obtain immediately the following corollary

Corollary 7.4.4.2. — Suppose that n > 2. Lets € Q<g, let N > 0
and let k € {1,...,n}. Let us fir (x;)7_, € (F})""'. One has that

J#k
lim VY (H,(s,x)"!) =0,
|2k | —00
lim VY (H,(s,x)~") = 0.
xk—>0
7.4.5. — In this paragraph we present several formulas for the deriva-
tion with Vi, that will be used in [7.4.6] Let v € Mp®.
Lemma 7.4.5.1. — If s is a complex number, one has that V(x, —

|zy]2) = s|x,|® in the domain x, € FX.
Proof. — If v is real then

20|z’ -1
v v S — — S — S — v S.
(Joolo) = —5— = wsla["sgn(x) = s|z]* = s|z
If v is complex, then
a 2s
Vil = =5 — (!f' d o207 = sl = sl
z

[
We set F,; := {z| |z|, = 1}. We have established in an identifi-

cation
Po:Rog X Fyy = (r,2) = pu(r)z,
where p, : Rug — F is defined by p,(r) = /™. For a character
€ (F))*, we have set m(x,) to be the unique real number m such
that the character y,|r., is given by r — r™. If v is a real place, we set
{(x») to be 0 if the character x,p,, is the trivial character, otherwise we
set (x,) = 1. If v is a complex place, we have set £(x,) to be the unique
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integer ¢ such that x.|p,, is given by z — 2. Let x € [7 (a)(F,)]* be a
character. We set X, := x, 0¢?. We note that the function Y, : (F))" —
C is given by

x> H g Oy ) 4,

If v, € [7(a)(F,)]* is a character, we set

(74.5.2) m(x,) = (m(x{)); € R"
and
(7.4.5.3) £(x) = (L(x)); € 27,
where x{ is given by
2 = Xo(@P (k=1 ns (2)1=5))
k#j

It follows from the definition that

m(x,) € M = {x € R"| Zaj:cj =0}.

j=1

Lemma 7.4.5.4. — Let k € {1,...,n}. Suppose x, € [T (a)(F,)]|" is

a character. We set d(k, x,) = (1 — %)Z(Xq(,k)) + im(ng)). One has that
vk(;(/v) = d(ka XU) ’ Sgir

Proof. — If k # j, then we have that

V(im0

)) -0
and that _
V(][ 06y = 0,

By using this and the product rule, we obtain that:
- m (]) Ny (5;]))
W Lt el )

4 1(]k> im 1()k) — E,k) Ny & im E,j) —1/ny £ g)j>)

= V(a0 g | 0D =000 me) T e 067 (| ) .

=1
J#k
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One has that
zm ) (k) Ny
Vk(xi(x || () —e(x )/ ?)

(k)
(k) ’Lm(x(k)) [0;@ )
= 0O |y ’

m() - iy

CCRNNG .
+ (im(xF) — n—v)xk(x )|x;€|v v
1 , 0P NN

= d<k7 Xv) : %’u
It follows that

im gﬂ o) L)
Vi( (H’ Jl & x]|xj| Y ) * )

(7)
= d(k, x) mem (g M/me) )

7j=1

= d(k, Xv) ' ngw
The statement is proven. ]
7.4.6. — In this paragraph we make the wanted estimates on the ab-

solute value of the Fourier transform. We use the integration by parts
with respect to the vector fields V.

Lemma 7.4.6.1. — Suppose thatn > 2. Letk € {1,...,n—1}, lets €
Q-0 and let N be a non-negative integer. The function VY (H,(s,—)71) :
(FX)"txF,; — Cis absolutely dzy . . .dx, 1 X\, 1-integrable. Moreover,
if xo € [ (a)(F,)]* is a character, one has that

ﬁv(sa Xv) ' (_d(k7 Xv))N

G

=" VN (H,(s, =) Xod 21 ... d* Tt A1,
Ao (Fon) /(F oixmy,

Proof. — Without loss of the generality, we can suppose that £ = 1.
Suppose N = 0. Proposition gives that the integral defining the

Fourier transform H,(s, x,) converges absolutely. Now, it follows from
Lemma [5.4.1.3| that (where ¢ : (F))" — [Z(a)(F,)] is the quotient

v
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map)
(Hy(s,—)"'x0) 0 ¢* = Hy(s,—) "X,
e L'(F)" ' x Fyy,d*ny .. d* T 1M 1)
and that

7 a
H(s, xv :—"/ Hy(s, =) Rod ey . .. d*Ty 1oy,
( X ) >\U,1<FU71) (Fx)n71><FU,1 ( ) X 1 1 1

The statement is thus true when N = 0 and we suppose it is true for
N — 1, where N > 1. By Proposition [7.4.3.1] we have that

VY (Hy(s,—)7") = Hols, =) Pr((5;Vihy) ).
By Corollary [7.4.2.4] the functions VJ(h;) are bounded. It follows that
VN (H,(s, =)™ € LN(F)" ' % Foq,d*zy ... d*T_1 A1),

Using the induction hypothesis and the fact that Vi(X) = d(1, x») - Xo
from Lemma [7.4.5.4] we obtain that:

ﬁv(sthu) ’ (_d(17XU))N
= ﬁv(sa Xv) ' (_d(17xv))N_1(_d(l7Xv))

_d(1>XU)an / N1, = e
N (F) \Y Hy(s,— Ty A T Ny
A (Fo) (F)1xFy r )X 1 14,1
—a B
= —n VN—I HU S7_ -1 v NU d*x . d*ﬂ?n_ )\v ‘
)\U71(Fv,1) [va)n_lev’l 1 ( ( ) ) I(X ) 1 1 1

The last integral, by Fubini theorem, writes as
/ ®?:_21d*I] X d)\vvl(u) X
(va)n_QXFv,l
[T AL i) VARl )

As VY (H, (s, —)Y) : (FX)n! x F,1 — Cisabsolutely d*x; ... d*x,_1 A\, 1-
integrable, we deduce that for almost every ((mj)?:_%, u) € (FX)" 2 x F,1,
we have VV=!(H,(s, —, (z;)5=3,u)"") is absolutely d*z-integrable. Now,

for such ((xj)?:_zl, u) € (F)})"?x F,1, Lemma|7.4.4.2|and Lemma |7.4.5.4
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give that the functions z; — V"' H,(s, (z7);)"" and @1 — Xo((25);) sat-
isfy the conditions of Corollary [7.4.1.5 and we can apply the integration
by parts with the respect to V;. We get that:

[V s 0 )V ol )y
= - /FX V{V (ﬁv(s, (xj)?;117 u)il)%v«wj)?:ﬁll? u)d*xb
and hence that
/ VY Hy(s, ) )Vi(R) d s . d Ao
(F)n=1xFyq
= — / VN (Hy(s, =) IXod 21 ... d*Tn_1 Ay 1.
(F)"—1xFy 1

Finally, we deduce that

ﬁv(su Xv) ' <_d(17 Xv))N

—a ~
= . val H,U S7— -1 v "’v d*x d*xn, )\U
A”,l(Fv,l) /(VFUX)n1xFU71 1 ( ( ) ) 1(X ) 1 1Aw,1
Ay,

)\v,l (Fv,l)

The statement is proven. O]

= —/ Vf[(f[v(s, =) X d* Ty ATy Ay
(F)n=1xFy 1

The integration by parts from the last lemma enables us to make the
following estimate:
Lemma 7.4.6.2. — Let v € M. Suppose that n > 2. Let k €
{1,...,n—1} and let N be a positive integer. Let KK C RZ, be a compact.
There exists C = C(k,N,K) > 0 such that for every character x, €
[T (a)(F,)|* and every s € K+ iR", one has that

(ks x) I - [Ho(s, x0)| < C(1+ [IS(s))™
Proof. — It follows from Lemma [7.4.6.1| that
(k. x) M1 Ho (5, x0)| <

a/ ~
" vV H,(s,— A AL o d T, Ay
)\U’I(FvJ) /(va)nle,v’1 ‘ k ( ( ) )’ 1 10,1
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By Lemma [7.4.3.1] there exists an isobaric polynomial Py of weighted
degree N such that

Vi (Hy(s,—)™") = Ho(s, =) Pr((s;Vi(hy)) ).

Moreover, by Corollary [7.4.2.4] the functions V¢{(h;) are bounded, and
we deduce that there exists C" > 0 such that

| Pr((;Vihy (%)) < C'(1+[1S(s) )™
for every x € F* — {0} and every s € K + iR™. Tt follows that

~ C'a ~
d(k, x)|N [ Hy (s, X g—”/ Hy(s, =) Yd*zy - - d*Tn_1
itk Mool < s [ e )
C'a
<O IO s [ )
< (1 +[IS(s)1]) or(Fod) [,7(a)(F)]| (8, =) |p
C'ay, _
< (1+ H%(S)H)Nm /[y( . [H (s, =)
N C'a, =~
= (L+113(s)I)™ roa(For) (R(s), 1)
for every s € K +iR" and every x, € [7(a)(F})]". Proposition[7.1.3.3

gives that there exists A > 0, such that |H,(s, x,)| < A for every s €
t

K + iR™ and every x, € [f(a)(F )]*. We se C?}; - 1t follows

)
O =
that for every s € K +iR"™ and every x, € [.7 (a)(F,)]* one has that
[k, o) [N |Ho (s, x0)] < C(L+ (1))
[

Lemma 7.4.6.3. — Let v € M. Suppose that n > 2. Lelt k €
{1,....,n—1} and let N be a positive integer. Let K C RZ, be a compact.
There exists C = C(k,N,K) > 0 such that for every character x, €
[T (a)(Fy)]* and every s € KK+ iR", one has that

(L) + [m O [Ha(s, xo)| < C+ (1))
Proof. — Lemma [7.4.6.2| gives that there exists C’ > 0 such that
(7.4.6.4) [k, xo) | - [Ho(s, x0)| < C/(1L+1S(s)[)™

for every s € K + iR" and every x, € [ (a)(F,)]*. Proposition
gives that there exists A > 0, such that |H,(s, x,)| < A for every s €
K+ iR™ and every x, € [7(a)(F,)]*. We prove the claim of the lemma
with C' = 4" max(C’, A). Let s € K +iR" and let x, € [T (a)(F,)]*. We
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suppose first that v is complex or that v is real and that K(quk)) = 0.
This condition implies that

1
(- )| = 1o
Ty
We obtain that
1
il x) = [(1 = O + im o)

1 .
> §|€(X5'“)) +im ()]

O]+ [m ()]
- .

From the inequality ([7.4.6.4)), we deduce that

(O] + [m(A) )Y
4N

>

[Ho(s, xo)| < [d(k, xo)| - [Ho(s, X))
< C'(1+IS(s)IDY,
and hence that
(EOSD HmOEN DY [Ho (s, x0) | < 4¥C"(1H[S(s)])Y < COH[S() DY
The claim is proven in the case v is complex or v is real and ¢ (Xz(,k)) =0.
We suppose now that v is real and that K(Xq(,k) = 1. One has that
d(k,x) = im(xq()k)) and rewriting the inequality ([7.4.6.4)) gives that
MO - [Hy(s, xo)l < C'(1+[1S(s)[)Y.
Suppose that |m(x§,k))| < 1. Then one has that
(OS] + ImOAIDY - [Ho(s, x0) = (14 [m(S)DY - [H (s, x0)]
< 2N ’ |ﬁv(57X'u)|
<2VA4

<C
< CL+[I3(s)INY
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Suppose that |m(x5,k))| > 1. Then one has that

(OS] + [mOSN DY - [Hu(s, xo)l = (14 [m(E)D)N - [Ho(s, x0)|
< 2¥lm ()Y - [ Ho(s, x0)|
<2VC(1+[[S(s)IDY
< CO+[IS(s)IY

The claim is thus verified also for the case v is real and E(Xf)k)) = 1. The
statement of the lemma is proven. O]

We are ready to prove:
Proposition 7.4.6.5. — Let v € My and let K C R be a compact.
For every integer N > 1, there exists C' = C(N) > 0 such that for every
s € K+ R™ and every x, € [T (a)(F,)|* one has

CAA+ISE)IDY
(1 [l () [[) (1 + [ [0 [[)) ¥/ G107

Proof. — Let us first suppose that n > 2. We have already seen in Propo-
sition that there exists A > 0 such that

|H,(s, xo)| < A

|H, (s, x0)| <

for every x, € [7(a)(F,)] and every s € K +iR". Using this and Lemma
7.4.6.3| we get that there exists M > 0 such that

(7.4.6.6) H |H, (s, x0)| %
ke{l,..,n—1}
16O [+ Im () =0
x T (ea®) +1mOP)DY Hols, v
ke{l,..,n—1}

1O 4 m () [0
< M1+ [|S(s)[)NY

for every x, € [7(a)(F,)] and every s € K + iR"™. Using the fact that
arm(xiY) + -+ anm(xV) = 0
we deduce that

[|lm(y,)|| < max (j_{na}éil Im(xD)], az|m(xV) + - + an—1|m(xg”_1))|)

=1,...,
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and hence there exists an index o(x,) € {1,...,n — 1} such that

(7.4.6.7) (n—1)-maxaj - mO )| 2 [m ()|

In an analogous way, we conclude that there exists index r(x,) €
{1,...,n — 1} such that

(7.4.6.8) (n—1)- mjax aj - \g(X r(xv)) ) > [1€(x)||-

Using the arithmetic-geometric inequality and the estimates ([7.4.6.7)) and
(7.4.6.8]), we conclude that there exists D > 0 such that

(7469 D I ()] + )Y

1O+ m O] #0

> max(|[€(x0) || m ) |72, [ mOe) 172, 1160 |1Y2).
Combining the estimates ((7.4.6.9)) and ([7.4.6.6) and taking the n — 1-th
root gives
(7.4.6.10)

[ H, (s, x0) [ max(||€0xo) ||| mO) [ Tm (O[], [0 )Y 0D
< (MDD (14 (|3(s) )Y

for every s € K +iR" and every x, € [7(a)(F,)]*

For every x, € [7(a)(F,)]* with £(x,) = (0); and ||m(x,)|| < 1 and
every s € K 4 iR", one has that

9N/(2(n—1)) 4
(1 + [ Jmx, )| ) /=)
< 2N/ A(L+ (IS(s) )Y
~ (0N A+ [m () [[) V=107
For every x, € [Z(a)(F,)]* for which £(x,) # (0); and for which
llm(x,)|| <1 and for every s € K 4 ¢{R" one has
~ 1/(n=1) S N
| H, (s, x0)| < (MD’)‘E(XUM’(J\lf/j;(g\ylg)sm)
22D (M D)V D (A + [13(s) )Y
— (T 10D A A+ [Jm () [[)) ¥/ G107

|Hy(s, x0)| <
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For every x, € [Z(a)(F,)]* with €(x,) = (0); and |jm(x,)|| > 1 and
every s € K 4+ iR", one has that

- 1/(n—1) o N
o)l < PN
2N/(2(n—1))(MD>1/(n—1)<1_|_ H%(S)H)N
(T €L+ T )™/
For every x, € [Z(a)(Fy)]" with £€(x,) # (0); and ||m(x,)|| > 1 and
every s € K 4+ iR", one has that
(< (MD)TTO{ 4 IS

= [0 [N @1 | [m () ||/ G- 1)

L ZVCCTDMDY D 1 [[S(s)|)Y

= T+ Tmle) N+ T[€0w) D) V21

Therefore C' = 22V/ =) max((M D)= A) satisfies the wanted con-
dition. Hence, the claim is valid when n > 2.

Suppose now that n = 1. In this case, one has that m(y,) = 0 and
that ||¢(x,)|| > 1. The claim follows from the boundness of the Fourier

transform (Proposition |7.1.3.3]). [

IA

| Ho(s, Xo)

7.4.7. — Inl6.1.2land in[6.2.1] we have defined norms of the characters

of A% and of [Z(a)(Ar)]*, respectively. In this paragraph we give a

corollary of Proposition and we write it in terms on the norms.
For a character y € (A%)*, we have defined:

HXHdiscrete = Urélj\%;.(o(”g(Xv)H)a

[IXllso = max ([lm(x.)I])-

veEMZ
For a character x € [.72(Ap)]*, we have defined

|1 |discrete = max (|[€(x)|]),

veEMZ

[Ixflee = maxc (Jlm (xo) 1)
Proposition [7.4.6.5] implies that:
Corollary 7.4.7.1. — Let K C R, be a compact and let N be a
positive integer. There exists C' > 0 such that for every x € |7 (a)(Ap)]*
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and every s € KK +1R" one has

" C(L+ ISV
H,(s, xv)| < :
L1 1H(s. ) <<1+||X\|dm><1+Hxnoo))N/W—l”

veEMg

Proof. — We have that

(1+ HXHdiscrete S H 1"’ H‘e Xv H)
veMp

and that
L+ 1xllse) < JT @+ 1mOe)lD).

veEME®

It follows from Proposition that there exists C > 0 such that for
every x € [7(a)(Ar)]* one has that

A Ci(L+[[Ss)IDY
vell\_4[°° ulsel = Uel;loo ((1+ [Jm(x) ) (1 + [£(x)|])) ¥/ C=1)

O S
((1 4 | X! |discrete ) (1 + HXHOO))

The statement is proven. 0

1)

7.5. Global transform
Using the results of [7.3] [7.4] and [6.3] we obtain estimates for the global

Fourier transform.

Let pa, be the Haar measure on [.7 (a)(A )] given by Definition|5.4.3.3

= QG e @ e

’UEM% veEMg
7.5.1. — In this paragraph we are going to present a Haar measure on
the dual group (R%,/(Rx¢)a)*. Let us set
M = M(a) :={xeR"a-x =0},
)\a : R>0 — (R>0)a T (l'aj)j.
The subspace M is the kernel of the surjective linear map R" — R, x —

a-x and we will identify R™ /M with R (for this identification the quotient
map R™ — R"/M becomes X — a - x).
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Lemma 7.5.1.1. — Let dm be the unique Lebesque measure on M such
that

(dzy ...dx,)/dm = dx.
1. For A > 0, let us define

0% : R" — R"” x — (Axj);.

We have that (0%|M).(dm) = A~™Ydm, ie for any dm-
integrable function f, one has that

1
/fdm:An_lf £ 00| ydm.
M M

2. The homomorphism

£:R — (Ryo)* ts |2

is an isomorphism and one has &, (dx) = d*x. The homomorphism

eOR @) xo [P,
j=1
where prj : R™ — R s the projection to the j-th coordinate, is an
isomorphism and one has £ (dzy ... dx,) = d*xy ... d*z,.
3. Let (Rso)x be the group of characters of (R%,)* which are trivial on
(R>0)a. One has that &"(M) = (Rxg)z = (R%/(Rs0)a)*
4. The isomorphism £"|pr - M = (R%o/(Rso)a)* from (2) satisfies

(&) (dm) = (d*21 ... d*z,/(Na)o(d"7)) "
Proof. — For a,b > 0, we have that d*z([a,b]) = logb — loga. The
homomorphism exp : R — R, is an isomorphism, for which, hence, one
has that (exp).dz = d*z. In the proof, using the isomorphism exp, we
identify R and R.y and the corresponding measures dx and d*x.

1. For A > 0, let 6} : R — R be the map x — Ax. We observe that
(0%).(dzy -+ - dxy,) = A™"dzy ...dz, and that (0}).(dr) = A~ 'dz.

Now, in the commutative diagram

{0} > M > R X22% R » {0}
l s l@” 04
{0} > M y R 222% » {0}
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the vertical maps are isomorphisms, and we deduce
A~ = (0).(dz) = (0%).(dxy ... dx,) /(0% |a)«dm
= A"z ... dx, /(0| p)dm.

This gives (0% ]y).dm = A~"~Ydm. For every dm-integrable func-
tion f one has that

/ fdm = / o (0310 3lar)odm = A [ o (85100

Wlth this identification, the first claim is given in [5, Chapter II, §1,
n°9, Corollary 1 of Proposition 11]. The second claim we deduce
by the fact that the dual of a finite product of Haar measures is the
product of the duals.

3. The isomorphism exp” : R” — (Rs¢)" identifies a(R) = {(a;z);|z €
R} with (Rsp)a. Let 0 # x € a(R) and let 0 # = € R such that
a;x = x; for every j. For every y € M, we have that

&"(y)(x) = exp <Z 2i7rijj> = exp <2z'7m; Z ajyj>.
j=1 i=1

Hence, £"(y) € (a(R))* if and only if y € M and the claim follows.
4. The dual sequence of the short exact sequence
i(Rsg)a®Na n

0—= Ry —— RY) = RY;/(Rsp)a — 0

is the short exact sequence sequence
0 — (R%/(Rsp)a)” — R* 225 R — 0,

Lemma [7.1.1.2] gives

dry...de, /(21 ... d* 2,/ (Ma)(d2))" = da.

By definition dx; ...dx,/dm = dz. Now, the commutativity of the
diagram

{0} > M y R X22% R

Js .

{1} — (RLy/(R>0)a)” R* — R
gives that

(" a)s(dm) = (d*zy ... d*x, /(Na)«(d2))".

» {0}

{0},

~
~
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]

For a character x € (Rs)*, we denote by m(x) the unique real
number m such that y is given by z + 2. For a character

X € (R%y/(Rsp)a)* we write
m(y) := (m(x")); € M,
where xU) is the pullback character R given by the composite homo-
morphism
(( i£j T n n
R>0 —> R 0 R>0/<R>0)a.
It follows from Lemma [7.5.1.1] that

(R%/(Rs0)a)” = M X — m(y)

is an isomorphism and we write |-|™ for the unique character of
(RZy/(Rs0)a)* such that its image under the isomorphism is m. Let
x € R2, be a lift of x € (R%;/(Rx0)a). We observe that

n
~427Tm
J

and that .
=T
j=1

In other words

(7.5.1.2) £"(m) = |-|=™,
7.5.2. — In this paragraph we estimate the global Fourier transform of
the height.

In the equality [3.4.9.1] we have established an identification

For a character x € (A;)* we write m(x) for m(x|r.,). In the equality
3.4.9.2] we have established an identification

[7(a)(Ap)] = [T (a)(Ap)h x (RZy/(Rsp)a)-
For (x,), € [7(a)(Ap)], let (X,), € (AR)"™ be its lift. The morphism to
the second coordinate is given by

xo ga (I 0, ).

vEMp
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where gr., : RZ; = RZ%;/(R>0)a is the quotient map. For a character
X € [7(a)(Ap)]*, we write m(x) for m(x|rz,/(&sq)a)- We write [-[*™ for
the unique character x € [ (a)(Ap)]* which satisfies x|(7(@)a); = 1
and x|rn,/(®s0)a = || For (x,), € [7(a)(Ar)], one has that

n

|(3¢0)o| ™ = H

J=1

iﬂ’Lj n )
=11 I1 =lim.

j::l 'UGMF

H |%jv|v

vEMp

Lemma 7.5.2.1. — 1. For every m € M, one has that
Hs, )™ = H(s +im, ).

2. Let x € [Z(a)(Ap)]*. Whenever the quantities on the both hand
sides converge, one has that

H(s,x) = H(s + im. xo)-

Proof. — 1. Let (x,), € [7(a)(AFp)] and let (X,), € (Ax)"™ be its lift.
By using that m € M, we get that

Hfs, (Xv)v)|(xv)v|im = H H,(s,x,) H |§jv|im]‘

’UEMF

vEMp 7=1

- 1 (&0 [Tl )

vEMp

= H(s+im, (x,),),

as claimed.
2. It follows from (1) that

H(s,)x = H(s +im,-)xo| ™Y = H(s + im, -) xo.
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Now, one has that

H(s,x) = / H(s, )xtap
(7 (a)(Ar)]

B / H(s,)xo| - |im(X)/~LAF
[7(a)(AF)]

- / H(s + im(x), o)ia,
[T (a)(AF)]

= H(s +im(x), xo),

whenever every quantity converges. The claim is proven.

[]

Given a character x € [7 (a)(Ar)]*, let us denote by x( the character
X|[7(a)ap), - For every s € C", Lemma [7.5.2.1| gives that
Lemma 7.5.2.2. — 1. For every x € |7 (a)(Ag)]*, the product

= H Hv(S7 Xv)
vEME
converges when s € (<.

2. Let K C K2, = HveM%[f(a)(Ov)] be an open subgroup. For

max

every x € [ (a)(Ap)]* vanishing on K, the function

s H(s,x) H

=1

sj +im(xW) —1
s; +im(x)

extends to a holomorphic function in the domain Q>%. Moreover,

there exists % > 0 > 0 such that for any compact in the domain

K C RZ,_s and any positive integer N, there exists C(K,N) > 0
such that for any x € |7 (a)(Ap)]* which vanishes on K and any
s € K +iR" one has that

- s; +im(xV)) — 1
7523) |H J ‘
75:23) |fi(s. ) s
Xo =
C(/C N)(l—I—H\S( )||) (ri+r2 +1(1+ Hm( )||)
(1_'_HXHdlscrete)N/2(n D- 1((1—|—HXH ))N/2” 1)-1°

Proof. — 1. Suppose s € ;. For every xy € [Z(a)(Ar)]*, by
Proposition [7.3.1.1, one has that the product HUGM% H,(s, xv)




H
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converges absolutely and by Corollary [7.4.7.1} one has that
s — HUGME.? H,(s, x») is holomorphic in the domain Q.. The

claim follows.
2. By Proposition there exists a unique holomorphic function
(- x) Q>§ — C such that

(s x)

= H(s +im(x), Xo)

y =<

n

= gbﬁn(s—i—im(x),x())HL(s] +im(x H o(s +im(x), Xou)-

j=1 veEME

The function s — HveMgo H,(s 4 im(x), Xo») is holomorphic in the
domain Q-4 by Corollary Recall that L(-, xo) is an entire
function for every 0 # xo € AL, while L(-,1) is a meromorphic
function with the single pole at 1 and no other poles. Therefore,
the function

sj +im(xW) — 1

S > H —— L(s;+im(x\9), x H L(sj+im(xY), X(()j))

=1

Y ()
xg'=1 s+ im(x) x§#1

extends to a holomorphic function in the domain Q>§ . Hence
~ sj +im(xW) —1

S = H<S+Zm(X)7XO) . i
Xgl;[l s; +im(x)

extends to a holomorphic function in the domain Q+,_s. By Propo-

sition [6.3.1.2] there exists % >0 > 0 and Cy > 0 such that

sj +im(xW) —1
s; +im(x)

Lis; +im() ) [T Ls +imG6), )
X§#1

n : ; 1/n
< Gy H L+ 8N+ 11X o) (14 ()

H

< Gl +H (SN + lxolloo) (T + [m(x)]])

provided that R(s;) > 1—6 for j = 1,...,n. Let N be an integer
and let  C RZ, ; be a compact. Proposition gives that
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there exists C7 > 0 such that |¢g,(s, x)| < C; for every s € K +iR™.
By Lemma[7.4.7.1] there exists C'5 > 0 such that

Cs(1 + [|S(s) PN+
(s+im(x), xo,)| <
U!A_;[[oo | ) Xo )l (1 + ||XHdiscrete)N/(2(n D) (1 + HXHOO)N/(Q(n*l))

for every s € K + iR" and every x € [7(a)(Ar)]* which vanishes
on K. By Corollary [6.2.2.3] there exists Cy > 1 such that
1+ [Ixoll
1 + HXO| |discrete

We deduce that for every s € K 4+ iR™ and every x € [7(a)(Ap)]*
which vanishes on K, one has

< (4.

H(s+im(x),xo) ]
<j),

S —i—zm —1 ; 75 .
y H j HL s;4im(x ),X(()])) H H,(s+im(x), Xov)
(G j=1 vEME

L im(y@D) — 1
sj + im(x*) ‘: Prin(s + im(x), X0) X

s; +im(x\))

sj—f—zmx

CLCCs(1 + [[S(s) DY (1 + [[xoll ) (1 + [ ()]])
a ((1 + HXOHdlscrete)(1 + ||XHoo))N/ 2(n—1))
C105C3C (1 4 |S(s) [N F72+ (1 4 [[m(y)|])
(1 + ||X0||dlscrete)N/(2(n 1)- 1(1 -+ HX()H )N/ 2(n—1)) "

The claim follows.

Note that if x1, x2 € [7(a)(Ar)]* are two characters then
[xixalloe = max {lm(xioxe0)l
(

= rgg}{; [Im(x10) +m(x20)|

<
< Jnax [[m(x10)]| + Jna [[m(x20)]]

= [Ix1lloo + llx2lco-

Now, if xo = x||7™ for x € [Z(a)(Ar)]* and m € M, using the in-
equality

1 <1+|x|

x,y € C,
IT+|z+yl — 14y 4
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we can deduce that

1 11l

(7.5.2.4) = < .
L+ Ixlls T+ [Ixol[7™(loe = 14 [|ml|

We can establish the following corollary:

Corollary 7.5.2.5. — Let K C K2, be an open subgroup. For every
a > 0 there ezist f = B(a) > 0 and § = d(«) > 0 such that for every
compact KK C RZ,_5, one has that there exists C = C(a, K) > 0 such that
for every s € K+ iR™ and every x € 7 (a)(Ap)* which vanishes on K

one has

o s+ im(x¥)) — 1 C(1+[13(s)[))"
s 11 5+ im0 | = T+ xollawene) (L+ OO

Proof. — Firstly, let C; > 0 be such that for every xo € 2k one has

1+ [|xol[oo
1 + ||X0| |discrete

such C} exists by Corollary [6.2.2.3] Let N be an integer bigger than
2(n —1)(2a+2) and let § > N(ry +r2) + 1. Let ¢ be given by Lemma

7.5.2.2| It follows from this lemma and from the estimate ([7.5.2.4]) that

for every compact K C RZ,_;, there exists C'(K, N) such that for every
X € [Z(a)(Ar)]* which vanishes on K and every s € K + iR" one has

< Cl7

~ s; +im(xW) — 1
H(s,x) | | J , .
’ - ()
o s; 4+ im(x\))

< O M)A+ [ISE) Y21 + [Im()l])

(1 + 110 aiscrete) 0 (1 + || x||oo) 7D
C(K, N)(1+ [[S(s)]))° (1 + [[m(x)]])
(1 + I1xol laiscrete) (1 =+ [x[loo)) 22+t
C+ SN+ [Ixolloo)*
= (L4 llxol laiserete) 2 (1 + [ fm(x)[ )
COP (1 +[1S(s)ID)?
(T xol DL A (x| ])>
The claim follows. [
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7.5.3. — For an open subgroup K C K3, = [[ean[7(2)(0,)], we

denote by 20 the subgroup of .7 (a)(Ar)]} given by the characters that
vanish on [Z(a)(i)(F)]K. In this paragraph we explain that one can
sum transforms over the characters of 2. The following lemma will be
used.

Lemma 7.5.3.1. — Suppose X is a discrete set. Let f: X — Rxsq be
such that there exists A > 0 and d > 0 such that for every B > 0 one has

{z € X|f(x) < B}| < AB".
Let € > 0. The series

1
2 T
>

zeX f
f(z)>0

and the series

converge for N > d + e.
Proof. — For every i € Z>4, let us set

w(i) = {z € X[i —1 < f(z) <i}|.

Let B > 1 be an integer. By Abel’s summation formula, for N > d + ¢
we have that

1 = w(i)
2 T <

zeX i=1
fl@)<B
1 B+1 B 1 1 i
15D Z;w('r)—l—;(lw 0T D );w(J)
B
d
1+B Z:: 1+z) Tror A
2N TN—1

-d
<A+ZA Ny

B

<A+Z 274

gN+1— —d

< A+2NAC(N+1 —d).
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(we have used that (144)" =i < 2VN=1) Tt follows that 3 _ 1+ftx))N

converges uniformly for N > d 4+ €. Moreover, for N > d + ¢, one has

that
Y X et X

xEX
f(z)>0 1>f(:v)>0 (:v)>1
2
< 2 + 2 A
reX f zeX (1‘|‘f(.1'))
1> f(x)>0 f(x)>1

Asthesum ) .ex HOL ) is a finite sum and as the sum ) | zex —(1+f(x))

1> f(z)>0 f(x)>
converges uniformly for N > d + ¢, we deduce that ) ,ex f(;) ~ con-
f(z)>0
verges uniformly for N > d + €. The statement is proven. m
We set

sj +im(xW) — 1
s; + im(x@)

H(s,x):=H(s, ) []
Jj=
Definition 7.5.3.2. — We define formally

gk (s) == Z H(s, xo)
Xo€AK

and

gy (s) == Z I/—j*(s,x()).

X0€2AK

Proposition 7.5.3.3. — Let K C K2,  be an open subgroup and let
a > 0. There exist § = 0(a) > 0 and = [(a) > 0 such that the

following conditions are satisfied:
1. The series

(7.5.3.4) gi(s) == > H*(s,xo)

X0€™A K

converges absolutely and uniformly on compacts in the domain
Qs1-5 and the function s — g5 (s) is holomorphic in the domain
Q15

2. For every compact K C $-1_5 one has that there exists C' =
C(a, K) > 0 such that for every s € K+ iR"™ and every m € M one
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has that
CL+]IS(s)])”

(1 + [[ml[)
Proof. — Let o > 0. By Corollary , there exist % > 6 > 0 and
B > 0 such that for any compact X C RZ,_; there exists C' > 0 such
that for every s € K +1R", every xo € /g and every m € M one has for
X = Xol|[™ that:

(7.5.3.5)
= s;+im; —1 ~ .
H(s +im, T = |H(s, xol|™

s TT 2t sl I

Xéj):l Xp =1
C+[IS(s)I)?
~ (X4 [Ixollaiscrete) (1 + [[ml[))>
We prove that the series converges absolutely and uniformly on
compacts of Q+1_5. Let G C Qs be a compact set and let C(G) > 0
be such that for every s € G one has [[S(s)|| < C(G). Let £ C RY,

be a compact such that G C K + ¢R™. Note that for j = 1,...,n and
s € K 4+ iR" one has that

|9k (s +im)| <

sj +im(xW) —1
s; +im(xW))

-1
Sj

Given o > nre + 1, it follows from the estimate (7.5.3.5)) that for every
Xo € Ui and every s € G one has that

Sj

<3

~ S5 —1 1+ B
o [T 21 < [ Clo 000 SO 7y
(7.5.3.6) =1 (1 IPxollaseme)® 5,
_ (L4 CO) O K)3"
(1 + HXOHdiscrete>a
Now, by Corollary there exists B > 0 such that for every A > 0
one has that [{xo € x| ||xo0|ldiscrete < A}| < BA™?. The set Ay is

discrete (Lemma/|6.1.2.4)), and therefore the estimate ((7.5.3.6)) and Lemma
7.5.3.1| give that the series ZXO@[K AThee converges. We deduce that

the series ([7.5.3.4]) converges absolutely for every s € G. Moreover, for
M > 0 one has that if ||xo||discrete > M, then

~ C(G)PC(a,K)3™
s = S9N
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for every s € G, and, hence, the convergence is uniform on compacts. As
for every yo € g, the function s — ﬁ(s, xo0) [Tj—, 51
in the domain Q-;_5, we deduce that s — g} (s) is holomorphic in the
domain Q,_5. Let K C RZ,_; be a compact. For every s € K+ iR" and

every m € M, it follows from the estimate ([7.5.3.5)) that

is holomorphic

gic(s+im)| = | 3= F(s+im, xo) H*#ﬂ
Xo€AK j=1 J J
c ca+se)In” 3 1 '
— (T4 |fml][)e vl (1 + []xo0l|discrete)*
The statement follows. O

Sj—l

The function s — [}_,
deduce that in this domain the series defining

does not vanish in the domain €2-;. We

s;i —1
j=1"7

converges absolutely. Therefore s — gk (s) is a holomorphic function in
this domain.






CHAPTER 8

ANALYSIS OF HEIGHT ZETA
FUNCTIONS

8.1. Analysis of M-controlled functions

In this section we adapt the analysis of [I17] to our needs. We recall
the definition of M-controlled functions and establish properties of their
integrals.

8.1.1. — Let d > 1 be an integer and U C R? an open subset. For a
vector subspace M C RY, we say that a function f : U + iR? — C is
M-controlled if for every a > 0, there exists > 0 such that for any
compact I C U, there exists C'(K) > 0 such that for every m € M and
every s € C" with R(s) € K, one has

: CE)A+[IS(s)I)”
1.1 . <

(8.1.1.1) |f(s+i-m)| < (15 [l

Remark 8.1.1.2. — Note that if f is M-controlled, then f is M-
controlled in the sense of [17), Section 4.3]. There, the condition is that
there exists a family of linear forms (¢;); in V* such that the ¢;|M form a
basis of M and such that there exists 5’ > 0 and 1 > ¢ > 0 for which for
any compact I C U there exists C'(K) > 0 such that for every m € M
one has

: C'(K) (1 +[1S(s)I)” 1
(8.1.1.3)  |f(s+i-m)| <
(14 [lmf})t=< TI(1 + [¢;(s +ml]))
if provided R(s) € K. We verify that our condition is stronger. The
inequality

1 <1+|x|
L+ |z+yl — 14y

r,yeC
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gives that
L]
Now there exist Cy, C; > 0 such that
[T +16)D < Co(1 + IS (s) I

£

and

1 - Ch
[T, (1 +[€;(m)[) = (1 + [[m][)dim "
provided that $(s) € K. Hence, if f satisfies our condition it satisfies

the estimate .
The following result is given as Lemma 3.1.6 in [17].

Lemma 8.1.1.4 (Chambert-Loir, Tschinkel, [17, Lemma 3.1.6])

Let ¢ : R" — R* be a surjective map and let M C R™ be its kernel.
Fors € C", let's € C" be such that qc(S) = s. Endow M with the unique
Lebesgue measure dm such that (dz; . ..dx,)/dm = dz; ... dzxy. Suppose
that f : U + iR* — C is an M-controlled holomorphic function. The
integral

W /M f(s+im)dm

converges for every s € U +iR" and the value of
1 ~

does not depend on the choice of S and the resulting map p(f) : q(U) +
iR* — C is holomorphic and {0}-controlled.
Remark 8.1.1.5. — The original Lemma 3.1.6 has been simplified by
assuming M’ = M (with the notation as in 3.1.6 in [17]).

The following result is Theorem 3.1.14 in [17].
Theorem 8.1.1.6 (Chambert-Loir, Tschinkel, [I7, Theorem
3.1.14))

Let ¢ : R — R* be a surjective linear map such that q(R%,) = R,
and let M = kerq. Let f : Qs9 — C be a holomorphic function
such that there exists an open ball B C R™ centred at 0 such that
s f(s) ]I}, S;jrl extends to an M -controlled holomorphic function on
(B + iR™) U Qsq. Then there exists an open neighbourhood B’ of 0 in

R* such that Sy (f) H5:1 4 extends to a holomorphic {0}-controlled
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function in the domain (B’ + iR*) U (RY + iR¥). Moreover, if one has
for every x € RY, that

s—0t

lim (s" H:z:j)f(sx) =a,

for some 0 # a € R, then one has for every x' € RY that
k

lim. (" [T=)2u(f)(sx) = a.
j=1

Remark 8.1.1.7. — The original statement of Theorem is
somewhat simplified here. With notation as in Theorem 3.1.14 of [17],
we have supposed that M = M’ and C = A = RZ,. We have also
added the condition ¢(RZ,) = RY, in order to make calculations of
the characteristic functions of cones ([17, Section 3.1.7]) simple. For
every k € Zs1, the cone RY is simplicial and its characteristic function
(according to [17, Section 3.1.7]) is given by

1
Qg —C S = ——

Hj:l Sk

8.2. Height zeta function

We define and prove holomorphicity of a height zeta function. Let
(fo: F" — {0} — R.p), be a quasi-toric family of weighted degree d.

8.2.1. — We define height zeta functions.
Definition 8.2.1.1. — For s € C" we formally define series

Z((f)o)(s) = Z(s) == Y H(s, %)™
x€[7 (a)(F)]
and
Z((f)o)(s) = Z(s):= Y H(s,x)™"
x€[Z(a)(F)]
Proposition 8.2.1.2. — Let (f, : F' — {0} — R.q), be a degree
la| quasi-toric family of a-homogenous functions. For s € Q- we set

H(s,—) = Hs . Let % > ¢ > 0. The height zeta function series defining

Z(s) and Zo(s) converge absolutely and uniformly in the domain Q<q.,
and defines a holomorphic function in this domain.
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Proof. — By Theorem 4.6.8.2] one has that there exists C' > 0 such that

{x € [Z@(F)||H(x) < BY| < B
a-R(s)

|al

for every B > (0. Note that if s € {251, then one has that >1+e>

1+ ¢/2. Thus by Lemma [7.5.3.1) we have that the series

> HsxT'= Y Hx) W

xe[Z(a)(F)] xe[Z(a)(F)]

converges absolutely and uniformly in the domain Q<. It follows that
the function Z is holomorphic in this domain. One has that

Z(s) = Z(s) + > H(s,x).
xe([Z(a)(F)]=[7 (a)(F)])
Let 6 > 0 be such that (1 + ¢)(Ja] — min;a;)/|a] < max(1/2,1 — ¢).
Theorem gives that there exists C’(d) > 0 such that
{x e ((Z(@)(F)] = [7(a)(F)])|H(x) < B}|
< C(§) B0+ lal-min; )/ la]

a-R(s)

la

Note that if s € Qs pax(1/2,1-¢), then
gives that
a-R(s)

> H(s,x) = > H(x) Tl

xe([Z(a)(F)]=[7 (a)(F)]) xe([Z(a)(F)]=[7 (a)(F)])

> max(1/2,1 — €). Lemma

converges absolutely and uniformly in the domain s € Qs pax1/2,1-¢)- It
follows that the function defined by the series is holomorphic. Conse-
quently, the series defining 7 also converges absolutely and uniformly in
the domain s € 0.1, . and defines a holomorphic function in this domain.
The statement is proven. O

8.2.2. — The goal of this paragraph is to apply Poisson formula to
understand the analytic behaviour of the height zeta series.

We suppose n > 1 is an integer and a € Z%;if n > 2 anda=a € Z+;
if n = 1. Recall that in Definition for s € C", we have defined

formally
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and in Proposition [8.2.1.2] we have established that there exists v > 0
such that the series converges absolutely and uniformly for any s € Q.
and defines a holomorphic function in this domain.

For v € S (that is the finite places v for which f, is not toric), by
Lemma one can take an open subgroup K, C [Z (a)(O,)], such
that if x, € [Z(a)(F,)]* does not vanish at K,, then }AIU(S,XU) =0
for every s € Q4. We set K, = [Z(a)(O,)] for v € M2 N S. Let us set
K = HveM% K, and let 2 be the group of characters [Z (a)(Ap)]; — S*
which vanish on [7(a)(i)]([7 (a)(F)]) and on K. By Corollary [6.2.2.2]
the group 2k is a finitely generated abelian group. R

In Definition|7.5.3.2} we have defined g (s) = >_ o, H(s, x0)- Recall
that M = {x € R" : a-x = 0}. By Proposition one has that
g (1 + s) converges absolutely and uniformly in the domain -, that
s — gr (1 +s) is M-controlled and holomorphic function in the domain
Q5o and that there exists 6 > 0 such that s — gx(1 + )]}, SJ_Sil
extends to a holomorphic M-controlled function in the domain 2 _;.

The following lemma will be used to determine the exact constant in
Poisson formula.

Lemma 8.2.2.1. — The measure (pa, / countz(a)m) (7 @) F)))" on

([7 (@) (Ap)l/[7 () @)]([7 (@) (F)])*
= ([Z@AnL/[Z7 (@@([7 @)(F)])" x (RL/(Rs0)a)"

(the identification follows from the identification and Lemma
satisfies that

(1ap/ count g (@) 7@ E))”

1 o
" E(a) COUNt (7 (a)(h )1 /17 (@) @7 (@)(F))* X (d7Ta)",

where
E(a) := LI (F, pgeda))| Res(Cr, 1)n71A(F)"Tfl
|fged(a) (F)]
and where we write d*r, for the measure (d*ry...d"r,)/(Aa)«(d*r) on
RZo/(R>0)a-

Proof. — Let p; be the Haar measure on [7(a)(Ar)]; normalized by
pay /i1 = d*r,. For the above identification, one has that

P/ COUNEL7 (@)@ 7 (@)(F)]) = H1/ COUREL7 ()(0)] (17 (a) (F)]) XA Ta-
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We denote [i7 1= pq/ count| 7 (a)(i))([7(a)(F)]) - Lhis measure satisfies

[ = [ (F, Mng(a))l_l
|:ugcd(a)(F)| 7

where 117 is the measure from Definition [5.4.4.3] Proposition |5.4.4.4| gives
that

i ([7 (@) (Ap)h/[7 (@) ()I([7 (a)(F)]))

- |H’1H:j;:?;;l(ﬁ>)!m([y(a)(AF)]l/[y(a)(i)]([ﬂ(a)(F)]))

_ |IH1(F7 :“gcd(a))’ Res(Cr, 1)n_1A(F)nT_1
’H’gcd(a) (F)l

= E(a).

Using Lemma [7.1.1.3] we obtain that

.1
= By O @A /17 @017 @E):

The statement follows. O

Proposition 8.2.2.2. — For every s € (-, both sides of

: LI (F, prgeaa))] :
Z(1 = 1 . d
(1+s) Fla) /MgK( +s+i-m)dm

converge and the equality is valid.

Proof. — By Lemma [3.4.7.1] the kernel of the map [Z(a)(F)] —
|7 (a)(Ap)] is isomorphic to the finite group I (F, figed(a)). Using this
and the fact that

a-s

H(x) =l = H(s, 7 (a)(i)(x))
(Lemma [7.1.2.2)), we deduce that
Z(1+8) = W (F )l > H+s%)7"

x€[7 (a) ()]([7 () (F)])
Poisson formula (Proposition [7.1.1.4)) applied to the inclusion

(7 (@) @)I([7 (a)(F)]) C [7(a)(Ar)]
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gives that

H(1+s,x)™"
x€[7(a)(@)]([7 () (F)])

/ H(1+s, —)(pap/ countiz @@z @)
(17 @) AR/ 7@ ONT (@) (F)])*

for every s for which the both sides converge and, hence,
Z(1 +s) = [II'(F, pgeaa))| %
H(1+4s, =) (pa/ comntiz @)z @) E))

J
[7(2)(Ar))/[7 (2)()([7 (a) (F)])*

for every s that the both sides converge. By Lemma [7.5.1.1], the homo-
morphism

&R — (R2)* x> (r e Hr?mj)

induces an isomorphism £"|y; @ M — (Rso/(Rs0)a)*, which satisfies
(€™ a)«dm = (d*ra)*. Now, Lemma [8.2.2.1] and Fubini theorem give
that

o

Z(s)
It F u - 7 n
_ | ( e ’/ 3 Fi(s, xof™ (m))dm.
x0€[7 (a)(Ar)]1/[7 (a)(D]([F (@) (F)])*

Lemmal|7.5.2.1|gives H(1+s, xof™(m)) = H(14s+2irm, xo). Moreover,
it follows from Lemma [7.2.2.2 that H(1 + s + 2im, xo) = 0, for every

Xo € [Z(a)(Ap)]1 /[T (a)(F)]* — Ax. We deduce that
> H(1+s, x0&"(m))

xo€([7 (@)(Ar)h/[7 (2) O]([7 (a) (F)]))*

= Z H(1+ s+ 2imm, xo)

X0€AK
= gx (1 +s+ 2imm).

Therefore,

LI (F, Hgeda))|
E(a)

Z(1+ s) = gK (14 s+ 2i7rm)dm.
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We introduce
Gr(1+s):= / 9 (1 + s + 2imrm)dm,
M

which, if the integral converges, by Part (1) of Lemma [7.5.1.1] is the

salne as

Gr(l+s)= / grk(1+s+i-m)dm
M

1
(27’()”71
The function s — gk (1 +s) is M-controlled and so the integral defining

G g converges for s € Q¢ by Lemma|8.1.1.4] By Proposition [8.2.1.2] the
series defining Z(1 + s) converges for s € Q2-,. We get

: | IT (F, pgeaqa))|
Z(1 = 1
(1+s) Fla) Gk(1+s)
|[IT (F, pgeaqa))| / .
= 1 -m)d
Fla) MgK( +s+i-m)dm
in the domain .. The claim is proven. O

Proposition 8.2.2.3. — Letn > 1. Let a € Zgl if n > 2 and let
a=a>2ifn=1. For every x € RY; one has that

" A(F)"z R n-l
lim (stj) ’ gK(]. + SX) = ( ) |Ngcd(eas)<(<}:)7|1) !

s—0t ~ 4
J=1

Proof. — Let x € RZ,. The series defining

g+ sx) = 3 H1+ 5% x0)

X0€A K

converges absolutely and uniformly when s > 0, so we can exchange the
limit and the sum, we get:

(8.2.2. 4)
g ([T = 5 g ([0 5500
]=1 X0E€A K Jj=1

By Proposition we have that for every g € Ak, there exists a
holomorphic function ¢(—, xo) : Q>% — C such that one has an equality

of the meromorphic functions

veMp

H(S Xo) = &(s; Xo HL 597Xo H H (85 Xou)
j=1
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for s € Q2-1. Suppose xo # 1. There exists index k£ such that X 7é 1,
and the function s — L(s, X(() )) is entire. For j # k, we have that

lim sx;L(1 + sz, ) = lim sxiCp(l + sx;)
5—0

s—0t

exists. We conclude that

n

s, ([Lo) (@ + 52500

= g o101 o) o) [T om0 s ) TR0+ 520200

=0.

Therefore, the only surviving term in the sum on the right hand side of

the equality (8.2.2.4)) is, hence, for xyo = 1. Lemma|7.2.1.1| gives for every

v € MY — S (that is for every finite v such that f, is toric) that
ﬁv((1+sxj)j71) = G(a- 1+SSC] HQ’ +ij
Hence we have

H((1+ s2;);,1) [ [ ¢r(1 + s2)7"

j=1
= H <ﬁv((1+sxj)],1)HCv(1+333]) 1) X H ﬁv((l—l—S:L‘])J,l)
UEM% j=1 veEME
- T (s Tt ) TT alats),) s
veESNMY Jj=1 veEMY-S
X H ﬁ[v((l“'sxj)]al)
vEME

When s > 0, one has Rt(a- (1+sz;);) > 1 (because a € Z%, if n > 2 and
a=a € Z%, if n = 1), and thus the product HveMg_S Gla-(1+szy);)™t
converges to

Crla- (L+sz)) ™ [ Glar (14 sa5);).

veSNMY,
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We deduce
(82.2.5) H((1+ sz;);,1)

- (Ter+s) TT (Aett+ s 0 TT60 -+ )

veSNMY,
X (r(a- (14 sz;))) ( H Gola- (14 sx;); )H H (14 sxj);,1)
vESNMY veEME®

We will calculate the limit of the last product multiplied by H?:l 515,
when s goes to zero. One has that

(8.2.2.6) lim (ﬁ sx;)Cr(1 + sz;) = Res(Cr, 1)".

s—0t

Now we calculate:
(8.2.2.7)

lim (flv((1+sxj)j,1)HQ,(1—|—swj)1)>< H ﬁ[v((l—irsxj)j,l)

s—0t ;
Jj=1

vESNMY
— H (ﬁv(1,1)gy(1)—")x H,(1,1).

vGSﬂM%

By Lemma [5.4.1.2} for v € M% we have that
H,(1,1) = gv(1)"1/ Hy(1, =)y
(7 (a)(Fy)]

= G()" wo([7 (@) (F)])
= G()" w,([Z(a)(F)]),

where we have used that w([Z?(a)(F,)] —[7 (a)(F,)]) = 0 which we have
established in Lemma [5.2.4.2| For v € M we have that

Eumz/’ Ho(L, =)'y = wo ([P (a)(EL)]).
(7 (a)(Fv)]

We conclude that the product on the right hand side of the equality

is equal to
(8.2.2.8) [T ¢ 'w((Z@F)) x [] w((2(a)F.).

veSNME vEME®
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Finally, we can calculate
(8.2.2.9)

dim Gelar (1)) [T Golar(rsey)y) = elal) ™ T Gllal).

veSNMY, veSNMY,

Using the facts (8.2.2.6)), (8.2.2.8)) and (8.2.2.9), we conclude

lim ( stﬂ (1 4+ sz;);,1)

s—0+

- ReS Res(¢r, 1)" H Go(la]) WU Z@)(F)) [ w(2@(F)).

Cr( |a\ veSNMY, »(1) veEM

Using the formula given in Lemma [5.3.3.3| for 7 we deduce that the last
number is

n—1

RG‘S(CF, 1)n_17_’“'gcd(a)(F)l_lA(F>T7

as claimed. O

Theorem 8.2.2.10. — There exists v > 0 such that the series series

defining

(8.2.2.11)

Z((s);) = Y, HE)™ = [W(F, ptgeaw))| >, H((s);,%) "
x€[7 (a)(F)] xe[7 (2)()]([7 (a)(F)])

converges for s € Ro, + iR and the function that associates to s the
value of Z((s);) is holomorphic in the domain R(s) > . There ezists

1 > 6 > 0 such that the function s — ZO((s)j) extends to a meromorphic
function in the domain R(s) > 1 — 0 with the only pole at s =1 which is
simple, and such that for every compact IC C R+ _5 there exists C(K) > 0
and B(K) > 0 such that

*—L2((s),)

S

if provided R(s) € K. We have further that
lim(s — 1)Z((s);) =

T
s—1 |a| '

< C(R) 1+ [S(s))"™

Proof. — Let us firstly establish the convergence and holomorphicity.
We have seen in Proposition [8.2.1.2] that there exists v > 0 such that

the series defining 7 (s) converges absolutely for s € €2, and defines a
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holomorphic function in this domain. We deduce that the series defining
ZO((S)J) converges in the domain R, + iR. The function s — Z((s;);)
is holomorphic as it this the composition of the holomorphic map R, +
iR — €2, which is given by s — (s); and the holomorphic map Q.. — C
which is given by s — Z (s).

Let us now prove the meromorphic extension and the bound. The
facts that s — gK(l + s) is holomorphic for s € Q¢ and that s —
gx(L+s) [}, 5 +1 is M-controlled in the domain Q- _5 for some ¢’ > 0

(Proposition [7.5.3.3)), enable us to apply Theorem [8.1.1.6f We apply this
theorem for the map R” — R, x — a - x and the function

T (F, frgeata ).
S — | (E'l;;)d( ’)])|gK(1+s+im).

We get that

> ’H-I Fp cd(a |
s—Z((1+s);) = E(a) 27fn1 /gK 1+ s+ m;);)dm
_ |H-Il(F ,ugcd (aj); )|
E(a)
is holomorphic in the domain R(s) > 0 and that there exists 1 > 6 > 0

such that 54%12 ((1+ s);) extends to a holomorphic functions for #(s) >
—6 and is {0}-controlled in this domain. This means that for every
compact K C R _g, there exist C(K), S(K) > 0 such that

sZ((1+5);)
s+1
provided that R(s) € K. Pick a compact K C R.;_s5. For every s with
R(s) € K, one has that
s — 1Zo(s) _ (s—1)Z((1+(s—1));)
s (s—1)+1
where £ — 1= {z — 1|z € £}.

Let us calculate the limit. By Proposition [8.2.2.3] for every x € RZ,
one has

Zu(gx)(lal + af - 5)

< CIR)A+[S(s))"™

< O(K = 1)(1+ |S(s)])PED,

n—1

lim s"gr (1 + sx) H = Res(Cr, 1) pgeaa) (F)| T A(F) 2

s—0t
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Now, the second part of Theorem [8.1.1.6| gives that for every > 0 one
has that

s o [HTY(F, prged(a))]
sli}[%‘ SZ((l + Sx)j) N sli}I(lJl‘*‘ E(a)

T (F, prgeaa
- | (E,(/:S )| slir(% sem(g9k)(|al + |a| - sx)

|H-11(F7ﬂ'cda)| .
— ab) Jm lalse (o) (al + Jal - s0)

I (F, prgeacay)| . -
_ | ( Hged( ))| lim s”gK(l "’SX)HtTj
j=1

st (gx)(|al + |a]sz)

la|E'(a) s—0+

[P, pyeag)) | Res(Gr, 1" A(F) 5 7
| - B(a) - |ftgedca) (F)]

Jal
where the last equality follows directly from the definition of F(a) =

1 es n—1 n-l
| 11X (F’Hng(a)de((fZ;l))\ A = (see Lemma [8.2.2.1). We deduce that the
ged(a

function s — Z((1 + s);) admits a pole of order 1 at 0, which is simple
and

Res(s — Z((1 +5);),1) = é

The statement follows. O

By using the Tauberian result given as [17, Theorem Al] we deduce
the following theorem.
Theorem 8.2.2.12. — Let (f,), be a quasi-toric degree |a| family of
a-homogenous smooth functions. One has that
-

{x € [Z(a)(F)][H(x) < B} ~ ’a’B,
when B tends to +oc0.
Proof. — We first establish the following fact
-
{x e [T (a)(F)]|H(x) < B} ~ HB'

Let W C [Z(a)(F)] be the set of points for which H(x) < 1, it is finite by
Corollary (4.7.1.3} We define Zg(a)r)-w((5);) = >se 7@y -w H(x) 7%
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It follows from Theorem|8.2.2.10|that the series defining Zoy(a)(p)_w((s)j)
converges absolutely in the domain R + 7R and that there exists ¢ > 0

such that the function s + Z 7 (r)—w extends meromorphically to the
domain R(s) > 1—¢ and has one and only one pole in this domain which
is moreover simple with the residue
o T
ReS(Zy(a)(F)_W, 1) = H

By the absolute convergence of the defining series and the fact that we
are summing only for those x for which H(x) > 1, the function s —
Z7(a)(F)-w((s);) is decreasing on |y, +-00[. Let us pick IC = [1-6/2, y+1].
It follows from Theorem [8.2.2.10] and the triangle inequality, that there
exists C'(K), B(K) > 0 such that for R(s) € K one has that

(s — D) Zs @) -w((s),)

s—1
< |—
S

D HE) T HCK)(1+]S(s)]) 5.
xeW
The function s — |2 3 11 [H(x) 7| is bounded for s € K+iR, say by

A > 0. By the fact that Z)r)-w is decreasing on |7, +oo[ we deduce
that for ®(s) > 1 — §/2 one has that

(s — 1)Z(s)(y + 1)

\ < (A+C(K) + Zrarw (v + 1)L+ [S(s)])°.

Therefore, 7 7(a)(F)—w satisfies the conditions we need for the Tauberian
theorem. Our claim for the rational points of .7 (a) follows from the

direct application of the theorem.
Let us now prove the statement of the theorem. By Theorem [4.6.8.2]
we have that there exists A > 0 such that for every B > 0 one has that

{xe[Z()F)] - [7(a)(F)]|H(x) < B}
< AB|a\7minj aj 10g(2 + B|a\7minj a; ’a|>n2(r1+rz)+nfl'
Thus the statement follows. O

8.3. Equidistribution of rational points

We study the “equidistribution” of the set of rational points of a
weighted projective stack in its adelic space.
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8.3.1. — In this paragraph we recall what do we mean by the equidis-
tribution. Let X be a compact topological space and let ;1 be a measure
on X. Let U be a subset of X. Let H : U — R.q be a function such
that for every B > 0, one has that {x € U|H(x) < B} is finite. We say
that U is equidistributed in (X, p), (or simply in X) with respect to H
if for any open p-measurable subset W C X such that p(0W) = 0 one
has that
e eUNWIH) < BY (W)

B—oo  |{x € U|H(xz) < B}| u(X)’
8.3.2. — Let n € Z>; and let a € Z%,. We establish that the rational
points of #(a) are equidistributed in the space [],c,,.[Z7(a)(F))].

If v € Mp, we say that a function f : [Z(a)(F,)] — C is smooth if its
pullback F — {0} — C is smooth. If A C C is open, the sets of smooth
functions [Z(a)(F,)] — A will be denoted by € ([Z(a)(F,)], A).
Lemma 8.3.2.1. — Let v € Mp.

1. There exists a unique structure of a v-adic manifold on [P (a)(F,)]
such that for an open subset A C [P (a)(F,)] and f € €°(A,C)
one has that f € €>*(A,C) if and only if f is smooth in the usual
sense (i.e. f is locally constant if v € MY and f is an infinitely
differentiable function if v € M ).

2. Let f, : F' — {0} — Rsg be an a-homogenous continuous func-
tion and let w, == (f;'dx,...dx,)/d*z be the induced measure on
(P (a)(F,)]. Let W C [Z(a)(F,)] be an open subset such that
wp(OW) = 0. Let € > 0. There exist smooth functions h,g :
(P (a)(F,)] = Rsq such that

Oghglwggand/ (9 —h)w <e.
(2 (a)(Fv)]

Proof. — 1. We have seen in Proposition [3.3.4.1] that the action
FI o (B —{0}) = (£ — {0}) (t,x) = (t%x;);

is proper, i.e. the canonical morphism F x (F' — {0}) — (F' —
{0}) x (F* — {0}) is proper. Let e : F)} — (F))a be given by
e(t) = (t%);. The group (Fy,)a = {(t%);|t € F,}} acts on F)—{0} by
the component-wise multiplication. The two actions are compatible
in the following sense: ¢-x = e(t)x. Now the proper morphism

FX x (Fr—={0}) — (F" — {0}) x (F* — {0}) factorizes as

(eJdpp_q0y) (
o

Fx (F={0}) ES)ax (B ={0}) = (£ ={0}) x (£ —{0}).
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The first morphism is surjective, hence by [7, Chapter I, §10,
n° 1Proposition 5], the second morphism is proper, i.e. the action
of (F))a on F' — {0} is proper. By [6 Paragraph 6.2.3] we deduce
that the quotient [27(a)(Fy)] = (F;'—{0})/F) = (F —{0})/(F))a
carries a unique structure of a compact v-adic manifold and with
this structure, the smooth functions in our sense are precisely the
smooth functions on the v-adic manifold [Z?(a)(F,)].

2. To prove the statement, we use the existence of bump functions
on v-adic manifolds. First, we recall the proof for this statement
when v € M2 and when v € M° we refer the reader to [36, Lemma
2.15]. Let K be a compact of [Z(a)(F,)]. If U D K is open, for
every X € KC, there exists an open and closed neighbourhood Ny of x
contained in U (because every point in the spaces F) for r > 0 has a
basis of its neighbourhoods given by open and closed balls). By the
compacity of I, there exist xi,...,x, such that N :=[J Nk, D K.
Moreover, N C U is open and closed, thus 1y is a bump function
which extends the function 1.

Now let us prove the claim. For every open U O W, there exists
a smooth function gy : [Z(a)(F,)] — [0, 1] such that gyl = 1 and
supp(gy) C U. For every compact K C W there exists a smooth
function hyx : K — [0, 1] such that hg|r = 1 and supp(hg) C W.
For every € > 0, by the regularity of w and the fact that w(0W) =
0, there exists open U D W and a compact K C W such that
w(U) —w(K) < e. It follows that

/ (gu — hg)w < / 1y grw=w(lU) —w(K) <e.
[#(a)(Fv)] [7(a)(Fu)]

]

Let (f, : ' — {0} — R.g), be a quasi-toric degree |a|-family of
a-homogenous smooth functions. Let H = H((f,),) be the resulting
height on [Z(a)(F)] and let w = w((f,)») be the resulting mea-
sure on [[,cp [Z2(a)(F,)]. The goal of the rest of the paragraph is
to establish that the set [Z2(a)(:)]([Z(a)(F)]) is equidistributed in
[Loen, [Z(a)(F,)]. We will write 7 for the map [#?(a)(i)] The following
theorem is motivated by [47], Proposition 3.3].

Theorem 8.3.2.2 (“Equidistribution of rational points”)
The set i([Z(a)(F)]) is equidistributed in [ [, ¢y, [27(a)(F,)] with re-
spect to H.
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Proof. — In the case n = 1 and a; = 1, the statement is trivially true.
In the rest of the proof we suppose that n > 1 and that a € Z% if n > 2
and that a = a1 € Z~ if n = 1. The proof is adaptation of the proof of
[47, Proposition 3.3]. We split it in several parts.

1. In the first part we establish that the asymptotic for counting points
of [Z(a)(F)] equals to |III'(F, piged(a))| times the asymptotic for
counting the points of i([Z?(a)(F')]). By Theorem [8.2.2.12] one has
that

Wllver, [Z(@)(F)))

[{x € [Z(@)(F)]|H(x) < B} ~poo al

It follows from Proposition [3.4.3.1] that
Wllier, [Z(@)(F))
~B—oo .
[T (F, prgeaa)| - 12|
It follows from Theorem [4.6.8.2] that for every B > 0 there exists
C" > 0 such that

{x € i([Z(a)(F)] — [7(a)(F)])|H (x) < B}
|a|—min; a;

< C'B @ log(2 4 B)Y(ritratnl,

{x ei([7(a)(F))|H (%) < B}

We deduce that
w(HUeMF[z@(a)(Fv)])B
NB (e’ .
7% I (F, prgeaqa)| - 1]

2. We are going to prove the claim for the open subsets W C
HveMF['@<a)(Fv)] of the form

[{x € i([Z(a)(F)])|H(x) < B}

where S is a finite set and for v € S the set W, C [#(a)(F,)] is
open satisfying that w,(0W,) = 0 (we will call such open subset
elementary). For v € Sy, by Lemma there exist smooth
functions g¢,, h, : W, — R+ such that

ew,([Z(a)(F))])
8|Sw|

Let us set n = ¢/4. For v € S, we define h,, = (1 —n)h, + n and
Goy = (1—1)gp+n and for v € Mp—S, we define h,,,, = g,,, = 1. We

Oghvglwvggvéland/(gv_hv)wvg

v
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define hy, = [[,cpr,. Pom and gy = [ eps,. Go- For x € [P(a)(F)],
let x € " — {0} be a lift of x. Observe that

H(((hyyodd) - f)o) ) = T] ((hoy0ad) - f)(X)

vEMp

— H h;;(qS(i))fv(i)

vEMp

for x € [#(a)(F)]. By Lemma|5.3.3.2} one has that w(((h,,, ©¢3) -

fo)v) = hyw. Similarly H(((g; ,005)fo)o) = g0([2 (a) (i0)](x)) 7" H (x)
for x € [Z(a)(F)] and

w(((g," 0 a)) - fo)o) =

Now, it follows from (1 ) that for the quasi-toric degree |a| families
of smooth functions ((h,} 0 q3) - fu)o and ((g,; © ¢3) - fu)» We have
that

[{x € i([Z(a)(F)])|H(x) < hy(x) - B}|
= [{x € i([Z@EFH(((h," °q)) - fo)o)(x) < B}

Iaerr 1@ it
~B—oo .
Rt (F Hecd(a))| - |

and that

[{(x € i([2 (@) (F))) | H (x) < g,(x) B}
J e, [2(@)(F)] I
e |H-Il(F7 ,ugcd(a))l . |a|B

Using (1), we deduce that

{x € i((Z@EPNIHN < hIBY e izmmn
e il@@ENHE < B " oL, [ Z@(E)
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and analogously for g,. Thus, there exists By > 0 such that if
B > By, one has that

fHueMF Z(a)(Fv)] h W €

W(ILer, [2(@(F)]) 8
C ixei(Z@)IHE) < Blles, (1 —mlw, + )}
- {x € i([Z(a)(F)])|H(x) < B}
- fHUGMFWaXFv)] In
~ w([Lea, [Z(@)(F)])
It follows that
w(W) €
w(ler, [Z(@)(F)]) 8
_ xei(ZE)NIAR) < Bllies, (1~ mlw, +n)}
- {x € i([Z(a)(F)])|H(x) < B}|
< w(W) L€
T WL, [Z(@)(F)]) 4
One has that
i XS UP@FDIHE <uBY e
Booo [{x € i([2(a)(F)])|H (x) < B} 4
For B > 0, we deduce that

{x € u[Z(a)(F))|H(x) < B]l,cs, (1 =n)1w, + 1)}
{x € i([2(a)(F)])|H(x) < B}
3 w(W)
W(HveMF[@(a)(Fv)])
H{x e W|H

+e
8

<

oo |

x) < B}| [{x € i([Z(a)(F)])|H(x) < nB}|

( |
T {xei(Z@F)IHKx) < B}  [{xei([Z(a)(F)])|H(x) < B}
B w(W)
W([Tvenrs,[Z(2)(F)])
< {x € W|H(x) < B}| B w(W) €
~ ixei((Z@EFNIHE) < B} wllew[Z@F)]) 2
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Thus the claim follows for elementary open subsets W C

[Loew, [Z(@) ()]

. We prove claim for every W which is a finite union of elementary

open subsets of [ [, ;. [Z7(a)(F,)]. The collection of the elementary
open subsets of [[ ;.. [Z(a)(F,)] is stable for finite intersections.
Suppose the claim is valid for every union of £ elementary open sets.
Let Vi,..., Vi1 be elementary open sets, we have that

[{x € U Vi U Vi H(x) < B}|

[{x € i([Z(a)(F)])|H(x) < B}

|{X€UJ 1 VilH (x) < BY| + [{x € Vi |H(x) < B}|
{x € i([Z(a)(F)])|H(x) < B}
H{x e Ui (V; nVin)|H(x) < BY|
{x € i([Z(a)(F)])|H(x) < B}
(UJ 1 J) + w(Vit1) _W(U —1(V] kaJrl))
W(ILoerr [2(a)(F)])
B (Uk—HV)
- W([Ler [Z@F)])

It follows by the induction, that the claim is wvalid for W
which is a union of finitely many elementary open subsets of
[Loenr, [Z(2) ()]

Let us now prove the claim for a general open subset W with
w(0W) = 0. We shall first establish that for every € > 0, there
exist W’ and W which are finite unions of the elementary open
subsets of [[,cy,.[Z(a)(F,)], such that W/ C W C W” and such
that w(W"” — W') < e. For v € Mp, open sets of [Z(a)(F,)] with
negligible boundary form a basis of the topologies of [Z(a)(F,)]
(the collection of such open sets contains the images of open balls
in F"—{0}, and the open balls in F'—{0} form a basis of the topolo-
gies and have negligible boundaries). It follows that the elementary
open subsets form a basis of the topology of [[,cs,.[Z(a)(F,)]. Let

e > 0. The space W is a compact, thus can be covered by the
finitely many elementary open sets of volume no more than e;. We
let W” be the union of these sets. By the inner regularity of w (e.g.
[29, Theorem 2.5.13]), there exists a compact set K C W such that
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w(W) —w(K) < €/2. Cover the set K by finitely many elementary
open subsets lying completely in W. We let W’ be the union of this
sets. Clearly, W/ ¢ W C W”. By using that w(0W) = 0 we get
that

wW" =W <wW”" = W) +w(W — W)
wW" = (WUW)) +w(WUIW) — W)

(W = W) +w(W — W)

AN VAR VAR VAN
o

Now, for 6 > 0, one has that there exists By > 0 such that if B > By,

then:
w(W') B [{x € W'|H(x) < B}|
w(1ler, [Z(a)(F)]) {x € i([Z(a)(F)])|H(x) < B}
[{x € W|H(x) < B}|
[{x € i([Z(a)(F)])|H (x) < B}
and that
[{x € W|H(x) < B}| < [{x € W"|H(x) < B}|
{x € ([Z(a)(F)])[H(x) < B} — [{x €i([Z(a)(F)])|H(x) < B}|

< w(W//)
a W(HveMF[’@(ava)])

+ 0.

It follows that
{x € W|H(x) < B}| - w(W)
{xei([Z@)(FHX) <BY 77 w([Lew,[2(@)(F)])

The statement is proven.

]

We deduce the following proposition (it is analogous to parts (a) and
(b) of [47, Proposition 3.3|)
Proposition 8.3.2.3. — The following claims are valid:
1. Let f: [Ler, [Z(@)(F,)] — C be a step function (the sum is as-
sumed to be finite) > \;1yw,, where W; are open sets with negligible
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boundaries. One has that

er[W(a)(F)] f(x)

Boe [{x € [Z(a)(F)][H(x) < B}

— lim 2xciqz@y (X
s [{x € i([Z(a)(FIH(x) < BY

fHUeMF 2@)F) @
w( HveMF[g<a)(Fv)]) ‘

2. For every continuous function f : [[,cp[Z(@)(F,)] — C, the
equality from (1) is valid
3. The asymptotic formula from Theorem (8.2.2.1% s wvalid for any
quasi-toric degree |a| family of a-homogenous functions (g, : F/* —
Proof. — For the first two claims, the proofs of the corresponding claims
in [47, Proposition 3.3] work here. For the third one, we make minor
modifications.
1. By Theorem [8.3.2.2] the equality is valid for the characteristic func-

tions of open sets with negligible boundaries. Clearly, the equality
stays valid for any step function (the sum is assumed to be finite)
> Ailw,, where W; are open sets with negligible boundaries, as-
sumed to be pairwise disjoint. We verify that the same equality
stays valid for a step function ), A\;1y,, where W; are open sets
with negligible boundaries (not assumed pairwise disjoint). For ev-
ery point x € [[,cp,[P(a)(F,)], let A(x) be the set of the in-
dices i for which x € W;. We let W) = ;e A) W;. The function
> Ailw, coincides with the function

Z ( Z))‘i) 1w

A(x) “i€A(z

where the sum is taken over all subsets that appear as A(x) for some
x € [[oerr, [Z(a)(F,)]. A finite intersection of open sets with negli-
gible boundary is an open set with negligible boundary (because the
boundary of an intersection is contained in the union of the bound-
aries), thus the sets W) are open sets with negligible boundary.
Hence, the equality stays valid for described step functions.
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2. The open sets with negligible boundaries form a basis of the compact
topological space [[,¢,,.[Z?(a)(F,)]. Now, any continuous function
[ Ieer, |2 (@)(F,)] — C can be approached uniformly by step
functions ), \;1yw,, where W; are open sets with negligible bound-
aries. The claim follows.

3. Let (go : F' — {0} — R.p), be a quasi-toric degree |a| family of
a-homogenous functions and let HY be the resulting height. Let S’
be the finite set of places for which f, # ¢,. For v € S" and for
x € [Z(a)(F,)], let x € F' — {0} be a lift of x. The function

he I [2(@)(F)] = R (x)o = [] f“&”),

vEMp ves’ gv(iv)

does not depend on the choices of X,, is a continuous function (be-
cause f, and g, are of the same weighted degree and are continuous
functions F* — {0} — R.). Note that when x € i([Z?(a)(F)]), one
has that

because for every v, one can take X, to be a fixed element in (F*)".
By Theorem [8.3.2.2 for every open W with negligible boundary,
one has that

x| 2()(E)H () < 1w B}
B324) I T ke (2@ ENHEX < B)|

— vaeMF[g’(a)(Fv)] lyw
w( HUEMF L@(a)(Fv)]) .

The same equality is valid when 1y is replaced by a step function
> Ailw,, where W; are open with the negligible boundaries. Let
€ > 0, there exists a step function ) . A;1y,, with W; open with the
negligible boundaries, such that 0 < h — . A1y, < e. It follows
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that
{x € i([Z(a)(F)])|H(x) < B}|
[{x € i([Z(a)(F)])|H(x) < B}
_ Hxe[Z@WE)]|H(x) < h(x)B}|
{x € i([Z(a)(F)])[H(x) < B}
< Nxei[Z(@)F))IHX) < (c+ 3 \ilw,)B}|

- {x € i([Z(a)(F,)])|H(x) < B}
fn rry [2(@) o (€ 22 Al Jw

S (H eMFW( a)(F,)])
I (@) (22 Al o

w(IT. EMF[ (a)(F)])

=€

Similarly,

{x € i(|2(a)(F)))|H*(x) < B}|
[{x € i([Z(a)(F)])[H(x) < B}
_ |{x € [Z(a)(F)]|H(x) < h(x)B}]
[{x € i([2(a)(F)])|H(x) < B}
_ {xe[Z@P)]HX) < (5 Alw,)BY
= xei([Z@)F)H(x) < B}|
Iaers 1@ (B2 Ailws o
e (HveMF[ (a)(F)])

By decreasing ¢, we deduce that

x e P@EDIH) < BY e, wm
Booo [{x € i([Z(a)(F)])|H(x) < BY  w([Toen, [Z(@)(F)])
It follows from Lemma [5.3.3.2] that

hw = w v)v A (a Fv .
/HUEMF[@(a)(Fv)] ((g0) )<U£4[F[ (a)(F,)])

Finally, Theorem gives that
x e (2 @EDI) < B _ (e, [2@E)

B—oo B o |a|
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thus
e i P@EDIE) < BY (000 (Mew, (2@ (R)
5 B - a

as claimed.

]

Remark 8.3.2.5. — Suppose that (f#), is the toric degree |a| family
of a-homogenous functions. Using the expression for 7 from Lemma
5.3.3.3| and the formula for the volumes w,([Z(a)(F},)]) for v € M
from Lemma [5.3.2.1], we get that

~_ Res(Cr, )| ptgeaa) ()2 a))™ ((2m)" [al)"
A(F)* % ¢p(Jal)
 Reg(F)hp2m (2m)" | tgeagay(r) |27 D7 (2) (122|172
A(F)% A(F)HT_IU}FCF(‘&D
_ he (2” (2m) ) n|a|’“1+’”2 Reg(F)|figeaa) (F)] '
¢r(lal) A(F) wr

Here, Reg(F) is the regulator of F' and wp the number of roots of unity
in F'. Hence,

{x € [Z(a)(F)]|H" (x) < B}

hp  (272m)2N\" o1 Reg(F) geata (F))]
~B—o00 |a| B
Cr(lal) \ /A(F) or

The counting result in this case has been obtained by Bruin and Najman
([I2, Theorem 3.7]). They used the method of Deng from [25], which
is similar to the original method of Schanuel from [53] for the case of
rational points of the projective space.
Remark 8.3.2.6. — Theorem [8.2.2.10 and Theorem give that
the closed substack Z°({X;---X,}) C Z(a) given by the G,,-invariant
closed subscheme Z(X;---X,) C A™ — {0}, is not an “accumulating”
substack (see [47, Definition 1.3] for the terminology).

The same estimate as in Theorem [8.2.2.12]is true for the rational points

of the stack #(a) (because the stack & (a) — #(a) has only one rational
point).
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Remark 8.3.2.7. — For L € Pic(Z(a)) ®z R = Pic(¥(a))r and
A € R, we define a measure #;, on the set

R if L=0and A =0,
He(N) = {y € Pic(Z(a))ply(L) = A} = { {7} i L#0 ,
0 if L=0and X\ #0.
by setting it to be the Lebesgue measure, the Haar measure which is
normalized by QL({%}) = % and by 6y(0) = 1, respectively. We define
1 1
|a|) |

al’
(This definition is [47, Definition 2.4] for the case rk(Pic) = 1). Thus
the leading constant in the asymptotics of Theorem [8.2.2.12] and in Part
(3) of Proposition [8.3.2.3] writes as ar, as predicted by Peyre in [47] for

Fano varieties.

a=a(P(a)) = Oja({y > 0} NH o (1)) = Qlal(



CHAPTER 9

NUMBER OF pu,-TORSORS OF
BOUNDED DISCRIMINANT

In this chapter F' will be a number field and Op its ring of integers. The
goal of this chapter is to give the asymptotic behaviour for the number of
im-torsors over F' of bounded discriminant, where m > 2 is an integer.

We are going to use the language of heights on weighted projective stacks
from @l

9.1. Calculations of the discriminant

In this section we will be calculating the discriminants of ,,-torsors
over F, where v is a finite place of F', where m > 2 is an integer.

9.1.1. — We use [42] as principal reference for the definition and basic
properties of discriminants. Let R be a Dedekind domain and let K be
its field of fractions. Let L be a finite extension of K. Let R’ be the
integral closure of R in L. If x1,...,x, is a basis of L over K, we set

Az, ..., zy) = det((Tr(zix4))45),

where Tr : L — K is the trace map. We say that A is the discriminant of
the basis z1,...,x,. We define A(R', R) to be the ideal of R generated
by all A(zq,...,x,) when xq,...,z, range over all bases of L/K which
are contained R'. By the abuse of notation, we may write A(L/K) for
A(R'/R) if R and R are understood from the context.
Proposition 9.1.1.1 ([42], Corollary 2.10, Chapter III])

For a tower of fields K C L C M one has that:

A(M/K) = AL/ K)M Ny (A(M/L)).
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Proposition 9.1.1.2 ([42], Corollary 2.12, Chapter I1I])
Suppose that L/K is unramified. One has that A(L/K) = (1).

Let ®(L/K) denotes the different ideal ([42, Definition 2.1, Chap-
ter I11]). The following statement is true for any tamely ramified primes
([42] Definition 7.6, Chapter II]), but for our needs the following version
suffices (clearly, it makes primes automatically tamely ramified):
Proposition 9.1.1.3 ([42], Theorem 2.6]). — Suppose that p is a non-
zero prime ideal of R such that R/p is a finite field of characteristic
coprime to [L : K| and let q be a prime of R’ lying over p. One has
that vg(D(L/K)) = eqp — 1 where vq(D(L/K)) is the exponent of q in
the prime factorisation of the ideal ©(L/K) and eq, is the degree of the
ramification of the prime ideal p in q.

If A= K x---x K, be a product of finite separable extensions K;/K,
we define A(A/K) := [[, A(K;/K). The following proposition is given
in [42] Corollary 2.11, Chapter III] when A is a field, nonetheless, it is
true when A is a finite product of finite extensions of F'.

Proposition 9.1.1.4. — Let A/F be a finite product of finite exten-
sions of F. Let v € M%. One has that

V(A(A/F)) = U(A((A ®p Fv)/Fv)) .

Proof. — Let A= K x --- x K,, with K;/F finite extensions of F'. For
every i, by [42], Corollary 2.11, Chapter III], one has that

st/ ) = o [T AR,

wt|v
where w’ are places of K; lying above v. For every i, by [42) Proposition
8.3, Chapter II], one has that
H K, = K; ®r F,
wi|v
and hence

H A(le/Fv) = A(Kz F Fv)'

wilv

We deduce that

W(A(K;/F)) = v (A(Ki ®p F, /Fv)).



9.1. CALCULATIONS OF THE DISCRIMINANT 281

Hence,

W(AA/F)) = (H A/ F)) = v(ﬁA((Ki or F)/F) )

The statement is proven. O

9.1.2. — Let again m > 2 be an integer and let v € MY be such that
v(m) = 0. In this paragraph we calculate the discriminant of a fi,,-torsor
over I,. We have not found a reference for these calculations.

Lemma 9.1.2.1. — Let n be an integer such that v(n) = 0. Let {/m,
be a formal n-th root of the uniformizer w,. One has that

A(F,(/m)/F,) = 70O,
Proof. — Let us write K for F,(/m,). By Eisenstein’s criterion, the
polynomial X" — 7, is irreducible. It follows that the degree of the ex-
tension K'/F, is equal to n and that the elements {/m,, {/72,..., {/7n~t
do not belong to O,. We deduce that (/m,) N O, = (m,). Thus the
degree of the ramification of 7, in K is at least n and hence is equal to n
(because the degree of the extension is n). Proposition[9.1.1.3| gives that
(D(K/F,)) = (/7)™ '. We deduce that
A(K/F,) = Ng/p,(D(Fy(3/m0) [ Fy))
= Niyr, ((3/m)" )
— N (/)"

As Ng/p,(m,) = (), it follows that Ng/p, ((/7,)) = (7,), and hence
A(F, (/) [ Fu) = AK/F,) = Nigyp, (/7)) = (1)
The statement is proven. 0

Lemma 9.1.2.2. — Let a € E) and let n be an integer such that
v(n) = 0. We set d = ged(v(a),n). Let /a be an n-th root of a (lying
in an algebraic closure of F,). One has that

A(Fv(%)/F,U) = W(L[)F“( %):Fv](l—d/n)ov'
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Proof. — Let us set r = v(a) and d = ged(v(a),n). We write a = mhu
for some u € O,°. There exist integers b, ¢ such that br + cn = d so that
(rw)b(ro)" = 7’ for some v € OX. Let m/™? and u'/™ be formal
n/d-th and 1/n-th roots of 7, and u, respectively. We have the following
towers of extensions:

Fv (,/Tvl/(n/d)’ ul/n)

Fv(al/n vl/(n/d))

)/ \F(
\ . /

Let us set M = F,(m,//0/4 yl/m) K = F,(a’/") and L = F,(m/™?).
The extensions M /K and M/L are unramified because v(n) = 0. Now,
Proposition [9.1.1.1] gives that

A(K/F,)ME = A(L/F,)MH,

One has that

[K:F)-[M:K|=[L:F]-[M: L= (n/d)M: L],
thus

A(K/F,) = A(LJF,)MEVIMEK] — AL/ F,)@/mER]
Recall that by Lemma [9.1.2.1} one has that

A(L/F,) = A(Fv(ﬂi/(n/d))/Fv) _ 7T1()71/(11)_1(,)%
thus
A(K/F,)) = gl @/m/d-00  — glK:Fl0=d/mo
= plF(VayR](-d/mo
O

Proposition 9.1.2.3. — Let a € . Let m > 2 be an integer such
that v(m) = 0. Let us set d = ged(v(a),m). One has that

A((PIX)/(X™ = a))/F,) = 737" Oy,

Proof. — Let X" —a = H§=1 b;(X), be the composition of X —a into a

product of irreducible unitary polynomials (repetitions are allowed). For
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every j =1,...,¢, let n; be a root of b;(X) so that F,(b;) are fields and
the homomorphism

is an isomorphism. For every j, one has that 77;” = a and by [0.1.2.2] we
have that

A(F,(n))/F,) = miest)(=@/m) o
We deduce that

l
AR X)/(X™ = a)/F,) = [[(rleet)0-0/m 0,y = zmid/m=D 0,
=1

d—m
=, "O0,.

]

9.1.3. — In this paragraph, we define the heights that will be used for
the counting. The following notation will be used in the rest of the
Chapter: m > 2 will be a fixed integer, r will be the smallest prime of m
and a(m) := m? —m?/r. We will use the terminology from [4.4]
Lemma 9.1.3.1. — For v € MY, let us define f2>: FX — Ryq by

75 ) = [yl (N(A((Fv X]/(x™ y))/m)”a(m)),

where N stands for the ideal norm. Forv € M, we set f2(y) = |y[s/™.

1. For every v € Mp, the function f~ is m-homogenous and of
weighted degree 1.

2. For every v € MY, the function f2 is locally constant.

3. Let v € MY such that v(m) = 0. For every y € FX, one has that

fUA(y) — Mi/m‘m‘ggcd(v(y)vm)—m)/a(m — ’WU’5(y)/m+(gcd(v(y)M)—m)/a(m)_

For every y € OF, one has that f>(y) = 1.

v
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Proof. — 1. The function y — |y|11,/ " is m-homogenous of weighted de-
gree 1. It follows that for v € Mp® one has that f, is m-homogenous
of weighted degree 1. Let v € M2 and let ¢ € F*. The image of
the ideal (X™ — y) under the isomorphism

F,[X] — F,[X] X tlX

is the ideal (7" X™ —y) = (X™—t™y). It follows that F,[X]/(X™—
y) and F,[X]/(X™ — t™y) are isomorphic, hence the norms of the
corresponding discriminants are the same. It follows that

g (N(A((R[X]/(X™ = y)/F,)

is F‘-invariant. We deduce that f, is m-homogenous of weighted
degree 1. The claim is proven.

2. The function y — (N (A((F,[X]/(X™ = y)/F))™ is (F)m-
invariant by (1). The subgroup (F,),, C F,* is of the finite index in
F by Lemma , thus open in F* by [42] Exercice 4, Chapter
I1]. The function y + |y|, is invariant for the open subgroup O C
FY. We deduce that f, is invariant for the open subgroup (F,),, N
O of F. It follows that f, is locally constant.

3. As v(m) = 0, Proposition [9.1.2.3| gives that
A((FIX)/(X™ =)/ F,) = mpmedt@m O,
We deduce that for every y € F one has that

1/e(m)
20 =l (VAR - )/ )
[y, [ )=o)
— yﬂ-v’5(y)/m+(gcd(v(y),m)—m)/a(m).

If y € O, one has that
I (y) = [yly/ ™, et whmmm/atm = 1,

The claim is proven.
O]

Definition 9.1.3.2. — Let v € My and let k € Z. Let f2 be as in
Lemma[9. 1.3 1.

— The function x > (f>(z))* will be called the discriminant m-
homogenous function of weighted degree k.
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— A degree k family (f, : F) — Rs), of m-homogenous continuous
functions, will be said to be quasi-discriminant if for almost all v,

one has that f, = (x — (f2(z))*). It follows from Lemmal9.1.3.1

that quasi-discriminant families are generalized adelic (see Defini-
tion and the resulting height H = H((f,)») on & (m)(F)
will be said to be quasi-discriminant height.

— If for every v € My one has that f, = (v — (f2(x))), then the
family (f,), will be said to be the discriminant degree k family. The
resulting height H> = H((f,),) will be said to be the discriminant
height.

As usual, we will write H for the resulting heights on the set of the
isomorphism classes [Z2(m)(F)].
Remark 9.1.3.3. — Note that by Lemma [9.1.3.1f and by Lemma
4.4.3.1] a “quasi-discriminant” and a “quasi-toric” family are different
notions.
Remark 9.1.3.4. — The calculations from Proposition [9.1.2.3| and
Lemma may be well known, however we have not found an ade-
quate reference.
Lemma 9.1.3.5. — Let (f2), be the discriminant degree 1 family of m-
homogenous continuous functions and let H® be the resulting height. Let
y € F*. One has that

1/a(m)
HA(¢" (1)) = N(A(F[X]/(X’” - y))/F)) |

where ¢™ : (A' — {0}) — Z(m) is the quotient 1-morphism.
Proof. — By the product formula, one has that

Hy) = [] ()

= ((ILwi) IL wheos (s (exeen —uy/e) s

=11 N(A((FU[X]/(X’”—.U))/FU))W

0
veMp,
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Proposition [9.1.1.4] gives that

11 N(A((m[X]/(Xm - y))/Fv>)

0
veME,

We deduce that

]

9.1.4. — In this paragraph, we prove the weak Northcott property. Our
proof does not involve Hermite-Minkowski theorem (|42, Theorem 2.13])
and relies on a comparison with toric heights that we establish in Lemma
9.1.4.0l

Let (f, : F) — Ryg), be a degree 1 quasi-discriminant family of m-
homogenous functions and let H = H((f,),). For v € Mg, let H, be the
function H, : [Z(m)(F,)] — Ry induced from F-invariant function
FY — Rog,y — |y|;1/mfv(y) (we have studied such functions in
for a general generalized adelic family). If f, = f2, we may write H2

v

for H,. By Lemma [4.4.5.2] one has that if x € [.7(m)(F')], then
(9.1.4.1) H(z) = [[ H(T(m)(@)](@)),
vEMp
where for v € Mp, the map [Z(m)(i,)] : [T (m)(F)] — [T (m)(F,)] is
the induced map from the F *-invariant inclusion i, : (F*)" — (F))".
Lemma 9.1.4.2. — The following claims are valid:
1. Suppose that v(m) = 0. Fory € F), one has that
HA (¢ (y)) = |m,|led@m)=m)/aim),
The function H2 : [T (m)(F,)] = Rsg is [Z (m)(O,)]-invariant. If
x € [T (m)(0,)], then H>(x) = 1.
2. Suppose that v € M. One has that H> = 1.
Proof. — 1. As v(m) =0, by Lemma [9.1.3.1] one has that

HA (¢ () = |yl =7 2 (y) = |y | (£ m)—m)/a(m)



9.1. CALCULATIONS OF THE DISCRIMINANT 287

for y € FX. Let us prove that H2 is [ (m)(O,)]-invariant. Let
x € [T (m)(F,)] and let u € [T (m)(O,)]. Let T and u be its lifts in
F) and O], respectively. We have that

H@A( ) _ ‘ﬂ' | (ged(v(Z),m)—m)/a(m) __ |7T | (ged(v(@z),m)—m)/a(m) _ HUA(ZEU)

It follows that H> is [Z(m)(O,)]-invariant. Suppose that z €
[T (m)(O,)] = ¢™(O)). Then 7 can be taken in O. Thus

HUA( ) = || (ged(v(z),m)—m)/a(m) _ 1

2. The function f2 is the function z + \x!l/ ™. The function H is the

induced function from the constant function x — |z, m g A( ) =1,
hence H> = 1.
[

Lemma 9.1.4.3. — There exists C' > 0 such that for every
z € [T (m)(F)] one has that

CHA(JZ) > H#(x)ﬁ,

where H* is the height defined by the degree 1 toric family (f¥), of m-
homogenous functions.

Proof. — For v € Mp, let H® be the function induced from F*-invariant
function y — |y|v L/m f2(y) and let H be the function induced from F*-
invariant function y — |y|;1/mff(y). Recall that for v € M$°, by the
definitions of f2 and f# (see Lemma [9.1.3.1| and Definition , one
has f2& = f#, thus by Lemma|9.1.4.2] one has that HS = H} = 1. Using
this and using Lemma [4.4.5.2] for z € .7 (m)(F)], we get that

Aa)= [T HX(Z(m)(0))(@))

’UEM%

= [I #X (7 (m)@)](),

0
veME,

where the maps [7 (m)(i,)] : [Z(m)(F)] — [Z (m)(F,)] are the induced
maps from (F*),,-invariant inclusions i, : (F'*)" — (F))". For every
finite v such that v(m) = 0, by the finiteness of the space [ (m)(F,)]
one has that there exists C, > 0 such that for every z € [ (m)(F,)] one
has that

Hi}x) > CuH ()™,
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Let v € MY be such that v(m) = 0. By Lemma [9.1.3.1] one has for
y € F* that
FA () = Iy - scatmetwam),

On the other side, by Lemma 4.4.3.1], one has for y € F that

m —(2-122))
HE (47" (9)) = Imol.

For every k € Z one has that

m — ged(k,m) > k_ LEJ

m m
(if k is divisible by m, then the quantities on both hand sides are equal
to zero, and if k is not divisible by m, then the quantity on the left hand

side is at least 1, hence is bigger than the quantity on the right hand
side). We deduce that

HE > (HF)Ym,
It follows that

A Z< I Cv) (H#) ),

v(m)#£0
The statement is proven. O

Proposition 9.1.4.4. — Let (f, : F — Ryg), be a degree 1
quasi-discriminant family of m-homogenous functions.  The height
H = H((fv)v) is a weak Northcott height. Moreover, for every B > 0,

there exists C > 0 such that
{z € [2(m)(F)]|H(z) < B}| < CB™™.

Proof. — Let (f2 : F)X — Rsg), be the discriminant degree 1 family
of m-homogenous functions. The families (f2), and (f,), are degree 1
families of m-homogenous continuous functions and for almost all v one
has f2 = f, (because (f,), is quasi-discriminant), thus by Lemma ,
there exists a constant C; > 0 such that C;H® < H(y) for every y €
[2(m)(F)]. Let (f# : FX — Ryg), be the toric family of m-homogenous
functions of weighted degree 1 and let H#* = H((f7),) be the resulting
height. Lemma [9.1.4.3] gives that there exists Cy > 0 such that

HA(y) > CoHH (y)/om),
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for every y € [Z(m)(F)]. Now, for every B > 0, one has that

{z € [Z(m)(F)]|H (z) < B}
<z € [2(m)(P)|CiH(z) < B
< [{z € [2(m)(F))|CoO(HF (2)) V™ < B}|

= [{z € [2(m)(F)]|H" (z) < C3'CBY™Y].
Theorem implies that there exists C3 > 0 such that
{z € [2(m)(F)]|H*(x) < Cy'Cr ' BY™Y| < GyCy ey Bmet™

for every B > 0 (recall that in [8.2.2.12] the degree of the toric family
is m and our toric family is of the degree 1). Thus for every B > 0, we
have that

{z € [2(m)(F)]|H(z) < B} < C;Cy ' CrmBmet™),
The statement is proven. O

Remark 9.1.4.5. — In the next sections we establish the precise
asymptotic behaviour of |{z € [Z(m)(F)]|H(z) < B}| when B — oc.

9.2. Analysis of height zeta function

The goal of this section is to establish the asymptotic behaviour of
H{x € [Z(m)(F)]|H(x) < B}. Using the “Tauberian dictionary”, the
task translates into the study the convergence of the height zeta series.
For that purpose we use Fourier analysis.

Let (f, : F* = Ryg), be a quasi-discriminant degree m family of m-
homogenous functions. For v € Mp, we will denote by f2 the discrimi-
nant m-homogenous function of weighted degree m. In the entire section
we will denote by S the finite set

S = {ve Mp|f, # f;> or v(m) # 0}.

9.2.1. — In this paragraph we study the local Fourier transform of a
local height.

Let v € Mp. Let @ ¢ FX = (F)/(Fm = [2m)(F)] =
(7 (m)(F,)] be the quotient map. By Lemma [5.2.3.1] the measure d*x
on F* is F-invariant for the action ¢ -y = t™y of F,* on F. We set p,
to be the quotient Haar measure d*z/d*x on [.7 (m)(F),)] (see Definition
5.4.1.1)). Recall that the sets 7 (m)(F,)] are finite by Lemma [3.3.5.7

hence 1, ([ (m)(F,)]) are finite positive numbers.
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Lemma 9.2.1.1. — The Haar measure ., 1s normalized by

po([F (m)(F3)]) = m.

— Suppose that v € M%. Recall from Proposition [3.3.5.4] that
[ (m)( O,)] identifies with the open and compact subgroup ¢(O))
[9( (F,)] and is of index m by Lemma [3.3.5.5l By Lemma

e

(F

)
5.4.2.1] the measure p, is normalized by s, ([7(m)(O,)]) = 1 i.e. by
([ (m)(F,)]) = m. Suppose that v € M. One has by Lemma

m that

[ S
L7 (m)(F)] Aoa(Fo) Jp,,
0

If x € [7(m)(F,)]* is a character, we denote by X the pullback char-
acter (¢™)*(x) : F* — S'. Lemma gives that Y™ = 1 and that
X = X is an isomorphism of .7 (m)(F,)]* to the closed subgroup (F,)% C
(E))*. For a complex number s and a character x € [7(m)(F,)]* we
define formally

~

H,(s,x) ;:/ H, X o
[7 (m)(Fy)]
Lemma 9.2.1.2. — Let v € Mp.

1. For every s € C one has that H;* € L'([7 (m)(F,)], it,). For every

X € [T (m)(F,)]*, one has that s — H,(s,x) is an entire function.
Moreover, for every compact K C R, there exists C(K) > 0 such

that for every s € K + iR, one has that ﬁ[v(s, x) < C.
2. Suppose that v € M% — S. Let s € C and let x € [T (m)(F,)]* be a
character. One has that

(9.2.1.3)

m—1 s(m?—mged(§,m)))/a(m) ~, i .
7a e [ eedBm G wdy if x| gm0 = 1,
v (S7X) T .
0 otherwise.

3. Suppose thatv € M. For every s € C and every x € [T (m)(F,)]*,
one has that

~ m i Xy =1,
9.2.14 Hy(s,x) = .
( ) (5:%) {O otherwise.
Proof. — 1. The group [.7 (m)(F},)] is finite by Lemma [3.3.5.7] More-

over, i, is a Haar measure on [.7 (m)(F})], hence a non-zero multiple
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of the counting measure. It follows that H,* € L'([.7 (m)(F,)], ttv)-
Let x € [Z(m)(F,)]* be a character. For every x € [7(m)(F,)],
one has that s — H,(z) ®x(z) is an entire function. We deduce
that s — f]v(s, X) is an entire function. Moreover, for every s € C,
by the triangle inequality, one has that |ﬁ]v(s,x)| < ﬁv(%(s), 1).
For every compact K C R, by the fact that u, is a multiple of the

counting measure, there exists C’'(K) > 0 such that if R(s) € £
then

(s )| < HR(), D) < CUsup S ()™,

The claim is proven.
2. It follows from Lemma [0.1.4.2] that

[7(m)(0)] = C  x (H(2)™

is [.7 (m)(O,)]-invariant. We deduce that if x|[7m)©0,) 7 1, then

Suppose that X|(7mm)o,) = 1. It follows that X[,x = 1. The
function (H2)~% is [Z(m)(O,)]-invariant, hence ((H2)™% o0 ¢?) =
e (Jo]; 2 (x)) "% is [ 7 (m)(O,)]-invariant. Using Lemma |5.4.1.3
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we get that

~

B0 = [ )
[7 (m)(F)]
=) [ (o) (voat)d's
F)nD
—G) [ (el ) R
F)}nDm

m v(z),m)—m?2)/a(m)\—s=~ *
=Cv(1)/F o (| |{8catEhm)=mD ) =5 () d*
X Apm

Z/ |7T |vm —m ged(v(z), m))/a(m)x( )d
T Ox

:@(1)Z|m|i<m2 meedGm)/am) (7d) - &z (7 O))

J=0

= N7 | St mseaGom) falm) 57 (Y,

The claim is proven.
3. For every s € C, the function (H2)~* is the constant function 1.

Thus for y € [Z(m)(F,)]* such that x, # 1 one has that H,(s, ) =
0. Suppose that y = 1. We have that

/ (HvA)is/Lv = / Ly =m
[T (m)(Fy)] [T (m)(Fy)]

by Lemma [9.2.1.1

9.2.2. — We will compare the Fourier transform of the local “discrim-
inant” height with a product of certain local L-functions.

Lemma 9.2.2.1. — Letv € M2 — S. Let s € C with R(s) > 0 and let
X € [ (m)(F,)]*. One has that

H2 (s, y)
1,21 Lo(s, xm/m) |

3

( G (R(s)(1 + 1/a(m ))))2’“‘1”“
Co(2R(s)(1 4+ 1/a(m))) '
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Proof. — Suppose first X|[7@m)0,)) # 1. Lemma [9.2.1.2 gives that
H2(s,x) = 0, hence the inequality is trivially verified. Suppose now
that x|z )0, = 1. Asv € M} — S, Lemma [9.2.1.2] gives that

m—1
77 s(m2—mged(j,m))/a(m) =~ ]
Hp (s, x) = Y m [t mecdUm)/atmn(ql),
7=0
We have that:
(9.2.2.2)
HA2(s, x)
[1,=t Lo(s, Xx™/7)
m—1 r—1
s(m?2—mgcd(j,m))/a(m)~ j s~mj/r
= [tz sty || TT i o)
7=0 j=1

m—1 r—1
s(m2—mged(j,m))/a(m) =~ j s~(._mj/r
(3 ity ) TT1 o otz

=0 j=1
Whenever ged(m,j) = m/r, we have m? — mged(m,j) = m? —
mged(m, j) = a(m), and we rewrite the last sum as:
m—1
D gl s et ()
=0
=1+ Z |7rv|f}5<“(7719)> + Z |ﬂ_v|f}(m2_mgcd(m,j))/a(m)%(ﬂ-g)
ged(j,m)="¢ ged(m,j)< o
r—1 .
mj . o
— 14 |7Tu|i<Z%(7TvT' )) 4 Z |7Tv|Z(m‘z_mgcd(ﬂ,m))/a(m)x(wi)_
Jj=1 ged(m,j) <2

Now, we expand the last product of the equality (9.2.2.2)) and collect the
terms:

]/_\IA(S X) ’ m2r N
e = 14 Y A(X) [
TR S
It is clear that
A1(X) = A2(X) = -+ = Aam)-1(X) =0,

and one also has that
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because every X(WUTJ ) appears exactly twice in the expanded product
with the different signs. Moreover, each Aj(X) is a sum of no more than
2"~1m numbers of the absolute value 1, thus for every k = 1,...,m?r, one
can estimate that |A;(X)| < 2"'m. Now, using the triangle inequality

and the fact that |m,|, < 1 we deduce that
7y m2r
H3 (s, X) ‘

[1521 Lu(s, xmi/7)

L+ ) Ak [/
k=1

mzr

<14+270m D | [fORe

k=a(m)+1
<1+ 2" m(m?r — a(m) — 1)|x,|H etm+D)/atm)
<1 2Ly, R+ o))

< (1 + || R A+ almp)y2r=tmsr

= ( G (R(s)(1+ (1/a(m)))) )2r1m3
GERE) A+ (1fam))

The statement is proven. ]

9.2.3. — In this paragraph we study the global Fourier transform.
Let [7 (m)(AFr)] be the restricted product

(7 (m)(r)] = [] [7m)(F)),

vEMp

where the restricted product is taken with the respect to the open
and compact subgroups [7(m)(O,)] C [Z(m)(F,)] for v € M. Let
[T (m)(1)] + [T(m)(F)] — [Z(m)(Ar)] be the diagonal map. If
(z0)v € [7(m)(AF)], by Lemma[9.1.4.2] the product

H(z) = H H,(x)

vEMp

is finite. By Proposition [5.4.3.2] the function H : [.7(m)(Ar)] — Ryg is
continuous. By the equality (9.1.4.1)), for = € [.7(m)(F)], one has that

(9.2.3.1) H(z) = H([Z (m)())](z)).
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For v € Mp, let K, be the maximal subgroup of the finite group
(7 (m)(F,)] such that H, is K,-invariant. By Lemma [0.1.4.2] for every
v € MY — S, one has that K, D [7(m)(O,)].

Lemma 9.2.3.2. — Let x € [T (m)(Ar)]. We denote by S, the finite
set of places of F' given by the union of the set Mg°, of the set of places v
for which v(x) # 0 and of the set of the places v for which H, is not
[T (m)(O,)]-invariant. Let us set

maXze[7(F,)) H,(2)
C(x) = |
(I) vgx minzG[?(Fv)] HU(Z)

For every y € [7(m)(Ar)|, one has that
C(x) ' H(y) < H(wy) < C(x)H(y).

Proof. — For v € Mp — S,,, one has that H,(z) = 1. For v € S,, let us
set

maxX.c(7(r,) Ho(2)
Cy(z) =
() min.ci7(r,) Ho(2)

so that C(z) = [],cg, Cuo(). For every y € [ (m)(Ap)], one has that

= C(z)H(y).

Analogously, one verifies that C(z) " H(zy) < H(y).
For z € R, recall that -, is the “tube”:

Lemma 9.2.3.3. — Let x € ([Z()|([Z (m)(F)]))*.

1. Suppg:se X does not vanish on K. Then for every s € C, one has
that H(s,x) = 0.



296 CHAPTER 9. NUMBER OF ,,-TORSORS OF BOUNDED DISCRIMINANT

2. Suppose x vanishes on K. For s € Q_ _awm _, the product

a(m)+1

H,(s, x0)
I IT,-1 Lo(s, xmi/")

vEMO

converges uniformly on compacts in the domain Q__awm . The func-
a(m)+1

tion

H,(s, xv)

r—1 ~on i )
ity Tt Ll X7)

am)  — C which satisfies that for

7(_7X) e

is a holomorphic function €_

a(m)+1
every compact K C R__aeny  there exists C = C(K) > 0 such that
a(m)+1
(s, ) < €,
for s € K +iR.
3. One has that v(1,1) > 0.
Proof. — 1. Let v € M2 such that x,|x, # 1. By Lemma[9.2.1.2] one

has that ﬁv(s, Xv) = 0 for every s € C. It follows that H(s,x) = 0.
2. For v € MY, let us denote by

Hy (s, Xv)
IT;=1 Lo(s, Xm/7)
For every v € MY, the function ~,(— ,Xv) 18 an entire function,
because by Lemma 2| the function H, (s, xv) is an entire func-
tion and because forj = 1, ...,7—1, the function (L, (s, x™/"))~! =

(1 — |m|3X™/"(|7y])) is an entire function. Moreover, by Lemma
9.2.2.1] for v € M2 — S, there exists a positive integer A such that

G (R()(L+ 5)) )
GERG) A+ 55)) )

For every y > a(m)/(a(m) + 1), the product

Gy + 5m)) \*
H ((v(Qy(l—l—a(m)))>

’UEMO

Yo(8, Xo) =

(9.2.3.4) (s )] < (
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converges uniformly in the domain R_ am) to
(@(m)+1)

< Cy(1+ 55m)) I G2y + 55)) )A

C(2y<1 + ﬁ)) - ves Cv( (1+ a(m)))

It follows that the product

I w6x)

’UEM%—S

converges absolutely and uniformly in the domain s €

a(m) .

a(m)+1

We deduce that the product (s, x) = HvEM% (8, Xv) converges
absolutely and uniformly in the domain s € Q_ am . Moreover,

>

a(m)+1
Y(=5X) : 2 _aen — Cis a holomorphic function and it satisfies
a(m)+1
that
(s, %)

. (C(%(s)(uﬁ?)) XHCU(za%( s)(1+ a(m ) T s

6(2%(8)(1 + W)) vES Cv( ( )(1 + a(m ves

We deduce that for a compact K C Rx1/(a(m)+1) one has that

(5,50 < sup (( ¢yl + 759)) I Co(2y(1+ 2 a(m ) e X)

yek C(Qy(l + a(in))) ves Cv(y(l - a( ) ves

The statement is proven.
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3. For v € M2 — S, one has that

Y(1,1) = H.(1,1)

'r 1

Gu(1
( (m2—m ged(;, m))/aW) (1= |my]o)"

2

m 7'm2/r+l
T_ 1 |7Tv|v+0(|7rv|v o )>X
x (1 ~ (=Dl + Om )
'm277n2/'r+1
N (1 — (r = 1?m ) + O(Imyv ™™ ))’

where by O(|m,|¥) is meant a quantity that for all v is bounded by
a constant (independent of v) times |r,|*. For every v € M2, one

has that ]?L,(l, 1) = f[ﬂ(m)(Fv)] H 'y, > 0, because H,! is strictly
positive and p, is a Haar measure on a finite group, hence

,(1,1)
Gu(1)1

= H %)(171) >0

veM%

Y(1,1) = > 0.

It follows that

9.2.4. — In this paragraph we estimate the global Fourier transform.

In the equality , we have provided an identification AL x Ryy =
A%, If x is a character of [ (m)(Ar)] = AX/(AF)n, then X is of order
dividing m, thus x|Rso = 0. Recall that by Lemma , one has that
7 (m)(Ar)] = [T (m) (AL

Let KU, = HveM%[ﬂ(m)(Ov)]. The group K2, , as well as its any
open subgroup K, is compact. By Corollary[6.2.2.5| for an open subgroup
KCK),, = HveM%[ﬁ(a)(Ov)], one has that

Ug = (K[T (m)(D)]([7 (m)(F)])) -
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is finite. We are ready to estimate the global Fourier transform. Let p,.
be the restricted product measure

Hap = ® Moy

vEMFE

on [7(a)(Ar)] (as in Definition [5.4.3.3). For s € C and a character
X € [Z(m)(Ar)]*, we define formally

~

H(s,x) = / H™xpap.
[T (m)(Ap)]

~

H,(s, x,) converges, then

Lemma [5.4.3.2| gives that if the product ||

veEMp

H(s,x) = [] Ho(s,x0)-

vEMp

Lemma 9.2.4.1. — For x € g let us define d(x) = 0 if x™/" # 1
and d(x) = r — 1, otherwise. For every x € Uk, the function H(s,x) is
holomorphic in the domain s € Q1. Moreover, there exists > 0 such

that
s—1 d(x) .
( ) A(s, )

S

extends to a holomorphic function in the domain Q2~1_s and such that for
every compact I C Rsq_5 there exists C' = C(K) > 0, such that

S

}( - 1)d(X)ﬁ<s,x>\ < CUO( +13(9))

for every x € Ug.

Proof. — Set v,(s, xv) = % for v € M2. By Lemma|9.2.3.3)

for every x € g, the product [], . MY, Yo($, Xv) converges absolutely and

uniformly on the compacts in the domain €2_ am) to a holomorphic

>

a(m)+1
function v(—, x) : Q_ _aom_ — C and, moreover as 2y is finite, for every
a(m)+1
compact K C R__awm , there exists Cp > 0 such that [y(s, x)| < G for
a(m)+1

every x € Uy and every s € K +iR.
Let us define K := (¢™|go_)"'(K). It is an open subgroup of finite

index of the compact group K . hence K is of the finite index in K?

max’ max"*

Note that if x|x = 1, then x|z = 1. Now, by Proposition [6.3.1.2] we get
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that there exist
one has that

(0 ) (Ieee)

PCOES] ) ;>0 >0and C > 0, such that for every x € g

j=1 j=1
S‘C“'mj/rzl
T (s —1)L(s,X™/7) i
— ) L ~m T
(T (I veen)
%mj/rzl mJ/T#l

extends to a holomorphic function in the domain 2-;_s and satisfies the
inequality

(1 5_1)(HL o) £ e+ )

Jj=1
xmi/m=1

in this domain. We deduce that in the domain -;_s one has that

H(s,x) = [] Hos,xo) x [ Hols. xo)

veMY, veEME®
r—1
= ( H P)/v S, X HLU(S va]/r ) X H Hv(57X)
veMY J=1 vEME®

converges to Y(s, x) Hj;l L(s,X™/™) HveM;o H,(s,x). Moreover, using
Lemma [9.2.1.2] if I C R.;_s is a compact, we deduce that there exists
C > 0 such that

(11 )ae

_]—1
Xmi=1
r—1 s—1 r—1 N
=|(IT 5 0Tl 0) < I At
j=1 j=1 vEMP
xmi=1
r—1 s—1 r—1
=w<s,><>|( Seen) (T e I )
j=1 7j=1 veEMp®
i’mj/'rzl i’mg/r#l

CA+3(s)])-
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To complete the proof, it suffices to see that for every x € A, one has
that

(9.2.4.2) {710 <j <r—1and Y/ =1} = d(x).

Suppose that Y™ = 1. For every j € {1,...,r — 1} one has that
X" = () )™ = (qf, ) (x™/") = 1, hence

|{j|0§j§r—1and%mj/T:1}|:r—1:d(X).

Suppose that x™/" # 1. Suppose that for some j € {1,...,r — 1} one
has that

XM= ((gi,) X =1
Let k € {1,...,r — 1} be such that kj = 1 + ¢r for some ¢ € Z~(. Then,
1= %mjk;/r _ %(mfr—&-l)/r _ ;mﬁs(fm/r _ %’m/r
because Y™ = (¢f.)*(x") = 1 (because [T (m)(Ap)] is an m-torsion

group).This is a contradiction. We deduce that
[{10<j <7 —Tand Y™ =1} =0 =d(x).

In either of the two cases, we obtain that the equality (9.2.4.2)) is valid.
We deduce that

S

(5 1)d( )ﬁ(&x)‘ <C+[36))

The statement is proven. O

9.2.5. — In this paragraph we define the height zeta function, establish
its convergence and the meromorphic extension of the function it defines.
For s € C, we define formally

Z(s) = Z H(z)™".

z€l7 (m)(F)]

The following lemma verifies some of the conditions that are needed to be
satisfied in order to apply Poisson formula. We will write i([.7 (m)(F)])
for [7 (m)()]([7 (m) (F)]).
Lemma 9.2.5.1. — The following claims are valid.
1. Let € > 0. For s € Qsqo(m)te, the series defining Z(s) converges
absolutely and uniformly. The function s — Z(s) is holomorphic in
the domain Qs qm)-
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2. Let s € Quo(m). For every x € [T (m)(Ap)], the series

>, Hy)®

yei([7 (m)(F)])

converges absolutely. The function

T Z H(zy)™

yei([7 (m)(F)])

18 continuous.

Proof. — 1. Tt follows from Proposition that there exists C} >
0 such that for every B > 0 one has that

{y € [2(m)(F)]|H(y) < B} < C,B*™

(recall that in Proposition we had a quasi-discriminant de-
gree 1 family, while now it is a degree m quasi-discriminant de-
gree m family). Now, it follows from Lemma , that the series
defining Z(s) converges absolutely and uniformly for s € Qs q(m)e-
Thus Z is holomorphic in the domain €5, (n)+e, and by decreasing
€ we deduce that Z is holomorphic in the domain Q).

2. For x € [ (m)(AF)], we denote by S, the finite set of places
of F' given by the union of the set Mp°, of the set of places v
for which v(xz) # 0 and of the set of the places v for which H,
is not [.7 (m)(O,)]-invariant. Let us set U, := {x,} C [T (m)(F},)]
(where z, is the v-adic component of ). We define

U:c = H UJ:,U X H [9(771/)(01))]

VESy ’UEM?;—Sx

We are going to prove that the series converges absolutely and uni-
formly on U,. For every 2’ € U, and every y € i([.7 (m)(F)]), it
follows from Lemma [9.2.3.2] that there exists C'(x) > 0 such that

|H(a'y) ™| = H(z'y) ™) < C(a) O H (y) "),

The kernel of the homomorphism [7 (m)(F)] — [Z(m)(AFr)] is
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% converges absolutely, it follows that
Y JHE@Y = ) Hay) "W
y€i([7 (m)(F)]) y€i([7 (m)(F)))
Z(R(s))
< Ofg) R 227220
= )

and hence the series > 7. H(2'y)™® converges abso-
lutely and uniformly in the domain 2z’ € U,. It follows that
= iz omyry H(2'y) ™" is continuous on U,. We deduce that
T =D iz myry) H(xy) ™" is continuous on [F (m)(AF)].

[

Let = C [Z(m)(AFp)]* be the group of the characters x which satisfy
that y™/" = 1. Note that =+ is given by

[ (m)(Ap)]msr = {2™" |z € [T (m)(Arp)]}.
For an open subgroup K C K, = [Lears[7 (m)(O,)], we denote by

Ex = A NZ. By Corollary [6.2.2.5 the subgroups 2 are finite, thus
discrete, hence the groups Zx are finite and discrete. To simplify nota-
tion, in the rest of the paragraph we may write [Z (m)(F')] for what is
technically [7 (m)()]([7 (m)(F)]).

Lemma 9.2.5.2. — The following claims are valid:

0 . the group Z% is the ker-
nel of the homomorphism [T (m)(Ap)] — Zi, which is in-
duced from the inclusion Zx C [T (m)(Ap)]*. Moreover, it is
open, closed and of index |Ex| in [T (m)(Ar)]. One has that
=k — [ (m)(F)K[7 (m) (Ar)wr.

2. The group =L := (=%, where the intersection is over all open
subgroups K of KO, identifies with the closure

1. For every open subgroup K C K°

[T (m)(ENT (m)(Ap)|m/r C [T (m)(Ar)].
3. Let K C K

max De an open subgroup and let f be a K-invariant
continuous complex valued function lying in L'([T (m)(Ar)], ta,)-

One has that
1 —~
DRI

|:K| XGEK

4. There exists a unique Haar measure u= on ZL such that for every

open subgroup K C K? any K-invariant continuous function

max’
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I [Z(m)(Ar)] = C one has that f € LY(Z%,|=x|pa,) if and only
if € LNEL, 1ik) and if [ € LMEk, [Bxclpay ), then

/ mm—pm/.mM

Proof. — 1. The claim that Z% is the kernel of the homomorphism
[T (m)(Ar)] — Zj follows from Proposition [6.1.1.1] The same

proposition gives that the homomorphism [.7(m)(Ar)] — Zj is
surjective. The group = is finite and discrete, of order |Zf|, thus

Zx is an open, closed and of index |Zg|, as claimed. Clearly,

=% = ([T (m)(F)F K- 0 7 (m)(Ap)lh )

= [T (m)(E)K[T (m)(Ap)|m/r-

The subgroup [7(m)(F)|K C [Z(m)(Afr)] is closed (because
it is a product of a discrete subgroup [Z(m)(F)] and a com-
pact subgroup K in [Z(m)(Ar)]), hence, is equal to Ax =
([Z (m)(F)]K))*t = [Z(m)(F)]K, which is of the finite index in
|7 (m)(Ap)]. It follows that the subgroup

[T (m)(F) KT (m)(Ap)]m/r C [T (m)(Ar)]

is closed, as it contains 2% as a finite index subgroup. The claim
follows.

2. First, let us observe that [7(m)(F)|[Z (m)(Ap)]m, C Ex, be-
cause == is a closed subgroup of [7 (m)(Ar)] and because for every

compact and open K C [.7(m)(Ap)] one has that
[T (m) (T (m)(Ap)lmse € [T (m)(F)][T (m)(Ap) /e K = Eig.

Let now
y € [T (m)(Ap)] = ([Z (m)(F))]T (m)(AF)lm/r-

The open subgroups of K _ form a basis of neighbourhoods of

max

1 € [Z(m)(AF)], thus there exists an open subgroup K C K?
such that yK N ([7 (m)(F)])[Z (m)(Ar)]m/» = 0. Hence,

y & (7 (m)(P[T (m)(Ap)me) K = Ex.
It follows that y ¢ =% and the claim is proven.
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3. We apply the Poisson formula for the inclusion Zx C [T (m)(Ap)]*,
where Zk is endowed with the counting measure and [.7 (m)(Ap)]*,
with the dual measure juj _— of the measure py,. Every z €
[T (m)(AF)] will be regarded as a character of [7(m)(Ar)]* by the
evaluation map. By (1), the group =% identifies with the kernel
of the homomorphism [ (m)(Ar)] — Zk, given by = — |z,
and is an open subgroup of index |Zg| in [Z(m)(Afr)]. The

dual measure of the measure countz, on the dual group =j is
given by ‘E - countz; , thus we have an equality of measures on

([7 (m)(Ap)]*/Z )—“'

(1, / countz,)” = [Z] - ez

The Fourier transform of y ~— f(X) at the character z, by the
Fourier inversion formula (7.1.1.1), is equal to f. By the finite-
ness of Zx and the continuity of x f(x) ([5, Chapter II, §1,
n° 2, Proposition 2]), the conditions (2) and (3) of Poisson formula
(Proposition are satisfied, and applying it gives that

S Flx —|~K|/ Fiinr.

XE€EEK

as claimed.

4. For an open subgroup K C K?°_ . let dk be the probability Haar
measure on K. For every K, using the fact that the product subset
of a closed subset and a compact subgroup is closed ([7, Chapter
111, §4, n°1, Corollary 1 of Proposition 1]) and that =3 is closed

(1), we get that
2K =

. Let us denote by gk the canonical morphism
gx :ZE x K - ELK =24 (y, k) — yk.

The group [f (m)(Ap)] is countable at infinity by Lemma [3.4.8.1]
For every open K C K2 it follows from [10, Chapter VII, §2,

max’

n' 9, Corollary of Proposition 13] that there exists a unique Haar
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measure pLX on =L such that for every continuous positive valued
function f on _K one has that f € LY(=%,|=x|pa,) if and only if
fogr € LML x K, utE x dk) and if f € L' (2%, |=x|pa,) then

el [ dune =08 [ (7o,

for some b(K) > 0. We deduce that if f € L*Z%,|Zx|pa,) is
moreover assumed to be K-invariant, then

=x] / sy =) / R

We now prove that the measures b(K)utX are independent
of the choice of K. First, we prove it for open subgroups
of K/ C K (such subgroups are compact and of finite index
in K). Let h : [Z(m)(Ar)] = R be a K-invariant function in
LY[Z (m)(AF)], pta,). Using (3) and the fact that for a character
X € Ej which is not trivial on K, one has that ﬁ(X) = 0 (because

h is K'-invariant), we deduce that

b(K) / — |2k / by = 300 = 3 R0

XE=EK XEE K/

— 2wl | hpag = b(K) / ha
€L

K —oo

As b(K)ptE and b(K')utX" are Haar measures on ZL | it follows
that b(K)utX = b(K")utK'. Now we prove the claim for general
K'. As for any open subgroup K’ C K°__, we have that K N K’ is
open in K and K’, we deduce

bR = b(K AR O = bR )

Thus pL = b(K)uLX is the wanted measure.
0

Denote by j : 25 = [[,ear, [Z2(m)(F,)] the canonical inclusion. Note

that j is the Comp081te of the closed embedding L < [7(m)(AF)]
and the canonical inclusion [7(m)(Ap)] — [l,cp, |7 (M)(F)] =

[Loens, [Z(m)(F,)]. The later map is continuous by Lemma (3.4.1.1}

hence 7 is continuous.
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For any compactly supported continuous ¢ : [,y [Z2(m)(F,)] —
R, it follows from Lemma [9.2.4.1] that the limit

lim (s — 1) / (60 H *poe = lim (s — 1) [Zx] / (60 H s,
s—1+ =L s—1+ Ef{

)

where K C Kglax is open, exists and is a non-negative number. It follows

that

2 T [2(m)(F.)],Rso) = Rsg ¢+ lim (s—1)" / (607 H 1o
UEMF s—1t Eé_o

is a non-negative linear form, hence by [9, Chapter III, §1, n° 6, Theorem
1] extends to a measure on [ [, [Z2(m)(F,)]

Definition 9.2.5.3. — Let (f, : F) — Ryg), be a quasi-discriminant
degree m family of m-homogenous functions. We define a measure w on

HveMF[gZ(m)(Fv)] by

w = w((fo)o) = lpm(F)] m (s = 1) (H " oo

s—1+

We set

r = (£ =l [[ [2m)E).

vEMFE

Lemma 9.2.5.4. — Assuming the conditions of Definition the
following claims are valid

1. One has that

lim (s — 1)T_lﬁ](s, 1) = lim (s — 1)T_1/ H™pup, > 0.
[7(m)(AF)]

s—1t s—1t

2. One has that = > 0.

Proof. — 1. Recall that I/-L,(s, 1) = m for every v € My® by Lemma
9.2.1.2 Now, by Lemma [9.2.3.3] one has that

r—1

f_\l<87 1) = 7(57 1)mr1+T2 H L<S7 1) = 7(57 1)mr1+r2C(S)r—17

J=1
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where y(—, 1) is a holomorphic function in the domain 2_ _awm and
a(m)+1
v(1,1) > 0. Thus
lim (s — 1) H(s, 1) = (1, )m" " lim (s — 1)""'¢(s)""

s—1t s—1t
= y(1,1)m"™ " Res(¢, 1)
> 0.
2. Let K C K9 be an open subgroup such that H = H((f,),) is K-

invariant. By Lemma [9.2.5.2) one has that

o TT (2 6m)(F)) = e (F) Tim (5 — 1) / H i

veEMp
= | (F)] i (s = 1) [Zx| | H piag
=K
)] such that for
Using Lemma

Let {z1... 21z, } be a set of elements of [T (m)(Ap
any i # j € {1,...,|Z2k|}, one has that v;2;' & Zx.
9.2.3.2 we obtam that for s > 1, one has that

/ H oy =3 [ H o) das ()
[7(m)(AF)] 5 JER
< ZC(:L‘Z-)_S /:L H_SMAF7
1 —K

for certain C'(x;) > 0. It follows that
0 < lim (s — 1)7"1/ H™
sl [7 (m) (Ar)]

= lim ( s—lrlzC:v, / H %y,

s—1t

ZC’ z;)7") lim (s — 1)’"_1/ H ™% up,,
S*)l"’ EJ&

and hence that limg 1+ (s —1)""' [_. H us, > 0. We deduce that
K

r= (P Y (s = 1l [ H o >0,
s—1+ EJIE'

as claimed.
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Theorem 9.2.5.5. — There exists 0 > 0, such that Z extends to a
meromorphic function in the domain s € Q<1_s with the only pole in
this domain at 1 which is of order r — 1 and such that for every compact
K C Rs1_s one has that there exists C(K) > 0 such that

()

if provided R(s) € Ru1_5. The principal value at the pole s = 1 is equal
to

< C(R)A+[S(s))

T

m
Proof. — By the equality (9.2.3.1)), one has that H(z) = H([.7 (m)(i)](x))
and by Proposition [3.4.3.1| the group ker([Z (m)(i)]) = II(F, pt,) is
finite. It follows that formally one has that

(9.2.5.6) Z(s) = |II'(F, i) > H(x)™®.
z€[7 (m)(D)]([7 (m)(F)))
By Lemma for every € > 0, the series defining Z(s) converges ab-
solutely and uniformly to a holomorphic function in the domain 2 4(m)+c
and it follows from[9.2.4.1]that for s € Q- the sum on the right hand side
converges and is a holomorphic function in s in this domain. Thus, the
equality is valid in €2+ as an equality of holomorphic functions.
We apply Poisson formula (Proposition to the inclusion

(7 (m)@D]([F (m)(F)]) C [ (m)(Ar)]

(we have already verified the conditions (2) and (3) of Proposition|7.1.1.4
in Lemma [9.2.5.1]). We have formally

>, H@T
vl m) O (m)(F)

H (s, x)(ftap/ otz m) (7 m)E))"

/([7(”1)(i)]([9(”1)(1[’)]))L
We use Lemma [8.2.2.7] to understand the measure

(pap [ cOUNt L7 ) @)(17 G (D))
A volume of a subset of (R<¢),, = Rs¢ when (Rq),, is endowed with the

pushforward measure of the measure d*r for the map R.g — Ry, 2 —
max is 1/m times it was for the measure d*r. Thus the Haar measure d*r,,

from Lemma [8.2.2.1] is normalized by (d*r,)(Rso/(Rx0)m) = m. Hence,
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the dual measure of d*ry, satisfies that (d*rm,)*((Rso/(Rs0)m)*) = —.
Now, Lemma [8.2.2.1] gives that

(kap/ countz @)z m)E)”
= ‘Mm(F” count(js A 7 (1.7 .
L (F, )] (17 (m) (A1 /L7 (m)DI(T (m) (F))* -

Whenever y € 20x, we have by Lemma [9.2.3.3| that ]/-j(s,x) = 0. We

deduce that formally one has

(9.2.5.7)

T (F, )] - |ftom (F _
Z(s) = | Tfl|£1FL‘; |Z wZH(

XEAx XEAK

For every xy € 2k, by Lemma [9.2.4.1| one has that s f[(s,x) is a
holomorphic function in the domain Q1. As the group 2 is finite,

we deduce that s — > o H(s,x) is a holomorphlc function in the
domain €2.;. It follows that the equality (9.2.5.7)) is valid as an equality
of holomorphic functions in the domain Q>1 Moreover the equality
(19.2.5.7)) is valid as an equality of the maximal meromorphic extensions
of the functions from the both hand sides. Moreover, Lemma [9.2.4.1
gives that there exists o > 0 such that

(8_ 1>d(X)ﬁ(87x)

S

extends to a holomorphic function in the domain €2-;_s and that for
every compact K C R.;_s there exists C'(K) > 0, such that

(= 1)dmﬁ<s,x>] < R+ 13(9))

S

for every x € A (here d(x) = r — 1 if x™/" = 1 otherwise d(x) = 0). By
the finiteness of Ax and the fact that d(y) < r — 1, we deduce that

)3 (Sgl)r_lms,x) - (‘1) S Ay

xEAx XE™A K

extends to a holomorphic function in the domain €)-;_s and such that
for every compact K C R.1_4 there exists C(K) > 0, such that

() Z e

XEAK

< C(R)(A +[3(s)))-
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We deduce that Z extends to a meromorphic function in the domain
s € 2-1_5 with the only possible pole at s = 1 in this domain which is
of order at most » — 1. Moreover, for every compact IC C R-;_s one has

that
() 2o

if provided R(s) € K.

The last part of the proof we dedicate to the proving that Z indeed has
a pole at 1, that this pole is of order exactly » — 1 and to the calculation
of the principal value. We calculate the limit

< C(R)(1+[S(s))

r—1

s—1\""! ~ s—1
li H = li H .
i () X A=Y am () A

XEAK XEA K

Recall that by =x we have denoted the subgroup of xy € 2Ax such that
™ =1 If x € Ax — =k, then by Lemma [9.2.4.1, one has that
s+ H (s, x) is holomorphic in the domain Q-;_s, and thus

' s—1 r—lA
lim H(s,x) =0.

s—1t S

We deduce that

s—1\"" ~ s—1\""~
li H = li H
i () X A=Y () A

xEAK XEEK

Using Lemma [9.2.5.2] we have that

(9.25.8) S Ao = Bl [ H o = [
EL EL

XEEK

whenever the quantities on both hand sides converge. By the fact that
H~* is absolutely integrable over [.7 (m)(Ap)] for s € Q- and by Lemma
, we deduce that the equality (9.2.5.8]) is valid in the domain Q- ;.
Moreover, the equality ((9.2.5.8]) is valid, as an equality of the meromor-
phic functions on the domain €+;_5. We deduce that

. s—1 ! —s, 1
lim Hp .
s—1t S =L
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(e rr, [2(m)(F))

We recognize this quantity from Definition [9.2.5.3| as

[l (F)) ’
and hence
(551 2= -7
AGIE ST
XE™AK
_ |t (F)| 'W(HUGMF[Q(m)(Fv)])
| (£7) [0
_ wlLear [ 2(m)(F)
The statement is proven. O]

In Theorem [9.2.5.5, we have verified the conditions of the Tauberian
result [I7, Theorem Al]. We deduce that:
Corollary 9.2.5.9. — Let (f, : F* — Ryg), be a quasi-discriminant
degree m family of m-homogenous functions and let H be the resulting

height on [Z2(m)(F)]. One has that

{x € [2(m)(P)]|H (@) < BY| ~ —-—Blog(B)

(r—2)!
when B — oo.
If for every v one has that f, = f2, where f2 is the discriminant m-

homogenous functions of weighted degree m, then by [9.1.3.5] we get for
y € [Z(m)(F)] that

mfa(m)
HA () = N(A(F[X]/(Xm - @“))/F)) ,

where 7 is a lift of 3. Let us write |A|(y) for H2(y)*™)/™ It is precisely
the norm of the discriminant of a torsor corresponding to y. We deduce
that:

Corollary 9.2.5.10. — One has that
{z € [Z(m)(F)]] |Al(z) < B}|

TT_QTA

B0 mr=tr—1)2.(r —2)!

Bt log(B)™ 2,
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where 72 = 7((f2),).

9.2.6. — In this paragraph we explain the equidistribution of rational
points in [ ¢y, [P (m)(F,)]. We will write i for the map [ (m)(i)].
Theorem 9.2.6.1. — The set i([Z(m)(F)]) is equidistributed in
[Loens, [Z(m)(F,)] with respect to H.

Proof. — The proof follows the proof of Theorem with some mod-
ifications and simplifications. Corollary [9.2.5.9, together with the fact
that ker(:) = III'(F, u,,) from Proposition [3.4.3.1], gives that

{z € i([Z(m)(F)])|H (z) < B}
W([ Toerr, [2(m)(E)])
|

e G 2 ] R

We say that an open subset W is elementary if W writes as W =
[Toerr, Wo, where W, C [Z7(m)(F)] is open, and for almost all v, one
has that W, = [Z(m)(F,)]. As for every v, the spaces [Z?(m)(F,)] are
finite and discrete by Lemma [3.3.5.7, we deduce that W is open and
closed, hence OW = (). We prove that for every elementary W, one has
that

| € W|H(x) < B}| ~ w(W)
jz € i([Z(m)(F)|H(z) < BY 77 w([Tyen, [Z2(m)(F)])

For v € My, we define g, = 1y, = h,. Let ¢ > 0 and set n = ¢/4. For
v € Mp, we set g,, = (1 —n)lw, +n and h,, = g,,. The proof that
H((fy (g, oq™)),) = 9y LH is identical to the proof of the corresponding
claim in Part (2) proof of Theorem [8.3.2.2] Let us establish that

w((fo - (gro 0 d))e) = g, 'w.

For a compactly supported continuous function ¢ : [, ¢, [Z2(m)(F,)] —
C we say that it is decomposable, if it can be written as ®yenr, ¢, where
for almost all v one has that ¢, = 1. Let ¢ : [Z(m)(F,)] — R be
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decomposable. One has that

w((fv ’ <g;11) ° qu))v>(¢)
= lim (s —1)"!

s—1t

(O)H(((fo (gm0 @)))o)) " Hog

1
oo

— Tim (s— 1) /E<¢gs>H

s—1+

o

>l (5= 1) [ (60, )k

s—1t
= w(dg, ),

where the only inequality follows from the fact that g,* > g, ! (which is
true because g, takes values in the interval ]0, 1[). On the other side, for

every d > 1, by taking in the limit only those s contained in the domain
11,6, we deduce that

oo

W((fo - (ggu 0@y ))(@) < lim (s = 1) | 69, H gy

s—1+ L
= w(gg,”).

From the fact that w is a measure, it follows that lims_,;+ w(pg™) =
w(¢pg™!), and hence that

(9.2.6.2) W((fo (ggw 0 @))e) (@) = w(dg,")

for any non-negative decomposable function ¢. Clearly, any real valued
decomposable function is a difference of two non-negative decomposable
functions, and the equality (9.2.6.2) m is hence valid for all real valued de-
composable functions. Any decomposable ¢ writes as ¢1 + i¢s, for some
decomposable real valued functions ¢; and ¢9. The equality E9 2.6. 2' is
thus valid for any decomposable ¢. Moreover, the equality (9.2.6.2)) is
valid for finite sums of decomposable functions. The finite sums of de-
composable continuous compactly supported functions are dense in the
set C. ([1oers, [Z(m)(F,)],C) by [9, Chapter III, §4, n°5, Lemma 3],
hence w((fy - (9,4 © @*))v) = g, 'w. To prove the claim for the elemen-
tary open subset W, we use the same steps as in the part (2) of Theo-

rem [8.3.2.2] with the only change in the function of B (that is replace
w(Tyenr, [Z(@)(F0)]) 1 WTverr, [Z(@)(F0)]) r—2
M Fotgeara) Pl 5 With g (ray 5 108(B) ™).

(1]
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We have hence established the claim for every elementary subset of
[Z(m)(F)]. The rest of the proof is identical to the proofs of parts (3)
and (4) in the proof of Theorem [8.3.2.2] O

9.2.7. — In the last paragraph, we prove that p,,-torsors which are
fields are of positive proportion among all p,, torsors of bounded quasi-
discriminant height.
Proposition 9.2.7.1. — There exists A(m, (f,)») > 0 such that for
B >0, one has that

Hx € [2(m)(F)]| x is a field, H(z) < B} > A(m, (f,).)Blog(B) 2.

Proof. — Let w be a finite place of ' which does not extend the place 2
of Q. Let us denote by w,, the canonical map

(7 (m)(F,)] = Z/mZ,

given in Lemma|3.3.5.5, Recall that if y € F¥ is alift of y € [T (m)(Fy)],
then the image of w(y) under the quotient map Z — Z/mZ is w.,(y).
We let

W={ye[Pm)(F)]:wnly) =1} x ] [2m)(E)).

veEMp—{w}

The set {y € [Z(m)(F,)]|wm(y) = 1} is open and closed in the finite dis-
crete set [Z2(m)(F,)], thus W is open and closed in [],¢5,,. [Z2(m)(F)].
Hence, OW = (). We prove two claims that will imply the statement of
the proposition.

1. Let us prove that if z € [Z?(m)(F)] satisfies that i(z) € W, then «
is a field. One has that z is fi