
HAL Id: tel-03683308
https://theses.hal.science/tel-03683308v1
Submitted on 7 Jan 2022 (v1), last revised 31 May 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connected Multi-Agent Path Finding: How Robots Get
Away with Texting and Driving

Arthur Queffelec

To cite this version:
Arthur Queffelec. Connected Multi-Agent Path Finding: How Robots Get Away with Texting
and Driving. Artificial Intelligence [cs.AI]. IRISA, équipe LogicA, 2021. English. �NNT : �. �tel-
03683308v1�

https://theses.hal.science/tel-03683308v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Arthur QUEFFELEC
Connected Multi-Agent Path Finding
How Robots Get Away with Texting and Driving
Thèse présentée et soutenue à Rennes, le 11 Octobre 2021
Unité de recherche : IRISA - UMR6074
Thèse No :

Rapporteurs avant soutenance :

Sven Koenig Professeur, University of Southern California
Bruno Zanuttini Professeur, Université de Caen

Composition du Jury :
Attention, en cas d’absence d’un des membres du Jury le jour de la soutenance, la composition du jury doit être revue
pour s’assurer qu’elle est conforme et devra être répercutée sur la couverture de thèse

Président : Nicolas Markey Directeur de recherche, IRISA, Inria, CNRS, Univ. Rennes
Examinateurs : Sven Koenig Professeur, University of Southern California

Anastasia Paparrizou Chargée de recherche, Université d’Artois, CRIL-CNRS
Bruno Zanuttini Professeur, GREYC, Normandie Université, UNICAEN, CNRS, ENSICAEN

Dir. de thèse : François Schwarzentruber Maitre de conférences, IRISA, CNRS, Univ. Rennes
Encadrant : Ocan Sankur Chargé de recherche, IRISA, Inria, CNRS, Univ. Rennes

RESUMÉ

La planification de chemin consiste à concevoir une séquence d’étapes à suivre pour une
entité mobile. Cette tâche est au cœur de nombreux problèmes du monde réel. La planifica-
tion est utilisée dans les problèmes d’optimisation pour les trains, dans l’aviation et même pour
analyser/concevoir les intersections routières. En outre, l’utilisation récente de véhicules auto-
nomes a accru le besoin de planification, notamment pour les robots d’entrepôt, les véhicules
de remorquage d’avions, les robots de bureau, les véhicules portuaires autonomes, ou même
pour les entités virtuelles de jeux vidéo. De plus, la planification peut garantir de nombreuses
propriétés comme l’optimalité, l’absence de collisions, la connectivité périodique/continue ou
la préservation d’une formation. L’étude de la planification autonome peut permettre de réduire
la congestion, la pollution, les accidents, les coûts et plus encore.

Dans certaines applications, il est important de considérer la connectivité des agents. Bien
que certaines configurations garantissent une connectivité permanente entre les entités (ex : en-
trepôts), ce n’est pas toujours le cas dans les applications avec des environnements ouverts. Pre-
nons l’exemple des missions de collecte d’informations, au cours desquelles les agents doivent
visiter un ensemble de lieux et recueillir des informations à l’aide de capteurs (e.g. des camé-
ras, des capteurs de fumée, des hygromètres, etc.) Une exigence commune de ces missions est
d’obtenir un flux vidéo en direct, ce qui ne peut être assuré que par une connectivité perma-
nente. Cette exigence peut être critique dans des contextes spécifiques tels que les missions de
recherche et de sauvetage, où la communication entre les agents dépend de la topologie de la
zone (e.g. les bâtiments, les arbres) et où elle est nécessaire pour assurer une visite appropriée
de la zone, ou pour transférer les informations recueillies à une station de base.

Un autre aspect que l’on retrouve dans de nombreuses applications est le manque de la
connaissance complète de la zone dans laquelle les entités se déplacent. Par exemple, dans
les missions d’exploration, les agents ne reçoivent aucune information sur l’environnement et
doivent le découvrir par eux-mêmes. Dans ce contexte, les agents peuvent être amenés à assurer
une connectivité à tout moment pour échanger leurs résultats et, en cas de déconnexion, ils
devront se rechercher pour se reconnecter.

Les travaux récents sur la planification des entités se sont concentrés sur la planification
d’exécutions sans collision. Ce problème, appelé Multi-Agent Path Finding (MAPF), consiste à
trouver une séquence d’étapes pour qu’un groupe d’agents atteigne des cibles spécifiées tout en
évitant les collisions. Cette thèse étudie deux aspects de la planification de chemins multi-agents
afin de modéliser et de résoudre des applications plus réalistes : (1) la connectivité généralisée
des agents ; (2) la connaissance incomplète de l’environnement.

De nombreux travaux sur la planification des chemins et la planification de couvertures
supposent un modèle de graphe discret donné obtenu par décomposition cellulaire ou graphe de
visibilité, ou utilisent une méthode d’échantillonnage pour construire un graphe sur lequel des
algorithmes combinatoires sont appliqués. Les algorithmes basés sur les graphes, tels que ceux
que nous étudions, et les travaux antérieurs tels que A* pour MAPF sont donc pertinents dans

3

ce contexte.
Il est important de comprendre la complexité computationnelle de ces problèmes de graphes

pour connaître les limites des solutions algorithmiques ainsi que les heuristiques qui peuvent
être appliquées au problème en question. La contribution de ce travail est double. Tout d’abord,
nous présentons un cadre pour étudier et modéliser les problèmes de planification de chemins
multi-agents basés sur la connectivité. Nous fournissons un travail initial détaillé sur la com-
plexité de ce cadre et un algorithme optimal pour le résoudre. Deuxièmement, nous étendons
notre cadre de connectivité au cadre de connaissance incomplète et montrons la complexité du
calcul connecté et décentralisé des plans dans des environnements partiellement connus.

Tout d’abord, nous abordons le problème de la connectivité, appelé Connected Multi-Agent
Path Finding (MAPF). Bien que des travaux initiaux aient été effectués pour formaliser un cadre
de communication basé sur l’environnement, nous avons étudié ce problème en détail sous deux
objectifs différents, l’accessibilité et la couverture. Le premier problème consiste à rechercher
une séquence d’étapes pour qu’un groupe d’agents navigue dans un environnement pour at-
teindre un emplacement spécifique. Le second problème consiste à trouver une exécution pour
une flotte afin de couvrir tous les emplacements d’une zone. Un aspect important de ces pro-
blèmes est de savoir si on nous donne une limite sur le nombre d’étapes dans lesquelles les
agents doivent atteindre leurs objectifs. Il est intéressant de noter que ces problèmes se com-
portent différemment selon la classe d’instance. En particulier, nous montrons la difficulté de
ces problèmes en général et les restrictions possibles qui les rendent traitables. En outre, nous
présentons la complexité de certaines variantes simples qui peuvent être déduites des preuves.
Nos résultats montrent que les problèmes de recherche de chemin ou de couverture sont in-
traitables que l’exécution soit bornée ou non, NP-complet et PSPACE-complet respectivement.
Cependant, décider de l’existence d’un plan peut devenir plus facile sous certaines hypothèses,
surtout si l’on se restreint aux graphes sight-moveable. En effet, avec cette classe, qui restreint
la communication aux emplacements assurant un chemin connecté, les problèmes sont LOG-
SPACE ou NLOGSPACE. Cependant, nous avons montré que l’optimisation d’une exécution
est un problème difficile à moins de se restreindre à des classes irréalistes.

Ensuite, nous illustrons et analysons un algorithme optimal pour résoudre CMAPF. Cer-
tains algorithmes ont été proposés précédemment : un algorithme en ligne et deux algorithmes
d’approximation. Contrairement aux approches précédentes, la structure de notre algorithme
est basée sur CBS, et nous prouvons son optimalité et sa correction. L’approche est découplée,
un algorithme de bas niveau recherche un chemin pour chaque agent, tandis qu’un algorithme
de haut niveau contraint les agents pour assurer la connectivité. Nous discutons de certaines
optimisations, et nous fournissons une étude expérimentale de son passage à l’échelle.

Nous présentons un cadre pour la connaissance incomplète prenant en compte la connec-
tivité. Nous utilisons le cadre de communication de la première contribution, et limitons notre
étude au problème de l’accessibilité. La connaissance incomplète de l’environnement fait ré-
férence au fait que certains mouvements ou communications ne sont pas assurés. Ainsi, même
si l’environnement est statique, les agents vont observer de nouvelles informations lors de leur
exploration. Dans ce cas, il est important de distinguer deux problèmes. Premièrement, le cas
connecté qui impose aux agents de rester connectés à toutes les étapes. Dans ce cas, les agents
doivent s’assurer qu’une communication incertaine ne perturbera pas l’exécution. Cependant,

4

les agents partagent la même connaissance à tout moment puisqu’ils s’informent mutuellement
de leurs résultats. Le deuxième problème, le cas décentralisé, laisse les agents se déconnec-
ter pendant la mission. Comme les agents ne peuvent pas partager leurs connaissances à tout
moment, ils doivent raisonner sur les observations possibles des autres et leurs choix.

Cette différence est un indice de l’explication du "saut" conséquent en complexité entre le
cas connecté et le cas décentralisé. Nos résultats montrent que la distinction intuitive entre le
cas décentralisé et le cas connecté a un impact majeur sur la complexité du problème. En effet,
le cas connecté est PSPACE-complet et le cas décentralisé est NEXPTIME-complet. Dans le
cadre général des graphes dirigés, l’ajout d’une borne sur l’exécution n’a aucun impact sur la
complexité. Cependant, sur les graphes non orientés, il est trivial de trouver une exécution non
bornée, car les agents peuvent explorer toutes les configurations jusqu’à ce qu’ils atteignent le
but ou découvrent qu’il est impossible de le faire.

5

TABLE OF CONTENTS

List of Figures 10

1 Introduction 11
1.1 Contribution . 13

1.1.1 Connectivity . 13
1.1.2 Incomplete Knowledge . 14

1.2 Outline . 15

2 Preliminaries 17
2.1 Complexity Theory . 17

2.1.1 Problem . 17
2.1.2 Complexity Classes . 19
2.1.3 Completeness . 22
2.1.4 Asymptotic notation . 23

2.2 Multi-Agent Path Finding . 23
2.2.1 Problem Statement . 24

3 State of The Art 25
3.1 Multi-Agent Path Finding . 25

3.1.1 Complexity . 26
3.1.2 Variants . 26

3.2 Coverage Planning . 27
3.3 Connectivity . 28

3.3.1 Connected MAPF . 28
3.4 Partially-Known Environment . 28

3.4.1 SLAM . 28
3.4.2 Canadian Traveler Problem . 29

I Connectivity 30

4 Connected Multi-Agent Path Planning 31
4.1 Introduction . 31
4.2 Preliminaries . 33

4.2.1 Topological Graphs . 33
4.2.2 Execution . 35
4.2.3 Decision Problems . 35
4.2.4 Known Results . 37

7

TABLE OF CONTENTS

4.2.5 Overview of Results . 37
4.3 Directed Topological Graphs . 38
4.4 Undirected Topological Graphs . 38
4.5 Sight-Moveable Topological Graphs . 44

4.5.1 Upper Bounds . 44
4.5.2 Lower Bounds . 46
4.5.3 Relaxation . 50

4.6 Complete-Communication Topological Graphs 54
4.7 Variants . 55

4.7.1 Bounded Reachability and Coverage with Binary Bounds 55
4.7.2 Weighted Movement Graph . 55
4.7.3 Bounded Disconnection . 56
4.7.4 Collisions . 56
4.7.5 Planar Movement Graphs . 57

4.8 Conclusion . 59

5 Connected-Conflict-Based Search 61
5.1 Introduction . 61
5.2 Connected-Conflict-Based Search . 61

5.2.1 The High-Level: The Constraint Tree 62
5.2.2 The Low-Level: Constrained Shortest Paths 66

5.3 Theoretical Analysis . 66
5.4 Experimental Results . 68
5.5 Conclusion . 69

II Incomplete Knowledge 72

6 CMAPF in Partially-Known Environments 73
6.1 Introduction . 73
6.2 Our framework . 74

6.2.1 Modeling Incomplete Knowledge . 74
6.2.2 Complements . 76
6.2.3 Decision Problems . 78

6.3 Quantified Boolean Formula . 80
6.3.1 Quantified Boolean Formula . 80
6.3.2 Dependency Quantified Boolean Formula 80

6.4 Connected Reachability . 80
6.4.1 Unbounded Case . 80
6.4.2 Bounded Case . 82

6.5 Decentralized Reachability . 86
6.5.1 Unbounded Case . 86
6.5.2 Bounded Case . 89

8

TABLE OF CONTENTS

6.6 Discussion . 92
6.6.1 Additional Results . 92
6.6.2 Related Work . 93
6.6.3 Perspectives . 93

7 Conclusion 95
7.1 Contributions . 95

7.1.1 Connectivity . 95
7.1.2 Incomplete Knowledge . 96

7.2 Publications . 96
7.3 Future Work . 97

Bibliography 99

9

LIST OF FIGURES

1.1 Example of an execution for two agents in a 2D environment. The start locations are A2
and B5. The goal locations are E2 and D1. 12

1.2 Example of a connected configuration for three agents on a 2D environment. 12
1.3 Example of a state in the exploration of a partially-known environment with 2 agents. . . 13

2.1 Schematic representation of a two-tape DTM. 19
2.2 Overview of the complexity classes. 22

4.1 Examples of topological graphs. 34
4.2 Example of a covering execution of length 10 with 3 agents. The plan is depicted from

left to right and from top to bottom. 36
4.3 Reduction of CMAPF-initUND into CMAPFUND. The node tn+2 communicates with all

nodes v such that v communicates with B. 39
4.4 Reduction of CMAPFUND to CMACP-initUND. 41
4.5 Reductions of Section 4.4. 43
4.6 Example of an ordering of nodes in V ′ = {c1, . . . , cn, B}. 44
4.7 Gadgets for reduction of 3-SAT into bCMAPFSM. 47
4.8 Reduction of 3-SAT into bCMAPFSM. Communication edges implied by movement

edges are not displayed. The variable x1 is present in the clause c1 and cn. 47
4.9 Maps. 53
4.10 Characteristics of the discretized graphs and their relaxations. 53
4.11 Reductions of Sections 4.5 and 4.6. 54
4.12 Summary of all the planar constructions. 58

5.1 An example of a topological graph. 62
5.2 MDDs for agent 1 in Example 5.1. 65
5.3 An example of a topological graph with the negative instance s = 〈s1, s2〉 with goal

g = 〈g1, g2〉. 67
5.4 Benchmarks. The two maps used to obtain topological graphs. Obstacles are in black.

For each map, we generate a topological graph with a distance-based communication
(range we used are depicted below the maps). 69

5.5 Success rate of CCBS, DFS, and SB to solve CMAPF on Offices and Open maps. 70
5.6 Average execution size of DFS and CCBS to solve CMAPF on Offices and Open maps. . 70

6.1 Examples of partially known topological graphs. 76
6.2 Gadgets for the reduction from TQBF into the bounded reachability problem in the com-

plete connectivity case. 84
6.3 Gadgets in the reduction from DQBF to unbounded decentralized reachability. 88
6.4 Gadgets for the reduction from DQBF to the bounded decentralized reachability problem. 90

10

CHAPTER 1

INTRODUCTION

Path planning is the task of designing a sequence of steps for a mobile entity to follow. This
task is required at the center of numerous real-world problems. Planning is used in optimization
problems for trains [56], in aviation [119] and even in the analysis/design of road intersec-
tions [39]. In addition, the recent use of autonomous vehicles has increased the need for plan-
ning, namely for warehouse robots [162], aircraft-towing vehicles [110], office robots [157], au-
tonomous port vehicles [154], or even for virtual entities as in video-games [106]. Additionally,
planning of agents can guarantee many properties as optimality and lack of collisions [139],
periodic/continuous connectivity [69] or preservation of a formation [93]. The study of au-
tonomous planning can allow one to reduce congestion, pollution, accidents, costs and more.

In some applications, it is important to consider the connectivity of the agents. Although
some settings guarantee a permanent connectivity among entities (e.g. warehouses [162]), this
is not always true in applications with open environments. As an example, consider information
gathering missions, where agents are required to visit a set of locations and gather informa-
tion using sensors (e.g. cameras, smoke sensors, hygrometers etc.). A common requirement of
these missions is to obtain a live feed of video which can be ensured only through permanent
connectivity [73]. This requirement can be critical in specific setting like search and rescue mis-
sions, where the communication between the agents depends on the topology of the area (e.g.
buildings, trees) and it is required to ensure proper visit of the area, or to transfer information
gathered to a base station [3, 151].

Another aspect that can be found in many applications is the lack of complete knowledge
of the area in which the entities move. For instance, in exploration missions, the agents are not
provided any information of the environment and must discover it by themselves [127, 153]. In
this context, the agents may have to ensure connectivity at all times to exchange their findings
and in case of disconnection they will have to search for each other to reconnect.

Recent works on the planning of entities have been focused on the planning of collision-
free executions. This problem, called Multi-Agent Path Finding (MAPF), is to find a sequence
of steps for a group of agents to reach specified targets while avoiding collisions. This dis-
sertation studies two aspects of multi-agent path planning in order to model and solve more
realistic applications: (1) generalized connectivity of the agents; (2) incomplete knowledge of
the environment.

Many works on path planning and coverage path planning either assume a given discrete
graph model obtained by cell decomposition or visibility graph [87], or use a sampling method
to construct a graph on which combinatorial algorithms are applied [79, 83]. Graph-based al-
gorithms such as those we study, and previous work such as A∗ for MAPF [133, 145] and
Conflict-Based Search (CBS) [137] are thus relevant in this setting. It is important to under-

11

Introduction

A B C D E

1

2

3

4

5

Path of an agent

Goal location of an agent

Figure 1.1 – Example of an execution for two agents in a 2D environment. The start locations are A2 and
B5. The goal locations are E2 and D1.

stand the computational complexity of these graph problems to understand the limits of the
algorithmic solutions and as well as heuristics that can be applied to the problem at hand.

In Figure 1.1, we depicted a 2D environment and an execution of two agents. The envi-
ronment is represented by black and white tiles. The former represents obstacles and the latter
represents free areas. An agent can move to either of the white tiles surrounding his current
position (i.e. North, South, East, West). In this example the two agents are in collision after 4
steps in the cell D3. This execution is, thus, not collision-free and would not be valid for the
MAPF problem. A solution would be to delay one of the agent by 1 step.

A B C D E

1

2

3

4

5

Connectivity of the agents

Position of an agent

Figure 1.2 – Example of a connected configuration for three agents on a 2D environment.

Figure 1.2 depicts a connected configuration of three agents. It is worth noting that agents
are capable of multi-hop communication. In other words, the agent can relay communication to
others. This phenomenon is depicted by agent in D4 connected to agent in E2 through the agent
in D2.

An example of a partially-known environment is depicted in Figure 1.3. We consider that
the agent can see at 2 cells away from them (only 1 cell in diagonal). In order to reach their
goals, the agents must avoid the obstacles that they will encounter during the mission. It is

12

Introduction

A B C D E F G H I J
1
2
3
4
5
6
7
8
9

10

Undiscovered obstacle

Observation

Figure 1.3 – Example of a state in the exploration of a partially-known environment with 2 agents.

worth noting that it may be beneficial for the agents to take a detour to observe the environment
as it could shorten the paths of others. Indeed, it may be the case that an agent by, extending
slightly its path and, observing the presence of an obstacle, can warn in advance another agent,
shortening the overall execution.

1.1 Contribution

The contribution of this work is twofold. First, we present a framework to study and model
connectivity-based multi-agent path planning problems. We provide a detailed initial work on
the complexity of this framework and an optimal algorithm to solve it. Second, we extend our
connectivity framework to the incomplete knowledge setting and show the complexity of the
connected and decentralized computation of plans under partially known environments. Let us
give a more detailed summary of our contributions.

1.1.1 Connectivity

Firstly, we address the problem of connectivity. While some initial work has been done to
formalize an environment-based communication framework [69, 151], we studied this problem
in detail under two different goals, reachability and coverage. The summary of the contributions
is depicted in Table 1.1.

The reachability problem is denoted CMAPF, for Connected Multi-Agent Path Finding,
and the coverage problem is denoted CMACP, for Connected Multi-Agent Coverage Planning.
The first problem consists in searching a sequence of steps for a group of agents to navigate in
an environment to reach a specific location. The CMACP problem asks to find an execution for
a fleet to cover every location of an area.

An important aspect of those problems is whether we are given a bound on the number of
steps in which the agents are to achieve their goals. We will denote the bounded version of

13

Introduction

a problem with the prefix ‘b’. For instance, bCMACP is the problem of finding a connected
bounded covering execution.

It is worth noting that these problems behave differently depending on the class of instance.
In particular, we show how hard these problems are in general and possible restrictions which
render them tractable. In addition, we present the complexity of some simple variants that can
be inferred from the proofs.

Our results show that path finding or coverage problems are intractable whether the exe-
cution is bounded or not, NP-complete and PSPACE-complete respectively. However, decid-
ing the existence of a plan can become easier under some assumptions, especially if restricted
to Sight-Moveable graphs. Indeed, with this class, which restrict the communication to loca-
tions ensuring a connected path, the problems are LOGSPACE or NLOGSPACE. However, we
showed that the optimization of an execution is a hard problem unless restricted to unrealistic
classes.

Then, we illustrate and analyze an optimal algorithm to solve Connected Multi-Agent Path
Finding (CMAPF). Some algorithms have been previously proposed: an online algorithm [68]
and two approximation algorithms [151]. Contrarily to the previous approaches, the structure
of our algorithm is based on CBS, and we prove its optimality and soundness. The approach is
decoupled, a low-level algorithm searches for a path for each agent, while a high-level algorithm
constrains the agents to ensure connectivity. We discuss some optimizations, and we provide an
experimental study of its scalability.

1.1.2 Incomplete Knowledge
We present a setting for incomplete knowledge taking connectivity into account. We use the

communication framework of the first contribution, and restrict our study to the reachability
problem. A problem with a suffix ‘I’denotes the incomplete knowledge variant. For instance,
bCMAPFI denotes the bounded reachability problem with incomplete knowledge. The sum-
mary of the contributions is depicted in Table 1.2.

The incomplete knowledge of the environment refers to the fact that some movement or
communication are not ensured. Thus, even though the environment is static the agents will
observe new information as they explore. In this case, it is important to distinguish two prob-
lems. First, the connected case which enforces the agents to stay connected at all steps. In this
case, the agents have to ensure that an uncertain communication will not disrupt the execution.
However, the agents share the same knowledge at all times as they inform each other of their
findings. The second problem, the decentralized case, lets the agents disconnect during the mis-
sion. As the agents may not share their knowledge at all times, they have to reason about the
possible observations of the others and their choices.

This difference is a hint at the explanation to the consequent “jump” in complexity between
the connected case, CMAPFI, and the decentralized case, DMAPFI. Our results show that
the intuitive distinction between the decentralized case and the connected case has a major
impact on the complexity of the problem. Indeed, the connected case is PSPACE-complete and
the decentralized case is NEXPTIME-complete. In the general setting of directed graphs, the
addition of a bound on the execution has no impact on the complexity. However, on undirected

14

Introduction

graphs it is trivial to find an unbounded execution as the agents can explore all configurations
until they reach the goal or discover that it cannot be done.

1.2 Outline
The rest of this dissertation is structured in 6 Chapters as follows:
In Chapter 2, we present the preliminaries. In particular, the Section 2.1 introduces the

necessary notions of complexity theory and Section 2.2 formalizes MAPF. The Chapter 3 sum-
marizes the state of the art. More precisely, in Section 3.1 we give a background of MAPF,
Section 3.2 is dedicated to present previous works on coverage planning, in Section 3.3 we
introduce some work on connectivity and Section 3.4 presents the work which inspired our
incomplete knowledge framework. Then, the contributions of this dissertation are arranged in
two parts, with Part I dedicated to the study of CMAPF, and Part II focused on the study of an
incomplete knowledge setting for the coordination of agents.

In Chapter 4, we introduce and study the connectivity framework. Section 4.1 establishes
the setting of our work. In Section 4.2, we introduce the required notions for the rest of the
chapter. In Section 4.3, we describe the upper bounds of our problems on directed topologi-
cal graphs and, in Section 4.4, we prove the lower bounds on undirected topological graphs to
obtain completeness results. In Section 4.5, we study sight-moveable topological graphs. Sec-
tion 4.6 contains the complexity analysis of the complete-communication topological graphs.
We introduce relevant extensions of our problems in Section 4.7. We present a conclusion and
future works in Section 4.8.

Chapter 5 introduces an algorithm to solve CMAPF. Section 5.1 gives an overview of the
setting and previous works. Section 5.2 presents our algorithm, and Section 5.3 contains the
correctness and optimality proofs. Then, Section 5.4 presents experiments.

In Chapter 6, we study the problem of connected coordination in a partially-known environ-
ment. Section 6.1 presents the study of incomplete knowledge. In Section 6.2, we formalize our
imperfect information setting. We recall the TQBF and TDQBF problems in Section 6.3. Our
results for the connected and decentralized cases are given in Sections 6.4 and 6.5 respectively.
Section 6.6 contains additional results that can be obtained from our work, discussion on related
work, and perspectives.

Finally, in Chapter 7, we conclude on the work achieved in this dissertation. We summarize
the different results of each contribution in Section 7.1. In Section 7.2, we provide the list of
articles that have been published during the writing of this study. Then, we state possible future
works that would extend our results and remove limitations in Section 7.3.

15

Introduction

Top. Graph/Problem
CMAPF CMACP bCMAPF bCMACP
(Def. 4.7) (Def. 4.8) (Def. 4.9) (Def. 4.10)

Directed PSPACE-complete
(Th. 4.3) PSPACE-complete

(Th. 4.4)
NP-complete

[69]
NP-complete

(Th. 4.8)

(Def. 4.1)
Undirected PSPACE-complete

[151](Def. 4.2)
Sight-Moveable

in LOGSPACE
(Prop. 4.3)

in NLOGSPACE
(Prop. 4.4)

NP-complete
(Def. 4.3) (Th. 4.6)
Complete-Comm. in NLOGSPACE

(Prop. 4.5)(Def. 4.4)

Table 1.1 – Summary of the contribution (1).

Top. Graph/Problem
CMAPFI DMAPFI bCMAPFI bDMAPFI
(Def. 6.4) (Def. 6.3) (Def. 6.2) (Def. 6.1)

Directed PSPACE-complete NEXPTIME-complete
PSPACE-complete

(Th. 6.2, 6.3)
NEXPTIME-complete

(Th. 6.5)
(Def. 4.1) (Th. 6.1) (Th. 6.4)
Undirected Trivial
(Def. 4.2) See 6.6.1

Table 1.2 – Summary of the contribution (2).

16

CHAPTER 2

PRELIMINARIES

This chapter is dedicated to the introduction of the concepts that require a proper definition
for the results presented in this dissertation. We first introduce notions from complexity theory.
This theory will be used throughout this work as we will classify the difficulty of several studied
problems. This classification work has for primary purpose to evaluate how efficiently a problem
can be solved. In addition, the complexity proofs provide an insight on the difficulties of a
problem.

Then, we present the MAPF problem formally. This problem is at the root of this work and
the definition will be extended to account for new aspects such as connectivity and incomplete
knowledge.

2.1 Complexity Theory
Complexity theory is the study of algorithmic problems and how hard they are to solve. Let

us begin with the notion of decision problem, complexity class and completeness. The following
section is inspired from Garey and Johnson [55]. See the books of Garey and Johnson [55],
Lewis and Papadimitriou [89], Arora and Barak [7], and Homer and Selman [70] for a detailed
presentation of the complexity theory.

2.1.1 Problem
In this work, we consider a decision problem to be a task to accomplish. A task takes place

in a specific domain and can either be completed or not. As an example, let us suppose that we
want to deliver a package. For this delivery, we are given the instance: a map of the city, our
starting location, and the delivery location. First and foremost, we must make sure that we can
reach the delivery location. In other words, we must decide whether our task can be completed,
if the current instance is positive or not. More formally, we define a decision problem as follows.

Definition 2.1 (Decision Problem). A decision problem is a pair Π = (D, Y) with D, the
domain, a set of instances and Y ⊆ D a set of positive instances.

From now on, when defining a problem, the input — describing the generic information
provided — and the output — stating a question over the input — represent the domain and the
positive instances, respectively. Let us define the Undirected Connectivity problem to illustrate
the previous definition.

17

Chapter 2 – Preliminaries

Problem (Undirected Connectivity).
- Input: A graph G = 〈V,E〉, with V a finite set of vertices and E a finite set of undirected

edges, and two vertices s, t ∈ V .

- Output: Does there exist a path from s to t?

One can wish to ask a maximization or minimization question over the output. For instance,
we can assume that our previous delivery problem is requiring to be done as fast as possible.
This new task is an optimization problem which asks to minimize our path from s to t. It is
worth noting that, a decision problem can be derived from an optimization problem. Indeed, by
the introduction of a bound k, one can reformulate the yes-no question.

Problem (Undirected Shortest Path).
- Input: A graph G = 〈V,E〉, with V a finite set of vertices and E a finite set of undirected

edges, two vertices s, t ∈ V , and a bound k.

- Output: Does there exist a path from s to t of cost no more than k?

Under the assumption that the cost is “easy” to compute, this decision problem is not harder
than the associated optimization problem. Indeed, one can solve the optimization problem and
compare the cost of the obtained solution with the given bound. Thus, the associated optimiza-
tion problem is at least as hard.

Encoding

While the presentation of the formal encoding of a decision problem is beyond of the scope
of this dissertation, a detail is worth bringing to the attention of the reader. When deriving
a decision problem from an optimization problem, the exact encoding of the bound may be
important to specify. Indeed, the complexity of a problem may increase significantly with the
use of a more succinct encoding.

In this work, we will often demonstrate the complexity of a problem using a binary encoding
of the bound, as one might call it more “reasonable”. However, when relevant, we show whether
the complexity holds or changes using a unary encoding for completeness.

Deterministic Turing Machine

To define the notion of algorithm, we must first present the model of computation. For
simplicity, we model an algorithm by the two-tapes Deterministic Turing Machine (DTM),
which consists of two infinite tapes (input, work), a finite control with two heads. A read-only
head is attached to the input tape and a read/write head is attached to the work tape.

The tapes of the machine are composed of linearly ordered cells, each holding a symbol.
The control is composed of a finite set of states, including the distinguished start, yes and no
states. A depiction of a DTM is provided in Figure 2.1.

With the help of the head, the control can read the content of a cell from the input and work
tapes, or write only to the work tape. Additionally, it can move the head to the left or right,

18

2.1. Complexity Theory

Control

Read-only Head

Read/Write Head

-3 -2 -1 0 1 2 3

Input Tape

-3 -2 -1 0 1 2 3

Work Tape

Figure 2.1 – Schematic representation of a two-tape DTM.

and change state. The machine starts with the control in its start state and the heads on the cells
numbered 1 of their respective tape. From there, the steps taken by the control is determined by
its internal state and the content of the cell being read. When the control reaches the yes or no
state, it halts and “answers” accordingly.

Now, let us assume that given a problem Π, we have a DTM which, for all instances d ∈ D
in the domain, answers “yes” if d ∈ Y and “no” if d /∈ Y . Then we say that this DTM is a
deterministic algorithm that solves the problem Π.

2.1.2 Complexity Classes
Time

In order to solve a problem, an algorithm must go through a number of steps during its
computation. This idea can be related to the time used by the algorithm to halt. More formally,
we define the time function as follows.

Definition 2.2 (Time Function).

TA,Π(n) = max
d∈D,|d|=n

{m | A solves d in m steps }

is the most amount of time which the algorithmA uses to solve an instance of size n of a problem
Π.

We can say thatA is a polynomial-time algorithm if there exists a polynomial p such that, for
all n ∈ Z+, TA,Π(n)� p(n). Equivalently, we can say that A is an exponential-time algorithm
if there exists an exponential e such that, for all n ∈ Z+, TA,Π(n)� e(n).

We can now derive time-classes of problems:

Definition 2.3 (PTIME). The class PTIME, or P for short, is the class of problems for which
there exists a polynomial-time algorithm which solves it.

19

Chapter 2 – Preliminaries

Definition 2.4 (EXPTIME). The class EXPTIME is the class of problems for which there exists
an exponential-time algorithm which solves it.

Space

During computation, an algorithm not only takes steps but uses space on the work tape of the
DTM to store information. This can be called the “memory” of the algorithm. More formally,
we define the space function as follows.

Definition 2.5 (Space Function).

SA,Π(n) = max
d∈D,|d|=n

{m | A solves d using m work cells }

is the most amount of space the algorithmA uses to solve an instance of size n of a problem Π.

We say that A is a polynomial-space algorithm if there exists a polynomial p such that,
for all n ∈ Z+,SA,Π(n) � p(n). Equivalently, we can say that A is an exponential-space or
logarithmic-space algorithm.

Similarly to the time property previously defined, we can define space-classes of problems:

Definition 2.6 (PSPACE). The class PSPACE is the class of problems for which there exists a
polynomial-space algorithm which solves it.

Definition 2.7 (EXPSPACE). The class EXPSPACE is the class of problems for which there
exists an exponential-space algorithm which solves it.

Definition 2.8 (LOGSPACE). The class LOGSPACE, or L for short, is the class of problems
for which there exists a logarithmic-space algorithm which solves it.

Note that regarding a logarithmic-space algorithm, only the space used on the work tape is
considered.

Nondeterminism

Before providing a detailed description of a Nondeterministic Turing Machine (NDTM), it
may be useful to present informally the concept of nondeterministic algorithm. For this purpose,
let us define the following problem.

Problem (Traveling Salesman Problem).

- Input: A graph G = 〈V,E〉, with V a finite set of vertices and E a finite set of undirected
edges, a vertex s ∈ V .

- Output: Does there exist a tour starting at s to visit all vertices exactly once ?

20

2.1. Complexity Theory

Intuitively, it seems quite hard to create a tour without having to come back on some pre-
vious choices as we might only later realize an early mistake. In fact, this problem does not
admit a polynomial-time algorithm (unless P = NP). However, if we are given a tour, we can
in polynomial-time verify whether this tour is valid. Thus, if we were lucky enough at guessing
a tour, we might find a solution easily. This is the concept at the core of a nondeterministic
algorithm.

More formally, a NDTM is structured as an DTM, except for the addition of a guessing
module attached to a write-only head. This module starts on the cell numbered -1 of the work
tape. From there, it can either write a symbol in the current cell, move to the left or stop. The
choice of steps done by the guessing module are totally arbitrary. When the guessing module
becomes inactive, the control starts its computation as in a DTM.

Now, let us assume that given a problem Π, we have a NDTM which, for all instances d ∈ D
in the domain, if d ∈ Y then there exists a guess that leads the control to answers “yes”, and if
d /∈ Y then there is no such guess. Then we say that this NDTM is a nondeterministic algorithm
that solves the problem Π.

We can now describe the nondeterministic equivalent of the previously introduced complex-
ity classes.

Definition 2.9 (NPTIME). The class NPTIME, or NP for short, is the class of problems for
which there exists a nondeterministic polynomial-time algorithm which solves it.

Definition 2.10 (NEXPTIME). The class NEXPTIME is the class of problems for which there
exists a nondeterministic exponential-time algorithm which solves it.

Definition 2.11 (NLOGSPACE). The class NLOGSPACE, or NL for short, is the class of prob-
lems for which there exists a nondeterministic logarithmic-space algorithm which solves it.

A generalized notation of complexity classes describes the type of Turing machine (deter-
ministic (D), nondeterministic (N)) used along with the bound over the time or space function.
For instance, we can equivalently denote NEXPTIME as NTIME(exp(n)), or LOGSPACE as
DSPACE(log(n)).

An important theorem of the complexity theory is the following:

Theorem 2.1 (Savitch’s Theorem [134]). For all function f(n) ≥ log(n), NSPACE(f(n)) ⊆
DSPACE(f 2(n)).

In other words, all problems that can be solved by a NDTM in space f(n), can also be
solved by a DTM in space f 2(n).

Corollary. PSPACE = NPSPACE and EXPSPACE = NEXPSPACE.

Many more complexity classes have been introduced and studied in the literature. However,
the problem studied throughout this dissertation will fit inside the presently introduced classes.
In Figure 2.2, we depicted the inclusion of the complexity classes. Note that, if a problem can be
solved in, let say, polynomial-time then it can be solved by an algorithm in any more powerful
complexity class, for instance a nondeterministic exponential-time algorithm.

21

Chapter 2 – Preliminaries

EXPSPACE

NEXPTIME

EXPTIME

PSPACE

NP

P

NL

L

Figure 2.2 – Overview of the complexity classes.

2.1.3 Completeness
Up until now, we described the complexity classes and the membership relation of a prob-

lem. A crucial notion for the study of problems is one of completeness. In particular, it gives
a tool for studying how “hard” a problem is compared to others. Additionally, if a problem,
complete for a specific class, happen to admit an efficient algorithm then any problem of this
class can use this algorithm as a subroutine.

The key idea used to show that a problem is complete for a specific class is that of a trans-
formation, also called reduction. Note that for the sake of conciseness, we will only present
polynomial transformation that apply to proof of NP-completeness and above. However, an
interested reader might want to refer to Sipser [143] and Arora and Barak [7] for details on
transformation of P-completeness and below.

Definition 2.12 (Polynomial Transformation). A polynomial transformation from a problem Π
to Π′ is a function f : D 7→ D′ that satisfies the following two conditions:

1. There exists a DTM that computes f in PTIME;

2. For all instances d ∈ D, d ∈ Y if and only if f(d) ∈ Y ′.

Whenever a problem Π has a polynomial transformation to a Π′, we say that Π can be
polynomially reduced to Π′. Intuitively, it also means that Π′ is “at least as hard” as Π. We can
now define the concept of completeness.

22

2.2. Multi-Agent Path Finding

Definition 2.13 (Completeness). Given a class C, a problem Π is C-complete if Π ∈ C and, for
all other problem Π′ ∈ C, Π can be polynomially reduced to Π′.

Intuitively, the C-complete problems are the hardest problems in C. From our previous def-
initions, we can observe that given two problems Π,Π′ ∈ C, if Π is C-complete and Π reduces
to Π′ then Π′ is C-complete. Thus, throughout this work we will rely on this observation to
show that a problem is C-complete. Indeed, we will introduce a problem previously proven C-
complete, show that our problem is in C and show that we have a polynomial transformation
from the introduced problem to ours.

Note that the use of a polynomial reduction is not valid to show the completeness of a
problem to the class P and below. Indeed, as a polynomial reduction would, by default, require
a polynomial amount of time, one must use a logarithmic-space reduction or lower.

2.1.4 Asymptotic notation

We introduced complexity classes which let us prove how hard a problem is. However, when
analyzing algorithms it may be important to obtain a more fine-grained classification of the
computation time or space. Let us introduce the notion of asymptotic notation for computation
time. Nevertheless, the following can be applied to describe spacial behavior of algorithms.

As stated previously, in order to solve a problem, an algorithm will go through a number of
steps which may change depending on the instance. Intuitively, consider the problem of sorting
a list, in general the algorithm will have to execute more steps to sort a longer list. It is important
when analyzing an algorithm to describe how much the number of steps taken grows with the
size of the instance.

Let us define multiple notations used to describe the behavior of an algorithm A on a prob-
lem Π.

Definition 2.14 (Big-O Notation). A grows in O(f(n)) if there exists a positive constant c such
that for all n, the number of steps of A for all instances d ∈ D of size n is at most c× f(n).

Definition 2.15 (Big-Omega Notation). A grows in Ω(f(n)) if there exists a positive constant c
such that for all n, the number of steps ofA for all instances d ∈ D of size n is at least c×f(n).

Note that f ∈ Ω(g) if and only if g ∈ O(f).

2.2 Multi-Agent Path Finding

Let us present the problem at the origin of this work. In this section, we formally introduce a
general definition of the MAPF problem. We present the theoretical setting of the problem and
a bounded variant.

23

Chapter 2 – Preliminaries

2.2.1 Problem Statement
The MAPF is the problem of moving a group of agents in an environment. For theoretical

convenience, the environment is modeled as a graph.

Definition 2.16 (Graph). A graph is a couple G = 〈V,E〉, with V a set of vertices and E ∈
V × V a set of edges.

Each agent starts at a specific location of the graph and move along the edges to reach their
respective targets. In other words, the agents start at a configuration and must reach a provided
goal configuration.

Definition 2.17 (Configuration). A configuration c of n agents in a graph G is a vector of
elements of V of size n, denoted c = 〈c1, . . . , cn〉.

During their travel in the graph, all the agents synchronize when arriving at a node. This
sequence of steps is called an execution.

Definition 2.18 (Execution). An execution e of length `with n agents in a graphG is a sequence
of configuration e = 〈c1, . . . , c`〉 such that (cj, cj+1) ∈ E for all 1 ≤ i < `.

For simplicity, we can note cj →G c
j+1 as a shortcut to (cj, cj+1) ∈ E.

Two types of collisions must be avoided in an execution. Recall that ctk denotes the position
of agent k at time t.

Definition 2.19 (Vertex Collision). Two agents a, b are in vertex collision at a time-step t of an
execution e = 〈c1, . . . , c`〉 when cta = ctb.

Definition 2.20 (Edge Collision). Two agents a, b are in edge collision at a time-step t of an
execution e = 〈c1, . . . , c`〉 when ct−1

a = ctb and ct−1
b = cta.

An execution without vertex-collision and edge-collision is said to be collision-free. For-
mally, MAPF can be defined as follows.

Problem 2.1 (MAPF).
- Input: A graph G and two configurations cs, cg of same size.
- Output: Does there exist a collision-free execution e = 〈cs, . . . , cg〉?

MAPF is a planning problem, thus it is often assumed that a solution always exists. However,
it is important to minimize the number of steps in the execution. While multiple definitions of
the minimization problem exist, we will restrict our definition to the minimization of the sum
of paths length. In other words, we consider that an agent increases the cost of the execution if
and only if it moves between two configurations or idles on a vertex different from its goal. A
bounded version of MAPF can be defined as follows.

Problem 2.2 (Bounded MAPF).
- Input: A graph G, two configurations cs, cg of size n and a bound k.
- Output: Does there exist a collision-free execution e = 〈cs, . . . , cg〉 of cost k?

24

CHAPTER 3

STATE OF THE ART

This chapter is dedicated to a summary of the literature surrounding the study of CMAPF
and related works. First, we will present MAPF, the complexity of deciding the existence of an
unbounded and bounded solution, special cases, variants and algorithms. Then, we introduce the
previous contributions on CMAPF and the known results. In addition, we provide a presentation
of the studies of the exploration of unknown environments. Finally, we present works which go
beyond the initial problem and the possible extensions that our work can undergo.

3.1 Multi-Agent Path Finding
MAPF is a problem which has obtained growing interest in the recent years. Multiple lines

of work brought MAPF to its current state. First, Reif [129], in parallel with Hopcroft et al.
[71], studied the complexity of the Coordinated Motion Problem which asks for the motion of
multiple three-dimensional objects in an environment with obstacles. This problem was shown
to be PSPACE-hard, even in the two-dimensional case. An example of such a problem is the case
of two disc-shaped robots moving in the presence of polygonal obstacles [136]. The planning
problem for multiple agents is PSPACE-hard even when robot shapes are restricted to simple
tiles [67]. PSPACE-hardness was shown in case of unit-square robots with polygonal obstacles
as well when agents are unlabelled/homogeneous, or in our terminology, anonymous [144]. A
line of algorithms that avoid this high complexity are those based on sampling methods such
as Kavraki et al. [79] and Kuffner and LaValle [83]. They randomly sample points and check
whether these points can be connected respecting the constraints of the system. This allows one
to quickly generate a tree or a graph between sampled points, and continue sampling points
until the desired plan is found.

In another line of work, Ratner and Warmuth [128] studied the generalized version of the
15-Puzzle. They showed that finding the shortest solution to this problem is NP-hard. In order
to deal with the high complexity of the problem, multiple approaches were investigated.

First, with the introduction of A* [65], the centralized approach was investigated [86]. In
this algorithmic approach, the group of agent is considered to be a single entity. Many variants
of A* were studied and introduced to solve the MAPF efficiently and/or optimally. A standard
of the game industry was Local Repair A* (LRA*) [148]. However, many more improvements
and variants were studied [145, 58].

Another approach called the decoupled approach, recently gave birth to the most efficient al-
gorithm to solve MAPF. The strategy of such approach is to consider each agent as independent,
and plan their paths separately. A good example of such a technique is Windowed Hierarchical
Cooperative A* (WHCA*) [141]. Agents are considered in turns; each one is assigned a path

25

Chapter 3 – State of The Art

avoiding collisions with previously assigned agents. Similar approaches were studied by Dres-
ner and Stone [39], Wang, Botea, et al. [159], and Jansen and Sturtevant [77]. However, contrar-
ily to the centralized approaches, these are not optimal. In order to solve this last issue, Sharon
et al. [139] introduced CBS which was improved with many powerful optimizations [138, 19,
46, 91, 90].

3.1.1 Complexity
The complexity of MAPF has been intensively studied in order to find practical classes

in which the problem is easier or that can be used to simplify the computation of the gen-
eral problems through heuristics. Indeed, MAPF was studied on planar graphs [167], on grid
graphs [171]. While no practical classes of graphs seem to yield a tractable variant of the deci-
sion problem associated to the optimization of MAPF, deciding the existence of an execution
was shown to be in PTIME [169].

Slideable

An interesting restriction of MAPF on grid maps is the one of slideable instances. This class
of instances, introduced by Wang and Botea [160], admits a polynomial-time algorithm. For an
instance to be Slideable, there must exist a path for all agents to their goals which at all time
admits alternative moves. The core idea is that the algorithm does not require replanning. While
this algorithm is not complete for general MAPF, it runs in O(|V |2n2) or even linearly on some
instances.

3.1.2 Variants
Here we present multiple variants of MAPF that have been studied to capture additional

important concepts.

Target Assignment

Introduced by Ma and Koenig [102], the Target-Assignment and Path Finding (TAPF) prob-
lem is the problem of assigning targets to the agents in teams along planning collision-free
paths. This problem generalizes both the anonymous and non-anonymous MAPF. Indeed, the
anonymous MAPF would be TAPF with a single team of agents, and the non-anonymous MAPF
would be TAPF with single agent teams. Multiple algorithmic solutions were introduced to solve
TAPF [102, 114, 99].

Robustness

The theoretical formulation of MAPF does not take into account the various mishaps that
can happen during the execution of the plan in the real world. Multiple concepts of robustness
have been studied to create plans which can react or avoid problems during the execution. The

26

3.2. Coverage Planning

concept of k-robustness [11], allows the agents to survive to a bounded number of mishaps. A
parallel line of work studied a probabilistic robustness [10], which can provide a solution which
succeeds with probability at least p.

Lifelong

While MAPF solves the problem of efficiently moving a group of agents in an arbitrary
complex environment, it does not handle an important characteristic of the warehouse problems.
In such a setting, the system continuously receives new requests of targets for the agents to
reach. The Lifelong MAPF, introduced as Multi-Agent Pickup and Delivery (MAPD) [104],
solves this online version of MAPF. More works on this particular variant was done by Ma
et al. [100] and Li et al. [94].

3.2 Coverage Planning

The coverage path planning problem has been studied in different settings; see the surveys
of Choset [32], Galceran and Carreras [54], and Cabreira et al. [25]. This problem can be used
to solve inspection (where a given set of points of interests must be observed), surveillance
(points of interest must be continuously visited), and can be used in applications such as lawn
mowing and floor cleaning. One can prove probabilistic completeness results in some cases,
which means that if a solution exists, then the algorithm will eventually find it with probability
1; although it may not be able to detect that no solution exists [42]. Some of these algorithms
work in two phases: the first phase consists in sampling points and checking the feasibility of the
edges between them, and the second phase consists in solving a graph problem on this structure,
and repeating the first phase if no solution is found. Some works use approximations of metric
Traveling Salesman Problem (TSP) to find solutions in the constructed graph [35, 41]. Other
works use A∗ search algorithms with suitable heuristics to compute approximate solutions [53].

Several works consider the coverage path planning problem for multiple agents [31, 54, 25].
Kusnur et al. [85] introduced a centralized framework to compute plans for the persistent cov-
erage problem without communication constraints. In Rekleitis et al. [131] gave algorithms for
the repeated coverage problem in unknown environments for a team of robots, including the
case of the line-of-sight communication restriction. This uses the cell decomposition given by
Choset and Pignon [33] for the coverage path planning. Hazon and Kaminka [66] and Xiaoming
Zheng et al. [163] obtain a graph structure thanks to a cell decomposition, and variants of span-
ning trees are computed on this graph to ensure coverage with multiple robots. Graph problems
related to this problem are studied by Xu [164]. The generalization of TSP was studied by Anbu-
udayasankar et al. [5] which is a relevant problem for coverage path planning in the multi-agent
setting. Some works also consider maneuverability and camera angle constraints [1].

27

Chapter 3 – State of The Art

3.3 Connectivity
The continuous communication restriction appears in several works which provide exper-

iments to demonstrate the feasibility of the proposed algorithms [120, 113, 166, 152]. Some
works consider the use of dynamic teams of robots which exchange their information on cur-
rent solutions [118]. Communication and battery restrictions are considered together by Cesare
et al. [26] which gave an algorithm in which robots can adopt the roles for exploring, meeting,
sacrificing themselves (continuing the mission in case of low battery), and serving as com-
munication relay for other robots. Different communication restrictions have been considered
as well such as event-based communication where the discovery of new information triggers
communication (see e.g [3, 13]).

3.3.1 Connected MAPF
The CMAPF problem was initially introduced by Hollinger and Singh [69] along with an

online algorithm. The algorithm would run on each agent separately and guarantee a periodic
reconnection of the agents. The NP-hardness of bounded CMAPF was also proven in this work.
Later, Tateo et. al. [151] provided a complexity analysis of the unbounded problem and different
variants. The problem is shown PSPACE-complete without a bound, regardless of the collision-
free requirement, or the addition of a base station. Here, we remind the reader the previous
results of CMAPF.

Theorem 3.1 ([69]). Deciding the existence of a bounded connected execution on undirected
topological graphs is NP-hard.

Theorem 3.2 ([151]). Deciding the existence of a connected execution on undirected topologi-
cal graphs is PSPACE-complete.

3.4 Partially-Known Environment
The exploration and navigation in a partially-known/unknown environment has been inten-

sively studied. Many parallel lines of works studied different approaches and model of this
problem. Let us present a few from which our framework is inspired.

3.4.1 SLAM
The Simultaneous Localization and Mapping (SLAM) problem asks to integrate the infor-

mation collected during navigation into the most accurate map possible. A good overview of
the many methods developed for unknown environment mapping can be found in the work of
Rao et al. [126]. However, SLAM does not address the navigation task. Two different prob-
lems emerged to address the planning of the navigation in parallel to the mapping task. The
Simultaneous Planning Localization and Mapping (SPLAM) asks for a motion plan through the
unknown environment, which is quite intractable [84, 88, 22]. On the other hand, the Next-Best

28

3.4. Partially-Known Environment

View (NBV) problem [60, 116, 4] asks to guide a robot through the environment to optimize
the amount of new information gathered per step.

3.4.2 Canadian Traveler Problem
An interesting variant of the Shortest Path problem is the Canadian Traveler Problem (CTP)

initially formulated by Papadimitriou and Yannakakis [121]. A traveler wishes to travel to a city
during winter. However, it might happen that some roads have not been cleared of snow. Thus,
it is assumed that when arriving at an intersection, the traveler is able to observe which roads
are clear. The problem has recently received additional interest [15, 115, 165, 44].

29

PART I

CONNECTIVITY

30

CHAPTER 4

CONNECTED MULTI-AGENT PATH
PLANNING

4.1 Introduction
The MAPF problem asks for a plan to move a group of agents to a target configuration in

a graph while avoiding collisions. It is an important problem in the design of groups of au-
tonomous vehicles, and has been used in several applications such as Kiva (Amazon Robotics)
warehouse systems [162], autonomous aircraft towing vehicles [110], office robots [157] and
characters in video games [142].

A closely related problem is that of coverage path planning which consists in computing
a plan that visits a set of given locations in a graph. A comprehensive survey is provided by
Galceran and Carreras [54]. Applications include underwater ship hull inspection [42], wildfire
tracking with drones [123], to name a few.

An important application area is that of information gathering missions in which agents
must visit a set of locations in an area and gather information using sensors (e.g. camera, smoke
sensor, hygrometer etc.). Some applications, such as search and rescue missions, might require
continuous connection between all agents and a base station, for instance, in order to stream
video and allow human operators to make decisions [3]. In this case, the path planning and
coverage path planning algorithms must take additional connectivity constraints into account in
order to compute suitable plans. Several works have explored planning algorithms in this setting
e.g. [132, 120].

The variant of MAPF with connectivity constraints and related computational complexity
results were studied by Hollinger and Singh [69] and Tateo et al. [151]. The latter present
complexity results for connectivity constraints with and without collision constraints and that
the existence of a plan of arbitrary length in both cases is PSPACE-complete in undirected
graphs. Interestingly, it means that it has the same complexity as classical planning [24]. The
work of Bodin et al. [18] considers the coverage path planning and provides experiments in
which instances are described in Planning Domain Definition Language (PDDL) and solved
with the planner Functional STRIPS [52]. In other words, MAPF with connectivity constraints
is more difficult than MAPF with collision constraints: deciding the existence of a collision-free
plan of arbitrary length is in PTIME, as stated by Yu and Rus [172].

Now, concerning the optimization problems, there is a subtlety about the encoding (unary vs
binary) of the length of plans. For MAPF with collision constraints, as the existence of a plan is
equivalent to the existence of a plan of length O(|V |3) where |V | is the number of nodes [172],
the encoding of the length is not relevant. Thus, several papers on the topic do not specify the

31

Part I, Chapter 4 – Connected Multi-Agent Path Planning

encoding [14, 105, 128, 167, 168, 169]. However, for MAPF with connectivity constraints, there
is no such bound on the length of a plan. We show that the existence of a bounded plan when
the bound is given in binary is PSPACE-complete; while when the bound is given in unary,
the problem is NP-complete, even on undirected graphs, as claimed by Hollinger and Singh
[69], although they do not explicitly specify the membership proof and are ambiguous about
the encoding 1.

We mainly consider a setting where collisions are ignored. In fact, we are interested in
the computational complexity of maintaining connectivity in plans. As done by Hollinger and
Singh [69], agents are be assumed to be equipped with a low-level collision avoidance system
in some cases. Additionally, in drone applications with few agents, different altitudes can be
used to avoid collisions. Nevertheless, we do discuss the impact of taking collision constraints
into account in our results as well.

In this chapter, we are interested in the computational complexity of two problems: CMAPF
is the variant of MAPF with connectivity constraints, without collision constraints; and CMACP
is the variant of coverage path planning for multiple agents with connectivity constraints. As in
the work of Hollinger and Singh [69] and Tateo et al. [151], a problem instance is a topological
graph, which is a set of nodes given with movement edges along which agents can move, and
communication edges which determine pairs of vertices at which communication is possible.
Our results are as follows. We establish the computational complexity of determining the ex-
istence of plans, showing that CMAPF is PSPACE-complete on directed graphs as well, and
proving that CMACP is PSPACE-complete on both types of graphs. We study bounded versions
of these problems where a bound on the length of the plan is given as part of the input; these
are denoted by bCMAPF and bCMACP. As done by Turner [155], we advocate for lengths of
plans written in unary, although we also study the complexity of our problems when the encod-
ing is binary. We show that both bCMAPF and bCMACP are NP-complete when the bound
is given in unary, and we clearly state their PSPACE-completeness when the bound is given in
binary.

Given the prohibitively high complexity reported above, we are interested in searching for
‘easier’classes of topological graphs which are realistic for the purpose of information gathering
missions. One of our main contributions is the identification of a natural class of topological
graphs, called sight-moveable, for which we give efficient algorithms. This class requires that
whenever an agent can communicate with another node, then it can also move to that node while
maintaining direct communication. This can be seen as a restriction on allowed topological
graphs; however, if the graph at hand does not have this property, it may be possible to enforce
it by removing some communication edges (not allowing the planning algorithm to rely on
those edges). Subsection 4.5.3 describes a way to obtain sight-moveable graphs from a given
topological graph. Thus, any plan found in the obtained sight-moveable graph can be applied
on the original one.

The class of sight-moveable graphs offers good computational properties: both CMAPF
and CMACP belong to NLOGSPACE, meaning that they can be solved by a non-deterministic

1. The bounded plan is clearly in NP when the bound ` is written in unary: simply guess a solution of length at
most ` and check that it is correct. When the bound is given in binary, a solution may be in exponential size, and
cannot be guessed in polynomial time.

32

4.2. Preliminaries

algorithm that only uses a logarithmic amount of memory. Practically, it means that algorithms
for generating plans can be parallelized, because NLOGSPACE is included in the Nick’s class
(NC), [34], known to represent decision problems for which there is a parallel algorithm. How-
ever, the bounded versions remain NP-complete. We complete the investigation with the com-
plexity analysis of the problem with complete communication graphs, where all pairs of nodes
can communicate. In addition, we give complexity results on several variants of our problems.

Note that the PSPACE lower bound given by Tateo et al. [151] concerned the reachability
problem where agents start from arbitrary locations, whereas we prove that the PSPACE lower
bound still holds for agents starting all from the base. Furthermore, this chapter extends the
work of Charrier et al. [29] and Charrier et al. [30], in which the complexity of CMAPF (when
agents start from the base) and CMACP on undirected topological graphs was left open. In
this contribution, we solved them (Theorem 4.3 and 4.4). We also include detailed proofs and
discuss relevant extensions that were not considered in previous work.

Overview In Section 4.2, we introduce the required notions for the rest of the chapter. In Sec-
tion 4.3, we describe the upper bounds of our problems on directed topological graphs and, in
Section 4.4, we prove the lower bounds on undirected topological graphs to obtain complete-
ness results. In Section 4.5, we study sight-moveable topological graphs. Section 4.6 contains
the complexity analysis of the complete-communication topological graphs. We introduce rel-
evant extensions of our problems, in Section 4.7. We present a conclusion and future works in
Section 4.8.

4.2 Preliminaries
In some path finding applications, one considers a discretization of the space which yields

a graph of movements on which algorithms are run. For instance, regular grids which decom-
pose the space in square, triangular or hexagonal cells, irregular grids with techniques such as
quadtrees [51, 81] or Voronoï diagrams comprehensively discussed in the survey of Aurenham-
mer [12].

Our work is independent of the particular method used to obtain the discretization. We only
work under the hypothesis that a feasible plan on the graph generated by the discretization is
also feasible in the continuous space.

We will, now, introduce the notions used throughout this work. We define formally the
general topological graphs and some subclasses, the notion of execution and the properties
considered, the decision problems we investigate and some known results on these problems.

4.2.1 Topological Graphs
Our problems require graphs with two types of edges: movement edges along which agents

can move, and communication edges which specify whether agents at two different locations can
communicate. We call graphs with this additional information topological graphs. The formal
definition is the following and examples are depicted in Figure 4.1.

33

Part I, Chapter 4 – Connected Multi-Agent Path Planning

(a) Directed (b) Undirected

(c) Sight-moveable (d) Complete-communication

Base Node
Movement Communication

Figure 4.1 – Examples of topological graphs.

Definition 4.1 (Topological Graph). A topological graph is a tuple G = 〈V,Em, Ec〉, with V
a finite set of nodes containing a distinguished node B called the base, Em⊆ V × V a set of
movement edges and Ec ⊆ V × V a set of undirected communication edges.

The node B is the supervision base station from which the agents start the mission and with
which they are required to keep communication.

In some applications movement edges are reversible, that is, if an agent can travel from a
node to another, it can also go back to the former through the same edge. Undirected graphs
thus naturally arise in some applications. See Figure 4.1b for an example.

Definition 4.2 (Undirected Topological Graph). A topological graph is said to be undirected if
〈V,Em〉 is an undirected graph.

Let us now introduce our new class, called sight-moveable topological graphs, which is one
of our main contributions. This class requires the movement edges to be reflexive. In addition,
whenever an agent can communicate with another node, then it can also move to that node while
maintaining the communication with the node it started from. An example of a sight-moveable
graph is given in Figure 4.1c.

Definition 4.3 (Sight-Moveable Topological Graph). A sight-moveable topological graph G =
〈V,Em, Ec〉 is a directed topological graph such that

1. Em ⊆ Ec,
2. for all v ∈ V , (v, v) ∈ Em,
3. and whenever (v, v′) ∈ Ec, there exists a sequence ρ = 〈ρ1, . . . , ρn〉 of nodes such that
v = ρ1, v′ = ρn, for all i ∈ {1, . . . , n− 1} (v, ρi) ∈ Ec and (ρi, ρi+1) ∈ Em.

34

4.2. Preliminaries

Last, we define the complete-communication topological graphs which are simply sight-
moveable topological graphs with undirected movement and complete communication topol-
ogy. An example of such a graph is depicted in Figure 4.1d, and the formal definition is the
following.

Definition 4.4 (Complete-Communication Topological Graph). A topological graph is said to
be a complete-communication if it is a sight-moveable topological graph such that 〈V,Em〉 is
an undirected graph and Ec = V × V .

Observe that a complete-communication graphs are reflexive, undirected, connected graphs
with communication edges between each pair of nodes.

We say that a topological graph has a planar (grid) movement graph iff the graph 〈V,Em〉
is a planar (resp. grid) graph.

4.2.2 Execution
An execution is a finite sequence of configurations describing the positions of the agents

during the mission. We require that all agents should be connected to the base in all config-
urations. We will use multi-sets to denote nodes occupied by agents in configurations, since
agents are anonymous. In other terms, if the goal is to reach a target configuration, it does not
matter which agent occupies which node, as long as there is the right number of agents at each
node. Other works use the term unlabelled or homogeneous (see e.g. [144]); but we use the
terminology of Multi-Agent Path Finding (MAPF).

The formal definition of a configuration is the following.

Definition 4.5 (Configuration). A configuration c of n agents in a topological graph G is a
tuples of elements of V of size n, denoted c = 〈c1, . . . , cn〉.

A configuration is said to be connected iff the graph 〈Vc, Ec ∩ (Vc × Vc)〉 is connected with
Vc = {B, c1, . . . , cn}.

Given a topological graph G = 〈V,Em, Ec〉, we write c →G c′ to say that agents in c
perform one-step movements to occupy nodes in c′. Formally, we have c →G c′ if c (resp. c′)
can be written as 〈c1, . . . , cn〉 (resp. 〈c′1, . . . , c′n〉), and (ci, c′i) ∈ Em for all 1 ≤ i ≤ n.

Definition 4.6 (Execution). An execution e of length ` with n agents in a topological graphG is
a sequence of connected configuration e = 〈c1, . . . , c`〉 such that cj →G c

j+1 for all 1 ≤ j < `.

In our setting, the makespan of an execution is equal to its length.
A covering execution e = 〈c1, . . . , c`〉 of length ` with n agents in a graph G is an execution

such that c1 = c` = 〈B, . . . , B〉 and for all v ∈ V , there exists j ∈ {1, . . . , `} such that v
appears in cj . An example of such an execution is depicted in Figure 4.2 (from left to right).

4.2.3 Decision Problems
We formally define the problems CMAPF and CMACP and their bounded versions bCMAPF

and bCMACP.

35

Part I, Chapter 4 – Connected Multi-Agent Path Planning

UAV
Movement
Communication
Active communication
Visited regions

Figure 4.2 – Example of a covering execution of length 10 with 3 agents. The plan is depicted from left
to right and from top to bottom.

The Unbounded Case

Definition 4.7 (CMAPF). Given a topological graph G, an integer n and a configuration c of
size n, decide if there is an execution 〈c1, . . . , c`〉 in G such that c1 = 〈B, . . . , B〉 and c` = c.

Definition 4.8 (CMACP). Given a topological graph G and an integer n, decide if there exists
a covering execution with n agents.

We also consider variants CMAPF-init and CMACP-init denote the problems in which the
agents start at a given configuration rather than at the base. In other words, the initial configu-
ration is part of the input. In addition, CMACP-init requires the agents to return to the initial
configuration rather than to the base.

In the above problems, the encoding of the integer n (unary or binary) does not matter.
Indeed, in CMAPF, CMAPF-init and CMACP-init, the input already contains some configu-
ration which is of size n; in CMACP, it is useless to have n greater than the number of nodes.

The Bounded Case

The bounded versions are inspired from the so-called polynomial-length planning problem
[155] in which we ask for the existence of a plan of length bounded by a polynomial in the size
of the planning task. This can be seen as the decision problem for the optimization problem that
seeks to minimize the length of an execution, except that we assume that the bound is given in
unary. In fact, the goal of planning algorithms is to compute plans, so given a bound ` on the
length of the desired plan, the algorithm always allocates memory space of size Ω(`) to store
the plan.

36

4.2. Preliminaries

That is why we use unary encoding in the following definitions. Binary encoding of the
length ` is discussed as well in Subsection 4.7.1.

Definition 4.9 (bCMAPF). Given a topological graph G, an integer n and a configuration c
of size n and ` an integer written in unary, decide if there is an execution 〈c1, . . . , c`

′〉 in G s.t.
`′ ≤ `, c1 = 〈B, . . . , B〉 and c`

′ = c.

Definition 4.10 (bCMACP). Given a topological graph G, an integer n, an integer ` written
in unary, decide if there exists a covering execution of length `′ such `′ ≤ `.

Restriction to Subclasses of Graphs

We consider the restriction of the above problems to the following subclasses of graphs:
directed graphs (denoted by DIR), undirected graphs (denoted by UND), sight-moveable graphs
(denoted by SM) and complete-communication graphs (denoted by CC). The variants of these
problems to a given graph class will be denoted using a subscript, that is, CMAPF?, CMACP?,
bCMAPF?, bCMACP?, CMAPF-init?, and CMACP-init? denote the restriction of these prob-
lems to graphs of type ? ∈ {DIR, UND, SM, CC}.

4.2.4 Known Results

The connected version of MAPF was introduced by Hollinger and Singh [69], in which
a topological graph discretizes the space and it is proved that the existence of a plan for the
reachability of a configuration of non-anonymous agents in a bounded number of steps with
collisions allowed is NP-hard:

Theorem 4.1 ([69]). bCMAPF-initUND is NP-hard.

As stated before, the above paper actually states the NP-hardness of this problem but without
specifying the encoding of the bound.

Tateo et al. [151] establish the complexity of CMAPF-initUND:

Theorem 4.2 ([151]). CMAPF-initUND is PSPACE-complete.

We relate both problems showing PSPACE-hardness when agents all start at the base.

4.2.5 Overview of Results

In the rest of the work, we study upper and lower complexity bounds for the defined de-
cision problems on different topological graphs. The following sections present our results,
respectively, for the general case, the undirected graphs, sight-moveable graphs, and complete-
communication graphs. An overview of these results is given in Figure 4.1.

37

Part I, Chapter 4 – Connected Multi-Agent Path Planning

Class/Problem
CMAPF CMACP bCMAPF bCMACP
(Def. 4.7) (Def. 4.8) (Def. 4.9) (Def. 4.10)

Directed PSPACE-complete
(Th. 4.3) PSPACE-complete

(Th. 4.4)
NP-complete

[69]
NP-complete

(Th. 4.8)

(Def. 4.1)
Undirected PSPACE-complete

[151](Def. 4.2)
Sight-Moveable

in LOGSPACE
(Prop. 4.3)

in NLOGSPACE
(Prop. 4.4)

NP-complete
(Def. 4.3) (Th. 4.6)
Complete-Comm. in NLOGSPACE

(Prop. 4.5)(Def. 4.4)

Table 4.1 – Overview of the complexity results.

4.3 Directed Topological Graphs
In this section, we will consider the previous problems restricted to the class of directed

topological graphs. These problems are thus denoted by CMAPFDIR and bCMAPFDIR (resp.
CMACPDIR and bCMACPDIR), with DIR denoting the class of directed topological graphs.

In this section, we show upper bounds for all our problems in the general case, that is, for
directed topological graphs. Observe that this also provides upper bounds for other classes such
as undirected graphs.

For the unbounded problems, we can design a straightforward non-deterministic algorithm
running in polynomial space, that guesses an execution by keeping in memory the last config-
uration, and, for CMACP, the set of visited regions. In fact, the number of configurations is
exponential, and a single configuration can be stored in polynomial space. Moreover, one can
easily bound the length of executions by an exponential as well. We conclude with Savitch’s
Theorem (NPSPACE=PSPACE)[134]:

Proposition 4.1. CMACP and CMAPF are in PSPACE.

For the bounded versions of the problems, since the bound is encoded in unary, one can
guess and check a path of bounded length in polynomial time. The result follows.

Proposition 4.2. bCMACP and bCMAPF are in NP.

4.4 Undirected Topological Graphs
In this section we prove the PSPACE lower bound of the problems CMAPF and CMACP

on undirected topological graphs.
We consider the result of Theorem 4.2 in the setting where all agents start at the base.

Theorem 4.3. CMAPFUND is PSPACE-complete.

38

4.4. Undirected Topological Graphs

G

B

B

B′

v′1 v′2 v′n

v1 v2 vn

v′n+1 v′n+2

vn+1 vn+2

s1 s2 sn

t1 t2 tn

tn+1 tn+2

Figure 4.3 – Reduction of CMAPF-initUND into CMAPFUND. The node tn+2 communicates with all
nodes v such that v communicates with B.

Proof. The upper bound comes from Proposition 4.1. The lower bound is by reduction from
CMAPF-initUND (see Theorem 4.2). Let us denote by a tuple (G,B, n, s, t) the instances of
CMAPF-initUND where G is the graph, B the base, n the number of agents, s the initial config-
uration and t the target configuration. Instances of CMAPFUND will be denoted by (G,B, n, t)
as the initial configuration is fixed.

Let (G,B, n, s, t) be an instance of CMAPF-initUND. We show how to map (G,B, n, s, t)
to an instance of CMAPFUND in polynomial time. We construct the instance (G′, B′, n + 2, t′)
of CMAPFUND where G′ is given in Figure 4.3, B′ is the base, and the final configuration t′ is
〈t1, . . . , tn, tn+1, tn+2〉.

Let us describe more precisely the construction of G′. We write s = 〈s1, . . . , sn〉 and t =
〈t1, . . . , tn〉. The graph G′ contains the graph G: in particular, it contains B that is no longer the
base; a new node B′ is now the base. Let us describe the construction of G′.

- Nodes We first create two layers of n+2 vertices. The first layer is composed of the following
vertices v1, . . . , vn, vn+1, vn+2 and the second of v′1, . . . , v

′
n, v

′
n+1, v

′
n+2. We also add

two nodes tn+1 and tn+2.
- Movement We add movement edges between tn+1 and v′n+1, tn+2 and v′n+2, tn+1 and tn+1, and

tn+2 and tn+2. Then, the role of tn+1 and tn+2 is to relay the communication fromB′

to nodes in G. We connect B′ to the first layer, i.e. with a movement edge between
B′ and vi, for all 1 ≤ i ≤ n + 2. The first layer has movement edges to the second
layer, i.e. with a movement edge between vi and v′i, for all 1 ≤ i ≤ n + 2. The n
first vertices of the second layer has movement edges to the initial configuration s
such that there is a movement edge from v′i to si, for all 1 ≤ i ≤ n.

- Communication We add communication edges from B′ to tn+1, from tn+1 to tn+2 as well as
from tn+2 to B and if there exists v such that B communicates v then we create

39

Part I, Chapter 4 – Connected Multi-Agent Path Planning

a communication edge from tn+2 to v. We add a communication edge from B′ to
vn+1, from vi to vi+1, for all 1 ≤ i < n, from vn+1 to v1 and from vn to vn+2. We
repeat this last procedure for the second layer as well.

We now give the formal definition of our reduction. In the sequel, we use the symbol t to
emphasize that the union is of disjoint sets. Formally, given (G,B, n, s, t) withG = 〈V,Em, Ec〉
with base B, we define (G′, B′, n+ 2, t′) where G′ = 〈V ′, E ′m, E ′c〉 with base B′ where:
– V ′ := V t

{
B′, v1, . . . , vn, v

′
1, . . . , v

′
n, vn+1, vn+2, v

′
n+1, v

′
n+2, tn+1, tn+2

}
– E ′m is the symmetric closure of

Em ∪ {(B′, v1), . . . , (B′, vn), (B′, vn+1), (B′, vn+2)}
∪ {(v1, v

′
1), . . . , (vn, v′n)} ∪ {(v′1, s1), . . . , (v′n, sn)}

∪
{

(vn+1, v
′
n+1), (vn+2, v

′
n+2), (v′n+1, tn+1), (v′n+2, tn+2)

}
∪{(tn+1, tn+1), (tn+2, tn+2)};

– E ′c is the symmetric closure of
Ec ∪

{
(v′1, v′2), . . . , (v′n−1, v

′
n)

}
∪ {(v1, v2), . . . , (vn−1, vn)}

∪
{

(B′, vn+1), (B′, v′n+1), (B′, tn+1)
}

∪
{

(v′1, v′n+1), (v′n, v′n+2), (tn+2, B)
}

∪{(tn+2, v) | (B, v) ∈ Ec}
∪ {(v1, vn+1), (vn, vn+2), (tn+1, tn+2)}.

It is worth noting that all connected configurations in G are now connected via B′, tn+1 and
tn+2. We now show the instance (G,B, n, s, t) of CMAPF-initUND is feasible if, and only if in
the constructed instance (G′, B′, n+ 2, t′) of CMAPFUND is feasible.

(⇒) Suppose that t is reachable from s in the instance (G,B, n, s, t). We construct an ex-
ecution for (G′, B′, n + 2, t′) as follows. All agents start from B′. The n + 2 agents first reach
〈v1, . . . , vn+2〉, then 〈v′1, . . . , v′n+2〉, then 〈s1, . . . , sn, tn+1, tn+2〉. After that, the agents at posi-
tions s1, . . . , sn reach positions t1, . . . , tn (following the same plan as in for (G,B, s, t)), while
the two others remain in tn+1 and tn+2.

(⇐) Let us consider an execution e from 〈B′, . . . , B′〉 to t′ for (G′, B′, n + 2, t′). Let us
extract an execution from s to t for (G,B, n, s, t). In order to do so, we prove the Facts 1 and 2.

Fact 1. The configuration 〈s1, . . . , sn, tn+1, tn+2〉, up to a permutation, appears in the execution
e.

Proof. The configuration t′ is reached at the end of the execution e and the n+ 2 agents started
at B′. Thus, n agents must enter into G and be at one of the si at some point. Let us consider
the moment of the execution e when an agent, denoted a, occupies a node si. For that, it must
be at v′i before going to si. Furthermore, for agent a to be connected at v′i the nodes v′n+1
and v′1, . . . , v

′
i−1 must be occupied. At the next step, at least the nodes tn+1 and tn+2 must be

occupied for agent a to be connected at si.
Consider the last instant before tn+2 is first occupied (some instant where tn+2 is occupied

has to exist since otherwise no visit of G coud be connected to B′). At this last instant some
agent is necessarily at v′n+2, hence v′1, . . . , v′n+1 are also occupied.

40

4.4. Undirected Topological Graphs

G
B

G G

t1 t2 tn

v1
1 v1

2 v1
n

v2
1 v2

2 v2
n

v3
1 v3

2 v3
n

v4
1 v4

2 v4
n

Figure 4.4 – Reduction of CMAPFUND to CMACP-initUND.

Towards contradiction, assume the agent at v′i next moves to vi. Then for the connection
to be maintained from B′ to this agent, also (in particular) vn+1 has to be occupied; this is
necessarily by the (necessarily unique) agent which was at v′n+1, hence tn+1 is not occupied
and so, the agent at tn+2 is not connected, contradiction. Hence the next configuration must be
〈s1, . . . , sn, tn+1, tn+2〉. 4

Now, by Fact 1, we can consider the last time at which the agents are in the configuration
〈s1, . . . , sn, tn+1, tn+2〉. We prove the Fact 2.

Fact 2. Between that last time and the end of the execution, there are always the same n agents
in G, one agent on tn+1 and one on tn+2.

Proof. A similar reasoning to the last one can be used to show that if an agent is located at si
before moving to v′i then nodes from s1 to sn as well as tn+1 and tn+2 are occupied. Thus, since
this is the last time the agents are in the configuration 〈s1, . . . , sn, tn+1, tn+2〉, none of the n first
agents can move out of G. Furthermore, tn+1 and tn+2 must stay occupied in order for the n
agents in G to be connected to B′. 4

From Facts 1 and 2, the positions of the first n agents in the portion of the execution between
the last time in 〈s1, . . . , sn, tn+1, tn+2〉 and t′ are fully in G and gives an execution starting at s
and finishing at t for (G,B, n, s, t).

We now turn our attention to CMACPUND. To do so, we start by establishing the PSPACE-
completeness of CMACP-initUND, and then show how to reduce this problem
to CMACPUND.

Lemma 4.1. CMACP-initUND is PSPACE-complete.

41

Part I, Chapter 4 – Connected Multi-Agent Path Planning

Proof. The membership of CMACP-initUND to PSPACE can be shown by using the same ar-
guments as for the proof of Proposition 4.1. The proof of PSPACE-hardness is obtained by
polynomial reduction from CMAPFUND. We map a CMAPFUND-instance (G,B, n, t) to the
CMACP-initUND-instance (G′, B, 2n, s) where G′ is depicted in Figure 4.4 and starting at the
configuration s = 〈B, . . . , B, v1

1, . . . , v
1
n〉. The definition of s means that n agents start at the

baseB and n agents start in positions v1
1, . . . , v

1
n, that are in the reduction gadget. Let us describe

the construction of G′.

- Nodes We make four layers of vertices from v1
1 , . . . , v1

n to v4
1 , . . . , v4

n.

- Movement We create movement edges between vji and vj+1
i , with 1 ≤ i ≤ n and 1 ≤ j ≤ 3.

Each node of the first and last layers have self-loops. The node v4
1 has a movement

edge to all nodes of G.

- Communication The node v4
n has a communication edge to all nodes of G and all nodes of the

fourth layer. We create a communication edge between v2
i to ti, for all 1 ≤ i ≤ n.

We create a communication edge between v3
i and v3

i+1, for all 1 ≤ i < n. Finally,
we connect in communication the nodes of the first layer and the node v3

1 to the base
B.

Formally, given (G,B, n, t) with G = 〈V,Em, Ec〉 with base B, we define (G′, B, 2n, s)
where G′ = 〈V ′, E ′m, E ′c〉 with base B where:
– V ′ := V t {v1

1, . . . , v
1
n, v

2
1, . . . , v

2
n, v

3
1, . . . , v

3
n, v

4
1, . . . v

4
n}

– E ′mis the symmetric closure of
∪Em ∪ {(v, v4

1) | v ∈ V }
∪ {(v1

i , v
1
i), (v1

i , v
2
i), (v2

i , v
3
i), (v3

i , v
4
i), (v4

i , v
4
i) | i ∈ {1, . . . , n}}

– E ′c is the symmetric closure of
Ec ∪ {(B, v1

1) . . . (B, v1
n)} ∪ {(t1, v2

1), . . . , (tn, v2
n)}

∪
{

(B, v3
1), (v3

1, v
3
2), . . . , (v3

n−1, v
3
n)

}
∪

{
(v4

1, v
4
n) . . . (v4

n−1, v
4
n)

}
∪ {(v4

n, v) | v ∈ V } ;
and s = 〈B, . . . , B, v1

1, . . . , v
1
n〉.

We now show that the instance (G,B, n, t) of CMAPFUND is feasible if and only if the
instance (G′, B, 2n, s) of CMACP-initUND is feasible.

(⇒) Suppose the configuration t is reachable in G. Let us construct an execution starting at
s in G′ that cover all nodes in G′. First, the first n agents reach configuration t, while the other
n agents stay at layer v1

i using the self-loops. After that, the first n agents stay at t while the
others progress to the fourth layer v4

i . Finally, while the agents at v4
2 to v4

n don’t move using the
self loops, the agent at v4

1 covers the whole graph since the presence of an agent at v4
n makes

sure that all nodes of G are connected to other agents and to the base. Once finished, this agent
can go back to v4

1 and the n agents can return back to the layer 1 as initially. Finally, the n
agents occupying configuration t can go back to B by following the same path in reverse. This
constitutes a covering execution for CMACP-initUND.

(⇐) Assume that G′ can be covered, and let T denote the first time v4
n is visited. The agent

at v4
n can only be at v3

n at time T − 1. Thus, the nodes v3
1, . . . , v

3
n−1 must also be occupied due

42

4.4. Undirected Topological Graphs

CMAPF-initUNDCMAPF-initUND

CMAPFUND

CMACP-initUND

CMACPUND

CMAPFDIR

CMACPDIR

Th. 4.3

Lemma 4.1

Th. 4.4

Figure 4.5 – Reductions of Section 4.4.

to connectivity constraint. Then, at time T − 2, all n agents were on the second layer v2
i . In

fact, the layer 4 must be empty at this point by the choice of T and due to connectivity edges
(and note also that there are no self-loops on the third layer). But since each node v2

i is only
connected to ti, at time T − 2 the other n agent must be at configuration t. This concludes the
proof.

Theorem 4.4. CMACPUND is PSPACE-complete.

Proof. The upper bound comes from Proposition 4.1. We present the lower bound, which
is by reduction from CMACP-initUND. We map a CMACP-initUND-instance (G, n, s) to the
CMACPUND-instance (G′, n + 2) of where G′ is defined as in Figure 4.3 (ignoring vertices
t1, . . . , tn). The formal description is given in the proof of Theorem 4.3.

We show that instance (G, n, s) of CMACP-initUND is feasible iff instance (G′, n + 2) of
CMACPUND is feasible. The proof is very similar to the proof of Theorem 4.3. The first n agents
are used for the execution in G while the two others operate in the gadget.

(⇒) If G can be covered starting from s then in G′, the agents can first reach s as described
in proof of Theorem 4.3, then follow the same plan to cover the graph, and execute the plan in
reverse to come back to s and then back to B′. Meanwhile, the two others reach tn+1 and tn+2
loops there and come back to B′.

(⇐) Assume there is a covering execution in G′ from base B′. We already proved in Theo-
rem 4.3 (Fact 1) that from configuration 〈B′, . . . , B′〉 the agents necessarily go through config-
uration 〈s1, . . . , sn, tn+1, tn+2〉 to go in G. In the proof of Fact 1, observe that before tn+2 is first
occupied no si can ever have been occupied, since these nodes are connected toB′ only through
tn+2. Hence the next configuration where all si are occupied is the first visit of any agent to any
si. Said otherwise, and generalizing to other instants when tn+2 starts being occupied, agents
always enter G at s1, . . . , sn together. With a dual reasoning, one can see that always leave G
together. Hence, the execution in G′, minus the steps in the gadget, can be reproduced in G.

We conclude this section by depicting, in Figure 4.5, the reductions used and the proof
scheme. The dotted arrows represent the unmentioned corollaries.

43

Part I, Chapter 4 – Connected Multi-Agent Path Planning

B = ci0 ci1 ci2 ci3 ci4 ci5 ci6

Figure 4.6 – Example of an ordering of nodes in V ′ = {c1, . . . , cn, B}.

4.5 Sight-Moveable Topological Graphs
The main challenge in deciding whether there exists a connected plan is to verify that the

given number of agents can visit a node of the graph while staying connected. Indeed, to visit
a location connected to, say, the base, an agent might have to rely on multiple other agents.
Hence, if we can guarantee that whenever two locations are connected we can move an agent
from one to the other without the need of an extra relay, the problem becomes “easy”. This
assumption underlies the definition of sight-moveable topological graphs. Interestingly, the un-
bounded decision problems CMAPFSM and CMACPSM are in LOGSPACE and NLOGSPACE,
respectively. Unfortunately, the bounded version bCMAPFSM is NP-complete. At the end of the
section, we discuss a relaxation method based on this class of graphs.

4.5.1 Upper Bounds
Let us call USTCONN (resp. STCONN) the problem of determining whether two nodes of

a given undirected (resp. directed) graph are connected. The algorithms presented in this section
rely on the following complexity result:

Theorem 4.5 ([130]). USTCONN is in LOGSPACE.

Proposition 4.3. CMAPFSM is in LOGSPACE.

Proof. Let us define the problem UCONN as that of checking whether a given undirected graph
is connected. By Theorem 4.5, this problem is in LOGSPACE since it suffices to check the
connectivity between all pairs of nodes in LOGSPACE.

We are going to reduce CMAPFSM to UCONN in logarithmic space.
Let G = 〈V,Em, Ec〉 a sight-moveable topological graph and c a configuration. Let V ′ =

{c1, . . . , cn, B}. We show that the configuration c is reachable iff the restriction of G′ := (V,Ec)
to the nodes in V ′ is a connected graph. It is clear that this condition is necessary since if G′ is
not connected then the agents cannot occupy configuration c.

Conversely, assume that G′ is connected. Then, let us order the nodes B, c1, . . . , cn into
ci0 , ci1 , ci2 , . . . , cin with ci0 = B, such that for all 1 ≤ j ≤ n, cij is connected to some cik with
0 ≤ k < j; such an order exists, and can be obtained by breadth-first search in a Ec-spanning
tree of V ′ at root B, see Figure 4.6 for an example.

We then construct an execution for reaching the configuration c as follows. The construction
is by induction on 0 ≤ j ≤ n: at step j, the first j agents occupy nodes ci1 , . . . , cij . The base case
j = 0 is the empty execution. For j ≥ 1, let k < j such that (cik , cij) ∈ Ec. We send the j-th
agent to cik following the path that has been constructed earlier, by induction. We then move that

44

4.5. Sight-Moveable Topological Graphs

agent to cij following a path that stays connected with cij , which exists by the sight-moveable
property, the other agents either stay at ci0 or at their respective cij by using the self-loops.

Thus, (G, n, c) is a positive CMAPFSM-instance iff G′ is a positive UCONN-instance. The
reduction is in logarithmic space: we compute G′ by enumerating all Ec-edges (u, v) in G, and
we output (u, v) when u, v ∈ V ′. We recall that we only take into account the working memory
for computing G′; the output – G′ itself – is not taken into account in the used space (see e.g.
[143], Ch. 8, Def. 8.21).

Before giving the complexity of CMACPSM, we need the following intermediary result. Let
us call Bounded-USTCONN the following problem: given an undirected graph G, two nodes
s, t, an integer n, decide whether there is a path of length at most n from s to t in G. Note that,
whatever the encoding of n is, the problem Bounded-USTCONN can be decided in logarithmic
space.

Lemma 4.2. Bounded-USTCONN is in NLOGSPACE.

Proof. We reduce Bounded-USTCONN to STCONN in logarithmic space as follows. From
a Bounded-USTCONN instance (G, s, t, n) we construct in logarithmic space a STCONN in-
stance (G′, s′, t′):

1. The nodes of G′ are pairs (v, j) where v is a node of G and j ∈ {0, 1, . . . ,m} where m
is the minimum of n and the number of nodes of G.

2. The graph G′ contains an edge between (v, j) and (v′, j + 1) when there is an edge
between v and v′ in G or when v = v′;

3. s′ = (s, 0) and t′ = (t, n).

The STCONN instance (G′, s′, t′) can be computed in log-space. Step 1 requires to store the
current node v of G′ to be processed and an integer j written in binary, that is of size logm. Im-
portantly, as m is smaller than the number of nodes in G′, the representation of m is logarithmic
in the size of the input. For this reason, note that the overall spatial complexity does not change
even if the encoding of n is in binary.

Proposition 4.4. CMACPSM is in NLOGSPACE.

Proof. Let G = 〈V,Em, Ec〉 be a sight-moveable topological graph and n an integer written in
unary. We prove that for all vertices v, there is a path of length at most n from v to the base c
in the communication graph iff (G, n) is a positive instance of CMACPSM. One direction is
obvious: if (G, n) is a positive instance, then all vertices must within a distance of at most n from
the base in the communication graph; otherwise no connected configuration can visit that vertex.
Assume that all vertices are within a distance of n from the base. For any vertex v, consider
path v1, . . . , vk in the communication graph, with v1 = c, vk = c, and such that (vi, vi+1) ∈ Ec.
We apply the construction of Proposition 4.3 to build an execution from configuration cn to
some configuration where k agents occupy {v1, . . . , vk}, and others stay at c. We now extend
this execution to “roll back” so that all agents return to the base. We first let the agent at vk, go
to vk−1: this is possible by the sight-moveable property and since (vk, vk−1) ∈ Ec. Then the two

45

Part I, Chapter 4 – Connected Multi-Agent Path Planning

agents together move to vk−2, and so on, until all come back to c. We can now combine these
executions to cover all vertices, and let agents end in the base.

Thus, the algorithm consists in checking sequentially, for all v, that ((V,Ec), v, c, n) is a
positive instance of Bounded-USTCONN. Hence, we obtain a non-deterministic algorithm in
logarithmic space to decide CMACPSM.

4.5.2 Lower Bounds
We now focus on the NP lower bound of bCMAPFSM.

Theorem 4.6. bCMAPFSM is NP-complete even for a fixed execution length ` ≥ 3.

46

4.5.Sight-M
oveable

TopologicalG
raphs

B

vci

ci

gci

(a) Clause gadget

B

vxi
v¬xi

x ¬x

gx

(b) Variable gadget

Figure 4.7 – Gadgets for reduction of 3-SAT into bCMAPFSM.

Movement
Communication
Fully connected path of length 4

B

vx1 v¬x1

x1 ¬x1

gx1

vxn v¬xn

xn ¬xn

gxn

vc1

c1

gc1

vcm

cm

gcm

Figure 4.8 – Reduction of 3-SAT into bCMAPFSM . Communication edges implied by movement edges are not displayed. The variable x1 is
present in the clause c1 and cn.

47

Part I, Chapter 4 – Connected Multi-Agent Path Planning

Proof. The upper bound comes from Proposition 4.2. The lower bound proof is by polyno-
mial time reduction from 3-SAT problem (see [78]). Given a 3-SAT instance, set of clauses
c1, . . . , cm with variables x1, . . . , xn, we describe the construction of an instance (G, k, c) of
bCMAPFSM with k = n+m agents.

The topological graph G = 〈V,Em, Ec〉 is constructed as follows. We start by placing the
base B from which the agents start their mission.

Please recall that in a sight-moveable graph all movements edges have a respective commu-
nication edges, thus in the construction below we do not explicit them.

For each variable x, we construct a gadget composed of 5 nodes connected to the base
depicted in Figure 4.7b: nodes xi, ¬xi, staging nodes vxi

, v¬xi
and a goal node gxi

. We add
movement edges from B to vxi

, from vxi
to x and from x to gxi

(resp. from B to v¬xi
, from v¬xi

to ¬xi and from ¬xi to gxi
). As for the communication, the node xi (res. ¬xi) communicates

with the base.

For each clause cj , we construct a gadget composed of 3 nodes depicted in Figure 4.7a. We
create a node cj , a staging node vcj

and a goal node gcj
. We add movement edges from B to

vc, from vcj
to cj and from cj to gcj

. The communication between a clause cj and a literal xi or
¬xi is dictated by the existence of the literal in the clause. We do not use direct communication
edges because the obtained topological graph should be sight-moveable. Instead, we use fully
connected paths of length 4. Such a path between – let say – xi and cj consists three intermediate
nodes p1

ij , p
2
ij , p

3
ij , such that there is a path made up of movement edges from xi to cj , passing

throw p1
ij , p

2
ij , p

3
ij . Furthermore, we suppose that the nodes xi, p1

ij , p
2
ij , p

3
ij and cj form a clique

w.r.t. to the communication edges. Now, there is a fully connected path of length 4 between xi
and cj if and only if xi ∈ cj; and there is a fully connected path of length 4 between ¬xi and cj
if and only if ¬xi ∈ cj .

We add movement edges from gxi
to gxi+1 , and from gcj

to gci+1 for all 1 ≤ i < n, as well
as from gxn to gc1 . Last, we add a fully connected path of length 4 from gx1 to the base such
that (gx1 , B) ∈ Ec, in the sense that all nodes of this path have communication edges between
them. This translation is polynomial in the number of clauses and variables. The construction is
depicted in Figure 4.8. The snake-like path from gx1 to B is a fully connected path of length 4.

From a 3-SAT instance, one can construct the graph G and ask for an execution of length 3
to reach the configuration 〈gx1 , . . . , gxn , gc1 , . . . , gcm〉.

Formally, the topological graph G = 〈V,Em, Ec〉 is defined by:

48

4.5. Sight-Moveable Topological Graphs

– V := {B, vx1 , v¬x1 , . . . , vxn , v¬xn , vc1 , . . . , vcm}
∪{gx1 , . . . , gxn , gc1 , . . . , gcm}
∪ {p1

B, p
2
B, p

3
B} ∪

{
p1
ij, p

2
ij, p

3
ij | i ∈ {1, . . . , n} , j ∈ {1, . . . ,m}

}
– Emis the symmetric closure of

{(B, vx1), (B, v¬x1), . . . , (B, vxn), (B, v¬xn), (B, vc1), (B, vc1xm)}
∪ {(vx1 , x1), (v¬x1 ,¬x1), . . . (vxn , xn), (v¬xn ,¬xn)}
∪ {(vc1 , c1), . . . , (vcm , cm)}
∪ {(x1, gx1), (¬x1, gx1), . . . , (xn, gxn), (¬xn, gxn)}
∪ {(c1, gc1), . . . , (cm, gcm)}
∪

{
(gx1 , gx2), . . . (gxn−1 , gxn), (gxn , gc1), (gc1 , gc2), ..., (gcm−1 , gcm

}
∪{(B, p1

B), (p1
B, p

2
B), (p2

B, p
3
B), (p3

B, gx1)}
∪

{
(xi, p1

ij), (p1
ij, p

2
ij), (p2

ij, p
3
ij), (p3

ij, cj) | xi ∈ cj
}

∪
{

(¬xi, p1
ij), (p1

ij, p
2
ij), (p2

ij, p
3
ij), (p3

ij, cj) | ¬xi ∈ cj
}

– Ec is the symmetric and reflexive closure of
Em ∪ {(B, x1), (B,¬x1), . . . , (B, xn), (B,¬xn)}

∪

(B, p1

B), (p1
B, p

2
B), (p2

B, p
3
B), (p3

B, gx1),
(B, p2

B), (p1
B, p

3
B), (p2

B, gx1)
(B, p3

B), (p1
B, gx1), (B, gx1)

∪

(xi, p1

ij), (p1
ij, p

2
ij), (p2

ij, p
3
ij), (p3

ij, cj),
(xi, p2

ij), (p1
ij, p

3
ij), (p2

ij, cj)
(xi, p3

ij), (p1
ij, cj), (xi, cj)

| xi ∈ cj

∪

(¬xi, p1

ij), (p1
ij, p

2
ij), (p2

ij, p
3
ij), (p3

ij, cj),
(¬xi, p2

ij), (p1
ij, p

3
ij), (p2

ij, cj)
(¬xi, p3

ij), (p1
ij, cj), (¬xi, cj)

| ¬xi ∈ cj

;

where nodes pk• are the intermediate nodes in the fully connected paths.

Fact 3. G is a sight-moveable topological graph.

Proof. Concerning the communication between the base B and the nodes xi (resp. ¬xi), a
path does exist under the communication of B to reach xi (resp. ¬xi), due to communication
induced by the movement. For the other communication edges, they are part of full connected
paths which guarantee the sight-moveable condition. This ends the proof of Fact 3. 4

Now let us prove that a 3-SAT instance is satisfiable iff there exists an execution of at most
3 steps in the graph G.

(⇒) We show that if a 3-SAT instance is satisfiable then there exists an execution of at most
3 steps in the graph G built from it. Let val be a truth assignment which satisfies the instance.
Recall that there are n + m agents. The first step of the execution consists in moving an agent
in each vci

, and for each variable xi, moving one agent to vxi
if the val(xi) = 1 and to v¬xi

otherwise. Note that all staging nodes communicate with B.
In the second step, all agents progress to their unique successors other than B. While all

nodes xi and ¬xi are connected to B, a node ci is connected to B if and only if there is an

49

Part I, Chapter 4 – Connected Multi-Agent Path Planning

agent in one of its literals. This is the case since val satisfies the formula. In the third step of the
execution, agents go to states gxi

and gci
. Here, the connection with the base is ensured since gx1

is connected to it, and gx2 is connected to gx1 , gx3 is connected to gx2 and so on.
This execution is thus a solution of bCMAPFSM with bound ` = 3.
(⇐) We show that if in the graph G there exists an execution of at most 3 steps constructed

from a 3-SAT instance, then the instance is satisfiable. Let us assume that we have an execution
e of at most 3 steps with the last configuration being 〈gx1 , . . . , gxn , gc1 , . . . , gcm〉.

The only shortest path from B to gci
is of length 3 and goes through vci

. For states gxi
, the

only shortest paths are also of length 3 and go through either vxi
or v¬xi

. Thus, in order to reach
the given target configuration, at the initial step, agents must cover the states vci

and either vxi

or v¬xi
for all i, j. At the second step, following the above mentioned shortest paths, agents will

be at states ci and either xi or ¬xi depending on the staging nodes they were occupying. The last
step is the target configuration. Since the agents are connected at the second, it follows that for
each clause cj , the state corresponding to some literal of cj is occupied by an agent. Thus, the
valuation on variables encoded by the choices of the agents satisfies the 3-SAT instance.

4.5.3 Relaxation
For unbounded reachability and coverage, it seems tempting to take advantage of efficient

algorithms on sight-moveable topological graphs (Proposition 4.3 and 4.4). In this subsection,
we propose a transformation of a topological graph into a sight-moveable sub-graph. This trans-
formation leads to a relaxation method: a solution found in the obtained sight-moveable topo-
logical graph still holds in the original graph.

This transformation requires the original graph to already satisfy properties 1 and 2 of Defi-
nition 4.3. If not, (1) we remove movement edges (v, v′) ∈ Em that are not inEc, (2) we remove
all nodes without a self-loop.

Algorithm 1 Transformation into a sight-moveable topological graph

Require: A topological graph G = 〈V,Em, Ec〉 satisfying properties 1 and 2 of Definition 4.3
1: C := ∅
2: for all v ∈ V do
3: Q := {v}
4: while Q not empty do
5: v′ := Q.pop()
6: for all v′′ | (v′, v′′) ∈ Em do
7: if (v, v′′) ∈ Ec then
8: C := C ∪ {(v, v′′)}
9: Q := Q ∪ {v′′}

10: E ′c := {(v, v′) | (v, v′) ∈ C and (v′, v) ∈ C or v′ = v}
11: return 〈V,Em, E ′c〉

The simple transformation, given in Algorithm 1, prunes the communication edges which

50

4.5. Sight-Moveable Topological Graphs

do not respect the property 3 of sight-moveable topological graphs, described in Definition 4.3.
We now show this transformation outputs a sight-moveable topological graph.

Theorem 4.7. Algorithm 1 constructs a sight-moveable topological graph.

For simplicity, we say that a node v is sight-moveable to a node v′ iff there exists a sequence
ρ = 〈ρ1, . . . , ρn〉 of nodes such that v = ρ1, v′ = ρn, (v, ρi) ∈ Ec and (ρi, ρi+1) ∈ Em for all
i ∈ {1, . . . , n−1}. Algorithm 1 consists in running a breadth-first search from each vertex, and
marking all reachable vertices v′ to which v is sight-moveable. The communication edges are
kept if the sight-moveable property was shown to hold in both directions.

Proof. First, given a node v, we show that the queue Q contains only nodes that v is sight-
moveable to.

Invariant Given v, let Iv: for all v′ ∈ Q, v is sight-moveable to v′.

Proof. Before entering the while loop, at Line 3, the queue Q contains only v. Hence, the
Invariant Iv is initially satisfied. Let us suppose that Invariant Iv holds after an arbitrary number
of loop iterations. If Q is empty, Invariant Iv holds. Otherwise, a node v′ is popped out of Q. If
a successor of v′ communicates with v then we add the successors of v′ to Q. Invariant Iv holds
since v is sight-moveable to v′, by induction, and (v, v′′) ∈ C. 4

We add a pair (v, v′) to C iff v′ was in Q and (v, v′) ∈ Ec. Hence, given Invariant Iv,
(v, v′) ∈ C iff v is sight-moveable to v′. Finally,E ′c is the set of pairs (v, v′) such that (v, v′) ∈ C
and (v′, v) ∈ C, that is v is sight-moveable to v′ and v′ is sight-moveable to v. Therefore, the
graph returned by Algorithm 1 is sight-moveable.

This relaxation offers the opportunity to verify efficiently if a topological graph contains a
solution. It is worth noting that the original topological graph might admit a solution, while no
solution is found by the relaxation.

We illustrate the usage of the relaxation on the following maps, depicted in Figure 4.9, previ-
ously used by Tateo et al. [151], for the study of their algorithms. We use a similar discretization
of the maps, i.e. the nodes of the graph are obtained by cells of 11×11 pixels for Office and
13×13 for Open, and we assume the communication range to be of 100 pixels. In addition, we
use the same discretization with cells of 15×15 pixels for Coast, a map from the Benchmarks
for Grid-Based Path-Finding [149], with an identical communication range.

We show, in Figure 4.10, the size of each component of the graphs obtained after discretiza-
tion and the impact of the relaxation. The relaxation of Office removes up to 18% of the com-
munication edges. We can observe that most of the communication through the walls, allowed
by the communication range, will be removed in the relaxation since the sight-moveable prop-
erty cannot be ensured. In particular the large room in the center loses a lot of communication
edges with its surrounding. However, the relaxation of Open removes only 0.2% of the com-
munication due to its small number of obstacles. Finally, the relaxation does not remove any
communication edges from the discretization made of Coast.

Intuitively, the relaxation removes communication links between two vertices which cannot
be connected by maintaining communication. In fact, if a node communicates through an obsta-
cle, then the sight-moveable property requires it to have a bypass path that remains connected.

51

Part I, Chapter 4 – Connected Multi-Agent Path Planning

This is why, in the Office map, in particular at the borders of the central room, most communi-
cation links through walls are removed by the algorithm. But if the size of the obstacles is larger
than the communication range, then there will be mostly no communication through obstacles,
and it is unlikely that the relaxation will remove any communication edges: this can be observed
on the Coast map where no edge is removed by the algorithm.

Thus, in open maps such as cities, forests etc., we expect that our relaxation removes a few
edges and preserves the feasibility of our problems. It might however remove more communica-
tion edges, rendering the problems infeasible in indoor applications (inside of buildings, mazes,
etc.). We leave the empirical evaluation of this relaxation for future work.

52

4.5.Sight-M
oveable

TopologicalG
raphs

(a) Office (b) Open

(c) Coast

Figure 4.9 – Maps.

Map/Graph
Original Relaxation

Nodes Movement Communication Communication
Office 1669 5618 277059 227155
Open 2421 9114 295155 294503
Coast 5184 20448 580644 580644

Figure 4.10 – Characteristics of the discretized graphs and their relaxations.

53

Part I, Chapter 4 – Connected Multi-Agent Path Planning

3-SAT

bCMAPFSM

bCMAPFDIR

G-HC

bCMACPCC

bCMACPDIR

Th. 4.6 Th. 4.8

Figure 4.11 – Reductions of Sections 4.5 and 4.6.

4.6 Complete-Communication Topological Graphs
The following result relies on the fact that the communication is complete.

Proposition 4.5. bCMAPFCC is in NLOGSPACE.

Proof. We refer to Lemma 4.2. Indeed, given a configuration c and ` ∈ N, the straightforward
iteration on the locations ci followed by the verification of a path of at most ` (given in unary)
steps from B to ci yields a sound and complete algorithm for bCMAPFCC.

Our NP lower bound proof of the bCMACPCC problem is by reduction from the grid Hamil-
tonian cycle (G-HC) problem which is the Hamiltonian cycle problem restricted to grid graphs
and is NP-complete [75]. We use this particular version of the Hamiltonian cycle problem for
simplicity of the proof. Furthermore, we obtain a lower bound on the bCMACPCC problem with
a grid movement graph.

Theorem 4.8. Even restricted to grid graphs, bCMACPCC is NP-complete for a fixed number
of agents n ≥ 1.

Proof. The upper bound follows from Proposition 4.2.
We give a polynomial-time reduction from the G-HC problem. Consider an instance of G-HC

denoted G = 〈V,E〉.
Consider the sight-moveable topological graph G′ = 〈V,Em, Ec〉 with undirected move-

ment Em = E and Ec = V × V and associate a single agent and the bound |V | to the
bCMACPCC instance. We call a simple cycle containing all vertices a tour. We prove that there
exists a tour t in G iff there exists a covering execution of length |V | in G′.

(⇒) Any tour of G is a valid execution satisfying bCMACPCC since the communication
edges form a complete graph, and the bound is |V |.

(⇐) Let us suppose that we have an execution of length |V | which covers the graph G′. The
execution starts and ends at B and visits all nodes in |V | steps. Hence, the execution visits all
nodes only once and is a cycle in the graph.

In Figure 4.11, we depicted the results obtained in this section and in Section 4.6.

54

4.7. Variants

4.7 Variants
In this section, we introduce several variants and study their impact on the complexity.

4.7.1 Bounded Reachability and Coverage with Binary Bounds
Our membership NP proofs for the bounded versions of the reachability and coverage prob-

lems rely on the unary encoding of the bound given in input. It is relevant to investigate the
impact of providing that bound in binary on the complexity of the problems.

We show that both problems bCMAPFDIR and bCMAPFUND with the bound ` written in
binary are both PSPACE-complete. The membership to PSPACE can be shown as in Proposi-
tion 4.1: since a binary counter can be added to count up to `. For bCMAPFUND, the PSPACE-
hardness follows from a reduction from CMAPFUND, whose PSPACE-hardness is established
in Theorem 4.3. Indeed, any instance of CMAPFUND can be reduced to bounded reachability
with bound ` = |V |n. In fact, if CMAPFUND has a solution, then there is a plan of length
at most |V |n. Indeed, in the worst case, the agents must go through all configurations possi-
ble in the graph. This number can be computed in polynomial time and represented in binary.
The same argument is used to show the PSPACE-hardness of bCMAPFDIR by reduction from
CMAPFDIR whose PSPACE-hardness was proved by Tateo et al. [151] (see Theorem 4.2).

Theorem 4.9. The variants of bCMAPFDIR and bCMAPFUND with ` written in binary are
PSPACE-complete.

A similar argument can be used to show the PSPACE-hardness of the problems bCMACPUND

and bCMACPDIR. In fact, if there is a covering execution, then there must be one of length at
most |V |n × (|V | + 1). Indeed, the agents must traverse at most the |V |n possible configura-
tions to reach each node of the graph and go back to the base, which means an upper bound of
|V |n × (|V | + 1) for the whole execution. This bound can be written in binary in polynomial
space, so PSPACE-completeness also holds for these problems.

Theorem 4.10. The variants of bCMACPDIR and bCMACPUND with ` written in binary are
PSPACE-complete.

4.7.2 Weighted Movement Graph
An interesting extension is obtained by assigning costs to edges of the movement graph, and

considering the bounded reachability problem with respect to the total cost of the execution.
Consider a weighted topological graph G = 〈V,Em, Ec, cost〉, where for each edge cost(e)

is the cost of e, a positive integer.
One could consider several ways of aggregating the weights along executions. We consider

the case where the weights correspond to travel times between vertices, and the goal is to min-
imize total travel time, which also implies minimizing battery usage in drone applications. We
consider a synchronous setting where all agents synchronize at each configuration in the plan;
therefore, the travel time between two configurations is the maximum of the weights of the

55

Part I, Chapter 4 – Connected Multi-Agent Path Planning

edges along which agents travel. In other terms, we assume that agents wait for each other at
each step of the execution.

Formally, for an execution c0, c1, . . . , ck, the total cost is defined as follows:

k−1∑
i=0

max
j∈{1,2,...,n}

cost(cij, ci+1
j), (4.1)

where cij denotes the vertex occupied by agent j at configuration ci. Assuming binary encoding
of all weights, we are interested in checking the existence of an execution of bounded cost, and
that of a covering execution of bounded cost.

When weights are encoded in unary, both reachability and coverage problems are NP-hard
since when all costs are equal to 1, then the problems are identical to bCMAPF and bCMACP,
respectively. Since all weights are natural numbers, the length of the execution is not more than
the cost bound given in input. Thus, similarly to Proposition 4.2, one can guess an execution
and bound its length with a polynomial number of guesses.

Theorem 4.11. The weighted variants of bCMAPF, bCMACP on directed and undirected
topological graphs with unary encoding are NP-complete.

When the weights are encoded in binary, then the problems are PSPACE-hard as shown in
Section 4.7.1; and the PSPACE algorithms can be extended to establish PSPACE-completeness.

Theorem 4.12. The weighted variants of bCMAPF, bCMACP on directed and undirected
topological graphs with binary encoding are PSPACE-complete.

4.7.3 Bounded Disconnection
Another extension consists in allowing the agents to be disconnected for a bounded number

of steps along the execution. Such a feature can be desirable in order to allow the agents to reach
difficult locations where communication cannot be guaranteed. By bounding the disconnection
time, the connection with the base is only disturbed temporarily.

This extension is also PSPACE-complete. In fact, our membership results can easily be ex-
tended both for reachability and coverage problems. For PSPACE-hardness, observe that when
the allowed bound is 0, the problems become identical to our setting, so all hardness proofs
carry over.

4.7.4 Collisions
Collision constraints consist in disallowing several agents to share the same location at a

given time, and provide an interesting extension of our setting. In our case, we allow several
agents to be at the base but not at other nodes.

The PSPACE-completeness results hold by using the same reductions used for the proof of
Theorems 4.3 and 4.4 from the collision-free variant problem of Tateo et al. [151]. Indeed, the
reductions gadgets used are collision-free, and thus we obtain:

56

4.7. Variants

Theorem 4.13. The variants with collision constraints of the problems CMAPFUND, CMAPFDIR,
CMACPUND and CMACPDIR are PSPACE-complete.

We can show that when the topological graph is sight-moveable, then the complexity of de-
ciding the reachability and coverage without allowing collisions is unchanged. We use the same
membership proof of Proposition 4.3 and 4.4. Indeed, a positive instance of CMAPFSM (resp.
CMACPSM) is a positive instance of CMAPFSM (resp. CMACPSM) with collision constraints.
In order to obtain a collision-free execution, it suffices to modify as follows: we consider an
ordering, as depicted in Figure 4.6, and consider each branch one by one. For each branch, we
dispatch first the agent with the furthest target from the base, followed by the second furthest
agent and so on. This yields a collision-free execution for CMAPFSM. CMACPSM can be solved
by a repeated application of CMAPFSM. Observe that CMAPFCC and CMACPCC can use the
same algorithms.

Theorem 4.14. The variants of the problems CMAPFSM, CMAPFCC (resp. CMACPSM and
CMACPCC) with collision constraints are in LOGSPACE (resp. NLOGSPACE).

Regarding the bounded versions, the membership of Proposition 4.2 hold without allowing
collisions. Indeed, checking if the path contains a collision can be done in polynomial-time. The
lower bound can be showed by reduction from the MAPF problem to bCMAPFCC. Additionally,
the proof of Theorem 4.8 holds without allowing collisions given that the proof holds for a single
agent.

Theorem 4.15. The variants of bCMAPF? and bCMACP? without collisions are NP-complete
for all ? ∈ {UND, DIR, SM, CC}.

4.7.5 Planar Movement Graphs
One could wonder whether the complexity of these problems change when restricted to

topological graphs whose movement graphs are planar. This is an interesting question since in
targeted applications the graphs are indeed planar; and some problems are known to become
easier on planar graphs (e.g. the shortest path computation [80]). In this section, we show that
our reductions proving the PSPACE-hardness of CMAPFUND, CMACP-initUND, CMACPUND

and CMAPFSM use planar graphs, which means that these hardness results hold even when the
input is restricted to planar graphs.

Actually, the proof of CMAPF-initUND, by Tateo et al. [151], uses a planar movement graph.
They even prove a stronger result: the reachability problem is PSPACE-hard even for graphs that
are disjoint unions of paths 2.

Let us consider an instance (GReachinit
, B, s, t) of CMAPF-initUND where GReachinit

is a
topological graph that is a disjoint union of paths (depicted in the middle of Figure 4.12), B is

2. Their reduction is from a problem called the reconfiguration problem on constraint graphs. The topolog-
ical graph computed from a constraint graph contains single nodes (), paths of length 3 (which we denote by

) and a single path graph of length |E| (denoted by . . .), with E the set of
edges in the constraint graph.

57

Part I, Chapter 4 – Connected Multi-Agent Path Planning

GReachinit

GReach

GCoverinit

GCover

B

B′

v′1 v′2 v′n

v1 v2 vn

v′n+1 v′n+2

vn+1 vn+2

s1 s2 sntn+1 tn+2

v1
1 v1

2 v1
n+2

v4
1

B′′

v1 . . . vn+2 vn+2+1 . . . vn+2+n+2vn+2+n+3 vn+2+n+4

v′1 . . . v′n+2 v′n+2+1 . . . v′n+2+n+2v′n+2+n+3 v′n+2+n+4

tn+2+n+3 tn+2+n+4

Figure 4.12 – Summary of all the planar constructions.

58

4.8. Conclusion

its base, s = (s1, . . . , sn) is initial configuration for n agents, depicted at the bottom ofGReachinit

in Figure 4.12 and t = (t1, . . . , tn) is the target configuration (the target nodes t1, . . . , tn are in
GReachinit

as defined by Tateo et al. [151] but are not displayed in the figure).
Then as shown in Figure 4.12, the gadgets we proposed in this contribution can all be ar-

ranged to obtain planar graphs as well.

1. The gadget given in Figure 4.3, used in the proof of Theorem 4.3 is a planar graph; in
fact, it can be arranged, to obtain GReach (in Fig. 4.12) whose base is B′ and is designed
for n+ 2 agents. This proves that CMAPFUND is PSPACE-hard on planar graphs.

2. We consider now the reduction of Figure 4.4 used in proof of Lemma 4.1, which contains
GReach. This reduction, namedGCoverinit in Figure 4.12 is also planar. The base of this graph
is still B′, and it is designed for n+ 2 +n+ 2 = 2n+ 4 agents. In this reduction, the first
n + 2 agents start in B′ while the others start in v1

1, . . . , v
1
n+2. Indeed, the latter gadget

is disconnected from the rest of the graph, except that the node v4
1 has a movement edge

to all nodes in the graph. One can observe that a movement edge can be created from
v4

1 to all nodes in the graph GReach, while keeping the construction planar, thanks to the
particular structure ofGReach. This shows that CMACP-initUND is PSPACE-hard on planar
graphs.

3. Finally, we can add the gadget of Figure 4.3 used in proof of Theorem 4.4, shown in the
top part of Figure 4.12. We thus obtain GCover designed for 2n + 4 + 2 = 2n + 6 agents
starting at the base B′′, which is the reduction of Theorem 4.4. The obtained graph is also
planar. This shows that CMACPUND is PSPACE-hard on planar graphs.

To sum up:

Theorem 4.16. CMAPFUND, CMACP-initUND and CMACPUND are PSPACE-hard on planar
graphs.

4.8 Conclusion
We have studied numerous variants of the defined problems in the hope to give a complete

overview of this new extension of the MAPF problem. We provided a thorough study of coordi-
nation problems under connectivity constraints for reachability and coverage. This study carves
an initial map of the complexity and the difficulties that can rise while solving such problems.

We still lack results for some of these variants. Furthermore, it is also unclear whether the
combination of these variants can yield higher complexity. Additionally, there are still many
variants of MAPF that have not been extended to these problems.

An important result of this chapter is the introduction of sight-moveable topological graphs.
Indeed, being able to decide in NLOGSPACE whether the reachability or the coverage can be
done is an important improvement over the previous results. However, the optimization of the
execution cannot be solved in a easier manner in this class.

In realistic situation, the topological graph may not be fully known in advance. Indeed,
the discretization may not represent faithfully the area in which the agents evolve. Thus, we

59

Part I, Chapter 4 – Connected Multi-Agent Path Planning

attend to extend this work to incomplete knowledge in which the agents only have an over-
approximation of the actual topological graph. While the agents move around the area they can
observe the graph and update their knowledge.

Finally, not only can the area be partially known by the agents, but some mishaps can happen
during the mission. Indeed, an external actor might disable an agent and, in this setting, the
group of agent should have to find the agent or finish the mission without it. In the weighted
graph extension (Subsection 4.7.2), mishaps can also be due to strong wind which modifies the
cost of the movement.

60

CHAPTER 5

CONNECTED-CONFLICT-BASED SEARCH

5.1 Introduction
In this chapter, we study an optimal decoupled algorithm for CMAPF that can be extended to

the collision-avoidance requirement. Our algorithm is an adaptation of CBS [137, 139] to handle
connectivity constraints. We thus present the first optimal algorithm that handles connectivity
in this setting.

Both MAPF and CMAPF could be solved offline as a single-agent search with A* [64].
However, this would be exponential in the number of agents and available moves. This coupled
approach is computationally intensive and less effective, in general, than a decoupled approach
in which paths of the agents are computed separately. This is the approach taken by CBS to solve
MAPF. CBS computes optimal paths for each agent separately; and when a collision between
two agents is detected at a location at a given time step, it enforces one of the agents away from
that location at that time. Numerous improvements have been introduced to CBS [20, 46, 90,
91, 92].

Our contribution is an optimal algorithm called Connectivity-Conflict-Based Search (CCBS)
to solve CMAPF. The main structure of the algorithm is based on CBS with new enhancements
to deal with the particular challenges of CMAPF. Observe that CBS deals with collision con-
flicts between two agents by enforcing one of the agents to move away from the location of
the collision. In CCBS, connectivity conflicts correspond to disconnected configurations, that
is, configurations where the agents do not form a connected subgraph. Resolving such a conflict
is more tricky: a connectivity conflict can involve several agents (i.e. one may need to relocate
several agents to obtain a connected configuration) and a single disconnected agent may not be
the source of the conflict. Thus, unlike CBS, our algorithm may need several steps to resolve a
connectivity conflict.

Outline Section 5.2 presents our algorithm. Section 5.3 contains the correctness and opti-
mality proofs. Section 5.4 presents experiments, and we conclude and discuss the many possible
extensions of this work in Section 5.5.

5.2 Connected-Conflict-Based Search
In this section we describe our algorithm called Connectivity-Conflict-Based Search (CCBS)

for CMAPF. Let us first introduce an example used to illustrate some notions during the pre-
sentation of our algorithm.

61

Part I, Chapter 5 – Connected-Conflict-Based Search

v1 v2 v3

v4 v5 v6

Movement edges
Communication edges

Figure 5.1 – An example of a topological graph.

Example 5.1. Consider the topological graph of Figure 5.1. Consider the instance of CMAPF
with k = 2 agents with starting configuration s = 〈v1, v4〉 and goal configuration g = 〈v3, v6〉.
The execution ([v1, v2, v3], [v4, v5, v6]) is not connected. Indeed, at the second step the config-
uration is 〈v2, v5〉: no communication edge exists between v2 and v5. However, the execution
([v1, v2, v3, v3], [v4, v4, v5, v6]) is connected since the configurations 〈v1, v4〉, 〈v2, v4〉, 〈v3, v5〉
and 〈v3, v6〉 are connected. This execution is actually an optimal solution of this CMAPF in-
stance and is of cost 4.

Our algorithm is inspired by the general concept of CBS [139] which solves MAPF by
finding an optimal collision-free execution (without any connectivity constraints). CBS solves
the MAPF problem in a decoupled manner by computing separately the path of each agent
and progressively repairing the resulting execution by constraining agents away from collision
locations. CBS is correct and optimal, that is, it finds a collision-free execution with minimum
cost whenever there is at least a solution, and, as shown by Sharon et al. [139], it can be made
complete by the addition of a polynomial procedure [172], that is, it can also detect the absence
of solution.

Similarly to CBS, CCBS is composed of two levels, the high-level constructs a constraint
tree which searches for the right set of constraints to add; and the low-level computes single-
agent paths satisfying given constraints.

Definition 5.1 (Constraint). A positive constraint is a tuple denoted by 〈a, v, t〉 where a is an
agent, v a vertex, and t a time step.

Intuitively, a positive constraint 〈a, v, t〉means that agent amust be at vertex v at time step t.
Formally, given an execution exec, the path execa for agent a is consistent with such a constraint
if execa[t] = v. An execution exec is consistent with a set of constraints if all paths execa are
consistent with all constraints in the set.

Notice the difference with CBS [139] which only uses negative constraints, while we use
positive ones. Positive constraints were already also used by Li et al. [91] for collision con-
straints only.

We will say that an execution exec has a connectivity conflict at time t, if there exists t such
that exec[t] is a disconnected configuration.

5.2.1 The High-Level: The Constraint Tree
Given an instance of CMAPF 〈G, k, s, g〉, the high-level of CCBS builds a constraint tree

containing constraint nodes.

62

5.2. Connected-Conflict-Based Search

Definition 5.2 (Constraint Node). A constraint node n is composed of the following attributes:
1. n.cons — a finite set of constraints;
2. n.exec — an execution;
3. n.cost — the cost of the execution.

Initially, the tree contains a single root node n with an empty set of constraints, an execution
composed of a shortest path from sa to ga for each agent a.

If the execution is connected, we return it. Otherwise, we say that the execution contains
connectivity conflicts, that is, disconnected configurations. In this case, we split this constraint
node as follows: we select (1) a disconnected configuration at a timestep t, (2) and an agent
a, and (3) for each vertex v ∈ V , we create a successor constraint node n′ with constraints
n.cons ∪ {〈a, v, t〉}; we assign a shortest path for a satisfying these constraints, keep other
agents’ paths unchanged, and compute the cost of this new solution.

These generated constraint nodes are stored in a priority queue, called OPEN, ordered by
the cost of their executions, and we break ties by choosing nodes with the least number of
connectivity conflicts. Note that a child node added for a connectivity conflict at time step t
may still contain a connectivity conflict at time step t; in fact, one may need to add several
constraints (that is, to move several agents) in order to render the configuration connected.
When generating children nodes for a connectivity conflict at time t, we thus do not consider
agents for which there is already a constraint at time t since this would be either redundant or
make the node unsatisfiable.

Note that for each connectivity conflict at time t and an agent a, one of the generated child
node constrains agent a to his current location (this is because a child node is created for all v ∈
V). This allows us to guarantee the optimality of the algorithm; in fact, if the optimal solution
requires the agent to remain at his current position, we do keep a branch in the constraint tree
consistent with an optimal solution.

We describe the 3 main steps of the high-level algorithm:

(1) Choice of the connectivity conflict Once a constraint node is selected for splitting from
the priority queue, we need to select a connectivity conflict, that is, a disconnected configuration
in the execution. An execution contains multiple conflicts in general, and the order in which
these are addressed can have an impact on the performance of the search.

Notice that one may need to modify several paths, that is, add several constraints, in order to
render a configuration connected. Each such constraint corresponds to a level in the constraint
tree, so several levels may be required to transform a single configuration into a connected
one. Intuitively, we would like the search to avoid exploring too deep in the constraint tree
too quickly, so we prefer conflicts that require a small number of constraints. We thus select
a conflict with the least number of connected components in the communication graph of the
configuration. The constraints added to solve such a conflict of course impact other time steps as
well. Although these might create new conflicts, they can also solve other conflicts; intuitively,
the hope is that the constraints often force the agents to remain close to each other rather than
drift apart thus often guide us towards a solution. We empirically observed that this choice
improved the performance.

63

Part I, Chapter 5 – Connected-Conflict-Based Search

(2) Choice of the agent In the worst case, one might need to relocate almost all agents in
order to render a configuration connected. However, this is often not the case. In order to solve
a connectivity conflict with a small number of constraints (thus, a small number of levels in
the constraint tree), we select an agent in one of the smallest connected components of the
communication graph of the configuration. For instance, an agent which seems to be alone and
disconnected from the rest of a big group is selected and relocated first.

(3) Reducing the branching factor When splitting a constraint node, we generate a new con-
straint node for each available position of the selected agent, generating a total of |V | children
nodes. Such a branching factor is not practical for an efficient search. Fortunately, most of the
positions are often not reachable by the agent at the considered time step given the set of con-
straints of the node. Hence, the high-level algorithm creates a large number of nodes which are
not satisfiable. In order to limit the generation of such nodes, we consider the following two
optimizations.

Partial Splitting: The idea of this optimization is that when splitting a node n, we give
priority to child nodes that have a better chance of not extending the execution. In fact, given a
conflict at time t and agent a, we first only generate successor nodes for each v reachable by a in
exactly t steps; and put the parent node n back to OPEN with its cost increased by 1. The next
time the node n is selected for splitting, we continue generating nodes for vertices v reachable
by a in exactly t−1 steps etc. Notice that the second set of nodes will necessarily increase the
cost since they constrain the agent, at time t, to a vertex that they could reach in t−1 steps
(while this might be necessary to ensure connectivity). Observe also that a constraint with v
only reachable with more than t steps would be unsatisfiable so these are not generated. This
optimization is inspired by Enhanced Partial Expansion A* (EPEA*) [45].

Future constraint: When an agent a is constrained to be at location v at time t, this con-
strains the first portion of the path to be of length exactly t, and to end in v. Thanks to this simple
observation, when addressing a connectivity conflict at time t′ < t, we can consider only those
constraining at locations v′ at time t′ such that there exists a path of length t′ from sa to v′, and
a path of length t− t′ from v′ to v.

Both optimizations can be implemented using multi-value decision diagrams (MDDs) [20].
Indeed, given agent a and cost `, MDDs allow one to build a compact representation of all
paths of cost ` for agent a. An MDD has a level for each time step, and level t contains all
locations at which the agent a can be at time t along paths that reach the goal location with cost
exactly `. In particular, if agent a can reach their goal with cost `, then level 0 only contains the
start location and level ` only contains the goal location. We denote by MDD`

a[t] the set of all
locations reachable by agent a with cost t along paths of cost ` that end in the goal. Figure 5.2a
(resp. 5.2b) is the MMD of cost 2 (resp. 3) of agent 1 in Example 5.1. Note that MDD3

1 does
not contain the path [v1, v2, v3, v3], as idling on the goal has cost 0, so this path has cost 2.

The overall algorithm is given in Algorithm 2, which shows how the constraint tree is cre-
ated. It maintains a priority queue OPEN which stores the set of leaf nodes that have not been
expanded yet. It runs as long as a solution has not been found and OPEN is non-empty. At each
iteration, the best node is picked (Line 3). If this node has no connectivity conflict, it means
that a solution is found (Line 4). If the node has connectivity conflicts, then such a conflict

64

5.2. Connected-Conflict-Based Search

v1 v2 v3

(a) MDD2
1

v1

v1

v2

v2 v3

(b) MDD3
1

Figure 5.2 – MDDs for agent 1 in Example 5.1.

Algorithm 2 High-Level of CCBS
Require: Topological graph G = 〈V,Em, Ec〉, configurations s, g (considered as global variables)

1: INSERTROOT

2: while OPEN is not empty do
3: n := remove the best node from OPEN
4: if n has no conflict then return n.exec
5: CHILDREN := empty list
6: t := time-step of the chosen conflict in n.exec (1)
7: a := agent to split at t in n (2)
8: SPLIT(n, t, a)
9: if BYPASS was raised then

10: discard CHILDREN and insert n again into OPEN.
11: else
12: insert all nodes in CHILDREN into OPEN

Algorithm 3 Sub-procedures
1: procedure INSERTROOT

2: root := new node
3: root.cons := ∅
4: for all agents a do root.execa := CSP(sa, ga, ∅)
5: root.cost := Cost(exec)
6: insert root into OPEN

7: procedure CREATECHILD(node n, constraint 〈a, v, t〉)
8: n′ := new node with n′.cons := n.cons ∪ {〈a, v, t〉}
9: for all agents b 6= a do n′.execb := n.execb

10: n′.execa := CSP(sa, ga, n′.cons)
11: n′.cost := Cost(exec)
12: if n′.cost = n.cost and n′ has less conflicts than n then
13: n.execa := n′.execa
14: raise BYPASS
15: insert n′ into CHILDREN

16: procedure SPLIT(node n, time-step t, agent a)
17: for all v ∈ V and following (3) do
18: CREATECHILD(n, 〈a, v, t〉)

65

Part I, Chapter 5 – Connected-Conflict-Based Search

and an agent are chosen and child nodes are created (Lines 6 and 7). The last part of the algo-
rithm shows the bypass optimization from Boyarski et al. [19] which is the following. If a child
node n′ of n has the same cost as n, but has fewer conflicts, then we replace the execution of n
by that of n′, discard all children, and put n back in OPEN. This allows us to bound the size of
the constraint tree.

5.2.2 The Low-Level: Constrained Shortest Paths

We use an algorithm similar to the one described by Li et al. [91] to compute the constrained
shortest paths for individual agents. Given a set of positive constraints, a start and a goal vertex,
we use the positive constraints as timely ordered landmarks. We compute a shortest path from
the start location to the first landmark using the original low-level of CBS [137] (time-space
A*). Then from the first landmark to the second and so on until the goal vertex. No time bound
is put on the path to the goal, while one is used on landmarks, which correspond to the times
given in the constraints. Remark that if a landmark cannot be reached in the given time then
there is no path satisfying the constraints.

Algorithm 3 shows the sub-procedures used in CCBS. CSP is a call to the low-level, that is,
CSP(sa, ga, c) returns a shortest path from sa to ga respecting the constraint set c.

5.3 Theoretical Analysis
In this section, we discuss the theoretical analysis of CCBS. Both following theorems are

similar to the proofs of CBS [139].

Lemma 5.1. At any moment during the execution of the algorithm, for all connected executions
exec from s to g, there is a node n in OPEN that is consistent with exec.

Proof. Consider such an execution exec. We prove the lemma by induction on the expansion of
the search tree in OPEN. At the beginning, the root does not contain any constraints, thus exec
is consistent with the root node.

Let us assume that the property is true at step i−1, and let us denote the content of OPEN by
n1, . . . , nk. At the i-th step of expansion, we choose a node, let it be n1. If one of the n2, . . . , nk
is consistent with exec, then we are done. Otherwise, by induction, n1 is consistent with exec.
Moreover, if n1 does not have conflicts, we are also done.

Otherwise, assume first that n1 contains a connectivity conflict. The algorithm creates a
child node for each possible position of an agent a at a time t. Hence, a child node is created
with the additional constraint 〈a, exec[t], t〉 and added to OPEN. This node is thus consistent
with exec. Last, notice that if the bypass optimization is applied, then the node n1 is put back in
OPEN.

Lemma 5.2. At any moment during the execution of the algorithm, for all constraint nodes n,
n.cost ≤ cost(exec∗(n)) with exec∗(n) an optimal execution consistent with n.

66

5.3. Theoretical Analysis

s1 v1 g1

s2 v2 g2

Figure 5.3 – An example of a topological graph with the negative instance s = 〈s1, s2〉 with goal g =
〈g1, g2〉.

Proof. The cost n.cost is the sum of the cost of the shortest paths of each agent consistent with
their respective constraints in n.cons. Since the path of each agent in the execution exec∗(n) also
satisfies all constraints n.cons, the inequality follows.

We are now ready to prove the soundness and completeness theorems.

Theorem 5.1 (Soundness). Any solution returned by CCBS is optimal.

Proof. Let exec be an optimal solution. The algorithm returns a solution if it pops a node n
from OPEN which contains an execution without conflicts. By Lemma 5.2, we know that
n.cost ≤ cost(exec∗(n)), and since n.exec has no conflicts, we have n.cost = cost(exec∗(n)).
Furthermore, Lemma 5.1 shows that exec is consistent with some node n′ in OPEN at this mo-
ment, which means that n′.cost ≤ cost(exec). But since the algorithm picks the node with the
least cost, we also have n.cost ≤ n′.cost. It follows that n.cost ≤ cost(exec), so the returned
solution n.exec is optimal.

Theorem 5.2 (Completeness). If there is a solution, CCBS returns a solution.

Proof. Notice first that OPEN never becomes empty until a solution is found by Lemma 5.1.
Assume that there is a non-terminating execution, thus generating an infinite constraint tree.

We claim that the cost of any leaf at a depth m is at least m
k|V | where k is the number of

agents. In fact, by construction, there can be at most one constraint per agent and time step, so
if tmax denotes the maximal time step that appears in all the constraints along the branch up
to depth m, then we have m ≤ k|V |tmax, that is tmax ≥ m

k|V | . So the path of some agent has
length at least tmax. Now consider the node n at which a constraint at tmax appears. Since goal
configuration g is assumed to be connected, n.exec[tmax] must be different from g. Thus, the
path of some agent a has length more than tmax. Since this path is a shortest path satisfying the
constraints n.cons, the path of agent a at any leaf node below n cannot be shorter. Thus cost at
all such leafs is at least m

k|V | .
In other terms, the cost of each branch diverges to infinity as the branch is extended. This

implies that each leaf node is eventually split since it will eventually become the top node in the
priority queue. So, at some point, the queue only contains nodes of costs strictly greater than
the cost of exec∗. By Lemma 5.1, one node n of these nodes is consistent with exec∗. We thus
have n.cost > cost(exec∗). By definition, we have cost(exec∗) ≥ cost(exec∗(n)). Contradiction
with Lemma 5.2.

67

Part I, Chapter 5 – Connected-Conflict-Based Search

If there is a solution, CCBS returns an optimal solution. However, if there is no solution,
CCBS runs forever, as does CBS. For example, consider the instance with two agents given
in Figure 5.3. One can observe that there is no connected execution for the two agents. The
constraint tree will grow infinitely enforcing the agents to stay at their starting locations.

As done by Sharon et al. [139], we may use an algorithm to check the existence of a solution
before running CCBS. While this check is in polynomial time in the collision-only case [172], in
presence of connectivity constraints, checking the existence of a solution is PSPACE-complete
[151].

5.4 Experimental Results
In this section, we evaluate the performance of our algorithm and compare it with the two

algorithms of Tateo et al. [151], namely, the Sample-Based (SB) and Depth-First Search (DFS)
algorithms.

The former algorithm creates an execution by, starting from the initial configuration, ex-
ploring only a subset of all the possible connected steps by performing random movements. A
heuristic then evaluates the “best” state. Then the process is iterated until the “best” state is the
goal state. The latter algorithm is, intuitively, similar to iterations of A* of depth 1. More pre-
cisely, the algorithm, starting from the initial configuration, searches the “next best connected
state”, which minimize a heuristic. From this state the process is iterated until it reaches the
goal.

The experiments were carried out on 2 benchmark maps, depicted in experimental analysis
of Hollinger and Singh [68] and Tateo et al. [151]. Offices is a map of the SDR offices from the
Radish data set [72]. Open is a map of the McKenna MOUT site. The movement edges follow
a 4-way grid (i.e. the agents can move in the 4 directions). Concerning communications, we
adopted a distance-based one. In distance-based communication, an agent communicates with
all other agents within a maximal distance, called the range; the range is displayed below the
maps in Fig. 5.4.

All algorithms were implemented in C++ and run on an Intel i7 5600U 2.60 GHz (3.20 GHz)
with 8 GB of available memory (out of 16 GB). We used the open source programs published
by [151] to run their algorithms (which are also in C++). For both maps and for each number n
of agents, with n ∈ {2, 3, . . . , 20}, we had 100 instances, and we gave each algorithm 1 minute
per instance. The success rate of an algorithm on these benchmarks is defined as the percentage
of instances for which it found an execution in the allocated time. Note that CCBS is an optimal
algorithm unlike all other algorithms.

The success rate of the algorithms are given in Figure 5.5 for both class of benchmarks.
Figure 5.6 depicts the average size of the execution generated by the algorithm.

The two considered maps are of different nature. Open has fewer obstacles, which are more-
over thick (these correspond to buildings), and it has many communication edges; Offices has
many thin obstacles through which agents cannot move but can communicate.

Instances on Open seems to be easier to solve since all algorithms achieve a higher suc-
cess rate for a few agents; while CCBS scales better: the success rate of DFS and SB drop

68

5.5. Conclusion

range:

#nodes 1494
#mvt edges 2419
#comm edges 29962

(a) Offices Map.

range:

#nodes 2205
#mvt edges 4107
#comm edges 39310

(b) Open Map.

Figure 5.4 – Benchmarks. The two maps used to obtain topological graphs. Obstacles are in black. For
each map, we generate a topological graph with a distance-based communication (range we used are
depicted below the maps).

consequently after 10 agents, and CCBS stays above 40 %. However, on Office, SB is able to
outperforms all algorithms after 10 agents. The performance of CCBS drops very fast on Office.
DFS exhibit the same behaviors on both maps, not scaling beyond 10 agents.

Now, we can observe that, as shown by Tateo et al. [151], SB generates very long executions,
while DFS manages to generate shorter executions. However, we can see that DFS rapidly
diverges from the optimal execution.

One would expect CCBS to be outperformed in all instances by approximate algorithms.
However, quite surprisingly, CCBS is able to outperforms DFS and SB on Open with a relatively
high number of agents. This may be the case as the decoupled structure of CCBS allow the
generation of an almost-fully connected execution very early in the computation, while DFS
must deal with state-explosion since the first step.

5.5 Conclusion

We presented CCBS, the first optimal algorithm for CMAPF which, in some cases, outper-
forms the state-of-the-art algorithms SB and DFS. The execution generated by CCBS are by an
order of magnitude shorter than the most successful algorithm SB. On some maps, CCBS is able
to scale to higher number of agents than other algorithms will still being optimal. Furthermore,
the scalability displayed by CCBS may show that solvers of CMAPF benefit from a decoupled
structure.

We believe that the scalability can be improved further by studied the known enhancement

69

Part I, Chapter 5 – Connected-Conflict-Based Search

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of Agents

Su
cc

es
s

R
at

e
(%

)

CCBS
DFS
SB

(a) Offices Map

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of Agents

(b) Open Map

Figure 5.5 – Success rate of CCBS, DFS, and SB to solve CMAPF on Offices and Open maps.

2 4 6 8 10 12 14 16 18 200

200

400

600

800

1,000

Number of Agents

A
ve

ra
ge

Si
ze

CCBS
DFS
SB

(a) Offices Map

2 4 6 8 10 12 14 16 18 200

200

400

600

800

1,000

Number of Agents

(b) Open Map

Figure 5.6 – Average execution size of DFS and CCBS to solve CMAPF on Offices and Open maps.

70

5.5. Conclusion

previously introduced for CBS. In CBS, a popular and efficient optimization considers car-
dinal conflicts [20], which are conflicts that can only be solved by increasing the lengths of
the paths of all involved agents. This concept led to the integration of powerful heuristics in
CBS [46, 90]. The adaptation of similar concepts for connectivity is however nontrivial. Fur-
thermore, rather than only addressing connectivity conflicts, one could develop a combination
of CCBS and CBS in order to solve CMAPF with collision constraints. Indeed, our approach
makes it simple to interleave CCBS with CBS to solve connectivity and collisions during the
same search. We leave this interesting research opportunity for future works. Our results open a
challenging research avenue for developing such optimizations well adapted for both collision
and connectivity constraints.

71

PART II

INCOMPLETE KNOWLEDGE

72

CHAPTER 6

CMAPF IN PARTIALLY-KNOWN
ENVIRONMENTS

6.1 Introduction
The coordination of mobile agents is at the heart of many real world problems such as traffic

control [39], robotics [43, 168], aviation [119] and more [142, 170]. Some of these problems
have multiple aspects which make them complex: (1) Some systems are multi-agent, that is,
the behaviors of agents influence others’ and these influences must be taken into consideration
when computing missions; this can be due, for instance, to collisions [101], sensor interfer-
ences [57, 135] etc.; (2) Some missions must ensure connectivity, that is, ensure periodic or
constant connection to a station/agent to share acquired information [3]; (3) The environment
may be only partially known, and the agents may discover it during the mission [127, 153].
Several works have considered problems containing these three aspects. For instance, several
algorithmic approaches have been investigated to solve the coordination of multi-robot explo-
ration [23, 161, 107]. Our objective in this contribution is to present a framework to study the
theoretical complexity of planning problems with respect to these three aspects.

The theoretical complexity of some related problems have been studied in the literature.
MAPF is an important framework introduced to study collision-free navigation of agents in
warehouses [47, 101]. This problem was intensively studied and gave rise to a popular algorithm
known as CBS [139]. An extension of MAPF with connectivity constraints, called CMAPF,
was studied as well by Hollinger and Singh [69]. The complexity of CMAPF and algorithmic
solutions were studied in Tateo et al. [151] and Charrier et al. [28]. However, CMAPF only
addresses the multi-agent and connectivity aspects, and not the partial knowledge of the envi-
ronment. The latter aspect is considered in the CTP, which is a well-known problem to study
the navigation of an agent in a partially known graph [121]. While the initial framework was for
a single agent, CTP has been extended to multiple agents in the settings of packet routing [74],
multi-robot exploration [22] and more [98]. While a notion of communication was considered
by Zhang and Xu [174] and Shiri and Salman [140], it is limited to settings where all agents
can receive information at all times or only designated agents can send information. In contrast,
we are interested in studying the setting where agents’ ability to communicate depends on their
positions in the graph, and in establishing theoretical complexity results of resulting problems.

In this chapter, we study the theoretical complexity of generating plans for a group of agents
to reach a given target configuration. More precisely, we analyze the impact of enforcing or
ignoring: (A) connectivity; (B) collision; (C) a bound on the length of the execution. For (A), we
consider either fully-connected strategies, requiring that the agents remain connected at all times

73

Part II, Chapter 6 – CMAPF in Partially-Known Environments

Decentralized Connected

Bounded
NEXPTIME-complete PSPACE-complete

(Th. 6.5) (Th. 6.2, 6.3)

Unbounded
NEXPTIME-complete PSPACE-complete

(Th. 6.4) (Th. 6.1)

Table 6.1 – Complexity Results.

during the mission, or a decentralized strategy, allowing agents to disconnect and reconnect. (B)
In some applications, collisions can be handled by a local collision avoidance system [69], and
one can thus abstract away and ignore collisions in graph-based planning algorithms. (C) By
providing a bound on the execution length, we can study the complexity of the decision problem
associated to the optimization problem. Our results are summarized in Table 6.1. Interestingly,
The PSPACE algorithm for the connected problem with a bounded execution is subtle and
relies on a variant of the Savitch’s theorem [134] we present here. Additionally, the PSPACE-
completeness holds even in the case in which agents can always communicate, thus the hardness
of the problem already comes from the incomplete knowledge of the movement graph. For the
decentralized case, we prove the NEXPTIME-hardness in the bounded and unbounded cases
by two separate reductions from the True Dependency Quantified Boolean Formula Problem
(TDQBF) [122], thus showing that the problem becomes significantly harder in this case.

Let us compare our contribution with known complexity results. In the fully known environ-
ment, the CMAPF problem is PSPACE-complete in the connected and unbounded case [151],
while it is NP-complete in the bounded case (with the bound given in unary) [69]. Thus, the par-
tial knowledge of the environment does not render the problem harder in terms of complexity. In
contrast, recall that in MAPF (without connectivity), one can check the existence of a solution
in polynomial time [169], while the bounded problem is NP-hard [150], so the hardness is due
to connectivity constraints. Some algorithms were presented for CMAPF by Tateo et al. [151]
that can scale up to about ten agents. Since both problems are similar and belong to PSPACE,
one can hope that these approaches can be extended to the partial knowledge case. On the other
hand, our results show that the complexity of the decentralized case is significantly higher.
While some tools and algorithms are available for Decentralized Partially Observable Markov
Decision Processes (Dec-POMDPs), which are in the same complexity class, the scalability is
limited and the development of efficient algorithms for this case seems more challenging (see
survey of Amato et al. [2]).

6.2 Our framework

6.2.1 Modeling Incomplete Knowledge

To formalize CMAPF in the incomplete knowledge setting, let us show how to represent the
initial knowledge of the agents, and how their knowledge evolves during the execution. Agents
initially know the exact set of vertices, but only have a lower and an upper approximation of the

74

6.2. Our framework

actual graph: they know that some (communication or movement) edges are certain (they must
be present), while some are uncertain (they may be absent).

Definition 6.1 (Initial Knowledge). The initial knowledge is modeled by a pair of topological
graphs (G1, G2), with the graph G1 = 〈V,Em1, Ec1〉 a lower bound, and G2 = 〈V,Em2, Ec2〉
an upper bound on the knowledge about the actual graph with Em1 ⊆ Em2 and Ec1 ⊆ Ec2.

The agents initially know G1 and G2 while the actual graph G = 〈V,Em, Ec〉 is initially
unknown to them. They only know that Em1 ⊆ Em ⊆ Em2 and Ec1 ⊆ Ec ⊆ Ec2, written as
G1 ⊆ G ⊆ G2. The perfect information case is captured by G1 = G2(= G).

A movement (resp. communication) edge is said to be certain (i.e. sure to be present) if
it is in Em1 (resp. Ec1); it is said uncertain (i.e. can be absent) if it is in Em2 \ Em1 (resp.
Ec2 \ Ec1). We assume that the communication edges of the actual graph are undirected, so for
all (u, v) ∈ Ec2 \ Ec1, either (u, v), (v, u) ∈ Ec, or (u, v), (v, u) 6∈ Ec.

We say that an edge (u, v) is an uncertain undirected movement edge when (u, v), (v, u) ∈
Em2\Em1. The environment can leave both edges (u, v), (v, u), remove both edges (u, v), (v, u),
but also remove (u, v) and leave (v, u), or remove (v, u) and leave (u, v). That is, the movements
edges of the actual graph are not necessarily undirected.

Example 6.1. Figure 6.1a depicts an initial knowledge (G1, G2). The area is divided in two
zones connected by two bridges, represented by the edges (s2, s4) and (s3, s5), with an uncer-
tainty on their traversability and on the communication between s1 and s4.

A strategy σa for agent a tells where to go next after a given execution e. Formally:

Definition 6.2 (Strategy). A strategy σa for agent a maps any execution e to a vertex such that
(v, σa(e)) ∈ Em where v is the vertex at which agent a is in the last configuration of e.

A joint strategy π is a tuple 〈π1, . . . , πn〉 where πi is a strategy for agent i. The outcome of a
joint strategy π starting from configuration cs is the execution e defined by induction as follows:
e[0] is cs, and for t ≥ 1, e[t] is the configuration in which agent i is at vertex πi(e[0..t− 1]).

In the context of incomplete knowledge, the behaviors of the agents only depend on their
observations, similarly to imperfect information games as done by Berthon et al. [16]. The
strategies, as defined above, do not necessarily take observations of the agents into account. We
will now formalize observations and uniform strategies, that is, those respecting the observations
of the agents.

In our setting, at any time, an agent observes all movement edges adjacent (both in- and
out-coming) to the vertex v it occupies. Moreover, they observe the presence or absence of a
communication edge between v and v′ if v′ is occupied by another agent with which there is
a direct or indirect communication (via other agents). Intuitively, during an execution, at each
step, each agent updates their knowledge about the graph with these observations they receive.
Moreover, they share all their knowledge with all agents with which they are connected at each
step.

The observation of adjacent movement edges has been a recurrent practice in theoretical
works [121, 15] as well as robotics [40, 82], and our formalism is inspired from these works.

75

Part II, Chapter 6 – CMAPF in Partially-Known Environments

s1

s2

s3

s4

s5

s6

?

?
?

(a) An initial knowledge (G1, G2).

s1s2s3

s4s5 s6

s7all

?

?

(b) An initial knowledge of a topological graph.
Vertex s7 has communication edges with all other
vertices.

Certain movement edge
Certain undirected movement edge

? Uncertain movement edge
? Uncertain undirected movement edge

Certain communication edge
? Uncertain communication edge

Figure 6.1 – Examples of partially known topological graphs.

The knowledge of an agent at any time corresponds intuitively to a pair of graphs as in
Definition 6.1. For agent a and execution e, let us denote by ka(e)G the knowledge of agent a
about the graph after observing the execution e in actual graph G. Given such knowledge K =
ka(e)G, the agent can deduce an under-approximation and an over-approximation of the actual
graph; let us denote these by GK and G

K respectively. In particular, if K is the knowledge
the agents have initially, then GK = G1 and GK = G2. We present a representation of the
knowledge using predicates in the Subsection 6.2.2 where a detailed formalization of ka(e)G
can be found.

In the rest of the chapter, we assume all considered strategies to be uniform, that is, they
comply with the knowledge of the agents: the strategies prescribe the same move to all ex-
ecutions that are indistinguishable with the agent’s observations. Formally, if |e| = |e′| and
ka(e)G = ka(e′)G, then σi(e) = σi(e′).

6.2.2 Complements
We present here a formal modeling of the incomplete knowledge in our setting.
In our setting, at any time, an agent observes all movement edges adjacent (in- and out-

coming edges) to the vertex v it occupies. Moreover, they observe the presence or absence of
a communication edge between (v, v′) if v′ is occupied by another agent with which there is
a direct or indirect communication (via other agents). Intuitively, during an execution, at each
step, each agent updates their knowledge about the graph with these observations they receive.

76

6.2. Our framework

Moreover, they share all their knowledge with all agents with which they are connected at each
step.

Given graph G = 〈V,Em, Ec〉, let us define the direct observation obsa(c) of agent a at a
configuration c to be the set:{

omca,v′ | (ca, v
′) ∈ Em

}
∪

{
o¬mca,v′ | (ca, v

′) /∈ Em
}

(1)

∪
{
omv′,ca

| (v′, ca) ∈ Em
}
∪

{
o¬mv′,ca

| (v′, ca) /∈ Em
}

(2)

∪
{
occa,cb

| j is an agent and (ca, cb) ∈ Ec
}

(3)

∪
{
o¬cca,cb

| j is an agent connected to i in c, (ca, cb) /∈ Ec
}

(4)

where omu,v, o
¬m
u,v , ocu,v and o¬cu,v are abstract terms that represent the observations. In the definition

of obsa(c), points (1) and (2) mean that agent a directly observes the set of movement edges
adjacent to her current position. Point (3) means that agent a observes a communication edge
when she can communicate with another agent b. Point (4) means that agent a observes the
absence of a communication edge when she sees that she can not communicate directly with
another agent b but can communicate with b via multi-hop. That is, we say that j is an agent
connected to i in c when there is a communication path ci1 , ci2 , . . . , cik with i1 = i and ik = j.

Let O denote the set of all observations. We define the knowledge of an agent as a subset
of O. We define the initial knowledge for the pair (G1, G2) as follows:

K0(G1, G2) =
{
omu,v | (u, v) ∈ Em1

}
∪

{
ocu,v | (u, v) ∈ Ec1

}
∪{

o¬mu,v | (u, v) /∈ Em2

}
∪

{
o¬cu,v | (u, v) /∈ Ec2

}
where Gi = 〈V,Emi, Eci〉.

This corresponds to the a priori knowledge on the graph all agents have before making any
observation.

During the execution, agents update their knowledge at each step, upon visiting a new con-
figuration. Formally, the knowledge ka((Kj)1≤j≤n, e)G of agent a after observing execution e
in actual graph G, where each agent j starts with initial knowledge Kj , is defined by induction
on e:

— ka((Kj)1≤j≤n, ε)G = Ka

— ka((Kj)1≤j≤n, ec)G is the union of:

ka((Kj)1≤j≤n, e)G; (a)
obsa(c); (b)⋃

j connected to i in c

(kb((Kj)1≤j≤n, e)G ∪ obsb(c). (c)

Intuitively, the knowledge of an agent is composed of (a) her knowledge collected until now,
(b) her current observation, and (c) the knowledge of the agents she is connected to and their
current observation.

77

Part II, Chapter 6 – CMAPF in Partially-Known Environments

When the agents start with an initial knowledge (G1, G2) that is clear from the context, we
will omit the tuple (Kj)1≤j≤n and simply write ka(π)G.

Note that during a connected execution, all agents have an identical knowledge at all times.
We thus omit the subscript i, and replace the tuple of initial knowledge sets by a single set K
and write k(K, π)G rather than ka((Kj)1≤j≤n, π)G.

6.2.3 Decision Problems
We consider the decision problem of reaching a configuration cg from a configuration cs in

less than k steps, using uniform strategies. For two configurations cs, cg, let us call a topological
graph G (cs, cg)-admissible if there is an execution from cs to cg, which is not necessarily
connected.

Definition 6.3 (Positive Instance). We say that an instance (G1, G2, c
s, cg, k) is positive if there

exists a joint strategy π such that in all (cs, cg)-admissible graphs G satisfying G1 ⊆ G ⊆ G2,
the outcome of π starting in cs ends in cg in less than k steps.

Observe that the above problem requires that a strategy ensures the reachability of the tar-
get configuration only for graphs that are (cs, cg)-admissible and compatible with the initial
knowledge. In fact, intuitively, we would like the strategy to work under all possible graphs G
with G1 ⊆ G ⊆ G2. However, requiring a strategy to ensure reachability in a non-admissible
graph does not make sense, since even a strategy with full information would fail. We thus
require the strategies to make their best efforts, that is, to ensure the objective unless it is phys-
ically impossible.

Example 6.2. Consider the example of Figure 6.1a. If both bridges (i.e. movement edges (s2, s4)
and (s3, s5)) are absent in the actual graph, the graph is not (s1, s6)-admissible and there cannot
be a strategy ensuring reachability. The admissible graphs contain either (s2, s4), or (s3, s5),
or possibly both. Note that, this instance is negative for k < 6 (that is, it does not admit a
solution). Indeed, consider a strategy that moves the agent, for instance, to s2. In the graph
where (s2, s4) is absent, the agent would need to come back to s1 and take the alternative path,
which requires an execution of total length 6; and the situation is symmetric if the first move is
towards s3. The instance is nonetheless positive for k ≥ 6 with the described strategy. However,
if the edges (s2, s1) and (s3, s1) were not present, then the instance would be negative. In fact,
once the agent moves to s2 or s3, they get stuck if the graph only contains the other bridge.

We now define the connected version of Definition 6.3. For two configurations cs, cg, we
say that a topological graph G is (cs, cg)-c-admissible if there is a connected execution from cs

to cg. We will often omit the pair of configurations which will be clear from the context, and
write simply admissible or c-admissible.

Definition 6.4 (c-Positive Instance). We say that an instance (G1, G2, c
s, cg, k) is c-positive if

there exists a joint strategy π such that in all (cs, cg)-c-admissible graphs G satisfying G1 ⊆
G ⊆ G2, the outcome of π starting in cs is connected and ends in cg in less than k steps.

78

6.2. Our framework

In the connected case, agents cannot visit a disconnected configuration. Hence, the consid-
ered strategies only visit configurations that are certainly connected. Observe that agents can
make observations about the presence or absence of communication edges while being con-
nected and use this information later.

Example 6.3. Let us illustrate the above property on the example of Figure 6.1b. Assume there
are two agents, the starting and goal configurations are cs = 〈s1, s6〉 and cg = 〈s5, s7〉, and
the only uncertainty is about the movement edges (s3, s5) and (s4, s5). Here, Agent 2 could
immediately move to her target s7; however, she could also cooperate with Agent 1 and lower
the total completion time. Indeed, from their start configuration 〈s1, s6〉, the agents first move
to 〈s2, s4〉 where Agent 2 observes whether (s4, s5) is present. Assume the edge is present. Then,
they follow the sequence 〈s4, s6〉 · 〈s5, s7〉; and otherwise 〈s3, s6〉 · 〈s5, s7〉. Thus, in order to
minimize the length of the execution, the agents do not always take their shortest paths but
might help other agents by obtaining information about the graph.

Consider now the same example in which the communication edge (s3, s6) is uncertain. If
this edge is absent then Agent 2 cannot help Agent 1 achieve the target faster since if the former
moves to s4 and (s4, s5) is absent, then, in order to maintain connectivity, the next configurations
should be 〈s4, s6〉 · 〈s2, s7〉 · 〈s3, s7〉 · 〈s5, s7〉. An execution of the same size is obtained when
Agent 2 moves to s7 in the first step.

For both Definitions 6.3 and 6.4 above, let us call a joint strategy a witness if it witnesses
the fact that the given instance is positive, and respectively, c-positive.

We instantiate the CMAPF problem in four different settings. The four following deci-
sion problems are defined depending on whether we consider the connectivity requirement and
whether the bound is finite. Note that the bounded problems are the decision problems associ-
ated to the optimization problems.

Problem 6.1 (bDMAPFI).
- Input: A pair (G1, G2), a start configuration cs, a goal configuration cg and a bound k <∞.
- Output: Is (G1, G2, c

s, cg, k) positive?

Problem 6.2 (bCMAPFI).
- Input: A pair (G1, G2), a start configuration cs, a goal configuration cg and a bound k <∞.
- Output: Is (G1, G2, c

s, cg, k) c-positive?

Problem 6.3 (DMAPFI).
- Input: A pair (G1, G2), a start configuration cs and a goal configuration cg.
- Output: Is (G1, G2, c

s, cg,∞) positive?

Problem 6.4 (CMAPFI).
- Input: A pair (G1, G2), a start configuration cs and a goal configuration cg.
- Output: Is (G1, G2, c

s, cg,∞) c-positive?

As we will see, the encoding of the integer k does not change the overall complexity. Lower
bounds are all obtained directly for the unary encoding; the lower bounds for the binary encod-
ing follows. Concerning the upper bounds, we explain for each case how to design an algorithm
with k encoded in binary.

79

Part II, Chapter 6 – CMAPF in Partially-Known Environments

6.3 Quantified Boolean Formula
In this section, we present the True Quantified Boolean Formula Problem (TQBF) and True

Dependency Quantified Boolean Formula Problem (TDQBF). These problems are necessary
for the reductions presented in the following sections.

6.3.1 Quantified Boolean Formula
The True Quantified Boolean Formula Problem (TQBF) asks whether a given a QBF ϕ

is valid. Recall that a QBF ϕ is of the form ∀z1∃z2 . . . Qnznψ where z1, . . . , zn are Boolean
variables; Qn is ∀ if n is odd, and ∃ if n is even; ψ is a Boolean formula in Conjunctive Normal
Form (CNF) over variables z1, . . . , zn. TQBF is PSPACE-complete [147]. For convenience and
simplicity, we say that an existentially (resp. universally) quantified variable is an existential
(resp. universal) variable. We will often use x1, x2, . . . for existential variables and y1, y2, . . . for
universal ones.

6.3.2 Dependency Quantified Boolean Formula
The TDQBF is the problem of deciding whether a given DQBF is valid. A DQBF is a

formula in which dependencies of existential variables over universal variables are explicitly
specified. A DQBF is of the form ∀y1, . . . , yn∃x1(Ox1) . . . ∃xn(Oxn) ψ, where each Oxi

is, the
dependency set, a subset of universally quantified variables, and ψ is a Boolean formula in
CNF over x1, . . . , xn, y1, . . . , yn. It is worth noting that a QBF can be seen as a DQBF with
Ox1 ⊆ Ox2 ⊆ ... ⊆ Oxn .

Formally, a DQBF ϕ is valid iff there exists a collection of Skolem functions A = (Axi
:

{0, 1}Oxi → {0, 1})i=1..n such that replacing each existential variable xi by a Boolean formula
representing Axi

, turns ψ into a tautology. TDQBF is NEXPTIME-complete [122], and will be
used to prove NEXPTIME lower bounds in Section 6.5.

6.4 Connected Reachability
We first address the case where agents must be connected at each step of the execution.

In this case, agents share their knowledge at all times and thus the group of agents can be
considered as a single agent playing against the environment.

6.4.1 Unbounded Case
We first focus on the existence of an unbounded connected strategy. Interestingly, we show

that verifying the existence of a connected strategy in a partially known environment is not
harder than in a perfectly known environment.

Theorem 6.1. CMAPFI is PSPACE-complete.

80

6.4. Connected Reachability

We define the following recursive property: P (G,G, c, cg) holds for graphs G,G, and con-
figurations c, cg if either G is not (cs, cg)-c-admissible, or there exists a connected execution π
from c to cg in G such that for all G with G ⊆ G ⊆ G, writing K0 for the initial knowledge
for the pair (G,G), there exists 0 ≤ i0 ≤ |π| with k(K0, c)G = k(K0, π[0..i0 − 1])G, and either
π[i0] = cg or (k(K0, c)G (K = k(K0, π[0..i0])G and P (GK , G

K
, π[i0], cg)).

The following two lemmas prove Theorem 6.1.

Lemma 6.1. An instance I = (G1, G2, c
s, cg,∞) is c-positive if, and only if P (G1, G2, c

s, cg).

Proof. We prove the following more general property by induction on the number of edges
present in G2 and absent in G1, that is, |Em2|− |Em1|+ |Ec2|− |Ec1|: For all graphs G1 ⊆ G ⊆
G ⊆ G2, and configurations c, if the instance (G,G, c, cg,∞) is c-positive then P (G,G, c, cg).

If G = G then either the instance is not c-admissible and, then, P (G,G, c, cg) holds, or
there is a connected execution in G from c to cg in which case the property holds as well.

Assume G (G, and consider σ a witness strategy for the instance (G,G, c, cg,∞). Con-
sider a graph G ⊆ G ⊆ G. If the execution π induced by σ does not reveal any new obser-
vation in G, then it must end in cg and P (G,G, c, cg) holds. Otherwise, let i0 be the first step
where a new observation is made. Since σ is a witness strategy, it is a witness for the instance
(GK , G

K
, π[i0], cg,∞) as well where K = k(π[0..i0])G. Since GK and GK have a smaller

number of differences than G and G, we conclude by induction that P (G,G, π[i0], cg). Thus,
P (G,G, c, cg) holds.

Let us now show that all instances that satisfy the property are c-positive. Assume that the
property P (G1, G2, c

s, cg) holds. We define the joint strategy σ on all graphs GK and execu-
tions π in GK , such that P (GK , G

K
, last(π), cg), by induction on the length of π.

Assume σ is constructed for an execution π and knowledge K. If GK is not c-admissible,
then any strategy is a witness strategy so σ can be defined arbitrarily. Otherwise, consider the
connected execution π′ given by P (GK , G

K
, last(π), cg). We define σ so that agents follow π′

until index i0, in which case either π′[i0] = cg or P (GK′ , G
K′
, ππ′[1..i0], cg).

Lemma 6.2. P (G1, G2, c
s, cg) can be checked in polynomial space.

Proof. The existence of a connected execution can be checked in polynomial space by Theo-
rem 3.2. However, the size of such an execution can be exponential, and checking the property
P (G1, G2, c

s, cg) requires iterating over the step of the execution. We thus need to combine the
enumeration of the connected execution as we check P recursively.

The procedure to check P (G,GK
, c, cg) works as follows. We non-deterministically guess

a connected execution step by step, from c to cg using the PSPACE algorithm of Theorem 3.2.
We thus only keep the last configuration in memory, a binary integer counter to bound the
length of the execution (bounded by the number of configurations, thus an exponential), and
the current graph GK . If there is no such execution, we accept. Otherwise, at each step, say,
after having visited execution π and generated next configuration c′ we enumerate all possi-
ble sets K ′ = k(K0, πc

′)G, where K0 is the initial knowledge for the pair (G1, G2). This can
be done by enumerating all subsets of movement edges adjacent to c′, present in GK but not

81

Part II, Chapter 6 – CMAPF in Partially-Known Environments

in GK , and similarly communication edges revealed by c′. Note that k(K0, πc
′)G only depends

on k(K0, π)G and c′ which the algorithm already has. There is an exponential number of possi-
bilities, and these can be enumerated in polynomial space. For each case, we check recursively
whether P (GK′ , G

K′
, c′, cg). Since the knowledge can increase only a polynomial number of

times (since the knowledge can only increase when an edge is added or removed), the depth of
the recursive calls is polynomial. Thus, overall, the procedure uses polynomial space.

6.4.2 Bounded Case
We now study the existence of a bounded connected strategy. We show that this problem is

PSPACE-complete even when the communication graph is complete.

Theorem 6.2. bCMAPFI is in PSPACE when the bound is given in binary.

Proof. Let us first prove the upper bound when k is given in unary. As APTIME = PSPACE [27],
we give an alternating algorithm that runs in polynomial time, as follows. At each step, the
existential player chooses the next connected configuration to move the agents; and the universal
player chooses the information about the newly discovered edges. After k steps the algorithm
accepts if the target configuration is reached, or the revealed edges mean that the graph is not
c-admissible. The number of steps is bounded by k, which is polynomial, thus the algorithm
runs in polynomial time.

There is one subtlety to prove the correctness. The alternating algorithm actually corre-
sponds to a slight variant of our setting which can be seen as a game. In our setting, the en-
vironment chooses a graph G with G1 ⊆ G ⊆ G2 at the beginning, and the agents discover
the graph G as they move. In contrast, in the alternating algorithm, the universal player reveals
the graph step by step; therefore the environment might adapt the graph to the moves of the
existential player.

Lemma 6.3. The alternating algorithm is correct.

Proof. First, observe that if the existential player has a strategy σ in the alternating algorithm,
then the instance is c-positive. In fact, for any graph G with G1 ⊆ G ⊆ G2, consider strategy τ
of the universal player which makes choices according to G. Since this σ wins against τ , either
the graph is not admissible or the agents successfully arrive to the target configuration. Con-
versely, assume that the instance is c-positive, that is, for all choices of an admissible graph G,
the agents arrive at a target configuration under some joint strategy σ. We apply σ in the al-
ternating algorithm. Consider any strategy τ of the universal player, and observe the execution
induced by (σ, τ). If the graph induced by τ is revealed not to be admissible, then the existential
player wins. Otherwise, consider any admissible graph G with G1 ⊆ G ⊆ G2 compatible with
the edges revealed during the execution of (σ, τ). Since σ is winning in the original game when
the underlying graph is G, the existential player also wins. 4

When k is binary, the previous algorithm does not run in polynomial time. However, observe
that the number of alternations can be bounded by a polynomial because there is only a poly-
nomial number of steps in which the universal players reveal new information to the coalition

82

6.4. Connected Reachability

of agents. In fact, the universal player is only useful when some agent is at a vertex that has not
been seen before, and this can only happen a linear number of times. Furthermore, the previous
algorithm runs in polynomial space.

When k is binary, our problem is in STA(poly(n), ∗, poly(n)) where STA(s(n), t(n), a(n))
is the set of problems decided in space O(s(n)), time O(t(n)) with O(a(n))) alternations. Our
problem is in PSPACE thanks to the generalization of Savitch’s theorem we prove:

Lemma 6.4. STA(poly(n), ∗, poly(n)) ⊆ PSPACE.

Proof. To build a PSPACE algorithm, we perform a DFS of the computation tree T in a succinct
manner. Consider the tree T ′, built from T , where we only keep vertices in which the universal
player makes a decision, while paths along which only the existential player moves are shortcut
into single edges. The depth of this tree is polynomial by definition.

The idea is to run a DFS on T ′ to check whether the machine accepts. This can be done
in polynomial space provided that the children of all vertices can be computed in polynomial
space. Successors of an existential configuration c in T ′ are computed as follows: we generate
on-the-fly all possible configurations c′ and test whether c′ is reachable from c in the original
alternating machine by using a PSPACE oracle. The DFS that runs in PSPACE augmented with
this PSPACE oracle gives a polynomial space procedure. 4

Intuitively, this lemma is proved by guessing the computations between each universal
choice by a PSPACE oracle, which yields an overall PSPACE algorithm.

Theorem 6.3. bCMAPFI with complete connectivity is PSPACE-hard.

Proof. The lower bound is proven by reduction from TQBF.
Consider a QBF ϕ of the form ∀z1∃z2 . . . Qnznψ where ψ is a Boolean formula in conjunc-

tive normal form with n variables and m clauses.
In the reduction, we call a movement path, from node v to node u, a chain of nodes linking v

to u by movement edges. In addition, we denote an occurrence of a positive (resp. negative)
literal of a variable z, by z (resp. ¬z)

We create the graphsG1 andG2 as described in Figure 6.2. More precisely, for each variable
z, we create a gadget shown in Figure 6.2a. For each clause, we create a gadget as depicted in
Figure 6.2b. In addition, we create a movement edge between a node vz (resp. v¬z) and a node
tγ if the literal z (resp. ¬z) is present in the clause γ.

We define the initial and target configurations cs, cg as follows. There is a single agent at
each vertex of the form sγ (resp. sz) whose target is tγ (resp. tz). Furthermore, at each sz (resp.
s¬z) there is one agent for each clause that contains z (resp. ¬z) and her target is tz (resp. t¬z).

We show that ϕ is true iff (G1, G2, c
s, cg, k) is c-positive with k = 3(n− 1) + 5.

For simplicity, we classify the agents as follows.

— A Variable agent is an agent starting at a node sz;

— a Clause agent is an agent starting at a node sγ;

— a Positive (resp. negative) occurrence agent is an agent starting at sz (resp. s¬z).

83

Part II, Chapter 6 – CMAPF in Partially-Known Environments

sz vz

uz

u¬z

uz tz

sz

s¬z

vz

v¬z

lz

rz

r¬z

l¬z

t¬z

tz

. . .
3(i− 1) + 1

. . .
3(i− 1) + 2

. . .
3(i− 1) + 2

. . .
3(n− i) + 2

∀z?
∃z

∀z

?∃z

. . .
3(n− i)− 1

. . .
3(n− i)− 1

?

?

?

?

(a) Variable gadget for variable z. Edges between vz and l¬z , and between vz and rz are
both certain if z is existential and both uncertain if z is universal.

sγ vγ

rγ

lγ

tγ. . .
3(n− 1) + 3 ?

?

(b) Clause gadget γ.

Certain Movement edge
? Uncertain Movement edge
∀z?
∃z

Movement edge that is certain
if z is existential and uncer-
tain if z is universal

(vz, tγ) ∈ Em1 when z is an occurrence in γ
(v¬z, tγ) ∈ Em1 when ¬z is an occurrence in γ

Figure 6.2 – Gadgets for the reduction from TQBF into the bounded reachability problem in the complete
connectivity case.

84

6.4. Connected Reachability

(⇒) Assume that the QBF ϕ is true. There exists a collection of Skolem functions A such
that for each existential variable zi (where i is even), and an assignment ν to universally quan-
tified variables in z1, z3, . . . , zi−1, Azi

(ν) ∈ {>,⊥} is the value assigned to zi such that ϕ is
true under assignment ν augmented with the values of A. We construct the following strategy
σ, which guarantees that cg is reached in k steps from cs.

Intuitively, the lengths of the initial movement paths are designed so that agents starting
at szi

arrive at vzi
in the order of their indices. For an existential variable agent, the choice of the

successor from vzi
determines the value of zi; while for a universal variable agent, the choice is

made by the environment. More precisely, if the agent moves to rzi
, then zi is set to true, if she

moves to l¬zi
it is set to false.

Formally, all agents start by moving to their respective v nodes (e.g. A clause agent at sγ
moves to vγ). They arrive at these nodes at different moments due to the sizes of their movement
paths. An existential variable agent arrives at node vzi

at time 3(i − 1) + 1. At this point, all
universal variable agents among z1, z3, . . . , zi−1 have arrived to their respective nodes vzj

, thus
revealing the values of these variables. Let ν be this assignment. IfAzi

(ν) = >, the agent moves
to rzi

, and otherwise, to l¬zi
.

When a universal variable agent arrives to vzi
at time 3(i − 1) + 1, she follows the only

edge dictated by the environment, either to rzi
or to l¬zi

. This assigns> to the variable zi in the
former case, and ⊥ in the latter case. Observe that if the graph is admissible, then there must
exist a path from source to target for each agent; this means that one of these edges must be
present.

Consider a positive (resp. negative) occurrence agent associated to a clause γ. This agent
arrives to vzi

(resp. v¬zi
) at time 3(i − 1) + 2. Observe that the variable agent has already

determined the value of zi in the previous step.
• if zi is assigned > (resp. ⊥) then the agent moves to tγ , observe which edges are available

at tγ , and immediately comes back to vzi
(resp. v¬zi

). Now, the edge between rzi
(resp. l¬zi

)
and uzi

(resp. u¬zi
) has been observed by agent zi; so if this edge is present, she moves to rzi

and uzi
; and if not, then the edge from lzi

to uzi
must be available, and she arrives to tzi

(resp.
t¬zi

) at time k.
• if zi is assigned ⊥ (resp. >) then she does not visit tγ , but moves to lzi

(resp. l¬zi
). If

the edge between lzi
(resp. l¬zi

) and uzi
(resp. u¬zi

) is available, she moves to tzi
(resp. t¬zi

),
otherwise she moves back and reach tzi

(resp. t¬zi
) at time k, through rzi

(resp. r¬zi
).

It remains to argue that clause agents can reach their target nodes within k steps. Since ϕ is
true, by the definition ofA, whatever the choice for the universal variables, some literal ` of each
clause γ is assigned to true. Therefore, the positive or negative occurrence agent corresponding
to this literal visits tγ , thus revealing the edges available from tγ to rγ and lγ . Note that at
least one of these edges must be available for the graph to be admissible. Thus, a clause agent
arriving to vγ at time 3(n− 1) + 3 can follow the available path to reach tγ exactly at time k.

(⇐) Let σ be a witness joint strategy. Following σ, each clause agent c must know the
available edges in the rest of their paths at time 3(n− 1) + 3 since otherwise they cannot ensure
reaching tγ at time k. Thus, for each clause γ, the node tγ is visited by some occurrence agent
under strategy σ. Furthermore, an occurrence agent z (resp. ¬z) can visit node tγ and still make
it to tz (resp. t¬z) in time iff the associated variable agent has observed the presence of the edge

85

Part II, Chapter 6 – CMAPF in Partially-Known Environments

between uz (resp. u¬z) and rz (resp. l¬z) beforehand. In fact, otherwise, if the occurrence agent
makes a wrong guess between lz and rz, they will not arrive to tz (resp. t¬z) at time k. Hence,
the joint strategy of the variable agents determines an assignment function which satisfies ϕ.

Our reduction actually builds an undirected movement graph. Thus, PSPACE-hardness holds
already for undirected movement graphs. Note that in our current setting, pairs of uncertain
edges of the form (u, v) and (v, u) are treated separately, but the lower bound proof still holds
when they are seen as one.

6.5 Decentralized Reachability

We now tackle the case where agents are allowed to be disconnected; at each configuration,
they share their knowledge with all agents to which they are connected. This case is harder
because agents no longer follow a centralized strategy and they must cooperate to exchange
information at the right moment to reach their targets.

6.5.1 Unbounded Case

Theorem 6.4. DMAPFI is NEXPTIME-complete.

Proof. For the upper bound, an NEXPTIME algorithm consists in guessing uniform strategies
for all agents and checking whether the joint strategy is a witness. Such a strategy has expo-
nential size since it is a function of the sets of knowledge of the agents and the current vertex.
One can enumerate all graphs G between G1 and G2, and execute the joint strategy on G to
check that it ensures the reachability of the target. Moreover, the executions to be checked have
at most exponential length. In fact, executions can be seen as paths in a meta-graph where ver-
tices are configurations augmented with the sets of knowledge of the agents. This meta-graph is
of exponential size, so it is sufficient to consider executions of exponential length. The overall
non-deterministic algorithm is thus in exponential time.

The lower bound is shown by reduction from TDQBF. Given a DQBF ϕ of the form
∀y1, . . . , yn∃x1(Ox1) . . . ∃xn(Oxn) ψ, we build an instance (G1, G2, c

s, cg, k) of unbounded de-
centralized reachability. We denote by γ1, . . . , γm the clauses in ψ.

The graph G1 and G2 as follows. For each variable z, we create the gadget depicted in
Figure 6.3a.

We create the observation gadget for all existential variables x and for all (universal) vari-
ables y ∈ Ox, depicted in Figure 6.3b. For convenience, we write O for the pair (x, y) corre-
sponding to observation of y by x.

Finally, we create the clause gadget, depicted in Figure 6.3c. A vertex γi certainly commu-
nicates with>z iff z ∈ γi, and with⊥z iff ¬z ∈ γi. Moreover, the vertex vγ communicates with
all >z and ⊥z for all variables z.

86

6.5. Decentralized Reachability

We define the initial and target configurations as:

cs = 〈sγ, sγ1 , . . . , sγm , sx1 , . . . , sxn , sy1 , . . . , syn , sO1 , . . . , sOk
〉, and

cg = 〈tγ, tγ1 , . . . , tγm , tx1 , . . . , txn , ty1 , . . . , tyn , tO1 , . . . , tOk
〉.

Lemma 6.5. DQBF ϕ holds if and only if (G1, G2, c
s, cg,∞) is positive.

Proof. We denote the agents as such: (1) an agent that starts at sz as the existential agent z if z
is an existential variable; the agent is called universal if z is universal; (2) the verification agent
is the one starting at sγ; (3) the clause agents γi start at sγi

; (4) the observation agents O start
at sO.

(⇒) Suppose the DQBF ϕ holds, and let A be the collection of Skolem functions. We build
the following joint strategy. The environment chooses the truth values of universal variables z
by deleting some edges vz to >z or vz to ⊥z. If the environment deletes the edge vz to >z, the
agent is forced to pass in ⊥z, thus the variable z is considered to be false. If the environment
deletes the edge vz to ⊥z, the agent is forced to pass in >z, thus variable z is considered to be
true. If the environment deletes neither edge, then we define the strategy for agent ay to choose
to pass in y, making y true by default.

The rest of the strategy is defined as follows. At the first step, each variable agent for vari-
able z moves to vz, and each observation agent for the pair (x, y) moves to vy, and thus observes
the value of universal variable y. At the second step, existential agents remain in place, while
observation agents move to vO, thus sharing their observations with the corresponding existen-
tial agents. Thus, at this point, each existential agent corresponding to variable x knows the
values of all universal variables y ∈ Ox. Then, agent z moves to >z if Az(ν) = 1 and to ⊥z
otherwise, where ν is the valuation of the variables in Oz.

All clause agents move from si to γi and remain at γi for two steps so that all existential
and universal variable agents z are at >z or ⊥z. The verification moves to vγ and also waits for
two steps. Since each clause is satisfied by the currently read valuation, each clause agent γi
communicates at least with one existential or universal agent. Thus, the verification agent com-
municates with all clause agents via these variable agents. Since the clause agents communicate
with the verification agent at this moment, the latter can see which edges are present in the clause
gadget, and can continue go to tγ without getting stuck.

(⇐) Conversely, suppose there is a witness joint strategy, in particular ensuring that the ver-
ification agent goes to tz. This means that the agent must have received all the information about
the topology around vertices γ1, . . . , γk. But this is only possible if the agents have occupied
a configuration in which the verification agent is at vγ , all clause agents are at γi such that for
each clause γi, there is at least one variable agent z at >z if z ∈ γi and at ⊥z if ¬z ∈ γi. Thus,
ϕ is a positive instance of TDQBF. 4

87

PartII,C
hapter6

–
C

M
A

P
F

in
Partially-K

now
n

E
nvironm

ents

sz vz

>z

⊥z

tz

∀z

? ∃z

∀z?
∃z

(a) Gadget for variable z. Both edges (vz,>z) and (vz,⊥z) are
certain (resp. uncertain) if z is existential (resp. universal).

sO vy

vO

vx

tO

(b) Gadget for the observation O of universal variable y from
existential variable x.

sγ vγ uγ1

lγ1

rγ1

γ1

s1

t1

?

?

. . . uγk

lγk

rγk

γk

sk

tk

?

?
tγ

(c) Clause gadget.

Certain movement edge
Certain communication edge

? Uncertain movement edge
∀z?
∃z

Certain (resp. uncertain) movement
edge if z is existential (resp. universal)

(>z, γi) ∈ Ec1 when z appears in γi
(⊥z, γi) ∈ Ec1 when ¬z appears in γi
(>z, vγ) ∈ Ec1, (⊥z, vγ) ∈ Ec1

Figure 6.3 – Gadgets in the reduction from DQBF to unbounded decentralized reachability.

88

6.5. Decentralized Reachability

6.5.2 Bounded Case
In the bounded case, the problem is NEXPTIME-complete independently of the encoding

of the bound. Moreover, the hardness holds even for undirected graphs.

Theorem 6.5. bDMAPFI is NEXPTIME-complete, NEXPTIME-hardness holds for undirected
graphs.

Proof. The upper bound when the bound k is given in unary is obtained by the following non-
deterministic algorithm:

(1) Guess a strategy σi for each agent i, up to executions of length ≤ k. Such a strategy can
be represented as a tree of depth k, and thus has size exponential in k.

(2) Check that σi is uniform for agent i.
(3) For all admissible graphs G such that G1 ⊆ G ⊆ G2, execute the joint strategy σ and

check that the outcome execution from the initial configuration leads to the target configuration.
The obtained algorithm is non-deterministic and runs in exponential time. Note that the en-

coding of k is not relevant since for k ≥ 2|V | there is always a solution following the unbounded
case.

We now prove the NEXPTIME-hardness result by reduction from TDQBF. Given an in-
stance of TDQBF ∀y1, . . . , yn∃x1(Ox1) . . . ∃xn(Oxn) ψ, we build an instance of bounded de-
centralized reachability (G1, G2, c

s, cg, k). We denote the number of clauses by m.

89

PartII,C
hapter6

–
C

M
A

P
F

in
Partially-K

now
n

E
nvironm

ents

sz vz

>z

⊥z

tz. . .
3× n2 − 2|Oz|+ 1

∀z

? ∃z

∀z?
∃z

. . .
3m+ 1

. . .
3m+ 1

(a) Variable gadget for variable z. Edges between vz and >z , and between vz and ⊥z are
both certain if z is existential and both uncertain if z is universal.

sγ vγ uc1

lγ1

rγ1

γ1

s1

t1

?

?

...

3×
n

2+
2

...

3m
+

1

. . .
3×n2 + 2

. . . uck

lγk

rγk

γk

sk

tk

?

?

...

3×
n

2+
2

...

3m
+

1

tγ

(b) Clauses gadget.
Certain Undirected Movement edge

? Uncertain Undirected Movement
edge

∀z?
∃z

Undirected Movement edge that is
certain if z is existential and uncer-
tain if z is universal

(>z, γi) ∈ Ec1 when z appears in γi
(⊥z, γi) ∈ Ec1 when ¬z appears in γi
(>z, vγ) ∈ Ec1, (⊥z, vγ) ∈ Ec1

Figure 6.4 – Gadgets for the reduction from DQBF to the bounded decentralized reachability problem.

90

6.5. Decentralized Reachability

We construct the graph G1 as follows:
For each variable z, we create a gadget, as depicted in Figure 6.4a. We create the vertices

sz, vz, >z, ⊥z and tz, and we create a movement path of length 3m + 1 from tz to >z and
⊥z. Then, if the variable z is universal, we create a movement path of length 3 × n2 + 1 from
sz to vz. If the variable z is xi, that is the i-th existential variable, we build a movement path
of length 3 × n2 − 2|Oz| + 1 from sz to vz as follows. We first build a movement path of
length 3 × (in − |Oz|). We then extend this movement by a vertex ρy for each y ∈ Oz. We
extend our path from the last such vertex ρy to vz by a movement path of length 3× (n2 − in).
Furthermore, we add a bidirectional edge between ρy and vy.

We create the clause gadget, depicted in Figure 6.4b, composed of the vertices sγ , vγ , tγ and
for all clauses γi, the vertices uγi

, lγi
, rγi

, si, ci and ti. We create a movement path of length
3× n2 + 2 between sγ and vγ and between all si and γi. For all γi, we create movement edges
from uγi

to lγi
and to rγi

, from the vertex γi to uγi+1 , or tγ if i = m. In addition, we add a
movement edge between vγ and uγ1 . For all γi, we add a movement path of length 3m + 1
between vertices γi and ti. Vertex γi communicates with >z iff z ∈ γi, and with ⊥z iff ¬z ∈ γi.
Moreover, vertex vγ communicates with all >z and ⊥z for all variables z.

Graph G2 contains G1 and for all universal variables z, we add movement edges: from vz to
>z and to ⊥z, and for all clauses γi, we add movement edges from the vertex γi to lγi

and to
rγi

.
We define the initial and target configurations as cs = 〈sγ, sγ1 , . . . , sγm , sz1 , . . . , szn〉 and

cg = 〈tγ, tγ1 , . . . , tγm , tz1 , . . . , tzn〉.
We show that ϕ is a positive instance of TDQBF iff (G1, G2, c

s, cg, k) is positive with k =
3 × n2 + 2 + 3m + 1. We refer to an agent that starts at sz as the existential agent z if z is an
existential variable; the agent is called universal if z is universal. The verification agent is the
agent that starts at sγ and the clause agents γi start at sγi

.
(⇒) Suppose the DQBF holds, and let A be an assignment function. We build a joint strat-

egy. The environment chooses the truth values of variables z by deleting some edges vz to >z
or vz to ⊥z. If the environment deletes the edge vz to >z, it enforces the agent to pass in ⊥z,
thus the variable z is considered to be false. If the environment deletes the edge vz to ⊥z, it
enforces the agent to pass in >z, thus variable z is considered to be true. If the environment
deletes neither edge, then we define the strategy for agent ay to choose to pass in y, making y
true by default.

The strategy is defined as follows. Each existential agent z follows the movement path of
length 3 × n2 − 2|Oz| + 1 to vz, but whenever they have vertex vy as a neighbor, they visit vy,
come back, and continue their paths. This happens exactly Oz times, so at time 3 × n2 + 1,
the existential agent is at uz. Note that along this path the agent has visited all vertices vz′
with z′ ∈ Oz, thus knows which edge among (vz′ ,>z′) and (vz′ ,⊥z′) is present. Thus, upon
arriving to vz, the agent has the knowledge of the valuation for all variables in Oz. Observe also
that by construction of the movement paths between sz and vz, the agents never meet in this
phase of the execution. Agent z moves to >z if Az(ν) = 1 and to ⊥z otherwise, where ν is the
valuation of the variables in Oz.

All clause agents reach γi at time 3×n2 + 2. Moreover, the verification agent is at vγ at this
point, and all existential and universal variable agents z are at >z or ⊥z. Recall that all these

91

Part II, Chapter 6 – CMAPF in Partially-Known Environments

vertices communicate. Since each clause is satisfied by the currently read valuation, each clause
agent γi communicates at least with one existential or universal agent. Thus, the verification
agent communicates with all clause agents via these variable agents. Since the clause agents can
see which edges are present in the clause gadget, the verification agent has now full information
about this gadget, and can continue their path until tγ without backtracking, thus in total time
3× n2 + 2 + 3m+ 1.

(⇐) Conversely, suppose there is a joint strategy enforcing that the verification agent goes
to tγ in k steps. Thus, it means that she must have received all the information about the sur-
roundings of the vertices γ1, . . . , γk, as she has no time to backtrack from a wrong choice. This
information can only be sent to the verification agent from the clause agents through the variable
agents after 3× n2 + 2 steps. The variable agents representing the assignments are connecting
(i.e. satisfying) all clauses. Indeed, for all γi, there is one variable agent z at >z if z ∈ γi and
at ⊥z if ¬z ∈ γi. Thus, the DQBF is a positive instance of TDQBF.

6.6 Discussion

6.6.1 Additional Results

We present results obtained by a simple observation/modification.
Unbounded Reachability and Undirected Graphs. Both the unbounded connected and un-

bounded decentralized reachability become trivial on undirected graphs. This is because we
only require reachability for (c-)admissible graphs. In the decentralized case, each agent can
run a DFS independently, and eventually reach their targets in at most 2|V | steps, and a similar
search can be done by the set of agents in the connected case.

Base Station. Several works consider a designated base vertex to which all agents must
stay connected during the execution [151, 30, 28]. This concept is only relevant in the con-
nected case. Our results also hold with this additional constraint. In fact, the lower bound of
Theorem 6.1 follows from Tateo et al. [151], which proves the bound also with a base. In The-
orem 6.3, we can add the base vertex as an isolated vertex so that the reduction is still valid.

Collisions. We did not require the paths to be collision-free in the results presented in this
paper. However, this property is already ensured by our proofs or can be obtained by simple
modifications. The lower bound proof of Theorem 6.1 relies on Theorem 3.2 from Tateo et al.
[151] which holds with collision constraints as well, so this is also true for our case. The proof
of Theorem 6.3 does not generate collision-free paths as the groups of occurrence agents start
and finish at the same location and follow almost the same path. This proof can be adapted
to prevent collisions by delaying each occurrence agent by 3 steps behind one another. This
can be achieved easily by extending the movement paths and shifting the starting location and
target location of an agent up by 3 vertices behind the previous agent. The proof of lower
bound of Theorem 6.4 features a construction ensuring a collision-free strategy. Indeed, the
observations agents only need to take turns to visit the universal variables. Thus, the result
holds with collision constraints as well. The algorithms of Theorem 6.1, 6.3, and 6.5 can be
adapted by restricting all considered configurations to collision-free ones; while c-admissibility

92

6.6. Discussion

of a graph with collision constraints can be checked using Theorem 3.2.
Graph Classes. The MAPF and CMAPF problems have been studied for different classes of

graphs (planar, grid, . . .). The proof of lower bound in Theorem 6.1 relies on the proof of un-
bounded reachability done in Charrier et al. [28], thus the result of PSPACE-hardness on planar
graphs also carries over to our problem. Planar QBF is known to be PSPACE-complete [95],
and the construction of Theorem 6.3 is such that when applied to a planar QBF, the resulting
graph is planar. Our PSPACE-completeness result thus holds on planar graphs.

6.6.2 Related Work
Different definitions of robust plans have been studied [103, 8, 9]. A k-robust plan guaran-

tees the reachability of the target in the events of at most k delays. A p-robust plan executes
without a conflict with probability at least p. Our framework does not consider delayed agents
but focus on synchronous executions with incomplete knowledge of the area.

The problem of MAPF with a dynamic environment has multiple formulations. The Ad-
versarial Cooperative Path-Finding [76] considers that the obstacles are agents which reason
to prevent the cooperation to reach its goal. Murano et al. [111] considered the problem where
the dynamics of the environment is predictable. Additionally, when obstacles have unknown
dynamics, one can estimate their movements and plan to minimize the probability of a colli-
sion [109], or predict their movements [61] and plan online the movement of the agents [173].
In our setting, the environment is static, thus, all observations are fixed.

MAPF with Uncertainty (MAPFU) asks for a plan which guarantees that mishaps, local-
ization and sensing errors do not impact the proper execution of the plan. This problem can
be solved by temporal logic [156], POMDPs [108], replanning [146, 48, 96], interaction re-
gions [39, 50], and belief space planning [21, 59, 125]. Nebel et al. [112] studied the MAPF
problem with an uncertainty on the destination of the agents and lack of communication. The
asynchronous movement of the agents, studied in those papers, cannot be expressed in our
framework as we require the agent to follow some universal clock to execute their plan.

6.6.3 Perspectives
We proposed a setting for CMAPF in the incomplete case and studied the theoretical com-

plexity of the reachability problem. The first natural question is to find classes of graphs (e.g.
grid graphs) on which the reachability problem is easier to solve, as it was done for MAPF
in Wang and Botea [160] and Banfi et al. [14], and CMAPF in [28]. Another possible direction
is to study the coverage of all vertices [28]. An alternative way to handle non-admissible graphs
is to require that agents return to their starting configuration if the graph is discovered not to be
admissible. We believe that such variants should be as hard as reachability. Furthermore, there
are several possible generalizations that could be considered by introducing dynamic environ-
ments (instead of static), faulty sensing of agents, robustness, uncertainty, etc.

93

CHAPTER 7

CONCLUSION

In this chapter, we provide a summary of the contributions of this dissertation. Then, we
present the different articles that have been published during the writing of this work. Finally,
we provide the reader with interesting future works and research directions which can follow
this work.

7.1 Contributions
More autonomous agents are being used every day and the tasks they perform become in-

creasingly more complex [56, 119, 39, 162]. Those applications require multiple agents to co-
operate together towards a goal. As the tasks complexify, it is not practical to reason about the
group of agents as a single entity. Thus, there is a need for algorithms that let agents communi-
cate and be aware of each other, plan together, avoid mistakes, and “survive” mishaps.

While many works attempted to tackle the problem of planning with communication and/or
in a partially-known environment, none of the existing work presented a framework to properly
study the complexity and algorithmic methods of multi-agent path planning with a formal com-
munication system. This dissertation has for purpose to fill this gap by providing an in-depth
study of the connected multi-agent path planning problems with incomplete knowledge.

7.1.1 Connectivity

Part I introduced a framework which formalizes environment-based communication system
for multi-agent path planning problems. This setting allowed us to study connected planning
independently of the communication system used by the agents in Chapter 4. Note that, the
applications of this framework define the communication, thus, the result of this work hold
for most common communication systems (e.g. line-of-sight, radius). This first contribution
provided a broad overview of the difficulties of planning with communication as well as some
ways to ease the problems. In particular, we identify a class of graphs which correspond to
realistic applications and reduces the complexity to LOGSPACE.

Chapter 5 presents an optimal algorithm to solve CMAPF which is able to, in some cases,
outperform known approximate algorithms. We provided a proof of its optimality and sound-
ness, and we showed that our algorithm may not terminate on unsatisfiable instances. We pro-
vided experimentation which shows that, while outperformed, our algorithm can offer a good
alternative by scaling better in connected worlds and generating execution, by an order of mag-
nitude shorter. Finally, as it is based on a similar structure as the well-studied CBS algorithm for

95

MAPF, one can extend it to support the generation of collision-free executions and may adapt
some known optimizations.

7.1.2 Incomplete Knowledge
Secondly, we provided an extension of the framework presented in Chapter 4 which can

model partially-known environments. The case of incomplete knowledge in multi-agent sys-
tems is crucial as almost no real world application can ensure a perfectly known world. Impor-
tantly, our framework offers a way to model the loss of communication and the reconnection
of agents in a positional manner. We studied the impact of enforcing a permanent connectivity
and allowing disconnections. This study gives an initial step towards understanding precisely
the cost of communication in unknown worlds.

7.2 Publications
The majority of the content of this dissertation has been published in International peer-

reviewed conferences and journals.

Conference:
1. T. Charrier, A. Queffelec, O. Sankur, F. Schwarzentruber (2019), Reachability and Cov-

erage Planning for Connected Agents: Extended Abstract, International Conference on
Autonomous Agents and Multi-Agent Systems.

2. T. Charrier, A. Queffelec, O. Sankur, F. Schwarzentruber (2019), Reachability and Cov-
erage Planning for Connected Agents, International Joint Conference on Artificial Intel-
ligence.

3. A. Queffelec, O. Sankur, F. Schwarzentruber (2021), Planning for Connected Agents in a
Partially Known Environment, Canadian Conference on Artificial Intelligence.

Journal:
4. T. Charrier, A. Queffelec, O. Sankur, F. Schwarzentruber (2020), Complexity of planning

for connected agents, Journal of Autonomous Agents and Multi-Agent Systems.

Demo:
5. A. Queffelec, O. Sankur, F. Schwarzentruber (2018), Generating Plans for Cooperative

Connected UAVs, International Joint Conference on Artificial Intelligence.
6. T. Charrier, A. Queffelec, O. Sankur, F. Schwarzentruber (2021), Connected Multi-Agent

Path Finding: Generation and Visualization, International Joint Conference on Artificial
Intelligence.

The integrality of Chapter 4 has been published throughout publications 1,2,4. The study in
Chapter 5 has been partially published in 5 and is under preparation. Finally, the publication 3
is a short version of Chapter 6.

96

7.3 Future Work
In order to conclude this dissertation we would like to give the reader a look beyond the

content of our study. In particular, we wish to provide the reader with a view of the potential
solutions to solve the high-complexity problems defined in this work.

Our first work, Chapter 4, gave a good overview of the complexity of CMAPF. However, our
framework describes an arbitrary communication system, and one may be interested to study
the complexity of a specific system (e.g. radius, line-of-sight). Indeed, as shown by the study of
the sigh-moveable graphs, in Section 4.5, it may be that some communication systems are easier
to plan with. For instance, our constructions in proofs often rely on fully connected locations
(see proofs of Section 4.4), which may not be realistic. Furthremore, most of our proofs, even
in planar cases, also rely on non-euclidean movement graphs (see proofs of Section 4.7). It may
be the case that under a euclidean hypothesis, some problems are simpler, or admits powerful
approximation algorithms.

Secondly, we provided a simple algorithmic solution to optimally solve CMAPF in Chap-
ter 5. However, by taking inspiration from the optimizations of CBS, the scalability may be
greatly improved. Furthermore, one may wish to combine CCBS with CBS to obtain the first
algorithm capable of generating connected and collision-free execution, although it would re-
quire rethinking most optimizations of CCBS and CBS. Additionally, CMAPF seems to be
a very cooperation-demanding problem, as disconnection is global to the group, a decoupled
algorithm may not be the most efficient approach.

We showed that solving the connected variant of CMAPF in an incomplete environment is,
in the worst case, as hard as solving CMAPF. However, the algorithmic solutions employed
to solve CMAPF are not adaptable to the incomplete knowledge case. Indeed, an unknown
environment requires the agents to be equipped with a strategy. Fortunately, related lines of
works are that of the CTP and Partially Observable Markov Decision Processes (POMDPs), for
which many algorithms have been developed and may be adapted [97, 49, 158, 63, 17].

Finally, while the PSPACE complexity of the previous problems may still be practical, it
leaves little hope for solving the decentralized variant. Fortunately, our problem can be mod-
eled as a Dec-POMDPs and may benefit from the state-of-the-art planners [38, 62, 6, 117].
Another approach to solve the decentralized case of CMAPF would be to use a Multi-Agent
Reinforcement Learning (MARL) approach. Many recent works have been investigating the ef-
ficiency of RL in multi-agent systems [36, 37], see [124] for a comprehensive survey on robotic
applications.

97

BIBLIOGRAPHY

[1] Ali Ahmadzadeh, James Keller, George Pappas, Ali Jadbabaie, and Vijay Kumar, « An
Optimization-Based Approach to Time-Critical Cooperative Surveillance and Coverage
with UAVs », in: Experimental Robotics: The 10th International Symposium on Exper-
imental Robotics, Berlin, Heidelberg, 2008, pp. 491–500, DOI: 10.1007/978- 3- 540-
77457-0_46.

[2] C. Amato, G. Chowdhary, A. Geramifard, N. K. Üre, and M. J. Kochenderfer, « Decen-
tralized Control of Partially Observable Markov Decision Processes », in: CDC, 2013,
pp. 2398–2405, DOI: 10.1109/CDC.2013.6760239.

[3] F. Amigoni, J. Banfi, and N. Basilico, « Multirobot Exploration of Communication-
Restricted Environments: A Survey », in: IEEE Intelligent Systems 32.6 (Nov. 2017),
pp. 48–57, ISSN: 1941-1294, DOI: 10.1109/MIS.2017.4531226.

[4] F. Amigoni, V. Caglioti, and Umberto Galtarossa, « A Mobile Robot Mapping System
with an Information-Based Exploration Strategy », in: ICINCO, 2004.

[5] S. P. Anbuudayasankar, K. Ganesh, and S. Mohapatra, Models for practical routing
problems in logistics, 2016.

[6] Raghav Aras and Alain Dutech, « An Investigation into Mathematical Programming
for Finite Horizon Decentralized POMDPs », in: 37.1 (Jan. 2010), pp. 329–396, ISSN:
1076-9757.

[7] Sanjeev Arora and Boaz Barak, Computational complexity: a modern approach, 2009.

[8] Dor Atzmon, Ariel Felner, Roni Stern, Glenn Wagner, Roman Barták, and Neng-Fa
Zhou, « k-Robust Multi-Agent Path Finding », in: International Symposium on Combi-
natorial Search (SoCS), 2017, pp. 157–158.

[9] Dor Atzmon, Roni Stern, Ariel Felner, Nathan R. Sturtevant, and Sven Koenig, « Prob-
abilistic Robust Multi-Agent Path Finding », in: Proc. of ICAPS, 2020, pp. 29–37.

[10] Dor Atzmon, Roni Stern, Ariel Felner, Nathan R. Sturtevant, and Sven Koenig, « Prob-
abilistic Robust Multi-Agent Path Finding », in: Proceedings of the International Con-
ference on Automated Planning and Scheduling 30.1 (June 2020), pp. 29–37.

[11] Dor Atzmon, Roni Stern, Ariel Felner, Glenn Wagner, Roman Barták, and Neng-Fa
Zhou, « Robust multi-agent path finding », in: Eleventh Annual Symposium on Combi-
natorial Search, 2018.

[12] Franz Aurenhammer, « Voronoi Diagrams - A Survey of a Fundamental Geometric Data
Structure », in: ACM Comput. Surv. 23.3 (1991), pp. 345–405, DOI: 10.1145/116873.
116880.

99

https://doi.org/10.1007/978-3-540-77457-0_46
https://doi.org/10.1007/978-3-540-77457-0_46
https://doi.org/10.1109/CDC.2013.6760239
https://doi.org/10.1109/MIS.2017.4531226
https://doi.org/10.1145/116873.116880
https://doi.org/10.1145/116873.116880

[13] J. Banfi, A. Q. Li, N. Basilico, I. Rekleitis, and F. Amigoni, « Asynchronous multi-
robot exploration under recurrent connectivity constraints », in: 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2016, pp. 5491–5498, DOI:
10.1109/ICRA.2016.7487763.

[14] Jacopo Banfi, Nicola Basilico, and Francesco Amigoni, « Intractability of Time-Optimal
Multirobot Path Planning on 2D Grid Graphs with Holes », in: IEEE Robotics and Au-
tomation Letters 2.4 (2017), pp. 1941–1947, DOI: 10.1109/LRA.2017.2715406.

[15] Amotz Bar-Noy and Baruch Schieber, « The Canadian Traveller Problem. », in: SODA,
vol. 91, 1991, pp. 261–270.

[16] Raphaël Berthon, Bastien Maubert, Aniello Murano, Sasha Rubin, and Moshe Y. Vardi,
« Strategy logic with imperfect information », in: LICS, 2017, pp. 1–12, DOI: 10.1109/
LICS.2017.8005136, eprint: 1805.12592.

[17] Zahy Bnaya, Ariel Felner, Dror Fried, Olga Maksin, and Solomon Shimony, « Repeated-
Task Canadian Traveler Problem », in: vol. 28, Jan. 2011, DOI: 10.3233/AIC-150665.

[18] François Bodin, Tristan Charrier, Arthur Queffelec, and François Schwarzentruber, « Gen-
erating Plans for Cooperative Connected UAVs », in: IJCAI 2018, July 2018, pp. 5811–
5813, DOI: 10.24963/ijcai.2018/846.

[19] Eli Boyarski, Ariel Felner, Guni Sharon, and Roni Stern, « Don’t Split, Try To Work It
Out: Bypassing Conflicts in Multi-Agent Pathfinding », in: ICAPS 2015, 2015, pp. 47–
51.

[20] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, and
Solomon Eyal Shimony, « ICBS: Improved Conflict-Based Search Algorithm for Multi-
Agent Pathfinding », in: IJCAI 2015, 2015, pp. 740–746.

[21] A. Bry and N. Roy, « Rapidly-exploring Random Belief Trees for motion planning un-
der uncertainty », in: Proc. of ICRA (2011), pp. 723–730.

[22] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun, « Collaborative multi-robot
exploration », in: Proc. of ICRA, vol. 1, 2000, pp. 476–481, DOI: 10 .1109/ROBOT.
2000.844100.

[23] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, « Coordinated multi-robot
exploration », in: IEEE Transactions on Robotics 21.3 (2005), pp. 376–386, DOI: 10.
1109/TRO.2004.839232.

[24] Tom Bylander, « The Computational Complexity of Propositional STRIPS Planning »,
in: Artif. Intell. 69.1-2 (1994), pp. 165–204, DOI: 10.1016/0004-3702(94)90081-7.

[25] Tauã M. Cabreira, Lisane B. Brisolara, and Paulo R. Ferreira Jr., « Survey on Coverage
Path Planning with Unmanned Aerial Vehicles », in: Drones 3.1 (2019), ISSN: 2504-
446X, DOI: 10.3390/drones3010004.

100

https://doi.org/10.1109/ICRA.2016.7487763
https://doi.org/10.1109/LRA.2017.2715406
https://doi.org/10.1109/LICS.2017.8005136
https://doi.org/10.1109/LICS.2017.8005136
1805.12592
https://doi.org/10.3233/AIC-150665
https://doi.org/10.24963/ijcai.2018/846
https://doi.org/10.1109/ROBOT.2000.844100
https://doi.org/10.1109/ROBOT.2000.844100
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1016/0004-3702(94)90081-7
https://doi.org/10.3390/drones3010004

[26] K. Cesare, R. Skeele, Soo-Hyun Yoo, Yawei Zhang, and G. Hollinger, « Multi-UAV ex-
ploration with limited communication and battery », in: 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), May 2015, pp. 2230–2235, DOI: 10.1109/
ICRA.2015.7139494.

[27] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer, « Alternation », in: J. of
ACM 28.1 (1981), pp. 114–133, DOI: 10.1145/322234.322243.

[28] Tristan Charrier, Arthur Queffelec, Ocan Sankur, and François Schwarzentruber, « Com-
plexity of planning for connected agents », in: Auton. Agents Multi Agent Syst. 34.2
(2020), p. 44, DOI: 10.1007/s10458-020-09468-5.

[29] Tristan Charrier, Arthur Queffelec, Ocan Sankur, and François Schwarzentruber, « Reach-
ability and Coverage Planning for Connected Agents », in: Proceedings of AAMAS,
Montreal, QC, Canada, May 13-17, 2019, 2019, pp. 1874–1876.

[30] Tristan Charrier, Arthur Queffelec, Ocan Sankur, and François Schwarzentruber, « Reach-
ability and Coverage Planning for Connected Agents », in: IJCAI 2019, 2019, pp. 144–
150, DOI: 10.24963/ijcai.2019/21.

[31] Y. Chen, H. Zhang, and M. Xu, « The coverage problem in UAV network: A survey », in:
Fifth International Conference on Computing, Communications and Networking Tech-
nologies (ICCCNT), July 2014, DOI: 10.1109/ICCCNT.2014.6963085.

[32] Howie Choset, « Coverage for robotics - A survey of recent results », in: Ann. Math.
Artif. Intell. 31.1-4 (2001), pp. 113–126, DOI: 10.1023/A:1016639210559.

[33] Howie Choset and Philippe Pignon, « Coverage Path Planning: The Boustrophedon Cel-
lular Decomposition », in: Field and Service Robotics, London, 1998, pp. 203–209,
ISBN: 978-1-4471-1273-0.

[34] Stephen A. Cook, « A Taxonomy of Problems with Fast Parallel Algorithms », in: Infor-
mation and Control 64.1-3 (1985), pp. 2–21, DOI: 10.1016/S0019-9958(85)80041-3,
URL: https://doi.org/10.1016/S0019-9958(85)80041-3.

[35] T. Danner and L. E. Kavraki, « Randomized planning for short inspection paths », in:
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, Apr.
2000, 971–976 vol.2, DOI: 10.1109/ROBOT.2000.844726.

[36] Yann-Michaël De Hauwere, Sam Devlin, Daniel Kudenko, and Ann Nowé, « Context-
sensitive reward shaping for sparse interaction multi-agent systems », in: The Knowl-
edge Engineering Review 31.1 (2016), pp. 59–76.

[37] Sam Devlin and Daniel Kudenko, « Theoretical Considerations of Potential-Based Re-
ward Shaping for Multi-Agent Systems », in: The 10th International Conference on
Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’11, 2011, pp. 225–
232, ISBN: 0982657153.

101

https://doi.org/10.1109/ICRA.2015.7139494
https://doi.org/10.1109/ICRA.2015.7139494
https://doi.org/10.1145/322234.322243
https://doi.org/10.1007/s10458-020-09468-5
https://doi.org/10.24963/ijcai.2019/21
https://doi.org/10.1109/ICCCNT.2014.6963085
https://doi.org/10.1023/A:1016639210559
https://doi.org/10.1016/S0019-9958(85)80041-3
https://doi.org/10.1016/S0019-9958(85)80041-3
https://doi.org/10.1109/ROBOT.2000.844726

[38] Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpillet,
« Optimally solving Dec-POMDPs as continuous-state MDPs », in: Journal of Artificial
Intelligence Research 55 (2016), pp. 443–497.

[39] Kurt Dresner and Peter Stone, « A Multiagent Approach to Autonomous Intersection
Management », in: JAIR 31.1 (2008), pp. 591–656, DOI: 10.1613/jair.2502.

[40] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, « Robotic exploration as graph con-
struction », in: IEEE Transactions on Robotics and Automation 7.6 (1991), pp. 859–
865, DOI: 10.1109/70.105395.

[41] Brendan Englot and Franz Hover, « Planning Complex Inspection Tasks Using Redun-
dant Roadmaps », in: Robotics Research : The 15th International Symposium ISRR,
Cham, 2017, pp. 327–343, ISBN: 978-3-319-29363-9, DOI: 10.1007/978-3-319-29363-
9_19.

[42] Brendan Englot and Franz Hover, « Sampling-Based Coverage Path Planning for In-
spection of Complex Structures », in: International Conference on Automated Planning
and Scheduling, 2012, URL: https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/
paper/view/4728.

[43] Esra Erdem, Doga G. Kisa, Umut Oztok, and Peter Schüller, « A General Formal Frame-
work for Pathfinding Problems with Multiple Agents », in: Proc. of AAAI, 2013, pp. 290–
296.

[44] Patrick Eyerich, Thomas Keller, and Malte Helmert, « High-Quality Policies for the
Canadian Traveler’s Problem. », in: vol. 1, Jan. 2010.

[45] Ariel Felner, Meir Goldenberg, Guni Sharon, Roni Stern, Tal Beja, Nathan Sturtevant,
Jonathan Schaeffer, and Robert C. Holte, « Partial-expansion A* with Selective Node
Generation », in: AAAI 2012, Toronto, Ontario, Canada, 2012, pp. 471–477.

[46] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, T. K. Satish Kumar,
and Sven Koenig, « Adding Heuristics to Conflict-Based Search for Multi-Agent Path
Finding », in: ICAPS 2018, vol. 28, 1, 2018, pp. 83–87.

[47] Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir Goldenberg, Guni
Sharon, Nathan Sturtevant, Glenn Wagner, and Pavel Surynek, « Search-based optimal
solvers for the multi-agent pathfinding problem: Summary and challenges », in: SoCS,
2017, pp. 28–37.

[48] D. Ferguson, N. Kalra, and A. Stentz, « Replanning with RRTs », in: Proc. of ICRA,
2006, pp. 1243–1248, DOI: 10.1109/ROBOT.2006.1641879.

[49] D. Ferguson, A. Stentz, and S. Thrun, « PAO for planning with hidden state », in: IEEE
International Conference on Robotics and Automation, 2004, vol. 3, 2004, 2840–2847
Vol.3, DOI: 10.1109/ROBOT.2004.1307491.

[50] Carlo Ferrari, Enrico Pagello, Jun Ota, and Tamio Arai, « Multirobot motion coordina-
tion in space and time », in: Robotics and Autonomous Systems 25.3-4 (1998), pp. 219–
229, DOI: 10.1016/S0921-8890(98)00051-7.

102

https://doi.org/10.1613/jair.2502
https://doi.org/10.1109/70.105395
https://doi.org/10.1007/978-3-319-29363-9_19
https://doi.org/10.1007/978-3-319-29363-9_19
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4728
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4728
https://doi.org/10.1109/ROBOT.2006.1641879
https://doi.org/10.1109/ROBOT.2004.1307491
https://doi.org/10.1016/S0921-8890(98)00051-7

[51] Raphael A. Finkel and Jon Louis Bentley, « Quad Trees: A Data Structure for Retrieval
on Composite Keys », in: Acta Inf. 4 (1974), pp. 1–9, DOI: 10.1007/BF00288933.

[52] G. Francès, M. Ramírez, N. Lipovetzky, and H. Geffner, « Purely Declarative Action
Descriptions are Overrated: Classical Planning with Simulators », in: Twenty-Sixth In-
ternational Joint Conference on Artificial Intelligence, 2017, DOI: 10.24963/ijcai.2017/
600.

[53] Mengyu Fu, Alan Kuntz, Oren Salzman, and Ron Alterovitz, « Toward Asymptotically-
Optimal Inspection Planning Via Efficient Near-Optimal Graph Search », in: Proceed-
ings of Robotics: Science and Systems, FreiburgimBreisgau, Germany, June 2019, DOI:
10.15607/RSS.2019.XV.057, eprint: 1907.00506.

[54] Enric Galceran and Marc Carreras, « A survey on coverage path planning for robotics »,
in: Robotics and Autonomous Systems 61.12 (2013), pp. 1258–1276, ISSN: 0921-8890,
DOI: https://doi.org/10.1016/j.robot.2013.09.004.

[55] Michael R Garey and David S Johnson, « Computers and intractability », in: A Guide to
the (1979).

[56] Keivan Ghoseiri, Ferenc Szidarovszky, and Mohammad Jawad Asgharpour, « A multi-
objective train scheduling model and solution », in: Transportation Research Part B:
Methodological 38.10 (2004), pp. 927–952, ISSN: 0191-2615, DOI: https://doi.org/10.
1016/j.trb.2004.02.004.

[57] Dani Goldberg and Maja J. Matarić, « Interference as a Tool for Designing and Evalu-
ating Multi-Robot Controllers », in: Proc. of AAAI, 1997, pp. 637–642.

[58] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon, and Jonathan Schaeffer, « A*
variants for optimal multi-agent pathfinding », in: Workshops at the Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.

[59] J. P. Gonzalez and A. Stentz, « Planning with uncertainty in position an optimal and
efficient planner », in: IROS, 2005, pp. 2435–2442, DOI: 10.1109/IROS.2005.1545048.

[60] Héctor González-Baños and Jean-Claude Latombe, « Navigation Strategies for Explor-
ing Indoor Environments », in: I. J. Robotic Res. 21 (Oct. 2002), pp. 829–848, DOI:
10.1177/027836402128964099.

[61] N. C. Griswold and J. Eem, « Control for mobile robots in the presence of moving
objects », in: IEEE Trans. on Rob. and Autom. 6.2 (1990), pp. 263–268, DOI: 10.1109/
70.54744.

[62] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein, « Dynamic Programming
for Partially Observable Stochastic Games », in: AAAI’04, 2004, pp. 709–715, ISBN:
0262511835.

[63] Eric A. Hansen and Shlomo Zilberstein, « LAO*: A heuristic search algorithm that finds
solutions with loops », in: Artificial Intelligence 129.1 (2001), pp. 35–62, ISSN: 0004-
3702, DOI: https://doi.org/10.1016/S0004-3702(01)00106-0.

103

https://doi.org/10.1007/BF00288933
https://doi.org/10.24963/ijcai.2017/600
https://doi.org/10.24963/ijcai.2017/600
https://doi.org/10.15607/RSS.2019.XV.057
1907.00506
https://doi.org/https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/https://doi.org/10.1016/j.trb.2004.02.004
https://doi.org/https://doi.org/10.1016/j.trb.2004.02.004
https://doi.org/10.1109/IROS.2005.1545048
https://doi.org/10.1177/027836402128964099
https://doi.org/10.1109/70.54744
https://doi.org/10.1109/70.54744
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00106-0

[64] Peter E Hart, Nils J Nilsson, and Bertram Raphael, « A formal basis for the heuristic
determination of minimum cost paths », in: IEEE Transactions on Systems Science and
Cybernetics, (1968), pp. 100–107.

[65] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, « Correction to "A Formal Basis
for the Heuristic Determination of Minimum Cost Paths" », in: SIGART Bull. 37 (Dec.
1972), pp. 28–29, ISSN: 0163-5719, DOI: 10.1145/1056777.1056779.

[66] N. Hazon and G. A. Kaminka, « Redundancy, Efficiency and Robustness in Multi-Robot
Coverage », in: Proceedings of the 2005 IEEE International Conference on Robotics
and Automation, Apr. 2005, pp. 735–741, DOI: 10.1109/ROBOT.2005.1570205.

[67] Robert A. Hearn and Erik D. Demaine, « PSPACE-completeness of sliding-block puz-
zles and other problems through the nondeterministic constraint logic model of compu-
tation », in: Theoretical Computer Science 343.1 (2005), Game Theory Meets Theoret-
ical Computer Science, pp. 72–96, ISSN: 0304-3975, DOI: https://doi.org/10.1016/j.tcs.
2005.05.008.

[68] G. A. Hollinger and S. Singh, « Multirobot Coordination With Periodic Connectivity:
Theory and Experiments », in: IEEE Transactions on Robotics, (Aug. 2012), pp. 967–
973.

[69] Geoffrey A. Hollinger and Sanjiv Singh, « Multirobot Coordination With Periodic Con-
nectivity: Theory and Experiments », in: IEEE Trans. Robotics 28.4 (2012), pp. 967–
973, DOI: 10.1109/TRO.2012.2190178.

[70] Steven Homer and Alan L Selman, Computability and complexity theory, 2011.

[71] J.E. Hopcroft, J.T. Schwartz, and M. Sharir, « On the Complexity of Motion Planning
for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman’s Prob-
lem" », in: The International Journal of Robotics Research 3.4 (1984), pp. 76–88, DOI:
10.1177/027836498400300405, eprint: https://doi.org/10.1177/027836498400300405.

[72] Andrew Howard and Nicholas Roy, The Robotics Data Set Repository (Radish), 2003.

[73] Univ Rennes 1 / IRISA, UAV RETINA Project, http://eole-eyes.irisa.fr/, 2018.

[74] A. Itai and H. Shachnai, « Adaptive source routing in high-speed networks », in: ISTCS,
June 1993, pp. 212–221, DOI: 10.1109/ISTCS.1993.253468.

[75] Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter, « Hamilton Paths in
Grid Graphs », in: SIAM J. Comput. 11.4 (1982), pp. 676–686, DOI: 10.1137/0211056.

[76] M. Ivanová and P. Surynek, « Adversarial Cooperative Path-Finding: Complexity and
Algorithms », in: ICTAI, 2014, pp. 75–82, DOI: 10.1109/ICTAI.2014.22.

[77] M. Renee Jansen and Nathan R. Sturtevant, « Direction Maps for Cooperative Pathfind-
ing », in: Proceedings of the Fourth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE’08, Stanford, California, 2008, pp. 185–190.

[78] R. M. Karp, « Reducibility Among Combinatorial Problems », in: Proceedings of a
symposium on the Complexity of Computer Computations, 1972.

104

https://doi.org/10.1145/1056777.1056779
https://doi.org/10.1109/ROBOT.2005.1570205
https://doi.org/https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1109/TRO.2012.2190178
https://doi.org/10.1177/027836498400300405
https://doi.org/10.1177/027836498400300405
https://doi.org/10.1109/ISTCS.1993.253468
https://doi.org/10.1137/0211056
https://doi.org/10.1109/ICTAI.2014.22

[79] L. E. Kavraki, M. N. Kolountzakis, and J. Latombe, « Analysis of probabilistic roadmaps
for path planning », in: Proceedings of IEEE International Conference on Robotics and
Automation, vol. 4, Apr. 1996, 3020–3025 vol.4, DOI: 10.1109/ROBOT.1996.509171.

[80] Philip N. Klein, Shay Mozes, and Oren Weimann, « Shortest Paths in Directed Pla-
nar Graphs with Negative Lengths: A Linear-space O(N Log2 N)-time Algorithm »,
in: ACM Trans. Algorithms 6.2 (2010), 30:1–30:18, ISSN: 1549-6325, DOI: 10.1145/
1721837.1721846.

[81] Aaron Knoll, « A survey of octree volume rendering methods », in: GI, the Gesellschaft
für Informatik, 2006, p. 87.

[82] S. Koenig, C. Tovey, and W. Halliburton, « Greedy Mapping of Terrain », in: Proc. of
ICRA, vol. 4, 2001, 3594–3599 vol.4, DOI: 10.1109/ROBOT.2001.933175.

[83] J. J. Kuffner and S. M. LaValle, « RRT-connect: An efficient approach to single-query
path planning », in: Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065),
vol. 2, 2000, 995–1001 vol.2, DOI: 10.1109/ROBOT.2000.844730.

[84] Benjamin Kuipers and Yung-Tai Byun, « A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations », in: Robotics and Autonomous
Systems 8.1 (1991), Special Issue Toward Learning Robots, pp. 47–63, ISSN: 0921-
8890, DOI: https://doi.org/10.1016/0921-8890(91)90014-C.

[85] Tushar Kusnur, Shohin Mukherjee, Dhruv Mauria Saxena, Tomoya Fukami, Takayuki
Koyama, Oren Salzman, and Maxim Likhachev, « A Planning Framework for Per-
sistent, Multi-UAV Coverage with Global Deconfliction », in: CoRR abs/1908.09236
(2019), arXiv: 1908.09236.

[86] Jean-Claude Latombe, Robot motion planning, vol. 124, 2012.

[87] Steven M. LaValle, Planning Algorithms, 2006, DOI: 10.1017/CBO9780511546877.

[88] Tod S. Levitt and Daryl T. Lawton, « Qualitative navigation for mobile robots », in:
Artificial Intelligence 44.3 (1990), pp. 305–360, ISSN: 0004-3702, DOI: https://doi.org/
10.1016/0004-3702(90)90027-W.

[89] Harry R Lewis and Christos H Papadimitriou, « Elements of the Theory of Computa-
tion », in: ACM SIGACT News 29.3 (1998), pp. 62–78.

[90] Jiaoyang Li, Ariel Felner, Eli Boyarski, Hang Ma, and Sven Koenig, « Improved Heuris-
tics for Multi-Agent Path Finding with Conflict-Based Search », in: IJCAI, Aug. 2019,
pp. 442–449, DOI: 10.24963/ijcai.2019/63.

[91] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Ariel Felner, Hang Ma, and Sven Keonig,
« Disjoint Splitting for Conflict-Based Search for Multi-Agent Path Finding », in: ICAPS
2019, 2019, pp. 279–283.

[92] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven Koenig, « Symmetry-
Breaking Constraints for Grid-Based Multi-Agent Path Finding », in: SOCS, 2019.

105

https://doi.org/10.1109/ROBOT.1996.509171
https://doi.org/10.1145/1721837.1721846
https://doi.org/10.1145/1721837.1721846
https://doi.org/10.1109/ROBOT.2001.933175
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/https://doi.org/10.1016/0921-8890(91)90014-C
https://arxiv.org/abs/1908.09236
https://doi.org/10.1017/CBO9780511546877
https://doi.org/https://doi.org/10.1016/0004-3702(90)90027-W
https://doi.org/https://doi.org/10.1016/0004-3702(90)90027-W
https://doi.org/10.24963/ijcai.2019/63

[93] Jiaoyang Li, Kexuan Sun, Hang Ma, Ariel Felner, TK Satish Kumar, and Sven Koenig,
« Moving agents in formation in congested environments », in: Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems, 2020, pp. 726–
734.

[94] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Kumar, and
Sven Koenig, « Lifelong Multi-Agent Path Finding in Large-Scale Warehouses », in:
Proceedings of the 19th International Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’20, Auckland, New Zealand, 2020, pp. 1898–1900, ISBN:
9781450375184.

[95] D. Lichtenstein, « Planar Formulae and Their Uses », in: SIAM Journal on Computing
(SICOMP) 11 (1982), pp. 329–343, DOI: 10.1137/0211025.

[96] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun,
« Anytime Dynamic A*: An Anytime, Replanning Algorithm », in: Proc. of ICAPS,
2005, pp. 262–271.

[97] Maxim Likhachev and Anthony Stentz, « Probabilistic planning with clear preferences
on missing information », in: Artificial Intelligence 173.5 (2009), Advances in Auto-
mated Plan Generation, pp. 696–721, ISSN: 0004-3702, DOI: https://doi.org/10.1016/j.
artint.2008.10.014.

[98] Lucian Vlad Lita, Jamieson Schulte, and Sebastian Thrun, « A System for Multi-Agent
Coordination in Uncertain Environments », in: Proc. of AGENTS, 2001, pp. 21–22, DOI:
10.1145/375735.375806.

[99] Hang Ma, « Target Assignment and Path Planning for Navigation Tasks with Teams of
Agents », PhD thesis, University of Southern California, 2020.

[100] Hang Ma, Wolfgang Hönig, TK Satish Kumar, Nora Ayanian, and Sven Koenig, « Life-
long path planning with kinematic constraints for multi-agent pickup and delivery »,
in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 01, 2019,
pp. 7651–7658.

[101] Hang Ma and Sven Koenig, « AI Buzzwords Explained: Multi-Agent Path Finding
(MAPF) », in: AI Matters 3 (2017), DOI: 10.1145/3137574.3137579.

[102] Hang Ma and Sven Koenig, « Optimal Target Assignment and Path Finding for Teams of
Agents », in: Proceedings of the 2016 International Conference on Autonomous Agents
& Multiagent Systems, Singapore, May 9-13, 2016, 2016, pp. 1144–1152.

[103] Hang Ma, T. K. Satish Kumar, and Sven Koenig, « Multi-Agent Path Finding with Delay
Probabilities », in: Proc. of AAAI, 2017, pp. 3605–3612.

[104] Hang Ma, Jiaoyang Li, TK Kumar, and Sven Koenig, « Lifelong multi-agent path find-
ing for online pickup and delivery tasks », in: arXiv preprint arXiv:1705.10868 (2017).

106

https://doi.org/10.1137/0211025
https://doi.org/https://doi.org/10.1016/j.artint.2008.10.014
https://doi.org/https://doi.org/10.1016/j.artint.2008.10.014
https://doi.org/10.1145/375735.375806
https://doi.org/10.1145/3137574.3137579

[105] Hang Ma, Craig A. Tovey, Guni Sharon, T. K. Satish Kumar, and Sven Koenig, « Multi-
Agent Path Finding with Payload Transfers and the Package-Exchange Robot-Routing
Problem », in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, 2016, pp. 3166–3173.

[106] Hang Ma, Jingxing Yang, L. Cohen, T. K. S. Kumar, and Sven Koenig, « Feasibility
Study: Moving Non-Homogeneous Teams in Congested Video Game Environments »,
in: AIIDE, 2017.

[107] Laëtitia Matignon, Laurent Jeanpierre, and Abdel-Illah Mouaddib, « Coordinated multi-
robot exploration under communication constraints using decentralized markov deci-
sion processes », in: Proc. of AAAI, vol. 26, 1, 2012.

[108] S. A. Miller, Z. A. Harris, and E. K. P. Chong, « Coordinated Guidance of Autonomous
UAVs via Nominal Belief-State Optimization », in: ACC, 2009, pp. 2811–2818, DOI:
10.1109/ACC.2009.5159963.

[109] Jun Miura and Y. Shirai, « Probabilistic Uncertainty Modeling of Obstacle Motion for
Robot Motion Planning », in: Journal of Robotics and Mechatronics 14 (2002), pp. 349–
356.

[110] Robert Morris, Corina S. Pasareanu, Kasper Søe Luckow, Waqar Malik, Hang Ma,
T. K. Satish Kumar, and Sven Koenig, « Planning, Scheduling and Monitoring for Air-
port Surface Operations », in: Planning for Hybrid Systems, Papers from the 2016 AAAI
Workshop, Phoenix, Arizona, USA, February 13, 2016, vol. WS-16-12, AAAI Work-
shops, 2016.

[111] A. Murano, Giuseppe Perelli, and S. Rubin, « Multi-agent Path Planning in Known
Dynamic Environments », in: PRIMA, 2015, DOI: 10.1007/978-3-319-25524-8_14.

[112] Bernhard Nebel, Thomas Bolander, Thorsten Engesser, and Robert Mattmüller, « Im-
plicitly Coordinated Multi-Agent Path Finding under Destination Uncertainty: Success
Guarantees and Computational Complexity », in: JAIR 64.1 (2019), pp. 497–527, ISSN:
1076-9757, DOI: 10.1613/jair.1.11376.

[113] Thomas Nestmeyer, Paolo Robuffo Giordano, Heinrich H. Bülthoff, and Antonio Franchi,
« Decentralized Simultaneous Multi-Target Exploration Using a Connected Network of
Multiple Robots », in: Auton. Robots 41.4 (2017), pp. 989–1011, ISSN: 0929-5593, DOI:
10.1007/s10514-016-9578-9.

[114] Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William Yeoh,
« Generalized target assignment and path finding using answer set programming », in:
Twelfth Annual Symposium on Combinatorial Search, 2019.

[115] Evdokia Nikolova and David R. Karger, « Route Planning under Uncertainty: The Cana-
dian Traveller Problem », in: Proceedings of the 23rd National Conference on Artifi-
cial Intelligence - Volume 2, AAAI’08, Chicago, Illinois, 2008, pp. 969–974, ISBN:
9781577353683.

107

https://doi.org/10.1109/ACC.2009.5159963
https://doi.org/10.1007/978-3-319-25524-8_14
https://doi.org/10.1613/jair.1.11376
https://doi.org/10.1007/s10514-016-9578-9

[116] Andreas Nüchter, Hartmut Surmann, and Joachim Hertzberg, « Planning Robot Motion
for 3D Digitalization of Indoor Environments », in: In Proc. of the 11th International
Conference on Advanced Robotics (ICAR, 2003, pp. 222–227.

[117] Frans A. Oliehoek, Matthijs T. J. Spaan, Christopher Amato, and Shimon Whiteson,
« Incremental Clustering and Expansion for Faster Optimal Planning in Decentralized
POMDPs », in: J. Artif. Int. Res. 46.1 (Jan. 2013), pp. 449–509, ISSN: 1076-9757.

[118] Michael Otte and Nikolaus Correll, « Any-Com Multi-robot Path-Planning with Dy-
namic Teams: Multi-robot Coordination under Communication Constraints », in: Exper-
imental Robotics: The 12th International Symposium on Experimental Robotics, Berlin,
Heidelberg, 2014, pp. 743–757, ISBN: 978-3-642-28572-1, DOI: 10.1007/978-3-642-
28572-1_51.

[119] Lucia Pallottino, Vincenzo G. Scordio, Antonio Bicchi, and Emilio Frazzoli, « De-
centralized Cooperative Policy for Conflict Resolution in Multivehicle Systems », in:
IEEE Transactions on Robotics 23.6 (2007), pp. 1170–1183, DOI: 10.1109/TRO.2007.
909810.

[120] R. Pandey, A. K. Singh, and K. M. Krishna, « Multi-robot exploration with commu-
nication requirement to a moving base station », in: 2012 IEEE International Confer-
ence on Automation Science and Engineering (CASE), Aug. 2012, pp. 823–828, DOI:
10.1109/CoASE.2012.6386475.

[121] Christos H Papadimitriou and Mihalis Yannakakis, « Shortest paths without a map », in:
Theoretical Computer Science 84.1 (1991), pp. 127–150, DOI: 10.1016/0304-3975(91)
90263-2.

[122] Gary Peterson, John Reif, and Salman Azhar, « Lower Bounds for Multiplayer Nonco-
operative Games of Incomplete Information », in: Comput & Math. Appl. 41.7-8 (2001),
pp. 957–992, DOI: 10.1016/S0898-1221(00)00333-3.

[123] H. X. Pham, H. M. La, D. Feil-Seifer, and M. C. Deans, « A Distributed Control Frame-
work of Multiple Unmanned Aerial Vehicles for Dynamic Wildfire Tracking », in: IEEE
Transactions on Systems, Man, and Cybernetics: Systems (2018), pp. 1–12, ISSN: 2168-
2232, DOI: 10.1109/TSMC.2018.2815988.

[124] Athanasios S Polydoros and Lazaros Nalpantidis, « Survey of model-based reinforce-
ment learning: Applications on robotics », in: Journal of Intelligent & Robotic Systems
86.2 (2017), pp. 153–173.

[125] Samuel Prentice and Nicholas Roy, « The Belief Roadmap: Efficient Planning in Belief
Space by Factoring the Covariance », in: IJRR 28 (Oct. 2009), pp. 1448–1465, DOI:
10.1177/0278364909341659.

[126] N SV Rao, Srikumar Kareti, Weimin Shi, and S Sitharama Iyengar, Robot navigation
in unknown terrains: Introductory survey of non-heuristic algorithms, tech. rep., Oak
Ridge National Lab., TN (United States), 1993.

[127] N. Rao, S. Kareti, Weimin Shi, and S. Iyengar, « Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms », in: 1993.

108

https://doi.org/10.1007/978-3-642-28572-1_51
https://doi.org/10.1007/978-3-642-28572-1_51
https://doi.org/10.1109/TRO.2007.909810
https://doi.org/10.1109/TRO.2007.909810
https://doi.org/10.1109/CoASE.2012.6386475
https://doi.org/10.1016/0304-3975(91)90263-2
https://doi.org/10.1016/0304-3975(91)90263-2
https://doi.org/10.1016/S0898-1221(00)00333-3
https://doi.org/10.1109/TSMC.2018.2815988
https://doi.org/10.1177/0278364909341659

[128] Daniel Ratner and Manfred K. Warmuth, « Finding a Shortest Solution for the N × N
Extension of the 15-PUZZLE Is Intractable », in: Proceedings of the 5th National Con-
ference on Artificial Intelligence. Philadelphia, PA, USA, August 11-15, 1986. Volume
1: Science, 1986, pp. 168–172.

[129] John H Reif, « Complexity of the mover’s problem and generalizations », in: 20th An-
nual Symposium on Foundations of Computer Science (sfcs 1979), IEEE Computer So-
ciety, 1979, pp. 421–427.

[130] Omer Reingold, « Undirected connectivity in log-space », in: J. ACM 55.4 (2008), 17:1–
17:24, DOI: 10.1145/1391289.1391291.

[131] Ioannis Rekleitis, Ai Peng New, Edward Samuel Rankin, and Howie Choset, « Efficient
Boustrophedon Multi-Robot Coverage: an algorithmic approach », in: Annals of Math-
ematics and Artificial Intelligence 52.2 (2008), pp. 109–142, ISSN: 1573-7470, DOI:
10.1007/s10472-009-9120-2.

[132] Martijn N. Rooker and Andreas Birk, « Multi-robot exploration under the constraints
of wireless networking », in: Control Engineering Practice 15.4 (2007), pp. 435–445,
ISSN: 0967-0661, DOI: https://doi.org/10.1016/j.conengprac.2006.08.007.

[133] Malcolm R. K. Ryan, « Exploiting Subgraph Structure in MultiRobot Path Planning »,
in: in Journal of Artificial Intelligence Research 31 (2008), pp. 497–542, eprint: 1111.
0053.

[134] Walter J. S., « Relationships Between Nondeterministic and Deterministic Tape Com-
plexities », in: Journal of Computer and System Sciences (1970), DOI: 10.1016/S0022-
0000(70)80006-X.

[135] Miguel Schneider-Fontán and M. Mataric, « Territorial multi-robot task division », in:
IEEE Trans. on Rob. and Autom. 14 (1998), pp. 815–822.

[136] Jacob T. Schwartz and Micha Sharir, « On the Piano Movers’ Problem: III. Coordinating
the Motion of Several Independent Bodies: The Special Case of Circular Bodies Moving
Amidst Polygonal Barriers », in: The International Journal of Robotics Research 2.3
(1983), pp. 46–75, DOI: 10.1177/027836498300200304.

[137] Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant, « Conflict-Based Search
for Optimal Multi-agent Path Finding », in: AAAI 2012, Toronto, Ontario, Canada, 2012,
pp. 563–569.

[138] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant, « Meta-Agent Conflict-
Based Search For Optimal Multi-Agent Path Finding. », in: SoCS 1 (2012), pp. 39–40.

[139] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant, « Conflict-based search
for optimal multi-agent pathfinding », in: Artif. Intell. 219 (2015), pp. 40–66, DOI: 10.
1016/j.artint.2014.11.006.

[140] Davood Shiri and F. Sibel Salman, « On the Online Multi-Agent O—D k-Canadian
Traveler Problem », in: J. of Comb. Opt. 34.2 (2017), pp. 453–461, DOI: 10 . 1007 /
s10878-016-0079-8.

109

https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1007/s10472-009-9120-2
https://doi.org/https://doi.org/10.1016/j.conengprac.2006.08.007
1111.0053
1111.0053
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1177/027836498300200304
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1007/s10878-016-0079-8
https://doi.org/10.1007/s10878-016-0079-8

[141] David Silver, « Cooperative Pathfinding », in: AIIDE 2005, Marina del Rey, California,
2005, pp. 117–122.

[142] David Silver, « Cooperative Pathfinding », in: Proceedings of the First AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, AIIDE’05, Marina del
Rey, California, 2005, pp. 117–122.

[143] M. Sipser, Introduction to the theory of computation, 1997, ISBN: 978-0-534-94728-6.

[144] Kiril Solovey and Dan Halperin, « On the hardness of unlabeled multi-robot motion
planning », in: The International Journal of Robotics Research 35.14 (2016), pp. 1750–
1759, DOI: 10.1177/0278364916672311.

[145] Trevor Standley, « Finding Optimal Solutions to Cooperative Pathfinding Problems »,
in: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI’10,
Atlanta, Georgia, 2010, pp. 173–178.

[146] Athony Stentz, « Optimal and Efficient Path Planning for Unknown and Dynamic En-
vironments », in: IJRA 10 (Feb. 1993).

[147] L. J. Stockmeyer and A. R. Meyer, « Word Problems Requiring Exponential Time (Pre-
liminary Report) », in: Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing (STOC), 1973, pp. 1–9, ISBN: 9781450374309, DOI: 10.1145/800125.
804029.

[148] Bryan Stout, Smart Move: Intelligent Path-Finding, 1996.

[149] Nathan R. Sturtevant, « Benchmarks for Grid-Based Pathfinding », in: IEEE Trans.
Comput. Intellig. and AI in Games 4.2 (2012), pp. 144–148, DOI: 10.1109/TCIAIG.
2012.2197681, URL: https://doi.org/10.1109/TCIAIG.2012.2197681.

[150] Pavel Surynek, « An Optimization Variant of Multi-Robot Path Planning is Intractable »,
in: Proc. of AAAI, 2010, pp. 1261–1263.

[151] D. Tateo, J. Banfi, A. Riva, F. Amigoni, and A. Bonarini, « Multiagent Connected Path
Planning: PSPACE-Completeness and How to Deal With It », in: AAAI 20018, 2018,
pp. 4735–4742.

[152] WT Luke Teacy, Jing Nie, Sally McClean, and Gerard Parr, « Maintaining connectivity
in UAV swarm sensing », in: 2010 IEEE Globecom Workshops, IEEE, 2010, pp. 1771–
1776.

[153] Sebastian Thrun, « Robotic Mapping: A Survey », in: Exploring Artificial Intelligence
in the New Millennium, 2003, pp. 1–35.

[154] T. Thurston and Huosheng Hu, « Distributed agent architecture for port automation »,
in: Proceedings 26th Annual International Computer Software and Applications, 2002,
pp. 81–87, DOI: 10.1109/CMPSAC.2002.1044537.

[155] Hudson Turner, « Polynomial-Length Planning Spans the Polynomial Hierarchy », in:
Logics in Artificial Intelligence, European Conference, JELIA 2002, Cosenza, Italy,
September, 23-26, Proceedings, 2002, DOI: 10.1007/3-540-45757-7_10.

110

https://doi.org/10.1177/0278364916672311
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1109/TCIAIG.2012.2197681
https://doi.org/10.1109/TCIAIG.2012.2197681
https://doi.org/10.1109/TCIAIG.2012.2197681
https://doi.org/10.1109/CMPSAC.2002.1044537
https://doi.org/10.1007/3-540-45757-7_10

[156] A. Ulusoy, S. L. Smith, X. C. Ding, and C. Belta, « Robust multi-robot optimal path
planning with temporal logic constraints », in: Proc. of ICRA, 2012, pp. 4693–4698,
DOI: 10.1109/ICRA.2012.6224792.

[157] Manuela Veloso, Joydeep Biswas, Brian Coltin, and Stephanie Rosenthal, « CoBots:
Robust Symbiotic Autonomous Mobile Service Robots », in: Proceedings of the 24th
International Conference on Artificial Intelligence, IJCAI’15, Buenos Aires, Argentina,
2015, pp. 4423–4429, ISBN: 9781577357384.

[158] Glenn Wagner and Howie Choset, « M*: A complete multirobot path planning algo-
rithm with performance bounds », in: International Conference on Intelligent Robots
and Systems, 2011, pp. 3260–3267, DOI: 10.1109/IROS.2011.6095022.

[159] Ko-Hsin Cindy Wang, Adi Botea, et al., « Fast and Memory-Efficient Multi-Agent
Pathfinding. », in: ICAPS, 2008, pp. 380–387.

[160] Ko-Hsin Cindy Wang and Adi Botea, « Tractable Multi-Agent Path Planning on Grid
Maps », in: IJCAI 2009, Proceedings of the 21st International Joint Conference on Arti-
ficial Intelligence, Pasadena, California, USA, July 11-17, 2009, 2009, pp. 1870–1875.

[161] Kai M Wurm, Cyrill Stachniss, and Wolfram Burgard, « Coordinated multi-robot ex-
ploration using a segmentation of the environment », in: IROS, IEEE, 2008, pp. 1160–
1165.

[162] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz, « Coordinating Hundreds of
Cooperative, Autonomous Vehicles in Warehouses », in: National Conference on In-
novative Applications of Artificial Intelligence, IAAI’07, Vancouver, British Columbia,
Canada, 2007, pp. 1752–1759, ISBN: 9781577353232.

[163] Xiaoming Zheng, Sonal Jain, S. Koenig, and D. Kempe, « Multi-robot forest coverage »,
in: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005,
pp. 3852–3857, DOI: 10.1109/IROS.2005.1545323.

[164] Ling Xu, « Graph Planning for Environmental Coverage », PhD thesis, Carnegie Mellon
University, Aug. 2011.

[165] Yinfeng Xu, Maolin Hu, Bing Su, Binhai Zhu, and Zhijun Zhu, « The canadian traveller
problem and its competitive analysis », in: J. Comb. Optim. 18 (Aug. 2009), pp. 195–
205, DOI: 10.1007/s10878-008-9156-y.

[166] E. Yanmaz, « Connectivity versus area coverage in unmanned aerial vehicle networks »,
in: Proceedings of IEEE International Conference on Communications, ICC 2012, 2012,
DOI: 10.1109/ICC.2012.6364585.

[167] Jingjin Yu, « Intractability of Optimal Multirobot Path Planning on Planar Graphs », in:
IEEE Robotics and Automation Letters 1.1 (2016), pp. 33–40, DOI: 10.1109/LRA.2015.
2503143.

[168] Jingjin Yu and Steven LaValle, « Planning Optimal Paths for Multiple Robots on Graphs »,
in: Proceedings - IEEE International Conference on Robotics and Automation (2012),
pp. 3612–3617, DOI: 10.1109/ICRA.2013.6631084.

111

https://doi.org/10.1109/ICRA.2012.6224792
https://doi.org/10.1109/IROS.2011.6095022
https://doi.org/10.1109/IROS.2005.1545323
https://doi.org/10.1007/s10878-008-9156-y
https://doi.org/10.1109/ICC.2012.6364585
https://doi.org/10.1109/LRA.2015.2503143
https://doi.org/10.1109/LRA.2015.2503143
https://doi.org/10.1109/ICRA.2013.6631084

[169] Jingjin Yu and Steven M. LaValle, « Multi-agent Path Planning and Network Flow », in:
Algorithmic Foundations of Robotics X, Berlin, Heidelberg, 2013, pp. 157–173, ISBN:
978-3-642-36279-8.

[170] Jingjin Yu and Steven M. LaValle, « Optimal Multirobot Path Planning on Graphs:
Complete Algorithms and Effective Heuristics », in: IEEE Trans. on Rob. 32.5 (2016),
pp. 1163–1177, DOI: 10.1109/TRO.2016.2593448.

[171] Jingjin Yu and Steven M. LaValle, « Structure and Intractability of Optimal Multi-Robot
Path Planning on Graphs », in: Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, AAAI’13, Bellevue, Washington, 2013, pp. 1443–1449.

[172] Jingjin Yu and Daniela Rus, « Pebble Motion on Graphs with Rotations: Efficient Feasi-
bility Tests and Planning Algorithms », in: Algorithmic Foundations of Robotics, vol. 107,
Springer Tracts in Advanced Robotics, 2014, pp. 729–746, DOI: 10.1007/978-3-319-
16595-0_42.

[173] Yun Seok Nam, Bum Hee Lee, and Nak Yong Ko, « A View-Time Based Potential
Field Method for Moving Obstacle Avoidance », in: Proc. of SICE, 1995, pp. 1463–
1468, DOI: 10.1109/SICE.1995.526730.

[174] Huili Zhang and Yinfeng Xu, « The k-Canadian Travelers Problem with Communica-
tion », in: FAW-AAIM, 2011, pp. 17–28, DOI: 10.1007/s10878-012-9503-x.

112

https://doi.org/10.1109/TRO.2016.2593448
https://doi.org/10.1007/978-3-319-16595-0_42
https://doi.org/10.1007/978-3-319-16595-0_42
https://doi.org/10.1109/SICE.1995.526730
https://doi.org/10.1007/s10878-012-9503-x

INDEX OF DEFINITIONS

2.1 Definition (Decision Problem) . 17
2.2 Definition (Time Function) . 19
2.3 Definition (PTIME) . 19
2.4 Definition (EXPTIME) . 20
2.5 Definition (Space Function) . 20
2.6 Definition (PSPACE) . 20
2.7 Definition (EXPSPACE) . 20
2.8 Definition (LOGSPACE) . 20
2.9 Definition (NPTIME) . 21
2.10 Definition (NEXPTIME) . 21
2.11 Definition (NLOGSPACE) . 21
2.12 Definition (Polynomial Transformation) . 22
2.13 Definition (Completeness) . 23
2.14 Definition (Big-O Notation) . 23
2.15 Definition (Big-Omega Notation) . 23
2.16 Definition (Graph) . 24
2.17 Definition (Configuration) . 24
2.18 Definition (Execution) . 24
2.19 Definition (Vertex Collision) . 24
2.20 Definition (Edge Collision) . 24

4.1 Definition (Topological Graph) . 34
4.2 Definition (Undirected Topological Graph) . 34
4.3 Definition (Sight-Moveable Topological Graph) . 34
4.4 Definition (Complete-Communication Topological Graph) 35
4.5 Definition (Configuration) . 35
4.6 Definition (Execution) . 35
4.7 Definition (CMAPF) . 36
4.8 Definition (CMACP) . 36
4.9 Definition (bCMAPF) . 37
4.10 Definition (bCMACP) . 37

5.1 Definition (Constraint) . 62
5.2 Definition (Constraint Node) . 63

6.1 Definition (Initial Knowledge) . 75
6.2 Definition (Strategy) . 75
6.3 Definition (Positive Instance) . 78
6.4 Definition (c-Positive Instance) . 78

113

Titre : Recherche de Chemin Multi-agents Connectés : Comment les Robots Téléphonent au
Volant en Toute Impunité

Mot clés : Plannification, Système Multi-Agents, Théorie de la complexité, Connectivité, Connaissance
Incomplète

Résumé : La planification de chemin consiste
à concevoir une séquence d’étapes à suivre
pour une entité mobile. Cette tâche est au
cœur de nombreux problèmes du monde réel.
L’étude de la planification autonome peut per-
mettre de réduire la congestion, la pollu-
tion, les accidents, les coûts et plus encore.
Dans certaines applications, il est important
de considérer la connectivité des agents. Bien
que certaines configurations garantissent une
connectivité permanente entre les entités, ce
n’est pas toujours le cas dans les applica-
tions avec des environnements ouverts. On
retrouve aussi, dans de nombreuses applica-
tions, le manque de connaissance complète
de la zone dans laquelle les entités se dé-
placent. Par exemple, dans les missions d’ex-
ploration, les agents ne reçoivent aucune in-

formation sur l’environnement et doivent le dé-
couvrir par eux-mêmes. Un problème impor-
tant, appelé Multi-Agent Path Finding, consiste
à trouver une séquence d’étapes pour qu’un
groupe d’agents atteigne des cibles spécifiées
tout en évitant les collisions. Tout d’abord,
nous présentons un cadre pour étudier et mo-
déliser les problèmes de planification de che-
mins multi-agents basés sur la connectivité.
Nous fournissons un travail initial détaillé sur
la complexité de ce cadre et un algorithme op-
timal pour le résoudre. Deuxièmement, nous
étendons notre cadre de connectivité au cadre
de connaissance incomplète et montrons la
complexité du calcul connecté et décentralisé
des plans dans des environnements partielle-
ment connus.

Title: Connected Multi-Agent Path Finding: How Robots Get Away with Texting and Driving

Keywords: Planning, Multi-Agent Systems, Complexity Theory, Connectivity, Incomplete Knowledge

Abstract: Path planning is the task of devising
a sequence steps for a mobile entity to follow.
This task is required at the center of numerous
real-world problems. The study of autonomous
planning can allow one to reduce conges-
tion, pollution, accidents, costs and more. In
some applications, it is important to consider
the connectivity of the agents. Although some
settings guarantee a permanent connectivity
among entities, this is not always true in appli-
cations with open environments. Another as-
pect that can be found in many applications
is the lack of complete knowledge of the area
in which the entities move. For instance, in
exploration missions, the agents are not pro-

vided any information of the environment and
must discover it by themselves. An important
problem, called Multi-Agent Path Finding, is
to find a sequence of steps for a group of
agents to reach specified targets while avoid-
ing collisions. First, we present a framework
to study and model connectivity-based multi-
agent path planning problems. We provide a
detailed initial work on the complexity of this
framework and an optimal algorithm to solve it.
Second, we extend our connectivity framework
to the incomplete knowledge setting and show
the complexity of the connected and decen-
tralized computation of plans under partially
known environments.

	List of Figures
	Introduction
	Contribution
	Connectivity
	Incomplete Knowledge

	Outline

	Preliminaries
	Complexity Theory
	Problem
	Complexity Classes
	Completeness
	Asymptotic notation

	Multi-Agent Path Finding
	Problem Statement

	State of The Art
	Multi-Agent Path Finding
	Complexity
	Variants

	Coverage Planning
	Connectivity
	Connected MAPF

	Partially-Known Environment
	SLAM
	Canadian Traveler Problem

	I Connectivity
	Connected Multi-Agent Path Planning
	Introduction
	Preliminaries
	Topological Graphs
	Execution
	Decision Problems
	Known Results
	Overview of Results

	Directed Topological Graphs
	Undirected Topological Graphs
	Sight-Moveable Topological Graphs
	Upper Bounds
	Lower Bounds
	Relaxation

	Complete-Communication Topological Graphs
	Variants
	Bounded Reachability and Coverage with Binary Bounds
	Weighted Movement Graph
	Bounded Disconnection
	Collisions
	Planar Movement Graphs

	Conclusion

	Connected-Conflict-Based Search
	Introduction
	Connected-Conflict-Based Search
	The High-Level: The Constraint Tree
	The Low-Level: Constrained Shortest Paths

	Theoretical Analysis
	Experimental Results
	Conclusion

	II Incomplete Knowledge
	CMAPF in Partially-Known Environments
	Introduction
	Our framework
	Modeling Incomplete Knowledge
	Complements
	Decision Problems

	Quantified Boolean Formula
	Quantified Boolean Formula
	Dependency Quantified Boolean Formula

	Connected Reachability
	Unbounded Case
	Bounded Case

	Decentralized Reachability
	Unbounded Case
	Bounded Case

	Discussion
	Additional Results
	Related Work
	Perspectives

	Conclusion
	Contributions
	Connectivity
	Incomplete Knowledge

	Publications
	Future Work

	Bibliography

