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This work was co-funded by Inria and University of Texas Southwestern (UTSW), and
was performed at Inria Saclay-Ile-de-France within the MΞDISIM project team (joint with
Institut Polytechnique de Paris and part of the LMS laboratory). The research was also
funded by the Inria - UTSW Associated Team TOFMOD (Tetralogy of Fallot and Modeling
of Diseases).

The research was supported by the W. B. Ellen Gordon Stuart Trust, The Communities
Foundation of Texas and by the Pogue Family Distinguished Chair (award to Dr F. Gerald
Greil in February, 2015). The work was in addition supported by the Ministry of Health
of the Czech Republic [NV19-08-00071]. Research reported was supported by Children’s
HealthSM, but the content is solely the responsibility of the authors and does not necessarily
represent the official views of Children’s HealthSM.

Associated Research Team
TOFMOD

iii





To the memory of my grandmother, Anna G.





Acknowledgements

This thesis has been a precious journey of three and a half years along which I have been
immersed into a friendly, encouraging and intellectually stimulating environment. An
environment created by people of great professionalism and kindness to whom I would like
to express my sincere gratitude here.

First and foremost, I would like to thank my thesis supervisors, Radomír Chabiniok,
Dominique Chapelle and Tarique Hussain. Thank you for initiating the collaboration
between Inria (France) and University of Texas Southwestern Medical Center in Dallas
(USA) – that I know took quite an effort to organize due to transatlantic location of
the parties – and for honoring me with an opportunity to work within this collaboration
towards developing new solutions for augmented patients’ care. This PhD project was truly
exciting and motivational for me right from reading the proposal. I would like to thank my
supervisors for acknowledging my weaknesses and strengths and creating an environment
where I was able to grow in a comfortable and enjoyable way. Thank you, Radek, for
your continuous support, teaching and almost immediate availability every time I had a
question. Thank you for your genuine interest, enthusiasm and professionalism in developing
the subject of this thesis. I truly enjoyed our discussions on heart pathophysiology and
biomechanics along all the journey of this work. In addition to that I would like to thank
you for your contribution towards developing my scientific writing and presentation skills.
Looking back, I see that when we started to work on our first article the level of my writing
was rather feeble (compared to what it became at the end of the PhD). But thanks to
your guidance and somewhat creative approach to the occurring problems I acquired a
solid grasp of scientific writing style. Thank you, Dominique, for your professionalism in
guiding my journey towards achieving a PhD degree. Thank you for your teaching and
communication attitude, where you give your student enough space to be a leader of the
project and at the same time provide rigorous professional and personal support. I truly
admire your attention to details and ability to optimize every aspect of the work (and you
have taught me to do so as well). All our progress meetings were efficient and educational,
where I would always feel enriched with new knowledge and outlook on scientific research
in general. Thank you, Tarique, for your genuine interest in translational research and
providing a constant clinical outlook on our work. Your enthusiasm towards our results
provided additional motivation along the journey. Thank you for all the advice, support
and encouragement that you shared with me in these years.

I would also like to express my gratitude to the members of the jury. Firstly, to the
examiners of my PhD manuscript, Alistair Young and Jan Janoušek. Thank you for taking
your time to provide a thorough evaluation and review of my work. I thank Abdul Barakat
for taking the responsibility of chairing the jury. In addition, I would like to thank other
members of the jury, Joost Lumens, Eva Sammut, Vicky Y. Wang for your questions during
the defense that triggered interesting discussion and provided me with a different viewpoint
on possible interpretation of my results. Such an exchange is truly valuable.



Besides my PhD supervisors, I would like to thank clinical collaborators of this project,
Gerald Greil, Animesh Tandon, Keren Hasbani, Daniel A. Castellanos, Joshua S. Greer,
Mohamed Abdelghafar Hussein, Surendranath R. Veeram Reddy, for providing clinical data
of the patients without which the research of this thesis would have been impossible. In
addition, I would like to thank Camille Hancock Freisen for your enthusiasm in our results
and for providing valuable clinical feedback that shaped the story of our papers acceptable
for publication in clinical journal. Thank you, Gerald Greil, Animesh Tandon, and Daniel
A. Castellanos for your encouragement, discussions and clinical outlook on our results.

My gratitude also goes to Philippe Moireau for development of CardiacLab cardiac
simulation library (including specific components to this project: valve regurgitation &
stenosis) – the tool that was fundamental for the development of this PhD research. In
addition to that I thank you for hosting me at MΞDISIM team, for your help in solving all
the organizational issues related to my circumstances.

I would like to thank Cécile Patte and Martin Genet for providing me with a motion
tracking tool. I also thank Cécile Patte, Martin Genet, and Ezgi Berberoglu for introducing
to me the fundamentals of MRI image segmentation in MeVisLab during the first year of
my PhD.

My gratitude goes to my colleagues from the MΞDISIM team, with whom I was lucky
to share this part of my scientific journey. I was surrounded by kind, friendly and dynamic
people who are passionate about their work and at the same time care about the well-being
of others. I thank the senior members of our team, Philippe Moireau, Patrick Le Tallec,
Frédérique Clément, Sébastien Imperiale, Fabrice Vallée, Jean-Marc Allain, Martin Genet,
Matthieu Caruel. Thank you for welcoming me at the team, it was a pleasure to share
our team events with you. I would like to thank François Kimmig for your kindness and
willingness to help with all sorts of problems – from administrative to scientific. Thank
you for organizing VendrediSim with Arthur Le Gall that contributed to the dynamics of
our team. I would like to thank François Kimmig, Arthur Le Gall, Federica Caforio, Cécile
Patte, Nicole Tueni, Ezgi Berberoglu, Florent Wijanto, Chloé Giraudet, Hajer Methenni,
Guillaume Balif and Jérôme Diaz. Most of you were there when I joined the team (or soon
after), so I thank you for the welcoming and friendly atmosphere that you have created
and I really enjoyed sharing an open space with you as well as our discussions during the
coffee and lunch breaks. I would like to thank Jessica Manganotti for your company at
open space, for taking care of the chouquette meetings and presents for our teammates. I
also thank Mahdi Manoochehrtayebi, Mathieu Barre, Tiphaine Delaunay, André Dalmora,
Jona Joachim, Giulia Merlini, Alice Peyraut for your company and scientific discussions.
Finally, I would like to thank Bahar Carabetta for the administrative support and friendly
communications.

My sincere gratitude goes to all members of the family whom I love endlessly. First of
all, I would like to thank my dear husband, Temo, who has been supporting me along all
the journey of this important chapter in my professional life. You have believed in me more
than I have believed in myself. You have been creating such a space of unconditional love
and support where all worries vanish and the mind renews for the new discoveries. Thank
you Temo for giving me strength that nourished my growth and well-being. I would like
to thank our daughter Ariana, who was born after the first year of my PhD and who has
enlightened our life from inside out ever since. You were teaching me a healthy work-life
balance by blocking me from work in the evenings and weekends. I would most sincerely
like to thank my dear parents for your love, endless support and hard work that you have
invested in raising me (and my 4 siblings). I thank my mom, Inna, for your endless optimism
and encouragement, and for your trust in my dreams. I thank my dad, Sergei, for your love
and belief in me that was a source of strength when I was thousands of kilometers away

viii



from home all on my own. You have been holding my hand ever since I was a little girl and
have been the proudest one of my small and big achievements (even if not showing that). I
truly owe my achievements to my parents. I thank my sister, Anna, for your support and
help with Ariana during the important events throughout my PhD. I thank my brother,
Andrei, for your support, sense of humor and for calling me a Doctor way before I defended
my PhD. I thank my youngest siblings, Misha and Dasha, for all the joyful moments that
we spent together. I thank my aunt, Nadezda, for your support, love and kindness and tons
of sweets that you had been packing me with so that “I did not feel sad abroad”.

ix



x



Contents

Introduction 1

1 Biomechanical modeling to evaluate ‘current mechanical state’ of the
myocardium in repaired tetralogy of Fallot patients 31
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.2.2 Biomechanical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.2.3 Model calibration to data of individual patients . . . . . . . . . . . . 36
1.2.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.3.1 Direct analysis of clinical data . . . . . . . . . . . . . . . . . . . . . . 37
1.3.2 Model-derived ventricular contractility . . . . . . . . . . . . . . . . . 37
1.3.3 Post-PVR changes in RV EDV and effective PA flow . . . . . . . . . 40

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.4.2 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.6 Supplemental Appendix. Additional Methodology . . . . . . . . . . . . . . . 45

2 Biomechanical modeling to evaluate the evolution of myocardial mechani-
cal properties under different loading conditions 59
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2.1 Patient-specific biomechanical models pre- and post-PVR . . . . . . 61
2.2.2 Post-PVR in silico prediction of contractility . . . . . . . . . . . . . 63
2.2.3 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.1 RV and PA peak systolic pressures in patient-specific models pre-

and post-PVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.2 In silico prediction of right ventricular contractility . . . . . . . . . . 64

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Model-assisted time-synchronization of clinical
pressure-volume data 77
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Contents

3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.2 Biomechanical model of the heart . . . . . . . . . . . . . . . . . . . . 83
3.2.3 Time-varying elastance . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.4 Time-synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5 Appendix 1: Extended research letter to editor . . . . . . . . . . . . . . . . 94
3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Appendix 2: Conference proceeding of Functional Imaging and Modeling of
Heart FIMH 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4 Conceptual link between model-derived measures of ventricular contrac-
tility and clinically accepted surrogate measures of ventricular systolic
performance 113
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1.1 Emax as a measure of ventricular pump function during systole . . . 115
4.1.2 Conceptual link between Emax and max(dP/dt) . . . . . . . . . . . . 116
4.1.3 Model-derived contractility . . . . . . . . . . . . . . . . . . . . . . . 117
4.1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.2 Time-varying elastance and max(dP/dt) . . . . . . . . . . . . . . . . 117
4.2.3 Myocardial contractility and max(dP/dt) from patient-specific biome-

chanical models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.4 Quantitative analysis of the relationships between the data- and

model-derived measures of contractility . . . . . . . . . . . . . . . . 118
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.1 Relationship between Emax and max(dP/dtdata/model) . . . . . . . . 118
4.3.2 Relationship between contractility and max(dP/dtdata/model) . . . . . 120
4.3.3 Relationship between contractility and Emax . . . . . . . . . . . . . . 123

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.1 Quantitative link between Emax and max(dP/dt) . . . . . . . . . . . 123
4.4.2 Data- and model-derived max(dP/dt) . . . . . . . . . . . . . . . . . 124
4.4.3 Quantitative interdependence between the surrogate measures of

ventricular contractility . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4.4 Clinical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4.5 Model-derived max(dP/dt) as a model-based data filter . . . . . . . 128
4.4.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xii



Contents

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.6.1 In silico effect of QRS duration on max(dP/dt) . . . . . . . . . . . . 129
4.6.2 In silico effect of atrioventricular valve regurgitation on max(dP/dt) 130

Conclusions and perspectives 136

Appendix A: Coupled model of two ventricles
and two circulatory systems 148

xiii





Introduction

Nothing in life is to be feared, it is only to be
understood. Now is the time to understand more, so

that we may fear less.
— Marie Curie



This PhD work was performed in the MΞDISIM team at Inria Saclay Ile-de-France
and École Polytechnique, Palaiseau (France) jointly with University of Texas Southwestern
(UTSW) Medical Center, Dallas (USA). It was supervised by Dr. Dominique Chapelle
(Inria senior research scientist in the ‘Mathematical and Mechanical Modeling with Data
Interaction im SImulations for Medicine’, MΞDISIM, team), Dr. Tarique Hussain (pediatric
cardiologist at UTSW Medical Center Dallas) and Dr. Radomír Chabiniok (applied cardiac
modeler connecting Inria and UTSW Medical Center).

The aim of this interdisciplinary project is to translate the cardiovascular biomechanical
modeling to a clinical environment of patients with congenital heart disease. The advance-
ment of this work was possible thanks to the close collaboration between the biomechanical
modeling team at Inria and the department of pediatric cardiology at UTSW Medical
Center, particularly within the Inria - UTSW Associated Team ‘Tetralogy of Fallot and
Modeling of Diseases’ (TOFMOD).

Clinical management of congenital heart disease. Application
to repaired tetralogy of Fallot

Congenital heart diseases (CHD) account for nearly a third of all congenital birth defects
with an incidence of 1% of the total live births worldwide (≈ 1.35 million annual births)
[1; 2]. Accurate diagnosis and effective treatment of all types of congenital heart defects
has dramatically improved over the past 50 years. Infant survival within the first year after
birth with complex congenital heart defects increased from 67.4 % for the 1979-1993 birth
cohort to 82.5 % for the 1994-2005 cohort [3]. Long-term survival of patients with CHD also
improved with a mean decline of mortality rate by 34.5 % between 1990 and 2017 across
all age groups (from birth to 50 years old) [4]. Increased survival of children with CHD has
created a new cohort of population containing adolescents and adults who are at risk of
suffering (or are suffering) from chronic heart disease. In 2010 in the USA it was estimated
that the adult population exceeded the children population with CHD, with 1.4 million
adults vs. 1.0 million children with CHD, and 300 000 of these adults had severe forms
of CHD [5]. A growing population of adults with chronic life-long morbidity creates an
associated burden on the healthcare systems over the world. This translates into increased
financial expenses, increased need for educated professionals and the optimization of the
existing and/or the development of new care strategies to ensure (1) the choice of the most
efficient initial intervention for a given patient (e.g. to minimize a long-term detrimental
effect of residual lesions), (2) a smooth transition from the pediatric to adult care, and (3) an
adequate surveillance of sustained cardiovascular lesions to avoid uncontrolled deterioration
of the heart function.

This thesis will primarily deal with the right ventricular congenital disease called
tetralogy of Fallot (TOF), which is the most common cyanotic CHD with the incidence of
3.5 per 10 000 births [6] (e.g. ≈ 1660 babies with TOF are born in the USA every year [7]).
Tetralogy of Fallot is a disease containing (Figure 1): (1) ventricular septal defect (VSD),
(2) obstruction of the right ventricular outflow tract (RVOT), (3) overriding of the aorta (i.e.
the aorta appears directly over VSD instead of over the left ventricle which makes blood
from the right ventricle flow directly into the aorta), and (4) right ventricular hypertrophy.
Complete surgical repair of TOF is usually performed within the first 1.5 years of life where
the ventricular septal defect is closed and a transannular patch is inserted into the RVOT
to enlarge the size of RVOT and pulmonary artery (PA).

Patients with repaired TOF (rTOF) show excellent survival rates after initial repair, e.g.
94.8 % and 92.8 % in the 10 and 25 years after the initial surgery [9], respectively. However,
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(a) Normal heart (b) Tetralogy of Fallot (TOF) (c) Repaired tetralogy of Fallot
(rTOF)

Figure 1: Anatomy of the normal heart (a), tetralogy of Fallot (b), and tetralogy of Fallot after
complete repair (rTOF) (c). Figure taken from [8].

their mortality rates are higher compared to normal population [10; 11] because some
residual lesions could remain present after the initial surgery: (1) regurgitation through
the PV (due to the insertion of the transannular patch), (2) stenosis on the RVOT, and
(3) stenosis of the branched pulmonary arteries. RVOT obstruction and PV regurgitation
create pressure- and/or volume- overload in the RV leading to ventricular remodeling,
hypertrophy and/or dilatation of the ventricular chamber, respectively. In addition, rTOF
RVs are prone to electrophysiological abnormalities caused either by the initial surgical
repair [12] or developed later in the remodeled heart [13]. The most prevalent one is the
right bundle branch block (RBBB) — a block along the electrical conduction system of
the right ventricle that causes delay or blockage of the ventricular activation. It creates
intraventricular (e.g. when the activation of RV is not homogeneous) or interventricular
activation dyssynchrony (e.g. delayed activation of right with respect to the left ventricle).
In such electrophysiological conditions RV contraction becomes delayed and mechanically
less efficient. The patients tend to develop severe arrhythmias. If left untreated the rTOF
RV function progressively diminishes and patients become at high risk of sudden death
from cardiac arrest and arrhythmia. Park et al. [9] showed that at least 18%, 31% and 53
% of patients in 5, 10 and 20 years after the initial repair, respectively, require some type
of reintervention – to correct the hemodynamic burden and/or to control the pathological
RV remodeling and associated deterioration of electrophysiology.

Pulmonary valve replacement (PVR) is a common intervention that is performed to
correct the hemodynamic burden and avoid deterioration of ventricular function. Predicting
the correct timing for PVR is crucial. In the conditions of longstanding exposure to pressure-
and volume overload the myocardium undergoes uncontrolled remodeling that at some
point becomes irreversible. In addition, PVR has to be repeated throughout life as the
lifespan of the implanted valve is typically up to ≈ 10 years. Therefore, PVR should be
performed as late as possible but before the irreversible remodeling has occurred [14].

In clinical practice it is still unclear how to distinguish irreversible versus reversible my-
ocardial remodeling and how to prevent or maintain a failing volume- and/or pressure-loaded
RV [15]. Current decision-making protocols for interventional planning and monitoring of
the functional response to the therapy of rTOF patients (as well as patients with other
types of CHD [16; 17]) are vastly based on image-derived biomarkers [18; 19; 20]. The gold
standard technique is cardiovascular magnetic resonance imaging (MRI) [16] that allows
the quantification of ventricular volumes, mass and phase contrast flow through the valves.
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However, the sensitivity and specificity of image-based biomarkers remain elusive, e.g. ≈
40 % of rTOF patients show an unfavorable outcome post-PVR (i.e. normalization of
ventricular volumes does not occur) [21; 22] suggesting that the timing of PVR was possibly
incorrect [23].

Emerging need for personalized approaches in patient care of
congenital heart disease

To date there is a knowledge gap regarding the underlying long-term mechanisms of a
progression of congenital heart pathologies for a number of reasons:

1. Thanks to the ongoing progress in surgical techniques, children and adult populations
with CHD continue to grow every year, creating a novel set of cardiovascular problems
that were not seen before the era of progress of cardiac interventions [18]. As the
longitudinal data of CHD progression had been quite sparse until recently, the current
guidelines for the management of patients with CHD do not yet most adequately
inform the therapy and follow-up planning.

2. Patients with CHD possess unique and complex anatomical arrangements with rare
and varied lesions both prior to and after corrective surgery that trigger a long-term
remodeling processes.

3. There is a lack of sensitivity and specificity of existing biomarkers.

The complexity of the CHD profiles necessitates the development of functional biomarkers
that are (1) patient-specific, (2) capable of tracking the time-varying profile of the disease
progression, and (3) capable of elucidating functional changes indicative of ventricular
dysfunction. Existing biomarkers are primarily given by imaging and biochemical modalities.
Practice shows that they are not sensitive enough to detect, track and assess the development
of advanced pathological states. The loss of regulatory capacity of the heart to stress factors
at tissue- and organ-level may well occur prior to the occurrence of detectable symptoms
[24] (e.g. reduction in the ejection fraction). Hence, it is inherently challenging to spot the
onset of failing organ. The ultimate goal is therefore to develop a patient-specific monitoring
and surveillance tool that could consider an interaction between disease, therapy and time.
Such a tool should integrate all levels of disease progression – from molecular to organ-level
function and back – as well as take into account the lifestyle and the environment of a
given patient. The development of monitoring tools of such a precision clearly necessitates
an integration of collaborative efforts from multiple disciplines: applied mathematics,
computer science, computational biology, biophysics, biomechanics, experimentation, and
cardiovascular medicine (including imaging, surgery, cardiology). [25].

With an expansion of the availability of clinical data and accelerating progress of
computer power, the creation of personalized monitoring tools containing a physiological
representation of internal organ mechanics is becoming a reality [26]. A new era of digital
medicine is developing with the emerging concept of ‘digital twin’, which could be defined
as a virtual tool that coherently integrates the clinical data acquired over time by means
of mechanistic and statistical models providing (1) augmented interpretation of existing
clinical biomarkers, and (2) novel model-based patient-specific indices of heart function
[25]. The schematics in Figure 2 demonstrates an example of a rTOF patient management
profile, that in addition to conventional clinical biomarkers, could be augmented by novel
mechanical and statistical model-derived indicators when e.g. evaluating the ‘current state’
of ventricular function prior to performing the PVR. In the sequel, we will briefly review
the state of the art of existing modeling techniques.
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Figure 2: Clinical management of patients augmented by digital medicine tools, example of repaired
tetralogy of Fallot patients. Black chart: current pipeline of the clinical decision-making; blue
and orange charts: integration of model-derived indices into the clinical decision-making. ECG:
electrocardiogram; PV: pulmonary valve; PVR: pulmonary valve replacement; RV: right ventricle;
RVOT: right ventricular outflow tract obstruction.

Fundamental characteristics of cardiac anatomy, structure and
function

The predominant role of the heart is to pump the blood through the vascular system to
sustain the bodily demand in oxygen and nutrients. The function of the heart as a muscular
pump arises from the orchestration of multiphysics processes occurring at various spatial
scales.

The myocardium is a hierarchical structure. Its functional capacity is determined by the
interaction between the electrical signal conducting system (e.g. sinus node and Purkinje
system, Figure 3) and a force-generating unit of the myocardium (e.g. sarcomere, Figure 4).
Sarcomeres are composed of thick and thin myofilaments (which contain myosin and actin
filaments, respectively). Electrical activation of the myocytes triggers the release of the
calcium ions from the sarcoplasmic reticulum into the cytoplasm. Calcium ions bind to
the troponin-C (TN-C on Figure 4 (b)) causing the configurational change of the actin
filament that unmasks the myosin binding sites. Myosin heads then attach to the actin
filaments and produce the power stroke that pulls the Z-bands towards each other inducing
the shortening of the sarcomere and the associated contraction of the myocardium. For a
detailed description of excitation-contraction coupling of the cardiac myocytes see e.g the
textbook of [27].

At the organ-level cardiac myocytes form the myofibers that are axially arranged into a
three-dimensional (3D) structure [28] (Figure 5 (a)), and are wrapped by a 3D network of
collagen connective tissue [29] (Figure 5 (b)). In addition, the tissue is organized in laminae
– cleavage planes [29]. Such a structural organization of the tissue facilitates fast propagation
of electrical waves in the direction of the fibers [30] and allows complex deformations of the
myocardium that occur throughout the cardiac cycle [31].

5



Figure 3: Electrical signal conducting system of the heart. Figure taken from [27]. Copyright
Elsevier (2011) with permission.

(a) Sarcomere (b) Actin-myosin complex

Figure 4: Microstructural arrangement of cardiac myocytes. (a) At the tissue-level myofibers
are composed of myocytes that are interconnected by intercalated discs. Myocytes are arranged
into myofibrils that are divided into the functional compartments – sarcomeres. Sarcomeres are
composed of thin and thick myofilaments (actin and myosin filaments, respectively), and are
separeted by Z-discs. Protein titin anchors myosin filaments into the z-line (b) Microstructure of the
sarcomere force producing region. Thick filaments are composed of myosin molecules that contain
myosin heads. Thin filaments are composed of actin, tropomyosin that wraps the actin filament,
and regulatory troponing complex (TN) proteins. TN-I: inhibits myosin binding to actin; TN-C:
troponin-C, calcium ion binding cite; and TN-T: binds to tropomyosin. Excitation-contraction
coupling with subsequent power stoke production arise via binding of the myosin head to the actin
filaments. Attached myosin heads pulls the Z-bands towards each other producing the shortening of
the sarcomere (contraction of the myocardium). Figure taken from [32]. Copyright Wolters Kluwer
Health (2012) with permission.

Cardiac cycle

The mechanical pumping action of the heart is characterized by the cardiac cycle that
describes the change in atrial and ventricular pressure and volume (Figure 6). The initiation
of the cardiac cycle is determined by the generation of action potential in the sinus node
and its propagation downstream the conducting system of the heart (see Figure 3). These
electrophysiological events are reflected in the electrocardiogram (ECG) recording. The
P-wave corresponds to the depolarization of the atria, triggered by the activation of the sinus
node. The QRS complex represents the depolarization of the ventricles and corresponds to
the signal propagation through the Purkinje network and ventricular myocardium, see Figure
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(a) 3D myofiber arrangements (b) 3D fibrous matrix of the my-
ocardium

Figure 5: Organ-level structural arrangements of the myocardial wall. (a) Directions of myocardial
fibers reconstructed from diffusion tensor magnetic resonance imaging of porcine heart showing a
three-dimensional (3D) myofiber arrangement within the myocardial wall. (b) Scanning electron
microscope image of the cross section of the ventricular wall demonstrating the 3D structural
arrangement of the extracellular matrix. Figures taken from [28] (open source).

6 and Figure 3. The travelling of the electrical signal throughout the myocardium induces
an electro-mechanical coupling within the myocardium leading to an active contraction
of the corresponding heart chambers, period called as atrial (ventricular) systole. Atrial
(ventricular) systole is followed by the diastole when the repolarization of the myocardium
occurs with associated relaxation of the tissue allowing the blood to fill up the chambers.
The atrial physiological function is to facilitate an optimal filling of the ventricle with blood,
while the ventricular function is to generate a major contractile force to pump the blood
into the vascular tree [27].

Figure 6: Orchestration of the events occurring during the cardiac cycle demonstrating changes
in left atrial, left ventricular, and systemic circulation pressures, left ventricular volume, and
electrocardiogram. Figure taken from [27]. Copyright Elsevier (2011) with permission.
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Modeling of cardiovascular anatomy, physiology and function

An extended anatomical description of the cardiac compartments (e.g. ventricular chambers)
could be obtained from the statistical shape models [33; 34; 35]. These models constitute
population atlases based on the acquired patient-specific 3D image data of the pathology
in question. Such an atlas contains the representation of a mean shape and shape varia-
tions around this mean for a given population. These metrics allow to detect correlative
relationships between the specific geometrical features, which in turn could augment the
phenotyping of a given pathology.

The representation of physiology (function) of various compartments of the cardiovascular
system is a subject of biomechanical modeling studies. The major focus of these studies
is to represent functional characteristics of the heart and cardiovascular system in order
to provide additional mechanical perspective on the physiology and function that are not
measurable in vivo. Considering a multiscale organization of the heart and interaction
of the multiphysics processes on various spatial scales the modeling of the cardiovascular
mechanics is a fundamentally complex task. The challenge is to achieve a balance between
sufficient model complexity to represent the underlying physiology and (1) the availability
of the numerical methods and computational techniques able to solve the associated system
of equations and (2) the availability of the experimental data to estimate the parameters of
the constitutive mechanical laws.

The mechanical behaviour of the heart and blood is often represented within the theory of
continuum mechanics. The solution of the associated system of partial differential equations
provides simulations of the tissue motion and blood flow. Mechanical actions of the heart
(e.g. myocardial contraction and/or relaxation) can be represented by various formulations:
(1) solid mechanics (modeling of myocardium), (2) fluid mechanics (flow of blood inside the
cavity or vessels), (3) electrophysiology. These three can be coupled, e.g. fluid-structure
interaction (blood inside heart cavities, or blood inside the coronary vessel tree modeled
using porous material), electro-mechanical models (interaction between electrical signal
propagation and subsequent mechanical action of the myocardium). Mechanical properties
of the arteries (e.g. Young’s modulus) and mechanical profile of the arterial blood flow (e.g.
blood flow velocity) can be represented by the models of computational fluid dynamics.

The framework for formulating the biomechanical model of the heart within a theory
of solid mechanics is of particular relevance to this thesis. In the sequel we provide
a description of a formulation of such models. We also briefly mention a principle of
integrating electrophysiology into solid mechanics.

General framework to formulate a biomechanical model of the heart

Cardiac biomechanics are often modeled with a theory of solid mechanics. An advancement
of finite element methods and computers in the 1960s [36; 37] triggered the development
of heart models with complex geometries where the solution of the prescribed non-linear
constitutive equations became tractable [38]. First attempts to model a 3D function of the
heart containing the description of underlying tissue-level mechanics date back to the 1970s
in the works of P. J. Hunter [39; 40] and others [41; 42; 43; 44]. In order to model the 3D
function of the heart the models need to contain the following constituents:

• A heart geometry with detailed description of myocardial tissue architecture

• Theoretical framework for the description of tissue motion

• Material constitutive laws that describe the mechanics of resting and contracting
myocardium (derived from experimental measurements of tissue- and sarcomere-level
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mechanics)

• Representation of electrical activation of the tissue

• Physiological boundary conditions that define an external loading and/or kinematic
constraints acting on the deforming body

• Effective numerical method to solve the associated system of equations

Over the last decades, an advancement in imaging techniques has provided an accurate
3D description of patient-specific geometry. Acquired in vivo cardiac geometry could be
directly deployed in the cardiac simulation pipeline. One of the common techniques is MRI
thanks to its high spatial and temporal resolution and a high contrast between deforming
myocardium and the surrounding tissues [45; 46]. In addition, MRI does not have any
X-ray dose and can provide a wide variety of data (e.g. static high resolution anatomical,
functional cine images, flow, tissue characterization – e.g. T1 weighted images, gadollinium
late enhancement). Computed tomography and echocardiography are also widely used to
extract hearts geometry, motion and flow.1 The structural information about the spatial
arrangement of the myofibers (e.g. fiber orientation, fiber angles) could be prescribed to
the FE mesh [48; 49]. Patient-specific myocardial fiber architecture could be generated by
processing diffusion tensor MRI data [50; 51; 52; 53]; however the accuracy of such data is
still limited. In addition, the availability of patient-specific fiber data is hampered by the
technical difficulty of their acquisition (e.g. only a few centers in the world are equipped for
such exams) and practical difficulty (e.g. long acquisition time for patients). In the absence
of patient-specific data the common practice is to assign fiber angles between 50 and 70◦

for endocardium and -50 and -70◦ for epicardium [54; 55; 56], the values being provided by
the histological data [57].

A foundation for the formulation of mechanistic models of the heart is the theory of
finite deformation elasticity. It characterizes myocardial deformations in space and time
with prescribed stress-strain constitutive laws. The deformation acting on the material
is given by the strain tensor. The stress acting on infinitesimally small planes within the
material is given by the stress tensor. By solving the system of partial differential equations
that govern the conservation of mass, momentum and energy it is possible to simulate the
motion of the myocardial tissue [40; 58; 31].

Myocardium is commonly modeled as a viscoelastic, anisotropic (e.g. transversely
isotropic) and incompressible material. Such a non-linear material behavior was observed
in numerous experimental studies on tissue-mechanics (e.g. [59; 60], the review about the
architecture of the myocardium by [61]) and was incorporated into the various forms of
the elastic strain energy density function such as [62; 63; 64; 65; 60; 66]. The strain energy
function is often expressed in terms of Piola-Kirchhoff stress to denote the passive stress
tensor in the overall description of the constitutive law.

In order to model the active contraction of the myocardium the description of the
active tension must be included. The active tension tensor, often in the form of second
Piola-Kirchhoff stress, can be combined with the passive stress tensor to provide an overall
description of active and passive constitutive law of the myocardium [58] – active stress
framework. The representation of active tension within the myocardium can be either given
by a single variable of active stress (such as in [67; 68; 49; 69; 70; 71]) or by integrating micro-

1After semiautomatic (e.g. Circle Cardiovascular Imaging, Calgary, Alberta, Canada) or manual
contouring of the ventricular cavity (e.g. MeVisLab software) finite element (FE) mesh generation softwares
(e.g. GMSH [47]) could be used to provide a patient-specific tetrahedral mesh that could be directly
employed for subsequent simulations.
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scale mechanics of actin-myosin interaction into the overall constitutive law of myocardial
contraction (e.g. [72; 73; 74]).

One of the earliest constitutive model of active contraction of the myocardium was
proposed by A. V. Hill [75] in 1938. He derived an empirical three-element rheological model
of muscle contraction that consisted of a contractile element in series with a passive elastic
element and both in parallel to the other passive elastic element. Elastic elements were
considered as springs of a given stiffness while the contractile element constitutive law was
in a form of force-velocity relationship. Another theoretical framework of active contraction
modeling belongs to A. F. Huxley who proposed a sarcomere level contraction model [76]. In
1954 the experiments with skeletal muscle brought a sarcomere level description of location
and arrangement of actin and myosin, with the contractile force being produced concurrently
with the myosin sliding over the actin filaments. [77; 78]. Following that discovery in 1957
A. F. Huxley formulated a sliding filament theory of muscle contraction [76]. It considers
all myosin heads as series of linear springs with a certain energy. Attachment of the myosin
heads to the corresponding actin sites produces active tension and relative sliding of myosin
over the actin causing shortening of the muscle. This theory was revolutionary to the
field and later formed a basis for the other models of subcellular myocardial contraction,
e.g. [79; 80; 81; 82; 83; 65; 84]. As more experimental data on subcellular myocyte
physiology became available (e.g. calcium kinetics, passive propertied of cardiac muscles,
length-dependent kinetics of the cross-bridges) Huxley’s model of actin-myosin sliding was
extended to account for the dynamics of calcium binding and passive properties of the
myocytes [65; 68; 84] that allowed a more holistic description of myocardial physiology.

A model proposed by Bestel-Clément-Sorine (BCS) within Huxley’s framework [84]
is of particular relevance to this thesis. It is a model of a sarcomere level kinetics with
chemically controlled (i.e. calcium concentration) constitutive law of actin-myosin mechanics
in myofiber direction. The contractile component was coupled with passive component of
visco-elastic type, and a set of differential equations provided a constitutive relation between
stress and strain. The BCS model was further extended by Chapelle and colleagues in 2012
[72] to incorporate more physiological Frank-Starling mechanism (i.e. preload dependent
property of the myocytes force generating capacity) of myocardial contraction and embed
this model into an energy-consistent framework of continuum mechanics. This multi-scale
model formulated by [72] is the biomechanical model used in this thesis in application to
the modeling of cardiac mechanics of patients with CHD.

Electrical activation input to the mechanical model is often given by reaction-diffusion
partial differential equations (e.g. bidomain, monodomain equations [85; 86; 87; 88]) that
simulate the propagation of transmembrane potential over the 3D myocardium of the heart
with subsequent intracellular calcium release. Calcium kinetics couple electrical and mechan-
ical components in the model via embedding of the activation time or calcium concentration
(output from the electrophysiological model) into the sarcomere-level constitutive model
of active tension [68; 89; 90; 58; 73; 91; 92; 93]. However, if the modeled pathology is not
related to electrical abnormalities the input variable of electrical activation duration could
be directly prescribed into the sarcomere model of active tension. The electrical input is
prescribed such that the timing of complete activation of the ventricular myocardial tissue
corresponded to e.g. measured QRS duration [56; 94; 95; 96].

In the 3D space the boundary conditions define the displacement constraints on the
deforming ventricle. They account for the presence of the surrounding anatomical structures:
diaphragm, thoracic cage, and the lungs. One of the approaches is to consider viscoelastic
boundary conditions [97] or sliding of the complementary surfaces [98]. Boundary conditions
that define the external loading can be represented by a lumped-parameter model of the
circulation coupled to the ventricular outflow tract [90; 99; 100; 93; 71].
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Phenomenological model of the heart function

The simplest way to represent an organ-level pumping behavior of the heart is to consider
the cardiac chamber as a generator of blood flow and pressure. A time-varying elastance
model describes the time-variant changes of instantaneous intraventricular pressure and
volume. It was originally proposed by H. Suga in the 1970s [101] and later extensively
employed by others [102; 103; 104; 105; 106; 107; 108]. The model determines the ability of
ventricular chamber to generate systolic pressure and flow against given vascular impedance
[101]. It does not describe constitutive properties of underlying tissue-level mechanics, but
gives a global organ-level function. Thanks to its simplicity the model has been used in
clinical physiological studies to characterize organ-level cardiac performance [109; 110; 111].

Applied modeling to augment interpretation of clinical data

The development of the applied modeling workflow that may be directly employed in
a clinical environment is a subject of ongoing research. The aim is to augment the
interpretation of clinical data by model-derived characteristics of myocardial (vascular)
mechanics (i.e. mechanical models) or by additional geometrical indices of the pathology
(i.e. statistical shape models). Within a framework of mechanical modeling an augmented
interpretation of clinical data is usually achieved by the following: (1) an appropriate choice
of the model ingredients that sufficiently represent the pathophysiology in question; (2) the
calibration of patient-specific parameters of the constitutive laws. The latter is achieved via
matching the model prediction (e.g. output of the model in terms of ventricular pressure
and/or volume curves) with the observed data – the so-called data-model coupling. The
mathematical methods that enable a personalized data-model coupling are a vast area of
research in applied mathematics. Briefly these methods are data assimilation (optimization)
techniques [112; 113; 114; 115] that aim to find a balance between the two conditions: (1)
a distance between the model prediction (defined by a given set of parameters) and the
data, and (2) a confidence in the model (i.e. typically parameters cannot take arbitrary
values). In application to cardiac modeling see e.g. [116; 71; 48; 56; 117].

As regards cardiac mechanics we can highlight some interesting approaches pertaining
to model-augmented clinical data interpretation. Patient-specific diastolic and/or systolic
mechanical properties may be extracted by coupling the 3D heart model with MRI data. The
passive (active) constitutive law of the myocardium – i.e. that describes myocardial behavior
during diastole (systole) – is prescribed to the 3D finite element model of the ventricle. The
kinematics of the model are coupled to that given by CMR data by adjusting parameters
of passive (active) constitutive law. Such a procedure provides patient-specific parameters
of myocadial stiffness (active stress) that can be used to assess e.g. diastolic (systolic)
heart failure in patients. Studies investigating the passive behavior of the myocardium are
[48; 118; 119], and active behavior [120; 121; 56; 122]. Electromechanical models of the heart,
where the electrophysiological input is embedded into the active constitutive law, allow to e.g.
describe and predict the effect of cardiac resychronization therapy on ventricular contraction.
Various patterns of electrical wave propagation are prescribed and the subsequent response
of ventricular mechanics is studied, e.g. the models of [55; 74; 100; 69; 123; 93].

Whilst 3D finite element models allow modeling of the realistic multi-level and multi-
physics phenomena, they require (1) high computational cost (e.g. in fluid structure
interaction models simulation of one cardiac beat could be at the time-scale of days), and
(2) adjustment of the large number of constitutive parameters. Such features limit their
direct translation into clinical bench and make the studies of large patient cohorts almost
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unattainable. Some approaches of a reduced geometrical representation of ventricular cavity
exist that decrease the computational time of one cardiac beat to the duration of seconds.
The family of CircAdapt models [124; 125; 70] – 1D models of cardiac mechanics – provide
a global representation of a chamber-level stress-strain relationship. The geometry of the
cavity is determined by the adaptation of the cavity to the imposed mechanical loading.
Another approach was developed by Caruel et al. [126], where the geometry of a complete
multi-scale 3D mechanical model [72] was reduced to a sphere while preserving all the
constitutive laws (i.e. 0D model). The resulting 0D model preserves the sarcomere-level
mechanical description but thanks to the only one radial displacement of the ventricular
cavity the simulation of one cardiac beat takes around 10ms.

Modeling of patients with congenital heart disease

In this section we provide an overview of the biomechanical modeling techniques that can be
coupled to the clinical data of patients with CHD. These models could be used in order to
obtain biomechanical insight into the myocardial health. One of the first efforts to simulate
the mechanical behaviour of the cardiovascular system of patients with CHD was in the early
2000s. Clinical data of patients with single-ventricle geometry was coupled to mechanical
models of the heart and circulation. The pumping action of the heart was represented by a
simple time-varying elastance model [104] that was coupled to the lumped parameter model
of the circulation [127; 128; 129] (see also a later study in [130]). These models studied the
influence of hemodynamic factors (e.g. resistance of the circulation) on the ability of the
heart to generate cardiac output in rest and exercise. Despite a simple phenomenological
representation of cardiac mechanics these models showed promising results in their ability
to provide a global view on circulation dynamics of patients with single-ventricle physiology.
A more mechanistic description of cardiac mechanics of patients with CHD was deployed
by [131] for patients with single-ventricle physiology and by [132] with rTOF patients. The
studies used CircAdapt models coupled to lumped parameter models of circulation. The
model of the outflow valve allowed to incorporate the regurgitation into the system. The
Bernoulli relation was used to model the pressure drop across the valve. The results of these
studies reproduced the clinical nature of the complex pathophysiological patients conditions.
Moreover, the study of [132] investigated a comparative effect of pulmonary regurgitation
versus ventricular dyssynchrony on exercise capacity of rTOF patients. Another group
used 3D finite element mechanical models coupled to the MRI data to study passive
and active properties of RV myocardium of patients with rTOF [133; 134; 135]. The
studies adjusted the parameters of the material law of the myocardium based on the
direct measurements of the biaxial stress-strain data obtained from a cadaveric normal
heart sample. The methods of obtaining biaxial mechanical dataset for ventricular tissue
were previously developed by [136; 137]. The studies that compared active properties
[133; 134] of the myocardium of rTOF pre- and post-PVR showed that patient-specific
model-derived active stress pre-PVR was the best predictor of the outcome of PVR 6
months post-PVR. The study of [135] demonstrated that passive mechanical properties of
rTOF patients pre-PVR were distinct from the healthy subjects substantiating the potential
of the proposed method to discriminate patient-specific indices of myocardial health. In the
study [138] a 3D biomechanical model of the heart coupled to pre-operative clinical data
(stage 2 surgery) of a patient with single-ventricle physiology allowed to simulate various
post-operative conditions of the cardiovascular system (i.e. virtual surgical planning).
Mechanical properties of patients with single-ventricle geometry were extracted by coupling
0D model of the heart [126] with the clinical data of these patients. The framework provided
patient-specific properties of myocardial stiffness, contractility and vascular resistance – the
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indices that have clinical significance in studying potential mechanisms of failure of patients
with Fontan circulation. Finally, various patterns of ventricular filling could be investigated
by the models of ventricular fluid dynamics of e.g. patients with hypoplastic left heart
syndrom [139; 140; 141]. These models provide an insight into e.g. filling efficiency, kinetic
energy and viscous dissipation of the blood flow, and intraventricular pressure gradient.

Aims and objectives

The burden placed on the healthcare system due to the growing population of adults
with CHD necessitates the development of new healthcare solutions. Often this cohort of
patients requires lifelong monitoring of their cardiovascular health and repeated interventions.
However, the complexity and uniqueness of their cardiovascular anatomy and function
challenge the development of optimal diagnostic tools. It is particularly challenging to track
the disease progression and elucidate the cut-off values of loss of functional capacity of
the heart. Currently, clinical decision-making is driven by the image-based or biochemical
biomarkers of the disease that are limited in their specificity and sensitivity to the advanced
pathological states [24]. These biomarkers track the progression of the disease in terms of
the change in organ’s size and shape, or occurrence of biochemical agents in the blood (e.g.
due to severe tissue-level remodeling). These changes however occur downstream sarcomere-
and tissue-level remodeling. The latter in turn could be characterized in terms of associated
changes in the myocardial mechanical properties (e.g. stiffness and contractility), that are
difficult to access via standard clinical biomarkers.

Biomechanical modeling has a potential to provide an extended understanding of
underlying tissue mechanics [30]. We have discussed above the ability of various types of
models to provide an augmented description of various components of the cardiovascular
system. Regardless of the variety of the modeling approaches available to date, studies
demonstrating the translation of these models to a real clinical environment are lacking.
Thus there is a need to explore the applicability of these modeling approaches in assisting
clinical decision-making.

The aim of this PhD thesis is to apply biomechanical modeling in a cohort of patients
with CHD to demonstrate its potential in assisting clinical decision-making. Firstly, we
aim to provide patient-specific mechanical indicators of the pathology that may augment
the interpretation of CMR and catheter pressure data in a cohort of patients with rTOF.
Secondly, we aim to demonstrate the potential of the model to assist in clinical data
processing – to ameliorate the interpretation of various data sources and data acquisition
protocols – in a cohort of patients with single-ventricle geometry.

Objectives

The biomechanical model used in this thesis was developed at Inria by Chapelle et al. [72].
We use a 0D version of this model [126] in which the constitutive mechanical laws are
preserved as in the full 3D model [72] but the geometry and kinematics are reduced to a
sphere. The model also contains the valvular components to account for arterial and/or
atrioventricular valve regurgitation and stenosis of the outflow tract (see valve law presented
in [73] and proof-of-concept clinical studies e.g. [94; 95; 96]).

The clinical data (catherization pressures and MR images) were provided by the Uni-
versity of Texas Southwestern Medical Center, Dallas (USA) and the University of Texas,
Austin (USA). We work with two cohort of patients with CHD: (1) rTOF prior to and after
PVR, (2) patients with single-ventricle geometry prior to completing the Fontan circulation.

13



The following objectives are pursued:

I: Evaluate the mechanics of the right ventricle and pulmonary circulation
in a patient-specific manner
We explore the ability of the model to represent RV and pulmonary circulation mechanics
of rTOF patients pre- and post-PVR. These patients are subjected either to independent or
combined effect of PV regurgitation and RVOT stenosis. We build patient-specific models
of the cardiovascular system by calibrating the model to represent the measured data of
these patients. We evaluate the mechanical response of the system (1) to the presence, and
(2) to the immediate removal of PV regurgitation and RVOT stenosis.

II: Predict the evolution of ventricular mechanics under different loading condi-
tions
The ability of the model to predict the evolution of RV mechanics under different loading
conditions is explored. We use patient-specific models of RV calibrated considering the PV
regurgitation and RVOT stenosis. We explore the ability of these models to predict an
immediate response of RV contractility to acute changes of the level of RVOT resistance.

III: Develop a model-assisted time-synchronization technique of clinical pressure-
volume data
We develop a model-assisted time-synchronization technique of clinical pressure-volume
(P-V) data that can address the problem of P-V data dyssynchrony. The universality of
the method for the variety of data acquisition protocols is demonstrated.

IV: Validate model-derived indices of ventricular systolic function against
clinically accepted surrogate measures of systolic performance
We explore the correspondence of the indices of systolic performance directly obtained from
the clinical measurements – maximum value of time-varying elastance (Emax) and maximum
time derivative of ventricular pressure (max(dP/dt)) – with model-derived contractility
and max(dP/dt). In addition, we confront data- vs. model-derived max(dP/dt) in order to
show possible applications of model-derived max(dP/dt) as a model-based data-filter.

Thesis outline

This thesis manuscript is divided into four chapters.

Chapter 1: Biomechanical modeling to evaluate ‘current mechanical state’ of
the myocardium in repaired tetralogy of Fallot patients.

The purpose of this chapter was to use the biomechanical model in a cohort of rTOF patients
to assess comparative influences of residual right ventricular outflow tract obstruction
(RVOTO) and pulmonary regurgitation on ventricular health. We analyzed 20 patients pre-
and post-PVR. The data contained volume and phase contrast flow measurements given by
CMR a few months prior to PVR, and catherization pressures obtained during PVR. The
model was coupled to the patients’ data to obtain patient-specific mechanical properties
of the cardiovascular system. Thanks to the valvular component in the model we could
incorporate PV regurgitation and stenosis into the calibration of constitutive mechanical
properties of the myocardium. The results showed an increased contractility pre-PVR in all
patients compared to normal RVs. After PVR the contractility significantly decreased in
all patients. Patients with predominantly RVOTO showed higher levels of contractility and
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stroke work decrease compared to those with predominantly PV regurgitation. This chapter
shows the ability of the biomechanical model (1) to integrate multiple clinical data inputs,
(2) to assess the influence of both combined and independent effects of PV regurgitation
and RVOT stenosis on RV health, and (3) to augment clinical indicators of RV health in
patient-specific manner.

This chapter was published as a clinical research article entitled ‘Biomechanical modeling
to inform pulmonary valve replacement in tetralogy of Fallot patients after complete repair’
in the Canadian Journal of Cardiology [142]. An electronic supplementary material of
the paper contains a detailed description of biomechanical heart model, model calibration
procedure, and demographic and clinical details of the patients.

Chapter 2: Biomechanical modeling to evaluate the evolution of myocardial
mechanical properties under different loading conditions

The purpose of this chapter was to explore the ability of the biomechanical model to predict
the response of ventricular mechanics to the progressive decrease of the afterload in rTOF
RVs that are predominantly affected by RVOTO. Patient-specific models pre-PVR created
in chapter 1 were used, cessation of PV regurgitation and progressively decreasing RVOT
resistance were assumed. Myocardial contractility was re-calibrated for the corresponding
decrease in RVOT resistance. In silico relationships between the contractility and RVOT
resistance post-PVR were built. The predictive value of these relationships was tested
against the post-PVR models created from the actual post-PVR datasets in chapter 1. The
resulting in silico relationships between contractility and RVOT resistance showed a linear
form. In silico predicted contractility was in correspondence with post-PVR model-derived
contractility. The chapter demonstrates that these relationships have the potential to
inform clinicians about the hypothetical mechanical response of the ventricle based on the
degree of pre-operative RVOTO.

This chapter was published as an original research article article entitled ‘Prediction
of ventricular mechanics after pulmonary valve replacement in tetralogy of Fallot by
biomechanical modeling: A step towards precision healthcare’ in the Annals of Biomedical
Engineering [143].

Chapter 3: Model-assisted time-synchronization of clinical pressure-volume
data

Clinical pressure-volume (P-V) data when acquired by different modalities (e.g. CMR and
pressure catheter) are often subjected to time-synchronization errors. This yields acquired
P-V loops with artificial shape, in particular skewed isovolumetric phases. These errors
are inherent to data acquisition and data processing techniques. The prime motivation
of this chapter was to develop a time-synchronization technique that could be directly
employed in clinical settings, e.g. during a volume-challenge study (manipulating preload
conditions of the heart via administration of fluid bolus) of patients with single-ventricle
geometry prior to completing Fontan circulation. This chapter develops a model-assisted
time-synchronization method for ventricular P-V signals from two types of data acquisition
protocols: (1) P-V data with prospectively (N=24, single-ventricle patients) and (2) with
retrospectively (N=45, predominantly rTOF left and right ventricular patients) ECG-
triggered cine MRI sequences. The qualitative improvement of time-synchronized P-V loops
is demonstrated by plotting the clinically acquired P-V loops and those obtained after the
proposed time-synchronization. We use a metrics derived from cardiovascular physiology to
demonstrate the physiologically meaningful quantitative improvement of time-synchronized
P-V data. In particular, we statistically compare the original and time-synchronized

15



maximum time derivative of time-varying elastance (E(t)) – (dE/dtmax) – in relation to
max(dP/dt) derived from the original pressure signals. The proposed time-synchronization
method produced high-quality P-V loops yielding statistically more accurate indices of
myocardial energetics – max value of time-varying elastance (Emax) and stroke work (area
encompassed within P-V loop). This chapter demonstrated an ability of the model to
assist in clinical data treatment during pre-interventional planning for e.g. patients with
single-ventricle geometry.

The material of this chapter and the presented methods composed two publications
that are in the appendices:

• Appendix 1 is an extended research letter to editor entitled ‘Time-synchronization
of invasive cardiovascular magnetic resonance data using a biomechanical model for
pressure-volume loop analysis’ that was accepted for publication in the Journal of
Magnetic Resonance Imaging.

• Appendix 2 is a published peer-reviewed conference paper entitled ‘Model-Assisted
Time Synchronization of Cardiac MR Image and Catheter Pressure Data’ in Proc. of
Functional Imaging and Modeling of Heart, FIMH 2021. This work was a proof-of-
concept study to demonstrate the model-assisted time-synchronization technique on
10 patients from rTOF left ventricular datasets.

Chapter 4: Conceptual link between model-derived measures of ventricular
contractility and clinically accepted surrogate measures of ventricular systolic
performance

Translation of novel model-derived indices into clinical practice necessitates their validation
against existing clinically accepted biomarkers. In this chapter the goal is to explore a
conceptual link between data- and model-derived indices of ventricular contractility. Time-
synchronized datasets and calibrated models of all patients from Chapter 3 were used to
(1) build statistical relationships between the aforemetioned indices, and (2) statistically
compare model- and data-derived max(dP/dt). In addition, a thorough literature review
on the clinical relevance of the presented indices of cardiac systolic function was performed.
The results (1) showed significant correlation between all model- and data-derived indices,
and (2) emphasized a potential application of model-derived max(dP/dt) as a model-based
data filter of noisy values of clinical max(dP/dt). A literature review demonstrated that (1)
the gold standard measure of ventricular contractility is challenging to use with the current
physiological and biomechanical knowledge, and (2) some clinical scenarios might benefit
from combining several indices of contractile performance.
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CHAPTER 1

Biomechanical modeling to evaluate ‘current mechan-
ical state’ of the myocardium in repaired tetralogy of
Fallot patients

The purpose of this chapter was to use the biomechanical model in a cohort of rTOF patients
to assess comparative influences of residual right ventricular outflow tract obstruction
(RVOTO) and pulmonary regurgitation on ventricular health. We analyzed 20 patients pre-
and post-PVR. The data contained volume and phase contrast flow measurements given by
CMR a few months prior to PVR, and catherization pressures obtained during PVR. The
model was coupled to the patients’ data to obtain patient-specific mechanical properties
of the cardiovascular system. Thanks to the valvular component in the model we could
incorporate PV regurgitation and stenosis into the calibration of constitutive mechanical
properties of the myocardium. The results showed an increased contractility pre-PVR in all
patients compared to normal RVs. After PVR the contractility significantly decreased in
all patients. Patients with predominantly RVOTO showed higher levels of contractility and
stroke work decrease compared to those with predominantly PV regurgitation. This chapter
shows the ability of the biomechanical model (1) to integrate multiple clinical data inputs,
(2) to assess the influence of both combined and independent effects of PV regurgitation
and RVOT stenosis on RV health, and (3) to augment clinical indicators of RV health in
patient-specific manner.
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Abstract

Background: A biomechanical model of the heart can be used to incorporate
multiple data sources (electrocardiography, imaging, invasive hemodynamics).
The purpose of this study was to use this approach in a cohort of patients with
tetralogy of Fallot after complete repair (rTOF) to assess comparative influences
of residual right ventricular outflow tract obstruction (RVOTO) and pulmonary
regurgitation on ventricular health.

Methods: Twenty patients with rTOF who underwent percutaneous pul-
monary valve replacement (PVR) and cardiovascular magnetic resonance imag-
ing were included in this retrospective study. Biomechanical models specific to
individual patient and physiology (before and after PVR) were created and used
to estimate the RV myocardial contractility. The ability of models to capture
post-PVR changes of right ventricular (RV) end-diastolic volume (EDV) and
effective flow in the pulmonary artery (Qeff) was also compared with expected
values.

Results: RV contractility before PVR (mean 66 ± 16 kPa, mean ± standard
deviation) was increased in patients with rTOF compared with normal RV (38-
48 kPa) (P < 0.05). The contractility decreased significantly in all patients
after PVR (P < 0.05). Patients with predominantly RVOTO demonstrated
greater reduction in contractility (median decrease 35%) after PVR than those
with predominant pulmonary regurgitation (median decrease 11%). The model
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simulated post-PVR decreased EDV for the majority and suggested an increase
of Qeff both in line with published data.

Conclusions: This study used a biomechanical model to synthesize multiple
clinical inputs and give an insight into RV health. Individualized modeling
allows us to predict the RV response to PVR. Initial data suggest that residual
RVOTO imposes greater ventricular work than isolated pulmonary regurgitation.

Keywords— translational research, cardiovascular modeling, myocardial contractility,
tetralogy of Fallot, personalized medicine, cardiovascular magnetic resonance imaging

1.1 Introduction

Stenosis of the pulmonary valve is a relatively common congenital condition isolated, or
as a part of the constellation of tetralogy of Fallot (TOF). The initial pressure overload is
corrected surgically often using a transannular patch, causing varying degrees of pulmonary
regurgitation (PR). Over time, valve-sparing techniques have been preferred, but at the cost
of potentially higher rates of residual right ventricular outflow tract obstruction (RVOTO).
Chronic RV volume overload leads to RV dilation and chronic RVOTO can cause RV
hypertrophy. To avoid RV failure and even to allow reverse remodeling, patients undergo
pulmonary valve replacement (PVR) in adolescence or early adult life. There is a robust
debate regarding the optimal timing of PVR [1; 2; 3; 4; 5; 6; 7]. Among the main clinical
indicators considered in decision making are the degree of RV dilation, RV ejection fraction
(EF), and pulmonary valve regurgitation fraction (RF) [8]. However, the ability to predict
post-PVR reverse remodeling remains elusive and is witnessed in only 60% of patients
regardless of the threshold for intervention [2]. Upstream, the debate as to the optimal initial
repair remains whether transannular patch with mild residual obstruction is preferable
to annulus-sparing approaches in borderline valves. Current practice is to favor valve
preservation, but recent long-term outcome data suggest [9] that RV hypertrophy may be a
predictor of adverse events.

Although the current guidelines focus on the direct measures taken from imaging data,
the underlying physiology is not the primary driver of interventions. Incorporating physical
and physiologic assumptions of cardiovascular function in the framework of biomechanical
modeling [10; 11] has the potential to augment the interpretation of clinical data, such as
by estimating some clinically relevant functional quantities, eg, myocardial contractility
[12; 13; 14]. The contractility in the present work represents the active stress generated by
the myocardial sarcomere unit during contraction. The contractility in a given patient can
be increased chronically (eg, in ventricular overloading such as due to a valvular defect)
and adapts to the actual physiologic state by inotropic stimulation [14]. We remark that
the level of myocardial contractilitydas used in this workdwas demonstrated to correlate
with the maximum time derivative of ventricular pressure, max(dp/dt) [14], which is a
widely accepted surrogate measure of global ventricular contractility. Assessing mechanical
properties of the hearts of patients with tetralogy of Fallot after complete repair (rTOF)
provides additional metrics which may provide new insight into the initial procedure choice
in cases of borderline pulmonary valve annulus.

1.1.1 Objectives

The goal of this retrospective observational work was to quantify the level of RV myocardial
contractility before PVR and immediately after PVR by coupling the available clinical
data with a biomechanical model. We hypothesize that the RV contractility is chronically
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increased in rTOF patients with PR or residual RVOTO and that it will decrease immediately
after PVR. This reduction toward the normal values will also translate into the reduction
of stroke work that the heart needs to exert.

1.2 Methods

1.2.1 Data

A group of 20 patients with rTOF who underwent percutaneous PVR were included in this
retrospective study. The data collections were performed under the ethical approvals of
Institutional Review Boards of the UT South- western Medical Center, Dallas (STU-2020-
0023), and the University of Texas, Austin (IRB 2020-06-0128). The IRBs waived the need
for a consent to use the anonymized retrospective data.

All patients underwent cardiovascular magnetic resonance (CMR) examination 4-6
months before PVR. CMR was processed semi-automatically by using the CVI42 software
(Circle Cardiovascular Imaging, Calgary, Alberta, Canada) and a finite element method
for image registration [15; 16]. The results of CMR analyses are RV time-vs-volume plots
and time-vs-flow through the pulmonary artery (PA) together with the flow integrated
throughout the cycle containing the forward and regurgitant components (Qfor and Qback,
respectively). The effective flow through the pulmonary circulation (ie, Qfor - Qback) will
be denoted as Qeff .

During the percutaneous PVR, the right-heart pressures (containing right atrial, RV,
and PA pressures) were taken before and after deploying the valve. Figure 1.1 displays an
example of processed clinical data of a selected patient.

Figure 1.1: Example of processed clinical data (A) before and (B) after pulmonary valve replacement.

Supplemental Tables 1.4 and 1.3 provide information about the basic demographics,
baseline anatomy, possible palliation, type and age of TOF repair, reintervention (if any),
and the type of prosthesis in each patient.

Data of healthy subjects were obtained from a population study [17] that contained
the values (weighted means) of RV and PA end-systolic pressures (ESPs), RV end-diastolic
volume (EDV) and end-systolic volume (ESV), and RV myocardial mass.
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1.2.2 Biomechanical model

The biomechanical heart model of reduced order [18; 19] was used. While the geometry and
kinematics of RV are reduced, the constitutive mechanical laws are preserved as in the full 3D
model [20] (Fig. 1.2). Specifically, myocardial tissue was modeled by a viscoelastic material
with active contractile component representing the actin-myosin interaction (consistent
with the sliding filament theory by A.F. Huxley [21; 22]). The myocardial internal stresses –
passive (given by the tissue stiffness of the viscoelastic material) and active (generating the
active shortening of the myocardial fibers leading to heart contraction) – are in equilibrium
with the external loading (the pressure exerted on the endocardial surface) and inertia
forces. The model of the RV was connected to a Windkessel model of the circulatory system
[23], which consisted of proximal resistance and capacitance Rprox, Cprox (representing the
main and branch pulmonary arteries) with pressure Par, distal resistance and capacitance
Rdist, Cdist (representing the remaining pulmonary circulation) with pressure Pdist, and
terminal venous pressure Pvs, as depicted in Figure 1.2. The detailed description of the
model is provided in Supplemental Appendix, and rigorous formulations can be found in
our previous work [18; 20; 24].
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Figure 1.2: Model of right ventricle coupled with atrioventricular and arterial outflow valves and
with circulation system represented by a Windkessel model. PV, Pat , Par, Pdist, and Pvs stand for
pressures in ventricle, atrium, large arteries, distal circulation, and venous system, respectively,
RTV

for , RTV
back, R

RVOT
for and RRVOT

back are forward and backward resistances of the tricuspid valve and
forward and backward resistances of the ventricular outflow tract, respectively, and Rprox, Rdist,
Cprox, and Cdist are proximal and distal resistances and capacitances of the circulation.

1.2.3 Model calibration to data of individual patients

The biomechanical model of RV and pulmonary circulation was adjusted manually to
the data of each individual patient by a sequential calibration [19]. The pulmonary
Windkessel model was adjusted while imposing the measured PA flow. Using cine magnetic
resonance imaging, we prescribed the wall thickness and the ventricular volume in reference
configuration (when zero intraventricular pressure is assumed) [25]. The RV preload was
prescribed according to the measured RV pressure in diastole. Passive myocardial prop-
erties (ie, myocardial stiffness) were calibrated so that the simulated EDV matched the
measurement. RVOT was modeled as an outlet valve allowing the forward and regurgitant
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flow [24] (with resistances RRVOT
for and RRVOT

back , respectively). The backward resistance
RRVOT

back was adjusted to match the backward flow waveform. RRVOT
back was set to a high value

if no PR was present (effectively zero backward conductance). Similarly, a negligible RRVOT
for

was used if no pathologic RVOTO was present. The tricuspid valve (TV) was modeled as an
inlet valve with resistances RTV

for and RTV
back, respectively [26]. The myocardial contractility

was adjusted according to the measured RV stroke volume (SV) and RV ESP. Physiologic
assumptions of mechanochemical coupling of the actin-myosin complex in the sarcomere are
translated into the mechanical system generating force – the active contractility – which
combines with the passive viscoelastic properties of the tissue.

The post-PVR model was obtained by recalibrating the pre-PVR model with the aim
to match the post-PVR pressure measurements. We preserved the passive myocardial
properties, prescribed the preload as in the measurement, RRVOT

back was set to its maximum
(to eliminate PR) and RRVOT

for adjusted to match the pressure difference between RV and
PA. Finally, the contractility was adjusted so that the simulated RV ESP matched the data.

The mechanical parameters of these patient-specific models give an insight into the
cardiovascular physiology of each patient. The simulated RV EDV and pulmonary flow
after PVR were used to validate the model prediction against published data by Lurz et al.
[27]. Further details of the model calibration, including quantitative values of parameters
for each patient (Supplemental Table 1.5), are presented in the Supplemental Appendix 1.6.

1.2.4 Statistical analysis

Wilcoxon signed-rank tests were conducted for the changes in model-derived contractility
and PA ESP at P < 0.05. Bland-Altman plots were constructed to evaluate the difference
between simulated and measured functional indicators.

1.3 Results

1.3.1 Direct analysis of clinical data

The results of direct analysis of clinical data are summarized in Supplemental Table 1.3.
Pre-PVR CMR revealed that 45% of patients had mild PR, with RF of 10%-30%, 15% of
patients had moderate PR (RF 30%-40%), and 40% had severe PR (RF > 40%). Considering
the RV size, 25% of patients had moderate RV dilation (EDV indexed to the body surface
area, RV EDVi, 120-140 ml/m2) and 20% had moderate to severe RV dilation (RV EDVi
140-150 ml/m2), while the remaining patients had normal or mildly dilated RV. Finally,
30% of patients had moderate pulmonary stenosis, with the RV to PA pressure gradient of
≥ 25 mmHg. The degree of RVOTO was evaluated based on the ratio of RV to LV ESP,
where ratios ≥ 50% and < 50% were considered to represent high and low, respectively,
degrees of RVOTO. The comparison of RV SV and outflow volume Qfor revealed mild TR
in 4 patients.

The patients were divided into 3 groups according to the level of RVOTO and PR: low
degree of RVOTO and at least moderate PR (group A); high degree of RVOTO and mild
PR (group B); and high degree of RVOTO and at least moderate PR (group C). Groups
A-C contained 9, 8, and 3 patients, respectively.

1.3.2 Model-derived ventricular contractility

We successfully calibrated the model for all patients before and after PVR. Figure 1.3 and
Supplemental Figures 1.8-1.10 show the simulated cardiac cycles compared with data in
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selected patients. Bland-Altman plots in Figure 1.4 and quantitative summary in Table 1.1
show the mean bias between the simulations and measurements before and after PVR.
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Figure 1.3: Measured data (dashed lines) and simulation (solid lines) for patient 16. PA, pulmonary
artery; PVR, pulmonary valve repair; RV, right ventricle.

Table 1.1: Bland-Altman quantitative statistics summarizing the mean bias ± standard deviation
and limits of agreement (95% confidence intervals) between simulations and measurements. EDVi,
end-diastolic volume indexed to body surface area; ESP, end- systolic pressure; ESVi, end-systolic
volume indexed to body surface area; PA, pulmonary artery; PVR, pulmonary valve replacement;
Qback, backward flow; Qfor, forward flow; RV, right ventricle.

mean ± SD 95%-confidence interval
Pre-PVR
RV EDVi (ml/m2) 0.01 ± 0.04 -0.08 to 0.01
RV ESVi (ml/m2) -0.77 ± 1.41 -3.53 to 2.00
RV ESP (mmHg) 0.06 ± 1.10 -2.11 to 2.23
PA ESP (mmHg) -0.08 ± 0.95 -1.93 to 1.78
PA Qfor (ml/cardiac cycle) 3.00 ± 5.40 -7.60 to 13.70
PA Qback (ml/cardiac cycle) 0.01 ± 5.00 -10.20 to 10.22
Post-PVR
RV ESP (mmHg) -0.05 ± 0.60 -1.23 to 1.13
PA ESP 0.41 ± 0.67 -0.90 to 1.72

Calibrating the model by using the data from a healthy population revealed the
contractility of healthy RV to be in the range of 38-48 kPa. The values of RV contractility
in all patients (assessed by models calibrated to pre- and post-PVR data) are plotted
against RV ESP in Figure 1.5A. Pre- and post-PVR median contractilities were 66 and 51
kPa, respectively. Figure 1.5B shows a strong positive correlation (R2 = 0.95; P <0.001)
between the RV ESP and contractility rescaled by the ratio of myocardial wall thickness
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Figure 1.4: Bland-Altman plots for RV EDVi, ESVi, PA Qfor, Qback, RV ESP, PA ESP (all lines
represent the mean of the difference between data and simulation, top and 95% prediction interval
(± 1.96 times SD). EDVi, end-diastolic volume indexed to body surface area; ESP, end-systolic
pressure; ESVi, end-systolic volume indexed to body surface area; PA, pulmonary artery; PVR,
pulmonary valve replacement; Qback, backward flow; Qfor, forward flow; RV, right ventricular.
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over ventricular radius. Stroke work was calculated as the area encompassed within the
simulated ventricular pressure-volume (P-V) loops and is plotted against RV ESP in Figure
1.5C. Pre- and post-PVR median stroke works were 327 and 233 mJ, respectively. The
stroke works obtained from the healthy subjects were in the range of 103-150 mJ. The
values of mean contractility and stroke work for each group, relative to the maximum values
of the normal population, are presented in Table 1.2.
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Figure 1.5: Model-derived right ventricular (RV) (A) contractility and (C) stroke work for each
patient. Filled and empty circles correspond to pre- and post-PVR values, respectively. The number
labels of the circles correspond to individual patients. The values for healthy RVs are represented
by the area encompassed within the dashed lines. (B) RV contractility rescaled by the ratio of
myocardial wall thickness over ventricular chamber radius against RV end-systolic pressure, where
gray line is Pearson correlation with R2 = 0.95 and P < 0.05. PR, pulmonary regurgitation; PVR,
pulmonary valve replacement; RVOTO, right ventricular outflow tract obstruction.

Table 1.2: Median right ventricular (RV) contractility and relative contractility compared with
normal RV contractility (48 kPa), and median RV stroke work and relative stroke work compared
with normal RV stroke work (150 mJ). Group A: no right ventricular outflow tract obstruction
(RVOTO) and high pulmonary regurgitation (PR), group B: high RVOTO and no PR, group C:
high RVOTO and high PR. Significance is assumed at P < 0.05.

Contractility Contractility with Stroke work Stroke work with
(kPa) respect to normal (mJ) respect to normal

Pre-PVR Post-PVR Pre-PVR Post-PVR Pre-PVR Post-PVR Pre-PVR Post-PVR
Group A 50 46 (p=0.008) 4% 0% 200 166 (p=0.027) 34% 10%
Group B 71 52 (p=0.016) 48% 8% 444 266 (p=0.016) 196% 77%
Group C 75 53 (p=0.250) 56% 10% 706 448 (p=0.250) 370% 199%
All patients 66 51 (p=0.000) 38% 6% 327 233 (p=0.000) 118% 55%

1.3.3 Post-PVR changes in RV EDV and effective PA flow

The patient-specific post-PVR models were used to assess the changes of RV volumes and
PA flow after PVR based on captured post-PVR invasive pressures. Figure 1.6 shows the
model-derived changes of RV EDVi and PA Qeff. The average EDP decrease in our cohort
was lower than that in the study by Lurz et al. [27]: 14.2% vs 26.5%. Consequently, the
average EDV decrease was also lower: 3% decrease suggested by the model vs 12% reported
by Lurz et al. The model suggested an increase of PA Qeff after PVR, which fell between
the pre-PVR values of Qfor and Qeff – in line with Lurz et al.
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Figure 1.6: (A) Model-predicted post-pulmonary valve replacement (PVR) changes in right ven-
tricular end-diastolic volumes indexed to body surface area (EDVi). Central line inside each box
indicates the median, and the bottom and top edges of the boxes show 25th and 75th percentiles,
respectively. Black circles connected by black lines show the EDVi change from before to after PVR
for individual patients. (B) Post-PVR model- predicted change in effective flow (Qeff) in each patient
group. Orange bars: Qeffpre−PVR/Qforpre−PVR corresponding to the complement of regurgitation
fraction (1 - Qback/Qfor), where Qfor and Qback are forward and backward flows, respectively. Blue
bars: Qeffpost−PVR (model) is scaled by Qforpre−PVR (data) (consistently with the orange bars) to
demonstrate model-predicted significant increase of Qeffpost−PVR

. Note that model-derived Qeff/Qfor

= 1 for post-PVR (owing to the assumption of zero pulmonary regurgitation post-PVR). Asterisks
indicate significant difference at P < 0.05.

1.4 Discussion

This study applied patient-specific biomechanical modeling on a group of patients with
rTOF indicated for PVR. We aimed to assess whether the proposed data-model coupling
framework provides any additional clinical indicators of the effects of PVR.

CMR- and pressure-derived clinical indicators suggested 3 groups of patients based on
the grade of PR and severity of RVOTO. The patient-specific models created separately for
pre- and post-PVR physiology revealed that PVR triggered an immediate adaptation of
RV contractility for a majority of patients, with a decrease of the median contractility by
23%. Table 1.2 reveals that the patients with a high degree of RVOTO showed a larger
contractility decrease (groups B and C) and the contractility of all patients decreased close
to the normal values (Table 1.2 and Figure 1.5).

The stroke work represents the mechanical energy generated by the ventricle during a
heartbeat. The analysis of P-V loops suggested that even though the patients with a high
degree of RVOTO (groups B and C) experienced a significant decrease of the median stroke
work (Table 1.2), the actual stroke work after PVR remained elevated owing to a limited
decrease of RV pressure after PVR. The patients with predominantly PR and a low degree
of RVOTO (group A) showed a decrease of the median stroke work by 17%. The resulting
stroke work was only ∼10% above normal values (Table 1.2), thanks to the normal RV
pressure after PVR.

The strong correlation between the ventricular pressure and the rescaled contractility
is in line with Laplace’s law of myocardial wall stress being directly proportional to the
level of pressure developed in the chamber for a given geometry during ventricular systole.
Thus, before PVR we observed higher levels of contractility in patients with increased RV
systolic pressure and in those with dilated RVs (patients 12 and 14 from group A). The
RV contractility decreased after PVR primarily owing to the release of RVOTO. The sole
effect of regurgitation on the system was visible in the patients from group A. The median
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contractility and stroke work in that group appeared to be only up to 4% and 34% higher,
respectively, than a range of reference healthy RV contractility and stroke work (Table 1.2).
This suggests that, in infants with TOF with borderline pulmonary valve annulus, inserting
a transannular patch might be preferential, because the RV is likely to well tolerate the
created PR. However, 2 patients with the most dilated RVs (RV EDVi > 140 mL/m2)
appeared to be the outliers, with pre-PVR contractilities of 77 and 73 kPa (patients 12
and 14, respectively). It is likely that before PVR, the majority of patients in group A had
been preserving their cardiac output at moderately elevated myocardial stresses. Those
with dilated RVs had been progressively becoming less efficient and had elevated metabolic
demands. Therefore, our model revealed that the myocardial contractility was substantially
increased in the patients with dilated RVs before PVR. However, the critical range of RV
dilation is unclear from this study and is the subject of our ongoing work. Furthermore, we
showed that the greatest reduction of contractility occurred because of removal of RVOTO,
while removing the regurgitation itself did not lead to a significant immediate decrease of
contractility in the majority of patients.

Not having post-PVR CMR prevented us from performing a detailed validation of our
post-PVR models. However, a partial validation was possible thanks to the study by Lurz et
al. [27], in which CMR was performed immediately after the intervention on the pulmonary
valve. Our models showed a decrease of RV EDV for patients experiencing a decrease in
RV EDP and an increase of PA Qeff after PVR, both of which qualitatively match with the
study of Lurz et al. The lower decrease of EDP (as measured in our patients compared
with those of Lurz et al.) explains the lower EDV decrease in our group of patients.

1.4.1 Limitations

A number of limitations should be addressed. First, an assumption of spherical RV
might have overestimated the contractility because the spherical shape is mechanically
more efficient than a crescent shape. Figure 1.7 demonstrates the effect of interobserver
variability in estimating RV myocardial mass: The difference between pre- vs post-PVR
contractility were preserved in a relative sense, and this would be expected also if an
accurate RV geometry was used. It is expected that the active stress developed in various
parts of the RV varies (eg, inflow part may be very contractile, while the outflow will be
hypo- or dyskinetic due to the passive transannular patch). Such a heterogeneity cannot be
captured by our simplified model. However, our pilot study demonstrates that using such a
modeling approach is directly feasible in the clinical setup. The level of complexity allows
medical doctors to set up the patient-specific models. This may facilitate launching a large-
scale and multisite clinical study counting hundreds of cases, which would be out of reach
for a number of complex models.

Percutaneous PVR is mostly not used in patients with very dilated RVs and RVOTs,
who rather undergo surgical PVR. In this pilot study we took advantage of the accessibility
of measured pressures after PVR. However, we acknowledge that the population in this
study was biased and did not allow for general conclusions regarding relative impact of PR
and pulmonary stenosis over the whole range of this patient population. In a future study,
we aim to use an estimation of RVOT pressure gradient based on the measured flow profile
through the RVOT [28] and the estimated RV end-diastolic pressure according to the right
atrial volume and flow through the tricuspid valve [29].

Another important concern is the time period of 4-6 months between the acquisition
of CMR and catheterization data in this proof-of-concept work. The progressive RV
remodeling might have caused an underestimation of the current RV volumes, which may in
turn affect the predicted model-derived properties. Finally, the validation of our post-PVR
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Figure 1.7: Sensitivity of the model-derived contractility to the variation of right ventricular (RV)
mass. Pre- and post-pulmonary valve replacement (PVR) contractilities (filled and empty points,
respectively) were calibrated for the following type of mass input for each patient: RV mass
represented by RV free wall (RVFW; black points), RVFW mass increased by the mass of half
septum mass (blue points), and RVFW with full septum (red points). Solid lines between the points
show the decrease of the model-derived contractility after PVR.

model was limited by the absence of post-PVR CMR. In the future we aim to perform an
additional CMR within 48 hours after PVR, which would be plausible for most patients.
RV electromechanical dyssynchrony is another major pathophysiologic factor that can lead
to further pathologic RV remodeling. Cardiac models with a detailed electrical component
provide perspective in optimizing RV cardiac resynchronization therapy [30], and modeling
could even contribute to the decision making of a possible combination of PVR and RV
cardiac resynchronization therapy.

1.4.2 Future perspectives

In addition to RV contractility at rest, a reduced exercise capacity may play a significant
role in the response to PVR and will be studied [14]. The present work demonstrates an
application of models capturing an immediate state of the cardiovascular system to inform
about the current physiologic state without explicitly considering the previous progress
of ventricular remodeling. Models of long-term evolution [31; 32] have the potential to
include information about the initial state of pathology, type of repair, and the evolution
throughout the life of patient (Supplemental Table 1.4). They could also be useful in better
understanding the reverse remodeling after PVR – a crucial step in predicting the long-term
effect of PVR and subject of our ongoing research [33; 34]. Advanced imaging techniques
such as the assessment of myocardial fiber directions by magnetic resonance diffusion tensor
imaging35 could be considered in the future.

Even though the present study demonstrated a substantially increased work that the
RV must exert in patients with residual RVOTO and therefore favors transannular patch
in the case of borderline annulus size, we are aware that our proof-of-concept modeling
study cannot have immediate implications on patient care. Furthermore, it is known that a
mild-to-moderate stenosis in the early postoperative period may spontaneously regress and
the strategy of preservation of annular function may be compatible with long-term relief of
RVOTO.

1.5 Conclusion

Combination of computational models and clinical data is feasible in a cohort of patients
with rTOF. The present study quantifies the level of RV overload with chronic valvular
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disease and how the level of overloading decreases after intervention on the valve. Though
not directly predicting who should undergo PVR and who should wait, we think our
physiologic finding is of clinical interest as a step toward optimal clinical evaluation and
management of patients with valvular heart disease. Furthermore, the need to aim for
long-term relief of RVOTO is highlighted, perhaps prejudicing the initial surgical approach.
Predictions based on coupling clinical data and biomechanical models have the potential
to become part of clinical assessment to contribute to optimizing and personalizing the
clinical management of every patient.
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1.6 Supplemental Appendix. Additional Methodology

Detailed clinical information

Supplementary Table 1.3 shows patients’ demographics and direct analysis of clinical data.
Supplementary Table 1.4 summarizes clinical details about patients included in the study,
namely the complicating features of the baseline anatomy, palliation (if any), type of repair,
age of repair, possible re-intervention prior to the pulmonary valve replacement (PVR) and
the type prosthesis used in percutaneous PVR (related to this study).

Description of the model

The model used in the present study is a biomechanical model of single heart cavity [18; 19]
with the preload imposed from the measured pressure data in diastole, and connected to a
Windkessel model of circulatory system [23] (schematics of the model is shown in Figure 1.2
of the main article body). The geometry and kinematics of the ventricle are reduced to a
sphere with inner radius R and wall thickness d, while constitutive mechanical laws are
preserved as in the full 3D heart model described in [24] and [20].

The displacement of the sphere in radial direction y and the intraventricular pressure
PV are the principal unknowns that the model is solving for. The variation of ventricular
volume during the cardiac cycle and systolic wall thickening is then directly derived from
the radius R (from the center of the cavity to the middle of ventricular wall (see Figure 1.2):

V =
4

3
π

(
R− d

2

)3

, (1.1)

where

R = R0(1 + efib), d = d0(1− efib)
−2, efib = (R−R0)/R0, (1.2)

with R0 and d0 being the ventricular radius and wall thickness at reference (stress-free)
configuration.

The multiscale formulation of the model allows to capture the behavior of actin-myosin
interaction at the fiber level and translate it into the whole organ performance [24; 20]. The
constitutive behavior of myocardium is represented by a Hill-Maxwell rheological model [35].
It contains an active contractile component, that represents sliding of the myosin heads along
actin filament, and a visco-elastic component accounting for the visco-elastic properties of
surrounding connective tissue (collagen-rich components in myocardium). Physiological
assumptions of mechano-chemical coupling of the actin-myosin complex in the sarcomere
are translated into the mechanical system generating force. It was originally developed by
A. F. Huxley [21] (see also recent work [22]). All myosin filaments in the sarcomere unit
are considered as a series of springs with certain energy. The following system of ordinary
differential equations describes the active stress (τc) and active stiffness (kc) produced in
each actin-myosin unit (by all myosin springs) at certain sarcomere extension (efib):{

k̇c = −(|u|+ α|ėfib|)kc + n0(efib)k0|u|+
τ̇c = −(|u|+ α|ėfib|)τc + ėfibkc + n0(efib)σ0|u|+,

(1.3)

where u(t) is an electrical activation function that represents intracellular calcium concen-
tration levels and induces contraction (when u > 0) or relaxation. The maximum value of
u was taken as 35 s−1 [36] and the minimum negative value within the range of -100 to
-20 s−1 (depending on the rate of ventricular pressure decay in early relaxation).

45



Chapter 1. Biomechanical modeling to evaluate ‘current mechanical state’ of the
myocardium in repaired tetralogy of Fallot patients

The function n0(efib) ∈ [0, 1] is the fraction of recruited myosin heads at a given
sarcomere extension efib representing the Frank-Starling law [20]. The parameter α is a
bridge destruction rate upon rapid change in length in the sarcomere [20]. The parameter
σ0 is the asymptotic active stress developed by the sarcomere during systole at a given
inotropic level and under optimal fiber extension (when Frank-Starling function n0 = 1).
This parameter is referred in this work as the myocardial contractility.

The elastic component of the myocardium is modeled by the passive constitutive
law inspired from [37] (see also detailed analysis in [38]) in the form of the exponential
hyperelastic potential

We = C0e
C1(J1−3)2 + C2e

C3(J4−1)2 , (1.4)

with material constants Ci, i ∈ {0, 1, 2, 3}, representing the myocardial passive properties.
They account for the behavior of ventricle when a given preload (internal pressure) is imposed
– the so-called end-diastolic pressure-volume relationship (EDPVR). The reduced invariants

of the right Cauchy-Green strain tensor C are given by J1 = I1I
− 1

3
3 and J4 = I4I

− 1
3

3 , where
I1 = tr(C), I3 = det(C), I4 = τ1 · C · τ1 (with τ1 being the unit vector in myocardial fiber
direction). The overall dynamics is described by a Lagrangian formulation, where the
aforementioned Cauchy-Green deformation tensor C and Green-Lagrange strain tensor e
are defined by

C = F T · F , e =
1

2
(C − I), (1.5)

where F = I +∇y is the deformation gradient with y being the displacement with respect
to the stress-free reference configuration (I stands for the identity tensor).

The viscous pseudo-potential is given by

Wv =
η

2
tr(ė2), (1.6)

where η is a viscous damping parameter.
The ventricle is connected with the circulation by coupling the pressures in the atrium,

ventricle and outflow artery (Pat, PV and Par) with the ventricular volume change V̇ (by
inflow or outflow of blood). The inflow via the tricuspid valve (TV) and outflow via the
right ventricular outflow tract (RVOT) are controlled by diodes [24], which allow forward
as well as pathological regurgitant backward flows (we recall Figure 1.2). These valve
components allow to model pathological stenosis by increasing the resistance to forward
flow RTV

for or RRVOT
for for TV or RVOT, respectively (which have minimal resistance under

physiological conditions). Likewise, the regurgitation is modeled by decreasing the backward
resistance RTV

back or RRVOT
back (for TV or RVOT, respectively), while very high resistances are

used under physiological non-regurgitant regime (practically, zero back-conductance). The
overall ventricular volume change V̇ by inflow or outflow of blood is given by [24]:


V̇ = (Pat−PV)

RTV
for

+ (Par−PV)

RRVOT
back

, when Pv ⩽ Pat (filling of ventricle)

V̇ = (Pv−Pat)

RTV
back

+ (Par−Pv)

RRVOT
back

, when Pat ⩽ Pv ⩽ Par (isovolumic contraction)

V̇ = (Par−PV)

RRVOT
for

+ (Pat−PV)

RTV
back

, when Pv ⩾ Par (ejection).

(1.7)

Finally, the peripheral circulation is represented by a two-stage Windkessel model [23]
containing proximal resistance and capacitance Rprox, Cprox (representing the main and
branch pulmonary arteries, with pressure Par), and distal resistance and capacitance Rdist,
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Cdist (representing the remaining pulmonary circulation, with pressure Pdist and terminal
venous pressure Pvs), as depicted in Figure 2. The Windkessel system reads:{

CproxṖar + (Par − Pdist)/Rprox = Q

CdistṖdist + (Pdist − Par)/Rprox = (Pvs − Pd)/Rdist.
(1.8)

Model calibration

This section describes the model calibration procedure.

I Model calibration prior to pulmonary valve replacement
1 The pulmonary Windkessel model was adjusted independently of the heart model.

The forward flow was imposed from the measured data into the two-stage Wind-
kessel system, and proximal and distal resistance and capacitance elements were
adjusted to match the arterial pressure waveform in the data.

2 The geometrical parameters for the heart model were obtained from the end-
diastolic time frame of the short axis cine magnetic resonance image (end-diastolic
volume and the right ventricular myocardial mass). The volume at reference
configuration (Vref), when zero intraventricular pressure is assumed, was prescribed
using the phenomenological relation obtained experimentally in [25]. The volume
Vref (in ml) is given by

Vref = EDV (0.6− 0.006EDP ),

with EDV being the measured end-diastolic volume in (ml) and EDP the mea-
sured end-diastolic ventricular pressure (in mmHg). The right ventricular (RV)
mass was considered as the mass of the RV free wall increased by half of the
interventricular septum. In the simplified geometry of the model, the measured
RV mass directly provided the myocardial wall thickness at reference configuration
of the model (d0).

3 To calibrate the passive properties of myocardium (given by hyperelastic potential
Eq. (1.4)), we followed [19] and used coefficients C0 = 665 Pa, C1 = 2.4 Pa, C2 =
103 Pa and C3 = 5.5 Pa (which were obtained to fit the experimentally measured
end-diastolic pressure-volume relationship to a reference healthy human data).
The passive potential Eq.(1.4) was then multiplied by a “stiffness multiplication
factor” aiming for the simulated end-diastolic volume to match the measurement,
once the measured end-diastolic pressure (preload) was imposed.

4 To calibrate the resistances RRVOT
for and RRVOT

back , the pulmonary Windkessel model
was connected to the heart model. The forward resistance RRVOT

for was adjusted
to match the measured difference between RV and pulmonary artery (PA) end-
systolic pressures. The initial guess (pre-calibration) of the value of RRVOT

for was
made by taking

RRVOT
for = (P̄V − P̄ar)/Qfor,

with P̄V being the average RV pressure during systole, P̄ar the average PA pressure
during systole and Qfor the forward flow in PA. The backward resistance was
adjusted to match the backward flow waveform in the data (decreased RRVOT

back

value, if pulmonary regurgitation was present). After introducing the backflow into
the system, the distal Windkessel parameters (Rdist and Cdist) were readjusted
so that the simulated pressure decay matched the acquired pulmonary pressure
waveform.
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5 The backward resistance of the tricuspid valve RTV
back was adjusted in the patients

with tricuspid regurgiation to match the level of regurgitation volume to the
measurement [39].

6 The profile of the electrical activation function u in Eq. (1.3) was calibrated based
on QRS and ST durations measured from the ECG.

7 The parameter of active contractility σ0 in Eq. (1.3) was adjusted to match RV
stroke volume and end-systolic pressure.

II Model calibration after pulmonary valve replacement
The datasets after pulmonary valve replacement (post-PVR) were limited to pressure
waveforms of right-heart catheterization. In the absence of any post-PVR flow data, we
assumed that non-significant pulmonary regurgitation was present after the intervention
and excluded the possibility for the backflow by increasing the backward resistance
RRVOT

back . In addition, we assumed that the passive stiffness properties and reference
volume (Vref) did not change immediately after PVR.
The ventricular preload was prescribed according to the RV pressure measurement
post-PVR. The forward resistance of the RRVOT

for was decreased to match the pressure
gradient between RV and PA (which decreased due to elimination of RVOT obstruction)
and the distal Windkessel parameters were modified to match the pressure decay of
the post-PVR PA pressure waveform. Finally, the contractility σ0 was adjusted to
match the peak of RV end-systolic pressure.

Supplementary Table 1.5 provides model parameters in each patient-specific models.
Figures 3 (main body of article) and Supplementary Figures 1.8-1.10 display RV pre- and
post-PVR calibrations for selected patients.

Automatization of the model setup, would allow the performance of a sensitivity analysis
[40] and is a necessary step to translate the present proof-of-concept work into clinical
practice.

Model-derived relative stiffness

Supplementary Table 1.5 last column shows patient-specific tissue stiffness. The median
stiffness in our cohort was 1.67 and in the healthy population [17] 1.10. The model-estimated
tissue stiffness seem to reveal a stiffening of the right ventricular myocardium by around
50% above normal in the studied cohort. We remark that these results are preliminary due
to the uncertainty in the estimation of reference volume in the right ventricle. Detailed
study of passive tissue stiffness is out of scope of this work.
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Figure 1.8: Measured data (dashed line) and simulation (solid line) for Patient #3.
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Figure 1.9: Measured data (dashed line) and simulation (solid line) for Patient #8.
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Figure 1.10: Measured data (dashed line) and simulation (solid line) for Patient #9.
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Chapter 1. Biomechanical modeling to evaluate ‘current mechanical state’ of the
myocardium in repaired tetralogy of Fallot patients

Patient Anatomical Palliation Type of Age of Re-intervention/ Type of
number complicating repair repair re-surgery prosthesis

features (years)

Pulmonary RPA angioplasty Melody PB10 20mm
1 atresia BT shunt Conduit 0.42 at 2 years pulmonary valve

at 12 years
Pulmonary RPA angioplasty Melody PB10 20mm

2 atresia – Conduit 0.02 and conduit change pulmonary valve
at 6 months at 8 years

Pulmonary Melody PB10 20mm
3 atresia – Conduit 0.04 – pulmonary valve

at 13 years
Transannular Edwards Sapien

4 – BT shunt patch 0.75 – 29mm XT valve
at 11 years

Melody PB10 20mm
5 DORV BT shunt Conduit 1.17 – pulmonary valve

at 9 years
Transannular Edwards Sapien

6 – – patch 0.33 – 26mm pulmonary
valve at 11 years

Absent Conduit Edwards Sapien
7 pulmonary Conduit 0.02 replaced 23mm XT valve

valve at 3 years at 8 years
Pulmonary Conduit Melody PB10 20mm

8 atresia BT shunt Conduit 1.17 replaced pulmonary valve
at 3 years at 8 years

Transannular Edwards Sapien
9 – – patch 0.75 – 29mm XT valve

at 11 years
Transannular Edwards Sapien

10 – – patch 0.33 – 26mm pulmonary
valve at 11 years

Conduit replace Melody PB10 20mm
11 – – Conduit 0.83 at 3 years pulmonary valve

Bioprosthesis (8 years) valve at 17 years
Transannular Edwards Sapien

12 – – patch 0.33 – 23mm XT valve
at 6 years

Pulmonary Edwards Sapien
13 atresia – Conduit 0.02 – 23mm XT valve

at 8 years
Transannular Edwards Sapien

14 – – patch 0.58 – 23mm XT valve
at 16 years

Conduit Edwards Sapien
15 – – Conduit 0.58 revision 23mm XT valve

at 12 years at 26 years
Pulmonary Melody 22mm

16 atresia – Conduit 0.02 – pulmonary valve
at 17 years

Pulmonary Melody PB10 20mm
17 atresia BT shunt Conduit 0.75 – pulmonary valve

at 15 years
Pulmonary Melody PB10 20mm

18 atresia – Conduit 0.02 – pulmonary valve
at 11 years

Conduit replaced Melody PB10 20mm
19 – BT shunt Conduit 0.17 at 1 year and pulmonary valve

at 7 years at 13 years
Transannular Melody 22mm

20 – – patch 0.42 pulmonary valve
at 19 years

Table 1.4: Clinical details about patients included in the study. BT shunt, Blalock-Taussig shunt;
DORV, double outlet right ventricle; RPA, right pulmonary artery.
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1.6. Supplemental Appendix. Additional Methodology

Patient RRVOT
for RRVOT

back Contractility Relative
tissue stiffness

pre-PVR post-PVR pre-PVR pre-PVR post-PVR pre-/post-PVR
# (×106 Pa·s

m3 ) (×106 Pa·s
m3 ) (×106 Pa·s

m3 ) (kPa) (kPa)

1 43.0 18.1 35.0 93 70 1.72
2 22.0 11.4 30.3 62 52 1.63
3 14.0 7.7 9.2 75 53 1.74
4 7.1 4.3 10.0 36 34 1.56
5 27.0 3.8 50.0 73 48 1.58
6 18.0 11.5 18.2 72 60 1.68
7 11.0 11.0 7.7 60 55 1.58
8 27.0 7.8 25.0 70 43 1.49
9 6.9 1.5 5.0 47 42 1.65
10 6.3 6.3 18.0 58 58 1.78
11 11.0 11.0 2 · 105 56 56 1.53
12 8.1 7.7 8.3 77 63 1.95
13 3.8 3.8 3.3 50 49 1.72
14 2.3 0.1 5.7 73 46 2.50
15 5.0 4.0 14.3 40 33 1.75
16 22.0 5.5 15.4 55 35 1.67
17 18.0 7.9 22.2 88 56 1.63
18 5.3 5.0 7.7 47 40 1.50
19 22.0 3.7 30.3 70 41 1.66
20 7.7 0.8 14.3 83 68 1.78

Healthy 0.1 - 2 · 105 38-48 – 1.10

Table 1.5: Main patient-specific parameters of the model and their changes after pulmonary valve
replacement (PVR).
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CHAPTER 2

Biomechanical modeling to evaluate the evolution
of myocardial mechanical properties under different
loading conditions

The purpose of this chapter was to explore the ability of the biomechanical model to predict
the response of ventricular mechanics to the progressive decrease of the afterload in rTOF
RVs that are predominantly affected by RVOTO. Patient-specific models pre-PVR created
in chapter 1 were used, cessation of PV regurgitation and progressively decreasing RVOT
resistance were assumed. Myocardial contractility was re-calibrated for the corresponding
decrease in RVOT resistance. In silico relationships between the contractility and RVOT
resistance post-PVR were built. The predictive value of these relationships was tested
against the post-PVR models created from the actual post-PVR datasets in chapter 1. The
resulting in silico relationships between contractility and RVOT resistance showed a linear
form. In silico predicted contractility was in correspondence with post-PVR model-derived
contractility. The chapter demonstrates that these relationships have the potential to
inform clinicians about the hypothetical mechanical response of the ventricle based on the
degree of pre-operative RVOTO.
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Abstract

Clinical indicators of heart function are often limited in their ability to accurately
evaluate the current mechanical state of the myocardium. Biomechanical modeling has
been shown to be a promising tool in addition to clinical indicators. By providing a
patient-specific measure of myocardial active stress (contractility), biomechanical modeling
can enhance the precision of the description of patient’s pathophysiology at any given
point in time. In this work we aim to explore the ability of biomechanical modeling to
predict the response of ventricular mechanics to the progressively decreasing afterload in
repaired tetralogy of Fallot (rTOF) patients undergoing pulmonary valve replacement (PVR)
for significant residual right ventricular outflow tract obstruction (RVOTO). We used 19
patient-specific models of patients with rTOF prior to pulmonary valve replacement (PVR),
denoted as PSMpre, and patient-specific models of the same patients created post-PVR
(PSMpost)—both created in our previous published work. Using the PSMpre and assuming
cessation of the pulmonary regurgitation and a progressive decrease of RVOT resistance, we
built relationships between the contractility and RVOT resistance post-PVR. The predictive
value of such in silico obtained relationships were tested against the PSMpost, i.e. the
models created from the actual post-PVR datasets. Our results show a linear 1-dimensional
relationship between the in silico predicted contractility post-PVR and the RVOT resistance.
The predicted contractility was close to the contractility in the PSMpost model with a mean
(± SD) difference of 6.5 (± 3.0)%. The relationships between the contractility predicted by
in silico PVR vs. RVOT resistance have a potential to inform clinicians about hypothetical
mechanical response of the ventricle based on the degree of pre-operative RVOTO.

Keywords— myocardial contractility, ventricular overload, valvular heart disease, biome-
chanical modeling, valve replacement

60

https://doi.org/10.1007/s10439-021-02895-9


2.1. Introduction

2.1 Introduction

After initial repair of tetralogy of Fallot (TOF) pulmonary regurgitation (PR) and/or
residual right ventricular outflow tract obstruction (RVOTO) detrimentally affect ventricular
mechanical properties in the long-term. A chronic right ventricular (RV) volume and/or
pressure overload leads to RV dilatation and/or hypertrophy. At the extent of the myocardial
ability to compensate, the RV remodeling become pathologic and RV systolic and/or diastolic
function may deteriorate. To avoid decompensated RV remodeling or to allow the RV
to reverse-remodel back to normal size, patients undergo a pulmonary valve replacement
(PVR). Timing of PVR is critical. PVR is ideally performed as late as possible because of the
limited lifespan of an implanted valve [1], but before the myocardium undergoes significant
irreversible changes. The ability to most accurately evaluate the current mechanical state
of the myocardium and subsequently predict optimal timing of PVR is a subject of ongoing
research. The sensitivity and specificity of the current clinical guidelines for PVR are
limited and in practice post-PVR RV reverse-remodeling occurs in only 60% of patients [2].
The level of PR, RV dilatation (end-diastolic volume typically indexed to body surface area),
and RV ejection fraction are often considered as the main clinical indicators for PVR [3; 4].
A recent observational cohort study has demonstrated that greater RV hypertrophy and
higher levels of RV systolic pressures are strongly associated with irreversible remodeling
and/or sudden death in tetralogy of Fallot patients after surgical repair (rTOF) [5]. It is
therefore important to understand both the independent and combined effect of RV dilation
and hypertrophy triggering factors (PR and RVOTO, respectively) on the evolution of RV
mechanics.

Biomechanical modeling has been shown to be a promising tool for modeling ‘in silico’ (a
new term that has been coined to contrast to ‘in vivo’) myocardial function. The short-term
models (capturing single or a few cardiac beats) have been shown to be useful in predicting
short-term effects of Cardiac Resynchronization Therapy [6; 7; 8]. Biomechanical modeling
has also been proposed to assess the effect of pulmonary vasodilatation therapy in Fontan
patients with early-stage heart failure [9].

In our recently published retrospective study [10] we demonstrated the ability of a
biomechanical model to provide information about the current mechanical state of the
myocardium in late rTOF patients prior to and immediately after PVR, while using the
clinical data obtained pre- and post-PVR. In the present work we would like to explore the
ability of these patient-specific models created from the pre-PVR data (PSMpre) to predict
the response of ventricular mechanics to PVR. Specifically, we aim to build a relationship
between the myocardial contractility predicted in silico using PSMpre, while decreasing
the RVOT resistance (and subsequently decreasing RV-to-PA pressure difference, in clinical
medicine often incorrectly called the pressure gradient). This will simulate the reduction
of RVOTO during PVR when the valve is implanted. The predictive capability of such
an in silico PVR will be assessed by comparing the predicted RV contractility with the
contractility in the patient-specific models post-PVR (PSMpost) as reported in our previous
work [10], where PSMpost and the associated contractility values were obtained when using
the catheterization data measured after the actual PVR.

2.2 Methods

2.2.1 Patient-specific biomechanical models pre- and post-PVR

The creation of PSMpre and PSMpost of the studied cohort has been reported previously
[10]. Here, we provide only a brief description. We used a biomechanical model of the RV
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cavity with simplified geometry (spherical ventricle with inner radius R and wall thickness
d). The model developed by Caruel et al. [11] has been previously employed in various
clinical studies [12; 13]. The constitutive mechanical properties of the myocardium are
preserved as in the full 3D heart model [14].

The overall tissue-level mechanical behavior of the myocardium is described by a
rheological model of Hill-Maxwell type [15] that allows to represent an active contractile
component (actin-myosin unit) and a viscoelastic component (collagen-rich elements). The
active behavior of the myocardium is modeled within A.F.Huxley’s sliding filament theory
[16; 17]. The myosin filaments within a sarcomere unit are considered as an element that
produces active stress (τc) and active stiffness (kc) at certain sarcomere extension (efib)
with the following system of differential equations [18; 14]:{

k̇c = −(|u|+ α|ėfib|)kc + n0(efib)k0|u|+
τ̇c = −(|u|+ α|ėfib|)τc + ėfibkc + n0(efib)σ0|u|+,

(2.1)

where u(t) is an electrical activation function that is related to intracellular calcium kinetics
and induces contraction (when u >0) or relaxation (when u <0) of the myocardium. The
parameter α is a bridge destruction rate upon rapid change in length in the sarcomere
[14].The function n0(efib) ∈ [0, 1] is the representation of the Frank–Starling law that gives
the fraction of recruited myosin heads at a given sarcomere extension (efib) [14]. The
parameters σ0 and k0 are the active stress and stiffness developed by the sarcomere during
systole under optimal fiber extension (efib), when n0 = 1, reflecting the inotropic state [13].
The parameter σ0 will be further referred to as contractility. The elastic part of passive
behavior of the myocardium is modeled by the constitutive law inspired by Holzapfel and
Ogden [19; 20] in the form of the hyperelastic potential:

We = C0e
C1(J1−3)2 + C2e

C3(J4−1)2 , (2.2)

where Ci, i ∈ 0, 1, 2, 3 are material constants that account for the passive behavior of the
ventricle under imposed preload pressure. The calibration of Ci to the given end-diastolic
pressure (EDP) and volume provides the patient-specific end-diastolic pressure volume
relationship (EDPVR). The overall dynamics of the system are given by a Lagrangian
formulation, where e is Green–Lagrange strain tensor and J1,4 are the reduced invariants of
the right Cauchy-Green strain tensor (C), that accounts for transversely isotropic behavior
of the myocardium (for details see Refs. [11; 14; 20]).

The viscous part of the passive behavior is given by viscous pseudo-potential:

Wv =
η

2
tr(ė2), (2.3)

where η is a viscous damping parameter.
The ventricular cavity model was coupled with inlet and outlet valves to control the

inflow from the tricuspid valve (TV) and outflow through the right ventricular outflow tract
(RVOT). Both TV and RVOT were represented by a system of diodes with forward and
backward resistances that allowed simulation of the required forward and backward flows in
the corresponding compartments (Fig. 2.1). Thus, by increasing the resistance to forward
flow (RTV

for and RRVOT
for for TV and RVOT, respectively) we can simulate valvular stenosis

of a given grade. Likewise, by decreasing the backward resistances (RTV
back and RRVOT

back for
TV and RVOT, respectively) we can model valvular regurgitation. The pressures in the
atrium, ventricle and pulmonary artery (Pat, PRV and PPA, respectively) are coupled with
a ventricular volume change V̇ (inflow or outflow of blood) as described by Sainte-Marie et
al [21].
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Figure 2.1: Reduced-order model of the right ventricle (RV) with inner radius R and wall thickness
d: The ventricle is coupled to tricuspid valve (TV) and RV outflow tract (RVOT) via a system of
diodes with forward and backward resistance (RTV

for , RTV
back and RRVOT

for , RRVOT
back ). The pulmonary

circulation is represented by a Windkessel model with resistance and capacitance of proximal
and distal arteries (Rprox, Cprox, and Rdist, Cdist, respectively). PRV and PRA are pressure in the
RV and right atria, respectively. PPA and Pdist, and Pvs are pressure in the proximal and distal
pulmonary artery, and venous system, respectively.


V̇ = (Pat−PV)

RTV
for

+ (Par−PV)

RRVOT
back

, when Pv ⩽ Pat

V̇ = (Pv−Pat)

RTV
back

+ (Par−Pv)

RRVOT
back

, when Pat ⩽ Pv ⩽ Par

V̇ = (Par−PV)

RRVOT
for

+ (Pat−PV)

RTV
back

, when Pv ⩾ Par.

(2.4)

The circulation system is represented by a two-stage Windkessel model [22], as is also
depicted in Fig. 2.1.

In the present study, we will use PSMpre and PSMpost of nineteen rTOF patients created
in our previous work [10]. These models are given by the patient-specific parameters
characterizing the circulation (proximal and distal resistance and capacitances Rp, Rd,
Cd); the heart geometry and function (myocardial passive stiffness, active contractility),
and RVOT mechanics (RVOT forward and backward resistances RRVOT

for , RRVOT
back ). The

detailed model calibrations are described in our previous work [10]. We remark that the
ethical approvals in the study [10], in which the patient-specific models were created, were
granted by the Institutional Review Boards of UT Southwestern Medical Center Dallas
(STU-2020-0023) and UT Austin (IRB 2020-06-0128).

2.2.2 Post-PVR in silico prediction of contractility

The pre-PVR patient-specific models PSMpre were used to predict in silico the RV con-
tractility after PVR. We assumed no PR after PVR (therefore we increased the backward
RVOT resistance RRVOT

back to a large value). Sequentially, the RVOT resistance RRVOT
for was

decreased to its minimum (representing no RVOTO assumed after PVR). For each value of
RRVOT

for the ventricular contractility was recalibrated in the model to preserve pulmonary
artery peak systolic pressure (PA PSP). This is in line with our observations made in
this cohort [10] and another study using clinical data [23] and is detailed in Sec. 2.3.1.
The RVOT pressure difference for the corresponding decrease of the RRVOT

for resistance was
calculated by subtracting PA PSP from the simulated RV pressure. The in silico decrease of
RVOT pressure difference was plotted against the corresponding values of in silico predicted
contractility. The contractility in PSMpost reported previously [10] (see Sec. 2.2.1) was
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used to validate the in silico predicted contractility for a measured value of RVOT pressure
difference post-PVR.

2.2.3 Statistical analysis

The changes in post-PVR RV and PA PSP were evaluated via the Wilcoxon signed-rank test
at p <0.050. The difference between the in silico predicted post-PVR contractility and the
contractility in PSMpost was quantitatively evaluated via a Bland–Altman plot analysis. In
addition, the in silico predicted contractility and the contractility in PSMpost were multiplied
by the ratio of myocardial wall thickness over ventricular chamber radius—rescaled in
accordance with the Laplace law. Pearson’s correlations were built between the rescaled in
silico predicted contractility, rescaled contractility in PSMpost and the post-PVR RV peak
systolic pressure (RV PSP) at p<0.050.

2.3 Results

2.3.1 RV and PA peak systolic pressures in patient-specific models pre-
and post-PVR

Patients were divided into 2 groups according to the level of RVOTO: low- and high-RVOTO
groups based on RV-to-LV systolic pressure ratio. RVOTO was defined as low if the ratio
of RV to LV peak systolic pressures was < 50% and high if the ratio was ⩾ 50%. All
patients from the low-RVOTO group had at least moderate PR (regurgitation fraction
> 30%), while the high-RVOTO patients had at least mild PR (regurgitation fraction >
20%). There were n = 9 patients with low-RVOTO and n=10 patients with high-RVOTO.
Complete clinical and hemodynamic characteristics of this patient cohort can be found in
the supplementary material of published work [10].

Figure 2.2 shows RV PSP and PA PSP pre- and post-PVR in the low- and high-RVOTO
groups. RV PSP showed insignificant post-PVR change (p=0.133) and a significant decrease
(p=0.004) in low-RVOTO group and high-RVOTO group, respectively. In the low-RVOTO
and high-RVOTO groups the median change of PA PSP was 2.0 and 1.0 mmHg, respectively.
The analysis of pressure data in our patient cohort therefore showed an insignificant change
of PA PSP post-PVR (p=0.326 for all patients).

2.3.2 In silico prediction of right ventricular contractility

Figures 2.3 and 2.4 show the in silico prediction of RV contractility for a sequential decrease
of RVOT resistance (RRVOT

for ) in 4 patients from high- and 2 patients from low-RVOTO
groups, respectively. In silico predictions of contractility for the remaining patients can
be found in the Supplementary Figs. 2.6 and 2.7. With a decreasing level of RRVOT

for ,
the RV contractility was decreasing along a line for all studied patients, creating a 1D
patient-specific trajectory within the RV contractility-RVOT pressure difference space. The
mean (± SD) in silico predicted contractility at 0 mmHg RVOT pressure difference for all
patients was 36 (±) 9 kPa. Note that the range of healthy RV contractility was assumed to
be 38–48 kPa [10].

Figure 2.5a shows a Bland–Altman plot of the difference between the in silico predicted
contractility post-PVR and data-estimated contractility in PSMpost for the measured RVOT
pressure difference post-PVR.

The mean (±SD) absolute difference between the in silico predicted contractility and the
contractility in PSMpost in the low- and high-RVOTO group was 4.0 (±2.6) and 3.1 (±2.1)
kPa, respectively. Pearson’s correlation (R2) for the in silico predicted contractility and
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Figure 2.2: (a) right ventricular (RV) peak systolic pressure pre- and post-PVR. (b) pulmonary
artery (PA) peak systolic pressure pre- and post-PVR. Central line inside the boxplots is the median,
bottom and top edges of the boxes show 25th and 75th percentiles, respectively, the whiskers
connect the most extreme data points not considered as outliers. Low-/High-RVOTO low/high
right ventricular outflow tract obstruction patient groups.
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Figure 2.3: In silico prediction of right ventricular (RV) contractility post-PVR (black points) for
selected patients from high right ventricular outflow tract obstruction (RVOTO) group. Filled blue
and orange points are the contractilities in the pre- and post-PVR patient-specific models. Orange
stars in patients #2 and #6 are additional post-PVR data-estimated contractility, where post-PVR
pressures were acquired ∼2 h earlier than the final post-PVR pressure measurement (filled orange
points). Healthy RV contractility was assumed to be 38-48 kPa [10].

for the contractility in PSMpost (both multiplied by the ratio of myocardial wall thickness
over ventricular chamber radius according to Laplace’s law) was 0.902 (p=0.000) and 0.910
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Figure 2.4: In silico prediction of right ventricular (RV) contractility post-PVR (black points) for
selected patients from low right ventricular outflow tract obstruction (RVOTO) group. Filled blue
and orange points are the contractilities in the pre- and post-PVR patient-specific models
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Figure 2.5: Quantitative difference between the contractility from in silico prediction and that
from the post-PVR patient-specific models for a measured post-PVR right ventricular (RV) outflow
tract pressure difference. A: Bland–Altman plot, solid horizontal line is the mean of the difference
between the in silico predicted and contractility in the patient-specific model, top and bottom
dashed horizontal lines are the limits of agreement at 95% prediction interval (±1.96 times standard
deviation). B: Pearson’s correlation for in silico predicted and the contractility in patient-specific
model, while both are multiplied by the ratio of myocardial wall thickness over ventricular chamber
radius (rescaled contractility) and measured RV peak systolic pressure post-PVR at p < 0.05. C:
Pearson’s correlation between the rescaled contractility and RV pressure. Orange and blue points
are the pre- and post-PVR contractilities in the patient-specific models, respectively. Black stars are
the in silico predicted contractility at zero mmHg RVOT pressure difference, R2=0.954, p=0.000.

(p=0.000), respectively (Fig. 2.5b). Figure 2.5c shows Pearson’s correlation for the in silico
predicted contractility at 0 mmHg pressure difference and the contractility in pre- and
post-PVR patient-specific models rescaled in accordance with the Laplace’s law in relation
to the RV PSP. R2 for all values of contractility (orange, and blue points and black stars in
Fig. 2.5c) is 0.954 (p=0.000). For the contractility at 0 mmHg pressure difference alone
(black stars in Fig. 2.5c), R2 is 0.850 (p=0.000).

2.4 Discussion

In this work we evaluated the predictive value of patient-specific biomechanical models
created from patients’ data prior to PVR in previously reported study [10] to establish
model-predicted (in silico) changes in RV contractility post-PVR. We used an assumption
that PA PSP was preserved post-PVR as it showed little or no variation in clinical data
[10; 23]. We therefore gradually decreased the RVOT resistance and re-calibrated the
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contractility to maintain PA PSP for each patient to represent the set of in silico predicted
contractilities. We used the data-estimated contractility in PSMpost, also created in the
previous study [10], to validate the in silico predicted contractility. For the majority of
patients, the in silico predicted contractility fell close to the RV contractility in PSMpost.
The mean (± SD) error in low- and high-RVOTO groups corresponded to 5.0 (±4.0)% and
4.0 (±3.0)% with respect to pre-PVR contractility, respectively. The difference between
the in silico predicted contractility and the contractility in PSMpost on individual patient
basis varied from negative (negative part of y-axis on Bland–Altman plot denoting the in
silico predictions underestimating the contractility in PSMpost) to positive (positive part of
y-axis, the in silico predictions overestimating the contractility from patient-specific models).
These errors could be explained by the measurement uncertainties in the catherization
pressure signals. In addition, different preload pressures imposed during the in silico PVR
prediction vs. the preload used in the patient-specific models could have contributed to the
discrepancy presented in the Bland–Altman plot: the in silico prediction did not assume
any preload change from the pre-PVR RV end-diastolic pressure (EDP), while the actual
post-PVR patient-specific models directly used the measured post-PVR pressures. However,
as only a mild decrease of EDP post-PVR was observed, we expect that its effect on the
post-PVR contractility will be small compared to that given by the decrease in RVOTO.
We also evaluated the difference between the in silico predicted contractility values and
the contractility in PSMpost rescaled with respect to the Laplace’s law (Wall stress directly
proportional to Pressure · chamber radius/wall thickness). Pearson’s correlations between
the rescaled contractility and measured RV pressure post-PVR — using either the in silico
prediction or the in PSMpost — showed almost identical strong correlations (Fig. 2.5b).
This suggests that the effect of the variation present in Bland–Altman plot is small with
respect to the global mechanical properties of the ventricle for a given ventricular geometry.

We observe linearity of the relationship between the in silico predicted contractility and
the RVOT resistance. In addition, these 1D relationships predict the contractility at 0 mmHg
RVOT pressure difference to be in the range of healthy RV contractility [10] in all patients.
In accordance with Laplace’s law we plotted the rescaled in silico predicted contractility
at 0 mmHg RVOT pressure difference against the pre-PVR PA PSP and combined that
correlation with previously published Laplace’s correlations of pre- and post-PVR data-
estimated contractility in PSMpre and PSMpost, respectively [10]. The combined correlation
revealed a strong overall relationship. The return to a completely unobstructed RVOT
may not be possible in some patients due to the residual RVOT gradient of at least 10–15
mmHg (as a result of placing a stented bioprosthesis). Nevertheless, the in silico predicted
contractility at hypothetically minimal RVOT resistance also follows the Laplace’s law of
ventricular wall stress generation. This further strengthens the physiological relevance of
the in silico predicted relationship between the contractility vs. RVOT resistance post-PVR
for a given ventricular geometry.

Although the model used in this study is rather complex and nonlinear in various
aspects (e.g. passive and active behavior of myocardium), the final finding is a nearly
linear relationship between the in silico predicted contractility and the RVOT resistance
throughout a wide range of the resistance values. As shown in Fig. 2.2, there is an
insignificant change of PA PSP post-PVR. With the systolic PA pressure waveform being
rather flat and PA PSP being close to PA end-systolic pressure (ESP), the pressure change
between the start and end of ejection is nearly preserved post-PVR as well as the amount
of ejected blood (stroke volume, SV). This was also observed in the clinical study of Lurz
et al. [23], which suggested that the SV undergoes insignificant change immediately after
PVR.
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We can approximate SV by

SV =
RVPSP− PAPSP

RRVOT
for

· teject, (2.5)

where teject stands for time of ejection. In the previous work [10] we demonstrated that
model-derived contractility σ0 is proportional to RV PSP via the Laplace law:

RVPSP = 2σ0
h

r
, (2.6)

where h and r are ventricular wall thickness and chamber radius, respectively. Assuming
that SV is relatively unchanged immediately after the RVOTO release, by combining Eqs.
(2.5) and (2.6) the linearity between σ0 and RVOT resistance (RRVOT

for ) becomes apparent:

2σ0
h

r
=

SV ·RRVOT
for

teject
+ PAPSP. (2.7)

We hypothesize that the linearity between the in silico predicted contractility and the
RVOT resistance observed in the current cohort of patients is determined by the preservation
of SV immediately post-PVR. A larger cohort of patients containing both RVOTO and PR
should be studied to elucidate if the preservation of the SV post-PVR and if the observed
linearity consistently happens. Nevertheless, the contractility itself accounts for nonlinear
active constitutive behavior of the myocardium and in the present modeling approach is an
inherently patient-specific index of the inotropic state of the myocardium and our results
support its prognostic significance.

It should be recognized that there are other mechanical models that could provide the
representation of the internal myocardial stress. For example, a lumped-parameter model
of the heart and circulation as in CircAdapt is an alternative patient-specific approach for
modeling the stress–strain relationship of the myocardium and the interaction between
ventricles and the vascular tree [24; 25; 26]. Even though CircAdapt models contain the
interaction between the two ventricles and are fast in computation time (real time or close to
real time), their micromechanical formulation does not account for sarcomere-level kinetics
but is in the form of phenomenological myofiber-level stress–strain relationship. The family
of 3D finite element models [14; 27; 28; 7] allows the investigation of regional wall mechanics
(e.g. contractility [29; 30]), see also review articles [31; 32] and references therein. However,
these are computationally expensive approaches, which limits their practical applicability
in the investigation of large cohorts of patients in clinical settings. In the current work we
ran 7 simulations per patient to establish the in silico relationships. This would be hardly
achievable with a 3D model.

Overall, the in silico predicted relationship between the contractility and RVOT re-
sistance demonstrates an immediate response of RV active mechanical properties to the
varying afterload pressure. Our results suggest that after PVR the RVOT pressure difference
and myocardial contractility will follow a nearly linear relationship (1D line). The linearity
of pressure vs. contractility relationship could be used to inform about evolution of RV
mechanics at a given level of RVOTO post-PVR and subsequently assist in planning the
patient’s intervention. Should the goal be to reduce the myocardial stress to a larger extent,
the surgical procedure might be preferential as opposed to the percutaneous procedure that
is known to typically result in a higher level of residual RVOT difference. The current
workflow, however, cannot provide the exact estimate of post-PVR physiology. The level
of RVOT resistance decrease may depend on a number of factors (e.g. actual morphology
of RVOTO, type of prosthetic valve used, initial type of repair). Possibly, patient-specific
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computational fluid dynamics simulations on the RVOT and PA could contribute to predict
the decrease of the RV-to-PA pressure difference [33; 34; 35]. This is, however, out of scope
of the current work.

The complete validation of the in silico predicted relationship between the post-PVR
contractility and RVOT resistance is limited due to the limitation of the study [10], in
which the only post-PVR measured pressures were available. In addition, the number of
patients used in the present study is relatively small to draw universal conclusions regarding
the response of RV mechanics to decreased RVOT pressure difference. Therefore, a detailed
study with extended cohort of patients and simultaneous acquisition of pressure-volume data
during the intervention (e.g. by a conductance catheter) is a natural follow-up to the present
paper. The current modeling approach predicts an instantaneous change of ventricular
mechanics at a given geometry in response to different levels of RVOTO whereas the long-
term effect of PVR on the mechanical and morphological properties remain unknowable.
In the future we propose to combine our prediction of immediate response to PVR with
a kinematic growth theory framework [36; 37; 38; 39] or machine learning approach [40],
which could include some distinct features obtained from advanced image data analysis
constrained by a biomechanical model [41]. In particular, it will be interesting to study the
morphological change of the ventricular cavity to mechanical unloading at several points
along the predicted (1D) line, where a given change of intraventricular pressure with respect
to pre-PVR could be considered as a stress-based unloading stimuli [42].

Biomechanical modeling has a potential to provide an insight into the evolution of
RV mechanics. We have demonstrated the ability of the model to predict the mechanical
response of the ventricle under progressive recovery of RV ESP through decreasing levels
of RVOTO. Our results show a linear relationship between contractility and the level of
RVOTO post- PVR. This step could contribute to the optimal clinical management for
individual patients. The future objective would be to suggest what type of intervention
(e.g. type or size of prosthesis, or percutaneous vs. surgical approach) would be the best
for a given patient and combine with our ventricular-mechanics prediction. In the current
paper we demonstrated the approach on the cohort of tetralogy of Fallot patient with
pulmonary valve pathology and right ventricular overload. This type of model-derived
predicted outcome may have relevant application even in other valvular pathologies (e.g.
aortic valve pathologies).
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2.5 Appendix

Supplementary Figures 2.6-2.7 show the in silico prediction of right ventricular (RV)
contractility post-PVR for all patients.
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Figure 2.6: In silico prediction of right ventricular (RV) contractility post-PVR (black points) for
the patients from high right ventricular outflow tract obstruction (RVOTO) group. Filled blue and
orange points are the contractilities in the pre- and post-PVR patient-specific models, respectively.
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Figure 2.7: In silico prediction of right ventricular (RV) contractility post-PVR (black points) for
the patients from low right ventricular outflow tract obstruction (RVOTO) group. Filled blue and
orange points are the contractilities in the pre- and post-PVR patient-specific models, respectively.
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CHAPTER 3

Model-assisted time-synchronization of clinical
pressure-volume data

Clinical pressure-volume (P-V) data when acquired by different modalities (e.g. CMR and
pressure catheter) are often subjected to time-synchronization errors. This yields acquired
P-V loops with artificial shape, in particular skewed isovolumetric phases. These errors
are inherent to data acquisition and data processing techniques. The prime motivation
of this chapter was to develop a time-synchronization technique that could be directly
employed in clinical settings, e.g. during a volume-challenge study (manipulating preload
conditions of the heart via administration of fluid bolus) of patients with single-ventricle
geometry prior to completing Fontan circulation. This chapter develops a model-assisted
time-synchronization method for ventricular P-V signals from two types of data acquisition
protocols: (1) P-V data with prospectively (N=24, single-ventricle patients) and (2) with
retrospectively (N=45, predominantly rTOF left and right ventricular patients) ECG-
triggered cine MRI sequences. The qualitative improvement of time-synchronized P-V loops
is demonstrated by plotting the clinically acquired P-V loops and those obtained after the
proposed time-synchronization. We use a metrics derived from cardiovascular physiology to
demonstrate the physiologically meaningful quantitative improvement of time-synchronized
P-V data. In particular, we statistically compare the original and time-synchronized
maximum time derivative of time-varying elastance (E(t)) – (dE/dtmax) – in relation to
max(dP/dt) derived from the original pressure signals. The proposed time-synchronization
method produced high-quality P-V loops yielding statistically more accurate indices of
myocardial energetics – max value of time-varying elastance (Emax) and stroke work (area
encompassed within P-V loop). This chapter demonstrated an ability of the model to
assist in clinical data treatment during pre-interventional planning for e.g. patients with
single-ventricle geometry.
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The material of this chapter was converted into an extended research letter to editor
format and was accepted for publication in the Journal of Magnetic Resonance

Imaging. Preliminary proof-of-concept study of the proposed methods was published
as a conference paper in the Proc. of Functional Imaging and Modeling of Heart
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Abstract

Background: Therapy planning benefits from assessment of myocardial en-
ergetics using ventricular pressure-volume (P-V) loops. The acquisition of P-V
signals using cardiac MRI and intraventricular pressure is often subjected to time-
synchronization errors yielding P-V diagrams with skewed isovolumetric phases.

Purpose: We aim to develop a universal time-synchronization method for
the ventricular P-V signals, independent of the setup of MRI sequence, type of
catheter and patients’ pathophysiology, by using biomechanical cardiac modeling.

Study type: retrospective.
Population: Two groups of P-V data with prospectively (N=24) and retro-

spectively (N=45) ECG-triggered cine MRI.
Field strength / sequence: 1.5 T scanner. bSSFP cine sequence in prospec-

tive ECG-triggering (kt-BLAST factor 6, partial Fourier 0.625) and in retrospective
ECG-gating (SENSE 2), both in temporal resolution 30ms.

Assessment: Ventricular time-varying elastance E(t) = P (t)/V (t) was com-
puted from original (orig) and time-synchronized (t-syn) data. The expected
physiological relationship between max(dP/dt) and max(dE/dt) was statistically
evaluated.
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Statistical test: Linear regression models through the origin were fitted to
investigate the difference between max(dPorig/t−syn/dt) and max(dEorig/t−syn/dt).
Wilcoxon signed-rank tests at p<0.05 were conducted to assess the quantitative
difference between max(dEorig/dt) and max(dEt−syn/dt). Standard error of regres-
sion coefficients (SEcoef) and coefficients of determination (R2) of fitted models
were computed. Original and time-synchronized values of Emax and stroke work
were compared with Wilcoxon signed rank test at p<0.05.

Results: The shapes of time-synchronized P-V loops were qualitatively im-
proved. Time-synchronized P-V signals showed statistically stronger relationship
between max(dP/dt) and max(dE/dt) in terms of physiologically more relevant
coefficient of linear regression model and decreased variance of max(dE/dt) with
respect to max(dP/dt) (R2 >0.88 in all patients). Time-synchronized and original
max(dE/dt) were significantly different (p=0.00 in all patients). Time-synchronized
stroke work was significantly higher than original stroke work (p=0.00 in all pa-
tients).

Data conclusion: The proposed time-synchronization method produces high-
quality P-V loops from cine MRI combined with catheter-derived pressure record-
ings.

Keywords— time-synchronization of clinical data, pressure-volume loop, invasive cardio-
vascular magnetic resonance imaging, cardiovascular modeling, translational research

3.1 Introduction

Pressure-volume (P-V) loops provide a meaningful insight into myocardial energetics and
their employment in the clinical practice is beneficial in a number of situations both for
left and right ventricles (LV, RV), e.g. to investigate ventricular-arterial coupling [1; 2; 3]
or to assess the myocardial function [4; 5]. For instance, patients with single ventricle
geometry prior to completing a complex surgical intervention undergo a detailed assessment
of the current mechanical state of the myocardium [6]. P-V loops can be reconstructed
from invasive cardiovascular magnetic resonance imaging (iCMR) (simultaneous acquisition
of catheter pressure and CMR volume) in order to assess the functionality of the heart
[7]. However, the recorded pressure and volume tracings are not perfectly synchronous
yielding P-V loops with artificial shapes (see Figure 3.1). While the acquired pressure
data are aligned with respect to the R-wave of the ECG, in the acquisition of the cine
magnetic resonance imaging (MRI) a number of factors could cause a suboptimal alignment
of data with respect to the R-wave peak of patient’s ECG. First, the acquisition of cine
MRI data is performed typically over hundreds of cardiac cycles yielding a time-volume
plot that represents an average cycle during the acquisition. Second, due to a strong
magnetic field of the MR scanner, it is difficult to derive a standard ECG. The so-called
ventriculogram (VCG) is used instead, even though the terminology is often slightly abused
and the signal is called ECG (as we do in our paper). Typically, the most prominent peak
in the VCG is automatically detected and used as a trigger point. Particularly, in patients
with pathological QRS duration (e.g. in some patients with a bundle branch block the QRS
duration may go even beyond 200 ms), a more prominent S or R’ wave can be detected
instead. Third, retrospective ECG gating, which is preferred for cine MRI, allows the whole
cardiac cycle to be acquired (as opposed to prospective triggering, in which typically the
first 30-50 ms and final 100 ms are missed). However, the retrospective reconstruction and
associated temporal interpolation is yet another factor in the temporal offset of volume
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data. Finally, the fluid-filled catheter could record the pressures with some delay due to
inertia effect, which could vary depending on the catheter type and size [8].
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Figure 3.1: Illustration of the pressure-volume (P-V) offsets on the shape of the P-V loop in the
measured data of left ventricle (LV) of a patient with repaired tetralogy of Fallot (#AF25 LV).

A complete synchronization of the P-V signals is possible when the data are acquired
fully synchronously, for instance when using a conductance and pressure catheter. During
iCMR procedures, as the time offset between the ventricular pressure and volume varies
among patients due to the actual configuration of iCMR protocol (e.g. setup of the MRI
sequence or the type and size of catheter used), the synchronization of corresponding cardiac
phases in the P-V signals is typically performed manually. This approach relies on the
isovolumic contraction and relaxation phases to be “perpendicular” to the x-axis in the
P-V loop (we recall Figure 3.1). However, a manual synchronization can be suboptimal
particularly in some clinical scenarios, e.g. for patients with valvular regurgitation where a
clear appearance of isovolumic phases in P-V diagrams is lacking.

Due to the numerous factors contributing to the P-V dyssynchrony causing the P-V
time-offset being different in each patient and acquisition, we aim to develop a universal
time-synchronization procedure independent of a variability of the volume-pressure time-
offset given by the individual patients and a given examination protocol. We use a
biophysical model specific to a given patient and created using the acquired data. A recent
methodological study [9] demonstrated the potential of such an approach to synchronize
P-V signals in time [9]. Using the measured values of maximum and minimum ventricular
pressure and volume, simplified patient-specific models of a cardiac cycle are created. These
models provide synchronous pressure and volume waveforms, which can be used as a
template to time-synchronize the measured data (see Figure 3.2). In the current work
we aim to apply such a model-assisted time-synchronization technique on an extended
cohort of patients: 24 P-V datasets of patients with single-ventricle geometry; 20 datasets
of RVs; and 18 datasets of LVs, both in patients with tetralogy of Fallot after complete
surgical repair (rTOF). We show the qualitative improvement by plotting the clinically
acquired P-V loops and those obtained after the proposed time-synchronization. Since
the ground truth synchronized data are not available in the cohort of patients undergoing
CMR and pressure catheter exams, we use a metrics derived from cardiovascular physiology
that demonstrates the physiologically meaningful quantitative improvement. Specifically,
we statistically compare the original and time-synchronized maximum time derivative of
time-varying elastance (E(t))– max(dE/dt) – in relation to the maximum time derivative
of pressure – max(dP/dt) – derived from the original pressure signals.
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Figure 3.2: A: Distorted pressure-volume (P-V) loop due to the time offset between the acquired
pressure and volume data illustrated on Patient AF24 LV from our study. B: Detection of the time
offset by using patient-specific biomechanical model, simulating synchronous pressure and volume
waveforms. C: Corrected P-V loop (solid line) reconstructed from the time-synchronized (t-syn)
data.

3.2 Methods

3.2.1 Data

Datasets from two groups of patients were included in this study. The first group contained
10 patients with single-ventricle physiology prior to completing the Fontan circulation. The
patients underwent an iCMR procedure where the catherization pressure and cine MRI
were simultaneously acquired prior to and after a fluid bolus administration. Patients
received 5 ml/kg within 1 or 2 fluid boluses. Ventricular volumes were measured using a
prospectively ECG-triggered balanced steady-state free precession (bSSFP) cine sequence
(kt-BLAST factor 6, partial Fourier 0.625, in order to shorten acquisition time in this
volume-challenge study). The temporal resolution was ∼30 ms. In total, 24 pressure-volume
(P-V) datasets from a baseline and post-bolus conditions were acquired. Additionally, most
patients also had standard clinical cine MRI with retrospective ECG gating (SENSE 2,
temporal resolution ∼30 ms) taken at baseline conditions. The second group consisted of
20 rTOF patients prior to the pulmonary valve replacement (PVR). CMR was acquired and
reconstructed with standard settings and retrospective ECG gating (as described above).
Catheter pressures were acquired in a separate session. In total 17 and 20 P-V datasets
of left and right ventricles (LV, RV), respectively, were included in the study. We remark
that two rTOF patients did not have LV pressure tracing and one had LV pressure tracing
of an inferior quality. CMR ventricular volumes were processed using the CVI42 software
(Circle Cardiovascular Imaging Inc., Calgary, Canada) and the motion tracking algorithm
[10; 11]. The data collections for single-ventricle patients were performed under the ethical
approval of the Institutional Review Boards of UT Southwestern Medical Center Dallas
(STU 032017-061). The data collections for rTOF patients were performed under the ethical
approvals of the Institutional Review Boards of UT Southwestern Medical Center Dallas
(STU-2020-0023) and UT Austin (IRB 2020-06-0128). The IRBs waived the need for a
consent to use the anonymized retrospective data.

An additional dataset with fully synchronous pressure and volume signals, acquired
using a conductance P-V loop catheter in a pre-clinical study, was included as a verification
case. Seven P-V loops were generated out of the single measured cardiac cycle: original
P-V data (perfectly synchronous pressure and volume signals); and six P-V loops with
imposing an artificial time offsets of ±50, ±100 and ±150 ms between the pressure and
volume signals.
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Figure 3.3: Coupling of the heart with atrioventricular and arterial valves via system of diodes and
with circulation system represented by a two-stage Windkessel model. Pat , PV, Par, Pdist, Pvs are
pressures in atrium, ventricle, proximal artery, distal circulation and venous system, respectively;
RAV

for , RAV
back and RVOT

for , RVOT
back are forward, backward resistances of atrioventricular valve and

ventricular outflow tract, respectively. Rprox, Cprox, Rdist, Cdist are proximal and distal resistances
and capacitances in Windkessel model.

3.2.2 Biomechanical model of the heart

We employed the biomechanical heart model described in [12]. This model was used in
clinical research projects, such as [5; 13; 14]. A subject-specific model was created for
each dataset in our study. Ventricular geometry and kinematics are reduced to a sphere
with inner radius R and wall thickness d (Figure 3.16). Constitutive material laws that
provide myocardial passive and active properties are preserved as in the full 3D heart model
[15]. Myocardial passive stiffness is given by visco-elastic constitutive law [16]. Myocardial
contractility is modeled within the A. F. Huxley sliding filament theory framework [17; 18]
where mechano-chemical coupling of actin-myosin unit produces an active contraction of
the sarcomere. The internal myocardial stresses (passive and active) are in mechanical
equilibrium with external intraventricular cavity pressure. Globally, the ventricular cavity
pressure and volume are an output of the model. The heart model is coupled with inlet
and outlet valves that are described by a system of diodes to control an inflow from the
atrioventricular (AV) valve and an outflow through the ventricular outflow tract (VOT) with
corresponding forward and backward AV/VOT valve resistances, RAV/VOT

for and R
AV/VOT
back ,

as described in [19] and applied in a recent clinical study [14]. The circulation system is
represented by a two-stage Windkessel model [20]. The model was made patient-specific by
applying the following sequential calibration procedure [14]: Windkessel model parameters
(resistances and capacitances), were adjusted to match maximum, minimum and dicrotic
notch pressures in the outflow artery. Then, in the ventricular cavity model wall thickness
and sphere radius were prescribed from cine MRI mass and EDV measurements. The stress-
free reference configuration was derived as in the Klotz et al. study [21]. Ventricular preload
was imposed from the measured end-diastolic pressure (EDP). Passive myocardial stiffness
was adjusted to match measured EDV under imposed preload. Myocardial contractility
was calibrated according to the measured stroke volume and end-systolic pressure in the
ventricle.
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3.2.3 Time-varying elastance

We perform a quantitative evaluation of the time-synchronized P-V loops with respect to
the time-varying elastance (TVE) model of Suga et al. [22]. Time-varying elastance E(t) is
defined by

E(t) =
P (t)

V (t)− V0
(3.1)

with P (t) and V (t) being ventricular pressure and volume. In this work, the correction
factor V0 is taken as zero. Sunagawa and Sagawa [23] proposed that time derivative of
ventricular pressure can be expressed in terms of time derivative of E(t) and that in the
isovolumetric phase the maximum derivative of ventricular pressure (max(dP/dt)) is linearly
related to the maximum derivative of E(t) (max(dE/dt)).

max(dP/dt) = max(dE/dt) · (EDV − V0). (3.2)

The linearity of max(dP/dt) vs. end-diastolic volume (EDV) relationship with a slope
corresponding to max(dE/dt) was experimentally detected in canine hearts by Little et al.
[24]. Therefore, in the present work we consider the relationship between max(dP/dt) and
max(dE/dt) as a quantitative measure of ventricular function during ejection.

3.2.4 Time-synchronization

Thanks to the biophysical and physiological behavior of the model, the simulated pressure
and volume traces are synchronous and were therefore taken as templates to synchronize
the original data in time. Optimal time offsets tpressureoffset and tvolume

offset between the measured
data and the model were derived by minimizing the criterion:

min
toffset

∫ tend

0
(f(t)− g(t− toffset))

2dt, (3.3)

where f(t) represents the simulated ventricular pressure or volume; g(t) is the measured
ventricular pressure (volume); tend is the end of the cardiac cycle in the measured data.

First, we applied the time-synchronization procedure on the dataset acquired by the
conductance P-V loop catheter, in which the pressure-volume time offsets were manually
imposed. The time-synchronized data were compared with the original fully synchronous
acquisition to verify our approach.

Then, all clinical datasets with intraventricular pressure catheter and cine MRI-cardiac
volumes were time-synchronized according to criterion given by eq. (3.3). P-V loops were
constructed both for original and time-synchronized (t-syn) data. They were first assessed
qualitatively. Secondly, the TVE function was computed for the original and t-syn data:

Eorig(t) =
Porig(t)

Vorig(t)
,

Et−syn(t) =
Pt−syn(t)

Vt−syn(t)
,

(3.4)

where Porig/t−syn(t), Vorig/t−syn(t) are ventricular cavity pressures and volumes as originally
measured / time-synchronized, respectively. The time derivative of ventricular pressure can
be expressed in terms of TVE [23] for the original or t-syn data, respectively:

Porig/t−syn(t)

dt
=

dEorig/t−syn(t)

dt
· Vorig/t−syn(t) + Eorig/t−syn(t) ·

dVorig/t−syn(t)

dt
. (3.5)
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During the isovolumic contraction phase, dP/dt reaches its maximum value, max(dP/dt),
and V (t) is constant (equal to EDV) [24], hence:

max(dPorig/t−syn/dt) = max(
dPorig/t−syn(t)

dt
) = max(

dEorig/t−syn(t)

dt
) · EDV. (3.6)

Original and time-synchronized values of maximum TVE: Emax = max(P (t)/V (t)), and
stoke work: area encompassed within the P-V loop, were computed for each patient.

3.2.5 Statistical analysis

Considering the identity relationship in Eq. (3.6), a reference linear relationship through the
origin with slope coefficient (Coef) equal to 1 was constructed. Then, linear regression models
through the origin were fitted to investigate the difference between max(dPorig/t−syn/dt)
computed directly from original/time-synchronized data and max(dPorig/t−syn/dt) expressed
in terms of TVE of original/time-synchronized data (Eq. (3.6)). Coef of the fitted models
of original/time-synchronized data were computed and compared with the reference linear
regression model. Wilcoxon signed-rank tests at p<0.05 were conducted to assess the
quantitative difference between max(dEorig/dt) and max(dEt−syn/dt). Standard error of
regression coefficients (SEcoef) and coefficients of determination (R2) of fitted models of
original/time-synchronized data were computed. Original and time-synchronized values
of Emax and stroke work were statistically compared with Wilcoxon signed rank test at
p<0.05.

3.3 Results

Figure 3.4 shows pressure and volume waveforms from the dataset acquired by the conduc-
tance catheter with manually imposed time offsets. Our time-synchronization corrected the
P-V loops within 0.002s of the imposed time offset, verifying the approach.
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Figure 3.4: Verification of time-synchronization technique using conductive catheter pressure-volume
(P-V) data. A: Original P-V loop from conductive catheter (solid blue line) and artificially imposed
P-V time-offsets in positive direction (colored dotted lines). B: original P-V loop from conductive
catheter (solid blue line) and artificially imposed P-V time-offsets in negative direction (colored
dotted lines). C: model-detected P-V time-offsets imposed in A. Offsets are the difference between
the pressure and volume in absolute values.

Figures 3.5 and 3.6 show ventricular pressure, volume and outflow from the ventricle
acquired by pressure catheter and CMR, plotted together with the result of simulation.
The measured data are plotted before and after the time-synchronization for single-ventricle
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patient #10 (prospective ECG-gating) and rTOF RV patient #F05 (retrospective ECG-
gating, 58% of pulmonary regurgitation), respectively. Figures 3.7 and 3.8 display the
original and time-synchronized P-V loops for selected single-ventricle patients and rTOF
patients (left and right ventricular data), respectively.
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Figure 3.5: Example of measured data plotted together with simulation for single-ventricle patient
#10 with prospective ECG-trigger. Top row: model calibration versus original (non-synchronized)
data; bottom row: model calibration versus time-synchronized data. LV: left ventricle; AO: aorta.

Figure 3.9 shows the fitted linear regression models for original and time-synchronized
signals in single-ventricle patients (panel A), rTOF LV and RV patient datasets (panels
B-C). Table 3.1 summarizes statistics of linear regression models presented in Figure
3.9 and p-values of Wilcoxon signed-rank test for the difference between max(dEorig/dt)
and max(dEt−syn/dt). The coefficients of linear regression models for max(dEorig/dt) vs.
max(dEt−syn/dt) were: 1.279 vs. 1.040 in single-ventricle patients; 1.795 vs. 1.126 in
rTOF LVs; and 1.615 vs. 1.180 in rTOF RVs. The difference between max(dEorig/dt) and
max(dEt−syn/dt) was significant with p=0.000 in all three groups.

Table 3.1: Statistics for linear regression models of original and time-synchronized (t-syn) data,
and a reference linear (ref.) model; and -values of Wilcoxon singed-rank test between original and
t-syn data. Coef: regression coefficient; R2: coefficient of determination; rTOF- LV/-RV: repaired
tetralogy of Fallot left/right ventricle, respectively; SEcoef : standard error of the coefficient; W :
Wilcoxon singed-rank test.

Single-ventricle rTOF-LV rTOF-RV ref.
Original T-syn Original T-syn Original T-syn

Coef 1.279 1.040 1.795 1.126 1.615 1.180 1.000
SEcoef 0.039 0.012 0.087 0.026 0.064 0.023 0.000
R2 0.774 0.963 0.626 0.881 0.712 0.912 1.000
W 0.000 0.000 0.000

Table 3.2 shows the model-derived time offsets of single-ventricle patients at baseline,
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Figure 3.6: Example of measured data plotted together with simulation for right ventricle of
rTOF patient #F05, who had pulmonary regurgitation (regurgitation fraction of 58%). Top row:
model calibration versus original (non-synchronized) data; bottom row: model calibration versus
time-synchronized data. RV: right ventricle; PA: pulmonary artery.
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Figure 3.7: Pressure-volume loops for single-ventricle patients #9 and #10 at baseline and after
administration of 5ml/kg fluid bolus (bolus 1), CMR is with prospective ECG-trigger.
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Figure 3.8: Pressure-volume loops for rTOF patients. Patient #F05 right ventricle (RV) contains
58% of pulmonary regurgitation. Patient #F14 RV contains 11% and 30% of tricuspid and
pulmonary regurgitation, respectively.
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Figure 3.9: Linear regression models for original and time-synchronized data for single-ventricle
patients (A), rTOF left venricle (rTOF-LV) (B), and rTOF right ventricle (rTOF-RV) (C). Dotted
black line is a reference model with slope equal to 1.
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bolus 1 and bolus 2 for prospective cine MRI sequence combined with catherization pressures,
and that at baseline for retrospective cine MRI combined with the baseline catherization
pressures. Mean (± SD) P-V offsets were 0.054 (± 0.021) s, 0.062 (± 0.026) s, and 0.063
(± 0.018) s in baseline, bolus 1 and 2, respectively (all using prospectively ECG-triggered
cine MRI). Mean (± SD) P-V offsets in baseline with retrospective cine MRI were 0.079
(± 0.033) s. Table 3.3 shows the model-derived time offsets of left and right ventricles of
rTOF patients, where mean (± SD) P-V offsets were 0.110 (± 0.039) s and 0.116 (± 0.032)
s in LV and RV, respectively.

Table 3.2: Model-derived time offsets of pressure-volume data for single-ventricle patients with
prospective ECG trigger (prosp) in three bolus conditions: baseline, bolus 1, and bolus 2; and
retrospective ECG gating (retro) in baseline. QRSd: QRS duration; HR: heart rate; SD: standard
deviation.

QRSd (s) HR (bpm) Time-offsets (pressure-volume) (s)
Baseline Bolus 1 Bolus 2 Baseline
prosp prosp prosp retro

Pt #1 - 72 0.074 0.081 0.082 -
Pt #2 - 102 0.039 0.055 0.043 0.079
Pt #3 - 93 0.028 - - 0.061
Pt #4 - 78 0.040 0.040 0.048 0.053
Pt #5 - 103 0.064 0.086 0.080 -
Pt #6 - 85 0.077 0.075 0.060 0.122
Pt #8 0.080 96 0.021 0.005 - 0.041
Pt #9 0.080 82 0.067 0.074 - 0.077
Pt #10 0.091 73 0.080 0.079 - 0.130
Pt #11 0.078 81 0.050 0.064 - 0.091
mean 0.054 0.062 0.063 0.079
SD 0.021 0.026 0.018 0.033

Figure 3.10 shows original and time-synchronized values of Emax and stroke work,
where time-synchronized Emax was significantly lower (p=0.00 in all patients) and time-
synchronized stroke work was significantly higher (p=0.00 in all patients) compared to
those calculated from the original P-V data.

3.4 Discussion

The present study develops a time-synchronization technique for the P-V data by using
patient-specific biomechanical models. The fully synchronous pre-clinical dataset allowed
to verify the model-based synchronization. A small error in the detected time offset of 2
milliseconds was most likely caused by a slight model-data discrepancy given by: noise or
other artifacts in the P-V data (which cannot be completely avoided in any type of data
acquisition); and model imperfection (even though in line with biophysical and physiological
principles, the model is only a representation of reality). Taking into account the fact that
the temporal resolution of cine MRI – the core of presented work – is typically 20-30 ms,
the detected offset of 2 ms (i.e. <10 % of temporal resolution) is negligible.

Then, we applied the method on two types of data acquisition protocols: iCMR P-V
datasets, in which the pressure is acquired together either with highly-accelerated cine
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Table 3.3: Model-derived time offsets for repaired tetralogy of Fallot (rTOF) left and right ventricle
patients. CMR: cardiovascular magnetic resonance; Cath: catherization; LV: left ventricle; QRSd:
QRS duration; HR: heart rate; RV: right ventricle; SD: standard deviation.

QRSd (s) HR (bpm) Time-offsets (pressure-volume) (s)
CMR Cath rTOF-LV rTOF-RV

Pt #F02 0.165 64 61 - 0.079
Pt #F03 0.137 66 63 0.128 0.059
Pt #F04 0.166 58 73 0.118 0.120
Pt #F05 0.158 68 64 0.148 0.130
Pt #F06 0.137 72 85 0.108 0.106
Pt #F07 0.086 70 70 0.061 0.086
Pt #F13 0.126 63 81 0.095 0.107
Pt #F14 0.159 72 85 0.088 0.094
Pt #F16 0.160 68 64 0.098 0.122
Pt #F17 0.089 60 80 - 0.091
Pt #F18 0.165 83 61 0.152 0.113
Pt #F19 0.129 88 87 0.100 0.098
Pt #F20 0.117 93 87 - 0.136
Pt #F21 0.133 81 59 0.098 0.141
Pt #F22 0.147 91 67 0.200 0.199
Pt #AF24 0.163 82 75 0.096 0.101
Pt #AF25 0.129 75 74 0.047 0.127
Pt #AF26 0.096 74 95 0.155 0.153
Pt #AF29 0.146 79 79 0.123 0.165
Pt #AF31 0.129 49 75 0.058 0.095
mean 0.140 0.110 0.116
SD 0.030 0.039 0.032
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A B

Figure 3.10: Boxplot of original and time-synchronized indices of myocardial function in each patient
group. A: maximum values of time-varying elastance (Emax). B: stroke work (area encompassed
within the pressure-volume loop). Bars correspond to the medians, upper and lower error bars are
75th and 25th percentiles, respectively. Asterisks show significant difference of time-synchronized
data with respect to the original at p<0.05. rTOF-LV/-RV: repaired tetralogy of Fallot left/right
ventricle patients.

MRI using prospective ECG triggering (at baseline and post-fluid bolus), or with standard
cine MRI in retrospective ECG gating (at baseline); and P-V data obtained during sep-
arate catheterization and CMR sessions (cine MRI in retrospective ECG gating). While
the patients with single ventricles underwent the iCMR procedures, the sequential pres-
sure catheter and CMR exam were performed for the patients with rTOF. Figures 3.7
and 3.8 demonstrate that the proposed time-synchronization qualitatively improves the
shapes of P-V loops in both single-ventricle and rTOF patients. Figure 3.9 shows that the
time-synchronization changes the slope of the relationship between max(dEt−syn/dt)·EDV
and max(dPt−syn/dt) closer to the reference linear model with the slope of 1. Further-
more, the time-synchronization decreases the variance of max(dEt−syn/dt) with respect to
max(dPt−syn/dt) with R2 >0.93 in all three groups and consequently shifts the original time-
varying elastance to its more physiologically meaningful relationship. The time-synchronized
value of maximum time-varying elastance (Emax) could be later used as a surrogate measure
of ventricular mechanical performance. Note that in rTOF patients in both LVs and RVs
the slope of time-synchronized linear regression is above 1 by 13% and 18%, respectively.
This could be due to the volumes acquired 3-4 months prior to the catheterization causing
an underestimation of EDV with respect to the pressure signals. RVs, and to a lesser extent
LVs, of rTOF patients undergo progressive remodeling (dilatation of the chamber and/or
thickening of the myocardial wall) until the pressure is measured during the percutaneous
PVR [25]. The relationship between max(dE/dt)·EDV and max(dP/dt) (Eq. (3.6)) as-
sumes constant EDV during isovolumic contraction. Some RVs in our cohort have a mild
level of tricuspid valve regurgitation causing an imperfect isovolumic contraction. Therefore,
the EDV variability is more prominent in the RVs than in LVs of the rTOF patients in our
study. Since the tricuspid regurgitation is mild, we find this correlation reliable.

The model-detected P-V time offsets vary both between the patients and within in-
dividual datasets (e.g. between bolus conditions, or rTOF LV and RV datasets. Such a
variability demonstrates that the image acquisition – with P-V synchronously measured or
not – is subjected to time-synchronization errors and that those errors appear to be different
during every new acquisition. In single-ventricle patients with cine MRI acquired with
prospective ECG-trigger the time offsets are of the order of 2-3 MRI time frames (Table
3.2). In single-ventricle patients at baseline when the additional retrospectively ECG-gated
cine MRI were combined with pressures, the offsets became 3-4 cine MRI time frames. In
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rTOF patients the offsets are of the order of 3-5 frames (Table 3.3). The pathologically
long QRS duration was observed in rTOF patients, mean (± SD) QRSd is 0.137 (± 0.025)
s, which could have increased the uncertainty in detecting the R-peak by the MR scanner.
Also, errors associated with the temporal interpolation when reconstructing from the retro-
spectively ECG-gated sequence could have increased the P-V offset. Our study therefore
confirms that when combining intraventricular catherization and CMR procedures, the
temporal errors in P-V signals are associated with CMR acquisition and reconstruction
techniques. In particular, temporal resolution, the type of ECG trigger / gating (prospective
vs. retrospective), averaging over hundreds of cycles, and detection of R-peak from a wide
QRS complex might have contributed to the detected P-V offsets in the studied datasets.
This also substantiate developing a universal model-based time-synchronization.

The multiscale biomechanical model employed in this work has been previously used
in a number of patient-specific applications, e.g. in planning of cardiac resynchronization
therapy [26]. The model was also directly coupled with in vivo cine MRI via data assimila-
tion [27]. These works demonstrate its compatibility with real cardiology data, including
physiologically relevant timings of cardiac phases. We acknowledge that alternative cardiac
models with adequate representation of P-V changes could be employed for the proposed
synchronization method. The advantage of using physiologically compatible cardiac models,
e.g. [15; 28], is that such models can be coupled with datasets with complex hemodynam-
ics. The model could represent inflow and/or outflow valve mechanics, such as valvular
regurgitation and/or stenosis [14; 29] and account for the mechanics of circulatory system
such as pulmonary/systemic vasoconstriction in pulmonary/systemic hypertension. Figure
3.8 (bottom row) demonstrates the effect of tricuspid and pulmonary regurgitation on the
shape of RV P-V loops in rTOF patients. The regurgitation on either valve suppresses the
corresponding isovolumic phases. This would limit the ability to time-synchronize such
datasets, if the criterion for the time synchronization was solely the constant ventricular
volume during the isovolumic phases. The proposed time-synchronization template provided
by the model is a solution suitable even in patients with valvular pathologies.

We remark that, furthermore, the biophysical model (thanks to the predictive capability)
substitutes for the missing part of the cardiac cycle, as can be seen in the time-volume plots
acquired by cine MRI in prospective ECG trigger (Figure 3.5 left). We also appreciate that
the model used for this study was demonstrated to be easily deployed in clinical environment
and directly used by physicians [5; 13; 30]. The proposed time-synchronization method
is not limited neither to the presented data acquisition protocols nor to the P-V signals
themselves, and could be utilized in a variety of clinical scenarios, e.g. when catherization
is combined with transthoracic echocardiography [5], or to synchronize aortic pressure-flow
loops [31].

The study demonstrates that time-synchronization of P-V data yields a more physiolog-
ical relationship of TVE where the time-synchronized value of Emax is significantly lower
than the non-synchronized one. Suga et al. demonstrated in [22] on invasive data from
canine hearts that the maximum value of ventricular TVE (Emax) is a load independent
measure of ventricular contractility. Subsequent studies consistently showed its applicability
across species (e.g. in pigs [32] or human patients [33; 34]. Therefore, the maximum value
of TVE is commonly used as a surrogate measure of myocardial contractility [2; 35], and
the time-synchronization of P-V data is therefore crucial for an accurate and reproducible
detailed assessment of the ventricular systolic function. Finally, Figure 3.10 shows a sig-
nificant difference between the stroke work between synchronized and non-synchronized
data. The plot demonstrates the need of synchronizing the data to derive correct values of
important quantities of ventricular energetics. While the actual ground truth is not known,
the indirect evidence by the elastance-derived metrics and the qualitative amelioration of
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the P-V loops, gave a confidence to our method of data synchronization.
While the biomechanical model was used in this work only to synchronize the measured

P-V data, the model itself has a physiological significance and could provide additional
information of clinical interest. The high-quality PV-loops can therefore be combined e.g.
with physiological parameters of myocardial contractility, periphery vascular resistance or
ventriculo-arterial coupling [5; 13; 14], to give some examples.

3.4.1 Limitations

There are a number of limitations of the study. First of all, CMR and pressure catheter
exams do not provide the ground truth measurement of P-V loop. This is why we employed
a metrics based on time-varying elastance and demonstrated that the proposed time
synchronization is significantly ameliorating the P-V loop, as is reflected by this measure
commonly used in cardiac physiology. We used only one fully synchronous dataset obtained
by the conductance to verify our approach. However, the synchronicity of simulated
pressure and volume of our physiologically and biophysically based model was validated
in our previous clinical studies: with full 3D model [26] and with reduced-order model
[5; 13; 14]. We also name the limitation of this small-scale study being a single-observer
only.

3.4.2 Conclusion

Clinical scenarios that necessitate high-quality P-V loops for the therapy planning can
benefit from the proposed model-based time-synchronization of P-V signals. The modeling
framework is fast in computation time and can be directly employed in clinical settings.
The method is universal for the variety of P-V data acquisition protocols and pathologies.
It is efficient for both simultaneously and sequentially acquired cine MRI and pressure
data, i.e. it makes the use of P-V loops available to all centers and not only to those with
dedicated and costly pressure and conductance catheter simultaneous P-V loop systems. It
could be also adapted to other imaging protocols (e.g. echocardiography, or dynamic CT)
combined with catherization data. In conclusion, the proposed method applies the model
to contribute to the planning of complex interventions and, thanks to the biophysical and
physiological background of the models, it can consequently augment the possibilities of
the optimal clinical management.
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3.5.1 Introduction

Pressure-volume loops (PV loops) provide a meaningful insights into myocardial energetics
[6; 7]. Pressure-volume (P-V) data is often acquired by different modalities and subject
to time-synchronization errors yielding skewed shapes of PV diagrams (Figure 3.11 (A)).
A temporal dyssynchrony could be associated with cardiac magnetic resonance imaging
(MRI) acquisition and reconstruction techniques: the temporal resolution of the scanner,
the type of ECG trigger / gating (prospective vs. retrospective), averaging over cardiac
cycles, and detection of R-peak from a wide QRS complex [9]. In addition, some delays
could arise from the inertia effect of the fluid-filled catheter that varies depending on the
catheter type and size [8].

A complete synchronization of the P-V signals is possible when using an intraventricular
conductance catheter. In other settings, a manual delineation of the isovolumic phases
may be performed. However, such an approach can be suboptimal, e.g. in patients with
valvular regurgitation due to the absence of clear isovolumic phases. We aim to develop
a time-synchronization technique that is independent of the data acquisition methods or
patients’ pathophysiology by using patient-specific biomechanical model derived waveforms
to detect P-V offsets in the measured data. Our previous study demonstrated the potential
of such an approach on P-V data acquired sequentially (volumetric data during cardiac MRI
followed by pressure data during cardiac catheterization) without valvular regurgitation [9].
In the present study we aim to extend the method for simultaneously acquired P-V data
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(i.e. during interventional cardiac MRI) and for patients with pulmonary regurgitation (i.e.
right ventricles of patients with repaired tetralogy of Fallot, rTOF).

3.5.2 Methods

3.5.2.1 Data

Datasets from two groups of patients were included in the study. The first group contained
10 patients with single-ventricle physiology undergoing interventional cardiac MRI within
the pre-Fontan assessment. P-V were acquired simultaneously at baseline and immediately
after fluid administration providing 24 P-V datasets. Fluid boluses were administered either
as a single 5 ml/kg bolus or as two 2.5 ml/kg boluses. A highly-accelerated prospective
ECG-triggered cine bSSFP sequence (kt-BLAST factor 5, partial Fourier 0.625, slice
thickness 10 mm, spatial resolution 2.4 x 2.4 x 10 mm) was used. Another group contained
patients with rTOF with 17 left and 20 right ventricular P-V datasets (rTOF-LV and rTOF-
RV, respectively). A retrospective ECG-gated cine bSSFP sequence (SENSE 2, spatial
resolution 2 x 2 x 10 mm) was used. Catheter pressures were sequentially acquired during
pulmonary valve replacement therapy. Temporal resolution was 30 ms in both groups
and all acquisitions. A motion tracking algorithm [11] was used to obtain time-vs.-volume
signals from cardiac MRI.

3.5.2.2 Biomechanical heart model

We employed a biomechanical heart model of a single heart cavity where the geometry and
kinematics of the ventricle are represented by sphere [12] with constitutive mechanical laws
describing active (contractile) and passive (viscoelastic) behavior of the myocardium. To
model a cardiac cycle in patient-specific manner model parameters were tuned such that
simulated waveforms corresponded to the maximum and minimum pressure and volume for
a given patient (see e.g. [13]).

3.5.2.3 Time synchronization

The model was used as a template for temporal synchronization of original P-V data.
We assumed that synchronicity of simulated P-V traces is given by the biophysical and
physiological formulation of the model. We minimized the distance between data and model
waveforms (Figure 3.11 (B)) to detect the corresponding time offsets for tpressureoffset and tvolume

offset :

min
toffset

∫ tend

0
(f(t)− g(t− toffset))

2dt, (3.7)

where f(t) and g(t) are the simulated and original ventricular pressure or volume, respec-
tively; tend is the end of the cardiac cycle in the original data. Total P-V time offset was
given by:

tP-V
offset = abs(tpressureoffset − tvolume

offset )· (3.8)

PV loops were constructed for original and time-synchronized (t-syn) data. Quantitative
evaluation of t-syn traces was derived from time-varying elastance (TVE). TVE [22], defined
as E(t) = P (t)/V (t), was computed from original and t-syn data, where P (t) and V (t) are
ventricular pressures and volumes, respectively. According to TVE the isovolumic phase
could be described as [24; 23]:

max(dP/dt) = max(dE/dt) · EDV, (3.9)
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where max(dP/dt) and max(dE/dt) are maximum time derivatives of ventricular pressure
and elastance, respectively, end-diastolic volume (EDV ) is assumed to be constant during
isovolumic contraction. We confronted max(dE/dt) derived from original and t-syn data
(max(Eorig/dt) and max(Et−syn/dt), respectively) with respect to the max(dP/dt) of the
original pressure waveforms via linear regression analysis. Note that max(dP/dt) does not
change with time-synchronization.

Finally, the original, t-syn and model-derived values of maximum TVE (i.e. Emax =
max[P (t)/V (t)]), and stroke work (i.e. area encompassed within the PV loop) were
computed for each patient and statistically compared with Wilcoxon signed rank test at
p < 0.05.

3.5.3 Results

Figure 3.11 (D-F) shows t-syn PV loops for selected patients from all groups. The slope
coefficients of linear regressions models (Coef) of max(dEorig/dt) vs. max(dEt−syn/dt) in
single-ventricle patients were 1.279 vs. 1.040; in rTOF LVs 1.795 vs. 1.126; and in rTOF
RVs 1.615 vs. 1.180 (Figure 3.12).
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Figure 3.11: Model-assisted time-synchronization of clinical pressure-volume data. A: Distorted
pressure-volume loop (PV loop) due to the time offset between the acquired pressure and volume
data illustrated on rTOF left ventricle Pt #AF24 from our study. B: Detection of the time offset by
using patient-specific biomechanical model, simulating synchronous pressure and volume waveforms.
C: Corrected PV loop (solid line) reconstructed from the time-synchronized (t-syn) data D: PV
loops for single-ventricle patient #9 at baseline (cine MRI is prospectively ECG-triggered). E-F:
PV loops for rTOF patient left and right ventricles (rTOF-LV and -RV, respectively), rTOF-RV Pt
#F14 contains 11% and 30% of tricuspid and pulmonary regurgitation, respectively.

Mean (± SD) model-derived P-V offsets of single-ventricle patients were 0.059 (± 0.022)
s; of rTOF-LVs and rTOF-RVs 0.110 (± 0.039) s and 0.116 (± 0.032) s, respectively.

T-syn vs. original Emax (p = 0.000) and stroke work (p = 0.000) were significantly lower
in all patients. The difference for model-derived vs. time-synchronized (1) Emax was not
significant in all three groups (p > 0.050 in all patients), (2) stroke work was not significant
for single-ventricle and rTOF LV (p > 0.050 in both groups) and significant for rTOF RV
patients (p = 0.000), Figure 3.13.
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Figure 3.12: Linear regression models for original and time-synchronized (t-syn) data for single-
ventricle patients (A), rTOF left ventricle (B), and rTOF right ventricle (C). Dotted black line is a
reference linear model with slope (Coefref) equal to 1. R2: coefficients of determination of linear
regression models.
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Figure 3.13: Boxplot of original and time-synchronized indices of myocardial function in each patient
group. A: maximum values of time-varying elastance (Emax). B: stroke work (area encompassed
within the pressure-volume loop). Bars correspond to the medians, upper and lower error bars are
75th and 25th percentiles, respectively. Asterisks show significant difference of time-synchronized
data with respect to the original at p < 0.05. rTOF-LV/-RV: repaired tetralogy of Fallot left/right
ventricle patients, respectively.

3.5.4 Discussion

We developed a biomechanical model-assisted time-synchronization technique for clinical P-
V data. Time-synchronization qualitatively improves the shapes of PV loops in all patients.
Quantitative improvement of t-syn data was demonstrated via stronger TVE relationship
during isovolumic phase. In addition to that t-syn values of Emax and stroke work were
significantly different from the non-synchronized ones. Therefore, time-synchronization of
P-V data is crucial to derive meaningful values for ventricular energetics.

This model can replace noisy data traces, thus overcoming errors associated with data
acquisition and/or processing protocols (e.g. missing part of the cardiac cycle, noise in the
data, or non-physiological over-/undershoot in pressure measurements).
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Abstract
When combining cardiovascular magnetic resonance imaging (CMR) with pressure

catheter measurements, the acquired image and pressure data need to be synchronized in
time. The time offset between the image and pressure data depends on a number of factors,
such as the type and settings of the MR sequence, duration and shape of QRS complex or
the type of catheter, and cannot be typically estimated beforehand. In the present work we
propose using a biophysical heart model to synchronize the left ventricular (LV) pressure
and volume (P-V) data. Ten patients, who underwent CMR and LV catheterization, were
included. A biophysical model of reduced geometrical complexity with physiologically
substantiated timing of each phase of the cardiac cycle was first adjusted to individual
patients using basic morphological and functional indicators. The pressure and volume
waveforms simulated by the patient-specific models were then used as templates to detect the
time offset between the acquired ventricular pressure and volume waveforms. Time-varying
ventricular elastance was derived from clinical data both as originally acquired as well as
when time-synchronized, and normalized with respect to end-systolic time and maximum
elastance value (EN

orig(t), E
N
t-syn(t), respectively). EN

t-syn(t) was significantly closer to the
experimentally obtained EN

exp(t) published in the literature (p<0.05, L2 norm). The work
concludes that the model-driven time-synchronization of P-V data obtained by catheter
measurement and CMR allows to generate high quality P-V loops, which can then be used
for clinical interpretation.

Keywords— interventional cardiovascular magnetic resonance imaging, cardiovascu-
lar modeling, time-synchronization of clinical data, pressure-volume loops, personalized
medicine, translational research
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Figure 3.14: Illustration of the pressure-volume (P-V) offsets on the shape of the P-V loop in the
measured data.

3.6.1 Introduction

The analysis of intraventricular pressure-volume (P-V) loops contributes to the detailed
assessment of the heart function and can be employed when planning a complex intervention.
Combining the catheter pressure measurement with cardiovascular magnetic resonance
imaging (CMR) yields rich morphological and functional datasets of the current state of
patients’ pathology. However, the recorded ventricular pressures and volumes are often not
precisely synchronous, even during a simultaneous acquisition, which affects the shape of
the P-V loop (see Fig. 3.14). There are three principal reasons for this P-V dyssynchrony:

I Data of cine MRI are obtained over a number of cardiac cycles and the reconstructed
time-volume plot therefore represents an average cycle during the acquisition.

II The detection of R-peak in the strong magnetic field of MRI is known to be challenging,
particularly in patients with a pathological QRS complex in whom the S wave or R’ wave
(e.g. in some right bundle branch block patients) may be detected instead. This leads
into the time offset up to the QRS duration.

III The fluid-filled catheter is known to record the pressure changes with some delay, which
varies depending e.g. on the catheter size.

The time offset caused by these points varies among the patients and practically cannot
be predicted beforehand. In this work we propose to create biophysical models of a
reduced complexity using the patient-specific information of the maximum and minimum
ventricular volume and pressure provided by the CMR and catheter data. These models
will then be used as a template for the time-synchronization of the measured P-V data
(see the pipeline depicted in Fig. 3.15). Qualitative assessment will be carried out by
plotting the P-V loops using the original and the time-synchronized pressure and volume
waveforms. The quantitative comparison will be performed by comparing the generated
ventricular time-varying elastance functions with the experimentally obtained time-varying
elastance published by Suga et al. [22]. Furthermore, some functional characteristics of the
cardiovascular system not directly visible in the data can be obtained thanks to using a
patient-specific biophysical model.
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3.6.2 Methods

3.6.2.1 Data

Datasets of left ventricles of ten patients with repaired tetralogy of Fallot (rTOF) were
included in the study. The data collections were performed under the ethical approvals of
the Institutional Review Board of UT Southwestern Medical Center Dallas (STU-2020-0023).
The IRB waived the need for a consent to use the anonymized retrospective data. Cine MRI
data with retrospective ECG gating (with parallel factor SENSE=2, temporal resolution
∼30 ms) covering both ventricles and phase-contrast flow through the aortic valve were
acquired. The ventricular volumes from cine MRI were obtained using the CVI42 software
(Circle Cardiovascular Imaging Inc., Calgary, Canada) combined with the motion tracking
algorithm of [10]. The catherization was performed in a separate session after CMR. A
left-heart cathether was advanced into aorta and left ventricle, where the pressures were
recorded during a breath-hold.

3.6.2.2 Biophysical heart model

A reduced-complexity biomechanical model of left ventricle (LV) and systemic circulation
was employed [12]. The schematics of the model is depicted in Fig. 3.16. The geometry
and kinematics of the ventricle are reduced to a sphere with an inner radius R and a wall
thickness d, while the constitutive mechanical laws are preserved as in the full 3D heart
model [15; 19]. The mechanical behavior of the myocardium is described by a rheological
model of Hill-Maxwell type [36] that contains an active contractile component (actin-
myosin complex) and a visco-elastic component (collagen-rich elements in the surrounding
connective tissue). The active component is represented within Huxley’s sliding filament
theory [17; 18]. All myosin filaments in the sarcomere unit are considered as a series of
springs, with active stress (τc) and active stiffness (kc) produced for sarcomere extension
(efib) given by, see [15]:{

k̇c = −(|u|+ α|ėfib|)kc + n0(efib)k0|u|+
τ̇c = −(|u|+ α|ėfib|)τc + ėfibkc + n0(efib)σ0|u|+,

(3.10)

where u(t) is an electrical activation function representing intracellular calcium kinetics that
induces contraction (when u > 0) or relaxation (u < 0) of the myocardium (Fig. 3.16b).
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Figure 3.16: (a) Coupling of the heart with atrioventricular and arterial valves via system of diodes
and with circulation system represented by a two-stage Windkessel model. Pat, PV Par, Pdist, Pvs

stand for pressures in left atrium, left ventricle, aorta, distal systemic circulation and venous system;
Rprox, Cprox, Rdist, Cdist are proximal and distal resistances and capacitances in Windkessel model;
(b) Electrical activation function u(t) (black line) with imposed timings of duration of QRS and ST
segment from electrocardiogram measurements.

The parameter α is a bridge destruction rate upon rapid change in length in the sarcomere
[15]. The parameter σ0 is the active stress developed by the sarcomere during systole under
optimal extension efib, and n0(efib) ∈ [0, 1] represents the Frank-Starling law [15]. The
parameter σ0 will be further referred to as the contractility.

The model was turned into patient-specific regime according to the sequential calibration
procedure described in [5]. Briefly, the 2-stage Windkessel model was adjusted by imposing
the flow measured by phase-contrast MRI aiming to match the maximum and minimum
aortic pressure and the pressure at the dicrotic notch. Then, the LV wall thickness and
the ventricular volume were prescribed according to the cine MRI. The model stress-free
configuration was assumed as in the experimental data of [21]. The ventricular preload
was prescribed from the measured end-diastolic ventricular pressure. Passive myocardial
properties were calibrated to match the measured end-diastolic volume under imposed
preload. Myocardial contractility was adjusted to match the measured stroke volume.
Patient-specific parameters adjusted during this process, therefore were in the Windkessel
model: distal and proximal resistances of the circulation, distal capacitance of the circulation;
in the heart model: myocardial stiffness and contractility. Ventricular stroke work was
calculated as the area encompassed within the model-derived P-V loop.

3.6.2.3 Time-synchronization

Thanks to the biophysical and physiological character of the model, the timing of the
cardiac phases was considered as a reference. The simulated waveforms were therefore
used as templates to time-synchronize the original data to find an optimal time offset toffset
between the measured data and the model, minimizing the criterion:

min
toffset

∫ tES

0
(f(t)− g(t− toffset))

2dt, (3.11)

where f(t) represents the simulated LV pressure or volume; g(t) represents the measured
ventricular pressure (volume); tES is the time of end-systole in the data.

The P-V loops were constructed by using both original and time-synchronized waveforms.
Time-varying elastance was computed for the original and time-synchronized data as:

Eorig/t-syn(t) =
Porig/t-syn(t)

Vorig/t-syn(t)
, (3.12)
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Table 3.5: Model-derived time offsets and biophysical parameters. QRSd: QRS duration; MRI:
magnetic resonance imaging; Cath: catherization; Rdist: distal resistance of the circulation.

Heart rate Time offsets Mechanical indicators
QRSd MRI Cath Pressure-volume Contractility Stroke work Rdist

s bpm bpm s kPa mJ ×108Pa× s/m3

Pt #1 0.089 70 74 0.081 95 698 1.05
Pt #2 0.165 83 61 0.142 85 853 0.52
Pt #3 0.129 88 87 0.139 86 367 1.55
Pt #4 0.133 81 59 0.098 100 893 0.85
Pt #5 0.147 91 67 0.139 73 467 1.60
Pt #6 0.163 82 75 0.120 73 462 1.40
Pt #7 0.129 75 74 0.106 67 445 0.90
Pt #8 0.096 74 95 0.161 56 304 1.10
Pt #9 0.146 79 79 0.158 48 328 1.30
Pt #10 0.129 49 75 0.086 80 907 0.54

where Porig/t-syn(t), Vorig/t-syn(t) are LV pressures and volumes as originally measured /
time-synchronized. The time-varying elastances were then double-normalized in time (with
respect to the end-systolic time tES) and with respect to the maximal elastance value, as in
Suga et al. [22]:

EN (t̄) =
E(t̄ · tES)

max(E)
· (3.13)

3.6.2.4 Statistical analysis

The distances between the normalized time-varying elastance obtained from the original,
time-synchronized data, respectively (EN

orig, E
N
t-syn, respectively) and the experimentally

obtained EN
exp (by Suga et al. [22]) were compared using the L2 norm over the whole cardiac

cycle, i.e. relative distance RD is given by

RD(EN
orig/t-syn, E

N
exp) =

||EN
orig/t-syn − EN

exp||L2

||EN
exp||L2

· (3.14)

Wilcoxon signed-rank tests at p<0.05 were conducted to assess the difference between
RD(EN

orig, E
N
exp) and RD(EN

t-syn, E
N
exp).

3.6.3 Results

Fig. 3.17 shows an example of the patient-specific model and the model-based time-synchro-
nization for Patient #6. Fig. 3.18 displays P-V loops for selected patients, while using
original or time-synchronized pressure and volume waveforms. Fig. 3.19(a) shows for patient
#6 EN

orig/t-syn(t̄) (original and time-synchronized data, respectively), in comparison with the
experimentally obtained EN

exp(t̄). Median RD(EN
orig, E

N
exp) and RD(EN

t-syn, E
N
exp) (original

and time-synchronized data for all patients) were 0.16 and 0.03, respectively, as shown
in Fig. 3.19(b). According to the Wilcoxon signed-rank test, EN

t−syn(t̄) was significantly
closer to EN

exp(t̄) (p<0.05). Table 3.5 shows the time offsets for all patients detected by
the proposed procedure between original and time-synchronized data. Table 3.5 (right
columns) shows examples of patient-specific quantities derived by the model characterizing
the functional state of the heart and circulation system.
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Figure 3.17: Example of data-model coupling for Patient #6. Top: model calibration versus original
(non-synchronized) data; bottom: model calibration versus time-synchronized data.
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Figure 3.18: Pressure-volume loops for selected patients.
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Figure 3.20: Pressure-volume loops for right ventricle of patient #5 with 11% and 30% of tricuspid
and pulmonary regurgitation, respectively.
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3.6.4 Discussion

In this work we developed a time-synchronization protocol for the ventricular pressure
obtained by catheter measurement and volume from cine MRI using a patient-specific
computational model. Fig. 3.18 shows a qualitative improvement of the P-V loops after
time-synchronizing the pressure and volume data. The box plot in Fig. 3.19 shows that in all
10 patients the shape of normalized time-varying elastance obtained from time-synchronized
P-V data is substantially closer to the experimentally measured curve [22]. This suggests
that the time-synchronization restores the time-varying elastance to give a physiologically
more meaningful relationship. Even though the time-varying elastance obtained in [22]
was obtained in dogs, some data obtained in other animal species (e.g. pigs [32]) or even
from invasive measurements in human patients [33; 34] suggest their compatibility with [22].
Therefore, in the present work we assumed the normalized time-varying elastance [22] to be
a physiological representative of ventricular pressure-volume relationship. The time offsets
detected by the model appeared to vary among the patients (Table 3.5) demonstrating
that the same offset cannot be applied to all patients even though the same setup of MR
acquisition was used. The offsets between P-V data were between 0.081 and 0.161 s, what is
in the order of the QRS duration in all patients in our study. In addition to that in patients
#2, #4, #5, #10 the difference between MRI and pressure heart rates was more that
30%. Therefore we hypothesize that when combining MRI and catherization techniques
the offsets in the P-V data might be associated with several factors: wide QRS complex,
difference in the heart rates, and an error in the order of temporal resolution of the MRI
(0.020-0.030s).

The model employed in this work was a biomechanical model incorporating physiology
of muscle contraction built on various spatial scales. Of note, any other heart model
with adequate timings of P-V change could be used as a template in the proposed time-
synchronization method. The advantage of using our model [15] is that it can also account
for the valvular mechanics (inflow and/or outflow valve regurgitation, see [29]) and hence
can be used for time-synchronization of the ventricles with more complicated physiology.
Fig. 3.20 shows an example of model-assisted time-synchronization of the right ventricle of
Patient #5 with 11% and 30% of tricuspid and pulmonary regurgitation, respectively, where
the absence of isovolumic phases would have limited the ability to yield a physiological P-V
loop without using a model as a resynchronization template. In addition, the advantage
of using a truly biophysical model is that it provides, as a “side effect”, additional patient-
specific mechanical indicators of various compartments of the cardiovascular system (some
examples are displayed in Table 3.5). Those may not be directly visible in the data but are
clinically relevant. For instance, myocardial contractility characterizes the functionality of
the ventricle, the stroke work can provide information about myocardial energetics, and the
distal resistance of the circulation system is an important indicator of a functional state
or cardiovascular health in a variety of pathologies. The proposed time-synchronization
strategy is not limited neither to the CMR & catherization data acquisition protocol nor to
the ventricular pressure & volume data itself, and could be utilized in the variety of patients’
data. It can be used e.g. to time-synchronize data acquired in an interventional CMR suite
(iCMR, [7]). Moreover, the model can substitute e.g. a missing part of the cardiac cycle
in the volume waveform (typically, in highly accelerated cine MRI in prospective ECG
trigger).

3.6.5 Conclusion

Time-synchronization of data using patient-specific biophysical modeling can be applied
when combining various imaging techniques (echoardiography, dynamic CT, or CMR) and/or
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when imaging is combined with catherization data. The proposed modeling framework
is fast in computational time and can be employed in clinical settings allowing to plot
high-quality P-V loops and extract some useful functional indices of the cardiovascular
system.
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CHAPTER 4

Conceptual link between model-derived measures of
ventricular contractility and clinically accepted surro-
gate measures of ventricular systolic performance

Translation of novel model-derived indices into clinical practice necessitates their validation
against existing clinically accepted biomarkers. In this chapter the goal is to explore a
conceptual link between data- and model-derived indices of ventricular contractility. Time-
synchronized datasets and calibrated models of all patients from Chapter 3 were used to
(1) build statistical relationships between the aforemetioned indices, and (2) statistically
compare model- and data-derived max(dP/dt). In addition, a thorough literature review
on the clinical relevance of the presented indices of cardiac systolic function was performed.
The results (1) showed significant correlation between all model- and data-derived indices,
and (2) emphasized a potential application of model-derived max(dP/dt) as a model-based
data filter of noisy values of clinical max(dP/dt). A literature review demonstrated that (1)
the gold standard measure of ventricular contractility is challenging to use with the current
physiological and biomechanical knowledge, and (2) some clinical scenarios might benefit
from combining several indices of contractile performance.
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4.1. Introduction

4.1 Introduction

Myocardial contractility is often described by myocardial inotropic state. Myocardial
inotropy is the potential of the myocardium to generate an optimal level of force during
systole in a steady state and on a beat-to-beat basis. It is a specific characteristic of an
organ-level performance of the heart to develop an optimal level of force that is required
to pump the blood into the arterial network during ventricular systole. Pathological
conditions due to substantial tissue-level remodeling could diminish an overall inotropy of
the myocardium. This could lead to an inability of the heart to maintain an adequate bodily
blood supply and if sustained to organ failure. Therefore, to optimize the diagnostics and
treatment of cardiac pathologies it is important to have accurate measures of myocardial
inotropy (contractility) that are able to characterize the functional state of the heart.

Myocardial inotropic state can be measured during the two points throughout the
cardiac systole: (1) during isovolumic phase when the ventricle is building pressure against
the closed arterial and atrioventricular valves and the rate of tension development reaches
its maximum, and (2) at the end of ejection when the maximum level of stress is generated
for given loading conditions to push all the blood into the circulation. The maximum rate
of pressure development during isovolumic systole (max(dP/dt)) is a surrogate measure
of the maximum rate of tension development within the myocardium [1; 2; 3; 4; 5]. The
end of ejection and the associated level of myocardial stress has been characterized by
the maximum value of time-varying elastance (Emax). In the sequel we will introduce the
theoretical relationship between max(dP/dt) and Emax.

4.1.1 Emax as a measure of ventricular pump function during systole

The time-varying elastance model (E(t)) of Suga et al [6] describes ventricular systolic
pump function in terms of variation in instantaneous ratio of pressure versus volume during
the cardiac cycle. It determines the ability of ventricular chamber to generate systolic
pressure and flow against given vascular impedance [7]. Recall:

E(t) =
P (t)

V (t)− V0
, (4.1)

with P (t) and V (t) being ventricular pressure and volume. In this work, similar to Chapter
3 the correction factor V0 is taken as zero.

The time-varying elastance model has been shown to be valid for a variety of species:
dogs [6; 8], pigs [9], and humans [10; 11]. Suga and colleagues [6; 8] have demonstrated that
the normalization of E(t) curve by its peak amplitude (Emax) and the time to peak amplitude
(tmax) among studied ventricles yields a single normalized elastance curve (EN (t̄)) with
unique shape regardless of the canine ventricle studied. EN (t̄) was shown to be independent
of loading conditions, heart rate and contractile state:

EN (t̄) =
E(t̄ · tmax)

Emax
· (4.2)

Hence:

E(t) = Emax ∗ EN (t̄), (4.3)

where

Emax =
PES

VES
, (4.4)
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with PES and VES being end-systolic pressure and volume, respectively.
The characteristic parameters of time-varying elastance curve are Emax and tmax, the

latter characterizing the time of end systole [6]. Emax is independent from loading conditions
and is sensitive to the changes in inotropic state of the myocardium [6; 8; 12] and is therefore
considered as a surrogate measure of contractility.

4.1.2 Conceptual link between Emax and max(dP/dt)

Senzaki et al. [10] demonstrated in human LV’s that mean EN (t̄) curves appeared to have
the same shape despite different disease conditions, afterload, preload and inotropic states
(Figure 4.1).

0 0.5 1 1.5 2 2.5 3

Normalized time

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e

d
 e

la
s
ta

n
c
e

Figure 4.1: Averaged normalized elastance curve (EN (t̄)) for the cohort of 78 human left ventricles,
where 15 patients were normal heart and 63 contained various forms of chronic heart disease. Solid
line is the mean and dashed lines are the ± 1 standard deviation. Adapted from [10]

Figure 4.1, reproduced from Senzaki et al. [10], shows that the least variance of
the normalized elastance for the studied cohort of 78 patients (15 normal heart and 63
various forms of chronic heart disease) occurred in two points of cardiac cycle: (1) early
contraction (isovolumic phase) and (2) just before the end of systole, suggesting that a
time-varying elastance model could systematically predict the chamber performance at these
two characteristic time points. Similar conclusion was reached in animal study by Little
in 1985 [13] who showed that max(dP/dt) can be expressed in terms of maximum time
derivative of E(t) (max(dE/dt)) during isovolumetric systole assuming that end-diastolic
volume (EDV) is constant. Recall from Chapter 3:

max(dP/dt) = max(dE/dt) ∗ EDV · (4.5)

In addition the time-varying elastance model predicts that max(dE/dt) is proportional
to Emax via time differentiation of eq. (4.3):

max(dE/dt) = (Emax/tmax) ∗max(dEN/dt̄)· (4.6)

The value of EN (t̄) was shown to be preserved across canine [6; 8] and human [10]
ventricles. The maximum value of the derivative of EN (t̄) should also be constant – k:

max(dE/dt) = (Emax/tmax) ∗ k· (4.7)

Little [13] invasively obtained max(dP/dt) vs. EDV relationship via acute preload
reduction by caval occlusion in closed chest canine LV’s and compared it with PES vs. VES

relationship (where the slope is equal to Emax). It was found that (1) max(dP/dt) vs. EDV
relationship was described by straight line and the slope of this line was equivalent to
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max(dE/dt), and (2) in response to positive inotropic stimulation both max(dE/dt) and
Emax significantly increased. Similar proportionality between the slopes of the relationships
between max(dP/dt) vs. EDV and PES vs. VES was demonstrated in another study by [14].
Therefore, the time-varying elastance model has the potential to provide a conceptual link
between dynamics of contraction occurring in isovolumic phase and end of ejection.

4.1.3 Model-derived contractility

The biomechanical model-derived contractility represents a maximum inotropic stress
generated by the myocardium during systole. It is derived from Huxley’s sliding filament
theory of actin-myosin dynamics that are integrated into the Hill-Maxwell rheological law
to model the overall tissue-level contraction (see Appendix in Chapter 1). In Chapters 1
and 2 we have demonstrated the potential of the model-derived contractility to characterize
RV function before and after pulmonary valve replacement in patient-specific manner. The
model-derived contractility (rescaled by the ratio of ventricular wall thickness over chamber
radius) was in agreement with the Laplace’s law and has been previously shown to correlate
with max(dP/dt) in [15].

4.1.4 Objectives

Translation of novel model-derived indices into clinical practice necessitates their validation
against existing clinically accepted biomarkers. The first aim of this chapter is to explore
a conceptual link between data- and model-derived indices of ventricular contractility.
The following associated relationships between data- and model-derived indices will be
quantitatively evaluated: (1) E(t) vs. data- and model-derived max(dP/dt), (2) model-
derived contractility vs. data-derived max(dP/dt), and (3) model-derived contractility vs.
data-derived Emax.

Clinically acquired max(dP/dt) might not always be available due to the absence of
continuous pressure signal or due to the high level of noise present in the acquisition of
the pressure signal. Therefore, the second aim is to explore the the potential of model-
derived max(dP/dt) to act as a model-based ’data-filter’. We will statistically evaluate the
difference between data- and model-derived max(dP/dt) with respect to their relationship
with data-derived Emax.

4.2 Methods

4.2.1 Data

Three groups of patients were included in this study. Time-synchronized datasets from
Chapter 3 were used: N=16 single-ventricle patients, N=17 rTOF LV patients, and N=20
rTOF RV patients. The catheters used to collect pressure signals in three patients’ groups
were: in single ventricle and rTOF RV patients 6-French Arrow, Balloon Wedge-Pressure
Catheter (Teleflex Medical Headquarter International, Ireland, Model #: AI-07124 or
AI-07126), and in rTOF LV patients 4F 90cm Pigtail 4-French non-braided pigtail catheter
(Angiodynamics, Soft-Vu, Amsterdam, The Netherlands).

4.2.2 Time-varying elastance and max(dP/dt)

To explore the relationship between Emax and max(dP/dt) we used the time-varying
elastance model according to which max(dP/dt) should be related to Emax via eqs. (4.5)
and (4.7):
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max(dP/dt)

EDV
= (Emax/tmax) ∗ k· (4.8)

4.2.3 Myocardial contractility and max(dP/dt) from patient-specific biome-
chanical models.

For single-ventricle and rTOF RV patients we used the calibrated models from Chapters
3 and 1, respectively. For rTOF LV patients the same biomechanical model described in
detail in the Chapter 1 was used to calibrate the model (see description of calibration
procedure in the Appendix of Chapter 1). Briefly, the following patient-specific parameters
of the circulation were adjusted: proximal resistance, distal resistance and capacitance.
EDV and ventricular mass were used to derive the reference volume and mean wall
thickness. End-diastolic pressure was imposed to calibrate patient-specific parameters of
myocardial wall thickness from hyperelastic law (eq. (1.4) in Chapter 1). Finally, myocardial
contractility was calibrated to match measured end-systolic pressure and volume (ESP and
ESV, respectively) in the data. Intraventricular pressure is the output of the model that
is given by the principle of virtual work. Model-derived pressure-vs-time waveform was
differentiated in time to obtain the maximum value of its derivative max(dP/dtmodel).

4.2.4 Quantitative analysis of the relationships between the data- and
model-derived measures of contractility

Data-derived measures of ventricular contractility were Emax and max(dP/dtdata), and
model-derived measures were max(dP/dtmodel) and contractility. The following associated
relationships were built:

I Linear regression model through the origin for Emax/tmax vs. max(dP/dtdata/model)
/EDV (eq. (4.8)) at p < 0.050. Note that in the sequel this relationship will be
referred to as Emax vs. max(dP/dtdata/model) relationship. The reference value of k in
this relationship was assumed be kref=max(dEN/d(t̄)), where max(dEN/d(t̄))=2.3 as
suggested by Senzaki et al. [10] for a human ventricle.

II Pearson’s correlation between model-derived contractility rescaled by the ratio of my-
ocardial wall thickness over chamber radius (in accordance with Laplace’s law) and
max(dP/dtdata/model) at p < 0.050.

III Pearson’s correlation between max(dP/dtdata/model) and ventricular ESP in the data at
p < 0.050. Bland-Altman plots were constructed to quantitatively evaluate the difference
between max(dP/dtdata) and max(dP/dtmodel).

IV Pearson’s correlation between model-derived rescaled contractility and Emax · EDV at
p < 0.050.

4.3 Results

4.3.1 Relationship between Emax and max(dP/dtdata/model)

The mean (± SD) Emax in three patients groups was: 1.92 (± 1.13) mmHg/ml, 2.23 (±
0.82) mmHg/ml, and 0.61 (± 0.25) mmHg/ml in single-ventricle, rTOF LV and rTOF RV,
respectively. The mean (± SD) tmax in three patients groups was: 0.27 (± 0.04) s, 0.32 (±
0.03) s and 0.27 (± 0.05) s in single-ventricle, rTOF LV and rTOF RV, respectively.

118



4.3. Results

Figure 4.2 shows fitted linear regression models for the relationships between Emax/tmax

vs. max(dP/dtdata/model)/EDV in single-ventricle, rTOF LV and RV patients. Table 4.1
summarizes quantitative statistics of the fitted regression models. In all three groups
R2 of data- vs. model-derived Emax vs. max(dP/dt) relationships were 0.87 vs. 0.98 in
single-ventricle patients, 0.60 vs. 0.82 in rTOF LV patients, and 0.72 vs. 0.86 in rTOF RV
patients. The mean (± SD) coefficients of data- vs. model-derived Emax vs. max(dP/dt)
relationships were 1.66 (±0.28) vs. 2.25 (±0.20), respectively, in single-ventricle group; 2.16
(±0.61) vs. 2.28 (±0.32), respectively, in rTOF LV group; 1.68 (±0.47) vs. 1.72 (±0.28),
respectively, in rTOF RV group.
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Figure 4.2: Linear regression models for the relationships between time-varying elastance given by
the data and maximum time derivative of ventricular pressure given by the data (max(dP/dtdata))
and that provided by the model (max(dP/dtmodel)) in single-ventricle, rTOF left and right ventricle
patients. EDV: end-diastolic volume; Emax: maximum time-varying elastance; tmax: time of
occurrence of Emax; kfit: coefficient of the fitted linear regression model: kref : reference coefficient
equal to 2.3 derived from Senzaki et al. normalized time-varying elastance curve [10]; R2: coefficient
of determination at p < 0.05.
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Table 4.1: Statistics for linear regression models for the relationships between data-derived time-
varying elastance and data- and model-derived maximum time derivative of ventricular pressure,
max(dP/dtdata) and max(dP/dtmodel), respectively, in single-ventricle, rTOF left (LV) and right
ventricle (RV) patients. kfit: regression coefficient; SEkfit

: standard error of the coefficient; R2:
coefficient of determination.

max(dP/dtdata) max(dP/dtmodel)
kfit SEkfit R2 p-value kfit SEkfit R2 p-value

Single-vent. 1.79 0.09 0.87 0.00 2.12 0.04 0.98 0.00
rTOF LV 2.00 0.14 0.60 0.00 2.20 0.09 0.82 0.00
rTOF RV 1.47 0.08 0.72 0.00 1.70 0.06 0.86 0.00

4.3.2 Relationship between contractility and max(dP/dtdata/model)

Figure 4.3 shows Pearson’s correlations between model-derived rescaled contractility and
max(dP/dtdata) and max(dP/dtmodel). R2 between contractility and max(dP/dtdata) were
0.80 (p=0.00), 0.55 (p=0.02) and 0.80 (p=0.00) in single-ventricle, rTOF LV, and rTOF
RV patients, respectively.

4.3.2.1 Difference between data- and model-derived max(d/Pdt)

Mean max(dP/dtdata) (± SD) was 821 (± 247) mmHg, 1157 (± 262) mmHg, and 484 (±
144) mmHg in single-ventricle, rTOF LV and rTOF RV groups, respectively. Mean arterial
diastolic pressure (± SD) was 47.8 (± 6.3) mmHg, 52.4 (± 7.6) mmHg, and 11.8 (± 2.2)
mmHg in single-ventircle, rTOF LV, and rTOF RV patient groups, respectively.

Figure 4.4 and Table 4.2 show the Bland-Altman statistics for the difference between
max(dP/dtdata) and max(dP/dtmodel). The mean (± SD) difference was -272 (± 168)
mmHg, -78 (± 221) mmHg and -40 (±118) mmHg in single-ventricle, rTOF LV and rTOF
RV patients, respectively.

Figure 4.5 shows Pearson’s correlations between ventricular ESP and max(dP/dtdata/model),
where R2 of data- vs. model-derived relationships were 0.84 (p=0.00) vs. 0.91 (p=0.00),
0.66 (p=0.00) vs. 0.83 (p=0.00), and 0.77 (p=0.00) vs. 0.95 (p=0.00) in single-ventricle,
rTOF LV, and rTOF RV patients, respectively.

Table 4.2: Bland-Altman quantitative statistics showing the mean bias ± standard deviation (SD)
and limits of agreement at 95%-confidence interval (CI) (± 1.96 times standard deviation) between
data- and model-derived max(dP/dt) in mmHg.

mean ± SD 95% - CI
Single-vent. -274 ± 168 -601 to 57
rTOF LV -78 ± 221 -511 to 357
rTOF RV -40 ± 118 -271 to 190
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Figure 4.3: Pearson’s correlations between model-derived contractility rescaled by the ratio of
ventricular wall thickness over chamber radius and maximum time derivative of ventricular pressure
given by the data (max(dP/dtdata)) and that provided by the model (max(dP/dtmodel)) in single-
ventricle (top row), rTOF left (middle row) and right ventricle (bottom row) patients. R2: Pearson’s
coefficient at p < 0.05.
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Figure 4.4: Bland-Altman plots for the difference between data- and model-derived max(dP/dt) in
single-ventricle (left), rTOF left (middle) and right ventricle (right) patients. Solid horizontal line is
the mean of the difference between data- and model-derived max(dP/dt). Top and bottom dashed
horizontal lines are the 95 % prediction interval (± 1.96 standard deviation). LV: left ventricle; RV:
right ventricle.
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Figure 4.5: Pearson’s correlations between ventricular end-systolic pressure and data-/ model-
derived maximum time derivative of ventricular pressure (max(dP/dtdata/model)) in single-ventricle
(top row), rTOF left (middle row) and right ventricle (bottom row) patients. LV: left ventricle; RV:
right ventricle; R2: Pearson’s coefficient at p < 0.05.
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4.3.3 Relationship between contractility and Emax

Figure 4.6 shows Pearson’s correlations between model-derived contractility rescaled by
the ratio of ventricular wall thickness over chamber radius and maximum time-varying
elastance (Emax) divided by EDV. R2 was 0.89 (p=0.00), 0.78 (p=0.00), and 0.97 (p=0.00)
in single-ventricle, rTOF LV and rTOF RV patients’ groups, respectively.
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Figure 4.6: Pearson correlations between model-derived contractility rescaled by the ratio of
ventricular wall thickness over chamber radius and maximum time-varying elastance (Emax) divided
by end-diastolic volume (EDV) in single-ventricle (left), rTOF left (middle) and right ventricle
(right) patients. R2: Pearson’s coefficient at p < 0.05.

4.4 Discussion

The aim of the present chapter was to explore a conceptual link between data- and model-
derived surrogate measures of ventricular contractility. The main findings were:

• Emax vs. max(dP/dtdata): strong relationship in single-ventricle, and moderate relation-
ships in rTOF LV and rTOF RV patients’ groups

• Emax vs. max(dP/dtmodel): strong relationship in all three patients’ groups

• contractility vs. max(dP/dtdata): strong relationship in single-ventricle and rTOF RV
patients, and moderate relationship in rTOF LV patients.

• contractility vs. Emax: strong relationship in all patients’ groups.

4.4.1 Quantitative link between Emax and max(dP/dt)

Linear regression analysis of the relationship between Emax vs. max(dP/dtdata) were strong
and significant in single-ventricle group, and moderate and significant in rTOF LV and
RV groups substantiating the correspondence of pressure-volume data with the elastance
model of Suga [8]. Similarly in the relationship between Emax vs. max(dP/dtmodel) the
strongest relationship with the least variance was observed in single-ventricle group. In
single-ventricle patients pressure-volume data were simultaneously acquired whereas in
rTOF LV and RV patients pressure-volume data were recorded in separate sessions (volumes
3-4 months prior to catherization). As already acknowledged in Chapter 3 volume data
might be underestimated with respect to the pressure data in rTOF patients as both
ventricles are progressively remodeling until the catherization is performed.

Linear regression models for the relationships of Emax vs. max(dP/dtdata/model) in
Figure 4.2 suggest that model-derived max(dP/dt) quantitatively strengthens Emax vs.
max(dP/dt) relationship yielding higher values of R2 and lower values of SEfit in all
patients. In addition model-derived max(dP/dt) shifted kfit-coefficients (kfit = 2.12, kfit =
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2.20 and kfit = 1.70 in single-ventricle, rTOF LV, and rTOF RV, respectively) closer to the
k-coefficient reported in the literature: kref = 2.3 in Senzaki et al. [10] (human), ksuga =
2.4 in Suga et al [6] (canine), and k= 2.2 ± 0.7 in the study by Little [13] (canine).

The kfit-coefficient in rTOF RV group was lower compared to that in single-ventricle
and rTOF LV groups. Anatomical and physiological characteristics that are inherent to the
RV — crescent geometry, greater regional wall variation, mechanical coupling with the LV—
might contribute to the observed difference in Emax vs. max(dP/dt) relationship between
rTOF LVs and RVs. Suga and colleagues [7; 6; 8] originally proposed the time-varying
elastance concept for the description of LV systolic pump function. Later, a number of
researcher showed the validity of time-varying elastance for the characterization of RV
systolic performance. Maughan et al [16], in canine RVs, Dell’Italia et al. [17] and Brown
et al. [18], in human RVs, invasively derived time-varying elastance and demonstrated
that (1) the linear relationship between pressure and volume at any given point in time
within the cardiac cycle for the range of imposed preload and afterload conditions, (2) the
maximum slope of these linear relationships (Emax) was sensitive to the imposed changes
in the inotropic state. Thus, assuming that the time-varying elastance model is valid for
RV the lower kfit-coefficient of rTOF RV Emax vs. max(dP/dtmodel) relationship might
signify that for a given level of Emax RV generates a lower max(dP/dt) compared to that
in the rTOF LV. The diastolic pressure in the pulmonary circulation is lower than in the
systemic (e.g. in our cohort pulmonary artery diastolic pressure was by 40 mmHg lower
than that in the aorta of rTOF), therefore during RV isovolumetric systole semilunar valve
opens at lower pressures and the peak rate of achieved pressure increase is also lower
[2]. Also, RV contractile behaviour could be determined by the mechanical dependence
of RV systolic pump function from LV contraction as demonstrated by [19; 20; 21] and
extensively discussed in the review by [22]. Oboler et al. [19] and [21] in canine heart
and Feneley et al. [20] in human hearts demonstrated that in the conditions of induced
dyssynchronous ventricular contraction (e.g. RV pressure derivative becomes double peaked
and LV remains single peaked) either peak I or peak II of RV dP/dt (depending on the
conditions of ventricular assynchrony) becomes temporally coincident with the peak of LV
dP/dt. In addition to that [21] showed that RV dP/dt peak that is coincident with LV
dP/dt peak is significantly greater in magnitude than the other RV dP/dt peak. Since
the ventricles anatomically share the fibers via septum and pericardial sac [23; 24] the
tension that is developed by the LV contraction could be transmitted to RV via common
fibers. LV could consequently contribute to the total tension that is developed by the
RV during systole. Finally, a lower kfit-coefficient in rTOF RV might be a marker of a
pathological state of the ventricle. Recall that RVs in the present dataset are severely
affected by pulmonary valve regurgitation and/or stenosis. Therefore, lower kfit-coefficient
might be associated with the remodeling of the RV myocardium due to long-term exposure
to pulmonary valve regurgitation and/or stenosis and associated depressed ventricular
systolic function. However, more extensive RV data are required in order to distinguish
whether anatomical characteristics of the RV or pathological hemodynamic conditions
contribute to the lower kfit values observed in the present chapter.

4.4.2 Data- and model-derived max(dP/dt)

In single-ventricle patients model-derived max(dP/dt) appeared to be systematically over-
estimated with respect to the data-derived max(dP/dt). In rTOF patient groups the
difference between data- and model-derived max(dP/dt) in LV is more prominent than in
RV (Bland-Altman plot on Figure 4.4). The ground truth for max(dP/dt) is however not
known. Therefore the observed difference between data- and model-derived max(dP/dt)
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could be associated with both the noise present in the catherization pressure signals and
modeling errors. Firstly, fluid-filled catheters are subjected to inertia artefacts that arise
due to their design (i.e. a column of fluid that fills the catheter) and that distort a pressure
wave to certain extent as it travels inside the probe altering the shape of the recorded
waveform [25]. The catheter-induced artefacts present in the acquired signal depend on
catheter size and type [26] and become exaggerated once the pressure time derivative is
computed [27]. Hence, rTOF LV pressure recordings could be more noisy than the rTOF
RV recordings as different types of catheters were used. Secondly, model induced errors
might also play a role. The observed overestimation of model-derived max(dP/dt) might
be due to the model being less accurate for the description of single-ventricular mechanics.
In particular, an assumption of the spherical ventricular shape might be less appropriate
for single-ventricle patients. This patient cohort was not homogeneous with some patients
having systemic left and some systemic right ventricle. Therefore, the further investigation
of modeling errors need to be performed.

4.4.3 Quantitative interdependence between the surrogate measures of
ventricular contractility

The correlation between model-derived contractility and data-derived max(dP/dt) was
strong and significant in single-ventricle and rTOF RV patients, and moderate and significant
in rTOF LV patients. A weaker correlation in rTOF LV could be due to the noisy pressure
signals as acknowledged above. Strong correlations between model-derived contractility
and data-derived Emax · EDV were observed in all patients’ groups. Therefore, model-
derived contractility is in correspondence with the clinically accepted surrogate measures of
contractility: one that represents the rate of tension development and the other systolic
pump function of the heart. As outlined in Section 4.1.2 time-varying elastance model
conceptually links the contractile performance during isovolumetric systole with that of
end-ejection. Significant relationships between (1) Emax and max(dP/dtdata/model) and
(2) between model-derived contractility and max(dP/dtdata/model) both substantiate that
contractile performance of the heart during isovolumetric contraction is linked to that at
the end of systole. Therefore, we hypothesize that muscle ability to develop tension is likely
to be proportional to its ability to generate the end-systolic level of tension for a given
ventricular geometry. Garcia et al [28] investigated the interaction between max(dP/dt)
and Emax in porcine LVs under different afterload conditions and contractile states and
concluded that Emax was the main determinant of the changes in max(dP/dt). Gleason
et al [27] proposed that in the conditions of chronic exposure to pressure overload the
ventricle adapts its rate of tension development in similar fashion as it adapts its ability to
develop maximum tension. Gleason et al [27] found a good correlation between max(dP/dt)
and ESP (our data also showed a significant correlation between max(dP/dt) and ESP,
Figure 4.5). Sandler et al [29] and Spann et al. [30] discovered that when ventricular
sustains chronic elevation of ESP ventricular wall increases in mass, but the tension per
unit of myocardial mass remains constant. In the view of these findings [27; 29] and others
[31; 32; 33] it has been proposed that mechanism of adaptive hypertrophy maintains the
tension per unit of myocardial mass constant whilst ventricular wall is adding myocardial
muscle units in order to sustain increased contractile demand. Therefore, it is possible that
in the increased hemodynamic loading the rate of tension development is also maintained
constant per unit of myocardial mass as a results of adaptive ventricular hypertrophy [27] .
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4.4.4 Clinical implications

Identifying reliable, reproducible and predictive indices of myocardial contractility for
clinical use has been a subject of translational and clinical research for many years. It is
particularly challenging to derive load independent measures of myocardial performance
that could characterize the changes in myocardial material properties and predict the onset
of tissue-level irreversible remodelling.

Since 1970s time-varying elastance has been recognized as a physiologically relevant
concept to index organ-level cardiac performance. Changes in chamber elastance (in
particular Emax) are assumed to represent a net effect of changes of myocardial material
properties (i.e. stiffness, contractility, contractile to eleastic element ratio) and chamber
structural properties that together determine venticular pumping ability [34]. Even though
some researchers have shown the efficiency of Emax to characterize the pathological state of
the myocardium [35; 36; 37] and to evaluate cardiac performance in response to various
therapeutic interventions (in LV: [38; 39; 40; 37], and in RV [41]) its clinical use remains to
be limited. Firstly, an estimation of Emax is technically demanding as it pertains fitting
linear regression to several end-systolic pressure-volume points that are typically acquired
by varying preload via e.g. inferior vena cava occlusion, whilst latter could be dangerous in
some pathological conditions. Some alternative methods exist to estimate Emax from single-
beat pressure-volume measurement using systolic time intervals and normalized elastance
curve (EN(t̄)) with invasive [10; 42] and noninvasive [43] pressure acquisitions. Le Gall et
al [11] argued, however, that such methods are too sensitive to their parameters (e.g. there
is high probability of error in measured tmax that could render an inaccurate estimation of
Emax from EN(t̄)). Le Gall et al. [11] proposed biomechanical model-assisted estimation of
patient-specific elastance from single-beat echocardiographic flow and catherization pressure
data. The model allows to vary loading conditions in silico rendering several points on
ESPVR to estimate Emax. Secondly, the assumption of ESPVR non-linearity might not
be universally correct [44]. The linearity of the ESPVR has been shown to be violated
in the hearts subjected to regional coronary occlusion [45] where the slope appeared to
be convex to the volume axis. Another group of studies have demonstrated contractility-
dependent curvilinearity of ESPVR on in situ canine left ventricles [46; 47; 48]: at higher
contractile states (Emax > 7 mmHg/ml) ESPVR was concave to volume axis, and at lower
(Emax < 3.5 mmHg/ml) it was convex (note that in these studies the values of Emax were
calculated with V0). These studies however concluded that in the physiological inotropic
range of contractility in the in vivo heart the ESPVR is linear [46; 47; 48]. In addition
to that the linearity of human RV elastance has been questioned as the wide range of
resting Emax values and the varying V0 throughout the contraction was reported by [17; 18]
in normotensive RVs. Nevertheless, lack of linearity should not be interpreted against
the validity of varying-elastance model to describe systolic performance of a given heart
at a given inotropic state [44]. Instead, the potential nonlinearity should be considered
depending on the operating range of pressure-volume data and when interpreting the
data for intra-subject comparison [18; 44]. Thirdly, in extreme pathological scenarios
time-varying elastance might be an inadequate model. Vandenberghe et al [49] showed that
in patients with advanced heart failure with inserted mechanical circulatory support (e.g.
LV assist device patients) obtained time-varying elastance curves showed high variation
in amplitude on beat-to-beat basis due to interaction between the heart and ventricular
assist device. Simple elastance model where pressure is determined by the instantaneous
volume and that assumes that hemodynamics are internally regulated by the heart and
cardiovascular system cannot account for complex heart-to-device interaction where the
heart is subjected to extreme loading condition that are suddenly changing on beat-to-beat
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basis. Such cases justify a need for a more complex microstructurally oriented modeling
approaches such as [50] that are able to track cardiac performance in real time [51; 52].

Since early 1960s the maximum rate of pressure increase has been proposed as a
surrogate measure of contractility that from phenomenological point of view represents
velocity of fiber shortening. Even though it is highly sensitive to changes in inotropic
state [53; 54; 55; 1; 56; 57], it has been shown to be dependent on a number of organ-level
factors. (1) Max(dP/dt) is highly preload dependent via Frank-Starling mechanism (length-
dependent affinity of binding of Ca2+ to troponin-C and the numbers of cross-bridges
cycling) [55; 58; 59]. Therefore to account for length-dependent effect the correction of
max(dP/dt) by EDV was introduced [13]. The relationship between max(dP/dt) vs. EDV
(with slope of max(dE/dt) see Section 4.1.2) was found to be more sensitive to acute changes
in contractility than Emax [14; 60]. (2) Max(dP/dt) is dependent on the diastolic pressure
in the arterial system [55; 59]. Max(dP/dt) occurs just before the opening of the semilunar
valve, thus, if ventricle is building a pressure against lower load (e.g. diastolic pressure
in the pulmonary circulation) its ability to generate maximum pressure is reduced during
isovolumetric systole. At the onset of opening of the semilunar valve the work generated by
the ventricle is distributed into the pushing the blood into the arterial tree and the rate
of pressure rise decreases. (3) Max(dP/dt) is subjected to chronotropic effect, increased
heart rate causes the increased concentration of Ca2+ in the sarcoplasmic reticulum of
the myocardium and consequently increases the rate of myocardial activation (so-called
’Treppe’ effect originally discovered by Bowditch in 1871 [61] ) [62; 27; 55]. (4) The manner
of ventricular activation could affect the muscle ability to build force. In clinical studies it
was shown that left bundle brunch block slows down max(dP/dt) [20]. Similarly, in our
in silico simulations we demonstrated that increased duration of QRS complex tends to
decrease max(dP/dt) (Figure 4.7 in Appendix). Finally, an in silico effect of the level of
the atrioventricular (AV) valve regurgitation on max(dP/dt) appeared to be small (Figure
4.8 in Appendix).

Preload, arterial diastolic pressure, and heart rate could be altered by interventions and
vary in resting state between the patients. Therefore, the inotropic effect of the contractility
change as indexed by max(dP/dt) could be hidden especially when comparing on inter-
subject basis [55]. However, due to an excellent sensitivity of max(dP/dt) to changes in
inotropic state it has been viewed as a fair measure of contractility when the variation in
preload, diastolic arterial pressure and heart rate could be relatively controlled. A number
of studies with patients undergoing cardiac resynchronization therapy (CRT) demonstrated
the potential of max(dP/dt) to evaluate the acute response to the therapy and predict the
incidence of heart failure or mortality in 1 year following the implantation of the CRT device
[57; 63; 56]. The predictors of the long-term response were either the baseline or the acute
max(dP/dt) post CRT implantation, whilst the level of relative response of max(dP/dt) to
CRT (e.g. baseline max(dP/dt) divided by acute max(dP/dt)) did not correlate with the
long-term outcome [63; 56]. These results support the ability of max(dP/dt) to evaluate
the contractile state within individual patients and not between the patients.

Model-derived contractility is a measure of maximum inotropic stress developed by
the myocardium during systole. During the calibration the model is sequentially coupled
to patient-specific measurements of heart rate, QRS duration, end-diastolic and end-
systolic pressures and volumes in the arteries (only pressures) and ventricle. Therefore, the
calibrated value of contractility is a function of the patient-specific levels of preload and
afterload conditions rendering the comparison between the subjects possible. In Chapter
1 we assessed the ability of model-derived contractility to evaluate the current state of
the myocardium of the rTOF patients pre- and post-PVR. In Chapter 2 we explored the
ability of the model to predict an in silico mechanical response of the myocardium to
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different afterload conditions post-PVR in the hypothetical absence of post-PVR data.
We demonstrated that model-derived contractility could augment clinical indicators of
patients’ pathology and inform clinicians about the level of myocardial contractility in
response to varying afterload conditions. Our results show that the current model has the
potential to provide personalized assessment of myocardial function. We acknowledge, that
a long-term prognostic value of the model-derived contractility is yet to be determined.
Only recently the current modeling approach started to be employed with real patients’ data
in [64; 15; 11; 52; 65; 66], where no long-term follow-up data were available. A translation
of the novel model-derived indexes into clinical practise necessities their validation against
the existing clinically accepted biomarkers of myocardial function. In the current chapter
we established strong correlations between model-derived contractility and max(dP/dtdata)
and Emax substantiating the physiological relevance of the model-derived contractility to
describe systolic performance of the heart.

4.4.5 Model-derived max(dP/dt) as a model-based data filter

Our results showed that model-derived max(dP/dt) is statistically more equivalent to the
data-derived Emax. This suggests that model-derived max(dP/dt) quantitatively strengthens
the relationship between contractile performance of isovolumetric phase and end of ejection.
Max(dP/dt) acquired in clinical settings is a continuous variable that is highly subjected
to measurement artefacts. Hence, even tiny fluctuations of the probe during pressure
acquisition are exaggerated once the first derivative of the pressure is computed. Model-
derived max(dP/dt) is calculated from the pressure signal that is an output of the model
at a given time-step of the cardiac cycle simulation (e.g. in the current model it is 0.001 s).
Therefore, model-derived max(dP/dt) has a potential to be used (1) as a filter for the noisy
pressure signals, so-called ’model-based data filtering’, and (2) as an index of isovolumic
contraction in the conditions when clinical acquisition of the contentious pressure wave is
either too noisy or not available at all. The function of model-derived max(dP/dt) as a
data-filter should be further explored by fitting in silico noise to the the model-derived
pressure signal and subsequently comparing the in silico and model-derived max(dP/dt).

4.4.6 Limitations

The results of the current chapter are subjected to some limitations. In the calculation of
E(t) the volume correction factor V0 was not considered. In human heart the value of V0

was shown to be relatively small, 18 ± 16 ml in LVs by Starling et al. [67] and 10 ± 19 ml
in RV by Karunanithi et al. [68]. Starling et al. [67] showed a good correlation between
Emax taken from E(t) model with V0 and that without (R2 = 0.90). In comparison to the
reported values in the literature for Emax that are taken from E(t) model with V0 the Emax

values in the current chapter are likely to be systematically underestimated. In human
LVs Starling et al. [67] showed that mean values for Emax without V0 are by 35% lower
than Emax with V0, and in human RVs Emax without V0 was by 68% lower than Emax with
V0 [18]. In the future the calculation of Emax that contains the correction for V0 could
be performed via model-assisted estimation of patient-specific elastance as shown by Le
Gall et al. [11]. The limitations that are inherent to the model-derived contractility were
already addressed in Chapters 1 and 2.
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4.5 Concluding remarks

In this chapter we demonstrated the correspondence of data-derived indices of myocardial
contractility (Emax and max(dP/dt)) with model-derived contractility and max(dP/dt).
Considering the complexity and hierarchical nature of the heart function and limited
availability of measurable quantities in vivo the gold standard measure of ventricular
contractility cannot be yet advised. Some clinical scenarios might benefit from combining
several indices of contractile performance for the assessment of the effects of the intervention.
Whilst the plausibility of the data- and model-derived myocardial indices to assess acute
changes has been recognized more research is needed to elucidate their long-term predictive
value. Finally, we suggested a potential application of max(dP/dt) as a model-based data
filter of clinical max(dP/dt).

4.6 Appendix

In silico effect of (1) QRS duration and (2) AV valve regurgitation on max(dP/dtmodel)
was investigated. In three selected patient-specific models from each patient group in
the activation function of the heart we prescribed the duration of QRS from 0.08 to
0.150 s, preserved all other parameters and re-calculated the corresponding values of
max(dP/dtmodel). Similarly, an in silico effect of AV valve regurgitation was investigated by
decreasing by imposing the regurgitation on AV valve from 10 % to 50 % (via decreasing the
value of AV valve resistance in the model). Preserving all other parameters we re-calculated
the corresponding values of max(dP/dtmodel).

4.6.1 In silico effect of QRS duration on max(dP/dt)

Figure 4.7 shows an in silico effect of increasing the duration of QRS complex on max(dP/dtmodel)
in three selected patient-specific models from single-ventricle, rTOF LV and RV patients
groups. Increasing QRSd from 0.08 s to 0.150 s resulted in the 27%, 27% and 30 % decrease
of the max(dP/dt) in single-ventricle, rTOF LV and rTOF RV selected patient-specific
models, respectively.

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

QRSd (s)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

re
la

ti
v
e
 m

a
x
(d

P
/d

t
m

o
d

e
l )

Single-ventricle

Pt #8

Pt #10

Pt #11

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

QRSd (s)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

re
la

ti
v
e
 m

a
x
(d

P
/d

t
m

o
d

e
l )

rTOF left ventricle

Pt #F04

Pt #F07

Pt #F13

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

QRSd (s)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

re
la

ti
v
e
 m

a
x
(d

P
/d

t
m

o
d

e
l )

rTOF right ventricle

Pt #F04

Pt #F07

Pt #F13

Figure 4.7: In silico effect of increasing QRS duration (QRSd) on max(dP/dt) in three selected
patient-specific models from single-ventricle (left), rTOF left (middle) and right ventricle (right)
patients groups, respectively. Max(dP/dt) was rescaled by the value of patient-specific model-
derived max(dP/dt) obtained at QRSd of 0.08 s.

The mean (± SD) QRSd in our patients’ cohort was 0.082 (± 0.006) in single-ventricle
patients, 0.140 (± 0.030) in rTOF LV and RV patients.
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4.6.2 In silico effect of atrioventricular valve regurgitation on max(dP/dt)

Figure 4.8 shows an in silico effect of increasing AV valve regurgitation on max(dP/dtmodel)
in three selected patient-specific models from single-ventricle, rTOF LV and rTOF RV
patient groups. Increasing AV valve regurgitation to 50 % resulted in 10% , 12% and
15% decrease of max(dP/dtmodel) in single-ventricle, rTOF LV and rTOF RV patients,
respectively.
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Figure 4.8: In silico effect of increasing atrioventricular (AV) valve regurgitation fraction on
max(dP/dtmodel) in three selected patient-specific models from single-ventricle (left), rTOF left
(middle) and right ventricle (right) patients groups, respectively. max(dP/dtmodel) was rescaled by
the value of max(dP/dtmodel) obtained at QRSd of 0.08 s.
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Conclusions

Patients with CHD are particularly in demand of personalized healthcare solutions. Standard
clinical biomarkers are limited in their ability to provide specific descriptions of advanced
pathological states. This could lead to mistaken conclusions regarding the functional
capacity of their cardiovascular system [1; 2; 3] and inability to define a correct timing for
certain interventions. The knowledge of internal mechanical characteristics of the heart
and vasculature could potentially enhance our understanding of the pathological profile of
CHDs. With a growing potential of computational models to provide a detailed mechanical
(geometrical) description of various compartments of the cardiovascular system a possibility
to deploy a model-assisted diagnosis is becoming more and more evident.

The main goal of this thesis was to demonstrate the potential of biomechanical modeling
to assist in clinical decision-making related to the management of patients with CHD.
In particular, the goal was to develop scientific evidence to support the translation of
biomechanical modeling to the clinical environment. The ability to fully exploit such goals
largely depends on the collaborative potential of the research environment. The availability
of clinical data is often a limiting factor in translational research. In this PhD work such
a barrier was overcome thanks to the close collaboration between the modeling team at
Inria and the department of pediatric cardiology at UTSW. In addition, a constant clinical
outlook on the evolution of the applied modeling framework guided the development of our
research.

We employed a previously developed multi-scale biomechanical model [4] with a geometry
reduced to a spherical shape [5]. The model represents the mechanical behavior of a single
ventricular cavity that is coupled to the circulatory system via a system of diodes and
Windkessel model. The system of diodes contains forward and backward components
allowing to include forward and backward flow through the arterial valve, respectively [6].
We demonstrated the potential of this model to provide an enhanced mechanical description
of the RVs of patients with rTOF that are subjected to PV regurgitation and/or RVOTO.
In particular, we showed an ability of this model (1) to evaluate the ‘current mechanical
state’ of the RVs prior to and after PVR, and (2) to predict the evolution of RV mechanics
under different loading conditions. In addition we showed an application of the model to
provide a rigorous clinical data treatment of a variety of data acquisition protocols. This
further extends the spectrum of clinical problems that could be optimized by means of
patient-specific biomechanical modeling.

The results of this PhD work could be summarized in the following categories.

I: Patient-specific mechanical description of the right ventricle and pulmonary
circulatory system

Model-derived contractility provided an insight into the mechanical state of the RV subjected
to different hemodynamic conditions. Thanks to the valvular component in the model the
calibration of the myocardial contractility considered the presence of PV regurgitation and
RVOTO. Thus, we could assess the influence of independent and combined effects of PV
regurgitation and RVOTO on RV functional state. Our results demonstrated that patients
with predominant RVOTO experience higher levels of contractility pre-PVR and higher levels
of contractility decrease post-PVR compared to those with predominant PV regurgitation.
In addition, we have demonstrated the ability of the model to predict the mechanical
response of the ventricle under progressive recovery of RV PSP through decreasing levels of
RVOTO. We derived in silico relationships between myocardial contractility and RVOTO
that appeared to be linear. These relationships demonstrated an immediate response of the
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cardiac contractility to a given decrease in RVOTO.
Overall, we could quantify the level of RV overload and how the level of overloading

could decrease after intervention on the valve. Even though our study is not able to provide
the cut-off values of ventricular overload (when myocardial remodeling becomes irreversible)
we speculate that revealed mechanical insight into the RV function could contribute to the
optimal clinical management of patients with valvular pathologies. For example, if the
need to aim for long-term relief of RVOTO is highlighted, the surgical approach of valve
replacement might be preferential. The in silico relationship between contractility and
RVOTO could be interpreted as a ‘virtual experimental tool’ for testing various post-PVR
loading conditions. This could further contribute to the choice of the type of intervention
on the valve (e.g. type or size of prosthesis, or percutaneous vs. surgical approach).

II: Model-assisted pressure-volume time-sychronization to optimize patients
diagnostics

We developed a model-assisted time-synchronization technique of clinical P-V signals that is
universal w.r.t. data acquisition protocols. The universality of the approach is determined by
the model ability (1) to represent the physiological timing of the events of the cardiovascular
system, (2) to integrate multiple data inputs, and (3) to represent ventricular mechanics
considering the valvular regurgitation (i.e. the shape of the simulated P-V accounts for
valvular mechanics). The time-synchronized P-V loops were qualitatively improved yielding
physiologically more meaningful measures of ventricular energetics (e.g. Emax and stroke
work).

Clinical scenarios that necessitate high-quality P-V loops for the therapy planning can
benefit from the proposed model-based time-synchronization of P-V signals. The modeling
framework is fast in computation time and can be directly employed in clinical settings.
The applicability of the method for both simultaneously and sequentially acquired CMR
and pressure data makes the use of P-V loops available to all centers and not only to those
with dedicated and costly pressure and conductance catheters for simultaneous P-V loop
systems. The proposed method applies the model to contribute to the planning of complex
interventions and, thanks to the biophysical and physiological background of the models, it
can consequently augment the possibilities of optimal clinical management.

The developed model-assisted time-synchronization belongs to the ‘model-constrained’
data processing techniques. We proposed a novel approach to align the data ‘in time’ while
there are a number of model-constrained techniques to register data in space [7; 8; 9].

III: Correspondence of model-derived indices of myocardial contractility with
clinically accepted measures of systolic performance

We have demonstrated the correspondence of data-derived indices of myocardial contractility
(Emax and max(dP/dt)) with model-derived contractility and max(dP/dt). A physiological
validation of novel model-derived indices is one of the necessary steps in their translation
to a clinical usage. In addition, we confronted data- and model-derived max(dP/dt). We
suggested a potential application of max(dP/dt) as a model-based data filter of clinical
max(dP/dt), The latter could be either (1) not available at all due to the absence of
continuous intraventicular pressure signal; or (2) too noisy. The noise is inherent to the
pressure acquisition itself and is amplified once the time derivative is computed.

A thorough literature review on clinical relevance of the data- and model-derived
measures of contractility showed that the gold standard measure of ventricular contractility
is challenging to use with the current physiological and biomechanical knowledge. This
further substantiates a need for (1) a rigorous validation of the existing model-based
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indicators and (2) a continued search for other biomechanical model-based indices of
myocardial function. In addition, the literature review emphasized that some clinical
scenarios might benefit from combining several indices of contractile performance.

Perspectives

Having obtained a detailed mechanical description of the RV myocardial function pre-
and post-PVR of patients with rTOF, a natural perspective of these results will be to
further explore a functional characteristic of the myocardium in terms of (1) myocardial
energetics, (2) contractile reserve, (3) long-term evolution of contractility post-PVR, and
(4) biventricular (i.e. RV-LV) interaction.

Myocardial energetics

A decreased contractility and stroke work post-PVR suggest a possible decrease in the
myocardial metabolic and oxygen demand. Myocardial oxygen consumption was not
evaluated but could be in principle measured by the Fick principle (from arterial and
coronary sinus oxygen concentration) or via the ammonia positron emission tomography
[10].

Contractile reserve

A knowledge of the contractile reserve of the patients could help to understand the functional
limits of the heart. We could normalize patient-specific contractility indices obtained in
Chapter 1 by the corresponding maximum contractility value to stratify the level of severity
of pre-PVR contractility among patients. In addition, the level of contractile reserve itself
could be an independent index of cardiac functionality [11], and could be used to access the
response to PVR. Previous works have quantified the contractile reserve during dobutamine
stress testing using the current 0D model [12] or time-varying elastance [13]. A similar
methodology could be directly transferred to the patients with rTOF.

Automatization of the model setup

To date there exists a variety of biomechanical modeling approaches allowing a realistic sim-
ulation of myocardial mechanics in pathophysiological conditions. However, the validation
of these models against in vivo patients data has not been extensively performed on large
patients cohorts (> 100 subjects) [14]. Efficient methods enabling automatic parameter esti-
mation could substantially contribute to the translation of the models into clinical practice.
These methods could make large scale clinical studies possible and enable the sensitivity
analysis of the novel model-derived indices. Some parameter estimation techniques have
the potential to be integrated into an applied modeling pipeline, e.g. [15; 16; 17; 18; 19].

In this thesis patient-specific parameters were adjusted manually by following a sequential
calibration of the corresponding model compartments. By using automated parameter
identification a similar study could be extended to a larger cohort of patients (e.g. > 100
subjects). We particularly envision to run the model with more data of RVs of patients
with rTOF solely affected by PV regurgitation. In Chapter 1 we have observed that 2
patient with dilated RVs (iEDV > 150 ml/m2) from the group predominantly affected by
PV regurgitation were outliers due to the high contractility. This suggests there might be
an association between the level of RV dilatation and contractility. With only 9 patients in
that group we could not investigate such a relationship. More patients data coupled to the

140



current 0D model could possibly provide a richer mechanical insight of the effect of PV
regurgitation on the RV health.

Long-term remodeling of the myocardium

We showed that the biomechanical model employed in this thesis could be an efficient tool
in characterizing immediate mechanical properties of the cardiovascular system. The results
of Chapters 1 and 2 were interpreted without explicitly considering the previous or future
progress of ventricular remodeling. The state of the myocardial health of patients with
rTOF is however constantly evolving in time both prior to and after PVR. Therefore, in the
future we propose to combine our modeling approach with models capturing a long-term
evolution of cardiac mechanics. In particular, the kinematic growth theory framework
[20; 21; 22] allows to simulate growth and remodeling of the myocardium. This theory
assumes that changes in ventricular shape and size occur in response to the applied stress-
and/or strain-based mechanical stimuli. Thus, various studies have modeled concentric
and/or eccentric cardiac growth (as well as reverse growth) in terms of the chronic changes
in ventricular morphology in response to e.g. simulated aortic stenosis and mitral valve
regurgitation [23], simulated diastolic and systolic heart failure [24], and unloading of
the left ventricle (i.e. a strain-driven reverse myocardial growth) [25]. The simulation
results of these studies showed a good agreement with the image data of patients. The
kinematic growth theory allows to study a consequence of growth (reverse growth) on organ
morphology but does not capture an evolution of intrinsic tissue mechanical properties (i.e.
myocardial contractility and stiffness).

We hypothesize that patients with rTOF could notably benefit from a modeling tandem
combining the current patient-specific instantaneous model with the models of cardiac
growth. Models of long-term evolution have the potential to include information about the
initial state of pathology, type of repair, and the evolution throughout the life of patient.
They could also be useful in better understanding the reverse remodeling after PVR – a
crucial step in predicting the long-term effect of PVR.

The interpretation of the model-derived post-PVR indicators obtained in Chapter 1
could be enhanced by the model of reverse myocardial growth (such as [25]). As a perspective
study of Chapter 2 we propose to investigate the morphological change of the ventricular
cavity to mechanical unloading at several points along the predicted line, where a given
change of intraventricular pressure with respect to pre-PVR could be considered as a
stress-based unloading stimulus.

Synergetic approaches in modeling of cardiovascular disease

Digital tools that could aid clinical decision-making do not only reside within the mechanical
models. Data-driven models (i.e. based on statistical and machine learning techniques)
have proved their utility and robustness to identify unseen trends from large data cohorts
that are of prognostic significance. For example, in application to rTOFs statistical shape
modeling studies quantified the level of RV remodeling in terms of the association between
morphological indices (i.e. global and regional RV dilatation, outflow tract bulging) and
the level of PV regurgitation [26; 27]. A recent study by Mauger et al. [28] quantified the
relationship between the biventricular shape variation and the severity of PV regurgitation.
These studies assume that tissue-level remodeling is translated to the geometrical alterations
of the ventricular cavity. Therefore, the associated statistical relationships between the
morphological indices are interpreted as representative of the underlying changes in tissue
functional capacity. The approach seems to be promising in (1) identifying global trends
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in the population and (2) stratifying anatomical variability among patients. It is however
limited in explaining the functional state of the outliers from the population templates [26].

An employment of a synergetic modeling approach in creation of digital medicine tools
has been recently proposed [29]. It implies to combine data-driven and mechanical models
in order to tackle clinical problems from a broader perspective [30]. For example, an
application of this thesis combining current biomechanical model with aforementioned
statistical shape modeling approaches [26; 27; 28] could provide tissue-level mechanical
insight into revealed statistical relationships between the level of RV dilatation and PV
regurgitation. In addition such a synergy could potentially describe the functional state of
the population outliers revealed by the shape models (e.g. such as in [26]).

From a global perspective model synergies could be used to create population atlases
that combine geometrical and mechanical indices of a variety of cardiovascular diseases.
For example, considering the UK Biobank [31] as a source of population data, the machine
learning algorithms could be used to classify and identify geometrical biomarkers of specific
cardiac phenotypes. Then, each phenotype could be studied by means of biomechanical
models (such as the model deployed in this thesis) in a patient-specific manner. The aim
could be to obtain a range of patient-specific biomechanical parameters of the observed
geometrical variability within a given phenotype. Biomechanical model-based description
of the population phenotypes could in turn (1) broaden our knowledge of the key patho-
physiological mechanisms, (2) enable in silico trails for the therapy development, and (3)
provide prognosis of the effects of therapeutic interventions [29].

Indirect ventricular coupling via coupled model of two ventricles

In this thesis we primarily focused on the model-based analysis of the RV function of
patients with rTOF. However, in patients with rTOF RV dysfunction often impairs LV
systolic and diastolic performance [32; 33]. Some studies indeed suggest that the degree of
LV dysfunction might be of prognostic significance and deterministic of exercise capacity in
rTOFs [34; 35; 36].

In patients with rTOF LV dysfunction arises secondarily to RV volume and pressure
overload. This is likely to be attributed to the biventricular coupling (i.e. anatomical
and mechanical interdependence). The two ventricles are encapsulated by the common
pericardial sac and share their fibers via the septum and subepicardial layers. During every
cardiac beat both contraction and relaxation of the ventricular chambers are determined
by such an interdependence. Thus, during cardiac systole the LV has been found to
substantially contribute to RV contraction [37; 38; 39]. The total diastolic LV motion is
constrained by the level of RV dilation due to the limited ability of the pericardial sac to
stretch [38]. For example, reduced diastolic wall strain was found in the LVs of rTOFs
with high level of RV volume overload [40; 41]. The reduced ability of LV to stretch during
diastole leads to the decreased LV preload. This in turn could lead to a decrease in LV
cardiac output via (1) reduced LV EDV, and (2) reduced ESV via Frank-Starling mechanism
(i.e. length dependent decrease in the ability of the myocytes to develop maximum force).

The mechanisms that link RV dysfunction to a decrease in LV function remain poorly
understood. Therefore, we hypothesize that extending the current model of single-ventricle
to a coupled model of two ventricles (LV and RV) and two circulatory systems (pulmonary
and systemic) could provide a tool to investigate the ventricular interdependence in patients
with rTOF. In particular, we aim to investigate indirect ventricular coupling – e.g. the
effect of RV output on LV preload pre- and post-PVR in terms of changes in LV EDV and
myocardial contractility. After the removal of PV regurgitation from the RV during PVR
the effective PA flow (Qeff) increases [42]. Recall that in Chapter 1 we showed a model-
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predicted increase in effective pulmonary flow (Qeff) immediately post-PVR. Therefore,
the volume of blood that fills the LA and LV should also increase. A number of studies
showed an immediate increase in LV EDV immediately post-PVR [42; 35]. Therefore, we
hypothesize that increased PA Qeff is associated with increased LV EDV post-PVR via
indirect ventricular coupling – an effect that we would aim to reproduce with a coupled
model. A description of an envisioned 4-cavity closed-loop model of two ventricles and two
circulatory systems as well as some preparatory work can be found in the Appendix A.

Final conclusions

This thesis demonstrated that biomechanical modeling could be deployed in a clinical
environment to address various types of problems. The biomechanical model provides a
common framework to integrate multiple datasets from individual patients. In application
to patients with rTOF suffering from ventricular overload we have demonstrated that the
current framework could assist in evaluating the response to the intervention and potentially
advise a type of intervention on the valve. Moreover, this type of model-predicted outcome
could be directly translated to the population of patients with other valvular pathologies
(e.g. aortic valve stenosis). In addition, we demonstrated the potential of the model to
provide ‘model-constrained’ data-processing of the variety of data acquisition protocols.

Models can facilitate the transition from population-based clinical decision-making (i.e.
derived from empirical evidence-based clinical studies) to a patient-specific care. Predictions
based on coupling clinical data and biomechanical models have the potential to become part
of clinical assessment to contribute to optimizing and personalizing the clinical management
of every patient.
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Appendix A: Coupled model of two ventricles and
two circulatory systems



As a persective of this thesis we would like to investigate an indirect right- and left-
ventricular (RV-LV) coupling in patients with rTOF. We aim to address an immediate
effect of pulmonary valve replacement (PVR) on LV by means of a 4-cavity closed loop
model.

Coupled model of two ventricles and two circulatory systems

We aim to create a 4-cavity closed-loop model with the following constituents: (1) ventricular
cavities are represented by the 0D model [1]; (2) atrial cavities by the time-varying elastance
model [2]; and (3) valvular components by the system of diodes; and (4) circulation systems
by the lumped-parameter model with associated resistance and capacitance of the distal
and proximal parts.

In the sequel we present a description of an atrial component in the 4-cavity model.
In this model we aim to simulate simultaneous LV and RV contraction and the effect of
circulatory system hemodynamics on ventricular mechanics. The goal of the atria in this
setup is to provide a realistic ventricular filling. Therefore, we chose a phenomenological
description of atrial mechanics – time-varying elastance model [2] – to simulate the flow that
fills the ventricles as a result of active atrial contraction. First, we calibrated a 0D model
[1] of the atria to in silico healthy left atrial dataset obtained from a population study of
[3]. Then, we derived a time-varying elastance function from the simulated atrial pressure-
volume (P-V) loop that was used an input for the biomechanicaly-derived time-varying
elastance model of the atrial cavity [4].

In silico atrial pressure-volume loop

The atrial role in the cardiac cycle can be split into three functional phases [5]:

I Reservoir phase: atria act as a reservoir for blood during ventricular contraction. Passive
filling of the atria by the venous return. Atrioventricular (AV) valves are closed.

II Conduit phase: atria act as a conduit that passively fills the ventricle during initial filling
period. The phase initiates with the opening of the AV valves.

III Pump phase: atria actively pump the blood into the ventricles at the end of the filling
period. Active atrial contraction contributes 15-30 % of total ventricular filling.

The data representative of a healthy left atrial function are presented in Table A1.

Table A1: Healthy left atrial in silico dataset. Volume data are the weighted means of healthy left
atria from the population study of [3].

Vmax (ml) 89.00 maximum volume achieved during reservoir phase
Vmin (ml) 41.00 minimum volume achieved during pump phase
Wall thickness (mm) 2.73
Pmax (mmHg) 8.00 maximum pressure achieved during pump phase
Pmin (mmHg) 2.00 preload for the atrial model (venous pressure)
P-wave (ms) 0.80 depolarization of the atria
PR-section (ms) 0.10 repolarization of the atria
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We created a 0D model of the atria to represent the active atrial contraction during the
pump phase. The calibration of the atrial model followed the calibration procedure as it is
described for the ventricle in the Appendix of Chapter 1. Briefly, the following ingredients
were adjusted:

I The afterload for the atria was given by a Windkessel model. Low resistance parameters
were set such that simulation was periodic.

II Atrial cavity mass was derived from the atrial wall thickness given by [3].

III Preload pressure (i.e. pressure in the atrium at the end of the conduit phase) was assumed
to be 2 mmHg. Atrial stiffness was adjusted to match the in silico Vmax.

IV Forward and backward resistances of the outflow valve were set to the default values to
represent no outflow valve obstruction and regurgitation, respectively.

V Electrical activation function was created based on the physiological timings of the
duration of atrial depolarization (i.e. equal to 0.08 s) and repolarization (i.e. equal to
0.10 s).

VI Atrial contractility was adjusted to match the in silico Vmin.

The simulation cycle was initiated by the active contraction of the atrium (pump
phase). Time-varying elastance – E(t) = P (t)/V (t) – was derived from the simulated
pressure-volume loop.

Figure A1 shows the simulated atrial pressure-volume (P-V) loop and the associated
time-varying elastance. We remark that ventricular filling happens during the conduit
and pump phases of the atrial cycle. During the reservoir phase atrium is decoupled from
the ventricle since the AV valve is closed. Therefore, we were particularly interested in
reproducing the mechanical behavior of the conduit and pump phases. Our results show a
good agreement with in silico atrial data. In addition the calculated volume integrals of
the conduit and pump phases were 28.96 ml and 12.78 ml, respectively. This suggests that
in the simulated 0D model the pump phase contributes 30 % to the total ventricular filling
(i.e. given by the sum of the volume of blood of conduit and pump phases).
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Figure A1: In silico atrial pressure-volume loop and the associated time-varying elastance.
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Atrial time-varying elastance model

Instead of using a multi-scale description of the cavity mechanics (e.g. atria or ventricle)
as provided by a 0D model, the mechanics of contraction could be represented by the
time-varying elastance (E(t)) model and a passive filling by end-diastolic pressure volume
relationship (EDPVR) – given by the hyperelastic potential eq. (1.4) as shown by Le Gall
et al. [4]: {

P (t) = E(t) + ηsVV̇ (t) systole

P (t) = EDPVR(t) + ηdVV̇ (t), diastole
(4.9)

where ηsVV̇ (t) and ηdVV̇ (t) are the penalty terms introduced for numerical stability for
systole and diastole, respectively.

We run a biomechanically-derived time-varying elastance model (VEM) of the atria as
described by Eq. (4.9). The systolic part was represented by the time-varying elastance of
the pump phase derived from the 0D atrial model (Figure A1(b), blue part of the curve),
and the diastolic part by the calibrated EDVPR of the atrial 0D model. Figure A2 shows
the output of the VEM in comparison with the output of the 0D model of in silico atrium.
Figure A2 demonstrates that VEM model can accurately reproduce the atrial mechanics.
VEM is therefore an optimal modeling choice for a representation of atrial mechanics in
the closed-loop 4-cavity model.
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Figure A2: Simulation results of the time-varying elastance (VEMpump) model of the atrium (orange
solid lines) in comparison to the 0D model of the atrium (blue dotted lines).
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Titre : Modélisation biomécanique cardiovasculaire personnalisée pour améliorer l’interprétation des données cliniques et aider à planifier les
interventions chez les patients atteints de cardiopathie congénitale

Mots clés : modélisation biomécanique, contractilité du myocarde, surcharge ventriculaire, cardiopathie valvulaire, cardiopathie congénitale,
synchronisation temporelle des données cliniques, médecine personnalisée

Résumé : Cette thèse de doctorat est une recherche interdisciplinaire
qui porte sur la modélisation biomécanique appliquée du système car-
diovasculaire chez les patients atteints de cardiopathies congénitales.
L’objectif est d’explorer le potentiel de la modélisation biomécanique
pour aider à la prise de décision clinique.
Tout d’abord, nous avons exploré la capacité d’un modèle bioméca-
nique précédemment développé à améliorer l’interprétation des don-
nées cliniques pour les patients atteints de tétralogie de Fallot après
réparation (TOFr) avant et après le remplacement de la valve pulmo-
naire (RVP). Des modèles personnalisés du ventricule droit (VD) et
de la circulation pulmonaire ont été construits pour 20 sujets avant et
après le RVP à l’aide de données obtenues par résonance magné-
tique cardiovasculaire (RMC) et par cathéter de pression. Ces modèles
ont été soumis aux effets de la régurgitation de la valve pulmonaire
(VP) et/ou de l’obstruction du canal de sortie du VD (RVOT). Les mo-
dèles ont fourni des indices de contractilité myocardique personnalisés
avant et après la RPV. Les résultats ont montré une diminution de la
contractilité chez tous les patients après la RVP. Les patients présen-
tant une obstruction prédominante de l’RVOT ont connu une diminution
plus importante de la contractilité, alors que l’arrêt de la régurgitation
elle-même n’a pas entraîné de réduction significative de la contractilité.
Après cette étude détaillée de la pathophysiologie des VD surchargés
avant et après la RVP, nous avons exploré la capacité du modèle à pré-
dire la réponse de la mécanique ventriculaire lors de la diminution pro-
gressive de la post-charge des VD chez les patients atteints de TOFr.
Des modèles pré-PVR personnalisés ont été utilisés et l’arrêt de la ré-
gurgitation PV et la diminution progressive de la résistance RVOT ont
été supposés. Les relations in silico résultantes entre la contractilité et
la résistance de l’RVOT après la RVP sont apparues linéaires et cohé-
rentes avec celles données par les modèles post-RVP spécifiques aux

patients.
Pour les patients dont le cœur est constitué d’un seul ventricule et qui
subissent une RMC combinée à un cathéter de pression (dans le cadre
de la planification d’une chirurgie complexe), le modèle a été utilisé
pour synchroniser dans le temps les données de pression du cathéter
et les volumes ventriculaires obtenus par RMC. Cette synchronisation
temporelle assistée par le modèle produit des boucles P-V de haute
qualité qui donnent des indices plus précis de l’énergétique cardiaque
(valeur maximale de l’élastance variable dans le temps (Emax) et du
travail systémique) et qui pourraient donc être utilisés pour améliorer
l’interprétation clinique.
Enfin, nous avons comparé les indices de Emax et de la dérivée tem-
porelle maximale de la pression ventriculaire, max(dP/dt), obtenus di-
rectement à partir des mesures cliniques, avec la contractilité et le
max(dP/dt) dérivés du modèle. Tous les indices dérivés des données
et du modèle ont montré une bonne concordance. De plus, une ap-
plication potentielle du max(dP/dt) dérivé du modèle comme filtre de
données basé sur le modèle a été soulignée.
Dans l’ensemble, cette thèse a démontré (1) la capacité de la modé-
lisation biomécanique à fournir des indices mécaniques supplémen-
taires de la fonction ventriculaire et leur évolution dans différentes
conditions de charge, ce qui pourrait contribuer à la planification d’une
thérapie optimale ; (2) une application du modèle pour fournir un traite-
ment robuste des données cliniques d’une variété de protocoles d’ac-
quisition de données ; et (3) une correspondance des indices dérivés
du modèle avec des mesures de substitution de la contractilité accep-
tées cliniquement. En conclusion, cette thèse a montré que la modé-
lisation biomécanique pouvait être déployée dans un environnement
clinique pour résoudre divers types de problèmes en médecine per-
sonnalisée.

Title : Patient-specific cardiovascular biomechanical modeling to augment interpretation of clinical data and assist planning interventions for
patients with congenital heart disease
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Abstract : This PhD thesis is an interdisciplinary research that deals
with applied biomechanical modeling of the cardiovascular system in
patients with congenital heart diseases. The aim is to explore the po-
tential of biomechanical modeling to assist in clinical decision-making.
First, we explored the ability of a previously developed biomechanical
model to augment the interpretation of clinical data for patients with te-
tralogy of Fallot after repair (rTOF) prior to and after pulmonary valve
replacement (PVR). Patient-specific models of the right ventricle (RV)
and pulmonary circulation were built for 20 subjects pre- and post-PVR
using cardiovascular magnetic resonance (CMR) and pressure cathe-
ter data. These models were subjected to the effects of pulmonary
valve (PV) regurgitation and/or RV outflow tract (RVOT) obstruction.
The models provided patient-specific indices of myocardial contractility
pre- and post-PVR. The results showed a decrease of contractility in
all patients post-PVR. Patients with predominantly RVOT obstruction
experienced a higher level of contractility decrease whereas ceasing
the regurgitation itself did not lead to a significant reduction in contrac-
tility. After this detailed study of pathophysiology of the overloaded RVs
pre- and post-PVR, we explored the ability of the model to predict the
response of ventricular mechanics when progressively decreasing the
afterload of the RVs in patients with rTOF. Pre-PVR patient-specific
models were used and cessation of PV regurgitation and progressive
decrease of RVOT resistance were assumed. The resulting in silico
relationships between the contractility and RVOT resistance post-PVR
appeared to be linear, and consistent with that given by the patient-

specific post-PVR models.
For patients with single-ventricle hearts undergoing CMR combined
with a pressure catheter (as part of planning for complex surgery), the
model was used to synchronize in time the catheter-pressure data and
the ventricular volumes obtained by CMR. This model-assisted time-
synchronization produces high quality P-V loops that yield more accu-
rate indices of myocardial energetics (maximum value of time-varying
elastance (Emax) and stroke work) and hence could be used to ame-
liorate the clinical interpretation.
Finally, we compared the indices of Emax and maximum time derivative
of ventricular pressure, max(dP/dt), when obtained directly from the cli-
nical measurements vs. model-derived contractility and max(dP/dt). All
data- and model-derived indices showed a good agreement. In addi-
tion, a potential application of model-derived max(dP/dt) as a model-
based data filter was emphasized.
Overall, this thesis demonstrated (1) an ability of biomechanical mode-
ling to provide additional mechanical indices of ventricular function and
their evolution under different loading conditions, which has the poten-
tial to contribute into the planning of optimal therapy; (2) an application
of the model to provide robust clinical data processing of a variety of
data acquisition protocols; and (3) a correspondence of model-derived
indices with clinically accepted surrogate measures of contractility. In
conclusion, this thesis showed that biomechanical modeling could be
deployed in a clinical environment to address various types of problems
towards the delivery of personalized healthcare solutions.
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