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Résumé
Il existe de nombreuses manières de représenter les connaissances et les croyances
ainsi que leur évolution dans des systèmes multi-agents. Parmi celles-ci, la
Logique Epistémique Dynamique (DEL) a tendance à prendre le devant de la
scène. Dans DEL, les modèles sont constitués de mondes possibles ainsi que
de relations entre ces mondes indiquant lesquels chaque agent sait distinguer
ou non. Mais la sémantique concise et la grande expressivité de DEL ont un
prix : en particulier, le problème de l’existence d’une solution à un problème de
planification en DEL est indécidable dès que plus de deux agents sont en jeu.
Plus précisément, étant donnés une situation initiale, un ensemble d’actions
autorisées et un but, il n’est pas possible en général de décider s’il existe ou non
une séquence d’actions menant de l’état initial à un état dans lequel le but est
satisfait.

Il convient alors de se demander si l’on peut trouver des approches plus sim-
ples, qui donnent de meilleurs résultats en termes de complexité tout en restant
suffisamment expressives pour modéliser des situations réelles intéressantes.
Dans cette thèse, nous développons et étudions certaines de ces logiques re-
streintes de connaissances et de croyances ainsi que leur application à des
problèmes de planification épistémique. Nous ne sommes pas les premiers à
nous intéresser à de telles simplifications de DEL: typiquement, les autres ap-
proches existantes restreignent les types d’actions qui peuvent être exécutés à
des actions n’augmentant pas (ou peu) l’incertitude, ou limitent les capacités
cognitives des agents de sorte que la connaissance commune (tout le monde
sait que tout le monde sait que tout le monde sait que... à l’infini) ne soit pas
considérée, les agents ne puissent pas raisonner sur les connaissances des autres
agents, ou bien les agents ne puissent pas savoir que d’autres agents connaissent
des informations qu’ils ne connaissent pas eux-mêmes.

L’approche principale développée dans cette thèse, la Logique Epistemique
d’Observation (EL-O), repose sur le concept de “savoir si”, ou “voir si”, plutôt
que le plus traditionnel “savoir que”. Cela nous permet d’avoir un niveau
d’expressivité plus élevé que d’autres simplifications existantes de DEL. Dans
cette thèse nous développons EL-O et étudions un certain nombre de ses pro-
priétés et variants possibles. En particulier, nous montrons que le problème de
satisfiabilité est NP-complet, et que EL-O est un fragment de la logique standard
S5. Nous définissons ensuite une sémantique pour les actions et problèmes de
planification EL-O, et montrons que le problème de l’existence d’un plan pour
un problème donné est non seulement décidable, mais aussi PSpace-complet, ce
qui est la même classe de complexité qu’en planification classique (c’est-à-dire
non-épistémique). Ce résultat vaut à la fois pour la planification séquentielle, où
une action est effectuée à la fois, et parallèle, où plusieurs actions peuvent être
effectuées en même temps. Nous étudions enfin des pistes pour adapter notre
approche à une logique de croyances, et montrons que toutes ces approches ainsi
que d’autres de la littérature peuvent être traduites dans le cadre plus général
de la Logique des Attitudes Doxastiques de Lorini.
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Abstract
There are many ways to represent knowledge and belief and the evolution thereof
in multiagent systems. Among those, one framework that has taken the forefront
of the scene is Dynamic Epistemic Logic (DEL), in which models consist of
possible worlds that are valuations over propositional variables and relations
between those worlds which indicate which worlds agents can or cannot tell
apart. The concise semantics and high expressive power of DEL come at a cost:
in particular, planning in DEL is undecidable as soon as more than two agents
are involved. That is, given an initial situation, a set of allowed actions, and a
goal, it is not possible in general to decide whether or not there exists a series
of actions which will lead one from the initial situation to a situation in which
the goal is achieved.

The question is then whether one can find some simpler approaches which
give better complexity results while remaining expressive enough to model a
variety of real-life situations. In this thesis we develop and study some such
restricted logics of knowledge and belief, and consider their applicability in
particular when it comes to epistemic planning. We are not the first to do this:
other approaches exist which typically either heavily restrict the types of actions
that can be executed, limit the agents’ reasoning power, or both. For agents,
uncertainty on actions might not be allowed, common knowledge (everybody
knowing that everybody knows that everybody knows that... up to infinity)
might not be considered, or agents might not be allowed to reason about other
agents’ knowledge or know that another agent knows something that they don’t
know themselves.

The approach presented in this thesis is rooted in logics of observation and
relies on ‘knowing whether’, or ‘seeing’, as a basic concept, rather than the
more traditional ‘knowing that’. This allows our logic to be more expressive
than other existing restricted logics which are based on ‘knowing that’. We
refine the already existing Epistemic Logic of Observation (EL-O), discuss a
number of its properties (including NP-completeness of the EL-O satisfiability
problem and the fact that EL-O is a fragment of standard S5 logic) and possible
variations, and show that it naturally leads to a framework for epistemic plan-
ning which is not only decidable, but PSPACE complete. We then discuss how
this approach could be extended to reason about beliefs, and finally compare
this approach to other symbolic epistemic and doxastic logics through the more
general framework of Lorini’s Logic of Doxastic Attitudes.
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Chapter 1

Introduction

Imaginons un scénario dans lequel une lettre serait apportée à deux agents, la
destinataire du courrier et son ami. Cette lettre contient une information in-
connue des deux agents ; les deux sont donc curieux d’en connâıtre le contenu.
La destinataire du pli préfère peut-être lire celui-ci en privé, mais si sont com-
pagnon la voit faire, ce dernier saura qu’elle sait ce que renferme le courrier.
La destinataire pourrait aussi être d’accord pour partager l’information et lire
la lettre à voix haute. Dans ce cas, il y aura connaissance commune du contenu
du pli entre les deux agents : ils sauront tous deux ce que dit la lettre, sauront
tous deux qu’ils le savent tous deux, sauront tous deux qu’ils savent tous deux
qu’ils le savent tous deux, etc.

Les logiques épistémiques et doxastiques ont pour but de représenter ce
type d’information sur les connaissances et les croyances des agents. La logique
épistémique fut introduite par Hintikka dans [76], et popularisée à l’aune de
l’intelligence artificielle dans des travaux tels que [52]. Ces logiques ont une
grande variété de domaines d’application et permettent aussi bien d’implémenter
des robots possédant une théorie de l’esprit [46] que d’analyser des protocoles
blockchain [67] ou des jeux à information incomplète telles que le Cluedo ou
Hanabi [100].

Nous nous intéressons dans cette thèse à l’utilisation de ces représentations
pour la planification épistémique : étant donnés une situation initiale, un certain
nombre d’actions possibles, et un but, peut-on trouver une suite d’actions qui
nous mèneront de l’état initial à notre but ? L’on peut par exemple souhaiter
que tous les agents apprennent les secrets de tous les autres agents au bout
d’une série d’appels téléphoniques comme dans le problème de bavardage [41],
ou bien vouloir planifier les déplacements et communications des agents afin
que certains d’entre eux prennent connaissance d’informations que d’autres ne
doivent pas apprendre comme dans le problème de communication sélective de
[80], ou bien encore essayer d’apprendre le contenu d’une lettre destinée à autrui
comme dans notre exemple d’ouverture. Si la planification classique (c’est-à-
dire non-épistémique) est un domaine de recherche riche et actif, il n’y a à ce
jour pas de consensus clair sur la meilleure manière d’ajouter de l’incertitude
en termes de croyances ou de connaissances des agents, et en particulier sur
le meilleur compromis entre expressivité d’une part et complexité calculatoire
d’autre part.

Traditionnellement, la connaissance et la croyance sont représentées à l’aide

7



CHAPTER 1. INTRODUCTION 8

de modèles de Kripke contenant des mondes possibles pour chaque agent [51].
Un agent connâıt une certaine information si cette information reste inchangée
dans tous les mondes que l’agent considère possible, de légers ajustements au
niveau de la sémantique permettant de représenter différentes sortes de connais-
sance et de croyance. En particulier, il est souvent supposé que les agents ont
une capacité d’introspection, autrement dit qu’ils ont conscience de ce qu’ils
savent et même de ce qu’ils ne savent pas. La logique épistémique correspon-
dante est appelée S5.

Des opérateurs dynamiques furent ajoutés à ce formalisme, tout d’abord
sous la forme des annonces publiques de Plaza ([111], travaux d’abord publiés
en 1989) ainsi que dans d’autres travaux sur des types particuliers d’actions
[59, 60, 47] avant d’arriver au cadre général des modèles à événements [15]
dans ce qui est désormais connu sous le nom de Logique Epistémique Dy-
namique (DEL). Ces modèles à événements utilisent des modèles de Kripke afin
de représenter des événements possibles en plus des mondes possibles. (Voir [51]
pour une présentation plus approfondie de DEL.) Ici encore, des restrictions sur
ces modèles permettent de s’assurer que la connaissance a toutes les propriétés
souhaitées ; on peut par exemple citer les travaux sur les modèles de plausibilité
pour représenter les croyances et leur révision [122, 16].

Plusieurs présentations de ce genre de logique épistémique existent, prenant
comme primitive soit l’opérateur ‘savoir que’ (Kiφ se lit “l’agent i sait que
φ est vrai”), soit l’opérateur ‘savoir si’ (Kifiφ se lit “l’agent i sait si φ est
vrai ou non”). L’approche avec l’opérateur ‘savoir si’ a son origine dans les
logiques de non-contingence [106, 78] et a été dévelopée en tant qu’alternative à
l’approche ‘savoir que’ dans des travaux tels que [54]. Les deux opérateurs sont
interdéfinissables : un agent sait si une formule φ est vraie ou non s’il sait soit que
φ est vrai, soit que φ est faux, et il sait que φ est vrai si φ est vrai et il sait si φ est
vrai. Autrement dit, Kifiφ↔ Kiφ∨Ki¬φ etKiφ↔ φ∧Kifiφ. Les présentations
des logiques épistémiques standard avec l’opérateur ‘savoir si’ ont donc la même
expressivité que celles avec l’opérateur ‘savoir que’. D’autres logiques mettant
en avant des opérateurs tels que ‘savoir ce qu’est’ et ‘savoir comment’ ont aussi
été développées [125, 126, 14]. L’idée qu’il est particulièrement intéressant,
lorsque l’on considère des applications en planification, de pouvoir raisonner sur
la connaissance de valeurs de constantes telles que des numéros de téléphone ou
des codes pour ouvrir des portes par le biais de logiques avec opérateur ‘savoir
ce qu’est’ est défendue dans [125].

Si la logique épistémique standard présente une grande expressivité, cela
vient au prix de complexités plus élevées que celles de la logique proposition-
nelle : le problème de satisfiabilité dans S5 est PSpace-complet dès qu’il y a
plus d’un agent, et Exptime-complet si l’on ajoute un opérateur de connais-
sance commune. L’extension dynamique DEL présente aussi un coût élevé :
en particulier, la planification DEL est indécidable [26] même lorsqu’on y im-
pose des restrictions relativement strictes [27]. Il est donc utile de considérer
des manières plus simples de représenter la connaissance et les actions, afin
d’obtenir des résultats de complexité plus intéressants. De telles approches ont
été considérées par exemple dans [45, 118, 77, 110, 119, 108, 84, 80, 107]. Elles
prennent le parti soit de restreindre les actions de manière à ce que l’incertitude
ne puisse pas ‘trop’ augmenter lors de l’application d’un plan [77, 80], soit de
simplifier la logique statique [118, 107], lorsqu’elles n’optent pas pour les deux
stratégies à la fois [108, 119]. Les logiques statiques simplifiées considérées
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dans la littérature sont limitées à un seul agent, n’incorporent pas de notion
de connaissance commune, ou bien restreignent les capacités de raisonnement
des agents, soit en plaçant une borne supérieure sur la profondeur d’imbrication
des opérateurs de connaissance (éliminant souvent toute connaissance d’ordre
supérieure), soit en limitant l’applicabilité de ces opérateurs. En particulier,
Lakemeyer et Lespérance [84] proposent un langage dans lequel l’opérateur
‘savoir que’ ne peut s’appliquer qu’à des formules d’une forme particulière de
sorte que les agents ne peuvent connâıtre des disjonctions. Plus précisément, le
langage consiste en des combinations booléennes de littéraux modaux restreints,
définis par :

λ ::= p | ¬λ | Kiλ

Cela signifie que les situations dans lesquelles un agent sait qu’un autre agent en
sait plus qu’elle ne peuvent être représentées dans cette approche : par exemple,
l’agent 1 ne peut pas savoir que l’agent 2 sait si p est vrai ou non (K1(K2p ∨
K2¬p)) à moins de connâıtre elle-même la valeur de vérité de p (nous montrons
ceci formellement dans le chapitre 6). Ceci représente un inconvénient majeur,
car de telles situations sont fondamentales lorsque l’on souhaite représenter des
agents pouvant communiquer entre eux : la situation décrite ci-dessus mènerait
naturellement l’agent 1 à interroger l’agent 2 au sujet de p ; de manière plus
générale, le fait de savoir à qui demander de l’information ainsi que le fait de
savoir si quelqu’un a besoin d’une information particulière sont d’importants
déclencheurs d’instances de communication.

Une logique épistémique s’inspirant de l’approche mentionnée ci-dessus fut
proposée dans [70, 40]. Dans cette logique, l’applicabilité des opérateurs de
connaissance est restreinte d’une manière similaire, mais l’opérateur ‘savoir si’
remplace l’opérateur ‘savoir que’. Si ces deux opérateurs engendrent la même
expressivité dans le cas général, cela n’est plus le cas lorsqu’on considère le
langage restreint. En particulier, la formule K1(K2p∨K2¬p) peut être exprimée
à l’aide d’opérateurs ‘savoir si’ par Kif2p ∧Kif1Kif2p.

La logique qui en résulte est la Logique Epistémique de l’Observation, ou
EL-O. Par analogie avec les logiques d’observation, dans lesquelles les connais-
sances des agents proviennent de ce qu’ils observent, les opérateurs dans EL-O
ne s’appellent pas Kifi et CKif i mais Si et JS : Si α se lit “l’agent i voit la
valeur de vérité de α”, et JS α se lit “les agents voient conjointement la valeur de
vérité de α” (autrement dit, il y a connaissance commune de la valeur de vérité
de α). Ces atomes d’observabilité sont définis selon la grammaire suivante :

α ::= p | Si α | JS α

La logique EL-O est suffisamment expressive pour capturer bon nombre de
problèmes du monde réel : elle est multi-agent, a une forme de connaissance
commune, et la connaissance est moins restreinte que dans les logiques dans
lesquelles la profondeur épistémique est bornée, ou l’applicabilité des opérateurs
limitée aux littéraux modaux restreints de [84, 107].

Dans cette thèse nous proposons une version mise à jour de EL-O, ex-
posons les principales propriétés de cette logique, et montrons en particulier que
l’expressivité mentionnée ci-dessus ne vient pas au prix d’une grande complexité
calculatoire : le problème de satisfiabilité EL-O est NP-complet, c’est-à-dire la
même classe de complexité que pour le calcul propositionnel classique. Du côté
dynamique, nous définissons un cadre pour faire de la planification avec EL-O
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dans lequel les actions ont des préconditions et des effets conditionnels, et mon-
trons que le problème de décision de l’existence d’une solution à un problème
de planification ainsi défini est PSpace-complet, à la fois pour la recherche de
plans séquentiels et de plans parallèles. Ceci est encore une fois la même classe
de complexité que les problèmes correspondants en planification classique. La
preuve repose sur des traductions polynomiales des problèmes de planification
EL-O vers des problèmes de planification classiques.

Au cœur de cette efficacité, nous retrouvons les capacités restreintes de
raisonnement des agents ainsi que l’approche symbolique : les états EL-O sont
simplement des ensembles d’atomes d’observabilité indiquant les vérités ontiques
ainsi que ce que les agents savent dans l’état considéré. D’autres cadres de plan-
ification épistémique simple utilisent aussi des bases de connaissance [109, 119],
qui sont aussi prisées pour leur efficacité dans la littérature de vérification de
modèles [120, 21, 22]. L’approche symbolique est encore plus courante lorque
l’on considère la représentation de la croyance [3, 82, 68, 113, 20, 114, 94], pour
laquelle une des préoccupations principales est le maintien de la cohérence des
croyances d’un agent alors qu’il apprend de nouvelles informations. Cependant,
contrairement à la connaissance, la croyance ne se prête pas si facilement que
cela au passage de l’opérateur ‘croire que’ à un opérateur ‘croire si’, ou ‘avoir
une croyance à propos de’. Il est toutefois intéressant de considérer comment les
principes du cadre EL-O pourraient être adaptées au raisonnement avec de la
croyance en plus de la connaissance. Nous abordons ceci à l’aide de deux nou-
veaux opérateurs : l’opérateur de ‘croyance correcte’ TBAi et celui de ‘simple
croyance’ MBAi.

Si nous explorons tout au long de cette thèse la relation entre EL-O et DEL,
la question de la relation entre EL-O et d’autres logiques avec bases de connais-
sances ou de croyances se pose également. Parmi ces dernières, la logique des
attitudes doxastiques (LDA) de Lorini [94] s’avère fournir un cadre très général
dans lequel EL-O ainsi qu’un certain nombre d’autres approches peuvent être
exprimés. Cela nous permet de mieux déterminer les liens entre ces différentes
logiques.

La thèse est organisée de la manière suivante : dans le chapitre 2, nous
donnons un aperçu de notions préexistantes qui nous seront utiles tout au long
du reste de la thèse. Dans le chapitre 3, nous présentons EL-O et prouvons
ses principales propriétés, y compris la NP-complétude de son problème de sat-
isfiabilité. Nous montrons également que EL-O est un fragment de la logique
S5 standard dans laquelle le principe d’induction pour la connaissance com-
mune n’est pas satisfait. Dans le chapitre 4, nous étudions avec un peu plus
de recul les axiomatisations de la connaissance commune et de la connaissance
commune avec opérateur ‘savoir si’, et prenons la nouvelle axiomatisation que
nous proposons comme inspiration pour définir une version de EL-O qui est un
vrai fragment de S5, suivant le principe d’induction pour la connaissance com-
mune. Dans le chapitre 5, nous définissons les actions et tâches de planification
EL-O et montrons que le problème de décision de l’existence d’une solution à un
problème de planification EL-O est PSpace-complet, à la fois pour la planifica-
tion séquentielle et pour la planification parallèle. Nous illustrons ce formalisme
sur un éventail d’exemples d’applications, certains étant nouveaux et d’autres
provenant de la littérature. Dans le chapitre 6, nous explorons un certain nom-
bre de propriétés ayant rapport à la planification EL-O, comme l’extension des
résultats obtenus aux autres versions de EL-O présentées dans les chapitres
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précédents, l’ajout d’opérateurs dynamiques au langage, et enfin la relation en-
tre le formalisme EL-O et DEL ainsi qu’entre EL-O et d’autres approches pour
la planification épistémique simplifiée. Dans le chapitre 7, nous abordons une
manière d’adapter les principes de EL-O afin de définir une logique simple de
connaissance et de croyance avec opérateurs de ‘croyance correcte à propos de’
et ‘simple croyance à propos de’. Enfin, dans le chapitre 8 nous montrons com-
ment intégrer EL-O ainsi que d’autres logiques similaires au cadre plus général
des logiques LDA.

La liste des publications sur lesquelles est basée cette thèse est donnée à la
fin de ce chapitre.

Imagine a situation in which a letter is brought to two agents. The letter is
addressed to one of the agents, and contains a piece of information. The recip-
ient of the letter and their companion alike are curious to know the contents of
the letter. The former may wish to read the letter privately, but if their friend
sees them doing so, this friend will then know that they know the contents of the
letter, and start asking questions. If this turns out to be to no avail, the com-
panion might turn to reading the letter in secret, making sure that the recipient
does not see them and does not know that they know what is in the letter. But
the recipient might also be open to sharing, and read the letter out loud: in this
case, there will be common knowledge between the two agents of the piece of
information. That is, not only will they both know this information, but they
will both know that they both know it, both know that they both know that
they both know it, and so on.

Representing this type of information about knowledge and belief of agents
is the subject of epistemic and doxastic logics. Epistemic logic was introduced
by Hintikka in [76] and popularized from an AI point of view in works such as
[52]. The range of applications of these logics varies greatly, from providing rep-
resentations of knowledge for intelligent robots [46] to investigating blockchain
protocols [67] or analyzing games with imperfect information such as Cluedo or
Hanabi [100].

One way of using these representations that is of particular interest to us
is through epistemic planning: given an initial situation, some set of allowed
actions, and a goal, can we find a sequence of actions that will bring us from
our initial situation to our goal? This can mean everybody learning everybody
else’s secrets through series of phone calls as in the gossip problem [41], plan-
ning movements and announcements so that only desired agents learn crucial
information while others stay ignorant of it as in the selective communication
problem of [80], or indeed figuring out the contents of a letter not destined to
us as in our opening example. While classical (i.e., non-epistemic) planning is a
very rich and active field, there is as of yet no clear consensus on the best way
of adding uncertainty to the mix in terms of agents’ knowledge or beliefs, or on
the best balance between expressivity and computational complexity.

Traditionally, knowledge and belief are represented using Kripke models with
possible worlds for each agent [51]. An agent knows a piece of information if
that information is the same throughout the worlds which that agent considers
possible; slight adjustments in the semantics allow for representation of different
kinds and strengths of knowledge or belief. In particular, a common assumption
is that agents should have a capacity of introspection, that is, to be aware of
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what they do know and even of what they don’t know. The corresponding logic
of knowledge is called S5.

Dynamics were added to this formalism starting with Plaza’s Public An-
nouncement Logic ([111], work originally published in 1989) as well as other
works on specific types of updates [59, 60, 47], before being generalized through
the use of event models [15], resulting in what is now known as Dynamic Epis-
temic Logic (DEL). These event models similarly uses Kripke models to represent
possible events as well as possible worlds. (We refer the reader to [51] for a more
in-depth overview of DEL.) Once again, specific restrictions on these models al-
low for reasoning about different types of knowledge and belief (see e.g. the
work on plausibility models for beliefs [122, 16]).

Several presentations of this type of epistemic logic exist, which take either
‘knowing that’ (Kiφ reads “agent i knows that φ is true”) or ‘knowing whether’
(Kifiφ reads “agent i knows whether or not φ is true”) as a primitive. The
‘knowing whether’ approach has roots in non-contingency logics [106, 78] and
has been developed as an alternative to ‘knowing that’ in works such as [54].
The two operators are interdefinable: an agent knows whether or not a formula
φ is true if they either know that φ is true or they know that φ is false, and
they know that φ is true if φ is true and they know whether or not φ is true.
That is, Kifiφ ↔ Kiφ ∨Ki¬φ and Kiφ ↔ φ ∧ Kifiφ. Therefore presentations
of the standard epistemic logic with ‘knowing whether’ operators have the same
expressivity as those with ‘knowing that’. In addition to these, other logics have
been developed arguing for operators such as ‘knowing what’ or ‘knowing how’
[125, 126, 14]. As argued in [125], being able to reason about knowledge of the
value of constants like a telephone number or the code to open a door through
logics of ‘knowing what’ is of particular interest when considering planning
applications.

While it is very powerful in terms of expressivity, reasoning in standard
epistemic logic is strictly more complex than reasoning in propositional logic:
deciding satisfiability of a formula in S5 is PSpace-complete if there is more
than one agent, and Exptime-complete if the operator of common knowledge is
present [66]. Reasoning with the dynamic extension DEL also proves to be im-
practical in many cases: in particular, planning in DEL is undecidable [26] even
under severe restrictions [27]. It is therefore useful to consider simpler ways of
representing knowledge and actions, leading to reduced complexity results. Such
approaches have been considered e.g. in [45, 118, 77, 110, 119, 108, 84, 80, 107].
These approaches either restrict the range of actions so that uncertainty cannot
grow ‘too much’ throughout the application of a plan [77, 80], simplify the static
logic [118, 107], or both [108, 119]. The simple static logics considered either
are limited to a single agent, lack common knowledge, or restrict the reasoning
capabilities of agents, either by placing an upper bound on the number of nested
knowledge operators (often dropping higher order knowledge altogether) or by
limiting the scope of these operators. In particular, Lakemeyer and Lespérance
[84] propose a language of ‘knowing that’ in which the scope of the knowledge
operator is restricted so that agents cannot know disjunctions. More precisely,
formulas are boolean combinations of restricted modal literals, defined as follows:

λ ::= p | ¬λ | Kiλ

This means that one cannot represent situations in which one agent knows that
another agent knows more than they do: agent 1 can not know that agent 2
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knows whether or not p is true (K1(K2p ∨K2¬p)) without knowing the truth
value of p themselves (we will show this formally in Chapter 6). This is a major
drawback because such formulas are fundamental in communication and more
generally in any form of interaction: the situation described would naturally
lead agent 1 to ask agent 2 about p; more generally, knowing who to ask about
information as well as knowing whether someone is in need of more information
are major factors in prompting communication.

Drawing inspiration from this last approach, an epistemic logic was proposed
in [70, 40] in which the scope of knowledge operators is similarly restricted, but
shifting from ‘knowing that’ to ‘knowing whether’ operators. While the two
presentations are equivalent in the general case, this is no longer true when
considering the restricted language: in particular, we can express K1(K2p ∨
K2¬p) with ‘knowing whether’ operators as Kif2p ∧Kif1Kif2p.

The resulting logic is the Epistemic Logic of Observation, or EL-O. Drawing
a parallel to logics of observation, in which agents’ knowledge come from what
they see, the operators in EL-O are not called Kifi and CKif but Si and JS :
Si α reads “agent i sees the truth value of α”, and JS α reads “all agents jointly
see the truth value of α”. The grammar of these so-called observability atoms
is:

α ::= p | Si α | JS α

EL-O is expressive enough to capture a number of real life problems: it is mul-
tiagent, has a form of common knowledge, and offers agents a wider scope of
knowledge than logics in which knowledge is either bounded in depth or re-
stricted to the modal literals of [84].

In this thesis we provide an updated version of EL-O, give a number of its
properties, and show in particular that this expressivity does not come at a
high complexity price: the satisfiability problem is NP-complete, that is, the
same complexity class as satisfiability in Classical Propositional Calculus. On
the dynamic side, we define a framework for epistemic planning with EL-O in
which actions have preconditions and conditional effects and show that deciding
the existence of a solution to a planning problem is PSpace-complete, for both
sequential and parallel plan search. Once again, this is the same complexity
class as the classical planning counterpart of this problem. The proof involves
defining polynomial translations to the corresponding classical problems.

At the core of this efficiency are the limited reasoning ability of agents as
well as the symbolic approach: EL-O states are simply sets of epistemic atoms
indicating which propositional facts and which knowledge holds at that state.
This feature of reasoning with so-called knowledge bases is shared by a few other
frameworks for simple epistemic planning [109, 119] and is also studied with
regards to model checking efficiency [120, 21, 22]. The symbolic approach with
bases is perhaps more widespread when considering representations of beliefs
[3, 82, 68, 113, 20, 114, 94], in which a core concern is that of maintaining
consistency of an agent’s beliefs even when receiving new information. However,
unlike knowledge, it is not that straightforward to go from a logic of ‘belief
that’ to a logic ‘belief whether’, or more naturally ‘belief about’. Nevertheless,
it is interesting to consider how the principles of the EL-O framework could be
adapted to reason about beliefs as well as knowledge. We will be discussing
this through two new operators: the operator of ‘true belief’ TBAi and that of
‘mere belief’ MBAi.
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While we discuss the relationship between EL-O and DEL throughout this
thesis, another question is that of comparing EL-O to other logics of knowledge
and belief bases. Among these, we find the Logic of Doxastic Attitudes (LDA)
proposed by Lorini [94] to be a very general framework in which EL-O as well
as many of these related approaches can be embedded. This allows us to better
characterize the relationship between all of these logics.

The thesis is organized as follows: in Chapter 2, we give an overview of
preexisting notions that will be useful to us throughout the rest of the thesis.
In Chapter 3, we present EL-O and prove a number of its properties, includ-
ing NP-completeness of its satisfiability problem. We also show that EL-O is
a fragment of the standard S5 logic without the induction principle for com-
mon knowledge. In Chaper 4, we take a step back to discuss axiomatizations of
common knowledge and ‘common knowledge whether’, then take the new ax-
iomatization that we propose as inspiration to define a version of EL-O that is
a true fragment of S5, with the induction principle for common knowledge. In
Chapter 5, we define EL-O actions and planning tasks and show that deciding
the existence of a solution to an EL-O planning task is PSpace-complete both
for sequential and parallel planning. We illustrate the framework with a number
of application problems, both new and from the literature. In Chapter 6, we
discuss some properties around EL-O planning, such as its extension to variants
of EL-O proposed in previous chapters, the addition of dynamic operators to
the language and finally its relation to DEL and other approaches to lightweight
epistemic planning. In Chapter 7, we discuss how to take ideas from EL-O to
define a simple logic of knowledge and belief with operators of ‘true belief about’
and ‘mere belief about’. Finally, in Chapter 8 we show how to embed EL-O as
well as other related logics into the framework of LDA.

This thesis is mainly based on the following publications:

• Cooper, M. C., Herzig, A., Maffre, F., Maris, F., Perrotin, E., & Régnier,
P. (2020). A lightweight epistemic logic and its application to planning.
Artificial Intelligence, 103437.

• Herzig, A. & Perrotin, E. (2020). On the axiomatization of common knowl-
edge. Advances in Modal Logic (AiML 2020) (13:309–328).

• Cooper, M., Herzig, A., Maris, F., Perrotin, E., & Vianey, J. (2020).
Lightweight Parallel Multi-Agent Epistemic Planning. Proceedings of the
International Conference on Principles of Knowledge Representation and
Reasoning (KR 2020) (Vol. 17, No. 1, pp. 274-283).

• Herzig, A. & Perrotin, E. (2021). True belief and mere belief about a propo-
sition and the classification of epistemic-doxastic situations. Filosofiska
Notiser (1-Special issue on modal logic) (pp.103-117).

• Herzig, A., Maris, F., & Perrotin, E. (2021). A dynamic epistemic logic
with finite iteration and parallel composition. Proceedings of the Inter-
national Conference on Principles of Knowledge Representation and Rea-
soning (KR 2021) (Vol. 18, No. 1, pp. 676-680).

• Herzig, A. & Perrotin, E. (2022, forthcoming). Efficient reasoning about
knowledge and common knowledge. Many-Valued and Modal Logics (Es-
says in honour of Yu. V. Ivlev).



Chapter 2

Background
Contexte

Dans ce chapitre nous rappelons un certain nombre de notions que nous serons
amenés à utiliser tout au long de ce manuscrit. Nous donnons d’abord les lan-
gages, sémantiques et axiomatisations des logiques standard de connaissance,
avec ou sans croyance ou connaissance commune. Nous passons ensuite à
l’aspect dynamique et rappelons les bases de la planification classique ainsi que
les modèles à événements de la logique épistémique dynamique standard.

In this chapter we go over some preexisting notions which we will be building
upon in the rest of this thesis. We start with recalling the language, semantics
and axiomatizations of a number of standard static epistemic logics without
and with common knowledge. We then move on to dynamics and go over some
basics of classical planning as well as event models in DEL.
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2.3.4 The case of classical parallel planning . . . . . . . . 26
2.3.5 DEL planning: event models and product updates . 27

2.1 Standard classical and epistemic logics
In this section we give an overview of the standard logics we will be discussing in
the rest of the thesis. We start with a general presentation of boolean languages
and Classical Propositional Calculus (CPC), and then move on to logics of
knowledge and belief, with a focus on S5.

In the entire thesis we will be using Prop to denote a countable set of propo-
sitional variables with typical members p, q, etc., and Agt to denote a finite set
of agents with typical members i, j, etc.

2.1.1 Boolean languages and Classical Propositional Cal-
culus CPC

The language Lbool(V) of boolean formulas over some vocabulary V combines
the elements of V by means of the boolean operators. It is defined by the
grammar

Lbool(V) : φ ::= p | ¬φ | φ ∧ φ

where p ranges over V. The boolean operators ⊤, ⊥, ∨, →, and ↔ are defined
in the standard way, and we use the standard conventions for omitting paren-
theses. The vocabulary of φ is defined inductively by: Voc(p) = {p}, for p ∈ V;
Voc(¬φ) = Voc(φ); Voc(φ ∧ φ′) = Voc(φ) ∪ Voc(φ′).

The vocabulary V is usually supposed to be a countable set of propositional
variables Prop that are not analysed further. However, in the lightweight epis-
temic logic EL-O that will be presented over the next few chapters V has some
structure: its observability atoms involve propositional variables and agents.
Related to that, instead of defining the length of an atomic formula to be 1
we suppose here that each p ∈ Prop has some length ℓ(p) ≥ 1. The length of
complex formulas is then defined inductively from the length of atomic formulas
by: ℓ(¬φ) = ℓ(φ) + 1 and ℓ(φ∧φ′) = ℓ(φ) + ℓ(φ′) + 1. For example, if ℓ(p) = 1
then ℓ(⊤) = 5 because ⊤ abbreviates ¬(p ∧ ¬p).

A state is a subset of the vocabulary V. We denote states by s, s′, etc. The
number of elements of a finite state s is denoted by |s|. In Classical Propositional
Calculus (CPC) the formulas of Lbool(V) are interpreted in the set of all states
2V according to the following truth conditions:

s |= p iff p ∈ s;
s |= ¬φ iff s ̸|= φ;
s |= φ ∧ φ′ iff s |= φ and s |= φ′.

for every p ∈ V. A formula φ is CPC satisfiable iff s |= φ for every s ∈ 2V, and it
is CPC valid iff s |= φ for some s ∈ 2V. It is known that CPC-satisfiability of a
formula is NP-complete and that CPC-validity of a formula is coNP-complete.
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2.1.2 The standard epistemic language
The grammar of the standard language FmlEL is:

FmlEL : φ ::= p | ¬φ | φ ∧ φ | Kiφ | CKφ

where p ranges over the set of propositional variables Prop. The formula Kiφ
reads “agent i knows that φ” and CKφ reads “it is common knowledge that φ”.
From there we can define the operator EK of shared knowledge: EKφ is defined
as
∧

i∈Agt Kiφ, and reads “everybody knows that φ”.
Example 2.1 (Gossip). In the gossip problem [41], each agent has a secret, and
can call other agents in order to share their own secret as well as any other secret
they might know. While many variants of this problem exist featuring various
goals and modalities for sharing information, the goal of the original gossip
problem is simply to obtain shared knowledge of all secrets. This is expressed
in the standard epistemic language FmlEL by

∧
i,j∈Agt(Kjsi ∨ Kj¬si). Shared

knowledge up to depth 2 is expressed by
∧

i,j,r∈Agt(KrKjsi ∨KrKj¬si). In the
generalised gossip problem [70, 73] the goal is shared knowledge up to depth k,
written

∧
i∈Agt

∧
K⃗∈{Kj : j∈Agt}k (K⃗si∨ K⃗¬si) in FmlEL, where {Kj : j ∈ Agt}k

is the set of all sequences of individual ‘knowing that’ operators of length k.

2.1.3 Kripke models and usual epistemic logics
Let us first set aside common knowledge and focus on individual knowledge; we
will come back to common knowledge in section 2.2.

Semantically, a Kripke model [24], also called possible worlds model, is a
tuple M = ⟨W, {Ri}i∈Agt , V ⟩ where W is a nonempty set of possible worlds;
every Ri is a binary relations on W ; and V : W −→ 2Prop is a valuation.
The interpretation of FmlEL formulas with no common knowledge operator in
a pointed Kripke model (M,w) is:

(M,w) |= p iff p ∈ V (w);
(M,w) |= ¬φ iff (M,w) ̸|= φ;
(M,w) |= φ ∧ ψ iff (M,w) |= φ and (M,w) |= ψ;
(M,w) |= Kiφ iff (M,w′) |= φ for every w′ such that wRiw

′.

A formula φ is valid in M if (M,w) |= φ for every w ∈ W ; if C is a class of
Kripke models, φ is valid in C if φ is valid in every Kripke model in C.

The standard classes of Kripke models which we will be considering are
defined via required properties, called frame properties, of the binary relations
Ri. First, the logic of all Kripke frames is K(Ki), an axiomatization of which is
given in Table 2.1. The specific frame properties which we will be considering
and the corresponding axioms are listed in Table 2.2. A number of standard
logics of interest to us are listed in Table 2.3. Logics of knowledge are usually
considered to be at least KT(Ki): agents’ knowledge should be truthful. S4(Ki)
requires agents to have positive introspection: if they know something, then
they should know that they know it. The logic we base most of this thesis on
is S5(Ki), in which agents have both positive and negative introspection: they
know exactly what they do and don’t know. Semantically, in S5(Ki) Kripke
models all relations Ri are equivalence relations. Finally, the logic S4.2(Ki) is
interesting as a logic of knowledge and belief; we expand on this in Section 2.1.4.
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CPC axiomatics of classical propositional calculus
RN (Ki) from φ, infer Kiφ

K (Ki) Ki(φ→ ψ)→ (Kiφ→ Kiψ)

Table 2.1: Axioms for the logic K(Ki)

Axiom name Property of Ri Axiom
T (Ki) Reflexivity Kiφ→ φ
4 (Ki) Transitivity Kiφ→ KiKiφ
.2 (Ki) Confluence ¬Ki¬Kiφ→ Ki¬Ki¬φ
5 (Ki) Euclideanness ¬Kiφ→ Ki¬Kiφ

Table 2.2: Some standard frame properties for Kripke models and the corre-
sponding axioms

2.1.4 Three epistemic-doxastic logics
In this section we recall three epistemic-doxastic logics of ‘knowledge that’ and
‘belief that’: one basic system and two possible extensions.

In epistemology there is a long-standing debate about the relation between
knowledge and belief. For long it was taken for granted that knowledge can
be reduced to belief by defining ‘knowledge that φ’ as ‘justified true belief that
φ’. However, Gettier’s counterexample [61] sparked new debates on the subject
that are still ongoing today, and there is no consensus about whether such a
reduction is possible and how it should be defined. A more cautious enterprise
is to take both Bi and Ki as primitives and to study the interaction between
these two modal operators. This however has to be done with care, as we will
see later in this section.

The traditional language of epistemic-doxastic logic, which we denote here
by FmlEDL, is defined by the following grammar:

FmlEDL : φ ::= p | ¬φ | φ ∧ φ | Bip | Kip

where p ranges over a countable set Prop of propositional variables and i ranges
over a finite set Agt of agents. With the language FmlEDL we are going to study
three different epistemic-doxastic logics.

The weakest logic EDL is axiomatized by the first four lines of Table 2.5,
i.e., by KD5(Bi)+S4(Ki)+KiB+BiKB. An axiomatization of KD5(Bi) is given
in Table 2.4, and the axiomatization of S4(Ki) is the one given in Section 2.1.3.

Logics Axiomatization
KT(Ki) K(Ki)+ T (Ki)
S4(Ki) KT(Ki)+ 4 (Ki)
S4.2(Ki) S4(Ki)+ .2 (Ki)
S5(Ki) KT(Ki)+ 5 (Ki)

Table 2.3: Some standard modal logics
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RN (Bi) from φ, infer Biφ
K (Bi) Bi(φ→ ψ)→ (Biφ→ Biψ)
D(Bi) Biφ→ ¬Bi¬φ
5 (Bi) ¬Biφ→ Bi¬Biφ

Table 2.4: An axiomatization of KD5(Bi)

KD5(Bi) the principles of modal logic KD5 for Bi

S4(Ki) the principles of modal logic S4 for Ki

KiB Kiφ→ Biφ
BiKB Biφ→ KiBiφ
BiBK Biφ→ BiKiφ
5 (Ki) ¬Kiφ→ Ki¬Kiφ

Table 2.5: Principles of the three logics EDL (first four lines), EDL+BiBK , and
EDL+5 (Ki).

The two remaining axioms are interaction axioms governing the interplay of
knowledge and belief: KiB says that knowledge implies belief; BiKB is the
axiom of positive introspection of belief.
Remark 2.1. The positive introspection axiom 4 (Bi): Biφ → BiBiφ is not in
our list but can be derived from BiKB and KiB. Our logic of belief is therefore
KD45(Bi).

Similarly, the negative introspection axiom ¬Biφ → Ki¬Biφ is not in our
list but can be derived from KD5(Bi) and positive introspection of belief. 1

We will moreover be considering two extensions of EDL the axioms of which
are stated in the last two lines of Table 2.5. For the first, which we call
EDL+BiBK , we add an axiom of strong belief BiBK to EDL: if i believes that φ
then i believes that she knows that φ. The second, which we call EDL+5 (Ki),
does not feature the axiom BiBK , but has negative introspection for knowledge
instead.
Remark 2.2. The strong belief axiom BiBK makes the following equivalences
provable in EDL+BiBK :

Ki(Biφ→ Kiψ)↔ Biφ→ Kiψ,

Ki(φ→ Biψ)↔ Ki¬φ ∨Biψ,

Ki(φ→ ¬Biψ)↔ Ki¬φ ∨ ¬Biψ.

Remark 2.3. It is known that the extension of EDL by both BiBK and 5 (Ki)
is not very interesting: in that logic belief implies knowledge [102]. To see that,

1Here is a formal proof:
1. ¬Biφ → Bi¬Biφ 5 (Bi)
2. Bi¬Biφ → KiBi¬Biφ BiKB
3. KiBi¬Biφ → Ki¬Biφ by 4 (Bi), D(Bi), Ki normal
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it suffices to prove that (Biφ ∧ ¬Kiφ) → ⊥ becomes a theorem. Intuitively,
BiBK characterizes agents not being able to tell apart their beliefs from their
knowledge, while 5 characterizes agents knowing exactly what is knowledge and
what is merely belief. 2 We refer the reader to the work of Voorbraak for further
results and discussions [124, 62].

It was established by Lenzen that the logic EDL+BiBK is strongly related
to the modal logic S4.2.

Proposition 2.1 ([88]). The equivalence Biφ ↔ ¬Ki¬Kiφ is a theorem of
EDL+BiBK. The logic S4.2 together with the axiom Biφ ↔ ¬Ki¬Kiφ is an
equivalent axiomatization of EDL+BiBK.

We have seen that S4 .2 (Ki) Kripke models are models ⟨W, {Ri}i∈Agt , V ⟩
such that the individual accessibility relations Ri are reflexive, transitive and
confluent. In [34] S4 .2 (Ki) is described as the logic of reflexive and transitive
Kripke frames with a final cluster. That is, for every i ∈ Agt, there is a set of
worlds Wi ⊆W such that for any w ∈W and w′ ∈Wi it is the case that wRiw

′.
Proposition 2.1 then tells us that what agent i believes is exactly what is true
in this final cluster:

(M,w) |= Biφ iff (M,w′) |= φ for every w′ ∈Wi.

Beyond Lenzen’s papers, an excellent survey of extensions of EDL and their
properties can be found in Aucher’s papers [7] and [8]. (The second publication
extends the conference version in [6].)

Proposition 2.1 allows us to settle the complexity of deciding provability of a
formula φ in EDL+BiBK . If we replace all subformulas Biψ of φ by ¬Ki¬Kiψ
then the resulting formula φ′ only contains modal operators Ki, and its length is
linear in the length of the original φ. Following Proposition 2.1, φ′ is equivalent
to φ in EDL+BiBK . Moreover and again by Proposition 2.1, φ′ is a theorem of
EDL+BiBK if and only if φ′ is a theorem of S4.2. The results in [116, 35, 34]
that the problem of deciding provability in S4.2 is PSpace-complete can be
generalised to multi-agent S4.2, as confirmed in [35]. Hence both provability
and consistency in EDL+BiBK are PSpace-complete. We do not know whether
complexity results for the logics EDL and EDL+5 (Ki) exist; we conjecture that
provability is PSpace-complete in these logics as well.

2.2 Shared and common knowledge
We now consider the properties of shared and common knowledge.

2A proof is:
1. Biφ → BiKiφ BiBK
2. ¬Kiφ → Ki¬Kiφ 5 (Ki)
3. Ki¬Kiφ → Bi¬Kiφ KiB
4. (BiKiφ ∧Bi¬Kiφ) → ⊥ KD(Bi)
5. (Biφ ∧ ¬Kiφ) → ⊥ from 1,2,3,4
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2.2.1 Kripke models with common knowledge
A Kripke model with common knowledge is a tuple M = ⟨W,RAgt , {Ri}i∈Agt , V ⟩
where W is a nonempty set of possible worlds; RAgt and every Ri are binary
relations on W such that the transitive closure of the union of all Ri is a subset
of RAgt ; and V : W −→ 2Prop is a valuation. To obtain the full truth conditions
for formulas of FmlEL in pointed Kripke models, we combine the semantics given
in Section 2.1.3 with the condition for the common knowledge operator:

(M,w) |= CKφ iff (M,w′) |= φ for every w′ such that wRAgtw
′.

Just as before, a formula φ is valid in M if (M,w) |= φ for every s ∈ W ; if
C is a class of Kripke models with common knowledge, φ is valid in C if φ is
valid in every Kripke model in C. Just as with individual knowledge, standard
properties of common knowledge are reflected through corresponding properties
of RAgt .

2.2.2 Shared knowledge
We now consider logics that are at least KT(Ki). The operator EK is a normal
modal operator: it obeys the modal schema K and the rule of necessitation RN .
Moreover it obeys:

T (EK ) EKφ→ φ.
It is straightforward to prove that the following holds for logics of individual
knowledge from KT(Ki) on:
Proposition 2.2. The formula

Def2 (EKif ) (EKφ ∨ EK¬φ)↔
∧

i∈Agt(Kiφ ∨Ki¬φ)
is a theorem of the KT(Ki) axiomatics.

When individual knowledge is S5, it is an established result that the operator
Ki obeys the axiom B:

B(Ki) ¬φ→ Ki¬Kiφ

In this case, despite the fact that the shared knowledge operator EK neither
obeys positive nor negative introspection, it also obeys the B axiom:
Proposition 2.3. The formula

B(EK ) ¬φ→ EK¬EKφ

is a theorem of the S5(Ki) axiomatics.
Proof. The proof is simple, but we give it here as we did not find it in the
literature:

1. φ→ Ki¬Ki¬φ B(Ki)

2. ¬Ki¬φ→ ¬EK¬φ

3. Ki¬Ki¬φ→ Ki¬EK¬φ from (2), Ki normal

4. φ→ Ki¬EK¬φ from (1), (3)

5. φ→ EK¬EK¬φ from (4)
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GFP-based axiomatics
At least KT(Ki) see Table 2.3

RN (CK ) from φ, infer CKφ
K (CK ) CK (φ→ ψ)→ (CKφ→ CKψ)
T (CK ) CKφ→ φ
∗5 (CK ) ¬CKφ→ CK¬CKφ

FP ′ CKφ→ EKCKφ
GFP CK (φ→ EKφ)→ (φ→ CKφ)

RGFP-based axiomatics
At least KT(Ki) see Table 2.3

FP CKφ→ EK (φ ∧ CKφ)
RGFP from φ→ EK (ψ ∧ φ),

infer φ→ CKψ

Table 2.6: Two axiomatizations of common knowledge for logics that are at
least KT: the GFP axiomatics with an induction axiom of [65] (top) and the
RGFP axiomatics with an induction rule of [66, 52] (bottom). For S5 common
knowledge, add the starred axiom ∗5 (CK ) to the GFP-based axiomatics.

2.2.3 Two axiomatizations of common knowledge
We now come back to common knowledge. An overview of the different axioma-
tizations of logics of common knowledge can be found in [91] where the relation
between the underlying logic of individual knowledge and the resulting logic of
common knowledge is studied in depth.

Common knowledge is generally considered to be a fixpoint of shared knowl-
edge: if there is common knowledge that φ, then everybody knows that φ,
everybody knows that everybody knows that φ, and so on. This means that
common knowledge is always at least S4, and is reflected in the requirement in
Kripke models that the transitive closure of the union of all Ri be included in
RAgt .

Whether the converse holds is less generally agreed upon: if it is true that
EKφ, EKEKφ, EKEKEKφ, and so on, that is, if EKkφ is true for every
integer k, should it be the case that CKφ? We call this property the induction
principle for common knowledge. It has been argued by some that this would
make common knowledge too strong [95, 69], and logics in which this does not
hold have been developed, such as that by Genesereth and Nilsson [58], used in
modal extensions of logic programming in the 90s [13, 12], in which common
knowledge is seen as knowledge of a ‘fictitious knower’ or ‘any fool’.

Nevertheless, most standard logics of common knowledge do uphold this
equivalence. We give in Table 2.6 two prevalent axiomatizations of such logics of
common knowledge for logics that are at least KT [65, 66, 52]. Other axiomatics
can be found in [87, 83]. Such axiomatizations are popular in Dynamic Epistemic
Logics [23, 51]. Common knowledge implying any nesting of shared knowledge
is captured by K (CK ), T (CK ), and FP ′ on the left side, and by FP on the
right. The other direction is captured by the induction axiom GFP on the
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S5(Ki) see Table 2.3
RN (CK ) from φ, infer CKφ

K (CK ) CK (φ→ ψ)→ (CKφ→ CKψ)
T (CK ) CKφ→ φ
5 (CK ) ¬CKφ→ CK¬CKφ

FP ′ CKφ→ EKCKφ

Table 2.7: Axiomatization of the logic S5\GFP of S5-based common knowledge
without the induction principle for common knowledge

left and the induction rule RGFP on the right. When considering S5 common
knowledge, the axiom 5 (CK ) is added in the GFP-based axiomatics, while in
the RGFP-based axiomatics common knowledge is S5 iff individual knowledge
is S5. We will call these axiomatics “KT-based” when referring to the version
in which individual knowledge is KT(Ki), and “S5-based” when referring to the
version in which individual knowledge is S5(Ki).

We will also call S5\GFP the logic described by all axioms of the S5-based
GFP axiomatized except for GFP, as given in Table 2.7. S5\GFP Kripke
models are Kripke models M = ⟨W,RAgt , {Ri}i∈Agt , V ⟩ in which RAgt and all
Ri are equivalence relations and (

⋃
i∈Agt Ri)∗ ⊆ RAgt , where (

⋃
i∈Agt Ri)∗ is the

transitive closure of the union of all Ri. In this thesis we will refer to Kripke
models with S5 individual and common knowledge which obey the induction
principle for common knowledge simply as S5 Kripke models. These are models
M = ⟨W,RAgt , {Ri}i∈Agt , V ⟩ in which RAgt and all Ri are equivalence relations
and (

⋃
i∈Agt Ri)∗ = RAgt .

Let us analyze the two axiomatics of Table 2.6 a bit further. It is a standard
result in normal modal logics that axiom 4 can be proved from T and 5 . In the
case of common knowledge, 4 (CK ) is already a theorem of the KT-based GFP
axiomatics thanks to the induction axiom schema:

Proposition 2.4. The formula

4 (CK ) CKφ→ CKCKφ

is a theorem of the KT-based GFP axiomatics.

Proof. 1. CK (CKφ→ EKCKφ) from FP ′ and RN (CK )

2. CK (CKφ→ EKCKφ)→ (CKφ→ CKCKφ) GFP

3. CKφ→ CKCKφ from (1) and (2)

Proposition 2.5. Axiom 5 (CK ) is redundant in the S5-based GFP axiomatics.

Proof. 1. ¬CKφ→ Ki¬KiCKφ B(Ki)

2. CKφ→ KiCKφ from FP ′

3. Ki¬KiCKφ→ Ki¬CKφ from (2), Ki normal

4. ¬CKφ→ Ki¬CKφ from (1), (3)
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5. ¬CKφ→ EK¬CKφ from (4)

6. CK (¬CKφ→ EK¬CKφ) from (5) by RN (CK )

7. CK (¬CKφ→ EK¬CKφ)→ (¬CKφ→ CK¬CKφ) GFP

8. ¬CKφ→ CK¬CKφ from (6) and (7)
Note the use of the axiom B(Ki), valid in S5(Ki) but not in general.

The axiomatics with the induction rule RGFP are due to [66, 52]; the induc-
tion rule can actually be traced back to the analysis of common knowledge in
the philosophical literature [117]. Interestingly and contrasting with the GFP
axiomatics, the S5 axioms and rules for CK are implicit here:

Proposition 2.6. The formulas K (CK ), T (CK ), 4 (CK ), are theorems and
the rule RN (CK ) is derivable in the KT-based RGFP axiomatics. Moreover,
the formula ∗5 (CK ) is a theorem of the S5-based RGFP axiomatics.

Proof. The proofs are simple, but we give them here for completeness. K (CK )
can be proved by substituting φ by CKφ ∧ CK (φ → ψ) in RGFP, using FP
and the fact that EK is a normal modal operator. T (CK ) can be proved from
FP and T (EK ). 4 (CK ) can be proved by substituting both φ and ψ by CKφ
in RGFP, using FP and the fact that EK is a normal modal operator. The
rule RN (CK ) can be derived with RGFP if we substitute ⊤ for φ and φ for ψ
and use the fact that EK is a normal modal operator. It is only the proof of
∗5 (CK ) which is a bit longer:

1. φ→ EK¬EK¬φ B(EK )

2. EK¬EK¬φ→ EK¬CK¬φ from FP, EK normal

3. EK¬CK¬φ→ EKEK¬EKCK¬φ from B(EK ), EK normal

4. EKEK¬EKCK¬φ→ EKEK¬CK¬φ from FP, EK normal

5. EK¬CK¬φ→ EK (¬CK¬φ ∧ EK¬CK¬φ) from (3), (4), EK normal

6. EK¬CK¬φ→ CK¬CK¬φ from (5) by RGFP

7. φ→ CK¬CK¬φ from (1), (2), (6)

2.2.4 Equivalence of the two axiomatics
The RGFP axiomatics and the GFP axiomatics are both complete for the same
semantics. Therefore all axioms in one system must be derivable in the other,
and the inference rules of one system are admissible in the other. We are
however not aware of a direct equivalence proof in the respective systems in the
literature, so we give it below.3 We prove the two directions:

3The paper by Bucheli et al. [32] establishes that RGFP is derivable from a variant of
GFP, CK(φ → EKφ) → (EKφ → CKφ) (which they have to choose instead of GFP because
they take K as the logic of individual knowledge; see Remark 2.4). However their proof is
indirect, making use of an intermediate system.
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1. in the KT-based RGFP axiomatics, K (CK ), T (CK ), FP ′, GFP are the-
orems and RN (CK ) is derivable, and in the S5-based RGFP axiomatics,
5 (CK ) is a theorem;

2. in the GFP axiomatics, FP ′ is a theorem and RGFP is derivable.

We have already established in Section 2.2.3 that K (CK ), T (CK ), and
5 (CK ) are theorems of the relevant RGFP axiomatics. Second and quite ob-
viously, as EK is a normal modal operator, we have that FP ′ is provable from
FP and that, the other way round, FP is provable from FP ′ and T (CK ). It
remains to prove the equivalence of the induction axiom and the induction rule.

Proposition 2.7. The induction axiom GFP is a theorem of the KT-based
RGFP axiomatics (and a fortiori of the S5-based RGFP axiomatics).

Proof. 1. CK (φ→ EKφ)→ EKCK (φ→ EKφ) from FP, EK normal

2. (CK (φ→ EKφ) ∧ φ)→ EKφ from T (CK )

3. (CK (φ→ EKφ) ∧ φ)→ (EKφ ∧ EKCK (φ→ EKφ)) from (1) and (2)

4. (CK (φ→ EKφ) ∧ φ)→ EK ((φ ∧ CK (φ→ EKφ)) ∧ φ) from (3), EK
normal

5. (CK (φ→ EKφ) ∧ φ)→ CKφ from (4) by RGFP

Proposition 2.8. The induction rule RGFP is derivable in the GFP axiomat-
ics.

Proof. 1. φ→ EK (ψ ∧ φ) hypothesis

2. CK (ψ ∧ φ→ EK (ψ ∧ φ)) from (1) by RN (CK )

3. CK (ψ ∧ φ→ EK (ψ ∧ φ))→ (ψ ∧ φ→ CK (ψ ∧ φ)) GFP

4. ψ ∧ φ→ CK (ψ ∧ φ) from (2), (3)

5. φ→ ψ ∧ φ from (1) by T (EK )

6. φ→ CKψ from (5), (4), CK normal

Remark 2.4. Notice how both proofs make use of the truth axiom T . This is
due to the fact that T is ‘hidden’ in GFP in order for the presentation of GFP
to be more concise. A more general presentation of the induction axiom found
in the literature is the axiom CK (φ→ EKφ)→ (EKφ→ CKφ). This axiom is
equivalent to GFP in the presence of T , and equivalent to RGFP even without
T . 4

4We call GFP′ this alternative axiom. Equivalence of GFP and GFP′ in the presence of
T is straightforward. A direct proof of the equivalence with RGFP is as follows.

From RGFP:
1. EKφ ∧ CK(φ → EKφ) → EKφ ∧ (EKφ → EKEKφ) from FP, EK normal
2. EKφ ∧ CK(φ → EKφ) → EK(φ ∧ EKφ ∧ CK(φ → EKφ)) from (1), EK normal
3. EKφ ∧ CK(φ → EKφ) → CKφ from (2) and RGFP
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2.2.5 From ‘knowing that’ to ‘knowing whether’
An alternative presentation of logics of knowledge (that is, logics that are at
least KT) takes ‘knowing whether’ rather than ‘knowing that’ as a core concept.
The language thus becomes:

Fml if
EL : φ ::= p | ¬φ | φ ∧ φ | Kifiφ | CKifφ

where p ranges over Prop. Kifiφ reads “agent i knows whether or not φ is true”,
and CKifφ reads “it is common knowledge whether or not φ is true”. The
operator of shared knowledge whether, EKif , can be defined from individual
knowledge whether: EKifφ is defined as

∧
i∈Agt Kifiφ. These operators and

the standard ‘knowing that’ operators are interdefinable: in Fml if
EL, Kiφ can

be defined as φ ∧ Kifiφ, and CKφ as φ ∧ CKifφ; and in FmlEL, Kifiφ can be
defined as Kiφ∨Ki¬φ and CKifφ and CKφ∨CK¬φ. Alternative possibilities
of defining the ‘knowing whether’ operators for shared and common knowledge
are explored in [53], but they turn out to be equivalent when the considered
operators are at least KT, as they are here.

The semantics of the ‘knowing whether’ operators Kifi and CKif are as
follows. Given a Kripke model M = ⟨W,RAgt , {Ri}i∈Agt , V ⟩,

(M,w) |= Kifiφ iff (M,w) and (M,w′) agree on φ for every w′ s.t. wRiw
′;

(M,w) |= CKifφ iff (M,w) and (M,w′) agree on φ for every w′ s.t. wRAgtw
′;

where agreement on a formula is defined naturally: (M,w) and (M,w′) agree on
φ when either (M,w) |= φ and (M,w′) |= φ, or (M,w) ̸|= φ and (M,w′) ̸|= φ.

One way to axiomatize logics of ‘knowing whether’ is to simply take an
axiomatization of the corresponding logic of ‘knowing that’ and replace all in-
stances of Kiφ with φ ∧ Kifiφ, and all instances of CKφ with φ ∧ CKifφ. A
more direct axiomatization of the logic without common knowledge is given in
[54], with the definition and axiomatization of common knowledge whether be-
ing left as an open question. The matter is discussed and an axiomatization for
S5 given in [53]; we recall it in Table 2.8. We will be discussing this further and
proposing a different axiomatization in Chapter 3.

2.2.6 Bisimulations
In order to compare the EL-O framework to standard DEL we will be making
use of bisimulation properties. A bisimulation [104] between two Kripke models
M = ⟨W,RAgt , {Ri}i∈Agt , V ⟩ and M ′ = ⟨W ′, R′

Agt , {R′
i}i∈Agt , V

′⟩ is a relation
Z ⊆ W ×W ′ such that for all w ∈ W and w′ ∈ W ′ such that wZw′: V (w) =
V ′(w′) (atomic); if wRAgtu for some u ∈ W then uZu′ and w′R′

Agtu
′ for some

u′ ∈ W ′, and if wRiu for some u ∈ W then uZu′ and w′R′
iu

′ for some u′ ∈ W ′

(forth); if w′R′
Agtu

′ for some u′ ∈ W ′ then uZu′ and wRAgtu for some u ∈

From GFP′:
1. φ → EK(φ ∧ ψ) hypothesis
2. CK(φ ∧ ψ → EK(φ ∧ ψ)) from (1) and RN(CK)
3. EK(φ ∧ ψ) → CK(φ ∧ ψ) from (2) and GFP
4. φ → CK(φ ∧ ψ) from (1) and (3)
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CPC Axiomatics of classical propositional calculus
Con(Kifi) Kifi(φ→ ψ) ∧Kifi(¬ψ → φ)→ Kifiφ
Dis(Kifi) Kifiφ→ Kifi(φ→ ψ) ∨Kifi(¬φ→ χ)

T (Kifi) Kifiφ ∧Kifi(φ→ ψ) ∧ φ→ Kifiψ
5 (Kifi) ¬Kifiφ→ Kifi¬Kifiφ

↔ (Kifi)) Kifiφ↔ Kif¬φ
RN (Kifi) from φ, infer Kifiφ
RE(Kifi) from φ↔ ψ, infer Kifiφ↔ Kifiψ

Con(CKif ) CKif (φ→ ψ) ∧ CKif (¬ψ → φ)→ CKifφ
Dis(CKif ) CKifφ→ CKif (φ→ ψ) ∨ CKif (¬φ→ χ)

T (CKif ) CKifφ ∧ CKif (φ→ ψ) ∧ φ→ CKifψ
Mix(CKif ) CKifφ→ EKifφ ∧ EKif CKifφ
Ind(CKif ) CKif (φ→ EKifφ)→ (φ→ CKifφ)
RN (CKif ) from φ, infer CKifφ
RE(CKif ) from φ↔ ψ, infer CKifφ↔ CKifψ

Table 2.8: The axiomatization of the logic S5 with ‘knowing whether’ of [53].

W , and if w′R′
iu

′ for some u′ ∈ W ′ then uZu′ and wRiu for some u ∈ W
(back). Two pointed models (M,w) and (M ′, w′) are bisimilar if there exists
a bisimulation Z between M and M ′ such that wZw′. In that case, we have
(M,w) |= φ iff (M ′, w′) |= φ for every formula φ ∈ FmlEL [24].

2.3 Classical and DEL planning
We now define classical planning tasks [57] and more generally planning tasks
over a vocabulary V. Actions have preconditions and conditional effects, and
are assumed to be deterministic. We define solvability of planning tasks via
sequential plans, in which actions are performed one at a time, and via parallel
plans, in which several actions might be performed simultaneously at each step.
We finish the section by describing the dynamics of DEL planning.

2.3.1 Action descriptions and planning tasks
Just as for the definition of boolean formulas in Section 2.1.1, we consider an
abstract vocabulary V with which actions are described. An action description
over V (or action for short) is a pair a = ⟨pre(a), eff (a)⟩ where pre(a) ∈ Lbool(V)
and eff (a) ⊆ Lbool(V) × 2V × 2V. The formula pre(a) is the precondition of a,
describing when the action may be applied, and eff (a) are the conditional effects
of a, describing which atomic formulas the action may add or remove from the
current state under additional conditions. For each conditional effect

ce = ⟨cnd(ce), ceff +(ce), ceff −(ce)⟩

in eff (a), cnd(ce) is the condition of ce, ceff +(ce) are the added and ceff −(ce)
are the deleted atomic formulas. The vocabulary and the length of an action
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description are defined by:

Voc(a) = Voc(pre(a)) ∪
⋃

ce∈eff (a)

(
Voc(cnd(ce)) ∪ ceff +(ce) ∪ ceff −(ce)

)
;

ℓ(a) = ℓ(pre(a)) +
∑

ce∈eff (a)

ℓ(cnd(ce)) +
( ∑

p∈ceff +(ce)∪ceff −(ce)

ℓ(p)
) .

Remember that each p ∈ V has its length ℓ(p) ≥ 1.

Example 2.2 (Lights on). The action of an agent i flipping a light switch in a
room can be represented as:

flipi = ⟨Ini, {⟨On, ∅, {On}⟩
⟨¬On, {On}, ∅⟩}⟩

where Ini is a propositional variable that is true when the agent is in the room,
and On is a propositional variable representing the light being on. That is,
the action flipi has as a precondition that agent i is in the room, and has two
conditional effects: first, if the light is on, then On should become false, hence
we have {On} as a negative effect and no positive effects. Second, if the light is
off (i.e. On is false), then On should become true, hence in that case we have
{On} as a positive effect and no negative effects.

A planning task over V is a triple P = ⟨Act, s0,Goal⟩ where Act is a set of
action descriptions, s0 ∈ 2V is the finite initial state, and Goal ∈ Lbool(V) is the
goal formula. Its vocabulary and length are:

Voc(P) =
( ⋃

a∈Act
Voc(a)

)
∪ s0 ∪ Voc(Goal);

ℓ(P) = |s0|+ ℓ(Goal) +
∑

a∈Act
ℓ(a).

2.3.2 Semantics and solvability of planning tasks
An action a is interpreted in terms of a deterministic partial function τa on
states. Given some set of actions Act and corresponding action-interpreting
functions τ = {τa : a ∈ Act}, we say that the state s is reachable from the
state s0 via τ by a sequential plan if there exists an integer m ≥ 0, a sequence
of states s0, . . . , sm from 2V, and a sequence of actions a1, . . . , am from R such
that s0 = s0, s = sm, and for every k such that 1 ≤ k ≤ m, τak

(sk−1) is defined
and τak

(sk−1) = sk . Given a such interpretation of actions τ , a planning task
⟨Act, s0,Goal⟩ is solvable by a sequential plan via τ if there exists a state s
satisfying the goal formula that is reachable from the initial state s0 via τ by a
sequential plan.

A parallel plan is a sequence of steps each of which is a set of actions that
are executed simultaneously. A set of actions A = {a1, . . . , am} determines a
partial function τA on states. Given a set of actions Act and corresponding
action-interpreting functions τ = {τA : A ⊆ Act}, a state s is reachable from
the state s0 via τ by a parallel plan if there is a sequence A1, . . . ,Am of steps
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and a sequence of states s0, . . . , sm with m ≥ 0 such that s = sm and for every
k such that 1 ≤ k ≤ m, τAk

(sk−1) is defined and τAk
(sk−1) = sk. Given a such

interpretation τ of sets of actions in Act, a planning task ⟨s0,Goal⟩ is solvable
by a parallel plan via τ if there is at least one state s satisfying Goal that is
reachable by a parallel plan from s0 via τ ; otherwise it is unsolvable by a parallel
plan. Solvability by a sequential plan is the special case where the parallel plan
is a sequence of singletons.

2.3.3 The case of classical sequential planning
Two conditional effects of an action description a should not conflict when pre(a)
and their triggering conditions are jointly satisfiable. In the case of classical
planning, that is, planning in CPC, we say that a is classically consistent if and
only if for every ce1, ce2 ∈ eff (a), if pre(a)∧cnd(ce1)∧cnd(ce2) is CPC satisfiable
then ceff +(ce1) and ceff −(ce2) are disjoint.

Example 2.3. For an example of inconsistency consider the following descrip-
tion of the action swapp,q swapping the truth values of p and q. Suppose
this action can always be executed, so its precondition is pre(swapp,q) = ⊤,
and suppose its conditional effects are naively described by eff (swapp,q) =
{⟨p, {q}, {p}⟩, ⟨q, {p}, {q}⟩}. These two conditional effects conflict because ⊤ ∧
p ∧ q is CPC-satisfiable. Observe that we can make the description classically
consistent by replacing the precondition by ¬(p ↔ q): the action is executable
only if the truth values of p and q differ.

A classically consistent action description determines a partial function τCPC
a

as follows: given a state s ⊆ V, τCPC
a is defined at s if s |=CPC pre(a). In that

case we say that a is executable at s and stipulate:

τCPC
a (s) =

(
s \

⋃
ce∈eff (a),
s|=cnd(ce)

(
ceff −(ce)

))
∪

⋃
ce∈eff (a),
s|=cnd(ce)

ceff +(ce).

That is, if the precondition of a is satisfied then a removes negative effects
of all those conditional effects ce that ‘fire’, i.e., whose triggering conditions
are satisfied, and it adds the positive effects of those ce. As a’s description is
consistent it does not matter in which order we apply negative and positive
effects.

Example 2.4 (Lights on, ctd.). Let s = {In1,On}, and flip1 be the action of
agent 1 flipping a light switch described above. Then flip1 is executable at s,
τflip1(s) = {In1}, and τflip1(τflip1(s)) = {In1,On}. If s = {On}, the agent is not in
the room, and cannot flip the switch: the precondition of flip1 is not satisfied.
Hence flip1 is not executable at the state {On}.

A planning task is classically solvable by a sequential plan if a state satisfying
the goal formula is reachable from the initial state by a sequential plan via
{τCPC

a : a ∈ Act}, i.e., via the CPC-interpretation of the actions in Act. It
is known that classical solvability of a planning task is a PSpace-complete
reasoning problem [33].
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2.3.4 The case of classical parallel planning
Parallel planning comes with a few more conditions for consistency of actions.
We follow the notion of interference from [112], which guarantees that non-
interfering actions can be interleaved in any order: in reality, “parallel” actions
are rarely executed exactly at the same time, and the effects of these actions
should not be changed depending on which of them happens to start first. In-
tuitively, in any parallel plan, no effect of an action should be destroyed by an
effect of another action executed in parallel, and no precondition of an action
should be destroyed by an effect of another action executed in parallel. Let us
define these two consistency criteria formally.

Actions a1 and a2 that are executable at s have no contradictory effects at
s if: for every ce1 ∈ eff (a1) and ce2 ∈ eff (a2), if s |= cnd(ce1) ∧ cnd(ce2) then
ceff +(ce1) ∩ ceff −(ce2) = ∅. It follows that the description of the individual
action a is consistent iff a has no contradictory effects with itself in every s such
that s |= pre(a).

We say that two different actions a1 and a2 that are executable at s have no
cross-interaction at s if the following hold:

1. s and τa1(s) agree on pre(a2) and on the condition cnd(ce2) of every con-
ditional effect ce2 ∈ eff (a2);

2. s and τa2(s) agree on pre(a1) and on the condition cnd(ce1) of every con-
ditional effect ce1 ∈ eff (a1).

Example 2.5 (Lights on, ctd.). Consider instead of flipi the actions switchOni

and switchOffi defined as follows:

switchOni = ⟨⊤, {⟨⊤, {On}, ∅⟩}⟩
switchOffi = ⟨⊤, {⟨⊤, ∅, {On}⟩}⟩

That is, both actions have no preconditions and one effect with no conditions.
switchOni simply ensures that the light is on after the action is executed, and
switchOffi ensures that the light is off after the action is executed. Both actions
are executable in every state, but have contradictory effects at every state: if
they are executed at the same time, the light will be turned on and off at the
same time.

If we add a precondition on the conditional effects of both actions so that
these effects only ‘fire’ when the light is not in the right position, the actions
become:

switchOn′
i = ⟨⊤, {⟨¬On, {On}, ∅⟩}⟩

switchOff′
i = ⟨⊤, {⟨On, ∅, {On}⟩}⟩

These actions no longer have contradictory effects, as the preconditions of both
effects are not simultaneously satisfiable. However, they have cross-interactions
at every state: if the light is on at s (On ∈ s), then s and τswitchOff′

i
(s) disagree

on the condition of the conditional effect of switchOn′
i, and if the light is off

at s (On ̸∈ s), then s and τswitchOn′
i
(s) disagree on the conditional effect of

switchOff′
i. Hence the order in which these actions are executed would change

which conditional effects would fire for each action.
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Putting things together, we say that a set of actions A = {a1, . . . , am} such
that all ai are executable at s is consistent in s if for every ai, aj ∈ A such that
ai ̸= aj ,

1. ai and aj have no contradictory effects in s;

2. ai and aj have no cross-interaction in s.

In classical planning, the function τCPC
A is defined at s if every ai ∈ A is

executable at s and A is consistent in s. When τCPC
A is defined at s then:

τCPC
A (s) =

(
s \

⋃
a∈A,ce∈eff (a),

s|=cnd(ce)

(
ceff −(ce)

))
∪

⋃
a∈A,ce∈eff (a),

s|=cnd(ce)

ceff +(ce).

When {a1, a2} is consistent in s then the actions can be interleaved arbitrar-
ily: we have τ{a1,a2}(s) = τa2(τa1(s)) = τa1(τa2(s)).

Example 2.6. Consider the actions of agents entering and exiting a room:

enteri = ⟨¬Ini, {⟨⊤, {Ini}, ∅⟩}⟩
exiti = ⟨Ini, {⟨⊤, ∅, {Ini}⟩}⟩

Consider a setting with two agents 1 and 2, and the state s = {In1}. Then
τ{exit1,enter2}(s) = {In2}.

A planning task is classically solvable by a parallel plan if a state satisfying
the goal formula is reachable from the initial state by a parallel plan via {τCPC

A :
A ⊆ Act}. Note that due to the consistency requirements, a planning task is
classically solvable by a parallel plan iff it is classically solvable by a sequential
plan.

2.3.5 DEL planning: event models and product updates
Dynamic Epistemic Logic (DEL) is the dynamic extension of the epistemic logics
presented in Section 2.1 and 2.2. DEL-based planning has been studied exten-
sively in the literature in the last ten years [26, 9, 29, 37, 28, 27]. Just like
classical planning tasks, DEL planning tasks consist of an initial situation, some
actions, and a goal formula. The initial situation is a standard Kripke model
with possible worlds; all that is left is to describe DEL actions.

An S5 event model is a tuple Evt = ⟨W Evt, REvt
Agt , {REvt

i }i∈Agt , preEvt, postEvt⟩
where W Evt is a finite set of events; REvt

Agt and the REvt
i are equivalence relations

on W Evt such that every REvt
i is a subset of REvt

Agt ; preEvt : W Evt −→ FmlEL maps
events to their preconditions; and postEvt : W Evt −→ (Prop −→ FmlEL) maps
events to partial functions such that for every e ∈W Evt, postEvt(e) is undefined
almost everywhere. Just like with standard Kripke models, the properties of
REvt

i and REvt
Agt can be adjusted to correspond to different types of knowledge

and belief. A pointed event model is a pair (Evt, e) where e ∈ W Evt is the
designated event (or the actual event). A multipointed event model is a pair
(Evt, E) where E ⊆ W Evt is such that for any two distinct events e, e′ in E,
the preconditions of e and e′ are incompatible, that is, preEvt(e) ∧ preEvt(e′) is
unsatisfiable.
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⊤
p← φ

Assign(p,φ):
e1

Agt ∪
{Agt}

φ

skip

PubAnn(φ):
e2

Agt ∪
{Agt}

φ

skip

SemiPrivAnn(φ,i):
e+

¬φ

skip

e−

{Agt} ∪ Agt \ {i}

⊤
skip

PubForget(p):
e+

⊤
p← ¬p

e−

Agt ∪ {Agt}

Figure 2.1: DEL event models for the public assignment of φ to p (top left), the
truthful public announcement of φ (bottom left), the truthful semi-private an-
nouncement of ¬φ to agent i (top right), and the public forgetting of p (bottom
right).

Here are some examples and their representations as graphs, in which nodes
are events, labelled arrows represent the equivalence relations, the actual event is
denoted via a double outline, and pre- and postconditions are given respectively
in the top and bottom line in the nodes. An undefined postcondition is denoted
by skip. We will often omit transitive and reflexive arrows for clarity.

1. The public assignment of φ to p, i.e., the event where p publicly gets
the truth value of φ, is modeled by an event model Assign(p, φ) with a
single point e1 whose precondition is ⊤, with total relations, i.e., such
that REvt

Agt = REvt
i = {⟨e1, e1⟩}, and with the postcondition function

postEvt(e1) such that postEvt(e1)(p) = φ and undefined for all q ̸= p. This
event model is shown on the top left-hand side in Figure 2.1.

2. The truthful public announcement of a formula φ is modeled by an event
model PubAnn(φ), represented on the bottom right-hand side of Figure
2.1, with a single point e2 whose precondition is φ, with total relations
and with an undefined postcondition function.

3. The truthful semi-private announcement whether φ to agent i is when i
learns whether p and the other agents only learn that i learns whether
p without learning whether p themselves. This is modeled by an event
model SemiPrivAnn(φ, i) with two points e+ and e− where preEvt(e+) = φ
and preEvt(e−) = ¬φ, with an undefined postcondition function, and with
REvt

Agt = REvt
j = {e+, e−} × {e+, e−} for every j ̸= i and REvt

i =
{⟨e+, e+⟩, ⟨e−, e−⟩}. When we want to model that i learns that φ then
e+ is the designated event; otherwise it is e−, as is the case in the top
right-hand model of Figure 2.1.

4. The public forgetting of a propositional variable p by all agents [50] can be
captured by an event model PubForget(p) with two points e+ and e− where
preEvt(e+) = preEvt(e−) = ⊤, where REvt

Agt = REvt
i = {e+, e−} × {e+, e−}
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for every i, and where postEvt is such that postEvt(e+)(p) = skip, and
postEvt(e−)(p) = ¬p. This event model is represented on the bottom
right-hand side in Figure 2.1.

Given a Kripke model M = ⟨W,RAgt , {Ri}i∈Agt , V ⟩ as defined in Section
2.2.1 and an event model Evt, the product update of M by Evt is the Kripke
model M ⊗ Evt = ⟨W ′, R′

Agt , {R′
i}i∈Agt , V

′⟩ with

• W ′ = {(s, e) : s ∈W, e ∈W Evt, and (M, s) |= preEvt(e)};

• (s, e)R′
Agt(t, f) iff sRAgtt and eREvt

Agtf ;

• (s, e)R′
i(t, f) iff sRit and eREvt

i f , for every i ∈ Agt;

• V ′((s, e)) = {p : postEvt(e)(p) is undefined and (M, s) |= p} ∪
V ((s, e)) = {p : postEvt(e)(p) is defined and (M, s) |= postEvt(e)(p)}.

The product update of a pointed Kripke model (M, s) with a pointed event
model (Evt, e) is the pointed Kripke model (M ⊗ Evt, (s, e)), defined only when
(M, s) |= preEvt(e). The product update of a pointed model (M, s) with a
multipointed event model (Evt, E) is the pointed model (M ⊗ Evt, (s, e)) where
e ∈ E is such that (M, s) |= preEvt(e), defined when such an e exists in E. In
that case the hypothesis in the definition of a multipointed event model that
the preconditions of different events are incompatible ensures that it is unique.



Chapter 3

EL-O: Epistemic Logic of
Observation
La logique épistémique de l’observation : EL-O

La logique EL-O est un fragment de la logique DEL-PAO qui fut introduite dans
[70]. La thèse [99] présente une vue d’ensemble du travail précédemment effectué
sur EL-O. Cette logique est fondée sur un langage simple : les formules sont des
combinaisons booléennes d’atomes d’observation, ces derniers étant définis de
la manière suivante :

ATM ∋ α ::= p | Si α | JS α
où p représente une variable propositionelle, Si α se lit “l’agent i voit α” (c’est
à dire que l’agent i sait si α est vrai ou non) et JS α se lit “les agents voient
conjointement α” (c’est à dire qu’il y a connaissance commune de la valeur de
vérité de α).

Dans ce chapitre nous présentons une version perfectionnée de EL-O reposant
sur une nouvelle sémantique : les états sont des ensembles quelconques d’atomes
d’observation, et les principes d’introspection sont simulés dans la sémantique.
Cela nous permet d’obtenir une propriété de modèles finis : toute formule satisfi-
able l’est dans un état fini. Nous montrons aussi que le problème de satisfiabilité
EL-O est NP-complet, et donnons une axiomatisation de cette logique. Nous
étudions ensuite la relation entre EL-O et la logique épistémique standard et
montrons que EL-O est un fragment de la logique S5\GFP. Nous considérons
enfin plusieurs possibilités pour étendre EL-O. Tout d’abord, nous montrons qu’il
est naturel d’ajouter des constantes au langgage afin de généraliser la notion de
‘savoir la valeur de vérité de’ à celle de ‘savoir la valeur de’ (un code, un numéro
de téléphone, etc.). En revanche, il est moins simple d’étendre l’opérateur de
vision jointe JS à des groupes arbitraires d’agents, et nous discutons brièvement
des problèmes que cela soulèverait.

The logic EL-O is the static fragment of the logic DEL-PAO, introduced in [70].
An overview of previous work on EL-O can be found in [99]. In this chapter we
present a more polished version of EL-O with updated semantics and study some
of its properties. In particular, we give a finite model property and show that

34
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checking EL-O satisfiability is NP-complete. We then investigate the relation
between EL-O and standard epistemic logics and show that EL-O is a fragment
of the logic S5\GFP. We finally discuss a few possibilities of extending EL-O.
Mainly, we show that adding constants to the language and seeing the operator
Si as a ‘knowing what’ or ‘knowing the value of’ operator is easily done. Less
straightforward is generalizing the joint vision operator JS to arbitrary groups
of agents, and we end the chapter by discussing the issues this would bring up.

This chapter is mainly based on the following publications:

• Cooper, M. C., Herzig, A., Maffre, F., Maris, F., Perrotin, E., & Régnier,
P. (2020). A lightweight epistemic logic and its application to planning.
Artificial Intelligence, 103437.

• Herzig, A., Maris, F., & Perrotin, E. (2021). A dynamic epistemic logic
with finite iteration and parallel composition. Proceedings of the Inter-
national Conference on Principles of Knowledge Representation and Rea-
soning (KR 2021) (Vol. 18, No. 1, pp. 676-680).
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3.1 Syntax and semantics of EL-O
In this section we describe the language and semantics of EL-O. While the
observability atoms and introspection principles described in Sections 3.1.1 and
3.1.2 have remained the core of the EL-O framework, the actual language and
semantics have known quite a bit of variation over time, with forays into possible
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world semantics and infinite valuations as states [99]. Here worlds are arbitrary
sets of atoms, and introspection principles are simulated via the nonstandard
semantics described in Section 3.1.4. This new presentation will allow us to
work with finite states, which many of the results in this thesis rely on.

3.1.1 Observability atoms and introspection
We now define the vocabulary we will be using in our epistemic logic. Let
Prop be a countable set of propositional variables and let Agt be a finite set
of agents. The set of observability operators is OBS = {Si : i ∈ Agt} ∪ {JS},
where Si stands for individual observability of agent i and JS stands for joint
observability of all agents. The set of all sequences of observability operators
is noted OBS∗ and the set of all non-empty sequences is noted OBS+. We use
σ, σ′, etc. to denote elements of OBS∗ and reserve nil for the empty sequence.
The length of a sequence of observability operators is defined inductively by:
ℓ(nil) = 0; ℓ(Si σ) = ℓ(σ) + 1; and ℓ(JS σ) = ℓ(σ) + 1.

Observability atoms, or atoms for short, are finite sequences of observability
operators followed by a propositional variable. The set

ATM = {σ p : σ ∈ OBS∗, p ∈ Prop}.
is the set of all atoms. (This set depends on the set of propositional variables
Prop and on the set of agents Agt; we however leave these arguments implicit.)
We use the small Greek letters α, α′, β,. . . to denote atoms. Here are some
examples: S1 p reads “1 sees the value of p”. Hence 1 knows whether p is true or
false. JS S2 q reads “all agents jointly see whether agent 2 sees the value of q”.
In other words, there is joint attention in the group of all agents concerning 2’s
observation of q: agent 2 may or may not see the value of q, and in both cases
this is jointly observed. S1 S2 S3 p reads “1 sees whether 2 sees whether 3 sees
p”. The length of an observability atom is ℓ(σp) = ℓ(σ) + 1. Therefore an atom
of length 1 is nothing but a propositional variable. For example, ℓ(JS S2 p) = 3.
Example 3.1 (Gossip, ctd.). In the initial state sG1

0 of the gossip problem
introduced in Example 2.1 of Section 2.1.2, each agent only knows their own
secret. These secrets can be seen as rumors concerning each agent, which may or
may not be true; each agent knows whether the rumor pertaining to themselves
is true of not. Therefore sG1

0 = {Si si : i ∈ Agt} ∪ S where S is some subset of
{si : i ∈ Agt}.

Individual introspection is expressed with our ‘knowing whether’ operator
as Si Si α. That is, each agent knows whether or not they see α, for any atom
α. Moreover, in S5 is common knowledge that this introspection takes place:
this is expressed by JS Si Si α. Joint introspection is expressed by JS JS α. We
have also stated in Section 2.2.3 that common knowledge is a fixpoint of shared
knowledge, which means that joint vision should imply any nesting of individual
vision. (We formalize this in Section 3.1.2). We therefore call an atom introspec-
tive if it contains two consecutive Si, or a JS that is preceded by a non-empty
sequence of observability operators. In other words, an atom is introspective if
it is of the form σ Si Si α for some σ ∈ OBS∗, or of the form σ JS α for some
σ ∈ OBS+. The set of all introspective atoms is

I -ATM = {σ Si Si α : σ ∈ OBS∗ and α ∈ ATM} ∪
{σ JS α : σ ∈ OBS+ and α ∈ ATM}.
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The set I -ATM is infinite and is a proper subset of ATM . Intuitively, it is the
set of atoms that should always be true when considering agents capable of both
positive and negative introspection.

3.1.2 Atomic consequence and introspective states
We now formalize the fact that joint observation is a fixpoint of shared individual
observation. We define a relation of atomic consequence between observability
atoms as follows:

α⇒ β iff α = β, or α = JS α′ and β = σ α′ for some σ ∈ OBS+.

If this is the case then we say that α is a cause of β and that β is a consequence
of α. For example, JS p ⇒ Si p and JS p ⇒ JS Si p. The relation ⇒ is clearly
reflexive and transitive. Moreover, the set of introspective atoms is closed under
atomic consequence: if α ∈ I -ATM and α⇒ β then β ∈ I -ATM .

We let α⇐ denote the set of causes of α and α⇒ the set of its consequences:

α⇐ = {β : β ⇒ α}, α⇒ = {β : α⇒ β}.

Here are some examples:

(p)⇐ = {p}, (p)⇒ = {p},
(Si p)⇐ = {Si p, JS p}, (Si p)⇒ = {Si p},

(JS p)⇐ = {JS p}, (JS p)⇒ = {σ p : σ ∈ OBS+},
(Si Sj p)⇐ = {Si Sj p, JS Sj p, JS p}, (Si Sj p)⇒ = {Si Sj p}.

Observe that α⇐ is always finite while α⇒ is either infinite (namely when α
starts by JS) or the singleton {α} (namely when α is a propositional variable
or starts by some Si). When β ⇒ α then the length of β is less than or equal
to the length of α. Moreover, the set of causes of α has at most ℓ(α) elements:
|α⇐| ≤ ℓ(α). It follows that the sum of the lengths of all causes of α is at most
quadratic in the length of α:

Proposition 3.1. For every α,
∑

β : β⇒α ℓ(β) ≤
(
ℓ(α)

)2.

We generalize atomic cause and consequence to states s ∈ 2ATM by defining
s⇐ =

⋃
α∈s α

⇐ and s⇒ =
⋃

α∈s α
⇒. When s contains all its atomic conse-

quences and all introspective atoms then we say that s is introspectively closed
or, for short, introspective. The set of all introspective states is

I -STATES = {s⇒ ∪ I -ATM : s ∈ 2ATM}.

This is an infinite set. Each of its elements is infinite due to infinity of I -ATM .

3.1.3 Language of EL-O
The language of EL-O is the set Lbool(ATM ) of boolean formulas built from the
set of observability atoms ATM . Putting things together:

ATM ∋ α ::= p | Si α | JS α
Lbool(ATM ) ∋ φ ::= α | ¬φ | φ ∧ φ
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where p ∈ Prop and i ∈ Agt. We recall that the length of formulas is deter-
mined by the definition of length of atoms from Section 3.1.1. For example,
ℓ(JS S1 p ∧ ¬S2 q) = 7. Note that the vocabulary of formulas such as JS S1 p
does not contain the ‘sub-atoms’ p and S1 p: we have Voc(JS S1 p) = {JS S1 p}.
Note also that the language Lbool(Prop) is the fragment of Lbool(ATM ) without
observability operators.

Example 3.2 (Gossip, ctd.). The goal of the original gossip problem is for all
agents to know all secrets: GoalG1 =

∧
i,j∈Agt Sj si. The goal of obtaining shared

knowledge of depth 2 is expressed by GoalG2 =
∧

i,j,r∈Agt
(
Sj si ∧ Sr Sj si

)
, i.e.,

every agent r knows that every Sj si is true.

Example 3.3 (Letter). In the example given in the introduction, there are two
agents: Agt = {1, 2}. If both agents read the letter separately, then S1 p ∧ S2 p
(where p represents the contents of the letter) will be true: both agents learn
whether or not p is true. If one agent reads the letter aloud to the other agent,
then JS p will become true. If agent 1 sees agent 2 reading the letter, then
S2 p ∧ S1 S2 p will be true, but if agent 2 manages to secretly read the letter,
then S2 p ∧ ¬S1 S2 p will be true.

3.1.4 Semantics of EL-O
We recall that a state is a subset of the vocabulary ATM . We wish for agents to
have full positive and negative introspection, that is, to be aware of what they do
and don’t see, and of what is and isn’t jointly seen. We also wish for joint vision
to actually be a fixpoint of shared individual observation. For this we will be
using the notions described in Sections 3.1.1 and 3.1.2. A way of guaranteeing
these properties was proposed in [70] where formulas are interpreted exclusively
in the set of introspectively closed states I -STATES defined in Section 3.1.2,
that is, the states that contain all introspective atoms and are closed under
atomic consequence. As such states are always infinite, it is not immediately
clear how to define model checking (which requires finite states). One way out
is to work with ‘sufficiently introspective states’, as done in [99, Chapter 2].
Here we work with finite models and instead interpret formulas in such a way
that the desired properties are simulated. The EL-O truth conditions are just
as those for CPC given in the previous chapter, except that for atomic formulas
we stipulate:

s |= α iff α ∈ s⇒ ∪ I -ATM .

Hence α is true in s if and only if α is introspective or β ⇒ α for some β ∈ s.

Example 3.4 (Letter, cont.). If one of the agents reads the letter aloud to the
other agent, then they get common knowledge of whether or not p is true: we are
in state s = {JS p}. We then also have individual vision of p: s |= S1 p∧S2 p. If
instead agent 1 sees agent 2 privately reading the letter without agent 2 noticing
this, we will be in state s′ = {S2 p, S1 S2 p}. In this state agent 1 does not know
the truth value of p, but agent 2 does: s′ |= ¬S1 p ∧ S2 p.

Example 3.5 (Gossip, ctd.). Let sG1
0 be the initial state of the gossip problem

from Example 3.1. Then sG1
0 |= Si si ∧

∧
j ̸=i ¬Si sj for every i ∈ Agt.

The EL-O semantics coincides with the CPC semantics for the fragment
Lbool(Prop) of Lbool(ATM ):
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Proposition 3.2. Let φ ∈ Lbool(Prop). Then s |= φ iff s |=CPC φ.

It will sometimes be useful to consider introspective closures of states. The
following proposition can easily be shown by induction on the structure of φ.

Proposition 3.3. Let φ ∈ Lbool(ATM ) be a formula and s ∈ 2ATM a state.
Then s |= φ iff s⇒ ∪ I -ATM |= φ.

A formula φ ∈ Lbool(ATM ) is EL-O satisfiable iff s |= φ for some s ∈ 2ATM ;
it is EL-O valid iff s |= φ for every s ∈ 2ATM . Clearly, an atom α is EL-O valid
if and only if it is introspective. Moreover, for atoms α, β ∈ ATM we have that
α→ β is EL-O valid iff α⇒ β or β is introspective.

Proposition 3.4. Let A,B ⊆ ATM be such that
(∧

α∈A α
)
∧
(∧

β∈B ¬β
)

is
EL-O unsatisfiable. Then B contains some introspective β, or there are α ∈ A,
β ∈ B such that α⇒ β.

Proof. We prove the contraposition: suppose B contains no introspective atom
and there are no α ∈ A and β ∈ B such that α ⇒ β. We show that the state
s = A satisfies

(∧
α∈A α

)
∧
(∧

β∈B ¬β
)
. First, s satisfies every element of A.

Second, s does not satisfy any β ∈ B: otherwise β would be introspective, or
we would have α⇒ β for some α ∈ A.

Remark 3.1. When Agt is a singleton then Si p∧¬JS p is satisfiable. While this
anomaly could be taken care of by a modification of the semantics, we do not
do so for the sake of readability and content ourselves with the observation that
the JS operator is superfluous when there is only one agent.
Remark 3.2. It would be interesting to generalise joint observability from Agt
to arbitrary subsets of Agt. For instance, after a gossiping phone call between
agents i and j all secrets previously known by one of them become jointly
observable by the group {i, j}. This however presents some difficulties, which
we discuss in Section 3.5.

In the rest of the section we establish finite model property, given an axiom-
atization, and prove NP-completeness of EL-O satisfiability.

3.2 Some properties of EL-O
We study some properties of the logic EL-O, starting with a finite model property
which allows us to then establish NP-completeness of the satisfiability problem.
We end this section with an axiomatization of EL-O validities.

3.2.1 Finite model property
A standard property of CPC is that s |=CPC φ iff s∩Voc(φ) |=CPC φ. This does
not hold in EL-O due to the non-standard truth condition for atoms. (It suffices
to consider s = {JS p} and φ = Si p to see this.) Nevertheless, we obtain a finite
model property by using a closure of the state s.

First of all, let us say that two states s and s′ agree on the set of atoms
A ⊆ ATM when they agree on every element of A, i.e., when for every α ∈ A,
s |= α iff s′ |= α. This is not enough to guarantee that s ∩ A = s′ ∩ A. To
witness, consider s = {JS p}, s′ = {Si p}, and A = {Si p}: s and s′ agree on A,
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but s ∩ A = ∅ while s′ ∩ A = {Si p}. However by straightforward induction on
the structure of formulas we get:

Proposition 3.5. Let φ ∈ Lbool(ATM ) be a formula and s, s′ ∈ 2ATM two
states agreeing on Voc(φ). Then s |= φ iff s′ |= φ.

Combining Propositions 3.3 and 3.5 we obtain the finite model property for
EL-O.

Proposition 3.6. Let φ ∈ Lbool(ATM ) be a formula and s ∈ 2ATM a state.
Then s |= φ iff (s⇒ ∪ I -ATM ) ∩ Voc(φ) |= φ.

Proof. We know by Proposition 3.3 that s |= φ iff s⇒ ∪ I -ATM |= φ. By
Proposition 3.5, it now suffices to show that s⇒ ∪ I -ATM and (s⇒ ∪ I -ATM )∩
Voc(φ) agree on Voc(φ). Consider α ∈ Voc(φ) such that s⇒ ∪ I -ATM |= α.
Then α ∈ s⇒∪ I -ATM , hence α ∈ (s⇒∪ I -ATM )∩Voc(φ) and (s⇒∪ I -ATM )∩
Voc(φ) |= α. Consider now α ∈ Voc(φ) such that (s⇒ ∪ I -ATM )∩Voc(φ) |= α.
Then either α ∈ I -ATM or there exists β ∈ (s⇒ ∪ I -ATM ) ∩ Voc(φ) such that
β ⇒ α. In the first case, clearly s⇒ ∪ I -ATM |= α. In the second, we have
β ∈ s⇒ ∪ I -ATM , hence s⇒ ∪ I -ATM |= α. This ends the proof.

3.2.2 Complexity of EL-O satisfiability
Proposition 3.7. Let s ∈ 2ATM be a state and φ ∈ Lbool(ATM ) a formula.
Then s |= φ iff (s⇒ ∪ I -ATM ) ∩ Voc(φ) |=CPC φ.

Proof. It suffices to prove that s |= φ iff s⇒ ∪ I -ATM |=CPC φ. This is shown
by a straightforward induction on the structure of φ.

Proposition 3.8. The problem of deciding satisfiability of Lbool(ATM ) formu-
las is NP-complete.

Proof. Hardness is the case because EL-O satisfiability and CPC satisfiability
coincide for the Lbool(Prop) fragment of Lbool(ATM ) (Proposition 3.2). For
membership, guess some subset s ∈ 2Voc(φ) and check in polynomial time:

1. that s contains all its relevant consequences: for every α ∈ Voc(φ) and
β ∈ s, check that if β ⇒ α then α ∈ s;

2. that s contains all introspective atoms from Voc(φ): for every α ∈ Voc(φ),
check that if α ∈ ATM then α ∈ s;

3. that s |=CPC φ.

Checking that s |=CPC φ is tantamount to checking that s |= φ because:
(a) thanks to the first and second check, s equals (s⇒ ∪ I -ATM ) ∩ Voc(φ),
and therefore s |=CPC φ iff (s⇒ ∪ I -ATM ) ∩ Voc(φ) |=CPC φ; (b) by Proposition
3.7, the latter is the case iff s |= φ.

3.2.3 Axiomatization of EL-O validities
The EL-O validities of our language Lbool(ATM ) are axiomatized by the schemas
of Table 3.1 together with CPC. We prove its completeness via CPC.
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Vis1 Si Si α
Vis2 JS JS α
Vis3 JS Si Si α
Vis4 JS α→ Si α
Vis5 JS α→ JS Si α

Table 3.1: Axioms of EL-O

Proposition 3.9. Let φ ∈ Lbool(ATM ) be a formula. Then φ is EL-O valid iff
φ is provable in CPC from the axiom schemas Vis1 –Vis5 of Table 3.1.

Proof. We again take advantage of Proposition 3.7 and show that Vis1 –Vis5
characterise the set of introspectively closed states I -STATES = {s⇒∪I -ATM :
s ∈ 2ATM}. The right-to-left direction is clear: each of the five axiom schemas
is valid in introspectively closed states. For the left-to-right direction, we show
that every s satisfying Vis1 –Vis5 is introspectively closed.

For closure under atomic consequence, let s |= α. The interesting case
is when α = JS α′. Then s |= JS Si1 α

′ for any agent i1 by axiom Vis5 ,
and also s |= JS Si2 Si1 α

′ for any i1 and i2, and so on: we can generate any
s |= JS Sim . . . Si1 α

′ and then, by Vis4 , we can obtain s |= Sim . . . Si1 α
′. More-

over, we have s |= JS JS α′ by Vis2 , and in the same way, we can generate
s |= Sim

. . . Si1 JS α′ for any agents i1, . . . im and i. We therefore obtain that s
satisfies every σ α′ for any σ ∈ OBS+, that is, every atomic consequence of α.

We use the same technique to show that a state s satisfying Vis1 –Vis5
satisfies every σ Si Si α for σ ∈ OBS∗ and every σ JS α for σ ∈ OBS+: we obtain
the first with Vis1 (for σ empty) and Vis3 , Vis4 , and Vis5 (for σ non-empty),
and the second with Vis2 , Vis4 , and Vis5 .

Remark 3.3. We do not require states to satisfy the infinitary constraint “if
σ α ∈ s for every σ ∈ {Si : i ∈ Agt}+ then JS α ∈ s”, which is the EL-O
counterpart of the induction principle for common knowledge. We will discuss
in Chapter 3 how to integrate this additional constraint.

3.3 EL-O as a fragment of epistemic logic S5\GFP
We now situate our lightweight epistemic logic w.r.t. the standard epistemic
logic S5\GFP with ‘knowing whether’ operators Kifi and CKif . Recall that
S5\GFP, described in Chapter 2, is the logic of S5 individual and common
knowledge which does not obey the induction principle for common knowledge.
We are going to identify the operators Si with Kifi and JS with CKif . Then the
language Lbool(ATM ) of EL-O becomes a fragment of Fml if

EL. When we make
this identification we are going to talk about the EL-O fragment of Fml if

EL.
Our main result is that for the EL-O fragment of Fml if

EL, the axioms of Table
3.1 are sound and complete w.r.t. validity in S5\GFP models (Proposition3.12).
It follows by Proposition 3.8 that our lightweight epistemic logic is a fragment of
standard epistemic logic with an NP-complete satisfiability problem. This is an
important result because satisfiability of Fml if

EL formulas is PSpace-complete
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as soon as there are two agents, and this is the case even without the common
knowledge operator [24].

3.3.1 The canonical model for EL-O
Let us establish that every EL-O valuation s can be identified with a particular
pointed S5\GFP Kripke model (MEL-O, s). This actually calls back to previous
iterations of EL-O semantics, as described in [99, Chapter 2]. The first thing
we do is define how the states’ observability information determines equivalence
relations between states. For every s, s′ ∈ 2ATM we define:

sREL-O
i s′ iff s and s′ agree on every α such that s |= Si α;

sREL-O
Agt s

′ iff s and s′ agree on every α such that s |= JS α.

As joint vision implies individual vision, it is clear that all REL-O
i are included

in REL-O
Agt . While these relations are clearly reflexive, it is not immediately clear

that they are also symmetric and transitive; so let us prove that.

Proposition 3.10. All relations REL-O
i and REL-O

Agt are equivalence relations.

Proof. We prove symmetry and transitivity of REL-O
i for an arbitrary i; the proof

for REL-O
Agt is analogous. For symmetry, suppose sREL-O

i s′. Then for every α, if
s |= Si α then s and s′ agree on α. Take an arbitrary β such that s′ |= Si β. s′

agrees with s on Si β because s |= Si Si β. Hence s |= Si β, and s and s′ agree on
β, and therefore s′REL-O

i s. For transitivity, suppose sREL-O
i s′ and s′REL-O

i s′′ and
suppose s |= Si α. We show that s and s′′ agree on α. By hypothesis, s and s′

agree on α. As observed above, s and s′ also agree on Si α because s |= Si Si α.
Hence s′ |= Si α, and so s′ and s′′ agree on α. Therefore s and s′′ agree on
α.

We are ready to define the canonical Kripke model for EL-O as the tuple
MEL-O = ⟨W EL-O, REL-O

Agt , {REL-O
i }i∈Agt , V

EL-O⟩ with

W EL-O = I -STATES = {s⇒ ∪ I -ATM : s ∈ 2ATM},
REL-O

Agt = REL-O
Agt ∩ (W EL-O ×W EL-O),

REL-O
i = REL-O

i ∩ (W EL-O ×W EL-O),
V EL-O(w) = w ∩ Prop for every w ∈W EL-O.

Remark 3.4. In EL-O, the empty initial state s0 = ∅ models maximal ignorance:
the agents do not know anything beyond tautologies. The simplicity of this mod-
eling contrasts with the corresponding pointed Kripke model (MEL-O, I -ATM ):
in that model, every agent can access infinitely many possible worlds from s0.
Actually the classical examples in introductory textbooks and articles about
epistemic logic (such as the muddy children puzzle) are all modeled by finite
Kripke models. As recently observed by Artemov [4], such finite models pre-
suppose more or less tacitly a lot of common knowledge, which is too strong an
assumption in many situations.

Proposition 3.11. Let φ ∈ Lbool(ATM ) and s ∈ W EL-O. Then s |= φ iff
(MEL-O, s) |= φ.
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Proof. The proof is by induction on the structure of φ. The only interesting
case is the base case of atoms α ∈ ATM . We use induction on the length of α.

When α = p then (MEL-O, s) |= p iff s |= p for any s ∈ W EL-O by definition
of V EL-O. When α = Si β we prove the two directions of the equivalence.

• If s |= Si β for some β ∈ ATM and some s ∈ W EL-O: consider s′ ∈ W EL-O

such that sREL-O
i s′. By definition of REL-O

i , s and s′ agree on all α such that
s |= Si α. Therefore if s |= β then s′ |= β, and by the induction hypothesis,
(MEL-O, s′) |= β; hence (MEL-O, s) |= Kiβ. If s |= ¬β, by the same
argument, we have that (MEL-O, s) |= Ki¬β. Therefore (MEL-O, s) |= Si β.

• If (MEL-O, s) |= Si β for some β ∈ ATM and some s ∈ W EL-O, then either
(MEL-O, s) |= Kiβ or (MEL-O, s) |= Ki¬β. Suppose that s ̸|= Si β. In
particular β ̸∈ I -ATM . If s |= β, consider s′ = s \ β⇐, and if s ̸|= β,
consider s′ = s ∪ β⇒. In both cases s′ ∈W EL-O, and s and s′ agree on all
α such that s |= Si α. Therefore sREL-O

i s′, but by the induction hypothesis,
(MEL-O, s′) |= β iff s′ |= β iff s |= ¬β iff (MEL-O, s) |= ¬β: this contradicts
the hypothesis that (MEL-O, s) |= Si β.

For the case α = JS β we proceed similarly.

3.3.2 Completeness of the EL-O fragment of Fml if
EL w.r.t.

S5\GFP validity
We now show that the EL-O semantics in terms of observability and the stan-
dard Kripke semantics have the same validities as far as the EL-O fragment is
concerned.

Proposition 3.12. Let φ ∈ Lbool(ATM ) be a formula. Then φ is valid in
S5\GFP Kripke models iff φ is provable in CPC from the EL-O axioms of Ta-
ble 3.1.

Proof. For soundness we show that the schemas Si Si α, JS JS α, JS Si Si α,
JS α → Si α, JS α → JS Si α are valid in S5\GFP Kripke models. For the first
it suffices to observe that Si Si α is equivalent to Ki

(
Kiα∨Ki¬α

)
∨Ki¬

(
Kiα∨

Ki¬α
)
. The latter is equivalent in S5 to the propositionally valid Kiα∨Ki¬α∨

¬(Kiα∨Ki¬α). Validity of the other axiom schemas can be proved in a similar
manner.

For completeness suppose that φ is not provable from the EL-O axioms. By
Proposition 3.9 there exists s ⊆ ATM such that s ̸|= φ. Hence s⇒∪I -ATM ̸|= φ
by Proposition 3.7 and, as s⇒ ∪ I -ATM ∈ W EL-O, (MEL-O, s⇒ ∪ I -ATM ) ̸|= φ
by Proposition 3.11. Hence φ cannot be valid in S5\GFP Kripke models.

3.3.3 Axiomatization of the MEL-O validities in FmlEL

We return to FmlEL, that is, the standard language of ‘knowing that’. It follows
from Propositions 3.11 and 3.12 that there is no formula in the EL-O fragment
that is valid in MEL-O without being valid in the set of all S5\GFP Kripke
models. This fails to hold for the full language FmlEL. This can be seem from
the axiomatization of the FmlEL validities in MEL-O of [71] and [99, Chapter 2].1

1Our semantics differs from the semantics in these papers in that it is finitary. The only
thing that changes is the soundness proof, which is routine.
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It is made up of: the EL-O axioms of Table 3.1; the axioms

Kiα↔ α ∧ Si α, Ki¬α↔ ¬α ∧ Si α,

CKα↔ α ∧ JS α, CK¬α↔ ¬α ∧ JS α

relating Ki to Si and CK to JS ; all S5 principles for Ki and CK ; plus two
axioms distributing Ki and CK over clauses: if A+ and A− are two sets of
atoms,

Ki

( ∨
α∈A+

α ∨
∨

α∈A−

¬α
)
↔
( ∨

α∈A+

Kiα
)
∨
( ∨

α∈A−

Ki¬α
)
,

CK
( ∨

α∈A+

α ∨
∨

α∈A−

¬α
)
↔
( ∨

α∈A+

CKα
)
∨
( ∨

α∈A−

CK¬α
)

if (A+)⇐∩A− = ∅, and

Ki

( ∨
α∈A+

α ∨
∨

α∈A−

¬α
)
↔ ⊤,

CK
( ∨

α∈A+

α ∨
∨

α∈A−

¬α
)
↔ ⊤

otherwise. These last four axioms are specific to observability-based knowledge
and are typically invalid in normal modal logics. An instance of the first one is
Ki(p∨q)↔ (Kip∨Kiq), for different p and q. This is a strong principle: to give
an example, if it is known that the butler or the gardener was the murderer then
it is also known which of the two it was. The reason is that our logic is built
on atomic observability information: what is modeled in MEL-O are forms of
individual and common knowledge that are respectively obtained via individual
observation and joint observation of facts. This differs conceptually from the
classical operators of individual and common knowledge as studied in epistemic
logic [52]. The property of distribution over falsifiable disjunctions of literals
is common in epistemic logics that are based on observability of propositional
variables. It is shown in [22] that it can be avoided if one introduces new
propositional variables.

The axiomatics allows us to reduce every FmlEL formula to an equivalent (in
MEL-O) Lbool(ATM ) formula. For example, positive introspection Kip→ KiKip
reduces to (p∧ Si p)→ (p∧ Si p∧ Si Si p). Observe that the latter is EL-O valid.

3.4 Adding constants: EL-OC
Consider the examples we have mentioned up until now: they were of agents
knowing secrets, or the contents of messages. We can also mention here the
Two Generals’ Problem [1, 63], in which two generals send a messenger back
and forth to make sure they agree on the time of an attack (we will come back
to this example in Chapter 5). As is standard, we have modeled these secrets
and messages by propositional variables, making them entities that could be
true or false. However, this may seem counterintuitive: what does it mean for
a secret to be false? Or for a time of attack to be modeled by a propositional
variable? While we can contrive to find explanations for these modeling choices,
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we choose here to remark that representing these entities as constants, rather
than variables, and seeing the Si operator applied to constants as a ‘knowing
what’, or ‘knowing the value of’, operator, rather than a ‘knowing whether’
operator, would change almost nothing to the EL-O framework.

This notion of ‘knowing what’ is not new. Plaza introduces and axiomatizes
the logic of knowledge with designators [111], LKd

m(P,D), where m is the num-
ber of agents, P is a set of proposition symbols and D is a set of constants. The
main feature of this logic is operator Kv; the formula Kvid is read as “agent i
knows the value of d”. The semantics are then defined on Kripke models with
two valuations, one for propositions and one for designators; agent i knows the
value of d at a world if the value of d is the same across all accessible worlds for
i at that world. This notion of knowing the value of a constant is then picked
up as ‘knowing what’ by Fan and Wang in [126], and developed more by Wang
in [125] as well as by Baltag and colleagues in [14, 17]. While the interest of
adding ‘knowing what’ operators to logics of knowledge is extensively argued
in [125] especially, particularly in the field of AI, the focus in [126] and [125]
is mostly on dynamic versions of the logic in which there are public announce-
ments, while that in [17] is to investigate the use of ‘knowing what’ operators
to model dependencies between variables.

We finish this chapter by introducing a version of EL-O called the Epistemic
Logic of Observation with Constants, abbreviated to EL-OC. Its language refines
that of EL-O: agents may see not only the truth values of propositions, but also
the value of constants. We show that this refinement poses no difficulty, and
leads to an enlarged field of possibilities regarding the problems that can be
modeled.

3.4.1 The language of EL-OC
We now consider not only the set Prop of propositional variables, but also a
countable set of constants Cst. We do not change the observability operators
Si and JS , but we refine the set of atoms:

ATM -C = {σ p : σ ∈ OBS∗, p ∈ Prop} ∪
{σ c : σ ∈ OBS+, c ∈ Cst}.

We still use α, β,... to denote atoms, unless specified as members of ATM -C ∪
Cst. Here are some examples involving constants: S1 c reads “1 sees the value
of c”. JS S2 c reads “all agents jointly see whether agent 2 sees the value of c”.
Note that constants are always preceded by at least one observability operator
as they have no truth value themselves.

We follow the principles of EL-O w.r.t. introspective atoms. The set of all
introspective atoms is

I -ATM -C = {σ Si Si α : σ ∈ OBS∗ and α ∈ ATM -C ∪ Cst} ∪
{σ JS α : σ ∈ OBS+ and α ∈ ATM -C ∪ Cst}.

We also adapt the definition of atomic consequence between atoms as follows:

α⇒ β iff α = β or there are α′ ∈ ATM -C ∪ Cst, σ ∈ OBS+

such that α = JS α′ and β = σ α′.
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Vis1 Si Si α
Vis2 JS JS α
Vis3 JS Si Si α
Vis4 JS α→ Si α
Vis5 JS α→ JS Si α

Table 3.2: Axioms for introspection in EL-OC, where α ∈ ATM -C ∪ Cst

The language of EL-OC is simply Lbool(ATM -C ), defined by the grammar

φ ::= α | ¬φ | (φ ∧ φ)

where α ranges over ATM -C . The set ATM (φ) of atoms of formula φ is defined
as in EL-O. For example, ATM (S1 JS p ∧ S2 c) = {S1 JS p, S2 c}.

3.4.2 Semantics and axiomatization
States are subsets of the set of atoms ATM -C . The set of all states is 2ATM-C .
The semantics of EL-OC follow those of EL-O, with the only non-standard case
being that of atoms:

s |=EL-OC α iff α ∈ s⇒ ∪ I -ATM -C

for α ∈ ATM -C .

Example 3.6 (Gossip, ctd.). Consider the original gossip problem in which
secrets are seen as constants: Cst = {si : i ∈ Agt}. In the initial state sGC

1
0 of

the problem every agent only knows their own secret. Therefore sGC
1

0 = {Si si :
i ∈ Agt}. Then s

GC
1

0 |=EL-OC Si si and s
GC

1
0 |=EL-OC

∧
j ̸=i ¬Si sj for every i ∈ Agt.

The valid EL-OC formulas are axiomatized by the schemas of Table 3.2. The
axioms are the same as those for EL-O, except that α is taken to be a member
of ATM -C ∪ Cst. The proof of completeness is virtually identical to that of
Proposition 3.9.

All other properties of EL-O hold: the translation to classical propositional
calculus is the same and the finite model property as well as other interme-
diate results still hold. It follows that the satisfiability problem in EL-OC is
NPcomplete.

3.4.3 Applications
As stated in the beginning of this section, the practical usefulness of EL-OC is
already clear just from looking standard application problems of epistemic logic
and planning: in the gossip problem, it does not matter what the secrets are;
in the Two Generals’ problem, it does not matter what the message is. EL-
OC allows us to model in a natural way situations in which agents must share
knowledge about some fact, such as a message or a secret, without burdening
ourselves with the limitation that this fact must be expressible as a proposition
that is true or false.
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While sometimes these facts can be expressed as propositions without af-
fecting the modeling much, other times allowing agents this broader definition
of knowledge enables us to model problems in a much more succinct way. If an
agent must know what another agent’s phone number is in order to call them, or
if they must know a code in order to unlock a door, the only way to model this
in terms of ‘knowing that’ or ‘knowing whether’ operators is to have a proposi-
tional variable for all possible options for that phone number or code, while in
EL-OC it suffices to have a constant representing the value of that number or
code.

Example 3.7. Agent 1 wishes to unlock a door that has a code; the code might
be 00, 01, 10, or 11. The code is actually 11, which agent 1 does not know, but
agent 2 knows, and agent 1 knows that agent 2 knows what the code is. Consider
the variables p00, p01, p10, and p11, where pij represents the proposition that
the right code is ij. Then the situation can be modeled in EL-O as 2 :

p11∧¬S1 p00 ∧ ¬S1 p01 ∧ ¬S1 p10 ∧ ¬S1 p11

∧ S2 p00 ∧ S2 p01 ∧ S2 p10 ∧ S2 p11

∧ S1 S2 p00 ∧ S1 S2 p01 ∧ S1 S2 p10 ∧ S1 S2 p11

On the other hand, consider the constant c representing the code of the door.
Then the situation can be modeled in EL-OC as:

¬S1 c ∧ S2 c ∧ S1 S2 c

Notice that the code is not made explicit in this representation; if the modeler
wishes for the code to be explicit, the previous representation can also be used
in EL-OC, while it is unclear what the converse (considering c as a propositional
variable in EL-O) would mean.

Example 3.8 (Gossip, ctd.). Some variants of the gossip problem include the
fact that agents may or may not know other agents’ telephone numbers, and
must know another agent’s number in order to call them. This is easily modeled
by adding agents’ telephone numbers to the set of constants: Cst = {si : i ∈
Agt} ∪ {ti : i ∈ Agt}, where si represents each agent’s secret and ti represents
each agent’s telephone number. Agent 1 knowing agent 2’s number is then
expressed as S1 t2.

3.5 Discussion: joint vision for arbitrary groups
of agents

It seems natural to want to generalize the joint vision operator JS to an operator
JSG of joint vision for any group G ⊆ Agt. For example, calls in the gossip
problem should lead to some common knowledge between the two agents in the
call, even though common knowledge between all agents can never be achieved
as soon as there are more than two agents.

2This does not actually fully represent the situation, as agents should also know that the
code must be exactly one of the four possibilities, that is, that exactly one of the pi,j must be
true. This, however, cannot be expressed in EL-O, as the language of EL-O restricts agents
from knowing these kinds of disjunctions.
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However, this generalization is not that easily added into EL-O; this was
invesigated in [38], but the main issue, which we describe below, was overlooked.
The reason for this difficulty is that introducing these generalized operators
would mean requiring more complex reasoning from agents. We analyze this in
this section.

Joint vision for a singleton is identified with individual vision: JS{1} α is the
same thing as S1 α. First, we remark that common knowledge of α within a
group G should imply common knowledge of α within all subgroups of G, i.e.,
JSG α→ JSH α should be valid for any H ⊆ G ⊆ Agt. We hence generalize the
atomic consequence ⇒ to ⇛:

α⇛ β iff α = β or α = JSG α
′ and β = σα′ for some σ ∈ OBS+

G

where OBSG = {JSH : H ⊆ G}.
Suppose now that S3 JS{1,2} p is true at a state s. If JS{1,2} p is true, then

agent 3 knows that JS{1,2} p is true. Hence agent 3 should then know that S1 p
and S2 p are true. More generally, if JSG α is true in some state s for some group
G and atom α, then if α is true in s, JSG β should also be true for any atom β
such that α⇒ β. This is already a step up from reasoning in EL-O: some truths
might be a consequence of two atoms rather than just one.

That is not all. Considering another state s′ in which S3 JS{1,2} p is true, we
now suppose that JS{1,2} p is false. Hence here agent 3 knows that JS{1,2} p is
false. But then agent 3 should also know that JS{1,2,4} p is false, as JS{1,2,4} p
would imply JS{1,2} p. More generally, if JSG α is true in some state s for some
group G and atom α, then if α is false in s, JSG β should also be true for any
atom β such that β ⇒ α.

Here lies the difficulty in figuring out semantics for an EL-O with this gen-
eralized joint knowledge operator: while it is relatively straightforward to add
truths to a set of atoms, it is more difficult to pronounce atoms ‘definitely false’.
Completing an arbitrary set of atoms into the corresponding set of truths, or
even checking that a set of atoms is consistent to begin with, is not straightfor-
ward at all, and we leave it as an open problem to figure out whether this can
be done in general in a finite number of steps. We could avoid the problem by
requiring states to be infinite sets of atoms required to be closed under the rules
described above; however, working with infinite states with no known way of
turning back to finite states is not only impractical when considering problems
such as model checking, but also not very interesting for concrete applications
such as planning. We will therefore not be considering this generalization any
further in this thesis.

3.6 Conclusion
We have updated the logic EL-O of [99], a simple epistemic logic with individ-
ual and joint visibility operators. We allow in particular for states to consist
of arbitrary sets of atoms. This leads to a finite model property as well as
NP-completeness of the EL-O satisfiability problem. We have given an axioma-
tization for EL-O and shown that it is a fragment of the logic S5\GFP, that is,
the logic of S5 individual and common knowledge in which common knowledge
does not follow the induction principle. Finally, we have shown that adding
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constants to EL-O is straightforward, resulting in the logic EL-OC, while adding
joint vision for arbitrary subgroups of agents remains an open problem.



Chapter 4

On common knowledge
whether
Connaissance commune et ‘savoir si’

Nous avons vu dans le chapitre précédent que la logique EL-O correspondait
à un fragment de S5\GFP, la version de S5 qui ne satisfait pas le principe
d’induction pour la connaissance commune. Les présentations usuelles de ce
principe d’induction reposent soit sur un axiome de plus grand point fixe [87,
83, 65], soit sur une règle d’induction [66, 52] :

GFP CK (φ→ EKφ)→ (φ→ CKφ);
RGFP from φ→ EK (ψ ∧ φ), infer φ→ CKψ.

où CK se lit “il y a connaissance commune que” et EK se lit “tous les agents
savent que”. Si ces principes sont intuitifs dans le cadre d’autres logiques telles
la logique temporelle, leur interprétation est moins claire lorsqu’on considère la
connaissance commune. Leur traduction en termes du langage EL-O n’est pas
non plus évidente.

Dans ce chapitre nous prenons un peu de recul et proposons une axioma-
tisation alternative pour la connaissance commune S5, que nous trouvons plus
intuitive que les axiomatisations standard et qui se traduit bien aux logiques
avec l’opérateur ‘savoir si’. Cette axiomatisation repose sur le nouvel axiome
GFP0 :

GFP0 CK (EKφ ∨ EK¬φ)→ (CKφ ∨ CK¬φ).

Nous montrons que ce nouvel axiome est un théorème de toute logique de con-
naissance (c’est à dire toute logique où l’opérateur de connaissance individuelle
est au moins KT) et qu’il est équivalent à GFP si la connaissance commune est
S5. Nous montrons également que GFP0 n’est plus correct si l’on passe de la
connaissance à la croyance.

À partir de cette nouvelle axiomatisation, il est naturel de définir une ax-
iomatisation des logiques avec opérateurs ‘savoir si’, en prenant l’axiome suivant:

GFP2 CKifφ↔ (EKifφ ∧ CKif EKifφ).

50
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Ce dernier axiome nous ramène enfin vers EL-O, et nous terminons ce chapitre
en définissant une nouvelle version de EL-O dans lequel le principe d’induction
pour la connaissance commune est vérifié. Cette logique, que nous nommons EL-
O+Ind, repose sur une restriction de la sémantique de EL-O afin de se limiter aux
états vérifiant explicitement l’axiome GFP2 . Nous étudions les propriétés de
EL-O+Ind et montrons qu’il s’agit bien d’un fragment de la logique S5 standard.

We have seen in the previous chapter that the logic EL-O corresponds to a
fragment of S5\GFP, that is, a version of S5 which does not follow the induc-
tion principle for common knowledge. When looking at the usual presentations
of this induction principle, it is not immediately obvious how to translate them
into the language of EL-O. In this chapter we take a step back and propose an
alternative axiomatization for S5 common knowledge that is, in our opinion,
more intuitive than the standard axiomatizations, and translates well to logics
of knowing whether. After a brief discussion on the applicability of this new ax-
iomatizations to logics weaker than S5, we take inspiration from the new axiom
to define a second version of EL-O which is a true fragment of S5.

This chapter is mainly based on the following publications:

• Herzig, A. & Perrotin, E. (2020). On the axiomatization of common knowl-
edge. Advances in Modal Logic (AiML 2020) (13:309–328).

• Herzig, A. & Perrotin, E. (2022, forthcoming). Efficient reasoning about
knowledge and common knowledge. Many-Valued and Modal Logics (Es-
says in honour of Yu. V. Ivlev).
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The standard axiomatizations of the logic of common knowledge, given in
Chapter 2 and recalled here in Table 4.1, contain either the induction axiom
schema, alias greatest fixed-point axiom GFP [87, 83, 65], or alternatively the
induction rule RGFP [66, 52]:

GFP CK (φ→ EKφ)→ (φ→ CKφ);
RGFP from φ→ EK (ψ ∧ φ), infer φ→ CKψ.

In the proof theory literature there exist sequent system counterparts of these
principles, e.g. in [2, 75]. Similar axioms and rules were used to axiomatize
common belief [31, 91].

Such inductive principles are common in temporal logics, where they mirror
induction on the natural numbers. There, the reading is obvious and the in-
tuitive meaning is clear. More generally, we can make sense of such principles
when interpreted on well-founded orderings. However, the meaning of the induc-
tion axiom schema is less obvious when the modal operator is that of common
knowledge, and one might even wonder whether it is a reasonable principle at
all. To witness the difficulty to find an intuitive reading to the above principles,
consider the reading of RGFP that is given in the introductory chapter of the
Handbook of Epistemic Logic:

“If it is the case that φ is ‘self-evident’, in the sense that if it is
true, then everyone knows it, and, in addition, if φ is true, then
everyone knows ψ, we can show by induction that if φ is true, then
so is EKk(ψ ∧ φ) for all k.” [49]

The explanations in the standard texts resort to concepts such as ‘φ indicates
to every agent that ψ is true’ [89], ‘φ is evident’ [105], ‘it is public that φ is
true’ [117], or ‘φ is a common basis implying shared belief in ψ’ [55]. With these
understandings RGFP can be read “if φ is public and indicates ψ to everybody
then truth of φ implies that ψ is common knowledge”. The formalisation of these
supplementary concepts however introduces further complications, see e.g. [44]
for a tentative to settle the logic of ‘indicates’.

Can the above inductive principles be replaced by principles with more in-
tuitive appeal? In this chapter we propose a new axiom schema:

GFP0 CK (EKφ ∨ EK¬φ)→ (CKφ ∨ CK¬φ).

Unlike GFP and RGFP, it can be read straightforwardly: “if it is common
knowledge that everybody knows whether φ then it is common knowledge
whether φ”; or alternatively: “common knowledge that the truth value of φ
is shared knowledge implies that the truth value of φ is common knowledge”. In
this chapter we consider KT- and S5-based common knowledge. We prove the
following results:

1. GFP0 is a theorem if the logic of individual knowledge is at least KT;

2. GFP0 is equivalent to GFP if the logic of individual knowledge is S5;

3. GFP0 leads to a simple and intuitive axiomatization of S5-based ‘common
knowledge whether’, based on the axiom GFP2 :

GFP2 CKifφ↔ (EKifφ ∧ CKif EKifφ);
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GFP-based axiomatics
At least KT(Ki) see Table 2.3

RN (CK ) from φ, infer CKφ
K (CK ) CK (φ→ ψ)→ (CKφ→ CKψ)
T (CK ) CKφ→ φ
∗5 (CK ) ¬CKφ→ CK¬CKφ

FP ′ CKφ→ EKCKφ
GFP CK (φ→ EKφ)→ (φ→ CKφ)

RGFP-based axiomatics
At least KT(Ki) see Table 2.3

FP CKφ→ EK (φ ∧ CKφ)
RGFP from φ→ EK (ψ ∧ φ),

infer φ→ CKψ

Table 4.1: Two axiomatizations of common knowledge for logics that are at
least KT: the GFP axiomatics with an induction axiom of [65] (top) and the
RGFP axiomatics with an induction rule of [66, 52] (bottom). For S5 common
knowledge, add the starred axiom ∗5 (CK ) to the GFP-based axiomatics.

KT(Ki)
RN (CK ) from φ, infer CKφ

K (CK ) CK (φ→ ψ)→ (CKφ→ CKψ)
4 (CK ) CKφ→ CKCKφ

FP0 CKφ→ EKφ
GFP0 CK (EKφ ∨ EK¬φ)→ (CKφ ∨ CK¬φ)

Table 4.2: Alternative axiomatization of S5 common knowledge: the GFP0
axiomatics.

4. GFP0 is specific to knowledge and fails for belief.

For the sake of simplicity we here only consider shared and common knowl-
edge of the set of all agents. However, everything in sections 4.1 to 4.3 straight-
forwardly generalises to common knowledge of arbitrary sets of agents.

The third point listed above brings us back to EL-O: can this new axioma-
tization point us towards a version of EL-O in which the induction axiom for
common knowledge whether is valid? In the second half of this chapter we
present a such version of EL-O, which we name EL-O+Ind. We study the prop-
erties of EL-O+Ind and show that it is a fragment of the logic S5.
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4.1 An alternative axiomatization of S5 com-
mon knowledge

Table 4.2 contains a new axiomatics of common knowledge. The main difference
w.r.t. the GFP axiomatics recalled in Table 4.1 is that the induction axiom
GFP is replaced by GFP0 . A further difference is that our axiomatics explicits
4 (CK ), which is a theorem of the GFP and RGFP axiomatics. Finally and
thanks to 4 (CK ), our version of the fixed-point axiom FP0 is weaker than FP ′

(and a fortiori weaker than FP). It is however strong enough to entail T (CK ):
CKφ→ φ (together with T (Ki)).

Observe that it follows from Proposition 2.2 and the fact that CK is a normal
modal operator that the two axioms

GFP0 CK (EKφ ∨ EK¬φ)→ (CKφ ∨ CK¬φ)
GFP1 CK

∧
i∈Agt(Kiφ ∨Ki¬φ)→ (CKφ ∨ CK¬φ)

are equivalent. The second axiom says that if it is common knowledge that
each agent has an epistemic position w.r.t. φ then either φ or ¬φ are common
knowledge.

4.1.1 Soundness of the GFP0 axiomatics
We prove soundness w.r.t. the S5-based GFP axiomatics of Table 4.1. The
result holds both for the KT-based and the S5-based versions.

The inference rules are the same: RN (CK ) and modus ponens. It remains to
show that our axioms of Table 4.2 are theorems of the S5-based GFP axiomatics.
The only ones that are missing there are 4 (CK ), FP0 , and GFP0 . First, 4 (CK )
is, by Proposition 2.4, a theorem of the KT-based GFP axiomatics and a fortiori
of the S5-based GFP axiomatics. Second, FP0 can be proved from FP ′ and
T (CK ). Third, here is a proof of GFP0 that relies on T (Ki), or rather, its
consequence T (EK ):

Proposition 4.1. GFP0 is a theorem of the KT-based GFP axiomatics (and
a fortiori of the S5-based GFP axiomatics).

Proof. We distinguish the two cases φ and ¬φ and prove that CK (EKφ∨EK¬φ)
implies both φ → CKφ and ¬φ → CK¬φ; from that GFP0 follows by propo-
sitional logic reasoning.

1. CK (EKφ ∨ EK¬φ)→ CK (φ→ EKφ) by T (EK ), RN (CK ), K (CK )

2. CK (φ→ EKφ)→ (φ→ CKφ) GFP

3. CK (EKφ ∨ EK¬φ)→ (φ→ CKφ) from (1), (2)

4. CK (EKφ ∨ EK¬φ)→ (¬φ→ CK¬φ)
a from (3) by uniform subst. of φ by ¬φ

5. CK (EKφ ∨ EK¬φ)→ (CKφ ∨ CK¬φ) from (3), (4)

Therefore all theorems of our new GFP0 axiomatics are also theorems of
the GFP axiomatics and, by Proposition 2.7, of the RGFP axiomatics.
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4.1.2 Completeness of the GFP0 axiomatics for S5 knowl-
edge

We prove completeness w.r.t. the S5-based GFP axiomatics. We have already
seen in Section 4.1.1 that the inference rules are the same; it remains to show
that the axioms of the S5-based GFP axiomatics of Table 4.1 that are not in our
GFP0 axiomatics are theorems of the latter. These axioms are 5 (CK ), FP ′,
and GFP. Proposition 2.5 tells us that 5 (CK ) can be proved from the rest of
the S5-based GFP axiomatics and is therefore redundant: it could be dropped
from the GFP axiomatics. Axiom FP ′ can be proved from our FP0 , 4 (CK ),
K (CK ), and RN (CK ). It remains to show that GFP is a theorem of our new
axiomatics. The next lemma will be instrumental; its proof uses B(EK ) (via
Proposition 2.3) and 4 (CK ). (Recall that B(EK ) is a theorem of S5(Ki), but
not of KT(Ki).)

Lemma 4.1. The schema CK (φ → EKφ) → CK (¬φ → EK¬φ) is provable
from the axiom schemas K (CK ), 4 (CK ), RN (CK ), FP, and the S5 axioms for
Ki.

Proof. The proof is as follows:

1. CK (φ→ EKφ)→ EK (φ→ EKφ) by FP, EK normal

2. EK (φ→ EKφ)→ (EK¬EKφ→ EK¬φ) EK normal

3. ¬φ→ EK¬EKφ Proposition 2.3

4. CK (φ→ EKφ)→ (¬φ→ EK¬φ) from (1), (2), (3)

5. CKCK (φ→ EKφ)→ CK (¬φ→ EK¬φ) from (4) by RN (CK ) and
K (CK )

6. CK (φ→ EKφ)→ CKCK (φ→ EKφ) 4 (CK )

7. CK (φ→ EKφ)→ CK (¬φ→ EK¬φ) from (5), (6)

Proposition 4.2. GFP is provable in the GFP0 axiomatics.

Proof. The proof is as follows:

1. CK (EKφ ∨ EK¬φ)→ (CKφ ∨ CK¬φ) GFP0

2.
(
CK (φ→ EKφ) ∧ CK (¬φ→ EK¬φ)

)
→ CK (EKφ ∨ EK¬φ)

a by RN (CK ) and K (CK )

3.
(
CK (φ→ EKφ) ∧ CK (¬φ→ EK¬φ)

)
→ (CKφ ∨ CK¬φ)

a from (1) and (2)

4. CK (φ→ EKφ)→ CK (¬φ→ EK¬φ) Lemma 4.1

5. CK (φ→ EKφ)→ (CKφ ∨ CK¬φ) from (3), (4)

6. CK (φ→ EKφ)→ (CKφ ∨ ¬φ) from (5) by T (CK )
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CPC axiomatics of classical propositional calculus
Sym(Kifi) Kifiφ↔ Kifi¬φ
RE(Kifi) from φ↔ ψ, infer Kifiφ↔ Kifiψ
RN (Kifi) from φ, infer Kifiφ

Conj(Kifi) (φ ∧ ψ)→
(
Kifi(φ ∧ ψ)↔ (Kifiφ ∧Kifiψ)

)
∗45 1(Kifi) KifiKifiφ
∗45 2(Kifi) Kifi(φ ∧Kifiφ)

Def2 (EKif ) EKifφ↔
∧

i∈Agt Kifiφ

Sym(CKif ) CKifφ↔ CKif¬φ
RE(CKif ) from φ↔ ψ, infer CKifφ↔ CKifψ
RN (CKif ) from φ, infer CKφ

Conj(CKif ) (φ ∧ ψ)→
(
CKif (φ ∧ ψ)↔ (CKifφ ∧ CKifψ)

)
∗45 1(CKif ) CKif CKifφ
∗45 2(CKif ) CKif (φ ∧ CKifφ)

GFP2 CKifφ↔ (EKifφ ∧ CKif EKifφ)

Def2 (Ki) Kiφ↔ (φ ∧Kifiφ)
Def2 (EK ) EKφ↔ (φ ∧ EKifφ)
Def2 (CK ) CKφ↔ (φ ∧ CKifφ)

Table 4.3: Axiomatization of S5 common knowledge whether: the GFP2 ax-
iomatics.

4.2 Commonly knowing whether
In this section we show that our axiomatics of Table 4.2 leads to a simple
axiomatization of the S5-based ‘common knowledge whether’ operator.

A straightforward possibility for axiomatizing the ‘knowing whether’ opera-
tors is to add to the axiomatics of Table 4.2 the following axioms:

Def1 (Kifi) Kifiφ↔ (Kiφ ∨Ki¬φ)
Def1 (EKif ) EKifφ↔ (EKφ ∨ EK¬φ)
Def1 (CKif ) CKifφ↔ (CKφ ∨ CK¬φ)

However, we are going to take another road here, in view of axiomatizing the
fragment without ‘knowing that’ operators. Our axiomatics in Table 4.3 takes
the ‘knowing whether’ operators as primitive and defines the ‘knowing that’
operators. The first part is proper to Kifi and EKif . We might have taken
over as well the axiomatics of [54]; the principles Sym(Kifi), RE(Kifi), and
RN (Kifi) can also be found there, but we find the rest of our axioms a bit
simpler than theirs. Axiom 45 1(Kifi) can be found in [106]. The second part
of our axiomatics parallels the first part and moreover has a single greatest
fixed-point axiom relating EKif and CKif (that is perhaps better called a fixed-
point axiom tout court: its syntactical form is very close to that of a possible
fixed-point axiom for common belief CBφ↔ (EBφ∧EB CBφ)). The third part
contains the definitions of the ‘knowing that’ operators.

We are going to prove soundness and completeness of the axiomatics of Table
4.3 w.r.t. the S5-based GFP0 axiomatics (more precisely: w.r.t. the extension
of the latter by Def1 (Kifi), Def1 (EKif ), and Def1 (CKif )).
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Proposition 4.3. For the S5-based GFP2 axiomatics of Table 4.3, all infer-
ence rules are derivable and all axioms are theorems in the S5-based GFP0
axiomatics.

To show this, we prove each principle of Table 4.3. We start with the last
three definitions so that we can use them in the rest of the proofs.

Def2 (Ki) Kiφ↔ (φ ∧Kifiφ)

Proof. 1. Kiφ↔ (φ ∧ (Kiφ ∨Ki¬φ)) from T (Ki)

2. Kiφ↔ (φ ∧Kifiφ) from (1) and Def1 (Kifi)

Def2 (EK ) EKφ↔ (φ ∧ EKifφ)

Proof. The proof follows the lines of that of Def2 (Ki), using Def1 (EKif ) instead
of Def1 (Kifi) and use that T (EK ) is a theorem.

Def2 (CK ) CKφ↔ (φ ∧ CKifφ)

Proof. The proof follows the lines of that of Def2 (Ki), using use Def1 (CKif )
instead of Def1 (Kifi) and T (CK ) instead of T (Ki).

Sym(Kifi): Kifiφ↔ Kifi¬φ

Proof. 1. (Kiφ ∨Ki¬φ)↔ (Ki¬φ ∨Ki¬¬φ) Ki normal

2. Kifiφ↔ Kifi¬φ from (1) by Def1 (Kifi)

RE(Kifi): from φ↔ ψ, infer Kifiφ↔ Kifiψ

Proof. 1. φ↔ ψ hypothesis

2. Kiφ↔ Kiψ from (1), Ki normal

3. Ki¬φ↔ Ki¬ψ from (1), Ki normal

4. (Kiφ ∨Ki¬φ)↔ (Kiψ ∨Ki¬ψ) from (2), (3)

5. Kifiφ↔ Kifiψ from (4) by Def1 (Kifi)

RN (Kifi): from φ, infer Kifiφ

Proof. 1. φ hypothesis

2. Kiφ from (1), Ki normal

3. Kiφ ∨Ki¬φ from (2)
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4. Kifiφ from (3) by Def1 (Kifi)

Conj(Kifi): (φ ∧ ψ)→
(
Kifi(φ ∧ ψ)↔ (Kifiφ ∧Kifiψ)

)
Proof. We prove the two implications

(
φ ∧ ψ ∧ Kifi(φ ∧ ψ)

)
→ Kifiφ and (φ ∧

ψ ∧Kifiφ ∧Kifiψ)→ Kifi(φ ∧ ψ), each time using that we have already proved
Def2 (Ki) to be a theorem. For the former:

1. Ki(φ ∧ ψ)→ (Kiφ ∨Ki¬φ) Ki normal

2.
(
φ ∧ ψ ∧Kifi(φ ∧ ψ)

)
→ Kifiφ from (1), theorem Def2 (Ki)

For the latter:

1. (Kiφ ∧Kiψ)→ Ki(φ ∧ ψ) Ki normal

2. (φ ∧Kifiφ ∧ ψ ∧Kifiψ)→
(
φ ∧ ψ ∧Kifi(φ ∧ ψ)

)
from (1), thm. Def2 (Ki)

3. (φ ∧ ψ ∧Kifiφ ∧Kifiψ)→ Kifi(φ ∧ ψ) from (2)

45 1(Kifi): KifiKifiφ

Proof. Similar to the next proof of 45 2(Kifi).

45 2(Kifi): Kifi(φ ∧Kifiφ)

Proof. 1. Kiφ ∨Ki¬φ ∨ (¬Kiφ ∧ ¬Ki¬φ)

2. Kiφ→ Ki(φ ∧Kifiφ) from 4 (Ki) and thm. Def2 (Ki), Ki normal

3. Ki¬φ→ Ki¬(φ ∧Kifiφ) from Ki normal

4. (¬Kiφ ∧ ¬Ki¬φ)→ (Ki¬Kiφ ∧Ki¬Ki¬φ) from thm. ∗5 (Ki)

5. (Ki¬Kiφ ∧Ki¬Ki¬φ)→ Ki¬Kifiφ from Def1 (Kifi), Ki normal

6. (¬Kiφ ∧ ¬Ki¬φ)→ Ki¬(φ ∧Kifiφ) from (4), (5), Ki normal

7. Ki(φ ∧Kifiφ) ∨Ki¬(φ ∧Kifiφ) from (1), (2), (3), (6)

8. Kifi(φ ∧Kifiφ) from (7), Def1 (Kifi)

Def2 (EKif ): EKifφ↔
∧

i∈Agt Kifiφ

Proof. This is Proposition 2.2.

Sym(CKif ): CKifφ↔ CKif¬φ

Proof. Follow the lines of that of Sym(Kifi).

RE(CKif ): from φ↔ ψ, infer CKifφ↔ CKifψ
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Proof. Follow the lines of that of RE(Kifi).

RN (CKif ) from φ, infer CKφ

Proof. Follow the lines of that of RN (Kifi).

Conj(CKif ) (φ ∧ ψ)→
(
CKif (φ ∧ ψ)↔ (CKifφ ∧ CKifψ)

)
Proof. Follow the lines of that of Conj(Kifi).

∗45 1(CKif ) CKif CKifφ

Proof. Follow the lines of that of 45 1(Kifi).

45 2(CKif ) CKif (φ ∧ CKifφ)

Proof. Follow the lines of that of 45 2(Kifi).

GFP2 CKifφ↔ (EKifφ ∧ CKif EKifφ)

Proof. We prove the three implications CKifφ→ EKifφ, CKifφ→ CKif EKifφ,
and (EKifφ ∧ CKif EKifφ)→ CKifφ. For the first:

1. (CKφ ∨ CK¬φ)→ (EKφ ∨ EK¬φ) from FP0

2. CKifφ→ EKifφ from (1), Def1 (EKif ), Def1 (CKif )

For the second:

1. CKφ→ CKEKφ from 4 (CK ), FP0

2. CKφ→ CKEKifφ from (1), Def (EKif ), normal CK

3. CK¬φ→ CKEKif¬φ from (2) by uniform substitution

4. CK¬φ→ CKEKifφ from (3) by Sym(Ki)

5. CKifφ→ CKEKifφ from (2), (4), Def1 (CKif )

6. CKifφ→ CKif EKifφ from (5), Def1 (CKif )

For the third:

1. CK (EKφ ∨ EK¬φ)→ (CKφ ∨ CK¬φ) GFP0

2. CKEKifφ→ CKifφ from (1), Def1 (EKif ), Def1 (CKif )

3. (EKifφ ∧ CKif EKifφ)→ CKifφ from (2), thm. Def2 (CK )

Proposition 4.4. For the S5-based GFP0 axiomatics of Table 4.2, all infer-
ence rules are derivable and all axioms are theorems in the S5-based GFP2
axiomatics. Moreover, the equivalences Def1 (Ki), Def1 (EK ), and Def1 (CK )
are theorems in the S5-based GFP2 axiomatics.
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To show this we prove all principles of Table 4.2, starting with the last three
definitions.

Def1 (Kifi) Kifiφ↔ (Kiφ ∨Ki¬φ)

Proof. 1. (Kiφ ∨Ki¬φ)↔ ((φ ∧Kifiφ) ∨ (¬φ ∧Kifi¬φ)) from Def2 (Ki)

2. Kifi¬φ↔ Kifiφ Sym(Kifi)

3. Kifiφ↔ (Kiφ ∨Ki¬φ) from (1), (2)

Def1 (EKif ) EKifφ↔ (EKφ ∨ EK¬φ)

Proof. Follow the lines of that of Def1 (Kifi).

Def1 (CKif ) CKifφ↔ (CKφ ∨ CK¬φ)

Proof. Follow the lines of that of Def1 (Kifi).

RN (Ki) from φ, infer Kiφ

Proof. 1. φ hypothesis

2. Kifiφ from (1) by RN (Kifi)

3. φ ∧Kiφ from Def2 (Ki)

4. Kiφ from (3)

K (Ki) Ki(φ→ ψ)→ (Kiφ→ Kiψ)

Proof. 1. (φ ∧Kifiφ ∧ (φ→ ψ) ∧Kifi(φ→ ψ))→ Kifi(φ ∧ (φ→ ψ))
blablabla from Conj(Kifi)

2. (φ ∧Kifiφ ∧ (φ→ ψ) ∧Kifi(φ→ ψ))→ Kifi(φ ∧ ψ)
blablabla from (1) by RE(Kifi)

3. (φ ∧ ψ ∧Kifi(φ ∧ ψ))→ Kifiψ from Conj(Kifi)

4. (φ ∧Kifiφ ∧ (φ→ ψ) ∧Kifi(φ→ ψ))→ (ψ ∧Kifiψ) from (2), (3)

5. Ki(φ→ ψ)→ (Kiφ→ Kiψ) from (4) by Def2 (Ki)

T (Ki) Kiφ→ φ

Proof. 1. (φ ∧Kifφ)→ φ

2. Kiφ→ φ from (1) by Def2 (Ki)

∗5 (Ki) ¬Kiφ→ Ki¬Kiφ
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Proof. 1. Kifi(φ ∧Kifiφ) 45 2(Kifi)

2. KifiKiφ from (1) by Def2 (Ki)

3. Kifi¬Kiφ from (2) by Sym(Kifi)

4. ¬Kiφ→ (¬Kiφ ∧Kifi¬Kiφ) from (3)

5. ¬Kiφ→ Ki¬Kiφ from (4) by Def2 (Ki)

RN (CK ) from φ, infer CKφ

Proof. Follow the lines of that of RN (Ki).

K (CK ) CK (φ→ ψ)→ (CKφ→ CKψ)

Proof. Follow the lines of that of K (Ki).

T (CK ) CKφ→ φ

Proof. Follow the lines of that of T (Ki).

FP0 CKφ→ EKφ

Proof. 1. (φ ∧ CKifφ)→ (φ ∧ EKifφ) from GFP2

2. CKφ→ EKφ from (1) by Def2 (CK ), Def2 (EK )

GFP0 CK (EKφ ∨ EK¬φ)→ (CKφ ∨ CK¬φ)

Proof. 1. (EKifφ ∧ CKif EKifφ)→ CKifφ from GFP2

2.
(
(EKφ ∨ EK¬φ) ∧ CKif (EKφ ∨ EK¬φ)

)
→ CKifφ

a from (1) by thm. Def1 (EKif ) and RE(CKif )

3. CK (EKφ ∨ EK¬φ)→ (CKφ ∨ CK¬φ)
a from (2) by Def2 (CK ), thm. Def1 (CKif )

It follows from propositions 4.3 and 4.4 that the first two parts of Table 4.3
provide a sound and complete axiomatization for the fragment of the language
with only ‘knowing whether’ operators.

Proposition 4.5. If formula φ has no Ki, EK, CK operators then φ is a
theorem of the S5-based GFP2 axiomatics of Table 4.3 if and only if it is provable
without the axioms Def2 (Ki), Def2 (EK ), and Def2 (CK ).

Proof. Suppose no Ki, EK , CK occur in φ and suppose φ is a theorem of
the S5-based GFP2 axiomatics. Whenever the proof of φ uses axiom Def2 (Ki),
Def2 (EK ), or Def2 (CK ), we can eliminate that axiom by replacing the definien-
dum by the definiens everywhere in the proof.
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4.3 Discussion: epistemic logics weaker than S5
4.3.1 Epistemic logics between KT and S5
We have seen that our new axiom GFP0 is sound for logics of knowledge,
understood as logics where the logic of individual knowledge is at least KT, and
that it is complete when the logic of individual knowledge is S5.

We conjecture that the KT-based GFP0 axiomatics is incomplete. We how-
ever do not have a formal proof for the time being. Such a proof would have to
delve into semantics: it typically consists in designing a non-standard semantics
for which the axiomatics with GFP0 is complete. We leave this aside for the
time being.

Under the hypothesis that the KT-based GFP0 axiomatics is incomplete,
one may wonder which axiom is missing to obtain completeness. A tempting
avenue is to add the formula CK (φ → EKφ) → CK (¬φ → EK¬φ) of Lemma
4.1 as an axiom schema to the axiomatics of Table 4.2. The proof of Proposition
4.2 then gives us completeness because it uses none of the S5 axioms but T (Ki).
However it can be shown that this amounts to adding 5 (CK ): it can be shown
that the formula is equivalent to 5 (CK ) in the presence of T (CK ).

Proposition 4.6. In the GFP-based axiomatics for KT, 5 (CK ) and the formula
CK (φ→ EKφ)→ CK (¬φ→ EK¬φ) are interderivable.

Proof. From the GFP-based axiomatics for KT and 5 (CK ) (recall that 4 (CK )
is derivable from FP ′, RN (CK ) and GFP):

1. CKCK (φ→ EKφ)→ CK (φ→ CKφ) from GFP, RN (CK ), K (CK )

2. CK (φ→ EKφ)→ CKCK (φ→ EKφ) 4 (CK )

3. CK (φ→ EKφ)→ CKCK (¬CKφ→ ¬φ) from (1), (2) and 4 (CK )

4. CK (φ→ EKφ)→ CK (CK¬CKφ→ CK¬φ) from (3) and K (CK )

5. CK (φ→ EKφ)→ CK (¬CKφ→ CK¬φ) from (4) and 5 (CK )

6. CK (φ→ EKφ)→ CK (¬φ→ EK¬φ) from (5), FP ′ and T (CK )

From the GFP-based axiomatics for KT and CK (φ → EKφ) → CK (¬φ →
EK¬φ):

1. CK (φ→ EKφ)→ CK (¬φ→ EK¬φ) hypothesis

2. CK (CKφ→ EKCKφ) from FP ′ and RN (CK )

3. CK (¬CKφ→ EK¬CKφ) from (2) and (1)

4. ¬CKφ→ CK¬CKφ from (3) and GFP

Just as common knowledge is necessarily positively introspective even when
individual knowledge isn’t, it can still be argued that S5 common knowledge
can make sense even when individual knowledge is not S5: one can imagine,
e.g., that common knowledge is “written on a blackboard”, or otherwise easily
available to agents such that they are able to immediately verify what is and is
not commonly known. We leave further explorations to future work.
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4.3.2 GFP0 is not appropriate for belief
Up to now we have only discussed common knowledge; we now briefly discuss
common belief.

Let us write Biφ for “i believes that φ”, EBφ for “it is shared belief that
φ”, and CBφ for “it is common belief that φ”, and let us suppose the logic of
the Bi operators is KD (or, alternatively, any logic without the T axiom).

It is intuitively clear that the belief-version of GFP1 ,

CB
∧

i∈Agt
(Biφ ∨Bi¬φ)→ (CBφ ∨ CB¬φ),

should not hold: if there is common belief—and even common knowledge—that
everybody has an opinion about φ then it by no means follows that there is
common belief about φ.

What about GFP0? The fact that GFP1 is unintuitive need not disqualify
GFP0 . Indeed, while these two axioms are equivalent in epistemic contexts,
they fail to be so in doxastic contexts: in KD45,

∧
i∈Agt(Biφ ∨Bi¬φ) does not

imply EBφ ∨ EB¬φ, and does not do so a fortiori in KD; and therefore the
belief-counterpart of Proposition 2.2 does not hold.

As it turns out, GFP0 is not a reasonable principle of common belief either.
This can be highlighted by the following example. Suppose that the set of agents
under concern is Agt = {1, 2} and that there is a misunderstanding between 1
and 2 about an inform act of a third agent. That third agent is not relevant
here, and we suppose that Agt = {1, 2}. Let us suppose that 1 believes the third
agent said p and therefore believes that p is in the common ground (B1CBp),
while 2 believes that ¬p is in the common ground (B2CB¬p). It follows by
4 (CB) and by the (intuitively still valid) belief-counterpart of FP0 that

B1CBEBp ∧B2CBEB¬p.

As both CB and EB are normal operators, it follows that

B1CB(EBp ∨ EB¬p) ∧B2CB(EBp ∨ EB¬p),

i.e., that EBCB(EBp ∨ EB¬p). The latter is equivalent to CB(EBp ∨ EB¬p)
thanks to the belief-version of the fixed-point axiom, which is CBφ↔ EBCBφ.
From that the counter-intuitive consequence CBp ∨ CB¬p would follow by the
belief-counterpart of GFP0 .

To sum up, unlike the standard induction principles the status of our new
versions of the induction axiom differs between knowledge and belief: they are
specific to common knowledge and fail for common belief.

4.4 A second version of EL-O
We introduce in this section a new version of EL-O, called EL-O+Ind, which we
will show to be a fragment of the logic S5. This is achieved on the semantic
side by restricting states to particular sets of atoms, and on the syntactic side
by adding an axiom to the logic inspired by GFP2 .
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4.4.1 Language and semantics of EL-O+Ind
The language of EL-O+Ind is exactly the language of EL-O. In Chapter 3, EL-
O states are allowed to be arbitrary sets of atoms. We will for EL-O+Ind be
considering only states that are members of the following set:

IND-STATES = {s ⊆ ATM : for all α ∈ ATM , if for all i ∈ Agt
Si α ∈ s ∪ I -ATM and JS Si α ∈ s ∪ I -ATM
and JS α ̸∈ I -ATM then JS α ∈ s}

This guarantees the validity of the following principle: if for some atom α,
JS Si α and Si α are true for all i ∈ Agt, then JS α should also be true.

In the rest of this chapter we will only be using the term “states” to refer to
members of IND-STATES , and will be referring to arbitrary subsets of ATM
simply as sets of atoms.

Example 4.1 (Letter, cont.). Suppose that both agents read the letter sepa-
rately, then tell each other that they have read the letter. Then they both know
the contents of the letter, and they jointly see that each of them knows whether
p is true: S1 p, S2 p, JS S1 p and JS S2 p are all true. But then JS p should also
be true: it is the case that both agents know whether p is true, both know that
they both know it, and so on. For this reason, {S1 p, S2 p, JS S1 p, JS S2 p} is not
a state, but {S1 p, S2 p, JS S1 p, JS S2 p, JS p} is.

We first state a few basic properties of IND-STATES .

Proposition 4.7. IND-STATES is closed under intersection: if two states s
and s′ are in IND-STATES then s ∩ s′ is also in IND-STATES.

Proposition 4.8. If s ∈ IND-STATES then s⇒ ∪ I -ATM ∈ IND-STATES.

We call IND-STATESF the set of all finite states. The set of all introspec-
tively closed states is

I -IND-STATES = {s⇒ ∪ I -ATM : s ∈ IND-STATES}.

The truth conditions for formulas in EL-O+Ind are then just as in EL-O:

s |=EL-O+Ind α iff α ∈ s⇒ ∪ I -ATM
s |=EL-O+Ind ¬φ iff s ̸|=EL-O+Ind φ
s |=EL-O+Ind φ ∧ ψ iff s |=EL-O+Ind φ and s |=EL-O+Ind ψ

where s ∈ IND-STATES . In the rest of this chapter we will use |= as a shorthand
for |=EL-O+Ind (rather than as a shorthand for |=EL-O as we do in the other
chapters).

In the rest of this section we establish a finite model property for EL-O+Ind,
prove NP-completeness of EL-O+Ind satisfiability, and give an axiomatization.

4.4.2 Completion of a finite state and finite model prop-
erty

The finite model property for EL-O was obtained by considering, given an EL-O
state s and a formula φ, the state (s⇒ ∪ I -ATM ) ∩ Voc(φ). However, given an
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A0 = A A1 A2 = C(A)
JS S1 S2 p, (JS S2 S2 p), JS S1 S2 p, JS S1 S2 p,
S1 S2 p, (S2 S2 p), S1 S2 p, S1 S2 p,
JS S1 p, JS S1 p, JS S2 p, JS S1 p, JS S2 p,
S1 p, S2 p S1 p, S2 p S1 p, S2 p,

JS p

Table 4.4: Construction of the completion of A in Example 4.2. The atoms
added at each step are in bold, the atoms that cause these additions are un-
derlined. The atoms that are parenthesized are the introspective atoms not
explicitly in A.

EL-O+Ind state s and a formula φ, it is not always the case that s ∩ Voc(φ)
is still in IND-STATES . A bit more work is necessary to obtain a finite model
property for EL-O+Ind. We first show how to obtain for any set of atoms A the
smallest state containing A.
Definition 4.1. Let A ⊆ ATM be an arbitrary set of atoms. We define the
completion of A, noted C(A), as follows:

A0 =A
Ak+1 =Ak ∪ {JS α : Si α, JS Si α ∈ Ak ∪ I -ATM for all i ∈ Agt

and JS α ̸∈ Ak ∪ I -ATM}

C(A) =
⋃
k∈N

Ak

Example 4.2. Let Agt = {1, 2} and A = {S1 p, S2 p, JS S1 p, S1 S2 p, JS S1 S2 p}.
Then S1 S2 p, JS S1 S2 p ∈ A, S2 S2 p, JS S2 S2 p ∈ I -ATM , and JS S2 p ̸∈ I -ATM .
Therefore A1 = A ∪ {JS S2 p}. But then S1 p, S2 p, JS S1 p, JS S2 p ∈ A1, and
JS p ̸∈ I -ATM , hence A2 = A1∪{JS p}. No more atoms can be added after this
step: C(A) = A2. See Table 4.4 for a more visual breakdown of the operation.

We now show that this completion process ends in a finite number of steps
for any finite set of atoms A.
Proposition 4.9. Let A be a finite set of atoms and ℓ be the length of the
longest atom in A. If ℓ < 3 then for all k ∈ N, Ak = A. Otherwise for any
k ⩾ ℓ− 2, Ak = Ak+1. That is, C(A) = A if ℓ < 3 and C(A) = Aℓ−2 if ℓ ⩾ 3.

Proof. If ℓ < 3 then there can be no atoms in A of the form JS Si α, hence the
first result.

When ℓ ⩾ 3, we show by induction on k that the longest atom in Ak \Ak−1
is of length no more than ℓ − k for any k ⩾ 1. Any atom JS α in A1 \ A must
be such that JS Si α ∈ A for some i, and therefore the length of JS α is at most
ℓ − 1. From there on, for any atom JS α in Ak+1 \ Ak, it must be the case
that JS Si α ∈ Ak \ Ak−1 for some i ∈ Agt (otherwise JS α would be in Ak).
Therefore the length of JS Si α must be no more than ℓ − k by the induction
hypothesis, and the length of JS α is therefore at most ℓ− k − 1.

Hence atoms in Aℓ−2 \Aℓ−3 are of length at most 2, that is, the only atoms
that can be in Aℓ−2 \Aℓ−3 are of the form JS p with p ∈ Prop. As these are not
of the form JS Si α, no more atoms can be added from Aℓ−1 on.
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It follows that if A is finite then C(A) is also finite. Moreover, clearly C(A) ∈
IND-STATES for any A.

Proposition 4.10. Let A ⊆ ATM be an arbitrary set of atoms. If A is finite
then C(A) ∈ IND-STATESF .

As before, we say that two states s and s′ agree on the set of atoms A ⊆ ATM
when they assign the same truth value to every element of A, i.e., when for every
α ∈ A, s |= α iff s′ |= α. By a straightforward induction on the structure of
formulas we get:

Proposition 4.11. Let φ ∈ Lbool(ATM ) be a formula and s, s′ ∈ IND-STATES
two states agreeing on Voc(φ). Then s |= φ iff s′ |= φ.

With this we obtain the finite model property for EL-O+Ind:

Proposition 4.12 (Finite model property). For any formula φ ∈ Lbool(ATM ),
if s |= φ for some s ∈ IND-STATES then there exists a finite state s′ ∈
IND-STATESF such that s′ |= φ.

Proof. Let s ∈ IND-STATES be such that s |= φ. We first remark that as
Voc(φ) is finite, so is C(Voc(φ)) by Proposition 4.10. Using Propositions 4.7 and
4.8, we obtain that (s⇒∪I -ATM )∩C(Voc(φ)) ∈ IND-STATESF . It is clear that
s and s⇒ ∪ I -ATM agree on all atoms. Then s and (s⇒ ∪ I -ATM )∩C(Voc(φ))
agree on Voc(φ). Therefore by Proposition 4.11, s and (s⇒∪I -ATM )∩C(Voc(φ))
agree on φ.

4.4.3 Complexity of EL-O+Ind satisfiability
The EL-O+Ind satisfiability problem consists in deciding, given a formula φ ∈
Lbool(ATM ), whether there exists a s ∈ IND-STATES such that s |= φ. In
this section we analyze the complexity of this problem. We start by reducing
EL-O+Ind model checking to classical model checking.

Lemma 4.2. Let φ ∈ Lbool(ATM ) be a formula and s ∈ IND-STATES be a
state. Then s |= φ iff s⇒ ∪ I -ATM |=CPC φ.

Proposition 4.13. Let φ ∈ Lbool(ATM ) be a formula. Then φ is EL-O-
satisfiable iff there exists a set of atoms s ⊆ C(Voc(φ)) such that s is in
IND-STATESF , s = (s⇒ ∪ I -ATM ) ∩ C(Voc(φ)) and s |=CPC φ.

Proof. The left-to-right direction follows from Proposition 4.12 and Lemma 4.2:
if there exists s ∈ IND-STATES such that s |= φ, consider s′ = (s⇒∪I -ATM )∩
C(Voc(φ)). Then s′ ∈ IND-STATESF , s′ = (s′⇒ ∪ I -ATM ) ∩ C(Voc(φ)), and
s′ |= φ by the proof of Proposition 4.12. By Lemma 4.2, s′⇒ ∪ I -ATM |=CPC φ,
hence (s′⇒ ∪ I -ATM ) ∩ C(Voc(φ)) |=CPC φ, that is, s′ |=CPC φ.

Suppose now that there exists s ⊆ C(Voc(φ)) such that s ∈ IND-STATESF ,
s = (s⇒ ∪ I -ATM )∩ C(Voc(φ)) and s |=CPC φ. Then s⇒ ∪ I -ATM |=CPC φ and
by Lemma 4.2, s |= φ.

In order to determine complexity of satisfiability in EL-O+Ind, we must
analyze the complexity of calculating C(Voc(φ)) for any formula φ.
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Lemma 4.3. Let A ⊆ ATM be a finite set of atoms. Let ℓ be the length of the
longest atom in A, and |A| be the number of atoms of A. Then the completion
C(A) of A can be constructed in time O(|A|2ℓ3).

Proof. The algorithm follows the construction of Ak given in Definition 4.1,
and stops when a fixpoint is reached, after at most ℓ − 2 steps by Proposition
4.9. Finding which atoms must be added to construct Ak+1 can be done in
O(|Ak|2) operations. Moreover, the number of atoms added in A1 is no more
than |A|

2 (more precisely, it is no more than |A|
2|Agt| ), and as any atom added

from there on must be on the basis of an atom added at the previous step, no
more than |A|

2 atoms can be added at each step. Therefore for any k ⩽ ℓ − 2,
|Ak| ⩽ |A|(1 + ℓ−2

2 ), that is, |Ak| ⩽ 1
2 |A|ℓ. Therefore each step is done in time

O(|A|2ℓ2). As there are at most ℓ− 2 such steps, the entire construction can be
done in time O(|A|2ℓ3).

Proposition 4.14. The satisfiability problem for EL-O+Ind is NP-complete.

Proof. Hardness is the case because CPC can be embedded into EL-O+Ind, just
as with EL-O. For membership, let φ ∈ Lbool(ATM ) be a formula. The algorithm
is as follows:

1. Construct C(Voc(φ)) (in O(ℓ(φ)5). Note that |Voc(φ)| ⩽ ℓ(φ) and the
longest atom of Voc(φ) is of length at most ℓ(φ), hence |C(Voc(φ))| ⩽
ℓ(φ)2.

2. Guess a set s ⊆ C(Voc(φ)).

3. Check that s ∈ IND-STATES (in O(|s|2), i.e. O(ℓ(φ)4) because |s| ⩽
|C(Voc(φ))| ⩽ ℓ(φ)2).

4. Check that for any α ∈ s and β ∈ C(Voc(φ)), if α ⇒ β then β ∈ s and if
β ∈ I -ATM then β ∈ s (in O(|s||C(Voc(φ))|, i.e. O(ℓ(φ)4)).

5. Check that s |=CPC φ.

Hence the satisfiability problem in EL-O+Ind has the same complexity as
its EL-O and classical counterparts.

4.4.4 Axiomatization of EL-O+Ind validities
The EL-O+Ind validities of our language Lbool(ATM ) are axiomatized by the
schemas of Table 4.5 together with CPC. Notice the new axiom Ind compared
to the axiomatization of EL-O. This axiom is a direct translation of the right-
to-left direction of the induction axiom for common knowledge whether GFP2
discussed in Section 4.2.

Proposition 4.15. Let φ ∈ Lbool(ATM ) be a formula. Then φ is EL-O+Ind
valid iff φ is provable in CPC from the axiom schemas Vis1 – Vis5 + Ind of
Table 4.5.
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Table 4.5: Axioms for EL-O

Vis1 Si Si α
Vis2 JS JS α
Vis3 JS Si Si α
Vis4 JS α→ Si α
Vis5 JS α→ JS Si α

Ind
(∧

i∈Agt(JS Si α ∧ Si α)
)
→ JS α

Proof. We again take advantage of Lemma 4.2 and show that Vis1 – Vis5
+ Ind characterise the set of introspectively closed states I -IND-STATES =
{s⇒∪I -ATM : s ∈ IND-STATES}. We first remark that as I -IND-STATES =
I -STATES ∩ IND-STATES , the axiom schemas Vis1 – Vis5 must be valid in
all introspective states. Moreover, we know that any set of atoms satisfying
Vis1 – Vis5 must be in I -STATES . Only two elements are left to prove: first,
the axiom schema Ind is valid in all introspectively closed states. Second, any
set of atoms satisfying Ind must be a member of IND-STATES . Both of these
elements are straightforward.

4.5 EL-O+Ind as a fragment of epistemic logic S5
As in Chapter 3, we identify Si with Kifi and JS with CKif , and consider the
language Lbool(ATM ) as the EL-O fragment of Fml if

EL. In this section we show
that standard S5 epistemic logic is a conservative extension of EL-O+Ind, that
is, that Table 4.5 axiomatizes the validities of S5 over the EL-O fragment of
the full language FmlEL. It follows by Proposition 4.14 that our lightweight
epistemic logic is a fragment of standard epistemic logic with an NP-complete
satisfiability problem.

4.5.1 A canonical model for EL-O+Ind
As in Chapter 3, we define a particular Kripke model MEL-O+Ind in which worlds
are EL-O+Ind valuations, starting with defining equivalence relations between
states. For every s, s′ ∈ IND-STATES we define:

sREL-O+Ind
i s′ iff s and s′ agree on every α such that s |= Si α;

sREL-O+Ind
Agt s′ iff s and s′ agree on every α such that s |= JS α.

As before, all relations REL-O+Ind
i and REL-O+Ind

Agt are equivalence relations, and
all REL-O+Ind

i are included in REL-O+Ind
Agt .

We then define the canonical Kripke model for EL-O+Ind as the tuple
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MEL-O+Ind = ⟨W EL-O+Ind ,∼EL-O+Ind
Agt , {∼EL-O+Ind

i }i∈Agt , V
EL-O+Ind⟩ with

W EL-O+Ind = {s⇒ ∪ I -ATM : s ∈ IND-STATESF},
∼EL-O+Ind

Agt = REL-O+Ind
Agt ∩ (W EL-O+Ind ×W EL-O+Ind),

∼EL-O+Ind
i = REL-O+Ind

i ∩ (W EL-O+Ind ×W EL-O+Ind),
V EL-O+Ind(w) = w ∩ Prop for every w ∈W EL-O+Ind .

Hence the possible worlds of MEL-O are the introspective closures of finite states.
We know it suffices to consider finite models due to the finite model property
proved in Section 4.4.2; the fact that we are considering closures of finite states
rather than arbitrary states will be instrumental in our proofs.

Proposition 4.16. For any φ ∈ Lbool(ATM ), for any s ∈ W EL-O+Ind, s |= φ
iff MEL-O+Ind , s |= φ.

Proof. This is shown by induction on the form of φ. It suffices to show by
induction on α that for all s ∈ W EL-O+Ind , for all α ∈ ATM , s |= α iff
MEL-O+Ind , s |= α.

By definition of MEL-O+Ind , for any p ∈ Prop and any s, MEL-O+Ind |= p iff
s |= p, and for any atom α and agent i, if s |= Si α then MEL-O+Ind , s |= Si α
and if s |= JS α then MEL-O+Ind , s |= JS α.

If s ̸|= Si α, consider s′ = s∪{α} if α ̸∈ s and s′ = s \ {α} if α ∈ s. We show
that s′ ∈ W EL-O+Ind . Because s ∈ W EL-O+Ind , there exists s0 ∈ IND-STATESF
such that s = s⇒

0 ∪ I -ATM . Suppose that s |= α and α ̸∈ s0. Then either
α ∈ I -ATM or there exists β ∈ s0 such that β ⇒ α. In the first case, Si α
must also be introspective, and in the second, β ⇒ Si α, hence in both cases
s |= Si α. As this is not possible, we conclude that s |= α iff α ∈ s0. Consider
then s′

0 = s0 ∪ {α} if α ̸∈ s0 an s′
0 = s0 \ {α} if α ∈ s0. As s ̸|= Si α, α

can not be of the form JS α′, and therefore s′ = s′⇒
0 ∪ I -ATM . We now show

that s′
0 ∈ IND-STATESF . Suppose that there exists β such that Sj β ∈ s′

0
and JS Sj β ∈ s′

0 for all j ∈ Agt, and JS β ̸∈ s′
0. Necessarily α = Sj β for

some j. But then JS α ∈ s0, and therefore Si α ∈ s, which is impossible.
Therefore s′

0 ∈ IND-STATESF . We have constructed s′ ∈W EL-O+Ind such that
s and s′ disagree on α (and therefore by the induction hypothesis, MEL-O+Ind , s
and MEL-O+Ind , s′ also disagree on α), and clearly s∼i

EL-O+Inds′. Therefore
MEL-O+Ind , s ̸|= Si α.

If s ̸|= JS α, we take the same s′ and show in the same way that s′ ∈
W EL-O+Ind . Then s and s′ disagree on α and s ∼EL-O+Ind

Agt s′, and therefore
MEL-O+Ind , s ̸|= JS α.

Corollary 4.1. For any formula φ ∈ Lbool(ATM ), |=EL-O+Ind φ iff |=MEL-O+Ind φ.

Proof. This is shown by combining the above result with the finite model prop-
erty of Proposition 4.12: if MEL-O+Ind , s |= φ for some s ∈ W EL-O+Ind , then
s |= φ; and if s |= φ for some s ∈ IND-STATES , then by Proposition 4.12 there
exists s′ ∈ IND-STATESF such that s′ |= φ, therefore s′⇒ ∪ I -ATM |= φ, and
we conclude by Proposition 4.16 that MEL-O+Ind , s′⇒ ∪ I -ATM |= φ.
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4.5.2 Completeness of the EL-O+Ind fragment w.r.t. S5 va-
lidity

We now show that the EL-O+Ind semantics in terms of observability and the
standard S5 Kripke semantics have the same validities as far as the EL-O+Ind
fragment is concerned. It is clear that the EL-O+Ind axioms are valid in S5. For
the other direction, we could attempt to show that MEL-O+Ind is an S5 Kripke
model. We here take a different approach and instead show that it is at least
bisimilar to an S5 model.

We define the model M0 as follows: M0 = ⟨W EL-O+Ind ,∼Agt , {∼EL-O+Ind
i

}i∈Agt , V
EL-O+Ind⟩ where ∼Agt = (

⋃
i∈Agt ∼

EL-O+Ind
i )+. That is, ∼Agt is the

transitive closure of the union of all ∼EL-O+Ind
i . Clearly M0 is an S5 Kripke

model. To show that validites of Lbool(ATM ) are preserved, we will need the
following lemma:

Lemma 4.4. Let M = ⟨W,RAgt , {Ri}i∈Agt , V ⟩ be a Kripke model such that
RAgt and all Ri are equivalence relations, and let s be a world in that model.
If there exists α and a finite sequence i1, . . . , in of agents such that (M, s) ̸|=
Sin

. . . Si1 α, then there exists a subsequence il1 , . . . , ilp
of i1, . . . , in and a world

s′ in M such that sRilp
. . . Ril1

s′ and (M, s) and (M, s′) disagree on α.

Proof. This is shown by induction on n. If n = 1 and s ̸|= Si1 α, then by
definition of Kripke models there exists s′ such that sRi1s

′ and s and s′ disagree
on α.

Suppose that the property is true for all k ⩽ n for some n. Suppose s ̸|=
Sin . . . Si1 α. Let m = min{k ⩽ n : ∀l ⩾ k, s ̸|= Sil

. . . Si1 α}. If m = 1 then
s ̸|= Si1 α and we are back at the first case. Otherwise we have s ̸|= Sim

. . . Si1 α
and s |= Sim−1 . . . Si1 α. Therefore there exists a world sm such that sRim

sm

and s and sm disagree on Sim−1 . . . Si1 α, that is, sm ̸|= Sim−1 . . . Si1 α. If s and
sm disagree on α we are done. Otherwise the induction hypothesis tells us that
there exists a subsequence il1 , . . . , ilp of i1, . . . , im−1 and a state s′ such that
smRilp

. . . Ril1
s′ and sm and s′ disagree on α Therefore sRim−1smRilp

. . . Ril1
s′

and s and s′ disagree on α.

We are now ready to prove that MEL-O+Ind and M0 are bisimilar for formulas
of Lbool(ATM ).

Proposition 4.17. For any formula φ ∈ Lbool(ATM ), for any s ∈W EL-O+Ind,
MEL-O+Ind , s |= φ iff M0, s |= φ.

Proof. This is shown by induction on φ. The only interesting case is when
φ = JS α and MEL-O+Ind , s ̸|= JS α. Let us show that in this case there is
necessarily a sequence of agents i1, . . . , in such that s ∼EL-O+Ind

i1
. . . ∼EL-O+Ind

in
s′

and s and s′ disagree on α, and therefore M0, s ̸|= JS α.
If MEL-O+Ind , s ̸|= JS α then s ̸|= JS α by Proposition 4.16. As s is in

IND-STATES , it must be the case that either s ̸|= Si1 α for some agent i1, or s |=
Si α for all i ∈ Agt and s ̸|= JS Si1 α for some agent i1. In the second case, either
s ̸|= Si2 Si1 α for some agent i2, or s |= Si Si1 α for all i ∈ Agt and s ̸|= JS Si2 Si1 α
for some i1. Iterating this, we get that either s ̸|= Sin . . . Si1 α for some sequence
in, . . . , i1 of agents, or there exists an infinite sequence (ik)k∈N of agents such
that for all k, s |= Si Sik

. . . Si1 α for all i ∈ Agt and s ̸|= JS Sik
. . . Si1 α. In the
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first case the previous lemma gives us the desired result. It remains to show
that the second case cannot happen.

As s ∈ W EL-O+Ind , we know that there exists a finite state s0 such that
s = s⇒

0 ∪ I -ATM . Let M = max{k | Sik
. . . Si1 α ∈ s0}. Then SiM+1 . . . Si1 α ∈

s⇒
0 \ s0. Therefore there exists β ∈ s0 such that β ⇒ SiM+1 . . . Si1 α. But then
β ⇒ JS SiM+1 . . . Si1 α, which contradicts the fact that s ̸|= JS SiM+1 . . . Si1 α.
Hence this second case is impossible. We conclude that M0, s ̸|= JS α.

With this we conclude that MEL-O+Ind is bisimilar to an S5 Kripke model.
This means that all S5 validities in the EL-O fragment of Fml if

EL are valid in
MEL-O+Ind and therefore in EL-O+Ind, giving us our completeness result. EL-
O+Ind is therefore a fragment of standard S5.

4.6 Conclusion
We have studied the axiomatization of the logic of common knowledge, coming
up with an alternative GFP0 to the standard induction axiom principles that is
intuitively appealing as an axiom for common knowledge. While our proofs are
not very difficult, we believe that GFP0 will lead to presentations of epistemic
logic that are intuitively more appealing. We have then used the alternative
presentation of GFP0 with ‘knowing whether’ operators, GFP2 , to inspire a
version of EL-O which follows the induction axiom for common knowledge, and
shown that the main properties of EL-O hold in this logic EL-O+Ind: we have a
finite model property, and the satisfiability problem is NP-complete. We have
axiomatized EL-O+Ind and shown that it is indeed a fragment of the standard
logic S5.

Our investigation in the first half of this chapter may appear somewhat old-
fashioned: all our proofs are purely syntactical and we do not use any semantical
tools, as was done in ‘the syntactic era (1918-1959)’ [24, Section 1.7] before
Kripke semantics was invented. We nevertheless believe that axiomatic systems
provide an important toolbox to understand intuitively what a logical system
is able to express and what not. To witness, consider the inference rule RGFP:
according to the explanations e.g. in [117], the rule says something about φ
indicating to everybody that ψ; however and as the equivalence with axiom
GFP demonstrates, this is not the case: axiom GFP of the equivalent GFP-
based axiomatics has a single schematic variable φ, which shows us that the
concept of one proposition indicating another proposition is not accounted for
by the Kripke semantics. This is in line with the analysis of [44] where it is
argued that this concept cannot be modeled in Kripke semantics and where the
authors investigate a different semantical framework.



Chapter 5

Planning with EL-O
La planification EL-O

Dans ce chapitre nous décrivons les actions et tâches de planification EL-O et
définissons leur sémantique ainsi que la notion de solvabilité pour les planifi-
cations séquentielle et parallèle. Ces définitions suivent de très près celles de
la planification classique : les actions ont des préconditions et des effets condi-
tionnels, mais ces conditions et effets sont exprimés dans le langage EL-O, et la
sémantique doit tenir compte des interactions entre connaissance individuelle et
connaissance commune. Par exemple, si un agent i oublie la valeur de vérité de
p, non seulement Si p mais aussi JS p doivent être retirés le cas échéant de l’état
courant.

Etant donnée une tâche de planification EL-O, nous définissons ensuite une
‘expansion’ de cette tâche qui est solvable en planification classique si et seule-
ment si la première tâche est solvable en planification EL-O. Ceci nous permet
d’obtenir notre principal résultat de complexité : le problème de solvabilité en
planification EL-O est PSpace-complet, aussi bien dans le cas séquentiel que
dans le cas parallèle. Ainsi le cadre EL-O nous permet de faire de la planifica-
tion épistémique au prix de la planification classique, et la fonction d’expansion
que nous définissons permet d’utiliser des planificateurs classiques à cet effet.

Nous illustrons enfin l’applicabilité de notre cadre à l’aide d’un éventail
d’exemples simples, dont certains exemples courants de la littérature tels que le
problème des deux généraux et le problème de bavardage.

In this chapter we describe EL-O actions and planning tasks and define se-
mantics and solvability for both sequential and parallel planning. We define for
any EL-O planning task an expansion of that planning task which is classically
solvable if and only if the original planning task is EL-O solvable. This gives
us our main complexity result: deciding solvability of an EL-O planning task
is PSpace-complete, both in the sequential and parallel cases. We finish by
illustrating the applicability of our framework on a variety of examples.

This chapter is mainly based on the following publications:

• Cooper, M. C., Herzig, A., Maffre, F., Maris, F., Perrotin, E., & Régnier,
P. (2020). A lightweight epistemic logic and its application to planning.
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Artificial Intelligence, 103437.

• Cooper, M., Herzig, A., Maris, F., Perrotin, E., & Vianey, J. (2020).
Lightweight parallel multi-agent epistemic planning. 17th International
Conference on Principles of Knowledge Representation and Reasoning
(KR 2020).
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5.1 Epistemic planning with conditional effects
Just as we instantiated the vocabulary V of the presentation of boolean lan-
guages with ATM in order to define the language of EL-O, we define EL-O
actions by instantiating V in the general definition of action descriptions and
planning tasks of Chapter 2 (Section 2.3.1) by ATM to obtain EL-O actions and
planning tasks. That is, an EL-O action description is a pair a = ⟨pre(a), eff (a)⟩
where pre(a) ∈ Lbool(ATM ) and eff (a) ⊆ Lbool(ATM )× 2ATM × 2ATM , and an
EL-O epistemic planning task, or epistemic planning task over ATM , is a triple
P = ⟨Act, s0,Goal⟩ where Act is a set of EL-O action descriptions, s0 ∈ 2ATM

is the initial state, and Goal ∈ Lbool(ATM ) is the goal formula.
We now describe consistency conditions and semantics of EL-O actions, both

in the contexts of sequential and of parallel planning.

5.1.1 EL-O consistent action descriptions
An action description a = ⟨pre(a), eff (a)⟩ over ATM is EL-O consistent if:

1. for every ce ∈ eff (a), ceff −(ce) contains no introspective atoms;
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2. for every ce1, ce2 ∈ eff (a), if pre(a) ∧ cnd(ce1) ∧ cnd(ce2) is satisfiable in
EL-O then ceff +(ce1) and (ceff −(ce2))⇐ are disjoint.

The first condition is clear: it makes no sense to delete introspective atoms. The
second condition means that two conditional effects of an action cannot conflict
when pre(a) and their triggering conditions are jointly satisfiable. Hence when
an action a has conditional effects ce1, ce2 ∈ eff (a) and there are α1 ∈ ceff +(ce1)
and α2 ∈ ceff −(ce2) such that α1 ⇒ α2 then pre(a)∧cnd(ce1)∧cnd(ce2) must be
inconsistent. Note that it follows from the transitivity of atomic consequence⇒
that ceff +(ce1) and (ceff −(ce2))⇐ are disjoint iff ceff +(ce1)⇒ and (ceff −(ce2))⇐

are.

Example 5.1 (Lights on, ctd.). Recall the action of flipping a light switch
inside a room given in Chapter 2:

flipi = ⟨Ini, {⟨On, ∅, {On}⟩,
⟨¬On, {On}, ∅⟩}⟩

As the Lbool(Prop) is included in Lbool(ATM ), this is an EL-O action description
as well as a classical action description.

We suppose that there are only two agents: Agt = {1, 2}. Consider now
the actions of entering and exiting the room. When entering a room, an agent
gains individual knowledge of whether or not the light is on, and if the other
agent is also in the room, they gain joint knowledge of the state of the light.
When exiting the room, an agent no longer knows whether or not the light is
on, as the switch could be flipped while they are outside the room. Hence the
two actions can be described in the following manner:

enteri = ⟨¬Ini, {⟨⊤, {Ini, Si On}, ∅⟩,
⟨Inj , {JS On}, ∅⟩}⟩

exiti = ⟨Ini, {⟨⊤, ∅, {Ini, Si On}⟩}⟩

for i, j ∈ {1, 2} and i ̸= j.

Example 5.2 (Gossip, ctd.). Let us describe calls in the original gossip problem
where the goal is to obtain shared knowledge of depth k = 1. Suppose ATM is
built from Agt = {1, . . . , n} and Prop = {si : i ∈ Agt}. During the action callij ,
in which a call is made between agents i and j (this action being symmetrical),
the two agents tell each other every secret they know among all n secrets. We
have callij = ⟨pre(callij), eff (callij)⟩ with pre(callij) = ⊤ and:

eff (callij) = {⟨Si s1 ∨ Sj s1, {Si s1, Sj s1}, ∅⟩,
. . . ,

⟨Si sn ∨ Sj sn, {Si sn, Sj sn}, ∅⟩}.

Intuitively, a secret becomes observable for both agents if at least one of them
observes it. Each callij is EL-O consistent because it has no negative effects.

Here is a more complex example of a consistent action.

Example 5.3. Consider the action pour of pouring a bottle of liquid on a
healthy lawn [110]. Factually, its effect is that if the liquid is poisonous the
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lawn becomes dead. Epistemically, pour has several conditional effects: (1) if
i knows that Poisonous then i will know that the lawn is dead; (2) if i does
not know whether Poisonous and if the lawn is known to be healthy1 then i
will no longer know whether the lawn is healthy or dead. (There is a third
possible epistemic situation where i knows that ¬Poisonous, but we need not
say anything here because there is no effect as far as the status of Dead is
concerned.) Consider the description of pour with precondition pre(pour) = ⊤
and effect

eff (pour) =
{
⟨Poisonous, {Dead}, ∅⟩,
⟨Poisonous ∧ Si Poisonous, {Si Dead}, ∅⟩,
⟨¬Si Poisonous ∧ ¬Dead ∧ Si Dead, ∅, {Si Dead}⟩

}
.

The first conditional effect is factual and the last two are epistemic. The second
represents (1): Poisonous∧Si Poisonous expresses that i knows that the liquid is
poisonous; and the third represents (2): ¬Dead∧Si Dead expresses that i knows
that the lawn is healthy. This action description is EL-O consistent in particular
because the conjunction of the two last conditions Poisonous ∧ Si Poisonous and
¬Si Poisonous ∧ ¬Dead ∧ Si Dead is inconsistent.

5.1.2 Semantics and solvability by a sequential plan
We define the EL-O semantics of a consistent action a in terms of a partial
function τEL-O

a on introspective states, that is, states of I -STATES = {s⇒ ∪
I -ATM : s ⊆ ATM}. The function τEL-O

a is defined at s if s |= pre(a). In that
case we say that a is executable at s and stipulate:

τEL-O
a (s) =

(
s \

⋃
ce∈eff (a),
s|=cnd(ce)

(
ceff −(ce)

)⇐
)
∪

⋃
ce∈eff (a),
s|=cnd(ce)

(
ceff +(ce)

)⇒
.

That is, if the precondition of a is satisfied then a removes negative effects of
all those conditional effects ce that ‘fire’, i.e., whose triggering conditions are
satisfied, plus their causes; and it adds the positive effects of ce, plus their
consequences. Consistency of a ensures that it does not matter in which order
we apply negative and positive effects.

Following the formalism introduced in Chapter 2, an EL-O planning task
⟨Act, s0,Goal⟩ is a triple such that Act is a set of consistent EL-O action de-
scriptions, s0 ⊆ ATM is the finite initial state and Goal ∈ Lbool(ATM ) is the
goal formula. Such a task is EL-O solvable by a sequential plan iff there is a
state s such that s |= Goal that is reachable from s⇒

0 ∪ I -ATM via the EL-O
interpretation of the actions in Act, i.e., via {τEL-O

a : a ∈ Act}.

Example 5.4 (Lights on, ctd.). Consider the state s = {On, In1, S1 On}. If
agent 2 enters the room, the atoms added to s are In2, and JS On as well as all
of its consequences. Hence the current state becomes τEL-O

enter2
(s) = {On, In1, In2}∪

{σOn : σ ∈ OBS+}. If agent 1 then leaves the room, the atoms In1 and S1 On
1In [110], the condition of the last effect is only that it is not known that ¬Poisonous, and

the effect is that it is no longer known that ¬Dead. This however produces an unintuitive
result in states where the liquid is known to be poisonous.
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are removed, as well as the only cause of the latter (other than itself) JS On.
Hence we arrive at τEL-O

exit1
(τEL-O

enter2
(s)) = {On, In2} ∪ {σOn : σ ∈ OBS+, ℓ(σ) ≥ 2}.

It might seem surprising that atoms such as JS S2 p remain true after agent
1 exits the room. However, there are two possibilities: either higher order
knowledge is not considered in the planning task at hand, in which case this
‘residual knowledge’ has no impact on planning, or higher order knowledge is
considered, in which case the definition of the action exiti should be defined
accordingly so that all the necessary knowledge is removed. If the first, the
alternative semantics given in Section 5.2.1 will allow us to disregard superfluous
atoms.

Example 5.5 (Gossip, ctd.). The planning task corresponding to the original
gossip problem is G1 = ⟨ActG1 , sG1

0 ,GoalG1⟩ with

ActG1 = {callij : i, j ∈ Agt and i ̸= j},

sG1
0 = {Si si : i ∈ Agt} ∪ S for some S ⊆ {si : i ∈ Agt},

GoalG1 =
∧

i,j∈Agt
Si sj .

It can be solved via 2n − 4 calls; when n ≥ 4 then there is no EL-O solu-
tion that takes less calls [11, 121, 64]. For instance, for n = 4 the sequence
call12; call34; call13; call24 is an EL-O solution with 4 calls.

Classical planning tasks as defined in Chapter 2 are particular EL-O epis-
temic planning tasks: when action descriptions contain no observability op-
erators then classical consistency and EL-O consistency of actions coincide;
moreover, ceff −(ce) =

(
ceff −(ce)

)⇐ and ceff +(ce) =
(
ceff +(ce)

)⇒ for all con-
ditional effects, and therefore τEL-O

a = τCPC
a for every action a. It follows from

PSpace hardness of classical solvability that solvability of EL-O planning tasks
is PSpace-hard, too.

5.1.3 Consistency of a set of actions at a state
We also need to take introspection into consideration when defining consistency
of sets of EL-O actions. There are two elements to this definition. First, two
actions a1 and a2 that are both executable at s have no contradictory effects at
s if for every ce1 ∈ eff (a1) and ce2 ∈ eff (a2), if s |= cnd(ce1) ∧ cnd(ce2) then
ceff +(ce1)∩ ceff −(ce2)⇐ = ∅. Just as with classical actions, this generalizes the
definition of consistency for single actions.

Second, we say that two different actions a1 and a2 that are executable at s
have no cross-interaction at s if the following hold:

1. s and τEL-O
a1

(s) agree on pre(a2) and on the condition cnd(ce2) of every
conditional effect ce2 ∈ eff (a2);

2. s and τEL-O
a2

(s) agree on pre(a1) and on the condition cnd(ce1) of every
conditional effect ce1 ∈ eff (a1).

Putting things together, we say that a set of actions A = {a1, . . . , am} is
consistent in state s if for every ai, aj ∈ A such that ai ̸= aj ,

1. ai and aj have no contradictory effects in s;
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2. ai and aj have no cross-interaction in s.

Example 5.6 (Lights on, ctd.). Let s = {On, In1, S1 On}. The actions exit1 and
enter2 are both executable at s, but they have contradictory effects at s: s and
τEL-O

exit1
(s) disagree on In1, which is the condition of one of the conditional effects

of enter2. Hence the set {exit1, enter2} is inconsistent in s.

Example 5.7 (Gossip, ctd.). Any set of gossiping calls callij is consistent in any
state. Therefore conference calls {callij , callir} where i calls j and r at the same
time are consistent, making the parallel gossiping task solvable in one step.

One way to exclude conference calls is to replace callij by startCallij plus a
single endCalls action as follows:

pre(startCallij) = freei ∧ freej ,

eff (startCallij) = eff (callij) ∪ {⟨⊤, ∅, {freei, freej}⟩},
pre(endCalls) = ⊤,
eff (endCalls) = {⟨⊤, {freei : i ∈ Agt}, ∅⟩},

and to add all freei to the initial state. Then there is no state where a set of
actions with conference calls is consistent: startCallij and startCallir have cross-
interaction at any state satisfying freei ∧ freej ∧ freer.

While this solution is natural (agents cannot call two agents at a time because
they are no longer available once they have begun a call), splitting calls into two
separate actions artificially doubles the number of steps in an optimal solution.
Another possibility that avoids the endCalls action is to replace all callij by Tcallij ,
with:

pre(Tcallij) = ⊤,
eff (Tcallij) = eff (callij) ∪

{⟨tgi, ∅, {tgi}⟩} ∪ {⟨¬tgi, {tgi}, ∅⟩} ∪
{⟨tgj , ∅, {tgj}⟩} ∪ {⟨¬tgj , {tgj}, ∅⟩}.

Here any two calls involving i each toggles the value of tgi, which means that
these calls have cross-interaction at any state satisfying their preconditions.

5.1.4 Semantics and solvability by a parallel plan
A set of actions A = {a1, . . . , am} determines a partial function τEL-O

A on intro-
spective states. The function τEL-O

A is defined at s if every ai ∈ A is executable
at s and A is consistent in s. When τEL-O

A is defined at s then:

τEL-O
A (s) =

(
s \

⋃
a∈A,ce∈eff (a),

s|=cnd(ce)

(
ceff −(ce)

)⇐
)

∪
⋃

a∈A,ce∈eff (a),
s|=cnd(ce)

(
ceff +(ce)

)⇒
.

The consistency requirements ensure that actions in a consistent set of ac-
tions at s can be interleaved arbitrarily: we have τEL-O

{a1,a2}(s) = τEL-O
a2

(τEL-O
a1

(s)) =
τEL-O

a1
(τEL-O

a2
(s)). More generally:
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Proposition 5.1. If a ∈ A is consistent in s with any other action in A then
τEL-O

A (s) = τEL-O
a (τEL-O

A\{a}(s)) = τEL-O
A\{a}(τEL-O

a (s)).

An EL-O planning task ⟨Act, s0,Goal⟩ is EL-O solvable by a parallel plan iff
there is a state s such that s |= Goal that is reachable from s⇒

0 ∪ I -ATM via
the EL-O-interpretation of sets of actions of Act, i.e., via {τEL-O

A : A ⊆ Act}.
Solvability by a sequential plan is the special case where the parallel plan is a
sequence of singletons.

Example 5.8 (Lights on, ctd.). Let s = {On, In1, S1 On}. The set {enter2, flip1}
is consistent at s, and τEL-O

{enter2,flip1}(s) = {In1, In2} ∪ {σOn : σ ∈ OBS+}.

Example 5.9 (Gossip, ctd.). Let G′
1 be modification of G1 that is obtained

by replacing the actions callij by Tcallij of Example 5.7. Then G′
1 can be solved

in ⌈log2 n⌉ steps of parallel calls if the number of agents n is even, and in
⌈log2 n⌉+ 1 steps if n is odd [19, 86, 79, 41]. For instance, for n = 4 the parallel
plan ⟨{Tcall12,Tcall34}, {Tcall13,Tcall24}⟩ is a solution of G′

1 with 2 steps.

5.2 Plannning over finite states and complexity
5.2.1 Planning over finite states
While we have defined the semantics of EL-O actions on introspective states for
full generality, it is not very feasible in practice to reason with infinite states.
In this section we give a different semantics which allows us to work with finite
states. This is done by defining semantics relative to a given vocabulary. Intu-
itively, if the planner does not wish to consider modal depth higher than, say, 3,
then the effects of actions of depth 4 or more can be disregarded entirely with
no ill effect. In particular, when adding joint vision to a state, there is no need
to also add all of its consequences; it is enough to only consider those that are
relevant to the planning task at hand.

Let Voc ⊆ ATM be a given vocabulary, and a be a consistent action descrip-
tion such that Voc(a) ⊆ Voc. The function τVoc

a is a partial functions on states
of the following set:

I -STATES |Voc = {s ∩Voc : s ∈ I -STATES}
= {(s⇒ ∪ I -ATM ) ∩Voc : s ∈ 2ATM}

For any state s ∈ I -STATES |Voc, τVoc
a is defined if s |= pre(a). In that case

τVoc
a (s) =

(
s \

( ⋃
ce∈eff (a),
s|=cnd(ce)

ceff −(ce)⇐ ∩Voc
))
∪

⋃
ce∈eff (a),
s|=cnd(ce)

((
ceff +(ce)

)⇒ ∩Voc
)
.

It is easily shown that if s ∈ I -STATES |Voc then τVoc
a (s) ∈ I -STATES |Voc.
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Example 5.10 (Lights on, ctd.). Consider the state s = {On, In1, S1 On} of
Example 5.4, and suppose that we do not care about higher order observation,
but only whether observation of On is individual or joint: the set of atoms
that we consider is Voc = {In1, In2,On, S1 On, S2 On, JS On}. Suppose now that
agent 2 enters the room: the atoms added to s are In2 and JS On as well as all
of its consequences that are in Voc, that is, only S2 On. Hence the current state
becomes τVoc

enter2
(s) = {On, In1, S1 On, In2, S2 On, JS On}. If agent 1 then leaves

the room, the atoms In1 and S1 On are removed, as well as the cause of the
latter JS On. Hence we arrive at τVoc

exit1
(τVoc

enter2
(s)) = {On, In2, S2 On}.

We now show that planning with these semantics is equivalent to planning
with the more general semantics given previously.

Lemma 5.1. Let Voc be a subset of ATM, s ∈ I -STATES be an introspective
state and a be a consistent action such that Voc(a) ∈ Voc. Then τEL-O

a (s) is
defined iff τVoc

a (s ∩Voc) is defined, and in that case τVoc
a (s ∩Voc) = τEL-O

a (s) ∩
Voc.

Proof. As Voc(pre(a)) ⊆ Voc, s and s∩Voc agree on pre(a) (following Proposi-
tion 3.5). Hence τEL-O

a (s) is defined iff τVoc
a (s ∩Voc) is defined.

By the same argument, s and s ∩ Voc agree on cnd(ce) for all conditional
effects ce of a. Hence:

τEL-O
a (s) =

(
s \

⋃
ce∈eff (a),
s|=cnd(ce)

(
ceff −(ce)

)⇐
)
∪

⋃
ce∈eff (a),
s|=cnd(ce)

(
ceff +(ce)

)⇒

=
(
s \

⋃
ce∈eff (a),

s∩Voc|=cnd(ce)

(
ceff −(ce)

)⇐
)
∪

⋃
ce∈eff (a),

s∩Voc|=cnd(ce)

(
ceff +(ce)

)⇒

By intersecting this with Voc we conclude that τEL-O
a (s) ∩Voc = τVoc

a (s ∩Voc).

This result can be generalized to any sequence of actions: if Act is such
that for all a ∈ Act, Voc(a) ⊆ Voc, then for every s ∈ I -STATES |Voc, there
exists a state s′ that is reachable from s via {τEL-O

a : a ∈ Act} iff there exists a
state s′′ that is reachable from s ∩ Voc via {τVoc

a : a ∈ Act}, and in that case
s′′ = s′ ∩Voc.

Proposition 5.2. Let Voc be a subset of ATM and P = ⟨Act, s0,Goal⟩ be a
planning task such that Voc(P) ⊆ Voc. Then P is EL-O solvable by a sequen-
tial plan iff the planning task ⟨Act, (s⇒

0 ∪ I -ATM ) ∩Voc,Goal⟩ is solvable by a
sequential plan via {τVoc

a : a ∈ Act}.

Proof. P is EL-O solvable via {τEL-O
a : a ∈ Act} if there exists a state s such

that s |= Goal that is reachable from s⇒
0 ∪ I -ATM via {τEL-O

a : a ∈ Act} .
As we have just seen, this is the case iff there exists a state s′ reachable from
(s⇒

0 ∪ I -ATM ) ∩ Voc via {τVoc
a : a ∈ Act}, and in that case s′ = s ∩ Voc. In

particular, as Voc(P) ⊆ Voc, s′ and s′′ agree on Voc(Goal), and therefore on
Goal.
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These results can be extended to parallel planning. Given a set of atoms
Voc and a set of actions A, the function τVoc

A is once again a partial functions
on states of I -STATES |Voc. For any state s ∈ I -STATES |Voc, τVoc

A is defined if
all a ∈ A are executable at s and A is consistent at s. In that case

τVoc
a (s) =

(
s \

( ⋃
a∈A,ce∈eff (a),

s|=cnd(ce)

(
ceff −(ce) \ I -ATM

)⇐ ∩Voc
))
∪

⋃
a∈A,ce∈eff (a),

s|=cnd(ce)

((
ceff +(ce)

)⇒ ∩Voc
)
.

In the same manner as before we can prove:

Proposition 5.3. Let Voc be a subset of ATM and P = ⟨Act, s0,Goal⟩ be a
planning task such that Voc(P) ⊆ Voc. Then P is EL-O solvable by a paral-
lel plan iff the planning task ⟨Act, (s⇒

0 ∪ I -ATM ) ∩Voc,Goal⟩ is solvable by a
parallel plan via {τVoc

A : A ⊆ Act}.

5.2.2 Translation into classical planning
We now define the expansion of any EL-O planning task P, which closely fol-
lows the semantics of Section 5.2.1, naturally choosing Voc(P) as the relevant
vocabulary. If P = ⟨Act, s0,Goal⟩, its expansion is defined as:

Exp(P) =
〈
{⟨pre(a),ExpP(eff (a))⟩ : a ∈ Act},
(s⇒

0 ∪ I -ATM ) ∩ Voc(P),Goal
〉

where the expansion of the effects of an action relative to P is defined as:

ExpP(eff (a)) =
{〈

cnd(ce), ceff +(ce)⇒ ∩ Voc(P),
ceff −(ce)⇐ ∩ Voc(P)

〉
: ce ∈ eff (a)

}
.

After expansion classical solvability and EL-O solvability coincide:

Proposition 5.4. Let P = ⟨Act, s0,Goal⟩ be an EL-O epistemic planning task.
Then P is EL-O solvable by a sequential plan iff Exp(P) is classically solvable
by a sequential plan. Moreover, P is EL-O solvable by a parallel plan iff Exp(P)
is classically solvable by a parallel plan.

Proof. This follows directly from Propositions 5.2 and 5.3. We only give details
for sequential planning: P is EL-O solvable by a sequential plan iff the planning
task ⟨Act, (s⇒

0 ∪ I -ATM ) ∩ Voc(P),Goal⟩ is solvable by a sequential plan via
{τVoc(P)

a : a ∈ Act}. Clearly this is the case iff Exp(P) is classically solvable by
a sequential plan.

5.2.3 Complexity of EL-O planning
Because everything in the expansion of planning tasks is restricted to the vocab-
ulary of that planning task, the length of the expansion of epistemic planning
tasks P is polynomial in the length of P: ℓ(Exp(P)) ≤ (ℓ(P))2.
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Proposition 5.5. Solvability of an EL-O planing task, both by a sequential and
a parallel plan, is PSpace-complete.

Proof. Recall that classical sequential and parallel planning are both PSpace-
complete. As the language of CPC is a subset of the language of EL-O, and
the classical and EL-O interpretations of actions and sets of actions coincide on
Lbool(Prop), classical planning is a particular case of epistemic planning. The
solvability problem is therefore PSpace-hard just like classical planning [33].
Membership follows from Proposition 5.4 and PSpace-completeness of classical
planning.

5.3 Applications
In this section, we give some examples of epistemic planning tasks. We start with
the Byzantine Generals Problem as well as some toy examples, most of which
were introduced in [42]. We then focus on the generalised gossip problem.

5.3.1 Two Generals’ Problem
The Two Generals’ Problem [1, 63] is about coordination by communicating
over an unreliable channel, highlighting the importance of common knowledge.
The Byzantine Generals’ Problem [85] is a generalisation of that problem. In
short, two generals need to coordinate an attack; they can win only if they
attack at the same time: either both attack in the morning (m) or both attack
in the afternoon (¬m). To communicate they must send a messenger who can
be captured. They must decide on a time to attack, agree on this time, and
each general must know that the other has agreed, and so on. To do this, one
general sends a time for the attack, but since he cannot be sure the message was
received, the other general must send an acknowledgment. Of course, just like
the original message, the acknowledgment can be lost, so the first general must
send an acknowledgment, and so on. It is impossible to be fully coordinated,
i.e., to obtain common knowledge of the fact that the second general knows the
time of the attack.

Formally, with Agt = {1, 2} and Prop = {m}, we define the atom αn as:

• αn = S1 S2 S1 ...S2 m︸ ︷︷ ︸
n alternations

if n is even;

• αn = S2 S1 S2 ...S2 m︸ ︷︷ ︸
n alternations

if n is odd.

For n ≥ 0 we define the family of actions sndMsgn by stipulating:

pre(sndMsgn) = m ∧ S1 m ∧ S2 m ∧ α2 ∧ α3 ∧ · · · ∧ αn−1

eff (sndMsgn) = {⟨⊤, {m, S1 m, S2 m, α2, α3, . . . , αn}, ∅⟩}

whose effect is that the time of the attack is set, both agents know it, agent 1
knows that agent 2 knows it, and so on until n.

The planning task to be solved is P = ⟨Act, s0,Goal⟩ with s0 = ∅, Goal =
JS S2 m, and Act = {sndMsgn : n ≥ 0}. There is no solution for this task: while
all sequences ⟨sndMsg0, . . . , sndMsgn⟩ are executable, none of them reaches a
state where JS S2 m is true.
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action precondition conditional effects
enteri ¬Ini {⟨⊤, {Ini}, ∅⟩}
enter′

i ¬Ini ∧ ¬Inj , i ̸= j {⟨⊤, {Ini}, ∅⟩}
leavei Ini {⟨⊤, ∅, {Ini}⟩}
reveali Ini {⟨⊤, {Si m}, ∅⟩} ∪

{⟨Inj , {JS m}, ∅⟩, j ̸= i}
informs1,2m (In1↔In2) ∧ S1 m {⟨⊤, {JS m}, ∅⟩}

∧¬(S2 m ∧ S1 S2 m)
informs′

1,2m (In1↔In2) ∧ S1 m {⟨⊤, {JS m}, ∅⟩}
∧¬S2 m ∧ S1 S2 m

Table 5.1: Action descriptions for the message task

Remark 5.1. The initial state s0 = ∅ of the Two Generals’ Problem illustrates
a case of maximal ignorance as discussed in Remark 3.4. The infiniteness of
the maximal ignorance Kripke model may explain why the DEL literature pays
only little attention to this and other Byzantine coordination problems: most
presentations are in semantical terms and use model checking in finite Kripke
models. (A finite modeling was however proposed recently in [27].)

5.3.2 Learning a message
Suppose two agents 1 and 2 are outside a room (¬In1∧¬In2). The room contains
a message that we suppose for simplicity to be the value of the propositional
variable m. Each of the agents can enter and leave the room and can (tem-
porarily) reveal the message when she is in the room. In case the other agent
is also in the room the message is jointly seen. (So this is a conditional effect.)
We define a series of planning tasks where the initial state is s0 = {m} and
where we vary the action descriptions and the goal. For convenience we list all
the action descriptions in Table 5.1.

For a start, consider Act = {enteri, leavei, reveali : i ∈ {1, 2}} where enteri

and leavei respectively have preconditions ¬Ini and Ini and the obvious effects
and where reveali requires to be in the room and has one unconditional effect (i
knows the message) and one conditional effect: if the other agent is in the room
then the message becomes common knowledge. We suppose, for simplicity, that
there are no epistemic consequences when an agent enters or leaves the room
because we are not interested in the epistemic status of In1 and In2. Consider
Goal = ¬In1 ∧ ¬In2 ∧ S1 m ∧ S2 m. The sequences

sol1 = ⟨enter1, reveal1, leave1, enter2, reveal2, leave2⟩,
sol2 = ⟨enter1, enter2, reveal1, leave1, leave2⟩

are both solutions of ⟨Act, s0,Goal⟩.
If we replace Goal by Goal ′ = ¬In1 ∧ ¬In2 ∧ JS m then sol2 still solves

⟨Act, s0,Goal ′⟩, but sol1 no longer does.
Next, consider a variant of Act in which the room is so small that it does not

fit two people: we have to replace enteri by enter′
i with precondition pre(enter′

i) =
¬Ini ∧ ¬Inj , for i ̸= j. Let the resulting action description be Act′. While there
is still a solution of ⟨Act′, s0,Goal⟩, there is no solution of ⟨Act′, s0,Goal ′⟩.



CHAPTER 5. PLANNING WITH EL-O 83

action precondition conditional effects
gorighta ⊤ {⟨pa,k, {pa,k+1}, {pa,k}⟩ : 1 ≤ k ≤ 3}
golefta ⊤ {⟨pa,k, {pa,k−1}, {pa,k}⟩ : 2 ≤ k ≤ 4}
sensea,q pa,2 {⟨⊤, {Sa q}, ∅⟩}
tella,q Sa q {⟨φb, {Sb q}, ∅⟩, ⟨φc, {Sc q}, ∅⟩}

Table 5.2: Action descriptions for the selective communication task

Let us augment the set of actions by adding a further action informs1,2m
whose precondition is that both agents are in the same place, that the speaker
1 knows whether m and that it is possible for her that m is informative for the
hearer 2. Let the resulting set of actions be Act′′. Then the sequence

sol3 = ⟨enter1, reveal1, leave1, informs1,2m⟩

becomes a further solution of ⟨Act′′, s0,Goal⟩ as well as of ⟨Act′′, s0,Goal ′⟩.
Observe that sol3 is shorter than the other solutions.

Let us finally modify Act′′ into Act′′′ by a more demanding precondition of
informing, namely by requiring that the speaker knows that her utterance is
relevant for the hearer. Then sol3 is no longer a solution of ⟨Act′′, s0,Goal⟩ nor
of ⟨Act′′, s0,Goal ′⟩: the speaker lacks knowledge about the hearer. It becomes a
solution again if we make the hypothesis that there is initial common knowledge
of ignorance about m, i.e., if we set s′

0 = {m, JS S1 m, JS S2 m}.

5.3.3 Selective communication
The following example is from Kominis and Geffner:

Let a, b, and c be three agents in a corridor of four rooms (p1,
p2, p3 and p4 from left to right). The agents can move from a
room to a contiguous room, and when agent i communicates (tells)
some information, all the agents that are in the same room or in a
contiguous room, will hear what was communicated. For example,
if agent i expresses in p3 his knowledge about q, all agents in rooms
p2, p3 and p4 will come to know it. We consider the problem where
agent a is initially in room p1, b in p2, c in p3, and a has to find out
the truth value of a proposition q and let c know without agent b
learning it [80].

As in [80], we suppose that a can only learn the value of q by a sensing action
in room 2. Let pi,k mean that agent i is in room pk, for i ∈ {a, b, c} and
1 ≤ k ≤ 4. Then the formula φb =

∨
1≤k,ℓ≤4,|k−ℓ|≤1(pa,k ∧ pb,ℓ) expresses

that b is close to a, and likewise for φc. We model this as an EL-O planning
task P = ⟨Act, s0,Goal⟩ with Act = {golefta, gorighta, sensea,q, tella,q}, s0 =
{pa,1, pb,2, pc,3}, Goal = Sc q ∧ ¬Sb q. The descriptions of the actions in Act are
listed in Table 5.2. Then the sequence

⟨golefta, sensea,q, gorighta, gorighta, gorighta, tella,q⟩
is a solution of P.



CHAPTER 5. PLANNING WITH EL-O 84

action precondition conditional effects
drivesOnc dc ∧ ¬rc {⟨⊤, {rc}, {dc, Sc wrp}⟩}
stopsAndSignalsc dc ∧ wrp ∧ Sc wrp {⟨⊤, {JS wrp}, {dc}⟩}
restartsc ¬dc ∧ rp {⟨⊤, {dc}, ∅⟩}
crossesp wrp ∧ ((¬dc ∧ JS wrp) ∨ rc) {⟨⊤, {rp}, {wrp}⟩}

Table 5.3: Action descriptions for the pedestrian crossing task

5.3.4 Pedestrian crossing
In this 2-agent coordination problem that is derived from Lewis’s [89], a pedes-
trian wants to cross a road at the same time as a car wants to reach its desti-
nation. The driver can either continue or stop to let the pedestrian cross. In
the latter case the driver signals to the pedestrian, for example by flashing the
car’s headlights, that it is safe for the pedestrian to cross. We assume that the
intentions of the pedestrian are obvious to the driver while the car is approach-
ing (but not after it has driven away since the driver will not be looking in
the rear-view mirror), but the pedestrian does not know this. Thus, before the
pedestrian crosses the road, common knowledge must be established between
the two agents (pedestrian and driver) of the pedestrian’s intention to cross.

We can model this problem using the following propositional variables: dc is
true if the car is driving forward, rc is true if the car has reached its destination;
rp is true if the pedestrian has reached the other side of the road, wrp is true if
the pedestrian wants to reach the other side of the road.

Then the planning task can be described as follows. The agents are p (the
pedestrian) and c (the car). The initial state is s0 = {dc, wrp, Sc wrp}, the goal is
Goal = rp∧rc, and the set of actions Act has four elements, three concerning the
car and one the pedestrian, whose preconditions and effects are listed in Table
5.3. The action drivesOnc has a precondition dc ∧ ¬rc and (unique) conditional
effect that the car reaches its destination, stops driving and no longer sees
the value of wrp (whether the pedestrian wants to cross or not). Note that
the fact that Sc wrp becomes false implies that JS wrp becomes false because
the latter is an atomic cause of the former, i.e., because JS wrp ∈ (Sc wrp)⇐.
The action stopsAndSignalsc has a precondition dc ∧ wrp ∧ Sc wrp and (unique)
conditional effect that the car stops and signals (by flashing its lights) that the
driver knows that the pedestrian wants to cross which leads immediately to
common knowledge of wrp. The third possible action of the car is to restart
(after a stop). Finally, the only action of the pedestrian is crossesp.

Then the two sequences of actions

⟨drivesOnc, crossesp⟩,
⟨stopsAndSignalsc, crossesp, restartsc, drivesOnc⟩

both solve our planning task ⟨Act, s0,Goal⟩.

5.3.5 Authorisation via plenary meetings
Here is a further example of actions with common knowledge preconditions.
Consider a planning task involving cooperation between different agents that
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action precondition conditional effects
doTaskik aik {⟨⊤, {tik, Sitik}, ∅⟩}
authorisek

∧
i∈Agt JS ti,k−1 {⟨⊤, {aik : i ∈ Agt}, {pi : i ∈ Agt}⟩}

goMeetingi ⊤ {⟨⊤, {pi}, ∅⟩}
announcei

∧
k∈Agt pk {⟨tik ∧ Si tik, {JS tik}, ∅⟩}

Table 5.4: Action descriptions for the authorisation via plenary meetings task

can be divided into m different stages with tasks to be performed at each stage
by each agent. Agents are only authorised to start stage k + 1 if all tasks of
stage k have been completed and all agents have common knowledge of this.
The only way this can be achieved is by having a plenary meeting at the end of
each stage during which each agent announces that their stage-k task has been
completed.2

Each agent i requires an authorisation aik to start their stage-k task. Ini-
tially, ai1 is true for all agents i, i.e., s0 = {ai1 : i ∈ Agt}. Let tik represent
the fact that agent i ∈ Agt has completed their stage-k task. The propositional
variable pi is true if agent i is present at the meeting.

The preconditions and effects of the four action types doTaskik, authorisek,
goMeetingi, and announcei are described in Table 5.4. For the action doTaskik,
each agent sees when they have accomplished their task, but not when other
agents accomplish theirs. The action authorisek (k = 2, . . . ,m) authorises the
start of stage k. Authorisations for stage k > 1 are only issued if there is
common knowledge that all tasks of stage k− 1 have been completed. They are
thus issued at the end of each plenary meeting. A side effect of this is that all
agents leave the meeting. The action goMeetingi allows each agent to go to the
meeting room whenever they wants. Once everybody is present, each agent i
can announce that their task has been completed via the action announcei.

The goal is common knowledge that all tasks have been completed:

Goal =
∧

i∈Agt

∧
k=1,...,m

(tik ∧ JS tik).

With 2 agents and 2 stages, the following sequence is a solution:

⟨doTask11, doTask21, goMeeting1, goMeeting2, announce1, announce2,

authorise2, doTask12, doTask22, goMeeting1, goMeeting2, announce1, announce2⟩.

5.3.6 The generalised gossip problem
Let the set of agents be Agt = {1, . . . , n} and let the set of propositional variables
be Prop = {si : i ∈ Agt}. Let us describe the planning task for the generalised
gossip problem of depth k as an EL-O planning task Gk = ⟨ActGk , sGk

0 ,GoalGk⟩.
The initial state is sGk

0 = {Si si : i ∈ Agt} ∪ S for some S ⊆ {si : i ∈ Agt}
(cf. Example 3.1). The goal of obtaining shared knowledge of depth k can be

2The need for common knowledge can be interpreted as agents not only needing to know
that they have communicated about the completion of their own task, but also needing to
know that that communication was successful, similarly to the Byzantine Generals’ Problem.



CHAPTER 5. PLANNING WITH EL-O 86

described in EL-O by

GoalGk =
∧

i∈Agt

∧
σ ∈OBS+,ℓ(σ )≤k

σ si.

The set of actions is ActGk = {callij : i, j ∈ Agt, i ̸= j}, where pre(callij) = ⊤
and where for every 0 ≤ m < k, every σm ∈ OBS≤m of length at most m and
every r ∈ Agt there are conditional effects ce ∈ eff (callij) of the form:

cnd(ce) =Si σmsr ∨ Sj σmsr;
ceff +(ce) ={σ Si σmsr : σ ∈ {Si, Sj}≤k−m−1}

∪ {σ Sj σmsr : σ ∈ {Si, Sj}≤k−m−1}
={σ σmsr : σ ∈ {Si, Sj}≤k−m};

ceff −(ce) =∅;

where {Si, Sj}≤k−m denotes the set all sequences of observability operators Si

and Sj of length at most k −m. For k = 1 we obtain cnd(ce) = Si sr ∨ Sj sr,
ceff +(ce) = {Si sr, Sj sr}, and ceff −(ce) = ∅, matching Example 5.2.

We recall that the original gossip problem with n ≥ 4 agents can be solved
in 2(n− 2) calls [11, 121, 64] and that there is no shorter solution. It is known
that the generalised gossip problem Gk can be solved in at most (k+1)(n−2)
calls [73] and that there is no shorter solution [41]. For instance, for k = 2 and
n = 5 the sequence

call13, call14, call25, call15, call13, call24, call14, call15, call23

is a solution with 3× 3 = 9 calls, which is therefore optimal.

5.3.7 Generalised gossiping with ignorance goals
We can also easily model ignorance goals. Given a set of atoms A, let G-negk,A =
⟨ActG-negk,A , s

G-negk,A

0 ,GoalG-negk,A⟩ be the planning task for the generalised
gossip problem of depth k with the atoms of A as the only negative goals. The
initial state and the actions remain the same: sG-negk,A

0 = {Si si : i ∈ Agt} ∪ S
for some S ⊆ {si : i ∈ Agt} and ActG-negk,A = {callij : i, j ∈ Agt, i ̸= j}; but
the goal changes:

GoalG-negk,A =
( ∧

σ∈{Si : i∈Agt}≤k

∧
j∈Agt, σsj /∈A

σsj

)
∧
( ∧

α∈A

¬α
)
.

Here are some examples:

• G-neg1,{S1 s2} corresponds to the case where we want everyone to know all
secrets, except that agent 1 should not know the secret of agent 2;

• G-neg1,{S1 s3,S2 s4}, to the case where agent 1 should not get to know the
secret of agent 3 and agent 2, the secret of agent 4;

• G-neg2,{S1 S2 s3}, to the case of epistemic depth 2 where only agent 1 should
not know whether agent 2 knows the secret of agent 3, while agents 1 and
2 should know the secret of agent 3;
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• G-neg3,{S1 S2 s3} is the same as G-neg2,{S1 S2 s3} but with depth 3.

It was shown in [43] that the existence of a solution for gossiping with ignorance
goals is an NP-complete problem.

5.4 Conclusion
We have defined EL-O sequential and parallel planning through conditional ac-
tions with conditional effects very similar to actions in classical planning. We
have given two semantics for EL-O actions: one in the general case, working with
infinite introspective states, and one which allows us to work with finite states
when restricting the considered vocabulary. In general, this vocabulary will be
that of the planning task at hand. We have shown the equivalence of these two
semantics, and used the second to show our main result for this section: deciding
the existence of a plan given an EL-O planning task is PSpace-complete, the
same complexity class as classical planning. This is the case both for sequential
and parallel planning. We have then illustrated our framework on a number of
application examples, both original and from the literature.

An encoding of EL-O action descriptions into the standard Planning Domain
Definition Language (PDDL) as well as some experimental results can be found
in [39] and [42].



Chapter 6

Around EL-O planning
Autour de la planification EL-O

Dans le chapitre précédent nous avons défini les bases de la planification EL-O.
Nous étudions maintenant ce cadre plus en profondeur, de ses possibles ram-
ifications à ses liens avec d’autres modèles de planification épistémique. Tout
d’abord, nous étudions la possibilité d’étendre les définitions et résultats du
Chapitre 5 aux autres versions de EL-O présentées dans cette thèse : la ver-
sion avec constantes, EL-OC, et la version qui suit l’axiome d’induction pour
la connaissance commune, EL-O+Ind. Nous définissons ensuite une extension
dynamique de EL-OC en y ajoutant les opérateurs dynamiques de la logique
DL-PPA [74], et montrons que dans cette logique les actions EL-O peuvent être
réduites à des programmes et la solvabilité d’une tâche de planification devient
un problème de vérification de modèle. Enfin, nous développons une compara-
ison entre les actions EL-O et les modèles à événements de DEL, ainsi qu’entre
EL-O et d’autres modélisations simplifiées de planification épistémique.

We have defined the basics of EL-O planning in Chapter 5. In this chapter
we further investigate this framework, both in its possible ramifications and in
its relation to other epistemic planning frameworks. We first discuss possibili-
ties of extending the definitions and results of Chapter 5 to the other versions of
EL-O that we have presented throughout this thesis: the version with constants
EL-OC and the version which follows the induction axiom for common knowl-
edge EL-O+Ind. We then take the EL-OC framework and define a dynamic
extension of it based on the logic DL-PPA of [74]. Finally, we attempt to situate
our framework with regard to DEL as well as other simple epistemic planning
frameworks of the literature.

This chapter is mainly based on the following publications:

• Cooper, M. C., Herzig, A., Maffre, F., Maris, F., Perrotin, E., & Régnier,
P. (2020). A lightweight epistemic logic and its application to planning.
Artificial Intelligence, 103437.

• Herzig, A., Maris, F., & Perrotin, E. (2021). A dynamic epistemic logic
with finite iteration and parallel composition. Proceedings of the Inter-
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national Conference on Principles of Knowledge Representation and Rea-
soning (KR 2021) (Vol. 18, No. 1, pp. 676-680).
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6.1 Discussion: planning with other versions of
EL-O

6.1.1 EL-OC
Going from EL-O planning to EL-OC planning is quite simple. Actions and
planning tasks are simply defined over ATM -C instead of ATM . That is,
an EL-OC action description is a pair a = ⟨pre(a), eff (a)⟩ where pre(a) ∈
Lbool(ATM -C ) and eff (a) ⊆ Lbool(ATM -C )× 2ATM-C × 2ATM-C , and an EL-O
epistemic planning task, or epistemic planning task over ATM -C , is a triple
P = ⟨Act, s0,Goal⟩ where Act is a set of EL-O action descriptions, s0 ∈ 2ATM-C

is the initial state, and Goal ∈ Lbool(ATM -C ) is the goal formula. Consistency
conditions and semantics are the same as those of EL-O, simply replacing all
instances of |=EL-O with |=EL-OC.

Example 6.1 (Lights on, ctd.). The door is now locked with a code c. An
agent must know c in order to enter the room.

enteri = ⟨¬Ini ∧ Si c, {⟨⊤, {Ini, Si On}, ∅⟩
⟨Inj , {JS On}, ∅⟩}⟩

We can also imagine that seeing agent i enter the room will lead agent j to know
that agent i knows the code for the door, and that agents might communicate
about the code, all of which is easily expressed in EL-OC.
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Example 6.2 (Gossip, ctd.). We consider the variant of the gossip problem
with n agents in which agents must know another agent’s telephone number in
order to call them, and agents can communicate about telephone numbers as
well as secrets. The set of constants is Cst = {si : i ∈ Agt} ∪ {ti : i ∈ Agt}.
We only consider knowledge of depth 1 as in the original gossip problem. The
action callNumberi

j of agent i calling agent j is described as follows:

callNumberi
j = ⟨Si tj , {⟨Si s1 ∨ Sj s1, {Si s1, Sj s1}, ∅⟩

⟨Si t1 ∨ Sj t1, {Si t1, Sj t1}, ∅⟩
. . .

⟨Si sn ∨ Sj sn, {Si sn, Sj sn}, ∅⟩
⟨Si tn ∨ Sj tn, {Si tn, Sj tn}, ∅⟩}⟩

The expansion of EL-OC planning tasks is defined exactly as the one for
EL-O planning tasks. It can therefore be proved in the same way as before that:

Proposition 6.1. Solvability of an EL-O planing task, both by a sequential and
a parallel plan, is PSpace-complete.

6.1.2 EL-O+Ind
Working with EL-O+Ind planning is a little bit trickier as one must be careful to
stay within EL-O+Ind states, and more precisely members of I -IND-STATES .
Here the language is that of EL-O, meaning that EL-O+Ind actions and plan-
ning tasks are exactly EL-O actions and planning tasks. The difference is in
the semantics. An EL-O+Ind action a induces a partial function τEL-O+Ind

a on
I -IND-STATES . If s ∈ I -IND-STATES , the function τEL-O+Ind

a is defined at
s if s |= pre(a). In that case we say that a is executable at s and stipulate
that τEL-O+Ind

a (s) = C(τa(s))⇒, where C is the completion function defined in
Chapter 4 (Section 4.4.2).

Example 6.3 (Lights on, ctd.). It is natural to suppose that both agents know
who is inside and outside the room at all times. This means that they al-
ways know exactly who knows whether the light in the room is turned on.
Supposing that this is common knowledge, we can consider the state s =
{JS S1 On, JS S2 On, S1 On, In1} in which only agent 1 is in the room and the
light is off. We can then define the action of an agent entering the room as
follows:

enter′
i = ⟨¬Ini, {⟨⊤, {Ini, Si On}, ∅⟩}⟩

If agent 2 enters the room, the current state becomes:

τEL-O+Ind
enter′

i
(s) = C(τenter′

i
(s))⇒

= C({JS S1 On, JS S2 On, S1 On, In1, S2 On, In2})⇒

= {JS S1 On, JS S2 On, S1 On, In1, S2 On, In2, JS On}⇒

= {In1, In2} ∪ {σOn : σ ∈ OBS+}

This change in semantics makes translating actions to classical actions more
difficult. It is still an open problem whether EL-O+Ind planning can be poly-
nomially translated into classical planning.
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6.2 A dynamic version of EL-OC: DEL-PPAOC
A dynamic extension of EL-O, DEL-PAO, was proposed in [70], and a model-
ing of planning tasks in DEL-PAO with no common knowledge and no parallel
plans was given in [40]. We here give a fuller and more succinct dynamic logic,
adding in particular an operator of parallel composition as well as an operator
of inclusive nondeterministic composition. Both are imported from Dynamic
Logic of Parallel Propositional Assignments DL-PPA [74]. In the resulting logic,
which we call DEL-PPAOC, the solvability of various planning problems can be
captured: the existence of sequential and parallel plans, both in the unbounded
and in the finite horizon version. The operator of inclusive nondeterministic
composition turns out to be instrumental for the succinct modeling of parallel
planning.

6.2.1 Language of DEL-PPAOC
The language of DEL-PPAOC extends the language of EL-OC with the dynamic
operator ⟨π⟩, where π is a program. Programs π and formulas φ are defined by
the following grammar:

φ ::= α | ¬φ | φ ∧ φ | ⟨π⟩φ,
π ::= α←φ | φ? | π;π | π ∪ π | π ⊔ π | π ⊓ π | π∗,

where α ranges over the set of atomic formulas ATM -C . The formula ⟨π⟩φ reads
“there is a possible execution of π such that φ is true afterwards”. The program
α←φ assigns the truth value of φ to α. φ? tests whether φ is true (and fails when
φ is false). π1;π2 executes π1 and π2 in sequence. π1 ∪ π2 nondeterministically
chooses between executing either π1 or π2; and π1 ⊔ π2 nondeterministically
chooses between executing either π1, or π2, or both. π1 ⊓ π2 is the parallel
composition of π1 or π2. The set of all formulas is FmlDEL-PPAOC. As per usual,
the set of atoms occurring in a program π is denoted by Voc(π). For example,
Voc(JS p←(Si q ∨ Sj Si r)) = {JS p, Si q, Sj Si r}. The formula [π]φ abbreviates
¬⟨π⟩¬φ and is therefore read “φ is true after every possible execution of π”. We
define n-times iteration of π by induction on n: π0 = ⊤? and πn+1 = π;πn.
From there, we define π≤n as

⋃
0≤i≤n π

i. π∗ is the unbounded iteration of π.

6.2.2 Semantics of DEL-PPAOC
The interpretation of a program π is a ternary relation on the set of valuations:
∥π∥ ⊆ 2ATM-C × 2ATM-C × 2ATM-C . When ⟨s,U ,W ⟩ ∈ ∥π∥ then there is
an execution of π from state s to state U assigning the variables in W . The
interpretation function is defined by mutual recursion, from the interpretation
of programs given in Table 6.1 and the following interpretation of formulas:

s |= α iff α ∈ s⇒ ∪ I -ATM -C ,
s |= ⟨π⟩φ iff there are U ,W such that ⟨s,U ,W ⟩ ∈ ∥π∥ and U |= φ,

and as usual for boolean operators.
The interpretation of the assignment α←φ is that either (1) the value of φ

is true , α gets the value true, and the set of assigned variables is the singleton
{α}, or (2) the value of φ is false, all causes of α get the value false, and the set
of assigned variables is the set α⇐ of all causes of α.
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∥α←φ∥ = {⟨s, s∪{α}, {α}⟩ : s |= φ} ∪ {⟨s, s\α⇐, α⇐⟩ : s ̸|= φ},
∥φ?∥ = {⟨s, s, ∅⟩ : s |= φ},

∥π1;π2∥ =

⟨s,U ,W ⟩ :
there are U1,W1,W2 such that
⟨s,U1,W1⟩ ∈ ∥π1∥, ⟨U1,U ,W2⟩ ∈ ∥π2∥,
and W = W1 ∪W2

,
∥π1 ∪ π2∥ = ∥π1∥ ∪ ∥π2∥,
∥π1 ⊔ π2∥ = ∥π1∥ ∪ ∥π2∥ ∪ ∥π1 ⊓ π2∥,

∥π1 ⊓ π2∥ =

⟨s,U ,W ⟩ :

there are U1,W1,U2,W2 such that
⟨s,U1,W1⟩ ∈ ∥π1∥, ⟨s,U2,W2⟩ ∈ ∥π2∥,
W1 ∩W2 ∩U1 = W1 ∩W2 ∩U2,
U = (s\W ) ∪ (U1∩W1) ∪ (U2∩W2),
and W = W1 ∪W2

,
∥π∗∥ =

⋃
k∈N0

∥πk∥.

Table 6.1: Interpretation of DEL-PPAOC programs

The interpretation of parallel composition π1 ⊓ π2 is that each subprogram
πk is executed locally; then it is checked whether the modifications (in terms of
assigned variables) are compatible: this is the case when all variables that are
assigned by both subprograms (namely the variables in W1 ∩W2) get assigned
the same truth value. If this is not the case then the parallel composition fails;
otherwise the resulting valuation U is computed by putting together (1) the
unchanged part of s (i.e., s \W ), (2) the updates of π1 (i.e., U1 ∩W1), (3) the
updates of π2 (i.e., U2 ∩W2). Moreover, the set of variables W assigned by a
parallel composition is the union of the sets of variables assigned by the sub-
programs.

The interpretation of inclusive nondeterministic composition π1 ⊔ π2 is the
exclusive nondeterministic composition of the three programs π1, π2 and π1⊓π2.

In the rest of this section we show how to model EL-O planning tasks in
DEL-PPAOC.

6.2.3 Action descriptions
DEL-PPAOC actions are defined just like EL-OC actions, except that precon-
ditions and conditions of conditional effects are formulas of the full dynamic
language FmlDEL-PPAOC. That is, a DEL-PPAOC action description is a pair
a = ⟨pre(a), eff (a)⟩ where pre(a) is a formula from FmlDEL-PPAOC (the precondi-
tion of a) and eff (a) ⊆ FmlDEL-PPAOC×2ATM-C×2ATM-C is the set of conditional
effects of a. Consistency and semantics of actions and sets of atoms are defined
just as for EL-O actions. In particular, we consider semantics over a finite set of
atoms Voc ∈ ATM -C , following the formalism of Section 5.2.1. We call τ•Voc

A
the interpretation function of a set of actions A in DEL-PPAOC relative to Voc.

To every such vocabulary and set of conditional actions we can associate a
DEL-PPAOC program which behaves exactly like the parallel execution of its
elements. First, execution of a single action a relative to a finite set of atoms
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Voc can be simulated by the DEL-PPAOC program exeAct(Voc, a) defined when
a is consistent. In that case exeAct(Voc, a) is defined as follows:

exeAct(Voc, a) = pre(a)? ⊓
l

ce∈eff (a)


¬cnd(ce)?

∪

cnd(ce)?
⊓

d
α∈ceff +(ce)⇒∩Voc α←⊤

⊓
d

α∈ceff −(ce)⇐∩Voc α←⊥


 .

The formula

NoCrossInt(Voc, a, a′) = ⟨exeAct(Voc, a′)⟩pre(a) ∧∧
ce∈eff (a)

(cnd(ce)↔ ⟨exeAct(Voc, a′)⟩cnd(ce))

then expresses (given that (Voc(a) ∪ Voc(a′)) ⊆ Voc) that neither executability
nor effects of a are sensitive to the execution of a′, i.e., that a and a′ have no
cross-interaction in a given state. Then to every finite set of atoms Voc and set
of actions A we associate the DEL-PPAOC program

exeAct(Voc,A) =
∧

a,a′∈A,a ̸=a′

NoCrossInt(Voc, a, a′)?;
l

a∈A
exeAct(Voc, a).

Proposition 6.2. For every finite set of actions A = {a1, . . . , am} and finite
set of atoms Voc ⊆ ATM-C such that

⋃
1⩽k⩽m Voc(ak) ⊆ Voc,

1. τ•Voc
A is defined in s iff there exist some U ,W such that ⟨s,U ,W ⟩ ∈
∥exeAct(Voc,A)∥;

2. If τ•Voc
A is defined in s then τ•Voc

A (s) = U iff ⟨s,U ,W ⟩ ∈ ∥exeAct(Voc,A)∥
for some W .

Proof. Consider first a single action: A = {a}. Note that in this case we have
∥exeAct(Voc,A)∥ = ∥exeAct(Voc, a)∥. Let s be an arbitrary state. τ•Voc

a (s) is not
defined iff either (1) a is inconsistent, in which case exeAct(Voc, a) is undefined,
or (2) s ̸|= pre(a), in which case the program fails because ∥pre(a)?∥ = ∅. When
τ•Voc

a (s) is defined then s |= pre(a), so ⟨s, s, ∅⟩ ∈ ∥pre(a)?∥. Moreover, for
each ce ∈ eff (a) such that s |= cnd(ce) the programs (

d
p∈ceff +(ce)⇒∩Voc α←⊤)

and (
d

α∈ceff −(ce)⇐∩Voc α←⊥) are executed in parallel and all the assignments
are consistent (no α←⊥ and α←⊤ are executed in parallel for the same α by
consistency of s). Then the parallel composition of all these programs leads, by
definition, to the state τ•Voc

a (s) = U , with ⟨s,U ,W ⟩ ∈ ∥exeAct(V oc, a)∥, where
U is the set of variables assigned to ⊤ and W the set of all assigned variables
in the program exeAct(V oc, a).

Consider now now A = {a1, . . . , am} with m ⩾ 2. Let s be an arbitrary
state. We have already shown that for all i ∈ {1, . . . ,m}, exeAct(Voc, ai) be-
haves correctly and produces the same effects as the single action {ai}, and is
executable iff τ•Voc

ai
(s) is defined. If two actions a, a′ ∈ A have contradictory ef-

fects in state s, there are ce ∈ eff (a) and ce′ ∈ eff (a′) and α ∈ ATM -C such that
s |= cnd(ce) ∧ cnd(ce′) and (ceff +(ce) ∩ ceff −(ce′)⇐) ∪ (ceff −(ce)⇐ ∩ ceff +(ce′))
contains α, and then the program fails because of the execution of the parallel
composition of α←⊥ and α←⊤ in the program exeAct(Voc, a)⊓ exeAct(Voc, a′).
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If actions a and a′ are executable at s and have cross-interaction at s, then either
τ•Voc

a′ (s) ̸|= pre(a) or there is a conditional effect ce ∈ eff (a) such that s and
τ•Voc

a′ (s) disagree on cnd(ce), or the symmetric cases (swapping a and a′). In
the first case, the execution of ⟨exeAct(Voc, a′)⟩pre(a)? in NoCrossInt(Voc, a, a′)
fails, and in the second, the execution of

(
cnd(ce)↔ ⟨exeAct(Voc, a′)⟩cnd(ce)

)
?

in NoCrossInt(Voc, a, a′) fails. Finally, the parallel composition of all these pro-
grams check contradictory effects and cross-interaction and leads to the state
τ•Voc

A (s) by definition because of the parallel execution of all exeAct(Voc, ai).

6.2.4 DEL-PPAOC planning tasks
A DEL-PPAOC planning task is a triple P = ⟨Act, s0,Goal⟩ where Act is a finite
set of consistent actions, s0 ∈ 2ATM-C is a finite state (the initial state) and
Goal ∈ FmlDEL-PPAOC is a DEL-PPAOC formula. Solvability is defined as usual.

Theorem 6.1. A planning task P = ⟨Act, s0,Goal⟩ is solvable by a parallel
plan with no more than k steps if and only if:

s0 |=
〈(d

a∈Act xa←⊥;
⊔

a∈Act xa←⊤;πx
)≤k
〉

Goal

where the xa are fresh variables (xa /∈ Voc(P) for all a ∈ Act) and where

πx =
∧

a,a′∈Act,a′ ̸=a

((xa ∧ xa′)→ NoCrossInt(Voc(P), a, a′))? ;

l

a∈Act

(
¬xa? ∪ (xa?; exeAct(Voc(P), a))

)
.

Proof. The program
d

a∈Act xa←⊥ initialises a special fresh variable xa /∈ Voc(P)
to ⊥, for each action a ∈ Act. Then the inclusive nondeterministic composition⊔

a∈Act xa←⊤ chooses some non empty subset of actions A ⊆ Act and executes
the program

d
a∈A xa←⊤. At this point, xa = ⊤ iff a ∈ A, and the program

πx is executed. It is easily seen that, for a given choosen set of actions A, πx
behaves like the program exeAct(Voc(P),A). We know by Proposition 6.2 that
the latter program behaves correctly and produces the same effect as the parallel
execution of all actions in A. The sequence

d
a∈Act xa←⊥;

⊔
a∈Act xa←⊤;πx is

then repeated a number of times lesser or equal than k. This produces a sequence
of at most k parallel executions of action sets, i.e., a parallel plan bounded by
k. Therefore the formula is satisfied in the initial state if and only if there exists
a parallel plan of length bounded by k after which the goal is satisfied, i.e., if
and only if the planning task is solvable with a sequence of at most k parallel
steps.

Solvability by a sequential plan is the special case where the parallel plan is
a sequence of singletons.

Theorem 6.2. A planning task ⟨Act, s0,Goal⟩ is solvable by a sequential plan
with no more than k actions if and only if:

s0 |=
〈(⋃

a∈Act exeAct(Voc(P), a)
)≤k
〉

Goal.
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Proof. Our formula reads “there exists an execution of
(⋃

a∈Act exeAct(a)
)≤k

after which Goal is true.” We know by Proposition 6.2 that exeAct(Voc(P), a)
behaves correctly and produces the same effects as the single action a. The
program

(⋃
a∈Act exeAct(Voc(P), a)

)≤k non-deterministically chooses an action
a from Act and executes the corresponding program exeAct(Voc(P), a), then
repeats this a number of times lesser or equal than k. This produces a sequence
of at most k actions, i.e., a sequential plan bounded by k. Therefore the formula
is satisfied in the initial state if and only if there exists a sequential plan of length
bounded by k after which the goal is satisfied, i.e., if and only if the planning
task is solvable with a sequence of at most k actions.

We express solvability in the general case by replacing the k-bound with
unbounded iteration:

Theorem 6.3. A planning task P = ⟨Act, s0,Goal⟩ is solvable by a parallel
plan with no more than k steps if and only if:

s0 |=
〈(d

a∈Act xa←⊥;
⊔

a∈Act xa←⊤;πx
)∗
〉

Goal

where the xa are fresh variables (xa /∈ Voc(P) for all a ∈ Act) and where

πx =
∧

a,a′∈Act,a′ ̸=a

((xa ∧ xa′)→ NoCrossInt(Voc(P), a, a′))? ;

l

a∈Act

(
¬xa? ∪ (xa?; exeAct(Voc(P), a))

)
.

A planning task ⟨Act, s0,Goal⟩ is solvable by a sequential plan with no more
than k actions if and only if:

s0 |=
〈(⋃

a∈Act exeAct(Voc(P), a)
)∗
〉

Goal.

6.3 Relation to planning with with DEL event
models

We show that EL-O action descriptions can capture several important kinds of
DEL event models (precisely, public, private and semi-private announcements)
and the other way round, we show for some of our action descriptions how they
correspond to DEL event models. One might expect that all such descriptions
have a corresponding DEL event model; however, the correspondence is not
obvious due to fundamental differences in the way epistemic effects are modeled.
We explain this in detail in Section 6.3.3.

6.3.1 From DEL event models to EL-O action descriptions
In what follows we show that we can express as EL-O actions several kinds of
event models introduced in Chapter 2 (Section 2.3.5) and recalled in Figure 6.1,
where we sometimes restrict preconditions to literals and conjunctions thereof.
We are going to associate an EL-O action description a(Evt, e) to a given pointed
event model

(
Evt, e

)
. In all cases, the precondition of a(Evt, e) is preEvt(e).
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⊤
p← φ

Assign(p,φ):
e1

Agt ∪
{Agt}

φ

skip

PubAnn(φ):
e2

Agt ∪
{Agt}

φ

skip

SemiPrivAnn(φ,i):
e+

¬φ

skip

e−

{Agt} ∪ Agt \ {i}

⊤
skip

PubForget(p):
e+

⊤
p← ¬p

e−

Agt ∪ {Agt}

Figure 6.1: The event models Assign(p, φ), PubAnn(φ), SemiPrivAnn(φ, i), and
PubForget(p).

(More precisely, it is the reduction of preEvt(e) to an Lbool(ATM ) formula ob-
tained by exhaustively applying the reduction axioms of Section 3.3.3.) Hence
(MEL-O, s) |= preEvt(e) exactly when τEL-O

a(Evt,e) is defined at s. For such points s, it
can be shown that the pointed product update

(
MEL-O⊗Evt, (s, e)

)
is bisimilar

to the pointed Kripke model
(
MEL-O, τEL-O

a(Evt,e)(s)
)
. Recall that bisimulation is

defined in Section 2.2.6.
First, let us look at some kinds of public assignments. The public assignment

of⊤ to p, Assign(p,⊤), is captured by the action description a(Assign(p,⊤), e1) =
⟨⊤, {⟨⊤, {JS p, p}, ∅⟩}⟩. The public assignment of ⊥ to p, Assign(p,⊥), is cap-
tured by the action a(Assign(p,⊥), e1) = ⟨⊤, {⟨⊤, {JS p}, {p}⟩}⟩. Finally, the
public toggling of the truth value of p, Assign(p,¬p), is captured by an action
description with two conditional effects

a(Assign(p,¬p), e1) = ⟨⊤, {⟨¬p, {p}, ∅⟩, ⟨p, ∅, {p}⟩}⟩.
Observe that, contrarily to Assign(p,⊤) and Assign(p,⊥), Assign(p,¬p) does not
modify JS p: if an agent does not know whether p before the public toggling of
p then they also do not know whether p afterwards.

Second, let us look at some kinds of public announcements. The truthful
public announcement of a propositional variable p is captured by the action
description with precondition p, unconditional positive effect JS p, and with-
out negative effects: a(PubAnn(p), e2) = ⟨p, {⟨⊤, {JS p}, ∅⟩}⟩. Symmetrically,
the public announcement of ¬p is captured by the action a(PubAnn(¬p), e2) =
⟨¬p, {⟨⊤, {JS p}, ∅⟩}⟩. More generally, we can capture the public announcement
of conjunctions of atoms and negations of atoms:

a(PubAnn((
∧

α∈A+

α) ∧ (
∧

α∈A−

¬α)), e2) = ⟨(
∧

α∈A+

α) ∧ (
∧

α∈A−

¬α),

{⟨⊤, {JS α : α ∈ A+ ∪A−}, ∅⟩}⟩.

The precondition guarantees truthfulness of the announcement. Here are some
examples of public announcements of the above conjunctions. We also add the
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equivalent formulation in the standard epistemic language.

a(PubAnn(¬Kip ∧ ¬Ki¬p), e2) = a(PubAnn(¬Si p), e2)
= ⟨¬Si p, {⟨⊤, {JS Si p}, ∅⟩}⟩,

a(PubAnn(Kip), e2) = a(PubAnn(p ∧ Si p), e2)
= ⟨p ∧ Si p, {⟨⊤, {JS p}, ∅⟩}⟩,

a(PubAnn(p ∧ ¬Kip), e2) = a(PubAnn(p ∧ ¬Si p), e2)
= ⟨p ∧ ¬Si p, {⟨⊤, {JS p}, ∅⟩}⟩.

In the announcement of p ∧ Si p and of the Moore sentence p ∧ ¬Si p we have
dropped JS Si p from the add-list because the latter already contains JS p (cf.
the EL-O axiom Vis5 ).

Third, the semi-private announcement to i that p is true is captured by the
action description

a(SemiPrivAnn(p, i), e+) = ⟨p, {⟨⊤, {Si p, JS Si p}, ∅⟩}⟩.
The effect is that i sees whether p and that all agents jointly see that; in other
words, that it becomes common knowledge that i sees whether p.

Fourth, the event model PubForget(p) of publicly forgetting p corresponds
to the action description

a(PubForget(p), n) = ⟨⊤, {⟨⊤, {JS Si p : i ∈ Agt}, {Si p : i ∈ Agt}⟩}⟩.
That is, all Si p become false and this becomes common knowledge.

Proposition 6.3. For each of the above event models Evt:

1. (MEL-O, s) |= preEvt(e) if and only if τEL-O
a(Evt,e) is defined at s;

2. If τEL-O
a(Evt,e)(s) is defined then

(
MEL-O, τEL-O

a(Evt,e)(s)
)

and
(
MEL-O⊗Evt, (s, e)

)
are bisimilar.

Proof. The first item is the case because, as already mentioned, the precondition
of the action descriptions a(Evt, e) are all equivalent to preEvt(e).

We sketch the proof of the second item for the public announcement of p. Let
MEL-O⊗PubAnn(p) = ⟨W,RAgt , {Ri}i∈Agt , V ⟩, and consider s ∈W EL-O such that
τEL-O

a(PubAnn(p),e)(s) is defined. Then τEL-O
a(PubAnn(p),e)(s) = s∪{JS p}⇒. We show that

the pointed models
(
MEL-O, τEL-O

a(PubAnn(p),e)(s)
)

and
(
MEL-O ⊗ PubAnn(p), (s, e2)

)
are bisimilar, where e2 is the single event of the event model PubAnn(p). To
that end we define the relation Z between W EL-O and W as: s′Z(s′′, e2) iff
s′ = s′′ ∪ {JS p}⇒. It can be checked that the three conditions for Z being a
bisimulation are satisfied: atomic, forth, and back.

The other proofs are similar; we only sketch the case of public forgetting of
p, PubForget(p). As this action has a trivial precondition, τEL-O

a(PubForget(p))(s) is
defined for all s. We show that given a state s ∈ W EL-O, the pointed models(
MEL-O, τEL-O

a(PubForget(p))(s)
)

and
(
MEL-O ⊗ PubForget(p), (s, e+)

)
are bisimilar via

the following relation Z between W and W EL-O:

Z = {⟨τEL-O
a(PubForget(p))(s′), (s′, e+)⟩ : s′ ∈W EL-O} ∪

{⟨τEL-O
a(PubForget(p))(s′) ∪ {p}, (s′, e−)⟩ : s′ ∈W EL-O and p ̸∈ s′} ∪

{⟨τEL-O
a(PubForget(p))(s′) \ {p}, (s′, e−)⟩ : s′ ∈W EL-O and p ∈ s′}.

It can be checked that Z is indeed a bisimulation.
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⊤
skip

a

⊤
p← ⊤

b
{i : ¬Si p} ∪
{Agt : ¬JS p}

Figure 6.2: An event model equivalent to ⟨⊤, {⟨⊤, {p}, ∅⟩}⟩.

Something that cannot be modeled in general in our framework is the public
announcement that ¬Kip, or, expressed in the EL-O fragment, that ¬(p∧ Si p).
The reason is that it is not clear how the disjunctive effect of that announcement
could be described in terms of an add-list.

6.3.2 From EL-O action descriptions to DEL event models
We now consider the converse direction: given an EL-O action description a,
can we find a DEL event model (Evt, e) such that for any state s ∈ W EL-O,
the product (MEL-O ⊗ Evt, (s, e)) of (MEL-O, s) and (Evt, e) is defined iff s |=
pre(a), and such that in that case, (MEL-O ⊗ Evt, (s, e)) and (MEL-O, τEL-O

a (s))
are bisimilar?

Let us here restrict our attention to a few very basic EL-O action descriptions
in which there is a single conditional effect either adding or deleting one atom.
The idea behind the construction of an equivalent event model is the following:
when adding or deleting an atom from a world, only agents who see this atom
know that it has been modified.

The easiest way to translate this into DEL event models is through the
use of Bolander’s edge-conditioned event models [25]. Such models incorpo-
rate conditions on accessibility relations, so that a model is a tuple Evt =
⟨W Evt, REvt

Agt , {REvt
i }i∈Agt , preEvt, postEvt⟩ where REvt

Agt : W Evt ×W Evt −→ FmlEL,
REvt

i : W Evt × W Evt −→ FmlEL for every i ∈ Agt, and the rest is defined as
previously. The product of such an edge-conditioned event model with a model
M = ⟨W,RAgt , {Ri}i∈Agt , V ⟩ is M ⊗ Evt = ⟨W ′, R′

Agt , {R′
i}i∈Agt , V

′⟩ where

(s, e)R′
Agt(t, f) iff sRAgtt and (M, s) |= REvt

Agt(e, f) and (M, t) |= REvt
Agt(e, f);

(s, e)R′
i(t, f) iff sRit and (M, s) |= REvt

i (e, f) and (M, t) |= REvt
i (e, f);

and the rest is defined as previously. As mentioned in [25], edge-conditioned
event models can be simulated by standard event models, though the former
are more succinct.

We now give a few examples of translations of simple EL-O action descrip-
tions into edge-conditioned event models. We will only be giving the bisimula-
tion relations without the proofs that they are indeed bisimulations, as those
proofs are tedious but uncomplicated.

An equivalent event model to the assignment of p to true, ⟨⊤, {⟨⊤, {p}, ∅⟩}⟩,
is given in Figure 6.2. The bisimulation relation Z is as follows: for every state
s ∈ W EL-O, sZ(s, a) and (s∪{p})Z(s, b). If we wish to assign p to false rather
than true (action ⟨⊤, {⟨⊤, ∅, {p}⟩}⟩), we simply replace the assignment p ← ⊤
in the actual event by p ← ⊥, and change the bisimulation relation so that
(s \ {p})Z(s, b) for any s ∈ W EL-O. This action can be interpreted as the value
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⊤
skip

a

α

skip

b

¬α

skip

c

{j : ¬Sj Si α} ∪
{Agt : ¬JS Si α}

{j : ¬Sj Si α} ∪
{Agt : ¬JS Si α}

{Agt} ∪
Agt\{i}

Figure 6.3: An event model equivalent to ⟨⊤, {⟨⊤, {Si α}, ∅⟩}⟩.

of p (the property of an object) changing, while only agents who are looking at
this object can see the change.

For the action ⟨⊤, {⟨⊤, {Si α}, ∅⟩}⟩ making Si α true, we need in the general
case two actual events, one for when α is true and one for when it is false. An
event model equivalent to this action description is given in Figure 6.3. The
corresponding bisimulation Z is the following: for every state s ∈W EL-O,

• sZ(s, a);

• (s∪{Siα})Z(s, b) if s |= α;

• (s∪{Siα})Z(s, c) if s |= ¬α.

A more complex example, given in Figure 6.4, is that of an event model
equivalent to an action making the atom Si p false. This can be interpreted as
agent i looking away from p. Agents who saw agent i looking at p will see them
look away, and the other agents will not be aware of this change. While this is
a fairly natural action to consider, it is difficult to generalize to assigning Si α
to false for any given α, as only propositional variables can receive assignments
in DEL event models. The bisimulation Z in the case of Figure 6.4 is as follows:
for every state s ∈W EL-O,

• sZ(s, a);

• (s \ {JS p, Si p})Z(s, b);

• (s \ {JS p, Si p, p})Z(s, c) if s |= p;

• ((s∪{p}) \ {JS p, Si p})Z(s, c) if s |= ¬p;

• (s \ {p})Z(s, d) if s |= p;

• (s∪{p})Z(s, d) if s |= ¬p.

Let us give one more example, this time involving a precondition: private
announcements. In an S5 setting, an announcement can only be private if no
one is watching (as we cannot represent agents “believing that nothing has
happened”). That is, we can only privately announce whether α is true to an
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⊤
skip

a

⊤
skip

b

⊤
p← ¬p

c

⊤
p← ¬p

d
{j : ¬Sj Si p}∪

{Agt : ¬JS Si p} {i, Agt}
{j : ¬Sj Si p}∪

{Agt : ¬JS Si p}

Figure 6.4: An event model equivalent to ⟨⊤, {⟨⊤, ∅, {Si p}⟩}⟩.

⊤
skip

a

α ∧
∨

j ̸=i
Sj Si α

skip

b′

¬α ∧
∨

j ̸=i
Sj Si α

skip

c′

α ∧
∧

j ̸=i
¬Sj Si α

skip

b

¬α ∧
∧

j ̸=i
¬Sj Si α

skip

c

{j : ¬Sj Si α}∪
{Agt : ¬JS Si α}

{j : ¬Sj Si α}∪
{Agt : ¬JS Si α}

{Agt}∪
Agt\{i}

{Agt}∪
Agt

{Agt}∪
Agt

{Agt}∪
Agt\{i}

Figure 6.5: An event model equivalent to the private announcement whether α
to i.

agent i if for all j ̸= i, ¬Sj Si α holds. The corresponding action description
has condition

∧
j ̸=i ¬Sj Si α and a single conditional effect ⟨⊤, {Si α}, ∅⟩. The

corresponding event model is given in Figure 6.5. The bisimulation Z is: for
every state s ∈ W EL-O, sZ(s, a), and (s ∪ Siα)Z(s, e) if s |= preEvt(e) for e ∈
{b, b′, c, c′}.

We stop here without delving into the territory of deleting longer atoms
or combining several effects. It is, we hope, fairly obvious that given an ac-
tion description, the construction of an equivalent DEL event model is neither
straightforward nor systematic. This, we believe, is an argument in favour of
our framework, in which many actions can be defined very succinctly and in a
natural manner.

6.3.3 Discussion: DEL vs. EL-O
The comparison with DEL leads us to a fundamental question: how should an
action be described? All the approaches in the literature advocating DEL for
epistemic planning presuppose that event models provide an appropriate tool
for the description of actions. This, however, seems questionable to us. For
example, how should we describe the action of pushing a light button? It is
useful for our discussion to recall the fundamental distinction in philosophy of
action between action types and action tokens [10]. Pushing a light button is an
example of the former, while an example of the latter is the pushing of a par-
ticular button at a particular point in time by a particular agent. The elements
of the set of action descriptions Act are clearly action types. In contrast, the
elements of the execution of a solution to a planning task are typically action
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tokens.1
Let us suppose that the action type of pushing a light button can be described

by means of preconditions and effects. Reasonably, the precondition is that the
agent is close to the switch2 and the effect is that the light is on. However,
a DEL event model has to contain more information than that: it also has to
say how the button-pushing is perceived (or not) by each of the agents. Now
remember that we have to describe an action type: we have to account for all
possible circumstances of button pushing. For each agent there are at least two
cases: the one where the agent is present and observes the light bulb and the
one where they are absent. Altogether, this requires an exponential numbers of
points in an event model. Worse, we also have to take care of the evolution of
the agents’ higher-order knowledge: for each couple of observing agents i and j
we have to distinguish whether i sees that j observes the bulb, and so on, the
limit case being when there is joint observation of the bulb. Hence exhaustive
action descriptions by means of DEL event models systematically have to have
an infinite number of points in order to take all the possible effects into account.
This can actually be seen as an epistemic version of the ramification problem
[101].

Contrasting with DEL event models, our EL-O-based action descriptions do
not require to fully describe all possible ramifications: the direct effect of pushing
the light button is simply that the light is on, and the indirect epistemic effects
follow from the description of the state, namely who observes the light bulb and
who doesn’t. This is a fundamentally different answer to the question of how
actions should be described. It makes the modeller’s task much simpler and
more natural. (A similar argument was first put forward in [30].)

At the core of this distinction between EL-O and DEL is the observation
that DEL models get bigger the more uncertainty there is, while the opposite
is true for EL-O; and that EL-O models give a straightforward account of the
knowledge in a situation, while DEL reasons about possibilities (which worlds
are possible for each agent, which event may have happened according to each
agent, etc.). One or the other of the approaches may then be better suited
depending on the problem at hand, with EL-O being stronger when reasoning
with more uncertainty and straightforward actions of learning and forgetting
as well as more general action types, while DEL is better suited to situations
with more common knowledge and more convoluted events with specific action
tokens.

Of course, DEL remains more expressive than EL-O, and not all actions can be
modeled in EL-O. For example, the public announcement of the disjunction p∨q
(the event model PubAnn(p ∨ q)) or the assignment of q to p (the event model
Assign(p, q)) cannot be captured. This is because all propositional variables
are independent in our approach, as witnessed by the fact that the knowledge
operator distributes over disjunctions of literals: for different p and q, Ki(p∨ q)
is equivalent to Kip ∨ Kiq, and Ki(p ↔ q) is equivalent to (Kip ∧ Kiq) ∨
(Ki¬p ∧Ki¬q). This is clearly a limitation of our approach. In particular, we
cannot capture the muddy children problem, in which the children learn that
one of them has a muddy forehead without knowing who. Note that while DEL

1In DEL-based planning this distinction is clarified for the first time in [90].
2There might be more, such as that the wires leading to the light bulb are working, that

the light bulb is not broken etc.: we here neglect the qualification problem [101] which is that
the precondition is typically an infinite conjunction.
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is more general as far as preconditions are concerned (any complex formula
can be announced), its postconditions are restricted: they assign propositional
variables and therefore cannot model actions with disjunctive ontic effects such
as p ∨ q.

For the same reason we cannot capture the poisonous liquid example from
[110]. In this problem there is a bottle of liquid, a healthy lawn, and two
actions: pour and senseLawn. The first is the action of pouring some liquid on
the lawn that we have already described in Example 5.3 (Section 5.1.1). The
second senses whether or not the lawn is dead: we have pre(senseLawn) = ⊤
and eff (senseLawn) =

{
⟨⊤, {Si Dead}, ∅⟩

}
. Then for the set of actions Act =

{pour, senseLawn}, there is no solution of the planning task
⟨ATM ,Act, {¬Dead, Si Dead}, Si Poisonous⟩.

In particular, pouring some liquid on the lawn and checking whether the lawn is
dead does not inform the agent whether Poisonous is the case. This is because
after pouring the liquid the agent should know that the state of the lawn is
tied to the toxicity of the liquid. Such knowledge cannot be captured in our
framework.

6.4 Other related works
6.4.1 Muise et al.
Muise et al. [107] follow a strategy that is very similar to ours, applying the
logic of proper epistemic knowledge bases (PEKBs) of [84] to simple epistemic
planning. In [84], formulas are restricted to boolean combinations of so-called
restricted modal literals (RMLs): sequences of belief operators and negations
that are followed by a propositional variable; in other terms, formulas of FmlEL
without conjunctions and disjunctions. Formally, the grammar for RMLs is:

λ ::= p | ¬λ | Kiλ

where p ranges over Prop and i over Agt. PEKBs are conjunctions of such RMLs.
Muise et al. have also started to consider the integration of ‘knowing whether’
operators in [103], but have not integrated this into the planning formalism of
[107].

The major advantage of our EL-O-based approach over the RMLs-based ap-
proach is that boolean combinations of RMLs cannot express Ki(Kjp∨Kj¬p)∧
¬Kip ∧ ¬Ki¬p is true, that is, i knows that j knows whether p while i does
not know about p herself. As we have argued in Chapter 1, such situations are
important in interaction and more specifically in communication. They can be
expressed in our framework by Lbool(ATM ) formulas of the form Si Sj p∧¬Si p.
To prove this formally it suffices to show that Ki(Kjp ∨Kj¬p) cannot be ex-
pressed by boolean combinations of RMLs.

Proposition 6.4. Let i and j be different. Then there is no boolean combination
of RMLs φ that is equivalent to Ki(Kjp ∨Kj¬p) in S5 Kripke models.

Proof. Consider the two S5 Kripke models M = ⟨W,RAgt , {Ri}i∈Agt , V ⟩ and
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w0

p

w1

¬p

w0

p

w1

¬p

w3

p

w2
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i

i

i

i

i, j

Figure 6.6: Models M (left) and M ′ (right); reflexive arrows omitted.

M ′ = ⟨W ′, R′
Agt , {R′

i}i∈Agt , V
′⟩ with

W = {w0, w1}, W ′ = {w0, w1, w2, w3},
RAgt = W ×W = Ri, R′

Agt = W ′ ×W ′ = R′
i,

Rj = δW , R′
j = δW ′ ∪ {⟨w2, w3⟩, ⟨w3, w2⟩},

V (w0) = ∅, V ′(w0) = V ′(w3) = ∅,
V (w1) = {p}; V ′(w1) = V ′(w2) = {p};

where δW = {⟨w0, w0⟩, ⟨w1, w1⟩} is the identity relation of W and δW ′ is the
identity relation of W ′. They are depicted in Figure 6.6. Clearly, (M,w0) |=
Ki(Kjp ∨Kj¬p) and (M ′, w0) ̸|= Ki(Kjp ∨Kj¬p). We prove that no boolean
combinations of RMLs can tell the pointed models (M,w0) and (M ′, w0) apart.
From that it immediately follows that there can be no such boolean combination
that is equivalent to Ki(Kjp ∨Kj¬p).

To establish that of (M,w0) and (M ′, w0) satisfy the same formulas as far as
the language of boolean combinations of RMLs is concerned it suffices to prove
that (M,w0) |= λ iff (M ′, w0) |= λ for every RML λ. We use induction on the
length of λ. We have to check the following exhaustive list of cases; each of
them is straightforward.
Case 1. λ = q for some q ∈ Prop. Obvious. ((M,w0) ̸|= λ and (M ′, w0) ̸|= λ,
regardless of whether q equals p or not.)
Case 2. λ = ¬µ, for some RML µ. Straightforward application of the induction
hypothesis.
Case 3. λ = Kiµ. We have the following subcases.
Case 3.1. λ = Kiq for some q ∈ Prop. Obvious. ((M,w0) ̸|= λ and (M ′, w0) ̸|=
λ.)
Case 3.2. λ = Ki¬µ, for some RML µ. We have to dive deeper into the
subcases here.
Case 3.2.1. λ = Ki¬q. Obvious. ((M,w0) ̸|= λ and (M ′, w0) ̸|= λ.)
Case 3.2.2. λ = Ki¬¬µ. We use that λ↔ Kiµ is valid and apply the induction
hypothesis.
Case 3.2.3. λ = Ki¬Kiµ. We use that Ki¬Kiµ and ¬Kiµ are equivalent in
S5 and apply the induction hypothesis.
Case 3.2.4. λ = Ki¬Kjµ. We do yet another case analysis.
Case 3.2.4.1. λ = Ki¬Kjq. Obvious. ((M,w0) ̸|= λ and (M ′, w0) ̸|= λ.)
Case 3.2.4.2. λ = Ki¬Kj¬µ. This is the last case analysis we have to do:
Case 3.2.4.2.1. λ = Ki¬Kj¬q. Obvious. ((M,w0) ̸|= λ and (M ′, w0) ̸|= λ.)
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Case 3.2.4.2.2. λ = Ki¬Kj¬¬µ. We use that λ↔ Ki¬Kjµ is valid and apply
the induction hypothesis.
Case 3.2.4.2.3. λ = Ki¬Kj¬Kiµ. We have (M,w0) |= λ ↔ Kiµ and
(M ′, w0) |= λ↔ Kiµ, allowing us to apply the induction hypothesis.
Case 3.2.4.2.4. λ = Ki¬Kj¬Kjµ. We use that Ki¬Kj¬Kjµ and KiKjµ are
equivalent in S5 and apply the induction hypothesis.
Case 3.2.4.3. λ = Ki¬KjKiµ. We have (M,w0) |= λ↔ Kiµ and (M ′, w0) |=
λ↔ Kiµ, allowing us to apply the induction hypothesis.
Case 3.2.4.4. λ = Ki¬KjKjµ. We use that Ki¬KjKjµ and Ki¬Kjµ are
equivalent in S5 and apply the induction hypothesis.
Case 3.3. λ = KiKiµ. We use that KiKiµ and Kiµ are equivalent in S5 and
apply the induction hypothesis.
Case 3.4. λ = KiKjµ. We have (M,w0) |= λ ↔ Kiµ and (M ′, w0) |= λ ↔
Kiµ, allowing us to apply the induction hypothesis.
Case 4. λ = Kjµ. We have (M,w0) |= λ↔ µ and (M ′, w0) |= λ↔ µ, allowing
us to apply the induction hypothesis.

6.4.2 Kominis and Geffner
Kominis and Geffner’s approach [80, 81] distinguishes three kinds of actions:
physical actions modifying the world, public updates (that are nothing but
DEL-like public announcements), and sensing actions by means of which an
agent learns whether a formula is true or not.

On the one hand, their approach is more general than ours because agents
can sense arbitrary formulas. This allows them to model the muddy children
problem, which we cannot express as an EL-O planning task (see Section 6.3.3).
However, if we restrict the formulas describing the set of initially possible states,
the formulas that are publicly announced, and the formulas that are sensed to
observability atoms (more precisely: to the equivalent FmlEL formulas) then
everything that can be modeled in Kominis and Geffner’s approach can also be
modeled in ours.

On the other hand, Kominis and Geffner’s approach imposes three severe
restrictions:

• all actions can be placed into one of the three categories;

• the set of initially possible states is common knowledge among all agents;

• all physical actions and all public updates are public;

• all sensing actions are semi-private.

The first hypothesis is clearly too strong for many natural everyday situations,
as we have already said in Section 3.3.1 (Remark 3.4). The second hypothesis is
also very strong: it forbids the modeling of private actions modifying the world
as required in several of our examples of Section 5.3. The third hypothesis means
that when an agent i senses the truth value of φ then all other agents see this:
they learn that i knows whether φ is true or not but ignore whether what i has
learned is φ or ¬φ. This means that there can be no private communication;
in particular, one cannot model what we take to be a paradigmatic epistemic
planning task, viz. the gossip problem.
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6.4.3 Petrick and Bacchus
There is also an older approach due to Petrick and Bacchus about planning
under incomplete information for a single agent [109, 110] which bears some
similarities to ours. Their language is first-order but does not have epistemic
operators. Instead, there are several kinds of knowledge bases by means of which
the epistemic status of pieces of information is represented. In particular, there
is a ‘knowing that’ database whose elements are literals and a ‘knowing whether’
database whose elements are atoms. The point of view is subjective, while ours
is objective, i.e., the agent’s knowledge is represented, but not what is true in
the world. Therefore the identity of Kip and p ∧ Kifip cannot be expressed in
their language. Just as the original proposal in [109], our approach does not
account for postdiction (deducing the past from the present), as illustrated by
Example 5.3. This is because in our approach the knowledge operator distributes
over disjunctions of literals. This limitation of our approach is also the reason
why we cannot account for the muddy children problem: the latter requires
actions where the children learn a disjunction, namely that one of them is dirty.
A solution to the muddy children problem where public announcements were
integrated into DEL-PAO was presented in [36]; however, in that paper only the
semantics was designed, without an axiomatization or complexity result. The
study of such mathematical properties will be subject of future work.

6.5 Conclusion
We have discussed the extension of the results of Chapter 5 to EL-OC and
EL-O+Ind, defined the logic DEL-PPAOC as a dynamic extension of EL-OC
and discussed the relation between our framework and other related epistemic
frameworks. A few open problems remain: first, it is not clear whether it
is possible to polynomially translate EL-O+Ind planning tasks into classical
planning tasks as we have done for standard EL-O planning tasks. This means
that the complexity of the solvability problem for EL-O planning is not precisely
known. Second, it would be interesting to investigate a systematic translation
from EL-O action descriptions to DEL event models, though the few examples
we have given here show that this is not at all straightforward.

An interesting avenue for future research are implicitly coordinated plans as
introduced by Bolander et al. [28]. For example, suppose agent 2 would like
to borrow the apartment of his friend 1 while 1 is away on vacation. Agent 1
has an action putMat of putting the key under the door mat that is described
by pre(putMat) = ⊤ and eff (putMat) =

{
⟨⊤, {Mat}, ∅⟩

}
; agent 2 has an action

tryTake of trying to take the key with pre(tryTake) = ⊤ and eff (tryTake) ={
⟨⊤, {S2 Mat}, ∅⟩, ⟨Mat, {hasKey2}, ∅⟩

}
. The initial state is s0 = ∅. Then 1

putting the key under the mat and 2 taking the key solves the planning task
⟨ATM ,Act, s0, hasKey2⟩.

However, when 2 arrives at the apartment he will not know that the key is under
the mat, unless 1 has told him. A better plan, baptised ‘implicitly coordinated’
in [28], involves 1’s action checkMat which can be described in EL-O terms
by pre(checkMat) = ⊤ and eff (checkMat) =

{
⟨⊤, {S2 Mat}, ∅⟩

}
. The formal

characterisation of such plans requires a language in which it can be expressed
that agents know whether a given sequence of actions will lead to a desired
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state of the world: it is not enough that the action leads to the goal, the acting
agent must also know that. This fails to be the case for 2’s action tryTake: as 2
does not know whether the key is under the mat, he does not know whether the
conditional effect ⟨Mat, {hasKey2}, ∅⟩ will be triggered. A dynamic extension of
EL-O such as the one given in Section 6.2, DEL-PPAOC, should enable reasoning
about implicitly coordinated plans. The details however remain to be worked
out.



Chapter 7

True and mere belief about
a proposition

La simplicité de EL-O repose sur deux facteurs : l’opérateur ‘savoir si’ et les ca-
pacités de raisonnement limitées des agents. Dans ce chapitre nous considérons
une manière d’adapter ces propriétés à des logiques épistémico-doxastiques, dans
lesquelles les agents n’ont pas seulement des croyances mais aussi des connais-
sances.

Le langage naturel n’admet pas de notion de ‘croire si’ ; nous traiterons donc
dans ce chapitre de propositions de la forme “i a des connaissances à propos
de φ” (i sait soit que φ est vrai, soit que φ est faux) et “i a une croyance à
propos de φ” (c’est à dire que i croit soit que φ est vrai, soit que φ est faux).
Formellement, nous écrivons Kifiφ pour la première de ces notions et BAiφ pour
la seconde. Nous poussons l’analyse un peu plus loin et distinguons les cas “i a
une croyance correcte à propos de φ” et “i a une simple croyance à propos de
φ”, notées respectivement TBAiφ et MBAiφ. Autrement dit, MBAiφ indique
que i a une croyance à propos de φ, mais pas de connaissance.

Les modalités TBAiφ et MBAiφ sont non-standard, mais toutefois naturelles.
Prenons comme exemple l’évolution des connaissances et des croyances dans un
variant du test Sally-Ann [127, 18]. Supposons que Sally et Ann se trouvent
dans une pièce, Ann tenant une bille. Un panier et une bôıte sont posés dans
cette pièce. Notons S pour Sally, A pour Ann, et b la proposition “la bille est
dans le panier”. Décrivons maintenant les états épistémiques de Sally et Ann
au cours des événements qui suivent.

1. Ann met la bille dans le panier. Sally et Ann savent alors que la bille est
dans le panier, elles ont donc une croyance à propos de b qui est correcte
et n’est pas une simple croyance :

b ∧ TBAAb ∧ ¬MBAAb ∧ TBASb ∧ ¬MBASb.

2. Sally quitte la pièce. Sally continue de croire, à raison, que la bille est
dans le panier, mais elle n’en est plus sûre :

b ∧ TBAAb ∧ ¬MBAAb ∧ TBASb ∧MBASb.

107
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3. Ann prend la bille et la met dans la bôıte. En supposant que Sally croie
toujours que la bille est dans le panier, sa croyance est maintenant incor-
recte :

¬b ∧ TBAAb ∧ ¬MBAAb ∧ ¬TBASb ∧MBASb.

4. Sally rentre de nouveau dans la pièce et regarde dans le panier. Elle sait
maintenant que la bille n’est pas dans le panier :

¬b ∧ TBAAb ∧ ¬MBAAb ∧ TBASb ∧ ¬MBASb.

Nous pourrions étendre l’histoire de sorte à ce que Sally passe par tous les
états épistémiques possibles. Par exemple, Sally pourrait initialement être en
dehors de la pièce, n’ayant aucune idée de la position de la bille : alors TBASb
et MBASb seraient tous les deux faux.

Au-delà de l’étude des situations épistémiques, nous montrons ici que les
modalités TBAi et MBAi sont pleinement expressives, en ce sens que Kiφ et
Biφ peuvent être défini comme abbréviations à partir de TBAiφ et MBAiφ.
De plus, nous montrons que les huit situations épistémiques possibles par rap-
port à une proposition contingente φ peuvent être caractérisées par les huit
combinaisons possibles des trois formules φ, TBAiφ et MBAiφ. Enfin, nous
étudions les réductions de modalités consécutives portant sur le même agent.
Nous prenons les trois logiques standard de connaissances et croyances définies
dans le Chapitre 2 et montrons que dans ces trois logiques, MBAiTBAiφ est
équivalent à MBAiφ et TBAiTBAiφ est équivalent à TBAiφ ∨ ¬MBAiφ. De
plus, nous montrons que pour deux de ces logiques les quatre combinaisons
possibles peuvent être réduites à une profondeur modale de 1.

The simplicity of EL-O relies on two factors: the ‘knowing whether’ operator
and the agents’ limited reasoning power. In this chapter we consider a way to
bring these aspects over to epistemic-doxastic logics, that is, logics that reason
about agents’ beliefs as well as their knowledge.

This chapter is mainly based on the following publication:

• Herzig, A. & Perrotin, E. (2021). True belief and mere belief about a propo-
sition and the classification of epistemic-doxastic situations. Filosofiska
Notiser (1-Special issue on modal logic) (pp.103-117).
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In natural language one cannot say “I believe whether φ”; we are therefore
going to talk in this chapter about propositions of the form “i has knowledge
about φ” and “i has a belief about φ”. Formally, we write Kifiφ for the former
and BAiφ for the latter. We further analyse this and distinguish “i has a true
belief about φ” and “i has a mere belief about φ”, respectively written TBAiφ
and MBAiφ. We understand MBAiφ as “i has a belief about φ but does not
know whether φ”.

The modalities TBAi and MBAi are non-standard, but nevertheless natural.
To witness, consider the evolution of knowledge and belief in a variant of the
famous Sally-Ann Test [127, 18]. Suppose Sally and Ann are in a room. Ann
is holding a marble. There is a basket and a box in the room. Let S stand for
Sally, A for Ann, and b for “the marble is in the basket”. We describe Ann’s
and Sally’s epistemic situations after the following events took place.

1. Ann puts the marble in the basket. Sally then knows that the marble is in
the basket, i.e., she has a belief about b that is both true and not a mere
belief:

b ∧ TBAAb ∧ ¬MBAAb ∧ TBASb ∧ ¬MBASb.

2. Sally leaves the room. Sally continues to believe that the marble is in the
basket, but she no longer knows that:

b ∧ TBAAb ∧ ¬MBAAb ∧ TBASb ∧MBASb.

3. Ann transfers the marble to the box. Supposing that Sally still believes
that the marble is in the basket she now has a false belief:

¬b ∧ TBAAb ∧ ¬MBAAb ∧ ¬TBASb ∧MBASb.

4. Sally re-enters and looks inside the basket. Now she knows that the marble
is not in the basket:

¬b ∧ TBAAb ∧ ¬MBAAb ∧ TBASb ∧ ¬MBASb.

We could extend the story in such a way that Sally goes through all possible
epistemic situations. For example, Sally could initially be outside the room, not
having any idea whether or not the marble is in the basket: then both TBASb
and MBASb would be false.

The formal background of our investigation are the three epistemic-doxastic
logics having both ‘knowledge that’ and ‘belief that’ modal operators described
in Chapter 2 (Section 2.1.4): EDL, EDL+BiBK , and EDL+5 (Ki). Beyond the
study of epistemic situations we show that the modalities TBAi and MBAi are
fully expressive, in the sense that both Kiφ and Biφ can be defined as abbrevia-
tions from them. Furthermore, we show that the eight possible epistemic situa-
tions w.r.t. a contingent proposition φ can be characterised in terms of the eight
possible combinations of the three formulas φ, TBAiφ, and MBAiφ. Finally, we
study reductions of consecutive modalities with the same agent. We show that
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KD5(Bi) the principles of modal logic KD5 for Bi

S4(Ki) the principles of modal logic S4 for Ki

KiB Kiφ→ Biφ
BiKB Biφ→ KiBiφ
BiBK Biφ→ BiKiφ
5 (Ki) ¬Kiφ→ Ki¬Kiφ

Table 7.1: Principles of the three logics EDL (first four lines), EDL+BiBK , and
EDL+5 (Ki).

for all three logics, MBAiTBAiφ is equivalent to MBAiφ and TBAiMBAiφ is
equivalent to TBAiφ∨¬MBAiφ. Moreover, we show that for the two strongest
of the three logics all four possible combinations can be reduced to modal depth
one.

The structure of this chapter is as follows. We first define several ‘knowledge
about’ and ‘belief about’ modal operators and show that they have the same
expressivity as standard ‘knowing that’ and ‘believing that’ operators in the
considered logics (Section 7.1). We then give the reductions of consecutive
modalities featuring the same agent (Section 7.2) and conclude (Section 7.3).

7.1 ‘Belief-about’ and epistemic-doxastic situa-
tions

In the language of ‘knowledge that’ and ‘belief that’ we can define several modal
operators of the kind ‘having a belief about a proposition’ and ‘having knowledge
about a proposition’. We show that the modalities ‘true belief about’ and ‘mere
belief about’ play a particular role: they allow us to define in a combinatorial
way all possible epistemic-doxastic situations about a contingent proposition φ.
Moreover, we show how ‘knowledge that’ and ‘belief that’ can be defined from
the modalities ‘true belief about’ and ‘mere belief about’.

We recall in Table 7.1 the three epistemic-doxastic logics EDL, EDL+BiBK
and EDL+5 (Ki) described in Chapter 2. In this section we only consider the
logic EDL; we explore properties of our new operators in the two other logics in
the next section.

7.1.1 From ‘belief-that’ to ‘belief-about’
Let us define the following modalities as abbreviations in the language FmlEDL:

BAiφ = Biφ ∨Bi¬φ “i has a belief about φ”
Kifiφ = Kiφ ∨Ki¬φ “i has knowledge about φ”

TBAiφ = (φ ∧Biφ) ∨ (¬φ ∧Bi¬φ) “i has a true belief about φ”
MBAiφ = (Biφ ∧ ¬Kiφ) ∨ (Bi¬φ ∧ ¬Ki¬φ) “i has a mere belief about φ”

Observe that by principles of propositional logic, TBAiφ is equivalent to
(φ→ Biφ)∧ (¬φ→ Bi¬φ). Moreover, MBAiφ is equivalent to (Biφ∨Bi¬φ)∧
¬Kiφ∧¬Ki¬φ and hence to BAiφ∧¬Kifiφ. (The first equivalence holds thanks
to axioms KiB and D(Bi).)
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Proposition 7.1. The following equivalences hold:

BAi¬φ↔ BAiφ, TBAi¬φ↔ TBAiφ,

Kifi¬φ↔ Kifiφ, MBAi¬φ↔ MBAiφ.

7.1.2 A ‘belief-about’ fragment of the language FmlEDL

Let LTBA,MBA be the fragment of the language FmlEDL where the only modal
operators are TBAi and MBAi. Hence the grammar of LTBA,MBA is:

LTBA,MBA : φ ::= p | ¬φ | φ ∧ φ | TBAiφ | MBAiφ.

In the rest of the chapter we are going to investigate the properties of
LTBA,MBA. In the rest of the present section we show that it has enough ex-
pressivity to account for all possible epistemic situations about a contingent
proposition and to capture the ‘knowledge that’ and ‘belief that’ modalities. In
the next section we investigate whether and how consecutive modalities can be
reduced.

7.1.3 First-order epistemic-doxastic situations
Let φ be a contingent formula, i.e., a formula such that both φ and ¬φ are
consistent. There are eight possible epistemic-doxastic situations that can be
expressed in the traditional language of epistemic logic FmlEDL, namely:

φ ∧Kiφ ¬φ ∧Ki¬φ
φ ∧Biφ ∧ ¬Kiφ ¬φ ∧Bi¬φ ∧ ¬Ki¬φ
φ ∧ ¬Biφ ∧ ¬Bi¬φ ¬φ ∧ ¬Biφ ∧ ¬Bi¬φ
φ ∧Bi¬φ ¬φ ∧Biφ

These distinctions can not only be expressed in FmlEDL, but also in the fragment
LTBA,MBA.

Proposition 7.2. The following equivalences are theorems of EDL:

φ ∧Kiφ↔ φ ∧ TBAiφ ∧ ¬MBAiφ,

¬φ ∧Ki¬φ↔ ¬φ ∧ TBAiφ ∧ ¬MBAiφ,

φ ∧Biφ ∧ ¬Kiφ↔ φ ∧ TBAiφ ∧MBAiφ,

¬φ ∧Bi¬φ ∧ ¬Ki¬φ↔ ¬φ ∧ TBAiφ ∧MBAiφ,

φ ∧ ¬Biφ ∧ ¬Bi¬φ↔ φ ∧ ¬TBAiφ ∧ ¬MBAiφ,

¬φ ∧ ¬Biφ ∧ ¬Bi¬φ↔ ¬φ ∧ ¬TBAiφ ∧ ¬MBAiφ,

φ ∧Bi¬φ↔ φ ∧ ¬TBAiφ ∧MBAiφ,

¬φ ∧Biφ↔ ¬φ ∧ ¬TBAiφ ∧MBAiφ.

Proof. These equivalences can be proved with the KiB axiom together with
principles of normal modal logics. The proof amounts to spelling out the defini-
tions of TBAi and MBAi and applying the axioms KiB, K (Bi), K (Ki) and the
inference rules RN (Bi) and RN (Ki). For example, the first equivalence can be
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proved as follows:

φ ∧ TBAiφ ∧ ¬MBAiφ↔ φ ∧Biφ ∧ (Biφ→ Kiφ)
↔ φ ∧Biφ ∧Kiφ

↔ φ ∧Kiφ by KiB

Thanks to Proposition 7.2, the eight possible epistemic-doxastic situations
can also be characterised in the fragment LTBA,MBA:

φ ∧ TBAiφ ∧ ¬MBAiφ ¬φ ∧ TBAiφ ∧ ¬MBAiφ
φ ∧ TBAiφ ∧MBAiφ ¬φ ∧ TBAiφ ∧MBAiφ
φ ∧ ¬TBAiφ ∧ ¬MBAiφ ¬φ ∧ ¬TBAiφ ∧ ¬MBAiφ
φ ∧ ¬TBAiφ ∧MBAiφ ¬φ ∧ ¬TBAiφ ∧MBAiφ

Hence we have characterised all possible epistemic-doxastic situations in terms of
three independent components. This can be compared to the study of different
normative positions in deontic logic as initiated by Kanger and Lindahl and
studied more recently by Sergot [115].

7.1.4 Higher-order epistemic-doxastic situations
We can generalise first-order epistemic-doxastic situations to higher orders. Let
us demonstrate this by going through Sally’s second-order epistemic-doxastic
situations, i.e., her beliefs about Ann’s beliefs.

1. Ann puts the marble in the basket. Sally then knows that Ann knows
that the marble is in the basket, i.e., she has a belief about Ann’s beliefs
that is both true and not a mere belief:

b ∧ TBAAb ∧ ¬MBAAb ∧
TBASb ∧ TBASTBAAb ∧ ¬MBASTBAAb ∧
¬MBASb ∧ TBASMBAAb ∧ ¬MBASMBAAb.

2. Sally leaves the room. Sally continues to believe that Ann sees the marble,
but she no longer knows that:

b ∧ TBAAb ∧ ¬MBAAb ∧
TBASb ∧ TBASTBAAb ∧MBASTBAAb ∧
MBASb ∧ TBASMBAAb ∧MBASMBAAb.

3. Ann transfers the marble to the box. Sally’s belief that Ann knows where
the marble is remains true:

¬b ∧ TBAAb ∧ ¬MBAAb ∧
¬TBASb ∧ TBASTBAAb ∧MBASTBAAb ∧
MBASb ∧ TBASMBAAb ∧MBASMBAAb.

4. Sally re-enters and looks inside the basket. We consider several possibili-
ties as to the evolution of her beliefs about Ann’s beliefs:
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(a) Sally and Ann look into the basket together. Now Sally knows that
Ann also knows that the marble isn’t there:

¬b ∧ TBAAb ∧ ¬MBAAb ∧
TBASb ∧ TBASTBAAb ∧ ¬MBASTBAAb ∧
¬MBASb ∧ TBASMBAAb ∧ ¬MBASMBAAb.

(b) Sally looks into the basket without Ann. She may then believe that
Ann still thinks that the marble is in the basket when it is not.
Therefore Sally’s beliefs about Ann’s beliefs become untrue:

¬b ∧ TBAAb ∧ ¬MBAAb ∧
TBASb ∧ ¬TBASTBAAb ∧MBASTBAAb ∧
¬MBASb ∧ ¬TBASMBAAb ∧MBASMBAAb.

(c) Sally looks into the basket without Ann. She sees that the marble
is not there, but believes that Ann is the one who took it out, and
therefore that Ann still knows the location of the marble. As long as
she has no confirmation, this remains a mere belief:

¬b ∧ TBAAb ∧ ¬MBAAb ∧
¬TBASb ∧ TBASTBAAb ∧MBASTBAAb ∧
MBASb ∧ TBASMBAAb ∧MBASMBAAb.

7.1.5 From ‘belief-about’ to ‘belief-that’
The definition of ‘about’ modalities from ‘that’ modalities of Section 7.1 is
straightforward. We now consider the other way around: expressing ‘that’
modalities using ‘about’ modalities. We already know that the formula Kiφ is
equivalent to φ ∧Kifiφ. It is also known that the ‘belief about’ modality alone
cannot express the belief-that modality [54]. We show now that the fragment
LTBA,MBA is fully expressive: together, the two modalities of true belief TBAi

and of mere belief MBAi are enough to express ‘belief that’ and ‘knowledge
that’.

Proposition 7.3. The following equivalences are theorems of EDL:

Kifiφ↔ TBAiφ ∧ ¬MBAiφ,

Kiφ↔ φ ∧ TBAiφ ∧ ¬MBAiφ,

BAiφ↔ TBAiφ ∨MBAiφ,

Biφ↔ (φ ∧ TBAiφ) ∨ (¬φ ∧ ¬TBAiφ ∧MBAiφ).

Proof. This follows from Proposition 7.2.

7.2 Reduction of ‘about’ modalities
In this section we explore the interplay between the different modalities, as
governed in particular by principles of introspection. We begin by listing some
equivalences of the base logic EDL, then we investigate some more properties of
its two extensions EDL+BiBK and EDL+5 (Ki).
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7.2.1 Properties of EDL
Our first group of equivalences is about traditional operators followed by TBAi

and MBAi and their negations.

Proposition 7.4. The following equivalences are theorems of EDL:

BiTBAiφ↔ BAiφ, KiTBAiφ↔ Kifiφ,
Bi¬TBAiφ↔ ¬BAiφ, Ki¬TBAiφ↔ ¬BAiφ,

BAiTBAiφ↔ ⊤.

Proof. We first prove the equivalences of the first column.

BiTBAiφ↔ Bi(¬φ ∨Biφ) ∧Bi(φ ∨Bi¬φ)
↔ (Bi¬φ ∨Biφ) ∧ (Biφ ∨Bi¬φ) by KD45(Bi)
↔ BAiφ

Bi¬TBAiφ↔ Bi¬((φ ∧Biφ) ∨ (¬φ ∧Bi¬φ))
↔ Bi(¬φ ∨ ¬Biφ) ∧Bi(φ ∨ ¬Bi¬φ)
↔ (Bi¬φ ∨ ¬Biφ) ∧ (Biφ ∨ ¬Bi¬φ) by KD45(Bi)
↔ ¬Biφ ∧ ¬Bi¬φ by KD(Bi)
↔ ¬BAiφ

The last equivalence of the first column follows immediately from the two above
results.

We now move on to the second column.

KiTBAiφ↔ Ki((φ→ Biφ) ∧ (¬φ→ Bi¬φ))
↔ Ki(φ→ Biφ) ∧Ki(¬φ→ Bi¬φ)
↔ (Ki¬φ ∨Biφ) ∧ (Kiφ ∨Bi¬φ) by Remark 2.1
↔ Ki¬φ ∨Kiφ

↔ Kifiφ
Ki¬TBAiφ↔ Ki¬((φ ∧Biφ) ∨ (¬φ ∧Bi¬φ))

↔ Ki(¬φ ∨ ¬Biφ) ∧Ki(φ ∨ ¬Bi¬φ)
↔ (Ki¬φ ∨ ¬Biφ) ∧ (Kiφ ∨ ¬Bi¬φ) by Remark 2.1
↔ ¬Biφ ∧ ¬Bi¬φ
↔ ¬BAiφ

This ends the proof.

The above equivalences allow us to reduce consecutive modalities TBAiTBAi

and MBAiTBAi.

Proposition 7.5. The following equivalences hold in EDL:

TBAiTBAiφ↔ TBAiφ ∨ ¬MBAiφ,

MBAiTBAiφ↔ MBAiφ.
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Proof. For the first equivalence:

TBAiTBAiφ↔ (TBAiφ ∧BiTBAiφ) ∨ (¬TBAiφ ∧Bi¬TBAiφ)
↔ (TBAiφ ∧ BAiφ) ∨ (¬TBAiφ ∧ ¬BAiφ) by Proposition 7.4
↔ TBAiφ ∨ (¬TBAiφ ∧ ¬MBAiφ) by Proposition 7.3
↔ TBAiφ ∨ ¬MBAiφ

For the second equivalence:

MBAiTBAiφ↔ BAiTBAiφ ∧ ¬KiTBAiφ ∧ ¬Ki¬TBAiφ

↔ ⊤∧ ¬Kifiφ ∧ BAiφ by Proposition 7.4
↔ MBAiφ

This ends the proof.

We conjecture that the logic EDL is not strong enough to allow us to reduce
consecutive modalities TBAiMBAi and MBAiMBAi. We do not establish this
formally and show instead that such reductions exist for the two extensions of
EDL, EDL+BiBK and EDL+5 (Ki).

7.2.2 Properties of EDL+BiBK
We once again begin by investigating the interactions between traditional oper-
ators and TBAi and MBAi.
Proposition 7.6. The following equivalences hold in EDL+BiBK:

BiMBAiφ↔ ⊥, KiMBAiφ↔ ⊥,
Bi¬MBAiφ↔ ⊤, Ki¬MBAiφ↔ ¬MBAiφ.

Proof. We start with the left column.

BiMBAiφ↔ Bi((Biφ ∨Bi¬φ) ∧ ¬Kiφ ∧ ¬Ki¬φ)
↔ Bi(Biφ ∨Bi¬φ) ∧Bi¬Kiφ ∧Bi¬Ki¬φ
↔ (Biφ ∨Bi¬φ) ∧Bi¬Kiφ ∧Bi¬Ki¬φ
↔ (BiKiφ ∨BiKi¬φ) ∧Bi¬Kiφ ∧Bi¬Ki¬φ by BiBK
↔ ⊥

Bi¬MBAiφ↔ Bi((Biφ→ Kiφ) ∧ (Bi¬φ→ Ki¬φ))
↔ Bi(Biφ→ Kiφ) ∧Bi(Bi¬φ→ Ki¬φ)
↔ (Biφ→ BiKiφ) ∧ (Bi¬φ→ BiKi¬φ) by KD45(Bi)
↔ ⊤ by BiBK

It remains to prove the right column.

KiMBAiφ→ BiMBAiφ

→ ⊥
Ki¬MBAiφ↔ Ki((Biφ→ Kiφ) ∧ (Bi¬φ→ Ki¬φ))

↔ (Biφ→ Kiφ) ∧ (Bi¬φ→ Ki¬φ) by Remark 2.1
↔ ¬MBAiφ



CHAPTER 7. TRUE AND MERE BELIEF ABOUT A PROPOSITION 116

Together with Proposition 7.5, the next result establishes that in EDL+BiBK
all combinations of TBAi and MBAi can be reduced:

Proposition 7.7. The following equivalences hold in EDL+BiBK:

TBAiMBAiφ↔ ¬MBAiφ,

MBAiMBAiφ↔ MBAiφ.

Proof. The proof makes use of Proposition 7.6:

TBAiMBAiφ↔ (MBAiφ ∧BiMBAiφ) ∨ (¬MBAiφ ∧Bi¬MBAiφ)
↔ (MBAiφ ∧ ⊥) ∨ (¬MBAiφ ∧ ⊤)
↔ ¬MBAiφ

MBAiMBAiφ↔ (BiMBAiφ ∧ ¬KiMBAiφ) ∨ (Bi¬MBAiφ ∧ ¬Ki¬MBAiφ)
↔ (⊥ ∧ ¬⊥) ∨ (⊤ ∧ ¬¬MBAiφ)
↔ MBAiφ

7.2.3 Properties of EDL+5 (Ki)
We show once again that all combinations of TBAi and MBAi can be reduced,
now considering EDL+5 (Ki). In this logic the reductions are quite straightfor-
ward.

Proposition 7.8. The following equivalences hold in EDL+5 (Ki):

KifiMBAiφ↔ ⊤,
MBAiMBAiφ↔ ⊥,
TBAiMBAiφ↔ ⊤.

Proof. The introspective principles tell us that MBAiφ → KiMBAiφ and that
¬MBAiφ→ Ki¬MBAiφ, hence the first equivalence. From there, we can show:

MBAiMBAiφ↔ BAiMBAiφ ∧ ¬KifiMBAiφ

↔ BAiMBAiφ ∧ ⊥
↔ ⊥

Following the same reasoning as for the first equivalence, we also have that
MBAiφ→ BiMBAiφ and ¬MBAiφ→ Bi¬MBAiφ. Therefore:

TBAiMBAiφ↔ (MBAiφ ∧BiMBAiφ) ∨ (¬MBAiφ ∧Bi¬MBAiφ)
↔ MBAiφ ∨ ¬MBAiφ

↔ ⊤

These last two reductions follow the intuition that in EDL+5 (Ki) the agents
can always tell whether or not their beliefs are based on knowledge, whereas in
EDL+BiBK agents do not consider the possibility that their beliefs are mere
beliefs.
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7.3 Conclusion
We have studied two modalities of ‘belief about’ in the framework of three
epistemic-doxastic logics whose base logic combines KD45 for the ‘belief that’
modality and S4 for the ‘knowledge that’ modality. Our ‘true belief about’
and ‘mere belief about’ modalities can express in a combinatorial way all eight
possible epistemic situations. They are also expressive enough to capture the
‘belief that’ and ‘knowledge that’ modalities.

For all three logics, an axiomatization of the theorems in the language
LTBA,MBA can be obtained in a very simple manner, namely by taking the tradi-
tional axiomatization of Table 7.1 and substitutingKi andBi by their definitions
in terms of TBAi and MBAi of Section 7.1.5. This is straightforward, but we do
not find this very informative because the resulting axioms are complicated, par-
ticularly as the modal operators TBAi and MBAi neither satisfy the monotony
axioms TBAi(φ ∧ ψ) → (TBAiφ ∧ TBAiψ) and MBAi(φ ∧ ψ) → (MBAiφ ∧
MBAiψ), nor the conjunction axioms (TBAiφ ∧ TBAiψ) → TBAi(φ ∧ ψ) and
(MBAiφ ∧MBAiψ)→ MBAi(φ ∧ ψ).

One of the perspectives for future work is the definition of lightweight frag-
ments of our language, as done for Bi by Muise et al. [107] and as we have done
for Ki with EL-O. In the same spirit we can define epistemic-doxastic atoms as
sequences of modalities TBAi and MBAi that are followed by a propositional
variable: they are of the form

M1 · · ·Mdp

where p ∈ Prop and where Mk is either TBAi or MBAi, for some i. We therefore
expect lightweight epistemic-doxastic logic to be able to account for the evolu-
tion of belief and knowledge in applications where autonomous agents have to
be equipped with a theory of mind in order to reason about other agents.

Just as the switch from ‘knowing that’ to ‘knowing whether’ makes an ex-
tension to ‘knowing what’ quite natural, we can also imagine the operators of
true and mere belief being applied to constants: our beliefs are not limited to
propositions and one might have a true belief or a mere belief about what the
letter says or who the murderer is. Considering a set of constants Cst, the
language of true and mere beliefs then becomes:

LC
TBA,MBA : φ ::= p | TBAic | MBAic | ¬φ | φ ∧ φ | TBAiφ | MBAiφ.

where c ∈ Cst.
Here is an example: When reading a murder mystery, a reader r starts with

no belief or knowledge who the culprit might be. This can be expressed as
¬MBArc ∧ ¬TBArc, where c represents the identity of the culprit. After a few
clues are given, the author’s goal is usually to mislead the reader: that is, the
author wishes for MBArc ∧ ¬TBArc to be the case. Hence the reader should
have a theory (MBArc), but that theory should be false (¬TBArc). The reader,
however, wishes to outwit the author and figure out who the real culprit is before
their theory is confirmed by the final reveal: they wish for MBArc ∧ TBArc to
be true. By the end of the book, all is explained, and the reader knows who the
culprit really was: ¬MBArc ∧ TBArc is true.



Chapter 8

On knowledge and belief
bases
Sur les bases de connaissances et de croyances

Les représentations de la connaissance et de la croyance que nous avons étudiées
dans cette thèse sont symboliques : les états sont des ensembles de formules
à partir desquelles la valeur de vérité de n’importe quelle formule peut être
directement calculée. Les états EL-O peuvent être vus comme des bases de
connaissances contenant les connaissances de tous les agents à cet état ainsi que
les vérités ontiques. Cette manière de représenter les connaissances des agents
par des ensembles de formules n’est pas nouvelle, et présente des avantages en
termes de vérification de modèles [120, 21, 22]. Ce type d’approche est encore
plus prévalente lorsqu’on considère les croyances plutôt que les connaissances
[82, 68, 113, 20, 3, 114], quoique principalement étudiée dans des contextes
avec un seul agent, où le problème est de maintenir la cohérence d’une base de
croyances malgré l’apparition de nouvelles informations.

Dans la lignée de ces approches avec bases de croyances, la Logique des
Attitudes Doxastiques (LDA) de Lorini, introduite dans [92] et développée en
tant que “famille de logiques LDA” dans [94], présente un système relativement
général pour raisonner sur les croyances de plusieurs agents, en se fondant sur un
mélange de bases de croyances représentant les croyances explicites des agents
et une sémantique de mondes possibles (appelés alternatives doxastiques) per-
mettant le calcul de croyances implicites. Contrairement aux modèles de Kripke
standard, les relations d’accessibilité dans les modèles LDA sont calculées à par-
tir des croyances explicites des agents, ce qui rend les modèles plus compacts :
si les modèles de Kripke sont d’autant plus grands que l’incertitude est élevée,
l’inverse est vrai pour les bases de croyances. De plus, les propriétés des croy-
ances telles que l’introspection sont garanties par des propriétés des relations
d’accessibilité. Il est donc possible de modéliser différents types de croyance
ainsi que des notions de croyance de groupe, telles que la croyance distribuée
[72], simplement en modifiant la définition de ces relations d’accessibilité.

Dans ce chapitre nous tirons profit de la modularité de LDA et montrons que
les logiques présentées dans cette thèse ainsi que plusieurs approches similaires
de la littérature peuvent être traduites dans LDA en ajustant les définitions
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des alternatives doxastiques ainsi que du socle commun (l’ensemble de tous
les mondes possibles dans un modèle donné). Nous donnons d’abord une vue
d’ensemble des logiques LDA, puis montrons comment y traduire EL-O dans
la Section 8.2 en passant de bases de connaissances à des ‘bases de visions’
que nous définissons. Les modèles résultants sont similaires aux structures de
connaissances de [21], que nous traduisons aussi dans LDA dans la Section 8.3
afin de clarifier la relation entre les deux. Dans la Section 8.4 nous couvrons
les ‘bases de connaissances épistémiques propres’ (PEKBs) de [84, 107], avant
de revenir aux croyances et d’étudier un fragment de la logique des croyances
correctes et simples croyances du Chapitre 7 dans la Section8.5.

We finish this thesis by providing a basis for comparison between our work
and a number of related approaches through embeddings into the framework of
Lorini’s Logic of Doxastic Attitudes.

The contents of this chapter are as of yet unpublished. References are made
to the following publication:

• Herzig, A., Lorini, E., Perrotin, E., Romero, F. & Schwarzentruber, F.
(2020). A logic of explicit and implicit distributed belief. 24th European
Conference on Artificial Intelligence (ECAI 2020) (pp.753-760).
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The representations of knowledge and belief that we have studied in this
thesis are symbolic: states are sets of formulas from which truths are directly
computed. We can see EL-O states as knowledge bases containing the knowledge
of all agents at that state as well as ontic truths. This approach of representing
agents’ minds through sets of formulas is not new, as it presents advantages
when it comes to model checking [120, 21, 22]. It is even more prevalent in
doxastic logics [82, 68, 113, 20, 3, 114], though mostly studied in single-agent
settings where the focus is maintaining consistency of a belief base in the face
of new information.
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Following this ‘belief base’ approach to belief representation, Lorini’s Logic
of Doxastic Attitudes (LDA), introduced in [92] and further developed as a
“family of LDA logics” in [94], provides quite a general framework for reasoning
about multiple agents’ beliefs, through a mixture of belief bases representing
the agents’ explicit beliefs and possible worlds (so-called doxastic alternatives)
semantics allowing for computation of implicit beliefs. Contrary to standard
Kripke models, accessibility relations in LDA models are derived from agents’
explicit beliefs, which makes the framework fairly compact: while standard
Kripke models are bigger the less information agents have, the opposite is the
case for belief bases. Moreover, properties of belief such as introspection are
ensured through properties on accessibility relations. Hence changing the com-
putation of these relations allows us to model different kinds of belief as well as
group belief notions such as distributed belief [72].

In this chapter we take advantage of the modularity of LDA and show that
the frameworks presented in this thesis as well as several related approaches
can all be embedded into LDA through slight adjustments in the definitions of
doxastic alternatives and common ground (the set of possible worlds in a given
model). We start by giving an overview of the LDA framework. We then show
in Section 8.2 how to embed EL-O into this framework by going from belief
bases to what we call ‘vision bases’. This leads to a framework very similar to
the knowledge structures of [21], which we also embed into the LDA framework
in section 8.3 in order to get a better idea of the relation between the two. In
Section 8.4 we go over the proper epistemic knowledge bases of [84, 107], before
returning to beliefs and considering the logic of true and mere beliefs of Chapter
7 in Section 8.5. We conclude in Section 8.6.

8.1 An overview of LDA
In this approach, each agent has a non-deductively closed belief base consisting
of their explicit beliefs. An implicit belief is a statement that can be inferred
from these explicit beliefs. In [92, 94], the idea of using belief bases as a se-
mantics for multi-agent epistemic logic which was put forth. It was further
developed in a series of papers with the aim of capturing multi-agent belief
dynamics [94, 96], higher-order epistemic reasoning [93] and graded belief [97],
of elucidating the connection between distributed belief and belief merging [72]
and between belief bases and propositional awareness [98].

8.1.1 Basic language and semantics
We start by recalling the basic language and semantics of LDA. We assume as
before that Prop is a countably infinite set of propositions and Agt = {1, . . . , n}
is a finite set of agents. The languages L0(Prop,Agt) and L1(Prop,Agt) are
defined as follows:

L0(Prop,Agt) ∋ ν ::= p | ¬ν | ν ∧ ν | ∆iν

L1(Prop,Agt) ∋ φ ::= ν | ¬φ | (φ ∧ φ) | □iφ

where p ∈ Prop and i ∈ Agt. ∆iν reads: “agent i explicitly believes that ν”,
while □iφ reads: “agent i implicitly believes that φ”.
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A multi-agent belief base is a tuple B = (B1, . . . , Bn, V ) where for every
i ∈ Agt, Bi ⊆ L0 is agent i’s belief base and V ⊆ Prop is the actual state
of the world. We call B the set of all multi-agent belief bases. Formulas of
L0(Prop,Agt) are interpreted in multi-agent belief bases as follows:

B |= p iff p ∈ V ;
B |= ∆iν iff ν ∈ Bi;

and as usual for boolean operators.
The interpretation of L1(Prop,Agt) formulas involves quantification over a

given set of belief bases, through the notion of doxastic alternatives: if B,B′ ∈ B
are two multi-agent belief bases, BRiB

′ if for all ν ∈ Bi, B′ |= ν. A context is
any set of multi-agent belief bases.

Formulas of the full language L1(Prop,Agt) are then interpreted as follows:
if B is a belief base and Cxt is a context,

(B,Cxt) |= ν iff B |= ν;
(B,Cxt) |= □iφ iff (B′, Cxt) |= φ for all B′ ∈ Cxt s.t. BRiB

′;

the interpretation of boolean operators being standard.

8.1.2 Other kinds of belief and knowledge
Different properties of implicit belief can be represented by adjusting the defi-
nition of the relations Ri. For example, to add positive introspection of implicit
belief we can add Bi ⊆ B′

i to the condition for BRiB
′. For negative introspec-

tion we add the condition B′
i ⊆ Bi. The D axiom corresponds to individual

belief bases being consistent.
If we wish to consider standard knowledge (‘knowing that’), every Bi must

contain only information that is true in B: that is, any belief base B must be
such that if ν ∈ Bi then B |= ν. Then ∆iν can be read as “i explicitly knows
that ν” and □iφ as “i implicitly knows that φ”.

It is actually more convenient to consider knowing whether : it suffices then
to change “B′ |= ν” to “B and B′ agree on ν” in the condition for BRiB

′, and
truth of agents’ knowledge need not be verified as it is now built in. ∆iν then
reads “i explicitly knows whether ν” and □iφ reads “i implicitly knows whether
φ”. The interpretation of the latter operator also changes to:

(B,Cxt) |= □iφ iff (B,Cxt) and (B′, Cxt) agree on α

for all B′ ∈ Cxt s.t. BRiB
′.

8.1.3 Group belief and knowledge
The operator of implicit belief □i can be generalized to a ‘group belief’ oper-
ator □G, where G ⊆ Agt is a group of agents and □i becomes identified with
□{i}. Three kinds of group belief and knowledge are generally studied: shared,
distributed, and common belief and knowlege; see [72] for a study of □G as an
operator of distributed belief. When considering knowledge, standard common



CHAPTER 8. ON KNOWLEDGE AND BELIEF BASES 122

knowledge (which follows the induction principle) can quite naturally be defined
as follows:

(B,Cxt) |= □Gφ iff (B′, Cxt) |= φ for all B′ ∈ Cxt s.t. BRGB
′

for ‘knowing that’ and

(B,Cxt) |= □Gφ iff (B,Cxt) and (B′, Cxt) agree on α

for all B′ ∈ Cxt s.t. BRGB
′

for ‘knowing whether’, where RG is in both cases the transitive closure of⋃
i∈GRi.

8.2 EL-O: Vision bases
In this section we give an embedding of EL-O into the framework of LDA.

8.2.1 ‘Vision’ bases: language and semantics
As EL-O is about ‘knowing whether’, when embedding it into the LDA framework
it is convenient to take the ‘knowing whether’ version of the language of LDA as
a target language. We therefore restrict the language as follows: the language
of explicit knowledge becomes

LVis
0 ∋ ν ::= p | ∆iν

where p ∈ Prop, while the language of implicit knowledge is restricted to
Lbool(ATM ). Here ∆iν reads “agent i explicitly observes whether or not ν
is true”, while Si α expresses implicit observation and JS α expresses implicit
joint observation (that is, Si is the equivalent of □i and JS that of □Agt in the
language of the previous section). One can view explicit observation as repre-
senting what the agent ‘physically’ sees, while implicit observation is what the
agent deduces from what they see.

We now give the semantics of what we call vision bases. These semantics
follow those given in the previous section for logics of knowing whether and
commonly knowing whether, but are adapted to the restricted language. A
multi-agent vision base is a tuple B = (B1, . . . , Bn, V ) where for every i ∈ Agt,
Bi ⊆ LVis

0 is agent i’s vision base and V ⊆ Prop is the actual state of the world.
The set of all multi-agent vision bases is noted BVis. The semantics for LVis

0 is
as follows:

B |= p iff p ∈ V ;
B |= ∆iν iff ν ∈ Bi.

The definition of epistemic alternatives for vision bases is that given in Sec-
tion 8.1.2 for ‘knowing whether’: if B,B′ ∈ BVis, then BRVis

i B′ if Bi = B′
i

and B and B′ agree on all ν ∈ Bi. The relation RVis
i is clearly an equivalence

relation for all i.
Once again, a context is any set of multi-agent vision bases. We call CxtVis

the set of all contexts. If B is a vision base and Cxt is a context, truth of a
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Vis1 Si Si α
Vis2 JS JS α
Vis3 JS Si Si α
Vis4 JS α→ Si α
Vis5 JS α→ JS Si α

Table 8.1: The EL-O axioms

formula of Lbool(ATM ) in (B,Cxt) is defined as follows:

(B,Cxt) |= p iff B |= p;
(B,Cxt) |= Si α iff (B,Cxt) and (B′, Cxt) agree on α

for all (B′, Cxt) s.t. BRVis
i B′;

(B,Cxt) |= JS α iff (B,Cxt) and (B′, Cxt) agree on α

for all B′ ∈ Cxt;

and as usual for boolean operators. Notice that the truth condition for (B,Cxt) |=
JS α differs from the one we have given in Section 8.1.3 for the ‘common knowl-
edge whether’ operator. This is because, as discussed in previous chapters, joint
vision in EL-O is a nonstandard form of common knowledge which does not obey
the induction principle.

We now consider in what way the logic of vision bases relates to EL-O. A
first interesting result pertains to the axiomatization of EL-O.

Proposition 8.1. The EL-O axioms, recalled in Table 8.1, are valid in the
semantics of vision bases.

Proof. Let (B,Cxt) be a model, i be an agent and α an atom.
Vis1 : Let B′ ∈ Cxt be such that BRVis

i B′. We want to show that B and B′

agree on Si α. Suppose there exists B′′ such that B′RVis
i B′′ and (B′, Cxt) and

(B′′, Cxt) disagree on α. Then BRVis
i B′′ and (B,Cxt) and (B′′, Cxt) disagree

on α. Likewise, if (B,Cxt) and (B′′, Cxt) disagree on α for some B′′ such that
BRVis

i B′′, then B′RVis
i B′′ and (B′, Cxt) and (B′′, Cxt) disagree on α. Hence B

and B′ agree on Si α.
Vis2 : By the semantics of JS , all B′ such that B′ ∈ Cxt must agree on

JS α.
Vis3 : By Vis1 , all B′ such that B′ ∈ Cxt verify (B′, Cxt) |= Si Si α.
Vis4 , Vis5 : suppose that all B′ such that B′ ∈ Cxt agree on α. Then in

particular for any B′, B′′ ∈ Cxt such that B′RVis
i B′′, (B′, Cxt) and (B′′, Cxt)

agree on α. Therefore all B′ such that B′ ∈ Cxt verify (B′, Cxt) |= Si α.

The restricted nature of the EL-O language has two consequences when con-
sidering a translation to vision bases: the first, which we have already addressed,
is to restrict what agents may explicitly see, that is, what kinds of formulas may
be found in the agents’ vision bases. The second is to restrict what agents may
commonly know, and how much reasoning power is available to them. This is
reflected through the choice of possible contexts for vision bases.

We now consider the class CxtEL-O ⊆ CxtVis of contexts of the shape
Cxt(P+, P−, N+, N−) where P+, P− ⊆ Prop, N+, N− ⊆ L0\Prop, P+∩P− =
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∅, N+ ∩N− = ∅, and

Cxt(P+, P−, N+, N−) = {(B1, . . . , Bn, V ) ∈ BVis :
P+ ⊆ V, P− ∩ V = ∅,
∀∆iν ∈ N+, ν ∈ Bi

and ∀∆iν ∈ N−, ν ̸∈ Bi}.

In order to establish further properties of these vision bases w.r.t. to EL-O,
we first define translations between elements of LVis

0 and EL-O atoms in which
there are no occurrences of the operator JS : if α is such an atom, we call
αE the proposition α in which all operators of the form Si is replaced by the
corresponding ∆ii, and if ν ∈ LVis

0 , we call νI the proposition ν in which all
operators of the form ∆i are replaced by the corresponding Si . Formally:

pE = pI = p;
(Si α)E = ∆i(αE);
(∆iν)I = Si (νI).

Proposition 8.2. For all α ∈ ATM, for all cxt ∈ CxtEL-O and all B =
(B1, . . . , Bn, v) ∈ Cxt, (B,Cxt) |= Si α iff one of the following holds:

1. Si α ∈ I -ATM

2. (B,Cxt) |= JS α

3. there is no JS in α and αE ∈ Bi.

Proof. The right-to-left direction follows from the previous proposition and the
definition of epistemic alternatives. We show the left-to-right direction by in-
duction on α. Suppose that neither of the three conditions holds. Construct B′

in the following way:

• If α = p for some p ∈ Prop, B′ = (B1, . . . , Bn, V
′) where V ′ = V ∪ {p} if

p ̸∈ V , V ′ = V \ {p} if p ∈ V ;

• If α = Sj ν
′ for some j and β, B′ = (B1, . . . , B

′
j , . . . , Bn, V ) where B′

j =
Bj ∪ {ν′} if ν′ ̸∈ Bj , B′

j = Bj \ {ν′} if β ∈ Bj .

We can then show in both cases that B′ ∈ Cxt, BRVis
i B′ and B and B′ disagree

on α (using the induction hypothesis in the second case). Hence (B,Cxt) ̸|=
Si α.

Proposition 8.3. For any α ∈ ATM, Cxt = Cxt(P+, P−, N+, N−) ∈ CxtVis

and B ∈ Cxt, (B,Cxt) |= JS α iff JS α ∈ I -ATM or there exists ν ∈ P+∪P−∪
N+ ∪N− such that JS νI ⇒ JS α.

Proof. We show this by induction on the length of α. It is clear that for any
p ∈ Prop, (B,Cxt) |= JS p iff p ∈ P+ ∪ P−.

Suppose that (B,Cxt) |= JS Si α with JS Si α ̸∈ I -ATM . If (B,Cxt) |= JS α
then by the induction hypothesis there exists ν ∈ P+ ∪ P− ∪ N+ ∪ N− such
that JS νI ⇒ JS α, and then JS νI ⇒ JS Si α. Otherwise, we show that αE ∈
P+ ∪ P− ∪N+ ∪N−:
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• If (B,Cxt) |= Si α then as (B,Cxt) |= JS Si α and (B,Cxt) ̸|= JS α, we
have that (B′, Cxt) |= Si α and (B′, Cxt) ̸|= JS α for all B′ ∈ Cxt. Hence
for all B′ ∈ Cxt we are in the third case of Proposition 8.2, that is,
αE ∈ B′

i. Then necessarily α ∈ N+.

• If (B,Cxt) ̸|= Si α then (B′, Cxt) ̸|= Si α for all B′ ∈ Cxt, hence αE ̸∈ B′
i

for all B′ ∈ Cxt. Then necessarily α ∈ N−.

Finally, suppose that there exists ν ∈ P+∪P−∪N+∪N− such that JS νI ⇒
JS α. We show that (B,Cxt) |= JS νI , which will entail (B,Cxt) |= JS α by
Proposition 8.1. It is clear that (B,Cxt) |= JS α if ν is in P+, P− or N+. If ν
is in N− then ν is of the form ∆iµ and with µ ̸∈ B′

i for all B′ ∈ Cxt. There are
then two cases:

• If (B′, Cxt) |= Si µ
I for some B′ ∈ Cxt then by Proposition 8.2, either

Si µ
I ∈ I -ATM or (B′, Cxt) |= JS µI . In both cases we conclude that

(B,Cxt) |= JS Si µ
I .

• Otherwise (B′, Cxt) ̸|= Si µ
I for all B′ ∈ Cxt, hence (B,Cxt) |= JS Si µ

I

by the semantics of the JS operator.

Hence in all cases (B,Cxt) |= JS νI , which concludes the proof.

8.2.2 EL-O to vision bases
For any EL-O state, we can construct a corresponding vision model which has
exactly the same validities in the following manner. If s ⊆ ATM is a state, we
define Bs = (Bs

1, . . . , B
s
n, V

s) such that for all ν ∈ L0, ν ∈ Bs
i iff Si ν

I ∈ s, and
for all p ∈ Prop, p ∈ V s iff p ∈ s. We also define Cxts = Cxt(P+, P−, N+, N−)
where

• P+ = {p : JS p ∈ s and p ∈ s};

• P− = {p : JS p ∈ s and p ̸∈ s};

• N+ = {(Si α)E : JS Si α ∈ s and Si α ∈ s};

• N− = {(Si α)E : JS Si α ∈ s and Si α ̸∈ s}.

Lemma 8.1. For all α in Lbool(ATM ), for all s ∈ ATM, if (Bs, Cxts) |= α
then s |= α.

Proof. We show this for every form of α. First, s |= p iff p ∈ s iff p ∈ V s iff
(Bs, Cxts) |= p.

If (Bs, Cxts) |= JS α, we know by Proposition 8.3 that either JS α ∈ I -ATM
or there exists ν ∈ P+ ∪ P− ∪ N+ ∪ N− such that JS νI ⇒ JS α. In the first
case, clearly s |= JS α; in the second case, JS νI ∈ s by definition of Cxts, hence
s |= JS α.

Finally, suppose that (Bs, Cxts) |= Si α. By Proposition 8.2, we know that
either Si α ∈ I -ATM , (B,Cxt) |= JS α, or αE ∈ Bs

i . In the first case, clearly
s |= Si α. In the second case, we have already shown that s |= JS α, hence
s |= Si α. In the third case, Si α ∈ s by definition of Bs

i , hence s |= Si α.

Lemma 8.2. For all α in ATM, for all s ∈ ATM, if s |= α then (Bs, Cxts) |=
α.
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Proof. We prove this for every form of α. First, s |= p iff p ∈ s iff p ∈ V s iff
(Bs, Cxts) |= p.

Suppose now that s |= JS α. Then JS α ∈ s⇒ ∪ I -ATM . If JS α ∈ I -ATM
then (Bs, Cxts) |= JS α by Proposition 8.1. If JS α ∈ s⇒, then there exists β
such that JS β ∈ s and JS β ⇒ JS α. Then by definition of Cxts we have that
βE ∈ P+ ∪P− ∪N+ ∪N− and therefore (Bs, Cxts) |= JS α by Proposition 8.3.

Finally, suppose that s |= Si α. Then Si α ∈ s⇒ ∪ I -ATM . If Si α ∈ I -ATM
then (Bs, Cxts) |= Si α by Proposition 8.1. If Si α ∈ s⇒, then either Si α ∈ s
or JS β ⇒ Si α for some JS β ∈ s. In the first case by definition of Bs we have
αE ∈ Bi. In the second case we have already shown that (Bs, Cxts) |= JS β.
By Proposition 8.1 this gives us that (Bs, Cxts) |= Si α.

The following result can be shown by induction on φ:

Proposition 8.4. For all φ in Lbool(ATM ), for all s ∈ ATM, s |= φ iff
(Bs, Cxts) |= φ.

Proof. By a straightforward induction on φ, using the two lemmas.

8.2.3 Vision bases to EL-O
We now show the other direction: for any pointed vision model with a context in
CxtEL-O, we can construct a corresponding EL-O state with the same validities.

We first define for any Cxt = Cxt(P+, P−, N+, N−) ∈ CxtEL-O and B =
(B1, . . . , Bn, V ) ∈ Cxt the state s(B,Cxt) ⊆ ATM as follows:

s(B,Cxt) =V ∪ {Si ν
I | i ∈ Agt, ν ∈ Bi}∪

{JS νI | ν ∈ P+ ∪ P− ∪N+ ∪N−}

Lemma 8.3. For any α ∈ ATM, for any Cxt ∈ CxtEL-O and any B ∈ Cxt, if
(B,Cxt) |= α then s(B,Cxt) |= α.

Proof. By induction on α, where B = (B1, . . . , Bn, V ):
If (B,Cxt) |= p then p ∈ V and therefore p ∈ s(B,Cxt).
If (B,Cxt) |= JS β then by Proposition 8.3, either JS β ∈ I -ATM , in which

case we immediately have that s(B,Cxt) |= JS β, or there exists ν ∈ P+ ∪ P− ∪
N+ ∪N− such that JS νI ⇒ JS β. Because ν ∈ P+ ∪ P− ∪N+ ∪N−, we have
JS νI ∈ s(B,Cxt). Therefore s(B,Cxt) |= JS νI and s(B,Cxt) |= JS β.

If (B,Cxt) |= Si β then either β ∈ Bi or (B,Cxt) |= JS β or Si β ∈ I -ATM .
In the first case Si β ∈ s(B,Cxt). In the second case, by the same reasoning as
above, we have that s(B,Cxt) |= JS β, and therefore s(B,Cxt) |= Si β. In the third
case we immediately have that s(B,Cxt) |= Si β.

Lemma 8.4. For any α ∈ ATM, for any Cxt ∈ CxtEL-O and any B ∈ Cxt, if
s(B,Cxt) |= α then (B,Cxt) |= α.

Proof. By induction on α, where B = (B1, . . . , Bn, V ):
If s(B,Cxt) |= p then p ∈ s and therefore p ∈ V .
If s(B,Cxt) |= JS β then either JS β ∈ I -ATM or there exists γ such that

JS γ ∈ s(B,Cxt) and JS γ ⇒ JS β. In the first case (B,Cxt) |= JS β. In the
second case by definition of s(B,Cxt) we have (B,Cxt) |= JS γ and therefore
(B,Cxt) |= JS β.
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If s(B,Cxt) |= Si β then either Si β ∈ I -ATM or Si β ∈ s or there exists γ
such that JS γ ∈ s(B,Cxt) and JS γ ⇒ Si β. In the first case (B,Cxt) |= Si β.
In the second case βE ∈ Bi and therefore (B,Cxt) |= Si β. In the third case
we have by the same reasoning as above that (B,Cxt) |= JS γ, and therefore
(B,Cxt) |= Si β.

Proposition 8.5. For any φ ∈ Lbool(ATM ), for any Cxt ∈ CxtEL-O and any
B = (B1, . . . , Bn, V ) ∈ Cxt, s(B,Cxt) |= φ iff (B,Cxt) |= φ.

Proof. By induction on φ using the two previous lemmas.

We now conclude for the relation of EL-O to vision base models:

Proposition 8.6. For any φ ∈ Lbool(ATM ), ⊢EL-O φ iff |=CxtEL-O φ (where
|=CxtEL-O φ is defined as: for all Cxt ∈ CxtEL-O, for all B ∈ Cxt, (B,Cxt) |= φ).

8.3 Relation to knowledge structures
Knowledge structures are defined in [21] as follows:

F = (Voc, θ, O1, . . . , On)

where Voc is a finite subset of Prop, θ is a boolean formula over Voc, and for
each agent i, Oi is a subset of Voc representing that agent’s observable vari-
ables, that is, the variables that i observes. We omit the dynamic components
of the original presentation, though it would be interesting to examine paral-
lels between dynamic versions of vision base models and knowledge structures
as well. In order to either avoid ambiguity with vision base notations, or to
show parallels between the two we adapt some of the notations of the original
presentation.

States are assignments over (i.e. subsets of) Voc satisfying θ. While a more
general relation between states is defined in order to cover common knowledge
for groups of agents, the indistinguishability relation for any agent i can be
redefined as follows: sRKS

i s′ iff s∩Oi = s′∩Oi. The semantics over these worlds
are standard, with no distinction between explicit and implicit observation.

The purpose of the rest of this section is to show that knowledge struc-
tures can also be embedded into vision base models. This turns out to be quite
straightforward, as many of the elements of both representations are very sim-
ilar. As before, we consider a restriction on contexts of CxtVis, which we call
CxtKS, and show that given this restriction, there is an exact correspondence
between vision models and knowledge structures.

For any knowledge structure F = (Voc, θ, O1, . . . , On), we define a corre-
sponding context

Cxt(F) = {(O1, . . . , On, V ) : V ⊆ Voc, V |= θ}.

We call CxtKS the set of contexts of the form Cxt(F).

Lemma 8.5. Let F = (Voc, θ, O1, . . . , On) be a knowledge structure, and con-
sider the context Cxt(F). Then for any states s and s′ of the knowledge struc-
ture, sRKS

i s′ iff (O1, . . . , On, s)RVis
i (O1, . . . , On, s

′).
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Proof. The proof is straightforward, following the definitions.

Proposition 8.7. Let F = (Voc, θ, O1, . . . , On) be a knowledge structure, and
let s be a state of F . Then for any formula φ, ((O1, . . . , On, s), Cxt(F)) |= φ
iff (F , s) |= φ.

Proof. The proof is straightforward, by induction on φ.

8.4 Relation to PEKBs
We come back to the proper epistemic knowledge bases (PEKBs) mentioned in
Section 6.4.1. Just like EL-O, PEKBs are fairly straightforward to translate into
the framework of belief bases because they mainly rely on a restriction of the
language. Moreover, common knowledge is not considered.

Recall that PEKBs are sets, or (equivalently) conjunctions, of restricted
modal literals, defined as follows:

λ ::= p | ¬λ | Kiλ

This translates into the language of belief bases as:

LPEKB
0 ∋ ν ::= p | ¬ν | ∆iν

LPEKB
1 ∋ φ ::= r | φ ∧ φ

Semantics are then standard, and the restricted reasoning capabilities of
agents are preserved by considering the set of all multi-agent bases as a context.
To reflect the logic of [84], we take the most general semantics for belief bases,
corresponding to the modal logic K; if we wish to follow [107], we take the
semantics corresponding to KD45 models, as described in Section 8.1.2.

8.5 True and mere beliefs
We now adapt belief base models to the S4.2 version of the logic of true and
mere beliefs of Chapter 7 with the following restricted language:

ATM TM ∋ α ::= p | TBAiα | MBAiα

LTM
1 ∋ φ ::= α | ¬φ | φ ∧ φ

We further restrict the language so that for any α, there are no two consec-
utive operators relating to the same agent, that is, no OiO

′
i where i is an agent

and O,O′ ∈ {TBA,MBA}.

8.5.1 TM bases
Each agent now has two bases: one for true beliefs, and one for mere beliefs.
The language of explicit beliefs is as follows:

LTM
0 ∋ ν ::= p | θiν | µiν
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where θiν reads “i has a true explicit belief about ν” and µiν reads “i has a
mere explicit belief about ν”.

A multi-agent true and mere belief base, or TM base for short, is a tuple B =
(T1,M1, . . . , Tn,Mn, V ) where for every i ∈ Agt (Agt = {1, . . . , n}), Ti,Mi ⊆
LTM

0 are agent i’s true and mere belief bases respectively and V ⊆ Prop is the
actual (ontic) state of the world. We furthermore require that for any agent i,
Ti and Mi contain no formula starting with θi or µi, that is, that agents have
no explicit beliefs about their own explicit beliefs. We call BTM the set of all
TM bases.

The semantics for formulas of LTM
0 is as follows:

B |= p iff p ∈ V ;
B |= θiν iff ν ∈ Ti;
B |= µiν iff ν ∈Mi.

We now need to define epistemic alternatives for TM bases. Consider B,B′ ∈
BTM. Then BRTM

i B′ iff the following hold:

1. Ti ∪Mi = T ′
i ∪M ′

i ;

2. Ti \Mi ⊆ T ′
i \M ′

i ;

3. B and B′ agree on Ti ∩ T ′
i and on (Mi \ Ti) ∩ (M ′

i \ T ′
i );

4. B and B′ disagree on Ti∆T ′
i ;

where Ti∆T ′
i = (Ti \T ′

i )∪ (T ′
i \Ti) Intuitively, an agent in state B believes that

another state B′ is possible if:

• The agent holds beliefs about the exact same objects (this corresponds to
the interaction axioms Biφ→ KiBiφ and ¬Biφ→ Ki¬Biφ);

• The agent still knows in B′ what they know in B (this corresponds to
positive introspection for knowledge);

• The agent’s explicit beliefs are the same in B and B′: if the agent’s belief
about a formula ν is either true in both B and B′ or false in both B and
B′ then B and B′ should agree on φ, and if the agent’s belief about φ is
true in B and false in B′ or vice versa then B and B′ should disagree on
ν.

Proposition 8.8. For all i, RTM
i is a reflexive and transitive relation.

Proof. Reflexivity is immediate. For transitivity, consider B, B′ and B′′ such
that BRTM

i B′ and B′RTM
i B′′. Then:

1. Ti ∪Mi = T ′
i ∪M ′

i = T ′′
i ∪M ′′

i .

2. Ti \Mi ⊆ T ′
i \M ′

i ⊆ T ′′
i \M ′′

i .

3. Suppose that ν ∈ Ti ∩ T ′′
i . If ν ∈ T ′

i , then ν ∈ Ti ∩ T ′
i , hence B and B′

agree on ν, and ν ∈ T ′
i ∩ T ′′

i , hence B′ and B′′ agree on ν. Therefore B
and B′′ agree on ν. If ν ̸∈ T ′

i , then ν ∈ Ti∆T ′
i , hence B and B′ disagree

on ν, and ν ∈ T ′
i ∆T ′′

i , hence B′ and B′′ disagree on ν. Therefore B and
B′′ agree on ν.
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Suppose now that ν ∈ (Mi \ Ti) ∩ (M ′′
i \ T ′′

i ). If ν ∈ T ′
i , then ν ∈ Ti∆T ′

i ,
hence B and B′ disagree on ν, and ν ∈ T ′

i ∆T ′′
i , hence B′ and B′′ disagree

on ν. Therefore B and B′′ agree on ν. If ν ̸∈ T ′
i , then ν ∈ (Mi \ Ti) ∩

(M ′
i \ T ′

i ), hence B and B′ agree on ν, and ν ∈ (M ′
i \ T ′

i ) ∩ (M ′′
i \ T ′′

i ),
hence B′ and B′′ agree on ν. Therefore B and B′′ agree on ν.

4. Suppose ν ∈ Ti∆T ′′
i . Consider for example ν ∈ Ti \ T ′′

i ; the other case
is symmetrical. If ν ∈ T ′

i , then ν ∈ Ti ∩ T ′
i , so B and B′ agree on

ν, and ν ∈ T ′
i ∆T ′′

i , so B′ and B′′ disagree on ν. Therefore B and B′′

disagree on ν. If ν ̸∈ T ′
i , then ν ∈ Ti∆T ′

i , so B and B′ disagree on ν, and
ν ∈ (M ′

i \T ′
i )∩ (M ′′

i \T ′′
i ), so B′ and B′′ agree on ν. Therefore B and B′′

disagree on ν.

Hence BRTM
i B′′.

8.5.2 S4.2 contexts and semantics
In order to reflect properties of S4.2 knowledge, we consider the set of con-
texts CxtTM which has the following property: for any Cxt ∈ CxtTM and
any i ∈ Agt, if B = (T1,M1, . . . , Tn,Mn, V ) ∈ Cxt then there exists a Bi =
(T i

1,M
i
1, . . . , T

i
n,M

i
n, V

i) ∈ Cxt such that T i
i = Ti ∪Mi, M i

i = ∅, and B and Bi

agree on Ti and disagree on Mi \ Ti.
Though we only require any such state to be in the considered contexts, we

show how to construct one given a TM base (T1,M1, . . . , Tn,Mn, V ). For this
we take:

• T i
j = {ν : θjν ∈ Ti and ν ∈ Tj} ∪ {ν : θjν ∈ Mi \ Ti and ν ̸∈ Tj} for
j ̸= i;

• M i
j = {ν : µjν ∈ Ti and ν ∈ Tj} ∪ {ν : µjν ∈ Mi \ Ti and ν ̸∈ Tj} for

j ̸= i;

• V i = (Ti ∩ V ) ∪ ((Mi \ Ti) \ V ).

As Ti and Mi contain no atoms starting with θi or µi, it is easily shown that
this TM base agrees with B on Ti and disagrees with B on Mi \ Ti.

Proof. This is shown by induction on the stucture of ν ∈ Ti ∪Mi. If p ∈ Ti for
some p ∈ Prop, then p ∈ V i iff p ∈ V , and therefore B and Bi agree on p. If
p ∈Mi \ Ti, then p ∈ V i iff p ̸∈ V , so B and Bi disagree on p. The argument is
similar for ν = θiν

′ and ν = µiν
′. Note that this only works for the restricted

language in which there are no boolean connectors in formulas of L0.

Recall that, as described in Chapter 2 (Section 2.1.4), S4.2 models have a
final cluster for every Ri and that an agent believes φ at a state iff φ is true
in all states of the corresponding final cluster. We now show that any context
satisfying this property yields an S4.2 model, and that in particular the Bi

described above are the elements of the final cluster for the relation RTM
i .

Proposition 8.9. If Cxt ∈ CxtTM then for all i, RTM
i is a reflexive, transitive

and confluent relation.
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Proof. Reflexivity and transitivity has been shown in the general case. Con-
fluence is shown using the property required for contexts in CxtTM. Con-
sider a TM base B = (T1,M1 . . . , Tn,Mn, V ) ∈ Cxt and a corresponding Bi =
(T i

1,M
i
1, . . . , T

i
n,M

i
n, V

i) ∈ Cxt. For any B′ = (T ′
1,M

′
1 . . . , T

′
n,M

′
n, V

′) ∈ Cxt,
we show that if BRTM

i B′ then B′RTM
i Bi.

1. Ti ∪Mi = T ′
i ∪M ′

i .

2. T ′
i \M ′

i ⊆ T ′
i ⊆ Ti ∪Mi.

3. If ν ∈ T ′
i ∩ (Ti ∪Mi) then ν ∈ Ti ∩ T ′

i hence B and B′ agree on ν, and
ν ∈ Ti, hence B and Bi agree on ν. Therefore B′ and Bi agree on ν.

4. If ν ∈ T ′
i ∆(Ti ∪Mi) then as T ′

i ⊆ (Ti ∪Mi) it is the case that ν ̸∈ T ′
i .

If ν ∈ Ti then ν ∈ Ti∆T ′
i therefore B and B′ disagree on ν, and B

and Bi agree on ν. Hence B′ and Bi disagree on ν. If ν ̸∈ Ti then
ν ∈ (Mi \ Ti) ∩ (M ′

i \ T ′
i ) and therefore B and B′ agree on ν and B and

Bi disagree on ν. Hence B′ and Bi disagree on ν.

Let us examine the shape of such a model for a single agent. It is a lattice
with a final cluster. Each ‘level’ corresponds to a given number of propositions
known, and knowledge increases when going towards the final cluster in the
lattice. Clusters correspond to identical knowledge. The bottom of the lattice
represents no knowledge, while the top of the lattice represents the world in
which everything is known, which is the final cluster of believed states.

The language of implicit beliefs that we consider is LTM
1 , described at the

beginning of this section. In order to define the semantics, the simplest way is
to start from the standard epistemic language FmlEL. The semantics for this
language are standard:

(B,Cxt) |= p iff B |= p;
(B,Cxt) |= Kiφ iff (B′, Cxt) |= φ for all B′ ∈ Cxt s.t. BRTM

i B′;

and as usual for boolean operators.
We can then define the operators Bi, BAi, TBAi, MBAi and their semantics

in the standard manner:

Biφ↔ ¬Ki¬Kiφ;
BAiφ↔ Biφ ∨Bi¬φ

TBAiφ↔ (Biφ ∧ φ) ∨ (Bi¬φ ∧ ¬φ);
MBAiφ↔ (Biφ ∨Bi¬φ) ∧ ¬Kiφ ∧ ¬Ki¬φ.

8.5.3 Equivalence of the semantics
We now consider the canonical context BTM, that is, the set of all possible TM
bases. We show that given a set of atoms s ⊆ ATM TM and its direct translation
into a TM base Bs, for any formula φ ∈ LTM

1 , s |=CPC φ iff (Bs,BTM) |= φ. This
relies on an induction on φ; the rest of the section is dedicated to proving the
cases of the true and mere belief operators, the other cases being straightforward.
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Lemma 8.6. For any B = (T1,M1, . . . , Tn,Mn, V ) ∈ BTM, any i and and
any ν ∈ Ti ∪ Mi, (B,BTM) |= BAiν, and if Bi is as defined above, then
(B,BTM) |= Biν iff Bi |= ν, and (B,BTM) |= Bi¬ν iff Bi ̸|= ν.

Proof. As BRTM
i Bi, to show that (B,BTM) |= Biν, it suffices to show that

(Bi,BTM) |= Kiν, and similarly for ¬ν. Consider B′ = (T ′
1,M

′
1, . . . , T

′
n,M

′
n, V )

such that BiRTM
i B′. We wish to show that Bi and B′ agree on ν for any

ν ∈ Ti∪Mi. By definition of RTM
i , we know that Ti∪Mi ⊆ T ′

i , and that Bi and
B′ agree on (Ti ∪Mi)∩ T ′

i , that is, on Ti ∪Mi, giving us the desired result.

Lemma 8.7. For any ν ∈ L0 and any B ∈ BTM, if (B,BTM) |= BAiν then
ν ∈ Ti ∪Mi.

Proof. If (B,BTM) |= BAiν then for any B′ such that BiRTM
i B′, Bi and B′

must agree on ν. Suppose that ν ̸∈ Ti ∪Mi. Then we can construct a state
B′ = (T ′

1,M
′
1, . . . , T

′
n,M

′
n, V ) which differs from Bi only on the value of ν. That

is, B′ is constructed in the following way:

• if ν = p for some p ∈ Prop, then T ′
k = T i

k and M ′
k = M i

k for all k, and
V ′ and V i differ only on p (V ′ = V i ∪ {p} if p ̸∈ V i and V ′ = V i \ {p} if
p ∈ V i);

• if ν = θjν
′ for some j and ν′, then T ′

k = T i
k for all k ̸= j, T ′

j and T i
j differ

only on ν′, M ′
k = M i

k for all k, and V ′ = V i;

• if ν = µjν
′ for some j and ν′, then T ′

k = T i
k for all k, M ′

k = M i
k for all

k ̸= j, M ′
j and M i

j differ only on ν′, and V ′ = V i.

It is easily shown that BiRTM
i B′, but Bi and B′ disagree on ν. This contradicts

our first hypothesis. Therefore ν ∈ Ti ∪Mi.

Proposition 8.10. For any ν ∈ LTBA,MBA, for any B ∈ BTM, (B,BTM) |=
θiν ↔ TBAiν and (B,BTM) |= µiν ↔ MBAiν.

Proof. Consider B = (T1,M1, . . . , Tn,Mn, V ) ∈ BTM and p ∈ Prop and sup-
pose that (B,BTM) |= θiν. Then ν ∈ Ti and, according to Lemma 8.6,
(B,BTM) |= Biν iff Bi |= ν, and (B,BTM) |= Bi¬ν iff Bi ̸|= ν. But by
definition of Bi, Bi |= ν iff B |= ν. Therefore (B,BTM) |= Tiν.

Suppose now that (B,BTM) |= Tiν. Then by Lemma 8.7 ν ∈ Ti ∪Mi, and
B and Bi agree on ν. Therefore ν ∈ Ti.

We move on to the case where (B,BTM) |= µiν. Then ν ∈Mi, and Lemma
8.6 tells us that (B,BTM) |= BAiν; it remains to show that there exists B′ ∈
BTM such that BRTM

i B′ and B and B′ disagree on ν. We once again consider
three cases depending on the form of ν:

• if ν = p for some p ∈ Prop, we consider B′ such that T ′
k = Tk for all k ̸= i,

M ′
k = Mk for all k, Ti and T ′

i differ only by p, and V and V ′ differ only
by p;

• if ν = θjν
′ for some j and ν′, we consider B′ such that T ′

k = Tk for all
k ̸= i, j, M ′

k = Mk for all k, V ′ = V , Ti and T ′
i differ only by ν, and Tj

and T ′
j differ only by ν′;
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• if ν = µjν
′ for some j and ν′, we consider B′ such that T ′

k = Tk for all
k ̸= i, M ′

k = Mk for all k ̸= j, V ′ = V , Ti and T ′
i differ only by ν, and Mj

and M ′
j differ only by ν′.

Clearly B and B′ disagree on ν in all cases. More precisely, B and B′ agree on
all atoms except for θiν and ν. We now show that BRTM

i B′.

1. Ti ∪Mi = T ′
i ∪M ′

i as Ti and T ′
i differ only by ν and ν ∈Mi = M ′

i ;

2. Ti \Mi = T ′
i \M ′

i for the same reason as above;

3. Consider ν′′ ∈ Ti ∩ T ′
i . Then ν′′ ̸= ν, and therefore B and B′ agree on ν.

Consider now ν′′ ∈ (Mi \ Ti) ∩ (Mi \ T ′
i ). ν is in (Mi \ Ti) iff it is in T ′

i ,
therefore ν′′ ̸= ν and B and B′ agree on ν.

4. Finally, ν is the only member of Ti∆T ′
i , and B and B′ disagree on ν.

Therefore BRTM
i B′, and we can conclude that (B,BTM) |= Miν.

The last case is that in which (B,BTM) |= Miν. Then by Lemma 8.7,
ν ∈ Ti∪Mi; moreover, there existsB′′ such thatBRTM

i B′′ andB andB′ disagree
on ν. Suppose that ν ∈ Ti \Mi. Then by definition of RTM

i , ν ∈ T ′′
i \M ′′

i and
B and B′′ agree on ν, which contradicts our hypothesis. Therefore ν ∈Mi.

8.6 Discussion and conclusion
We have shown how EL-O, knowledge structures, PEKBs, and the S4.2-based
logic of true and mere belief can be embedded into Lorini’s LDA framework.
Our embeddings rely on small adjustments to the language and semantics of
LDA.

We have shown in particular that both EL-O and knowledge structures can be
embedded into a particular version of LDA models which we call vision models.
As both the logic of vision models and that of knowledge structures have the
same expressivity as standard epistemic logics, this result tells us that we could
restrict our consideration of vision models to those where the context is in
CxtKS. However, allowing for full generality of contexts is not completely
redundant, as it can allow for a more natural way of expressing simple situations
with given higher-order knowledge, whereas this construction is not that clear
for knowledge states.

Altogether, we have shown that LDA framework provides a general and flexi-
ble tool for reasoning about knowledge and beliefs by combining the compactness
of symbolic approaches with the flexibility of possible worlds approaches. This
makes it a very useful reference framework against which many other existing
formalisms can be compared.



Chapter 9

Conclusion

Dans cette thèse nous avons défini et étudié quelques modélisations simples de
raisonnement sur et planification avec de la connaissance et de la croyance dans
des systèmes multiagents. En particulier, nous avons fait un premier pas vers
une planification épistémique multi-agent réaliste avec la logique EL-O. Notre
approche est symbolique et se base sur des atomes d’observabilité, autrement dit
des agents avec raisonnement simplifié basé sur le concept de ‘savoir si’ plutôt
que le traditionnel ‘savoir que’.

Du côté statique, nous avons présenté plusieurs versions de EL-O et montré
qu’il s’agissait de fragments de différentes version de la logique standard S5 (avec
et sans l’axiome d’induction pour la connaissance commune). Nous avons prouvé
que le problème de satisfiabilité pour chacune de ces versions de EL-O est NP-
complet, donc dans la même classe de complexité que le problème de satisfiabilité
en logique classique propositionnelle. De plus, la nouvelle sémantique que nous
avons défini pour EL-O dans le Chapitre 3 nous permet de travailler avec des
modèles finis, ce qui s’avère être un élément crucial lorsqu’il s’agit de définir la
planification dans EL-O et de montrer que le problème de décision de l’existence
d’un plan étant donnée une tâche de planification est PSpace-complet, encore
une fois la même classe complexité que le problème propositionnel classique
correspondant. Ce résultat tient à la fois pour la planification séquentielle et
parallèle. Nous avons prouvé ceci en définissant une traduction polynomiale
des tâches de planification EL-O vers des tâches de planification classiques, ce
qui signifie que les planificateurs classiques peuvent être utilisés pour résoudre
des problèmes de planification épistémique sans perte significative d’efficacité
dès lors que ces problèmes peuvent être exprimés dans le formalisme de EL-
O. Nous avons aussi défini une extension dynamique de EL-O qui nous permet
de capturer la solvabilité des tâches de planifications comme un problème de
vérification de modèle.

La complexité de la planification dans EL-O présente une amélioration sig-
nificative par rapport à la planification DEL, qui est indécidable même pour
des fragments relativement simples. Par exemple, si les actions modifient aussi
le monde (et non seulement les connaissances des agents), alors le problème
de l’existence d’un plan est indécidable dès que des opérateurs épistémiques
sont autorisés à apparâıtre dans les préconditions ; si les actions sont purement
épistémiques, alors le problème est indécidable dès que le nombre d’agents ou
la profondeur épistémique dépasse 2. Nous avons aussi défendu l’idée que les
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atomes d’observabilité fournissent une manière simple et finie de représenter
des situations d’ignorance maximale, qui deviennent simplement des états con-
tenant seulement des informations propositionnelles, tandit que dans la logique
épistémique standard la représentation de telles situations nécessite des modèles
de Kripke infinis. De manière générale, dans DEL, l’incertitude fait augmenter
la taille des modèles, tandis que le contraire est vrai pour EL-O. De plus, nous
avons montré que la correspondance entre les actions EL-O et les modèles à
évènements de DEL n’est pas si claire. Ceci est dû à une différence fondamentale
des approches de modélisation entre EL-O et DEL : dans EL-O, on se préoccupe
plutôt des effets directs d’une action (c.à.d. quels atomes deviennent vrais ou
faux), alors que dans DEL, la modélisation s’articule autour de l’incertitude, à
partir de laquelle la connaissance et son évolution sont déterminées. Bien sûr,
puisque EL-O est une logique restreinte, toutes les actions ne peuvent pas y
être modélisées, mais nous défendons l’idée que dans bien des cas, EL-O offre
au modélisateur de tâches de planification une manière très naturelle de définir
modèles et actions, loin de n’être qu’une version restreinte et “moindre” de DEL.

Comparé à d’autres logiques épistémiques simplifiées pour la planification
épistémique, notre approche gagne en expressivité : EL-O permet de modéliser
de la connaissance d’ordre supérieur, de la connaissance commune, des opérateurs
moins restreints que les ‘littéraux modaux restreints’ de la littérature, et une plus
grande liberté dans la définition des actions, qui ne sont pas limitées aux seules
actions publiques ou semi-privées. Il est aussi possible d’incorporer dans EL-O
une notion de ‘savoir ce qu’est’ (ou ‘connâıtre la valeur de’), dont l’importance
dans les applications en intelligence artificielle est soulignée dans la littérature.
Nous avons aussi comparé les logiques présentées dans cette thèse avec d’autres
logiques épistémiques symboliques proches en encodant le tout dans le cadre très
général des logiques LDA de Lorini. Il serait intéressant de se pencher également
sur la question de l’applicabilité à la planification d’autres logiques épistémiques
simplifiées développées pour résoudre d’autres problèmes tels que la vérification
de modèles, en particulier celles de [56], et d’en comparer les résultats avec notre
approche.

L’efficacité de EL-O repose sur la limitation des capacités de raisonnement
des agents. En particulier, les agents ne peuvent connâıtre la valeur de vérité
de disjonctions arbitraires. En conséquence, EL-O ne peut pas être utilisé pour
modéliser des problèmes tels que celui des Muddy Children. De plus, comme
développé dans la thèse, la généralisation de notre opérateur de vision jointe à
des groupes quelconques d’agents n’est pas évidente et demeure un problème
ouvert.

Les succès que nous avons rencontrés avec EL-O nous ont tout de même in-
cités à étudier l’adaptabilité des éléments clés de cette approche à des logiques
non seulement de connaissance mais aussi de croyance. À cet effet nous avons
proposé deux nouveaux opérateurs, l’un de ‘croyance correcte’ et l’autre de
‘simple croyance’, à l’aide desquels toutes les situation épistémico-doxastiques
peuvent être représentées de manière combinatoire. Cela permet de ne pas avoir
à gérer les interactions entre les traditionnels opérateurs de connaissance et de
croyance, par exemple le fait que la connaissance implique la croyance. Nous
avons étudié le comportement de ces nouveaux opérateurs dans trois logiques
épistémiques doxastiques standard. La prochaine étape pourrait être d’étudier
des restrictions à des ‘atomes épistémico-doxastiques’ similaires aux atomes
d’observation de EL-O, ou bien de se pencher sur le problème de la planifi-
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cation avec des connaissances et des croyances. Il est intéressant de noter que
lorsque l’on considère des opérateurs de ‘croyance à propos de’, les problèmes
de cohérence que l’on retrouve au coeur de nombreuses approches de révision
des croyances disparaissent : la question est plutôt de savoir si l’agent choisira
ou non d’avoir une croyance à propos de la proposition en question, et de savoir
si cette croyance sera vraie ou non. Autrement dit, la difficulté ne porte plus
sur comment mettre à jour des bases se croyances, mais plutôt de décider s’il
faut on non les mettre à jour. Ceci mène à un changement perspective que nous
espérons étudier plus en profondeur dans des travaux futurs.

Enfin, prenant un détour par les axiomatisations de logiques de connaissance
commune, nous avons proposé une nouvelle axiomatisation pour la connaissance
commune S5 avec un axiome d’induction que nous trouvons plus intuitif que les
solutions préexistantes. Notre axiomatisation est spécifique à la connaissance
et fonctionne aussi bien pour les logiques avec l’opérateur ‘savoir que’ que pour
celles avec ‘savoir si’, mais n’est pas adaptée aux croyances. Il serait intéressant
d’étudier une généralisation de ce nouvel axiome aux logiques qui ne suivent pas
l’axiome de vérité.

Nous travaillons dans cette thèse avec une approche centralisée dans laquelle
un planificateur unique décide des actions de tous les agents. D’autres approches
sont étudié le problème de bavardage classique d’un point de vue complètement
différent, avec des agents tous autonomes. Plus généralement, prenons l’action
de demander de l’information à un autre agent : cette situation a lieu lorsque
le premier agent sait que le second agent connâıt l’information en question.
Cependant, si la planification est centralisée, seul le planificateur omniscient
a théoriquement besoin de savoir que le second agent a l’information pour or-
donner au premier agent de l’interroger, qu’importe ce que sait ce dernier. En
ce sens, élargir notre approche à de la planification distribuée et autonome
étendrait nettement son domaine d’application.

In this thesis we have defined and investigated a few simple frameworks for
reasoning about and planning with knowledge and belief in multiagent systems.
Most notably, we have made a first step towards realistic multi-agent epistemic
planning through the EL-O framework. Our approach is a symbolic approach
based on observability atoms, that is, simple reasoning revolving around the
concept of ‘knowing whether’ rather than the traditional ‘knowing that’.

On the static side, we have given a few versions of EL-O which we have shown
to be fragments of different versions of S5 (with and without the induction axiom
for common knowledge) and for which we have shown the satisfiability problem
to be NP-complete, just like the satisfiability problem in Classical Propositional
Calculus. Moreover, the improved semantics that we have defined for EL-O in
Chapter 3 allow us to work with finite models, which is instrumental in defining
EL-O planning and showing that the problem of deciding the existence of a plan
given a planning task is PSpace-complete, once again the same complexity as
its classical counterpart. This holds both for sequential and parallel planning.
We have shown this by defining a polynomial translation of EL-O planning tasks
into classical planning tasks, which means that classical planners may be used
to solve epistemic planning problems with no significant loss of efficiency, so
long as these problems can be expressed in the EL-O formalism. We have also
defined a dynamic extension of EL-O which allows us to capture solvability of
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planning tasks as a model-checking problem.
The complexity result for EL-O planning is a significant improvement over

DEL planning, which is undecidable even for simple fragments. For example,
if actions also change the world (and not only the agents’ knowledge), then
plan existence is undecidable whenever epistemic operators are allowed in pre-
conditions; if actions are purely epistemic, then it is undecidable whenever two
agents are involved or the epistemic depth exceeds 2 [9]. We have also argued
that observability atoms provide a simple, finite way to represent situations of
maximal ignorance, namely by states that only hold propositional information,
while such situations require infinite Kripke models in standard epistemic logic.
More generally, in DEL, models get bigger the more uncertainty there is, while
the opposite is true in EL-O. Moreover, we have shown that the correspondence
between EL-O actions and DEL event models is not that clear, due to a fun-
damental difference in approaches when defining such actions and models: in
EL-O, the focus is on the effects of an action (i.e., which atoms become true or
false), whereas in DEL, the focus is on the uncertainty, from which knowledge
and the evolution thereof are computed. Of course, the restricted nature of
EL-O means that every possible action may not be modeled in EL-O, but we
have argued that in many cases, EL-O offers to the designer of a planning task a
very natural way of defining models and actions, far from being but a “lesser”,
more restricted DEL.

In comparison to other lightweight epistemic logics and epistemic planning
frameworks, our approach gains in expressivity: we have higher-order knowl-
edge, a form of common knowledge, more reasoning power than the similar
restricted modal literals of the literature, and great freedom in the definition
of actions, which may be public, private, or anything in between. We also in-
corporate a notion of ‘knowing what’ (or ‘knowing the value’), which has been
argued to be of crucial importance in AI applications. We have further assessed
the frameworks proposed in this thesis and other related symbolic approaches
through encoding into the very general framework of Lorini’s LDA logics. It
would be interesting to further investigate the compared applicability to plan-
ning of other simplified epistemic logics designed for other problems such as
model checking, in particular those of [56].

At the core of the efficiency of EL-O is the agents’ limited reasoning power.
In particular, agents cannot know arbitrary disjunctions. This means that EL-
O cannot be used to model problems such as the muddy children problem.
Moreover and as discussed in this thesis, it is not obvious how to generalize our
joint vision operator to arbitrary groups of agents, and we leave this as an open
problem for now.

Nevertheless, the success with EL-O has prompted us to investigate whether
the key elements of the approach can be transferred over to a logic not only
of knowledge but also of belief. To this end we have introduced two new op-
erators, one of true belief and one of mere belief, which allow us to represent
all epistemic-doxastic situations in a combinatorial manner. This allows us to
avoid the interaction between the traditional knowledge and belief operators,
such as knowledge implying belief. We have investigated the behavior of these
new operators in three different standard epistemic-doxastic logics. The next
step might be to investigate restrictions to ‘epistemic-doxastic atoms’ similar to
the EL-O observability atoms, or look into planning with knowledge and belief.
Interestingly when considering ‘belief about’ modalities, the consistency issue
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at the core of many approaches to belief revision becomes void: the question is
rather whether or not the agent will choose to have a belief about the proposi-
tion at hand, and whether or not that belief will be true. That is, the question is
not of how to update belief bases but rather of whether to update them, leading
to a change in perspective which we leave as future work to explore.

Finally, through a detour into the world of axiomatizations of common
knowledge we have proposed a new alternative for S5 common knowledge featur-
ing an induction axiom for common knowledge which we find more intuitively
appealing than existing solutions. Our axiomatization is tailored to knowledge
and translates well to the ‘knowing whether’ setting, but we have shown that
it is not suited for beliefs. An interesting avenue for future work would be a
generalization of this new axiom to logics which do not obey the truth axiom.

In this thesis we have assumed a centralised approach in which a single
planner decides the actions of all agents. Other approaches have studied the
classical gossip problem from a completely different perspective, assuming that
all agents are autonomous [5, 48, 123]. More generally, consider the action of
asking another agent for information: we have argued that this happens when
the first agent knows that the second agent has said information. However, when
considering centralized planning only the omniscient planner would theoretically
need to know that the second agent has the information in order to tell the
first agent to ask the question, no matter what the first agent knows. In this
regard considering distributed and autonomous planning would greatly widen
the applicability of our framework.
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[2] Luca Alberucci and Gerhard Jäger. About cut elimination for logics of
common knowledge. Annals of Pure and Applied Logic, 133(1-3):73–99,
2005.

[3] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the
logic of theory change: Partial meet contraction and revision functions.
The journal of symbolic logic, 50(2):510–530, 1985.

[4] Sergei N. Artemov. Observable models. In Sergei N. Artemov and Anil
Nerode, editors, Logical Foundations of Computer Science - International
Symposium, LFCS 2020, Deerfield Beach, FL, USA, January 4-7, 2020,
Proceedings, volume 11972 of Lecture Notes in Computer Science, pages
12–26. Springer, 2020.

[5] Maduka Attamah, Hans van Ditmarsch, Davide Grossi, and Wiebe van der
Hoek. Knowledge and gossip. In Proceedings of the 21st European Con-
ference on Artificial Intelligence (ECAI 2014), pages 21–26, 2014.

[6] Guillaume Aucher. Axioms .2 and .4 as interaction axioms. In Chitta
Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Fourteenth
International Conference, KR 2014, Vienna, Austria, July 20-24, 2014.
AAAI Press, 2014.

[7] Guillaume Aucher. Principles of Knowledge, Belief and Conditional Belief.
In Manuel Rebuschi, Martine Batt, Gerhard Heinzmann, Franck Lihoreau,
Michel Musiol, and Alain Trognon, editors, Interdisciplinary Works in
Logic, Epistemology, Psychology and Linguistics, pages 97–134. Springer,
2014.

[8] Guillaume Aucher. Intricate axioms as interaction axioms. Studia Logica,
103(5):1035–1062, 2015.

[9] Guillaume Aucher and Thomas Bolander. Undecidability in epistemic
planning. In Francesca Rossi, editor, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI 2013), pages 27–33.
AAAI Press, 2013.

139



BIBLIOGRAPHY 140

[10] Robert Audi, editor. The Cambridge Dictionary of Philosophy, Second
Edition. Cambridge University Press, 1999. entry ‘Action’.

[11] Brenda Baker and Robert Shostak. Gossips and telephones. Discrete
Mathematics, 2(3):191–193, 1972.

[12] Matteo Baldoni. Normal multimodal logics: Automatic deduction and
logic programming extension. PhD thesis, Università degli Studi di Torino,
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Dans cette thèse nous étudions un cadre simple dans lequel modéliser les
croyances et les connaissances ainsi que leur évolution dans des systèmes multi-
agents. La logique standard de représentation des connaissances est très expres-
sive, mais au prix d’une haute complexité calculatoire. Nous proposons ici un
cadre qui permet de capturer plus de situations que d’autres approches exis-
tantes tout en restant efficace. En particulier, nous considérons l’application de
notre logique à la planification épistémique : étant données une situation ini-
tiale et des actions possibles, peut-on atteindre un but fixé ? Cela peut signifier
savoir à qui poser des questions pour apprendre des informations, faire en sorte
de ne pas être remarquée lorsque l’on lit le courrier de quelqu’un d’autre, ou
empêcher quelqu’un d’entendre nos secrets. Nous considérons aussi de possibles
extensions à des logiques de croyance, ainsi que les liens entre notre système et
d’autres cadres proches.

In this thesis we study a lightweight framework in which to model knowledge
and beliefs and the evolution thereof in multiagent systems. The standard logic
used for this is very expressive, but this comes at a high cost in terms of com-
putational efficiency. We here propose a framework which captures more than
other existing approaches while remaining cost-effective. In particular, we show
its applicability to epistemic planning: given an initial situation and some pos-
sible actions, can we find a way to reach our desired goal? This might mean
knowing who to ask in order to learn something, making sure we aren’t seen
when reading someone else’s mail, or preventing someone from overhearing our
secrets. We also discuss possible extensions to logics of belief, and the relations
between our framework and other related approaches.


