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Summary

E
 offers apt means and tools to specify the degree to which risk factors and inter-

vention strategies influence public health in the case of an epidemic outbreak. These manners

include surveys, data analysis, controls, and appropriate assessments. In this field, mathematical

modeling plays an intrinsic role in elucidating the impact of communicable diseases’ repercussions

and prophesying likely future scenarios. The application of mathematical models to epidemiology

requires characterizing the variables that affect the behavior of a disease in order to get a series

of equations whose solution agrees with what is happening in reality. Accordingly, mathematical

epidemiology represents the principal ground for decisions that aimed at preventing, dominating,

or eradicating the disease.

Empirical records of many epidemics show that external fluctuations are significant factors

in the spread process of infectious diseases. Undoubtedly, stochastic models are considered the

most realistic and practical method to simulate and study the evolution of an epidemic under

environmental disturbances. The analysis of these models requires many advanced analytical

techniques due to their intricacy and difficulty. Focusing on this problematic, the present thesis aims

to treat the evolutionary dynamics of some epidemic models with natural environmental noises

and certain unexpected phenomena. Under a suitable hypothetical framework, we offer and develop

new general and non-standard approaches to prove some interesting asymptotic properties of the

perturbed models, namely: stability, ergodicity, periodicity, persistence in the mean, extinction of

the disease, long-term character around the deterministic equilibriums. At the end of each section,

some numerical simulations are presented to verify the theoretical results and clearly show the

sharpness of the obtained conditions and thresholds.

In general, this thesis improves numerous studies existing in the field of stochastic mathemati-

cal epidemiology and provides alternative tools to treat and analyze more complex epidemiological

and biological models.

Keywords: Epidemics; Infectious diseases; Environmental disturbances; Stochastic systems;

Lévy noise; Asymptotic properties; Stability; Periodicity; Ergodicity; Persistence in the mean; Dis-

ease extinction; The long-time character around the deterministic equilibrium.
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Résumé (French version)

L
’ offre des moyens et des outils appropriés pour spécifier dans quelle mesure

les facteurs de risque et les stratégies d’intervention influencent la santé publique en cas

d’épidémie. Ces méthodes comprennent des enquêtes, des analyses de données, des contrôles et des

évaluations appropriées. Dans ce domaine, la modélisation mathématique joue un rôle intrinsèque

dans l’élucidation de l’impact des répercussions des maladies transmissibles et la prédiction de

scénarios futurs probables. L’application des modèles mathématiques à l’épidémiologie nécessite

une caractérisation des variables qui affectent le comportement d’une maladie afin d’obtenir une

série d’équations dont la solution concorde avec ce qui se passe dans la réalité. En conséquence,

l’épidémiologie mathématique représente le principal motif de décision visant à prévenir, dominer

ou éradiquer la maladie.

Les données empiriques de nombreuses épidémies montrent que les fluctuations externes sont

des facteurs importants dans le processus de propagation des maladies infectieuses. Sans aucun

doute, les modèles stochastiques sont considérés comme la méthode la plus réaliste et la plus pra-

tique pour simuler et étudier l’évolution d’une épidémie en cas de perturbations environnementales.

L’analyse de ces modèles nécessite de nombreuses techniques analytiques avancées en raison de

leur complexité et de leur difficulté. En se concentrant sur cette problématique, la présente thèse

vise à traiter la dynamique évolutive de certains modèles épidémiques avec des bruits environ-

nementaux naturels et certains phénomènes inattendus. Dans un cadre hypothétique adapté, nous

proposons et développons de nouvelles approches générales et non standard pour prouver certaines

propriétés asymptotiques intéressantes des modèles perturbés, à savoir: stabilité, ergodicité, péri-

odicité, persistance dans la moyenne, extinction de la maladie, caractère à long terme autour des

équilibres déterministes. A la fin de chaque section, quelques simulations numériques sont présen-

tées pour vérifier les résultats théoriques et montrer clairement la netteté des conditions et des

seuils obtenus.

D’une manière générale, cette thèse améliore de nombreuses études existant dans le domaine de

l’épidémiologie mathématique stochastique et fournit des outils alternatifs pour traiter et analyser

des modèles épidémiologiques et biologiques plus complexes.

Mots clés: Épidémies; Maladies infectieuses; Perturbations environnementales; Systèmes stochas-

tiques; Bruit de Lévy; Propriétés asymptotiques; Stabilité; Periodicité; Ergodicité; Persistance dans

la moyenne; Extinction de la maladie; Le caractère long terme autour de l’équilibre déterministe.
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Prologue

E
 represents the branch of medical science that studies and analyzes the reasons,

distributions, and mechanisms of the diseases spread in a specific population. The idiom

"epidemiology" is originated from the Greek words: "epi", "demos" and "logos", which literally

means "study what happens to people" [1]. The incorporation of these three words indicates that

the subject of the epidemiology applies exclusively to humans. Epidemiology assists in improving

ways and methodologies used in clinical explorations, public health studies, and fundamental

scientific research in medical investigations. Historically, the term "epidemiology" was first used to

describe the characteristics of some epidemics in 1802 by the Spanish scientific Joaquin de Villalba

(1752-1807) [30]. Since that date, epidemiological investigations focused on emerging diseases that

prevailed in susceptible populations and that often caused numerous deaths. For instance, the

"Spanish" influenza virus in 1918-1919 killed more than 50 million people, and every year there

is seasonal influenza that caused an extra than 35 thousand deaths in the world. There are also

many epidemics that persist in some populations for a long time and cause massive losses. Millions

of people die each year from cholera, respiratory infections, measles, malaria, and dengue fever

in diverse parts of the world. This is enormously happening in many countries with weak health

care systems. In 2011, the World Health Organization (WHO) estimated that there were 1.5 million

deaths from tuberculosis, 1.2 million from HIV/AIDS, and nearly half a million mortalities from

malaria. The high epidemic mortality rate has significant implications for life expectancy and the

economic system in the concerned countries. For example, the ongoing Coronavirus (COVID-19)

caused a deep international crisis with 2.3 million deaths resulting in global health problems and

changes in lifestyle. Currently, we are struggling to control the spread of this epidemic, which has

the potential to be the deadliest disease in human history. In this regard, to face and manage such

a crisis situation, various scientific methods and analytical studies are required. As a method and

science, mathematical modeling is the appropriate tool. It is the art of translating real problems

into flexible mathematical formulas whose theoretical and numerical analysis provides suggestions,

answers, and constructive solutions. As a field of application, mathematical epidemiology plays

the main role in the analysis of factors that may influence the prevalence of the disease.

The concept that the spread of epidemics obeys laws that can be formulated in a mathematical

expression is not recent. The beginning started with Daniel Bernoulli in 1760 by publishing a

scientific report in which he characterizes the impacts of Smallpox on life average employing a

mathematical lifetime chart analysis. His study aims to show up the benefits of inoculation against

the said epidemic [100]. Since then, many attempts have been made to describe the impact of some

epidemics on the population, but the non-linear dynamics of its transmission were imperfectly

understood until the twentieth century. In 1906, W. H. Hamer was the first to observe that a

decreasing density of susceptible individuals can lead to the extinction of the measles epidemic.

He proposed the first ordinary epidemiological system for modeling disease prevalence [100]. In

the same vein, S. R. Ross in 1911 used mathematical modeling to discuss the effectiveness of

different intervention methods against malaria [1]. In 1927, W.O. Kermack (public health doctor)

and A. G. Mckendrick (biochemist) published a straightforward system of the spread of epidemics
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by direct contact. At the time, they compared their model with actual data from the spread of the

Bombay plague between 1905 and 1906 [15]. Their theory proved important during the elimination

of Smallpox in the 1970s [34]. At the end of the twentieth century, mathematical epidemiology

became more common in public health policy-making. Many contributions have been made to

modeling some epidemics, and most of these studies have relied on various assumptions based

on the deterministic formulation. Since the start of the 21st century, many epidemics appeared

including the severe acute respiratory syndrome (SARS) epidemic in 2002 [14], influenza A virus

sub-type H5N1 in 2005 [4], influenza A virus sub-type H1N1 in 2009 [88], Ebola epidemic in 2004

[17], and Coronavirus in 2019 [13]. That revived interest in mathematical modeling by improving

the Kermack-McKendrick model and considering new hypotheses based on the characteristics of

each epidemic.

The first generation of epidemic models was deterministic, and many issues were addressed,

for example: could the epidemic situation worsen and affect a vast section of society? How many

people are suffering from the epidemic? What are the effects of intervention strategies on the

spread of the disease? Could complete extinction happen? When responding to these questions,

the standard models have been refined and generalized in a variety of ways to make them more

adapted to reality. Some of these enhancements and expansions have, for example, taking into

account irregular contact between people and sudden environmental changes. The generation of

formulations that take these assumptions into account is called stochastic epidemiological models.

Naturally, both deterministic and stochastic epidemiological systems have a meaningful role to

carry out. However, the focus of this thesis is on perturbed epidemiological models.

Substantially, in an ecosystem, epidemiological models are always perturbed by the external

noise [3]. May [95] has shown that due to some environmental noises, the transmission rate, the

birth rate, carrying capacity, and other parameters involved in the model should exhibit irregular

and random fluctuation to a greater or lesser extent. Subsequently, lots of studies have inserted

the white noise into the corresponding deterministic formulations to show the impacts of the

environmental fluctuation on the population dynamics [16]. These systems are stochastic epidemic

models with only white noise and hence its solution is continuous. However, when faced with

sudden environmental shocks (earthquakes, hurricanes, epidemics, etc.), such disorders can break

the continuity of the solution. Therefore, we should employ the stochastic differential equation with

jumps to study the dynamic behavior of the epidemic model. Roughly speaking, the jump times

are always random, and the expected time of jumps is analogous to Lévy jumps [37]. Therefore,

these stochastic perturbations can be approximately modeled and simulated by Lévy jumps. Lévy

processes are actually stochastic processes with stationary and independent increments. Their

significance in applied probability theory stems from many important facts (see for example [27, 26,

36]).

This thesis aims to provide new ways to improve the analysis of some perturbed epidemiological

models. Several generalizations, techniques, and approaches are proposed in order to predict and

control the dynamics of infectious diseases under a suitable hypothetical framework. Thus, this

thesis can be considered as a rich basis for outlook studies in the said field. Generally, this work

contains six principal chapters. We begin with an introductory chapter (Chapter I) on the basic

process of setting up an epidemic model under different hypotheses by using differential equations

and some fundamentals classic notions in mathematical epidemiology. The chapter contains also

all epidemic models treated during this thesis and provides a soft entry into epidemic modeling

before presenting a more generalized context which required many stochastic analysis tools. These

latter are introduced briefly in Chapter II. This auxiliary chapter provides a rigorous theoretical

reference for important concepts and mathematical results used in this thesis. Our main results

are offered from Chapter III which contains three sections about an SIR epidemic model with Lévy

jumps. Notably, this epidemic model is represented by Itô-Lévy stochastic differential equations in

order to simulate sudden and unexpected external phenomena. By adopting some innovative and

ameliorated mathematical approach, we analyze the long-run characteristics of three categories of

an SIR model with jumps. Chapter IV deals with the asymptotic properties of the HBV model

with unexpected environmental disturbances. By adopting two types of Lévy perturbations, we
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prove the existence of a unique ergodic stationary distribution by using the mutually exclusive

possibilities. Furthermore, the threshold analysis is provided in the case of proportional Lévy

noise. By integrating environmental disturbances and the various periods of immunity, in Chapter

V, we study the dynamics of an epidemic model of the SIRS type. A rich analysis and a suitable

generalization are offered to understand the characteristic of some epidemics with different periods

of immunity and vertical transmission. It should be pointed that the study presented in this chapter

can be generalized in the case of Lévy jumps by using the same techniques introduced in Chapters

III and IV. Chapter VI extends previous chapters by treating the dynamic characteristics of a

perturbed epidemic model with quarantine policy and Lévy disturbance. New general and non-

standard results are proved in order to investigate some interesting asymptotic properties, namely:

ergodicity, persistence in the mean, and extinction of the disease.

It is noteworthy that all studies described in the above-said chapters improve many existing

studies in the field of mathematical epidemiology and provide new techniques to treat and analyze

more general epidemic models. Furthermore, each chapter (Chapters IV-VI) represents the results

previously published or submitted to indexed specialized journals.
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Chapter I
Deterministic epidemiological system:

general approach to modeling

A𝔟𝔰𝔱𝔯𝔞𝔠𝔱

I
 this chapter, we introduce some classical deterministic epidemic models. These baseline systems

will be extended to incorporate more realistic hypotheses about disease transmission, various

control strategies, and the impact of demography. The principal intent of this chapter is to present

all the epidemic models treated during this thesis, especially in Chapters III-VI.

1 Introduction

Infectious diseases are disorders caused by organisms like viruses, germs, bacteria or parasites.

These organisms live in and on our bodies and move through many modes of transmission such

as direct physical contact (horizontal spread), mother to baby (vertical transmission), airborne

particles, water or food, or vectors of infection. The mathematical model of a contagious disease

aims to characterize and describe its dissemination mechanisms, which can be illustrated mainly

as follows: when the carrier of infection mingles with a host population of susceptible, the disease

is transmitted to other individuals. An infectious individual is defined as one from whom the

contagious agent can be naturally acquired. We define an asymptomatic carrier as a person with an

infectious disease agent but displays no physical symptoms. The person who shelters an infectious

agent and diagnosed as a disease case is called an infected individual. If the number of cases raises

above the ordinary average within a short period of time, then an epidemic outbreak happens.

Infected population regains their health and recovers from contagion, either via pharmaceutical

treatment or owing to the behavior of the immune mechanism, and may get different phases of

gained impregnability against reinfection according to the disease characteristics. If the infectious

population decreases and disappears, the epidemic dies and becomes extinct. Otherwise, if new

individuals insert into the host population from natural birth or migration, or if the contagion

appears easy under the inducement conditions, the disease may persist over a lengthy period of

time. We say in this case that the disease will be endemic in the population. A global pandemic
happens if the epidemic propagates worldwide. For example, the growth of Coronavirus 2019

(COVID-19) disease, caused by Coronavirus-2 severe acute respiratory syndrome (SARS-Cov-2),

is considered a global issue and a huge health crisis. This complicated disease first appeared

in December 2019 in Wuhan (capital of Hubei in China), and since then, the world knew a

terrifying increase in the number of cases due to the virus dissemination ability. The statistics

witnessed this outbreak when the number of deaths and infected people surpassed 2,311,432 and

106,018,480 respectively at the time of writing this thesis. Unquestionably, these massive numbers
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put the decision makers and health authorities in a hard position to find answers for the following

inquiries:

• How dangerous will this pandemic be? The risk can be established by the accumulated number

of infected individuals and the overall number of cases that may demand pharmaceutical

treatment.

• How long will the disease last? will there be extinction or persistence?

• How efficient will lock-down, isolation, quarantine, or vaccination be?

• What are successful tools and measures to inhibit, control, and enucleate this endemic

disease?

In order to help public health authorities make informed decisions, mathematical modeling is an

important tool to obtain appropriate hypotheses and adequate answers to the above questions.

The classical methods employing experimental and statistical approaches may not be sufficient,

but the use of the dynamic models may provide an additional understanding of the transmission

mechanisms of an epidemic. In general, the process of modelling and creating epidemiological

systems involves the following steps:

1. Consider appropriate assumptions about the disease dissemination mechanisms based on the

ready epidemiological data.

2. Set up an epidemiological model based on these assumptions. This generally begins by deter-

mining the sub-compartments of the model, drawing the switch diagram, and then deriving

the mathematical equations.

3. Achieve a mathematical analysis of the constructed model to understand and establish all

possible outcomes on the disease spread. This is done mainly by using existing mathematical

approaches and theories and by performing numerical simulations to illustrate its validity.

4. Explain and interpret the theoretical findings according to the assumptions considered in

stage 1.

Generally speaking, epidemiological models are a translation of our hypotheses on the disease

characteristics, and an approximation of the real situation of its spread [40]. It should be noted

that there is a continuous distinction in the epidemiological modeling between the proposed models

depending on their ability to simulate reality and their ability to provide good forecasts about the

future of the disease [31]. These epidemic models can be classified into deterministic and stochastic

systems. The first class takes various forms of ordinary differential equations that describe the

dynamic interactions between rates of change and different population sizes. In these models,

each set of variable states is determined only by the parameters of the model and the initial state

of the variables [34]. The second class is considered as a generalization of the previous one by

taking into consideration the environmental perturbations and treating the disease infection as

a stochastic process. These perturbed models are appropriate to deal with tiny communities and

small population groups with a high number of infectious contacts [16]. Although this thesis deals

with stochastic epidemic models, the presentation of the associated deterministic formulation is

necessary. In what follows, we highlight some standard characteristics and theoretical results of

this category.

2 Compartmental approach
In this section, we explain how to create a mathematical model for the spread process of an

epidemic using a compartmental method. We first divide the host population into different classes

(compartments) according to the characteristics of the individuals. In one of the simplest scenarios,

we consider the following groups:
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• Susceptible individuals who are healthy but can contract the infection. We denote the size of

this class by 𝑆 .

• Infected people who contracted the epidemic and are now sick with it. We denote the size of

this class by 𝐼 .

• Removed individuals who have recovered and can no longer contract the epidemic. This class

is generally designated by 𝑅.

S I R
new infections recovery

Figure I.1: Transfer diagram for a simple compartment epidemic model.

The schematic flow diagram of a straightforward SIR model is illustrated in Figure I.1. The major

idea of epidemiological modeling is to show the evolution of the individuals’ number in each of

the three classes at a given time 𝑡 . To establish this dynamic mathematically, we consider the

small-time interval [𝑡, 𝑡 + δ𝑡] and we extract the transition between the three classes via Figure I.1

such that the arrows indicate the direction of the transfer. We assume that the total change in

each class is the number of the population entering the class minus the number leaving the same

class during the time interval. By applying the same logic to each class, we obtain the following

equations:

new infections

new infections transfer into R 

 transfer from I

-

-=

=

=

S(t)

I(t)

R(t)

Figure I.2: The net changes between 𝑆 (𝑡), 𝐼 (𝑡), and 𝑅(𝑡).

We divide the two sides of these three equations by δ𝑡 and let δ𝑡 → 0, then we obtain the

following differential equations:

infection occurrence rate

infection occurrence rate transfer rate into R

transfer rate from I

-

-=

=

=

S'(t)

I'(t)

R'(t)

Figure I.3: Differential equations of the SIR epidemic model.

To derive the deterministic formulation in the form of a system of ordinary differential equa-

tions (ODEs), we make some assumptions depending on the epidemic characteristics. Then, we

write the transfer rates on the right side as functions of 𝑆 (𝑡), 𝐼 (𝑡), and 𝑅(𝑡). As an illustrative ex-

ample, in the next section, we consider a simple model that simulates the dynamics of susceptible,

infectious, and removed individuals. This model was first suggested by Kermack and McKendrick

in 1927. Since then, various studies have analyzed and improved it [20], and this thesis has the

same objective.

3 The Kermack-McKendrick epidemic model

To show how the different rates in Figure I.3 depend on 𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡), we assume the following

assumptions about the transmission mechanism of an epidemic:

6



• The dissemination occurs horizontally by potential direct contact between individuals (hori-

zontal transmission). Direct contact includes touching or sexual relations (see Figure I.4).

• The contact between the individuals is homogeneous and the population is well mixed.

• The infected individuals are also infectious.

• Recovered individuals acquire permanent immunity.

Horizontal transmission

Infectious Individual Susceptible individual

Figure I.4: Illustration of the horizontal transmission due to a potential direct contact between

individuals.

To establish the differential equations of Kermack-McKendrick epidemic model, we determine the

rate of change in each class. When a susceptible person enters into direct contact with an infectious

one, that susceptible individual becomes infected and switched from the susceptible class into the

infected one. The number of persons who become infected per unit of time is called incidence, and
the change rate of the susceptible compartment is given by

¤𝑆 (𝑡) = −incidence ratio.

To present the incidence ratio expression, we consider that 𝑝 is the probability that contact with

a susceptible individual will lead to the infection and 𝑐 the per capita contact rate. We define the

function 𝐹 (𝑡) = β𝐼 (𝑡) as a force of infection, where β = 𝑝𝑐 is the transmission rate. Then, the

number of people who become infected per unit of time is equal to 𝐹 (𝑡)𝑆 . This number called the

mass action incidence which is the simplest form of the various incidence expressions. With the use

of this incidence rate style, we get the following differential equation for susceptible individuals:

¤𝑆 (𝑡) = −β𝑆 (𝑡)𝐼 (𝑡). After being infected, the individuals move to class 𝐼 (𝑡). In addition, recovered

or dead individuals leave the infected compartment with a constant recovery rate γ. Then, the

differential equation for infected individuals is taking the following form: ¤𝐼 (𝑡) = β𝑆 (𝑡)𝐼 (𝑡) − γ𝐼 (𝑡).
People who leave the infected class enter the removed class. Then the third differential equation

can be expressed as follows: ¤𝑅(𝑡) = γ𝐼 (𝑡). Finally, the total model is depicted in the diagram in

Figure I.5 with the corresponding system of differential equations:
d𝑆 (𝑡) = −β𝑆 (𝑡)𝐼 (𝑡)d𝑡,
d𝐼 (𝑡) =

(
β𝐼 (𝑡)𝑆 (𝑡) − γ𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) = γ𝐼 (𝑡)d𝑡 .
(I.1)

To be well defined mathematically, this epidemic model is fitted with the following given initial

values: 𝑆 (0) = 𝑆0 > 0, 𝐼 (0) = 𝐼0 > 0, and 𝑅(0) = 𝑅0 ≥ 0.

S I R
S(t)I(t) γI(t)

Figure I.5: Transfer diagram of the Kermack-McKendrick epidemic model.

In general, a differential equation model such as model (I.1) is mathematically well posed if,

from any initial value, there is a unique global-in-time solution. Since the variables 𝑆 (𝑡), 𝐼 (𝑡) and
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𝑅(𝑡) denote the number of people, they are assumed to take positive values. From biological and

mathematical considerations, it is necessary to prove that starting from positive initial conditions

implies that the solution remains positive at all times. That is to say that the following biologically

feasible region:

R3
+ =

{
(𝑆, 𝐼 , 𝑅) ∈ R3

+ |𝑆 > 0, 𝐼 > 0, 𝑅 > 0
}
,

is positively invariant with respect to model (I.1). The deterministic epidemic model (I.1) called an

SIR epidemic system (or Kermack-McKendrick model) and it is applied to model many diseases

such as measles, mumps, rubella, and pertussis. In this model, the total population size 𝑁 (𝑡) =

𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡) remains constant since ¤𝑁 (𝑡) = 0. From the first equation, we have ¤𝑆 (𝑡) ≤ 0. Then,
𝑆 (𝑡) is decreasing and 𝑆 (𝑡) ≤ 𝑆0. In view of the second equation of (I.1), we get ¤𝐼 (𝑡) =

(
β𝑆 (𝑡) −γ

)
𝐼 (𝑡).

Then, we can establish the following two cases:

• If 𝑆0 <
γ
β , we have 𝑆 (𝑡) < 𝑆0 <

γ
β , then ¤𝐼 (𝑡) < 0 for all 𝑡 ≥ 0. Consequently, 𝐼 (𝑡) strictly

decreases and then no pandemic can happen in this state.

• If 𝑆0 >
γ
β , then 𝑆 (𝑡) >

γ
β for 𝑡 ∈ [0, 𝑡) where 𝑡 > 0. Consequently, 𝐼 (𝑡) strictly increases for

𝑡 ∈ [0, 𝑡) and the pandemic occurs.

This shows the definition of the threshold which is the value to be exceeded for an epidemic to

happen. In the same context, we consider the following expression β×𝑆0× 1
γ , which can be explained

as

Rate of active

contacts of an

infectious person

initial value

of susceptible

individuals

average

infectious

phase
xx

In epidemiology, this important term is called the basic reproduction number
a R0 and is defined

as the average number of secondary infections generated by a typical case of infection in a fully

susceptible population during the middle infectious phase. It is used to measure the possibility of

disease transmission. Comparing with the threshold phenomena mentioned above, we have the

following conclusions:

• If R0 < 1, then the disease dies out.

• If R0 > 1, then the disease persists in the population.

Basically, the Kermack-McKendrick model (I.1) relies on the following assumption: there are no

human demographic changes and the population is closed, i.e. no births, no deaths, and no

migration to and from the host population. This assumption appears so restricted and not realistic.

The demographics are one of the most significant factors and need to be included in mathematical

modelling. In the next section, we consider an improved version of the system (I.1) that includes

the population demographics.

4 An SIR model with vital dynamics
Epidemiological systems that do not take into account the births and deaths that occur in the

population are called epidemiological systems without demography. This type of system is very

useful for modeling diseases on a short time scale, especially for studying the transmission of

childhood illnesses. However, there are many epidemics that have been spreading and developing

a
In the literature, several techniques have been proposed for the calculation of R0 ([94], Chapter 5), but the most

known is that of the next generation approach introduced by van den Driessche and Watmough in [32]. According

to this method, R0 is the spectral radius 𝜌 of the next generation matrix defined by 𝑀 = 𝐹𝑉 −1
, where 𝑉 and 𝐹 are

respectively the matrices expressing the infections transition and the emergence of new infected cases in the different

contaminated compartments of the model.
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for a long time, such as tuberculosis, AIDS and hepatitis C. In this state, the size of the host

population can be modified, and the demographics cannot be neglected.

S I R
S(t)I(t) I(t)b

bS(t) bI(t) bR(t)

Figure I.6: Transfer diagram for an SIR epidemic model with demography.

To enrich the Kermack-McKendrick model (I.1) with the demographic assumption, we assume

that the birth and death rates are the same and that there is no disease-related mortality. By

denoting the demographic constant by 𝑏, the new transfer diagram is shown in Figure I.6, which

leads to the following system of differential equations [100]:
d𝑆 (𝑡) =

(
𝑏 − 𝑏𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝐼 (𝑡)𝑆 (𝑡) − (𝑏 + γ)𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − 𝑏𝑅(𝑡)

)
d𝑡 .

(I.2)

Here, we notice that the size of the total population remains constant and is normalized to one.

The invariant set of (I.2) is

Γ1 =

{
(𝑆, 𝐼 , 𝑅) ∈ R3

+ | 𝑆 + 𝐼 + 𝑅 = 1
}
.

Based on the explanation of the threshold phenomenon in the previous section, the basic repro-

duction number is expressed by R0 =
β
𝑏+γ . Since 𝑁 (𝑡) = 1, we can study, for example, two equations

instead of three which simplifies the analysis. For this purpose, we consider the following two-

dimensional system:{
d𝑆 (𝑡) =

(
𝑏 − 𝑏𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝐼 (𝑡)𝑆 (𝑡) − (𝑏 + γ)𝐼 (𝑡)

)
d𝑡,

(I.3)

and the invariant set becomes Γ0,1 = {(𝑆, 𝐼 ) ∈ R2
+ |0 ≤ 𝑆 + 𝐼 ≤ 1}. In general, the long-term behaviour

of the epidemic is established by analyzing the equilibriums of its model, or the states in which the

solution does not change over time. There are two possible equilibriums for the model (I.3) which

are obtained by setting ¤𝑆 (𝑡) = ¤𝐼 (𝑡) = 0 and getting the following equations:

𝑏 − 𝑏𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡) = 0 and β𝑆 (𝑡)𝐼 (𝑡) − (𝑏 + γ)𝐼 (𝑡) = 0.

By solving this simple system, we found the following two possible states:

• Disease-free equilibrium 𝐸� = (1, 0) which is defined as the point at which no disease is

present.

• Endemic equilibrium 𝐸~ = (𝑆~, 𝐼~), where 𝑆~ =
𝑏+γ
β and 𝐼~ =

𝑏 [β−(𝑏+γ) ]
β(𝑏+γ) . In this case, the

epidemic cannot be completely eliminated but remains in a population.

More precisely, we say that the model (I.3) has two possible cases:

• If R0 ≤ 1, then 𝐸� = (1, 0) is the only equilibrium in Γ0,1.

• If R0 > 1, then both 𝐸� and the endemic equilibrium 𝐸~ exist in Γ0,1.

The deterministic model (I.3) can be further improved by taking into account the movement of

immigration, different demography rates, which makes the size of the total population variable

[136]. Under these assumptions, we obtain a modified SIR epidemic model which is suitable for

modelling many diseases such as Morbilli disease (measles) and HBV. We present this model in

the next section.
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5 An SIR model with varying total population size
To integrate the different demographic states and the movement of individuals into the SIR epidemic

model, we assume the following additional assumptions:

• There is a recruitment rate 𝐴 > 0 corresponding to natural births and immigration.

• All people are born sensitively to the infection.

• There is a disease-related mortality rate (α > 0) in addition to the natural rate µ ≡ µ1 > 0,
where µ2 = µ1 + α is the general mortality rate.

S I R
S(t)I(t) I(t)A

μI(t) μR(t)μS(t) αI(t)

Figure I.7: Transfer diagram for an SIR model with varying total population and disease-caused

death.

Under these assumptions, the SIR epidemic model with variable demography and non-constant

population size is depicted in Figure I.7 with the following corresponding system of differential

equations [94]:
d𝑆 (𝑡) =

(
𝐴 − µ𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝐼 (𝑡)𝑆 (𝑡) − (µ + α + γ)𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − µ𝑅(𝑡)

)
d𝑡 .

(I.4)

Conceptually, the stability of an equilibrium 𝑥★ means that solutions starting sufficiently close

(nearby) to 𝑥★ remains close to the equilibrium 𝑥★ for all 𝑡 ≥ 0. An equilibrium is said to be

asymptotically stable if it is stable and if every solution with an initial value sufficiently close to

𝑥★ approaches 𝑥★ as 𝑡 → ∞. That is to say, solutions that start close enough not only remain

close enough but also eventually converge to the equilibrium. Therefore, asymptotic stability is a

stronger condition than simple stability because it requires that trajectories satisfy more restrictive

conditions. Moreover, the equilibrium 𝑥★ is said to be globally asymptotically stable if it is stable

and if the solutions for all initial values approach 𝑥★ as 𝑡 → ∞. Otherwise, the equilibrium 𝑥★ that

is not stable is said to be unstable. Instability of the equilibrium 𝑥★ means that there are solutions

starting arbitrarily close to 𝑥★ that do not approach it.

When studying the asymptotic behavior of epidemics, the main issue is to analyze the steady

states (equilibriums) of the model and their stability, which can mainly be determined by the basic

reproduction ratio. In (I.4), the basic reproduction number is expressed by R0 =
β𝐴

µ(µ+α+γ) which

is the threshold for an epidemic to persist or disappear. This model always has a disease-free

equilibrium 𝐸� =

(
𝐴
µ , 0, 0

)
. When R0 ≤ 1, the equilibrium 𝐸� is globally asymptotically stable in

Γ𝑆𝐼𝑅 =

{
(𝑆, 𝐼 , 𝑅) ∈ R3

+ | 𝑆 + 𝐼 + 𝑅 ≤ 𝐴

µ

}
.

Therefore, the disease will extinct after some period of time. When R0 > 1, the equilibrium 𝐸� is

unstable and there is an endemic equilibrium 𝐸~ =

(
µ+α+γ

β ,
µ
β (R0 − 1), γβ (R0 − 1)

)
of the system (I.4)

which is globally asymptotically stable; this means that the disease always remains in a population.

In the above-presented SIR model, it is supposed that the immunity received by recovery from

the disease is permanent. This is not always right, as there may be a gradual lack of immunity

with time. For example, the case of seasonal influenza. Temporary immunity can be described by

an SIR epidemic model in which a transfer rate from 𝑅 to 𝑆 is added. We present this epidemic

model in the next section.
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6 An SIR model with temporary immunity

The SIR epidemic model can be extended to the case of provisional immunity, where members of

the removed compartment may lack immunity over time and return to the susceptible class. This

extension is called the SIRS epidemic model. By denoting the rate of the loss of immunity by 𝑘, the

SIRS model can be depicted in Figure I.8 with the following corresponding system of differential

equations [69]:
d𝑆 (𝑡) =

(
𝐴 − µ𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡) + 𝑘𝑅(𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝐼 (𝑡)𝑆 (𝑡) − (µ + α + γ)𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − (µ + 𝑘)𝑅(𝑡)

)
d𝑡 .

(I.5)

Generally, for epidemic systems, there are different techniques for proving the global stability

of equilibria. One of the most commonly used methods is the Lyapunov
a
function which is a

scalar function that can be used to analyze the stability of an equilibrium point. We briefly state

Lyapunov’s theorem for the global stability of the equilibrium 𝑥★ (for detailed proof of Lyapunov’s

theorem see Theorem 4.2 of [52]).

S I R
S(t)I(t) I(t)A

I(t) R(t)S(t) I(t)

kR(t)

Figure I.8: Transfer diagram for an SIRS epidemic model with varying total population and disease-

caused death.

Theorem 6.1 (Lyapunov’s Stability Theorem). If a function V(𝑥) is globally positively definiteb
and radially unboundedc, and its time derivative is globally negative, ¤V(𝑥) < 0 for all 𝑥 ≠ 𝑥★, then the
equilibrium 𝑥★ is globally asymptotically stable.

If a function V(𝑥) exists that verifies the conditions of the last theorem, then this function is

called a Lyapunov stable. In Theorem 6.1, it is necessary to verify that the first derivative of the

Lyapunov function is strictly negative. However, we can show only the non positivity due to the

next theorem (more details, see corallary 4.2 of [52]).

Theorem 6.2 (Krasovkii-LaSalle Theorem). Let 𝑥★ be an equilibrium of the autonomous system
¤𝑥 = 𝑓 (𝑥). Assume that exists a continuously differentiable function V : R𝑛 → R such that

• V is positive definite on the entire space,

• V is radially unbounded,

• ¤V(𝑥) ≤ 0 for all 𝑥 ∈ R𝑛.

If the invariant set Γ𝑉 = {𝑥 ∈ R𝑛 | ¤𝑉 (𝑥) = 0} contains only the equilibrium 𝑥★, then 𝑥★ is globally
asymptotically stable.

It is very important to mention that there is no exact method to establish a Lyapunov function

which is often difficult and complicated in terms of calculation. However, if a Lyapunov function

a
Named after the Russian mathematician Aleksandr Mikhailovich Lyapunov.

b
Let V be a continuous scalar function, that is, V : R𝑛 ↦→ R. The function V is termed positive definite on the entire

space (global) if V(𝑥★) = 0 and V(𝑥) > 0 for 𝑥 ≠ 𝑥★.
c
A scalar function V(𝑥) such that V : R𝑛 → R is termed radially unboundedly if V(𝑥) → ∞ if | |𝑥 | | → ∞.
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is found, it can directly prove the global stability of the equilibrium. For the model (I.5), we have

that

d𝑁 (𝑡) =
(
𝐴 − µ𝑁 (𝑡) − α𝐼 (𝑡)

)
d𝑡 .

Hence, the total population size 𝑁 may vary in time and lim sup
𝑡→∞

𝑁 (𝑡) ≤ 𝐴
µ . Consequently, it is

sufficient to study the solutions in the positive invariant set

Γ𝑆𝐼𝑅𝑆 =

{
(𝑆, 𝐼 , 𝑅) ∈ R3

+ | 𝑆 + 𝐼 + 𝑅 ≤ 𝐴

µ

}
.

In our case, the basic reproduction number of the model is R0 =
β𝐴

µ(µ+α+γ) . According to the study

presented in [69], the model (I.5) has the disease-free equilibrium 𝐸� =

(
𝐴
µ , 0, 0

)
and the unique

endemic equilibrium 𝐸~ = (𝑆~, 𝐼~, 𝑅~), where

𝑆~ =
𝐴

µR0
,

𝐼~ =
µ(µ + 𝑘) (µ + α + γ) (R0 − 1)

β(γµ + (µ + 𝑘) (µ + α)) ,

𝑅~ =
µγ(µ + α + γ) (R0 − 1)
β(γµ + (µ + 𝑘) (µ + α)) .

By using the following Lyapunov function

V(𝑆, 𝐼 , 𝑅) = 0.5
((
𝑆 − 𝐴

µ

)
+ 𝐼 + 𝑅

)2
+ (α + 2µ)

β
𝐼 + (α + 2µ)

2γ
𝑅2,

the authors proved that if R0 ≤ 1, the disease-free equilibrium 𝐸� of (I.5) is globally asymptotically

stable in Γ𝑆𝐼𝑅𝑆 . When R0 > 1, they demonstrated that 𝐸~ is globally asymptotically stable in the

interior of Γ𝑆𝐼𝑅𝑆 by employing the following Lyapunov function

V(𝑆, 𝐼 , 𝑅) = 0.5
( (
𝑆 − 𝑆~

)
+

(
𝐼 − 𝐼~

)
+

(
𝑅 − 𝑅~

) )2

+ (α + 2µ)
β

(
𝐼 − 𝐼~ − 𝐼~ ln

𝐼

𝐼~

)
+ (α + 2µ)

2γ
(
𝑅 − 𝑅~

)2
.

In the above Kermack - McKendrick model and its improved versions, the mechanism of infection

is supposed to occur through direct contact between infectious and susceptible individuals. This

is often called horizontal transmission. Another type of the spread is the vertical transmission,

in which the infection is passed to a newborn directly from an infected mother (see Figure I.9).

Examples of diseases that can be transmitted vertically include HIV/AIDS, Chagas disease, syphilis,
rubella, and herpes simplex virus. Therefore, the consideration of dual transmission (horizontal

and vertical) is very necessary in some cases. The SIRS epidemic model that considering the said

hypothesis is presented in the following section.

Vertical transmission

Infectious mom Infected fetus or baby

Figure I.9: Illustration of the vertical transmission from an infected mother to a newborn.
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7 An SIRS model with vertical transmission

To model the vertical transmission mechanism of an epidemic, we assume that a fraction 𝑞 of

newborns in the infected population becomes infected at birth, and the remaining fraction 𝑝 = 1−𝑞
is susceptible. In this case, we define the following notations:

• 𝑏 × 𝑁 is the complete number of newborns with a natural birth rate 𝑏.

• 𝑞 × 𝑏 × 𝐼 is the number of newborns infected at birth.

• 𝑏 × 𝑁 − 𝑞 × 𝑏 × 𝐼 is the number of healthy but susceptible newborns.

S I R
S(t)I(t) I(t)

A

I(t) R(t)S(t) I(t)

kR(t)

b[S(t)+R(t)]

pbI(t) qbI(t)

Figure I.10: Transfer diagram for an SIRS epidemic model with vertical dissemination.

We can consider the demography and immigration motion by adding the positive rate 𝐴 of external

healthy persons entering the susceptible population and the mortality rate µ. In Figure I.10, we

illustrate the spread process of an epidemic with horizontal and vertical dissemination. Then, the

resulting system is described by the following system of ordinary differential equations [173]:
d𝑆 (𝑡) =

(
𝐴 + 𝑏

(
𝑆 (𝑡) + 𝑅(𝑡)

)
+ 𝑝𝑏𝐼 (𝑡) − µ𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡) + 𝑘𝑅(𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝐼 (𝑡)𝑆 (𝑡) + 𝑞𝑏𝐼 (𝑡) − (µ + α + γ)𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − (µ + 𝑘)𝑅(𝑡)

)
d𝑡 .

(I.6)

In this model, the basic reproduction number is expressed by R0 =
𝛽𝐴

(µ−𝑏) (µ2+γ−𝑞𝑏) , where µ > 𝑏 and

µ2 = µ + α. As mentioned earlier, R0 is the threshold that determines whether the disease will die

out or persist. When R0 ≤ 1, there always exists a disease-free equilibrium 𝐸� =

(
𝐴

µ−𝑏 , 0, 0
)
which

is globally asymptotically stable. If R0 > 1, 𝐸� is unstable and there is an endemic equilibrium

𝐸~ = (𝑆~, 𝐼~, 𝑅~) where

𝑆~ =
µ2 + γ − 𝑞𝑏

β
,

𝐼~ =
(µ + 𝑘) (µ − 𝑏) (µ2 + γ − 𝑞𝑏) (R0 − 1)
β((µ − 𝑏)γ + (µ + 𝑘) (µ2 − 𝑞𝑏))

,

𝑅~ =
γ𝐼~

(µ + 𝑘) ,

which is globally asymptotically stable under a sufficient condition.

The SIRS model (I.6) integrates temporal immunity and vertical transmission is widely used to

model many epidemics. But, for some diseases with bacterial agents such as meningitis, plague,
and venereal diseases, the cure cannot generate immunity for a long time. Infected people can

recover after certain treatments and return directly to the susceptible class due to the transient

antibody [73]. By taking this new hypothesis into account in the model (I.6), we obtain a general

SIRS model that considers different periods of immunity. We present this epidemic model in the

following section.
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8 An SIRS model with vertical transmission and various period of
immunity

To approach the reality, the basic SIRS epidemic model will be enriched with the hypotheses of

vertical transmission and transfer from infected to susceptible individuals. We assume that the

recovery cannot produce immunity for a long time and the infected individuals may recover after

some treatments and therapies and then go back directly to the susceptible compartment with a

positive rate γ1 [127]. Considering this new hypothesis, in Figure I.11, we give the transfer diagram

for the general version of SIRS epidemic model. Thus, we get the following system of ODEs [58]:
d𝑆 (𝑡) =

(
𝐴 + 𝑏

(
𝑆 (𝑡) + 𝐼 (𝑡)

)
+ 𝑝𝑏𝐼 (𝑡) − µ𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡) + γ1𝐼 (𝑡) + 𝑘𝑅(𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝐼 (𝑡)𝑆 (𝑡) + 𝑞𝑏𝐼 (𝑡) − (µ + α + γ1 + γ2)𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
γ2𝐼 (𝑡) − (µ + 𝑘)𝑅(𝑡)

)
d𝑡 .

(I.7)

S I R
S(t)I(t) I(t)A

 I(t) R(t)S(t)

kR(t)

b[S(t)+R(t)]

pbI(t) qbI(t)

I(t)

2

1

2

Figure I.11: Transfer diagram for an SIRS epidemic model with vertical transmission and various

period of immunity.

According to the theory in [173, 73], the basic reproduction number of system (I.7) is

R0 =
β𝐴

(µ − 𝑏) (µ2 + γ1 + γ2 − 𝑞𝑏)
.

If R0 ≤ 1, the deterministic model (I.7) has only the disease-free equilibrium 𝐸� =

(
𝐴

µ−𝑏 , 0, 0
)
, which

is asymptotically stable in Γ𝑆𝐼𝑅𝑆 . When R0 > 1, 𝐸� becomes unstable and there exists a globally

asymptotically stable endemic equilibrium 𝐸~ = (𝑆~, 𝐼~, 𝑅~) such that

𝑆~ =
(µ2 + γ1 + γ2 − 𝑞𝑏)

β
,

𝐼~ =
(R0 − 1) (µ + 𝑘) (µ − 𝑏) (µ2 + γ1 + γ2 − 𝑞𝑏)

β(γ2(µ − 𝑏) + (µ + 𝑘) (µ2 − 𝑞𝑏))
,

𝑅~ =
γ2𝐼

∗

µ + 𝑘 .

As mentioned before, the incidence rate is the number of new infected situations per population

in a given time phase. In many previous epidemic models, the bilinear incidence rate is frequently

used (see e.g. [3, 71, 72]). However, there exist many forms of nonlinear incidence rate and each

form presents some advantages as the following examples:

• 𝑓 (𝑆, 𝐼 ) =
(
β − β1𝐼

𝑣+𝐼 𝑆𝐼
)
, (β > β1, 𝑣 > 0) [90];

• 𝑓 (𝑆, 𝐼 ) = β𝑆𝐼
1+𝑘𝐼𝑝 , (𝑘 > 0, 0 ≤ 𝑝 ≤ 1) [68];

• 𝑓 (𝑆, 𝐼 ) = β𝑆𝐼
1+𝑘1𝐼+𝑘2𝑆

, (𝑘1 > 0, 𝑘2 ≥ 0) [50];

• 𝑓 (𝑆, 𝐼 ) = β𝑆𝑢 𝐼
1+𝑆𝑣 , (𝑢 ≥ 𝑣) [138].
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There have been many mathematical models [64, 65, 66, 89, 117] committed to studying the impacts

of nonlinear transmission on the propagation of a disease. As a modified form, we can consider

the following general functional response:

𝑓 (𝑆, 𝐼 ) = β𝑆𝐼

1 + α1𝑆 + α2𝐼 + α3𝑆𝐼
, (I.8)

where α1, α2, α3 ≥ 0. It is necessary to mention that 1 + α1𝑆 + α2𝐼 + α3𝑆𝐼 is a general form which

represents mutual interference between 𝑆 and 𝐼 . In particular cases:

• when α1 = α2 = α3 = 0, 𝑓 (𝑆, 𝐼 ) becomes a bilinear mass-action function response (Namely,

type I Holling functional response) [90];

• when α2 = α3 = 0, 𝑓 (𝑆, 𝐼 ) becomes a saturated incidence rate (Namely, Holling type II
functional response) [68];

• when α3 = 0, 𝑓 (𝑆, 𝐼 ) becomes a Beddington-DeAnglis functional response (Namely, modified

type II Holling functional response) [50];

• when α3 = α1α2, 𝑓 (𝑆, 𝐼 ) becomes a Crowley-Martin functional response introduced in [138].

By considering the incidence (I.8) into the model (I.7), we obtain the following general SIRS

epdiemic model:
d𝑆 (𝑡) =

(
𝐴 + 𝑏 (𝑆 (𝑡) + 𝑅(𝑡)) − β𝑆 (𝑡 )𝐼 (𝑡 )

𝜓 (𝑆,𝐼 ) − µ𝑆 (𝑡) + 𝑝𝑏𝐼 (𝑡) + γ1𝐼 (𝑡) + 𝑘𝑅(𝑡)
)
d𝑡,

d𝐼 (𝑡) =
(
β𝑆 (𝑡 )𝐼 (𝑡 )
𝜓 (𝑆,𝐼 ) + 𝑞𝑏𝐼 (𝑡) − (µ2 + γ1 + γ2)𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
γ2𝐼 (𝑡) − (µ + 𝑘)𝑅(𝑡)

)
d𝑡,

(I.9)

where 𝜓 (𝑆, 𝐼 ) = 1 +α1𝑆 +α2𝐼 +α3𝑆𝐼 . The basic reproduction number of system (I.9) can be presented

as follows:

R0 =
β𝐴(

(µ − 𝑏) + α1𝐴
)
(µ2 + γ1 + γ2 − 𝑞𝑏)

.

As a real example, Hepatitis B remained enormous defiance and a great global health issue caused

by the Hepatitis B virus (HBV) [134]. Chronic HBV can be transmitted by sexual contact, through

the touch, by impregnation with polluted blood, or by the direct transmission of Hepatitis B from

the mother to a fetus during pregnancy (vertical transmission) [174]. In the next section, we use

the SIR epidemic system to model the spread of the said virus under the vaccination strategy.

9 The Hepatitis B epidemic model with successful vaccination
According to the recent statistics of the world health organization (WHO) [143], about 350 million

people worldwide have been infected and carrying HBV. This serious infection is responsible for

approximately 600,000 deaths each year [102]. Because of the high severity of HBV infection and

the large number of deaths associated with it, it is compulsory to improve our control of this virus.

Mathematical models are a vigorous tool to simulate and control the spread of the HBV infection.

There exist many previous interesting works committed to studying Hepatitis B transmission. For

example, Anderson and May [5] analyzed a straightforward mathematical model for illustrating the

role of carrier individuals on the spread of HBV. In [106, 55], the authors developed the impact

of vaccination and other controlling measures of HBV outbreak. They showed that the booster

vaccine of Hepatitis B is very necessary and useful. By denoting the successful vaccination rate

by θ, Khan et al. [56] formulated the characteristics of HBV disease transmission and proposed

the following deterministic SIR model:
d𝑆 (𝑡) =

(
𝐴 − β𝑆 (𝑡)𝐼 (𝑡) − (µ + θ)𝑆 (𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ + 𝑟 + δ)𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
δ𝐼 (𝑡) + θ𝑆 (𝑡) − µ𝑅(𝑡)

)
d𝑡 .

(I.10)
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Figure I.12: Transfer diagram of Hepatitis B epidemic model.

The following region Γ𝐻𝐵𝑉 =

{
(𝑆, 𝐼 , 𝑅) ∈ R3

+ : 𝑆 + 𝐼 + 𝑅 ≤ 𝐴
µ

}
is almost surely positively invariant

by the system (I.10). If R0 =
β𝐴

(µ+θ) (µ+𝑟+δ) ≤ 1, then for any initial condition (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ Γ𝐻𝐵𝑉

the disease-free equilibrium 𝐸� = 𝐸�(𝑆0, 0, 𝑅0) =
(
𝐴

µ + θ
, 0,

𝐴θ

µ(µ + θ)

)
is globally asymptotically stable.

If R0 > 1, then there exists a globally asymptotically stable the infected endemic equilibrium

𝐸~ = (𝑆~, 𝐼~, 𝑅~) such that

𝑆~ =
µ + 𝑟 + δ

β
, 𝐼~ = (µ + θ) (R0 − 1) and 𝑅~ =

θ(µ + 𝑟 + δ) + βδ(µ + θ) (R0 − 1)
βµ

.

One intrusion method to mitigate the spread of infectious diseases is to quarantine some infections,

in order to control the dissemination of the infection to susceptibles. The word quarantine origi-

nally corresponded to a period of forty days, which represent the length of time that arriving ships

suspected of plague infection were constrained from intercourse with the shore in Mediterranean

ports in the 15-19th centuries [41]. The word quarantine has evolved to mean forced isolation

or stoppage of interactions with others. Over many centuries, quarantine has been implemented

to reduce the transmission of human diseases like plague, cholera, typhus, yellow fever, small-
pox, Leprosy, diphtheria, tuberculosis, measles, mumps, Ebola and Covid-19. In the following two

sections, we examine the effects of quarantine in two endemic models for infectious diseases.

10 An epidemic model with permanent immunity and quarantine
strategy

The study of infectious diseases has long been a subject where epidemiological issues are combined

with financial and social problems. The rapid spread of COVID-19 these days shows that humanity

stills suffer from epidemics that may lead to the collapse of medical and economic systems. By

isolating infected individuals and quarantining the susceptible population at home, many countries

have basically controlled the outbreak of COVID-19 [133, 54]. In order to analyze the impact

of this strategy on the spread of epidemics and to predict their future behavior, we use different

mathematical formulations according to their characteristics [118, 129]. In this section, we consider

an SIQR epidemic model in the form of ordinary differential equations. These ODEs describe the

evolution of susceptible 𝑆 (𝑡), infected 𝐼 (𝑡), isolated 𝑄 (𝑡) and recovered 𝑅(𝑡) individuals as time

functions. The rates of change and the interactions between different population classes in our

case are expressed by the following deterministic model [41]:
d𝑆 (𝑡) =

(
𝐴 − µ𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ + γ + δ + 𝑟2)𝐼 (𝑡)

)
d𝑡,

d𝑄 (𝑡) =
(
δ𝐼 (𝑡) − (µ + 𝑘 + 𝑟3)𝑄 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
𝛾𝐼 (𝑡) + 𝑘𝑄 (𝑡) − µ𝑅(𝑡)

)
d𝑡,

(I.11)

where 𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡) and 𝑅(𝑡) denote the numbers of susceptible, infected but not quarantined,

quarantined infected, and removed individuals at time 𝑡 , respectively. The schematic flow diagram

of the model (I.11) is illustrated in Figure I.13. The parameters can be summarized in the following

list:
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• 𝐴: the influx of people into the susceptible person compartment.

• µ: the natural death rate of the compartments 𝑆 , 𝐼 , 𝑄 and 𝑅.

• β: the transmission coefficient from compartment 𝑆 to compartment 𝐼 .

• γ: the recovery rate of infectious individuals.

• δ: is the isolation rate from 𝐼 to 𝑄 .

• 𝑘 : the recovery rate of isolated individuals.

• 𝑟2: the disease-linked death rate of infectious individuals.

• 𝑟3: the disease-linked death rate of isolated individuals.

S I

R

S(t)I(t)

I(t)

A

I(t)

R(t)

S(t) r I(t)

Q

kQ(t)

Q(t)r Q(t)

δI(
t)

2

3

Figure I.13: Transfer diagram of SIQR epidemic model.

Consistently, we assume that all parameters are positive constants. In this model, the total popu-

lation 𝑁 (𝑡) of the model varies, because vulnerable parts of the population can be received through

birth or immigrants, and individuals will die of natural and epidemic deaths. As in the previous

epidemic models, the differential equation for 𝑁 implies that solution (I.11) starting in the positive

orthant R4
+ remain in the subset

ΓSIQR =

{
(𝑆, 𝐼 ,𝑄, 𝑅) ∈ R+4 : 𝑆 + 𝐼 +𝑄 + 𝑅 ≤ 𝐴

µ

}
.

Then, it suffices to consider the solutions in the region ΓSIQR. As before, the initial value problem

is well-posed both mathematically and biologically in ΓSIQR. The quarantine reproduction number

of system (I.11) is R0 =
β𝐴

µ(µ+δ+γ+𝑟2) . The deterministic SIQR model (I.11) always has the disease-free

equilibrium 𝐸�(𝑆0, 0, 0, 0) = (𝐴µ , 0, 0, 0). If R0 > 1, then ΓSIQR contains a unique positive endemic

equilibrium 𝐸~ = (𝑆~, 𝐼~, 𝑄~, 𝑅~), where

(𝑆~, 𝐼~, 𝑄~, 𝑅~) =
(
𝐴

µ𝑅0
,
µ(𝑅0 − 1)

β
,

δ𝐼 ∗

𝑘 + µ + 𝑟3
,

(
γ + 𝑘δ

𝑘 + µ + 𝑟3

)
𝑅0 − 1
β

)
.

The following two results describe the behavior of solutions of (I.11) in the invariant set ΓSIQR.

• If R0 ≤ 1, then ΓSIQR is an asymptotic stability region for the disease-free equilibrium 𝐸�.

• If R0 > 1, then the region ΓSIQR − {(𝑆, 𝐼 ,𝑄, 𝑅) | 𝐼 = 0} is an asymptotic stability region for the

endemic equilibrium 𝐸~.
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11 An epidemic model with no full immunity and quarantine strat-
egy

Lately, due to the passive effect of epidemics on population growth, controlling the dynamic be-

havior of these diseases and predicting what will happen has become a remarkable research topic.

Hence, the establishment of mathematical formulations has become an important method to study

the properties of epidemics. For more contagious diseases such as smallpox, measles, plague,

mumps, and Ebola, the most efficient methods of intervention are to quarantine those who have

already been infected, in order to reduce transmissions to susceptible individuals [120]. Moreover,

in most of the previously mentioned epidemics, the infection does not grant immunity, and sus-

ceptible individuals become infected, and then some infected ones remain in class 𝐼 throughout the

period of infection before returning to the susceptible class, while other infected individuals are

transferred to the quarantine class Q and they stay there until they are no longer contagious, at

which time they return to 𝑆 [120, 119, 121]. This process is modeled by an epidemic system called

an SIQS model since one typical pathway is through 𝑆 , then 𝐼 , then 𝑄 , and then back to 𝑆 , as

shown in Figure I.14.

S I Q
S(t)I(t) I(t)A

I(t)S(t)  I(t) Q(t) Q(t)

I(t)

kQ(t)

2 3

Figure I.14: Transfer diagram of SIS epidemic model with isolation.

The differential equations for this SIQS model are [153]:
d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡) + γ𝐼 (𝑡) + 𝑘𝑄 (𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝐼 (𝑡)𝑆 (𝑡) − (µ1 + α2 + δ + γ)𝐼 (𝑡)

)
d𝑡,

d𝑄 (𝑡) =
(
δ𝐼 (𝑡) − (µ1 + α3 + 𝑘)𝑄 (𝑡)

)
d𝑡,

(I.12)

where the parameters appearing in this system are described as follow:

• 𝐴 is the recruitment rate of the susceptible individuals corresponding to new births.

• µ1 is the natural death rate.

• δ is the isolation rate.

• 𝑟2 is the disease-related mortality rate.

• 𝑟3 is the death rate associated with the disease under isolation intervention. For simplicity,

we denote µ2 = µ1 + α2 and µ3 = µ1 + α3 as a general mortality rates.

• γ and 𝑘 are the rates which individuals recover and return to 𝑆 from 𝐼 and 𝑄 , respectively.

• β represents the transmission rate.

All parameters are usually assumed to be positive. The general transfer diagram for the model (I.12)

is illustrated in Figure I.14. Herbert et al. [41] proved that the basic reproduction number of the

deterministic model (I.12) is expressed by R0 =
β𝐴

µ1 (µ2+δ+γ) . This parameter is an essential quantity

to predict whether a disease will persist or not. If R0 ≤ 1, the model (I.12) has only the disease-

free equilibrium 𝐸� = (𝐴/µ1, 0, 0) which is globally asymptotically stable, and if R0 > 1, 𝐸� becomes

unstable and there exists a global asymptotically stable endemic equilibrium 𝐸~ = (𝑆~, 𝐼~, 𝑄~), where

𝑆~ =
𝐴

µ1R0
, 𝐼~ =

𝐴(1 − 1/R0)
µ2(1 + δ/(µ3 + 𝑘))

, and 𝑄~ =
δ𝐼~

(µ3 + 𝑘)
.

18



Chapter II
Mathematical Preliminaries

A𝔟𝔰𝔱𝔯𝔞𝔠𝔱

M
 probability has become an important tool for the formulation and the analysis of

biological models which take into account the random aspect. This chapter presents some

concepts of stochastic calculus that will be used in this thesis. Instead of giving a detailed theory,

which can be found elsewhere (for example [93, 103, 51, 99, 104]), we have tried to collect only the

definitions and results necessary to promote a full understanding of the main results.

1 Stochastic processes and their characteristics
The stochastic process is a mathematical object allowing to model the occurrence, at each time after

a given initial moment, of a random and irregular phenomenon. The randomness and obvious lack

of predictability are taken into account by introducing a measurable space (Ω, F ) on which a

probability measure P can be placed, where Ω is a sample description space and F is a σ-algebra.

Conceptually, a collection {X𝑡 }𝑡 ∈𝐼 b of R𝑛-valued random variables is called a stochastic process

with index set 𝐼 and state space R𝑛 . That is, for each time 𝑡 ≥ 0, 𝜔 ↦→ X𝑡 (𝜔) is a measurable

function from Ω to R𝑛 . In this chapter and for the purposes of this thesis, we let the parameter set

𝐼 be R+ = [0,∞). For a fixed sample point 𝜔 ∈ Ω, the mapping 𝑡 ↦→ X𝑡 (𝜔) ∈ R𝑛; (𝑡 ≥ 0) is the sample

trajectory of the process X associated with 𝜔 . By abuse of notation, we often write a stochastic

process X ≡ {X𝑡 (𝜔)}𝑡 ≥0 as {X𝑡 } or X(·). We therefore present the following definitions:

Definition 1.1. Let X be a R𝑛-valued stochastic process defined on a probability space (Ω, F , P).
This process is said to be

• Continuous if for almost 𝜔 ∈ Ω, the function 𝑡 ↦→ X𝑡 (𝜔) is continuous on 𝑡 ≥ 0. Hence, the

process X is continuous if for almost all its paths are continuous. Furthermore, it is right

continuous (resp. left continuous) if 𝑡 ↦→ X𝑡 (𝜔) is right continuous (resp. left continuous) for

almost 𝜔 ∈ Ω and every 𝑡 ≥ 0.

• Cadlagc (right continuous and left limit) if it is right continuous and for almost all 𝜔 ∈ Ω,
the left limit lim

𝑠→𝑡
𝑠<𝑡

X𝑠 (𝜔) exists and is finite for all 𝑡 > 0.

• Increasing if X𝑠 ≤ X𝑡 for any 𝑠 < 𝑡 . Thus, a stochastic process is increasing if all its paths

are increasing.

b
The time parameter 𝑡 may be either discrete or continuous, but in this thesis we will consider continuous-time

stochastic processes.

c
The ambiguous word "cadlag" is a French acronym for "continu à droite, limite à gauche" which simply means the

right-continuous with left limits.
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• Integrable if, for all 𝑡 ≥ 0, X𝑡 is an integrable random variable. Moreover, it is square-

integrable if E|X𝑡 |2 < ∞ for every 𝑡 ≥ 0.

• Measurable if the stochastic process regarded as a function of two variables (𝑡, 𝜔) from R+×Ω
to R𝑛 is measurable with respect to the σ-algebra B(R+) ⊗ F a

, where B(R+) is the family of

all Borel subsets of R+.

• Gaussian if all its finite-dimensional distributions
b
are normal.

For two R𝑛-valued stochastic processes X and Y, there exist two different concepts of equality:

Definition 1.2. Y is a version or modification of X if, for every 𝑡 ≥ 0, we have X𝑡 = Y𝑡 almost surely

(for abbreviation, we write a.s.). That is to say, for each time 𝑡 ≥ 0, P
(
{𝜔 : X𝑡 (𝜔) = Y𝑡 (𝜔)}

)
= 1.

Definition 1.3. X and Y are said to be stochastically equivalent or indistinguishable if for almost

all 𝜔 ∈ Ω, X𝑡 (𝜔) = Y𝑡 (𝜔) for all 𝑡 ≥ 0. That is, P
(
{𝜔 : X𝑡 (𝜔) = Y𝑡 (𝜔) for all 𝑡 ≥ 0}

)
= 1. This is the

same as saying that they almost surely have the same sample paths.

2 Filtrations of F

In the theory of stochastic calculus, filtrations are completely ordered collections of subsets that

are used to model the information which is available at a given point of time. Therefore, it play

an important role in the formalization of random processes. More formally, a filtration is a family

{F𝑡 }𝑡 ≥0 of increasing sub-σ-algebras of F (i.e, F𝑡 ⊂ F𝑠 ⊂ F for all 0 ≤ 𝑡 < 𝑠 < ∞). To further

elaborate this notion, we let F𝑠 and F𝑡 be two σ-algebras on (Ω, F , P), then F𝑠 ⊂ F𝑡 if and only if

F𝑡 holds more information about the process than does F𝑠 .
Given a stochastic process X, the elementary choice of a filtration is its natural (canonical)

version, i.e., F X
𝑡 , σ

{
X𝑠 , 0 ≤ 𝑠 ≤ 𝑡

}
. That is to say, the smallest σ-algebra with respect to which

X𝑠 is measurable for every 𝑠 ∈ [0, 𝑡]. As an interpretation, F X
𝑡 indicates all the information that

can be extracted from the observation of X trajectories between 0 and 𝑡 . Precisely, the fact that

𝐴 ∈ F X
𝑡 means that by time 𝑡 , an observer of X knows whether or not 𝐴 has occurred. Note that

F∞ = σ
( ⋃
𝑡 ≥0

F𝑡
)
denotes the σ-algebra generated by

⋃
𝑡 ≥0

F𝑡 that encodes the available information over

all time 𝑡 .

A filtration {F𝑡 }𝑡 ≥0 is said to be right continuous if F𝑡 =
⋂
𝑠>𝑡

F𝑠 for all 𝑡 ≥ 0. Roughly speaking,

the right continuity of {F𝑡 }𝑡 ≥0 means that if the filtration {F𝑡 }𝑡 ≥0 encodes the information available

as time goes by, then F𝑡+ =
⋂
𝜖>0

F𝑡+𝜖 allows an infinitesimal vision into the future at each 𝑡 ∈ [0,∞).

A probability space (Ω, F , P) equipped with a filtration {F𝑡 }𝑡 ≥0 is called a filtered probability

space and expressed by (Ω, F , {F𝑡 }𝑡 ≥0, P). From now on, in this thesis, we shall always work on a

given filtered probability space (Ω, F , {F𝑡 }𝑡 ≥0, P) such that {F𝑡 }𝑡 ≥0 satisfying the usual conditions

(i.e., it is right continuous and F0 contains all P-nullc sets). Of course, the completion of the

filtration means that if an event is impossible, this impossibility is already known on the date 0.
To translate mathematically the non-anticipating property of a stochastic process, we propose

the following definition.

Definition 2.1. A stochastic process {X𝑡 } is said to be adaptedd with respect to the information

structure {F𝑡 }𝑡 ≥0 if, for each 𝑡 ≥ 0, X𝑡 is an {F𝑡 }-measurable random variable.

a
Let (Ω1, F1) and (Ω2, F2) be two measurable spaces. The σ-algebra for the corresponding product space Ω1 × Ω2 is

called the product σ-algebra and is defined by F1 ⊗ F2 = σ({𝐵1 × 𝐵2 : 𝐵1 ∈ F1, 𝐵2 ∈ F1}).
b
For a stochastic process X defined on a probability space (Ω, F , P), the joint distribution of a random vector

(X(𝑡1), . . . ,X(𝑡𝑝 )) where 𝑝 ≥ 1 and 0 ≤ 𝑡1 < · · · < 𝑡𝑝 , is called a finite-dimensional distribution of the process X.

c
A set 𝐻 ∈ Ω is said to be P-null if there exists a set �̃� ∈ F such that 𝐻 ⊂ �̃� and P(�̃� ) = 0.

d
An adapted process is also called a non-anticipating process.
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An {F𝑡 }-adapted process is, therefore, a process whose value at any date 𝑡 is revealed by the

information carried by F𝑡 . Analogously, the stochastic process X is adapted to {F𝑡 } if, for every

𝑡 ≥ 0, σ(X𝑠 , 0 ≤ 𝑠 ≤ 𝑡) ⊆ F𝑡 . In this case, for any 𝑡 ≥ 0, X𝑡 is known at time 𝑡 when the information

loaded by F𝑡 is available and known. Furthermore, every process X is adapted to its natural

filtration {F X
𝑡 }.

Take into account the dynamic nature of the stochastic process with respect to filtration {F𝑡 }𝑡 ≥0,

the notion of progressive measurability is required. Precisely, if we have a stochastic process, the

following definition is appropriate.

Definition 2.2. A stochastic process X is said to be {F𝑡 }-progressively measurable if for every

𝑇 ≥ 0, {X(𝑡)}0≤𝑡 ≤𝑇 regarded as function of (𝑡, 𝜔) from [0,𝑇 ] ×Ω to R𝑛 is B([0,𝑇 ]) ⊗ F𝑇 -measurable,

where B([0,𝑇 ]) is the family of all Borel subsets of [0,𝑇 ].

Now, we introduce the concept of a predictable process which is a stochastic process whose value

is knowable at an earlier time and the information about the process behavior is left-continuous.

The notion of predictability is more facilely understood in the discrete-time case where X𝑘 is F𝑘-
predictable if X𝑘 is F𝑘−1-measurable. We mention that every predictable process is adapted, but not

conversely. For the continuous-time case, we let S denotes the smallest σ-algebra on R+ × Ω with

respect to which every left continuous adapted process is measurable, then the following definition

is adequate.

Definition 2.3. A continuous-time stochastic process X is said to be predictablea if the process

regarded as a function of (𝑡, 𝜔) is S-measurable.

3 Stopping times
In the last two subsections, we have introduced the required definitions of a stochastic process

and filtration. Since we oftentimes monitor the stochastic processes at a random time, an addi-

tional concept about stopping time is required. Typically, we suppose that the stopping time is

random variable which whose value is interpreted as the time at which a given stochastic process

offers a specific behavior. As mentioned earlier, we are working on a filtered probability space

(Ω, F , {F𝑡 }𝑡 ≥0, P).

Definition 3.1. A random variable 𝜏 : Ω → [0,∞] (it can take the value ∞) is termed an {F𝑡 }-
stopping time if {𝜏 ≤ 𝑡} , {𝜔 : 𝜏 (𝜔) ≤ 𝑡} ∈ F𝑡 for every 𝑡 ≥ 0.

More generally, we can consider the stopping time as the first time that an adapted stochastic

process reaches a certain value. we clarify this idea in the following theorem.

Theorem 3.2 (Hitting times). Let X be an R𝑛-valued cadlag {F𝑡 }-adapted process. Let also O an
open subset of R𝑛 and define

𝜏 = inf{𝑡 ≥ 0 : X𝑡 ∉ O},

with the hypothesis that the inf ∅ = ∞. Then, 𝜏 is an {F𝑡 }-stopping time. It indicates the time of the
first exist from O.

In addition, let 𝜅 denotes another {F𝑡 }-stopping time, then 𝜏𝜅 = inf{𝑡 ≥ 𝜅 : X𝑡 ∉ O} is an

{F𝑡 }-stopping time which is the first time of the exit from O after 𝜅.

We indicate that any random time equal to a non-negative constant is a stopping time. Now,

we briefly present some classic properties of stopping times.

Lemma 3.3. Let 𝜏 be a stopping time, the set

F𝜏 =
{
𝐴 ∈ F : 𝐴 ∩ {𝜔 : 𝜏 (𝜔) ≤ 𝑡} ∈ F𝑡 for all 𝑡 ≥ 0

}
⊂ F

is actually a sub-σ-algebra of F and 𝜏 is F𝜏 -measurable. Furthermore, for any {F𝑡 }-stopping times 𝜏 ,
𝜗 , and 𝐴 ∈ F𝜗 , we have 𝐴 ∩ {𝜗 ≤ 𝜏} ∈ F𝜏 . Particularly, if 𝜗 ≤ 𝜏 on Ω, we get F𝜗 ⊆ F𝜏 .

a
One can conclude that: left-continuous + non-anticipating ⇒ predictable.
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Lemma 3.4. Let X denote a progressively measurable process and let 𝜏 be a stopping time, then
X𝜏 , {X𝜏∧𝑡 }𝑡 ≥0 is termed a stopping process of X.

Eventually, we introduce some basic operations on stopping times such as taking the maximum

or minimum of two times or, for right-continuous filtrations, taking the limit of a sequence of

times.

Lemma 3.5. • If 𝜃 and 𝜗 are stopping times, then 𝜃 ∨ 𝜗 and 𝜃 ∧ 𝜗 are also stopping times.

• Let 𝜃𝑛 be a sequence of stopping times converging to a limit 𝜃 . Assume that for each 𝜔 ∈ Ω, we
have 𝜃𝑛 (𝜔) ≤ 𝜃 (𝜔) for large enough 𝑛. Then, 𝜃 is a stopping time.

• If 𝜃𝑛 is a sequence of stopping times, then sup
𝑛

𝜃𝑛 is a stopping time.

• Let (𝜃𝑛)𝑛∈N be a sequence of stopping times and the filtration is right-continuous, then lim inf
𝑛→∞

𝜃𝑛

and lim sup
𝑛→∞

𝜃𝑛 are stopping times.

4 Continuous-time martingale
Now, we turn our attention to continuous-time martingales which are stochastic processes that

remain the same on the average (i.e. the expected future value conditional on the present is

equal to the current value). Notionally, an {F𝑡 }-adapted integrable process M ≡ {M𝑡 }𝑡 ≥0 is called

continuous-time martingalea with respect to {F𝑡 }𝑡 ≥0 if E(M𝑡 |F𝑠) = M𝑠
b
a.s. for all 0 ≤ 𝑠 < 𝑡 < ∞.

If in the martingale property E(M𝑡 |F𝑠) = M𝑠 "=" is replaced by "≤" (resp. "≥"), then M is called

a supermartingale (resp. submartingale). Plainly, M is a submartingale if and only if −M is a

supermartingale, and is a martingale if it is both a submartingale and a supermartingale.

In the following, we shall denote by F∞ the 𝜎-algebra
∨
𝑡 ≥0 F𝑡 (the limit variable M∞ is measur-

able with respect to F∞), and we want to know whether the process indexed by R+ ∪ {+∞} obtained

by adjoining M∞ and F∞ is still a (sub)martingale. The corresponding result is especially intersting

for martinglaes.

Theorem 4.1. For a right-continuous martingale M𝑡 , 𝑡 ∈ R+, the following three conditions are
equivalent,

• lim
𝑡→∞

M𝑡 exists in the 𝐿1-sense;

• there existes a random variable M∞ in 𝐿1, such that M𝑡 = E(M∞ |F𝑡 );

• the family {M𝑡 , 𝑡 ∈ R+} is uniformly integrable.

If these conditions hold, then M∞ = lim
𝑡→∞

M𝑡 a.s. Moreover, if for some 𝑝 > 1, the martingale

is bounded in 𝐿𝑝 , i.e. sup
𝑡

E( |M𝑡 |𝑝) < ∞, then the equivalent conditions above are satisfied and the

convergence holds in the 𝐿𝑝-sense.

We now present the optional stopping theorem. If M is a uniformly integrable martingale, the

M∞ exists a.s. and if 𝜏 is a stopping time, we define M𝜏 on {𝜏 = ∞} by setting M𝜏 = M∞.

Theorem 4.2. If M is a right-continuous martingale and 𝜃 , 𝜗 are two bounded stopping times with
𝜃 ≤ 𝜗 ,

M𝜃 = E(M𝜗 |F𝜃 ) a.s.

If M is uniformly integrable, the family {M𝜃 } where 𝜃 runs through the set of all stopping times is
uniformly integrable and if 𝜃 ≤ 𝜗

M𝜃 = E(M𝜗 |F𝜃 ) = E(M∞ |F𝜃 ) a.s.
a
Notice that the definition of martingale makes sense only when the underlying filtration {F𝑡 }𝑡 ≥0 and the probability

measure P have been specified.

b
Clearly, the martingale M has constant expectation: ∀𝑡 ≥ 0, E(M𝑡 ) = E(M0).
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Remark 4.3. The two statements are actually the same, as a martingale defined on an interval

which is closed on the right is uniformly integrable.

In order to understand properly the role of martingales, we present some of their classes. One

such category is that continuous, square-integrable martingales (i.e. E|M𝑡 |2 < ∞ for every 𝑡 ≥ 0).
Hence, we give the following result.

Proposition 4.4. Let M be a square-integrable continuous martingale. Then, there exist a unique
continuous integrable increasing process denoted by {〈M,M〉𝑡 } such that {M2

𝑡 − 〈M,M〉𝑡 } is a
continuous martingale vanishing at 𝑡 = 0.

We mention that the process {〈M,M〉𝑡 } is called the quadratic variation of M. Specifically,

for any bounded stopping time 𝜏 , we have EM2
𝜏 = E〈M,M〉𝜏 . Now, let M̃ ≡ {M̃𝑡 }𝑡 ≥0 be another

square-integrable continuous martingale, then

〈M, M̃〉𝑡 = 0.5
(
〈M + M̃,M + M̃〉𝑡 − 〈M,M〉𝑡 − 〈M̃, M̃〉𝑡

)
.

We call this process the joint quadratic variation of M and M̃. More generally, {〈M, M̃〉𝑡 } is

the unique continuous integrable process of finite variation such that {M𝑡M̃𝑡 − 〈M, M̃〉𝑡 } is a

continuous martingale. Identically, for any bounded stopping time 𝜏 , EM𝜏M̃𝜏 = E〈M, M̃〉𝜏 .
For the purpose of this thesis, we need to generalize the martingale concept to that of local

martingales. Extensively, localization is a method of extending a given property to a larger class

of processes.

Definition 4.5. Let P ≡ {P𝑡 }𝑡 ≥0 be a right continuous adapted process. Then, P is a local
martingale if there exists a non-decreasing sequence of stopping times 𝜏𝑘 ↑ ∞ a.s. such that every

{P𝜏𝑘∧𝑡 }𝑡 ≥0 is a martingale.

It should be pointed out that every martingale is a local martingale, but not the other way

around. Likewise, let P and P̃ be two continuous local martingales, then their joint variation

is the unique continuous adapted process of finite variation such that {P𝑡 P̃𝑡 − 〈P, P̃〉𝑡 }𝑡 ≥0 is a

continuous local martingale.

We now present the strong law of large numbers theorem for local martingales which is fre-

quently used in this thesis.

Theorem 4.6 (Strong law of large numbers, [77]). Let P be a continuous local martingale such that
P0 = 0 a.s. Then

lim
𝑡→∞

〈P,P〉𝑡 = ∞ a.s. ⇒ lim
𝑡→∞

P𝑡
〈P,P〉𝑡

= 0 a.s.

Furthermore

lim sup
𝑡→∞

〈P,P〉𝑡
𝑡

< ∞ a.s. ⇒ lim
𝑡→∞

P𝑡
𝑡

= 0 a.s.

In the following, we shall present a classical result known as Doob’s martingale inequalities.

Theorem 4.7 (Doob’s martingale inequalities, [144]). Let {M𝑡 }𝑡 ≥0 be an R𝑛-valued martingale. Let
[𝑎, 𝑏] be a bounded interval in R+.

• If 𝑝 ≥ 1 and M𝑡 ∈ L𝑝 (Ω;R𝑛), then

P
{
𝜔 : sup

𝑎≤𝑡 ≤𝑏
|M𝑡 (𝜔) | ≥ 𝑐

}
≤ E|M𝑏 |𝑝

𝑐𝑝

holds for all 𝑐 > 0.
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• If 𝑝 > 1 and M𝑡 ∈ L𝑝 (Ω;R𝑛), then

E

(
sup
𝑎≤𝑡 ≤𝑏

|M𝑡 |𝑝
)
≤

(
𝑝

𝑝 − 1

)𝑝
E|M𝑏 |𝑝 .

Finally, we present one more practical and useful convergence result.

Theorem 4.8 (Convergence theorem, [78]). Let {𝐴𝑡 }𝑡 ≥0 and {𝑈𝑡 }𝑡 ≥0 be two continuous adapted
increasing processes with 𝐴0 = 𝑈0 = 0 a.s. Let {P𝑡 }𝑡 ≥0 be a continuous local martingale with P0 = 0
a.s. Let also ζ be a non-negative F0-measurable random variable. Define

X𝑡 = ζ +𝐴𝑡 −𝑈𝑡 + P𝑡 for all 𝑡 ≥ 0.

If X𝑡 is non-negative, then{
lim
𝑡→∞

𝐴𝑡 < ∞
}
⊂

{
lim
𝑡→∞

X𝑡 exists and is finite

}
∩

{
lim
𝑡→∞

𝑈𝑡 < ∞
}

a.s.

Particularly, if lim
𝑡→∞

𝐴𝑡 < ∞ a.s., then for almost 𝜔 ∈ Ω, we have lim
𝑡→∞

X𝑡 (𝜔) exists and is finite. In
addition, we obtain lim

𝑡→∞
𝑈𝑡 (𝜔) < ∞.

5 Brownian motion

Robert Brown
(1773-1858)

In this section, we present the Brownian motion
a
. We refer to [93] for

a general introduction of this process, to [103] for a detailed description

of the main properties of Brownian motion. Historically, Brownian mo-

tion has been exhibited to represent motions which evolve over time in

a particularly disordered fashion, for example in physics to represent mi-

croscopic particles subjected to multiple shocks in their environment or in

finance to represent very volatile stock market prices. Brownian motion

plays a central role in the theory of stochastic processes. It appears in

many theoretical as well as applied situations and it offers a fairly sim-

ple framework within which many calculations can be carried out. To

characterize the motion mathematically, we give the following definition.

Definition 5.1. A one-dimensional {F𝑡 }-standard Brownian motion
(
{F𝑡 }-

SBM, for brevity

)
is a continuous {F𝑡 }-adapted process W ≡ {W𝑡 }𝑡 ≥0 defined on (Ω, F , {F𝑡 }𝑡 ≥0, P)

with the following properties:

1. P(W0 = 0) = 1, that is, to establish the position of a Brownian particle, we start at 𝑡 = 0, with

the initial location specified as W0 = 0.

2. For 0 ≤ 𝑠 < 𝑡 < ∞, the increment (displacement) W𝑡 −W𝑠 is normally distributed with mean

zero and variance 𝑡 − 𝑠 . Equivalently, W𝑡 −W𝑠 ∼
√
𝑡 − 𝑠 N(0, 1).

3. For 0 ≤ 𝑠 < 𝑡 < ∞, the increment W𝑡 −W𝑠 is independent of F𝑠 . That is to say that for any

𝐴 ∈ B(R), 𝐵 ∈ F𝑠 ,

P
({
𝜔 ∈ Ω : W𝑡 (𝜔) −W𝑠 (𝜔) ∈ 𝐴 and 𝜔 ∈ 𝐵

})
= P

(
W𝑡 (𝜔) −W𝑠 (𝜔) ∈ 𝐴

)
× P

(
𝐵
)
.

a
In 1827, the first (heuristic) description of Brownian motion is due to the scottish botanist Robert Brown (who

therefore gave it its name). He observes fine organic particles in suspension in a gas or a fluid and describes their

particularly erratic movements.
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Let W be an SBM and 0 ≤ 𝑡0 < 𝑡1 < · · · < ∞, then the increments W𝑡𝑖 − W𝑡𝑖−1 , 1 ≤ 𝑖 ≤ 𝑘

are independent. Consequently, we say that W has independent increments. In addition, the

distribution of W𝑡𝑖 −W𝑡𝑖−1 depends only on the difference 𝑡𝑖 − 𝑡𝑖−1, and in this case, we say that W
has stationary increments. The peculiarity of an SBM W process lies in its ability to represent the

cumulative impact of process noise. Explicitly, if W𝑠 and W𝑡 indicate the position of the process

at times 𝑠 and 𝑡 , respectively, then the increment W𝑡 −W𝑠 shows the net noise along the interval

]𝑠, 𝑡].
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Figure II.1: Twenty sample paths of the standard Brownian motion W𝑡 for 𝑡 ∈ [0, 300].

According to the definition of a filtration {F𝑡 }𝑡 ≥0 for 0 ≤ 𝑠 < 𝑡 , we can state that there is at least

as much information at time 𝑡 as there is at time 𝑠 . Therefore, the accumulated information is

represented mathematically by the fact that F𝑠 ⊂ F𝑡 . Remark that {F𝑡 }𝑡 ≥0 is a part of the definition

of W, but we can define an SBM on (Ω, F , P) without filtration. In this case, W satisfies the

properties 1 and 2 but the property 3 is substituted by that it has the independent increments. In

such a situation, one can define FW
𝑡 = σ(W𝑠 , 0 ≤ 𝑠 ≤ 𝑡) for 𝑡 ≥ 0, as the σ-algebra generated by

{W𝑠 | 0 ≤ 𝑠 ≤ 𝑡}a. Evidently, W is an SBM with respect to the filtration {FW
𝑡 }𝑡 ≥0. Furthermore, if

FW
𝑡 ⊂ F𝑡 , 𝑡 ≥ 0, and W𝑡 −W𝑠 is independent of F𝑠 (0 ≤ 𝑠 < 𝑡), then W is a Brownian motion with

respect to the filtration {F𝑡 }𝑡 ≥0.

It can also be noted that in Definition 5.1 we do not demand the probability space (Ω, F , P) be

complete and {F𝑡 }𝑡 ≥0 satisfy the usual conditions. Nevertheless, in this thesis we need to work

on a complete probability space with a filtration verifying the said conditions. For this reason, we

assume that W is a Brownian motion defined on the probability space (Ω, F , P) and let (Ω, F̄ , P̄)
indicate the completion

b
of (Ω, F , P). Undoubtedly, W is a Brownian motion on the complete

probability space (Ω, F̄ , P̄). In the same line, we use the notation 𝔒 to denote the collection of

P-null sets. Then, for all 𝑡 ≥ 0, F̄𝑡 = σ(FW
𝑡 ∪ 𝔒) is the augmentation under P of the natural

filtration {FW
𝑡 } generated by W. Furthermore, {F̄𝑡 }𝑡 ≥0 is a filtration on (Ω, F̄ , P̄) verifying the

usual conditions and W is an SBM process on (Ω, F̄ , P̄) with respect to {F̄𝑡 }𝑡 ≥0.

Brownian motion has many salient features and important properties, and some of them are

presented in the following:

• Symmetry property: the process −W is an SBM with respect to the same filtration {F𝑡 }𝑡 ≥0.

a
We often call {FW

𝑡 }𝑡 ≥0 the natural filtration generated by W.

b
Suppose that (Ω, F , P) is a probability space. Define a class N0 of subsets of Ω as follows:

𝑁 ∈ N0 if and only if ∃𝑍 ∈ F such that 𝑁 ⊆ 𝑍 and P(𝑍 ) = 0.

It is sometimes philosophically satisfying to be able to make precise the idea that "𝑁 in N0 is P-measurable and P(𝑁 ) = 0".
This is done as follows. For any subset 𝐹 of Ω, we write 𝐹 ∈ F̄ if ∃𝐸,𝐺 ∈ F such that 𝐸 ⊆ 𝐹 ⊆ 𝐺 and P(𝐺 \ 𝐸) = 0. It is
very easy to show that F̄ is a 𝜎-algebra on Ω and indeed that F̄ = 𝜎 (F ,N0). With obvious notation,we define for 𝐹 ∈ F̄ ,

P̄(𝐹 ) = P(𝐸) = P(𝐺),

it being easy to check that P̄ is well defined. Moreover, it is no problem to prove that (Ω, F̄ , P̄) is a probability space,

the completion of (Ω, F , P).
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• Scaling property: let α > 0 and X𝑡 = Wα𝑡√
α

for all 𝑡 ≥ 0. Then, {X𝑡 }𝑡 ≥0 is an SBM with respect

to the filtration {Fα𝑡 }𝑡 ≥0.

• For 𝑡 ≥ 0, it is noted that E(W𝑡 ) = 0, Var(W𝑡 ) = E(W2
𝑡 ) = 𝑡 . Furthermore, W is a continuous

square-integrable martingale and its quadratic variation 〈W,W〉𝑡 = 𝑡 for all 𝑡 ≥ 0.

• The strong law of large numbers property: lim
𝑡→∞

(W𝑡/𝑡) = 0 a.s.

• For almost any 𝜔 ∈ Ω, the sample path W· (𝜔) of the SBM process W is nowhere differentiable.

• For almost any 𝜔 ∈ Ω, the sample path 𝑡 ↦→ W𝑡 (𝜔) is locally Hölder continuous
a
with

exponent ᾱ if 0 < ᾱ < 0.5; it is nowhere Hölder continuous for every ᾱ > 0.5.
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Figure II.2: An illustration of the strong law of large numbers property for Brownian motion.

For a 𝑛-dimensional standard Brownian motion, we have the following definition.

Definition 5.2. A 𝑛-dimensional process {W𝑡 = (W1
𝑡 , . . . ,W𝑛

𝑡 )}𝑡 ≥0 is called a 𝑛-dimensional

standard Brownian motion if any {W𝑘
𝑡 } is a one-dimensional standard Brownian motion, and

{W1
𝑡 },. . . ,{W𝑛

𝑡 } are independent.

Readily, a 𝑛-dimensional standard Brownian motion is a 𝑛-dimensional continuous martingale

associated with the following quadratic variations
b

〈W 𝑗 ,W𝑘〉𝑡 = δ𝑗𝑘𝑡 for 1 ≤ 𝑗, 𝑘 ≤ 𝑛.

Here, δ𝑗𝑘 =

{
1 for 𝑗 = 𝑘

0 for 𝑗 ≠ 𝑘
denotes the Dirac delta function.

6 White noise process
Roughly speaking, a plausible mathematical interpretation for the "loud" phenomena is the so-

termed one-dimensional white noise 𝜉 (𝑡). In engineering and applied sciences, it is habitual to

define it as a "derivative" (just notation) of W(𝑡), i.e., 𝜉 (𝑡) = ¤W(𝑡). Seemingly, the term "noise"d𝑡

is expressed as 𝜉 (𝑡)d𝑡 = dW(𝑡). As was aforementioned,
¤W(𝑡) does not exist and it has not an

ordinary meaning; so, it can be seen as a non-standard derivative. To properly characterize the

white noise 𝜉 (𝑡), we present the following definition.

a
As usual, the term "local" (or "locally") means that the definition should be restricted to any neighborhood. In this

case, 𝑓 is locally Hölder continuous if, for every interval (𝑎, 𝑏) there exists a constant 𝐶 > 0 such that

|𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐶 |𝑥 − 𝑦 |𝛼

for every 𝑥,𝑦 ∈ [𝑎, 𝑏].
b
This is described by the well-known Lévy theorem (see for example [93]).
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Definition 6.1. Let X = {X𝑡 }𝑡 ≥0 be a Gaussian stochastic process such that EX2
𝑡 < ∞, 𝑡 ≥ 0.

The co-variance function of X is defined by 𝑐 (𝑡, 𝑠) = E ({X𝑡 − EX𝑡 } · {X𝑠 − EX𝑠 }), where 𝑡, 𝑠 ≥ 0. If

𝑐 (𝑡, 𝑠) = 𝔥(𝑡 − 𝑠) for some real-valued function 𝔥 : R → R and if E(X𝑡 ) = E(X𝑠) for all 𝑡, 𝑠 ≥ 0, then
X𝑡 is said to be stationary in the wide sense.

Formally, the white noise 𝜉 (𝑡) is a Gaussian and wide-sense stationary process with 𝔥(·) = δ0,

where δ0 is the Dirac point mass function.

7 Stochastic integration: Itô integral
Consider for example the dynamic of a given population N expressed by the following ordinary

differential equation (ODE): {
dN(𝑡) = GN(𝑡)d𝑡,
N(0) = N0.

(II.1)

where G is the associated growth rate. Suppose that G is subject to some random fluctuations,

then G can be rewrite as G + σnoise, where σ is the intensity of the noise. Consequently, (II.1) can

be transformed into the following perturbed ODE:

dN(𝑡) = GN(𝑡)d𝑡 + σN(𝑡) · noise · d𝑡 .

By using the integration, the last equality becomes

N(𝑡) = N(0) +
∫ 𝑡

0
GN(𝑠)d𝑠 +

∫ 𝑡

0
σN(𝑠) · noise · d𝑠 .

But, how we can define the following expression

∫ 𝑡

0
σ𝑁 (𝑠) · noise · d𝑠? To solve this problem, we

consider the white noise 𝜉 (𝑡) = ¤W(𝑡) as an elementary choice to present the noise. Hence,∫ 𝑡

0
σ𝑁 (𝑠) · 𝜉 (𝑠) · d𝑠 =

∫ 𝑡

0
σ𝑁 (𝑠)dW(𝑠). (II.2)

Kiyosi Itô
(1915-2008)

Since the Brownian motion W is nowhere differentiable almost surely

and whose paths are of infinite variation for almost every 𝜔 ∈ Ω, the

integral (II.2) can not be defined in the ordinary way
a
. Hence, we need to

define the integral for a large class of stochastic processes by making use

of the stochastic characterization of W. Notably, we will look at the Itô

stochastic integral with respect to W which is firstly defined by Kiyosi

Itô
b
in 1946. To this end, let 0 ≤ 𝑎 < 𝑏 < ∞ and denote M2( [𝑎, 𝑏];R) the

space of all real-valued measurable {F𝑡 }-adapted processes 𝑔 ≡ {𝑔(𝑡)}𝑎≤𝑡 ≤𝑏
such that

| |𝑔| |2[𝑎,𝑏 ] = E
(∫ 𝑏

𝑎

|𝑔(𝑡) |2d𝑡
)
< ∞. (II.3)

Clearly, under the metric (II.3), the space M2( [𝑎, 𝑏];R) is complete. We say that two process

𝑔, ℎ ∈ M2( [𝑎, 𝑏];R) are equivalent, if | |𝑔 − ℎ | |2[𝑎,𝑏 ] = 0. For a stochastic process 𝑔 ∈ M2( [𝑎, 𝑏];R), we

aim to define the Itô integral I(𝑔) =
∫ 𝑏
𝑎
𝑔(𝑡)dW(𝑡). The general idea is defining 𝐼 (ℎ) for elementary

process class ℎ. Then, proving that each 𝑔 ∈ M2( [𝑎, 𝑏];R) can be approximated by simple process ℎ’s

such that I(𝑔) is the limit of I(ℎ). A brief overview of this approach is presented in three steps.

a
Brownian motion is not of bounded variation so we cannot apply the usual definitions of Riemann Stieltjes to

evaluate the integrals along some realized path.

b
Kiyosi Itô was a Japanese mathematician who made fundamental contributions to the theory of stochastic processes.

He invented the concept of stochastic integral and is known as the founder of Itô calculus.
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Step 1. A real-valued stochastic process ℎ ≡ {ℎ(𝑡)}𝑎≤𝑡 ≤𝑏 is termed an elementary (step) process

if there exists a partition 𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 = 𝑏 of [𝑎, 𝑏], and bounded random variables 𝜅𝑖 ,

0 ≤ 𝑖 ≤ 𝑘 − 1 such that 𝜅𝑖 is F𝑡𝑖 -measurable and

ℎ(𝑡) = 𝜅01[𝑡0,𝑡1 ] (𝑡) +
𝑘−1∑︁
𝑖=1

𝜅𝑖1(𝑡𝑖 ,𝑡𝑖+1 ] (𝑡). (II.4)

Let M2
0 ( [𝑎, 𝑏];R) be the subspace of elementary processes in M2( [𝑎, 𝑏];R) and define the stochastic

integral with respect to the Brownian motion W of an elementary process ℎ as

I(ℎ) =
∫ 𝑏

𝑎

ℎ(𝑡)dW(𝑡) =
𝑘−1∑︁
𝑖=0

𝜅𝑖
[
W(𝑡𝑖+1) −W(𝑡𝑖)

]
.

Step 2. Clearly, the stochastic integral (Itô stochastic integral) I(ℎ) is F𝑏-measurable, 𝜅𝑖 is F𝑡𝑖 -
measurable, and W(𝑡𝑖+1) −W(𝑡𝑖) is independent of F𝑡𝑖 , 𝑖 = 0, 1, . . . , 𝑘 − 1. Moreover, I(ℎ) ∈ L2(Ω;R)
since, if ℎ ∈ M2

0 ( [𝑎, 𝑏];R), then

E

(∫ 𝑏

𝑎

ℎ(𝑡)dW(𝑡)
)
= 0,

E
©«
�����∫ 𝑏

𝑎

ℎ(𝑡)dW(𝑡)
�����2ª®¬ = E

(∫ 𝑏

𝑎

|ℎ(𝑡) |2𝑑𝑡
)

[The Itô isometry]

. (II.5)

Additionally, if two processes ℎ1, ℎ2 ∈ M2
0 ( [𝑎, 𝑏];R) and 𝑚1,𝑚2 ∈ R, then 𝑚1ℎ1 +𝑚2ℎ2 ∈ M2

0 ( [𝑎, 𝑏];R)
and ∫ 𝑏

𝑎

(
𝑚1ℎ1(𝑡) +𝑚2ℎ2(𝑡)

)
dW(𝑡) =𝑚1

∫ 𝑏

𝑎

ℎ1(𝑡)dW(𝑡) +𝑚2

∫ 𝑏

𝑎

ℎ2(𝑡)dW(𝑡). (II.6)

According to properties (II.5) and (II.6), we can extend the integral definition from simple processes

to processes in M2( [𝑎, 𝑏];R). The justification for this extension is presented in the next step.

Step 3. For any 𝑔 ∈ M2( [𝑎, 𝑏];R), there exists a sequence {ℎ𝑛} of elementary processes such

that

lim
𝑛→∞
E

(∫ 𝑏

𝑎

|𝑔(𝑡) − ℎ𝑛 (𝑡) |2d𝑡
)
= 0. (II.7)

Via (II.5), (II.6) and (II.7) we get

lim
𝑛1,𝑛2→∞

E
©«
�����∫ 𝑏

𝑎

ℎ𝑛1 (𝑡)dW(𝑡) −
∫ 𝑏

𝑎

ℎ𝑛2 (𝑡)dW(𝑡)
�����2ª®¬

= lim
𝑛1,𝑛2→∞

E
©«
�����∫ 𝑏

𝑎

(
ℎ𝑛1 (𝑡) − ℎ𝑛2 (𝑡)

)
dW(𝑡)

�����2ª®¬
= lim
𝑛1,𝑛2→∞

E

(∫ 𝑏

𝑎

|ℎ𝑛1 (𝑡) − ℎ𝑛2 (𝑡) |2d𝑡
)
= 0.

Specifically, I(ℎ𝑛) is a Cauchy sequence in L2(Ω;R), so that its limit exists and we define this

limit as the Itô stochastic integral I(𝑔). To summarize and conclude, the Itô stochastic integral of

𝑔 with respect to W is

I(𝑔) =
∫ 𝑏

𝑎

𝑔(𝑡)dW(𝑡) = lim
𝑛→∞

∫ 𝑏

𝑎

ℎ𝑛 (𝑡)dW(𝑡) in L2(Ω;R),

where {ℎ𝑛} is a sequence of elementary processes verifying (II.7). This definition is independent of

the particular sequence {ℎ𝑛}.
Broadly speaking, the stochastic integral has many specific characteristics. We present here

only some of its properties which are used during this thesis.
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• I(𝑔) is F𝑏-measurable.

• I
(
𝑐1𝑔1(𝑡) + 𝑐2𝑔2(𝑡)

)
= 𝑐1I(𝑔1) + 𝑐2I(𝑔2), for all 𝑔1,𝑔2 ∈ M2( [𝑎, 𝑏];R).

• EI(𝑔) = 0 and E
(
I(𝑔) |F𝑎

)
= 0.

• E
(
|I(𝑔) |2

)
= E

(∫ 𝑏

𝑎

|𝑔(𝑡) |2d𝑡
)
.

• E
(
|I(𝑔) |2

��F𝑎) = E (∫ 𝑏

𝑎

|𝑔(𝑡) |2d𝑡
���F𝑎) =

∫ 𝑏

𝑎

E
(
|𝑔(𝑡) |2

��F𝑎) d𝑡 .
• If ζ is a real-valued, bounded F𝑎-measurable random variable, then ζ𝑔 ∈ M2( [𝑎, 𝑏];R) and

I(ζ𝑔) = ζI(𝑔).

Now, let 𝑇 > 0. We define for 𝑔 ∈ M2( [0,𝑇 ];R), the indefinite Itô stochastic integral as

K(𝑡) =
∫ 𝑡

0
𝑔(𝑠)dW(𝑠), 𝑡 ∈ [0,𝑇 ],

where, by definition, K(0) = 0. Evidently, {K(𝑡)}𝑡 ∈[0,𝑇 ] is a square integrable martingale with

respect to the filtration {F𝑡 }𝑡 ≥0 and

E
(
K(𝑡) |F𝑠

)
= E

(
K(𝑠) |F𝑠

)
+ E

(∫ 𝑡

𝑠

𝑔(𝑟 )dW(𝑟 )
���F𝑠 ) = K(𝑠), 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 .

Using Doob’s martingale inequalities (Theorem 4.7), we obtain the following result:

E

(
sup

0≤𝑡 ≤𝑇
|K(𝑡) |2

)
≤ 4E

(∫ 𝑇

0
|𝑔(𝑠) |2d𝑠

)
.

Furthermore, K = {K(𝑡)}𝑡 ∈[0,𝑇 ] has a continuous version and its quadratic variation is given by

〈K,K〉𝑡 =
∫ 𝑡

0
|𝑔(𝑠) |2d𝑠, 0 ≤ 𝑡 ≤ 𝑇 .

We will now extend the Itô stochastic integral to the multidimensional case. Let

W(𝑡) =
{
(W1(𝑡), . . . ,W𝑚 (𝑡))𝑇

}
𝑡 ≥0

be an 𝑚-dimensional standard Brownian motion. Let 𝑔 ∈ M2( [0,𝑇 ];R𝑛×𝑚) denote the collection of

all 𝑛 ×𝑚-matrix-valued measurable {F𝑡 }-adapted process 𝑔 = {(𝑔𝑖 𝑗 (𝑡))𝑛×𝑚}0≤𝑡 ≤𝑇 such that
a

E

(∫ 𝑇

0
|𝑔(𝑠) |2d𝑡

)
< ∞.

By using matrix representation, we define the multi-dimensional stochastic integral

∫ 𝑡

0
𝑔(𝑠)dW(𝑠) =

∫ 𝑡

0

©«
𝑔11(𝑠) . . . 𝑔1𝑚 (𝑠)
...

...

𝑔𝑛1(𝑠) . . . 𝑔𝑛𝑚 (𝑠)

ª®®¬
©«
dW1(𝑠)

...

dW𝑚 (𝑠)

ª®®¬
to be the 𝑛-column-vector-valued process whose j’th component is the following sum of one-

dimensional Itô integrals

𝑚∑︁
𝑘=1

∫ 𝑡

0
𝑔 𝑗𝑘 (𝑠)dW𝑘 (𝑠).

a
Here, |𝐴| presents the trace norm for matrix 𝐴, i.e., |𝐴| =

√︁
trace(𝐴𝑇𝐴).
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Let M2(R+;R𝑛×𝑚) denote the family of all processes 𝑔 ∈ 𝔏2(R+;R𝑛×𝑚)a such that

E

(∫ 𝑇

0
|𝑔(𝑡) |2d𝑡

)
< ∞ for every 𝑇 > 0.

Markedly, if 𝑔 ∈ M2(R+;R𝑛×𝑚), then {𝑔}0≤𝑡 ≤𝑇 ∈ M2( [0,𝑇 ];R𝑛×𝑚) for every 𝑇 > 0 and consequently

the integral

∫ 𝑡

0
𝑔(𝑠)dW(𝑠) 𝑡 ≥ 0 is well defined. Now, our objective is to define this integral for

all processes in 𝔏2(R+;R𝑛×𝑚). Consider 𝑔 ∈ 𝔏2(R+;R𝑛×𝑚), we define for each integer 𝑘 ≥ 1, the

following time

𝜏𝑘 = 𝑘 ∧ inf
{
𝑡 ≥ 0 :

∫ 𝑡

0
|𝑔(𝑠) |2d𝑠 ≥ 𝑘

}
.

Note that 𝜏𝑘 ↑ ∞ a.s. Furthermore, {𝑔(𝑡)1[0,𝜏𝑘 ] (𝑡)}𝑡 ≥0 ∈ M2(R+;R𝑛×𝑚) and the integral

I𝑘 (𝑡) =
∫ 𝑡

0
𝑔(𝑠)1[0,𝜏𝑘 ] (𝑠)dW(𝑠), 𝑡 ≥ 0

is well defined. For all 1 ≤ 𝑘 ≤ �̄� and 𝑡 ≥ 0, I�̄� (𝑡 ∧𝜏𝑘 ) = I𝑘 (𝑡). Then, I𝑘 (𝑡) = I�̄� (𝑡), for all 0 ≤ 𝑡 ≤ 𝜏𝑘 .
Generally, we define the indefinite stochastic integral I(𝑡) by the following way I(𝑡) = I𝑘 (𝑡) on

0 ≤ 𝑡 ≤ 𝜏𝑘 . Let 𝑔 ∈ 𝔏2(R+;R𝑛×𝑚), then the indefinite Itô integral

∫ 𝑡
0 𝑔(𝑠)dW(𝑡) (𝑡 ≥ 0) of 𝑔 with

respect to W(𝑡) is a R𝑛-valued continuous local martingale.

Eventually, it is important to note that, in this thesis, all (three) of the following notations are

equivalent and will be used frequently:∫ 𝑡

0
𝑔dW ,

∫ 𝑡

0
𝑔(𝑠)dW(𝑠) ,

∫ 𝑡

0
𝑔(𝑠, 𝜔)dW𝑠 (𝜔) .

8 Itô’s formula

To properly evaluate the stochastic Itô integrals, we will use what is called the Itô rule or Itô formula
which is very important and plays a key role in stochastic analysis. Accordingly, let {W(𝑡)}𝑡 ≥0
be a one-dimensional SBM defined on the complete probability space (Ω, F , P) and adapted to the

filtration {F𝑡 }𝑡 ≥0. In addition, let 𝑓 ∈ 𝔏1(R+;R)b and 𝑔 ∈ 𝔏2(R+;R). Then, a one-dimensional

continuous adapted process X(𝑡) on 𝑡 ≥ 0 of the form

X(𝑡) = X(0) +
∫ 𝑡

0
𝑓 (𝑠)d𝑠 +

∫ 𝑡

0
𝑔(𝑠)dW(𝑠), (II.8)

is called an Itô process with the following stochastic differential representation

dX(𝑡) = 𝑓 (𝑡)d𝑡 + 𝑔(𝑡)dW(𝑡) .

Consequently, if V ∈ C1,2(R+ × R;R)c, then V(𝑡,X(𝑡)) is again an Itô process with the stochastic

differential given by

dV(𝑡,X(𝑡)) =
{
V𝑡 (𝑡,X(𝑡)) + V𝑥 (X(𝑡), 𝑡) 𝑓 (𝑡) + 0.5V𝑥𝑥 (𝑡,X(𝑡))𝑔2(𝑡)

}
d𝑡

+ V𝑥 (𝑡,X(𝑡))𝑔(𝑡)dW(𝑡) a.s. (II.9)

a𝔏2 (R+;R𝑛×𝑚) denotes the family of all 𝑛 ×𝑚-matrix-valued measurable {F𝑡 }-adapted processes 𝑔 = {𝑔(𝑡)}𝑡 ≥0 such

that

∫ 𝑇
0 |𝑔(𝑡) |2d𝑡 < ∞ a.s. for every 𝑇 > 0.

b
Generally, 𝔏1 (R+;R𝑛) denotes the family of all R𝑛-valued measurable {F𝑡 }-adapted processes 𝑓 = {𝑓 (𝑡)}𝑡 ≥0 such that∫ 𝑇

0 |𝑓 (𝑡) |d𝑡 < ∞ a.s. for every 𝑇 > 0.
c
Generally, C1,2 (R+ × R𝑛 ;R) denotes the family of all real-valued V(𝑡, 𝑥) defined on R+ × R𝑛 such that they are

continuously twice differentiable in 𝑥 and once in 𝑡 .
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where V𝑡 =
𝜕V
𝜕𝑡

, V𝑥 = 𝜕V
𝜕𝑥

and V𝑥𝑥 = 𝜕2V
𝜕𝑥2 . Next, if V ∈ C1,2(R+ × R𝑛;R), we set

V𝑥 =

(
𝜕V
𝜕𝑥1

, . . . ,
𝜕V
𝜕𝑥𝑛

)
and V𝑥𝑥 =

(
𝜕2V
𝜕𝑥 𝑗 𝜕𝑥𝑘

)
𝑛×𝑛

=

©«
𝜕2V
𝜕𝑥1𝜕𝑥1

. . . 𝜕2V
𝜕𝑥1𝜕𝑥𝑛

...
...

𝜕2V
𝜕𝑥𝑛𝜕𝑥1

. . . 𝜕2V
𝜕𝑥𝑛𝜕𝑥𝑛

ª®®®¬ .
In the multidimensional case, let W(𝑡) =

(
W1(𝑡), . . . ,W𝑚 (𝑡)

)𝑇 (𝑡 ≥ 0), be an 𝑚-dimensional Brow-

nian motion (W𝑘 (𝑡) are independent SBMs) and consider a 𝑛-dimensional continuous adapted

process X(𝑡) =
(
X1(𝑡), . . . ,X𝑛 (𝑡)

)𝑇
of the form

X(𝑡) = X(0) +
∫ 𝑡

0
𝑓 (𝑠)d𝑠 +

∫ 𝑡

0
𝑔(𝑠)dW(𝑠),

where 𝑓 = (𝑓1, . . . , 𝑓𝑛)𝑇 ∈ 𝔏1(R+;R𝑛) and 𝑔 = (𝑔 𝑗𝑘 )𝑛×𝑚 ∈ 𝔏2(R+;R𝑛×𝑚). Let also V ∈ C1,2(R+ × R𝑛;R),
then V(𝑡,X(𝑡)) is again an Itô process with the following stochastic equation

dV(𝑡,X(𝑡)) =
{
V𝑡 (𝑡,X(𝑡)) + V𝑥 (𝑡,X(𝑡)) 𝑓 (𝑡) + 0.5trace

(
𝑔𝑇 (𝑡)V𝑥𝑥 (𝑡,X(𝑡))𝑔(𝑡)

)}
d𝑡

+ V𝑥 (𝑡,X(𝑡))𝑔(𝑡)dW(𝑡) a.s. (II.10)

As an application, and by using Itô formula, we introduce the following proprieties:

1.
∫ 𝑡

0
dW(𝑠) = W(𝑡), and

∫ 𝑡

0
W(𝑠)dW(𝑠) = 1

2
W2(𝑡) − 1

2
𝑡 .

2.
∫ 𝑡

0
𝑠dW(𝑠) = 𝑡W(𝑡) −

∫ 𝑡

0
W(𝑠)d𝑠 .

Finally, let [𝑡, 𝑡 + d𝑡] be an infinitesimal time interval, where both d𝑡 and

√
d𝑡 are positives. For

dW𝑡 = W𝑡+d𝑡 −W𝑡 , we get dW𝑡 ∼ 𝑁 (0, d𝑡).

9 Stochastic differential equations
Generally, a stochastic differential equation (SDE, for short) is a differential equation in which

one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic

process. SDEs are employed to simulate diverse phenomena such as unstable stock prices or

biological systems subject to environmental fluctuations. Typically, SDEs contain a variable which

represents random white noise calculated as the non-standard derivative of Brownian motion.

However, other types of random behaviour are possible, such as Lévy jump processes (see for

example [104]). A simple SDE is provided in the next example:

Example 9.1 (Brownian motion with constant drift µ and intensity σ). A Brownian motion (with

drift) X(𝑡) is the solution of the following SDE:

dX(𝑡) = µd𝑡 + σdW(𝑡),

with initial value X(0) = X0. By direct integration, we get

X(𝑡) = X0 + µ𝑡 + σW(𝑡)

and hence X(𝑡) is normally distributed with X0 + µ𝑡 and variance σ2𝑡 .

Globally, the aim of this section is to derive and examine the solution of a stochastic differential

equation of the form

dX(𝑡) = 𝑓 (𝑡,X(𝑡))d𝑡 + 𝑔(𝑡,X(𝑡))dW(𝑡), 𝑡 ∈ [𝑡0,𝑇 ], 𝑇 > 0, (II.11)
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with initial value X(𝑡0) = X0, where X0 is an F𝑡0-measurable R𝑛-valued random variable such that

E|X0 |2 < ∞. Here, 𝑓 and 𝑔 are called the drift and diffusion coefficient functions, respectively.

Generally speaking, we can view 𝑓 as measuring short-time growth and 𝑔 as representing short-

term variability. When 𝑔(𝑡,X(𝑡)) ≡ 0 in (II.11), the obtained expression is clearly the ordinary

differential equation (ODE) (see [28]). Looking to details, we pursue to answer questions such as

the following:

• Under what conditions is there a solution?

• If a solution exists, is it unique?

• If an exact solution is established, in what sense is it stable?

In order to resolve these issues, let W(𝑡) = (W1(𝑡), . . . ,W𝑚 (𝑡)) be an 𝑚-dimensional Brownian

motion defined on (Ω, F , {F𝑡 }𝑡 ≥0, P). Let also 𝑓 : [𝑡0,𝑇 ] × R𝑛 → R𝑛 and 𝑔 : [𝑡0,𝑇 ] × R𝑛 → R𝑛×𝑚 be

both Borel-measurable functions. Hence, the equation (II.11) is equivalent to the following stochastic

integral representation:

X(𝑡) = X0 +
∫ 𝑡

𝑡0

𝑓 (𝑠,X(𝑠))d𝑠 +
∫ 𝑡

𝑡0

𝑔(𝑠,X(𝑠))dW(𝑠), 𝑡 ∈ [𝑡0,𝑇 ] . (II.12)

Conceptually, an R𝑛-dimensional stochastic process X(𝑡) = {X(𝑡)}𝑡 ∈[𝑡0,𝑇 ] is called a solution of

(II.11) if

• X(𝑡) is continuous and F𝑡 -adapted,

• {𝑓 (𝑡,X(𝑡))} ∈ 𝔏1( [𝑡0,𝑇 ];R𝑛) and {𝑔(𝑡,X(𝑡))} ∈ 𝔏2(R+;R𝑛×𝑚),

• Equation (II.12) holds for every 𝑡 ∈ [𝑡0,𝑇 ] almost surely.

A solution X(𝑡) is said to be unique if any other solution X̃(𝑡) is indistinguishable from X(𝑡), that
is

P
(
X(𝑡) = X̃(𝑡) for all 𝑡 ∈ [𝑡0,𝑇 ]

)
= 1.

Now, we present the conditions that guarantee the existence and uniqueness of the solution to

equation (II.11).

Theorem 9.2 ([51]). If the coefficient functions 𝑓 , 𝑔 of SDE (II.11) verify the conditions

|𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) | + |𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦) | ≤ ℭ |𝑥 − 𝑦 |
[Uniform Lipschitz condition]

(II.13)

for some positive constant ℭ and all 𝑥,𝑦 ∈ R𝑛, 𝑡 ∈ [𝑡0,𝑇 ]; and

|𝑓 (𝑡, 𝑥) |2 + |𝑔(𝑡, 𝑥) |2 ≤ ℭ̄(1 + |𝑥 |2)
[Linear growth condition]

(II.14)

for some positive constant ℭ̄ and all (𝑡, 𝑥) ∈ [𝑡0,𝑇 ] × R𝑛. Then, there exists a unique solution X(𝑡) in
M2( [𝑡0,𝑇 ];R𝑛) of (II.11). Furthermore, this solution verifies sup

𝑡0≤𝑡 ≤𝑇
E|X(𝑡) |2 < ∞.

From the last theorem, X(𝑡) is uniformly bounded in M2( [𝑡0,𝑇 ];R𝑛) and if X(𝑡), X̃(𝑡) are both

solutions of (II.11) with the same initial value, then

P

(
sup

𝑡0≤𝑡 ≤𝑇
|X(𝑡) − X̃(𝑡) | = 0

)
= 1.

Consequently, the solution X(𝑡) is unique in a pathwise sense.
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The Lipschitz condition (II.13) ensures that 𝑓 and 𝑔 do not change faster than a linear function

relative to changes in 𝑥 . This implies the Lipschitz continuity of 𝑓 (𝑡, ·) and 𝑔(𝑡, ·) for all 𝑡 ∈ [𝑡0,𝑇 ].
The linear growth condition (II.14) avails to bound 𝑓 and 𝑔 uniformly with respect to 𝑡 ∈ [𝑡0,𝑇 ].
This constraint on the growth of 𝑓 and 𝑔 ensures that almost surely the solution X(𝑡) does not

"explode" (i.e., tend to +∞) in the interval [𝑡0,𝑇 ] regardless of the X0 value.

The above-mentioned solution is called a strong solution since it has a strong unique sample

trajectory and because the probability space (Ω, F , P), the filtration {F𝑡 }𝑡 ≥0, the Brownian motion

W(𝑡), and even coefficient functions 𝑓 and 𝑔 are all given and specified precisely in advance.

But, if just the coefficients 𝑓 (𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are preliminary specified and the pair of processes

(X̃(𝑡),W̃(𝑡)) are defined on a constructed and appropriate filtered probability space such that (II.11)

holds, then X̃(𝑡) is called a weak solution. Specifically, the main difference between strong and

weak solutions is that for strong solutions we are given Brownian motion defined on a given

filtered probability space, while for weak solutions we are free to choose and construct a Brownian

motion and an appropriate filtered probability space. If two weak solutions established under the

said conditions are indistinguishable, then the pathwise uniqueness holds for (II.11). Moreover, if

two solutions (weak or strong) of (II.11) have the same finite-dimensional probability distribution,

then they are weakly unique. It should be noted that a strong solution to (II.11) is also a weak one,

but the reverse is not generally true. According to the result presented in (Karatzas and Shreve

[51], Corollary 5.3.23), the existence of the weak solution and the pathwise uniqueness implies

the existence of a strong solution. Also, the pathwise uniqueness implies the weak uniqueness.

Basically, in this thesis, we are always concerned with strong solutions.

The Lipschitz condition (II.13) and the linear growth condition (II.14) seem to be too restrictive

hypotheses for the existence and uniqueness of the solutions to the SDE (II.11). The next theorem

is a generalization of Theorem 9.2 in which the uniform Lipschitz condition (II.13) is replaced by

the local Lipschitz condition.

Theorem 9.3. Assume that the linear growth condition (II.14) holds, but the Lipschitz condition
(II.13) is substituted with the following new local one: for every integer ℓ ≥ 1, there exists a positive
constant ℭℓ such that, for all 𝑥,𝑦 ∈ R𝑛, 𝑡 ∈ [𝑡0,𝑇 ], 𝑇 > 0 and with max{|𝑥 |, |𝑦 |} ≤ ℓ,

|𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) | + |𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦) | ≤ ℭℓ |𝑥 − 𝑦 |
[Local Lipschitz condition]

. (II.15)

Then, there exists a unique solution X(𝑡) to SDE (II.11) in M2( [𝑡0,𝑇 ];R𝑛).

The local Lipschitz condition (II.15) permits us to include numerous functions of 𝑓 and 𝑔 like

the functions that are continuously differentiable in 𝑥 on [𝑡0,𝑇 ] × R. Likewise, linear growth can

be replaced by a monotone condition as presented by the following theorem.

Theorem 9.4. Assume that the local Lipschitz condition (II.15) holds, but the linear growth condition
(II.14) is replaced with the following monotone condition: there exists a positive constant ℭ̃ such that
for all (𝑡, 𝑥) ∈ [𝑡0,𝑇 ] × R𝑛,

𝑥𝑇 𝑓 (𝑡, 𝑥) + 0.5|𝑔(𝑡, 𝑥) |2 ≤ ℭ̃(1 + |𝑥 |2)
[Monotone condition]

. (II.16)

Then, there exists a unique solution X(𝑡) to SDE (II.11) in M2( [𝑡0,𝑇 ];R𝑛).

Generally, the monotone condition (II.16) guarantees the existence of the solution X(𝑡) on

the whole of the interval [𝑡0,𝑇 ]. Furthermore, it should be emphasized that the linear growth

condition (II.14) implies the monotone condition (II.16), but the reverse is not true. In the case of

an autonomous
a
SDE, (II.11) is expressed as follows

dX(𝑡) = 𝑓 (X(𝑡))d𝑡 + 𝑔(X(𝑡))dW(𝑡), 𝑡 ∈ [𝑡0,𝑇 ], 𝑇 > 0, (II.17)

a
Here, both 𝑓 and 𝑔 are independent of the time 𝑡 and 𝑓 (𝑡,X(𝑡)) ≡ 𝑓 (X(𝑡)), 𝑔(𝑡,X(𝑡)) ≡ 𝑔(X(𝑡)).
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with initial value X(𝑡0) = X0. If X0 is a random variable independent of W(𝑡) −W(𝑡0), then, under
the conditions of (II.13) and (II.14), SDE (II.17) has a unique, continuous global

a
solution X(𝑡) on

[𝑡0,∞) such that

|𝑓 (𝑥) − 𝑓 (𝑦) | + |𝑔(𝑥) − 𝑔(𝑦) | ≤ ℭ |𝑥 − 𝑦 |
[Lipschitz condition]

,

is verified, and for a fixed 𝑥 ∈ R𝑛 value,

|𝑓 (𝑥) |2 + |𝑔(𝑥) |2 ≤ ℭ2(1 + |𝑥 |2)
[Linear growth condition]

.

is satisfied.

Example 9.5 (Geometric Brownian motion). An autonomous geometric Brownian motion X(𝑡)
is the solution of an SDE with the drift constant 𝜇 and the diffusion coefficient 𝜎 > 0 which is

expressed as follows:

dX(𝑡) = µX(𝑡)d𝑡 + σX(𝑡)dW(𝑡),

with initial value X(0) = X0 > 0. The unique analytic solution is presented as following

X(𝑡) = 𝑒 log X0+µ̄𝑡+σW(𝑡 ) = X0𝑒
µ̄𝑡+σW(𝑡 ) ,

where µ̄ = µ − 0.5σ2
. Therefore, E

(
X(𝑡)

)
= X0𝑒

µ𝑡
and Var

(
X(𝑡)

)
= X2

0 𝑒
2µ𝑡 (𝑒σ2𝑡 − 1

)
.
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Figure II.3: Numerical simulations of the paths of the geometric Brownian motion with µ = 0.01
and different values of intensities σ = 0.01, 0.02, 0.03, 0.04, 0.05.

Now, we will present some interesting properties of the solution X(𝑡) to (II.11) under the hy-

potheses of Theorem 9.2. Specifically, we say that X(𝑡), with X(𝑡0) = X0, is stochastically bounded

if for each 𝜖 > 0 there exists a γ𝜖 = γ𝜖 (𝑡0,X0) > 0 such that

inf
𝑡 ∈[𝑡0,𝑇 ]

P( |X(𝑡) | ≤ γ𝜖 ) > 1 − 𝜖.

If γ𝜖 depends only on X0, then X(𝑡) is said to be uniformly stochastically bounded. In addition,

X(𝑡) is continuous on [𝑡0,𝑇 ] if there is a constant 𝔟 such that

|X(𝑡) − X(𝑠) |2 ≤ 𝔟 |𝑡 − 𝑠 |, 𝑡0 ≤ 𝑠, 𝑡 ≤ 𝑇,

where

X(𝑡) − X(𝑠) =
∫ 𝑡

𝑠

𝑓 (𝑢,X(𝑢))d𝑢 +
∫ 𝑡

𝑠

𝑔(𝑢,X(𝑢))dW(𝑢) .

Suppose that E( |X0 |)2𝑝 < ∞, where 𝑝 is a positive integer. Then, for the solution X(𝑡) to the

SDE (II.11) on [𝑡0,𝑇 ],
a
Under assumptions of Theorem 9.2 on every finite sub-interval [𝑡0,𝑇 ] ⊂ [𝑡0,∞), SDE dX(𝑡) = 𝑓 (𝑡,X(𝑡))d𝑡 +

𝑔(𝑡,X(𝑡))dW(𝑡), 𝑡 ∈ [𝑡0,∞) has a unique global solution X(𝑡) defined on the entirety of [𝑡0,∞).
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• E|X(𝑡) |2𝑝 ≤
(
1 + E( |X0 |)2𝑝

)
𝑒M(𝑡−𝑡0)

,

• E|X(𝑡) −X0 |2𝑝 ≤ M̄
(
1+E( |X0 |)2𝑝

)
(𝑡 −𝑡0)𝑝𝑒M(𝑡−𝑡0)

, where M = 2𝑝 (2𝑝 +1)ℭ2
and M̄ are constants

(dependent upon 𝑝, ℭ, and 𝑇 − 𝑡0).

• E|𝑋 (𝑡) − 𝑋 (𝑠) |2𝑝 ≤ M1 |𝑡 − 𝑠 |𝑝 , 𝑡0 ≤ 𝑠, 𝑡 ≤ 𝑇 , and M1 constant.

Moreover, let 𝑝 ≥ 2, X(𝑡0) = X0 ∈ L𝑝 (Ω;R𝑛), and suppose that the linear growth condition (II.14) is

verified. Then, the 𝑝-th-order moment

E|X(𝑡) |𝑝 ≤ 2
𝑝−2

2

(
1 + E( |X0 |)𝑝

)
𝑒𝑝α(𝑡−𝑡0) , 𝑡 ∈ [𝑡0,𝑇 ],

where α = ℭ + ℭ2(𝑝 − 1)/2.

10 SDEs and stability
Basically, the common difficulty with SDEs is that it may not be possible to establish the explicit

form of the solution. It is therefore important to focus on the qualitative information that can be

extracted about the solutions without actually solving the SDEs. In this regard, in what follows we

will study the notion of the stability of a solution. That is, we will examine the question of whether

small changes in the initial conditions or parameters of a dynamic system lead to low changes

(stability) or large changes (instability) in the solution. When we try to switch the main principles

of Lyapunov stability for deterministic ODEs to their stochastic version, some compulsory queries

present themselves.

• How to define stochastic stability?

• How to define Lyapunov functions and what properties must a stochastic Lyapunov function

have?

To respond to these questions, let us first present the SDE (II.11), where

dX(𝑡) = 𝑓 (𝑡,X(𝑡))d𝑡 + 𝑔(𝑡,X(𝑡))dW(𝑡), 𝑡 ≥ 𝑡0. (II.18)

Here, we assume that the assumptions of Theorem 9.2 are satisfied and almost surely X(𝑡0) =

X0 ∈ R𝑛 . For any X0 independent of W(𝑡), 𝑡 ≥ 𝑡0, Equation (II.18) has a unique global solution

X(𝑡) ≡ 𝑋𝑡 (𝑡0,X0) with continuous and finite moments sample paths. Suppose that

𝑓 (𝑡, 0) = 0 and 𝑔(𝑡, 0) = 0 for all 𝑡 ≥ 𝑡0. (II.19)

Hence, equation (II.18) has the solution X(𝑡) ≡ 0 corresponding to the initial value X(𝑡0) = 0. This
solution is called the trivial solution or equilibrium position.

Moreover, let 0 < 𝔰 ≤ ∞ and S𝔰 = {X ∈ R𝑛 : |X| < 𝔰}. Denote by C1,2(R+ × S𝔰;R+) the family

of all non-negative functions V(𝑡,X(𝑡)) defined on R+ × S𝔰 such that they are continuously twice

differentiable in X and once in 𝑡 . Then, the differential operator L associated with equation (II.18)

is

L =
𝜕

𝜕𝑡
+

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑡, 𝑥)
𝜕

𝜕𝑥𝑖
+ 0.5

𝑛∑︁
𝑖,𝑘=1

{
𝑔(𝑡, 𝑥)𝑔𝑇 (𝑡, 𝑥)

}
𝑖𝑘

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑘
.

If L applies on the function V ∈ C1,2(R+ × S𝔰;R+), then

LV(𝑡, 𝑥) = V𝑡 (𝑡, 𝑥) + V𝑥 (𝑡, 𝑥) 𝑓 (𝑡, 𝑥) + 0.5𝑡𝑟𝑎𝑐𝑒
{
𝑔𝑇 (𝑡, 𝑥)V𝑥𝑥 (𝑡, 𝑥)𝑔(𝑡, 𝑥)

}
.

Note that if 𝑥 (𝑡) ∈ S𝔰, we have via Itô’s formula that

dV(𝑡, 𝑥 (𝑡)) = LV(𝑡, 𝑥 (𝑡))d𝑡 + V𝑥 (𝑡, 𝑥 (𝑡))𝑔(𝑡, 𝑥 (𝑡))dW(𝑡). (II.20)
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In the stochastic case, the presence of the term dW(𝑡) in (II.20) implies that the stability of X(𝑡)
to (II.18) requires that E

(
dV(𝑡)

)
≤ 0. This condition is verified if LV

(
𝑡,X(𝑡)

)
≤ 0 for all 𝑡 ≥ 0

since E
(
dV(𝑡)

)
= E

(
LV(X(𝑡))d𝑡

)
. So, the stability condition

dV
d𝑡

≤ 0 of the deterministic case is

substituted by LV(𝑡,X(𝑡)) ≤ 0. Hence, the function V serves as the stochastic Lyapunov version

to SDE (II.18)

10.1 Stability in probability
Under the aforementioned assumptions, our discussion of the stochastic stability of the equilibriums

should now be framed in terms of probability.

Definition 10.1. The trivial solution X(𝑡) ≡ 0 (under the hypothesis (II.19)) is termed stochastically

stable (stable in probability) if for every 𝜖 > 0,

lim
X0→0
P

(
sup
𝑡 ≥𝑡0

|X𝑡 (𝑡0,X0) | ≥ 𝜖
)
= 0,

otherwise, the said solution is stochastically unstable. The equilibrium solution is stochastically

asymptotically stable if it is stochastically stable and

lim
X0→0
P

(
lim
𝑡→∞

X𝑡 (𝑡0,X0) = 0
)
= 1.

The equilibrium solution is globally stochastically asymptotically stable or stochastically asymptotic

stable in the large if it is stochastically stable and, for all X0 ∈ R𝑛

P
(
lim
𝑡→∞

X𝑡 (𝑡0,X0) = 0
)
= 1.

Recall that we always assume that the assumptions of the existence an uniqueness of the

solution are fulfilled and, moreover, 𝑓 (𝑡, 0) = 0, 𝑔(𝑡, 0) = 0. To generalize and extend the Lyapunov

method for studying the stability of ODEs to that of SDEs, we present the following theorems.

Theorem 10.2 (stochastic stability). If there exists a positive-definitea stochastic Lyapunov function
V(𝑡, 𝑥) ∈ C1,2( [𝑡0,∞) × S𝔰;R+) such that LV(𝑡, 𝑥) ≤ 0 for all (𝑡, 𝑥) ∈ [𝑡0,∞) × S𝔰, then the trivial of
equation (II.18) is stochastically stable.

Theorem 10.3 (Stochastic asymptotically stability). If there exists a positive-definite decrescentb
functionV(𝑡, 𝑥) ∈ C1,2( [𝑡0,∞)×S𝔰;R+) such that LV(𝑡, 𝑥) is negative-definitec, then the trivial solution
of equation (II.18) is stochastically asymptotically stable.

Theorem 10.4 (Global asymptotic stability ). If there exists a positive-definite decrescent radially
unbounded function V(𝑡, 𝑥) ∈ C1,2( [𝑡0,∞) × R𝑛;R+) such that LV(𝑡, 𝑥) is negative-definite, then the
trivial solution of equation (II.18) is stochastically asymptotically stable in the large.

10.2 Almost sure exponential stability
Now, we present the formal definition of the almost sure exponential stability.

Definition 10.5. The trivial solution of equation (II.18) (under the hypothesis (II.19)) is said to be

almost surely exponentially stable if

lim sup
𝑡→∞

1
𝑡

log |X𝑡 (𝑡0,X0) | < 0 a.s. (II.21)

for all X0 ∈ R𝑛 . The left-hand side of the last inequality is termed the sample Lyapunov exponents

of the solution X.

a
A continuous function V(𝑡, 𝑥) defined on [𝑡0,∞) × S𝔰 is termed positive-definite if V(𝑡, 0) ≡ 0 and for some µ ∈ 𝔎

(𝔎 is the family of all continuous nondecreasing functions µ : R+ → R+ such that µ(0) = 0 and µ(𝑟 ) > 0 if 𝑟 > 0),
V(𝑡, 𝑥) ≥ µ( |𝑥 |) for all 𝑡 ∈ [𝑡0,∞) and 𝑥 ∈ S𝔰 .

b
A continuous positive function V is termed decrescent if for some µ ∈ 𝔎, V(𝑡, 𝑥) ≤ µ( |𝑥 |) for all (𝑡, 𝑥) ∈ [𝑡0,∞) ×S𝔰 .

c
A function V i aid to be negative-definite if −V is positive-definite
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Generally, the almost sure exponential stability means that almost all sample paths of the

solution will tend to the equilibrium state X = 0 exponentially fast if and only if the sample

Lyapunov exponents are negative. Under this standing hypothesis, we have the following useful

theorem.

Theorem 10.6 (Almost sure exponential stability). Assume that there exists a function V(𝑡,X) ∈
C1,2( [𝑡0,∞) × R𝑛;R+), and constants 𝑝 > 0, ℭ1 > 0, ℭ2 ∈ R, ℭ3 ≥ 0, such that for all 𝑥 ≠ 0 and 𝑡 ≥ 𝑡0,

• ℭ1 |𝑥 |𝑝 ≤ V(𝑡, 𝑥),

• LV(𝑡, 𝑥) ≤ ℭ2V(𝑡, 𝑥),

• |V𝑥 (𝑡, 𝑥)𝑔(𝑡, 𝑥) |2 ≥ ℭ3V2(𝑡, 𝑥).
Then

lim sup
𝑡→∞

1
𝑡

log |X𝑡 (𝑡0,X0) | ≤
2ℭ2 − ℭ3

2𝑝
a.s.

for all X0 ≠ 0 in R𝑛. Especially, if 2ℭ2 − ℭ3 < 0, the trivial solution of SDE (II.18) is almost surely
exponentially stable.

10.3 Moment exponential stability
In this subsection, we will present the 𝑝th moment exponential stability for SDE (II.18), where

𝑝 > 0. We begin with the following definition.

Definition 10.7. The trivial solution of SDE (II.18) is said to be 𝑝th moment exponentially stable

if there is a pair of positive constants 𝔡1 and 𝔡2 such that

E( |X𝑡 (𝑡0,X0) |𝑝) ≤ 𝔡1 |X0 |𝑝𝑒−𝔡2 (𝑡−𝑡0)
on 𝑡 ≥ 𝑡0

for all X0 ∈ R𝑛 . In particular, when 𝑝 = 2, it is usually said to be exponentially stable in mean

square.

Evidently, the 𝑝th moment exponential stability shows that the 𝑝th moment of the solution will

tend to 0 exponentially fast. That is,

lim sup
𝑡→∞

1
𝑡

log
(
E( |X𝑡 (𝑡0,X0) |𝑝)

)
< 0.

Globally speaking, the 𝑝th moment exponential stability and the almost sure exponential stability

do not imply each other and extra conditions are required in order to establish one from the other.

The next result gives the hypotheses under which the 𝑝th moment exponential stability implies the

almost sure exponential stability.

Theorem 10.8. Assume that there is a positive constant ℭ such that
𝑥𝑇 𝑓 (𝑡, 𝑥) ∨ |𝑔(𝑡, 𝑥) |2 ≤ ℭ |X|2 for all (𝑡, 𝑥) ∈ [𝑡0,∞) × R𝑛 .

Then, the 𝑝th moment exponential stability of the trivial solution of equation (II.18) implies the almost
sure exponential stability.

Now, we will offer a sufficient criterion for the 𝑝th moment exponential stability via a Lyapunov

function.

Theorem 10.9. Suppose that there is a functionV(𝑡, 𝑥) ∈ C2,1( [𝑡0,∞)×R𝑛;R+), and positive constants
𝔭1, 𝔭2 and 𝔭3, such that

𝔭1 |𝑥 |𝑝 ≤ V(𝑡, 𝑥) ≤ 𝔭2 |𝑥 |𝑝 ,
LV(𝑡, 𝑥) ≤ −𝔭3V(𝑡, 𝑥),

for all (𝑡, 𝑥) ∈ [𝑡0,∞) × R𝑛. Then

E( |X𝑡 (𝑡0,X0) |𝑝) ≤
𝔭2
𝔭1

|X0 |𝑝𝑒−𝔭3(𝑡 − 𝑡0) on 𝑡 ≥ 𝑡0,

for all X0 ∈ R𝑛. That is, the trivial solution of SDE (II.18) is 𝑝th moment exponentially stable and the
𝑝th moment Lyapunov exponent should not be greater than −𝔭3.
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11 Ergodic stationary distribution and periodicity
Let X ≡ {X𝑡 }𝑡 ≥0 be a stochastic process with values in R𝑛 defined on a probability space (Ω, F , P).
The σ-algebra F𝑡 = σ(X𝑠 , 0 ≤ 𝑠 ≤ 𝑡), 𝑡 ≥ 0, is the history of the process up to and including time

𝑡 . More accurately, F𝑡 records the information ready from our observation of X𝑠 for all times

0 ≤ 𝑠 < 𝑡 . X is called a Markov process if the Markov property

P(X𝑡 ∈ 𝐵 |F𝑠) = P(X𝑡 ∈ 𝐵 |X𝑠)

holds a.s. for all 0 ≤ 𝑠 ≤ 𝑡 < ∞ and all Borel sets 𝐵 ⊂ R. Clearly, given the value of X𝑠 , one

can prophesy the probabilities of outlook values X𝑡 as well as if you knew the whole history of

the process ahead of time 𝑠 . The process only knows X𝑠 and is not conscious of how it got there

so that the after time depends on the past only through the present, that is, once the present is

recognized, the past and future are independent.

The transition probability of the Markov process is a function P(𝑠, 𝑥 ; 𝑡, 𝐵) defined on 0 ≤ 𝑠 ≤ 𝑡 <
∞, 𝑥 ∈ R, with the following properties:

1. For every 0 ≤ 𝑠 ≤ 𝑡 < ∞, P
(
𝑠,X𝑠 ; 𝑡, 𝐵

)
= P

(
X𝑡 ∈ 𝐵 |X𝑠

)
.

2. For every 0 ≤ 𝑠 ≤ 𝑡 < ∞ and 𝑥 ∈ R, P
(
𝑠, 𝑥 ; 𝑡, ·

)
is a probability measure on the family of Borel

sets B.

3. For every 0 ≤ 𝑠 ≤ 𝑡 < ∞ and 𝐵 ∈ B, P(𝑠, ·; 𝑡, 𝐵) is Borel measurable.

4. For every 0 ≤ 𝑠 ≤ 𝑟 ≤ 𝑡 < ∞ and 𝑥 ∈ R, and 𝐵 ∈ B,
a

P(𝑠, 𝑥 ; 𝑡, 𝐵) =
∫
R
P(𝑟,𝑦; 𝑡, 𝐵)P(𝑠, 𝑥 ; 𝑟, 𝑑𝑦) .

[Chapman-Kolmogorov equation]

In terms of the previous transition probability, the Markov property turns as P(X𝑡 ∈ 𝐵 |F𝑠) =

P(𝑠,X𝑠 ; 𝑡, 𝐵); and hence we write P(X𝑡 ∈ 𝐵 |X𝑠 = 𝑥) = P(𝑠, 𝑥 ; 𝑡, 𝐵) which is the probability that the

process will be in set 𝐵 at time 𝑡 given that the process was in state 𝑥 at time 𝑠 ≤ 𝑡 . A Markov

process X is termed homogeneous (with respect to 𝑡) if its transition probability P(𝑠, 𝑥 ; 𝑡, 𝐵) is

stationary, that is,

P(𝑠 + 𝑢, 𝑥 ; 𝑡 + 𝑢, 𝐵) = P(𝑠, 𝑥 ; 𝑡, 𝐵), 0 ≤ 𝑠 ≤ 𝑡 < ∞, 𝑥 ∈ R, and 𝐵 ∈ B .

In this case, the transition probability is a function of 𝑥 , 𝐵, and the difference 𝑡−𝑠 since P(𝑠, 𝑥 ; 𝑡, 𝐴) =
P(0, 𝑥 ; 𝑡 − 𝑠, 𝐵). Therefore, we can purely write P(0, 𝑥 ; 𝑡, 𝐵) = P(𝑥 ; 𝑡, 𝐵). Generally and without losing

generality, let P(𝑥 ; 𝑡, ·) denote the probability measure defined as follows

P(𝑥 ; 𝑡, 𝐵) = P(X(𝑡) ∈ 𝐵 |X(0) = 𝑥), for any Borel set 𝐵 ⊂ R𝑛 .

If there is a probability measure 𝜋 (·) on the measurable space (R𝑛,B(R𝑛)) such that

lim
𝑡→∞
P(𝑥 ; 𝑡, 𝐵) = 𝜋 (𝐵) for all 𝑥 ∈ R𝑛 .

Then, the stochastic differential equation (II.17) has a stationary distribution 𝜋 (·)b. With reference

to the book of Khasminskii [57], we have the following lemma, which is very helpful to prove the

a
This property means that a single-step transition probability can be expressed in terms of a combination of two-step

transition probabilities with respect to an arbitrary intermediate time 𝑟 .
b
A stationary distribution for a Markov process is a probability measure 𝜋 over a state space R𝑛 that satisfies∫

R𝑛
P(𝑥 ; 𝑡, 𝐵)𝜋 (d𝑥) = 𝜋 (𝐵).

A stationary distribution of a Markov process is a probability distribution that remains unchanged as time progresses.
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result related to the stationary distribution. Let X be a homogeneous Markov process in R𝑛, and

is described by the following stochastic differential equation:

dX(𝑡) = 𝑓 (X(𝑡))d𝑡 +
𝑘∑︁
𝑟=1

𝑔𝑟 (X(𝑡))dW𝑟 (𝑡).

The diffusion matrix is defined as follows:

𝑀 (𝑥) =
(
𝑎𝑖 𝑗 (𝑥)

)
, 𝑎𝑖 𝑗 (𝑥) =

𝑘∑︁
𝑟=1

𝑔𝑖𝑟 (𝑥)𝑔
𝑗
𝑟 (𝑥) .

Lemma 11.1. The Markov process X has a unique ergodica stationary distribution 𝜋 if there exists
a bounded open domain 𝐷 ⊂ R𝑛 with regular boundary such that its closure �̄� ⊂ R𝑛, and the following
hypotheses hold

• In the open domain 𝐷 and some neighborhood thereof, the smallest eigenvalue of the diffusion
matrix 𝑀 (𝑥) is bounded away from zero.

• If 𝑥 ∈ R𝑛 \ 𝐷, the mean time 𝜏 at which a path issuing from 𝑥 reaches the set 𝐷 is finite, and
sup
𝑥 ∈𝐾
E𝜏 < ∞ for every compact subset 𝐾 ⊂ R𝑛.

Moreover, if 𝑓 is a function integrable with respect to the measure 𝜋 , then

P

{
lim
𝑇→∞

1
𝑇

∫ 𝑇

0
𝑓
(
X𝑡

)
d𝑡 =

∫
R𝑛
𝑓 (𝑥)𝜋 (d𝑥)

}
= 1,

for all 𝑥 ∈ R𝑛.

Dissimilar from the above result, in this thesis, we use the Feller property and mutually exclu-

sive possibilities to derive the condition for existence of the ergodic stationary distribution, which

can close the gap left by using the Khasminskii method.

The definition of Markov processes, is much too general for many applications. However, many

of the processes which we study also satisfy the much stronger Feller property. The definition of

Feller processes involves putting continuity constraints on the transition function, for which it is

necessary to restrict attention to processes lying in a topological space (E,TE). It will be assumed

that E is locally compact
b
, Hausdorff

c
, and has a countable base

d
(lccb, for short).

Given a topological space E, C0(E) denotes the continuous real-valued functions vanishing at

infinity
e
. That is, 𝑓 : E→ R is in C0(E) if it is continuous and, for any 𝜖 > 0, the set {𝑥 : |𝑓 (𝑥) | ≥ 𝜖}

is compact.

a
Let (Ω, F , 𝜇) be a probability space and 𝜙𝑡 , 𝑡 ∈ R a group of measurable transformations of Ω. We say that 𝜙𝑡

is measure preserving if 𝜇 (𝜙−1
𝑡 (𝐴) = 𝜇 (𝐴) for all 𝑡 ∈ R and all 𝐴 ∈ F . Now, let 𝜙𝑡 be a group of measure preserving

transformations of (Ω, F , 𝜇). Then, for any 𝑓 ∈ 𝐿1 (𝜇) the limit

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑓 (𝜙𝑠 (𝑥))d𝑠 = 𝑓 ∗ (𝑥)

exists 𝜇-a.s. The limit 𝑓 ∗ (𝑥) is 𝜙𝑡 invariant, and

∫
Ω 𝑓 d𝜇 =

∫
Ω 𝑓

∗
d𝜇. The group of transformation 𝜙𝑡 is said to be ergodic

if 𝑓 ∗ is constant 𝜇-a.s. and in that case 𝑓 ∗ (𝑥) =
∫
𝑓 d𝜇.

b
Let E be a topological space. Most commonly E is called locally compact if every point 𝑥 of E has a compact

neighbourhood.

c
In topology, a Hausdorff space (separated space) is a topological space where for any two distinct points there exist

neighbourhoods of each which are disjoint from each other.

d
A base for the topology TE of a topological space (E,TE) is a family 𝐵 of open subsets of E such that every open set

of the topology is equal to a union of some sub-family of 𝐵.
e
A function is said to vanish at infinity if its values approach 0 as the input grows without bounds.
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Definition 11.2 (Feller property). Let E be an lccb space. Then, a transition function {P𝑡 }𝑡 ≥0 is

feller if, for all 𝑓 ∈ C0(E),

• P𝑡 𝑓 ∈ C0(E).

• 𝑡 ↦→ P𝑡 𝑓 is continuous with respect to the norm topology on C0(E).

• P0 𝑓 = 𝑓 .

A Markov process X whose transition function is Feller is a Feller process.

Proposition 11.3 ([12]). Let X be a process that starts with initial value 𝑥 . X is said to be a Feller
process if, for any fixed 𝑡 ≥ 0 and any bounded, continuous and F -measurable function ℎ : R𝑛 → R,
E
[
ℎ(X𝑡 )

]
depends continuously upon 𝑥 .

Now, we present a lemma which gives mutually exclusive possibilities for the existence of an

ergodic stationary distribution to the system (I.2).

Lemma 11.4 (Mutually exclusive possibilities lemma, [128]). Let X be a stochastic Feller process
with values in R𝑛, then either an ergodic probability measure exists, or

lim
𝑡→∞

sup
𝜈

1
𝑡

∫ 𝑡

0

∫
R𝑛
P
(
𝑥 ; 𝑠, Σ

)
𝜈 (d𝑥)d𝑠 = 0, (II.22)

for any compact set Σ ⊂ R𝑛, where the supremum is taken over all initial distributions 𝜈 on R𝑛 and(
𝑥 ; 𝑠, Σ

)
is the probability for X ∈ Σ with X(0) = 𝑥 ∈ R𝑛.

In the natural world, due to individual life cycles and seasonal variation, birth rate, and other

parameters always present periodic changes for population models. For the stochastic biological

system, the existence of a periodic solution is a very important dynamical behavior. Let us present

the definition of a periodic solution.

Definition 11.5. A stochastic process X(𝑡) = X(𝑡, 𝜔) (−∞ < 𝑡 < +∞) is said to be periodic with

period 𝜃 if for every finite sequence of numbers 𝑡1, 𝑡2, . . . , 𝑡𝑛 the joint distribution of random variables

X(𝑡1 + ℎ), . . . ,X(𝑡𝑛 + ℎ) is independent of ℎ, where ℎ = 𝑘𝜃 (𝑘 = ±1,±2, . . . ).

A Marcov process X(𝑡) is 𝜃-periodic if and only if its transition probability function (if it exists)

is 𝜃-periodic and the function P0(𝑡, 𝐴) = P{X(𝑡) ∈ 𝐴} satisfies the equation

P0(𝑠, 𝐴) =
∫
R𝑛
P0(𝑠, d𝑥)P(𝑠, 𝑥 ; 𝑠 + 𝜃,𝐴) ≡ P0(𝑠 + 𝜃,𝐴) .

Consider the following equation

X(𝑡) = X(0) +
∫ 𝑡

0
𝑓 (𝑠,X(𝑠))d𝑠 +

𝑘∑︁
𝑟=1

∫ 𝑡

0
𝑔𝑟 (𝑠,X(𝑠))dW𝑟 (𝑠), X ∈ R𝑛 . (II.23)

Lemma 11.6. Suppose that the coefficients of (II.23) are 𝜃-periodic in 𝑡 and satisfies the following
condition:

|𝑓 (𝑠, 𝑥) − 𝑓 (𝑠,𝑦) | +
𝑘∑︁
𝑟=1

|𝑔𝑟 (𝑠, 𝑥) − 𝑔𝑟 (𝑠,𝑦) | ≤ M|𝑥 − 𝑦 |, |𝑓 (𝑠, 𝑥) | +
𝑘∑︁
𝑟=1

|𝑔𝑟 (𝑠, 𝑥) | ≤ M(1 + |𝑥 |),

in every cylinder 𝐼 ×𝐷, where M is a constant. Furthermore, we suppose that there exists a function
V(𝑡, 𝑥) ∈ ℭ2 in R𝑛 which is 𝜃-periodic in 𝑡 , and satisfies the following conditions

inf
|𝑥 |>𝑅

V(𝑡, 𝑥) → ∞ as 𝑅 → ∞ and LV(𝑡, 𝑥) ≤ −1 outside some compact set.

Then, there exists a solution of (II.23) which is a 𝜃-periodic Markov process.
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12 Lévy processes

Paul Lévy
(1886-1971)

Theoretical and empirical studies show that for the analysis of some epi-

demics, it is essential to take into account the possibility of an almost

instantaneous movement of large amplitude (jump) in the number of in-

fected or deaths. To model mathematically these phenomena, the jumps

processes offer a suitable context to describe and predict the epidemics

future. In this section, we define a Lévy process, named after the French

mathematician Paul Lévy
a
, and we present some indication of how rich a

category of processes they form. Specifically, we give some basic concepts

and necessary results for the applied calculus of jump-diffusion used in

this thesis. Since there are sundry good books and documents which offer

a detailed theory, we will just briefly summarize it here. For complete

knowledge, we refer the reader to the following books [6, 37, 104]. Now, we begin by making the

following definition.

12.1 Poisson random measure and Lévy processes

Definition 12.1. Let (Ω, F , {F𝑡 }𝑡 ≥0, P) be a filtered probability space. An {F𝑡 }-adapted process

Z(𝑡) ≡ {Z𝑡 }𝑡 ≥0 in R is called a Lévy process if

1. Z(0) = 0 a.s.

2. Z(𝑡) has independent increments (i.e. Z(𝑡+𝑠)−Z(𝑡) is independent of F𝑡 = 𝜎 (Z(𝑢), 0 ≤ 𝑢 ≤ 𝑡).

3. Z(𝑡) has stationary increments (i.e. the distribution of Z𝑡+𝜖 −Z𝑡 depends on 𝜖, but not on 𝑡).

4. Z(𝑡) is stochastically continuous (i.e, for all 𝑡 ≥ 0 and all 𝜅 > 0, P
(
|Z(𝑡 + 𝜖) − Z(𝑡) | > 𝜅

)
→ 0

as 𝜖 → 0).

Let Z(𝑡) be a Lévy process. Then, Z(𝑡) has a cadlag version (right continuous with left limits)
which is also a Lévy process. In addition, let B0 be the family of Borel sets 𝐷 ⊂ R whose closure �̄�

does not contain 0. By denoting ΔZ(𝑡) = Z(𝑡) −Z(𝑡−) the jump of Z(𝑡) at 𝑡 > 0, we can associate

the counting measure N to Z(𝑡) in the following way: for all 𝐷 ∈ B0, we put

N(𝑡, 𝐷) = N(𝑡, 𝐷, 𝜔) =
∑︁

0<𝑠≤𝑡
1𝐷

(
ΔZ(𝑠)

)
.

[The number of jumps of size ΔZ(𝑡 ) ∈𝐷 which occur before or at time 𝑡 ]

(II.24)

Generally, (II.24) is the Poisson random measure which indicates the counting measure of jumps

in D up to the time 𝑡 . As the path is cadlag, for all 𝐷 ∈ B0, we have N(𝑡, 𝐷) < ∞ a.s.

Certainly, a Brownian motion {W(𝑡)}𝑡 ≥0 has stationary and independent increments. Hence,

W(𝑡) is a (continuous) Lévy process. Another significant example is the following.

Example 12.2 (Poisson Process). The Poisson process Θ(𝑡) with associated intensity γ > 0 is a

Lévy process taking values in N ∪ {0} such that

P
(
Θ(𝑡) = 𝑛

)
=

(𝜆𝑡)𝑛
𝑛!

𝑒−𝜆𝑡 , 𝑛 = 0, 1, 2, . . .

Let us return to the definition offered in (II.24). The set function 𝐷 ↦→ N (𝑡, 𝐷, 𝜔) is a σ-finite

measure on B0 for each fixed 𝑡, 𝜔 with the associated differential form N(𝑡, d𝑢). Furthermore, for

each fixed 𝜔 , the set function (𝑎, 𝑏] × 𝐷 ↦→ N (𝑏, 𝐷,𝜔) − N (𝑎, 𝐷,𝜔), (𝑎, 𝑏] ⊂ [0,∞), 𝐷 ∈ B0, defines

a σ-finite measure with the associated differential form N(d𝑡, d𝑢). Now, we consider the mean

a
Paul Pierre Lévy was a French mathematician who was active especially in probability theory, introducing funda-

mental concepts such as Lévy processes, Lévy measures, and Lévy distribution.
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measure 𝜈 (𝐷) = E
(
N(1, 𝐷)

)
. This set function also defines a σ-finite measure on B0 and is called

the Lévy measure associated to Z(𝑡). By fixing 𝐷 in B0, the process

Θ𝐷 (𝑡) , Θ𝐷 (𝑡, 𝜔) , N(𝑡, 𝐷, 𝜔),

is a Poisson process with the intensity 𝜆 = 𝜈 (𝐷).

Figure II.4: Illustration of the Poisson process.

Example 12.3 (Compound Poisson process). Let Q(𝑛), 𝑛 ∈ N be a sequence of i.i.d.
a

random

variables in R with common finite distribution µQ(1) = µQ . Let also Θ(𝑡) be a Poisson process with

intensity 𝜆 > 0, independent of all the Q(𝑛)’s. The compound Poisson process Qσ(𝑡) is expressed by

Qσ(𝑡) = Q(1) + · · · + Q
(
Θ(𝑡)

)
, 𝑡 > 0.

An increment of this process is defined by

Qσ(𝑠) − Qσ(𝑡) =
Θ(𝑠)∑︁

𝑘=Θ(𝑡+1)
Q(𝑘), 𝑠 > 𝑡 . (II.25)

Remark that (II.25) is independent of Q(1), . . . ,Q
(
Θ(𝑡)

)
, and its distribution depends only on the

difference (𝑠 − 𝑡). Consequently, Qσ(𝑡) is a Lévy process. In order to determine the Lévy measure

𝜈 of Qσ(𝑡), we consider 𝐷 ∈ B0, then

𝜈 (𝐷) = E
(
N(1, 𝐷)

)
= E

( ∑︁
0<𝑠≤1

1𝐷
(
ΔQσ(𝑠)

))
[E((number of jumps) × 1𝐷 (jump))]

= E
(
Θ(1)1𝐷 (Q)

)
= 𝜆µQ (𝐷).

Figure II.5: Illustration of the compound Poisson process.

a
A collection of random variables is independent and identically distributed (i.i.d.) if each random variable has the

same probability distribution as the others and all are mutually independent.
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Roughly speaking, the previous example shows that a Lévy process can be represented by a

compound Poisson process if and only if its Lévy measure is finite. But, there exist many Lévy

processes with infinite Lévy measure 𝜈 with the fact that

∫
|𝑢 | ≤𝑟 |𝑢 |𝜈 (d𝑢) = ∞, 𝑟 > 0. Moreover, it is

easy to remark that for any fixed 𝑟 the process

M (𝑘) (𝑡) ,
∫

1
𝑘
≤𝑢≤𝑟

𝑢
[
N(𝑡, d𝑢) − 𝑡𝜈 (d𝑢)

]
, 𝑘 = 1, 2, . . .

are L2
-martingales and they converge in L2

to a martingale M(𝑡) denoted by

M(𝑡) =
∫
|𝑢 | ≤𝑟

𝑢
[
N(𝑡, d𝑢) − 𝑡𝜈 (d𝑢)

]
.

12.2 Itô-Lévy decomposition
The following results gives a general description of Lévy processes.

Proposition 12.4 (Itô-Lévy decomposition). Let Z(𝑡) be a Lévy process. Then, Z(𝑡) admits the
following unique representation

Z(𝑡) = α𝑡 + σW(𝑡) +
∫
|𝑢 |<𝑟

𝑢Ñ (𝑡, d𝑢) +
∫
|𝑢 | ≥𝑟

𝑢N(𝑡, d𝑢) . (II.26)

Here, α ∈ R, σ ∈ R, 𝑟 ∈ [0,∞], and

Ñ (d𝑡, d𝑢) = N(d𝑡, d𝑢) − 𝜈 (d𝑢)d𝑡

is the compensated Poisson random measure of Z(·). It is assumed that the standard Brownian
motion W(𝑡) is independent of Ñ . Note that for each 𝐷 ∈ B0, the process M(𝑡) , Ñ (𝑡, 𝐷) is a
martingale. Specifically, if α = 0 and 𝑟 = ∞, we call Z(𝑡) a Lévy martingale. Furthermore, if
E|Z(𝑡) | < ∞ for all 𝑡 > 0, then we can choose 𝑟 = ∞. Hence, Z(𝑡) can be written in the compact form

Z(𝑡) = α𝑡 + σW +
∫
R
𝑢Ñ (𝑡, d𝑢) .
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Figure II.6: An illustration of the Itô-Lévy jumps process paths.

Theorem 12.5 (Lévy-Khintchine formula). Let Z(𝑡) be a Lévy process with Lévy measure 𝜈 .
Then, ∫

R
min(1, |𝑢 |2)𝜈 (d𝑢) < ∞ and E

(
𝑒𝑖𝜉Z(𝑡 )

)
= 𝑒𝑡𝜓 (𝜉) , 𝜉 ∈ R,

where,

𝜓 (𝜉) = −1
2
σ2𝜉2 + 𝑖α𝜉 +

∫
|𝑢 |<𝑟

{
𝑒𝑖𝜉𝑢 − 1 − 𝑖𝜉𝑢

}
𝜈 (d𝑢) +

∫
|𝑢 | ≥𝑟

{
𝑒𝑖𝜉𝑢 − 1

}
𝜈 (d𝑢).
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Now, let 𝔇𝑠𝑘
be the space of a cadlag adapted processes with the Skorohod topology

a
. Let

also 𝔇𝑢𝑐𝑝
denote the space of a cadlag adapted processes endowed with the associated topology

given by the uniform convergence on compacts in probability
b
(ucp, for short). By considering an

elementary process ℎ(𝑡) of the form (II.4) and a cadlag process X, we define

𝔍X (ℎ) ,
∫ 𝑡

0
ℎ(𝑠)dX(𝑠) , 𝜅0X0 +

∑︁
𝑖

𝜅𝑖
(
X𝑡𝑖+1∧𝑡 − X𝑡𝑖∧𝑡

)
, 𝑡 > 0,

where 𝜅𝑖 ∈ F𝑡𝑖 and 𝑡0 ≤ 𝑡1 ≤ · · · ≤ 𝑡𝑛+1 < ∞. Let X be a semimartingale
c
. Then, the mapping 𝔍X

can be extended to a continuous linear map 𝔍X : 𝔇𝑢𝑐𝑝 → 𝔇𝑠𝑘
. By using this construction, we

can define stochastic integrals of the form

∫ 𝑡
0 ℎ(𝑠)dZ(𝑠) for all ℎ ∈ 𝔇𝑢𝑐𝑝

. From the decomposition

(II.26), we obtain the generalized stochastic integrals of the following form

X(𝑡, 𝜔) = X0 +
∫ 𝑡

0
𝑓 (𝑠, 𝜔)d𝑠 +

∫ 𝑡

0
𝑔(𝑠, 𝜔)dW(𝑠) +

∫ 𝑡

0

∫
R\{0}

η(𝑠,𝑢, 𝜔)Ñ (d𝑠, d𝑢),

where the integrands are {F𝑡 }-predictable and satisfy the following assumption∫ 𝑡

0

{
|𝑓 (𝑠, 𝜔) | + 𝑔2(𝑠, 𝜔) +

∫
R\{0}

η2(𝑠,𝑢, 𝜔)𝜈 (d𝑢)
}
d𝑠 < ∞ a.s. for all 𝑡 > 0.

Then, the differential notation Itô-Lévy process is defined as follows:

dX(𝑡, 𝜔) = 𝑓 (𝑡, 𝜔)d𝑡 + 𝑔(𝑡, 𝜔)dW(𝑡) +
∫
R\{0}

η(𝑡,𝑢, 𝜔)Ñ (d𝑡, d𝑢) . (II.27)

Obviously, if E

(∫ 𝑇

0

∫
R\{0}

η2(𝑡,𝑢, 𝜔)𝜈 (d𝑢)d𝑡
)
< ∞, then the process M(𝑡) =

∫ 𝑡

0

∫
R\{0}

η(𝑡,𝑢, 𝜔)Ñ (d𝑠, d𝑢),

0 ≤ 𝑡 ≤ 𝑇 is a martingale. Moreover, if

∫ 𝑇

0

∫
R\{0}

η2(𝑡,𝑢, 𝜔)𝜈 (d𝑢)d𝑡 < ∞ a.s., then the process M(𝑡)

is a local martingale for all 0 ≤ 𝑡 ≤ 𝑇 .

12.3 The Itô-Lévy formula
We consider the process X expressed by (II.27) and let V : R2 → R be a C2

-function such that

Y(𝑡) ≡ V(𝑡,X(𝑡)). Then, Y(𝑡) is again an Itô-Lévy process and

dY(𝑡) = 𝜕V
𝜕𝑡

(𝑡,X(𝑡))d𝑡 + 𝜕V
𝜕𝑥

(𝑡,X(𝑡))
{
𝑓 (𝑡, 𝜔)d𝑡 + 𝑔(𝑡, 𝜔)dW(𝑡)

}
+ 0.5𝑔2(𝑡, 𝜔) 𝜕

2V
𝜕𝑥2 (𝑡,X(𝑡))d𝑡

+
∫
R\{0}

{
V

(
𝑡,X(𝑡) + η(𝑡,𝑢, 𝜔)

)
−V(𝑡,X(𝑡)) − 𝜕V

𝜕𝑥
(𝑡,X(𝑡))η(𝑡,𝑢, 𝜔)

}
𝜈 (d𝑢)d𝑡

+
∫
R\{0}

{
V

(
𝑡,X(𝑡−) + η(𝑡,𝑢, 𝜔)

)
−V(𝑡,X(𝑡−))

}
Ñ (d𝑡, d𝑢) .

Example 12.6 (The geometric Itô-Lévy process). In this example, we consider the following Itô-

Lévy stochastic differential equation

dX(𝑡) = αX(𝑡)d𝑡 + σX(𝑡)dW(𝑡) +
∫
R\{0}

η(𝑡,𝑢)X(𝑡−)Ñ (d𝑡, d𝑢),

a
A Skorohod topology on 𝐷𝑠𝑘 is defined by introducing the Skorohod metric 𝑑𝑠𝑘 defined by

𝑑𝑠𝑘 (𝑓 , 𝑔) = inf
𝜏

sup
𝑡 ≥0

{|𝑓 (𝑡) − 𝑔(𝜏 (𝑡)) | + |𝜏 (𝑡) − 𝑡 |},

where 𝜏 moves over all strictly increasing, continuous mappings of R+ to R+ such that 𝜏 (0) = 0.
b
Here, 𝐻𝑛

𝑢𝑐𝑝
→ 𝐻 if for all 𝑡 > 0, sup

0≤𝑠≤𝑡
|𝐻𝑛 (𝑠) − 𝐻 (𝑠) | → 0 in probability.

c
A stochastic process X(𝑡) is called semimartingale, if it can be decomposed as X = Y(𝑡) + A(𝑡), where Y is a local

martingale and A is cadlag adapted process of locally bounded variation.
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where α, σ are constants and η > −1. Then, X(𝑡) can never jump to 0 or a negative value. In order

to establish explicitly the solution X(𝑡) of this Lévy SDE, we reformulate it as follows:

dX(𝑡)
X(𝑡−) = αd𝑡 + σdW(𝑡) +

∫
R\{0}

η(𝑡,𝑢)Ñ (d𝑡, d𝑢) .

By setting Y(𝑡) = lnX(𝑡) and using Itô’s formula, we obtain

dY(𝑡) =
(
α − 0.5σ2

)
d𝑡 + σdW(𝑡) +

∫
R\{0}

{ln(1 + η(𝑡,𝑢)) − η(𝑡,𝑢)} 𝜈 (d𝑢)d𝑡 +
∫
R\{0}

ln(1 + η(𝑡,𝑢))Ñ (d𝑡, d𝑢) .

Therefore

Y(𝑡) = Y(0) +
(
α − 0.5σ2

)
𝑡 + σW(𝑡) +

∫ 𝑡

0

∫
R\{0}

{ln(1 + η(𝑡,𝑢)) − η(𝑡,𝑢)} 𝜈 (d𝑢)d𝑠

+
∫ 𝑡

0

∫
R\{0}

ln(1 + η(𝑡,𝑢))Ñ (d𝑠, d𝑢) .

Consequently

X(𝑡) = X(0) exp

{(
α − 0.5σ2

)
𝑡 + σW(𝑡) +

∫ 𝑡

0

∫
R\{0}

{ln(1 + η(𝑡,𝑢)) − η(𝑡,𝑢)} 𝜈 (d𝑢)d𝑠

+
∫ 𝑡

0

∫
R\{0}

ln(1 + η(𝑡,𝑢))Ñ (d𝑠, d𝑢)
}
.

Next, we formulate the corresponding multi-dimensional version of latest result. Let X(𝑡) ∈ R𝑛
be an Itô-Lévy process of the following form:

dX(𝑡) = 𝑓 (𝑡, 𝜔)d𝑡 + 𝑔(𝑡, 𝜔)dW(𝑡) +
∫
R𝑛\{0}

η(𝑡,𝑢, 𝜔)Ñ (d𝑡, d𝑢), (II.28)

where 𝑓 : [0,𝑇 ] ×Ω → R𝑛, 𝑔 : [0,𝑇 ] ×Ω → R𝑛×𝑚 and η : [0,𝑇 ] ×𝑅𝑛 ×Ω → R𝑛×ℓ are adapted processes

such that the integrals exist. Here, W(𝑡) is an 𝑚-dimensional Brownian motion and

Ñ (d𝑡, d𝑢)𝑇 =

(
Ñ1(d𝑡, d𝑢1), . . . , Ñℓ (d𝑡, d𝑢ℓ )

)
=

(
N1(d𝑡, d𝑢1) − 𝜈1(d𝑢1)d𝑡, . . . ,Nℓ (d𝑡, d𝑢ℓ ) − 𝜈ℓ (d𝑢ℓ )d𝑡

)
,

where {N𝑗 } are independent Poisson random measures with Lévy measures 𝜈 𝑗 . Specifically, when

written in detail the component number 𝑖 of X(𝑡) in (II.28), then X𝑖 (𝑡) has the following form

dX𝑖 (𝑡) = 𝑓𝑖 (𝑡, 𝜔)d𝑡 +
𝑚∑︁
𝑗=1

𝑔𝑖 𝑗 (𝑡, 𝜔)dW𝑗 (𝑡) +
ℓ∑︁
𝑗=1

∫
R
η𝑖 𝑗 (𝑡,𝑢 𝑗 , 𝜔)Ñ𝑗 (d𝑡, d𝑢 𝑗 ), 1 ≤ 𝑖 ≤ 𝑛.

Let V ∈ C1,2( [0,𝑇 ] × R𝑛;R) and let Y(𝑡) = V(𝑡,X(𝑡)). Then

dY(𝑡) = 𝜕V
𝜕𝑡

d𝑡 +
𝑛∑︁
𝑖=1

𝜕V
𝜕𝑥𝑖

(
𝑓𝑖d𝑡 + 𝑔𝑖dW(𝑡)

)
+ 0.5

𝑛∑︁
𝑖, 𝑗=1

(
𝑔𝑔𝑇

)
𝑖 𝑗

𝜕2V
𝜕𝑥𝑖𝜕𝑥 𝑗

d𝑡

+
ℓ∑︁
𝑘=1

∫
R\{0}

{
V

(
𝑡,X(𝑡−) + η(𝑘) (𝑡,𝑢𝑘 )

)
−V(𝑡,X(𝑡−)) −

𝑛∑︁
𝑖=1

𝜕V
𝜕𝑥𝑖

(𝑡,X(𝑡−))η(𝑘)
𝑖

(𝑡,𝑢𝑘 )
}
𝜈𝑘 (d𝑢𝑘 )d𝑡

+
ℓ∑︁
𝑘=1

∫
R\{0}

{
V

(
𝑡,X(𝑡−) + η(𝑘) (𝑡,𝑢𝑘 )

)
−V(𝑡,X(𝑡−))

}
Ñ𝑘 (d𝑡, d𝑢𝑘 ),

where η(𝑘) ∈ R𝑛 is column number 𝑘 of the 𝑛 × ℓ matrix η = [η]𝑖𝑘 and η
(𝑘)
𝑖

= η𝑖𝑘 is the coordinate

number 𝑖 of η(𝑘)
.

Generally, the Itô-Lévy isometries state the following results:
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• E
[(∫ 𝑇

0
𝑔(𝑠, 𝜔)dW(𝑠)

)2]
= E

[∫ 𝑇

0
𝑔2(𝑠, 𝜔)𝑑𝑠

]
[The Itô isometry]

.

• E
[(∫ 𝑇

0

∫
R\{0}

η(𝑠,𝑢, 𝜔)Ñ (d𝑠, d𝑢)
)2]

= E

[∫ 𝑇

0

∫
R\{0}

η2(𝑠,𝑢, 𝜔)𝜈 (d𝑢)d𝑠
]

[The Lévy isometry]

.

If the last quantity is finite, then M(𝑡) =
∫ 𝑇

0

∫
R\{0}

η(𝑠,𝑢, 𝜔)Ñ (d𝑠, d𝑢)
[The martingale property]

is a martingale for 𝑡 ≥ 𝑇 with

the following quadratic variation

〈M,M〉𝑡 =
∫ 𝑇

0

∫
R\{0}

η2(𝑠,𝑢, 𝜔)𝜈 (d𝑢)d𝑠 .

12.4 Itô-Lévy stochastic differential equations
Theorem 12.7. Consider the following Lévy SDE in R𝑛 :

dX(𝑡) = 𝑓 (𝑡,X(𝑡))d𝑡 + 𝑔(𝑡,X(𝑡))dW(𝑡) +
∫
R𝑛\{0}

η(𝑡,X(𝑡−), 𝑢)Ñ (d𝑡, d𝑢), X(0) = X0 ∈ R𝑛,

where 𝑓 : [0,𝑇 ] × R𝑛 → R𝑛, 𝑔 : [0,𝑇 ] × R𝑛 → R𝑛×𝑚 and η : [0,𝑇 ] × R𝑛 × R𝑛 → R𝑛×ℓ verify the following
assumptions

|𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) |2 + ||𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦) | |2 +
ℓ∑︁
𝑘=1

∫
R\{0}

|η(𝑘) (𝑡, 𝑥,𝑢𝑘 ) − η(𝑘) (𝑡, 𝑦,𝑢𝑘 ) |2𝜈𝑘 (d𝑢𝑘 ) ≤ ℭ̂1 |𝑥 − 𝑦 |2

[Lipschitz continuity condition]
(II.29)

for some finite constant ℭ̂1 and for all 𝑥,𝑦 ∈ R𝑛, and

|𝑓 (𝑡, 𝑥) |2 + ||𝑔(𝑡, 𝑥) | |2 +
∫
R\{0}

ℓ∑︁
𝑘=1

|η𝑘 (𝑡, 𝑥,𝑢) |2𝜈𝑘 (d𝑢𝑘 ) ≤ ℭ̂2

(
1 + |𝑥 |2

)
[At most linear growth condition]

(II.30)

for some finite constant ℭ̂2 and for all 𝑥 ∈ R𝑛. Then, there exists a unique cadlag adapted solution
X(𝑡) and E

[
|X(𝑡) |2

]
< ∞ for all 𝑡 ≥ 0.

Remark 12.8. Solutions of Lévy SDE in the time homogeneous case, i.e. when 𝑓 (𝑡, 𝑥) = 𝑓 (𝑥),
𝑔(𝑡, 𝑥) = 𝑔(𝑥) and η(𝑡, 𝑥,𝑢) = η(𝑥,𝑢), are called Lévy jump diffusions.

Now, we compare the following two one-dimensional stochastic differential equations driven by

a Brownian motion (W𝑡 )𝑡 ≥0 and a Poisson process (N𝑡 )𝑡 ≥0

X1(𝑡) = X1(0) +
∫ 𝑡

0
𝑓1(𝑠,X1(𝑠))d𝑠 +

∫ 𝑡

0
𝑔1(𝑠,X1(𝑠))dW(𝑠) +

∫ 𝑡

0

∫
R𝑛\{0}

η(𝑠,X1(𝑠−), 𝑢)Ñ (d𝑠, d𝑢),

X2(𝑡) = X2(0) +
∫ 𝑡

0
𝑓2(𝑠,X2(𝑠))d𝑠 +

∫ 𝑡

0
𝑔2(𝑠,X2(𝑠))dW(𝑠) +

∫ 𝑡

0

∫
R𝑛\{0}

η(𝑠,X2(𝑠−), 𝑢)Ñ (d𝑠, d𝑢), (II.31)

where X1(0) and X2(0) are the initial states of these two SDEs with initial time 𝑡 ∈ [0,𝑇 ]. The

main objective of the next theorem is to find a necessary and sufficient condition of the above

coefficients that ensures

X1(0) ≤ X2(0) ⇒ X1(𝑠) ≤ X2(𝑠), ∀𝑠 ∈ [𝑡,𝑇 ], P − 𝑎.𝑠 ., ∀𝑡 ≤ 𝑇 . (II.32)
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Theorem 12.9 (Stochastic comparaison Theorem, [109]). We assume (II.29) and (II.30) are verified.
Then the following conditions are equivalent

1. (II.32) holds for SDEs (II.31);

2. For each (𝑡, 𝑥) ∈ [0,𝑇 ] × R, the coefficients 𝑓𝑖 , 𝑔𝑖 and 𝜂𝑖 , 𝑖 = 1, 2 satisfy:

𝑓1(𝑡, 𝑥) ≤ 𝑓2(𝑡, 𝑥),
𝑔1(𝑡, 𝑥) = 𝑔2(𝑡, 𝑥),

𝜂1(𝑡, 𝑥,𝑢) = 𝜂2(𝑡, 𝑥,𝑢), 𝜈 (d𝑢) − 𝑎.𝑠 .

For the situation without jumps, we have

Corollary 12.10. We assume (II.29) and (II.30) as well as 𝜂1 ≡ 𝜂2 ≡ 0. Then, the following conditions
are equivalent:

1. (II.32) holds for SDEs (II.31);

2. For each (𝑡, 𝑥) ∈ [0,𝑇 ] × R, the coefficients 𝑓𝑖 and 𝑔𝑖 𝑖 = 1, 2 satisfy:

𝑓1(𝑡, 𝑥) ≤ 𝑓2(𝑡, 𝑥),
𝑔1(𝑡, 𝑥) = 𝑔2(𝑡, 𝑥) .

13 Some definitions and useful results
Definition 13.1. We consider a population and X(𝑡) its size at time 𝑡 .

• The population is said to go to extinction if lim
𝑡→∞

X(𝑡) = 0 a.s.

• The population is said to be non-persistent in the mean if lim
𝑡→∞

〈X(𝑡)〉 = 0 a.s., where

〈𝜓 (𝑡)〉 = 1
𝑡

∫ 𝑡

0
𝜓 (𝑠)d𝑠 .

• The population is said to be exponentially extinct if lim sup
𝑡→∞

𝑡−1 lnX(𝑡) < 0 a.s.

• The population is said to be weakly persistent if lim sup
𝑡→∞

X(𝑡) > 0 a.s.

• The population is said to be weakly persistent in the mean if lim sup
𝑡→∞

〈X(𝑡)〉 > 0 a.s.

• The population is said to be strongly persistent in the mean if lim inf
𝑡→∞

〈X(𝑡)〉 > 0 a.s.

• The population is said to be stochastically permanent if for any 𝜖 > 0, there exists a pair of

positive constants β1 = β1(𝜖) and β2 = β2(𝜖) such that for any initial value X0 ∈ R+, we have

lim sup
𝑡→∞

P ( |X(𝑡) | > β1) ≤ 𝜖
[Stochastically ultimate boundedness]

and lim inf
𝑡→∞

P ( |X(𝑡) | ≥ β2) ≥ 1 − 𝜖
[Stochastic persistence]

.

Obviously, it can be seen from above definitions that the exponentially extinction implies the

extinction and the non-persistence in the mean. In addition, the strong persistence in the mean

implies the weak persistence and the weak persistence in the mean. But, the reverse of the above

reasoning is not generally true. Furthermore, a stochastic epidemic model is termed stochastically

permanent, if it is both stochastically ultimate bounded and persistent.

Lemma 13.2. Let X ∈ C(Ω × [0, +∞),R+). We suppose that 1 + η𝑖 (𝑢) > 0 (𝑖 = 1, 2, . . . ), for all 𝑢 in a
measurable subset 𝑍 ⊂ (0,∞) satisfying 𝜈 (𝑍 ) < ∞. Then, we have the following conclusions.
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• If there exist 𝑇 > 0, ℭ0 > 0, ℭ, M𝑖 such that when 𝑡 ≥ 𝑇 ,

lnX(𝑡) ≤ ℭ𝑡 − ℭ0

∫ 𝑡

0
X(𝑠)d𝑠 +

𝑛∑︁
𝑖=1

σ𝑖W𝑖 (𝑡) +
𝑛∑︁
𝑖=1

M𝑖

∫ 𝑡

0

∫
U

ln
(
1 + η𝑖 (𝑢)

)
Ñ (d𝑠, d𝑢) a.s.,

then 
lim sup
𝑡→∞

1
𝑡

∫ 𝑡
0 X(𝑠)d𝑠 ≤ ℭ

ℭ0
a.s. if ℭ ≥ 0,

lim
𝑡→∞

X(𝑡) = 0 a.s. if ℭ < 0.

• If there exist 𝑇 > 0, ℭ0 > 0, ℭ > 0, M𝑖 such that when 𝑡 ≥ 𝑇 ,

lnX(𝑡) ≥ ℭ𝑡 − ℭ0

∫ 𝑡

0
X(𝑠)d𝑠 +

𝑛∑︁
𝑖=1

σ𝑖W𝑖 (𝑡) +
𝑛∑︁
𝑖=1

M𝑖

∫ 𝑡

0

∫
U

ln
(
1 + η𝑖 (𝑢)

)
Ñ (d𝑠, d𝑢) a.s.,

then lim inf
𝑡→∞

1
𝑡

∫ 𝑡
0 X(𝑠)d𝑠 ≤ ℭ

ℭ0
a.s.

The following elementary inequalities will be used frequently in the sequel.

• Hölder’s inequality If 1 < 𝑝 < ∞ and 𝑞 is given by 1/𝑝+1/𝑞 = 1, E( |𝑋 |𝑝) < ∞, and E( |𝑌 |𝑞) < ∞,

then

|E(𝑋𝑌 ) | ≤ E( |𝑋𝑌 |) ≤
(
E|𝑋 |𝑝

) 1
𝑝
(
E|𝑌 |𝑞

) 1
𝑞 .

The Hölder inequality gives E( |𝑋 |) ≤ E( |𝑋 |𝑝)1/𝑝
for 𝑌 = 1 and Cauchy-Schwarz inequality for

𝑝 = 𝑞 = 2.

• Minkovski’s inequality If 1 ≤ 𝑝 < ∞ and 𝑋 , 𝑌 ∈ 𝐿𝑝 , then 𝑋 + 𝑌 ∈ 𝐿𝑝 and(
E|𝑋 + 𝑌 |𝑝

) 1
𝑝 ≤

(
E|𝑋 |𝑝

) 1
𝑝 +

(
E|𝑌 |𝑝

) 1
𝑝 .

• Chebyshev’s inequality

P
{
𝜔 : |𝑋 (𝜔) | ≥ ℭ

}
≤ ℭ−𝑝E|𝑋 |𝑝

if ℭ > 0, 𝑝 > 0, and 𝑋 ∈ L𝑃 (Ω;R𝑛).

• Burkholder-Davis-Gundy inequality Let 𝑔 ∈ 𝔏2(R+;R𝑛×𝑚). For any 𝑡 ≥ 0, define

𝔛(𝑡) =
∫ 𝑡

0
𝑔(𝑠)dW(𝑠) and 𝔄(𝑡) =

∫ 𝑡

0
|𝑔(𝑠) |2d𝑠 .

Then for every 𝑝 > 0, there exist positive constants ℭ𝑝 and ℭ𝑝 , such that

ℭ𝑝E|𝔄(𝑡) |
𝑝

2 ≤ E
(

sup
0≤𝑠≤𝑡

|𝔛(𝑠) |𝑝
)
≤ ℭ𝑝E|𝔄(𝑡) |

𝑝

2 for all 𝑡 ≥ 0.

• Gronwall’s inequality Let 𝑇 > 0 and ℭ ≥ 0. Let 𝑓 (·) be a Borel measurable bounded

nono-negative function on [0,𝑇 ], and let 𝑔(·) be a non-negative integrable function on [0,𝑇 ].
If

𝑓 (𝑡) ≤ ℭ +
∫ 𝑡

0
𝑓 (𝑠)𝑔(𝑠)d𝑠 for all 0 ≤ 𝑡 ≤ 𝑇,

then

𝑓 (𝑡) ≤ ℭ exp
(∫ 𝑡

0
𝑔(𝑠)d𝑠

)
for all 0 ≤ 𝑡 ≤ 𝑇 .
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The basics of the stochastic analysis and jump-diffusion theory are presented, followed by some

classical tools that are will be used in the following chapters to analyze the various disturbed

epidemic models. It should be emphasized that this chapter is just a collection of the definitions

and notations necessary to comprehend the key results of this thesis. For more details and specifics,

we refer the reader to this book [51].

Now, we are in the position to present the main contributions and results of this thesis. We will

apply the theories of this chapter to analyze mathematically the perturbed version of the epidemic

models presented in Chapter I.
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Chapter III
Some new results on the dynamics of a

stochastic SIR epidemic model

A𝔟𝔰𝔱𝔯𝔞𝔠𝔱

R
, emerging epidemics like COVID-19 and its variants require predictive mathematical

models to implement suitable responses in order to limit their negative and profound impact

on society. The SIR system is a straightforward mathematical formulation to model the dissem-

ination of many infectious diseases. The present chapter reports novel theoretical and analytical

results for a perturbed version of an SIR epidemic model. Notably, our epidemic model is repre-

sented by Itô-Lévy stochastic differential equations in order to simulate sudden and unexpected

external phenomena. By adopting some innovative and ameliorated mathematical approaches, we

analyze the long-run characteristics of three categories of an SIR model with jumps. Initially, we

suppose that the stochastic disturbances associated with the disease transmission coefficient and

the mortality rate are presented with two perturbations: standard Gaussian white and Lévy noises,

respectively. We investigate some attractive asymptotic properties of this new perturbed model,

namely: persistence in the mean, ergodicity, and extinction of the disease. Next, we consider an

SIR epidemic model driven by a multidimensional Lévy jump process. We aim to develop a mathe-

matical method for deriving the stochastic threshold which can determine the existence of a unique

ergodic stationary distribution or the extinction of the epidemic. Our method differs from previous

approaches by the use of the comparison theorem, mutually exclusive possibilities lemma, and some

alternative techniques of the stochastic differential systems. Ultimately, we consider the case of

an SIR model with the distributed latency period and Lévy jumps. We aim to study the dynamic

behavior characteristics of this perturbed delayed model. Within this scope, we offer sufficient

conditions for two epidemiological properties: extinction and persistence of the epidemic. One of

the most intriguing results is that the dynamics of the stochastic model are closely related to the

intensities of white noises and Lévy jumps, which can give us a good insight into the evolution of

the epidemic in some unexpected situations. Broadly speaking, our work complements the results of

some previous investigations and provides a new way to predict and analyze the dynamic behavior

of epidemics with distributed delay. For illustrative purposes, numerical examples are presented

for each perturbed model in order to check the theoretical studies.

1 Dynamic characterization of a stochastic SIR infectious disease
model with dual perturbation

1.1 Introduction
As mentioned previously, the dissemination of infectious diseases may subject to some uncertainties

and stochastic phenomena due to fluctuations in the natural environment. Many studies pointed
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out that stochastic differential equations can be applied to formulate the perturbed SIR epidemic

model and explore the dynamics of infectious diseases [2, 150]. By assuming that the disease

transmission is subject to some small random fluctuations and the contact rate β is disturbed by

the white noise, the SIR model (I.4) is transformed into the following SDEs:
d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡−σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡+σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡),

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − µ1𝑅(𝑡)

)
d𝑡,

(III.1)

where W(𝑡) is the standard Brownian motion defined on (Ω, F , {F𝑡 }𝑡 ≥0, P) with a filtration {F𝑡 }𝑡 ≥0
satisfying the usual conditions containing all the random variables that we meet in this section. σ

is the intensity of environmental white noise. In the following, we present some previous results

on the dynamics of the model (III.1):

• Tornatore et al. [136] proved that 𝐸� of the deterministic system (I.4) is globally asymptoti-

cally stable under a suitable condition, and they established a threshold that determines the

dynamics of the stochastic system (III.1).

• Ji et al. [47] proved the global stability of the stochastic system (III.1) by using the Lyapunov

functional method, and they studied the asymptotic character of the solution around the

endemic point 𝐸~ of (I.4).

• Ji and Jiang [43] investigated the threshold behavior of the model (III.1) which determines

the extinction or the persistence of the epidemic.

Besides the above-mentioned bilinear perturbation, the deterministic system (I.4) can be perturbed

by assuming that the white noise is directly proportional to 𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡). More formally, the

perturbed version of (I.4) can be described by the following SDEs:
d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡+σ1𝑆 (𝑡)dW1(𝑡),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡+σ2𝐼 (𝑡)dW2(𝑡),

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − µ1𝑅(𝑡)

)
d𝑡+σ3𝑅(𝑡)dW3(𝑡),

(III.2)

where W𝑖 (𝑡) (𝑖 = 1, 2, 3) are the independent standard Brownian motions and σ𝑖 (𝑖 = 1, 2, 3) are the

intensities of environmental white noises. Many previous studies have analyzed the dynamics of

the stochastic model (III.2). For example:

• Ji et al. [46] investigated the asymptotic behavior of the model (III.2) around the disease-free

equilibrium 𝐸� of (I.4).

• Lin et al. [76] analyzed the long-time behavior of the stochastic model (III.2). Precisely, they

discussed the convergence of the solution densities to a singular measure.

However, epidemic models just perturbed by the Gaussian white noise can not successfully

characterize the situation when the population suffers sudden catastrophic disturbance such as

earthquakes, hurricanes, and floods. The severe environmental change can affect the dynamical be-

havior of the epidemic significantly [62, 60]. Therefore, it is necessary to employ the discontinuous

Lévy process to analyze and control infectious diseases during these phenomena. According to the

Lévy-Itô decomposition [23] (see also Chapter II), a Lévy process is decomposed into the sum of a

linear drift, a Brownian motion, and a superposition of centered Poisson processes with different

jump sizes. If the SIR model is governed by Lévy jumps, then the deterministic model (I.4) can be

described by the following SDEs with jumps:
d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡+σ1𝑆 (𝑡)dW1(𝑡) +

∫
U
η1(𝑢)𝑆 (𝑡−)Ñ (d𝑡, d𝑢),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡+σ2𝐼 (𝑡)dW2(𝑡) +

∫
U
η2(𝑢)𝐼 (𝑡−)Ñ (d𝑡, d𝑢),

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − µ1𝑅(𝑡)

)
d𝑡+σ3𝑅(𝑡)dW3(𝑡) +

∫
U
η3(𝑢)𝑅(𝑡−)Ñ (d𝑡, d𝑢),

(III.3)
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where 𝑆 (𝑡−), 𝐼 (𝑡−) and 𝑅(𝑡−) are the left limits of 𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡), respectively. W𝑖 (𝑡) (𝑖 = 1, 2, 3)
are independent Brownian motions and σ𝑖 > 0 (𝑖 = 1, 2, 3) are their intensities. N is a Poisson

counting measure with compensating martingale Ñ and characteristic measure 𝜈 on a measurable

subset U of (0,∞) satisfying 𝜈 (U) < ∞. W𝑖 (𝑡) (𝑖 = 1, 2, 3) are independent of N . We assume

that 𝜈 is a Lévy measure such that Ñ (d𝑡, d𝑢) = N(d𝑡, d𝑢) − 𝜈 (d𝑢)d𝑡 and the functions η𝑖 : U → R
(𝑖 = 1, 2, 3) are bounded and continuous. The following references are the two works that have

studied the dynamics of the model (III.3):

• Zhang and Wang [154] analyzed the asymptotic behavior of the stochastic solution of the

model (III.3) around the equilibriums 𝐸� and 𝐸~.

• Zhou and Zhang [172] investigated the effect of the jumps on the dynamics of the model (III.3),

and they obtained the stochastic threshold which determines the extinction or persistence of

the disease.

Generally speaking, there are two popular ways to introduce stochastic factors into the epidemic

models. The first is to presume that the spread of the epidemic is subject to some small and standard

random fluctuations that can be described by Gaussian white noise. The other is to assume that the

model is affected by massive disturbances caused by sudden environmental shocks. Mathematically,

these huge random perturbations can be described by Lévy noise. In this section, we present a new

stochastic SIR epidemic model with dual perturbations. We merge the stochastic transmission with

a discontinuous perturbed mortality rate. We suppose that the transmission of the epidemic may

subject to some small uncertainties, and the mortality rate can be affected by huge environmental

phenomena. This new perturbation allows us to examine the effects of both Gaussian white noise

and Lévy noise on the transmission dynamics of infectious diseases during environmental shocks.

Motivated by the above discussion, the stochastic variability in the mortality rate µ1 and the

epidemic transmission rate β are presented as follows:

µ1 µ1 − σ1 ¤W1(𝑡) − ¤J (𝑡) and β β + σ2 ¤W2(𝑡),

where W𝑖 (𝑡) (𝑖 = 1, 2) are independent Brownian motions with intensities σ𝑖 (𝑖 = 1, 2), and

J (𝑡) =

∫ 𝑡

0

∫
U
η(𝑢)Ñ (d𝑠, d𝑢). The perturbed version corresponding to the system (I.4) can be

expressed by the following form:
d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡+σ1𝑆 (𝑡)dW1(𝑡) +

∫
U
η(𝑢)𝑆 (𝑡−)Ñ (d𝑡, d𝑢)−σ2𝑆 (𝑡)𝐼 (𝑡)dW2(𝑡),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡+σ1𝐼 (𝑡)dW1(𝑡) +

∫
U
η(𝑢)𝐼 (𝑡−)Ñ (d𝑡, d𝑢)+σ2𝑆 (𝑡)𝐼 (𝑡)dW2(𝑡),

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − µ1𝑅(𝑡)

)
d𝑡+σ1𝑅(𝑡)dW1(𝑡) +

∫
U
η(𝑢)𝑅(𝑡−)Ñ (d𝑡, d𝑢) .

(III.4)

In this section, we devote our main attention to study the asymptotic proprieties of the new

stochastic epidemic model (III.4) that includes both white noise and Lévy jumps. The principal

contributions are as follows:

• We prove the existence of a unique ergodic stationary distribution to the model (III.4) by

employing the Feller property and mutually exclusive possibilities lemma 11.4. In this sense,

we propose an alternative method to establish the explicit threshold expression without using

the invariant probability distribution of an auxiliary process, which can close the gap left by

using the method presented in [163] and [162].

• We prove that the persistence of the disease occurs under the same condition of the ergodicity

of the model (III.4). As a result, we treat a problem that is intentionally ignored in literature;

it is not biologically reasonable to consider two distinct thresholds for the persistence and

the existence of stationary distribution of (III.4).

• We give sufficient conditions for the stochastic extinction of the disease.
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1.2 Main results
Firstly, we introduce some notations and lemmas which are used in our main results. To properly

study our model (III.4), we have the following fundamental assumptions on the jump-diffusion

coefficients:

• (H1) We assume that the jump coefficient η(𝑢) satisfy

∫
U
η2(𝑢)𝜈 (d𝑢) < ∞.

• (H2) For all 𝑢 ∈ U, we assume that 1 + η(𝑢) > 0 and

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢) < ∞.

• (H3) We suppose that

∫
U

(
ln(1 + η(𝑢))

)2
𝜈 (d𝑢) < ∞.

• (H4) We suppose that

∫
U

(
(1 + η(𝑢))2 − 1

)2
𝜈 (d𝑢) < ∞.

• (H5) Assume that for some 𝑝 > 1, 𝜒2 = µ1 − (2𝑝−1)
2 σ2

1 −
1

2𝑝 ℓ𝑝 > 0, where

ℓ𝑝 =

∫
U

(
(1 + η(𝑢))2𝑝 − 1 − 2𝑝η(𝑢)

)
𝜈 (d𝑢) < ∞.

Remark 1.1. Biologically, if η(𝑢) > 0 the Lévy jumps increase the quantity of the host population.

Otherwise, if −1 < η(𝑢) < 0, the number of individuals is minimized gradually.

Remark 1.2. The assumptions (H3) and (H4) mean biologically that the intensity of Lévy jumps

cannot exceed the environmental carrying capacity.

In view of the epidemiological interpretation and the dynamical behavior, whether the stochastic

model is well-posed is the first concern thing. Therefore, to analyze the stochastic model (III.4),

the first problem to be checked is the existence of a unique global positive solution, that is, there

is no explosion in finite time under any positive initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+. It is known

that there exists a unique global solution to the stochastic models for any given initial value if the

coefficients verify the local Lipschitz and the linear growth conditions. But, the coefficients of the

model (III.4) do not verify the linear growth condition, which may let the solution to explode at a

finite time. The following theorem assures the well-posedness of the stochastic model (III.4).

Theorem 1.3. Let (H1) and (H2) hold. For any initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+, there exists a

unique positive solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) of the system (III.4) on 𝑡 ≥ 0, and the solution will stay in R3
+

almost surely.

The proof is somehow standard and classic (see for example [171]), so we omit it.

In the following, we always presume that the assumptions (H1)-(H5) hold.

Lemma 1.4. Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of (III.4) with initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+ and

𝑁 (𝑡) = 𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡). Then

E
(
𝑁 2𝑝 (𝑡)

)
≤

(
𝑁 (0)

)2𝑝
𝑒 {−𝑝𝜒2𝑡 } + 2𝜒1

𝜒2
, and lim sup

𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
𝑁 2𝑝 (𝑠)

)
d𝑠 ≤ 2𝜒1

𝜒2
,

where 𝜒1 = sup
𝑥>0

{
𝐴𝑥2𝑝−1 − 𝜒2

2
𝑥2𝑝

}
.

Proof. Making use of Itô’s lemma, we obtain

d(𝑁 (𝑡))2𝑝 = 2𝑝 (𝑁 (𝑡))2𝑝−1(𝐴 − µ1𝑁 (𝑡) − 𝑟𝐼 (𝑡))d𝑡 + 𝑝 (2𝑝 − 1)σ2
1(𝑁 (𝑡))2𝑝

d𝑡

+
∫
U
(𝑁 (𝑡))2𝑝 ((1 + η(𝑢))2𝑝 − 1 − 2𝑝η(𝑢)

)
𝜈 (d𝑢)d𝑡 + 2𝑝σ1(𝑁 (𝑡))2𝑝

dW1(𝑡)]

+
∫
U
(𝑁 (𝑡−))2𝑝 ((1 + η(𝑢))2𝑝 − 1

)
Ñ (d𝑡, d𝑢).
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Then

d(𝑁 (𝑡))2𝑝 ≤ 2𝑝 (𝑁 (𝑡))2𝑝−1 (𝐴 − µ1𝑁 (𝑡)
)
d𝑡 + 𝑝 (2𝑝 − 1)σ2

1(𝑁 (𝑡))2𝑝
d𝑡 + 2𝑝σ1(𝑁 (𝑡))2𝑝

dW1(𝑡)

+
∫
U
(𝑁 (𝑡))2𝑝 ((1 + η(𝑢))2𝑝 − 1 − 2𝑝η(𝑢)

)
𝜈 (d𝑢)d𝑡

+
∫
U
(𝑁 (𝑡−))2𝑝 ((1 + η(𝑢))2𝑝 − 1

)
Ñ (d𝑡, d𝑢)

= 2𝑝

{
𝐴(𝑁 (𝑡))2𝑝−1 −

,𝜒2︷                                                                                ︸︸                                                                                ︷(
µ1 −

(2𝑝 − 1)
2

σ2
1 −

1
2𝑝

∫
U

(
(1 + η(𝑢))2𝑝 − 1 − 2𝑝η(𝑢)

)
𝜈 (d𝑢)

)
(𝑁 (𝑡))2𝑝

}
d𝑡

+ 2𝑝σ1(𝑁 (𝑡))2𝑝
dW1(𝑡) +

∫
U
(𝑁 (𝑡−))2𝑝 ((1 + η(𝑢))2𝑝 − 1

)
Ñ (d𝑡, d𝑢).

We choose neatly 𝑝 > 1 such that 𝜒2 > 0, we have

d(𝑁 (𝑡))2𝑝 ≤ 2𝑝
{
𝜒1 −

𝜒2

2
(𝑁 (𝑡))2𝑝

}
d𝑡 + 2𝑝σ1(𝑁 (𝑡))2𝑝

dW1(𝑡)

+
∫
U
(𝑁 (𝑡−))2𝑝 ((1 + η(𝑢))2𝑝 − 1

)
Ñ (d𝑡, d𝑢) .

On the other hand, we have

d

(
(𝑁 (𝑡))2𝑝𝑒𝑝𝜒2𝑡

)
= 𝑝𝜒2(𝑁 (𝑡))2𝑝𝑒𝑝𝜒2𝑡 + 𝑒𝑝𝜒2𝑡

d(𝑁 (𝑡))2𝑝

≤ 2𝑝𝜒1𝑒
𝑝𝜒2𝑡

d𝑡 + 𝑒𝑝𝜒2𝑡2𝑝σ1(𝑁 (𝑡))2𝑝
dW1(𝑡)

+
∫
U
(𝑁 (𝑡−))2𝑝 ((1 + η(𝑢))2𝑝 − 1

)
Ñ (d𝑡, d𝑢).

Then, and by taking integration and expectation on both sides, we get

E
(
𝑁 2𝑝 (𝑡)

)
≤ (𝑁 (0))2𝑝𝑒−𝑝𝜒2𝑡 + 2𝑝𝜒1

∫ 𝑡

0
𝑒−𝑝𝜒2 (𝑡−𝑠)

d𝑠 ≤ (𝑁 (0))2𝑝𝑒−𝑝𝜒2𝑡 + 2𝜒1

𝜒2
.

Obviously, we obtain

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
𝑁 2𝑝 (𝑠)

)
d𝑠 ≤ (𝑁 (0))2𝑝 lim sup

𝑡→+∞

1
𝑡

∫ 𝑡

0
𝑒−𝑝𝜒2𝑠

d𝑠 + 2𝜒1

𝜒2
=

2𝜒1

𝜒2
.

Now, we consider the following subsystem
d𝑋 (𝑡) =

(
𝐴 − µ1𝑋 (𝑡)

)
d𝑡 + σ1𝑋 (𝑡)dW1(𝑡) +

∫
U
η(𝑢)𝑋 (𝑡−)Ñ (d𝑡, d𝑢), ∀𝑡 > 0,

𝑋 (0) = 𝑁 (0) > 0.
(III.5)

Remark 1.5. The solution of (III.5) is unique and positive. The proof is presented in Example 1.5,

pp. 7 of [104].

Lemma 1.6. [171] Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the positive solution of system (III.4) with any given initial
condition (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3

+. Let also 𝑋 (𝑡) be the positive solution of equation (III.5) with any
given initial value 𝑋 (0) = 𝑁 (0) ∈ R+. Then

• lim
𝑡→∞

𝑋 (𝑡 )
𝑡

= 0, lim
𝑡→∞

𝑋 2 (𝑡 )
𝑡

= 0, lim
𝑡→∞

𝑆 (𝑡 )
𝑡

= 0, lim
𝑡→∞

𝐼 (𝑡 )
𝑡

= 0, and lim
𝑡→∞

𝑅 (𝑡 )
𝑡

= 0 a.s.

• lim
𝑡→∞

1
𝑡

∫ 𝑡
0 𝑋 (𝑠)dW1(𝑠) = 0, lim

𝑡→∞
1
𝑡

∫ 𝑡
0 𝑋

2(𝑠)dW1(𝑠) = 0, lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW1(𝑠) = 0,

lim
𝑡→∞

1
𝑡

∫ 𝑡
0 𝑆 (𝑠)dW2(𝑠) = 0 lim

𝑡→∞
1
𝑡

∫ 𝑡
0 𝐼 (𝑠)dW1(𝑠) = 0, and lim

𝑡→∞
1
𝑡

∫ 𝑡
0 𝑅(𝑠)dW1(𝑠) = 0 a.s.
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• lim
𝑡→∞

1
𝑡

∫ 𝑡

0

∫
U
η(𝑢)𝑋 (𝑠−)Ñ (d𝑠, d𝑢) = 0, lim

𝑡→∞
1
𝑡

∫ 𝑡

0

∫
U
𝑋 2(𝑠−)

(
(1 + η(𝑢))2 − 1

)
Ñ (d𝑠, d𝑢) = 0,

lim
𝑡→∞

1
𝑡

∫ 𝑡

0

∫
U
η(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢) = 0, lim

𝑡→∞
1
𝑡

∫ 𝑡

0

∫
U
η(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢) = 0,

and lim
𝑡→∞

1
𝑡

∫ 𝑡

0

∫
U
η(𝑢)𝑅(𝑠−)Ñ (d𝑠, d𝑢) = 0 a.s.

Remark 1.7. For a detailed proof and generalized version of the last lemma, we refer the reader

to the proof of Lemma 2.5 in Chapter VI.

Remark 1.8. In the absence of Lévy jumps (see for example [139]), the stationary distribution

expression is used to estimate the time averages of the auxiliary process solution by employing the

ergodic theorem [93]. Unluckily, the said expression is still unknown in the case of the Lévy noise.

This issue is implicitly mentioned in [163, 162] as an open question, and the authors presented the

threshold analysis of their model with an unknown stationary distribution formula. In this thesis,

we propose an alternative method to establish the exact expression of the threshold parameter

without having recourse to the use of ergodic theorem. This new idea that we propose is presented

in the following lemma.

Lemma 1.9. Let 𝑋 (𝑡) be the solution of system (III.5) with an initial value 𝑋 (0) ∈ R+ and assume
that 𝜒3 = 2𝜇1 − σ2

1 −
∫
U
η2(𝑢)𝜈 (d𝑢) > 0. Then

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑋 (𝑠)d𝑠 = 𝐴

µ1
a.s. and lim

𝑡→∞
1
𝑡

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 = 2𝐴2

µ1𝜒3
a.s.

Proof. Integrating from 0 to 𝑡 on both sides of (III.5) yields

𝑋 (𝑡) − 𝑋 (0)
𝑡

= 𝐴 − µ1
𝑡

∫ 𝑡

0
𝑋 (𝑠)d𝑠 + σ1

𝑡

∫ 𝑡

0
𝑋 (𝑠)dW1(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η(𝑢)𝑋 (𝑡−)Ñ (d𝑠, d𝑢) .

Clearly, we can derive that

1
𝑡

∫ 𝑡

0
𝑋 (𝑠)d𝑠 = 𝐴

µ1
− 𝑋 (𝑡) − 𝑋 (0)

µ1𝑡
+ σ1
µ1𝑡

∫ 𝑡

0
𝑋 (𝑠)dW1(𝑠) +

1
µ1𝑡

∫ 𝑡

0

∫
U
η(𝑢)𝑋 (𝑡−)Ñ (d𝑠, d𝑢) .

From Lemma 1.6, one can derive that

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑋 (𝑠)d𝑠 = 𝐴

µ1
a.s.

Applying the generalized Itô’s formula to model (III.5) leads to

d𝑋 2(𝑡) =
(
2𝑋 (𝑡)

(
𝐴 − µ1𝑋 (𝑡)

)
+ σ2

1𝑋
2(𝑡) +

∫
U
𝑋 2(𝑡)

(
(1 + η(𝑢))2 − 1 − 2η(𝑢)

)
𝜈 (d𝑢)

)
d𝑡

+ 2σ1𝑋
2(𝑡)dW1(𝑡) +

∫
U
𝑋 2(𝑡−)

(
(1 + η(𝑢))2 − 1

)
Ñ (d𝑡, d𝑢) .

Integrating both sides of the last equation from 0 to 𝑡 , yields

𝑋 2(𝑡) − 𝑋 2(0) = 2𝐴
∫ 𝑡

0
𝑋 (𝑠)d𝑠 −

,𝜒3>0︷                                                             ︸︸                                                             ︷(
2𝜇1 − σ2

1 −
∫
U

(
(1 + η(𝑢))2 − 1 − 2η(𝑢)

)
𝜈 (d𝑢)

) ∫ 𝑡

0
𝑋 2(𝑠)d𝑠

+ 2σ1

∫ 𝑡

0
𝑋 2(𝑠)dW1(𝑠) +

∫ 𝑡

0

∫
U
𝑋 2(𝑠−)

(
(1 + η(𝑢))2 − 1

)
Ñ (d𝑠, d𝑢) .
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Therefore

1
𝑡

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 = 2𝐴

𝜒3𝑡

∫ 𝑡

0
𝑋 (𝑠)d𝑠 + (𝑋 2(0) − 𝑋 2(𝑡))

𝜒3𝑡
+ 2σ1
𝜒3𝑡

∫ 𝑡

0
𝑋 2(𝑠)W1(𝑠)

+ 1
𝜒3𝑡

∫ 𝑡

0

∫
U
𝑋 2(𝑠−)

(
(1 + η(𝑢))2 − 1

)
Ñ (d𝑠, d𝑢) .

From Lemma 1.6, we can easily verify that

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 = 2𝐴2

µ1𝜒3
a.s.

The aim of the following theorem is to give the condition for the persistence in the mean of

the disease and the ergodicity of the stochastic model (III.4). Our approach is inspired by the work

of Zhao and Yuan [162]. We suppose that 𝜒3 > 0 and we define the following parameter:

R𝑠0 =

(
µ2 + γ +

σ2
1

2

)−1 (
β𝐴

µ1
−
𝐴2σ2

2
µ1𝜒3

−
∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
.

Theorem 1.10. If R𝑠0 > 1, then for any value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+, the disease is persistent in

the mean. Furthermore, under the same condition, the stochastic system (III.4) admits a unique
stationary distribution and it has the ergodic property.

Proof. On the one hand, based on the model (III.4), we get

d

(
𝑆 (𝑡) + 𝐼 (𝑡)

)
=

(
𝐴 − µ1𝑆 (𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡 + σ1

(
𝑆 (𝑡) + 𝐼 (𝑡)

)
dW1(𝑡)

+
∫
U
η(𝑢) (𝑆 (𝑡−) + 𝐼 (𝑡−)) Ñ (d𝑡, d𝑢) .

Taking integral on both sides of the last equation from 0 to 𝑡 , we see that

1
𝑡

(
𝑆 (𝑡) + 𝐼 (𝑡) − 𝑆 (0) − 𝐼 (0)

)
= 𝐴 − µ1

𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 − (µ2 + γ)

𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 + σ1

𝑡

∫ 𝑡

0
(𝑆 (𝑠) + 𝐼 (𝑠))dW1(𝑠)

+ 1
𝑡

∫ 𝑡

0

∫
U
η(𝑢) (𝑆 (𝑠−) + 𝐼 (𝑠−)) Ñ (d𝑠, d𝑢) .

Then, one can obtain that

1
𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 = 𝐴

µ1
− (µ2 + γ)

µ1𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 + Φ1(𝑡), (III.6)

where

Φ1(𝑡) =
σ1
µ1𝑡

∫ 𝑡

0
(𝑆 (𝑠) + 𝐼 (𝑠))dW1(𝑠) −

1
µ1𝑡

(
𝑆 (𝑡) + 𝐼 (𝑡) − 𝑆 (0) − 𝐼 (0)

)
+ 1
µ1𝑡

∫ 𝑡

0

∫
U
η(𝑢) (𝑆 (𝑠−) + 𝐼 (𝑠−)) Ñ (d𝑠, d𝑢).

On the other hand, applying Itô’s formula to the second equation of (III.4), we get

d ln 𝐼 (𝑡) =
(
β𝑆 (𝑡) −

σ2
2

2
𝑆2(𝑡) −

(
µ2 + γ +

σ2
1

2

)
−

∫
U
η(𝑢) − ln(1 + η(𝑢))𝜈 (d𝑢)

)
d𝑡

+ σ1dW1(𝑡) + σ2𝑆 (𝑡)dW2(𝑡) +
∫
U

ln(1 + η(𝑢))Ñ (d𝑡, d𝑢) . (III.7)
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Integrating (III.7) from 0 to 𝑡 and then dividing 𝑡 on both sides, we have

1
𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) = β

𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 −

σ2
2

2𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠 −

(
µ2 + γ +

σ2
1

2

)
−

∫
U
η(𝑢) − ln(1 + η(𝑢))𝜈 (d𝑢)

+ σ1
𝑡
W1(𝑡) +

σ2
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW2(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢) .

From (III.6), we obtain

1
𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) = β𝐴

µ1
− β(µ2 + γ)

µ1𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 + βΦ1(𝑡) −

σ2
2

2𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠 −

(
µ2 + γ +

σ2
1

2

)
−

∫
U
η(𝑢) − ln(1 + η(𝑢))𝜈 (d𝑢) + σ1

𝑡
W1(𝑡) +

σ2
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW2(𝑠)

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢) .

By the stochastic comparison theorem, we have 𝑁 (𝑡) ≤ 𝑆 (𝑡) a.s. and

1
𝑡

(
ln 𝐼 (𝑡) − ln 𝐼 (0)

)
≥

(
β𝐴

µ1
−
σ2

2
2𝑡

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 −

(
µ2 + γ +

σ2
1

2

)
−

∫
U
η(𝑢) − ln(1 + η(𝑢))𝜈 (d𝑢)

)
+ βΦ1(𝑡) −

β(µ2 + γ)
µ1𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 + σ1

𝑡
W1(𝑡) +

σ2
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW2(𝑠)

+ 1
𝑡

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢) .

Hence, we further get

β(µ2 + γ)
µ1𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 ≥

(
β𝐴

µ1
−
σ2

2
2𝑡

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 −

(
µ2 + γ +

σ2
1

2

)
−

∫
U
η(𝑢) − ln(1 + η(𝑢))𝜈 (d𝑢)

)
+ βΦ1(𝑡) −

1
𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) + σ1

𝑡
W1(𝑡) +

σ2
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW2(𝑠)

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢).

By assumption (H3), Lemma 1.6 and the large number theorem for martingales, we can easily verify

that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 ≥ µ1

β(µ2 + γ)

(
β𝐴

µ1
−
𝐴2σ2

2
µ1𝜒3

−
(
µ2 + γ +

σ2
1

2

)
−

∫
U
η(𝑢) − ln(1 + η(𝑢))𝜈 (d𝑢)

)
=

µ1
β(µ2 + γ)

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
> 0 a.s.

This shows that the system (III.4) is persistent in the mean with probability one.

In the following, we will discuss the existence of a unique ergodic stationary distribution of

the positive solutions to the system (III.4). Similar to the proof of Lemma 3.2 in [135], we briefly

verify the Feller property of the SDE model (III.4). The main purpose of the next analysis is to

prove that (II.22) is impossible. Same as the above, we have

d

{
ln 𝐼 (𝑡) − β

µ1

(
𝑋 (𝑡) − 𝑆 (𝑡)

)}
=

(
β𝑆 (𝑡) −

(
µ2 + γ +

σ2
1

2

)
−
σ2

2
2
𝑆2(𝑡) −

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
d𝑡

− β

µ1

(
− µ1(𝑋 (𝑡) − 𝑆 (𝑡)) + β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡 + σ1dW1(𝑡) + σ2𝑆 (𝑡)dW2(𝑡)

− βσ1
µ1

(𝑋 (𝑡) − 𝑆 (𝑡))dW1(𝑡) −
βσ2
µ1

𝑆 (𝑡)𝐼 (𝑡)dW2(𝑡)

− β

µ1

∫
U
η(𝑢) (𝑋 (𝑡−) − 𝑆 (𝑡−))Ñ (d𝑡, d𝑢) +

∫
U

ln(1 + η(𝑢))Ñ (d𝑡, d𝑢) .
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Hence

d

{
ln 𝐼 (𝑡) − β

µ1

(
𝑋 (𝑡) − 𝑆 (𝑡)

)}
=

(
β𝑋 (𝑡) −

(
µ2 + γ +

σ2
1

2

)
−
σ2

2
2
𝑆2(𝑡) −

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
d𝑡

− β2

µ1
𝑆 (𝑡)𝐼 (𝑡)d𝑡 + σ1dW1(𝑡) + σ2𝑆 (𝑡)dW2(𝑡) −

βσ1
µ1

(𝑋 (𝑡) − 𝑆 (𝑡))dW1(𝑡)

− βσ2
µ1

𝑆 (𝑡)𝐼 (𝑡)dW2(𝑡) −
β

µ1

∫
U
η(𝑢) (𝑋 (𝑡−) − 𝑆 (𝑡−))Ñ (d𝑡, d𝑢)

+
∫
U

ln(1 + η(𝑢))Ñ (d𝑡, d𝑢) . (III.8)

Integrating from 0 to 𝑡 on both sides of (III.8) yields

ln
𝐼 (𝑡)
𝐼 (0) −

β

µ1

(
𝑋 (𝑡) − 𝑆 (𝑡)

)
+ β

µ1

(
𝑋 (0) − 𝑆 (0)

)
=

∫
𝑡

0

(
β𝑋 (𝑠) −

σ2
2

2
𝑆2(𝑠) −

(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
d𝑠

− β2

µ1

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)d𝑠 + σ1W1(𝑡) + σ2

∫ 𝑡

0
𝑆 (𝑠)dW2(𝑠) −

βσ1
µ1

∫ 𝑡

0
(𝑋 (𝑠) − 𝑆 (𝑠))dW1(𝑠)

− βσ2
µ1

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)dW2(𝑠) −

β

µ1

∫ 𝑡

0

∫
U
η(𝑢) (𝑋 (𝑠−) − 𝑆 (𝑠−))Ñ (d𝑠, d𝑢) +

∫ 𝑡

0

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢) .

Then, we get∫ 𝑡

0
β𝑆 (𝑠)𝐼 (𝑠)d𝑠 = µ1

β

∫
𝑡

0

(
β𝑋 (𝑠) −

σ2
2

2
𝑆2(𝑠) −

(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
d𝑠

+
(
𝑋 (𝑡) − 𝑆 (𝑡)

)
−

(
𝑋 (0) − 𝑆 (0)

)
− µ1

β
ln
𝐼 (𝑡)
𝐼 (0) +

σ1𝜇1

β
W1(𝑡) +

σ2𝜇1

β

∫ 𝑡

0
𝑆 (𝑠)dW2(𝑠)

− σ1

∫ 𝑡

0
(𝑋 (𝑠) − 𝑆 (𝑠))dW1(𝑠) − σ2

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)dW2(𝑠)

−
∫ 𝑡

0

∫
U
η(𝑢) (𝑋 (𝑠−) − 𝑆 (𝑠−))Ñ (d𝑠, d𝑢) + µ1

β

∫ 𝑡

0

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢) .

From Lemma 1.6, one can derive that

lim
𝑡→∞

𝑋 (𝑡)
𝑡

= 0, lim
𝑡→∞

𝑆 (𝑡)
𝑡

= 0 and lim
𝑡→∞

1
𝑡

∫ 𝑡

0

∫
U
η(𝑢) (𝑋 (𝑠−) − 𝑆 (𝑠−))Ñ (d𝑠, d𝑢) = 0 a.s.

Moreover,

lim
𝑡→∞

µ1σ2
β𝑡

∫ 𝑡

0
𝑆 (𝑢)dW2(𝑠) = 0 and lim

𝑡→∞
σ1
𝑡

∫ 𝑡

0

(
𝑋 (𝑢) − 𝑆 (𝑢)

)
dW1(𝑠) = 0 a.s.

Application of the strong law of large numbers and assumption (H3) shows that

lim
𝑡→∞

µ1σ1W1(𝑡)
β𝑡

= 0 and lim
𝑡→∞

µ1
β𝑡

∫ 𝑡

0

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢) = 0 a.s.

Applying similar arguments to those in Lemma 2.5 of [63], we obtain

lim
𝑡→∞

σ2
𝑡

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)dW2(𝑠) = 0 a.s.

58



Since lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) ≤ lim sup

𝑡→∞

1
𝑡

ln
𝑁 (𝑡)
𝐼 (0) ≤ 0 a.s. (see Lemma 2.1. of [26]), one can derive that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
β𝑆 (𝑠)𝐼 (𝑠)d𝑠

≥ µ1
β

lim inf
𝑡→∞

1
𝑡

∫
𝑡

0

(
β𝑋 (𝑠) −

σ2
2

2
𝑋 2(𝑠) −

(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
d𝑠

=
µ1
β

lim
𝑡→∞

1
𝑡

∫
𝑡

0

(
β𝑋 (𝑠) −

σ2
2

2
𝑋 2(𝑠) −

(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
d𝑠 . (III.9)

Now, from Lemma 1.9, it follows that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
β𝑆 (𝑠)𝐼 (𝑠)d𝑠 ≥ µ1

β
×

(
β𝐴

µ1
−
𝐴2σ2

2
µ1𝜒3

−
(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
=
µ1
β

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
> 0 a.s. (III.10)

To continue our analysis, we need to set the following subsets:

Ω1 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝑆 (𝑡, 𝜔) ≥ 𝜖, and, 𝐼 (𝑡, 𝜔) ≥ 𝜖},
Ω2 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝑆 (𝑡, 𝜔) ≤ 𝜖},
Ω3 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝐼 (𝑡, 𝜔) ≤ 𝜖},

where 𝜖 > 0 is a positive constant to be determined later. Therefore, by (III.10), we get

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
β𝑆 (𝑠)𝐼 (𝑠)1Ω1

)
d𝑠 ≥ lim inf

𝑡→∞
1
𝑡

∫ 𝑡

0
E
(
β𝑆 (𝑠)𝐼 (𝑠)

)
d𝑠 − lim sup

𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
β𝑆 (𝑠)𝐼 (𝑠)1Ω2

)
d𝑠

− lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
β𝑆 (𝑠)𝐼 (𝑠)1Ω3

)
d𝑠

≥ µ1
β

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
− β𝜖lim sup

𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
𝐼 (𝑠)

)
d𝑠

− β𝜖lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
𝑆 (𝑠)

)
d𝑠 .

Thus, one can see that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
β𝑆 (𝑠)𝐼 (𝑠)1Ω1

)
d𝑠 ≥ µ1

β

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
− 2𝐴β𝜖

µ1
.

We can choose 𝜖 ≤ µ2
1

4β2𝐴

(
µ2 + γ + σ2

1
2

) (
R𝑠0 − 1

)
, and then we obtain

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
β𝑆 (𝑠)𝐼 (𝑠)1Ω1

)
d𝑠 ≥ µ1

2β

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
> 0. (III.11)

Let 𝑝 > 1 such that 𝜒2 > 0 and 𝑞 is given by
1
𝑞
+ 1
𝑝
= 1. By utilizing the Young inequality 𝑥𝑦 ≤ 𝑥𝑝

𝑝
+ 𝑦𝑞

𝑞

for all 𝑥 ,𝑦 > 0, we get

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
β𝑆 (𝑠)𝐼 (𝑠)1Ω1

)
d𝑠 ≤ lim inf

𝑡→∞
1
𝑡

∫ 𝑡

0
E

(
𝑝−1(ηβ𝑆 (𝑠)𝐼 (𝑠))𝑝 + 𝑞−1η−𝑞1Ω1

)
d𝑠

≤ lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
𝑞−1η−𝑞1Ω1

)
d𝑠 + 𝑝−1(ηβ)𝑝 lim sup

𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
𝑁 2𝑝 (𝑠)

)
d𝑠,
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where η is a positive constant satisfying

η𝑝 ≤ 𝑝𝜇1𝜒2β
−(𝑝+1)

8𝜒1

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
.

By Lemma 1.4 and (III.11), we deduce that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
1Ω1

)
d𝑠 ≥ 𝑞η𝑞

(
µ1
2β

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
− 2𝜒1η

𝑝β𝑝

𝑝𝜒2

)
≥ µ1𝑞η

𝑞

4β

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
> 0. (III.12)

Setting

Ω4 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝑆 (𝑡, 𝜔) ≥ ζ, or, 𝐼 (𝑡, 𝜔) ≥ ζ},
Σ = {(𝑡, 𝜔) ∈ R+ × Ω | 𝜖 ≤ 𝑆 (𝑡, 𝜔) ≤ ζ, and, 𝜖 ≤ 𝐼 (𝑡, 𝜔) ≤ ζ},

where ζ > 𝜖 is a positive constant to be explained in the following. By using the Markov’s inequality,

we can observe that∫
Ω
1Ω4 (𝑡, 𝜔)dP(𝜔) ≤ P(𝑆 (𝑡) ≥ ζ) + P(𝐼 (𝑡) ≥ ζ) ≤ 1

ζ
E[𝑆 (𝑡) + 𝐼 (𝑡)] ≤ 1

ζ

(
2𝐴
µ1

+ 𝑁 (0)
)
.

Choosing

1
ζ
≤ µ1𝑞η

𝑞

8β

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

) (
2𝐴
µ1

+ 𝑁 (0)
)−1

.

We thus obtain

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E[1Ω4]d𝑠 ≤

µ1𝑞η
𝑞

8β

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
.

According to (III.12), one can derive that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E[1Σ]d𝑠 ≥ lim inf

𝑡→∞
1
𝑡

∫ 𝑡

0
E[1Ω1]d𝑠 − lim sup

𝑡→∞

1
𝑡

∫ 𝑡

0
E[1Ω4]d𝑠

≥ µ1𝑞η
𝑞

8β

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
> 0.

Based on the above analysis, we have determined a compact domain Σ ⊂ R3
+ such that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
P
(
𝑠,

(
𝑆 (0), 𝐼 (0), 𝑅(0)

)
, Σ

)
d𝑠 ≥ µ1𝑞η

𝑞

8β

(
µ2 + γ +

σ2
1

2

) (
R𝑠0 − 1

)
> 0.

Applying similar arguments to those in Theorem 3.1 in [135] or Corollary 4.4 in [57], we show the

uniqueness of the ergodic stationary distribution of our model (III.4). This completes the proof.

Now, we will give the result on the disease extinction. Define

R̂𝑠0 =

(
µ2 + γ +

σ2
1

2

)−1 (
β𝐴

µ1
−
σ2

2𝐴
2

2𝜇2
1

−
∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
.

Theorem 1.11. Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of system (III.4) with positive initial value. If

R̂𝑠0 < 1 and σ2
2 ≤ µ1β

𝐴
, (III.13)

or

β2

2σ2
2
−

(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢) < 0. (III.14)

Then, the disease dies out exponentially with probability one.
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Proof. By Itô’s formula for all 𝑡 ≥ 0, we have

d ln 𝐼 (𝑡) =
(
β𝑆 (𝑡) −

σ2
2

2
𝑆2(𝑡) −

(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
d𝑡

+ σ1dW1(𝑡) + σ2𝑆 (𝑡)dW2(𝑡) +
∫
U

ln(1 + η(𝑢))Ñ (d𝑡, d𝑢) . (III.15)

Integrating (III.15) from 0 to 𝑡 and then dividing 𝑡 on both sides, we get

ln 𝐼 (𝑡)
𝑡

=
β

𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 −

σ2
2

2𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠 −

(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢) + Φ2(𝑡),

(III.16)

where

Φ2(𝑡) =
ln 𝐼 (0)
𝑡

+ σ1
𝑡
W1(𝑡) +

σ2
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW2(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢) .

Obviously, we know that

1
𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠 ≥

(
1
𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠

)2
.

Therefore, and by using (III.6), we derive

ln 𝐼 (𝑡)
𝑡

≤ β

𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 −

σ2
2

2

(
1
𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠

)2
−

(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢) + Φ2(𝑡)

≤ β

(
𝐴

µ1
− (µ2 + γ)

µ1𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 + Φ1(𝑡)

)
−
σ2

2
2

(
𝐴

µ1
− (µ2 + γ)

µ1𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 + Φ1(𝑡)

)2

−
(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢) + Φ2(𝑡) .

Hence, one can see that

ln 𝐼 (𝑡)
𝑡

≤ β𝐴

µ1
−
𝐴2σ2

2

2𝜇2
1

−
(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

− (µ2 + γ)
µ1

(
β −

𝐴σ2
2

µ1

)
1
𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 −

σ2
2

2

(
(µ2 + γ)
µ1𝑡

∫ 𝑡

0
𝐼 (𝑢)d𝑢

)2
+ Φ2(𝑡) + Φ3(𝑡), (III.17)

where

Φ3(𝑡) = βΦ1(𝑡) −
σ2

2
2
Φ2

1(𝑡) −
σ2

2𝐴Φ1(𝑡)
µ1

+ σ2
2Φ1(𝑡)

(µ2 + γ)
µ1𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 .

Based on Lemma 1.6, one has

lim
𝑡→∞

Φ2(𝑡) = lim
𝑡→∞

Φ3(𝑡) = 0 a.s.

Taking the superior limit on both sides of (III.17), then by condition (III.13), we arrive at

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤
(
µ2 + γ +

σ2
1

2

) (
R̂𝑠0 − 1

)
< 0 a.s.
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Now, if the condition (III.14) is satisfied, then from (III.16) we get

ln 𝐼 (𝑡)
𝑡

=
β

𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 −

σ2
2

2𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠 −

(
µ2 + γ +

σ2
1

2

)
−

∫
U
η(𝑢) − ln(1 + η(𝑢))𝜈 (d𝑢)

+ ln 𝐼 (0)
𝑡

+ σ1
𝑡
W1(𝑡) +

σ2
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW2(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢) .

Then

ln 𝐼 (𝑡)
𝑡

=
β2

2σ2
2
−

(
µ2 + γ +

σ2
1

2

)
−

∫
U
η(𝑢) − ln(1 + η(𝑢))𝜈 (d𝑢) − 1

𝑡

∫
𝑡

0

(
σ2

2
2

(
𝑆 (𝑠) − β

σ2
2

)2
)
d𝑠

+ ln 𝐼 (0)
𝑡

+ σ1
𝑡
W1(𝑡) +

σ2
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW2(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢)

≤ β2

2σ2
2
−

(
µ2 + γ +

σ2
1

2

)
−

∫
U
η(𝑢) − ln(1 + η(𝑢))𝜈 (d𝑢) + ln 𝐼 (0)

𝑡

+ σ1
𝑡
W1(𝑡) +

σ2
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW2(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η(𝑢))Ñ (d𝑠, d𝑢).

By the large number theorem for martingales, Lemma 1.6 and the condition (III.14), our desired

result holds true. This completes the proof.

1.3 Numerical examples
In this subsection, we will validate our theoretical results with the help of numerical simulation

examples taking parameters from the theoretical data mentioned in Table III.1. We numerically

simulate the solution of system (III.4) with initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) = (1, 0.5, 0.4). The used

numerical method is described in Appendix A.

Parameters Description Value

𝐴 The recruitment rate 0.09

µ1 The natural mortality rate 0.05

β The transmission rate 0.08

γ The recovered rate 0.01

µ2 The general mortality rate 0.09

Table III.1: Some theoretical parameter values of the model (III.4).

Example 1.12 (Stationary distribution and permanence). We choose the stochastic fluctuations

intensities σ1 = 0.02 and σ2 = 0.03, and we assume that η(𝑢) = 0.05, U = (0,∞) and 𝜈 (U) = 1.
Other parameters are given in Table III.1. Then, R𝑠0 = 1.3961 > 1. From Figure III.1, we show the

existence of the unique stationary distributions for 𝑆 , 𝐼 and 𝑅 of model (III.4) at 𝑡 = 300, where the

smooth curves are the probability density functions of 𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡), respectively. It can be

obviously observed that the solution of the stochastic model (III.4) persists in the mean under the

same condition (see Figure III.2).

Example 1.13 (Extinction). We choose the white noise intensities σ1 = 0.1 and σ2 = 0.3 to ensure

that the condition (III.14) of Theorem 1.11 is satisfied. We can conclude that for any initial value,

𝐼 (𝑡) obeys

lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) ≤ β2

2σ2
2
−

(
µ2 + γ +

σ2
1

2

)
−

∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢) = −0.0862 < 0 a.s.

That is, 𝐼 (𝑡) will tend to zero exponentially with probability one (see Figure III.3 (a)). To verify that

the condition (III.13) is satisfied, we change σ1 to 0.01, σ2 to 0.02, and β to 0.05 and keep other
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parameters unchanged. Then we have

R̂𝑠0 =

(
µ2 + γ +

σ2
1

2

)−1
(
β𝐴

µ1
−
σ2

2𝐴
2

2𝜇2
1

−
∫
U

(
η(𝑢) − ln(1 + η(𝑢))

)
𝜈 (d𝑢)

)
= 0.8792 < 1,

and

σ2
1 −

µ1β

𝐴
= −0.0277 < 0.

Therefore, the condition (III.13) of Theorem 1.11 is satisfied. We can conclude that for any initial

value, 𝐼 (𝑡) obeys

lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) ≤ (R̂𝑠0 − 1)

(
µ2 + γ +

σ2
1

2

)
= −0.0121 < 0 a.s.

That is, 𝐼 (𝑡) will tend to zero exponentially with probability one (see Figure III.3 (b)).
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Figure III.1: Histogram of the probability density function for 𝑆 , 𝐼 , and 𝑅 population at 𝑡 = 300 for

the stochastic model (III.4), the smoothed curves are the probability density functions of 𝑆 (𝑡), 𝐼 (𝑡)
and 𝑅(𝑡), respectively.

1.4 Discussion
Generally speaking, the dissemination of the epidemic diseases presents a global issue that concerns

decision-makers to elude deaths and deterioration of economies. Many scientists are motivated to

understand and suggest the ways for diminishing the epidemic dissemination. The first generation

proposed the deterministic models that showed a lack of realism due to the neglecting of environ-

mental perturbations. Recent studies present a deep understanding of the diseases outbreak process

by taking into account their random aspect. The contribution of this section is the first work that

combines two different disturbances: white and Lévy noises. This original idea generalizes the

existing works [136, 47, 173, 73, 127, 154, 172]. Our work based on the following new techniques:
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Figure III.2: The paths of 𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡) for the stochastic model (III.4) with initial values

(𝑆 (0), 𝐼 (0), 𝑅(0)) = (1, 0.5, 0.4).
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Figure III.3: The paths of 𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡) for the stochastic model (III.4) with initial values

(𝑆 (0), 𝐼 (0), 𝑅(0)) = (1, 0.5, 0.4).

1. The calculation of the solution averages of the auxiliary equation (III.5) instead of the classic

method based on the explicit form of the stationary distribution to the model (III.5).

2. The investigation of the persistence condition with a new approach based on the stochastic

comparison theorem.

3. The use of Feller property and mutually exclusive possibilities lemma for proving the ergodicity

of the model (III.4).

Based on the above techniques, our analysis leads to the following main results:

1. In Theorem 1.10, we proved that the persistence in the mean of the disease occurs under the

same condition of the existence of a unique ergodic stationary distribution.

2. In Theorem 1.11, we showed that the extinction of the disease in the stochastic system (III.4)

occurs if one of the conditions (III.13) and (III.14) holds. It should be noted that these

conditions are sufficient for the extinction of the epidemic.

Comparing our study with previous research, our theoretical analysis leads to establishing a new

appropriate condition for the persistence and the existence of ergodic stationary distribution for

the model (III.4). But, some interesting topics merit further investigation. On the one hand,

one may propose an improved method to obtain the global threshold between the existence of

the unique ergodic stationary distribution (persistence) and the extinction of a disease. On the

other hand, it is necessary to check that the method utilized in this section can be also applied to

analyze other stochastic realistic models such as SIRS, SEIR, and single-species population models

[142, 19, 18, 140].
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2 Threshold analysis of a stochastic SIR epidemic model with 3-
dimensional Lévy process

2.1 Introduction
The intent of this section is to deal with the perturbed version of the SIR epidemic model (I.4)

driven by a 3-dimensional Lévy. In the following, we give the threshold for the ergodicity and

the extinction of the disease, but before stating the principal result, we first rewrite the stochastic

model which takes the following form:
d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡+σ1𝑆 (𝑡)dW1(𝑡) +

∫
U
η1(𝑢)𝑆 (𝑡−)Ñ (d𝑡, d𝑢),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡+σ2𝐼 (𝑡)dW2(𝑡) +

∫
U
η2(𝑢)𝐼 (𝑡−)Ñ (d𝑡, d𝑢),

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − µ1𝑅(𝑡)

)
d𝑡+σ3𝑅(𝑡)dW3(𝑡) +

∫
U
η3(𝑢)𝑅(𝑡−)Ñ (d𝑡, d𝑢),

(III.18)

In [172], the authors proved that the parameter

T 𝑠
0 =

(
µ2 + γ

)−1
(
β𝐴

µ1
−
σ2

2
2

−
∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
𝜈 (d𝑢)

)
is the threshold of the stochastic model (III.18) (under the same hypothetical framework of this

present analysis, see the subsection 2.2.1). More specifically, if T 𝑠
0 < 1, the epidemic eventually

vanishes with probability one; while if T 𝑠
0 > 1, the disease persists almost surely.

As far as we know, no previous research has investigated the ergodicity of the stochastic system

(III.18). It is of interest to study the long term behavior of the stochastic epidemic model (III.18)

which provides a link between mathematical study, actual diseases, and public health planning. Our

contribution aims to develop a mathematical method to study the ergodicity of the model (III.18) as

an important asymptotic property which means that the stochastic model has a unique stationary

distribution that predicts the survival of the infected population in the future. Based on the works

[162] and [163], we employe the Feller property, the mutually exclusive possibilities lemma, and

the stochastic comparison theorem to prove that T 𝑠
0 is the threshold between the existence of the

ergodic stationary distribution and the extinction. It should be noted that the approach used to

prove the ergodicity is different from the Khasminskii method widely used in the literature (see for

example [150, 161, 75]), and the method used to prove the extinction is different from that used in

[172].

2.2 Main results
2.2.1 Well-posedness of the stochastic model (III.18)

For the purpose of well analyzing our model (III.18), it necessary that we make the following

standard assumptions:

• (H1) We assume that

∫
U
η2
𝑖 (𝑢)𝜈 (d𝑢) < ∞ (𝑖 = 1, 2, 3).

• (H2) We assume that 1 + η𝑖 (𝑢) > 0, and
∫
U

(
η𝑖 (𝑢) − ln(1 + η𝑖 (𝑢))

)
𝜈 (d𝑢) < ∞ (𝑖 = 1, 2, 3).

• (H3) We suppose that exists a constant 𝜅 > 0, such that

∫
U

(
ln(1 + η𝑖 (𝑢))

)2
𝜈 (d𝑢) ≤ 𝜅 < ∞.

• (H4) We assume that for some 𝑝 > 1, 𝜒2 = µ1 −
(2𝑝 − 1)

2
max

{
σ2

1,σ
2
2
}
− 1

2𝑝
ℓ𝑝 > 0, where

ℓ𝑝 =

∫
U

( (
1 + η1(𝑢) ∨ η2(𝑢)

)2𝑝 − 1 − η1(𝑢) ∧ η2(𝑢)
)
𝜈 (d𝑢) < ∞.
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Theorem 2.1. Under (H1) and (H2), for any initial value
(
𝑆 (0), 𝐼 (0), 𝑅(0)

)
∈ R3

+, there exists a unique
positive solution

(
𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)

)
of the system (III.18) on 𝑡 ≥ 0, and the solution will stay in R3

+ almost
surely.

Proof. By assumption (H1) and the fact that the drift and the diffusion are locally Lipschitz,

the model (III.18) admits a unique local solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) on [0, 𝜏𝑒) for any initial value

(𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+, where 𝜏𝑒 is the explosion time. To show that this solution is global, we need

to show that 𝜏𝑒 = ∞ a.s. Let 𝜖0 > 0 be sufficiently large, such that 𝑆 (0), 𝐼 (0), 𝑅(0) lie within the

interval

[
1
𝜖0
, 𝜖0

]
. For each integer 𝜖 ≥ 𝜖0, we define the following stopping time:

𝜏𝜖 = inf
{
𝑡 ∈ [0, 𝜏𝑒) : 𝑆 (𝑡) ∉

(1
𝜖
, 𝜖

)
or 𝐼 (𝑡) ∉

(1
𝜖
, 𝜖

)
or 𝑅(𝑡) ∉

(1
𝜖
, 𝜖

)}
,

where throughout this section, we set inf ∅ = ∞. Evidently, 𝜏𝜖 is increasing as 𝜖 → ∞. Set

𝜏∞ = lim
𝜖→∞

𝜏𝜖 , whence 𝜏∞ ≤ 𝜏𝑒 . If we can prove that 𝜏∞ = ∞ a.s., then 𝜏𝑒 = ∞ and the solution

(𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) ∈ R3
+ for all 𝑡 ≥ 0 almost surely. If this statement is false, then there exist a pair of

positive constants 𝑇 > 0 and 𝑘 ∈ (0, 1) such that P{𝜏∞ ≤ 𝑇 } ≥ 𝑘 . Hence, there is an integer 𝜖 ≥ 𝜖0
such that

P{𝜏𝜖 ≤ 𝑇 } ≥ 𝑘 for all 𝜖 ≥ 𝜖0. (III.19)

Define a 𝐶2
-function V : R3

+ → [0,∞) by

V(𝑆, 𝐼 , 𝑅) =
(
𝑆 −𝑚 −𝑚 ln

𝑆

𝑚

)
+ (𝐼 − 1 − ln 𝐼 ) + (𝑅 − 1 − ln𝑅),

where 𝑚 > 0 is a positive constant to be determined later. Then, by Itô’s formula, we obtain that

dV(𝑆, 𝐼 , 𝑅) = LV(𝑆, 𝐼 , 𝑅)d𝑡 +
(
1 − 𝑚

𝑆

)
σ1𝑆dW1(𝑡) +

(
1 − 1

𝐼

)
σ2𝐼dW2(𝑡) +

(
1 − 1

𝑅

)
σ3𝑅dW3(𝑡)

+
∫
U

(
𝑚η1(𝑢)𝑆 (𝑡−) −𝑚 ln(1 + η1(𝑢))

)
Ñ (d𝑡, d𝑢) +

∫
U

(
η2(𝑢)𝐼 (𝑡−) − ln(1 + η2(𝑢))

)
Ñ (d𝑡, d𝑢)

+
∫
U

(
η3(𝑢)𝑅(𝑡−) − ln(1 + η3(𝑢))

)
Ñ (d𝑡, d𝑢),

where,

LV(𝑆, 𝐼 , 𝑅) = 𝐴 − µ1𝑆 −
𝑚𝐴

𝑆
+𝑚β𝐼 +𝑚𝜇1 − (µ2 + γ)𝐼 − β𝑆 + (µ2 + γ) + γ𝐼 − µ1𝑅 − γ

𝐼

𝑅
+ µ1 +

𝑚σ2
1

2

+
σ2

2
2

+
σ2

3
2

+
∫
U

(
𝑚η1(𝑢) −𝑚 ln(1 + η1(𝑢))

)
𝜈 (d𝑢) +

∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
𝜈 (d𝑢)

+
∫
U

(
η3(𝑢) − ln(1 + η3(𝑢))

)
𝜈 (d𝑢) .

Then

LV(𝑆, 𝐼 , 𝑅) ≤ 𝐴 − µ2𝐼 +𝑚β𝐼 + µ1 +𝑚𝜇1 + µ2 + γ +
𝑚σ2

1
2

+
σ2

2
2

+
σ2

3
2

+ J1,

where

J1 =

∫
U

(
𝑚η1(𝑢) −𝑚 ln(1 + η1(𝑢))

)
𝜈 (d𝑢) +

∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
𝜈 (d𝑢)

+
∫
U

(
η3(𝑢) − ln(1 + η3(𝑢))

)
𝜈 (d𝑢) .
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Given the fact that 𝑥 − ln(1 + 𝑥) ≥ 0 for all 𝑥 > 1 and the hypothesis (H2), we conclude that J1 is

positive and finite. To simplify, we choose 𝑚 =
µ2
β , then we obtain

LV(𝑆, 𝐼 , 𝑅) ≤ 𝐴 − µ2𝐼 +𝑚β𝐼 + µ1 +𝑚𝜇1 + µ2 + γ +
𝑚σ2

1
2

+
σ2

2
2

+
σ2

3
2

+ J1 ≡ J2.

Therefore,∫ 𝜏𝜖∧𝑇

0
dV(𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) ≤

∫ 𝜏𝜖∧𝑇

0
J2d𝑡 +

∫ 𝜏𝜖∧𝑇

0

∫
U

(
η1(𝑢)𝑆 (𝑡−) −𝑚 ln(1 + η1(𝑢))

)
Ñ (d𝑡, d𝑢)

+
∫ 𝜏𝜖∧𝑇

0

∫
U

(
η2(𝑢)𝐼 (𝑡−) − ln(1 + η2(𝑢))

)
Ñ (d𝑡, d𝑢)

+
∫ 𝜏𝜖∧𝑇

0

∫
U

(
η3(𝑢)𝑅(𝑡−) − ln(1 + η3(𝑢))

)
Ñ (d𝑡, d𝑢).

Taking expectation yields

E𝑉 (𝑆 (𝜏𝜖 ∧𝑇 ), 𝐼 (𝜏𝜖 ∧𝑇 ), 𝑅(𝜏𝜖 ∧𝑇 )) ≤ V(𝑆 (0), 𝐼 (0), 𝑅(0)) + J2𝑇 .

Extending 𝜖 to ∞ leads to the contradiction ∞ > 𝑉 (𝑆 (0), 𝐼 (0), 𝑅(0)) + J2𝑇 = ∞. Thus, 𝜏∞ = ∞ a.s.

which completes the proof of the theorem.

2.2.2 Threshold analysis of the model (III.18)

In this subsection, we always presume that the assumptions (H1)-(H4) hold. The aim of the

following theorem is to determine the threshold for the stochastic model (III.18).

Theorem 2.2. The parameter T 𝑠
0 is the threshold of the stochastic model (III.18). That is to say

that:

1. If T 𝑠
0 > 1, then the stochastic system (III.18) admits a unique stationary distribution and it has

the ergodic property for any initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+.

2. If T 𝑠
0 < 1, then the epidemic dies out exponentially with probability one.

Before proving this main theorem, we present some useful lemmas. Firstly, we consider the

following subsystem
d𝜓 (𝑡) = (𝐴 − µ1𝜓 (𝑡))d𝑡 + σ1𝜓 (𝑡)dW1(𝑡) +

∫
U
η1(𝑢)𝜓 (𝑡−)Ñ (d𝑡, d𝑢) ∀𝑡 > 0,

𝜓 (0) = 𝑆 (0) > 0.
(III.20)

Lemma 2.3. [171] Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the positive solution of the system (III.18) with any given
initial condition (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3

+. Let also 𝜓 (𝑡) ∈ R+ be the solution of the equation (III.20) with
any given initial value 𝜓 (0) = 𝑆 (0) ∈ R+. Then

1. lim
𝑡→∞

1
𝑡
𝜓 (𝑡) = 0, lim

𝑡→∞
1
𝑡
𝑆 (𝑡) = 0, and lim

𝑡→∞
1
𝑡
𝐼 (𝑡) = 0 a.s.

2. lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 (𝑠)dW1(𝑠) = 0, lim

𝑡→∞
1
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW1(𝑠) = 0, and lim

𝑡→∞
1
𝑡

∫ 𝑡

0
𝐼 (𝑠)dW1(𝑠) = 0 a.s.

3. lim
𝑡→∞

1
𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝜓 (𝑠−)Ñ (d𝑠, d𝑢) = 0, lim

𝑡→∞
1
𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢) = 0,

and lim
𝑡→∞

1
𝑡

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢) = 0 a.s.
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Lemma 2.4. Let 𝜓 (𝑡) be the solution of the system (III.20) with an initial value 𝜓 (0) ∈ R+. Then,

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 (𝑠)d𝑠 = 𝐴

µ1
a.s.

Proof. Integrating from 0 to 𝑡 on both sides of (III.20) yields

𝜓 (𝑡) −𝜓 (0)
𝑡

= 𝐴 − µ1
𝑡

∫ 𝑡

0
𝜓 (𝑠)d𝑠 + σ1

𝑡

∫ 𝑡

0
𝜓 (𝑠)dW1(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝜓 (𝑠−)Ñ (d𝑠, d𝑢) .

Clearly, we can derive that

1
𝑡

∫ 𝑡

0
𝜓 (𝑠)d𝑠 = 𝐴

µ1
− 𝜓 (𝑡) −𝜓 (0)

µ1𝑡
+ σ1
µ1𝑡

∫ 𝑡

0
𝜓 (𝑠)dW1(𝑠) +

1
µ1𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝜓 (𝑠−)Ñ (d𝑠, d𝑢) .

According to Lemma 2.3 and the large number theorem for martingales, we can easily verify that

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 (𝑠)d𝑠 = 𝐴

µ1
a.s.

Lemma 2.5. Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of (III.18) with initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+,

then for any 𝑝 > 1 such that 𝜒2 > 0, it holds that

1. E[𝑆 (𝑡) + 𝐼 (𝑡)]2𝑝 ≤
[
𝑆 (0) + 𝐼 (0)

]2𝑝
𝑒 {−𝑝𝜒2𝑡 } + 2𝜒1

𝜒2
;

2. lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E
[ (
(𝑆 (𝑠) + 𝐼 (𝑠)

)2𝑝
]
d𝑠 ≤ 2𝜒1

𝜒2
, where 𝜒1 = sup

𝑥>0

{
𝐴𝑥2𝑝−1 − 𝜒2

2
𝑥2𝑝

}
.

The demonstration of this result is similar to the proof of Lemma 1.4 and so it is omitted here.

Lemma 2.6. [163] Let ℎ(𝑡) > 0, 𝑘 (𝑡) ≥ 0 and 𝐺 (𝑡) be functions on [0, +∞), 𝑐 ≥ 0 and 𝑑 > 0 be
constants, such that lim

𝑡→∞
𝐺 (𝑡 )
𝑡

= 0 and

lnℎ(𝑡) ≤ 𝑐𝑡 + 𝑘 (𝑡) − 𝑑
∫ 𝑡

0
ℎ(𝑠)𝑑𝑠 +𝐺 (𝑡) .

If 𝑘 (𝑡) is a non-decreasing function, then

lim sup
𝑡→∞

1
𝑡

(
− 𝑘 (𝑡) + 𝑑

∫ 𝑡

0
ℎ(𝑠)𝑑𝑠

)
≤ 𝑐.

Proof of Theorem 2.2. We begin by proving the first point.

1. Similarly to the proof of Lemma 3.2. in [135], we briefly verify the Feller property of the SDE

model (III.18). The main purpose of the next analysis is to prove that (II.22) is impossible for

system (III.18). Applying Itô’s formula gives

d

{
ln 𝐼 (𝑡) − β

µ1

(
𝜓 (𝑡) − 𝑆 (𝑡)

)}
=

(
β𝑆 (𝑡) −

(
µ2 + γ +

σ2
2

2

)
−

∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
𝜈 (d𝑢)

)
d𝑡

− β

µ1

(
− µ1

(
𝜓 (𝑡) − 𝑆 (𝑡)

)
+ β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡 + σ2d𝑊2(𝑡)

− β

µ1
(𝜓 (𝑡) − 𝑆 (𝑡))dW1(𝑡) +

∫
U

ln(1 + η2(𝑢))Ñ (d𝑡, d𝑢)

− β

µ1

∫
U
η1(𝑢)

(
𝜓 (𝑡−) − 𝑆 (𝑡−)

)
Ñ (d𝑡, d𝑢) .
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Hence

d

{
ln 𝐼 (𝑡) − β

µ1

(
𝜓 (𝑡) − 𝑆 (𝑡)

)}
=

(
β𝜓 (𝑡) −

(
µ2 + γ +

σ2
2

2

)
−

∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
𝜈 (d𝑢)

)
d𝑡

− β2𝑆 (𝑡)𝐼 (𝑡)
µ1

d𝑡 + σ2d𝑊2(𝑡) −
β

µ1
(𝜓 (𝑡) − 𝑆 (𝑡))dW1(𝑡)

+
∫
U

ln(1 + η2(𝑢))Ñ (d𝑡, d𝑢) − β

µ1

∫
U
η1(𝑢)

(
𝜓 (𝑡−) − 𝑆 (𝑡−)

)
Ñ (d𝑡, d𝑢) .

(III.21)

Integrating from 0 to 𝑡 on both sides of (III.21) yields

ln
𝐼 (𝑡)
𝐼 (0) −

β

µ1
(𝜓 (𝑡) − 𝑆 (𝑡)) + β

µ1
(𝜓 (0) − 𝑆 (0)) =

∫ 𝑡

0
β𝜓 (𝑠)d𝑠 −

(
µ2 + γ +

σ2
2

2

)
𝑡

+ 𝑡
∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
𝜈 (d𝑢)

− β2

µ1

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)d𝑠 + σ2W2(𝑡)

− β

µ1

∫ 𝑡

0
(𝜓 (𝑠) − 𝑆 (𝑠))dW1(𝑠)

+
∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢)

− β

µ1

∫ 𝑡

0

∫
U
η1(𝑢)

(
𝜓 (𝑠−) − 𝑆 (𝑠−)

)
Ñ (d𝑠, d𝑢).

Then, we have∫ 𝑡

0
β𝑆 (𝑠)𝐼 (𝑠)d𝑠 = µ1

β

∫ 𝑡

0
β𝜓 (𝑠)d𝑠 − µ1

β

((
µ2 + γ +

σ2
2

2

)
+

∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
𝜈 (d𝑢)

)
𝑡

+ (𝜓 (𝑡) − 𝑆 (𝑡)) − (𝜓 (0) − 𝑆 (0)) − µ1
β

ln
𝐼 (𝑡)
𝐼 (0) +

µ1σ2
β

W2(𝑡)

−
∫ 𝑡

0
(𝜓 (𝑠) − 𝑆 (𝑠))dW1(𝑠) +

µ1
β

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢)

−
∫ 𝑡

0

∫
U
η1(𝑢)

(
𝜓 (𝑠−) − 𝑆 (𝑠−)

)
Ñ (d𝑠, d𝑢) . (III.22)

For all 𝑡 ≥ 0, we let

M1(𝑡) =
µ1σ2
β

W2(𝑡) −
∫ 𝑡

0
(𝜓 (𝑠) − 𝑆 (𝑠))dW1(𝑠) +

µ1
β

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢)

−
∫ 𝑡

0

∫
U
η1(𝑢)

(
𝜓 (𝑠−) − 𝑆 (𝑠−)

)
Ñ (d𝑠, d𝑢).

We know that Z(𝑡) =
(∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢)
)
𝑡 ≥0

is a local martingale with quadratic

variation

〈Z(𝑡),Z(𝑡)〉𝑡 =
(∫

U

(
ln(1 + η2(𝑢)

)2
𝜈 (d𝑢)

)
𝑡 .

By using strong law of large numbers, Lemma 2.3 and the condition (H3), we get lim
𝑡→∞

M1 (𝑡 )
𝑡

= 0,
a.s. From the system (III.18), we obtain

d(𝑆 (𝑡) + 𝐼 (𝑡)) =
(
𝐴 − µ1𝑆 (𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡 + σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡)

+
∫
U

(
η1(𝑢)𝑆 (𝑡−) + η2(𝑢)𝐼 (𝑡−)

)
Ñ (d𝑠, d𝑢) . (III.23)
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Applying Itô’s formula to the equality (III.23) gives that

d ln
(

1
𝑆 (𝑡) + 𝐼 (𝑡)

)
=

(
−𝐴

𝑆 (𝑡) + 𝐼 (𝑡) +
µ1𝑆 (𝑡) + (µ2 + γ)𝐼 (𝑡)

𝑆 (𝑡) + 𝐼 (𝑡) +
σ2

1𝑆
2(𝑡) + σ2

2𝐼
2(𝑡)

2(𝑆 (𝑡) + 𝐼 (𝑡))2

)
d𝑡

−

∫
U

(
ln

(1 + η1(𝑢))𝑆 (𝑡) + (1 + η2(𝑢))𝐼 (𝑡)
𝑆 (𝑡) + 𝐼 (𝑡) − η1(𝑢)𝑆 (𝑡) + η2(𝑢)𝐼 (𝑡)

𝑆 (𝑡) + 𝐼 (𝑡)

)
𝜈 (d𝑢)

− σ1𝑆 (𝑡)
𝑆 (𝑡) + 𝐼 (𝑡)dW1(𝑡) −

σ2𝐼 (𝑡)
𝑆 (𝑡) + 𝐼 (𝑡)dW2(𝑡)

−

∫
U

(
ln

(1 + η1(𝑢))𝑆 (𝑡−) + (1 + η2(𝑢))𝐼 (𝑡−)
𝑆 (𝑡−) + 𝐼 (𝑡−)

)
Ñ (d𝑡, d𝑢) .

Integrating, we get

ln
(

1
𝑆 (𝑡) + 𝐼 (𝑡)

)
= ln

(
1

𝑆 (0) + 𝐼 (0)

)
−𝐴

∫ 𝑡

0

1
𝑆 (𝑠) + 𝐼 (𝑠)d𝑠 +M2(𝑡) +M3(𝑡),

where

M2(𝑡) =

∫
𝑡

0

µ1𝑆 (𝑠) + (µ2 + γ)𝐼 (𝑠)
𝑆 (𝑠) + 𝐼 (𝑠) d𝑠 +

∫
𝑡

0

σ2
1𝑆

2(𝑠) + σ2
2𝐼

2(𝑠)
2(𝑆 (𝑠) + 𝐼 (𝑠))2 d𝑠

−

∫
𝑡

0

∫
U

(
ln

(1 + η1(𝑢))𝑆 (𝑠) + (1 + η2(𝑢))𝐼 (𝑠)
𝑆 (𝑠) + 𝐼 (𝑠) − η1(𝑢)𝑆 (𝑠) + η2(𝑢)𝐼 (𝑠)

𝑆 (𝑠) + 𝐼 (𝑠)

)
𝜈 (d𝑢)d𝑠,

and

M3(𝑡) = −

∫
𝑡

0

σ1𝑆 (𝑠)
𝑆 (𝑠) + 𝐼 (𝑠)dW1(𝑠) −

∫
𝑡

0

σ2𝐼 (𝑠)
𝑆 (𝑠) + 𝐼 (𝑠)dW1(𝑠)

−

∫
𝑡

0

∫
U

(
ln

(1 + η1(𝑢))𝑆 (𝑠−) + (1 + η2(𝑢))𝐼 (𝑠−)
𝑆 (𝑠−) + 𝐼 (𝑠−)

)
Ñ (d𝑠, d𝑢) .

By lemmas 2.6 and 2.3, we get

lim sup
𝑡→∞

1
𝑡

(∫ 𝑡

0

𝐴

𝑆 (𝑠) + 𝐼 (𝑠)d𝑠 −M2(𝑡)
)
≤ 0 a.s.

Then

lim sup
𝑡→∞

1
𝑡

ln
(
𝑆 (𝑡) + 𝐼 (𝑡)

)
≤ 0 a.s.

Hence

lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) ≤ lim sup

𝑡→∞

1
𝑡

ln
(
𝑆 (𝑡) + 𝐼 (𝑡)

)
𝐼 (0) ≤ 0 a.s.

Thus, it follows from (III.22) that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
β𝑆 (𝑠)𝐼 (𝑠)d𝑠 ≥ µ1

β

(
lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
β𝜓 (𝑠)d𝑠 −

((
µ2 + γ +

σ2
2

2

)
+

∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
𝜈 (d𝑢)

))
=
µ1
β

(
lim
𝑡→∞

1
𝑡

∫ 𝑡

0
β𝜓 (𝑠)d𝑠 −

((
µ2 + γ +

σ2
2

2

)
+

∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
𝜈 (d𝑢)

))
=
µ1(𝜇2 + 𝛾)

β

(
T 𝑠

0 − 1
)
> 0 a.s.

By employing Lemma 2.5, the remainder of this demonstration is quite similar to that of

Theorem 1.10.
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2. Now, we will prove that if T 𝑠
0 < 1, we have extinction of the disease. By applying Itô’s

formula and using Lemma 2.4, we get that

lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) = βlim sup

𝑡→∞

∫ 𝑡

0
𝑆 (𝑠)d𝑠 −

(
(µ2 + γ) +

σ2
2

2
+

∫
U
η2(𝑢) − ln(1 + η2(𝑢))𝜈 (d𝑢)

)
≤ β lim

𝑡→∞

∫ 𝑡

0
𝜓 (𝑠)d𝑠 −

(
(µ2 + γ) +

σ2
2

2
+

∫
U
η2(𝑢) − ln(1 + η2(𝑢))𝜈 (d𝑢)

)
= (µ2 + γ)

(
T 𝑠

0 − 1
)
< 0 a.s.

This completes the proof.

2.3 Numerical example

In this subsection, we will validate our theoretical result with the help of numerical simulations

taking parameters from the theoretical data mentioned in Table III.2. We numerically simulate the

solution of the system (III.18) with initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) = (0.4, 0.3, 0.1). For the purpose of

showing the effects of the perturbations on the disease dynamics, we have realized the simulations

many times.

Parameters Description Value

𝐴 The recruitment rate 0.09

µ1 The natural mortality rate 0.05

β The transmission rate 0.06

γ The recovered rate 0.01

µ2 The general mortality 0.09

Table III.2: Some theoretical parameter values of the model (III.18).

We have chosen the stochastic fluctuations intensities σ1 = 0.02, σ2 = 0.08 and σ3 = 0.01. Further-

more, we assume that η1(𝑢) = 0.05, η2(𝑢) = 0.02, η3(𝑢) = 0.01, U = (0,∞) and 𝜈 (U) = 1. Then,

T 𝑠
0 = 1.0460 > 1. From Figure III.4, we show the existence of the unique stationary distributions for

𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡) of model (III.18) at 𝑡 = 700, where the smooth curves are the probability density

functions of 𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡), respectively. Now, we choose 𝐴 = 0.08, then T 𝑠
0 = 0.9260 < 1. That

is, 𝐼 (𝑡) will tend to zero exponentially with probability one (see Figure III.5).

2.4 Discussion

Eventually, this subsection presents new techniques to analyze the threshold of a stochastic SIR

epidemic model with Lévy jumps. This short study is based on the following new techniques:

1. The calculation of the temporary average of a solution of (III.20) instead of the classic method

based on the explicit form of the stationary distribution to (III.20).

2. The use of Feller property and mutually exclusive possibilities lemma for proving the ergodicity

of the model (III.18).

According to the above techniques, our analysis leads to establish the threshold parameter for the

existence of an ergodic stationary distribution and the extinction of the disease.
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Figure III.4: Histogram of the probability density function for 𝑆 , 𝐼 , and 𝑅 population at 𝑡 = 700 for

the stochastic model (III.18), the smoothed curves are the probability density functions of 𝑆 (𝑡), 𝐼 (𝑡)
and 𝑅(𝑡), respectively.
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Figure III.5: The paths of 𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡) for the stochastic (III.18) when T 𝑠
0 = 0.9260 < 1.

3 The long-time behaviour of a stochastic SIR epidemic model with
distributed delay and 3-multidimensional Lévy jumps

3.1 Introduction

In the SIR model, we often assume that recovered individuals can get continuous immunity.

Many studies have paid close attention to the characteristics of the long-term epidemics immune

response [40, 97, 148]. To confer the realistic aspect of the epidemic model and make it biologically

reasonable, numerous scholars considered the SIR epidemic model with time delay because an

individual may not be infectious until some time after becoming infected [67]. In the above-

mentioned works, the time delay is assumed to be single-valued. The constant delay may be

considered if the variation of the time is known exactly, which is not real for many biological

reasons [92]. Considering the variable infectivity in the time interval yields a model with a

distributed delay [10]. Therefore, it is more realistic to introduce a continuously distributed delay

in the biological modeling [132, 126]. Analyzing the characteristics of the SIR model with a
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distributed time delay still a rich subject that may deliver new comprehension of the epidemics

propagation which motivates our work. According to the approach of Muroya et al. [101], we

consider the delay kernel G : [0,∞) → [0,∞) as a normalized L1
-function, i.e,

∫ ∞
0 G(𝑠)d𝑠 = 1. The

average delay for the kernel G can be presented by the following quantity

∫ ∞
0 𝑠G(𝑠)d𝑠 < ∞. Hence,

the incidence rate at time 𝜏 can be presented as the following form: β𝑆 (𝜏)
∫ 𝜏
−∞ G(𝜏 − 𝑠)𝐼 (𝑠)d𝑠, where

β denotes the transmission rate, 𝑆 (𝑡) and 𝐼 (𝑡) represent the fractions of susceptible and infective

individuals at time 𝑡 . The SIR epidemic model with distributed delay can be expressed as follows

[82]:


d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)

∫ 𝑡

−∞
G(𝑡 − 𝑠)𝐼 (𝑠)d𝑠

)
d𝑡,

d𝐼 (𝑡) =
(
β𝑆 (𝑡)

∫ 𝑡

−∞
G(𝑡 − 𝑠)𝐼 (𝑠)d𝑠 − (µ2 + γ)𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − µ3𝑅(𝑡)

)
d𝑡,

(III.24)

where 𝑅(𝑡) is the fraction number of recovered populations at time 𝑡 . The remaining parameters

appearing in this system are described as follows:

• 𝐴 is the recruitment rate of susceptible individuals corresponding to births and immigration.

• µ1, µ3 are the natural death rates associated respectively to the susceptible and recovered

populations, µ2 is a general mortality rate including the effect of the disease fatality.

• γ is the rate of individuals leaving 𝐼 to 𝑅 (recovered rate).

The threshold number of the deterministic system (III.24) is T★ =
β𝐴

µ1(µ2 + γ) which determines

the persistence (T★ > 1) or the extinction (T★ < 1) of the epidemic. Many studies showed that

the deterministic epidemic model (III.24) is suitable to describe the transmission process of some

known epidemics such as Rubella, Whooping cough, Measles and Smallpox. Due to many biological

and mathematical considerations [82], in this section, we consider the delay kernel with Gamma

distribution G(𝑠) =
𝑠𝑛𝜋𝑛+1

★ 𝑒−𝜋★𝑠

𝑛!
, 𝑠 ∈ (0,∞), where the constant 𝜋★ > 0 is the rate of exponential

fading memory, which means the retrogradation of the past memories effect. As a special case, we

treat our model with a low kernel function G with 𝑛 = 0. By letting D(𝑡) =
∫ 𝑡
−∞ 𝜋★𝑒

−𝜋★ (𝑡−𝑠) 𝐼 (𝑠)d𝑠 and
using the linear chain approach, system (III.24) can be transformed into the following equivalent

system:


d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)D(𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝑆 (𝑡)D(𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − µ3𝑅(𝑡)

)
d𝑡,

dD(𝑡) = 𝜋★
(
𝐼 (𝑡) − D(𝑡)

)
d𝑡 .

(III.25)

Although the use of deterministic models can explain and simulate some phenomena in real life,

such models do not actually consider the effect of the natural stochasticity, and we plainly wish to

learn how randomness affects our epidemic models [147, 152, 149, 123, 9, 110, 115]. Generally, one of

the ordinary extensions from the deterministic SIR model to the stochastic version is to incorporate

environmental white noises, which appear from an almost continuous series of small variations

on the model parameters [24, 160, 158, 124, 125, 111, 122, 96]. Therefore, the stochastic delayed

SIR epidemic can be an accurate tool to predict the long-run dynamics of infectious epidemics

[79, 85, 136, 47, 173, 73, 127, 53, 42]. In [82], the authors inserted the stochastic perturbation in the

model (III.24) by assuming that the white noise is directly proportional to the variable 𝑆 and they
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obtained the following stochastic system:
d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)D(𝑡)

)
d𝑡+σ𝑆 (𝑡)dW(𝑡),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)D(𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡,

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − µ3𝑅(𝑡)

)
d𝑡,

dD(𝑡) = 𝜋★
(
𝐼 (𝑡) − D(𝑡)

)
d𝑡 .

(III.26)

where W(𝑡) is a standard Brownian motion with associated intensity σ > 0. Specifically, they

proved the existence and uniqueness of an ergodic stationary distribution to the model (III.26).

Then, they established sufficient conditions for the extinction of a disease that spreads according

to this model. On the basis of these findings, one question was catches our attention. It is possible

to develop and generalize the stochastic model proposed in [82]? So, the objective of this work

is to expound on this problem and provide a suitable analytical context. Specifically, we aim to

describe the strong fluctuations by considering a general version of the dynamical model (III.26).

It is clear that the population systems may suffer certain sudden environmental catastrophes, such

as earthquakes, floods, droughts, etc [156, 157, 159]. For example, the recent massive explosion

in the port city of Beirut. The impact of this unexpected disaster has been extremely devastating,

especially when it has occurred simultaneously with the COVID-19 pandemic. This led to a sudden

worsening of the health situation and a jump increase in the number of deaths. Mathematically,

we use the Lévy process to describe the phenomena that cause a big jump to occur occasionally

[37, 130, 131, 154, 172]. By considering this type of random perturbations, the model (III.26) becomes

the following system of stochastic differential equations with Lévy jumps (SDE-Js for short):

d𝑆 (𝑡) =
(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)D(𝑡)

)
d𝑡+σ1𝑆 (𝑡)dW1(𝑡) +

∫
U
η1(𝑢)𝑆 (𝑡−)Ñ (d𝑡, d𝑢),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)D(𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡+σ2𝐼 (𝑡)dW2(𝑡) +

∫
U
η2(𝑢)𝐼 (𝑡−)Ñ (d𝑡, d𝑢),

d𝑅(𝑡) =
(
γ𝐼 (𝑡) − µ3𝑅(𝑡)

)
d𝑡+σ3𝑅(𝑡)dW3(𝑡) +

∫
U
η3(𝑢)𝑅(𝑡−)Ñ (d𝑡, d𝑢),

dD(𝑡) = 𝜋★
(
𝐼 (𝑡) − D(𝑡)

)
d𝑡+σ4D(𝑡)dW4(𝑡) +

∫
U
η4(𝑢)D(𝑡−)Ñ (d𝑡, d𝑢),

(III.27)

where 𝑆 (𝑡−), 𝐼 (𝑡−), 𝑅(𝑡−) and D(𝑡−) are the left limits of 𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡) and D(𝑡), respectively.

W𝑖 (𝑡) (𝑖 = 1, 2, 3, 4) are independent Brownian motions and σ𝑖 > 0 (𝑖 = 1, 2, 3, 4) are their intensities.

N is a Poisson counting measure with compensating martingale Ñ and characteristic measure 𝜈

on a measurable subset U of (0,∞) satisfying 𝜈 (U) < ∞. W𝑖 (𝑡) (𝑖 = 1, 2, 3, 4) are independent of N .

We assumed that 𝜈 is a Lévy measure such that Ñ (d𝑡, d𝑢) = N(d𝑡, d𝑢) − 𝜈 (d𝑢)d𝑡 and we suppose

that the function η𝑖 : U → R is bounded and continuous. Since the compartment 𝑅(𝑡) does not

appear in the equations of 𝑆 (𝑡), 𝐼 (𝑡) and D(𝑡), it is sufficient to analyze the dynamic behavior of

the following SDE-J model:
d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)D(𝑡)

)
d𝑡+σ1𝑆 (𝑡)dW1(𝑡) +

∫
U
η1(𝑢)𝑆 (𝑡−)Ñ (d𝑡, d𝑢),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)D(𝑡) − (µ2 + γ)𝐼 (𝑡)

)
d𝑡+σ2𝐼 (𝑡)dW2(𝑡) +

∫
U
η2(𝑢)𝐼 (𝑡−)Ñ (d𝑡, d𝑢),

dD(𝑡) = 𝜋★
(
𝐼 (𝑡) − D(𝑡)

)
d𝑡+σ4D(𝑡)dW4(𝑡) +

∫
U
η4(𝑢)D(𝑡−)Ñ (d𝑡, d𝑢).

(III.28)

In this study, we develop a new analysis to deal with stochastic models with jumps in epi-

demiology. Our main goal is to investigate sufficient conditions of the stochastic extinction and

persistence in the mean. These two important properties are sufficient to predict and analyze the

dynamics of a given epidemic. We apply a new approach to estimate the values of the averages

𝑡−1
∫ 𝑡

0
𝜓 (𝑠)d𝑠 and 𝑡−1

∫ 𝑡

0
𝜓 2(𝑠)d𝑠, where 𝜓 (𝑡) is the positive solution of the following subsystem:


d𝜓 (𝑡) =

(
𝐴 − µ1𝜓 (𝑡)

)
d𝑡 + σ1𝜓 (𝑡)dW1(𝑡) +

∫
U
η1(𝑢)𝜓 (𝑡−)Ñ (d𝑡, d𝑢), ∀𝑡 > 0,

𝜓 (0) = 𝑆 (0) > 0.
(III.29)
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Our approach allows us to close the gap left by using the classical method presented for example

in [163]. Furthermore, we give an optimal sufficient condition for the stochastic extinction. For the

purpose of well understanding the dynamics of the delayed model (III.28), we give a sufficient con-

dition of the disease persistence. The analysis in this section seems to be promising to investigate

other related stochastic delayed models with Lévy noises in epidemiology and even in biology.

3.2 Main results
In mathematical epidemiology, we are generally interested in two things, the first is to know when

the epidemic will die out, and the second is when it will continue and persist. In this section,

we will try our best to find sufficient conditions for these two interesting asymptotic proprieties

in terms of model parameters and intensities of noises. For the sake of notational simplicity, we

define

• σ̄ , max
{
σ2

1,σ
2
2,σ

2
4

}
and 𝜗 , min

{
µ1,µ2 + γ − 𝜋★, 𝜋★

}
.

• η̄(𝑢) , max{η1(𝑢), η2(𝑢), η4(𝑢)} and η(𝑢) , min{η1(𝑢), η2(𝑢), η4(𝑢)}.

• ζ̂𝑝 (𝑢) ,
[
1 + η̄(𝑢)

]𝑝 − 1 − 𝑝η̄(𝑢) and ζ̌𝑝 (𝑢) ,
[
1 + η(𝑢)

]𝑝 − 1 − 𝑝η(𝑢).

• 𝜉 (𝑢) , max
{
ζ̂𝑝 (𝑢), ζ̌𝑝 (𝑢)

}
and ℓ𝑝 ,

∫
U
𝜉 (𝑢)𝜈 (d𝑢).

To properly study the long-term of the perturbed model (III.28), we have the following hypotheses

on the jump-diffusion coefficients:

� (H1): We assume that the jump coefficients 𝜆𝑖 (𝑢) in (I.2) satisfy

∫
U
𝜆2
𝑖 (𝑢)𝜈 (d𝑢) < ∞ (𝑖 = 1, 2, 4).

� (H2): For all 𝑖 = 1, 2, 4, we assume that 1 + 𝜆𝑖 (𝑢) > 0 and

∫
U

(
𝜆𝑖 (𝑢) − ln

(
1 + 𝜆𝑖 (𝑢)

) )
𝜈 (d𝑢) < ∞.

• (H3): For 𝑖 = 1, 2, 4, we assume that

∫
U

[
ln(1 + η𝑖 (𝑢))

]2
𝜈 (d𝑢) < ∞ .

• (H4): For 𝑖 = 1, 2, 4, we assume that

∫
U

[ (
1 + η̄(𝑢)

)2 − 1
]2
𝜈 (d𝑢) < ∞.

• (H5): We suppose that there exists some real number 𝑝 > 2 such that

𝜒1,𝑝 = 𝜗 − (𝑝 − 1)
2

σ̄ − 1
𝑝
ℓ𝑝 > 0.

For the convenience of discussion in the stochastic model (III.28), we introduce two lemmas which

will be used in our analysis.

Lemma 3.1 ([63]). We assume that the conditions (H4) and (H5) hold. Let (𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)) be the
positive solution of the system (III.28) with any given initial condition (𝑆 (0), 𝐼 (0),D(0)) ∈ R3

+. Let
also 𝜓 (𝑡) ∈ R+ be the solution of the equation (III.29) with any given initial value 𝜓 (0) = 𝑆 (0) ∈ R+.
Then

• lim
𝑡→∞

𝑡−1 𝜓 (𝑡) = 0, lim
𝑡→∞

𝑡−1 𝜓 2(𝑡) = 0, lim
𝑡→∞

𝑡−1 𝑆 (𝑡) = 0, lim
𝑡→∞

𝑡−1 𝐼 (𝑡) = 0,

and lim
𝑡→∞

𝑡−1 D(𝑡) = 0 a.s.

• lim
𝑡→∞

𝑡−1
∫ 𝑡

0
𝜓 (𝑠)dW1(𝑠) = 0, lim

𝑡→∞
𝑡−1

∫ 𝑡

0
𝜓 2(𝑠)dW1(𝑠) = 0, lim

𝑡→∞
𝑡−1

∫ 𝑡

0
𝑆 (𝑠)dW1(𝑠) = 0,

lim
𝑡→∞

𝑡−1
∫ 𝑡

0
𝐼 (𝑠)dW2(𝑠) = 0, and lim

𝑡→∞
𝑡−1

∫ 𝑡

0
D(𝑠)dW4(𝑠) = 0 a.s.

75



• lim
𝑡→∞

𝑡−1
∫ 𝑡

0

∫
U
η1(𝑢)𝜓 (𝑠−)Ñ (d𝑠, d𝑢) = 0, lim

𝑡→∞
𝑡−1

∫ 𝑡

0

∫
U

(
(1 + η1(𝑢))2 − 1

)
𝜓 2(𝑠−)Ñ (d𝑠, d𝑢) = 0,

lim
𝑡→∞

𝑡−1
∫ 𝑡

0

∫
U
η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢) = 0, lim

𝑡→∞
𝑡−1

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢) = 0,

and lim
𝑡→∞

𝑡−1
∫ 𝑡

0

∫
U
η4(𝑢)D(𝑠−)Ñ (d𝑠, d𝑢) = 0 a.s.

Remark 3.2. By using the same approach adopted in Lemma 2.5 of [63], we can easily prove the

last result. Note that the hypothesis (H5) is an ameliorated version of it corresponding hypothesis

frequently used in many previous works, for example, [27, 26, 36]. Therefore, the adoption of 𝜒1,𝑝
in this section raises the optimality of our calculus and results.

Lemma 3.3. Assume that the conditions (H4) and (H5) hold. Let 𝜓 (𝑡) be the solution of (III.29) with
an initial value 𝜓 (0) ∈ R+. Then, 𝜒2 = 2𝜇1 − σ2

1 −
∫
U
η2

1(𝑢)𝜈 (d𝑢) > 0, and

• lim
𝑡→∞

𝑡−1
∫ 𝑡

0
𝜓 (𝑠)d𝑠 = 𝐴

µ1
a.s.

• lim
𝑡→∞

𝑡−1
∫ 𝑡

0
𝜓 2(𝑠)d𝑠 = 2𝐴2

µ1𝜒2
a.s.

Proof. Integrating from 0 to 𝑡 on both sides of (III.29) yields

𝜓 (𝑡) −𝜓 (0)
𝑡

= 𝐴 − µ1
𝑡

∫ 𝑡

0
𝜓 (𝑠)d𝑠 + σ1

𝑡

∫ 𝑡

0
𝜓 (𝑠)dW1(𝑠) + 𝑡−1

∫ 𝑡

0

∫
U
η1(𝑢)𝜓 (𝑠−)Ñ (d𝑠, d𝑢).

Clearly, we can derive that

𝑡−1
∫ 𝑡

0
𝜓 (𝑠)d𝑠 = 𝐴

µ1
− 𝜓 (𝑡) −𝜓 (0)

µ1𝑡
+ σ1
µ1𝑡

∫ 𝑡

0
𝜓 (𝑠)dW1(𝑠) +

1
µ1𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝜓 (𝑠−)Ñ (d𝑠, d𝑢) .

By Lemma 3.1, we get

lim
𝑡→∞

𝑡−1
∫ 𝑡

0
𝜓 (𝑠)d𝑠 = 𝐴

µ1
a.s.

Now, applying the generalized Itô’s formula to model (III.29) leads to

d𝜓 2(𝑡) =
(
2𝜓 (𝑡)

(
𝐴 − µ1𝜓 (𝑡)

)
+ σ2

1𝜓
2(𝑡) +

∫
U
𝜓 2(𝑡)

(
(1 + η1(𝑢))2 − 1 − 2η1(𝑢)

)
𝜈 (d𝑢)

)
d𝑡

+ 2σ1𝜓
2(𝑡)dW1(𝑡) +

∫
U
𝜓 2(𝑡−)

(
(1 + η1(𝑢))2 − 1

)
Ñ (d𝑡, d𝑢).

Integrating both sides of the last expression from 0 to 𝑡 and then dividing by 𝑡 , yields

𝜓 2(𝑡) −𝜓 2(0)
𝑡

= 2𝐴 × 1
𝑡

∫ 𝑡

0
𝜓 (𝑠)d𝑠 −

≡𝜒2︷                                ︸︸                                ︷(
2𝜇1 − σ2

1 −
∫
U
η2

1(𝑢)𝜈 (d𝑢)
)
×1
𝑡

∫ 𝑡

0
𝜓 2(𝑠)d𝑠

+ 2σ1 ×
1
𝑡

∫ 𝑡

0
𝜓 2(𝑠)dW1(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
𝜓 2(𝑠−)

(
(1 + η1(𝑢))2 − 1

)
Ñ (d𝑠, d𝑢) .

Therefore

𝜒2

𝑡

∫ 𝑡

0
𝜓 2(𝑠)d𝑠 = 2𝐴

𝑡

∫ 𝑡

0
𝜓 (𝑠)d𝑠 +

(
𝜓 2(0) −𝜓 2(𝑡)

)
𝑡

+ 2σ1
𝑡

∫ 𝑡

0
𝜓 2(𝑠)dW1(𝑠)

+ 1
𝑡

∫ 𝑡

0

∫
U
𝜓 2(𝑠−)

(
(1 + η1(𝑢))2 − 1

)
Ñ (d𝑠, d𝑢) . (III.30)
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Clearly, 𝜒2 ≠ 0, because if it is not the case, we will obtain by letting 𝑡 go to infinity in (III.30)

2𝐴2

µ
= 0, which is obviously impossible. So, and using Lemma 3.1, we can easily verify that

lim
𝑡→∞

𝑡−1
∫ 𝑡

0
𝜓 2(𝑠)d𝑠 = 2𝐴2

µ1𝜒2
a.s.

and since 𝑡−1
∫ 𝑡

0
𝜓 2(𝑠)d𝑠 > 0 for all 𝑡 > 0, we can conclude also that

2𝐴2

µ1𝜒2
> 0 and then 𝜒2 > 0.

Hence the proof is completed.

We are now in the position to state and prove the main results of this section. In the following,

we always presume that the hypotheses (H1)-(H5) hold.

3.2.1 Stochastic extinction of the epidemic

In this subsection, we give a sufficient condition for the stochastic extinction of the disease in

the system (III.28). For brevity and simplicity in writing the next result, we adopt the following

notations:

• Υ , min{µ2 + γ, 𝜋★}
(√

T★ − 1
)
1{T★≤1} + max{µ2 + γ, 𝜋★}

(√
T★ − 1

)
1{T★>1}.

• η , σ2
1 +

∫
U
η2

1(𝑢)𝜈 (d𝑢) and Σ ,
(
2
(
σ−2

2 + σ−2
4

) )−1
.

• ℵ̄(𝑢) ,
(
ln

(
1 + η2(𝑢) ∧ η4(𝑢)

)
− η2(𝑢) ∧ η4(𝑢)

)
× 1{η2 (𝑢)∧η4 (𝑢)>0}.

• ℵ(𝑢) ,
(
ln

(
1 + η2(𝑢) ∨ η4(𝑢)

)
− η2(𝑢) ∨ η4(𝑢)

)
× 1{η2 (𝑢)∨η4 (𝑢) ≤0}.

• ℵ(𝑢) , ℵ̄(𝑢) + ℵ(𝑢) and Π ,

∫
U
ℵ(𝑢)𝜈 (d𝑢).

• Θ , Υ + Π − Σ + 𝜋★

(
T★η

𝜒2

) 1
2

.

• For any vector 𝑥 ∈ R𝑛, we denote its transpose by 𝑥𝑇 .

Theorem 3.4. Let us denote by (𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)) the solution of the stochastic system (III.28) that
starts from a given initial data (𝑆 (0), 𝐼 (0),D(0)) ∈ R3

+. Under the hypotheses (H1)-(H5), we have

lim sup
𝑡→∞

𝑡−1 ln

(
1

µ2 + γ
𝐼 (𝑡) +

√
T★

𝜋★
D(𝑡)

)
≤ Θ a.s.

Notably, if Θ < 0, then the epidemic will go to zero exponentially with probability one. Consequently,

lim
𝑡→∞

𝐼 (𝑡) = 0 and lim
𝑡→∞

D(𝑡) = 0 a.s.

Proof. Our proof starts with the use of Theorem 1.4 in [11] to establish that there is a left eigenvector

of the following matrix

𝔐0 =

(
0 β𝐴

µ1 (µ2+γ)
1 0

)
corresponding to

√
T★

. This vector will be denoted by (𝑒1, 𝑒2) = (1,
√
T★). Then,

√
T★(𝑒1, 𝑒2) =

(𝑒1, 𝑒2)𝔐0. On the other hand, we define a ℭ2
-function M : R2

+→R+ by

M(𝐼 (𝑡),D(𝑡)) = 𝜔1𝐼 (𝑡) + 𝜔2D(𝑡),
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where 𝜔1 =
𝑒1

µ2+γ and 𝜔2 =
𝑒2
𝜋★
. By applying the generalized Itô’s formula with Lévy jumps we obtain

d lnM(𝐼 (𝑡),D(𝑡)) = L lnM(𝐼 (𝑡),D(𝑡))d𝑡 + 1
𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

{
𝜔1σ2𝐼 (𝑡)dW2(𝑡) + 𝜔2σ4D(𝑡)dW3(𝑡)

}
+

∫
U

ln
(
1 + 𝜔1η2(𝑢)𝐼 (𝑡−) + 𝜔2η4(𝑢)D(𝑡−)

𝜔1𝐼 (𝑡−) + 𝜔2D(𝑡−)

)
Ñ (d𝑡, d𝑢),

where

L lnM(𝐼 (𝑡),D(𝑡)) = 1
𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

{
𝜔1

(
β𝑆 (𝑡)D(𝑡) − (µ2 + γ)𝐼 (𝑡)

)
+ 𝜔2𝜋★

(
𝐼 (𝑡) − D(𝑡)

)}
− 1

2(𝜔1𝐼 (𝑡) + 𝜔2D(𝑡))2

{
𝜔2

1σ
2
2𝐼

2(𝑡) + 𝜔2
2σ

2
4D

2(𝑡)
}

+

∫
U

[
ln

(
1 + 𝜔1η2(𝑢)𝐼 (𝑡) + 𝜔2η4(𝑢)D(𝑡)

𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

)
− 𝜔1η2(𝑢)𝐼 (𝑡) + 𝜔2η4(𝑢)D(𝑡)

𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

]
𝜈 (d𝑢) .

Moreover, it is easy to show the following inequality(
1
σ2

2
+ 1
σ2

4

)
×

(
𝜔2

1σ
2
2𝐼

2(𝑡) + 𝜔2
2σ

2
4D

2(𝑡)
)
≥

(
1
σ2
𝜔1σ2𝐼 (𝑡) +

1
σ4
𝜔2σ4D(𝑡)

)2
.

In order to find an optimal and good majorization, we adopt the fact that∫
U

[
ln

(
1 + 𝜔1η2(𝑢)𝐼 (𝑡) + 𝜔2η4(𝑢)D(𝑡)

𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

)
− 𝜔1η2(𝑢)𝐼 (𝑡) + 𝜔2η4(𝑢)D(𝑡)

𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

]
𝜈 (d𝑢) ≤ Π. (III.31)

By using the last two results, we get

L lnM(𝐼 (𝑡),D(𝑡)) ≤ 𝜔1βD(𝑡)
𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

(
𝑆 (𝑡) − 𝐴

µ1

)
+ Π − Σ

+ 1
𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

{
𝜔1

(
β𝐴

µ1
D(𝑡) − (µ2 + γ)𝐼 (𝑡)

)
+ 𝜔2𝜋★

(
𝐼 (𝑡) − D(𝑡)

)}
.

By the stochastic comparison theorem, we have

L lnM(𝐼 (𝑡),D(𝑡)) ≤ 𝜔1βD(𝑡)
𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

(
𝜓 (𝑡) − 𝐴

µ1

)
+ Π − Σ

+ 1
𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

{
𝑒1

µ2 + γ

(
β𝐴

µ1
D(𝑡) − (µ2 + γ)𝐼 (𝑡)

)
+ 𝑒2
𝜋★

(
𝜋★𝐼 (𝑡) − 𝜋★D(𝑡)

)}
.

Then, we obtain that

L lnM(𝐼 (𝑡),D(𝑡))

≤ 𝜔1β

𝜔2

����𝜓 (𝑡) − 𝐴

µ1

���� + Π − Σ + 1
𝜔1𝐼 (𝑡) + 𝜔2D(𝑡) (𝑒1, 𝑒2)

(
𝔐0(𝐼 (𝑡),D(𝑡))𝑇 − (𝐼 (𝑡),D(𝑡))𝑇

)
=
𝜔1β

𝜔2

����𝜓 (𝑡) − 𝐴

µ1

���� + Π − Σ + 1
𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

(√
T★ − 1

) (
𝑒1𝐼 (𝑡) + 𝑒2𝐷 (𝑡)

)
=
𝜔1β

𝜔2

����𝜓 (𝑡) − 𝐴

µ1

���� + Π − Σ + 1
𝜔1𝐼 (𝑡) + 𝜔2D(𝑡)

(√
T★ − 1

) (
𝜔1(µ2 + γ)𝐼 (𝑡) + 𝜋★𝜔2D(𝑡)

)
≤ Υ + Π − Σ + 𝜔1β

𝜔2

����𝜓 (𝑡) − 𝐴

µ1

���� .
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Hence, we deduce that

d lnM(𝐼 (𝑡),D(𝑡)) ≤
(
Υ + Π − Σ

)
d𝑡 + 𝜔1β

𝜔2

����𝜓 (𝑡) − 𝐴

µ1

���� d𝑡
+ 1
𝜔1𝐼 (𝑡) + 𝜔2𝐷 (𝑡)

{
𝜔1σ2𝐼 (𝑡)dW2(𝑡) + 𝜔2σ4𝐷 (𝑡)dW4(𝑡)

}
+

∫
U

ln
(
1 + η(𝑢)

)
Ñ (d𝑡, d𝑢),

where η(𝑢) = max{η2(𝑢), η4(𝑢)}. Now, by integrating both sides of the last inequality and dividing

by 𝑡 , we find immediately that

𝑡−1 lnM(𝐼 (𝑡),D(𝑡)) ≤ 𝑡−1 lnM(𝐼 (0),D(0)) + Υ + Π − Σ

+ 𝜔1β

𝜔2𝑡

∫ 𝑡

0

���𝜓 (𝑠) − 𝐴

µ1

���d𝑠 + 𝑡−1 J3(𝑡) + 𝑡−1 J4(𝑡), (III.32)

where

J3(𝑡)=
∫ 𝑡

0

σ2𝜔1𝐼 (𝑠)
𝜔1𝐼 (𝑠) + 𝜔2𝐷 (𝑠)dW2(𝑠) +

∫ 𝑡

0

σ4𝜔2𝐷 (𝑠)
𝜔1𝐼 (𝑠) + 𝜔2𝐷 (𝑠)dW4(𝑠),

J4(𝑡) =
∫ 𝑡

0

∫
U

ln
(
1 + η(𝑢)

)
Ñ (d𝑠, d𝑢) .

It is easy to check that J3(𝑡) is a local martingale with finite quadratic variation, and by the

hypothesis (H3) we can affirm that J4(𝑡) is also a local martingale with finite quadratic variation.

By the strong law of large numbers for local martingales [93], we get

lim
𝑡→∞

𝑡−1 J3(𝑡) = 0 a.s and lim
𝑡→∞

𝑡−1 J4(𝑡) = 0 a.s.

Now, by using the Holder’s inequality, we deduce that

𝑡−1
∫ 𝑡

0

���𝜓 (𝑠) − 𝐴

µ1

���d𝑠 ≤ 𝑡−
1
2

( ∫ 𝑡

0

(
𝜓 (𝑠) − 𝐴

µ1

)2
d𝑠

) 1
2

=

(
𝑡−1

∫ 𝑡

0

(
𝜓 2(𝑠) − 2𝐴

µ1
𝜓 (𝑠) +

( 𝐴
µ1

)2)
d𝑠

) 1
2

.

It follows from Lemme 3.3 that

lim
𝑡→∞

𝑡−1
∫ 𝑡

0

���𝜓 (𝑠) − 𝐴

µ1

���d𝑠 ≤ (
2𝐴2

µ1𝜒2
− 2𝐴2

µ2
1

+ 𝐴
2

µ2
1

) 1
2

=
©«
𝐴2

(
σ2

1 +
∫
U η2

1(𝑢)𝜈 (d𝑢)
)

µ2
1𝜒2

ª®®¬
1
2

.

Taking the superior limit on both sides of (III.32) leads to

lim sup
𝑡→∞

𝑡−1 lnM(𝐼 (𝑡),D(𝑡)) ≤ Υ + Π − Σ + 𝜔1β

𝜔2

©«
𝐴2

(
σ2

1 +
∫
U η2

1(𝑢)𝜈 (d𝑢)
)

µ2
1𝜒2

ª®®¬
1
2

a.s.

Which implies,

lim sup
𝑡→∞

𝑡−1 lnM(𝐼 (𝑡),D(𝑡)) ≤ Υ + Π − Σ + 𝜋★

(
T★η

𝜒2

) 1
2

= Θ a.s.

That is to say, if Θ < 0, then lim sup
𝑡→∞

𝑡−1 ln 𝐼 (𝑡) < 0, and lim sup
𝑡→∞

𝑡−1 lnD(𝑡) < 0 a.s., which implies

in turn that the disease will die out with probability one and this completes the proof.

Remark 3.5. When the jumps coefficients η𝑖 (𝑢) (𝑖 = 1, 2, 4) and the white intensities σ𝑖 (𝑖 = 2, 4)
degenerate to zero, our results in Theorem 3.4 coincide with Theorem 2.3 in [82]. Therefore, our

results generalize the consequence of the mentioned paper.
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3.2.2 Persistence in mean of the epidemic

The study of the persistence in the mean is a significant characteristic to know more about epidemic

dynamics. For this reason, in this subsection, we will give the condition for the disease persistence.

For simplicity of notation, we define the following quantity

T̃★ = β

(
𝐴

µ1 + σ̄1

) (
(µ2 + γ + σ̄2) + β

(
𝐴

µ1 + σ̄1

)
σ̄4
𝜋★

)−1

,

where σ̄𝑖 , 0.5σ2
𝑖 +

∫
U

(
η𝑖 (𝑢) − ln(1 + η𝑖 (𝑢)

)
𝜈 (d𝑢), 𝑖 = 1, 2, 4.

Theorem 3.6. Let (𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)) be the solution of (III.28) with any positive initial data. The
stochastic model (III.28) has the following property: if T̃★ > 1 holds, then the disease 𝐼 (𝑡) persists
in the mean almost surely.

Proof. Begin by considering the following function

Z(𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)) = −ℭ1 ln 𝑆 (𝑡) − ln 𝐼 (𝑡) − ℭ2 lnD(𝑡) + ℭ3D(𝑡).

where ℭ𝑖 , (𝑖 = 1, 2, 3) are positive constants to be determined in the following. From Itô’s formula

and system (III.28), we have

dZ(𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)) = LZ(𝑆 (𝑡), 𝐼 (𝑡),D(𝑡))d𝑡 − ℭ1σ1dW1(𝑡) − σ2dW2(𝑡) − ℭ2σ4dW4(𝑡)

+ ℭ3σ4𝐷 (𝑡)dW4(𝑡) −
∫
U
ℭ1 ln

(
1 + η1(𝑢)

)
Ñ (d𝑡, d𝑢) −

∫
U

ln
(
1 + η2(𝑢)

)
Ñ (d𝑡, d𝑢)

−
∫
U
ℭ2 ln

(
1 + η4(𝑢)

)
Ñ (d𝑡, d𝑢) +

∫
U
ℭ3η4(𝑢)D(𝑡−)Ñ (d𝑡, d𝑢),

where

LZ(𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)) = − ℭ1
𝑆 (𝑡)

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)D(𝑡)

)
+
ℭ1σ

2
1

2
− 1
𝐼 (𝑡)

(
β𝑆 (𝑡)D(𝑡) − (µ2 + γ)𝐼 (𝑡)

)
+
σ2

2
2

− ℭ2𝜋★
D(𝑡) (𝐼 (𝑡) − D(𝑡)) +

ℭ2σ
2
4

2
+ ℭ3𝜋★

(
𝐼 (𝑡) − D(𝑡)

)
+

∫
U
ℭ1

(
η1(𝑢) − ln(1 + η1(𝑢)

)
𝜈 (d𝑢) +

∫
U

(
η2(𝑢) − ln(1 + η2(𝑢)

)
𝜈 (d𝑢)

+
∫
U
ℭ2

(
η4(𝑢) − ln(1 + η4(𝑢)

)
𝜈 (d𝑢).

We then find that

LZ(𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)) = −β𝑆 (𝑡)D(𝑡)
𝐼 (𝑡) − ℭ1𝐴

𝑆 (𝑡) −
ℭ2𝜋★𝐼 (𝑡)
D(𝑡) + (ℭ1β − ℭ3𝜋★)D(𝑡)

+ ℭ1(µ1 + σ̄1) + ℭ2(𝜋★ + σ̄4) + (µ2 + γ + σ̄2) + ℭ3𝜋★𝐼 (𝑡)

≤ −3
(
β𝐴𝜋★ℭ1ℭ2

) 1
3 + (ℭ1β − ℭ3𝜋★)D(𝑡) + ℭ1(µ1 + σ̄1)

+ ℭ2(𝜋★ + σ̄4) + (µ2 + γ + σ̄2) + ℭ3𝜋★𝐼 (𝑡) .

By choosing

ℭ1 = β
( 𝐴

µ1 + σ̄1

)2
(𝜋★ + σ̄4)/𝐴𝜋★,

ℭ2 = β
( 𝐴

µ1 + σ̄1

)
/(𝜋★ + σ̄4),

ℭ3 = ℭ1β/𝜋★,

80



we may actually obtain that

LZ(𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)) ≤ −β
( 𝐴

µ1 + σ̄1

)
+ (µ2 + γ + σ̄2) + β

( 𝐴

µ1 + σ̄1

) σ̄4
𝜋★

+ ℭ1β𝐼 (𝑡)

= −β
( 𝐴

µ1 + σ̄1

) (
1 − 1

T̃★

)
+ ℭ1β𝐼 (𝑡) .

Hence, we get

dZ(𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)) ≤
(
− β

( 𝐴

µ1 + σ̄1

) (
1 − 1

T̃★

)
+ ℭ1β𝐼 (𝑡)

)
d𝑡 − ℭ1σ1dW1(𝑡) − σ2dW2(𝑡)

− ℭ2σ4dW4(𝑡) + ℭ3σ4𝐷 (𝑡)dW4(𝑡) −
∫
U
ℭ1 ln

(
1 + η1(𝑢)

)
Ñ (d𝑡, d𝑢)

−
∫
U

ln
(
1 + η2(𝑢)

)
Ñ (d𝑡, d𝑢) −

∫
U
ℭ2 ln

(
1 + η4(𝑢)

)
Ñ (d𝑡, d𝑢)

+
∫
U
ℭ3η4(𝑢)D(𝑡−)Ñ (d𝑡, d𝑢) .

Integrating from 0 to 𝑡 and dividing by 𝑡 on both sides of the last inequality, yields

𝑡−1 Z(𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)) ≤ 𝑡−1 Z(𝑆 (0), 𝐼 (0),D(0)) − β
( 𝐴

µ1 + σ̄1

) (
1 − 1

T̃★

)
+ ℭ1β 𝑡−1

∫ 𝑡

0
𝐼 (𝑠)d𝑠 + 𝑡−1 J5(𝑡) + 𝑡−1 J6(𝑡),

where

J5(𝑡) = −
(
ℭ1σ1W1(𝑡) + σ2W2(𝑡) + ℭ2σ4W4(𝑡)

)
+ ℭ3σ4

∫ 𝑡

0
𝐷 (𝑠)dW4(𝑠),

J6(𝑡) = −
∫ 𝑡

0

∫
U
ℭ1 ln

(
1 + η1(𝑢)

)
Ñ (d𝑡, d𝑢) −

∫ 𝑡

0

∫
U

ln
(
1 + η2(𝑢)

)
Ñ (d𝑡, d𝑢)

−
∫ 𝑡

0

∫
U
ℭ2 ln

(
1 + η4(𝑢)

)
Ñ (d𝑡, d𝑢) +

∫ 𝑡

0

∫
U
ℭ3η4(𝑢)D(𝑡−)Ñ (d𝑡, d𝑢) .

By using, the strong law of large numbers for local martingales and Lemma 3.1, we can obtain

lim
𝑡→∞

𝑡−1 J5(𝑡) = 0 a.s and lim
𝑡→∞

𝑡−1 J6(𝑡) = 0 a.s

Therefore

lim inf
𝑡→∞

𝑡−1
∫ 𝑡

0
𝐼 (𝑠)d𝑠 ≥ 1

ℭ1

( 𝐴

µ1 + σ̄1

) (
1 − 1

T̃★

)
> 0 a.s.

This shows that the disease persists in the mean as claimed.

Remark 3.7. Persistence in the mean is an important concept in mathematical epidemiology. It

captures the long-term survival of the disease even when the population size is quite low at 𝑡 = 0.
Moreover, the persistence of the model refers to a situation where the disease is endemic in a

population.

3.3 Numerical simulations
This section is devoted to illustrate our theoretical results by employing numerical simulations. In

the three following examples, we apply the algorithm presented in [112] to discretize the disturbed

system (III.28). Using the software Matlab2015b and the parameter values listed in Table III.3, we

numerically simulate the solution of the system (III.28) with the initial value (𝑆 (0), 𝐼 (0),D(0)) =

(0.6, 0.3, 0.05).
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Parameters Numerical values

𝐴 0.9 0.3 0.6 0.6

µ1 0.3 0.3 0.4 0.4

β 0.07 1.3 0.35 0.8

γ 0.05 0.05 0.2 0.3

µ2 0.5 0.5 0.3 0.3

𝜋★ 0.09 0.09 0.7 0.2

σ1 0.15 0.15 0.2 0.169

σ2 0.25 0.25 0.15 0.15

σ4 0.27 0.27 0.13 0.13

η1 0.2 0.2 0.5 0.5

η2 0.23 0.23 0.3 0.3

η4 0.1 0.1 0.7 0.7

Figure III.6 Figure III.7 Figure III.8 Figure III.9

Table III.3: Nominal values of the system parameters and disturbances intensities adopted in the

different simulation examples .

3.3.1 The stochastic extinction case

In order to exhibit the strong random fluctuations effect on epidemic dynamics, we present in

Figure III.6, the trajectories of the stochastic solution (𝑆 (𝑡), 𝐼 (𝑡),D(𝑡)). We assume that U = (0,∞)
and 𝜈 (U) = 1, then by using the parameters listed in Table III.3, we must check the existence of

𝑝 such that 𝜒1,𝑝 > 0. By simple calculation, we easily get 𝜒1,𝑝 = 0.0206 for 𝑝 = 2.1. Then, the

condition (H5) is satisfied. With the chosen parameters, we can obtain the following values:

Expression Value

T★ , β𝐴(µ1(µ2 + γ))−1
0.3818

Υ , min{µ2 + γ, 𝜋★}(
√
T★ − 1) -0.0344

Π ,
∫
U ℵ(𝑢)𝜈 (d𝑢) -0.0047

Σ ,
(
2
(
σ−2

2 + σ−2
4

) )−1
0.0168

η , σ2
1 +

∫
U η2

1(𝑢)𝜈 (d𝑢) 0.0625

𝜒2 = 2𝜇1 − σ2
1 −

∫
U η2

1(𝑢)𝜈 (d𝑢) 0.5375

Θ , Υ + Π − σ + 𝜋★
√
T★η

1
2 𝜒

− 1
2

2 -0.0369

Table III.4: Some expressions and their corresponding values.

From Table III.4, we have Θ < 0, then the condition of Theorem 3.4 is verified. That is to say that

the epidemic dies out exponentially almost surely which is exactly illustrated in Figure III.6.

3.3.2 The stochastic persistence case

Consider the system (III.28) with parameters appearing in Table III.3. Then, we obtain the following

values:

Expression Value

σ̄1 , 0.5σ2
1 +

∫
U

(
η1(𝑢) − ln(1 + η1(𝑢)

)
𝜈 (d𝑢) 0.0289

σ̄2 , 0.5σ2
2 +

∫
U

(
η2(𝑢) − ln(1 + η2(𝑢)

)
𝜈 (d𝑢) 0.0542

σ̄4 , 0.5σ2
4 +

∫
U

(
η4(𝑢) − ln(1 + η4(𝑢)

)
𝜈 (d𝑢) 0.0411

T̃★ , β

(
𝐴

µ1+σ̄1

) (
(µ2 + γ + σ̄2) + β

(
𝐴

µ1+σ̄1

)
σ̄4
𝜋★

)−1

1.0344
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Figure III.6: The paths of 𝑆 (𝑡), 𝐼 (𝑡) and D(𝑡) for the stochastic model (III.28) when Θ = −0.0369 < 0.

Table III.5: Some expressions and their corresponding values.

Therefore, T̃★ > 1. From Figure III.7, we observe the persistence of the epidemic 𝐼 (𝑡) in this case,

which agree well with Theorem 3.6. Furthermore, the solutions 𝑆 (𝑡) and 𝐷 (𝑡) are persistent which

implies the non-extinction of the stochastic model (III.28).

3.3.3 The Lévy jumps effect on the epidemic dynamics

To find out the effect of white noise and jumps intensities on epidemic dynamics, in this example,

we will compare the trajectories of the following systems:

• The deterministic model (III.26) (σ𝑖 = 0 and η𝑖 = 0, 𝑖 = 1, 2, 4).

• The stochastic version of (III.26) with degenerate diffusion [82] (σ2 = σ4 = 0 and η𝑖 = 0,
𝑖 = 1, 2, 4).

• The SDE-J system (III.28) (σ𝑖 ≠ 0 and η𝑖 ≠ 0, 𝑖 = 1, 2, 4).

We take the values appearing in Table III.3 which are the same as those used in [82]. For the rest

of parameters, we choose σ1 = 0.2, σ2 = 0.15, σ4 = 0.13, η1 = 0.5, η2 = 0.3, and η4 = 0.7. For the sake

of a comparison, we choose the following initial value(𝑆 (0), 𝐼 (0),D(0)) = (0.2, 0.3, 0.4) used in [82].

We see from Figure (III.8) that the effects of Lévy jumps lead to the extinction of the disease while

the deterministic model (III.26) and the perturbed model driven by degenerate diffusion both predict

persistence. Therefore, we say that the jumps have negative effects on the prevalence of epidemics.

This means that jumps can change the asymptotic behavior of the epidemic model significantly. To

examine the effect of jumps intensities on dynamical system (III.26) in the case of persistence, we

shall decrease the intensity σ1 to 0.169 and take other parameter as in the last column of Table

III.3. From Figure III.9, we observe the persistence of the epidemic in all cases with a greater

variation in the case of Lévy jumps. Plainly, environmental factors and unexpected phenomena

have significant impacts on the spread of epidemics.
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Figure III.7: The paths of 𝑆 (𝑡), 𝐼 (𝑡) and D(𝑡) for the stochastic model (III.28) when T̃★ = 1.0344 > 1.
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Figure III.8: The paths of 𝑆 (𝑡), 𝐼 (𝑡) and D(𝑡) for the deterministic model (III.25), the model (III.26)

with degenerate diffusion, and the SDE-J (III.28).
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Figure III.9: The paths of 𝑆 (𝑡), 𝐼 (𝑡) and D(𝑡) associated respectively to the models (III.25), (III.26)

and (III.28).

3.4 Discussion
This section takes into account these two factors. Specifically, we have analyzed a delayed SIR

epidemic model that incorporates proportional Lévy jumps. For analytical reasons, we have em-

ployed the linear chain approach to transform the model with a weak kernel case (III.24) into

the equivalent system (III.25). After proving the well-posedness of this perturbed model, we have

analyzed its long-term behavior. Under some hypotheses, the main epidemiological findings of our

study are presented as follows:

1. We have given sufficient condition for the extinction of the epidemic.

2. We have established sufficient condition for the persistence in the mean of the epidemic.

Compared to the existing literature, the novelty of our work lies in new mathematical analysis

techniques and improvements which are summarized in the following items:

1. Our work is distinguished from previous works [27, 26, 36] by the use of the expression 𝜒1,𝑝
which boosts the optimality of our calculus and results.

2. Our study offers an alternative method to the gap mentioned in (Theorem 2.2, [163]). Without

using the explicit formula of the distribution stationary 𝑓 (·) of 𝜓 (which still up to now

unknown), we calculate the following time averages:

lim
𝑡→∞

𝑡−1
∫ 𝑡

0
𝜓 (𝑠)d𝑠 and lim

𝑡→∞
𝑡−1

∫ 𝑡

0
𝜓 2(𝑠)d𝑠 a.s.

3. In order to find an optimal and good majorization, we have considered the inequality (III.31)

in our analysis without eliminated it (since ln(1+𝑥) −𝑥 ≤ 0 for all 𝑥 > −1) which differs from

the calculus presented in [26].
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Generally speaking, our theoretical results indicate that the conditions of extinction and persistence

are mainly depending on the magnitude of the noise intensities as well as the system parameters.

From numerical simulations, we remark that Lévy jumps affect significantly the long-run behavior

of an epidemic. Eventually, we point out that this chapter extends the study presented in [82]

to the case of Lévy jumps and delivers some new insights for understanding the propagation of

diseases with distributed delay. Furthermore, the method developed in this chapter can be used to

investigate a class of related stochastic models driven by Lévy noise.
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Chapter IV
Asymptotic analysis of the stochastic

Hepatitis B virus model with unexpected

environmental disturbances

A𝔟𝔰𝔱𝔯𝔞𝔠𝔱

T
 Hepatitis B virus (HBV) represents a rich subject that sparks the interest of epidemiological

researchers. This chapter aims to examine the long-run properties of the HBV system with

unexpected environmental disturbances. We begin with an imprecise HBV model perturbed by

Lévy noise. The uncertainty property is justified by the fact that the parameters associated with

the HBV model are not certain, but the range to which it belongs can readily be determined. The

resulting model is mathematically and biologically well-posed. Under an appropriate assumption,

we prove the existence of a unique ergodic stationary distribution by using the mutually exclusive

possibilities lemma demonstrated by Stettner in 1986. Furthermore, in the case of the proportional

Lévy process with specified parameters, we present the threshold expression which determines the

permanence or the extinction of HBV. Basically, we find that Lévy random perturbations can

help to reduce the spread of HBV. That is, compared with the stochastic model, the deterministic

formulation overestimates the spreading capacity of disease.

1 Ergodic stationary distribution of an imprecise HBV epidemic
model with Lévy jumps

1.1 Introduction

The deterministic HBV model (I.10) can be improved by taking into account the unpredictable

biological conditions [168, 70, 137, 98]. Also, environmental fluctuations have important effects on

the growth and propagation of an epidemic disease [59, 61]. Khan et al. [56] discussed the dynamic

of a stochastic HBV epidemic model with varying population size. They supposed that the effect

of randomly fluctuating environment is manifest themselves mainly as fluctuations in the HBV

transmission rate. To confer the realistic aspect to our study and make it biologically reasonable,

in this section, we extend the work of Khan et al. [56] to the case of Lévy noise perturbation. We

take into consideration the effects due to some unexpected and severe environmental disturbances

(tsunami, floods, earthquakes, hurricanes, whirlwinds, etc.) on the disease outbreak [7, 172]. Thus,
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we consider the following model:
d𝑆 (𝑡) =

(
𝐴 − β𝑆 (𝑡)𝐼 (𝑡) − (µ + 𝜃 )𝑆 (𝑡)

)
d𝑡−σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡) −

∫
U
η(𝑢)𝑆 (𝑡−)𝐼 (𝑡−)Ñ (d𝑡, d𝑢),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ + δ + 𝑟 )𝐼 (𝑡)

)
d𝑡+σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡) +

∫
U
η(𝑢)𝑆 (𝑡−)𝐼 (𝑡−)Ñ (d𝑡, d𝑢),

d𝑅(𝑡) =
(
δ𝐼 (𝑡) + 𝜃𝑆 (𝑡) − µ𝑅(𝑡)

)
d𝑡,

(IV.1)

where 𝑆 (𝑡−) and 𝐼 (𝑡−) are the left limits of 𝑆 (𝑡) and 𝐼 (𝑡), respectively. W(𝑡) is a real-valued

Brownian motion with intensity σ > 0. Ñ , 𝜈 , η and U are defined in the previous chapters

such that 𝜈 (U) < ∞. In system (IV.1), we assume that model parameters are precisely known

and constant. However, this hypothesis may not be validated due to the lack of data and errors

of measurements. It is more realistic to study HBV dynamics with interval-valued parameters.

Recently, Pal et al. [105] used interval-valued parameters to analyze the prey-predator model due

to the lack of precise biological data such as prey and predator population growth rates. The same

logic was applied for epidemic models. In [108], the authors treated a cholera epidemic model

with uncertain parameters. They investigated the stability condition of equilibrium points. Bao et

al. [8] studied a stochastic SIRS model that includes Lévy jumps and interval parameters. They

established the stochastic threshold which determines the extinction and persistence in the mean

of disease. In [29], the authors studied an imprecise SIR epidemic model. They solved the optimal

control problem.

In this section, we consider the HBV epidemic model with stochastic transmissions and lévy

noise. To make our model more realistic, we consider imprecise biological parameters. To the

best of our knowledge, the existence of a stationary distribution of system (IV.1) with imprecise

parameters remains not proved. In the next subsection, we propose a solution to the mentioned

problem by considering an original method different from the Lyapunov approach described in [57].

Before proving the existence of unique a stationary distribution in subsection 1.2.3, we demonstrate

the well-posedness of the model (IV.1) with interval-valued parameters in subsection 1.2.2. Some

simulation examples are proposed in subsection 1.3 to illustrate our theoretical study.

1.2 Main results

1.2.1 Imprecise stochastic HBV model

Before showing the main result of this section, we first present some definitions of interval numbers

and interval-valued function who are used in our study. Then, we construct the imprecise stochastic

HBV model.

Definition 1.1 ([105]). An interval number 𝑍 is defined as 𝑍 = [𝑧, 𝑧] = {𝑥 |𝑧 ≤ 𝑥 ≤ 𝑧, 𝑥 ∈ R} where

R is the set of all real numbers and 𝑧, 𝑧 are the lower and upper limits of the interval numbers

respectively. Furthermore, any real number 𝑧 can be represented in term of interval number as

[𝑧, 𝑧].

Definition 1.2 ([105]). An interval-valued function for the interval [𝑥,𝑦] can be represented by the

following function:

𝜓 (𝑝) = 𝑥 (1−𝑝)𝑦𝑝 for 𝑝 ∈ [0, 1] .

Theorem 1.3. The following stochastic differential equation with interval-valued parameters
d𝑆 (𝑡) =

(
𝐴 − β𝑆 (𝑡)𝐼 (𝑡) − (µ + 𝜃 )𝑆 (𝑡)

)
d𝑡−σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡) −

∫
U
η(𝑢)𝑆 (𝑡−)𝐼 (𝑡−)Ñ (d𝑡, d𝑢),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ + δ + 𝑟 )𝐼 (𝑡)

)
d𝑡+σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡) +

∫
U
η(𝑢)𝑆 (𝑡−)𝐼 (𝑡−)Ñ (d𝑡, d𝑢),

d𝑅(𝑡) =
(
δ𝐼 (𝑡) + 𝜃𝑆 (𝑡) − µ𝑅(𝑡)

)
d𝑡,
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where 𝐴 ∈ [�̂�, �̌�], β ∈ [β̂, β̌], µ ∈ [µ̂, µ̌], 𝜃 ∈ [𝜃, 𝜃 ], δ ∈ [δ̂, δ̌], 𝑟 ∈ [𝑟, 𝑟 ] and σ ∈ [σ̂, σ̌], is provided an
interval-valued functional form of parameters by the following stochastic differential equation:
d𝑆 (𝑡) =

(
(�̂�)1−𝑝 (�̌�)𝑝 − (β̂)1−𝑝 (β̌)𝑝𝑆 (𝑡)𝐼 (𝑡) −

(
(µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝

)
𝑆 (𝑡)

)
d𝑡−dZ(𝑡,

d𝐼 (𝑡) =
(
(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑡)𝐼 (𝑡) − ((µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝)𝐼 (𝑡)

)
d𝑡+dZ(𝑡),

d𝑅(𝑡) =
(
(δ̂)1−𝑝 (δ̌)𝑝𝐼 (𝑡) + (𝜃 )1−𝑝 (𝜃 )𝑝𝑆 (𝑡) − (µ̂)1−𝑝 (µ̌)𝑝𝑅(𝑡)

)
d𝑡,

(IV.2)

where

dZ(𝑡) = (σ̂)1−𝑝 (σ̌)𝑝𝑆 (𝑡)𝐼 (𝑡)dW(𝑡) +
∫
U
η(𝑢)𝑆 (𝑡−)𝐼 (𝑡−)Ñ (d𝑡, d𝑢), for 𝑝 ∈ [0, 1] .

The proof is similar to that in [105] and hence is omitted here.

1.2.2 Well-posedness of the stochastic model (IV.2)

The theorem 1.4 is a prerequisite for analyzing the long-run behavior of the model (IV.2). From

epidemiological considerations, it is reasonable to suppose that the intensity of Lévy jumps cannot

exceed environmental carrying capacity. Hence, we impose the following standard assumption:

Assumption 1. The function η(𝑢) is bounded and
����( (�̂�)1−𝑝 (�̌�)𝑝

(µ̂)1−𝑝 (µ̌)𝑝

)
η(𝑢)

���� ≤ Γ < 1, 𝑢 ∈ U.

By using the Lyapunov analysis method (as mentioned in [8]), we shall verify that the solution

of the system (IV.2) is global and positive.

Theorem 1.4. For any initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+, there exists a unique positive solution

(𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) of the system (IV.2) on 𝑡 ≥ 0, and the solution will remain in R3
+ with probability one.

That is to say, the solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) ∈ R3
+ for all 𝑡 ≥ 0 almost surely.

Proof. Since the coefficients of the system (IV.2) satisfy the local Lipschitz condition, then for any

initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+ there is a unique local solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) on [0, 𝜏𝑒), where

𝜏𝑒 is the explosion time. To show that the solution is global, we only need to prove that 𝜏𝑒 = ∞
a.s. Let 𝜖0 > 0 be sufficiently large such that 𝑆0, 𝐼0, 𝑅0 liying within the interval

[
1
𝜖0
, 𝜖0

]
. For each

integer 𝜖 ≥ 𝜖0, we define the following stopping time:

𝜏𝜖 = inf
{
𝑡 ∈ [0, 𝜏𝑒) : min{𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)} ≤ 1

𝜖
or max{𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)} ≥ 𝜖

}
,

where throughout this section we set inf ∅ = ∞ (as usual, ∅ denotes the empty set). Clearly, 𝜏𝜖 is

increasing as 𝜖 → ∞. Set 𝜏∞ = lim
𝜖→∞

𝜏𝜖 whence 𝜏∞ ≤ 𝜏𝑒 . If we can prove that 𝜏∞ = ∞ a.s., then 𝜏𝑒 = ∞
and the solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) ∈ R3

+ for all 𝑡 ≥ 0 almost surely. Specifically, to complete the proof,

we only need to prove that 𝜏∞ = ∞ a.s. If this statement is false, then there exists a pair of positive

constants 𝑇 > 0 and 𝑘 ∈ (0, 1) such that

P{𝜏∞ ≤ 𝑇 } > 𝑘.

Hence, there is an integer 𝜖1 ≥ 𝜖0 such that

P{𝜏𝜖 ≤ 𝑇 } ≥ 𝑘 for all 𝜖 ≥ 𝜖1. (IV.3)

For 𝑡 ≥ 𝜏𝜖 and each 𝜖,

d(𝑆 + 𝐼 + 𝑅) =
(
(�̂�)1−𝑝 (�̌�)𝑝 − (µ̂)1−𝑝 (µ̌)𝑝 (𝑆 + 𝐼 + 𝑅) − (𝑟 )1−𝑝 (𝑟 )𝑝𝐼

)
d𝑡

≤
(
(�̂�)1−𝑝 (�̌�)𝑝 − (µ̂)1−𝑝 (µ̌)𝑝 (𝑆 + 𝐼 + 𝑅)

)
d𝑡 .
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Then

𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡) ≤ (�̂�)1−𝑝 (�̌�)𝑝
(µ̂)1−𝑝 (µ̌)𝑝

+ 𝑒−(µ̂)1−𝑝 (µ̌)𝑝𝑡
(
𝑆 (0) + 𝐼 (0) + 𝑅(0) − (�̂�)1−𝑝 (�̌�)𝑝

(µ̂)1−𝑝 (µ̌)𝑝

)
,

≤


(�̂�)1−𝑝 (�̌�)𝑝
(µ̂)1−𝑝 (µ̌)𝑝 , if 𝑆 (0) + 𝐼 (0) + 𝑅(0) ≤ (�̂�)1−𝑝 (�̌�)𝑝

(µ̂)1−𝑝 (µ̌)𝑝 ,

𝑆 (0) + 𝐼 (0) + 𝑅(0), if 𝑆 (0) + 𝐼 (0) + 𝑅(0) > (�̂�)1−𝑝 (�̌�)𝑝
(µ̂)1−𝑝 (µ̌)𝑝 ,

≡ ℭ.

From mathematical and biological considerations, we can study the disease dynamics of the model

(IV.2) in the following bounded set

Δ =

{
(𝑆, 𝐼 , 𝑅) ∈ R3

+ : 𝑆 + 𝐼 + 𝑅 ≤ (�̂�)1−𝑝 (�̌�)𝑝
(µ̂)1−𝑝 (µ̌)𝑝

a.s.

}
.

Therefore, the region Δ is almost surely positively invariant set by the system (IV.2). Now, we

define the following Lyapunov 𝐶2
-function 𝑉 : R3

+ → R̄+ by

V(𝑆, 𝐼 , 𝑅) = (𝑆 − 1 − ln 𝑆) + (𝐼 − 1 − ln 𝐼 ) + (𝑅 − 1 − ln𝑅) .

For 0 ≤ 𝑡 ≤ 𝜏𝜖 ∧𝑇 , using Itô’s formula, we obtain that

dV(𝑆, 𝐼 , 𝑅) = LV(𝑆, 𝐼 , 𝑅)d𝑡 − (σ̂)1−𝑝 (σ̌)𝑝𝑆dW(𝑡) + (σ̂)1−𝑝 (σ̌)𝑝𝐼dW(𝑡)

−
∫
U

(
η(𝑢)𝑆 (𝑡−)𝐼 (𝑡−) + ln(1 − η(𝑢)𝐼 (𝑡−))

)
Ñ (d𝑡, d𝑢)

+
∫
U

(
η(𝑢)𝑆 (𝑡−)𝐼 (𝑡−) − ln(1 + η(𝑢)𝑆 (𝑡−))

)
Ñ (d𝑡, d𝑢), (IV.4)

where L is the differential operator, and

LV(𝑆, 𝐼 , 𝑅) =
(
1 − 1

𝑆

) (
(�̂�)1−𝑝 (�̌�)𝑝 − (β̂)1−𝑝 (β̌)𝑝𝑆𝐼 −

(
(µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝

)
𝑆

)
+

(
1 − 1

𝐼

) (
(β̂)1−𝑝 (β̌)𝑝𝑆𝐼 − ((µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝)𝐼

)
+

(
1 − 1

𝑅

) (
(δ̂)1−𝑝 (δ̌)𝑝𝐼 + (𝜃 )1−𝑝 (𝜃 )𝑝𝑆 − (µ̂)1−𝑝 (µ̌)𝑝𝑅

)
+ 1

2
(σ̂)2−2𝑝 (σ̌)2𝑝𝐼 2 + 1

2
(σ̂)2−2𝑝 (σ̌)2𝑝𝑆2

−
∫
U
(ln(1 − η(𝑢)𝐼 ) + η(𝑢)𝐼 )𝜈 (d𝑢) −

∫
U
(ln(1 + η(𝑢)𝑆) − η(𝑢)𝑆)𝜈 (d𝑢)

≤ (�̂�)1−𝑝 (�̌�)𝑝 + (β̂)1−𝑝 (β̌)𝑝ℭ + (𝜃 )1−𝑝 (𝜃 )𝑝 + (σ̂)2−2𝑝 (σ̌)2𝑝ℭ2 + (𝑟 )1−𝑝 (𝑟 )𝑝

+ 3(µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 +
∫
U
H1𝜈 (d𝑢) +

∫
U
H2𝜈 (d𝑢),

where

H1 = − ln(1 − η(𝑢)𝐼 ) − η(𝑢)𝐼 and H2 = − ln(1 + η(𝑢)𝑆) + η(𝑢)𝑆.

By Assumption 1, we have 1 − η(𝑢)𝐼 > 0. In addition, by Taylor-Lagrange’s formula, we show that

H1 = η(𝑢)𝐼 − η(𝑢)𝐼 + η2(𝑢)𝐼 2
2(1 − 𝜅η(𝑢)𝐼 )2 ≤ Γ2

2(1 − Γ)2 , 𝜅 ∈ (0, 1) . (IV.5)

Similarly, we get

H2 = −η(𝑢)𝑆 + η(𝑢)𝑆 + η2(𝑢)𝑆2

2(1 + 𝜅η(𝑢)𝑆)2 ≤ Γ2

2(1 − Γ)2 , 𝜅 ∈ (0, 1) . (IV.6)
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Therefore,

LV(𝑆, 𝐼 , 𝑅) ≤ (�̂�)1−𝑝 (�̌�)𝑝 + (β̂)1−𝑝 (β̌)𝑝ℭ + (𝜃 )1−𝑝 (𝜃 )𝑝 + (σ̂)2−2𝑝 (σ̌)2𝑝ℭ2 + (𝑟 )1−𝑝 (𝑟 )𝑝

+ 3(µ̂)1−𝑝 (µ̌)𝑝 +
(
(β̂)1−𝑝 (β̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝

)
+ Γ2

(1 − Γ)2𝜈 (U)

≡ ℭ̃,

where ℭ̃ is a positive constant. Integrating both sides of (IV.4) from 0 to 𝜏𝜖 ∧ 𝑇 , and taking

expectation, we get

EV
(
𝑆 (𝜏𝜖 ∧𝑇 ), 𝐼 (𝜏𝜖 ∧𝑇 ), 𝑅(𝜏𝜖 ∧𝑇 )

)
≤ V(𝑆 (0), 𝐼 (0), 𝑅(0)) + ℭ̃𝑇 .

Setting Ω𝜖 = {𝜏𝜖 ≤ 𝑇 } for 𝜖 ≥ 𝜖0 and by (IV.3), we have P(Ω𝜖 ) ≥ 𝑘 . For 𝜔 ∈ Ω𝜖 , there is some

component of 𝑆 (𝜏𝜖 , 𝜔), 𝐼 (𝜏𝜖 , 𝜔) and 𝑅(𝜏𝜖 , 𝜔) equals either 𝜖 or
1
𝜖
. Hence, V(𝑆 (𝜏𝜖 ), 𝐼 (𝜏𝜖 ), 𝑅(𝜏𝜖 )) is not

less than 𝜖 − 1 − ln 𝜖 or
1
𝜖
− 1 − ln 1

𝜖
. Consequently,

V(𝑆 (0), 𝐼 (0), 𝑅(0)) + ℭ̃𝑇 ≥ E
(
1Ω𝜖

V(𝑆 (𝜏𝜖 , 𝜔), 𝐼 (𝜏𝜖 , 𝜔), 𝑅(𝜏𝜖 , 𝜔))
)

≥ 𝑘
(
(𝜖 − 1 − ln 𝜖) ∧

(
1
𝜖
− 1 − ln

1
𝜖

))
.

Extending 𝜖 to ∞ leads to the contradiction. Thus, 𝜏∞ = ∞ a.s. which completes the proof of the

theorem.

1.2.3 Existence and uniqueness of a stationary distribution to the system (IV.2)

Our aim in this subsection is to give the appropriate condition for the SDE model (IV.2) has

a unique ergodic stationary distribution. To this end, we use Lemma 11.4 (Chapter 2) and we

introduce the following notation:

R𝑠0 =
1

((µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝)

(
(β̂�̂�)1−𝑝 (β̌�̌�)𝑝

(µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝
− σ̃2(�̂�)2−2𝑝 (�̌�)2𝑝

2(µ̂)2−2𝑝 (µ̌)2𝑝

)
,

where σ̃2 = (σ̂)2−2𝑝 (σ̌)2𝑝 +
∫
U

η2(𝑢)
(1 − Γ)2𝜈 (d𝑢). Furthermore, we let

Ω1 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝑆 (𝑡, 𝜔) ≥ 𝜖, and, 𝐼 (𝑡, 𝜔) ≥ 𝜖},
Ω2 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝑆 (𝑡, 𝜔) ≤ 𝜖},
Ω3 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝐼 (𝑡, 𝜔) ≤ 𝜖},
Ω4 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝑆 (𝑡, 𝜔) ≥ ζ, or, 𝐼 (𝑡, 𝜔) ≥ ζ},
Ω5 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝜖 ≤ 𝑆 (𝑡, 𝜔) ≤ ζ, and, 𝜖 ≤ 𝐼 (𝑡, 𝜔) ≤ ζ},

where 𝜖 < ζ are positive constants to be determined later.

Theorem 1.5. If R𝑠0 > 1, the stochastic system (IV.2) admits a unique stationary distribution and it
has the ergodic property for any initial value (𝑆0, 𝐼0, 𝑅0) ∈ Δ.

Proof. The following proof is divided into three steps:

Step I. Similar to the proof of Lemma 3.2 in [135] or Theorem 2.5 in [162], we briefly verify the

Feller property of the SDE model (IV.2). The main purpose of the next steps is to prove that (II.22)

is impossible.

Step II. Define

V(𝑡) = ln 𝐼 (𝑡) + (β̂)1−𝑝 (β̌)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)
𝑆 (𝑡) .
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Applying Itô’s formula gives

dV(𝑡) =
(
(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑡) − ((µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝)

− 1
2
(σ̂)2−2𝑝 (σ̌)2𝑝𝑆2(𝑡) +

∫
U

(
ln(1 + η(𝑢)𝑆 (𝑡−)) − η(𝑢)𝑆 (𝑡−)

)
𝜈 (d𝑢)

)
d𝑡

+ (σ̂)1−𝑝 (σ̌)𝑝𝑆 (𝑡)dW(𝑡) +
∫
U

ln(1 + η(𝑢)𝑆 (𝑡−))Ñ (d𝑡, d𝑢)

+ (β̂�̂�)1−𝑝 (β̌�̌�)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)
d𝑡 − (β̂)2−2𝑝 (β̌)2𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)
𝑆 (𝑡)𝐼 (𝑡)d𝑡

− (β̂)1−𝑝 (β̌)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)
((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)𝑆 (𝑡)d𝑡

− (β̂)1−𝑝 (β̌)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)
(σ̂)1−𝑝 (σ̌)𝑝𝑆 (𝑡)𝐼 (𝑡)dW(𝑡)

− (β̂)1−𝑝 (β̌)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)

∫
U
η(𝑢)𝑆 (𝑡−)𝐼 (𝑡−)Ñ (d𝑡, d𝑢) . (IV.7)

Noting that 0 < 𝑆 <
(�̂�)1−𝑝 (�̌�)𝑝
(µ̂)1−𝑝 (µ̌)𝑝 , the equality (IV.7) can be rewritten as follows

dV(𝑡) ≥
(

(β̂�̂�)1−𝑝 (β̌�̂�)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)
− ((µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝)

− (σ̂�̂�)2−2𝑝 (σ̌�̂�)2𝑝

2(µ̂)2−2𝑝 (µ̌)2𝑝 − (β̂)2−2𝑝 (β̌)2𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)
𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡

+
∫
U

(
ln(1 + η(𝑢)𝑆 (𝑡−)) − η(𝑢)𝑆 (𝑡−)

)
𝜈 (d𝑢)d𝑡

+ (σ̂)1−𝑝 (σ̌)𝑝𝑆 (𝑡)dW(𝑡) +
∫
U

ln(1 + η(𝑢)𝑆 (𝑡−))Ñ (d𝑡, d𝑢)

− (β̂)1−𝑝 (β̌)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)
(σ̂)1−𝑝 (σ̌)𝑝𝑆 (𝑡)𝐼 (𝑡)dW(𝑡)

− (β̂)1−𝑝 (β̌)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)

∫
U
η(𝑢)𝑆 (𝑡−)𝐼 (𝑡−)Ñ (d𝑡, d𝑢). (IV.8)

Integrating the inequality (IV.8) from 0 to 𝑡 leads to

V(𝑡) − V(0) ≥ (β̂�̂�)1−𝑝 (β̌�̌�)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)
− ((µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝)

− (σ̂�̂�)2−2𝑝 (σ̌�̂�)2𝑝

2(µ̂)2−2𝑝 (µ̌)2𝑝 − (β̂)2−2𝑝 (β̌)2𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)d𝑠

+
∫ 𝑡

0

∫
U

(
ln(1 + η(𝑢)𝑆 (𝑠−)) − η(𝑢)𝑆 (𝑠−)

)
𝜈 (d𝑢)d𝑠

+ K1(𝑡) + K2(𝑡) + K3(𝑡) + K4(𝑡),
where

K1(𝑡) =
∫ 𝑡

0
(σ̂)1−𝑝 (σ̌)𝑝𝑆 (𝑠)dW(𝑠),

K2(𝑡) =
−(β̂)1−𝑝 (β̌)𝑝 (σ̂)1−𝑝 (σ̌)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)dW(𝑠),

K3(𝑡) =
∫ 𝑡

0

∫
U

ln(1 + η(𝑢)𝑆 (𝑠))Ñ (d𝑠, d𝑢),

K4(𝑡) =
−(β̂)1−𝑝 (β̌)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)

∫ 𝑡

0

∫
U
η(𝑢)𝑆 (𝑠)𝐼 (𝑠)Ñ (d𝑠, d𝑢).
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The quadratic variation of K1 is defined by 〈K1,K1〉𝑡 =
∫ 𝑡

0
(σ̂)2−2𝑝 (σ̌)2𝑝𝑆2(𝑠)d𝑠 . Therefore, we get

lim sup
𝑡→∞

〈K1,K1〉𝑡
𝑡

= (σ̂)2−2𝑝 (σ̌)2𝑝 lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠

≤ (σ̂)2−2𝑝 (σ̌)2𝑝 (�̂�)2−2𝑝 (�̌�)2𝑝

(µ̂)2−2𝑝 (µ̌)2𝑝 < ∞ a.s.

Similarly, we have

lim sup
𝑡→∞

〈K2,K2〉𝑡
𝑡

=
(β̂)2−2𝑝 (β̌)2𝑝 (σ̂)2−2𝑝 (σ̌)2𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)2
lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆2(𝑠)𝐼 2(𝑠)d𝑠 < ∞ a.s.

By the Assumption 1, we deduce that

ln(1 − Γ) ≤ ln(1 + η(𝑢)𝑆 (𝑠)) ≤ ln(1 + Γ) .

Then

lim sup
𝑡→∞

〈K3,K3〉𝑡
𝑡

= lim sup
𝑡→∞

1
3

∫ 𝑡

0

∫
U
(ln(1 + η(𝑢)𝑆 (𝑠))2𝜈 (d𝑢)d𝑠

≤ max
{
(ln(1 + Γ))2, (ln(1 − Γ))2

}
𝜈 (U) < ∞ a.s.

and

lim sup
𝑡→∞

〈K4,K4〉𝑡
𝑡

≤ (β̂𝐴)2−2𝑝 (β̌𝐴)2𝑝(
(µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝

) (
(µ̂)1−𝑝 (µ̌)𝑝

)2𝜈 (U) < ∞ a.s.

According to the strong law of large numbers for local martingales, one can conclude that

lim
𝑡→∞

1
𝑡
K𝑖 (𝑡) = 0 a.s., 𝑖 = 1, 2, 3, 4. (IV.9)

By using (IV.6) and Assumption 1, we get

1
𝑡

∫ 𝑡

0

∫
U

(
ln(1 + η(𝑢)𝑆 (𝑠)) − η(𝑢)𝑆 (𝑠)

)
𝜈 (d𝑢)d𝑠 ≥ −1

2
(�̂�)2−2𝑝 (�̌�)2𝑝

(µ̂)2−2𝑝 (µ̌)2𝑝

∫
U

η2(𝑢)
(1 − Γ)2𝜈 (d𝑢).

Let

σ̃2 = (σ̂)2−2𝑝 (σ̌)2𝑝 +
∫
U

η2(𝑢)
(1 − Γ)2𝜈 (d𝑢) .

Therefore

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑠)𝐼 (𝑠)d𝑠 ≥ ((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)

(β̂)1−𝑝 (β̌)𝑝

(
(β̂�̂�)1−𝑝 (β̌�̌�)𝑝

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)

− ((µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝) − σ̃2 (�̂�)2−2𝑝 (�̂�)2𝑝

2((µ̂)2−2𝑝 (µ̌)2𝑝)

)
.

Thus we can derive that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑠)𝐼 (𝑠)d𝑠 ≥ ((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)

(β̂)1−𝑝 (β̌)𝑝
(
(µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝

+ (𝑟 )1−𝑝 (𝑟 )𝑝
) (
R𝑠0 − 1

)
> 0 a.s. (IV.10)
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Step III. To continue our analysis, we use the definition of Ω1, Ω2 and Ω3. Then, it follows from

(IV.10) that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑠)𝐼 (𝑠)1Ω1

)
d𝑠 ≥ lim inf

𝑡→∞
1
𝑡

∫ 𝑡

0
E
(
(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑠)𝐼 (𝑠)

)
d𝑠

− lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑠)𝐼 (𝑠)1Ω2

)
d𝑠

− lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑠)𝐼 (𝑠)1Ω3

)
d𝑠

≥ ((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)
(β̂)1−𝑝 (β̌)𝑝

(
(µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝

+ (𝑟 )1−𝑝 (𝑟 )𝑝
) (
R𝑠0 − 1

)
− 2(β̂�̂�)1−𝑝 (β̌�̌�)𝑝𝜖

(µ̂)1−𝑝 (µ̌)𝑝
.

We can choose

𝜖 ≤ ((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝) ((µ̂)1−𝑝 (µ̌)𝑝)
4(β̂)2−2𝑝 (β̌)2𝑝 (�̂�)1−𝑝 (�̌�)𝑝

(
(µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝

) (
R𝑠0 − 1

)
,

then we obtain

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑠)𝐼 (𝑠)1Ω1

)
d𝑠 ≥ ((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)

2(β̂)1−𝑝 (β̌)𝑝
(
(µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝

+ (𝑟 )1−𝑝 (𝑟 )𝑝
) (
R𝑠0 − 1

)
> 0 a.s.

Let 𝑎 and 𝑏 two real numbers greater than 1 such that
1
𝑎
+ 1
𝑏
= 1. By utilizing Young inequality

𝑥𝑦 ≤ 𝑥𝑎

𝑎
+ 𝑦𝑏

𝑏
for all 𝑥 ,𝑦 > 0, we get

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑠)𝐼 (𝑠)1Ω1

)
d𝑠 ≤ lim inf

𝑡→∞
1
𝑡

∫ 𝑡

0
E

(
𝑎−1

(
𝜛(β̂)1−𝑝 (β̌)𝑝𝑆 (𝑠)𝐼 (𝑠)

)𝑎
+ 𝑏−1𝜛−𝑏1Ω1

)
d𝑠

≤ 𝑎−1
(
𝜛(β̂)1−𝑝 (β̌)𝑝

)𝑎 ( (�̂�)1−𝑝 (�̌�)𝑝
(µ̂)1−𝑝 (µ̌)𝑝

)2𝑎

+ lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E(𝑏−1𝜛−𝑏1Ω1)d𝑠, (IV.11)

where 𝜛 is a positive constant satisfying

𝜛𝑎 ≤ 𝑎

4

(
(β̂)1−𝑝 (β̌)𝑝

)−(𝑎+1)
(
(�̂�)1−𝑝 (�̌�)𝑝
(µ̂)1−𝑝 (µ̌)𝑝

)−2𝑎 (
(µ̂)1−𝑝 (µ̌)𝑝

+ (𝜃 )1−𝑝 (𝜃 )𝑝
) (
(µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝

) (
R𝑠0 − 1

)
.

From (IV.11), we deduce that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E(1Ω1)d𝑠

≥ ((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)𝑏𝜛𝑏

4(β̂)1−𝑝 (β̌)𝑝
(
(µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝

) (
R𝑠0 − 1

)
> 0 a.s. (IV.12)

By using the Markov’s inequality, we can observe that∫
Ω
1Ω4 (𝑡, 𝜔)dP(𝜔) ≤ P(𝑆 (𝑡) ≥ ζ) + P(𝐼 (𝑡) ≥ ζ) ≤ 1

ζ
E(𝑆 (𝑡) + 𝐼 (𝑡)) ≤ 1

ζ

(�̂�)1−𝑝 (�̌�)𝑝
(µ̂)1−𝑝 (µ̌)𝑝

.
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Figure IV.1: Histogram of the probability density function for 𝑆 , 𝐼 , and 𝑅 population at 𝑡 = 300 for

the stochastic model (IV.2), the smoothed curves are the probability density functions of 𝑆 (𝑡), 𝐼 (𝑡)
and 𝑅(𝑡), respectively. Here, we get R𝑠0 = 2.1848 > 1 for 𝑝 = 0.

Choosing

1
ζ
≤ ((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)𝑏𝜛𝑏

8(β̂�̂�)1−𝑝 (β̌�̌�)𝑝
(
(µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝

) (
R𝑠0 − 1

)
.

We thus obtain

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E(1Ω4)d𝑠 ≤

((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)𝑏𝜛𝑏

8(β̂)1−𝑝 (β̌)𝑝
(
(µ̂)1−𝑝 (µ̌)𝑝 + (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝

) (
R𝑠0 − 1

)
.

According to (IV.12), one can derive that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E(1Ω5)d𝑠 ≥ lim inf

𝑡→+∞
1
𝑡

∫ 𝑡

0
E(1Ω1)d𝑠 − lim sup

𝑡→+∞

1
𝑡

∫ 𝑡

0
E(1Ω4)d𝑠

≥ ((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)𝑏𝜛𝑏

8(β̂)1−𝑝 (β̌)𝑝
(
(µ̂)1−𝑝 (µ̌)𝑝

+ (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝
) (
R𝑠0 − 1

)
> 0 a.s.

Consequently, we have determined a compact domain Ω5 ⊂ R3
+ such that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
P
(
𝑢, (𝑆 (0), 𝐼 (0), 𝑅(0)),Ω5

)
d𝑠 ≥ ((µ̂)1−𝑝 (µ̌)𝑝 + (𝜃 )1−𝑝 (𝜃 )𝑝)𝑏𝜛𝑏

8(β̂)1−𝑝 (β̌)𝑝
(
(µ̂)1−𝑝 (µ̌)𝑝

+ (δ̂)1−𝑝 (δ̌)𝑝 + (𝑟 )1−𝑝 (𝑟 )𝑝
) (
R𝑠0 − 1

)
> 0 a.s.

Applying similar arguments to those in [135], we show the uniqueness of the ergodic stationary

distribution of our model (IV.2), denoted by 𝜋 (·). This completes the proof.
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Figure IV.2: Histogram of the probability density function for 𝑆 , 𝐼 , and 𝑅 population at 𝑡 = 300 for

the stochastic model (IV.2), the smoothed curves are the probability density functions of 𝑆 (𝑡), 𝐼 (𝑡)
and 𝑅(𝑡), respectively. Here, we get R𝑠0 = 1.99 > 1 for 𝑝 = 0.5.

1.3 Numerical simulations

In this subsection, in order to show different dynamical results of the stochastic model (IV.1) under

imprecise parameter values, we present some numerical simulations. The parameters values are

given in Table IV.1.

Notation Value Source Notation Value

�̂� 0.75 Assumed �̌� 1.2

µ̂ 0.09 [56] µ̌ 0.2

β̂ 0.5 Assumed β̌ 0.8

δ̂ 0.3 [56] δ̌ 0.5

𝑟 0.1 [56] 𝑟 0.3

𝜃 0.2 [56] 𝜃 0.3

σ̂ 0.08 Theoretical σ̌ 0.1

Table IV.1: Parameters value used in numerical simulations.

For the purpose of showing the effects of imprecise parameters and Lévy noise on HBV dynamics,

we have realized the simulation many times. We assume that η(𝑢) = 0.003, U = (0,∞) and

𝜈 (U) = 1. Noticing that the Assumption 1, is always held with parameters value in Table IV.1.

From Figures IV.1, IV.2 and IV.3, we show the existence of the unique stationary distributions for

𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡) of model (IV.2) at 𝑡 = 300, where the smooth curves are the probability density

functions of 𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡), respectively. That is to say that the solution of the SDE model

(IV.2) persists strongly. Furthermore, different values of the parameter imprecision 𝑝 can crucially

affect the persistence of HBV.
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Figure IV.3: Histogram of the probability density function for 𝑆 , 𝐼 , and 𝑅 population at 𝑡 = 300 for

the stochastic model (IV.2), the smoothed curves are the probability density functions of 𝑆 (𝑡), 𝐼 (𝑡)
and 𝑅(𝑡), respectively. Here, we get R𝑠0 = 1.7398 for 𝑝 = 1.

1.4 Discussion

In the study of the dynamics of stochastic systems, the ergodicity is one of the most important

and significant characteristics. For this purpose, we have used the mutually exclusive possibilities

lemma to establish the sharp and optimal condition for the existence of the stationary distribution

without employing the classical Lyapunov method. To ensure the realistic aspect of our model, we

replaced constant parameters in the model (IV.1) by imprecise ones. Based on Theorem 4.2 in [57],

for any 𝜋-integrable function 𝑔 : R+ → R:

P

(
lim
𝑡→+∞

1
𝑡

∫ 𝑡

0
𝑔(𝑋 (𝑠)) d𝑠 =

∫
R+

𝑔(𝑥)𝜋 (𝑥) 𝑑𝑥
)
= 1.

The ergodic property for HBV means that the stochastic model has a unique stationary distribution

which predicts the survival of the infected population in the future. That means the HBV persists

for all time regardless of the initial conditions [35]. Furthermore, the ergodic property grants a

reason why the integral average of a solution of the system (IV.2) converges to a fixed point whilst

the system may fluctuate around as time goes by.

2 Threshold analysis of the stochastic HBV epidemic model with
Lévy Jumps

2.1 Introduction

In reality, the spread of a disease is characterized by randomness due to the unpredictable character

of human contacts. From biological and mathematical perspectives, our main concern is to improve

the model of Khan et al. [56], and include the unexpected stochastically effects by using the

approach mentioned in [171]. We assume that the Lévy perturbations are directly proportional to
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𝑆 (𝑡), 𝐼 (𝑡), and 𝑅(𝑡). Then, we obtain the following stochastic HBV epidemic model:
d𝑆 (𝑡) =

(
𝐴 − β𝑆 (𝑡)𝐼 (𝑡) − (µ + 𝜃 )𝑆 (𝑡)

)
d𝑡+σ1𝑆 (𝑡)dW1(𝑡) +

∫
U
η1(𝑢)𝑆 (𝑡−)Ñ (d𝑡, d𝑢),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ + δ + 𝑟 )𝐼 (𝑡)

)
d𝑡+σ2𝐼 (𝑡)dW2(𝑡) +

∫
U
η2(𝑢)𝐼 (𝑡−)Ñ (d𝑡, d𝑢),

d𝑅(𝑡) =
(
δ𝐼 (𝑡) + 𝜃𝑆 (𝑡) − µ𝑅(𝑡)

)
d𝑡+σ3𝑅(𝑡)dW3(𝑡) +

∫
U
η3(𝑢)𝑅(𝑡−)Ñ (d𝑡, d𝑢).

(IV.13)

In this section, we will establish the threshold parameter which determines the extinction and

the persistence in the mean of the HBV. This threshold value coincides with the deterministic

threshold R0 =
β𝐴

(µ+𝜃 ) (µ+δ+𝑟 ) , in the absence of white noise and Lévy jumps. For the purpose of well

analyzing our model (IV.13), it necessary that we make the following standard assumptions.

• (A1) We assume that the jump coefficients satisfy

∫
U
η2
𝑖 (𝑢)𝜈 (d𝑢) < ∞ (𝑖 = 1, 2, 3).

• (A2) For all 𝑢 ∈ U, we assume that 1 + η𝑖 (𝑢) > 0, (𝑖 = 1, 2, 3) and∫
U

[
η𝑖 (𝑢) − ln(1 + η𝑖 (𝑢))

]
𝜈 (d𝑢) < ∞.

For the proof of Lemmas 2.3 and 2.4, we add the following supplementary assumptions:

• (A3) We suppose that exists a constant 𝜅 > 0, such that

∫
U

[
ln(1 + η𝑖 (𝑢))

]2
𝜈 (d𝑢) < 𝜅.

• (A4) There exists 𝜚 > 1 such that µ − 1
2 (𝜚 − 1)σ̃2 − 1

𝜚
𝜆 > 0, where σ̃2 = σ2

1 ∨ σ2
2 ∨ σ2

3, and

𝜆𝑝 =

∫
U

{[
1 + η1(𝑢) ∨ η2(𝑢) ∨ η3(𝑢)

]𝑝 − 1 − 𝑝
[
η1(𝑢) ∧ η2(𝑢) ∧ η3(𝑢)

]}
𝜈 (d𝑢) .

Remark 2.1. The condition (A1) and (A2) are necessary to prove the existence and uniqueness

of the solution. Based on biological considerations, we need to add the conditions (A3) and (A4)
to guarantee that the sufficient small intensity of Lévy jumps cannot exceed the environmental

carrying capacity.

Since 𝑆 , 𝐼 and 𝑅 in system (IV.13) denote the population densities, they should be nonnegative.

To analyze the asymptotic properties of system (IV.13), the first step is to show that the solution of

the system is unique, positive and global. Under assumptions (A1)-(A4), we present the following

result:

Theorem 2.2. For any initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+, there exists a unique positive solution

(𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) of system (IV.13) on 𝑡 ≥ 0, and the solution will remain in R3
+ with probability one.

The proof of the last theorem is standard (see for example [58]). Hence, we also omit it here.

Now, we list two results used in our analysis.

Lemma 2.3 ([172]). Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of model (IV.13) with any positive initial
value. Then,

• lim
𝑡→∞

𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡)
𝑡

= 0 a.s.

• lim
𝑡→∞

𝑆 (𝑡)
𝑡

= 0, lim
𝑡→∞

𝐼 (𝑡)
𝑡

= 0, and lim
𝑡→∞

𝑅(𝑡)
𝑡

= 0 a.s.
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Lemma 2.4 ([172]). Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of model (IV.13) with any positive initial
value. Then,

lim
𝑡→∞

∫ 𝑡
0

∫
U η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0

∫
U η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0,

and lim
𝑡→∞

∫ 𝑡
0

∫
U η3(𝑢)𝑅(𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0 a.s.

The proof of Lemmas 2.3 and 2.4 is almost the same as those in Lemmas 2.1 and 2.2 in [172].

Hence we omit it here.

2.2 Main results
2.2.1 The stochastic extinction

In this section, our main concern is to determine the condition for the extinction of the HBV

epidemic. We define the threshold of our stochastic epidemic model (IV.13) as follows:

R𝔧

0 =
1

(µ + δ + 𝑟 )

(
β𝐴

µ + 𝜃 −
σ2

2
2

−
∫
U
[η2(𝑢) − ln(1 + η2(𝑢))]𝜈 (d𝑢)

)
.

Theorem 2.5. Let assumptions (A1)-(A4) hold and let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of system
(IV.13) with any initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3

+. If R
𝔧

0 < 1, then

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤ (µ + δ + 𝑟 )
(
R𝔧

0 − 1
)
< 0 a.s.

That is to say, the HBV epidemic dies out exponentially with probability one. Furthermore, we have
that

lim
𝑡→∞

〈𝑆 (𝑡)〉 = 𝐴

µ + 𝜃 a.s. and lim
𝑡→∞

〈𝑅(𝑡)〉 = 𝜃𝐴

µ(µ + 𝜃 ) a.s.

Proof. Integrating from 0 to 𝑡 on both sides of the first and second equations of the proposed

stochastic HBV model (IV.13), leads to the following equations

𝑆 (𝑡) − 𝑆 (0)
𝑡

= 𝐴 − (µ + 𝜃 )〈𝑆 (𝑡)〉 − β〈𝑆 (𝑡)𝐼 (𝑡)〉 + σ1
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW1(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢),

𝐼 (𝑡) − 𝐼 (0)
𝑡

= β〈𝑆 (𝑡)𝐼 (𝑡)〉 − (µ + δ + 𝑟 )〈𝐼 (𝑡)〉 + σ2
𝑡

∫ 𝑡

0
𝐼 (𝑠)dW2(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢) .

Obviously, we obtain

〈𝑆 (𝑡)〉 = 𝐴

µ + 𝜃 − µ + δ + 𝑟
µ + 𝜃 〈𝐼 (𝑡)〉 +𝜓1(𝑡), (IV.14)

where 𝜓1(𝑡) is defined by the following equation

𝜓1(𝑡) = − 1
µ + 𝜃

{
𝑆 (𝑡) − 𝑆 (0)

𝑡
+ 𝐼 (𝑡) − 𝐼 (0)

𝑡
− σ1
𝑡

∫ 𝑡

0
𝑆 (𝑠)dW1(𝑠) −

σ2
𝑡

∫ 𝑡

0
𝐼 (𝑠)dW2(𝑠)

− 1
𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢) − 1

𝑡

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

}
.
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By Lemmas 2.3 and 2.4, we have

lim
𝑡→∞

𝜓1(𝑡) = 0 a.s.

Making use Itô’s formula to (IV.13), one can get that

d ln 𝐼 (𝑡) =
(
β𝑆 (𝑡) − (µ + δ + 𝑟 ) − 1

2
σ2

2 −
∫
U
η2(𝑢) − ln(1 + η2(𝑢))𝜈 (d𝑢)

)
d𝑡

+ σ2dW2(𝑡) +
∫
U

ln(1 + η2(𝑢))Ñ (d𝑡, d𝑢). (IV.15)

Integrating (IV.15) from 0 to 𝑡 on both sides, we get

ln 𝐼 (𝑡)
𝑡

=β〈𝑆 (𝑡)〉 − (µ + δ + 𝑟 ) + σ2W2(𝑡)
𝑡

+ ln 𝐼 (0)
𝑡

− 1
2
σ2

2 −
∫
U
η2(𝑢) − ln(1 + η2(𝑢))𝜈 (d𝑢)

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑡, d𝑢) .

Substituting the result (IV.14) into the previous equation, implies that

ln 𝐼 (𝑡)
𝑡

= β

(
𝐴

µ + 𝜃 − µ + δ + 𝑟
µ + 𝜃 〈𝐼 (𝑡)〉 +𝜓1(𝑡)

)
− (µ + δ + 𝑟 ) − 1

2
σ2

2 +
ln 𝐼 (0)
𝑡

−
∫
U
η2(𝑢) − ln(1 + η2(𝑢))𝜈 (d𝑢) +

σ2W2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢)

≤ β𝐴

µ + 𝜃 + β𝜓1(𝑡) − (µ + δ + 𝑟2) −
1
2
σ2

2 +
ln 𝐼 (0)
𝑡

−
∫
U
η2(𝑢) − ln(1 + η2(𝑢))𝜈 (d𝑢)

+ σ2W2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢) .

Let M1(𝑡) =
∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢). According to the hypothesis (A3), we have

〈M1,M1〉(𝑡) = 𝑡
∫
U
[ln(1 + η2(𝑢))]2𝜈 (d𝑢) < 𝜅𝑡 .

By the large number theorem for martingales, we get

lim
𝑡→∞

M1(𝑡)
𝑡

= 0 and lim
𝑡→∞

W2(𝑡)
𝑡

= 0 a.s.

Consequently, if the condition R𝔧

0 < 1 holds, we have

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤ (µ + δ + 𝑟2)
(
R𝔧

0 − 1
)
< 0 a.s.

Therefore,

lim
𝑡→∞

𝐼 (𝑡) = 0 a.s. (IV.16)

By (IV.14) and (IV.16), one can see that

lim
𝑡→∞

〈𝑆 (𝑡)〉 = 𝐴

µ + 𝜃 a.s. (IV.17)

Next, we shall show that lim
𝑡→∞

〈𝑅(𝑡)〉 = 𝜃𝐴
µ(µ+𝜃 ) a.s. From system (IV.13), we have

𝑅(𝑡) − 𝑅(0)
𝑡

= δ〈𝐼 (𝑡)〉 + 𝜃 〈𝑆 (𝑡)〉 − µ〈𝑅(𝑡)〉 + σ4
𝑡

∫ 𝑡

0
𝑅(𝑠)dW3(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η3(𝑢)𝑅(𝑠−)Ñ (d𝑠, d𝑢) .

Making use of Lemmas 2.3 - 2.4, (IV.17) and (IV.16), we get the desired result.
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2.2.2 The disease persistence

In this section, we shall establish the condition for the persistence of the HBV epidemic.

Theorem 2.6. Let assumptions (A1)-(A4) hold and let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of system
(IV.13) with any initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3

+. If R
𝔧

0 > 1, then

lim
𝑡→∞

〈𝐼 (𝑡)〉 = �̃� > 0 a.s. lim
𝑡→∞

〈𝑆 (𝑡)〉 = 𝑆 > 0 a.s. and lim
𝑡→∞

〈𝑅(𝑡)〉 = 𝑅 > 0 a.s.

where

�̃� =
1
β
(µ + 𝜃 )

(
R𝔧

0 − 1
)
,

𝑆 =
𝐴

µ + 𝜃 − 1
β
(µ + δ + 𝑟 )

(
R𝔧

0 − 1
)
,

𝑅 =
𝜃𝐴

µ + 𝜃 +
(
δ(µ + 𝜃 ) − 𝜃 (µ + δ + 𝑟 )

β

) (
R𝔧

0 − 1
)
.

That is to say, the HBV epidemic will prevail if R𝔧

0 > 1.

Proof. According to the Itô’s formula, one can see that

ln 𝐼 (𝑡)
𝑡

= β

(
𝐴

µ + 𝜃 − µ + δ + 𝑟
µ + 𝜃 〈𝐼 (𝑡)〉 +𝜓1(𝑡)

)
− (µ + δ + 𝑟 ) − 1

2
σ2

2 +
ln 𝐼 (0)
𝑡

+ σ2W2(𝑡)
𝑡

−
∫
U
η2(𝑢) − ln(1 + η2(𝑢))𝜈 (d𝑢) +

1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢)

= (µ + δ + 𝑟 )
(
R𝔧

0 − 1
)
− β

µ + δ + 𝑟
µ + 𝜃 〈𝐼 (𝑡)〉 + β𝜓1(𝑡) +

1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢)

+ ln 𝐼 (0)
𝑡

+ σ2W2(𝑡)
𝑡

.

By using Lemmas 2.3 - 2.4, we get

lim
𝑡→∞

〈𝐼 (𝑡)〉 = (µ + 𝜃 )
β

(
R𝔧

0 − 1
)
> 0 a.s.

From (IV.14), on can conclude that

lim
𝑡→∞

〈𝑆 (𝑡)〉 = 𝐴

µ + 𝜃 − µ + δ + 𝑟
µ + 𝜃 lim

𝑡→∞
〈𝐼 (𝑡)〉.

Consequently,

lim
𝑡→∞

〈𝑆 (𝑡)〉 = 𝐴

µ + 𝜃 − 1
β
(µ + δ + 𝑟 )

(
R𝔧

0 − 1
)
> 0 a.s.

On the other hand, we have

𝑅(𝑡) − 𝑅(0)
𝑡

= δ〈𝐼 (𝑡)〉 + 𝜃 〈𝑆 (𝑡)〉 − µ〈𝑅(𝑡)〉σ3
𝑡

∫ 𝑡

0
𝑅(𝑠)dW3(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η3(𝑢)𝑅(𝑠−)Ñ (d𝑠, d𝑢) .

Thus,

lim
𝑡→∞

〈𝑅(𝑡)〉 = 𝜃𝐴

µ(µ + 𝜃 ) +
(
δ(µ + 𝜃 ) − 𝜃 (µ + δ + 𝑟 )

β𝜇

) (
R𝔧

0 − 1
)
> 0 a.s.

This completes the proof.
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Figure IV.4: Numerical simulation of the paths 𝐼 (𝑡) for the HBV epidemic model (IV.13) (with

jumps), the trajectories of 𝐼 (𝑡) for the system (IV.13) when η𝑖 = 0 (without jumps) and the solution

𝐼 (𝑡) of the corresponding deterministic HBV system.
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Figure IV.5: Numerical simulation of the paths (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) for the HBV epidemic model (IV.13).
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2.3 Numerical simulations
In this subsection, we shall use Euler numerical approximation to illustrate the rigor of our ana-

lytical results. The two examples are given below concern the results obtained in Theorems 2.5 and

2.6. Moreover, we numerically simulate the solution of a corresponding deterministic HBV system

for the comparison.

Example 2.7. Choose 𝐴 = 1, β = 0.65, µ = 0.4, 𝜃 = 0.5, δ = 0.1, 𝑟 = 0.2, σ1 = 0.1, σ2 = 0.2, σ3 = 0.15,
η1 = 0.01, η2 = 0.1, η3 = 0.03, U = (0,∞) and 𝜈 (U) = 1. Then, R0 = 1.0317 > 1, R𝑠0 = 1.0032 > 1
and R𝔧

0 = 0.9965 < 1. The computer simulations illustrated by Figure IV.4 (a), support the result of

Theorem 2.5. That is to say, the HBV in system (IV.13) (with jumps) dies out exponentially with

probability one, although the disease in system (IV.13) without jumps persists. If we decrease β to

0.0.62, we get R0 = 0.9841 < 1, R𝑠0 = 0.9556 < 1 and R𝔧

0 = 0.9489 < 1. By Theorem 2.5, the HBV will

tend to zero exponentially with probability one (see Figure IV.5 (b)).

Example 2.8. Let β = 0.69 and other parameters be the same as the previous example. Then,

R0 = 1.0952 > 1, R𝑠0 = 1.0667 > 1 and R𝔧

0 = 1.0600 > 1. We can conclude, by Theorem 2.6, the

solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) of (IV.13) obeys that

lim
𝑡→∞

〈𝐼 (𝑡)〉 = 0.078 > 0 a.s.

lim
𝑡→∞

〈𝑆 (𝑡)〉 = 1.050 > 0 a.s.

lim
𝑡→∞

〈𝑅(𝑡)〉 = 1.332 > 0 a.s.

This means that HBV infection persists almost surely. The computer simulations showed in Figure

IV.5 support the result 2.6 clearly.

2.4 Discussion
By comparing Figures IV.4 and IV.5, one can observe that Lévy jumps has a great effect on the

extinction and persistence of the epidemic. A larger noise is more likely to suppress the spread of

HBV. Furthermore, in the case of environmental disturbances, the dangers of diseases outbreak

increase exponentially. It is crucial to encourage vaccination against transmitted of HBV.

3 Sharp conditions for the existence of a unique stationary distri-
bution of HBV model with Lévy noise perturbation

3.1 Introduction
The threshold concept for the stochastic models generalizes the well-known one in the deterministic

setting and provides important information about parameter relationships and the occurrence of

disease outbreaks. Under appropriate assumptions, in the previous section, we have established

that

R𝔧

0 =
1

(µ + δ + 𝑟 )

(
β𝐴

µ + 𝜃 −
σ2

2
2

−
∫
U
[η2(𝑢) − ln(1 + η2(𝑢))]𝜈 (𝑑𝑢)

)
,

is the stochastic threshold of the model (IV.13). If R𝔧

0 ≤ 1, then

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤ (µ + δ + 𝑟 )
(
R 𝐽

0 − 1
)
< 0 a.s.

Moreover, we showed that

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 = 𝐴

µ + 𝜃 a.s. and lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑅(𝑠)d𝑠 = 𝜃𝐴

µ(µ + 𝜃 ) a.s.
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That is to say that the HBV epidemic dies out exponentially with probability 1. Otherwise, when

R𝔧

0 > 1, the HBV epidemic will prevail almost surely. Our former results lead to establishing that

in the case of environmental disturbances, the danger of the HBV increase exponentially and it is

important to apply appropriate strategies against its huge propagation. In this section, we extend

our previous analysis by analyzing the ergodicity of the model (IV.13). The ergodic stationary

distribution is an important dynamical property in the field of stochastic analysis [57]. It indicates

the weak stability and offers a rigorous description of the stochastic persistence, which allows us a

deeper grasp of the endemic state [35]. To the best of our knowledge, there are no results relative

to the existence of a unique stationary distribution of model (IV.13) have been reported, and the

effects of Lévy jumps on the existence of the ergodic stationary distribution are still unknown. The

classical approach used to prove the ergodicity is the Lyapunov function analysis method proposed

by Khasminskii [57]. However, in most cases, this approach can derive sufficient conditions only

under additional assumptions that are not optimal (see for example [84]). In this section, we use

a different method [162] to study this problem which gives sharp sufficient conditions by using the

mutually exclusive possibilities lemma demonstrated in [128]. By assuming the assumptions (A1),

(A2) and (A3) hold, we present the following result.

Lemma 3.1. Assume that for some 𝑝 > 2, 𝜒2 = min{𝜃, δ + 𝑟 } − (2𝑝−1)
2 max

{
σ2

1,σ
2
2
}
− 1

2𝑝 ℓ > 0, where

ℓ𝑝 =

∫
U

(
(1 + η1(𝑢) ∨ η2(𝑢))2𝑝 − 1 − 2𝑝η1(𝑢) ∧ η2(𝑢)

)
𝜈 (d𝑢) .

Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of (IV.13) with initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+. Then

1. E
(
(𝑆 (𝑡) + 𝐼 (𝑡))2𝑝 (𝑡)

)
≤ (𝑆 (0) + 𝐼 (0))2𝑝𝑒 {−𝑝𝜒2𝑡 } + 2𝜒1

𝜒2
,

2. lim sup
𝑡→+∞

1
𝑡

∫ 𝑡

0
E
(
(𝑆 (𝑠) + 𝐼 (𝑠))2𝑝 )

d𝑠 ≤ 2𝜒1

𝜒2
a.s., where 𝜒1 = sup

𝑥>0

{
𝐴𝑥2𝑝−1 − 𝜒2

2 𝑥
2𝑝}.

Now, we consider the following stochastic subsystem:
dX(𝑡) =

(
𝐴 − (µ + 𝜃 )X(𝑡)

)
d𝑡 + σ1X(𝑡)dW1(𝑡) +

∫
U
η1(𝑢)X(𝑡−)Ñ (d𝑡, d𝑢) ∀𝑡 > 0

X(0) = 𝑆 (0) .
(IV.18)

Lemma 3.2. Let X(𝑡) be the solution of system (IV.18) with an initial value 𝑋 (0) ∈ R+. Then, the
system (IV.18) admits a unique ergodic stationary distribution, denoted by 𝜋 (·).
Proof. Let 𝑓 (𝑡) = 1

X(𝑡 ) . By using the Itô’s lemma to (IV.18), we get

d𝑓 (𝑡) =
(

−1
𝑋 2(𝑡)

(
𝐴 − (µ + 𝜃 )X(𝑡)

)
+ 1
X(𝑡)σ

2
1 +

1
X(𝑡)

∫
U

(
1

1 + η1(𝑢)
− 1 + η1(𝑢)

)
𝜈 (d𝑢)

)
d𝑡

− σ1
X(𝑡)dW1(𝑡) +

1
𝑋 (𝑡−)

∫
U

( 1
1 + η1(𝑢)

− 1
)
Ñ (d𝑡, d𝑢)

= 𝑓 (𝑡) (𝜒3 −𝐴𝑓 (𝑡)) − σ1 𝑓 (𝑡)dW1(𝑡) +
∫
U

(
1

1 + η1(𝑢)
− 1

)
𝑓 (𝑡−)Ñ (d𝑡, d𝑢), (IV.19)

where

𝜒3 = (µ + 𝜃 ) + σ2
1

∫
U

(
1

1 + η1(𝑢)
− 1 + η1(𝑢)

)
𝜈 (d𝑢) .

Plainly, the equation (IV.19) is the logistic growth model driven by lévy jumps. Simply, we verify

that

Λ = 𝜒3 −
σ2

1
2

−
∫
U

(
1

1 + η1(𝑢)
− 1 + ln

1
1 + η1(𝑢)

)
𝜈 (d𝑢)

= (µ + 𝜃 ) +
σ2

1
2

+
∫
U
(η1(𝑢) − ln(1 + η1(𝑢))𝜈 (d𝑢)

> 0.
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Tong et al. [135] proved that if Λ > 0, then there is a unique stationary distribution to equation

(IV.19). By virtue of Theorem 1 and Remark 2 in [151] or Theorem 2.2 in [163], we deduce that the

model (IV.18) admits a unique ergodic stationary distribution with support R+, denoted by 𝜋 (·).

Remark 3.3. Based on Lemma 3.2 and the Theorem 3.3.1 in [113], for any 𝜋-integrable function:

𝑔 : R+ → R

P

(
lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑔(𝑋 (𝑠))d𝑠 =

∫
R+

𝑔(𝑥)𝜋 (𝑥)d𝑥
)
= 1.

Lemma 3.4. [93] Assume that for some 𝑝 > 1 such that 𝜒2 > 0. Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the positive
solution of the system (IV.13) with any given initial condition (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3

+. Let also
X(𝑡) ∈ R+ be the solution of the equation (IV.18) with any given initial value 𝑋 (0) = 𝑆 (0) ∈ R+. Then

1. lim
𝑡→∞

X(𝑡 )
𝑡

= 0, lim
𝑡→∞

𝑆 (𝑡 )
𝑡

= 0, lim
𝑡→∞

𝐼 (𝑡 )
𝑡

= 0 a.s.

2. lim
𝑡→∞

∫ 𝑡
0

∫
U η1(𝑢)𝑋 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0

∫
U η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0,

lim
𝑡→∞

∫ 𝑡
0

∫
U η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0 a.s.

3.2 Main results
Assume that for some 𝑝 > 1 and 𝜒2 > 0. The aim of the following theorem is to give the condition

of the unique stationary distribution. For simplicity, we define the parameter:

T 𝔧

0 =
1

(µ + δ + 𝑟 )

(
β

∫
R+
𝑥𝜋 (𝑥)d𝑥 −

σ2
2

2
−

∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
𝜈 (d𝑢)

)
.

Theorem 3.5. If T 𝔧

0 > 1, then the stochastic system (IV.13) admits a unique stationary distribution
and it has the ergodic property for any initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3

+.

Remark 3.6. Motivated by the approach used in the proof of Theorem 1.5, we readily prove the

ergodicity of the stochastic model. To avoid redundancy, we omit the detailed demonstration.

From Remark 1.8, we can conclude that∫
R+
𝑥𝜋 (𝑥)d𝑥 = lim

𝑡→∞
1
𝑡

∫ 𝑡

0
X(𝑠)d𝑠 = 𝐴

µ + 𝜃 .

Consequently T 𝔧

0 = R𝔧

0 which is the global threshold of the stochastic HBV model (IV.13).

3.3 Discussion
In the latter two sections, our contribution is that, epidemiologically, we generally answer this

question: How do unexpected environment fluctuations affect the threshold of the HBV model?

We find that these perturbations reduce the deterministic threshold of an HBV model. Put differ-

ently, the threshold of the stochastic HBV model is less than the threshold of the corresponding

deterministic version. This means the Lévy stochastic perturbation of the transmission rate can

suppress the spread of the disease. This is consistent with some existing studies.
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Chapter V
Analysis of a stochastic SIRS epidemic

model with vertical transmission and

transfer from infectious to susceptible

A𝔟𝔰𝔱𝔯𝔞𝔠𝔱

B
 integrating environmental disturbances and various periods of immunity, we analyze the

dynamics of an epidemic model of the SIRS type. Initially, we consider a perturbed system

with constant population size. This model is discussed in two cases: autonomous and non-

autonomous. We establish sufficient conditions for extinction and persistence in the mean of a

disease. In addition, we prove the global stability of the system under a suitable condition of

random intensity. In the case of the time-dependent system, we show that there exists at least

one positive periodic solution. In the second section, we aim to generalize the nonlinear incidence

rate of a stochastic SIRS epidemic model. Our principal system is enriched with the hypothesis

of varying population size. Under some conditions imposed on the intensity of the white noise

perturbation, the global stability of the system is proven. Furthermore, the threshold of our model

which determines the extinction and persistence of the disease is established. In the third section,

we propose a new stochastic SIRS epidemic model by simultaneously introducing the stochastic

transmission and the proportional perturbation. For the permanence case, the ergodicity of the

perturbed system is proved by employing an alternative approach different from the Lyapunov

method. Under the similar condition of the existence of the unique ergodic stationary distribution,

the persistence in the mean of the epidemic is shown. When the basic reproduction number R0 > 1,
the asymptotic behavior of the solution around the endemic equilibrium of the deterministic model

is provided. For the extinction case, sufficient conditions for the disappearance of the epidemic are

obtained. When R0 ≤ 1, the analysis of the asymptotic behavior around the disease-free equilibrium

of the deterministic model is also investigated. In order to make the readers understand our study

better, we present some numerical simulations to illustrate our theoretical results.
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1 Dynamical behavior of autonomous and non-autonomous SIRS
epidemic model with vertical transmission and transfer from in-
fectious to susceptible

1.1 Introduction

In this section, we treat an SIRS epidemic model with vertical transmission, transfer from infectious

to susceptible, and constant population size which takes the following form:



d𝑆 (𝑡) =
(
𝑏 (𝑆 (𝑡) + 𝑅(𝑡)) − β𝑆 (𝑡)𝐼 (𝑡) − 𝑏𝑆 (𝑡) + 𝑝𝑏𝐼 (𝑡) + γ1𝐼 (𝑡) + 𝑘𝑅(𝑡)

)
d𝑡,

d𝐼 (𝑡) =
(
β𝐼 (𝑡)𝑆 (𝑡) − 𝑏𝐼 (𝑡) − γ1𝐼 (𝑡) − γ2𝐼 (𝑡) + 𝑞︸︷︷︸

𝑞=1−𝑝

𝑏𝐼 (𝑡)
)
d𝑡,

d𝑅(𝑡) =
(
γ2𝐼 (𝑡) − (𝑏 + 𝑘)𝑅(𝑡)

)
d𝑡 .

(V.1)

The parameters involved in system (V.1) are all positive constants. Due to homogeneously mixed

contact between individuals, we use the mass action rate β𝑆𝐼 as an incidence rate of our epidemic

model and we assume that the total population size 𝑁 (𝑡) = 𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡) is normalized to one.

By using the same arguments presented in [73], we can easily establish that the basic reproduction

number of system (V.1) is R0 =
β

𝑝𝑏 + γ1 + γ2
. If R0 ≤ 1, the deterministic model (V.1) has only

the disease-free equilibrium 𝐸�(1, 0, 0) which is asymptotically stable in the case of R0 < 1 , and

if R0 > 1, 𝐸� becomes unstable and there exists an endemic equilibrium 𝐸~ = (𝑆~, 𝐼~, 𝑅~) which is

globally asymptotically stable.

The deterministic model constructed above can be improved by taking into account the unpre-

dictable biological conditions [59]. In the real world, biological phenomena are often affected by

the environmental noise, and the nature of epidemic growth is inherently random due to the un-

predictability of person-person contacts in the case of horizontal transmission, or in the other case

of vertical transmission (mother-fetus) [38]. Consequently, there are many authors who studied

stochastic epidemic models. They introduced random effects into models by different techniques

(see e.g., [97]). In particular, the following three techniques are often used. The first one is param-

eters perturbation of the model [68, 165, 167]; the second one is the environmental noise that is

proportional to the variables of the model [19, 107, 33]; and the last one is the vigor of the positive

equilibrium of the deterministic model [87]. In this section, we assume that the transmission rate

involved in the system (V.1) is not absolutely constant and may fluctuate around some average

values. Both from a biological and mathematical perspective, the principal main of our study is

to investigate how the stochastic character of human transmission affects the spread of diseases

by studying the dynamical behavior of our stochastic model. We assume that the contact rate is

perturbed by Gaussian white noise, which is presented by β + σ
.

W(𝑡), where W(𝑡) is a standard

Brownian motion with intensity σ > 0. Then, we obtain the following autonomous SIRS epidemic

model with the perturbation stochastic:


d𝑆 (𝑡) =

(
𝑏 (𝑆 (𝑡) + 𝑅(𝑡)) − β𝑆 (𝑡)𝐼 (𝑡) − 𝑏𝑆 (𝑡) + 𝑝𝑏𝐼 (𝑡) + γ1𝐼 (𝑡) + 𝑘𝑅(𝑡)

)
d𝑡−σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (𝑝𝑏 + γ1 + γ2)𝐼 (𝑡)

)
d𝑡+σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡),

d𝑅(𝑡) =
(
γ2𝐼 (𝑡) − (𝑏 + 𝑘)𝑅(𝑡)

)
d𝑡 .

(V.2)

In the previous perturbed epidemic system, we only considered the constant parameters and ne-

glected the time-dependent factor. However, the time-dependent factor plays a very crucial role in

the dissemination of infectious diseases and the fluctuation has often observed in the incidence

of many epidemics [39]. Recently, a few authors considered the seasonal fluctuations in epidemic

models, such as [49, 45, 86]. For this reason, we also assume that all coefficients in system (V.2)
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are 𝑇 -periodic functions and can be presented by the following non-autonomous model:

d𝑆 (𝑡) =
(
𝑏 (𝑡) (𝑆 (𝑡) + 𝑅(𝑡)) − β(𝑡)𝑆 (𝑡)𝐼 (𝑡) − 𝑏 (𝑡)𝑆 (𝑡) + 𝑝 (𝑡)𝑏 (𝑡)𝐼 (𝑡) + γ1(𝑡)𝐼 (𝑡) + 𝑘 (𝑡)𝑅(𝑡)

)
d𝑡

−σ(𝑡)𝑆 (𝑡)𝐼 (𝑡)dW(𝑡),
d𝐼 (𝑡) =

(
β(𝑡)𝑆 (𝑡)𝐼 (𝑡) − (𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡))𝐼 (𝑡)

)
d𝑡+σ(𝑡)𝑆 (𝑡)𝐼 (𝑡)dW(𝑡),

d𝑅(𝑡) =
(
γ2(𝑡)𝐼 (𝑡) − (𝑏 (𝑡) + 𝑘 (𝑡))𝑅(𝑡)

)
d𝑡 .

(V.3)

With reference to the existing results in the literature, our contributions are as follow:

• For the autonomous system (V.2), we give the sufficient conditions for the persistence and

the extinction of a disease. Then, we give a condition of the moment exponential stability of

𝐸�.

• For the non-autonomous system (V.3), we establish sufficient conditions for the persistence

and the extinction of a disease with seasonal variations. Then, we prove the existence of a

positive periodic solution.

For simplicity, we use the following notations:

• If 𝑓 (𝑡) is a bounded function on [0,∞), we define 𝑓 = max
𝑡 ∈[0,𝑇 ]

𝑓 (𝑡) and 𝑓 = min
𝑡 ∈[0,𝑇 ]

𝑓 (𝑡) .

• We consider a bounded set Δ as follows:

Δ =

{
𝑥 = (𝑥1, 𝑥2, 𝑥3) : 𝑥1 > 0, 𝑥2 > 0, 𝑥3 > 0 and 𝑥1 + 𝑥2 + 𝑥3 = 1

}
.

On the existence and uniqueness of a positive solution of systems (V.2) and (V.3), we present the

following results:

Theorem 1.1. For any initial value in Δ, there is a unique positive solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) of system
(V.2) on 𝑡 ≥ 0, and the solution will remain in R3

+ with probability one. That is to say, the solution
(𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) ∈ R3

+ for all 𝑡 ≥ 0 almost surely.

The proof of Theorem 1.1 is standard and hence is omitted here. In addition, from biological

consideration, we can study the disease dynamics of model (V.2) in the bounded set Δ.

Corollary 1.2. Consider the model (V.3), for any given initial value in Δ, there is a unique positive
solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) on 𝑡 ≥ 0 and P((𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) ∈ Δ) = 1.

1.2 Main results
1.2.1 Dynamical behavior of autonomous system (V.2)

In this section, our main concern is to study the stochastic dynamics of the autonomous epidemic

model (V.2). Given that the value of the deterministic threshold R0 characterizes the dynamical

behaviors of the system (V.1) and guarantees persistence or extinction of the disease. Similarly, we

define the threshold of our stochastic SIRS epidemic model (V.2) as follows:

R𝑠0 =
β

𝑝𝑏 + γ1 + γ2 + σ2

2

.

To analyze the dynamic of system (V.2), it is sufficient to study the following system:{
d𝐼 (𝑡) = (β(1 − 𝐼 (𝑡) − 𝑅(𝑡))𝐼 (𝑡) − (𝑝𝑏 + γ1 + γ2)𝐼 (𝑡)) d𝑡+σ(1 − 𝐼 (𝑡) − 𝑅(𝑡))𝐼 (𝑡)dW(𝑡),
d𝑅(𝑡) = (γ2𝐼 (𝑡) − (𝑏 + 𝑘)𝑅(𝑡)) d𝑡 .

(V.4)

Obviously, the region Γ0 =
{
(𝐼 (𝑡), 𝑅(𝑡)) ∈ R2

+ : 𝐼 (𝑡) + 𝑅(𝑡) < 1 for all 𝑡 ≥ 0
}
is a positively invariant

domain corresponding to the model (V.4).
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Theorem 1.3. Let (𝐼 (𝑡), 𝑅(𝑡)) be the solution of system (V.4) with any initial value in Γ0. If one of
the following conditions is satisfied,
(a) σ2 ≤ β and R𝑠0 < 1,
(b) σ2 > β and β2

2σ2 − (𝑝𝑏 + γ1 + γ2) < 0,
then, 𝐼 (𝑡) tend to zero exponentially a.s.

Proof. It follows from Itô’s formula that

d ln 𝐼 (𝑡) =
(
β(1 − 𝐼 (𝑡) − 𝑅(𝑡)) − (𝑝𝑏 + γ1 + γ2) −

σ2

2
(1 − 𝐼 (𝑡) − 𝑅(𝑡))2

)
d𝑡 + σ(1 − 𝐼 (𝑡) − 𝑅(𝑡))dW(𝑡)

≤
(
β(1 − 𝐼 (𝑡) − 𝑅(𝑡)) − (𝑝𝑏 + γ1 + γ2) −

σ2

2
(1 − 2𝐼 (𝑡) − 2𝑅(𝑡))

)
d𝑡 + σ(1 − 𝐼 (𝑡) − 𝑅(𝑡))dW(𝑡)

≤
(
β −

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

)
− (β − σ2) (𝐼 (𝑡) + 𝑅(𝑡))

)
d𝑡 + σ(1 − 𝐼 (𝑡) − 𝑅(𝑡))dW(𝑡).

Let M(𝑡) =

∫ 𝑡

0
σ(1 − 𝐼 (𝑠) − 𝑅(𝑠))dW(𝑠). It is a real-valued continuous local martingale, and its

quadratic variation is

〈M,M〉𝑡 =
∫ 𝑡

0
σ2(1 − 𝐼 (𝑠) − 𝑅(𝑠))2

d𝑠 ≤ σ2𝑡,

which implies lim
𝑡→∞

𝑀 (𝑡)
𝑡

= 0 a.s. according to the strong law of large numbers for martingales.

If σ2 ≤ β, then

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤
(
𝑝𝑏 + γ1 + γ2 +

σ2

2

) (
R𝑠0 − 1

)
< 0 a.s.

While if σ2 > β, then

d ln 𝐼 (𝑡) ≤
(
β2

2σ2 − (𝑝𝑏 + γ1 + γ2)
)
d𝑡 + σ(1 − 𝐼 (𝑡) − 𝑅(𝑡))dW(𝑡).

Integrating it from 0 to 𝑡 and taking the limit superior of both sides, we obtain

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤ β2

2σ2 − (𝑝𝑏 + γ1 + γ2) < 0 a.s.

This completes the proof.

Lemma 1.4. Consider the equation

𝑥 (𝑡) = 𝑥 (𝑡0) +
∫ 𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠))d𝑠 +
∫ 𝑡

𝑡0

𝑔(𝑠, 𝑥 (𝑠))dW(𝑠), 𝑥 ∈ R𝑛, 𝑡0 ∈ R.

Suppose that:

1. The functions 𝑓 and 𝑔 satisfy the local Lipschitz and linear growth conditions;

2. sup
𝑡 ≥0

{E|𝑥 (𝑡) |𝑝 } < ∞, where | · | is the Euclidean norm in R𝑛.

Then almost every sample path of
∫ 𝑡

𝑡0

𝑔(𝑠, 𝑥 (𝑠))dW(𝑠) is uniformly continuous on 𝑡 ≥ 0.

Theorem 1.5. Suppose that one of the conditions in Theorem 1.3 holds. Then, the solution
(𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) converge almost surely to the disease-free equilibrium (1, 0, 0) in Δ̄.

The following lemma is needed for the proof of Theorem 1.5.
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Lemma 1.6. ([25]) Let 𝑓 be a non-negative function defined on [0,∞) that is integrable on [0,∞)
and uniformly continuous on [0,∞). Then, lim

𝑡→∞
𝑓 (𝑡) = 0.

Proof of Theorem 1.5. From the first equation of the system (V.2), we can write

d (1 − 𝑆 (𝑡)) =
(
− 𝑏 (1 − 𝑆 (𝑡)) + β𝑆 (𝑡)𝐼 (𝑡) + 𝑏𝐼 (𝑡) − (𝑝𝑏 + γ1)𝐼 − 𝑘𝑅(𝑡)

)
d𝑡 + σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡).

Or in integrated form as

1 − 𝑆 (𝑡) =1 − 𝑆 (0) −
∫ 𝑡

0

[
𝑏 (1 − 𝑆 (𝑠)) + (𝑝𝑏 + γ1)𝐼 (𝑠) + 𝑘𝑅(𝑠)

]
d𝑠 +

∫ 𝑡

0

[
β𝑆 (𝑠)𝐼 (𝑠) + 𝑏𝐼 (𝑠)

]
d𝑠 +M(𝑡),

(V.5)

where M(𝑡) = σ

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)dW(𝑠). Clearly, M(𝑡) is a continuous local martingale with M(0) = 0.

Define

𝑋 (𝑡) = 𝑋 (0) −𝑈 (𝑡) +𝐴(𝑡) +M(𝑡),

where

𝑋 (0) = 1 − 𝑆 (0),

𝑈 (𝑡) =
∫ 𝑡

0

(
𝑏 (1 − 𝑆 (𝑠)) + (𝑝𝑑 + γ1)𝐼 (𝑠) + 𝑘𝑅(𝑠)

)
d𝑠,

𝐴(𝑡) =
∫ 𝑡

0

(
β𝑆 (𝑠)𝐼 (𝑠) + 𝑏𝐼 (𝑠)

)
d𝑠 .

By (V.5), we have 𝑋 (𝑡) ≥ 0 a.s. for all 𝑡 ≥ 0. It is clear that 𝐴(𝑡) and 𝑈 (𝑡) are continuous adapted

increasing processes on 𝑡 ≥ 0 with 𝐴(0) = 𝑈 (0) = 0. From Theorem 1.1, we have in Δ

lim
𝑡→∞

∫ 𝑡

0

(
β𝑆 (𝑠)𝐼 (𝑠) + 𝑏𝐼 (𝑠)

)
d𝑠 ≤ lim

𝑡→∞

∫ 𝑡

0

(
β + 𝑏

)
𝐼 (𝑠)d𝑠 ≤

∫ ∞

0

(
β + 𝑏

)
ℭ1𝑒

−ℭ2𝑠
d𝑠 < ∞.

Consequently, we get

lim
𝑡→∞

(1 − 𝑆 (𝑡)) < ∞ a.s. (V.6)

Now, we prove that 𝑆 (𝑡) is uniformly continuous. Since 𝑥 (𝑡) = (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) ∈ Δ, the coefficients

of (V.2) satisfy the local Lipschitz and linear growth conditions. Moreover, we have

sup
𝑡 ≥0

{
E
(√︁
𝑆2(𝑡) + 𝐼 2(𝑡) + 𝑅2(𝑡)

)𝑝}
≤ 1.

From Lemma 1.4, 𝑥 (𝑡) is uniformly continuous, and hence 𝑆 (𝑡) is uniformly continuous. By

applying Lemma 1.6 to (V.6), we get lim
𝑡→∞

𝑆 (𝑡) = 1 a.s. Since the solution is positive and 𝑆 (𝑡) +
𝐼 (𝑡) + 𝑅(𝑡) = 1, one can conclude that (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) converges almost surely to the disease-free

equilibrium (1, 0, 0) in Δ̄.

Theorem 1.7. Let (𝐼 (𝑡), 𝑅(𝑡)) be a solution of system (V.4) with any initial value in Γ0. If R𝑠0 > 1,
then

lim inf
𝑡→∞

〈𝐼 (𝑡)〉 ≥ 𝑏 + 𝑘
β(𝑏 + 𝑘 + γ2)

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

) (
R𝑠0 − 1

)
> 0 a.s.

lim inf
𝑡→∞

〈𝑅(𝑡)〉 ≥ γ2
β(𝑏 + 𝑘 + γ2)

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

) (
R𝑠0 − 1

)
> 0 a.s.
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Proof. Integrating the second equation of system (V.4) yields

𝑅(𝑡) − 𝑅(0)
𝑡

= γ2〈𝐼 (𝑡)〉 − (𝑏 + 𝑘)〈𝑅(𝑡)〉.

Then,

〈𝑅(𝑡)〉 = 1
𝑏 + 𝑘

(
γ2〈𝐼 (𝑡)〉 −

𝑅(𝑡) − 𝑅(0)
𝑡

)
. (V.7)

On the other hand, as the proof of Theorem 1.3, we can conclude that

d ln 𝐼 (𝑡) =
(
β(1 − 𝐼 (𝑡) − 𝑅(𝑡)) − (𝑝𝑏 + γ1 + γ2) −

σ2

2
(1 − 𝐼 (𝑡) − 𝑅(𝑡))2

)
d𝑡 + dM(𝑡)

≥
(
β(1 − 𝐼 (𝑡) − 𝑅(𝑡)) − (𝑝𝑏 + γ1 + γ2) −

σ2

2

)
d𝑡 + dM(𝑡)

=

(
β −

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

)
− β(𝐼 (𝑡) + 𝑅(𝑡))

)
d𝑡 + dM(𝑡) .

Integrating it from 0 to 𝑡 and dividing by 𝑡 on both sides, we get

ln 𝐼 (𝑡)
𝑡

≥
(
β −

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

))
− β〈𝐼 (𝑡)〉 − β〈𝑅(𝑡)〉 + M(𝑡)

𝑡
+ ln 𝐼 (0)

𝑡

≥
(
β −

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

))
− β〈𝐼 (𝑡)〉 − β

𝑏 + 𝑘

(
γ2〈𝐼 (𝑡)〉 −

𝑅(𝑡) − 𝑅(0)
𝑡

)
+ M(𝑡)

𝑡
+ ln 𝐼 (0)

𝑡

=

(
β −

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

))
− β

(
1 + γ2

𝑏 + 𝑘

)
〈𝐼 (𝑡)〉 + β(𝑅(𝑡) − 𝑅(0))

𝑡 (𝑏 + 𝑘) + M(𝑡)
𝑡

+ ln 𝐼 (0)
𝑡

.

Therefore,

lim inf
𝑡→∞

〈𝐼 (𝑡)〉 ≥ 𝑏 + 𝑘
β(𝑏 + 𝑘 + γ2)

(
β −

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

))
=

𝑏 + 𝑘
β(𝑏 + 𝑘 + γ2)

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

) (
R𝑠0 − 1

)
> 0 a.s.

Finally, it follows from (V.7) that

lim inf
𝑡→∞

〈𝑅(𝑡)〉 ≥ γ2
β(𝑏 + 𝑘 + γ2)

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

) (
R𝑠0 − 1

)
> 0 a.s.

This finishes the proof.

In order to obtain the stability conditions, we have the following inequalities:

Lemma 1.8. Let ℎ ≥ 2 and 𝜖, 𝑥 , 𝑦 > 0. Then

𝑥ℎ−1𝑦 ≤ (ℎ − 1)𝜖
ℎ

𝑥ℎ + 1
ℎ𝜖ℎ−1𝑦

ℎ,

𝑥ℎ−2𝑦2 ≤ (ℎ − 2)𝜖
ℎ

𝑥ℎ + 2
ℎ𝜖

ℎ−2
2
𝑦ℎ .

Now, we get the sufficient conditions for the moment exponential stability which are given by

the following theorem:

Theorem 1.9. Let ℎ ≥ 2. If the condition σ2 <
2(𝑝𝑏 + γ1 + γ2 − β)

ℎ − 1
holds, the disease-free equilibrium

𝑃0 of the system (V.2) is h𝑡ℎ moment exponentially stable in Δ.
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Proof. Let ℎ ≥ 2. Now, we consider the following Lyapunov function

V2(𝑋 ) = 𝜆1 (1 − 𝑆)ℎ + 1
ℎ
𝐼ℎ + 𝜆2𝑅

ℎ, for all 𝑋 = (𝑆, 𝐼 , 𝑅) ∈ Δ.

where 𝜆𝑖 , (𝑖 = 1, 2) are real positive constants to be determined later. It is easy to check that the

first condition of Theorem 10.9 is true. Furthermore

LV2 = − ℎ𝜆1 (1 − 𝑆)ℎ 𝑏 + ℎ𝜆1 (1 − 𝑆)ℎ−1 β𝐼𝑆 − ℎ𝜆1(𝑝𝑏 + γ1) (1 − 𝑆)ℎ−1 𝐼

+ ℎ𝜆1𝑏 (1 − 𝑆)ℎ−1 𝐼 − ℎ𝜆1𝑘 (1 − 𝑆)ℎ−1 𝑅 + [β𝑆 − (𝑝𝑏 + γ1 + γ2)] 𝐼ℎ

+ ℎ𝜆2γ2𝑅
ℎ−1𝐼 − ℎ𝜆2(𝑏 + 𝑘)𝑅ℎ +

𝜆1ℎ(ℎ − 1)
2

(1 − 𝑆)ℎ−2 σ2𝑆2𝐼 2

+ (ℎ − 1)
2

σ2𝐼ℎ𝑆2.

In Δ, we have

LV2 ≤ − ℎ𝜆1 (1 − 𝑆)ℎ 𝑏 +
[
ℎ𝜆1

(
β + 𝑏

) ]
(1 − 𝑆)ℎ−1 𝐼 + ℎ(ℎ − 1)σ2

2
𝜆1 (1 − 𝑆)ℎ−2 𝐼 2

−
(
(𝑝𝑏 + γ1 + γ2 − β) − (ℎ − 1)σ2

2

)
𝐼ℎ + ℎ𝜆2γ2𝑅

ℎ−1𝐼 − ℎ𝜆2(𝑏 + 𝑘)𝑅ℎ .

By using Lemma 1.8, we get

𝐼 (1 − 𝑆)ℎ−1 ≤ (ℎ − 1)𝜖
ℎ

(1 − 𝑆)ℎ + 1
ℎ𝜖ℎ−1 𝐼

ℎ,

𝐼 2 (1 − 𝑆)ℎ−2 ≤ (ℎ − 2)𝜖
ℎ

(1 − 𝑆)ℎ + 2
ℎ𝜖

ℎ−2
2
𝐼ℎ,

𝐼𝑅ℎ−1 ≤ (ℎ − 1)𝜖
ℎ

𝑅ℎ + 1
ℎ𝜖ℎ−1 𝐼

ℎ .

Then

LV2 ≤ −
(
ℎ𝑏 −

(
(𝑏 + β) (ℎ − 1) + σ2(ℎ − 1) (ℎ − 2)

2

)
𝜖

)
𝜆1 (1 − 𝑆)ℎ

+
[(
(𝑏 + β)𝜖1−ℎ + (ℎ − 1)σ2

2
𝜖

2−ℎ
ℎ

)
𝜆1 + γ2𝜖

1−ℎ𝜆2 − (𝑝𝑏 + γ1 + γ2 − β) − (ℎ − 1)σ2

2

]
𝐼ℎ

− (ℎ(𝑏 + 𝑘) − (ℎ − 1)γ2𝜖) 𝜆2𝑅
ℎ .

We chose 𝜖 sufficiently small such that the coefficients of (1 − 𝑆)ℎ and 𝑅ℎ be negative, and as

(𝑝𝑏 + γ1 + γ2 − β) − (ℎ − 1)σ2

2
> 0, we can choose 𝜆1 and 𝜆2 positive such the coefficient of 𝐼ℎ be

negative. According to Theorem 10.9, the proof is completed.

Under Theorem 1.9, we have in the case ℎ = 2 the following corollary.

Corollary 1.10. If the condition σ2 < 2(𝑝𝑏 + γ1 + γ2 − β) holds, the disease free equilibrium 𝑃0 of
the system (V.2) is globally asymptotically stable in Δ.

Remark 1.11. The global stability signifies that the dynamic system will reach to the equilibrium

value from any initial value. Biologically, the global stability of free disease equilibrium may be

interpreted as the inescapable fate of the epidemic situation regardless of its initial situation. But

this inevitability happens as long as the community strictly follows the associated mathematical

model of an epidemic. Furthermore, the h
𝑡ℎ

moment exponential stability means that the h
𝑡ℎ

moment of the state will tend to the equilibrium exponentially fast.
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1.2.2 Dynamical behavior of the non-autonomous system (V.3)

To study the dynamic of system (V.3), it is sufficient to analyze the following system:{
d𝐼 (𝑡) = (β(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡))𝐼 (𝑡) − (𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡))𝐼 (𝑡)) d𝑡+σ(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡))𝐼 (𝑡)dW(𝑡),
d𝑅(𝑡) = (γ2(𝑡)𝐼 (𝑡) − (𝑏 (𝑡) + 𝑘 (𝑡))𝑅(𝑡)) d𝑡 .

(V.8)

Similarly, we define the following threshold of our stochastic epidemic model (V.8)〈
R𝑠0

〉
𝑇
=

〈β〉𝑇
〈𝑝𝑏 + γ1 + γ2 + σ2/2〉𝑇

.

Theorem 1.12. Let (𝐼 (𝑡), 𝑅(𝑡)) be a solution of system (V.8) with any initial value in Γ0. If one of
the following conditions is satisfied,
(a) σ2(𝑡) ≤ β(𝑡) for all 𝑡 ≥ 0, and 〈R𝑠0〉𝑇 < 1,

(b) σ2(𝑡) > β(𝑡) for all 𝑡 ≥ 0, and
〈
β2

2σ2 − (𝑝𝑏 + γ1 + γ2)
〉
𝑇

< 0,

then 𝐼 (𝑡) tends to zero exponentially a.s.
Proof. It follows from Itô’s formula that

d ln 𝐼 (𝑡) =
(
β(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡)) − (𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡)) −

σ2(𝑡)
2

(1 − 𝐼 (𝑡) − 𝑅(𝑡))2
)
d𝑡

+ σ(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡))dW(𝑡)

≤
(
β(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡)) − (𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡)) −

σ2(𝑡)
2

(1 − 2𝐼 (𝑡) − 2𝑅(𝑡))
)
d𝑡

+ σ(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡))dW(𝑡)

≤
(
β(𝑡) −

(
𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡) +

σ2(𝑡)
2

)
− (β(𝑡) − σ2(𝑡)) (𝐼 (𝑡) + 𝑅(𝑡))

)
d𝑡

+ σ(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡))dW(𝑡) .

Let M(𝑡) :=
∫ 𝑡

0
σ(𝑠) (1 − 𝐼 (𝑠) − 𝑅(𝑠))dW(𝑠). It is a real-valued continuous local martingale, and its

quadratic variation is 〈M,M〉𝑡 =
∫ 𝑡

0
σ2(𝑠) (1− 𝐼 (𝑠) −𝑅(𝑠))2

d𝑠 ≤ σ̌2𝑡 , which implies lim
𝑡→∞

M(𝑡)
𝑡

= 0 a.s.

according to the strong law of large numbers for martingales.

1. If σ2(𝑡) ≤ β(𝑡) for all 𝑡 ≥ 0. Then

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤ lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0

(
β(𝑠) −

(
𝑝 (𝑠)𝑏 (𝑠) + γ1(𝑠) + γ2(𝑠) +

σ2(𝑠)
2

))
d𝑠

=
1
𝑇

∫ 𝑇

0

(
β(𝑠) −

(
𝑝 (𝑠)𝑏 (𝑠) + γ1(𝑠) + γ2(𝑠) +

σ2(𝑠)
2

))
d𝑠

= 〈𝑝𝑏 + γ1 + γ2 + σ2/2〉𝑇
(
〈R𝑠0〉𝑇 − 1

)
< 0 a.s.

2. If σ2(𝑡) > β(𝑡), then

d ln 𝐼 (𝑡) ≤
(
β2(𝑡)
2σ2(𝑡)

− (𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡))
)
d𝑡 + σ(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡))dW(𝑡) .

Integrating this from 0 to 𝑡 and taking the limit superior of both sides, we obtain

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤ lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0

(
β2(𝑠)
2σ2(𝑠)

− (𝑝 (𝑠)𝑏 (𝑠) + γ1(𝑠) + γ2(𝑠)
)
d𝑠

=
1
𝑇

∫ 𝑇

0

(
β2(𝑠)
2σ2(𝑠)

− (𝑝 (𝑠)𝑏 (𝑠) + γ1(𝑠) + γ2(𝑠))
)
d𝑠

=

〈
β2

2σ2 − (𝑝𝑏 + γ1 + γ2)
〉
𝑇

< 0 a.s.
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This completes the proof.

Theorem 1.13. Let (𝐼 (𝑡), 𝑅(𝑡)) be a solution of system (V.8) with any initial value in Γ0. If 〈R𝑠0〉𝑇 > 1,
then

lim inf
𝑡→∞

〈𝐼 (𝑡)〉 ≥ 𝑏 + 𝑘
β̌(𝑏 + 𝑘 + γ̌2)

〈𝑝𝑏 + γ1 + γ2 + σ2/2〉𝑇
(
〈R𝑠0〉𝑇 − 1

)
> 0 a.s.

lim inf
𝑡→∞

〈𝑅(𝑡)〉 ≥ γ̂2(𝑏 + 𝑘)
β̌(𝑏 + 𝑘) (𝑏 + 𝑘 + γ̌2)

〈𝑝𝑏 + γ1 + γ2 + σ2/2〉𝑇
(
〈R𝑠0〉𝑇 − 1

)
> 0 a.s.

Proof. Integrating the second equation of system (V.8) yields

𝑅(𝑡) − 𝑅(0)
𝑡

= 〈γ2𝐼 〉𝑡 − 〈(𝑏 + 𝑘)𝑅〉𝑡 ≤ γ̌2〈𝐼 〉𝑡 − (𝑏 + 𝑘)〈𝑅〉𝑡 ,

then,

〈𝑅〉𝑡 ≤
1

𝑏 + 𝑘

(
γ̌2〈𝐼 〉𝑡 −

𝑅(𝑡) − 𝑅(0)
𝑡

)
.

On the other hand, we can conclude that

d ln 𝐼 (𝑡) =
(
β(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡)) − (𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡)) −

1
2
σ2(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡))2

)
d𝑡 + dM(𝑡)

≥
(
β(𝑡) (1 − 𝐼 (𝑡) − 𝑅(𝑡)) − (𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡)) −

σ2(𝑡)
2

)
d𝑡 + dM(𝑡)

=

(
β(𝑡) −

(
𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡) +

σ2(𝑡)
2

)
− β(𝑡) (𝐼 (𝑡) + 𝑅(𝑡))

)
d𝑡 + dM(𝑡),

where M(𝑡) is defined as in the proof of Theorem 1.12. Integrating from 0 to 𝑡 and dividing by 𝑡

on both sides, we get

ln 𝐼 (𝑡)
𝑡

≥ 〈β −
(
𝑝𝑏 + γ1 + γ2 + σ2/2

)
〉𝑡 − β̌〈𝐼 〉𝑡 − β̌〈𝑅〉𝑡 +

M(𝑡)
𝑡

+ ln 𝐼 (0)
𝑡

≥ 〈β − (𝑝𝑏 + γ1 + γ2 + σ2/2)〉𝑡 − β̌〈𝐼 〉𝑡 −
β̌

𝑏 + 𝑘

(
γ̌2〈𝐼 〉𝑡 −

𝑅(𝑡) − 𝑅(0)
𝑡

)
+ M(𝑡)

𝑡
+ ln 𝐼 (0)

𝑡

= 〈β − (𝑝𝑏 + γ1 + γ2 + σ2/2)〉𝑡 − β̌

(
1 + γ̌2

𝑏 + 𝑘

)
〈𝐼 〉𝑡 +

β̌(𝑅(𝑡) − 𝑅(0))
𝑡 (𝑏 + 𝑘)

+ M(𝑡)
𝑡

+ ln 𝐼 (0)
𝑡

.

Therefore,

lim inf
𝑡→∞

〈𝐼 〉𝑡 ≥
𝑏 + 𝑘

β̌(𝑏 + 𝑘 + γ̌2)
〈𝑝𝑏 + γ1 + γ2 + σ2/2〉𝑇

(
〈R𝑠0〉𝑇 − 1

)
> 0 a.s.

Finally, it follows from the system (V.8) that

(𝑏 + 𝑘)〈𝑅〉𝑡 ≥ 〈(𝑏 + 𝑘)𝑅〉𝑡 = 〈γ2𝐼 〉𝑡 −
𝑅(𝑡) − 𝑅(0)

𝑡
≥ γ̂2〈𝐼 〉𝑡 −

𝑅(𝑡) − 𝑅(0)
𝑡

.

Then

lim inf
𝑡→∞

〈𝑅〉𝑡 ≥
γ̂2(𝑏 + 𝑘)

β̌(𝑏 + 𝑘) (𝑏 + 𝑘 + γ̌2)
〈𝑝𝑏 + γ1 + γ + σ2/2〉𝑇

(
〈R𝑠0〉𝑇 − 1

)
> 0 a.s.

This finishes the proof.
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Now, by constructing a suitable function V, we will show the existence of a positive 𝑇 -periodic

solution of system (V.8).

Theorem 1.14. If 〈R𝑠0〉𝑇 > 1, then there exists a 𝑇 -periodic solution of system (V.8).

Proof. It is easy to see that the coefficients of system (V.8) satisfy the local Lipschitz. To prove the

periodicity by using Lemma 11.6, we construct a 𝑇−periodic C2
-function V(𝑡, 𝑋 ) and a closed set

𝑈 ⊂ Γ0. We define a function V : [0,∞) × Γ0 → R by

V(𝑡, 𝐼 , 𝑅) = V1(𝐼 , 𝑅) + V2(𝐼 , 𝑅) + V3(𝑡),

where

V1(𝐼 , 𝑅) = 𝑀
(
− ln 𝐼 + β̌

𝑏 + 𝑘
𝑅

)
,

V2(𝐼 , 𝑅) = − ln𝑅 − ln(1 − 𝐼 − 𝑅),
V3(𝑡) = 𝑀𝜓 (𝑡),

and 𝑀 > 0 satisfies the following condition

−𝑀
〈
𝑝𝑏 + γ1 + γ2 +

σ2

2

〉
𝑇

(
〈R𝑠0〉𝑇 − 1

)
+ 2𝑏 + 𝑘 + β̌ + σ̌2

2
≤ −2. (V.9)

We let
.

𝜓 (𝑡) = −
〈
β −

(
𝑝𝑏 + γ1 + γ2 + σ2

2

)〉
𝑇
+

(
β(𝑡) −

(
𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡) + σ2 (𝑡 )

2

))
,

𝜓 (0) = 0.
(V.10)

It is easy to prove that 𝜓 (𝑡) is 𝑇 -periodic function. In fact, integrating (V.10) from 𝑡 to 𝑡 + 𝑇 , we

obtain

𝜓 (𝑡 +𝑇 ) −𝜓 (𝑡) =
∫ 𝑡+𝑇

𝑡

.

𝜓 (𝑠)d𝑠 = 0.

Hence, the function V(𝑡, 𝐼 , 𝑅) is also 𝑇 -periodic function. Making use of Itô’s formula, we get

LV1(𝐼 , 𝑅) = 𝑀
(
−

(
β(1 − 𝐼 (𝑡) − 𝑅(𝑡)) − (𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡))

− σ2(𝑡)
2

(1 − 𝐼 (𝑡) − 𝑅(𝑡))2
)
+ β̌γ2(𝑡)𝐼 (𝑡)

𝑏 + 𝑘
− β̌

𝑏 + 𝑘
(𝑏 (𝑡) + 𝑘 (𝑡))𝑅(𝑡)

)
≤ 𝑀

(
−

(
β(𝑡) −

(
(𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡) + γ2(𝑡) +

σ2(𝑡)
2

))
+ β̌

(
1 + γ̌2

𝑏 + 𝑘

)
𝐼 (𝑡)

)
,

and

LV2(𝐼 , 𝑅) = −γ2(𝑡)𝐼 (𝑡)
𝑅(𝑡) + (𝑏 (𝑡) + 𝑘 (𝑡)) − 𝑏 (𝑡)

1 − 𝐼 (𝑡) − 𝑅(𝑡) + 𝑏 (𝑡) + β𝐼 (𝑡)

+ 𝑏𝐼 (𝑡)
1 − 𝐼 (𝑡) − 𝑅(𝑡) −

(𝑝 (𝑡)𝑏 (𝑡) + γ1(𝑡))𝐼 (𝑡)
1 − 𝐼 (𝑡) − 𝑅(𝑡) − 𝑘 (𝑡)𝑅(𝑡)

1 − 𝐼 (𝑡) − 𝑅(𝑡) +
σ2(𝑡)𝐼 2(𝑡)

2

≤ − γ̂2𝐼 (𝑡)
𝑅(𝑡) + 2𝑏 + 𝑘 + β̌ + σ̌2

2
.

Thus, one can see that

LV(𝑡, 𝐼 , 𝑅) ≤ 𝑀

(
−

〈
β −

(
𝑝𝑏 + γ1 + γ2 +

σ2

2

)〉
𝑇

+ β̌

(
1 + γ̌2

𝑏 + 𝑘

)
𝐼 (𝑡)

)
− γ̂2𝐼 (𝑡)

𝑅(𝑡) + 2𝑏 + 𝑘 + β̌ + σ̌2

2

= 𝑀

(
−
〈
𝑝𝑏 + γ1 + γ2 +

σ2

2

〉
𝑇

(
〈R𝑠0〉𝑇 − 1

)
+ β̌

(
1 + γ̌2

𝑏 + 𝑘

)
𝐼 (𝑡)

)
− γ̂2𝐼 (𝑡)

𝑅(𝑡) + 2𝑏 + 𝑘 + β̌ + σ̌2

2
.
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Define a bounded closed set 𝑈 =

{
(𝐼 , 𝑅) ∈ Γ0 : 𝐼 ≥ 𝜖1 and 𝑅 ≥ 𝜖2

}
, where 0 < 𝜖1, 𝜖2 < 1 verify the

following conditions

𝑀β̌

(
1 + γ̌2

𝑏 + 𝑘

)
𝜖1 ≤ 1, (V.11)

𝜖2 = 𝜖2
1, (V.12)

𝑀β̌

(
1 + γ̌2

𝑏 + 𝑘

)
− γ̂2
𝜖1

≤ 1. (V.13)

For convenience, we divide 𝑈 𝑐 into two domains

𝑈 1
𝜖 =

{
(𝐼 , 𝑅) ∈ Γ0 : 0 < 𝐼 < 𝜖1

}
,

𝑈 2
𝜖 =

{
(𝐼 , 𝑅) ∈ Γ0 : 𝜖1 ≤ 𝐼 < 1, 0 < 𝑅 < 𝜖2

}
.

Clearly, 𝑈 𝑐 = Γ0\𝑈 =
2⋃
𝑖=1
𝑈 𝑖𝜖 . Now we prove that LV(𝑡, 𝑦, 𝑧) ≤ −1 on [0,∞) ×𝑈 𝑐 , which is equivalent

to showing it on the above two domains.

Case 1. When (𝑡, 𝐼 , 𝑅) ∈ [0,∞) ×𝑈 1
𝜖 , we have

LV(𝑡, 𝐼 , 𝑅) ≤ −𝑀
〈
𝑝𝑏 + γ1 + γ2 +

σ2

2

〉
𝑇

(
〈R𝑠0〉𝑇 − 1

)
+𝑀β̌

(
1 + γ̌2

𝑏 + 𝑘

)
𝜖1 + 2𝑏 + 𝑘 + β̌ + σ̌2

2
.

In view of (V.11), we get 𝐿𝑉 ≤ −1 for all (𝑡, 𝐼 , 𝑅) ∈ [0,∞) ×𝑈 1
𝜖 .

Case 2. Similarly, when (𝑡, 𝐼 , 𝑅) ∈ [0,∞) ×𝑈 2
𝜖 , we get

LV(𝑡, 𝐼 , 𝑅) ≤ −𝑀
〈
𝑝𝑏 + γ1 + γ2 +

σ2

2

〉
𝑇

(
〈R𝑠0〉𝑇 − 1

)
+𝑀β̌

(
1 + γ̌2

𝑏 + 𝑘

)
− γ̂2

𝜖1
𝜖2

+ 2𝑏 + 𝑘 + β̌ + σ̌2

2
.

In accordance with (V.12) and (V.13), we get LV ≤ −1 for all (𝑡, 𝐼 , 𝑅) ∈ [0,∞) ×𝑈 2
𝜖 . Consequently,

we deduce that LV ≤ −1 for all (𝑡, 𝐼 , 𝑅) ∈ [0,∞) ×𝑈 𝑐 . Therefore, the system (V.8) has a 𝑇 -periodic

solution according to Lemma 11.6.

1.3 Numerical simulations

In this section, we present some numerical simulation results to show the effect of the white noise

on the dynamics of SIRS models (V.2) and (V.3) by using the Milstein’s method. For this purpose,

the numerical scheme for stochastic autonomous model (V.4) is given by:


𝐼 𝑗+1 = 𝐼 𝑗 + 𝐼 𝑗

[
β(1 − 𝐼 𝑗 − 𝑅 𝑗 ) − (𝑝𝑏 + γ1 + γ2)

]
Δ𝑡+σ𝐼 𝑗 (1 − 𝐼 𝑗 − 𝑅 𝑗 )

√
Δ𝑡ε𝑗

+σ2

2 𝐼 𝑗 (1 − 𝐼 𝑗 − 𝑅 𝑗 ) (1 − 2𝐼 𝑗 − 𝑅 𝑗 ) (ε2
𝑗 − 1)Δ𝑡,

𝑅 𝑗+1 = 𝑅 𝑗 +
[
γ2𝐼 𝑗 − (𝑏 + 𝑘)𝑅 𝑗

]
Δ𝑡,

where ε𝑗 , 𝑗 = 1, 2, ..., 𝑛, are 𝑗-th realization of the Gaussian random normal variate N(0, 1). Likewise

for the non-autonomous model (V.8), we obtain the following discretized equations:


𝐼 𝑗+1 = 𝐼 𝑗 + 𝐼 𝑗

[
β𝑗Δ𝑡 (1 − 𝐼 𝑗 − 𝑅 𝑗 ) − (𝑝 𝑗Δ𝑡𝑏 𝑗Δ𝑡 + γ1 𝑗Δ𝑡 + γ2 𝑗Δ𝑡 )

]
Δ𝑡

+σ𝑗Δ𝑡 𝐼 𝑗 (1 − 𝐼 𝑗 − 𝑅 𝑗 )
√
Δ𝑡ε𝑗 + 1

2σ
2
𝑗Δ𝑡 𝐼 𝑗 (1 − 𝐼 𝑗 − 𝑅 𝑗 ) (1 − 2𝐼 𝑗 − 𝑅 𝑗 ) (ε2

𝑗 − 1)Δ𝑡,
𝑅 𝑗+1 = 𝑅 𝑗 +

[
γ2 𝑗Δ𝑡 𝐼 𝑗 − (𝑏 𝑗Δ𝑡 + 𝑘 𝑗Δ𝑡 )𝑅 𝑗

]
Δ𝑡 .

Moreover, we numerically simulate the solution of the corresponding deterministic system (V.1) for

comparison.
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Parameters Description Value

β The transmission rate 0.041

𝑏 The demography rate 0.3

γ1 The transfer rate from I to S 0.01

γ2 The transfer rate from I to R 0.03

𝑝 The rate of the offspring of infected parents that are susceptible 0.01

𝑘 The rate which individuals recover and return to S from R 0.02

Table V.1: The theoretical parameter values of the model (V.1).
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Figure V.1: Compute simulation of the paths (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) for the SIRS epidemic model (V.2).

Example 1.15. (Stochastic dynamics of the autonomous model (V.2)) For the deterministic model

(V.1) and its stochastic description (V.2), the parameters are taken from Table V.1. In this case,

R0 = 1.0199 > 1, then the model (V.1) admits a unique endemic equilibrium 𝐸~ which is globally

stable for any initial values (𝑆 (0), 𝐼 (0), 𝑅(0)). For the corresponding stochastic model (V.2), we

choose σ = 0.1, then we have σ2 ≤ β and

R𝑠0 =
β

(𝑝𝑏 + γ1 + γ2 + σ2/2)
= 0.9071 < 1.

Therefore, from Theorem 1.3, 𝐼 (𝑡) almost surely tends to zero exponentially with probability one

time
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Figure V.2: Compute Simulations for the SDE model (V.2) with the parameters in Example 1.15

(see FigureV.1 - left). To see the effect of fluctuations on the system dynamics (V.2) with large noise

intensity, we increase σ to 0.5, than we get σ2 > β and
β2

2(𝑝𝑏+γ1+γ2) −σ2 = −0.0402 < 0. Therefore, 𝐼 (𝑡)
will tend to zero exponentially with probability one (see Figure V.1). When we increase the value of

β to 0.05, we obtain R𝑠0 = 1.1062 > 1, then according to Theorem 1.7, the solution of the stochastic
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system (V.2) is persistent in the mean (see Figure V.2 - right). For a clear comparison with the

deterministic solution of the epidemic model (V.1), the disease will prevail with R0 = 1.2438 > 1.
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Figure V.3: Compute simulation of the paths (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) for the SIRS epidemic model (V.3).
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Figure V.4: Compute simulation of the paths (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) for the SIRS epidemic model (V.3).

Example 1.16. (Stochastic dynamics of the non-autonomous model (V.3)) Assume that the pa-

rameters of the non-autonomous system (V.3) are taken from Table V.2

Function Expression

β(𝑡) 0.4 + 0.1 cos(𝑡) 0.6 + 0.35 cos(𝑡) 0.5 + 0.1 cos(𝑡) 0.5 + 0.1 cos(𝑡)
𝑏 (𝑡) 0.08 + 0.02 sin(𝑡) 0.08 + 0.02 sin(𝑡) 0.08 + 0.02 sin(𝑡) 0.08 + 0.02 sin(𝑡)
γ1(𝑡) 0.2 + 0.02 sin(𝑡) 0.2 + 0.02 sin(𝑡) 0.2 + 0.02 sin(𝑡) 0.2 + 0.02 sin(𝑡)
γ2(𝑡) 0.2 + 0.03 sin(𝑡) 0.2 + 0.03 sin(𝑡) 0.2 + 0.03 sin(𝑡) 0.2 + 0.03 sin(𝑡)
𝑝 (𝑡) 0.03 + 0.01 sin(𝑡) 0.03 + 0.01 sin(𝑡) 0.03 + 0.01 sin(𝑡) 0.03 + 0.01 sin(𝑡)
𝑘 (𝑡) 0.6 + 0.5 sin(𝑡) 0.6 + 0.5 sin(𝑡) 0.6 + 0.5 sin(𝑡) 0.6 + 0.5 sin(𝑡)
σ(𝑡) 0.1 + 0.05 cos(𝑡) 1 0.1 + 0.05 cos(𝑡) 0

Figure V.3 - left Figure V.3 - right Figure V.4 - left Figure V.4 - right

Table V.2: Some periodic functions used to simulate the paths of non-autonomous model (V.3).

For the corresponding stochastic model (V.3), we get 〈R𝑠0〉𝑇 = 0.9466 < 1, where 𝑇 = 2𝜋 . Obviously,

σ2(𝑡) ≤ β(𝑡) for all 𝑡 ≥ 0 (see the first column of Table V.2). So, the condition (a) of Theorem 1.12

is satisfied. That is, 𝐼 (𝑡) will tend to zero exponentially with probability one (see Figure V.3 - left).

To verify that the condition (b) is satisfied, we choose β(𝑡) = 0.6 + 0.35 cos(𝑡) and σ(𝑡) = 1. Clearly,
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σ2(𝑡) > β(𝑡) for all 𝑡 ≥ 0, and
〈 β2

2σ2 − (𝑝𝑏 +γ1 +γ2)
〉
𝑇
= −4.0151 < 0. Therefore, the disease dies out

with probability one (see Figure V.3 - right). That is to say, large noises can lead the disease to

extinction. In order to illustrate the conclusions of Theorem 1.13, in Figure V.4 (left), we choose

the values of the system parameters from Table V.2 (if σ(𝑡) = 0, see Figure V.4 right). Other values

of the system parameters are unchanged. Direct calculation shows that 〈R0〉𝑇 = 2.0018 > 1 and

〈R𝑠0〉𝑇 = 1.1805 > 1. According to Theorem 1.13, the solution of stochastic non-autonomous system

(V.3) is persistent. From Theorem 1.14 it follows that the system (V.3) has a positive periodic

solution.

1.4 Discussion
Generally, in this study, we have shown that the large noise will exponentially suppress the disease,

and if the noise is sufficiently small, the conditions R𝑠0 < 1 (autonomous case) or 〈R𝑠0〉𝑇 < 1 (non-

autonomous case) are sufficient for guaranteeing the extinction of the disease. So, if the noise

is sufficiently small, R𝑠0 or 〈R𝑠0〉𝑇 can be considered as the thresholds of the systems (V.2) and

(V.3) respectively, and their values determine the persistence or extinction of the infectious disease.

Therefore, an interesting open problem is the possibility of establishing the extinction of the models

(V.2) and (V.3) only when R𝑠0 < 1 and 〈R𝑠0〉𝑇 < 1, respectively.

2 Stability and threshold of a stochastic SIRS epidemic model with
vertical transmission, general functional response and transfer
from infectious to susceptible

2.1 Introduction
The main of this study is to investigate how the stochastic character of human transmission affect

disease’s spreading through studying the dynamical behavior of our stochastic model. We assume

that the contact rate β is perturbed by Gaussian white noise, which is presented by β + σ ¤W(𝑡),
where W(𝑡) is a standard Brownian motion with intensity σ > 0. Then, we obtain the following

SIRS epidemic model with stochastic perturbation and general functional response
d𝑆 (𝑡) =

[
𝐴 + 𝑏 (𝑆 (𝑡) + 𝑅(𝑡)) − β𝑆 (𝑡 )𝐼 (𝑡 )

𝜓 (𝑆,𝐼 ) − µ𝑆 (𝑡) + 𝑝𝑏𝐼 (𝑡) + γ1𝐼 (𝑡) + 𝑘𝑅(𝑡)
]
d𝑡 − σ𝑆 (𝑡 )𝐼 (𝑡 )

𝜓 (𝑆,𝐼 ) dW(𝑡),

d𝐼 (𝑡) =
[
β𝑆 (𝑡 )𝐼 (𝑡 )
𝜓 (𝑆,𝐼 ) + 𝑞𝑏𝐼 (𝑡) − (µ + γ1 + γ2 + 𝑎)𝐼 (𝑡)

]
d𝑡 + σ𝑆 (𝑡 )𝐼 (𝑡 )

𝜓 (𝑆,𝐼 ) dW(𝑡),
d𝑅(𝑡) = [γ2𝐼 (𝑡) − (µ + 𝑘)𝑅(𝑡)] d𝑡,

(V.14)

where 𝜓 (𝑆, 𝐼 ) = 1 + α1𝑆 + α2𝐼 + α3𝑆𝐼 (α1, α2, α3 ≥ 0), 𝑝 = 1 − 𝑞 and 𝜇 > 𝑏. There are many au-

thors who studied stochastic epidemic models. They introduced random effects into models by

different techniques (see e.g. [56, 7, 116, 21, 135, 57, 145, 21, 91, 141]). Furthermore, in the study

of the dynamical behavior of the epidemic models, we are interested in two situations, one is

when the disease goes to extinction, the other is when the disease prevails. Thus many authors

have studied this interesting topic. For example, Ji et al. [44] investigated the threshold of SIR

epidemic models with stochastic perturbation. Liu et al. [83] established a interesting results on

the threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime

switching. Zhao and Jiang [165] investigated the threshold of a stochastic SIRS epidemic model

with saturated incidence and then considered the threshold of a stochastic SIS epidemic model

with vaccination [166, 164]. furthermore, they studied the threshold of a stochastic SIRS epidemic

model with varying population size [167]. Zhao and Yuan [170] studied the threshold behavior of a

stochastic SIVR epidemic model with standard incidence and imperfect vaccine. In case that the

disease goes extinct, they showed that the disease-free equilibrium is almost surely stable by using

the nonnegative semimartingale convergence theorem. C. Zhu et al. [173] studied the threshold of

a stochastic SIRS model with vertical transmission and saturated incidence.
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In this work, we consider a stochastic SIRS model with general incidence rate. This gener-

alization is the main difficulty to be overcome in establishing the conditions of the threshold of

SIRS model (V.19), which, to the best of our knowledge, has never been examined in the previously

known literature. In addition, we prove the global stability of the stochastic SIRS model (V.19)

with stochastic perturbations, which has not been proven in the previous papers. Define a bounded

set Δ as follows:

Δ =

{
𝑥 = (𝑥1, 𝑥2, 𝑥3) : 𝑥1 > 0, 𝑥2 > 0, 𝑥3 > 0 and 𝑥1 + 𝑥2 + 𝑥3 <

𝐴

µ − 𝑏

}
.

Since 𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡) represent the number of the susceptible, the infected and the recovered

individuals at time 𝑡 , respectively, they should be non-negative. So, the first step of our study is to

prove that the system (V.14) has a unique global positive solution.

Theorem 2.1 ([58]). For any initial value in Δ, there is the unique positive solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡))
of system (V.14) on 𝑡 ≥ 0, and the solution will remain in R3

+ with probability one, that is to say, the
solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) ∈ R3

+ for all 𝑡 ≥ 0 almost surely.

From the Theorem 2.1, we can conclude the following corollary:

Corollary 2.2. Δ is an almost surely positively invariant domain for the system (V.14).

2.2 Main results

2.2.1 Moment exponential stability

Theorem 2.3. Let ℎ ≥ 2. If

1
2
(ℎ − 1)

(
𝐴

(µ − 𝑏) + α1𝐴

)2
σ2 < (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) −

β𝐴

(µ − 𝑏) + α1𝐴

holds, the disease-free equilibrium 𝐸� of the system (V.14) is h𝑡ℎ moment exponentially stable in Δ.

Proof. Let ℎ ≥ 2. Considering the Lyapunov function

V(𝑆, 𝐼 , 𝑅) = 𝜆1

(
𝐴

µ − 𝑏 − 𝑆
)ℎ

+ 1
ℎ
𝐼ℎ + 𝜆2𝑅

ℎ, for all (𝑆, 𝐼 , 𝑅) in Δ,

where 𝜆𝑖 , 𝑖 = 1, 2 are real positive constants to be determined later. Then, we have

LV(𝑆, 𝐼 , 𝑅) = − ℎ𝜆1

(
𝐴

µ − 𝑏 − 𝑆
)ℎ

(µ − 𝑏) + ℎ𝜆1

(
𝐴

µ − 𝑏 − 𝑆
)ℎ−1

β𝐼𝑆

𝜓 (𝑆, 𝐼 ) − ℎ𝜆1(𝑝𝑏 + γ1)
(
𝐴

µ − 𝑏 − 𝑆
)ℎ−1

𝐼

− ℎ𝜆1(𝑏 + 𝑘)
(
𝐴

µ − 𝑏 − 𝑆
)ℎ−1

𝑅 +
(

β𝑆

𝜓 (𝑆, 𝐼 ) − (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏)
)
𝐼ℎ + ℎ𝜆2γ2𝑅

ℎ−1𝐼

− ℎ𝜆2(µ + 𝑘)𝑅ℎ + 𝜆1ℎ(ℎ − 1)
2

(
𝐴

µ − 𝑏 − 𝑆
)ℎ−2

σ2𝑆2𝐼 2

𝜓 2(𝑆, 𝐼 )
+ (ℎ − 1)

2
σ2𝐼ℎ𝑆2

𝜓 2(𝑆, 𝐼 )
.

In Δ, we have

LV(𝑆, 𝐼 , 𝑅) ≤ − ℎ𝜆1

(
𝐴

µ − 𝑏 − 𝑆
)ℎ

(µ − 𝑏) +
[
ℎ𝜆1

β𝐴

(µ − 𝑏) + α1𝐴

] (
𝐴

µ − 𝑏 − 𝑆
)ℎ−1

𝐼 + ℎ(ℎ − 1)σ2𝐴2

2[(µ − 𝑏) + α1𝐴]2𝜆1

×
(
𝐴

µ − 𝑏 − 𝑆
)ℎ−2

𝐼 2 −
( (

µ + γ1 + γ2 + 𝑎 − 𝑞𝑏 −
β𝐴

(µ − 𝑏) + α1𝐴

)
− (ℎ − 1)

2
𝐴2σ2

((µ − 𝑏) + α1𝐴)2

)
𝐼ℎ

+ ℎ𝜆2γ2𝑅
ℎ−1𝐼 − ℎ𝜆2(µ + 𝑘)𝑅ℎ .
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By using Lemma 1.8, we get

𝐼

(
𝐴

µ − 𝑏 − 𝑆
)ℎ−1

≤ (ℎ − 1)𝜖
ℎ

(
𝐴

µ − 𝑏 − 𝑆
)ℎ

+ 1
ℎ𝜖ℎ−1 𝐼

ℎ,

𝐼 2
(
𝐴

µ − 𝑏 − 𝑆
)ℎ−2

≤ (ℎ − 2)𝜖
ℎ

(
𝐴

µ − 𝑏 − 𝑆
)ℎ

+ 1
ℎ𝜖

ℎ−2
2
𝐼ℎ,

𝐼𝑅ℎ−1 ≤ (ℎ − 1)𝜖
ℎ

𝑅ℎ + 1
ℎ𝜖ℎ−1 𝐼

ℎ .

Then

LV(𝑆, 𝐼 , 𝑅) ≤ −
[
ℎ(µ − 𝑏) −

(
𝐴β(ℎ − 1)

(µ − 𝑏) + α1𝐴
+ σ2𝐴2(ℎ − 1) (ℎ − 2)

2[(µ − 𝑏) + α1𝐴]2

)
𝜖

]
𝜆1

(
𝐴

(µ − 𝑏) − 𝑆
)ℎ

−
[ (

µ + γ1 + γ2 + 𝑎 − 𝑞𝑏 −
β𝐴

(µ − 𝑏) + α1𝐴

)
− (ℎ − 1)

2
𝐴2σ2

[(µ − 𝑏) + α1𝐴]2

+
(

β𝐴

(µ − 𝑏) + α1𝐴
𝜖1−ℎ + (ℎ − 1)σ2𝐴2

[(µ − 𝑏) + α1𝐴]2𝜖
2−ℎ
ℎ

)
𝜆1 + γ2𝜖

1−ℎ𝜆2

]
𝐼ℎ

− (ℎ(µ + 𝑘) − (ℎ − 1)γ2𝜖) 𝜆2𝑅
ℎ .

We chose 𝜖 sufficiently small such that the coefficients of

(
𝐴

µ−𝑏 − 𝑆
)ℎ

and 𝑅ℎ be negative, and as(
µ + γ1 + γ2 + 𝑎 − 𝑞𝑏 − β𝐴

(µ−𝑏)+α1𝐴

)
− (ℎ−1)

2
𝐴2σ2

[ (µ−𝑏)+α1𝐴]2 > 0, we can choose 𝜆1 and 𝜆2 positive such the

coefficient of 𝐼ℎ be negative. This ends the proof.

Under Theorem 2.3, we have in the case of ℎ = 2 the following corollary:

Corollary 2.4. If the condition 1
2 (

𝐴
(µ−𝑏)+α1𝐴

)2σ2 < (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) − β𝐴
(µ−𝑏)+α1𝐴

holds, the disease
free 𝐸� of the system (V.14) is globally asymptotically stable in Δ.

2.2.2 Persistence in the mean

In this subsection, our main concern is to determine the conditions for the spread and disappear-

ance of an infectious disease. Given that the value of the deterministic threshold R0 characterizes

the dynamical behaviors of system (I.9) and guarantees the persistence or theextinction of the dis-

ease. Similarly, we define the following threshold of our stochastic SIRS epidemic model (V.14) as

follows

R𝑠0 = R0

(
1 − σ2𝐴

2β[(µ − 𝑏) + α1𝐴]

)
=

β𝐴(
(µ − 𝑏) + α1𝐴

)
(µ2 + γ1 + γ2 − 𝑞𝑏)

(
1 − σ2𝐴

2β[(µ − 𝑏) + α1𝐴]

)
.

Theorem 2.5. If R𝑠0 > 1, then the solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) of system (V.14) with positive initial value
is persistent in the mean. Moreover, we have

lim inf
𝑡→∞

〈𝐼 (𝑡)〉 ≥ ℭ∗ > 0,

lim inf
𝑡→∞

〈𝑅(𝑡)〉 ≥ γ2ℭ∗
(µ + 𝑘) > 0,

lim inf
𝑡→∞

〈
𝐴

µ − 𝑏 − 𝑆
〉
≥ [(µ − 𝑏 + 𝑎) (µ + 𝑘) + (µ − 𝑏)γ2]ℭ∗

(µ − 𝑏) (µ + 𝑘) > 0,

where

ℭ∗ =
(R𝑠0 − 1) (µ2 + γ1 + γ2 − 𝑞𝑏)β−1(µ − 𝑏) (µ + 𝑘) ((µ − 𝑏) + α1𝐴)

(𝑘 + 𝑏) (µ − 𝑏) (µ − 𝑏 + 𝑎) + (µ − 𝑏) (β𝐴 − (𝑝𝑏 + γ1) (µ − 𝑏)) +𝐴(µ + 𝑘) (α2(µ − 𝑏) + α3𝐴)
.
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Proof. We consider a function V★
defined by

V★(𝑆, 𝐼 , 𝑅) = 𝜔1(𝑆 + 𝐼 + 𝑅) + 𝜔2𝑆 + ln 𝐼 ,

where 𝜔1and 𝜔2 are real positive constants to be chosen in the follwing. Using Itô’s formula, we

have

dV★(𝑆, 𝐼 , 𝑅) =𝜔1

(
𝐴 − (µ − 𝑏)𝑆 − (µ − 𝑏 + 𝑎)𝐼 − (µ − 𝑏)𝑅

)
d𝑡 + 𝜔2

(
𝐴 − (µ − 𝑏)𝑆 − β𝐼𝑆

𝜓 (𝑆, 𝐼 )

+ (𝑝𝑏 + γ1)𝐼 + (𝑏 + 𝑘)𝑅
)
d𝑡 − 𝜔2

σ𝑆𝐼

𝜓 (𝑆, 𝐼 )dW(𝑡) +
(
− (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏)

+ β𝑆

𝜓 (𝑆, 𝐼 ) −
1
2

σ2𝑆2

𝜓 2(𝑆, 𝐼 )

)
d𝑡 + σ𝑆

𝜓 (𝑆, 𝐼 )dW(𝑡) .

Since (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) ∈ Δ, we get − β𝑆𝐼

𝜓 (𝑆, 𝐼 ) ≥ − β𝐴𝐼

µ − 𝑏 , and

β𝑆

𝜓 (𝑆, 𝐼 ) =
β𝐴

(µ − 𝑏) + α1𝐴
− β(µ − 𝑏)

(µ − 𝑏) + α1𝐴

(
𝐴

µ−𝑏 − 𝑆
)

𝜓 (𝑆, 𝐼 ) − βα2𝐴

(µ − 𝑏) + α1𝐴

𝐼

𝜓 (𝑆, 𝐼 ) −
βα3𝐴

(µ − 𝑏) + α1𝐴

𝑆𝐼

𝜓 (𝑆, 𝐼 )

≥ β𝐴

(µ − 𝑏) + α1𝐴
− β(µ − 𝑏)

(µ − 𝑏) + α1𝐴

(
𝐴

µ − 𝑏 − 𝑆
)
− β𝐴

(µ − 𝑏) + α1𝐴

(
α2 + α3

𝐴

(µ − 𝑏)

)
𝐼 .

Inject these tow inequalities in expression of dV★
, we get

dV★(𝑆, 𝐼 , 𝑅) ≥𝜔1

(
𝐴 − (µ − 𝑏)𝑠 − (µ − 𝑏 + 𝑎)𝐼 − (µ − 𝑏)𝑅

)
d𝑡

+ 𝜔2

(
𝐴 − (µ − 𝑏)𝑆 − β𝐴𝐼

µ − 𝑏 + (𝑝𝑏 + γ1)𝐼 + (𝑏 + 𝑘)𝑅
)
d𝑡 − 𝜔2

σ𝑆𝐼

𝜓 (𝑆, 𝐼 )dW

+
(
− (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) +

β𝐴

(µ − 𝑏) + α1𝐴
− β(µ − 𝑏)

(µ − 𝑏) + α1𝐴

(
𝐴

µ − 𝑏 − 𝑆
)

− β𝐴

(µ − 𝑏) + α1𝐴

(
α2 + α3

𝐴

(µ − 𝑏)

)
𝐼

)
d𝑡 − σ2𝑆2

2𝜓 2(𝑆, 𝐼 )
d𝑡 + σ𝑆

𝜓 (𝑆, 𝐼 )dW(𝑡) .

Then

dV★(𝑆, 𝐼 , 𝑅) ≥
(
(𝜔1 + 𝜔2) (µ − 𝑏) − β(µ − 𝑏)

(µ − 𝑏) + α1𝐴

) (
𝐴

(µ − 𝑏) − 𝑆
)
d𝑡 + [𝜔2(𝑏 + 𝑘) − 𝜔1(µ − 𝑏))]𝑅d𝑡

−
(
𝜔1(µ − 𝑏 + 𝑎) + 𝜔2

(
β𝐴

µ − 𝑏 − (𝑝𝑏 + γ1)
)
+ β𝐴

(µ − 𝑏) + α1𝐴
(α2 + α3

𝐴

µ − 𝑏 )
)
𝐼d𝑡

+
(
−(µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) +

β𝐴

(µ − 𝑏) + α1𝐴
− σ2𝐴2

2[(µ − 𝑏) + α1𝐴]2

)
d𝑡

− (𝜔2𝐼 − 1) σ𝑆

𝜓 (𝑆, 𝐼 )dW(𝑡) .

In order to eliminate

(
𝐴
µ − 𝑆

)
and 𝑅 from the last inequality, we choose 𝜔1 and 𝜔2 as follows

𝜔1 =
β(𝑏 + 𝑘)

(µ + 𝑘) ((µ − 𝑏) + α1𝐴)
and 𝜔2 =

β(µ − 𝑏)
(µ + 𝑘) ((µ − 𝑏) + α1𝐴)

.

By integration, we get

V★(𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡))

≥ − (𝑘 + 𝑏) (µ − 𝑏) (µ − 𝑏 + 𝑎) + (µ − 𝑏) (β𝐴 − (𝑝𝑏 + γ1) (µ − 𝑏)) +𝐴(µ + 𝑘) (α2(µ − 𝑏) + α3𝐴)
β−1(µ − 𝑏) (µ + 𝑘) ((µ − 𝑏) + α1𝐴)

×
∫ 𝑡

0
𝐼 (𝑠)d𝑠 + (R𝑠0 − 1) (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏)𝑡 + V★(𝑆 (0), 𝐼 (0), 𝑅(0)) −

∫ 𝑡

0
(𝜔2𝐼 − 1) σ𝑆

𝜓 (𝑆, 𝐼 )dW(𝑡).
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Hence,

ln 𝐼 (𝑡) ≥ − (𝑘 + 𝑏) (µ − 𝑏) (µ − 𝑏 + 𝑎) + (µ − 𝑏) (β𝐴 − (𝑝𝑏 + γ1) (µ − 𝑏)) +𝐴(µ + 𝑘) (α2(µ − 𝑏) + α3𝐴)
β−1(µ − 𝑏) (µ + 𝑘) ((µ − 𝑏) + α1𝐴)

×
∫ 𝑡

0
𝐼 (𝑠)d𝑠 + (R𝑠0 − 1) (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏)𝑡 + K(𝑡),

where

K(𝑡) = V★(𝑆 (0), 𝐼 (0), 𝑅(0)) − (𝜔1 + 𝜔2)𝑆 − 𝜔1𝐼 − 𝜔1𝑅 −
∫ 𝑡

0
(𝜔2𝐼 (𝑠) − 1) σ𝑆

𝜓 (𝑆, 𝐼 )dW(𝑡) .

Thus, the strong law of large number for martingales implies that lim
𝑡→∞

K(𝑡 )
𝑡

= 0 a.s. Consequently

lim inf
𝑡→∞

〈𝐼 (𝑡)〉 ≥
(R𝑠0 − 1) (µ + 𝑟2 + δ + γ)β−1(µ − 𝑏) (µ + 𝑘) ((µ − 𝑏) + α1𝐴)

(𝑘 + 𝑏) (µ − 𝑏) (µ − 𝑏 + 𝑎) + (µ − 𝑏) (β𝐴 − (𝑝𝑏 + γ1) (µ − 𝑏)) +𝐴(µ + 𝑘) (α2(µ − 𝑏) + α3𝐴)
:= ℭ∗.

Next, the third equation of system (V.14) gives

𝑅(𝑡) − 𝑅(0)
𝑡

= γ2〈𝐼 (𝑡)〉 + (µ + 𝑘)〈𝑅(𝑡)〉.

Implies that 〈𝑅(𝑡)〉 = γ2
(µ+𝑘) 〈𝐼 (𝑡)〉 + K1(𝑡) where K1(𝑡) = 𝑅 (0)−𝑅 (𝑡 )

(µ+𝑘)𝑡 and lim
𝑡→∞

K1(𝑡) = 0 a.s. Then

lim inf
𝑡→∞

〈𝑅(𝑡)〉 ≥ γ2ℭ∗
(µ + 𝑘) .

Finally, it follow from the system (V.14) that

d(𝑆 + 𝐼 + 𝑅) =
(
(µ − 𝑏)

(
𝐴

µ − 𝑏 − 𝑆
)
− (µ − 𝑏 + 𝑎)𝐼 − (µ − 𝑏)𝑅

)
d𝑡 .

Therefore 〈
𝐴

µ − 𝑏 − 𝑆 (𝑡)
〉
=
µ − 𝑏 + 𝑎
µ − 𝑏 〈𝐼 (𝑡)〉 + 〈𝑅(𝑡)〉 + K2(𝑡),

where K2(𝑡) = 𝑁 (𝑡 )−𝑁 (0)
µ𝑡 and lim

𝑡→∞
K2(𝑡) = 0 a.s. Then

lim inf
𝑡→∞

〈
𝐴

µ − 𝑏 − 𝑆 (𝑡)
〉
≥ [(µ − 𝑏 + 𝑎) (µ + 𝑘) + (µ − 𝑏)γ2]ℭ∗

(µ − 𝑏) (µ + 𝑘) a.s.

2.2.3 Stochastic extinction

In this subsection, we investigate the conditions for the extinction of the disease.

Theorem 2.6. Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of system (V.14) with initial value (𝑆 (0), 𝐼 (0), 𝑅(0))
in Δ. Then

1. lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤ β2

2σ2 − (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) < 0 a.s. if σ2 >
β2

2(µ + γ1 + γ2 + 𝑎 − 𝑞𝑏)
holds,

(V.15)

2. lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤ (R𝑠0 − 1) (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) < 0 a.s. if R𝑠0 < 1 and σ2 ≤ β[(µ − 𝑏) + α1𝐴]
𝐴

hold.

(V.16)
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Proof. It follows from Itô’s formula that

d ln 𝐼 (𝑡) =
(

β𝑆

𝜓 (𝑆 (𝑡), 𝐼 (𝑡)) − (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) −
σ2

2
𝑆2(𝑡)

𝜓 2(𝑆 (𝑡), 𝐼 (𝑡))

)
d𝑡 + σ𝑆 (𝑡)

𝜓 (𝑆 (𝑡), 𝐼 (𝑡))dW(𝑡).

Integrating this from 0 to 𝑡 and dividing by 𝑡 on both sides, we have

ln 𝐼 (𝑡)
𝑡

=
1
𝑡

∫ 𝑡

0

(
β𝑆 (𝑠)

𝜓 (𝑆 (𝑠), 𝐼 (𝑠)) − (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) −
σ2

2
𝑆2(𝑠)

𝜓 2(𝑆 (𝑠), 𝐼 (𝑠))

)
d𝑠 + ln 𝐼 (0)

𝑡
+ M(𝑡)

𝑡
, (V.17)

where M(𝑡) =
∫ 𝑡

0

σ𝑆 (𝑠)
𝜓 (𝑆 (𝑠), 𝐼 (𝑠))dW(𝑠) is a local martingale with the quadratic variation that verifies

〈M,M〉𝑡 ≤ σ2𝐴2𝑡
𝜇−𝑏 . An application of the strong law of large numbers for local martingales leads to

lim
𝑡→∞

M(𝑡)
𝑡

= 0 a.s.

From Equation (V.17), we have

ln 𝐼 (𝑡)
𝑡

=
1
𝑡

∫
𝑡

0

(
−σ

2

2

(
𝑆 (𝑠)

𝜓 (𝑆 (𝑠), 𝐼 (𝑠)) −
β

σ2

)2
− (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) +

β2

2σ2

)
d𝑠 + ln 𝐼 (0)

𝑡
+ 𝑀 (𝑡)

𝑡

≤
(
β2

2σ2 − (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏)
)
+ ln 𝐼 (0)

𝑡
+ M(𝑡)

𝑡
.

Taking the limit superior of both sides, we obtain the desired assertion if the condition (a) is

satisfied.

Now, and from the last inequality, one can establish that

ln 𝐼 (𝑡)
𝑡

≤
(

β𝐴

(µ − 𝑏) + α1𝐴
− (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) −

σ2

2
𝐴2

[(µ − 𝑏) + α1𝐴]2

)
+ ln 𝐼 (0)

𝑡
+ M(𝑡)

𝑡

≤ (R𝑠0 − 1) (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) +
ln 𝐼 (0)
𝑡

+ M(𝑡)
𝑡

.

If the condition (b) is satisfied, and by taking the limit superior of both sides, we obtain the desired

assertion (V.16). This finishes the proof.

2.3 Numerical simulations
In this subsection, we present the numerical simulations to support the above theoretical results,

illustrating extinction and persistence in mean of disease. We mainly use Milstein’s method to

discrete the system (V.14). Moreover, we numerically simulate the solution of a corresponding

deterministic system for comparison.

Parameters Value

𝐴 0.4 0.2 0.2

β 0.2 0.52 0.8

µ 0.3 0.3 0.3

𝑏 0.2 0.2 0.2

γ1 0.01 0.01 0.1

γ2 0.03 0.03 0.5

𝑞 0.1 0.01 0.01

𝑎 0.1 0.1 0.1

𝑘 0.2 0.2 0.2

α1 0.05 0.05 0.05

α2 0.02 0.02 0.02

α3 0.01 0.01 0.01

σ 0.5 0.1 0.1

Figure V.5 - left Figure V.5 - right Figure V.6
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Table V.3: The theoretical parameter values of the model (V.14).

time

0 10 20 30 40 50 60 70 80 90 100

I(
t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stochastic

Deterministic

time

0 10 20 30 40 50 60 70 80 90 100

I(
t)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Stochastic

Deterministic

Figure V.5: Compute simulation of the paths 𝐼 (𝑡) for the SIRS epidemic model (V.14), and 𝐼 (𝑡) of

the corresponding deterministic version.

Example 2.7. For our model (V.14), the parameters are taken from Table V.3 (first column). If

σ = 0, we get R0 = 1.5873 > 1, thus the deterministic version admits a unique endemic equilibrium

𝐸~ which is globally stable for any initial values (𝑆 (0), 𝐼 (0), 𝑅(0)). For the corresponding stochastic

version, we choose σ = 0.5, then we have
β2

2(µ+γ1+γ2+𝑎−𝑞𝑏) −σ2 = −0.2024 < 0. Therefore, the condition

(a) of Theorem 2.6 is satisfied. We can conclude that for any initial value, 𝐼 (𝑡) obeys

lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) ≤ β2

2σ2 − (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) = −0.34 a.s.

That is, 𝐼 (𝑡) will tend to zero exponentially with probability one (see Figure V.5 - left).
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Figure V.6: Compute simulation of the paths (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) for the SIRS epidemic model (V.14).
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Example 2.8. We choose the parameter values from Table V.3 (second column), then we have

R𝑠0 = 0.9210 < 1, and σ2 − β(µ−𝑏)
𝐴

= −0.25 < 0. Then, the condition (b) of Theorem 2.6 is satisfied.

We can conclude that for any initial value, 𝐼 (𝑡) obeys

lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) ≤ (R𝑠0 − 1) (µ + γ1 + γ2 + 𝑎 − 𝑞𝑏) = −0.015 a.s.

That is, 𝐼 (𝑡) will tend to zero exponentially with probability one (see Figure V.5 - right).

Example 2.9. We choose the parameter values from Table V.3 (third column), then we get

R𝑠0 = 1.4409 > 1.

According to Theorem 2.5, the solution of the stochastic system (V.14) is persistent in the mean

(see Figure V.6).

2.4 Discussion
In the above study, we have considered a stochastic SIRS epidemic model with vertical transmission

and transfer from infectious to susceptible. We have obtained sufficient conditions for the stochastic

stability of disease-free equilibrium by using a suitable Lyapunov function and other techniques of

the stochastic analysis. Furthermore, we have showed that the disease is persistent when the basic

reproduction number R𝑠0 > 1. Finally, we have given two sufficient conditions for the extinction

of the disease with probability one. From Theorem 2.6, we have showed that the large noise will

exponentially suppress the disease, and if the noise is sufficiently small, the condition R𝑠0 < 1 is

sufficient for guaranteeing the extinction of the disease. So, if the noise is sufficiently small, R𝑠0
can be considered as the threshold of system (V.14) and its value determines the persistence and

extinction of the infectious disease. Besides the white noise perturbation, epidemic models may

be disturbed by telegraph noise which can lead to the system to switch from one environmental

regime to another. The telegraph noise can be illustrated as a switching between two or more

sub-regimes of different environments. For example, the growth rate for some fish in dry season

will be much different from it in rainy season. The switching between environmental regimes is

often memory-less and the waiting time for the next switching follows the exponential distribution.

Therefore, this study can be extend to the case of regime switching.

3 Analysis of a stochastic SIRS epidemic system with vertical dis-
semination, switch from infectious to susceptible individuals,
stochastic transmission and proportional perturbation

3.1 Introduction
The deterministic model (I.7) provides a great view on the spread of the epidemic, but in the real

and complex world, the population dynamics of infectious diseases are naturally affected by random

fluctuations and perturbations [38, 97, 59, 114, 169, 62]. Therefore, the stochastic SIRS epidemic

can be an accurate tool to predict the long-run of infectious epidemics [165, 19, 167, 87, 45]. For

example, in the previous section, we assumed that the disease transmission coefficient β is subject

to the environmental white noise, that is β → β + σ
.

W(𝑡) where W(𝑡) is a standard Brownian

motion and σ > 0 is the intensity of environmental white noise. Then, the system (I.7) becomes the

following stochastic differential equation:
d𝑆 (𝑡) =

(
𝐴 + 𝑏 (𝑆 (𝑡) + 𝑅(𝑡)) − β𝑆 (𝑡)𝐼 (𝑡) − µ1𝑆 (𝑡) + 𝑝𝑏𝐼 (𝑡) + γ1𝐼 (𝑡) + 𝑘𝑅(𝑡)

)
d𝑡−σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) + 𝑞𝑏𝐼 (𝑡) − (µ2 + γ1 + γ2)𝐼 (𝑡)

)
d𝑡+σ𝑆 (𝑡)𝐼 (𝑡)dW(𝑡),

d𝑅(𝑡) =
(
γ2𝐼 (𝑡) − (µ + 𝑘)𝑅(𝑡)

)
d𝑡 .

(V.18)
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In the same section, we investigated the conditions for the moment exponential stability of the

equilibrium 𝐸�. Then, we established sufficient conditions for the extinction and persistence of the

model (V.18) with a general incidence rate.

Besides the parameter perturbation method, there is another type of the stochastic disturbances.

One can include the effect of environmental fluctuations by assuming the noise is proportional to

the variables 𝑆 (𝑡), 𝐼 (𝑡), and 𝑅(𝑡). Many authors have considered the proportional perturbation into

epidemic models and have studied their dynamics [19, 155, 22]. In this section, we simultaneously

consider the stochastic transmission and the proportional perturbation in the SIRS epidemic system.

The combination of these dual fluctuations makes the transmission dynamics more biologically

realistic in a very noisy environment with non-constant population size 𝑁 (𝑡) = 𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡).
The perturbed model can be described by the following stochastic differential equation:
d𝑆 (𝑡) =

(
𝐴 + 𝑏 (𝑆 (𝑡) + 𝑅(𝑡)) − β𝑆 (𝑡)𝐼 (𝑡) − µ1𝑆 (𝑡) + 𝑝𝑏𝐼 (𝑡) + γ1𝐼 (𝑡) + 𝑘𝑅(𝑡)

)
d𝑡

+σ1𝑆 (𝑡)dW1(𝑡)−σ4𝑆 (𝑡)𝐼 (𝑡)dW4(𝑡),
d𝐼 (𝑡) =

(
β𝑆 (𝑡)𝐼 (𝑡) + 𝑞𝑏𝐼 (𝑡) − (µ2 + γ1 + γ2)𝐼 (𝑡)

)
d𝑡+σ2𝐼 (𝑡)dW2(𝑡)+σ4𝑆 (𝑡)𝐼 (𝑡)dW4(𝑡),

d𝑅(𝑡) =
(
γ2𝐼 (𝑡) − (µ3 + 𝑘)𝑅(𝑡)

)
d𝑡+σ3𝑅(𝑡)dW3(𝑡),

(V.19)

where W𝑖 (𝑡) (𝑖 = 1, 2, 3, 4) represent independent Brownian motions defined on the complete prob-

ability space (Ω, F , {F𝑡 }𝑡 ≥0, P) with positive intensities σ𝑖 > 0 (𝑖 = 1, 2, 3, 4). Here, µ2 = µ + α2 and

µ3 = µ + α3 are the general mortality rates, where α2 and α3 are the mortality rates associated to

the disease.

This section aims to analyze the asymptotic behavior of the epidemic system (V.19). We will

give a sharp condition for the existence of the unique ergodic stationary distribution by using a

new method different from the Lyapunov method described in [57]. Our method allows combining

the persistence and the ergodicity under the same optimal condition which is not provided with

the classical method. As a result, we treat a problem that is ignored in literature; it is not

biologically reasonable to consider two distinct conditions for the persistence and the existence of

the stationary distribution. Another approach to study the asymptotic behavior of the stochastic

solution was considered by [48, 47, 146]. They investigated the asymptotic behavior around the

endemic and disease-free equilibria by measuring the mean value of the oscillation between the

solution and the deterministic equilibria. But, to the best of our knowledge, this approach has

not been obtained theoretically until now in the case of the stochastic system (V.19). Thus, it is

significant to study the dynamical behaviors around the deterministic equilibria 𝐸� and 𝐸~ in this

general context. Under some restricted conditions of white noise intensities, we prove that the time

average of the distance (or mean distance) between the stochastic solution and the deterministic

equilibrium is eventually small. Furthermore, we focus on sufficient conditions for the extinction

case in order to give a general view of the dynamics of an epidemic modeled by the system (V.19).

The following lemma aims to show the existence and uniqueness of the global positive solution,

which is necessary for analyzing the long-term behavior of the model (V.19). Since the proof is

standard (see [58]), we present it without proof.

Lemma 3.1. For any initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+, there exists a unique positive solution

(𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) of the system (V.19) on 𝑡 ≥ 0, and the solution will remain in R3
+ with probability one.

By using Lemma 3.1, we obtain the following important result.

Lemma 3.2. Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of (V.19) with initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+,

then for any 𝑝1 ∈
[

1
2 ,

1
2 + µ1−𝑏

σ2

)
, we have the following estimations:

E[𝑁 2𝑝1 (𝑡)] ≤ 2𝐶1 (2𝑝1)
𝐶2 (2𝑝1) + 𝑁 2𝑝1 (0)𝑒 {−𝑝1𝐶2 (2𝑝1)𝑡 } and lim sup

𝑡→∞
1
𝑡

∫ 𝑡
0 E[𝑁

2𝑝1 (𝑢)]d𝑢 ≤ 2𝐶1 (2𝑝1)
𝐶2 (2𝑝1) ,

where σ2 = max{σ2
1,σ

2
2,σ

2
3}, 𝐶2(2𝑝1) = (µ1 − 𝑏) − (2𝑝1−1)

2 σ2
and 𝐶1(2𝑝1) = sup

𝑥>0

{
𝐴𝑥2𝑝1−1 − 𝐶2 (2𝑝1)

2 𝑥2𝑝1
}
.

Proof. From system (I.2), we have

d𝑁 (𝑡) =
(
𝐴 − (𝜇1 − 𝑏)𝑁 (𝑡) − 𝛼2𝐼 (𝑡) − 𝛼3𝑅(𝑡)

)
d𝑡 + σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑅(𝑡)dW3(𝑡).
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Making use of Itô’s formula, we obtain

d𝑁 2𝑝1 (𝑡) = 2𝑝1𝑁
2𝑝1−1(𝑡)

(
𝐴 − (𝜇1 − 𝑏)𝑁 (𝑡) − 𝛼2𝐼 (𝑡) − 𝛼3𝑅(𝑡)

)
d𝑡

+ 2𝑝1(2𝑝1 − 1)
2

𝑁 2𝑝1−2(𝑡)
(
σ2

1𝑆
2(𝑡) + σ2

2𝐼
2(𝑡) + σ2

3𝑅
2(𝑡)

)
d𝑡

+ 2𝑝1𝑁
2𝑝1−1(𝑡)

(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑅(𝑡)dW3(𝑡)

)
.

Then

d𝑁 2𝑝1 (𝑡) ≤ 2𝑝1

[
𝐴𝑁 2𝑝1−1(𝑡) −

(
(𝜇1 − 𝑏) −

(2𝑝1 − 1)
2

σ2
)
𝑁 2𝑝1 (𝑡)

]
d𝑡

+ 2𝑝1𝑁
2𝑝1−1(𝑡)

(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑅(𝑡)dW3(𝑡)

)
≤ 2𝑝1

[
𝐶1(2𝑝1) −

𝐶2(2𝑝1)
2

𝑁 2𝑝1 (𝑡)
]
𝑑𝑡

+ 2𝑝1𝑁
2𝑝1−1(𝑡)

(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑅(𝑡)dW3(𝑡)

)
, (V.20)

where 𝐶1(2𝑝1) = sup
𝑥>0

{𝐴𝑥2𝑝1−1 − 𝐶2 (2𝑝1)
2 𝑥2𝑝1} and 𝐶2(2𝑝1) = (𝜇1 − 𝑏) − (2𝑝1−1)

2 𝜂2
. On the other hand, we

have

d

[
𝑁 2𝑝1 (𝑡)𝑒𝑝1𝐶2 (2𝑝1)𝑡

]
= 𝑝1𝐶2(2𝑝1)𝑁 2𝑝1 (𝑡)𝑒𝑝1𝐶2 (2𝑝1)𝑡 + 𝑒𝑝1𝐶2 (2𝑝1)𝑡

d𝑁 2𝑝1 (𝑡) .

In view of (V.20), we get

d

[
𝑁 2𝑝1 (𝑡)𝑒𝑝1𝐶2 (2𝑝1)𝑡

]
≤ 2𝑝1𝑒

𝑝1𝐶2 (2𝑝1)𝑡
[
𝐶1(2𝑝1)d𝑡 + 𝑁 2𝑝1−1(𝑡)

(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑅(𝑡)dW3(𝑡)

)]
. (V.21)

Integrating (V.21) from 0 to 𝑡 , then by taking the expectation, we get

E[𝑁 2𝑝1 (𝑡)] ≤ 𝑁 2𝑝1 (0)𝑒−𝑝1𝐶2 (2𝑝1)𝑡 + 2𝑝1𝐶1(2𝑝1)
∫ 𝑡

0
𝑒−𝑝1𝐶2 (2𝑝1) (𝑡−𝑢)

d𝑢 ≤ 𝑁 2𝑝1 (0)𝑒−𝑝1𝐶2 (2𝑝1)𝑡 + 2𝐶1(2𝑝1)
𝐶2(2𝑝1)

.

Obviously, we obtain

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E[𝑁 2𝑝1 (𝑢)]d𝑢 ≤ 𝑁 2𝑝1 (0)lim sup

𝑡→∞

1
𝑡

∫ 𝑡

0
𝑒−𝑝1𝐶2 (2𝑝1)𝑢

d𝑢 + 2𝐶1(2𝑝1)
𝐶2(2𝑝1)

=
2𝐶1(2𝑝1)
𝐶2(2𝑝1)

.

This completes the proof of Lemma 3.1.

Now, we consider the following auxiliary stochastic differential equation

d𝜓 (𝑡) =
(
𝐴 − (µ1 − 𝑏)𝜓 (𝑡)

)
d𝑡 + σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑅(𝑡)dW3(𝑡), (V.22)

with the initial condition 𝜓 (0) = 𝑁 (0) > 0.

Remark 3.3. Note the positivity of the solutions (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) and 𝜓 (𝑡), then 𝑁 (𝑡) ≤ 𝜓 (𝑡) a.s.

holds due to the stochastic comparison theorem.

Lemma 3.4 ([63]). Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the positive solution of the system (V.19) with any given
initial condition (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3

+. Let also 𝜓 (𝑡) ∈ R+ be the solution of the equation (V.22) with
any given initial value 𝜓 (0) ∈ R+. Then

lim
𝑡→∞

𝜓 (𝑡)
𝑡

= 0, lim
𝑡→∞

𝜓 2(𝑡)
𝑡

= 0, lim
𝑡→∞

𝑆 (𝑡)
𝑡

= 0, lim
𝑡→∞

𝐼 (𝑡)
𝑡

= 0, and lim
𝑡→∞

𝑅(𝑡)
𝑡

= 0 a.s.
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Moreover, if µ1 − 𝑏 > σ2

2 , then

lim
𝑡→∞

∫ 𝑡
0 𝑆 (𝑢)dW1(𝑢)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0 𝑆 (𝑢)dW4(𝑢)

𝑡
= 0,

lim
𝑡→∞

∫ 𝑡
0 𝐼 (𝑢)dW2(𝑢)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0 𝑅(𝑢)dW3(𝑢)

𝑡
= 0 a.s.

Similar to the proof of the last Lemma (see Lemma 2.2 in [93]), we can easily prove the next

result by using Burkholder-Davis-Gundy inequality [93], Doob’s martingale inequality [93], and

Borel-Cantelli Lemma [93].

Lemma 3.5 ([63]). Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the positive solution of the system (V.19) with any given
initial condition (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3

+ and 𝜓 (𝑡) ∈ R+ be the solution of the equation (V.22) with any
given initial value 𝜓 (0) ∈ R+. If µ1 − 𝑏 > σ2

2 , then

lim
𝑡→∞

∫ 𝑡
0 𝑆

2(𝑢)dW1(𝑢)
𝑡

= 0, lim
𝑡→∞

∫ 𝑡
0 𝑆

2(𝑢)dW4(𝑢)
𝑡

= 0,

lim
𝑡→∞

∫ 𝑡
0 𝐼

2(𝑢)dW2(𝑢)
𝑡

= 0, lim
𝑡→∞

∫ 𝑡
0 𝑅

2(𝑢)dW3(𝑢)
𝑡

= 0 a.s.

Remark 3.6. In the following, we always assume that µ1 − 𝑏 > σ2

2 . This assumption is a standard

key parametric condition for the proofs of our results.

Now, we are in a position to show and prove our main results, which is given in the following

subsection.

3.2 Main results
3.2.1 Ergodicity and persistence in the mean

Before establishing the condition for the existence of the stationary distribution to system (V.19),

we start with the following lemma.

Lemma 3.7. Let 𝜓 (𝑡) ∈ R+ be the solution of the equation (V.22) with any given initial value
𝜓 (0) = 𝑁 (0) ∈ R+. Then

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 (𝑢)d𝑢 =

𝐴

µ1 − 𝑏
a.s.

and

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 2(𝑢)d𝑢 ≤ 2𝐴2

(µ1 − 𝑏) (2(µ1 − 𝑏) − σ2)
a.s.

Proof. We integrate (V.22) from 0 to 𝑡 on both sides, then

𝜓 (𝑡) −𝜓 (0) = 𝐴𝑡 + (µ1 − 𝑏)
∫ 𝑡

0
𝜓 (𝑢)d𝑢 + σ1

∫ 𝑡

0
𝑆 (𝑢)dW1(𝑢) + σ2

∫ 𝑡

0
𝐼 (𝑢)dW2(𝑢) + σ3

∫ 𝑡

0
𝑅(𝑢)dW3(𝑢) .

Therefore, we get

1
𝑡

∫ 𝑡

0
𝜓 (𝑢)d𝑢 =

𝐴

µ1 − 𝑏
− 𝜓 (𝑡) −𝜓 (0)(µ1 − 𝑏)𝑡

+ σ1
(µ1 − 𝑏)𝑡

∫ 𝑡

0
𝑆 (𝑢)dW2(𝑢)

+ σ2
(µ1 − 𝑏)𝑡

∫ 𝑡

0
𝐼 (𝑢)dW2(𝑢) +

σ3
(µ1 − 𝑏)𝑡

∫ 𝑡

0
𝑅(𝑢)dW3(𝑢) .
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By using Lemma 3.4, we get

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 (𝑢)d𝑢 =

𝐴

µ1 − 𝑏
a.s. (V.23)

By Itô’s formula for all 𝑡 ≥ 0, we have

d𝜓 2(𝑡) =
(
2𝜓 (𝑡)

(
𝐴 − (µ1 − 𝑏)𝜓 (𝑡)

)
+ σ2

1𝑆
2(𝑡) + σ2

2𝐼
2(𝑡) + σ2

3𝑅
2(𝑡)

)
d𝑡

+ 2𝜓 (𝑡)
(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑅(𝑡)dW3(𝑡)

)
≤

(
2𝜓 (𝑡)

(
𝐴 − (µ1 − 𝑏)𝜓 (𝑡)

)
+ σ2𝜓 2(𝑡)

)
d𝑡

+ 2𝜓 (𝑡)
(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑅(𝑡)dW3(𝑡)

)
. (V.24)

Obviously, we obtain

1
𝑡

∫ 𝑡

0
𝜓 2(𝑢)d𝑢 ≤ 2𝐴

(2(µ1 − 𝑏) − σ2)
1
𝑡

∫ 𝑡

0
𝜓 (𝑢)d𝑢 − 𝜓 2(𝑡) −𝜓 2(0)

(2(µ1 − 𝑏) − σ2)𝑡
+ σ1

(2(µ1 − 𝑏) − σ2)𝑡

∫ 𝑡

0
𝜓 (𝑢)𝑆 (𝑢)dW1(𝑢)

+ σ2

(2(µ1 − 𝑏) − σ2)𝑡

∫ 𝑡

0
𝜓 (𝑢)𝐼 (𝑢)dW2(𝑢) +

σ3

(2(µ1 − 𝑏) − σ2)𝑡

∫ 𝑡

0
𝜓 (𝑢)𝑅(𝑢)dW3(𝑢) .

Using the same method as that used in the demonstration of Lemma 2.5. in [63], we obtain

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 (𝑢)𝑆 (𝑢)dW1(𝑢) = 0

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 (𝑢)𝐼 (𝑢)dW2(𝑢) = 0

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 (𝑢)𝑅(𝑢)dW3(𝑢) = 0 a.s.

Therefore, we can see that

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 2(𝑢)d𝑢 ≤ 2𝐴2

(µ1 − 𝑏) (2(µ1 − 𝑏) − σ2)
a.s. (V.25)

For simplicity, we define

R𝑠0 =
1(

µ2 + γ1 + γ2 − 𝑞𝑏 +
σ2

2
2

) (
β𝐴

(µ1 − 𝑏)
−

σ2
4𝐴

2

(µ1 − 𝑏) (2(µ1 − 𝑏) − σ2)

)
.

Theorem 3.8. If R𝑠0 > 1, then the stochastic system (V.19) admits a unique stationary distribution
and it has the ergodic property for any initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3

+.

Proof. Similar to the proof of Lemma 3.2 in [135], we briefly verify the Feller property of the

stochastic model (V.19). The main purpose of this demonstration is to prove that (II.22) is impos-

sible. We define

V(𝑡) = ln 𝐼 (𝑡) −𝑚
(
𝜓 (𝑡) − 𝑆 (𝑡)

)
,

where 𝑚 is a positive constant to be determined later. Applying Itô’s formula gives

dV(𝑡) =
(
β𝑆 (𝑡) − (µ2 + γ1 + γ2 − 𝑞𝑏) −

σ2
4

2
𝑆2(𝑡) −

σ2
2

2

)
d𝑡 + σ4𝑆 (𝑡)dW4(𝑡) + σ2dW2(𝑡)

−𝑚
(
− (µ1 − 𝑏)

(
𝜓 (𝑡) − 𝑆 (𝑡)

)
+ β𝑆 (𝑡)𝐼 (𝑡) − (𝑝𝑏 + γ1)𝐼 (𝑡) − (𝑏 + 𝑘)𝑅(𝑡)

)
d𝑡

−𝑚σ2𝐼 (𝑡)dW2(𝑡) −𝑚σ3𝑅(𝑡)dW3(𝑡) +𝑚σ4𝑆 (𝑡)𝐼 (𝑡)dW4(𝑡) .
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We choose 𝑚 =
β

µ1−𝑏 , then we have

dV(𝑡) =
(
β𝑆 (𝑡) −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
−
σ2

4
2
𝑆2(𝑡)

)
d𝑡 + β

(
𝜓 (𝑡) − 𝑆 (𝑡)

)
d𝑡

+ β(𝑝𝑏 + γ1)
µ1 − 𝑏

𝐼 (𝑡)d𝑡 + β(𝑏 + 𝑘)
µ1 − 𝑏

𝑅(𝑡)d𝑡 − β2

µ1 − 𝑏
𝑆 (𝑡)𝐼 (𝑡)d𝑡 + σ4𝑆 (𝑡)dW4(𝑡)

+ σ2dW2(𝑡) −𝑚σ2𝐼 (𝑡)dW2(𝑡) −𝑚σ3𝑅(𝑡)dW3(𝑡) +𝑚σ4𝑆 (𝑡)𝐼 (𝑡)dW4(𝑡).

Consequently,

dV(𝑡) ≥
(
β𝜓 (𝑡) −

σ2
4

2
𝑆2(𝑡) −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

))
d𝑡 − β2

µ1 − 𝑏
𝑆 (𝑡)𝐼 (𝑡)d𝑡 + σ4𝑆 (𝑡)dW4(𝑡)

+ σ2dW2(𝑡) −𝑚σ2𝐼 (𝑡)dW2(𝑡) −𝑚σ3𝑅(𝑡)dW3(𝑡) +𝑚σ4𝑆 (𝑡)𝐼 (𝑡)dW4(𝑡). (V.26)

Integrating from 0 to 𝑡 on both sides of (V.26) yields

V(𝑡) − V(0) ≥

∫
𝑡

0

(
β𝜓 (𝑢) −

σ2
4

2
𝑆2(𝑢) −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

))
d𝑢

− β

µ1 − 𝑏

∫ 𝑡

0
β𝑆 (𝑢)𝐼 (𝑢)d𝑢 + σ4

∫ 𝑡

0
𝑆 (𝑢)dW4(𝑢) + σ2W2(𝑡)

−𝑚σ2

∫ 𝑡

0
𝐼 (𝑢)dW2(𝑢) −𝑚σ3

∫ 𝑡

0
𝑅(𝑢)dW3(𝑢) +𝑚σ4

∫ 𝑡

0
𝑆 (𝑢)𝐼 (𝑢)dW4(𝑢).

Then, we get∫ 𝑡

0
β𝑆 (𝑢)𝐼 (𝑢)d𝑢 ≥ µ1 − 𝑏

β

∫
𝑡

0

(
β𝜓 (𝑢) −

σ2
1

2
𝑆2(𝑢) −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

))
d𝑢 +

(
𝜓 (𝑡) − 𝑆 (𝑡)

)
−

(
𝜓0 − 𝑆0

)
− µ1 − 𝑏

β
ln
𝐼 (𝑡)
𝐼 (0) +

σ4
𝑚

∫ 𝑡

0
𝑆 (𝑢)dW4(𝑢) +

σ2
𝑚

W2(𝑡)

− σ2

∫ 𝑡

0
𝐼 (𝑢)dW2(𝑢) − σ3

∫ 𝑡

0
𝑅(𝑢)dW3(𝑢) + σ4

∫ 𝑡

0
𝑆 (𝑢)𝐼 (𝑢)dW4(𝑢) . (V.27)

From Lemma 3.4, one can derive that

lim
𝑡→∞

𝜓 (𝑡)
𝑡

= 0 and lim
𝑡→∞

𝑆 (𝑡)
𝑡

= 0 a.s.

Moreover,

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆 (𝑢)dW4(𝑢) = 0 lim

𝑡→∞
1
𝑡

∫ 𝑡

0
𝐼 (𝑢)dW2(𝑢) = 0 and lim

𝑡→∞
1
𝑡

∫ 𝑡

0
𝑅(𝑢)dW3(𝑢) = 0 a.s.

Applications of the strong law of large numbers shows that

lim
𝑡→∞

W2(𝑡)
𝑡

= 0 a.s.

Applying similar arguments to those in (Theorem 3.1, [25]), we obtain

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆 (𝑢)𝐼 (𝑢)dW4(𝑢) = 0 a.s.

Since lim sup
𝑡→∞

1
𝑡

ln 𝐼 (𝑡 )
𝐼 (0) ≤ lim sup

𝑡→∞
1
𝑡

ln 𝑁 (𝑡 )
𝐼 (0) ≤ 0, we get

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
β𝑆 (𝑢)𝐼 (𝑢)d𝑢 ≥ (µ1 − 𝑏)

β
lim inf
𝑡→∞

1
𝑡

∫
𝑡

0

(
β𝜓 (𝑢) −

σ2
1

2
𝜓 2(𝑢) −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

))
d𝑢

=
(µ1 − 𝑏)

β
lim
𝑡→∞

1
𝑡

∫
𝑡

0

(
β𝜓 (𝑢) −

σ2
1

2
𝜓 2(𝑢) −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

))
d𝑢.

(V.28)
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By Lemma 3.7, we then have

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
β𝑆 (𝑢)𝐼 (𝑢)d𝑢 ≥ (µ1 − 𝑏)

β
×

(
β𝐴

(µ1 − 𝑏)
−

𝐴2σ2
1

(µ1 − 𝑏) (2(µ1 − 𝑏) − σ2)
−

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

))
=

(µ1 − 𝑏)
β

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
(R𝑠0 − 1) > 0 a.s.

The remaining of the proof follows the lines of demonstration of Theorem 1.10.

In the following result, we give the condition for persistence in the mean of the disease.

Theorem 3.9. If R𝑠0 > 1, then for any value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3
+, the disease 𝐼 (𝑡) is persistent in

the mean.

Proof. By the model (V.19), we have

d(𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡)) =
(
𝐴 − (µ1 − 𝑏) (𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡)) − α2𝐼 (𝑡) − α3𝑅(𝑡)

)
d𝑡

+ σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑅(𝑡)dW3(𝑡) . (V.29)

Integrating (V.29) from 0 to 𝑡 , and then dividing 𝑡 on both sides, we get

1
𝑡

(
(𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡)) − (𝑆 (0) + 𝐼 (0) + 𝑅(0))

)
= 𝐴 − (µ1 − 𝑏)

1
𝑡

∫ 𝑡

0
𝑆 (𝑢)d𝑢 − (µ2 − 𝑏)

1
𝑡

∫ 𝑡

0
𝐼 (𝑢)d𝑢 − (µ3 − 𝑏)

1
𝑡

∫ 𝑡

0
𝑅(𝑢)d𝑢

+ σ1
𝑡

∫ 𝑡

0
𝑆 (𝑢)dW1(𝑢) +

σ2
𝑡

∫ 𝑡

0
𝐼 (𝑢)dW2(𝑢) +

σ3
𝑡

∫ 𝑡

0
𝑅(𝑢)dW3(𝑢).

Taking the integration for the third equation of model (V.19) yields

𝑅(𝑡) − 𝑅(0) = γ2

∫ 𝑡

0
𝐼 (𝑢)d𝑢 − (µ1 + 𝑘)

∫ 𝑡

0
𝑅(𝑢)d𝑢 + σ3

∫ 𝑡

0
𝑅(𝑢)dW3(𝑢). (V.30)

Dividing 𝑡 on both sides of equation (V.30), we have

1
𝑡

∫ 𝑡

0
𝑅(𝑢)d𝑢 =

γ2
(µ1 + 𝑘)

1
𝑡

∫ 𝑡

0
𝐼 (𝑢)d𝑢 + σ3

(µ1 + 𝑘)
1
𝑡

∫ 𝑡

0
𝑅(𝑢)dW3(𝑢)

− 1
(µ1 + 𝑘)𝑡

(𝑅(𝑡) − 𝑅(0)).

Then, one can obtain that

1
𝑡

∫ 𝑡

0
𝑆 (𝑢)d𝑢 =

𝐴

(µ1 − 𝑏)
− 1
𝑡

(
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑢)d𝑢 + Φ1(𝑡), (V.31)

where

Φ1(𝑡) =
σ3

(µ1 + 𝑘)𝑡

∫ 𝑡

0
𝑅(𝑢)dW3(𝑢) −

1
(µ1 + 𝑘)𝑡

(𝑅(𝑡) − 𝑅(0))

+ 1
(µ1 − 𝑏)𝑡

(
σ1
𝑡

∫ 𝑡

0
𝑆 (𝑢)dW1(𝑢) +

σ2
𝑡

∫ 𝑡

0
𝐼 (𝑢)dW2(𝑢) +

σ3
𝑡

∫ 𝑡

0
𝑅(𝑢)dW3(𝑢)

)
− 1

(µ1 − 𝑏)𝑡

(
(𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡)) − (𝑆 (0) + 𝐼 (0) + 𝑅(0))

)
.

Applying Itô’s formula to the second equation of (V.19), we get

d ln 𝐼 (𝑡) =
(
β𝑆 (𝑡) −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
−
σ2

4
2
𝑆2(𝑡)

)
d𝑡 + σ4𝑆 (𝑡)dW4(𝑡) + σ2dW2(𝑡) . (V.32)
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Integrating (V.32) from 0 to 𝑡 and then dividing 𝑡 on both sides, we have

1
𝑡
(ln 𝐼 (𝑡) − ln(0)) = β

𝑡

∫ 𝑡

0
𝑆 (𝑢)d𝑢 −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
−
σ2

4
2𝑡

∫ 𝑡

0
𝑆2(𝑢)d𝑢

+ σ4
𝑡

∫ 𝑡

0
𝑆 (𝑢)dW4(𝑢) +

σ2
𝑡
W2(𝑡) .

From (V.31), we get

1
𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) = β𝐴

(µ1 − 𝑏)
− β

𝑡

(
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑢)d𝑢

+ βΦ1(𝑡) −
(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
−
σ2

4
2𝑡

∫ 𝑡

0
𝑆2(𝑢)d𝑢

+ σ4
𝑡

∫ 𝑡

0
𝑆 (𝑢)dW4(𝑢) +

σ2
𝑡
W2(𝑡).

By Lemma 3.7 and Remark 3.3, we obtain

1
𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) ≥

(
β𝐴

(µ1 − 𝑏)
−
σ2

4
2𝑡

∫ 𝑡

0
𝜓 2(𝑢)d𝑢 −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

))
+ βΦ1(𝑡) −

β

𝑡

(
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑢)d𝑢

+ σ4
𝑡

∫ 𝑡

0
𝑆 (𝑢)dW4(𝑢) +

σ2
𝑡
W2(𝑡) .

Hence, we further have

β

𝑡

(
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑢)d𝑢 ≥

(
β𝐴

(µ1 − 𝑏)
−
σ2

4
2𝑡

∫ 𝑡

0
𝜓 2(𝑢)d𝑢 −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

))
+ βΦ1(𝑡) −

1
𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) + σ4

𝑡

∫ 𝑡

0
𝑆 (𝑢)dW4(𝑢) +

σ2
𝑡
W2(𝑡) .

Based on Lemma 3.4, we obtain

lim
𝑡→∞

Φ1(𝑡) = 0, lim
𝑡→∞

1
𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) = 0 and lim

𝑡→∞
σ4
𝑡

∫ 𝑡

0
𝑆 (𝑢)dW4(𝑢) = 0 a.s.

Applications of the strong law of large numbers shows that

lim
𝑡→∞

σ2W2(𝑡)
𝑡

= 0 a.s.

Then, we conclude that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
𝐼 (𝑢)d𝑢

≥ 1
β

(
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

)−1
(

β𝐴

(µ1 − 𝑏)
− 2𝐴2

(µ1 − 𝑏) (2(µ1 − 𝑏) − σ2)
−

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

))
=

1
β

(
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

)−1
(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
(R𝑠0 − 1) > 0 a.s.

This shows that the system (V.19) is persistent in the mean with probability one. This completes

the proof.
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3.2.2 Asymptotic behavior around the endemic equilibrium

When R0 =
β𝐴

(µ1 − 𝑏) (µ2 + γ1 + γ2 − 𝑞𝑏)
> 1, the endemic equilibrium 𝐸~ of the deterministic system

is globally asymptotically stable. However, the stochastic model (V.19) does not have the endemic

equilibrium 𝐸~. In this subsection, we show that the solution of the stochastic model (V.19)

oscillates around 𝐸~ under certain conditions. We prove that the distance between the solution

𝑋 (𝑡) = (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) and the endemic equilibrium 𝐸~ has the following form:

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
‖𝑋 (𝑢) − 𝐸~‖2

d𝑢 ≤ 𝐶, a.s.

where 𝐶 is a positive constant. For simplicity, we introduce the following notations:

𝑟1 = γ2
(
2(µ1 − 𝑏) + α2 + γ2

) (
2(µ1 − 𝑏) + α3

)
+ γ2(𝑏 + 𝑘)

(
2(µ1 − 𝑏) + α2

)
,

𝑟2 = γ2β
(
2(µ1 − 𝑏) + α3

)
,

𝑟3 = γ2β(𝑏 + 𝑘),
𝑟4 = α2β(𝑏 + 𝑘),
𝑠1 =

(
𝑟1 + 𝑟3

) (
(µ1 − 𝑏) − σ2

1
)
,

𝑠2 = 𝑟2
(
(µ2 − 𝑏 + γ2) − σ2

2
)
+ 𝑟3

(
(µ2 − 𝑏) − σ2

2
)
,

𝑠3 = 𝑟3
(
(µ3 − 𝑏) − σ2

3
)
+ 𝑟4

(
(µ3 + 𝑘) − σ2

3
)
,

𝑠4 =
𝑟1
2
σ2

2𝐼
∗ + 𝑟2

2
σ2

1𝑆
∗2 + 𝑟2

2
σ2

2𝐼
∗2 + 𝑟3σ2

1𝑆
∗2 + 𝑟3σ2

2𝐼
∗2 + 𝑟3σ2

3𝑅
∗2 + 𝑟3σ2

4𝑅
∗2,

Ŝ = 𝑠4 +
𝑟1σ

2
4𝐼

∗

(µ1 − 𝑏) (2(µ1 − 𝑏) − σ2)
.

Theorem 3.10. Assume that (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) is the solution of the model (𝑉 .19) with the initial value
(𝑆 (0), 𝐼 (0), 𝑅(0)) ∈ R3

+. If R0 > 1, 𝑠1 > 0, 𝑠2 > 0, and 𝑠3 > 0, then

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0

(
𝑠1(𝑆 (𝑢) − 𝑆∗)2 + 𝑠2(𝐼 (𝑢) − 𝐼 ∗)2 + 𝑠3(𝑅(𝑢) − 𝑅∗)2

)
d𝑢 ≤ Ŝ a.s.

Proof. We define the following non-negative function

𝑓 (𝑆, 𝐼 , 𝑅) = 𝑟1 𝑓1(𝐼 ) + 𝑟2 𝑓2(𝑆, 𝐼 ) + 𝑟3 𝑓3(𝑆, 𝐼 , 𝑅) + 𝑟4 𝑓4(𝑅),

where

𝑓1(𝐼 ) = 𝐼 − 𝐼 ∗ − 𝐼 ∗ ln
𝐼

𝐼 ∗
,

𝑓2(𝑆, 𝐼 ) =
1
2
(𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗)2,

𝑓3(𝑆, 𝐼 , 𝑅) =
1
2
(𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗ + 𝑅 − 𝑅∗)2,

𝑓4(𝑅) =
1
2
(𝑅 − 𝑅∗)2.

Then, by Itô’s formula, we obtain

d𝑓1(𝐼 ) = L 𝑓1d𝑡 + σ2 (𝐼 − 𝐼 ∗) dW2(𝑡) + σ4𝑆 (𝐼 − 𝐼 ∗) dW4(𝑡),

where

L 𝑓1 = β (𝑆 − 𝑆∗) (𝐼 − 𝐼 ∗) +
σ2

2
2
𝐼 ∗ +

σ2
4

2
𝑆2𝐼 ∗.
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Similarly, by Itô’s formula, we arrive at

d𝑓2(𝑆, 𝐼 ) = L 𝑓2d𝑡 + (𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗) (σ1𝑆dW1(𝑡) + σ2𝐼dW2(𝑡)),

where

L 𝑓2 = (𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗)
(
− (µ1 − 𝑏) (𝑆 − 𝑆∗) + (𝑏 + 𝑘) (𝑅 − 𝑅∗)

− (µ2 − 𝑏 + γ2) (𝐼 − 𝐼 ∗)
)
+
σ2

1
2
𝑆2 +

σ2
2

2
𝐼 2

≤ (𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗)
(
− (µ1 − 𝑏) (𝑆 − 𝑆∗) + (𝑏 + 𝑘) (𝑅 − 𝑅∗)

− (µ2 − 𝑏 + γ2) (𝐼 − 𝐼 ∗)
)
+ σ2

1(𝑆 − 𝑆
∗)2 + σ2

1𝑆
∗2 + σ2

2(𝐼 − 𝐼
∗)2 + σ2

2𝐼
∗2.

In a similar way, we get

d𝑓3(𝑆, 𝐼 , 𝑅) = L 𝑓3d𝑡 + (𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗ + 𝑅 − 𝑅∗) (σ1𝑆dW1(𝑡) + σ2𝐼dW2(𝑡) + σ3𝑅dW3(𝑡)),

where

L 𝑓3 = (𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗ + 𝑅 − 𝑅∗)
(
− (µ1 − 𝑏) (𝑆 − 𝑆∗) − (µ2 − 𝑏) (𝐼 − 𝐼 ∗)

− (µ3 − 𝑏) (𝑅 − 𝑅∗)
)
+
σ2

1
2
𝑆2 +

σ2
2

2
𝐼 2 +

σ2
3

2
𝑅2

≤ (𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗ + 𝑅 − 𝑅∗)
(
− (µ1 − 𝑏) (𝑆 − 𝑆∗) − (µ2 − 𝑏) (𝐼 − 𝐼 ∗)

− (µ3 − 𝑏) (𝑅 − 𝑅∗)
)
+ σ2

1(𝑆 − 𝑆
∗)2 + σ2

1𝑆
∗2 + σ2

2(𝐼 − 𝐼
∗)2

+ σ2
2𝐼

∗2 + σ2
3(𝑅 − 𝑅∗)2 + σ2

3𝑅
∗2.

Using Itô’s formula, it follows that

d𝑓4(𝑅) = L 𝑓4d𝑡 + σ4(𝑅 − 𝑅∗)𝑅dW4(𝑡),

where

L 𝑓4 = (𝑅 − 𝑅∗)
(
γ2(𝐼 − 𝐼 ∗) − (µ3 + 𝑘) (𝑅 − 𝑅∗)

)
+
σ2

3
2
𝑅2

≤ (𝑅 − 𝑅∗)
(
γ2(𝐼 − 𝐼 ∗) − (µ3 + 𝑘) (𝑅 − 𝑅∗)

)
+ σ2

3(𝑅 − 𝑅∗)2 + σ2
3𝑅

∗2.

Therefore, we can see that

d𝑓 (𝑆, 𝐼 , 𝑅) = 𝑟1d𝑓1(𝐼 ) + 𝑟2d𝑓2(𝑆, 𝐼 ) + 𝑟3d𝑓3(𝑆, 𝐼 , 𝑅) + 𝑟4d𝑓4(𝑅)
= L 𝑓 d𝑡 + 𝑟1

[
σ2 (𝐼 − 𝐼 ∗) dW2(𝑡) + σ4𝑆 (𝐼 − 𝐼 ∗) dW4(𝑡)

]
+ 𝑟2

[
(𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗) (σ1𝑆dW1(𝑡) + σ2𝐼dW2(𝑡))

]
+ 𝑟3

[
(𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗ + 𝑅 − 𝑅∗) (σ1𝑆dW1(𝑡) + σ2𝐼dW2(𝑡)

+ σ3𝑅(𝑡)dW3(𝑠))
]
+ 𝑟4σ4(𝑅 − 𝑅∗)𝑅dW3(𝑡), (V.33)
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where

L 𝑓 = 𝑟1L 𝑓1 + 𝑟2L 𝑓2 + 𝑟3L 𝑓3 + 𝑟4L 𝑓4
≤ 𝑟1β(𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗) − 𝑟2(µ1 − 𝑏) (𝑆 − 𝑆∗)2 + 𝑟2(𝑏 + 𝑘) (𝑆 − 𝑆∗) (𝑅 − 𝑅∗)
− 𝑟2(µ2 − 𝑏 + γ2) (𝑆 − 𝑆∗) (𝐼 − 𝐼 ∗) − 𝑟2(µ1 − 𝑏) (𝑆 − 𝑆∗) (𝐼 − 𝐼 ∗)
+ 𝑟2(𝑏 + 𝑘) (𝐼 − 𝐼 ∗) (𝑅 − 𝑅∗) − 𝑟2(µ2 − 𝑏 + γ2) (𝐼 − 𝐼 ∗)2

− 𝑟3(µ1 − 𝑏) (𝑆 − 𝑆∗)2 − 𝑟3(µ2 − 𝑏) (𝑆 − 𝑆∗) (𝐼 − 𝐼 ∗)
− 𝑟3(µ3 − 𝑏) (𝑆 − 𝑆∗) (𝑅 − 𝑅∗) − 𝑟3(µ1 − 𝑏) (𝑆 − 𝑆∗) (𝐼 − 𝐼 ∗)
− 𝑟3(µ2 − 𝑏) (𝐼 − 𝐼 ∗)2 − 𝑟3(µ3 − 𝑏) (𝐼 − 𝐼 ∗) (𝑅 − 𝑅∗)
− 𝑟3(µ1 − 𝑏) (𝑅 − 𝑅∗) (𝑆 − 𝑆∗) − 𝑟3(µ2 − 𝑏) (𝐼 − 𝐼 ∗) (𝑅 − 𝑅∗)
− 𝑟3(µ3 − 𝑏) (𝑅 − 𝑅∗)2 + 𝑟4γ2(𝑅 − 𝑅∗) (𝐼 − 𝐼 ∗)

− 𝑟4(µ3 + 𝑘) (𝑅 − 𝑅∗)2 + 𝑟1
σ2

2
2
𝐼 ∗ + 𝑟1

σ2
4

2
𝑆2𝐼 ∗ + 𝑟2σ2

1(𝑆 − 𝑆
∗)2

+ 𝑟2σ2
1𝑆

∗2 + 𝑟2σ2
2(𝐼 − 𝐼

∗)2 + 𝑟2σ2
2𝐼

∗2 + 𝑟3σ2
1(𝑆 − 𝑆

∗)2 + 𝑟3σ2
1𝑆

∗2

+ 𝑟3σ2
2(𝐼 − 𝐼

∗)2 + 𝑟3σ2
2𝐼

∗2 + 𝑟3σ2
3(𝑅 − 𝑅∗)2 + 𝑟3σ2

3𝑅
∗2.

Consequently,

L 𝑓 ≤ 𝑟1
[
β (𝐼 − 𝐼 ∗) (𝑆 − 𝑆∗) +

σ2
2

2
𝐼 ∗ +

σ2
4

2
𝑆2𝐼 ∗

]
+ 𝑟2

[
(𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗)

(
− (µ1 − 𝑏) (𝑆 − 𝑆∗) + (𝑏 + 𝑘) (𝑅 − 𝑅∗)

+ (µ2 − 𝑏 + γ1 + γ2) (𝐼 − 𝐼 ∗)
)
+ σ2

1(𝑆 − 𝑆
∗)2 + σ2

1𝑆
∗2 + σ2

2(𝐼 − 𝐼
∗)2 + σ2

2𝐼
∗2

]
+ 𝑟3

[
(𝑆 − 𝑆∗ + 𝐼 − 𝐼 ∗ + 𝑅 − 𝑅∗)

(
− (µ1 − 𝑏) (𝑆 − 𝑆∗) + (µ2 − 𝑏) (𝐼 − 𝐼 ∗)

+ (µ3 − 𝑏) (𝑅 − 𝑅∗)
)
+ σ2

1(𝑆 − 𝑆
∗)2 + σ2

1𝑆
∗2 + σ2

2(𝐼 − 𝐼
∗)2 + σ2

2𝐼
∗2

+ σ2
3(𝑅 − 𝑅∗)2 + σ2

3𝑅
∗2

]
+ 𝑟4

[
(𝑅 − 𝑅∗)

(
γ2(𝐼 − 𝐼 ∗) − (µ3 + 𝑘) (𝑅 − 𝑅∗)

)
+ σ2

3(𝑅 − 𝑅∗)2 + σ2
3𝑅

∗2
]
.

Then, we obtain

L 𝑓 ≤ −
( (
𝑟1 + 𝑟3

) (
(µ1 − 𝑏) − σ2

1
) )
(𝑆 − 𝑆∗)2

−
(
𝑟2

(
(µ2 − 𝑏 + γ2) − σ2

2
)
+ 𝑟3

(
(µ2 − 𝑏) − σ2

2
) )
(𝐼 − 𝐼 ∗)2

−
(
𝑟3

(
(µ3 − 𝑏) − σ2

3
)
+ 𝑟4

(
(µ3 + 𝑘) − σ2

3
) )
(𝑅 − 𝑅∗)2

+ 𝑟1
2
σ2

2𝐼
∗ + 𝑟2

2
σ2

1𝑆
∗2 + 𝑟2

2
σ2

2𝐼
∗2 + 𝑟3σ2

1𝑆
∗2

+ 𝑟3σ2
2𝐼

∗2 + 𝑟3σ2
3𝑅

∗2 + 𝑟3σ2
4𝑅

∗2 + 𝑟1
σ2

4
2
𝑆2𝐼 ∗

= −𝑠1(𝑆 − 𝑆∗)2 − 𝑠2(𝐼 − 𝐼 ∗)2 − 𝑠3(𝑅 − 𝑅∗)2 + 𝑠4 + 𝑟1
σ2

4
2
𝑆2𝐼 ∗.

Integrating both sides of (V.33) from 0 to 𝑡 , yields

0 ≤ 𝑓 (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) = 𝑓 (𝑆 (0), 𝐼 (0), 𝑅(0)) +
∫ 𝑡

0
L 𝑓 (𝑆 (𝑢), 𝐼 (𝑢), 𝑅(𝑢))d𝑢 + Z(𝑡),
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where

Z(𝑡) = 𝑟1σ2

∫ 𝑡

0
(𝐼 (𝑢) − 𝐼 ∗) dW2(𝑢) + 𝑟1σ4

∫ 𝑡

0
𝑆 (𝑢) (𝐼 (𝑢) − 𝐼 ∗) dW4(𝑢)

+ 𝑟2σ1

∫ 𝑡

0
(𝑆 (𝑢) − 𝑆∗ + 𝐼 (𝑢) − 𝐼 ∗)𝑆 (𝑢)dW1(𝑢)

+ 𝑟2σ2

∫ 𝑡

0
(𝑆 (𝑢) − 𝑆∗ + 𝐼 (𝑢) − 𝐼 ∗)𝐼 (𝑢)dW2(𝑢))

+ 𝑟3σ1

∫ 𝑡

0
(𝑆 (𝑢) − 𝑆∗ + 𝐼 (𝑢) − 𝐼 ∗ + 𝑅(𝑢) − 𝑅∗)𝑆 (𝑢)dW1(𝑢)

+ 𝑟3σ2

∫ 𝑡

0
(𝑆 (𝑢) − 𝑆∗ + 𝐼 (𝑢) − 𝐼 ∗ + 𝑅(𝑢) − 𝑅∗)𝐼 (𝑢)dW2(𝑢)

+ 𝑟3σ3

∫ 𝑡

0
(𝑆 (𝑢) − 𝑆∗ + 𝐼 (𝑢) − 𝐼 ∗ + 𝑅(𝑢) − 𝑅∗)𝑅(𝑢)dW3(𝑢)

+ 𝑟4
∫ 𝑡

0
σ4(𝑅(𝑢) − 𝑅∗)𝑅(𝑢)dW3(𝑢).

It then follows that

0 ≤ 1
𝑡
𝑓 (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) ≤ 1

𝑡
𝑓 (𝑆 (0), 𝐼 (0), 𝑅(0))

− 1
𝑡

∫ 𝑡

0

(
𝑠1(𝑆 (𝑢) − 𝑆∗)2 − 𝑠2(𝐼 (𝑢) − 𝐼 ∗)2 − 𝑠3(𝑅(𝑢) − 𝑅∗)2

)
d𝑢

+ 𝑠4 +
𝑟1σ

2
4𝐼

∗

2𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠 + Z(𝑡)

𝑡
.

Applying similar arguments to those in (Theorem 3.1, [25], page 1610), we obtain

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆 (𝑢)𝐼 (𝑢)dW𝑖 (𝑢) = 0 (𝑖 = 1, 2, 3, 4) a.s.

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆 (𝑢)𝑅(𝑢)dW𝑖 (𝑢) = 0 (𝑖 = 1, 2, 3) a.s.

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝐼 (𝑢)𝑅(𝑢)dW𝑖 (𝑢) = 0 (𝑖 = 1, 2, 3) a.s. (V.34)

Therefore, by Lemmas 3.4 and 3.5, we have

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0

(
𝑠1(𝑆 (𝑢) − 𝑆∗)2 + 𝑠2(𝐼 (𝑢) − 𝐼 ∗)2 + 𝑠3(𝑅(𝑢) − 𝑅∗)2

)
d𝑢 ≤ 𝑠4 +

𝑟1σ
2
4𝐼

∗

2
lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆2(𝑢)d𝑢 a.s.

By the stochastic comparison theorem, one has

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0

(
𝑠1(𝑆 (𝑢) − 𝑆∗)2 + 𝑠2(𝐼 (𝑢) − 𝐼 ∗)2 + 𝑠3(𝑅(𝑢) − 𝑅∗)2

)
d𝑢 ≤ 𝑠4 +

𝑟1σ
2
4𝐼

∗

2
lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝜓 2(𝑢)d𝑢 a.s.

Hence, by Lemma 3.7, we get

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0

(
𝑠1(𝑆 (𝑠) − 𝑆∗)2 + 𝑠2(𝐼 (𝑠) − 𝐼 ∗)2 + 𝑠3(𝑅(𝑠) − 𝑅∗)2

)
d𝑠 ≤ Ŝ a.s.

The proof is completed.

3.2.3 Sufficient conditions for the extinction of the disease

In this subsection, we will establish the sufficient conditions for the extinction of the disease in

the stochastic model (V.19). Define

R̂𝑠0 =
1(

µ2 + γ1 + γ2 − 𝑞𝑏 +
σ2

2
2

) (
β𝐴

(µ1 − 𝑏)
−

σ2
4𝐴

2

2(µ1 − 𝑏)2

)
.
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Theorem 3.11. Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of system (V.19) with positive initial value. If

R̂𝑠0 < 1 and σ2
4 ≤ (µ1 − 𝑏)β

𝐴
, (V.35)

or

β2

2σ2
4
−

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
< 0. (V.36)

Then, the disease dies out exponentially with probability one. That is to say,

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

< 0 a.s. (V.37)

Proof. By Itô’s formula for all 𝑡 ≥ 0, we have

d ln 𝐼 (𝑡) =
(
β𝑆 (𝑡) −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
−
σ2

4
2
𝑆2(𝑡)

)
d𝑡

+ σ4𝑆 (𝑡)dW1(𝑡) + σ2dW2(𝑡). (V.38)

Integrating (V.38) from 0 to 𝑡 and then dividing 𝑡 on both sides, we get

ln 𝐼 (𝑡)
𝑡

=
β

𝑡

∫ 𝑡

0
𝑆 (𝑢)d𝑢 −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
−
σ2

4
2𝑡

∫ 𝑡

0
𝑆2(𝑢)d𝑢 + Φ2(𝑡), (V.39)

where

Φ2(𝑡) =
σ4
𝑡

∫ 𝑡

0
𝑆 (𝑢)dW4(𝑢) +

σ2W2(𝑡)
𝑡

− ln 𝐼 (0)
𝑡

.

Obviously, we know that

1
𝑡

∫ 𝑡

0
𝑆2(𝑢)d𝑢 ≥

(
1
𝑡

∫ 𝑡

0
𝑆 (𝑢)d𝑢

)2
.

Therefore, from (V.31), we derive

ln 𝐼 (𝑡)
𝑡

≤ β

𝑡

∫ 𝑡

0
𝑆 (𝑢)d𝑢 −

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
−
σ2

4
2

(
1
𝑡

∫ 𝑡

0
𝑆 (𝑢)d𝑢

)2
+ Φ2(𝑡)

= β

(
𝐴

(µ1 − 𝑏)
− 1
𝑡

(
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑢)d𝑢 + Φ1(𝑡)

)
−

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
−
σ2

4
2

(
𝐴

(µ1 − 𝑏)
− 1
𝑡

(
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑢)d𝑢 + Φ1(𝑡)

)2
+ Φ2(𝑡) .

Hence one can see that

ln 𝐼 (𝑡)
𝑡

≤ β𝐴

(µ1 − 𝑏)
−

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
−

𝐴2σ2
4

2(µ1 − 𝑏)2

−
(
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

) (
β −

𝐴σ2
4

(µ1 − 𝑏)

)
1
𝑡

∫ 𝑡

0
𝐼 (𝑢)d𝑢

−
σ2

4
2𝑡2

((
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑢)d𝑢

)2
+ Φ2(𝑡) + Φ3(𝑡), (V.40)
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where

Φ3(𝑡) = βΦ1(𝑡) −
σ2

4
2
Φ2

1(𝑡) −
σ2

4𝐴Φ1(𝑡)
(µ1 − 𝑏)

+ σ2
4Φ1(𝑡)

(
(µ2 − 𝑏)
(µ1 − 𝑏)

+ γ2
(µ1 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑢)d𝑢.

An application of the large number theorem for martingales and Lemma 3.4, one has

lim
𝑡→∞

Φ2(𝑡)
𝑡

= lim
𝑡→∞

Φ3(𝑡)
𝑡

= 0 a.s.

Taking the superior limit on both sides of (V.40), then by condition (V.35), we arrive at

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤
(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

) (
R̂𝑠0 − 1

)
< 0 a.s.

Now, if the condition (V.36) is satisfied, then

ln 𝐼 (𝑡)
𝑡

≤ β2

2σ2
4
−

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
+ σ4
𝑡

∫ 𝑡

0
𝑆 (𝑢)dW4(𝑢) +

σ2W2(𝑡)
𝑡

− ln 𝐼 (0)
𝑡

.

By lemma 3.4, large number theorem for martingales and the condition (V.36), our desired result

(V.37) holds true. This completes the proof.

3.2.4 Asymptotic behavior around the disease-free equilibrium

When R0 ≤ 1, the disease-free equilibrium 𝐸� of the deterministic model is asymptotically stable,

which indicates that the epidemic will die out. We know that 𝐸� isn’t an equilibrium of the

stochastic model (V.19), it is of great interests to show how the stochastic solution of the model

(V.19) spirals closely around the equilibrium 𝐸�. In the next Theorem, we prove that the distance

between the solution 𝑋 (𝑡) = (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) and the disease-free equilibrium 𝐸0
has the following

form:

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
‖𝑋 (𝑢) − 𝐸�‖2

d𝑢 ≤ 𝐶, a.s.

where 𝐶 is a positive constant. For simplicity, we introduce the following notations:

𝑣1 =
µ1 − 𝑏

2
− σ2

1,

𝑣2 =
µ1 − 𝑏

2
+ α2 + γ2 −

σ2
2

2
−

γ2
2

2(µ3 − 𝑏)
,

𝑣3 =
µ3
2

+ 𝑏
2
+ 𝑘 −

σ2
3

2
− (𝑏 + 𝑘)2

(µ1 − 𝑏)
,

𝑣4 = min{𝑣1, 𝑣2, 𝑣3},

T̂ = σ2
1

(
𝐴

√
𝑣4(µ1 − 𝑏)

)2
.

Theorem 3.12. Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) be the solution of the model (𝑉 .19) with initial value (𝑆 (0), 𝐼 (0), 𝑅(0)) ∈
R3
+. Suppose that R0 ≤ 1, 𝑣1 > 0, 𝑣2 > 0 and 𝑣3 > 0, then

lim sup
𝑡→∞

1
𝑡

∫
𝑡

0

((
𝑆 (𝑢) − 𝐴

µ1 − 𝑏

)2
+ 𝐼 2(𝑢) + 𝑅2(𝑢)

)
d𝑢 ≤ T̂ a.s.
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Proof. We define the following function

𝑔(𝑆, 𝐼 , 𝑅) = 𝑔1(𝑆, 𝐼 ) + 𝑢1𝑔2(𝐼 ) + 𝑔3(𝑅),

where

𝑔1(𝑆, 𝐼 ) =
1
2

(
𝑆 − 𝐴

µ1 − 𝑏
+ 𝐼

)
, 𝑔2(𝐼 ) = 𝐼 , 𝑔3(𝑅) =

1
2
𝑅2,

and 𝑢1 is a positive constant to be determined later. Then the function 𝑔 is positive definite. By

Itô’s formula for all 𝑡 ≥ 0, we have

d𝑔1(𝑆, 𝐼 ) = L𝑔1d𝑡 +
(
𝑆 − 𝐴

µ1 − 𝑏
+ 𝐼

) (
σ1𝑆dW1(𝑡) + σ2𝐼dW2(𝑡)

)
,

where

L𝑔1 =

(
𝑆 − 𝐴

µ1 − 𝑏
+ 𝐼

)
(𝐴 − (µ1 − 𝑏)𝑆 + (𝑏 + 𝑘)𝑅 − (µ2 − 𝑏 + γ2)𝐼 ) +

σ2
1

2
𝑆2 +

σ2
2

2
𝐼 2

=

(
𝑆 − 𝐴

µ1 − 𝑏
+ 𝐼

) (
−(µ1 − 𝑏)

[
𝑆 − 𝐴

µ1 − 𝑏

]
+ (𝑏 + 𝑘)𝑅 − (µ2 − 𝑏 + γ2)𝐼

)
+
σ2

1
2

(
𝑆 − 𝐴

µ1 − 𝑏
+ 𝐴

µ1 − 𝑏

)2
+
σ2

2
2
𝐼 2

= −(µ1 − 𝑏)
[
𝑆 − 𝐴

µ1 − 𝑏

]2
−

(
µ2 − 𝑏 + γ2

)
𝐼 (𝑡)

[
𝑆 − 𝐴

µ1 − 𝑏

]
+ (𝑏 + 𝑘)√︁

µ1 − 𝑏

√︁
µ1 − 𝑏𝑅

[
𝑆 − 𝐴

µ1 − 𝑏

]
− (µ1 − 𝑏)

[
𝑆 − 𝐴

µ1 − 𝑏

]
𝐼

− (µ2 − 𝑏 + γ2)𝐼 2 +
(𝑏 + 𝑘)√︁
µ1 − 𝑏

√︁
µ1 − 𝑏𝑅𝐼 +

σ2
1

2

(
𝑆 − 𝐴

µ1 − 𝑏
+ 𝐴

µ1 − 𝑏

)2
+
σ2

2
2
𝐼 2.

Then we employ the following inequalities (𝑥 + 𝑦)2 ≤ 2𝑥2 + 2𝑦2
and 2𝑥𝑦 ≤ 𝑥2 + 𝑦2

to estimate the

cross terms. The above inequality can be rewritten as

L𝑔1 ≤ −(µ1 − 𝑏)
[
𝑆 − 𝐴

µ1 − 𝑏

]2
−

(
2(µ1 − 𝑏) + α2 + γ2

)
𝐼

[
𝑆 − 𝐴

µ1 − 𝑏

]
− (µ2 − 𝑏 + γ2)𝐼 2 +

(𝑏 + 𝑘)2

2(µ1 − 𝑏)
𝑅2 + (µ1 − 𝑏)

2
𝐼 2 + (𝑏 + 𝑘)2

2(µ1 − 𝑏)
𝑅2

+ µ1 − 𝑏
2

[
𝑆 − 𝐴

µ1 − 𝑏

]2
+ σ2

1

(
𝑆 − 𝐴

µ1 − 𝑏

)2
+ σ2

1

(
𝐴

µ1 − 𝑏

)2
+
σ2

2
2
𝐼 2.

Therefore, we get

L𝑔1 ≤ −
(
µ1 − 𝑏

2
− σ2

1

) [
𝑆 − 𝐴

µ1 − 𝑏

]2
−

(
2(µ1 − 𝑏) + α2 + γ2

)
𝐼

[
𝑆 − 𝐴

µ1 − 𝑏

]
−

(
µ1 − 𝑏

2
+ α2 + γ2 −

σ2
2

2

)
𝐼 2 + (𝑏 + 𝑘)2

(µ1 − 𝑏)
𝑅2 + σ2

1

(
𝐴

µ1 − 𝑏

)2
.

Again, applying Itô’s formula, one can obtain

d𝑔2 = L𝑔2d𝑡 + σ2𝐼dW2(𝑡) + σ4𝑆𝐼dW4(𝑡),

L𝑔2 = β𝑆𝐼 − (µ2 + γ1 + γ2 − 𝑞𝑏)𝐼

≤ β

(
𝑆 − 𝐴

µ1 − 𝑏

)
𝐼 +

(
𝐴

µ1 − 𝑏
− (µ2 + γ1 + γ2 − 𝑞𝑏)

)
𝐼 .
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Recalling that R0 ≤ 1, then we obtain

L𝑔2 ≤ β

(
𝑆 − 𝐴

µ1 − 𝑏

)
𝐼 (𝑡) .

Identically, one can get that

d𝑔3(𝑅) = L𝑔3d𝑡 + σ3𝑅
2
dW3(𝑡),

where

L𝑔3(𝑅) = γ2𝑅𝐼 − (µ3 + 𝑘)𝑅2 +
σ2

3
2
𝑅2

≤
γ2

2𝐼
2

2(µ3 − 𝑏)
+ µ3 − 𝑏

2
𝑅2 − (µ3 + 𝑘)𝑅2 +

σ2
3

2
𝑅2

=
γ2

2𝐼
2

2(µ3 − 𝑏)
−

(
µ3
2

+ 𝑏
2
+ 𝑘 −

σ2
3

2

)
𝑅2.

By setting 𝑢1 = 1
β

(
2(µ1 − 𝑏) + α2 + γ1

)
, we get

L𝑔 ≤ −
(
µ1 − 𝑏

2
− σ2

1

) (
𝑆 − 𝐴

µ1 − 𝑏

)2
−

(
µ1 − 𝑏

2
+ α2 + γ2 −

σ2
2

2
−

γ2
2

2(µ3 − 𝑏)

)
𝐼 2

−
[µ3

2
+ 𝑏

2
+ 𝑘 −

σ2
3

2
− (𝑏 + 𝑘)2

(µ1 − 𝑏)

]
𝑅2.

Consequently,

d𝑔(𝑆, 𝐼 , 𝑅) = L𝑔d𝑡 + σ1

(
𝑆 − 𝐴

µ1 − 𝑏
+ 𝐼

)
𝑆dW1(𝑡) + σ2

(
𝑆 − 𝐴

µ1 − 𝑏
+ 𝐼

)
𝐼dW2(𝑡)

+ σ2𝐼dW2(𝑡) + σ4𝑆𝐼dW4(𝑡) + σ3𝑅
2
dW3(𝑡)

≤ −
(
µ1 − 𝑏

2
− σ2

1

) (
𝑆 − 𝐴

µ1 − 𝑏

)2
−

(
µ1 − 𝑏

2
+ α2 + γ2 −

σ2
2

2
−

γ2
2

2(µ3 − 𝑏)

)
𝐼 2

−
(
µ3
2

+ 𝑏
2
+ 𝑘 −

σ2
3

2
− (𝑏 + 𝑘)2

(µ1 − 𝑏)

)
𝑅2 + σ2

1

(
𝐴

µ1 − 𝑏

)2
+ σ1

(
𝑆 − 𝐴

µ1 − 𝑏
+ 𝐼

)
𝑆dW1(𝑡)

+ σ2

(
𝑆 − 𝐴

µ1 − 𝑏
+ 𝐼

)
𝐼dW2(𝑡) + σ2𝐼dW2(𝑡) + σ4𝑆𝐼dW4(𝑡) + σ3𝑅

2
dW3(𝑡) .

Integrating both sides of the last inequality from 0 to 𝑡 , yields

0 ≤ 𝑔(𝑆 (𝑡), 𝐼 (𝑡), 𝑅(𝑡)) − 𝑔(𝑆 (0), 𝐼 (0), 𝑅(0)) ≤ −𝑣1

∫ 𝑡

0

(
𝑆 (𝑢) − 𝐴

µ1 − 𝑏

)2
d𝑢 − 𝑣2

∫ 𝑡

0
𝐼 2(𝑢)d𝑢

− 𝑣3

∫ 𝑡

0
𝑅2(𝑢)d𝑢 + σ2

1

(
𝐴

µ1 − 𝑏

)2
𝑡 +W(𝑡),

where

W(𝑡) = σ1

∫ 𝑡

0

(
𝑆 (𝑢) − 𝐴

µ1 − 𝑏
+ 𝐼 (𝑢)

)
𝑆 (𝑢)dW1(𝑢) + σ2

∫ 𝑡

0

(
𝑆 (𝑢) − 𝐴

µ1 − 𝑏
+ 𝐼 (𝑢)

)
𝐼 (𝑢)dW2(𝑢)

+ σ2

∫ 𝑡

0
𝐼 (𝑢)dW2(𝑢) + σ4

∫ 𝑡

0
𝑆 (𝑢)𝐼 (𝑢)dW4(𝑢) + σ3

∫ 𝑡

0
𝑅2(𝑢)dW3(𝑢).

Employing Lemmas 3.4, 3.5 and (V.34) yields

lim sup
𝑡→∞

1
𝑡

∫
𝑡

0

[
𝑣1

(
𝑆 (𝑢) − 𝐴

µ1 − 𝑏

)2
+ 𝑣2𝐼

2(𝑢) + 𝑣3𝑅
2(𝑢)

]
d𝑢 ≤ σ2

1

(
𝐴

µ1 − 𝑏

)2
a.s.
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Then, we get

lim sup
𝑡→∞

1
𝑡

∫
𝑡

0

[(
𝑆 (𝑢) − 𝐴

µ1 − 𝑏

)2
+ 𝐼 2(𝑢) + 𝑅2(𝑢)

]
d𝑢 ≤ T̂ a.s.

This completes the proof.

3.3 Numerical simulations
In this subsection, in order to show different dynamical results of the stochastic model (V.19) under

theoretical parameter values (see Table V.4), we present some numerical simulations. We use the

Euler-Maruyama method to simulate the trajectories of the stochastic model (V.19).

Parameters Value

𝐴 0.2 0.2 0.2

β 0.03 0.022 0.03

µ1 0.05 0.05 0.05

µ2 0.09 0.09 0.09

µ3 0.0055 0.0055 0.0055

𝑏 0.01 0.01 0.01

γ1 0.01 0.01 0.01

γ2 0.02 0.02 0.02

𝑞 0.2 0.2 0.2

𝑘 0.04 0.04 0.04

σ1 0.028 0.028 0.028

σ2 0.03 0.03 0.3

σ3 0.025 0.025 0.0287

σ4 0.3 0.3 0.2

Figures V.7 and V.8 Figure V.9 (left) Figures V.9 (right) and V.10

Table V.4: The theoretical parameter values of the model (V.19).

Example 3.13 (The permanence case). For the purpose of showing the effects of the perturbations

on the disease dynamics, we have realized the simulation many times. We have chosen the

parameter value from Table V.4 (second column). Then, 2(µ1 − 𝑏) − σ2 = 0.0791 > 0 and R𝑠0 =

1.6242 > 1. From figure V.7, we show the existence of the unique stationary distributions for 𝑆 (𝑡),
𝐼 (𝑡) and 𝑅(𝑡) of the model (V.19), where the smooth curves are the probability density functions of

𝑆 (𝑡), 𝐼 (𝑡) and 𝑅(𝑡), respectively. It can be obviously observed that the solution of the SDE model

(V.19) persists in the mean. For the deterministic system, we obtain R0 = 1.6949 > 1. Then, the

deterministic endemic equilibrium 𝐸~ = (2.95, 0.9567, 0.2733) is globally asymptotically stable. Then,

we have

σ2
1 − (µ1 − 𝑏) = −0.0392 < 0,

σ2
2 − (µ2 − 𝑏) = −0.0791 < 0,

σ2
3 − (µ3 − 𝑏) = −0.0193 < 0.

Therefore, the conditions of Theorem 3.10 are satisfied. As expected, the stochastic solution is

oscillating around the endemic equilibrium 𝐸∗ for a long time (see Figure V.8).

Example 3.14 (The extinction case). To verify that the condition (V.35) is satisfied, we decrease

β to 0.022 and keep other parameters unchanged. Then, we have R̂𝑠0 = 0.9132 < 1 and σ2
4 −

(µ1−𝑏)β
𝐴

=

−0.0040 < 0. Therefore, the condition (V.35) of Theorem 1.1 is satisfied. We can conclude that for

any initial value, 𝐼 (𝑡) obeys

lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) ≤ (R̂𝑠0 − 1)

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
= −0.0082 < 0 a.s.
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(a) The left figure is the stationary distribution for S(t), the right picture is the trajectory

of S(t).
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(b) The left figure is the stationary distribution for I(t), the right picture is the trajectory

of I(t).
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(c) The left figure is the stationary distribution for R(t), the right picture is the trajectory

of R(t).

Figure V.7: The numerical illustration of obtained results in Theorems 1.1 and 3.9.
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That is, 𝐼 (𝑡) will tend to zero exponentially with probability one (see Figure V.9 - Right). Now,

we choose β = 0.03 and the white noise intensities σ1 = 0.028, σ2 = 0.3, σ3 = 0.0287 and σ4 = 0.2
to ensure that the condition (V.36) of Theorem (3.11) is satisfied. We can conclude that for any

initial value, 𝐼 (𝑡) obeys

lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) ≤ β2

2σ2
4
−

(
µ2 + γ1 + γ2 − 𝑞𝑏 +

σ2
2

2

)
= −0.2980 < 0 a.s.

That is, 𝐼 (𝑡) will tend to zero exponentially with probability one (see Figure V.9 - left). For the

deterministic system , we obtain R0 = 0.9322 < 1. Then, the deterministic disease-free equilibrium

𝐸� = (5, 0, 0) is globally asymptotically stable. Then, we have

σ2
1 −

µ1 − 𝑏
2

= −0.0192 < 0,

σ2
2 +

γ2
2

(µ3 − 𝑏)
− (µ1 − 𝑏) + 2(α2 + γ2) = −0.1191 < 0,

σ2
3 +

2(𝑏 + 𝑘)2

(µ1 − 𝑏)
− µ3 + 𝑏 + 2𝑘 = −0.0043 < 0.

Then, the conditions of Theorem 3.12 are verified and the stochastic solution is oscillating around

the deterministic disease-free equilibrium 𝐸� for a long time (see Figure V.10).
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Figure V.8: The numerical simulation of solution (S(t),I(t),R(t)).

The outbreak of epidemics has caused severe damage and loss to populations. Many scientific

papers are devoted to analyzing the outbreak of the epidemics for a long time, and many solutions

and suggestions have been used to control the dissemination of infectious diseases. However, the

effects of environmental disturbances on the epidemic cannot be ignored. In our present study, we

proposed and analyzed a new stochastic version of the SIRS epidemic model by considering the

bi-linear and proportional perturbations. This is a general and well-established way of introducing

stochastic environmental noise into realistic dynamic models. Our study led to five main results:
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Figure V.9: The numerical simulation of I(t).
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Figure V.10: The numerical simulation of solution (S(t),I(t),R(t)).

1. In Theorem 3.8, we gave a systematic approach to the analysis of the existence of a unique

ergodic stationary distribution when R𝑠0 > 1 by using the property of the Feller process and

mutually exclusive possibilities lemma. From a biological viewpoint, the ergodicity implies

that the epidemic will be prevalent and persistent in the long term.

2. In Theorem 3.9, we checked that the persistence in the mean of the disease occurs under the

same condition R𝑠0 > 1 by using a new simple method. Although the solution is unbounded,

we have estimated the time average of 𝜓 2(𝑡), where 𝜓 (𝑡) is the solution of equation (𝑉 .22).

3. In Theorem 3.10, we obtained sufficient conditions to guarantee that the solution of the

stochastic system fluctuates around the endemic deterministic equilibrium of system (𝐼 .1).
The present study is the first attempt, to the best of our knowledge, to analyze the asymptotic

behavior of the SIRS epidemic model (V.19).

4. In Theorem 3.11, we showed that the extinction of a disease in the stochastic system (V.19)

occurs if one of the conditions (V.35) and (V.36) holds. It should be noted that these

conditions are sufficient for the extinction of the epidemic.
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5. In Theorem 3.12, we proved that under some conditions, the solution of system (I.2) will

oscillate around the disease-free deterministic equilibrium, and the intensity of fluctuations

is related to the intensity 𝜂1, but do not relate to the intensities of the other white noises.

To illustrate duly our theoretical results, we have performed some numerical simulations by

using MATLAB software. From Figure V.7, we have shown the existence of a unique stationary

distribution which means that the disease persists for all time regardless of the initial conditions.

Furthermore, the ergodic property grants a reason why the integral average of a solution of system

(V.19) converges to a fixed point whilst the system may fluctuate around as time goes by. Note that,

in general, the endemic equilibrium is not a steady-state of the stochastic model (I.2). This latter

will fluctuate around the deterministic endemic equilibrium which is illustrated clearly in Figure

V.8. Moreover, in a biological and epidemiological view, the disease will persist when the basic

reproduction number is higher than one and 𝑠1, 𝑠2 and 𝑠3 are positive. In the case of extinction, in

Figure V.10, we have plainly estimated the average oscillation around the deterministic free-disease

equilibrium to exhibit whether the disease will die out. In a biological interpretation, one expects

any solution to be close to the deterministic equilibrium most of the time if the stochastic effects

are slight and the basic reproduction number is less than one.

3.4 Discussion
Our study improved many existing results. Precisely, we obtained sharper results for a more general

stochastic SIRS model by using new techniques and approaches. Furthermore, our work can be

applied to treat more biological and ecological systems such as the heroin model and to analyze

the impact of predation in the spread of infectious diseases. However, our paper brings more

challenges to propose an improved method to obtain the global threshold between the existence

of the unique ergodic stationary distribution (persistence) and extinction. We seek in our future

works to treat this interesting problem.
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Chapter VI
Dynamic characteristics of a perturbed

epidemic model with quarantine policy and

Lévy disturbance

A𝔟𝔰𝔱𝔯𝔞𝔠𝔱

T
 spread of infectious diseases is a major challenge in our contemporary world, especially

after the recent outbreak of Coronavirus disease 2019 (COVID-19). The quarantine strategy

is one of the important intervention measures to control the spread of an epidemic by greatly

minimizing the likelihood of contact between infected and susceptible individuals. This chapter

treats two kinds of epidemic models with quarantine. We start with the threshold analysis of

a stochastic SIQR model with Lévy jumps. Then, we analyze the impact of various stochastic

disturbances on the epidemic dynamics during the quarantine period. For this purpose, we present

an SIQS epidemic model that incorporates the stochastic transmission and the Lévy noise in order

to simulate both small and massive perturbations. Under appropriate conditions, some interesting

asymptotic properties are proved, namely: ergodicity, persistence in the mean, and extinction of

the disease. The theoretical results show that the dynamics of the perturbed model are determined

by parameters that are closely related to the stochastic noises. Our work improves many existing

studies in the field of mathematical epidemiology and provides new techniques to predict and

analyze the dynamic behavior of epidemics.

1 The threshold of a stochastic SIR epidemiological model with
quarantine and Lévy jumps

1.1 Introduction

As stated before, the effects due to unexpected environmental shocks have been neglected in the

deterministic formulation. The proposed solution to this issue is introducing a jump process into

the underlying population dynamics. Many works have introduced Lévy jumps process into their

models. Many works have introduced Lévy jumps process into their models. For example, Bao et

al. [7] produced pioneering works on this approach. They first studied a stochastic Lotka-Volterra

population systems with Lévy jumps. From then on, many interesting studies on the epidemic

models with Lévy jumps have been reported (see e.g. [80, 81]). Motivated by the above mentioned

works, in this contribution, we consider the following SIQR epidemic model with both white noise
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and Lévy jumps perturbations:

d𝑆 (𝑡) =
(
𝐴 − µ𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡)

)
d𝑡+σ1𝑆 (𝑡)dW1(𝑡) +

∫
U
η1(𝑢)𝑆 (𝑡−)Ñ (d𝑡, d𝑢),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ + γ + δ + 𝑟2)𝐼 (𝑡)

)
d𝑡+σ2𝐼 (𝑡)dW2(𝑡) +

∫
U
η2(𝑢)𝐼 (𝑡−)Ñ (d𝑡, d𝑢),

d𝑄 (𝑡) =
(
δ𝐼 (𝑡) − (µ + 𝑘 + 𝑟3)𝑄 (𝑡)

)
d𝑡+σ3𝑄 (𝑡)dW3(𝑡) +

∫
U
η3(𝑢)𝑄 (𝑡−)Ñ (d𝑡, d𝑢),

d𝑅(𝑡) =
(
γ𝐼 (𝑡) + 𝑘𝑄 (𝑡) − µ𝑅(𝑡)

)
d𝑡+σ4𝑅(𝑡)dW4(𝑡) +

∫
U
η4(𝑢)𝑅(𝑡−)Ñ (d𝑡, d𝑢),

(VI.1)

where 𝑆 (𝑡−), 𝐼 (𝑡−), 𝑄 (𝑡−) and 𝑅(𝑡−) are the left limits of 𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡) and 𝑅(𝑡), respectively. N is

a Poisson counting measure with the compensated process Ñ and Lévy measure ν on a measurable

subset U of (0,∞) satisfying ν(U) < ∞. Principally, we have that Ñ (d𝑡, d𝑢) = N(d𝑡, d𝑢) − ν(d𝑢)d𝑡
and we assume that the independent Brownian motions W𝑖 (𝑡) (𝑖 = 1, 2, 3, 4) are independent of N .

The functions η𝑖 : U → R are bounded and continuous.

The general aim of this short section is to investigate the asymptotic properties of the stochastic

epidemic model (VI.1) and to establish the threshold which determines the extinction and the

persistence in the mean of the disease. This threshold value coincides with the deterministic

threshold in absence of white noise and Lévy jumps. For the purpose of well analyzing our model

(VI.1), it necessary that we make the following assumptions:

• (A1) We assume that the jump coefficients η𝑖 (𝑢) in (VI.1) verify

∫
U
η2
𝑖 (𝑢)ν(d𝑢) < ∞ (𝑖 = 1, 2, 3).

• (A2) For all 𝑢 ∈ 𝑍 , 1 + η𝑖 (𝑢) > 0, 𝑖 = 1, 2, 3, 4 and

∫
U

(
η𝑖 (𝑢) − ln(1 + η𝑖 (𝑢))

)
ν(d𝑢) < ∞.

• (A3) We suppose that exists a constant 𝜅 > 0, such that

∫
U

(
ln(1 + η𝑖 (𝑢))

)2
ν(d𝑢) < 𝜅.

• (A4) There exists 𝜚 > 1 such that µ− 1
2
(𝜚 − 1)σ̃2 − 1

𝜚
𝜆𝑝 > 0, where σ̃2 = max

{
σ2

1,σ
2
2,σ

2
3,σ

2
4
}
, and

𝜆𝑝 =

∫
U

{(
1 + max{η1(𝑢), η2(𝑢), η3(𝑢), η4(𝑢)}

)𝑝
− 1 − 𝑝

(
min{η1(𝑢), η2(𝑢), η3(𝑢), η4(𝑢)}

)}
ν(d𝑢) .

Remark 1.1. Generally, the assumptions (A1) - (A4) mean that the intensities of Lévy jumps are

not very large.

Under assumptions (A1) - (A2), we check the well-posedness of the perturbed system (VI.1).

Theorem 1.2. For any initial value (𝑆 (0), 𝐼 (0), 𝑄 (0), 𝑅(0)) ∈ R4
+, there exists the unique positive

solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡), 𝑅(𝑡)) of system (VI.1) on 𝑡 ≥ 0, and the solution will remain in R4
+ with

probability one. That is to say, the solution (𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡), 𝑅(𝑡)) ∈ R4
+ for all 𝑡 ≥ 0 almost surely.

Now, we list some former results used in the previous chapters. Under the assumptions (A1) -
(A4), we have the following lemmas:

Lemma 1.3 ([171]). Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡), 𝑅(𝑡)) be the solution of model (VI.1) with any positive initial
value. Then

• lim
𝑡→∞

𝑆 (𝑡) + 𝐼 (𝑡) +𝑄 (𝑡) + 𝑅(𝑡)
𝑡

= 0 a.s.

• lim
𝑡→∞

𝑆 (𝑡)
𝑡

= 0, lim
𝑡→∞

𝐼 (𝑡)
𝑡

= 0, lim
𝑡→∞

𝑄 (𝑡)
𝑡

= 0 and lim
𝑡→∞

𝑅(𝑡)
𝑡

= 0 a.s.

Lemma 1.4 ([171]). Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡), 𝑅(𝑡)) be the solution of model (VI.1) with any positive initial
value. Then

148



• lim
𝑡→∞

∫ 𝑡
0 𝑆 (𝑠)dW1(𝑠)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0 𝐼 (𝑠)dW2(𝑠)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0 𝑄 (𝑠)dW3(𝑠)

𝑡
= 0,

lim
𝑡→∞

∫ 𝑡
0 𝑅(𝑠)dW4(𝑠)

𝑡
= 0 a.s.

• lim
𝑡→∞

∫ 𝑡
0

∫
U η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0

∫
U η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0,

lim
𝑡→∞

∫ 𝑡
0

∫
U η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0

∫
U η4(𝑢)𝑅(𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0 a.s.

1.2 Main results

In this subsection, our main concern is to determine the condition for the extinction and persistence

of an infectious disease under quarantine strategies. Given that the value of the deterministic

threshold R0 =
β𝐴

µ(µ + γ + δ + 𝑟2)
characterizes the dynamical behavior of the deterministic system

and guarantees persistence or extinction of the disease, similarly we define the threshold of our

stochastic SIQR epidemic model (VI.1) as follows:

R𝔧

0 =
1

(µ + γ + δ + 𝑟2)

(
β𝐴

µ
−
σ2

2
2

−
∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
ν(d𝑢)

)
.

Theorem 1.5. Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡), 𝑅(𝑡)) be the solution of system (VI.1) with any initial positive value.
If R𝔧

0 < 1, then

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤ (µ + γ + δ + 𝑟2)
(
R𝔧

0 − 1
)
< 0 a.s.

Furthermore, we have that

lim
𝑡→∞

〈𝑆 (𝑡)〉 = 𝐴

µ
a.s. lim

𝑡→∞
〈𝑄 (𝑡)〉 = 0 a.s. and lim

𝑡→∞
〈𝑅(𝑡)〉 = 0 a.s.

Proof. Integrating from 0 to 𝑡 on both sides of the first and second equations of system (VI.1),

gives

𝑆 (𝑡) − 𝑆 (0)
𝑡

= 𝐴 − µ〈𝑆 (𝑡)〉 − β〈𝑆 (𝑡)𝐼 (𝑡)〉 + σ1
𝑡
𝑆 (𝑠)dW1(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢),

𝐼 (𝑡) − 𝐼 (0)
𝑡

= β〈𝑆 (𝑡)𝐼 (𝑡)〉 − (µ + δ + γ + 𝑟2)〈𝐼 (𝑡)〉 +
σ2
𝑡
𝐼 (𝑠)dW2(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢) .

Noticeably, we get

〈𝑆 (𝑡)〉 = 𝐴

µ
− µ + δ + γ + 𝑟2

µ
〈𝐼 (𝑡)〉 +𝜓1(𝑡), (VI.2)

where

𝜓1(𝑡) = − 1
µ

{
𝑆 (𝑡) − 𝑆 (0)

𝑡
+ 𝐼 (𝑡) − 𝐼 (0)

𝑡
− σ1
𝑡
𝑆 (𝑠)dW1(𝑠) −

σ2
𝑡
𝐼 (𝑠)dW2(𝑠)

− 1
𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢) − 1

𝑡

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

}
.
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By Lemmas 1.3 and 1.4, we have lim
𝑡→∞

𝜓1(𝑡) = 0 a.s. Making use Itô’s formula to (VI.1), one can

conclude that

d ln 𝐼 (𝑡) =
(
β𝑆 (𝑡) − (µ + δ + γ + 𝑟2) −

1
2
σ2

2 −
∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
ν(d𝑢)

)
d𝑡

+ σ2dW2(𝑡) +
∫
U

ln(1 + η2(𝑢))Ñ (d𝑡, d𝑢).

Integrating from 0 to 𝑡 on both sides, we get

ln 𝐼 (𝑡)
𝑡

=β〈𝑆 (𝑡)〉 − (µ + δ + γ + 𝑟2) −
1
2
σ2

2 −
∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
ν(d𝑢)

+ σ2W2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑡, d𝑢) + ln 𝐼 (0)
𝑡

.

Substituting the result (VI.2) into the previous equation, implies that

ln 𝐼 (𝑡)
𝑡

=β

(
𝐴

µ
− µ + δ + γ + 𝑟2

µ
〈𝐼 (𝑡)〉 +𝜓1(𝑡)

)
− (µ + δ + γ + 𝑟2) −

1
2
σ2

2 +
ln 𝐼 (0)
𝑡

−
∫
U

(
η2(𝑢) − ln(1 + η2(𝑢))

)
ν(d𝑢) + σ2W2(𝑡)

𝑡
+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢)

≤ β𝐴

µ
β𝜓1(𝑡) − (µ + δ + γ + 𝑟2) −

1
2
σ2

2 +
ln 𝐼 (0)
𝑡

−
∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

+ σ2W2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢).

Let K1(𝑡) =
∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢). According to the hypothesis (A3), we have

〈K1,K1〉(𝑡) = 𝑡
∫
U
[ln(1 + η2(𝑢))]2ν(d𝑢) < 𝜅𝑡 .

By the strong law of large numbers for martingales, we get lim
𝑡→∞

K1 (𝑡 )
𝑡

= 0 and lim
𝑡→∞

W2 (𝑡 )
𝑡

= 0 a.s.

Consequently, if the condition R𝔧

0 < 1 holds, we have

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤ (µ + γ + δ + 𝑟2)
(
R𝔧

0 − 1
)
< 0 a.s.

Therefore lim
𝑡→∞

𝐼 (𝑡) = 0 a.s. Consequently, from (VI.2), one can see that lim sup
𝑡→∞

〈𝑆 (𝑡)〉 = 𝐴
µ a.s. Next,

we shall show that lim
𝑡→∞

〈𝑄 (𝑡)〉 = 0 and lim
𝑡→∞

〈𝑅(𝑡)〉 = 0 a.s. From system (VI.1), we have

𝑄 (𝑡) −𝑄 (0)
𝑡

= δ〈𝐼 (𝑡)〉 − (µ + 𝑘 + 𝑟3)〈𝑄 (𝑡)〉 + σ3
𝑡

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢),

and

𝑅(𝑡) − 𝑅(0)
𝑡

= γ〈𝐼 (𝑡)〉 + 𝑘 〈𝑄 (𝑡)〉 − µ〈𝑅(𝑡)〉 + σ4
𝑡

∫ 𝑡

0
𝑅(𝑠)dW4(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η4(𝑢)𝑅(𝑠−)Ñ (d𝑠, d𝑢).

Making use of Lemmas 1.3 and 1.4, we get the desired result.

Now, we will establish the condition for persistence of the disease in the next theorem.

Theorem 1.6. Let (𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡), 𝑅(𝑡)) be the solution of system (VI.1) with any initial positive value.
If R𝔧

0 > 1, then

lim
𝑡→∞

〈𝐼 (𝑡)〉 = �̃� > 0 a.s. lim
𝑡→∞

〈𝑆 (𝑡)〉 = 𝑆 > 0 a.s. lim
𝑡→∞

〈𝑄 (𝑡)〉 = 𝑄 > 0 a.s. lim
𝑡→∞

〈𝑅(𝑡)〉 = 𝑅 > 0 a.s.

where �̃� = µ
β

(
R𝔧

0 − 1
)
, 𝑆 = 𝐴

µ − (µ+δ+γ+𝑟2)
(
R𝔧

0−1
)

β , 𝑄 =
δµ

β(µ+𝑘+𝑟3)
(
R𝔧

0 − 1
)
, 𝑅 =

(γ+𝑘δ)µ
β(µ+𝑘+𝑟3)

(
R𝔧

0 − 1
)
. That is

to say, the epidemic model (VI.1) will prevail if R𝔧

0 > 1.
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Proof. According to the Itô’s formula, one can see that

ln 𝐼 (𝑡)
𝑡

= β

(
𝐴

µ
− µ + δ + γ + 𝑟2

µ
〈𝐼 (𝑡)〉 +𝜓1(𝑡)

)
− (µ + δ + γ + 𝑟2) −

1
2
σ2

2 +
ln 𝐼 (0)
𝑡

−
∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢) +

σ2W2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢)

= (µ + γ + δ + 𝑟2)
(
R𝔧

0 − 1
)
− β

µ + δ + γ + 𝑟2
µ

〈𝐼 (𝑡)〉 + β𝜓1(𝑡) +
ln 𝐼 (0)
𝑡

+ σ2W2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢) .

Using Lemmas 1.3 - 1.4, we get

lim
𝑡→∞

〈𝐼 (𝑡)〉 = µ

β

(
R𝔧

0 − 1
)
> 0 a.s.

From (VI.2), on can conclude that

lim
𝑡→∞

〈𝑆 (𝑡)〉 = 𝐴

µ
− µ + δ + γ + 𝑟2

µ
lim
𝑡→∞

〈𝐼 (𝑡)〉.

Consequently,

lim
𝑡→∞

〈𝑆 (𝑡)〉 = 𝐴

µ
−

(µ + δ + γ + 𝑟2)
(
R𝔧

0 − 1
)

β
> 0 a.s.

On the other hand, we establish that

lim
𝑡→∞

〈𝑄 (𝑡)〉 = δµ

β(µ + 𝑘 + 𝑟3)

(
R𝔧

0 − 1
)
> 0 a.s.

and

lim
𝑡→∞

〈𝑅(𝑡)〉 = (γ + 𝑘δ)µ
β(µ + 𝑘 + 𝑟3)

(
R𝔧

0 − 1
)
> 0 a.s.

This completes the proof.

1.3 Numerical simulations
In this subsection, we shall use Euler numerical approximation to illustrate the rigor of our ana-

lytical results. The two examples are given below concern the results obtained in Theorems 1.5 and

1.6.

Parameters Description Numerical values

𝐴 Recruitment rate of 𝑆 4 4

µ Natural mortality rate 0.2 0.2

β The transmission rate 0.0176 - 0.016 0.021

γ Recovered rate for 𝐼 0.02 0.02

δ Quarantine rate of 𝐼 0.01 0.01

𝑘 Recovered rate for 𝑄 0.01 0.01

𝑟2 Disease-related death rate of 𝐼 0.1 0.1

𝑟3 Disease-related death rate of 𝑄 0.2 0.2

σ1 Intensity of W1(𝑡) 0.11 0.11

σ2 Intensity of W2(𝑡) 0.35 0.35

σ3 Intensity of W3(𝑡) 0.12 0.12

σ4 Intensity of W4(𝑡) 0.18 0.18

η1 Jump intensity of 𝑆 0.02 0.2

η2 Jump intensity of 𝐼 0.12 0.12

η3 Jump intensity of 𝑅 0.01 0.01

η4 Jump intensity of 𝑄 0.02 0.02

Figure VI.1 Figures VI.2 - VI.3

151



Table VI.1: Nominal values of the system parameters and disturbances intensities adopted in the

different simulation examples .

time

0 20 40 60 80 100 120 140 160 180 200

I(
t)

0

0.5

1

1.5

2

2.5

3

Deterministic

Without jumps

With jumps

time

0 50 100 150 200 250 300 350 400

I(
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Figure VI.1: Compute simulation of the paths 𝐼 (𝑡) for the SIQR epidemic model (VI.1) (with jump),

the trajectory of 𝐼 (𝑡) for the system (without jump, i.e. η𝑖 = 0) and the solution 𝐼 (𝑡) of the

corresponding deterministic system. The left image for β = 0.176 and the right one for β = 0.16.

Example 1.7. By taking parameters from the theoretical data mentioned in the Table VI.1, we

obtain

R0 =
β𝐴

µ(µ + γ + δ + 𝑟2)
= 1.067 > 1,

R𝑠0 =
1

µ + γ + δ + 𝑟2

(
β𝐴

µ
−
σ2

2
2

)
= 1.0054 > 1,

R𝔧

0 =
1

µ + γ + δ + 𝑟2

(
β𝐴

µ
−
σ2

2
2

−
∫
U
[η2(𝑢) − ln(1 + η2(𝑢))]ν(d𝑢)

)
= 0.998 < 1.

The computer simulations shown in Figure VI.1 - (left) support the result of Theorem 1.5. That

is to say, the disease in system (VI.1) dies out exponentially with probability one. Although the

disease in stochastic (without jumps) and deterministic systems is persistent. If we decrease β to

0.016, we get

R0 =
β𝐴

µ(µ + γ + δ + 𝑟2)
= 0.9696 < 1,

R𝑠0 =
1

µ + γ + δ + 𝑟2

(
β𝐴

µ
−
σ2

2
2

)
= 0.908 < 1,

R𝔧

0 =
1

µ + γ + δ + 𝑟2

(
β𝐴

µ
−
σ2

2
2

−
∫
U
[η2(𝑢) − ln(1 + η2(𝑢))]ν(𝑑𝑢)

)
= 0.901 < 1.

By the Theorem 1.5, the disease will tend to zero exponentially with probability one (see Figure

VI.1 - right).

Example 1.8. Let β = 0.021 and other parameters be presented in Table VI.1. Then

R0 =
β𝐴

µ(µ + γ + δ + 𝑟2)
= 1.2727 > 1,

R𝑠0 =
1

µ + γ + δ + 𝑟2

(
β𝐴

µ
−
σ2

2
2

)
= 1.2655 > 1,

R𝔧

0 =
1

µ + γ + δ + 𝑟2

(
β𝐴

µ
−
σ2

2
2

−
∫
U
[η2(𝑢) − ln(1 + η2(𝑢))]ν(𝑑𝑢)

)
= 1.2588 > 1.
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Figure VI.2: Compute simulation of the paths (𝑆 (𝑡), 𝐼 (𝑡)) for the SIQR epidemic model (VI.1).
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Figure VI.3: Compute simulation of the paths (𝑄 (𝑡), 𝑅(𝑡)) for the SIQR epidemic model (VI.1)

By Theorem 1.6, we can conclude that the mean solution of (𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡), 𝑅(𝑡)) of (VI.1) obeys

that

lim
𝑡→∞

〈𝐼 (𝑡)〉 = 2.548 > 0 a.s.

lim
𝑡→∞

〈𝑆 (𝑡)〉 = 18 > 0 a.s.

lim
𝑡→∞

〈𝑄 (𝑡)〉 = 0.127 > 0 a.s.

lim
𝑡→∞

〈𝑅(𝑡)〉 = 0.387 > 0 a.s.

This means the disease persists almost surely. The computer simulations are shown in Figure VI.2

and Figure VI.3 support these results clearly.

1.4 Discussion
Ultimately, this short section is concerned with the persistence and extinction of a stochastic SIQR

epidemic model with Lévy jumps. We have shown that a Lévy-jumps noise (e.g., tsunami, volca-

noes, avian influenza, hurricanes, earthquakes, toxic pollutants, etc.) in reality could mitigate the

epidemic in the case of non-persistence. Generally, our results showed that noises have important

effects on the dynamic of the disease. Some interesting topics deserve further investigation. We

may analyze more realistic but complex models, such as considering the effects of regime-switching

with Lévy jumps on the stochastic system (VI.1). We leave these works as our future works.
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2 New and general results on the asymptotic behavior of an SIS
epidemiological model with quarantine strategy, stochastic trans-
mission, and Lévy disturbance

2.1 Introduction

As previously reported, the spread of infectious diseases can undergo random disturbances and

stochastic phenomena due to environmental fluctuations [127, 73]. Since disturbed models can

describe many practical problems very well, many types of stochastic differential equations have

been used to analyze various epidemic models in recent years [173, 47]. There are two common

ways to introduce stochastic factors into epidemic systems. The first one is to assume that the

transmission of the diseases is subject to some small random fluctuations which can be described

by the Gaussian white noise [156, 157]. The other one is to admit that the model parameters are

affected by massive environmental perturbations like the climate changes, earthquakes, hurricanes,

floods, etc [154, 172]. For a better explaination to these phenomena, the use of a compensated Pois-

son process into the population dynamics provides an appropriate and more realistic context [159].

Considering these two types of random disturbances, many works have analyzed the asymptotic

behaviors of various epidemic models, including persistence in the mean, extinction, and ergod-

icity [163, 154, 172]. These interesting researches have served an important role in the stochastic

modeling of epidemics. But, all these models have considered either the standard white Gaussian

noise or the Lévy jumps. In this work, we combine these two perturbations by treating an SIQS

epidemic model that simultaneously includes the stochastic transmission and the discontinuous

Lévy process. This original idea extends the study presented in [159] and gives us a general view

of the disease dynamics under different scenarios of random perturbations.

The threshold analysis of perturbed epidemic systems is very important for understanding and

controlling of the disease spread. In our case, the deterministic SIQS model will be perturbed not

only by white noise but also by Lévy jumps, which makes its analysis more complicated and needs

some new techniques and methods. During this study, we aim to develop a mathematical approach

to prove the existence of a unique ergodic stationary distribution and persistence in the mean of the

new perturbed model. Without using the classical Lyapunov method presented in [57], we obtain

sufficient conditions for the ergodicity by employing the Feller property and mutually exclusive

possibilities lemma. Under the same conditions, we demonstrate that the persistence in the mean

of the disease occurs. To analyze properly our new model, we study the stochastic extinction case.

Let (Ω, F , P) be a complete probability space with a filtration {F𝑡 }𝑡 ≥0 satisfying the usual con-

ditions, and containing all the random variables that will be meted in this section. We merge the

stochastic transmission with a discontinuous perturbed mortality rates. The random variability in

the epidemic transmission β and the mortality rates µ𝑖 (𝑖 = 1, 2, 3) are presented by a decomposition

of usual white noise and the Lévy-Itô process, respectively. Under these assumptions, the evolution

of an epidemic during the quarantine strategy is modeled by the following system of stochastic

differential equations:
d𝑆 (𝑡) =

(
𝐴 − µ1𝑆 (𝑡) − β𝑆 (𝑡)𝐼 (𝑡) + γ𝐼 (𝑡) + 𝑘𝑄 (𝑡)

)
d𝑡+dP1(𝑡),

d𝐼 (𝑡) =
(
β𝑆 (𝑡)𝐼 (𝑡) − (µ2 + δ + γ)𝐼 (𝑡)

)
d𝑡+dP2(𝑡),

d𝑄 (𝑡) =
(
δ𝐼 (𝑡) − (µ3 + 𝑘)𝑄 (𝑡)

)
d𝑡+dP3(𝑡),

(VI.3)

where

dP1(𝑡) = σ1𝑆 (𝑡)dW1(𝑡) +
∫
U
η1(𝑢)𝑆 (𝑡−)Ñ (d𝑡, d𝑢) − σβ𝑆 (𝑡)𝐼 (𝑡)dWβ(𝑡),

dP2(𝑡) = σ2𝐼 (𝑡)dW2(𝑡) +
∫
U
η2(𝑢)𝐼 (𝑡−)Ñ (d𝑡, d𝑢) + σβ𝑆 (𝑡)𝐼 (𝑡)dWβ(𝑡),

dP3(𝑡) = σ3𝑄 (𝑡)dW3(𝑡) +
∫
U
η3(𝑢)𝑄 (𝑡−)Ñ (d𝑡, d𝑢).
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Here, Wβ(𝑡) and W𝑖 (𝑡) (𝑖 = 1, 2, 3) are the mutually independent Brownian motions defined on

(Ω, F , {F𝑡 }𝑡 ≥0, P) with the positive intensities σβ and σ𝑖 (𝑖 = 1, 2, 3). 𝑆 (𝑡−), 𝐼 (𝑡−) and 𝑄 (𝑡−) are the

left limits of 𝑆 (𝑡), 𝐼 (𝑡) and 𝑄 (𝑡), respectively. N is a Poisson counting measure with compensating

martingale Ñ and characteristic measure ν on a measurable subset 𝑍 of (0,∞) satisfying ν(𝑍 ) < ∞.

It assumed that ν is a Lévy measure such that Ñ (d𝑡, d𝑢) = N(d𝑡, d𝑢) − ν(d𝑢)d𝑡 . We also assume

that W𝑖 (𝑡) (𝑖 = 1, 2, 3,β) are independent of N . The functions η𝑖 : U → R (𝑖 = 1, 2, 3) are bounded

and continuous.

For the sake of notational simplicity, we define

• η̄(𝑢) = max{η1(𝑢), η2(𝑢), η3(𝑢)} and η(𝑢) = min{η1(𝑢), η2(𝑢), η3(𝑢)}.

• 𝜌𝑛,𝑝 (𝑢) =
[
1 + η̄(𝑢)

]𝑛𝑝 − 1 − 𝑛𝑝η̄(𝑢) and 𝜌𝑛,𝑝 (𝑢) =
[
1 + η(𝑢)

]𝑛𝑝 − 1 − 𝑛𝑝η(𝑢).

• ℓ𝑛,𝑝 =

∫
U

[
𝜌𝑛,𝑝 (𝑢) ∨ 𝜌𝑛,𝑝 (𝑢)

]
ν(d𝑢) and σ̄ = max{σ2

1,σ
2
2,σ

2
3}.

To properly study our model (VI.3), we have the following fundamental assumptions on the jump-

diffusion coefficients:

• (A1) We assume that

∫
U
η2
𝑖 (𝑢)ν(d𝑢) < ∞, {𝑖 = 1, 2, 3}.

• (A2) For all 𝑢 ∈ U, 1 + η𝑖 (𝑢) > 0 and

∫
U

[
η𝑖 (𝑢) − ln(1 + η𝑖 (𝑢))

]
ν(d𝑢) < ∞, {𝑖 = 1, 2, 3}.

• (A3) We suppose that

∫
U

[
ln(1 + η𝑖 (𝑢))

]2
ν(d𝑢) < ∞, {𝑖 = 1, 2, 3}.

• (A4) We suppose that

∫
U

[ (
1 + η̄(𝑢)

)2 − 1
]2
ν(d𝑢) < ∞.

• (A5) We suppose that for each positive integer 𝑛 there is some real number 𝑝 > 1 for which

γ𝑛,𝑝 = µ1 −
(𝑛𝑝 − 1)

2
σ̄ − 1

𝑛𝑝
ℓ𝑛,𝑝 > 0.

2.2 Main results
2.2.1 Generalization of some former results

In view of the biological interpretation, the question of whether the stochastic model is well-posed

is the first concern. Therefore, to analyze the stochastic model (VI.3), it is necessary to verify the

existence of a unique global positive solution, that is, there is no explosion in finite time for any

positive initial value (𝑆 (0), 𝐼 (0), 𝑄 (0)) ∈ R3
+. The following lemma assures the well-posedness of the

stochastic model (VI.3).

Lemma 2.1. Let assumptions (A1) and (A2) hold. For any initial value 𝑌 (0) = (𝑆 (0), 𝐼 (0), 𝑄 (0)) ∈ R3
+,

there exists a unique positive solution 𝑌 (𝑡) = (𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡)) of system (VI.3) on 𝑡 ≥ 0, and this
solution will stay in R3

+ almost surely.

The proof is somehow standard and classic (see for example [58, 171]), so we omit it here.

In the following, we always presume that the assumptions (A1) - (A5) hold. For reference purposes,

we will prepare several useful lemmas.

Lemma 2.2. Let 𝑛 be a positive integer and let 𝑌 (𝑡) denotes the solution of system (VI.3) that starts
from a given point 𝑌 (0) ∈ R3

+. Then, for any 𝑝 > 1 that satisfies γ𝑛,𝑝 > 0, we have

• E
[
𝑁𝑛𝑝 (𝑡)

]
≤ 𝑁𝑛𝑝 (0) × 𝑒−

𝑛𝑝γ𝑛,𝑝
2 𝑡 + 2δ̄

γ𝑛,𝑝
.
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• lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E
[
𝑁𝑛𝑝 (𝑠)

]
d𝑠 ≤ 2δ̄

γ𝑛,𝑝
a.s.

where δ̄ = sup
𝑥>0

{𝐴𝑥𝑛𝑝−1 − γ𝑛,𝑝
2 𝑥𝑛𝑝 } and 𝑁 (𝑡) = 𝑆 (𝑡) + 𝐼 (𝑡) +𝑄 (𝑡).

Proof. Making use of Itô’s lemma to 𝑁𝑛𝑝 (𝑡), we obtain

d𝑁𝑛𝑝 (𝑡) =
{
𝑛𝑝𝑁𝑛𝑝−1(𝑡)

(
𝐴 − µ1𝑁 (𝑡) − 𝑟2𝐼 (𝑡) − 𝑟3𝑄 (𝑡)

)
+ 𝑛𝑝

2
(𝑛𝑝 − 1)𝑁𝑛𝑝−2(𝑡)

(
σ2

1𝑆
2(𝑡) + σ2

2𝐼
2(𝑡) + σ2

3𝑄
2(𝑡)

)
+

∫
U
𝑁𝑛𝑝 (𝑡)

[(
1 + η1(𝑢)

𝑆 (𝑡)
𝑁 (𝑡) + η2(𝑢)

𝐼 (𝑡)
𝑁 (𝑡) + η3(𝑢)

𝑄 (𝑡)
𝑁 (𝑡)

)𝑛𝑝
− 1

− 𝑛𝑝
(
η1(𝑢)

𝑆 (𝑡)
𝑁 (𝑡) + η2(𝑢)

𝐼 (𝑡)
𝑁 (𝑡) + η3(𝑢)

𝑄 (𝑡)
𝑁 (𝑡)

)]
ν(d𝑢)

}
d𝑡

+ 𝑛𝑝𝑁𝑛𝑝−1(𝑡)
(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑄 (𝑡)dW3(𝑡)

)
+

∫
U
𝑁𝑛𝑝 (𝑡−)

[(
1 + η1(𝑢)

𝑆 (𝑡−)
𝑁 (𝑡−) + η2(𝑢)

𝐼 (𝑡−)
𝑁 (𝑡−) + η3(𝑢)

𝑄 (𝑡−)
𝑁 (𝑡−)

)𝑛𝑝
− 1

]
Ñ (d𝑡, d𝑢) .

Then

d𝑁𝑛𝑝 (𝑡) ≤
(
𝑛𝑝𝑁𝑛𝑝−1(𝑡)

(
𝐴 − µ1𝑁 (𝑡)

)
+ 𝑛𝑝

2
(𝑛𝑝 − 1)𝑁𝑛𝑝 (𝑡)σ̄ + 𝑁𝑛𝑝 (𝑡)

∫
U

[
𝜌𝑛,𝑝 (𝑢) ∨ 𝜌𝑛,𝑝 (𝑢)

]
ν(d𝑢)

)
d𝑡

+ 𝑛𝑝𝑁𝑛𝑝−1(𝑡)
(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑄 (𝑡)dW3(𝑡)

)
+

∫
U
𝑁𝑛𝑝 (𝑡−)

(
(1 + η̄(𝑢))𝑛𝑝 − 1

)
Ñ (d𝑡, d𝑢). (VI.4)

Rewriting the above inequality, one can see that

d𝑁𝑛𝑝 (𝑡) ≤ 𝑛𝑝
{
𝐴𝑁𝑛𝑝−1(𝑡) −

(
µ1 −

(𝑛𝑝 − 1)
2

σ̄ − 1
𝑛𝑝

∫
U

[
𝜌𝑛,𝑝 (𝑢) ∨ 𝜌𝑛,𝑝 (𝑢)

]
ν(d𝑢)

)
𝑁𝑛𝑝 (𝑡)

}
d𝑡

+ 𝑛𝑝𝑁𝑛𝑝−1(𝑡)
(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑄 (𝑡)dW3(𝑡)

)
+

∫
U
𝑁𝑛𝑝 (𝑡−)

(
(1 + η̄(𝑢))𝑛𝑝 − 1

)
Ñ (d𝑡, d𝑢) .

We choose neatly 𝑝 > 1 such that γ𝑛,𝑝 = µ1 −
(𝑛𝑝 − 1)

2
σ̄ − 1

𝑛𝑝

∫
U

[
𝜌𝑛,𝑝 (𝑢) ∨ 𝜌𝑛,𝑝 (𝑢)

]
ν(d𝑢) > 0. There-

fore

d𝑁𝑛𝑝 (𝑡) ≤ 𝑛𝑝
{
δ −

γ𝑛,𝑝

2
𝑁𝑛𝑝 (𝑡)

}
d𝑡 + 𝑛𝑝𝑁𝑛𝑝−1(𝑡)

(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑄 (𝑡)dW3(𝑡)

)
+

∫
U
𝑁𝑛𝑝 (𝑡−)

(
(1 + η̄(𝑢))𝑛𝑝 − 1

)
Ñ (d𝑡, d𝑢) .

On the other hand, we have

d𝑁𝑛𝑝 (𝑡) × 𝑒
𝑛𝑝γ𝑛,𝑝

2 𝑡 = 𝑝γ𝑛,𝑝 𝑁
𝑛𝑝 (𝑡) × 𝑒

𝑛𝑝γ𝑛,𝑝
2 𝑡 + 𝑒

𝑛𝑝γ𝑛,𝑝
2 𝑡

d𝑁𝑛𝑝 (𝑡)

≤ 𝑛𝑝δ̄𝑒
𝑛𝑝γ𝑛,𝑝

2 𝑡 + 𝑒
𝑛𝑝γ𝑛,𝑝

2 𝑡

[
𝑛𝑝𝑁𝑛𝑝−1(𝑡)

(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑄 (𝑡)dW3(𝑡)

)
+

∫
U
𝑁𝑛𝑝 (𝑡−)

(
(1 + η̄(𝑢))𝑛𝑝 − 1

)
Ñ (d𝑡, d𝑢)

]
.

Then, by taking the integration and the expectations, we get

E
[
𝑁𝑛𝑝 (𝑡)

]
≤ 𝑁𝑛𝑝 (0) × 𝑒−

𝑛𝑝γ𝑛,𝑝
2 𝑡 + 𝑛𝑝δ

∫ 𝑡

0
𝑒−

𝑛𝑝

2 γ𝑛,𝑝 (𝑡−𝑠)
d𝑠 ≤ 𝑁𝑛𝑝 (0)𝑒−

𝑛𝑝γ𝑛,𝑝
2 𝑡 + 2δ̄

γ𝑛,𝑝
.
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Obviously, we obtain

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E
[
𝑁𝑛𝑝 (𝑠)

]
d𝑠 ≤ 𝑁𝑛𝑝 (0) × lim sup

𝑡→∞

1
𝑡

∫ 𝑡

0
𝑒−

𝑛𝑝γ𝑛,𝑝
2 𝑠

d𝑠 + 2δ̄
γ𝑛,𝑝

=
2δ̄
γ𝑛,𝑝

.

This completes the proof.

Remark 2.3. Throughout this remark, �̃� is standing for the sum η1(𝑢)𝑆 + η2(𝑢)𝐼 + η3(𝑢)𝑄 , where

𝑢 ∈ U. In the study of stochastic biological models driven by Lévy jumps (see for example,

[172, 171, 27, 26, 36]), the following quantity∫
U
𝑁𝑛𝑝

[(
1 + �̃�

𝑁

)𝑛𝑝
− 1 − 𝑛𝑝 �̃�

𝑁

]
ν(d𝑢),

is widely majorazed by ∫
U
𝑁𝑛𝑝

(
(1 + η̄(𝑢))𝑛𝑝 − 1 − 𝑛𝑝η(𝑢)

)
ν(d𝑢) .

However, the last estimation can be ameliorated by considering the following inequality∫
U
𝑁𝑛𝑝

[(
1 + �̃�

𝑁

)𝑛𝑝
− 1 − 𝑛𝑝 �̃�

𝑁

]
ν(d𝑢) ≤

∫
U
𝑁𝑛𝑝

[
𝜌𝑛,𝑝 (𝑢) ∨ 𝜌𝑛,𝑝 (𝑢)

]
ν(d𝑢), (VI.5)

which is established from the observation that the function

𝑔(𝑥) = (1 + 𝑥)𝑛𝑝 − 1 − 𝑛𝑝𝑥, 𝑛, 𝑝 ≥ 1,

is decreasing for 𝑥 ∈ (−1, 0) and increasing for 𝑥 ≥ 0. Needless to say, this last fact makes

necessarily 𝑔(𝑎) ∨ 𝑔(𝑏) as the highest value of 𝑔 on any interval [𝑎, 𝑏] ⊂ (−1,∞). The adoption of

the inequality (VI.5) in our calculus, especially in (VI.4), (VI.7) and (VI.12), will improve many

classical results presented in the above mentioned papers.

Remark 2.4. Lemma 2.2 takes into consideration the stochastic transmission and the effect of

Lévy jumps, and this makes it clearly an extended version of Lemma 2.3 presented in [162].

Lemma 2.5. Consider the initial value problem{
d𝑋 (𝑡) =

(
𝐴 − µ1𝑋 (𝑡)

)
d𝑡 + P̄1(𝑡) + P̄2(𝑡) + P3(𝑡),

𝑋 (0) = 𝑁 (0) ∈ R+,
(VI.6)

where

P̄1(𝑡) = σ1𝑆 (𝑡)dW1(𝑡) +
∫
U
η1(𝑢)𝑆 (𝑡−)Ñ (d𝑡, d𝑢),

P̄2(𝑡) = σ2𝐼 (𝑡)dW2(𝑡) +
∫
U
η2(𝑢)𝐼 (𝑡−)Ñ (d𝑡, d𝑢) .

Let us denote by 𝑌 (𝑡) = (𝑆 (𝑡), 𝐼 (𝑡), 𝑄 (𝑡)) and 𝑋 (𝑡) the positive solutions of systems (VI.3) and (VI.6)
respectively. Then

• lim
𝑡→∞

𝑋𝑛 (𝑡)
𝑡

= 0 a.s., ∀𝑛 ∈ {1, 2, · · · }.
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• lim
𝑡→∞

∫ 𝑡
0 𝑋 (𝑠)𝑆 (𝑠)dW1(𝑠)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0 𝑋 (𝑠)𝐼 (𝑠)dW2(𝑠)

𝑡
= 0, and lim

𝑡→∞

∫ 𝑡
0 𝑋 (𝑠)𝑄 (𝑠)dW3(𝑠)

𝑡
= 0 a.s.

• lim
𝑡→∞

∫ 𝑡
0

∫
U

(
(1 + η̄(𝑢))2 − 1

)
𝑋 2(𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0 a.s.

Proof. Our approach to demonstrate this lemma is mainly adapted from [171]. The proof falls

naturally into three steps.

Step 1. Applying the generalized Itô’s formula [27] to K(𝑋 ) = 𝑋𝑛𝑝 , where 𝑛 is a fixed integer

number, we derive

dK(𝑋 ) ≤ LKd𝑡 + 𝑛𝑝𝑋𝑛𝑝−1
(
σ1𝑆dW1(𝑡) + σ2𝐼dW2(𝑡) + σ3𝑄dW3(𝑡)

)
+

∫
U
𝑋𝑛𝑝 (𝑡−)

(
(1 + η̄(𝑢))𝑛𝑝 − 1

)
Ñ (d𝑡, d𝑢), (VI.7)

where

LK ≤ 𝑛𝑝𝑋𝑛𝑝−2
[
𝐴𝑋 −

(
µ1 −

(𝑛𝑝 − 1)
2

σ̄ − 1
𝑛𝑝
ℓ𝑛,𝑝

)
𝑋 2

]
.

Choose a positive constant 𝑝 > 1 such that γ𝑛,𝑝 = µ1 − (𝑛𝑝−1)
2 σ̄ − 1

𝑛𝑝
ℓ𝑛,𝑝 > 0. Then

dK(𝑋 ) ≤
(
𝑛𝑝𝑋𝑛𝑝−2 (𝐴𝑋 − γ𝑛,𝑝𝑋

2) )
d𝑡 + 𝑛𝑝𝑋𝑛𝑝−1

(
σ1𝑆dW1(𝑡) + σ2𝐼dW2(𝑡) + σ3𝑄dW3(𝑡)

)
+

∫
U
𝑋𝑛𝑝 (𝑡−)

(
(1 + η̄(𝑢))𝑛𝑝 − 1

)
Ñ (d𝑡, d𝑢) . (VI.8)

For any constant 𝑚 satisfying 𝑚 ∈ (0, 𝑛𝑝γ𝑛,𝑝), one can see that

d𝑒𝑚𝑠K(𝑋 (𝑠)) ≤ L
(
𝑒𝑚𝑡K(𝑋 (𝑡))

)
+ 𝑛𝑝𝑒𝑚𝑡𝑋𝑛𝑝−1(𝑡)

(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑄 (𝑡)dW3(𝑡)

)
+ 𝑒𝑚𝑡

∫
U
𝑋𝑛𝑝 (𝑡−)

(
(1 + η̄(𝑢))𝑛𝑝 − 1

)
Ñ (d𝑡, d𝑢).

Integrating both sides of the last inequality from 0 to 𝑡 , we get∫ 𝑡

0
d𝑒𝑚𝑠K(𝑋 (𝑠)) ≤

∫ 𝑡

0

(
𝑚𝑒𝑚𝑠K(𝑋 (𝑠)) + 𝑒𝑚𝑠L

(
K(𝑋 (𝑠)

) )
d𝑠

+ 𝑛𝑝
∫ 𝑡

0
𝑒𝑚𝑠𝑋𝑛𝑝−1(𝑠)

(
σ1𝑆 (𝑠)dW1(𝑠) + σ2𝐼 (𝑠)dW2(𝑠) + σ3𝑄 (𝑠)dW3(𝑠)

)
+

∫ 𝑡

0
𝑒𝑚𝑠

∫
U
𝑋𝑛𝑝 (𝑠−)

(
(1 + η̄(𝑢))𝑛𝑝 − 1

)
Ñ (d𝑠, d𝑢) .

Taking expectation on both sides yields that

E𝑒𝑚𝑡K(𝑋 (𝑡)) ≤ K(𝑋 (0)) + E
{ ∫ 𝑡

0

(
𝑚𝑒𝑚𝑠K(𝑋 (𝑠)) + 𝑒𝑚𝑠L

(
K(𝑋 (𝑠))

)
d𝑠

}
.

In view of (VI.8), we can see that

𝑚𝑒𝑚𝑡K(𝑋 (𝑡)) + 𝑒𝑚𝑡L
(
K(𝑋 )

)
≤ 𝑛𝑝𝑒𝑚𝑡�̄�,

where �̄� = sup
𝑋>0

{
𝑋𝑛𝑝−2

[
−

(
γ𝑛,𝑝 − 𝑚

𝑛𝑝

)
𝑋 2 +𝐴𝑋

]
+ 1

}
. Then, we have

E𝑒𝑚𝑡K(𝑋 (𝑠)) ≤ K(𝑋 (0)) + 𝑛𝑝�̄�
𝑚

𝑒𝑚𝑡 .
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Therefore, we get

lim sup
𝑡→∞

E
[
𝑋𝑛𝑝 (𝑡)

]
≤ 𝑛𝑝�̄�

𝑚
a.s.

Consequently, there exists a positive constant �̄� such that for all 𝑡 ≥ 0,

E
[
𝑋𝑛𝑝 (𝑡)

]
≤ �̄� . (VI.9)

Step 2. Integrating from 0 to 𝑡 after applying the famous Burkholder-Davis-Gundy inequality

[93] to (VI.8), allows us to conclude that for an arbitrarily small positive constant 𝑧, 𝑚 = 1, 2, ...,

E
[

sup
𝑚𝑧≤𝑡 ≤(𝑚+1)𝑧

𝑋𝑛𝑝 (𝑡)
]
≤ E

[
𝑋 (𝑚𝑧)

]𝑛𝑝
+

(
𝑧1𝑧 + 𝑧2𝑧

1
2
(
𝑛𝑝σ̄ +

∫
U

(
(1 + η̄(𝑢))𝑛𝑝 − 1

)2
ν(d𝑢)

) )
×

[
sup

𝑚𝑧≤𝑡 ≤(𝑚+1)𝑧
𝑋𝑛𝑝 (𝑡)

]
,

where 𝑧1 and 𝑧2 are positive constants. Specially, we select 𝑧 > 0 such that

𝑧1𝑧 + 𝑧2𝑧
1
2

(
𝑛𝑝σ̄ +

∫
U

(
(1 + η̄(𝑢))𝑛𝑝 − 1

)2
ν(d𝑢)

)
≤ 1

2
.

Then

E
[

sup
𝑚𝑧≤𝑡 ≤(𝑚+1)𝑧

𝑋𝑛𝑝 (𝑡)
]
≤ 2�̄� .

Let 𝜖 > 0 be arbitrary. By employing Chebyshev’s inequality, we derive

P
{

sup
𝑚𝑧≤𝑡 ≤(𝑚+1)𝑧

𝑋𝑛𝑝 (𝑡) > (𝑚𝑧)1+𝜖
}
≤
E
[

sup
𝑚𝑧≤𝑡 ≤(𝑚+1)𝑧

𝑋𝑛𝑝 (𝑡)
]

(𝑚𝑧)1+𝜖 ≤ 2�̄�
(𝑚𝑧)1+𝜖 .

Making use of the Borel-Cantelli lemma gives that for almost all 𝜔 ∈ Ω

sup
𝑚𝑧≤𝑡 ≤(𝑚+1)𝑧

𝑋𝑛𝑝 (𝑡) ≤ (𝑚𝑧)1+𝜖 , (VI.10)

verifies for all but finitely many 𝑚. Consequently, there exists a positive constant 𝑚0(𝜔) such that

𝑚0 ≤ 𝑚 and (VI.10) holds for almost all 𝜔 ∈ Ω. In other words, for almost all 𝜔 ∈ Ω, if 𝑚0 ≤ 𝑚 and

𝑚𝑧 ≤ 𝑡 ≤ (𝑚 + 1)𝑧,

ln𝑋𝑛𝑝 (𝑡)
ln 𝑡

≤ (1 + 𝜖) ln(𝑚𝑧)
ln(𝑚𝑧) = 1 + 𝜖.

Because 𝜖 is arbitrarily small, then

lim sup
𝑡→∞

ln𝑋𝑛 (𝑡)
ln 𝑡

≤ 1
𝑝

a.s.

Therefore, for any small 𝑣 ∈ (0, 1 − 1/𝑝), there is a constant 𝑉 = 𝑉 (𝜔), for which if 𝑡 ≥ 𝑉 then

ln𝑋𝑛 (𝑡) ≤
(1
𝑝
+ 𝑣

)
ln 𝑡 .

Hence

lim sup
𝑡→∞

𝑋𝑛 (𝑡)
𝑡

≤ lim sup
𝑡→∞

𝑡
1
𝑝
+𝑣

𝑡
= 0.
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This together with the positivity of the solution implies

lim
𝑡→∞

𝑋𝑛 (𝑡)
𝑡

= 0 a.s.

Step 3. Now, we define

I1(𝑡) =
1
𝑡

∫ 𝑡

0
𝑋 (𝑠)𝑆 (𝑠)dW1(𝑠), I2(𝑡) =

1
𝑡

∫ 𝑡

0
𝑋 (𝑠)𝐼 (𝑠)dW2(𝑠),

I3(𝑡) =
1
𝑡

∫ 𝑡

0
𝑋 (𝑠)𝑄 (𝑠)dW3(𝑠), I4(𝑡) =

1
𝑡

∫ 𝑡

0

∫
U
𝑋 2(𝑠−)

( (
1 + η̄

)2 − 1
)
Ñ (d𝑠, d𝑢) .

In view of the Burkholder-Davis-Gundy inequality, we find that for 𝑝 > 2,

E

[
sup

𝑚≤𝑡 ≤(𝑚+1)
|I1(𝑡) |𝑝

]
≤ 𝐶𝑝E

[ ∫ 𝑡

0
𝑋 4(𝑠)d𝑠

] �̄�

2

≤ 𝐶𝑝

[
E

∫ 𝑡

0
𝑋 4(𝑠)d𝑠

] �̄�

2

≤ 𝐶𝑝

[
E

∫ 𝑡

0
|𝑋 4(𝑠) |d𝑠

] �̄�

2

, (VI.11)

where 𝐶𝑝 =

[
𝑝�̄�+1

2(𝑝−1)�̄�−1

]𝑝/2
> 0. Similarly to the previous case, we find

E

[
sup

𝑚≤𝑡 ≤(𝑚+1)
|I4(𝑡) |𝑝

]
≤ 𝐶𝑝

( ∫
U

( (
1 + η̄

)2 − 1
)2
ν(d𝑢)

) �̄�

2
[
E

∫ 𝑡

0
|𝑋 4(𝑠) |d𝑠

] �̄�

2

.

Via (VI.9) and (VI.11), one can see that

E
[

sup
𝑚≤𝑡 ≤(𝑚+1)

|I1(𝑡) |𝑝
]
≤ 21+ �̄�

2 �̄�𝐶𝑝𝑚
�̄�

2 .

For any arbitrary positive constant 𝜖, and by making use of Chebyshev’s inequality, we obtain

P
{

sup
𝑚≤𝑡 ≤(𝑚+1)

|I1(𝑡) |𝑝 > 𝑝1+𝜖+ �̄�

2

}
≤
E
[

sup
𝑚≤𝑡 ≤(𝑚+1)

|I1(𝑚 + 1) |𝑝
]

𝑝1+𝜖+ �̄�

2

≤
21+ �̄�

2 �̄�𝐶𝑝

𝑝1+𝜖 , 𝑚 = 1, 2, ...

Using the Borel-Cantelli lemma, one has

ln |I1(𝑡) |𝑝
ln 𝑡

≤
(
1 + 𝜖 + 𝑝

2
)
ln𝑚

ln𝑚
= 1 + 𝜖 + 𝑝

2
.

Taking the limit superior on both sides of the last inequality and applying the arbitrariness of 𝜖,

we deduce

lim sup
𝑡→∞

ln |I1(𝑡) |
ln 𝑡

≤ 1
2
+ 1
𝑝

a.s.

That is to say, for any positive constant 𝜏 ∈
(
0, 1

2 − 1
𝑝

)
, there exists a constant 𝑇 = 𝑇 (𝜔) such that

for all 𝑡 ≥ 𝑇 ,

ln |I1(𝑡) | ≤
(1
2
+ 1
𝑝
+ 𝜏

)
ln 𝑡 .

Dividing both sides of the last inequality by 𝑡 and taking the limit superior, we have

lim sup
𝑡→∞

|I1(𝑡) |
𝑡

≤ lim sup
𝑡→∞

𝑡
1
2+

1
�̄�
+𝜏

𝑡
= 0.

Combining it with lim inf
𝑡→∞

|I1 (𝑡 ) |
𝑡

≥ 0, one has lim
𝑡→∞

|I1 (𝑡 ) |
𝑡

= lim
𝑡→∞

I1 (𝑡 )
𝑡

= 0 a.s.

In the same way, we prove that

lim
𝑡→∞

I2(𝑡)
𝑡

= 0, lim
𝑡→∞

I3(𝑡)
𝑡

= 0, lim
𝑡→∞

I4(𝑡)
𝑡

= 0 a.s.

This completes the proof.
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Remark 2.6. The positivity of the solutions 𝑋 (𝑡) and 𝑌 (𝑡) together with the stochastic comparison

theorem [93], leads to the fact that 𝑁 (𝑡) ≤ 𝑋 (𝑡) a.s. which in turn implies that

lim
𝑡→∞

𝑆𝑛 (𝑡)
𝑡

= 0, lim
𝑡→∞

𝐼𝑛 (𝑡)
𝑡

= 0, lim
𝑡→∞

𝑄𝑛 (𝑡)
𝑡

= 0, and even lim
𝑡→∞

𝑁𝑛 (𝑡)
𝑡

= 0 a.s.

Remark 2.7. By comparing our findings with those of Lemmas 3.3 and 3.4 in [171], one can

conclude that the new result 2.5 presents a modified and generalized version to these lemmas,

which will be necessary to prove Lemma 2.10.

Lemma 2.8. Let 𝑌 (0) ∈ R3
+ be a positive given value. If 𝑌 (𝑡) denotes the positive solution of system

(VI.3) that starts from 𝑌 (0), then

• lim
𝑡→∞

∫ 𝑡
0 𝑆 (𝑠)dWβ(𝑠)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0 𝑆 (𝑠)dW1(𝑠)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0 𝐼 (𝑠)dW2(𝑠)

𝑡
= 0,

and lim
𝑡→∞

∫ 𝑡
0 𝑄 (𝑠)dW3(𝑠)

𝑡
= 0 a.s.

• lim
𝑡→∞

∫ 𝑡
0

∫
U η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0, lim

𝑡→∞

∫ 𝑡
0

∫
U η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0,

and lim
𝑡→∞

∫ 𝑡
0

∫
U η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢)

𝑡
= 0 a.s.

Remark 2.9. The last lemma is easily demonstrated by using an analysis similar to that in the

proof of Lemma 2.5.

Lemma 2.10. Let 𝑋 (𝑡) ∈ R+ be the solution of the equation (VI.6) with any given initial value
𝑋 (0) = 𝑁 (0) ∈ R+. Suppose that 𝜒 = 2µ1 − σ̄ −

∫
U

[
η̄2(𝑢) ∨ η2(𝑢)

]
ν(d𝑢) > 0, then

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑋 (𝑠)d𝑠 = 𝐴

µ1
a.s.

and

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 ≤ 2𝐴2

µ1𝜒
a.s.

Proof. Integrating from 0 to 𝑡 on both sides of (VI.6) yields

𝑋 (𝑡) − 𝑋 (0)
𝑡

= 𝐴 − µ1
𝑡

∫ 𝑡

0
𝑋 (𝑠)d𝑠 + σ1

𝑡

∫ 𝑡

0
𝑆 (𝑠)dW1(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢)

+ σ2
𝑡

∫ 𝑡

0
𝐼 (𝑠)dW2(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

+ σ3
𝑡

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢) .

Clearly, we can derive that

1
𝑡

∫ 𝑡

0
𝑋 (𝑠)d𝑠 = 𝐴

µ1
− 𝑋 (𝑡) − 𝑋 (0)

µ1𝑡
+ σ1
µ1𝑡

∫ 𝑡

0
𝑆 (𝑠)dW1(𝑠) +

1
µ1𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢)

+ σ2
µ1𝑡

∫ 𝑡

0
𝐼 (𝑠)dW2(𝑠) +

1
µ1𝑡

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

+ σ3
µ1𝑡

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠) +

1
µ1𝑡

∫ 𝑡

0

∫
U
η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢).
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According to Lemma 2.8, we have

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑋 (𝑠)d𝑠 = 𝐴

µ1
a.s.

Now, applying the generalized Itô’s formula to equation (VI.6) leads to

d𝑋 2(𝑡) ≤
(
2𝑋 (𝑡)

(
𝐴 − µ1𝑋 (𝑡)

)
+ σ̄𝑋 2(𝑡) +

∫
U
𝑋 2(𝑡)

[
η̄2(𝑢) ∨ η2(𝑢)

]
ν(d𝑢)

)
d𝑡

+ 2𝑋 (𝑡)
(
σ1𝑆 (𝑡)dW1(𝑡) + σ2𝐼 (𝑡)dW2(𝑡) + σ3𝑄 (𝑡)dW3(𝑡)

)
+

∫
U
𝑋 2(𝑡−)

( (
1 + η̄(𝑢)

)2 − 1
)
Ñ (d𝑡, d𝑢) . (VI.12)

Integrating both sides from 0 to 𝑡 , yields

𝑋 2(𝑡) − 𝑋 2(0) ≤ 2𝐴
∫ 𝑡

0
𝑋 (𝑠)d𝑠 −

(
2µ1 − σ̄ −

∫
U

[
η̄2(𝑢) ∨ η2(𝑢)

]
ν(d𝑢)

) ∫ 𝑡

0
𝑋 2(𝑠)d𝑠

+ 2σ1

∫ 𝑡

0
𝑋 (𝑠)𝑆 (𝑠)dW1(𝑠) + 2σ2

∫ 𝑡

0
𝑋 (𝑠)𝐼 (𝑠)dW2(𝑠) + 2σ3

∫ 𝑡

0
𝑋 (𝑠)𝑄 (𝑠)dW3(𝑠)

+
∫ 𝑡

0

∫
U
𝑋 2(𝑠−)

( (
1 + η̄(𝑢)

)2 − 1
)
Ñ (d𝑠, d𝑢).

Let 𝜒 = 2µ1 − σ̄ −
∫
U

[
η̄2(𝑢) ∨ η2(𝑢)

]
ν(d𝑢) > 0. Therefore

1
𝑡

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 ≤ 2𝐴

𝜒𝑡

∫ 𝑡

0
𝑋 (𝑠)d𝑠 + 𝑋

2(0) − 𝑋 2(𝑡)
𝜒𝑡

+ 2σ1
𝜒𝑡

∫ 𝑡

0
𝑋 (𝑠)𝑆 (𝑠)dW1(𝑠)

+ 2σ2
𝜒𝑡

∫ 𝑡

0
𝑋 (𝑠)𝐼 (𝑠)dW2(𝑠) +

2σ3
𝜒𝑡

∫ 𝑡

0
𝑋 (𝑠)𝑄 (𝑠)dW3(𝑠)

+ 1
𝜒𝑡

∫ 𝑡

0

∫
U
𝑋 2(𝑠)

( (
1 + η̄(𝑢)

)2 − 1
)
Ñ (d𝑠, d𝑢) .

By Lemma 2.5 and assumptions (A4)-(A5), we can easily verify that

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 ≤ 2𝐴2

µ1𝜒
a.s.

2.2.2 Ergodicity and persistence in the mean

In the following, we aim to give the condition for the ergodicity the persistence of the disease. We

suppose that 𝜒 > 0 and we define the parameter:

R𝑠0 =

(
µ2 + δ + γ +

σ2
2

2

)−1
(
β𝐴

µ1
−
𝐴2σ2

β

µ1𝜒
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
.

For simplicity, we introduce the following notations:

• 𝑀1 =
µ2

1
4β2𝐴

(
µ2 + δ + γ +

σ2
2

2

) (
R𝑠0 − 1

)
.

• 𝑀2 =
𝑝µ1γ2,𝑝β

−(𝑝+1)

8δ̄

(
µ2 + δ + γ +

σ2
2

2

) (
R𝑠0 − 1

)
.

• 𝑀3 =
µ1𝑞

8β

(
µ2 + δ + γ +

σ2
2

2

) (
2𝐴
µ1

+ 𝑁 (0)
)−1 (

R𝑠0 − 1
)
.
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Theorem 2.11. If R𝑠0 > 1, the stochastic system (VI.3) admits a unique stationary distribution and
it has the ergodic property for any initial value 𝑌 (0) ∈ R3

+.

Proof. Applying the generalized Itô’s formula to ln 𝐼 − β
µ1
(𝑋 − 𝑆), we easily derive

d

{
ln 𝐼 (𝑡) − β

µ1

(
𝑋 (𝑡) − 𝑆 (𝑡)

)}
≥

(
β𝑋 (𝑡) − (µ2 + δ + γ) −

σ2
2

2
−
σ2
β

2
𝑆2(𝑡) −

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
d𝑡

− β2

µ1
𝑆 (𝑡)𝐼 (𝑡)d𝑡 + σ2dW2(𝑡) +

∫
U

ln(1 + η2(𝑢))Ñ (d𝑡, d𝑢) + σβ𝑆 (𝑡)dWβ(𝑡)

− β

µ1
σβ𝑆 (𝑡)𝐼 (𝑡)dWβ(𝑡) −

β

µ1
P̄2(𝑡) −

β

µ1
P3(𝑡) . (VI.13)

Integrating from 0 to 𝑡 on both sides of (VI.13) yields

ln
𝐼 (𝑡)
𝐼 (0) −

β

µ1

(
𝑋 (𝑡) − 𝑆 (𝑡)

)
+ β

µ1

(
𝑋 (0) − 𝑆 (0)

)
≥

∫ 𝑡

0

(
β𝑋 (𝑠) − (µ2 + δ + γ) −

σ2
2

2
−
σ2
β

2
𝑆2(𝑠) −

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
d𝑠

− β2

µ1

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)d𝑠 + σ2𝑊2(𝑡) +

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢) + σβ

∫ 𝑡

0
𝑆 (𝑠)dWβ(𝑠)

−
βσβ

µ1

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)dWβ(𝑠) −

βσ2
µ1

∫ 𝑡

0
𝐼 (𝑠)dW2(𝑠) −

β

µ1

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

− βσ3
µ1

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠) −

β

µ1

∫ 𝑡

0

∫
U
η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢) .

Hence∫ 𝑡

0
β𝑆 (𝑠)𝐼 (𝑠)d𝑠

≥ µ1
β

∫ 𝑡

0

(
β𝑋 (𝑠) − (µ2 + δ + γ) −

σ2
2

2
−
σ2
β

2
𝑆2(𝑠) −

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
d𝑠

− µ1
β

ln
𝐼 (𝑡)
𝐼 (0) +

(
𝑋 (𝑡) − 𝑆 (𝑡)

)
−

(
𝑋 (0) − 𝑆 (0)

)
+ µ1

β
σ2𝑊2(𝑡) +

µ1
β

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢)

+
µ1σβ

β

∫ 𝑡

0
𝑆 (𝑠)dWβ(𝑠) − σβ

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)dWβ(𝑠) − σ2

∫ 𝑡

0
𝐼 (𝑠)dW2(𝑠) −

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

− βσ3

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠) −

∫ 𝑡

0

∫
U
η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢) . (VI.14)

From Remark 2.6 and Lemma 2.8, one can derive that

lim
𝑡→∞

𝑋 (𝑡)
𝑡

= 0, lim
𝑡→∞

𝑆 (𝑡)
𝑡

= 0, and lim
𝑡→∞

1
𝑡

∫ 𝑡

0

∫
U
(η2(𝑢)𝐼 (𝑠−) + η3(𝑢)𝑄 (𝑠−))Ñ (d𝑠, d𝑢) a.s.

Moreover,

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆 (𝑠)dWβ(𝑠) = 0,

1
𝑡

∫ 𝑡

0
𝐼 (𝑠)dW2(𝑠) = 0 and lim

𝑡→∞
1
𝑡

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠) = 0 a.s.

Application of the strong law of large numbers and assumption (A3) shows that

lim
𝑡→∞

W2(𝑡)
𝑡

= 0 and lim
𝑡→∞

1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢) = 0 a.s.

Applying similar arguments to those in the proof of Lemma 2.5, we obtain

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑆 (𝑠)𝐼 (𝑠)dWβ(𝑠) = 0 a.s.

163



Since lim sup
𝑡→∞

1
𝑡

ln 𝐼 (𝑡 )
𝐼 (0) ≤ lim sup

𝑡→∞
1
𝑡

ln 𝑁 (𝑡 )
𝐼 (0) ≤ 0 a.s., one can derive that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
β𝑆 (𝑠)𝐼 (𝑠)d𝑠

≥ µ1
β

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0

(
β𝑋 (𝑠) − (µ2 + δ + γ) −

σ2
2

2
−
σ2
β

2
𝑋 2(𝑠) −

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
d𝑠

=
µ1
β

lim
𝑡→∞

1
𝑡

∫ 𝑡

0
β𝑋 (𝑠)d𝑠 −

σ2
β

2
lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 −

(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢).

From Lemma 2.10, it follows that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
β𝑆 (𝑠)𝐼 (𝑠)d𝑠 ≥ µ1

β
×

(
β𝐴

µ1
−
𝐴2σ2

β

µ1𝜒
−

(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
=
µ1
β

(
µ2 + δ + γ +

σ2
2

2

) (
R𝑠0 − 1

)
> 0 a.s. (VI.15)

To continue our analysis, we need to set the following subsets:

• Ω1 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝑆 (𝑡, 𝜔) ≥ 𝜖, and, 𝐼 (𝑡, 𝜔) ≥ 𝜖},
• Ω2 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝑆 (𝑡, 𝜔) ≤ 𝜖},
• Ω3 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝐼 (𝑡, 𝜔) ≤ 𝜖},

where 𝜖 > 0 is a positive constant to be determined later. Therefore, by (VI.15), we get

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
β𝑆 (𝑠)𝐼 (𝑠)1Ω1

)
d𝑠 ≥ µ1

β

(
µ2 + δ + γ +

σ2
2

2

) (
R𝑠0 − 1

)
− 2𝐴β𝜖

µ1
.

We can choose 𝜖 ≤ 𝑀1, and then we obtain

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
β𝑆 (𝑠)𝐼 (𝑠)1Ω1

)
d𝑠 ≥ µ1

2β

(
µ2 + δ + γ +

σ2
2

2

) (
R𝑠0 − 1

)
> 0. (VI.16)

Let 𝑞 = 𝑎0 > 1 be a positive integer and 1 < 𝑝 =
𝑎0
𝑎0−1 such that γ2,𝑝 > 0 and

1
𝑞
+ 1
𝑝
= 1. By utilizing

the Young inequality 𝑥𝑦 ≤ 𝑥𝑝

𝑝
+ 𝑦𝑞

𝑞
for all 𝑥 ,𝑦 > 0, we get

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
β𝑆 (𝑠)𝐼 (𝑠)1Ω1

)
d𝑠 ≤ lim inf

𝑡→∞
1
𝑡

∫ 𝑡

0
E

(
𝑝−1(ηβ𝑆 (𝑠)𝐼 (𝑠))𝑝 + 𝑞−1η−𝑞1Ω1

)
d𝑠

≤ lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
(
𝑞−1η−𝑞1Ω1

)
d𝑠 + 𝑝−1(ηβ)𝑝 lim sup

𝑡→∞

1
𝑡

∫ 𝑡

0
E
[
𝑁 2𝑝 (𝑠)

]
d𝑠,

where η is a positive constant satisfying η𝑝 ≤ 𝑀2. By Lemma 2.2 and (VI.16), we deduce that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E
[
1Ω1

]
d𝑠 ≥ 𝑞η𝑞

(
µ1
2β

(
µ2 + δ + γ +

σ2
2

2

) (
R𝑠0 − 1

)
−

2η𝑝β𝑝γ2,𝑝

𝑝δ̄

)
≥ µ1𝑞η

𝑞

4β

(
µ2 + δ + γ +

σ2
2

2

) (
R𝑠0 − 1

)
> 0. (VI.17)

Setting

Ω4 = {(𝑡, 𝜔) ∈ R+ × Ω | 𝑆 (𝑡, 𝜔) ≥ ζ, or, 𝐼 (𝑡, 𝜔) ≥ ζ},
Σ = {(𝑡, 𝜔) ∈ R+ × Ω | 𝜖 ≤ 𝑆 (𝑡, 𝜔) ≤ ζ, and, 𝜖 ≤ 𝐼 (𝑡, 𝜔) ≤ ζ},

where ζ > 𝜖 is a positive constant to be explained in the following. By using the Markov’s

inequality, we can observe that∫
Ω
1Ω4 (𝑡, 𝜔)dP(𝜔) ≤ P(𝑆 (𝑡) ≥ ζ) + P(𝐼 (𝑡) ≥ ζ) ≤ 1

ζ
E[𝑆 (𝑡) + 𝐼 (𝑡)] ≤ 1

ζ

(
2𝐴
µ1

+ 𝑁 (0)
)
.
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Choosing
1
ζ ≤ 𝑀3η

𝑞 . We thus obtain

lim sup
𝑡→∞

1
𝑡

∫ 𝑡

0
E[1Ω4]d𝑠 ≤

µ1𝑞η
𝑞

8β

(
µ2 + δ + γ +

σ2
2

2

) (
R𝑠0 − 1

)
.

According to (VI.17), one can derive that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
E[1Σ]d𝑠 ≥ lim inf

𝑡→∞
1
𝑡

∫ 𝑡

0
E[1Ω1]d𝑠 − lim sup

𝑡→∞

1
𝑡

∫ 𝑡

0
E[1Ω4]d𝑠

≥ µ1𝑞η
𝑞

8β

(
µ2 + δ + γ +

σ2
2

2

) (
R𝑠0 − 1

)
> 0.

Based on the above analysis, we have determined a compact domain Σ ⊂ R3
+ such that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
P
(
𝑠, 𝑌 (0), Σ

)
d𝑠 ≥ µ1𝑞η

𝑞

8β

(
µ2 + δ + γ +

σ2
2

2

) (
R𝑠0 − 1

)
> 0.

Applying similar arguments to those in Theorem 5.1 of [57], we show the uniqueness of the ergodic

stationary distribution of our model (VI.3). This completes the proof.

Theorem 2.12. If R𝑠0 > 1, then for any value 𝑌 (0) ∈ R3
+, the disease is persistent in the mean.

Proof. From model (VI.3) it yields

d(𝑆 (𝑡) + 𝐼 (𝑡) +𝑄 (𝑡)) =
(
𝐴 − µ1𝑆 (𝑡) − µ2𝐼 (𝑡) − µ3𝑄 (𝑡)

)
d𝑡 + P̄1(𝑡) + P̄2(𝑡) + P3(𝑡) . (VI.18)

Integrating (VI.18) from 0 to 𝑡 , and then dividing 𝑡 on both sides, we get

1
𝑡

(
(𝑆 (𝑡) + 𝐼 (𝑡) +𝑄 (𝑡)) − (𝑆 (0) + 𝐼 (0) +𝑄 (0))

)
= 𝐴 − µ1

𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 − µ2

𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 − µ3

𝑡

∫ 𝑡

0
𝑄 (𝑠)d𝑠 + σ1

𝑡

∫ 𝑡

0
𝑆 (𝑠)dW1(𝑠)

+ 1
𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢) + σ2

𝑡

∫ 𝑠

0
𝐼 (𝑠)dW2(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢)

+ σ3
𝑡

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠) +

1
𝑡

∫ 𝑡

0

∫
U
η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢) .

Taking the integration for the third equation of model (VI.3) yields

𝑄 (𝑡) −𝑄 (0) = δ

∫ 𝑡

0
𝐼 (𝑠)d𝑠 − (µ3 + 𝑘)

∫ 𝑡

0
𝑄 (𝑠)d𝑠 + σ3

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠) +

∫ 𝑡

0

∫
U
η3(𝑢)𝑄 (𝑡−)Ñ (d𝑠, d𝑢) .

(VI.19)

Dividing 𝑡 on both sides of equation (VI.19), we have

1
𝑡

∫ 𝑡

0
𝑄 (𝑠)d𝑠 = δ

(µ3 + 𝑘)
1
𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 + σ3

(µ3 + 𝑘)
1
𝑡

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠)

+ 1
(µ3 + 𝑘)

∫ 𝑡

0

∫
U
η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢) − 1

(µ3 + 𝑘)𝑡
(𝑄 (𝑡) −𝑄 (0)).

Then, one can obtain that

1
𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 = 𝐴

µ1
− 1
𝑡

(
µ2
µ1

+ δµ3
µ1(µ3 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑠)d𝑠 + Φ1(𝑡), (VI.20)
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where

Φ1(𝑡) =
σ3µ3

µ1(µ3 + 𝑘)𝑡

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠) +

µ3
µ1(µ3 + 𝑘)𝑡

∫ 𝑡

0

∫
U
η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢) − 1

(µ3 + 𝑘)𝑡
(𝑄 (𝑡) −𝑄 (0))

+ σ1
µ1𝑡

∫ 𝑡

0
𝑆 (𝑠)dW1(𝑠) +

1
µ1𝑡

∫ 𝑡

0

∫
U
η1(𝑢)𝑆 (𝑠−)Ñ (d𝑠, d𝑢) + σ2

µ1𝑡

∫ 𝑡

0
𝐼 (𝑠)dW2(𝑠)

+ 1
µ1𝑡

∫ 𝑡

0

∫
U
η2(𝑢)𝐼 (𝑠−)Ñ (d𝑠, d𝑢) + σ3

µ1𝑡

∫ 𝑡

0
𝑄 (𝑠)dW3(𝑠) +

1
µ1𝑡

∫ 𝑡

0

∫
U
η3(𝑢)𝑄 (𝑠−)Ñ (d𝑠, d𝑢)

− 1
µ1𝑡

(
(𝑆 (𝑡) + 𝐼 (𝑡) +𝑄 (𝑡)) − (𝑆 (0) + 𝐼 (0) +𝑄 (0))

)
.

Applying Itô’s formula to the second equation of (VI.3), we get

d ln 𝐼 (𝑡) =
(
β𝑆 (𝑡) − (µ2 + δ + γ) −

σ2
2

2
−
σ2
β

2
𝑆2(𝑡) −

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
d𝑡

+ σ2dW2(𝑡) +
∫
U

ln(1 + η2(𝑢))Ñ (d𝑡, d𝑢) + σβ𝑆 (𝑡)dWβ(𝑡) . (VI.21)

Integrating (VI.21) from 0 to 𝑡 and then dividing 𝑡 on both sides, we have

1
𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) = β

𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 − (µ2 + δ + γ) −

σ2
2

2
−
σ2
β

2𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠 −

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

+ σ2
𝑊2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢) +
σβ

𝑡

∫ 𝑡

0
𝑆 (𝑠)dWβ(𝑠) .

From (VI.20), we get

1
𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) = β𝐴

µ1
− β

𝑡

(
µ2
µ1

+ δµ3
µ1(µ3 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑠)d𝑠 + βΦ1(𝑡) − (µ2 + δ + γ)

−
σ2

2
2

−
σ2
β

2

∫ 𝑡

0
𝑆2(𝑠)d𝑠 −

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

+ σ2
𝑊2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢) +
σβ

𝑡

∫ 𝑡

0
𝑆 (𝑠)dWβ(𝑠).

Since 𝑆 (𝑡) ≤ 𝑋 (𝑡) a.s., we obtain

1
𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) ≥ β𝐴

µ1
− β

𝑡

(
µ2
µ1

+ δµ3
µ1(µ3 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑠)d𝑠 + β𝜙1(𝑡) − (µ2 + δ + γ)

−
σ2

2
2

−
σ2
β

2

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 −

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

+ σ2
𝑊2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢) +
σβ

𝑡

∫ 𝑡

0
𝑆 (𝑠)dWβ(𝑠).

Hence, we further have

β

𝑡

(
µ2
µ1

+ δµ3
µ1(µ3 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑠)d𝑠 ≥ −1

𝑡
(ln 𝐼 (𝑡) − ln 𝐼 (0)) + β𝐴

µ1
+ β𝜙1(𝑡) − (µ2 + δ + γ)

−
σ2

2
2

−
σ2
β

2

∫ 𝑡

0
𝑋 2(𝑠)d𝑠 −

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

+ σ2
𝑊2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢) +
σβ

𝑡

∫ 𝑡

0
𝑆 (𝑠)dWβ(𝑠) .
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By assumption (𝐴3), Lemmas 2.8 - 2.10, and the large number theorem for martingales, we can

easily verify that

lim inf
𝑡→∞

1
𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠 ≥ 1

β

(
µ2
µ1

+ δµ3
µ1(µ3 + 𝑘)

)−1 (
µ2 + δ + γ +

σ2
2

2

)
(R𝑠0 − 1) > 0 a.s.

This shows that the system (VI.3) is persistent in the mean with probability one. This completes

the proof.

2.2.3 The extinction of the disease

Now, we will give the result on the extinction of the disease. Define

R̂𝑠0 =

(
µ2 + δ + γ +

σ2
2

2

)−1 (
β𝐴

µ1
−
σ2
β
𝐴2

2µ2
1

−
∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
.

Theorem 2.13. Let 𝑌 (𝑡) be the solution of system (VI.3) with initial value 𝑌 (0) ∈ R3
+.

If

R̂𝑠0 < 1 and σ2
β ≤ µ1β

𝐴
, (VI.22)

or

β2

2σ2
β

−
(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢) < 0, (VI.23)

then the disease dies out exponentially with probability one. That is to say,

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

< 0 a.s. (VI.24)

Proof. By Itô’s formula for all 𝑡 ≥ 0, we have

d ln 𝐼 (𝑡) =
(
β𝑆 (𝑡) − (µ2 + δ + γ) −

σ2
2

2
−
σ2
β

2
𝑆2(𝑡) −

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
d𝑡

+ σ2dW2(𝑡) +
∫
U

ln(1 + η2(𝑢))Ñ (d𝑡, d𝑢) + σβ𝑆 (𝑡)dWβ(𝑡) . (VI.25)

Integrating (VI.25) from 0 to 𝑡 and then dividing 𝑡 on both sides, we get

ln 𝐼 (𝑡)
𝑡

=
β

𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 −

(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢) −

σ2
β

2𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠 + Φ2(𝑡),

(VI.26)

where

Φ2(𝑡) =
σβ

𝑡

∫ 𝑡

0
𝑆 (𝑠)dWβ(𝑠) −

σ2𝑊2(𝑡)
𝑡

+ 1
𝑡

∫ 𝑡

0

∫
U

ln(1 + η2(𝑢))Ñ (d𝑠, d𝑢) − ln 𝐼 (0)
𝑡

.

Obviously, we know that

1
𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠 ≥

(
1
𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠

)2
.
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Therefore, from (VI.20), we derive

ln 𝐼 (𝑡)
𝑡

≤ β

𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 −

(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢) −

σ2
β

2

(1
𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠

)2
+ Φ2(𝑡)

= β

(
𝐴

µ1
− 1
𝑡

(
µ2
µ1

+ δµ3
µ1(µ3 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑠)d𝑠 + 𝜙1(𝑡)

)
−

(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

−
σ2
β

2

(
𝐴

µ1
− 1
𝑡

(
µ2
µ1

+ δµ3
µ1(µ3 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑠)d𝑠 + 𝜙1(𝑡)

)2

+ Φ2(𝑡).

Hence, one can see that

ln 𝐼 (𝑡)
𝑡

≤ β𝐴

µ1
−

(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢) −

𝐴2σ2
β

2µ2
1

−
(
µ2
µ1

+ δµ3
µ1(µ3 + 𝑘)

) (
β −

𝐴σ2
β

µ1

)
1
𝑡

∫ 𝑡

0
𝐼 (𝑠)d𝑠

−
σ2
β

2𝑡2

((
µ2
µ1

+ δµ3
µ1(µ3 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑠)d𝑠

)2

+ Φ2(𝑡) + Φ3(𝑡), (VI.27)

where

Φ3(𝑡) = βΦ1(𝑡) −
σ2
β

2
Φ2

1(𝑡) −
σ2
β
𝐴Φ1(𝑡)
µ1

+ σ2
βΦ1(𝑡)

(
µ2
µ1

+ δµ3
µ1(µ3 + 𝑘)

) ∫ 𝑡

0
𝐼 (𝑠)d𝑠 .

Based on Lemma 2.8, one has

lim
𝑡→∞

Φ2(𝑡)
𝑡

= lim
𝑡→∞

Φ3(𝑡)
𝑡

= 0 a.s.

Taking the superior limit on both sides of (VI.27), then by condition (VI.22), we arrive at

lim sup
𝑡→∞

ln 𝐼 (𝑡)
𝑡

≤
(
µ2 + δ + γ +

σ2
2

2

) (
R̂𝑠0 − 1

)
< 0 a.s.

Now, from (VI.26), we have

ln 𝐼 (𝑡)
𝑡

=
β

𝑡

∫ 𝑡

0
𝑆 (𝑠)d𝑠 −

(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢) −

σ2
β

2𝑡

∫ 𝑡

0
𝑆2(𝑠)d𝑠 + Φ2(𝑡)

=
β2

2σ2
β

−
(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢) −

σ2
β

2
1
𝑡

∫ 𝑡

0

(
𝑆 (𝑠)d𝑠 − β

σ2
β

)2
𝑑𝑠 + Φ2(𝑡)

≤ β2

2σ2
β

−
(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)) + Φ2(𝑡) .

By the large number theorem for martingales, Lemma 2.8 and the condition (VI.23), our desired

result (VI.24) holds true. This completes the proof.

2.3 Numerical examples
In this section, we will validate our theoretical results with the help of numerical simulation

examples taking parameters from the theoretical data mentioned in the Table VI.2. We numerically

simulate the solution of system (VI.3) with the initial values (𝑆 (0), 𝐼 (0), 𝑄 (0)) = (0.5, 0.3, 0.1). The

unit of time is one day.
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Parameters Numerical values

𝐴 0.1 0.1 0.1

µ1 0.05 0.05 0.05

µ2 0.09 0.09 0.09

µ3 0.052 0.052 0.052

β 0.075 0.05 0.05

γ 0.01 0.01 0.01

δ 0.03 0.03 0.03

𝑘 0.04 0.04 0.04

σ1 0.01 0.01 0.01

σ2 0.03 0.12 0.01

σ3 0.07 0.12 0.12

σβ 0.02 0.1 0.02

η1 0.01 0.2 0.2

η2 0.02 0.12 0.12

η3 0.05 0.01 0.01

Figures VI.4 and VI.5 Figure VI.6 (a) Figure VI.6 (b)

Table VI.2: Nominal values of the system parameters and disturbances intensities adopted in the

different simulation examples.
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Figure VI.4: Histogram of the probability density function for 𝑆 , 𝐼 , and 𝑄 population at 𝑡 = 300 for

the stochastic model (VI.3), the smoothed curves are the probability density functions of 𝑆 (𝑡), 𝐼 (𝑡)
and 𝑄 (𝑡), respectively.

Example 2.14. We assume that U = (0,∞) and ν(U) = 1. Then, R𝑠0 = 1.1756 > 1. From Figure

VI.4, we show the existence of the unique stationary distributions for 𝑆 (𝑡), 𝐼 (𝑡) and 𝑄 (𝑡) of the

model (VI.3) at 𝑡 = 300, where the smooth curves are the probability density functions of 𝑆 (𝑡), 𝐼 (𝑡)
and 𝑄 (𝑡), respectively. It can be obviously observed that the solution of the stochastic model (VI.3)

persists in the mean (see Figure VI.5).
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time
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Figure VI.5: The paths of 𝑆 (𝑡), 𝐼 (𝑡) and 𝑄 (𝑡) for the stochastic model (VI.3) with initial values

(𝑆 (0), 𝐼 (0), 𝑄 (0)) = (0.5, 0.3, 0.1).
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Figure VI.6: The numerical simulation of 𝐼 (𝑡) in the system (VI.3).

Example 2.15. Now, we choose the white noise intensities σ2 = 0.12 and σβ = 0.1 to ensure that

the condition (VI.23) of theorem (2.13) is satisfied. We can conclude that for any initial value, 𝐼 (𝑡)
obeys

lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) ≤ β2

2σ2
β

−
(
µ2 + δ + γ +

σ2
2

2

)
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢) = −0.1374 < 0 a.s.

That is, 𝐼 (𝑡) will tend to zero exponentially with probability one (see Figure VI.6 (a)). To verify

that the condition (VI.22) is satisfied, we change σ2 to 0.01, σβ to 0.02 and β to 0.05 and keep

other parameters unchanged. Then we have

R̂𝑠0 =

(
µ2 + δ + γ +

σ2
2

2

)−1
(
β𝐴

µ1
−
σ2
β
𝐴2

2µ2
1

−
∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
= 0.7650 < 1,

and

σ2
β − µ1β

𝐴
= −0.0249 < 0.

Therefore, the condition (VI.22) of Theorem 2.13 is satisfied. We can conclude that for any initial

value, 𝐼 (𝑡) obeys

lim sup
𝑡→∞

1
𝑡

ln
𝐼 (𝑡)
𝐼 (0) ≤

(
µ2 + δ + γ +

σ2
2

2

) (
R̂𝑠0 − 1

)
= −0.0306 < 0 a.s.

That is, 𝐼 (𝑡) will tend to zero exponentially with probability one (see Figure VI.6 (b)).

170



2.4 Discussion
In this latest study, we proposed a new version of a perturbed SIS epidemiological model with a

quarantine strategy. This model simultaneously takes into account random transmission and the

effects of jumps. We have addressed possible scenarios of the pandemic spread during unforeseen

climate changes or environmental shocks. Compared with the existing literature, the novelty of

our study manifested in new analysis techniques and improvements which are summarized in the

following items:

• Our study is distinguished from previous works [172, 171, 27, 26, 36] by improving the ma-

jorization of the following quantity∫
U
𝑁𝑛𝑝 (𝑡)

((
1 + �̃�

𝑁

)𝑛𝑝
− 1 − 𝑛𝑝 �̃�

𝑁

)
ν(d𝑢),

which raises the optimality of our calculus and results.

• Our results in Lemmas 2.5 and 2.8 provide an extended and generalized version of classical

lemmas 3.3 and 3.4 presented in [171] which are widely used in the literature.

• Our study provides an improved threshold

R𝑠0 =

(
µ2 + δ + γ +

σ2
2

2

)−1
(
β𝐴

µ1
−
𝐴2σ2

β

µ1𝜒
−

∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
,

by taking into consideration the Remark 2.3. This parameter is a sufficient condition for the

existence of a unique ergodic stationary distribution and persistence of the disease under

some assumptions. The last two asymptotic properties are proven in Theorems 2.11 and 2.12,

by using a new approach based on Lemma 2.10 and the mutually exclusive possibilities lemma.

• Our study offers an alternative method to the gap mentioned in (Theorem 2.2, [163]). Without

using the explicit formula of the distribution stationary π(·) of 𝑋 (which still up to now

unknown), we gave the expression of the ergodicity and persistence threshold.

• For the case of non-persistence, in Theorem 2.13, we proved that the following parameter

R̂𝑠0 =

(
µ2 + δ + γ +

σ2
2

2

)−1 (
β𝐴

µ1
−
𝐴2σ2

β

2µ2
1

−
∫
U
η2(𝑢) − ln(1 + η2(𝑢))ν(d𝑢)

)
,

is a sufficient conditions for the disappearance of the disease.

Eventually, we point out that the obtained results extend and generalize many previous works

(for example, [156, 157, 159]), by analyzing the dynamics of the SIQS epidemic models with two

disturbances. We believe that this contribution can be a rich basis for future studies.
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Conclusions and outlook

T
 aim of this thesis was to study duly some famous stochastic epidemic models. To this

end, a novel analyzing framework was developed in order to answer several questions and

problematics. This framework utilized many new techniques different from those used frequently in

the literature. This concluding chapter summarizes the work achieved within this thesis, highlights

the key findings, and discusses how they relate to the thesis aims and the global context.

• Problematic context of the various studies conducted in this thesis and our proposed
solutions
The study of the stochastic epidemic models requires numerous innovative analytical tech-

niques due to their intricacy and difficulty. The analyzing work in this thesis aimed to provide

creative insight by addressing the gaps mentioned in several recent papers.

I Combination of two types of disturbances
We have begun by supposing that the stochastic disturbances associated to the disease

transmission coefficient and the mortality rate are presented with two perturbations:

standard Gaussian white noise and Lévy jumps, respectively. This novel idea was not

considered formerly. The adoption of this dual perturbation demands some new tech-

niques which are presented in the first section of Chapter III. In the case of the SIRS

system, we have simultaneously considered the stochastic transmission and the propor-

tional perturbation. The combination of these dual fluctuations makes the transmission

dynamics more biologically realistic in a very noisy environment with non-constant

population size. A global analysis of the long-run behavior of the epidemic model was

provided in Section 3 of Chapter V. Since the isolation of individuals is one of the

most efficient strategies, in Section 2 of Chapter VI, we have considered a general form

of an SIQS epidemic model with proportional Lévy jumps and random transmission in

order to simulate both slight and massive perturbations. Under appropriate conditions,

some attractive asymptotic properties have proved, namely: ergodicity, persistence in the

mean, and extinction of the disease. Our work introduced in the said section improves

many existing studies in the field of mathematical epidemiology and provides original

techniques to predict and analyze the dynamic behavior of epidemics.

I Treatment of some open problems
In the obscurity of Lévy jumps, the stationary distribution expression is used to estimate

the time averages of the auxiliary process solution by employing the ergodic theorem.

Unluckily, the said expression is still unknown in the case of the Lévy noise. This issue

is implicitly mentioned as a direct question in many papers [163, 162]. In this thesis, we

have proposed an alternative method to establish the exact expression of the threshold

parameter without having recourse to the use of the ergodic theorem. This creative idea

that we propose is detailed in Section 1 of Chapter III, Section 2.1 of Chapter III, Section

1.1 of Chapter IV, and Section 2 of Chapter VI.

I Generalization of some classic results
In Section 2 of Chapter VI, we have proved a general version of some habitual results
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[27, 26, 36]. Our obtained findings provide an extended and generalized version of

the techniques which are widely used in the literature. Furthermore, in Section 2 of

Chapter V, we have generalized the incidence rate of a stochastic SIRS with some

real hypotheses. We have obtained sufficient conditions for the stochastic stability of

disease-free equilibrium by using a suitable Lyapunov function and other techniques of

the stochastic analysis. In addition, we have studied the conditions of the persistence

in the mean and extinction of a disease.

I Improvement of the some hypotheses and assumptions
In this thesis, we have ameliorated some assumptions on Lévy intensities which raise the

optimality of our calculus and results. Especially in Section 2.1 of Chapter III, Section 3

of Chapter III, and Section 2 of Chapter VI.

I Amelioration of some thresholds
Initially, we have proposed an alternative method to establish the explicit threshold

expression without using the invariant probability distribution of an auxiliary process,

which can close the gap left by using the classical Lyapunov method. In addition,

we have employed an alternative method to prove the existence of unique stationary

distribution (see Section 1 of Chapter III, Section 2.1 of Chapter III, Section 1.1 of Chapter

IV, and Section 2 of Chapter VI). Eventually, we have improved the conditions of the

extinction of the SIR epidemic model with delay.

I Extension of some epidemic model to the Lévy case
During this thesis, we have extended many epidemic models to a more general context.

The SIR, HBV, SIQR models are treated by considering the effects of Lévy noises, and

some interesting asymptotic properties are established.

• General summary and future works
By considering previous mathematical analyses, knowledge gaps were identified. This high-

lights the importance of the work within this thesis, as it addresses some of these gaps,

furthering our understanding of transmissible diseases under random fluctuations. So, given

the capabilities of the findings of this thesis, we consider several proposals to continue with

this work in the future:

I Analysis of epidemic models under regime switching_ It should be noted that the

epidemic models may be perturbed by color noise which can cause the system to convert

(transfer) from one environmental regime to another one. Generally, the switching

between the regimes is often memoryless and the waiting time for the next switching

follows the exponential distribution. Consequently, the regime-switching can be modeled

by operating a continuous-time Markov chain with values in a finite state space. We

treat this interesting approach in our forthcoming works.

I Analysis of a hybrid switching of epidemic models
Besides a white noise, another two driving processes are taken into account: a stationary

Lévy process and a continuous-time finite-state Markov chain. The combination of

these two perturbations provides a hybrid system. This fascinating topic deserves further

consideration in the future.

I Analysis of more complex and general biological models
In fact, it is necessary to check that the methods utilized in this thesis can be also applied

to analyze other stochastic realistic models like chemostat and single-species population

models. We leave these investigations for our future works.
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Appendix A
Numerical solution

S
 differential equations with an explicit solution are only exceptional cases. Therefore,

numerical methods for the discretization of the said equations are required in order to approx-

imate their solutions. This approximation is termed a numerical solution. The general aim of this

appendix is to present some numerical methods used to simulate the sample paths of the solution

in the previous chapters. For this purpose, we illustrate the numerical solution of the following

stochastic differential equation:

dX(𝑡) = 𝑓 (𝑋 (𝑡))d𝑡 + 𝑔(𝑋 (𝑡))dW(𝑡), 𝑡 ∈ [0,𝑇 ], (A.1)

where, as habitual, W is the standard Brownian motion. To guarantee the existence and unique-

ness of a strong solution, we suppose that the functions 𝑓 (𝑥) and 𝑔(𝑥) verify the Lipschitz and

linear growth conditions. We start with the standard method in the field of numerical analysis for

the stochastic differential equations.

1 The Euler Approximation
Generally, a numerical solution X (𝑛) ≡ (X (𝑛) (𝑡), 𝑡 ∈ [0,𝑇 ]) of the SDE (A.1) is a stochastic process

that approximates its solution. This approximation is characterized by a partition τ𝑛 of [0,𝑇 ]:

τ𝑛 : 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛−1 < 𝑡𝑛 = 𝑇,

with the associated mesh δ𝑛 = mesh(τ𝑛) = max
𝑖=1,...,𝑛

(𝑡𝑖 − 𝑡𝑖−1). The process X (𝑛)
is calculated only at

the points 𝑡𝑖 of τ𝑛 . Actually, we are interested in solutions X with continuous sample paths, so we

assume that X (𝑛) (𝑡) on (𝑡𝑖−1, 𝑡𝑖) is derived by simple linear interpolation of the points (𝑡𝑖−1,X (𝑛)
𝑡𝑖−1

)
and (𝑡𝑖 ,X (𝑛)

𝑡𝑖
). Consequently, a numerical approximation scheme determines X (𝑛)

at the points 𝑡𝑖
with the following form:

Denote, as habitual, Δ𝑖 = 𝑡𝑖 − 𝑡𝑖−1 and Δ𝑖W = W(𝑡𝑖) −W(𝑡𝑖−1), 𝑖 = 1, . . . , 𝑛. Then

X (𝑛)
0 = X(0),

X (𝑛) (𝑡1) = X (𝑛) (0) + 𝑓 (X (𝑛) (0))Δ1 + 𝑔(X (𝑛) (0))Δ1W,

X (𝑛) (𝑡2) = X (𝑛) (𝑡1) + 𝑓 (X (𝑛) (𝑡1))Δ2 + 𝑔(X (𝑛) (𝑡1))Δ2W,

...

X (𝑛) (𝑡𝑛−1) = X (𝑛) (𝑡𝑛−2) + 𝑓 (X (𝑛) (𝑡𝑛−2))Δ𝑛−1 + 𝑔(X (𝑛) (𝑡𝑛−2))Δ𝑛−1W,

X (𝑛) (𝑇 ) = X (𝑛) (𝑡𝑛−1) + 𝑓 (X (𝑛) (𝑡𝑛−1))Δ𝑛 + 𝑔(X (𝑛) (𝑡𝑛−1))Δ𝑛W .

The Euler approximation scheme
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In practice, we can usually choose equidistant points 𝑡𝑖 such that δ𝑛 = mesh(τ𝑛) = 𝑇 /𝑛 and

X (𝑛) (𝑖𝑇 /𝑛) = X (𝑛) (𝑖 − 1)𝑇 /𝑛) + 𝑓 (X (𝑛) (𝑖 − 1)𝑇 /𝑛))δ𝑛 + 𝑔(X (𝑛) (𝑖 − 1)𝑇 /𝑛))Δ𝑖W, 𝑖 = 1, . . . , 𝑛.

2 The Milstein Approximation

Consider the following stochastic differential

X(𝑡) = X(0) +
∫ 𝑡

0
𝑓 (X(𝑠))d𝑠 +

∫ 𝑡

0
𝑔(X(𝑠))dW(𝑠), 𝑡 ∈ [0,𝑇 ] .

For the points 𝑡𝑖 of the partition τ𝑛, we consider the difference X(𝑡𝑖) − X(𝑡𝑖−1) and derive:

X(𝑡𝑖) = X(𝑡𝑖−1) +
∫ 𝑡𝑖

𝑡𝑖−1

𝑓 (X(𝑠))d𝑠 +
∫ 𝑡𝑖

𝑡𝑖−1

𝑔(X(𝑠))dW(𝑠), 𝑖 = 1, . . . , 𝑛. (A.2)

Remark that the Euler approximation is based on a discretization of the integrals in (A.2) such

that ∫ 𝑡𝑖

𝑡𝑖−1

𝑓 (X(𝑠))d𝑠 ≈ 𝑓 (X(𝑡𝑖−1))Δ𝑖 , and

∫ 𝑡𝑖

𝑡𝑖−1

𝑔(X(𝑠))dW(𝑠) ≈ 𝑔(X(𝑡𝑖−1))Δ𝑖W,

and then substitute X(𝑡𝑖) with X (𝑛) (𝑡𝑖):

X (𝑛) (𝑡𝑖) = X (𝑛) (𝑡𝑖−1) + 𝑓 (X (𝑛) (𝑡𝑖−1))Δ𝑖 + 𝑔(X (𝑛) (𝑡𝑖−1))Δ𝑖W, 𝑖 = 1, . . . , 𝑛.

However, the Milstein approximation employs the so-termed Taylor-Itô expansion of (A.2). The

general idea based on the applying of the Itô to the integrands 𝑓 (X(𝑠)) and 𝑔(X(𝑠)) in (A.2). Notice

that the Milstein scheme is the Euler approximation with an extra correction term containing the

squared increments of Brownian motion.

X (𝑛) (0) = X(0) and for 𝑖 = 1, . . . , 𝑛,

X (𝑛) (𝑡𝑖) = X (𝑛) (𝑡𝑖−1) + 𝑓 (X (𝑛) (𝑡𝑖−1))Δ𝑖 + 𝑔(X (𝑛) (𝑡𝑖−1))Δ𝑖W

+ 0.5𝑔(X (𝑛) (𝑡𝑖−1)) ¤𝑔(X (𝑛) (𝑡𝑖−1))
(
(Δ𝑖W)2 − Δ𝑖

)
.

The Milstein approximation scheme

In order to measure the quality of the approximation of X and compare the two previous schemes,

we have the following results

� The Euler approximation converses strongly with order 0.5.

� The milstein approximation converges strongly with order 1.

Consequently, the milstein leads to substantial improvement of the quality of the numerical solu-

tion.
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3 The Euler approximation for jump-diffusion SDE
In this section, we briefly illustrate the discrete time approximation for the following autonomous

jump-diffusion stochastic differential equation

dX(𝑡) = 𝑓 (X(𝑡))d𝑡 + 𝑔(X(𝑡))dW(𝑡) +
∫
U
η(X(𝑡−), 𝑢)Nν(d𝑡, d𝑢), (A.3)

for 𝑡 ∈ [0,𝑇 ], with X(0) ∈ R. Here W is a Brownian motion and Nν(d𝑡, d𝑢) is a F𝑡 -adapted Poisson

measure. The associated mark space U ⊂ (0,∞) is 1-dimensional and the intensity jump measure

is ν(d𝑢)d𝑡 = λVd𝑢d𝑡 , where V(·) is a given probability density function. The Jump-diffusion SDE

(A.3) can be expressed in integral form as:

X(𝑡) = X(0) +
∫ 𝑡

0
𝑓 (X(𝑠))d𝑠 +

∫ 𝑡

0
𝑔(X(𝑠))dW(𝑠) +

Nν (𝑡 )∑︁
𝑖=1

η(X(τ−𝑖 ), ξ𝑖),

where {(τ𝑖 , ξ𝑖), 𝑖 ∈ {1, 2, . . . ,N(𝑡)}} is the double sequence of jump times and marks generated by

the Nν. As above-mentioned approximations, we consider the time discretization 0 = 𝑡0 <1< · · · <
𝑡𝑛𝑇 = 𝑇 , and let for all 𝑡 ∈ [0,𝑇 ] the index 𝑛𝑡 = max{𝑛 ∈ {0, 1, . . . } : 𝑡𝑛 ≤ 𝑡} be the last point

discretization before 𝑡 . In practice, we can choose 𝑡𝑛 = 𝑛Δ, for 𝑛 ∈ {0, 1, . . . ,𝑇 /Δ}, where Δ ∈ (0, 1)
is the time step size. The simplest Euler scheme of (A.3) is described in the following box.

X𝑛+1 = X𝑛 + 𝑓 (X𝑛)Δ + 𝑔(X𝑛)ΔW𝑛 +
∫ 𝑡𝑛+1

𝑡𝑛

∫
U
η(X𝑛, 𝑢)Nν(d𝑡, d𝑢)

= X𝑛 + 𝑓 (X𝑛)Δ + 𝑔(X𝑛)ΔW𝑛 +
Nν (𝑡𝑛+1)∑︁

𝑖=Nν (𝑡𝑛)+1
η(X𝑛, ξ𝑖),

for 𝑛 ∈ {0, 1, . . . , 𝑛𝑇 − 1}.

The Euler scheme for jump-diffusion SDE

The numerical analysis of stochastic differential equations with jumps is a relatively new area

of applied probability theory. A detailed of adapted and improved numerical techniques are

given in the following interesting paper [74].
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