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Résumé

En apprentissage par renforcement (RL), un agent apprend à résoudre une tâche en interagis-

sant avec son environnement. Afin de faire passer à l’échelle ces agents sur des tâches complexes,

les méthodes récentes ont proposé avec succès d’intégrer les méthodes d’apprentissage profond

au RL, créant le domaine d’apprentissage profond par renforcement (DRL). Cependant, la signifi-

cation sémantique d’une tâche est toujours pourvue par une fonction de récompense experte qui

guide l’agent dans son processus d’apprentissage. Ce paradigme contraste avec la manière dont

les animaux et humains apprennent: les travaux de psychologie suggèrent que les humains sont

intrinsèquement motivés à acquérir de nouvelles connaissances à propos de leur environnement.

Dans cette thèse, notre objectif est d’étudier comment la motivation intrinsèque permet de

résoudre les problèmes expérimentés par le DRL.

Tout d’abord, nous mettons en évidence comment les motivations intrinsèques actuelles at-

taquent certains problèmes du DRL. Nous classifions et formalisons lesméthodes, puis analysons

leurs limites. Afin d’exhiber leur importance, nous mettons en avant que ces verrous peuvent em-

pêcher un agent d’apprendre des compétences et représentations de l’environnement de plus en

plus complexes. Ce sont des éléments-clés pour faire apprendre des agents autonomes comme

des humains.

Á partir de cette analyse, nous introduisons deux nouveaux modèles qui peuvent apprendre

des compétences diverses et spécifiques à une tâche de bout en bout. Le premier, ELSIM, con-

struit un arbre discret de compétences dans la direction des récompenses de l’environnement.

Nos résultats montrent que ce paradigme d’apprentissage améliore l’exploration dans des envi-

ronnements avec des récompenses éparses et permet d’utiliser des compétences sur différentes

tâches corrélées. Nous mettons en avant les inconvénients d’ELSIM et proposons un autre mod-

èle, DisTop, pour les corriger. DisTop construit progressivement une topologie de l’environnement

en utilisant une fonction de coût contrastive, un réseau auto-organisé et une politique dépendante

d’objectifs. L’agent peut alors intelligemment contrôler quelles compétences apprendre ou oublier.

De cette manière, DisTop est compétitif avec des algorithmes de l’état de l’art sur trois types de

tâches différentes, incluant une tâche hiérarchique avec des récompenses éparses.

Pour conclure la thèse, nous discutons des perspectives du domaines et des directions futures

de notre recherche.

Mots-clés

Apprentissage par renforcement, Motivation intrinsèque, Apprentissage développemental, Ap-

prentissage tout au long d’une vie, Apprentissage de représentations.



Abstract

In reinforcement learning (RL), an agent learns to solve a task by interacting with its environ-

ment. In order to scale these RL agents on high-dimensional complex tasks, recent methods suc-

cessfully proposed to integrate deep learning methods in RL, creating the field of deep RL (DRL).

However, the semantic meaning of a task still derives from an expert reward function that guide

the agent in its learning process. This paradigm contrasts with how animals and humans learn:

psychology suggests that humans are intrinsically motivated to autonomously acquire knowledge

about their environment.

In this dissertation, our objective is to investigate how intrinsic motivation can solve the issues

experienced by DRL algorithms.

First of all, we stress out how intrinsic motivations currently address some issues of DRL al-

gorithms. We classify them, analyze the current limitations of these methods. To highlight their

importance, we emphasize that these deadlocks may prevent an agent to learn both increasing

complex skills and environment representations. These are key elements to make autonomous

agent learn in a more human-like way.

Following this analysis, we introduce two new models that can learn diverse and task-specific

skills in an end-to-end way. The first one, ELSIM, builds a discrete tree of skills in the direction

of the feedbacks of the environment. Our results show that this learning paradigm favors explo-

ration in sparse-rewards environments and allows to reuse skills over different correlated tasks.

We highlight the drawbacks of ELSIM and propose a novel model, DisTop, that tackle them. It pro-

gressively builds a discrete topology of the environment using an unsupervised contrastive loss,

a self-organizing network and a goal-conditioned policy. Then, DisTop can smartly control which

skill to improve or forget. This way, DisTop competes with state-of-art algorithms on three dif-

ferent benchmarks, including a hierarchical environment with sparse rewards. To conclude the

dissertation, we discuss the outlooks of the domain and future directions for research.

Keywords

Reinforcement learning, Intrinsic motivation, Developmental learning, Lifelong learning, Repre-

sentation learning
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Chapter 1

Introduction

1.1 Context

In this dissertation, we consider the setting where an agent interacts with its environment

through reinforcement learning (RL)[Sutton and Barto, 2018]. In RL, an agent learns to solve a task

by maximizing the cumulative reward it gathers throught its interactions with its environment. An

example of such agent could be a wheeled robot that perceives its environment with a camera

(state) and moves (action) to post letters (task). While these works have been limited to very

simple tasks for a long time, recent works proposed to merge the generalization power of deep

neural networks with standard approaches of RL, creating the field of deep reinforcement learning

(DRL)[Mnih et al., 2015]. These approaches have demonstrated their ability to learn specific tasks

using only ground high-dimensional inputs [Mnih et al., 2015] and ground actions [Haarnoja et al.,

2018]. As a typical example, the Deep Q-Network (DQN) [Mnih et al., 2015] outperforms humans

performance on several atari games using only ground pixels. More broadly, using neural net-

works frees an agent from the need of expertly building features representing high-level semantic

knowledge of the world.

Despite these recent successes, most of the works in DRL focus on agents that learn tasks

specified by a human, e.g solving an atari game. This is a consequence of the way the learning

process is modelled: for a given task, an expert exports the semantic of the task in a reward

function that can be maximized by the agent. This reward function has to be expertly built, it

may be a score if an agent tries to solve a game or a distance function when the agent learns to

reach a target position. Typically, this reward function has to be dense and well-structured to avoid

unexpected learnt behaviors [Ng et al., 1999] and to give meaningful feedbacks to the agent.

On another side, unlike RL, humans from birth onward try to learn, explore even though they do

not get external incentives [Ryan and Deci, 2000]. This mechanism inspired the emergence of de-

velopmental learning [Cangelosi and Schlesinger, 2018, Piaget and Cook, 1952, Oudeyer and Smith,

2016], which is based on the trend that babies, or more broadly organisms, have to spontaneously

explore their environment [Gopnik et al., 1999] and acquire new skills [Barto, 2013]. By skills, we

mean a behavior that strives to reach a goal, which can be a set of states in the environment.
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1.1. CONTEXT

Figure 1.1: Illustration of the different locomotion learning steps during early infant.

Typically, babies can autonomously select their goals and pursue them by interacting with the en-

vironment [Oudeyer et al., 2013, Baldassarre et al., 2014]. By selecting harder and harder goals, a

baby incrementally and continually learns new skills and accumulates a plethora of very diverse

and increasingly complex skills. Such motivation to learn is called an motivation (IM) [Ryan and

Deci, 2000].

Learnt skills can be locomotion skills, grasping skills, climbing or whatever results from playing

or interactingwith its environment. For example, Figure 1.1 1 displays the locomotion learning steps

of a child during its first year: a baby will consecutively start to turn over its stomach, sit down,

stand up, crawl, walk with help of objects and then without help; finally it will learn to run faster and

faster and will move backward. These skills can then be hierarchically organized to create higher

level skills. For example, grasping and walking skills can be organized to create a new skill like

opening a window. The resulting interactions with the environment may also ground the symbolic

meaning of the different objects that compose the world: a child understands the concept of an

object according to how it interacts with it [Brooks, 1991, Stoytchev, 2009, Varela et al., 2017]. All

this knowledge and these skills are often useless in the short term, but reveals to be precious in the

long term for the survival of an organism [Baldassarre and Mirolli, 2013b]. This learning scheme

can also be found in most of animals, making it strongly correlated with the appearance of intel-

ligence. It suggests that the combination of open-ended learning and autonomous development

through intrinsic motivation may be the hallmark of intelligence [Baldassarre et al., 2014].

1Source: https://edu.glogster.com/glog/infant-and-toddler-development/
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CHAPTER 1. INTRODUCTION

1.2 Problem statement and outline

1.2.1 Problem statement

In this work, we hypothetize that intrinsic motivation can bring key missing elements to DRL

methods. In particular, we would like to emancipate from an expert supervision so that agents au-

tonomously and continually learn to interact with their environment. This being done, agents could

learn increasingly complex behaviors without supervision, like humans do. The objective of this

work is to study how to take advantage of intrinsic motivations to solve the issues experienced

by DRL algorithms. Throughout our scientific journey, we first give an overview of the basics of

DRL and intrinsic motivation, then we detail three contributions that respectively correspond to

three chapters and we finally preserve the last chapter for a discussion about the outlooks and

limitations of our work. In the following, we sum up the chapters and our contributions.

1.2.2 Background of DRL and intrinsic motivation

The first chapter focuses on the background of DRL and intrinsic motivation. In a first time, we

review a key algorithm of RL and its extension to DRL. In a second time, we take a close look on

intrinsic motivation, we define intrinsic motivation from a psychological perspective and highlight

its properties so that we may fruitfully instantiate it in the RL framework. Finally we exhibit how

intrinsic motivation can integrate the RL framework by reformulating it on the basis of hierarchical

RL [Sutton et al., 1999], goal-conditioned RL [Schaul et al., 2015] and information theory [Cover

and Thomas, 2012]. This gives us the opportunity to investigate the interests of using intrinsic

motivation in RL.

1.2.3 Survey of IM in RL:

Analysis of IM in RL: In our first contribution, we study the current role of intrinsic motivation

in the context of DRL. We thoroughly analyze and identify how intrinsically motivated DRL agents

tackle the different issues specific to DRL approaches. Based on this study, we propose a novel

classification of the methods based on their technical and theoretical contribution. It follows that

we exhibit the limitations of the different classes of approaches, highlight ongoing research, iden-

tify the outlooks of the domain and unify intrinsic motivations under one principle.

More specifically, this work showcases the importance of learning hierarchical skills with in-

trinsic motivation. We name this a bottom-up skill discovery, since skills are learnt independently

from any task. Briefly, one of our results is the observation that learning hierarchically organized

bottom-up skills can solve a large number of issues experienced by DRL algorithms.

Reformulation of our problem statement Based on our analysis, we hypothetize that an agent

can overcome shortcomings of DRL if it sequentially learns hierarchically organized skills. This

way, we reformulate the objective of our work: how can an agent learn increasingly complex hi-
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erarchically organized skills with intrinsic motivation ? This is the motivation of our next contri-

butions.

1.2.4 End-to-end learning of reusable skills

Scientific issues. In our analysis, we exhibit that previous approaches mostly learn the skills

during an unsupervised pre-training phase (or developmental period [Metzen and Kirchner, 2013]),

this prevents end-to-end exploration and the specialization of skills to a given task or goal. If

it is not possible to specialize skills according to a goal, it may also prevent an integration in a

hierarchically organized structure. Based on this simple observation, we hypothetize that an agent

has to be able to simultenaously learn to solve a task or a goal and learn its bottom-up skills; it

results that its learning process has to be end-to-end, i.e without pre-training phase. To validate

the hypothesis, we temporally puts aside the hierarchical organization of skills and focus on how

to discover skills with intrinsic motivation in an end-to-end way.

ELSIM: end-to-end learning of reusable skills through intrinsic motivation. The second contri-

bution is a model, ELSIM, that improves a previous approach in order to learn a discrete set of

skills in an end-to-end way. In particular, it progressively builds a tree of skills in the direction of

the feedbacks of the environment.

This improvement opens newperspectives: 1- the agent can nowdirectly solves a task or a goal,

making it suitable to be incorporated in a hierarchical setting; 2- it can explore its environment even

though it does not get extrinsic rewards, thus improving exploration. While being end-to-end, skills

can still be used across several tasks. Our proof-of-concept experiments validate our hypothesis.

However, our thorough analysis highlight that: firstly, exploration is sub-optimal; secondly,

learning a discrete set of skills makes it difficult to integrate it in a continually growing hierarchical

architecture. These issues motivate our third contribution.

1.2.5 Discovering a topological representation while learning diverse skills

The third contribution is a model, DisTop, that learns a topological state-goal representation

of its environment while learning the skills to navigate inside it. It overcomes the limitations of

ELSIM by learning a continuous goal representation and its discretized version, it selects the skills

to improve according to their density (for exploration) or their interest relatively to a task. The

agent still learns in an end-to-end way, keeping the best properties of ELSIM.

In our experiments, we show that: 1- while DisTop enjoys the properties of ELSIM, it clearly out-

performs it on several benchmarks; 2- by forgetting skills and smartly targetting skills to improve,

it gets competitive results with state-of-the-art methods on dense rewards single-task, multi-skill

discovery benchmarks without rewards and hierarchical tasks with sparse rewards.

With our model, we expect further works to exhibit the possibility and interest of using DisTop

while using a hierarchical policy.
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1.2.6 Discussion

In the last chapter, we will summarize our contributions and highlight their perspectives and

limitations. In particular we will discuss the questions raised by our works: how to learn a good

representation of the environment ? Can we use a unified concept of intrinsic motivation to guide

the model proposals ? These questions may be critical for future research in developmental learn-

ing, both in the short and long term.
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Chapter 2

Background of intrinsic motivation and deep RL

Themotivation of an autonomous agent can be two-folds: either it tries to solve a task given by

an external entity, in which case it can learn through RL, or it acts according to its own will, in which

case it is intrinsically motivated. Both methods have different properties and origins. Intrinsic

motivation is a concept derived from the psychological literature [Deci and Ryan, 2010] to describe

the spontaneous inclination of humans to learn and explore the environment [Ryan andDeci, 2000].

This definition is intuitive but it is unclear how it could be integrated in a computational framework

in order for an autonomous agent to enjoy the potential benefits of an intrinsic motivation. In

contrast, DRL agents evolve in a well-defined computational framework where an agent perceives

the ground state of the environment and executes ground low-level actions to solve one single-

task. The main algorithms of RL and DRL are built inside this framework. It results that integrating

the intrinsicmotivation in the computational framework of RL requires to revisit the standard vision

of RL.

In this chapter, we review the basics of RL, DRL, intrinsic motivation and their association. In

Section 2.1, we define the framework of RL; this includes the modelisation of the problem as a

Markov Decision Process, the core algorithms that drive RL and their recent extensions to DRL

algorithms. In particular we highlight a recent state-of-the-art method [Haarnoja et al., 2018] we

will use throughout the rest of the dissertation. Then, in Section 2.2, we focus on developmental

learning, in particular lifelong learning and intrinsicmotivation: we define them and identify the key

properties that characterize an intrinsic motivation. With all these elements in hand, in Section 2.3,

we describe the computational framework that merges intrinsic motivation and DRL. Importantly,

within this model, we give general key elements that guarantee an efficient learning process to an

intrinsically motivated agent.

Throughout the dissertion, we will assume the reader has a basic understanding of deep learn-

ing methods, in particular: Convolutional neural networks (CNN), Multi-layer perceptrons (MLP),

stochastic gradient descent (SGD), optimizers . . . . For further informations about these aspects,

we refer to Goodfellow et al. [2016].
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Figure 2.1: Illustration of the interaction loop in RL.

2.1 Reinforcement learning

This section is dedicated to the description of the reinforcement learning framework, including

the modeling of the problem and the core algorithms that adress it.

2.1.1 Markov Decision Process

Considering an autonomous agent that interacts in its environment, we can model this as a

Markov Decision Process (MDP)[Puterman, 2014]. An MDP is defined by:

• S the set of possible states;

• A the set of possible actions;

• T the transition function T : S ×A× S → R. T (s′, a, s) = p(s′|s, a) defines the probability to

go in state s′ ∈ S after making an action a ∈ A in state s ∈ S;

• R the reward function R : S ×A× S → R;

• γ ∈ [0, 1] the discount factor;

• d0 : S → R the initial probability distribution of states.

In this dissertation, T and d0 define probabilities (discrete argument) or probability density

functions (continuous arguments); these functions are strictly positive and their integral equals

one.

The interaction loop of an RL agent is illustrated by Figure 2.1. An agent starts in a state s0
given by d0. At each time step t, the agent perceives a state st and performs an action at. Then, it

waits for the feedback from the environment composed of a state st+1 sampled from the transition

function st+1 ∼ p(·|st, at), and a reward given by the reward function rt = R(st, at, st+1). The agent

repeats this interaction loop until the end of an episode. The episode endswhen the agent reaches

particular states send ∈ S or after a fixed number of timesteps Tepisode. At the end of an episode,

the agent resets in a starting state s0 ∼ d0(·) and can repeat the loop. This approach is very generic

and allows to model a large number of problems that can be described with an agent interacting

with its environment.
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It may happen that the agent does not access its full state. For instance, as humans, we do

not visually perceive what is behind us and we must infer it from our previous observations. In

this case, the MDP can be extended to a Partially Observable Markov Decision Process (POMDP)

[Kaelbling et al., 1998]. In comparison with a MDP, it adds a set of possible observations O which

defines what the agent can perceive and an observation function Ω : S × O → R that defines the

probability of observing o ∈ O when the agent is in the state s, i.e Ω(s, o) = p(o|s).

To solve a MDP or POMDP, we need to assess the performance of the algorithm according

to a reward-based criteria. For example, a commonly used criteria can be to maximize the dis-

counted cumulated reward gathered throughout an infinite or finite horizon defined by Equation

2.1, where Tepisode ∈ [1;∞[. The discount factor γ ∈ [0; 1] defines how much the long-term reward

is important in comparison with the short-term reward.

J =





Tepisode∑

t=0

γtrt



 . (2.1)

Similarly, we can also define the finite-horizon undiscounted objective with Tepisode 6=∞:

J =





Tepisode∑

t=0

rt



 . (2.2)

Here, the reward is considered as extrinsic (or as a feedback) because the reward function is

provided expertly and specifically for the task. We will now study how standard RL agents manage

to solve an MDP.

2.1.2 Reinforcement learning

A reinforcement learning algorithm aims to associate states s ∈ S to actions a ∈ A through

a stochastic policy π : S × A → R. In the specific case of π(a|s) = {0, 1}, the policy becomes

deterministic. This policy induces a t-steps state distribution that can be recursively defined as:

dπt (s) =

∫

S

dπt−1(st−1)

∫

A

p(st|st−1, a)π(a|st−1)da dst−1 (2.3)

with dπ0 (s) = d0. The goal of the agent is then to find the optimal policy π∗ maximizing the

cumulative reward defined in Equation 2.1:

π∗ = arg max
π

Eat∼π(·|st)

[
∞∑

t=0

γtR(st, at, st+1)|s0∼d0(·)
]

. (2.4)

The simplest strategy to optimize this objective is to 1- randomly generate policies; 2- execute

them a large number of times to estimate the expectation of cumulated reward. This estimation

is called a Monte-Carlo approximation; 3- Keep the best policy. But this is strongly inefficient since

the number of possible policies scales exponentially with the number of states and actions.
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Figure 2.2: Illustration of the difficulty to differentiate optimal actions from sub-optimal ones. The
black line represents the trajectory of an orange agent that looks for the star.

To make easier the problem, one can search for the optimal actions in each state of the MDP,

dividing the issue into more straightforwards issues. This approach amounts to find the action

that maximizes the long-term reward in a state s. Following our criteria, we can maximize the

expected discounted gain following a policy π from a state s, noted Vπ(s) (cf. Equation 2.5), or

from a state-action tuple, notedQπ(s, a) (cf. Equation 2.6). It allows to measure the impact of the

state-action tuple in obtaining the cumulative reward [Sutton and Barto, 1998].

Vπ(s) = E
at∼π(·|st)

st+1∼p(·|st,at)

(
∞∑

t=0

γtR(st, at, st+1)|s0=s
)

. (2.5)

Qπ(s, a) = E
at∼π(·|st)

st+1∼p(·|st,at)

(
∞∑

t=0

γtR(st, at, st+1)|s0=s,a0=a
)

. (2.6)

This computation also deals with what is called the credit assignment problem, i.e the difficulty

to identify the value of an action while marginalizing the effect of other actions from the same

trajectory. Figure 2.2 illustrates the issue. Before passing the bottleneck, the orange agent made

a sub-optimal action; even though it managed to achieve the task, which was reaching the star, it

could perform better by fixing this sub-optimal action. Q-learning algorithm tackles this by com-

puting the value of each pair (s, a). When the policy selects the actions, it efficiently identifies the

contribution of each action with respect to the final performance of the policy.

There is an optimal Q-function Q∗ that has the highest value in all states. This is defined by

Equation 2.7.

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S, ∀a ∈ A. (2.7)
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If an agent finds out the optimal Q-function, it will be able to act optimally in the environment

according to its given task. More formally, the optimal policy is defined by:

π∗(at|st) = ✶[at = arg max
a

Q∗(st, a)] (2.8)

where ✶[cond] is the indicator function which equals 1 if cond is verified, 0 elsewhere. Since the op-

timal policy derives from the optimal Q-values, the problemamounts to find the optimal Q-function.

One way to approximate the optimal Q-function is to take advantage of the Bellman equation

verified by the optimal Q-function [Sutton and Barto, 1998]:

Q∗(st, at) = E
st+1∼p(·|st,at)

[
R(st, at, st+1) + γ max

a
Q∗(st+1, a)

]
. (2.9)

It tells us that the optimal Q-value of a state-action tuple (st, at) is the reward that results from

the interaction plus the maximum future cumulative reward starting from the next state. One can

notice that this approximation of Q is off-policy, i.e the right-hand part does not depend on the

policy 1.

We can now apply the Q-learning algorithm: it uses Equation 2.9 to define a recursive opera-

tor that approximates Q(st, at) using true interactions from the environment. The application of

this recursive operator is sometimes called bootstrapping. Equation 2.10 describes this recursive

approximation where α ∈ [0; 1] is the learning rate and Qprev denotes the Q-value at the previous

learning step [Watkins, 1989].

Q(st, at) = Qprev(st, at) + α
[
−Qprev(st, at) +R(st, at, st+1) + γ max

a
Qprev(st+1, a)

︸ ︷︷ ︸

Target

]
. (2.10)

We recall that an agent does not access the transition function st+1 ∼ p(·|st, at). So it still

has to gather true interesting interactions to apply this operator and correct its Q-values. A naive

approach would be to apply its optimal policy according to its current estimation of the optimal

Q-function, π(at|st) = ✶[at = arg max
a

Q(st, a)]. But under-approximated Q(s, a) would never be

corrected, since the agent would never execute sub-optimal actions in s. In contrast, it has to keep

exploring using currently sub-optimal actions to fix badly approximated Q-values. Of course, at

the opposite, if it only executes random actions, it may never discover interesting parts of its state

space. This is called the exploitation-exploration trade-off: how much should the agent follow

its actual optimal policy and how much it should explore ? We briefly introduce two standard

exploration strategies:

• The simplest one is the method ǫ-greedy. It allows to select with probability ǫ a random

action, and with probability (1− ǫ) the current optimal action.

• The Boltzmann exploration selects an action ak according to the probability defined by Equa-

1In this dissertation, so as to be concise, we only detail the off-policy setting since this is the one we used in the work,
but a large different set of algorithms derive from an on-policy setting. Essentially, the difference comes from whether
it takes into consideration the current exploration policy of an agent when it approximates its Q-value [Sutton and Barto,
1998].
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Figure 2.3: Illustration of a Deep Q-network on Atari Breakout. The state space is composed of
images with dimensions 210× 160× 3 and the actions consist in moving the horizontal bar to the
left or the right (|A| = 2).

tion 2.11 where τ ∈ R is an hyper-parameter that rules how much the agent explores. The

greater it is, the more random is the policy. Intuitively, Boltzmann exploration ponderates the

probability to select an action according to its current Q-value.

π(ak|s) =
e

Q(s,ak)

τ

∑

a∈A e
Q(s,a)

τ

. (2.11)

Assuming we access a large table that describes the Q-values of all state-action tuples, by

iteratively applying the Bellman operator and stochastically acting in the environment, Q-values

progressively converge towards the optimal Q-values [Sutton and Barto, 1998].

However, when the states are high-dimensionnal inputs, e.g images filled with 84 × 84 pixels

(84×84×3 values), the number of states is huge and directly approximating Q-values using a table

turns out to be impossible. In this case, a learning agent has to generalize over its state space to

efficiently compute Q-values. For similar reasons, it is not clear how one can solve a MDP with a

continuous action or state space. The two next sections will be dedicated to summarize the recent

advances in the domain based on deep neural networks.

2.1.3 Deep reinforcement learning

To scale on high-dimensional and continuous state and action spaces, recent approaches suc-

cessfully proposed to approximate Q and π with neural networks, which leaded to the emergence

of the field of deep reinforcement learning.

Generalizing over the state space

To generalize over the state space, Mnih et al. [2015] proposed to approximate Q(s, a) with a

neural network parameterized by θ: Qθ(s, a) ≈ Q(s, a). This is illustrated in Figure 2.3; the neu-

ral network takes in a state (image with 210 × 160 × 3 dimensions) and outputs the Q-values of

each of the two possible actions. However it is not possible to directly apply Equation 2.10 due

to what has been called the deadly triad [Sutton and Barto, 1998]. When an agent uses complex
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Figure 2.4: Illustration of a typical off-policy variant of an actor-critic architecture (value gradient
architecture).

function approximators along with off-policy learning and bootstrapping (like in the Q-learning),

the approximation may diverge. Intuitively, this is because modifying a Q-value with Equation 2.9

also modifies its target Q-value (right part of Equation 2.9). It follows that, if some Q-values are

more often updated than others, the Q-values can diverge [van Hasselt et al., 2018]. To bypass this

issue, the Deep Q-Network (DQN) [Mnih et al., 2015] proposes two mechanisms:

1. To learn on uncorrelated different states, they use a very large buffer B of interactions and

learn from interactions sampled from it.

2. Rather than using the true Q-value as a target, they use a slowly moving approximation Q̂θ′ .

Parameters θ′ are either updated towards θ at a predefined frequency [Mnih et al., 2015] or

they slowly move at each learning step using an exponential moving average [Lillicrap et al.,

2015].

Equation 2.12 sums up the resulting objective function, which can bemaximized using stochas-

tic gradient descent. Using buffers, we have rt ∼ R(st, at, st+1).

Ldqn = E
(st,at,rt,st+1)∼B

[

Qθ(st, at)− (rt + γmax
a

Q̂θ′(st+1, a))
]2

(2.12)

RL with continuous action spaces

To keep generalizing over the state space while generating continuous actions, SVG [Heess

et al., 2015] also approximates π with a neural network πφ. Figure 2.42 illustrates a typical architec-

ture. An Actor neural network takes in a state s and computes the mean µφ(s) and the co-variance

matrix σφ(s) of a diagonal Gaussian. Actions are sampled from this parameterized Gaussian dis-

tribution. Then, actions are bounded by the action space of theMDP using a tanh function (actions

generally range in [−1; 1]). After that, a Critic neural network computes the Q-value of an incoming

(state,action) tuple. The Critic objective function is essentially the same as in the previous sub-

section, but takes in actions deterministically output by the Actor to compute the one-dimensional

2Image taken from https://montreal.ubisoft.com
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target objective. Thus, in the following, we focus on how to learn the continuous policy. With

this architecture, Equation 2.13 highlights that the cumulative reward, approximated byQθ , can be

maximized by updating the Actor using SGD.∇at Qθ(st, tanh(at)) computes the gradient of action

with respect to the Q-value approximation, i.e how to change the action to increase the Q-value;

∇θ πφ(at|st) translates the required changes of action into an update of the parameters of the

policy.

∇θπJ ≈ Est∼B∇at Qθ(st, tanh(at)) ∇θ πφ(at|st) with at ∼ N (µθ(st), σθ(st)) (2.13)

To allow back-propagation of the gradient through action sampling at ∼ N (µθ(st), σθ(st)), we

can apply the reparameterization trick [Kingma and Welling, 2014]:

1. sample ǫnoise ∼ N (0, 1);

2. compute at = µθ(st) + ǫnoise σθ(st).

From now, in continuous cases, we will refer to π as being the parameterized distribution in-

duced by ǫnoise with bounded actions. A variant of this architecture, DDPG [Lillicrap et al., 2015],

can also learn a deterministic actor. With these methods, the agent typically explores by manu-

ally adding either a spherical Gaussian Noise to the actions output by the policy, or a Ornstein-

Uhlenbeck process to provide temporally coherent behaviors. In the next subsection, we study a

state-of-the-art DRL algorithm based on these improvements.

Soft Actor Critic

Soft Actor-Critic (SAC) [Haarnoja et al., 2018] proposes tomaximize the entropy augmented cu-

mulative reward defined by Equation 2.14. By adding an entropy term H(A) =
∑

a∈A p(a) log p(a)

weighted by the hyper-parameter α, SAC learns a stochastic actor that directly learns to explore. α

directly controls the degree of exploration, themore α is important, themore the agent explores in-

dependently from the rewards. They show that it considerably improves and stabilizes the learning

process on several environments.

π∗ = arg max
π

Eat∼π(·|st)

[
∞∑

t=0

γt(R(st, at, st+1)|s0∼d0 + αH(π(·|st))
]

. (2.14)

It follows two new objectives to learn the Q-values (Equation 2.15) and the policy (Equation

2.16). For the Q-value approximation, the gradient associated to the entropy term is approximated

through Monte-Carlo sampling of log-probabilities. Intuitively, the policy outputs a distribution of

actions that matches the α-weighted distribution of exponential Q-values over actions. Of course,

the repartition of the Q-values over the state space changes considerably in comparison with the

usual objective (Equation 2.4), the entropy term strongly favors states where the agent can act

stochastically.
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JQ(θ) = E
(st,at,rt,st+1)∼B
at+1∼πφ(·|st+1)

[

(Qθ(st, at)− (rt + γ (Q̂θ′(at+1, st+1)− α log πφ(at+1|st+1)))
]2

. (2.15)

Jπ(φ) = Est∼B

[
Eat∼πφ(·|st)α log πφ(at|st)−Qθ(st, at)

]
. (2.16)

Additionally to these objective functions, it is possible to fix the over-estimation bias of Q-

learning based models [Fujimoto et al., 2018, Van Hasselt et al., 2016, Hasselt, 2010]. This bias

occurs when an agent bootstraps its Q-values using the best possible action in the next state, mak-

ing Q-values over-estimated in comparison with the true Q-value. Over-estimated Q-values tend to

be more often bootstraped making other Q-values also over-estimated. Thus, it can prevent an

agent to efficiently converge, being stuck in some over-estimated local optimums. To overcome

this issue, TD3 [Fujimoto et al., 2018] proposes to under-estimate Q-values using a double-critic

architecture; in fact, an under-estimation is better than an over-approximation since the error may

not be recursively propagated. It is possible to incorporate this improvement in the SAC objec-

tive; there is now two approximations of the Q-function,Q1
θ1 andQ2

θ2 with their own slowly moving

approximation Q̂1
θ′1

and Q̂2
θ′2

. Using Qminθ′ = min(Q̂1
θ′1(at+1, st+1), Q̂

2
θ′2(at+1, st+1)), Equation 2.17

sums up the update when the minimum over two Q-function acts as the target Q-value. The same

equation applies to update Q2
θ2
.

JQ1(θ1) = E
(st,at,rt,st+1)∼B
at+1∼πφ(·|st+1)

[
Qθ(st, at)− (rt + γ (Qminθ′ − α log πφ(at+1|st+1)))

]2
. (2.17)

Because of its efficiency, most of the methods we will study in the rest of the dissertation are

based on SAC. Now that we reviewed some core components of DRL, we will study how we can

take advantage of the generalization ability and long-term maximization of DRL agents to build

intrinsically motivated agents. We first define two components of develomental learning: lifelong

learning and intrinsic motivation, then we study the typical properties of an intrinsic motivation.

2.2 Developmental learning

Developmental learning refers to the design of models that directly draws inspiration from hu-

man cognitive development; such model of agent should autonomously build its knowledge by

interacting with its world [Guerin, 2011, Nguyen et al., 2021]. In this section, we describe two as-

pects of developmental learning: a developmental agent (1) continually acts and perceives its

environment even though its objective may change and (2) autonomously and actively acquires

knowledge through an intrinsic motivation.
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2.2.1 Definition of lifelong learning

Biological organisms face an uninterrompted stream of data all along their lifetime. During

this lifetime, they keep acting according to different objectives that are assigned to them, whether

they are self-assigned or attributed by an external entity. Typically, a child may play with its cubes

and change its activity to play with, for instance, a puzzle: This ability to switch between activities

is called lifelong learning or continual learning [Thrun and Mitchell, 1995, Parisi et al., 2019, Lesort

et al., 2020].

In the machine learning domain, this generally results in an agent that learns to solve several

different tasks sequentially. However, such setting introduces several new considerations. Firstly,

the agent should be able to transfer and reuse the knowledge acquired while carrying out a task to

another task [Parisi et al., 2019]. For instance, if a baby knows how to grasp a ball, it should provide

him/her information about how to grasp a cube. This is refered as transfer learning. Secondly, the

agent must avoid forgetting how to solve previously learnt tasks, which is not trivial when an agent

uses neural networks [Parisi et al., 2019, Lesort et al., 2020] since a newly learnt taskmay overwrite

a previous learnt task. For instance, if a child learns to shoot a ball after learning to grasp it, it must

not forget how to grasp it. This forgetting issue is refered as catastrophic forgetting.

2.2.2 Definition of intrinsic motivation

According to Singh et al. [2010], evolution provides a general intrinsic motivation (IM) function

that maximizes a fitness function based on the survival of an individual. Curiosity, for instance,

does not immediately produce selective advantages but enables the acquisition of skills provid-

ing by themselves some selective advantages. More widely, the use of intrinsic motivation allows

to obtain intelligent behaviors which may later serve goals more efficiently than with only a stan-

dard reinforcement [Baldassarre andMirolli, 2013a, Baldassarre, 2011, Lehman and Stanley, 2008].

Typically, a student doing his mathematical homework because he/she thinks it is interesting is

intrinsically motivated whereas his/her classmate doing it to get a good grade is extrinsically mo-

tivated [Ryan and Deci, 2000]. In this future, the intrinsically motivated student may be more suc-

cessful inmath than the other one. It questions the relevance of using only standard reinforcement

methods.

Simply stated, intrinsic motivation is about doing something for its inherent satisfaction rather

than to get a positive feedback from the environment [Ryan and Deci, 2000]. Looking at this def-

inition, one can notice that intrinsic motivation is defined by contrast with extrinsic motivation;

it highlights the difference between the two paradigms. Intrinsic motivation assumes the agent

learns on its own while extrinsic motivation assumes there exits an expert that supervises the

learning process.

More rigorously, Oudeyer and Kaplan [2008] explain that an activity is intrinsically motivating for

an autonomous entity if its interest depends primarily on the collation or comparison of information

from different stimuli and independently of their semantics. At the opposite, an extrinsic reward

results of an unknown environment static function which does not depend on previous experience

of the agent on the considered environment. The main point is that the agent must not have any
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a priori on the semantic of the observations it receives. Here the term stimuli does not refer to

sensory inputs, but more generally to the output of a system which may be internal or external to

the independent entity, thereby including homeostatic body variables (temperature, hunger, thirst,

attraction to sexual activities . . . ) [Baldassarre, 2011, Berlyne, 1965]. Broadly speaking, the mo-

tivation of an agent can be internal (source of motivation) while still being extrinsic (why of the

actions). For instance, when an agent is looking for food because of the hunger, hunger is a stim-

uli coming to the cognitive system of the agent such that it is an internal but extrinsic motivation.

As an other example, a child may do his/her homeworks because he/she thinks it will be crucial

to latter get a job. While the source of the motivation is internal, the true outcome comes from the

environment.

Now that the we clarified the notion of intrinsic motivation, the next section provides a compu-

tational perspective on intrinsic motivation and study its properties. An extensive overview of IM

can be found in Barto [2013].

2.2.3 Properties of intrinsic motivation

While the previouslymentioned definition encompasses the search for desirable stimulus prop-

erties such as surprisingness [Berlyne, 1965], an intrinsically motivated entity could also search

their exact opposite, such as boredom. It highlights that it is not enough to say that an agent

is intrinsically motivated; different kind of intrinsic motivations can co-exist and each one may

have different properties. Examples include "novelty", "surprisingness", "complexity", "ambiguity" . . .

[Oudeyer and Kaplan, 2008, Berlyne, 1965]. However it is possible to exhibit typical properties.

The notion of intrinsic motivation is strongly related to its homeostatic property. The agent,

while acting to fulfil its intrinsic motivation is progressively satisfied and the interest of the agent

moves towards other things. As an example, this is especially visible when one consider ex-

ploratory motivations. Let us consider an agent that moves in a maze. When an agent discovers

a new part of its environment, at first it is satisfied and keeps exploring this area; then, one expect

it will progressively get bored and may move away, this is in fact the core interest of exploratory

behaviors. It highlights that intrinsic motivations do not bring static behaviors but temporary be-

haviors that rule the search for information.

We can sum up and translate the definition of intrinsic motivation into several key properties

that characterize how intrinsic is a motivation for an agent.

• The motivation has to be task-agnostic. By task, we refer to a goal attributed by an external

entity (like in the RL framework described in Section 2.3.1).

• The agent must be guided by the information contained in its previous interactions. This

directly follows the definition of Oudeyer and Kaplan [2008].

• The motivation has to be dynamic, or in other words, non-stationary.

• The agent does not access a priori knowledge on its environment.

Looking at these properties, we can see how intrinsic motivation relates to standard learning

schemes in machine learning. Table 2.1 shows the difference between RL and the use of IM. RL is
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Table 2.1: Type of learning. feedback here refers to an expert supervision.

With feedback Without feedback

Active Reinforcement Intrinsic motivation

Passive Supervised Unsupervised

an active process since the agent learns from its interactions with the environment, unlike classi-

fication or regression which are supervised methods. Unsupervised learning is a passive learning

process, i.e. it does not use predefined labels, or in other words, learns without a feedback. Finally,

the substitution of the feedback by an intrinsic motivation allows to break free from an expert

supervision; however, the difference remains between IM and unsupervised learning in the sense

that IM is an active process which implies interactions. In the literature of machine learning, intrin-

sic motivation-based learning may also be called self-supervised learning [Liu et al., 2021, Pathak

et al., 2017].

In the next section, wewill see how to formally incorporate these properties tomakeDRLagents

intrinsically motivated.

2.3 Intrinsic motivation in DRL

2.3.1 A model of RL with intrinsic rewards

Reinforcement learning is derived from behaviorism [Skinner, 1938] and usually uses extrinsic

rewards [Sutton and Barto, 1998]. However Singh et al. [2010] and Barto et al. [2004] reformulated

the RL framework to incorporate IM. We can differentiate rewards, which are events in the environ-

ment, and reward signals which are internal stimulis to the agent. Thus, what is named reward in

the RL community is in fact a reward signal. Inside the reward signal category, there is a distinction

between primary reward signals and secondary reward signals. The secondary reward signal is a

local reward signal computed through expected future rewards and is related to the value function

(cf. Equation 2.6) whereas the primary reward signal is the standard reward signal received from

the MDP.

In addition, rather than considering theMDPenvironment as the environment inwhich the agent

achieves its task, it suggests that the MDP environment can be formed of two parts: the exter-

nal part which corresponds to the potentiel task and the environment of the agent; the internal

part which computes the MDP states and the secondary reward signal using potentially previous

interactions. Consequently, we can consider an intrinsic reward as a reward signal received from

the MDP environment. The MDP state is no more the external state but an internal state of the

agent. However, from now, we will follow the terminology of RL and the term reward will refer to

the primary reward signal.

Figure 2.5 summarizes the new framework: the critic is in the internal part of the agent, it

computes the intrinsic reward and deals with the credit assignment. The agent canmerge intrinsic

rewards and extrinsic rewards in its internal part. The state includes sensations and any form of

internal context; in this section we refer to this state as a contextual state. The decision can be a
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Figure 2.5: Model of RL integrating IM, taken in Singh et al. [2010]. The environment is factored
into an internal and external environment, with all reward coming from the former.

high-level decision decomposed by the internal environment into low-level actions.

This conceptual model incorporates intrinsic motivations into the formalism of MDP. Now, we

will review how this model is instantiated in practice. Indeed it is possible to extend RL to incor-

porate the three new components that are intrinsic rewards, high-level decisions and contextual

states. We separately study them in the following sections.

2.3.2 Intrinsic rewards and information theory

Throughout our definition of intrinsic motivation, one can notice that the notion of information

comes up a lot. As we will see in Chapter 3, this is not hazardous and quantifying information

proves useful to generate intrinsic rewards. In this section, we provide the basics about infor-

mation theory and explain how to use it to combine intrinsic and extrinsic rewards. However, we

emphasize that intrinsic rewards are not restricted to informationmeasures and their characteriza-

tion mostly depends one whether the reward function fits the properties of an intrinsic motivation.

Information theory. The Shannon entropy quantifies the mean necessary information to deter-

mine the value of a random variable. LetX be a random variable with a law of density p(X) satis-

fying the normalization and positivity requirements, we define its entropy by:

H(X) = −
∫

X

p(x) log p(x). (2.18)

In other words, it allows to quantify the disorder of a random variable. The entropy is maximal

whenX follows an uniformdistribution, andminimalwhen p(X) is equal to zero everywhere except

in one value, which is a Dirac distribution. From this, we can also define the entropy conditioned

on a random variable S. It is similar to the classical entropy and quantifies the mean necessary

information to findX knowing the value of an other random variable S:

H(X|S) = −
∫

S

p(s)

∫

X

p(x|s) log p(x|s). (2.19)
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The mutual information allows to quantify the information contained in a random variable X

about an other random variable Y . It can also be viewed as the decrease of disorder brought by a

random variable Y on a random variableX. The mutual information is defined by:

I(X;Y ) = H(X)−H(X|Y ) (2.20)

We can notice that the mutual information between two independent variables is zero (since

H(X|Y ) = H(X)). Similarly to the conditional entropy, the conditional mutual information allows

to quantify the information contained in a random variable about an other random variable, know-

ing the value of a third one. It can be written in various ways:

I(X;Y |S) = H(X|S)−H(X|Y, S) (2.21)

= H(Y |S)−H(Y |X,S) (2.22)

= H(X|S) +H(Y |S)−H(X,Y |S)

= DKL

[

p(X,Y |S)||p(X|S)p(Y |S)
]

(2.23)

We can see with Equation 2.21 and Equation 2.22 that themutual information is symmetric and

that it characterizes the decrease in entropy on X brought by Y (or inversely). Equation 2.23 defines

the conditional mutual information as the Kullback-Leibler divergence [Cover and Thomas, 2012]

between distribution P (Y,X|S) and the same distribution if Y and X were independent variables

(the case whereH(Y |X,S) = H(Y |S)).

It is straightforward to generalize mutual information to several random variables, leading to

the multi-information [Slonim et al., 2001]:

I(X1, . . . , XN ) = DKL

[

p(X1, . . . , XN )||p(X1) . . . p(XN )
]

(2.24)

It quantifies the information that variables X1, . . . , XN contain about each other. As above, it

is described as the discrepancy between the joint distribution p(X1, . . . , XN ) and the same distri-

bution if variables were independent.

For further information on these notions, the interested reader can refer to Cover and Thomas

[2012]. Let us focus again on intrinsic rewards to give an example. By computing the mutual

information between actions and the resulting states, an agent can provide intrinsic rewards that

measure how much it controls its environment using one action. Other methods compute reward

so that the agent learns a policy that maximizes the entropy of visited states. We givemore details

about this aspect in Chapter 3.

Combining intrinsic rewards and extrinsic reward In practice, there aremultipleways to integrate

an intrinsic reward into a RL framework. The main approach is to compute the agent’s reward r

as a weighted sum of an intrinsic reward rint and an extrinsic reward rext: r = αrint + βrext

[Kakade and Dayan, 2002, Burda et al., 2018, Gregor et al., 2016]. Of course, one of the weighting

coefficient α and β can be set to 0. In this version, one can think of the intrinsic reward as an

intrinsic bonus. When the extrinsic value function is important to compute the intrinsic reward or
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when the hyper-parameters α and β may change, the sum can be made at the Q-value level, i.e.

Q(s, a) = αQint(s, a) + βQext(s, a) [Kim et al., 2019b] where α and β ponderate each Q-value. As

noticed in Section 2.2.3, intrinsic rewards generally evolve over time; while it may often decrease

to zero [Baldassarre, 2011], this is not a general rule and it may happen that the agent cannot

find an optimal stationary policy. Other works propose to learn several Q-values depending of the

weighting parameters [Beyer et al., 2019] or learn a set of policies by making neurral networks

dependent on the weights [Badia et al., 2019].

2.3.3 Decisions and hierarchical RL

Figure 2.6: Visualization of trajectories
of agents that start at the white circle
and try to reach the star.The blue agent
uses only low-level actionswhile the or-
ange can set goals.

Hierarchical reinforcement learning (HRL) architec-

tures are adequate candidates to model the decision hi-

erarchy of an agent [Barto and Mahadevan, 2003, Dayan

and Hinton, 1993, Sutton et al., 1999]. Dayan and Hin-

ton [1993] introduced the feudal hierarchy, called Feudal

reinforcement learning. In this framework, a manager

selects the goals that workers will try to achieve by se-

lecting low-level actions. Once the worker achieved the

goal, the manager can select an other goal, so that the

interactions keep going. The manager rewards the RL-

based worker to guide its learning process; we formal-

ize this with intrinsic motivation in the next section. Fig-

ure 2.6 illustrates the hierarchical trajectories of an or-

ange agent that accesses four high-level goals, each one

going into one of the four rooms. At the origin, the hierar-

chical architectures have been introduced to make eas-

ier the long-term credit assignment [Dayan and Hinton,

1993, Sutton et al., 1999]. This problem refers to the fact

that rewards can occur with a temporal delay and will only very weakly affect all temporally distant

states that have preceded it, although these statesmay be important to obtain that reward. Indeed,

the agent must propagate the reward along the entire sequence of actions (through Equation 2.9)

to reinforce the first involved state-action tuple. This process can be very slow when the action

sequence is large. This problem also concerns determining which action is decisive for getting

the reward, among all actions of the sequence (see also Section 2.1.2. In contrast, if an agent can

take advantage of temporally-extended actions, a large sequence of low-level actions become a

short sequence of time-extended decisions that make easier the propagation of rewards.

This goal setting mechanism can be extended to create managers of managers so that an

agent can recursively define increasingly abstract decisions as the hierarchy of RL algorithms in-

creases. Relatively to Figure 2.5, the internal environment of a RL module becomes the lower level

module.

We can model these decisions as options. An option op ∈ O is defined through 3 components:

• A set of starting states I ⊂ S from which an option can be applied.
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• A policy (or worker) that is responsible of achieving the optionswith lower-level actions. This

is studied in the next section.

• A completion functionF that specifies the probability of completing the option in each state.

Typically, the starting state can derive from d0 (all options start at the beginning of an episode)

or the full set of states S (options can start everywhere). The completion function can also set

a probability 0 everywhere [Eysenbach et al., 2018], in this case, it ends at the same time as an

episode. Such specific cases often occur [Eysenbach et al., 2018]. Options where originally learnt

during a pre-training phase with exclusively extrinsic rewards [Sutton et al., 1999], it was meant to

take advantage of expert knowledge on the task. However, in our framework, we are interested

in intrinsically motivated agent, so, in the next section, we take a closer look on how to learn the

policies that learn to achieve goals using intrinsic motivation. In particular, we will define goals,

skills and explain how to build a contextual state.

2.3.4 Goal-parameterized RL

Usually, RL agents solve only one task and are not suited to learnmultiple tasks. Thus, an agent

is unable to generalize across different variants of a task. For instance, if an agent learns to grasp

a circular object, it will not be able to grasp a square object. In the developmental model described

in Section 2.3.1, the decisions can be hierarchically organized into several levels where an upper-

level takes decision (or sets goals) that a lower-level has to satisfy. This questions: 1- how a DRL

algorithm can make its policy dependent on the goal set by its upper-level decision module ? 2-

How to compute the intrinsic reward using the goal ? These issues rise up a new formalism based

on developmental machine learning [Colas et al., 2020b].

In this formalism, a goal is defined by the pair (g,RG) where G ⊂ R
d, RG is a goal-conditioned

reward function and g ∈ G is the d-dimensional goal embedding. This contrasts with the notion of

task which is proper to an extrinsic reward function assigned by an expert to the agent.

With such embedding, one can generalize DRL to multi-goal learning, or even to every available

goal in the state space, with theUniversal Value FunctionApproximator (UVFA) [Schaul et al., 2015].

UVFA integrates, by concatenating, the state goal embedding gwith the state of the agent to create

a contextual state c = (g, s). Depending on the semanticmeaning of a skill, we can further enhance

the contextual states with other actions or states executed after starting executing the skill (cf.

Section 3.5).

We can now define the skill associated to each goal as the goal-conditioned policy πg(a|s) =
π(a|g, s); in other words, a skill refers to the sensorimotor mapping that achieve a goal [Thill et al.,

2013]. This skill may by learnt or unlearnt according to the expected intrinsic rewards it gathers.

It implies that, if the goal space is well-constructed (as often a ground state space for example,

RG = S), the agent can generalize its policy across the goal space, i.e the corresponding skills of

two close goals are similar.

For example, let us consider an agent moving in a closed maze where every position in the

maze can be a goal. We can set G = S and set the intrinsic reward function to be the euclidian

distance between the goal and the current state of the agent RG : S ×G→ R, (s, g)→ ||s− g||2.
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This formalismcompletes the instantiation of the architectures described in Section 2.3.1. Now

we will explain how, in practice, one can efficiently learn the goal-conditioned policy.

2.3.5 Efficient learning with goal relabelling

When the goal space is a continuous state space, it is difficult to determine whether a goal is

reached or not, since two continuous values are never exactly equal. Hindsight experience replay

(HER) [Andrychowicz et al., 2017] tackles this issue by providing a way to learn on multiple objec-

tives with only one interaction. With author’s method, the agent can use an interaction done to

accomplish one goal to learn on an other goal, by modifying the associated intrinsic reward. This

mechanism greatly improves the sample efficiency since it avoids to try all interactions for every

goals.

Let us roll out an example. An agent acts in the environment to gather a tuple (s, s′, rg, a, g)

where rg is the reward associated to the goal g. The agent can learn on this interaction, but can

also use this interaction to learn other goals; to do so, it can change the goal into a new goal and

recompute the reward, resulting in a new interaction (s, s′, rg′ , a, g
′). The only constraint for doing

this is that the reward function R(s, a, s′, g′) has to be known, which is the case with an intrinsic

reward function. Typically, an agent can have a goal state and a reward function which is 1 if it is

into that state and 0 otherwise. At every interaction, it can change its true goal state for its current

state and learn with a positive reward.

2.4 Conclusion

We considered the setting where an agent interacts with its environment. We have highlighted

several recent advances allowing to scale RL methods to high-dimensional state space and con-

tinuous action space (Section 2.1). But one needs other mechanism tomake a learning agent truly

independent from external interventions. Intrinsic motivation may play this role; while it comes

from psychological literature, we emphasized its key properties so that we can use it in compu-

tational frameworks in Section 2.2. By theoretically reconsidering the RL framework and taking

advantage of how DRL methods learn, we illustrated how intrinsic motivation can be efficiently

translated into intrinsic rewards, HRL and goal-conditioned RL (Section 2.3).

However, we notice there are several ways to instantiate and apply an intrinsic motivation; the

effects are different for each of them. This is reflected in practice: one may use goal-conditioned

RL at a single decision-level or may not use any notions of goals, using only flat intrinsic rewards.

Even across similar architectures, intrinsic rewards may be computed using very different heuris-

tics; in addition, it may happen that RG depends on the structure of G so that computing G may

also influence the intrinsic reward. In eachmethod, it may differently overcome a limitation of DRL.

This observation motivates our work and we analyze the current literature in the next chapter.
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Chapter 3

Survey on intrinsic motivation in DRL

In the previous chapter, we studied the evolution of DRL and gave a general overview on how

to formally integrate intrinsic motivations with DRL. In this chapter, we study the role of intrinsic

motivation in the framework of DRL.

Indeed, despite the recent improvements of DRL approaches (several are detailed in Section

2.1), they turn out to be most of the time unsuccessful when the rewards are scattered in the envi-

ronment, as the agent is then unable to learn the desired behavior for the targeted task [Francois-

Lavet et al., 2018]. Moreover, the behaviors learned by the agent are hardly reusable, both within

the same task and across many different tasks [Francois-Lavet et al., 2018]. It is difficult for an

agent to generalize its skills so as to learn to make high-level decisions in the environment. For

example, such skill could be go to the door using primitive actions consisting in moving in the four

cardinal directions; or even to move forward controlling different joints of a humanoid robot like in

the robotic simulator MuJoCo [Todorov et al., 2012].

For several years now, IM is increasingly used in RL, fostered by important results and the

emergence of deep learning. This paradigm offers a greater learning flexibility, through the use of

a more general reward function, allowing to tackle the issues raised above when only an extrinsic

reward is used. Typically, IM improves the agent ability to explore its environment, to incrementally

learn skills independently of its main task, to choose an adequate skill to be improved and even

to create a representation of its state with meaningful properties. In addition, as a consequence

of its definition, IM does not require additional expert supervision, making it easily generalizable

across environments.

A lot of very different works pretend to fit in the framework of IMs by proposing task-agnostic

losses [Kulkarni et al., 2016, Zhang et al., 2019, Ostrovski et al., 2017], it follows the introduction of

a plethora of erratic objectives. In fact, considering that objective biases (slow features [Wiskott

and Sejnowski, 2002], bottleneck research [McGovern and Barto, 2001, Menache et al., 2002], ex-

pected cover time [Jinnai et al., 2019] . . . ) or assumptions (access to object-oriented representa-

tions [Kulkarni et al., 2016], sensory separation [Zhao et al., 2021] . . . ) do not question the task-

agnosticity of an intrinsic motivation, one can introduce an infinite number of objectives, all with

their specific application.
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Scope and motivation of our review. In this chapter, we make the choice to study and group

together methods that maximize information theoretic objectives. We closely match the definition

of IM provided in Section 2.2.2 and we characterize it as the search for correlations among a

set of internal variables. This way, we revisit the notions of surprise, novelty and skill learning

and show that they can encompass numerous works. This allows us to situate a large body of

works, to highlight important directions of research and to unify these intrinsic motivations using

information theory.

Related works. The overall literature on IM is huge [Barto, 2013] and we only consider its applica-

tion to DRL. Therefore, our study of IMs is notmeant to be exhaustive. Intrinsicmotivation currently

attracts a lot of attention and several worksmade a restricted study of the approaches. Colas et al.

[2020b] and Amin et al. [2021] respectively focus on the different aspects of skill learning and ex-

ploration ; Baldassarre [2019] studies intrinsic motivation through the lens of psychology, biology

and robotic ; Pateria et al. [2021] review hierarchical reinforcement learning as a whole, including

extrinsic and intrinsic motivations; Linke et al. [2020] experimentally compare different goal selec-

tion mechanisms. In contrast with these approaches, we study a large part of objectives all based

on intrinsic motivation through the lens of information theory. We assume that our work is in line

with the work of Schmidhuber [2008], which postulates that organisms are guided by the desire

to compress the information they receive. However, by reviewing the more recent advances in the

domain, we formalize the idea of compression with the tools from information theory.

To sum up, in this chapter, we investigate the use of IM in the framework of DRL and consider

the following aspects:

• The role of IM in addressing the challenges of DRL.

• Classifying current works through information theoretic principles.

• Important outlooks of IM in RL.

• Proposal of an unified view of IMs.

This chapter is organized as follows. As a first step, we highlight themain current challenges of

RL and identify the need for an additional outcome (Section 3.1). Then, we briefly explain our clas-

sification (Section 3.2), namely surprise, novelty and skill learning and we detail how current works

fit it (respectively Section 3.3, Section 3.4 and Section 3.5). Thereafter, we highlight some impor-

tant outlooks of the domain (Section 3.6). Finally, in Section 3.7, we unify intrinsic motivations

under one information theoretic objective function and discuss its potential role as a universal

guiding principle.
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Figure 3.1: Illustration of the sparse reward issue in a very simple setting. The agent, represented
by a circle, strives to reach the star. The reward function is one when the agent reaches the star
and zero otherwise. On the left side, the agent explores with standard methods such as ǫ-greedy;
as a result, it stays in its surrounded area because of the temporal inconsistency of its behaviour.
On the right side, we can imagine an ideal exploration strategie where the agent covers the whole
state space to discover where rewards are located.

3.1 Challenges

3.1.1 Sparse rewards

Classic RL algorithms operate in environments where the rewards are dense, i.e. the agent

receives a reward after almost every completed action. In this kind of environment, naive explo-

ration policies such as ǫ-greedy [Sutton and Barto, 1998] or the addition of a Gaussian noise on

the action [Lillicrap et al., 2015] are effective. More elaborated methods can also be used to pro-

mote exploration, such as Boltzmann exploration [Cesa-Bianchi et al., 2017, Mnih et al., 2015] or an

exploration in the parameter-space [Plappert et al., 2017, Rückstiess et al., 2010, Fortunato et al.,

2017]. In environments with sparse rewards, the agent receives a reward signal only after it ex-

ecuted a large sequence of specific actions. The game Montezuma’s revenge [Bellemare et al.,

2015] is a benchmark illustrating a typical sparse reward function. In this game, an agent has to

move between different rooms while picking up objects (it can be keys to open doors, torches, ...).

The agent receives a reward only when it finds objects or when it reaches the exit of the room.

Such environments with sparse rewards are almost impossible to solve with the above mentioned

undirected exploration policies [Thrun, 1992] since the agent does not have local indications on the

way to improve its policy. Thus the agent never finds rewards and cannot learn a good policy with

respect to the task [Mnih et al., 2015]. Figure 3.1 illustrates the issue on a simple environment.

This issue stresses out the need for directed exploration methods [Thrun, 1992]. While intrinsic

motivation can provide such direction, the principle of "optimism in face of uncertainty" [Audibert

et al., 2007] can also execute a directed exploration without intrinsic motivation [Thrun, 1992].

Briefly, this principle can incite agents to go in areas with a lot of epistemic uncertainties about its

Q-values [Ciosek et al., 2019, Pacchiano et al., 2020]. Yet, it is hard to approximate the epistemic

uncertainty and it only slightly improves exploration [Ciosek et al., 2019]. This principle can also

relate with some intrinsic motivations when we consider uncertainty about models (see Section

3.3.2).
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Figure 3.2: Illustration of the benefits of using options. Agents, represented by circles, have to
reach the star. The green agent can use a skill Go to the far right; the orange agent can only use
primitive actions to reach the star.

Rather than working on an exploration policy, it is common to shape an intermediary dense re-

ward function that adds to the reward associated to the task in order to make the learning process

easier for the agent [Su et al., 2015]. However, the building of a reward function often reveals sev-

eral unexpected errors [Ng et al., 1999, Amodei et al., 2016] and most of the time requires expert

knowledge. For example, it may be difficult to shape a local reward for navigation tasks. Indeed,

one has to be able to compute the shortest path between the agent and its goal, which is the same

as solving the navigation problem. On the other side, the automation of the shaping of the local

reward (without calling on an expert) requires too high computational resources [Chiang et al.,

2019].

We will see in Section 3.3, Section 3.4 how IM is a valuable method to encourage exploration

in a sparse rewards setting.

3.1.2 Temporal abstraction of actions

As argued in Section 2.3.3, skills, through hierarchical RL, are a key element to speed up the

learning process since the number of decisions to take is significantly reduced when skills are

used. In particular, they make easier the credit assignment. Skills can be manually defined, but it

requires some extra expert knowledge [Sutton et al., 1999]. To avoid providing hand-made skills,

several works proposed to learn them with extrinsic rewards [Bacon et al., 2017, Li et al., 2020b].

However, if an agent rather learns skills in a bottom-up way, i.e with intrinsic rewards rather than

extrinsic rewards, learnt skills become independent from possible tasks. This way, skills can be

reused across several tasks to improve transfer learning [Aubret et al., 2020, Heess et al., 2016]

and an agent can learn skills even though it does not access rewards, improving exploration when

rewards are sparse [Machado et al., 2017]. Let us illustrate both advantages.

Exploration when rewards are sparse. Figure 3.2 illustrates the benefit in terms of exploration

when an agent hierarchically uses skills. The green circle can use a skill Go to the far right, to
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reach the rewarding star while the orange agent can only use low-level cardinal movements. The

problem of exploration becomes trivial for the agent using skills, since one exploratory action can

lead to the reward. In contrast, it requires an entire sequence of specific low-level actions for the

other agent to find the reward. This problem arises from the minimal number of specific actions

needed to get a reward (see also Section 3.1.1). A thorough analysis of this aspect can be found

in [Nachum et al., 2019b].

Reusing skills across several tasks. Skills learnt with intrinsic rewards are not specific to a

task. Assuming an agent is required to solve several tasks in a similar environment, i.e a single

MDP with a changing extrinsic reward function, an agent can execute its discovered skills to solve

all tasks. Typically, in Figure 3.2, if both agents learnt to reach the star and we move the star

somewhere else in the environment, the green agent would still be able to execute Go to the far

right and executing this skill may make the agent closer to the new star. In contrast, the orange

agent would have to learn a whole new policy.

In Section 3.5, we provide insights on how an agent can discover skills in a bottom-up way.

3.2 Classification of methods

In order to tackle the problem of exploration, an agent may want to identify and return in rarely

visited states or unexpected states, which can be quantified with current intrinsic motivations.

We will particularly focus on two objectives that address the challenge of exploring with sparse

rewards, each with different properties: maximizing novelty and surprise. We formalize novelty

and surprise through the lens of information theory (in respectively Section 3.4 and Section 3.3)

and the works that instantiate it. Surprise and novelty are specific notions that have often been

used in an interchanged way and we are not aware of a currently unanimous definition of novelty

[Barto et al., 2013]. The third notionwe study, skill learning, focuses on the issue of skill abstraction.

Table 3.1 sums up our taxonomy. We classify intrinsic motivations in three categories of objec-

tives based on information theory that reflects the high-level studied concepts of novelty, surprise

and skill learning. In practice, we mostly take advantage of the mutual information to provide a

quantity for our conceptual objectives. These objectives are compatible with each other and may

be used simultaneously, as argued Section 3.6.3. Within each category of objectives, we addition-

nally highlight several ways to maximize each objective and provide details about the underlying

methods of the literature.

Surprise: Following the definition of Itti and Baldi [2009], we reexplore the notion of surprise and

quantify it by I(S′; Φ|h, S,A) where h refers to a dataset of interactions and Φ represents

a distribution over parameters of a forward/density model. This objective has also been

called expected information gain [Sun et al., 2011]. Based on the works we analyze, we study

surprisemaximization over densitymodels and forwardmodels, which are twoways ofmea-

suring the unexpectedness. Surprise can also bemaximized through aminimax game on the

prediction error using several approximations.

Novelty: Basedon the analysis of Barto et al. [2013], we define novelty-seeking behavior as actively

maximizing the mutual information between states and a learnt representation of states Z ,
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Surprise: I(S′; Φ|h, S,A), Section 3.3

Formalism Information gain Minimax Information gain

over forward model prediction error over density model

Sections Section 3.3.2 Section 3.3.3 Section 3.3.4

Rewards DKL(p(Φ|h, s, a, s′)||p(Φ|h)) ||s′ − ŝ′||22 1√
N̂(s′)

Novelty: I(S;Z), Section 3.4

Formalism Parametric density K-nearest neighbors

Sections Section 3.4.1 Section 3.4.2

Rewards − log ρ(s′) log(1 + 1
K

∑K
0 ||g(s′)− nnk(g(S), g(s′))||2)

Skill learning: I(G; f(T )), Section 3.5

Formalism Fixed goal distribution Goal-state Proposing diverse goals

achievement

Sections Section 3.5.1 Section 3.5.2 Section 3.5.3

Rewards log p(g|s′) −||sg − s′||22 (1 + αskew) log p(sg)

αskew < 0

(Goal selection policy)

Table 3.1: Summary of our taxonomy of intrinsic motivations in DRL. The function f outputs a part
of the trajectories T , Z and G are internal random variables respectively denoting state represen-
tations and self-assigned goals. Please, refer to the corresponding sections formore details about
methods and notations.
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I(S;Z). We divide this objectivemaximization into two kinds ofmethods: a direct maximiza-

tion of a parametric entropy of states, and an entropy maximization based on a k-nearest

neighbors approximation.

Skill learning: We formalize skill learning as maximizing the mutual information between a goal

representation G and a part of a time-extended trajectory f(T ), I(G; f(T )) while following

G. We will consider two ways to achieve this: 1- fixing the goal distribution; 2- deriving the

goal representation from the state space. We will see that the second point also needs to

maximize the entropy of goals-states.

We justify our objective within each category and study the different ways to maximize this

objective and the advantages/disadvantages. In practice, surprise and novelty are currently max-

imized as a flat intrinsic motivation, i.e without using hierarchical decisions. This mostly helps

to improve exploration when rewards are sparse. In contrast, skill learning allows to define time-

extended hierarchical skills which enjoy all the benefits argued in Section 3.1.2.

3.3 Surprise

In this section, we study methods that maximize the surprise. Firstly, we formalize the notions

of surprise, then we will study three approaches for computing intrinsic rewards based of these

notions.

3.3.1 Definition of surprise

In this section, we assume the agent learns either a density model (Section 3.3.4) or a for-

ward model of the environment (Sections 3.3.2 and 3.3.3) parameterized by φ ∈ Φ. The density

model induces a marginal distribution of state p(S|φ) and a forward model computes the next-

state distribution conditioned on a tuple state-action p(S′|S,A, φ). Typically, this can be the pa-

rameters of a neural network. Trying to approximate the true model, the agent maintains an ap-

proximate distribution p(Φ|h) of models, where ht = h refers to the ordered history of interactions

((s0, a0, s1), (s1, a1, s2), . . . , (st−1, at−1, st)). In this section, h simulates a dataset of interactions,

we use it to clarify the role of the dataset. It is important to notice that the policy feeds this h.

In this case, surprise quantifies the mismatch between an expectation and the true experi-

ence of an agent [Barto et al., 2013, Ekman and Davidson, 1994]. In this paper, we refer to the

definition of Itti and Baldi [2009], which define it as the discrepancy between a prior distribution

of beliefs and the posterior probability distribution following an observation [Itti and Baldi, 2009,

Storck et al., 1995]. If an agent maximizes the surprise over a model through interactions with the

environment, which is often the case [Barto et al., 2013], it leads to the expected information gain

objective [Sun et al., 2011]. Intuitively, the agent returns in states where it experienced an unex-

pected transition. Using the KL-divergence to assess the discrepancy, surprise can be computed

asDKL(p(Φ|ht+1)||p(Φ|ht)) where φ ∈ Φ are parameters of a model and t denotes the timestep.
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In this case, the agent has a prior distribution about model parameters p(Φ) and this model

can be updated using the Bayes rule:

p(φ|h, s, a, s′) = p(φ|h) p(s′|h, s, a, φ)
p(s′|h, s, a) . (3.1)

The expected information gain [Sun et al., 2011, Little and Sommer, 2013] over a forward or

density model parameterized by φ can be formulated as:

IG(h,A, S′, S,Φ) = E
(s,a)∼π

s′∼pT (·|s,a,h)

DKL(p(Φ|h, s, a, s′)||p(Φ|h)). (3.2)

≈ I(S′; Φ|h,A, S)

where pT refers, in this section, to the true probability induced by the transition fonction of the

environment. Actively maximizing the expected information gain amounts to reduce the uncer-

tainty of the model. We emphasize that p(φ|h) = p(φ|h, a, s) since only full transitions provide

informations about the true dynamics of the environment. In this case, p(s′|s, a, h) does not refer

to the probability induced by the environment, but rather to the probability induced by the current

history of transitions. This is stressed out by writing:

p(s′|s, a, h) =
∑

φ∈Φ

p(s′|s, a, h, φ)p(φ|s, a, h). (3.3)

Let us assume φ are parameters of a forward model. When the history gets large enough,

we hypothetize that the distribution p(φ|s, a, h) becomes not null only for φ being equal to the

probability induced by the true environment transition function φT . In this case, p(s′|s, a, h) indeed
refers to the probability of a transition, i.e p(s′|s, a, h) = p(s′|s, a, h, φT ) . Similar reasoning can be

obtained if φ encodes a density model and if the environment’s marginal distribution of states is

the uniform one.

In the following, we will study three objectives: the expected information gain over forward

models, an approximation of surprise over forward models leading to a minimax game and the

expected information gain over density models.

3.3.2 Information gain over forward model

We first study the works that maximize the expected information gain over forward models.

Here, φ are parameters of a forward model. Using Equation 3.2, we can extract an intrinsic reward:

R(s, a, s′) = DKL(p(Φ|h, s, a, s′)||p(Φ|h)). (3.4)

This way, an agent executes actions that provide information about the dynamics of the envi-

ronment. This allows, on one side, to push the agent towards areas it does not know, and on the
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other side to prevent attraction towards stochastic areas. Indeed, if the area is deterministic, envi-

ronment transitions are predictable and the uncertainty about its dynamics can decrease. At the

opposite, if transitions are stochastic, the agent turns out to be unable to predict transitions and

does not reduce uncertainty. The exploration strategy VIME [Houthooft et al., 2016] computes this

intrinsic reward by modelling p(φ|h) with Bayesian neural networks [Graves, 2011]. The interest of

Bayesian approaches is to be able to measure the uncertainty of the learned model [Blundell et al.,

2015]. This way, assuming a fully factorized Gaussian distribution over model parameters, the KL-

divergence has a simple analytic form [Houthooft et al., 2016, Linke et al., 2020], making it easy to

compute. However, the interest of the proposed algorithm is shown only on simple environments

and the reward can be computationally expensive to compute. Achiam and Sastry [2017] propose

a similar method (AKL), with comparable results, using deterministic neural networks, which are

simpler and quicker to apply. The weak performance of both models is probably due to the diffi-

culty to retrieve the uncertainty reduction by rigorously following the mathematical formalism of

information gain.

In JDRX [Shyam et al., 2019], authors show that one canmaximize the information gain by com-

puting the Jensen-Shannon or Jensen-Rényi divergence between distributions of states induced

by several forward models. The more the models are trained on a state-action tuple, the more

they will converge to the expectated distribution of next states. Intuitively, the reward represents

howmuch the different transitionmodels disagree on the next-state distribution. Other works also

maximize a similar form of disagreement [Pathak et al., 2019, Yao et al., 2021, Sekar et al., 2020] by

looking at the variance of predictions among several learnt transition models. These models can

also predict in latent spaces [Sekar et al., 2020]. It appears that suchmethods are competitive with

state of the art approaches [Burda et al., 2019]. However the main intrinsic issue is computational

since it requires multiple forward models to train.

To conclude, despite the theorical power of the information gain for improving exploration, it

remains hard to efficiently estimate it and use it in difficult tasks. In the next paragraph, we review

how we can simplify the expected information gain.

3.3.3 Prediction error of forward model

Using a deterministic forward model φ, one can also maximize the surprise using several ap-

proximations.

I(S′; Φ|h,A, S) ≈ HT (S
′|h,A, S)−HT (S

′|A,Φ, S, h)
= − E

(s′,s,a)∼π
log p(s′|h, s, a) + E

φ∼p(·|h,s,a,s′)
(s′,s,a)∼π

log p(s′|s, a, φ, h) (3.5)

where HT refers to the entropy with true transitions in its expected part. Equation 3.5 means

that, in order to maximize the expected information gain, the agent should go in areas where it

reduces the entropy of its approximation; indeed, the right-hand term predicts with one more tran-

sition than the left-hand term. Now, we will make the strong assumption that the second term of

Equation 3.5 can be optimally maximized through the loss of the predictivemodel ifHT (S
′|h,A, S)

is maximized using actions. A fully deterministic environment is a particular case of such setting
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since the second term would converge to 0 for all transitions. In this case, the agent just has to go

in stochastic areas. One can lower-bound the first term using the stochastic forward model:

− E
(s′,s,a)∼π

log p(s′|h, a, s) = − E
(s′,s,a)∼π

log E
φ∼p(·|h)

p(s′|h, a, s, φ) (3.6)

≥ − E
φ∼p(·|h)
(s′,s,a)∼π

log p(s′|φ, h, a, s) (3.7)

where we applied the Jensen inequality. The two final terms of Equation 3.5 are essentially

similar while being optimized by different parts of themodel (actions and forwardmodel), it results

a minimax objective. The predictive model strives to reduce the mismatch between true next-

states and predictions while the agent acts to maximize it.

One can model p(s′|h, s, a, φ) with a unit-variance Gaussian distribution in order to obtain a

tractable loss. This way, we have:

E
φ∼p(·|h)
(s′,s,a)∼π

− log p(s′|φ, h, a, s) ≈ E
φ∼p(·|h)
(s′,s,a)∼π
ŝ′∼p(·|s,a,φ)

− log
1

(2π)d/2
e−0.5(s′−ŝ′)T (s′−ŝ′) (3.8)

∝ E
φ∼p(·|h)
(s′,s,a)∼π
ŝ′∼p(·|s,a,φ)

||s′ − ŝ′||22 + Const (3.9)

As explained in Section 3.3.1, we assume p(s′|h, a, s) represents the the probability induced by

the transition function of the environment and ŝ′ represents the mean prediction. It follows a line

of works that generates intrinsic rewards equal to ||s′ − ŝ′||22 where

ŝ′ = arg max
s′′∈S

p(s′′|h, a, s, φ) (3.10)

assuming φ paramaterizes a deterministic forwardmodel. Therefore, the agent should go towards

areas where the prediction of the state following a state-action tuple is difficult. Following the

objective, we can compute an intrinsic reward as:

R(s, a, s′) = ||g(s′)− g(ŝ′)||22 (3.11)

where g is a generic function (e.g. identity or a learnt one) encoding the state space into a

feature space. Equation 3.11 amounts to reward the predictor error of φ in the representation g. In

the following, we will see that learning a relevant function g is the main challenge.

The first natural idea to test is whether a function g is required. Burda et al. [2019] learn the

forward model from the ground state space and observe it is inefficient when the state space is

large. In fact, the L21 distance is meaningless in such high-dimensional state space. In contrast,

they raise up that random features extracted from a random neural network can be very competi-

tive with other state-of-art methods. However they poorly generalize to environment changes. An

1Euclidian distance.
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other model, Dynamic Auto-Encoder (Dynamic-AE) [Stadie et al., 2015], computes the distance

between the predicted and the real state in a state space compressed with an auto-encoder [Hin-

ton and Salakhutdinov, 2006]. g is then the encoding part of the auto-encoder. However this

approach only slightly improves the results over Boltzmann exploration on some standard Atari

games. Other works also consider a dynamic-aware representation [Ermolov and Sebe, 2020].

These methods are unable to handle the local stochasticity of the environment [Burda et al.,

2019]. For example, it turns out that adding random noise in a 3D environment attracts the agent; it

passively watches the noise since it is unable to predict the next observation. This problem is also

called the white-noise problem [Pathak et al., 2017, Schmidhuber, 2010]. This problem emerges by

considering only themaximization of Equation 3.7, making us assume environments are determin-

istic. Therefore, exploration with prediction error breaks down when this assumption is no longer

true.

To tackle explorationwith local stochasticity, the intrinsic curiositymodule (ICM) [Pathak et al.,

2017] learns a state representation function g end-to-end with an inverse model (i.e. a model which

predicts the action done between two states). Thus, the function g is constrained to represent

things that can be controlled by the agent during next transitions. Secondly, the forward model

used in ICM predicts, in the feature space computed by g, the next state given the action and the

current state. The prediction error does not incorporate the white-noise that does not depend on

actions, so it will not be represented in the feature state space. ICM notably allows the agent to

explore its environment in the gamesVizDoom et SuperMario Bros. Building a similar action space,

Exploration with Mutual Information (EMI) [Kim et al., 2019a] significantly outperforms previous

works on Atari but at the cost of several complex layers. EMI transfers the complexity of learning

a forward model into the learning of a space and action representation through the maximization

of I([s, a]; s′) and I([s, s′]; a). Then, the forward model φ is constrained to be a simple linear model

in the representation space. Furthermore, EMI introduces a model error which offloads the linear

model when a transition remains strongly non-linear (such as a screen change). However one

major drawback of ICM and EMI is the incapacity of their agent to keep in their representation

what depends on their long-term control. For instance, in a POMDP, an agent may perceive the

consequences of its actions several steps later.

An other way to tackle local stochasticity can be to maximize the improvement of prediction

error, or learning progress, of a transition model [Schmidhuber, 1991, Azar et al., 2019, Lopes et al.,

2012, Oudeyer et al., 2007, Kim et al., 2020]. However, it turns out to be hard to estimate since the

reward depends on the efficiency of the gradient update of the forward model. In its stochastic

variant, rewarding the learning progress correlates with the reduction of entropy, thereby merging

the information gain formalism of Section 3.3.2.

Conclusion. While these methods perform well in deterministic environments, they struggle

to offset the determinism assumption that underpines the focus on Equation 3.7; it results that

standard methods focus on the more stochastic areas. Methods that tackle stochasticity may

not predict important long-term information about the environment or they need to compute a

learning progress measure, which is non-trivial. In the next paragraph, we explore the information

gain related to an other kind of models: a density model.
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3.3.4 Information gain over density model

Surprisal can also arise by quantifying the discrepancy between its probability of occurring and

the fact that it actually occurred [Barto et al., 2013]. To quantify this probability of occuring, in this

paragraph, we assume the agent tries to learn a density model φ ∈ Φ that approximates the true

current marginal density distribution of states p(s′). In this setting, we can define the expected

information gain over a density model φ [Bellemare et al., 2016]:

IG(h, S,A, S′) ≈ E
s′∼π

DKL(p(φ|h, s′)||p(φ|h)). (3.12)

We hypothetize that the adversarial training that results from the objective (active maximiza-

tion of the KL-divergence and density fitting) results in an approximately uniform distribution of

states (and auniform density estimation). This may be due to the convexity of the KL-divergence

in p(φ|h, a, s, s′) and p(φ|h) but we leave the proof to future work. To our knowledge, no works di-

rectly optimize this objective, but it has been shown that this objective lower-bounds the squared

inverse pseudo-count objective [Bellemare et al., 2016], which derives fromcount-based objectives;

in the following, we will review count and pseudo-count objectives.

To efficiently explore its environment, an agent can count the number of times it visits a state

and returns in rarely visited states. Such methods are said to be count-based [Strehl and Littman,

2008]. As the agent visits a state, the intrinsic reward associated with this state decreases. It can

be formalized with:

R(s, a, s′) =
1

√

N(s′)
(3.13)

where N(s) is the number of times that the state s has been visited.

Although this method is efficient and tractable in a tabular environment (with a discrete state

space), it hardly scaleswhen states are numerous or continuous since an agent never really returns

in the same state. A first solution proposed by Tang et al. [2017], called TRPO-AE-hash, is to hash

the latent space of an auto-encoder fed with states. However, these results are only slightly better

than those obtained with a classic exploration policy. An other line of works propose to adapt

counting to high-dimensional state spaces via pseudo-counts [Bellemare et al., 2016]. Essentially,

pseudo-counts allow the generalization of the count from a state towards neighbourhood states

using a learnt density model φ. This is defined as:

N̂(s′) =
p(s′|φ)(1− p(s′|φ′)
p(s′|φ′)− p(s′|φ) (3.14)

where φ′(s) computes the density of s after having learnt on s. In fact, Bellemare et al. [2016]

show that, under some assumptions, pseudo-counts increase linearly with the true counts. In this

category, DDQN-PC [Bellemare et al., 2016] and DQN-PixelCNN [Ostrovski et al., 2017] compute φ

using respectively a Context-Tree Switching model (CTS) [Bellemare et al., 2014] and a Pixel-CNN

density model [Van den Oord et al., 2016]. Although the algorithms based on density models work

on environments with sparse rewards, they add an important complexity layer [Ostrovski et al.,
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2017]. One can preserve the quality of observed exploration while decreasing the computational

complexity of the pseudo-count by computing it in a learnt latent space [Vezzani et al., 2019,Martin

et al., 2017].

There exists several other well-performing tractable explorationmethods like RND [Burda et al.,

2018], DQN+SR [Machado et al., 2018], RIDE [Raileanu and Rocktaschel, 2020] or BeBold [Zhang

et al., 2020b]. These papers argue the reward they propose more or less relate to a count estima-

tion.

Conclusion. Maximizing the information gain over a density model may maximize the pseudo-

count, which relates to count-based objectives. They provide interesting feedbacks for exploration,

but in practice, pseudo-counts are hard to approximate since they rely on a powerfull density

model, a strict online estimation of density and they assume p(s|φ) strictly increases ∀s ∈ S [Os-

trovski et al., 2017]. In addition, they also struggle with the problem of randomness. For instance,

let us assume that one (state, action) tuple can lead to two very different states with 50% chance

each. The algorithm will manage to count for both states the number of visits, although it would

take twice as long to avoid to be too much attracted. However, these methods do not address the

white-noise problem since next statesmay be randomly generated at every steps. In this case, it is

unclear how these methods could resist the temptation of going into this area since the counting

associated to this state will never increase.

3.4 Novelty maximization

Novelty quantifies howmuch a stimuli contrasts with a previous set of experiences [Barto et al.,

2013, Berlyne, 1966]. More formally, Barto et al. [2013] defend that an observation is novel when a

representation of it is not found in memory, or, more realistically, when it is not “close enough” to any

representation found in memory. Previous experiences may be collected in a bounded memory or

distilled in a learnt representation.

Several works propose to formalize novelty seeking as looking for low-density states [Becker-

Ehmck et al., 2021], or similarly (cf. Section 3.4.2), states that are different from others [Lehman

and Stanley, 2011, Conti et al., 2018]. In our case, this would result in maximizing the entropy of a

state distribution. This distribution can be the t-steps state distribution (cf. Equation 2.3)H(dπt (S))

or the entropy of the stationary state-visitation distribution over a finite horizon T :

H(dπ(S)) = H(
1

T

T∑

t=1

dπt (S)). (3.15)

This formalization is not perfect and does not fit several intuitions about novelty [Barto et al.,

2013]. Barto et al. [2013] criticize such definition by stressing out that very distinct and memo-

rable events may have low probabilites of occuring while not being novel (e.g a wedding). They

suggest that novelty may rather relates to the acquisition of a representation of the incoming sen-

sory data. Following this definition, we propose to formalize novelty seeking behaviors as those

that actively maximize the mutual information between states and their representation I(S;Z) =

H(S) − H(S|Z) where Z is a low-dimensional space (|Z| ≤ |S|). This objective is commonly

37



3.4. NOVELTY MAXIMIZATION

known as the infomax principle. [Linsker, 1988, Almeida, 2003, Bell and Sejnowski, 1995, Hjelm

et al., 2019]; in our case, it amounts to actively learning a representation of the environment. Most

of works focus on actively maximizing the entropy of state distribution while a representation

learning function minimizesH(S|Z).

There are several ways to maximize the state-entropy, we separate them based on how they

maximize the entropy. We found two kind ofmethods: low-density search and k-nearest neighbors

methods.

3.4.1 Direct entropy maximization

Themost evident way tomaximize the entropy of states consists in maximizingH(ρ(s))where

ρ(s) approximates a density model p(s). If we access this density model, it becomes straightfor-

ward to discover a policy thatmaximizes the entropy of a stationary state distribution [Hazan et al.,

2019]. But computing ρ(s) is challenging in high-dimensional state spaces. Several methods pro-

pose to estimate ρ(s) using variational inference [Zhang et al., 2021, Islam et al., 2019, Lee et al.,

2019, Pong et al., 2020] based on autoencoder architectures. In this setting, we can use either

Equation 3.16 [Lee et al., 2019] or Equation 3.17 [Pong et al., 2020], assuming z is a compressed

latent variable, p(z) a prior distribution [Kingma and Welling, 2014] and qdecoder a neural network

that ends with a diagonal Gaussian.

ρ(s) ≈ qdecoder(s|z)qencoder(z|s) (3.16)

≈ 1

N

N∑

i=1

p(z)

qencoder(z|s)
qdecoder(s|z) (3.17)

Equation 3.17 is unbiased but more expensive to compute than Equation 3.16 since it requires

decoding several samples. Basically, this estimation allows to reward an agent [Berseth et al.,

2020, Lee et al., 2019, Zhang et al., 2021] according to:

R(s, a, s′) = − log ρ(s′).

Within this setting, Pong et al. [2020] and Lee et al. [2019] learn new skills that target these

novel states (see also Section 3.5). MaxRenyi [Zhang et al., 2021] uses the Rény entropy, a more

general version of the Shannon entropy, to give more importance to very low-density states. Islam

et al. [2019] propose to condition the state density estimation with policy parameters in order to

directly back-propagate the gradient of state-entropy into policy parameters. Although MaxRenyi

achieves good scores onMontezuma’s revengewith pure exploration, maximizing the ground state

entropy may not be adequate since two closed ground states are not necessarily neighbors in the

true environment [Aubret et al., 2021]. Following this observation, GEM [Guo et al., 2021] rather

maximizes the entropy of the estimated density of states considering the dynamic-aware proximity

of states,H(R). However they do not actively considerH(R|S).

Conclusion. Generally speaking, these methods need an accurate density model to provide
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Figure 3.3: Illustration of the correlation between density and the fourth-nearest neighbor distance.
Circles represent states and red dotted lines show the distance between a state and its fourth
nearest neighbor.

rewards. In the next paragraph, we study methods that avoid learning a density model.

3.4.2 K-nearest neighbors approximation of entropy

Several works propose to approximate the entropy of a distribution using samples and their

k-nearest neighbors [Singh et al., 2003, Kraskov et al., 2004]. In fact such objective has already

been refered to as novelty [Conti et al., 2018]. Assuming nnk(S, si) is a function that outputs the

k-th closest state to si in S, this approximation can be written as:

H(S) ∝ 1

|S|
∑

si∈S

log ||si − nnk(S, si)||2 + χ(|S|) + Const (3.18)

where χ(s) is the digamma function. This approximation assumes the uniformity of states in the

ball centered on a sampled state with radius ||si − nnk(S, si)||2 [Lombardi and Pant, 2016] but its

full form is unbiased with a large number of samples [Singh et al., 2003]. Intuitively, it means that

the entropy is proportional to the average distance between states and their neighbors. Figure

3.3 shows how density estimation relates to k-nearest neighbors distance. We clearly see that

low-density states tend to be more distant from their nearest neighbors.

Few methods [Mutti et al., 2020] provably relates to such estimations, but several approaches

take advantage of the distance between state and neighbors to generate intrinsic rewards, making

them related to such entropymaximization. For instance,APT [Liu andAbbeel, 2021] proposes new

intrinsic rewards based on the k-nearest neighbors estimation of entropy:

R(s, at, s
′) = log(1 +

1

K

K∑

0

||g(s′)− nnk(g(S), g(s′))||2) (3.19)

where g is a representation function learnt with a contrastive loss based on data augmentation

[Srinivas et al., 2020] andK denotes the number of k-nn estimations. By looking for distant state

embeddings during an unsupervised pre-training phase, they manage to considerably speed up

task-learning in the DeepMind Control Suite. The representation g can also derive from a random

encoder [Liu and Abbeel, 2021] or a constrastive loss that ensures the euclidian proximity between
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consecutive states [Tao et al., 2020, Yarats et al., 2021].

Identifying different states. Instead of relying on euclidian distance, one can try to learn a

similarity function. EX2 [Fu et al., 2017] learns a discriminator to differentiate states from each

other: when the discriminator does not manage to differentiate the current state from those in the

buffer, it means that the agent has not visited this state enough and it will be rewarded. States are

sampled from a buffer, implying the necessity to have a large buffer. To avoid this, some methods

distill recent states in a prior distribution of latent variables [Kim et al., 2019b, Klissarov et al., 2019].

The intrinsic reward for a state is then the KL-divergence between a fixed diagonal Gaussian prior

and the posterior of the distribution of latent variables. In this case, common latent states fit the

prior while novel latents diverge from the prior.

Intra-episode novelty. K-nearest neighbors intrinsic rewards have also been employed to im-

prove intra-episode novelty [Stanton and Clune, 2018]. It contrasts with standard exploration since

the agent looks for novel states in the current episode: typically it can try to reach all states af-

ter every resets. This setting is possible when the policy depends on all its previous interactions,

which is often the case when an agent evolves in a POMDP, since the agent has to be able to pre-

dict its value function even though varies widely during episodes. This way, ECO [Savinov et al.,

2018b] and Never give up [Badia et al., 2019] uses an episodic memory and learn to reach states

that have not been visited during the current episode.

Conclusion K-nn methods turn out to be simple to experiment, but they strongly rely on learnt

dynamic-aware representations, their theoretical connection to the rigorous approximation of en-

tropy remainsmost of the time unclear and the approach badly scaleswith an increase of themem-

ory size. We note that simple methods can tackle the issue of finding the neighbors by partionning

together close states [Yarats et al., 2021]. We observe efficient exploration and themethods easily

translate to intra-episode exploration.

3.4.3 Conclusion

In this section, we reviewed works that maximize novelty to improve exploration with flat poli-

cies. We formalized novelty as actively discovering a representation according to the infomax

principle despite that most of works maximize the entropy of states. But works manages to learn

a representation that match the inherent structure of the environment [Tao et al., 2020]. It sug-

gests that it is most of the time enough to learn a good representation. For instance, Guo et al.

[2021] and Tao et al. [2020] compute a reward based on a learnt representation, but perhaps a bad

representation tends to be located in low-density areas. It would result that active representation

entropy maximization correlates with state-conditional entropy minimization.

We are not aware of a lot of methods that actively learn a representation maximizing I(R;S).

Yet, we stress out two methods that strive to actively learn a representation of states. In CRL

[Du et al., 2021] and NOR [Nachum et al., 2019a], the agent plays a minimax game. A module

learns a representation function with a constrastive loss and the agent actively challenges the

representation by looking for states with a large loss.

40



CHAPTER 3. SURVEY ON INTRINSIC MOTIVATION IN DRL

3.5 Skill learning

In our everyday life, nobody has to think about having to move his arms’ muscles to grasp an

object. A command to take the object is just issued. This can be done because an acquired skill

can be effortlessly reused.

Skill abstraction denotes the ability of an agent to learn a representation of diverse skills. We

formalize skill abstraction as maximizing the mutual information between the goal g ∈ G and

some of the rest of the contextual states f(τ) ∈ f(T ), denoted as I(G; f(T )) where τ ∈ T is a

trajectory and f a function that extracts a subpart of the trajectory (last state for example). The

definition of f depends on the wanted semantic meaning of a skill. Let s0 refers to the state at

which the skill started and s a random state from the trajectory, we highlight two settings based

on the literature:

• f(T ) = S, the agent learns skills that target a particular state of the environment [Eysenbach

et al., 2018].

• f(T ) = T , the agent learns skills that follow a particular trajectory. This way, two different

skills can end in the same state if they cross different areas [Co-Reyes et al., 2018].

Most of works maximize I(G;S) so that, unless stated otherwise, we refer to this objective.

In the following, we will study the different ways to maximize I(G;S) which can be written under

its reversed form I(S;G) = H(G)−H(G|S) or forward form I(G;S) = H(S)−H(S|G) [Campos

et al., 2020]. In particular, we emphasize that:

−H(G|S) =
∑

g∈G,s∈S

p(g, s) log p(g|s) (3.20)

= E
g∼p(g)
s∼πg

log p(g|s) (3.21)

where, to simplify, p(g) is the current distribution of goals (approximated with a buffer) and

s ∼ πg denotes the distribution of states that results from the policy that achieves g. Note that

p(g, s) = p(s|g)p(g).

In this section, we first focus on methods that assume they can learn all skills induced by a

given goal space/goal distribution and they assign parts of trajectories to every goal. The second

set of methods directly derives the goal space from visited states, so that there are two different

challenges that we treat separately: the agent has to learn to reach a selected goal and it must

maximize the diversity of goals it learns to reach. Wemake this choice of decomposition because

some contributions focus on only one part of the objective function.
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(a) Skills are not learnt yet. (b) The discriminator tries unsuccessfully to dis-
tinguish the skills.

(c) Each skill learns to go in the area assigned to it
by the discriminator.

(d) Skills locally spread out by maximizing action
entropy, as standardly done in DRL [Haarnoja et al.,
2018].

Figure 3.4: The agent (circle) starts an episode in the center of the environment, colors denote the
trajectories of their corresponding skills.

3.5.1 Fixing the goal distribution

Thefirst approach assumes the goal space is arbitrarily provided except for the semanticmean-

ing of a goal. In this setting, the agent samples goals uniformly from G, ensuring that H(G) is

maximal, and it progressively assigns all possible goals to a part of the state space. To do this

assignment, the agent maximizes the reward provided by Equation 3.21:

R(g, s, a, s′) = − log qω(g|s′) (3.22)

where qω(g|s′) represents a learnt discriminator (often a neural network) that approximates

p(g|s′).

At first, we focus on discrete number of skills, where p(g) represents a uniform categorical

distribution. Figure 3.4 sums up the learning process with two discrete skills: 1- skills and discrim-

inator q are randomly initialized; 2- the discriminator tries to differentiate the skills with states s

from its trajectories, in order to approximate p(g|s); 3- skills are rewarded with Equation 3.22 in

order to make them go in the area assigned to it by the discriminator; 4- finally, skills are clearly

distinguishable and target different parts of the state space. SNN4HRL [Florensa et al., 2017] and

DIAYN [Eysenbach et al., 2018] implement this procedure by approximating g with, respectively, a
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partition-based normalized count and a neural network. VALOR [Achiam et al., 2018] also uses a

neural network, but discriminate discrete trajectories. In this setting, the agent executes one skill

per episode.

Maximizing I(G;S|S0) like VIC [Gregor et al., 2016] or I(G;S0|S)with R-VIC [Baumli et al., 2021]

make it hard to use a uniform (for instance)H(G|S0), because every skill may not be executable ev-

erywhere in the state space. Therefore, they also maximize the entropy term with another reward

bonus similar to log p(g|s0). They learn discriminable skills, but still struggle to combine them

on complex benchmarks [Baumli et al., 2021]. Keeping p(g) uniform, DADS [Sharma et al., 2020]

maximizes the forward form of mutual information I(S;G|S0) = H(S|S0)−H(S|G,S0) by approx-

imating p(s|s0) and p(s|s0, g). This method makes possible to plan over skills and can combine

several locomotion skills. However this requires several conditional probability density estimation

on the ground state space, which may badly scale on higher-dimensional environments.

These methods tend to stay close from their starting point [Campos et al., 2020] and do not

learn skills that cover the whole state space. In fact, it is easier for the discriminator to overfit over

a small area than to make a policy go in a novel area, this results with a lot of policies that target

a restricted part of the state space [Choi et al., 2021]. Accessing the whole set of true possible

states and deriving the set of goals by encoding states can considerably improve the coverage of

skills [Campos et al., 2020].

Approaches for a better coverage of states. Hetereogenous methods address the problem

of overfitting of the discriminator. The naive way can be to regularize the learning process of the

discriminator. ELSIM (Chapter 4) takes advantages of L2 regularization and progressively expand

the goal space G to cover larger areas of the state space and Choi et al. [2021] propose to use

spectral normalization [Miyato et al., 2018]. More consistent dynamic-aware methods may further

improve regularization; however it remains hard to scale the methods to a large number of skills

which are necessary to scale to a large environment. In above-mentioned methods, the number of

skills greatly increases [Achiam et al., 2018, Aubret et al., 2020] and the discrete skill embedding

does not provide information about proximity of skills. Therefore learning a continuous embedding

may be more efficient.

Continuous embedding. The prior uniform distribution p(g) is far more difficult to set in a

continuous embedding. One can introduce the continuous DIAYN with a prior p(G) = N (0d, I)

where d is the number of dimensions, or the continuous DADS with a uniform distribution over

[−1; 1] [Sharma et al., 2020], yet it remains unclear how the skills could adapt to complex envi-

ronments, where the prior does not globally fit the inherent structure of the environment. VISR

[Hansen et al., 2020] seems to, at least partially, overcome this issue with a long unsupervised

training phase and successor features. They uniformly sample goals on the unit-sphere and com-

putes the reward as a dot product between unit-normed goal vectors and successor features

log qω(g|s) = φsuccessor(s)
T g.

Conclusion. This set of methods manages to learn discrete skills that can be combined, yet,

despite regularization, discrete skills struggle to cover a very large state space [Aubret et al., 2020]

(cf. Chapter 4). Successfull adaptations to scale it up to large states spaces currently rely on the

relevance of successor features. In the next two sections, we study how to maximize the mutual

information by assuming the goal space derives from the state space.
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3.5.2 Achieving a state-goal

In this section, we review how current methods maximize the goal achievement part of the

objective of the agent, −H(Sg|S) where Sg refers to the goal-relative embedding of states. We

temporally set aside H(Sg) and we will come back to this in the next subsection, Section 3.5.3,

mainly because the two issues are tackled separately in the literature.

Obviously, maximizing −H(Sg|S) can be written:

−H(Sg|S) =
∑

Sg

p(sg, s) log p(sg|s) (3.23)

= E
sg∼p(s)
s∼πg

log p(sg|s) (3.24)

where, to simplify, p(s) is the current distribution of states (approximated with a buffer) and

s ∼ πg denotes the distribution of states that results from the policy that achieves g. If log p(sg|s′)
is modelled as an unparameterized Gaussian with a unit-diagonal co-variance matrix, we have

log p(sg|s′) ∝ −||sg − s′||22 + Const so that we can reward an agent according to:

R(sg, s, a, s
′) = −||sg − s′||22. (3.25)

Trivially, it means that if the goal is a state, the agent must minimize the distance between its

state and the goal state. To achieve this, it can take advantage of a goal-conditioned policy πsg (s).

Ground state space. This way, Hierarchical Actor-Critic (HAC) [Levy et al., 2019] directly uses

the state space as a goal space to learn three levels of option (the options from the second level

are selected to fulfill the chosen option from the third level). A reward is given when the distance

between states and goals (the same distance as in Equation 3.25) is below a threshold and they

take advantage of HER to avoid to directly use the threshold. Similar reward functions can be

found in Pitis et al. [2020] and Zhao et al. [2019]. Related to these works, HIRO [Nachum et al.,

2018] uses as a goal the difference between the initial state and the state at the end of the option

f(T ) = Sf − S0.

This approach is relatively simple and does not require extra neural networks. However, there

are two problems in using the state space in the reward function. Firstly, a distance (like L2)makes

little sense in a very large space like images composed of pixels. Secondly, it is difficult to make a

manager policy learn on a too large action space. Typically, an algorithm having as goals images

can imply an action space of 84× 84× 3 dimensions for a goal-selection policy (in the case of an

image with standard shape). Such a wide space is currently intractable, so these algorithms can

only work on low-dimensional state spaces.

Learning a representation of goals. To tackle this issue, an agent can learn low-dimensional

embedding of space φe andmaximize the reward of Equation 3.26 using a goal-conditioned policy

πφe(sg)(s):

R(sg, s, a, s
′) = −||φe(sg)− φe(s′)||22. (3.26)
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Similarly to Equation 3.25, this amounts to maximize −H(Sg|S). RIG [Nair et al., 2018] pro-

poses to build the feature space independently with a variational auto-encoder (VAE); but this ap-

proach can be very sensitive to distractors (i.e. useless features for the task or goal, inside states)

and does not allow to correctly weight features. Similar approaches also encode part of trajecto-

ries [Kim et al., 2021, Co-Reyes et al., 2018] for similar mutual information objectives. SFA-GWR-

HRL [Zhou et al., 2019] uses unsupervised methods like the algorithms of slow features analysis

[Wiskott and Sejnowski, 2002] and growing when required [Marsland et al., 2002b] to build a topo-

logical map. A hierarchical agent then uses nodes of the map, representing positions in the world,

as a goal space. However the authors do not compare their contribution to previous approaches.

Other approaches learn a state embedding that captures the proximity of states with con-

trastives losses. For instance, DISCERN learns the representation function by maximizing the

mutual information between the last state representation and the state-goal representation. Sim-

ilarly to works in Section 3.5.1, the fluctuations around the objective allow to bring states around

sg closer to it in the representation. More explicitly, the representation of NOR [Nachum et al.,

2019a] maximizes I(φe(St+k);φe(St), At:t+k) and the one of LESSON [Li et al., 2021b] and DisTop

(cf. Chapter 5) approximately maximizes I(φe(St+1);φe(St)); LESSON and NOR target a change in

the representation andmanage to navigate in a high-dimensional maze while learning the intrinsic

euclidian structure of the mazes. Their skills can be reused on several environments. However,

experiments are made in 2-dimensional embedding spaces and it remains unclear how relevant

may be goals as state changes in an embedding space with higher dimensions. The more the

number of dimensions increase, the more difficult it will be to distinguish possible skills from im-

possible skills in a state. DisTop targets goal-state, it has more difficulties to navigate in large

environments, but also work in non-maze environments. We discuss again this issue in the next

section.

Conclusion. To sum up, representation learning methods allows to learn state-based skills

over complex state spaces. Learning this representation function combined with the use of the

euclidian distance as reward function amounts to learn a particular form of reward function in

addition for providing pre-computed features to the goal-conditioned policy. In the next paragraph,

we study how to maximizeH(S) so that to make sure learnt skills are diverse.

3.5.3 Proposing diverse state-goals

To make sure the agent maximizes the mutual information between its goals and all visited

states, it must sample a diverse set of goal-states. In other words, it has to maximize H(Sg) but

through goal selection rather than with an intrinsic bonus as in Section 3.4. Similarly to works on

novelty (cf. Section 3.4), such entropy maximization along with skill acquisition (cf. Section 3.5.2)

tackles the exploration challenge, but without facing catastrophic forgetting (cf. Section 3.6.1)

since the agent does not forget its skills.

A naive approachwould be to generate randomvalues in the goal space, but this faces a consid-

erable problem: the set of achievable goals is often a very small subset of the entire goal space.

To tackle this, a first approach can be to explicitly learn to differentiate these two sets of goals

[Florensa et al., 2018, Racaniere et al., 2019], using for example a Generative Adversarial Networks

(GAN) [Florensa et al., 2018, Goodfellow et al., 2014], but it is ineffective in complex environments
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Figure 3.5: Examples of state-goals selection strategies, extracted and adapted from Pitis et al.
[2020]. In the RIG strategy, the agent samples goals according to its current distribution of states;
the DISCERNstrategy tries to samples uniformly and theMEGAstrategy prioritizes very lowdensity
states.

Figure 3.6: Illustration of the reweighting process. Left: probability of visited states to be selected
as goals before density-reweighting. Right: probability of visited states to be selected as goals
after density-reweighting. This figure simplifies the figure of Pong et al. [2020].

[Pong et al., 2020]. Other works obtain good results on imagining new goals, but using either a

particularly structured goal space [Colas et al., 2020b] or dataset [Khazatsky et al., 2021]. In con-

trast, an agent can simply set a previously met state as a goal, this way, it ensures that goals are

reachable, since they have already been achieved. In the rest of this section, we focus on this set

of methods.

Figure 3.5 illustrates different strategies for sampling goals using previously met states. In

RIG [Nair et al., 2018], the agent randomly samples states as goals from its buffer, but it does not

increase the diversity of states, and thus, the diversity of learnt skills. Pong et al. [2020] showed

theoretically and empirically that, by sampling goals following a α-more uniform distribution over

the support of visited states than the "achieved" distribution, the distribution of states of the agent

can converge to the uniform distribution. Intuitively, the agent just samplesmore often low-density

goals: this setting typically applies in the two right-most distributions of Figure 3.5 andwe illustrate

it in Figure 3.6. There are several ways to increase the importance of low-density goal-states that

we introduce in the following.

Density estimation in the ground state space. DISCERN [Warde-Farley et al., 2019] proposes to

sample uniformly over the support of visited stated with a simple procedure. Every time the agent

wants to add an observation to its buffer, it randomly samples an other observation from its buffer

and only keeps the one that is the farthest to all other states of the buffer. This way, it progressively

builds an uniform distribution of states inside its buffer. However, it uses the euclidian distance to

compare images, which may not be relevant. Other approaches select the state that has the lower

density (OMEGA) [Pitis et al., 2020] according to a kernel density estimation or use the rank of

state-densities [Zhao and Tresp, 2019] estimated with a Variational Gaussian Mixture Model [Blei
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and Jordan, 2006]. In contrast with them, Skew-fit [Pong et al., 2020] provides more flexibility on

how uniform one want its distribution of states. Skew-fit extends RIG and learns a parameterized

generative model qφ(S) ≈ p(S) and skews the generative model (VAE) with the ratio:

qφ(s)
αskew . (3.27)

where αskew < 0 determines the speed of uniformisation. This way it gives more importance

to low-density states. Then it weights all visited states according to the density approximated by

the generative model at the beginning of each epoch, which is made of a predefined number of

timesteps. Skew-fit manages to explore image-based environments very efficiently. As shown in

[Aubret et al., 2021] (cf. Chapter 5), this ratio applied on a discrete number of skills, amount to

rewards a Boltzmann goal-selection policy with:

R(sg) = (1 + αskew) log p(sg). (3.28)

Density reweighting by partitioning the embedding space. With a different objective, GRIM-

GREP [Kovač et al., 2020] partitions the VAE embedding of Skew-fit with a GaussianMixtureModel

[Rasmussen et al., 1999] to estimate the learning progress of each partition and avoid distractors.

The density weighting can also operate in a learnt embedding. HESS [Li et al., 2021a] partitions

the embedding space of LESSON and rewards with a variant of a count-based bonus (see Section

3.3). It improves exploration in a two-dimensional latent embedding but the size of partitions may

not scale well if the agent considers more latent dimensions. In contrast, DisTop [Aubret et al.,

2021] (cf. Chapter 5) dynamically clusters a dynamic-aware embedding space using a variant of

a Growing When Required [Marsland et al., 2002b]; they estimate the density of state according

to how much its partition contains states and skew the distribution of sampled similarly to Skew-

fit. HESS and DisTop demonstrate their ability to explore and navigate with an ant inside complex

mazes without extrinsic rewards.

Conclusion. Entropy maximization methods improves over standard skill learning methods by

learning to reach as many states as possible. We expect further works to show the ability to scale

to even more complex environments, with higher-dimensional latent structure [Li et al., 2021a].

3.6 Outlooks of the domain

In this section, we take a step back and thoroughly analyze the results of our overall review.

We first study the exploration process of flat intrinsic motivation in comparison with hierarchical

intrinsic motivations in Section 3.6.1; then, this will motivate our focus on the challenges induced

by learning a deep hierarchy of skills in Section 3.6.2. Finally, in Section 3.6.3, we discuss how flat

and hierarchical intrinsic motivation can and should cohabit in such hierarchy.
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Figure 3.7: Illustration of the detachment issue. Image extracted from Ecoffet et al. [2019]. Green
color represents intrinsically rewarding areas, white color represents no-rewards areas and purples
areas are currently being explored. (1) The agent starts to learn and has not explored the environ-
ment yet. (2) It discovers the rewarding area at the left of its starting position and explores it. (3) It
consumed close intrinsic rewards on the left part, thus it prefers gathering the right-part intrinsic
rewards. (4) Due to catastrophic forgetting, it forgot how to reach the intrinsically rewarding area
on the left.
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3.6.1 Long-term exploration, detachment and derailment

The most challenging used benchmarks in flat intrinsic motivations (surprise and novelty) are

DMLab and Montezuma’s revenge, yet very sparse reward games such as Pitfall! are not currently

addressed and should be investigated. In Pitfall!, the first reward is reached only after multiple

rooms where it requires specific action sequences to go through each room. State of the art on IM

methods [Ostrovski et al., 2017] achieve 0 mean reward in this game. At the opposite, imitation RL

methods [Aytar et al., 2018, Hester et al., 2018] are insensitive to such a specific reward, and thus,

exceed IM methods with a mean reward of 37232 on Montezuma’s revenge and 54912 on Pitfall!.

Even though these methods use expert knowledge, this performance gap exhibits their resilience

to long-term rewards. Compared with flat intrinsic reward methods, which do not exceed a 10000

score onMontezuma’s revenge [Burda et al., 2018] and hardly achieve a score on Pitfall! [Ostrovski

et al., 2017], it shows that flat IMs is still far from solving the overall problem of exploration.

Furthermore, we want to emphasize that the challenge is harder when the intrinsic reward itself

is sparse [Burda et al., 2018]. In Montezuma’s revenge, it is about avoiding to use a key too quickly

in order to be able to use it later. In every day life, it can be about avoiding to spend money too

quickly. In fact, it looks like there is an exploration issue in the intrinsic reward function. Intrinsic

reward can guide the exploration at the condition that the agent finds this intrinsic reward. There

may be two reasons causing the intrinsic reward to be sparse:

1. The first comes from partial observability, with which most models are incompatible. Typi-

cally, if an agent has to push a button and can only see the effect of this pushing after a long

sequence of actions, density models and predictive models may not provide meaningfull in-

trinsic rewards. There would be a too large distance between the event "push a button" and

the intrinsic reward.

2. Figure 3.7 illustrates the second issue, called detachment [Ecoffet et al., 2019, 2021]. It results

from a distant intrinsic reward coupled with catastrophic forgetting. Simply stated, the RL

agent can forget the presence of an intrinsic reward in a distant area: this is hard to maintain

the correct Q-value that derives from a distant currently unvisited rewarding area. This is

emphasized in on-policy settings.

Pursuing such distant intrinsic reward may be even harder due to the possible derailment is-

sue [Ecoffet et al., 2019, 2021]. Essentially, an agent may struggle to execute a long sequence of

specific actions needed to reach a distant rewarding area because the local stochasticity incites

local dithering all along the sequence. Detachment motivates the need for a hierarchical explo-

ration [Ecoffet et al., 2021] and derailment motivates frontier-based exploration [Bharadhwaj et al.,

2020], which consists in deterministically reaching the area to explore before starting exploration.

3.6.2 Deeper hierarchy of skills

According to Brooks [1991], everything is grounded in primitive sensor motor patterns of acti-

vation. This everything refers to the structure of the world and agent affordances. Capturing this

knowledge amounts to form concept representations and reusable skills [Weng et al., 2001], use it
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Figure 3.8: Illustration of a three-levels HRL architecture where each DRL algorithm learns with
intrinsic motivation. Each incoming state is built based on the original state and the dynamics of
the lower-level policies.

as a basis for new skills [Prince et al., 2005], explore the environment to find new interesting skills,

autonomously self-generate goals in accordance with the level and morphology of the agent.

Most works presented in Section 3.5 abstract actions on a restricted number of hierarchies

(generally one hierarchy). This is necessary to well-understand the mechanism of abstraction,

but we want to argue that imposing deeper hierarchies could considerably enhance the semantic

comprehension of the environment of an agent. Organisms are often assumed to deal with com-

position of behaviors, which in turn serve as building block for more complex behaviors [Flash and

Hochner, 2005]. Using a limited vocabulary of skills makes easier avoiding the curse of dimen-

sionality associated to the redundancy of a whole set of ground behaviors.

Figure 3.8 displays a simplified example of such architecture. We saw in Section 3.5 that ob-

taining good skills essentially relies on the quality of the learnt representationwhich can depend on

the potentially temporally-extended dynamics [Nachum et al., 2019a, Aubret et al., 2021, Li et al.,

2021b]. The representation can be learnt using the slowness principle [Wiskott and Sejnowski,

2002] which assumes temporally close states are similar. By configuring the time-extension of

the representation, one may focus on different semantic parts of the state space.

This can be illustrated in Aubret et al. [2021] (cf. Chapter 5): 1- the agent can learn a very low

level representation that provides skills that can manipulate torques of a creature; 2- skills can

also orientate an agent in a maze assuming it accesses the maze representation. While they do

not try to combine and learn several representations at the same time, furtherworks could consider

separate different parts of states (e.g. agent positions and object positions [Zhao et al., 2021]) or

learning these representations at different time scales.

Skill focus. In a developmental process, multi-level hierarchical RL questions the ability of the

agent to learn all policies of the hierarchy simultenaously. This obviously relates to the ability of

organisms to continually learn throughout their lifetime; but in more practical way, it may allow to

focus the learning process of skills that are interesting for higher-level skills. This focus avoids
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learning everything in the environment [Aubret et al., 2021], which is hard and obviously not done

by biological organisms.

Critical periods and lifelong learning. Considering a goal representation that changes over

time introduces new issues for the agent. In this case, the goal-conditioned policy may be per-

turbed by the changes of inputs and may no longer be able to reach the goal [Li et al., 2021a]. Cur-

rent methods consider 1- developmental periods (unsupervised pre-training [Metzen and Kirchner,

2013]); 2- tomodify the representation every k-steps epochs [Pong et al., 2020]; 3- to impose slowly

changes of the representation [Aubret et al., 2021, Li et al., 2021a]. Further works may thoroughly

investigate the relation and transitions between these methods since they can relate to the con-

cept of critical periods [Hensch, 2004, Konczak, 2004]. Critical periods assume that the brain is

more plastic at some periods of development in order to acquire specific knowledge. Despite this

mechanism, the brain slowly keeps learning throughout the lifetime. In the hierarchy of skills, the

introduction of a new level may first result in a quick/plastic learning process, followed by slower

changes.

3.6.3 The role of flat intrinsic motivations

In Section 3.6.1, we essentially criticized the limited role that flat intrinsic motivation like sur-

prise or novelty can play in favor of exploration and we hypothetized in Section 3.6.2 that deeper

hierarchies couldmake emerge an understanding ofmore complex affordances. Then, what could

be the roles of surprise and novelty ?

Novelty. We saw in Section 3.4 that novelty seeking behaviors allow to learn a correct rep-

resentation of the whole environment; this can be a basis for learning diverse skills. While some

methods consider a goal as a state andmanage to avoid using novelty bonuses [Pong et al., 2020],

this is harder to dowhen skills have a different semantic (like a change in the state space). Nachum

et al. [2019a] provide a meaningful example of this: the agent acts to simultaneously discover a

representation of the environment and achieve upper-level goals.

Surprise. We leave aside the interest of surprise for learning a forward model that could be

used for planning [Hafner et al., 2019] and rather focus on the learning process. Surprise amounts

to look for the learning progress of forward models so that, in a hierarchy of skills, it quantifies

whether skills can currently be better learnt or not. This links surprise to curriculum learning [Ben-

gio et al., 2009], i.e can we find a natural order to efficiently learn skills ? For example, assuming

an agent want to learn to reach state-goal in a maze, it would be smarter to learn to start learning

skills that target goals close to its starting position and to progressively extend its goal selection

while learning other skills. Several strategies have been proposed to smartly hierarchically select

goals [Colas et al., 2019, Linke et al., 2020], yet it often does not consider intrinsic skills [Colas

et al., 2019].

To sum up, we propose that the role of surprise and novelty may rather be to support the learn-

ing of skills. Novelty seeking helps to learn the representation required by the skill learningmodule

and surprise speeds up the maximization of the skill learning objective. Considering this, it would

result several surprises and novelties: an agent can experiment a novel or surprise interaction for a

level of decision (injure the toy while walking), yet it does not mean other levels would be surprised
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(it is still on the same road). This emphasizes the multi-dimensionality and relativity of the notion

of surprisingness ou novelty [Berlyne, 1960], only a part of the incoming stimuli may arouse the

agent.

3.7 Unifying intrinsic motivations

In this section, we more thoroughly investigate the links between information theory and in-

trinsic motivation. We saw in Section 2.2.2 that an intrinsic motivation is defined by how it is

computed, i.e the comparison on previous data. While this definition encompasses the search for

desirable stimulus properties such as surprisingness, novelty or a large number of distinctly de-

scribed motivations [Berlyne, 1960], an intrinsically motivated entity could also search their exact

opposite, such as boredom. Therefore, the comparison of data appears more as a property of an

IM rather than as its definition. It follows that IM appears to the DRL community like a fuzzy con-

cept that admits a lot of different approaches. Despite this, intrinsic motivation could be a core

component in the development of organisms [Guerin, 2011]. As such, a precise formalism may

converge to a computational principle guiding the development of agents.

In order to quantify the information processed by an agent, previous works propose to model

the sensori-motor loop of an agent interacting with its environment using a Bayesian network

[Pearl, 2014]; This modeling allows to quantitatively analyze the perception-action loop [Touchette

and Lloyd, 2004, Klyubin et al., 2004a]. This framework opens the path for a quantitatization of

intrinsic motivations.

We noticed in Section 3.6 that maximizing the correlations of some variables can/could lead to

complex behaviors that reflect the emergence of increasingly more complex cognitive structures

as a result of interactions with the environment [Guerin, 2011, Zlatev and Balkenius, 2001]. Having

argues in Section 3.6.3 for the compatibility of intrinsic motivations, we now propose to go con-

siderably further and to join current forms of intrinsic motivations with the information-theoretic

framework of the perception-action loop in order to exhibit the information-theoretic general princi-

ple that underpins current IMs. Precisely, we formally show that maximizing the multi-information

of a simple hierarchical cognitive model amounts, to some extent, to simultaneously maximizing

novelty, surprise and skill learning objectives

Our methodology is two-folds:

• Proposing a plausible cognitive architecture, modelled as a Bayesian Network. It essentially

requires variables with causal dependencies.

• Deriving local maximization terms from the multi-information of the model.

Proposing a complete cognitive architecture explaining the full complexity of human behaviors

is out of the scope of our study. This rather aims to demonstrate the validity of our objective recipe.

In the following, we first introduce Bayesian networks in Section 3.7.1, then we explictly give

the assumptions (Section 3.7.2) that we use in Section 3.7.3 to derive the objective that unifies

skill learning, novelty and surprise. We end the section with a discussion about this objective.
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Figure 3.9: Simple example of Bayesian network.

Figure 3.10: Bayesian network which sums up the perception-action loop, extracted from Klyubin
et al. [2004a]. S are sensory inputs, R the true state of the environment, A ground actions on the
agent,M the memory of the agent. We use a different notation in comparison with the rest of the
dissertation to remain faithful to the original figure.

3.7.1 Bayesian networks

Bayesian networks (or graphical models) are directed acyclic graphs for which 1-vertices cor-

respond to random variables which represent part of the state of the system; 2-edges reflect sta-

tistical dependencies between these variables, i.e a causal relationship. Figure 3.9 illustrates a

simple example of graphical model. Given the dependencies, a joint probability p(X,Y,C, Z) is

conform to the graphical model if p(X,Y,C, Z) = p(X)p(Y |X)p(Z)p(C|Z, Y ). More generally, if

(V0, . . . , VN ) are the N + 1 vertices of a graph, and Pa(V ) sums up the parents of V with respect

to the edges, we can write [Pearl, 2014]:

P (V0, . . . , VN ) =

N∏

i=0

P (Vi|Pa(Vi)). (3.29)

These models are convenient to model action-perception loops [Touchette and Lloyd, 2004,

Klyubin et al., 2004a, Levine, 2018] and allow to compute information theoretic measures. In this

setting, parameters, actions, states, decisions etc. . .are all random variables. Figure 3.10 shows

the graphical model induced by a typical perception-action loop which is unrolled through time.

This kind of unrollment is typical of Dynamical Bayesian Network [Dagum et al., 1992]. While we

could also use a Structured Graphical Model [Pearl, 2010], we assume that the standard graphical

model is simpler and makes our results more understandable.

When variables can be described with a graphical model, the multi-information of the whole

set of variables can be rewritten as the sum of mutual information between a node and its parents

[Friedman et al., 2001, Slonim et al., 2001]:
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Time

Decision levels

Figure 3.11: Bayesian network which sums up a simplified HRL-based cognitive model of an agent.
o are observations, φ a distribution of parameters encoding a forward model, a ground actions of
the agent, z representations of the state of the agent, gk the k-level decisions and φk the k-level
forwardmodel. Black arrows represent inter-hierarchies interactions, yellow and blue components
represent respectively the first decision level and the second decision level. We assume themodel
is consistent through time. In practice, all variables are dependent on the content of the memory
and the decisions/actions depend on DRL parameters but we omit these here for clarity since it
does not bring out more informations for our analysis.

MI(V0, . . . , VN ) =

N∑

i=0

I(Vi;Pa(Vi)). (3.30)

3.7.2 Assumptions about agent’s cognitive model

A plausible candidate for a simplified cognitive architecture can be inspired from hierarchical

reinforcement learning for two reasons. First there are bio-inspired correlations between hierarchi-

cal behaviors in humans [Botvinick, 2008, Mussa-Ivaldi and Bizzi, 2000] and the option framework

[Botvinick et al., 2009]. Indeed, human behaviors are building blocks that can be hierarchically or

serially combined to performmore complex building blocks, which can be combined again [Mussa-

Ivaldi and Solla, 2004, Mussa-Ivaldi and Bizzi, 2000]. Secondly it is widely used in computational

models since it can bring out complex behaviors, as argued in Section 3.6.2. We also introduce

the concept of representations that have been discovered in the brain [Quiroga et al., 2005], e.g

some neurons respond to particular objects.

We model the cognitive model of an agent with a Bayesian network [Pearl, 2014], as in Friston

et al. [2017]. However, in contrast with them, we do not assume an agent is a generativemodel and

only follows the internal causality of its processing. Thereby we do not explicitly model the hidden

variables of the environment and rather consider an implicit and abstract understanding of the

dynamics at several levels of representations. This directly follows the Bayesian brain hypothesis

[Knill and Pouget, 2004] which assumes that the brain models uncertainty and performs Bayesian

inference over variables. However, Figure 3.11 shows theBayesianNetworkB of a decision-making

step at the second level of a HRL framework, assuming the high-level decisions last for three

timesteps. Of course, the framework can be made generic over a decision’s level-dependent du-
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ration lk. In our case, the probability distributions are defined over a memory of the agent, which

is filled with new interactions. We made some common-sense assumptions: first, we assume the

agent learns a forward model φ that integrates the perception-action loop. It does not access the

true state and the agent is agnostic to it but rather learns a representation of the environment that

allows to produce high-level decisions; the information contained in the representation grows the

higher up the hierarchy it is. The decisions impact the time-extended representation, as well as

the ground actions of the agent.

One can notice that we can easily add more hierarchies to the model; we can recursively re-

produce the interactions between low-level and high-level decisions so that high-level modules

become low-level modules for the next level of the hierarchy.

In practice, the true causal model that usually results from the interactions of the agent may be

essentially similar, except for the links between zt and zt+3 and the absence of the hidden causal

variables of the environment.

Maximizing the multi-information of such architecture is particularly hard since each combi-

nation of time-observation is a random variable. For instance, the probability p(O0 = o) may

be different from p(O25 = o). In addition, in a lifelong learning scenario without episodes, the

timesteps tmay infinitely increase, leaving one value for each variable at each timestep. To over-

come this issue, we take inspiration from off-policy RL [Mnih et al., 2015] and the brain [Wilson and

McNaughton, 1994] and assume the agent considers a restricted set of time-independent vari-

ables while replaying its interactions. This facilitates the memorization of interactions so that the

agent only needs to keep local ordering (a variable and its direct parents) rather than the whole

time-index. Thus, we write p(Vt) = p(V |t) = P (V ) and p(Vt|Pa(Vt)) = p(V |Pa(V )) where V can

represent any random variables and Pa represent the parents. In other words, we assume that

the joint distribution of tuples of locally dependent variables is time-independent. In this case we

have, with t = 0, . . . , N :

∑

t

I(Xt;Xt−1, Yt) =
∑

t

I(X ′;X,Y |t)

=
∑

t

H(X ′|t)−H(X ′|X,Y, t)

=
∑

t

−
∑

X′

p(x′, t) log p(x′|t) +
∑

X′,X,Y

p(x′, x, y, t) log p(x′|x, y, t)

= −
∑

X′

∑

t

p(x′|t)p(t) log p(x′|t) +
∑

X′

∑

X,Y

∑

t

p(x′, x, y|t)p(t) log p(x′|x, y, t)

(1)
= −

∑

X′

∑

t

p(x′)p(t) log p(x′) +
∑

X′

∑

X,Y

∑

t

p(x′, x, y)p(t) log p(x′|x, y)

(2)
= −

∑

X′

∑

t

p(x′)
1

N
log p(x′) +

∑

X′

∑

X,Y

∑

t

p(x′, x, y)
1

N
log p(x′|x, y)

=
∑

t

1

N

[
−
∑

X′

p(x′) log p(x′) +
∑

X′

∑

X,Y

p(x′, x, y) log p(x′|x, y)
]

= I(X ′;X,Y ) (3.31)
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where we applied p(V |t) = p(V ) in (1) and noticed that p(t) = 1
N in (2). This essentially means

that, by storing interactions in memory, the agent considerably simplifies the objective to time-

independent variables. In the next section, we use this results to derive the multi-information of

the model.

3.7.3 Derivation of core objectives

Now we will use Equation 3.31 to derive the locally structured multi-information of the model

B:

MIB
(1)
=
∑

t

I(Ot+1;Ot, At, φ) + I(At;G
1
t , Ot) + I(Zt;φ

1, G1
t−3, Zt−3, Ot) + I(G1

t ;G
2
t , Zt)

(2)
= I(O′;O,A, φ) + I(A;G1, O) + I(Z ′;φ1, G1, Z,O′) + I(G1;G2, Z) (3.32)

(3)
= I(O′;φ|A,O)
︸ ︷︷ ︸

Low-level surprise

+ I(O′;A,O)
︸ ︷︷ ︸

Controllability

+ I(A;G1, O)
︸ ︷︷ ︸

Low-level policy

+ I(Z ′;Z,O′)
︸ ︷︷ ︸

Novelty

+ I(Z ′;φ1|G1, Z,O′)
︸ ︷︷ ︸

High-level surprise

+ I(Z ′;G1|Z,O′)
︸ ︷︷ ︸

Skill learning

+ I(G1;G2, Z)
︸ ︷︷ ︸

High-level policy

(3.33)

Since our model is a directed acyclic graph, in (1) we can rewrite the multi-information as the

sum of mutual informations between the nodes and their parents using Equation 3.30. In (2), we

simply apply Equation 3.31 to each term. Finally, in (3), we unroll the first and third terms with the

chain rule of mutual information. Let us now analyze each term of Equation 3.33:

Surprise: two terms relate to surprise, one per level of the hierarchy. It directly refers to our

formalism of surprise in Section 3.3 where the agent acts to reduce its uncertainty over its forward

or density model. This allows to explore the environment through different levels of decisions.

Controllability: controllability has been discussed in Section 3.3 and relates to the ability of

the agent to control through actions the observations it gathers [Touchette and Lloyd, 2004]. This

way, the agent can act to avoid stochastic areas. This may also be maximized through evolution

of sensors and actuators [Klyubin et al., 2005]. In upper-levels of the hierarchy, this term can be re-

trieve through the skill learning term, however, in this setting, the policy underpinning a skill defines

the semantic meaning of a skill, so that no skills lead to intrinsically stochastic areas [Eysenbach

et al., 2018].

Policies: these terms essentiallymeans the agentmust learn policies dependent on the current

representations and high-level decisions while each action should have lowmarginal probabilities.

This is most of the time respected since current exploration policies often progressively converge

to an almost deterministic policy when they become able to solve a task. This is the case, for

instance of decaying ǫ-greedy, where ǫ progressively converges to almost 0, or Boltzmann explo-

ration. Along with exploration through surprise and novelty, it allows for directed exploration.

Novelty: we discussed about novelty seeking behaviors in Section 3.4, it essentially allows to
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learn a representation of the environment. This time, we propose to maximize I(Z ′;Z,O′) rather

than I(Z ′;O′). We argued in Section 3.4 that novelty aims at dynamically discovering a represen-

tation of the environment, but what kind of representations ? Equation 3.33 suggests that this

representation should capture both low-level features and temporally-extended features. This is

in line with our analysis in Section 3.6.2 which emphasizes the role of the slowmoving principle for

learning representations. One can see this as transforming the temporal information into abstract

representations, without the need for explicit memory-based networks [Greff et al., 2016]. Concep-

tually, this shares ideas with clockwork recurrent neural networks [Koutnik et al., 2014] which has

been applied on classification of sequences of data. Since Z ′ must keep informations about allO′

and add information relatively to previous Z , the representation size should grow along with the

hierarchy in order to capture more information about observations. If the agent transmits ground

representations towards high levels of the hierarchy (maximizing the objective), this can be de-

ducted with Z ′ = (Z ′′, O′) and:

I(Z ′;Z,O′) = I(Z ′′, O′;Z,O′)

= I(Z ′′;Z,O′|O′) + I(O′;Z,O′)

= I(Z ′′;Z|O′) +H(O′). (3.34)

Considering a large hierarchy of decisions and representations, we generalize this to an arbi-

trary level:

I(Z ′k;Zk, Z ′k−1) = I(Z ′′k;Zk|Z ′k−1) +H(Z ′k−1). (3.35)

In practice, we just need to make possible H(O′k−1) < H(Z ′k) which may be a consequence

of |Z ′k| > |O′k−1|. Now let us further investigate why different temporal resolution should encode

different representations. We can write:

I(Z ′k;Zk, O′k−1) = H(Zk) +H(O′k−1)− I(O′k−1;Zk)−H(Zk, O′k−1|Z ′k). (3.36)

Equation 3.36 tells us that, under size constraints, the agent has to minimize I(O′k−1;Zk),

thereby encoding different informations about the observations with Zk and O′k−1. The causal

model directly implies that O′k−1 should focus over short-term information and Zk over longer-

term information since Zk−1 does not access local information.

Skill learning: Finally, we observe the last component we are looking for when maximized

through the low-level policy: a skill learning objective that we described in Section 3.5. This sug-

gests an agent should not look for ground states or trajectories [Eysenbach et al., 2018], but rather

a change in the input space [Gregor et al., 2016]. In our case, this appears that the skill learning

should focus on changes in the temporally-extended part of the representation.

As a result, the multi-information of a hierarchical model can indeed explain surprise, novelty

and skill learning. As emphasized by Equation 3.33, the roles of I(Z ′;φ1, G1, Z,O′) and I(O′;O,A, φ)

are essential for such derivation; the two others only incite the policies to act according to their
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goal and actual observations/representations.

3.7.4 Discussion

Wehope futureworkswill investigatewhethermulti-informationwould provide explanations for

other phenomenas, like visual tracking [Eckmann et al., 2020], vergence control [Zhang et al., 2014],

disentanglement [Bengio et al., 2009], language [Vygotsky, 1980] . . . . Multi-information principle

arises in a bottom-up way by studying works on intrinsic motivation but the building of a Bayesian

cognitivemodel should be intertwinnedwith biological evidences about the structure of the cortex,

in particular the interactions between cortical areas [Mumford, 1992, Felleman and Van Essen,

1991]. In fact, we expect that an investigation about correlated neurobiology aspects to provide

more evidences of the principle.

Widening the explanation strength of multi-information could make it a plausible candidate to

be a guiding principle for action and perception, thereby competing with the free-energy principle

[Friston, 2010]. Yet, we highlight that the multi-information shares some properties with the free-

energy principle which itself has been justified with neurobiological studies [Friston, 2005]. This

includes minimizing the conditional entropy of representations, or errors of prediction, and the

building of a causal model. The most proeminent difference lies in the fact that multi-information

maximizes the total amount of information, or marginal entropy of states, representations and de-

cisions. This is a critical add-on since it allows to tackle the dark room issue of the free-energy

principle: in their case, an agent staying motionless in the darkness minimizes its prediction er-

ror and thus, acts optimally. In the case of multi-information, the dark-room scenario does not

maximize the marginal entropy of observations/representations, and thus, does not maximize the

objective.

However, we think that the most important advantage of multi-information in comparison with

the free-energy comes from our methodology: by extrapolating multi-information principle from

machine learning objectives, it deeply connects with the truth on the ground, making it useful for

deriving new objectives. In contrast, to the best of our knowledge, the free-energy principle com-

poses with only few applications in complex environments [Berseth et al., 2020].

3.8 Conclusion

In this survey, we have presented the current challenges faced by DRL: namely 1- learning with

sparse rewards through exploration; 2- building a hierarchy of skills in order to make easier credit

assignment, exploration with sparse rewards and transfer learning.

We identified several types of IM to tackle these issues, that we classified into three cate-

gories based on the maximized information theoretic objective, which are surprise, novelty and

skill learning. Surprise and novelty based intrinsic motivations implicitly improve exploration while

skill learning allows to create a hierarchy of skills.

Looking for surprise maximizes the mutual information between a model parameters and the
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next state, knowing the previous state, the action and the history of interactions. We have shown

that it can be maximized through three set of works: information gain over predictive models,

density models or prediction errors. Novelty seeking can be assimilated to learning a represen-

tation of the environment, through the maximization of mutual information between states and

their representation. The most important term is the state-entropy maximization. Finally, using

skill learning objective that amount to maximize the mutual information between a goal and a part

of trajectories of the corresponding skill, an agent can learn hierarchies of temporally-extended

skills.

The three objectives are compatible and we have discussed how they could interact to provide

amore robust exploration process along with reusable and hierarchical skills, a quick and focused

skill acquisition and multi-semantic representations. In addition, we showed that these objectives

can by summarized by considering the multi-information of a simple hierarchical cognitive model.

We expect that further works will show the value of multi-information as a way to induce a large

set of complex behaviors and cognitive abilities.

The core part of the developmental architecture presented in Section 3.6.2 is mostly based on

the integration of bottom-up hierarchical skill discovery in HRL. We recall that we identified three

advantages of discovering skills in a bottom-up way:

1. The time extended commitment resulting from a hierarchical random walk avoids the usual

wanderlust due to the sparsity of rewards.

2. Objective functions for skill abstraction encourages skill diversity, which favors exploration

of the state space.

3. Skills can be hierarchically executed and transfered across several different tasks.

In particular, such exploration pathways may be robust against detachment, which is a hard

issue for flat exploration methods. All together, these elements highlight the potential role of

bottom-up skill discovery to tackle RL deadlocks. In the rest of the dissertation, we propose to

investigate how bottom-up hierarchical skill discovery could concretely be at the origin of this de-

velopmental architecture. Thus we reformulate and refine our problem statement: Can an agent

continually learn increasingly complex hierarchical skills using DRL and intrinsic motivation ?

As a first step, we put aside the hierarchical combination of skills and focus on their discovery.

In fact, we hypothetize that, even though an agent does not take advantage of a straightforward

credit assignment or hierarchical randomwalk, exploration and skills transfer can still benefit from

bottom-up skill discovery. In the next chapter, we introduce a novel model that validate this hypoth-

esis.
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Chapter 4

End-to-end learning of reusable skills through intrinsic

motivation

4.1 Introduction

In the previous chapter, we thoroughly studied what is missing to DRL agents to tackle some

of their more important issues (exploration, transfer learning and credit assignment problem). We

proposed a developmental architecture and noticed that it could be based on a bottom-up skill

discovery. In this chapter, we thoroughly investigate how to discover such skills, we identify the

shortcomings of the related approaches and propose a novel model that tackle them.

Several works [Eysenbach et al., 2018, Achiam et al., 2018, Pong et al., 2020] recently proposed

to intrinsically learn skills (see definition in Section 2.3.4) by maximizing the mutual information

between states s ∈ S and goals g ∈ G, I(G,S), such that different states are covered by the learned

skills. While they discover a great diversity of skills, these works neither learn skills sequentially,

nor execute skills sequentially [Eysenbach et al., 2018], but rather always sample goals uniformly.

Learning skills uniformly brings up several issues:

1. Most skills target uninteresting parts of the environment relatively to some tasks; thereby it

requires prior knowledge about which features to diversify [Eysenbach et al., 2018, Sharma

et al., 2020]. This is illustrated in the first step of Figure 4.1, the agent learns a skill that goes

to the top part of the environment, even though there are no extrinsic rewards.

2. Time-extended skills used in a hierarchical setting are often sub-optimal for a task. With

diversity heuristic, skills are indeed not expressive enough to efficiently target a goal [Eysen-

bach et al., 2018, Achiam et al., 2018]. This is showed in the second step of Figure 4.1, even

though the agent knows which of its skill performs the best, it may often reach sub-optimal

areas.

3. The agent suffers from catastrophic forgetting when it tries to learn a task while learning

skills [Eysenbach et al., 2018]. This issue appears in steps two and three of Figure 4.1, while
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Skill 1Skill 0Positive extrinsic rewards

Figure 4.1: Illustration of the problem inherent to previous skill learning methods. The blue circle
represents the starting position of the agent and it executes one skill par episode. 1) the agent
learns diverse skills, skill 0 goes up and skill 1 goes down; 2) it executes its rewards skill, i.e skill 1;
3) It forgets the difference between skills 1 and 0.

executing only skill 1, the agent progressively forgets what differentiates skills 1 and 0, mak-

ing skills collapse.

Let us suppose there is a hierarchical module that provides goals to the skill learning algorithm.

Again, the algorithm will not focus its learning process on upper-levels assignments and will dis-

cover skills in uninterested areas of the state space. Thus, the issue is two-folds: 1- it prevents

an agent to learn a task; 2- it prevents skill discovery methods to be efficiently integrated in a hi-

erarchical way. In fact, uniform skill discovery occurs during a developmental period [Metzen and

Kirchner, 2013] which is just an unsupervised pretraining. However, a truly open-ended learning

agent does not consider pre-training phases and always expands its repertoire of skill, whether

high-level goals or tasks are provided to it. To implement such open-ended learning agent, hierar-

chical skills should be discovered in a continual learning framework (cf. Section 2.2.1).

In the rest of the chapter, we propose to improve the approaches for continually learning in-

creasingly difficult skills with diversity heuristics. We introduce ELSIM (End-to-ended Learning

of reusable Skills through Intrinsic Motivation), a method for learning representations of skills in

a bottom-up way. The agent autonomously builds a tree of abstract skills where each skill is a

refinement of its parent. First of all, skills are learned independently from the tasks but along with

tasks; it guarantees they can be easily transferred to other tasks andmay help the agent to explore

its environment. Secondly, the agent selects a skill to refine with extrinsic or intrinsic rewards, and

learns new sub-skills; it ensures that the agent learns specific skills useful for tasks through an

intelligent curriculum, among millions of possible skills.

We believe our paradigm, by removing the requirement of an unsupervised pretraining, makes

compatible skill discovery methods with an open-ended architecture. Therefore, we emphasize

three properties of our ELSIM method :

Learning is bottom-up : the agent does not require an expert supervision to expand the set of

skills. It can use its skills to solve different sequentially presented tasks or to explore its

environment.
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Learning is end-to-end : the agent never stops training and keeps expanding its tree of skills. It

gradually self-improves and avoids catastrophic forgetting.

Learning is focused : the agent only learns skills useful for its high-level extrinsic/intrinsic objec-

tives when provided.

Our contributions are the following: we introduce a new curriculum algorithm based on an

adaptation of diversity-based skill learning methods. Our objective is not to be competitive when

the agent learns one specific goal, but to learn useful and reusable skills along with sequentially

presented goals in an end-to-end fashion. We show experimentally that ELSIM achieves good

asymptotic performance on several single-task benchmarks, improves exploration over standard

DRL algorithms andmanages to easily reuse its skills. Thus, this is a step towards lifelong learning

agents.

This chapter is organized as follows. First, we provide more details on diversity-based intrinsic

motivation (Section 4.2.1) and exhibit how ELSIM relates to existing works that learn skills in a

lifelong learning scenario. In Section 4.3, the core of our method is presented. Then, we explain

and visualize how ELSIM works on simple gridworlds and compare its performances with state-

of-the-art DRL algorithms on single and sequentially presented tasks learning (Section 4.4). We

sum up the method in Section 4.5 just before we take a step back, will evaluate how ELSIM could

be integrated in a hierarchical setting and discuss the limitations of ELSIM in Section 4.6. Based

on this discussion, we investigate a potential solution in Section 4.7.

4.2 Background

4.2.1 Obtaining diverse skills through mutual information objective

One way to learn, without extrinsic rewards, a set of different skills is to use the objective dis-

cussed in Section 3.5.1. We already discussed the intuition of the method in Section 3.5.1, here we

provide more technical details.

In DIAYN [Eysenbach et al., 2018], learned skills should be as diverse as possible (different

skills should visit different states) and distinguishable (it should be possible to infer the goal from

the states visited by the skill). It follows that the learning process of DIAYN is 4-step with two

learning parts: 1- the agent samples one skill from an uniform distribution; 2- the agent executes

the skill (randomly initialized); 3- a discriminator qω learns to categorize the resulting states to the

assigned skill; 4- at the same time, these approximations reward (cf. Equation 4.4).

The global objective can be formalized as maximizing the MI between the set of skills G and

states S′ visited by skills, defined by [Gregor et al., 2016]:

I(G;S′) = H(G)−H(G|S′) (4.1)

= E g∼p(g)
s′∼p(s′|πg

θ
,s)

[log p(g|s′)− log p(g)] (4.2)
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where πgθ is the skill associated to the goal g ∈ G and is parameterized by θ; p(g) is the uniform

distribution of skills the agent samples on; and p(g|s′) is the probability to infer g knowing the next

state s′ and skills. This MI quantifies the reduction in the uncertainty of G due to the knowledge

of S′. By maximizing it, states visited by a skill πg have to be informative about the given goal g.

A bound on the MI can be used as an approximation to avoid the difficulty to compute p(g|s′)
[Barber and Agakov, 2003, Gregor et al., 2016] :

I(G,S′) ≥ E g∼p(g)
s′∼p(s′|πg

θ
,s)

[log qω(g|s′)− log p(g)] (4.3)

where qω(g|s′) is the discriminator approximating p(g|s′). In our case, the discriminator is a neu-

ral network parameterized by ω. qω minimizes the standard cross-entropy −Eg∼p(g|s′) log qω(g|s′)
where s′ ∼ πgθ .

To discover skills, it is more efficient to set p(g) to be uniform as it maximizes the entropy ofG

[Eysenbach et al., 2018]. Using the uniform distribution, log p(g) is constant and can be removed

from Equation 4.3. It follows that one canmaximize Equation 4.3 using an intrinsic reward to learn

the skill g ∈ G [Eysenbach et al., 2018]:

rg(s′) = log qω(g|s′). (4.4)

Similarly to [Eysenbach et al., 2018], we use an additional entropy term to encourage the diver-

sity of covered states. In practice, this bonus is maximized through the use of DRL algorithms:

Soft Actor Critic (SAC) [Haarnoja et al., 2018] for continuous action space and Deep Q network

(DQN) with Boltzmann exploration [Mnih et al., 2015] for discrete one.

4.2.2 Related works

Since we already studied works related to skill learning in Section 3.5, we focus on sequential

learning methods and other lifelong learning aspects tackled in the literature. We also compare

our technical contribution to previous approaches.

Sequential learning. Contrary tomethods that learn skills uniformly (Section 4.2.1), somemeth-

ods manage to execute skills sequentially, considering skills as options and hierarchically running

several of them inside one episode. However, either they do not explore efficiently [Nachum et al.,

2019a, Levy et al., 2019], or explore with a hierarchical random walk [Nachum et al., 2018, Li et al.,

2021b]. While this is more efficient than a low-level random walk [Li et al., 2021b], it is not as ef-

ficient as discovering novel states through novel skill discovery. Deep Covering Options (DCO)

explores efficiently [Jinnai et al., 2019] but it is unclear whether it can learn a large set of options.

Approaches also learn skills directly with the tasks [Bacon et al., 2017, Li et al., 2020a], but skills

are biased towards a task and this prevents exploration when rewards are sparse.

Continual learning. Other works proposed a lifelong learning architecture. Some assume that

skills are already learned and learn to reuse them; for example, Hierarchical Deep Reinforcement

Learning Network (H-DRLN) [Tessler et al., 2017] uses a hierarchical policy to choose between
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ground actions and skills. They also propose to distill previously learned skills into a larger archi-

tecture, making their approach scalable. In contrast, we tackle the problem of learning skills in an

end-to-end fashion, thereby our approach may be compatible. Similarly to us, Continual Curiosity

driven Skill Acquisition (CCSA) [Kompella et al., 2017] addresses the catastrophic forgetting prob-

lem by freezing the learning of some experts. Theymix two unsupervised learningmethods to find

and represent goal states, and then learn to reach them. However, their unsupervised algorithm

only extracts linear features and they manually define a first set of skills. One particular aspect of

continual learning is Meta-RL: how can an agent learn how to learn ? Traditional methods assume

there exists a task distributions and try to generalize over it [Finn et al., 2017, Duan et al., 2016];

this task distribution serves as prior knowledge. In [Gupta et al., 2018], the authors address this

issue and apply Model-Agnostic Meta-Learning (MAML) [Finn et al., 2017] on an uniform distribu-

tion of tasks learned by DIAYN [Eysenbach et al., 2018]. However, learning is neither focused, nor

end-to-end. In the continuity of this work, Curricula for Unsupervised Meta-Reinforcement Learn-

ing (CARML) [Jabri et al., 2019] mixes the objective of DADS [Sharma et al., 2020] and Meta-RL; it

alternates between generating trajectories of the distribution of tasks and fitting the task distribu-

tion to new trajectories. While CARML discovers diverse behaviors with pixel-level state space, it

cannot learn a global objective end-to-end like ELSIM.

State abstraction. Our method can be viewed as a way to perform state abstraction [Li et al.,

2006]. Rather than using this abstraction as inputs to make learning easier, we use it to target

specific states. The application of our refinement method bounds the suboptimality of the repre-

sentation, while the task-independent clustering ensures that skills are transferable. In contrast to

our objective, existingmethods usually tackle suboptimality for a task without addressing transfer

learning or exploration [Akrour et al., 2018, Abel et al., 2016]. The k-d tree algorithm [Friedman et al.,

1977] has been used to perform state abstraction over a continuous state space [Uther and Veloso,

1998], but as above, the splitting process takes advantage of extrinsic reward and previously de-

fined partitions are not adapted throughout the learning process. In the domain of developmental

robotics, Robust Intelligent Adaptive Curiosity (RIAC) and SAGG-RIAC [Baranes and Oudeyer, 2009,

2010] already implement a splitting algorithm building a tree of subregions in order to efficiently

explore the environment and learn a forward model. More precisely, they split the state space to

maximize either the sum of variance of interactions already collected or the difference of learning

progress between subregions. However, these heuristics do not scale to larger continuous envi-

ronments. In contrast, we assign states to subregions according to the proximity of states and

use these subregions as reusable skills to solve several tasks. Adaptive skills adaptive partitions

(ASAP) [Mankowitz et al., 2016] partitions the goal space, but does not use intrinsic motivation

and the partitions are limited to hyper-plans.

4.3 Method

In this section, we first give an overview of our method and then detail the building of the tree

of skills, the learning of the skill policy, the selection of the skill to refine and how ELSIM integrates

this in an end-to-end framework.
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(a) Two skills are learnt. (b) The agent separates skill 1 into two new sub-
skills (1,0) and (1,1)

Figure 4.2: The agent (circle) starts an episode in the center of the environment, colors denote the
trajectories of their corresponding skills.

4.3.1 Overview: building a tree of skills

To get both bottom-up skills and interesting skills relatively to some tasks, our agent has to

choose the skills to improve thanks to the extrinsic rewards, but we want that our agent improves

its skills without extrinsic rewards. The agent starts by learning a discrete set of diverse and distin-

guishable skills using the method presented in Section 4.2.1. Once the agent clearly distinguishes

these skills using the covered skill-conditioned states with its discriminator, it splits them into new

sub-skills. For instance, for a creature provided with proprioceptive data, a moving forward skill

could be separated into running and walking. The agent only trains on sub-skills for which the par-

ent skill is useful for the global task. Thus it incrementally refines the skills it needs to accomplish

its current task. If the agent strives to sprint, it will select the skill that provides the greater speed.

The agent repeats the splitting procedure until its skill either reach the maximum number of splits

or become too deterministic to be refined.

The first splitting is illustrated in Figure 4.2a and Figure 4.2b, where the agent is a circle that

moves in the squared enviromnent. The hierarchy of skills is maintained using a tree where each

node refers to an abstract skill that has been split and each leaf is a skill being learned.

We formalize the hierarchy using sequence of letters where a letter’s value is assigned to each

node:

• The set of skills G is the set of leaf nodes. A skill g ∈ G is represented by a sequence of

k + 1 letters : g = (l0, l1, ..., lk). When g is split, a letter is added to the sequence of its

new sub-skills. For instance, the skill g = (l0 = 0, l1 = 1) can be split into two sub-skills

(l0 = 0, l1 = 1, l2 = 0) and (l0 = 0, l1 = 1, l2 = 1).

• The vocabulary V refers to the values which can be assigned to a letter. For example, to

refine a skill into 4 sub-skills, we should define V = {0, 1, 2, 3}.

• The length L(g) of a skill is the number of letters it contains. Note that the length of a skill is

always larger than its parent’s.

• l:k is the sequence of letters preceding lk (excluded).
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(a) Two skills are learnt.

(b) The agent separates the best skill, skill 0, into two new subskills (0,0) and (0,1)

(c) The agent separates its new best skills into two new subskills (0,0,0) and (0,0,1)

(d) The agent keeps expanding its tree of skill in the direction of the feedback from the environment.

Figure 4.3: The yellow path represents the goal selected to be executed and splitted and r denotes
the average extrinsic rewards gathered by a skill and . Here, |V | = 2.
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Figure 4.3 illustrate how ELSIM builds a tree. The agent first learns to distinguish two skills,

then it recursively split it best extrinsically rewarding skill into new subskills.

We use two kind of policies: the first are the goal-conditioned policies defining a skill. The

learning of these skills is described in Section 4.3.2. The second type of policy is task-dependent

and responsible to choose which skill to execute; we call it the tree-policy (see Section 4.3.3).

4.3.2 Learning skills

In this section, we detail how skills are learned. We adapt the method presented in Section

4.2.1 to our hierarchical skills context. Two processes are simultaneously trained to obtain diverse

skills: the skills learn to maximize the intrinsic reward (cf. Equation 4.4), which requires to learn

a discriminator qω(g|s′). This is difficult because it requires to provides a lot of trajectories from

each πg.

Given our hierarchic skills, we can formulate the probability inferred by the discriminator as a

product of the probabilities of achieving each letter of g knowing the sequence of preceding letters,

by applying the chain rule:

rg(s′) = log qω(g|s′) = log qω(l
0, l1, . . . , lk|s′)

= log
k∏

i=0

qω(l
i|s′, l:i) =

k∑

i=0

log qω(l
i|s′, l:i)

=

k−1∑

i=0

log qω(l
i|s′, l:i) + log qω(l

k|s′, l:k). (4.5)

Gathering this value is difficult and requires an efficient discriminator qω. As it will be ex-

plained in Section 4.3.4, in practice, we use one different discriminator for each node of our tree:

∀i, qω(li|s′, l:i) ≡ q:iω(l
i|s′) where i indicates the level in the tree. For instance, if |V | = 2, one

discriminator q∅ω will be used to discriminate (l0 = 0) and (l0 = 1) but an other one, ql
0=0
ω will

discriminate (l0 = 0, l1 = 0) and (l0 = 0, l1 = 1).

Training several discriminators at the same time induce several issues, 1- we can not simul-

teneaously learn all of them; 2- we must avoid to learn correlated discriminators that similarly

partition the state space.

Primary learning for the leaves discriminators. It would be difficult for the discriminators to learn

over all letters at once; the agent would gather states for several inter-level discriminators at the

same time and a discriminator would not know which part of the gathered states it should focus

on. This is due to the fact that discriminators and skills simultaneously train. Furthermore, there

are millions of possible combinations of letters when the maximum size of sequence is large. We

do not want to learn them all.

To address these issues, we introduce a new curriculum learning algorithm that refines a skill
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only when it is distinguishable. When discriminators successfully learn, they progressively ex-

tends the sequence of letters; in fact, we split a skill (add a letter) only when its discriminator has

managed to discriminate the values of its letter. Let’s define the following probability:

p:kfinish(l
k) = Esfinal∼π:k+1

[
q:kω (l

k|sfinal)
]
. (4.6)

where sfinal is the state reached by the skill at the last timestep. We assume the discriminator

q:kω has finished its primary learning phase when: ∀v ∈ V, p:kfinish(l
k = v) ≥ δ where δ ∈ [0, 1]

is an hyperparameter. Choosing a δ close to 1 ensures that the skill is learned, but a skill always

explores, thereby it may never reach an average probability of exactly 1; we found empirically that

0.9 works well.

To approximate Equation 4.6 for each letters’ value v, we use an exponential moving average

p:kfinish(l
k = v) = (1 − β)p:kfinish(lk = v) + βq:kω (l

k = v|sfinal) where sfinal ∼ π:k+1 and β ∈ [0; 1].

Since we use buffers of interactions (see Section 4.3.4), we entirely refill the buffer before the split.

Learning uncorrelated discriminated areas. Let us reconsider Equation 4.5. The left-hand part

represents the reward assigned by the previously learned discriminators. It forces the skill to stay

close to the states of its parent skills since this part of the reward is common to all the rewards of

its parent skills. In contrast, the right-hand part represents the reward assigned by the discrimina-

tor that actively learns a new discrimination of the state space. Since the agent is constrained to

stay inside the area of previous discriminators, the new discrimination is uncorrelated from pre-

vious parent discriminations. In practice, we increase the importance of previous discriminations

with a hyper-parameter α ∈ R:

rg(s′) = log qω(l
k|s′, l:k) + α

k−1∑

i=0

log qω(l
i|s′, l:i). (4.7)

This hyper-parameter is important to prevent the agent to deviate frompreviously discriminated

areas to learn more easily the new discrimination.

4.3.3 Learning which skill to execute and train

For each task, a stochastic policy, called tree-policy and noted πT (with T the tree of skills),

is responsible to choose the skill to train by navigating inside the tree at the beginning of a task-

episode. This choice is critical in our setting: while expanding its tree of skills, the agent cannot

learn to discriminate every leaf skill at the same time since discriminators need states resulting

from the skills. We propose to choose the skill to refine according to its benefit in getting an other

reward (extrinsic or intrinsic), thereby ELSIM executes and learns only interesting skills (relatively

to an additional reward).

To learn the tree-policy, we propose to model the tree of skills as an MDP solved with a Q-

learning and Boltzmann exploration. The action space is the vocabulary V ; the state space is

the set of nodes, which include abstract and actual skills; the deterministic transition function
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Figure 4.4: Representation of a part of the tree of skills with |V | = 2 and the value of tree-policy in
each node. White nodes are actual leaves of the tree (there are no discriminators since there are
no children to discriminate). Yellow nodes represent nodes for which the discriminator can not dif-
ferentiate its sub-skills; the tree-policy samples uniformly. Nodes are blue when the discriminator
can distinguish its sub-skills; the tree-policy samples using Q-values.

is the next node selection; if the node is not a leaf, the reward function RT is 0, else this is the

discounted reward of the skill executed in the environment divided by themaximal episode length.

Each episode starts with the initial state as the root of the tree, the tree-policy selects the next

nodes using Q-values. Each episode ends when a leaf node has been chosen, i.e. a skill for which

all its letters has been selected; the last node is always chosen uniformly (see Section 4.3.4).

Let us roll out an example using the tree-policy displayed in Figure 4.4. The episode starts at

the root of the tree; the tree-policy samples the first letter, for example it selects l0 = 0. Until it

reaches a leaf-node, it samples new letters, e.g. l1 = 1 and l2 = 0. The tree-policy has reached

a leaf, thereby it will execute and learn the skill (0, 1, 0). Then, the state-action tuple ((0, 1), (0))

is rewarded with the scaled discounted reward of the task. This reward is propagated via the Q-

learning update to previous state-action tuples ((∅), (0)) and ((0), (1)) to orientate the tree-policy

to (0, 1, 0).

The MDP evolves during the learning process since new letters are progressively added. The

Q-values of new skills are initialized with their parent Q-values. However, Equation 4.5 ensures

that adding letters at the leaf of the tree monotonically increases Q-values of their parent nodes.

The intuition is that, when splitting a skill, at least one of the child is equal or better than the skill

of its parent relatively to the task. We experimentally show this in Section 4.4.2. The resulting

curriculum can be summarized as follows: the tree will be small at the beginning, and will grow

larger in the direction of feedbacks of the environment.

We now sum up the process of the tree-policy: 1-an agent runs an episode inside the MDP of

skills; the sequence of actions represents a skill; 2- the agent executes the skill; 3- the tree-policy

is rewarded according to how well the skill fits the task and the Q-learning applies. When the tree

policy gathers a constant (possibly null) reward, it becomes uniform. The full algorithm of the

tree-policy is given in Appendix A.1.
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4.3.4 Simultaneous training of the tree-policy and skills

The MI objective requires the skill distribution to remain uniform (cf. Equation 4.4), however

that is not our case: the agent strives to avoid some useless skills while focusing on others. In

our preliminary experiments, ignoring this leads us to catastrophic forgetting of the learned skills

since discriminators forget how to categorize states of the skills they never learn on. To bypass

this issue and sample uniformly, we assign to each node i of our tree a replay buffer containing

interactions of the skill with the environment, a RL algorithm and a discriminator (q:iω). At each

split, skills and buffers of a node are copied to its children; for the first node, its skills are randomly

initialized and its buffer is empty.

This way, the entire training is off-policy: the skill fills the replay buffer while the discriminator

and skills learn from the interactions that are uniformly extracted from their buffers. We divide the

lifetime of a node into two phases, before and after the split: 1-the learning phase during which

next letter’s values are sampled uniformly; the tree-policy is uniform at this node; 2-the exploitation

phase during which the tree-policy chooses letters with its Boltzmann policy (Section 4.3.3).

Then, at each step, the agent runs the tree-policy to select the discriminator in the learning

phase that will learn. The discriminator samples amini-batch of data from its children’s (all leaves)

buffers and learns on it. Then, all children skills learn from the intrinsic feedback of the same

interactions, output by the selected discriminator and all its parents according to Equation 4.5.

Once a node enters the exploitation phase, an hyper-parameter η regulates the probability that

each parent’s discriminator learn on its children data. Their learning interactions are recursively

sampled uniformly on their children. This post-exploration learning allows a node to expand its

high-reward area. Without this mechanism, different uncovered states of the desired behaviour

may be definitively attributed to different fuzzy skills, as shown in Section 4.4.1. The full learning

algorithm is given in Appendix A.2.

Figure 4.4 gives an example of a potential tree and how different phases coexist; the skills

starting by (0, 1) seem to be themost interesting for the task since each letter sampling probability

is high. Skills (0, 1, 0), (0, 1, 1), (1, 0) and (1, 1) are being learned, therefore the sampling probability

of their last values is uniform.

4.4 Experiments

The first objective of this section is to study the behavior of our ELSIM algorithm on basic

gridworlds to make the visualization easier. The second purpose is to show that ELSIM can scale

with high-dimensional environments. We also compare its performance with a non-hierarchical

algorithm SAC [Haarnoja et al., 2018] in a single task setting. Finally we show the potential of

ELSIM for transfer learning.
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Figure 4.5: Different states covered by the agent while doing a skill. The first and sixth columns
display the skills learned with a message length equal to 1; once the learning has been completed,
the agent refines each skill into four new sub-skills, displayed on each row.

4.4.1 Study of ELSIM in gridworlds

In this section, we analyze how skills are refined on simple gridworlds adapted from gym-

minigrid [Chevalier-Boisvert and Willems, 2018]. Unless otherwise stated, there is no particular

task (or extrinsic reward), thereby the tree-policy is uniform.

Experimental setup. The observations of the agent are its coordinates; its actions are the

movements into the four cardinal directions. Our hyperparameters can be found in Appendix A.3

To maximize the entropy of the skill with a discrete action space, we use the DQN algorithm [Mnih

et al., 2015]. The agent starts an episode in the middle of the grid (see figures) and an episode

resets every 100 steps, thus the skill lasts 100 steps. At the end of the training phase, the skills

of all the nodes are evaluated through an evaluation phase lasting 500 steps for each skill. In all

figures, each tile corresponds to a skill that is displayed at the top-left of the tile. We set |V | = 4,

so that there are four skills at the beginning of the tree and each skill splits into four new subskills.

Figure 4.6, Figure 4.5 and 4.8 display the density of the states visited by skills during the evaluation

phase: the more red the state, the more the agent goes over it.

Can ELSIM refine a high-stochastic skills into low-stochastic skills ? The first and sixth col-

umn of Figure 4.5 shows, for each possible skill g when L(g) = 1, the states covered by the agent

during the evaluation phase of the skills. We can see that the agent clearly separates its skills

since the states covered by one skill are distinct from the states of the other skill. In our example,

the first skill (0)makes the agent go at the right of the grid, the second one (1) at the top, the third

one (2) at the left and the fourth one at the bottom. In contrast, columns two to five and seven to

eleven of Figure 4.5 show the skills learned with L(g) = 2. As evidenced by goals’ numbers, the

four rightmost skills are the refinement of the leftmost fuzzy policy on the same row. We see that

the refinement allows to get lower-stochastic policies. For example, skill (1) is very fuzzy while its

children target very specific areas of the world. This emphasizes the benefits of using more latent

variables to control the environment.

Do the split of skills improve the exploration of an agent ? Figure 4.6 shows some skills learned

in an environment of 4 rooms separated by a bottleneck. The full set of skills is displayed in Ap-

pendix A.5. We first notice that the agent clearly separates its first skills (0), (1), (2), (3) since the

states covered by one skill are distinct from the states of the other skills. However it does not

escape from its starting room when it learns these first skills. When it develops the skills close

to bottlenecks, it learns to go beyond and invests new rooms. It is clear for skills (1) and (2)

which, with one refinement, respectively explore the top-right (skill (1, 0)) and bottom-left (skills
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Figure 4.6: Some skills learned by the agent in an environment composed of four rooms.

Figure 4.7: Discriminator’s probability of achieving skills (1), (3) and their sub-skills in every state
(i.e. q(g|s)). The more red the state, the more rewarding it is for the skill. The left side corresponds
to the preliminary stage of the learning process (timestep 128.104); the right side corresponds to
the end of the learning process (timestep 640.104).

(2, 0), (2, 2), (2, 3)) rooms. With a second refinement, (2, 3, 0) even manages to reach the farthest

room (bottom-right). This stresses out that the refinement of a skill also allows to expand the

states covered by the skill, and thus can improve the exploration of an agent when the rewards are

sparse in an environment.

Does the split of skills correct a wrong over-generalization of a parent skill ? Figure 4.7 shows

the evolution of the intrinsic reward function for some skills (see Appendix A.6 for the full set of

skills). The environment contains a vertical wall and settings are the same as before, except the

Boltzmann parameter set to 0.5. At the beginning, skill (1) is rewarding identically left and right

sides of the wall. This is due to the generalization over coordinates and to the fact that the agent

has not yet visited the right side of the wall. However it is a wrong generalization because left

and right sides are not close to each other (considering actions). After training, when the agent

begins to reach the right side through the skill (3, 2), it corrects this wrong generalization. The

reward functions better capture the distance (in actions) between two states: states on the right

side of the wall are attributed to skill (3) rather than (1). We can note that other parts of the reward

function remain identical.

Can the agent choose which skill to develop as a priority ? In this part, we use the same

environment as previously, but states on the right side of the wall give an extrinsic reward of 1.

Thus the agent follows the tree-policy to maximize its rewards, using Boltzmann exploration, and

focus its refinement on rewarding skills. Figure 4.8 shows all the parent skills of the most refined

skill which reaches L(g) = 6. The agent learns more specialized skills in the rewarding area than

when no reward is provided (cf. Appendix A.7 for the full set of skills learned).

Summary. We illustrated the following properties of ELSIM: 1- it expands a previously learned

rewarding area when it discovers new states; 2- we show in Section 4.4.2 that it improves explo-

ration when the rewards are sparse; 3- adding letters corrects over-generalization of their parent
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Figure 4.8: One path in the tree of skills learned by the agent with an extrinsic reward of 1 on the
upper right side of the wall.
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Figure 4.9: Average reward per episode in classical environments (HalfCheetah-v2 [Todorov et al.,
2012], LunarLanderContinuous-v0 [Shariff and Dick, 2013], MountainCarContinuous-v0 [Moore,
1990] and Pendulum-v0) for SAC and ELSIM (averaged over 4 seeds). We use our own imple-
mentation of SAC except forHalfCheetah for which the blue curve is the average reward of SAC on
5 seeds, taken from [Haarnoja et al., 2018]. We stopped the simulation after convergence of SAC.

discriminator; 4- it can focus the skill expansion towards task-interesting areas.

4.4.2 Performance on a single task

In this part, we study the ability of ELSIM to be competitive on continuous benchmarkswithout

any prior knowledge. Action and state spaces of used environments are summarized in Table 4.1.

Unless stated otherwise, used hyper-parameters can be found in Appendix A.4. For ELSIM, we set

the maximum skill length to 10, which is reached in HalfCheetah.

Figure 4.9 respectively shows the average reward per episode for different environments.

Shaded areas color are upper-bounded (resp. lower-bounded) by the maximal (resp. minimal)

average reward.

First, the MountainCarContinuous environment represents a challenge for the exploration as it

is a sparse reward environment: the agent receives the reward only when it reaches the goal. In this

environment, ELSIM outperforms SAC by getting a higher average reward. It confirms our results

(cf. Section 4.4.1) on the positive impact of ELSIM on the exploration. There is a slight decrease

after reaching an optima, in fact, ELSIM keeps discovering skills after finding its optimal skill. On

Environment State space Action space

HalfCheetah 17 6

MountainCarContinous 2 1

Pendulum 3 1

LunarLander 8 2

Table 4.1: Summary of environments and the size of action and state spaces.
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Figure 4.10: Average reward per episode in HalfCheetah and HalfCheetah-Walk. We use our own
implementation of SAC for HalfCheetah-Walk. The black curve is the average reward of a random
tree-policy that uses the transfered skills.

Pendulum and LunarLander, ELSIM achieves the same asymptotic average reward than SAC, even

though ELSIMmay require more timesteps. OnHalfCheetah, SAC is on average better than ELSIM.

However we emphasize that ELSIM also learns other skills. For example in HalfCheetah, ELSIM

learns to walk and flip while SAC, which is a non-hierarchical algorithm, only learns to sprint.

4.4.3 Transfer learning

In this section, we evaluate the interest of ELSIM for transfer learning. We take skills learned by

intra-policies in Section 4.4.2, reset the tree-policy and restart the learning process onHalfCheetah

and HalfCheetah-Walk. HalfCheetah-Walk is a slight modification of HalfCheetah which makes the

agent target a speed of 2 (cf. Appendix A.8 for more details on the new reward function). skills

learning was stopped in HalfCheetah.

In contrast with our previous experiment, the performance exclusively depends on the explo-

ration of the tree. Therefore we use MBIE-EB [Strehl and Littman, 2008] to more efficiently explore

the tree. This method adds a count-based bonus to the Q-value:

Q̃(s, a) = Q(s, a) +
β

√

n(s, a)
(4.8)

where n(s, a) is the number of time we chose a in s and β is an hyper-parameter. We set it to

10 for classic HalfCheetah and 2 for walking HalfCheetah. The agent selects the action that has

the larger Q̃.

Figure 4.10 shows that the tree-policy learns to reuse its previously learned skills on HalfChee-

tah since it almost achieves the same average reward as in Figure 4.9. On HalfCheetah-Walk, we

clearly see that the agent has already learned skills to walk and that it easily retrieves them. In

both environments, ELSIM learns faster than SAC, which learns from scratch. It demonstrates

that skills learned by ELSIM can be used for other tasks than the one it has originally been trained

on.
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4.5 Conclusion

We proposed ELSIM, a novel algorithm that continually refines discrete skills using a recently

defined diversity heuristic [Eysenbach et al., 2018]. To do so, the agent progressively builds a tree

of different skills in the direction of a high-level objective. As shown in Section 4.4, ELSIM expands

the area associated to a skill thanks to its exploratory behavior which comes from adding latent

variables to the overall policy. ELSIM also focuses its training on interesting skills relatively to

some tasks. Even though the agent is often learning a task, the skills can be defined independently

froma specific task andwe showed that ELSIMpossiblymakes them transferable across different

tasks of a similar environment. Since the agent does not need extrinsic reward to learn, we show

that it can improve exploration on sparse rewards environments. We trained ELSIM on relatively

simple benchmarks, however, it is a strong proof-of-concept that emphasizes the potential ability

of bottom-up skill discovery to tackle exploration and transfer learning.

Let us recall that our final objective is to integrate this paradigm of skill discovery in a hierarchi-

cal scenario where several upper-level modules set different higher-level goals inside one episode.

Therefore, in the next section, we assess the ability of ELSIM to integrate a hierarchical setting.

We also discuss its exploration and transfer performance.

4.6 Limitations of ELSIM

ELSIM learns a discrete set of skills and, when it does not access rewards, it explores uniformly

over its set of skills while building the tree of skills. In this section, we will explain why these prop-

erties hurt the integration of ELSIM in a hierarchical framework and why it sub-optimally bounds

both its exploration process and its ability to reuse skills. We will sketch some outlooks, however

these observations will incite us to tackle the problem of continual bottom-up skill discovery in a

different way in the next chapter.

4.6.1 Sub-optimal exploration

ELSIM is able to keep improving its skills in an end-to-end way, even though it does not ac-

cess rewards. However it uniformly samples skills to execute, and thus uniformly tries to improve

them. Such uniform discovery is, in fact, strongly sub-optimal. To illustrate this, let us reconsider

our previous examples. In Figure 4.5, the agent starts in the middle of an empty environment, it

can explore all around its starting position and each skill can be improved; in this situation, the ex-

ploration process is going well: its uniform sampling matches an uniform distribution of the state

space.

Figure 4.11: Skill 3
of Figure 4.6.

It contrasts with our experiment in the four rooms environment (Fig-

ure 4.6) from which we display the third skill in Figure 4.11. By uniformly

sampling skills at each level of its tree, it more thoroughly focuses on the

top-left room. Indeed, 2 of its first-level skills (0 and 3) can not leave the

room. Uniform sampling over each level of the tree hierarchy results in at
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least 50% of skills sampled in the top-left room, despite they can not be im-

proved. There is no mechanism for inciting the agent to focus on skills that

can be improved or novel areas. This issue is highlighted on much more

complicated benchmarks in the next chapter.

This issue could be addressed by taking advantage of learning progress

measures [Oudeyer and Kaplan, 2009] or count-based entropy maximization [Watters et al., 2019,

Pong et al., 2020]. In the next section, we will focus on the limitations proper to the discretization

of the goal space.

4.6.2 Discrete set of skills

Currently, our method allows to avoid the problem of catastrophic forgetting, but the coun-

terpart is an increase of the memory footprint, which is a recurrent issue in methods based on

trees. ELSIM creates novel neural networks at each level of the hierarchy, it prevents the trans-

fer of knowledge between the different neural networks. But even though one neural network may

approximate several same-level policies, the input goal space is strongly unstructured (one hot en-

coding vector) so that the goal-conditioned policy of an agent can not generalize on it: the distance

between two goal representations does not give information about the proximity of the resulting

skills.

This generalization issue also occurs on the top-down vertical representation of the tree. Know-

ing that a skill performs badly does not give sufficient information about the performance of skills

lower in the tree, making samples unefficient. This is stressed out by our transfer learning ex-

priment in Figure 4.10: while ELSIM indeed finds the correct already learnt skill, it took almost

100 000 steps to find out which one is the best, even though it takes advantage of the tree. This

problem is even more prominent if one wants to integrate ELSIM in a multi-level hierarchical ar-

chitecture. Assuming the goal space is the action space of an upper-level agent, its upper-level

action space would be a very large discrete action space, which is intractable for a DRL agent:

typical approaches that scale to large action spaces take advantage of a continuous embedding

of actions [Dulac-Arnold et al., 2015].

To sum up, the discrete set of goals is not adequate, neither as an input for a low-level goal-

conditioned policies, nor as an output for a high-level policy. These observations suggest that a

continuous embedding would more easily integrate a hierarchical organization and make easier

transfer learning. There are two alternatives to build a continuous embedding:

1. We can map the discrete tree representation to a continuous space.

2. The agent should directly learn a continuous embedding.

In the last section of the chapter, we briefly study the relevance of the first option: can we map

a discrete tree to a continuous embedding ? By highlighting our preliminary investigation, wemean

to provide explanation and a basic overview of this research outlook. We more thoroughly study

the second option in the Chapter 5.
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Figure 4.12: Left: Illustration extracted from. "Circle Limit I" by M.C. Escher? It illustrates how the
Poincare disc models the hyperbolic space. The area of each tile is constant in the hyperbolic
space while the area gradually decreases as tiles get closer to the boundary in an euclidian space.
Right: A tree output in an euclidian spacemodified. Source: https://bjlkeng.github.io/posts/

4.7 Learning a continuous hyperbolic embedding of skills

This section provides basic materials about how to learn a continuous embedding of trees so

that we can discuss if ELSIM could integrate a hierarchical setting. It ends up with a discussion

on the perspectives of this approach.

4.7.1 A short introduction to hyperbolic spaces

Creating a continuous embedding of the tree of skills is not trivial; this embedding should be

induced with a metric that captures how much skills are similar. Similarity between skills here

refers to the length of the path in the tree that connects skills, this comes from how we build our

tree of skills (Section 4.3). For instance, in the right part of Figure 4.12, z is far from z′ since three

nodes separate them, but close to z′′ since one node separate them. While the induced metric

usually follows an euclidian distance, the required dimensionality grows too fast with the number

of levels when themetric is intrinsically hierarchical like in a tree [Linial et al., 1995, Sala et al., 2018],

the required dimension of the embeddings may be unbounded. This is especially due to the fact

that the number of nodes of a tree grows exponentially with the depth of a tree. More specifically,

assuming each node of a tree has b children, with maximum depth l, we can compute the number

of nodes as n = 1 + bl−1. The right part of Figure 4.12 illustrates this issue: the euclidian space

quickly saturates and, although nodes z and z′ should be very different, their euclidian distance is

low.

Recent studies rather suggest that hyperbolic embeddings may more appropriately fit the hier-

archical structure of a tree than embeddings provided with an euclidian metric [Nickel and Kiela,

2017, Sonthalia and Gilbert, 2020, Law et al., 2019, Chamberlain et al., 2017]. Essentially, hyperbolic

geometry is a non-Euclidian geometry that studies spaces provided with a constant negative sec-

tional curvature. This curvature modifies the notion of distance between points so that the area

of a disc grows exponentially with its radius (instead of quadratically for an uncurved euclidian

geometry). It follows that hyperbolic geometry can be thought as a continuous version of a tree

[Krioukov et al., 2010], making intuitive its relevance for embedding a tree.
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Several models exist to study an hyperbolic geometry, but we focus on the Poincare Ball, since

this is largely used in machine learning [Nickel and Kiela, 2017, Khrulkov et al., 2020], even though

other models may be used [Nickel and Kiela, 2018]. The Poincare Ball model corresponds to the

Riemannian manifold with (Bdc , gcp) where c < 0 is an arbitrary negative curvature coefficient, Bdc
is the d-dimensional open-ball of radius 1√

|c|
and gcp = 2

1+c||z||22
ge is its metric tensor. ge is the

euclidian metric tensor, i.e it defines a dot-product. Using this model, all points belong to Bdc and

we can analytically compute the distance between two points using Equation 4.9.

dcp(z, z
′) =

1
√

|c|
arcosh

(
1 + 2c

||z − z′||22
(1 + c||z||22)(1 + c||z′||22

)
. (4.9)

The Poincare disc model B21 illustrated in the left part of Figure 4.12 shows how distances are

altered when points get closer to the boundary of the ball: they exponentially increase with small

variations. This is reflected in the distance estimation of Equation 4.9, the denominator exhibits

that, when vectors are closed to the boundary, distances tend to be larger than those of vectors

close to the origin of the ball. Consequently, the center of the ball is close to all points relatively to

the boundary points; this gives an intuitive understanding of the induced hierarchy: the root of the

tree should be close to the origin and leaves should be close to the boundary of the ball.

4.7.2 Hyperbolic skill embedding

In practice, there are two ways to compute an hyperbolic embedding in a Poincare Ball. We can

use optimization methods based on SGD, contrastive learning and hyperbolic distance [Nickel and

Kiela, 2017]. Equation 4.10 provides an example of loss function which simultaneously finds out

embeddings of all nodes, using a dataset D of connected nodes. The numerator brings together

connected nodes while the denominator moves away unconnected nodes.

LZ =
∑

(z,z′)∈D

log
e−d

c
p(z,z

′)

∑

zn|(z,zn)/∈D e
−dcp(z,zn) + 1

(4.10)

Alternatively, one can analytically embeds a provided tree [Sala et al., 2018, Sarkar, 2011] using

geometric operators [Brannan et al., 1999]. Thismethod, called Sarkar’s construction, progressively

embeds nodes by starting from the root and adding nodeswith a depth-first strategy. In both cases,

our preliminary experiments highlight several shortcomings. We briefly detail them below.

Scaling factor. An example of already learnt skill embedding resulting fromSarkar’s construction

applied on skills previously stored is displayed in Figure 4.13. We see that skill (0, 0, 0) is close to

skill (2, 2), even though we consider an hyperbolic distance. In fact Sarkar’s construction trades

off how quickly close-to-the-root nodes gets closer to the boundary with a scale factor τ . A high

scale factor will set a lot of nodes very close to the boundary. This keeps the distances of the

original tree but makes embeddings sensitive to the precision of float numbers [Sala et al., 2018]:

for an embedding e, 1√
(c)
− e should be different from 0, but as it gets closer to 0 (e.g 10−15), it

may be confounded with 0. A low scale factor reverses the trade-off. This issue is shared by the
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Figure 4.13: Embedding of a set of skills in the Poincare disc.

optimization-basedmethod, for which the scaling factor can be simulated through a regularization

that incites embeddings to not deviate too much from the origin. Ongoing research suggests that

hyperbolic models different from the Poincare Ball could tackle this issue [Nickel and Kiela, 2018].

Hyperbolic DRL. Let us recall that our objective is to consider the skills as options selected by an

upper-level DRL policy. However, despite recent advances in hyperbolic deep learning and hyper-

bolic Normal distributions [Ganea et al., 2018, Mathieu et al., 2019, Khrulkov et al., 2020, Pennec,

2006, Nagano et al., 2019], it remains unclear how a high-level DRL algorithm could output hy-

perbolic goals. It is made worse by the fact that it should output possible goals, i.e goals that

correspond to existing goals inside the whole Poincare Ball.

Graph versus tree. Figure 4.5 highlighted that ELSIM can refine a high-stochastic skill into a low-

stochastic one. This is interesting because it highlights that the tree of skills captures a hierarchi-

cal structure of the state space built by the discriminators; close-to-the-origin skills target larger

part of the state space whereas leaf skills target smaller parts. However, in practice, the tree and

skills most of time do not follow this semantic. This is emphasized by Figure 4.6 and Figure 4.14.

A new skill does not only target a more specific area, it targets a totally different area than the area

of its parent. At the end, looking at the state space and learnt skills, the goal representations of

the top-right and the bottom-right skills are very different although they access close areas. This

error may happen every time the agent finds a novel path between otherwise different goals, as a

consequence of exploration. It may complicate generalization over the goal space in novel areas.
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Figure 4.14: Skills (1,0,0) and (2,3,0) and their parents. Extracted from Figure 4.6.

4.7.3 Conclusion

These observations suggest that our hierarchical representation is not adequate to explore and

match the structure of the environment, a graph may be more appropriate by being able to handle

such setting. However, further works on hyperbolic embeddings may open new research perspec-

tives by considering a continuous hierarchical abstraction of the state space. We expect further

improvements in hyperbolic DRL algorithms to open this path. In the next chapter, we thoroughly

investigate our second option which was about directly learning a continuous representation of

the state space. In particular, we will introduce a new model that aims to tackle the shortcomings

of ELSIM.
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Chapter 5

Discovering a topological representation to learn

diverse and rewarding skills

In the last chapter, we stressed out several mandatory properties to learn skills that can be

simultaneously learnt and organized in a hierarchical way. We sum up these desideratas:

1. An agent should stop trying to improve a skill if it can not extend it.

2. Learning a continuous skill representation may make easier both a hierarchical integration

of skills and the generalization of a goal-conditioned policy.

3. A graph-based representation of the environment may better fit the structure of the environ-

ment.

In particular, an efficient way to explore an environment can be to learn diverse skills that max-

imize the state entropy [Hazan et al., 2019, Pong et al., 2020]. To follow such principle, we propose

that the agent should not focus on what to learn, as commonly done in RL, but rather on where to

learn in its environment. Thus the agent should learn a representation of states that keeps the

structure of the environment to be able to select where it is worth learning, instead of learning a

representation that fits a wanted behavior which is most of the time unknown. Indeed, a standard

DRL agent tackles the issue of learning a representation of its states from scratch using only ex-

trinsic rewards. In a sparse-reward environment, the agent turns out to be unable to locate the

reward and learn a representation of its surrounding.

In this chapter, we introduce a new way to learn a continuous goal space and select the goals,

keeping the learning process end-to-end. We propose a new model that progressively Discovers

a Topological representation (DisTop) of the environment. DisTop bridges the gap between ac-

quiring skills that reach a uniform distribution of terminal embedded states and solving a task.

It makes diversity-based skill learning suitable for end-to-end exploration in a single-task setting

irrespective of the ground state space. DisTop simultaneously optimizes three components:

1. it learns a continuous representation of its states using a contrastive loss that brings to-

gether consecutive states;
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2. this representation allows the building of a discrete topology of the environment with a new

variation of a Growing When Required network [Marsland et al., 2002a]. Using the clusters of

the topology, DisTop can sample from an almost-arbitrary distribution of visited embedded

states using a very small set of parameters;

3. it trains a goal-conditioned deep RL policy to reach embedded states.

Upon these 3 components, a hierarchical state-independent Boltzmann policy selects the clus-

ter of skills to improve according to an extrinsic reward and a diversity-based intrinsic reward.

We show, through DisTop, that the paradigm of choosing where to learn and what to forget

using a learnt discrete topology is more generic than previous approaches. Our contribution is

4-folds: 1- we visualize the representation learnt by DisTop and exhibit that, unlike previous ap-

proaches [Pong et al., 2020], DisTop is agnostic to the shape of the ground state space and works

with states being images, high-dimensional proprioceptive data or high-dimensional binary data;

2- we demonstrate that DisTop clearly outperforms our previous method ELSIM; 3- we show that

DisTop achieves similar performance with state-of-the-art (SOTA) algorithms on both single-task

dense rewards settings [Haarnoja et al., 2018] and multi-skills learning benchmarks [Pong et al.,

2020]; 4- we show that it improves exploration over a state-of-the-art hierarchical method on hard

hierarchical benchmarks.

In Section 5.1, we first describe the basic elements required to understand DisTop . Then, in

Section Section 4.3 we describe the motivation of DisTop and its core components. After that,

we describe the experiments that support the effectiveness of DisTop (Section 5.3). Finally, we

explain how our work relates with previous approaches (Section 5.5) and we discuss the perspec-

tives and limitations of DisTop (Section 4.5).

5.1 Background

In this section, we introduce the key tools required to understand how DisTop works. This in-

cludes the framework of entropy maximization of Skew-fit, basic elements on contrastive learning

and a well-known topology-mapping growing network.

5.1.1 Goal-conditioned RL for skill discovery

Skew-Fit [Pong et al., 2020] strives to learn goal-conditioned policies that visit a maximal en-

tropy of states. We already discussed Skew-fit in Section 3.5.3 but we deepen some aspects in

this section.

To generate goal-states with high entropy, they learn a generative model, i.e a model that gen-

erates states, that incrementally increases the entropy of generated state-goals andmakes visited

states progressively tend towards a uniform distribution. Assuming a parameterized generative

model of states qψ(s) is available, an agent would like to learn ψ to maximize the log-likelihood of
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Figure 5.1: Illustration of an embedding of a unsupervised contrastive loss. Extracted from https:

//ai.googleblog.com/2021/06/extending-contrastive-learning-to.html.

the state distribution according to a uniform distribution: Es∼U(S) log qψ(s). But sampling from the

uniform distribution U(S) is hard since the set of reachable states is unknown.

Skew-Fit uses importance sampling and approximates the true ratio with a skewed distribution

of the generativemodel qψ(s)αskew whereαskew < 0. Thisway, itmaximizesEs∼B qψ(s)
αskew log qψ(s)

where s are uniformly sampled from the buffer B of the agent. αskew defines the importance given

to low-density states; if αskew = 0, the distribution will stay similar, if αskew = −1, it strongly over-

weights low-density states to approximate U(S). In practice, they show that directly sampling

states s ∼ 1
Z qψ(s)

αskew , with Z being the normalization constant reduces the variance.

5.1.2 Contrastive learning and InfoNCE

Contrastive learning aims at discovering a similarity metric between data points [Chopra et al.,

2005]. First, positive pairs that represent similar data and fake negative pairs are built. Second

they are given to an algorithm that computes a data representation able to discriminate the positive

from the negative ones. Figure 5.1 illustrates the learning processwhen no labels are provided. The

agent samples an anchor and embeds in a low-dimensional state represented by a circle. Then

a process transforms the image in positive examples and the agent other data points denoted

labeled as negatives, here images of elephants and cats. The agent brings together the anchor

and its transformation in the embedding space and separates the anchor from negative samples.

In unsupervised learning, the positive sample building process is a critical step since the whole

embedding builds over this. Several methods [Laskin et al., 2020, Schwarzer et al., 2020] propose

to build them using data augmentation methods; this includes random shifts, crops or color jitter.

InfoNCE [van den Oord et al., 2018] proposed to build positive pairs from states that belong
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Figure 5.2: Illustration of the networks learnt while varying the input distribution. Extracted from
Marsland et al. [2002a].

to the same trajectory, making the process scale to all input representations. The negative pairs

are built with states randomly sampled. For a sampled trajectory, they build a set B that con-

catenates N − 1 negative states and a positive one st+p. Then, they maximize L
N
InfoNCE =

−EB

[
log

fp(st+p,vt)∑
sj∈B fp(sj ,vt)

]
where vt represents an aggregation of previous states learnt with an

autoregressive model, p indicates the additional number of steps needed to select the positive

sample and fp are positive similarity functions. The numerator brings together states that are part

of the same trajectory and the denominator pushes away negative pairs. InfoNCE maximizes a

lower bound of the mutual information I(vt, st+p).

One can also see such optimization function as metric learning [Tschannen et al., 2020]. The

objective of metric learning is to learn a function g : R
d → R

p that maps semantically similar

inputs x ∈ R
d onto metrically close points in R

p. In the case of InfoNCE, we can set fp(x, y) =

sim(g(x), g(y)) where sim is a similarity function that defines the wanted metric (euclidian dis-

tance for example).

5.1.3 Growing when required

Severalmethods introduced unsupervised neural networks to learn a discrete representation of

a fixed input distribution [Kohonen, 1990, Fritzke et al., 1995, Marsland et al., 2002a]. The objective

is to have clusters (or nodes) that cover the space defined by the input points . Each node c ∈ C
has a reference vectorwc which represents its position in the input space. We are interested in the

Growing when required algorithm (GWQ) [Marsland et al., 2002a] since it updates the structure of

the network (creation and deletion of edges and nodes) and does not impose a frequency on node

addition. Figure 5.2 shows the network learnt while facing points sampled inside the two squares.

The network globally matches the input distribution and quickly changes its topology along with

the input distribution (between the second and third squares).

In the following, we will summarize the algorithm.It starts with 2 nodes and an edge that con-

nects them. A d dimensional weight vector wi is associated to each node i, denoting its position

in the input space. Input points xt are sequentially given to the network and each one go through

several steps:

1. get the closest node c1t to xt (firing one) and its second closest node c2t ;

2. add (or update) a winning edge with age = 0 between the two closest nodes;

3. if the distance between c1t and xt exceeds a threshold and the c1t firing count is greater than
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Figure 5.3: Illustration of a learning step of our growing network and contrastive loss (cf. text).
Cylinders are buffers associated to each cluster, blue circles are states embedded with φ and pink
circles represent clusters. The image is an example of state in the Visual Door [Nair et al., 2018]
environment.

an other threshold, create a new node c′ halfway and connect it to c1t and c2t ;

4. if no node is added,move c1t and its neighbors towardsxt according to the respective learning

rates α and αneighbors;

5. increment the age of the edges of c1t and the firing count of c1t ;

6. the age of an edge is deleted when it exceeds a threshold and a node is deleted when it does

not have neighbors. The procedure repeats until a stopping criterion is met.

We provide additional details about the algorithm in Section 5.2.2.

5.2 Method

In this section, we introduce our model. Firstly, we give an overview of the method, then we

will successively present the core components of the model, namely a new state-representation

learning method (Section 5.2.2), a way to discretize the state-representation in order to bias state

sampling (Section 5.2.2), how wemix the previous sampling with extrinsic rewards (Section 5.2.3)

and technical details about the reward computation and our goal-relabeling strategies (Section

5.2.4).

5.2.1 Overview

As in the previous chapter, we define the interest of an agent so that its default behavior is to

learn skills that achieve a uniform distribution of terminal states while focusing its skill discovery

in extrinsically rewarding areas when a task is provided. If the agent understands the true intrinsic

environment structure and can execute the skills that navigate in the environment, a hierarchical

policy would just have to select the state to target and to call for the corresponding skill. However,

this is difficult to learn both skills and the structure of the environment. First the ground repre-

sentation of states may give no clue of this structure and may be high-dimensional. Second, the

agent has to autonomously discover new reachable states. Third, the agent must be able to easily

sample goals where it wants to learn.
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Figure 5.4: Illustration of the selection of a skill and an interaction of the skill. See text for expla-
nations.

DisTop tackles theses challenges by executing skills that target low-density or previously re-

warding visited states in a learnt topological representation. We refer to a state that acts like a

goal as a goal-state. Figure 5.3 illustrates how DisTop learns a topological representation:

1. It samples an interaction (sprev, a, s, sg) from different buffers (see below), where sg is the

original goal-state and embeds the associated states with a neural network φω (cf. Section

5.2.3). Here, it selects the second buffer.

2. Then, φω is trained with a new contrastive loss that brings together consecutive states in

the embedded space (cf. Section 5.2.2). This makes the embeddings of states reflect the

topology of the environment, which is important to make the next step meaningful.

3. After that, our growing network dynamically clusters the embedded states in order to uni-

formly cover the embedded state distribution. In Figure 5.3, the two nearests clusters, three

and four gets closer to the input embedding. DisTop approximates the probability density of

visiting a state with the probability of visiting its cluster (cf. Section 5.2.3).

Finally, it assigns buffers to clusters, and can sample goal-states or stateswith almost-arbitrary

density over the support of visited states, e.g the uniform or reward-weighted ones (cf. Section

5.2.3).

Figure 5.4 describes how DisTop gathers states:

1. At the beginning of each episode, a state-independent Boltzmann policy πhigh selects a clus-

ter.

2. Then a goal-state s is selected that belongs to the buffer of the selected cluster and the

agent finally computes its representation g = φω′(s)where weights ω′ are a slow exponential

moving average of ω.

3. A goal-conditioned policy πgθ , trained to reach g, acts in the environment and discovers new

reachable states close to its goal.

4. The interactions made by the policy are stored in two buffers: according to their initial objec-

tive and according to the embedding of the reached state.

We will now detail each step of the DisTop process.
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5.2.2 Learning the topology of the states

In order to learn the discrete topology of the known states, the agent passes through two steps:

1- it learns a continuous representation of states undistorted with respect to the environment dy-

namics; 2- it discretizes this representation and tracks the changes.

Learning an undistorted continuous representation of states. DisTop strives to learn a state rep-

resentation function φω that maps a given state to an embedded space. To learn this function, we

propose to maximize the constrained mutual information between the consecutive states result-

ing from the interactions of an agent. We call consecutive states, pair of states that are separated

by one action, i.e pairs for which there exists a transition. We define the binary operator ✶(s, s′) to

be equal to 1 if s and s′ follow each other, 0 otherwise.

To learn φω , DisTop takes advantage of the InfoNCE loss (cf. Section 5.1.2). In contrast with

previous approaches [Lu et al., 2019, van den Oord et al., 2018], we want to keep our representa-

tion locally undistorted [Lesort et al., 2018, Indyk, 2001], so that it reflects the true topology of the

environment and we can apply a L2-based clustering algorithm on this representation. We call

undistorted a representation that respects:

||φω(s)− φω(s′)||2 ≤ kc, if ✶(s, s′). (5.1)

||φω(s)− φω(s′)||2 > kc, otherwise. (5.2)

To compute such representation, we do not consider the whole sequence of interactions since

this makes it more dependent on the policy. Typically, a constant and deterministic policy would

lose the structure of the environment and could emerge once the agent has converged to an op-

timal deterministic policy. DisTop considers its local variant and builds positive pairs with only

consecutive states. This way, it keeps distinct the states that cannot be consecutive. We propose

to select our unique similarity function as fω(st, st+1) = e−k||φω(st)−φω(st+1)||2 where φω is a neural

network parameterized by ω, ||2 is the L2 norm and k is a temperature hyper-parameter [Chen et al.,

2020]. If B is a batch ofN−1 negative states and 1 consecutive state, the local InfoNCE objective,

LInfoNCE, is described by Equation 5.5.

LInfoNCE = E
(st,st+1)∈B

[
log

fω(st, st+1)
∑

s∈B fω(s, st+1)

]

= E
(st,st+1)∈B

[
− k||φω(st)− φω(st+1)||2 − log(

∑

s∈B

fω(s, st+1))
]

(5.3)

= E
(st,st+1)∈B

[
− k||φω(st)− φω(st+1)||2 − log(fω(st, st+1) +

∑

s∈Bs 6=st

f(s, st+1))
]

(5.4)

≥ E
(st,st+1)∈B

[
− k||φω(st)− φω(st+1)||2 − log(1 +

∑

s∈Bs 6=st

f(s, st+1))
]

(5.5)

In the last line of Equation 5.5, we upper-bound fω(st, st+1) with 1 since e−v < 1 when v is
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positive. The logarithmic function is monotonic, so the negative logarithm inverses the bound. We

introduce this bound since we found it to stabilize the learning process.

Intuitively, Equation 5.5 brings together consecutive states, and pushes away states that are

separated by a large number of actions. This is illustrated in the second step of Figure 5.3.

There are several drawbacks with this objective function. Firstly, the representation may still

be strongly distorted, making a clustering algorithm inefficient since the pushing away term (right-

hand term) can override the other one. Secondly, the DRL algorithm requires semantically stable

inputs to compute Q-values: if the representation of its goals quickly changes, it can not take into

account the changes andmay output bad approximations of Q-values. To tackle this, Equation 5.6

reformulates the objective as a constrained maximization. Firstly, DisTop forces the distance be-

tween consecutive states to be below a threshold δ (first constraint of Equation 5.6). Secondly, it

enforces our representation to stay consistent over time, i.e lower than a close to 0 constant ǫ (sec-

ond constraint of Equation 5.6). In consequence, we avoid using a hand-engineered environment-

specific scheduling [Pong et al., 2020] and update representations in an online fashion.

max
ω

E
(st+1)∈B

− log(1 +
∑

s∈B

fω(s, st+1)) s.t. E
(st,st+1)∈B

||φω(st)− φω(st+1)||2 ≤ δ

E
st+1∈B

||φω(st+1)− φω′(st+1)||22 ≤ ǫ
(5.6)

Transforming the constraints into penalties, the agent maximizes Equation 5.7. kc is the tem-

perature hyper-parameter that brings closer consecutive states, β is the coefficient that slows

down the speed of change of the representation. In practice we set kc > 1 to avoid distortions (cf.

Section 5.4).

LDisTop = E
(st,st+1)∈B

[
− kc(ReLU(||φω(st)− φω(st+1)||2 − δ))− log(1 +

∑

s∈B

fω(s, st+1))

− β||φω(st+1)− φω′(st+1)||22
]

(5.7)

By applying this objective function, DisTop learns a consistent, not distorted representation that

keeps close consecutive states while avoiding collapse (see Figure 5.7 for an example). In fact,

by increasing kc and/or k, one can select the level of distortion of the representation (cf. Section

5.4 for an analysis). One can notice that the function depends on the distribution of consecutive

states in B; we experimentally found that using tuples (st, st+1) from sufficiently stochastic policy

is enough to keep the representation stable. We discuss the distribution of states that feed B in

Section 5.2.4. In practice, to learn φω we do not consider the whole batch of states as negative

samples. For each positive pair, we randomly sample only 10 states within the batch of states. In

the following, we will study how DisTop takes advantage of this specific representation to sample

diverse or rewarding state-goals.
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Mapping the continuous representation to a discrete topology Since our representation strives

to avoid distortion by keeping close consecutive states, DisTop canmatch the topology of the em-

bedded environment by clustering the embedded states. Using this topology, the next Section will

detail how to bias the goal and state sampling procedure to favor exploration and themaximization

of an extrinsic reward.

In order to adapt the building process to temporally-related and goal-related interactions, we

adapt the GWQ and propose the Off-policy Embedded Growing Network (OEGN). OEGN dynami-

cally creates, moves and deletes clusters so that clusters generates a network that uniformly cover

the whole set of embedded states, independently of their density; this is illustrated in the two last

steps of Figure 5.3. Each node (or cluster) c ∈ C has a reference vector wc which represents its

position in the input space. The update operators make sure that all embedded states φω(s) are

within a ball centered on the center of its cluster, i.e minc (φω(s)-wc)
⊤(φω(s)-wc) ≤ δnew where

δnew is the radius of the ball and the threshold for creating clusters. δnew is particularly important

since it is responsible of the granularity of the clustering: if it is low, we will have a lot of small

clusters, else we will obtain few large clusters that badly approximate the topology. The algorithm

works as follows: assuming a new low-density embedded state is discovered (rare state located at

the border of a ball), there are two possibilities: 1- the balls currently overlap: OEGN progressively

moves the clusters closer to the new state and reduces overlapping; 2- the clusters almost do not

overlap and OEGN creates a new cluster next to the embedded state. In the case of a high-density

embedded state, it does not much modify the spread of balls. A learnt discrete topology can be

visualized at the far right of Figure 5.7.

Algorithm 1 Algorithm of OEGN (red) and GWQ (blue)

Initialize network with two random nodes, set theirs attributes to 0 and connect them.
for each learning iteration do

Sample a tuple si, ci, s
prev
i ← sample(B).

Embed states: ei ← φω′(si); e
prev
i ← φω′(sprevi )

Sample an input ei ← sample(B).
closest← minc∈C(||c− ei||2).
Increase error count of ci by 1.
Reset error count of closest to 0
ApplyDeleteOperator().
If a node is deleted, stop the learning iteration
Apply CreationOperator().
ApplyMovingOperator().
Apply EdgeOperator().

end for

Algorithm 1 describes the major steps of OEGN and GWQ. Operators and relative changes

are described below. Specific operations of OEGN are colored in red, the ones of GWQ in blue

and the common parts are black. Following Algorithm 1, we define e = φω′(s) and closest(e) =

minc∈C(||c− e||2) for all s ∈ B.

Delete operator: Delete ci if ci.error is above a threshold δerror to verify that the node is still

active; delete the less filled neighbors of two neighbors if their distance is below δprox to avoid too

much overlapping; check it has been selected ndel times before deleting it. Delete if a node does

not have edges anymore.

Both creation and moving operators: Check that the distance between the original goal gi and
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the resulting embedding ||gi − ei||2 is below a threshold δsuccess.

Creation operator: Check if ||closest − ei||2 > δnew. Verify closest has already been selected

δcount times by the goal-selection policy. If the conditions are filled, a new node is created at the

position of the incoming input ei and is connected to closest. Update a firing count of the winning

node and its neighbors and check it is below a threshold. A node is created halfway between the

winning node and the second closest node. The two winning nodes are connected to the new

node.

Moving operator: If no node is created or deleted, which happens most of the time, we apply

the moving operator described by Equation 5.8. In our case, we use a very low αneighbors to avoid

the nodes to concentrate close to high-density areas.

wj =







wj + α(φω′(s)− wj), if j = closest

wj + αneighbors(φω′(s)− wj), if j ∈ neighbors(closest)
wj , otherwise.

(5.8)

Edge operator: edges are added or updated with attribute age = 0 between the winning node of

ei and the one of eprevi . Edges with age = 0 are added or updated between the two closest nodes

of ei. When an edge is added or updated, increment the age of the other neighbors of closest and

delete edges that are above a threshold δage.

In the next section, we detail how we take advantage of the topology to bias the state and goal

sampling process.

5.2.3 Selecting novel or rewarding skills

While sampling low-density or rewarding states is attractive to solve a task, it is not easy to

sample new reachable goals. For instance, using an embedding space R
10, the topology of the

environment may only exploit a small part of it, making most of the goals pointless. Similarly to

previous works [Warde-Farley et al., 2019], DisTop generates goals by sampling previously visited

states. To sample the states, DisTop first samples a cluster, and then samples a state that belongs

to the cluster.

Building a skewed distribution To sample more often low-density embedded states, we assume

that the density of a visited state is reflected by the marginal probability of its cluster. So we

approximate the density of a state with the density parameterized by w, reference vector of e =

φω′(s):

qw(φω′(e)) ≈ count(cs)
∑

c′∈C count(c
′)

(5.9)

where count(cs) denotes the number of interactions that belong to the cluster that contains e.

Using this approximation, we skew the distribution very efficiently by first sampling a cluster with
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the probability given by

pαskew
(c) =

count(c)1+αskew

∑

c′∈C count(c
′)1+αskew

(5.10)

where αskew is the skewed parameter (cf. Section 5.1.1).

While our approximation qw(s) decreases the quality of our skewed objective, it makes our

algorithm very efficient: we associate a buffer to each cluster and only weight the distribution of

clusters; unlike Pong et al. [2020], DisTop does not weight each visited state , but only a limited

set of clusters. In practice we can trade-off the bias and the instability of OEGN by decreasing the

radius of the balls δnew: the smaller the clusters are, the smaller the bias is, but the more unstable

are OEGN and the sampling distribution (see Section 5.4). So, in contrast with Skew-Fit, we do

not need to compute the approximated density of each state, we just need to keep states in the

buffer of their closest node. In practice, we associate to each node a second buffer that takes in

interactions according to the proximity of the original goal with respect to the node. This results

in two sets of buffers: BG and BS to respectively sample goal-states and states with the skewed

distribution. Formally, given an interactions (sg, s, s
′, a) :

• in BS , DisTop selects the cluster arg min
c∈C

||φ(s)− c||2;

• in BG, DisTop selects the cluster arg min
c∈C

||φ(sg)− c||2.

In the next sections, wewill detail howwe use this skewed distribution overBG andBS for sam-

pling low-density goal-states (Section 5.2.3) and sampling learning interactions (Section 5.2.4).

Sampling from the skewed distribution It is not easy to sample new reachable goals. For in-

stance, using an embedding space R
10, the topology of the environment may only exploit a small

part of it, making most of the goals pointless. Similarly to previous works [Warde-Farley et al.,

2019], DisTopgenerates goals by sampling previously visited states. To sample the states, DisTopfirst

samples a cluster, and then samples a state that belongs to the cluster.

Sampling a cluster: To increase the entropy of states, DisTop samples goal-states with the

skewed distribution defined in Section 5.2.2, which can be reformulated as:

pαskew
(c) =

e(1+αskew) log count(c)

∑

c′∈C e
(1+αskew) log count(c′)

. (5.11)

It is equivalent to sampling with a simple Boltzmann policy πhigh, using a novelty bonus re-

ward log count(c) and a fixed temperature parameter 1+αskew. In practice, we can use a different

α′
skew than in Section 5.2.2 to trade-off the importance of the novelty reward in comparison with an

extrinsic reward (see below) or decrease the speed at which we gather low-density states [Pong

et al., 2020].
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(a) States that belong
to the buffer of a clus-
ter represented by the
circle.

Uniform sampling in the
ball

(b) The agent randomly samples a vec-
tor in the ball associated to the cluster.

Uniform sampling in the
ball

State sampled

(c) The agent selects the closest embed-
ded state to the vector.

Figure 5.5: Illustration of how an agent samples interactions from a buffer.

We can add a second reward tomodify our skewed policy πhigh so as to take into consideration

extrinsic rewards. We associate to a cluster c ∈ C a value rc that represents the mean average

extrinsic rewards received by the skills associated to its goals :

rc = E
s∈c,g=φω(s)

1

T

T∑

t=0

E
at∼π

g

θ
(·|st),st+1∼p(·|st,at)

R(st, at, st+1). (5.12)

The extrinsic value of a cluster Rextc is updated with an exponential moving average Rextc = (1 −
αc) ∗ Rextc + αc ∗ rc where αc is the learning rate. To favor exploration, we can also update the

extrinsic value of the cluster’s neighbors with a slower learning rate. Our sampling rule can then

be :

πhigh(c) = softmaxC(textRextc + (1 + α′
skew) log count(c)) (5.13)

Sampling a state: Once the cluster is selected, we keep exploring independently of the pres-

ence of extrinsic rewards. To approximate a uniformdistribution over visited states that belongs to

the cluster, DisTop samples a vector in the ball of radius δnew that surrounds the center of its clus-

ter (Figure 5.5b). It rejects the vector and samples another one if it does not belong to the cluster.

Finally, it selects the closest embedded state to the random vector and extracts the corresponding

interaction (Figure 5.5c).

For example, one can imagine a ball with 100 states close to the center of the ball and two

states on its surface; with a random sampling system, the agent would give priority to states close

to the center. In contrast, we want to simulate uniform sampling in the ball that corresponds to

the selected cluster. By computing the state that is the closest to a uniformly sampled point in the

ball, our preliminary experiments suggested it increases the uniformity of selection inside the ball

and favors exploration.

5.2.4 Learning goal-conditioned policies

Training We now briefly introduce the fewmechanisms used to efficiently learn the skills πgθ that

achieve sampled goals. Our implementation of the goal-conditioned policy is trained with Soft
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Actor-Critic (SAC) [Haarnoja et al., 2018] and the reward is the L2 distance between the state and

the goal in the learnt representation: rgt (st−1, at−1, st, s
g
t ) = ||φω′(st) − φω′(sgt )||2 like Pong et al.

[2020].

Our goal-conditioned policy πgθ needs a uniform distribution of goals to avoid forgetting pre-

viously learnt skills. Our representation function φω requires a uniform distribution over visited

states to quickly learn the representation of novel areas. In consequence, DisTop samples a clus-

ter c ∼ pαskew
and randomly takes half of the interactions from BG and the rest from BS . We can

also sample a ratio of clusters with πhigh if we do not care about forgetting skills (cf. Section 5.4).

θ, ω and w are learnt over the same mini-batch and we relabel the goals extracted from BS as

detailed below.

Relabeling strategies. To increase the learning efficiency, we proposed three relabeling strate-

gies:

1. πhigh relabelling: we take samples from BS and relabel the goal using clusters sampled with

πhigh and randomly sampled states. This is interesting when the agent focuses on a task;

this gives more importance to rewarding clusters and allows to forget uninteresting skills.

Indeed, since it does not learn of these skills, it forgets how to execute them and the corre-

sponding nodes of the graph gets deleted.

2. Uniform relabelling: we take samples from BS and relabel the goal using states sampled

from from BS . When αskew ≈ 0, this is equivalent to relabeling uniformly over the embedded

state space. It is close to the stategy used by Pong et al. [2020].

3. Topological relabelling: we take samples from both BS and BG and relabel each goal with

a state that belongs to a neighboring cluster. This is interesting when the topology is very

large, making an uniform relabelling inefficient.

5.3 Experiments

Our experiments aim at studying whether the ability of DisTopto select skills to learn and for-

get makes the approach generic to different task settings. We compare DisTop to three SOTA

algorithms on three kinds of tasks with very different ground state spaces, thereby we compare

DisTop to: the SOTA algorithm SAC [Haarnoja et al., 2018] on dense rewards task; the SOTA algo-

rithm Skew-Fit [Pong et al., 2020] on no-rewards task; SAC and the SOTA algorithm LESSON [Li

et al., 2021b] on sparse rewards task. We also compare DisTop to ELSIM, which follows the same

paradigm than ours, on the ability to explore the environment and solve a dense-reward task. That

is unclear to us how to fairly adapt Skew-fit to solve a particular task and we can not assess the

skills diversity of SAC since it does not learn skills. Similarly, LESSON requires a task to learn skills

and it explores with hierarchical random walk, making a fair comparison unrelevant in no/dense-

rewards task. We also compare the learnt representation with the representation learnt by a VAE

to exhibit its properties.
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Figure 5.6: Examples of 8 terminal states after the execution of 8 different skills learnt in Visual
Pusher.

All curves are a smooth averaged over 5 seeds, completed with a shaded area that represent

themean +/- the standard deviation over seeds. Used hyper-parameters are described in Appendix

B.3, environments and evaluation protocols details are given in Appendix B.4. Figure 5.6 displays

some skills learnt by our algorithm, but further videos and images are available in Appendix B.6.

Is DisTop able to learn diverse skills without rewards ? We assess the diversity of learnt skills

on two robotic tasks Visual Pusher (a robotic arm moves in 2D and eventually pushes a puck) and

Visual Door (a robotic armmoves in 3Dand can open a door) [Nair et al., 2018]. These environments

are particularly challenging since the agent has to learn skill from 48x48 images using continuous

actions without accessing extrinsic rewards. We compare to the SOTA algorithm Skew-Fit [Pong

et al., 2020], which skews the goal distribution in ground the state space with a VAE [Kingma and

Welling, 2014] and periodically updates its representation. We use the same evaluation protocol

than Skew-Fit: a set of images are sampled, given to the representation function and the goal-

conditioned policy executes the skill. In Figure 5.8, we observe that skills of DisTop are learnt

quicker on Visual Pusher but are slightly worst on Visual Door. Since both Skew-Fit and DisTop

generates rewards with the L2 distance, we hypothesize that this is due to the structure of the

learnt goal space. In practice we observed that DisTop is more stochastic than Skew-Fit, probably

because the intrinsic reward function is required to be smooth over consecutive states. It results

that a one-step complete change of the door angle creates a small change in the representation,

thereby a small negative intrinsic reward. Despite the stochasticity, it is able to reach the goal

as evidenced by the minimal distance reached through the episode by Distop(min). Stochasticity

does not bother the evaluation on Visual Pusher since the arm moves elsewhere after pushing the

puck in the right position. Therefore, DisTopmanages to learn diverse skills, but maymore or less

fluctuate according to the overall proximity of states.

Does DisTop discover the environment topology even though the ground state space is unstruc-

tured ? In this experiment, we analyze the representation learnt by a VAE [Kingma and Welling,

2014] and DisTop. To make sure that the best representation is visualizable, we adapted the gym-

minigrid environment [Chevalier-Boisvert and Willems, 2018] (cf. Figure 5.7) where a randomly

initialized agent moves for fifty timesteps in the four cardinal directions. We use the ground state

space, either an unstructured one with 900-dimensional one-hot vector with 1 at the position of
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Figure 5.7: Visualization of the representations learnt by a VAE and DisTopon the gridworld dis-
played at the far left. From left to right, we respectively see a- the rendering of the maze; b- the
continuous representation learnt by DisTop with 900-dimensional binary inputs; c- a VAE represen-
tation with true (x,y) coordinates; d- a VAE representation with 900-dimensional binary inputs; e-
OEGN network learnt from binary inputs.
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Figure 5.8: Left: Comparison of DisTop and Skew-Fit on their ability to reach diverse states. In
the Visual Pusher environment, we compare the final distance of the position puck with its de-
sired position; in the door environment, we compare the angle of the door with the desired angle.
DisTop(min) is the minimal distance reached through evaluation episode. At each evaluation it-
eration, the distances are averaged over fifty goals. Right: Average rewards gathered throughout
episodes of 300 steps while training on Halfcheetah-v2 and Ant-v2 environments.

the agent (binary) or a structured one composed of (x,y) coordinates of the agent. Interactions are

given to the representation learning algorithm. Except for OEGN, we display as a node the learnt

representation of each possible state and connect states that are reachable in one step. For OEGN,

we simply displays the learnt network. In Figure 5.7, we clearly see that DisTop discovers the topol-

ogy of its environment since each connected points are distinct but closewith each other. Similary,

OEGN network closely resembles the environment topology. In contrast, the VAE representation

collapses since it cannot take advantage of the proximity of states in the ground state space; it

only learns a correct representation when it gets (x,y) positions, which are well-structured. This toy

visualization highlights that, unlike VAE-basedmodels,DisTop does not depend onwell-structured

ground state spaces to learn a suitable environment representation for learning skills.

Can DisTop solve non-hierarchical dense rewards tasks? We test DisTop on MuJoCo environ-

ments Halfcheetah-v2 and Ant-v2 [Todorov et al., 2012], where the agent gets rewards to move for-

ward as fast as possible. We fix the maximal number of timesteps to 300. We compare DisTop to

our implementation of SAC [Haarnoja et al., 2018], a SOTA algorithm, and to ELSIM, the method

introduced in the previous chapter which follows the same paradigm than DisTop. We obtain bet-

ter results than our previous experiments with ELSIM using similar hyper-parameters to DisTop. In

Figure 5.8 (Right), we observe that DisTop obtains high extrinsic rewards and clearly outperforms

ELSIM. It also outperforms SAC on Halfcheetah-v2 and is close to SAC on Ant-v2. In contrast, we

highlight that SAC overfits to dense rewards settings and cannot learn in sparse or no-reward set-

tings (see below). Despite the genericity of DisTop and the narrowness of SAC, DisTop competes

with SAC on two of SAC’s favourite environments.
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Figure 5.9: Average rewards throughout training episodes. We use a plot for each comparison to
avoid curve overlaps.

Figure 5.10: Top-down view of Ant Maze environment and visualization of the topology that is pro-
gressively learnt by DisTop. The blue circle represents the extrinsically rewarding area. Small green
points represent selected goal-states and the red circle highlights the area under exploitation.

Does combining representation learning, entropy of states maximization and task-learning im-

prove exploration on high-dimensional hierarchical tasks ? We evaluate DisTop ability to ex-

plore and optimize rewards on image-based versions of Ant Maze and Point Maze environments

[Nachum et al., 2018]. The state is composed of a proprioceptive state of the agent and a top

view of the maze ("Image"). Details about state and action spaces are given in Appendix B.4.2.

In contrast with previous methods [Nachum et al., 2018, Li et al., 2021b], we remove the implicit

curriculum that changes the extrinsic goal across episodes; here we train only on the farthest goal

and use a sparse reward function. Thus, the agent gets a non-negative reward only when it gets

close to the top-right goal. We compare our method with a SOTA hierarchical method, LESSON [Li

et al., 2021b] since it performswell on hierarchical environments with extrinsic rewards likemazes,

ELSIM and our implementation of SAC [Haarnoja et al., 2018]. For ELSIM, LESSON and DisTop,

we only pass the "image" to the representation learning part of the algorithms, assuming that an

agent can separate its proprioceptive state from the sensorial state. In Figure 5.9, we can see that

DisTop is the only method that manages to regularly reach the goal; in fact, looking at a learnt 3D

OEGN network in Figure 5.10, we can see that it successfully represents the U-shape form of the

maze and sets goals close to the extrinsic goal. LESSON discovers the goal but does not learn
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Figure 5.11: Different Topologies learnt on the gridworld displayed in Figure 5.7. From left to right,
we show the learnt topology with kc = 2, kc = 10, kc = 50.

Figure 5.12: Different Topologies learnt on the gridworld displayed in Figure 5.7. From left to right,
we show the learnt topology with δ = 0.01, δ = 0.05, δ = 0.1, δ = 0.2.

to return to it1; we hypothesize that this is because, unline DisTop it does maximize the entropy

of states, and thus hardly reach the goal. Neither SAC, nor ELSIM find the reward. We suppose

that the undirected width expansion of the tree of ELSIM does not maximize the state-entropy,

making it spend too much time in useless areas and thus inefficient for exploration. Therefore,

DisTop outperforms two hierarchical methods in two sparse rewards environment by priorizing

its goal sampling process on low-entropy areas.

5.4 Ablation study

In this section, we study the impact of the different key hyper-parameters of DisTop. Except for

previous results (entitled "paper"), we average the results over 3 random seeds. For visualizations

based on the topology, the protocol is the same as the one described in Section 5.3. In addition,

we select the most viewable one among 3 learnt topologies; while we did not observe variance in

our analysis through the seeds, the 3D angle of rotation can bother our perception of the topology.

Controlling the distortion of the representation. The analysis of our objective function LDisTop

shares some similarities with standard works on contrastive learning [Chopra et al., 2005]. How-

ever, we review it to clarify the role of the representationwith respect to the interactions, the reward

function and OEGN.

In Figure 5.11, we study the influence of the distortion parameter kc that brings closer consec-

utive states in LDisTop (cf. Equation 5.7). We can see that the distortion parameter kc rules the

global dilatation of the learnt representation. A low kc also increases the distortion of the represen-

tation, which may hurt the quality of the clustering algorithm. kc competes with k, the temperature

hyper-parameter of the similarity function in Equation 5.7. As we can see in Figure 5.13, k rules

the minimal allowed distance between very different states. So, there is a trade-off between a low

1In Point Maze, the best seed of LESSON returns to the goal after 5 millions timesteps
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Figure 5.13: Different Topologies learnt on the gridworld displayed in Figure 5.7. From left to right,
we show the learnt topology with k = 0.5, k = 1, k = 3, k = 10.

Figure 5.14: Different OEGN networks learnt according to δnew. From left to right, we show the
OEGN network with δnew = 0.2,δnew = 0.4,δnew = 0.6,δnew = 0.8,δnew = 1

k that distorts the representation, and a high k that allows different states to be close with each

other. With a high k, the L2 rewards may admit several local optimas.

In Figure 5.12, we see that the distortion threshold δ, which prevents consecutive embeddings

to be equal in Equation 5.7, also impacts the distortion of the representation, however it mostly

limits the compression of the representation in the areas the agent often interacts in. In the bor-

ders, the agent often hurts the wall and stays in the same position. So in comparison with large

rooms, the bring together is less important than the move away part. δ limits such asymmetries

and keeps large rooms dilated. Overall, this asymmetry also occurs when the number of states in-

creases due to the exploration of the agent: the agent progressively compresses its representation

since interesting negative samples are less frequent.

The size of the clusters of OEGN has to match the distortion of the representation. Figure 5.14

emphasizes the importance of the creation threshold parameter δnew that rules the radius of clus-

ter in Section 5.2.2. With a low δnew = 0.2, clusters do not move and a lot of clusters are created.

OEGN waits a long time to delete them. with a high δnew = 1, the approximation of the topology

becomes very rough, and states that belong to very different parts of the topology are classified

in the same cluster; this hurts our density approximation.

Selection of interactions: Figure 5.15 shows the importance of the different hyper-parameters

that rule the sampling of goals and states in Equation 5.13 and Equation 5.10. In Ant environment,

we see that the agent has to sample a small ratio of learning interactions from πhigh rather than

pαskew
; it speeds up its learning process by making it focus on important interactions relatively

to extrinsic rewards. Otherwise, it remains hard to learn all skills at the same time. However, the

learning process becomes unstable if it deterministically samples from a very small set of clusters

(ratios 0.9 and 0.7).

Then we evaluate the importance of 1 + α′
skew on Visual Pusher. We see that the agent learns

quicker with a low 1 + α′
skew. It hardly learns when the high-level policy almost does not over-
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Figure 5.15: Different learning curves showing the impact of the choice of interactions. 1- We study
the impact choosing learning interactionswith πhigh rather than pαskew

. 2- we study the importance
of 1+α′

skew in Visual Pusher. 3 and 4- we assess the importance of 1+αskew in Visual Pusher and
Visual Door.

sample low-density clusters (−0.1). This makes our results consistent with the analysis provided

in the paper of Skew-Fit [Pong et al., 2020].

In the last two graphics of Figure 5.15, we show the impact of 1 + αskew ; we observe that the

agent learns quicker when 1 + αskew is close to 0. It highlights that the agent quicker learns both

a good representation and novel skills by sampling uniformly over the clusters.

Overall, we also observe that some seeds become unstable since they coincide with large dele-

tions of clusters. We expect that an hyper-parameter search on the delete operators of OEGNmay

solve this issue in these specific cases.

5.5 Related works

In this section, we explain how our work relates to previous approaches.

Intrinsic skills in hierarchical RL Some works propose to learn hierarchical skills, but do not in-

troduce a default behavior that maximizes the visited state entropy [Hazan et al., 2019], limiting

the ability of an agent to explore. For example, it is possible to learn skills that target a ground

state or a change in the ground state space [Nachum et al., 2018, Levy et al., 2019]. These ap-

proaches do not generalize well with high-dimensional states. To address this, one may want to

generate rewards with a learnt representation of goals. NOR [Nachum et al., 2019a] bounds the

sub-optimality of such representation to solve a task and LESSON [Li et al., 2021b] uses a slow

dynamic heuristic to learn the representation. In fact, it uses an InfoNCE-like objective function;

this is similar to [Lu et al., 2019] which learns the representation during pre-training with random

walks. Above-mentioned methods use a hierarchical random walk to explore the environment, we

have shown in Section 5.3 that DisTop explores quicker by maximizing the entropy of states in

its topological representation. DCO [Jinnai et al., 2019] generates options by approximating the

second eigenfunction of the combinatorial graph Laplacian of the MDP. It extends previous works

[Machado et al., 2017, Bar et al., 2020] to continuous state spaces.

In addition, DisTop strives to learn either skills that are diverse or extrinsically rewarding. It

differs from a set of prior methods that learn only diverse skills during a pre-training phase, pre-
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venting exploration for end-to-end learning. Some of them maximize the mutual information (MI)

between a set of states and skills. Typically, DIAYN [Eysenbach et al., 2018], VALOR [Achiam et al.,

2018] and SNN [Florensa et al., 2017] learn a discrete set of skills, but hardly generalize over skills.

It has been further extended to continuous set of skills, using a generative model [Sharma et al.,

2020] or successor features [Hansen et al., 2020, Borsa et al., 2019]. In both case, directly maxi-

mizing this MI may incite the agent to focus only on simple skills [Campos et al., 2020]. DISCERN

[Warde-Farley et al., 2019] maximizes the MI between a skill and the last state of an episode using

a contrastive loss. Unlike us, they use the true goal to generate positive pairs and a L2 distance

over pixels to define a strategy that improves the diversity of skills. In addition, unlike VAE-based

models, our method better scales to any ground state space (see Section 5.3). Typically, RIG [Nair

et al., 2018] uses a VAE [Kingma and Welling, 2014] to compute a goal representation before train-

ing the goal-conditioned policies. Using a VAE, it is possible to define a frontier with a reachability

network, from which the agent should start stochastic exploration [Bharadhwaj et al., 2020]; but

the gradual extension of the frontier is not automatically discovered, unlike approaches that max-

imize the entropy of states (including DisTop). Skew-Fit [Pong et al., 2020] further extended RIG

to improve the diversity of learnt skills by making the VAE over-weight low-density states. Unlike

DisTop, it is unclear how Skew-Fit could target another distribution over states than a uniform one.

Approaches based on learning progress (LP) have already been built over VAEs [Kovač et al., 2020,

Laversanne-Finot et al., 2018]; we believe that DisTop could make use of LP to avoid distractors or

further improve skill selection.

Skill discovery for end-to-end exploration. Like DisTop, ELSIM (cf. Chapter 4) discovers diverse

and rewarding skills in an end-to-endway. It builds a tree of skills and selects the branch to improve

with extrinsic rewards. DisTop outperforms ELSIM for both dense and sparse-rewards settings (cf.

Section 5.3). This end-to-end setting has also been experimented through multi-goal distribution

matching [Pitis et al., 2020, Lee et al., 2019] where the agent tries to reduce the difference between

the density of visited states and a given distribution (with high-density in rewarding areas). Yet,

either they approximate a distribution over the ground state space [Lee et al., 2019] or assume

a well-structured state representation [Pitis et al., 2020]. Similar well-structured goal space is

assumed when an agent maximizes the reward-weighted entropy of goals [Zhao et al., 2019].

Dynamic-aware representations. A set of RL methods try to learn a topological map without

addressing the problem of discovering new and rewarding skills. Some methods [Savinov et al.,

2018b,a, Eysenbach et al., 2019] consider a topological map over direct observations, but to give

flat intrinsic rewards or make planning possible. We emphasize that SFA-GWR-HRL [Zhou et al.,

2019] hierarchically takes advantage of a topological map built with two GWQ placed over two

Slow Feature Analysis algorithms [Wiskott and Sejnowski, 2002]; it is unclear whether it can be ap-

plied to other environments than their robotic setting. Functional dynamic-aware representations

can be discovered by making the distance between two states match the expected difference of

trajectories to go to the two states [Ghosh et al., 2019]; interestingly, they exhibit the interest of

topological representations for HRL and propose to use a fix number of clusters to create goals.

Previous work also showed that an active dynamic-aware search of independent factors can dis-

entangle the controllable aspects of an environment [Bengio et al., 2017]. Other methods take

advantage of temporal contrastive losses for other functional uses; therefore, unlike DisTop, they
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do not try to learn a topology of the environment by preventing the distortion of the representation.

For example, successor representations [Jinnai et al., 2019, Wu et al., 2018] orthogonalize the fea-

tures of the representation and standard temporal contrastive losses use the representation for

imitation [Sermanet et al., 2018], end-to-end task solving [Anand et al., 2019, Stooke et al., 2021] or

flat exploration [Yarats et al., 2021, Guo et al., 2021].

5.6 Conclusion

We introduced a new model, DisTop, that simultaneously learns a discrete topology of its en-

vironment and the skills that navigate into it. In contrast with previous approaches [Pitis et al.,

2020, Pong et al., 2020], there is no pre-training, particular scheduling [Pong et al., 2020] or ran-

dom walks [Lu et al., 2019]. It manages to select whether it wants to forget a skill, does not need a

well-structured goal space like Pitis et al. [2020] or dense rewards as required by Li et al. [2021b].

Our main take-away message is as follow: computing a discrete topology of the environment al-

lows to control which skills to forget, improve or explore. With this control capacity, DisTop is

generic enough to compete with SOTA algorithms on three very different reward settings and

state spaces. Yet, there are limitations and exciting perspectives: HRL and planning based ap-

proaches [Nasiriany et al., 2019] could both take advantage of the topology andmake easier states

discovery; Frontier-based exploration [Bharadhwaj et al., 2020] could also be explored to reduce

skill stochasticity. Disentangling the topology [Bengio et al., 2013] could improve the scalability of

the approach: currently, the number of created cluster may exponentially grow with respect to the

number of independent factors.
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Chapter 6

Conclusion

The concept of intrinsic motivation has been introduced in the psychological literature to de-

scribe the tendency of organisms to actively understand the structure of the world. Intrinsic moti-

vation is able to describe parts of complex organism behaviors, highlighting its potential interest

to develop agents that learn and grow like humans. On an other side, the computational framework

of DRL has recently shown substantial improvements in being able to provide learning agents that

can achieve complex tasks in difficult environments. Yet there are critical limitations in standard

DRL: an agent requires handmade feedback to guide its learning process. This dissertation aimed

to study how intrinsic motivations can complement DRL.

6.1 Synthesis of contributions

The first part of our work (Chapter 2) consisted in describing the framework of DRL and defin-

ing intrinsic motivation from a computational perspective. This way, we thenmanaged to highlight

that DRL and intrinsic motivation can be theoretically used together through goal-conditioned pol-

icy, hierarchical RL and information theory. This provided the basis of a computational framework

for developmental DRL. Having these key elements in hand, Chapter 3 studied on-going research

in this domain under the perspective of information theory. We proposed/reconsidered mathe-

matical information theoretic definitions of the notions of surprise seeking, novelty seeking, and

skill learning. This way, this can serve as a categorization to encompass a large body of works

that tackle DRL issues like exploration in sparse rewards or skill abstraction.

Our analysis stressed out the interest of learning abstract skills: it allows surprise and novelty

seeking behaviors to avoid catastrophic forgetting, and thus, avoid the collapse of the exploration

process. Learning more hierarchies of abstract skills could also be crucial to imitate the hierarchy

of skills learnt by biological organisms. However, we noticed that, to learn deep hierarchies of

skill, an agent must be able to focus its skill discovery on what interests its upper-level skills. The

analogy with humans clearly testifies this: there is no need for all humans to learn all gymnastic

skills, most humans only learn the main locomotion skills like walking, turning or running. To be

able to select what to improve, the agent must simultaneously select the skills it wants to improve
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and to learn them.

This motivated the rest of the dissertation. In Chapter 4, we introduced ELSIM, which is a

method that learns skills in a bottom-up way while being able to select which skill to improve

according to extrinsic rewards. In particular, ELSIM creates a tree of discrete skills that either ex-

pands widthwise when the agent wants to explore or expands depthwise if the agent knows which

skills it wants to improve according to extrinsic feedbacks. We showed that ELSIM improves trans-

fer learning and exploration when rewards are sparse in comparison with a SOTA DRL algorithm.

Despite the properties of ELSIM, we also evidended that ELSIM is unable to efficiently explore

and can not easily integrate a deep hierarchy of DRL agents. In addition, the tree of skills can not

capture the graph-based structure of an environment.

To tackle the challenges of ELSIM, we proposed another model, DisTop (Chapter 5). DisTop

learns a continuous representation of goal-states that matches the topological structure of the

environment. This representation is then discretized into a graph. Thanks to this structured rep-

resentation, DisTop selects which node is worth to be improved according to both exploration

and extrinsic rewards. If it needs to focus on particular skills, it also forgets uninteresting skills.

Therefore, DisTop enjoys the same properties than ELSIM, but using a continuous representation

of goals-states. This makes DisTop eligible for an integration in a deep hierarchy of DRL agents.

In the following section, we try to take a step back to project ourselves on what remains to be

done in the domain of intrinsic motivation.

6.2 Outlooks of research

Our works focused on analyzing the potential of intrinsic motivation to build open-ended learn-

ing agents. We proposed two models that can learn to achieve intrinsically generated goals while

learning to achieve a task in an end-to-end way. In this section, we discuss the lessons from our

works on two time-scales: 1- the short-term perspective and 2- the long-term perspective.

6.2.1 On learning a representation of the environment

Here, we focus on the short-term perspectives based on lessons we learnt about our survey

analysis and our models DisTop and ELSIM.

ELSIM and DisTop only consider one hierarchy of skills. Typically, the agent selects a goal (in

the graph or tree) and it executes the corresponding skill in the environment. We argued in Sec-

tion 3.6.1 for the need of deep composite hierarchies of skills and we hope that further works will

quantitatively exhibit the interest of using several hierarchies of skills that correspond to different

temporal scales. But, as highlighted in Section 3.5, the nature of skills essentially depends on the

learnt representation of states that underpins the reward function. Currently, there are clearly two

distinct approaches, one based on VAE [Pong et al., 2020] and the other based on temporal (and

marginally data-augmentation based for images) contrastive losses (cf. Chapter 5). In the first

set of methods, the disentangled representation opens a large set of possibilities for affordance
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learning [Khazatsky et al., 2021], while contrastive losses capture the temporal proximity what-

ever the structure of the ground state space is. We perceive two challenges for active contrastive

representation learning:

Clarifying actual losses. Contrastive losses are the subject of intensive research [Chen et al.,

2020, Srinivas et al., 2020, Schwarzer et al., 2020]. In particular, several works (including DisTop)

introduce temporally contrastive losses with different structures [Li et al., 2021b, Oord et al., 2018,

Warde-Farley et al., 2019, Nachum et al., 2019a], [Shu et al., 2020, Ermolov and Sebe, 2020, Tao

et al., 2020, Yarats et al., 2021] and non-contrastive losses also show similar properties [Choi et al.,

2021, Zhang et al., 2020a]. Their specific properties are currently unclear since each representa-

tion is sometimes learnt in a different context for a different purpose. The same mutual infor-

mation objective can lead to a spherically distributed representation [Ermolov and Sebe, 2020], a

distorted one Li et al. [2021b], an undistorted one (like DisTop, cf. Chapter 5), action-dependent

ones [Nachum et al., 2019a] and our preliminary analysis highlights that some losses do not dy-

namically adapt [Choi et al., 2021]. Studying the properties of these representations under one

common framework could enlighten the path of representation learning.

Disentangling the representation. The biggest challenge for contrastive losses may be to be

able to disentangle this representation to better capture the causal model of the world. This is

consistent with our analysis of the difficulty of DisTop to tackle environments with several factors

of variation. In the case of DisTop, such disentangled continuous representation could open the

path for a disentangled discrete representation, i.e a disentangled topology of the environment. In

this case, contrastive loss may go beyond the VAE approach.

6.2.2 Multi-information as a universal guiding princple

We discussed in Section 3.7 howwe can unify intrinsic motivations with multi-information over

a hierarchical agent’s model. Furthermore, we shortly argued that this single objective could be a

plausible candidate for being a universal guiding principle that rules action selection and percep-

tion in organisms. In addition, the multi-information may clarify the role of ontogenetic learning

and phylogenetic learning. Ontogenetic learning may refer to the multi-information maximization

while phylogenetic learning could refer to learning the overall structure of the brain, considering

the trade-off between processing information andminimizing the required energy, i.e following the

parsimony principle [Polani, 2009, Polani et al., 2007].

That is a very strong hypothesis that deserves to be verified since it could open the path to the

derivation of precise objective functions. In fact, this principle transforms the problem of propos-

ing a learning objective into the problem of proposing a cognitive architecture composed of ele-

mentary components and inductive biases. Fortunately, such proposals can be enlightened with

the help of neurobiology, in contrast to the problem of proposing objectives, which hardly takes

inspiration from neuroscience. Briefly, this may strengthen the relation between the domain of

neurobiology and machine learning. In results, our recipe may directly tackle the actual problem

of erratically proposing a plethora of objectives for an agent.
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6.3. CONCLUSION

To illustrate this aspect, let us naturally ask the following question: what doesmulti-information

teach us about the objective function of DisTop ? Let us discuss the three objectives derived from

multi-information:

Novelty could improve the exploration process by inciting to go into badly represented areas of

the state space.

Surprise may allow DisTop to target improvable skills, this includes skills to improve in sparse re-

ward areas, but most importantly, it would make DisTop avoid purely stochastic areas where

the agent could not learn skills. We currently avoid such setting in our experiments.

Skill learning: the skill learning termof themulti-information suggests tomaximize I(R′;G1|R,O′)

rather than I(R′;G1) for the goal-conditioned policy. Thus, DisTop agent should learn skills

that impose a change in the representation rather than skills that target a particular area of

the environment. Along with surprise, the agent may also avoid making skills that can not

be achieved in particular states.

Overall, even though the discrete topological representation has several advantages presented

in Chapter 5, this suggests that DisTop could also benefit fromusing objective functions as the one

of HESS [Li et al., 2021a] and NOR [Nachum et al., 2019a], which integrate skills as changes in the

representation space, incoroporate novelty-seeking behaviors and autonomously compute tem-

porally coherent features. This example ilustrates how instrinsic motivation as a guiding principle

could help us to define future objectives.

6.3 Conclusion

Developmental approaches attract a lot of attention, because of the ability of the theory to ex-

plain the development process of humans [Nguyen et al., 2021]. Our pathway is composed of two

parts: firstly, we argued that information-theoretic intrinsic motivations in DRL and lifelong learn-

ing are plausible candidates for a computational theory of developmental learning, despite the fact

that they were currently mostly addressed separately. Secondly, we introduced two models that

allow to integrate the lifelong learning paradigm in works on intrinsic motivation, it follows that

choosing which skills to keep and deepen makes the learning models generic to several types of

tasks. Thismay be a key aspect to integrate skill discovery in amulti-level hierarchy of skills. To go

further in this direction, we argued for the need of further evidences showing that our unification

of intrinsic motivations based on the multi-information can be a universal guiding principle of au-

tonomous development. This may provide a methological way to keep exploring the path towards

human-like learning agents.
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Appendix A

Complements on ELSIM experiments

A.1 Tree-policy algorithm

Algorithm 2 shows how ELSIM runs an episode in the environment without the learning part

of the intra-skill policy and the discriminator. There are 3 steps: 1-an agent runs an episode inside

the MDP of skills; the sequence of actions represents a skill; 2- the agent executes the intra-skill

policy of the skill; 3- the tree-policy is rewarded according to how well the intra-skill policy fits the

task and the Q-learning applies.

Algorithm 2 Tree-policy of ELSIM
Environment env, episode length eplen, learning rate φ.
Tree T , Tree-policy πT .
Leaves’ policies and buffers: ∀gleaves ∈ leaves(T ), πgleaves

θ , Bgleaves .
⊲ It selects a skill to execute

node← root(T )
while not(leaf(node)) do

node← Boltzmann(πT (node))
end while
rtree ← 0

⊲ It runs the intra-skill policy in the environment
obs← env.reset()
done← false
while not(done) do

action← πnode(obs)
next_obs, reward, done← env.step(action)
Fill Bnode with obs, done, next_obs, action
obs← next_obs
rtree ← rtree + γT

reward
eplen

end while
⊲ It learns Q-values of the tree-policy

parent← parent(node)
Q(parent, node) = (1− lrT )×Q(parent, node) + lrT × rtree
while not(root(node)) do

parent← parent(node)
Q(parent, node) = maxn∈children(node)(Q(node, n))

end while
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A.2 Learning algorithm

Algorithm 3 shows one learning step in ELSIM for discriminators and intra-skill policies. The

agent executes its tree-policy on its tree; the discriminators of the intermediary encountered nodes

learn with probability η on a batch of interactions of their recursively and uniformly chosen children

leaves. The last discriminator learns with probability 1 over a batch of its leaves’ interactions. This

batch is labeled with the intrinsic reward computed through Equation 4.5 and leaves’ intra-skill

policies learn with this batch.

Algorithm 3 Learning step of intra-skill policies and discriminators
batch_size, Tree T , Tree-policy πT .
Discriminators: ∀g ∈ nodes(T ), qgω.
Leaves’ policies and buffers: ∀gleaves ∈ leaves(T ), πgleaves

θ , Bgleaves .
⊲ It selects a node to learn on

node← root(T )
while not(leaves(children(node))) do

if random() < η then
i← 0 ⊲ Discriminators in exploitation phase learn with probability η
batch← ∅
while i < batch_size do

node2← node
while not(leaf(node2)) do

node2← Uniform(children(node2))
end while
ADD(batch, sample(Bnode2))

end while
Cross_entropy(batch, qnodeω )

end if
node← Boltzmann(πT (node))

end while
⊲ Learn the discriminator and intra-skill policies of the last node

i← 0
batch← ∅
while i < batch_size do

leaf ← Uniform(children(node))
ADD(batch, sample(Bleaf ))

end while
Cross_entropy(batch, qnodeω )
for each leaf ∈ children(node) do

Learn πleafθ with Equation 4.5 and SAC
end for

A.3 Hyper-parameters on gridworlds

Table A.1 shows hyperparameters used in gridworlds experiments. Hyper-parameters of the

discriminator and DRL networks are identical. Tree-policy parameters are used only when there is

a high-level goal.
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Parameters Symbol Values

DRL

Boltzmann coefficient αDQN 1

Buffer size Bsize 10k

Hidden layers hlSAC 2x64

Learning rate lrDQN 0.001

Gamma γ 0.98

Episode duration D 100

Batch size batch_size 64

Parallel environments n 16

target smoothing coefficient τ 0.005

ELSIM

Discriminators hidden layers lrD 2x64

Split threshold δ 0.9

Sampling probability η 0.5

Average coefficient β 0.02

Vocabulary size |V | 4

Old discriminations scale α 1

Tree-policy

Gamma γT 1

Boltzmann coefficient αT 20

Learning rate lrT 0.05

Table A.1: Hyper-parameters used for gridworld experiments.

A.4 Hyper-parameters on continuous environments.

Since the goal of ELSIM is to learn in a continual learning setting, we record the performances of

ELSIM in trainingmode, i.e. with its stochastic policies. Table A.2 shows hyper-parameters used in

experiments on continuous environments. Learning rate of the discriminator andDRLnetworks are

identical. In addition to these hyper-parameters, we set the weight decay of discriminators to 0.01

in the exploitation phase. We also manually scale the intra-skill rewards and entropy coefficient

αSAC to get lower-magnitude value function, thus, we divide rewards and entropy coefficient by 5

and clamp the minimal reward by (-2). SAC algorithms used by ELSIM do not use a second critic

(but our implementation of SAC does).

Classic environments . On MountainCar, Pendulum and LunarLander , we changed αsac to 0.1.

Our implementation of SAC . Our implementation of SAC use the same hyper-parameters as in

Haarnoja et al. [2018], but with a buffer size of 100000 and a learning rate of 0.001.
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A.5. SKILLS LEARNED IN FOUR ROOMS ENVIRONMENT

Parameters Symbol Values

DRL

Entropy coefficient αSAC 0.25

Buffer size Bsize 20k

SAC hidden layers hlSAC 2x128

Learning rate lrSAC 0.001

Discount γ 0.98

Episode duration D 500

Batch size batch_size 128

Parallel environments n 16

target update parameter τ 0.005

ELSIM

Discriminators hidden layers lrD 2x64

Split threshold δ 0.9

Sampling probability η 0.5

Average coefficient β 0.02

Vocabulary size |V | 4

Old discriminations scale α 2

Tree-policy

Gamma γT 1

Boltzmann coefficient αT 5

Learning rate lrT 0.05

Table A.2: Hyper-parameters used for experiments on continuous environments.

Transfer learning . In experiments on transfer learning, we fix the number of parallel environ-

ments to 1 and reduce the length of an episode to 200. For the first 20 updates of a node, the

tree-policy remains uniform.

A.5 Skills learned in four rooms environment

Figure A.1 shows the complete set of learned skills in four rooms environment. It completes

skills displayed by Figure 4.6.

A.6 Skills learned with a vertical wall

Figure A.2 shows the evolution of the reward function for the complete set of learned skills. It

completes skills displayed by Figure 4.7.
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Figure A.1: Full set of skills learned by the agent in an environment composed of four rooms.

Figure A.2: Probability of achieving each skill in every states (i.e. q(g|s)).
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A.7. SKILL EXPANSION

Figure A.3: Skills learned by the agent in an environment with a vertical wall.

Figure A.4: Skills learned by the agent in an environment with a vertical wall. The agent does not
focus on a specific area since there are no rewarding states.

A.7 Skill expansion

Figure A.3 shows the complete set of learned skills learned in an environment with a vertical

wall. States on the upper right side of the wall give a reward of 1. It completes skills displayed by

Figure 4.8.

In Figure A.4, we perform the same simulation as in Figure 4.8 without goals. The tree-policy

does not focus on the right side of the wall, and thus, gets less controllability than in Figure 4.8.

A.8 HalfCheetah-Walk

We introduce a slight modification of HalfCheetah-v2 to make the creature walk. The reward

function used in HalfCheetah-v2:

R(s, a, s′) = Sf(s, s′) + C(a) (A.1)

where C(a) is the cost for making moves and Sf(s, s′) is the speed of the agent. The reward
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function used in HalfCheetah-Walk is:

R(s, a, s′) =

{

Sf(s, s′) + C(a) if Sf(s, s′) > 2

4− Sf(s, s′) + C(a) else
(A.2)
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Appendix B

Complements on DisTop experiments

B.1 Ablation study

Except for δnew and δsuccess, we emphasize that thresholds parameters have not been fine-tuned

and are common to all experiments; we give them in Table B.1.

B.2 Comparison methods

LESSON: we used the code provided by the authors and reproduced some of their results in

dense rewards settings. Since the environments are similar, we used the same hyper-parameter

as in the original paper Li et al. [2021b].

Skew-Fit: since we use the same evaluation protocol, we directly used the results of the paper.

In order to fairly compare DisTop to Skew-Fit, the state given to the DRL policy of DisTop is also the

embedding of the true image. We do not do this in other environments. We also use the exact same

convolutional neural network (CNN) architecture for weights ω as in the original paper of Skew-Fit.

Parameters Value

Age deletion threshold δage 600

Error deletion count δerror 600

Proximity deletion threshold δprox 0.4× δnew
Count creation threshold δcount 5

Minimal number of selection ndel 10

Learning rate α 0.001

Neighbors learning rate αneighbors 0.000001

Number of updates per batch ∼ 32

Table B.1: Fixed hyper-parameters used in OEGN. They have not been tuned.
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It results that our CNN is composed of three convolutional layers with kernel sizes: 5x5, 3x3, and

3x3; number of channels: 16, 32, and 64; strides: 3, 2 and 2. Finally, there is a last linear layer with

neurons that corresponds to the topology dimensions d. This latent dimension is different from

the ones of Skew-Fit, but this is not tuned and set to 10.

ELSIM: In contrast with our first experiments, we set the batch size to 256 and use neural net-

works with 2×256 hidden layers. Theweight decay of the discriminator is set to 1·10−4 in themaze

environment and 1 · 10−3 in Ant and Half-Cheetah. In Ant and Half-Cheetah, the learning process

was too slow since the agent sequentially runs up to 15 neural networks to compute the intrinsic

reward; so we divided the number of updates by two. In our results, it did not bring significant

changes.

SAC: we made our own implementation of SAC. We made a hyper-parameter search on entropy

scale, batch size and neural networks structure. Our results are consistent with the results from

the original paper Haarnoja et al. [2018].

B.3 Hyper-parameters

Table B.2 shows the hyper-parameters used in ourmain experiments. We emphasize that tasks

are very heterogeneous and we did not try to homogenize hyper-parameters across environments.

B.4 Environment details

B.4.1 Robotic environments

Environments and protocols are as described in Pong et al. [2020]. For convenience, we sum

up again some details here.

Visual Door: a MuJoCo environment where a robotic arm must open a door placed on a table to

a target angle. The state space is composed of 48x48 images and the action space is a move of

the end effector (at the end of the arm) into (x,y,z) directions. Each direction ranges in the interval

[-1,1]. The agent only resets during evaluation in a random state. During evaluation, goal-states are

sampled from a set of images and given to the goal-conditioned policy. At the end of the 100-steps

episode, we measure the distance between the final angle of the door and the angle of the door in

the goal image.

Visual Pusher: a MuJoCo environment where a robotic arm has to push a puck on a table. The

state space is composed of 48x48 images and the action space is a move of the end effector (at

the end of the arm) in (x,y) direction. Each direction ranges in the interval [-1,1]. The agent resets
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in a fixed state every 50 steps. During evaluation, goal-states are sampled randomly in the set of

possible goals. At the end of the episode, wemeasure the distance between the final puck position

and the puck position in the goal image.

B.4.2 Maze environments

These environments are described in Nachum et al. [2019a] and we used the code modified by

Li et al. [2021b]. For convenience, we provide again some details and explain our sparse version.

The environment is composed of 8x8x8 fixed blocks that confine the agent in a U-shaped corridor

displayed in Figure 5.10.

Similarly to Li et al. [2021b], we zero-out the (x,y) coordinates and append a low-resolution top

view of themaze to the proprioceptive state. This "image" is a 75-dimensional vector. In our sparse

version, the agent gets 0 reward when its distance to the target position is below 1.5 and gets -1

reward otherwise. The fixed goal is set at the top-left part of the maze.

Sparse Point Maze: the proprioceptive state is composed of 4 dimensions and its 2-dimensional

action space ranges in the intervals [-1,1] for forward/backward movements and [-0.25,0.25] for

rotation movements.

Sparse Ant Maze: the proprioceptive state is composed of 27 dimensions and its 8-dimension

action space ranges in the intervals [-16,16].

B.5 Computational resources

Each simulation runs on one GPU during 20 to 40 hours according to the environment. Here

are the settings we used:

• Nvidia Tesla K80, 4 CPU cores from of a Xeon E5-2640v3, 32G of RAM.

• Nvidia Tesla V100, 4 CPU cores from a Xeon Silver 4114, 32G of RAM.

• Nvidia Tesla V100 SXM2, 4 CPU cores from a Intel Cascade Lake 6226 processors, 48G of

RAM. (Least used).

B.6 Examples of skills

Figures B.1, B.2 and B.3 show examples skills learnt in respectively Visual Door, Visual Pusher

and Ant Maze. Additional videos of skills are available in supplementary materials. We also pro-

vide videos of the topology building process in maze environments. We only display it in maze

environments since the 3D-topology is suitable.
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Figure B.1: Examples of 8 skills learnt in Visual Door.

Figure B.2: Examples of 8 skills learnt in Visual Pusher.

Figure B.3: Examples of 8 skills learnt in Ant Maze.
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Parameters Values RP/RD/MA/MC/SAM/SPM Comments

DRL algorithm SAC

Entropy scale 0.1/0.1/0.2/0.2/0.1/0.2

Hidden layers 3/3/3/3/4/4

Number of neurons 512 Smaller may work

Learning rate RP: 3 · 10−4 else 5 · 10−4 Works with both

Batch size RP: 256 else 512 Works with both

Smooth update RP:0.001 else 0.005 Works with both.

Discount factor γ 0.99/0.99/0.99/0.99/0.996/0.996 Tuned for mazes

Relabeling 3/2/1/1/2/2 3 can replace 2

Representation φω

Learns on BG No/No/No/No/Yes/Yes Works with both

Learning rate 1 · 10−4, MA: 5 · 10−4, MC: 1 · 10−3 Not tuned on MA, MC

Number of neurons 256 except robotic images Not tuned

Hidden layers 2 except robotic images Not tuned

Distortion threshold δ SPM: 0.01 else 0.1 Tuned on SPM

Distortion coefficient kc 20 See Appendix B.1

Consistency coefficient β RD: 0.2 else 2 Not tuned

Smooth update αslow 0.001 Not tuned

Temperature k 1/1/3/3/3/3 See Appendix B.1

Topology dimensions d 10/10/10/3/3/3 Not tuned

OEGN and sampling

Creation threshold δnew RP:0.8 else 0.6 See Appendix B.1

Success threshold δsuccess ∞/∞/0.2/0.2/∞/∞
Buffers size [8/15/5/5/15/15] · 103

Skew sampling 1 + αskew RD:0.1 else 0 See Appendix B.1

updates per steps 2/2/0.5/0.5/0.25/0.25

High-level policy πhigh

Learning rate αc 0.05 Tuned

Neighbors learning rate 0/0/0.2αc/0.2αc/0/0 Not fine-tuned

Skew selection 1 + α′
skew −1/− 0, 1/0/0/− 1/− 1/ See Appendix B.1

Reward temperature text 0/0/50/10/100/100

Table B.2: Hyper-parameters used in experiments. RP, RD, MA, MC, SAM, SPM respectively stands
for Robotic Visual Pusher, Robotic Visual Door, MuJoCo Ant, MuJoCo Half-Cheetah, Sparse Ant
Maze, Sparse Point Maze.
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