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Abstract

Cleverly engineered microswimmers have been of increasing scientific interest, as
they show great promise in various biomedical applications.

In this study, we propose a novel mechanism of propulsion in fluids at the
microscale, using a buckling mechanism activated by pressure waves. We considered
an in vivo-friendly hollow elastic shell of micrometric size composed of a lipidic
membrane enclosing a gas bubble. Such microbubbles are approved for clinical
use as diagnostic ultrasound contrast agents (UCAs).

We experimentally investigate the buckling dynamics of microbubbles upon an
increase of the external pressure. The effect of the driving frequency is studied
as well as that of the size and mechanical properties of the microbubbles. We
confront the results to existing theories on buckling dynamics that consider shells
made out of an isotropic and incompressible material.

In parallel, we highlight that such hypothesis are too restrictive to account
accurately for the dynamics of such UCAs with lipidic shells. Considering these
shortcomings, we observe the spherical oscillations of these shells. In this simpler
configuration, we derive a new theoretical model that includes the compressibility
of the shell and its elastic anisotropy in the radial direction. We thus offer a better
description of the spherical oscillations that have been widely studied theoretically
and experimentally in the past three decades.

Finally, we evidence, a non-zero displacement upon a complete cycle of deflation
and re-inflation of the microbubbles, that includes buckling events.

The proposed propulsion mechanism whose direction is controlled in the shell ref-
erence frame can be an answer to the problem of directivity accounted in the acoustic
radiation force technique used in ultrasound molecular imaging and drug delivery.





Abstract in French

Les micro-nageurs intelligemment conçus suscitent une attention croissante et se
sont révélés très prometteurs pour diverses applications biomédicales.

Dans cette étude, nous proposons un nouveau mécanisme de propulsion dans
les fluides à l’échelle microscopique, en utilisant un mécanisme de flambage activé
par des ondes de pression. Nous avons considéré une coque élastique creuse de
taille micrométrique composée d’une enveloppe lipidique renfermant une bulle de
gaz. De telles micro coques sont approuvées pour une utilisation clinique comme
agents de contraste ultrasonores (UCA).

Nous étudions, de manière expérimentale, la dynamique de flambage des micro-
enveloppes lors d’une augmentation de la pression externe. L’effet de la fréquence
d’excitation est étudié, ainsi que celui de la taille et des propriétés mécaniques
des micro-coques. Nous confrontons les résultats aux théories existantes sur la
dynamique de flambage qui considèrent des coques constituées d’un matériau
isotrope et incompressible.

En parallèle, nous mettons en évidence que de telles hypothèses sont trop
restrictives pour rendre compte avec précision de la dynamique de tels UCAs à
coques lipidiques. Pour ce faire, nous considérons les oscillations sphériques de ces
coques. Dans cette configuration plus simple, nous dérivons un nouveau modèle
théorique qui inclut la compressibilité de la coque et son anisotropie élastique dans
la direction radiale. Nous offrons ainsi une meilleure description des oscillations
sphériques qui ont été largement étudiées théoriquement et expérimentalement
au cours des trois dernières décennies.

Enfin, nous mettons en évidence un déplacement non nul lors d’un cycle
complet de dégonflage et de regonflage des micro-coques, qui inclut des événe-
ments de flambage.

Ce mécanisme de propulsion dont la direction est contrôlée dans le cadre de
référence de la coque peut être une réponse au problème de la directivité intervenant
dans la technique de force de rayonnement acoustique utilisée dans l’imagerie
moléculaire ultrasonore et l’administration ciblé de médicaments.
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1.1 Background
A series of fluctuations of the pressure field in a medium is the scientific way to define
"Sound". When an acoustic wave travels at frequencies ranging between 20 kHz and
20 MHz, it won’t be perceivable by the human ear and it will be called an ultrasound
wave. Many animals in the nature world, such as bats and dolphins, use ultrasound
as a real-time locating system. Inspired by nature, [Richardson, 1913] received
two patents within a month after the titanic tragedy, for an echo-ranging system
under water to detect large objects. On the foot-steps of animals, humans used echo
systems to develop ultrasound (US) imaging. US technique has many advantages: it
is non-invasive and inexpensive, available at the point-of-care, and is a safe medical
application. It is a widely used imaging technique especially in the prenatal screening
of the fetus which is by far the best known application of ultrasound these days.

As for optics, the resolution of ultrasound is limited by its wavelength because of
diffraction [Strutt, 1877]. The wavelength is inversely proportional to the frequency
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by a factor of ≈ 1540 m/s which is the speed of sound in tissues. Hence, an
increase of the frequency of the medical probe, one can enhance the resolution.
Unfortunately, sound attenuation in human tissue increases exponentially with
the frequency [Bamber, 1998] and causes a lower signal on the received part. A
common approach to enhance the image is to use bio-compatible microbubbles
or ultrasound contrast agents (UCAs).

1.2 Ultrasound Contrast Agents
By serendipity, during an echography of the aorta, [Gramiak and Shah, 1968] saw
high peaks on the received signal. In turned out that the presence of air bubbles
inside an injected hand-agitated saline solution was responsible for the opacification
of the right ventricle. It was indeed, the first ultrasonic image enhancement technique.
These air bubbles are known as the first generation of UCAs. As they dissolve
rapidly in the liquid, a second generation of UCAs was developed, that are made
of air bubbles encapsulated by a thin shell: galactose as in Echovist® (1991) or
albumin (a human protein) as in Albunex®(1995) or galactose and palmitic acid as
in Levovist®(1995). Finally, the third generation of UCAs includes microbubbles
with higher life-time, air being simply replaced by a gas with higher molecular
weight, responsible of decreased solubility: SF6 as in Sonovue® (2001), C3F8 as in
Definity®(2001) or C4F10 as in Sonazoid®(2007). All of these gases are encapsulated
by phospholipids. The resulting shells are known as soft-shell UCAs, while the
ones made with polymers are known as hard-shell UCAs.

Commercial UCAs are intravenously administered, and circulate in the blood-
stream for several minutes. They demonstrate good safety and are already in
widespread clinical use, not only for imaging the heart, but also the liver, kidney
and other organs [Barr et al., 2020]. The physics behind the enhancement is
the following: UCAs are highly compressible which makes them an efficient
acoustic reflectors. They can create a acoustic impedance mismatch between
the biological tissues and the fluid [Goldberg, 1997]. The acoustic response of
UCAs is dependent on the particle size, shell design, and shape of the applied
ultrasound waveform [De Jong et al., 2009]. As it will be discussed in the next
chapter, microbubbles resonates in the MHz range. When excited at a centre
frequency f0, microbubbles oscillate non-linearly and generates echoes at different
harmonics including subharmonics [Sijl et al., 2011] f0/2, or ultrahamonics 3f0/2
and even higher harmonics (2f0, 3f0...) [Sojahrood et al., 2021]. Using the non-linear
nature of UCAs, various contrast-enhanced ultrasound imaging techniques were
conducted to enhance the signal coming from UCAs specially in the small capillaries
and near the tissues, like harmonic imaging, pulse inversion, amplitude modulation
and contrast pulse sequence [Caskey et al., 2011].

Even in presence of such agents, axial and lateral resolutions of ultrasonic devices
used in clinical applications are still diffraction-limited. To image beyond this limit,
[Desailly et al., 2013, Errico et al., 2015, Couture et al., 2018] discovered a new
technique called ultrasound localization microscopy (ULM). It consists in using
microbubbles as isolated punctual sources of acoustic echoes. These signals can
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Figure 1.1: (a-b-c) 3D reconstructed microvasculature of the brain: (a) coronal view, (b)
sagittal view. Intensity reflects the count of microbubbles. (d) 3D rendering with tilted
ultrasound probe on another rat to observe the cortex in the right hemisphere. Images
from [Chavignon et al., 2021].

Figure 1.2: Left: 3D rendering of the flow velocity. Right: 600 µm coronal slice at
bregma -1.5mm of the hemodynamic volume up to 30 mm/s. Flows are encoded yellow to
red (positive) for upward flows, and green to blue (negative) for downward flows. Images
from [Chavignon et al., 2021].

thus be localized far beyond the diffraction limit. The reason for crossing this limit
is that a microbubble with a diameter ranging from 1 to 10 µm, send signals with
a wavelength λ ≈ 100 to 300 times its size. ULM technique is considered to be
the ultrasound counterpart of other optical techniques, such as photo-activated
localization microscopy (PALM) [Betzig et al., 2006] and stimulated emission
depletion (STED) microscopy [Hell and Wichmann, 1994]. Both of them use
fluorescent molecules as isolated sources of light. They are known as pioneering
methods resulting in the advent of Nobel-prize winning. In a recent work [Chavignon
et al., 2021], ULM technique was used together with the ultrafast ultrasound imaging
technique [Tanter and Fink, 2014] to provide 3-D images of the microcirculation
in a living rat brain (transcranial) (See Fig.1.1). And only 7 minutes acquisition
revealed vessels down to 31 µm in diameter with flows from 4.3 mm/s to 28.4
mm/s as shown in Fig.1.2.

While commercial UCAs are quite polydisperse in size, narrowing the size



4 1.2. Ultrasound Contrast Agents

distribution of UCAs appears then as a way to match better the relatively narrow
frequency bandwidth of ultrasonic devices with that of the UCAs, thus leading
to better sensitivity of the whole detection process. Recently, monodisperse
phospholipid-shelled microbubbles were produced [Segers et al., 2016] and showed
2-3 orders of magnitude higher acoustic sensitivity than that of polydisperse
microbubbles in-vitro [Segers et al., 2018] and in-vivo [Helbert et al., 2020]. A
cheaper way of production can be done using a ’sonofluidic’ device [Carugo et al.,
2021]. Finally, a new generation of UCAs is proposed by [Soysal et al., 2021],
authors succeeded to prepare monodisperse microbubbles that can be freeze dried
without apparent change of size or acoustic behaviour.

1.2.1 Diagnostics and Therapeutic Applications

In the past few decades, the use of microbubbles in medicine went far beyond the
imaging. One way of cancer diagnosis can be done using ultrasound diffusion of
microbubbles in the vasculature that can distinguish healthy tissues and tumors
[Mohanty et al., 2019]. microbubbles can be functionalised by conjugating ligands
to their surface that will bind to the target molecules. Targeted UCAs has shown
to be very useful in the diagnosis of many life-threatening diseases [van Rooij et al.,
2015]. UCAs can also be decorated with antibiotics [Kouijzer et al., 2021] to be
used for the destruction of bacterial biofilms, phenomena recently introduced as
’sonobactericide’ [Lattwein et al., 2020].

Drug delivery can be conducted mechanically in different modalities [Kooiman
et al., 2014, Couture et al., 2014]. The ’traditional’ way was pioneered by [Bao
et al., 1997] in an in-vitro study termed sonoporation. It was recently translated
to a clinical case study on human pancreatic cancer [Kotopoulis et al., 2013]. The
idea is to do a co-administration of drugs with microbubbles with a target to
produce sonoporation [Kooiman et al., 2011]. Under acoustic excitation, a stable
cavitation regime can be reached, where the microbubble volumetrically oscillate
and create microstreaming on the surrounding fluid which induces pore formation
in the endothelial cells for drug uptake. Although under high acoustic excitations,
current UCAs cannot stay long enough on the target and are rapidly destroyed,
[Kwan et al., 2015] proposed nanocups that traps air bubble inside to perform
stable cavitation for longer time in an in-vivo tumor model. Focused ultrasound
drives the microbubbles to a cavitation regime and opens the brain blood barrier
(BBB) [Aryal et al., 2014]. BBB opening-induced stable cavitation has also shown
great promise after the successful deposit of antibody therapy for breast cancer that
has metastized to the brain in a first-in-world clinical trial (Sunnybrook Health
Sciences centre, Toronto, Canada) [Meng et al., 2021]. Another way to profit from
the BBB opening, is to locate a brain cancer tumor which sends biomarkers into
the bloodstream prior to the drug uptake [Pacia et al., 2022]. Fig.1.3 illustrates
this novel technique called ’sonobiopsy’.

The second way for drug delivery is the use of UCAs as drug carriers. Either
drugs can be linked/adsorbed to the shell, or an additional drug reservoir can be
added into the core of the microbubbles [Hernot and Klibanov, 2008]. Followed by
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Figure 1.3: Schematic of the sonobiopsy of a brain tumor by BBBO with drug delivery
by acoustic cavitation. Image adapted from Hong Chen page on McKelvey School of
Engineering (Washington University, St.Louis) website.

higher-intensity ultrasound pulse at the target location,the drug can be released,
thereby limiting side effects elsewhere.

A striking new technique for drug delivery used in pancreatic cancer was recently
proposed by [Owen et al., 2021]. It relies on the sonodynamic therapy (SDT),
defined by the activation of drugs by ultrasound. Authors fabricated oxygen
filled microbubbles to fasten the activation process. Drug activation by light was
initially created in photodynamic therapy (PDT). It turned out that the principle
mechanism underlying the activation in SDT is the same as the one in PDT, in fact,
microbubbles under high acoustic cavitation can emit light, phenomenon known
as ’sonoluminescence’ [Brenner et al., 2002].

1.3 Drug delivery assistance
Despite the huge advances in drug delivery systems and the progress achieved, the
circulation of the drug carriers in the bloodstream is still not controlled which hinders
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their translation to clinical practice. The absence of specificity and sensitivity with
the passive circulating microbubbles jeopardizes the accurate delivery of drugs.
Also, the number of microbubbles reaching their targets is low and thus generates
weak echoes [Frinking et al., 2012]. One way to improve the number of cargoes is
by using magnetic nanoparticles incorporated within the encapsulation coupled to
a magnetic system around the organ. [Owen et al., 2015] showed the effectiveness
of this approach in vitro. Same effect was shown in an organ transplantation setup
by the same group in vivo [Crake et al., 2016].

Soft entities including microbubbles that circulates in confined geometries like
capillaries exhibit a lateral migration toward the vessel axis, preventing them to stay
in contact with the endothelium [Coupier et al., 2008]. So far, the only developed
mechanical approach to assist drug delivery is the acoustic radiation force (ARF)
[Rychak et al., 2007] that will be discussed in the following section.

1.3.1 Acoustic radiation force

When an air-bubble in a liquid is subjected to an acoustic pressure field, it can
undergo volume pulsations. If the acoustic pressure gradient is non-zero, then it can
couple with the bubble oscillations to produce a translational force on the bubble.
This is the primary Bjerkness force [Bjerknes, 1906]. If the sound wave driving
such motion is the secondary wave emitted by a neighboring pulsating bubble, a
mutual interaction comes into effect and two bubbles pulsating in phase attract
each other. The average force is then called secondary Bjerknes force.

The first use of ARF for enhancing drug delivery goes back to 1993 [Fowlkes
et al., 1993]. Few years later, [Dayton et al., 1997] studied the displacement induced
by AFR for different acoustic frequencies and pressures. Authors reported an
induced velocity that can reach several tens of millimeters per second. [Vos et al.,
2007] pioneered the use of the ARF for accurate measurement of shell elasticity
and viscosity. A Doppler based approach to track free floating microbubbles is
used and the experimental speed of the microbubbles is compared to theoretical
models that couples the volumetric oscillations and the translational-induced AFR
to extract the viscoelastic parameters.

Extensive work has been done to understand and optimize the translational
motion induced by AFR. [Garbin et al., 2009, Acconcia et al., 2018] checked the
effect of the history force, that is considered as an additional drag force, present
when the phase velocity of the shell lags the one of the fluid. In contrast to previous
studies, where the microbubbles were isolated using optical trap, in this recent study
[Supponen et al., 2020], the effect of the size range of free floating microbubbles on
their translation motion was discussed. A major drawback of the ARF technique
is the directivity imposed by the ultrasound vector field. Unfortunately, a 1-D
controlled motion is not enough to manoeuvre the drug carrier in 3-D regions
with a complex network as blood stream.



1. Introduction 7

1.4 Swimming in the bloodstream
Creation of microswimmers to perform important biomedical tasks has long been
inspired by the science fiction movies, and have already attracted significant attention
among researchers [Bunea and Taboryski, 2020, Llacer-Wintle et al., 2021].

If we consider microswimmer administrated intravenously, it will circulate
passively in the bloodstream with different velocities ranging from several cm/s in
the aorta to several mm/s in capillaries [Errico et al., 2015]. The velocity of the
microswimmer vs has to be in the order of 10 mm/s to swim against capillaries
flows. For a microswimmer that propels itself by shape-change, the Reynold number
[Reynolds, 1883] associated to the deformation is Res = vdR/η, with vd is the
deformation speed, η being the kinetic viscosity in order of 10−6 m/s for plasma.
If the deformation is fast such as Re exceeds unity, the regime is called inertial.
On the other hand, if the deformation is slow and Re is less than unity, which
is called the Stokes regime. In the former regime, the viscous forces of the fluid
dominate the inertia force. In order to have a propulsion in a such regime, the
swimmer has to create a time-irreversible displacement usually referred to the
’scallop theorem’. The historic talk of [Purcell, 1977] illustrates well the swimming
in the Stokes regime with the metaphor comparison: a microswimmer in blood
stream is equivalent to a human swimming in peanut butter.

1.4.1 Swimming by microstreaming

Microstreaming specifically refers to the streaming flow of fluid around an oscillating
object such as a gas bubble [Lighthill, 1978]. Whenever the acoustic penetration
depth [usually defined as ζ = (2η/ω)1/2 where ω angular driving frequency] is in
the same order of magnitude of the bubble radius, the microstreaming effect cannot
be neglected. For instance for a bubble or radius 1 µm under acoustic excitation
with ω = 20 kHz, the ratio ζ/R ∼ 4. Rich variety of streaming patterns can be
generated through different shape and volume oscillations modes. [Marmottant and
Hilgenfeldt, 2003] studied the fluid streaming pattern around an oscillating bubble
and the rupture of a lipid vesicles introduced in the vicinity of the created vortex.
An important study to understand more complexed phenomenon as sonoporation.
Recently, [Lajoinie et al., 2018] studied experimentally as well as theoretically
how microstreaming can enhance drug release from targeted UCAs. Another
beneficial way in the use of the microstreaming is the propulsion technique. The
first millimetric bubble-swimmer proposed propelled by microstreaming is the
"acoustic scallop" [Dijkink et al., 2006]. An air bubble is trapped inside a millimetric
tube closed at one end actuated by piezoelectric transducer.

Swimming by micro-streaming requires only that the Reynolds number of the
flow exiting the tube be large enough for inertia to be important which is referred
to swimming by inertial effect. More recently, based on the same principle, a
double-bubble based microswimmer was proposed [Luo and Wu, 2021]. Two air
bubbles with different size are trapped into a 3D printed frame to enable steering
since each bubble has a different resonance frequency [Minnaert, 1933].
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1.4.2 Swimming by buckling
A thin rod under compression is perhaps the easiest example to define buckling. The
relevant strain energies of this problem are the stretching energy Us that accounts for
the compression and the bending energy Ub. The ratio of these two energies Ub/Us
scales as: ∼ d2(k/ε)2 where d is the thickness of the rod, k is the average curvature
induced by bending (units of reciprocal length) and ε is the averaged strain induced
by stretching (unitless). As this quantity is very small for thin rods, it means that it
is cheaper in terms of energy to bend the rod than to compress it. When speaking
about buckling, in a classical definition [Euler, 1744], we imagine a catastrophic
failure of a spherical tank full of oil. In the field of structural engineering, design
were made to prevent instability events such as buckling, an approach that can be
succinctly referred to as ’Buckliphobia’ [Reis, 2015]. [Budiansky and Hutchinson,
1979] famously used to say "everyone loves a buckling problem", and this resonates
these days with a tremendous amount of papers on how to leverage useful energy
from buckling instability [Levin et al., 2016, Yan et al., 2021, Pal et al., 2021].

In the recent years, various buckling based mechanical swimmers have been
proposed experimentally as well as numerically. [Chi et al., 2020] developed fast
swimming Jelly-fish like soft robot. It consist in attaching swimming paddles
on a bilayer elastomeric material that performs a snap-through bi-stability upon
pressurization. [Nagarkar et al., 2021] showed that a pneumatically actuated sheet
can crawl on land or swim in water by buckling instability.

A proof of concept of the buckling as propulsion mechanism for spherical shells
has been introduced in [Djellouli et al., 2017]. An experimental study uses millimetric
elastic spherical shell, where air was pumped in-and-out in a symmetrical way. A
seeded defect was introduced in the shell to control buckling position and it was
attached to a friction-less rail to circumvent its floating due to the buoyancy force.
A net positive displacement was evidenced even in the Stokes regime. The deflation
speed induced by buckling is very fast, in order of 1 m/s, which gives a deformation
related Reynolds number: Red = 100 such as inertial propulsion is achieved.

1.5 Motivation
The general aim of this thesis is to show that buckling of microbubbles can be a
promising propulsion mechanism for various medical applications notably in drug
delivery systems. The approach is to study buckling dynamics of microbubbles
for different sizes, visco-elastic properties and configurations. To highlight the
importance of the composition of the shell, we investigate theoretically in chapter
2, the effect of shell viscoelastic compressibility as well as eventual anisotropy on
the spherical oscillations. It is a first step before considering more complexed
configuration as the buckled one. Chapter 3 is an experimental study of buckling
dynamics of lipid coated commercial and homemade UCAs. We consider different
viscoelastic parameters, polydisperse as well as monodisperse, in a near the wall and
in a floating configuration. In chapter 4, we study the swimming induced by a full
cycle of deflation and re-inflation for different applied pressures and frequencies. In
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addition, we study the swimming in a very rare case where a SonoVue® microbubble
got glued to two spherical beads and formed an object that sediments with gravity.

Note: Throughout the following thesis, the word ’microbubble’ will
be used, the reader has to keep in mind that it is implicitly meant the
gas bubble and the encapsulating shell. It is an important point to
mention, since a gas bubble only cannot buckle but it is the shell that
undergoes buckling and debuckling events.
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2.1 Introduction
The behaviour of UCAs in an ultrasound field has been the subject of investigation
for the past three decades. Loads of reviews every year are published to try and
summarize the advances of the use of UCAs as well as their theoretical modeling
[Helfield, 2019, Versluis et al., 2020, Frinking et al., 2020, Stride et al., 2020]. An
accurate understanding of the fundamental behavior of UCAs is still of primordial
importance. For instance, in the field of molecular imaging, the goal is to selectively
detect and enhance echo signals derived from the molecularly adherent microbubbles
via specific ligand–receptor bindings, while suppressing signals derived from the
background tissues. An achievement of this goal can lead to fasten the diagnostics
of Stroke [Hingot et al., 2020] instead of using current diagnostic imaging as MRI
and CT, that require specialized centers and time.

In this theoretical study, we extend the models of ultrasound contrast agent
coated microbubbles by accounting for two hitherto overlooked effects: the com-
pressibility of the material constituting the shell, and its possible elastic anisotropy.
Such anisotropy has been shown to greatly influence the buckling process of shells
([Munglani et al., 2019, Pitois et al., 2015, Quemeneur et al., 2012]. The importance
of anisotropy will be shown in the next chapter where we study experimentally
the buckling dynamics. It is therefore important to consider its effect on the
spherical oscillations.

2.2 Previous models
Since the early work of [Besant, 1859] who was concerned by the time needed
to fill up the empty space of a collapsed bubble and the pressure generated at
any point in an incompressible liquid, forced vibrations of bubbles have attracted
attention for decades. Giving a simpler derivation of Besant’s results, Lord [Rayleigh,
1917] generalized the case to a cavity with nonzero pressure, i.e. to a gas-filled
bubble. The surface tension and the viscosity of the surrounding fluid were taken
into account (see [Plesset and Prosperetti, 1977] for a review), leading to the
famous Rayleigh-Plesset equation.

In order to take into account the shell encapsulating the microbubble, a semi-
empirical model was developed [de Jong et al., 1992, De Jong et al., 1994] by
way of the introduction of two ad-hoc quantities, Sp and Sf , that account for
the effective elastic and dissipative properties of the interface. Assuming a zero-
thickness shell, which is motivated by the proximity between the shell thickness
and the molecular scale, other models have introduced rheological constants that
are explicitly related to the expected properties of the shell material. The first
approach by [Chatterjee and Sarkar, 2003] was followed by the models of [Sarkar
et al., 2005] and [Marmottant et al., 2005]. In the latter, a non-linear model is
proposed, presenting the elasticity of the shell as an effective surface tension. Its
linearized form is equivalent to the de Jong model.

In [Church, 1995], a finite thickness shell was considered. It was assumed to be
made of a homogeneous, incompressible and isotropic material, that was described
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by a Kelvin-Voigt model. This model was linearized relatively to the thickness
to radius ratio in [Hoff et al., 2000], giving rise to the Church-Hoff model. In
[Morgan et al., 2000], thin-shell UCAs were described by a constant thickness
model using bulk elasticity and viscosity.

Following [Marmottant et al., 2005], other nonlinear models have been proposed,
with a more complex rheological behavior like strain softening and strain hardening
[Tsiglifis and Pelekasis, 2008, Paul et al., 2010], or shear thinning [Doinikov et al.,
2009, Li et al., 2013].

2.3 Confrontation with experiments
Vibration experiments on UCAs should a priori allow to determine the rheological
constants of the material, through the chosen model among those cited above, as
long as they are not too numerous. The final goal is usually to choose the best
fitting couple of one elastic and one viscous parameter to describe the observed
damped signal. This couple is unique for the model selected, for instance, (Sp, Sf )
in [de Jong et al., 1992] model, (GS, µS) in [Church, 1995] model, and so on.
Note that using finite thickness shell models requires to make assumptions, or
additional measurements, to determine the value of the shell thickness. In all
models, additional assumptions are generally made in order not to consider the
inner gas pressure as an unknown to be determined.

Several techniques can be used to determine the shell oscillations. In [Gorce
et al., 2000], a batch of encapsulated microbubbles are insonated at frequencies
up to 30 MHz, and the viscoelastic parameters are deduced by measuring the
attenuation expression. The spectroscopy approach relies on using a high speed
camera to directly measure the radial displacement of the UCAs, which is fitted
with the theoretical one [van der Meer et al., 2007]. Light scattering methods were
also developed [Tu et al., 2009, Li et al., 2013], where the scattering cross section is
related to the resonance frequency containing the viscoelastic properties using the
Mie scattering theory. A photoacoustic measurement technique was developed in
[Lum et al., 2016]. Readers can refer to [Helfield, 2019] and [Versluis et al., 2020]
for recent reviews on linear models theory and experimental measuring methods.

All the existing linear models are virtually the same, with 2D moduli that
can be expressed explicitly in terms of 3D moduli and thickness. Tables 2.1-
2.5 summarize some experimental estimations of shell properties using the De
Jong, Marmottant, Church-Hoff and Sarkar models respectively for different UCAs
and using various techniques.

Such experiments may also be used to validate the model that is used to describe
the results. This requires to determine by another means the rheological properties
of the shell material. Such validations are scarce in the literature, and yield only
accurate order of magnitude so far. The atomic force microscopy (AFM) is a
direct approach used to estimate UCAs’ properties. However, depending on the
model used to extract elastic constants from the force-displacement curve of an
AFM, very different values can be found [Abou-Saleh et al., 2013, Lytra et al.,
2020, Buchner Santos et al., 2012, Shafi et al., 2019]. This makes the validation of
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Table 2.1: Shell properties estimations using de Jong model [de Jong et al., 1992]. f and
p are the characteristic frequencies and amplitudes of the acoustic waves used to excite
the UCAs. Sp and Sf are the elastic and viscous ad-hoc parameters that are introduced
in the model. The intervals for the viscoelastic parameters correspond to cases where
dependency on the radius was reported.

R20 f p Sp Sf Method
UCA (µm) (MHz) (kPa) (N/m) (10−6 N/m.s)

SonoVue® 0.6− 4.5 1− 10 < 10 0.35− 2.61 0.46− 3.42 Attenuation
[Gorce et al., 2000]

Albunex® 2.5− 6 0.7− 12.5 not known 8 4 Attenuation
[de Jong and Hoff, 1993]

Definity® 0.5− 2.5 12− 28 25 1.71 0.015 Attenuation
[Goertz et al., 2007]

1− 3 7− 15 25 1.64 0.15 Attenuation
[Faez et al., 2011]

spherical oscillation models a tricky task so far. As an example, in [Buchner Santos
et al., 2012] and [Lytra et al., 2020], values between 8 and 38 MPa are found for the
Young modulus E ′ of a Definity® UCA probed by an AFM. For an incompressible
material the 2D compression modulus χ2D is E ′d0, where d0 is the shell thickness,
estimated to be around 5 nm for such UCAs. This leads to 0.04 < χ2D < 0.2 N/m,
which is not in agreement with the values around 1 N/m found with the de Jong
(Table 2.1) or Marmottant (Table 2.2) model. Note however, that static values of
the shell may differ considerably from dynamic values measured in the MHz range.

In addition, experimental determinations have lead to unexpected dependencies
of the viscoelastic parameters on shell radius, as also shown in Tables 2.1-2.4.
[van der Meer et al., 2007] observed a dependence of the shell viscosity on the initial
bubble radius using Marmottant model for BR-14®. [Chetty et al., 2008] measured
an increase of the shear modulus G′ with the radius using Church-Hoff model for
Sonovue®. [Tu et al., 2009] and [Li et al., 2013] measured an increase of the elasticity
and the viscosity parameters of the shell with the shell radius, using the linearized
Marmottant model for Sonovue®. Identical observation where made in [Doinikov
et al., 2009] (lipid encapsulated bubbles with De Jong model), [Helfield and Goertz,
2013] (Definity® with Marmottant model), and [Parrales et al., 2014] (home-made
monodisperse encapsulated microbubbles with the linearized Marmottant model).

This dependence on radius of the material properties was not substantiated by
physical arguments, suggesting that extra modeling was required.

So far, the models have not considered the possible compressibility or anisotropy
of the material constituting the shell. The purpose of the present study is to include
these effects in the model of bubble oscillations and to quantify their influence on the
linearized oscillation properties, i.e. the eigenfrequency and the damping coefficient.

2.4 Model
We consider an encapsulated gas bubble immersed in an incompressible fluid with a
density ρf and a shear viscosity µf . The effect of the liquid compressibility could
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Table 2.2: Shell properties estimations using Marmottant model [Marmottant et al.,
2005]. f and p are the characteristic frequencies and amplitudes of the acoustic waves used
to excite the UCAs. Analysis of experiments through the model allow to determine the
2D compression modulus χ2D and the surface dilatationnal viscosity κS . In the linearized
version of the model, they are related to the constants introduced by de Jong through
Sp = 2χ2D and Sf = 12πκS . The intervals for the viscoelastic parameters correspond to
cases where dependency on the radius was reported.

R20 f p χ2D κS Method
UCA (µm) (MHz) (kPa) (N/m) (10−8 N/m.s)

SonoVue® 0.975 2.9 130 1 1.5 Spectroscopy
[Marmottant et al., 2005]

0.8− 3.25 2.5 150 0.024− 0.871 0.1− 3 Light scattering
[Tu et al., 2009]

0.75− 3.25 2.5 150 0.39− 0.55 0.05− 2 Light scattering
[Tu et al., 2011]

0.8− 3.25 2.5 150 0.4− 0.55 0.1− 3 Light scattering
[Li et al., 2013]

BR14® 1.9 1.5− 2.5 < 40 0.541 2.3 Spectroscopy
[van der Meer et al., 2007]

Table 2.3: Follow-up of Table II for reviewer version (Table does not fit on one page).

R20 f p χ2D κS Method
UCA (µm) (MHz) (kPa) (N/m) (10−8 N/m.s)

Definity® 0.72− 1.4 1 308 0.5− 0.97 0.01− 0.9 Light scattering
[Tu et al., 2011]

1.4− 2.8 4− 13.5 6− 25 0.5− 2.5 0.02− 0.6 Spectroscopy
[Helfield and Goertz, 2013]

Home-made 2.9− 6.3 0.5− 4 − 0.28− 0.85 3− 6 Attenuation
lipid shell [Parrales et al., 2014]

be further included as described in the work of [Prosperetti, 1987]. The bubble
shell is modeled as a visco-elastic solid of initial thickness de. Furthermore, it was
shown according to thin shell theory that a shell made of an homogeneous material
with Poisson ratio ν may sustain a maximum relative loss of volume

(∆V/V )b =
√

3(1− ν)
1 + ν

d0

R20
, (2.1)

before it buckles [Hutchinson, 1967, Quilliet, 2012], where d0 and R20 are the shell
thickness and external radius at rest, respectively. The first fraction is of order 1,
except for exotic values of ν close to −1. Even for shells happening to be thicker
than the commercially available ones, (∆V/V )b is hence reasonably expected not
to exceed 1/10. This point, plus recent experimental results having suggested
that pressure-volume relationships obtained within the framework of thin shell
theory apply also for thick shells [Coupier et al., 2019], indicates that we may safely
consider, here and in the following, that linear elasticity framework is sufficient to
describe the spherical behaviour of a wide range of UCAs in the unbuckled regime.
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Table 2.4: Shell properties estimations using Church-Hoff model [Hoff et al., 2000]. The
thickness d0 is an estimation which is made in each paper. f and p are the characteristic
frequencies and amplitudes of the acoustic waves used to excite the UCAs. The intervals
for the viscoelastic parameters correspond to cases where dependency on the radius was
reported.

R20 d0 f p G′ µG Method
UCA (µm) (nm) (MHz) (kPa) (MPa) (Pa.s)

SonoVue® 1.78 4 2.5 150 20 0.6 Light scattering
[Tu et al., 2009]

3− 5.5 2.5 6.8− 7.3 40 1.9− 105 1 Microscopy
[Chetty et al., 2008]

Sonazoid® 1.6 4 2− 6 300− 800 52 0.99 Attenuation
[Sarkar et al., 2005]

Optison® 1.5 5− 10 3.6− 4.3 100 20.7 1.7 Attenuation
[Chatterjee and Sarkar, 2003]

Table 2.5: Shell properties estimations using Sarkar model [Sarkar et al., 2005]. f and
p are the characteristic frequencies and amplitudes of the acoustic waves used to excite
the UCAs. ES and κS are the surface dilatational elasticity and viscosity respectively
introduced in the model.

R20 f p ES κS Method
UCA (µm) (MHz) (kPa) (N/m) (10−8 N/m.s) Method

Sonazoid® 3.2 2− 6 200− 600 0.51 1 Attenuation
[Sarkar et al., 2005]

Home-made 0.7− 1.5 2.5− 3 100− 150 0.02 0.85 Attenuation
PLA shell [Paul et al., 2013]

2.4.1 Quasi-static approximation
In the absence of body forces, the equation of motion in the solid [Landau and
Lifschitz, 1986] reads

ρS
∂2u

∂t2
−∇ · σ = 0, (2.2)

where ρS is the initial density of the solid, u the displacement field, and σ is the
Cauchy stress tensor calculated on the actual configuration.

If we consider only elastic contributions to the stress, the dimensional analysis
of (2.2) shows that if the parameter ε = ω2

0d
2
eρs/E, that compares the orders of

magnitude of the first and second term in (2.2), is small, then acceleration can be
neglected (see e.g. [Langtangen and Pedersen, 2016]). Here E is a typical elastic
constant of the material, and ω0 is the (unknown) shell pulsation. Physically,

√
ε

is the ratio of the typical time scale τ0 = de
√
ρs/E needed for an elastic wave to

travel across the shell thickness de over the time scale ω−1
0 of the motion of the

boundary. In general, E is not smaller than 100 MPa for a polymeric material
where de ∼ 100 nm, but for lipid shells of thickness of order 5 nm which are made
of the type of anisotropic material that we treat later on in this chapter, orders
of magnitude as low as 100 kPa were proposed for an effective isotropic Young
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modulus [Shafi et al., 2019]. Hence, with ρS ∼ 1000 kg/m3, τ0 is expected to be
smaller than 5 × 10−10 s. This implies that, with ω0 usually measured or found
according to previous models lower than 10 MHz, ε is lower than 10−4.

The acceleration term can therefore be neglected for actual UCAs and will be
so in the rest of this chapter. The resolution of Eq.(2.2) under this assumption
will serve to determine the boundary conditions for the stress in the fluid, in
order to determine its acceleration.

A problem similar to ours has been widely studied recently, that of a bubble
oscillating in a liquid confined by a visco-elastic solid [Doinikov et al., 2018, Doinikov
and Marmottant, 2018, Vincent and Marmottant, 2017, Wang, 2017]. A simplifying
hypothesis, that is used in [Vincent and Marmottant, 2017] and [Wang, 2017] is
to consider that the surrounding solid is not accelerated by the pressure waves.
Here, we have shown that this hypothesis holds for our problem, due in particular
to the thinness of the shells.

Note that the resonance frequency ω0 is the unknown of this problem, so the
validity of the hypothesis has to be checked a posteriori.

2.4.2 Stress-strain relation in the solid
We consider the shell as being made of a transverse isotropic material, i.e. whose
properties in the orthoradial plane do not depend on the direction considered but
can be different from that in the radial direction. The elastic properties of such a
material are characterized by five independent elastic constants. The stress-strain
relationship can be written as [Lubarda and Chen, 2008]:

σelij = λ εkkδij + 2µ εij + 2(µ0 − µ) (δi0iεi0j + δi0jεi0i)
+ α (εi0i0δij + δi0iδi0jεkk) + β δi0iδi0jεi0i0 , (2.3)

where ε is the strain tensor, λ is the first Lamé coefficient, µ the shear modulus in
the plane of isotropy, µ0 the out-of-plane shear modulus, and α and β two other
coefficients. The direction i0 points the axis of transverse isotropy. For an isotropic
material, α = β = 0 and µ0 = µ. For radial displacements, the elastic Cauchy
stress tensor has only diagonal components given by{

σelrr = (λ+ 4µ0 − 2µ+ 2α + β) εrr + 2(λ+ α) εθθ
σelθθ = σelφφ = (λ+ α) εrr + 2(λ+ µ) εθθ

, (2.4)

with εrr = ∂u/∂r and εθθ = εφφ = u/r, where u = u(r, t) is the Eulerian radial
displacement in the shell.

The viscoelastic properties of the material are described by the generalized
Kelvin-Voigt model [Thompson and Kelvin, 1865, Voigt, 1892] where the complete
strain tensor reads σ = σel+σvisc, where σvisc is the viscous stress. For a transverse
anisotropic material, integrating a thermodynamical consistent model [Dalenbring,
2002] based on the augmented Hooke’s law (AHL) [Dovstam, 1995] in this fluid-
structure interaction problem requires finite elements implementation. Another
approach may be to consider viscosity effect for only some components of the
stress tensor [Lubarda and Asaro, 2014].
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We will therefore consider two cases in this study, both going one step fur-
ther compared to the model by [Church, 1995] that considers an isotropic and
incompressible material:

1. A visco-elastic isotropic material, that can be compressible,

2. An anisotropic, purely elastic, material which is transversely isotropic and
compressible.

In the case of an isotropic linear material, the elastic stress reads

{
σelrr = (K ′ + 4

3G
′) εrr + 2(K ′ − 2

3G
′) εθθ

σelθθ = σelφφ = (K ′ − 2
3G
′) εrr + 2(K ′ + 1

3G
′) εθθ

, (2.5)

where we have introduced the shear modulus G′ = µ and the bulk modulus
K ′ = λ + 2

3µ. Both are a-priori functions of the oscillation frequency, which
would call for the resolution of a self-consistency equation when the oscillation
frequency will be eventually found as a function of, in particular, these elastic
constants. We introduce the Kelvin-Voigt viscous stress σvisc whose expression
is similar to that of the elastic stress:

{
σviscrr = (µK + 4

3µG) ε̇rr + 2(µK − 2
3µG) ε̇θθ

σviscθθ = σviscφφ = (µK − 2
3µG) ε̇rr + 2(µK + 1

3µG) ε̇θθ
(2.6)

The viscosities µK and µG describe the friction losses due to volume changes and
shear, respectively. Little is known, in general, about the values of the loss moduli
and, in particular, the “viscous Poisson ratio” whose definition may vary depending
on the authors [Lakes and Wineman, 2006]. Its determination generally requires
to perform two independent experiments aiming at determining, e.g., a shear loss
modulus G′′ and a traction loss modulus E ′′ (see, e.g. [Guillot and Trivett, 2011]).
From a modelling perspective, one approach consists in following [Lemaitre and
Chaboche, 1994] where it is assumed , with no explicit justification that the ratio
µK/µG is equal to K ′/G′ which amounts to say that the viscous Poisson ratio that
would characterize a ratio of strain rates is equal to the elastic Poisson ratio that
characterises the ratio of strains [von Ende et al., 2011, Linn et al., 2013]. Without
this assumption, and considering an AHL model as in [Tschoegl et al., 2002], [Pritz,
2009] have proposed bounds for the potential values of the loss moduli for materials
with a positive Poisson ratio and a low enough shear loss factor. They show that
2/3 < K ′′/G′′ < 1 which, for a sinusoidal signal of given pulsation w0, amounts
to the tight inequalities 2/3 < µK/µG < 1. We discuss these two assumptions in
the discussion (Sec. 2.5.6), but one should keep in mind that the difficulties in
characterizing accurately two dissipation constants in viscoelastic materials, whose
properties are often frequency dependent, must lead to consider the aforementioned
relationships as pure hypotheses as for now.



2. Spherical oscillations of UCAs: First investigation of shell compressibility and
elastic anisotropy 19

2.5 Isotropic compressible shell

2.5.1 Derivation
Deformation in the solid

The Eulerian radial displacement u within the shell is defined on the actual configu-
ration as the variation from an unstrained position holding no stress within the shell:

u(r, t) = r − re, (2.7)

where r is the actual position of a material particle located at re in the refer-
ence configuration.

The radial displacement u(r, t) is then calculated by solving Eq. (2.2) in the
quasi-static approximation:

[∇ · (σel + σvisc)]r = 0. (2.8)

The ratio between the viscous and the elastic terms in the above equation is
given by the ratio between the loss and storage moduli. Previous experimental
studies on existing UCAs show that the ratio between the viscosity and the storage
modulus is of order 10−8 − 10−9 s (see values in tables 2.1–2.5) therefore ω0τS is
often small, which we will take as a hypothesis in the following.

For an isotropic solid, from [∇ · σ]r = ∂σrr
∂r

+ 2
r

(σrr − σθθ) and using Eqs. (2.5)
and (2.6), we are lead to solve:(

∂2

∂r2 + 2
r

∂

∂r
− 2
r2

)
(u+ τSu̇) = 0, (2.9)

with:

τS = µM
M ′ , M

′ = K ′ + 4
3G
′, µM = µK + 4

3µG . (2.10)

The solutions of Eq. (2.9) can be written:

u(r, t) = a(t)r + b(t)
r2 + A(r)e−t/τS , (2.11)

where the term in A(r) characterizes the internal relaxation within the shell. Note
that since ω0τS is small, this term will marginally contribute to the overall response
of the shell, and we shall therefore place ourselves in the conditions where it is zero.

The two variables a(t) and b(t) depend on the long time t� τS associated with
the variations of the boundary conditions. We first express them as functions of
R1(t) and R2(t), respectively the internal and external radii of the shell, which
are our variables of interest. This is achieved thanks to Eq.(2.7), which leads to
u(Ri) = Ri(t) − Rie, for i = 1, 2. R1e and R2e are the values of the radii in the
unstrained case, and R10 and R20 their values at equilibrium in the fluid, which
may differ from R1e and R2e, notably because of hydrostatic pressure. We find:

a(t) = R2
2(t)[R2(t)−R2e]−R2

1(t)[R1(t)−R1e]
R3

2(t)−R3
1(t) , (2.12)
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and:

b(t) = R2
1(t)R2

2(t)
R3

2(t)−R3
1(t) × {R2(t)[R1(t)−R1e]−R1(t)[R2(t)−R2e]}. (2.13)

Note that a and b are of order 1 relatively to the displacements at the bound-
aries, in agreement with the linear elastic theory used here to characterize the
deformation tensor.

Velocity in the solid

The velocity field in the shell vs is the material derivative of the Eulerian dis-
placement u(r, t):

vs(r, t) = Du

Dt
= ∂u

∂t
+ ∇u · vs(r, t). (2.14)

For small deformations, |∇u| � 1, the radial component of the velocity vs
thus can be approximated to

vs ≈
∂u

∂t
= ȧr + ḃ

r2 , (2.15)

where ȧ and ḃ are the time derivative of the variables a and b. Direct calculation
of ȧ and ḃ, shown in Appendix, leads to expressions which violate the kinematic
boundary conditions, i.e. vs(r = R1) 6= U1 and vs(r = R2) 6= U2, where we define
U1 = Ṙ1 and U2 = Ṙ2. However, the deviations from the kinematic boundary
conditions remain of order |Ri−Rie|/Rie, consistently with the assumption of small
deformation and linear elastic behavior. Hence, we can restrict the velocity to its
leading order expression, where R1e coincides with R1 and R2e with R2. This leads
to an expression for vs that can otherwise be obtained directly from Eq. (2.15)
by applying continuity condition at R1 and R2:

vs(r, t) ≈ avr + bv
r2 , (2.16)

where

av = R2
2(t)U2 −R2

1(t)U1

R3
2(t)−R3

1(t) , (2.17)

and

bv = [R2(t)U1 −R1(t)U2]R2
1(t)R2

2(t)
R3

2(t)−R3
1(t) . (2.18)

The above calculated displacement and velocity generalize the ones found in
[Church, 1995] where an incompressible solid material is considered. Such materials
are characterised by a traceless deformation tensor:

εrr + εθθ + εφφ = 3a = 0, (2.19)



2. Spherical oscillations of UCAs: First investigation of shell compressibility and
elastic anisotropy 21

leading to the following displacement in the solid:

uinc(r, t) = R2
1(t)[R1(t)−R1e]

r2 , (2.20)

where we have also used the relation a = 0 to reformulate the expression of b.
The velocity vs given by Eq. (2.16) then becomes:

vinc
s (r, t) = R2

1(t)U1

r2 . (2.21)

Eqs. (2.20) and (2.21) are identical to the ones found in [Church, 1995] where the
solid velocity was calculated directly from the law conservation of the mass for an
incompressible fluid ∇ · vs = 0, while the displacement was deduced from volume
conservation that reads, in the small deformation limit, ∇ · u = 0. Note that
the two approaches are cross-consistent only in the small deformation framework:
then in this case ∇ · u = 0, and moreover the 1/r2 behaviour of vs is recovered
only if Eq. (2.14) is approximated to Eq. (2.15).

Note finally that the displacement can also be defined on the reference con-
figuration i.e. using Lagrangian formalism without significant difference [Al-
tenbach et al., 2008].

Equations of motion in the liquid

The conservation of mass for an incompressible fluid in a spherical coordinate system
gives:

1
r2

∂

∂r
(r2v) = 0, (2.22)

where v = (vf (r), 0, 0) is the radial Eulerian velocity vector in the fluid. For
r = R2, vf(r = R2) ≡ U2.

The velocity profile of the fluid is then:

vf (r) = U2R
2
2

r2 . (2.23)

The Navier-Stokes equation for an incompressible fluid and irrotational flow
writes [Landau and Lifschitz, 1987]:

ρf

(
∂vf
∂t

+ vf
∂vf
∂r

)
= −∂P

∂r
. (2.24)

Integration of Eq. (2.24) between R2 and +∞, using Eq. (2.23), leads to:

ρf

(
R2U̇2 + 3

2U
2
2

)
= Pf |r=R2

− P∞, (2.25)

where Pf |r=R2
is the pressure in the fluid near the shell boundary, and P∞ is the

sum of the applied acoustic pressure Pac(t) and the ambient pressure P0.
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In addition, conservation of radial momentum at the external surfaces of
the shell imposes:

−PG(t) = (σelrr + σviscrr )|r=R1 −
2γ1

R1
, (2.26)

and:

(σelrr + σviscrr )|r=R2 = −Pf |r=R2 + σfrr|r=R2 −
2γ2

R2
, (2.27)

where γ1 and γ2 are the surface tensions respectively at the internal and external
boundaries of the shell, and PG(t) is the pressure of the gas inside the bubble. We
assume the gas to obey a polytropic law, such that PG(t) = Pg0(R10/R1)3κ, where
PG0 is the equilibrium gas pressure and κ is the polytropic exponent of the gas.
The radial component σfrr of the viscous stress equals:

σfrr = 2µf
∂vf
∂r

= −4µf
U2R

2
2(t)
r3 . (2.28)

The normal stresses in the shell are obtained from Eqs. (2.5), (2.6), (2.11) and
(2.15), noting that as done for the velocity, the strain rate ε̇ is approximated in
the linear elasticity limit to: ε̇ = ∂ε/∂t, therefore the relation between ε̇ and vs
is similar to that between ε and u. We have then:

σelrr = 3K ′a− 4G′ b
r3 , (2.29)

σviscrr = 3µKav − 4µG
bv
r3 . (2.30)

Inserting (2.29) and (2.30) in the first boundary condition (2.26) leads to a
first equation for R1 and R2:

−PG + 2 γ1

R1
= 3K ′a− 4G′ b

R3
1

+ 3µKav − 4µG
bv
R3

1
. (2.31)

Replacing a, b, av and bv by their values (2.12), (2.13), (2.17) and (2.18) in
the above equation, one eventually gets:

− PG + 2 γ1

R1
= 3K ′R

2
2(R2 −R2e)−R2

1(R1 −R1e)
R3

2 −R3
1

− 4G′ [R2(R1 −R1e)−R1(R2 −R2e)]R2
2

(R3
2 −R3

1)R1

+ 3µK
R2

2U2 −R2
1U1

R3
2 −R3

1
− 4µG

(R2U1 −R1U2)R2
2

(R3
2 −R3

1)R1
.

(2.32)

We use the second boundary condition (2.27) to get rid of the unknown fluid
pressure in Eq. (2.25), such that:

ρf

(
R2U̇2 + 3

2U
2
2

)
= −2γ2

R2
− P∞ − 4µf

U2

R2

− 3K ′a+ 4G′ b
R3

2
− 3µKav + 4µG

bv
R3

2
. (2.33)
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This equation can be rewritten in a form that resembles a Rayleigh-Plesset
equation by replacing the term R2 − R2e in a and b thanks to Eq. (2.32) :

ρf

(
R2U̇2 + 3

2U
2
2

)
= −P0 − Pac(t)− 2 γ2

R2
− 4µf

U2

R2

+
(
PG − 2 γ1

R1

)(
1− 4G′

3K ′ + 4G′
R3

2 −R3
1

R3
2

)

− 4G′ 3K ′
3K ′ + 4G′

R3
2 −R3

1
R3

2

R1 −R1e

R1

+ 4U2

R2

[
µG

(
1− 4G′

3K ′ + 4G′

)
− µK

3G′
3K ′ + 4G′

]

− 4U1

R1

[
µG

(
1− 4G′

3K ′ + 4G′

)
− µK

3G′
3K ′ + 4G′

R3
1

R3
2

]
.

(2.34)

In this expression, it is interesting to observe that the elastic contribution of
the internal gas is modulated by the intrinsic elastic properties of the shell. This
feature will disappear in the incompressible limit. Eq. (2.32) and Eq. (2.34)
constitute a system of differential equations for the two unknowns R1 and R2. For
incompressible materials, the Rayleigh-Plesset equation is sufficient as R1 and R2
are simply linked through the incompressibility condition.

2.5.2 Unstrained Vs Initial Radii
As mentioned before, the unstrained radii may be different from the initial radii:
Rie 6= Ri0. The radius Rie is defined by the unstrained state of the shell before it is
plunged into the liquid, after what stresses within the shell take place, due to the
surface tension at the interfaces, and the internal and external pressures.

Taking Eqs. (2.32) and (2.34) at equilibrium (U1 = U2 = 0, P∞ = P0), one
can extract the displacements Ri0 − Rie. They can be written R1e = R10(1 + Z1)
and R2e = R20(1 + Z2), with:

Z1 = 1
3K ′

[
R3

20

V̂S

(
P0 + 2γ2

R20

)
− R3

10

V̂S

(
PG0 −

2γ1

R10

)]
1

4G′

[
R3

20

V̂S

(
P0 − PG0 + 2γ2

R20
+ 2γ1

R10

)]
, (2.35)

Z2 = 1
3K ′

[
R3

20

V̂S

(
P0 + 2γ2

R20

)
− R3

10

V̂S

(
PG0 −

2γ1

R10

)]
1

4G′

[
R3

10

V̂S

(
P0 − PG0 + 2γ2

R20
+ 2γ1

R10

)]
, (2.36)

where V̂S = R3
20 − R3

10.
These formulations highlight the effect of compressibility, which is the same

for the two radii.
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If the shell is incompressible (K ′ � PG0 , P0, γi/R10), one has:

Zinc
i =

(
P0 − PG0 + 2γ1

R10
+ 2γ2

R20

)
R3

20 +R3
10 −R3

i0

4G′V̂S
, (2.37)

which is identical to the expression found in [Church, 1995] when PG0 = P0, which
was hypothesized in that paper.

In [Doinikov and Dayton, 2006], where incompressible shells are also considered,
the authors find the same relation as Eq. (2.37), which is the first order of their Eq.
(33). However in a second step they go further in the calculation using deformation
profiles that are valid in the compressible case and find expressions (Eqs. (40) and
(41) in their paper) that contradicts our findings, and the ones in [Church, 1995]
and in [Sarkar et al., 2005] in that they find the counter-intuitive result that surface
tension tends to increase the equilibrium radius. Here, we are satisfied with the
observation that an increase of surface tension leads to a shrinkage of the shell.
This altogether suggests that care must be taken not to mix expressions from the
compressible case with expressions from the incompressible case.

It is worth emphasizing that in the incompressible case, the ratio of the volume
in the unstressed configuration to that after the shell is plunged in the fluid, namely
[R3

20(1 + Zinc
2 )3 −R3

10(1 + Zinc
1 )3]/

(
R3

20 −R3
10

)
, is equal to 1 in this model or in the

other models [Church, 1995, Khismatullin and Nadim, 2002, Doinikov and Dayton,
2006] only to first order in Zinc

i . This corresponds to the domain of validity of the
linear elasticity framework. In the general case, one must therefore restrict the
obtained expressions to the first order in Zi for consistency.

2.5.3 Linear analysis
Assuming a small-amplitude oscillation, linear equations for the Ri can be obtained
using the following relations:

R1(t) = R10[1 + x(t)], |x(t)| � 1;
R2(t) = R20[1 + y(t)], |y(t)| � 1;

U1(t) = R10ẋ;
U2(t) = R20ẏ;

(2.38)

To the first order in x, y, Z1 and Z2, Eq. (2.32) becomes, after using Eqs
(2.35) and (2.36):

−
(

3κPG0 −
2γ1

R10
+ 4G′R3

20 + 3K ′R3
10

R3
20 −R3

10

)
x

+ (4G′ + 3K ′)R3
20

R3
20 −R3

10
y − 4µGR3

20 + 3µKR3
10

R3
20 −R3

10
ẋ

+ (4µG + 3µK)R3
20

R3
20 −R3

10
ẏ = 0.

(2.39)

Dividing this equation by K ′ and taking the limit K ′ →∞, one gets x = yR3
20/R

3
10,

which is the relationship obtained for an incompressible material as in [Church,
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1995]. Eq. (2.39) is therefore a generalization of this relationship for the case
of a viscoelastic compressible material.

Eq. (2.39) together with the linearized Rayleigh-Plesset-like equation obtained
from Eq. (2.34) constitutes the following linear system:

MẌ +BẊ +KX = F (t), (2.40)

where:

X =
(
x
y

)
, F (t) =

(
−Pac(t)

0

)
, M =

[
0 ρfR

2
20

0 0

]

B =
 b11 b12
−4µGR3

20−3µKR3
10

R3
20−R

3
10

(4µG+3µK)R3
20

R3
20−R

3
10

 (2.41)

with b11 = 12
K ′µG −G′µK R3

10
R3

20

3K ′ + 4G′ ,

b12 = 4
(
µf + 3K

′µG −G′µK
3K ′ + 4G′

)
,

and

K =
k11

−2γ2
R20

k21
(4G′+3K′)R3

20
R3

20−R
3
10

 (2.42)

with

k11 =
(

3κPG0 −
2γ1

R10

)(
1− 4G′

3K ′ + 4G′
R3

20 −R3
10

R3
20

)

+ 12G′K ′
3K ′ + 4G′

R3
20 −R3

10
R3

20
,

k21 =− 3κPG0 + 2γ1

R10
− 4G′R3

20 + 3K ′R3
10

R3
20 −R3

10
.

The free oscillations of the shells (Pac = 0) are described by non-trivial harmonic
solutions of the above system X = X0e

λt, where λ = −δ + iω, that are obtained
by setting det(λ2M + λB +K) = 0. This leads to a polynomial equation of order
3 for λ, which can be solved analytically (yet leading to very long expressions)
or numerically. This equation reads

c1λ
3 + c2λ

2 + c3λ+ c4 = 0, (2.43)
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where

c1 = −b21m12, c2 = det[B]− k21m12, (2.44)
c3 = b11k22 − b12k21 − b21k12 + b22k11, c4 = det[K].

For sake of comparison with the literature, and making use of the observation
that damping coefficient is usually small, we present the leading order approximation
and the first-order correction with respect to this damping coefficient in the following.
Note that this is a second and independent approximation, based on the usual
values of dissipation factors, that is added to that of small deformation.

Leading order approximation

For B = 0, Eq. (2.43) becomes det[K] − k21m12λ
2 = 0, therefore λ = iω0 where

the undamped resonance frequency ω0 is given by:

ω2
0 = 3K ′ + 4G′

ρfR2
20[

4G′ 3K ′
3K ′ + 4G′

R3
20 −R3

10
R3

20
+
(

3κPG0 −
2γ1

R10

)(
1− 4G′

3K ′ + 4G′
R3

20 −R3
10

R3
20

)]

×
[(

3κPG0 −
2γ1

R10

)
R3

20 −R3
10

R3
20

+ 4G′ + 3K ′R
3
10

R3
20

]−1

− 2γ2

ρfR3
20
.

(2.45)

This constitutes the central result of this study. The last term in the above
expression is the classical contribution of the surface tension of the outer surface,
which acts against an effective mass of fluid whose scale is given by the shell
size. By contrast, the contribution of the shell elasticity and of the elastic forces
acting on the inner side of the shell (the gas pressure and the surface tension)
are strongly coupled. As discussed later on, this coupling disappears in the
incompressibility limit. As in the Rayleigh-Plesset expression for a free bubble
— ωRP0 =

[
1

ρfR
2
20

(
3κPG0 − 2γ1

R20
− 2γ2

R20

)]1/2
, that is recovered here with Eq. (2.45)

taken in the limit of vanishing shell volume (R10 → R20) — adding surface tension
makes the shell pulsation decrease, at fixed PG0. In practice, PG0 is not known nor
measurable and it would be preferable to express the pulsation as a function of
the external pressure P0. While this is easily done for a free bubble, leading to
an increase of pulsation with surface tensions, this is more complex in the present
situation: PG0 and P0 also couple through the elastic stress within the shell, which
depends on the reference configuration (R1e, R2e), which is not known in general.

In this context, measuring oscillation frequency cannot be sufficient to determine
the elastic constants of the shell material. Even if surface tensions are assumed
to be zero, and considering that the external radius is known, we are left with
four unknowns which are the two elastic constants, the internal pressure and the
internal radius. This is one more than in Church model and two more than in
zero-thickness shell models. Even in these simpler model, and in all cases, one
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needs to know more on the fabrication process of the shell to know their stress-
free state or to make additional assumptions. In [Church, 1995], it is for instance
assumed that permeability of the shell under study allows to consider that PG0 = P0,
which may be true for thin lipid shells, but not for thicker shells, as pointed out
in [Doinikov and Dayton, 2006].

For an incompressible shell, the undamped natural frequency becomes:

ωinc0 = (ρSR2
10α

inc)−1/2
(

3κPG0 −
2γ1

R10
− 2γ2

R20

R3
10

R3
20

+4G′R
3
20 −R3

10
R3

20

)1/2

,with αinc = ρf
ρS

R10

R20
.

(2.46)

This differs from the expression proposed in [Church, 1995]:

ωCh0 = (ρSR2
10α

Ch)−1/2
{

3κPG0 −
2γ1

R10
− 2γ2

R20

R3
10

R3
20

+4G′R
3
20 −R3

10
R3

20

[
1 + ZCh

1

(
1 + 3R3

10
R3

20

)]}1/2

,

(2.47)

with

αCh = ρf
ρS

R10

R20
+ 1− R10

R20
. (2.48)

A first difference lies in the effective mass characterized by the coefficient α, since
we neglected the inertia of the shell. Note that it introduces a correction on ω2

0 of
order d0/R20, where d0 = R20−R10, that is of at most a few percent for actual UCAs.

The other difference lies in the presence of a ZCh
1 term in [Church, 1995]. This

is due to a subtle inconsistency in the linearizing process: as discussed in Sec. 2.5.2,
ZCh

1 must be considered as a small parameter in order to keep the validity of linear
elasticity framework. It characterizes the difference between the unstrained state and
the equilibrium state, the same way as x and y in Eq. 2.38 characterize the difference
between the actual and the equilibrium state. Terms like xZ1 should therefore not
be included in the linearized equation, contrary to what is done in [Church, 1995]
between his Eqs. (12) and (17). Replacing ZCh

1 by its value in ωCh0 one gets:

ωCh0 = (ρSR2
10α

Ch)−1/2
[
3κPG0 + 2γ1

R10

3R3
10

R3
20

+

2γ2

R20

(
1 + 2R3

10
R3

20

)
+ 4G′

(
R3

20 −R3
10

R3
20

)]1/2

.

(2.49)

One can see that the contributions of the surface tension are incorrectly estimated
with this contested expression by Church, as this expression does not converge to
the Rayleigh-Plesset pulsation ωRP0 in the vanishing volume limit.
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Figure 2.1: Ratio of the undamped resonance frequencies ω0/ω
inc
0 as a function of

d0/R20, in the absence of external surface tension. G′ is fixed to a) G′ = P̃ , b) G′ = 5 P̃ ,
c) G′ = 10 P̃ , d) G′ = 100 P̃ , e) G′ = 1000 P̃ , f) G′ = 104 P̃ . P̃ is PG0 −

2γ1
3κR10

. We
varied K ′ as 100G′, 10G′, 3G′, 2G′, G′ and 2

3 G
′, and the corresponding Poisson ratios

ν = (3K ′ − 2G′)/(6K ′ + 2G′) are shown on each curve. Note that when ν = −1, ω0 ≈ 0.

First order approximation

If Eq. (2.43) is expanded to the first orders in bij and δ, one gets that ω = ω0 and

δ = −c3 + b21m12ω
2
0

2k21m12
, (2.50)

which can be reformulated as:

δ = 1
2m12

[
b12 − b11

k22

k21
+ k11

k2
21

(b21k22 − b22k21)
]
. (2.51)

As seen in Eq. (2.40), the first term b12 in the above expression represents the
damping directly affecting the motion of the external radius of the shell, through
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the fluid viscosity and a contribution of the shell viscosity. The second term stems
from the damping affecting the motion of the internal radius, which is weighted by
the elastic contribution k22/k21. The third term stems from the coupling between
dissipation and elastic deformation inside the shell.

For an incompressible shell, the damping ratio δ in Eq. (2.50) simply becomes:

δinc = 2(R3
20 −R3

10)µG +R3
10µf

ρSR2
10R

3
20α

inc
. (2.52)

In [Church, 1995] it reads:

δCh = 2(R3
20 −R3

10)µG +R3
10µf

ρSR2
10R

3
20α

Ch
. (2.53)

As for the pulsation a difference of a few percents remains, which is related
to the absence of shell mass in our model.

2.5.4 Effect of compressibility on the resonance frequency
We discuss in this section to which extent the frequency is modified when the
material is compressible. We first consider a reference configuration, denoted R,
which is considered in [Church, 1995]: d0 = 15 nm, PG0 = 101.3 kPa, ρf = 1000
kg/m3, ρS = 1100 kg/m3, µf = 0.001 Pa.s, G′ = 88.8 MPa, γ1 = 0.04 N/m,
γ2 = 0.005 N/m and κ = 7/5. For such a shell whose external radius lies in the
range 1− 10µm, we find that 0.99 < ωinc0 /ωCh0 < 1, which indicates that while our
model has led us to neglect the inertia of the shell, this assumption will modify the
final result by a negligible amount. Note that in this example, since γi/Ri0 � G′,
the inaccuracy that we exhibited in the [Church, 1995] model has no quantitative
consequence. In the following, we consider ωinc0 as the reference value for discussion.

We now discuss the effect of compressibility together with an evaluation on
the impact of the contribution of gas compressibility. For most commercial shells,
G′ is actually 10 to 1000 times the ambient pressure (see e.g. Table 2.4). Since
the G′ contribution is weighted by d/R (which is roughly the ratio of the shell
material volume over the volume of gas), both contributions are likely to contribute
with comparable weight.

As the contribution of the external surface tension is purely additive, for
simplicity we set γ2 = 0 and consider several values of P̃ = PG0 − 2γ1

3κR10
, that

characterizes the contribution of the inner gas to UCA oscillations. In this case,
regarding space variables, R20 × ω0 depends only on d0/R20.

In Fig. 2.1, the ratio ω0/ω
inc
0 is calculated for different values of G′ and K ′,

that are set relatively to P̃ .
The influence of compressibility is significant: it reduces the resonance frequency,

all the more that the relative thickness d0/R20 increases, the Poisson ratio decreases,
and the shear modulus increases. In particular, when the bubble radius decreases at
fixed thickness, this effect of compressibility will become relatively more important.
Compressibility thus introduces a dependency of the frequency on the shell radius



30 2.5. Isotropic compressible shell

(ν=0.495)

(ν=0.451)

(ν=0.35)

(ν=0.285)

(ν=0.125)

(ν=0)
0.85

0.90

0.95

1.00

0 0.02 0.04 0.06 0.08 0.10

δ
/δ
in
c

d0 /R20

*

(ν=0.495)

(ν=0.451)

(ν=0.35)

(ν=0.285)

(ν=0.125)

(ν=0)

0.80

0.85

0.90

0.95

1.00

0 0.02 0.04 0.06 0.08 0.10

δ
/δ
in
c

d0 /R20

(a) (b)

(ν=0.495)

(ν=0.451)

(ν=0.35)

(ν=0.285)

(ν=0.125)

(ν=0)

0.75

0.80

0.85

0.90

0.95

1.00

0 0.02 0.04 0.06 0.08 0.10

δ
/δ
in
c

d0 /R20

(ν=0.495)

(ν=0.451)

(ν=0.35)

(ν=0.285)

(ν=0.125)

(ν=0)0.7

0.8

0.9

1.0

0 0.02 0.04 0.06 0.08 0.10

δ
/δ
in
c

d0 /R20

(c) (d)

Figure 2.2: Ratio of the damping ratios δ/δinc as a function of d0/R20, in the absence
of external surface tension. G′ is fixed to a) G′ = P̃ , b) G′ = 1.5 P̃ , c) G′ = 4 P̃ , d)
G′ = 5 P̃ .P̃ is PG0 −

2γ1
3κR10

. We varied K ′ as 100G′, 10G′, 3G′, 2G′, G′ and 2
3 G
′, and the

corresponding Poisson ratios ν = (3K ′ − 2G′)/(6K ′ + 2G′) = (3µK − 2µG)/(6µK + 2µG)
are shown on each curve. Note that curves do not vary by more than 1% for G′ ≥ 5 P̃ .

that is more complex than in the incompressible case, where ω0 ∝ 1/R20 in the
thin shell limit.

For large values of G′, Eq. (2.45) yields, after setting K ′ = 2(1+ν)
3(1−2ν)G

′ ≡ f(ν)G′,

ω2
0,G′�P̂ = 1

ρfR2
20

(
4G′ R

3
20 −R3

10
R3

20

)
3f(ν)

4 + 3f(ν)R
3
10

R3
20

. (2.54)

Then, ω0,G′�P̂

ωinc0,G′�P̂

2

=
3f(ν)(1− d0

R20
)3

4 + 3f(ν)(1− d0
R20

)3 ≡ g(ν, d0, R20). (2.55)

In the thin shell limit, compressibility leads to a decrease of the pulsation
squared by a factor

√
f(ν)/[f(ν) + 4/3].

Eq. (2.54) can also be interpreted from the following practical viewpoint: if one
measures a shell pulsation and deduces from this measurement a value G′0 for the
shell, assuming incompressibility, the same measurement can also be obtained with
a shell of shear modulus G′ and Poisson ratio ν obeying G′0 = G′g(ν, d0, R20).

The consequences are two-fold: as g(ν, d0, R20) is significantly smaller than
1 as soon as ν < 1/2, the existence of unforeseen compressibility will lead to
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Figure 2.3: Ratio of the damping ratios δ/δinc as a function of d0/R20, in the absence
of external surface tension. G′ is fixed to a) G′ = P̃ , b) G′ = 2 P̃ , c) G′ = 3 P̃ , d)
G′ = 5 P̃ . P̃ is PG0 −

2γ1
3κR10

. We varied K ′ as 100G′, 10G′, 3G′, 2G′,G′ and 2
3 G
′, and the

corresponding Poisson ratios ν = (3K ′ − 2G′)/(6K ′ + 2G′) are shown on each curve.Note
that curves do not vary by more than 1% for G′ ≥ 5 P̃ . In all cases, µK = 0.7µG, following
[Pritz, 2009].

an underestimation of the shear modulus. For instance, for a shell of estimated
thickness 15 nm and external radius 2 µm, if ν happens to be 0.4 instead of 0.5,
g(ν, d0, R20) = 0.77, which means that the shear modulus will be underestimated
by 23%. This value reaches 28% if d0 = 200 nm.

Second, as g is an increasing function of R20, using a model for incompressible
material can lead to an artificial increase of the (apparent) shear modulus with
the radius, a feature regularly pointed out in the literature.

These compressibility effects are more pronounced for thick shells, and we
are not aware of oscillation measurements in the literature based on thick shells
like polymeric shells. In addition, a more quantitative analysis of the impact of
compressibility on the radius dependency of the frequency, by comparison with other
suggestions like non-linear effects, requires to know more about the inner pressure
inside the considered shells, which depends on their manufacturing process and also
potentially on the allotted time for pressure equalization through transmembrane
diffusion. This point becomes even more evident in the zero-thickness shell limit
that is discussed in the following.
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2.5.5 From finite thickness to zero-thickness shell
For vanishing thickness, considering the corresponding limit in our finite thickness
model or in that of [Church, 1995] leads to models that can be compared to zero-
thickness models. In particular, in [Hoff et al., 2000], the vanishing thickness
limit of Church model is considered and the resulting frequency is shown to be
similar with that obtained in [de Jong et al., 1992] or in the linearized version
of [Marmottant et al., 2005]:

ω0−thickness
0 = (ρfR2

0)−1/2
(

3κPG0 + 4χ0

R0

)1/2
, (2.56)

where R0 is the shell radius and χ0 has the dimension of a surface tension and
includes in-plane elasticity effects as well as surface tension effects on both sides
of the interface [de Jong et al., 1992, Hoff et al., 2000, Marmottant et al., 2005,
Sarkar et al., 2005, van der Meer et al., 2007]. In [Hoff et al., 2000] when surface
tension effects are neglected, χ0 is shown to be equal to χ2D = 3G′d0, the in-plane
surface contraction modulus.

We examine here the small thickness limit of our model. We consider only the
incompressibility limit, which is already an interesting source for discussion and
allows direct comparison with the actual zero-thickness models.

Keeping only the 0th and 1st orders in d0/R20 in Eq. (2.45), we find the
following expansion:

ωinc0 = (ρfR2
20)−1/2

[
3κPG0 −

2γ1

R20
− 2γ2

R20
+
(

12G′ + 9κPG0 −
8γ1

R20

)
d0

R20
+ o

(
d0

R20

)]1/2

(2.57)

By comparison with Eq. (2.56), this introduces a correction that implies that
pressure and inner surface tension have a more complex space-dependency than that
proposed in the Church-Hoff model, where the 1st order in d0/R20 was neglected
in the inertial term.

We attempt to discuss the implication of our modeling regarding the interpre-
tation of experimental data. Authors generally consider a given experiment for a
set of shells of different sizes, which they either watch (measuring thus the radius
oscillation [van der Meer et al., 2007, Chetty et al., 2008, Li et al., 2013, Doinikov
et al., 2009, Tu et al., 2009]) or listen (measuring thus the acoustic transmission
[Parrales et al., 2014]). The obtained curves are then fitted according to the chosen
model, which results in the determination of the corresponding elastic modulus for
each shell radius. It is then generally observed that this constant increases with
the radius, which highlights the limit of the chosen model. Other parameters are
generally considered as known but they are not always given by the authors. In
particular, the inner pressure PG0 is sometimes set to atmospheric pressure with
not much justification [van der Meer et al., 2007, Li et al., 2013, Doinikov et al.,
2009, Tu et al., 2009] but some authors do not specify their choice [Parrales et al.,
2014]. On the other hand, the descriptions of fabrication processes of home-made
microbubbles often mention initial gaz pressure larger than 1 bar [Segers et al.,
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2016, Parrales et al., 2014], which questions the hypothesis of atmospheric pressure
inside the shells. Though diffusion may favor this hypothesis, such a phenomenon
will also induce stresses inside the shell reaching its new equilibrium, resulting in
uncertainties on the exact state around which the oscillations take place.

Finally, it is generally observed in all papers that while the radius varies by a
factor 2 to 3, the corresponding elastic modulus varies by a factor 3 to 4. In [Parrales
et al., 2014] this is the case but contrary to most other papers where only the values
of the elastic constants are given, the measured frequencies are also mentioned. We
therefore use these raw data to make the following comments. In Fig. 2.4, the
pulsations found in the experiments are plotted as a function of shell radius. Those
shells are lipidic shells, therefore the small-thickness limit holds. The fit of their
data by the usual zero-thickness law (Eq. 2.56), assuming PG0 = 1 bar and κ = 1.4,
is not that good, which illustrates the conclusions of the authors who, considering
each radius separately, showed that the elastic modulus must be an increasing
function of the radius. We note however that the fit yields χ0 = 0.21 N/m, which
is smaller than all the values reported by the author for the different shell radii,
which questions the (implicit) choice of inner pressure or of polytropic constant
they made. Interestingly, letting PG0 free leads to a better fit, with PG0 = 1.6 bar.
This shows the importance of the knowledge of the inner pressure or, equivalently,
of the polytropic coefficient that depends on the chosen gas and on the details of
the thermodynamics process, as discussed in [Parrales et al., 2014].

In the expression for the zero-thickness limit that we established (Eq. 2.57), we
show that the contribution of pressure is more complex and that it is important
to decouple, in the elastic contribution of the interface, bulk effects from surface
tension effects: they do not sum up in a simple χ0 parameter. Using this expression
we find an even better fit for the data of [Parrales et al., 2014], illustrating thus
the complex interplay between all the parameters of these models. Note that we do
not claim here that the parameters we find are those that actually characterize the
considered shell. Our discussion simply highlights the need for a good knowledge
of a maximum of parameters, if one wishes to extract one unknown parameter
from the sole measurement of oscillation frequencies.

2.5.6 Effect of compressibility on the damping
Reminder: our model assumes that τS = µM/M

′ is much smaller than ω−1
0 . In the

following examples, we checked that τSω0 is always lower than 0.01. We set here
the fluid viscosity µf = 0.001 Pa.s and the shear viscosity µG = 0.002 Pa.s.

As for the discussion on pulsation, we set γ2 = 0 and consider several values of
P̃ = PG0 − 2γ1

3κR10
. In Fig. 2.2 we show the ratio of the damping constants δ/δinc

under the hypothesis that µK varies with µG the same way K ′ varies with G′ that
is, the viscous and elastic Poisson ratio are equal [Lemaitre and Chaboche, 1994].
In Fig. 2.3 µK is chosen to be equal to 0.7µG following [Pritz, 2009], where it is
shown that 2/3 < µK/µG < 1 for thermodynamic consistency.

Compressibility has the effect to make the damping constant decrease.As
for the elastic constant determined through the frequency, this may lead to an
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Figure 2.4: Dots: experimental pulsations found in [Parrales et al., 2014] as a function
of shell radius. Full black line: fit with Eq. (2.56) with fixed inner pressure PG0 = 1 bar
and χ0 as a free parameter. Red dotted line: fit with the same equation but the pressure
is also a free parameter. Blue dashed line: fit with Eq. (2.57) with also the surface tension
being a free parameter. Using Eq. (2.57) allows to recover the full spatial dependency of
the data, with a 1/R0 and a 1/R3/2

0 contribution.

underestimation of the shear viscosity if an incompressible model is used. For large
values of G′ and K ′ = G′f(ν) compared to P̃ , as for the frequencies, the damping
depends only on elastic properties through the Poisson ratio, as can be seen through
Eqs. (2.41) and (2.42) taken in the limit G′, K ′ � P̃ . In practice, as seen in Figs.
2.2 and 2.3, this limit is reached as soon as G′ > 5P̃ , which is generally the case
for actual commercial UCAs. Interestingly, the choice of the model for the viscous
Poisson ratio has little impact on the final results: for high values of K ′, µK is
not expected to contribute much for both models as its contribution vanishes in
the incompressibility limit (see Eq. (2.52)), and for values of K ′ comparable G′,
µK is close to µG in both models. If the [Pritz, 2009] model is assumed though,
the coupling between elastic and viscous terms is such that the damping is not
a monotonous function of the Poisson ratio ν.

2.6 Transverse isotropic elastic shell

We now examine the effect of anisotropy in the properties of a purely elastic
material. We reformulate Eq. (2.4) using elastic constants corresponding to



2. Spherical oscillations of UCAs: First investigation of shell compressibility and
elastic anisotropy 35

standard deformations [Lempriere, 1968, Itskov and Aksel, 2002]:
σelrr = (1−ν‖)E′r

1−ν‖−2
E′‖
E′r
ν2
θr

εrr + 2νθrE′‖

1−ν‖−2
E′‖
E′r
ν2
θr

εθθ

σelθθ = σelφφ = νθrE
′
‖

1−ν‖−2
E′‖
E′r
ν2
θr

εrr + E′‖

1−ν‖−2
E′‖
E′r
ν2
θr

εθθ
, (2.58)

where E ′r is the Young modulus for traction in the radial direction while E ′‖ is
the Young modulus in the orthoradial plane. ν‖ is the Poisson ratio in this same
plane, and νθr the Poisson ratio governing deformations in the orthoradial plane
when there is a radial load 1.

Thermodynamical consistency imposes [Lempriere, 1968]:

−1 ≤ ν‖ ≤ 1
−
√
E ′r/E

′
‖ ≤ νθr ≤

√
E ′r/E

′
‖

ν‖ ≤ 1− 2ν2
θr

E′‖
E′r

. (2.59)

For an isotropic material of Poisson ratio ν, these inequalities reduce to −1 ≤
ν ≤ 1/2. The case ν = 1/2 corresponds to incompressible material as considered
in [Church, 1995].

2.6.1 Derivation
Displacement within the shell

Following the same steps as in Sec. 2.5.1, the displacement now obeys the fol-
lowing equation:

d2u

dr2 + 2
r

du

dr
− 2ku

r2 = 0, (2.60)

with:

k =
E ′‖(1− νθr)
E ′r(1− ν‖)

, (2.61)

which is the equivalent of Eq. (2.9) for this purely elastic case.
The solutions of Eq. (2.60) have the form

uTr(r) = aTrrβ+ + bTrrβ− , (2.62)

with β± = 1
2(−1±

√
1 + 8k). Note that by virtue of Eqs. (2.59), it can be shown

that k ≥ −1/8 whatever the material properties and the exponents β± are real.
The isotropic case corresponds to k = 1 then β− = −2 and β+ = 1. The variables
aT and bT are related to the boundary conditions thanks to Eq. (2.7):

aTr = (R2 −R2e)Rβ−
10 − (R1 −R1e)Rβ−

20

R
β−
10 R

β+
20 −R

β+
10 R

β−
20

, (2.63)

1Note that νrθ is used by some authors instead of νθr [Lempriere, 1968].
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and

bTr = (R1 −R1e)Rβ+
20 − (R2 −R2e)Rβ+

10

R
β−
10 R

β+
20 −R

β+
10 R

β−
20

. (2.64)

The Rayleigh-Plesset-like equation can be derived following the same steps
as in Sec. 2.5.1. For the sake of simplicity we calculate directly the resonance
frequency in the following section.

2.6.2 Resonance frequency
Following the same steps as in Sec. 2.5.3, one gets the following system:

MẌ +KX = F (t), (2.65)

where

X =
(
x
y

)
, F (t) =

(
−Pac(t)

0

)
,M =

[
0 ρfR

2
20

0 0

]
,

and

KTr =
[
kTr11

−2γ2
R20

kTr21 kTr22

]
,where

kTr11 =
(

3κPG0 −
2γ1

R10

)

×
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20 −Rβ+−1

10 )(β+ − 1)−1R
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10 A−
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
+
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, (2.66)

with:

A+ = β+(1− ν‖)E ′r − [1− (2− β+)νθr]E ′‖, (2.67)

A− = β−(1− ν‖)E ′r − [1− (2− β−)νθr]E ′‖, (2.68)

and:

kTr21 = −3κPG0 + 2γ1

R10
+

R
β+
20 R
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, (2.68)
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kTr22 =
R20R

β−+β+−1
10

[
E ′r(1− ν‖)(β+ − β−)

]
(

1− ν‖ − 2
E′‖
E′r
ν2
θr

)
(Rβ−
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β+
20 −R

β+
10 R

β−
20 )

. (2.69)

Then, the undamped resonance frequency is:

ωTr0 =
(

det[KTr]
m12kTr21

)1/2

. (2.70)

2.6.3 Effect of anisotropy
In what follows, the couple (E ′ = 2G′(1 + ν),ν) will be used to describe the elastic
properties of an isotropic solid for the sake of comparison with the elastic properties
of a transversely isotropic material.

We first discuss what is the impact of anisotropy keeping the material incompress-
ible. In such a situation, it is shown in [Itskov and Aksel, 2002] that νθr = 1/2 while
ν‖ = 1− E′‖

2E′r
. Thermodynamics constraints (Eq. (2.59)) then impose E ′r > E ′‖/4.

We remark that Eq. (2.61) becomes k = 1 that is, the deformation function is
the same as in the isotropic case. Second, the terms in the KTr matrix implying
the shell elastic constants are all proportional to E ′r and do not depend on E ′‖.
We conclude that incompressible shells oscillate exactly the same way whatever
the value of their in-plane Young modulus that is, they oscillate like isotropic
incompressible shells of Young modulus E ′r

For anisotropic compressible material, in general, hydrostatic stress does not
necessarily induces a uniform dilatation in the three directions. It is interesting for
comparison with the isotropic case to consider the situation where this is true. In
such a situation of isotropic volumetric response, a bulk modulus can be defined as
a material constant [Itskov and Aksel, 2002]. It is equal to κ = E ′r/[3(1− 2νθr)]. In
addition, it can be shown that ν‖ is given by 1−E′‖

2

(
1
E′r

+ 1
3κ

)
; the material properties

are thus described, for the radial motion considered here, by 3 independent variables
(e.g. κ, E ′r and E ′‖) instead of 4 in the general case and 2 in the incompressible
case. In this case also, the pulsation is that of the isotropic material of moduli
K ′ = κ and E ′ = E ′r, though the deformation inside the shell is not the same:
in Eq. (2.61), k is independent from E ′‖ (but not necessarily equal to 1) and
because ν‖ appears only under the pattern 1 − ν‖ in KTr, it can be easily seen
that the contribution of E ′‖ vanishes.

Finally, in Fig. 2.5, we consider a general (arbitrary) case, based on the test
case the configuration R as it refers to a lipidic shell, which we may expect to
exhibit transverse anisotropic properties. We have fixed ν‖ = νθr = 0.35 and varied
E ′‖ as a function of E ′r, within the bounds allowed by thermodynamics. Here, E ′‖
also influences the frequency, which increases as E ′‖ increases.

In all cases, as for the isotropic case, these results show that for a given measure
of pulsation frequency, several sets of elastic parameters can yield the same result.
More complex dependency with the external radius is also expected.
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Figure 2.5: Ratio of the undamped resonance frequencies in the compressible case
ωTr0 /ωiso0 . The values for the in-plane and out-plane Poisson ratio are ν‖ = νθr = 0.35.
We varied E′‖ as 0.01E′r, 0.1E′r, 0.5E′r, E′r and 2.65E′r, the isotropic constants E′ = E′r
and ν are set to 88.8 MPa and 0.35 respectively.

2.7 Conclusion & Perspectives
We have developed a finite thickness shell model for the oscillations of an en-
capsulated bubble whose material can be compressible and/or present different
elastic properties in the radial and orthoradial directions. The main hypothesis
is that we have neglected the mass of the shell, leading to infinite velocity for
wave propagation in the material, in order to simplify the equations. The next
step would be to consider the complete problem of wave propagation, as done for
instance in [Doinikov et al., 2018, Doinikov and Marmottant, 2018] for a bubble
oscillating in a liquid confined by a visco-elastic solid.

We have found exact expressions for the free pulsation of an encapsulated bubble,
that could be used to interpret more accurately experimental characterization of
UCAs. Our results suggest that neglecting compressibility will lead to underestima-
tion of the shear modulus, and that adding some compressibility in the model may
explain the apparent growth of the elastic moduli with the shell radius.

A correction of the widely used Church model [Church, 1995] is evidenced.
Another correction of another model [Doinikov and Dayton, 2006] is shown, where an
inconsistency in the calculation of the radii in the unstrained configuration was made.

Due to the growing interest in the development of new generation UCAs,
made of various material and built with well defined radii, we expect that several
opportunities to test our model will emerge in the near future. Our predictions
can also be used to build more complete theories accounting for the response of
the shells to external signals.

Finally, our model started to be used instead of pioneering models like in a
very recent paper [Kikuchi and Kanagawa, 2021] where they study the effect of
shell compressibility on the non-linear response of multiple microbubbles as well
as in [Dash and Tamadapu, 2022, Sojahrood et al., 2021].

Note: Our paper [Chabouh et al., 2021] was chosen on the cover highlight
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Figure 2.6: Cover highlight in JASA (biomedical acoustics), March 2021

in the Journal of Acoustical Society of America (JASA) for biomedical acous-
tics (see Fig.2.6).



40



3
Buckling Dynamics

Contents
3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Experimental apparatus . . . . . . . . . . . . . . . . . . 44
3.2.2 Pressure sensor calibration . . . . . . . . . . . . . . . . 45
3.2.3 microbubbles . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 Experimental procedure . . . . . . . . . . . . . . . . . . 47
3.2.5 External trigger . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Buckling angle . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Evolution per cycle . . . . . . . . . . . . . . . . . . . . . 52

3.4 Height & Width . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Quasi-static load . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Evolution in time . . . . . . . . . . . . . . . . . . . . . . 56
3.5.2 Shape hysteresis . . . . . . . . . . . . . . . . . . . . . . 58
3.5.3 3D numerical simulation comparison . . . . . . . . . . . 58
3.5.4 Buckling pressure . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Dynamic buckling load . . . . . . . . . . . . . . . . . . . 61
3.7 Conclusions & perspectives . . . . . . . . . . . . . . . . 63

3.1 State of the art
Buckling of UCAs has been reported in the literature numerous times. Since UCAs
can be used as drug carriers [Kooiman et al., 2014], the study of their rupture
mechanism has lead to evidence the buckling of microbubbles. In the work of
[Bouakaz et al., 2005], they conducted a videomicroscopy experiment using a high

41
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Figure 3.1: a) b) and c) Microbubbles under microscope reveals three different oscillation
regimes upon acoustic excitation. f) evidence of buckling from SEM experiments. Adapted
from [Helfield et al., 2017].

speed camera to observe polymer microbubbles (PB127) under different acoustic
excitation. For a range of amplitudes and frequencies, microbubbles can exhibit
distinct regimes of oscillation. Prior to the rupture, authors found a "transient
regime" where the microbubbles are compressed without significant expansion.
This transient regime was later referred to "compression-only" behavior [De Jong
et al., 2007] and it is well described by the Marmottant model [Marmottant et al.,
2005, Marmottant et al., 2011]. Inspired by the buckling of a lipid monolayer, this
model adds an effective surface tension of the solid once the radius exceeds the
buckling radius which corresponds to the spherical regime. Later, various high-speed
optical observations of commercial UCAs under acoustic excitation mentioned the
appearance of buckling [Chetty et al., 2008, Dollet et al., 2008, Helfield et al., 2017].
Fig.3.1, adapted from [Helfield et al., 2017], shows the above mentioned regimes
for a polymeric microbubble under acoustic excitations.

’Listening’ to the buckling was reported as well. In the work of [Renaud et al.,
2015], the authors have noticed a decrease of the speed of sound in the medium
containing microbubbles when the ambient pressure is increased above a certain
threshold. This result hints for ’softening’ of the medium due to microbubble
buckling. An independent study has reached the same conclusion [Memoli et al.,
2018]. There, the primary Bjerkness forces on commercial polymeric shells are
measured; a strong rise of this force above a given amplitude of the applied acoustic
field is interpreted again as a signature of the sudden ‘softening’ of the shell.

In a very recent work [Mokbel et al., 2021], the intrinsic dynamics of the buckled
state is studied experimentally on centimetric shells and in three-dimensional
axisymmetric simulations. The results are supported by a theoretical model that
accurately describes the buckled shell as a two-variable-only oscillator. This study
shows a potential in the understanding of this ’softening’ effect reported in acoustics
experiments on microbubbles.

Another approach in the study of the dynamics of rupture of UCAs is to measure
the pressure at which rupture occurs during a quasi-static overpressure experiment.
[Leong-Poi et al., 2002] measured the volumetric decrease resulting from an increase
in static pressure and estimated the bulk modulus of polymeric UCAs by monitoring
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multiple UCAs subjected to overpressure without mentioning buckling of shells.
Later on, in a similar work, [Chitnis et al., 2011] studied the rupture of polymer

shells with 2 different shell-thickness-to-radius ratios (7.5nm/µm and 40nm/µm).
They used a linear buckling theory and a refined one that takes into account the
shear component arising due to nonuniform shell thickness. They reported an
agreement with this refined buckling theory to measure thickness of microbubble
only for very stiff materials (Young modulus ≈ 1500 MPa).

Few years after, the same group [Koppolu et al., 2015] combined two different
experiments, first one is a quasi-static linear increase of the hydrostatic pressure
of a fluid containing microbubbles and seen under videomicroscopy. The second
one is acoustic backscatter measurements. It is highlighted that the microbubbles
that didn’t experience buckling are the ones that had an order of magnitude higher
subharmonic response. Same experiments for two different lipid microbubbles were
conducted in [Thomas and Borden, 2017]. They observe a higher initial dilatational
elasticity with the increase of the pressurization rate. They suppose that the
stiffening of the microbubbles arises from their composition and microstructure.
Another way to understand the observed stiffening is by introducing the creeping
effect. When a viscoelastic structure buckles due to creep, it may be treated as
an equivalent elastic structure with a lower critical load [Hayman, 1981]. Stated
differently, the faster the loading, the more time needed to the instability to
take place. This phenomena was studied in a very recent work [Stein-Montalvo
et al., 2021]. A dynamic pressure buckling experiment was done on defect-
seeded centimetric spherical shells. And the results are in great agreement with
viscoelastic shell models.

Finally, in a very recent study [Yoo et al., 2022], an acoustical tweezer was
used to trap a single glass microbubble and the rupture pressure is measured.
Their measurements collapse well with the linear elastic buckling theory (discussed
later in the present chapter)

So far, no investigation has been done on the buckling/unbuckling dynamics of
UCAs and specifically before the rupture phase. The aim of the present chapter
is to study this aspect experimentally on different microbubbles.

3.2 Methods
We have designed and assembled an experimental apparatus, that enables us to
investigate the deformations of microbubbles in two different configurations:

• microbubbles floating against gravity far from walls.

• microbubbles stuck to the glass walls.

The advantage of the first configuration is twofold: firstly, it entitles the study
of the dynamics of a free shell for a complete cycle of buckling and unbuckling.
Secondly, it enables the study of the buckling-induced displacement as it will be
discussed in details in Chapter 4.
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Figure 3.2: Schematic of the experimental apparatus

In the second configuration, different pressure loads can be applied, since the
microbubble is contained for a very long time. For instance, a quasi-static loading
i.e. a slow variation of the external pressure or a load with a step function, to
study the intrinsic properties of the buckling dynamics.

3.2.1 Experimental apparatus
A schematic of the experimental apparatus is shown in Fig. 3.2. An inverted
microscope (Olympus®, model IX70) is twisted 90◦ through three stabilizing
aluminium legs. This configuration allows to have an observation axis perpendicular
to gravity (z-axis). After the injection in to the chamber, which the focal plane
is (xy), the microbubbles float up against gravity. With this experimental setup,
their displacement and deformation can be recorded concomitantly.

A standard microfluidic system of Elveflow® is used to connect the pressure
controller (Elvesys®, France) to the chamber.

A custom-built chamber used for the experiment was designed and fabricated in
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our laboratory. Fig.3.3 shows a 3D-view and top-view of the piece designed using
SolidWorks® (Dassault systèmes, France) software. Aluminium material is selected
in order to avoid any deformation of the membrane upon pressurization owing to
their high tensile strength (around 90 MPa). The chamber has a standard size of
(75 mm ×25 mm) to be easily mounted on the microscope. The other dimensions
are carefully selected to fit the standard size of the tubing and the microfluidic
connections. The diameter of the sample medium is 25 mm with a thickness of
2 mm that gives a total fluid volume of V ≈ 980 µL.

To close the chamber and ensure no leakage, two plain microscope slides
(Corning®, USA) with a size (32 mm ×32 mm) and a thickness of 1mm were
glued on the top and button surfaces using a blue epoxy adhesive Loctite® SI
5926. Note that the upper and lower surfaces need to be carefully cleaned to avoid
any greasy particles to get stuck on it and prevent a perfect adhesion of the glass
cover-slips. A 48 hours waiting time is required for a full adhesion before any use of
the chamber. Finally, 8 aluminum bars (4 on each side) are screwed on the top and
button surface to prevent any deformation of the adhesive upon pressurisation.

Since the behaviour of the microbubbles, is in general sensitive to temperature
[Shekhar et al., 2018], all the experiments were conducted at room temperature. And
to avoid any unwanted movement of the chamber that might alter the deformation
and the displacement of the microbubbles, the whole setup is mounted on an
optical table (Thorlabs®).

3.2.2 Pressure sensor calibration

A microfluidic pressure sensor (MPS1, Elvesys®, France) is mounted in series with
the system. The pressure sensor is used to check if there is a time delay or amplitude
shift between the measured the pressure inside the chamber (Pmeas) and the input
pressure (Pin) provided by the pressure controller. Following the instruction of the
manufacturer, the calibration is made by connecting the pressure sensor directly
to the outlet of the pressure controller. Once calibrated, the pressure sensor is
inserted after the outlet of the chamber at a height z1 = 25 cm. An example of
pressure measurements is shown on Fig.3.4. It indicates the target pressure (P
Target) that the system should follow, the input pressure (Pin), the measured
pressure (Pmeas) and the difference between them (∆P = Pin − Pmeas) on one
complete cycle of 40 seconds period (T = 40 s).

First, we see that the input pressure well respects the target pressure all the
time except at the beginning, where a jump of 5 kPa is made to start and at the
end of the cycle where the input pressure plateaus instead of following the sine
curve. Second, the average difference between the input and the measured pressures
is constant. It has a value of ∆P = 2.463 ± 0.249 kPa which corresponds to the
hydrostatic pressure between the height of the pressure controller and the height
of the pressure sensor. If we consider, Phydro = ρg∆z, assuming the water density,
ρ = 1000 kg/m3, the acceleration of the gravity, g = 9.81 m/s2 and ∆z = 25± 0.1
cm gives Phydro = 2.45± 0.1 kPa (≈ ∆P ). We can thus conclude that the pressure
inside the chamber is Pin + ρgδz, where δz is the height difference between the
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Figure 3.3: Top and 3D view of the designed chamber

considered microbubble and the pressure controller (See Fig.3.2).

3.2.3 microbubbles
All along the work presented in this thesis, we used two different UCAs. The
first one, is a commercial contrast agent, SonoVue/Lumason® (Bracco Spa, Milan,
Italy). It consist of a phospholipid shell encapsulating a sulfur hexafluoride gas
core. Different measurements of their visco-elastic properties, obtained through
various experimental techniques, can be found in the literature. As highlighted
in the previous chapter and in our published work [Chabouh et al., 2021], those
parameters are highly dependent on the theoretical model that is used to fit the
experimental data. The elastic 2D compression modulus χ2D ranges from 0.024
to 2.61 N/m, and the surface viscosity modulus κS from 0.1× 10−8 to 3× 10−8

N/m.s. In what follows we will use a value of 0.5 N/m for χ2D and 0.5× 10−8

N/m.s for κS. To maintain good stability of the SonoVue® microbubbles according
to the manufacturer’s suggestions, they were freshly reconstituted prior to use
through a mixture of the lyophilisate with 5 ml physiological saline solution, to
form a suspension that contains approximately 2 − 5× 108 shells per milliliter
with diameters ranging from 2 to 7 µm.

The second population is a homemade monodisperse lipidic microbubbles,
fabricated by our collaborators: PhD student Benjamin van Elburg under the
supervision of Assis. Prof. Dr. Guillaume Lajoinie, Assis. Prof. Dr. Tim Segers
and Prof. Dr. Michel Versluis (Physics of Fluids group, University of Twente,
The Netherlands). The synthesis setup consists in a microfluidic flow-focusing
device. It uses a feedback loop to control the size and monodispesity of the freshly
formed microbubbles in [Van Elburg et al., 2021, Segers et al., 2020, Segers et al.,
2016]. The encapsulating shell is made of phospholipid (mixture of DPPC, DPPA,
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Figure 3.4: Plot of the target pressure, Pin, Pmeas and the difference ∆P = Pin−Pmeas

and DPPE-PEG5000 in a 80:10:10 molar ratio). With this technique, χ2D can
be precisely tuned over one order of magnitude with values between 0.5 N/m to
4.5 N/m. We used two different batches with two different χ2D : ∼ 0.55 and 2
N/m with average radius of 3 µm.

3.2.4 Experimental procedure
In order to avoid any air bubbles inside the medium, we first degas 500 ml of
distilled water for a period of 15 minutes in a vacuum multi-staged pump. After
switching the pump off, a tiny opening of the valve is done to slowly introduce
ambient air to the medium at room temperature (21 ± 1◦C)

Second, a neat suspension of microbubbles was diluted by a factor 1000 in
degassed saline (0.09% w/v) which gives an approximate concentration of ≈ 1× 105

microbubbles per ml. The suspension is placed in a Falcon microfluidic reservoir
for 15 mL (Fisher Scientific, USA). The microbubbles are injected into the chamber
through application of a 30 mbar overpressure to the reservoir. The valve is
closed once the chamber is full.

Microbubble deformations and motions are recorded using a fast camera (Miro
310, Vision Research) at a rate of 100 frame/s. An x,y,z automated stage (MS-2000,
ASI, USA) is used to select a microbubble prior to the video acquisition.
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Figure 3.5: Schematic of the trigger system

3.2.5 External trigger

For the quasi-static experiments, we have developed a trigger system that is capable
of setting on the pressure controller and the video acquisition at the same time
by clicking one single button. This was made possible thanks to an algorithm
written in the Elveflow® interface (See appendix.A.1).

Fig.3.5 shows a schematic of the system. Briefly, a square signal with an
amplitude of 5V peak-to-peak and a period T = 0.5 ms is sent from a programmable
arbitrary waveform generator AWG (33600A Series, Keysight). This signal enters
the pressure controller and triggers it. At the same time an output signal leaves from
the pressure controller to trigger the video acquisition. All signals are visualized
using a oscilloscope (HDO 4024, Teledyne Lecroy).

At the beginning of every experiment, the amplitude of the pressure and the
period can be changed and fed into the algorithm. The main purpose of this trigger,
is the accurate measurement of the buckling time and the buckling pressure as
it will be discussed later in this chapter.

Homemade tracking algorithm To track the microbubbles and get their defor-
mation at every time step, we have developed a homemade tracking algorithm
with sub-micron resolution.

The image of a single microbubble has a complex 2D intensity profile in the
image plane. It can be well approximated by a two-dimensional (2D) elliptical
Gaussian distributions of light intensity [Mann et al., 1999]. In our algorithm,
we use a 2D elliptical Gaussian model with an angle θ. In the Gaussian model,
the intensity is expressed as:
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(a) (b)

(c) (d)

Figure 3.6: Light intensity distribution of a) raw image in , b) raw image in ’buckled’
shape, c) fitted image in ’spherical’ shape and d) fitted image in ’buckled’ shape. In the
spherical phase: σ′x = 5.11 µm and σ′y = 5.38, in the buckled phase: σ′x = 4.87 µm and
σ′y = 5.30

I(x, y) = I0 + A× exp
(
− x′2

2σ′2x
− y′2

2σ′2y

)
, (3.1)

{
x′ = (x− x0)cosθ − (y − y0)sinθ
y′ = (x− x0)sinθ + (y − y0)cosθ (3.2)

where (x0, y0) is the center coordinate of the Gaussian model, θ is the rotation
angle, σ′x and σ′y are the standard deviation of x′ and y′ axis respectively, A is
the Gaussian amplitude peak and I0 is the background amplitude. The fitting
parameters are estimated according to the least squares principle. After the fitting,
data are processed such as θ is always the angle of the short axis i.e. min(σ′x,σ′y).
θ is also chosen such as when the ratio σ′x/σ′y is minimal, the corresponding angle
θ indicates the angle of the deflation as it will be later discussed. An example of
the fitting is shown on Fig.3.6 where we show the initial raw and fitted image of
the same shell in the unbuckled and buckled states respectively.
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3.3 Buckling angle

3.3.1 Definition

If an ideal spherical shell would undergoes a buckling event, there would be no
privileged orientation for the direction of buckling. For n successive cycles of
buckling and unbuckling, the shell could a priori have n different buckling angles
(i.e. orientation of the depression). Of course, shapes are not ideal or perfect in
nature, which means that there is always a few weaker spots in the shell on which
the instability could develop. Through the fabrication of seeded-defect in the shell,
one can control the buckling location [Djellouli et al., 2017].

Current UCAs could have single or multiple buckling directions. Previous exper-
imental observations of UCAs under static overpressure mentioned the ’wrinkling’
of the coating surface [Kwan and Borden, 2012] and [Thomas and Borden, 2017].
Authors explain the collapse of the shell with several steps. First, a nucleation
of microscopic folds takes place, which then leads to the aggregation of new folds
and finally, ends up with macroscopic folding events. Those folds can be initiated
anywhere on the surface with no privilege point or direction. The control of
buckling direction on the micro-scale has not been reported yet. Owing to its
thin lipidic encapsulation, (≈ 5 nm) a microbubble submitted to uniform pressure
buckles and manifest single or multiple facets, where a facet is defined as an
inverted spherical cap. An example of single and multiple facet of homemade
microbubbles is shown in Fig.3.7 where N is the number of facets. The pink
arrow points at a microbubble with 6 facets. Similar zoology of shapes is seen
in [Quemeneur et al., 2012]. They have studied the osmotic deflation of vesicles
experimentally and numerically. The study supported by a simple elastic theoretical
model. Authors reported a characteristic thickness for which the buckling occurs.
It has a value three order of magnitude higher than the actual lipidic thickness.
The same behaviour for our lipidic microbubbles is evidenced as it will be discussed
in the next section. Considering the microbubbles in the floating configuration,
a sinusoidal loading is applied with three different frequencies f = 1, 1.33 and
2Hz, and the amplitude Pin=20 kPa.

We define the aspect ratio λ as the ratio of σ′x/σ′y. In Fig.3.8a), we plot an
example of the aspect λ (left y-axis) and the fitting angle θ (right y-axis) in function
of time, for f = 2Hz. We can clearly see that λ varies from a value close to 1
in the spherical shape to a value around 0.88 with a sudden drop. The drop of
λ refers to the buckled shape. It is thus used to define the buckling angle θb as
seen on the inserted snapshots. The buckling spot did not change from cycle to
cycle (θb ≈ 120◦). But if we consider another example of the same experiment,
Fig.3.8 b) shows a variation of the angle from 45 to 80 degrees. Note: the initial
value of the aspect ratio is not equal to 1, even though the microbubble is in
a spherical shape (no deformation). This is due to non-spherical distribution of
the light intensity around the shell.

The evolution of the buckling angle from cycle to cycle will be studied in
the next section.
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Figure 3.7: Zoology of shapes of homemade microbubbles experiencing one or multiple
facets (N = 6 for the one shown next to the pink arrow).

(a) (b)

Figure 3.8: Example of fitting angle θ for two different SonoVue® microbubbles of initial
radius a) 2.5 µm and b) 2µm. To show clearly the measurement of the buckling angle, the
minima and maxima of curve a) correspond to spherical and deflated shapes respectively,
as highlighted by the inserted snapshots.
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Figure 3.9: a)Plot of the evolution of the angle θ and of the buckling angle on each
cycle θb as a function of time for a chosen microbubble.

3.3.2 Evolution per cycle
The physical question that we would like to answer is whether the shells exhibit
single or multiple buckling spot. Fig.3.9 shows the evolution of the buckling angle
θb of a chosen microbubble (θb being the local extremum per cycle).

As we cannot track material points on the shell, we use an indirect method to
study the evolution of the buckling angle via the rotational diffusion coefficient Dr.
Rotational diffusion is the counterpart of translational diffusion, which maintains or
restores the equilibrium statistical distribution of particles’ position in space. The
rotational diffusion coefficient of a single colloidal sphere with radius R suspended
in a solvent with shear viscosity µ is given by the familiar Stokes–Einstein–Debye
(SED) relation ([Stokes, 1856, Einstein, 1906, Debye, 1929]):

Dr
0 = kBT

f r0
= kBT

8πµR3 , (3.3)

with kBT the thermal energy and f r0 the Stokesian friction factor. The mean-
square angular deviation varies linearly with time and has Dr

0 as a coefficient of
proportionality. If there is only one buckling spot, we then have:

〈θ2
b 〉 = 2Dr

0t (3.4)
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We assume that the buckled shell is a sphere with a reduced radius ≈ 0.96 the
initial radius. Note that this assumption will be validated later on throughout
the chapter. Applying Eq.3.3 for kBT = 4× 10−21 J, µ = 1 mPa.s (water) and
R = 0.96 × 3 = 2.88 µm, we get a theoretical rotational diffusion coefficient of
Dr

0 = 6.52× 10−3 rad2/s. The pressure cycle has a period of t=0.5s, injecting this
value in Eq.3.4 and taking the square root, one gets the following root mean square
(RMS) of the buckled angle per period: θb,RMS = 0.081rad = 4.62◦.

The equation of the mean-square angular deviation as a function of time is given
as:

〈θ2
b (t)〉 = 1∑NT

i=1 Ni(t)

NT∑
i=1

Ni(t)∑
tj=1

[θb(tj + t)− θb(tj)]2 , (3.5)

where NT is the total number of trajectories, time tj refers to the time for the jth
image in the track and Ni is the number of images considered for the ith trajectory.
We look at the variation of the angle between 2 cycles for 2 different frequencies
f = 1 Hz and f = 2 Hz as plotted in Fig.3.10a) and b). Events of high ∆θ are
more probable to occur at low frequency which hints for multiple buckling spots.
For f = 2Hz, 97.9% of microbubbles shows a changing of the buckling angle within
±40 degrees. In contrast for f = 1 Hz, only 70.78% of microbubbles shows the
same change. We exclude the data where ∆θ exceeds ±40 degrees in what it follows
and we fit the distribution with a Gaussian function.

For the frequency of 2 Hz, in Fig.3.10c) we plot the standard deviation squared
of the following times (t = 0.5s, 1s, ...4s) which corresponds to cycle number 1, 2...8.
The variation of the average m̄ in function of time is negligible m̄ = 0.1 ± 0.49
hence σ2(t) can be approximated to 〈θ2

b (t)〉. Finally, σ2(t) is well fitted with a linear
function of time (A

√
t) and we obtain a RMS of the buckled angle: θb,RMS = 3.64◦

in agreement with the theoretical prediction mentioned above. Similar value is
measured with f = 1 Hz (not shown here).

This finding shows that the shells mostly have a unique buckling spot and
this spot allows to check the rotation of the shell which is well approximated as a
Brownian divisional rotation. An interesting consequence of this result is that upon
high frequency, the shell does not have enough time to relax all the surface after
every cycle, thus the weak point developed does not change. Similar results are seen
in the literature [Luan et al., 2014] where they refer to buckling as "lipid shedding".
The frequency used was 1 MHz and an acoustic pressure was varied from 50 to 425
kPa. Also in [Helfield et al., 2017] (See supplementary movies for more details).

3.4 Height & Width
A relevant parameter to look at when studying the buckling of spherical shells
is the "height" of the folded envelope of the shell. A common method to study
non-spherical oscillations of UCAs [Dollet et al., 2008] is the use of the quantity
R(θ) which is the radius and different angles θ. Here instead, we define this height
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(a) (b)

(c)

Figure 3.10: Histogram of ∆θ for a duration of 1 cycle a) (f = 2Hz), b)(f = 1Hz) and
c) Standard deviation squared of the buckling angle in function of the cycle number for
f = 2Hz.
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Figure 3.11: Illustration of h̃ and w̃ on a chosen buckled microbubble, a homemade
UCA with χ2D = 0.5 N/m and an initial radius R = 3 µm.

h̃ (and w̃) as the standard deviation of the light intensity in the direction of the
buckling (and normal to the buckling angle) as illustrated in Fig.3.11.

Derivation

We propose the determination of the value of the light intensity in the buckling
direction, for that, x′ is replaced by rcos(θ − θb) and y′ by rsin(θ − θb) in Eq.3.1.
The intensity profile becomes:

I(x, y) = I0 + A× exp

−
(
σ′2y cos

2(θ − θb) + σ′2x sin
2(θ − θb)

)
r2

2σ′2x σ′2y

 , (3.6)

Hence, the above equation can be written as:

I(x, y) = I0 + A× exp
(
− r2

2h̃2

)
, (3.7)

with,

h̃(t) =
σ′xσ

′
y√

σ′2x + (σ′2y − σ′2x )cos2(θ − θb)
(3.8)

In the direction perpendicular to θb, we can replace the angle by θ−θb+π/2 and
get:

w̃(t) =
σ′xσ

′
y√

σ′2x + (σ′2y − σ′2x )sin2(θ − θb)
(3.9)

Throughout this chapter, we will study the evolution of these parameters θb, h̃, w̃
and λ as function of time and of the loading to get more insight about the complexity
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of the buckling phenomena. It is important to note, that the choice of h̃ and w̃
is similar to earlier studies experimentally on a centimetric shells [Djellouli et al.,
2017, Stein-Montalvo et al., 2021] and numerically on micrometric shells [Mokbel
et al., 2021], except that herein the parameters are based on light intensity profiles.

3.5 Quasi-static load

The aim of this section is to study the behaviour of the shell with a very slow
variation of the pressure. In general, it is interesting to use a slow input to create a
fast or "strong" output which is exactly what an instability is good for, for instance,
to achieve an artificial muscle actuation [Yang et al., 2016]. In a practical way, it
is convenient to use the near wall configuration for this experiment since the
microbubbles would not stay long enough in the frame due to the buoyancy. In fact,
the floating speed of a microbubble of radius 3 µm is around 20µm/s. It means
that in maximum 10 seconds, the microbubble disappears from the image frame.
Thus, in this configuration, we can investigate the effect of slow pressurization. As
mentioned before, the measurement of the pressure inside the chamber was done
thanks to the pressure sensor introduced in series with the flow circulation.

3.5.1 Evolution in time

We applied a sinusoidal load with a 32 kPa amplitude and a period T = 40s. The
considered shell is a homemade UCA with χ2D = 2 N/m. The evolution of the aspect
ratio λ and the pressure are shown in Fig.3.12 a). First, the ratio begins to decrease
slowly until a sudden drop, at a certain pressure, which indicates the buckling event.
The inserted snapshot shows the non-spherical distribution of the light intensity
around the shell as discussed in 3.3.1. The evolution of the corresponding h̃(t)
and w̃(t) are shown in Fig.3.12 b). After the pressure starts to increase inside the
chamber (t = 4.3s) both the height and the weight start to decrease in a linear
manner; the slope is fitted with a linear curve that passes through (0,0) with a slope
0.91. It indicates the isotropic spherical compression. At t ∼ 13s, the projected
height h̃ decreases down to 2.3 µm while w̃ increases to a value even higher than the
raw "width" of the spherical initial configuration. In the classical buckling behaviour
of thin objects as discussed in [Holmes, 2019], it is known that when the outer
pressure is still increasing, further volumetric compression requires a lot of energy.
An energy-cheap way to react is to bend. This triggers the buckling instability. At
t = 21.5s, the pressure begins to decrease and the shell starts to re-inflate until
it becomes unstable again and another instability takes place, named debuckling:
where the shell shifts back to the spherical compressed shape.

It is also important to mention that upon buckling, the shell undergoes post
buckling oscillations as it will be discussed later in this chapter.
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b)
(a) (b)

(c) (d)

Figure 3.12: Evolution in time of a) the aspect ratio of the microbubble and the pressure.
b) the projected height h̃ and the projected width w̃. The inserted snapshot is the grey
level intensity of the first frame image showing asymmetry. c) Evolution of λ in function
of the pressure. The arrows shows the time direction (clockwise) and d) The projected
height h̃ in function of the projected width w̃, both normalized with the initial radius
R = 3 µm. The red curve is a fit with a linear curve passing through (0,0) with a slope
0.91 within an error 0.01% which indicates the linear decay.
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3.5.2 Shape hysteresis
The deformation speed vd can be measured as max(|dh̃/dt|), it has a value vd = 30
±0.14 mm/s. The associated Reynolds number is Red = 0.15. At low Red regime,
the time of the deformation does not matter on the swimming [Purcell, 1977]. In
order to apply the "Scallop theorem" the deformation of a swimmer should not be
time-reversible. In the case of our shell, it is important to check if the deformation
upon deflation follows the same path as the one upon the re-inflation. To answer
these questions, we plot in Fig3.12 c) and d), the variation of h̃/R in function of
w̃/R with R = 3µm being the initial radius, and the variation of λ in function of
the measured pressure inside the chamber. In the later, we notice that when h̃/R
decrease, so does w̃/R and it is in a linear fashion, which corresponds to the isotropic
compression as stated before. The compression is followed by a sudden collapse of h̃.

In both plots, the deformation does not follow the same path during deflation
and re-inflation. It manifests what we call a "shape hysteresis".

3.5.3 3D numerical simulation comparison
This result can be compared to a three-dimensional axisymmetric simulations
done by our collaborators (PhD student Marcel Mokbel under the supervision
of Prof. Dr. Sebastian Aland) in Dresden, Germany. (see [Mokbel et al., 2021]
for more information). It is based on the Arbitrary Lagrangian Eulerian (ALE)
method which couples between an Eulerian frame of reference for the fluid and a
Lagrangian frame of reference for the elastic material. Briefly, it consists in solving
the Navier-Stokes equation around a thin shell immersed in a fluid. A sinusoidal
pressure loading with an amplitude of 177 kPa is applied over a period T = 10s.
It has the same configuration mentioned in the paper i.e. a microbubble with a
Yong modulus E = 0.5 MPa, atmospheric pressure P0 = 100 kPa, water dynamic
viscosity η = 1 mPa.s, initial radius R0 = 22.5µm and shell thickness d = 5µm.
The equivalent 2D compression modulus χ2D is defined as E/2(1− ν) where ν is
the Poisson coefficient. Assuming an incompressible material of the shell (ν = 0.5)
and we get a χ2D = 2.5 N/m. This value is close to the one measured on the
homemade UCAs as mentioned in Sec.3.2.3.

For the sake of comparison with our experimental work, the exact same results
are plot in Fig.3.13. First, in a) a drop of λ prior to buckling is also recovered as for
the experiments. Second at P = 140 kPa, the buckling occurs and a more important
drop of λ is seen followed by a more pronounced postbuckling oscillations. After this
phase, the pressure goes even higher where the shell is squished until the re-inflation
takes place at t = 5s. Two seconds later, the debuckling phase starts with a jump of
lower amplitude compared to the buckling one. Contrary to the experimental result,
in Fig.3.13b) the shape hysteresis is more pronounced in the numerical simulation.
This might be due to the damping of the shell since the 3D simulations use an elastic
membrane with no viscosity. More quantification of this effect will be discussed later
in this chapter. Another interesting thing to note is the time-direction evolution
of the parameters. For both experimental data and numerical simulations, the
direction of time is clockwise for the evolution of the aspect ratio λ in function of



3. Buckling Dynamics 59

(a) (b)

(c)

Figure 3.13: 3D axisymmetric numerical simulation showing the evolution in time of a)
the aspect ratio and the pressure. b) the normalized height and width. c) The aspect
ratio in function of the pressure. The arrows show the time direction (anti-clockwise for
b) and clockwise for c)).

the pressure. On the other hand, the evolution of the height h̃ in function of w̃ is
clockwise while the one of the numerical simulation is anti-clockwise. The reason is
that for the numerical part, the amplitude of the collapse of the actual height h(t)
is higher than the one of the enlargement of the actual width w(t) upon buckling.
While for the experiment, both amplitudes are similar since the measurement of
the projected height h̃(t) is smaller than the actual height of the shell.
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3.5.4 Buckling pressure
Back in 1915, [Zoelly, 1915] derived the first critical pressure prediction for which a
thin walled spherical structure undergoes a catastrophic failure called "buckling".
For a perfect sphere with no imperfections, the critical pressure is given by:

Pc = 2E√
3(1− ν2)

(
d

R

)2

, (3.10)

with d the thickness of the shell and R the initial radius. As mentioned earlier,
the 2D compression modulus is given by:

χ2D = Ed

2(1− ν) , (3.11)

Usually, engineers design their structures with a critical load smaller than the
theoretical predicted one due to the imperfections of the material. In 1930, the
space agency NASA and collaborators introduced a knockdown factor kd ≡ P e

c /Pc.
It was later chosen to be ≈ 0.2 for a very safe design [SP, 1969].

In classical small strain theory of plates, the bending modulus B can be expressed
as:

B = Ed3

12(1− ν2) = χ2Dd
2

6(1 + ν) , (3.12)

Using the 2D compression modulus χ2D and the bending modulus B, the critical
buckling pressure can be written as:

Pc = 8√
2

√
Bχ2D

R2

√
1− ν (3.13)

If we consider our homemade UCAs, χ2D ranges between 0.5 to 2 N/m. For
an initial radius of 3µm, assuming a thickness of the lipid monolayer d = 5
nm and an incompressible material ν = 0.5, the theoretical critical pressure Pc
ranges between 0.4 to 1.6 kPa.

Experimentally, we measure the buckling pressure by repeating twice the same
loading on the same shell for 8 different shells of the same batch (χ2D = 2 N/m).
Fig.3.14, shows an example on a shell where we plot the aspect ratio λ in function
of the measured pressure. For every pressure cycle, the experiment is repeated
twice. Interestingly, we notice the sudden change of λ for all the tries at a pressure
Pb = 24 kPa. Same experiments done on 8 different shells reveals different values
of Pb ranging from 18 to 25 kPa. These values are an order of magnitude higher
than the theoretical predicted ones. This mismatch was already mentioned in the
literature [Chitnis et al., 2011]. They used different polymeric UCAs with unknown
shell properties under static overpressure. Using Eq.3.10 with the measured Prupture
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Figure 3.14: Experimental measurements of λ in function of the pressure for the same
shell (initial radius R = 3µm) for 2 different amplitude loads.

and d/R = 40nm/µm, they got an equivalent 2D compression modulus of 25.2 N/m
an order of magnitude higher the values reported in the literature using different
techniques for polymer coated microbubbles (see Table 2.4 in Chap2). Using Eq.3.13,
the bending modulus can be estimated and from Eq.3.12, an equivalent thickness can
be derived deq =

√
6(1 + ν)B/χ2D. The physical meaning of the later quantity is

an apparent thickness for which the buckling happens at the observed experimental
buckling pressure. For an incompressible shell material (ν = 0.5), and using the
measured bending modulus we get deq = 0.384 ±0.05 µm which is 2 orders of
magnitude greater than both bilayer thickness (∼ 5 nm). The same effect was seen
on the buckling of lipidic vesicles (lipid shell enclosing liquid) in [Quemeneur et al.,
2012], which also, suggests the anisotropy in the material.

3.6 Dynamic buckling load
In the previous section, we studied the quasi-static buckling of the shells. If we
ask ourselves, what is the behaviour of the shell after buckling it is hard to answer
using quasi-static loading, since any change can be due to intrinsic properties of
the shell but it can be also due to the pressure that is still varying. A way to
deal with that is by using a "Dynamic buckling" experiment [Sieber et al., 2019].
Dynamic buckling is the study of deformation of spherical shells subject to a rapidly
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(a) (b)

Figure 3.15: a) Recordings of the pressure and the associate deformation of the shell
through the aspect ratio λ. b) Zoom on the buckled phase, the dashed black curve is the
theoretical fit.

applied step in external pressure.
We performed a step function pressure loading on the homemade UCAs with

χ2D = 2 N/m in the near-wall configuration. In Fig.3.15, we show an example
of this experiment. The right vertical axis presents the evolution of the aspect
ratio λ and the left one shows the variation of the measured pressure. The x-axis
shows the time. The first drop of the aspect ratio corresponds to a pressure of 14
kPa. After the pressure plateaus at t = 0.5s the shell undergoes a postbuckling
oscillations until t = 4s. Right after, the pressure is turned off and goes directly
back to 0. At the same time, λ jumps up to a value close to the initial value
indicating the debuckling phase. It is also clear how the deformation does not
follow the same path during deflation and re-inflation which is the signature of
the shape hysteresis as stated earlier.

Postbuckling oscillations

To discuss the postbuckling, in fig.3.15b), we zoom on the first 4 seconds to see
how the shell reacts when the external pressure is stable. We fit our experimental
data with a sum of two cosine waves with two frequencies ω1 and ω2. We obtain
the following parameters: ω1 = 5.2 rad/s, ω2 = 0.08 rad/s, amplitudes A1 = 0.008
rad/s, and A2 = 0.96 with a phase shift of φ = 0.95 rad. The second pulsation ω2
is too small to be measured on such a short time interval. The associated term
is basically a constant on this time interval. The same experiment is repeated on
16 different shells of the same batch and the corresponding average postbuckling
oscillation period is: TPb = 0.82 ± 0.21 s.

The Marmottant model is the well known model that is used to describe the
oscillations of UCAs with taking into account the buckling of the shell [Marmottant
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et al., 2005]. In this model, when the shell is buckled, the only contribution on
the oscillation is the compressibility of the gas. Recently, [Mokbel et al., 2021]
studied the postbuckling behaviour experimentally on centimetric elastic spherical
shells and numerically. The study is supported with a theoretical model that is
based on a two-variable-only harmonic oscillator. Two non-dimensional resonance
pulsations were derived, one (ω+) that accounts for the volume oscillations and the
other one (ω−) for the surface oscillations. Using equation (4.20) of this paper with
the following microbubble parameters: χ2D = 2 N/m, ambient pressure P0 = 101.31
kPa, deq = 0.13 µm, initial radius R = 3 µm, κ = 1.4, α1,2 and kV S are taken
from the paper we get: ω1 = 7.84 MHz and ω2 = 1.27 MHz. The post buckling
and debuckling oscillations were several order of magnitudes smaller than the ones
predicted in [Mokbel et al., 2021]. A reason for the mismatch can be that in the this
model the bending energy is neglected which has a flattened landscape compared
to the stretching energy. Another reason can be the high damping effect of the
shell which was also neglected in the model.

3.7 Conclusions & perspectives
We have studied in this chapter, the buckling dynamics of two types of UCAs,
commercial (SonoVue®) and monodisperse homemade shells. Two different configu-
rations were used, a floating configuration and a near wall configuration. In the
former one, we showed that at a frequency higher than 2Hz, the microbubbles are
more likely to manifest one buckling spot. Through the mono-spot buckling we
quantified the rotation of the shell while floating and we proved that it is only due
to the Brownian rotational diffusion. In the later configuration, we studied the
buckling dynamics of the homemade UCAs using two different loading pressure.
The first one is a slow sinusoidal pressure load that enabled to measure the buckling
pressure. A characteristic thickness for lipidic shells was measured thanks to the
experimental buckling pressure and revealed the anisotropy of the material. A
comparison with numerical simulation was made and is consistent with our findings.
The second one is a ramp pressure load, that enabled to study the postbuckling
oscillations. In both cases, the shape hysteresis was evidenced which might be a
key factor for the swimming-induced motion through buckling mechanism. This
will be subject of the next chapter.
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4.1 Introduction
In several biological systems [Farutin et al., 2013], as well as many artificial
microswimmers [Degen, 2014] we can find the ’change of shape’ as a swimming
mechanism. When a microrobot or microorganism perform a shape deformation,
they generate a fluid flow around them. The flow is characterized by a Reynolds
number Re = UL/η, with U as the typical deformation velocity, L is the charac-
teristic microswimmer length, and η as the kinematic viscosity of the surrounding
fluid. With this parameter Re, two regimes for self propulsion exist. One way
is to perform a very fast stroke such as Re � 1, it is commonly known as the
inertial effect. Inertial regime can be found in nature, for instance, when insects
use thin flapping wings [Michelin and Llewellyn Smith, 2009]. On the other hand,
when the speed of the deformation is not high enough, the resulting Re for a
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microswimmer is less than unity. The low Re regime is commonly known as Stokes
regime where the fluid dynamics is dominated by viscous rather than inertial terms.
In order to produce a net positive displacement in the Stokes regime, the cyclic
deformation pattern must not be invariant under timereversal in confirmation with
the ’scallop theorem’ [Purcell, 1977]. It states that a purely reversible sequence
of deformations is not associated with any net motion.

Here, we consider the microbubble as a self-deforming or shape-changing object.
In the previous chapter, we saw that its deformation speed upon buckling vd is in
order of 30 mm/s; for an average size of 3 microns the Re associated is less than
unity, hence it fits in the Stokes regime. We also saw that the microbubble upon
a full cycle of deflation and re-inflation manifest a shape hysteresis.

We discuss in this chapter, whether this shape hysteresis can be an efficient
way to swim in such regime or not.

4.2 Single shell
We use the ’floating-configuration’ (Chap.3, Sec.3.2) to conduct this experiment.
The goal is to measure the displacement of the shells and relating it to the buckling
events. After their injection, microbubbles start to float against gravity due to the
buoyancy force. Assuming a microbubble density similar to the one of air (ρs = 1.225
kg/m3 and using the Stokes law, the sedimenting velocity is given by [Stokes, 1850]:

vb = 2
9

(ρs − ρf )gR2

µ
, (4.1)

where g is the acceleration of the gravity. Considering a 3 microns shell, the velocity
is estimated as: vb ≈ −20µm/s. The negative sign indicates the floating. The
image captured by the camera has a size of 640× 480 (pixel units). To compute
the traveled distance in µm, we use the camera pixel size. It has a value of 20
µm and under a 40X microscope objective, the conversion ratio is 0.5 µm/pixel.
Thus, the total traveled distance is around 300 µm. For an acquisition speed of
100 frames per second, one movie lasts about 17 seconds and with an activation
frequency of 2 Hz, we got at least 30 buckling events per shell. The pressure profile
used is a sinusoidal wave of amplitude P = 20 kPa. We varied the frequency in
the experiments for f = 1Hz and f = 2Hz.

4.2.1 Measurement corrections
The chamber was designed to fully sustain relatively high pressure with no leakage
or deformations. Although, in practice, having an a 100% water filled reservoir is
not realistic. There will always remain some air pockets inside which might create
undesired microflows when the chamber is submitted to pressure cycles. Another
source of error in the measurement of the displacement is the misalignment of
the camera with the vertical direction. To overcome these two above-mentioned
sources of errors, we add prior to every experiment a suspension of 5 µm average
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(a) (b)

Figure 4.1: a) An example of a reconstructed trajectory of a reference bead with a linear
fitting with an angle b) Scheme of the reference (x0, y0) frame and the corrected frame
(x, y).

diameter hollow glass beads (HGMS, Cospheric, USA) with a density of 0.1− 0.7
g/cm3. The wide spread of the density is due to the polydispersity in size of the
glass beads. They float with the microbubbles and they do not buckle when the
pressure is applied owing to their hard encapsulating shell. They are thus used as
reference particles due to their ability to provide the direction of gravity potentially
biased by microflows, as well as the noise on the data.

4.2.2 Frames & References
We determine the direction of biased gravity α by means of the reference beads.
Let us consider the fixed frame (x0, y0) associated to an image. Fig.4.1a) shows an
example of the trajectory of a bead after tracking. It is fitted with a straight line
tilted by 92.3◦ from the x0 axis. We apply the same analysis on all the beads: each
one has an angle αi with i = 1, 2...N and N is the number of beads per experiment.
After that, we define another frame (x, y) that is rotated from the frame (x0, y0)
by an angle α = 1

N

∑N
i=1 αi − 90. In this new frame, we find α = 2.09◦ ± 1.047,

all the beads goes in average in the y direction.
Both references are shown in Fig.4.1b), if we consider at an instant t the velocity

of a microbubble v(t), it is the result of the contribution of 3 main movements.

~v(t) = ~vb(t) + ~vp(t) + ~vs(t) (4.2)

where, ~vb(t) is the floating speed as mentioned before, ~vp(t) is the perturbative
velocity due to the undesired microflows and ~vs(t) is the swimming velocity.
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Projecting the above equation in the x-direction of the frame (x, y) we get:

vx(t) = vsx(t) (4.3)

The only speed that remains is the x component of the swimming velocity
vsx(t). Through the x-projection, we are sure that any movement will be due to
the swimming of the microbubbles only.

4.2.3 Swimming motion
The trajectory of a microbubble is represented in Fig.4.2 a) by the minimum
intensity projection. The yellow line is the reconstructed trajectory thanks to the
homemade tracking algorithm introduced in Chap.3, Sec.3.2.5. In the considered
microbubble, we apply a loading (pressure variation) with a sinusoidal profile of
amplitude 20 kPa and frequency f = 2Hz. For this microbubble of initial radius
R0 = 2.7 µm, we see a clear deviation to the right for a distance d = 7 µm which
is ∼ 2.6 × R0. The buckling angle is θb = 30◦. Let us check how the velocity
behaves upon every deflation and re-inflation. On the same figure c) we plot the
evolution of λ (on the left vertical axis) and the x-component of the velocity (on
the right vertical axis). An interesting concomitancy is worth mentioning here:
the instant λ drops (ratio of σ′x/σ′y see Chap.3 Sec.3.2.5), the velocity vx along
x peaks to a positive value with a postbuckling oscillation as seen one the same
figure d). Inversely, upon the re-inflation, vx peaks to a negative value while λ goes
back to the initial value. For a better visualization, we plot the averaged signals
over 25 cycles of λ and vx on 1 cycle (T = 0.5s). We clearly see an amplitude
consequent to the buckling that is higher to the one we see during debuckling. We
integrate the velocity signal over time and we get an average displacement of 0.83
µm/cycle which is roughly 30% its radius per cycle.

4.2.4 Swimming direction
An important question to ask is if the microbubble propels itself in the direction of
the deflation or not? To answer this question, we measure the net displacement
in the direction of the buckling angle. The following analysis procedure is applied
for every considered microbubble that encounters N pressure cycles:

• At every cycle, we get the buckling angle θb|i with i = 1, 2, ..., N .

• we divide vx by cos(θb)|i

• we integrate the above relation on every cycle.

The motivation for the above mentioned division is to retrieve the velocity in
the buckling direction, using only the information in the x direction where we
expect no biases as stated earlier.

Fig.4.3a) and b) show the net displacement/cycle for SonoVue® microbubbles
for an external driving frequency of 1Hz and 2Hz respectively. In In Fig.4.3 c) the
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b)
(a) (b)

(c) (d)

Figure 4.2: a) Example minimum intensity projection with the tracking of a microbubble
b) Averaged λ on 25 cycles c) Simultaneous measurements of λ and vx during 4 cycles
and d) average vx on 25 cycles. The gray envelope shows the standard deviation.
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net displacement/cycle for the homemade microbubbles. We add on each of these
plots the net displacement/cycle for the control (reference beads). The data shows
the average net displacement on all the cycles (at least 7 cycles per shell) with the
error bar being the standard deviation. A prominent feature in this plot is the
non-zero net displacement of the microbubbles. While for the reference beads, since
they do not buckle, their net displacement is negligible. If we consider a single
point of the data, it has a high standard deviation that indicates a difference in the
behaviour from cycle to cycle. The spread can be induced from an inaccuracy of
the measurement of the swimming direction. We do not control the measurements
in the 3rd direction (~z-axis pointing out of the paper).

We refer, in what if follows, to a "forward" propulsion when the net displacement
is positive and we refer to a "backward" propulsion when the net displacement is
negative. For the SonoVue® at f = 1Hz (Fig.4.3a)), we notice that every shell is
doing a backward motion since the error bar per shell does not cross the y = 0
line. While for the SonoVue® at 2Hz and the homemade microbubbles, we actually
have the two scenarios forward and backward motion.

The overlaid boxplot in Fig.4.3d) summarizes all the swimming experiments on
SonoVue® microbubbles for two different frequencies f = 1Hz and f = 2Hz and for
the homemade microbubbles for only one frequency f = 1Hz. In all experiments,
reference beads with a similar density (which do not buckle) were added as a control.
A statistical significance in the net displacement of microbubbles is shown through
a Student T-test (exact p − value = 2× 10−6). Homemade microbubbles show
higher net displacement compared to SonoVue®, it can be understood by their
higher elastic moduli. In fact the 2D compression modulus χ2D = 2 N/m for the
homemade microbubbles is higher than ∼ 0.5 for SonoVue®). In addition, we know
that the final volume after buckling is proportional to the elastic moduli [Quilliet,
2012], as it will be estimated in the next section. A higher volume of fluid is set
into motion. Note that the reason for not varying the frequency for the experiments
with the homemade microbubbles is purely technical. The buckling pressure as
measured in the previous chapter for the homemade microbubbles is higher than
the one of SonoVue®, for a frequency above 1Hz, the pressure inside the chamber
do not have the necessary time to attain the buckling pressure. The error bars on
the homemade microbubbles is considerably smaller than the errors on SonoVue®

since the homemade microbubbles are monodisperse in their size.

4.3 Ballasted microswimmer
During one of the swimming experiments introduced and analyzed in this chapter,
we saw a "strange body" sedimenting with the gravity. This was in contrast to what
we usually see: the upstream motion of the microbubbles due to the buoyancy force.
This body consists of one SonoVue® microbubble, bounded to two other smaller
glass microspheres. When the pressure is applied those two spheres do not buckle.
Such behavior is shown in Fig.4.4, with a sequence of spherical and buckled shape
of the microbubble. In what it follows, we will refer to this body as the ’Ballasted
microswimmer’. We will see in the following how to quantify such effect.
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(a) (b)

(c) (d)

Figure 4.3: Net displacement/cycle for SonoVue® UCAs in function of the radius at a)
f = 1Hz, b) f = 2Hz, c) Net displacement/cycle for homemade microbubbles at f = 1Hz
and d) The absolute net displacement of SonoVue® UCAs (two different frequencies),
homemade UCAs and control (glass beads). Each symbol represents net displacement
averaged on at least 8 cycles. The overlaid boxplots show the median, interquartile range,
mean, and the minimum to maximum values. Statistical significance indicated with *
Student T-test (p < 0.01).
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t = 0 ms t = 200 ms

Figure 4.4: Snapshot of the Ballasted microswimmer at two successive moments showing
spherical shape and buckled shape. The scale bar represents 15 µm.

4.3.1 Video analysis

To track the trajectory as well as the deformation of the ballasted microswimmer,
we first get rid of the two glass microspheres. This step is made by applying a high
filter threshold to separate the beads from the middle shell. The remaining contour
of each glass bead is filled with pixels with a grey level equal to the average grey
level of the background. Second, we use the same tracking algorithm developed
in this thesis to get the position and speed as function of time from the recorded
and pre-processed videos of the ballasted microswimmer. We also use the same
reference frame (x, y) as discussed in the previous section. We remind that the
corrected frame (x, y) accounts for the misalignment of the camera with the vertical
direction and for any undesired microflows encountered during the pressurization
of the chamber. The frequency of the activation f = 2Hz is fixed as well ass
the sinusoidal loading of amplitude 20 kPa.

4.3.2 Sedimentation

A part of the trajectory of the ballasted microswimmer is shown in Fig.4.5a) to
give an idea of the motion. Reader can refer to the movie online. An example
of the trajectory on one cycle (T = 0.5s) can be visualized on Fig.4.5b). The
ballasted microswimmer undergoes a buckling event and swims up against gravity
for a duration τ1 as indicated by the green arrow. After the deflation phase, the
ballasted microswimmer sediments for a duration τ2 in the buckled shape. After
that, the ballasted microswimmer undergoes a debuckling phase and swims down
for a duration τ3 . Finally, after the re-inflation phase, the ballasted microswimmer
sediments in a spherical shape for a duration τ4 = T − (τ1 + τ2 + τ3).

In order to extract the swimming motion i.e. the net displacement, we need
to account for the sedimentation in the spherical shape as well as in the buckled
shape. In fact, when the shell buckles, it looses a certain amount of its volume,
thus the buoyancy force decreases which means that it sediments faster.
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(a) (b)

Figure 4.5: a) Part of the tracking trajectory of the ballasted microswimmer under
excitation (See Movie Online). b) Zoom of the trajectory on one cycle (T = 0.5s), τ1
represents the buckling phase, τ2 represents the post-buckling phase, τ3 represents the
debuckling phase and τ4 represents the spherical phase.

Unbuckled microswimmer

Thanks to the experiments without applying a load (Pin = 0), we measured the
sedimentation velocity in the spherical shape. With the relation vs =

√
v̄x

2 + v̄y
2,

where v̄x and v̄y are the time average of the velocity in the x and y direction
respectively. With this we get vs = 1.32 ± 0.1 µm/s.

Estimation of the body weight

The sedimentation velocity in the spherical is shape do not vary in function of time
thus, we can estimate the body weight through the classical Newton’s 1st law:

~FW + ~FD + ~FB = ~0 (4.4)

where ~Fw, ~Fd and ~Fb are the weight of the particle, the drag force and the buoyancy
force respectively. Note that there is no effect of added mass since the radial velocity
is much smaller than the sedimenting velocity (dR/dt � vs).

We assume that the drag force on the three-body microswimmer is the sum
of the drag on each sphere [Stokes, 1856]:

~FD = 6πηfγ~vs, (4.5)
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where ηf is the dynamic viscosity of the hosting fluid and γ = (R1 +R2 +R3). Note
that the value of γ is in agreement with the experimental values reported in the
literature [Lee and Leith, 1989] for the drag force on agglomerated spheres.

The buoyancy force writes:

~FB = ρfV0~g, (4.6)

where ρf is the fluid density, and V0 is the volume of the unbuckled ballasted
swimmer hence formed from 3 spherical shells: V0 = 4

3π (R3
1 +R3

2 +R3
3).

Injecting Eq.(4.3) and Eq.(4.4) in Eq.(4.2) and projecting it along ~y axis one gets:

FW = 6πηf (R1 +R2 +R3)vs + 4
3π

(
R3

1 +R3
2 +R3

3

)
ρfg, (4.7)

We can deduce a value of FW = 5.744±0.59 pN considering the following parameters:
ρf = 1000 kg/m3, ηf = 10−3 Pa.s, R1 = 2.5 µm, R2 = 4.5 µm and R3 = 3
µm. Note that the initial values of the radii of the spheres from left to right in
Fig.4.4 are Ri with (i = 1, 2, 3).

Buckled microswimmer

An estimation of the final volume of the microswimmer after buckling is made by
the estimation of the of the volume of the (central) buckled shell. It can be achieved
through the use of the "plateau value" ∆Ppl which is the minimum value of the
outside-inside pressure difference ∆P . An estimation of this quantity was done in a
numerical simulation study [Quilliet, 2012], and it was later extended to a wider
range of d/R values by fitting it to experimental data [Coupier et al., 2019]:

∆Ppl = E

(1− ν2)0.75

(
2.34× 10−6 + 0.9(d/R)2.57

)
, (4.8)

We assume that the gas obeys a polytropic law, PV κ is constant, where κ is
the polytropic exponent of the gas. Hence the final volume fraction Vf/V0 can
be written as:

Vf
V0

=
(P0

Pf

)1/κ
=
( P0

P0 −∆Ppl

)1/κ
, (4.9)

Injecting Eq.4.8 in the above equation and applying it with the following microbubble
parameters: E = χ2Ddeq, ν = 0.5, χ2D = 0.5 N/m and deq = 0.31 µm, P0 = 101.31
kPa and R = 4.5 µm. We get a final fraction volume Vf/V0 = 0.88± 0.12, which
means that the shell looses ∼ 12% of its volume when it is buckled. Note that,
we use the equivalent thickness of the shell and not the actual thickness due to
the increase of the bending energy for lipidic shells as discussed in the previous
chapter (See Chap.3 Sec.3.5.4)
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Finally, we get the sedimentation velocity in the buckled shape vb by re-
writing Eq. (4.5) for the buckled state assuming same drag force between the
two states, we get:

vb =
FW − 4π

3 ρfg (R3
1 +R3

3 + 0.88R3
2)

6πηf (R1 +R2 +R3) (4.10)

For the value of FW found in the above and in the same conditions of the fluid:
vb = 4.32 ± 0.2 µm/s which is ∼ 3 × v0.

4.3.3 Results & discussion
Net displacement per cycle

The net displacement dnet is the displacement due to the sole swimming after every
cycle without the sedimentation contribution ~ds:

~dnet = ~dT − ~ds (4.11)

The estimation of the sedimentation traveled distance is performed on all
the different phases: ds = d1 + d2 + d3 + d4. During the 1st phase (buckling
phase), the shell is going from a spherical shape (downward velocity v0) to a
completely buckled shape (downward velocity vb > v0), the distance traveled d1
in this phase can be bounded as:

v0τ1 < d1 < vbτ1, (4.12)

For the 2nd phase which corresponds to the sedimentation in the buckled shape,
hence the distanced traveled d2 is bounded such as:

d2 = vbτ2, (4.13)

In the debuckling phase 3, the shell goes from a buckled shape to a spherical
shape, the distance d3 traveled is :

v0τ3 < d3 < vbτ3, (4.14)

And finally, in the last phase, the ballasted microswimmer sediments with a
spherical shape of the shell:

d4 = v0τ4 = v0(T − τ1 − τ2 − τ3), (4.15)

We can measure the duration of every phase by plotting the stack of the velocity
in the y-direction on one cycle. Fig. 4.6a) shows a 25-cycles stack of the velocity in
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b)
(a) (b)

(c) (d)

Figure 4.6: Vertical velocity of the ballasted microswimmer on one period T = 0.5s a)
stack of 25 cycles, b) debuckling phase with shift correction c) averaged signal with a
theoretical fit (dashed black line) d) averaged debuckling corrected signal with a theoretical
fit (dashed black line).
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y-direction on one cycle (T = 0.5 s). At about t=0.08s, we see the repetitive peak
of the velocity. It indicates the buckling phase. It decays and then it is followed by
a post-buckling oscillation for few cycles and it decays after a small duration. The
shell stabilizes for about 0.1s with a constant downward velocity vb. The second
group of peaks corresponds to the debuckling phase which is also followed by an
oscillation. Contrary to the buckling phase, the debuckling one does not occur
exactly on the same time at each cycle. We correct this phase shift as seen in Fig.
4.6b). The correction is made such as the first minima of every cycle coincides at
the same moment tshift = 0, 003± 0.016s. Remarkably, by aligning only the first
minima, the whole oscillations aligns as well. After that, we smooth these two
curves by taking the time average over all the cycles as shown in Fig. 4.6c) and d).
The gray envelop designates the error (mean ± standard deviation). The duration
of every phase as well are highlighted in the following table:

Phase duration (s) Average Standard deviation
τ1 0.14 0.01
τ2 0.11 0.01
τ3 0.14 0.02
τ4 0.11 0.02

Table 4.1: Summary of all the duration phases

Using all the duration phases and the two sedimenting velocities v0 and vb, we
get the bounding of the traveled sedimentation distance: 1.24µm/cycle < ds <
2.08µm/cycle. Finally, a bounding of the net displacement, which is the useful
information that we aimed to measure: 0.55µm/cycle < dnet < 1.37µm/cycle for a
driving frequency f = 2Hz which is ∼ 1/3 the radius of the microbubble per cycle.
A mean swimming velocity can be calculated: v̄swim ∼ 2 µm/s.

Post buckling and debuckling oscillations

We fit the post-buckling oscillations as well the the post-debuckling oscillations
with theoretical curves as shown by the black dashed lines in Fig. 4.6c) and d).
Those oscillations can be easily modeled as a free damped harmonic oscillator. The
classical response of a spring and a damper under free oscillations is:

ξ(t) = Ae−γtcos(ωt− φ) (4.16)

In our case, ξ(t) is the vertical velocity, γ is the damping coefficient, ω is the
pulsation and φ is the time phase. The experiment was repeated 10 times for
the same frequency and amplitude, 10 movies of the ballasted microswimmer was
taken and analyzed the same way. We obtain the following fitting parameters
shown in Table 4.2:

The post-buckling pulsation is higher than the post-debuckling one ωb > ωdb.
It means that the oscillations after the re-inflation takes longer than the one after
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Buckling Debuckling
A (µm/s) 75.34± 2.31 72.1± 6.31
ω (rad/s) 168.7± 2.01 159.67± 6.44
γ (µms)−1 23.29± 1.32 29.04± 4.81
φ (rad) 0.1± 0.01 0.1± 0.01

Table 4.2: Summary of the post buckling and debuckling oscillations of the ballasted
microswimmer with an activation frequency f = 2Hz.

inflation. Interestingly, the damping has the inverse effect: γb < γdb and it means
that the oscillations after buckling have higher amplitudes than the ones after
debuckling. As stated in the previous chapter, only one eigenfrequency is measured
which corresponds to the bending energy.

Another important remark regarding the value of the post buckling frequency
is that it is higher than the one measured on a single shell in the ’near-wall’
configuration. In fact, the microbubble here is confined between two spherical
beads, hence the mass fluid that moves around it is smaller, which can contribute
to a higher frequency while for the single microbubble, the contact is only the
wall (See Chap3 Sec.3.6).

4.4 Conclusions & perspectives
We have shown throughout this chapter, how commercial UCAs (SonoVue®) as well
as homemade microbubbles can swim by virtue of buckling mechanism.

We studied experimentally the effect of the elasticity of the shell material.
We showed that a higher swimming effect can be produced through higher 2D
compression modulus χ2D.

We also studied a very rare experimental case where SonoVue® microbubble
got glued to two spherical beads that do not buckle upon pressure. A swimming
against gravity was shown for a net displacement of about ∼ 1/3 the radius per
cycle. Post buckling and post debuckling oscillations were also measured, and they
are well fitted with a simple harmonic oscillator which provides an eigenfrequency.

It is important to note that the swimming motion is different from the trans-
lational motion than can be generated via the primary Bjerkness force [Bjerknes,
1906]. After the pioneering work of [Dayton et al., 1997] on the acoustic radiation
force applied on UCAs, many studies went in this direction. In [Acconcia et al.,
2018], an experimental study on the displacement of UCAs induced by these forces is
done. It uses an optical tweezers to carefully select a microbubble. Ultrasonic waves
are generated by a transducer that couples with the microbubbles into primary
and secondary Bjerkness forces. The induced displacement is always in the same
direction as the direction of propagation of the acoustic field. On the contrary, with
our technique, the direction of the displacement is completely independent of the
direction of the activation and it is controlled by a scalar parameter: Pressure.
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5.1 Scientific contributions
The overall aim of the work described in this thesis was first to improve the charac-
terization of ultrasound contrast agents and second to use them as microswimmers
using a novel propulsion mechanism: Buckling instability.

In chapter 2, we highlighted the lack of knowledge in modeling the behaviour of
UCAs through a theoretical model. The generalized model shows that including the
compressibility of the shell has a huge effect on the resonance frequency and on the
damping in the spherical regime. This effect provides the proposed model potentiality
to understand the size dependency of the viscoelastic parameters of the shell.

In addition, the anisotropy of the lipidic nature of the shell was studied and
it can contribute to a more realistic model.

In chapter 3, we successfully designed and conducted an experimental setup
with a minimal material complexity to study buckling dynamics of commercial
microbubbles SonoVue® as well as homemade monodisperse UCAs in two different
configurations: near the wall and freely floating against gravity. We developed
a triggering approach to study the intrinsic parameters of shell buckling as well
as a homemade algorithm to accurately track the position of the microbubbles
and their deformation in time and space.

The results validate our proposition of the anisotropy of the shell. Classical
linear buckling theory fails to estimate the buckling pressure of microbubbles. We
demonstrated how an apparent thickness resulting from an increase in the bending
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energy can be the adequate way to describe the behaviour of bilipid membranes.
Contrary to the current indirect methods, such as acoustic backscattering, buckling
dynamics might be the new experimental method to study intrinsic shell properties.

Experimental results were in-line with a 3D axisymmetric numerical study which
shows the robustness of the mechanism through the hysteretic shape deformation
path revealed in both studies.

In chapter 4, swimming motions were studied, a net positive displacement was
shown on SonoVue® UCAs and a more pronounced effect on the monodisperse
microbubbles. The results suggested two populations in the swimming motion,
the forward swimmers and the backward swimmers. Further research needs to
be conducted to understand the reason for the formation of the two populations.
Reference beads (which do not buckle) were used as a control, enabling us to show
that movement through buckling was different with a statistical significance.

A fortuitous discovery of a new type of swimmer was shown, where a microbubble
was glued to two other spherical beads started to sediment with gravity instead
of floating. Swimming against gravity was well remarked.

In addition, we measured the rotational motion of the shells while floating
through the use of a single buckling spot. Measurements of the angle difference
between cycles were well understood via a Brownian rotational diffusion model.

Post-buckling oscillations were studied and well modeled with a single har-
monic oscillator.

Overall, the buckling instability of UCAs can be a promising mechanism to
create in-vivo friendly microswimmers for various medical use such as targeted
drug and gene delivery as well as in molecular imaging.

5.2 Further work
As it was indicated at various stages throughout the thesis, there are many areas
that require further investigation.

Perhaps the greatest area of uncertainty, which was discussed at several points
in the thesis, is controlling the buckling direction. A way to tackle this challenge
is through the fabrication of UCAs with a seeded defect, so that buckling would
always arise at this spot. A second way to achieve this is by repeating the same
experiment that we conducted by complete chance (the ballasted microswimmer).
Attachments of several bodies show a promising way to control the buckling spot.

Exploration of different biocompatible shell materials is also essential for future
work. A higher net displacement could be achieved with a material that has
minimal damping. Less damping can allow faster buckling transition such as
inertial effects can be expected.

Once the optimization of shell viscoelastic properties for an optimal swimming
motion is done, ultrasound pressure waves can be used carefully to speed up the
activation. A combination of the acoustic force radiation and the streaming effect
will be added to the shell buckling which will be used in this case as extra steering
in a complete 3D mode owing to its important contribution to swimming.
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The ideal scenario would be to have four shells attached in a tetrahedron
structure with different sizes and visco-elastic materials so that each one will buckle
at a different given pressure. A full manoeuvre of this body could then be controlled
with the amplitude of the medical ultrasound probe in parallel to the probe used
for ultrasound imaging of the microrobot.



82



Appendices

83





A
Technical analysis

Contents
A.1 Triggering algorithm . . . . . . . . . . . . . . . . . . . . 85

A.1 Triggering algorithm
• Step 1 : set trigger out @ 0V (to rearm the trigger first)

• Step 2 : wait 5ms

• Step 3 : if trigger in @ 5V, then go to Step 5 (if False, go to Step 4)

• Step 4 : go to Step 2 for maximum 100 times (or more)

• Step 5 : set trigger out @ 5V

• Step 6 : end
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86 A.1. Triggering algorithm

Figure A.1: Trigger algorithm on Elveflow interface
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B.1 Deformation velocities
We present here the expressions obtained for ȧ and ḃ by directly derivating a
and b, see Sec. 2.5.1:
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