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A B S T R A C T

Online influence is the plinth of the social networks’ e�ect in our lives
and its impact has been steeply increasing. From viral marketing to
political campaigns and from news adoption to disease transmission,
the way we are influenced by others is more prevalent than ever. In
this thesis, we address the problem of e�ciently learning and analyzing
influence representations for numerous graph mining problems that are
apropos.

The first half of the thesis is devoted to the problem of influence
maximization, an NP-hard combinatorial optimization problem. The
aim is to find the nodes in a network that can maximize the spread of
information, where the spread is typically defined by random influence
probabilities and simple di�usion models. To address this, in the thesis’
first part, we devise a node representation learning model based on
di�usion cascades along with an adaptation of a traditional influence
maximization algorithm that utilizes the output of the model. This
framework surpasses competitive methods, evaluated in terms of com-
putational time and the influence of the predicted seeds in cascades of
the immediate future.

The second part is devoted to learning how to perform influence
maximization. We develop a graph neural network that inherently pa-
rameterizes an upper bound of influence estimation, and train it on
small simulated graphs. We experimentally show that it can provide ac-
curate estimations faster than the alternatives for graphs 10 times larger
than the train set. Furthermore, we use the models’ predictions and
representations to propose three new influence maximization methods.
An adaptation of Cost E�ective Lazy Forward that surpasses SOTA
but with significant computational overhead, a Q-learning model that
learns to retrieve seeds sequentially, and a submodular function that
acts as proxy for the marginal gain and can be optimized adaptively
and greedily with a theoretical guarantee. The latter strikes the best
balance between e�ciency and accuracy in our experiments.

In the second half of the thesis, we focused on specific applications of
influence in real data. In the third part we approach epidemic forecasting
using influence learning. We utilize the inherent message passing of
Graph Neural Networks to learn node representations based on mobility
networks of a country’s regions and the history of the disease progression.
These representations aim to capture how the epidemic di�uses through
regions, and are used to predict the number of new COVID-19 cases with
a forecasting window of up to 14 days. Furthermore, to capitalize on
the lag of the COVID-19 spreading between countries, a meta-learning
algorithm is proposed to transfer knowledge between models trained
in some countries’ whole epidemic circle, to a model predicting cases
for another country at the start of the outbreak, where the available
training data is limited. Our approach outperforms baseline, time-series,
and other deep learning models.
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In the final part, we analyze di�erent versions of academic influence
and device methods to quantify and predict it. Initially we utilize
the Microsoft Academic Graph to build an author-citation network
with billions of edges. We subsample it and perform directed-core
decomposition to quantify it and visualize it through an interactive
web-app. Subsequently we experiment with classifying the h-index of
an author based on a GNN on her coauthorship graph and the text
of her papers. We conclude the thesis with future directions regarding
learning-based influence maximization with heterogeneous data and
e�cient neural network training through submodular active learning.
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1
I N T R O D U C T I O N

1.1 motivation

Online social networks have come to play a substantial role in numerous
economical, social and political events, exhibiting their e�ect on shaping
public opinion [5, 10, 147]. The core component of their potential in
micro level is how a user influences another user online, which is depicted
in the users’ connections and activity [193]. Formally, social influence is
defined as a directed measure between two users and represents how
possible is for the target user to adapt the behavior or copy the action
of the source user. Influence is the commodity that governs information
passing through the network [119], and can thus be considered the
central tube from which the e�ect of online social networks passes on
to the real world. In other words, without users influencing each other
in multiple ways, social networks would be meaningless.

The immense gravity of social media is depicted in the ever increasing
number of users that has now reached almost 4 billion[189]. The e�ect
of social influence has been studied for more than a decade, starting for
commercial purposes such as for viral marketing campaigns, where the
influence between users is utilized as a means to advertise a product
in an indirect manner [11]. As the use of social media for news sharing
became more prominent, viral sharing throughout the network has come
to transfer news faster than traditional journalism [90]. Moreover, stud-
ies have revealed that influence has a significant e�ect on the adoption
of social responsibility e.g. the e�ect of advertising for voting was more
prevalent when the user is informed about friends who have voted [20].
Quantifying the online influence between ideologically dissimilar friends
was also indicative of the users’ openness to politically di�erent opinions
[15]. More recently, social networks helped sustain communication be-
tween isolated people during the COVID-19 pandemic, and social media
accounted for a breadth of their entertainment. The data stemming from
social network cell phone applications, such as mobility and population
density indices, have improved our understanding and prediction of the
epidemic spread [62].

On the other side of the spectrum, the negative impact of social
networks has been more prevalent than ever. Along with the easier news
transmission came a trend for sharing unverified fake news [210], which
has became one of the most serious modern problems in social networks
with immense implications, calling for a revolution in journalism [220].
Simultaneously, this fast-pace transmission of unverified information
along with targeted advertisements allows political campaigns to shape
public opinion in unprecedented volumes [172]. Another example of
negative influence is cyber bullying, which goes hand in hand with the
overall toxicity in online discussions and is known to impose a dramatic
e�ect on the youth [89]. These problems call for better identification and
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2 introduction

regulatory strategies, that can result from deeper understanding of the
influence mechanisms. For example influence maximization algorithms
have been utilized as counter strategies to misinformation spreading
[30] and to balance the users’ exposure to politically diverse news and
advertisements [202].

These applications are indicative of the importance on analyzing and
using influence in social networks, which leads unavoidably to the hinders
of the task. Firstly, exact influence quantification is an elusive concept
for two reasons. The first is that homophily can account for the e�ects
of influence [184] i.e. two users might perform similar actions not solely
due to coping, but also because their inherent similarity caused their
connection in the first place. The second is exogenous stimulants that
can not be measured and hence can be an overlooked confounder to the
user’s activity. The majority of computational methods, including ours,
adopt these assumptions and work with a corresponding approximation
of influence. Influence is inherently a temporal [14] and stochastic
concept, which requires sequential probabilistic methods [179]. Moreover,
social networks are a representative example of big data, demanding
for scalable solutions. Furthermore, the online presence of a user in
the network can be multifaceted e.g. profile information, text or image
posts calling for multimodal approaches. Although machine learning
has proven e�ective in such settings, it lacks theoretical guarantees and
principled solutions, which have been prevailing in influence algorithms
and influence analysis.

This dissertation aims to tackle some of these challenges. We address
methods and applications that revolve around influence in various types
of networks. Our work aspires to improve the current methods in terms
of accuracy and scalability using state-of-the-art representation learning
methods. In the subsequent sections, we give a brief overview of the
central concepts and clarify the current problems. We than delineate
the contributions of the thesis and give an outline.

1.2 influence & epidemics

Influence can be direct e.g. sending a news post to a friend or indirect
e.g. buying a product and collaborative filtering recommending the
product to a friend. The social network users are represented as nodes
in a graph and the edges depict a relationship, like following, friendship
and coauthorship. Influence is used to simulate how information flows
through the network using a stochastic di�usion model, such as the
independent cascade [106]. It can also be used to rank users in order to
find who spreads information more e�ectively in the network. Moreover,
these simulations serve as means of evaluation on the potential of graph-
theoretic metrics as faster substitutes for influence [139, 151]. This stems
from the fact that evaluating the influence of every node in a large
graph to rank them, is computationally demanding and in most cases
infeasible.

In many cases, simple ranking is not enough to spread information
e�ectively. If we want to find the optimal set of nodes, we need to
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maximize their combined reach, the well-known influence maximization
problem [106]. The aim is to find the optimal set of k users that would
maximize the influence spread i.e. the total number of users influenced,
if a di�usion simulation starts from that set. The complexity of the
problem pertains to the influence overlap between seeds, which has to
be minimized while searching for the strongest seeds. This problem lies
in the heart of opinion shaping [20] , diminishing misinformation [30],
mediating online polarization [202] and many pressing problems.

The analysis of influence relationships is not contained solely in the
online world. The study of influence dynamics shares similarities with
epidemiology, enough so that the initial di�usion models used for infor-
mation di�usion where based on epidemic models. The analogy can be
clarified if we think of a person having a certain probability of influenc-
ing another person as similar to the probability of infecting the other
person with a disease if they come in close contact. Analogously, the
probability of a user adopting a certain opinion or getting infected by an
epidemic, is analogous to the amount of its connections that are already
infected and the nature/intensity of their interactions. Methodologies
pertaining to influence can thus be utilized for strategies of epidemic
containment [222] or epidemic forecasting at di�erent scales [103].

1.3 problems

1.3.1 Influence probabilities

One of the main problems in the influence maximization literature
pertains to the standard of utilizing random or uniform influence prob-
abilities in di�usion models. Tha majority of the literature focuses on
overcoming the computational burdain that we analyze further below,
while overlooking the importance of accurate influence probabilities.
Experiments have shown that such approaches produce a less realistic
influence spread compared to simulation models with empirical influ-
ence probabilities [9]. These probabilities can be computed using real
traces of information i.e. di�usion cascades such as retweets or reshares,
which actually indicate which users copy each other. Several models
have been developed to measure e�ectively this quantity for tasks like
predicting the next node that will appear in a di�usion [124, 216], the
next time that someone will copy the di�used content [52, 97] or the
overall course of the spreading [27, 66, 79]. However, there is an open
problem pertaining on how to utilize such neural-network-based models
of learning influence in the context of influence maximization.

1.3.2 Diffusion models

The di�usion models su�er from fundamentally oversimplifying as-
sumptions that ignore several characteristics of real cascades [70, 169].
Specifically, the interactions are assumed to take place in discrete syn-
chronous steps. In reality nodes act at di�erent times and copying
times/burstiness e�ects play an important role in quantifying influence
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spreading [104]. Moreover, the di�usion models overlook higher order
influence e�ects because of their Markovian mechanism of influence
propagation. Meaning, the probability of influencing a node depends
only on the direct neighbors, which is not fully accurate, since the his-
tory of the cascade has proven beneficial in predicting the participation
of specific nodes [41, 97, 124, 213, 230]. Furthermore, the sensitivity
of such models to these parameters has been found significant [53],
which explains empirical results on the disagreement between simulated
influence spread and actual di�usion cascades [177]. Overall we can
hypothesize that in the presence of di�usion cascades and an underly-
ing network, model-independent approaches to influence maximization
could potentially exhibit more realistic solutions.

1.3.3 Efficiency

The problem with e�ciency pertains to two aspects. Influence maximiza-
tion itself is proved to be NP-hard, from a reduction to the set-cover
[106], for the most prominent di�usion models. This is the first source
of ine�ciency, that is addressed using greedy solutions. Additionally,
the influence estimation problem that is embedded in influence max-
imization, i.e. estimating the number of nodes influenced by a given
seed set is #P-hard. Specifically, it is analogous to counting simple
paths and would require 2|E| possible combinations to compute exactly,
where |E| is the number of network edges [37]. Typically, influence
estimation is approximated using repetitive Monte-Carlo simulations of
the independent cascade di�usion model. This is problematic, as this
process has to rerun for every candidate seed in every step of building
the seed set, rendering the basic model [106] unable to scale in graphs
with more than thousands of edges. Several scalable algorithms [22, 196]
and heuristics [38, 101] have been proposed capitalizing on sketches and
the structure of the graph to produce more e�cient solutions. A central
hypothesis of the thesis is whether we can utilize machine learning to
accelerate influence maximization.

1.4 applications

1.4.1 Epidemic forecasting

During a pandemic, accurately predicting the spread of the infection
is of paramount importance to governments and policymakers in order
to impose measures to combat the spread of the virus or decide on
the allocation of healthcare resources. The majority of the approaches
rely either on epidemic models [243] or on time series methods and
the history of the outbreak. Given the severity of the problem and the
need for accurate forecasting of the disease spread, machine learning,
and artificial intelligence approaches have emerged as a promising
methodology to combat epidemics such as COVID-19. However, the
problem is rather challenging because of the incosistencies and burts
that are present in the time series of positive cases [234]. Since the
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spreading of a pandemic is a spatiotemporal e�ect, we would like to
couple the history of the disease with complementary data that indicate
the spatial spreading, which would allow to capture latent cases that
emerge as bursts in the time series.

1.4.2 Academic Influence

Influence relationships in the academic world impacts research fundings,
industrial lab hiring and overall the path of scientific research. Generally,
the e�ect of preferential attachement is well known in the academic
world, signifying how prominent researchers tend to have more citations
and collaborations [2], hence shaping the scientific landscape with their
ideas. Past attempts to identify influencers in the academic world relied
on influencer ranking techniques on the coauthorship network [126].
This su�ers from two problems, the first being overlooking the field of
a scientist. The second is that coauthorships are not a straightforward
indicator of the researcher’s impact, meaning that a researcher might
have a large number of collaborators due to her academic environment
or their field, not because of her popularity. In contrast we argue that
neural networks can be used to fuse the structure and the fields using the
articles’ text representations. Moreover, we claim that citation networks
are a more valid indicator as they are also used to measure scientific
success in metrics like h-index [24].

1.5 thesis goal and contributions

This dissertation’s main goal is to develop influence representations
that can be used for large scale graph mining tasks. Inspired by the
challenges mentioned above, we break the thesis in two parts the first
part addresses the aforementioned problems of influence maximization,
while the second targets apropos applications of influence in real world
graphs. Our contributions can be summarized as follows:

1.5.1 Contributions on Influence Maximization

diffusion representations for influence maximiza-

tion. How to incorporate information from diffusion cascades for

model-independent influence maximization? To address problems (1.3.1)
and (1.3.2), we develop a method that substitutes traditional influence
estimation on random probabilities with learnt representations from
di�usion cascades. Initially, we juxtapose the parallel literature of influ-
ence learning and influence maximization to highlight the aparrent gap
of their combination. Subsequently, we propose a multi-task learning
neural network that learns from a history of cascades the di�usion prob-
ability between nodes, irrespectively of their distance on the network,
and the aptitude of a node to create large cascades. Using the di�usion
probabilities and the influence representations, we define a submodular
and monotone function that computes the influence spread of a user
without simulations.We optimize this function using a variation of the
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Celf [121] algorithm, to form a model-independent influence maxi-
mization method, called IMINFECTOR (Influence Maximization with
INFluencer VECTORs). We evaluate the method using ground truth
cascades instead of simulations on large scale datasets and compare
with other similar methods.

learning to estimate influence efficiently. Can we

use machine learning to improve the time effiicency of influence maxi-

mization? To address problem 1.3.3, we develop a Glie, a graph neural
network that learns to predict the influence estimations of a seed set on
a graph weighted based on the weighted cascade [106]. The architecture
is inspired by a theoretical upper bound of influence estimation and can
substitute the costly independent cascade simulations. It can be used as
a standalone influence predictor with competitive results for graphs up
to 10 times larger than the train set and is considerably faster compared
to a dynamic message passing model. The computational di�erence
accumulates in the context of influence maximization where the number
of influence estimations on each round is analogous to the size of the
network. We thus leverage Glie as a substitute for influence estimation
in Celf. The proposed method can run in graphs with millions of edges
in seconds, and exhibits comparative accuracy with a state-of-the-art
algorithm. Despite its significant acceleration, the method has a signifi-
cant computational overhead over the SOTA algorithm, we thus develop
two new methods to address this. The first is a Q-network architecture,
that utilizes Glie’s hidden representations and predictions to obtain
seeds sequentially, while minimizing the number of influence estimations
per round. The second is a submodular ranking function that adaptively
diminishes a node’s neighborhood as the seed set increases, based on the
influence representations of Glie. The results indicate that the latter
method is faster than the state-of-the-art while providing accurate seed
set quality.

1.5.2 Contributions on Influence Applications

predicting the epidemic spreading on small regional

level. Can we predict the number of COVID-19 cases in coarse

geographical regions on the first wave of the pandemic? We first create
graphs using the Facebook data indicating daily mobility between
geographical regions from applications on phones. We gathered and
map open data regarding the progress of the disease in these areas
using governmental and open data. We propose a model for learning
the spreading of COVID-19 in a country’s graph of such regions. The
model relies on the representational power of GNNs and their capability
to encode the underpinnings of the epidemic. Our main hypothesis
is that if we capture how people move between regions along with
the disease history, the prediction will improve. We apply a method
based on Model Agnostic Meta Learning to transfer a disease spreading
model from countries where the outbreak has been stabilized, to another
country where the disease is at its early stages. We evaluate the proposed
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approach on data obtained from regions of 4 di�erent countries, namely
France, Italy, Spain, and England. We observe that it can indeed surpass
the benchmarks and produce useful predictions.

visualizing academic influence at scale. Can we pro-

vide accurate depictions of a scientist’s influence on the academic world?

We utilize the Microsoft Academic Graph, the largest open-source bib-
liographical information to build a coauthorship graph. We use the
graph along with learnt representations from the paper abstracts to
perform h-index prediction for each author using a variety of graph
neural networks. Moreover, we create a citation graph between authors,
which includes billions of edges calling for big data management to
clean it and diminish it. We develop a parallel implementation of D-core
decomposition [73] to compute and visualize the influence score of the
authors in an interactive web applications. Furthermore, we provide
distribution plots indicating the quantile that a scientist’s h-index lies
on, based on the distribution of h-indices on her most relevant fields.

1.6 outline

The rest of the dissertation is organized as follows. In Chapter 2, we
briefly describe the required background on graph theory, submodular
optimization and deep learning required to buttress the rest of the thesis.
We also summarize di�erent approaches to influencer identification
such as graph degeneracy measures which will act as baselines for the
proposed methods. Chapter 3 describes IMINFECTOR, a two-step
method that learns influence representations from di�usion cascades
and uses them to perform influence maximization on the social network.
Chapter 4 presents Glie, a neural network for fast influence estimation
based on the independent cascade, alongside three methods, a traditional
algorithm, a reinforcement learning model and a submodular ranking
function, to perform influence maximization based on Glie’s estimations
and representations. Chapter 5 includes a neural model that performs
COVID-19 predictions on geographic NUTS3 regional level using the
history of the epidemic in the country and mass mobility indices as
logged from Facebook mobile applications. Chapter 6 presents the
pipeline we utilized to perform influencer ranking on the Microsoft
Academic Graph and a system we developed to visualize the results
interactively in the web. Finally, we conclude the dissertation in 7 with
an overview of the new questions derived from the thesis and future
research.





2
B A C K G R O U N D

In this chapter, we describe the preliminary concepts that our research
is based on. Initially, we introduce multiple concepts from graph theory
and underline their relevance with influence analysis. Furthermore,
we provide an overview of influence maximization and submodular
combinatorial optimization. Subsequently we introduce the basics of
neural networks and deep learning, and describe their use in node
and graph representation learning. Finally, we introduce transfer and
reinforcement learning, which are utilizedi n certain parts ofthe thesis.
The reader may refer to these references for a general introduction to
graphs [33, 57, 156], to submodular optimization [109, 154], to neural
networks [78, 87], to graph [86], transfer [162] and reinforcement [192]
learning.

2.1 graph basics

A graph is the abstract mathematical term used to explain a set of
objects that are connected with each other in certain ways. Throughout
the thesis, we use the terms network and graph interchangeably.

Definition 2.1.1 (Graph). A graph G(V , E) consists of a non-empty
set of nodes V and a set of edges E µ V ◊ V .

Alternatively, some parts of the literature refer to the nodes as vertices
and the edges as links, but we will use the former definitions. The number
of nodes in the graph is n = |V | and the number of edges m = |E|.
There are multiple types of graphs, but the ones of interest in this
dissertation are directed,weighted or bipartite. The edges of the graph
might indicate a directed relationship e.g. a social network user followes
another user or a paper cites another paper or an undirected e.g. two
authors wrote a paper together.

Definition 2.1.2 (Directed Graph). A graph is undirected i� for every
edge (i, j) œ E that links the ordered pair of node i and node j, there is
a reciprocal edge (j, i) œ E. A graph without this property is directed.

Moreover, the edges might be accompanied by a weight property e.g.
how many papers have the aforementioned authors wrote together.

Definition 2.1.3 (Weighted Graph). A graph is weighted if there is a
function W : E æ R that assigns a real number to each edge.

The final type of graph that we use is the bipartite, where the nodes
are separated into two groups and the edges connect only nodes from
di�erent groups e.g. the users in an e-shop and the products they
purchage.

9
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Definition 2.1.4 (Bipartite Graph). A graph is bipartite if there is a
property L : V æ [0, 1] that partitions the node set into two disjoint
sets Va, Vb, V = Va fi Vb, such that every edge e = (i, j) œ E æ (i œ

Va · j œ Vb) ‚ (i œ Vb · j œ Va).

Every graph can be represented by its adjacency matrix A, which has
size n ◊ n, and each row and column represent the nodes of the graph
and each element has one if an edge exist or 0 if it does not. Expanding
it to weighted graphs where the connections are represented by di�erent
volumes wi,j , we have:

Definition 2.1.5 (Weighted Adjacency Matrix). The weighted adja-
cency matrix A is a nṅ matrix such that:

Ai,j =

Y

]

[

wi,j , i�(i, i) œ E, ’i, j œ 1, ..., |V |

0
. (2.1)

The degree is the most prominent characteristic of a node inside
a network. It corresponds to the number of edges a node has in an
undirected graph. If the graph is directed, it breaks to indegree and
outdegree i.e. the number of incoming edges and the number of outgoing
edges. The degree matrix D is the diagonal n ◊ n matrix where each
element represents the degree of the corresponding node.

The final concept we will need is based on graph degeneracy [140] i.e.
the hierarchical decomposition of a graph into its nested subgraphs until
it can not be decomposed further. The graph is recursively peeled o�

based on a certain criteria, in the case of k-core decomposition, based
on every node’s degree surpassing a certain number k.

Definition 2.1.6 (k-core Decomposition). A subgraph H ™ G is a
k-core of G i� dv Ø k, ’v œ H.

The main notion that separates k-core decomposition with a degree
threshold filter is its recursiveness, meaning that the latter would re-
move all nodes with degree less then k and keep the resulting graph.
In contrast, core decomposition continues removing new nodes that
emerge with degree less than k, due to their neighbors being removed in
the previous step. This process is repeated until no other node can be
removed. An example can be seen in Figure (2.1). The k-core decomposi-
tion is rather important in the context of this thesis, as it is the primary
metric to perform influencer identification. Influencer identification is a
ranking procedure, where the nodes are sorted in decreasing function
based on their potential on influencing the rest of the network. The
k-core decomposition, due to extracting nodes that are part of dense
cliques and lie in the center of the network, provides a solid substitute
for influence based on the di�usion models used for influence estimation,
which we analyze further below.

2.2 influence maximization

Formally, let a graph G with influence probabilities p on the edges.
A real world example of an influence graph is a follow network such
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Algorithm 1 Independant Cascade

Input: Weighted Adjacency Matrix A, Seed Set S

Output: Influence Spread ‡

1: procedure IC(A, S)
2: ‡ Ω 0

3: while |S| > 0 do

4: ‡ Ω ‡ + 1

5: v Ω S[0]

6: for u = 0; u < |A|; u ++ do

7: p ≥ U(0, 1)

8: if Av,u > p then:
9: S.add(u)

10: S Ω S[1 :]

11: return ‡

T = t

0.3

0.5
0.7

T = t + 1

Figure 2.2: Example of one step of the Independent Cascade simulation (red
is infected).

may form paths of varying length, to nodes of varying degree. From a
theoretical perspective, the problem is was proven to be #P-hard under
the Independent Cascade as a reduction from counting s-t connectedness
in a directed graph, which can not be performed in polynomial time
[212].

In practice, a good approximation can be achieved by running 10,000
simulations of the Independent Cascade model starting from the seed set.
The influence spread denoted as ‡(S) corresponds to the average number
of nodes reached by the set. An analogous formulation relies on the
live-edge model, a Monte Carlo sampling of edges that creates subgraphs
based on the edge probabilities and calculates the final influence spread
as the expected number of reachable nodes from the seed set over these
graphs:

‡(S) =
ÿ

g™G

P (g)‡g(S) (2.2)

P (g) =
Ÿ

eœE(g)

pe

Ÿ

eÕœE(G)/E(g)

(1 ≠ peÕ) (2.3)

The influence spread ‡g(S) is the nodes that are connected with S

by a path in g. An example can be seen in Figure 2.3.This does not
alleviate the the required 10,000 samples to form an accurate estimate.
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p(g) = (1 ≠ 0.3) ú 0.5 ú 0.7

‡g(S = {u}) = 2

u

0.3

0.5

0.7

p(g) = (1 ≠ 0.3) ú 0.5 ú (1 ≠ 0.7)
‡g(S = {u}) = 1

u

Figure 2.3: Influence estimation based on the live edge model under the Inde-
pendent Cascade simulation (red is infected).

2.2.2 Submodular Maximization

As mentioned above, the aim of influence maximization is to find the
seeds that exhibit the maximum combined influence spread, which is
achieved by finding the most influential nodes while ensuring their
influence overlap is minimized. We thus seek for a balance between how
influential is a potential seed on its own and how much it overlaps with
the rest of the seed set. As mentioned in Section 1.3, it is an NP-hard
problem, because we need to take all possible combinations of nodes
as seed sets and evaluate their influence spread in order to find the
maximum. It is however possible to reach a guaranteed near-optimum
solution using a greedy approach, based on the submodularity of the
influence spread.

Let us first introduce the concept of submodularity. A function ‡ is
submodular i�:

‡(S fi u) ≠ ‡(S) Ø ‡(SÕ fi u) ≠ ‡(SÕ), ’S ™ SÕ (2.4)

We can can understand submodularity as a diminishing returns
property. In our case, we see that as S increases, the marginal gain of a
new node u /œ S can only decrease or stay the same. Intuitively, as more
nodes are added to S, the influence spread of u can either be left intact
(if it does not overlap with S’s) or can diminish if nodes in its influence
spread are already influenced by the new additions on S. The influence
estimation function based on the Independent Cascade is submodular
as proven by a reduction from the set cover problem [106].

Algorithm 2 Greedy

Input: Graph G, seed set size ¸

Output: Seed set S

procedure Greedy(G, ¸)
2: S Ω ÿ

while |S| Æ ¸ do

4: u = arg maxwœV \S ‡(S fi {w}) ≠ ‡(S)

S Ω S fi {}

6: return S

Monotonicity implies that adding new nodes to the seed set can only
increase the spread, which is easy to deduce based on the Independent
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Cascade which assumes influenced nodes stay influenced throughout
the whole di�usion spread. Formally , ’u œ G, we have:

‡(SÕ fi u) Ø ‡(S fi u) (2.5)

Submodularity and monotonicty allows us to use a greedy algorithm,
which sequentially choose the node that provides the best marginal gain
i.e. the maximum increase of the set’s influence spread, such as the one
presented in Algorithm (2). The algorithm is guaranteed a solution at
(1 ≠ 1/e)OPT where OPT is the optimum spread [154].

Throughout the thesis, we propose methods that are based on a faster
version of the Greedy, called Cost E�ective Lazy Forward (Celf)
[121]. Celf is an acceleration to the original greedy that is based on the
constraint that a seed’s spread will never get bigger in subsequent steps.
The algorithm can be seen in Algorithm (3). The influence spread is
computed for every node in the first iteration and kept in a sorted list, q,
as shown in Figure 2.4. We sort this list in descending fashion and choose
the first (u). In the next iteration, we start computing the marginal gain
from top to bottom. Let the marginal gain of node v for iteration t + 1

be ‡t+1(v). Then, we check if ‡t+1(v) Ø ‡t(z), and if that is the case,
since we have the definition of the influence spread ‡t(z) Ø ‡t+1(z), we
know that ‡t+1(v) Ø ‡t+1(z). This property stems from submodularity,
i.e. the marginal gain of any node can never increase with the size of
the seed set. In other words, if the influence spread of a node examined
at the current step is better than the next best node that was evaluated
in any previous step , it is chosen because it is necessarily bigger than
the rest of the sorted list. This process continues by calculating the
marginal gain of the top node and resorting the list to compare it with
the rest, until the top node remains at the top after computing its new
marginal gain. The worst-case complexity is similar to greedy but in
practice it can be hundreds of times faster, while retaining greedy’s
original guarantee of (1 ≠ 1/e).

‡t(u)

‡t(v)

‡t(z)

...

‡t(n)

‡t+1(v)

‡t+1(z)

...

‡t+1(n)

Ø

Æ

Ø

Figure 2.4: Visualization of the influence spread inequalities that allows Celf

to reduce the number of influence estimations per step.

2.2.3 Influence Sketches and Heuristics

Several methods have been developed to accelerate the computations of
influence maximization. The overwhelming majority focus on alleviating
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Algorithm 3 Celf

Input: Graph G, seed set size ¸

Output: Seed set S

procedure Celf(G, ¸)
2: set q Ω [ ], S Ω ÿ, ‡(S) Ω 0

for s œ V do

4: R Ω ‡(s)

q.append([s, R, 0])

6: q Ω sort(q, 1)

while |S| < ¸ do

8: u Ω q[0]

if u[2] == |S| then

10: S.add(u[0])
‡(S) Ω ‡(S) + u[1]

12: q.delete(u)
else

14: R Ω ‡(S fi {u[0]}) ≠ ‡(S)

q[0] Ω [u[0], R, |S|]

16: q Ω sort(q, 1)

return S

the computational demand of repeating simulations for influence esti-
mation. We will briefly mention them as they form the set of baselines
we utilize to quantify our proposed methods.

The most notable acceleration is achieved using reverse reachable sets
as a means of sketching to estimate influence without simulations in
every step. The main idea is to approximate the influence of a seed based
on the sets of nodes that reach randomly sampled nodes [22]. Intuitively,
if a node appears in many such sets, it can reach many random nodes. it
was proven that under a high probability that depends on the number of
reverse reachable sets sampled, the amount of sets that a node is found
in is analogous to its actual influence [22]. This results in remarkable
acceleration as not only the number of simulations required to form
the initial reverse reachable sets is practically smaller than computing
the influence spread with 10,000 Monte-Carlo Independent Cascade
simulations for every node, but also the same reverse reachable sets
can be used for influence estimation throughout all steps [197]. Several
improved version have been developed, relying on faster reachability
estimations [45], building reverse reachable sets that depend on each
other and hence diminishing their required number [196], and testing
the quality of the solution to stop the creation of reverse reachable sets
early [157].

Moreover, numerous heuristics have been proposed that, though lack-
ing guarantees, exhibit remarkable success in practice. These methods
rely mostly on empirical and intuitive shortcuts. For the Independent
Cascade model, the degree discount [38]. Pmia relies on the influence
paths with the highest probability to compute the influence of a node
[37] and Irie relies on Pmia and computes the influence of one node
in constant time to accelerate the procedure [101]. On the other hand,
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for the linear threshold model, SimPath is estimating influence up to a
certain number of hops [81] and Ldag relies on local directed acyclic
decompositions of the graph to approximate the influence estimation
[39].

As the problem of influence maximization became more popular,
several methods were developed to construct more realistic versions
by adding temporal [129], topic [127] and location constraints [237], or
addressing the adversarial settings [98]. From the perspective of network
immunization, the required seed set can be retrieved by finding the must
pivotal nodes using optimal percolation [170], which is proven to be
equivalent to IM under the linear threshold model [151]. Such methods
are developed for epidemic containment and have not proven e�ective
in typical influence maximization evaluation yet, hence are omitted in
this paper. In order to better dissect the vast literature on influence
maximization, we created a github repository1 devoted to every relevant
paper we could find, classified in di�erent categories.

2.3 graph learning

Graph learning covers a broad spectrum of methods that aim to address
traditional machine learning tasks on graph data. It is also connected
to transforming the nodes in continuous representations of low dimen-
sionality or high sparsity. Such transformations allow to capitalize on
methods from the broad literature of statistics and optimization for
continuous spaces, on the input graph, a fundamentally discrete methe-
matical object. The main challenge is to retain the relationships between
the nodes, meaning the edges, in the space of the new representations.
To think of some of the advantages of such representations, one can
simply address the problem of comparing two graphs with comparing
two vectors. The latter can be computed in linear time by the Euclidean
distance, while the former is refered to the graph isomoprhism problem
[146], and there is no known polynomial time algorithm to solve it.
Hence the need to form continuous representations of graphs, a practice
that was already common before the advent of deep learning, either by
topology [83] or by kernel mechanisms [159].

Recently, various types of graph learning has resurfaced as a promis-
ing subfield of deep learning [107, 171]. The primary goal to learn
representations from graphs is to perform these machine learning tasks:

• Node classification/regression: given a graph where a number of
nodes are labeled, treat each node as a sample and classify or
regress the labels of the rest of the nodes.

• Edge prediction: given a pair of vertices, predict whether there is
or should be an edge between them.

• Semi-supervised learning: When the vast majority of the samples
on a typical machine learning dataset are unlabeled, the model
capitalizes on an underlying graph that forms relationships be-

1 https://github.com/geopanag/awesome-influence-maximization-papers

https://github.com/geopanag/awesome-influence-maximization-papers




18 background

2.3.2 Node Representation Learning

Inspired by the huge success of word2vec [75], DeepWalk[171] and then
node2vec [84] were developed and have proven equally e�ective in the
domain of graphs. Their neural architecture comprises of two layers, one
hidden and one output. Each node is represented typically by a one-hot
vector. To train the model we start with random walks from a random
node, which produces a sequence of nodes. A predetermined window w

passes through this sequence and creates pairs of the window’s median
node u each other node v in the window. These are called node-context
pairs and are used to train in an unsupervised manner the neural
network. The input to the model is u and the predicted output is v.
The model, resembling Skipgram [75] can be summarized as follows:

arg max
W

(log(pr(v|u))) =
exp(W1

uW2
v)

q

vÕœV exp(W1
uW2

vÕ)
(2.6)

where W 1 is the hidden layer parameters and W 2 is the output. Due to
the sum in the denominator of the softmax function being commonly
prohibitively big, most architectures utilize negative sampling, i.e. taking
a few nodes that do not appear in the neighborhood of u to normalize
the probability. Intuitively, the model is trained to bring closer the
hidden layer representations of nodes with similar neighborhoods. This
allows to translate the relationships between the nodes from the discrete
space into the continuous R

d where d is the size of the embedding.

2.3.3 Graph Neural Networks

A graph neural network is essentially a non-linear parameterization
of message passing. To be specific, given that the input samples are
connected in a graph G and let let H

(0)
v œ R

d denote the initial feature
vector of node v, the aim is to combine the features H

(0)
u , u œ N (v) of a

node v’s neighbors along with Hv such that the accuracy in the down-
stream task is enhanced. This combination which resembles message
passing, is typically a summation or an average Zu = H0

u +
q

vœN(u)H0
v

and is the input to a simple multilinear perceptron H1 = f(ZW0).
Each of the GNN layers uses the graph structure and the node feature
vectors from the previous layer to generate new representations for
the nodes. The feature vectors are updated by aggregating local neigh-
borhood information. Suppose we have a GNN model that contains
T neighborhood aggregation layers. In an abstract sence, for the t-th
neighborhood aggregation layer (t > 0), the hidden state H

(t)
v of a node

v is updated as follows:

M(t)
v = AGGREGATE(t)

3;

H(t≠1)
u |u œ N (v)

<4

H(t)
v = COMBINE(t)

3

H(t≠1)
v , M(t)

v

4 (2.7)

By defining di�erent AGGREGATE(t) and COMBINE(t) functions,
we obtain a di�erent GNN variant. For the GNN to be end-to-end train-
able, both functions need to be di�erentiable. Furthermore, since there
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is no natural ordering of the neighbors of a node, the AGGREGATE(t)

function must be permutation invariant. The node feature vectors H
(T )
v

of the final neighborhood aggregation layer are usually passed on to
a fully-connected neural network to produce the output. The model
with an average aggregate mechanism, called Graph Convolutional Net-
work (GCN)[107] can be seen in Figure 2.5 and can be expressed in a
vectorized manner as :

Hi+1 = f(D≠1/2AD≠1/2Hi Wi+1) (2.8)

where D is the degree matrix and the product D≠1/2AD≠1/2 resembles
the normalized adjacency matrix. Normalization is mainly applied to
avoid numerical instabilities and exploding/vanishing gradients associ-
ated with deep neural networks. One should note that by normalizing,
we capture the distribution of the representations of the neighbors of a
node, but not the exact multiset of representations. After the desired
depth l is reached, the final representations can be used as an input to a
node classifier or as concatenated pairs for edge prediction. An example
scheme of a graph convolutional network can be seen in Figure (2.5).

ŷ = ReLU(HlWo)) (2.9)

The aggregation of all node representations can be used for graph-level
tasks such as graph classification or graph similarity.

Figure 2.6: Scheme of Model Agnostic Meta Learning (MAML) [68].

2.4 transfer and multi-task learning

Transfer learning contains numerous promising methods to address
data scarcity. The core concept is to train a model on a specific task
where there is enough labeled and unlabeled data, and then utilize
this model in a task that su�ers from insu�cient amount of training
or overall data samples. It has gathered increased attention for deep
learning models for two reasons. The first is that it is easy to utilize
a pretrained set of parameters by simply concetanating the current
model with them. The second is deep learning’s relentless need for
large amount of training data, which makes it unuseable in tasks with
insu�cient data, thus transfer learning is a promising path to address
this. The method is closely related to multi-task learning [61], where
the aim is to learn a set of parameters that perform multiple tasks at
the same time, to enhance the models capacity to generalizing. Both are
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considered part of the general subfield of meta-learning [206] and both
have exhibited tremendous success recently. One example is the GPT-
3 natural language model that learns to generalize through di�erent
languages e�ciently [29].

In the context of this thesis, we develop a multi-task neural network
[31] i.e. a neural network with two output layers trained on two types
of labels. Moreover, we utilized the Model Agnostic Meta Learning
(MAML) [68] as a means to improve forecasting in the start of a temporal
dataset, similar to addressing a cold start problem. In MAML, we use a
set of meta-train datasets (train and test sets) Mtr = {D1, D2, ..., Dp}

to learn an initial set of parameters ◊. These are trained regularly on a
meta-test training set and tested on the meta-test testing set regularly.
MAML takes advantage of the meta-train set by taking small gradient
steps over ◊ instead of regular training. This is achieved by training
◊ú, a temporary version of ◊ on some samples from a specific task’s
train set. Subsequently, the error of the prediction of ◊ú with the task’s
test set creates a gradient that is used to update ◊. The purpose is to
take small regulated steps towards a better estimate without falling in
early local minima, as shown in Figure (2.6). After the metatraining, ◊

underoges regular training in the meta-tests train set and evaluated in
the respective test set.

2.5 reinforcement learning

In reinforcement learning, the task is to learn a model that can pro-
vide sequential decisions. The system can be formalized as a Markov
Decision Process (MDP) which consists of a set of states S, a set of
actions A, a reward R that is a function of a state-action pair, and
a transition probability P that defines the distribution to transition
on the next state [192]. The Markov assumption certifies that the
probability of the next state depends only on the immediate previous:
P (t + 1|(st, at), ..., (s0, a0) = P (t + 1|(st, at)). The model we learn is
the policy fi(st) that maps a state to an action, and is a neural network
in the case of Deep Q-learning [205].

For the model to learn, we create a dataset based on simulating
di�erent trajectories of the environment. At each time step and until the
environment has reached its final state, we typically choose an action
based on the policy or based on a random choice. We balance between
these two choices using a random threshold e. This allows the training
set to include samples from untouched state-action pairs (exploring) and
samples predicted by the policy to increase the final reward (exploiting).
Each choice yields an action and hence a new state and a reward is
retrieved, which are stored in a memory bu�er. The outcome of one
simulation is called a trajectory ((s0, s1, a0, r0), (s1, s2, a1, r1), ...) and
is stored as separate quadraples in the memory.

In the thesis, we assume that the system does not have transition
probabilities i.e. if we choose an action the agent arrives at it in the
next step deterministically, we aim thus for a non-stochastic policy. The
policy can be learned directy using policy gradient [186] or by learning
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the Q-value of a given state-action pair. We will focus on the latter,
since we aim for a deterministic policy and we have a discrete action
space. To learn the mapping we use a neural network Qπ that takes as
input the state-action embeddings and outputs a score for each possible
action. The action is then chosen as:

aÕ = arg max
a

Qπ(s, a) (2.10)

The Q function corresponds to the cumulative reward up to K steps
ahead:

Qπ(s, a) = E
π
[Rt] = E

π
[

K
ÿ

kØ0

“krt+k|st = s, at = a] (2.11)

where “ represents a discount factor for the future rewards. The reason
the Q function does not act solely on myopic rewards (K = 0) and
instead uses the cumulative reward, is that reinforcement learning
aims to perform approximate dynamic programming. It is thus trained
to choose the action that will improve the reward in the long term,
and not to act greedily. If we assume sÕ to be the next state from
(s, a), we can derive the Bellman equation for the optimum policy fiú,
Qú(s, a) = maxπQπ(s, a) using Equation 2.11:

Qú(s, a) =
ú

E
π
[rt + “

K
ÿ

kØ0

“krt+k+1|st+1 = sÕ] = (2.12)

=
ú

E
π
[rt + “

Õ
max

a
Qú(sÕ, aÕ)] (2.13)

=
ÿ

sœS

[R(s, a, sÕ) + “
Õ

max
a

Qú(sÕ, aÕ)] (2.14)

which clarifies the recurrent nature of the model. We thus aim to train
Qπ such that it captures the future rewards given by the environment
and the value of the future state. The value of the future state is typically
computed by the maximum action of QπÕ

, a target network updated
with the value of Qπ after every certain amount of steps, to stabilize
training:

Λ = E[(Qπ(st, at) ≠ (rt+n + “ max
a

QπÕ

(st+n, a)))2] (2.15)

where n > 1 to capture long term rewards. During training in practice
we sample a certain amount of transition quadraples from the memory
and use them as samples to evaluate the loss function.
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M U LT I - TA S K L E A R N I N G F O R I N F L U E N C E

E S T I M AT I O N A N D M A X I M I Z AT I O N

We address the problem of influence maximization when the social
network is accompanied by di�usion cascades. In prior works, such
information is used to compute influence probabilities, which is utilized
by stochastic di�usion models in influence maximization. Motivated
by the recent criticism on the e�ectiveness of di�usion models as well
as the galloping advancements in influence learning, we propose IM-

INFECTOR (Influence Maximization with INFluencer vECTORs), a
unified approach that uses representations learned from di�usion cas-
cades to perform model-independent influence maximization that scales
in real-world datasets. The first part of our methodology is a multi-task
neural network that learns embeddings of nodes that initiate cascades
(influencer vectors) and embeddings of nodes that participate in them
(susceptible vectors). The norm of an influencer vector captures the
ability of the node to create lengthy cascades and is used to estimate the
expected influence spread and reduce the number of candidate seeds. In
addition, the combination of influencer and susceptible vectors form the
di�usion probabilities between nodes. These are used to reformulate the
network as a bipartite graph and propose a greedy solution to influence
maximization that retains the theoretical guarantees. We apply our
method in three sizable networks with di�usion cascades and evaluate
it using cascades from future time steps. IMINFECTOR outperforms
various competitive algorithms and metrics from the diverse landscape
of influence maximization in terms of combined e�ciency, scalability
and seed set quality.

source code The implementation of the proposed model can be
found online 1.

3.1 introduction

In section 1.3, we briefly described the problems of utilizing di�usion
models with random probabilities in the context of influence maximiza-
tion. We underline the importance of learning these probabilities from
historical logs of activity i.e. di�usion cascades. A di�usion cascade is a
sequence of events in discrete time. The events correspond to users in
the network, who are influenced by the topic of the cascade in time. A
tweet and its retweets is the most obvious example, but it can generalize
to other systems, including the web and the academic literature, as we
will see further in the experimental section. One crucial subtle point
here is that we are not aware of who influences whom, which would

1 https://github.com/geopanag/IMINFECTOR
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make the di�usion cascade a tree, we are only aware of the sequence
the users are influenced at.

The benefits of learning influence probability from real di�usion cas-
cades over random assignments are obvious. However, even when the
parameters are learned in an empirical manner from di�usion cascades,
in multiple cases the independent cascade (IC) model is utilized [27, 54,
179], which is problematic for two reasons. Apart from severe overfitting
due to the massive number of parameters, this approach assumes influ-
ence independence throughout related nodes or edges of the same node.
This assumption overlooks the network’s assortativity, meaning that an
influential node is more prone to e�ect a susceptible node then a less
influential node, even when the edge of the latter to the susceptible is
stronger than the edge of the former. This e�ect comes in contrast with
the actual mechanics of influence [12].

To address these issues, we propose a method that learns influencer
and susceptible embeddings from cascades, and uses them to perform
influence maximization without the use of a di�usion model. Initially
we propose Celfie, a variation of the Celf algorithm analyzed in
Chapter 2, that utilizes influence probabilities. Our model capitalizes
on the information contained in past di�usion cascades using influ-
ence and susceptibility representations learnt for this setting. To be
specific, we device a modification of the recently proposed influence
embedding model Inf2vec [66] in order to improve its scalability. Our
focus on the cascades’ initiators is justified from empirical evidence on
the predominantly tendency of influencers to initiate rather than copy
cascades, which we argue based on a data analysis on Sina Weibo. As we
will see in detail in the next section, Inf2vec computes influence and
susceptibility embeddings based on time precedence in di�usion cascade
history and follow relationships in the network. We adjust it to focus
on initiators of the cascades and compute di�usion probabilities, which
are influence probabilities between nodes with any possible distance in
the network. Following suit from recent model-independent influence
maximization algorithms [113, 207], we overlook the di�usion model
and connect each candidate seed (influencer) and every susceptible
node with a di�usion probability using the dot product of their respec-
tive influencer-susceptibility embeddings, forming a bipartite network.
Di�usion probabilities have the advantage of capturing higher-order
correlations that di�usion models fail to due to their Markovian nature.
Moreover, on this setting there are no higher order paths, which means
that each seed directly infects a specific node, thus the stochastic ex-
istence of an influence edge e�ects only the infection of the node in
the receiving end, and the need for repeated simulations is eliminated.
We take advantage of this to define a new marginal gain based on a
sampling strategy similar to the live-edge model, but diminishing the
sampling space based on previously influenced nodes and reusing a
seed’s past samples to compute the new influence spread.
This model however su�ers from an overestimation of the influence
spread i.e. the network is covered very fast which is computed by sam-
pling repetitively from a node’s neighbors and summing the edge’s
weights, decreases very fast during the seeding rounds. This has as a
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result the whole network being covered within a few iterations, meaning
that the retrieved seed set can stop at a budget smaller than the one
provided, if the method has detected that the whole network is already
covered. To address this, we first modify further the influence learn-
ing model into INFECTOR (INfluencer Vectors), a multi-task neural
network that learns influencer vectors for nodes that initiate cascades
and susceptible vectors for those that participate in them. INFECTOR
additionally embeds the aptitude of an influencer to create sizable cas-
cades in the norm of her embedding. We use these embeddings and their
norms to define an influence spread over this new bipartite network,
that uses the estimated aptitude as a prediction for the percentage of
the network each seed can cover. Moreover, we can use this estimate
of every candidate influencers’ spread to diminish the number of the
candidate seeds. Finally, we propose IMINFECTOR, a scalable greedy
algorithm that uses this submodular influence spread to compute a
seed set, retaining the theoretical guarantee of 1 ≠ 1/e. To evaluate the
performance of the algorithm, the quality of the produced seed set is
determined by a set of unseen cascades from future time steps, similar
to a train and test split in machine learning. We deem this evaluation
strategy more reliable than traditional evaluations based on simula-
tions because it relies on actual traces of influence. IMINFECTOR

outperforms Celfie and previous influence maximization methods with
learned edge weights, either in quality or speed in three sizable networks
with cascades.

3.2 related work

The main problem of the aforementioned influence maximization ap-
proaches is that the established influence spread may lead to seed sets
of poor quality. This can be caused either by the assignment of sim-
plistic influence weights or by the di�usion model’s innate assumptions.
To address the issue with the random influence weights, some novel
influence-maximization approaches assume multiple rounds of influence
maximization can take place over the graph, hence multiple simulations
can be used to compute the influence probabilities while balancing
between the number of nodes influenced in each round and learning
influence for non examined parts of the network. Since this is an in-
herently exploration-exploitation problem these models are based on
multi-armed bandits to use the feedback and update of the parameters
[191, 219, 224]. Though useful, these algorithms are built based on
the di�usion models as well, hence they share their aforementioned
deficiencies. Recently more model-independent online learning [113]
approaches that utilize regret functions without the use of di�usion
models have been proposed [207], but they su�er from scalability issues
and would not be able to scale in real-world social networks, such as
the ones we examine in this work.

There have been few attempts to address influence maximization with
learned influence parameters from real past cascades, which serve as
benchmark comparisons for our proposed approach [79, 80]. Influence
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learning can also follow a more principled probabilistic perspective, by
learning the parameters based on the independent cascade model [77].
These models su�er from overfitting due the number of parameters
which is proportional to the number of edges. To address this an array
of works utilize representation learning to capture influence between
two nodes. A representative example is Embedd-IC [27], an adapta-
tion of the independent cascade where the influence probabilities are
expressed as a combination of the nodes’ embeddings. Each node is
associated with two embeddings, a source and a target, which combined
construct the probability of influencing and getting influenced. This
method however relies on independent cascade, and consequently over-
looks the aforementioned higher order influence (Section 1.3). Another
important problem with influence learning techniques that are based on
di�usion models, is that they assume influence independence between
edges. This assumption does not allow the model to capture influence
similarities between nodes of similar status, which exist because of the
assortative mixing property [155]. Moreover, it causes a substantial
depreciation in the estimation of the influence spread [9], which is why
in this work, we utilize a model that learns influence and susceptibility
embeddings based on the co-occurence in di�usion cascades [66]. More
recent influence learning methods are devoid of di�usion models and
learn the embeddings based on co-occurrence in cascades [66], similarly
to node representation learning. This type of influence learning has not
been utilized yet for influence maximization. Although more accurate
in di�usion prediction, the input of this model consists of node-context
pairs derived from the propagation network of the cascade, a realization
of the underlying network (e.g. follow edges) based on time-precedence
in the observed cascade (e.g. retweets). This requires looping through
each node in the cascade and iterating over the subsequent nodes to
search for a directed edge in the network, which has a complexity of
O(cn̄(n̄ ≠ 1)/2), where c is the number of cascades and n̄ is the average
cascade size. This search is too time-consuming as we analyze more on
the experimental section.

It should be noted that apart from pure influence learning, multiple
methods have been developed to predict several aspects of a cascade,
such as Topo-LSTM and HiDAN to predict the next infected node
[214, 216], RMTPP, DeepDiffuse and CYANRNN for next node
and time of infection [52, 97, 215], DeepCas to predict cascade size
[123], and FOREST to predict next node and size together [231]. These
methods have advanced end-to-end neural architectures focused each on
their respective tasks. However, their hidden representations can not be
utilized in the context of IM, because they are derived by a sequence of
nodes, hence we can not form individual influence relationships between
two distinct nodes. In other words, an influence maximization algorithm
requires a node-to-node influence relationship, which is not clearly
provided by the aforementioned references. Moreover, methods that do
learn node-to-node influence but capitalize on other information such
as sentiment of the context [130] can not be utilized as well due to our
datasets missing content, but it is a promising future approach.



3.3 learning influencer vectors 27

Symbol Meaning Type

N number of nodes scalar

tu time of node’ u post scalar

Cu cascade initiated by u set

x, yt one-hot embedding of a node vector

yc cascade length scalar

Xt x, y pairs extracted from cas-
cade

list

O origin embeddings of INFEC-
TOR

matrix

T target embeddings of INFEC-
TOR

matrix

C constant embeddings of IN-
FECTOR

vector

pu,v probability of u influencing v scalar

z hidden layer output vector

ft softmax function

fc sigmoid function

ϕt output for node influenced vector

Ïc output for cascade size scalar

Φ jacobian of INFECTOR’s out-
put

matrix

L loss of INFECTOR vector

D INFECTOR classification
probabilities

matrix

⁄u number of nodes to be influ-
enced by u

scalar

D̂s D sorted for the row of node s matrix

‡Õ(s) influence spread of node set s scalar

S Set of seed nodes set

Table 3.1: Table of symbols.

3.3 learning influencer vectors

3.3.1 Node-Context Extraction

Our goal in the first part of our methodology is to create a model that
learns representations suitable for scalable model-independent influence
maximization. Due to the lack of a di�usion model, the network’s
structure becomes secondary and online methods tend to rely only on
the activity of individual nodes [113, 207]. We follow suit and propose
an influence learning method that focuses on influencers. We start from
the context creation process that produces the input to the network. In
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Figure 3.1: Schematic representation of Inf2vec node-context creation [66].

previous node-to-node influence learning models, initiating a cascade is
considered equally important with participating in a cascade created
by someone else [66], thus the context of a node is derived by the nodes
occurring after it in a cascade, as we see in Figure 3.1.

This process requires the creation of the propagation network, mean-
ing going through every node in the cascade and iterating over the
subsequent nodes to search for a directed edge in the network. This
has a complexity of O

1

c(n̄(n̄ ≠ 1)/2)
2

, where c is the number of cas-
cades and n̄ is the average cascade size. Given that the average size
of a cascade can surpass 60 nodes, it is a very time consuming for a
scalable influence maximization algorithm. To overcome this we focus
on the nature of IM, meaning the final chosen seed users will have to
exert influence over other nodes, thus we may accelerate the process
by capitalizing on the di�erences between influencers and simple users.
Intuitively, we expect the influencers to exhibit di�erent characteristics
in sharing content than the simple/susceptible nodes [155]. We argue
that an influencer’s strength lies on the cascades she initiates, and
evaluate this hypothesis through an exploratory analysis.

We utilize the cascades of Sina Weibo dataset, a large scale social
network accompanied by retweet cascades to validate our hypothesis.
The dataset is split in train and test cascades based on their time of
occurrence and each cascade represents a tweet and its set of retweets.
We keep the 18,652 di�usion cascades from the last month of recording
as a test set and the 97,034 from the previous 11 months as a train
set. We rank all users that initiated a cascade in the test set based on
three measures of success: the number of test cascades they spawn, their
cumulative size, and the number of Distinct Nodes Influenced (DNI)
[54, 164, 169], which is the set of nodes that participated in these test
cascades. We bin the users into three categories based on their success
in each metric, and for each category we compute the total cascades
the users start in the training set opposed to those they participate in.

Here, we examine the contrast between the behavior of the influencers
and normal users, meaning how more probable is for an influencer
to start cascades compared to normal users. As we see in Figure 3.2,
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users that belong to the top category of the test set are much more
prone to create cascades compared to the ones who belong to the mid
and low categories. Since our end goal is to find influencers for our
algorithm, this observation allows us to focus solely on the initiators
of the cascades, rather than every node in the cascade. Moreover, we
observe that influencers in Weibo are more prone to create cascades
opposed to participating in them. This means that by overlooking their
appearances inside the cascades of others, we do not lose too much
information regarding their influence relationships, as most of them
start the cascades.
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Figure 3.2: Influencer’s initiating versus participating in di�usion cascades.
DNI stands for distinct nodes influenced, size stands for cascade
size, and no stands for number of cascades started.

To this end, we propose a new approach to the creation of the input
to the neural network behind Inf2vec. Instead of deriving one node-
context pair for each node in the di�usion, we can derive a single
one only for the initiator of the cascade. Apart from the significant
computational gain, we expect this approach to perform adequately due
to the above observation. Moreover, instead of creating the di�usion
network, which is time consuming and prone to noise due to the absence
of edges [164], we can perform another type of sampling to derive the
context of the initiator.

Another important characteristic in the study of social influence
is its temporal dynamics. In the case of information di�usions, the
time passed between two node’s activity is known to play a role in the
amount of influence the source node exerts to the target [79]. Yet, the
original Inf2vec algorithm does not capitalize over this attribute. In
our dataset, we can observe this phenomenon by studying the copying
times in the di�usion cascades of the influencers. As mentioned above,
we focus on the nodes that have started a cascade in the test set and
use as a measure of a node’s influence the number of nodes it infects
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throughout all these cascades (DNI). We compute the average copying
time of a cascade, for all train cascades of these nodes, and average it
to get an estimate of how fast these nodes get “copied" during their
cascades. Subsequently, we group these nodes based on their DNI and
compute the average copying time of each group and plot it opposed
to the DNI in Figure 3.3. This plot indicates that nodes with higher
influence tend to have much faster cascades than ordinary influencers.
Of course, there are much more nodes with smaller DNI than high, but
since we take the average of the copying time for each DNI, the result
is not a�ected. Apart from confirming our intuition, this observation
buttress several findings that underline the decay of influence as the
copying time increases in real-world di�usion cascades [79]. To this end,
we guide the sampling of a node’s context based on the copying times
in its cascades. More specifically, we form the context by performing a
random sampling over the nodes in the cascade, where the probability
is inversely proportional to the copying time between the candidate
node and the initiator. For the current analysis, we do an oversampling
of 120% to emphasize the importance of fast resharing in the depiction
of influence. This creates node-context pairs that take into account the
temporal dynamics of the cascades.
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Figure 3.3: Average copying time in the train cascades relative to the number
of distinct nodes influenced in the test cascades.

To clarify notation, all cascade initiators are called influencers, an
influencer u’s context will be created by sampling over all nodes v in a
given cascade c that u started, with probability inversely proportional
to their copying time. In this way, the faster v’s retweet is, the more
probable it will appear in the context of u, following this formula

P (v|Cu) ≥
(tu ≠ tv)≠1

q

vÕœCu
(tu ≠ tÕ

v)
≠1

(3.1)

It is a general principle to utilize temporal dynamics in information
propagation when the network structure is not used [54, 77, 238] and is
based on empirical observation on the e�ect of influence in time [79]. In
our case we do an oversampling of 120% to emphasize the importance
of fast copying. This node-context creation has a complexity of O(cn),
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which is linear to the cascade’s size and does not require searching in the
underlying network. Even more importantly, this type of context sets
up the model to compute di�usion probabilities, i.e. influence between
nodes with more than one hop distance in the network.

3.3.2 Diffusion Probabilities

Intuitively, di�usion probability (DP) is the probability of the susceptible
node appearing in a di�usion started by the influencer, independently of
the two nodes’ distance in the network. This means that the underlying
influence paths from the seed to the infected node is included implicitly,
which changes drastically the computation of influence spread. For
example, in a setting with di�usion models and influence probabilities,
a node u might be able to influence another node z by influencing node
v between them, as shown in Figure 3.4. However, in our case, if u could
indeed induce the infection of z in a direct or indirect manner, it would
be depicted by the di�usion probability pu,z.

v

u z

pu,v pv,z

pu,z

Figure 3.4: Example of higher order influence showing the di�erence between
influence and di�usion probabilities.

In this setting we can capture the case when v appears in the cascades
of u and z appears in the cascades of v but not in u’s. This is a realistic
scenario that occurs when v reshares various types of content, in which
case content from u might di�use in di�erent directions than z. Hence, it
would be wrong to assume that u’s infection would be able to eventually
cause z’s. Typical influence maximization algorithms fail to capture such
higher order correlations because di�usion models act in a Markovian
manner and can spread the infection from u to z.

3.3.3 INFECTOR

The di�usion probabilities (DPs) are the basis for our model-independent
approach. We use the node context creation of node-context creation
analyzed in Section 3.3.1 and change the neural architecture of Inf2vec

to come up with the embeddings along with an estimate of an influencers
aptitude. To this end, we use a multi-task neural network [31] to learn
simultaneously the aptitude of an influencer to create long cascades
as well as the di�usion probabilities between her and the reposters.
We chose to extend the previous architecture in a multi-task learning
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representation of the target node and yc is the normalized cascade
length. We employ a non-linearity instead of a simple regression because
without it, the updates induced to the hidden layer from the second
output would heavily overshadow the ones from the first. Furthermore,
we empirically observed that the update of a simple regression would
cause the gradient to explode eventually. Moreover, variable C is a
constant vector of ones that is untrainable, in order for the update of
the regression loss to change only the hidden layer. This change was
motivated by experimental evidence.

Classify Influenced

Node

Regress Cascade

Size

Hidden zt,u = OuT + bt zc,u = OuC + bc

Output ϕt =
e(zt,u)

q

uÕœG
e

z
t,uÕ ϕc =

1

1+e≠(zc,u)

Loss Lt = yt log(ϕt) Lc = (yc ≠ Ïc)
2

Table 3.2: The layers of INFECTOR.

The training happens in an alternating manner, meaning when one
output is activated the other is idle, thus only one of them can change
the shared hidden layer at a training step. For example, given a node u

that starts a cascade of length 4 like in Figure 3.5, Ou will be updated
4 times based on the error of ∂Lt

∂O
, and one based on ∂Lc

∂O
, using the same

learning rate e for the training step · :

Ou,τ+1 = Ou,τ ≠ e
ˆL

ˆO
(3.2)

The derivatives from the chain rule are defined as:

ˆL

ˆO
=

ˆL

ˆÏ

ˆÏ

ˆz

ˆz

ˆO
. (3.3)

The derivatives in Eq. (3.3) di�er between regression and classification.
For the loss function of classification Lc, we have that

ˆzc

ˆO
= T€ (3.4)

ˆϕt

ˆzt
=

Y

_

]

_

[

ϕ
u
t (1 ≠ ϕ

v
t ), u = v

≠ϕ
u
t ϕ

v
t , u ”= v

(3.5)

where u is the input node and v is each of all the other nodes, represented
in di�erent dimensions of the vectors ϕt. If we create a matrix consisting
of N replicates of ϕt, we can express the Jacobian as this dot product:

ˆϕt

ˆzt
= Φt · (I ≠ Φt)

€, Φt =

S

W

W

W

U

ϕt
...

ϕt

T

X

X

X

V

œ R
N◊N (3.6)
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ˆLt

ˆϕt

= yt

Q

a ≠
1

ϕt

R

b (3.7)

The derivatives for the regression task are:

ˆzc

ˆO
= C€ (3.8)

ˆÏc

ˆzc
=

1

1 + e≠zc

Q

a1 ≠
1

1 + e≠zc

R

b = Ïc(1 ≠ Ïc) (3.9)

ˆLc

ˆÏc
= 2(yc ≠ Ïc)

(≠Ïc)

ˆÏc
= ≠2(yc ≠ Ïc) (3.10)

From Eqs. (3.3), (3.4), (3.6), (3.7), (3.8), (3.9),(3.10) we have:

ˆL

ˆO
=

Y

_

]

_

[

≠ yt

ϕt
(Φt · (I ≠ Φt)€)T€

≠2(yc ≠ Ïc)(Ïc(1 ≠ Ïc))C€
(3.11)

As mentioned above, the aim here is for the embedding of an influencer
(hidden layer O) to not only capture who she influences but also her
overall aptitude to create lengthy cascades. To be specific, for each node
v inside the cascade, Ou and Tv will undergo updates using the upper
formula from Eq. (3.11) to form the di�usion probabilities, depending
on ϕt and yt. We see that the upper update is formed based on a
combination of the gradients, hence each dimension of the update vector
might be positive or negative. In contrast, when updating the parameters
for the regression task, we multiply a constant vector C with a scalar
value. Thus, the update will increase or decrease the overall norm of
the embedding analogously to the di�erence of the predicted and the
actual cascade size.

The main di�erence between INFECTOR and similar node-to-node
influence learning methods is that it computes di�usion probabilities and
does not require the underlying social network, in contrast to influence
probabilities which are assigned to edges of the network [27, 66, 179].
Apart from capturing the aforementioned higher order correlations, DPs
will allow us to overcome the problems induced in influence maximization
by the di�usion models as well as surpass the computational bottleneck
of the repeated simulations. Please note that our method’s final purpose
is influence maximization, which is why we focus so much on the activity
of influencers and overlook the rest of the nodes. If we aimed for a purely
prediction task, such as cascade size or next infected node prediction, it
is not clear that our learning mechanism would be e�ective.
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3.4 influence maximization with influencer vectors

3.4.1 Diffusion with Influencer Vectors

In the second part of the methodology, we aim to perform fast and
accurate influence maximization using the representations learnt by
adapted Inf2vec or INFECTOR and their properties. Initially, we
will use the combination of the representations which form the diffusion

probability of every directed pair of nodes. The DPs derived from the
network can define a matrix:

D =

S

W

W

W

U

ft(O1T )
...

ft(OIT )

T

X

X

X

V

(3.12)

which consists of the nodes that initiate train cascades (influencers)
in one dimension and all susceptible nodes in the other. Even though
influencers are fewer than the total nodes, D can still be too memory-
demanding for real-world datasets. To overcome this, we can keep the
top P % influencers based on the norm of their influencer embedding |Ou|

to reduce space, depending on the device. Recall that, the embeddings
are trained such that their norm captures the influencers’ potential to
create lengthy cascades, because OuC =

qE
i Ou(i) = |O|, since C is

constant.
Given the di�usion matrix D, formally, the probability of a node v

getting influenced by a seed set S is the complementary probability
of not getting influenced by each node u œ S. Summing this over all
non-seed nodes gives the number of nodes the S can influence:

‡(S) =
ÿ

vœG/S

3

1 ≠
Ÿ

uœS

(1 ≠ pu,v)

4

(3.13)

To transform this into a set function that computes the infected nodes,
we can use a threshold such that a node will get infected if its probability
of getting influenced by the seed set at this step is equal to or more
than 0.5, which is the value used in classifiers with softmax output.
Unfortunately, it is easy to see that this function is not submodular. A
toy example with two source nodes a, b that can influence three other
nodes with probabilities [0.6, 0.3, 0.5] and [0.3, 0.4, 0.4], respectively. In
the first step, the algorithm will choose a as it gives 2 infected nodes
opposing to b that gives 0. In the second step, following our definition,
the addition of b will infect the second and final node, thus the property
of diminishing returns does not stand for this influence spread and we
can not utilize the greedy algorithm. Moreover the optimization of this
non-convex function is non-trivial.

Alternatively, D can be interpreted as a bipartite network where the
left side nodes are the candidate seeds for influence maximization, and
each of them can influence every node in the right side, where the rest
of the network resides. Since all edges are directed from left to right, no
paths with length more than 1 exist. This means that the probability of
an edge can only define the infection of one node, and it is independent
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Candidate seed node Susceptible node Clone seed node

Figure 3.6: Example of cloning candidate seeds for perfect bipartite matching.

of the infection of the rest—hence, we do not require a di�usion model
to estimate the spread. If we view the di�usion probabilities as edge
weights, a simplification used extensively in similar context [38, 81], we
can transform the problem into weighted bipartite matching. However,
in this case, each candidate seed (left side) can be assigned to more than
one nodes (right side). The matching can become perfect by creating a
number of clone seeds for each candidate seed, and assigning them to
the nodes the initial seed would be assigned to, in a one-to-one fashion,
as can be seen in Figure 3.6.

The number of clones is equal to the expectation of a candidate seed
u’s influence spread ⁄u. Cloning each node u for ⁄u times transforms
D into a balanced, weighted bipartite graph, for which we could use
algorithms such as the Munkres assignment [153]. Unfortunately, it has
a complexity of O(n4) and requires constructing a non-sparse N ◊ N

matrix, which renders it prohibitive for real-world datasets. Though
we can not use it directly, this interpretation remains useful for future
directions.

To be specific regarding our assumptions and the di�erence with
di�usion models, we revisit the source of the computational demand,
which we briefly discussed in Chapter 2. Simulations are performed
in order to account for all 2e possible combinations of edges. This
happens because an edge might produce the infection of more than the
target node e.g. when it is a bridge between two communities. This
can not happen in our setting by the definition of di�usion probability:
if a node can influence another node, no matter how far that is in
the original network, it will be depicted in their edge weight. That is
clear in the first iteration, where the infection of a seed can only cause
the infection of its neighbors hence simulations are not required. To
keep this property in the subsequent iterations (where the candidate’s
influenced spread overlaps with previous seeds) we make the assumption
that each node will influence for sure a certain number of nodes, based
on INFECTOR’s or adapted Inf2vec’s representations. Hence these
nodes can be removed, as they should not be recalculated in the influence
spread of subsequent candidate seeds. This pertains to the adaptive
influence maximization which is also known to exhibit similar theoretical
guarantees [76].
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3.4.2 Cost Effective Lazy Forward with Influence Embeddings (Celfie)

One can observe that a seed’s influence spread in the bipartite network
is related only to its edges and the edges of the rest of seed set defined
by matrix D. This characteristic can induce a drastic change to the
computation of the influence spread in Eq. (3.13). In the typical live-edge
model, edges are randomly sampled from the network and their joint
probability in Eq. (2.3) is used to weigh the influence spread. During
this process, edges that are unrelated to the seeds can be sampled,
because they may form a new path from a seed to multiple uninfected
nodes, which causes the computation of the joint probability of the
whole network in Eq. (2.3). However, in our case sampling an edge that
is unrelated to the seed set will never produce an infected node, because
we do not have any paths. It should be noted here that we assume the
di�usion probabilities are independent, and the amount of nodes a seed
can influence is not fixed in the sense that if a node that would be
influenced by a seed is already influenced, does not interfere with the
rest of the nodes that a seed can influence.

Thus, in the sampling process of this simulation model, we do not
have to take into account the probability of the whole network, but only
of the seed set under consideration. We can update P (g) in Eq. (2.2)
to depict this e�ect as follows:

P (g) =
Ÿ

sœS

Ÿ

e™N̄

pe

Ÿ

eÕœN(s)\N̄

(1 ≠ peÕ), (3.14)

where N (s) are the neighbors of the seed s, and N̄ ≥ N (s) is a sample
of them of size ‘. This not only allows to restrain our sampling to the
seed at hand, but also separate the sampling of the seed set with the
sampling of the candidate seed. In this way instead of sampling from the
whole network, computing the sample’s joint probability and finding the
live paths from the seed set in each simulation, we can sample solely for
each candidate seed and combine it with the sampling of the seed set in
the respective simulation from the previous iterations. To this end, we
can redefine the computation of the marginal gain and the algorithm
itself.

To measure the marginal gain of a candidate seed c, we use Algorithm
4. We perform a fixed number of simulations, where each one consists
of sampling a fixed number of c’s edges (line 4), according to their
probabilities. Subsequently, we unite these nodes with the ones that
have been infected by the seed set in that respective simulation (line 5),
which gives the candidates influenced set. The cumulative quantity from
all simulations subtracted by the same quantity of the seed set up to now
defines the marginal gain. The influence spread is basically the same
with the traditional ‡ [106], the only di�erence being sampling from
fewer edges. We can thus contend that it is submodular and monotonic
increasing.

The Celf with Influence Embeddings (Celfie) method can be seen
in Algorithm 5. It is an adapted implementation of CELF [121]. We
use Algorithm (4) as a subroutine to estimate the marginal gain c in
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Algorithm 4 Celfie Marginal Influence Set (MIS)

Input: Influence likelihood matrix D, index of candidate seed c, influ-
enced set up to now inf_set,number of simulations l, number of edges
to sample ‘

Output: Updated influenced set inf_set

procedure MIS(D, c, inf_set, l, ‘)
2: set gain = 0, n = size(D)[0]

for i Ω 0; i < l; i ++ do

4: c_inf Ω Sample(‘, n, D[c, :])

inf_set[i] = inf_set[i] fi c_inf

6: return inf_set

Algorithm 5 Celfie

Input: Influence likelihood matrix D , number of simulations l, number
of edges to sample ‘, seed set size size

Output: Seed set S

procedure Celfie(D, l, ‘, size)
2: set q = [], S = []

for i Ω 0; i < l; i ++ do

4: inf_set[i] Ω ÿ

for c Ω 0; c < N [1]; c ++ do

6: infs Ω MIS(D, c[0], inf_set, l, ‘)

q.append([c, infs, 0])

8: q Ω Sort(q, 1, Desc = True)

while S.size() < size do

10: c Ω q[0]

if c[2] == size(S) then

12: S.add(c[npos])

inf_set = c[1]

14: q.delete(c)

else

16: infs Ω MIS(D, c[0], inf_set, l, ‘)

mg Ω 0

18: for i Ω 0; i < l; i ++ do

mg+ = |infs[i]| ≠ |inf_set[i]|

20: c Ω [mg, infs, |S|]

q Ω Sort(q, 1, Desc = True)

22: return S

line 18 and 19. Variables l is the number of simulations and ‘ is the
number of edges to sample during each simulation. The list q is used to
store a node’s id and influence set, as well as the iteration it was last
updated. We can use CELF because the influence spread is submodular
and monotonic as mentioned above. This algorithm is an adaptation of
the algorithm introduced in Section 2.2.2.

Note that, Celfie utilizes the di�usion probabilities computed from
an Inf2vec with the context creation introduced in 3.3.1. The main
problems with this model is that the estimated influence spread is
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unbounded. Since influencers tend to be copied many times in real
cascades, the di�usion probabilities can become quite substantial. This
leaves room for significant overestimations for influencers with very
strong connections in the bipartite network, which in turn means that
the inf_set parameters may include the whole V without S having
reached its budget. We thus have to find a way to normalize the amount
of influence a node can exert. To do this we will use INFECTOR’s
representations and Eq. (3.16).

3.4.3 Influence Maximization with Influencer Vectors (Iminfector)

Since INFECTOR embeds in |Ou| of a candidate seed u’s how po-
tentially big is the cascade it initiates, will utilize it to compute the
fraction of all N nodes u is expected to influence:

⁄u =

S

W

W

W

N
||Ou||2

q

uÕœI ||OuÕ ||2

T

X

X

X

(3.15)

where I is the set of candidate seeds. The term resembles the norm of
u relative to the rest of the influencers and the size of the network. In
other words it is computing the amount of the network u will influence.
Since we know a seed s can influence a certain number of nodes, we can
use the di�usion probabilities to identify the top ⁄s nodes it connects
to. Moreover, we have to take into account the values of the DPs, to
refrain from selecting nodes with big ⁄s but overall small probability of
influencing nodes. Consequently, the influence spread is defined by the
sum of the top ⁄s DPs:

‡Õ(s) =
λs
ÿ

j

D̂s,j (3.16)

where D̂s is the DPs of seed s sorted in descending order. Once added
to the seed set, as mentioned above the seed’s influence set is considered
infected and is removed from D. This means that a seed’s spread will
never get bigger in two subsequent rounds, and we can employ Celf to
accelerate our solution.

To retain the theoretical guarantees of the greedy algorithm (1 ≠ 1/e),
we need to prove the monotonicity and submodularity of the influence
spread that we optimize in each iteration. To do this, we need to separate
the influence spread of the seed set S throughout the di�erent steps
of the algorithm. Let i(s) be the step before node s was inserted in S,
Si be seed set at step i, Di the DP matrix at step i and u the current
candidate seed.

Corollary 3.4.0.1. The influence spread is monotonic increasing.
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Proof.

‡Õ(Si(u) fi {u}) =
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(3.17)

Corollary 3.4.0.2. The influence spread is submodular.

Proof.

‡Õ(Si(u)≠1 fi {u}) ≠ ‡Õ(Si(u)≠1) =

ÿ
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‡Õ(Si(u) fi {u}) ≠ ‡Õ(Si(u)) =
λu
ÿ

j

D̂
i(u)
u,j (3.19)

D̂
i(u)
u,j , ’j œ ⁄u are the top DPs of u for nodes that are left uninfected

from the seeds in Si(u). Note here that, D̂
i(u)
u,j , ’j œ ⁄u are the top DPs

of u for nodes that are left uninfected from the seeds in Si(u). So, the
influence spread of u is reverse analogous to the influence spread of the
seed set up to that step:
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(3.20)

The algorithm is given at Algorithm 6 and is an adaptation of CELF
using the proposed influence spread and updates on D. We keep a queue
with the candidate seeds and their attributes (line 2) and the uninfected
nodes (line 3). The attributes of a candidate seed are its influence set
(line 5) and influence spread (line 6), as defined by Eq. (3.16). We sort
based on the influence spread (line 8) and proceed to include in the
seed set the candidate seed with the maximum marginal gain, which is
Ω after the removal of the infected nodes. Once a seed is chosen, the
nodes it influences are marked as infected (line 14). The DPs of the
candidate seeds are reordered after the removal of the infected nodes
(line 17) and the new marginal gain is computed (line 18).

An alternative to Eq. (3.15) would be to keep the actual percentage of
nodes influenced by each seed, i.e. ||Ou||2/N . This approach, however,
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Algorithm 6 IMINFECTOR

Input: Probability di�usion matrix D, expected influence spread ⁄,
seed set size ¸

Output: Seed set S

procedure IMINFECTOR(D, ⁄, ¸)
2: set q Ω [ ], S Ω ÿ

F = 0 : dim(D)[1]

4: for s = 0; s < dim(D)[0]; s ++ do

R Ω argsort(D[s, F ])[0 : ⁄[s]]

6: Ω Ω sum(D[s, R])

q.append([s, Ω, R, 0])

8: q Ω sort(q, 1)

while |S| < ¸ do

10: u Ω q[0]

if u[3] == |S| then

12: S.add(u[0])
R Ω u[2]

14: F Ω F ≠ R

q.delete(u)
16: else

R Ω argsort(D[u[0], F ])[0 : ⁄[u[0]]]

18: Ω Ω sum(D[u[0], R])

q[0] Ω [u[0], Ω, R, |S|]

20: q Ω sort(q, 1)

return S

su�ers from a practical problem. In real social networks, influencers can
create cascades with tens or even hundreds of thousands of nodes. In
this case, |⁄u| can be huge, so when our algorithm is asked to come
up with a seed set of e.g. 100 nodes, matrix D will be emptied in the
first few iterations that will include seeds covering the whole network.
This would constrain our algorithm to small seed set sizes, in which
case simple ranking metrics tend to be of equal strength with influence
maximization, as we argue further on the evaluation methodology. Hence,
we use a normalization that alleviates moderately the large di�erences
between influence spreads and allows for bigger seed set sizes.

To give a concrete example of how the algorithm works, let’s imagine
a simple network with 8 nodes, as depicted in Figure 3.7, with the
respective weights from each candidate seed S to each susceptible node
N . In the first step, ⁄ of a seed S defines how many of the S’s top
susceptible nodes should be taken into account in the computation of
‡Õ. In this case, we keep the top 3 for S3 and top 2 for S2 and S1. The
top 3 for S3 correspond to {N1, N3, N4}, as indicated by the green
edges in the bipartite network, whose sum gives a ‡Õ = 0.9. For S2, we
could either take {N1, N2} or {N1, N3}, both giving a ‡Õ = 0.6, which
is lower than S3, and the same applies for S1. Thus S3 is chosen as the
seed for step 1 and the influenced nodes are removed.

In the next step, matrix D is updated to remove the influenced nodes
and ‡Õ is recomputed. In this case, there are only two nodes left for
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Seed N1 N2 N3 N4 N5 ⁄ ‡Õ

S1 0.1 0.3 0.2 0.2 0.2 2 0.5

S2 0.4 0.2 0.2 0.1 0.2 2 0.6

S3 0.5 0.1 0.2 0.2 0 3 0.9

S1

S2

S3 N5
N4
N3
N2
N1

Figure 3.7: Example of IMINFECTOR: step 1.

Seed N2 N5 ⁄ ‡Õ

S1 0.3 0.2 2 0.5

S2 0.2 0.2 2 0.4

S1

S2 N5

N2

Figure 3.8: Example of IMINFECTOR: step 2.

each seed, so their influence spread is computed by the sum of all their
edges, since their ⁄ = 2. An important point here is that while in the
first step S2 had a stronger ‡Õ than S1, S1 is stronger now, due to the
removal of N1, which was strongly susceptible to the influence of S2,
but infected in the previous round by S3. Thus, the chosen seed in step
2 is S1.
Running time complexity. The first step of the algorithm is to
compute the influence spread for all candidate seeds I in D, which takes
I · N log N , because we sort the DPs of each candidate seed to take the
top ⁄. The sorting of q which has O(I · log I) before the algorithm’s
iterations start, adds constant time to the total complexity. With that
in mind, and taking into acount the seed set size ¸, the complexity is
analogous to O(¸ · I(I log I) · (N log N )), similar to CELF, but with
sorting N in every evaluation of the influence spread. In practice, in every
iteration, N is diminished by an average of ⁄ because of the removed
influence set, so the final logarithmic term is much smaller. Finally,
due to the nature of CELF, much fewer influence spread evaluations
than I take place in reality (line 16 in the algorithm), which is why our
algorithm is fast in practice.
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3.5 experimental evaluation

3.5.1 Datasets

It is obvious that we can not use networks from the influence maximiza-
tion literature because we require the existence of ground truth di�usion
cascades. Although such open datasets are still quite rare, we managed
to assemble three, two social and one bibliographical, to provide an
estimate of performance in di�erent sizes and information types. Table
6.4 gives an overview of the datasets.

Digg MAG Sina

Weibo

Nodes 279,631 1,436,158 1,170,689

Edges 2,251,166 15,928,078 225,877,808

Cascades 3,553 181,020 115,686

Avg Cas-

cade size

847 29 148

Table 3.3: Summary of the datasets used.

• Digg: A directed network of a social media where users follow
each other and a vote to a post allows followers to see the post,
thus it is treated as a retweet [118].

• MAG Computer Science: We follow suit from [175] and define a
network of authors with undirected co-authorship edges, where a
cascade happens when an author writes a paper and other authors
cite it. In other words, a co-authorship is perceived as a friendship,
a paper as a post and a citation as a repost. In this case, we
employ Microsoft Academic Graph (MAG) [187]. To construct the
network and di�usion cascades from MAG, we utilized the tables
PaperReferences, Author, PaperAuthorA�liation,PaperFields and
FieldsofStudy from the o�cial from the o�cial site2. Initially, we
removed some one-paper authors based on a pattern we analyze in
Chapter 6. Subsequently, we kept only papers with fields that are
included in the Computer Science “field of study”. To create the
coauthorship network, we formed a graph based on the authors’
coappearence in these papers using the ’PaperAuthorA�liation’
table. To form the di�usion cascades between authors, we had
to derive a sequence of papers (citing other papers) using ’Paper
References’. Subsequently, we transform it into a cascade over our
network by substituting the papers with their authors, and forming
one separate cascade for each author of the initial paper (as all
of them can be considered initiators). The authors of a certain
paper that is included in the cascade appear in a random sequence

2 https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
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accompanied with the same timestamp, which corresponds to the
time between the initial paper’s publication and the time this
paper was published. We remove cascades with length less than
10.

• Sina Weibo: A directed follower network where a cascade is defined
by the first tweet and the list of retweets [236]. We remove from
the network nodes that do not appear in the cascades i.e. they
are practically inactive, in order to make more fair the compar-
ison between structural and di�usion-based methods, since the
evaluation relies on unseen di�usions.

3.5.2 Baseline Methods

Most traditional influence maximization algorithms, such as greedy
[106] and CELF [121], do not scale to the networks we have used for
evaluation. Thus, we employ only the most scalable approaches:

• K-cores: The top nodes in terms of their core number, as defined
by the undirected k-core decomposition. This metric is extensively
used for influencer identification and it is considered the most
e�ective structural metric for this task [138, 139].

• AVG Cascade Size: The top nodes based on the average size of
their cascades in the train set. This is a straightforward ranking
of the nodes that have proven e�ective in the past [13].

• SimPath: A heuristic that capitalizes on the locality of influence
pathways to reduce the cost of simulations in the influence spread
[81]. (The threshold is set to 0.01).

• Credit Distribution: This model uses cascade logs and the
edges of the network to assign influence credits and derive a seed
set [80]. (Parameter ⁄ is set to 0.001).

• IMINFECTOR: Our final model with embedding size equal to
50, trained for 5 epochs with a learning rate of 0.1. The reduction
percentage P is set to 10 for Weibo and MAG, and 40 for Digg.
CELFIE is also employed with similar hyperparameters.

The parameters are the same as in the original papers. Comparing
network-based methods such as SimPath and IMM with methods that
use both the network and cascades, is not a fair comparison as the latter
capitalize on more information. To make this equitable, each network-
based method is coupled with two influence learning (IL) methods that
provide the influence maximization methods with influence weights on
the edges, using the di�usion cascades:

• Data-based (DB): Given that the follow edge u æ v exists
in the network, the edge probability is set to Auæv/Au, i.e. the
number of times v has copied (e.g. retweeted) u, relative to the
total activity (e.g. number of posts) of u [79]. Any edge with zero
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probability is removed, and the edges are normalized such that
the sum of weighted out-degree for each node is 1.

• Inf2vec: A shallow neural network performing influence learning
based on the co-occurence of nodes in di�usion cascades and the
underlying network [66]. It was proven more e�ective than similar
influence learning methods [27, 179] in the tasks of next node
prediction and di�usion simulation.

3.5.3 Evaluation Methodology

We split each dataset into train and test cascades based on their time of
occurrence. The methods utilize the train cascades and/or the underlying
network to define a seed set. The train cascades amount for the first 80%
of the whole set and the rest is left for testing. The evaluation is twofold:
computational time and seed set quality, similar to previous literature
in influence maximization. We evaluate the quality of the predicted seed
set using the number of Distinct Nodes Influenced (DNI)[54, 164, 169],
which is the combined set of nodes that appear in the test cascades
that are initiated from each one of the chosen seeds. To be specific,
each predicted seed in the seed set has started some cascades in the
test set. We compute the set of all infected nodes (DNI) by simply
adding every node appearing in these test cascades, in a unified set.
The size of this set indicates a measure of how successful was that seed
set on the test set. To understand the choice of DNI we need to take
into consideration that each seed can create several test cascades. For
example, another metric we could use is the sum of the average cascade
length of each seed’s test cascades [225]. With this approach though,
we fail to counter for the overlap between di�erent seeds’ spreads, and
hence we can end up with influential seeds whose influence spreads
overlaps a lot, resulting in an eventually smaller number of infected
nodes. As mentioned above, DNI maintains a set of all distinct nodes
participating in cascades started by each of the seeds, hence tackling
the potential overlap issue. Overall, the most significant advantage over
other standard influence maximization evaluations is that it relies on
actual spreading data instead of simulations. Although not devoid of
assumptions, it is the most objective measure of a seed set’s quality,
given the existence of empirical evidence.

Since our datasets di�er significantly in terms of size, we have to use
di�erent seed set size for each one. For MAG which has 205,839 initiators
in the train set, we test it on 10,000, Weibo with 26,158 is tested on 1,000,
and Digg with 537 has a seed set size of 50. This modification is crucial
to the objective evaluation of the methods because small seed sets favor
simpler methods. For example, the top 100 authors based on K-cores

in MAG would unavoidably work well because they are immensely
successful. However, increasing the seed set size allows the e�ect of
influence overlap to take place, and eventually, simplistic methods fall
short. The experiments were run on a machine with Intel(R) Xeon(R)
W-2145 CPU @ 3.70GHz, 252GB ram, and an Nvidia Titan V. Any
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Figure 3.9: Time comparison between the methods. Methods that could not
scale are marked with X.
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sizes, measured by the seed set’s number of Distinct Nodes Influ-
enced (DNI) in the test cascades. Algorithms that failed to scale
for the minimum seed set size, are not included.

method that required more memory or more than seven days to run, it
is deemed unable to scale.

3.5.4 Results

Figure 3.9 shows the computational time of the examined methods,
separated based on di�erent parts of the model, and Figure 3.10 shows
the estimated quality of each seed set. In terms of quality, we can see
that IMINFECTOR surpasses the benchmarks in two of the three
datasets. In Digg, Credit Distribution performs better but is almost
10 times slower, because of the average cascade size in the dataset. All
methods could scale in MAG except for SimPath with Inf2vec weights,
because in contrast to DB, Inf2vec retains all the edges of the original
MAG network, for which SimPath takes more than one week to run.
Moreover, SimPath with both types of weights is not able to scale in the
Weibo dataset, due to the number of edges. Credit Distribution also
fails to scale in Weibo due to the network’s and cascade size. IMM with
Inf2vec can not scale due to the high demand in memory. It can still
scale with DB weights (close to 1M nodes), but it performs purely. The
only method that scales successfully in Weibo was ranking by the k-core
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decomposition, which took about 650 seconds. IMM’s performance is
lower than expected, highlighting the di�erence between data-driven
means of evaluation and the traditional simulations of di�usion models,
which have been used in the literature due to the absence of empirical
data. IMM optimizes di�usion simulations as part of its solution, so it
is reasonable to outperform other methods in this type of evaluation.
However, it performance is not equal in a metric based on real influence
traces. This can be attributed largely to the aforementioned problems
of di�usion models and their miscalculation of the influence spread.

Compared to CELFIE, the previous version of our algorithm, IMIN-
FECTOR has superior performance as the seed set size increases. One of
the CELFIE’s core disadvantages is that the marginal influence spread,
which is computed by sampling repetitively from a node’s neighbors
and summing the edge’s weights, decreases very fast during the seeding
rounds. This has as a result the whole network being covered with few
rounds, and hence the retrieved seed set size to always be bounded. In
IMINFECTOR, each node has an expected influence spread as shown
in Eq. (3.15), which we have defined based on a node’s influencer vector,
compared to the rest of the initiator’s representations. In other words,
this formulation imposes the constraint that the network is shared
among all candidate seeds, depending on their influencer vector, ren-
dering infeasible to cover the whole graph without putting all initiators
in the seed set. Moreover, it allows for a fixed computation of a node’s
influence spread (e.g. without resampling), which renders it faster the
CELFIE which retrieves only 127 seeds for Weibo, 2059 for MAG and 4
for Digg.

In terms of influence learning methods, DB outperformed Inf2vec

because it removes edges with no presence in the cascades, diminishing
significantly the size of the networks, some even close to 90%. However,
it also had a severe shortcoming most notable in the social networks.
Due to the general lack of consistent reposters and the huge amount
of posts, the total activity of a node (the denominator in edge weight)
was much larger than the number of reposts by a follower (numerator).
Hence, the edge weights were too small with insignificant di�erences,
alleviating the computation of the simulated influence spread. This e�ect
is not so strong in the bibliographical network, because authors tend to
cite the same popular authors more consistently. A side observation is
the heavy computational burden of Inf2vec. It accounts for most of
the computational time (blue color), which justifies the context creation
mechanism of INFECTOR, while the accuracy validates our hypothesis
that influencers’ success lies more on the cascades they initiate rather
their reposts.

In general, we see that IMINFECTOR provides a fair balance
between computational e�ciency and accuracy. Most importantly, it ex-
hibits such performance using only the cascades, while the rest baselines
use both, the network and cascades. Being una�ected by the network
size, IMINFECTOR scales with the average cascade size and the
number of cascades, which makes it suitable for real world applications
where the networks are too big and scalability is of utmost importance.
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3.6 conclusion

In this chapter, we have proposed IMINFECTOR, a model-independent
method to perform influence maximization using representations learned
from di�usion cascades. The machine learning part learns pairs of
representations from di�usion cascades, while the algorithmic part uses
the representations’ norms and combinations to extract a seed set.
The algorithm outperformed several methods based on a data-driven
evaluation in three large scale datasets.

It should be noted that our method is not devoid of assumptions.
Firstly, we assume that the optimum seed set is comprised solely of nodes
that initiate cascades. Given the task of influence maximization, this
seems a valid assumption, with the exception of cases where very popular
people in the real world enter the social network and get hyperconneccted
without sharing content. Apart from this assumption, our method is
highly scalable; a system though with too many cascade initiators (close
to the number of users), will increase the overall complexity. A simple
solution to this is to remove initiators with minuscule activity, which,
given the exponential distribution characterizing the users’ activity,
will diminish severely the number. Finally, we tested our method in
three datasets of varying sizes and characteristics, but there are further
types of social networks that we need to experiment with to certify our
method’s e�ectiveness to the fullest.

A potential future direction is to examine deeper and more complex
architectures for INFECTOR to capture more intricate relationships.
From the algorithmic part, we can experiment with bipartite matching
algorithms, given su�cient resources. Overall, the main purpose of this
work is primarily to examine the application of representation learning
in the problem of influence maximization and secondarily to highlight
the importance of data-driven evaluation (e.g. DNI). In addition, we
want to underline the strength of model-independent methods and
evaluations, given the recent findings on the severe shortcomings of
di�usion models. We hope this will pave the way for more studies to
tackle influence maximization with machine learning means.



4
L E A R N I N G G R A P H R E P R E S E N TAT I O N S F O R

I N F L U E N C E M A X I M I Z AT I O N

In the previous chapter, we developed an influence maximization method
for datasets with di�usion cascades. However, numerous real-world net-
works are not accompanied with ground truth cascades. We thus develop
a neural method for influence maximization based on di�usion models.
In this chapter, we develop Glie, a Graph Neural Network (GNN)
that inherently parameterizes an upper bound of influence estimation
and train it on small simulated graphs. Experiments show that Glie

provides accurate influence estimation for real graphs up to 10 times
larger than the train set. More importantly, it can be used for influence
maximization on considerably larger graphs, as the predictions ranking
is not a�ected by the drop of accuracy. We develop a version of Cost
E�ective Lazy Forward optimization with Glie instead of simulated
influence estimation, surpassing the benchmark for influence maximiza-
tion, although with a computational overhead. To balance the time
complexity and quality of influence, we propose two di�erent approaches.
The first is a Q-network that learns to choose seeds sequentially using
Glie’s predictions. The second defines a provably submodular function
based on Glie’s representations to rank nodes fast while building the
seed set. The latter provides the best combination of time e�ciency and
influence spread, outperforming SOTA benchmarks.

source code The implementation of the proposed model can be
found online 1.

4.1 introduction

Several real-world problems can be cast as a combinatorial optimization
problem over a graph. From distributing packages [144] to improving the
general health [221] and vehicles’ management [201], optimization on
graphs lies in the core of many real-world applications that are vital to
our way of living. Unfortunately, the majority of these problems are NP-
hard, and hence we can only approximate their solution in a satisfactory
time limit that matches the real world requirements. Recent machine
learning methods have emerged as a promising solution to develop
heuristic methods that provide fast and accurate approximations [18].
The general idea is to train a supervised or unsupervised learning model
to infer the solution given an unseen graph and the problem constraints.
The models tend to consist of Graph Neural Networks (GNNs) to encode
the graph and the nodes, Q-learning [192, 217] to produce sequential
predictions, or a combination of both. The practical motivation behind
learning to solve combinatorial optimization problems, is that inference

1 https://github.com/geopanag/graph_rep_for_im
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time is faster than running an exact combinatorial solver [100]. That said,
specialized combinatorial algorithms like Concorde for the Traveling

Salesman Problem (TSP) or Gurobi in general, cannot be surpassed
yet [108].

Though many such methods have been proposed for a plethora of
problems, influence maximization has not been addressed yet extensively.
Influence maximization is defined in Chapter (2), where we underline
that it is NP-hard and is approximated through submodular maximiza-
tion. Moreover, the influence estimation problem that is embedded
in influence maximization, is also mentiond in Chapter 2) to be #P-
hard and approximated using repetitive Monte-Carlo simulations of the
chosen di�usion model. As mentioned above, due to the inherent com-
putational problems of both problems, several scalable algorithms[22,
196] and heuristics [38, 101] were developed capitalizing on sketches or
the structure of the graph to produce more e�cient solutions. Influence
maximization can be applied on a plethora of real-world tasks, such as
epidemic containment [222], diminishing fake news [30], and running
viral marketing campaigns [49].

We address influence maximization using neural networks, to cap-
italize on the aforementioned advantages as well as their ability to
easily incorporate contextual information such as user profiles and top-
ics [199], a task that remains unsolvable for non-specialized influence
maximization algorithms and heuristics. We propose Glie, a GNN that
provides e�cient influence estimation for a given seed set and a graph
with influence probabilities. It can be used as a standalone influence
predictor with competitive results for graphs up to 10 times larger than
the train set. Moreover, we leverage Glie for influence maximization,
combining it with Celf [121], that typically does not scale beyond net-
works with thousands of edges. The proposed method runs in networks
with millions of edges in seconds, and exhibits better influence spread
than a state-of-the-art algorithm and previous GNN-RL methods for
influence maximization. In addition, we develop Grim, a Q-learning ar-
chitecture that utilizes Glie’s representations and predictions to obtain
seeds sequentially, while minimizing the number of influence estimations
throughout steps. Finally, we propose Pun, a method that uses Glie’s
representations to compute the number of neighbors predicted to be
uninfluenced and uses it as an approximation to the marginal gain.
We prove Pun’s influence spread is submodular and monotone, and
hence can be optimized greedily with a guarantee, in contrast to prior
learning-based methods. The experiments indicate that Pun provides
the best balance between influence quality and computational e�ciency.

The chapter is organized as follows. Section 4.2 presents an overview
of relevant approaches and clarifies the advantage of the proposed
models. Section 4.3 describes the proposed methods, starting with
influence estimation and advancing progressively towards faster methods
for influence maximization. Section 4.4 exhibits and interprets the
experimental results for influence estimation and influence maximization.
Finally, Section 4.5 summarizes the contribution and presents future
steps.
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4.2 related work

The first approach to solving combinatorial optimization (CO) using
neural networks was based on attention-based NNs for discrete struc-
tures, PointerNets [209], followed by an architecture that combines
PointerNets with an actor-critic training to find the best route for
TSP [17]. The first architecture that utilized graph-based learning was
S2n-Dqn [47], usingStruct2Vec to encode the states of the nodes
and the graph, and training a Q-learning model that chooses the right
node to add in a solution given the current state.

Based on S2v-Dqn, a Dqn [150] for the network dismantling problem
was recently proposed [64] [125]. The model, named Finder, uses a deep
Q-learning architecture where the representations are derived by three
GraphSage layers. The reward is based on size of the giant connected
component size, i.e. every new node (seed) chosen, aims to dismantle the
network as much as possible. Some of the main advantages of Finder

is that it is trained on small synthetic data, which are easy to make,
and can extrapolate to relatively large graphs. On the other hand, one
of the core disadvantages is that it can not work with directed graphs
and weighted edges. Another recent supervised deep learning approach
on influence maximization, Gcomb [142], utilizes a probabilistic greedy
to produce scores on graphs and trains a GNN to predict them. A
Q-network receives the scores along with an approximate calculation of
the node’s neighborhood correlation with the seed set, to predict the
next seed. This approach, though scalable and comparable to SOTA in
accuracy, has to be trained on a large random subset of the graph (30%

of it) and tested on the rest. This makes the model graph-specific, i.e.
it has to be retrained to perform well on a new graph. This imposes a
serious overhead, considering the time required for training, subsampling
and labeling these samples using the probabilistic greedy method with
traditional influence estimation. As shown in [142] Appendix G, it takes
at least hundreds of minutes and is thus out of our scope. Finally,
recent works on learning approximations to submodular policies [8]
require a large number of ground truth evaluation to create the training
trajectories, which rendering the training too time consuming. Moreover,
such methods require a novel neural network encoding to capture the
state of influence maximization, which has not been developed yet.

In this chapter, we propose an approach that combines the advantages
of the aforementioned methods, in that it is only trained on small
simulated data once and generalizes to larger graphs, and it addresses
the problem of influence maximization in weighted directed networks.
Furthermore, the approach can be broken down to a GNN for influence
estimation and three influence maximization methods. The former
can act alone as influence predictor and be competitive with relevant
methods, such as Dmp [131] for graphs up to one scale larger than
the train set. Glie is used to propose Celf-Glie, Celf [121] with
Glie as influence estimator, Grim, a Q-network that learns how to
choose seeds using the Glie’s estimations and hidden representations,
and Pun, an adaptive influence maximization method that optimizes
greedily a submodular influence spread using Glie’s representations.
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Symbol Meaning Type

N number of nodes scalar

A column stochastic transition
matrix

matrix

X input features matrix

Ht activations of the hidden layer
t

matrix

Wt learnable parameters of the
hidden layer t

matrix

pu,v probability of u influencing v scalar

S Set of seed nodes set

LS , LÕ
S influence set representations vector

mS approximation to the marginal
gain

vector

‡̂(s), ‡m(s) influence spread of node set s scalar

Table 4.1: Table of symbols.

We note here that the majority of the relevant literature on DL for CO
address small graphs [47, 108, 174, 209] which makes them not applicable
to our task. More scalable, unsupervised methods citepkaralias2020erdos
are tailored to specific problems and is non-trivial to adjust them to
our problem, with the exception of [128] which was found significantly
worse than the SOTA algorithm we compare with in [142].

4.3 methodology

4.3.1 Graph Learning for Influence Estimation (Glie)

In this section, we introduce Glie (GNN Learning Influence Estimation),
which aims to learn how to estimate the influence of a seed set S over a
graph G = (V , E). Let A œ Rn◊n be a transition matrix and X œ Rn◊d

be the features of nodes, representing which nodes belong to the seed
set by 1 and 0 otherwise:

Xu =

Y

]

[

{1}d, u œ S

{0}d, u /œ S
. (4.1)

For the following analysis, we set d = 1. More dimensions will become
meaningful when we parameterize the problem. If we normalize A by
each row, we form a row-stochastic transition matrix, as:

Auv = pvu =

Y

]

[

1
deg(u) , v œ N (u)

0, v /œ N (u)
, (4.2)

where deg(u) is the in-degree of node u and N (u) is the set of neighbors
of u. Based on the weighted cascade [106], each row u stores the proba-
bility of node u being influenced by each of the other nodes that are
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connected to it by a directed link v æ u. Note that, in case of directed
influence graphs, A should correspond to the transpose of the adjacency
matrix. The influence probability p(u|S) resembles the probability of
a node u getting influenced if its neighbors belong in the seed set, i.e.
during the first step of the di�usion. We can use message-passing to
compute a well-known upper bound p̂(u|S) of p(u|S) for node u:

p̂(u|S) = Au · X =
ÿ

vœN (u)flS

1

deg(u)
= (4.3)

ÿ

vœN (u)flS

pvu Ø 1 ≠
Ÿ

vœN (u)flS

(1 ≠ pvu) = p(u|S), (4.4)

where the second equality stems from the definition of the weighted
cascade and the inequality from the proof in [240], App. A. As the
di�usion covers more than one-hop, the derivation requires repeating
the multiplication to approximate the total influence spread. To be
specific, computing the influence probability of nodes that are not
adjacent to the seed set requires estimating recursively the probability
of their neighbors being influenced by the seeds. If we let H1 = A · X,
and we assume the new seed set St to be the nodes influenced in the
step t ≠ 1, their probabilities are stored in Ht, much like a di�usion in
discrete time. We can then recompute the new influence probabilities
with Ht+1 = A · Ht,

Corollary 4.3.0.1. The repeated product Ht+1 = A · Ht computes an

upper bound to the real influence probabilities of each infected node at

step t + 1.

Corollary 4.3.0.2. The repeated product Ht+1 = A · Ht computes an

upper bound to the real influence probabilities of each infected node at

step t + 1.

Proof. We have:

p̂t(u|St) = Au · Ht (4.5)

=
ÿ

vœN (u)flSt

p̂vpvu (4.6)

Ø
ÿ

vœN (u)flSt

pvpvu (4.7)

Ø 1 ≠
Ÿ

vœN (u)flSt

(1 ≠ pvpvu) (4.8)

= pt(u|St) (4.9)

(4.10)

• (4.7) stems from Eq. 4.4 in the manuscript:

p̂(u|S) = Au · X =
ÿ

vœN (u)flS

1

deg(u)
= (4.11)

ÿ

vœN (u)flS

pvu Ø 1 ≠
Ÿ

vœN (u)flS

(1 ≠ pvu) = p(u|S). (4.12)
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• (4.8) can be proved by induction similar to [240]. For every pv Æ 1

, the base case
q

vœX pvpvu Ø 1 ≠
r

vœX (1 ≠ pvpvu) is obvious for
|X | = 1. For |X | > 1, we have:

1 ≠
Ÿ

vœX

(1 ≠ pvpvu) = 1 ≠ (1 ≠ pxpxu)
Ÿ

vœX \x

(1 ≠ pvpvu)

= 1 ≠
Ÿ

vœX \x

(1 ≠ pvpvu) + pxpxu

Ÿ

vœX \x

(1 ≠ pvpvu)

Æ
ÿ

vœX \x

pvpvu + pxpxu

Ÿ

vœX \x

(1 ≠ pvpvu)

Æ
ÿ

vœX \x

pvpvu + pxpxu

=
ÿ

vœX

pvpvu. (4.13)

• (4.9) we have p(u|v) = pvpvu per definition of the independent cas-
cade, and consequently p(u|S) = 1 ≠

r

vœN (u)flS(1 ≠ pvpvu), where
pv = 1 for v œ S1, which are the initial seed set that are activated
deterministically. We can thus contend that Eq. (4.10) stands, and
the computed probabilities are an upper bound of the real influ-
ence probabilities. Hence the influence spread, which is computed as
‡̂(S) =

q

(u,v)œE puv is also an upper bound to the real ‡(S).

In reality, due to the existence of cycles, two problems arise with
this computation. Firstly, if the process is repeated the influence of
the original seeds may increase again, which comes in contrast with
the independent cascade model. This can be controlled by minimizing
the repetitions, e.g., four repetitions cause the original seeds to be able
to reinfect other nodes in a network with triangles. To this end, we
leverage up to three neural network layers. Another problem due to
cycles pertains to the probability of neighbors influencing each other. In
this case, the product of the complementary probabilities in Eq. (4.4)
does not factorize for the non-independent neighbors. This e�ect was
analyzed extensively in Lokhov and Saad [131], App. B, and proved that
the influence probability computed by p(u|S) is itself an upper bound
on the real influence probability for graphs with cycles. Intuitively, the
product that represents non-independent probabilities is larger than the
product of independent ones. This renders the real influence probability,
which is complementary to the product, smaller than what we compute.

We can thus contend that the estimation p̂(u|S) provides an upper
bound on the real influence probability—and we can use it to compute
an upper bound to the real influence spread of a given seed set i.e. the
total number of nodes influenced by the di�usion. Since message-passing
can compute inherently an approximation of influence estimation, we
can parameterize it to learn a function that tightens this approximation
based on supervision. In our neural network architecture, each layer
consists of a GNN with a batchnorm and dropout omitted here, and
starting from H0 = X œ Rn◊d we have:

Ht+1 = ReLU([Ht, AHt]W0). (4.14)
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The readout function that summarizes the graph representation based
on all nodes’ representations is a summation over all the final represen-
tations with skip connections:

HG
S =

ÿ

vœV

[Hv
0, Hv

1, . . . , Hv
t ]. (4.15)

This representation captures the probability of all nodes being active
throughout each layer. The output that represents the predicted influ-
ence spread is derived by:

‡̂(S) = ReLU(HG
S Wo). (4.16)

Note that, the derived representations of each layer H i
t , untrained,

are the upper bound of the influence probability of seed set’s the t-hop
neighbors. The parameters of the intermediate layers Wt are trained
such that the upper bound is reduced and the final layer Wo can
combine the probabilities to derive a cumulative estimate for the total
number of influenced nodes. We empirically verify this by examining
the layer activations which can be seen in Figure 4.2 and the heatmaps
indicate a di�erence between columns (nodes) expected to be influenced,
meaning we could potentially predict not only the number but also
who will be influenced. However, since ‡̂ is derived by multiple layers,
the relationships and thresholds to determine the exact influenced set
is not straight forward. Below we experiment with di�erent such sets
extracted from H for the purpose of influence maximization.

4.3.2 Cost Effective Lazy Forward with Glie (Celf-Glie)

Celf is analyzed in Chapter 2. In our case, we propose a straight
forward adaptation where we substitute the original Celf Influence
Estimation based on Monte Carlo Independent Cascade with the output
of Glie. Initially we design an analysis to empirically prove that Glie’s
output is submodular and monotonous. For the real datasets, we use the
seed set retrieved by Glie-Celf and a random seed set to quantify the
di�erences between subsequent estimations. To be specific, we have a
sequence S that represents the seed set and a sequence R that represents
the random nodes, with Sj being the seed set up to jth element and sj

being the jth element, and similarly rj for R. We compute the marginal
gain to check for monotonicity:

mss = ‡̂(Sj fi sj+1) ≠ ‡̂(Sj) (4.17)

msr = ‡̂(Sj fi rj+1) ≠ ‡̂(Sj), (4.18)

and for submodularity, we have , with i = j ≠ 1:

sss = (‡̂(Si fi sj+1) ≠ ‡̂(Si)) ≠ (‡̂(Sj fi sj+1) ≠ ‡̂(Sj)) (4.19)

ssr = (‡̂(Si fi rj+1) ≠ ‡̂(Si)) ≠ (‡̂(Sj fi rj+1) ≠ ‡̂(Sj)). (4.20)
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In Figure 4.1, we plot m and s for some of our datasets. Regarding
s, since we require a constant node, we randomly sample one of the
seeds sj and a random node rj and visualize the sequences of both s

with regard to adding them in every step. The values of these functions
correspond to nodes, and range from tens to thousands, depending on
the datasets. For monotonicity and submodularity, we verify that m

and s are always more than zero. Moreover, we see that they decrease
with the size of the seed set, as well as the observation that adding
a random seed provides worst marginal gains (in monotonicity plots)
than adding the chosen seed.

Since Glie are monotonous and submodular in practice, ‡̂ is suitable
for optimizing with Celf, though we can not obtain any theoretical
guarantee. Celf-Glie has two main computational bottlenecks. First,
although it alleviates the need to test every node in every step, in
practice it still requires Influence Estimation for more than one nodes in
each step. Second, it requires computing the initial Influence Estimation
for every node in the first step. We will try to alleviate both with the
two subsequent methods.

4.3.3 Graph Reinforcement Learning for Influence Maximization

(Grim)

We develop a method that computes only one influence estimation in
every step, along with the initial influence estimation for all nodes. We
first utilize the activations mentioned above to define the influence set
representation LS œ {0, 1}n, which can be computed by adding the
activations of each layer Ht, summing along the axis of the hidden layer
size, and thresholding to get a binary vector:

LS =

I

T
ÿ

t=0

qdt

i=0 Hi
t

dt
Ø 0

J

, (4.21)

where T is the number of layers, and Hi
t œ Rn◊1 is a column from Ht.

This vector contains a label for each node whose sign indicates if it
is predicted to be influenced. We compute the average representation
because dt varies throughout layers, and since we add all layer’s outputs,
we need an equal contribution from each layer’s dimension to the final
output. We utilize this to compute the di�erence between the influence
of the current seed set and the initial influence of each other node.

We aim to build a method that learns how to pick seeds sequentially.
The model needs to receive information from Glie regarding the state
(graph and seed set), and decide on the next action (seed). Note that,
Glie can not provide a direct estimate of a new candidate’s s marginal
gain without rerunning Glie(S fi s, G), which is what we try to avoid.
To this end, we utilize a double Q-network [205] and the model is
depicted in Figure 4.2 (middle and right part). During the first step,
Glie provides an influence estimation for all candidate seeds, and the
node with the highest is added to the seed set, similar to Glie-Celf.
We also keep a list of each node’s initial influence set Ls. Subsequently,
the Q-network produces a Q-value for each node s using as input the
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a simpler influence set representation then in 4.21. Let L̂S , LÕ
S œ {0, 1}n

be the binary vectors with 1s in nodes predicted to be uninfluenced and
nodes predicted to be influenced respectively:

L̂S =

Y

]

[

d1
ÿ

i=0

Hi
1 Æ 0

Z

^

\

LÕ
S =

Y

]

[

d1
ÿ

i=0

Hi
1 Ø 0

Z

^

\

(4.24)

LÕ
S is simpler than LS defined in Eq. (4.21) and provides a more rough

estimate, but it allows for a simpler influence spread which we can
optimize greedily

‡m(S) = |LÕ
S | (4.25)

We can use L̂S and message-passing to predict the amount of a node’s
neighborhood that remains uninfluenced, i.e. the Potentially Uninfluenced
Neighbors (Pun), weighted by the respective probability of influence
For a node u,

mS [u] =
ÿ

vœN(u)

Au,vL̂v = A€
u · L̂S œ Rn◊1 (4.26)

For e�ciency, we can compute mS = AT L̂ which can be considered an
approximation to all nodes marginal gain on their immediate neighbors.
We can thus optimize this using arg maxS(mS), as shown in Figure
(4.2). In order to establish that ‡m can be optimized greedily with a
theoretical guarantee of (1 ≠ 1

e
)OPT, we prove its monotonocity and

submodularity.

Theorem 4.3.0.1. The influence spread ‡m is submodular.

For the purposes of the proof, Xi œ {0, 1}n◊d is the input and
Hi œ Rn◊hd is the output of the first neural layer for the input seed
set Si, and P œ {1}hd◊1. Moreover we define the support function
supp(v) = {i œ [1, d], vi ”= 0} [99] as the set of indices of non zero
elements in vector v œ Rd. Finally let R represent ReLU and btr, sttr

the mean and standard deviation computed by the batchnorm. Each
step is justified further below.

Proof. Monotonocity, ’i < j, Si µ Sj :

supp(Xj) ∏ supp(Xi) (4.27)

supp(XjW ) ´ supp(XiW ) (4.28)

supp(AXjW ) ´ supp(AXiW ) (4.29)

supp(R(AXjW )) ´ supp(R(AXiW )) (4.30)

supp

3

R(AXjW ) ≠ btr

sttr

4

´ supp

3

(R(AXiW ) ≠ btr)

sttr

4

(4.31)

supp(Hj) ´ supp(H(Si)) (4.32)

supp(HjP ) ´ supp(HiP ) (4.33)

| >0 {HjP} | Ø | >0 {HiP} | (4.34)

|LÕ
j | Ø |LÕ

i| (4.35)

‡m(Sj) Ø ‡m(Si) (4.36)

(4.37)
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1. (4.27) stems by the definition of X in Eq. (4.1).

2. (4.28) Xj is a convex hull that contains Xi [28]. We multiply both
sides by a real matrix W œ Rd◊hd which can equally dilate both
convex hulls in terms of direction and norm. This equal transforma-
tion cannot change the sign of the di�erence between the elements
of Xi and Xj and hence cannot interfere with the support of Xj

over Xi. The statement becomes more obvious for X œ {0, 1}n◊1

and W œ R1◊1. Note that both can result in zero matrices so we use
subset or equal.

3. (4.29) A is a non-negative matrix.

4. (4.30) ReLU is a non negative monotonically increasing function.

5. (4.31) Subtract by the same number and divide by the same positive
number.

6. (4.32) Definition in Eq. (4.14).

7. (4.33) P is positive.

8. (4.34) By definition of the support.

9. (4.35) By definition of LÕ
S .

For the proof of submodularity we have to define Xiu = XSifiu, u œ V

and note by the definition of the input that |Xju ≠ Xj | = |Xiu ≠ Xi|

for the l1 norm (sum of all elements):
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Proof. Submodularity ’i < j, Si µ Sj , ,:

|Xju ≠ Xj | = |Xiu ≠ Xi|

(4.38)

A|Xju ≠ Xj | = A|Xiu ≠ Xi|

(4.39)

|A(Xju ≠ Xj)| = |A(Xiu ≠ Xi)|

(4.40)

|AXju ≠ AXj | = |AXiu ≠ AXi|

(4.41)

|AXjuW ≠ AXjW | = |AXiuW ≠ AXiW |

(4.42)

R(|AXjuW ≠ AXjW |) ≠ 2btr =

R(|AXiuW ≠ AXiW | ≠ 2btr) (4.43)

|R(AXjuW ) ≠ R(AXjW ) ≠ 2btr| =

|R(AXiuW ) ≠ R(AXiW ) ≠ 2btr| (4.44)

supp(R(AXjuW ) ≠ R(AXjW ) ≠ 2btr) =

supp(R(AXiuW ) ≠ R(AXiW ) ≠ 2btr) (4.45)

supp(R(AXjuW ≠ btr)) ≠ supp(R(AXjW ) ≠ btr) ™

supp(R(AXiuW ≠ btr)) ≠ supp(R(AXiW ) ≠ btr) (4.46)

supp(Hju) ≠ supp(Hj) ™ supp(Hiu) ≠ supp(Hi)

(4.47)

‡m(Sj fi {u}) ≠ ‡m(Sj) Æ ‡m(Si fi {u}) ≠ ‡m(Si)

(4.48)

(4.49)

1. (4.41) Distributive property

2. (4.42) Similar to multiplication by A.

3. (4.46) The norm of the di�erence is distributed equally, but the
right hand di�erence has as least the same or more positive elements
because the norm of A ,which is stochastic ,is bounded by V hence
Xu can give up to the same gain to AXj and AXi, the same number
btr is subtracted, and more elements are activated by Xj then Xi as
shown in Eq. 4.35.

4. (4.47) We skipped dividing by sttr for brevity.

5. (4.48) Arrive with similar steps as 4.33 - 4.36.

Regarding the approximation of the marginal gain we first show that
choosing the node corresponding to the maximum mS will give the
maximum LÕ

ju: AÕ
uL̂j Ø AÕ

v L̂i ∆ LÕ
ju Ø LÕ

iv.

AÕ
uL̂j =

ÿ

vœN(u)

AÕ
uvL̂j [v] =

ÿ

vœN(u)

AuvLÕ
j [u] =

ÿ

vœN(u)

AuvXju

(4.50)

(4.51)
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This means that mS gives the node u that improves the biggest number
of rows in AXju that are not already considered influenced. Since
we know from Eq. 4.36 that a AXiu Ø AXiv ∆ |LÕ

iu| Ø |LÕ
iv|, the

claim concludes. Hence choosing the best node using the marginal gain
approximation is as good as the real influence spread. Now we prove
the submodularity of the proposed marginal gain.

Proof. Submodularity for the approximation of the marginal gain, ’i <

j, Si µ Sj , starting from (4.34):

| >0 {HjP} | Ø | >0 {HiP} |

| Æ0 {HjP} | Æ | Æ0 {HiP} | (4.52)

AÕ
uL̂j Æ AÕ

uL̂i (4.53)

mSj
[u] Æ mSi

[u] (4.54)

(|LÕ
j | + mSj

[u]) ≠ |LÕ
j | Æ (|LÕ

i| + mSi
[u]) ≠ |LÕ

i| (4.55)

‡m(Sj fi {u}) ≠ ‡m(Sj) Æ ‡m(Si fi {u}) ≠ ‡m(Si) (4.56)

1. (4.36) Complementarity between elements that are Æ 0 and elements
> 0.

2. (4.38) Definition in Eq. (4.24) and multiply with non-negative row u

from matrix AÕ.

3. (4.39) Definition in Eq. ( 4.26).

4. (4.40) Adding and subtracting |Lj | and |Li|.

5. (4.41) By definition of ‡m in Eq. (4.25) and the marginal gain of u,
we arrive at submodularity in Eq. (4.41).

Pun can be seen in the left part of Figure 4.2. We start by setting the
first seed as the node with the highest degree, which can be considered
a safe assumption as in practice it is always part of seed sets. We use
Glie(S, G) to retrieve L̂S , which we use to find the next node based
on arg maxvœG\S mS [v] and the new L̂Sfi{v}. One disadvantage of Pun

is that ‡m is an underestimation of the predicted influence, as can be
seen in Figure 4.3. Contrasted with the upper bound, Dmp, ‡m is not
as accurate as ‡̂, but allows us to compute e�ciently a submodular
proxy for the marginal gain. This underestimation means that a part
of the network considered uninfluenced in L̂S is measured as potential
gain for their neighbors, hence the ranking based on mS can be e�ected
negatively. As we observed in Figure 4.3, the divergence of ‡m increases
with the size of the seed set.

4.4 experiments

All the experiments are performed in a PC with an NVIDIA GPU
TITAN V (12GB RAM), 256GB RAM and an Intel(R) Xeon(R) W-
2145 CPU @ 3.70GHz. Regarding the reproducibility of our experiments,
we have attached all python codes in the supplementary files along with
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Graph # Nodes # Edges

Si
m Test/Train 100 ≠ 500 950 ≠ 4, 810

Large 1, 000 ≠ 2, 000 11, 066 ≠ 19, 076

Sm
al

l

Crime (CR) 829 2, 946

HI-II-14 (HI) 4, 165 26, 172

GR Colab (GR) 5, 242 28, 980

L
ar

ge Enron (EN) 33, 697 361, 622

Facebook (FB) 63, 393 1, 633, 660

Youtube (YT) 1, 134, 891 5, 975, 246

Table 4.2: Graph datasets.

• Enron an email network that covers all the email communications
in Enron. Each node is an email address, and an edge denotes at
least one communication between these addresses [122].

• Facebook is a subset of the friendsship networks from Facebook
users. A node represents a user and an edge represents friendship
between two users [112].

• Youtube the friendship network of the video-sharing site Youtube.
Nodes are users and an edge between two nodes indicates friend-
ship [112].

4.4.1 Influence Estimation

For training in the influence estimation task, we create a set of labeled
samples, each consisting of the seed set S and the corresponding influence
spread ‡(S). We create 100 Barabasi-Albert [16] and Holme-Kim [92]
undirected graphs ranging from 100 to 200 nodes and 30 from 300 to 500

nodes. 60% are used for training, 20% for validation and 20% for testing.
We have used these network models because the degree distribution
resembles the one of real world networks. The influence probabilities
are assigned based on the weighted cascade model, i.e. a node u has
equal probability 1/deg(u) to be influenced by each of her N (u) nodes.
This model requires a directed graph, hence we turn all undirected
graphs to directed ones by appending reverse edges. Though estimating
influence probabilities is a problem on its own [53, 165], in the absence
of extra data, the weighted cascade is considered more realistic than
pure random assignments [106].

We observed that 1, 000 has similar results to 10, 000, due to the
small size of the networks. The training takes 500 up to 1, 200 seconds,
depending on when the validation error converges. We have used a
small scale grid-search to find the optimum batch size 64, dropout 0.4,
number of layers 2, hidden layer size 64, and feature dimension 50. More
importantly, we observed that it is beneficial to decrease the hidden
layer size (by a factor of 2) as the depth increases, i.e. go from 32 to
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16. This means that the 1-hop node representations are more useful
compared to the 2-hop ones and so on—validating the aforementioned
conclusion that the approximation to the influence estimation in Eq.
(4.4), diverges more as the message-passing depth progresses.

We use two di�erent ways to come up with the seed sets S for varying
sizes of S from 1 to 5. We use random seed sets in order to capture the
average influence spread expected for a seed set of about that size. This
creates “average samples” which would constitute the whole dataset in
other problems. In influence maximization however, the di�erence in ‡

between an average seed set and the optimum seed set can be significant,
hence training solely on the random sets would render our model unable
to predict larger values that correspond to the optimum. We thus add
in the samples the optimum seed set for each size, taken using Celf and
MC ICs for influence estimation. For each size, we have the 30 random
seed sets that serve as negative samples and the optimum, which is a
more balanced form of supervision, as you expect the crucial majority
of the seed sets to have an average ‡. This amounts to a total of 20, 150

training samples.
Regarding the training procedure, we have used a small scale grid-

search using the validation set to find the optimum batch size 64, dropout
0.4, number of layers 2, hidden layer size 64, and feature dimension
50. More importantly, we observed that it is beneficial to decrease the
hidden layer size (by a factor of 2) as the depth increases, i.e. go from 32

to 16. This means that the 1-hop node representations are more useful
compared to the 2-hop ones and so on—validating the aforementioned
conclusion that the approximation to the influence estimation in Eq.
(4.4), diverges more as the message-passing depth increases. The training
then proceeds for 100 epochs with an early stopping of 50 and learning
rate of 0.01.

We evaluate the models in three di�erent types of graphs. The first
is the test set of the dataset mentioned above. The second is a set of 10

power-law large graphs (1, 000 – 2, 000 nodes) to evaluate the capability
of the model to generalize in networks that are larger by one factor.
The third is the set of small real-world graphs in Table 4.2. The real
graphs are evaluated for varying seed set sizes, from 2 to 10, to test our
model’s capacity to extrapolate to larger seed set sizes. Due to the size
of the latter two graphs (HI and GR), we take for each seed set size the
top nodes based on the degree as the optimum seed set along with a
30 random seed sets for the large simulated graphs and 3 for the real
graphs, to validate the accuracy of the model in non-significant sets of
nodes.

To quantify the potential of Glie for larger seed sets, we sample 9
random seed sets and 1 with the highest degree nodes and compute the
error of Dmp and Glie, with the ground truth influence divided by the
average influence in Table (4.4). We see that the error does not increase
significantly as the seed set increases, and that Glie outperforms Dmp

in GR while the reverse happens in CR and HT.
We have compared the accuracy of influence estimation with Dmp

[131]. We could not utilize the influence estimation of Ublf [240]
because its central condition is violated by the weighted cascade model
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Graph

(seeds)

Dmp Glie

MAE Time MAE Time

Test (1 – 5) 0.076 0.05 0.046 0.0042

Large (1 – 5) 0.086 0.44 0.102 0.0034

CR (1 – 10) 0.009 0.11 0.044 0.0029

HI (1 – 10) 0.041 2.84 0.056 0.0034

GR (1 – 10) 0.122 4.32 0.084 0.0042

Table 4.3: Average mean absolute error (MAE) divided by the average influence
i.e. relative MAE and time (in seconds) throughout all seed set sizes
and samples, along with the real average influence spread.

Graph Seeds Dmp Glie

CR 20 0.005 0.031

CR 50 0.006 0.059

CR 100 0.017 0.152

GR 20 0.161 0.029

GR 50 0.125 0.042

GR 100 0.093 0.082

HT 20 0.010 0.105

HT 50 0.004 0.062

HT 100 0.002 0.113

Table 4.4: Relative MAE for di�usion prediction of larger seed sets.

and the computed influence is exaggerated to the point it surpasses the
nodes of the network. The average error throughout all datasets and
the average influence can be seen in Table 4.3, along with the average
time.We evaluate the retrieved seed set using the independent cascade,
and the results are shown in Table 4.5. We should underline here that
this task would require more then 3 hours for the Crime dataset and
days for GR using the traditional approach with 1, 000 MC IC. As we
can see in Table 4.5, Glie-Celf allows for a significant acceleration
in computational time, while the retrieved seeds are more e�ective.
Moreover, in Celf, the majority of time is consumed in the initial
computation of the influence spread, i.e. the overhead to compute 100
instead of the 20 seeds shown in Table 4.5, amounts to 0.11, 0.22 and
0.19 seconds for the three datasets respectively.

4.4.2 Influence Maximization

Grim is trained on a dataset that consists of 50 random BA graphs
of 500 – 2, 000 nodes. It is trained by choosing 100 seeds sequentially,
to maximize the reward (delay = 2 steps) for each network. Since the
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Graph

(seeds)

Seed

Overlap

Dmp-Celf Glie-Celf

Influence Time Influence Time

CR(20) 14 221 83 229 1.0

HI(20) 13 1, 235 8, 362 1, 281 5.49

GR(20) 12 295 16, 533 393 7.01

Table 4.5: Influence maximization for 20 seeds with CELF, using the pro-
posed (Glie) substitute for influence estimation and evaluating
with 10, 000 MC independent cascades (IC).

immediate reward corresponds to the marginal gain, the sum of these
rewards at the end of the “game” corresponds to the total influence of
the seed set. An episode corresponds to completing the game for all
50 graphs; we play 500 episodes, taking roughly 40 seconds each. The
exploration is set to 0.3 and declines with a factor of 0.99. The model
is optimized using ADAM, as in Glie. We store the model that has
the best average influence over all train graphs in a training episode. In
order to diminish the computational time of the first step in Glie-Celf

and Grim, we focus on candidate seeds that surpass a certain degree
threshold based on the distribution, a common practice in the literature
[38, 142].

For comparison, we use a state-of-the-art influence maximization
method, Imm [196] which capitalizes on reverse reachable sets [22] to
estimate influence. Specifically, it produces a series of such influence
sketches and uses them to approximate the influence spread without
any simulation when building the seed set. This results in remarkable
acceleration while retaining a theoretical guarantee with high probability.
Note that, Imm is considered state-of-the-art and has similar influence
spreads with [198], while surpassing various heuristics [101]. We set e =

0.5 as proposed by the authors. We also compare with Finder, which
is analyzed in Section 6.2.1, and with the most well known heuristic
methods for the Independent Cascade Pmia [212], DegreeDiscount

[38] and K-cores [137] .

Graph Glie-Celf Grim Pun K-core Pmia DegDisc Imm FINDER

CR 228 232 227 126 224 227 228 232

GR 402 208 374 184 342 272 387 379

HI 1, 300 1, 304 1, 307 866 1, 274 1, 234 1,316 1, 110

EN 8, 189 8, 185 8, 205 5741 8, 041 7, 988 8,208 3, 964

FB 4,487 4, 480 4, 263 1594 2491 4, 489 4, 481 1, 823

YT 105,897 104, 824 104, 106 67, 084 97, 622 104, 706 105, 888 3, 799

Table 4.6: Influence spread computed by 10,000 MC ICs for 20.

The results for the influence spread of 20,50,100 and 200 seeds as
computed by simulations can be seen in Tables 4.6 to 4.9, while the time
results are shown in Table 4.10 and Table 4.11. The top result is in bold
and the second best is underlined. One can see that Glie-Celf exhibits
overall superior influence quality compared to the rest of the methods,
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Graph Glie-Celf Grim Pun K-core Pmia DegDisc Imm FINDER

CR 381 371 378 263 378 368 375 367

GR 738 553 700 303 654 556 725 635

HI 1,914 1, 905 1, 908 1, 407 1, 899 1, 824 1, 589 1, 904

EN 11,819 11, 114 11, 757 9, 796 11, 686 11, 183 10, 698 7, 133

FB 6, 631 5, 879 6, 329 2, 974 6, 574 4, 489 6,724 5, 649

YT 147, 631 148, 250 145, 796 78, 575 145, 863 143, 161 148,597 9, 152

Table 4.7: Influence spread computed by 10,000 MC ICs for 50.

Graph Glie-Celf Grim Pun K-core Pmia DegDisc Imm FINDER

CR 522 509 521 455 520 512 516 502

GR 1,102 997 1, 076 421 1, 013 919 1, 085 897

HI 2, 307 1, 302 2,308 2, 024 2, 291 2, 229 2, 290 2, 274

EN 14,920 14, 022 14, 912 10, 918 14, 855 13, 808 14, 848 12, 596

FB 8,710 7, 418 8, 409 4, 174 5, 613 8, 247 8, 625 5, 746

YT 189, 515 187, 808 187, 808 89, 546 189, 746 194,834 194, 521 34, 941

Table 4.8: Influence spread computed by 10,000 MC ICs for 100 seeds.

Graph Glie-Celf Grim Pun K-core Pmia DegDisc Imm FINDER

CR 661 650 657 647 656 644 650 642

GR 1, 617 1, 502 1,626 701 1, 566 1415 1, 617 1, 286

HI 2, 685 2, 631 2,688 2, 540 2, 685 2, 614 2, 668 2, 625

EN 17, 601 16, 642 17,614 13, 015 17, 534 16, 500 17, 497 17, 244

FB 10, 981 9, 406 10, 626 6, 434 7, 688 10, 309 11,007 10, 801

YT 246,439 241, 000 244, 579 110, 409 242, 057 236, 726 247, 178 50, 435

Table 4.9: Influence spread computed by 10,000 MC ICs for 200 seeds.

100 seeds 200 seeds

Graph Glie-Celf Grim Pun Imm FINDER Glie-Celf Grim Pun Imm FINDER

CR 1.25 0.91 0.15 0.13 0.41 2.00 2.03 0.25 0.19 0.41

GR 3.41 0.69 0.17 0.57 2.36 4.55 1.79 0.26 0.95 2.36

HI 1.20 2.59 0.17 0.56 1.01 2.19 0.60 0.27 1.29 1.01

EN 5.89 4.85 0.52 4.78 9.30 15.49 5.49 0.97 10.47 9.30

FB 120.6 100.00 1.42 69.90 56.8 287.7 123.95 3.1 171.25 56.80

YT 119.00 48.00 13.20 55.40 191.00 151.33 100.00 28.92 82.13 191.00

Table 4.10: Computational time in seconds.

100 seeds 200 seeds

Graph PMIA DegDisc K-core Pun PMIA DegDisc K-core Pun

CR 0.13 0.04 0.04 0.15 0.21 0.06 0.04 0.25

GR 0.70 0.12 1.5 0.17 0.80 0.13 1.5 0.26

HI 1.24 0.13 0.12 0.17 1.36 0.14 0.12 0.27

EN 24.83 1.96 2.17 0.52 26.74 2.06 2.17 0.97

FB 21.2 8.86 10.62 1.42 22.77 9.29 10.62 3.1

YT 3838.5 52.39 74.91 13.2 4006.29 54.38 74.91 28.92

Table 4.11: Computational time of heuristic approaches compared to Pun.

but is quite slower. Grim is slightly faster than Glie-Celf but is the
second slowest method. This quantifies the substantial overhead caused
by computing the influence spread of all candidate seeds in the first step.
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Their time di�erence amounts to how many more influence estimations
Glie-Celf performs in every step compared to Grim, which performs
only one. This is more obvious with Pun, which requires only one
influence estimation in every step and no initial computation. It is from
3 to 60 times faster than Imm while its computational overhead moving
from smaller to larger graphs is less than linear to the number of nodes.
In terms of influence quality, Pun is first or second in the majority
of the datasets and this e�ect becomes more clear as the seed set size
increases. DegDisc is faster than Pun in smaller graphs but slower
in larger and overall worse in seed set quality. Pmia provides medium
seed set quality but is computationally ineficient. Imm is clearly not
the fastest method, but it is very accurate, specially for smaller seed
set sizes. Finder exhibits the least accurate performance, which is
understandable given that it solves a relevant problem and not exactly
influence maximization for IC. The computational time presented is
the time required to solve the node percolation, in which case it may
retrieve a bigger seed set than 100 nodes. Thus, we can hypothesize it is
quite faster for a limited seed set, but the quality of the retrieved seeds
is the least accurate among all methods. Overall, we can contend that
Pun provides the best accuracy-e�ciency tradeo� from the examined
methods.

Moreover we performed experiments to compare Pun without the use
of GPU in Table 4.12, where it is visible that GPU provides a substantial
acceleration, but Pun remains the faster option even without it. Finally,
we juxtapose Pun and Imm on the same graphs with uniform influence
probabilities p = 0.01, (a common alternative to WC) in Figure 4.4. We
clearly observe that Pun outperforms Imm in this case as well.

Graph Pun GPU Pun CPU IMM

CR 0.15 0.17 0.13

GR 0.17 0.27 0.57

HT 0.17 0.20 0.56

EN 0.52 2.44 4.78

FB 1.42 17.5 69.9

YT 13.2 97.5 55.4

Table 4.12: Comparison between Pun CPU and GPU computational times for
100 seeds.

4.4.3 Comparison with IMINFECTOR

Here we perform a comparison between IMINFECTOR and Pun in
the datasets of Chapter 3. Pun requires a GPU with larger then 24
GB RAM to run for Weibo, so we kept the comparison in Digg and
MAG. The results at Figure 4.5 validate our intuition that Pun, which
is trained on the network based on the independent cascade, performs
better than IMINFECTOR in traditional evaluation based on monte
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Figure 4.4: Pun vs. Imm for IC with p = 0.01.

carlo simulations. On the contrary, IMINFECTOR outperforms Pun

significantly in the DNI introduced in Section 3.3.1, as it is based on the
unseen cascades. This stark contrast underlines the lack of combined
methods for evaluation. An influence maximization seed set should aim
to have a balanced performance on both di�usion and network based
evaluations. We thus contend that both types of evaluations should be
considered, and support the need for future hybrid approaches that
address both.

4.5 conclusion

We have proposed Glie, a GNN-based solution for the problem of
influence estimation. We showcase its accuracy in that task and utilized
it to address the problem of influence maximization. We developed
three methods based on the representations and the predictions of Glie.
Glie-Celf, an adaptation of a classical algorithm that surpasses SOTA
but with significant computational overhead. Grim, a Q-learning model
that learns to retrieve seeds sequentially using Glie’s predictions and
representations. And Pun, a submodular function that acts as proxy for
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Figure 4.5: PUN vs. IMINFECTOR spreading computed by a) by the inde-
pendent cascade and b) the distinct nodes influenced in the test
set cascades.

the marginal gain and can be optimized adaptively, striking a balance
between e�ciency and accuracy.

A typical influence maximization algorithm needs a significant con-
tribution in order to take into account the topic of the information
shared or the user’s characteristics [36] i.e. conditional di�usion. An
important practical advantage of a neural network approach is the easy
incorporation of such complementary data by adding the corresponding
embeddings in the input, as has been done in similar settings [199].
We thus deem an experiment with contextual information a natural
next step, given a proper dataset. Our approach can also be utilized to
address the minimum vertex cover in large graphs, as it is a problem
related to influence maximization and there exists models that work
well in both [142]. Finally, we also plan to examine the potential of
training online the reinforcement learning, i.e. receiving real feedback
from each step of the di�usion that could update both, the Q-Net and
Glie. This would allow the model to adjust its decisions based on the
partial feedback received during the di�usion.

Moreover influence maximization methods can be used for battling
such large scale manipulation in social media [202], such as targeting
the right susceptible users with specific political advertisements might
maximize the e�ect of the campaign on the general intent to vote . There
has been extensive research on producing counter campaigns to the fake
ones, that are equally e�ective and hence balancing each other [19]. More
importantly, Glie can be used as part of the mitigation strategy [202],
as a black box that substitutes the method’s RR-set based influence
estimation, to actually increase the balance of political exposure in the
given social network for the running campaigns. Moreover, our methods
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can inherently be utilized in the context of limiting fake news spreading
similar to other influence maximization algorithms [30].



5
T R A N S F E R G R A P H N E U R A L N E T W O R K S F O R

PA N D E M I C F O R E C A S T I N G

The recent outbreak of COVID-19 has a�ected millions of individuals
around the world and has posed a significant challenge to global health-
care. From the early days of the pandemic, it became clear that it is
highly contagious and that human mobility contributes significantly to
its spread. In this paper, we study the impact of population movement
on the spread of COVID-19, and we capitalize on recent advances in
the field of representation learning on graphs to capture the underly-
ing dynamics. Specifically, we create a graph where nodes correspond
to a country’s regions and the edge weights denote human mobility
from one region to another. Then, we employ graph neural networks to
predict the number of future cases, encoding the underlying di�usion
patterns that govern the spread into our learning model. Furthermore,
to account for the limited amount of training data, we capitalize on
the pandemic’s asynchronous outbreaks across countries and use a
model-agnostic meta-learning based method to transfer knowledge from
one country’s model to another’s. We compare the proposed approach
against simple baselines and more traditional forecasting techniques in
4 European countries. Experimental results demonstrate the superiority
of our method, highlighting the usefulness of GNNs in epidemiological
prediction. Transfer learning provides the best model, highlighting its
potential to improve the accuracy of the predictions in case of secondary
waves, if data from past/parallel outbreaks is utilized.

source code The implementation of the proposed model can be
found online1.

5.1 introduction

In late 2019, a highly infectious new virus, SARS-CoV-2, started spread-
ing in Wuhan, China. In early 2020, the virus had spread to most
countries around the world causing the pandemic of the COVID-19
disease. As of December 7, 2020, a total of 1, 532, 418 deaths and
66, 422, 058 cases of COVID-19 were confirmed worldwide2. In many
domains, data admits a natural graph representation. For instance, to
predict the spread of COVID-19, ideally, we would like to have access
to the social network of all individuals and to make predictions based
on the interactions between them. However, in the absence of such
data, we consider a similar problem; predicting the development of
the disease based on mass mobility data, i.e. how many people moved
from one place to another. Mobility inside a region can be regarded as

1 https://github.com/geopanag/pandemic_tgnn

2 https://covid19.who.int
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a proxy of the interaction i.e. the more people move, the higher the
risk of transmission inside the region. Interestingly, mobility between
di�erent regions is known to play a crucial role in the growth of the
pandemic, especially for long range travels [46, 190]. Mobility gives rise
to a natural graph representation allowing the application of recent
relational learning techniques such as graph neural networks (GNNs).

GNNs who have been introduced in Chapter 2 have been applied
to a wide variety of tasks, including node classification [107], graph
classification [152] and text categorization [160]. Since GNNs have been
successfully applied to several real-world problems, in this paper, we
also investigate their e�ectiveness in forecasting COVID-19. We focus
on the problem of predicting the number of confirmed COVID-19 cases
in each node. We propose a model that captures both spatial and
temporal information, thus combining mobility data with the history of
COVID-19 cases.

To investigate if the model can learn the underlying complex dynamics
associated with COVID-19, we evaluate it on recent data where we
predict the number of new cases. Our results demonstrate that GNNs on
mobility exhibit a substantial potential in predicting the disease spread.
Furthermore, since the availability of data is limited at the start of the
outbreak in a country, we employ a transfer learning method based on
Model-Agnostic Meta-Learning (MAML) to capitalize on knowledge
from other countries’ models.

The rest of this chapter is organized as follows. Section 5.2 provides
an overview of the related work and elaborates our contribution. Section
5.3 provides an overview of the dataset and the relationship between
mobility and COVID-19 cases. Section 5.4 provides a detailed description
of the proposed model. Section 5.5 evaluates the proposed model on
data from the first COVID-19 wave in 4 EU countries. Finally, section
5.6 summarizes the work and presents potential future work.

5.2 related work

As mentioned above, many recent studies have leveraged machine learn-
ing and artificial intelligence to make predictions about the spread of
COVID-19. For instance, Lorch et al. [133] propose a compartmental
SEIR model which is based on a parameterized counting process. The
parameteres of the model are estimated using bayesian optimization.
and was evaluated on regions of Germany and Switzerland. Flaxman et
al. [69] study the e�ect of major non-pharmaceutical interventions across
11 European countries with a bayesian model whose parameters are
estimated based on the observed deaths in those countries. Their results
indicate that the interventions have had a large e�ect on reducing the
spread of the disease. Time-series based models have also been utilized
and will serve as our baselines. For instance, Chimmula and Zhang
[43] employed an LSTM to predict the number of confirmed COVID-19
cases in Canada, while Kufel [111] investigated the e�ectiveness of the
ARIMA model in predicting the dynamics of COVID-19 in certain
European countries.
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A GNN for epidemic forecasting, ColaGNN, was recently developed by
Deng et al. [48]. ColaGNN learns a hidden state for each location using an
RNN, and then an attention matrix is derived from these representations
that captures how locations influence each other. This matrix forms
the graph that is passed on to a GNN to generate the outputs. This
work was evaluated on influenza-like illness (ILI) prediction in US and
Japan, without the use of an underlying graph. More recent works on
predicting COVID-19 using the graph of US counties include a static
[103] and a temporal GNN [71]. The former forms a supergraph using the
instances of the mobility graph, where the spatial edges capture county-
to-county movement at a specific date, and a county is connected to a
number of past instances of itself with temporal edges. The node features
include demographics, number of deaths and recoveries. In STAN [71]
on the other hand, the edges are determined based on demographic
similarity and geographical proximity between the counties. STAN takes
advantage of the nature of the pandemic and predicts the parameters of
an epidemic simulation model together with the infected and recovered
cases, using multiple outputs in the neural network. These are used to
produce long-term predictions based on the simulation and to penalize
the original long-term predictions of the model. The main di�erence
between these approaches and our work lies in the size of the constructed
graph and the amount of available data for training. To be specific, in
both these approaches the size of the training data ranges from 50 to
60 days. In our case, this is not feasible as the pandemic is already at
its peak before the 30th day, and has already cost too many lives. This
is why we utilize transfer learning to account for the limited training
samples in the initial stages of the pandemic. Moreover, our graphs are
relatively small compared to the graph of US counties. Finally, our open
data lacks in many cases the number of recovered cases, deaths and
population demographics required for training these models. This kind
of data may not always be available at the regional level for a real-life
pandemic, especially for smaller, less developed countries.

Transfer learning for disease prediction has been used in the past in
Zou et al. [242] who have mapped a disease model trained on online
google searches obtained from one location, where the virus spreading is
available, to another location, where the virus has not spread widely yet.
More recently, this approach was utilized in the context of COVID-19
[114]. In the context of graph representation learning, transfer learning
has only been used to the best of our knowledge for classifying textual
documents represented as graphs [116], for tra�c prediction [141], for
semi-supervised classification [233] and for designing GNNs that are
robust to adversarial attacks [195].

5.3 dataset

Facebook has released several datasets in the scope of Data For Good
program3 to help researchers better understand the dynamics of the
COVID-19 and forecast the spread of the disease [134]. We use a dataset

3 https://dataforgood.fb.com/tools/disease-prevention-maps/
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Country Time Regions Avg new case

Italy 24/2-12/5 105 25.65

England 13/3-12/5 129 16.7

Spain 12/3-12/5 35 61

France 10/3-12/5 81 7.5

Table 5.1: Summary of the available data for the 3 considered countries.

that consists of measures of human mobility between administrative
NUTS34 regions. The data is collected directly from mobile phones
that have the Facebook application installed and the Location History
setting enabled. The raw data contains three recordings per day (i.e.
midnight, morning and afternoon), indicating the number of people
moving from one region to another at that point of day. We compute a
single value for each day and each pair of regions by aggregating these
three values. We focus on 4 European countries: Italy, Spain, France
and England.

The number of cases in the di�erent regions of the 4 considered
countries were gathered from open data listed in the github page5 along
with the code and the aggregated mobility data. An overview of the
preprocessed data can be found in Table 5.1. The start date is the
earliest date for which we have both mobility data and data related
to the number of cases available. We apply text mining techniques to
preprocess and map the regions of the mobility data to those of the
open data, as well as quality control for noisy time series where the
recordings seemed infeasible. This led us into neglecting a 2 in Italy, and
10 (including islands) in Spain. We also do not take into consideration
regions that had less then 10 confirmed cases in total throughout the
pandemic, which corresponds to 14 regions in Spain and 3 in Italy, as
they were luckily not very a�ected by the pandemic.

We should stress here that in the considered set of data, case reporting
is often not consistent, while there are also very large variations in the
number of tests performed in each region/country. This is the main
reason behind the large di�erences in the number of reported cases
from day to day, as illustrated in Figure 5.1 for the di�erent regions of
Italy and France. Specifically, we see that for almost all regions, the
maximum di�erence encountered between consecutive days is multiple
times the average value of the time series, signifying the burstiness and
the di�culty of predicting exact samples of such time series.

In order to evaluate the relationship between mobility and COVID-19
cases, we compute the pearson correlation for the examined time shifts
in forecasting i.e. ranging from 1 to 14 days ahead. Specifically, for a
region u, its mobility is the total number of people moving in and out
of it each day, represented by mt starting from time 0 to time t. The
sequence of confirmed COVID-19 cases is represented by ct, and ct+1

4 https://en.wikipedia.org/wiki/Category:NUTS_3_statistical_regions_of_

the_European_Union

5 https://github.com/geopanag/pandemic_tgnn

https://en.wikipedia.org/wiki/Category:NUTS_3_statistical_regions_of_the_European_Union
https://en.wikipedia.org/wiki/Category:NUTS_3_statistical_regions_of_the_European_Union
https://github.com/geopanag/pandemic_tgnn
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t = T ≠ 1 and Corr1 =
q
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)(ct+1
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))

σ(mt)σ(ct+1) . In Figure 5.2 we can
see the correlation for all regions and all time shifts. Overall, we can
see that for most of the regions, mobility is correlated positively with
the short term number of cases and vice versa for the long term ones.
Overall this pattern pertains throughout most of the regions with the
exception of Spain. Hence we expect mobility to be a usefull predictor.

5.4 methodology

In this section, we present the proposed neural network architecture for
predicting the course of the COVID-19 disease. It should be mentioned
that our analysis involves a series of assumptions. First, we assume
that people that use Facebook on their mobile phones with Location
History enabled constitute a uniform random sample of the general
population. Second, we assume that the number of cases in a region
reported by the authorities is a representative sample of the number
of people that have been actually infected by the virus. Finally, we
hypothesize that the more people move from one region to another or
within a region, the higher the probability that people in the receiving
region are infected by the virus. This is a well-known observation in the
field of epidemics[46, 190], and motivates the use of a message-passing
procedure as we delineate below.

Symbol Meaning Type

N number of nodes scalar

G(t) graph at time t graph

w
(t)
u,v mobility from region u to v at

t

scalar

x
(t)
u number of cases in region u at

time t

vector

Ht

i
activations of the hidden layer
i at time t

matrix

Wi learnable parameters of the
hidden layer i

matrix

yu prediction for region u scalar

◊ the set of the model’s parame-
ters

set

M the set of datasets set

T k
i,j the samples for country k start-

ing from day i and predicting
j days ahead

set

Table 5.2: Table of symbols.
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Figure 5.4: Overview of the proposed MPNN architecture.

and is broken down to the cases received from other regions and the
new cases caused due to mobility inside u (xuauu).

5.4.2 Models

To model the dynamics of the spreading process, we use two di�erent
instances of GNNs [74]. As analyzed in chapter 2, these neural networks
consist of a series of neighborhood aggregation layers i.e. message-
passing, so we will call them Message Passing Neural Network (MPNN)
for the rest of the chapter.

message passing neural network To update the representa-
tions of the node in each of the input graphs, we use the message-passing
scheme of Eq. 2.8 in Chapter 2:

Hi+1 = f(Ã Hi Wi+1)

Note that for simplicity of notation, we have omitted the time index. The
above model is applied to all the input graphs G(1), . . . , G(T ) separately.
Given a model with K neighborhood aggregation layers, the matrices Ã

and H0, . . . , HK are specific to a single graph, while the weight matrices
W1, . . . , WK are shared across all graphs. As the number of neighbor-
hood aggregation layers increases, the final node features capture more
and more global information. However, retaining local, intermediary
information might be useful as well. Thus, we concatenate the matri-
ces H0, H1, . . . , HK horizontally, i.e. H = CONCAT(H0, H1, . . . , HK),
and the rows of the emerging matrix H can be regarded as node repre-
sentations that encode multi-scale structural information, including the
initial features of the node. In other words, we utilize skip connections
from each layer to the output layer which consists of a sequence of
fully-connected layers. Note that we apply the ReLU function to the
output of the network since the number of new cases is a nonnegative
integer. We choose the mean squared error as our loss function, as shown
below:

L =
1

nT

T
ÿ

t=1

ÿ

vœV

1

y(t+1)
v ≠ ŷ(t+1)

v

22
(5.1)
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set Mtr = {D(1), . . . , D(p)}, corresponds to the data sets of p countries
that we can use to obtain a set of parameters ◊. The learnt parameters
can then be employed to initialize the model for the country left out
in the Meta Test Mte. In reality, each dataset D(k), k œ {1, . . . , p} is
divided into subtasks itself. More specifically, each country has di�erent
training sets of increasing size (as the train days increase) as well as
shorter- and longer-term targets (next day, two days ahead and so on).
For each combination of these two, we train a di�erent model. Hence,

the set of tasks for a country k is D(k) =

;

1

Tr
(k)
i,j , Te

(k)
i,j

2

: 14 Ø i Ø

Tmax, 1 Ø j Ø dt

<

where
1

Tr
(k)
i,j , Te

(k)
i,j

2

is a dataset (train and test set)

associated with country k where the train set comprises of the first i

days of the data and the task is to predict the number of cases in the
j-th day ahead.

The set of parameters ◊ corresponds to the weight matrices and biases
of all layers in the MPNN model. As mentioned above, in MAML, ◊ is
randomly initialized and underoges gradient descent steps during the
metatrain phase. The algorithm is shown in Algorithm 7.

Algorithm 7 MPNN+TL

Input: Mtr, Mte, – , –m, n_epochs

Output: ◊

1: Initialize ◊ randomly
2: for D œ Mtr do

3: for (Tr, Te) œ D do

4: for Batch b œ Tr do

5: ◊t = ◊ ≠ –ÒθL(fθ(b))

6: ◊ = ◊ ≠ –mÒθL(fθt
(Te))/|Mtr|

7: for (Tr, Te) œ Mte do

8: for Epoch e œ n_epochs do

9: for Batch b œ Tr do

10: ◊ = ◊ ≠ –ÒθL(fθ(b))

11: error+ = E(fθ(Te))

12: return error/|Mte|

Note that in the Algorithm 7 , E is our error function (i.e. Eq. (5.5)),
L is the loss function defined in Eq. (5.1), and f is an MPNN.

In each task, we minimize the loss on the task’s train set towards a
task-specific ◊t, as shown in Eq. (5.2) and on lines 3-5 of the algorithm.
Then, we use the emerging ◊t to compute the gradient with respect to
◊ in the task’s test set as illustrated in Eq. (5.3) below and on line 6.
This gradient is normalized by the total number of tasks in the set to
refrain from taking too big steps:

◊t = ◊ ≠ –ÒθL
1

fθ(Tr
(k)
i,j )

2

(5.2)

◊ = ◊ ≠ –mÒθL
1

fθt
(Te

(k)
i,j )

2

(5.3)
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The standard update includes the gradient of ◊t and that of ◊, which
is in fact the hessian matrix, as shown in Eq. (5.4).

ˆLT (fθt
(Te

(k)
i,j ))

ˆ◊
= Òθt

L(fθt
(Te

(k)
i,j ))(I ≠ aÒ2

θLfθ(Tr
(k)
i,j )) (5.4)

We are dropping the term that contains the hessian, as it was shown
to have insignificant contribution in practice [68], possibly due to the
vanishing gradient. Finally, we train ◊ on the train set of Mte and test
on its test set (lines 7-10 and 11 respectively).

5.5 experiments

In this section, we first describe the experimental setting and the
baselines used for comparison. We last report on the performance of
the proposed models and the baselines.

5.5.1 Experimental setup

In our experiments, we train the models using data from day 1 to day
T , and then use the model to predict the number of cases for each
one of the next dt days (i.e. from day T + 1 to day T + dt). We are
interested in evaluating the e�ectiveness of the model in short-, mid-
and long-term predictions. Therefore, we set dt equal to 14. We expect
the short-term predictions (i.e. small values of dt) to be more accurate
than the long-term predictions (i.e. large values of dt). Note that we
train a di�erent model to predict the number of cases for days T + i

and T + j where i, j > 0 and i ”= j. Therefore, each model focuses on
predicting the number of cases after a fixed time horizon, ranging from
1 day to 14 days. With regards to the value of T , it is initially set equal
to 14 and is gradually increased (one day at a time). Therefore, the size
of the training set increases as time progresses. Note that a di�erent
model is trained for each value of T . Furthermore, for each value of T ,
to identify the best model, we build a validation set which contains the
samples corresponding to days T ≠ 1, T ≠ 3, T ≠ 5, T ≠ 7 and T ≠ 9,
such that the training and validation sets have no overlap with the test
set.

With regards to the hyperparameters of the MPNN, we train the
models for a maximum of 500 epochs with early stopping after 50

epochs of patience. Early stopping starts to occur from the 100th epoch
and onward. We set the batch size to 8. We use the Adam optimizer
with a learning rate of 10≠3. We set the number of hidden units of
the neighborhood aggregation layers to 64. Batch normalization and
dropout are applied to the output of every neighborhood aggregation
layer, with a dropout ratio of 0.5. We store the model that achieved
the highest validation accuracy in the disk and then retrieve it to make
predictions about the test samples. For the MPNN+LSTM model, the
dimensionality of the hidden states of the LSTMs is set equal to 64.
All the models are implemented with Pytorch [168]. We evaluate the
performance of a model by comparing the predicted total number of



84 transfer graph neural networks for pandemic forecasting

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Italy (10/3 to 12/5) Spain (26/3 to 12/5)

England (27/3 to 12/5) France (24/3 to 12/5)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

7

8

9

30

35

40

45

50

55

6

7

8

9

10

15.0

17.5

20.0

22.5

Prediction for dt days ahead

A
V

G
 E

rr
o
r 

in
 N

o
 o

f 
C

a
s
e
s
 P

e
r 

R
e
g
io

n

●

AVG

AVG_WINDOW

LAST_DAY

LSTM

MPNN

MPNN+LSTM

MPNN+TL

Figure 5.6: Average number of cases lost per region for each target shift.
PROPHET and ARIMA are omitted and shown in the table,
because they e�ected the legibility of the plot.

Model
Up to next 3 Days Up to next 7 Days Up to next 14 Days

England France Italy Spain England France Italy Spain England France Italy Spain

AVG 9.75 8.50 21.38 45.10 9.99 8.55 22.23 45.87 10.09 8.55 23.09 47.63

LAST_DAY 7.11 7.47 17.40 33.58 7.62 7.37 18.49 37.06 8.66 8.03 20.69 43.63

AVG_WINDOW 6.52 6.04 15.17 32.19 7.34 6.40 16.81 36.06 8.54 7.24 19.45 42.79

LSTM 9.11 8.08 22.94 51.44 8.97 8.13 23.17 49.89 9.10 7.91 23.12 47.26

ARIMA 13.77 10.72 35.28 40.49 14.55 10.53 37.23 41.64 15.65 10.91 39.65 46.22

PROPHET 10.58 10.34 24.86 54.76 12.25 11.56 27.39 62.16 16.24 14.61 33.07 79.42

TL_BASE 9.65 7.67 19.12 42.25 12.30 9.21 23.44 52.29 13.48 12.27 24.89 59.68

MPNN 6.36 6.16 14.39 35.83 6.86 5.99 15.47 38.51 8.13 6.93 17.88 44.25

MPNN+LSTM 6.41 6.39 15.56 33.35 6.67 7.21 16.41 34.47 7.02 7.36 17.25 35.31

MPNN+TL 6.05 5.83 14.08 29.61 6.33 5.90 14.61 31.55 6.84 6.13 16.69 34.65

Table 5.3: Average error for dt = 1 ≠ 3, 1 ≠ 7 and 1 ≠ 14, in number of cases
per region.

cases in each region versus the corresponding ground truth, throughout
the test set:

error =
1

n dt

T+dt
ÿ

t=T+1

ÿ

vœV

|ŷ(t)v ≠ y(t)v | (5.5)

5.5.2 Baselines

We compare the proposed models against the following baselines and
benchmark methods, which have been applied to the problem of COVID-
19 forecasting:

• AVG: The average number of cases for the specific region up to
the time of the test day.

• AVG_WINDOW: The average number of cases in the past d for
the specific region where d is the size of the window.



5.5 experiments 85

Country Di�erence Total Cases

England 10,088 99,087

France 4,004 29,767

Italy 24,872 169,674

Spain 13,176 100,345

Table 5.4: Cumulative di�erence in terms of correctly identified cases between
the proposed method and the next best baseline.

• LAST_DAY: The number of cases in the previous days is the
prediction for the next days.

• LSTM [43]: A two-layer LSTM that takes as input the sequence
of new cases in a region for the previous week.

• ARIMA [111]: A simple autoregressive moving average model
where the input is the whole time-series of the region up to before
the testing day.

• PROPHET [135]: A forecasting model for various types of time
series6.The input is similar to ARIMA.

• TL_BASE: An MPNN that is trained on all data from the three
countries and the train set of the fourth (concatenated), and tested
on the test set of the fourth. This serves as a baseline to quantify
the usefulness of MPNN+TL.

We should note here that since we rely solely on the number of
confirmed cases, we can not utilize models that work with recovery,
deaths and policies, such as SEIR. That said, a simple approach is to
run SI at every given T with a parameter — taken from the COVID-
19 literature, along with the number of infected people at T and the
population. In some preliminary experiments, however, this provided
errors in a di�erent scale then the ones mentioned here, similar to Gao
et al. [71], which is why we have not experimented further.

5.5.3 Results and Discussion

The average error per region for each one of the next 14 days is illustrated
in Figure 5.6. We observe that in all cases, the proposed models yield
lower average errors compared to those of the baselines. Among the
three variants, MPNN+TL is the best-performing model. It initially
outperforms the other approaches by a small margin that increases
further after the second day. Even simple baselines can be competitive
at predicting the next day’s number of cases since proximal samples for
the same region from the same phases of the pandemic tend to have a
similar number of cases. However, a prediction that goes deeper in time
requires the identification of more persistent patterns. In the case of our
model, as mentioned above, we aim to capture unregistered cases moving

6 https://github.com/facebook/prophet

https://github.com/facebook/prophet
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from one region to the other or spreading the disease in their new region.
These cases would inevitably take a few days to appear, due to the delay
of symptoms associated with COVID-19. This is why MPNN performs
well throughout the 14-days window. The results also demonstrate the
benefit of transfer learning techniques since MPNN+TL outperforms
MPNN and its baseline TL_BASE in all cases. We expect MPNN

to perform similar towards the end of the dataset, when the training
of both models has become similar due to the number of epochs and.
The main di�erence occurs when T is small, where the training samples
are scarce and MPNN is unable to capture the underlying dynamics.
One way to see this is again the accuracy of MPNN+TL in the long
term predictions. Due to the size of the prediction window, long term
tasks have diminished train set, meaning if the task is to predict t+14
and the set ends at day 60, t+14 training will stop at day 46 while the
t+1 will stop at 59. Thus MPNN performs similarly at the short-term
predictions but fails compared to MPNN+TL in the long term.

Note that for clarity of illustration, we chose not to visualize the
performance of PROPHET and ARIMA in Figure 5.6 as their error was
distorting the plot. However, we present in Table 6.2 the average error
for the predictions where dt takes three values: 3, 7 and 14. Overall,
it is clear that the time series methods (i.e. LSTM, PROPHET, and
ARIMA) and the temporal variant of our method MPNN+LSTM

yield quite inaccurate predictions. Apart from the inherent di�culty
of learning with time-series data, which we analyze further below,
this might also happen because of the nature of the epidemic curve.
Specifically, sequential models, that are trained with values that tend
to increase, are impossible to predict decreasing or stable values. For
instance, in our dataset, once the models have enough samples to learn
from, there is a transition in the phase of the epidemic due to lockdown
measures. The same applies when the epidemic starts to recede at the
start of May.

Our error function treats all regions equivalently, independent of the
region-specific population and the number of cases, i.e. a region with 10

cases per day should not be treated the same as a region with 1000. We
need a measure to take into account the region-specific characteristics as
well as the time. Towards this end, we computed the deviation between
the average predicted and the actual average number of cases over the
next 5 days (not to be confused with the average error for the next x

days in Table 5.3) and 5.4). The relative error of each region is defined
below and is illustrated in Figure 5.7.

r =
1

n (T ≠ 5)

T ≠5
ÿ

t=1

ÿ

vœV

-

-

-

-

q5
i=0 ŷ

(t+i)
v ≠

q5
i=0 y

(t+i)
v

-

-

-

-

q5
i=0 y

(t+i)
v

(5.6)

One can see that the regions with high relative error are the ones with
the fewest cases. On the other hand, the regions with the highest number
of cases tend to have much smaller relative error, less than 20% to be
exact, with the exception of one region in Spain. This indicates that
our model indeed produces accurate predictions that could be useful in
resource allocation and policy-making during the pandemic.
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Figure 5.7: Plot of the relative test error and average number of cases per day
for each available region.

Figure 5.7 also allows us to evaluate the method more objectively.
From a machine learning perspective, one may argue that even though
the MPNN+TL outperforms the baselines, their predictions are not
very accurate in terms of average error. This is partially explained
due to the inherent problems of the dataset mentioned at Section 5.3
as well as the assumption that case reporting is standard throughout
the regions. We expect a large improvement in performance in case a
standard methodology for case reporting is adopted and the number of
tests per region remains constant and proportional to the population.
Having said that, utilizing such a model in practice is more than feasible,
as the di�erence in scale is more useful at the regional level. In other
words, a region predicted to have 200 new cases total in the next 5 days
will have similar needs with a region with 240 or 160 real cases (20%
error). Contrary to that, a prediction of 200 cases with a real value of
300 would be a more significant misclassification, which is not possible
looking at the results at Figure 5.7. Moreover, regions with big relative
error tend to have a small number of cases e.g. the model may predict
20 cases in a region with 10 (100% error), which is also acceptable from
a real-world perspective.
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5.6 conclusion

In this paper, we presented a model for COVID-19 forecasting which
could provide useful insights to policymakers and allow them to make
informed decisions on appropriate interventions and resource allocation.
The proposed model builds upon the recent work on GNNs. We use
mobility data as a graph where nodes correspond to regions and edge
weights to measures of human mobility between their endpoints. Then,
we derive variants of the family of MPNNs to generate representations
for the regions based on their interactions. Furthermore, since di�erent
countries might be in di�erent phases of the epidemic, we propose to
transfer a well-performing disease spreading model from one country
to another where limited data is available. Experiments conducted on
data from 4 European countries show that our architectures outperform
traditional and more recent approaches in predicting the number of
daily new COVID-19 cases.

In terms of future directions, we plan to provide our model with
e. g.demographics regarding the the age/gender distribution and features
related to the weather. Furthermore, we will include additional data
from Facebook such as the intensity of connectedness between regions
measured by the friendship relationships between two regions. Our final
goal is to evaluate the model on the second wave of COVID-19, based
on the first.



6
A N A LY S I S O F A C A D E M I C I N F L U E N C E

Measuring and evaluating an author’s influence or her overall impact
over the academic world has been a withstanding challenge with pro-
found e�ects on society. Apart from its practical usage for academic
evaluation from governmental and industrial organizations, it enhances
scientific transparency and reinforces excellence. Moreover, due to the
democratization of science through social media, the public and mass
media require concise and reliable evaluations to follow a scientist’s
opinion in pressing matters, since they lack the expertise to assess
the validity of an authority’s opinion. In this chapter, we present our
e�orts to address this problem capitalizing on di�erent types of aca-
demic networks built based on the Microsoft Academic Graph (MAG),
to our knowledge the largest heterogeneous database of scientometric
measurements. We first attempt to predict the author’s scientific im-
pact using graph neural networks on the coauthorship network with
node representations extracted from the author’s papers’ abstracts. The
proposed method is compared with standard data mining techniques
based on graph mining and machine learning models. Subsequently, in
an e�ort to provide more qualitative results, we refrain from machine
learning and take a more traditional approach to build an interactive
web application based on network science and large-scale analytics. We
first create the citation network between authors i.e. who-cites-whom,
and then separate the authors impact into two di�erent scientometrics:
success in the specific field and influence over the academic network The
first is the distribution of the h-index for specific scientific fields and a
search engine to visualize an authors’ position in it as well as the top
percentile she belongs to. The second is recomputing the D-core influ-
ence metric on this huge network and presenting authority/integration
of the authors in the form of D-core frontiers. As a means of evaluation,
we present interesting insights on the densest scientific domains and the
most influential authors. We believe the proposed analytics highlight
under-examined aspects in the area of scientific evaluation and pave the
way for more involved scientometrics.

source code The implementation of the proposed model can be
found online 1.

6.1 microsoft academic graph

Microsoft Academic Graph (MAG) is the biggest openly available bib-
liographical corpus, including more than 250 million authors and 219
million papers [188]. We employed a snapshot version2 provided by

1 https://github.com/geopanag/MAG-Author-Influence-Scientometrics

2 created at 9/2/2019
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influence based on graph degeneracy. Finally, Section 6.4 concludes with
a summary and potential future steps.

6.2 graph neural networks for h-index prediction

Citation counts is undoubtedly the most widely used indicator of a
paper’s impact and success. It is commonly believed that the more
citations a paper has received, the higher its impact. When it comes to
authors, measuring impact becomes more complicated since an author
may have published multiple papers in di�erent journals or conferences.
Still the publication record of an author is in many cases the most
important criterion for hiring and promotion decisions, and for awarding
grants. Therefore, institutes and administrators are often in need of
quantitative metrics that provide an objective summary of the impact
of an author’s publications. Such indicators have been widely studied
in the past years [25, 59, 223, 235]. However, it turns out that not all
aspects of an author’s scientific contributions can be naturally captured
by such single-dimensional measures. The most commonly used indicator
is perhaps the h-index, a measure that was proposed by Jorge Hirsch
[91]. The h-index measures both the productivity (i.e. the number of
publications) and the impact of the work of a researcher. Formally,
the h-index is defined as the maximum value of h such that the given
author has published h papers that have each been cited at least h

times. Since its inception in 2005, the h-index has attracted significant
attention in the field of bibliometrics. It is not thus surprising that all
major bibliographic databases such as Scopus, the Web of Science and
Google Scholar compute and report the h-index of authors. One of the
main appealing properties of the h-index is that it is easy to compute,
however, the indicator also su�ers from several limitations which have
been identified in the previous years [23, 176, 211].

It is clear from the definition of h-index that it mainly depends on
the publication record of the author. On the other hand, there is no
theoretical link between the h-index of an author and the collabora-
tions the author has formed. For instance, it is not necessary that the
h-index of an author that has collaborated with many other individuals
is high. However, the above example is quite reasonable, and empiri-
cally, there could be some relation between h-index and co-authorship
patterns [105]. In fact, it has been reported that co-authorship leads
to increased scientific productivity (i.e. number of papers published)
[6, 55, 95, 117, 244]. For instance, some studies have investigated the
relationship between productivity and the structural role of authors in
the co-authorship network, and have reported that authors who pub-
lish with many di�erent co-authors bridge communication and tend to
publish larger amounts of papers [58, 110]. Since research productivity
is captured by the h-index, co-authorship networks could potentially
provide some insight into the impact of authors. Some previous works
have studied if centrality measures of nodes are related to the impact
of the corresponding authors. Results obtained from statistical analysis
or from applying simple machine learning models have shown that in
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some cases, the impact of an author is indeed related to their structural
role in the co-authorship network [1, 21, 228].

The goal of this section is to uncover such connections between
the two concepts, i.e. h-index and the co-authorship patterns of an
author. Specifically, we leverage machine learning and study whether
the collaboration patterns of an author are good indicators of the
author’s success i.e. the h-index. We treat the task as a regression
problem and since the collaboration patterns of an author can be
represented as a graph, we capitalize on recent advances in graph neural
networks, presented in Chapter 2. We build a co-authorship network of
the aforementioned processed MAG dataset, where nodes correspond
to authors that have published papers in computer science journals and
conferences. Their top-cited papers are utilized to create node features
using text representations. We then train a GNN model to predict the h-
index of each author. Our results demonstrate that the structural role of
an individual in the co-authorship network is indeed empirically related
to their h-index. Furthermore, we find that local features extracted
from the neighborhood of an author are very useful for predicting the
author’s h-index. On the other hand, the textual features generated
from the author’s published papers do not provide much information.
Overall, the proposed architectures quantify the potential gain of using
GNNs overal traditional methods.

6.2.1 Related Work

In the past years, a substantial amount of research has focused on
determining whether information extracted from the co-authorship
networks could serve as a good predictor of the authors’ scientific
performance. For instance, McCarty et al. investigated in [145] which
features extracted from the co-authorship network enhance most the
h-index of an author. The authors found that the number of co-authors
and some features associated with highly productive co-authors are
most related to the increase in the h-index of an author. In another
study [88], Heiberger and Wieczorek examined whether the structural
role of researchers in co-authorship networks is related to scientific
success, measured by the probability of getting a paper published in a
high-impact journal. They found that the maintenance of a moderate
number of persistent ties, i.e. ties that last at least two consecutive years,
can lead to scientific success. Furthermore, they report that authors
who connect otherwise unconnected parts of the network are very likely
to publish papers in high-impact journals. Parish et al. employed in
[167] the R index, an indicator that captures the co-authorship patterns
of individual researchers, and studied the association between R and
the h-index. They found that more collaborative researchers (i.e. lower
values of R) tend to have higher values of h-index, and the e�ect is
stronger in certain fields compared to others.

Several previous works have studied the relationship between network
centrality and research impact. Yan and Ding investigated in [228] if
four centrality measures (i.e. closeness centrality, betweenness centrality,
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degree centrality, and PageRank) for authors in the co-authorship
network are related to the author’s scientific performance. They found
that all four centrality measures are significantly correlated with citation
counts. Abbasi et al. also studied the same problem in [1]. Results
obtained from a Poisson regression model suggest that the g-index (an
alternative of the h-index) of authors is positively correlated with four
of the considered centrality measures (i.e. normalized degree centrality,
normalized eigenvector centrality, average ties strength and e�ciency).
Sarigöl et al. examined in [180] if the success of a paper depends
on the centralities of its authors in the co-authorship network. The
authors showed that if a paper is represented as a vector where most of
the features correspond to centralities of its authors, then a Random
Forest classifier that takes these vectors as input can accurately predict
the citation success of the paper. Bordons et al. explored in [21] the
relationship between the scientific performance of authors and their
structural role in co-authorship networks. The authors utilized a Poisson
regression model to explore how authors’ g-index is related to di�erent
features extracted from the co-authorship networks. The authors find
that the degree centrality and the strength of links show a positive
relationship with the g-index in all three considered fields. Centrality
measures cannot only predict scientific success, but can also capture the
publication history of researchers. More specifically, Servia-Rodríguez et

al. studied in [183] if the research performance of an author is related to
the number of their collaborations, and they found that if two authors
have similar centralities in the co-authorship network, it is likely that
they also share similar publication patterns.

Some other related studies have investigated the relationship between
the number of authors and the success of a paper. For instance, Figg
et al. analyzed in [67] the relationship between collaboration and the
citation rate of a paper. The authors found that there exists a positive
correlation between the number of authors and the number of citations
received by a paper, for papers published in six leading journals. Hsu and
Huang studied in [94] whether collaboration leads to higher scientific
impact. They computed the correlation between the number of citations
and the number of co-authors for papers published in eight di�erent
journals, and drew the same conclusions as Figg et al. above. Within
each journal, there exists a positive correlation between citations and the
number of co-authors, while single-authored articles receive the smallest
number of citations. In a di�erent study [3], Abramo et al. examined
how the international collaborations of Italian university researchers
is associated with their productivity and scientific performance. The
authors found that the volume of international collaboration is positively
correlated with productivity, while the correlation between the volume
of international collaboration and the average quality of performed
research is not very strong.

Our work is also related to mining and learning tasks in academic data
such as collaboration prediction [85, 229] and prediction of scientific
impact and success [4, 218]. When the scientific impact is measured
by the author’s h-index, the learning task boils down to predicting
the author’s h-index [51], while a similar problem seeks to answer the
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question of whether a specific paper will increase the primary author’s
h-index [50]. In addition, some attempts have been made to predict the
impact of an author based on its early indications and the use of graph
mining techniques [166].

Finally, GNNs, as learning models, have also been applied to other
types of graphs extracted from bibliographic data. More specifically,
some of the most common benchmark datasets to evaluate GNN methods
are the following paper citation networks: Cora, PubMed and CiteSeer
[181]. These datasets are used to predict the field of the paper given the
network and the paper’s textual information (i.e. abstract), in small
scale. In a larger scale, a recent graph transformer has been developed to
perform link prediction on a heterogeneous network that includes papers,
textual information extracted from papers, venues, authors, citations
and fields [96]. The edges represent di�erent types of relations and
thus an attention mechanism is utilized to separate between them and
aggregate the representations of the nodes. The final tasks evaluated are
paper-field, paper-venue and author-paper matching which correspond
to link prediction tasks.

6.2.2 Methods

Symbol Meaning Type

N number of nodes scalar

N (u) neighbors of node u set

Pu papers of node u set

hu feature representation of node
u

vector

A adjacency matrix matrix

Wt parameters for the t layer matrix

Ht activations for the t layer matrix

ru,f relevance for a field f to an
author u

scalar

Table 6.1: Table of symbols.

graph metrics One of the most prominent ways to estimate the
scientific impact of an author is based on the author’s position in the
academic collaboration network [166]. The position can be estimated
through multiple network science centralities and metrics developed to
capture di�erent dimensions of a node’s impact on the graph. In this
work, we utilize a number of them in order to serve as the input features
for our model.

• Degree: Defined in Chapter 2.

• Degree centrality: The number of neighbors of the node divided
by the maximum possible number of neighbors (i.e. n ≠ 1).
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• Neighbor’s average degree: The average degree of the neigh-
borhood of a node:

ND(v) =
1

|N (v)|

ÿ

uœN (v)

deg(u) (6.1)

• PageRank: Pagerank is an algorithm that computes a ranking
of the nodes in a graph based on the structure of the incoming
egdes. The main idea behind the algorithm is that a node spreads
its importance to all nodes it links to:

PR(v) =
ÿ

uœN (v)

PR(u)

deg(u)
(6.2)

In practice, the algorithm computes a weighted sum of two matri-
ces, i.e. the column stochastic adjacency matrix and an all-ones
matrix. Than, the pagerank scores are contained in the eigenvector
associated with the first eigenvalue of that matrix [161].

• Core number: Defined in Chapter 2.

• Diversity coefficient: The diversity coe�cient is a centrality
measure based on the Shannon entropy. Given the probability
of selecting a node’s neighbor based on its edge weight pu,v =

wv,u
q

uœN(v)
wv,u

, the diversity of a node is defined as the (scaled)

Shannon entropy of the weights of its incident edges.

D(v) =
≠

q

uœN (v)(pv,u log(pv,u))

log(|N (v)|)
(6.3)

• Community-based centrality: This centrality measure calcu-
lates the importance of a node by considering its edges towards
the di�erent communities [203]. Let dv,c be the number of edges
between node v and community c and nc the size of community c

retrieved by modularity optimization. The metric is then defined
as follows:

CBv =
ÿ

cœC

dv,c
nc

n
(6.4)

• Community-based mediator: The mediator centrality takes
into consideration the role of the node in connecting di�erent
communities [203], where the communities are again computed
by maximizing modularity. The metric relies on the percentages
of the node’s weighted edges that lie in its community relative to
its weighted degree and the corresponding percentage for edges
on di�erent communities. To compute it, we first calculate the
internal density of node v as follows:

pcv
v =

q

uœN (v)ficv
wv,u

deg(v)
(6.5)
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where cv is the community to which v belongs and can be replaced
with the other communities to obtain the respective external
densities. Given all densities, we can calculate the entropy of a
node as follows:

Ov = ≠pcv
v log(pcv

v ) ≠
ÿ

cÕœC\cv

pcÕ

v log(pcÕ

v ) (6.6)

where C is the set that contains all the communities. Finally, we
compute the community mediator centrality:

CMv = Ov
deg(v)

q

uœN (v) deg(u)
(6.7)

text representations In the past years, representation learn-
ing approaches have been applied heavily in the field of natural lan-
guage processing. The Skip-Gram model [148] is one of the most well-
established methods for generating distributed representations of words.
Skip-Gram is a neural network comprising of one hidden layer and an
output layer, and can be trained on large unlabeled datasets, similar
to the node representation learning models described in Chapter 2 and
Inf2vec described in Chapter 3. In our setting, let Pv denotes a set
that contains the abstracts of some papers published by author v. Let
also W denote the vocabulary of all the abstracts contained in

t

vœV

Pv.

Than, to learn an embedding for each word w œ W , our model is trained
to minimize the following objective function:

L(P , W ) =
ÿ

dœPv

ÿ

wiœd

ÿ

wjœ{wi≠c,...,wi+c}
wj ”=wi

log
1

p(wj |wi)
2

(6.8)

p(wj |wi) =
exp(v€

wi
vÕ

wj
)

q

wœW exp(v€
wi

vÕ
w)

(6.9)

where c is the training context, v€
wi

is the row of matrix H that corre-
sponds to word wi, and vÕ

wj
is the column of matrix O that corresponds

to wj . Matrix H œ R
|W |◊d is associated with the hidden layer, while

matrix O œ R
d◊|W | is associated with the output layer. The word

embeddings are contained in the rows of matrix H. The main intu-
ition behind the representations learnt by this model is that if two
words wi and wj have similar contexts (i.e. they both co-occur with
the same words), they obtain similar representations. In real scenar-
ios, the above formulation is impractical due to the large vocabulary
size, and hence, a negative sampling scheme is usually employed [75].
The training set is built by generating word-context pairs, i.e. for
each word wi and a training context c, we create pairs of the form
(wi, wi≠c), . . . , (wi, wi≠1), (wi, wi+1), (wi, wi+c).

Note that since the abstract of a paper contains multiple words, we
need to aggregate the embeddings of the words to derive an embedding
for the entire abstract. To this end, we simply average the representations
of the words. Furthermore, an author may have published multiple
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papers, and to produce a vector representation for the author, we again
compute the average of the representations of (the available subset of)
their papers:

hv =
1

|Pv|

ÿ

dœPv

1

|d|

ÿ

wœd

vw (6.10)

graph learning As defined in Chapter 2, a GNN model consists
of a series of aggregation layers, where a di�erent combination creates
a di�erent GNN variant. We use two di�erent GNN variants which
di�er from each other only in terms of the employed message-passing
procedure. The first is the GCN introduced in Chapter 2 Eq. 2.8.

The second corresponds to the GIN-0 model [226]. Given the afore-
mentioned co-authorship graph G = (V , E) where nodes are annotated

with feature vectors h
(0)
v œ R

d stemming from the learnt representations
of the author’s papers and/or the graph metrics, each neighborhood
aggregation layer of the first model updates the representations of the
nodes as follows:

h(t)
v = ReLU

3

W(t) h(t≠1)
v +

ÿ

uœN (v)

W(t) h(t≠1)
u

4

(6.11)

where W(t) is the matrix of trainable parameters of the tth message-
passing layer. In matrix form, the above is equivalent to:

H(t) = ReLU
3

Ã H(t≠1) W(t)
4

(6.12)

where Ã = A + I. Note that besides the above two message-passing
schemes, we also tried using GAT-like attention [208] in early experi-
ments, without obtaining better results.

Similarly to the MPNN developed in Chapter 5 instead of using
only the final node representations h

(T )
v (i.e. obtained after T message-

passing steps), we also use the representations of the earlier steps
h
(1)
v , . . . , h

(T ≠1)
v [227] to retain local and global information. Thus, we

concatenate the representations produced at the di�erent steps, finally
obtaining hv = [h

(1)
v ||h

(2)
v || . . . ||h

(T )
v ]. These node representations are

then passed on to one or more fully-connected layers to produce the
output, as we did in Chapter 5.

6.2.2.1 Data

The ’Field’ allowed us to extract subgraphs of the network induced
by authors that belong to a specific research field. In this experiment,
due to the well-known di�culties of using GNNs on large graphs, we
focused only on authors that have published papers in the field of
Computer Science. It should be noted that the emerging dataset was
missing textual information of some papers. If none of an author’s
papers contained text, we removed the corresponding node from the
graph as we would not be able to leverage the heterogeneous information
e�ectively. The final graph consists of 1,503,364 nodes and 37,010,860
edges. The weight of an edge is set equal to the number of papers two
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Method
Text Features Graph Features All Features

MAE MSE MAE MSE MAE MSE

Lasso 4.99 66.91 3.28 29.51 3.28 29.51

SGDRegressor 8.48 112.20 6.20 78.38 8.01 120.91

XGBoost 4.22 64.43 3.04 34.83 2.91 21.04

MLP 4.10 59.77 2.62 22.46 2.59 21.44

GCN 4.05 59.45 2.68 24.32 2.57 21.29

GNN 4.07 60.00 2.66 23.82 2.58 21.85

Table 6.2: Performance of the di�erent methods in the h-index prediction task.

set the number of epochs to 300. The best model is chosen based on
a validation experiment on a single 90% - 10% split of the training
data and is stored. At the end of the training, the stored model is
used to make predictions for the test instances. The MLP contains a
hidden layer of dimensionality 64. All its remaining hyperparameters
(e. g.dropout rate, activation function, etc.) take values identical to those
of the two GNNs. For lasso, the weight of regularization is set to 1.
For SGDRegressor, we use an l2 regularizer with weight 0.0001. The
initial learning rate is set to 0.01 and the number of epochs to 1000.
For XGBoost, we use the default values of the hyperparameters.

The performance of the di�erent models is illustrated in Table 6.2.
We report the mean absolute error (MAE) and the mean squared error
(MSE) of the di�erent approaches. There are three di�erent sets of
features passed on to each algorithm (features extracted from graph,
features extracted from text or from both). With regards to the perfor-
mance of the di�erent approaches, we first observe that neural network
models outperform the other approaches in all settings and by consid-
erable margins, except for one case. We hypothesize that this stems
from the inherent capability of neural networks to detect meaningful
and useful patterns in large amounts of data. In this case, though
semi-supervised, the training set still consists of more than 300,000
samples, which allows for e�ective use of the representational power
of neural network models. On the other hand, we see that XGBoost
performs better in terms of MSE in one setting since it optimizes the
MSE criterion, while the neural architectures are trained by minimizing
a MAE objective function, as also shown in Figure 4.2. To train the
proposed models, we chose to minimize MAE instead of MSE since
MAE is more interpretable in the case of h-index, and provides a generic
and even measure of how well our model is performing. Therefore, for
very large di�erences between the h-index and the predicted h-index
(e. g.y = 120 vs. ŷ = 40), the function does not magnify the error.

With regards to the di�erent types of features, we can see that the
graph metrics alone correspond to a much stronger predictor of the



100 analysis of academic influence

Author h-index
Predicted h-index

GCN GNN

Jiawei Han 131 94.75 115.09

Jie Tang 45 30.71 33.74

Lada Adamic 48 30.67 22.71

Zoubin Ghahramani 77 40.64 43.33

Michalis Vazirgiannis 36 25.76 27.89

Jure Leskovec 68 37.77 38.26

Philip S Yu 120 100.42 119.93

Table 6.3: The actual h-index of a number of authors as defined from google
scholar and their predicted h-index.

h-index compared to the features extracted from the papers’ textual
content. Due to the rich information encoded into these features, MLP
achieves similar performance to that of the two GNN models. This is
not surprising since GNN and GCN consist of two message-passing
layers followed by a multi-layer perceptron which is identical in terms of
architecture to MLP. The features extracted from the authors’ papers
seem not to capture the actual impact of the author. It is indeed hard to
determine the impact of an author based solely on the textual content
of a subset of the papers the author has published. Furthermore, these
features have been produced from a limited number of an author’s
papers, and therefore, they might not be able to capture the author’s
relationship with similar authors because of the diversity of scientific
abstracts and themes. GCN is in general the best-performing method
and yields the lowest levels of MAE. Overall, given the MAE of 2.57,
we can argue that GNNs can be useful for semi-supervised prediction
of the authors’ h-index in real-world scenarios.

To qualitatively assess the e�ectiveness of the proposed models, we
selected a number of well-known scholars in the field of data mining and
present their h-index along with the predictions of our two models in
Table 6.3. Keeping in mind that the overwhelming majority of authors
have a relatively small h-index (as has been observed in Figure 6.2), it is
clear that these are some of the most extreme and hard cases which can
pose a significant challenge to the proposed models. Even though the
objective function of the proposed models is MAE which does not place
more weight on large errors, still, as can be seen in Table 6.3, the two
models’ predictions are relatively close to each other. More importantly,
ranking based on the predictions is similar to ranking using the actual
h-index values of the authors in most cases.
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6.3 scientometric analysis web application

Given the demand of the real-world for qualitative results and visualiza-
tion, we demonstrate a set of analytics that provides novel insights on
a scientist’s impact. More specifically, we utilize information regarding
papers, their authors and the fields they belong to, to extract field-
based citations and the Author Oriented Citation (AOCI) network (to
our knowledge the largest existing of its kind). We then derive two
interactive visualizations that aspire to convey the author’s success and
influence over the academic network:

• We extract a field-based h-index (f-h-index) for each author using
the citations she receives in her papers that belong to specific
fields. Afterwards we form f-h-index distributions and position
the author’s f-h-index in them together with the top percentile
she belongs to, for the distributions of the top three fields she
most frequently publishes in.

• We compute the D-core decomposition of the AOCI graph, a mea-
sure of influence in directed networks [73] adopted in the Aminer
scientific search tool. Subsequently, we use the sub-graphs induced
by the decomposition to form the D-core matrix, a rectangular
heat map that displays the outmost cores (i.e. the densest citation
graphs) that an author belongs to, indicating her aggregate influ-
ence in terms of authority (incoming citations) and community
integration (in terms of outgoing citations).

Both visualizations along with the corresponding author search engines
are deployed online3. The first challenge towards computing the above
was ensuring the quality of the dataset. Although MAG has been
preprocessed extensively, we found out that more than 30% of the
unique names have been assigned multiple IDs. To dive deeper, we
performed an exploratory analysis on the number of papers for these
IDs and show that more than 80% have been assigned to one paper
only. This means that their h-index is 1 and they will have a minuscule
contribution to the influence estimation, thus we proceed to remove
them from the analysis. The second challenge adheres to the issue of
scalability. Creating AOCI in a typical manner is not feasible since
it includes a join operation between a table of 320Gb with a table
of 30Gb. We overcome this by breaking the author-cites-paper table
in multiple batches with non-overlapping authors and calculating the
ego-networks of the authors in each batch in parallel. Subsequently,
we filter the network based on edge weights to keep only the most
consistent citing relationships and run the D-core decomposition. As a
means of anecdotal evaluation, we examine the densest D-core subgraph
and provide a list of the most influential authors as well as a wordcloud
with the most frequent scientific fields in it. The vast majority of the
retrieved fields are related to particle physics, a field well known for its
massively dense collaboration and citation patterns [44]. The overall

3 http://graphdegeneracy.org/scientometrics/

http://graphdegeneracy.org/scientometrics/
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biology medicine

mathematics computer science

engineering chemistry

physics business

visual arts media

language geography

agriculture food

Table 6.4: The 14 fields assigned to papers in Microsoft Academic Graph

Figure 6.4: Field h-index percentiles for a researcher in chemistry, biology and
medicine.

confidence cp,f . To retrieve the most prevalent fields for an author u

with Pu papers, we computed her relevance to a specific field as:

ru,f =
ÿ

pœPu

cp,f (6.13)

We keep the top three fields for each author based on this ranking.
Subsequently, we separate the papers she wrote in each of these fields,
and derive a list of their citations. Note here that a paper might belong
to more than one field, hence its citations are included in the lists of all
these fields.

The f-h-index is computed through the typical h-index formula ana-
lyzed above but adjusted for each field. Specifically, we sort the author’s
papers on a given field based on their number of citations and taking
the maximum position h where the citations are at least h. We also
derive the general h-index of all authors, as an indication of an author’s
overall performance. The relationship between an author’s top three
f-h-index and her h-index is not straight forward because of the pres-
ence of papers in multiple fields and our disregard for the fields she
publishes more rare to i.e. they are not in the top three. Apart from
the aforementioned preprocessing, we aggregate authors based on their
name and keep the record with the biggest h-index, which results in a
set of 23, 202, 638 names. In order to make the distributions more legible
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Figure 6.5: Field h-index percentiles for a researcher in business, computer
science and physics.

we also removed all authors with an h-index of 1, which diminishes the
number to 10, 050, 770. Finally, the distribution is in logarithmic scale
to alleviate the severe skewness that characterizes such distributions.
The search is based on the last name and the results are sorted in
descending fashion based on the overall h-index.
An example of use case can be seen in Figures 6.4 and 6.5. Both re-
searchers have the same overall h-index, but the percentiles they belong
to in their specific fields are di�erent. More specifically, the one is close
to the top 0.3 in computer science and 0.8 in business which is his
actual field based on the normalized relevance score, while for the other,
the highest percentile is close to 1 and over 1.45 for his actual field.
Though indisputably both authors are successful, dr. Joachim Sachs
can be considered more impactful in his fields, using this comparison.

6.3.2 Author Influence

The influence exerted by scientists to the academic world can be mea-
sured from multiple di�erent perspectives. One could argue that co-
authorship is a form of influence [180]. However, scientists can have
an exceptional number of co-authors without performing remarkable
work, thus citation could be considered an indication of influence. The
semantic scholar defines an author’s influence on another author based
on how many times the latter cites the former [204]. Similar works
have analyzed the impact of an institution given its citations to and
from other institutions [143]. That said, simply relying on the number
of citations does not su�ce, as authors may get cited a lot but from
a limited number of people, which constraints their actual visibility.
Consequently, we deem more appropriate to measures influence based
on the scientist’s placement in the aforementioned AOCI, which can
capture both, the number of in and out citations as well as the number of
people that cite and get cited by an author. Especially the out citations
is a metric that shows activity and integration in the community.
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One of the most popular node influence metrics in other applications
is the max core it resides in [140], based on the k-core decomposition
analyzed in Chapter 2. However, the citation is a strictly directed
relationship, meaning that there is a significant di�erence between
citing and getting cited. In order to sustain this dual nature of in
and out citations, we employ the D-core decomposition [73], a well-
known adaptation of k-core that captures both the authority (via the
in citations) and the integration (via the out citations) of an author’s
directed influence and has been adopted by the popular bibliographic
exploration system Aminer.org 5.

The sole extraction of AOCI from the MAG was not straight forward
due to the scale of the dataset and its dense nature. More specifically,
given a certain paper with c citations, each cited paper with an average
of a authors, the paper’s authors will acquire c ú a edges, without taking
author overlapping into account. To form the graph we used the paper-
references table and the paper-author table from MAG6. We first created
a table that consists of the authors and the papers they cite, by a simple
join on the paper ID. Subsequently, we sort based on the author ID
and break the table in 20 batches with no author shared. We can then
join each batch with the paper-author table using the reference ID as
key to the paper ID to compute author-cites-author recordings which
can be turned in a weighted edge-list grouping by the authors and
counting their co-occurrence. Essentially this is the out-egonetwork of
each author in that batch, and we can create the whole network by
their combination, as shown at Figure 6.3. The resulting edge weights
are number of times an author cited another author. This creates a
network of 67, 614, 736 unique author ids with over 17 billion edges.
By removing the aforementioned ambiguous IDs and the edges with
weight less than 10, we end up with a directed network of 8, 960, 233

nodes and 599, 586, 916 edges. Removing edges with equal or less then
10 citations allows us to keep only the nodes that consistently cite each
other. In other words, apart from reducing the size of the network in a
manageable scale, it also allows us to perform a preliminary community
detection, as the consistent citing patterns between authors represent
the circulation and development of certain scientific ideas.

Given a directed network D = (V , E) with a set V of nodes and a set
E of directed edges between them, following the literature [73], we define
a directed core DCk,l as the subgraph were each node v œ V (DCk,l),
has at least degin

v (DCk,l) Ø k and degout
v (DCk,l) Ø l. It should be noted

that like the original k-core decomposition analyzed in Chapter 2, this
is not one-time filtering but rather a recursive process where the nodes
that are not in accordance with the aforementioned criteria are removed
iteratively. This means that even if a node initially complies with the
requirements, it may eventually be removed after removing the rest
of the nodes that do not comply if any of them are its neighbors. To
compute the decomposition we first define the maximum K and L, which
are the last bounds where the D-core is non-empty. We iterate over all

5 https://aminer.org/

6 All the queries were performed in PySpark in a cluster of 32 nodes, 16GB ram each,

Intel(R) Xeon(R) CPU E5-2407 v2 @ 2.40GHz

https://aminer.org/
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kÕ œ [0, K] and perform the decomposition for k = kÕ and all l œ [0, LkÕ ],
where DCkÕ,LkÕ+1 is empty. This provides us with a list of LkÕ subgraphs
for each kÕ. Since this computation is independent throughout di�erent
kÕ, we can parallelize this process by running a di�erent range in [0, K]

to a di�erent CPU. We used the retrieved D-cores to create a D-core
matrix, a heatmap with the size of the D-cores in a gradient motif. We
can then visualize a scientist’s authority/integration aptitude based
on the outmost D-cores she belongs to, as indicated in the example
of Figure 6.6. We remove authors with the same name to facilitate
search, based on who has the highest D-cores, and we are left with
6, 252, 393 names. Since the maximum incore and outcore found are
7800 and 7900 respectively, creating an interactive heatmap of such
scale is neither practical nor feasible. To this end, we break the plot in
two versions. The ’macro’ version shows the densest cores and uses a
step of 100, meaning the D-cores shown are for mod(k, 100) = 0 and
mod(l, 100) = 0. This includes only 175.952 authors, while rest lie in the
D-cores for k, l œ [0, 100], in which case we employ the "micro" version
where the D-core matrix has a step of 1.

Figure 6.6: D-core matrix visualization.

The aforementioned plot can be used to derive the most influential
users in the network, which reside in the optimal collaboration core
(OCD-core) based on OCI = (k + l)/2 [73], in our case k = 7600

and l = 7480. The top authors in OCD-core in terms of degree, which
resembles the number of people they cite and getting cited by, along
with the h-index and their fields of study as found by searching in the
web, are shown in table (6.5). We notice that degree and h-index are
not totally correlated - implying that the density of the citation network
captures di�erent influence aspects, as indicated in the recent rooted
citation influence metric [72].

We can observe that the majority of the top authors are physicists. In
general, OCD-core includes authors that cite and getting cited by each
other in a massive rate, which could be characteristic of some fields. To
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an online system with interactive visualizations that capitalize on the
author oriented citation network and field-based citations from MAG
to capture di�erent dimensions of a scientist’s impact. We claim that
this e�ort contributes to talent management and ranking within but
also out of the academic domain. In terms of future work, we plan to
extend our online portal portal further with the addition of several
novel analytics that address other well-known scientometric problems
such as self-citation ratios. Moreover, as the author to author citing
patterns are inherently weighted (reflecting the quantified impact of an
author to another) - we plan to compute the D-core taking the edge
weights into account, aiming at more informative and valid influence
rankings. Finally, we aspire to advance the GNN to address the rising
star prediction problem [166] and incorporate it into the online portal.



7
C O N C L U S I O N

The prominence of social networks and their projected e�ect on our
future lives has motivated the analysis of influence relationships using
algorithmic and database methods. With the increasing data hetero-
geneity and availability in the web, machine learning methods emerge
as a promising workhorse to improve the solutions on problems that
were addressed using algorithms or simulation models in the past. In
this thesis, we have proposed methods that complement or substitute
solutions based on non-learning algorithms or models on graph mining
problems that pertain to social influence.

7.1 summary of contributions

We have introduced several methods that tackle di�erent problems in
graph mining. The main contributions of the thesis are:

diffusion-based influence maximization Previous ap-
proaches to influence maximization relied heavily on randomly assigned
influence probabilities. We proposed a machine learning method to
include complementary information such as di�usion cascades to cir-
cumvent this problem. Specifically, we leverage a multi-task neural
model that learns from historical traces of information flow through the
network to derive representations that capture the influence relation-
ships between nodes. Based on these, we propose a new formulation of
the influence spread, which is proved to be submodular and monotone.
IMINFECTOR is proposed to optimize e�ciently the new marginal
gain using the representations and the prediction of a node’s influence
aptitude. Experimental results showcase the clear advantage of the
proposed method over benchmarks, either in accuracy or computational
e�ciency.

learning to estimate influence For networks with no
complementary data, we propose to utilize graph neural networks to
improve computational e�ciency. We developed Glie, a Graph Neural
Network developed based on an upper bound of influence estimation
and trained with supervision to tighten this bound. We rely on Glie to
propose three methods for influence maximization. 1) An adaptation of
a classical algorithm that surpasses SOTA 2) a Q-learning model that
learns to retrieve seeds sequentially 3) a submodular function that acts
as a proxy for the marginal gain and can be optimized adaptively. Our
experiments indicate that Glie is faster compared to alternatives and
its error is comparable for small seed sets and graphs up to 10 times
larger than the train set. Moreover, the proposed influence maximization
methods surpass the benchmarks in e�ciency and e�ectiveness.
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neural-network based epidemic forecasting The re-
cent pandemic of COVID-19 served as motivation for the development
of novel machine learning solutions. Here, we proposed a graph learning
solution to epidemic forecasting, a problem traditionally solved through
mathematical models. Initially, a temporal graph is created using data
from mobile phone apps indicating mass movements between small
geographical regions in di�erent European countries. Subsequently, we
develop a graph neural network that creates representations based on
the mobility patterns on the graph and the recent history of the epi-
demic in the area. The model is trained to produce forecasts of daily
COVID-19 positive cases in each region. To account for the cold start
problem inherent during the first weeks of the pandemic outbreak in a
country, we apply Model Agnostic Meta-Learning. The method utilizes
data from countries hit earlier by the pandemic to come up with better
initialization points to start training on the current country’s data. Our
results on 4 di�erent countries indicate that the proposed method can
retrieve thousands of unseen cases compared to standard methods for
epidemic forecasting, and justify the use of transfer learning.

prediction and evaluation of academic influence

Academic evaluation has been a prevalent problem for practical reasons
of hiring or funding, which has intensified with the democratization
of science in social media due to the public’s need to understand and
follow scientific authorities. In our case, we developed computational
methods to predict and assess the influence of a scientist, using the
biggest heterogeneous bibliometric dataset available, the Microsoft Aca-
demic Graph. We developed a graph neural network that takes as input
the coauthorship graph and the text representations of the author’s
papers and predicts the author’s h-index. Moreover, we created an
online web application to visualize the overall impact of a scientist qual-
itatively. Initially, we developed a distribution plot of the field-based
h-indices, to visualize the position of each author in her most relevant
fields. Finally, we compute and visualize the directed core metric of
the authors in an author-citation network, which quantifies an author’s
authority/integration over the rest of the academic world.

7.2 future steps

In this section, we propose future research directions and open questions
on the problems addressed in the current thesis as well as problems
pertaining to the application of submodular maximization in machine
learning.

heterogeneous neural network for influence algo-

rithms In practice, the problem of estimating influence between two
nodes includes multiple sources of information. Apart from the social
graphs, a social network contains di�usion cascades, the topic of the
information spread, or the information in the user profiles. In order to
create a method for influence prediction and maximization that takes
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multiple information sources into account, the most promising way is to
rely on neural networks that retrieve heterogeneous embeddings from
sequential events such as cascades, text or images that represent the
post topic, and node characteristics that include demographics. This
information along with the main graph forms a whole image of the user’s
state inside the system. It would allow the aforementioned problems
to be solved conditioned on topic, time, trend, and other contextual
data that require arduous work to include in current methodologies.
Moreover, it can serve as means to sparsify the graph or cluster the
users for recommendations or integrity purposes, such as identifying
toxic cliques. One of the biggest challenges towards this goal, apart from
the methodological novelty, is to create and open large-scale datasets
with such heterogeneous information.

One important question that arises from our observations in Chap-
ter 4 Section 4.4.3 where IMINFECTOR is compared with Pun in
simulations and unseen cascades, is whether we can build a universal
way to evaluate influence maximization algorithms. Our results indicate
that simulations are not enough, but in many cases cascades are not
available. Even in the presence of ground truth cascades, our proposed
metric overlooks the contribution of participating in a cascade and the
possibility of nodes starting copying information after a certain point,
which is not realistic. Finally, another important goal is to gradually
move towards model-independent methods, that would capture the
di�usion property without relying on the standard di�usion models.

efficient training through submodular active learn-

ing Training a neural network can be too computationally demanding,
which is a substantial hinder for real-world systems that require con-
tinuous retraining because of the stream of input data. Particularly,
when applied to web-scale graphs, graph neural networks su�er from
long training times and obligatory information loss due to neighborhood
sampling [34]. There is a clear need to achieve faster training times while
minimizing the loss of supervision. One promising approach is active
learning on the training batches, where sumodular optimization has
proven e�ective [8, 42, 60, 76]. Although active learning on graphs has
not been extensively examined, there are algorithms that can perform
optimally on trees and with a provable error bound on regular graphs,
[32]. It is thus a promising application of submodular optimization and
online learning.

enhancing predictions and quantifying confidence

In our proposed applications, we utilized graph neural networks for real-
world tasks such as pandemic forecasting and academic ranking. While
the predictions are useful, real-world systems have to be able to explain
and provide confidence intervals, especially in something as crucial and
sensitive as pandemic forecasting [102]. Thus, one direct extension of
our GNNs is to utilize explainability methods [56, 173] to improve the
outcome of the models. In the application of academic ranking, we plan
to expand it towards predicting future success while scientist is in the
early stages of their career. This problem, commonly called rising star
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identification [166], can be cast as a long-term forecasting method that
aims to uncover which patterns are important for a scientist e.g. strong
collaborations, heavy productivity etc. to succeed. Another interesting
path is to enhance the visualizations in our web application based on
other elaborate scientometrics, such as self-citation counts or weighted
D-core decomposition.



A
A P P E N D I X

L’influence en ligne est le socle de l’e�et des réseaux sociaux sur nos vies
et son impact n’a cessé de croître. Du marketing viral aux campagnes
politiques à la transmission de maladies, la façon dont nous sommes
influencés par les autres est plus répandue que jamais. Dans cette thèse,
nous abordons le problème de l’apprentissage et de l’analyse e�caces des
représentations d’influence pour de nombreux problèmes d’exploration
de graphes qui sont à propos.

La première moitié de la thèse est consacrée au problème de la max-
imisation de l’influence, un problème NP d’optimisation combinatoire.
L’objectif est de trouver les nœuds d’un réseau qui peuvent maximiser
la propagation de l’information, où la propagation est typiquement
définie par des probabilités d’influence aléatoires et des modèles de dif-
fusion simples. Pour répondre à ce problème, nous concevons un modèle
d’apprentissage de la représentation des nœuds basé sur des cascades
de di�usion ainsi qu’une adaptation d’un algorithme traditionnel de
maximisation de l’influence qui utilise la sortie du modèle. Ce cadre
surpasse les méthodes concurrentes, évaluées en termes de temps de
calcul et d’influence des graines prédites dans les cascades du futur
immédiat. La prochaine partie est consacrée à l’apprentissage de la max-
imisation de l’influence. Nous développons un réseau neuronal de graphe
qui paramètre de manière inhérente une limite supérieure d’estimation
de l’influence, et nous l’entraînons sur de petits graphes simulés. Nous
montrons expérimentalement qu’il peut fournir des estimations précises
plus rapidement que les autres solutions pour des graphes /dix/ fois
plus grands que l’ensemble d’entraînement. En outre, nous utilisons les
prédictions et les représentations des modèles pour proposer nouvelles
méthodes de maximisation de l’influence. Une adaptation de un ancien
algorithme, un modèle de Q-learning, et une fonction submodulaire qui
agit comme un proxy pour le gain marginal et peut être optimisée de
manière adaptative et avide avec certaines garanties théoriques. Cette
dernière fonction o�re le meilleur équilibre entre e�cacité et précision.

Dans la deuxième moitié de la thèse, nous sommes concentrés sur
des applications spécifiques de l’influence. Nous abordons la prévision
des épidémies en utilisant l’apprentissage par influence. Nous utilisons
le passage de messages inhérent aux réseaux neuronaux graphiques
pour apprendre des représentations de nœuds basées sur les réseaux
de mobilité des régions d’un pays et l’histoire de la contagion. Ces
représentations sont utilisées pour prédire le nombre de nouveaux cas
de COVID-19 avec une fenêtre de prévision allant jusqu’à 14 jours.
En outre, pour tirer parti du décalage de la propagation entre les
pays, un algorithme de méta-learning est proposé pour transférer les
connaissances entre les modèles formés dans le cercle épidémique complet
de certains pays, à un modèle prédisant les cas pour un autre pays au
début de l’épidémie, où les données d’apprentissage disponibles sont
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limitées. Notre approche surpasse les modèles de référence, les séries
temporelles et d’autres modèles d’apprentissage profond.

Dans la dernière partie, nous analysons di�érentes versions de l’influence
académique et des méthodes de dispositifs pour la quantifier et la prédire.
Dans un premier temps, nous utilisons le MAG pour construire un
réseau de citations d’auteurs avec des milliards d’arêtes. Nous le sous-
échantillonnons et e�ectuons une décomposition en noyaux dirigés pour
le quantifier et le visualiser au moyen d’une application web interactive.
Ensuite, nous expérimentons la classification du h-index d’un auteur sur
la base d’un GNN sur son graphe de coauteurs et le texte de ses articles.
Nous concluons la thèse en abordant de futures directions concernant
l’entraînement e�cace des réseaux neuronaux par l’apprentissage actif
submodulaire.
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