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“The imposing edifice of science provides a challenging view of what can be achieved by the
accumulation of many small efforts in a steady objective and dedicated search for truth.”

Charles Hard Townes



Résumé

Cette these explore la capacité des méthodes formelles, et plus particulierement du
model-checking, a analyser le comportement de patients lors de tests neuro-cognitifs
en clinique. A cette fin, elle étudie l'utilisation de « jeux sérieux » d’entrainement
cognitif par des patients seniors atteints de troubles neuro-cognitifs mineurs. Quatre
jeux sérieux ont été sélectionnés par les chercheurs cliniciens de 1'équipe CoBTeK,
chacun ciblant une fonction cognitive différente. Une premiere partie décrit la mo-
délisation sous forme de chaines de Markov des comportements des joueurs pour
les trois jeux qui étaient déja déployés au début de la these a I'institut Claude Pompi-
dou (ICP) de Nice. Les modeles développés sont probabilistes afin de représenter au
mieux l'ensemble des comportements que peuvent exprimer les patients. Les pro-
babilités initiales sont issues des estimations des praticiens de I'ICP. Les résultats
obtenus lors des vérifications de ces premiers modéles avec le model-checker Prism
sont encourageants pour la poursuite de cette démarche de modélisation. La compa-
raison des performances de Prism et d"un autre model-checker, Storm, sur la vérifi-
cation de ces modéles a montré que de maniére générale, Storm est plus performant
que Prism, cependant il est plus contraignant au niveau de I’expression des proprié-
tés logiques. La deuxieme partie concerne un protocole clinique mis en place afin
d’obtenir des données d’utilisation réelles de patients seniors. Pour cela, un total de
50 volontaires ont été inclus sur une durée de 10 mois : 30 présentaient des troubles
neuro-cognitifs mineurs et 20 avaient des plaintes cognitives isolées. Au cours de
ce protocole, chaque volontaire participait a deux séances individuelles de 30 a 90
minutes pendant lesquelles il leur était demandé de compléter les tests cliniques
manquant a leur dossier et de jouer aux quatre jeux sérieux précédemment mention-
nés. Ces résultats ont été analysés avec des méthodes classiques d’analyse statistique
pour évaluer leur intérét dans 'identification de troubles cognitifs. Ils ont permis a la
fois de trouver des différences de performances significatives entre les deux groupes
ainsi qu'une corrélation entre ces performances et les résultats des tests cliniques. Par
la suite, une analyse plus en profondeur des relevés d’utilisation a permis de com-
prendre quelles étaient les séries d’actions qui permettaient au mieux de catégoriser
chaque type de patient. Ces derniéres informations ont été utilisées pour calibrer les
modeles afin d’obtenir des modeles plus réalistes et fiables. La troisieme et derniere
partie détaille I'implémentation d’un modele de neurones artificiels décrivant 1’acti-
vité des ganglions de la base, région cérébrale impliquée dans le contrdle inhibiteur.
Cette fonction cognitive, ciblée par 1'un des jeux sérieux étudié dans la these, se re-
trouve dégradée chez des patients atteint de maladies neuro-dégénératives comme
la maladie d’Alzheimer ou le syndrome de Parkinson. La vérification de ce modele a
montré une activité cohérente avec celle décrite dans la littérature sur cette fonction
cognitive. La finalité de ce modele est d’étre couplé au modele d’activité associé au
jeu évaluant cette fonction afin d’explorer des modifications sur le réseau de neu-
rones pouvant engendrer un comportement caractéristique des patients atteints de
troubles neuro-cognitifs.

Mots clés : Modeles de comportements humains, Modeles probabilistes, Mé-
thodes formelles, Jeux sérieux, Réseaux de neurones biologiques, Maladies neuro-
dégénératives.
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Abstract

This thesis explores the ability of formal methods, and more particularly model-
checking, to analyze the behavior of patients during neuro-cognitive tests in clinical
settings. To this end, it studies the use of "serious games" for cognitive training of
senior patients with minor neurocognitive disorders. Four serious games were se-
lected by clinical researchers from the CoBTeK team, each targeting a different cog-
nitive function. A first part describes the modeling, in the form of Markov chains,
of player’s behaviors associated with the three games that were already deployed at
the beginning of the thesis at the Claude Pompidou Institute (ICP) in Nice. The mod-
els developed are probabilistic in order to best represent all the behaviors that pa-
tients can express. Initial probabilities are derived from ICP practitioner estimates.
The results obtained during the verifications of these first models with the Prism
model-checker are encouraging to continue this modeling approach. Comparing
the performances of Prism and of another model-checker, Storm, on the verification
of these models showed that in general, Storm is more efficient than Prism, however
it is more restrictive concerning the expression of logical properties. The second part
concerns a clinical protocol set up to obtain real data from senior patients. For that,
a total of 50 volunteers were included over a 10-month period: 30 had minor neu-
rocognitive disorders and 20 had isolated cognitive complaints. During this proto-
col, each volunteer participated in two individual sessions of 30 to 90 minutes during
which they were asked to complete the clinical tests missing from their record and
to play the four serious games previously mentioned. These results were analyzed
using classical statistical analysis methods to assess their interest in identifying cog-
nitive disorders. They made it possible to find significant differences in performance
between the two groups as well as a correlation between these performances and the
clinical tests results. Subsequently, a more in-depth analysis of the usage records led
to understand the series of actions that best allow to categorize each type of patient.
This latter information was used to calibrate the models in order to obtain more re-
alistic and reliable models. The third and last part details the implementation of an
artificial neuron model describing the activity of the basal ganglia, a brain region in-
volved in inhibitory control. This cognitive function, targeted by one of the serious
games studied in the thesis, is impaired in patients suffering from neurodegenera-
tive diseases such as Alzheimer’s disease or Parkinson’s syndrome. Verification of
this model showed an activity consistent with the one described in the literature on
this cognitive function. The purpose of this model is to be coupled to the activity
model associated with the game evaluating this function in order to explore modifi-
cations in the neural network that can generate a behavior characteristic of patients
with neurocognitive disorders.

Keywords: Human behavior models, Probabilistic models, Formal methods, Se-
rious games, Biological neural networks, Neurodegenerative diseases
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Chapter 1

Cognitive Impairment, Serious
Games, and Activity Recognition

This PhD thesis was partially funded by Région Sud (région Provence Alpes Cote
d’Azur, France) in partnership with the Innovation Alzeihmer association, located
at ICP (Institut Claude Pompidou) in Nice. The PhD work was done in the Stars
team of INRIA (focusing on human activity recognition systems) and, for the clinical
protocol part, at ICP (part of the Centre Hospitalier Universitaire of Nice). Both
ICP and INRIA are members of the Cognition Behaviour Technology lab (CoBTeK
lab), a pluridisciplinary team of the French Université Cote d’Azur directed by Pr.
Philippe Robert and Dr. Francois Brémond. This team groups together specialists
in childhood cognition disorders and elder cognition disorders as well as specialists
in computer science. As this manuscript focuses on elder cognitive disorders, the
main interactions were with cognition experts of CoBTeK at ICP. This institute is
specialized in the diagnosis and care of elder patients with memory losses induced
by diseases such as the Alzheimer’s one.

This thesis explores the ability of formal methods, and more particularly model-
checking, to analyze the behavior of patients during neurocognitive tests in clinical
settings. The first goal is to specify a new tool that would add to practitioners” toolkit
for early diagnosis of neurodegenerative diseases. To this end, the thesis studies the
use of "serious games" for cognitive training of senior patients with minor neurocog-
nitive disorders. Formal methods to describe serious game activities should allow
both a better understanding of the variety of behaviors and a better prediction of
patient diagnosis based on their behavior. They provide a framework for model
verification and analysis. This formal approach may predict combination of behav-
iors if they are not observed in experiments. The models coupled with a recogni-
tion system would lead to a reliable detection of risks of underlying neurocognitive
disorders in the patients. The second goal is to study models of biological neuron
networks involved in patient behaviors. We selected the inhibitory control cognitive
function that is targeted by one of the modeled serious games. The study of this
neural model coupled with the serious game activity model should lead to a better
understanding of patient behaviors and to new explorations on disorder origins.

1.1 Cognitive Impairments and Dementia

To perform daily living activities, human brain displays a set of mental abilities in-
cluding learning, thinking, reasoning, remembering, problem solving, decision mak-
ing, and attention. These abilities are called cognitive functions [49]. In one’s life,
these functions may decline due to normal ageing or to neuro-degenerative diseases.
Such declines can lead to cognitive impairments. According to the latest DSM-5 [47]
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classification, cognitive impairments are characterized by a cognitive decline as well
as behavioral disorders that can interfere in one’s daily life. Depending on the sever-
ity of these deficits and on their impact, this classification discriminates mild Neuro-
Cognitive Disorder (mild NCD) and Major Neuro-Cognitive Disorder (major NCD).
Patients suffering from mild NCD need to be supervised by medical practitioners.

The World Health Organization (WHO) defines dementia as a syndrome in which
cognitive functions decline beyond what is expected as a consequence of normal
ageing. According to the WHO, around 50 million people have dementia world-
wide with nearly 10 million new cases every year. Alzheimer may be the cause to
60 — 70% of these cases. Alzheimer’s prevalence varies with the age of the popula-
tion. A prevalence under 2% for people under 60 years old was observed while it
reaches beyond 20% for elders over the age of 85 years old [103]. According to the
WHO, in 2019, the estimated global societal cost of dementia was US$ 1.3 trillion, a
motivation to work on this peculiar topic.

Present Solutions for Diagnosis and Treatment for Alzheimer’s Disease

There are no treatment yet to restore the lost capacity of a patient. Moreover, drugs
reducing cognitive decline have yet to prove their efficiency. Indeed, even though a
new drug, named Aducanumab, received the agreement of the Food and Drug Ad-
ministration on June 7" 2021 (first Alzheimer Disease drug approval since 2003 [10])
as a drug reducing cognitive decline, its results are contradictory from a clinical
study to another [77]. Nowadays the main therapy consists in cognitive training to
maintain the patient capacities. Cognitive training is defined in a Cochrane review
[13] as a set of standardized tasks targeting specific cognitive functions (memory,
focus, reasoning ...). This training would improve, or at least maintain, the efficiency
of a cognitive function and would even apply to other activities. According to the
definition cited above, cognitive training includes a large number of activities. Thus,
when confronted to cognitive impairments, a practitioner goal is to detect the signs
of these impairments as soon as possible. To do so, practitioners have access to a
large battery of neuropsychological tests as well as bio-marker tests to establish a
highly reliable diagnosis. These tests can be laborious to perform for the practi-
tioner as well as for the patient. To strengthen the diagnosis, complementary data
can be acquired with the analysis of bio-markers in the cerebrospinal fluid [45]. The
CoBTeK team has a long experience in the development of new diagnosis techniques
using numeric technologies.

1.2 From Games to Serious Games

Serious games represent a way to deal with cognitive decline associated with ag-
ing. A serious game can be defined as "a mental contest, played with a computer
in accordance with specific rules, that uses entertainment to further government or
corporate training, education, health, public policy, and strategic communication
objective" [130]. Thus one can consider serious games as applications that give "at-
tractive shapes or plots (game) to didactic contents (serious)" [4].

When games became serious

This definition of serious games is quite recent in its form but the oxymoron "se-
rious game" is far older [42]. Indeed, one can track it back to the European Re-
naissance [91] and far earlier [19]. Since that time, the oxymoron has been used
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for different purposes (e.g., the professional practice of sport [42]). In their article,
Djaouti et al. trace back the first use of the "modern" definition of serious games in
the book "Serious Games" by Clark Abt first published in 1970 [1]. In his work, the
author attempted to use games for training and education in the context of the Cold
War. Nowadays, with the development of technologies in the past decades, digital
serious games are more and more affordable and usable for the general public.

Serious Games and Cognitive Impairment

The work presented in this manuscript focuses on the use of serious games in med-
ical applications. Serious games have already proved their interest to evaluate cog-
nitive impairment throughout several feasibility studies [116, 120, 73]. Other re-
searches have shown their potential in Alzheimer’s disease therapy as cognitive
training activities [5, 70, 98] or for neurocognitive disorder assessment [16, 90]. More-
over, studies have shown that elders prefer games over classical cognitive exercises
[94]. All these facts make serious games a tool of choice in patient diagnosis and
care.

The CoBTeK team has already developed several serious games [118, 107]. In
this manuscript, a selection of these games are used for the validation of a new as-
sessment method thanks to formal activity modeling.

1.3 Activity and Biological Formal Modeling

Modeling, and more particularly conceptual modeling, is the process of making an
abstract representation of a real or proposed system [108]. Models are used in vari-
ous domains (e.g., meteorology, biology, industry) for a variety of purposes (e.g.,to
predict, to understand, to design, to verify, to validate ...). In this manuscript, we aim
to both predict and understand patient behavior through formal model verification.

Formal Models

Formal methods refer to "mathematically based techniques for describing system
properties" [127]. Formal models are conceived and implemented with such formal
methods. They are also used in domains other than industry, notably in sciences,
to study the properties of a given phenomenon (e.g., verification of the behavior
of genetic logic gates [52]). These methods allow a mathematical verification of a
system. This verification can either be automated with model checking frameworks or
partially automated with theorem provers.

In this PhD thesis, we rely on model checking frameworks, that take as input a
modeled system and a property written in temporal logic. The framework performs
automatically the verification of the property and provides as output both the results
(property verified or not, and also, possibly, a counter example if the property does
not hold) and the computation times.

Human Activity Formal Modeling in Clinic

Models of human activities are used in recognition systems going from pedestrian
location [60] to daily living activity recognition [87]. Human activity formal models
for the verification, analysis, and classification of patient behaviors have been less
documented. This manuscript focuses on a medical application and more precisely
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on patient activities playing serious games. To model such activities, we chose a
probabilistic formalism that allows to represent a wide range of behaviors.

Biological Formal Modeling

Formal models are also used to study biological systems. Indeed, biology offers
many complex systems to analyze. Modeling and verifying these systems is well
suited to validate theories or to find errors in theoretical pathways [32, 28]. In our
work, we focus on the inhibitory control loop in the brain. Our goal is to study the
relations between its biological neural model and the human activity it monitors.

1.4 Road-map

The PhD thesis manuscript is organized as follows.

Chapter 2: Formal Methods for Modeling Serious Game Activity
This chapter mainly tackles two research questions:
¢ Are formal approaches suited and effective to model human activities?
¢ Are clinical serious games suited for such models?

To answer these questions, this chapter focuses on our first attempts to formally
model patient activity during serious games. It proposes a feasibility study of ac-
tivity modeling with Markov chains for three serious games targeting different cog-
nitive functions. The corresponding models were verified with probabilistic model
checkers. The games were chosen with practitioners based on their potential clini-
cal relevance. This study showed that probabilistic formal models provide enough
flexibility to model serious games activity.

Chapter 3: Clinical Protocol and Experimental Results
This chapter mainly tackles two other research questions:
¢ Can formal modeling of these activities be of interest for diagnosis?

¢ Can experimental data validate these models as well as their discriminant ca-
pabilities?

To answer these questions, this chapter describes a clinical experiment to collect data
on the use of the selected games by patients with mild Neuro-Cognitive Disorders
(mild NCD) and patients with Subjective Cognitive Disorders (SCD). The patients
were recruited in the Institut Claude Pompidou of Nice. The collected data were
analyzed with classical statistical tools. The results are to be used for the tuning of
the models developed in the previous chapter. The serious games used in this work
were good candidates to differentiate mild NCD and SCD patients. After modifica-
tion and calibration, the probabilistic models can mimic the observed behaviors of
mild NCD patients.
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Chapter 4: Model of the Inhibitory Control Circuit in the Brain

This chapter mainly tackles a final question:

¢ Is it possible to establish a relation between a human behavior model and a
neuronal brain model?

To answer this question, this chapter proposes a formal modeling of the inhibitory
control loop. This cognitive function was the target of one of the modeled serious
games of chapter 2. In the brain, it involves mainly basal ganglia. As basal ganglia
are a limited group of anatomical structures, the inhibitory control function was a
good candidate to investigate the relations between brain and activity models. We
propose the notion of Leaky Integrate & Fire (LI&F) neuron box that is is a gener-
alization of the LI&F neuron and it appears as a good method to model complex
neural network behavior while limiting the complexity of the model.






Chapter 2

Formal Methods for Modeling
Serious Game Activity

To model the activity of patients playing clinical serious games, we choose a formal
approach to set up behavioral models the properties of which can be automatically
verified. Model checking appears as a suitable and promising method. Moreover,
to represent the variability of human behavior, probabilistic modeling seems essen-
tial. In this way, we could implement serious game activity models and verify their
expected properties.

This chapter presents, first, the proposed methodology into which such formal
methods can be integrated. Second, it details the models developed for three se-
lected games targeting different cognitive functions and the verification of various
properties of these models. Using efficient and available formal tools, these models
showed their acceptability for human behavior modeling.

2.1 Formal Modeling and Verification

Model checking is a method developed as early as 1980 [33, 105]. It introduces the
use of automatic verification of software models. The benefit of such method is that
it facilitates the identification of software design problems before implementation.
The crashes of the Boeing 737 MAX aircraft give a recent and dramatic example of
undetected design problems. The aircraft flight control computer is endowed with
MCAS !, an automatic software system, unbeknownst to the pilots, that automat-
ically compensates the trend of the aircraft nose to pitch up in some situations of
flight. Unfortunately, this software was not resilient to sensor failures, leading to
two crashes, 346 casualties?, and nearly 800 brand new planes banned from the sky
for 20 months®. This sort of example shows the importance of model checking at
design time for safety critical software development.
Model checking relies on three elements:

¢ a model — usually a state-transition system — to model the behavior of the tar-
geted system;

* atemporal logic to specify relevant system properties (paths in the model);

* a model checker engine that can automatically verify a logical property and
return a Boolean (property true or false) or a numerical value (e.g., probability
to satisfy the property).

Ihttps://en.wikipedia.org/wiki/Maneuvering_Characteristics_Augmenttion_System

2https://transportation.house.gov/imo/media/doc/2020.09.15%20FINALY%20737%20MAXY,
20Report?20for’20Public)20Release . pdf

Shttps://en.wikipedia.org/wiki/Boeing_737_MAX_groundings
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press [p=0.5]

not press [p=0.5]
<release [p=1]
\/

FIGURE 2.1: DTMC representing a simple game. Each edge is labeled
with both an action and the corresponding probability.

Several probabilistic model checkers exist (such as UPPAAL [15], Storm [39], or
PAT [115]). We decided to rely on both PRISM [78] and Storm, which have provided
probabilistic model checkers since their beginning. PRISM is well established in the lit-
erature, and compatible with many supplementary tools such as parameter synthe-
sis tools and also with other model checkers, such as Storm. More precisely, PRISM
is a tool for formal modeling and analysis of systems with random or probabilistic
behavior. It has already been used to describe human activity [110]. It supports sev-
eral types of probabilistic models, discrete as well as continuous. On the other hand,
Storm is more recent but proved to be at least as efficient as PRISM [57]. Moreover, it
accepts PRISM models as input, thus it is a good alternative candidate to verify our
models.

Modeling Formalisms

In this thesis we rely on discrete-time Markov chains (DTMCs), which are transition
systems augmented with probabilities. Their set of states represents the possible
configurations of the system being modeled, and the transitions between states rep-
resent the evolution of the system, which occurs in discrete-time steps. Probabilities
to transit between states are given by discrete probability distributions. Markov
chains are memoryless, that is their current state contains all the information needed
to compute future states. More precisely:

Definition 1 A discrete-time Markov chain over a set of atomic propositions AP is a tuple
(S, Sinit, P, L) where S is a set of states (state space), Siyiy C S is the set of initial states,
P :SxS — [0,1] is the transition probability function (where Y g5 P(s,s') = 1 for all
s€S)and L : S — 24 is a function labeling states with atomic propositions over AP.

An example of DTMC for a simple two-state game is depicted in figure 2.1. In this
game, the player has to press a button as many times as she wishes. The figure shows
labels (press and release) over transitions. Even though they are not part of the
definition of DTMCs, these labels are implemented by PRISM. This usual extension
does not change the semantics of DTMCs, it allows to synchronize different modules
in PRISM. Moreover, it makes the models easier to read and to understand.

To simulate and check models of activities, the simulation and checking times
need not reflect the physical execution time of the activity itself. Markov chains
are deterministic and do not impose to associate a real duration with each action,
contrary to, e.g., timed automata. We can thus "master" the time, restricting it to the
instants when some significant events occur, hence reducing the checking time. This
justifies the choice of Markov chains that do not impose to associate a real duration
with each action. Moreover, as the games tackled in this thesis are "scoring" games
and do not really lead to a win or loss of the player, it seemed reasonable not to use
timed game automata such as UPPAAL [15] ones.
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Note that the models presented in this thesis have a finite set of states. Indeed,
the behaviors that they describe can be represented by finite state machines. Fur-
thermore we observe them over a bounded and discrete time. Once unwound to
feed PRISM model checkers, the resulting overall state space remains finite.

Temporal Logic

The dynamics of DTMCs can be specified thanks to the PCTL* (Probabilistic Compu-
tation Tree Logic) temporal logic [59]. PCTL* extends the CTL* logic (Computation
Tree Logic) [34] with probabilities. The following state quantifiers are available in
PCTL*: X (next time), which specifies that a property holds at the next state of a
given path, F (sometimes in the future), which requires a property to hold at some
future state on the path, G (always in the future), which imposes that a property is
true at every future state on the path. The until operator, U, is such that pI U p2
means that property p1 remains true until property p2 becomes true. Note that the
classical path quantifiers A (forall) and E (exists) of CTL* are replaced by probabili-
ties. Thus, instead of saying that some property holds for all paths or for some paths,
one says that a property holds for a certain fraction of the paths [59].

The most important operator in PCTL* is P, which allows to reason about the
probability of event occurrences. A property P bound [prop] is true in a state s
if the probability that the property prop holds in all the paths from s satisfies the
bound bound (where a bound is a comparison operator followed by a probability
value). As an example, the PCTL* property P= 0.5 [X (y = 1)] holds in a state
if the probability that y = 1 is true in the next state equals 0.5. All the state quan-
tifiers given above, with the exception of X, have bounded variants, where a time
bound is imposed on the property. Furthermore, the P PRISM operator can be used
as P=? [prop]; this computes the probability for prop to occur. For instance, the
property P =7 [G (y = 0)] expresses the probability that y always equals 0.

PRISM and Storm also support the notion of integer user-defined "rewards" which
can be seen as counters. Their computation and value do not impact the number of
states and transitions of the model nor its behavior. The R operator allows to retrieve
reward values. Additional operators have been introduced in PRISM to deal with re-
wards; we mainly use C (cumulative-reward). The property C<=t corresponds to the
reward value accumulated along a path until t time units have elapsed. PRISM pro-
vides model checking algorithms [34] to automatically validate DTMCs over PCTL*
properties and reward-based ones. On demand, the algorithms compute the actual
probability of some behavior of a model to occur. In particular, it deals with the
PCTL* fragments PCTL (Probabilistic Branching Time Logic) and PLTL (Probabilis-
tic Linear Logic). On the other hand, Storm can only deal with PCTL properties.

PRISM and Storm propose different model checking engines. Three out of four
PrisM engines (MTBDD, sparse, and hybrid) use data structures such as binary
decision diagrams (BDDs) and multi-terminal BDDs (MTBDDs). This use of data
structures allows to qualify these engines as wholly or partly symbolic. These three
engines represent models as MTBDDs but each one has its own model checking al-
gorithm. The fourth engine uses "explicit-state" data structures, hence it is known
as the "explicit" engine. Since this engine does not use symbolic data structures for
model construction, it can perform model checking in cases where other engines fail.
For example, it can handle models with a potentially very large state space of which
only a fraction is actually reachable. Regarding Storm, we mainly use its sparse en-
gine which relies on "explicit-state" data structures too.
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In addition to classical model checking tools, PRISM offers the possibility to run
experiments. The PRISM authors describe this feature as a "way of automating multi-
ple instances of model checking". This feature allows users to obtain curves display-
ing the evaluation results of a property with respect to one or several variables. Be-
sides, PRISM also proposes statistical model-checking, a way to test properties through
several simulations.

2.2 Serious Game Modeling

Observing patients while they perform simple activities provides interesting clues
on their cognitive status. To this aim, medical doctors have used "behavorial" tests
for years. Among these tests, serious games are interesting software tools that com-
bine entertainment with a medical purpose. They constitute a domain in which real-
time activity recognition is particularly relevant. They offer a framework in which
patients are expected to act a certain way to win: the expected behavior is well iden-
tified and it is possible to rely on different sensors (bio-metric and external) while
playing the game. Thus, the set of human activities associated with these games is
constrained compared to usual daily human activity. Therefore modeling and eval-
uation are feasible.

In the health domain, serious games can be used to incite patients to practice
physical exercises [30], to train medical staff with engaging activities [27], or to help
diagnose and treat patients [11, 50]. When formally modeling a patient playing a
diagnosis game, one can associate probabilities with actions to represent a healthy
or a pathological behavior. These probabilities are initially set according to physi-
cians’ past experience. Properties can then be defined to extract relevant data and
to compare them, first with experimental results in order to refine the model and
ultimately with real patients results in order to assess the patient cognitive health.

To model the behavior of a patient playing these games we use discrete-time
Markov chains (DTMCs). To the best of our knowledge, DTMC models are barely
used to describe human behavior. We can mention two examples, though: in the
context of pedestrian localization, [60] uses DTMCs to describe pedestrian trajecto-
ries; in computer vision, Hidden Markov Models (HMMSs) are a popular approach
for the description of activities [2, 69]. However, neither PRISM nor Storm (nor most
of the other probabilistic model checkers) allow to check temporal logic properties
over HMMs.

Methodology

Our methodology to study the behavior of patients playing serious games is de-
picted on figure 2.2. In step 1, together with the medical staff (psychiatrists, psychol-
ogists, nurses), we select a serious game that has a medical interest and we discuss
with the staff to understand precisely the rules of the game. Step 2 consists in trans-
lating these rules into a conceptual model that facilitates their encoding into a PRISM
model.

Together with the medical staff we choose a priori probabilities that we incor-
porate in the PRISM model (step 3) and that represent the likelihood of patients’
actions. This phase also offers an opportunity to discuss with practitioners about
the relevant actions to consider in the model and the interesting properties to check
on modeled patient behaviors. In step 4 we run PRISM to check the sanity of the
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model implementation and also to verify logical properties related to patients” med-
ical assessment. These properties are expressed in PCTL*. Then we can implement
a clinical protocol where real patients play the game and the resulting data are used
to calibrate the model, especially to adjust the probabilities.

(1\3 (E Formal (‘; Interview

~ Selection of an - representation with practitioners
existing game and of the game and to choose a priori
discussion > development > probabilities and
with of the corresponding insertion of
practitioners PRISM probabilities in the
code PRISM model
]
~ Verification of - exsgr?rlﬁg:\ts > 'I\.}'iodel calibration
PCTL properties with patients
. J/ - S - S

FIGURE 2.2: Workflow displaying the methodology adopted in the
thesis.

For step 1, we discussed with Pr Philippe Robert (neuro-psychiatrist), Dr Valeria
Manera, and Dr Jérémy Bourgeois (neuropsychologists) from Claude Pompidou in-
stitute in Nice. These discussions led to the selection of four games, each targeting a
different cognitive function:

¢ the Code game [118] targets selective and sustained visual attention functions,
e the Recognition game [107] targets episodic memory,

e the Inhibitory Control game [119] targets the inhibitory control function the role
of which is to inhibit some reflexes.

* the Tapiscine game targets the motivation functions.

All these games were developed to provide fun tools for either training or evalu-
ating patients. The design of these games followed a gamification process of preex-
isting cognitive tasks or paper exercises. The first three games are training tools for
patients with mild NeuroCognitive Disorders (mild NCD), whereas the fourth one
evaluates motivation disorders. At the time of the game selection, only the three first
games were already released, the fourth one was still under development.* Since
these games are selected by practitioners they constitute a good panel of tests that
can complement the set of validated neuro-psychological tests usually conducted by
clinicians to establish their diagnosis. Such games may assist doctors during the di-
agnosis process. They could provide new non-invasive screening methods based on
the observation of patient performance.

After modeling these games, we proposed a poll to psychiatrists, neuropsycholo-
gists, speech therapists, and nurses during a meeting of hospital practitioners in
order to complete the game models. A dozen practitioners gave their feedback on
the models (key actions, frequency of behaviors...) and they also provided us with
insights concerning a priori probabilities on interesting actions with respect to their
clinical experience, thus completing step 3.

“The first tests of this game started late 2019.
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For step 4, as previously mentioned, we used both PRISM and Storm model
checkers as PRISM modeling language can be used as input for both. An indepen-
dent competition [57] compared them to other probabilistic model checkers: PRISM
and Storm both showed to be the fastest in computation in this competition. In this
work, we decided to use both of them and to compare their advantages and draw-
backs.

For step 5, we collaborated with Alexandre Derreumaux (CoBTeK engineer) to
facilitate the access to data of interest. For each game, the sequence of actions, as
well as the timing of each action were saved. After analysis, these data were used to
calibrate the models in step 6.

In the long run, we expect that this approach could become part of routine clin-
ical practice. Indeed, it is an original application of model-checking that offers the
possibility to compare the actual behavior of a player with different verified behav-
ior models such as a healthy or a pathological behavior model. Considering the
behavior of patients as a path in the state transition diagram of one of these mod-
els, we could automatically match each patient with a particular model. This model
gives indications to the practitioners about the condition of the patient. The match-
ing relies on the probability to follow a particular path. In the case of general practi-
tioners, these indications could support them in their decision to send patients to a
specialized consultation.

The remainder of this chapter concentrates on steps 2 and 4 for the first three
games: Code game, Recognition game, and Inhibitory Control game. The fourth
game was not modeled yet since, as already said, it was not fully available at the
time.

2.21 Model Checking Usage

As seen in step 4 of figure 2.2, this work resorts to model checking techniques. How-
ever, it does not use these technique in the classical way.

The classical engineering purpose of model checking is to verify that the system
design meets the system specification. In the medical domain, this approach has
been used to verify safety critical software or artifacts. Indeed, as technology keeps
on improving, software systems find their place in medical tools. The use of formal
methods thus becomes a crucial step in the engineering of these tools [21] and skip-
ping it may lead to dangerous health issues. Model checking of medical tools can be
applied either offline (at design phase before system deployment) or online (during
system utilization). Regarding offline model checking, we can cite [92] and [12] in
which formal methods are used to detect inconsistencies of software components.
In [92], such methods are applied to prove that an hemodialysis machine design can
be considered as defect-free, that it correctly implements its specification, and that
it complies with safety, security, and reliability standards. In [12], the authors use
model checking to validate the design of a control algorithm for a surgical robot.
This algorithm and its environment are modeled with DTMCs in PRISM. The au-
thors could verify the following properties: deadlock freedom, absence of collision
between surgical tools, and reachability of a position in the operating area. Even
more importantly, they could analyze the impact of different control algorithms on
the out-of-boundary detection. A more methodological article [20] concentrates on
operator’s actions modeling. The authors succeed in generating Hollnagel’s zero-
order phenotypes of erroneous manipulations such as omissions, jumps, repetitions,
and intrusions. To demonstrate the use of this methodology, the authors choose as
example a radiation therapy machine based on the Therac-25. Despite limitations
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due to complexity, the generated model can be verified and reveals system problems
due to erroneous human behavior. This "action phenotypes" approach could be an
interesting track to explore, in our case to model patient’s actions. Regarding online
model checking, in [6] the authors specify a network of timed automata in UPPAAL
to model patients respiratory motions during radiation therapy. Since these external
motions are correlated with tumor internal motions, the goal is to detect movements
that may lead to misalignment between the beam and the tumor and thus requires
to stop irradiation. Online model-checking processes real time input data to predict
such a problem and to adjust the model if necessary. The authors demonstrate that
this approach outperforms classical state-of-the-art methods in term of number of
problems detected.

In these applications, although the patients are modeled in some way, they are
mainly described by their physiological data (blood pressure, pulse rate, respiratory
rhythm...) that may influence the modeled device operation or the ongoing medical
process.

Contrarily to this sort of model checking aiming at design verification, our aim is
to model and verify patient actions and behavior in order to help physicians refine
their diagnosis about patient condition. We do not design serious games and thus
we do not address the model checking of these software tools. Moreover, our target
games are already in use and have been verified and debugged by their develop-
ers. As in [6], we perform model checking during the game sessions with respect to
real-time inputs coming from sensors. However, the goal is not to detect software
problems nor to influence the game progress (nor the player behavior of course) but
only to observe and record data on the patient’s interaction with the game. The type
of interaction and its differences with a "normal" game session will help physicians
diagnose a possible disease.

Hence, our use of model checking is related to human activity recognition. It
is close to [55] where model checking is used to detect differences between actual
medical actions and ideal ones as described in a formal model of clinical guidelines.
The guidelines are represented as state-transition systems and the model checking
of (CTL) temporal logic properties investigates the consistency of the formalized
guidelines with the actual treatment. Similarly, in [88] the authors apply an extended
temporal logic and model checking to support automated real-time recognition of
daily living activities of elderly people. These approaches apply model checking
as we do, both to verify properties of a predefined formal model of activity and to
confront it with real data coming from patients or doctors activities. A difference
is that these two works use deterministic logics and model checking whereas we
rely on probabilistic ones. This is essential to fulfill our aim which is not only to
recognize people activities but also to evaluate patient impairment level and thus
to use model checking as an aid to diagnose and characterize patients. Note that
probabilistic model checking was also used to debug PRISM models of activities, as
in [99]. In our case, we use probabilities to explore paths associated with different
behaviors.

2.2.2 PRISM Modeling Language

PRISM provides a state-based modeling language inspired from the reactive module
formalism of [3]. A model is composed of a set of modules which interact with each
other. The state of a module is given by the values of its local variables and the global
state of the whole model is determined by the union of the local states of all its
modules. The dynamics of each module is described by a set of commands of the
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form:
[ |guard — proby : update, + ... 4+ prob, : update,;

where guard is a predicate over variables of the model, corresponding to a condition
to be verified in order to execute the command, and each update indicates a possible
transition of the model, achieved by giving new values to variables. Each update
is assigned a probability and, for each command, the sum of probabilities must be
1. The square brackets at the beginning of each command can either be empty or
contain labels representing actions. These actions can be used to force two or more
modules to transit simultaneously. The PRISM code for the DTMC of figure 2.1 is
shown in Algorithm 1. In this code, the unique integer variable y represents the
state of the player, it ranges over {0,1}. Its initial value is 0. When the guard y = 0
is true, the updates (¥’ = 0) and (y’ = 1) and their associated probabilities state that
the value of y remains at 0 with probability 0.5 and switches to 1 with probability
0.5. When y = 1, the update (' = 0) with probability 1 states that y switches back
to 0.

Finally, PRISM models can be extended with rewards [79], associating real val-
ues with model states or transitions. An example of reward is given at the end of
Algorithm 1: each time y = 1 (button pressed), the reward is incremented by 1.

Algorithm 1 PRISM code for figure 2.1 DTMC.

dtmc //Discrete-Time Markov Chain

module good_answer_game

y: [0..1] init O;

//Commands

[ 1y=0->0.5:(y’=0) + 0.5:(y’=1); // y’ corresponds to y in the next instant
[1y=1->1:(y'=0);

endmodule

rewards "y"
y=1:1;
endrewards

We model the behavior of a patient playing serious games with discrete-time
Markov chains (DTMCs).

As we started modeling with the PRISM modeling language, we had to cope
with one of its limitations: in PRISM Markov chains, it is not possible to put a limit
on the number of times the model can loop over a state. Even with a low probability
on the loop transition, there is still a risk for a simulation to never quit the loop
(fairness is not imposed). To avoid this issue, all the possible states must be explicitly
represented in the model, leading to an "unwound" model. But this unwinding turns
out to be an advantage to implement the effect of patients” fatigue; indeed as the
game proceeds, patients are likely to become tired, thus the probabilities of some
actions should vary accordingly. Thus, we included in all game models a simplified
yet realistic fatigue profile based on pre-computed probabilities at each time step of
the game in the unwound model.

The following sections describe the implementation of each behavior model and
some properties of interest. As a first step, sections 2.3 to 2.6 show the results of the
automatic verification of these properties with PRISM. As a second step, section 2.7.2
shows the comparison of the results and time performances of PRISM and Storm.
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FIGURE 2.3: Display of the Code game.
2.3 Code Game Model

In the Code game [118] patients interact with a touch-pad. They are asked to match
a random picture displayed in the center of the touch-pad with the corresponding
element in a list of pictures at the bottom of the screen (see figure 2.3). The game
lasts at most five minutes.

If the patient chooses the right picture, a happy smiley is displayed and a new
picture is proposed. Otherwise a sad smiley is displayed and the patient is asked to
try again. If the patient does not interact quickly enough with the touch-pad (more
than 10 seconds of inactivity), the game prompts her to choose a picture. Whenever
the patient exits the game zone, the game is aborted.

2.3.1 Model
A simplified pseudo-code program describing this game is given in Listing 2.1.

Initial: patient inside game_zone and patient presses_start_button
during 300s
console displays_picture
when [0.0005] patient exits game_zone preempt { exit }
// main loop on each occurrence of the asks_to_choose event
every console asks_to_choose patient
switch
case [0.75] (patient selects_picture) // patient selected something
switch
case [0.66] (console displays_happy_smiley)
// correct answer: new picture and continue loop
console displays_picture !/ count: happy_smiley
case [0.33] (console displays_sad_smiley)
// wrong answer: loop keeping current picture
nothing !/ count: sad_smiley
end switch
case [0.25] (console notifies_inactivity)
// patient did not react, continue with same picture
nothing !/ count: non_interaction
end switch
end every
end when
end during
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emit game_over

LISTING 2.1: Serious game pseudo code description. Green numbers
inside square brackets are probabilities. Red comments starting with
!l suggest PRISM rewards.

The game starts when the patient has been detected in the game zone and presses
the start button. The when clause introduces a preemption: the game may abort pre-
maturely, whatever its execution state is, if the patient leaves the game zone before
the normal end of the game; this is possible with Alzheimer patients who may suf-
fer from attention deficiency. The core of the game is described via the probabilistic
switch cases. The branches of a switch are exclusive and their order is a prior-
ity order: the first branch whose awaited event occurs executes its statements. A
probability of occurrence may be associated with a branch (indicated within square
brackets in the pseudo-code).

Furthermore, the clinicians can indicate (through ! comments) significant events
that should be remembered and counted. For instance, the number of happy smileys
displayed during the game gives an interesting information about a patient’s perfor-
mance. Note that, in this example, the sum of the weights in the probabilistic switch
case and in the preemptive condition is not 1. A normalization will be applied to
obtain the probabilities for the formal model. Thus, the user does not have to bother
with numeric computations.

As stated in the previous section, we use a DTMC to model the behavior of a
patient playing this game. Due to a limitation in PRISM, as explained in subsec-
tion 2.2.2, we must explicitly represent all the possible states in the model.

Since the game activity lasts at most five minutes (or 300 seconds), we know that
there will be a finite number of states in the chain. Thus, in the PRISM model, we
made the assumption that a patient needs at least three seconds to select a picture
(minimum time needed to think of which picture to choose and to touch the screen
to select it).

Model Design

With the previous assumption, step 2 of figure 2.2 can be completed. Indeed, the time
constraint of three-hundred seconds (and three seconds minimum for a selection)
can be translated into a maximum number of actions (or events) that can happen in
a scenario. If the patient keeps on selecting pictures, a smiley (happy or sad) is dis-
played. We call this event selection and it cannot happen more than a hundred times
in a row (300s/3s = 100). On the other hand, if the patient does not interact with the
game for ten seconds, the system displays a message (event notifies_inactivity in
listing 2.1). We call this event inactivity and it cannot happen more than thirty times
in a row (300s/10s = 30).

To represent all combinations of these two events, we picture a right-angle trian-
gle (figure 2.4a). The edge of length 100 (representing the scenario of a succession of
selections) and the edge of length 30 (representing the scenario of a succession of inac-
tivities) form the perpendicular sides of the triangle. Each state of this triangle, except
those on the hypotenuse, have three different possible transitions, represented in fig-
ure 2.4b. According to this figure, a state can either increment selection and move on
the selection axis, or increment inactivity and move on the inactivity axis. To represent
the action of the patient leaving the game before the end of the five minutes (which
could be detected by a camera) we use a Boolean variable called quit_game. If this
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wuit_game = true
selection + 1

0o selection 100
inactivity bnactivity +1
30
(A) Combinations of events triangle. (B) Possible state transitions for states symbol-

izing the game session.

FIGURE 2.4: Activity model for a player of the Code game.

variable is true, the state previously reached in the triangle is considered as the final
state of the game session.

All states on the hypotenuse represent the end of the five minutes of the game.
The only possible transition from them is equivalent to quit_game.

PRisSM Implementation

The model is composed of a single module called "Code_game'”. In this module, the
location of the patient is represented by an integer variable with range [0..2] called
location: 0 represents the patient being in the room before playing, 1 the patient being
in the gaming area, and 2 the patient being outside this area.

As previously described, the interaction of a patient with the game is represented
as an integer variable with range [0..100] called selection. A value i represents the fact
that the patient had i interaction(s) with the game.

The event of the game displaying a message after ten seconds of inactivity is
represented as an integer variable with range [0..30] called inactivity. A value i rep-
resents the fact that the game displayed the message i time(s).

To ease readability and re-usability of the module, each of the previous vari-
ables gets its maximum value defined outside the module in a global variable: loca-
tion_max, selection_max, and inactivity_max, respectively.

Variables selection_max and inactivity_max are also used to determine if a state
belongs to the hypotenuse of the triangle mentioned before. To do so, we solve the
following equation (where [ x] is the application of the ceiling function to x, denoting
the smallest integer greater or equal to x):

inactivity_max

- X action + inactivity_max 2.1
selectzon_max) + y_max]| (2.1)

inactivity = [(—
To take advantage of the rewards of PRISM, we use Boolean variables to represent

the other concepts.

¢ The event "a happy (resp., sad) smiley is displayed" for a good (resp., bad)
answer is represented by the variable happy_smiley (resp., sad_smiley).

* The event "the patient leaves the game area before the end of the five minutes"
is represented by quit_game.

¢ The event "the console displays a message after ten seconds of inactivity" is
represented by non_interaction.

5PRISM code at https://gitlab.com/ThibLY/thibaud_1_yvonnet_phd_thesis_models_and_
scripts
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Only one of these variables at a time can be true. Each time a variable is true,
it means that the event it represents happened and the associated reward is incre-
mented. The rewards associated with these Boolean variables are the following;:
happy_smiley is associated with Happy_smiley_reward, sad_smiley with
Sad_smiley_reward, non_interac-tion with Non_interaction_reward, and quit_game with
Leave_game_reward; the amount of time spent by the patient in the game is repre-
sented by Gaming_time.

The Gaming_time reward is more complex than the others because it increases by
three units for each good or bad answer and by ten units for each inactivity message
displayed by the console.

The state of the patient can go through different transitions only if it matches one
of the four different guards of the "Code_game" module (enumerated below). Note
that the global variable time_Is_Ouver contains a Boolean expression to determine if
the maximum number of actions that a patient can perform is reached.

1. variable location is equal to 0, meaning the patient is in the room;

2. variable location is equal to 1, time_Is_Owver is false and quit_game is false, mean-
ing the patient is playing the game;

3. variable location is equal to 1 and time_Is_Owver is true, meaning the patient has
played for the maximum time;

4. variable location is equal to 1 and quit_game is true, meaning the patient left the
game before the end of the maximum duration.

The PRISM code for the command associated with the second guard is given
in listing 2.2, where p1 = 0.5/sum, p2 = 0.25/sum, p3 = 0.25/sum, and p4 =
0.0005/sum, with sum = 0.5 + 0.25 4+ 0.25 + 0.0005.

[acts] location=1 & !time_Is_Over & quit_game=false ->

// good answer

pl : (selection’=selection+l) & (happy_smiley’=true) &
(sad_smiley’=false) & (inactivity_bool’=false) +

// bad answer

p2 : (selection’=selection+l) & (happy_smiley’=false) &
(sad_smiley’=true) & (inactivity_bool’=false) +

// inactivity

p3 : (inactivity’=inactivity+1l) & (happy_smiley’=false)&
(sad_smiley’=false) & (inactivity_bool’=true) +

// game left

p4 : (quit_game’=true) & (happy_smiley’=false) &
(sad_smiley’=false) & (inactivity_bool’=false);

LISTING 2.2: Excerpt from the Code_game module.

The state transitions taken along a path describe the patient’s behavior in a spe-
cific scenario. Some of these transitions have attached probabilities. The different
possible transitions for a patient are the following:

o if the first guard is true, location is updated to 1, meaning the patient enters the
gaming area;
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e if the second guard is true, four different transitions can be taken with different
probabilities: (i) the patient gives a good answer (with a weight of 0.5 for our
tests); (ii) the patient gives a bad answer (weight 0.25); (iii) the system asks the
patient to choose a picture after ten seconds of inactivity (weight 0.25); (iv) the
patient leaves the game (weight 0.0005);

e if the third or fourth guard is true, location is updated to 2, meaning the patient
leaves the gaming area.

To complete the previous model, we asked medical practitioners to provide a pri-
ori probabilities corresponding to a typical patient suffering from mild NeuroCogni-
tive Disorder (mild NCD). These probabilities are used in the following section.

2.3.2 Verification

For the model described in the previous section, we encoded and tested several
properties in PCTL* (step 4 of figure 2.2).

Two kinds of properties may be defined: those to verify the model and those
oriented toward the medical domain, which may give indications to a practitioner
regarding a patient’s impairment.

Model Verification

One typical property of the model itself is that all the model scenarios must reach
the final state, which means in this case that the variable location must eventually be
updated to 2. The following property verifies that this update occurs:

Property 1. What is the probability to reach the final state of the Markov chain?
P =?[F (location = location_max)|

If the result is below 1, there exists a possibility to never reach the final state. This
possibility only occurs if there is an error in the Code game model. In our case the
result is 1.0; it is obtained in 0.002 seconds.

Medically Oriented Properties

Properties about interactions. The following properties evaluate the probability
for a path to go through i occurrences of selection and j occurrences of inactivity. The
tirst three properties check the probability to end the game with i = selection_max
or j = inactivity_max or i in between 0 and selection_max and j in between 0 and
inactivity_max. The two last properties check the probability for the patient to leave
the game unexpectedly.

Property 2. What is the probability for a patient to never interact with the game
until the end of the duration of the game?

P =?[F (selection = 0) & (inactivity = inactivity_max)]

Property 3. What is the probability for a patient to interact with the game until the
end of the game without any interruption?

P =?[F (selection = selection_max) & (inactivity = 0)]
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Property 4. What is the probability for a patient to start the game and to interact
with it, e.g., 43 times (not necessarily consecutively) and not to interact with it 18
times (not necessarily consecutive)?

P =?[F (selection = 43) & (inactivity = 18)]

Property 5. What is the probability for a patient to leave the game just after pressing
the start button?

P =?[F ((selection = 0) & (inactivity = 0)) U (location = location_max)]

Property 6. What is the probability for a patient to leave the game before the
maximum game duration?

P =?[F (quit_game)]
Discussion The results for these properties are displayed in table 2.1, together with
their computing time.

The probability obtained for property 2 is rather low. This is due to the fact that
there is only one path leading to the state satisfying this property and this path itself
only goes through low probability transitions.

Two observations can be made on the results of property 3: (i) the probability is
higher than the one of property 2; (ii) this probability is low. The first observation is
due to the fact that the transition taken and repeated when this property is verified
has three times more chances to be taken than the one taken to satisfy property 2.
The probability of property 3 is pretty low because there is only one path made of
three hundred transitions that satisfies this property.

Property 4 checks the probability to reach one of the states representing the end
of the five minutes of the game. To give an example, a state which can only be
reached with paths composed of 43 transitions representing an interaction and 18
transitions representing a non-interaction was chosen. The probability for this prop-
erty is higher than the one of property 3. This is due to the fact that this state can be
reached by a large amount of paths.

Property 5 determines the probability for the patient to leave the game just after
pressing the start button. This property can be seen as a specialized version of prop-
erties 2, 3, and 4. Indeed, in its architecture, there is the same structure checking the
values of selection and inactivity together with another structure checking the value
of the variable location. This third variable is used to discriminate between the in-
stant before the start of the game and after the game started. Indeed, for these latter
instants, selection and inactivity are both equal to 0. The probability for this property
is low, which is consistent with the expected behavior of a mild NCD patient who
usually has enough motivation to stay at least some time in the game.

The probability obtained for property 6 is approximately 3% even though the
probability for the path to go through "quit_game=true" is five hundred times lower
than the probability to take the non-interaction transition. To satisfy this property,
all paths in which the transition quit_game is taken are considered. Note that if one
increases the maximum duration of the game but keeps the parameters of the model
as they are, the result of property 6 increases.

Possible medical significance The results obtained from the above properties give
several indications. In the case of a cohort selection based on this model, the behav-
ior described in properties 4,5, and 6 should be observed quite rarely (respectively
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Property Result Time(seconds)
Property 2 | 8.5445 x 10~ 0.026
Property 3 | 3.0508 x 101 0.049
Property 4 | 2.3188 x 102 0.03
Property 5 | 4.9975 x 104 0.054
Property 6 | 3.1364 x 102 0.058

TABLE 2.1: Results from property 2 to 6.

2% and 3% of the cases). These behaviors may indicate that patients have a more
degraded health condition than the desired patient profile. The behaviors described
in properties 2 and 3 must not be observed for mild NCD patients. If a cohort dif-
fers too much on the frequency of these behaviors, the practitioners must discard or
deeply change it. Otherwise, the risk to perform a clinical test on the wrong sample
of population is too high.

Properties about quality of actions. These properties are relative to the quality of
the actions (correct or not) that can be performed. The first one provides an average
"score" for the model. The following ones give probabilities to follow some specific
paths in the model.

Property 7.  Is the average amount of good responses given by a patient greater
than or equal to 30?

R{"”Happy_smiley_reward”} >= 30[F (location = location_max)]

Property 8. What is the average amount of good responses given by patients
during their game sessions?

R{”Happy_smiley_reward”} =?[F (location = location_max)]

Property 9. What is the probability for a patient to choose the correct picture
exactly once and to never choose a good one again until the end of the game?

P =?[(F happy_smiley) &
(G (happy_smiley => (X G 'happy_smiley & \quit_game)))]
where ("happy_smiley) means (not happy_smiley), that is (happy_smiley = false).

Property 10. What is the probability for a patient to directly choose the right
picture, without choosing a wrong picture before?

P =?[F (selection = 1 & happy_smiley)]

Discussion The results for these properties are displayed in tables 2.2a and 2.2b.
Property 7 returns a Boolean®. For this model, the result is true and it is con-
firmed by the result of property 8. This second property can also be written for
Happy_smiley_reward, Sad_smiley_reward and Inactivity_bool_reward. According to its
results, the average "score" for a cohort of patients matching this model parameters

6 According to the PRISM manual, "the total reward for a path is the sum of the state rewards for each
state along the path plus the sum of the transition rewards for each transition between these states". In
the case of bounded properties, the result is a Boolean indicating whether the target value is reached.
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Reward Result | Time(s) | | Property Result Time(s)
Happy_smiley_reward 31 0.044 7 true 0.047
Sad_smiley_reward 15 0.019 9 33012 x 10712 | 2.046
Inactivity_bool_reward 15 0.042 10 6.6622 x 101 0.007

(A) Results of property 8. (B) Results of properties 7, 9 and 10.

TABLE 2.2: Results for the properties concerning the quality of ac-
tions.

should be 31 good answers against 15 bad answers and there should be about 15
inactivity messages before the end of the session.

Property 9 is the longest to compute. The complexity of this property comes from
the nesting of G operators. Property 10 gives the biggest probability value compared
to all others. Indeed, unlike property 9, there is a huge amount of scenarios that can
validate it.

Possible medical significance Still in the case of a cohort pre-selection, the group
of patients should obtain an average "score" similar to the one obtained in property 8.
If the score differs too much from this result, the cohort must be rejected. According
to the result of property 9, a patient from this group is not expected to choose only
one right answer and then stay without exiting until the end of the game. On the
other hand, according to the result of property 10, in this same group, it should be
common to observe patients choosing the right picture on the first try (66% of the
cohort).

Cumulative Rewards and Simulations

This subsection gives an example of a property which shows the interest to perform
simulations of the model. We use the PRISM "cumulative reward" facilities to track
how the model accumulates rewards over time. Properties using rewards can in-
clude variables such as the one indicating the number of steps to perform before
checking the reward. This kind of variables allows the use of the "experiments" fea-
ture of PRISM and the creation of graphs of results.

Property 11. What is the amount of happy smileys accumulated within i steps?
R{”Happy_smiley_reward”} =?[C <= i

where i is the number of steps to perform before checking the reward and C is the
"cumulative-reward" operator presented in section 2.1. This property is also applied
to Sad_smiley_reward, Inactivity_bool_reward, Gaming_time, and Leave_game_reward.

In figure 2.5, the rewards for good answers, bad answers, and non-interactions
have a linear increase until they reach a plateau. The values reached by the rewards
are the ones obtained in property 8. The reward for the action of leaving the game is
almost equal to zero. This is because this reward can be incremented only once in a
run and that there is only 3% of the paths (see property 6) where a patient may leave
the game before its maximum duration.

In figure 2.6, the average game duration is slightly under 300 seconds. This is
due to the paths where a patient may leave the game before the maximum duration.
This shows that, although equation 2.1 in section 2.3 implies an approximation with
the ceiling function, the patients leaving the game are lowering the average enough
to bring it just under the maximum expected value. As a final observation, the game
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FIGURE 2.5: Average model checking results for rewards related to
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FIGURE 2.6: Average duration of the game obtained with model

checking.
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FIGURE 2.7: Experiment results on the accumulation of rewards over
100 simulation runs.
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FIGURE 2.8: Frequency of good answers over 10,000 runs (in blue)
and its fitting normal distribution with # = 31.2131 and 0 = 43.9271
(in red).

duration reaches the plateau around the seventy-fifth step. This is due to the fact
that most of the paths go several times through non-interaction transitions. Should
they not go through these transitions at all, the plateau might have been reached
around the 100*" step.

In figure 2.7a, over 100 simulations, some of them (in blue in the figure) reach
a maximum value which is above 300 seconds (still due to the approximation in
equation 2.1). Among these 100 simulations, some do not reach 300 seconds, one of
them (in red in figure 2.7a) even never increases and stays at 0. These simulations
follow the paths where a modeled patient leaves the game before the end of the
maximum duration. This experiment illustrates the results obtained with model
checking (properties 6 and 8).

In figure 2.7, over the 100 simulations, the results present a high variability which
cannot be foreseen with model checking. In this experiment, a maximum value of
47 good answers for a minimum of 5 good answers is reached.

Globally, in figure 2.7 as well as in figure 2.5, there is no "preferred" time to act
during the game. This can be seen with the linear increase of each reward value.
This is due to the current version of the model; in fact, the states representing the
game have homogeneous probabilities of transitions.

Due to the difficulty to distinguish the different runs in figure 2.7, a shell and a
Python scripts were written to retrieve raw data from simulations. These data are
used in figure 2.8 to display the frequency of good answers over 10,000 runs. In
this figure, the distribution of the frequency of good answers at the end of the game
can be approximated by a normal distribution of mean y = 31.2131. This result is
coherent with the result of property 2. It can be stated that a patient represented by
this model is more likely to give around 31 good answers rather than 40 or 25 ones.

For medical doctors to use these results, a range of acceptance must be defined
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experimentally for the game. A patient supposedly represented by this model who
gets results that are out of the range of acceptance can be interpreted in two differ-
ent ways: either the patient is not matching the model at all (improvement in the
patient’s behavior or wrong categorization of the patient) or the patient actually be-
longs to the group of patients represented by this model, but the model itself needs
adjustments to better represent this group.

Remarks on the Code game model This model was our first attempt to model and
validate serious game activities with PRISM. This first experience has shown that a
tool like PRISM is suitable to represent human activities and to automatically check
properties of medical interest. Of course, the model parameters have to be later
calibrated with respect to forthcoming clinical studies.

2.4 Pre-computed Time Dependent Probabilities for
Code Game Model

In the previous model, regardless of the time elapsed in the game, the chances of the
patients to give a good or bad answer are always the same. In reality, performances
can vary within a single game session, mainly because the patient may become tired
as the game proceeds. Such decrease in attention is documented for both healthy
elders [122] and early Alzheimer’s subjects [64]. The way sustained attention de-
creases over age is still under investigation but can be observed by practitioners
through cognitive tests. Thus it would be more realistic that some probabilities may
vary with the game time. However a "true" dynamic model where probabilities
evolve in real-time would violate the Markov’s hypotheses. Therefore our approach
is to propose a simplified fatigue profile that enables us to pre-compute the needed
probabilities at each time step of the game. So the PRISM unwound model mimics a
dynamic behavior while respecting the memoryless property of DTMCs.

This section details the corresponding modifications to the Code game model
and the results obtained with this new "fatigue-aware" version of the model. The
probabilities are as follows.

// probability to give a good answer
pl = (act_one_weight_one/sum_weight_one)

- ((7/3000)*((selection+inactivity*10/3)));
// probability to give a bad answer
p2 = (act_one_weight_two/sum_weight_one)

+ ((7/5000) * ((selection+inactivity*10/3)));
// probability to stay inactive
p3 = (act_one_weight_three/sum_weight_one)

+ ((3/5000)* ((selection+inactivity*10/3)));
// probability to leave the game
p4 = (act_one_weight_four/sum_weight_one)

+ ((1/3000)*((selection+inactivity*10/3)));

LISTING 2.3: Probability definition of the new Code_Game module.

In these definitions, the first pair of parentheses contains the original probabili-
ties from the previous implementation and the second pair of parentheses introduces
the time dependent part. In this model, we consider that, as time passes in the ses-
sion, the risk increases for the patient to give bad answers, to stay inactive, or to
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leave the game. To represent this, we introduce a priori a "fatigue constant” for each
possible action of the patient. These constants are based on practitioners” experience
[122, 64] and are to be updated with the results of future clinical studies. As selection
transitions represent an elapsed time of 3s and inactivity transition represents 10s,
we multiply inactivity by 10/3 to really take this time ratio into account.

To compare with our previous implementation, we checked this model with the
same properties presented in section 2.3.2. The new results from property 2 to prop-
erty 6 are shown in table 2.3.

Property | Previousresult | New result | New time(s)
Property 2 | 8.5445 x 1071° | 21732 x 10~V 0.025
Property 3 | 3.0508 x 10-1° | 4.8966 x 1010 0.032
Property 4 | 2.3188 x 102 | 1.2294 x 102 0.166
Property 5 | 4.9975 x 10~% | 4.9975 x 10~* 0.068
Property 6 | 3.1364 x 10~2 | 6.3952 x 10! 0.245

TABLE 2.3: Results from property 3 to 6 in the new model, compared
with previous results (first column).

Discussion on probabilistic properties The results of property 2 and property 6
are far superior in this version, while the results from property 3 and property 4
are inferior (compared to table 2.1). The result of property 5 is similar to the one
obtained in the previous version.

Possible medical significance The profile of patient obtained with these modifica-
tions is less stable than the previous one. Indeed, the risk for this patient to leave the
game doubled and the probability for other actions such as non-interaction greatly
increased compared to table 2.1.

The next tables show the results for property 7 to property 10.

Discussion on reward based properties Table 2.4a shows that the accumulation
of Happy_smiley_reward is far under the previous version, but the accumulated val-

ues of Sad_smiley_reward and Inactivity_bool_reward did not grow, indeed, they de-
creased.

Reward Previous result | New result | New time(s)
Happy_smiley_reward 31 18 0.234
Sad_smiley_reward 15 13 0.247
Inactivity_bool_reward 15 12 0.233
(A) Results of property 8.
Property | Previous result | New result | New time(s)

7 true false 0.228

9 3.3012 x 10~ '* | 1.6475 x 107 2.046

10 6.6622 x 10" | 6.6333 x 10" 0.008

(B) Results of Properties 9 and 10.

TABLE 2.4: Results for the properties concerning the quality of actions
with the new model, compared with previous results (first column).
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FIGURE 2.9: Average model checking results for rewards related to
good answers, bad answers, non-interaction, and game leaving be-
haviors in the new version of the model.

Logically, the result of property 7 is now false, since the reward accumulation
does not reach 30. Even though the accumulation of Sad_smiley_reward and Inactiv-
ity_bool_reward rewards did not increase, the result of property 9 is a thousand time
higher than in the previous version of the model. The result of property 10 is similar
to what it was.

Possible medical significance The low accumulation of rewards is due to the fact
that the patient tends to leave the game before the end of the timer. Property 10 also
shows that the behavior of the patient at the beginning of the game is really close
to the previous profile, but this new profile presents more risks to achieve a poor
performance at the end.

As for the previous model, we can track the changes in reward accumulation by
using the "run experiment" tool of PRISM.

Discussion on figures 2.9 and 2.6 There are several changes in figure 2.9 compared
to figure 2.6. The change of maximum reward accumulation is similar to the one al-
ready depicted in table 2.4a, but the shape of the curves changes. The curve of happy
smiley reward is most noticeable as time goes, as less rewards get accumulated. We
can say that the accumulation decelerate. Sad smiley and non interaction rewards
are now clearly separated. The leave game reward does not stay as low as in the
previous version of the model.

This last observation explains figure 2.10. In this figure the maximum game du-
ration is below 220s; this is a direct consequence of the accumulation of leave game
reward values.

Possible medical significance These results indicate that most of the patients rep-
resented by this model will leave the game before the timer reaches 220s.

Remarks on the fatigue-aware Code game model Since, according to the medical
staff, this version is suitable to realistically represent the behavior of patients, the
remaining two games have directly been modeled with this approach of fatigue.



28 Chapter 2. Formal Methods for Modeling Serious Game Activity

240

210
180
150
120

90
60

Time spent in Game

30

0 10 20 30 40 50 60 70 80
Step value

FIGURE 2.10: Average duration of the game obtained with model
checking in the new version of the model.
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FIGURE 2.11: Display of the Recognition game, with a flower exam-
ple of an intermediate complexity picture.

2.5 Recognition Game Modeling and Verification

The Recognition game is part of the MeMo Web platform 7 which provides sev-
eral serious games to train different neuro-cognitive functions. This game trains the
memory functions. A set of pictures is displayed one by one in front of the patient.
Most pictures of this set are unique, others are duplicated (one original and one du-
plicate). Pictures are randomly displayed to the patient. The duplicate of a picture
appears within a given distance from its original. This distance is a number of pic-
tures varying in a range defined before the beginning of the game. The goal for
the patient is to classify each picture as a "first-seen" picture (unique or original) by
dragging it into a folder or as a duplicate by dragging it into a garbage bin.

The difficulty increases with the number of unique, original, and duplicate pic-
tures as well as with the parameters of the distance range (start point and size). The
nature of the displayed pictures (which is defined by their subject, their details, their
color range, etc.) also impacts the difficulty.

7https ://games .memory-motivation.org/?lang=en
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(A) Easy picture. (B) Intermediate picture. (¢) Difficult picture.

FIGURE 2.12: Example of pictures of various complexity. Pic-
ture 2.12c is categorized as difficult because it is displayed some time
after 2.12b which is close in color and in flower shape.

2.5.1 Model Design

To simplify the modeling task on this game we designed, with the help of medi-
cal partners, nine exclusive levels of the game. The advantage of these customized
levels is that we know the exact sequences of pictures for each of them, whereas in
the original game the sequence is randomly generated for each game session. Each
customized level includes 28 unique pictures, 6 originals and 6 duplicates and is as-
sociated with two tags. The first tag describes the subject of the pictures which can be
"animals", "landscapes", or "flowers". The second tag describes three degrees of diffi-
culty. The difficulty of a level takes into account the distance range between originals
and duplicates and the similarity between the pictures as well as their significant de-
tails (both latter features will be referred to as the picture complexity). Each level has
a different combination of these two tags. To avoid a learning mechanism from the
patients, different sets of levels have been created, each one containing different tag
combinations. Moreover, tested patients should play this game only once a month,
thus minimizing the memorization risk. In this subsection, we focus on the third
level of difficulty, using flower pictures.

We decided to categorize each picture depending on its complexity. Two labels
are thus associated with a picture. The first one corresponds to the information

non

"unique", "original", or "duplicate". The second describes the complexity of the pic-
ture and can be "easy", "intermediate", or "difficult" (see figure 2.12).

The model of the game is a deterministic discrete finite automaton in which states
correspond to the behavior of the patient for the current picture. The model takes
into consideration four potential actions for each picture. The patient can: (1) give
a good answer (rightfully drag the picture into the folder or into the bin); (2) give a
bad answer (wrongfully drag the picture into the folder or into the bin); (3) hesitate
before answering; (4) leave the game. The time spent hesitating can vary for a given
patient depending on the picture. To represent such behavior, all states of the model
representing hesitation are equipped with three different transitions: one is a loop
back to the same state, whereas the others go to an "answering state" (right or wrong
answer). In this model, each state representing an action of the patient is linked to
other states by a probabilistic transition. Not only do these probabilities depend on
the picture displayed but they also depend on the time elapsed since the beginning
of the game. Thus, as in the Code game model, the time dependent probabilities of
the unwound model are pre-computed to take into account the patient’s fatigue.
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PRISM Implementation

To ensure that the PRISM implementation behaves as expected, we first created a
simplified model containing fewer details than necessary. The advantage is that this
first version is simple enough to be verified by all model checker engines available
in PRISM. Afterwards, we implemented a second version with slightly more details.
This second version could be verified using the explicit and the exact model checker
engines. These two intermediate models were useful to verify the feasibility and the
adequacy of this type of model to the properties we want to prove. The verification
of the final version, presented below, requires the PRISM explicit engine.

Contrary to the previous game, the patient behavior is very dependent on the
behavior of the game, that is which picture is shown at what point during the game.
It is a good software engineering practice to separate the two concerns and to design
two different modules. In the same spirit we added an observer module to facilitate
the computation of probabilities. This version is thus implemented with three PRISM
modules. The first one describes the game, the second the patient, and the third is
an observer to compute probabilities. The interactions between these modules are
illustrated in figure 2.13.

Recognition Game

) Unique Easy
Picture Qriginal Intermediate

Duplicate L Difficult

Patient
Dynamic Probabilities

/#\
Bad Dynamic
answer Probabilities

“

™ S

—» Game ends

‘Game starts F o ( Good Hesitation

J answer 7 \
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Action of
the patient
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FIGURE 2.13: Recognition game module interactions.

The game module has two variables, a Boolean variable and an integer counter.
The Boolean variable (game_on) is initialized to false and is updated if one of the two
following guards is true. The first guard, labeled pressStart, is true if, in the current
state, game_on is false. In such a case, pressStart updates game_on to true. The sec-
ond guard, labeled endGame, is true if, in the current state, game_on is true and the
counter variable, called nb_pictures, reaches its maximal value. In this case, endGame
updates game_on to false. The counter nb_pictures represents the number of pictures
that have been displayed so far. Its range goes from 0 to 40 and it is updated with
the validation of one of several guards. In this module, these guards are useful to:
(i) label the updates differently depending on the picture displayed by the game; (ii)
keep a code structure easy to read and to modify if needed. All updates are sim-
ilar and increase the value of nb_pictures by one. For these updates we use five la-
bels: easyFolder, medFolder, and diffFolder corresponding to (easy, medium or difficult)
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unique/original pictures, to be put in the folder and medBin and diffBin correspond-
ing to duplicate pictures, to be put in the bin. A transition labeled endLoop is used
to lead to a final state. This transition is triggered for sure when nb_pictures reaches
40 thanks to the synchronization with the patient module. Thus, an infinite loop
between game_on = true and game_on = false is avoided. For instance, if the game
module triggers the transition labeled easyFolder, the patient module (described be-
low) transits with pre-computed probabilities that depend on the time elapsed in the
game session.

The patient module is synchronized with the game module. That is why some of
its labels are the same as the game module ones. This synchronization allows us to
assign different probabilities to the transitions of the patient module, depending on
the transition taken in the game module. The patient module has six Boolean vari-
ables describing the state of the patient: finish_play which indicates that the patient
has stopped playing or has not finished yet; front_screen which indicates whether
the patient is facing the screen or not; choose_folder, choose_bin, quit_game, and hesitate
which indicate the action chosen by the patient for the current picture. If hesitate be-
comes true, a counter named hesi_count provides a measure of the "logical" hesitation
time®; it increases its value until the patient makes a choice for the current picture
or until the counter reaches its maximal value. In this model, for implementation
simplicity, we assume that in this case a patient has to make a choice. Moreover,
with the chosen parameters, if the patient enters an hesitation state she will have a
better chance to succeed on the current picture. When the choice is given, hesitate
becomes false and hesi_count is reset to 0. To store the nature of the picture during
hesitation, we added five Boolean variables: easy_fold, med_fold, diff_fold, med_bin and
diff_bin. Each one becomes true when the corresponding label of the game module
is activated. For example, if the game module triggers a transition labeled easy-
Folder, variable easy_fold is updated to true. The patient module uses probabilities
stored in external variables. These probabilities are associated with specific guards.
This module is equipped with ten labels. Labels pressStart, easyFolder, medFolder, diff-
Folder, medBin, diffBin, endGame, and endLoop are used to synchronize with the game
module. Labels patientHesitate and quitGame are not synchronized with the game
module.

The third module is the observer, it has only one variable, a counter ranging
from 0 to the maximal number of actions that the patient can do. For each of the 40
pictures, the patient can hesitate from 0 to 5 times before executing an other action
(good answer, bad answer or leave). Thus, the maximal number of actions per pic-
ture is 6 and for a whole session it is 40 * 6 = 240. This counter is increased each time
one of the labels easyFolder, medFolder, diffFolder, medBin, diffBin or patientHesitate is
activated. The value of this counter is used by the external variables that compute
the different probabilities corresponding to the actions of the patient. The code pre-
sented in listing 2.4 shows an example of how the probabilities are computed in this
model. Note that all numerical values result from discussion with practitioners (step
3 of figure 2.2).

// Probability to drag the picture in the folder
formula p_easy_folder_f =
0.90 - (4/30*(counter/240) + 2/30*(nb_pictures/40))
+ (0.02%hesi_count);
// Probability to drag the picture in the bin

8The time unit represented by this counter depends on the patient’s wellness and on the difficulty
of the game. It will be refined after statistical analysis of the results of real game sessions.
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formula p_easy_folder_b =
0.10 + (4/30*(counter/240) + 2/30*(nb_pictures/40))
- (0.02*hesi_count);

// Probability when taking into account
// hesitation or quitting the game
formula p_easy_folder_f_tot =
p_easy_folder_f*(1 - (p_start_hesi + p_quit_game));
formula p_easy_folder_b_tot =
p_easy_folder_b*x(1 - (p_start_hesi + p_quit_game));

// Probability to start hesitating
formula p_start_hesi = 0.10
+(1/(4*pow(2%0.3,1/2)))
*pow(1.359, -pow(((counter+nb_pictures)-26)/4,2));

// Probability to quit the game
formula p_quit_game = 0.0002;

LISTING 2.4: Probability calculation for an easy unique/original pic-
ture.

Listing 2.4 shows the probabilities for the four different actions. Here, the prob-
abilities for giving a good or a bad answer are specific to an easy first seen (unique
or original) picture. The results of formulas p_easy_folder_f and p_easy_folder_b
give the order of magnitude of how much more (or fewer) chances the player has
to give a good answer over a bad one. To normalize these results with other proba-
bilities they are used in formulas p_easy_folder_f_tot and p_easy_folder_b_tot
to compute the probabilities for the patient to give respectively a good or a bad
answer over the other actions (which are leaving the game and hesitating). The re-
sults of formulas p_easy_folder_f and p_easy_folder_b are also used to compute
the probabilities in the specific case where the maximum hesitation time has been
reached (remember that in this case the patient must answer).

2.5.2 Verification

This section presents some of the properties tested on the Recognition game model
as well as their results and analysis. To ease the comprehension of the following
section, table 2.5 summarizes the correspondence between the model variables and
what they represent.

Model Verification

To verify this model and ensure it is sensibly implemented, a reachability property
has been defined and tested. As the approach is similar to the Code game, it is not
detailed any further. The model checker gave the expected result (a probability of 1
to reach the final state) within 0.038s.

Medically Oriented Properties

The following properties check the probability of various combinations of actions
from the patient that may have an interesting medical interpretation.
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Variable Representation
finish_play Boolean indicating if the patient is done
playing the game or if she has not finished yet.
game_on Boolean indicating if the game is on or off.
front_screen Boolean indicating if the patient is in
front of the screen or if she left.
quit_game Boolean indicating if the patient has left the
game before classifying the last picture.
counter Integer variable of the observer module that gives
the time spent in the current game.
nb_pictures Integer variable counting the number of
pictures that have been displayed.
choose_bin Boolean variable indicating that the patient
has classified the picture as a duplicate.
hesi_count Integer variable counting the amount of
time the patient hesitates on a given picture.

TABLE 2.5: Summary of Recognition game model variables.

Property 1.  What is the probability for the patient to finish the game within 40
instants?
P =7 [F (counter = 40 & ! front_screen & quit_game)]

Property 2. What is the probability to put all 40 pictures in the folder?

P =? |G ((!game_on | (game_on & nb_pictures = 0)
| (nb_pictures >=1 & choose_bin)) & !quit_game)]

In this property, each term separated by OR operators (| in PRISM) corresponds
to a state of the game. The first term specifies that the property is true before the
game starts; the second specifies that the property is true when the game has started
but has not displayed any picture yet; the third one specifies that the property is
true only if, for each picture, the patient does not drag it into the bin. The last term
specifies that the property is true only if the patient does not quit the game before its
end.

Property 3. What is the probability for the patient to hesitate the longest possible
time on at least one picture?

P =? [F (hesi_count = 5)]

Property 4. What is the probability for the patient to hesitate the longest possible
time on all the 40 pictures?

P =? [F (counter = 240)]

Property 5. What is the probability for the patient to stay in the game at least i
instants?
P =? [F (counter =1i)]
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Property Result Time(seconds)
Property 1 | 1.0229 x 102 0.011
Property 2 | 9.3047 x 10~* 0.053
Property 3 | 2.9351 x 102 0.043
Property 4 0 0.01
Property 5 | 1.5258 x 10~ 13 0.03

TABLE 2.6: Results from property 1 to 5. Result of property 5 is given
fori = 85.

Property 6. What is the amount of good answered pictures accumulated during a
game session?

R{"good_answered”} =? [F finish_play & !front_screen|

Discussion The results for these properties are displayed in table 2.6, together with
their computing time.

Property 1 evaluates the probability to finish the game as quickly as possible,
that is with no hesitations on any picture. This property uses variables from the
patient module and from the observer module. As described in the previous section,
counter gives an idea of the amount of time spent in the game. Combined with
variables from the patient module (front_screen and quit_game), it allows us to check
the probability to finish the game within a given amount of time. Since there are 40
pictures, the minimum amount of instants to finish the game (without wasting any
instant in hesitation) is 40. The result for this property is close to 0.001 which is a
rather high probability given that there are other options for the patient (leave the
game or take more time to finish the game).

Property 2 checks the probability for the patient to put all the 40 pictures in the
folder (including those supposed to go into the bin) thus ignoring the duplicates.
This property is true if the game has not started yet, or if it has ended, or if it has
started but no picture has been displayed yet, or if the game has started and if (re-
gardless of the picture) the patient never dragged it into the bin. The goal of the last
condition (/quit_game) is to consider only the case in which the patient has processed
every single picture. The result for this property is close to 0.001, which is again a
high probability.

Properties 3, 4, and 5 check combinations of actions related to the hesitate transi-
tions.

Property 3 only uses variable hesi_count. This variable represents how long the
patient has been hesitating on a given picture. The chosen value of 5 is the maximum
value that hesi_count can take. The result of this property is close to 0.03. This result
is high compared to the previous ones which can be explained by a less constrained
property. Indeed, the previous properties checked a repetition of a behavior whereas
property 3 only checks if a behavior can be observed at least once in a game session.
Therefore, this property indicates that the occurrence of a long hesitation within a
single session is rather uncommon.

To verify this rarity, we implemented property 4 that checks the probability of
the patient hesitating on each picture for the maximum amount of time (i.e., reach-
ing hesi_count= 5 for each picture with the current configuration parameters). The
reason why we used counter alone in this property is because its highest value is
only reached if the patient module went through all transitions leading hesi_count to
be equal to 5 for all the 40 pictures of the game. This maximum amount of logical
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Reward Result | Time(seconds)
"good_answered" | 30.0026 0.181
"good_answer_fold" | 28.7624 0.186
"good_answer_bin" | 1.2402 0.17
"total_time_hesitate" | 7.523 0.158

TABLE 2.7: Results of property 6 for various rewards.

time is 40 * 6 = 240. This formula expresses the fact that, for each picture, hesi_count
first takes the value 0 before being incremented 6 times by 1 at each step when the
patient hesitates. The result obtained for property 4 is 0.0 which was unexpected. In-
deed, using the guided simulation tool of PRISM, such a state can be reached. Thus,
we further investigated this phenomenon, by varying the value of counter in this
property.

This led to property 5 that uses variable i, an integer value. We found that, ac-
cording to the model checker, there is no chance that the patient stays in the game for
more than 85 instants. Indeed, for i = 85 the probability computed in property 5 is
1.52 x 1013 but for i = 86 the result becomes 0.0. These results may indicate that the
probability to have the variable counter equal to 86 is so low that the model checking
engine considers it as a 0.

Property 6 is reward-based and gives an idea of the overall performance of a
patient during the game. It checks the average amount of good responses given
by a patient. The results for this property and for other behavior-related rewards
are displayed in table 2.7, together with their computing time. The model checker
finds an average of 30 good answers out of 40 for this model. Among these 30 good
answers, 29 are unique or original pictures placed in the folder for only 1 duplicate
placed in the bin. The "total_time_hesitate" reward shows that the modeled patient
takes approximately only 7 instants of hesitation in the whole session, which is a
very small amount.

Possible medical significance All these results can be interpreted as the ones of a
patient who does not take enough time to reflect on the picture classification, there-
fore making more mistakes than a healthy subject. This behavior could be induced
by a lack of motivation of the patient, which is part of an mild NCD diagnosis.
The reward-related properties results are consistent with these previous results as
the modeled patient makes mistakes on nearly all duplicate pictures and even on
unique and original pictures. Thus, the patient would need a deeper examination
from medical practitioners.

Evolution of probabilities and cumulative rewards

This subsection presents two diagrams that provide a global view of a typical game
session along time, contrarily to the previous properties that gave a result at a given
point in time. These diagrams were obtained with the "experiment" feature of PRISM.
They summarize the evolution of the model concerning the ability of the patient to
give good answers or to hesitate on a picture.

Figure 2.14 presents the evolution of the probabilities during a game session,
based on the results of the two following properties.

Property 7. What is the probability to hesitate on picture number i?

P =?[F(nb_pictures = i & hesitate)]
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FIGURE 2.14: Probabilities to give a good answer and to hesitate per
picture.

Property 8. What is the probability to give a good answer on picture number i?

P =?[F(nb_pictures =i &
((choose_folder & (nb_pictures = x)) | (choose_bin & (nb_pictures =y))))]

In this property, x is an abstract representation for all unique or original pictures
and y is the same for all duplicate pictures. This formula uses a simplified version of
the syntax of PRISM. The real formula is too big to be displayed and not easy to read.
In the real syntax, all values of x and y are known and must be explicitly specified.

Discussion Figure 2.14 shows how probabilities are distributed and how they in-
teract with each other. The probability for the patient to hesitate takes a Gaussian-
like form centered on picture 13. Picture 12 and 31 both correspond to difficult dupli-
cate pictures. The probability to give a good answer on picture 12 is higher because
it appears sooner than picture 31, but also because the patient has a high chance to
hesitate thus taking time to think about the answer.

Possible medical significance In this figure, we clearly observe the behavior de-
scribed earlier: a patient who is too hasty to finish the game and gives too many bad
answers.

The second diagram in figure 2.15 shows the accumulated values of rewards
(using the C operator defined in section 2.1) during a game session. For this purpose,
we use the following property:

Property 9. What is the amount of good answers within 7 steps?
R{”good_answered”} =? [C <= i]

We applied this property to other rewards: “good_answer_fold” for the number
of good answers on unique and original pictures, “good_answer_bin” for the number
of good answers on duplicate pictures, and “total_time_hesitate” for the number of
logical instants when the patient hesitates.

Discussion Figure 2.15 shows the influences of the probabilities on the reward val-
ues. Indeed, there is a high increase of the value of “total_time_hesitate” reward
within instants 10 and 20 preceding a weak increase until the end of the game.
For the accumulated value related to good answers, the behavior is different: the
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FIGURE 2.15: Average model checking results for rewards related to
good answers and hesitation.

highest increase takes place within instants 3 and 14. The accumulation of rewards
"good_answered” and “good_answer_fold” have exactly the same evolution until in-
stant 15. After this instant, the “good_answer_bin" reward value starts to accumulate.

Possible medical significance This figure (2.15) shows at which point in time a
patient is expected to accumulate good answers or when she is more likely to hesi-
tate. Another thing that can be observed is that this patient finishes the game rather
quickly around instant 55 which is a consequence of a low hesitation rate.

Remarks on the Recognition game model This model was the first directly im-
plemented with several modules. This separation of concerns is a good engineering
practice. The previous Code game was rather simple and did not require this kind
of separation, but for heavier models, it eases implementation, readability, debug-
ging, and extensibility of the code. This model was also the first to be directly im-
plemented with pre-computed time dependent probabilities. An observer module
collects information about the current game session to compute these time depen-
dent probabilities. They are computed by functions more complex than in the Code
game and this is a challenge in the implementation of the model. It was also the first
model to require the use of the PRISM explicit model-checking engine due to its large
state space. The other model checking engines utterly fail to give a result.

2.6 Inhibitory Control Game Modeling and Verification

The Inhibitory Control game is part of the TAE Web platform (https://cmrr-nice.
fr/lab/tae/), which provides several serious games to train and evaluate various
cognitive functions going from reflexes to motivation. Among these games, the one
we study targets the inhibitory control, one of the cognitive functions affected in
several neuro-degenerative diseases such as Parkinson or Alzheimer. Two versions
of this game are available on this platform and differ only in their settings.

In this game, the patient is asked to click exactly one time, as fast as possible,
on a target that appears for a short period of time at the center of the screen (see
figure 2.16 left). Knowing that human’s visual reaction time for a healthy adult per-
forming a "go/no-go" task is around 259 ms [46], the game takes into consideration
a possible anticipation from the patients and refuses to award a point if they clicked
before the end of a lap of 259 ms after the occurrence of the target. According to
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FIGURE 2.16: Display of the Inhibitory Control game, with both sig-
nals. The coin is the target and the warning sign is the decoy.

practitioners, this delay is suitable in our case because reaction time increases with
age and our patients are significantly older than the panel studied in [46]. Aslong as
the patient did not click and as long as a new signal did not appear, the patient can
click and score a point. Since this game is inspired by the go/no-go task, a second
type of signal exists: a "decoy" (figure 2.16 right). The decoy is a warning sign that
may appear instead of the target. In this case the patient must not click on it, despite
a color similar to the target one. This signal tests the inhibitory control function. The
difficulty relies on both the brevity of the occurrence of signals and on their common
color. A patient who clicks on every decoy may have an inhibitory control problem.
The time between signal occurrences is random (within a given range, defined at
game configuration).

Due to the difficulty of the task, the developers of the game included a short
training phase at the beginning of the game session. During this phase, three targets
and a decoy are presented to the patient, but the game does not register the patient’s
results. Then the "real" game starts and the results are stored.

The settings we chose for the Markov chain model are the following: 300 ms
of display time for each signal, 2000 & 1500 ms separating two signals, 10 target
occurrences, 3 training occurrences of target, 5 decoy occurrences, and 1 training
instance of decoy.

2.6.1 Model Design

To model this game we consider it as a succession of events, each one corresponding
to the occurrence of a signal; remember that the amount of time between two events
is not constant. Since this model only transits on signal occurrences, to determine the
current patient scenario we need to know the previous action of the patient. Thus,
for each event, we take into account what was the action of the patient since the last
event.

We consider six potential actions: (1) no click; (2) one click but with anticipation;
(3) one fast click; (4) one slow click; (5) one double click; (6) several clicks regardless
of the frequency and the reason. In this model, we do not consider the possibility
to prematurely leave the game because we assume that the patient will not want
to leave within the rather short duration of the game (a simple computation shows
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that the maximum duration is 72.2 s). The initial probabilities associated with the
different actions depend on two factors: the nature of the previous signal and the
time elapsed between the occurrence of the new signal and the occurrence of its
predecessor. To represent this time in a Markov chain we consider that the time
elapsed between two signals can be short, medium, or long. This information is
reflected in the label names of the five transitions between states. The nature of the
signal is reflected by both the label and the state variables. The probabilities of the
different actions also depend on the time spent in the game so far. As for the two
previous games, these probabilities are pre-computed.

PRisSM Implementation

The implementation follows the same organization as in the previous game: a game
module, a patient module, and an observer one.

The game module is composed of seven Boolean and two integer variables.
The integer variables, named num_targ and num_deco, are counters which are incre-
mented for each target, respectively decoy, that appears during the game. The first
Boolean variable is game_on, it indicates whether the game started or ended. The
next three Boolean variables (fast_occurrence, medi_occurrence and slow_occurrence)
determine if the next signal will appear in a short, medium, or long time span. When
one of these Boolean variables is true, the next transition will hold the correspond-
ing label, e.g., if the variable fast_occurrence is true then the next transition will hold
a label containing the term fast in its name. The last three Boolean variables work
in the same way. They are named next_targ, next_deco, and next_end. As their name
suggest, they determine if the next transition will lead to a target or to a decoy or if
the game will reach its end. Both the nature of the next signal and its speed are de-
cided using probabilities. For each signal, the probabilities for it to be fast, medium,
or slow are identical (3). The probability for the next signal to be a target or a decoy
depends on the number of remaining signals. The formulas in listing 2.5 compute
these probabilities:

formula proba_next_targ = (num_targ_max - num_targ)
/ (num_sign_max - num_sign);

formula proba_next_deco = (num_deco_max - num_deco)
/ (num_sign_max - num_sign);

LISTING 2.5: Computation of the probability of a target or a decoy to
appear.

where num_targ_max, num_deco_max, and num_sign_max are respectively the maxi-
mum number of targets, the maximum number of decoys, and their sum; num_targ,
num_deco, and num_sign are respectively the number of targets, the number of de-
coys and the total number of signals that have appeared so far in the session.

In this implementation, we decided to create twenty-four transition labels, to
consider all possible combinations of features related to patient actions and sig-
nals (such as occurrence speed, type of signal, etc.). Some labels are common with
the previous model (pressStart, endGame, and endLoop) and others are specific to
this game. Among these specific labels, the transiting one is associated with transi-
tions updating some of the Boolean variables previously introduced (fast_occurrence,
medi_occurrence, slow_occurrence, next_targ, next_deco, and next_end). The other labels
are associated with transitions leading either to a new signal or to the end of the
game.
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Figure 2.17 depicts the three phases of the game and the main transitions of the
model. When starting the game, the speed and the nature of the first signal are
automatically selected as one of the transitions associated with labels firstFastTarg,
firstMediTarg, firstSlowTarg, firstFastDeco, firstMediDeco, or firstSlowDeco. These label
names show the combination of several keywords: fast, medi, and slow for a fast,
medium, or slow occurrence of the signal; targ and deco for the occurrence of a target
or of a decoy. These combinations are reused for twelve of the other labels: trainFast-
Targ, trainMediTarg, trainSlowTarg, trainFastDeco, trainMediDeco, trainSlowDeco, fast-
Targ, mediTarg, slowTarg, fastDeco, mediDeco, and slowDeco. The six labels containing
the keyword train correspond to the training phase, while the six others correspond
to the "regular” game phase. Finally, after the last signal, some time is left to give the
patient enough time to react. This span of time is similar to the one between signals.
Therefore, all transitions leading to the end of the game hold one of the labels fas-
tEnd, mediEnd, or slowEnd. All the labels introduced in this game module are used to
synchronize with the patient module. Figure 2.17 summarizes these labels.

The patient module is composed of fifteen Boolean variables. The first two ones
are finish_play and front_screen. Depending on their combination, we can know if
the patient: (i) has not yet played (finish_play = false & front_screen = false); (ii) is
playing (finish_play = false & front_screen = true); (iii) has finished (finish_play =
true & front_screen = false).

The next six Boolean variables are used to describe the actions of the patient
between two consecutive signals. They are named after their corresponding actions:
not_click, anticipate, click_fast, click_slow, double_click, and several_click.

Remember that the patient has to click once when a target appears, and must
not click at all if no signal was sent before (which is the case at the beginning of
the game) or if a decoy appears. In this model, for each new signal, we check how
the patient behaved for the previous one. It is thus crucial to memorize what was
the previous signal to determine whether the patient displayed the correct behavior
or not. That is why the goal of the seven remaining Boolean variables is to mem-
orize the previous signal. This information is transmitted from one state to the
other to validate the correctness of the patient’s action. These seven variables are
curr_train, curr_targ, curr_deco, prev_train, prev_targ, prev_deco, and prev_none. Vari-
ables curr_targ and curr_deco are true if the model goes through transitions leading to
a target or a decoy. The same goes for curr_train if the model goes through transitions
leading to a training signal. prev_none is true only at the beginning of the game and is
set to false when the game takes a transition associated with the transiting label. Ev-
ery transition with this transiting label leads to an update of the variables prev_train,
prev_targ, and prev_deco with the values of curr_train, curr_targ, and curr_deco. To
manage every transition of this model, we had to spell them out for each possible
combination of the following elements: nature of the previous signal, nature of the
new signal, and speed of occurrence of the new signal. When the end of the game
is about to be reached, we consider the combination of these elements: nature of the
previous signal and speed at which the end screen will appear. Depending on the
transition, the probabilities associated with the actions vary.

The probability for the anticipate action is computed taking into account the time
lap preceding the previous signal. The longer it was, the higher the probability,
inducing a global decrease of the probabilities of all the other actions. The probabil-
ities for unique click (fast or slow), several click, double-click and no click actions mainly
depend on the nature of the signal and on the elapsed time since the beginning of
the game. These probabilities are computed with a different function depending on
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the phase of the game (first training signal, training phase, regular phase). These
functions refer to variables belonging to the observer module.

The observer module is composed of eight integer variables and a Boolean one.
The variables time_betw_sign and prev_time_betw_sign both range from 1 to 3. De-
pending on the speed of a signal, they take one of the values of this range. If the
signal is fast, the value is 1; if it is medium, the value is 2, and if it is slow, the value
is 3. These values correspond to a logical time, that will be mapped on real time
values, thanks to configuration constants (see the beginning of this section).

When going through transitions that hold the label transiting, prev_time_betw_sign
takes the current value of time_betw_sign. The variable total_time ranges from 0 to the
maximum duration of the game. This maximum is obtained when all signals occur
slowly. Since there are 19 signals plus the end of the game (thus 20 signals) and since
each of them has a non-zero probability to be slow (represented by the value 3), the
maximum (logical) duration is 60 (20 x 3).

Variable total_time is incremented by 1, 2, or 3 logical time units depending on
the speed of the signal. Variable num_action is an integer ranging from 0 to the to-
tal number of signals plus one (because we consider also the potential action per-
formed before the occurrence of the first signal). num_act_targ and num_act_deco are
both integer variables ranging from 0 to the maximum number of occurrences of
the corresponding signal. Although these three variables are not mandatory for the
model definition, they are necessary to express some of the behavioral properties
in the next section. To increment num_act_targ and num_act_deco we use variables
memo_targ and memo_deco, which can take the value 0 or 1 depending on the nature
of the previous signal. For example, if the current signal is a target, memo_targ is
updated to 1 while memo_deco is updated to 0. In the next transition, num_act_targ
will be updated to num_act_targ + memo_targ and num_act_deco will be updated to
num_act_deco + memo_deco.

The Boolean variable transiting is true when the model enters a transiting state.
The purpose of this variable is to facilitate the expression of interesting properties in
the next section.

To compute the probabilities of the patient actions, we use three variables: one
from the game module (num_sign), the others from the observer module (total_time
and prev_time_betw_sign). This paragraph only presents probabilities expected after
the end of the training phase. Listing 2.6 shows the probabilities associated with
most of the actions that a patient can perform on the apparition of a target.

//probability of anticipation for the previous target
formula proba_anticipate = 0.05
+(0.05 * prev_time_betw_sign/time_betw_sign_max)
+(0.10 * total_time/total_time_max)
+(0.05 * num_sign/num_sign_max) ;

const mu = 34;
const sigma = 9;

//probability of click exactly once for the previous target
formula gaussian_probability_targ = (1/(sigma * pow(2x0.2,1/2)))
* pow(1.359, -pow(((num_sign + total_time)- mu)/sigma, 2));

//probability of fast click ezactly once for the previous target
formula proba_good_click_fast = (0.25+(gaussian_probability_targ)
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-(0.08 *((num_sign + total_time)/50)))
*(1 - proba_anticipate);

//probability of slow click exactly once for the previous target

formula proba_good_click_slow = ((0.5 - gaussian_probability_targ)

- (0.05*((num_sign + total_time)/50)))*(1 - proba_anticipate)

//probability of more than two clicks for the previous target
formula proba_several_click_targ = 0.175
-(0.0075%(150/ (num_sign + total_time)));

//probability of no click at all for the previous target
formula proba_bad_not_click = 1/3%(
1 - proba_good_click_fast - proba_good_click_slow
- proba_several_click_targ - proba_anticipate);

LISTING 2.6: Probability computing for a target appearing after the
training phase.

Formula proba_anticipate gives the probability for the patient to click on the screen
in anticipation. This probability depends on three factors: the time elapsed be-
tween the previous signal and the signal that just appeared, the total time that has
elapsed since the beginning of the game, and the number of signals that have ap-
peared since the beginning of the game. Formula gaussian_probability_targ helps
compute the Gaussian-like functions corresponding to the actions of a good fast
and a good slow click (respectively proba_good_click_fast and proba_good_click_slow).
In these three formulas, many constants are used so that the two last equations
may fit the expected behaviors. This massive use of constants, necessary in PRISM
to represent such Gaussian-like functions, may introduce difficulties for the future
step of model calibration (step 6 of figure 2.2). Formulas proba_good_click_fast and
proba_good_click_slow are both normalized with respect to the probability for the pa-
tient to anticipate (proba_anticipate). Formula proba_several_click_targ also depends
on several constants to fit the expected behavior: in this case, practitioners foresee,
as the game goes, a slight increase of repeated clicks. Formula proba_bad_not_click
depends on all probabilities previously computed.

Once again, all formulas (especially their numerical parameters) have been de-
tined a priori to correspond to behaviors expected by medical practitioners (see step
1 of figure 2.2). All the parameters will be adapted with respect to the results of
clinical experimentation.

2.6.2 Verification

To ease the comprehension of the following section, table 2.8 summarizes the corre-
spondence between the model variables and what they represent.

Since the reachability property is similar to the one of the first model (see sec-
tion 2.3.2), we will not describe it in this section. For this model, the model checker
takes 1.225 s to check this property.

Medically Oriented properties

The following properties check how the patient performs on this game.

>
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Variable Representation
prev_targ Boolean indicating if the previous signal was a target
prev_deco or a decoy.

prev_signal

Variable name used in properties to refer to one
of the following variables: prev_targ, prev_deco.

transiting Boolean indicating if the model is in a transition state
click_fast Boolean indicating if the patient clicked in a fast or
click_slow slow way for the previous signal.

several_click

Boolean indicating if the patient clicked more than
once for the previous signal (excluding a single
double clicking).

not_click

Boolean indicating if the patient did not click at all
for the previous signal.

double_click

Boolean indicating if the patient double clicked
once for the previous signal.

action Variable name used in properties to refer to one or more
of the following variables: click_fast, click_slow,
several_click, not_click or double_click
num_sign Integer variable counting the number of
signals that have been displayed.
num_action Integer variable counting the number of

actions that have been done by the patient.

num_act_targ
num_act_deco

Integer variables counting the number of actions
done by the patient for a target or for a decoy.

num_act Variable name used in properties to refer to one
of the following variables: num_action,
num_act_targ or num_act_deco.
next_end Boolean indicating that the end of the game is reached.
game_on Boolean indicating if the game is on or off.

TABLE 2.8: Summary of Inhibitory Control game model variables.
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Property Result Time(seconds)
Property 1 | 4.7734 x 10~* 0.446
Property 2 | 2.5042 x 107! 0.474
Property 3 | 5.4716 x 10~/ 0.415
Property 4 | 7.2736 x 108 0.339
Property 5 | 1.1900 x 10~* 0.272
Property 6 | 2.1374 x 10~* 0.53

TABLE 2.9: Results from property 1 to 6.

Property 1. = What is the probability for the patient to click exactly once on each
target?

P =? [G (prev_targ & 'transiting) => (click_fast | click_slow)]

Property 2.  What is the probability for the patient to click several times on the
same decoy?

P =? [F (prev_deco & transiting & several_click)]

Property 3. What is the probability for the patient to click several times on each
decoy?
P =? [G (prev_deco & !transiting) => (several_click)]

Property 4. What is the probability for the patient to click several times on each
signal?

P =? |G ((prev_deco | prev_targ) & !transiting) => (several_click)]

Property 5. What is the probability for the patient to do the right action on each
signal until the thirteenth?
P =? [(((prev_targ & 'transiting) => (click_fast | click_slow)) &
((prev_deco & !transiting) => (not_click))) U (num_sign = 13)]

Property 6. What is the probability for the patient to do the right action on each
signal from the thirteenth until the last signal?

P =? [(((num_sign >= 13 & prev_targ & !transiting) => (click_fast | click_slow))

& ((num_sign >= 13 & prev_deco & !transiting) => (not_click)))
U (next_end & !game_on)]

Property 7. What is the average accumulation of good answers on targets at the
end of the game?

R{"”good_on_target”} =? [F (Igame_on & next_end)]

Discussion The results for these properties are displayed in table 2.9 and table 2.10,
together with their computing times.

The probability obtained for property 1 is rather low (of the order of 5 x 10~*):
this is due to the repetition of the action on each target.
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Property Result | Time(seconds)
"good_on_target” | 5.55 1.637
"good_on_decoy” | 0.86 1.459
"good_on_signal” | 6.42 1.785
"bad_on_target” | 4.44 1.448

"bad_on_decoy” | 4.13 1.855
"bad_on_signal” 8.57 1.437

TABLE 2.10: Results of property 7 for various rewards.

Property 2 computes the probability for the patient to click several times on at
least one decoy, which is an incorrect action. The result is 0.25 which is a high proba-
bility. To draw a parallel with property 1 we consider the probability to click several
times on each decoy, which is property 3. This property gives 5.47 x 107 which is
far lower than the result of property 1 by a factor of 10°. This was to be expected
since the probability of clicking several times on each decoy is close to 0.05.

Property 4 goes further by checking the probability for the patient to click several
times on each signal. The result for this property is 7.27 x 10~8, which is, as expected,
lower than property 3.

Properties 5 and 6 check the probabilities for the patient to perform the right
action, whatever the signal is, within a range of signals. Property 5 checks this prob-
ability for the range going from the beginning of the game until the apparition of
the thirteenth signal. The answer is 1.19 x 10~%, which is consistent with the result
obtained for property 1. Property 6 checks the probability to perform the right ac-
tions from the thirteenth signal until the end of the game. The probability for this
property is 2.13 x 10~%. The probability to perform a correct action before or after the
thirteenth signal are really close. Given that after this signal there are six signals left,
the chances to give good answers after the thirteenth signal are lower than before.

Property 7 is reward-based and gives an idea of the overall performance of a
patient during the game. It checks the average amount of good actions done by a
patient on a target. The results for this property and for other behavior-related re-
wards are displayed in table 2.10, together with their computing times. The model
checker takes approximately 1.5 seconds to give the result of these properties. The
reward “good_on_signal” shows that the average amount of good answers for a pa-
tient represented by this model is 6 out of the 15 non-training signals, which is pretty
low.

Possible medical significance Even though the patient has low chances to perform
one of the worst behaviors (clicking several time on each picture would indicate
some severe damages to the inhibitory control functions), she also has low chances
to give a good performance. The reward related results are consistent with these
low chances According to medical practitioners, this behavior could be observed
on patients suffering from early stages of dementia diseases such as Alzheimer or
Parkinson.

Evolution of probabilities and cumulative rewards

In this subsection, we present several diagrams obtained with the "run experiment"
tool of PRISM. These diagrams summarize the evolution of the model along time
concerning the ability of the patient to perform good or bad actions and provide a
better understanding on how the fatigue can influence the patient’s behavior.
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The first three diagrams present the evolution of the probabilities during the
game. Figures 2.18, 2.19, and 2.20 present the results of the following property.

Property 8. What is the probability to perform "action" for the game output number
i?
P =? [ F (num_act = i & prev_signal & (action) & !transiting)]

In this property, num_act and action are generic variable names that may refer to
any variable described in table 2.8.

Figure 2.18 shows the results for property 8 with num_act equal to num_act_targ,
prev_signal equal to prev_targ and with action being a Boolean presented in the legend
of the figure. This figure depicts the training ability of the patient. Indeed, after the
last training target (target number 3), the patient still progresses and has a higher
probability to click fast on the following targets. However, only the speed improves,
not the correctness.

After a certain point in time (the eighth target), the fatigue of the patient shows
its effect with a drastic decrease of the probability to click fast for the benefit of click-
ing slow or of performing a bad action. The probability to click several times on a
target reaches a plateau around 0.15, which means that, even though this probability
increased with the fatigue, it is still a rare phenomenon at the end of the game.

Figure 2.19 shows the results for property 8 with num_act as num_act_deco and
prev_signal as prev_deco. In this figure the peak performance of the patient is around
the second and third decoy. After that, there is a drastic decrease of the patient’s
performance in term of inhibitory control.

Figure 2.20 describes the results for property 8 with num_act as num_action and
prev_signal and action as a combination of prev_none, prev_targ and prev_deco with
their corresponding good or bad actions. This figure gives a global idea of the pa-
tient’s behavior and we clearly see the good effect of the training signals between
action 2 and 6 but, starting from action 10, the patient does more bad actions than
good ones.

The next figures 2.21 and 2.22 present the result for the following cumulative
reward property:

Property 9. What is the amount of good answers within 7 steps?

R{"”good_on_target”} =? [C <= i]

We applied the same property to other rewards: “good_on_target”, "good_on_decoy”,
"good_on_signal” (the sum of the previous ones), "bad_on_target”, "bad_on_decoy”,
and "bad_on_signal” summing the results of “bad_on_target” and "bad_on_decoy”.

The two figures 2.21 and 2.22 display "stair-like" diagrams. This is due to the
presence of transition states in which the model does not accumulate any reward.
We see the consequences of the results from figure 2.20. Indeed, the accumula-
tion of good_on_decoy value around step 22 decelerates while the accumulation of
bad_on_signal value accelerates. To summarize, while figure 2.20 gives a clear and
precise idea of the probability distribution within a whole game session, figures 2.21
and 2.22 give views on the consequences of this distribution. These three figures can
thus be used to verify and calibrate the model. Indeed, in a first step, figures 2.21 and
2.22 can be compared to the average behavior of patients to simplify fault-finding.
If they do not match, they give a hint on the position of the error. Then, this position
can be approximately found on figure 2.20 and helps to understand where and how
the probability distribution is erroneous.
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Remarks on the Inhibitory Control game model Surprisingly, although this game
is very simple to describe and only involves two signals, it was more difficult to
model than the previous ones. This is mainly due to the many ways it may fail as
well as succeed. This difficulty also pushed PRISM to its limits as the time for model-
checking is rather longer than for the two first games (up to 1 or 2 seconds compared
to a few hundredths of seconds for the other games). This may not seem significant,
but adding one parameter or modifying one (for example, setting num_targ_max to
20 + num_targ_training instead of 10 4+ num_targ_training) leads to a full night com-
putation and does not even terminate (the PRISM process consumes most of the CPU
time, yet far from saturating the memory).

2.7 Experience Feedback

Translating the rules of the different games (as given by medical practitioners) into
a formal model suitable for model checking is not straightforward and there is no
unique modeling approach, let alone a translation tool. This process highly depends
on the modeler’s personal experience with the selected tool and with activity model-
ing. In the previous sections, we described our modeling approaches for three differ-
ent serious games, each having its own requirements. These three models not only
satisfy the requirements but also permit verification with model-checking. However,
as mentioned before, we are aware that this approach is not the only possible one.

First, for a given game, more than one model may be necessary, at least possi-
bly two of them: one for the patient’s behavior and the other one for the program
that implements the game. The patient’s model should represent possible "deviant"
behaviors with respect to the rules. The game model represents, on the one hand,
the intrinsic game strategy and, on the other hand, possible reactions to patients’
actions. These two models, although different, must communicate and exchange
various kinds of information. In our case, PRISM provides a synchronization mech-
anism based on transition labels. This mechanism corresponds to a rendez-vous com-
munication: the first module which reaches a transition waits for the other ones
to reach the transition bearing the same label. Second, on the formal side, all the
models must satisfy the applicability hypotheses of model checking in particular a
discrete and bounded time and a finite (possibly huge) state space. In case these
hypotheses do not hold, it is necessary to slightly modify the game while keeping its
basic principles. For this purpose, serious games specialists should be involved once
more to validate the required changes and to respect the game purposes. Examples
of parameter tuning include reducing the bounding game duration or limiting the
number of steps in the game. This feedback loop between game implementation and
model design helps manage model complexity.

When modeling our case study games, we adopted and implemented different
modeling strategies corresponding to the specific features of each game. Based on
our modeling experience with these three serious games, we identified three differ-
ent factors impacting the difficulty to model a serious game. These factors are: time,
past event dependency, and action randomness. These factors, even more when they
are combined, may prevent game modeling unless the game parameters are tweaked
suitably.
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2.7.1 Game Models

The Code game only requires that the patient touches pictures displayed onto the
screen within five minutes. The quality of the answer for each picture is right or
wrong and does not depend on the picture itself nor on past events. The only factor
of difficulty in this game is its timed aspect which makes it rather easy to model. In
this kind of games, only the patient’s model is needed: it is a simple state machine
which is the same for all the game steps. Of course time must be discretized.

In the Recognition game the patient’s answer is based on previous game events.
Thus, this game requires two models, one representing the game sequence of events,
the other the patient’s behavior. For the patient’s model to take past game events
into account, the states of the automaton for a game step reflect the event history
that allowed to reach them. Thus the patient’s model can adjust the probabilities as-
sociated with state transitions depending on the current state of the second model,
the game one. In a previous version of this game, the sequence of events was entirely
random. The combination of the past event dependency, the random aspect but also
the size of the game made model-checking difficult. After discussion with special-
ists, the random aspect was removed. In its current version, the only difficulty that
remains is to model past event dependency. Even though the physical time is not a
parameter of such games, we include it in the patient’s model when it is relevant to
the patient’s behavior analysis.

In the Inhibition Control game the patient has to perform an action, as fast as
possible, based on the random display of a visual signal. To model this game, as for
the previous game, we need two models. However, the game model is more complex
than for the Recognition game: it must incorporate the random selections of both the
signal to display and the delay to display it. This random behavior greatly increases
the state space. Thus, this game combines the three factors of difficulty (time, past
event dependency, and randomness) making it the most complicated game to model.

The solutions we presented can be seen as a first contribution to set up a method-
ology of serious game modeling. To precisely define this methodology, to refine and
validate it, more games with similar and different features should be modeled.

2.7.2 PRISM and Storm Comparison

In this section we compare PRISM and Storm results on all properties described in
the previous sections (from 2.3 to 2.6). For the sake of readability, all results are
truncated to 3 decimals but they are generally equal (in PRISM and Storm) down to
the ninth decimal.

In some rare cases, we noticed a difference in the results given by PRISM and
Storm. With the help of Tim Quatmann of the Storm team, we figured out that the
accuracy of PRISM and Storm are not the same. Indeed, when computing properties,
PRrISM algorithms often use iterative numerical methods. The iteration stops once
the maximum difference between elements in the solution vectors drops below a
threshold named "termination epsilon". This threshold is set by default to 10~° but
can be redefined by the user. In the cases when PRISM does not give the same result
as Storm, the threshold is not low enough and changing it to 10~!2 solves the issue.
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Code game models

In the following tables’, properties are numbered as in sections 2.3 to 2.6. When
several properties are given the same main number, it indicates that they are all
derived from a generic property with the same number in the previous sections to
obtain real implementations of properties that can be tested. For example, property 8
from subsection 2.6.2 is written as follows in this subsection:

P =? [ F (num_act = i & prev_signal & (action) & !transiting)]

where num_act, i, prev_signal and action are generic variables that have to be re-
placed with actual variables such as in:

P =? [ F (num_act_targ =5 & prev_targ&(several_click)&!transiting)]

to be able to test it. Another case is for example property 8 from subsection 2.3.2
which was written using the reward associated with happy smileys:

R{”Happy_smiley_reward”} =?[F (location = location_max)]
but which can also be written with other rewards, for instance
R{”Sad_smiley_reward”} =?[F (location = location_max)]

The two first tables (2.11 and 2.12) display the computation times for the two
Code game versions, with and without taking fatigue into account.

Property number and formula PRISM Storm
Result Time Result Time
1- P=? [F location=location_max] 1.0 0.002 1.0 0.002
2- P=? [F (selection=0) &
(inactivity=inactivity_max)] 8.544E-19 | 0.007 | 8.544E-19 | 0.001
3- P=? [F (selection=selection_max) &
(inactivity=0)] 3.050E-13 | 0.019 | 3.050E-13 | 0.001
4- P=? [F (selection=43)
&(inactivity=18)] 2.318E-2 | 0.017 | 2.318E-2 | 0.003

5a- P=? [F ((selection=0)
& (inactivity=0))

U (location=location_max)] 4.997E-4 | 0.03 - -
5b- P=? [((selection=0) & (inactivity=0))
U (location=location_max)] 4.997E-4 | 0.002 | 4.997E-4 | 0.000
6- P=? [F (quit_game)] 3.136E-2 | 0.028 | 3.136E-2 | 0.004
7- R"Happy_smiley_reward">=30
[F location=location_max] true 0.016 true 0.005

TABLE 2.11: Code game without fatigue: results of properties 1 to 7
and computation times (in seconds).

Regarding property 5, it belongs to PLTL but not to PCTL. Indeed, finding a
formula expressing "in the future" and "until" using only one operator is challenging.
However, both Code game models (with and without fatigue) are particular cases.
Indeed, the formula "What is the probability for patients to take a path in which, at

9For the sake of page layout, in the tables of this section, the notation "x10**" is replaced by "Exx’
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Property number and formula PRrRIsSM Storm
Result Time Result Time
1- P=? [F location=location_max] 1.0 0.002 1.0 0.001
2- P=? [F (selection=0) &
(inactivity=inactivity_max)] 2.173E-17 | 0.027 | 2.173E-17 | 0.001
3- P=? [F (selection=selection_max) &
(inactivity=0)] 4.896E-16 | 0.029 | 4.896E-16 | 0.001
4- P=? [F (selection=43)
& (inactivity=18)] 1.229E-2 | 0.162 | 1.229E-2 | 0.002
5a- P=? [F ((selection=0) & (inactivity=0))
U (location=location_max)] 4997E-4 | 0.04 - -
5b- P=? [((selection=0) & (inactivity=0))
U (location=location_max)] 4.997E-4 | 0.003 | 4.997E-4 | 0.000
6- P=? [F (quit_game=true)] 6.395E-1 | 0.236 | 6.395E-1 | 0.004
7- R"'Happy_smiley_reward">=30
[F location=location_max] false 0.228 false 0.005

TABLE 2.12: Code game with fatigue: results of properties 1 to 7 and
computation times (in seconds).

some point in the future, their selection and activity score are equal to zero until they
leave the game?" verifies the same paths as the formula "What is the probability for
patients to keep their selection and activity score equal to zero until they leave the
game?". As a result, both formulas 5a and 5b have the same probabilities.

Regarding speed performance, Storm is slightly faster than PRISM with a gain
factor of the order of 10 for properties 3, 4, 6, and 7 of table 2.11 and for properties 2
and 3 and of table 2.12. Storm can be even faster on other properties with, for ex-
ample, a gain factor of the order of 100 for properties 4, 6, and 7 of table 2.12. This
difference between PRISM and Storm is due to the increased size of the model com-
pared to the model without fatigue.

The next tables focus on the last properties of the two Code game versions. The
PRrISM formulation of property 9a is rather complex. Because of the the nesting of
G operators, it is impossible to verify this formula with Storm. Indeed, this type of
nesting (which characterizes PLTL formulas included in PCTL*) is not supported by
Storm. Thus, following Tim Quatman’s advice, we wrote another formula in pure
PCTL (property 9b) that checks the same paths for Storm. This new property relies
on probabilities to gather rewards, a feature not supported by PRISM. The probabil-
ity to verify this property is exactly the same as in PRISM.

The different properties labeled as 11 show, for each different reward, the same
particular case of property 11 used for figure 2.6 "Average duration of the game
obtained with model checking" in subsection 2.3.2. We arbitrarily chose the case
where i = 50 to compare results and computation times for both model checkers

As seen in the previous pair of tables, Storm can be faster in some cases, espe-
cially with the model that takes the fatigue into account. We can highlight property 9
from both table 2.13 and table 2.14 as they respectively take 1.92 and 3.717 seconds
to be computed by PRISM whereas Storm computes them within 0.288 and 0.315
second.

The two Code game models were useful to compare PRISM and Storm as they
started to show a difference in computation as well as some limits and features from
both model checkers.
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Property number and formula

PRrIisM

Storm

Result

Time

Result

Time

8a- R"Happy_smiley_reward"=?
[F location=location_max]

31.364

0.016

31.364

0.005

8b- R"Sad_smiley_reward"=?
[F location=location_max]

15.682

0.015

15.682

0.005

8c- R"Non_interaction_reward"="?
[F location=location_max]

15.682

0.015

15.682

0.005

9a- P=? [(F happy_smiley) &
(G((happy_smiley) =>
(X G Thappy_smiley &
Iquit_game)))]

3.301E-12

1.92

9b- P=? [true U "
{rew{"Happy_smiley_reward"}<=1,
rew{"Happy_smiley_reward"}>=1,
rew{"Leave_game_reward"}<=0}
(location = 2)]

3.301E-12

0.288

TABLE 2.13: Code game without fatigue: results of properties 8 to 9
and computation times (in seconds).

Property number and formula

PRrRISM

Storm

Result

Time

Result

Time

8a- R"Happy_smiley_reward"=?
[F location=location_max]

18.385

0.227

18.385

0.005

8b- R"Sad_smiley_reward"=?
[F location=location_max]

13.942

0.222

13.942

0.005

8c- R"Non_interaction_reward"=?
[F location=location_max]

12.461

0.222

12.461

0.005

9a- P=? [(F happy_smiley) &
(G ((happy_smiley)
=>(X G thappy_smiley &
'quit_game)))]

1.647E-9

3.717

9b- P=? [true U "
{rew{"Happy_smiley_reward"}<=1,
rew{"Happy_smiley_reward"}>=1,
rew{"Leave_game_reward"}<=0}
(location = 2)]

1.647E-09

0.315

TABLE 2.14: Code game with fatigue: results of properties 8 to 9 and
computation times (in seconds).

Recognition game model

The next table (2.17) presents the results for a big part of the Recognition game prop-
erties. As property 8 is quite long to express in PRISM, it will be presented separately.

The model checking of the Recognition game model shows fewer differences in
term of computation time as none of the checked properties showed a speed gain
factor of the order of 10. On the other hand, a slight difference in the results tends
to show a difference in the algorithm’s accuracy. Properties 2, 4, and 5a show really
small differences as the results are of the same order of value. Property 5b shows a
slightly bigger difference as PRISM gives 0 and Storm gives 1.815 x 10713, which is
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Property number and formula PRrRISM Storm
Result | Time | Result | Time

10- P=? [F (selection=1 &

happy_smiley)] 6.662E-1 | 0.005 | 6.662E-1 | 0.001
11a- R"Happy_smiley_reward"=?
[C<=50] 23.708 0.01 23.708 | 0.002

11b- R"Sad_smiley_reward"=? [C<=50] 11.854 | 0.011 | 11.854 | 0.001
11c- R"Non_interaction_reward"=?

[C<=50] 11.854 | 0.011 11.854 | 0.001
11d- R"Leave_game_reward"=? [C<=50] | 2.370E-2 | 0.007 | 2.370E-2 | 0.001
11e- R"Gaming_time"=? [C<=50] 225.227 | 0.007 | 225.227 | 0.001

TABLE 2.15: Code game without fatigue: results of properties 10 to
11 and computation times (in seconds)

Property number and formula PRISM Storm
Result | Time | Result | Time
10- P=? [F (selection=1 &
happy_smiley)] 6.633E-1 | 0.004 | 6.633E-1 | 0.001
11a- R"Happy_smiley_reward"=?
[C<=50] 16.680 0.23 16.680 | 0.001
11b- R"Sad_smiley_reward"=?
[C<=50] 11.817 | 0.215 | 11.817 | 0.001
11c- R"Non_interaction_reward"="?
[C<=50] 10.733 | 0.216 | 10.733 | 0.001
11d- R"Leave_game_reward"=? [C<=50] | 4.714E-1 | 0.216 | 4.714E-1 | 0.001
11e- R"Gaming_time"=? [C<=50] 192.831 | 0.221 | 192.831 | 0.001

TABLE 2.16: Code game with fatigue: results of properties 10 to 11
and computation times (in seconds)

however still close to 0. These differences are corrected when the termination epsilon
is set to 10712,

Property 8 of subsection 2.5.2 can be divided into two properties. The first one
checks for the probability to give a good answer on picture number i where i = 30:

P =? [F (nb_pictures = 30 & ((choose_folder & (nb_pictures <=3

| nb_pictures =5 | (nb_pictures >= 7 &nb_pictures <= 8)
nb_pictures = 11 | nb_pictures = 13 | (nb_pictures >= 15 & nb_pictures <= 16
P P p 14
| (nb_pictures >= 26 & nb_pictures <= 27) | nb_pictures = 30
nb_pictures >= 34 & nb_pictures <= 36) | (nb_pictures >= 38
| (nb_p p p
& nb_pictures <= 39) | nb_pictures = 6 | nb_pictures = 18 | (nb_pictures >= 21
& nb_pictures <= 23) | nb_pictures = 28 | nb_pictures = 32 | nb_pictures = 40
p p p p
nb_pictures = 10 | nb_pictures = 14 | nb_pictures = 19 | nb_pictures = 29
P P P P
nb_pictures = nb_pictures = nb_pictures = nb_pictures =
b_pi 9| nb_pi 33 | nb_pi 4 | nb_pi 24
choose_bin nb_pictures = nb_pictures = nb_pictures =
| (ch bin & (nb_pi 17 | nb_pi 20 | nb_pi 25
| nb_pictures = 37 | nb_pictures = 12 | nb_pictures = 31))))]
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Property PRrRISM Storm
Result | Time Result Time

Oa- P=? [F finish_play & !game_on] 9.921E-1 | 0.047 | 9.921E-1 | 0.029
Ob- P=? [F finish_play &

!front_screen] 1.0 0.014 1.0 0.007
1- P=? [F (counter=40 &

'front_screen & !quit_game)] 1.022E-3 | 0.006 | 1.022E-3 | 0.005
2-P=? [G (game_on | (game_on

& nb_pictures=0)

| (nb_pictures>=1 & !choose_bin)

& !quit_game)] 9.304E-4 | 0.031 | 9.295E-4 | 0.023
3- P=? [F (hesi_count=5)] 2.935E-2 | 0.029 | 2.935E-2 | 0.020
4- P=? [F (counter=240)] 0.0 0.005 | 1.676E-113 | 0.006
5a- P=? [F (counter=85)] 1.525E-13 | 0.02 | 4.919E-13 | 0.011
5b- P=? [F (counter=86)] 0.0 0.02 | 1.815E-13 | 0.011
5¢- P=? [F (counter=30)] 9.952E-1 | 0.006 | 9.952E-1 0.002
6a- R"good_answered"=?

[F finish_play & !front_screen] 30.002 0.105 30.002 0.027
6b- R"good_answer_fold"=?

[F finish_play & !front_screen] 28.762 0.106 28.762 0.030
6c- R"good_answer_bin"=?

[F finish_play & !front_screen] 1.240 0.092 1.240 0.027
6d- R"total_time_hesitate"=?

[F finish_play & !front_screen] 7.523 0.092 7.523 0.026
7- P=? [F (nb_pictures=30

& hesitate)] 9.942E-2 | 0.016 | 9.942E-2 | 0.018s
9a- R"good_answered"=? [C<=30] 17.701 0.013 17.701 0.004
9b- R"good_answer_fold"=? [C<=30] 17.042 0.023 17.042 0.004
9c- R"good_answer_bin"=? [C<=30] 6.585E-1 | 0.015 | 6.585E-1 0.004
9d- R"total_time_hesitate"=? [C<=30] 5.194 0.01 5.194 0.004
9e- R"total_time_spent"=? [C<=30] 27.932 0.013 27.932 0.004
10- P=? [F (counter=30 & hesitate)] 1.170E-1 | 0.007 | 1.170E-1 | 0.008

TABLE 2.17: Recognition game results and computation times (in sec-
onds) for properties 6 to 10

The second one checks for the probability to give a good answer on instant number
i where i = 30:

P =? [F (counter = 30 & ((choose_folder & (nb_pictures <=3

| nb_pictures = 5 | (nb_pictures >= 7 & nb_pictures <= 8) | nb_pictures = 11
| nb_pictures = 13 | (nb_pictures >= 15 & nb_pictures <= 16)
| (nb_pictures >= 26 & nb_pictures <= 27) | nb_pictures = 30
| (nb_pictures >= 34 & nb_pictures <= 36) | (nb_pictures >= 38
& nb_pictures <= 39) | nb_pictures = 6 | nb_pictures = 18 | (nb_pictures >= 21
& nb_pictures <= 23) | nb_pictures = 28 | nb_pictures = 32 | nb_pictures = 40
| nb_pictures = 10 | nb_pictures = 14 | nb_pictures = 19 | nb_pictures = 29
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| nb_pictures =9 | nb_pictures = 33 | nb_pictures = 4 | nb_pictures = 24))
| (choose_bin & (nb_pictures = 17 | nb_pictures = 20 | nb_pictures = 25
| nb_pictures = 37 | nb_pictures = 12 | nb_pictures = 31))))]

PRrRISM and Storm give the same result on both properties (8.296 x 10~ for the first
version and 6.138 x 107! for the second version) for approximately the same com-
putation time (respectively 0.03s and 0.02s for PRIsM; 0.019s and 0.008s for Storm).
The reason these properties have so long formula is that for each instant checked by
the model checker, we want to verify which picture is associated with this instant
to know in which category it shall be sent to ("first-seen" or "duplicate") and what is
the action performed by the player.

This third model did not show any major difference in computation speed be-
tween PRISM and Storm but it did show some slight differences in results.

Inhibitory Control game model

The next following tables show the results and computation times of the Inhibitory
Control game model checking.

Property PRISM Storm
Result | Time | Result | Time

0- P=? [F (!game_on & next_end)] 1.0 0.429 1.0 0.132
1- P=? [G (prev_targ & !transiting)

=> (click_fast | click_slow)] 4.773E-4 | 0423 | 4.773E-4 | 0.464
2- P=? [F (prev_deco & !transiting

& several_click)] 2.504E-1 | 0.488 | 2.504E-1 | 0.516
3- P=? [G (prev_deco & !transiting)

=> (several_click)] 5.471E-7 | 0.371 | 1.057E-08 | 0.436
4-P=? [G ((prev_deco | prev_targ)

& ltransiting) => (several_click)] | 7.273E-08 | 0.241 | 1.110E-16 | 0.338

TABLE 2.18: Inhibitory Control game property results and computa-
tion times (in seconds) for properties 0 to 4.

The first table (2.18) does not show any major differences in PRISM and Storm
computation times but it shows some differences in the results. Property 3 shows
a difference (corrected by the termination epsilon calibration) of a factor of 10 and
property 4 shows a difference of a factor of 10%. The latter difference is reduced to
103 with a termination epsilon of 10~!2. It seems that the model checking algorithm
is more accurate in Storm than in PRISM. To better understand this observation, we
asked the Storm development team for an opinion. They noticed that this model is
kind of acyclic. As Storm has specifically tailored algorithms for this type of models,
this might be the reason why it is relatively easy to solve for it.

In the second table (2.19) there is a slight difference of computation speed for
property 5.

In table 2.20, the properties labeled as 7 show differences in computation speed
with approximately 1.5s for PRISM and 0.5s for Storm. Notably with property 7a
for which PRISM takes 2.428 s whereas Storm only takes 0.534 s to compute it. This
computation time can be explained because this property computes the average ac-
cumulation of rewards from the beginning of the game until its end. Thus, a large
part of the model states are explored to compute this property. It seems that Storm
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Property PRISM Storm
5- P=? [(((prev_targ & !transiting)
=> (click_fast | click_slow))
& ((prev_deco & !transiting)
=> (not_click))) U (num_sign=13)] | 1.190E-4 | 0.211 | 1.190E-4 | 0.076
6- P=? [(((num_sign>=13 & prev_targ
& transiting) )
=> (click_fast | click_slow))
& ((hum_sign>=13)
& prev_deco & !transiting)
=> (not_click))) )
U (next_end & !game_on)] 2.137E-4 | 049 | 2.137E-4 | 0.377
TABLE 2.19: Inhibitory Control game property results and computa-
tion times (in seconds) for properties 5 to 6.
Property PRrRISM Storm
7a- R"good_on_target"=? [
F (!game_on & next_end) ] 5.556 2.428 5.556 0.534
7b- R"good_on_decoy"=? [
F (!game_on & next_end) ] 8.673E-1 | 1.434 | 8.673E-1 | 0.526
7c- R"good_on_signal"=? |
F (!game_on & next_end) ] 6.423 1.407 6.423 0.577
7d- R"bad_on_target"=? [F
('game_on & next_end)] 4.443 1.536 | 4.443 0.544
7e- R"bad_on_decoy"=? [F
('game_on & next_end)] 4.132 1.51 4.132 0.532
7f- R"bad_on_signal"=? [ F
('game_on & next_end) ] 8.576 1.563 8.576 0.534
8a- P=? [F (num_act_targ=>5 & prev_targ
& (click_fast) & !transiting)] 2.690E-1 | 0.155 | 2.690E-1 | 0.195
8b- P=? [F (num_act_targ=>5 & prev_targ
& (click_slow) & !transiting)] 3.404E-1 | 0.145 | 3.404E-1 | 0.168
8c- P=? [F (num_act_targ=>5 & prev_targ
& (anticipate) & !transiting)] 1.245E-1 | 0.144 | 1.245E-1 | 0.169
8d- P=? [F (num_act_targ=>5 & prev_targ
& (not_click) & !transiting)] 4.896E-2 | 0.151 | 4.896E-2 | 0.169
8e- P=? [F (num_act_targ=5 & prev_targ
& (double_click) & !transiting)] 9.792E-2 | 0.141 | 9.792E-2 | 0.167

TABLE 2.20: Inhibitory Control game property results and computa-

tion times (in seconds) for properties 7 to 8.

explicit engine is more suited for exploring large models. Its algorithms may better

suit our models.
Table 2.21 shows a slight difference of a factor of 5 in the computation time of

property 9a for which PRISM takes 0.551s and Storm takes 0.094s.

The next following tables show properties for the Inhibitory Control game that

are not mentioned in subsection 2.6.2. These properties concern the model itself and
were not discussed with practitioners.
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Property PRISM Storm

9a- R"good_on_target"=? [ C<=25 ] 2789 10551 | 2789 | 0.094
9b- R"good_on_decoy"=? [ C<=25] | 6.000E-1 | 0.146 | 6.000E-1 | 0.092
9¢- R"good_on_signal"=? [ C<=25 ] 3389 | 0.165| 3.389 | 0.093
9d- R"bad_on_target"=? [ C<=25 ] 1.877 | 0153 | 1.877 | 0.091
9e- R"bad_on_decoy"=? [ C<=25] 1.733 | 0.148 | 1.733 | 0.094
9f- R"bad_on_signal"=? [ C<=25] 3.610 | 0.175| 3.610 | 0.092

TABLE 2.21: Inhibitory Control Game property results and computa-
tion times (in seconds) for properties 9

Property

PRrIisM

Storm

10- P=? [F (num_act_targ>3)
& num_act_targ=5
& prev_targ)
& (click_fast | click_slow))]

8.420E-1

0.152

8.420E-1

0.163

11- P=? [ F (num_act_targ=>5 & prev_targ
& (several_click) & !transiting) ]

1.190E-1

0.672

1.190E-1

0.183

12- P=? [F (num_act_targ=5 & prev_targ
(click_fast | click_slow | anticipate
| not_click | double_click)
| several_click)
& !transiting)]

1.0

0.152

1.0

0.019

13- P=? [F (num_act_deco>3
& num_act_deco=5
& prev_deco
& (click_fast | click_slow))]

8.450E-1

0.369

8.450E-1

0.430

TABLE 2.22: Inhibitory Control Game property results and computa-
tion times (in seconds) for properties 10 to 13

In table 2.22, the computation of property 12 is slightly faster with Storm (0.019s)

than with PrisMm (0.152s).

Property PRISM Storm
14a- P=? [F (num_act_deco=>5 & prev_deco

& (click_fast) & !transiting) ] 4.301E-1 | 0.378 | 4.301E-1 | 0.461
14b- P=? [F (num_act_deco=5 & prev_deco

& (click_slow) & !transiting)] 2.150E-1 | 0.385 | 2.150E-1 | 0.455
14c- P=? [F (num_act_deco=5 & prev_deco

& (anticipate) & !transiting)] 1.708E-1 | 0.380 | 1.708E-1 | 0.474
14d- P=? [F (num_act_deco=5 & prev_deco

& (not_click) & !transiting)] 1.123E-1 | 0.382 | 1.123E-1 | 0.444
14e- P=? [F (num_act_deco=5 & prev_deco

& (double_click) & !transiting)] 2.150E-2 | 0.375 | 2.150E-2 | 0.472
14f- P=? [F (num_act_deco=>5 & prev_deco

& (several_click) & !transiting)] 5.018E-2 | 0.371 | 5.018E-2 | 0.437

TABLE 2.23: Inhibitory Control Game property results and computa-
tion times (in seconds) for properties 14

Table 2.23 does not show any difference between both model checkers.
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Property PRrRIsM Storm

15- P=? [F (num_act_deco=5 & prev_deco
& (click_fast | click_slow | anticipate
| not_click | double_click
| several_click) & !transiting)] 1.0 0.194 1.0 0.099

16a- P=? [ F (num_action=5
& ((prev_none & (not_click))
| (prev_targ & (click_fast | click_slow))
| (prev_deco & (not_click)))
& ltransiting) ] 5.400E-1 | 0.473 | 5.400E-1 | 0.122

16b- P=? [ F (num_action=5
& ((prev_none & ('not_click))
| (prev_targ & (!click_fast & !click_slow))
| (prev_deco & ('not_click)))
& ltransiting) ] 4.599E-1 | 0.906 | 4.599E-1 | 0.122

TABLE 2.24: Inhibitory Control Game property results and computa-
tion times (in seconds) for properties 15 to 16

In table 2.24 shows that properties labeled as 16 have a slightly faster computa-
tion time with Storm compared to PRISM.

Conclusion of the comparison

The PRISM model checker engines benefit from several features such as the verifica-
tion of PCTL* properties and the "run experiments" tool which is pretty convenient
to visualize the chronology of the results under the form of diagrams. It is also easy
to install and it proposes a visual interface and many tutorials. On the other hand, it
can be rather slow to compute some properties with its "explicit" engine and it may
even enter an infinite loop thus providing no results at all.

Storm is usually faster than PRISM and is specialized in explicit methods allow-
ing a higher precision. Storm main engine is the sparse engine in the sense that it
tends to have the most features. It takes the model description and directly builds a
representation based on explicit data structures, mainly bit vectors and sparse ma-
trices. Then, model checking is performed using these data structures. Since these
permit easy access to single elements, they are standard representations for many
tasks involved in the solution procedure (like solving linear equations). This en-
ables the use of off-the-shelf libraries, for instance Eigen [56] or gmm++ [106], that
implement sophisticated solution methods. Among these methods, some are more
efficient to explore the state space as they are specifically tailored for acyclic mod-
els. It also allows users to write probabilistic properties that use rewards just as
any other state variables. But Storm has also some drawbacks. It only recognizes
PCTL formulas prohibiting the nesting of state quantifiers (PLTL formulas are not
accepted). As for example, a property such as P =?[XGF| is not accepted by Storm.
Also, if they want to obtain a diagram out of Storm results, users must create their
own scripts.

2.8 Conclusion

Complex human activity recognition remains a challenging research area [76], espe-
cially to build effective recognition systems. We propose a formal approach based
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on discrete-time Markov chains to model such human activities. Important prop-
erties of these models can be automatically verified thanks to model checking. The
proposed approach complements the main existing ones in the field of activity recog-
nition, which seldom address formal verification issues.

As a first step, together with clinicians, we selected four serious games for
Alzheimer patients and we encoded three of them as DTMCs in PRIsM. To this end,
it was necessary to use different approaches as each game had its own specific rules
and evaluation methods. Indeed, whereas speed and quality of response are key
points for the Code game, it is the nature of the presented item as well as the patient
associated response that are the key points of the Recognition game. The Inhibitory
Control game mixes both features as it focuses on speed, on the presented item, and
on the associated response. For the two last games, it was necessary to model both
the game and the player behavior.

We tested a dozen of medically-oriented PCTL* properties per game, thanks to
the PRISM model checker. These properties include the use of rewards to quantify
the performances of patients. They gave an overview of the modeled patients per-
formance in a fairly short amount of time on a standard computer configuration.
PRISM was able to return the probability for the modeled patients to go through
specific group of paths representing behaviors considered as pathological as well as
mean of response and time scores. These three models and their verification allowed
us to validate our approach and to test its scalability for rather different applications.

As a second step, we compared PRISM and Storm on the same set of properties
in order to determine which of these well known tools is more suitable for our appli-
cation. We chose Storm as its model checker accepts several modeling languages as
input, including the PRISM one, and as it shows good performances [57]. In this com-
parison, we used different model-checker engines: the hybrid and explicit engines of
PRISM (the hybrid engine for both versions of the Code game model) and the sparse
engine of Storm to verify medically oriented properties. Generally speaking, Storm
displays the best performance. Our intuition is that, at least for the Code game,
since states and paths cannot be easily compacted, the decision diagrams used to
build models in the (default) hybrid engine of PRISM cannot be fully exploited. The
explicit data structures used to build models by the (default) sparse engine of Storm
seem more suitable for our case studies. The other models cannot be explored with
the hybrid engine of PRISM and require its explicit engine for the same reason. The
computation times are usually less for Storm as its algorithms are tailored for the
kind of models we implemented. Nonetheless, the features available in PRISM, such
as the computation of PCTL* formulas or the "run experiment", make it hard to re-
place. In brief, these two probabilistic model checkers do not present the same flows
or advantages. For our work, they are complementary. When computing PCTL for-
mulas on rather big models, Storm is the most appropriate tool. In the case of larger
PCTL* properties with nested operators, PRISM is the one to go for.

Finally, it is essential to test our models in a real clinical experimentation to ad-
just the models presented in this chapter (model calibration, Step 6 of Figure 2.2),
especially to fix the probabilities and to obtain realistic models. To this end, we car-
ried out a medical protocol that ran from Sept 2020 to Sept 2021. This protocol and
its results are the purpose of the next chapter.
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FIGURE 2.17: Simplified automaton of the Inhibitory Control game.
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Chapter 3

Clinical Protocol and Experimental
Results

In order to validate our models in a clinical experimentation, we proposed a clinical
protocol involving patients coming to the Memory Centre (CMRR) of the Centre
Hospitalier Universitaire (CHU) of Nice at the Institut Claude Pompidou (ICP). In
this protocol, both mild neurocognitive disorder (mild NCD) patients and subjective
cognitive decline (SCD) ones played the three games previously presented as well
as a fourth one, the Tapiscine (targeting motivation disorders). This clinical protocol
allowed us to validate these games as suitable tools to discriminate between mild
NCD patients and SCD ones. This experiment led to calibrate two game models.

3.1 Clinical Experimentation Protocol

The objective of the protocol is to collect real data to validate the hypothesis that
models can differentiate mild NCD patients apart from control subjects, based on
their behavior and performance. To verify the acceptance of this hypothesis, the
predictions of the models should be consistent with experimental results. The main
criterion for assessing our approach is thus to verify the consistency of the observed
behaviors (score, action time/delay, gestures, choices) with the diagnoses obtained
by classical validated cognitive and behavioral tests.

Using serious games in such tests is relevant because it is known that observ-
ing people when they perform simple activities provide interesting clues on their
cognitive status. For instance, a previous work in our laboratory showed that the
observation of patient carrying out daily activities revealed significant differences
according to their stage of severity of Alzheimer’s disease [80]. Moreover, as already
mentioned, each of the selected games assesses a different cognitive and behavioral
dimension: selective and sustained attention, episodic memory capacity, inhibitory
control, or sensitivity to reward. Thus, they constitute a quite extensive panel of
tests.

3.1.1 A Fourth Game: Tapiscine

At the beginning of the PhD project, the Tapiscine game was only a prototype and
clinicians had no experience with it, thus it was not possible to create a model for it.
Since it has been included in the protocol, we present its rules here.

This game (fig. 3.1) targets sensitivity to reward, involved in motivational pro-
cesses and is installed on Android tablets. The goal is to "fill" different (virtual) pools
(by tapping the screen of the tablet) in exchange for rewards. Each tap corresponds
to a quantity of water poured into the pool.
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FIGURE 3.1: Display of the Tapiscine game.

The game session starts with a calibration phase to determine the maximum pool
size for a given player. This maximum size corresponds to the number of times (N)
that the player is able to tap on the screen in 10 seconds. Then, the game deduces
four possible pool sizes: small corresponding to N/4 taps, medium-small to N/2,
medium to %N, and large to the maximum N). At each round, the game proposes a
pool size and a number of reward points to the player; these parameters are chosen
randomly and independently. The size is drawn among the 4 previously defined
ones and the number of associated rewards among 3, 6, or 9 points. There are thus 12
configurations and the system proposes each configuration exactly 3 times. For each
configuration, the player can choose either to rest for ten seconds and win only 1
reward point or to try to fill the pool in 10 seconds (or less), to win the corresponding
reward points. A patient who does not choose after 30 seconds or who decides to
play but cannot fill the proposed pool does not win any reward.

On the psychological side, this game requires the patient to take a strategic deci-
sion: resting or filling the pool. For instance, it is more interesting to fill a small pool
with a high reward than to struggle to fill a large pool associated with a minimal
reward. The game ends when all the possible configurations of sizes and numbers
of rewards have been proposed three times.

A reward point corresponds to one piece of a jigsaw representing, e.g., a well-
known classical art painting. At the end of each round, the game displays a blurred
view of the current jigsaw puzzle with the pieces won so far, as well as the number of
jigsaws completed since the beginning of the session (fig. 3.1b). This partial display
works as an incentive to motivate the patient to continue playing and to complete the
picture. Each time the player gathers 25 pieces, the complete picture of the current
jigsaw is unveiled and a new jigsaw is chosen. At the end of the session, the game
congratulates the patient and displays all the jigsaw pictures gathered during the
session.
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3.1.2 Protocol Context

Unlike other approaches [120], we chose two-dimensional games in this protocol.
Such games are easier to produce and distribute than 3D ones. Moreover, they do
not require specialized hardware and they are available on touch pad or tablets.
As shown in a previous experiment, using an apathy assessment tool in older adults
with and without minor and major neurocognitive disorders [128], participants have
no problems with such devices.

The rest of this subsection details the constraints that had to be taken into account
in the design of the protocol.

Neurocognitive Tests used in the Protocol

As many cognitive and behavioral tests exist, it was necessary to select a set that
mainly focuses on the cognitive functions previously selected with clinicians. The
first constraint was to find cognitive tests used daily in the ICP institute to avoid
going through additional tests during the game sessions. The second constraint was
to find cognitive tests with a good sensitivity yet fast enough (as the protocol is not
devoted to complete the patient clinical records). Thus the selected neurocognitive
tests are the following.

¢ The "Mini Mental State Examination" (MMSE) which serves as a first screening
for cognitive deficits [100]. This test groups several questions and problems re-
lated to the orientation in space and time, memorization of words, calculation,
attention, comprehension, oral expression, and praxis. It is a rather general
test but it suffers from a low sensitivity to mild neurocognitive disorder [24].
Clinicians can’t rely on this test alone to make an appropriate diagnosis [7] but
it is useful to assess the degree of the global cognitive impairment.

¢ The "Five Word Test" [43] and the "Digit Span" [74] from "Wechsler Adult Intel-
ligence Scale-III" [109] target the working memory. The Five Word Test consists
in four phases: (i) memorization of a list of verbal words; (ii) immediate resti-
tution to check the encoding of the memoryj; (iii) interference with an other task
to draw the patient’s attention away; (iv) delayed restitution (with or without
any hint) to evaluate the memory. The Digit Span consists in the memoriza-
tion of a list of numbers given in a certain order by the practitioner and in its
restitution in the same order (short term memory) and in the reversed order
(working memory).

¢ The "Digit Symbol Substitution" (DSS) is among the oldest and most estab-
lished neurocognitive tests [124]. It is known to measure visual processing
speed [125] and attention [83]. The test is relatively simple to administer as
it only requires the printed statement of the test (see figure 3.2), a pen, and a
timer. The printed test displays a translation table (in which each digit is as-
sociated with a symbol) and a table of digits associated with empty cells. The
goal for the patients is to fill in as many blank cells as they can with the corre-
sponding symbols following an imposed order within two minutes. This test
is simple and very sensitive to impairments but, as a standalone tool, it does
not give any indication on the origin of the impairment [67].

* The "Frontal Assessment Battery at bedside" (FAB) is a "cognitive and behav-
ioral battery to assess frontal lobe functions" [44]. It evaluates through different
tasks several cognitive functions associated with the brain frontal lobes such
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as inhibitory control or mental flexibility. We mainly focus on the inhibitory
control evaluation through a "go/no go" task but other tasks focus on differ-
ent functions such as the fine motor and sequencing motor skills for the FAB
Luria’s task (used in section 3.2.5).

¢ The "Apathy Inventory" is an interview of a patient by a practitioner. The goal
is to evaluate three "clinical dimensions of apathy: emotional numbing, loss of
initiative, and loss of interest" [25].
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Participants

The protocol targets senior people aged 60 years and over [48] with diagnosed mild
NCD (according to the DSM-5) and people with Subjective Cognitive Decline (SCD)
[71]. This raised new constraints: indeed, as the protocol started in the middle of
the PhD project, it was impossible to recruit enough volunteers for a large scale
statistical study. Thus it has been decided that this protocol would take the form
of a feasibility study. We decided to recruit 50 volunteers including 30 mild NCD
subjects and 20 SCD ones. This choice was based on previous studies using the
same type of materials, for example, in [117], 30 participants with a MMSE score
more than or equal to 16 tested a game support system and 47 older subjects with
major and minor cognitive impairment tested the Code game; similarly, for the pilot
study of an exergame by [16], 18 subjects were selected.
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3.1.3 Protocol Provisional Planning

We expected this protocol to last 13 months, with 10 months of inclusion of patients

and 3 months of result analysis. The detailed program is shown in figure 3.3).

Talk with medical practitioners
Investigator informs and offers to participate to the study.
Trial on targeted games.

1 week

4 games to play
Duration: 40 to 60 min

1 1 month

Game session 2:

Game session 1:

4 games to play
Duration: 40 to 60 min

|

Results analysis
Total duration of analysis: 3 month.

Total inclusion duration : 10 month.

FIGURE 3.3: Experimental protocol flowchart.

Each participant has to be seen three times:

e First, during a regular clinical consultation at the Memory Center, in order to
present the protocol and, if necessary, to complete the clinical records with the

cognitive and behavioral tests previously described.

¢ Second and third, during two game sessions, one month apart, to play the four
serious games. Each game session should last 30 to 45 minutes. The second
session is similar to the first one, its objective is to minimize the impact of

external events in the patient lives on their measured performance.

During the game sessions, an investigator is expected to stay with the volunteers
to explain the rules of the games during a training phase, to assist the participants if
necessary, and also to note particular events that may occur during the session (for

example, if a participant asks again about the rules or leaves the game).

Game Session Planning

All volunteers had to play all games during each session. If a patient could not finish
a session (for any reason, e.g., time constraints or tiredness) he/she could come back
again to finish it. Each game proposes at least one training phase before playing
the actual game. The order in which the games are played by the volunteers was
randomized except for the Code game that is played three times, once after every
other game. For example, the order of the games in a session could be: (i) Tapiscine;
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(ii) Code game; (iii) Recognition game; (iv) Code game; (v) Inhibitory Control game;
(vi) Code game. The Tapiscine game has an integrated step by step tutorial proposed
at the beginning of the game. The Recognition game is composed of four levels, the
tirst one being a tutorial with 10 pictures before the three other levels of 40 pictures
with randomized themes. The Inhibitory Control game contains two levels, one
tutorial of 10 targets and 5 decoys and the actual level of 30 targets and 10 decoys.
The Code game also has two levels: one tutorial without timer but with visual and
audible indications on the validity of the answers and one actual level with a two
minutes timer and without visual indications. A volunteer who did not understand
the game on the first try of a training level receives more explanations and is entitled
to another try.

All the data (including scores, answers, and response times) as well as video
recordings (focused only on the hand gestures above the screen, for privacy) are to
be collected and anonymized.

As the necessary delay to obtain the ethical acceptance of a protocol is rather
long, the protocol was designed in parallel with the models described in chapter 2.

Ethical Validation

Under French Law each medical protocol must undergo a preliminary ethical vali-
dation. The goal is to ensure that patient rights and safety are respected; it is all the
more important as the proposed protocol targets senior populations. The protocol
proposal was submitted to two committees. First, the CERNI (Comité d’Ethique sur
les Recherches Non Interventionnelles) required some clarifications and redirected
us to a second committee: the CPP (Committee for the protection of people). After
a complete makeover and additional documents, the final version was submitted
on April 29th, 2020, and accepted on May 14th, 2020. From this point on, we could
carry out preliminary tests to ensure that the equipment was ready to perform the
real protocol. Volunteer recruitment started on September 29, 2020 after receiving
the CHU authorization.

3.1.4 Procedure

The inclusion phase was performed at the ICP with the help of on-site staff. For each
session, there was one investigator (mainly this thesis candidate). For some sessions
a clinician was also required to complete the patient clinical record. The investigator
was present at ICP 2 to 4 days a week to meet potential volunteers. A typical day of
inclusion was as follows:

¢ ICP staff provides a list of potential volunteers.

¢ Potential volunteers meet their practitioners for their clinical check up. Practi-
tioners assess the state of the patients and their ability to join the protocol.

¢ If a patient validates all inclusion criteria, the practitioner presents a protocol
overview to him/her.

¢ If the patient accepts to participate, the investigator meets her to give a detailed
presentation of the protocol and to set up an appointment for the first game
session.

This recruitment strategy resulted in many refusal (of the order of 40) and some
rare patients feigned their interest but could not be contacted again. However, in the
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end 51 volunteers were recruited within the planned schedule (10 months of inclu-
sion). Among these volunteers, one abandoned after the first session due to reloca-
tion and another stopped in the middle of the first session because of fatigue. This
second volunteer could not come back because of her degraded health condition.

The sanitary crisis of Covid-19 mostly impacted the previous phase of design
and ethical and administrative validation as communications were more difficult
during the first Covid lockdown. The recruitment phase got slightly slowed down
at the end of 2020 but did not suffer any long interruption. In fact, the sanitary crisis
has rather favored patient inclusion, since many volunteers complained about their
canceled activities and were actually happy to participate to this "authorized" one.

The duration of each game session was not constant from a person to another
or from a session to another. First, this protocol was grouped with another protocol
focusing only on the Tapiscine game. For the sake of this second protocol, a set of
surveys was provided to each participant at their first session. These surveys took
approximately 15 minutes for the fastest participants. The corresponding data as
well as the Tapiscine ones are out of the scope of this thesis and were independently
analyzed by the experts who created the game. The slowest participants could take
up to 45 minutes to complete their surveys. With this combination, the first session
could last from 50 to 120 minutes and the second session could last from 30 to 90
minutes. This amount of time depended mostly on the possible "chatty" nature of
the participants but also on the investigator capacity to explain the rules of each
game, which has improved over the course of the sessions.

Particular Cases

In some rare cases patients added to the difficulty of the protocol. The smallest
annoyance was the volunteers forgetting their appointments. A more troublesome
issue was that some patients could have an ambiguous diagnosis (e.g., high scores in
neurocognitive tests but diagnosed as mild NCD) that required an analysis of their
record by the ICP chief psychiatrist. Another complicated case was patients denying
their deficits. This denial was difficult to deal with. It was, for some patients, part
of their health condition and is named anosognosia. In fact, one of such patients
should not have been included in the protocol and her records have been removed.
The most difficult case to handle was a patient who tried to push the investigator to
assert that she had no disorders. Finally, the patient accepted to participate to the
protocol without any counterpart.

3.2 Result Analysis

This section analyzes the data gathered during the protocol to assess the validity
of the selected games in discriminating mild NCD and SCD patients. This analy-
sis lasted approximately six weeks. The section first details the analysis of the re-
cruited population before the analysis of each game separately. The final part gives
an overview and an overall analysis. The gathered data have been formatted and fil-
tered using Python3 scripts. All statistical tests were performed using SPSS version
27 [65]. In this manuscript, only the data of the three games modeled in chapter 2 are
analyzed. The Tapiscine data have been processed by statisticians and psychologists
of CoBTeK.
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3.2.1 Statistical Hypothesis Tests

When performing in vivo or in vitro experiments, one uses statistical tools to analyze
data and to determine if the observed differences result from the tested parameters
or from randomness. As they are used to verify hypotheses, these tests are named
"Statistical hypothesis tests". The hypotheses are of two natures:

¢ the null hypothesis, denoted HO, which varies according to the test;
¢ the alternative hypothesis, denoted H1.

The presented work aims to determine characteristics of two populations out of the
data analysis of two samples. This process, named inferential statistics, defines HO
as the hypothesis that there are no differences between both samples. Thus in the
following subsections:

¢ HO writes "both samples are from a same population";
¢ HI writes "both samples are from different populations".

As participants who are included in the research studies represent only a small part
of the population of interest, the results of statistical tests allow to refuse HO only
with a certain probability of error. The probability of risks of errors are between 0
and 1 and are of different nature:

¢ «a: the risk to reject HO when in fact it should not be rejected;
¢ f: the risk not to reject HO when in fact it should be rejected.

The value of risk « is set by the experimenter. In psychology as well as in biology, this
value is usually set to 0.05 as the observation of behaviors or living matters implies
much variability. Risk f depends on two factors: the chosen test and the size of the
sample. Usually, experimenters try to find an appropriate sample such that f is less
than 0.20.

To help in the decision to reject HO or not, most tests give a probability named
p-value (probability value). In an experiment, this value is interpreted as the prob-
ability to observe differences (even larger than experimentally observed) between
both samples, even if the HO hypothesis is not rejected. In psychology and biology,
this value has to be inferior to a threshold set to 0.05 for HO to be rejected. This crite-
rion of rejection has been broadly used but is at the center of a debate [17]. Indeed,
the p-value does not measure the probability for HO to be true but only the proba-
bility to observe the tested data given a true HO. Hence, a p-value threshold of 0.05
does not make experiment results rare enough when HO holds, leading to poorly
reproducible results. A better solution (yet not the best) is to qualify results with a
p-value under 0.005 as "statistically significant" and those between 0.005 and 0.05 as
“suggestive”.

To determine this p-value, many tests compare the obtained statistic (i.e., the
result of the test computation) to a model of distribution. This model of distribution
often requires, as a parameter, the degree of freedom (df). The degree of freedom can
be described as follows: given a data set of observed variables for which we know
the means, the degree of freedom corresponds to "the number of observations minus
the number of necessary relations among these observations"! [123]. For example, in

INecessary number of observations in the sample so that the statistical law (applied to the chosen
test) is relevant.
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the context of the test of Student [54] on a data set of one variable observed 50 times,
the formula would be df = 50 — 1. Once the model is chosen and adjusted with
the necessary parameter, the p-value depends on the location of the test statistic in
the modeled distribution: e.g., if the value of the test statistic is located in 5% of the
distribution, then the p-value is p = 0.05.

The rest of this subsection introduces the various tests [54] used in our study.

Parametric Tests

Parametric tests are a class of powerful tests based on the assumption that the data
distribution follows a given statistical model (e.g., a normal or a Poisson distribu-
tion). As the distribution is known, this category of tests uses the parameters of the
matching model (e.g., the mean and standard deviation in the case of a normal dis-
tribution) to compute their results, it is why they are qualified as parametric. Never-
theless, it is required to first use non-parametric tests (detailed further) to determine
the likelihood of the assumption on data distribution.

In this work, the data do not match such assumption on data distribution. But, as
there are no non-parametric alternatives, the SPSS software "general linear model"
feature was used to check the effect of several parameters upon different variables.
Using this feature, we focus on two statistical tests in the context of a ANalysis Of
VAriance (or ANOVA): the A of Wilk and the F-test.

* An analysis of variance (ANOVA) is a mathematical method to compare vari-
ations in a given data set. One of the main principles of the ANOVA is the
comparison of the two components of the total sum of squares, the "explained"
sum of squares and the "residual" sum of squares. This total sum of squares is
written as follows:
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where 1 is the number of observations, ¥ the total mean of variable x, and &;
the mean of variable x in the i sample. The first term of this equation is the
total sum of squares, the second is the explained sum of squares (as it reveals
how each sample differs from the total mean) and the final term is the residual
sum of squares (as it shows how much observations differ from the mean of
their sample). Once these values are known, one can evaluate the ratio of the
explained sum of squares over the residual sum of squares using a F-test.

The data analysis in this work uses an extension of the classical ANOVA which
aims to analyze the effects of multiple parameters on a given variable. More
precisely, the process is called "two-way mixed design measures ANOVA".

* The Mauchly’s sphericity test is used to verify one of the ANOVA'’s prerequi-
sites, i.e., the sphericity of data. Sphericity is met if the variance of differences
between all pairs of related groups are equal. Hence, in Mauchly’s test, the
HO hypothesis states that sphericity is respected. To verify this hypothesis,
Mauchly’s test computes a value denoted W that evaluates this similarity of
the variances. Once W is known, a x? test determines whether it shows a simi-
larity between each variance. However, this test is highly sensitive to both the
size and the distribution of data and it can accept the hypothesis HO when in
fact it should reject it. As the data in this work do not follow a normal dis-
tribution, we will assume that HO should be rejected. To deal with data that
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violate the sphericity assumption, it is necessary to apply a "correction" of the
degree of freedom used in the ANOVA final F-test. This correction induces an
increase of the p-value (compared to a F-test with a non-corrected degree of
freedom). This increase makes the test "stricter" to compensate the sphericity
assumption violation. The choice of the correction to apply relies on a value
denoted e that is computed by these correction methods. If € > 0.75, as it is the
case in all ANOVA tests performed in this work, it is recommended to use the
correction of Huynh-Feldt.

The F-test actually includes many generic parametric tests that are based on
the assumption that under the HO hypothesis, the test statistic (result of the
test) follows a Fisher-Snedecor distribution. The statistic F of this test is the
ratio "variation between sample means" over "variation within the samples”
which, in an ANOVA, corresponds to:

Where df; is the degree of freedom associated with the the explained sum of
squares and d f, the one associated with the residual sum of squares. The closer
F is to 1 the more HO tends to be acceptable. Then this value is confronted to
the Fisher-Snedecor distribution with df; and df, as parameters to determine
the p-value.

The A of Wilk is a multivariate test that extends the F-test. In the context of
an ANOVA, it tests whether the different means of a repeated variable vary
with the combinations of other dependent and independent variables. This
test returns a value named A that ranges from 0.0 to 1.0 and that estimates the
strength of the relationship between independent and dependent variables.
The closer the value is to 0.0, the more the independent variables may con-
tribute to the observed variations of the dependent variables. To determine
the p-value associated with a given A, SPSS uses a F-test. For example, in the
Code game study section 3.2.3, this test is used to verify if the means of the
amount of answers of both groups vary with the number of times the subjects
played the game and with this number of times combined with the type of the
subject group.

Non-parametric Tests

Contrarily to parametric tests, non-parametric ones are not based on statistical dis-
tributions. Thus, they do not require the satisfaction of the same prerequisites. These
tests are used in many situations and they are known to be more robust but they may
lead to the inadequate acceptance of HO and thus are less powerful. The non para-
metric tests used in this work are detailed below. Most of these tests use "critical"
value tables precomputed by the authors of the tests.

¢ Normality tests verify whether a data set follows a normal distribution or not.

In these protocol, we used the test of Shapiro-Wilk. In this test, HO states that
a given sample comes from a population that follows a normal distribution.
This test is particularly powerful for small samples (n < 50) which is our case.
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The test statistic, denoted W, is the squared correlation coefficient between the
generated normal distribution and the actual data. The bigger W the more the
data are compatible with a normal distribution. The p-value is determined by
comparing W to W,,; found in the Shapiro-Wilk table knowing the chosen «
and the size of the sample.

¢ The Wilcoxon signed ranks test checks for the differences between two paired
samples using its own ranking method. For this test, HO states that there are
no differences between the paired data. The statistic returned by this test is
denoted Z and results from the comparison of the rank mean of one of the
paired sample with the overall rank mean. The closer it is to 0 the fewer the
differences between both groups. To determine the significance of the test, Z
must also be compared to the associated Z,;;. For example, in the demographic
study section 3.2.2, this test is used to verify that repeating the game session
did not impact the subject performance. In other words, this test checks that
each subject (paired samples) had consistent results in both sessions.

¢ The Mann-Whitney U test that derives from the Wilcoxon one, compares two
unpaired samples and determines if they come from the same population. To
do so, it ranks the observed values of a variable. In this test, HO states that both
samples are from the same population. The test statistic is denoted U and is
the smaller of U; and U, defined below:

7/11‘(1’11‘ =+ 1)

U, = nin; + 5

—R;
where n; and n; are the sizes of samples i and j and R; the sum of the ranks
for sample i. Thus, U ranges from 0 to 11 x ny where 0 means that there is a
big difference of ranks between both groups (rejection of H0). To determine
whether HO must be rejected, the obtained U must be confronted to the corre-
sponding U,,; in the table of critical values of U. This table takes as entries the
chosen & and the sample sizes to return U,;. For example, in the demographic
study section below, this test is used to verify that distribution of ages is sim-
ilar in both groups (SCD and mild NCD). In other words, this test checks that
both groups, made of different subjects (unpaired samples), are samples of the
same population of age.

¢ The Friedman test is an extension of the Wilcoxon signed ranks test. It is an
alternative to the repeated measures ANOVA for data that do not validate the
normality assumptions. It is used to detect differences in the distributions of
three (or more) paired groups. This method based on ranks leads to the compu-
tation of statistic noted Q. If the size of the data allows it (numbero f groupsk >
4 or numberofrowsn > 15), Q can be approximated by a x? distribution. In
this case, the p-value is given by P(x2_; > Q). For example, in the Code game
result analysis, the Friedman test was used to determine whether the repeti-
tion of the game impacts the patients results. In this case the number of rows,
n, corresponds to the number of patients and the number of groups, k, cor-
responds to the number of game iterations. In other words, this test checks
that repeating the game does (or does not) improve (or decrease) the patients
performance.

» The x? of Pearson test checks for the independence of two variables. For this
test, HO states that the two variables are independent. The statistic returned by
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this test is denoted x?,. puted and displays the difference between the observed
frequencies and the theoretical frequencies (or expected frequencies if HO is
true). The formula is the following;:

ey (OB
computed - Eij
i,j
where O;; is the observed frequency of event i in sample j and Ej; is the the-
oretical frequency for the same event. To deduce the p-value, the x2 puted 1S

compared to the x? distribution for a chosen a and the degree of freedom as-
sociated with )(fomputgd. For example, in the demographic study section, this
test is used to verify that the distribution of women and men is similar in both
groups. In other words, this test checks that the variables group and sex are
independent.

The Kruskal-Wallis H test, also called one-way ANOVA on ranks, checks if
samples come from the same distribution. This test ranks the observed values
of a variable. In this test, HO states that each sample has the same mean of ranks
for a given variable. The statistic of this test is denoted H and is computed as

follows:
2
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where 1 is the sum of all sample sizes, ¢ the number of samples, T; the sum of
ranks for sample j, and n; the size of sample j. If HO is true, this score follows
a x? distribution and should be compared to the critical x> determined with
the degree of freedom and a. For example, in the demographic study section
below, this test is used to verify that the order in which the games were played
did not impact the results. In other words, the test checks whether the samples
(the three different positions in a game session), for a given variable (one of the
game scores), come from the same distribution.

The p of Spearman test checks for the existence of a correlation between two
variables. For this test, HO states that there is no correlation between the vari-
ables. The statistic generated by this test is denoted p and it evaluates the
strength of the association of two variables. It ranges from —1 to 1, with 0
meaning the absence of correlation in the given data. In the SPSS software,
the p-value associated with the correlation coefficient p is computed using an
approximation that utilizes a t-distribution. For example, in the Code game
study section 3.2.3, this test is used to verify if any correlation exists between
the results of the Code game and the results of neurocognitive tests such as the
DSS.

3.2.2 Demographic Study

The data gathered on the patients were:

* age, sex, laterality, education level;

¢ diagnosis, as described in the French Alzheimer Bank or BNA [82] (stage, syn-

dromic diagnosis and etiological diagnosis);
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* neurocognitive test results, including MMSE, detailed FAB, Five Words, Digit
Span, and DSS.

The group of mild NCD patients and the SCD patients one are respectively com-
posed of 31 and 20 subjects which is consistent with the provisional plan.

Results

The first test used on all data (demographic and game related) was the Shapiro-Wilk
normality test. This test revealed that a large majority of the data does not follow a
normal distribution. Thus most of the tests used in this section are non-parametric.

To allow a comparison of the game results of the two diagnosis groups (SCD and
mild NCD), the distribution of ages and sexes should be similar in both. Hence, the
first focus of this study is to verify this assumption.

First, the Mann-Whitney U test was used to check that both groups are composed
of seniors in the same range of age. The results of this test are displayed in table 3.1
as well as results of the Mann-Whitney U test on the distribution of MMSE and FAB
scores. To better visualize their significant levels, p-values are qualified by different
numbers of stars: 0.05 > p-value > 0.005 by "*", 0.005 > p-value > 0.0005 by **, and
0.0005 > p-value by ***.

mild NCD (n=31) | SCD (n=20) | Uvalue | p-value

Age (y), mean=+Std Err 74.870 £1.201 71.850 £=1.576 | 245.00 0.209

MMSE, mean=Std Err 26.580 = 0.453 29.500£0.246 | 66.50 | < 0.001***

FAB, mean+5Std Err 15.677 £ 0.283 17.500 £ 0.184 98.00 < 0.001***

TABLE 3.1: Mann-Whitney U test on the distribution of ages, MMSE
and FAB results within SCD and mild NCD groups.

The p-value associated with the age variable is above the standard threshold of
0.05. Thus this result does not allow to reject the HO hypothesis that both groups
belong to the same population. This distribution of ages is illustrated in figure 3.4
showing the associated box plots for both groups. On the other hand, performing
this test on the scores of MMSE and FAB allowed to reject the hypothesis HO as the
p-value is under the threshold of 0.005. This first table suggests that both groups
have a similar age distribution but show differences in terms of neurocognitive test
performance; these results were expected.

Second, the x? test on a pivot table (table 3.2) compares the proportion of women
in both groups. For this test, the null hypothesis suggests that the distribution of
women is independent from the group.

Sex SCD | Mild NCD
Woman 16 22
Man 4 9

Value | df | p-value
x> 10522 | 1| 0470

TABLE 3.2: Pivot table of the proportions of women and men in SCD
and mild NCD groups and x? test results.

Once again, the p-value is above the standard threshold of 0.05. Thus the null hy-
pothesis cannot be rejected which allows one to think that the distribution of women
is similar in both groups. This distribution is shown in figure 3.5.
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FIGURE 3.4: Boxplot of the distribution of ages within the SCD and
the mild NCD groups.
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FIGURE 3.5: Women/Men distribution in SCD and mild NCD
groups.

These parameters are important as they define the protocol groups. Indeed, a
difference in these distributions could be considered as the reason of the neurocog-
nitive test result differences. The selected groups do not show such discrepancy and
allow a comparison of the game results.

Third, the study of the mild NCD group etiology can give hints on expected
behavioral patterns. For instance, one expects an Alzheimer patient to suffer from
memory losses and a vascular cognitive impaired patient from memory losses and /or
praxis problems.

As shown in figure 3.6, three main groups can be distinguished:

* a group of patients diagnosed with confirmed or probable Alzheimer disease;

¢ a group of patients diagnosed with vascular cognitive impairment (caused by
vascular lesions in the brain);

¢ a group of patients with psycho-affective problems such as anxiety or depres-
sion.

A fourth group, named "Other", mostly includes not fully diagnosed patients.
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FIGURE 3.6: Major groups of etiologies in the mild NCD group.

Fourth, before analyzing each game individually, the Kruskal-Wallis test verifies
whether the random order in which the game are played has an effect on the player
performance. Overall, there are three possible orders. We want to check that this or-
der does not influence the results of the players. To do so, game scores were grouped
according to their position in the game session. The null hypothesis of the Kruskal-
Wallis test is that there are no differences between the game results whatever the
position is. An exert of the results are displayed in table 3.3.

1°'session 2"gession
o Recognition game
Inhibitory Control game 3devel
Valid go | Invalid no-go | Correct folder | Correct trash
Kruskal-Wallis H |  0.306 3.732 0.079 5.093
df 2
p-value 0.858 | 0.155 \ 0.961 \ 0.078

TABLE 3.3: Examples of results obtained for the Kruskal-Wallis test.

Most of the results of this test indicate that HO cannot be rejected and that the or-
der in which the games were played did not seem to interfere with the subject perfor-
mance. Rare cases of p-values under 0.05 have been observed for some Recognition
game variables but they are not consistent from a session to another.

Fifth and finally, the Wilcoxon signed ranks test checked whether both sessions
of a same patient have consistent results. Tables 3.4 show the results for the variables
which had a p-value under 0.05.

As seen in these tables, only a few variables of each game showed a p-value
under 0.05. Thus, for the majority of the data, HO can’t be rejected and one can
assume that subjects had similar results in both sessions with the exceptions shown
in table 3.4. However, to go further in the analysis, this test must also be executed
separately on the mild NCD and SCD groups. Tables 3.5 and 3.6 show the results for
the variables which had a p-value under 0.05.

Tables 3.5 and 3.6 show results similar to tables 3.4. Thus, the assumption that
subjects had similar results in both sessions still hold with exception of the first and
second iterations of the Code game.
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Inhibitory Control game Recognition game
Invalid no-go Correct folder 1st level
Mean 1st session 1.95 31.714
Mean 2nd session 2.84 30.795
Std Error 1st session 0.298 0.341
Std Error 2nd session 0.373 0.558
Sample size 37 49
V4 -2.059 -2.075
p-value 0.039* 0.038*
Code game
Answer | Answer Right Right Time Time
1st Iter. 2nd Iter. 1st Iter. 2nd Iter. 1st Iter. 2nd Iter.
llAs‘ieSr'ess. 102.270 108.92 101.104 108.00 | 1199.3569 | 1123.060
fwer. 10648 | 112,96 10571 | 111.88 | 1152489 | 1083.043
2nd Sess. : : : : : :
Std Error
1st Sess. 2.350 2.345 2.390 2.384 32.886 30.069
Std Error
ond Sess. | 2477 2.470 2.530 2.529 32.494 27.176
1
sample | g 49 48 49 48 49
size
V4 -3.373 -3.674 -3.525 -3.411 -3.539 -3.397
p-value | 0.001** | < 0.001*** | < 0.001*** | 0.001** | < 0.001*** | 0.001**
TABLE 3.4: Results of the Wilcoxon signed ranks test for selected vari-
ables of each game.
Code game
Answer | Answer | Right | Right Time
1stIter. | 2nd Iter. | 1st Iter. | 2nd Iter. | 1st Iter.
Aver.
st Sess. | 20-566 | 103.000 | 95.566 | 101.800 | 1274.866
Aver.
ond Sess. | 100275 | 106.724 | 99.344 | 105.482 | 1231.275
SAEmor | 3077 | 3086 | 3001 | 3118 | 46158
SIARIION | 5475 | 3438 | 3550 | 5528 | 47385
Sampl
SRRl 28 29 28 29 28
size
zZ -2.693 -2.859 -2.862 -2.769 -2.824
p-value | 0.007* | 0.004** | 0.004** | 0.006* 0.005*
TABLE 3.5: Results of the Wilcoxon signed ranks test on the mild
NCD group for selected variables of the only game showing signif-
icant results: the Code game.
Discussion

This first analysis leads to the following observations:
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Inhibitory Control game | Recognition game
Invalid no-go reaction
time standard deviation Correct trash 1st level
Mean 1st session 33.42 4.15
Mean 2nd session 136.987 4.900
Std Error 1st session 5.273. 0.301
Std Error 2nd session 53.138 0.228
Sample size 9 20
Z -2.521 -2.152
p-value 0.012* 0.031*
Code game
Answer | Answer | Right | Right Time
1st Iter. | 2nd Iter. | 1st Iter. | 2nd Tter. | 1st Iter.
Aver.
1st Sess. 111.100 | 118.450 | 109.750 | 117.950 | 1081.444
Aver.
71d Sess. 116.800 | 122.000 | 116.250 | 121.150 | 1025.483
Std Error
1st Sess. 2.319 2.262 2.564 2.260 21.806
Std Error
7nd Sess. 1.980 2.287 1.981 2.307 17.875
S
ample 20
size
Z -2.130 -2.188 -2.256 -2.038 -2.091
p-value 0.033* 0.029* 0.024* 0.042* 0.037*

TABLE 3.6: Results of the Wilcoxon signed ranks test on the SCD
group for selected variables of each game.

significant;

¢ the game order in a session does not impact the results of the subjects;

both groups are similar in their age and sex distribution;

* subjects had similar performances in both sessions.

the differences between both groups in their neurocognitive test results are

These observations validate both groups and allow to analyze each game without
caring about the game position in the session. The last item legitimates the use of
the results of only one of the two sessions or, if need be, the merge of both session
results.

3.2.3 Code Game

As a reminder, the Code game [118] asks the player to match a random picture dis-
played in the center of the touch-pad with the corresponding element in a list of
pictures at the bottom of the screen (see figure 2.3). To comply with the DSS test, the
game lasts at most two minutes (contrary to the hypothesis of the model in chap-
ter 2).
The data gathered in this game were:
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* series of icons displayed to the player, of answers of the player, of time taken
before each answer;

¢ amount of answers, of right answers, of wrong answers, and time mean.

The following analysis mainly focuses on both sessions except for the correlation
test that only focuses on the third iteration of the first session. According to tables 3.4
to 3.6, the third iteration allowed to obtain similar results in both sessions.

Results

First, the Mann-Whitney U test checked that the Code game scores show possible
differences between the mild NCD and the SCD groups. As this game is played three
times in a session, each iteration was checked. Results are displayed in tables 3.7 for
the first session and tables 3.8 for the second session.

mild NCD SCD U value | p-value
(n=30) (n=20)
Answers, mean+Std Err 96.5£3.0 111.1 £2.3 133.5 0.001**
Right, mean+Std Err 95.5+4+3.0 109.7 £2.5 139.5 0.001**
Wrong, mean+5td Err 1.0+£0.2 04+19 290.5 0.838
Time (ms), mean+Std Err | 1274.8 +-46.1 | 1081.4 + 21.8 134.0 0.001**
(A) First iteration of the Code game.
mild NCD SCD U value | p-value
(n=30) (n=20) p
Answers, mean=+Std Err 103.0 £ 3.0 1184 +2.2 129.0 0.001**
Right, mean+Std Err 101.8 £3.1 1179 +£2.2 125.0 0.001**
Wrong, mean+5td Err 1.2+£0.2 05£01 198.5 0.030*
Time (ms), mean+Std Err | 11919 +43.1 | 10124 +19.3 | 131.0 0.001**
(B) Second iteration of the Code game.
mild NCD SCD U value | p-value
(n=30) (n=20) p
Answers, mean=+5Std Err 109.9 £ 3.0 122.8 £2.3 159.5 0.005*
Right, mean+Std Err 108.5+3.0 121.8 2.4 163.0 0.007*
Wrong, mean+5td Err 14+£0.3 1.0+£0.2 293.0 0.883
Time (ms), mean+Std Err | 1102.8 £30.9 | 977.7 = 19.6 163.0 0.007*

(C) Third iteration of the Code game.

TABLE 3.7: Mann-Whitney U test results over the Code game scores

of the first session.

The results of the test show that all iterations of the Code game display differ-
ences between the mild NCD and the SCD groups. Three out of four variables al-
ways show a difference between both groups with a p-value under 0.05 and even
under 0.005: the number of answers, of right ones, and the mean time taken before
each response. In fact these three variables are strongly inter-dependent. Indeed,
as each subject has two minutes to get as many right answers as possible, the faster
they are, the better. The distribution of right answers during the first iteration of the
first session in both groups is shown in figure 3.7.
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TABLE 3.8: Mann-Whitney U test results over the Code game scores
of the second session.
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FIGURE 3.7: Box plot of the answers gathered by the mild NCD and
the SCD groups on the first iteration.
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mild NCD SCD U value | p-value
(n=29) (n=20) P
Answers, mean=4Std Err 100.2 £3.4 116.8 £1.9 128.0 0.001**
Right, mean+Std Err 99.3+3.5 116.2+1.9 127.5 0.001**
Wrong, mean+5td Err 09402 05+0.1 241.0 0.270
Time (ms), mean=+Std Err | 1231.2 +47.3 | 1025.4 £ 17.8 130.0 0.001**
(A) First iteration of the Code game.
mild NCD SCD U value | p-value
(n=29) (n=20) P
Answers, mean+Std Err 106.7 £ 3.4 122.0+2.2 148.0 0.004**
Right, mean+Std Err 1054 + 3.5 121.1+2.3 152.0 0.005*
Wrong, mean=+Std Err 1.24+02 0.8+0.2 250.5 0.380
Time (ms), mean+Std Err | 1151.3 +39.4 | 9839 +19.1 | 150.0 0.004**
(B) Second iteration of the Code game.
mild NCD SCD U value | p-value
(n=29) (n=20) P
Answers, mean+Std Err 108.7 £3.5 124.7 £ 2.6 120.5 0.001**
Right, mean+Std Err 107.1£3.7 1242 +2.6 116.0 0.001**
Wrong, mean+5td Err 1.6 £0.3 05+0.1 177.0 0.022*
Time (ms), mean+Std Err | 1132.1 +40.9 | 964.3 £21.7 | 120.0 0.001**

This box plot highlights the differences in the amount of answers. Indeed, even

if the mild NCD results seem to vary in a range that almost include the whole range
of SCD results, one can notice that two entire quartiles of the mild NCD results are
actually under the lowest score of the SCD group.
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Second, in an exploratory attempt and as there are no non-parametric equivalent,
a two-way mixed-design ANOVA checked for the causes of differences of scores
between groups and iterations®. All results of the two-way mixed-design ANOVA
are reported in tables 3.9 for the first session and tables 3.10 for the second one.

Effect Value F df | p-value
Iteration 0.290 | 56.249 | 2 | < 0.001***
Iteration*diagnosis | 0.963 | 0.883 | 2 0.421

(A) Wilks’” Lambda.

Mauchly’s W | df | p-value | Hyunh-Feldt e
Iteration 0.930 2 | 019 0.993

(B) Mauchly sphericity test.

Source Type III Sum of 2 df Mean 2 F p-value
Iteration 3438.388 1.986 | 1731.635 | 69.158 | < 0.001***
Iteration*diagnosis 36.510 1.986 18.387 | 0.734 0.482
Error iteration 2336.755 93.325 | 25.039

(C) "Test of within subjects effect" with Hyunh-Feldt correction.

TABLE 3.9: Two-way mixed-design ANOVA: effect on the amount of
answers of the repetition of the game within the first session and of
the diagnosis group of the subject.

Effect Value F df | p-value
Tteration 0.671 | 11.011 | 2 | 0.000***
Iteration*diagnosis | 0.994 | 0.132 2 0.877

(A) Wilks’” Lambda.

Mauchly’s W | df | p-value | Hyunh-Feldt e
Iteration 0.752 2 0.002 0.844

(B) Mauchly sphericity test.

Source Type III Sum of 2 df Mean 2 F p-value
Iteration 1729.962 1.687 | 1025.340 | 16.765 | 0.000***
Iteration*diagnosis 11.240 1.687 6.662 0.109 0.865
Error iteration 4746.705 77312 | 61.160

(C) "Test of within subjects effect" with Hyunh-Feldt correction.

TABLE 3.10: Two-way mixed-design ANOVA: effect on the amount
of answers of the repetition of the game within the second session
and of the diagnosis group of the subject.

As introduced in section 3.2.1, to execute the "test of within subjects effect" of
SPSS and to understand its results, it is necessary to perform a Mauchly sphericity
test and to apply a correction of the degree of freedom with the € of, e.g., Hyunh-
Feldt. Indeed, as a reminder, the data obtained in this protocol are non normal and
do not allow a Mauchly sphericity test to give robust results, thus we assume the

2 As the "Box’s test of equality of covariance” is really sensitive to non normal data such as the ones
collected in this protocol, it was not included in the analysis.
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non-sphericity of the data. As the Hyunh-Feldt € falls between 0.75 and 1.00, the
degree of freedom of the "test of within subjects effect" has to be corrected by Hyunh-
Feldt method. As tables 3.9 and 3.10 show, both results of the Wilks” Lambda test and
the "test of within subjects effect" show that only the repetition of the game permits
to reject hypothesis HO. Thus, one can assume that only the repetition of the game
had an effect on the progression of the subjects. This result suggests that both groups
should have a similar progression over the game iterations. Such progression can be
observed in figures 3.8 and 3.9. This result should be taken for what it is worth, as
the necessary assumptions were not met.
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FIGURE 3.8: Variations of means of total amount of answers in the
first session.
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FIGURE 3.9: Variations of means of total amount of answers in the
second session.

In order to validate the effect of the repetition of the game over the patients re-
sults, the Friedman statistical test has been performed on each group for both ses-
sion. The results are displayed on tables 3.11 to 3.14.
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N 28
Khi? 17.643

df 2
p-value | 0.000***

TABLE 3.11: Friedman Test result of the mild NCD group first session.

N 30
Khi® 36.867

df 2
p-value | 0.000***

TABLE 3.12: Friedman Test result of the mild NCD group second ses-

sion.
N 20
Khi? 32.076
df 2
p-value | 0.000***

TABLE 3.13: Friedman Test result of the SCD group first session.

N 20
Khi® 18.260
df 2
p-value | 0.000***

TABLE 3.14: Friedman Test result of the SCD group second session.

According to tables 3.11 to 3.14, the iteration of the game has an impact on the
patient results in both groups and in both sessions.
Third, a p of Spearman correlation test checked the correlation between the Code

game scores and the neurocognitive test results. The results of this correlation test
are summarized in table 3.15.

Answers | Right answers | Wrong answers | Time
coeff. corr 0.433 0.431 -0.002 0.275
MMSE p-value 0.002** 0.002** 0.990 0.053
Sample sizes 50
coeff. corr 0.783 0.790 -0.214 0.166
DSS p-value 0.000*** < 0.000*** 0.136 < 0.248
Sample sizes 50
coeff. corr 0.274 0.267 0.089 0.115
FAB p-value 0.054 0.061* 0.540 0.428*
Sample sizes 50
Digit Span coeff. corr 0.182 0.166 -0.027 0.350
p-value 0.237 0.283 0.863 0.822
reversed :
Sample sizes 44

TABLE 3.15: p of Spearman test on the correlation of the third itera-
tion of the first session of the Code game scores and neurocognitive
test results.

This table shows that the HO hypothesis can be rejected for several relations (p-
value under 0.05 and even 0.005). Hence, one can assume that some Code game
scores are correlated to several neurocognitive tests. As expected, the scores have
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a strong correlation coefficient with the DSS test (which inspired the game) and the
MMSE one (which is a global neurocognitive test). The strongest correlation coeffi-
cients are the time mean and the total amount of answers. As expected, according to
the first test of this subsection, the number of wrong answers is not correlated to any
neurocognitive test. The correlation of the total amount of answers variable with the
MMSE and the DSS results are displayed in figure 3.10
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FIGURE 3.10: Correlation of total amount of answers in the third ier-
ation of the first session with MMSE and DSS tests.
Discussion

The Code game score analysis showed that this game could differentiate participants
with neurocognitive disorders from control ones. Indeed, the scores are significantly
different between groups and this difference remains consistent from an iteration to
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another. The scores are also strongly correlated to well established neurocognitive
test results. The test from which it was inspired (the DSS one) is known to measure
processing speed and attention. The game showed to be relevant in measuring pro-
cessing speed but this experiment cannot measure any attention assessment. As the
number of wrong answers is not recorded in the DSS results it is difficult to say for
sure that the Code game cannot measure the efficiency of the player’s attentional
process.

Regarding a first comparison with the model described in the previous chapter,
one can notice major differences. Indeed, even though subject are given less time
(two minutes instead of five), mild NCD subjects get far more right answers (95.5
instead of 31) and far less wrong answers (1 instead of 15). Such difference led to a
redesign of the model before an actual calibration.

3.24 Recognition Game

As a reminder this game displays pictures randomly to the patient. Some pictures
have a duplicate that appears several pictures after its original. The goal for the
patient is to classify each picture as a "first-seen" picture (unique or original) by
dragging it into a folder or as a duplicate by dragging it into a garbage bin. This
game has three levels of difficulty and three picture themes randomly attributed to
each level for each patient. A fourth level with a fourth theme is used as training to
help subjects understanding the rule of the game.
The data gathered in this game were:

* series of pictures displayed to the subject, of actions of the subjects, and time
for each action;

¢ levels played, theme for each level, number of unique and original pictures put
in the folder, number of duplicates put in the trash, and total amount of time
taken to end each level.

The following analysis mainly focuses on the first session.

Results

First, a Kruskal-Wallis test checked whether the theme (nature, animals, or flowers)
of each level had an impact on the subject results. As a reminder, the null hypothesis
HO for this test states that all samples come from the same population. Here, for
each level, the samples are composed of both groups (mild NCD and SCD subjects)
for each theme (3 samples for each level). The results are displayed on tables 3.16.

These tables show that, except for the time variable of the first level, the p-values
are above 0.05. Thus the HO hypothesis cannot be rejected and on can assume that
the picture theme does not impact the subject performance. This result indicates that
if there are some differences between the results of levels 1, 2, and 3, they are more
likely to be caused by the difficulty of the level rather than by a difference of picture
theme. Hence, it is reasonable to focus on the levels of difficulty only.

To go further, the Kruskal-Wallis test has also been performed on the same data
but for each group. The results of these tests are displayed from tables 3.17 to ta-
bles 3.18.

The results shown in these tables are consistent with the more global results of
table 3.16. There are only three variables that are exceptions:
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Correct folder | Correct trash | Time(ms)
Mean 31.588 4.1373 111944.254
Std Error 0.339 0.181 5000.792
Kruskal-Wallis H 4.488 1.047 7.835
df 2
p-value 0.106 \ 0.592 | 0.0207
(A) 1st level
Theme | Rank
Nature | 28.670
Animals | 25.250
Flowers | 24.600
(B) 1st level ranks associated to time
Correct folder | Correct trash | Time(ms)
Mean 31.1373 4.745 112225.235
Std Error 0.418 0.172 5159.651
Kruskal-Wallis H 0.566 5.554 2.232
df 2
p-value 0.753 \ 0.062 \ 0.328
(C) 2nd level
Correct folder | Correct trash | Time(ms)
Mean 30.137 5.019 117972.392
Std Error 0.432 0.117 5469.389
Kruskal-Wallis H 5.436 1.991 0.701
df 2
p-value 0.066 | 0964 0.704

(D) 3rd level

TABLE 3.16: Examples of results obtained for the Kruskal-Wallis test
on the first session.

¢ the correct trash of the second level for the mild NCD group (the ranks suggest
that the theme "flowers" leads to different results);

¢ the time to finish the first level for the SCD group (the ranks suggest that the
theme "animals" leads to different results);

e the correct folder of the third level for the SCD group (the ranks suggest that
the theme "animal" leads to different results);

These variables are highlighting some levels that could be improved for future de-
velopment but tend to be the exception, rather than the rule as they are only three.

Second, a Mann-Whitney U test checked the differences of scores between both
groups. The results are shown in table 3.19.

This table shows that only the variable correct folder reaches a p-value under 0.05
(under 0.005 for the first level). Thus the null hypothesis HO stating that mild NCD
and SCD subjects have similar scores can only be rejected for the correct folder vari-
able (visualization in figure 3.11).
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Correct folder | Correct trash | Time(ms)
Mean 30.838 4.129 111169
Std Error 0.479 0.230 6587.981
Kruskal-Wallis H 1.803 2.922 2.494
df 2
p-value 0.406 \ 0.232 \ 0.287
(A) 1st level
Correct folder | Correct trash | Time(ms)
Mean 30.2253 4.580 114692
Std Error 0.573 0.248 7605.81
Kruskal-Wallis H 0.055 6.108 0.089
df 2
p-value 0973 |  0.047 0.957
(B) 2nd level
Theme | Rank
Nature | 13.500
Animals | 13.180
Flowers | 21.600
(C) 2nd level ranks associated to correct trash
Correct folder | Correct trash | Time(ms)
Mean 29.225 5.000 119974
Std Error 0.559 0.160 8053.386
Kruskal-Wallis H 2.259 2.183 4.126
df 2
p-value 0323 | 033 | 0127
(D) 3rd level

TABLE 3.17: Examples of results obtained for the Kruskal-Wallis test
on the first session for the mild NCD group.

Third, as it was done for the Code game, in an exploratory attempt, a two-way
mixed design ANOVA checked the differences of variation of scores for each level
of difficulty. This analysis focuses on the correct folder and correct trash variables. All
results are presented in table 3.20 for correct folder and table 3.21 for correct trash.

This table shows that only the tests regarding the effect of the difficulty level
reach a p-value under 0.005 and leads to reject hypothesis HO. Thus, one can assume
that only the level of difficulty of the game had an effect on the progression of the
subjects. This result suggests that both groups should have a similar progression
over the game levels, but it should be taken for what it is worth, as the necessary
assumptions were not met.

This second ANOVA table shows once more that only the tests regarding the
effect of the difficulty level reach a p-value under 0.005 leading to the same obser-
vation as for table 3.20. Figure 3.12 shows a summary of this ANOVA study. Once
again, this result should be taken for what it is worth, as the necessary assumptions
were not met.

Fourth and last, a p of Spearman correlation test checked if the results can be
correlated to the subjects clinical data. The results of this test are shown in table 3.22



(E) 3rd level ranks associated correct folder

TABLE 3.18: Examples of results obtained for the Kruskal-Wallis test
on the first session for the SCD group.
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Correct folder | Correct trash | Time(ms)
Mean 32.750 4.150 113146.500
Std Error 0.306 0.301 7840.390
Kruskal-Wallis H 0.752 0.583 7.010
df 2
p-value 0.687 \ 0.747 | 0.030%
(A) 1st level
Theme | Rank
Nature | 12.330
Animals | 3.500
Flowers | 12.000
(B) 1st level ranks associated to time
Correct folder | Correct trash | Time(ms)
Mean 32.550 5.000 108402.000
Std Error 0.444 0.205 5983.809
Kruskal-Wallis H 0.512 2.409 3.298
df 2
p-value 0.774 \ 0.300 \ 0.192
(C) 2nd level
Correct folder | Correct trash | Time(ms)
Mean 31.550 5.050 114869.000
Std Error 0.559 0.169 6416.96
Kruskal-Wallis H 8.563 0.689 1.911
df 2
p-value 0014 | 0709 0.385
(D) 3rd level
Theme | Rank
Nature 6.200
Animals | 15.500
Flowers | 8.810

This correlation test shows that the HO hypothesis can be rejected for two rela-
tions, the relation between the correct folder variable and, on the one hand, with the
memorization part of the "5 Words test" and, on the other hand, with the ordered
part of the "Digit Span test" (p-value under 0.05). HO can also be rejected for the
relation between the time variable and both the DSS test and the memorization part
of the "5 Words test" (p-value under 0.05). Thus one can assume that both the correct
folder and the time variables can be correlated to some neurocognitive tests.

Discussion

The analysis of this game can be summarized as follows:
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mild NCD SCD
(n=31) (n=20)

Correct folder, mean+Std Err | 30.8 0.4 | 32.7+0.3 148.0 0.001**

Correct trash, mean=+Std Err 41402 41403 308.5 0.976
Time (s), mean+Std Err 111.14+6.5 | 113.14+£7.8 | 305.0 0.923

(A) 1st level

U value | p-value

mild NCD SCD
(n=31) (n=20)

Correct folder, mean=+Std Err | 30.2 0.5 3254+04 168.5 0.005*

Correct trash, mean=+Std Err 45402 50£0.2 268.0 0.396
Time (s), mean+Std Err 114.6 £7.6 | 108.4+5.9 212.5 0.862

(B) 2nd level

U value | p-value

mild NCD SCD
(n=31) (n=20)

Correct folder, mean=+Std Err | 29.2+£0.5 | 31.5+£0.5 172.5 0.008*

Correct trash, mean=4Std Err 5040.1 50+0.1 308.5 0.975
Time (s), mean=+Std Err 1199+8.0 | 114.8 +6.4 298.0 0.817

(C) 3rd level

U value | p-value

TABLE 3.19: Mann-Whitney U test on the distribution of scores
within SCD and mild NCD groups of the first session.
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FIGURE 3.11: Box plot of correct folder actions of the mild NCD and
SCD groups.

the 3 themes did not impact the subject performance;

a significant difference of performance can be observed between both groups;

both groups show the same evolution of scores in the different levels;

the results of this game are correlated to working-memory tests and more
specifically to their memorization phase.

The similar evolution of performances within the game could be interpreted as a
similar strategy chosen by both groups. Indeed, as difficulty increases, more subjects
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Effect Value | F df | p-value
Level 0.758 | 7.678 | 2 | 0.001**
Level*diagnosis | 0.988 | 0.300 | 2 | 0.742

(A) Wilks” Lambda.

Mauchly’s W | df | p-value | Hyunh-Feldt e
Level 0.867 2 | 0033 0.932

(B) Mauchly sphericity test.

Source Type III Sum of 2 df Mean 2 F | p-value
Level 50.950 1.864 | 27.334 | 7.208 | 0.002**
Level*diagnosis 1.382 1.864 | 0.741 | 0.195 | 0.808
Error level 346.370 91.335 | 3.792

(C) Test of within subjects effect with Hyunh-Feldt correction.

TABLE 3.20: Two-way mixed design ANOVA: effect on the correct
folder variable of the level of difficulty and of the diagnosis group.

Effect Value F | df | p-value
Level 0.0.736 | 8.597 | 2 | 0.001**
Level*diagnosis | 0.974 | 0.647 | 2 | 0.528

(A) Wilks” Lambda.

Mauchly’s W | df | p-value | Hyunh-Feldt e
Level 0.979 2 | 0.601 1.000

(B) Mauchly sphericity test.

Source Type III Sum of df | Mean? F p-value
Level 20.467 2.000 | 10.234 | 10.029 | < 0.001***
Level*diagnosis 1.199 2.000 | 0.600 | 0.588 0.558
Error level 100.003 98.000 | 1.020

(C) Test of within subjects effect with Hyunh-Feldt correction.

TABLE 3.21: Two-way mixed design ANOVA: effect on the correct
trash variable of the level of difficulty and of the diagnosis group.

tended to place pictures in the trash thus reducing the errors on pictures that should
be placed there but increasing errors on those that should be placed in the folder.The
main difference between the two groups seems to rely on a "initial memory capital"
that is greater in SCD subjects over mild NCDs.

Regarding the comparison with the model described in the previous chapter,
one can notice that the correct folder categorization are pretty close (29.2 observed
for 28.7 estimated). However, the good trash categorization was underestimated
(5.0 observed for 1.2 estimated) and the "hesitation time" would require a deeper
analysis to be extracted. This model can be calibrated without any modification of
its structure.

3.2.5 Inhibitory Control Game

This game required to filter the data as the tablet had issues in some cases to detect
finger removal and the engineer could not find the cause of this problem. Thus the
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FIGURE 3.12: Variations of means of correct folder and correct trash
according to difficulty levels.

following analysis focuses mainly on the second session which showed less prob-
lems. However, since both sessions are equivalent according to the Wilcoxon signed
ranks test, the first session was kept when the second one was unusable. The subject
results which showed issues on both sessions were removed from the analysis. At
the end, 46 subjects remained (19 SCD and 27 mild NCD).

As a reminder, this game is inspired by the go/no-go task. It displays a target (or
a decoy) to the player who has to react (or not) accordingly. Each move starts with
the player touching the green button (see figure 2.16 of previous chapter). If a target
is displayed on the screen, the player must release the button to touch the target
as fast as possible and get back to the initial position. If a decoy is displayed, the
player must not move. The measured reaction time is the interval when the button
is released. Releasing the button when the target appears is a right action whereas
releasing it when the decoy appears is a wrong action.

The data gathered in this game were:



3.2. Result Analysis 91

Correct folder | Correct trash | Time

coeff. corr 0.258 0.008 -0.101

MMSE p-value 0.068 0.957 0.482
Sample sizes 51

coeff. corr 0.179 0.079 -0.305

DSS p-value 0.210 0.584 0.030*
Sample sizes 51

5 Words coeff. corr 0.304 -0.203 -0.332

memorization p-value 0.034* 0.162 0.020*
Sample sizes 49

5 Words coeff. corr 0.204 -0.039 -0.126

restitution p-value 0.159 0.789 0.388
Sample sizes 49

Digit Span coeff. corr 0.300 0.020 0.034

ordered p-value 0.045* 0.897 0.825
Sample sizes 45

Digit Span coeff. corr 0.076 -0.102 0.191

reversed p-value 0.621 0.506 0.209
Sample sizes 45

TABLE 3.22: p of Spearman test on the correlation of the Code game
scores and neuro-cognitive test results.

¢ the series of signals displayed to the subject, the actions of the subject, the
reaction time for each action;

¢ the number of right and wrong actions, the time mean for the right actions and
for the wrong ones.

Results

First, the Mann-Whitney U test checked if one of the recorded variables shows dif-
ferences between both groups. The results are displayed in table 3.23

mild NCD SCD U value -value
(n" = 27)(n® = 23) | (n" = 19)(n’ = 16) p
Valid go®, *

RN 29.3+0.1 29.7+0.1 173.0 | 0.029
Invalid no-go?,
Gt 20403 1.8+0.2 2470 | 0.828
Time go (ms), 498.0+11.5 458.849.8 162.0 | 0.035*
mean=5Std Err
: — 5

Time no-go” (ms), | 40954 519 361.0+£9.5 1100 | 0.035"
mean=Std Err

TABLE 3.23: Mann-Whitney U test on the distribution of scores
within SCD and mild NCD groups.

This first table shows that, regarding the score means, only the valid go actions
and the reaction times give p-values under 0.05. Thus the HO hypothesis can be
rejected and one can assume that these variables distinguish the two groups. This
distribution of scores is illustrated in figure 3.13.
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FIGURE 3.13: Box plot of the reaction time and valid go for mild NCD
and SCD groups.

The box plot on valid go actions shows a difference as it is really visible that most
subjects of the SCD group have a score of 30 while the mild NCD group is scattered
between 30 and 29. The box plots display also a noticeable difference in the reaction
time between groups as mild NCDs take more time to react.

Second, the p of Spearman test checked the correlation between the game vari-
ables and the subject clinical data. For the sake of clarity, only the most relevant data
are displayed in table 3.24.

As expected, the MMSE shows a significant correlation with at least a part of
the result variables: the number of valid go actions and the reaction time on invalid
no-go actions. The DSS results are also strongly correlated with both the number of
valid go actions and the reaction times on the target. Surprisingly, the FAB test shows
no correlation at all. To go further, the different parts of the FAB have been checked
as well. The go/no-go task, which is the typical measure method for the inhibitory
control, is not correlated at all to the game results. On the other hand, the Luria’s task
(assessing both fine motor and sequencing motor skills) result is strongly correlated
to the number of valid go actions and both reaction times. Figure 3.14 gives a better
view on the interaction of the game scores with the go/no-go task, the Luria’s task,
and DSS.
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Valid go | Invalid no-go | Time go | Time no-go

coeff. corr 0.323 -0.085 -0.1295 -0.390

MMSE p-value 0.028* 0.577 0.393 0.014*
Sample sizes 46 39

coeff. corr 0.286 0.149 -0.256 -0.237

FAB p-value 0.054 0.323 0.085 0.147
Sample sizes 46 39

coeff. corr 0.271 0.177 -0.117 -0.043

FAB go/no-go p-value 0.068 0.240 0.438 0.794
Sample sizes 46 39

coeff. corr 0.317 -0.041 -0.432 -0.375

FAB Luria’s task p-value 0.032* 0.787 0.003** 0.019*
Sample sizes 46 39

coeff. corr 0.400 -0.181 -0.408 -0.143

DSS p-value 0.006* 0.228 0.005* 0.385
Sample sizes 46 39

TABLE 3.24: p of Spearman test on the correlation of game scores and
neurocognitive test results.
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FIGURE 3.14: Correlation between the mean reaction times and DSS

Discussion

test.

This analysis showed that the Inhibitory Control game was suitable to differentiate
SCD and mild NCD subjects. However, it does not target the right cognitive func-
tion. Indeed, the number of right actions on targets and the reaction time on both
target and decoy were significantly different in both groups. But surprisingly, the p
of Spearman test did not show any correlation with the go/no-go task that inspired
this game. On the other hand, the Luria’s task showed way more correlation. This
part of FAB requires the patient to reproduce movements to demonstrate fine motor
skills and sequencing motor skills thus revealing possible executive dysfunction or

damage.

Regarding the comparison with the model described in chapter 2, there are major
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differences. Indeed, the final version of the game includes more signals and subjects
succeed more than what had been estimated. For go signals (targets in the model),
mild NCD subjects got 29.3/30 but only 5.55/10 had been estimated in the model.
For no-go signals (decoys in the model), they got 8/10 but only 0.86/5 had been es-
timated. Moreover, some data were unfortunately not recorded (e.g., signal display
times). Such conditions led to a redesign of the model before an actual calibration.

3.2.6 Result Overview
Discussion

The feasibility protocol shows that the games selected for this work seem to be suited
to discriminate between mild NCDs and SCDs. It particularly shows that the Code
game and the Recognition game scores seem to be consistent with the neurocogni-
tive tests assessing the cognitive functions of these games. As all the games give a
positive result for this study, they make it possible to calibrate their models detailed
in section 3.3; this calibration is the next step of figure 2.2 of chapter 2.

Protocol Feedback

Several points could be raised to increase the efficiency of future protocols.

¢ Collect the number of mistakes made by subjects in their DSS test and also
other interesting data such as signal display times.

¢ Select another frontal test to replace the FAB one. Indeed, as this test grades
each assessed function with a rank from 0 to 3, it was difficult to get a robust
correlation analysis. A more specialized test on the go/no-go task would be
more efficient.

¢ Hide all game parameters to put subjects in a situation closer to actual neu-
rocognitive tests and to avoid "cheating". For instance, it is not advisable that
the subjects know in advance internal parameters of the game (such as the total
amount of expected actions) and possibly base their behavior on this knowl-
edge.

¢ Improve the training phases so that subjects can learn the games without being
trained on the exact same critical parameters as the actual games (e.g., maxi-
mum time to react, arrangement of buttons ...).

3.3 Model Redesign and Calibration

The results obtained in the protocol experimentation differ from those of the model
checking in chapter 2. This difference can be explained by the changes in the game
parameters and because the initial profiles used in the models were not adapted.
Indeed, these profiles represented major NCDs rather than mild NCDs and the SCD
profile was not fully specified yet.

This section focuses on the redesign as well as the calibration of the Code game
and Inhibitory Control game PRISM models in order to make them compliant with
the observed experimental results. To do so, the statistics described in section 3.2 as
well as observations on raw data were used to adjust the models parameters.
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FIGURE 3.15: Activity model for a player of the Code game.

3.3.1 Code Game

The Code game was initially modeled with a five minutes duration. Subjects were
supposed to select a picture only once every three seconds and to have some inac-
tivity moments. With such parameters, subjects were expected to select 46 pictures
for 31 right answers and 15 wrong answers. It was also expected that subjects had
an overall risk of 3% to quit the game before the end of the duration. All these pre-
visions are far from the protocol results. A redesign of the model was thus required.

Redesign

The main focus points in the redesign are the duration of a session and the frequency
of actions. Indeed, the actual version of the game played during the protocol lasts
two minutes and the experiment results show that the frequency of actions is the
main criterion (if not the only one) to differentiate mild NCD from SCD subjects.
In the new version of the model, the axis "selection" of figure 2.4a is replaced with
an axis "selection_max" and axis "inactivity" is replaced with an axis "selection_min".
The values given to these variables depend on the raw data. For example, for mild
NCDs, the maximum number of answers in the raw data is 125 and the minimum
is 62; thus "selection_max" is equal to 125 and "selection_min" is equal to 62. Hence,
figure 2.4a becomes figure 3.15a.

As raw data did not show any inactivity within a Code game session, it seemed
reasonable to change the inactivity variable in the model. Thus, in the new version
of the Code game model, the modeled subject can only select an answer in a fast or a
slow way which are represented with two ranged integers fast and slow (represented
in figure 3.15b). On the other hand, we decided to keep the quit_game action but
with a probability close to zero (10~°%). Indeed during the protocol, only one patient
interrupted a game session and it was not in the middle of a game.

Looking at raw data information on mistakes, one can notice different types of
errors. The first and most noticeable type of error is the "miss click" one, that is the
error of a subject selecting the answer located directly beside the right answer in the
selection bar at the bottom of the screen. The second major type of error is the "antic-
ipation" one, that is the error of a subject selecting the answer corresponding to the
next picture in the list at the center of the screen. Other potential types of error were
identified but won’t be described here as they represent a small amount of errors for
both mild NCD and SCD subjects. The raw data show that both groups had almost
the same amount of errors but with a different distribution of the two main types of
errors (see table 3.25). This difference was observed but not statistically tested yet.

These types of errors have been included in the model as Boolean variables in
the module representing the subject. For example the variable miss_click represents
the "miss click" error type and anticipate represents the "anticipation” one.
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Error type mild NCD | SCD
Total amount 31 27

Miss click 15 6
Anticipation 1 9

TABLE 3.25: Error types in mild NCD and SCD groups.

Once the model has its new structure, the next step consists in its calibration to
represent the behavior of a group. This section only focuses on the first play of the
tirst session of the mild NCD subjects.

Calibration for Mild NCD Profile

As said earlier, the maximum number of answers for mild NCDs in the raw data is
125 and the minimum is 62. The selection_max and selection_min variables are thus
set to 125 and 62. According to the data analysis, within two minutes, mild NCD
subjects gathered a mean of 96.5 answers including a mean of 1 wrong answers. To
simplify the model, we consider that the number of answers for patients of the mild
NCD group follows a normal distribution centered on the mean 96.5. Looking at the
raw data, subjects seem to show quite a constant speed all along the game session.
Hence, the probabilities for the patients to select an answer fast or slow are given
by a constant value pfast and a formula pslow with pslow = 1 — pfast. Setting pfast
to 0.7 leads the model to compute a mean of 96.3 rewards; these rewards represent
answer gathering.

The probabilities to give a right or a wrong answer were calibrated in three
steps. First, the easiest was to determine the constant probability values for right
and wrong answers, regardless of the type of error, to compute a mean reward close
to 95.5 for right answers and to 1.0 for wrong answers. Second, the wrong answer
probability was redistributed to the probabilities of each type of error weighted by
their observed ratio. Third and last, ad hoc functions were introduced to approximate
the observed distribution of error types in a game session. For example, figure 3.16a
shows that most errors of miss click are made between the 25 and 55/ answers
and between the 70" and 110" answers. To represent this distribution, we chose
to define a density function consisting of two Gaussian-like peaks as shown in fig-
ure 3.16b. All constants of these Gaussian-like functions were manually chosen to
get closer to the results observed during the experimentation.

Once the model calibrated, properties have to be adapted and checked to com-
pare with the experimental results. The main changes as well as two of the new
variables are summarized in table 3.26.

Verification

The properties found in this section are either adapted versions or the exact same
properties as the ones found in section 2.3.2 of chapter 2. For this version, instead of
the "hybrid" model checking engine, PRISM software required the "explicit" engine
to compute the results with no errors.

Properties about speed. The following properties are extracted from properties 2,
3, 4 and 6 of chapter 2, section 2.3.2. In this chapter, we keep the same numbers as
in chapter 2, section 2.3.2. They evaluate the probability for a path to go through i
occurrences of fast actions and j occurrences of slow actions. The first three properties
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FIGURE 3.16: Miss click errors, from observations to probabilities.

check the probability to end the game with i = selection_max or j = selection_min,
or i in between 0 and selection_max and j in between 0 and inactivity_max so that
i + j is equal to the mean number of actions observed in the protocol (96). The last
one checks the probability for the patient to leave the game unexpectedly.

Property 2. What is the probability for a patient to be as slow as the slowest subject
observed in experiment?

P =?[F (fast = 0) & (slow = selection_min)]

Property 3. What is the probability for a patient to be as fast as the fastest subject
observed in experiment?

P =?[F (fast = selection_max) & (slow = 0)]

Property 4. What is the probability for a patient to start the game and to interact
with it, e.g., 96 times independently of the speed (fast or slow)?

P =?[F (location = location_max) & (fast + slow = 96)]
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Original variable | New variable Motivation
inactivity slow No inactivity observed,
associated probability is pslow
selection fast Compliant with previous change,
associated probability is pfast
inactivity_max selection_min | Compliant with previous changes
— miss_click Observed mistake,
associated probabilities are
pmiss_clickl and pmiss_click2
- anticipate Observed mistake,
associated probability is panticipate

TABLE 3.26: Summary of changes in the Code game model.

Property 6. What is the probability for a patient to leave the game before the
maximum game duration?
P =?[F (quit_game)]

Discussion The results for these properties are displayed in table 3.27, together
with their computing times.

The probability obtained for properties 2 and 3 are so low that PRISM considers
them as 0. As the probabilities for the actions slow and fast are simply defined with
tixed values, this result was expected. Indeed, there is only one existing path for
each property to be satisfied. Moreover, on one path, there are many states to go
through (62 for the slow action and 125 for the fast one), where the patient can escape
the path; thus the final probabilities get pretty low.

On the other hand, the computation of property 4 reaches a value of 11%. This is
due to the formula that includes all values of slow and fast variables verifying fast +
slow = 96 when the model reaches its final state. Moreover, the model parameters
were set so that the distribution of the final number of actions looks like a Gaussian
centered on 96.5. Thus this result is consistent with our expectation.

Finally, the probability to verify property 6 is, as for properties 2 and 3, a really
small one. As intended, this probability is even smaller (of the order of 107°%). Even
though this event never occurred during a Code game session of the protocol, it was
considered to be a valuable information, should it happen.

Property Prism Storm

Result Time(seconds) Result Time(seconds)
Property 2 0.00 0.066 3.8152 x 10~ 0.461
Property 3 0.00 0.047 4.3376 x 10~ 0.068
Property 4 | 1.1471 x 107! 0.136 1.1471 x 1071 0.140
Property 6 0.00 0.078 9.6331 x 10~ 0.190

TABLE 3.27: Results from properties 2 to 6.

Based on the assumption that subject speed distribution follows a Gaussian law,
these results can be interpreted as follows. If patients finish the game with the max-
imum or minimum number of actions, there are chances for them not to be part of
the mild NCD profile, even more if they decide to leave the game before the end of
the timer.
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Properties about quality of actions. The following property is directly imported
from section 2.3.2 of chapter 2 where it is indexed as property 8. It is relative to
the quality of the actions (correct or not) that can be performed. This reward-based
property provides an average "score" for the model.

Property 8. What is the average amount of good responses given by patients
during their game session

R{”Happy_smiley_reward”} =?[F (location = location_max)]

Discussion The results of this property for the different rewards of interest are
displayed in table 3.28, together with their computing time.

Property 8 can be written for Happy_smiley_reward, Sad_smiley_reward,
miss_click_rew, and anticipate_rew. According to its results, the average "score" for
a cohort of patients matching this model parameters should be 95.32 right answers
against 1.00 wrong ones for 0.49 miss click and 0.03 anticipation errors.

Reward PRISM Storm
Result | Time(seconds) | Result | Time(seconds)
Happy_smiley_reward | 95.32 0.686 95.32 0.220
Sad_smiley_reward 1.00 0.42 1.00 0.218
miss_click_rew 0.49 0.381 0.49 0.215
anticipate_rew 0.03 0.377 0.03 0.210

TABLE 3.28: Results of property 8.

These results are close to those observed in the experimentation. Indeed, the ob-
served mean of right and wrong answers are respectively 95.5 and 1.0. Regarding
the "miss click" and "anticipation" errors, their proportions among all observed er-
rors is respected with 15/31 = 0.48 for the "miss click" error and 1/31 = 0.03 for
the "anticipation" one. Thus the model is quite representative of the mean results of
mild NCD subjects.

Cumulative Rewards and Simulations The last property of this section corresponds
to property 11 of section 2.3.2 in chapter 2. This property uses the PRISM "cumulative
reward" facilities to track how the model accumulates rewards over time. Properties
using rewards can include variables such as the one indicating the number of steps
to perform before checking the reward. This kind of variables allows the use of the
"run experiment" feature of PRISM and the creation of graphs of results.

Property 11. What is the amount of happy smileys accumulated within 7 steps?
R{”Happy_smiley_reward”} =?[C <= i

where i is the number of steps to perform before checking the reward and C is the
"cumulative-reward" operator presented in section 2.1. This property is also applied
to Sad_smiley_reward, miss_click_rew, anticipate_rew.

The diagrams displayed in figure 3.17 show the average accumulation of happy
smiley rewards (subfigure 3.17a) and of sad smiley ones as well as rewards for the
two main types of errors discussed above (subfigure 3.17b). Diagram 3.17a shows
a relatively stable accumulation of happy smileys. Diagram 3.17b displays a more
irregular accumulation of sad smileys which corresponds to the observed results in
figure 3.16a.
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FIGURE 3.17: Average model checking results for rewards related to
right and wrong answers.

3.3.2 Inhibitory Control Game

The Inhibitory Control game was initially modeled with 10 target (go signal) occur-
rences, 3 training occurrences of target, 5 decoy (no go) occurrences, and 1 training
instance of decoy. The initial model also took into account the time elapsed between
two signals. As depicted in the experimental protocol (see section 3.2.5), the ac-
tual number of targets is 30 and the actual number of decoys is 10. Moreover, the
time elapsed between two signals and the action for the 3 training targets were not
recorded in the game’s log. Thus, model redesign was required.

Redesign

The whole redesign concerned the removal of the probabilistic time span between
two signals. This removal implied a heavy deletion of sets of guards and updates as
well as some variables. These deletions led to the modification of a large part of the
remaining set of guard and updates.

Calibration for Mild NCD Profile

The easiest part of the calibration was to change the number of targets and decoys
as the model was designed to ease these changes.

As said in the experimental results section, the protocol did not show differences
in the number of mistakes on the decoy signals by the mild NCD and SCD groups.
The main differences highlighted by the statistical analysis were on the number of
errors on the target signals and on the reaction speed for both types of signals.
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Variable Representation
prev_targ Boolean indicating if the previous signal was a target
prev_deco or a decoy.
prev_signal Variable name used in properties to refer to one
of the following variables: prev_targ, prev_deco.
transiting Boolean indicating if the model is in a transition state
click_sfast
click_fast Boolean indicating if the patient clicked in a fast or
click_medi | slow way for the previous signal. The fastest corresponds
click_slow to click_sfast and the slowest to click_sslow.
click_sslow
not_click Boolean indicating if the patient did not click at all
for the previous signal.
action Variable name used in properties to refer to one or more

of the following variables: click_sfast, click_fast,
click_medi, click_slow, click_sslow, or not_click.

num_sign Integer variable counting the number of
signals that have been displayed.
num_action Integer variable counting the number of
actions that have been done by the patient.
num_act_targ Integer variables counting the number of actions
num_act_deco done by the patient for a target or for a decoy.
num_act Variable name used in properties to refer to one

of the following variables: num_action,
num_act_targ or num_act_deco.

next_end Boolean indicating that the end of the game is reached.

game_on Boolean indicating if the game is on or off.

TABLE 3.29: Summary of Inhibitory Control game model variables.

The data exploration showed only one pattern if two signals for which the mild
NCD and SCD groups behavior differ. This exploration concerned both the temporal
location of mistakes during a session as well as the verification of the signals and
actions preceding a mistake. The exploration showed that 2/3 of the mistakes of
type "no click" on target were just after the apparition of a decoy. The remaining
calibration of the probabilistic parameters was made with the results displayed in
the experimental protocol section.

To better represent the speed capacity of the patient, we categorized the reaction
time in five classes instead of the two ones envisioned in the previous version of the
model (click_sfast, click_fast, click_medi, click_slow, and click_sslow).

Verification

The properties found in this section are either adapted versions or the exact same
properties as the ones found in section 2.3.2 of chapter 2. PRISM software required
the "explicit" engine to compute the results with no errors as it was also the case for
the initial version of this model.

To ease the comprehension of the following section, table 3.29 summarizes the
correspondence between the model variables and what they represent.
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Property Result Time(seconds)
Property 1 | 4.9369 x 107! 0.039
Property 5 | 4.6772 x 10~ ! 0.011
Property 6 | 1.2272 x 10! 0.034

TABLE 3.30: Results from property 1 to 6.

Properties on patient actions The following properties are extracted from proper-
ties 1,5, 6 and 7 of chapter 2, section 2.6.2. In this chapter, we keep the same numbers
as in chapter 2, section 2.6.2. The first three properties evaluate the probability for
a path to go through states representing good actions. The fourth one checks the
amount of rewards accumulated for different actions.

Property 1. = What is the probability for the patient to click exactly once on each
target?

P =2 [G (prev_targ & !transiting) => (click_sfast | click_fast | click_medi |

click_slow | click_sslow)]

Property 5. What is the probability for the patient to do the right action on each
signal until the thirteenth?

P =? [(((prev_targ & 'transiting) => (click_sfast | click_fast | click_medi |

click_slow | click_sslow)) &
((prev_deco & !transiting) => (not_click))) U (num_sign = 13)]

Property 6. What is the probability for the patient to do the right action on each
signal from the thirteenth until the last signal?

P =? [(((num_sign >= 13 & prev_targ & !transiting) => (click_sfast | click_fast |

click_medi | click_slow | click_sslow)) & ((num_sign >= 13
& prev_deco & !transiting) => (not_click))) U (next_end & game_on)]

Property 7. What is the average accumulation of good answers on targets at the
end of the game?

R{"good_on_target”} =? [F (Igame_on & next_end)]

Discussion The results for these properties are displayed in tables 3.30 and 3.31,
together with their computing times.

The probability obtained for property 1 is around 49%. This complies with the
experimental results in which patients succeeding on a high number of targets were
common observations.

Properties 5 and 6 check the probabilities for a patient to perform the right action,
whatever the signal is, within a range of signals. Property 5 checks this probability
for the range going from the beginning of the game until the apparition of the thir-
teenth signal. The answer is 4.67 x 10~!, which is consistent with the result obtained
for property 1. Property 6 checks the probability to perform the right actions from
the thirteenth signal until the end of the game. The probability for this property is
1.22 x 10~!. The probabilities to perform a correct action before or after the thir-
teenth signal show a big difference between the two versions. Given that after this
signal there are 27 signals left, the chances to give good answers after signal 13 are
significantly lower than before.
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Property Result | Time(seconds)
"good_on_target” | 29.30 0.045
"good_on_decoy” | 7.99 0.058
"good_on_signal” | 37.30 0.044
"bad_on_target” | 0.69 0.057

"bad_on_decoy” 2.00 0.047
"bad_on_signal” 2.69 0.044

TABLE 3.31: Results of property 7 for various rewards.

Property 7 is reward-based and gives an idea of the overall performance of a pa-
tient during the game. It checks the average amount of good actions done by a pa-
tient on a target. The results for this property and for other behavior-related rewards
are displayed in table 3.31, together with their computing times. The model checker
takes less than 0.1 second to give the result of these properties. The “good_on_signal”
reward shows that the average amount of good answers for a patient represented by
this model is 37.3 out of the 40 signals, complying with our experimental results.

Evolution of Probabilities and Cumulative Rewards The last properties of this sec-
tion corresponds to property 8 and 9 of section 2.6.2 in chapter 2. This properties uses
variables as well as the PRISM "cumulative reward" facilities to track how the model
probabilities behave and how the model accumulates rewards over time.

The first three diagrams present the evolution of the probabilities during the
game. Figures 3.18, 3.19, and 3.20 present the results of the following property.

Property 8. What is the probability to perform "action" for the game output number
i?
P =? [ F (num_act = i & prev_signal & (action) & !transiting)]
In this property, num_act and action are generic variable names that may refer to
any variable described in table 3.29.
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Figure 3.18 shows the results for property 8 with num_act equal to num_act_targ,
prev_signal equal to prev_targ and with action being a Boolean presented in the leg-
end of the figure and in table 3.29. The probabilities displayed in this figure are a
lot simpler than the probability shown in figure 2.18. This is intended as our data
exploration did not show any obvious variations within a session. This remark can
be extended to figure 3.19 and figure 3.20.
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Figure 3.19 shows the results for property 8 with num_act as num_act_deco and
prev_signal as prev_deco.
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Figure 3.20 describes the results for property 8 with num_act as num_action and
prev_signal and action as a combination of prev_none, prev_targ and prev_deco with
their corresponding good or bad actions. A small peak at the first action can be
seen reaching 100%. This first action is the one made before the arrival of the first
accounted game signal for which no patients had any error.

The next figures 3.21 and 3.22 present the results for the following cumulative
reward property:

Property 9. What is the amount of good answers within i steps?

R{”good_on_target”} =? [C <=1]
We applied the same property to other rewards: “good_on_target”, “good_on_decoy”,
"good_on_signal” (the sum of the previous ones), "bad_on_target”, "bad_on_decoy”,
"bad_on_signal” (the sum of the previous ones), “bad_tar_no_dec”, and
"bad_tar_aft_dec” that are sub-parts of bad_on_target. The reward “bad_tar_no_dec”
increments itself for bad actions on a target that was not directly preceded by any
decoys and "bad_tar_aft_dec” increments itself for bad actions on a target that was
directly preceded by a decoy.
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FIGURE 3.21: Average model checking results for rewards related to
good actions.

The two figures 3.21 and 3.22 display "stair-like" diagrams for the same reasons
stated for figures 2.21 and 3.22. The accumulation of reward are following a linear
increase which was to be expected with the new set of probabilities. Figure 3.22
displays the accumulation of the rewards “bad_tar_aft_dec” and "bad_tar_no_dec”.
This accumulation complies with the observation that two thirds of error on targets
were associated with the display of a decoy directly before the target.

3.4 Conclusion

Conducting a clinical protocol from design to data analysis is a challenging experi-
ence. The main constraint was to go through several ethical validation processes.
Even though the protocol described in this chapter is perfectible, its results showed
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the potential of serious games in the screening of mild NCD patients. The selected
games were able to display differences between mild NCD and SCD groups as well
as correlations with classical neurocognitive tests. These results were used to re-
design and manually calibrate the Code game and the Inhibitory Control game mod-
els. This first calibration experience is encouraging as it led to a better representation
of the behavior variants and make the models effective. It can be noted that the cal-
ibration can result in models far less complex than originally expected as seen in
the case of the Inhibitory Control game. This simplification encourages us to tackle
games associated with more complex behavior to model. However, the Inhibitory
Control game would definitely benefit from a second improved protocol to assess its
capacity to evaluate the inhibitory control function of the player. Moreover, the cal-
ibration of the models could go further to perfectly match the observed data. To do
so, we will consider the possibility to use parameter synthesis (e.g., PROPhESY [40]
which accepts PRISM format as input) or other classical optimization methods [58].

One of the natural continuation of this work is to study the potential link be-
tween these activity models and a brain model focused on a given cognitive func-
tion. To this end, the next chapter targets the inhibitory control function through
formal modeling in an attempt to explore the relations of the underlying biologi-
cal inhibition mechanism and the observed behavior during the Inhibitory Control
game.
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Chapter 4

Model of the Inhibitory Control
Circuit in the Brain

This chapter proposes a model of the neural network governing the inhibitory con-
trol function and studies some of its dynamic properties. The material of this chap-
ter comes mostly from the internship work of Benjamin Lapijover !. The internship
aimed to artificially represent the behavior of inhibitory control in humans through
a probabilistic model. To do this we modeled the different structures implied in the
inhibitory control loop thanks to a probabilistic discrete Markov chain model imple-
menting Leaky Integrate and Fire artificial neurons. The objective is to compare this
model with the activity model of the Inhibitory Control game and to explore their
relationships.

4.1 Cognitive Functions and Brain Structures

Cognitive functions is a broad designation that covers brain processes necessary in
the acquisition and the treatment of information and in reasoning. They include
domains such as learning, awareness, and decision making [75]. The concept of cog-
nitive functions is the base of many existing models which aim to deepen the current
knowledge on the brain mechanisms. For instance, Hopfield neural networks repre-
sent the associative memory [62]. More recently, artificial neuron models have been
used to understand the relations between the brain waves and cognitive functions
such as working memory or executive control [112].

In the field of neuropsychology, a daily activity of practitionerss is to assess these
cognitive functions with pen and paper tests. One of the main challenges of neu-
rocognitive science is to build a better understanding of the cognitive functions and
of their interactions. This knowledge may lead to improve both the clinical assess-
ment methods and the therapies for a given disorder.

In this work, we focus on the inhibitory control function. This choice is motivated
by three reasons:

e this function has been studied for a long time and several models already ex-
ist [121];

e this cognitive function can be evaluated with well established tests (e.g., go/no
-go task) for patients with age related diseases;

¢ the inhibitory control function is managed by a fairly restricted amount of
brain structures, the basal ganglia, which makes it easier to model, compared

Isupervised by Dr. Elisabetta De Maria and co-tutored by the author
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to attention (as in the Code game) or memory (as in Recognition game) func-
tions;

¢ other well studied and modeled brain processes such as the "Incentive
Salience" [18, 129] are not the most suited for age related diseases except in
some particular cases.

The following sections detail the brain structures and the diseases associated
with inhibitory control.

4.1.1 Biological Neuron

Biological neurons (see figure 4.1) allow inter cellular communication via electrical
signals. They can have thousands of ramifications called dendrites that receive nerve
(sensory and motor) information, named afferent signals. On the other hand the axon
is usually unique and sends information named efferent signals to other cells.
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FIGURE 4.1: Biological neuron.

Neurons are specialized in the conduction of information and their size varies.
For instance, brain inter neurons that are central nodes of neural circuits (but not
direct motor neurons, nor sensory ones) are a few millimeters long. On the other
hand, central nervous system projection neurons that carry information from a part
of the brain to another, or from the spinal cord to other organs, may be up to one
meter long. The action potential that runs through the axon is a nerve impulse caused
by the difference in ion concentration between the inside and the outside of the neu-
ron. When a neuron does not receive any signal, the membrane maintains a resting
potential generated by the ionic current at rest. The resting potential is caused by the
leaking channels which constantly balance the concentration of the potassium ions
on both sides of the membrane. Nerve impulses modulate the membrane potential
and if this potential exceeds the threshold of excitability, it triggers in turn an action
potential or spike. This action potential is defined as a quick rise and fall of the mem-
brane potential. When triggered, the spike travels along the neuron axon to reach the
synaptic terminals [104]. Depending on the neuron, the spike either directly travels
to the dendrites of the connected neuron or triggers the release of molecules, named
neurotransmitters. These neurotransmitters reach receptors on the dendrite side of
the synaptic connection. In both cases, the receiving neuron follows the same cycle
as the neuron that sent a spike.

4.1.2 Inhibitory Control Circuit

According to the literature [8, 9, 68], the brain regions involved in the inhibitory con-
trol cognitive function are the cortex, the basal ganglia, and the thalamus. Together,
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these anatomical structures make it possible to temporarily stop the action of the mo-
tor cortex and therefore to inhibit an action initially planned. At the attentional level
the role of the inhibitory control circuit is to ignore irrelevant stimuli. A deficit in
this circuit can cause cognitive impairment [23] and there exist neuropsychological
tests to assess it.

The basal ganglia (see figure 4.2) are considered as motor structures that allow
movements to start and stop, although they also have a role in non motor functions.
Some researches showed that a dysfunction of the inhibitory control circuit might
be involved in disorders other than the inhibitory control ones such as obsessive-
compulsive disorders [51, 41]. In this thesis, we only focus on the basal ganglia and
their role in the inhibitory control.

Basal ganglia are essentially a part of the motor loop and thus of the inhibitory
control circuit. They contain several anatomical structures like the striatum (STr)
which is itself composed of the putamen and caudate nucleus. These two latter
structures are often distinct in the circuit, but in our formal model we only represent
the STr. This simplification is advisable to limit the size and complexity of the model
and acceptable because the striatum can be considered as a whole functional zone
by itself [72].

Basal ganglia also contain:

* the globus pallidus which is separated into two structures:

— the outer segment (Gpe),

— and the inner segment (Gpi) which is related to the substantia nigra pars
reticulata (SNpr) (in our model we will represent them together);

e the subthalamic nucleus (STN);
e the substantia nigra pars compacta (SNpc).

The cortex (Cx) and the thalamus (Th) are also part of the inhibitory control loop
but not part of the basal ganglia [104].

There are two distinct pathways in inhibitory control. First, the direct path starts
from the STr which receives input signals (named afferent signals at the level of neu-
rons [85]) from several components of the cortex. When excited, STr inhibits the
Gpi/SNpr complex, leading to a disinhibition of the thalamus (Th) that communi-
cates with the motor cortex of the frontal lobe. The effect of this pathway is the
"release" [53] of the desired physical movement.

Second, the indirect path allows suppressing unwanted movements. It starts
from both STr and STN. In this path, STr inhibits GPe leading to the disinhibition of
STN which establishes connections onto the GPi/SNpr complex via excitatory fibers.
When receiving this excitation signal, the GPi/SNpr complex inhibits Th [53]. At the
same time, STN receives powerful afferent signals from the cortex making it possible
to modulate the release activity of the direct pathway [104]. More precisely:

¢ In the direct pathway, corresponding to the release of the programmed motor
action, specialized STr neurons target specific neurons of the Gpi/SNpr com-
plex neurons with "slow", "focused", and "convergent" inhibitory inputs [95].
These inputs trigger the disinhibition of the Th zone controlling the expression
of the desired motor program.

¢ Whereas in the indirect pathway, STN specialized neurons target the Gpi/S-
Npr complex with "fast" and "divergent" excitatory inputs [95]. These inputs
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FIGURE 4.2: Basal ganglia location and its components.

trigger the inhibition of Th in a way that removes all the unwanted motor pro-
grams and permits the movement initiated by the disinhibition done by the
direct pathway.

The decline of inhibitory control efficiency in aging subjects is due to anatom-
ical and functional changes in prefrontal/frontal regions [63]. However, there are
differences of loss between healthy and pathological aging. It is one of our goals to
differentiate these two conditions. It has been shown [36] that in neurodegenerative
diseases, such as Parkinson’s disease and Alzheimer’s disease with Parkinsonian
syndrome, there is a degeneration of the neurons of the substantia nigra pars com-
pacta (SNpc). The dopaminergic influx originating from the SNpc and targeting STr
is considerably reduced. STr is then less inhibited which consequently reduces the
inhibitory emission of the basal ganglia and removes the inhibition of the thalamus
and therefore the motor inhibition.

4.1.3 Alzheimer’s and Parkinson’s Diseases

As said in the introduction 1, the World Health Organization categorizes the Alzhei-
mer’s disease as the major cause of dementia (60-70% of the cases). The Parkinson’s
disease is another frequent dementia related disease that affects nearly 2% of seniors
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over the age of 65 according to the Alzheimer’s Association. These neurodegener-
ative diseases impact both memory and behavioral inhibition. The patients are no
longer able to suppress a non-dominant motor response and the executive function
of the patients is affected at an early stage of the disease. These diseases modify
patients functional and cognitive behavior and may alter their social behavior in the
long term.

The Alzheimer’s disease has some physiopathological specificities [31]:

¢ the presence of tau protein and beta amyloid aggregates are characteristic signs
of Alzheimer’s disease;

— the cytoskeleton of neuron cells becomes unstable;

— in the extracellular environment, the beta amyloid peptides aggregate ab-
normally into senile plaques;

¢ the porosity and loss of structure of the neurons progressively lead to a loss of
function and ultimately to the death of the neurons;

¢ thebrain hippocampus is the first anatomical structure affected by Alzheimer’s
disease.

The Parkinson’s disease presents characteristic motor disorders. It is defined by
symptoms such as tremors, hypertonia (stiffness of the muscles), and akinesia. Aki-
nesia is the reduction of voluntary and automatic motor skills which decreases the
initiation of movement [41]. Neuronal degeneration is characterized by Lewy bodies
which are neuronal inclusions made up of aggregates of a-synuclein and ubiquitin
proteins. Motor symptoms occur rather late in the disease, the main cause being the
dysregulation of the dopaminergic system. The disease actually begins with the de-
generation of the vagus nerve which subsequently causes the death of dopaminergic
neurons in the basal ganglia [23]. Parkinson’s disease is often at the center of studies
on the inhibitory control such as the work of [96] in which deep brain stimulation
are used to explore the role of STN in this cognitive function.

The death of nerve cells for both diseases begins at the periphery of the basal
ganglia which are at the center of inhibitory control. The inhibition process is gen-
erally slower with age, but in patients with an early stage of cognitive impairment
(such as the onset of undiagnosed Alzheimer’s or Parkinson’s diseases) the process
is even slower.

One type of task that can measure cognitive motor skills in patients with such
diseases is the go/no-go task which consists in suppressing an initially programmed
intentional movement. This task has not yet been able to differentiate an Alzheimer
population from a healthy one [51], but at the motor level, the antisaccade task, which
is close to the go/no-go one, made it possible to find alterations between the two
populations. In this task, it is sufficient to look at a particular point without eye
jerking in the presence of distractors [36]. In our case, the Inhibitory Control game
described in chapter 2 is inspired by such tasks and thus targets inhibitory control
capacities. This game has been tested by people with cognitive complaints or with
minor cognitive impairment (as shown in chapter 3 section 3.2.5).



112 Chapter 4. Model of the Inhibitory Control Circuit in the Brain

4.2 Inhibitory Control Computational Modeling

4.2.1 Inhibitory Control Models

Several explicative models of the inhibitory control use the go/no-go task to study
and describe its underlying mechanisms. As a matter of example, the pioneer horse
race model [84] inspired several models such as the interactive horse race model [22].
These models are reviewed in [121]; they describe the inhibitory control function as
a competition between a "go" and a "stop" process in the brain. This modeling ap-
proach gave many insights on the mechanisms of the inhibitory control [111]. With
the rise of computational simulation techniques, the past decades have seen the de-
velopment of several models based on neural networks for the inhibitory control
loop with respect to neuroanatomy [114]. Among these models, some focus only
on the inhibitory control and the basal ganglia (e.g., [14]) while others attempt to
include this loop in bigger brain circuits (e.g., [97]). In both previous examples, au-
thors tried to model healthy, pathological, and under medications behaviors. Note
that modeling the treatment is not part of the scope of this PhD thesis.

The model presented in this thesis finds its inspiration in the work of [126] the
authors of which attempted to model the inhibitory control function with a set of
(heavy) biological "Leaky Integrate and Fire" neuron networks representing each
brain structure implied in this function. This type of neuron model appears as the
most efficient for mathematical analysis (see next section).

4.2.2 Artificial Neural Network Models

The aim of formal biological neuron modeling is to obtain models that can be both
analyzed mathematically and sufficiently realistic to represent the essentials of neu-
ral processing.

The modeling of neural networks is often functionally classified into three gen-
erations [86]. The first generation is based on the "formal neuron" of McCulloch and
Pitts [93]. It has several binary inputs associated with weights and the sum of these
weights is compared to a threshold value determining activation or non-activation
of the neuron output [102].

The second generation of models of which the most representative example is
the multi-layer perceptron of Cybenko [37], exploits real valued activation functions.
These real values represent the frequency at which a neuron emits spikes (firing
rate). This kind of artificial neurons is still widely used in supervised and unsuper-
vised learning algorithms.

The third generation of neural network models, also called spiking neural net-
works [101], are characterized by the relevance of time aspects. Precise spike firing
times are taken into account. Moreover, past input spikes are also considered in the
computation of the membrane potential (temporal summation).

Among the different models of the third generation, we chose the Leaky Integrate
and Fire model [26], which is a good compromise between biological fidelity and
computational efficiency for mathematical analysis [66].

Leaky Integrate and Fire Discrete Model

According to the Leaky Integrate and Fire (LI&F) model, the membrane of a neuron
can be represented as an electronic circuit as proposed in the pioneering work of
Lapicque [81, 26].



4.2. Inhibitory Control Computational Modeling 113

In this model the intensity of the action potential is neglected, but the instant of
its occurrence plays an important role [38, 101]. We considered a discrete version
of the model where the membrane potential u at time t is defined by the following
equation:

w;-xi(t)+r-u(t—1)if u(t—1) < Tau
w; - x;(t) otherwise

o-{E;

In the equation:

e x;(t) € {0,1} is the signal received at time ¢ by the neuron through its i*" input
synapse;

* w; is the weight associated with the i input synapse to assign a strength to
the input;

* ris the leak factor caused by ion exchanges through the membrane;

¢ Tau is the excitability threshold beyond which the neuron emits an action po-
tential (a spike).

The threshold for the emission of an action potential (spike) is compared with the
membrane potential at time f. If the membrane potential exceeds the threshold, an
action potential is emitted and the membrane potential is reset to zero. The neuron
output function s(t) € {0,1} is therefore defined by

S(t) = { 1if u(t) > Tau

0 otherwise

Generalization to Neuron Boxes

In this thesis, the goal is to model the interactions of several structures of the brain
(which are made of thousands of neurons) while keeping the model tractable for
model checking. As modeling each and every neurons would make the model very
difficult to check, we introduce a generalization of the "LI&F" neuron to neuron
boxes. This means that we modified the equation of the LI&F neuron so that it may
represent several neurons, each one producing its own output at a given instant.

The generalization consists in representing each of the anatomical structures of
the inhibitory control circuit by a box containing ten neurons of LI&F type. This
number is not proportional to the actual number of neurons found in the brain struc-
tures nor does it follow the proportions found in the model of Wei and Wang [126].
This simplification is a trade off between biological accuracy and computation ca-
pacity. Indeed, a network of ten neurons cannot mimic the behavior of complex and
heavy networks with hundreds or thousands of neurons. However, it allows the
observation of a "firing ratio" (number of firing neurons out of the ten ones) for each
time step. Moreover, the generalization allows to model these ten neurons with only
one entity called box that directly computes the firing ratio at each time step. Thus
the choice of boxes makes it possible to have a behavior relatively close to a small
network of neurons, without requiring a lot of computing power.

To take the difference of sizes between biological structures into account, the
weight of each connection of the model was first set to a value proportional to

¢ the weight used for the same connection in the model of Wei and Wang;
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* the number of neurons connecting two structures in the model of Wei and
Wang.

The formula defining the dynamic of each box is the following;:

U(t) = Ty w- Xi(t) +r-U(t— 1) - (NS

This formula is close to the usual LI&F neuron dynamic formula [66] except that
here, the Boolean x; is replaced by the integer X; ranging from 0 to 10 to mimic the
possible 10 neuron inputs from another box. Indeed, another simplification of this
model is that when a biological connection exists between two boxes A and B, all
neurons of box A are considered to be connected to all neurons of box B. Thus,
the new formula does not take Boolean inputs anymore, but input firing ratio. This
simplification led to the insertion of a new variable: N. This variable represents the
number of neurons in the whole box (N = 10 in the presented model). As neu-
rons are far less sensitive to stimuli after emitting a spike due to the "Refractory
Periods" [104], the last term of the formula was introduced. In this term, S(t — 1)
represents the number of neurons which discharged at the previous time step. More
precisely, s(t) is defined with the following formula:

S(t) = LTILEZ)' where 0 < S(t) < N

Thus, to track the activity of a box in the model, one should check the values of
S(t) of this box in the time window of interest.

Biological inputs from the cortex are irregular, thus, to get as close as possible to
this irregularity, the input spikes are modeled by a Poisson law [61]. In their work,
Wei and Wang [126] modeled these inputs as Poisson spike trains. Following this
line, the computation of the activation probabilities of the cortex and SNpc neurons
in our model follows the Poisson function with parameter lambda below:

e MK
k!
where k is the number of cortex and SNpc neurons that send a spike.

P (k) =

4.3 Model of the Basal Ganglia and Validation

The first task was to provide a formal model of the main interactions between the
different basal ganglia nuclei. As in chapter 2, we rely on a probabilistic model-
ing approach based on the use of discrete-time Markov chains. We developed a
PRISM model to artificially mimic the behavior of human inhibitory control through
a probabilistic model. The purpose of this model is to be coupled to the activity
model associated with the game evaluating this function in order to explore modi-
fications in the neural network that can generate a patient behavior characteristic of
neurocognitive disorders.

Second, we automatically tested probabilistic temporal properties of this model
thanks to model-checking (in PRISM and Storm) to explore potential sources of patho
-logical behavior in the inhibitory control circuit.
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4.3.1 Model Overview

As said in section 4.2.1, neuropsychologists and neurobiologists have theorized sev-
eral models of the functioning of the basal ganglia which have already been inte-
grated into software systems. The model implemented in this thesis is inspired by
the basal ganglia model of [126]. In this paper the authors developed a "physiologi-
cally based network model of spiking neurons with feedback mechanisms" to study
inhibitory control in particular. They proposed a neural network model of LI&F
neurons for the basal ganglia following the architecture shown in figure 4.3.
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FIGURE 4.3: Graph describing the neural network of [126].

In the work of Wei and Wang, each structure of the basal ganglia in figure 4.3
was modeled using a different amount of neurons (e.g., 2500 for GPe and 250 for
Str) with either all to all connections or sparse connections (e.g., STr neurons are
all to all connected, whereas GPe has sparse connections with STN and itself). The
thalamus (Th) has also its own neuron network. The cortex signals being the inputs
of this model, they were modeled using a Poisson law that computes the input spike
trains. The authors represented the basal ganglia on both sides of the brain. With
this model, the authors obtained diagrams of activity for each structure to visualize
concepts such as the importance of some specific connections in inhibitory control.

Our approach is different as we do not rely on simulation only and we represent
basal ganglia on one side of the brain only but we kept the same division into differ-
ent boxes. As previously introduced, our work relies principally on model checking
techniques. The advantage of model checking is that it allows the automated explo-
ration of each possible state of a model to ensure the validation or the rejection of a
given property. However, this automated computation constrains experimenters to
implement models with lower complexity compared to simulation methods. Thus,
our model follows the architecture shown in figure 4.3 using LI&F neuron boxes and
other adaptations, resulting in the graph of figure 4.4.

The implementation followed several steps:

1. build a model for a single box of neurons (with formula 4.2.2 from section 4.2.2);

2. add conditions to limit the output firing ratio of boxes to values between 0 and
10 as each box represents 10 neurons;

3. build the model with all the biological structures represented as blue rectan-
gles in the basal ganglia square of figure 4.4 as well as the thalamus and in-
troduce excitatory and inhibitory connections between them as symbolized in
tigure 4.4;
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4. add connections from the cortex as inputs; these inputs follow a Poisson law
determining the number of spikes sent to the STr and Th boxes (section 4.2.2);

5. implement an additional Delay box between the STN box and the SNpr one
allowing a discrete functioning of the loop;

6. integrate a SNpc box to differentiate a healthy brain from a brain with a de-
generated SNpc. For this we defined 2 different formulas (see PRISM code in
section 4.3.2):

¢ the first takes into account both the inputs of the SNpc and those of the
cortex;

¢ the second takes into account only the inputs of the cortex.

We considered that a pathological brain has a 30% probability to follow the first
formula and a 70% probability to take into account the second. These numbers
were chosen in accordance with Cheng’s paper [29] which shows that the death
of dopaminergic neurons reaches 70% in the later phases of Parkinson’s disease.
Dopaminergic neurons are not considered to be dead in a healthy brain and there-
fore it will always follow the first formula (see figure4.5).

For each of the intermediate steps of the development, it was necessary to under-
stand the activity of the neural network. To do so PCTL properties on the activation
and inhibition of the boxes were tested with both PRiSM and Storm. To check these
properties, PRISM required the use of the "explicit" engine and Storm handled the
properties computation with its default engine (the "sparse" one).

4.3.2 PRISM Model Implementation

This section focuses on the implementation of the model with the PRISM language
and its verification with PRISM and Storm frameworks.

Each neuron box is implemented by a single PRISM module. All the neuron
box modules have a common structure with two variables (for global membrane
potential and firing ratio) and one set of guards and updates.
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FIGURE 4.5: Model differences between a healthy brain and a brain

with degenerated SNpc. The healthy brain always takes all inputs

from the SNpc and the cortex. The pathological circuit promotes the

inputs from the cortex and considers the SNpc inputs only 30% of the
time.

Example of a Simple Model

To illustrate this implementation, the simple case of two boxes, each with 10 neurons,
connected together is best suited. Figure 4.6 below presents the PRISM code of these
two boxes.

Between lines 13 and 20 are the constants used to compute the state of a given
neuron box. The tau constant corresponds to the spike activation threshold of a
classical LI&F neuron and has a value of 80°. The r constant is the leak factor which
decreases the impact of the past inputs with time. Finally the constants between line
17 and 20 are the weights associated with each connection between the boxes.

Between lines 28 and 44, one can find the two modules representing the neuron
boxes. In these modules the variables are:

¢ pbl and pb2 the global membrane potential of Bl and B2 respectively;

* nbl and nb2 the number of output spikes (or "firing ratio") of B1 and B2 respec-
tively.

The values of pbl and pb2 are computed with formulas b1 and b2 at lines 23 and 26.
In the update command of B1 (resp. B2) box module, the value of nb1 (resp. nb2) is
computed from the value of b1 (resp. b2). This computation aims at determining the
firing ratio, thus, the formula divides the global membrane potential b1 (resp. b2) by
the threshold tau. For example, if b1 = 400, nb1 is set to 400/tau = 5.

Lines 3 to 11 define a third module named Entry. This module is the input mod-
ule of the model and represents the cortex inputs of the neural networks. It has one
variable, t1, that represents the number of input spikes that are sent to the neuron
boxes and ranges from 1 to 10. The only set of guards and updates of this module
was generated thanks to a Python script that implements a Poisson law for the value
of t1. For example, the probability for the Entry module to send one spike (t1 = 1) is
0.000072991952613. This module gives the inputs to Bl as it can be seen in formula
bl.

In this model, module B1 receives entries from both the Entry and the B2 mod-
ules whereas B2 receives entries only from B1.

2Since the resting membrane potential of a neuron is —10mV and the biological threshold is 70mV,
we chose a threshold value of 80 because the resting potential in our model is 0.
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dtmc

module Entry

f/Input spike that follow a Poissonian law with 7 as parameter

f/Prism does not support more than 15 digit after the dot for this command
t1:[0..10];

[to] true -= 0.000072991952613: (11'=1) + 0.003437086558390: (t1'=2)

+ 0.021604031452484; (t1'=3) + 0,059540362608726; (t1'=4) + 0.104444862957054; (t1'=5)
+ 0.137676078041126: (t1'=6) + 0.149002779674338: (11'=7) + 0.139586531950597: (t1'=8)
10(+ 0.117116124452909: (t1'=9) + 0.26751825035076304; (11'=10);

11 | endmodul e

Lin R SN o ) (T R B

13|//tau = Spike activition threshold
14| const tau=B0;

15|//r == Leak factor

15 const double r=0.5;

17|//Input weight of each box

18| const entry=80;

19| const b2bl=-50;

20| const b1b2=90;

22|//Global membrane potential formula for Bl
23| formula bl=floor({entry*t1)+(b2b1*nb2)+ (r*phl*(1- (floor(pbl/taul /10))0);

25|//Global membrane potential formula for B2
26| formula b2=floor ((b1b2¥nbl)+ (r¥ph2* (1- (floor(pb2/taul /10)33);

28| module El

29 pbl: [0..800];//Global membrane potential of Bl at step t, maximum value 15 880
30(nbl:[0..10]; //Total number of output spikes of Bl at step t. meximum value 1s 18
31|//If pbl goes under @, both nbl and pbl are resetted to 8

32| //0r If phl=tau*ld, nbl is set to 10 and pbl to 868

33| //Thus, the Prism set of guard/update 1s the followzng:

34| [to] true-> 1:(nbl'=bl<0?0:bl1=800710: floor(bl/taul) & (pbl'=bl<@?0:bl=B007800:bL1);
35 endmodul e

37| module BZ

38| pb2: [0..800];//Global membrane potential of B2 at step t, meximum value 15 880
39(nb2: [0..10]; //Total number of output spikes of B2 at step t. meximum value 1s 18
40| //If ph2 goes under 8, both nb2 and pb2 are resetted to @

41| //0r 1f pb2>tau*1d, nb2 15 set to 18 and pbZ to 588

42| //Thus, the Prism set of guard/update is the following:

43| [to] true-> 1:(nb2'=bh2<0?0:b2=800710: floor(b2/tau)) & (pb2'=b2<070:b2=B007BO0:L2);
44 endmodul e

FIGURE 4.6: Example of a PRISM code with two boxes.

Finally, one can see that the three modules are synchronized by the PRISM syn-
chronization mechanism using a common transition label: here all the modules share
the same label ([to]).

Healthy Inhibitory Control Model

The implementation in PRISM of a healthy inhibitory control follows the architecture
described above (see figure 4.6), but with six modules, one for each of Entry (par-
tial representation of the cortex), STr, GPe, STN, SNpr (representing the Gpi/SNpr
complex which can be considered as a single functional structure), and Th. These
boxes have an associated formula for their global membrane potential and constants
for their connection weights except module Entry that has the behavior described in
section 4.3.2. These connections are organized following the architecture of the basal
ganglia shown in figure 4.4. However, we add two modules: Delay and Inhibitor.
The Delay module has a behavior close to a neuron box but is far simpler as it sends
the same amount of spikes that it receives. This supplementary module is neces-
sary as our model is a discrete synchronous system. Indeed, in [126], the continuous
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modeling allows the SNpr to receive signals from both GPe and STN simultaneously.
To imitate this behavior, the Delay module delays the signal from STN and makes it
reach SNpr at the same instant as the one from GPe. The Inhibitor module is used
as a generator of no-go signals at regular intervals to simulate external inhibitory
events. In the model, it sends "stop" signals to the STN module. For this purpose,
the STN module has one more set of guards and updates to to take this "stop" sig-
nal into account. The Inhibitor module sends arbitrarily a "stop" signal every ten
counts. To observe a successful inhibition, one has to check the output of module
Th. As shown in figure 4.4, this module is the one receiving the final inhibition
signal; hence, if its output firing ratio is low, it indicates a successful inhibition.

Parkinsonian Inhibitory Control Model

In an attempt to model the behavior observed in Parkinson’s disease, we defined an
alternative formula for the global membrane potential of STr (see figure 4.7).

f/Global membrane potential formula for 5Tr

formula STr _healthy=floor{(-wsnpcstr¥tl)+{wexstretl)+(-wgpestr¥n_GPe)
+{r*potentiel_STr*(1- (floor(potentiel_STr/tau)/100)));

formula STr_patho=floor((wcxstr*tl)+(-wgpestr¥n_GPe)

+{r*potentiel _STr*(1- (floor(potentiel STr/tau)/101)1));

module STr

potential_STr:[0.,800];

n_STr:[0..10];

[to] n STr==0 -= 0.3:(n_STr'=5Tr_healthy<0?0:5Tr_healthy=800710:floor(STr_healthy/taul)
& (potential_STr'=STr_healthy=0?0:5Tr_healthy=8007800:5Tr_healthy)

+ 0.7: (n_STr'=STr_patho<0?0:STr_patho=800710: floor (STr_patho/tau))

& (potential _STr'=STr_patho<0?0:5Tr_patho»8007800:STr_pathol;
endmodule

FIGURE 4.7: Code excerpt for a brain with a early Parkinson syndrome.

The STr neuron box module is thus written with one more update in its set of
guards and updates. It now has a probability of 0.9 to update its membrane poten-
tial with the "healthy" formula and a probability of 0.1 to update it with the "patho-
logical" formula. These formulas and probabilities were extrapolated from Wei and
Wang model.

4.3.3 Properties of Individual Boxes

The first step was to validate the different boxes individually. Each neuron box must
respect the specifications stated in section 4.2.2. In particular, at the box level, the
model must verify the conditions concerning the global membrane potential and
the firing ratio: the maximum and minimum global membrane potential must not be
exceeded; the maximum and minimum number of spikes must be respected; as long
as the global membrane potential is not greater than or equal to a certain threshold,
there should be no spike.

Thus, we verified that the following PCTL* properties which are invariants of
the boxes, hold for all boxes. In these properties, X is a variable denoting the current
box under test, n_X is the number of spikes emitted by box X, and potential_X is X
global membrane potential. As a reminder, P =? is the PCTL operator to compute
a probability and G is the operator to verify that a PCTL formula is true for every
state of a model.



120 Chapter 4. Model of the Inhibitory Control Circuit in the Brain

Property 1. What is the probability for the number of spikes to always be greater
than or equal to zero and less than or equal to the maximum value (10)?

P =?[G (n_X < 10 & n_X > 0)]

Property 2. What is the probability for the global membrane potential to always be
greater than zero and less than tau x 10 = 800?

P =?[G (potential_X < 800 & potential_X > 0)]

Property 3. What is the probability for the number of spikes to always be zero until
the potential is equal to or exceeds tau = 807

P =?[n_X = 0 U potential_X > 80]

Both model checkers give a positive answer (P=1) for all three properties and all
boxes. Results for box STr are shown in table 4.1. PRISM and Storm have comparable
computation time except for property 3 for which Storm is a lot faster.

Property Prism Storm
Result | Time (s) | Result | Time (s)
Property 1 1 0.357 1 0.489
Property 2 1 0.626 1 0.506
Property 3 1 1.028 1 0.000

TABLE 4.1: Results from property 1 to 3 for box STr

4.3.4 Properties about Box Synchronization

The next step is to validate the synchronization of the boxes. To best represent the
inhibitory control circuit, the boxes must be connected together following figure 4.4
so that the model may respect the known properties about the connections of the
corresponding biological structures in this circuit.

The first property checks that the boxes cannot all be off (i.e., that at least one box
has firing neurons).

Property 4. What is the probability for all boxes to not have a single output spike
after the first time step?

P =?[(X(Gn_STN = 0& n_GPe = 0& n_STr = 0 & n_Delay = 0
&n_SNpr=0&n_Th =0))]

Here the expected right answer is negative (P=0).

The following properties verify that the boxes are working in cascade for the
STN-Gpe-STr and STN-Delay-SNpr pathways as described in [126].

Property 5. What is the probability for STN to be activated (stop signal arrival),
and, in the next instant, GPe is activated, and again in the next instant, the STr is
inhibited?

P =?[(Fn_STN >5& (Xn_GPe >5& (Xn_STr <5)))]
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Property 6. What is the probability for STN to be activated (stop signal arrival),
and at the next instant, the Delay box is also activated, and one more instant later,
SNpr is activated at its turn?

P =?[(Fn_STN > 5 & (X n_Delay > 5 & (X n_SNpr > 5)))]

The next properties check the behavior of both the direct and indirect pathways
from the instant the stop signal is sent; we arbitrarily fixed this instant to be the tenth
one.

Property 7. What is the probability for the stop signal to rise at the tenth instant?

P =?[F =101_STN > 3]

Property 8. What is the probability for GPe and the Delay box to be activated at
the eleventh instant?

P =?[F =11 n_GPe > 3 & n_Delay > 3|

Property 9. What is the probability for STr to be inhibited and SNpr to be activated
at the twelfth instant?

P=?[F=12n_STr < 5& n_SNpr > 3]

Finally, the last property checks that the GPe and Delay boxes do not activate
until a stop signal occurs.

Property 10. What is the probability for Gpe and Delay boxes to not be activated
before the stop signal arrives (at the tenth instant)?

P =?[G <11 n_GPe = 0 & n_Delay = 0]

PRrISM and Storm give the expected valid answers, that is P=1 for all properties
(except P=0 for 4). All results are displayed in table 4.2. Storm could not handle
all properties; properties with nested PCTL operators and property 10 could not be
verified. One can see that for the three properties verified with both PRISM and
Storm, PRISM was ten times faster.

This verification shows that the model corresponds to our expectations. Indeed,
the model shows the disinhibition and activation of Gpi/SNpr nuclei that trigger
the inhibition of the thalamus and thus, the inhibition of an action. Moreover, the
simulation graph in figure 4.8 (obtained with the "run experiment" tool of PRISM)
showing spiking activity also confirms the inhibition of STr and Th following a stop
signal. Though they are not at the same scale level at all, these activities can approx-
imate the simulation results displayed in [126].

4.3.5 Property related to Thalamus Inhibition

To deduce the probability that a movement is actually inhibited, we defined a prop-
erty evaluating the probability to observe a low number of firing neurons in the
thalamus box. We arbitrarily consider that this latter box is inhibited when it re-
leases less than 4 spikes (less than 40% of the maximal "firing ratio" which is 10 for
the implemented boxes). In PCTL* this property is written:
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Property PRISM Storm
Result | Time (s) | Result | Time (s)
Property 4 0 5.189 —— ——
Property 5 1 10.169 —— ——
Property 6 1 9.667 —— ——
Property 7 1 0.240 1 2.094
Property 8 1 0.289 1 2.160
Property 9 1 0.308 1 2.160
Property 10 1 0.298 —— ——
TABLE 4.2: Results from property 4 to 10
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(B) STN-SNpr-Th path. The stop signal reaches the STN, then enables the activation of the SNpr
(thanks to the inhibition of the STr at the same time (t = 13)), and finally the inhibition of the tha-

lamus (and therefore of the behavioral response).

FIGURE 4.8: Paths allowing thalamus inhibition. Thanks to the dif-
ferent paths the arrival of a stop signal at t = 10 leads to the thalamus
inhibition and therefore to the inhibition of the behavioral response

att = 13.
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Property 11. What is the long run probability for Th to emit less than 3 spikes at

once?
S =?[n_Th < 4]

We compared the model checking results of our model with the simulation re-
sults from the article by Wei and Wang. As said in subsection 4.3.4, the behavior of
our formal inhibitory control model is close to the results presented in this article.
This behavior is still described as a race in which the stop signal information has to
transit from STN to SNpr before the STr inputs inhibit SNpr [113].

Wei and Wang conducted an experiment on their model by modulating the net-
work weights. The goal of this experiment was to determine if the inhibitory control
behavior is more sensitive to the modulation of some connections than to others. We
reproduced this experiment on our model. To this end, we doubled the weight of all
the connections one at a time and we computed the probability to reach a state where
the number of spikes emitted by the thalamus is less than 4. The results are similar
to those of [126] and go slightly beyond. For the GPe-STr and STr-SNpr connections,
the results found are similar to those of Wei and Wang: the strength of some connec-
tions can modulate the Stop Signal Reaction Time (SSRT) of the inhibitory control (see
table 4.3 and figure 4.9).
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(A) Results of Wei and Wang paper.

Basal ganglia /
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(B) Results obtained with our formal method. Each weight was doubled. A + indicates that increasing
the weight of this connection increases SSRT (lower probability for Th inhibition). A — indicates that
increasing this weight decreases SSRT (higher probability for Th inhibition).

Cortex

FIGURE 4.9: Inhibitory control circuit with modification of connection
weights.
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As seen in figure 4.9b we found that thalamus inhibition was less likely to occur
when increasing the weights of the following connections:

¢ GPe-GPe
¢ STN-GPe
* Gpe-SNpr
¢ STr-SNpr

The latter connection (STr-SNpr) modification results are also observed in the work
of Wei and Wang (see figure 4.9a).

On the contrary, inhibition is more likely when increasing the weights of the
following connections (see figure 4.9b):

e STr-GPe
¢ STN-SNpr
¢ SNpr-Th
* GPe-STr

The latter connection (GPe-STr) modification results are also observed in figure 4.9a.

Table 4.3 shows the detailed results and computation times for the verification of
property 11 for the model without modification and for each connection modifica-
tion. For this experiment, Storm was usually more than hundred times faster than
PRISM to return a result. The two model-checkers do not display the exact same
results but the variations between the original results and the modified connection
results are consistent. Some variations are really small (e.g., of the order of 107! for
STN-GPe connection) and others can be more important (e.g., of the order of 101
for the Gpe-SNpr connection).

The decrease of the number of firing neurons in the STr-GPe, STN-SNpr, GPe-
STr, and SNpr-Th connections causes a decrease in the probability of inhibition and
consequently a decrease in behavioral inhibition. A decrease in the inhibition prob-
ability in the model means a longer SSRT leading to the fulfillment of an unwanted
action. As explored in the analysis of the model of Wei and Wang, the impact of
the modification of the weight of the GPe-STr connection is a good representation of
experimental results on specific neurons, named arkypallidal cells, that connect the
GPe and STr [89]. More bibliographical research on the other connections will allow
to evaluate the whole relevance of these results.

4.3.6 Comparison of Impaired versus Healthy Brain Models

To differentiate healthy and Parkinsonian brains we considered the two models of
figure 4.5.

¢ The first represents a healthy brain where all neurons from the SNpc are
present.

¢ The second represents an unhealthy brain. As the number of neurons depletes
in SNpc in Parkinson’s disease [29], with an estimation of 30% of neurons re-
maining in SNpc of advanced Parkinson’s, this circuit only has 30% probability
of taking SNpc neurons into account.
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Connection PRISM Storm
Result Time (s) Result Time (s)

Original | 0.10323869094174158 | 375.410 | 0.103238690941621 2.440
Gpe-STN | 0.10323869094174158 | 374.411 | 0.103238690941621 2.428
GPe-GPe | 0.10117554696965828 | 866.167 | 0.1011755469658018 5.202
STN-GPe | 0.10323869092606311 | 381.648 | 0.1032386909260895 2.282

Gpe-SNpr | 0.06961314994688503 | 399.140 | 0.06961314994682553 | 2.609
STr-SNpr | 0.06596933727644758 | 396.324 | 0.06596933727649107 | 2.375
STr-GPe 0.1108495612659358 | 413.993 | 0.1108495612660819 2.059

STN-SNpr | 0.11535715582011276 | 325.601 | 0.1153571558199706 2.039
SNpr-Th | 0.12755757824032712 | 314.628 | 0.1275575782403877 1.923
GPe-STr | 0.10323869099184278 | 391.233 | 0.1032386909917619 2.513

TABLE 4.3: Results from property 11 for the model without modifica-
tions (Original) and after weight modification of specific connections.

Still with property 11 we found that there is a greater chance of getting a thala-
mus inhibition in the case of a healthy brain. Table 4.4 shows this result and displays
that Storm is once again more than a hundred times faster than PRISM. The second
formula depicted in figure 4.7 and the probability of 30% associated with it was
enough to lead to smaller chances to see an action inhibition (of the order of 1071).
This is compliant with results of [29].

Connection Prism Storm
Result Time (s) Result Time (s)
Healthy 0.10323869094174158 | 375.410 | 0.103238690941621 2.440
Parkinson | 0.09344162726849187 | 2552.475 | 0.0934416272696533 | 19.300

TABLE 4.4: Results of property 11 for the model without modifica-
tions (Healthy) and the Parkinsonian model with weight modifica-
tions.

4.4 Brain and Game Performance Coupled Model

The next step of this work is to implement a relationship between this brain model
and the calibrated Inhibitory Control game model. To do so, a new model is created
to merge the calibrated game model and the basal ganglia one. In this new model,
the game module is the entity deciding whether or not a stop signal is displayed.
For this, instead of a Inhibitor module sending stop signals, the STN module re-
ceives its stop signal inputs directly from the Inhibitory Control game model each
time a decoy transition occurs. The basal ganglia set of modules then decides on
the reaction to send to the game model based on the firing ratio of the thalamus. In
this combined model, the patient performance of the initial model of the Inhibitory
Control game model as calibrated in chapter 3 has to be split in two parts (see fig-
ure 4.10). The first part corresponds to all the patient’s action that have no interest
for the inhibitory control in the brain, i.e., anticipation, reaction speed.... The sec-
ond part concerns actions that send signals usable by the inhibitory control model.
The brain model presented in this chapter was unchanged. The complete model is a
large one and the model-checking is difficult....
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FIGURE 4.10: Modules of the complete model.
4.5 Conclusion and Perspectives

A better understanding of the mechanisms of inhibitory control could allow targeted
treatments for different classes of patients with dementia. This chapter proposed a
discrete probabilistic model of the inhibitory control circuit of the brain and its for-
mal validation. This model allowed us to reproduce known biological behaviors
from the literature such as the pathway race [113]. Our model also faithfully repre-
sent the importance of some connections in the pathways (e.g., GPe and STr connec-
tion [89]). These behaviors were translated in PCTL properties to check the adequacy
of the model. Moreover, running an adapted modulation experiment inspired from
[126] allowed to explore the sensitivity of inhibitory control to the modulation of
some connections that were not shown in [126]. Some modifications allowed us to
model a behavior compliant with Parkinson disease. Other modifications to rep-
resent other pathologies such as Alzheimer disease could not be done yet but are
scheduled for future work.

This merge is underway and should meet its end before March 2022. This mod-
eling project is a new opening in the cognitive function modeling. The use of proba-
bilistic formal models allows to preserve a wide variety of behaviors while enabling
model checking. For this model to be checked with off the shelf tools, it was nec-
essary to brought up a new generalization of the LI&F classical model to represent
small networks behavior with a single module. The implementation of the relation-
ship between the basal ganglia model and the calibrated game model is an attempt
to link the behavior in a game with a pathology through formal computational mod-
els.

This work opens new avenues for the formal modeling of cognitive functions and
their relations with diseases via rather simple tools like serious games. Moreover, it
has proven the feasibility of such model exploration using only off the shelf laptops.
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Chapter 5

Conclusion

This thesis aimed to provide a new approach based on formal methods to support
the early detection of neurodegenerative diseases. Monitoring and diagnosing early
mild NeuroCognitive Disorders (mild NCD) are known to be difficult. We follow
a current research direction which is to use serious games to evaluate the cogni-
tive functions of patients. The overall goal is to propose a computer aided system
that helps medical practitioners in monitoring patients with early cognitive deficien-
cies. Another more biologically oriented goal is to provide a computational cognitive
model of related structures of the brain.
More precisely, we have four sub-goals:

1. formal modeling of human activities on serious games: we modeled patient
behaviors during the games as Discrete Time Markov Chains (DTMCs);

2. validation of relevant activities to differentiate mild NCD and Subjective Cog-
nitive Decline (SCD) patients: we designed and conducted a clinical protocol
on these two populations;

3. formal modeling of the underlying biological mechanisms of one of the cogni-
tive functions of interest;

4. exploring the implementation of a common model representing both the bio-
logical mechanisms and the behavior of patients during a serious game.

First, we proposed a formal approach based on DTMCs to model human activi-
ties of different populations playing clinical serious games. Important properties of
these models can be automatically verified thanks to model checking. The proposed
approach complements the main existing ones in the field of activity recognition,
which seldom address formal verification issues. This proposal is part of the evalu-
ation of a new non-invasive screening methods based on the observation of patient
performance that can assist clinicians in the early diagnosis of patients. Together
with clinicians, we selected four serious games for Alzheimer patients and we mod-
eled three of them as DTMCs in PRISM. These models are parameterized with a priori
probabilities provided by clinicians. It was necessary to use different modeling ap-
proaches as each game has its own specific rules and evaluation methods. We tested
a dozen of patient behavioral properties per game, thanks to the PRISM and Storm
model checkers. These properties gave an overview of the modeled patients perfor-
mance in a fairly short amount of computation time on a regular laptop. PRISM and
Storm return the probabilities for the modeled patients to go through specific paths
representing various pathological behaviors. They also compute the means of an-
swers and time scores. The models and their verification allowed us to validate our
approach and to test its scalability for rather different applications. Regarding the
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comparison of PRISM and Storm, we observed that Storm is usually faster in its com-
putation time as its algorithms are tailored for the kind of models we implemented.
Nonetheless, some features available in PRISM, such as the computation of PCTL*
formulas or the "run experiment", make it hard to replace.

Second, we designed a clinical experimentation in association with clinicians of
the Institut Claude Pompidou of Nice to validate the activities of the selected serious
games. The main constraint was to go through several ethical validation processes.
The inclusion of subjects into the protocol lasted from Sept 2020 to June 2021 and the
whole experiment ended late Sept 2021. The results showed the potential of the se-
lected serious games in the screening of mild NCD patients. These games were able
to display differences between mild NCD and SCD groups as well as correlations
with classical neurocognitive tests. Indeed, this protocol represents an interesting
feasibility study; yet it is perfectible. The protocol results were used to redesign and
manually calibrate (i.e., adjust DTMC probabilities) two game models. This first cal-
ibration experience led to a better representation of the behavior variants and made
the model more effective. However, the calibration could go further to better match
the observed data.

Third, we chose to model the inhibitory control cognitive function. This choice is
mainly motivated by the fact that it is a routinely assessed function in elder patients
and a big part of its mechanisms and potential source of dysfunctions is located in a
rather small region of the brain named basal ganglia. We proposed a discrete prob-
abilistic model of the inhibitory control circuit of the brain and its formal validation.
This model allowed us to reproduce known biological behaviors from the literature
such as the pathway race and to state the importance of some connections in the
pathways. These behaviors were translated into PCTL properties to check the ade-
quacy of the biological model. Further bibliographical investigations has to be done
to validate all results obtained in the experiment.

Fourth, the work on the common model is still in progress. Indeed, we have
to redesign and calibrate the Inhibitory Control game model similarly to the Code
game model to better match the observed results. Once this calibration done, the
representation of the relationships between the basal ganglia model and the game
model will be possible. To do so, a new model has to be created to merge the cali-
brated game model and the basal ganglia one. In this new model, the game module
will be the entity deciding whether or not to send a no-go signal.

Contributions

The contributions of this PhD projects can be synthesized as follows.

1. Proposal of a probabilistic formal approach adapted to model human activ-
ity during serious games: these models can reproduce behaviors observed in
clinical conditions.

2. Identification of temporal activities as possible key points to differentiate mild
NCD and SCD profiles.

3. New generalization of the LI&F neuron, named neuron box, allowing to ob-
serve some rather complex behaviors.

4. New model of the inhibitory control function using these neuron boxes.

The two first contributions are clinically oriented and may serve as a basis for a
computer aided system for early diagnosis of dementia in elder patients. The last
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two ones are more biologically oriented. They provide a new reliable tool to repre-
sent and understand neurobiological knowledge and its relation with clinical obser-
vations. In the scope of cognitive function evaluation for elder patients, the game
duration may rarely exceed a duration of a few minutes. Moreover, these games are
intended to be easy to understand for users who are not necessarily familiar with
tablets or computers. These two factors are convenient because they limit the com-
plexity of the our models.

Perspectives
This work also opens new goals and questions.

* A larger scale clinical experiment with some protocol corrections would lead
to higher quality data.

e What are the limits of probabilistic model checking regarding serious game
modeling in terms of computation time, complexity/size of the model, and
fidelity or adequacy of the representation?

¢ How many relevant sensors (such as cameras, microphones, or bio-metric sen-
sors), hence new type of events, can be added to increase the accuracy of the
human activity formal models?

e What are the limits of the neuron box model?

- Isincreasing the range of the firing ratio a good solution to represent more
complex behaviors?

— Can the proposed neuron box model represent more complex behaviors
than the inhibitory control?

Each question opens new challenging research directions in both clinical and
biological domains.
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