
HAL Id: tel-03685770
https://theses.hal.science/tel-03685770v2

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight Hardware Design of a Chaos-Based Stream
Cipher for Secure Video Applications

Guillaume Gautier

To cite this version:
Guillaume Gautier. Lightweight Hardware Design of a Chaos-Based Stream Cipher for Secure
Video Applications. Cryptography and Security [cs.CR]. INSA de Rennes, 2020. English. �NNT :
2020ISAR0017�. �tel-03685770v2�

https://theses.hal.science/tel-03685770v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES SCIENCES

APPLIQUEES DE RENNES

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Images, Vision

Par

Guillaume GAUTIER
Lightweight Hardware Design of a Chaos-Based Stream Cipher for
Secure Video Applications

Thèse présentée et soutenue à Rennes, le 09 décembre 2020
Unité de recherche : Institut d’Électronique et des Technologies du numéRique (IETR)
Thèse N° : 20ISAR 27 / D20 - 27

Rapporteurs avant soutenance :

Régis Leveugle Professeur des Universités, Grenoble INP, Université Grenoble Alpes
René Lozi Professeur des Universités, Université Nice Sophia Antipolis

Composition du Jury :
Président : William Puech Professeur des Universités, Université de Montpellier
Examinateurs : Nathalie Bochard Ingénieure de recherche, CNRS, Université de Saint-Etienne

Wassim Hamidouche Maître de conférences, INSA Rennes
Régis Leveugle Professeur des Universités, Grenoble INP, Université Grenoble Alpes
René Lozi Professeur des Universités, Université Nice Sophia Antipolis

Dir. de thèse : Olivier Déforges Professeur des Universités, INSA Rennes
Co-Dir. de thèse : Safwan El Assad Maître de conférences, HDR, Polytech Nantes

Table of Contents

Acknowledgements 9

1 Introduction 11
1.1 Context . 11
1.2 Objectives and Contributions of the Thesis 12
1.3 Outline . 13

I Background 15

2 Introduction to Chaos-Based Cryptography and Side-Channel Attacks
(SCAs) 17
2.1 Introduction to Cryptography . 17

2.1.1 Asymmetric Cryptography . 18
2.1.2 Symmetric Cryptography . 18

2.1.2.1 Stream cipher . 18
2.1.2.2 Block cipher . 19

2.1.2.2.1 Electronic Code Book (ECB) mode 20
2.1.2.2.2 Cipher Block Chaining (CBC) mode 20
2.1.2.2.3 Cipher FeedBack (CFB) mode 21
2.1.2.2.4 Output FeedBack (OFB) mode 21
2.1.2.2.5 CounTeR (CTR) mode 21

3

TABLE OF CONTENTS

2.1.2.3 Existing non-chaotic cipher 22
2.2 Chaos Theory and its Application to Cryptography 23

2.2.1 Chaotic Maps . 23
2.2.1.1 Skew Tent (ST) Map . 24
2.2.1.2 PieceWise Linear Chaotic (PWLC) Map 25

2.2.2 Existing Chaos-Based Ciphers . 25
2.3 Physical Cryptanalysis . 26

2.3.1 Fault Attacks (FAs) . 27
2.3.2 Side-Channel Attacks (SCAs) . 27

2.3.2.1 Channels . 28
2.3.2.1.1 Time Attacks . 28
2.3.2.1.2 Power Attacks 28
2.3.2.1.3 Electromagnetic Attacks 28

2.3.2.2 Leakage Model . 28
2.3.2.2.1 Hamming Distance (HD) leakage model 29
2.3.2.2.2 Hamming Weight (HW) leakage model 29

2.3.2.3 Distinguisher . 29
2.3.2.3.1 Simple Power Analysis (SPA) 29
2.3.2.3.2 Differential Power Analysis (DPA) 30
2.3.2.3.3 Correlation Power Analysis (CPA) 30

2.3.2.4 Countermeasures against Side-Channel Attacks (SCAs) . . 30
2.3.2.4.1 Data Masking . 30
2.3.2.4.2 Constant Power Consumption 31

II Contributions 33

3 Enhanced Software Implementation of a Chaos-Based Stream Cipher 35
3.1 Original Stream Cipher . 36
3.2 Side Channel analysis of studied stream cipher 38

3.2.1 AT01 → AT06: Extraction of PKiS and PKiP , products of recur-
sive cells . 40

3.2.2 AT07 → AT08: PS and PP , parameters of the chaotic maps 40
3.2.3 AT09/AT17: K1S and K1P , first coefficient of recursive cell 41

4

TABLE OF CONTENTS

3.2.4 AT10→ AT16/AT18→ AT24: XiS, KiS, XiP and KiP , remaining
keys of recursive cell . 42

3.2.5 AT25: tr, the transient phase . 43
3.2.6 Recommended design improvements 43

3.3 New stream cipher . 43
3.3.1 Map bloc modification . 45

3.3.1.1 New chaotic map . 45
3.3.1.2 Constant time implementation 47

3.3.2 Coupling Matrix . 48
3.3.3 Shift in REC CELL improves key sensitivity 49
3.3.4 Masking . 50

3.3.4.1 Masking only the Infinite Impulse Response (IIR) structure 51
3.3.4.2 Masking coupling matrix and IIR structure 52

3.3.5 Set up of the key . 52
3.4 Results and discussion . 53

3.4.1 National Institute of Standards and Technology (NIST) Statistical
Tests Suite (STS) SP 800-22 . 53

3.4.2 Histogram distribution . 53
3.4.3 Correlation - HD . 54
3.4.4 Key sensitivity . 56
3.4.5 Confusion Analysis . 58
3.4.6 Time performance . 59

3.5 Conclusion . 61

4 Hardware Implementation of the proposed Lightweight Chaos-Based
Stream Cipher 65
4.1 Related work . 66
4.2 Hardware-friendly Architecture of the proposed Pseudo-Chaotic Number

Generator (PCNG) . 67
4.2.1 4D map . 67
4.2.2 PWLC map . 69
4.2.3 4-stage pipeline implementation . 69
4.2.4 A countermeasure against SCA . 71

4.3 Results and Discussion . 72

5

TABLE OF CONTENTS

4.3.1 Implementation of the LWCB SC 73
4.3.2 Comparison with other existing stream ciphers 73
4.3.3 Side-Channel Attack (SCA) analysis on LightWeight Chaos-Based

(LWCB) stream cipher hardware implementation 75
4.4 Conclusion . 77

5 Selective Encryption of the Versatile Video Coding (VVC) standard 81
5.1 Introduction . 81
5.2 Related Works . 83
5.3 CABAC engine in VVC . 86

5.3.1 Binarization methods . 86
5.3.2 Transform Coefficients (TCs) coding 87

5.3.2.1 VVC Transform Coefficient (TC) coding mode 87
5.3.2.2 VVC Transform Skip (TS) coding mode 89
5.3.2.3 Binarization process . 89

5.4 Proposed VVC selective encryption . 90
5.4.1 Transform Coefficient encryption 92
5.4.2 Encryption Method and Synchronisation 97

5.5 Results and Discussions . 98
5.5.1 Experimental Setup . 98
5.5.2 Video Quality and Encryption Space 99

5.5.2.1 Video Quality . 99
5.5.2.2 Encryption space . 102

5.5.3 Security Analysis . 102
5.5.3.1 Encryption Qualilty (EQ) analysis 102
5.5.3.2 Histogram analysis . 104
5.5.3.3 Edges and structural information protection 105
5.5.3.4 Sensitivity to secret keys 106
5.5.3.5 Brute Force Attack . 107
5.5.3.6 Error Concealment Attack 108

5.5.4 Complexity Analysis . 108
5.6 Conclusion . 109

6 Conclusion 111
6.1 Research Contributions . 111

6

TABLE OF CONTENTS

6.1.1 A new LightWeight Chaos-Based (LWCB) Stream Cipher 111
6.1.2 Hardware Design of Proposed Stream Cipher 112
6.1.3 Selective Encryption on the new Video Compression Standard Ver-

satile Video Coding (VVC) . 112
6.2 Prospects – Future Works . 113

6.2.1 Countermeasures Against SCAs for Chaotic Maps 113
6.2.2 Gate-Level Implementation of Proposed LWCB Stream Cipher . . . 113
6.2.3 Watermarking for VVC Standard 113

A French Summary 115
A.1 Contexte . 115
A.2 Objectifs et contributions de la thèse . 116
A.3 Organisation du manuscrit . 117
A.4 Conclusion . 117

A.4.1 Un nouveau chiffrement par flux basé chaos 118
A.4.2 Conception matérielle du chiffrement proposé 118
A.4.3 Cryptage sélectif sur la nouvelle norme de compression vidéo Ver-

satile Video Coding (VVC) . 119
A.5 Perspectives et Travaux futurs . 119

A.5.1 Contre-mesures contres les SCAs pour les cartes chaotiques 119
A.5.2 Implémentation du chiffrement par flux proposé niveau porte logique119
A.5.3 Méthode d’insertion de filigrane pour le standard VVC 120

List of Figures 121

List of Tables 125

List of Algorithms 127

Glossary 129

Bibliography 133

7

Acknowledgements

Je tiens tout d’abord à remercier le Pole d’Excellence Cyber, la region Bretagne ainsi
que la Direction Général de l’Armement pour avoir financé cette thèse.

Merci à l’ensemble des membres du jury d’avoir pris le temps d’évaluer mon travail de
ses trois dernières années.

Je tiens à remercier Olivier Deforges, Safwan El Assad et Wassim Hamidouche de
m’avoir fait confiance et encadré cette thèse. Merci de m’avoir accompagné au quotidien,
et m’avoir permis de découvrir vos domaines de recherche respectifs.

Maguy, ton investissement lors de ton parcours recherche, puis de ton stage n’est pas
passé inaperçu. Merci pour ton aide.

Je tiens également à remercier l’ensemble de mes collègues de l’équipe VAADER
d’avoir rendu ce cadre de travail agréable et convivial. Secure IC, et plus particulière-
ment Sylvain Guilley, Robert Nguyen et Adrien Facon, vos conseils et votre aide ont
contribué à la réalisation de ce document.

It is time to have some English to thank Naofumi Homma, Ville Yli-Mäyry and the
rest of the team for welcoming me in Sendai to study Side Channel Attacks.

Ville, thank you for everything, your help was precious. Thanks for the making me
discover Japan and its food and beverages. Hoping to see you again very soon.

Je tiens à remercier mes parents de m’avoir soutenu et encouragé pendant l’ensemble
de mes études, elles arrivent enfin à leur terme.

Quentin, merci pour toutes ces discussions qui ne devaient pas durer longtemps et qui
1h30 après continuent toujours.

Arthur, tu vois, c’est faisable, il "suffit" juste de s’y mettre.
Justine, pour avoir réussi à me supporter pendant cette phase de rédaction.

9

CHAPTER 1

Introduction

1.1 Context

The need for secure communication between multiple parties practically always ex-
isted. At first, cryptography was only used by military and governments. Nowadays, this
need became even more important with the apparition of more modern means of commu-
nication and the transition to an all-numeric environment. Secure communication channels
are required even for civil applications such as bank applications, telecommuting, Video
On Demand (VOD)... This diversification of use coupled with the multiplication of de-
vices, architectures, the limited resources of embedded devices are adding more and more
constraints to cipher design. Indeed, ciphers and its implementations need to be more
robust as the computation capacity becomes cheaper, to adapt to the plurality of de-
vices and its variety of architectures, and the limited resources such as energy, memory
or computation power limitations.

Furthermore, during the past decade, the use of video applications over the network
increased exponentially. VOD services such as Netflix or Amazon Prime for example, pay
television networks need to protect its content to be watchable only to its subscribers.
However, this protection should remain low-delay and low-complexity to keep achieving
real-time decoding.

11

Chapter 1 – Introduction

In this context, this thesis focuses to create a link between this two different fields of
research, first by investigating the implementation of secure encryption scheme and then,
by investigating how to protect video applications without creating a discomfort for the
end user.

1.2 Objectives and Contributions of the Thesis

The main objectives of this thesis are the following:

1. Investigate the resilience against Side-Channel Attacks (SCAs) an existing chaos-
based stream cipher.

2. Improve its resilience through modifications of the design and implementation of
countermeasures like masking.

3. Propose a hardware design of the improved stream cipher.

4. Propose selective encryption method for video content without affecting the com-
pression rate.

These four objectives are regrouped in three contributions. The first contribution is fo-
cusing on improving the chaos-based stream cipher proposed by Taha [1]. A method of
attack, using 25 consecutive SCAs, is proposed to completely recover the secret key. From
the proposed method, a new design of stream cipher is presented. This new design aims
to counter, or at least increase the complexity of the attacks performed on the previous
design.

The second contribution is to propose a secure and efficient lightweight hardware de-
sign of the newly proposed stream cipher. Several hardware implementations are proposed,
the first is an optimized implementation of new stream cipher without masking or pipeline.
This implementation is the reference design. Then, the second implementation is taking
advantage of a pipeline to increase the throughput. The third and fourth implementa-
tions embed a masking operation on a part of the reference design as a countermeasure
to SCAs.

The third contribution is a selective encryption scheme within the newest video com-
pression standard Versatile Video Coding (VVC). This selective encryption scheme is
developed respecting two major constraints: the solution must be Constant Bit Rate
(CBR), the efficiency of the compression scheme must remain unchanged, and standard
compliant, the encrypted video must be readable using any standard VVC decoder. For

12

1.3. Outline

comparison purposes with other selective encryption schemes, Advanced Encryption Stan-
dard (AES) is used instead of the stream cipher developed in the first two contributions.
It is important to note that proposed solution is compatible with any stream ciphers.

1.3 Outline

This thesis is organized as follows. Part I is dedicated to the background and a short
review of the state-of-the-art concerning three main topics:

1. cryptography in Section 2.1, with a presentation of the properties of confidential-
ity, data integrity and authentication. The difference between an asymmetric
and a symmetric encryption scheme, its applications. Finally, a presentation of a
few symmetric ciphers is proposed;

2. chaos theory in Section 2.2, the definition of a chaotic map and its applications to
cryptography;

3. finally, in Section 2.3, a brief overview of exiting SCAs and countermeasures.

Part II focuses on the contributions of this thesis with:

1. first, after assessing the security of the stream cipher proposed by Taha [1], a new
version of this cipher is proposed in Chapter 3;

2. Chapter 4 presents hardware designs of the proposed stream cipher with results
in terms of speed and hardware resource usage. This chapter also includes a short
study on the resilience of the designs against SCAs;

3. finally, in Chapter 5, a selective encryption scheme on the newest standard of video
encoding VVC is presented.

This thesis is then concluded in Chapter 6 followed with some perspectives and future
works.

13

Part I

Background

15

CHAPTER 2

Introduction to Chaos-Based Cryptography and Side-Channel
Attacks (SCAs)

2.1 Introduction to Cryptography

Cryptography is used to provide a secure communication link between multiple par-
ties. A secure communication link is established if the following three properties are met.
Confidentiality: This property ensures that the content of the communication is only
intelligible for authorized parties. Confidentiality is usually achieved by encrypting the
to-be-send data called plaintext using an encryption scheme, the output of this scheme is
called ciphertext. The cipher text is then over the communication link and only authorized
receivers should be able to recover the data using a decryption scheme.
Data integrity: This property ensures that received and decrypted cipher text remains
unaltered through the communication process between the authorized parties. Data In-
tegrity is usually performed using hash functions. A hash function is a function that
generates a unique hash string for a given data. The hash function should also produce
a completely different hash string for similar data. If two sets of data produce the same
hash string then it can be assumed that the two sets are identical.
Authentication: This property ensures that received data is coming from the expected
party.

17

Chapter 2 – Introduction to Chaos-Based Cryptography and Side-Channel Attacks (SCAs)

2.1.1 Asymmetric Cryptography

Asymmetric or Public-Key cryptography is an encryption scheme based on an encryp-
tion key, also called a public key, and a decryption key called a private key. Anyone can
encrypt data using a public key, however, only the associated private key can be used
to decrypt the encrypted data. This type encryption scheme cannot be used to transfer
huge payloads and require a good computational power. It is usually used establish for
small-payload communication such as emails or to set up a secure communication channel
using symmetric cryptography to transfer bigger payloads.

2.1.2 Symmetric Cryptography

In opposition to asymmetric cryptography where two different keys are used for en-
cryption and decryption, symmetric cryptography uses the same key to perform encryp-
tion and decryption. The main advantage is the possibility to transfer big payloads using
relatively lower computational power than asymmetric encryption scheme. However, the
transfer of the secret key is the main drawback. The secret key being used to encrypt
and decrypt the plaintext, needs to be sent to the other parties using secure channels and
asymmetric cryptography can be used to exchange the keys. Among symmetric encryption
schemes, two main categories can be distinguished: stream ciphers and block ciphers.

2.1.2.1 Stream cipher

A stream cipher is an encryption scheme where the plaintext P is XORed with the
output of a Pseudo-Random Number Generator (PRNG) XG to produce ciphertext C.

Pseudo-Chaotic
Number

Generator (PCNG)

K

IV

P C

XG

Figure 2.1 – Block diagram of a stream cipher.

18

2.1. Introduction to Cryptography

Figure 2.1 represents the block diagram of a stream cipher where the plaintext P is
ciphered using an PRNG initialized with a secret key K and an Initial Vector (IV). The
main advantage of this kind of cipher is a possibility to cipher without delays, and the
absence of minimal length of the plaintext. However only the value of the data is changed,
the position remains unchanged.

2.1.2.2 Block cipher

A block cipher encrypts fixed-length blocks of plaintext one by one by performing a
confusion and a diffusion operation.

Confusion DiffusionP C

r Rounds

rdrc

Figure 2.2 – Block diagram of a block cipher.

Figure 2.2 represents a general block diagram of a block cipher. The block of plaintext
goes through the confusion and the diffusion, this operation can be repeated on the same
block for a given number of rounds. It is important to note that either the confusion or
the diffusion is non-linear.

Confusion The confusion is the operation that changes the value of the data inside the
block. This operation can be performed using Substitution Boxes (S-Boxes).

Diffusion The diffusion is the operation that changes the position of the value inside
the block. Shifting and shuffling rows of the block, for example, is a method of diffusion.

When encrypting more than one block, the block cipher can be used in multiple modes
of operation. The most famous ones are Electronic Code Book (ECB) and Cipher Block
Chaining (CBC) to perform a block-based encryption and Cipher FeedBack (CFB), Out-
put FeedBack (OFB) and CounTeR (CTR) to use the block cipher as PRNG and create
a stream cipher.

19

Chapter 2 – Introduction to Chaos-Based Cryptography and Side-Channel Attacks (SCAs)

2.1.2.2.1 Electronic Code Book (ECB) mode Figure 2.3 represents how the ECB
mode of operation is working. In this mode, the plaintext is organized in blocks and each
block is encrypted independently. It is the simplest mode, fully parallelizable , and in
case of transmission errors, the following blocks are still decryptable. However, ECB is
sensitive to chosen-plaintext attack and attack by repetition. The ciphertext is the same
for a given key and plaintext, therefore, the produced cipher can be reused as is to cheat
the receiver.

Plaintext 1

Block Cipher
Encryption

Ciphertext 1

Key

Plaintext 2

Block Cipher
Encryption

Ciphertext 2

Key

Plaintext 3

Block Cipher
Encryption

Ciphertext 3

Key

Figure 2.3 – ECB block cipher mode of operation

2.1.2.2.2 Cipher Block Chaining (CBC) mode Figure 2.4 depicts the CBC mode
of operation. The first block of plaintext is XORed with a IV block. Then the output of
the XOR operation is put through the encryption block producing the first cipher block.
This cipher block is then reused and XORed to the next block of plaintext and the process
repeat itself. This is the most used mode and is more resilient to attacks compared to
ECB. However, the previous ciphered block is required to encrypt the current block,
making this mode, not parallelizable and undecryptable if a block is lost in the middle of
a transmission.

Plaintext 1

Initial Vector(IV)

Block Cipher
Encryption

Ciphertext 1

Key

Plaintext 2

Block Cipher
Encryption

Ciphertext 2

Key

Plaintext 3

Block Cipher
Encryption

Ciphertext 3

Key

Figure 2.4 – CBC block cipher mode of operation

20

2.1. Introduction to Cryptography

2.1.2.2.3 Cipher FeedBack (CFB) mode Figure 2.5 shows the first mode to use a
block cipher as a stream cipher, the CFB. In these kinds of modes, the plaintext is XORed
after the encryption block. The first block used is an IV. The output of the encryption
block is then XORed to the plaintext to produce the ciphertext. The cipher text is then
reused IV for encrypting the next block of plaintext. However, this mode of operation is
sensitive to chosen-plaintext attacks.

Initial Vector(IV)

Block Cipher
Encryption

Plaintext 1

Ciphertext 1

Key Block Cipher
Encryption

Plaintext 2

Ciphertext 2

Key Block Cipher
Encryption

Plaintext 3

Ciphertext 3

Key

Figure 2.5 – CFB block cipher mode of operation

2.1.2.2.4 Output FeedBack (OFB) mode Figure 2.6 illustrates the OFB mode.
This one is similar to the CFB mode, the only change the reused block used IV is the
block at the output of the encryption block. This mode of operation is also sensitive to
chosen-plaintext attacks.

Initial Vector(IV)

Block Cipher
Encryption

Plaintext 1

Ciphertext 1

Key Block Cipher
Encryption

Plaintext 2

Ciphertext 2

Key Block Cipher
Encryption

Plaintext 3

Ciphertext 3

Key

Figure 2.6 – OFB block cipher mode of operation

2.1.2.2.5 CounTeR (CTR) mode Figure 2.7 represents CTR mode, the most com-
monly used block cipher mode to create a stream cipher. The block used by the encryption
is counter value. The result of the encryption of the counter value is then XORed to the
plaintext block. For the next plaintext block, the value of the counter is incremented, and
the process is repeated.

21

Chapter 2 – Introduction to Chaos-Based Cryptography and Side-Channel Attacks (SCAs)

Counter = 1

Block Cipher
Encryption

Plaintext 1

Ciphertext 1

Key Block Cipher
Encryption

Plaintext 2

Ciphertext 2

Key Block Cipher
Encryption

Plaintext 3

Ciphertext 3

Key

Counter = 2 Counter = 3

Figure 2.7 – CTR block cipher mode of operation

2.1.2.3 Existing non-chaotic cipher

Data Encryption Standard (DES) [2] is a block cipher which encrypts block of
length of 64 bits with a 64-bit key. It has been by far the most popular block cipher for
the last 30 years but has been now replaced by Advanced Encryption Standard (AES)
because it is considered not secure against a determined attacker due to the fact that the
DES key space of 64 bits is too small. The DES has a structure called Feistel network
which is described as: it firstly does a bitwise permutation for the 64-bit plaintext x with
an initial 64 bits Initial Permutation (IP) and each round performs an identical operation.

Advanced Encryption Standard (AES) [2] is the most widely used symmetric ci-
pher today, which processes data in 128-bit blocks. AES is almost identical to the block
cipher Rijndael. The key size may take values such as 128, 192 and 256 bits executing
between 10 and 14 rounds depending on the key size. Its encryption round function con-
sists of three layers including key addition layer, byte substitution layer called S-Box and
diffusion layer. Its decryption round inverts the iterations resulting in a partially different
data path.

Rabbit [3] stream cipher is one of the most effective algorithms of the eSTREAM
Project [4]. It was designed for software and hardware applications. Its aim is to be faster
than commonly used ciphers. Rabbit does not have an S-Box. Instead, it has an internal
state that consists of 8 32-bit state variables, 8 32-bit counters and one counter carry bit.
The eight counters are updated every time before each iteration of the internal system.
In addition, the eight state variables are updated in the iteration of eight coupled non-
linear functions. All state variables only depend on their corresponding counters and the
previous state variables. The 128-bit keystream is generated using the state variables. The
encryption is done by XOR operation between the keystream and the plaintext.

22

2.2. Chaos Theory and its Application to Cryptography

HC-128 [5] is an efficient software stream cipher. It is constructed on two secret tables
of 512 32-bit elements each. At each step, it updates one element of a table with a non-
linear feedback function. All the elements of each table is updated every 1024 steps.

In addition, it is suitable for modern and future super-scalar microprocessors. Indeed,
three consecutive steps can be computed in parallel, as feedback and output functions.
We can say that this cipher can be implemented with a high degree of parallelism, which
is a good feature to be run efficiently on modern processors.

Trivium [6] is particularly well suited for applications requiring a flexible hardware
implementation. It is a synchronous stream cipher. It was designed to explore how far a
stream cipher can be simplified without sacrificing its security, speed or flexibility.

It generates 264 key stream from an 80-bit secret key and an 80-bit IV. The internal
structure of Trivium is composed of a 288-bit internal state. It is stored in three shift
registers of different lengths (93, 84 and 111) and is the heart of Trivium. The XOR-sum
of all three registers outputs forms the key stream. In addition, the output of each register
is connected to the input of another register. Trivium can be viewed as one circular register
with a length of 288 bits.

2.2 Chaos Theory and its Application to Cryptogra-
phy

Chaos refers in mathematics to non-linear dynamic systems with a behaviour that
appears completely random but is deterministic. A chaotic system is also highly sensitive
to initial conditions, topologically transitive and has a dense periodic orbit [7].

2.2.1 Chaotic Maps

A chaotic map is a discrete-time chaotic system. It is usually defined by a function from
a domain to the same domain appearing completely unpredictable [8]. This chaotic map
can be multidimensional. However 1-D maps are the one commonly used in cryptography.
The attractor is a representation in which the samples are displayed function of the
previous one. The dynamic system tends to evolve into this state. A fixed point is a state
in which the dynamic system is no longer evolving. For a dynamic system xn+1 = f(xn), a
fixed point exists when xi = f(xi). In literature multiple chaotic maps were defined such

23

Chapter 2 – Introduction to Chaos-Based Cryptography and Side-Channel Attacks (SCAs)

as the 2D-Baker map [9], the Gauss map [10], the Henon map [11], the Lorenz map [12],
the Lozi map [13] or the Tent map [14].

2.2.1.1 Skew Tent (ST) Map

The ST map [15] is defined in the literature as f : [0, 1]→ [0, 1] given by

f(x, p) =


x
p

if 0 ≤ x ≤ p,

1−x
1−p if p < x ≤ 1,

(2.1)

where p ∈]0, 1[is the parameter of the ST map. Figure 2.8 represents the mapping of the
map with parameter p set to 0.75. The ST map is used in multiple encryption scheme [16,
17, 18].

1

1p
x

f(x)

Figure 2.8 – Mapping of the ST map, with p = 0.75

24

2.2. Chaos Theory and its Application to Cryptography

2.2.1.2 PieceWise Linear Chaotic (PWLC) Map

The PWLC map [19] is defined in the literature as f : [0, 1]→ [0, 1] given by

f(x, p) =



x
p

if 0 ≤ x ≤ p,

1−x
1−p if p < x ≤ 1

2 ,

f(1− x, p) if 1
2 < x ≤ 1,

(2.2)

where p ∈]0, 1
2 [is the parameter of the PWLC. The mapping of the PWLC with the

parameter p = 0.2 is represented in Figure 2.9. This map is also used in several chaos-
based encryption schemes [20, 21]

1

1p 1
2

x

f(x)

Figure 2.9 – Mapping of the PWLC map, with p = 0.2

2.2.2 Existing Chaos-Based Ciphers

In the past decade, many chaos-based cryptographic techniques have been proposed. In
1997, Fridrich [22] introduced a chaos-based block encryption scheme and a structure [23]
used as the core structure of most chaos-based block cryptosystems. The Fridrich structure
in Figure 2.10 is a traditional confusion-diffusion architecture. It encrypts the plaintext
P by a round operation consisted of a 2-D Baker chaotic map confusion layer and a
fixed random permutation diffusion layer. The cipher will repeat the same operation for r

25

Chapter 2 – Introduction to Chaos-Based Cryptography and Side-Channel Attacks (SCAs)

rounds and outputs the ciphertext C. However in [24], the authors analysed the security
of the Fridrich scheme and highlighted some weaknesses and proposed improvements to
overcome these security failures. Thus, Yang et al. [25] propose a new version of Fridrich
scheme where the designer adds a Pseudo-Chaotic Number Generator (PCNG) to generate
key for the encryption operations. The confusion layer and diffusion layer in the previous
system can be replaced by other efficient mathematics functions.

For example, Barakat et al. [26] developed a block cipher for image encryption based on
Lorenz Chaotic Generator. The Lorenz’s Chaotic Generator [27], based on Lorenz’s differ-
ential equation system, can be used as a hard-key generator in a chaotic self-synchronizing
cipher encryption. Bensikaddour et al. [28] also proposed a chaos-based block cipher with
the new Fridrich structure for image encryption. The designer takes a PWLC map as key
generator map, an Arnold’s Cat map as confusion layer and the enhanced function in [24]
as the diffusion layer.

Confusion
Map

Diffusion
Map

P C

r Rounds

rdrc

Conf Key Diff Key

Figure 2.10 – Fridrich image encryption structure

2.3 Physical Cryptanalysis

Cryptanalysis is the study of cryptographic systems in order to find weaknesses to
either find the secret key, retrieve the plaintext from the ciphertext or reduce the space
for brute-force attacks. Cryptanalysis can be divided into two main categories.

1. Mathematical cryptanalysis studies the algorithm to find vulnerabilities. Most recent
encryption algorithms are generally secure against that type of cryptanalysis.

26

2.3. Physical Cryptanalysis

2. Physical cryptanalysis, on the other hand, studies the implementation of the algo-
rithm. An algorithm can be mathematically secure but its implementation is phys-
ically leaking information.

Among physical cryptanalysis, attacks are classified into two types, Fault Attacks
(FAs) or active attacks and SCAs or passive attacks.

2.3.1 Fault Attacks (FAs)

FAs are attacks aiming to create errors into the system by changing the execution
environment. Bar-El et al. [29] present multiple fault injection methods. For example,
creating a variation in the power supply of the device [30]. By changing the voltage outside
the requirement for a short amount of time, the system may enter in a faulty behaviour
and skip or misinterpret instructions. This type of fault injection is cheap. However it is
not a precise fault injection. In the same way, glitching the clock signal [30] is one of the
simplest and cheapest to operate. Glitching the clock will allow to create a shorter clock
cycle, the computation of the device will not be complete and error will be created.

Electromagnetic fault injection [31, 32] is another common method of injection. In this
method, a probe is used to perturb the external electromagnetic field of the attack device
and possibly impact the transistors and the memory blocks.

Laser fault injection [33] is one of the most expensive techniques, however, it is one
of the most precise. With laser injection it is possible to change the state of the system
temporarily or permanently.

The fault injection technique needed depends on the fault model required. Depending
on whether the attack requires to precisely flip one bit a time then laser injection should
be used. However, to produce random faults, a simple power variation or clock glitches
can be enough.

2.3.2 Side-Channel Attacks (SCAs)

Oppositely to FAs, SCAs are passive physical attacks. The attacker is not tampering
the system while performing an attack. The SCAs are based on exploiting leakage from
external physical measurements of the system such as execution time, power consumption,
or electromagnetic emissions, for example.

27

Chapter 2 – Introduction to Chaos-Based Cryptography and Side-Channel Attacks (SCAs)

2.3.2.1 Channels

2.3.2.1.1 Time Attacks introduced by Kocher [34], exploits execution time differ-
ences in algorithms in order to recover the secret. The most famous example of timing
attacks is on RSA implementations.

Algorithm 2.1: RSA square and multiply algorithm.
x← C
for j = 1 to n do
x← x2 mod N
if dj == 1 then
x← xC mod N

end if
end for
return x

In Algorithm 2.1, the RSA square-and-multiply algorithm is presented. Depending on
the secret key bit dj, it will execute just a square operation when the key bit equal 0
and execute a square operation followed multiply operation when the key bit equals 1. A
square operation takes significantly less time than a square-multiply operation. Therefore,
when a short iteration execution time occurs, the key bit dj is equal to 0, and 1 when for
a longer execution time.

2.3.2.1.2 Power Attacks exploit the dynamic power model and how CMOS cells
work. Each time a cell transition from 0 → 1 or 1 → 0 occurs, for a brief moment, the
two CMOS transistors are saturated creating a small spike in the power consumption.
Therefore, from the analysis of the power consumption, information about processed data
can be recovered using an appropriate leakage model and distinguisher.

2.3.2.1.3 Electromagnetic Attacks are similar to power attacks. The main differ-
ence lies in the method of leakage collection. The advantage of electromagnetic attacks
compared to power attacks is the possibility to collect leakage on a smaller and more
localized part of the system to get rid of noise generated by other elements of the device.

2.3.2.2 Leakage Model

The leakage model is one of the two requirements to perform a power/electromagnetic
attack. The leakage model is the model used to estimate the power consumption or elec-

28

2.3. Physical Cryptanalysis

tromagnetic emission of the device under attack. In the literature, mainly two different
leakage models are used, the Hamming Distance (HD) and the Hamming Weight (HW).

2.3.2.2.1 Hamming Distance (HD) leakage model is the model used to estimate
the consumption of a register transitioning from a value different from 0 to another. In
this case, the consumption C(t) of a register can be estimated as follows:

C(t) =
n∑
i=0

H(Ai ⊕Bi) + B(t), (2.3)

where Ai is the i-th bit of the initial value of the register of size n, Bi is the i-th bit of
the register after the load, H(0) correspond to the idle consumption, H(1) correspond to
the consumption of a transition B(t) is the noise at an instant t. This noise is usually
assumed to be Gaussian. This model also assumes that a transition from 0→ 1 or 1→ 0
consumes the same amount of power.

2.3.2.2.2 Hamming Weight (HW) leakage model is the model used to estimate
the consumption of a register transitioning from 0 to another value. In this case, the
consumption C(t) of a register can be estimated as follows:

C(t) =
n∑
i=0

H(Bi) + B(t). (2.4)

2.3.2.3 Distinguisher

The distinguisher is a method to expose dependency between the physical measure-
ment and a leakage model. The quality of a distinguisher is determined by its capacity to
highlight the correct key hypothesis from the others using the minimum number of traces.

2.3.2.3.1 Simple Power Analysis (SPA) SPA is a distinguisher aiming to recover
the secret key from only a few power consumption traces. Kocher [34] presents an attack
on the naive RSA implementation. This distinguisher is not only used to recover the key
directly it is often used to prepare for a more complex attack. The countermeasure against
SPA is to develop a constant-time implementation of the algorithm. A constant-time
implementation of an algorithm in an implementation where secret-dependent operations
take exactly the same amount of time for any given key.

29

Chapter 2 – Introduction to Chaos-Based Cryptography and Side-Channel Attacks (SCAs)

2.3.2.3.2 Differential Power Analysis (DPA) Kosher et al. [35] introduced the
DPA distinguisher and was applied only to single-bit variables. Later, the distinguisher
was extended to support multi-bit variables. This extended DPA is computed as the
covariance between the leakage l and the leakage model h:

DPA : ∆ = Cov(l, h). (2.5)

For the wrong key hypothesis, the difference trace is close to 0. On the other hand, when
the hypothesis is correct, the differential trace shows a peak.

2.3.2.3.3 Correlation Power Analysis (CPA) Brier et al. [36] proposed a normal-
ized version of DPA. The CPA distinguisher is less sensitive to noise and consequently is
more precise. CPA computes the correlation coefficient ρ between the leakage l and the
leakage model h:

CPA : ρ = Cov(l, h)
σl σh

, (2.6)

where σl and σh are the standard deviation of the leakage l and the leakage model h,
respectively.

2.3.2.4 Countermeasures against Side-Channel Attacks (SCAs)

2.3.2.4.1 Data Masking consists of combining, at each execution, sensible data with
a different random value, called a mask. Masked data are then processed through the
system. Before outputting the result, the mask is removed [37, 38, 39]. Masking can be
either Boolean or arithmetic. The type of masking depends on the operations performed
the masked algorithm. Boolean masking masks the value using a XOR operation between
the value v and the mask m,

vm = v ⊕m. (2.7)

Arithmetic masking is performed using an arithmetic operation and a modulo. For exam-
ple, an additive masking of a value on n bits is computed as follows;

vm = (v +m) mod n. (2.8)

Masking can be easily implemented on any linear operation γ respecting the following
equality:

f(v γ m) = f(v) γ f(m). (2.9)

30

2.3. Physical Cryptanalysis

However, for non-linear function, it can’t be recovered mathematically and it is required to
find solutions case by case. For S-Boxes, the most common non-linear part in encryption
schemes, the topic of masking was vastly studied [40, 41, 42].

2.3.2.4.2 Constant Power Consumption This countermeasure consists of hiding
the leakage inside a constant power usage. Exploiting the fact that hardware device uses
CMOS cells and its high consumption when transitioning, each clock cycle must have the
same amount of transition are occurring.

31

Part II

Contributions

33

CHAPTER 3

Enhanced Software Implementation of a Chaos-Based Stream
Cipher

Stream ciphers are commonly used to encrypt data in real-time applications like, for
example, in selective video encryption [43, 44]. It consists of performing an eXclusive OR
(XOR) operation between a plain text and the output of a deterministic random generator.
In the literature, multiple stream ciphers exist, the eSTREAM project was promoting the
design of efficient and compact stream ciphers such as HC-128 [5] or Rabbit [3], but
according to [45], eSTREAM ciphers are not all secured.

The chaos theory is used in cryptography for its natural property of deterministic
randomness. Indeed, chaos-based ciphers generally use chaotic maps for their combination
of security and relatively low complexity.

This section’s objective is to assess and improve the security of the stream cipher
proposed by Taha [1]. After a presentation of this method, an Side-Channel Attack (SCA)
analysis is carried out to assess the vulnerabilities of the design. Then, a new design is
proposed including countermeasures at the design and implementation levels. Finally, a
performance analysis of the new design is proposed.

35

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

3.1 Original Stream Cipher

Taha [1] proposed a stream cipher based on the Pseudo-Chaotic Number Generator
(PCNG) using a N = 32 bit precision, and represented in Figure 3.1. The PCNG is
composed of two cells, depicted in orange, that use different chaotic maps called Skew
Tent (ST) map and PieceWise Linear Chaotic (PWLC) map. The ST map is defined by
Equation (3.1) and the PWLC map is defined by Equation (3.2). The output of the maps
are periodically perturbed using a XOR operation with a Linear Feedback Shift Register
(LFSR). The outputs of the two cells are fed back to the chaotic maps after being filtered
using an Infinite Impulse Response (IIR) filter, depicted in green in Figure 3.1. The
outputs of the cells are also XORed to generate the key stream XG after reaching the end
of the transient state (i.e. after tr turns).

XS(n) = STmap(XS(n− 1), PS) =



⌊
2N × XS

PS

⌋
if 0 < XS < PS

⌊
2N × 2N−XS

2N−PS

⌋
if PS < XS < 2N

2N − 1 otherwise

(3.1)

XP (n) = PLWCmap(XP (n− 1), PP) =



⌊
2N × XP

PP

⌋
if 0 < XP < PP

⌊
2N × XP−P

2N−1−PP

⌋
if PP < XP < 2N−1

⌊
2N × 2N−PP−XP

2N−1−PP

⌋
if 2N−1 < XP < 2N − PP

⌊
2N × 2N−XP

PP

⌋
if 2N − PP < XP < 2N

2N − 1 otherwise
(3.2)

36

3.1. Original Stream Cipher

ST Map(PS)

LFSR(QS, ∆S)

PWLC Map(PP)

LFSR(QP , ∆P)

+

+×

Z−1

×

Z−1

+

×

Z−1
K1S

K2S

K3S

XS(n− 1)

XS(n− 2)

XS(n− 3)

V 1S(n)

V 2S(n)

V 3S(n)

+×
Z−1

×
Z−1

+

×
Z−1 K1P

K2P

K3P

XP (n− 1)

XP (n− 2)

XP (n− 3)

V 1P (n)

V 2P (n)

V 3P (n)

XS(n)

XP (n)

n > tr

XOF (n) XG(n− tr)

Recursive
cell ST

Recursive
cell PWLC

Cell
ST

Cell
PWLC

Figure 3.1 – Taha [1] PCNG diagram. In green are highlighted the recursive cells.
Orange dotted line delimits the two cells.

The Initial Vector (IV) of the PCNG is a 2N -bit-long word used as two separate
N -bit-long sub-IV, one for each cell, IVS for the ST map and IVP for the PWLC map.
The two sub-IVs are added to the input of each chaotic map for the first iteration of the
system resulting in the following equation:

XinMP (n) =


IVMP +∑3

i=1KiMP XMP (n− i) if n = 0∑3
i=1KiMP XMP (n− i) otherwise

, (3.3)

37

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

where MP is set to S for the ST map and P for the PWLC map. XinMP (n) is the
input of the map MP at iteration n, KiMP are the coefficients of the MP map filter and
XMP (n− i) are the delayed sample of the filter.

Table 3.1 lists all the elements composing the secret key of the PCNG. The param-
eter PS ∈]0, 232[and the coefficients of the IIR filter KS(1), KS(2), KS(3) ∈]0, 232[,
the initial delayed values XS(−1), XS(−2), XS(−3) ∈]0, 232[are part of the se-
cret key, for PWLC, the parameter PP ∈]0, 231[, KP (1), KP (2), KP (3) ∈]0, 232[and
XP (−1), XP (−2), XP (−3) ∈]0, 232[, respectively. The duration of the transient state
tr ∈]0, 256[is also part of the key, putting the length of the secret key to 455-bit long.

Table 3.1 – Key composition of the original stream cipher.

Name Length(in bits) Description

PS 32 Parameter of the ST map
K1S 32 First coefficient of the ST map recursive cell
K2S 32 Second coefficient of the ST map recursive cell
K3S 32 Third coefficient of the ST map recursive cell
XS(−1) 32 Initial value of the first delay of the ST map recursive cell
XS(−2) 32 Initial value of the second delay of the ST map recursive cell
XS(−3) 32 Initial value of the third delay of the ST map recursive cell
PP 31 Parameter of the PWLC map
K1P 32 First coefficient of the PWLC map recursive cell
K2P 32 Second coefficient of the PWLC map recursive cell
K3P 32 Third coefficient of the PWLC map recursive cell
XP (−1) 32 Initial value of the first delay of the PWLC map recursive cell
XP (−2) 32 Initial value of the second delay of the PWLC map recursive cell
XP (−3) 32 Initial value of the third delay of the PWLC map recursive cell
tr 8 Number of samples to reach before outputting the first sample(ie. XG(0) = XOF (tr))

Total 455

3.2 Side Channel analysis of studied stream cipher

This section presents possible attacks on the previously presented PCNG. The attacks
are all SCA-based attacks. Table 3.2 lists the 25 attacks to recover the full 455-bit key of
the PCNG.

38

3.2. Side Channel analysis of studied stream cipher

Table 3.2 – List of the attacks used to break PCNG.

Attacks Targeted Value Extracted Value Prerequisite Method Nb run

AT01 V 1S(0) V 1S(0), PK1S − SCA 1
AT02 V 2S(0) V 2S(0), PK2S PK1S SCA 1
AT03 V 3S(0) V 3S(0), PK3S PK1S and PK2S SCA 1
AT04 V 1P (0) V 1P (0), PK1P − SCA 1
AT05 V 2P (0) V 2P (0), PK2P PK1P SCA 1
AT06 V 3P (0) V 3P (0), PK3P PK1P and PK2P SCA 1
AT07 XS(n) PS PKiS(i = 1, 2, 3) Timing Attack 1
AT08 XP (n) PP PKiP (i = 1, 2, 3) Timing Attack 1
AT09 V 1S(1) K1S PS , V 3S(0) SCA Mult. 2

AT10 PK1S XS(−1) K1S , PK1S
Extented
Euclidian 2

AT11 V 2S(1) = K1S XS(0)
+K2S XS(−1) K2S XS(−1) PS , V 3S(0),K1S SCA 2

AT12 K2S XS(−1) K2S
K2S XS(−1),
XS(−1)

Extented
Euclidian 2

AT13 PK2S XS(−1) K2S , PK2S
Extented
Euclidian 2

AT14
V 3S(1) = K1S XS(0)
+K2S XS(−1)
+K3S XS(−2)

K3S XS(−2) PS , V 3S(0),K1S ,
K2S XS(−1) SCA 2

AT15 K3S XS(−1) K3S
K3S XS(−2),
XS(−2)

Extented
Euclidian 2

AT16 PK3S X3S K3S , PK3S
Extented
Euclidian 2

AT17 V 1P (1) K1P PP , V 3P (0) SCA Mult. 2

AT18 PK1P XP (−1) K1P , PK1P
Extented
Euclidian 2

AT19 V 2P (1) = K1P XP (0)
+K2P XP (−1) K2P XP (−1) PP , V 3P (0),K1P SCA 2

AT20 K2P XP (−1) K2P
K2P XP (−1),
XP (−1)

Extented
Euclidian 2

AT21 PK2P XP (−2) K2P , PK2P
Extented
Euclidian 2

AT22
V 3S(1) = K1P XP (0)
+K2P XP (−1)
+K3P XP (−2)

K3P XP (−2) PP , V 3P (0),K1P ,
K2P XP (−1) SCA 2

AT23 K3P XP (−2) K3P
K3P XP (−2),
XP (−2)

Extented
Euclidian 2

AT24 PK3P X3P K3P , PK3P
Extented
Euclidian 2

AT25 execution time tr Data output pattern Timing Attack tr

39

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

3.2.1 AT01 → AT06: Extraction of PKiS and PKiP , products of
recursive cells

Let PKiS be PKiS = XS(−i) × KiS and PKiP be PKiP = XP (−i) × KiP with
i ∈ {1; 2; 3}. To recover the values of the products PKiS and PKiP inside the recur-
sive cells, series of six SCA using a Correlation Power Analysis (CPA) distinguisher
on Hamming Weight (HW) leak pattern are used to recover the intermediary results
V 1S(0), V 2S(0), V 3S(0), V 1P (0), V 2P (0), and V 3P (0) represented in red in Figure 3.1.
The PKiS can be expressed as a function of the intermediary results as follows:

V 1S(0) = XS(−1)×K1S ⇒ P K1S = V 1S(0),

V 2S(0) = V 1S(0) +XS(−2)×K2S
= V 1S(0) + PK2S ⇒ P K2S = V 2S(0) − V 1S(0),

V 3S(0) = V 2S(0) +XS(−3)×K3S
= V 2S(0) + PK3S ⇒ P K3S = V 3S(0) − V 2S(0).

(3.4)

Similarly, the PKiP are expressed as follows:

V 1P (0) = XP (−1)×K1P ⇒ P K1P = V 1P (0),

V 2P (0) = V 1P (0) +XP (−2)×K2P
= V 1P (0) + PK2P ⇒ P K2P = V 2P (0) − V 1P (0),

V 3P (0) = V 2P (0) +XP (−3)×K3P
= V 2P (0) + PK3P ⇒ P K3P = V 3P (0) − V 2P (0).

(3.5)

3.2.2 AT07 → AT08: PS and PP , parameters of the chaotic maps

The chaotic maps used in the system are characterized by a parameter PS for the Skew
Tent and PP for PWLC. In the implementation, the execution time of the map depends
on the input given to the map.

According to Equation (3.3), for the first iteration, the output of the Skew Tent map
is equal to XS(0) = STmap(IVS + V 3S(0), PS). In Algorithm 3.1, the implementation
shows that when XinS ∈ {0;PS} the failsafe branch is executed. So, for the first iteration,
IVS + V 3S(0) = PS when the execution time is the shortest. Knowing V 3S(0), recovered
in the previous attacks, and by measuring the execution time while changing the value of
IVS, PS can be recovered.

40

3.2. Side Channel analysis of studied stream cipher

Algorithm 3.1: Calculate XS(n) = STmap(XinS(n), PS).
Require: XinS ∈]0; 232[and PS ∈]0; 232[
if 0 < XinS < PS then
XS ← XinS × ratio1

else if PS < XinS < M1 then
XS ← (M1 −XinS)× ratio2

else
XS ←M1 − 1

end if
return XS

where M1 = 232, M2 = 231 and ratios are precomputed floats.

Algorithm 3.2: Calculate Xp(n) = PLWCmap(Xp(n− 1), Pp).
Require: XinP ∈]0; 232[and Pp ∈]0; 231[
if 0 < XinP < Pp then
XP ← XinP × C1

else if (Pp < XinP < M2) then
XP ← (XinP − Pp)× C2

else if M2 < XinP < (M1 − Pp) then
P ← (M1 − Pp −XinP)× C2

else if (M1 − Pp) < XinP < M1 then
XP ← (M1 −XinP)× C1

else
XP ←M1 − 1

end if
return XP

where M1 = 232, M2 = 231 and ratios C1 and C2 are pre-computed floats.

A similar method is applied to recover PP . For the first iteration, the output of the
PWLC map is equal toXP (0) = PWLCmap(IVP+V 3P (0), PP). When the execution time
is the shortest,XinP (0) ∈ {0;PP ; 231}. However, the specification of the PCNG establishes
that XinP (0) /∈ {0; 231}. So if the execution time is the shortest and XinP (0) /∈ {0; 231}
then XinP (0) = PP .

3.2.3 AT09/AT17: K1S and K1P , first coefficient of recursive cell

The parameters of the chaotic maps PS, PP are now known by the attacker. XinS(0)
and XinP (0) can be set to a desired value by the attacker using the right IV. Con-

41

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

sidering this two facts, the attacker can now inject any value to the delay register of
the recursive cells. The objective of AT09 and AT17 is to attack the multiplications
V 1S(1) = K1S XS(0) and V 1P (1) = K1P XP (0) using the method described by Nguyen
et al. [46] to recover K1S and K1P . This attack requires to be able to measure V 1S(1)
and V 1P (1) and to be able to set the value XS(0) and XP (0). The method is dividing the
attacked words into 8-bit slices in order to reduce the memory footprint and increase the
speed of the attack.

3.2.4 AT10 → AT16/AT18 → AT24: XiS, KiS, XiP and KiP ,
remaining keys of recursive cell

This section explains how the remaining keys of the recursive cell are recovered. At this
point, we already recovered the PKiS, the PKiP , PS, PP , K1S and K1P . At this point,
four more CPA attacks are required to recover the last necessary intermediary values:

— AT11: V 2S(1) = K1S XS(0) +K2S XS(−1),

— AT14: V 3S(1) = K1S XS(0) +K2S XS(−1) +K3S XS(−2),

— AT19: V 2P (1) = K1P XP (0) +K2P XP (−1),

— AT22: V 3S(1) = K1P XP (0) +K2P XP (−1) +K3P XP (−2).

Once these last four values are recovered, successive applications of the extended Eu-
clidean algorithm are required to recover all remaining keys.

— AT10: Knowing P K1S(AT01) and K1S(AT09), XS(−1) = PK1S/K1S.

— AT12: Knowing V 1S(1)(AT09), XS(−1)(AT10) and V 2S(1)(AT11),
V 2S(1)− V 1S(1) = K2S XS(−1)⇒ K2S = V 2S(1)−V 1S(1)

XS(−1) .

— AT13: Knowing P K2S(AT02) and K2S(AT12), XS(−2) = PK2S/K2S.

— AT15: Knowing V 2S(1)(AT11), XS(−2)(AT13) and V 3S(1)(AT14),
V 3S(1)− V 2S(1) = K3S XS(−2)⇒ K3S = V 3S(1)−V 2S(1)

XS(−2) .

— AT16: Knowing P K3S(AT03) and K3S(AT15), XS(−3) = PK3S/K3S.

— AT18: Knowing P K1P (AT04) and K1P (AT17), XP (−1) = PK1P/K1P .

— AT20: Knowing V 1P (1)(AT17), XP (−1)(AT18) and V 2P (1)(AT19),
V 2P (1)− V 1P (1) = K2P XP (−1)⇒ K2P = V 2P (1)−V 1P (1)

XP (−1) .

— AT21: Knowing P K2P (AT05) and K2P (AT20), XP (−2) = PK2P/K2P .

42

3.3. New stream cipher

— AT23: Knowing V 2P (1)(AT19), XP (−2)(AT21) and V 3P (1)(AT22),
V 3P (1)− V 2P (1) = K3P XP (−2)⇒ K3P = V 3P (1)−V 2P (1)

XP (−2) .

— AT24: Knowing P K3P (AT06) and K3P (AT23), XP (−3) = PK3P/K3P .

3.2.5 AT25: tr, the transient phase

tr is a 8-bit number, element of the secret key, defining the number of iterations needed
by the system before enabling the sample output. By definition, tr is directly correlated
to the execution time of the transient phase, so is a weak element of the secret key. A
Simple Power Analysis (SPA) or a timing attack enables an attacker to recover tr. For a
timing attack, the attacker is required to measure the duration of the transient state ∆tr

and the duration of a single iteration ∆it, resulting in tr = ∆tr/∆it.

3.2.6 Recommended design improvements

Performing the previously presented attacks, some recommendations were highlighted.

— The design being composed of two distinct cells, it is fairly easy for any attacker
to attack one cell at a time, dividing the complexity of the attack. It would be
recommended to strongly improve how the two cells are associated.

— The current design is non-linear in its domain of definition, however, it is linear by
pieces possibly enabling algebraic attacks. It would be advised to add more non-
linearity.

— To counter the CPA attacks on the recursive cells, countermeasures like masking
should be applied to prevent this type of attack.

— There is no real countermeasure to the timing attack on tr, however, the risk linked
to recovering tr is negligible and gives no information on any other elements of the
key.

3.3 New stream cipher

After exposing, in the previous section, the vulnerabilities of the studied generator,
this section aims to propose a more secure LightWeight Chaos-Based (LWCB) Stream
Cipher (SC) by proposing design and implementation level countermeasures. Figure 3.2
presents in red the modifications given to the previous version.

43

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

[B
]

Z
−

1

×
+

Z
−

1

×
+

Z
−

1

×

K
14D

K
24D

K
34D

X
c

4
D

Z
−

1

×
+

Z
−

1

×
+

Z
−

1

×

K
1
P

K
2
P

K
3
P

X
c
P

M
ask

−
1

M
ask

−
1

4D
M

ap

LFSR
(Q

4
D ,∆

4
D)

LFSR
(Q

32 ,1)

X
in

4
D

P
W

LC
M

ap(P
P)

LFSR
(Q

P ,∆
P)

X
in
P

M
ask

M
ask

+
X

4
D

X
P

X
m

4
D

X
m
P

n
>
tr

X
G (n)

Recursive
cell4D

Recursive
cellPW

LC

Cell4D

CellPW
LC

Figure
3.2

–
Im

proved
PC

N
G

diagram
.In

red
are

show
n
the

differences
w
ith

[1].
In

green
are

highlighted
the

recursive
cell.O

range
dotted

line
delim

its
the

two
cells.

44

3.3. New stream cipher

3.3.1 Map bloc modification

Two modifications are proposed for the chaotic maps. First, the ST map and the PWLC
map being partly linear, the design was missing a non-linear component to improve the
resilience against algebraic attacks. The second modification relies on the implementations
of the chaotic maps, the computation of the maps is not constant in time, creating leakage
of parameters of the map.

3.3.1.1 New chaotic map

To replace the ST map, a chaotic map based on the Chebychev 4th order polynomial is
proposed. Chebyshev polynomials are widely used among chaotic cryptography to perform
encryption of all kinds. Due to their non-linearity and their chaotic behaviour on [-1,1] [47].
The polynomials are defined by the following suite:

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x).

(3.6)

So the equation of the Chebychev 4th order polynomial is

T4(x) = 8x4 − 8x2 + 1 = 8x2(x2 − 1) + 1. (3.7)

Figure 3.3a represents the attractor of the T4 polynomial.

However, the stream cipher is only using maps of type M : E → E where E is the
subset taking all natural integers in [1, 2N−1]. To match the system’s domain of definition
of the chaotic maps, a discrete version of the T4, called T4D, is defined in Equation (3.8).

45

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

Figure 3.3b is the attractor of the discrete T4D map.

T4D(X) =
(
T4(X

2N−1 − 1) + 1
)
× 2N−1 mod 2N

=
[
8
(

X

2N−1 − 1
)2 ((X

2N−1 − 1
)2
− 1

)
+ 2

]
× 2N−1 mod 2N

=
[
2N+2

(
X

2N−1 − 1
)2 ((X

2N−1 − 1
)2
− 1

)
+ 2N

]
mod 2N

=
[

2N+2

24N−4 (X − 2N−1)2
(
(X − 2N−1)2 − 22N−2

)]
mod 2N

= 1
23N−6

[
(X − 2N−1)4 − 22N−2 (X − 2N−1)2

]
mod 2N

(3.8)

XT4(n− 1)

XT4(n)

XT4 (0)

1−1

1

−1

(a)

XT4D
(n− 1)

XT4D
(n)

2N − 1

2N − 1XT4 (0)

(b)

Figure 3.3 – Map’s attractor of (a) Chebychev 4-th order polynomial T4 and (b) Discrete
Chebychev 4-th order polynomial T4D.

The drawback with Chebychev polynomial chaotic maps is its non-uniform histogram
in the neighbourhood. The histogram of the discrete T4D is depicted in Figure 3.4a. The
sample generated tends to concentrate on the extremes. To attenuate this behaviour,
the proposed solution is to XOR the samples of the chaotic maps and a 32-bit LFSR.
Figure 3.5 represents the schematic of the solution and Figure 3.4b the histogram of the
proposed solution.

The ST map is replaced by the T4D discrete 4th order Chebychev polynomial and an
LFSR. The initial value of the LFSR will replace the key parameter of the ST map. This
change does not affect the length of the global key.

46

3.3. New stream cipher

0 1 2 3 4
·109

0

200

400

600

(a)

0 1 2 3 4
·109

0

10

20

30

40

50

(b)

Figure 3.4 – Histogram for 31250 samples and 1000 bins of the 4D map (a) without any
additional LFSR (b) with an additional LFSR.

4D Map

LFSR(Q4D, ∆4D) LFSR(Q32, 1)

Xin4D(n) X4D(n)

Figure 3.5 – New map block diagram replacing the ST map.

3.3.1.2 Constant time implementation

Section 3.2.2 presents a timing attack on the chaotic maps to recover the parameters
PS and PP . Both maps are partly linear, and are implemented using a case structure,
implying that only one branch is computed each time and the processing time of each
processing is different. The ST map being removed and replaced by a continuous chaotic
map, only the PWLC map implementation presented in Algorithm 3.2 is revised. The
countermeasure proposed in Algorithm 3.3 is to compute all the cases each time and then
select the correct value.

The time variation of this new implementation is verified running multiple times the
map implementation with multiple keys comparing the standard deviation between the
two implementations.

Figure 3.6 presents the NCpB for 100 different secret keys of both implementation. The
standard deviation of the NCpB drops from 0.97 to 0.33, showing that the implementation

47

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

Algorithm 3.3: Constant-time implementation of XP (n) =
PLWCmap(XinP (n− 1), PP).
Require: XinP ∈]0; 232[and PP ∈ [0; 231[
B1 ← 0 < XinP < PP
B2 ← PP < XinP < M2
B3 ←M2 < XinP < (M1 − PP)
B4 ← (M1− PP) < XinP < M1
B5 ← (B1 +B2 +B3 +B4) = 0
X1 ← (XinP × ratio3)&mask(B1);
X2 ← ((XinP − PP)× ratio4))&mask(B2)
X3 ← ((M1 − PP −XinP)× ratio4))&mask(B3)
X4 ← ((M1 −XinP)× ratio3))&mask(B4)
return (X1 +X2 +X3 +X4 + ((M1 − PP)&mask(B5))

where M1 = 232, M2 = 231 and mask(BX) returns 0xFFFFFFFF if BX = 1,
otherwise 0.

is close to be constant in time. However the average goes from 42.16 to 45.04. The proposed
countermeasure degrades the time performances.

3.3.2 Coupling Matrix

The use of the coupling matrix was largely studied in previous work [48]. In this
case, the aim of this cipher is to add more interdependence between the two maps. The
divide and conquer approach used in Section 3.2 was possible because the two cells of the
generator were independent and only blended at the end to produce a sample. The idea
is to blend the two cells each iteration and force an attacker to consider both cells during
an attack.

The coupling matrix is a matrix product between the two inputs X4D(n) and XP (n)
and coefficients Bij, each coefficient is set by 5 bits from the secret key. The matrix product
is defined as follows:XC4D(n)

XCP (n)

 =

2N −B11 B12

B21 2N −B22


X4D(n)

XP (n)

 .
48

3.3. New stream cipher

0 20 40 60 80 100
40

42

44

46

index of the key

N
C
pB

Non CT
CT

Figure 3.6 – Number of Cycles per Byte (NCpB) function of the secret key of the PCNG
using, in blue, the non-Constant-Time (CT), in red, the CT implementation of the
PWLC map.

3.3.3 Shift in REC CELL improves key sensitivity

Uniqueness of reduced products inside the IIR filter is primary. Indeed, the filter
initialization being based on the secret key, filter output needs to be different for each
key; otherwise the generated sequence is the same. Two solutions are possible, the key
space can be reduced removing the weak keys or, as proposed below, to shift the result
before the reduction to N bits, where N is the internal resolution of the chaotic maps,
here N = 32.

Let q = P (C = C ′) be the probability of having C = C ′ with C = A×B, C ′ = A′×B′

and A, A′, B, B′ being four distinct unsigned integers defined on N bits. Equation (3.9)
presents the probability of having q in different cases. In our case, the generator is included
in the second case, i.e. q 6= 0. The proposed solution aims to minimize the probability q.


q = 0 if C or C ′ is defined on 2N-bits

q 6= 0 if C and C ′ are defined on M, M ′ bits,

with M, M ′ < 2N

(3.9)

Let ε(j) be equal to 1 << j with {j ∈ IN | j < N} and let i be an integer in [0;N − 1]
where i number of right shifts executed before the reduction to N bits. In the worst case,

49

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

i.e. A′ = A, B′ = B ⊕ ε(j) or A′ = A⊕ ε(j), B′ = B, the probability q is equal to:

qN(i) = P ((A×B) >> i = (A× (B ⊕ ε(N − 1))) >> i)

+ P ((A×B) >> i = (A× (B ⊕ ε(0))) >> i)

= 2−(i+1) + 2−(N−i)

Figure 3.7 shows the value of qN depending on the value i for N = 32. Minimum of
q32 is obtained for i = 15 and i = 16. In the rest of the chapter, we consider the value
i = 16. The new generic block diagram of a cell using shifting is presented in Figure 3.8.

0 5 10 15 20 25 30
0.00001

0.0001

0.001

0.01

0.1

1

i

q N
(i

)

Figure 3.7 – Probability qN(i) of having A×B = A′ ×B′ where i is the number of right
shift and A, B, A′ and B′being four distinct unsigned integers defined on N bits, for
N = 32.

3.3.4 Masking

In the assessment of the security of the original implementation of the cipher, the IIR
structure is weak against SCA. The straightforward countermeasure for linear application
is masking. In this context, we propose to add the masking countermeasure to first only
the IIR structure, then to the coupling matrix and the IIR structure, with an unmasking
just before the input of the chaotic maps.

Masking consists of adding or XORing a randomly generated value to an input or
intermediary value, and then carry on computations with the value masked. The real

50

3.3. New stream cipher

Z−1

× +
Z−1

× +
Z−1

×

K1MP

K2MP

K3MP

IN OUT

{47..16}

{47..16}

{47..16}

Figure 3.8 – New generic block diagram of a cell using shifts.

challenge of this countermeasure is to recover the correct value from the result of the
computation.

3.3.4.1 Masking only the IIR structure

Studied cipher using Multiply–ACcumulate (MAC) operations, additive masking is
more suited for IIR structure. So masked value XMC(n) at iteration n is defined

XCMPM
(n) = XCMP (n) +maskMP (n),

where XCMP (n) is the output of the coupling matrix and maskMP (n)

The IIR function is defined by

FIRRMP
(X(n)) =

D∑
i=1

X(n− i)×KiMP .

To unmask the result of the IIR structure, which is a linear function, can be written

XinMP (n) =FIRRMP
(XCMP (n)) = FIRRMP

(XCMPM
)− FIRRMP

(maskMP (n))

=
D∑
i=1

XCMPM
(n− i)×KiMP −

D∑
i=1

maskMP (n− i)×KiMP .

51

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

3.3.4.2 Masking coupling matrix and IIR structure

Masking operation in this case is similar. Additive masking is also used,

XMPM
(n) = XMP (n− 1) +maskMP (n).

In this case, the masked data goes through the coupling matrix and the IIR structure
without any unmasking. The unmasking operation is defined as follows:

XinMP (n) = FIRRMP
(FCouplingMP

(XMPM
(n))− FIRRMP

(FCouplingMP
(maskMP (n))).

3.3.5 Set up of the key

Figure 3.2 depicted the PCNG being used in the stream cipher. To be a cipher, it is
required to have a secret key and an IV. To do so, multiple parameters, and initial register
values are defined as the secret key. All secret key elements are defined in Table 3.3.

Table 3.3 – Key composition of the proposed stream cipher.

Name Length(in bits) Description

K14D 32 First coefficient of the 4D map recursive cell
K24D 32 Second coefficient of the 4D map recursive cell
K34D 32 Third coefficient of the 4D map recursive cell
X4D(−1) 32 Initial value of the first delay of the 4D map recursive cell
X4D(−2) 32 Initial value of the second delay of the 4D map recursive cell
X4D(−3) 32 Initial value of the third delay of the 4D map recursive cell
PP 31 Parameter of the PWLC map
K1P 32 First coefficient of the PWLC map recursive cell
K2P 32 Second coefficient of the PWLC map recursive cell
K3P 32 Third coefficient of the PWLC map recursive cell
XP (−1) 32 Initial value of the first delay of the PWLC map recursive cell
XP (−2) 32 Initial value of the second delay of the PWLC map recursive cell
XP (−3) 32 Initial value of the third delay of the PWLC map recursive cell
reg32 32 Initial value for the LFSR register
eij(0) 5 Coefficient B11 of the coupling matrix
eij(1) 5 Coefficient B12 of the coupling matrix
eij(2) 5 Coefficient B21 of the coupling matrix
eij(3) 5 Coefficient B22 of the coupling matrix
tr 8 Number of samples to reach before outputting the first sample(ie. XG(0) = XOF (tr))

Total 475

The computation of the input of the chaotic maps without masking is defined in
Equation (3.3) and MP is equal to 4D for the 4D map and P for PWLC.

52

3.4. Results and discussion

The output of the generator go through a transient phase. Until the number of iteration
reaches tr, the generator is outputting 0, then the generator start outputting the computed
samples. This phase ensures the generator is not in a transient state anymore.

3.4 Results and discussion

3.4.1 National Institute of Standards and Technology (NIST)
Statistical Tests Suite (STS) SP 800-22

NIST STS [49] the popular test suite for investigating the randomness of binary data
is applied. The suite contains 188 tests and sub-tests that assess the randomness of ar-
bitrarily long binary sequences. These tests focus on different types of non-randomness
that could exist in a sequence.

To perform the different tests, 100 sequences of 31250 32-bit samples (i.e., 1 million
bits per sequence) are generated using 100 different secret keys. All 188 tests and sub-tests
of the suite are run. For each test, a set of 100 Pvalue is produced and a sequence passes
a test whenever the Pvalue ≥ α = 0.01, where α is the level of significance of the test. A
value of α = 0.01 means that 1% of the 100 sequences are expected to fail. The proportion
of sequences passing a test is equal to the number of Pvalue ≥ α divided by 100.

Table 3.4 presents the NIST STS’s results of the constant-time version. The Pvalues of
all the tests are strictly over 0.01, meaning that the cipher passed all the tests. Passing
this test is necessary, but not sufficient to state that generated sequences are random.

3.4.2 Histogram distribution

The aim of this test is to determine if the histogram distribution is uniform. To assert
that, the χ2 test is used. If generated sequence verifies (3.10), the key associated passes
the χ2 test.

C∑
i=0

(Vobserved(i)− Vexpected)2

Vexpected
< Vcritical,

where Vexpected is the expected histogram count for a flat histogram,

Vobserved(i) is the histogram count for the i-th class,

and Vcritical is the maximum value the test can reach.

(3.10)

53

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

Table 3.4 – Average results on NIST STS for 100 keys.

Statistical Test Pvalue Proportion

ApproximateEntropy 0.508188 98.96
BlockFrequency 0.474995 99.07
CumulativeSums 0.539631 99.08
FFT 0.478261 98.85
Frequency 0.515495 99.06
LinearComplexity 0.453463 99.11
LongestRun 0.464725 99.01
NonOverlappingTemplate 0.501178 98.99
OverlappingTemplate 0.463584 98.73
RandomExcursions 0.424253 98.91
RandomExcursionsVariant 0.422496 99.12
Rank 0.471351 99.08
Runs 0.501347 99.04
Serial 0.495546 98.90
Universal 0.527559 98.93

This test is run on our algorithm and some reference algorithms. The test conditions
are the following.

— The test is run independently over 1000 randomly generated keys, and IVs.

— Samples are unsigned 32-bit integers.

— 108 samples are generated per sequence.

— C = 1000 classes are used.

— Vexpected = 108

C
= 105

— Vcritical is computed using the inverse of the chi-square cumulative distribution func-
tion as defined in [50, 51]. For this chapter, Vcritical = 1073.6.

Table 3.5 shows the percentage of keys passing the χ2 test with a set of 1000 random
keys and different algorithms. The performance of literature algorithms is close to 95%.
Taha [1] 3-delay PCNG is only presenting 88,1% passing keys, but 95.5% keys for the
proposed PCNG pass the test and is close to standard algorithms.

3.4.3 Correlation - Hamming Distance (HD)

These tests show the non-similarity of two generated streams from two different keys.
For these tests, a data set of 100 125000-bit long streams are generated using 100 randomly
generated keys. Then, correlation coefficients and average HDs between the streams are

54

3.4. Results and discussion

Table 3.5 – Histogram performance.

Algorithm Key passing χ2 test

Taha [1] - 3 delays 88,1%
LWCB PCNG - 3 delays 95.5%
Advanced Encryption Standard (AES) 94.9%
HC-128 [5] 95.4%
Rabbit [3] 95.5%

0.990

0.995

1.000

1.005

1.010
·105

Figure 3.9 – Histogram of the PCNG for one billion samples and 1000 bins.

computed. The correlation coefficient is computed using the binary representation of the
sequences where 1→ 1 and 0→ −1. The expected value of the correlation coefficient ρij,
for two completely random sequences, should be equal to 0. The average HD is defined
in (3.11), where Sx is the generated sequence of size L, x is the index of a key inside
an array of 100 random keys. The expected value, for two completely random sequences,
should be equal to 1

2 .

HD(Si, Sj) =


1
L
×∑L

k=1 Si(k)⊕ Sj(k) if i 6= j,

1
2 otherwise.

(3.11)

Figure 3.10 shows the obtained correlation coefficients between two-by-two different
sequences. As we can see, all correlation coefficients are centred around 0 and maximum
and minimum values are bounded by 4.13 × 10−3, result expected for non-correlated
sequences.

55

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

−2 0 2 4
·10−3

0

200

400

600

Correlation coefficients

Fr
eq
ue

nc
y

Figure 3.10 – Frequency distribution of the correlation coefficients between generated
stream with different keys.

Figure 3.11 shows HDs centred around 1
2 , and maximum deviation is bound by 2, 07×

10−3, meaning there is equal chance to generate a 0 or 1.

0.498 0.499 0.5 0.501
0

200

400

600

Hamming Distance

Fr
eq
ue
nc
y

Figure 3.11 – Frequency distribution of the HDs between generated stream with
different keys.

3.4.4 Key sensitivity

Evaluation of the system robustness against key sensitivity attacks can be assessed
using many existing tools such as Unified Average Changing Intensity (UACI) and Number

56

3.4. Results and discussion

of Pixels Change Rate (NPCR) [52, 53]. To compute these metrics, one random key is
generated K1 and a key with only one bit difference K2 is created. The two keys are then
used to generate a 8-bit-word stream S1 using K1, and S2 using K2 of length L. The UACI
and the NPCR are defined as follows:

UACI(S1, S2) = 1
L 28

L∑
k=1
|S1(i)− S2(i)| 100%, (3.12)

NPCR(S1, S2) = 1
L

L∑
k=1

DS1,S2(k) 100%, (3.13)

with:

DS1,S2(k) =

0, if S1(k) = S2(k)

1, if S1(k) 6= S2(k)
. (3.14)

The optimal NPCR and UACI values of a secure encryption scheme against key sensitivity
attacks are 99.58% and 33.46%, respectively [54].

To ensure the uniqueness of the streams generated by similar keys, correlation coeffi-
cients, HDs, UACIs and NPCR between a 125000-byte long stream SKi

generated by key
Ki and the corresponding stream SKij

generated by the key Ki with the jth bit modified,
noted Kij.

Figure 3.12 depicts the average correlation coefficient function of the position of the
modified bit of the key and the frequency distribution of the coefficients. Like in the
previous section, the binary sequences are interpreted with 1 → 1 and 0 → −1 and
the expected value is 0. The overall averages around −3.94 × 10−6 and with a standard
deviation at 1.02× 10−4.

Figure 3.13 illustrates the average HDs function of the position of the modified bit of
the key and the frequency distribution of the HDs. The average is close(−1.96× 10−6) to
the expected value(1

2) with a standard deviation of 5.13× 10−5.

Figure 3.14 and Figure 3.15 represent the average UACIs and NPCRs function of the
position of the modified bit of the key and its frequency distribution. The UACIs average
at the optimal value of 33.46% with a standard deviation of 6.2× 10−3. However, NPCRs
average with a small offset of 0.03% and standard deviation of 1.8× 10−3.

The computed correlation coefficients, HDs, UACIs and NPCR show that similar secret
keys produce completely different and uncorrelated streams.

57

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

0 50 100 150 200 250 300 350 400 450
−4
−3
−2
−1

0
1
2
3
4
·10−3

index of modified bit

C
or
re
la
tio

n
co
effi

ci
en
ts

average
median
min
max

(a)

−4 −2 0 2 4
·10−3

0

500

1,000

1,500

Correlation coefficients

Fr
eq
ue

nc
y

(b)

Figure 3.12 – (a) Average correlation coefficients and (b) frequency distribution of
correlation coefficients between stream SKi

and SKij
.

3.4.5 Confusion Analysis

This section aims to evaluate the capacity of the stream cipher to encrypt a plain text.
For the following tests, a set of 100 randomly generated key noted Ki with i being the
index of the key, a data set of 48 512x512 grayscale images, noted Ij where j is the index
of the image, are used to generate for each image Ij a cipher text noted CKi

(Ij), using
the keys Ki. The entropy H(CKi

(Ij)), the redundancy R(CKi
(Ij)) = 8 − H(CKi

(Ij)),
horizontal ρh(CKi

(Ij)) and vertical ρv(CKi
(Ij)) correlation coefficient are computed on

the ciphered images. The horizontal correlation coefficient of an image I of width W and
height H is computed as follows:

ρh(I) = cov(Xh, Yh)
σXh

σYh

,

where Xh = [I(0, 0), ..., I(W, 0), I(0, 1), ..., I(W − 1, H)],

and Yh = [I(1, 0), ..., I(W, 0), I(0, 1), ..., I(W,H)].

(3.15)

The vertical correlation coefficient of an image I of width W and height H is computed
as follows:

ρv(I) = cov(Xv, Yv)
σXv σYv

,

where Xv = [I(0, 0), ..., I(0, H), I(1, 0), ..., I(W,H − 1)],

and Yv = [I(0, 1), ..., I(0, H), I(1, 0), ..., I(W,H)].

(3.16)

58

3.4. Results and discussion

0 50 100 150 200 250 300 350 400 4500.498

0.499

0.5

0.501

0.502

index of modified bit

H
am

m
in
g
di
st
an

ce

average
median
min
max

(a)

0.5 0.5 0.5 0.5 0.5
0

500

1,000

1,500

Hamming Distance

Fr
eq
ue
nc
y

(b)

Figure 3.13 – (a) Average HDs and (b) frequency distribution of HDs between stream
SKi

and SKij
.

The redundancy of the ciphered images illustrated in Figure 3.16 shows an average of
8.78× 10−5 and a standard deviation of 6.63× 10−7.

Figure 3.17 and Figure 3.18 shows the average horizontal and the vertical correlation
coefficients function of the images and its frequency distribution. The correlation coeffi-
cients average at 1.22 × 10−4 with a standard deviation of 1.38 × 10−4 and 2.55 × 10−5

with a standard deviation of 1.57× 10−4 respectively.

3.4.6 Time performance

Time measurements are done on an Intel Core i7-7700 Central Processing Unit (CPU)
@3.60GHz. The test environment is set as follows:

— CPU frequencies are fixed at 3.60 GHz.

— Hyper-Threading is disabled.

— Pre-fetching is disabled.

— Process is assigned to a core using taskset command.

The function gettimeofday() is used to measure the time elapsed between the beginning
and the end of the encryption. The message to encrypt is 125000 bytes long.

The metric used in this chapter is defined as follows.

NCpB = F × t
M ×K

(3.17)

59

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

0 50 100 150 200 250 300 350 400 45033.2

33.3

33.4

33.5

33.6

33.7

33.8

index of modified bit

U
A
C
I

average
median
min
max

(a)

33.1 33.2 33.3 33.4 33.5 33.6 33.7
0

500

1,000

1,500

UACI

Fr
eq
ue
nc
y

(b)

Figure 3.14 – (a) Average UACIs and (b) frequency distribution of UACIs between
stream SKi

and SKij
.

0 50 100 150 200 250 300 350 400 45099.54

99.56

99.58

99.6

99.62

99.64

99.66

99.68

index of modified bit

N
PC

R

average
median
min
max

(a)

99.5499.5699.5899.699.6299.6499.6699.68
0

500

1,000

1,500

NPCR

Fr
eq
ue
nc
y

(b)

Figure 3.15 – (a) Average NPCRs and (b) frequency distribution of NPCRs between
stream SKi

and SKij
.

where t is the time measured, K is the number of keys used, M is the size, in bytes, of
the message and F is the frequency of the CPU. In this chapter:

— F = 3.60 GHz.

— M = 125000 Bytes.

— K = 100 Keys.

Table 3.6 presents timing performance for different implementations of our cipher and
some standard encryption methods. As shown in Table 3.6, the proposed LWCB PCNG
is two times slower than in AES-CounTeR (CTR). HC-128 and Rabbit present better

60

3.5. Conclusion

0 10 20 30 400.6

0.7

0.8

0.9

1

1.1

1.2
·10−4

index of image

R
ed
un

da
nc
y

average
median
min
max

(a)

0.7 0.8 0.9 1 1.1 1.2
·10−4

0

100

200

300

Redundancy

Fr
eq
ue
nc
y

(b)

Figure 3.16 – (a) Average redundancy and (b) frequency distribution of ciphered images
CKi

(Ij).

performance, however, these algorithms manifest some weaknesses against some attacks
such as injection and side-channel attacks mentioned in [45].

Table 3.6 – Timing of the different cipher versions compared to standard ciphers.

Cipher NCpB
Taha [1] 22.59

LWCB-SC 45.04
HC-128 [5] 8.59
Rabbit [3] 5.27
AES CTR 24.38

3.5 Conclusion

This chapter presents a method of attack using SCA on the stream cipher proposed
by Taha [1]. By understanding this method of attack, a new PCNG and an associated
stream cipher is proposed. This PCNG contains design modifications to counter some of
the attacks, and classic countermeasures, like masking are applied on some part of the
design.

Then the security against statistical attacks of the new design is checked using several
statistical tests like the NIST STS, correlation, histogram analysis, key sensitivity and
confusion analysis. A measurement of the time performance is also proposed. However

61

Chapter 3 – Enhanced Software Implementation of a Chaos-Based Stream Cipher

0 10 20 30 40
−8

−6

−4

−2

0

2

4

6
·10−3

index of image

H
or
iz
on

ta
lC

or
re
la
tio

n
C
oe
ffi
ci
en
ts

average
median
min
max

(a)

−6 −4 −2 0 2 4 6 8
·10−3

0

100

200

300

Horizontal Correlation
Coefficients

Fr
eq
ue
nc
y

(b)

Figure 3.17 – (a) Average horizontal correlation coefficients and (b) frequency
distribution of ciphered images CKi

(Ij).

0 10 20 30 40
−8

−6

−4

−2

0

2

4

6
·10−3

index of image

Ve
rt
ic
al

C
or
re
la
tio

n
C
oe
ffi
ci
en
ts

average
median
min
max

(a)

−6 −4 −2 0 2 4 6
·10−3

0

100

200

300

Vertical Correlation
Coefficients

Fr
eq
ue
nc
y

(b)

Figure 3.18 – (a) Average vertical correlation coefficients and (b) frequency distribution
of ciphered images CKi

(Ij).

62

3.5. Conclusion

the time measurements are not better than the state-of-the-art encryption schemes due
to the relatively high complexity added by the 4D map for example.

A hardware implementation of the proposed encryption scheme should be proposed
to study the impact of the modifications on SCA.

63

CHAPTER 4

Hardware Implementation of the proposed Lightweight
Chaos-Based Stream Cipher

In the literature, multiple ciphers are defined and implemented in hardware devices.
We especially studied, for its low-latency, the stream ciphers in which the ciphertext is
obtained by performing an eXclusive OR (XOR) between the plaintext and the output
of a random generator. For example, Advanced Encryption Standard (AES), the state-of-
the-art encryption standard, is available in multiple versions [55, 56], each optimizing a
trade-off between surface and speed. Moreover, some ciphers, like Trivium [6], are designed
to be hardware friendly and minimize logic resources. Some ciphers, based on chaos theory,
have also hardware implementations [57, 58]. Those ciphers usually require a high logic
resources to digitize chaotic systems.

Based on works in Chapter 3, an implementation of the LightWeight Chaos-Based
(LWCB) Stream Cipher (SC) on Field-Programmable Gate Array (FPGA) hardware plat-
form is proposed in this chapter. The system includes some countermeasures against Side-
Channel Attack (SCA) [59], such as Correlation Power Analysis (CPA) and Differential
Power Analysis (DPA). This effectiveness of theses countermeasures is assessed. The pro-
posed hardware implementation achieves a throughput of 673.68 Mbps at an operating
frequency of 21.05 MHz. A pipelined implementation operating at 80 MHz and achieving
a throughput of 2 560 Mbps is also proposed.

65

Chapter 4 – Hardware Implementation of the proposed Lightweight Chaos-Based Stream Cipher

The chapter is organized as follows. The existing stream ciphers and their implemen-
tation are first presented in Section 4.1. Section 4.2 investigates the design and details
of the hardware implementation of the chaos-based stream cipher such as the implemen-
tation of the chaotic maps, and the masking of the coupling matrix and the recursive
cells. The performance of the proposed system is assessed in Section 4.3 in terms of both
throughput and used logic resources. Moreover, the methodology proposed by Schneider
and Moradi [60] to test the resilience of a system against SCAs is used on the proposed
implementation. Finally, Section 4.4 concludes this chapter.

4.1 Related work

There are several hardware solutions of the state-of-the-art stream ciphers. This section
gives a brief review of a few existing implementations.

AES [2] developed in 2001 is the most widely used system. It can be considered as a
stream cipher only in its CounTeR (CTR) mode. It takes 128 bits as input and can use a
128, 192 or 256-bit key. Its round function consists of three layers including key addition
layer, byte substitution layer called S-Box and diffusion layer. Selected AES hardware
implementations [55, 56] have two completely different approaches, [55] try to achieve the
highest throughput while [56] aims to minimize the hardware resource usage.

The Rabbit stream cipher [61] is one of the most effective algorithms of the eSTREAM
Project. This project was launched in 2004 to create new stream ciphers for dedicated
designs. The cipher is not based on S-Boxes but on 8-32 bits state variables and counters.
The implementation of Rabbit proposed in [62] on a Virtex V achieves the throughput of
9 160 Mbps at 71.582 MHz operating frequency.

Salsa20 [63] is based on a hash function. This latter is implemented with simple oper-
ations as additions XOR and rotation. This cipher is very fast but presents some security
weaknesses. Indeed, several attacks have been concluded against it. Sugier [64] proposed
an implementation of Salsa20 on Spartan 3 and Spartan 6 FPGAs. The Spartan 3 imple-
mentation operating at 19.4 MHz to provide a throughput of 1 104 Mbps. The Spartan 6
implementation has a throughput of 2 519 Mbps and is operating at 48 MHz.

Trivium [6] is also a cipher from the eSTREAM Project. It is particularly well suited
for applications requiring a flexible hardware implementation. The 288-bits internal state
is stored in three shift registers which are the heart of the cipher and can be viewed as a
circular register. Gaj et al. [65] and in their more recent work [66] provided a comparison of

66

4.2. Hardware-friendly Architecture of the proposed Pseudo-Chaotic Number Generator
(PCNG)

multiple hardware-oriented eSTREAM candidates including Trivium. The two proposed
implementations were optimized to maximize the ratio performance per slices. Gaj et
al. [65] achieves a throughput of 12 160 Mbps and an operating frequency of 190 MHz.
In [66], their implementation achieves a throughput of 13 504 Mbps at an operating
frequency of 211 MHz.

Several chaotic systems have been developed and used for designing chaotic hardware
key generation for secure cryptosystems. Lorenz’s[57] and Lü’s[58] systems are the most
famous ones. A chaotic system can be considered as discrete or continuous. The previously
cited systems are continuous and defined by a differential equation. In [57], a cipher to
encrypt images is developed and implemented on a FPGA platform. It uses a key generator
based on the Lorenz’s chaotic system. This implementation achieves a throughput of 124
Mbps at an operating frequency of 15.598 MHz on a Virtex II FPGA. Another example of
such system is presented in [58] where a Lü’s-system-based chaotic key generator is used.
This system is also implemented of a Virtex II and achieves a throughput of 182.9 Mbps
with an operating frequency of 22.868 MHz.

4.2 Hardware-friendly Architecture of the proposed
Pseudo-Chaotic Number Generator (PCNG)

The block diagram of the proposed generator is depicted in Figure 3.2. We have defined
a hardware high-level module that instantiates the two cells of the generator, the weak
coupling and the key stream’s output. The generator module takes as input a secret key
and an Initial Vector (IV).

The block diagrams of the two cells are delimited in orange in Figure 3.2. Both cells
are composed of a recursive cell illustrated in green, a discrete map and Linear Feedback
Shift Registers (LFSRs). The next two sections present the hardware implementations of
the chaotic maps: 4D and PieceWise Linear Chaotic (PWLC).

4.2.1 4D map

The 4D map is a discrete version of the Chebyshev polynomial of degree 4 and is
defined in Chapter 3. Taking advantage of the multiplication and division by power of
2, Equation (3.8) is expressed in Equation (4.1) to minimize the logic resources of the
hardware implementation.

67

Chapter 4 – Hardware Implementation of the proposed Lightweight Chaos-Based Stream Cipher

Figure 4.1 is the simplified Register-Transfer Level (RTL) representation of the 4D map
implementation. This implementation of Equation (4.1) requires only two multipliers of 32
and 64-bit inputs, respectively and three adders of 64, 64 and 128 bits inputs, respectively.
The left and right shifting are implemented using routing and are not adding any extra
resources.

T4D(X) = 1
23N−6

[
(X − 2N−1)4 − 22N−2 (X − 2N−1)2

]
mod 2N

= 1
23N−6 (Y 2 − 22N−2 Y) mod 2N

= [Y × Y − Y << (2N − 2)] >> (3N − 6) mod 2N ,

with Y = (X − 2N−1)2 = X ×X + (1 << 2N − 2)− (X << N).

(4.1)

×

−

<<

+ ×

−

<<

>>X

N

22N−2

Y

2N − 2

3N − 6
4D(X)

Figure 4.1 – Simplified RTL representation of the 4D map implementation. The position
of the pipeline register is represented in red and the critical path in green.

68

4.2. Hardware-friendly Architecture of the proposed Pseudo-Chaotic Number Generator
(PCNG)

4.2.2 PWLC map

The PWLC map defined by Equation (3.2) can be written as follows:

PLWCmap(X,PP) =



C1 × F1(X) if 0 < X < PP ,

C2 × F2(X) if PP < X < 2N−1,

C2 × F3(X) if 2N−1 < X < 2N − PP ,

C1 × F4(X) if 2N − PP < X < 2N ,

F5(X) otherwise,

where ,

C1 = 2N

PP
, C2 = 2N

2N−1−PP
,

F1(X) = X, F2(X) = X − PP ,

F3(X) = 2N − PP −X, F4(X) = 2N −X,

F5(X) = 2N − 1,

(4.2)

and X is the input of the PWLC map and PP is the parameter of the PWLC map defined
in the secret key.

Figure 4.2 shows a simplified RTL representation of the proposed solution. In this
implementation, the ratios C1 and C2 are precomputed by the key generator to avoid
the implementation of a resource-intensive divider. Then, to use the minimum number of
multipliers, without reducing the throughput of the generator, the inputs of the multiplier
are selected by multiplexers to perform the correct computation depending on the value
of X. The PWLC map requires only one multiplier with 84-bit inputs.

4.2.3 4-stage pipeline implementation

The system is completely recursive, the previous sample is needed to compute next.
Consequently, the proposed implementation cannot take advantage of any temporal par-
allelism. However, we investigated the possibility of adding pipeline stages by modifying
the design.

Figure 4.3 presents, in green, the critical path and where the stages of the pipeline are
added to the system in red. In this system, the bottleneck is the 64-bit-input multiplier
used inside the 4D map for squaring Y . Therefore, a pipeline stage is nearly dedicated to

69

Chapter 4 – Hardware Implementation of the proposed Lightweight Chaos-Based Stream Cipher

×
F1(X)

0
F2(X)

1

F3(X)
0

F4(X)
1

F5(X)
0

C1 0
C2 1

PWLC(X)

0

1

1

Figure 4.2 – Simplified RTL representation of the PWLC map implementation
composed of 1 multiplier and 5 multiplexers. The position of the pipeline register is
represented in red.

computing Y 2 and is the reference to the other stages resulting in only four stages of the
pipeline:

1. compute recursive cells,
2. compute the first part of the chaotic maps:

— compute Y for the 4D map,
— compute and select the inputs of the multiplier for the PWLC map,

3. compute the end of the cells,
4. compute the last LFSR, the output function and the coupling matrix.

At initialization, the generator uses an identical key and 4 different IVs. Once the pipeline
stages are filled, the recursive cells start updating the samples. Therefore, the inputs of
the key of the maps is defined as follows:

XinMP (n) =


IVMP +∑3

i=1KiMP XMP (−i) if n = {0; 1; 2; 3}∑3
i=1KiMP XMP (n− i− 3) otherwise

, (4.3)

where MP is set to 4D for the 4D map and P for the PWLC map. XinMP (n) is the
input of the map MP at iteration n, KiMP are the coefficients of the MP map filter and
XMP (n− i) are the delayed sample of the filter.

The output of the PCNG being changed, a statistical analysis of it must be performed.

70

4.2. Hardware-friendly Architecture of the proposed Pseudo-Chaotic Number Generator
(PCNG)

[B]

Recursive Cell
4D maskXc4D

Recursive Cell
PWLC mask

XcP

4D Map

LFSR(Q4D, ∆4D) LFSR(Q32, 1)

Xin4D

PWLC Map(PP)

LFSR(QP , ∆P)

XinP

+
X4D

XP

n > tr

XG(n)

Figure 4.3 – Block diagram of the pipeline LWCB PCNG. In red are represented the
different pipeline stages and the critical path in green.

4.2.4 A countermeasure against SCA

As mentioned in the previous chapter, to protect the generator against CPA and DPA
attacks [59], masking operations are added to the recursive cells and the coupling matrix.
The aim of masking operations is to randomize intermediate results for the same couple
(secret key, IV).

To preform masking in a hardware implementation, a source of randomness needs to be
added. This less secured Pseudo-Random Number Generator (PRNG) will be used to mask
intermediary results. In our case, XOR shift [67] is chosen and defined in Algorithm 4.1.

Algorithm 4.1: Implementation of XOR shift PCNG.
x← x⊕ (x << 16 mod 232)
x← x⊕ (x << 5 mod 232)
x← x⊕ (x << 1 mod 232)
t← x
x← y
y ← z
z ← t⊕ x⊕ y
return z

where x, y, z are 32-bit words, initialized with 96-bit IV.

To reverse the mask, the random value must go through the same computation step as
the masked value. Then, in our case, the masking requires to add two more recursive cells
and one coupling matrix. The hardware resources used by the masked implementation

71

Chapter 4 – Hardware Implementation of the proposed Lightweight Chaos-Based Stream Cipher

increase compared to the initial version, however, the throughput will slightly change.
Figure 4.4 illustrates how the masking operation is added to the implementation.

[B]

[B]
mask

Recursive Cell
4D

Recursive Cell
4D mask

Xc4D

Recursive Cell
PWLC

Recursive Cell
PWLC mask

XcP

−

−

Xin4D

XinP

+

+

PRNG
4D

PRNG
PWLC

X4D

XP

Xm4D

XmP

mask4D

maskP

Figure 4.4 – Block diagram of the masking operation on the LWCB PCNG. In red are
represented the block added to perform the masking.

4.3 Results and Discussion

In this section, an internal module of the cipher is implemented and tested. Some
comparisons with the state-of-the-art are also provided. To evaluate the performance
in terms of resource usage and speed, the Xilinx Vivado 2018.2 set of tools is used.
All measurements are performed after the placement/routing step on a Kintex 7. The
hardware resource usage is expressed with Block RAMs (BRAMs) and slices which is
usually a group of Lookup Tables (LUTs), Flip-Flops (FFs), registers and Digital Signal
Processing (DSP) blocks. A LUT is a block that performs a combinatorial function. A
DSP block is block specialized in computing Multiply–ACcumulate (MAC) operations. In
these experiments, the bit depth N is set to 32 bits.

72

4.3. Results and Discussion

4.3.1 Implementation of the LWCB SC

Table 4.1 gives the hardware resources used for the PCNG. It uses in total 2 737 LUTs,
665 registers and 96 DSP blocks. Most of the resources are used by the map cells with 938
LUTs, 189 registers and 33 DSP blocks for the PWLC cell and 973 LUTs, 180 registers
and 44 DSP blocks for the 4D one.

Table 4.1 – Hardware resource usage of the proposed masked implementation without
pipeline

Component Slices LUTs Registers DSP Blocks

LWCB SC 797 2737 665 97
Matrix 49 160 2 10
4D Cell 303 973 180 44

4D Map 93 340 − 20
4D perturbation LFSR 39 81 48 −
4D Recurssive Cell 96 270 67 12
4D Recurssive Cell mask 91 283 65 12

4D LFSR 24 41 32 −
PWLC Cell 306 938 189 33

PWLC Map 45 102 − 9
PWLC perturbation LFSR 48 88 57 −
PWLC Recurssive Cell 186 542 67 12
PWLC Recurssive Cell mask 84 239 65 12

4D mask random 37 176 97 0
PWLC mask random 35 177 97 0
Matrix mask 51 162 2 10

The proposed implementation produces one sample of the PCNG at each clock cycle
and can operate at 21.05 MHz with a throughput of 673.68 Mbps.

4.3.2 Comparison with other existing stream ciphers

Table 4.2 presents a comparison with existing implementations of the ciphers presented
in Section 4.1 and the different versions of our stream cipher.

It is difficult to compare the ratio speed/surface on different implementations using
different platforms generated using different tools. To have a fair comparison between all
implementations, the best would be to implement and optimize each cipher on the same
platform. However, this is not possible in the limited time of a thesis.

This section proposes a comparison taking this problematic into account.
The LWCB SC implementation with masking used nearly twice the hardware resources

of the implementation without masking. However, the masking operation is not tanking

73

Chapter 4 – Hardware Implementation of the proposed Lightweight Chaos-Based Stream Cipher

Table 4.2 – Speed performance and hardware resources usage comparison of several
systems

Cipher Device Slices BRAM LUTs FF Registers DSP
Blocks

Max Freq
(MHz)

Throughput
(Mbps)

LWCB SC Kintex 7 4411 − 1 489 − 337 63 22.22 711.11
LWCB SC - 4 stages
of pipeline Kintex 7 6111 − 1 704 − 1 249 72 80 2 560

LWCB SC - Recursive
cells masked Kintex 7 7911 − 2 611 − 663 87 21.74 695.65

LWCB SC - Coupling
matrix and Recursive
cells masked

Kintex 7 7971 − 2 737 − 665 97 21.05 673.68

Lorenz’s chaotic system [57] Virtex II 1 9262 − 2 718 7912 − 40 15.598 124
Lü’s chaotic system [58] Virtex II 1 1152 − 1 926 8852 − 40 22.868 182.9
AES [55] Virtex V − − 9 276 1613 255 − 644.33 82 470

Spartan 6 − − 9 375 1466 256 − 886.64 113 500
AES [56] Spartan 2 2224 3 − − − − 60 166
Rabbit [62] Virtex V 5683 − − − − 24 71.582 9 160
Trivium [66] Spartan 3 3445 − − − − − 211 13 504
Trivium [65] Spartan 3 3885 − − − − − 190 12 160
Salsa20 [64] Spartan 3 2 0365 − 3 374 − 1 286 − 19.4 1014

Spartan 6 8186 − 2 955 − 1 317 − 48 2519

1 Kintex 7: 1 Slice = 4 LUTs = 8 FFs.
2 Virtex II: 1 Slice = 2 LUTs = 2 FFs.
3 Virtex V: 1 Slice = 4 LUTs = 4 FFs.

4 Spartan 2: 1 Slice = 2 LUTs = 2 FFs.
5 Spartan 3: 1 Slice = 2 LUTs = 2 FFs.
6 Spartan 6: 1 Slice = 8 LUTs = 16 FFs.

the throughput much, going from 711.11 Mbps to 673.68 Mbps. The proposed pipelined
implementation can achieve a throughput of 2 560 Mbps at an operating frequency of 80
MHz and a latency of 4 clock cycle.

Our stream cipher, easily challenges other chaos-based ciphers in terms of hardware
resources usage and throughput. However, more conventional ciphers tend to use fewer
hardware resources to achieve the same throughput.

It can be noted that the fastest cipher is AES [55]. The AES implementations presented
in [55, 56] operate at 644.33 MHz and 886.64 MHz and the throughput is equal to 82 470
Mbps and 113 500 Mbps, respectively. Even though, Trivium [66, 65] reaches a high
frequency the throughput is not better than other slow frequency ciphers. For example,
Salsa20 [64] implementations present a throughput of 1 014 Mbps and 2 519 Mbps with
an operating frequency of 19 MHz and 48 MHz, respectively. Rabbit [62] implementation
reaches a throughput of 9 160 Mbps with an operating frequency of 71.582 MHz. These
frequencies are the same as those achieved by the implementations of ciphers based on
chaotic key generators [57, 58]. However, these ciphers are still, in terms of throughput

74

4.3. Results and Discussion

less efficient than all the other implementations, as they have a 124 Mbps and 182.9 Mbps
throughput.

A correlation between the speed performance and the hardware resource usage can
be noted. In fact, the implementation of AES [55] which is the fastest is also the one
using the most resources. This is also the case with the implementations of Rabbit [62]
and Salsa20 [64], which use approximately 3 000 LUTs for a quite important throughput.
Moreover, the implementation using fewer resources is the compact implementation of
AES [56], it uses 444 LUTs to achieve a throughput of 166 Mbps. With less than twice
the size, Trivium’s [66, 65] implementations, with only 688 and 756 used LUTs, achieve
a throughput of 13 505 Mbps and 12 160 Mbps.

For the implementations of the ciphers based on a chaotic generator [57, 58], this
relation is not satisfied. Indeed, they use 2 718 and 1 926 LUTs, it achieves the same than
Rabbit and Salsa20 implementations which have better speed performance.

4.3.3 Side-Channel Attack (SCA) analysis on LightWeight
Chaos-Based (LWCB) stream cipher hardware implemen-
tation

In this section, a leakage assessment of the proposed hardware implementation is per-
formed using the methodology proposed by Schneider and Moradi [60, 68]. The methodol-
ogy is based on the Welsh’s t-test used. A potential leakage occurs with the implementa-
tion when the result of a non-specific t-test exceeds 4.5. To perform a non-specific t-test,
two sets of traces need to be generated, one with a fixed IV and one with a random IVs.
This complementary short study was conducted in collaboration with Noafumi Homma
from the Research Institute of Electrical Communication at Tohoku University.

To perform the power measurement, the SAKURA-X/SASEBO-GIII [69] evaluation
board is used. This evaluation board, developed within the projects SASEBO and its
successor SAKURA, is equipped with two different FPGAs, a Kintex 7 where the target
implementation is implemented and a Spartan 6 handling the communication between
the target implementation and the host PC. These two FPGAs are powered using two
isolated power circuits allowing relatively clean power measurements.

Figure 4.5 presents the setup we used. The evaluation board is connected to a 2-channel
numerical oscilloscope. The first channel is used to detect the trigger signal indicating the
start of the encryption from the target implementation. The second one is used to mea-

75

Chapter 4 – Hardware Implementation of the proposed Lightweight Chaos-Based Stream Cipher

Host PC

2-Channel
Oscillosope

Control:
Spartan 6

Target:
Kintex 7

K

IV
P

C

K IV P C

Trigger

Power Comsuption

Trace Trigger

Sakura-X
Figure 4.5 – Experimental setup for SCA measurement. K is the secret key, P is the
plaintext and C is the ciphertext.

sure the power consumption of the Kintex 7, i.e. the target implementation, using one
of the measurement points provided by the SAKURA-X board. This power consumption
is usually amplified to improve the measurement quality. The host PC is connected to
the evaluation board through Spartan 6 FPGA to handle the inputs of the target imple-
mentation and is also connected to the oscilloscope through the serial port to save the
traces.

The host PC will execute the following steps to measure one trace for the t-test:

1. set the target with a given key and a fixed plaintext P ,

2. set the target in a completely random state by running the target with a random
IV for a random time, for example.

3. measure with a fixed IV:

(a) set the IV,

(b) wait for the trigger signal,

(c) recover the trace form the oscilloscope,

(d) save the trace;

4. set the target in a random state,

5. measure with a random IV.

76

4.4. Conclusion

In this section, the t-test is performed on 1 000 000 traces with 1 000 points per trace.
T-tests are performed on three different configurations. The first configuration is the
system without masking, the second is the system with only the recursive cells masked
and finally the coupling matrix and the recursive cells are masked. Then, a zoom-in
proposed by studying only a system with the coupling matrix and the recursive cells in
the same previous configurations.

Figure 4.6 represents the results of non-specific t-tests on the different configurations.
The first two graphs, representing the t-test results without masking, show that the limit
of the null hypothesis (|t| > 4.5) is reached during almost all the execution, meaning
that the proposed implementation without masking is leaking. As shown by third and
fourth graphs, the recursive cell masking has a positive impact on the t-test results. The
amplitude of the t value is divided by 2 thanks to the addition of recursive cell masking.
Then fifth and sixth graphs show the impact of the masking of the coupling matrix. The
impact is less significant than the recursive cell masking. However a slight improvement
can be observed on the last graph.

While the proposed implementation is not passing the t-test, we can observe that
the implemented masking operation is quite effective but still not enough. The masking
operation, as implemented, is still leaking as shown by the last graph of Figure 4.6. A gate-
level implementation of the masking operation might be a good solution to remove at least
first order leakage. However, even with a perfect masking operation, the implementation
still has other problems to assess. The masking operation was performed only on the linear
part of the system and is not protecting the implementation from leaking. A method
of protection against SCAs for chaotic maps should be deeply investigated. From the
observations of Figure 4.6, the leakage of the implementation seems to come from the
chaotic maps. Moreover, the chaotic maps used in ciphers are usually non-linear or partly
linear and are not maskable using common masking operation.

4.4 Conclusion

In this chapter, several implementations of the proposed lightweight chaos-based
stream cipher are presented and compared to state-of-the-art stream-cipher implemen-
tations. The first implementation is the stream cipher described in the previous chapter
without any countermeasures against SCAs. This achieves a throughput of 711.11 Mbps
at an operating frequency of 22.22 MHz using only 441 slices. The second implementation

77

Chapter 4 – Hardware Implementation of the proposed Lightweight Chaos-Based Stream Cipher

0 200 400 600 800 1,000

−200

−100

0

100

200

300

W
ith

ou
tm

as
ki

ng
t

Full system

0 200 400 600 800 1,000

−150

−100

−50

0

50

100

150

Zoom-in on coupling matrix
and recursive cell

0 200 400 600 800 1,000

−150

−100

−50

0

50

100

150

Re
cu

rs
iv

e
ce

ll
m

as
ki

ng
t

0 200 400 600 800 1,000

−40

−20

0

20

40

0 200 400 600 800 1,000

−200

−100

0

100

200

sampleCo
up

lin
g

m
at

rix
an

d
re

cu
rs

iv
e

ce
ll

m
as

ki
ng

t

0 200 400 600 800 1,000

−40

−30

−20

−10

0

10

20

30

sample

Figure 4.6 – Non-specific t-test results for the proposed implementation with and
without masking. The dashed line represents the start of encryption and the red lines
are the limit if the t-test is admissible.

78

4.4. Conclusion

presented is a 4-stage-pipeline version. It operates at 80 MHz achieving a throughput of 2
560 Mbps with 611 slices. Finally, a masked implementation of the first one is proposed.
This implementation slightly degrades the speed performance with a throughput of 673.68
Mbps operating at 21.05 MHz using 797 slices.

Then, the security against SCAs is assessed using the methodology proposed by Schnei-
der and Moradi [60, 68]. The results of the non-specific t-test showed that with and without
masking, the proposed implementations are leaking. A gate-level implementation might
be a solution to the leakage of the coupling matrix and recursive cell masking. This results
also exposed the need for investigating method in order to mask chaotic maps.

79

CHAPTER 5

Selective Encryption of the Versatile Video Coding (VVC) standard

5.1 Introduction

Security and confidentiality of multimedia contents are of prominent importance in
many applications to ensure safe storage and transmission of images and videos. The
straightforward solution to perform secure transmission of a video is to encrypt the whole
video bitstream with a secure encryption protocol such as Advanced Encryption Standard
(AES) [70]. However, this solution when applied to video has several limitations related to
their high computational complexity increasing both the energy footprint and end-to-end
latency. This increase in complexity/latency is mainly caused by the processing complexity
of the encryption algorithm used to cipher the whole video especially when the video is
encoded at high bitrate. Moreover, the deciphering and ciphering processes are required
to perform post-processing operations such as transcoding for network adaptation. This
may harm security since the secret key is shared with untrusted middlebox in the network
to perform splicing, quality monitoring, watermarking and transcoding. The selective
encryption solution has emerged as an effective alternative to perform secure and low
complexity encryption of images and videos. The encryption process is performed in the
compressed-domain where only a set of the most sensitive information is encrypted. This
enables performing both format-compliant and constant bitrate encryption. The format-
compliant property is very important enabling to decode the video bitstream without

81

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

deciphering and thus all post-processing operations can be performed including packaging
and transcoding without requiring access to the secret key used for encryption. Moreover,
this property enables encrypting only some spatial regions in the image identified as
Region Of Interest (ROI) while keeping the rest of the image clear. The constant bitrate
property preserves the encoder coding efficiency. Selective encryption has been widely
investigated for different still image and video coding standards including JPEG [71],
JPEG-2000 [liu2006efficient, 72], Advanced Video Coding (AVC) [73], Scalable Video
Coding (SVC) [74] and more recently High Efficiency Video Coding (HEVC) [75, 76, 77]
and its scalable extension SHVC [44]. Selective encryption of the HEVC standard has been
widely investigated in the literature [78, 79, 80, 81] enabling format-compliant, secure and
low complexity encryption.

The ISO/Moving Picture Experts Group (MPEG) and ITU/Video Coding Experts
Group (VCEG) developed the next generation video coding standard called Versatile
Video Coding (VVC). This latter, released in July 2020, introduces new coding tools
outperforming HEVC by up to 50% in terms of bitrate reduction for a similar visual
quality [82]. To the best of our knowledge, format-compliant and constant bitrate encryp-
tion of VVC has not yet been addressed. Moreover, it is well known from information
theory [83] that enhancing the coding efficiency adds more dependencies in the bitstream
making format-compliant and constant bitrate encryption more challenging.

This chapter investigates a format-compliant and constant bitrate encryption of a
video bitstream encoded with the VVC standard. To meet these two constrains, the
encryption is performed at the level of the Context-Adaptive Binary Arithmetic Coding
(CABAC) engine. We first investigate all possible syntax elements that can be encrypted
in both format-compliant and constant bitrate. A set of VVC syntax elements including
Transform Coefficient (TC) values and signs, chroma prediction candidate, Motion Vector
(MV) differences and signs are encrypted. We propose a new algorithm that determines
the encryptable bins within the TCs. The proposed selective encryption solution has been
extensively assessed under the VVC Common Test Conditionss (CTCs) using three image
and video quality assessment metrics including Peak Signal to Noise Ration (PSNR),
Structural SIMilarity (SSIM) and Video Multimethod Assessment Fusion (VMAF), and
security metrics such as Encryption Qualilty (EQ) [84], histogram analysis, edge detection
and Edge Differential Ratio (EDR) [85]. The proposed solution has also been tested against
brute force attack, Number of Pixels Change Rate (NPCR) and Unified Average Changing
Intensity (UACI) [86]. The encryption space giving the percentage of encrypted bits in the

82

5.2. Related Works

Syntax Elements Binarization

Context Modeling

Selective Encryption

Context Coding

Bypass Coding

Bitstream

Context update

Arithmetic Coding

Figure 5.1 – Overall architecture of the Context-Adaptive Binary Arithmetic Coding
(CABAC) engine in Versatile Video Coding (VVC). The selective encryption block is
illustrated in green

bitstream varies in the range of 15% to 26% for different targeted bitrates. This results
in a very low decryption complexity which remains lower than 6% of the decoding time.

The rest of this chapter is organized as follows. Section 5.2 gives a brief review on
selective encryption solutions proposed for HEVC and then Section 5.3 describes the
entropy coding of syntax elements in VVC. Section 5.4 presents the proposed solution to
encrypt VVC syntax elements in format-compliant and constant bitrate. The performance
of the selective encryption solution is assessed in Section 5.5 in terms of video quality
degradation, resilience to different attacks and complexity overhead. Finally, Section 5.6
concludes this chapter.

5.2 Related Works

In this section, we review the existing solutions for High Efficiency Video Coding
(HEVC) standard encryption. The first format-compliant encryption solution of HEVC
was proposed by Shahid et al. [75]. In this solution, Advanced Encryption Standard (AES)
was used in Cipher FeedBack (CFB) mode to perform selective encryption of the selected
syntax elements at the CABAC stage. This work considered an earlier version of the
HEVC standard and some encryptable syntax elements of HEVC were not identified in
this solution. Farajallah et al. [76] proposed a selective encryption solution to cipher the
Region Of Interest (ROI) in HEVC standard. This solution relies on the tile concept intro-
duced in HEVC enabling a frame partitioning into independent rectangular regions. The
encryption process encrypts only tiles within the ROI and keeps the background clear. The
tiles within the ROI are encrypted in format-compliant and constant bitrate by ciphering
only a set of sensitive syntax elements. Moreover, to prevent the encryption propagation

83

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

outside the ROI, Motion Vectors (MVs) of the background tiles are constrained to only
refer to background area (no ROI) in the reference frames. Boyadjis et al. [77] presented
a selective encryption algorithm in order to increase the visual distortion. The presented
research moves selective encryption from bypass mode to regular mode, which negatively
affects the bitrate. Luma intra prediction modes are selected to be encrypted in addition
to the residuals. The presented solution enables more scrambling performance while the
compression efficiency has changed leading to a slight bitrate increase. Hamidouche et
al. [44] investigated a selective encryption of the final version of HEVC. The authors have
proposed a real time selective encryption solution for the scalable extension of HEVC
named Scalable HEVC (SHVC). The presented solution has analyzed all SHVC syntax
elements in order to perform format-compliant, constant bitrate and low latency encryp-
tion while preserving all SHVC features. The presented results showed the high security
level of the selective encryption solution with a low complexity overhead below 6% of
the decoder complexity. Van Wallendael et al. [78] presented a format-compliant selective
encryption solution for HEVC. They selected a set of syntax elements from HEVC that
preserve the format compliance. Several techniques to selectively encrypt the video are
investigated. The obtained result showed that most of the selected syntax elements have
a low effect on the rate-distortion performance while having a broad range in scrambling
performance. Memos et al. [79] presented an algorithm that encrypts only Intra frame (I
frame) frames of the HEVC bitstream based on the idea that Predicted frame (P frame)
and Bidirectional predicted frame (B frame) frames are useless without I frame frame.
Moreover, encrypting only I frame frames will decrease the encryption time by 50% and
propagates the encryption to other frames. The presented algorithm merged two algo-
rithms proposed in [87, 88], while introducing some modifications to the selection and
management of the encrypted data to be amendable to HEVC. This work relies on the
AES algorithm for secure transmission of HEVC bitstream with 256 bits as key length. It
collects sign bits of each transform coefficient of I frame frames until the collected signs
reached 256 bits. However, it is not clear in the proposed algorithm whether the collected
bits are used as key value or as state value since AES-256 state size is 128 and not 256.
The proposed algorithm performs conventional AES encryption on the collected bits and
swap the original sign bits by the encrypted ones. Finally, the Shamir’s Secret Sharing
(SSS) input parameters are collected from the non-zero Alternating Current (AC) coeffi-
cients of each transform block within the I frame frame. It is clear from the description
that the proposed algorithm performs partial encryption algorithm. It is also important

84

5.2. Related Works

to note that the proposed solution is not format-compliant, none constant bitrate since it
increases the bitstream size at least by 8%. Long et al. [80] presented a format-compliant
encryption in order to secure HEVC streams in multimedia social networks. The pre-
sented algorithm is tightly integrated with the encoding/decoding processes. The pre-
sented work performs encryption in two steps. First, a stream cipher is used to encrypt
sign of the nonzero Transform Coefficients (TCs), and the first sign bit hiding of TCs.
Second, based on a control factor, only one parameter from merging index, MV predic-
tion index, sign of MV difference and reference frame index is encrypted. The presented
research increases the bitrate, while it is format-compliant solution. Finally, the presented
work was assessed regarding security and complexity which confirms the good security
level and acceptable complexity overhead. Ahmed et al. [81] presented a new solution for
efficient selective encryption based on the chaotic logistic map for HEVC. The presented
solution encrypts the sign bit of the MV differences and the TCs. The encryption process
is performed at the entropy coding stage of the HEVC encoding process. They focused
on achieving a low complexity ciphering targeting real time applications, constant bitrate
and format-compliant encryption. The presented work was compared with the solution
proposed in [78] and the obtained results confirm the suitability for real time applica-
tions with an intermediate level of security. Peng et al. [89] presented a tunable selective
encryption scheme for HEVC based on chroma Intra Prediction Mode (IPM) and TCs
scrambling. The presented work has two security levels. The first one encrypts HEVC syn-
tax elements including Luma IPMs, Chroma IPMs, the suffix part of the TCs, sign and
value of the MV differences, merge index, advanced MV prediction, reference frame index,
and Sample-Adaptive Offset (SAO) filter parameters. The second security level relies on
edge extraction of each transform block. The transform block coefficients are scrambled
to increase the security level only when the current transform block contains edges. Fi-
nally, the AES is used in CounTeR (CTR) mode in order to generate the pseudo-random
number sequences. These sequences are used to encrypt all previously mentioned param-
eters with a simple eXclusive OR (XOR) operation. Xu [90] proposed to perform data
hiding inside the selected encrypted bitstream of HEVC. The secret message is hidden
using a Quantized Transform Coefficient (QTC) modification technique. It only changes
bits value based on the data hiding without changing the data size in bypass coding,
which confirms that the obtained solution is constant bitrate and format-compliant. Since
the used operation is a XOR, the extraction process of the hiding data can be achieved
on both encrypted as well as original videos. Obtained results confirm the resilience of

85

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

Pass 1

sig_coeff_flag

abs_level_gt1_flag

abs_level_parity_flag

abs_level_gt2_flag

Pass 2-1 abs_remainder

Pass 2-2 dec_abs_level

Pass 3 coeff_sign_flag

All Reg Bins used
context coding
bypass coding

Figure 5.2 – Binarization of the Transform Coefficients (TCs) of a 4×4 sub-block in TC
mode JVET-S2002 [91].

the presented work against replacement attacks. Moreover, the degradation on the video
quality introduced by data hiding is negligible. However, the presented algorithm was
not evaluated regarding important general video attacks such as Unified Average Chang-
ing Intensity (UACI), Number of Pixels Change Rate (NPCR), Edge Differential Ratio
(EDR), Encryption Qualilty (EQ), histogram analysis and key sensitivity attacks.

5.3 CABAC engine in VVC

The CABAC engine defined in VVC is similar to HEVC consisting of three main
functions: binarization, context modeling and arithmetic coding [92]. The overall CABAC
architecture is illustrated in Fig. 5.1. First, the binarization step converts syntax elements
to binary symbols (bins). Second, the context modeling updates the probabilities of bins,
and finally the arithmetic coding compresses the bins into bits according to the estimated
probabilities.

5.3.1 Binarization methods

Six binarization methods are used in VVC, namely Unary (U), Truncated Unary (TU),
Fixed Length (FL), Truncated Binary (TB), Truncated Rice Code with context p (TRp)
and Exp-Golomb k-th order code (EGk). The U code represents an unsigned integer B
with a binstring of length B+1 composed of B 1-bins followed by one 0-bin. The TU code
is defined with the largest possible value of the syntax element cMax (0 ≤ B ≤ cMax).
When the syntax element value B < cMax, the TU is equivalent to U code, otherwise B

86

5.3. CABAC engine in VVC

is represented by a binstring of cMax 1-bins. The FL code represents a syntax element
B with its binary representation of length dlog2(cMax + 1)e with dxe is smallest integer
greater than or equal to x. The TB code is similar to the FL code, except when the
cMax + 1 value is not a power of 2. In this case, let k be k = blog2(cMax + 1)c (with
bxc is largest integer less than or equal to x). The first u = 2k+1 − cMax elements are
coded with a FL code of length k. The remaining cMax+ 1− u symbols are offseted by
u and coded by k + 1 bins. The TRp code is a concatenation of a quotient q = bB/2pc
and a remainder r = B − q2p. The quotient q is first represented by the TU code as a
prefix concatenated with a suffix r represented by the FL code of length p. The EGk code
is also a concatenation of prefix and suffix. The prefix part of the EGk code is the U
representation of l(B) = blog2(B2k + 1)c. The suffix part is the FL code of B+ 2k(1−2l(B))
with cMax = k + l(B).

5.3.2 Transform Coefficients (TCs) coding

In this section we describe the CABAC coding of the TCs. Similar to HEVC, VVC
coefficients are either coded in regular TCs mode or Transform Skip (TS) mode. In both
modes, the transform block is first divided into sub-blocks.

5.3.2.1 VVC Transform Coefficient (TC) coding mode

The coefficients of each sub-block are encoded in three passes as illustrated in Fig. 5.2
for a 4×4 sub-block. The coefficients are processed in reverse diagonal scan order, as
depicted in Fig. 5.3a. The first pass processes a group of flags until it reaches a limit of
used bins specified by the standard. This maximum number of bins used in the first pass
is computed with respect to the block size (Wb ×Hb) as follows b(2log2(Wb)+log2(Hb)) 7/4c.
Once this limit is reached, the second pass starts encoding the remainders computed from
the coefficient value C as follows

abs_remainder =


⌊
|C|−4

2

⌋
|C| ≥ 4,

0 otherwise.
(5.1)

The coefficients of value lower than 4 are binarized by the flags in the first pass. The
second pass relies on the TRp/EGk binarization, until the position of the last coefficient
processed by the first pass is reached. Then, the dec_abs_level syntax element, computed

87

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

by (5.2) for the remaining coefficients is bypassed and binarized also using the TRp/EGk
binarization.

dec_abs_level =


V, if C = 0,

|C|, if |C| ≤ V,

|C|+ 1, if |C| > V,

(5.2)

the V constant is derived from a Lookup Table (LUT) V Arr according to the state and
the local absolute sum LocAbsSum computed for the current coefficient by (5.3). The V
value updates the 0 coefficient value such that coefficients have smaller binarization when
large coefficients are mixed with definite 0 values. The LocAbsSum is a saturated sum in
the interval [0, 31] of a set of neighboring coefficients S1 illustrated in green in Fig. 5.4a

LocAbsSum =
∑
i∈S1

|Ci| − 5BaseLvl
31

0

, (5.3)

whereBaseLvl is equal to 4 for the abs_remainder (Pass 2-1) and 0 for the dec_abs_level
(Pass 2-2).

Finally, the third pass encodes the signs of the coefficients. We can notice that only
the first pass relies on CABAC context coding and the last two passes perform bypass
coding. The abs_remainder and dec_abs_level syntax elements are both binarized by a
combination of TRp and in a special case EGk code. This binarization is presented in
Section 5.3.2.3.

C0 C2 C5 C9

C1 C4 C8 C12

C3 C7 C11 C14

C6 C10 C13 C15

0 X

Y

(a)
.

C0 C2 C5 C9

C1 C4 C8 C12

C3 C7 C11 C14

C6 C10 C13 C15

0 X

Y

(b)

Figure 5.3 – Transform Coefficients (TCs) scanning orders (5.3a) reverse diagonal scan
order and (5.3b) regular diagonal scan order.

88

5.3. CABAC engine in VVC

5.3.2.2 VVC Transform Skip (TS) coding mode

In Transform Skip mode, the coefficients of each sub-block are also encoded in three
passes that process the coefficients in a simple diagonal scan order, as shown in Fig. 5.3b.
The first pass mainly encodes all coefficients considered as significant (ie. C 6= 0) including
its sign and parity. The second pass encodes more flags to check whether the coefficient is
greater than a certain threshold. Finally, the third pass encodes the remainder coefficients
greater than 10 using the TRp/EGk binarization of abs_remainderTS

abs_remainderTS =
⌊
|C| − 10

2

⌋
. (5.4)

The local absolute sum in the case of TS mode LocAbsSumTS is computed by (5.5)
as follows

LocAbsSumTS =
∑
i∈S2

|Ci|

31

0

. (5.5)

It should be noted that the third pass relies on bypass coding.

5.3.2.3 Binarization process

Algorithm 5.1 gives the binarization process of the abs_remainder. The dec_abs_level
and abs_remainderTS syntax elements are also binarized by this algorithm. The TCs
remainders are binarized using either a TRp code, introduced in Section 5.3.1, or an EGk
code limiting the maximal length of a binarization to 32 bits as presented in Algorithm 5.2.
The selection between the two binarizations depends on a threshold value β defined in
the standard as

β = BinReduc 2cRiceParam, (5.6)

where BinReduc is set to 5, and cRiceParam ∈ {0, 1, 2, 3} is the rice parameter de-
rived from a LUT riceArr according to the saturated local absolute sum LocSumAbs

of previously coded coefficients computed by (5.3). Fig. 5.4a illustrates in green the set
of coefficients S1 used to derive the rice parameter of the current coefficient highlighted
in yellow. Similarly, Fig. 5.4b presents the coefficients used in TS mode, where the rice
parameter depends only on the top and left neighbor coefficients set S2. When the re-
mainder to encode is strictly below the threshold β, the TRp binarization is preformed
with p = cRiceParam. Otherwise, the limited EGk coding is applied.

89

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

Algorithm 5.1: abs_remainder Binarization
Input: abs_remainder is the unsigned integer to binarize
cRiceParam is the rice parameter
log2TrRange is the log2 of the TC range
BinReduc← 5 is the value used to determine the threshold between TRp and
Limited_EGk

β ← BinReduc 2cRiceParam
if abs_remainder < β then
TRp binarization with p← cRiceParam

else
Limited_EGk(abs_remainder, cRiceParam,
BinReduc, log2TrRange)

end if

Algorithm 5.2 shows that the maximum length of the prefix maxPrefixLen depends
on the range of the transform coefficients 2log2TrRange and BinReduc. To differentiate
between the two binarizations at the decoder side, BinReduc is added to the prefix length
when Limited_EGk is used. Then, a classical EGk binarization starts. However, if the
computed prefix length prefixLen is equal to the maximal prefix length maxPrefixLen,
the suffix length suffixLen is set to log2TrRange. Both codes are composed of a variable-
length prefix and if exists, a fixed-length suffix. The prefix is coded using a U or TU code
representation which implies that changing any bin will violate the decoder standard or
change the bitrate. On the other hand, the suffix might be encrypted in format compliance
and constant bitrate only when the LocSumAbs does not change the cRiceParam value
of the neighbor coefficients.

5.4 Proposed Versatile Video Coding (VVC) selec-
tive encryption

This section presents a new selective encryption scheme for VVC standard. The pro-
posed selective encryption fulfills two important features: standard format-compliant en-
cryption (i.e. the bitstream must be decodable by any VVC decoder) and constant bitrate
encryption (i.e. preserve the VVC compression efficiency).

The encryption is performed at the Context-Adaptive Binary Arithmetic Coding
(CABAC) level of the encoder. Fig. 5.1 depicts in green the position of the selective

90

5.4. Proposed VVC selective encryption

Algorithm 5.2: Limited_EGk(abs_remainder, cRiceParam,BinReduc,
log2TrRange)
Input: abs_remainder, cRiceParam, log2TrRange, BinReduc.

maxPrefixLen← 32−BinReduc− log2TrRange
codeV alue←

⌊
abs_remainder

2cRiceP aram

⌋
−BinReduc

prefixLen← 0
while prefixLen < maxPrefixLen
and codeV alue > 2prefixLen+1 − 2 do
prefixLen← prefixLen+ 1

end while
if prefixLen = maxPrefixLen then
suffixLen← log2TrRange

else
suffixLen← prefixLen+ cRiceParam+ 1

end if
totalPrefixLen← prefixLen+BinReduc
bitMask ← 2cRiceParam
prefix← 2totalPrefixLen − 1
suffix← codeV alue− 2prefixLen − 1
suffix← suffix 2cRiceParam + abs_remainder mod bitMask
//where a mod n gives the remainder of the euclidean divison of a by n

encryption in the CABAC engine. The encryption is performed after the binarization
process, and only a set of selected syntax elements, listed in Table 5.1 are ciphered. The
encryption involves syntax elements from different coding tools including transform block,
intra and inter predictions, and in-loop filters. This ensures the encryption of both intra
(Intra frame (I frame)) and inter (Predicted frame (P frame) and Bidirectional predicted
frame (B frame)) coded slices included in the VVC video sequence.

The syntax elements, listed in Table 5.1, have been selected based on following two
criteria:

— The syntax element is bypassed: this restriction preserves the VVC coding efficiency.

— Changing any bin will not change how the binstring is read by the decoder: this re-
striction ensures format-compliant encryption by excluding most of flags and syntax
elements binarized by variable length codes.

The encryption of the most syntax elements listed in Table 5.1 is straightforward ex-
cept the Transform Coefficients (TCs) that requires a specific processing to search for the

91

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

Xc

Yc

Xc + 1
Yc

Xc + 2
Yc

Xc

Yc + 1
Xc + 1
Yc + 1

Xc

Yc + 2

X

Y

(a)

Xc − 1
Yc

Xc

Yc − 1
Xc

Yc

X

Y
(b)

Figure 5.4 – TCs dependencies: coefficients highlighted in green are used to compute the
local absolute sum of the current coefficient in yellow for (5.4a) TC mode and (5.4b) TS
mode. S1 and S2 are two sets of green coefficients in (5.4a) and (5.4b), respectively.

encryptable bins. In the next section, we describe the encryption of the TCs since it is
the most challenging syntax element to encrypt. The coding of the TCs introduces de-
pendencies that need to be carefully addressed to perform format-compliant and constant
bitrate encryption.

5.4.1 Transform Coefficient encryption

This section presents how the TCs are encrypted. As explained in Section 5.3.2.3,
the binarization of the TCs and especially the length of the suffix depends on the pre-
viously encoded TCs. Therefore, encryption that changes the value of the coefficients
may introduce bitrate increase. Indeed, the binarization depends on a rice parameter
cRiceParam ∈ {0, 1, 2, 3} derived from previous TCs. This rice parameter defines the
fixed length of the suffix and therefore it corresponds to the size of the encryptable bins.
After an analysis of the binarization algorithm, multiple conditions ensuring constant
bitrate have emerged and are presented below.

First, it is important to note that the coefficients are binarized in two different ways
depending on whether they are processed by pass 2-1 or 2-2, as presented in Fig. 5.2.

— The encryption must not change the parity of the coefficient: changing the parity
will result in changing the state of the CABAC context. The state is updated using
the previous state value and the parity of the current coefficient.

— The encryption must not change the rice parameter: this will affect the bitrate.

92

5.4. Proposed VVC selective encryption

Table 5.1 – Encrypted syntax elements in the proposed VVC selective encryption
solution, all these syntax elements are bypass coded.

Coding block Syntax elements Binarization

Transform coefficients abs_remainder, dec_abs_level
Truncated Rice Code with context p (TRp),

Exp-Golomb k-th order code (EGk)
(TCs) abs_remainderTS TRp,EGk

coeff_sign_flag Fixed Length (FL)
coeff_sign_flagTS FL

Motion Vector (MV) abs_mvd_minus2 EGk
mvd_sign_flag FL

ALF Filter alf_luma_fixed_filter_idx Truncated Binary (TB)
Inter Prediction mmvd_direction_idx FL

merge_triangle_split_dir FL
Sample-Adaptive Offset (SAO) Filter sao_offset_sign FL

sao_band_position FL
sao_eo_class FL

Intra Prediction intra_chroma_pred_cand FL

— The encryption must not change the V value for coefficients processed by pass 2-2:
changing the value of this parameter can result in changing the parity, and thus the
CABAC context.

Considering those conditions, Algorithm 5.3 is proposed to identify the bins within the
TCs that can be encrypted in constant bitrate and format compliance. The rice parameter
of each TC is derived from a saturated absolute sum of the local neighborhood of the
current TC. Fig. 5.5a depicts in green the set S̄1 of affected TCs if the current TC in
yellow is modified by encryption. Therefore, for each affected coefficient, Algorithm 5.4
checks whether the changes in the local absolute sum will affect the context, the rice
parameter and the V value. To make sure that the parity is not changed, the encryption
excludes the Less Significant Bits (LSB) of the suffix and will perform encryption only
when the rice parameter is greater than 1 (cRiceParam ∈ {2, 3}).

The encryption of the coefficients in TS mode is similar. The main difference lies
in how the rice parameter is derived. Fig. 5.5b shows the set S̄2 of affected coefficients
in green when the current coefficient (in yellow) is modified by encryption. The current
coefficient is binarized using a prediction based on the top and left coefficients. Therefore,
the ciphered value of the current coefficient must remain lower or equal than the coefficient
depicted in red in Fig. 5.5b according to the used prediction scheme.

Algorithms 5.3 and 5.4 are used to check that the encrypted bins of the current bi-
narized coefficient are not affecting how the neighbor coefficients will be encoded. This

93

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

Algorithm 5.3: nbEncryptable = isEncryptable(Xc, Yc, CoeffArr, nbEncryptable,
bypass, V)

Input: (Xc, Yc): the coordinate of the current pixel,
CoeffArr[][]: the array of coefficient value,
nbEncryptable: the number of encryptable bits to test,
bypass: true if the current coefficient is bypass,
V : of the current pixel, set to 0 if bypass is false.

Output: the number of encryptable bits.

absLevel← |CoeffArr[Xc][Yc]|
if absLevel 6= 0 and cRiceParam > 1 then

absCMin, remMin← computeMin(absLevel,
nbEncryptable, bypass, V)

absCMax, remMax← computeMax(absLevel,
nbEncryptable, bypass, V)

encryptable← not (bypass
and V ∈ [remMin, remMax])

for p ∈ S̄1 do
encryptable← encryptable and

checkSumChange(Xp, Yp,
absLevel, absCMin, absCMax)

end for
if not encryptable and nbEncryptable > 1 then

return isEncryptable(Xc, Yc, CoeffArr,
nbEncryptable− 1, bypass, V)

else if encryptable then
return nbEncryptable

else
return 0

end if
else

return 0
end if

94

5.4. Proposed VVC selective encryption

Algorithm 5.4: Encryptable = checkSumChange(Xp, Yp, absLevel, absCMin,
absCMax);

Input: (Xp, Yp): the coordinate of the tested coefficient ,
absLevel: the absolute value of the coefficient (Xc, Yc) before encryption,
absCMin: the minimal possible encrypted value of the coefficient (Xc, Yc),
absCMax: the maximal possible encrypted value of the coefficient (Xc, Yc).

Output: true if ciphered value does not affect the context, the rice parameter and the C0,
false otherwise.
//Step 1
AbsSumP1←

∑
i∈S1 min(4 + |Ci| mod 2, |Ci|)

numPos←
∑
i∈S1 E(Ci) //where E(x) returns 1 if x 6= 0, 0 otherwise

AbsSumP1min← AbsSumP1−min(4 + (absLevel mod 2), absLevel)
+ min(4 + (absCMin mod 2), absCMin)

NoCtxChange←
⌊
AbsSumP1+1

2

⌋
≥ 3 and AbsSumP1− numPos ≥ 4

and
⌊
AbsSumP1Min+1

2

⌋
≥ 3 and AbsSumP1Min− numPos ≥ 4

//Step 2
AbsSumP21←

∑
i∈S1 |Ci|

AbsSumP21Min← AbsSumP21− absLevel + absCMin
AbsSumP21Max← AbsSumP21− absLevel + absCMax
TrAbsSumP21← [AbsSumP21− 20]31

0
TrAbsSumP21Min← [AbsSumP21Min− 20]31

0
TrAbsSumP21Max← [AbsSumP21Max− 20]31

0
RiceParP21← riceArr[TrAbsSumP21]

TrAbsSumP22← [AbsSumP21]31
0

TrAbsSumP22Min← [AbsSumP21Min]31
0

TrAbsSumP22Max← [AbsSumP21Max]31
0

RiceParP22← riceArr[TrAbsSumP22]
//Step 3
NoRiceParChange← true
if TrAbsSumP21Min /∈ IR[RiceParP21] or TrAbsSumP21Max /∈ IR[RiceParP21]
or TrAbsSumP22Min /∈ IR[RiceParP22] or TrAbsSumP22Max /∈ IR[RiceParP22]
then

NoRiceParChange← false
end if
//Step 4
NoV Change← true
for i← 0 to 2 do

currV ← V Arr[i][TrAbsSumP22]
if TrAbsSumP22Min /∈ IP [i][currV] or TrAbsSumP22Max /∈ IP [i][currV] then

NoV Change← false
end if

end for
//Step 5
return NoCtxChange and NoRiceParChange and NoV Change

95

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

Xc

Yc − 2
Xc − 1
Yc − 1

Xc

Yc − 1
Xc − 2
Yc

Xc − 1
Yc

Xc

Yc

0 X

Y

(a)

Xc + 1
Yc − 1

Xc Yc
Xc + 1
Yc

Xc − 1
Yc + 1

Xc

Yc + 1

0 X

Y

(b)

Figure 5.5 – The current coefficient (in yellow) is used to compute the local absolute
sum of the coefficients highlighted in green for (5.5a) TC mode and (5.5b) Transform
Skip (TS) mode. Coefficients highlighted in red are used along the current coefficient in
the prediction of the parity of the coefficients in green. S̄1 and S̄2 are two sets of green
coefficients in (5.5a) and (5.5b), respectively.

enables defining the bins that can be encrypted in format-compliant and constant bitrate.
The proposed solution is carried out as follows:

— Algorithm 5.3 checks at the binarization process whether the TC can be encrypted
or not. The encryption is possible only when the absolute value of the coefficient is
different from 0 (absLevel 6= 0) and the value of the derived rice parameter is above
1 (cRiceParam > 1).

— The algorithm then computes the minimum and maximum values of the encrypted
remainder (remMin, remMax) of the current coefficient. The minimum (absCMin)
and maximum (absCMax) absolute values of the coefficient are derived from their
respective remainders.

— Algorithm 5.4 checks for all coefficients in S̄1 depicted in green in Fig. 5.5a (when
they exist) whether ciphering the current coefficient (Xc, Yc) will affect its neighbor
coefficients (Xp, Yp), the rice parameter or the V value. This operation is performed
in five steps as follows:

1. The algorithm computes a saturated absolute sum of the tested coefficient of
coordinates (Xp, Yp) (AbsSumP1 = ∑

i∈S1 min(4 + |Ci| mod 2, |Ci|)) which

96

5.4. Proposed VVC selective encryption

is used for the context computation, with S1 the set of neighbor coefficients
of (Xp, Yp). This operation is performed at the first pass (P1) to check the
CABAC context change and set the NoCtxChange flag to true if the changes
on the AbsSumP1 will not affect the context.

2. The local absolute sum TrAbsSumP21 is then computed by (5.3) for the coeffi-
cient of coordinates (Xp, Yp). The minimum possible value TrAbsSumP21Min

and the maximum value TrAbsSumP21Max are also computed by (5.3) with
BaseLvl equals to 4.

3. Then, the algorithm checks whether the rice parameter will be affected with the
different computed sums in step 2 and sets a flag NoRiceParChange to true
if the rice parameter remains unchanged with all possible tested conditions. IR
is a Lookup Table (LUT) containing, for each rice value, the interval in which
the the local absolute sum does not change the rice parameter.

4. The parameter V is computed only in pass 2-2. At this fourth step, the al-
gorithm checks for the processed coefficients if the parameter V remains un-
changed to set the flag NoV Change to true. Similar to IR, IP returns, de-
pending of the state and V values, the interval in which the local absolute sum
does not change the V value.

5. Finally, Algorithm 5.4 returns true when NoCtxChange, NoRiceParChange
and NoV Change are all equal to true.

The decoder performs inverse operations performed by the encoder for deciphering.
The decoder first decodes the TCs and then it searches for the encryptable coefficients
using Algorithms 5.3 and 5.4. Finally, the deciphering will process only the identified
encrypted bins.

5.4.2 Encryption Method and Synchronisation

The syntax elements to cipher are now defined. To cipher the syntax elements of a
variable length, a stream cipher is more suited for this application. As the minimum
error propagation is one of the most desirable properties in video encryption, we use the
Advanced Encryption Standard (AES) algorithm in CounTeR (CTR) mode as a Pseudo-
Random Number Generator (PRNG) to encrypt the identified syntax elements. It is
important to note that CTR counter value should not be reused, which is adopted in our

97

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

solution [93]. Meanwhile, other stream ciphers such as Rabbit [94], LightWeight Chaos-
Based (LWCB) stream cipher [95], HC-128 [96] or even block ciphers like AES in Cipher
FeedBack (CFB) mode, can be used as well. A stream cipher produces a cipher text C
using a eXclusive OR (XOR) operation between the plain text P and the output steam
Xg produced by a PRNG,

C(P) = P ⊕Xg. (5.7)

To revert the encryption, a XOR between the cipher text and the same PRNG output
is performed. Thus, a perfect synchronization between the encoder and the decoder is
required. Most of the syntax elements are systematically ciphered and do not dependant
on the position or the context. However, the syntax elements associated to the TCs are
ciphered only if they meet conditions previously described in Section 5.4.1. One of this
conditions relies on the neighbor coefficients, implying that the last decoded coefficient
needs to be deciphered first. To allow this behavior, for each significant coefficient, en-
cryptable or not, the PRNG generates a sample equal to the size of the rice parameter,
e.g. the maximum encryptable size. The unused samples are discarded to keep the encoder
and the decoder perfectly synchronized. In CTR mode, one bit flipping caused by trans-
mission errors will only affect one bit during the deciphering process which minimizes the
error propagation.

5.5 Results and Discussions

In this section, we first present the experimental setup, followed by an assessment of
the video degradation introduced by the selective encryption, then a security analysis will
be presented, and finally a complexity evaluation is provided.

5.5.1 Experimental Setup

The experiments are carried-out under the Common Test Conditionss (CTCs) of
the Versatile Video Coding (VVC) standard. The CTCs define several test video se-
quences of different resolutions, and five Quantization Parameters (QPs) are used QP ∈
{17, 22, 27, 32, 37}. The proposed encryption solution is implemented in the VVC Test
Model (VTM) [97] version 6.0. VTM is the reference software implementation of both
encoder and decoder of the VVC standard. The coding configuration without encryption
is referred to as the Anchor. The video sequences are encoded with encryption in Random

98

5.5. Results and Discussions

(a) QP 17,
PSNR=42.90 dB

(b) QP 22,
PSNR=39.09 dB

(c) QP 27,
PSNR=34.98 dB

(d) QP 32,
PSNR=32.53 dB

(e) QP 37,
PSNR=29.72 dB

(f) QP 17,
PSNR=12.07 dB

(g) QP 22,
PSNR=11.73 dB

(h) QP 27,
PSNR=10.03 dB

(i) QP 32,
PSNR=10.68 dB

(j) QP 37,
PSNR=10.25 dB

Figure 5.6 – Visual illustration of Frame #10 of RaceHorsesC video decoded without
encryption (5.6a - 5.6e) and with selective encryption (5.6f - 5.6j) at five QPs

Access (RA) coding configuration. This latter is the common coding configuration used
in broadcast and Over-The-Top (OTT) applications with an Intra period of 32 frames.
The complexity measurements are performed on a desktop computer equipped with an
Intel i7-7700 processor running at 3.60 GHz on Ubuntu 18.04 OS.

5.5.2 Video Quality and Encryption Space

5.5.2.1 Video Quality

The distortion introduced by the proposed solution on the test video sequences is
assessed in this section. Three full-reference objective image and video quality metrics are
computed on the encrypted video sequences with respect to the original. PSNR is used
to evaluate the video quality based on the mean squared error computed over the frame
pixels [98]. The PSNR is computed as a weighted sum of the PSNR scores of the three
color components. SSIM explores the structural similarity between the original and the
decoded frame. It is important to note that a SSIM value close to 1 refers to decoded
frame of a similar quality as the original frame [99]. Finally, VMAF is a video quality
metric that predicts the perceived quality score of a video sequence [100], where a score of
100 indicates a good perceptual video quality and 0 refers to a very low perceived video
quality.

Table 5.2 presents the PSNR performance over all video sequences at the five consid-
ered QPs. We can notice that the PSNR drops at QP 17 from 44.77 dB in average to

99

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard
Table

5.2
–
Peak

Signalto
N
oise

R
ation

(PSN
R
)
perform

ance
ofthe

proposed
selective

encryption
for

allvideo
sequences

at
five

Q
Ps.A

nchor
and

ciphered
configurations

correspond
to

the
video

decoded
w
ithout

encryption
and

w
ith

selective
encryption,respectively.

P
S
N
R

Scores
(dB

)
Q
P

17
Q
P

22
Q
P

27
Q
P

32
Q
P

37
A
nchor

C
iphered

A
nchor

C
iphered

A
nchor

C
iphered

A
nchor

C
iphered

A
nchor

C
iphered

A
1

C
am

pfire
44.02

4.58
39.78

4.69
37.64

4.60
36.54

4.38
35.18

4.37
FoodM

arket4
46.21

10.99
44.29

10.79
42.96

10.62
41.13

9.76
38.84

10.83
Tango2

42.37
8.66

40.40
9.05

39.73
10.40

38.88
8.16

37.58
8.68

A
2

C
atR

obot1
42.84

9.13
40.48

9.55
39.56

9.73
38.37

8.72
36.70

9.08
D
aylightR

oad2
41.76

8.93
38.25

11.16
37.33

9.34
36.44

9.74
35.12

10.00
P
arkR

unning3
47.51

11.24
43.83

11.52
39.85

10.56
36.58

12.00
33.60

11.10

B

B
asketballD

rive
42.08

13.17
39.55

12.95
37.98

11.90
36.34

11.26
34.40

11.63
B
Q
Terrace

42.76
10.22

37.66
10.23

35.56
10.28

34.29
10.15

32.78
9.82

C
actus

41.54
10.04

38.74
10.23

37.24
9.48

35.59
9.12

33.51
8.99

M
arketP

lace
43.52

9.55
40.96

9.10
38.84

8.22
36.72

8.61
34.44

8.67
R
itualD

ance
47.02

9.43
44.79

10.44
41.71

10.11
38.71

9.28
35.76

9.56

C

B
asketballD

rill
44.19

13.40
41.69

12.83
38.57

12.88
35.71

11.94
33.09

11.22
B
Q
M
all

42.70
11.94

40.73
11.12

38.34
10.79

35.81
11.16

33.14
10.65

P
artyScene

42.13
12.02

39.05
11.78

35.73
11.34

32.76
11.21

29.96
11.33

R
aceH

orsesC
43.13

11.53
39.58

11.58
36.48

11.74
33.80

11.64
31.15

10.97

D

B
asketballP

ass
45.22

13.54
41.58

13.44
37.54

13.15
34.27

13.41
31.39

13.79
B
low

ingB
ubbles

41.75
11.20

38.81
11.69

35.60
11.06

32.69
11.44

29.87
11.57

B
Q
Square

42.10
8.89

38.69
9.37

35.41
8.78

32.70
8.93

30.22
9.62

R
aceH

orses
43.66

11.75
40.14

12.11
36.55

12.05
33.25

11.74
30.31

11.56

E
FourP

eople
44.92

9.91
43.38

9.72
41.81

8.73
39.82

8.93
37.30

8.70
Johnny

44.99
9.54

43.53
9.26

42.38
8.70

40.94
8.58

39.01
8.48

K
ristenA

ndSara
45.42

9.50
43.86

9.15
42.40

7.60
40.64

7.73
38.42

7.62

F

A
renaO

fV
alor

46.94
11.15

43.63
10.78

40.28
10.67

37.45
9.38

34.79
9.46

B
asketballD

rillText
44.31

12.52
41.73

12.01
38.52

12.10
35.60

11.24
32.89

11.21
SlideE

diting
54.72

9.69
51.35

10.49
47.31

10.15
43.25

10.72
38.92

9.31
SlideShow

56.12
1.94

52.43
3.16

48.61
4.28

45.17
3.98

41.83
4.35

A
verage

44.77
10.17

41.88
10.32

39.38
9.97

37.05
9.74

34.62
9.71

100

5.5. Results and Discussions

Table 5.3 – Average Structural SIMilarity (SSIM) performance of the proposed
encryption solution for all video classes at five QPs

SSIM Score
QP 17 QP 22 QP 27 QP 32 QP 37

Anchor Ciphered Anchor Ciphered Anchor Ciphered Anchor Ciphered Anchor Ciphered

A1 1.00 0.27 1.00 0.22 1.00 0.23 0.99 0.21 0.99 0.22
A2 1.00 0.23 1.00 0.23 1.00 0.21 0.99 0.21 0.99 0.21
B 1.00 0.27 1.00 0.27 0.99 0.26 0.99 0.25 0.97 0.25
C 1.00 0.23 0.99 0.23 0.98 0.23 0.97 0.23 0.94 0.24
D 0.99 0.24 0.97 0.24 0.95 0.25 0.91 0.26 0.85 0.28
E 1.00 0.39 1.00 0.40 0.99 0.37 0.99 0.37 0.99 0.39
F 1.00 0.26 1.00 0.31 1.00 0.35 0.99 0.36 0.97 0.35

Average 1.00 0.27 0.99 0.27 0.99 0.27 0.97 0.27 0.95 0.28

Table 5.4 – Average Video Multimethod Assessment Fusion (VMAF) performance of the
proposed encryption solution for all video classes at five QPs

VMAF Score
QP 17 QP 22 QP 27 QP 32 QP 37

Anchor Ciphered Anchor Ciphered Anchor Ciphered Anchor Ciphered Anchor Ciphered

A1 99.47 25.53 99.03 28.84 96.70 30.23 92.31 29.84 84.86 28.19
A2 99.88 23.79 99.22 23.88 97.20 25.15 92.49 25.27 85.02 25.22
B 99.80 2.78 99.08 2.89 96.35 3.24 89.46 3.52 77.84 3.67
C 99.88 7.16 99.59 7.72 96.91 7.78 89.84 7.63 77.55 7.88
D 99.42 6.66 98.78 6.57 95.68 6.76 87.96 6.75 75.68 6.29
E 97.37 0.16 96.54 0.51 95.00 0.62 92.04 0.71 86.52 1.27
F 98.88 6.20 98.65 7.83 96.72 8.57 92.47 8.66 85.43 6.86

Average 99.30 9.32 98.76 10.10 96.37 10.64 90.73 10.66 81.27 10.25

around 10.17 dB. The same PSNR values of encrypted videos are reached on different
QPs values. This indicates that the proposed solution significantly decreases the objective
quality of the encrypted video. Campfire and SlideShow encrypted video sequences have
a very low PSNR values. For Campfire, it can be explained by its texture and complex
shapes associated to high motion that increase the encryption space and thus improving
the quality of the encryption. Concerning SlideShow, shapes are less complex however
the encryption is able to flip the colors causing noticeable quality degradation with lower
PSNR scores than the average.

Table 5.3 presents the average SSIM scores for seven video classes at different QPs.
The proposed encryption solution enables to reduce the SSIM from around 1 to 0.25. The

101

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

obtained SSIM value confirms that the proposed solution introduces a drastic distortion
on the structure information within the encrypted video frame. We can notice that SSIM
scores of class E video sequences are higher than the average scores. These video sequences
have low motion and less texture compared to other sequences. This improves the coding
efficiency and decreases the performance of the selective encryption since less syntax
elements are encrypted.

Finally, Table 5.4 presents the VMAF scores which also emphasize the large degrada-
tion of the subjective video quality as a result of using the proposed encryption solution.

Fig. 5.6 illustrates the frame #10 of RaceHorcesC video sequence decoded at five QP
values with and without encryption. The visual quality of decoded encrypted video is very
low making difficult to recognize objects and colors in the video frame at all QP values
with PSNR scores around 11 dB.

5.5.2.2 Encryption space

The computational time of encryption mainly depends on the encryption space of
any ciphering process. However, the robustness and security level will be enhanced by
increasing the encryption space. In selective encryption, the somehow robust encryption
algorithm and low computational overhead as outcome of the encryption is the target.
Table 5.5 presents the encryption space of the proposed encryption solution as the percent-
age of encrypted bits by syntax element on the whole bitstream. The quality degradation
of selective encryption is achieved by ciphering only 26.66% and 15.42% of the bitstream
at high and low bitrates, respectively. We can notice that the largest encryption space
is enabled by the encryption of the Transform Coefficients (TCs) while the part of other
syntax element less present in the bitstream remains negligible (< 2%).

5.5.3 Security Analysis

In the previous section we only assess the visual degradation achieved by the proposed
encryption. In this section we focus on the quality of the proposed encryption and its
robustness against different types of attacks.

5.5.3.1 Encryption Qualilty (EQ) analysis

The algebraic summation of differences between pixels distributions of the original
frame H(P) and the encrypted fame H(C) is called EQ. This latter is computed as

102

5.5. Results and Discussions

Table 5.5 – Encryption space in percentage (%) per syntax element at five QPs

Syntax Elements
Encryption Space (%)

QP 17 QP 22 QP 27 QP 32 QP 37
alf_luma_filter_idx 0.01 0.02 0.04 0.06 0.06
sao_offset_sign 0.00 0.00 0.00 0.00 0.00

sao_band_position 0.01 0.01 0.01 0.01 0.01
sao_eo_class 0.01 0.02 0.01 0.01 0.00

mmvd_direction_idx 0.48 0.55 0.56 0.59 0.59
merge_triangle_split_dir 0.04 0.08 0.13 0.17 0.19

mvd_abs 0.26 0.48 0.76 0.98 1.14
mvd_sign 0.29 0.51 0.75 0.92 1.00

abs_remainder
coeff_sign

25.44 21.39 17.15 14.33 12.22

abs_remainderTS
coeff_signTS

0.06 0.06 0.05 0.03 0.01

intra_chroma
_pred_candidate

0.07 0.10 0.14 0.16 0.18

Total 26.66 23.21 19.61 17.24 15.42

follows [84]

EQ =
∑2d−1
Z=0 |HZ(C)−HZ(P)|

2d . (5.8)

Table 5.6 – Encryption Quality for CTCs video classes at five QP values

Encryption Quality (EQ)
QP 17 QP 22 QP 27 QP 32 QP 37 EQmax

A1 8 661 8 260 8 573 7 947 8 535 16 200
A2 9 235 6 791 8 058 8 871 7 971 16 200
B 1 620 1 805 1 923 1 920 1 911 4 050
C 231 245 224 236 270 780
D 61 69 81 70 83 195
E 682 748 1 057 1 150 1 096 1 800
F 907 1 225 944 1 240 1 298 2 108

Average 2640 2407 2603 2680 2652 5199

The higher EQ value is, the more secure is the selective encryption solution. Table 5.6
presents the EQ values for all video classes at the five considered QPs. The presented
values are the average EQ over encrypted frames and video sequences of each class. The
EQ does not have a relative point for comparison. A derivation from (5.8) is proposed to
compute the upper bound value of the EQ [44] as follows

EQmax = 2W H

2d , (5.9)

103

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

where H and W are the video height and width, respectively and d is the bit depth. The
upper bound value of the EQ is reached when the histograms of the two frames HZ(C)
and HZ(P) are not overlapping.

The average EQ values are within the interval [2407, 2680] in average with a theoretical
average upper bound of 5199.

The High Efficiency Video Coding (HEVC) selective encryption solution proposed
in [44] achieved an EQ value for Kimono video sequence higher than 38.54% of its max-
imum EQ, and an EQ value for PeopleOnStreet video higher than 40.92% its maximum
EQ. The proposed solution of different videos at different configuration ranges between
46.29% and 51.56% of the maximum EQ which confirms that the proposed solution has
a high security level regarding the encryption quality metric.

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Fr
eq

u
en

cy

Gray Level

(a) QP 17

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Fr
eq

u
en

cy

Gray Level

(b) QP 22

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Fr
eq

u
en

cy

Gray Level

(c) QP 27

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Fr
eq

u
en

cy

Gray Level

(d) QP 32

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Fr
eq

u
en

cy

Gray Level

(e) QP 37

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Fr
eq

u
en

cy

Gray Level

(f) QP 17

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Fr
eq

u
en

cy

Gray Level

(g) QP 22

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Fr
eq

u
en

cy

Gray Level

(h) QP 27

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Fr
eq

u
en

cy

Gray Level

(i) QP 32

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

Fr
eq

u
en

cy

Gray Level

(j) QP 37

Figure 5.7 – Histograms of frame #10 computed for the anchor (5.7a- 5.7e) and cipher
(5.7f- 5.7j) of RaceHorsesC video at five QP values. The selective encryption solution
significantly changes the pixels distributions as shown by the EQ metric.

5.5.3.2 Histogram analysis

Histogram of encrypted frame should be more uniform than original frame histogram
in order to resist to statistical analysis based attacks [101, 102]. Fig. 5.7 illustrates the his-
tograms of frame #10 of RaceHorcesC video sequence before and after selective encryption
at five considered QPs. The histograms of the encrypted frames is completely different
from the original frame histogram. In fact, the proposed encryption solution changes the
distribution of the decoded pixels toward different pattern which is close to uniform distri-
bution especially at lower bitrate (ie. high QP). We can also notice that in contrast to full
encryption, it is difficult for constant bitrate and format compliant selective encryption

104

5.5. Results and Discussions

to reach the uniform distribution of the histogram at all coding configurations and video
contents.

5.5.3.3 Edges and structural information protection

Edge detection enables assessing the ability of an encryption solution to hide the edge
information in the encrypted frame. This section evaluates the ability of the proposed
encryption solution to hide the edge in the encrypted video sequence. The Edge Differential
Ratio (EDR) is computed by (5.10) [85, 103].

EDR =
∑H
i=1

∑W
j=1 |PED(i, j)− CED(i, j)|∑H

i=1
∑W
j=1 |PED(i, j) + CED(i, j)|

, (5.10)

with PED and CED are the binary Laplacian of the decoded images with and without
encryption, respectively. EDR takes values in the interval [0, 1], where a value close to 1
corresponds to a high edge hiding capability.

Table 5.7 presents the average values of EDR computed on the first 64 frames of the
CTCs video sequences. The average EDR values are higher than 0.87 which shows the
ability of the proposed selective encryption to hide edges and structural information in the
encrypted frames. We can notice a lower EDR performance for class F video sequences.
This class includes mainly screen content video sequences for which selective encryption
is less effective to hide the structure of the edges.

Table 5.7 – Average EDR for CTCs video classes at five QP values

EDR
QP 17 QP 22 QP 27 QP 32 QP 37

A1 0.919 0.923 0.928 0.932 0.934
A2 0.890 0.896 0.900 0.904 0.906
B 0.890 0.893 0.896 0.899 0.904
C 0.879 0.877 0.877 0.876 0.874
D 0.876 0.887 0.890 0.880 0.881
E 0.866 0.864 0.856 0.856 0.844
F 0.813 0.780 0.762 0.741 0.762

Average 0.875 0.873 0.871 0.867 0.871

Fig. 5.8 illustrates the edges of the decoded frame #10 of RaceHorsesC sequence with-
out encryption (first row) and with encryption at the second row for five different QPs.
This figure clearly shows that the ciphered frames are noisy caused by high frequency

105

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

(a) QP 17 (b) QP 22 (c) QP 27 (d) QP 32 (e) QP 37

(f) QP 17 (g) QP 22 (h) QP 27 (i) QP 32 (j) QP 37

Figure 5.8 – Edge Detection on Frame #10 computed for the anchor (5.8a-5.8e) and
ciphered (5.8f- 5.8j) RaceHorsesC video at five QPs.

structure introduced by the selective encryption. Therefore, structural information in-
cluding edges in the ciphered frames are hidden and can be hardly explored by the EDR
based attacks.

5.5.3.4 Sensitivity to secret keys

Key sensitivity attacks are mainly based on the fact that the adversary tries to decipher
the encrypted frames using a key close to the secret key used for encryption. The second
adversary scenario is to guess the key if the encryption system provides information related
to the used secrete key such as the sensitivity of the encryption regarding small change
in the key. The proposed encryption algorithm should produce a completely different
encrypted frame when a slight change (one bit change) on the used secrete key [104].
Evaluation of the system robustness against key sensitivity attacks can be assessed using
many existing tools such as Unified Average Changing Intensity (UACI) and Number
of Pixels Change Rate (NPCR) [52, 53]. To compute these metrics, one random key is
generated K1 and a key with only one bit difference K2 is created. The two keys are then
used to cipher the same frame of width W and height H and a bit depth d. The result
will create a ciphered frame C1 using K1, and C2 using K2. The UACI and the NPCR are
defined as follow

UACI = 1
HW 2d

H∑
i=1

W∑
j=1
|C1(i, j)− C2(i, j)| 100%, (5.11)

106

5.5. Results and Discussions

NPCR = 1
HW

H∑
i=1

W∑
j=1

D(i, j) 100%, (5.12)

with:

D(i, j) =

0, if C1(i, j) = C2(i, j)

1, if C1(i, j) 6= C2(i, j)
.

Table 5.8 – NPCR and UACI with two secret keys with 1-bit-difference

UACI and NPCR
QP 17 QP 22 QP 27 QP 32 QP 37

UACI NPCR UACI NPCR UACI NPCR UACI NPCR UACI NPCR

A1 25.52 99.62 29.76 99.63 24.68 99.77 33.00 99.83 31.18 99.90
A2 22.03 99.85 20.70 99.80 21.30 99.82 25.24 99.85 30.29 99.76
B 24.48 99.83 26.17 99.82 24.27 99.82 29.05 99.81 27.04 99.60
C 19.60 99.82 23.71 99.86 24.32 99.86 21.03 99.83 23.21 99.84
D 22.18 99.85 22.68 99.84 23.12 99.83 21.34 99.76 23.51 99.69
E 23.69 99.79 23.94 99.70 32.54 99.91 43.99 99.95 37.79 99.91
F 26.84 99.52 37.42 99.03 26.96 99.33 33.27 99.66 22.65 98.76

Average 23.48 99.76 26.51 99.67 25.17 99.76 29.02 99.80 27.32 99.61

The optimal NPCR and UACI values of a secure image encryption scheme against key
sensitivity attacks are 99.58% and 33.46%, respectively [54].

Table 5.8 presents the obtained NPCR and UACI values on the CTCs for all video
classes at three QPs. Here, it is important to note that the NPCR and UACI results of
the selective encryption should not be analysed as in full image encryption. However, the
obtained values can give an indication on the ability of the selective encryption to resist
key sensitive and differential attacks. The average NPCR values at the three QPs for
all classes are very close to the optimal value of a secure encryption scheme against key
sensitivity attacks. Moreover, the average UACI values lie in the interval [19.60, 37.79]
with an average value over all classes that converges to the optimal value of 33.64. This
performance in terms of both NPCR and UACI proves the robustness of the proposed
selective encryption solution with regards the key sensitivity and differential attacks.

5.5.3.5 Brute Force Attack

Brute force attack or exhaustive search attack performs testing all possible values of
the used secret key in order to partially or completely break the cipher. [105] It is well-
known, that any encryption algorithm with at least 128 bits as secret key is considered

107

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

Table 5.9 – Replacement Attack, average PSNR, SSIM and VMAF score on CTCs.

QP PSNR SSIM VMAF
Anchor Replaced Anchor Replaced Anchor Repla.

17 44.85 5.87 1.00 0.29 99.21 6.77
22 41.98 5.80 0.99 0.30 98.47 6.67
27 39.42 5.90 0.99 0.31 95.78 7.16
32 37.02 5.80 0.97 0.32 89.88 7.29
37 34.54 5.92 0.95 0.32 80.21 6.93

as resilient to brute force attack, which is the case for the used Advanced Encryption
Standard (AES) algorithm. In selective encryption, the total number of tries to correctly
guess the selected encrypted bits should be at least 2128 tries in order to resist to brute
force attack [106, 107]. Our proposed selective encryption algorithm relies on AES in
counter mode as stream cipher with a secret key size of 128 bits. Moreover, the size of the
encryption space is very large.

5.5.3.6 Error Concealment Attack

The error concealment attack is a kind of attack based on guessing the encrypted
bits based on some assumptions. However, since the encryption space of a VVC video is
large, the only scenario that the adversary can follow is to try replacing all encrypted
bits with the same value (zero or one) and decipher the modified encrypted frame [108,
109]. In order to evaluate our proposed solution regarding error concealment attacks, all
encrypted bits are replaced by zero and then PSNR, SSIM and VMAF are calculated
again under the same CTCs. Table 5.9 gives the average PSNR, SSIM and VMAF scores
of video sequences deciphered with replacement attack at the five QPs. The obtained
quality scores are similar or even worst compared to encrypted video with AES generator
presented in Section 5.5.2. This confirms that the proposed selective encryption solution
is robust against attacks based on replacement bits.

5.5.4 Complexity Analysis

The aim of this section is to assess the complexity of the proposed encryption solution.
The complexity overhead is computed only for the decoder, since the encryption overhead
is negligible with respect to the encoding time. The average decoding run time is computed
based on 100 decodings without deciphering (DecTRef) and with deciphering (DecTSE).
The deciphering run time ∆SE is computed as a difference between decoding times with

108

5.6. Conclusion

and without deciphering ∆SE = DecTSE −DecTRef , while the percentage of deciphering
complexity overhead COSE is derived as follows

COSE = ∆SE

DecTRef
100%. (5.13)

Table 5.10 gives the deciphering time ∆SE in second and the deciphering complexity
overhead in percentage for all video classes at three QPs. The deciphering time does not
exceed 3 seconds even for high bitrate and high resolution 4K videos of classes A and
B. This corresponds to less than 6% of the total decoding time. The average deciphering
overhead remains lower than 4.23% observed at high bitrate presenting more TCs to
cipher.

Table 5.10 – Deciphering time ∆SE in second and deciphering overhead COSE in % on
Intel i7-7700 processor at 3.6 GHz.

QP 17 QP 22 QP 27 QP 32 QP 37
∆SE COSE ∆SE COSE ∆SE COSE ∆SE COSE ∆SE COSE

A1 1.356 3.540 0.404 1.560 0.091 0.518 0.005 0.019 -0.013 -0.147
A2 2.514 5.605 0.625 2.448 0.156 0.674 0.025 0.118 -0.001 -0.047
B 0.473 4.579 0.160 2.641 0.039 0.976 0.016 0.489 0.001 0.041
C 0.116 5.136 0.054 3.244 0.025 2.101 0.008 0.924 0.006 0.791
D 0.026 4.476 0.013 2.846 0.005 1.384 0.002 0.656 0.001 0.450
E 0.072 3.205 0.016 1.110 0.004 0.387 0.002 0.193 -0.002 -0.198
F 0.086 2.933 0.038 1.755 0.023 1.331 0.010 0.716 0.008 0.701

Average 0.581 4.236 0.167 2.305 0.045 1.111 0.010 0.485 0.001 0.261

5.6 Conclusion

In this chapter, a new selective encryption solution for the Versatile Video Coding
(VVC) standard was proposed. This solution encrypts at the Context-Adaptive Binary
Arithmetic Coding (CABAC) level a set of VVC syntax elements in format-compliant and
constant bitrate. The coding of the Transform Coefficients (TCs) in VVC introduces sev-
eral dependencies making constant bitrate encryption more challenging. We have proposed
an original algorithm that analyses the coding dependencies of the TCs to determine the
number and positions of encryptible bins for each coefficient. The proposed encryption
solution was integrated in both encoder and decoder of the VVC reference software VVC
Test Model (VTM) 6.0. The quality of the encrypted video was assessed under the VVC
Common Test Conditionss (CTCs) with three objective quality metrics including Peak

109

Chapter 5 – Selective Encryption of the Versatile Video Coding (VVC) standard

Signal to Noise Ration (PSNR), Structural SIMilarity (SSIM) and Video Multimethod
Assessment Fusion (VMAF). The low obtained quality scores clearly show the quality
degradation enabled by the encryption. Security analysis was also conducted to asses the
robustness against several attacks including statistical, key sensitivity and brute force at-
tacks. Finally, the complexity overhead of the deciphering at the decoder side is estimated
and remains lower than 6% of the decoding time confirming the lightweight advantage of
the proposed encryption solution.

110

CHAPTER 6

Conclusion

6.1 Research Contributions

This thesis presented three different contributions. The first contribution presents a
new stream cipher based on the work of Taha [1]. The second proposed several imple-
mentation of the proposed cipher and outlined some physical vulnerabilities. The last
contribution is a selective encryption scheme for the new video coding standard Versatile
Video Coding (VVC).

6.1.1 A new LightWeight Chaos-Based (LWCB) Stream Cipher

Chapter 3 introduces a method of attack using Side-Channel Attacks (SCAs) for the
stream cipher proposed by Taha [1]. The proposed method enables an attacker to recover
the secret key completely.

From the vulnerabilities exposed, a new stream cipher based on the work of Taha [1] is
proposed. This new stream cipher introduces a new chaotic map, the 4D map, to replace
the Skew Tent (ST) map to add non-linearity to the system. It also introduces a soft
coupling of the map cells increasing the interdependence of chaotic maps.

The new LightWeight Chaos-Based (LWCB) stream cipher is tested against statistical
attacks using several statistical tests like the National Institute of Standards and Technol-

111

Chapter 6 – Conclusion

ogy (NIST) Statistical Tests Suite (STS), correlation, histogram analysis, key sensitivity
and confusion analysis. Proposed cipher is passing all the statistical tests.

6.1.2 Hardware Design of Proposed Stream Cipher

In Chapter 4, several hardware designs of the stream cipher proposed in Chapter 3
are presented. The reference design, corresponding to an optimized implementation of the
stream cipher without pipeline or additive masking. This implementation, using only 441
slices, achieves a throughput of 711.11 Mbps at an operating frequency of 22.22 MHz. The
proposed 4-stage pipeline implementation operates at 80 MHz with a throughput of 2 560
Mbps and is using only 611 slices. This implementation approaches a speed up of 3.6,
and is increasing the area by less than 40%. The last implementation is adding additive
masking to the reference design. This addition slightly affects the speed performances,
the throughput is only dropping to 673.98 Mbps.

Then, in a short study, the security against SCAs and the effect of the additive masking
is assessed using the methodology proposed by Schneider and Moradi [60]. This study
shows that the proposed implementations are not passing first order t-test and might be
leaking information about the secret key.

6.1.3 Selective Encryption on the new Video Compression Stan-
dard Versatile Video Coding (VVC)

Chapter 5 presents the proposed selective encryption solution of VVC standard. This
encryption is completely format compliant and Constant Bit Rate (CBR). It takes place
at the Context-Adaptive Binary Arithmetic Coding (CABAC) level. This last chapter
introduces a method mainly focusing on encrypting the Transform Coefficients (TCs).
The TCs are challenging to encrypt due to its high dependency between each other. The
proposed encryption scheme was integrated in both encoder and decoder of the VVC
reference software VVC Test Model (VTM) 6.0.

The quality of the proposed scheme is evaluated under the Joint Video Experts Team
(JVET) Common Test Conditionss (CTCs) with Peak Signal to Noise Ration (PSNR),
Structural SIMilarity (SSIM) and Video Multimethod Assessment Fusion (VMAF) met-
rics. The degradation introduced by the encryption is notable for all metrics. The security
of the proposed scheme is also evaluated through Encryption Qualilty (EQ), histogram

112

analysis, edge detection or sensitivity to the secret key. Finally, the encryption only shows
a complexity overhead lower than 6% for the decoding process.

6.2 Prospects – Future Works

6.2.1 Countermeasures Against SCAs for Chaotic Maps

In proposed hardware implementations from Chapter 4, only the coupling matrix and
the recursive cells are masked. From the results of the same chapter, the chaotic maps are
leaking sensitive information. Chaotic maps used in encryption schemes are usually non-
linear, or at least partly linear. To our knowledge, no work on this matter was published
in the literature.

6.2.2 Gate-Level Implementation of Proposed LWCB Stream
Cipher

From the conclusion made in Chapter 4 about the non-selective t-test, the proposed
implementation should be improved. The possible leaks exposed need to be mitigated.
Working to a lower-level implementation, at the gate level, could be a solution to suppress
leakage. In the literature, proposed countermeasures are usually based on hiding sensitive
data by adding extra gates to perform the opposite function at the bit level in order to
have constant energy consumption.

6.2.3 Watermarking for VVC Standard

The solution proposed in Chapter 5 can have many applications such as Digital Rights
Management (DRM) or watermarking. Watermarking is a technique used to identify a
noise-tolerant signal by injecting markers into bits without a no visible onto subjective
quality. By definition, watermarking is sort of the opposite of selective encryption. Same
techniques can be implemented to VVC encoders.

113

APPENDIX A

French Summary

A.1 Contexte

Le besoin d’une communication sécurisée entre plusieurs entités a pratiquement tou-
jours existé. Au début, la cryptographie n’était utilisée que par l’armée et les gouverne-
ments. Aujourd’hui, ce besoin est devenu encore plus important avec l’apparition de
moyens de communication plus modernes et le passage à un environnement entièrement
numérique. Des canaux de communication sécurisés sont nécessaires, même pour des ap-
plications civiles telles que les applications bancaires, le télétravail ou encore la vidéo à
la demande (VOD). Cette diversification d’utilisation, associée à la multiplication des ap-
pareils, des architectures ainsi que les ressources limitées des systèmes embarqués, ajoute
de plus en plus de contraintes à la conception des algorithmes de chiffrement. En effet, le
chiffrement et ses implémentations doivent être plus robustes à mesure que la capacité de
calcul devient moins chère. Ils doivent également s’adapter à la pluralité des systèmes et
à sa variété d’architectures, en tenant compte des ressources limitées telles que l’énergie,
la mémoire ou les limitations de puissance de calcul des appareils.

En outre, au cours de la dernière décennie, l’utilisation des applications vidéo sur le
réseau a augmenté de manière exponentielle. Les services VOD comme Netflix ou Amazon
Prime par exemple, les réseaux de télévision payants doivent protéger leur contenu pour
qu’ils ne puissent être regardés que par leurs abonnés. Toutefois, cette protection ne doit

pas affecter l’expérience de l’utilisateur en restant à faible délai et peu complexe pour
continuer à assurer un décodage en temps réel.

Dans ce contexte, cette thèse vise à créer un lien entre ces deux différents domaines
de recherche, tout d’abord en étudiant la mise en œuvre d’un schéma de cryptage
sécurisé, puis en étudiant comment protéger une application vidéo sans créer de gêne
pour l’utilisateur final.

A.2 Objectifs et contributions de la thèse

Les principaux objectifs de cette thèse sont les suivants :

1. Étudier la résilience contre les attaques par canaux auxiliairesSCAs d’un chiffrement
par flux basé chaos existant.

2. Améliorer sa résilience en modifiant sa conception et en mettant en œuvre des
contre-mesures comme le masquage.

3. Proposer une conception matérielle du chiffrement par flux amélioré.

4. Proposer une méthode de cryptage sélectif pour le contenu vidéo sans affecter le
taux de compression.

Ces quatre objectifs sont regroupés dans trois contributions. La première contribution se
concentre sur l’amélioration du chiffrement par flux basé chaos proposé par Taha [1]. Une
méthode d’attaque, utilisant 25 SCAs consécutives, est proposée pour récupérer complète-
ment la clé secrète. À partir de la méthode proposée, une nouvelle méthode de chiffrement
par flux est présentée. Cette nouvelle conception vise à contrer, ou du moins à augmenter
la complexité des attaques effectuées sur la conception précédente.

La deuxième contribution consiste à proposer une conception matérielle légère, sûre et
efficace du nouveau système de chiffrement par flux. Plusieurs implémentations matérielles
sont proposées, la première est une implémentation optimisée du nouveau chiffrement par
flux sans masquage ni pipeline. Cette implémentation est la conception de référence.
Ensuite, la seconde implémentation tire parti du pipeline pour augmenter le débit. Les
troisième et quatrième implémentations intègrent une opération de masquage sur une
partie de la conception de référence comme contre-mesure à SCAs.

La troisième contribution est un schéma de cryptage sélectif dans la toute nouvelle
norme de compression vidéo VVCs. Ce schéma de cryptage sélectif est développé en
respectant deux contraintes majeures : la solution doit être à débit constant, l’efficacité

116

de la compression doit rester inchangée, et conforme à la norme, la vidéo cryptée doit être
lisible en utilisant n’importe quel décodeur VVCs standard.

A.3 Organisation du manuscrit

Cette thèse est organisée comme suit. La partie I est consacrée au contexte et à un
bref examen de l’état de l’art concernant trois sujets principaux :

1. la cryptographie dans la Section 2.1, avec une présentation des propriétés de confi-
dentialité, d’intégrité des données et d’authentification. La différence entre
un système de cryptage asymétrique et symétrique, et leurs applications. Enfin,
une présentation de quelques systèmes de chiffrement symétriques est proposée;

2. la théorie du chaos dans la Section 2.2, la définition d’une carte chaotique et leurs
applications à la cryptographie;

3. enfin, dans la Section 2.3, un aperçu sur les SCAs et ses contre-mesures possibles.

La Partie II se concentre sur les contributions de cette thèse avec :

1. en premier lieu, après une évaluation de la sécurité du système de chiffrement par
flux proposée par Taha [1], une nouvelle version de ce système est proposée dans le
Chapitre 3;

2. le Chapitre 4 présente les implémentations matérielles du chiffrement par flux pro-
posé avec des résultats en termes de vitesse et d’utilisation des ressources matérielles.
Ce chapitre comprend également une courte étude sur la résistance des implémen-
tations face aux SCAs;

3. Enfin, chapitre 5, une méthode de cryptage sélectif sur la toute dernière norme de
codage vidéo VVC est présentée.

Cette thèse est ensuite conclue dans le Chapitre 6 suivi de quelques perspectives et travaux
futurs.

A.4 Conclusion

Cette thèse a présenté trois contributions différentes. La première contribution présente
un nouvel algorithme de chiffrement basé sur les travaux de Taha [1]. La seconde pro-
pose plusieurs implémentations du chiffrement proposé et souligne certaines vulnérabilités

117

physiques. La dernière contribution est un schéma de cryptage sélectif pour la nouvelle
norme de codage vidéo VVC.

A.4.1 Un nouveau chiffrement par flux basé chaos

Le chapitre 3 présente une méthode d’attaque utilisant des SCAs contre le chiffrement
par flux proposé par Taha [1]. La méthode proposée permet à un attaquant de récupérer
complètement la clé secrète.

À partir des vulnérabilités exposées, un nouveau chiffrement par flux basé sur les
travaux de Taha [1] est proposé. Ce nouveau chiffrement introduit une nouvelle carte
chaotique, la carte 4D, pour remplacer la carte ST et ajouter de la non-linéarité au sys-
tème. Il introduit également un couplage souple des cellules de la carte, augmentant
l’interdépendance des cartes chaotiques.

Le nouveau chiffrement par flux basé chaos est testé contre les attaques statistiques
à l’aide de plusieurs tests statistiques comme la suite de test NIST STS, test de corréla-
tion, l’analyse de l’histogramme, l’analyse de la sensibilité des clés et de la confusion par
exemple. Le chiffrement proposé passe tous les tests statistiques.

A.4.2 Conception matérielle du chiffrement proposé

Le chapitre 4 présente plusieurs conceptions matérielles du chiffrement par flux pro-
posé dans le chapitre 3. La conception de référence, qui correspond à une implémentation
optimisée du chiffrement par flux sans pipeline ni masquage additif. Cette implémenta-
tion, qui n’utilise que 441 tranches, permet d’obtenir un débit de 711,11 Mo/s avec une
fréquence de fonctionnement de 22,22 MHz. L’implémentation pipeline à 4 étapes, pro-
posée dans ce manuscrit, fonctionne à 80 MHz avec un débit de 2 560 Mo/s, et n’utilise
que 611 tranches. Cette mise en œuvre approche une vitesse de 3,6, et augmente la surface
de moins de 40 %. La dernière implémentation consiste à ajouter un masquage additif à la
conception de référence. Cet ajout affecte légèrement les performances en ce qui concerne
la vitesse, le débit ne diminuant qu’à 673,98 Mo/s.

Ensuite, dans une brève étude, la sécurité contre les SCAs et l’effet du masquage
additif sont évalués en utilisant la méthodologie proposée par Schneider et Moradi [60].
Cette étude montre que les implémentations proposées ne passent pas le t-test de premier
ordre et pourraient entraîner des fuites d’informations sur la clé secrète.

118

A.4.3 Cryptage sélectif sur la nouvelle norme de compression
vidéo Versatile Video Coding (VVC)

Le chapitre 5 présente la solution de cryptage sélectif proposée de la norme VVC. Ce
cryptage est entièrement conforme au format et à débit constant. Il s’effectue au niveau
CABAC. Ce dernier chapitre présente une méthode principalement axée sur le cryptage
des TCs. Les TCs sont difficiles à chiffrer en raison de leur grande dépendance les uns
par rapport aux autres. Le schéma de cryptage proposé a été intégré dans le codeur et le
décodeur du logiciel de référence VVC VTM 6.0.

La qualité du schéma proposé est évaluée sur des séquences vidéo suivant les Conditions
de Test Communes CTCs avec les métriques PSNR, SSIM et VMAF. La dégradation
introduite par le cryptage est notable pour sur toutes les métriques. De plus, la sécurité
du système proposé est également évaluée au moyen d’une analyse de l’histogramme, d’une
détection des contours ou de la sensibilité à la clé secrète. Enfin, le cryptage ne présente
qu’une faible augmentation de complexité qui reste inférieure à 6 % pour le processus de
décodage.

A.5 Perspectives et Travaux futurs

A.5.1 Contre-mesures contres les SCAs pour les cartes chao-
tiques

Dans les implémentations matérielles proposées au chapitre 4, seules la matrice de cou-
plage et les cellules récursives sont masquées. D’après les résultats du même chapitre, les
cartes chaotiques sont des informations sensibles aux fuites. Les cartes chaotiques utilisées
dans les schémas de cryptage sont généralement non linéaires, ou du moins partiellement
linéaires. À notre connaissance, aucun travail sur ce sujet n’a été publié.

A.5.2 Implémentation du chiffrement par flux proposé niveau
porte logique

D’après la conclusion formulée au chapitre 4 sur le t-test non sélectif, l’implémentation
proposée doit être améliorée. Les éventuelles fuites exposées doivent être atténuées. Tra-
vailler sur une implémentation à un niveau inférieur, au niveau des portes logiques, pour-
rait être une solution pour supprimer les fuites. Dans la littérature, les contre-mesures

119

proposées sont généralement basées sur la dissimulation de données sensibles en ajoutant
des portes supplémentaires pour effectuer la fonction inverse au niveau du bit afin d’avoir
une consommation d’énergie constante, quelle que soit la valeur de la clé.

A.5.3 Méthode d’insertion de filigrane pour le standard VVC

La solution proposée au chapitre 5 peut avoir de nombreuses applications telles que la
gestion des droits numériques (DRM), ou l’insertion de filigrane. L’insertion de filigrane
est une technique utilisée pour identifier un signal tolérant au bruit en injectant un mar-
queur dans les bits sans effet visible sur la qualité subjective. Par définition, l’insertion
d’un filigrane est en quelque sorte l’opposé du cryptage sélectif. Cependant, les mêmes
techniques peuvent être appliquées à l’encodeur VVC.

120

List of Figures

2.1 Block diagram of a stream cipher. 18
2.2 Block diagram of a block cipher. 19
2.3 Electronic Code Book (ECB) block cipher mode of operation 20
2.4 Cipher Block Chaining (CBC) block cipher mode of operation 20
2.5 Cipher FeedBack (CFB) block cipher mode of operation 21
2.6 Output FeedBack (OFB) block cipher mode of operation 21
2.7 CounTeR (CTR) block cipher mode of operation 22
2.8 Mapping of the ST map, with p = 0.75 . 24
2.9 Mapping of the PieceWise Linear Chaotic (PWLC) map, with p = 0.2 . . . 25
2.10 Fridrich image encryption structure . 26

3.1 Taha [1] Pseudo-Chaotic Number Generator (PCNG) diagram. 37
3.2 Improved PCNG diagram. 44
3.3 Map’s attractor of (a) Chebychev 4-th order polynomial T4 and (b) Discrete

Chebychev 4-th order polynomial T4D. 46
3.4 Histogram for 31250 samples and 1000 bins of the 4D map (a) without any

additional Linear Feedback Shift Register (LFSR) (b) with an additional
LFSR. 47

3.5 New map block diagram replacing the ST map. 47

121

3.6 Number of Cycles per Byte (NCpB) function of the secret key of the PCNG
using, in blue, the non-Constant-Time (CT), in red, the CT implementation
of the PWLC map. 49

3.7 Probability qN(i) of having A×B = A′×B′ where i is the number of right
shift and A, B, A′ and B′being four distinct unsigned integers defined on
N bits, for N = 32. 50

3.8 New generic block diagram of a cell using shifts. 51
3.9 Histogram of the PCNG for one billion samples and 1000 bins. 55
3.10 Frequency distribution of the correlation coefficients between generated

stream with different keys. 56
3.11 Frequency distribution of the Hamming Distances (HDs) between gener-

ated stream with different keys. 56
3.12 (a) Average correlation coefficients and (b) frequency distribution of corre-

lation coefficients between stream SKi
and SKij

. 58
3.13 (a) Average HDs and (b) frequency distribution of HDs between stream

SKi
and SKij

. 59
3.14 (a) Average Unified Average Changing Intensitys (UACIs) and (b) fre-

quency distribution of UACIs between stream SKi
and SKij

. 60
3.15 (a) Average Number of Pixels Change Rates (NPCRs) and (b) frequency

distribution of NPCRs between stream SKi
and SKij

. 60
3.16 (a) Average redundancy and (b) frequency distribution of ciphered images

CKi
(Ij). 61

3.17 (a) Average horizontal correlation coefficients and (b) frequency distribu-
tion of ciphered images CKi

(Ij). 62
3.18 (a) Average vertical correlation coefficients and (b) frequency distribution

of ciphered images CKi
(Ij). 62

4.1 Simplified Register-Transfer Level (RTL) representation of the 4D map
implementation. The position of the pipeline register is represented in red
and the critical path in green. 68

4.2 Simplified RTL representation of the PWLC map implementation com-
posed of 1 multiplier and 5 multiplexers. The position of the pipeline reg-
ister is represented in red. 70

4.3 Block diagram of the pipeline LWCB PCNG. 71
4.4 Block diagram of the masking operation on the LWCB PCNG. 72

122

4.5 Experimental setup for SCA measurement. 76
4.6 Non-specific t-test results for the proposed implementation with and with-

out masking. The dashed line represents the start of encryption and the
red lines are the limit if the t-test is admissible. 78

5.1 Overall architecture of the CABAC engine in VVC. The selective encryp-
tion block is illustrated in green . 83

5.2 Binarization of the Transform Coefficients (TCs) of a 4×4 sub-block in TC
mode JVET-S2002 [91]. 86

5.3 Transform Coefficients (TCs) scanning orders (5.3a) reverse diagonal scan
order and (5.3b) regular diagonal scan order. 88

5.4 TCs dependencies: coefficients highlighted in green are used to compute
the local absolute sum of the current coefficient in yellow for (5.4a) TC
mode and (5.4b) Transform Skip (TS) mode. S1 and S2 are two sets of
green coefficients in (5.4a) and (5.4b), respectively. 92

5.5 The current coefficient (in yellow) is used to compute the local absolute sum
of the coefficients highlighted in green for (5.5a) TC mode and (5.5b) TS
mode. Coefficients highlighted in red are used along the current coefficient
in the prediction of the parity of the coefficients in green. S̄1 and S̄2 are
two sets of green coefficients in (5.5a) and (5.5b), respectively. 96

5.6 Visual illustration of Frame #10 of RaceHorsesC video decoded without
encryption (5.6a - 5.6e) and with selective encryption (5.6f - 5.6j) at five QPs 99

5.7 Histograms of frame #10 computed for the anchor (5.7a- 5.7e) and cipher
(5.7f- 5.7j) of RaceHorsesC video at five QP values. The selective encryp-
tion solution significantly changes the pixels distributions as shown by the
EQ metric. 104

5.8 Edge Detection on Frame #10 computed for the anchor (5.8a-5.8e) and
ciphered (5.8f- 5.8j) RaceHorsesC video at five Quantization Parameters
(QPs). 106

123

List of Tables

3.1 Key composition of the original stream cipher. 38
3.2 List of the attacks used to break PCNG. 39
3.3 Key composition of the proposed stream cipher. 52
3.4 Average results on NIST STS for 100 keys. 54
3.5 Histogram performance. 55
3.6 Timing of the different cipher versions compared to standard ciphers. . . . 61

4.1 Hardware resource usage of the proposed masked implementation without
pipeline . 73

4.2 Speed performance and hardware resources usage comparison of several
systems . 74

5.1 Encrypted syntax elements in the proposed VVC selective encryption so-
lution, all these syntax elements are bypass coded. 93

5.2 PSNR performance of the proposed selective encryption for all video se-
quences at five QPs. Anchor and ciphered configurations correspond to the
video decoded without encryption and with selective encryption, respectively.100

5.3 Average SSIM performance of the proposed encryption solution for all video
classes at five QPs . 101

5.4 Average VMAF performance of the proposed encryption solution for all
video classes at five QPs . 101

125

5.5 Encryption space in percentage (%) per syntax element at five QPs 103
5.6 Encryption Quality for CTCs video classes at five QP values 103
5.7 Average Edge Differential Ratio (EDR) for CTCs video classes at five QP

values . 105
5.8 NPCR and UACI with two secret keys with 1-bit-difference 107
5.9 Replacement Attack, average PSNR, SSIM and VMAF score on CTCs. . . 108
5.10 Deciphering time ∆SE in second and deciphering overhead COSE in % on

Intel i7-7700 processor at 3.6 GHz. 109

126

List of Algorithms

2.1 RSA square and multiply algorithm. 28

3.1 Calculate XS(n) = STmap(XinS(n), PS). 41
3.2 Calculate Xp(n) = PLWCmap(Xp(n− 1), Pp). 41
3.3 Constant-time implementation of XP (n) = PLWCmap(XinP (n− 1), PP). . 48

4.1 Implementation of eXclusive OR (XOR) shift PCNG. 71

5.1 abs_remainder Binarization . 90
5.2 Limited_EGk(abs_remainder, cRiceParam,BinReduc,

log2TrRange) . 91
5.3 nbEncryptable = isEncryptable(Xc, Yc, CoeffArr, nbEncryptable,

bypass, V) . 94
5.4 Encryptable = checkSumChange(Xp, Yp, absLevel, absCMin,

absCMax); . 95

127

Glossary

AC Alternating Current p. 83
AES Advanced Encryption Standard pp. 12, 21, 22, 54, 60, 65, 66, 73–75, 81, 83,

97, 107, 108, 148
AVC Advanced Video Coding p. 81
B frame Bidirectional predicted frame pp. 83, 90
BRAM Block RAM p. 72
CABAC Context-Adaptive Binary Arithmetic Coding pp. 82, 83, 86–88, 90, 92, 96,

109, 112, 118, 123
CBC Cipher Block Chaining pp. 3, 19, 20, 121
CBR Constant Bit Rate pp. 12, 112
CFB Cipher FeedBack pp. 3, 19–21, 83, 97, 121
CPA Correlation Power Analysis pp. 4, 30, 38, 42, 43, 65, 70
CPU Central Processing Unit p. 59
CT Constant-Time pp. 47, 121
CTC Common Test Conditions pp. 82, 98, 103, 105, 107–109, 112, 119, 126, 148
CTR CounTeR pp. 3, 19, 21, 60, 66, 83, 97, 98, 121
DES Data Encryption Standard p. 21
DPA Differential Power Analysis pp. 4, 29, 30, 65, 70
DRM Digital Rights Management pp. 113, 120
DSP Digital Signal Processing pp. 72, 73
ECB Electronic Code Book pp. 3, 19, 20, 121

129

EDR Edge Differential Ratio pp. 82, 83, 105, 126
EGk Exp-Golomb k-th order code pp. 86, 89, 91
EQ Encryption Qualilty pp. 6, 82, 83, 102–104, 112, 123
FA Fault Attack pp. 4, 27
FF Flip-Flop pp. 72, 73
FL Fixed Length pp. 86, 91
FPGA Field-Programmable Gate Array pp. 65–67, 75
HD Hamming Distance pp. 4, 5, 28, 29, 54, 55, 57, 122
HEVC High Efficiency Video Coding pp. 81–83, 86, 87, 104, 131
HW Hamming Weight pp. 4, 28, 29, 38
I frame Intra frame pp. 83, 90
IIR Infinite Impulse Response pp. 5, 35, 38, 48, 50–52
IP Initial Permutation p. 21
IPM Intra Prediction Mode p. 83
ISO International Organization for Standardization p. 82
ITU International Telecommunication Union p. 82
IV Initial Vector pp. 18, 20, 21, 23, 36, 41, 52, 54, 67, 70, 71, 75, 76
JPEG Joint Photographic Experts Group p. 81
JVET Joint Video Experts Team pp. 112, 148
LFSR Linear Feedback Shift Register pp. 35, 46, 67, 70, 121
LSB Less Significant Bits p. 93
LUT Lookup Table pp. 72, 73, 75, 88, 89, 97
LWCB LightWeight Chaos-Based pp. 6, 7, 43, 54, 60, 65, 70, 71, 73, 75, 97, 111, 113,

122
MAC Multiply–ACcumulate pp. 51, 72
MPEG Moving Picture Experts Group p. 82
MV Motion Vector pp. 82, 83, 91
NCpB Number of Cycles per Byte pp. 47, 121
NIST National Institute of Standards and Technology pp. 5, 53, 61, 111, 118, 125
NPCR Number of Pixels Change Rate pp. 56, 57, 82, 83, 106, 107, 122, 126
OFB Output FeedBack pp. 3, 19, 21, 121
OTT Over-The-Top p. 98
P frame Predicted frame pp. 83, 90

130

PCNG Pseudo-Chaotic Number Generator pp. 5, 25, 35, 36, 38, 40, 43, 47, 52, 54,
60, 61, 67, 69–71, 70–73, 121, 122, 125, 127

PRNG Pseudo-Random Number Generator pp. 18, 19, 71, 97, 98
PSNR Peak Signal to Noise Ration pp. 82, 99, 102, 108, 109, 112, 119, 125, 126
PWLC PieceWise Linear Chaotic pp. 4, 5, 24–26, 35–38, 40, 43, 46, 47, 52, 67–70,

72, 121, 122
QP Quantization Parameter pp. 98, 99, 101–105, 107–109, 123, 125
QTC Quantized Transform Coefficient p. 83
ROI Region Of Interest pp. 81, 83
RTL Register-Transfer Level pp. 67–69, 122
SAO Sample-Adaptive Offset pp. 83, 91
S-Box Substitution Box pp. 19, 22, 30
SC Stream Cipher pp. 43, 65, 73
SCA Side-Channel Attack pp. 3–7, 12, 13, 17, 18, 20, 22, 24, 26–28, 30, 35, 38, 50,

61, 63, 65, 70, 75, 77, 79, 111–113, 116–119, 122, 148
SHVC Scalable High Efficiency Video Coding (HEVC) pp. 81, 83
SPA Simple Power Analysis pp. 4, 29, 43
SSIM Structural SIMilarity pp. 82, 99, 101, 108, 109, 112, 119, 125, 126
SSS Shamir’s Secret Sharing p. 83
ST Skew Tent pp. 4, 24, 35–37, 43, 45, 46, 111, 118, 121
STS Statistical Tests Suite pp. 5, 53, 61, 111, 118, 125
SVC Scalable Video Coding p. 81
TB Truncated Binary pp. 86, 91
TC Transform Coefficient pp. 6, 82, 83, 86–91, 90–93, 96–98, 102, 109, 112, 118,

123
TRp Truncated Rice Code with context p pp. 86, 89, 91
TS Transform Skip pp. 6, 87–90, 93, 123
TU Truncated Unary pp. 86, 89
UACI Unified Average Changing Intensity pp. 56, 57, 82, 83, 106, 107, 122, 126
U Unary pp. 86, 89
VCEG Video Coding Experts Group p. 82
VMAF Video Multimethod Assessment Fusion pp. 82, 99, 102, 108, 109, 112, 119,

125, 126
VOD Video On Demand p. 11

131

VTM VVC Test Model pp. 98, 109, 112, 118, 142
VVC Versatile Video Coding pp. 6, 7, 12, 13, 81–84, 86–89, 88, 90, 91, 90–93, 91,

94–98, 100, 102, 104, 106, 108–113, 116–118, 120, 123, 125, 148
XOR eXclusive OR pp. 18, 20–23, 30, 35, 46, 50, 65, 66, 71, 83, 97, 98, 127

132

Bibliography

[1] Mohammad Abu Taha, « Real-Time and Portable Chaos-based Crypto-Compression
Systems for Efficient Embedded Architectures », Chapter 3, PhD thesis, 2017 (cit.
on pp. 12, 13, 35–37, 44, 54, 55, 61, 111, 116–118).

[2] Christof Paar, Jan Pelzl, and Bart Preneel, Understanding cryptography: a text-
book for students and practitioners, en, 2nd corrected printing, OCLC: 845804174,
Berlin: Springer, 2010 (cit. on pp. 22, 66).

[3] Martin Boesgaard, Mette Vesterager, and Erik Zenner, « The Rabbit Stream Ci-
pher », in: Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2008,
pp. 69–83 (cit. on pp. 22, 35, 55, 61).

[4] Matthew Robshaw, « The eSTREAM Project », en, in: New Stream Cipher De-
signs, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2008,
pp. 1–6 (cit. on p. 22).

[5] Hongjun Wu, « New Stream Cipher Designs », in: ed. by Matthew Robshaw and
Olivier Billet, Berlin, Heidelberg: Springer-Verlag, 2008, chap. The Stream Cipher
HC-128, pp. 39–47 (cit. on pp. 23, 35, 55, 61).

[6] Christophe De Canniere and Bart Preneel, « Trivium », in: New Stream Cipher
Designs: The eSTREAM Finalists, Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 244–266 (cit. on pp. 23, 65, 66).

133

[7] Boris Hasselblatt and Anatole Katok, A First Course in Dynamics: with a
Panorama of Recent Developments, Cambridge University Press, 2003 (cit. on
p. 23).

[8] Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke, Chaos: An Introduction
to Dynamical Systems, Springer New York, 1996 (cit. on p. 23).

[9] Franz Pichler and Josef Scharinger, « Finite dimensional generalized baker dynam-
ical systems for cryptographic applications », in: Computer Aided Systems Theory
— EUROCAST ’95, ed. by Franz Pichler, Roberto Moreno Díaz, and Rudolf Al-
brecht, Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 465–476 (cit. on
p. 24).

[10] C. Manchein and M.W. Beims, « Gauss map and Lyapunov exponents of inter-
acting particles in a billiard », in: Chaos, Solitons & Fractals 39.5 (Mar. 2009),
pp. 2041–2047 (cit. on p. 24).

[11] M. Hénon, « A two-dimensional mapping with a strange attractor », in: Commu-
nications in Mathematical Physics 50.1 (1976), pp. 69–77 (cit. on p. 24).

[12] Colin Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors,
vol. 41, Springer Science & Business Media, 2012 (cit. on p. 24).

[13] R Lozi, « Un attracteur étrange (?) du type attracteur de Hénon », in: Le Journal
de Physique Colloques 39.C5 (1978), pp. C5–9 (cit. on p. 24).

[14] T Yoshida, H Mori, and H Shigematsu, « Analytic study of chaos of the tent map:
band structures, power spectra, and critical behaviors », in: Journal of statistical
physics 31.2 (1983), pp. 279–308 (cit. on p. 24).

[15] M. Hasler and Y. L. Maistrenko, « An introduction to the synchronization of
chaotic systems: coupled skew tent maps », in: IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications 44.10 (1997), pp. 856–866
(cit. on p. 24).

[16] J. Khan, J. Ahmad, and S. O. Hwang, « An efficient image encryption scheme
based on: Henon map, skew tent map and S-Box », in: 2015 6th International
Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), 2015,
pp. 1–6 (cit. on p. 24).

134

[17] Shiguo Lian, Jinsheng Sun, and Zhiquan Wang, « A block cipher based on a suit-
able use of the chaotic standard map », in: Chaos, Solitons & Fractals 26.1 (2005),
pp. 117–129 (cit. on p. 24).

[18] K. Wong, Q. Lin, and J. Chen, « Simultaneous Arithmetic Coding and Encryption
Using Chaotic Maps », in: IEEE Transactions on Circuits and Systems II: Express
Briefs 57.2 (2010), pp. 146–150 (cit. on p. 24).

[19] Shujun Li et al., « Statistical Properties of Digital Piecewise Linear Chaotic Maps
and Their Roles in Cryptography and Pseudo-Random Coding », in: Cryptography
and Coding, ed. by Bahram Honary, Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 205–221 (cit. on p. 25).

[20] K. Wong, Q. Lin, and J. Chen, « Simultaneous Arithmetic Coding and Encryption
Using Chaotic Maps », in: IEEE Transactions on Circuits and Systems II: Express
Briefs 57.2 (2010), pp. 146–150 (cit. on p. 25).

[21] J. Peng et al., « A novel scheme for image encryption based on piecewise linear
chaotic map », in: 2008 IEEE Conference on Cybernetics and Intelligent Systems,
2008, pp. 1012–1016 (cit. on p. 25).

[22] Jiri Fridrich, « Image encryption based on chaotic maps », in: 1997 IEEE inter-
national conference on systems, man, and cybernetics. Computational cybernetics
and simulation, vol. 2, IEEE, 1997, pp. 1105–1110 (cit. on p. 25).

[23] Jiri Fridrich, « Symmetric ciphers based on two-dimensional chaotic maps », in:
International Journal of Bifurcation and chaos 8.06 (1998), pp. 1259–1284 (cit. on
p. 25).

[24] Shiguo Lian, Jinsheng Sun, and Zhiquan Wang, « Security analysis of a chaos-
based image encryption algorithm », in: Physica A: Statistical Mechanics and its
Applications 351.2-4 (2005), pp. 645–661 (cit. on p. 26).

[25] Huaqian Yang et al., « A fast image encryption and authentication scheme based
on chaotic maps », in: Communications in Nonlinear Science and Numerical Sim-
ulation 15.11 (2010), pp. 3507–3517 (cit. on p. 26).

[26] Mohamed L Barakat, Ahmed G Radwan, and Khaled N Salama, « Hardware real-
ization of chaos based block cipher for image encryption », in: ICM 2011 Proceed-
ing, IEEE, 2011, pp. 1–5 (cit. on p. 26).

135

[27] MS Azzaz et al., « Real-time FPGA implementation of Lorenz’s chaotic generator
for ciphering telecommunications », in: 2009 Joint IEEE North-East Workshop on
Circuits and Systems and TAISA Conference, IEEE, 2009, pp. 1–4 (cit. on p. 26).

[28] El-Habib Bensikaddour, Youcef Bentoutou, and Nasreddine Taleb, « Embedded
implementation of multispectral satellite image encryption using a chaos-based
block cipher », in: Journal of King Saud University-Computer and Information
Sciences 32.1 (2020), pp. 50–56 (cit. on p. 26).

[29] H. Bar-El et al., « The Sorcerer’s Apprentice Guide to Fault Attacks », in: Pro-
ceedings of the IEEE 94.2 (2006), pp. 370–382 (cit. on p. 27).

[30] L. Zussa et al., « Efficiency of a glitch detector against electromagnetic fault
injection », in: 2014 Design, Automation Test in Europe Conference Exhibition
(DATE), 2014, pp. 1–6 (cit. on p. 27).

[31] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine, « Electromag-
netic fault injection: the curse of flip-flops », in: Journal of Cryptographic Engi-
neering 7.3 (2017), pp. 183–197 (cit. on p. 27).

[32] N. Moro et al., « Electromagnetic Fault Injection: Towards a Fault Model on a
32-bit Microcontroller », in: 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, 2013, pp. 77–88 (cit. on p. 27).

[33] Oliver Kömmerling and Markus G Kuhn, « Design Principles for Tamper-Resistant
Smartcard Processors. », in: Smartcard 99 (1999), pp. 9–20 (cit. on p. 27).

[34] Paul C Kocher, « Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems », in: Annual International Cryptology Conference, Springer,
1996, pp. 104–113 (cit. on pp. 28, 29).

[35] Paul Kocher, Joshua Jaffe, and Benjamin Jun, « Differential power analysis », in:
Annual international cryptology conference, Springer, 1999, pp. 388–397 (cit. on
p. 30).

[36] Eric Brier, Christophe Clavier, and Francis Olivier, « Correlation power analysis
with a leakage model », in: International workshop on cryptographic hardware and
embedded systems, Springer, 2004, pp. 16–29 (cit. on p. 30).

[37] Suresh Chari et al., « Towards sound approaches to counteract power-analysis
attacks », in: Annual International Cryptology Conference, Springer, 1999, pp. 398–
412 (cit. on p. 30).

136

[38] Louis Goubin and Jacques Patarin, « DES and differential power analysis the “Du-
plication” method », in: International Workshop on Cryptographic Hardware and
Embedded Systems, Springer, 1999, pp. 158–172 (cit. on p. 30).

[39] Yuval Ishai, Amit Sahai, and David Wagner, « Private circuits: Securing hard-
ware against probing attacks », in: Annual International Cryptology Conference,
Springer, 2003, pp. 463–481 (cit. on p. 30).

[40] Mehdi-Laurent Akkar and Christophe Giraud, « An Implementation of DES and
AES, Secure against Some Attacks », in: Cryptographic Hardware and Embedded
Systems — CHES 2001, ed. by Çetin K. Koç, David Naccache, and Christof Paar,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 309–318 (cit. on p. 31).

[41] Emmanuel Prouff and Matthieu Rivain, « A generic method for secure sbox im-
plementation », in: International Workshop on Information Security Applications,
Springer, 2007, pp. 227–244 (cit. on p. 31).

[42] Erik Boss et al., « Strong 8-bit Sboxes with efficient masking in hardware extended
version », in: Journal of Cryptographic Engineering 7.2 (2017), pp. 149–165 (cit.
on p. 31).

[43] Shiguo Lian et al., « A chaotic stream cipher and the usage in video protection »,
in: Chaos, Solitons and Fractals 34.3 (2007), pp. 851–859 (cit. on p. 35).

[44] Wassim Hamidouche et al., « Real-time selective video encryption based on the
chaos system in scalable HEVC extension », in: Signal Processing: Image Commu-
nication 58 (2017), pp. 73–86 (cit. on pp. 35, 82, 84, 103, 104).

[45] Charalampos Manifavas et al., « A survey of lightweight stream ciphers for em-
bedded systems », in: Security and Communication Networks 9.10 (Dec. 2015),
pp. 1226–1246 (cit. on pp. 35, 61).

[46] Robert Nguyen et al., « Speed-up of SCA Attacks on 32-bit Multiplications »,
en, in: Codes, Cryptology and Information Security, ed. by Claude Carlet et al.,
vol. 11445, Cham: Springer International Publishing, 2019, pp. 31–39 (cit. on p. 42).

[47] T Geisel and V Fairen, « Statistical properties of chaos in Chebyshev maps », in:
Physics Letters A 105.6 (1984), pp. 263–266 (cit. on p. 45).

[48] Ons Jallouli, « Chaos-based security under real-time and energy constraints for the
Internet of Things », Chapter 4, PhD thesis, 2017 (cit. on p. 48).

137

[49] L. E. Bassham et al., A statistical test suite for random and pseudorandom number
generators for cryptographic applications, tech. rep., National Institute of Stan-
dards and Technology(NIST), 2010 (cit. on p. 53).

[50] Milton Abramowitz and Irene A Stegun, Handbook of mathematical functions: with
formulas, graphs, and mathematical tables, vol. 55, Government Printing Office,
1964 (cit. on p. 54).

[51] E. Kreyszig, "Introductory Mathematical Statistics", John Wiley, 1970 (cit. on
p. 54).

[52] Yue Wu, Joseph P Noonan, Sos Agaian, et al., « NPCR and UACI randomness
tests for image encryption », in: Cyber journals: multidisciplinary journals in sci-
ence and technology, Journal of Selected Areas in Telecommunications (JSAT) 1.2
(2011), pp. 31–38 (cit. on pp. 57, 106).

[53] Eli Biham and Adi Shamir, « Differential cryptanalysis of DES-like cryptosys-
tems », in: Journal of CRYPTOLOGY 4.1 (1991), pp. 3–72 (cit. on pp. 57, 106).

[54] Farhad Maleki et al., « An image encryption system by cellular automata with
memory », in: 2008 Third International Conference on Availability, Reliability and
Security, IEEE, 2008, pp. 1266–1271 (cit. on pp. 57, 107).

[55] Umer Farooq and M. Faisal Aslam, « Comparative analysis of different AES im-
plementation techniques for efficient resource usage and better performance of an
FPGA », en, in: Journal of King Saud University - Computer and Information
Sciences 29.3 (July 2017), pp. 295–302 (cit. on pp. 65, 66, 74, 75).

[56] Paweł Chodowiec and Kris Gaj, « Very Compact FPGA Implementation of the
AES Algorithm », en, in: Cryptographic Hardware and Embedded Systems - CHES
2003, ed. by Gerhard Goos et al., vol. 2779, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 319–333 (cit. on pp. 65, 66, 74, 75).

[57] Camel Tanougast, « Hardware Implementation of Chaos Based Cipher: Design of
Embedded Systems for Security Applications », en, in: Chaos-Based Cryptography,
vol. 354, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 297–330 (cit. on
pp. 65, 67, 74, 75).

[58] S. Sadoudi et al., « Real-time FPGA implementation of Lü’s chaotic generator for
cipher embedded systems », in: 2009 International Symposium on Signals, Circuits
and Systems, 2009, pp. 1–4 (cit. on pp. 65, 67, 74, 75).

138

[59] J. Fan et al., « State-of-the-art of secure ECC implementations: a survey on known
side-channel attacks and countermeasures », in: 2010 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust (HOST), June 2010, pp. 76–87
(cit. on pp. 65, 71).

[60] Tobias Schneider and Amir Moradi, « Leakage Assessment Methodology », in:
Cryptographic Hardware and Embedded Systems – CHES 2015, ed. by Tim Güneysu
and Helena Handschuh, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 495–513 (cit. on pp. 66, 75, 79, 112, 118).

[61] Martin Boesgaard, Mette Vesterager, and Erik Zenner, « The Rabbit Stream Ci-
pher », en, in: New Stream Cipher Designs, vol. 4986, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 69–83 (cit. on p. 66).

[62] Deian Stefan, « Hardware Framework for the Rabbit Stream Cipher », en, in:
Information Security and Cryptology, vol. 6151, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 230–247 (cit. on pp. 66, 74, 75).

[63] Daniel J. Bernstein, « The Salsa20 Family of Stream Ciphers », en, in: New Stream
Cipher Designs, vol. 4986, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 84–97 (cit. on p. 66).

[64] Jarosław Sugier, « Implementing Salsa20 vs. AES and Serpent Ciphers in Popular-
Grade FPGA Devices », en, in: New Results in Dependability and Computer Sys-
tems, vol. 224, Heidelberg: Springer International Publishing, 2013, pp. 431–438
(cit. on pp. 66, 74, 75).

[65] Kris Gaj et al., « Comparison of hardware performance of selected Phase II eS-
TREAM candidates », en, in: (), p. 11 (cit. on pp. 66, 67, 74, 75).

[66] David Hwang et al., « Comparison of FPGA-Targeted Hardware Implementations
of eSTREAM Stream Cipher Candidates », en, in: (), p. 12 (cit. on pp. 66, 67, 74,
75).

[67] George Marsaglia, « Xorshift RNGs », in: Journal of Statistical Software, Articles
8.14 (2003), pp. 1–6 (cit. on p. 71).

[68] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al., « A testing
methodology for side-channel resistance validation », in: NIST non-invasive attack
testing workshop, vol. 7, 2011, pp. 115–136 (cit. on pp. 75, 79).

139

[69] Side-channel AttacK User Reference Architecture. Sakura-X/Sasebo-GIII presenta-
tion page, url: http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html
(cit. on p. 75).

[70] Specification for the Advanced Encryption Standard (AES), Federal Information
Processing Standards Publication 197, 2001 (cit. on p. 81).

[71] M. Van Droogenbroeck, « Partial encryption of images for real-time applications »,
in: IEEE Signal Processing Symposium 1.2 (2004), pp. 11–15 (cit. on p. 82).

[72] Engel Dominik, Stütz Thomas, and Uhl Andreas, « A survey on JPEG2000 en-
cryption », in: IEEE Multimedia Systems 15.4 (2009), pp. 243–270 (cit. on p. 82).

[73] Z. Shahid, M. Chaumont, and W. Puech, « Fast Protection of H.264/AVC by Se-
lective Encryption of CAVLC and CABAC for I and P Frames », in: IEEE Trans-
actions on Circuits and Systems for Video Technology 21.5 (May 2011), pp. 565–
576 (cit. on p. 82).

[74] S. Park and S. Shin, « Efficient Selective Encryption Scheme for the H.264/Scalable
Video Coding(SVC) », in: 2008 Fourth International Conference on Networked
Computing and Advanced Information Management, vol. 1, Sept. 2008, pp. 371–
376 (cit. on p. 82).

[75] Zafar Shahid and William Puech, « Visual protection of HEVC video by selec-
tive encryption of CABAC binstrings », in: ieee transactions on multimedia 16.1
(2013), pp. 24–36 (cit. on pp. 82, 83).

[76] Mousa Farajallah et al., « ROI encryption for the HEVC coded video contents »,
in: 2015 IEEE International Conference on Image Processing (ICIP), IEEE, 2015,
pp. 3096–3100 (cit. on pp. 82, 83).

[77] B. Boyadjis et al., « Extended Selective Encryption of H.264/AVC (CABAC)- and
HEVC-Encoded Video Streams », in: IEEE Transactions on Circuits and Systems
for Video Technology 27.4 (Apr. 2017), pp. 892–906 (cit. on pp. 82, 84).

[78] Glenn Van Wallendael et al., « Encryption for high efficiency video coding with
video adaptation capabilities », in: IEEE Transactions on Consumer Electronics
59.3 (2013), pp. 634–642 (cit. on pp. 82, 84, 85).

[79] Vasileios A Memos and Kostas E Psannis, « Encryption algorithm for efficient
transmission of HEVC media », in: Journal of Real-Time Image Processing 12.2
(2016), pp. 473–482 (cit. on pp. 82, 84).

140

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html

[80] Min Long, Fei Peng, and Xiaoqing Gong, « A Format-Compliant Encryption for
Secure HEVC Video Sharing in Multimedia Social Network », in: International
Journal of Digital Crime and Forensics (IJDCF) 10.2 (2018), pp. 23–39 (cit. on
pp. 82, 85).

[81] Ahmed I Sallam, El-Sayed M El-Rabaie, and Osama S Faragallah, « Efficient
HEVC selective stream encryption using chaotic logistic map », in: Multimedia
Systems 24.4 (2018), pp. 419–437 (cit. on pp. 82, 85).

[82] N. Sidaty et al., « Compression Performance of the Versatile Video Coding: HD
and UHD Visual Quality Monitoring », in: 2019 Picture Coding Symposium (PCS),
Nov. 2019, pp. 1–5 (cit. on p. 82).

[83] C. E. Shannon, « Communication theory of secrecy systems », in: Declassified
Report, Bell Systems Technical Journal 28 (Dec. 1949), pp. 656–715 (cit. on p. 82).

[84] H. E. H. Ahmed, H. M. Kalash, and O. S. F. Allah, « Encryption Efficiency Anal-
ysis and Security Evaluation of RC6 Block Cipher for Digital Images », in: 2007
International Conference on Electrical Engineering, Apr. 2007, pp. 1–7 (cit. on
pp. 82, 103).

[85] Nidhi Taneja, Balasubramanian Raman, and Indra Gupta, « Chaos based partial
encryption of spiht compressed images », in: International Journal of Wavelets,
Multiresolution and Information Processing 9.02 (2011), pp. 317–331 (cit. on
pp. 82, 105).

[86] Yue Wu et al., « NPCR and UACI Randomness Tests for Image Encryption », in:
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of
Selected Areas in Telecommunications (JSAT, 2011 (cit. on p. 82).

[87] Adi Shamir, « How to share a secret », in: Communications of the ACM 22.11
(1979), pp. 612–613 (cit. on p. 84).

[88] V Vijayalakshmi, LM Varalakshmi, and G Florence Sudha, « Efficient encryption of
intra and inter frames in MPEG video », in: International Conference on Network
Security and Applications, Springer, 2010, pp. 93–104 (cit. on p. 84).

[89] Fei Peng et al., « A tunable selective encryption scheme for H. 265/HEVC based
on chroma IPM and coefficient scrambling », in: IEEE Transactions on Circuits
and Systems for Video Technology (2019) (cit. on p. 85).

141

[90] Dawen Xu, « Data hiding in partially encrypted HEVC video », in: ETRI Journal
(2020) (cit. on p. 85).

[91] S. Kim J. Chen Y. Ye, Algorithm description for Versatile Video Coding and Test
Model 10 (VTM 10), tech. rep. S2002, JVET, July 2020 (cit. on p. 86).

[92] V. Sze and M. Budagavi, « High Throughput CABAC Entropy Coding in HEVC »,
in: IEEE Transactions on Circuits and Systems for Video Technology 22.12 (2012),
pp. 1778–1791 (cit. on p. 86).

[93] Helger Lipmaa, Phillip Rogaway, and David Wagner, « Comments to NIST con-
cerning AES modes of operations: CTR-mode encryption », in: National Institute
of Standards and Technologies, Citeseer, 2000 (cit. on p. 98).

[94] Martin Boesgaard, Mette Vesterager, and Erik Zenner, « The Rabbit Stream Ci-
pher », en, in: New Stream Cipher Designs, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2008, pp. 69–83 (cit. on p. 98).

[95] Guillaume Gautier et al., « Hardware Implementation of Lightweight Chaos-Based
Stream Cipher », in: International Conference on Cyber-Technologies and Cyber-
Systems, CYBER 2019, Porto, Portugal, Sept. 2019, 5 pages, url: https://hal.
archives-ouvertes.fr/hal-02184571 (cit. on p. 98).

[96] Hongjun Wu, « The Stream Cipher HC-128 », en, in: New Stream Cipher Designs,
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2008, pp. 39–47
(cit. on p. 98).

[97] Git repository of the VTM, url: https://vcgit.hhi.fraunhofer.de/jvet/
VVCSoftware_VTM (cit. on p. 98).

[98] Stefan Winkler and Praveen Mohandas, « The evolution of video quality measure-
ment: From PSNR to hybrid metrics », in: IEEE transactions on Broadcasting 54.3
(2008), pp. 660–668 (cit. on p. 99).

[99] Zhou Wang et al., « Image quality assessment: from error visibility to structural
similarity », in: IEEE transactions on image processing 13.4 (2004), pp. 600–612
(cit. on p. 99).

[100] R. Rassool, « VMAF reproducibility: Validating a perceptual practical video qual-
ity metric », in: 2017 IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BMSB), June 2017, pp. 1–2 (cit. on p. 99).

142

https://hal.archives-ouvertes.fr/hal-02184571
https://hal.archives-ouvertes.fr/hal-02184571
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM

[101] Rawan Qumsieh, Mousa Farajallah, and Rushdi Hamamreh, « Joint block and
stream cipher based on a modified skew tent map », in: Multimedia Tools and
Applications 78.23 (2019), pp. 33527–33547 (cit. on p. 104).

[102] Michael Lewis-Beck, Data analysis: An introduction, 103, Sage, 1995 (cit. on
p. 104).

[103] Nidhi Taneja, Balasubramanian Raman, and Indra Gupta, « Selective image en-
cryption in fractional wavelet domain », in: AEU-International Journal of Elec-
tronics and Communications 65.4 (2011), pp. 338–344 (cit. on p. 105).

[104] Narendra K Pareek, Vinod Patidar, and Krishan K Sud, « Diffusion–substitution
based gray image encryption scheme », in: Digital signal processing 23.3 (2013),
pp. 894–901 (cit. on p. 106).

[105] Behrouz A Forouzan, Cryptography & network security, McGraw-Hill, Inc., 2007
(cit. on p. 107).

[106] Amir Said, « Measuring the strength of partial encryption schemes », in: IEEE
International Conference on Image Processing 2005, vol. 2, IEEE, 2005, pp. II–
1126 (cit. on p. 108).

[107] SuGil Choi, Jong-Wook Han, and Hyunsook Cho, « Privacy-Preserving H. 264
Video Encryption Scheme », in: ETRI Journal 33.6 (2011), pp. 935–944 (cit. on
p. 108).

[108] Thomas Stütz and Andreas Uhl, « On JPEG2000 error concealment attacks », in:
Pacific-Rim Symposium on Image and Video Technology, Springer, 2009, pp. 851–
861 (cit. on p. 108).

[109] Frederic Dufaux and Touradj Ebrahimi, « Scrambling for privacy protection in
video surveillance systems », in: IEEE Transactions on Circuits and Systems for
Video Technology 18.8 (2008), pp. 1168–1174 (cit. on p. 108).

143

List of my publications

Conferences

1. Guillaume Gautier, Safwan El Assad, Olivier Déforges, Sylvain Guilley, Adrien
Facon, Wassim Hamidouche, «Enhanced Software Implementation of a Chaos-Based
Stream Cipher», in: SECURWARE 2018, Venise, Italy, Sept. 2018, pp. 128–133.

2. Robert Nguyen, Adrien Facon, Sylvain Guilley,Guillaume Gautier, Safwan El As-
sad, «Speed-up of SCA Attacks on 32-bit Multiplications», in: International Confer-
ence on Codes, Cryptology And Information Security, C2SI 2019, Rabat, Morocco,
Apr. 2019, pp. 31–39.

3. Guillaume Gautier, Maguy Le Glatin, Safwan El Assad, Wassim Hamidouche,
Olivier Déforges, Sylvain Guilley, Adrien Facon, «Hardware Implementation of
Lightweight Chaos-Based Stream Cipher», in: International Conference on Cyber-
Technologies and Cyber-Systems, CYBER 2019, Porto, Portugal, Sept. 2019, 5
pages.

Journal

1. Mousa Farajallah, Guillaume Gautier, Wassim Hamidouche, Olivier Déforges,
Safwan El Assad, «Selective Encryption of the Versatile Video Coding Standard»,
in: IEEE Access.

145

Titre : Conception de Solutions Matérielles de Chiffrement Basées Chaos pour des Applica-
tions Vidéo Sécurisées

Mot clés : Cryptographie Basée Chaos, Attaques par Canaux Auxiliaires, Versatile Video

Coding, Chiffrement Sélectif.

Résumé : De par de la prolifération des objets
connectés, le développement de systèmes
cryptographiques sécurisés et à faibles res-
sources est devenu un véritable défi. De nom-
breux algorithmes de cryptage n’ont pas été
conçus initialement pour être mis en œuvre
sur des plateformes embarquées aux res-
sources informatiques, de mémoire et éner-
gétiques limitées. De plus, les méthodes d’At-
taque par Canaux Auxiliaires (SCAs) sont de
plus en plus efficaces, le coût de leurs appli-
cations diminue, de sorte que le besoin d’un
chiffrement sécurisé, léger et orienté matériel
est considérable.

Dans cette thèse, après avoir évalué la sé-
curité d’un chiffrement par flux basé chaos,
une conception avancée de ce chiffrement par
flux est proposée. Une implémentation maté-
rielle de ce nouveau chiffrement est introduite
et évaluée par rapport aux SCAs. Dans une
dernière partie, une méthode de cryptage sé-
lectif pour la prochaine norme de codage vi-
déo Versatile Video Coding (VVC) est pré-
sentée. Elle est appliquée sur des séquences
vidéos suivant les Conditions de Test Com-
munes (CTC) du standard, en utilisant un
chiffrement standardisé Advanced Encryption
Standard (AES).

Title: Lightweight Hardware Design of a Chaos-Based Stream Cipher for Secure Video Appli-
cations

Keywords: Chaos-based Cryptography, Side-Channel Attacks, Versatile Video Coding, Selec-

tive Encryption.

Abstract: Due to the proliferation of con-
nected devices, the development of secured
and low-resource cryptographic systems has
become a real challenge. Many encryption
algorithms were not designed to be imple-
mented on embedded platforms with limited
computing, memory and energy resources.
Moreover, Side-Channel Attack (SCA) are
more and more efficient, the cost of their appli-
cations is decreasing so the need for a secure
lightweight hardware-friendly cipher is consid-
erable.

In this thesis, after assessing the security
of an exciting chaos-based stream cipher, an
enhanced design of this stream cipher is pro-
posed. Then, a hardware implementation of
this new cipher is introduced and assessed
against SCA. Finally, a selective encryption
method for the next video coding standard Ver-
satile Video Coding (VVC) is proposed and as-
sessed under the Joint Video Experts Team
(JVET) Common Test Conditions (CTC) se-
quences using Advanced Encryption Standard
(AES).

	Acknowledgements
	1 Introduction
	1.1 Context
	1.2 Objectives and Contributions of the Thesis
	1.3 Outline

	I Background
	2 Introduction to Chaos-Based Cryptography and SCAs
	2.1 Introduction to Cryptography
	2.1.1 Asymmetric Cryptography
	2.1.2 Symmetric Cryptography
	2.1.2.1 Stream cipher
	2.1.2.2 Block cipher
	2.1.2.2.1 Electronic Code Book (ECB) mode
	2.1.2.2.2 Cipher Block Chaining (CBC) mode
	2.1.2.2.3 Cipher FeedBack (CFB) mode
	2.1.2.2.4 Output FeedBack (OFB) mode
	2.1.2.2.5 CounTeR (CTR) mode

	2.1.2.3 Existing non-chaotic cipher

	2.2 Chaos Theory and its Application to Cryptography
	2.2.1 Chaotic Maps
	2.2.1.1 Skew Tent (ST) Map
	2.2.1.2 PieceWise Linear Chaotic (PWLC) Map

	2.2.2 Existing Chaos-Based Ciphers

	2.3 Physical Cryptanalysis
	2.3.1 FAs
	2.3.2 SCAs
	2.3.2.1 Channels
	2.3.2.1.1 Time Attacks
	2.3.2.1.2 Power Attacks
	2.3.2.1.3 Electromagnetic Attacks

	2.3.2.2 Leakage Model
	2.3.2.2.1 Hamming Distance (HD) leakage model
	2.3.2.2.2 Hamming Weight (HW) leakage model

	2.3.2.3 Distinguisher
	2.3.2.3.1 Simple Power Analysis (SPA)
	2.3.2.3.2 Differential Power Analysis (DPA)
	2.3.2.3.3 Correlation Power Analysis (CPA)

	2.3.2.4 Countermeasures against SCAs
	2.3.2.4.1 Data Masking
	2.3.2.4.2 Constant Power Consumption

	II Contributions
	3 Enhanced Software Implementation of a Chaos-Based Stream Cipher
	3.1 Original Stream Cipher
	3.2 Side Channel analysis of studied stream cipher
	3.2.1 AT01 AT06: Extraction of PKiS and PKiP, products of recursive cells
	3.2.2 AT07 AT08: PS and PP, parameters of the chaotic maps
	3.2.3 AT09/AT17: K1S and K1P, first coefficient of recursive cell
	3.2.4 AT10 AT16/AT18 AT24: XiS, KiS, XiP and KiP, remaining keys of recursive cell
	3.2.5 AT25: tr, the transient phase
	3.2.6 Recommended design improvements

	3.3 New stream cipher
	3.3.1 Map bloc modification
	3.3.1.1 New chaotic map
	3.3.1.2 Constant time implementation

	3.3.2 Coupling Matrix
	3.3.3 Shift in REC CELL improves key sensitivity
	3.3.4 Masking
	3.3.4.1 Masking only the IIR structure
	3.3.4.2 Masking coupling matrix and IIR structure

	3.3.5 Set up of the key

	3.4 Results and discussion
	3.4.1 NIST STS SP 800-22
	3.4.2 Histogram distribution
	3.4.3 Correlation - HD
	3.4.4 Key sensitivity
	3.4.5 Confusion Analysis
	3.4.6 Time performance

	3.5 Conclusion

	4 Hardware Implementation of the proposed Lightweight Chaos-Based Stream Cipher
	4.1 Related work
	4.2 Hardware-friendly Architecture of the proposed Pseudo-Chaotic Number Generator (PCNG)
	4.2.1 4D map
	4.2.2 PWLC map
	4.2.3 4-stage pipeline implementation
	4.2.4 A countermeasure against SCA

	4.3 Results and Discussion
	4.3.1 Implementation of the LWCB SC
	4.3.2 Comparison with other existing stream ciphers
	4.3.3 Side-Channel Attack (SCA) analysis on LightWeight Chaos-Based (LWCB) stream cipher hardware implementation

	4.4 Conclusion

	5 Selective Encryption of the Versatile Video Coding (VVC) standard
	5.1 Introduction
	5.2 Related Works
	5.3 CABAC engine in VVC
	5.3.1 Binarization methods
	5.3.2 TCs coding
	5.3.2.1 VVC Transform Coefficient (TC) coding mode
	5.3.2.2 VVC Transform Skip (TS) coding mode
	5.3.2.3 Binarization process

	5.4 Proposed VVC selective encryption
	5.4.1 Transform Coefficient encryption
	5.4.2 Encryption Method and Synchronisation

	5.5 Results and Discussions
	5.5.1 Experimental Setup
	5.5.2 Video Quality and Encryption Space
	5.5.2.1 Video Quality
	5.5.2.2 Encryption space

	5.5.3 Security Analysis
	5.5.3.1 Encryption Qualilty (EQ) analysis
	5.5.3.2 Histogram analysis
	5.5.3.3 Edges and structural information protection
	5.5.3.4 Sensitivity to secret keys
	5.5.3.5 Brute Force Attack
	5.5.3.6 Error Concealment Attack

	5.5.4 Complexity Analysis

	5.6 Conclusion

	6 Conclusion
	6.1 Research Contributions
	6.1.1 A new LightWeight Chaos-Based (LWCB) Stream Cipher
	6.1.2 Hardware Design of Proposed Stream Cipher
	6.1.3 Selective Encryption on the new Video Compression Standard Versatile Video Coding (VVC)

	6.2 Prospects – Future Works
	6.2.1 Countermeasures Against SCAs for Chaotic Maps
	6.2.2 Gate-Level Implementation of Proposed LWCB Stream Cipher
	6.2.3 Watermarking for VVC Standard

	A French Summary
	A.1 Contexte
	A.2 Objectifs et contributions de la thèse
	A.3 Organisation du manuscrit
	A.4 Conclusion
	A.4.1 Un nouveau chiffrement par flux basé chaos
	A.4.2 Conception matérielle du chiffrement proposé
	A.4.3 Cryptage sélectif sur la nouvelle norme de compression vidéo Versatile Video Coding (VVC)

	A.5 Perspectives et Travaux futurs
	A.5.1 Contre-mesures contres les SCAs pour les cartes chaotiques
	A.5.2 Implémentation du chiffrement par flux proposé niveau porte logique
	A.5.3 Méthode d'insertion de filigrane pour le standard VVC

	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Bibliography

