
HAL Id: tel-03686469
https://theses.hal.science/tel-03686469v1

Submitted on 2 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel and distributed algorithms for pattern matching
in big graphs
Sarra Bouhenni

To cite this version:
Sarra Bouhenni. Parallel and distributed algorithms for pattern matching in big graphs. Compu-
tational Geometry [cs.CG]. Université de Lyon; Ecole Nationale Supérieure d’Informatique (ESI) -
Alger, 2021. English. �NNT : 2021LYSE1260�. �tel-03686469�

https://theses.hal.science/tel-03686469v1
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 2021LYSE1260

THÈSE de DOCTORAT DE L'UNIVERSITÉ DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1 en cotutelle avec l’Ecole
Supérieure d’Informatique - Alger

Ecole Doctorale N° 512
Informatiques et Mathématiques (InfoMaths)

Spécialité de doctorat : Informatique

Soutenue publiquement le 01/12/2021, par :

Sarra BOUHENNI

Parallel and Distributed Algorithms for
Pattern Matching in Big Graphs

Devant le jury composé de :

Fatima SI-TAYEB Présidente
Professeure, École Supérieure d’Informatique, Algérie

Yahya SLIMANI Rapporteur
Professeur, Université de la Manouba, Tunisie

Olivier TOGNI Rapporteur
Professeur, Université Bourgogne Franche Comté, France

Salima HASSAS Examinatrice
Professeure, Université Claude Bernard Lyon 1, France

Hamamache KHEDDOUCI Directeur de thèse
Professeur, Université Claude Bernard Lyon 1, France

Nadia NOUALI-TABOUDJEMAT Co-directrice de thèse
Directrice de recherche, CERIST, Algérie

Saïd YAHIAOUI Invité
Maître de recherche, CERIST, Algérie

This work is dedicated to my mom

You have always wished that I become a doctor (precisely a physician)

I hope that becoming a doctor in computer science counts

I love you

Acknowledgements

I would like to thank my three supervisors without whom the completion of this project

would not have been possible. Thank you Prof Hamamache Kheddouci and Dr Nadia

Nouali for your support and guidance throughout my four years of PhD. Your vision and

expertise helped me not only to progress as a researcher but also as a person.

My deepest appreciation and gratitude goes for my mentor and supervisor Dr Saïd

Yahiaoui who taught me the real meaning of research. Thank you for being there during

the hard times to appreciate even the little progress I made. . . Thank you for reminding

me every time that there is always room for improvement.

I would also like to acknowledge the programs PHC Tassili and IDEX Lyon for funding

this PhD.

I would also like to thank my colleagues in DTISI Lab and LIRIS lab for their interest

and valuable comments on my work.

To my friends and family, you should know that your support and encouragement was

worth more than I can express on paper.

To Nacera and Ouidad, thank you for your unconditional love and support.

To Anis, you were always there with a word of encouragement and listening ear. Thank

you for your presence along the way and your curiosity and willingness to help me solve

the problems I encountered.

Abstract

Graph Pattern Matching (GPM), usually evaluated through subgraph isomorphism, Ąnds

subgraphs of a large data graph that are similar to an input query graph. It has many

applications, such as pattern recognition and Ąnding communities in social networks.

However, besides its NP-completeness, the strict constraints of subgraph isomorphism

are making it impractical for GPM in the context of big data. As a result, relaxed

GPM models such as graph simulation emerged as they yield interesting results in

polynomial time. Moreover, massive graphs generated by mostly social networks require

distributed storing and processing of the data over multiple machines. Therefore, the

existing algorithms for relaxed GPM need to be revised to this context by adopting new

paradigms for big graph processing, e.g. Think-Like-A-Vertex and its derivatives.

In this thesis, we investigate the use of distributed graph processing paradigms and

systems in the evaluation of GPM queries. Our goal is to identify the programming

models that are best suited for this problem. Furthermore, we study the existing

GPM approaches, with more emphasis on the relaxed ones in the aim of proposing new

parallel and distributed algorithms for relaxed GPM that guarantee linear scalability.

Our contributions are summarized as follows. First, we propose a taxonomy of prior

work on distributed GPM based on multiple criteria, such as the GPM model and the

programming paradigm. Next, we introduce BDSim as a new model that captures

more semantic similarities compared to the existing models while being feasible in cubic

time. Besides, we design distributed vertex-centric algorithms that are adapted to the

context of massive graphs for evaluating BDSim. Furthermore, we propose the Ąrst fully

distributed and scalable approach for strong simulation, a relaxed GPM model that

strikes a balance between Ćexibility and tractability. Finally, we propose the Ąrst efficient

parallel edge-centric approach for evaluating graph simulation and dual simulation in

distributed graphs. We validate the effectiveness and efficiency of our approaches through

theoretical guarantees and reliable testing over synthetic and real-world graphs.

v

We conĄrmed in this thesis that different paradigms can be used in designing dis-

tributed GPM algorithms depending on the GPM model adopted. Indeed, algorithms

for neighborhood-based models such as subgraph isomorphism and strong simulation

perform better with a vertex-centric or subgraph-centric paradigm as the latter involves

some data locality, while the most efficient algorithms for graph simulation and dual

simulation are edge-based and offer linear scalability guarantees.

Keywords: Big data, Big graphs, Pattern matching, Subgraph isomorphism, Graph

algorithms, Parallel and Distributed computing.

Résumé

LŠappariement des sous-graphes (ASG) est un problème classique, souvent modélisé

à lŠaide de lŠisomorphisme de sous-graphes. Il est utilisé dans différents domaines

dŠapplication tels que la reconnaissance de motifs et la détection de communautés dans

les réseaux sociaux. Néanmoins, en plus du fait quŠil soit NP-Complet, lŠisomorphisme de

sous-graphes sŠavère très strict pour lŠASG dans le contexte actuel des grands graphes. Par

conséquent, de nouveaux modèles dŠASG relaxé ont apparu comme la Graph Simulation,

permettant dŠavoir des résultats intéressants dans un temps polynomial. De plus, les

graphes massifs qui sont issus des réseaux sociaux requièrent un stockage et un traitement

distribués sur plusieurs machines, dŠoù la nécessité de revisiter les algorithmes dŠASG

relaxé en adoptant de nouveaux paradigmes, dédiés au traitement des grands graphes,

notamment le Think-Like-A-Vertex et ses variantes.

Dans cette thèse, nous étudions lŠintérêt des systèmes et paradigmes distribués de

traitement des grands graphes dans lŠévaluation des requêtes dŠASG. LŠobjectif est

dŠidentiĄer les modèles de programmation qui sont les mieux adaptés pour ce problème.

Par ailleurs, nous visons à proposer de nouveaux algorithmes dŠASG qui sont parallèles,

distribués et offrant une scalabilité linéaire. Nos contributions se résument en quatre

points : (1) nous proposons une nouvelle classiĄcation des approches distribuées dŠASG,

en nous basant sur plusieurs critères tels que le modèle dŠASG et le paradigme de

programmation, (2) nous introduisons le nouveau modèle dŠASG relaxé BDSim qui permet

de mieux capturer les similarités entre les graphes, tout en ayant une complexité cubique.

En plus, nous proposons des algorithmes distribués centré sommet pour lŠévaluation de

BDSim sur des grands graphes, (3) nous développons le premier algorithme scalable et

complètement distribué pour évaluer Strong Simulation, un modèle dŠASG relaxé offrant

un compromis entre la Ćexibilité et la faisabilité, (4) enĄn, nous proposons la première

approche parallèle et centrée arêtes pour évaluer Graph Simulation et Dual Simulation

dans les graphes massifs et distribués. Nous validons les différents algorithmes proposés

théoriquement et expérimentalement sur des graphes massifs synthétiques et réels.

vii

A travers ce travail de recherche, nous avons conĄrmé que différents modèles de pro-

grammation peuvent être utilisés pour la conception dŠalgorithmes dŠASG et cela dépend

du modèle dŠASG adopté. Effectivement, lŠisomorphisme de sous-graphes et Strong

Simulation sont des modèles basés sur la localité et le voisinage à plusieurs sauts, ce qui

nécessite un paradigme centré sommet ou encore centré sous-graphe. En revanche, les

algorithmes les plus efficaces pour évaluer Graph Simulation et Dual Simulation effectuent

des traitements centrés arêtes et garantissent une scalabilité linéaire.

Mots clés: Big data, Big graphs, Pattern matching, Subgraph isomorphism, Graph

algorithms, Parallel and Distributed computing.

Contents

List of Figures xii

List of Tables xiv

List of Acronyms xvi

Introduction 1

Motivations and challenges . 1

Contributions . 3

Thesis organization . 5

I Context and Background 6

1 Preliminaries 7

1.1 Introduction . 7

1.2 Terminologies . 7

1.3 Problem deĄnition . 10

1.4 Applications of graph pattern matching 11

1.5 Structural Graph Pattern Matching . 11

1.5.1 Graph isomorphism . 12

1.5.2 Subgraph isomorphism . 12

1.5.3 Algorithms for subgraph isomorphism 12

1.5.4 Parallel algorithms for subgraph isomorphism 17

1.5.5 Limitations of subgraph isomorphism 21

1.6 Relaxed Graph Pattern Matching . 21

1.6.1 Graph simulation . 22

1.6.2 Dual simulation . 23

Contents ix

1.6.3 Strong simulation . 24

1.6.4 Strict simulation . 25

1.6.5 Tight simulation . 27

1.6.6 Bounded simulation . 29

1.6.7 Relaxation simulation . 30

1.6.8 Surjective simulation . 30

1.6.9 Taxonomy simulation . 31

1.6.10 Multi-constrained simulation . 31

1.6.11 Limited simulation . 31

1.6.12 Time-respecting simulation . 32

1.6.13 Double simulation . 32

1.7 Chapter summary . 32

2 Graph Pattern Matching in Massive Graphs: State-of-the-art 35

2.1 Introduction . 35

2.2 Distributed graph processing . 35

2.3 Programming models for distributed graph processing 37

2.3.1 Timing . 38

2.3.2 Communication . 38

2.3.3 Execution model . 39

2.4 Distributed graph pattern matching approaches 42

2.4.1 Querying distributed data graphs 43

2.4.2 Distributed structural graph pattern matching 43

2.4.3 Distributed relaxed graph pattern matching 49

2.4.4 ClassiĄcation of distributed GPM approaches 56

2.5 Chapter summary . 59

II Parallel and Distributed Algorithms for Relaxed GPM 61

3 Distributed Graph Pattern Matching via Bounded Dual Simulation 62

3.1 Introduction . 62

3.2 Bounded Dual Simulation (BDSim) . 63

3.3 Distributed evaluation of BDSim . 70

3.3.1 Extracting short cycles from the query graph 70

3.3.2 Vertex-centric algorithm for dual simulation 70

3.3.3 Vertex-centric algorithm for detecting invalid matches 74

Contents x

3.3.4 Vertex-centric algorithm for Ąltering invalid matches 77

3.4 Theoretical guarantees . 79

3.4.1 Convergence of the distributed algorithms 79

3.4.2 Correctness of the distributed algorithms 80

3.5 Experimental evaluation . 83

3.5.1 Experimental data sets . 83

3.5.2 Experimental setup . 84

3.5.3 Pattern generation . 84

3.5.4 Experimental results . 85

3.6 Chapter summary . 90

4 A Distributed and Scalable Approach for Strong Simulation 91

4.1 Introduction . 91

4.2 D3S: A distributed and scalable approach for strong simulation 92

4.2.1 Overview of D3S . 93

4.2.2 Vertex-centric dual simulation . 95

4.2.3 Vertex-centric neighborhood discovery 97

4.2.4 Vertex-centric strong simulation 100

4.3 D3S+ : Distributed and scalable evaluation of strict simulation 103

4.4 Experimental evaluation . 104

4.4.1 Distributed implementation . 104

4.4.2 Experimental environment . 105

4.4.3 Experimental results . 106

4.5 Chapter summary . 110

5 An Efficient Parallel Edge-Centric Approach for Relaxed GPM 111

5.1 Introduction . 111

5.2 Parallel edge-centric graph simulation . 113

5.2.1 Data structures . 114

5.2.2 Parallel graph simulation via PGSim 116

5.2.3 Convergence and Correctness of PGSim 121

5.3 Parallel edge-centric dual simulation . 124

5.3.1 A split-and-combine approach for parallel dual simulation 124

5.3.2 Convergence and Correctness of PDSim 127

5.4 Experimental evaluation . 128

5.4.1 Distributed implementation of PGSim and PDSim 129

5.4.2 Experimental environment . 129

Contents xi

5.4.3 Experimental results . 130

5.5 Chapter summary . 134

Conclusions and Perspectives 136

Conclusion . 136

Future directions . 138

Bibliography 140

List of Figures

1.1 Illustrative examples of different categories of graphs 8

1.2 Example of a data graph G1 and a query graph Q1 13

1.3 Results of applying subgraph isomorphism between Q1 and G1 14

1.4 Results of applying graph simulation between Q1 and G1 22

1.5 Limitations of graph simulation . 23

1.6 Results of applying dual simulation between Q1 and G1 25

1.7 Results of applying strong simulation between Q1 and G1 26

1.8 Results of applying strict simulation between Q1 and G1 27

1.9 Results of applying tight simulation between Q1 and G1 28

1.10 Example of bounded simulation . 30

1.11 Extensions of graph simulation . 33

1.12 Inclusion relationships between the GPM models 34

2.1 Components of a distributed architecture. 36

2.2 Graph fragmentation based on edge-cut partitioning strategy. 37

2.3 Programming models for distributed graph processing. 38

2.4 Bulk Synchronous Parallel model. 39

2.5 The vertex-centric paradigm. 41

2.6 The edge-centric paradigm. 41

2.7 The subgraph-centric paradigm. 41

2.8 Taxonomy of the distributed GPM approaches. 58

3.1 A cyclic query with three matches respecting dual simulation. 65

3.2 A graph with its Ąve short cycles. 65

3.3 Example showing the possible answers returned by BDSim 67

3.4 The inclusion relationships for BDSim 69

3.5 Diagram of distributed token passing procedure 75

3.6 The number of cycles w.r.t. the size of query graph. 85

List of Figures xiii

3.7 Results of varying the query graph size for BDSim 87

3.8 Number of active vertices during the evaluation of BDSim 88

3.9 Results of varying the data graph size for BDSim 89

3.10 Results of varying the number of distinct labels for BDSim 89

4.1 Strong simulation . 93

4.2 Local context of vertex 4 . 98

4.3 Construction of Lb for vertex 4 . 98

4.4 Difference between maxPGs returned by strict simulation and the one

returned by strong simulation in the case of query graph Q4 and data

graph G′

4. 103

4.5 Performance evaluation of D3S . 107

4.6 Comparing D3S and D3S+ to Strict13 on different datasets when varying

the query graph size ♣Vq♣ . 108

4.7 Comparing D3S and D3S+ to Strict13 on synthetic graphs when varying

the data graph size ♣V ♣. 109

5.1 Query graph Q5 . 114

5.2 Data graph G5 . 114

5.3 Match graph w.r.t. graph simulation (Gs) 114

5.4 Set of STwigs extracted from the data graph G5 115

5.5 Running example of PGSim . 122

5.6 The split-and-combine approach for parallel dual simulation 124

5.7 Gs1 resulting from ST1 . 127

5.8 Gs2 resulting from ST2 . 127

5.9 Match graph w.r.t. dual simulation (Gd) 127

5.10 Performance evaluation of PGSim and PDSim 131

5.11 Weak scaling of PGSim and PDSim . 132

5.12 Strong scaling of the parallel algorithms PGSim and PDSim 132

List of Tables

2.1 Distributed graph pattern matching approaches. 57

3.1 Different possible BDSim matches . 67

3.2 Notations used in the distributed algorithms of BDSim 71

3.3 Characteristics of the data graphs used in the different experiments . . . 84

4.1 Characteristics of the data graphs used in the different experiments . . . 105

5.1 Characteristics of the data graphs used in the different experiments . . . 129

List of Acronyms

BDSim Bounded Dual Simulation.

BFS Breadth First Search.

BSIM Bounded Simulation.

BSP Bulk Synchronous Parallel.

CC Connected Component.

D3S Distributed Scalable Strong Simulation.

D3S+ Distributed Scalable Strict Simulation.

DAG Direct Acyclic Graph.

DBS Double Simulation.

DFS Depth First Search.

DRS Dual Relaxation Simulation.

DSIM Dual Simulation.

GAS Gather-Sum-Apply-Scatter.

GPM Graph Pattern Matching.

GSIM Graph Simulation.

LSIM Limited Simulation.

Max-PG Maximum Perfect Subgraph.

List of Acronyms xvi

MCS Multi-Constrained Simulation.

MPI Message Passing Interface.

PDSim Parallel Dual Simulation.

PGSim Parallel Graph Simulation.

RDD Resilient Distributed Dataset.

RDF Resource Description Framework.

RPC Remote Procedure Call.

SGSIM Strong Simulation.

SIMD Single Instruction Multiple Data.

SJS Surjective Simulation.

SSSP Single Source Shortest Path.

STSIM Strict Simulation.

STwig Star Twig.

SubISO Subgraph Isomorphism.

TLAV Think Like A Vertex.

TRS Time-Respecting Simulation.

TSIM Tight Simulation.

TXS Taxonomy Simulation.

URS Unidirectional Relaxation Simulation.

WSN Wireless Sensor Network.

Introduction

Motivations and challenges

With the rapid growth of the Internet, huge amounts of data are being generated with

every passing minute. The challenges brought about by what is commonly known today

as Şbig dataŤ have led to the research community revising traditional techniques and

algorithms that were designed for collecting, storing, analyzing, and visualizing data.

According to an IBM report published in the year 2017 [139], 90 percent of the data

in the world has been generated in the last two years alone; i.e. during 2015Ű2016.

Incredibly, there are 2.5 quintillions new bytes of data produced every day, and such huge

quantities of information cannot be stored by traditional forms of centralized storage.

Indeed, distributed Ąle systems are used everywhere from large scale databases to big

data analytics platforms.

An important share of this data is represented in the form of graphs, which are known to

be natural and Ćexible data structures that are effective in modeling complex relationships,

interactions, and interdependence between objects. They are used for modeling datasets

in a broad range of domains, such as biological networks, the World Wide Web and social

media networks. There are a variety of graph problems that can be used in modeling

use cases of different application domains. For example, we have the shortest path

problem, graph traversals such as BFS or DFS, connected components, triangle counting,

minimum spanning tree, graph pattern matching or the page rank problem used to rank

the different nodes of a graph.

The very large graphs have been dubbed Şbig graphsŤ, which results in bringing new

challenges in the different stages of the big graphs pipeline, whether it is in terms of

distributed storage, distributed processing or visualization. Distributed processing of big

graphs is the most crucial stage of this pipeline. It involves solving a speciĄc problem

through highly optimized and efficient algorithms that are distributed and parallel.

Introduction 2

Therefore, they support data scalability and are able to harness the computing resources

available on every computing machine.

In this thesis, we address Graph Pattern Matching (GPM), which refers to the problem of

Ąnding occurrences of a small pattern graph (a.k.a. query graph) in a relatively larger data

graph. It is among the most analyzed problems in graph theory, and it has a wide range

of applications like in-database analytics, biometric identiĄcation and social networks

analysis. GPM queries are traditionally evaluated based on subgraph isomorphism that

Ąnds a bijective mapping between the vertices of the query graph and a subgraph of the

data graph, such that query edges are preserved by this mapping. Since several decades,

different subgraph isomorphism algorithms have been put forward, aiming to reduce

time and space complexity and addressing the problems of speciĄc graph classes, e.g.

trees, bipartite graphs, and direct acyclic graphs. Nevertheless, subgraph isomorphism

is known to have several limitations. It is an NP-Complete problem [49], which makes

it impractical for massive graphs that may contain up to billions of nodes and trillions

of edges. Indeed, the strict constraints imposed by this model are not interesting for

the current real-world applications especially in social networks. Consequently, graph

simulation [57, 32] has been considered as an alternative model that relaxes the matching

constraints imposed by subgraph isomorphism, hence making it feasible in polynomial

time. Furthermore, several other relaxed models emerged, aiming to reduce the time and

space complexity while keeping an acceptable accuracy depending on the application

domain and its requirements in terms of Ćexibility and response time. We cite for

example bounded simulation [34], dual simulation and strong simulation [84]. These

newly introduced models consider not only the topological structure of the graphs, but

also the semantic information carried by labels and attributes on both the graph vertices

and edges.

Besides, programming models are being used to design distributed graph algorithms such

as Hadoop MapReduce or the Bulk Synchronous Parallel model (BSP). However, recent

studies have shown that the general-purpose programming models, especially Hadoop

MapReduce, are inefficient in processing distributed graphs due to the complexity of

graph data as opposed to other forms of data. Big data processing in Hadoop MapReduce

is based on I/O operations that are time consuming. In addition, the data locality

is an intrinsic property of iterative graph algorithms. It increases the number of I/O

operations making this category of frameworks unsuitable for graph processing at large

scale. This is a reason why new paradigms, specially designed for big graph processing,

appeared such as the Think-Like-A-Vertex (TLAV) model and its derivatives adopted

Introduction 3

by Pregel [86], Giraph [44], GPS [108] and GraphX [143]. These paradigms consider

the different properties of graph data and allow designing linearly scalable algorithms

intended to run on clusters composed of dozens to hundreds of machines.

With the emergence of these distributed systems, important challenges need to be ad-

dressed in the Ąeld of graph pattern matching. The Ąrst challenge is distributed subgraph

matching in general, while the second one is efficient and linearly scalable algorithms for

relaxed subgraph matching. Even though the relaxed GPM models are appropriate for

social network analysis due to their polynomial time complexity, only few works address

them from a scalability point of view. In this thesis, we study the programming models

that are used for distributed graph processing and their adaptation to the problem

of graph pattern matching. We aim to propose, based on these models, new efficient

parallel and distributed algorithms for evaluating relaxed GPM while considering the

intrinsic properties of big graphs that are issued from real-world applications. The linear

scalability of these algorithms will be proved through a detailed theoretical validation in

addition to an experimental evaluation of their performance on several real graphs.

Contributions

To achieve the above mentioned objectives, we investigate in our Ąrst contribution the

existing relaxed GPM models and compare them to subgraph isomorphism. This study

allowed us to draw the relationships between these models and show how close they

are to graph simulation and subgraph isomorphism. In addition, we study the existing

graph processing paradigms to answer the following question; which programming models

are better suited for the problem of GPM and whether the differences between these

models affect the selection of the programming models that should be adopted or not?

Furthermore, we conduct a thorough study over prior distributed graph pattern matching

approaches to spot and discuss their shortcomings, notably in terms of scalability. Finally,

we propose a new taxonomy of GPM algorithms based on multiple criteria, such as the

GPM model involved and the programming paradigm adopted in designing the approach.

One conclusion drawn from this study is that strong simulation is an interesting extension

of graph simulation that captures the topological structure of the query graph by bringing

duality and locality. However, even though strong simulation allows preserving most of

the important information of a query graph, this model has not been sufficiently covered

in the context of massive graphs. Apart from the proposal of alternative models that

remain limited in terms of scalability, i.e. strict simulation or tight simulation [38], few

Introduction 4

research papers have paid attention to distributed strong simulation. For these reasons,

we tackle the problem of scalability of strong simulation from three different angles. First,

we propose an alternative GPM model that answers relaxed GPM queries in distributed

graphs while capturing duality and locality (properties present in strong simulation)

and offering scalability guarantees. Second, we design a new distributed and scalable

algorithm for evaluating strong simulation with performance guarantees on attributed

and dynamic data graphs. Finally, since dual simulation is an important building block

in the evaluation of strong simulation, we propose the Ąrst parallel and highly scalable

algorithm for dual simulation in distributed graphs (in addition to graph simulation).

These contributions are detailed below.

Our main contribution in this thesis is the proposal of a new relaxed GPM model called

Bounded Dual Simulation (BDSim), and that sits between graph simulation and subgraph

isomorphism. BDSim strikes a balance between tractability and accuracy of the returned

results as it captures perfectly the cyclic structure of the query graph while being feasible

in cubic time. We validate the scalability of BDSim through theoretical guarantees in

addition to the design and implementation of a distributed vertex-centric algorithm that

evaluates BDSim on massive data graphs. Finally, we conduct extensive experiments on

synthetic and real data graphs and compare our approach to prior GPM models.

The existing approaches of strong simulation are either centralized or distributed. How-

ever, even the distributed ones do not provide scalability guarantees. In our second

contribution, we propose the Ąrst fully distributed and vertex-centric algorithm for scal-

able evaluation of strong simulation on massive graphs, called D3S. An extension of this

approach to evaluate strict simulation, referred to as D3S+, is also proposed. In addition

to the theoretical guarantees on the convergence and correctness of this approach, the

conducted experiments prove that D3S and D3S+ can reduce the response time by up to

Ąve times compared to the state-of-the-art distributed algorithm.

Our last contribution is designing an efficient parallel edge-centric approach for evaluating

graph simulation and dual simulation. First, we introduce a new distributed data structure

called ST whose elements can be processed in parallel. Next, we propose the Ąrst parallel

and edge-based algorithm called PGSim to answer relaxed GPM queries through graph

simulation. Based on ST and PGSim, we develop PDSim, a highly scalable split-and-

combine approach to efficiently evaluate GPM queries via dual simulation. Furthermore,

we provide guarantees on the convergence and correctness of the two algorithms. The

conducted experiments show that our approach runs faster than the state-of-the-art

Introduction 5

vertex-centric algorithm of graph simulation by more than an order of magnitude. The

obtained results also prove the linear scalability of the two parallel algorithms.

Thesis organization

Chapter 1 (Preliminaries) provides important preliminaries in addition to an overview of

the two categories of graph pattern matching models that exist. The Ąrst category is

structural GPM and includes mainly subgraph isomorphism, while the second category

groups the relaxed GPM models such as graph simulation, dual simulation, strong

simulation and many other extensions.

Chapter 2 (Graph Pattern Matching in Massive Graphs: State-of-the-art) is divided into

two parts. The Ąrst part introduces and discusses the different programming models and

systems used in distributed graph processing, whereas in the second part, we review the

state-of-the-art distributed approaches of GPM on massive graphs. Finally, we classify

these works and provide a new taxonomy based on multiple criteria.

In Chapter 3 (Distributed Graph Pattern Matching via Bounded Dual Simulation), we

present our new model BDSim, along with details of the distributed vertex-centric

algorithms proposed to evaluate GPM queries via BDSim.

Next, in Chapter 4 (A Distributed and Scalable Approach for Strong Simulation), we

present and evaluate our new distributed vertex-centric algorithm for the scalable evalua-

tion of the two relaxed models strong simulation and strict simulation.

Chapter 5 (An Efficient Parallel Edge-Centric Approach for Relaxed GPM) presents

a new approach for parallel evaluation of relaxed GPM queries on distributed graphs.

We introduce the new distributed data structure ST and the two parallel edge-centric

algorithms PGSim and PDSim for graph simulation and dual simulation, respectively.

Finally, we conclude this thesis with a summary of the carried works and some future

perspectives.

Part I

Context and Background

Chapter 1

Preliminaries

1.1 Introduction

Graphs, being a set of nodes connected to each other by links, are a natural way of

representing information in a broad range of domains. Graphs are everywhere, they can

be found in chemistry to model the molecule structure, in physics to study the three-

dimensional structure of atoms, in social networks to model users and the relationships

between them, in the study of the World Wide Web where web pages and the hyperlinks

connecting them are represented as a graph, and Ąnally, in computer systems to model

computation Ćows. This chapter is an introduction to the world of graphs and graph

pattern matching in particular. First, we deĄne important terms and concepts. Next, we

introduce the problem of graph pattern matching and its application domains. Finally,

the largest part of this chapter is dedicated to reviewing the existing formulations and

models of graph pattern matching and drawing the relationships between them.

1.2 Terminologies

A graph is a structure that groups a set of objects where some pairs are related to each

other. These objects are identiĄed by unique numbers and can be characterized by labels

or attributes. They are known as the graph vertices (or nodes). When two vertices are

related, the link between them is referred to as an edge (or an arc). Moreover, the edges

can be labeled with values in R. In this case, the graph is called a weighted graph. An

edge can also have a speciĄc direction (the graph is therefore directed), or it can be

undirected (we talk about an undirected graph). Moreover, when an edge between two

1.2 Terminologies 8

vertices v and v′ is directed from v to v′, v is considered the source vertex and v′ is the

destination vertex of this edge. Finally, a graph is said to be simple when there is at

most one edge between any pair of vertices and there are no edges from a vertex to itself.

In other words, the graph does not contain parallel edges or loops.

Graphs are illustrated with a set of circles connected with simple lines (in undirected

graphs) or arrows (in the case of directed graphs). Examples of an undirected unlabeled

graph, undirected labeled graph and directed labeled graph are given in Figures 1.1a,

1.1b and 1.1c, respectively. A weighted graph is illustrated in Figure 1.1d.

(a) Undirected simple graph. (b) Undirected labeled simple graph.

(c) Directed labeled simple graph. (d) Weighted simple graph.

Figure 1.1 Illustrative examples of different categories of graphs

In what follows, we give the formal deĄnition of a directed labeled graph, a subgraph,

induced subgraph and other important terms.

DeĄnition 1 (Directed labeled graph). A directed labeled graph G = (V, E, f) is a

simple graph where:

(1) V is a Ąnite set of all the vertices in G,

(2) E is the set of edges E ⊆ V × V in which (v, v′) denotes an edge from v to v′,

(3) f is a function that maps each vertex v ∈ V to a label value f(v) in Σ, the set of

all labels.

DeĄnition 2 (Subgraph). A directed graph G′ = (V ′, E ′, f ′) is considered subgraph of a

directed graph G = (V, E, f) if and only if

(1) V ′ is a subset of V ,

(2) E ′ is a subset of E,

1.2 Terminologies 9

(3) ∀v ∈ V ′, f ′(v) = f(v).

DeĄnition 3 (Induced subgraph). Given a data graph G = (V, E, f) and a set of

vertices V ′ ⊂ V , the induced subgraph of G with respect to V ′ is the subgraph of G that

is composed of V ′ and all the edges connecting them from E.

Next, we deĄne a path, shortest path, graph distance, eccentricity, graph diameter and

its center.

DeĄnition 4 (Path). A path in a graph G = (V, E, f) is a sequence of vertices ρ =

(v1, v2, . . . , vn) such that (vi, vi+1) ∈ E,∀i ∈ 1, 2, . . . , n− 1. An elementary path is a path

where no vertex is repeated twice; ∀vi, vj ∈ ρ, vi ̸= vj.

DeĄnition 5 (Shortest path). Given an unweighted graph G = (V, E, f) and two vertices

v and v′ such that v ̸= v′. A shortest path between v and v′ is the path ρ = (v, . . . , v′)

with the least number of edges.

DeĄnition 6 (Graph distance). The distance d(v, v′) between two vertices v and v′ in a

connected graph G = (V, E, f) is the minimum length of the paths connecting them. The

length of a path p = (v1, v2, . . . , vn) is the number of its edges.

DeĄnition 7 (Eccentricity of a vertex). Eccentricity ϵ(v) of a vertex v ∈ V in graph

G = (V, E, f) is deĄned as the maximum graph distance between v and any other vertex

in G. ϵ(v) = max d(v, u),∀u ∈ V − ¶v♢

DeĄnition 8 (Graph diameter). Given a graph G = (V, E, f), the diameter of G is its

maximum eccentricity.

DeĄnition 9 (Graph center and graph radius). Given a graph G = (V, E, f), the centers

of G are the vertices having the minimum eccentricity, while its radius is the value of

minimum eccentricity.

Finally, a cycle is simply a closed path, and it is formally deĄned as follows.

DeĄnition 10 (Cycle). A cycle is a path ρ = (v1, v2, . . . , vn) where v1 = vn. A simple

cycle is a cycle formed by an elementary path; the Ąrst vertex is the only one repeated

twice.

1.3 Problem deĄnition 10

1.3 Problem deĄnition

Graph pattern matching is the problem of Ąnding occurrences of a small input graph

called pattern (a.k.a. query) graph Q such that Q = (Vq, Eq, fq) in a larger graph called

data graph G where G = (V, E, f).

The problem of GPM has several formulations or representations. We Ąnd the structural

graph pattern matching that includes graph isomorphism and subgraph isomorphism.

Other models based on simulation represent a Ćexible alternative, and are widely used

in todayŠs real-world applications. Under this category, referred to as relaxed GPM, we

Ąnd graph simulation and its extensions such as bounded simulation, dual simulation

and relaxation simulation.

Structural matching considers the structural information contained in the graph, i.e. the

information available is the edges between the graph vertices and it does not capture

matches that are close to the query. Vertices and edges may contain semantic information

in the form of labels making the matching semantic. On the other hand, the relaxed

graph matching considers less the structural information and more the semantic one

carried by labels on the data graph vertices or edges. These labels are very informative

as they participate in the matching process, such that two nodes or edges with the same

label are considered similar. A node/edge can have multiple labels, they are generally

represented as a set of attributes in the form of (key, value) where key is the label type

and value is the label itself. In this type of graph pattern matching, the structure of

the answers may vary from that of the input query because the structural matching

constraints are relaxed, seeking lower complexity and to capture more similarities.

A common property of these different GPM models is returning a match graph, which

can be either the whole graph G or one to several parts of it. A match graph is built from

a binary match relation R that maps the vertices of Q to the vertices of G w.r.t. the

GPM model. The maximum match graph is the one containing all the possible match

graphs. It is formally deĄned as follows.

DeĄnition 11 (Maximum match graph). Let G = (V, E, f) be a data graph, Q = (Vq, Eq, fq)

a pattern graph and R ⊆ Vq × V ′ the maximum match relation of Q in G w.r.t. a given

GPM model. The maximum match graph is G′ = (V ′, E ′, f ′), a subgraph of G verifying:

(1) R maps every vertex v in G′ to a vertex u in Q, i.e. ∀v ∈ V ′,∃u ∈ Vq such that

(u, v) ∈ R.

(2) ∀(v, v′) ∈ E ′,∃(u, u′) ∈ Eq such (u, v) ∈ R and (u′, v′) ∈ R.

1.4 Applications of graph pattern matching 11

1.4 Applications of graph pattern matching

Graph matching and graph pattern matching have been used since many decades in

multiple application areas. In document processing, we Ąnd two important applications.

First, in handwritten recognition where documents are analyzed and the text is extracted

and modeled as a graph. Then, these graphs are queried against an existing database

of already identiĄed texts and characters to recognize the written text [82, 1, 41, 118].

Similarly, graph matching was also used in symbols recognition [80, 142].

Biometric identiĄcation is an important task in security to determine the identity of a

person. It uses distinctive features of the person in the authentication process. A large set

of identiĄcation metrics are extracted from images and modeled as graphs. Then, this set

is queried with graph matching algorithms to Ąnd a correspondence with the input feature

of the person to be identiĄed. Among these digital features, we Ąnd Ąngerprints [22, 161],

retina [71] and the face [140]. In computer vision, graph matching is used for image

analysis and image databases for both indexing and retrieval [30, 2, 19, 19, 64]. Moreover,

it is also used in video analysis for object tracking [123, 95, 150, 159, 56].

Furthermore, different approaches of GPM are used for community detection in the World

Wide Web graph [42, 90] and community mining in social networks [13, 58]. Community

outlier detection is addressed through graph matching in [87]. In social networks, the

problem of expert Ąnding can be solved with graph pattern matching such that a pattern

of the desired qualiĄcations and their relationships is used as an input query graph [33].

Fraud detection through the analysis of cyclic patterns in social networks and graph

databases is addressed in [107, 99, 9]. These techniques employ GPM algorithms to Ąnd

predeĄned patterns in the form of rings that are suspicious of fraudulent behaviour in

banks and other data sources.

Finally, graph pattern matching has always been highly adopted in the Ąeld of information

security for intrusion and anomaly detection in programs, networks and cyber-physical

systems [67, 5, 75, 155, 88].

1.5 Structural Graph Pattern Matching

We deĄne graph isomorphism and subgraph isomorphism, two of the most studied models

in the literature. They are purely structural, i.e. emphasize the relations between vertices.

1.5 Structural Graph Pattern Matching 12

1.5.1 Graph isomorphism

Two graphs G = (V, E, f) and G′ = (V ′, E ′, f ′) are isomorphic if and only if there is a

bijective mapping R(R : V ′ → V) that satisĄes the following condition: ∀u, u′ ∈ V ′, if

R(u) = v ∈ V and (u, u′) ∈ E ′ then ∃v′ ∈ V such that R(u′) = v′ and (v, v′) ∈ E.

While we are interested in techniques and models that Ąnd answers to a query graph in

a larger graph, graph isomorphism is mainly used for comparing graphs of the same size

(a.k.a. graph matching).

1.5.2 Subgraph isomorphism

Subgraph isomorphism (SubIso) is deĄned as an injective mapping between the vertices

of the two graphs Q = (Vq, Eq, fq) and G = (V, E, f). In other words, it is the problem

of Ąnding all the subgraphs of a data graph G that are isomorphic to a pattern graph Q.

Formally, G matches Q via subgraph isomorphism if and only if: ∀u, u′ ∈ Vq, if R(u) =

v ∈ V and (u, u′) ∈ Eq then ∃v′ ∈ V such that R(u′) = v′ and (v, v′) ∈ E, we note here

that the mapping is not bijective.

Subgraph isomorphism can also be used in graph matching where the two graphs are

similar in size.

Example 1. Figure 1.2 shows an example of a pattern graph Q1 and a data graph G1.

G1 represents a social network, where vertices in G1 refer to employees, while an edge

between vertices v and v′ means that v has endorsed v′ on this social network (they worked

together in the past). A label on a data node indicates the job of the employee represented

by this vertex. In the process of hiring a new team, a pattern graph modeling the relations

required between the members of such team is used to Ąnd eligible candidates. For example,

an edge (A, B) in the pattern graph is translated to the following requirement: the person

who takes job A should have a past experience working with the employee getting job

B, A should also have recommended B on this social network. When applying subgraph

isomorphism, we can extract two matched subgraphs from G1. Their corresponding vertices

are ¶1, 3, 4, 5, 6♢ and ¶2, 3, 4, 5, 6♢ as it is shown in Figure 1.3.

1.5.3 Algorithms for subgraph isomorphism

Subgraph isomorphism is an NP-Complete problem [49] that has been the subject of

several studies over the past decades. We distinguish two types of algorithms to evaluate

it; exact and approximate algorithms. The exact algorithms Ąnd all subgraphs isomorphic

1.5 Structural Graph Pattern Matching 13

𝐵𝐴 𝐶 𝐷 𝐸
(a) Pattern graph Q1

𝐵𝐵 𝐴 𝐶𝐴𝐹
𝐷 𝐸

𝐶
𝐵 𝐴 𝐴 𝐵

𝐷
𝐶

𝐸 𝐷𝐸
𝐷𝐸 𝐷

𝐸
𝐸

𝐷
𝐸

𝐸
𝐶 𝐴

𝐵
𝐷𝐸

𝐶𝐴
𝐹

1

2 3 4 5

6

7

89

10
11

16

12

13 14

15

17

19

20 21 22

23

2425 26

28

29

30

31

32 33

34

27

18

(b) Data graph G1

Figure 1.2 An example of a data graph G1 containing employees in a professional social
network, where labels refer to their jobs and an edge between two vertices means that the
source endorsed the destination. The pattern graph Q1 represents the desired connections
between the employees that should be retrieved.

to the input query which leads to an exponential time complexity, whereas the other

algorithms provide approximate matches yielding to some improvements in the required

running time and space but with a loss in the quality of results. The comprehensive

Surveys [23, 46, 43, 131] give an overview of the different techniques used to evaluate

exact and inexact subgraph isomorphism since the seventies until 2015.

In its basic deĄnition, subgraph isomorphism does not capture the semantic similarities

that are generally represented by labels on both graph vertices and edges. However,

recent approaches consider the semantic information in addition to the pattern structure.

In [128], Ullmann suggested a tree-based algorithm for solving graph isomorphism. It

enumerates all the possible ways of matching query vertices with the data graph vertices

starting from a mapping matrix. It also uses a reĄnement procedure that prunes the

search space by eliminating unfruitful matches. It is based on the observation that

a query vertex u and a data vertex v that are mapped together must also have their

1.5 Structural Graph Pattern Matching 14

1

2 3 4 5

6

7

89

10
11

16

12

13 14

15

17

19

20 21 22

23

2425 26

28

29

30

31

32 33

34

27

18

𝐵𝐵 𝐴 𝐶𝐴𝐹
𝐷 𝐸

𝐶
𝐵 𝐴 𝐴 𝐵

𝐷
𝐶

𝐸 𝐷𝐸
𝐷𝐸 𝐷

𝐸
𝐸

𝐷
𝐸

𝐸
𝐶 𝐴

𝐵
𝐷𝐸

𝐶𝐴
𝐹

Figure 1.3 Results of applying subgraph isomorphism between query graph Q1 and data
graph G1 are colored in blue.

neighbors matched together. Thus, any match that does not satisfy this constraint is

eliminated from the beginning.

All the works that followed are based on this seminal work. They address two common

challenges. First, how to minimize the size of intermediate results by ordering the query

vertices. Second, Ąnding pruning strategies that avoid useless computations.

The Ąrst algorithm is VF2 [24]. It is based on the state space representation for solving

graph isomorphism. VF2 explores the search space starting from the neighbors of each

matched query vertex. VF2Plus [17] improves the ordering of VF2 by picking the query

vertices with the lowest chance of Ąnding matches in the data graph and the highest

number of neighbors among prior vertices in the ordering. VF3 [16] also improves VF2 by

proposing heuristics for reducing the search space size and the time used for processing

each state. Moreover, VF3-Light [15] is another algorithm that eliminates some of VF3Šs

heuristics which results in shorter running time.

Furthermore, we Ąnd algorithms that use exploration of the data graph to evaluate

subgraph isomorphism such as QuickSI [111], RI [10] or VF2++ [60]. Others create

tree/graph indices for storing the candidatesŠ sets like GraphQL [55], TurboIso [53],

BoostIso [100], CFL-Match [8], TurboFlux [66], DAF[52] and VC [121], while some

construct indices based on the data graph and use them to assist the embeddings

enumeration; GADDI[157] and SPath[160]. Finally, MQO-iso [101] constructs a Direct

Acyclic Graph (DAG) based on the relationships between multiple queries to guide

subgraph isomorphism search.

1.5 Structural Graph Pattern Matching 15

As opposed to Ullmann that does not deĄne an ordering of the query vertices, QuickSI [111]

proposed to process vertices with infrequent vertex labels in the data graph as quickly as

possible, which allows avoiding useless computations. QuickSI processes the edges/vertices

having a lower number of possible embeddings Ąrst, hence, reduces the size of explored

search space. It Ąrst selects a spanning tree that minimizes the number of possibly

generated embeddings in the data graph. Then, it selects an order of processing by

setting the Ąrst edge to explore as the one having minimum size of candidates for its

source and destination. Finally, a Depth First Search (DFS) traversal of the spanning tree

is conducted to enumerate all the possible embeddings. The two algorithms RI [10] and

VF2++ [60] are similar to QuickSI as they all explore the data graph directly without

generating any candidate sets. However, RI picks query vertices based on their degrees

by Ąrst selecting the one with the highest degree, and then the ones with most neighbors

in the current ordering. VF2++ picks query vertices with the least frequent labels in G

and the highest degree in Q.

To improve the existing pruning rules, GraphQL [55] proposed to use a neighborhood

signature of a query vertex u which is the set of its neighborsŠ labels. A data vertex v is

pruned out if its neighborhood signature does not include the neighborhood signature of

its matched query vertex. GraphQL picks the query vertex that is connected to an already

matched vertex and that has a minimum number of candidates. Similarly, SPath [160]

used an improved neighborhood signature to minimize the size of the candidatesŠ set. It

also matches a path-at-time.

TurboISO [53] is another algorithm that groups query vertices having the same label and

the same neighborhood into one node to reduce the duplicated generation of unfruitful

matches. It divides the data graph into separate Candidate Regions (CRs), where the

root of every CR is a data node matched to the query tree root. For each CR, TurboISO

enumerates the possible mappings based on a combine/permute strategy. Given a

sequence order and a candidate region CR, only one query vertex is processed and if it

leads to an accepted answer, other combinations are generated from other vertices in its

group. Otherwise, they are all eliminated.

Inspired by the query compression in TurboISO, BoostISO [100] compresses the data

graph based on the relationships between data vertices. It groups the data vertices

having the same matches to one hypernode in a new adapted graph that has a smaller

size. BoostISO also groups similar query vertices which allows it to prune unfruitful

matches as quickly as possible. A follow up revision of the Ąltering phase was made by

the same authors in [134].

1.5 Structural Graph Pattern Matching 16

Furthermore, in [101], Ren et al. propose a multi-query optimization plan (MQO-iso)

to reduce the processing time of multiple queries. The input query set is processed to

detect the common subgraphs, then a DAG is built based on the isomorphic relationships

between the queries such that there is an edge from q to q′ if q is a subgraph isomorphic

to q′. This DAG guides the subgraph isomorphism search while exploiting the already

generated intermediate results. The parents in the DAG are processed Ąrst and their

results are cached then used to process their children.

CFL-Match [8] proposes to decompose the query graph into three substructures. It

matches the cores Ąrst because they are less likely to be highly present in the data graph.

Second, it processes the forest substructures that have high chances of being present in

the graph, while leaves (one-degree vertices) are left to the end as they are most likely to

generate most of the unnecessary embeddings that must be avoided. The core is a dense

connected subgraph containing every single edge that is not present in a spanning tree of

the query. Such substructure, when processed earlier, reduces the number of unpromising

partial mappings by avoiding generating unnecessary Cartesian products. The forest is

the complement of the core in the query graph without the leaves. To evaluate subgraph

isomorphism, CFL-Match uses a Compact Path Index (CPI) having the same structure

as a Breath First Search (BFS) tree qt of the query graph. Its nodes represent a query

vertex u with its label and candidate set. For every edge (u1, u2) in qt, the CPI keeps the

edges between the candidate sets of u1 and u2. This CPI is then traversed to enumerate

subgraph isomorphism embeddings by processing the core, then the forest and Ąnally

the leaves. For the core, it uses a path-based ordering that minimizes the number of

generated embeddings while favoring the paths with non-tree edges.

On the other hand, DAF [52] addresses the limitations of TurboISO and CFL-Match by

converting the query graph into a DAG instead of a spanning tree. The algorithm uses

dynamic programming to Ąnd the candidate set for all the subgraph isomorphism embed-

dings then follows an adaptive, DAG-based ordering to build the possible embeddings.

Moreover, VC [121] improves the path-based ordering with a cost function that considers

edges also between the paths. VC uses a bigraph index for holding the candidate edges

instead of a spanning tree as it is the case for CFL-Match.

Finally, to detect patterns in a dynamic graph, TurboFlux [66] uses a data-centric graph

(DCG) representation of the intermediate results. A DCG is composed of the data graph

such that for each data node, its candidate query vertices are represented by incoming

edges. This DCG is then traversed to Ąnd subgraph isomorphism matches. TurboFlux

deĄnes transition rules on every edge in the DCG, then, whenever an edge is inserted or

1.5 Structural Graph Pattern Matching 17

deleted, it Ąrst checks whether it matches an edge in the query graph or not and then

updates the results according to the transition rules.

1.5.4 Parallel algorithms for subgraph isomorphism

In order to scale up the existing algorithms, two categories of parallel approaches showed

up addressing the problem of subgraph isomorphism, namely relational join-based and

exploration-based. We also Ąnd the GPU-friendly algorithms that use joins or exploration

to implement subgraph isomorphism enumeration on massively parallel architectures.

Join-based approaches

The data graph edges are considered as relational database tables, such that each pair

of labels forms a table, the attributes represent the two labels and the edge identiĄers

are the attribute values. These tables are Ąltered and a series of joins is applied to get

the matching answers. However, joins are very costly and many works addressed this

problem through different categories of joins: binary joins where the Ąrst two tables

(edge candidates) are joined, then, the result is joined again with a third table of edge

candidates until obtaining the end result [97, 152, 51, 127]. These works propose different

join orders that aim at optimizing the size of intermediate results. Other works attempted

to join substructures larger than edges which resulted into reducing further the size of

intermediate results. In [122], the pattern graph was decomposed into stars (two level

trees) that can be found through data graph exploration (they require only information

about direct neighbors of each data vertex). After that, the matched substructures were

joined to form a complete subgraph match. More recent works used different joining

units such as the TwinTwig [68], Crystal [98] or Clique [69, 70].

On the other hand, Afrati et al. [3] used the multiway joins where all the edge candidate

sets are joined at the same time. Furthermore, worst-case optimal join algorithms are

also used for multiway joins. Two common algorithms are GenericJoin [91] and LeapFrog

TrieJoin [130]. Parallel approaches for Ąnding subgraph isomorphism based on these

algorithms were proposed by [4] and [45] respectively. Mhedhbi et al. combined both

binary joins and the GenericJoin algorithm to evaluate subgraph isomorphism in [89].

In [70], Lai et al. surveyed and conducted an experimental comparison of a set of

join-based GPM algorithms and classiĄed them into three categories based on the join

strategy applied.

1.5 Structural Graph Pattern Matching 18

Exploration-based approaches

These are approaches based on data graph exploration, which naturally Ąt into the newly

TLAV paradigms for distributed graph processing. We discuss this category more in

detail in Chapter 3 after introducing the different concepts and programming models

for distributed graph processing in Chapter 2. However, as an exception, we present

here the four works QFrag [110], CECI [7], PSM [25] and BENU [138]. First, QFrag and

CECI replicate the data graph on multiple machines where each processor runs subgraph

isomorphism search on different parts of the data graph. Moreover, PSM evaluates

subgraph isomorphism in parallel on a single machine, while BENU is presented here

because it is also a parallel system that uses a similar approach to answer GPM queries.

QFrag [110] replicates the data graph on k workers and parallelizes TurboISO to evaluate

subgraph isomorphism while using task fragmentation to achieve load balance. QFrag

decomposes the Ąrst super-step of processing into two phases. In the Ąrst phase, each

worker is assigned a list of roots from which it builds the corresponding CRs. It considers

the embeddings enumeration of each CR as one subtask and estimates the processing

time of each tree to detect any outliers that cannot be processed locally. Embedding

enumeration of regular trees is conducted locally in the Ąrst super-step, while the outlier

trees are split into equal subtasks and distributed over the workers to be processed in

the second super-step.

CECI [7] is based on a spanning tree index constructed from a BFS traversal of the

query graph. Each node in this tree maps a query node u to a data node v matched to it

and to its neighbor for representing the tree edge candidates. It also keeps candidates

of uŠs neighbors that are connected by a non-tree edge. This index is then used to

enumerate subgraph isomorphism embeddings in parallel. Every candidate of the query

tree root is used as a pivot of an Embedding Cluster (EC) that will be processed in

parallel. To achieve load balancing, CECI estimates the cost of evaluating each EC,

then decomposes the costly ones into multiple ECs. Each worker processes an equal

number of ECs. Finally, CECI keeps the candidates of the non-tree edges in its index

and uses an intersection between the two sets, i.e. tree-edge candidates and non-tree

edges candidates, to enumerate the embeddings.

Furthermore, PSM [25] parallelizes backtracking based algorithms that adopt a DFS

traversal of the candidates tree index on a single machine. PSM decomposes the tree index

into search regions and each worker is assigned a region that it can expand independently

in parallel. Load balancing is conducted dynamically where busy workers split their

search regions into two equal subtasks.

1.5 Structural Graph Pattern Matching 19

Finally, BENU [138] also uses backtracking and decomposes the search tree into regions

to be processed by different workers. The workers use adjacency lists of the data graph

to enumerate possible embeddings through the application of set intersections. Load

balancing is achieved by splitting a tree task into subtasks if the degree of the current

tree root vertex is larger than a certain threshold.

GPU-friendly approaches

Under this category, we Ąnd the approaches aiming to accelerate graph processing tasks

with the help of GPU friendly algorithms. A CPU is characterized by a limited number of

powerful cores, whereas a GPU has thousands of cores with lower individual performance.

Graphics processors are highly used nowadays to implement solutions for graph problems,

e.g. shortest path [54, 63], BFS [83, 156], and minimum spanning tree [132, 105]. Each

core in the GPU works in a single-instruction-multiple-data (SIMD) fashion, i.e. the

same instruction is executed on different input data in parallel. For speeding up the

computing process, GPUs use a global memory with a large amount of device memory

and a shared memory for each multiprocessor with a limited amount of device memory.

A comprehensive survey on the challenges of GPU-based graph processing models and

algorithms can be found in [116].

Many GPU based algorithms were suggested tackling the GPM problem. GpSM [127] is

a graph pattern matching algorithm based on subgraph isomorphism that was designed

for massively parallel architectures. The authors proposed a Ąlter-and-join approach that

takes on edges as a basic processing unit. A selection order is Ąrstly obtained for the

query vertices based on some selection criteria. They get such order by extracting a query

tree from the query graph. Edges are added to the tree iteratively by selecting at each

step the ones maximizing the ratio between the vertices degree and their labels frequency.

This selection order was proven to reduce the size of the search space. Then, for each

query vertex in the tree, a Ąlter phase is conducted in parallel to check the candidacy of

every data vertex against it. To Ąlter out more data vertices, the neighborhood of each

query vertex is explored in parallel. A candidate vertex v is pruned out if there is a query

vertex u′ adjacent to u such that u′ does not have any candidate vertex in the adjacency

list of v. Another reĄnement strategy is also executed to prune low-connectivity vertices

with a degree less than a certain threshold. In the joining phase, candidate edges are

gathered then combined to form partial subgraph matches incrementally. They collect

candidate edges for each query edge, given a query edge (u, u′) such that C(u) and C(u′)

are the respective candidate sets of u and u′, candidate edges of (u, u′) are all the edges

1.5 Structural Graph Pattern Matching 20

(v, v′) verifying v ∈ C(u) and v′ ∈ C(u′). At the end of this phase, each query edge is

assigned a set of candidate edges. Then, the algorithm combines partial matches starting

from the smallest set of candidate edges to the largest one. Here, subgraph matches

are constructed iteratively by picking up at each step an edge from the candidate edges,

then joining it to the already built partial matches. One of the main assets of GpSM

is the graph representation in memory, it uses a different representation for storing the

candidate vertices and candidate edges.

GpSense [126] is an algorithm that enhances the performance of GpSM allowing to Ąnd

subgraph isomorphism efficiently on large common-sense knowledge graphs. The main

issue with knowledge graphs is their huge size not allowing them to be stored on the

memory of a single GPU, which led the authors to propose a new graph compression

technique that permits to reduce the graph size while preserving the same subgraph

isomorphism results. In a knowledge graph, they noticed that multiple data nodes playing

the same role have the same adjacency list, based on this observation, the authors propose

a multiple-level compression technique that merges such data nodes into one hyper-node.

In [136], the authors proposed a GPU-friendly algorithm for Ąnding subgraph isomorphism

in a large graph dataset. The initial problem that consists of counting triangles in a large

network is converted into a subgraph matching problem. They built a Ąlter-and-join

strategy for subgraph isomorphism based on the Gunrock [137] programming model.

Gunrock allows programmers to design primitives for graph processing on the GPU

with a high level of abstraction and higher performance. ItŠs a parallel, high-level

data-centric model manipulating a basic subset of edges or vertices that are actively

participating in the computation (such subset is called frontier). A program within the

Gunrock framework consists of three steps: advance, Ąlter and compute. The advance

step generates a new frontier from the current frontier by exploring the neighbors of

its vertices or edges . The Ąlter step generates a new frontier from the current one by

extracting a subset of it based on some criteria deĄned by the programmer. Finally, the

compute step that consists of a programmer-speciĄed function to be executed in parallel

on the elements of current frontier.

To enumerate subgraph isomorphism matches, this approach proceeds as follows. First,

the candidate vertices initialization is executed where the candidate set is Ąlled according

to the information held by every data vertex, this phase is executed within an advance

operator. In the second step, candidate edges are collected using the advance and

Ąlter operators. Finally, the joining step combines together candidate edges is executed

to incrementally build subgraph matches in parallel. This approach showed better

1.6 Relaxed Graph Pattern Matching 21

performances in the running time compared to the GpSM implementation of subgraph

isomorphism when the size of the query graph increased.

Other works such as [78, 153, 21] also propose new algorithms, partitioning strategies or

data structures that are GPU-based to solve the problem of subgraph isomorphism in

massively parallel architectures.

1.5.5 Limitations of subgraph isomorphism

Although discussions regarding the approximate solutions have dominated the research

on subgraph matching over the recent years, their performance is not yet able to manage

the actual size of the GPM problem. We are facing today a growing need for more

performing techniques and tools that can process big graphs; that are highly dynamic

and distributed over hundreds of machines because of their enormous size. For example,

Facebook is the largest social network with 2.4 billion monthly active users in June

2019 [31]. Furthermore, subgraph isomorphism requires the input graph to be structurally

identical to the data graph. In its stringent formulation, it does not consider the intrinsic

deformations of an object from its ideal model. Such drawbacks have led the research

community to investigate other models of GPM that are less expensive in time and space

and exploit better the semantic information held by labels. Graph simulation and its

extensions are considered nowadays the best Ąt techniques for GPM in many of the

emerging applications like analyzing associations in social networks [93].

1.6 Relaxed Graph Pattern Matching

In this section, we review graph simulation and the other models proposed as an alternative

to structural GPM. Models in this category aim to capture more similarities by relaxing

the matching constraints imposed by structural GPM, which may result into answers

that do not have the same structure of the query. This way of deĄning similarity is highly

needed in the current real-world applications such as plagiarism detection. For example,

Chao et al. proposed an approach based on graph pattern matching to detect plagiarism

in programs having thousands of lines of code [79]. They use the program dependence

graph to Ąnd similar graphs in an available code base.

1.6 Relaxed Graph Pattern Matching 22

1.6.1 Graph simulation

Graph simulation (GSIM) is a Ćexible model that allows one query vertex to be mapped

to multiple data vertices. It maps separately every edge from the pattern graph to edges

in the data graph resulting into one-to-many matching as an output. A vertex v in the

data graph G(V, E, f) is mapped to a vertex u in the query graph Q(Vq, Eq, fq) if they

have the same labels and the vertices on the outgoing edges of u have matches among the

children of v. In a formal way: given a data graph G and a pattern graph Q, a binary

relation R ⊆ Vq × V is said to be a match if:

(1) ∀ (u, v) ∈ R, f(u) = fq (v),

(2) ∀(u, u′) ∈ Eq,∃(v, v′) ∈ E such that (u′, v′) ∈ R.

Graph G matches pattern Q via graph simulation, if there exists a total match relation

R where ∀u ∈ Vq,∃v ∈ V , such that (u, v) ∈ R. It was proved that a total match can be

found in polynomial time (quadratic time) using a reĄned version of the Ąrst algorithm of

graph simulation, called HHK [57]. Another algorithm for graph simulation was proposed

in [32].

Given the data graph G1 in Figure 1.2b and the pattern graph Q1 in Figure 1.2a, the

application of graph simulation returns a match set R containing all the vertices of G1

except three vertices ¶11, 27, 34♢, as it is shown in Figure 1.4. We notice that several

vertices appearing in R should not have been conserved, notably ¶10, 33♢.

𝐵𝐵 𝐴 𝐶𝐴𝐹
𝐷 𝐸

𝐶
𝐵 𝐴 𝐴 𝐵

𝐷
𝐶

𝐸 𝐷𝐸
𝐷𝐸 𝐷

𝐸
𝐸

𝐷
𝐸

𝐸
𝐶 𝐴

𝐵
𝐷𝐸

𝐶𝐴
𝐹

1

2 3 4 5

6

7

89

10
11

16

12

13 14

15

17

19

20 21 22

23

2425 26

28

29

30

31

32 33

34

27

18

Figure 1.4 Results of applying graph simulation between query graph Q1 and data graph
G1 are colored in blue.

1.6 Relaxed Graph Pattern Matching 23

Graph simulation may appear like inexact graph pattern matching, but this is not true.

Error-tolerant approaches allow mismatches while graph simulation does not, i.e. the

answers returned by graph simulation respect the constraints deĄned by the model when

inexact matching tolerates incorrect matches to some degree. Besides its low complexity,

graph simulation is a natural Ąt for performing graph matching on a fragmented data

graph [32]. However, its weak part is failing to capture topological similarities between

matched graphs, since a disconnected graph can be correctly set as a match for a

connected one (a query example is given in Figure 1.5a and its answer in Figure 1.5b),

and a cyclic pattern can be matched to tree subgraphs (a cyclic pattern example is shown

in Figure 1.5c and its answer in Figure 1.5d).

𝐵 𝐷 𝐸𝐶

𝐵 𝐷 𝐸𝐶 𝐷 𝐵𝐸

𝐵 𝐷𝐶

𝐷 𝐶 𝐵
𝐵

(a) Connected query

𝐵 𝐷 𝐸𝐶

𝐵 𝐷 𝐸𝐶 𝐷 𝐵𝐸
1

2 3

4 5

6

7

𝐵 𝐷𝐶

𝐷 𝐶 𝐵
𝐵

(b) Disconnected answer

𝐵 𝐷 𝐸𝐶

𝐵 𝐷 𝐸𝐶 𝐷 𝐵𝐸

𝐵 𝐷𝐶

𝐷 𝐶 𝐵
𝐵

(c) Cyclic query

𝐵 𝐷 𝐸𝐶

𝐵 𝐷 𝐸𝐶 𝐷 𝐵𝐸

𝐵 𝐷𝐶

𝐷 𝐶 𝐵
1

2 3

4 𝐵
(d) Tree answer

Figure 1.5 An example showing the limitations of graph simulation.

1.6.2 Dual simulation

Dual simulation (DSIM) [84] considers parent relationships in addition to the child

relationships imposed by graph simulation. A vertex v from G = (V, E, f) is mapped

to a vertex u in Q = (Vq, Eq, fq), if they have the same labels and the vertices on their

incoming and outgoing edges are also mapped together. Formally, a data graph G

matches a pattern graph Q via dual simulation if there exists a binary match relation

R ⊆ Vq × V such that:

(1) ∀(u, v) ∈ R, fq(u) = f(v), i.e. u and v have the same label,

(2) ∀u ∈ Vq,∃v ∈ V such that (u, v) ∈ R and:

(a) ∀(u, u′) ∈ Eq,∃(v, v′) ∈ E such that (u′, v′) ∈ R (child relationship),

1.6 Relaxed Graph Pattern Matching 24

(b) ∀(u′′, u) ∈ Eq,∃(v
′′, v) ∈ E such that (u′′, v′′) ∈ R (parent relationship).

Moreover, the maximum dual match set is deĄned as follows.

DeĄnition 12 (Maximum dual match set). Given a data graph G = (V, E, f) and a

query graph Q = (Vq, Eq, fq). Let R ⊆ Vq × V be a match relation between Q and G

w.r.t. dual simulation (also called dual match relation). The maximum dual match set

Rd is a dual match relation such that for any dual match relation R, R ⊆ Rd.

The results of evaluating dual simulation on the example of Figure 1.2 are shown in

Figure 1.6. It removes vertices ¶10, 33♢ from the match set returned by graph simulation.

The dual match graph is the induced subgraph containing only vertices of the data graph

G1 that are already in the dual match relation. For example, even though vertices 26

and 28 belong to the dual match set, the edge linking them is not in the dual match

graph because there is no edge with labels (C, B) in Q1.

Considering that a connected graph is said to be an answer to a certain query if and only

if ∀u ∈ Vq,∃v ∈ V that matches u. Dual simulation brings duality into graph simulation

i.e. it eliminates cases where disconnected graphs are considered answers to connected

graph queries (back to the example in Figure 1.5, the partial answer composed of vertices

¶1, 2, 3♢ in Figure 1.5b is not valid as an answer on its own to the query in Figure 1.5a

in the case of dual simulation due to the absence of label C).

Even though dual simulation returns answers of better quality, it does not take into

account the data locality compared to graph simulation. Data locality indicates the scope

in which we should look for answers to our query. It could be the distances between

vertices in the resulting graph or its size. It is obvious that dual simulation does not take

into account data locality since cycles in the query graph can be matched to very long

cycles in the data graph. The data locality problem becomes relevant when the returned

answers are very large, thus difficult to analyze and also when the distances between

data vertices are not kept, making the relationships between distant vertices lose their

meaning. That is why this model was reinforced by introducing strong simulation.

1.6.3 Strong simulation

Strong simulation (SGSIM) [84] improves dual simulation by adding data locality such

that matches are only searched in a ball b of center v and having as radius dq, the

diameter of the pattern graph Q. The subgraph of G contained in this ball is denoted

Ĝ [v, dq]. Formally, G matches Q via strong simulation, if there exists a vertex v ∈ V

such that:

1.6 Relaxed Graph Pattern Matching 25

𝐵𝐵 𝐴 𝐶𝐴𝐹
𝐷 𝐸

𝐶
𝐵 𝐴 𝐴 𝐵

𝐷
𝐶

𝐸 𝐷𝐸
𝐷𝐸 𝐷

𝐸
𝐸

𝐷
𝐸

𝐸
𝐶 𝐴

𝐵
𝐷𝐸

𝐶𝐴
𝐹

1

2 3 4 5

6

7

89

10
11

16

12

13 14

15

17

19

20 21 22

23

2425 26

28

29

30

31

32 33

34

27

18

Figure 1.6 Results of applying dual simulation between query graph Q1 and data graph
G1 are colored in blue.

(1) Q matches Ĝ [v, dq] with maximum dual match set Rb
dq

in ball b of radius dq,

(2) v is member of at least one of the pairs of Rb
dq

.

For every vertex v in the data graph, the connected part of the result match graph of

each ball with respect to its Rb
dq

containing v is called a maximum perfect subgraph

(Max-PG) of G with respect to Q. By proposing a cubic time algorithm, the authors

proved that strong simulation not only succeeds to capture more topological similarities,

but it also keeps the same polynomial time complexity as graph simulation.

Applying strong simulation to the example given in Figure 1.2 eliminates matches that

fall within the long cycle composed of ¶18, 19, 20, 21, 22, 23, 24, 25♢, because the distance

between vertices 18 and 25 is greater than the patternŠs diameter, which is equal to 4. The

maximum match set contains the vertices ¶1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 26, 28, 29, 32♢

as shown in Figure 1.7. However, strong simulation is limited in terms of scalability since

it incurs very long processing time and memory consumption for locality balls creation,

especially when the data graph is very large.

1.6.4 Strict simulation

Strict simulation (STSIM) improves strong simulation with a revised deĄnition of locality

which enables achieving better quality of results with performance enhancements [39].

Locality balls are created from the members of the dual match graph instead of generating

them directly from the dual match set in the initial data graph as it is the case in strong

1.6 Relaxed Graph Pattern Matching 26

𝐵𝐵 𝐴 𝐶𝐴𝐹
𝐷 𝐸

𝐶
𝐵 𝐴 𝐴 𝐵

𝐷
𝐶

𝐸 𝐷𝐸
𝐷𝐸 𝐷

𝐸
𝐸

𝐷
𝐸

𝐸
𝐶 𝐴

𝐵
𝐷𝐸

𝐶𝐴
𝐹

1

2 3 4 5

6

7

89

10
11

16

12

13 14

15

17

19

20 21 22

23

2425 26

28

29

30

31

32 33

34

27

18

Figure 1.7 Results of applying strong simulation between query graph Q1 and data graph
G1 are colored in blue.

simulation. The difference is that in strong simulation the balls may contain data vertices

that are not in the dual match graph while in strict simulation the balls contain only

members from the dual match graph.

Let us deĄne the dual match graph Ąrst.

DeĄnition 13 (Dual match graph). Given a data graph G = (V, E, f) and a query

graph Q = (Vq, Eq, fq). The dual match graph is the subgraph G′ = (V ′, E ′, f) of G

composed of V ′ and E ′ such that :

(1) V ′ is the set of all vertices in Rd (the maximum dual match relation for Q in G),

(2) E ′ ⊂ E such that ∀(v, v′) ∈ E ′,∃(u, u′) ∈ Eq verifying (u, v) ∈ Rd and (u′, v′) ∈ Rd.

Given a data graph G = (V, E, f) and a query graph Q = (Vq, Eq, fq) such that Gd =

(Vd, Ed, fd) is the dual match graph. G matches Q via strict simulation if there exists a

vertex v ∈ Vd, such that:

(1) Ĝd[v, dq] matches Q where Ĝd is a subgraph of Gd centered at v with radius dq,

(2) v is member of the resulting Max-PG.

Strict simulation results into better efficiency by decreasing the size of the locality balls,

while obtaining better matches. The authors proposed an algorithm for calculating the

Max-PGs in cubic time. When applying this model on the example of Figure 1.2, it

results into the same match graph as strong simulation. However, we notice that the size

of the balls created is smaller than in the case of strong simulation because the latter

1.6 Relaxed Graph Pattern Matching 27

contains also non candidate vertices, the results are shown in Figure 1.8. We notice that

the Ąnal Max-PGs are the same as in strong simulation, but this is only valid for this

particular example. Even though strict simulation improved strong simulation, it still

incurs considerable processing time and may result into duplicate answers. Actually, two

adjacent vertices will most likely give the same Max-PG, a limitation that motivated

Fard et al. to propose tight simulation (TSIM) in [38].

𝐵𝐵 𝐴 𝐶 𝐷 𝐸
𝐶

𝐵 𝐴 𝐴 𝐵
𝐷

𝐶
𝐸 𝐷𝐸

𝐷𝐸 𝐷
𝐸 𝐷

𝐸
𝐸

𝐶 𝐴
𝐵

𝐷𝐸
𝐶𝐴

𝐹

1

2 3 4 5

6

7

89

16

12

13 14

15

17

19

20 21 22

23

2425 26

28

29

30

31

32 33 27

18

Figure 1.8 Results of applying strict simulation between query graph Q1 and data graph
G1 are colored in blue.

1.6.5 Tight simulation

It is based on strict simulation where only the most important vertices of the query

graph are considered in locality balls creation [38]. If strong simulation generates a ball

centered at each data vertex, and strict simulation creates a ball for each member of the

dual match graph, then tight simulation picks only data vertices candidate to the query

vertex with the highest selectivity score. The selectivity score here is a measure computed

for each query vertex based on its degree and label frequency. This measure allows

us to choose the most important vertex among the graph vertices. Tight simulation

reduces the number of locality balls, resulting in shorter processing time, because the

size of intermediate results is reduced and duplicated partial answers are minimized. It

is formally deĄned as follows: Given a pattern graph Q = (Vq, Eq, fq) and a data graph

G = (V, E, f). G matches Q, if there are vertices u in Q and u′ in G such that:

(1) u is a center of Q with highest deĄned selectivity,

(2) (u, u′) ∈ RD, where RD is dual match set between Q and G,

1.6 Relaxed Graph Pattern Matching 28

(3) Q matches ĜD[u′, dq] where ĜD is a ball extracted from GD (result of dual simula-

tion) with radius dq,

(4) u′ is member of the result Max-PG.

Among the centers of the query graph, the authors pick the one with the highest ratio

of its degree to its label frequency (maxu∈C(deg(u)/freq(fq(u))), where C is the set of

query centers). The locality balls are created with a radius equal to the eccentricity of

the query graph. They proposed a distributed algorithm with cubic time complexity for

Ąnding all the Max-PGs with respect to tight simulation [38].

We apply tight simulation on the example of Figure 1.2, the list of eccentricities for

each query vertex is ¶(A : 3), (B : 4), (C : 2), (D : 3), (E : 4)♢. There is only one

center in Q1 having a minimum eccentricity equal to 2 which is C. The data vertices

¶4, 9, 17, 26, 30♢ are part of the dual match graph between Q1 and G1. Hence, according

to tight simulation, we only create balls centered at these vertices with radius equal to 2.

Then, for each ball, we verify the dual match relation between the ball members and

the query vertices. The ball centered at 4 gives a match set containing the following

data vertices: ¶1, 2, 3, 4, 5, 6♢. The ball centered at 9 gives us the same previous match

set. Then, the balls centered at 17, 26 and 30 result all in zero matches. We notice that

tight simulation here gives the exact same result as subgraph isomorphism (results are

shown in Figure 1.9), while it can be computed in cubic time. The limitation of tight

simulation is that it is too strict for some applications of GPM where zero answers are

not welcomed.

𝐵𝐵 𝐴 𝐶 𝐷 𝐸
𝐶

𝐵 𝐴 𝐴 𝐵
𝐷

𝐶
𝐸 𝐷𝐸

𝐷𝐸 𝐷
𝐸 𝐷

𝐸
𝐸

𝐶 𝐴
𝐵

𝐷𝐸
𝐶𝐴

𝐹

1

2 3 4 5

6

7

89

16

12

13 14

15

17

19

20 21 22

23

2425 26

28

29

30

31

32 33 27

18

Figure 1.9 Results of applying tight simulation between query graph Q1 and data graph
G1 are colored in blue while the selected centers are gray.

1.6 Relaxed Graph Pattern Matching 29

1.6.6 Bounded simulation

Bounded simulation (BSIM) [34] is an extension of graph simulation that came as a

revision for the traditional subgraph isomorphism model, that falls short of capturing

similarities in the actual emerging applications, e.g. detecting communities in social

networks. A bounded path p in G is a sequence of vertices v1, v2, . . . , vn ∈ V , such that

∀i ∈ ¶1, . . . , n− 1♢, (vi, vi+1) ∈ E.

In this model, a data graph is deĄned as G = (V, E, fA), such that fA is used instead

of the labeling function f . For each node u in V , fA (u) is a tuple of attributes (A1 =

a1, . . . , An = an). Furthermore, a pattern graph is given as Q = (Vq, Eq, fv, fe) where

two functions fv and fe are introduced. First, fv(u) is a conjunction of predicates on the

attributes of u. fe is another function deĄned on Eq to limit the length of paths matched

to each edge of Eq (fe(u, u′) = ¶k, ∗♢ where * means no requirement on the path length).

A data graph G matches a pattern graph Q via bounded simulation if there exists a

binary relation R ⊆ Vq × V such that:

(1) ∀u ∈ Vq,∃v ∈ V such that (u, v) ∈ R,

(2) ∀ (u, v) ∈ R:

(a) The attributes fA(v) of v satisfy the predicate fv (u) of u,

(b) ∀ (u, u′) ∈ Eq, (u, u′) is mapped to a non-empty, bounded path p of length

k from v to v′ in G such that (u′, v′) ∈ R and len (p) ≤ k if fe (u, u′) is a

constant k.

Graph simulation is a special case for bounded simulation where only edge-to-edge

mappings are allowed. In the same paper, the authors proposed an algorithm for

computing bounded simulation that runs in cubic time. Incremental algorithms for

bounded simulation were also proposed for the case of a continuously updated data

graph.

Example 2. We present in Figure 1.10 another example of, respectively, a pattern graph

Q2 and a data graph G2. By applying bounded simulation, we get the edge (B, A) mapped

to the edge (2, 1), edge (A, C) mapped to the path (1, 4, 6) of length 2, (C, D) mapped to

paths (6, 5) and (6, 3, 5). Also, the edges (D, E) and (E, D) are mapped respectively to

(5, 7) and (7, 6, 5). Note that (D, E) cannot be mapped to the path (7, 6, 3, 5) because this

latter is of length 3, which does not satisfy the constraint on the edge (D, E) in Q2. The

result of applying bounded simulation is shown in the same Ągure.

1.6 Relaxed Graph Pattern Matching 30

B

A C D

E2
2

*

3

2

(a) Pattern graph Q2.

B

F

G

A

D

C

E1

2

3

4

5

6

7

(b) Data graph G2

B

F

G

A

D

C

E1

2

3

4

5

6

7

(c) Results of applying bounded simulation between Q2 and G2

Figure 1.10 An example of a labeled data graph G2, a query graph Q2 and the results of
bounded simulation where the matched vertices are colored in blue.

1.6.7 Relaxation simulation

This model is an extension of graph simulation that allows partially absent vertices

with the condition of substituting them with their children and / or parents [47]. To

avoid the problem of zero answers, the authors relax the constraints imposed by graph

simulation and dual simulation with respectively two models: unidirectional relaxation

simulation (URS) and dual relaxation simulation (DRS).

Given a data graph G = (V, E, f), a pattern graph Q = (Vq, Eq, fq) and a matching

relation R ⊆ Vq × V with (u, u′) ∈ R. If graph simulation requires all children of u ∈ Vq

to be matched with some or all the children of u′ ∈ V , then URS relaxes this constraint

by accepting also that grand-children of u′ replace their absent parents if they match

the children of u. The same goes for DRS such that in addition to children constraints,

if there are no parents to u′ matching some parents of u′, the grand-parents of u′ that

respect the matching constraints are considered in the Ąnal match relation.

1.6.8 Surjective simulation

Surjective simulation (SJS) [114] extends bounded simulation by relaxing the matching

constraints for the context of multi-labeled graphs. Vertices may have multiple labels and

this model redeĄnes the problem of graph pattern matching by instead of imposing that

all the labels of a query graph exist on its matched data vertex, surjective simulation is

deĄned such that a query vertex u from the query graph can be correctly matched to

a data vertex v if the two share a minimum number of common labels. Moreover, the

1.6 Relaxed Graph Pattern Matching 31

answers to surjective simulation must fall within a ball that has at most the diameter

of the input query graph. Shemshadi et al. [114] proposed an algorithm for Ąnding the

top-k matches w.r.t. surjective simulation.

1.6.9 Taxonomy simulation

Taxonomy simulation (TXS) [76] relaxes the label constraints in graph simulation by

allowing the mapping of different labels. This model introduces taxonomy to the context

of relaxed GPM through the use of a taxonomy graph in the matching process. A

taxonomy graph is a labeled rooted forest T that represents the existing relationships

between different labels. It deĄnes a specialization-generalization hierarchy in the data

graphs. The edges of T model an is-a relationship between two vertices.

Taxonomy simulation redeĄnes the problem of graph pattern matching by allowing a

query vertex u in Q (labeled with l) and a data vertex v in G (labeled with l′) to be

matched if and only if l′ is a descendent of l in the taxonomy hierarchy tree T .

1.6.10 Multi-constrained simulation

Multi-constrained simulation (MCS) [115] addresses the problem of multiple constraints

on edges by providing a non-trivial extension to bounded simulation. As opposed to

bounded simulation that supports only one constraint on the edge, i.e. the path length,

multi-constrained simulation allows for multiple constraints on the edge attributes. In

the same paper, a multi-threading heuristic algorithm was proposed for evaluating GPM

queries based on multi-constrained simulation.

1.6.11 Limited simulation

Limited simulation (LSIM) [29] is a model that considers the attributes on both vertices

and edges. It uses a similarity measure between vertices called k-similarity. Given a data

graph G (V, E, fV , fE) and a pattern graph Q (Vq, Eq, fV q, fEq, w) where (i) fV and fV q

are the respective vertex labeling functions associated to G and Q, (ii) fE and fEq are

the respective edge labeling functions associated to G and Q, (iii) w is a weight function

that maps each u ∈ Q to an element in N ∪ ∞. This weight is deĄned based on the

application domain, it could be for example the diameter of a circle of authority of a

manager in a social network.

DeĄnition 14 (k-limited similarity). k-limited similarity is a relation between two nodes

v in G and u in Q denoted by v ≥k u. Formally, v is k-limited similar to u if:

1.7 Chapter summary 32

(1) fV (v) = fV q(u) when k = 0,

(2) v ≥0 u; ∀eq = (u, u′) ∈ Eq,∃e = (v, v′) ∈ E with fEq (eq) = fE(e) and v ≥k−1 u

when k > 0.

G matches Q via limited simulation if there exist a node mapping relation Rv ⊆ Vq × V

and an edge mapping relation RE ⊆ Eq × E such that:

(1) ∀ (u, v) ∈ Rv, v ≥w(u) u,

(2) ∀ (e = (u, u′), e′ = (v, v′)) in RE, we have fEq (e) = fE (e′), (u, v) ∈ RV and

(u′, v′) ∈ RV .

This model is better suited for applications in social media since it considers also the

types of vertices and edges. The authors proposed also a polynomial algorithm to evaluate

limited simulation.

1.6.12 Time-respecting simulation

Time-respecting simulation (TRS) [158] also revises bounded simulation for the context

temporal data graphs. The data graph edges are timestamped which implies that the

matching process not only looks for vertices satisfying bounded simulation constraints

but also veriĄes the time validity of the answer. Given a query graph Q = (Vq, Eq, fq)

and a data graph G = (V, E, f, ft), where ft maps edges to timestamps. A path

p = (e1, e2, .., en), such that ∀i, ei ∈ E, is considered a match to a query edge e ∈ Eq if

and only if p is a time-respecting path. A time-respecting path is a sequence of edges

with non-decreasing time.

1.6.13 Double simulation

The most recent model in the relaxed GPM category is double simulation (DBS) [141].

It extends bounded simulation by imposing the matching constraints on both children

and parents of a data vertex. On the other hand, double simulation can be seen as an

extension of dual simulation that maps edges in the query graph to paths in the data

graph.

1.7 Chapter summary

To sum up what has been presented in this chapter, graph simulation was the Ąrst

model that came to relax the matching constraints imposed by subgraph isomorphism.

1.7 Chapter summary 33

Three extensions to this model were proposed, bringing a new deĄnition of similarity;

dual simulation that captures more topological structures (connected components and

undirected cycles), bounded simulation that matches edges with paths of bounded

length, and limited simulation that considers a new similarity information called k-

similarity. Multi-constrained simulation and surjective simulation are extensions to

bounded simulation that support multiple labels. Time-respecting simulation is another

extension designed for temporal graphs. On the other hand, relaxation simulation relaxes

further the constraints of graph simulation and dual simulation and hence allows for

larger results. Similarly, taxonomy simulation allows mapping even nodes of different

labels but that are related in terms of taxonomy. Strong simulation is an extension to

dual simulation that imposes locality to reduce the answer size while double simulation

relaxes dual simulation by mapping query edges to reachability paths. Finally, strict and

tight simulation shrink the size of the resulting match graphs to keep only answers closer

to subgraph isomorphism in terms of quality.

DRS

URS

GSIM

TRS

DSIM SGSIM STSIM TSIM

TXS

SJS

MCS

DBS

BSIM

Figure 1.11 Extensions of graph simulation where the direction of the arrows indi-
cates whether this extension came to restrict further the constraints imposed by graph
simulation or to relax them when the arrow is reversed (e.g. URS).

Figure 1.11 illustrates how these extensions, based on graph simulation, make the

constraints more or less relaxed or more stringent. The schema does not consider limited

simulation as an extension since it redeĄnes the notion of similarity rather than adding

or omitting some constraints to / from the original model.

The following propositions were given in [39, 84, 38] to describe the relations between

some GPM models:

1.7 Chapter summary 34

(1) If Q matches G via subgraph isomorphism, then Q matches G via tight simulation.

(2) If Q matches G via tight simulation, then Q matches G via strict simulation.

(3) If Q matches G via strict simulation, then Q matches G via strong simulation.

(4) If Q matches G via strong simulation, then Q matches G via dual simulation.

(5) If Q matches G via dual simulation, then Q matches G via graph simulation.

Furthermore, Figure 1.12 depicts the inclusion relationships between the different models.

Based on the application needs, we should decide to opt for graph simulation when

interested in Ćexibility and short response time. Moving from graph simulation toward

tight simulation and subgraph isomorphism will result in longer response time, but will

allow us to get better quality results compared to dual simulation and graph simulation.

GSIM DSIM SGSIM STSIM TSIM ISO BSIM

Figure 1.12 The inclusion relationships between results obtained by the different GPM
models discussed.

However, even with the progress made in reducing subgraph matching complexity from

exponential to a polynomial time, massive graphs containing billions of nodes and trillions

of edges cannot be stored or processed in a single machine. The following chapter discusses

this issue and presents the different mechanisms used in handling graphs distributed over

multiple machines.

Chapter 2

Graph Pattern Matching in Massive

Graphs: State-of-the-art

2.1 Introduction

Huge amounts of raw data that need to be analyzed are collected every minute. It

is common to partition and distribute them over multiple machines, so that queries

can be efficiently evaluated in a distributed fashion. Therefore, sequential algorithms

used in Ąnding subgraph isomorphism or graph simulation need to be adapted for this

context. In this chapter, we provide an overview of the paradigms used in distributed

graph processing. In a second part, we dive deeper into how these paradigms for massive

graph processing are used in the context of graph pattern matching. Finally, we draw a

taxonomy of the distributed GPM approaches based on multiple classiĄcation criteria.

2.2 Distributed graph processing

The most common distributed architecture used for handling massive graphs is the

master-slave architecture. The master is a machine of the cluster executing tasks of

coordination between different slave machines (a.k.a. workers) that are responsible for

parallel computations. The master machine also performs some monitoring tasks to

maintain a green state of the cluster so that all workers keep running smoothly. According

to Yan et al. in [144], a cluster is composed of mainly four components starting from

local storage, to distributed storage, communication layer and Ąnally the computing

module. (this architecture is sketched in Figure 2.1).

2.2 Distributed graph processing 36

②

③

①

④

Distributed computing

Local disk Local disk Local disk Local disk

Distributed storage

Master Worker Worker Worker

Figure 2.1 Components of a distributed architecture.

Component (1): Data graphs reside physically on distributed storage. HDFS [11] and

GoogleŠs Ąle system (GFS) [50] are two of the most popular distributed Ąle systems used

currently by several high-scale graph processing systems. These two Ąle systems share

the same aspects but do have some differences including the block size, node division

and the deletion strategy adopted.

Component (2): This part of the distributed architecture is responsible of loading

graphs from the distributed Ąle system to memory. In a parallel manner, the computation

module performs the computations on each machine.

Component (3): The communication layer deĄnes the technique used to exchange

messages between machines in the cluster, e.g. by using the paradigms Message Passing

Interface (MPI) or Remote Procedure Call (RPC).

Component (4): Each machine is responsible of its own local storage, which can be

used in out-of-memory systems that need to offload data graphs from memory to local

disks during computations.

Since data graphs must be split over multiple data stores, we deĄne a distributed graph

along with other related terminologies, i.e., fragment and partitioning strategies.

DeĄnition 15 (Distributed graph). A distributed data graph is a graph G partitioned

into k fragments (F1, F2, . . . , Fk), each fragment is located on a separate machine.

(V1, V2, . . . , Vk) is a partition of G(V, E, L) if and only if: (1) ∪k
i=1Vi = V and (2)

for any i ̸= j ∈ [1, k]Vi ∩ Vj = ∅.

Fragments of a data graph can depend on each other because of the crossing-edges

between vertices in different partitions and such vertices are called boundary nodes.

2.3 Programming models for distributed graph processing 37

DeĄnition 16 (Fragment). A fragment Fi is denoted as (G [Vi] , Bi) where G [Vi] is the

subgraph of G stored at machine i and Bi is the set of all boundary nodes in this subgraph.

We denote BV as the set of all boundary nodes and BE as the set of all crossing-edges.

The partitioning strategy we have just described is commonly used for distributing graphs

in the context of GPM and it is called Edge-Cut partitioning. The example shown in

Figure 2.2 has three fragments ¶F1, F2, F3♢, the global boundary set BV is composed

of the vertices ¶3, 5, 8, 9, 11♢. The alternative to Edge-Cut strategy is the Vertex-Cut

partitioning where edges of the data graphs are split between the different machines. In

this case, we have crossing vertices that are shared between multiple machines.

 6 7

10

12

1

4

2

F2 F3 F1

Crossing edge Boundary node

5

8

9

11
3

Figure 2.2 Graph fragmentation based on edge-cut partitioning strategy.

2.3 Programming models for distributed graph pro-

cessing

A programming model speciĄes an abstraction of how a parallel algorithm is designed

and executed. MapReduce [26] is one of the leading paradigms employed for processing

large data sets. However, algorithms that deal with graphs are different since they

incur poor data locality and little processing on every vertex of the graph, which results

into MapReduce job spending most of the time in I/O operations. This limitation of

MapReduce makes it unsuitable for handling distributed graphs. As a result, Pregel

framework was proposed in [86], along with other paradigms that have emerged later

challenging the programmer to think like a vertex. In Figure 2.3, we give a classiĄcation

of the commonly employed programming models for each layer in a big graph processing

system. These models are classiĄed based on three criteria namely execution model,

communication and timing. Each one offering two or more ways of deĄning how certain

tasks are performed by the system.

2.3 Programming models for distributed graph processing 38

Classes of programming models

Synchronous Asynchronous

Message passing Shared memory abstraction

Timing

Communication

Execution model
Vertex-
centric

Edge-centric
Subgraph-

centric

Figure 2.3 Programming models for distributed graph processing.

2.3.1 Timing

The timing deĄnes the synchronization type used to schedule tasks in parallel. Thus, a

parallel program can be either synchronous or asynchronous. In synchronous programming

models like Bulk Synchronous Parallel (BSP) [129], programs are composed of super steps

separated with synchronization points. After Ąnishing a super step, a process is blocked

until all the other processes, executed in parallel, terminate their tasks before moving to

the next super step. Asynchronous programming models do not set any constraints on

the order in which processes are executed, every process can send any message or execute

a task whenever CPU and bandwidth are available.

Considered as the most common model used for parallel processing, the bulk synchronous

parallel was proposed by Valiant in 1990 [129]. A BSP computer is composed of

three parts: (1) Components that can perform computations locally, (2) A router for

exchanging messages between each pairwise of such components, (3) A module allowing

for synchronization of these components. Every component carries out a computation in

a sequence of global super steps: (a) concurrent computation, (b) communication and (c)

barrier synchronization. Figure 2.4 illustrates the functioning of BSP.

2.3.2 Communication

This criterion deĄnes the way messages are exchanged between distant machines in the

cluster. We use either a message passing approach or shared memory abstraction. In

the Ąrst communication type, a message with its ID, containing information about the

source, destination and the needed information is sent from one machine to another while

in shared memory abstraction, vertices (programs) are considered as shared variables

that are accessed directly from any machine in the cluster.

2.3 Programming models for distributed graph processing 39

Processors

Barrier

synchronization

Communication

Local

computation

Figure 2.4 Bulk Synchronous Parallel model.

2.3.3 Execution model

The execution model determines the way a data graph is seen and iterated over. It could

be vertex-centric, edge-centric or subgraph centric.

Vertex-centric

The vertex-centric concept was introduced by Google in their paper on Pregel system [86].

A graph algorithm is executed from the perspective of a vertex that can perform a list

of operations as getting its ID, getting/setting its value or getting/counting its edges.

A vertex is analogous to a process in the BSP model. We also deĄne the notion of

neighboring processes, i.e. a process can send or receive messages only from its neighbors

(An illustration of the vertex-centric model is given in Figure 2.5).

Pregel deĄnes the way a graph processing algorithm is executed in parallel. It is based

on the BSP model, and adopts a message passing mechanism to communicate between

vertices. The data graph vertices are partitioned among several workers where each

vertex executes a compute() function, which is the same for all the vertices. A vertex can

have an active or inactive state. A Pregel program consists of a number of synchronized

iterations conducted in parallel by several vertices, and that can terminate only if all the

processes vote to halt and there are no pending messages waiting to be achieved.

Since its apparition, this model has revolutionized the world of graph processing. Ever

after, several open source frameworks were developed, adopting the same model while

providing improvements on the communication mechanism, load balancing or fault

tolerance. For example, Giraph [44] is the most popular framework with a large community

2.3 Programming models for distributed graph processing 40

working on it, including engineers from Yahoo, Facebook, LinkedIn and Twitter. This

system enhanced the initial model of Pregel with three improvements by Ąrst, introducing

parallelism at a Ąne grain using multi-threading on each worker. Also, to reduce the

communication cost, Giraph serializes Java objects before sending them from one machine

to another. Finally, to reduce the out-of-memory problems that occur generally with

longer super-steps with too many messages to send, Giraph adopts splits large super-steps

into smaller ones. We can cite other systems like GPS [108], MocGraph [162], Mizan [65],

GraphX [143], Pregel+[146] and GraphD [149] that propose an improvement of PregelŠs

model in a way or another.

Edge-centric

In this class of programming models, the parallel program iterates over the graph edges.

Therefore, the computing unit is an edge that can fulĄll some basic operations, e.g. get/set

its value or ID, or get the value of its target vertex. An edge can also communicate with

its neighboring edges by sending and receiving messages (see the illustration provided in

Figure 2.6). This paradigm is well-suited for data Ćows, and X-Stream [106] is one of the

frameworks adopting it.

Subgraph-centric

Unlike vertex-centric programming where vertices cannot know whether a vertex is located

at the same machine or not, subgraph-centric programming considers the fragment of

vertices located at the same machine as one computing unit. Here, communications

between vertices of the same subgraph are not delayed to the next super-step but executed

immediately. Such improvements result to better performance in computing time, number

of messages and total super-steps (see illustration of this model in Figure 2.7). In [144],

Yan et al. recommended this programming model in solving graph pattern matching.

Several frameworks support this paradigm including Giraph++ [125], GoFFish [117] and

Blogel [145], but they are basically vertex-centric.

Subgraph mining systems

On the other hand, there are subgraph mining systems that are dedicated for speciĄc

graph applications like subgraph matching, triangles Ąnding or frequent subgraphs

listing, e.g. Arabesque [124], Quegel [147], G-miner [20], Rstream [135], Fractal [27] and

G-thinker [148].

2.3 Programming models for distributed graph processing 41

Vi

e
1

e
2

e
3Vi1

Vi2

Vi3

Figure 2.5 The vertex-centric paradigm.

Vi

Vj

ei

Figure 2.6 The edge-centric paradigm.

HF

G

E

C

B
D

A

Figure 2.7 The subgraph-centric paradigm.

The most recent one is G-thinker which differs from previous frameworks that are known

to be IO-bound, i.e. their processing time is mostly dominated by I/O operations.

G-thinker is CPU-bound thanks to always keeping CPUs busy by switching to tasks that

have their data ready instead of waiting for the current task to receive its requested data

through the network. It handles two data tables: one for storing the graph available

locally and another cache table for remote vertices. The latter is shared by the different

subgraphs without the need to duplicate data within each subgraph. A subgraph is

handled by one thread independently and hence no synchronization is needed between

the different threads. Each thread, called comper, will construct its subgraph and work

on it to evaluate subgraph isomorphism or to count the number of local triangles, etc.

GRAPE [37] is a system that is different from the above mentioned ones. It allows

parallelization of sequential graph computations without adopting a TLAV paradigm.

Given a data graph G that is composed of k fragments ¶F1, F2, . . . , Fk♢, GRAPE assigns

each fragment to a processor. It uses partial evaluation to solve the graph problem on

one fragment of the data graph, i.e. a processor Pi evaluates the problem based on the

known data available in fragment Fi and exchanges messages based on the BSP model

to get the missing information updated. Then, each processor updates its partial answer

based on the received updates. When no processor emits new messages, an assemble

procedure is triggered at a coordinator machine to combine the partial answers.

Each one of the programming models presented in this section is well adapted for

designing algorithms that respond to speciĄc problems but not to others. For example,

2.4 Distributed graph pattern matching approaches 42

the vertex-centric programming model is adapted for algorithms based on communications

where the vertex program does not need to access neighborhood information, e.g. Single

Source Shortest Path (SSSP), Page Rank. On the other hand, the subgraph-centric

programming model is better suited for algorithms where the vertex-program requires its

neighborhood information in addition to its local information to update its local context,

which is the case for GPM. Finally, the edge-centric model is used to design Ćow-centric

algorithms where the main processing is executed on the graph edges and not on its

vertices.

Other programming models also exist, but they are not as commonly used as the ones

discussed above. For example, the partition-centric model is a special case of subgraph-

centric where all nodes and edges that are located in the same machine are considered as

one computing unit. Moreover, neighborhood-centric is another model considering that

the scope of a single vertex is composed of its local state and the states of its multi-hop

neighborhood. We also Ąnd other programming models similar to the vertex-centric one

such as Scatter-Gather and Gather-Sum-Apply-Scatter (GAS). These two models are

slightly different from the vertex-centric model. For example, Scatter-Gather deĄnes for

each vertex two functions Scatter and Gather. The Scatter function deĄnes and sends

messages to its neighbors, while the Gather function allows a vertex to read the received

messages and edit its local information. Both functions are executed in the same iteration

respecting the BSP model. A comprehensive survey of the programming abstractions

used for distributed graph processing can be found in [61].

2.4 Distributed graph pattern matching approaches

There are several previous works that reviewed and proposed different taxonomies of

sequential subgraph isomorphism algorithms such as [23, 46, 43, 131]. Other works like

[73, 14, 120] conducted a benchmarking to compare some of the very well known subgraph

isomorphism algorithms on the same environment. Unlike previous works, we provide in

this section a taxonomy of the distributed GPM approaches based on graph exploration

and which adopt the emerging TLAV paradigm and its derivatives. We also discuss

these programming models and how they improve solving GPM in massive graphs. This

section synthesizes the work conducted recently in GPM on distributed graph processing

systems with a narrow focus on relaxed matching that has gained an increased interest

during the past ten years.

2.4 Distributed graph pattern matching approaches 43

2.4.1 Querying distributed data graphs

When evaluating a subgraph matching query, fragments of the data graph can be processed

separately. Actually, the real challenge here is how we should evaluate GPM for the

boundary nodes. Because, as we mentioned earlier in Chapter 1, to verify if a data vertex

is a match to a certain query vertex, the matching information of its neighborhood is

necessary in the evaluation of the modelŠs constraints. Several answers to this question

have been proposed in the literature, we present in this section some of the most relevant.

To Ąnd matches of a query graph in a data graph that is fragmented over multiple sites,

a general algorithm follows these steps: a coordinator machine receives the pattern graph

Q, then transfers it to the workers which, in turn, perform a local evaluation of the

query resulting into a partial matching set. Such partial matches are then sent to the

coordinator to combine them into one Ąnal result. Different mechanisms and techniques

are involved in the evaluation of GPM for the set of boundary nodes. This can be

achieved by either communicating intermediate results between workers or even shipping

parts of the fragmented graph from one worker to another. We notice that some GPM

propositions rely on the existing frameworks of distributed graph processing while others

simply provide a from-scratch implementation of the distributed algorithms.

Different evaluation criteria are used to measure the performance of distributed graph

algorithms. Firstly, we have data shipment as the amount of data exchanged between

distinct machines during the execution of the algorithm. The second criterion is visit

times, the number of messages that are exchanged between workers in the cluster. Finally,

there is the make-span (a.k.a. response time) that refers to the duration between receiving

the query and Ąnding the result.

2.4.2 Distributed structural graph pattern matching

In this section, we review the latest works proposed for Ąnding subgraph isomorphism in

a distributed environment. We classify them based on the timing and execution model

applied. The studied works are divided into four classes: synchronous master-slave,

asynchronous master-slave, synchronous vertex-centric and asynchronous vertex-centric.

The works presented under this section are considered structural because they aim to

Ąnd answers that have the exact same structure as that of the input query.

2.4 Distributed graph pattern matching approaches 44

Synchronous master-slave

This model synchronizes the computation through super-steps separated by communi-

cations between workers or between workers and a coordinator. The main difference

between an algorithm using a master-slave execution approach and the one adopting

subgraph-centric is that the latter is fully centric while the Ąrst one involves a coordinator

for exchanging data between different workers or to orchestrate the graph matching

process. Both consider the subgraph as one computing unit on which all the operations

are made at the same time.

Peng et al. [96] adopt partial evaluation to Ąnd matches locally to each partition of the

distributed data graph. For the cross matches that include data vertices between multiple

fragments, each worker evaluates subgraph isomorphism based on its local information

and leaves some matches unanswered. Then, the partial matches are assembled on a

coordinator site to get cross matches. The assembly algorithm collects all the partial

matches, joins them by starting with two partial matches from connected fragments

and considers a new match at a time. If the match is complete, another assembly is

started, otherwise, other partial matches are joined to form a Ąnal answer. The authors

introduce a partitioning of the partial matches to avoid unfruitful joins. Partial matches

that share an internal data vertex are collected in the same partition and the assembly

is made between different partitions. Another distributed assembly that follows a BSP

master-slave was proposed: in the Ąrst super-step the partial-evaluation part is conducted

locally, then partial matches are shared between workers to assemble the cross-matches

in a distributed way such that an intermediate result is communicated each super-step.

A one-direction communication is used to avoid duplicate answers.

To parallelize TurboISO on a fragmented data graph. Fan et al. [37] expand each

fragment Fi with data vertices from other fragments such that subgraph isomorphism can

be evaluated locally on each worker. Subgraph isomorphism is determinable locally for a

fragment Fi if and only if, for every vertex v ∈ Fi, v can reach all its neighborhood within

d hops such that d is the diameter of the query graph. This work is based on GRAPE that

offers the three functions: partial evaluation (PEval), incremental evaluation (IncEval)

and assemble. In PEval, each worker gathers the d-neighborhood of its boundary nodes.

Then, it sends them to the coordinator that, in turn, sends each d-neighborhood to where

its center resides. IncEval is simply a sequential implementation of TurboISO. Finally,

the assemble function takes the union of the subgraph isomorphism matches returned

by each worker. The limitation of this approach is that large parts of the data graph

2.4 Distributed graph pattern matching approaches 45

may end up duplicated among workers, especially for small diameter graphs and when

dealing with complex queries of large diameters.

Asynchronous master-slave

We present the asynchronous approaches that allow workers to communicate with the

coordinator machine without synchronization barriers, hence allowing to reduce their

waiting time and consequently optimizing the overall response time.

The Ąrst approach under this category is COSI [12]. COSI relies on the RDF format1 for

describing both the data graph and query graph. The architecture used for evaluating

subgraph isomorphism consists of a set of workers that communicate directly with each

other and a master node behaving as an interface with the end user. This system

uses a partitioning strategy that minimizes the edge cuts between different sites of the

distributed architecture. It is based on the idea of keeping on the same machine every two

vertices that are likely to be retrieved together by a random query. The query is received

by the master that routes it to one or more workers. The worker process the query locally

and send back a complete subgraph matching answer to the master node. The local

algorithm uses a local index for retrieving neighbors of a data vertex. It deĄnes an order

for processing the query variables, Ąnds data candidates of the current query variable,

substitutes it with a data vertex v then searches for candidates of the next variable in the

set of neighbors of v. It continues executing this operation until no candidates are found

in the current partition. At the end of this step, the algorithm veriĄes if a valid match

set is obtained or not to send back an answer to the master. So here, the algorithm

explores the tree search in a depth Ąrst search fashion where each branch is traversed in

parallel to reduce the processing time. This approach for Ąnding subgraph isomorphism

performs well in terms of time and data shipment. However, even though neighborhood

indexes accelerate and facilitate the access to the data graph vertices, they have generally

a super-linear creation time.

In [122], a GPM system developed on top of Trinity [112] was proposed that is based on

query decomposition and graph exploration. The aim is to reduce the amount of data

shipment involved in the processing and also limit the size of intermediate results by

avoiding joins. It includes three major steps: Query decomposition and STwig ordering,

Exploration and Ąnally a Joining phase. The query graph is Ąrstly decomposed into

STwigs (trees of two levels). After that, a selection algorithm is executed to Ąnd the best

1The RDF format stands for Resource Description Framework, which is a graph data model for
describing graphs using a set of triples of the form: subject-predicate-object.

2.4 Distributed graph pattern matching approaches 46

order in which these STwigs will be processed minimizing further the size of intermediate

results (the output is an ordered sequence of STwigs S1, S2, . . . , SN). The STwigs sequence

is next delivered to each worker which will process it, explore the graph while joining

the partial matches obtained for each STwig (M1, M2, . . . , MN), then send back the

result R to the coordinator machine. The most important contribution here, is using

exploration instead of joining whenever it is possible, which considerably reduces the

size of intermediate results. The local evaluation of subgraph isomorphism requires

accessing STwig root children located on different workers, and hence involves network

communication. Compared to the propositions from previous approaches that rely on

indexes, this work has shown performances in response time when handling a graph of

one billion nodes. The only index required was intended to accelerate the access to each

data vertex by mapping identiĄers to their labels.

Synchronous vertex-centric

We review under this category the synchronous vertex-centric approaches proposed for

GPM.

Lighthouse [40] is a system that evaluates subgraph isomorphism and accepts as input

a graph query language equivalent to Cypher (the one used by Neo4J [59]). It is an

improvement for the approach proposed in [122]. Similarly, the query graph is decomposed

into STwig data structures that will be matched individually using the vertex-centric

approach, then, the matching results are joint to build the match result. This work

discusses the possibility of simply processing the STwigs in parallel then joining them

sequentially. Such optimization may require more memory to hold the intermediate

results but will deĄnitely reduce the number of super-steps and hence the query processing

time. So here, the main contribution was taking the query decomposition approach of

[122] and transforming it into a vertex-centric one and thus, enabling the system to

achieve better performance and gain in scalability.

PSgL [113] evaluates subgraph isomorphism based on a parallel traversal of both the

pattern graph Q and the data graph G to map vertices in Q with vertices in G. Each

data vertex v is Ąrst mapped to a query vertex u (selected based on a cost function that

minimizes the size of intermediate results). Then, in the next super-step, the mapping is

expanded by mapping neighbors of u to the neighbors of v if the mapping satisĄes the

matching constraints. In this step, u is colored black, its neighbors are gray, and the rest

of the pattern is white. In the next super-step, this mapping (tree) is forwarded to the

neighbors of v that can expand it further. A neighbor v′ will expand a gray vertex (that

2.4 Distributed graph pattern matching approaches 47

becomes black), its white neighbors (not yet mapped) are now mapped to neighbors of v′.

Every mapping is expanded in the same way until all the query vertices are mapped (it

returns the subgraph) or there is no way to expand it, i.e. no remaining neighbors of v′.

The authors propose heuristics that guide the tree forwarding among the data vertices.

This approach that adopts a BSP-based vertex-centric paradigm was implemented on

top of Giraph.

In [48], the authors use a Single Sink DAG extracted from an undirected pattern to

guide the evaluation of subgraph isomorphism in a distributed data graph. The sink

of the DAG is a query vertex that has no outgoing vertices, only incoming vertices.

Every data vertex candidate to this sink will be responsible for collecting a subgraph

match if it exists. Transition rules are attached to every edge in the DAG, then each

data vertex considered a candidate to a non sink query vertex will generate and transfer

the received messages that end at the sink data node. The data node accumulates the

received messages to form a correct match or drop the messages if there are non respected

subgraph isomorphism constraints. Furthermore, to support the detection of the same

query on an evolving graph, any update event triggers a message broadcast received by

the data vertices that will verify the transition rules and transfer these messages to their

neighbors if the transition rules become unsatisĄed. The receiving nodes will do the same

recursively until reaching the sink nodes that will update their matching information

accordingly.

Asynchronous vertex-centric

Reza et al. [102] proposed recently a distributed algorithm for evaluating subgraph

isomorphism on one trillion-edge graphs based on HavoqGT, a platform for asynchronous

vertex-centric graph processing [94]. The algorithm is composed of two phases. Firstly, a

Local Constraint Checking procedure eliminates aggressively the vertices that do not

satisfy the subgraph isomorphism constraints, several iterations can be executed until no

vertex is eliminated. Then, a Cycle Checking procedure is executed only for cyclic queries.

The Ąrst phase can successfully eliminate all the data vertices that do not participate

in answering the input query. But when the query graph contains cycles, there can

still be remaining vertices that do not verify the whole matching constraints. The idea

proposed by the authors consists of checking the existence of cycles based on some cyclic

constraints introduced by the user to keep only matches respecting them in the data

graph. If the algorithm Ąnds a cycle having a deĄned length d in the query graph then,

each data vertex already matched to a member of this cycle will execute a token passing

2.4 Distributed graph pattern matching approaches 48

routine. This routine is used to verify if it is also part of a cycle with the same length in

the data graph. The data vertex sends a token to its neighbors in a diameter of d such

that if the data vertex does not get back its token at the end of d iterations, it will be

eliminated because it is not part of any cycle. This approach showed good results for

handling undirected graphs of more than one trillion edges.

PruneJuice [104] uses graph pruning to evaluate subgraph isomorphism. The data graph

is pruned based on a set of constraints extracted from the query graph so that every data

vertex respecting these constraints will be part of a match. The embedding enumeration

can then be performed on the resulting pruned graph having the smallest size possible.

These constraints are divided into local constraints such as the vertex label and the

neighbor labels and that will be veriĄed by exchanging direct messages between the

data vertices. Non-local constraints require walks within the data graph such as path

search, cycle checking when a query label is repeated in the pattern or a query edge is

part of a cycle respectively. Both types of constraints require a token passing to verify

the cycle membership and to verify that two data vertices having the same label have a

speciĄc labeled path . Another type of non-local constraints that ensure that the pruned

graph contains exactly all the subgraph isomorphism matches is the Template-Driven

Search (TDS). The TDS prunes further the data graph by walking through the pruned

graph and checking for the union of cycle constraints and the union of repeated label

constraints and eliminating every data vertex not satisfying them.

Furthermore, Reza et al. [103] use k edit-distance to Ąnd approximate matches. Here, a

k edit-distance is the subgraphs of the data graph that become isomorphic to the input

query upon the deletion of up to k edges from the query. The authors have already deĄned

in [104] a set of local and non-local constraints that help pruning the data graph to

keep only exact matches and thus enumerate subgraph isomorphism embeddings. In this

contribution, they deĄne a set of prototypes from the query graph (variations of the query

graph within distance k) and then, they use the common local and non-local constraints

to avoid reevaluating subgraph isomorphism for every single prototype separately. A

data vertex that satisĄes a non-local constraint for k = δ + 1, will also satisfy this

constraint for k = δ. So, every time a data vertex meets speciĄc non-local constraint x,

this information is saved in the context of that vertex so that it can be reused in the

constraints veriĄcation for prototypes of smaller k.

In [119], a vertex-centric approach was presented for performing topology pattern match-

ing (subgraph isomorphism) in a distributed environment composed of a Wireless Sensor

Network (WSN). Each sensor in this WSN is analogous to a data vertex having a partial

2.4 Distributed graph pattern matching approaches 49

view of its closest neighbors in the network topology. Different from the previous works,

this proposition aims to reduce the disk storage and message overhead in a resource-

limited context. There is an initiator node v0 that starts the matching process and builds

a partial match set if possible. Then, it will ask its neighbors to further extend the

partial match set with their local views of the graph. When a node receives a request

from its neighbor to complete the match set, if it Ąnds a complete match set, it will send

back the result to v0. Otherwise, it will propagate its partial answer to other nodes in

the data graph. The authors conĄrmed that such approach can also be used in contexts

other than a WSN. However, the solution was only tested on 400 nodes.

2.4.3 Distributed relaxed graph pattern matching

Since the recent works on graph pattern matching are mostly oriented toward reaching

higher performance and scaling up the existing algorithms into larger graphs, we will

focus on distributed relaxed GPM. Graph simulation along with its induced models gave

an evidence of superiority over its conventional counterpart, and this is due to relaxing the

structural constraints imposed by subgraph isomorphism. The works discussed here are

divided into four categories. First, we have the master-slave execution model with both

synchronous and asynchronous timing. Then, we have BSP-based approaches adopting a

vertex-centric or subgraph-centric abstraction.

Synchronous master-slave

We review under this section a work that distributes processing following a master-slave

model where the workers communicate only with the master.

Graph simulation: Similar to the work presented in [36], graph simulation is evaluated

on top of GRAPE [37] by incrementally updating the match set of a query vertex u

in each fragment Fi. Then, the matching information of a vertex v in Fi is needed by

their original fragments to complete their matching. So, at the end of partial evaluation

(PEval), each processor sends a variable X(u, v), with true or false value to indicate

whether u ∈ Q is matched to v ∈ G or not, to the coordinator. The coordinator will

then propagate these variables into the processors that need to complete their matching

information. Upon the reception of these variables (in IncEval), each processor will verify

the matching constraints and update its local variables accordingly. If a variable X(u, v)

switches to false, it will propagate this update by sending a message to the coordinator,

which in turn propagates the change to the appropriate processors until there is no

2.4 Distributed graph pattern matching approaches 50

update issued. Finally, the coordinator will execute the assemble function which is the

union of partial matches generated by each processor.

Asynchronous master-slave

We present under this section the recent works adopting an asynchronous programming

model where the evaluation of the query is triggered on a master and then executed on

the different worker machines.

Graph simulation: The Ąrst work ever to address graph simulation in a distributed

environment was published in 2012 [85]. The authors adopted a message-passing approach

for solving graph simulation in the context of big graphs. Their solution is based on the

following Ąndings: they proved that evaluating separately the connected components

(CCs) of a data graph allows us to Ąnd a correct matching set by just computing the

union of different partial matches found for each CC. First, each worker receives the

query graph and Ąnds candidate vertices for each query vertex in parallel with other

workers. After this Ąltering step, the graph will contain a set of connected components,

some of which reside on the same worker while others are distributed over multiple

machines. Each worker executes locally the algorithm localHHK (an updated version of

HHK algorithm [57]) on the CCs that reside fully on it. Then, it sends back its partial

matching set to a coordinator machine, along with the information about vertices in a

CC across several machines. The coordinator executes a scheduling algorithm to assign

the remaining CCs to a set of workers while minimizing make-span and data shipment at

the same time. The assignment is then sent back to these workers that will ship the CCs

to their corresponding workers. The assigned workers will perform local graph simulation

on the received CCs and send back their results to the coordinator. At the end, a set

of partial matches for each connected component will be available on the coordinator

that builds a Ąnal matching set from their union. It is important to mention that the

proposed solution lies much more on distributing the data while executing the same

algorithms in parallel (data-parallel approach) rather than on the notion of distributed

processing.

In [36], Fan et al. proposed a distributed algorithm for solving GPM via graph simulation

with bounded response time and data shipment. Each worker maintains locally a

dependency graph for tracking linked vertices that are situated on other workers. To

perform local graph simulation correctly, the boundary nodes and crossing edges are

duplicated on both the source and destination machine and treated separately. Here,

instead of shipping parts of the data graph from one site to another, a Boolean variable

2.4 Distributed graph pattern matching approaches 51

X(v,u) is used to indicate whether the data vertex v is a match to the query vertex u or

not. If the two vertices v and u share the same label, then there must be at least one

matching relation between the child node ui of u and a child node vi of v to add this

tuple to the match set. This constraint is formulated as follows: X(v,u) = ∨(∧X(vi,ui)). To

evaluate graph simulation, the algorithm simply propagates the values of these variables

inside each worker such that each variable will be written in function of only the variables

that relate to virtual nodes (nodes copied from other fragments) in this machine. Then,

a message passing is conducted where each machine broadcasts the values of its in-node

variables (nodes considered as virtual-nodes in other fragments) following the dependency

graph. After receiving new values of variables related to its virtual-nodes, each machine

propagates this information among its local variables. Next, it updates them and conduct

a new message passing phase if one or more of its in-node variables were updated. The

algorithm converges when no more messages are exchanged. Adopting asynchronous

communication made it possible for this system to achieve better response time compared

to the solutions proposed in [39].

Strong simulation: In an earlier paper [84], the outlines of a distributed algorithm

were given for computing strong simulation. It was the Ąrst algorithm proposed in this

category but with no performance guarantees. The algorithm simply ships the contents

of each data locality ball that is stored across different machines to the machine with the

smallest index, then it evaluates strong simulation locally. After this step, the workers

send their partial results to a coordinator machine that merges them into a Ąnal match

set.

In [133], the process of Ąnding matches of a pattern graph is split into two phases: An

off-line redistribution phase is conducted to make the data graph locally determinable,

then an on-line evaluation phase is held for evaluating strong simulation. The main

challenge brought by strong simulation in the distributed setting is the data shipment

incurred. Indeed, we need to ship data vertices from different machines for each locality

ball created. Thus, the larger the query graph, the larger its diameter dq and the larger

the locality balls. As a reĆection, for reducing the size of these balls and hence the

amount of data shipped, we can think of reducing the diameter of query graphs. The idea

on which this paper is based is to set a maximal query diameter dq, and use it to further

optimize data shipment by redistributing the data graph offline. The redistribution

is made such that all the balls centered at v ∈ V will reside on the same machine.

An online processing algorithm is conducted at the reception of every query graph Q.

The online phase consists of partitioning the query graph into partition-trees (a tree

2.4 Distributed graph pattern matching approaches 52

rooted at each query vertex and having as diameter dq) locally on each worker. Then,

p-match-graph is computed for every partition-tree, knowing that p-match here is a

revision of graph simulation allowing to Ąnd partial results of a query graph locally

when using its partition-trees as input. Then the local p-match-graph obtained is sent

to a coordinator. This latter merges the local p-match-graphs received into one Ąnal

p-match-graph, then conducts strong simulation locally to Ąnd a Ąnal answer to the

query. Even though this algorithm achieved controllable data shipment in the online

phase, it is not well adapted for highly dynamic graphs. (a redistribution phase has to be

executed after each update event). Also, this proposal puts too much effort into reducing

the data shipment at the expense of response time, another drawback is that no data

shipment was involved between different workers but the algorithm still uses network

traffic between workers and master (which may lead to a load-balance problem). Such

proposition does not take advantage of the distributed systems and their optimizations.

Synchronous vertex-centric

We Ąnd several works adopting this programming model to evaluate graph simulation,

strong simulation, strict simulation or tight simulation. All the studied works adopt a

BSP-based vertex-centric abstraction.

Graph simulation: We review here three different algorithms of graph simulation and

dual simulation since the latter is a simple extension of the Ąrst.

In [39], the Ąrst algorithm to adopt a BSP-based vertex-centric approach to evaluate

graph simulation was proposed. Each vertex in the data graph has a local context

composed of two variables: a match Ćag and a match set. Upon receipt of the query

graph, it sets its matching Ćag to true if its label is the same as one of the query verticesŠ,

and the match set will contain identiĄers of the similar query vertices. Then, if the match

Ćag is true, it will also ask its children for their match sets. In the second super-step,

vertices that receive a request while their match Ćags are true will respond with their

match sets. In a third round, each vertex receiving information from its children will

update its match Ćag and match set according to the received match sets and the query

graph, it will then inform its parents of any update made. In the fourth round and

beyond, each vertex that receives an updated match set will update its match Ćag and

match set accordingly and inform its parents. This algorithm stops when all the vertices

stop sending messages, it takes at minimum 4 super-steps to evaluate graph simulation.

The same goes for dual simulation when each vertex will ask for information about its

2.4 Distributed graph pattern matching approaches 53

children and parents. Similarly, In the following super-steps, when a match set is updated,

the vertex will inform its children and parents about the updates made.

In [109], S2X was proposed for evaluating dual simulation on RDF data, on top of

GraphX. Spark allows for data-parallelism thanks to its Resilient Distributed Datasets

(RDDs) that apply an efficient partitioning strategy permitting to minimize the cut-edges

between worker machines. Moreover, graph-parallel computation is made possible with

its vertex-centric programming model called GraphX. The query graph consisting of a

set of triplets (edges) is broadcast to every data vertex that will verify dual simulation

constraints locally. Then, it will exchange its partial match sets with its neighbors to

further validate the matching sets built in the Ąrst super-step. At the end and after

receiving the partial results obtained by each data vertex, a joining phase is executed

to construct the Ąnal answer. If we compare the contribution made by this paper with

the algorithms in [39], here the authors addressed RDF graphs that are characterized by

labeled edges and that may have multiple edges between two nodes.

Another recent work proposed two vertex-centric algorithms to evaluate graph simulation

for acyclic queries and cyclic queries separately [77]. The Ąrst algorithm uses a Boolean

variable local to each data vertex which holds the matching information that can be

either True, False or Unknown. The algorithm is executed in three different stages:

Initialization, Message Broadcast and Match trial. In the Ąrst step, matching information

for data vertices verifying the match constraints are set to true (the vertices candidates

to a query vertex that has no children in the query graph), the remaining vertices set

their values to unknown. Then, a message broadcasting step is carried out to propagate

these truth values to parents. The vertices having their local matching variables set to

True send their labels to their parents and go inactive. On the other side, vertices with

unknown values will wait for messages from their children to complete their matching

information. Once a data vertex with unknown value receives the labels from all its

children, it will compare this label set with the label set needed for satisfying the graph

simulation constraints. If the two sets are equal, then it sets its local variable to true

and inform its parents. Otherwise, it will set it to false. But, if it does not receive all the

matching information from its children, then it will wait for the next super-step. In this

super-step, messages from the previous super-step will be delivered and data vertices

that did not yet compute their matching value will evaluate it depending on the set of

labels received from children. The algorithm proposed is not general since it sets another

constraint on the query graph. Indeed, it does not allow repeated labels while it is almost

impossible to Ąnd practical queries in real-world applications with a no repeated labels.

2.4 Distributed graph pattern matching approaches 54

Relaxation simulation: Gao et al. [47] proposed two BSP-Based vertex-centric

algorithms to evaluate their models URS and DRS on distributed graphs. In URS, the

authors deĄne the condition set of a query vertex u in Q as the set of labels that should

be satisĄed if two vertices are matched together. It is composed of the set of labels of

the children of u that can be substituted by its grand childrenŠs labels. The initial set is

composed of the children of u, then new combinations are generated by replacing a child

in the initial set with its children set. To evaluate an input query in a distributed way,

the query is Ąrst broadcast to all the data vertices in the graph. Then, each node sets its

match Ćag true if its label is equal to that of a query vertex. It propagates its label to its

children and parents during the next two iterations. Then, in the third super-step, if its

match Ćag is true, it computes its condition set and checks whether there is a satisĄed

condition set among the labels of its children. If yes, it votes for halt, otherwise it sets

its match value to false and informs its parents to update their matching information

accordingly. The same goes for DRS, such that both grand-parents and grand-children

may substitute the parents and children of a query vertex respectively in the condition

set. In this case, a data vertex will compute both parent and child condition sets and

exchange its matching information with its parents and children. Data vertices that

do not Ąnd candidates satisfying the two condition sets will set their match value to

false and inform their parents and children so they update their matching information

accordingly. It is the only distributed approach found in literature that treats a model

as interesting as URS and DRS. Nevertheless, the proposed algorithms only consider

patterns with unique labels which is not always the case in real-word applications.

Strong simulation: In [39], the authors proposed an algorithm that, Ąrstly, conducts

dual simulation in a distributed manner. Secondly, each vertex having a match Ćag set

to true will execute a BFS traversal to collect the contents of a ball, of which it is the

center, with a radius equal to dq (diameter of the input query). It then evaluates dual

simulation locally to each data vertex to get only matches falling inside these locality

balls. This approach is not scalable as it showed poor performance guarantees when

dealing with average data graphs. Its limit lies in the way data locality are generated,

because if we try to duplicate the neighborhood of every single node that has a true

match Ćag, up to dq hops, this will certainly create a bottleneck as the query graph gets

larger. That is why the authors proposed a distributed algorithm for strict simulation

which scales better as it uses only the dual match graph. The authors used the same

approach to evaluate tight simulation in [38], i.e. the locality balls are collected by a

subset of the dual match vertices.

2.4 Distributed graph pattern matching approaches 55

Furthermore, G-thinker [148] can be used for evaluating strong simulation as the locality

balls creation will not require the duplication of neighborhood data inside every single

subgraph generated leading to an intermediate data graph of exponential size. Since

strong simulation does not require communication between the subgraphs whose diameter

is well deĄned, using G-thinker will allow it to scale to very large graphs.

Synchronous subgraph-centric

Generally, when we use the vertex-centric model, it becomes difficult for the system to

achieve an optimal make-span since vertices do not know whether their neighbors reside

on the same worker or not. Consequently, even the use of information from vertices on

the same machine needs to be delayed to the next super-step. This generally leads to a

greater response time. Thus, approaches that focus on the multi-hop neighborhood of a

data vertex, i.e. subgraph-centric approaches, can be well adapted for distributed GPM.

Graph simulation: In [62], the authors focused on the big data velocity issue, i.e.

streaming graphs by adopting a BSP-based subgraph-centric approach on top of GPS.

The data graph is partitioned into several subgraphs that are mapped to the GPS vertices.

The proposed incremental algorithm evaluates graph simulation in a vertex-centric fashion

(an improvement to the proposition in [39]). Each data vertex is analogous to a BSP

process and uses two local variables; a match Ćag and a match set. They take into

account different kinds of events that come in to update the data graph, e.g. vertex

addition/removal, edge addition/removal and attribute addition/removal. To evaluate

the same query while having a graph updated every couple of seconds for example,

the algorithm maintains the previous matching information instead of resetting the

variables and starting from nothing. The update event will trigger a new iteration of

graph simulation. The vertices concerned will update their match Ćags and match sets

accordingly, inform their children that will conduct the basic updating process, and so

on. In streaming graphs, the data graph is updated quite often with the reception of

new events in a continuous way. Here, the main improvement brought was to avoid

computing the maximum perfect match from zero for the same query graph whenever the

data graph is modiĄed. Also, the use of subgraph-centric programming model reduced

the amounts of network traffic signiĄcantly.

Several other incremental algorithms were already proposed, but they do not deal with

the problem at high scale (no distributed algorithms were found except this work). Fan

et al. proposed in [34] three algorithms for incrementally evaluating graph matching

via graph simulation, bounded simulation and subgraph isomorphism. A recent work

2.4 Distributed graph pattern matching approaches 56

addressing the same problem was done in [154] where the authors proposed incremental

algorithms for performing dual simulation when no more than half of the data graph

edges are updated.

2.4.4 ClassiĄcation of distributed GPM approaches

Table 2.1 summarizes the presented GPM approaches, where every work is cited with

the programming paradigm adopted and the GPM model applied. We also give the size

of the largest graph tested within each work. The different approaches were not tested in

the same context. In addition to the size of graphs, there is also the nature of graphs that

differs from one experimentation to another; e.g. the density of the data graph, number

of the cycles appearing in it, and the number of present labels. Moreover, these different

works use very different system conĄgurations as the number of CPU cores varied from

tens to thousands of cores. We cannot compare the response times since the size and

nature of patterns used in the experiments change from one to another work. We give

such details only to show how far the authors went in their experimentation to validate

their approaches. The largest graph that has been tested contains 137 billion vertices of

synthetic data. It is common to reach such size in the current big graphs issued from

social networks, the World Wide Web and many other applications.

Some of the conclusions drawn out of this comparative study are as follows. First, graph

simulation is a promising model that aims to address the challenges of actual GPM

applications like network motif discovery, Ąnding communities in social networks, and

many other applications. That is why it is important to consider this research area as

one of the main current challenges of subgraph matching on big graphs. Second, strong

simulation is a challenging model that should be considered in future work. The way

its algorithm was distributed is not efficient and needs to be revised. Although, Ref.

[133] provided a new distributed algorithm for strong simulation, it does not beneĄt

from the aforementioned programming paradigms. Furthermore, redistributing the data

graph after every single update of its contents would arise a performance bottleneck

when dealing with highly dynamic graphs. Finally, even though relaxed graph pattern

matching is highly common among the recent works addressing GPM for social networks,

subgraph isomorphism approaches are also present and they showed high performance

guarantees when tested on massive graphs.

In Figure 2.8, we provide a taxonomy for the distributed algorithms we discussed earlier.

Our classiĄcation is based on three selection criteria: the programming paradigm used,

2.4 Distributed graph pattern matching approaches 57

Table 2.1 Distributed graph pattern matching approaches.

Work Year Model Timing Execution model size of graph

[12] 2010 SubIso Async. Master-slave 778M edges
[122] 2012 SubIso Async. Master-slave 1B nodes
[40] 2014 SubIso BSP Vertex-centric 100K nodes
[48] 2014 Inexact SubIso BSP Vertex-centric 105M nodes
[113] 2014 SubIso BSP Vertex-centric 42M nodes
[96] 2016 SubIso BSP Master-slave 1.3B nodes
[102] 2017 Inexact SubIso Async. Vertex-centric 68B nodes
[104] 2018 SubIso Async. Vertex-centric 137B nodes
[119] 2018 SubIso Async. Vertex-centric 400 nodes
[37] 2018 SubIso BSP Master-slave 65M nodes

Graph sim.
[103] 2020 Inexact SubIso Async. Vertex-centric 34B nodes
[84] 2011 Strong sim. Async. Master-slave 548K nodes
[85] 2012 Graph sim. Async. Master-slave 875K nodes
[39] 2013 Graph sim. BSP Vertex-centric 3M nodes

Dual sim.
Strong sim.
Strict sim.

[36] 2014 Graph sim. Async. Master-slave 3M nodes
[38] 2014 Tight sim. BSP Vertex-centric 5M nodes
[47] 2014 Relaxation sim. BSP Vertex-centric 1M nodes
[109] 2015 Dual sim. BSP Vertex-centric 10M nodes
[62] 2017 Graph sim. BSP Subgraph-centric 9.5 M nodes
[133] 2018 Strong sim. Async. Master-slave 1M nodes
[77] 2018 Graph sim. BSP Vertex-centric 403K nodes

the pattern matching model evaluated and whether the algorithm proposed is synchronous

or asynchronous.

Based on this comparative study, we notice that both synchronous and asynchronous

approaches were employed with more works adopting the BSP model. The master-slave

paradigm is the oldest one used in distributed graph processing. The vertex-centric

approaches form the largest part of these works, and Ąnally subgraph-centric is the

least frequent paradigm with only one work addressing graph simulation. Even though

Ref. [148] proposed an asynchronous subgraph-centric algorithm to evaluate subgraph

isomorphism on G-thinker, they did not give the algorithmic details of their approach.

The edge-centric paradigm was not adopted in distributed GPM. GpSM [127] and some

join-based algorithms process the data graph edge by edge. Their distributed version

2.4 Distributed graph pattern matching approaches 58

T
ax

o
n

o
m

y
 o

f
D

is
tr

ib
u

te
d

 G
P

M

Master-Slave

BSP

Subgraph ISO

(Peng et al., 2016)

(Fan et al., 2018)

Graph Sim (Fan et al., 2018)

Async.

Subgraph ISO

(Bröcheler et al., 2010)

(Sun et al., 2012)

Graph Sim

(Ma et al., 2012)

(Fan et al., 2014)

Strong Sim

(Ma et al., 2011)

(Wang et al., 2018)

Vertex-centric

BSP

Subgraph ISO

(Filip et al., 2014)

(Gao et al., 2014)

(Shao et al., 2014)

Graph Sim

(Fard et al., 2013)

(Li et al., 2018)

Dual Sim (Schätzle et al., 2015)

Strong, strict,

tight Sim
(Fard et al., 2014)

Relaxation Sim (Gao et al., 2016)

Async. Subgraph ISO

(Reza et al., 2017)

(Stein et al., 2018)

(Reza et al., 2019)

(Reza et al., 2020)

Subgraph-centric BSP Graph Sim (Kao et al., 2016)

Figure 2.8 Taxonomy of the distributed GPM approaches.

can be implemented in an edge-centric way. Similarly, this paradigm can be applied

to implement graph simulation that maps edges of the two graphs. Furthermore, the

2.5 Chapter summary 59

edge-centric paradigm naturally supports dynamic graphs as events occur on the graph

edges and need to be processed at the edge level. Therefore, it is interesting to explore this

area of research by proposing edge-centric GPM approaches. Besides, we note that the

synchronous algorithms can be easily designed and they are better understood compared

to the asynchronous ones. A synchronous algorithm endures less communication costs.

However, an asynchronous one allows a considerable improvement in the response time.

Actually, the computing units (vertices, edges or even subgraphs) do not have to wait

the termination of another process to send and receive requests or data to and from their

neighbors.

The taxonomy provided categorizes only the existing distributed GPM approaches, some

combinations were not employed and that is why we do not see them in this taxonomy.

An open question would be: Why do all combinations not appear in the literature of

distributed GPM? One reason could be that the vertex-centric paradigm, which is the

most common one, has been widely studied in the Ąeld of networks where machines

behave naturally in a vertex-centric way. Moreover, as we stated earlier, the most

intuitive way to evaluate subgraph matching is by a subgraph-centric algorithm since the

neighborhood of a data vertex is needed to decide whether it is a match or not. This

could be a reason that makes the subgraph-centric paradigm more interesting compared

to the vertex-centric one. However, subgraph-centric computing needs an additional level

of abstraction to make the neighbourhood of multiple hops available locally to every

single node in the graph. Such an abstraction layer is responsible for shipping data from

one node to its neighbors whenever a local update is made, which may cause additional

data shipment increasing the overall response time. Apart from the subgraph mining

systems proposed such as Arabesque, Rstream or G-thinker, few works adopt this model

even though adding an abstraction layer would certainly reduce the efforts for designing

graph algorithms.

2.5 Chapter summary

This chapter presented recent advances in graph processing systems for big graphs.

We discussed several programming models that are currently used in designing graph

algorithms for the context of distributed graphs. However, less work has been done

to take advantage of such paradigms in evaluating graph pattern matching at a high

scale. Subgraph-centric programming models are recommended for this kind of problem

together with asynchronous timing. Noticeably, studies were recently focused on graph

simulation due to its quadratic-time complexity. Furthermore, the recent research works

2.5 Chapter summary 60

are either addressing the velocity of data generation or the size of data graphs, seeking

to reduce the time and space complexity of previously proposed algorithms. However, it

is rare to Ąnd both issues handled in the same work.

Moreover, we identiĄed categories of distributed GPM approaches and classiĄed them

based on multiple criteria. We gave more attention to the relaxed pattern matching

since it is widely used in the current applications of social networks and massive graphs

in general. An abundant literature exists discussing subgraph isomorphism queries,

but the limitations of this model make it impractical for current applications of graph

pattern matching. Hence, beneĄting from subgraph isomorphism techniques to build an

enhanced approach for strong simulation is one of the current challenges in this domain,

especially in the distributed and parallel contexts. That is to say, we can combine the

inherent Ćexibility of the model itself and exploit the strong background behind subgraph

isomorphism to achieve better results.

In the second part of this thesis, we address this research direction by proposing an

alternative to strong simulation with scalability guarantees. Furthermore, motivated by

the shortcomings of the approaches discussed in this chapter, we design scalable distributed

algorithms to evaluate strong simulation, graph simulation and dual simulation.

Part II

Parallel and Distributed Algorithms

for Relaxed GPM

Chapter 3

Distributed Graph Pattern

Matching via Bounded Dual

Simulation

3.1 Introduction

Even though graph simulation is considered to be the Ąrst model that can be evaluated

in quadratic time, its weak part is that it does not capture the complete topological

structure of the pattern graph. Indeed, we often end up with answers having a structure

different from the input query. This is why dual simulation was proposed, allowing to

capture more topological structures via the duality property. The difference between the

two models is that graph simulation requires the matching constraints to be satisĄed

only for the children of the data vertex, while dual simulation brings duality by requiring

those constraints to be satisĄed for both the children and parents. Such speciĄcation

captures better the topology of the query; undirected cycles are preserved and connected

graphs are matched only to connected graphs. However, it is true that dual simulation

improves the quality of the results returned by graph simulation, yet, this model may

result in answers of much larger size, because cycles in the query graph can be translated

into cycles of unbounded length in the resulting match graph. This limitation motivated

the appearance of strong simulation, another model that captures the structure in graph

simulation while maintaining a low complexity, hence giving a compromise between

Ćexibility and tractability. Strong simulation is deĄned as graph simulation reinforced by

duality and locality. The locality property limits the accepted answers to only subgraphs

3.2 Bounded Dual Simulation (BDSim) 63

falling within a Ąxed diameter. Thus, cycles that are longer than the queryŠs diameter

are Ąltered out to keep answers of reasonable size. Although prior works addressed strong

simulation for large graphs, they did not give any scalability guarantees when the size of

data graphs increases reaching at least millions of vertices.

In this chapter, we propose Bounded Dual Simulation (BDSim) to answer relaxed GPM

queries on massive graphs. BDSim is an extension to dual simulation that allows not

only to capture duality and locality of the pattern graph, but it also preserves its cyclic

structure. As opposed to strong simulation that duplicates data graph vertices in an

exponential way when creating data locality balls, BDSim extends dual simulation by

eliminating cycles that have unbounded length from the match graph, hence allowing to

capture the locality and obtain results of reasonable size that are semantically correct.

The contributions made by this work are improving the response time because no data

locality balls are created. The number and size of messages communicated are also reduced

(tokens are exchanged instead of the whole vertex matching information). BDSim scales

well with the size of the data graph and can handle massive graphs. Finally, our approach

is adaptive because it uses a conĄgurable parameter k for limiting the size of cycles in

the resulting match graph, thus allowing more Ćexibility based on the input query and

application domain, which ensures avoiding the problem of zero answers.

The remainder of this chapter is organized as follows. Section 3.2 introduces the new

GPM model BDSim, whereas distributed vertex-centric algorithms for evaluating BDSim

on massive graphs are presented in Section 3.3. Section 3.4 provides a formal validation

of the proposed algorithms, and Section 3.5 is dedicated for their experimental evaluation

on synthetic and real-world datasets.

3.2 Bounded Dual Simulation (BDSim)

When addressing the problem of subgraph matching, the cyclic structure of the query

graph is an important property that captures the locality between query vertices. However,

dual simulation preserves only the child and parent relationships, which results into a

model that maps cycles in the query to cycles of unbounded length in the resulting match

graph. Actually, a cycle in the query graph can be translated to cycles having a multiple

length in the match graph. As a result, we end up having answers of large size that do

not necessarily resemble the input query.

3.2 Bounded Dual Simulation (BDSim) 64

Preserving the cyclic structure of the query and hence its locality is an important task in

GPM, because it allows to reduce further the size of returned answers, and to improve

their quality. Based on this observation, we notice that eliminating such unbounded

cycles reĄnes further the returned match graph compared to dual simulation and captures

better the topology of the query.

To address this challenge, we introduce BDSim, an adaptive relaxed GPM model that

lies between dual simulation and strong simulation. A cycle in the Ąnal match graph is

said to be bounded (or length-bounded) if its length is k times the length of the cycle

to which it is matched in the query, such that k is a Ąxed parameter. By introducing

BDSim, we aim to limit the size of cycles in the Ąnal match graph by checking if a data

vertex is in a cycle of bounded length or not, and this can be achieved by tracking all

the cycles of the query graph. Nevertheless, we will see that the set of short cycles is

enough to capture the closeness and proximity between the query vertices.

DeĄnition 17 (Short cycle). Given an unweighted graph G = (V, E, f) and two vertices

v and v′ such that e = (v, v′) ∈ E. We call a short cycle, if it exists, a cycle composed

of the edge e and an undirected shortest path between v and v′ in G′ = (V, E \ ¶e♢, f).

Note that, we deĄne an undirected shortest path in a directed graph as a shortest path

in the underlying undirected graph, i.e. when we ignore edge directions. We deĄne an

undirected cycle in a directed graph as a cycle in the underlying undirected graph, i.e. we

ignore edge directions. Unless expressly stated otherwise, we shortly use cycle to refer to

an undirected cycle. Furthermore, we omit the repeated vertex of a cycle when giving its

elements for simplicity purposes. In a graph, a long cycle is a cycle that is not short.

Dual simulation is a Ćexible model by deĄnition, it allows mapping an edge in query

graph Q to one or more edges in the dual match graph GD. In addition to that, two

query edges can be mapped to the same edge in GD. Consequently, given a cycle c ∈ Q

and one of its matched cycles c′ ∈ GD, c′ may have the same length as c, be longer or

even shorter, i.e. ♣c′♣ = r × ♣c♣ where r ∈ Q∗

+, with ♣c′♣ ≥ 2. An example illustrating such

different possibilities is given in Figure 3.1.

Lemma 1. Given a query graph Q, a cycle in Q is either a short cycle or a cycle

composed of edges from other short cycles.

Proof. By deĄnition, a short cycle is a cycle for which, the incident vertices of at least

one edge have their shortest path in this cycle (when excluding the corresponding edge

in computing the shortest path). Consequently, a long cycle cl is a cycle where all the

3.2 Bounded Dual Simulation (BDSim) 65

A B

AB

(a) A query cycle

A B

AB

2 2

3 3

A B1 1

A

B

5

5

A B

AB

4 4

6 6

(b) Different matched cycles.

Figure 3.1 A cyclic query with three matches respecting dual simulation.

1 2

4 35

6 7

c1

c2
c3

c5

c4

Figure 3.2 A graph with its Ąve short cycles.

shortest paths between the incident vertices of any considered edge are not entirely in cl,

and we refer to such paths as bridges. These bridges decompose cl into adjacent cycles

that are all short. Actually, an edge e ∈ cl that has its shortest path p outside cl results

into a new cycle c = e∪ p. c is effectively a short cycle from the deĄnition of short cycles.

The same thing applies for all the other edges in cl. Therefore, all the edges in cl belong

to at least one short cycle; i.e. clŮwhich is a long cycleŮis composed of edges from the

short cycles of Q.

Example 3. In the graph of Figure 3.2, the cycle c1 = ¶1, 2, 3, 4, 5, 1♢ is composed

of Ąve edges whose shortest paths do not belong to c1. Actually, the edge (1, 2) has the

shortest path ¶2, 4, 1♢ that forms the short cycle ¶1, 2, 4, 1♢. Similarly, the remaining edges

(2, 3), (4, 3), (4, 5) and (1, 5) result in the short cycles ¶2, 3, 4, 2♢, ¶4, 3, 2, 4♢, ¶4, 5, 1, 4♢

and ¶1, 5, 4, 1♢, respectively. Indeed, enumerating all the simple cycles in the graph returns

exactly 21 cycles, whereas the set of short cycles contains only 5 cycles. When using these

short cycles to bound the size of a match graph, we reduce the number of tracked cycles

by a fourth while still giving the same result. As a result, we minimize the number of

computations signiĄcantly and reduce the overall evaluation time of BDSim.

Lemma 2. Given a query graph Q and a data graph G. Let GD be the dual match graph

of Q in G. If the matches of the short cycles of Q are length-bounded in GD, then all the

matched cycles in GD will also be length-bounded.

3.2 Bounded Dual Simulation (BDSim) 66

Proof. We know that every cycle in Q is matched to a cycle in GD (from the deĄnition of

dual simulation). First, we assume that all the short cycles in Q have bounded matches in

GD. Then, we suppose that there exists a cycle c in Q having a match of an unbounded

length in GD. First, if c is a short cycle, then all its matches are bounded by supposition.

Second, if c is long, then it is composed of edges from other short cycles (See Lemma 1).

Besides, its matches are composed of the matches of these short cycles. Hence, it must

be bounded because all the short cycles are already bounded, and the composition of a

set of bounded cycles cannot be unbounded.

Theorem 1. In the dual match graph GD of query graph Q in data graph G, using only

the set of short cycles of Q is sufficient to bound the length of the matches of all the

cycles of Q in GD.

Proof. The proof of this theorem is directly derived from Lemma 1 and Lemma 2. From

Lemma 1, every cycle in Q is either a short cycle or composed of other short cycles.

According to Lemma 2, bounding the length of the matches of the short cycles of Q in

GD results into bounding the matches of all the cycles in Q.

BDSim extends dual simulation with a cycle constraint, such that a data vertex matched

with query vertices in a short cycle ci of Q must be a member of a matched cycle that

have the maximum length k × li in the match graph, where li is the length of ci and

k ∈ N∗. Moreover, BDSim is adaptive thanks to the parameter k that allows for more

Ćexibility. Actually, we may have a context where it is required to keep only cycles of

the same length, while in other cases, the allowed length would be equal to twice the

initial cycle length or even more. Hence, k is deĄned depending on the semantics of the

data graph and application domain.

The example below explains how BDSim works and demonstrates its adaptability based

on the application needs.

Example 4. Figure 3.3 shows a query graph Q3 and a data graph G3. The query graph

contains one undirected cycle c1 = ¶1, 3, 4♢ of length l1 = 3. When evaluating dual

simulation on the data graph G3 for query Q3, we get the dual match graph GD shown in

Figure 3.3c. The cycle c1 is matched to cycles of different lengths in GD (three cycles

of length l1 = 3 that are colored in blue and one cycle having a double length l2 = 6,

which is colored in orange). To restrict the returned answers to only matches having

cycles of bounded length, we verify for every data vertex matched to one of the cycle

members ¶1, 3, 4♢ whether it is in a cycle of length l ≤ k × l1 or not. Table 3.1 answers

3.2 Bounded Dual Simulation (BDSim) 67

A B

CD

1

3

2

4

(a) Query graph Q3

A B

CDAB

BA

CD

C

DC

D

E

2

1

1

1

21

2

3

3 4

2

13

4 3

(b) Data graph G3

A B

CDAB

BA

CD

C

DC

D

2

1

1

1

21

2

3

3 4

2

3

4 3

(c) Dual match graph GD

A B

CDAB

BA

CD

C

DC

D

2

1

1

1

21

2

3

3 4

2

3

4 3

(d) BDSim for k = 2

A B

CDAB

BA

CD

11

2

3

3 4

2

3

4 3

(e) BDSim for k = 1

Figure 3.3 Example of a query graph Q3, a data graph G3 and the different match graphs
resulting from dual simulation GD and BDSim (for both cases k = 1, 2). Q3 contains
one short cycle (c1 of length 3) that is translated into four cycles of different lengths in
GD, colored in orange or blue. Setting k = 2 allows capturing cycles of length up to 6
(Figure 3.3d), while k = 1 limits the answer of BDSim to cycles of exactly the same size
as c1, i.e. only cycles colored in blue from GD (Figure 3.3e).

this question for such data vertices in the cases where k = 2 and k = 1. For example,

the data vertices ¶C1, C2, D1, D2♢ are in the dual match graph but they should not be

considered as valid matches when seeking a more restricted answer. Hence, setting k to

1 eliminates them because they are members of only cycles with length l = 6 > k × l1.

Figures 3.3d and 3.3e give the desired Ąnal match graphs according to BDSim for k = 2

and k = 1, respectively.

Table 3.1 Different possible BDSim matches in data graph G3 for cycles in Q3 when
k = 2 and k = 1.

Data vertex in GD A1 A2 A3 C1 C2 C3 C4 D1 D2 D3 D4

Length of 1st matched cycle in GD 6 6 3 6 6 3 3 6 6 3 3
Length of 2nd matched cycle in GD 3 3 / / / / 3 / / 3 /
Vertex satisĄes BDSim for k = 2? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Vertex satisĄes BDSim for k = 1? ✓ ✓ ✓ X X ✓ ✓ X X ✓ ✓

Varying the value of parameter k while answering the same query allows for more

Ćexibility, especially to deal with the problem of zero answers when k is initially set to 1.

A formal deĄnition of BDSim is given below.

3.2 Bounded Dual Simulation (BDSim) 68

DeĄnition 18 (BDSim). Let G = (V, E, f) be a data graph, Q = (Vq, Eq, fq) a

query graph, ζ the set of short cycles related to every single edge in Q and k ∈ N∗ a

Ąxed parameter. G matches Q via BDSim, if there exists a maximum match relation

R ⊆ Vq × V and a subgraph GR of G, such that:

(1) G matches Q via dual simulation with maximum match relation R,

(2) GR is the match graph w.r.t. R,

(3) ∀(u, v) ∈ R, if u ∈ ci and ci ∈ ζ, then ∃c′

i, a cycle in GR that matches ci and

veriĄes:

(a) v ∈ c′

i,

(b) c′

i has a maximal length (k × li) in GR where li is the length of ci.

Indeed, BDSim aims to keep only matches that preserve locality. If a data vertex v is a

match to a query vertex u ((u, v) ∈ R) and u ∈ ci such that ci ∈ ζ, this mapping is kept

only if v belongs to a cycle c′

i that matches ci and has a bounded length in the match

graph.

Propositions 1 and 2 give the relationships that BDSim has with dual simulation and

subgraph isomorphism, respectively.

Proposition 1. If a data graph matches a query graph via BDSim, then it also matches

the same query graph via dual simulation.

Proof. By deĄnition, BDSim is a restriction of dual simulation, i.e. every data vertex

that matches a query vertex via BDSim must match that vertex w.r.t. dual simulation.

Hence, the proposition above is correct.

Proposition 2. If a data graph matches a query graph via subgraph isomorphism, then

it also matches this query w.r.t. BDSim.

Proof. First, a data graph that matches a query graph via subgraph isomorphism matches

the same query via dual simulation (Proposition 1 in [84]). Moreover, DeĄnition 18

states that a data vertex matches a query vertex w.r.t. BDSim, if it satisĄes at least dual

simulation constraints. Thus, this data graph already satisĄes the Ąrst two constraints of

BDSim.

Next, we prove that subgraph isomorphism already satisĄes constraint 3 of BDSim.

Let GI = (VI , EI , f) be a match graph of G for Q w.r.t. subgraph isomorphism and

3.2 Bounded Dual Simulation (BDSim) 69

R ⊆ Vq × VI is the corresponding bijective match relation. According to Theorem 3 in

[84], given a cycle ci = u1, u2, . . . , ul in ζ, ci must be matched to a cycle c′

j = v1, v2, . . . , vl

in GI where every single vertex u in ci is mapped to exactly one vertex v in cj. Formally,

∀m ∈ ¶1, . . . , l♢, (um, vm) ∈ R.

Constraint 3 in DeĄnition 18 of BDSim intends to eliminate the data vertices v ∈ VI

where (u, v) ∈ R and u ∈ ci in ζ, such that v belongs only to cycles of unbounded length.

However, subgraph isomorphism does not allow these cases by deĄnition, hence, GI

already satisĄes this constraint. Therefore, a data graph that matches a query graph via

subgraph isomorphism necessarily matches the same query graph via BDSim.

Figure 3.4 illustrates the inclusion relationships between BDSim and the other GPM

models. BDSim adaptability, ensured by the parameter k, allows it to be as Ćexible as

dual simulation or as strict as subgraph isomorphism. The smaller the value of k, the

closer we get to subgraph isomorphism and the larger it is, the closer we get to dual

simulation. Graph simulation, on the other hand, is more Ćexible than dual simulation.

SubISO BDSimk DSim GSimBDSim1 BDSim…

Figure 3.4 The inclusion relationships between BDSim for different values of k (BDSimk)
and the other models subgraph isomorphism (SubISO), dual simulation (DSim) and
graph simulation (GSim).

We propose an approach composed of the following four phases to evaluate BDSim: (1)

a preprocessing phase to extract the set of short cycles from the input query graph, (2)

evaluation of dual simulation and extraction of the dual match graph, (3) detection of

invalid matches (data vertices that are in cycles of unbounded length), and (4) elimination

of these matches to get the Ąnal match graph. The next section is dedicated for presenting

these phases one by one.

3.3 Distributed evaluation of BDSim 70

3.3 Distributed evaluation of BDSim

After extracting the set of short cycles from the input query graph using a sequential

algorithm, we evaluate dual simulation and extract the dual match graph in a distributed

way by adopting a TLAV paradigm and Pregel computation model. After that, we use

a distributed token passing algorithm to detect invalid matches that do not satisfy the

third constraint of DeĄnition 18. Finally, a distributed Ąltering phase allows to keep only

the correct matches w.r.t. BDSim.

In what follows, we present in detail the four phases of BDSim along with the proposed

algorithms.

3.3.1 Extracting short cycles from the query graph

We use a simple and yet efficient algorithm to compute the set of all the short cycles of

the query graph in quadratic time. Given a query graph Q = (Vq, Eq) and the set of its

short cycles ζ. To compute ζ, we verify for every edge in Eq, if it is part of a short cycle

ci and then add ci to ζ.

For each edge (u, v) in Eq, proceed as follows.

(1) Remove (u, v) from Eq,

(2) Check if u is still reachable from v,

(3) For every shortest path pi between v and u, let ci = pi ∪ (u, v) be a short cycle

and add ci to ζ.

To test the reachability of u from v, we execute a BFS traversal from vertex v that

returns the set of shortest paths between v and u if they exist. Since Q is an unweighted

graph, such traversal runs in O(♣Vq♣+ ♣Eq♣ − 1) [28]. This routine will be executed for

every edge in the graph. Hence, the time complexity for Ąnding ζ is O(♣Eq♣
2).

Next, we give the vertex-centric algorithms for evaluating dual simulation, the token

passing procedure and Ąnal Ąltering to get BDSim match graph. The notations used by

these algorithms are given in Table 3.2.

3.3.2 Vertex-centric algorithm for dual simulation

Algorithm VC-DSim depicts the steps of the vertex program used in evaluating dual

simulation in a distributed vertex-centric way.

3.3 Distributed evaluation of BDSim 71

Table 3.2 Notations used in the distributed algorithms of BDSim

Object Notation

Local vertex ID v

Parent and child constraints Cp, Cc

Local, parent and child match sets M, Mp, Mc

Set of locally removed query vertices R

Data message, removal message Dmsg, Rmsg

Set of global seeds Sg

Set of local seeds Sl

A short cycle in Sg or Sl ci

Length of a short cycle ci li
A seed s

The short cycle corresponding to s s.c

The matched query vertex of seed s s.m

Position of s.m in s.c s.p

Direction of s.m in s.c s.d

Next hop after vertex s.m in s.c s.h

Received tokens Ćag for s s.f

A token t

The next matched vertex in t next

A token expiration value exp

The match set of a data vertex v is the set of query vertices it matches, whereas a

matching constraint of a query vertex u in M includes its parents Cp(u) and children

Cc(u). The local context of a data vertex v is composed of its local match set M , the

match sets of its parents Mp and its children Mc. In addition to that, the matching

constraints related to M are kept locally.

We introduce the notion of matching constraints that are used in the evaluation of dual

simulation and BDSim. Indeed, instead of duplicating the whole query graph inside

every data vertex during the execution of our distributed algorithm, we generate a set of

constraints that are maintained locally by each data vertex. A data vertex keeps only

the constraints related to the query vertices that match it, therefore reducing the size of

replicated data.

DeĄnition 19 (Matching constraint). Given a query graph Q(Vq, Eq, fq), a candidate

data vertex (a vertex that has a similar label) is said to be a match for the query vertex

u ∈ Vq if and only if it satisĄes the parent and child relationship constraints of dual

simulation. Let Cp : Vq → 2Vq (Cc : Vq → 2Vq) be the function that maps a query vertex

u ∈ Vq to its parent constraints Cp(u) ⊆ Vq (child constraints Cc(u) ⊆ Vq), respectively.

Each edge (u′, u) ∈ Eq deĄnes a parent matching constraint u′ for u. Similarly, every

edge (u, u′′) ∈ Eq deĄnes a child matching constraint u′′ for u. Consequently, Cp (or Cp)

maps a vertex with zero parents (or children) to an empty set of constraints, respectively.

3.3 Distributed evaluation of BDSim 72

The distributed algorithm starts by an initial broadcast message to all the vertices of G.

The vertex program is then triggered by every vertex in G to start the evaluation of dual

simulation. Then, two types of messages are exchanged between the data graph vertices:

data messages Dmsg and removal messages Rmsg. When a data vertex v receives the

initial message containing the query graph Q, it stores locally in M a copy of the query

vertices that have the same label as v, along with the set of constraints for each query

vertex (set of parents Cp and children Cc of each u ∈M) (Lines 1Ű6). After that, if M is

not empty, v sends it with its identiĄer to its neighbors (Lines 7Ű9). Otherwise, M is

empty, v goes inactive (Lines 10Ű11).

In the next super-step, at the reception of these local match sets by neighbors, every

data vertex stores the parents and children match sets in separate variables Mp and Mc,

respectively (Lines 12Ű13). Then, it invokes Procedure EvalDSim (Line 14) to verify

the matching constrains in Cp and Cc using both match sets Mp and Mc, respectively.

Invalid matches are removed from M and added to R (a temporary variable that stores

the removed matches in the form of pairs (v, u)). It also removes these query vertices

from Cp and Cc as they will not serve in evaluating the matching constraints anymore.

The same routine is repeated until no new changes are made in M . If R is not empty, v

sends a removal message with R to all its neighbors, then it goes inactive (Lines 15Ű18).

In Super-step 3 and upon the reception of a removal message Rmsg, v removes the

mappings in Rmsg from Mp and Mc (Lines 19Ű20). Afterwards, it reevaluates the

matching constraints again, removes invalid matches from M , adds them to R and

updates Cp and Cc (call of Procedure EvalDSim in Line 21). The set of removed matches

is then shared with direct neighbors if it is not empty (Lines 22Ű25). The same process

will be repeated in the next super-steps until the algorithm converges.

At the end of this algorithm, every data vertex will have its local match set w.r.t. dual

simulation. If every single query vertex has at least one match, then, the union of these

local matches is exactly the global match set w.r.t. dual simulation. Otherwise, we return

an empty match set. Now, to extract the dual match graph, we Ąlter out vertices having

an empty match set and also the edges that does not represent a match.

Example 5. To illustrate the execution steps of Algorithm VC-DSim, we use the query

graph Q3 of Figure 3.3a and the data graph G3 of Figure 3.3b. At the end of the Ąrst

super-step, only data vertex E1 will have an empty match set, whereas all the remaining

vertices share their non empty matches to their direct neighbors. In the second iteration,

all the data vertices with a non-empty match set reevaluate dual simulation constraints.

However, since all the vertices except E1 satisfy already dual simulation, no removal

3.3 Distributed evaluation of BDSim 73

Algorithm VC-DSim

1 Super-step 1: At the reception of Q, do;
2 foreach vertex u in Q do

3 if f(v) = fq(u) then

4 Add u to M ;
5 Add parents of u to Cp;
6 Add children of u to Cc;

7 if M ̸= ∅ then

8 Dmsg ← (v, M);
9 Send Dmsg to all neighbors;

10 else

11 Vote to halt;

12 Super-step 2: At the reception of Dmsg while M ̸= ∅, do ;
13 Update Mp and Mc;
14 R← EvalDSim(M, Cp, Cc, Mp, Mc);
15 if R ̸= ∅ then

16 Rmsg ← (v, R);
17 Send Rmsg to all neighbors;

18 Vote to halt;
19 Super-step 3 and beyond: At the reception of an Rmsg while M ̸= ∅, do;
20 Update Mp and Mc;
21 R← EvalDSim(M, Cp, Cc, Mp, Mc);
22 if R ̸= ∅ then

23 Rmsg ← (v, R);
24 Send Rmsg to all neighbors;

25 Vote to halt;

Procedure EvalDSim

Input : M, Cp, Cc, Mp, Mc

Output : R

1 repeat

2 foreach vertex u in M do

3 Verify the matching constraints;
4 if u is not a match then

5 Remove u from M ;
6 Update Cp and Cc;
7 Add u to R;

8 until there are no changes in M ;

messages will be generated, announcing the end of the distributed algorithm. The dual

match graph is therefore the same as GD given in Figure 3.3c.

3.3 Distributed evaluation of BDSim 74

3.3.3 Vertex-centric algorithm for detecting invalid matches

In this section, we propose the distributed vertex-centric algorithm VC-TPass that ensures

the detection (and then removal) of cycles of unbounded length from the dual match

graph GD, i.e. not satisfying the closeness property represented by the third constraint

in the deĄnition of BDSim. Algorithm VC-TPass handles the following cases: (i) multiple

query vertices with the same label, (ii) multiple short cycles in the query graph, (iii)

the same vertex being part of more than one short cycle and (iv) data vertices that are

matched to different query vertices within the same short cycle.

Every data vertex in GD that is matched to a query vertex in ci ∈ ζ veriĄes its membership

to a similar, yet bounded cycle in GD. It initiates a token with its identiĄer and forwards

it to its neighbors based on some predeĄned conditions. Then, every vertex that receives

such token will decrement its expiration value and forward it to potential next hops in

the cycle. After k× li steps of forwarding the tokens, if an initiator does not receive back

its own token, this means that it does not belong to a bounded cycle that is matched to

ci in GD. Hence, it should be Ąltered out in the next phase.

The main challenge during this phase is to generate a small number of messages while

exploring the whole graph to detect unbounded cycles. Since the cycles are undirected,

knowing to which neighbor a token should be forwarded can be tricky. Hence, we guide

the token passing procedure with a set of seeds that are assigned to the query vertices of

every short cycle. Such data structure ensures that tokens are only forwarded to eligible

neighbors, i.e. vertices that are most likely to participate in this cycle detection phase.

It also allows the data vertices to explore a given cycle in the same way. We deĄne the

set of global seeds Sg computed directly from ζ and a set of local seeds Sl, a subset of Sg

that corresponds to only a given data vertex.

DeĄnition 20 (Set of Seeds). The set of seeds Sg is a data structure maintained by the

graph data vertices to guide the token passing procedure. An element of Sg is called a

seed, and it represents a matching query vertex m in the short cycle ci ∈ ζ. Moreover,

a seed is composed of multiple Ąelds that are deĄned as follows. Given the sequence of

ordered vertices Oi = ¶m1, m2, . . . , mn♢ in ci, we keep for each vertex m in ci.

(1) The cycle identiĄer ci,

(2) The query vertex identiĄer m ,

(3) The position of m in Oi, given as p,

(4) The direction of m in its edge, given as d,

3.3 Distributed evaluation of BDSim 75

(5) The next hop after m in Oi, given as h and,

(6) A Ćag f to indicate if the vertex has received tokens for this seed or not.

A data vertex matching one or more query vertices in ci keeps the set of their seeds

locally in Sl. Then, guided by Sl, it will send or forward tokens only to neighbors that

can be part of the currently explored cycle ci, i.e. only data vertices matched to the next

hop vertex in ci.

Example 6. In the query graph of Figure 3.3a, there is one short cycle c1 composed

of query edges (1, 3), (4, 3) and (1, 4). The set of global seeds is therefore given as

Sg = ¶(c1, 1, 0, OUT, 3, false), (c1, 3, 1, IN, 4, false), (c1, 4, 2, IN, 1, false)♢ where OUT

and IN indicate whether the vertex is considered as a source or destination in this cycle,

respectively.

No

Yes

Token

expired

Dual match graph GD

If (local match set ∩ set of seeds ≠ ∅), store the

intersection locally

For each local seed : generate and send a token to

eligible neighbors

Set of global seeds Sg

At the reception of token t

Drop

token and

vote to

halt

Yes

No

Self-generated

token?

Update

token flag

and vote to

halt

Update token and

forward it to eligible

neighbors

Figure 3.5 Diagram of the distributed token passing procedure for detecting invalid
matches.

3.3 Distributed evaluation of BDSim 76

The diagram given in Figure 3.5 illustrates the different steps of the token passing

algorithm for BDSim. After computing the short cycles ζ and set of global seeds Sg, they

are broadcast to all the data vertices in GD. When a data vertex v receives the set of

seeds, it checks for each seed s whether its matched query vertex s.m is a member of the

local match set. If it is the case, v will store s locally (Lines 1Ű3). Then, it generates

a token with an expiration value equal to k × li, such that li is the length of the short

cycle ci of this seed. Finally, it sends the token only to eligible neighbors that might be

part of a bounded cycle (Lines 4Ű11). An eligible neighbor is a data vertex matched to

the next hop vertex following the direction of the seed (a parent if the direction is IN

and a child if the direction is OUT).

During the next super-steps and upon the reception of a token t, the data vertex v

decrements the expiration value of t (Lines 13Ű14). When v receives back its own token,

it sets the local token Ćag to true for that seed and stop forwarding it (Lines 15Ű17).

However, if v is not the initiator and the token has expired already, it will drop it as it is

not valid anymore (Lines 18Ű19). If the token is still valid and v is not the initiator, it

veriĄes among its neighbors for eligible next hops and forward the token to them, then

goes inactive (Lines 20Ű29). The same super-step is executed in the next iterations. The

maximum number of super-steps is set to k× lm, where lm is the size of the longest short

cycle in ζ and lm ≤ ♣Vq♣.

Example 7. The detection of invalid matches for GD of Figure 3.3c proceeds as fol-

lows. The data vertices that will generate tokens are ¶A1, . . . , A3♢, ¶D1, . . . , D4♢ and

¶C1, . . . , C4♢. These sets of vertices are assigned to s1, s2, s3 from Sg, respectively. We

recall that Sg = ¶(c1, 1, 0, OUT, 3, false), (c1, 3, 1, IN, 4, false), (c1, 4, 2, IN, 1, false)♢.

Let k = 1, hence, the longest matched cycle allowed must be of length l = 3. For

example, during the Ąrst super-step, the data vertex D1 will generate a token t1 =

(Token(D1, c1, 4, 3)), then, it will send it to the only parent vertex mapped to t1.next = 3

which is data vertex C1. At the reception of t1 in the second super-step, C1 will decre-

ment t1 and look for a local seed that corresponds to the short cycle c1 and query vertex

4, it Ąnds s3. C3 will then look for the next eligible neighbor, i.e. a parent mapped

to query vertex 1. This neighbor happens to be A2, hence, C1 will forward the up-

dated token t1 = Token(D1, c1, 1, 2) to it. In the third super-step, A2 receives t1 and

decrements its expiring value. It updates the token in the same way which results into

t1 = Token(D1, c1, 3, 1), therefore, it will forward it to data vertices D2 and D4. In the

last super-step, both vertices D2 and D4 drop t1 since they are not its initiators and the

token has expired. At the end of the distributed algorithm, data vertices D1, D2, C1, C2

3.3 Distributed evaluation of BDSim 77

Algorithm VC-TPass

1 Super-step 1: At the reception of Sg while M ̸= ∅ , do;
2 foreach s ∈ Sg where M contains s.m do

3 Add s to Sl;
4 if d = IN then

5 foreach (u′, v′) ∈Mp where u′ = s.h do

6 t← Token(initiator ← v, cycle ← s.ci, next ← s.h, exp ← li × k) ;
7 Send t to v′;

8 else

9 foreach (u′, v′) ∈Mc where u′ = s.h do

10 t← Token(initiator ← v, cycle ← s.ci, next ← s.h, exp ← li × k) ;
11 Send t to v′;

12 Vote to halt ;
13 Super-step 2 until lm + 1: At the reception of t while Sl ̸= ∅, do;
14 t.exp← t.exp− 1;
15 Find s ∈ Sl where s.m = t.next and s.c = t.c;
16 if v = t.initiator then

17 s.f ← true;
18 else if t.exp = 0 then

19 Drop t ;
20 else

21 if s.d = IN then

22 foreach (u′, v′) ∈Mp where u′ = s.h do

23 t.next← u′ ;
24 Send t to v′ ;

25 else

26 foreach (u′, v′) ∈Mc where u′ = s.h do

27 t.next← u′ ;
28 Send t to v′ ;

29 Vote to halt;

will all have their token Ćags unchanged (set to false) while the other initiators would get

back their initiated tokens and set the corresponding Ćag to true.

3.3.4 Vertex-centric algorithm for Ąltering invalid matches

The local vertex program for every data vertex is given in Algorithm VC-FFilter. After

the convergence of Algorithm VC-TPass, a new broadcast message is sent to all the graph

vertices. Every data vertex that triggered a token passing, i.e. has a non-empty set of

local seeds, will verify the reception of its initiated tokens and update its local match set

accordingly (Lines 1Ű6). An initiator is considered no longer a match to a certain query

vertex if it does not receive any token for the cycle ci ∈ ζ containing that query vertex.

3.3 Distributed evaluation of BDSim 78

Any removal from the local match set triggers the creation of a removal message that

will be sent to both parents and children (Lines 7Ű9).

Afterwards, at the reception of a removal message Rmsg, every data vertex having a non

empty match set updates Ąrst its neighbors match sets (Lines 11Ű12), then, veriĄes the

matching constraints and updates its match set and local constraints accordingly (Line

13). Next, it creates a removal message if there are changes in M and sends it to all

its neighbors (Lines 14Ű17), that will execute the same routine until no more removal

messages are received announcing the end of the algorithm.

At the end of Algorithm VC-FFilter, every data vertex in the dual match graph will

have its local matches for BDSim. One last step veriĄes that every query vertex has at

least one match. If it is the case, then, the union of the local match sets is the maximum

match set w.r.t. BDSim. Otherwise, the returned answer must be empty.

Algorithm VC-FFilter

1 Super-step 1: At the reception of an initial message while Sl ̸= ∅, do ;
2 foreach s ∈ Sl do

3 if s.f = false then

4 Remove s.m from M ;
5 Update Cp and Cc;
6 Add s.m to R;

7 if R ̸= ∅ then

8 Rmsg ← (v, R);
9 Send Rmsg to all neighbors ;

10 Vote to halt;
11 Super-step 2 and beyond: At the reception of Rmsg while M ̸= ∅, do ;
12 Update Mp and Mc;
13 R← EvalDSim(M, Cp, Cc, Mp, Mc);
14 if R ̸= ∅ then

15 Rmsg ← (v, R);
16 Send Rmsg to all neighbors;

17 Vote to halt;

Example 8. After the detection of invalid matches from the dual match graph GD of

Figure 3.3c, the Ąltering phase proceeds as follows. In the Ąrst super-step, the vertices

D1, D2, C1, C2 will update their local match sets resulting all to an empty match set.

Consequently, they will send a removal message to their direct neighbors. Nevertheless,

the algorithm stops at the second super-step since no removal messages will be generated

during this iteration. Indeed, the removal of these data vertices gives us the match graph

of Figure 3.3e.

3.4 Theoretical guarantees 79

3.4 Theoretical guarantees

In this section, we prove the convergence and correctness of the proposed algorithms.

3.4.1 Convergence of the distributed algorithms

Given the data graph G = (V, E, f), the query graph Q = (Vq, Eq, fq) and corresponding

dual match graph GD = (VD, ED, f). Let ∆ be the maximum vertex degree in the data

graph, Γ ≤ ♣Vq♣ the maximum size of a local match set, σ the size of ζ the set of short

cycles and ρ ≤ ♣Vq♣ the length of the longest cycle in ζ. In a distributed environment, let

P be the number of processors running in parallel. We are using local data structures

that take effective constant time to add, remove, update or Ąnd an element. In the

following, we prove the convergence of the proposed algorithms. Theorems 2, 3 and 4

give an upper bound time complexity for each distributed algorithm.

Theorem 2. Algorithm VC-DSim has a time complexity of O ((♣V ♣ × ♣E♣ ×∆× ♣Vq♣
2)/P)

Proof. The Ąrst super-step for verifying the label similarity takes O(♣Vq♣), because each

data vertex iterates over the vertices of the query.

In the second super-step, at the reception of the match sets of its neighbors (∆ messages

in the worst case where every neighbor sends its local matches) Mc and Mp are updated

in constant time. Procedure EvalDSim executes the repeat loop for Γ iterations in the

worst case when a single member of the local match set is removed in every iteration.

The inner loop veriĄes the matching constraints for each member of the match set w.r.t.

dual simulation O(Γ). This results into a complexity of O(∆× ♣Vq♣
2).

When a data vertex is removed, the removal message can propagate to cross the edges of

the data graph in the worst case resulting to ♣E♣ additional iterations. When receiving

removal messages (∆ messages in the worst case), the data vertex updates the match

sets of its neighbors in constant time, and reevaluate the matching constraints in O(Γ2),

therefore, the complexity of this super-step is also O(∆× ♣Vq♣
2). Hence, the algorithm

complexity in a fully distributed environment is equal to O(♣E♣ ×∆× ♣Vq♣
2). The time

complexity in an environment with P processors is O ((♣V ♣ × ♣E♣ ×∆× ♣Vq♣
2)/P).

Theorem 3. The time complexity for Algorithm VC-TPass is O ((♣VD♣ ×∆2 × ♣Vq♣
3 × σ)/P).

Proof. The Ąrst super-step is composed of a simple operation executed for every seed in

Sg, hence, the number of iterations is at most (σ × ρ). The body of the loop iterates

3.4 Theoretical guarantees 80

over local match set M to check the membership of a seed, adds it to Sl in constant

time. Then, it iterates over the match sets of the neighbors having a size of ∆× Γ to

Ąnd eligible next hops. Hence, time complexity of this super-step is O(σ × ρ×∆× Γ).

In the next super-step and beyond, a data vertex can receive up to ∆ × σ × ρ tokens

in the worst case, where ∆ is the maximum number of neighbors from which a token

is issued and σ × ρ is the maximum size for Sl. One token is processed in O(∆ × Γ),

because we Ąrst get the related matched vertex from Sl in constant time, then iterate

over the neighborsŠ match sets to check if one of them is matched to the next hop for

the processed token. Therefore, the time complexity of a single iteration is equal to

O(∆2 × σ × ρ× Γ).

The number of the remaining super-steps is equal to k × ρ in the worst case (k is the

parameter of BDSim). Therefore, in a fully distributed environment, the time complexity

of this local program is equal to O(k×∆2× ρ2×σ×Γ). The algorithm complexity in an

environment composed of P processors is equal to O ((♣VD♣ ×∆2 × ♣Vq♣
3 × σ)/P).

Theorem 4. Algorithm VC-FFilter has a time complexity of O ((♣VD♣ × ♣E♣ ×∆× ♣Vq♣
2)/P).

Proof. The Ąrst super-step of Algorithm VC-FFilter iterates over local seeds Sl and

removes a matched vertex from its local match set if it did not receive back any tokens

for this matched vertex. The removal operation takes constant time. The maximum size

of Sl can be equal to σ × ρ, which is the size of Sg. Thus, the time complexity of this

super-step is equal to O(σ × ρ). The remaining super-steps are similar to super-step

three and beyond in Algorithm VC-DSim, hence, the time complexity of this algorithm

in a fully distributed system is equal to O (♣E♣ ×∆× ♣Vq♣
2). The time complexity in an

environment having P processors is O ((♣VD♣ × ♣E♣ ×∆× ♣Vq♣
2)/P).

3.4.2 Correctness of the distributed algorithms

We give Theorems 5, 6 and 7 that prove the correctness of Algorithms VC-DSim, VC-TPass

and VC-FFilter, respectively.

Theorem 5. Algorithm VC-DSim computes the correct and complete match set w.r.t.

dual simulation.

Proof. The correctness of Algorithm VC-DSim is guaranteed by the following properties

(1) the algorithm will terminate (Theorem 2) , (2) the algorithm returns a correct match

3.4 Theoretical guarantees 81

set w.r.t. dual simulation, and (3) the algorithm returns the complete match set w.r.t.

dual simulation.

The second property is proved as follows. We suppose that at the end of the algorithm,

at least one match (u, v) ∈ Vq × V that is kept even though (u, v) does not satisfy dual

simulation. First, if (u, v) does not respect dual simulation, this means that (i) u and

v do not share the same label value, or (ii) the parent or child constraints of u are not

satisĄed by v. Case (i) cannot happen because we only keep in M the query vertices

having the same label as v in the beginning of Super-step 1. Case (ii) also cannot happen

because every time Mc or Mp is updated, v receives a removal message and reevaluates

the matching constraints according to the new values of Mc and Mp. Therefore, all the

matches stored locally are correct matches.

The third property can be veriĄed as follows. We suppose that at the end of the algorithm

there exists at least one match (u, v) ∈ Vq × V that respects dual simulation while the

match set M of v does not contain u. Actually, if (u, v) is a correct match, this means the

two vertices share the same label, hence, u has necessarily been added to M during the

Ąrst super-step. During the remaining super-steps of the algorithm, the only removals

made from M are for query vertices that do not satisfy dual simulation constraints

anymore (Lines 3Ű5 in Procedure EvalDSim). Therefore, the computed match sets are

complete.

Furthermore, every single vertex of the query graph must have at least one match which

is guaranteed by the last step of phase one that checks such constraint and extracts the

dual match graph, hence, the union of the computed local match sets gives the correct

and complete match set w.r.t. dual simulation.

Theorem 6. At the end of Algorithm VC-TPass, all data vertices that triggered the token

passing procedure will receive back at least one token for every bounded cycle to which

they belong.

Proof. The correctness of Algorithm VC-TPass is ensured by the following properties (1)

the algorithm will terminate (Theorem 3), (2) a data vertex that is part of a bounded

cycle in the dual match graph GD will receive back its token, and (3) a data vertex that

does not belong to a bounded cycle for a given seed will not receive back any tokens.

The second property is guaranteed by the following. We suppose that at the end of

the algorithm, there exists at least one vertex v0 that is member of a bounded cycle

which did not receive back its token. If v0 is part of a matched bounded cycle c′ in GD,

3.4 Theoretical guarantees 82

then, it already has the seeds related to c, the related query graph, stored locally in Sl,

hence, v0 has indeed generated at least one token t for this seed. Therefore, if v0 did not

receive back its initiated token t then, either t did not traverse c′, or t has been dropped

before reaching v0. First, if t did not traverse c′, then there exists vi in c′ that did not

forward t to the next hop vj in c′. However, if vi and vj belong to c′, then the matches

of vj are already stored in Mp and Mc of vi. Therefore, vj cannot be ignored by vi when

forwarding t because vj is matched to the next hop in c. Consequently, t necessarily

traverses the bounded cycle. Furthermore, we know that the initial expiration value of t

is set to l × k where l is the length of c and a token is only dropped if it has expired,

meaning t has traversed c′ but it did not reach v0. Hence, c′ has a length l′ greater than

the tokenŠs expiration value (l′ > l × k), but this contradicts the supposition that c′ is a

bounded cycle. Therefore, every data vertex that has received back its initiated token is

member of a bounded cycle in GD.

To prove the third property, we suppose that there is at least one data vertex v0 that

receives back its generated token even though v0 does not belong to a bounded cycle.

First, the token expiration value is initialized to k× l, the maximum allowed cycle length,

where l is the length of the corresponding short cycle c in the query graph. Additionally,

the token expiration value is decremented in every super-step by the data vertex receiving

it. Moreover, an expired token that is not received by its initiator is immediately dropped

(Lines 18Ű19), hence, if a token is forwarded back to its initiator, then it must have taken

at most k × l hops (the length of the traversed path) to reach back v0. Therefore, v0

belongs to a bounded cycle that has a length ≤ k × l.

Theorem 7. Algorithm VC-FFilter computes the correct and complete match set w.r.t.

BDSim.

Proof. Algorithm VC-FFilter will terminate (Theorem 4. Moreover, we already proved

that every data vertex in the dual match graph satisĄes dual simulation constraints.

Furthermore, the data vertices not satisfying constraint 3 in DeĄnition 18 are the ones

matched to a seed in Sg but that did not receive back any token for those seeds. They

must be eliminated, which is what we do in the Ąrst super-step of the algorithm. Each

initiator having the token Ćag set to false for a given local seed in Sl will remove its

related query vertex from its local match set. At the end of this super-step, all the data

vertices not satisfying the cycle constraint have an updated matching information. Hence,

their neighbors need an updated version of their match sets, which we ensure by the

removal messages sent to all direct neighbors. When a removal message is received by

3.5 Experimental evaluation 83

a data vertex with a non-empty match set, it will update its overview of the matching

information for its parents and children accordingly. Then, it reevaluates dual simulation

and updates its local match set. If this reevaluation results into any removal, a removal

message will be sent to its neighbors that need an updated version of the local match

set of their parents and children. The third super-step and the following super-steps

guarantee that every data vertex not satisfying dual simulation anymore is Ąltered out

(its local match set is reduced as we proved it in Theorem 5).

Now, we need to ensure that all the vertices satisfying constraint 3 of DeĄnition 18 at the

end of the Ąrst super-step are still satisfying the same constraint after reevaluating dual

simulation. Intuitively, vertices that do not satisfy BDSim are only those not satisfying

dual simulation, but these vertices have already been Ąltered out. Super-step two and

beyond cannot result into a data vertex that satisĄes dual simulation and not BDSim

because if this happens, it simply means that this vertex belongs to only unbounded

cycles mapped to c ∈ ζ. Nevertheless, the only changes made in this stage to the dual

match graph are removals, hence, such data vertices cannot exist. This proves that every

data vertex contains the correct and complete matches w.r.t. BDSim.

Finally, the veriĄcation made at the end of this phase ensures that each query vertex has

at least one match which, in turn, guarantees that the union of these local matches is

the correct and complete match set w.r.t. BDSim.

3.5 Experimental evaluation

We conducted different experiments on synthetic and real datasets with the goal of

measuring the performance of the proposed approach and compare it to the three models:

graph simulation, dual simulation and strict simulation. Another aim is to identify the

bottlenecks of the proposed algorithms.

3.5.1 Experimental data sets

In addition to synthetic graphs generated using the R-MAT model [18], we worked on

two real datasets from SNAP Library [74], their characteristics are given in Table 3.3.

Amazon0601: This graph represents the recommendation system of the online store

Amazon. The graph vertices are Amazon products, while the links between these products

mean that the two are usually ordered together, i.e. ŞUsers Who Bought This Also

Bought ThisŤ relationships.

3.5 Experimental evaluation 84

Table 3.3 Characteristics of the data graphs used in the different experiments

Dataset (G) ♣V ♣ ♣E♣ ♣Σ♣

Amazon0601 403,394 3,387,388 10
LiveJournal 4,847,571 68,993,773 100

LiveJournal: It is another social network that allows users to share and write blogs.

Vertices represent users while edges represent the friendships among them.

Synthetic graphs: The R-Mat model is used to generate the synthetic data graphs.

It takes as input ♣V ♣, ♣E♣ and ♣Σ♣ such that ♣Σ♣ is the number of distinct labels and

♣E♣ = 20× ♣V ♣.

3.5.2 Experimental setup

The experiments presented in this thesis were carried on the High Performance Computing

Platform IBNBADIS. This platform is composed of 32 compute nodes, each composed of

two processors Intel(R) Xeon(R) CPU E5-2650 2.00GHz. Each processor has 8 cores,

which gives a total of 512 cores to the cluster. The theoretical power of IBNBADIS is

around 8 TFLOPS. Moreover, each node has 32GB memory with 100GB of disk capacity.

We deployed a 20-node cluster of Apache Spark [151] on top of IBNBADIS, where one

node plays the role of the master while the remaining nodes are considered workers.

All the algorithms proposed in this thesis were implemented using GraphX [143] and

SCALA programming language. GraphX is a module provided by Apache Spark that

allows vertex-centric graph processing through the exposed API of Pregel [86].

3.5.3 Pattern generation

We have tested the proposed algorithms of BDSim on real-world graphs by varying the

size of the pattern graph such that for each value ♣Vq♣, we extract 50 different patterns

randomly.

For this purpose, we implemented an algorithm that extracts patterns of small size

randomly from a data graph. The algorithm takes two input parameters that are ♣Vq♣,

the size of the subgraph and its density α such that ♣Eq♣ = ♣Vq♣
α. The default value of α

is set to α = 1.2 in all our experiments. This algorithm executes a BFS starting from a

random vertex in the graph, collects vertices randomly based on a Ąxed value of average

3.5 Experimental evaluation 85

out degree dO computed such that α = 1.2, then we extract the subgraph connecting

these vertices and add up edges to match the input parameters.

3.5.4 Experimental results

In Figure 3.6, we compare the number of short cycles in a given query graph to the

number of all simple cycles (Amazon0601 in Figure 3.6a and LiveJournal in Figure 3.6b).

Bounding the length of the cycles in the resulting match graph becomes intractable if we

decide to track all the simple cycles of the query graph. The reason is because we have

to deal with an exponential number of cycles. Nevertheless, the number of short cycles

increases linearly w.r.t. the size of query graphs. Therefore, using the set of short cycles

allows us to reduce signiĄcantly the number of processed cycles, resulting to a controlled

number of tokens and messages, which allows us to bound the length of all the existing

cycles in the dual match graph in a reasonable time.

5 10 15 20
|Vq|

0

100

200

300

400

#
 c

yc
le

s

Short cycles
All cycles

(a) Amazon0601 dataset

5 10 15 20
|Vq|

0

20

40

60

#
 c

yc
le

s

Short cycles
All cycles

(b) LiveJournal dataset

Figure 3.6 The number of cycles w.r.t. the size of query graph.

Exp-1: In this set of experiments, we evaluate our approach by varying the size of

the query graph and compare the obtained results with graph simulation (GSim), dual

simulation (DSim) and strict simulation (STSim). The results are shown in Figures 3.7

and 3.8.

We can see in Figures 3.7a and 3.7e that for Amazon0601 and LiveJournal, BDSim gives

a response time better than strict simulation and it yields to better quality answers

since the number of returned matches is reduced in comparison to the other models

(Figures 3.7b and 3.7f).

The number of super-steps for BDSim is almost always the highest (Figures 3.7c and

3.7g). However, it does not affect negatively the Ąnal response time, because as we

can see in the the four charts of Figure 3.8, the number of active vertices during every

super-step, for different values of ♣Vq♣ and for the two datasets, is always lower than that

3.5 Experimental evaluation 86

of strict simulation, without forgetting that for strict simulation the last iteration will

involve all the vertices present in the dual match graph.

The average response time increases with the query size because more vertices in the

query graph will most likely lead to larger intermediate results. Hence, having more

active vertices which will increase the size of match sets processed in every super-step

resulting into higher response time.

The number of exchanged messages shown in Figure 3.7d and Figure 3.7h for Amazon0601

and LiveJournal, respectively, is sensitive to the size of the query graph for the same

reason explained above. Actually, large intermediate results lead to more exchanges

between the graph vertices. We notice that the number of messages for BDSim is very

close to that of dual simulation. This is possible thanks to the token passing approach

that limits the search space into only eligible neighbors of a data vertex.

Exp-2: In this set of experiments, we evaluate our algorithms by varying the size of the

data graph. We use the R-Mat graph generator implementation provided by GraphX,

we give as an input the graph scale such as ♣V ♣ = 2scale, ♣E♣ = 20× ♣V ♣ and Σ = 100. We

vary the graph scale from 13 to 21, and for each generated graph, we extract 50 different

patterns of the same size ♣Vq♣ = 9 with α = 1.2. After that, we report the average

response time, number of super-steps, number of exchanged messages and number of

returned matches in Figure 3.9.

BDSim scales well with the size of the data graph. Actually, our algorithm runs in a

cubic time in function of the data graph size as it is shown in Figure 3.9a. Moreover,

Figure 3.9c gives the number of super-steps following logarithmic curve with an average

difference of 6 additional super-steps compared to dual simulation when ♣Vq♣ = 9. We

also notice that our approach performs better in terms of quality of results when the data

graph is larger where the number of returned matches is reduced by 2/3 times compared

to dual simulation. Furthermore, the number of exchanged messages follows the same

pace as dual simulation (Figure 3.9d).

Exp-3: In this set of experiments, we evaluate our approach by varying the number of

distinct labels using the same R-Mat generated data graph (♣V ♣ = 0.45M , ♣Vq♣ = 9).

We vary ♣Σ♣ from 100 to 500. After that, we report the average response time, number

of super-steps, number of exchanged messages and number of returned matches. The

obtained results are given in Figure 3.10.

The response time is also sensitive to ♣Σ♣ (Figure 3.10a). It decreases when increasing ♣Σ♣

for both BDSim and dual simulation. Actually, having more distinct labels in the data

3.5 Experimental evaluation 87

3 5 7 9 11 13 15 17 19
|Vq|

20

40

60

80

100

Re
sp

on
se

 ti
m

e
(s

)
GSim
DSim

STSim
BDSim, k=1

(a) Response time (Amazon0601)

3 5 7 9 11 13 15 17 19
|Vq|

0

5

10

15

#
 m

at
ch

es
 (|

Vf
|x
10

3)

DSim
STSim

BDSim, k=1

(b) Matches (Amazon0601)

3 5 7 9 11 13 15 17 19
|Vq|

5

10

15

#
 s

up
er

-s
te

ps

GSim
DSim

STSim
BDSim, k=1

(c) Super-steps (Amazon0601)

3 5 7 9 11 13 15 17 19
|Vq|

2

4

6

8

#
 m

es
sa

ge
s

(x
10

6)

GSim
DSim

STSim
BDSim, k=1

(d) Messages (Amazon0601)

3 5 7 9 11 13 15 17 19
|Vq|

50

100

150

200

Re
sp

on
se

 ti
m

e
(s

)

GSim
DSim

STSim
BDSim, k=1

(e) Response time (LiveJournal)

3 5 7 9 11 13 15 17 19
|Vq|

0.5

1.0

1.5

2.0

2.5

3.0

#
 m

at
ch

es
 (|

Vf
|x
10

6)

DSim
STSim

BDSim, k=1

(f) Matches (LiveJournal)

3 5 7 9 11 13 15 17 19
|Vq|

5

10

15

20

#
 s

up
er

-s
te

ps

GSim
DSim

STSim
BDSim, k=1

(g) Super-steps (LiveJournal)

3 5 7 9 11 13 15 17 19
|Vq|

2

4

6

#
 m

es
sa

ge
s

(x
10

6)

GSim
DSim

STSim
BDSim, k=1

(h) Messages (LiveJournal)

Figure 3.7 Varying the pattern graph size ♣Vq♣ for real datasets Amazon0601 and Live-
Journal.

3.5 Experimental evaluation 88

0 1 2 3 4 5 6 7 8 9 1011121314
Super-step

101

102

103

104

105

#
 a

ct
iv

e
ve

rti
ce

s
GSim
DSim

BDSim k=1
STSim

(a) Amazon0601, ♣Vq♣ = 4

0 1 2 3 4 5 6 7 8 9 10 11 12
Super-step

101

102

103

104

105

#
 a

ct
iv

e
ve

rti
ce

s

GSim
DSim

BDSim k=1
STSim

(b) Amazon0601, ♣Vq♣ = 7

0 1 2 3 4 5 6 7 8 9 10
Super-step

101

103

105

107

#
 a

ct
ive

 v
er

tic
es

GSim
DSim

BDSim k=1
STSim

(c) LiveJournal, ♣Vq♣ = 4

0 1 2 3 4 5 6 7 8 9 10 11 12
Super-step

101

103

105

107

#
 a

ct
ive

 v
er

tic
es

GSim
DSim

BDSim k=1
STSim

(d) LiveJournal, ♣Vq♣ = 7

Figure 3.8 Active vertices during the execution of the distributed algorithms on real-world
datasets

graph will lead to decreasing largely the size of intermediate results and this happens

right from super-step one, hence, less data vertices are likely to share their match sets,

resulting into a decrease in the number of returned matches and number of exchanged

messages (Figures 3.10b and 3.10d respectively). The number of super-steps also decreases

(Figure 3.10c) since more data vertices are Ąltered during the Ąrst few iterations of the

algorithm unlike when ♣Σ♣ is high where more data vertices are considered as candidates,

which requires more iterations to Ąlter out incorrect matches, thus resulting into higher

response time.

The obtained results conĄrm that BDSim improves the quality of the returned matches

compared to the existing models. Furthermore, the approach used to detect and Ąlter out

unbounded cycles ensures an effective and efficient elimination of invalid matches without

requiring large amounts of data shipment. BDSim can handle the problem of failing

query thanks to parameter k. This adaptability of BDSim guarantees that only results

of good quality are returned Ąrst when k is initialized to a small value. Nevertheless, k

can be increased by one step in the case of zero answers to allow returning more Ćexible

3.5 Experimental evaluation 89

0 25 50 75 100 125 150 175
|V| x104

0

50

100

150

Re
sp

on
se

 ti
m

e
(s

)

DSim
BDSim, k=1

(a) Response time w.r.t. ♣V ♣

0 25 50 75 100 125 150 175
|V| x104

0

1

2

#
 m

at
ch

es
 (|

Vf
|x
10

3)

DSim
BDSim, k=1

(b) Matches w.r.t. ♣V ♣

0 25 50 75 100 125 150 175
|V| x104

7.5

10.0

12.5

15.0

17.5

20.0

#
 s

up
er

-s
te

ps

DSim
BDSim, k=1

(c) Super-steps w.r.t. ♣V ♣

0 25 50 75 100 125 150 175
|V| x104

0

5

10

15

20

25

#
 m

es
sa

ge
s

(x
10

5)

DSim
BDSim, k=1

(d) Messages w.r.t. ♣V ♣

Figure 3.9 Varying the size of data graph ♣V ♣ for synthetic graphs, ♣Vq♣ = 9.

100 200 300 400 500

10

20

30

Re
sp

on
se

 ti
m

e
(s

)

DSim
BDSim, k=1

(a) Response time w.r.t. ♣Σ♣

100 200 300 400 500
0

200

400

600

#
 m

at
ch

es
 (|

Vf
|)

DSim
BDSim, k=1

(b) Matches w.r.t. ♣Σ♣

100 200 300 400 500

7.5

10.0

12.5

15.0

17.5

#
 s

up
er

-s
te

ps

DSim
BDSim, k=1

(c) Super-steps w.r.t. ♣Σ♣

100 200 300 400 500

1

2

3

4

#
 m

es
sa

ge
s

 (x
10

5)

DSim
BDSim, k=1

(d) Messages w.r.t. ♣Σ♣

Figure 3.10 Varying the number of distinct labels Σ for synthetic graphs, ♣Vq♣ = 9.

3.6 Chapter summary 90

results. Finally, even though BDSim returns answers of better quality, it remains a

scalable model that requires a processing time comparable to that of dual simulation.

3.6 Chapter summary

Despite the abundant work on graph pattern matching, it is only recently that research

works started focusing on the challenges brought about by current real-world applications,

mainly scalability. In this chapter, we proposed BDSim, an extension of dual simulation

that captures the cyclic structure of the input query graph. Our main contribution is

preserving proximity between the query vertices by tracking and Ąltering out cycles of

unbounded length from the Ąnal match graph. Indeed, we proved that the set of short

cycles of a query graph is sufficient to bound the length of all the matched cycles of the

match graph. Besides, we proposed distributed vertex-centric algorithms to evaluate

BDSim and demonstrated their effectiveness and efficiency through theoretical guarantees

and extensive experiments on real-world and synthetic data sets. The obtained results

showed that BDSim signiĄcantly improves the quality of the returned answers while

requiring a response time comparable to dual simulation.

BDSim and strong simulation are both relaxed GPM models that preserve duality

and locality. However, even though it is not intuitive to scale up strong simulation,

this model is interesting since it returns separate subgraphs as an answer to the input

query graph, while BDSim returns a single match graph. Therefore, we give particular

attention to strong simulation in the next chapter by proposing fully distributed and

scalable algorithms that evaluate strong simulation and strict simulation with performance

guarantees.

Chapter 4

A Distributed and Scalable

Approach for Strong Simulation

4.1 Introduction

Strong simulation was introduced to improve the quality of graph simulation by im-

posing two properties, namely duality and locality. The duality ensures preserving the

connectivity of the answers, while the locality property guarantees that the returned

subgraphs have bounded size. Strong simulation is particularly interesting as it is close

to subgraph isomorphism in terms of quality while it can still be evaluated in cubic time.

Prior distributed algorithms of strong simulation [84, 39, 35, 133] did not provide any

guarantees when it comes to scalability. Indeed, these approaches require moving large

parts of the data graph across the cluster workers in order to make the locality balls

available inside each machine, therefore resulting in large amounts of data shipment

that may create a bottleneck in the case of data graphs not having a uniform degree

distribution.

Motivated by these limitations, we propose D3S, a distributed and scalable algorithm that

evaluates strong simulation with performance guarantees. First, D3S does not duplicate

any parts of the data graph which ensures reduced communication costs. Moreover,

D3S addresses the natural skewness in real graphs by processing the locality balls in a

vertex-centric fashion, i.e. each member of a given locality ball participates in computing

the answer related to it. Furthermore, based on D3S, we design a distributed algorithm

for the more restricted model; strict simulation that reduces the size of the generated

locality balls, resulting in answers of better quality compared to strong simulation. We

4.2 D3S: A distributed and scalable approach for strong simulation 92

refer to the algorithm of strict simulation as D3S+. Finally, we provide theoretical

guarantees in addition to extensive experiments on synthetic and real-world datasets to

validate the different algorithms proposed. The test results conĄrm that our approach

can be Ąve times faster than the state-of-the-art work.

The remainder of this chapter is structured as follows. Section 4.2 details the distributed

vertex-centric algorithms proposed in addition to their formal validation. Strict simulation

is discussed in Section 4.3. Finally, the performance evaluation of D3S and D3S+ is

presented in Section 4.4.

4.2 D3S: A distributed and scalable approach for

strong simulation

Strong simulation strikes a balance between Ćexibility and tractability. It guarantees a

number of properties such as (1) preserving the child relationships, i.e., if a query vertex

u matches a data vertex v, then each child of u matches a child of v, (2) similarly, it

preserves the parent relationships, (3) strong simulation preserves directed and undirected

cycles, i.e., each undirected (directed) cycle in the query graph matches an undirected

(respectively directed) cycle in the match graph, (4) locality is also preserved by strong

simulation such that subgraph matches are searched in a locality ball having a diameter

equal to 2 × d where d is the query diameter, and Ąnally (5) the number of subgraph

matches returned by strong simulation is bounded by the number of vertices in the input

data graph. Indeed, each data vertex can result to a locality ball that may return a

match subgraph.

The above properties guarantee for strong simulation to be the best Ąt model for modern

GPM applications. In a spectrum of several models varying in Ćexibility and tractability,

strong simulation stands in the middle between subgraph isomorphismŮbeing NP-

Complete while having rigid constraintsŮand graph simulation, which is considered too

loose for capturing the structural information of a query graph. Nevertheless, massive

graphs of today are generally distributed over clusters of machines, therefore requiring the

sequential graph algorithms, including strong simulation, to be revisited for such complex

environments. The challenges we aim to address are the following. First, designing a

scalable algorithm for evaluating strong simulation in massive graphs. Second, how to

make this algorithm fully distributed so it can beneĄt from all the computing resources

available, and hence gain in terms of performance? Next, how can we avoid duplicating

the graph data, therefore allowing a scalability of the approach? In fact, avoiding the

4.2 D3S: A distributed and scalable approach for strong simulation 93

A

CB

ED

(a) Query graph Q4

A

CB

ED

CB

E

E

C

A

B

D

D

1 2

3
4

6 7
8 9

5

10

11 12 13 14
15

D

(b) Data graph G4

A

CB

ED

CB

E

E

C

A

B

D

D

1 2

3
4

6 7
8 9

5

10

11 12 13 14
15

D

(c) Locality ball Ĝ[4, 2]

A

CB

ED

3

6 7

11 12 E 13

(d) MaxPG Gs

Figure 4.1 Strong simulation

replication of graph data is crucial, especially in the case of massive and dynamic graphs

where update events need to be reĆected while making minimum changes to the data

graph.

To address these challenges, our approach for a distributed and scalable evaluation of

strong simulation (D3S) is designed to work in three stages. First, a vertex-centric

algorithm enumerates the dual simulation matches in a distributed way. After that, we

propose a novel algorithm that performs a distributed neighborhood discovering. This

step allows every data vertex being part of some locality ball to receive the identiĄer of

the center of this ball. Finally, strong simulation is evaluated in a fully distributed way

among all the data graph vertices to get the Ąnal maxPGs.

4.2.1 Overview of D3S

In this section, we give an overview of the distributed algorithm D3S. After that, we

proceed with the design of each phase apart. However, it is important to Ąrst recall the

notion of strong simulation. Strong simulation uses the notion of locality balls that are

subgraphs of the data graph in which a match graph is computed. Looking for a match

4.2 D3S: A distributed and scalable approach for strong simulation 94

graph inside such locality balls guarantees preserving distances between the match graph

vertices. It is formally deĄned as follows.

DeĄnition 21 (Locality ball). Given a data graph G = (V, E, f), vertex v ∈ V and

positive integer d. The induced subgraph of G that contains v and all the vertices in G

within a maximum distance d from v is referred to as a locality ball. This ball is denoted

as Ĝ [v, d] such as v is its center and d is its radius.

In Figure 4.1, we give query graph Q4 and data graph G4. Strong simulation evaluates a

graph pattern matching query by Ąrst, creating locality balls centered at every vertex

in G4 and having a radius = 2 (diameter of Q4). The locality ball Ĝ[4, 2] centered at

data vertex 4 is illustrated in Figure 4.1c. When evaluating dual simulation inside this

ball, the maximum dual match set returned is ∅. On the other hand, locality ball Ĝ[7, 2]

contains one maxPG denoted Gs (illustrated in Figure 4.1d) that will be returned as an

answer by strong simulation.

We also use the notion of matching constraints introduced in DeĄnition 19 in evaluating

dual simulation and strong simulation. For query graph Q4, the set of parent constraints

Cp for query vertex A is Cp(A) = ∅, while the child constraints Cc is Cc(A) = ¶B, C♢.

Similarly, query vertex C has ¶A, B♢ as parent constraints and ¶D, E♢ as child constraints.

Given the data graph G4 of Figure 4.1b, data vertex 4 is labeled C. Hence, it will only keep

constraints related to query vertices labeled C, i.e., Cp(C) = ¶A, B♢ and Cc(C) = ¶D, E♢

should be maintained locally by vertex 4.

Algorithm D3S

1 Input: G, Q;
2 Output: Gs;
3 Broadcast(Q);
4 G1 ← D3SA(G, Q);
5 G2 ← InducedSubgraph(G1) // filter out vertices having empty M in parallel

6 G3 ← D3SB(G2);
7 G4 ← D3SC(G3);
8 Gs ← ExtractMaxPGs(G4);
9 return Gs;

Algorithm D3S takes as input a data graph G and a query graph Q. The Ąrst step of

the algorithm is broadcasting Q to the data graph vertices that will run in a vertex-

centric way. The reception of this message triggers D3SA, a distributed and vertex-centric

algorithm that evaluates dual simulation locally to each data vertex (Lines 1Ű4). At the

end of Algorithm D3SA, every data vertex will have its correct matching information

computed locally. We note that the union of these local matches gives the maximum dual

4.2 D3S: A distributed and scalable approach for strong simulation 95

match set Rd. Nevertheless, we use directly the current state of the data graph to Ąlter

out vertices that will not participate in evaluating strong simulation (call of Procedure

InducedSubgraph in Line 5). A detailed discussion of the importance of this Ąltering

phase is provided under Section 4.2.3. On a relatively smaller data graph, where each

data vertex has its matching information stored locally, we execute the vertex-centric

neighborhood discovery algorithm D3SB. This algorithm allows the remaining vertices to

get the information of their locality balls (Line 6). Afterward, each vertex will execute a

local vertex-centric algorithm, referred to as D3SC , to evaluate dual simulation for the

locality balls where it is considered a member (Line 7). Indeed, each data vertex will

have different matching information stored locally depending on which locality ball is

considered as the main one. We note that these locality balls are identiĄed by their

centers. Finally, Algorithm D3S calls Procedure ExtractMaxPGs (Lines 8) to extract the

maximum perfect subgraphs from the resulting match sets related to each locality ball.

In what follows, we present the different stages of Algorithm D3S separately with examples

and give their respective vertex-centric algorithms in addition to the proofs of correctness

and convergence.

4.2.2 Vertex-centric dual simulation

The distributed and vertex-centric algorithm for evaluating dual simulation is denoted

D3SA. It is presented and discussed in details in Section 3.3.2. D3SA is a constraint-based

algorithm that generates the matching constraints related to each query vertex, then, it

broadcasts them among the data graph vertices. After that, each data vertex maintains

a local context composed of its match set M and the set of constraints for every member

in this match set. At the reception of the query graph, every data vertex v initializes M

with the set of query vertices that has a similar label. Moreover, it keeps locally the set

of constraints related to these query vertices for verifying dual simulation. If M is not

empty, then, vertex v will share it with its direct neighbors at the end of this super-step.

Algorithm D3SA takes as input Cc and Cp. Each data vertex v maintains a local context

composed of its match set M and the set of constraints for every member in this match set.

The data vertices can exchange two types of messages: data messages Dmsg and removal

messages Rmsg. The data messages are used in propagating the matching information of

a vertex to its neighbors, while the removal messages carry an update event of the local

matching information to the neighbors.

4.2 D3S: A distributed and scalable approach for strong simulation 96

At the reception of the Ąrst broadcast message containing Q, data vertex v initializes M

with the set of query vertices in Q that have a similar label. It also keeps the constraints

related to them locally (Lines 1Ű6). If M is not empty, then, data vertex v will share M

with its direct neighbors in the form of a data message Dmsg (Lines 7Ű9). Otherwise, v

becomes inactive because it does not belong to the global match set w.r.t. dual simulation

(Lines 10Ű11).

In the second super-step of D3SA, every data vertex v having a non empty match set will

be activated. If it receives a data message Dmsg, then, it stores the received match sets of

its parents and children locally in separate variables Mp and Mc, respectively (Lines 12Ű

13). Next, even if it does not receive any data, it must evaluate the constraints of

dual simulation using its local information, i.e., M, Cp, Cc, Mp and Mc (call of Procedure

EvalDSim in Line 14). If the evaluation leads to having one or more non satisĄed

constraints for a given query vertex u, then u will be removed from M and its related

constraints Cp(u) and Cc(u) will also be removed. A removal message Rmsg containing the

removed matches Rm will be generated and broadcast to the neighbors of v (Lines 15Ű18).

Every time a removal of a query vertex from M happens, it will be followed by the

removal of its related constraints in local Cp and Cc.

In the next super-steps, the reception of a removal message will trigger two operations.

First, each data vertex receiving this removal message will update the match sets of

its parents Mp and children Mc accordingly (Lines 19Ű20). Then, it will reevaluate the

matching constraints w.r.t. dual simulation (call of Procedure EvalDSim in Line 21). If

the matching constraints are not satisĄed for a given query vertex u in M , then M is

updated, u is added to Rm, and a removal message Rmsg containing Rm is generated and

broadcast to the direct neighbors of v (Lines 22Ű25). The same process is repeated in the

following super-steps until the local match sets converge and no new removal messages

are generated anymore. At the end of the distributed algorithm, every data vertex will

have its local match set w.r.t. dual simulation. If every single query vertex has at least

one match, then, the union of these local matches is exactly the global match set w.r.t.

dual simulation. Otherwise, the global match set is ∅.

Example 9. In data graph G4 and query graph Q4, if we notice data vertex 15 that has

label D, its parent constraints are Cp(D) = ¶C♢ and it has an empty child constraints

Cc(D) = ∅. On the other hand, its parents in G4 are ¶10, 14♢ and their respective

mappings from the Ąrst iteration are ¶(10, A), (14, D)♢. Since vertex 15 does not have a

parent that satisĄes the parent constraints (a parent matched to query vertex C), then it

will remove C from its local match set (along with the related constraints). After that,

4.2 D3S: A distributed and scalable approach for strong simulation 97

it will create a removal message Rmsg with the mapping (15, D). Then, it will share it

with neighbors 10 and 14. since the removal of vertex 15 will not affect the match sets of

vertices 10 and 14, the next super-step is the last one in Algorithm D3SA.

4.2.3 Vertex-centric neighborhood discovery

Let G = (V, E, f) be a data graph, Q = (Vq, Eq, fq) a query graph and d the diameter

of Q. Strong simulation improves the quality of dual simulation by imposing an additional

constraint which is the locality. This property requires dual simulation matches to be

located inside a locality ball of radius d and centered at data vertices that are already

part of the maximum dual match set Rd.

Moreover, given G′ the induced subgraph of G w.r.t. V ′ (set of vertices in Rd), it has

been shown in [84] that strong simulation can be directly evaluated on G′ instead of

G. Indeed, for every v ∈ V , the maxPG resulting from the locality ball b centered at v

with radius d in G is equivalent to the maxPG extracted from locality ball b′ centered

at v with radius d in G′. Therefore, we use G′ in this phase to reduce the size and

number of locality balls, hence, avoiding unnecessary computations. Working on the

induced subgraph G′ eliminates locality balls centered at vertices with an empty match

set w.r.t. dual simulation. It also ensures that locality balls are composed of only valid

dual simulation matches.

We propose discovering the d-neighborhood of each data vertex in Rd, then evaluating

dual simulation for the resulting locality balls in a distributed way. To do so, we give the

vertex-centric algorithm D3SB that allows each vertex in G′ to propagate its identiĄer in

a ball of radius d. This propagation allows other vertices that share the same locality to

discover it.

D3SB is triggered by an initial broadcast message Imsg. At the reception of Imsg, the

centers of locality will generate and send a data message with their identiĄers to their

locality members (Lines 1Ű3). Upon the reception of a locality ball center c, the receiving

vertex will add it to a local set named Lb. It will also map it in a [key, value] form

with its local match set M(c) and its parent and child match set Mp(c) and Mc(c),

respectively (Line 4Ű5). An illustration of partial local context of data vertex 4 is given in

Figure 4.2. After that, a data vertex will propagate the received centers to its neighbors

(Lines 6Ű7). The propagation will follow in the next super-steps until Super-step d + 1

where every data vertex will have the list of centers of all the locality balls to which it

belongs (Lines 8Ű10).

4.2 D3S: A distributed and scalable approach for strong simulation 98

Mc(c1)M(c1) Mp(c1)

Mc(c2)M(c2) Mp(c2)

Mc(c3)M(c3) Mp(c3)

4

c1

c2

c3

Figure 4.2 Local context of vertex 4

A

C

B

B

E

C AB

D 1 2

3 4

6

7
8

5

10

Lb(4) = {1, 2, 3, 5, 6, 7, 8, 10}

Figure 4.3 Construction of Lb for vertex 4

At the end of Super-step d + 1, each data vertex with a non empty list of centers will

share this list with its direct neighbors (Lines 11Ű13). When a data vertex receives such

list, it will store it locally in a variable named Nb (Lines 14Ű16). At this point, every

data vertex has a list of locality balls centers attached to their corresponding local match

sets. The parent and child match sets are also kept locally as they help in identifying

the matches to be removed in the next phase. The variable Nb is used to reĄne Mp and

Mc for each center c ∈ Lb.

Algorithm D3SB

1 Super-step 1: At the reception of Imsg while M ̸= ∅, do;
2 Send v to direct neighbors;
3 Vote to halt;
4 Super-step 2 to d: at the reception of Sb while M ̸= ∅, do;
5 Add new Sb to Lb;
6 Send new Sb to direct neighbors;
7 Vote to halt;
8 Super-step d + 1: if M ̸= ∅, then do;
9 if Received Sb ̸= ∅ then

10 Add new Sb to Lb;

11 if Lb ̸= ∅ then

12 Nb ← (v, Lb) Send Nb to direct neighbors;

13 Vote to halt;
14 Super-step d + 2: at the reception of Nb while M ̸= ∅, do;
15 Store Nb locally;
16 Vote to halt;

Example 10. In Example query graph Q4 and data graph G4, we have the query diameter

d = 2, hence the locality balls will have a radius equal to 2. Moreover, since data

vertex 4 belongs to the maximum dual match set, it must propagate its identiĄer in a

2-neighborhood. In the next super-step, vertex 4 will also discover the locality balls to

which it belongs and that are at one hop, i.e. it will get the set ¶1, 2, 3, 5♢. Vertex 4

will store these centers locally in variable Lb, then it will receive centers ¶6, 7, 8, 10♢ at

the beginning of the third super-step. It will also share this list with its direct neighbors

4.2 D3S: A distributed and scalable approach for strong simulation 99

¶1, 2, 3, 5♢. Finally, it will receive the locality centers of these neighbors and store them

in Nb. Figure 4.3 illustrates the execution of this phase.

Lemma 3. At the end of Algorithm D3SB, every data vertex having a non-empty match

set will have the set of locality balls centers to which it belongs.

Proof. The correctness of Algorithm D3SB is guaranteed by the following properties. (1)

the algorithm will terminate (Lemma 4), (2) every vertex v has the correct and complete

set of centers for each locality ball in which it is a member.

First, we suppose that the algorithm collects an invalid center, and then prove the

impossibility of this case. The set Lb contains vertices that are in a d-neighborhood from

v and that have a non empty match set, hence, an incorrect center is either a vertex with

a non empty match set or a vertex that is located in a distance > d from v. In every

super-step of the algorithm, a data vertex is activated only if it has a non empty match

set, hence, a vertex that communicates data with its neighbor must have a non empty

match set. Furthermore, Lb is constructed in an iterative way between the super-steps 1

and d+1 where a message generated in Super-step i arrives at the next hop in Super-step

i+1. Consequently, a message triggered by a vertex v′ reaches hop v which has a distance

d′ > d from v after exactly d′ super-steps. However, the construction of Lb takes exactly

d + 1 super-steps. Therefore, v cannot receive a center of a locality ball b such that v /∈ b.

Second, we suppose that the algorithm misses a center c for a vertex v and we prove that

this cannot happen. A center c is added to Lb for data vertex v if and only if: v has a

non empty match set, c has a non empty match set, the undirected distance between v

and c is ≤ d. We distinguish two scenario cases, c is a direct neighbor of v, it is directly

add to Lb in Super-step 2 (Line 5) where the new Sb is exactly the received Sb because

Lb is empty at the beginning of this super-step. The other case is where c has a distance

d′ > 1 from v. If ′ = 2, then c and v share a common neighbor v′, thus, c has already

been communicated to v′ in the Ąrst two super-steps. At the beginning of Super-step 2,

v′ has c in its new Sb, hence, it will share it with its direct neighbors including vertex v.

In the same way, we prove that c will reach v in d′ super-steps at most (2 < d′ ≤ d) and

will be added to Lb.

Lemma 4. Algorithm D3SB for discovering the d-neighborhood of a data vertex will

terminate.

Proof. We know that the maximum number of super-steps of D3SB is Ąnite (d + 2 such

that d is the diameter of the query graph). Moreover, each super-step will terminate.

4.2 D3S: A distributed and scalable approach for strong simulation 100

Actually, the Ąrst super-step is an atomic operation that will terminate. The second

super-step will also terminate because it iterates over a list of Ąnite size (number of

received messages from neighbors is Ąnite). The same thing applies to the super-steps

from 3 to d + 1 that will terminate. The last super-step involves an atomic operation for

storing the received data locally, hence, the algorithm will terminate.

4.2.4 Vertex-centric strong simulation

The last phase of our approach consists of evaluating strong simulation according to

every locality ball in a distributed way. Each data vertex in G′ uses the Nb as a guide

to update Mp(c) and Mc(c) for each center c in Lb (lines 1-4). Actually, if a neighbor n

does not belong to a locality ball centered at c ∈ Lb, then, its entries in Mp(c) and Mc(c)

will be Ąltered out. Indeed, the membership of n is retrieved from Nb.

Next, each data vertex v reevaluates the matching constraints w.r.t. dual simulation

according to each center in ¶Lb♢ (the call of Procedure EvalDSim in Line 5). If the dual

simulation constraints are not satisĄed anymore for some speciĄc center c, this means

that v does not belong to a maxPG resulting from the locality ball centered at c, hence, a

removal message Rmsg must be generated to inform its neighbors. The removal message

is composed of the related locality ball center, the data vertex identiĄer and removed

query vertex (Lines 6Ű8). Furthermore, v will also remove itself from a locality ball if its

corresponding match set becomes empty, i.e. it removes the center entry from variable Lb

(Lines 9Ű11). Afterward, v continues processing all the locality centers while generating

removal messages if there are any non respected constraints.

Upon the reception of a removal message Rmsg in the second super-step, each data vertex

checks Ąrst if it belongs to the related locality ball, if not, the message is ignored (Line 14).

Otherwise, the vertex updates the parents and children local match sets for that center c

(Line 15). After that, it reevaluates again the matching constraints w.r.t. dual simulation

(call of Procedure EvalDSim in Line 16). This call returns the updated match set M(c) in

addition to the set of removed matches Rm. If Rm is not empty, a removal message Rmsg

is generated and sent to all the direct neighbors (Lines 17Ű19). Similar to the previous

super-step, if the local match set w.r.t. center c becomes empty, then v removes itself

from the corresponding locality ball, i.e., it removes c from Lb (Lines 20Ű22).

In the following super-steps, every removal message will trigger the reevaluation of dual

simulation constraints with possible updates of the local match sets and generation of

new removal messages. The same process is triggered in each super-step until no messages

4.2 D3S: A distributed and scalable approach for strong simulation 101

are exchanged anymore announcing the convergence of the distributed algorithm. At this

point, every data vertex has locally the set of locality balls in which it has matches. The

union of matches for each locality ball forms the maxPG of that center. Finally, Procedure

ExtractMaxPGs will check for each returned maxPG if its center has a non-empty local

match set and that every query vertex has at least one match. Otherwise, this maxPG is

Ąltered out.

Algorithm D3SC

1 Super-step 1: At the reception of Imsg while M ̸= ∅, do;
2 foreach c in Lb do

3 Mp(c)← updated Mp based on Nb ;
4 Mc(c)← updated Mc based on Nb ;
5 (M(c), Rm)← EvalDSim(C, M , Mp(c),Mc(c)) ;
6 if Rm ̸= ∅ then

7 Rmsg ← (c, v, Rm);
8 Send Rmsg to neighbors ;

9 if M(c) = ∅ then

10 Add c to Rc ;

11 Remove Rc from Lb ;
12 Vote to halt ;
13 Super-step 2 and beyond: At the reception of Rmsg;
14 if Lb contains Rmsg.c then

15 Update Mp(c) and Mc(c);
16 (M(c), Rm)← EvalDSim(C, M , Mp(c),Mc(c)) ;
17 if Rm ̸= ∅ then

18 Rmsg ← (c, v, Rm);
19 Send Rmsg to neighbors ;

20 if M(c) = ∅ then

21 Remove c from Lb ;

22 Vote to halt;

Example 11. In the data graph G4, vertex 5 has the same child match set Mc =

¶(1, D), (2, E)♢ and the parent match set Mp = ¶(3, A), (5, B)♢ for every center c ∈ Lb.

To evaluate dual simulation for any locality ball, it must Ąrst update the parent and child

match sets related to it according to the contents of Nb. If we take the locality ball b6

centered at 6 ∈ Lb, the neighbors ¶1, 2, 5♢ do not belong to it, hence, their entries are

removed from Mp(6) and Mc(6). We end up with only one entry in the neighbors match

sets of center 6, i.e., (3, A). The local dual simulation constraints are not satisĄed for b6,

hence, vertex 4 will remove itself from b6, i.e., remove 6 from Lb and generate a removal

message with this information. This removal message is sent to the direct neighbors that

will update their match sets for b6. This data vertex will do the same thing for the other

centers in Lb. The remaining vertices in G′ will execute the same routine resulting in

4.2 D3S: A distributed and scalable approach for strong simulation 102

new removal messages that will be propagated among the graph vertices. At the end of the

algorithm, only the centers ¶3, 6, 7, 11, 12, 13♢ will remain. If we take center 7, the Ąve

vertices ¶3, 6, 7, 11, 12, 13♢ all satisfy dual simulation for its locality ball. These vertices

form the maxPG that will be returned by the algorithm.

Lemma 5. Algorithm D3SC returns the correct and complete set of maxPGs w.r.t. strong

simulation.

Proof. In the same way we proved the correctness of D3SA, one can see that, considered

separately, each data locality center represents a locality ball in which we evaluate dual

simulation in a distributed vertex-centric way (using the same routines in algorithm

D3SA). Each locality ball bc centered at vertex c has its own local match set M(c), parent

match set Mp(c) and child match set Mc(c). Furthermore, we evaluate the matching

constraints separately and every removal in M(c) triggers a removal message that is

propagated among the the members of bc.

Lemma 6. Algorithm D3SC for evaluating strong simulation will terminate.

Proof. The Ąrst super-step of the algorithm simply iterates over the local set Lb that has

a Ąnite size. Inside this loop, we update the two sets Mp(c) and Mc(c) by iterating over

a Ąnite set Nb and updating one element at a time. Procedure EvalDSim iterates over

Ąnite sets. Therefore, it will terminate. The remaining operations in the loop body are

atomic, hence the loop body will terminate. At the end of this iteration Lb is updated in

constant time. Therefore, the Ąrst super-step will terminate. In the next super-steps,

every data vertex updates its local match sets based on the received removal messages.

Removing invalid matches from Mp(c) and Mc(c) takes constant time. Reevaluating

dual simulation for the locality center c also takes Ąnite time. The remaining operations

in this super-step are atomic operations of message creation, and removal of invalid

elements elements from a Ąnite set Lb. Hence, the second super-step will terminate. The

maximum number of the remaining super-steps is ♣E♣ in the worst case where a locality

ball is composed of the whole match graph G′ and a removal message is propagated

across all the locality ballŠs edges. Consequently, Algorithm D3SC will terminate.

Given a data graph G = (V, E, f) and a query graph Q = (Vq, Eq, fq), to Ąnd the maxPGs

w.r.t. strong simulation we use the distributed vertex-centric algorithm D3S which is

given as the successive execution of D3SA, D3SB and D3SC .

4.3 D3S+ : Distributed and scalable evaluation of strict simulation 103

A

CB

ED

CB

E

E

C

A

B

D

D

1 2

3
4

6 7
8 9

5

10

11 12 13 14
15

D

(a) Data graph G′

4

A

CB

ED

3

6 7

11 12 E 13

(b) MaxPG returned by strict simulation

A

CB

ED

CB

E

E

C

A

B

D

D

1 2

3
4

6 7
8 9

5

10

11 12 13 14

A

CB

ED

3

6 7

11 12 E 13

(c) MaxPGs returned by strong simulation

Figure 4.4 Difference between maxPGs returned by strict simulation and the one returned
by strong simulation in the case of query graph Q4 and data graph G′

4.

Theorem 8. Algorithm D3S returns the correct and complete set of maxPGs w.r.t.

strong simulation.

Proof. The correctness of D3S results directly from Theorem 5, Lemma 3 and Lemma 5.

4.3 D3S+ : Distributed and scalable evaluation of

strict simulation

Strict simulation is an extension of strong simulation where the data locality balls are

generated from the dual match graph instead of the induced subgraph. This optimization

reduces the size of locality balls and restricts further the size of returned matches.

Consequently, the data shipment is reduced and the returned maxPGs are of better

quality. We name the distributed vertex-centric algorithm for strict simulation D3S+.

This variant of Algorithm D3S uses a dual match graph instead of the induced subgraph

(call of Procedure DualMatchGraph in Line 7 of Algorithm D3S+).

4.4 Experimental evaluation 104

Algorithm D3S+

1 Input: G, Q;
2 Output: Gs;
3 Broadcast(Q);
4 G1 ← D3SA(G, Q);
5 G2 ← DualMatchGraph(G1) // Filter out vertices and edges not having a match in

Q

6 G3 ← D3SB(G2);
7 G4 ← D3SC(G3);
8 Gs ← ExtractMaxPGs(G4);
9 return Gs;

To show how strict simulation reduces the size of locality balls, we use data graph G′

4 given

in Figure 4.4 and the query graph Q4. Strong simulation returns two maxPGs composed

of the whole data graph except data vertex 15 (Figure 4.4c). This is due to the additional

edge (4, 9) that allowed data vertices 4 and 9 to Ąnd the same large maxPG inside their

locality balls. However, since strict simulation is based on the match graph resulting from

dual simulation, this particular edge will be removed, because no edges labeled (C, C) are

present in Q4. Now, we build the data locality balls on top of this Ąltered graph, which

results into only one maxPG given in Figure 4.4b. The locality balls collected by vertex 4

in strong simulation and strict simulation are ¶1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14♢ and

¶1, 2, 3, 4, 5, 6, 7, 8, 10♢, respectively. Evaluating strong simulation on the Ąrst locality

ball gives the maxPG composed of data vertices ¶1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14♢,

while strict simulation does not Ąnd any matches inside the second ball. This example

proves that not only the locality balls are smaller in size but also the quality of results is

always similar or better.

4.4 Experimental evaluation

We conducted our experiments on real and synthetic data sets. The goal is to measure

the performance of D3S and D3S+, identify their bottlenecks and compare them to an

algorithm from the state-of-the-art.

4.4.1 Distributed implementation

We implemented the two algorithms D3S and D3S+ on top of GraphX using the program-

ming language SCALA. GraphX [143] is a module provided by Apache Spark that allows

vertex-centric graph processing through its exposed API of Pregel [86].

4.4 Experimental evaluation 105

The implementation provided by GraphX for Pregel executes a distributed algorithm

as a series of super-steps where each vertex that receives a message at the end of the

previous super-step is activated to execute its local program and prepare messages for the

next super-step. These super-steps are separated by synchronization barriers following

the BSP model. GraphX offers an additional feature for exchanging messages. A data

vertex can access its neighborsŠ local context to decide whether it needs to exchange

messages with them or not. We use the exposed information from each data vertex to

decide whether or not to send a message in three scenarios. The Ąrst scenario is related

to the evaluation of dual simulation, a data vertex shares its local match set only with

data vertices that can beneĄt from it in building their local match sets. Actually, a

neighbor is interested in receiving a match set if the vertex sending it matches their

parent and/or child constraints. Hence, if there is no intersection between the vertex

constraints and this neighborŠs match set, the match set will not be shared with it, which

eliminates useless messages and avoids unnecessary computations. The second scenario

appears in the phase of neighborhood discovery when a data vertex decides to propagate

its list of centers, it only sends the ones not already known by each neighbor. This

optimization reduces the size and number of exchanged messages. Finally, the removal

messages are only shared with data vertices having a non empty match set, because there

is no need to activate data vertices that are already eliminated from the global match set.

These improvements reduce the number and size of exchanged messages which optimizes

signiĄcantly the response time of D3S and D3S+.

4.4.2 Experimental environment

We worked on four real-world graphs from SNAP Datasets [74]. The characteristics of

these real graphs are given in Table 4.1. Unless expressly stated otherwise, the number

of distinct labels in each data graph is Ąxed to ♣Σ♣ = 500.

Furthermore, the R-Mat model [18] is used to generate synthetic data graphs. It takes as

an input ♣V ♣, ♣E♣ and ♣Σ♣ such that ♣Σ♣ is the number of distinct labels and ♣E♣ = 20×♣V ♣.

Table 4.1 Characteristics of the data graphs used in the different experiments

Dataset (G) ♣V ♣ ♣E♣

Epinions 75,879 508,837
Amazon0601 403,394 3,387,388
WebGoogle 875,713 5,105,039
LiveJournal 4,847,571 68,993,773

4.4 Experimental evaluation 106

When varying the values of ♣Vq♣, we use the algorithm given in Section 3.5.3 to extract

50 different patterns randomly for each value.

We executed our experiments on a Spark cluster composed of 10 nodes with 32GB

memory and 16 cores for each; one node plays the role of the master while the remaining

nodes are considered as workers.

4.4.3 Experimental results

The results of performance evaluation for D3S and D3S+ and comparison with the state-

of-the-art distributed algorithm for evaluating strict simulation Strict13 from [39] are

presented and discussed in this section.

Exp-1: In the Ąrst set of experiments, we evaluate the performance of D3S by varying

the following graph parameters: The size of query graph ♣Vq♣, the query diameter d and

the number of distinct labels ♣Σ♣. The obtained results are discussed below.shown in

Figure 4.5. In Figure 4.5a, we notice that the size of the query graph does not affect

greatly the overall running time of D3S, especially for small and average data graphs.

The number of super-steps (Figure 4.5b), on the other hand, depends largely on the

size of the query graph and follows a logarithmic growth in function of the query size.

In Figure 4.5c, we see that the number of exchanged messages is almost constant and

does not seem to be dependant of the size of query graphs. In Figures 4.5d, 4.5e and

4.5f, we see that the highest number of active vertices is reached mainly in the Ąrst few

iterations where data vertices not satisfying dual simulation are being eliminated. After

that, the number of active vertices remains stable until the end which conĄrms that the

two algorithms D3SB and D3SC converge with a bounded number of active vertices.

Since the number of iterations of the distributed algorithm is given in function of the

diameter of the query graph, we vary this parameter. We report the average response time

in Figure 4.5j, number of super-steps in Figure 4.5k and number of exchanged messages

in Figure 4.5l. The results obtained show that, indeed, the number of super-steps grows

linearly when d increases, reaching at most 20 iterations for queries having a diameter

equal to 8. The response time is also sensitive to the change in query diameters. It

increases faster for larger data graphs, namely LiveJournal. Moreover, the data shipment,

represented by the total number of messages, remains constant when varying d, which

proves that D3S is insensitive to the query diameter in terms of data shipment.

Finally, since the number of distinct labels plays in important role in the Ąltering phase

where only the candidate vertices are kept active, we evaluate the performance of D3S

4.4 Experimental evaluation 107

3 5 7 9 11 13 15 17 19
|Vq|

0

10

20

30

Re
sp

on
se

 ti
m

e
(s

)

Epinions
Amazon0601
GoogleWeb
LiveJournal

(a) Response time w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

10

12

14

16

#
 s

up
er

-s
te

ps

Epinions
Amazon0601
GoogleWeb
LiveJournal

(b) Super-steps w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

0

1 M

2 M

3 M

4 M

5 M

#
 m

es
sa

ge
s Epinions

Amazon0601
GoogleWeb
LiveJournal

(c) Messages w.r.t. ♣Vq♣

0 1 2 3 4 5 6 7 8 9 10 11
Super-step

102

104

106

#
 a

ct
iv

e
ve

rti
ce

s

(d) Actives vertices, ♣Vq♣ = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Super-step

101

103

105

107

#
 a

ct
iv

e
ve

rti
ce

s

(e) Actives vertices, ♣Vq♣ = 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Super-step

101

103

105

107

#
 a

ct
iv

e
ve

rti
ce

s

(f) Actives vertices, ♣Vq♣ = 15

200 400 600 800 1000
| |

0

10

20

30

40

Re
sp

on
se

 ti
m

e
(s

)

Epinions
Amazon0601
GoogleWeb
LiveJournal

(g) Response time w.r.t. ♣Σ♣

200 400 600 800 1000
| |

10

12

14

16

#
 s

up
er

-s
te

ps

Epinions
Amazon0601
GoogleWeb
LiveJournal

(h) Super-steps w.r.t. ♣Σ♣

200 400 600 800 1000
| |

0

1 M

2 M

3 M

4 M

5 M

#
 m

es
sa

ge
s Epinions

Amazon0601
GoogleWeb
LiveJournal

(i) Messages w.r.t. ♣Σ♣

1 2 3 4 5 6 7 8
d

10

20

30

Re
sp

on
se

 ti
m

e
(s

)

Amazon0601
GoogleWeb
LiveJournal

(j) Response time w.r.t. d

1 2 3 4 5 6 7 8
d

10

12

14

16

18

#
 s

up
er

-s
te

ps

Amazon0601
GoogleWeb
LiveJournal

(k) Super-steps w.r.t. d

1 2 3 4 5 6 7 8
d

1 M

2 M

3 M

4 M

5 M

#
 m

es
sa

ge
s

Amazon0601
GoogleWeb
LiveJournal

(l) Messages w.r.t. d

Figure 4.5 Performance evaluation of D3S

4.4 Experimental evaluation 108

3 5 7 9 11 13 15 17 19
|Vq|

2

4

6

8

10

Re
sp

on
se

 ti
m

e
(s

)

Epinions-D3S
Epinions-D3S+

Epinions-Strict13

(a) Response time w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

6

8

10

12

#
 s

up
er

-s
te

ps

Epinions-D3S
Epinions-D3S+

Epinions-Strict13

(b) Super-steps w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

78 k

80 k

82 k

84 k

86 k

#
 m

es
sa

ge
s

Epinions-D3S
Epinions-D3S+

Epinions-Strict13

(c) Messages w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

4

6

8

10

12

14

Re
sp

on
se

 ti
m

e
(s

)

Amazon0601-D3S
Amazon0601-D3S+

Amazon0601-Strict13

(d) Response time w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

6

8

10

12

14

#
 s

up
er

-s
te

ps

Amazon0601-D3S
Amazon0601-D3S+

Amazon0601-Strict13

(e) Super-steps w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

410 k

420 k

430 k

440 k

#
 m

es
sa

ge
s

Amazon0601-D3S
Amazon0601-D3S+

Amazon0601-Strict13

(f) Messages w.r.t. ♣Vq♣s

3 5 7 9 11 13 15 17 19
|Vq|

5.0

7.5

10.0

12.5

15.0

17.5

Re
sp

on
se

 ti
m

e
(s

)

GoogleWeb-D3S
GoogleWeb-D3S+

GoogleWeb-Strict13

(g) Response time w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

6

8

10

12

14

#
 s

up
er

-s
te

ps

GoogleWeb-D3S
GoogleWeb-D3S+

GoogleWeb-Strict13

(h) Super-steps w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

900 k

920 k

940 k

#
 m

es
sa

ge
s

GoogleWeb-D3S
GoogleWeb-D3S+

GoogleWeb-Strict13

(i) Messages w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

10

20

30

40

50

60

Re
sp

on
se

 ti
m

e
(s

)

LiveJournal-D3S
LiveJournal-D3S+

LiveJournal-Strict13

(j) Response time w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

8

10

12

14

16

#
 s

up
er

-s
te

ps

LiveJournal-D3S
LiveJournal-D3S+

LiveJournal-Strict13

(k) Super-steps w.r.t. ♣Vq♣

3 5 7 9 11 13 15 17 19
|Vq|

4.9 M

5.0 M

5.1 M

5.2 M

5.3 M

5.4 M

#
 m

es
sa

ge
s

LiveJournal-D3S
LiveJournal-D3S+

LiveJournal-Strict13

(l) Messages w.r.t. ♣Vq♣

Figure 4.6 Comparing D3S and D3S+ to Strict13 on different datasets when varying the
query graph size ♣Vq♣

4.4 Experimental evaluation 109

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
|V| (x106)

0

20

40

60

80

Re
sp

on
se

 ti
m

e
(s

)

Synthetic-D3S
Synthetic-D3S+

Synthetic-Strict13

(a) Response time w.r.t. ♣V ♣

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
|V| (x106)

8

10

12

14

16

18

#
 s

up
er

-s
te

ps

Synthetic-D3S
Synthetic-D3S+

Synthetic-Strict13

(b) Super-steps w.r.t. ♣V ♣

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
|V| (x106)

0

1 M

2 M

3 M

#
 m

es
sa

ge
s

Synthetic-D3S
Synthetic-D3S+

Synthetic-Strict13

(c) Messages w.r.t. ♣V ♣

Figure 4.7 Comparing D3S and D3S+ to Strict13 on synthetic graphs when varying the
data graph size ♣V ♣.

when varying ♣Σ♣ in the data graph. We report the average response time in Figure 4.5g,

average number of super-steps in Figure 4.5h and average number of exchanged messages

in Figure 4.5i. The number of labels also has a little effect on the performance of D3S.

Actually, the less labels are in the data graph, the more computations are triggered to

eliminate invalid matches among the remaining candidates. This is explained by the

fact that the number of initial candidates gets larger when the number of distinct labels

decreases. The same thing applies to the number of super-steps. However, the number of

messages is almost the same for all values of ♣Σ♣ which proves that D3S is insensitive to

this parameter.

Exp-2: In this set of experiments, we compare D3S and D3S+ to Strict13 when varying

the size of query graph. The average response time, the average number of super-steps the

average number of exchanged messages with respect to ♣Vq♣ are presented in Figure 4.6.

We conducted the comparison on the real datasets Epinions, Amazon0601, GoogleWeb

and LiveJournal.

These experiments show that D3S and D3S+ are faster than Strict13 by up to Ąve

times. The number of super-steps is, in turn, larger for D3S and D3S+ because all the

computations are conducted in a vertex-centric way while in Strict13, the last iteration

is the longest as it evaluates strict simulation for every data locality ball in a sequential

way. This explains why D3S and D3S+ are faster even though they require additional

super-steps. D3S+ runs more super-steps than D3S to get the Ąnal maxPGs because strict

simulation is more stringent than strong simulation, hence, D3S+ involves the removal

of extra invalid matches that were accepted by D3S. The data shipment is larger in

Strict13 which slows down the computations compared to D3S and D3S+ for the four

datasets. In Figures 4.6c, 4.6f, 4.6i and 4.6l, we see that the larger the query graph, the

4.5 Chapter summary 110

larger becomes the gap between the number of messages exchanged in D3S (or D3S+) and

Strict13.

Exp-3: In these experiments, we test the weak scalability of our approach in comparison

to Strict13 by increasing the size of the data graph. We varied the scale of R-Mat

graphs from 13 to 22 (size of data graphs from 213 to 222) and compared D3S and D3S+

to Strict13 (♣Vq♣ is set to 9). The results are given in Figure 4.7.

In Figure 4.7c, the data shipment is slightly larger for Strict13. Even though the

number of super-steps (Figure 4.7b) is larger for both D3S and D3S+, the response time

in Figure 4.7a, on the other hand, is shorter by two thirds compared to Strict13.

4.5 Chapter summary

In this chapter, we studied strong simulation, an interesting model for answering GPM

queries. It allows capturing the topology of the query graph compared to graph simulation

while still feasible in cubic time. We proposed the distributed approaches D3S and D3S+

for evaluating strong simulation and strict simulation, respectively. To achieve higher

levels of scalability, D3S and D3S+ were designed to be fully distributed such that the data

graph parts are never shipped between workers or between vertices residing on the same

worker. Consequently, strong simulation (and strict simulation) can be extended to cases

where the semantic similarity is deĄned based on multiple attributes. We validated the

effectiveness and efficiency of our algorithms through theoretical guarantees in addition

to extensive experiments on synthetic graphs and real-world datasets. Furthermore, the

test results show that D3S and D3S+ run faster than the state-of-the-art work, which

makes them suitable for massive graphs and the current applications of GPM in social

networks.

Notably, the acceleration achieved by D3S and D3S+ mostly concerns the neighborhood

discovery and strong simulation evaluation. Although we used a distributed vertex-centric

algorithm to evaluate dual simulation, an important portion of the processing time of D3S

and D3S+ is spent in dual simulation. Moreover, the two GPM models dual simulation

and graph simulation are particular as they do not require locality during the matching

process, which raises a question on the need for a vertex-centric processing to Ąnd answers

w.r.t. these two models. We attempt to answer this question in the next chapter by

proposing two parallel and edge-centric algorithms that outperform signiĄcantly the

vertex-centric versions. Accordingly, we can use the parallel dual simulation to accelerate

further the two algorithms D3S and D3S+.

Chapter 5

An Efficient Parallel Edge-Centric

Approach for Relaxed GPM

5.1 Introduction

Even though many works have addressed the problem of GPM for large graphs, the

actual size of data graphs is still challenging. In fact, social networks are generating huge

amounts of data continuously, e.g., Facebook was the largest network with 2.4 billion

monthly active users in June 2019 [31]. These networks cannot Ąt on the memory of a

single machine due to their large size; hence, they need distributed storage and processing.

Among the challenges we encounter in such distributed environments, there is linear

scalability, a key property for distributed graph algorithms. Yet, prior works addressing

relaxed GPM in this context are limited due to the bounded level of parallelism that can

be reached [85, 39, 36, 109, 62, 77, 37].

In this chapter, we show that graph simulation and dual simulation can be both efficiently

evaluated by parallel algorithms that achieve linear scalability. Actually, the different

algorithms given by [39, 109, 62, 77] adopt the vertex-centric paradigm of Pregel [86].

In Pregel, the data graph is seen as a distributed system where vertices are analogous

to computing units that can execute their local programs in parallel and exchange

messages with their neighbouring vertices. The algorithm runs in a series of computations

separated by a synchronization barrier and message exchanges. An initial message

consisting of the query graph is sent to all the data vertices that will store their matching

information locally. In each iteration the graph vertices share their matching information

or removal messages with their neighbors that update their local matches accordingly.

5.1 Introduction 112

The distributed algorithm converges when no further messages are exchanged anymore.

Nevertheless, the vertex-centric paradigm is limited because it generally exhibits a heavy

message passing. Additionally, the natural skew present in real-world graphs does not

allow for a higher degree of parallelism. Finally, the vertex-centric paradigm is more

suitable for graph algorithms that require data locality. Indeed, data locality is important

for graph problems where a large neighbourhood of a vertex is required to evaluate the

GPM model, e.g. subgraph isomorphism and strong simulation.

Furthermore, the algorithms proposed in [36, 77, 37] adopt partial evaluation in answering

graph simulation queries. In partial evaluation, each worker of the distributed system

evaluates graph simulation based only on the data stored locally, then, it communicates

with a coordinator machine that propagates the newly computed matching information

among the workers. At the reception of the matching information of other workers,

a worker will update its local matching information accordingly. If there are any

updates, another round of message exchange and computations are carried out until the

algorithm convergence. Depending on the partitioning strategy adopted, some workers

may remain inactive for most of the processing time. Moreover, these works do not

provide mechanisms for parallelizing computations on the same machine, hence, limiting

the degree of parallelism that can be achieved.

These shortcomings motivated our work to propose PGSim and PDSim, two parallel

edge-based algorithms to answer GPM queries in parallel for the two models, respectively.

Our main contributions are summarized as follows.

(1) We introduce ST, a novel distributed data structure for storing the data graph edges

which ensures a high degree of parallelism. ST is composed of basic computing

units called STwigs; a set of edges having the same source or the same destination

vertex. ST ensures high scalability due to the independence between its elements

that can be processed in parallel.

(2) We propose PGSim, an edge-centric algorithm for evaluating graph simulation in

parallel on distributed data graphs. To the best of our knowledge, this is the Ąrst

work on graph simulation that adopts an edge-centric programming model.

(3) Based on ST and PGSim, we propose PDSim, a fast parallel algorithm for evaluating

dual simulation in the same context of massive graphs.

(4) In addition to that, we prove the effectiveness of our approach by giving theoretical

guarantees on the correctness of the different algorithms proposed in this chapter.

5.2 Parallel edge-centric graph simulation 113

(5) Furthermore, we propose an implementation of the parallel algorithms on top of

the in-memory distributed system Apache Spark [151].

(6) Finally, we prove the efficiency of PGSim and PDSim through extensive experiments

and compare them to the state-of-the-art vertex-centric approach on different real-

world and synthetic data graphs. The obtained results veriĄed that PGSim and

PDSim can be ten times faster than their vertex-centric counterparts.

The remainder of this chapter is organized as follows. First, we introduce PGSim in

Section 5.2 and give a formal validation of the proposed algorithm. In Section 5.3,

we propose the parallel edge-centric algorithm for dual simulation with theoretical

guarantees. Finally, Section 5.4 gives the implementation details in addition to the results

of experimental evaluation of PGSim and PDSim.

5.2 Parallel edge-centric graph simulation

A particularity of graph simulation is that it requires availability of only the matching

information from the children of a data vertex to decide whether it is a correct match

or not. To illustrate this, a query graph Q5, a data graph G5 and their match graph

Gs w.r.t. graph simulation are given in Figures 5.1, 5.2 and 5.3, respectively. We use

query labels as identiĄers only for simplicity purpose. For example, the query vertex B

is mapped to data vertex 6 in the resulting match graph. Moreover, vertex B has a child

vertex C, hence, at least one of the children of vertex 6 should be mapped to C. Notice

that B has also a parent relationship with vertex C, however, this relation is not reĆected

in Gs. Such scenario is possible because we only care about the child relationships when

answering queries via graph simulation.

To design an efficient and scalable algorithm, we consider the fact that only children of

a data vertex are required in graph simulation, which allows us to avoid a sequential

traversal of the data graph. Exploiting this property will decouple the different parts of

the data graph and the computations performed on them, hence, increasing the degree

of parallelism. Moreover, the data locality preserved by the vertex-centric programming

model is more important for graph problems where a large neighbourhood of a vertex is

required to evaluate the GPM model, e.g. subgraph isomorphism and strong simulation.

Therefore, this paradigm is more suitable for such problems, but is less accurate for the

case of graph simulation because the message passing communication adopted causes a

very low speed of computations. Moreover, the vertex-centric paradigm requires message

passing even for vertices residing on the same physical machine even though the exchanged

5.2 Parallel edge-centric graph simulation 114

A

B C

Figure 5.1 Query graph Q5

A

C B

B

C

C

C A

B

1

4 3

2
5

7

8
6

9

Figure 5.2 Data graph G5

A

C B

B C A

1

4 3

2
5

7

B

6

Figure 5.3 Match graph w.r.t. graph simulation (Gs)

information between any pair of vertices is directly available if we adopt an edge view.

These observations motivated our proposition of PGSim a parallel, edge-based algorithm

that adopts a shared memory abstraction instead of message passing to evaluate graph

simulation on distributed graphs.

In what follows, we introduce the different data structures used by our approach. Then,

we present the steps of the parallel algorithm PGSim and give its formal validation.

5.2.1 Data structures

Graph simulation deĄnes a set of matching constraints that must be respected by each

data vertex in order to be considered as a correct match for a given query vertex. We

deĄne a matching constraint as follows.

DeĄnition 22 (Matching constraint of a vertex). Given a query graph Q = (Vq, Eq, fq),

the matching constraints of a query vertex u ∈ Vq are given as the set of its children in

Q. Let C : Vq → 2Vq be the function that maps a query vertex u ∈ Vq to its constraints

C (u) ⊆ Vq. Each edge (u, u′) ∈ Eq deĄnes a matching constraint u′ for u. Consequently,

C maps a vertex with zero children to an empty set of constraints.

As an example, the set of constraints of query graph Q5 are given as ¶C (A) = ¶B, C♢,

C (B) = ¶C♢, C (C) = ¶B♢♢.

Now, let G = (V, E, f) be a data graph, a data vertex v ∈ V is matched to a query

vertex u ∈ Vq, if and only if, f(v) = fq(v) and v respects the matching constraints

C (u) of u. We say that constraints of u are also constraints of its candidates such that a

5.2 Parallel edge-centric graph simulation 115

candidate is a data vertex having the same label as u. Therefore, a data vertex can have

multiple constraints that should be met by its children, such that each constraint must

be met by one or more of its outgoing edges. These edges sharing the same source vertex

are grouped together to form a data structure that we call STwig, which will be deĄned

next. Moreover, we call ST, the set of all STwigs extracted from a data graph.

DeĄnition 23 (STwig). Given a data graph, each vertex in this graph generates an

STwig structure. Every STwig is composed of the set of outgoing edges from this vertex,

that we refer to as root. The destination vertex of each edge is considered a child of this

STwig.

An STwig has exactly one root but it can have zero or more children. An empty STwig

is an STwig that has a root but no children, it represents an isolated data vertex or a

data vertex with no children.

The set of STwigs related to our data graph G5 is illustrated in Figure 5.4. PGSim

processes these STwigs in parallel to evaluate graph simulation.

CA

C B

B

1

4 3

2

B C
3 4

BC
34

BC

B
3

25

B C
2 5

C

C

C

B

5

8
6

9

C

C

B

5
7

86 C

8

9

A

Figure 5.4 The set of STwigs extracted from the data graph G5. The different STwig
roots are colored in gray

Each STwig in the initial ST, which is extracted from the data graph, has its own local

context. A local context is composed of two types of match sets; a local match set and

child match set.

DeĄnition 24 (Local match set). Given the STwig t, we deĄne a local match set M(t)

as a set of matches (u, v, b) of the root vertex such that each pair (u, v) ∈ Vq × V is

mapped to a Boolean value b indicating whether the matching is correct or not.

DeĄnition 25 (Child match set). Given the STwig t, the child match set, noted Mc(t),

is simply the union of the local matches of the children of t. However, Mc does not

include a match Ćag b, because we only keep the correct matches.

An STwig with a non empty match set has its root mapped to at least one query vertex.

Consequently, an STwig that has an empty match set is not a correct match and therefore

5.2 Parallel edge-centric graph simulation 116

can be eliminated from ST. Intuitively, an empty STwig can only be mapped to query

vertices having an empty set of constraints. Hence, its local match set is initialized but

never updated afterwards.

DeĄnition 26 (ST). The set of all STwigs of a given data graph are stored in the

distributed data structure ST. Each STwig in ST is mapped to a local context composed

of a match set M and a child match set Mc.

ST is constructed off-line from the initial data graph and then processed in parallel.

Furthermore, the global match set for graph simulation is deĄned as follows.

DeĄnition 27 (Global match set). Given a query graph Q, and ST, the distributed set

of STwigs extracted from data graph G. We compute the union of all the local match

sets in ST w.r.t. C , the set of constraints of Q. If there is at least one constraint in C

that is not present in this union, the global match set Mg is ∅. Otherwise, it is given as

this union.

Since we deĄned the basic concepts and data structures used by ST, we are now ready

to introduce PGSim in the following section.

5.2.2 Parallel graph simulation via PGSim

Our approach for evaluating graph simulation in parallel consists of three points. First, a

preliminary phase builds ST off-line by simply grouping the data graph edges that share

the same source vertex together. Moreover, vertices without outgoing edges result into

empty STwigs. Next, at the reception of an input query graph Q, we extract the set of

constraints C in a straightforward way, as they are directly retrieved from the edges of Q.

Finally, we compute the global match set w.r.t. graph simulation based on ST and C .

We give Algorithm PGSim that takes as input ST and C . It is an iterative algorithm

that applies a set of transformations on the initial ST, resulting each time to a new

reĄned data structure that is closer to the Ąnal match graph. Each iteration of PGSim

transforms a given STwig by updating its local match set M in addition to its child match

set Mc in parallel. The parallel algorithm executes two categories of steps (iterations);

the initialization step and the computation steps. After its convergence, PGSim extracts

the global match set Mg from the reĄned ST, also in parallel.

5.2 Parallel edge-centric graph simulation 117

Algorithm PGSim

1 Input: ST, C ;
2 Output: Mg;
3 I ← ∅ ;
4 foreach STwig t in ST do
5 It ← InitializeSTwig(t, C); // Initialize the local match set and

child match set

6 I ← I ∪ It;

7 ST ← ReĄne(ST) ; // Filter out STwigs with empty match sets

8 while I ̸= ∅ do
9 Itmp ← ∅;

10 foreach STwig t in ST do
11 It ← ComputeSTwig(t, I) ; // Evaluate graph simulation locally

12 Itmp ← Itmp ∪ It;

13 I ← Itmp;
14 ST ← ReĄne(ST) ; // Filter out STwigs with empty match sets

15 Mg ← ExtractMg(ST, C) ; // Extract the global match set

16 return Mg;

Initialization step

During the initialization (Algorithm InitializeSTwig), we evaluate for each STwig

t its local match set based on the root label and the different children labels only.

Each STwig runs a local program in parallel where it initializes the children match

set Mc (Call of Procedure InitMatch in Lines 3Ű5) and its local match set M (Call

of Procedure InitMatch in Line 6). Initially, M is composed of matches based only

on the label constraint. Then, t veriĄes for each match in M (a pair (u, v)) whether

the child constraints are respected or not by assigning a true or false value (Call of

Procedure GraphSim in Line 7). The Boolean Ćag b attached to each pair (u, v) indicates

whether this pair passes the child constraints or not. The matches that do not pass

child constraints are collected in I and returned by the parallel algorithm (Lines 6Ű12).

For now, an STwig root does not know whether its children satisfy the child constraint

themselves or not, so here, I allows us to update the local child match set Mc. After that,

the local match set M must be recomputed based on the new Mc. After the initialization,

Algorithm PGSim reduces the size of ST by invoking Procedure Refine (Line 7) that

removes from ST all the STwigs having an empty local match set.

5.2 Parallel edge-centric graph simulation 118

Procedure ExtractMg

1 Input: ST, C ;
2 Output: Mg;
3 Mg ← ∅;
4 foreach STwig t in ST do
5 Mg ←Mg ∪M(t) ; // Mg is initialized by the union of STwigs

match sets

6 foreach u in C do
7 if u /∈Mg then
8 return ∅ ; // Every single query vertex must appear at least

once in Mg

Procedure InitMatch takes the set of constraints C and a vertex v and computes the

match set of v based only on the label similarity constraint. The initialization program

of an STwig t invokes this procedure for each local edge to initialize M(t) and Mc(t).

Procedure GraphSim takes both M(t) and Mc(t) in addition to the set of constraints C

as input parameters and veriĄes for each pair (u, v) in M(t) whether there exist children

of t that are matched to C (u). If at least one constraint in C (u) remains unmatched,

(u, v) is mapped to b = false, otherwise the match Ćag b is set to true.

In the example of query graph Q5 and data graph G5, PGSim starts by building the initial

ST data structure from G5 where each vertex in G5 results into an STwig. The initial ST

contains the two types of STwig described earlier, i.e. seven non empty STwig and two

empty STwig. In the initialization step, each STwig computes its local match set M and

children match set Mc. Then, it updates M based on Mc which gives the local matches

shown in Figure 5.5. The two empty STwigs rooted at 8 and 9 are initially mapped to

query vertex C during the initialization phase. However, C has a child constraint that

requires a vertex to have at least one of its children matched to query vertex B, but both

STwigs are empty (they do not have any children), hence their initial matches become

invalid (they are colored in red) and therefore will be broadcast and added to I, the

global set of invalid matches for this Ąrst iteration of the parallel algorithm.

Computation steps

A computation step starts if the set of invalid matches I is not empty. I is composed

of the pairs (u, v) in every local match set M that did not pass the child constraints

(Lines 8Ű13 in Algorithm InitializeSTwig). Consequently, the STwigs having a non

5.2 Parallel edge-centric graph simulation 119

Algorithm InitializeSTwig

1 Input: t, C ;
2 Output: It ;
3 Mc ← ∅;
4 foreach v ∈ t.children do
5 Mc ←Mc∪ InitMatch(C , v) ; // Initialize the child match set

6 Mr ← InitMatch(C , t.root); // Initialize the STwig match set

7 M ← GraphSim(C , Mr, Mc) ; // Evaluate graph sim for this STwig

8 It ← ∅;
9 foreach (u, v, b) in M do

10 if b = false then
11 M ←M \ (u, v, b) ; // Filter out invalid matches ((u,v) that

satisfy only label similarity)

12 It ← It ∪ (u, v) ; // Collect the set of removed matches in It

13 return It;

Procedure InitMatch

1 Input: C , v;
2 Output: M ;
3 M ← ∅ ; // Initialize M with an empty set

4 foreach u ∈ C do
/* Iterate over the set of vertices in the query graph,

available also in C */

5 if fq(u) = f(v) then
6 M ←M ∪ (u, v) ; // Add (u, v) to M only if it respects the

label similarity constraint

7 return M ;

empty match set run Algorithm ComputeSTwig in parallel to update their child match

sets according to I (Line 3) and reevaluate their local constraints for graph simulation

based on the new value of Mc (Call of Procedure GraphSim in Line 4). We also return

the set of new invalid matches that should be propagated to other STwigs in ST (Lines 5Ű

10). If the set of invalid matches I is not empty, another computation step (Call of

Algorithm ComputeSTwig) is triggered to propagate these removals and update the local

match sets accordingly. Afterwards, the new invalid matches I are reevaluated (Lines 9Ű

13 in Algorithm PGSim) and the STwigs having only invalid matches are Ąltered out

(Call of Procedure ReĄne in Line 14). If there are new invalid matches, we repeat the

computations again until yielding to an empty I. Then, Algorithm PGSim converges, and

5.2 Parallel edge-centric graph simulation 120

Procedure GraphSim

1 Input: C , M, Mc;
2 Output: M ′;
3 M ′ ← ∅ ; // Initialize the new match set

4 foreach (u, v) ∈M do
5 b← true ; // Initialize the match flag to true

6 foreach c ∈ C (u) do
7 if ¬(Mc contains c) then
8 b← false ; // Change the match flag to false if v does not

satisfy C (u) anymore

9 M ′ ←M ′ ∪ (u, v, b) ; // Add the updated matching info to MŠ

10 return M ′ ;

Procedure Refine

1 Input: ST ;
2 Output: ST ;
3 foreach STwig t in ST do
4 if M(t) = ∅ then
5 ST ← ST \ t ; // Filter out every member of ST having an

empty match set

6 return ST ;

the global match set Mg is computed based on the Ąnal match set of each remaining

STwig in ST (Lines 15Ű16).

Back to the example of query graph Q5 and data graph G5. At the end of the Ąrst

iteration, the two STwigs rooted at 8 and 9 have both empty match sets, consequently,

they are eliminated during the reĄnement phase of the ST before the next iteration.

Since I is not yet empty, a second iteration of computation starts where each STwig

in the reĄned ST updates its child match set based on the invalid matches of I. For

example, both STwigs rooted at data vertices 6 and 7 are affected by the previous

iteration. Actually, the child constraint for the STwig rooted at 6 is ¶C♢, but since the

two children ¶8, 9♢ were Ąltered out, it eliminates them from its local Mc. Nevertheless,

the third child 5 has a valid match, therefore, the local match set remains the same.

The same thing applies for the STwig rooted at vertex 7 that updates only its local Mc

without changing its local match set (see the updated ST in Figure 5.5). At the end

of this iteration, I remains empty which announces the end of the parallel algorithm in

only two iterations. The global match set is the union of the local match sets for the

5.2 Parallel edge-centric graph simulation 121

Algorithm ComputeSTwig

1 Input: t, I ;
2 Output: It ;
3 Mc ←Mc \ I ; // Filter out invalid matches from Mc

4 M ← GraphSim(C , M , Mc) ; // Reevaluate graph simulation based on

the new Mc

5 It ← ∅;
6 foreach (u, v, b) in M do
7 if b = false then

/* GraphSim sets match flag b to false when (u, v) is not a

correct match anymore */

8 M ←M \ (u, v, b) ; // Filter out the invalid match

9 It ← It ∪ (u, v) ; // Keep track of the invalidated matches in It

10 return It;

remaining STwigs in ST. Moreover, the resulting match graph composed of the remaining

STwigs in ST, is exactly the same as Gs given in Figure 5.3.

5.2.3 Convergence and Correctness of PGSim

First, we prove the convergence of the proposed algorithm through the following Lemmas.

Lemma 7. The maximum number of super-steps to run PGSim is ♣E♣.

Proof. In the worst case, we have a successive elimination of matches one by one, such

that only one match is Ąltered out in each iteration. A removed match in a given STwig

is only propagated to its childrenŠs STwigs and such removal information can propagate

over a path from the Ąrst removed STwig to cross all the edges of G. Therefore, the

maximum number of iterations is equal to ♣E♣.

Let ∆O be the maximum out degree of G and Γ be the maximum size of a local match

set. We know that Γ ≤ lq where lq ≤ ♣Vq♣ is the highest label frequency in Q.

Lemma 8. The time complexity of Algorithm InitializeSTwig is equal to O(∆O×♣Vq♣).

Proof. The Initialize program of a given STwig t initializes the match set of every child

in t in O(∆O × ♣Vq♣), then it initializes the match set of its root in O(♣Vq♣). After that,

t evaluates graph simulation in O(♣Vq♣ × Γ). Finally, it takes at most O(Γ) to update

5.2 Parallel edge-centric graph simulation 122

B

A

C

B

1

4 3

2

B C
3 4

BC
34

BC

B
3

25

B C
2

5

C

C C

B

5

8
6

9

C
9

C
8

C

C

B

57

86

A

1 → A

2 → B

3 → B

4 → C

5 → C

6 →B

7 → A

8 → C

9 → C

Invalid matches I

8 → C

9 → C

Initial ST M(t)

B

A

C

B

1

4 3

2

B C
3 4

BC
34

BC

B
3

25

B C
2

5

CB

56

C

B

57

6

A

Invalid matches I

1 → A

2 → B

3 → B

4 → C

5 → C

6 →B

7 → A

Refined ST M(t)

empty END

Figure 5.5 A running example of PGSim on pattern graph Q1 and data graph G1. We
illustrate the initial ST and the different transformations applied by PGSim to get the
Ąnal match graph w.r.t. graph simulation. Values of the Ćag b of each match in M(t)
are illustrated by two colors; blue for true and red for false

M and populate It. Therefore, the time complexity of Algorithm InitializeSTwig is

O(∆O × ♣Vq♣).

Lemma 9. The time complexity of Algorithm ComputeSTwig is equal to O(Γ× ♣Vq♣).

Proof. The Update program of an STwig t updates Mc in at most O(Γ), then it reevaluates

graph simulation in O(Γ× ♣Vq♣). Finally, it updates M and It in O(Γ). Hence, the time

complexity of Algorithm ComputeSTwig is O(Γ× ♣Vq♣).

Theorem 9. Algorithm PGSim for evaluating graph simulation in parallel will terminate

with time complexity O(♣V ♣/P × ♣Vq♣
2 × ♣E♣).

5.2 Parallel edge-centric graph simulation 123

Proof. The data structure ST has a maximum length equal to ♣V ♣. After its construction,

it contains exactly ♣V ♣ STwigs. After the Ąrst iteration it gets smaller in size because the

reĄne procedure can only remove elements from ST. Algorithm PGSim starts by iterating

over ST, the set of STwigs and updating each STwig in parallel. Given P , the number

of processors running in parallel, it will take O(♣V ♣/P × ♣Vq♣ ×∆O) to Ąnish the loop.

After that, the second loop runs for at most ♣E♣ iterations (from Lemma 7) such that

in each iteration, it takes O(♣V ♣/P) to reĄne ST in parallel and O(♣V ♣/P × ♣Vq♣ × Γ)

to update the STwigs in parallel. The global match set is extracted in O(♣V ♣/P).

Therefore, the time complexity of Algorithm PGSim in an environment with P processors

is O(♣V ♣/P × ♣E♣ × ♣Vq♣
2).

Theorem 10. Algorithm PGSim computes the correct and complete match set w.r.t.

graph simulation.

Proof. The correctness of PGSim can be veriĄed by the following. (1) the parallel

algorithm terminates (Theorem 9), (2) the parallel algorithm computes the correct

matches w.r.t. graph simulation and (3) the parallel algorithm returns the complete set

of matches w.r.t. graph simulation.

To prove the second property, we suppose that at the end of the parallel algorithm, there

exists a match (u, v) ∈Mg not satisfying the constraints of graph simulation for u ∈ Vq.

If (u, v) ∈Mg, this means that at the end of PGSim, the STwig rooted at v has u in its

local match set M(t). If (u, v) does not satisfy graph simulation, then, either u and v

do not have the same label or v does not satisfy the set of constraints C (u). However,

the Ąrst case is impossible because M(t) is initialized in Procedure InitMatch with only

query vertices that share the same label. Moreover, if v does not satisfy C (u), it should

have been already Ąltered out in the initialization program of t where we evaluate graph

simulation through Procedure GraphSim, or during the following iterations where the

matching constraints are reevaluated at every childŠs update. Furthermore, the only

operation performed on the initial match set is removal, thus, M(t) contains correct

matches at the end of PGSim.

One can verify that Mg contains the complete matches w.r.t. graph simulation as follows.

Actually, we are sure that any correct match necessarily belongs to the initial match set

of a given t that was generated by Procedure InitMatch for every single data vertex

v in the data graph. Next, we suppose that PGSim Ąlters out incorrectly a correct

match (u, v) from local M(t). For any STwig t ∈ ST , M(t) is only updated inside

Procedure GraphSim and the only removal of (u, v) made happens when C (u) are not

5.3 Parallel edge-centric dual simulation 124

satisĄed anymore. Therefore, PGSim returns the complete match set Mg for graph

simulation.

5.3 Parallel edge-centric dual simulation

In this section, we introduce our split-and-combine approach to evaluate dual simulation.

We also introduce the parallel algorithm used by this approach, dubbed PDSim, and

give theoretical guarantees on its correctness. Dual simulation requires the availability

of both the child and parent information to decide on the matching of any data vertex.

In addition, the existing algorithms for dual simulation (whether centralized or vertex-

centric) all process the matching information for incoming and outgoing edges of a data

vertex sequentially. However, in the case of high degree vertices, this strategy can lead to

a load imbalance. Therefore, to address this problem, we run the computations related

to the parent constraints and those related to the child constraints in parallel.

Compute ST1

STwigs by children

Compute ST2

STwigs by parents

Evaluate child matching and parent matching for ST1 and ST2 in parallel

ST = Combine refined ST1 and ST2

𝑀 = 𝑀1 ∩𝑀2I = M1⊕M2
Broadcast I to all workers

Update Mc and Mp based on I
Update M based on Mc and Mp

I = removed macthes from M
Broadcast I to all workers

For each
STwig in ST

For each
STwig in ST

For each
STwig in STi

Figure 5.6 The split-and-combine approach for parallel dual simulation

5.3.1 A split-and-combine approach for parallel dual simula-

tion

The split-and-combine approach considers dual simulation as a set of constraints of two

types: parent-based and child-based constraints. This separation allows generating two

types of STwigs, the Ąrst type is the same as the STwig we have seen in PGSim, while

5.3 Parallel edge-centric dual simulation 125

the second type is based on the parents of a data vertex v, i.e. each data vertex results

into an STwig that groups the edges having v as their destination. In the same way, the

empty parent based STwigs have only a root and represent vertices with zero parents in

the data graph. This phase is referred to as the Split phase. Figure 5.6 illustrates the

different steps of computation followed by Algorithm PDSim for parallel dual simulation.

Algorithm PDSim takes as input the two distributed data structures ST1 and ST2, that

were constructed before the Split phase (performed only once for each data graph off-line).

The Ąrst ST contains the STwigs based on child relationship and the second one is built

based on the parent relationship.

During the Split phase, we execute Algorithm PGSim on ST1 using C1, the child constraints

of the input query (Line 3), while a modiĄed version of PGSim that checks the parent

constraints C2 is executed on ST2 (Line 4). We note that, here PGSim returns the reĄned

ST without computing the global match set. At the end of this phase, the two reĄned

data structures will have only edges of the data graph respecting the child constraints

and parent constraints separately. However, dual simulation requires that the two types

of constraints are met by these edges at the same time, hence, we call Algorithm Combine

that takes as input ST1 and ST2 to Ąnd the match set M of each STwig w.r.t. dual

simulation (Line 5).

Algorithm Combine groups the matching information of children Mc and parents Mp of a

given STwig. It also computes a next local match set M by eliminating matches that do

not satisfy dual simulation (Line 3). The match set M of a given STwig t is computed

as the intersection of the match sets M1 and M2 for t in ST1 and ST2, respectively

(Lines 4Ű8). Indeed, a data vertex is said to be a match of a given query vertex u w.r.t.

dual simulation if and only if it satisĄes the label constraint and both child constraints

C1(u) and parent constraints C2(u). In addition to that, the Ąltered out matches are

stored in I and returned by the parallel algorithm.

Nevertheless, the evaluation of dual simulation does not stop here. Actually, the same

removal process that we have seen in PGSim must be triggered after each update made

to a local match set M in the combined ST to propagate the removed matches across

the other STwigs. Therefore, the same routine will be executed such that the set of

removed matches I is broadcast at the end of every iteration and dual simulation is

reevaluated again (based on both Mc and Mp) for each STwig affected by this removal

until I becomes empty (Lines 6Ű13 of Algorithm PDSim). Consequently, Algorithm PDSim

converges with the correct Ąnal match graph. The global match set Mg is then computed

in the same way as the match set of graph simulation (Lines 14Ű15).

5.3 Parallel edge-centric dual simulation 126

Algorithm PDSim

1 Input: ST1, ST2, C1, C2;
2 Output: Mg;
3 ST1 ← PGSim(ST1, C1) ; // Evaluate child-based constraints C1

4 ST2 ← PGSim(ST2, C2) ; // Evaluate parent-based constraints C2

5 (ST, I)← Combine(ST1, ST2, C1, C2) ; // For each STwig, combine its

two match sets

6 ST ← ReĄne(ST) ; // Filter out STwigs in ST having empty match sets

7 while I ̸= ∅ do
8 Itmp ← ∅;
9 foreach STwig t in ST do

10 It ← ComputeSTwig(t, I) ; // Dual simulation is evaluated

instead of graph simulation

11 Itmp ← Itmp ∪ It;

12 I ← Itmp;
13 ST ← ReĄne(ST) ; // Filter out STwigs in ST having empty match

sets

14 Mg ← ExtractMg(ST, C1 ∪ C2) ; // Get the global match set Mg w.r.t.

dual simulation

15 return Mg;

Algorithm Combine

1 Input: ST1, ST2, C1, C2 ;
2 Output: I, ST ;
3 ST ← fullOuterJoin(ST1, ST2) ; // Combine the two STs based on the

STwig root vertex

4 I ← ∅ ; // Initialize the set of invalid matches

5 foreach t in ST do
6 M(t)←M1(t) ∩M2(t) ; // Combine the two match sets using

intersection

7 I ← I ∪ (M1(t)⊕M2(t)) ; // Invalid matches are the ones appearing

in only one match set

8 return (ST, I)

The Split-and-Combine approach increases the degree of parallelism because Ąrst, we

process the two distributed data structures ST1 and ST2 in parallel, which prunes out

invalid matches as early as possible. After that, the remaining computations are also

performed in parallel on a much smaller ST.

5.3 Parallel edge-centric dual simulation 127

To illustrate the execution steps of PDSim, we use the same data graph G5 and query

graph Q5. The two graphs Gs1 of Figure 5.7 and Gs2 of Figure 5.8 represent ST1 and

ST2, respectively. Let us take the STwig rooted at 6, it has a non-empty local match

set M1 = ¶(B, 6)♢ in ST1 but that match set M2 is empty in ST2. Intuitively, the local

match set of this STwig, named M , should be empty after calling Algorithm Combine

because it does not respect the constraints of dual simulation. Indeed, M is given as the

intersection between M1 and M2. We should inform the other STwigs of the combined

ST about the removal of the match (B, 6). The set of removed matches I contains

elements that do not appear in both M1 and M2, i.e., M1 ⊕M2. Indeed, the local match

set of STwig rooted at 6 becomes empty. The remaining iterations of Algorithm PDSim

eliminates the STwig rooted at vertex 7. Next, the STwigs rooted at data vertices 5

and 2 will be Ąltered out one after another. The remaining STwigs form the Ąnal match

graph given in Figure 5.9.

A

C B

B C A

1

4 3

2
5

7

B

6

Figure 5.7 Gs1 resulting from ST1 Figure 5.8 Gs2 resulting from ST2

Figure 5.9 Match graph w.r.t. dual simulation (Gd)

5.3.2 Convergence and Correctness of PDSim

We give Theorem 11 and Theorem 12 that prove the convergence and correctness of

Algorithm PDSim, respectively.

Theorem 11. Algorithm PDSim will terminate with a time complexity O(♣V ♣/P ×♣Vq♣
2×

♣E♣).

Proof. PDSim takes the same time complexity to process ST1 and ST2, which results into

O(♣V ♣/P × ♣E♣ × ♣Vq♣
2). After that the combine method takes O(♣V ♣/P) to combine ST1

and ST2, the remaining steps for dual simulation take at most O(♣V ♣/P × ♣E♣ × ♣Vq♣
2) to

converge (similar to the evaluation of graph simulation). Moreover, the global match set

5.4 Experimental evaluation 128

is extracted in at most O(V/P). Consequently, the time complexity of Algorithm PDSim

is O(♣V ♣/P × ♣E♣ × ♣Vq♣
2).

Theorem 12. Algorithm PDSim returns the correct and complete match set w.r.t. dual

simulation.

Proof. The correctness of PDSim is ensured by the following properties. (1) The parallel

algorithm will terminate (Theorem 11), (2) the parallel algorithm returns the correct

match set of dual simulation, (3) the algorithm returns the complete set of matches of

dual simulation.

First, we suppose that at the end of the algorithm, there exists an incorrect match (u, v)

in the returned match set Mg. If (u, v) is an incorrect match, then either the two vertices

have different labels or v does not satisfy some of the constraints in C1(u) or C2(u). The

Ąrst case cannot occur because every local match set is initialized with query vertices

having similar labels and Mg is formed by the union of these local matches. Moreover, the

local match set M of the STwig rooted at v in ST is initialized by the intersection of M1

(only matches satisfying C1) and M2 (only matches satisfying C2). Moreover, the next

iterations of the parallel algorithm always remove the members of M not satisfying dual

simulation. Furthermore, the only operations performed on M are removal operations,

which ensures that invalid matches cannot be added to M during this stage, hence, the

initial supposition is not valid. Therefore, Algorithm PGSim returns the correct matches

w.r.t. dual simulation.

Next, we suppose that there exists a correct match (u, v) such that (u, v) is not part of the

returned match set Mg. A match (u, v) is considered correct if and only if fq(u) = f(u),

and v satisĄes the child constraints C1(u) and parent constraints C2(u). Since we proved

the correctness of Algorithm PGSim in Theorem 10, then a correct match is necessarily

part of both M1(v) and M2(v). Therefore, if such match exists, then it has been Ąltered

out during the combine phase or removal iterations following it in PDSim. However,

the only removals made from the local match set M(v) happen after evaluating dual

simulation based on the updated child and parent match sets. Hence, Algorithm PGSim

returns the complete matches w.r.t. dual simulation.

5.4 Experimental evaluation

In this section, we evaluate the performance of the proposed parallel edge-centric al-

gorithms and compare them to the vertex-centric one. First, we give details on the

5.4 Experimental evaluation 129

distributed implementation of ST, PGSim and PDSim. Then, we present the data sets

used during the different experiments and give their characteristics. Next, we give the

cluster conĄguration used and the environment in which these experiments were carried

out. Finally, we present the different sets of experiments and discuss their results.

5.4.1 Distributed implementation of PGSim and PDSim

We implemented the distributed data structure ST on top of Apache Spark [151]. Apache

Spark is an in-memory data processing framework that offers a distributed computation

model based on Resilient Distributed Datasets (RDDs). An RDD is a distributed

data structure that can be processed in parallel by applying a transformation on each

element of the RDD. The immutability of Spark RDDs guarantees their resilience. If an

RDD is lost while the distributed algorithm is running, it will be directly recomputed

based on the set of operations that generated it Ąrst, hence allowing Spark to be fault-

tolerant while avoiding costly I/O operations except for loading the initial RDD. ST

inherits the properties of Spark RDDs, which makes it a distributed data structure for

in-memory processing on a computing cluster. PGSim is implemented as a series of

successive RDD transformations applied to the initial ST. Moreover, we implemented

the Split-and-Combine approach of PDSim on top of Spark, using RDDs.

5.4.2 Experimental environment

We use four real-world datasets from SNAP Library [74]. Characteristics of these graphs

are given in Table 5.1. Unless expressly stated otherwise, the number of distinct labels is

Ąxed to ♣Σ♣ = 500.

Furthermore, the R-Mat model [18] is used to generate synthetic data graphs. The

generator takes as an input ♣V ♣, ♣E♣ and ♣Σ♣ such that ♣Σ♣ is the number of distinct labels.

We Ąx ♣E♣ = 20× ♣V ♣ for all the synthetic graphs generated in these experiments.

Table 5.1 Characteristics of the data graphs used in the different experiments

Dataset (G) ♣V ♣ ♣E♣

Epinions 75,879 508,837
Amazon0601 403,394 3,387,388
WebGoogle 875,713 5,105,039
LiveJournal 4,847,571 68,993,773
Synthetic up to 3,504,383 up to 83,886,080

5.4 Experimental evaluation 130

To extract patterns of different sizes, we use the algorithm given in Section 3.5.3 to

extract 50 different patterns randomly for each value of ♣Vq♣.

We executed our experiments on a Spark cluster composed of 10 nodes with 32GB

memory and 16 cores for each; one node plays the role of the master while the remaining

nodes are considered as workers.

5.4.3 Experimental results

In this section, we present and discuss the results of performance evaluation for PGSim

and PDSim in comparison to the state-of-the-art vertex-centric algorithm (VC-GSim)

proposed in [39]. We implemented VC-GSim on top of GraphX [143], a graph processing

system that offers an implementation of Pregel [86] on top of Apache Spark.

Varying the graph parameters

In this set of experiments, we evaluate the impact of three different parameters, ♣Vq♣; the

size of query graph, d; the diameter of the query graph and ♣Σ♣; the number of distinct

labels in the data graph, on the performance of PGSim and PDSim. The results are

given in Figure 5.10.

First, we discuss the average response time when varying ♣Vq♣. As we can see, the

obtained results prove the superiority of our approach. PGSim is faster than VC-GSim

for the four real datasets Epinions, Amazon0601, WebGoogle and LiveJournal. The

improvement in response time achieved becomes more signiĄcant when the size of the

data graph increases. Indeed, PGSim is ten times faster than the vertex-centric version

for LiveJournal. Moreover, PGSim is sensitive to the size of the query graph as it

increases in a linear curve with respect to ♣Vq♣. On the other hand, the parallel algorithm

PDSim for evaluating dual simulation behaves slower than VC-GSim for Epinions, which

can be explained by the fact that dual simulation requires more computations to prune

out invalid matches compared to graph simulation. However, it takes a shorter time to

process queries from the other data sets. Actually, PDSim is very scalable when varying

the size of query graphs or when varying the size of datasets, for a massive graph like

LiveJournal, PDSimŠs response time is closer to that of PGSim.

Next, we evaluate the behavior of PGSim and PDSim compared to VC-GSim with

respect to the diameter of pattern graphs d, using the same data sets. For small to

average graphs, we notice that the response time is not affected by d. However, for

LiveJournal, the response time increases slightly w.r.t. this parameter, since the larger d

5.4 Experimental evaluation 131

4 8 12 16 20
|Vq|

400

600

800

1000

1200

1400

Re
sp

on
se

 ti
m

e
(m

s)

Epinions

PGSim
PDSim
VC-GSim

(a) Varying ♣Vq♣ (Epinions)

1 2 3 4 5 6 7
d

400

600

800

1000

1200

1400

1600

Re
sp

on
se

 ti
m

e
(m

s)

Epinions

PGSim
PDSim
VC-GSim

(b) Varying d (Epinions)

200 300 400 500 600 700 800 900
| |

1000

2000

3000

4000

Re
sp

on
se

 ti
m

e
(m

s)

Epinions

PGSim
PDSim
VC-GSim

(c) Varying ♣Σ♣ (Epinions)

4 8 12 16 20
|Vq|

500

1000

1500

2000

2500

Re
sp

on
se

 ti
m

e
(m

s)

Amazon0601

PGSim
PDSim
VC-GSim

(d) Varying ♣Vq♣ (Amazon0601)

1 2 3 4 5 6 7
d

500

1000

1500

2000

2500

Re
sp

on
se

 ti
m

e
(m

s)

Amazon0601

PGSim
PDSim
VC-GSim

(e) Varying d (Amazon0601)

200 300 400 500 600 700 800 900
| |

1000

2000

3000

4000

Re
sp

on
se

 ti
m

e
(m

s)

Amazon0601

PGSim
PDSim
VC-GSim

(f) Varying ♣Σ♣ (Amazon0601)

4 8 12 16 20
|Vq|

1000

2000

3000

4000

Re
sp

on
se

 ti
m

e
(m

s)

WebGoogle

PGSim
PDSim
VC-GSim

(g) Varying ♣Vq♣ (WebGoogle)

1 2 3 4 5 6 7
d

1000

2000

3000

4000

Re
sp

on
se

 ti
m

e
(m

s)

WebGoogle

PGSim
PDSim
VC-GSim

(h) Varying d (WebGoogle)

200 300 400 500 600 700 800 900
| |

1000

2000

3000

4000

5000

6000

Re
sp

on
se

 ti
m

e
(m

s)

WebGoogle

PGSim
PDSim
VC-GSim

(i) Varying ♣Σ♣ (WebGoogle)

4 8 12 16 20
|Vq|

0

5000

10000

15000

20000

25000

Re
sp

on
se

 ti
m

e
(m

s)

LiveJournal

PGSim
PDSim
VC-GSim

(j) Varying ♣Vq♣ (LiveJournal)

1 2 3 4 5 6 7
d

0

5000

10000

15000

20000

25000

Re
sp

on
se

 ti
m

e
(m

s)

LiveJournal

PGSim
PDSim
VC-GSim

(k) Varying d (LiveJournal)

200 300 400 500 600 700 800 900
| |

0

5000

10000

15000

20000

25000

Re
sp

on
se

 ti
m

e
(m

s)

LiveJournal

PGSim
PDSim
VC-GSim

(l) Varying ♣Σ♣ (LiveJournal)

Figure 5.10 Performance evaluation of the parallel algorithms PGSim and PDSim in
comparison to the vertex-centric one VC-GSim when varying the graph parameters:
query graph size ♣Vq♣, query graph diameter d and the number of distinct labels ♣Σ♣

5.4 Experimental evaluation 132

0 1 2 3
|V| (x 106)

103

104

Re
sp

on
se

 ti
m

e
(m

s)

PGSim
PDSim
VC-GSim

(a) Response time (ms) w.r.t. ♣V ♣

0 1 2 3
|V| (x 106)

101

102

103

104

#
 m

at
ch

es

Graph simulation
Dual simulation

(b) Number of matches w.r.t. ♣V ♣

Figure 5.11 Weak scaling of the parallel algorithms. Note: the Y axis is on log scale

16 32 48 64 80 96 112 128
cores

1000

1500

2000

2500

3000

3500

Re
sp

on
se

 ti
m

e
(m

s)

9

10

11

12

13

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(a) Epinions

16 32 48 64 80 96 112 128
cores

1000

1500

2000

2500

3000

3500

4000

Re
sp

on
se

 ti
m

e
(m

s)

9

10

11

12

13

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(b) Amazon0601

16 32 48 64 80 96 112 128
cores

1000

2000

3000

4000

Re
sp

on
se

 ti
m

e
(m

s)

8

9

10

11

12

13

14

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(c) WebGoogle

16 32 48 64 80 96 112 128
cores

2000

4000

6000

8000

10000

12000

Re
sp

on
se

 ti
m

e
(m

s)

8

10

12

14

16

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(d) LiveJournal

16 32 48 64 80 96 112 128
cores

2000

4000

6000

8000

10000

Re
sp

on
se

 ti
m

e
(m

s)

8

10

12

14

16

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(e) Synthetic graph, scale = 21

16 32 48 64 80 96 112 128
cores

2500

5000

7500

10000

12500

15000

17500

Re
sp

on
se

 ti
m

e
(m

s)

6

8

10

12

14

16

18

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(f) Synthetic graph, scale = 22

Figure 5.12 Strong scaling of the parallel algorithms PGSim and PDSim

5.4 Experimental evaluation 133

gets, the more iterations are required to Ąlter out all the invalid matches. PGSim is the

least sensitive to the variations in d.

Finally, the number of distinct labels of the data graph ♣Σ♣ is an important parameter

that affects generally the size of the initial candidates set. We vary ♣Σ♣ from 200 to 900

for the four real-world data sets. Here, the same query graphs are used with ♣Vq♣ = 9.

Moreover, we use the same generated Σ on both data graphs and query graphs for each

experiment. We evaluate graph simulation with PGSim and VC-GSim, dual simulation

with PDSim and note the average response time. The response time decreases when

increasing ♣Σ♣, this is a normally expected behavior for PGSim and PDSim as we use

a reĄnement right after the Ąrst iteration of the algorithm to prune out all the data

vertices not having a label that exists in the query graph. The number of invalid matches

increases when the data graph has a large set of distinct labels and inversely. On the

other hand, the change in response time for VC-GSim is slow and the algorithm takes

longer time to evaluate graph simulation in the different data sets.

Weak scaling experiment

In this set of experiments, we evaluate the weak scalability of PGSim and PDSim. This

type of experiments consists of Ąxing the number of workers/cores of the cluster and

increasing the size of the problem, which is the data graph G in our case. We generate

synthetic data graphs of different sizes by varying the scale of the R-Mat model from 13

to 22 (resulting to ♣V ♣ that varies from 213 to 222). We report the average response time

for running graph simulation and dual simulation over 50 instances of queries having

the same size (♣Vq♣ = 9). The results of comparing PGSim and PDSim to VC-GSim are

given in Figure 5.11a.

PGSim outperforms VC-GSim by one order of magnitude. We can see how the difference

in response time between the two algorithms gets larger when the size of the data graph

increases. For the Ąrst data graph having only 7.7k vertices, the two algorithms are very

close with 600 ms while PDSim evaluates dual simulation for the same data graph in

one second. Nevertheless, when increasing the size of data graphs, PGSim takes only

1.4 seconds to process the largest synthetic graph containing 3.5M vertices and 83.9M

edges, while VC-GSim takes 42.6 seconds to get the same result.

Moreover, we can see in Figure 5.11b, the difference between the number of matches

returned by graph simulation and dual simulation. PDSim prunes out a big part of the

matches returned by graph simulation, which happens during the combine phase along

with the remaining iterations that allow the parallel algorithm to converge to the correct

5.5 Chapter summary 134

match set. Even with these additional computations performed by PDSim, our approach

for evaluating dual simulation outperforms signiĄcantly VC-GSim when increasing ♣V ♣.

Indeed, it only takes 7.5 seconds to process the largest synthetic graph. Consequently,

this set of experiments proves the scalability of our parallel algorithms.

Strong scaling experiment

We test the strong scalability of PGSim and PDSim by Ąxing the problem size (Ąxing

the data graph) and varying the number of cores in the cluster. We report the average

response time and speedup when evaluating graph simulation and dual simulation,

respectively, on 50 instances of query graphs having the same size (♣Vq♣ = 9). We run

this set of experiments on the four real-world data sets in addition to synthetic graphs of

different size. Figure 5.12 presents the obtained results.

PGSim scales very well with the number of cores. Indeed, the algorithm speedup

increases linearly when increasing the number of cores for all the data graphs. We notice

that the larger the data graph size, the higher speedups can be achieved. Indeed, the

highest speedups of 16 and 18 are achieved by PGSim and PDSim, respectively, on the

synthetic graph having the largest size (♣V ♣ = 3.5M and ♣E♣ = 83.9M). Nevertheless,

for remaining data graphs, the speedup curve starts Ćattening after some point due to

reaching a maximum level of parallelism. For example, for the three data sets Epinions

(Figure 5.12a), Amazon0601 (Figure 5.12a) and WebGoogle (Figure 5.12a), the speedup

of the two algorithms increases very fast when adding up 16 to 32 cores. After that, the

speedup increases very slowly even when doubling the number of cores used.

The different experiments presented in this section prove the strong scalability of the

distributed data structure ST and the two parallel algorithms PGSim and PDSim.

5.5 Chapter summary

In this chapter, we proposed PGSim, an efficient parallel edge-centric approach for

evaluating graph simulation on distributed graphs. PGSim relies on the distributed data

structure ST that groups the edges of the data graph and allows reaching higher degrees

of parallelism while avoiding locality issues generally present in the vertex-centric graph

algorithms. Moreover, we proposed PDSim, a split-and-combine approach for evaluating

dual simulation based on ST and PGSim. We provided theoretical guarantees on the

correctness and the convergence of PGSim and PDSim. Moreover, the experimental

results proved that the two propositions outperform the vertex-centric graph simulation

5.5 Chapter summary 135

by one order of magnitude. Therefore, we can use PDSim directly in evaluating BDSim,

strong simulation and strict simulation which will guarantee a noticeable improvement

in their response time.

Conclusions and Perspectives

Conclusion

In this thesis, we addressed the problem of scalability of relaxed GPM models. Graph

pattern matching is an important problem in graph theory and it has been extensively

studied for the past 50 years with applications almost everywhere. This problem has been

widely used for biological identiĄcation through Ąngerprint recognition, retina recognition

and face recognition. In addition, intrusion detection is an important application domain

where malicious behaviours of programs that are modeled as a pattern are queried against

the program dependence graph. Moreover, GPM is being highly used nowadays in social

networks for recommendation, expert Ąnding and social community detection.

As a Ąrst part of this manuscript, we studied the different models proposed for formalizing

this problem, from subgraph isomorphism, the most stringent model to the most Ćexible

ones such as graph simulation and bounded simulation that belong to the category of

relaxed GPM. All these GPM models differ both in terms of Ćexibility and tractability,

which makes them more suitable for speciĄc application domains than other ones. In

the second part, we investigated the use of TLAV programming models and systems in

scaling up the existing GPM approaches. Our main contributions are summarized as

follows.

First, we proposed a new taxonomy of distributed GPM approaches based on the GPM

model and programming paradigm applied. Among the drawn up conclusions, we suggest

that the vertex-centric and subgraph-centric programming models are best suited for

evaluating GPM models that impose a locality property, since the neighborhood of a

single vertex is required in evaluating its matching information. Additionally, strong

simulation is considered among the top GPM models that strike a balance between

Ćexibility and tractability, which makes it suitable for a wide range of applications.

Conclusions and Perspectives 137

The second contribution of this thesis is BDSim, a new relaxed GPM model that captures

better the topological structure of the query graph while being feasible in cubic time.

We showed that BDSim is more stringent than dual simulation allowing it to return

accurate answers. It is more Ćexible than subgraph isomorphism, which makes it scalable

to massive data graphs. Our model preserves the proximity between query vertices by

eliminating cycles of unbounded length from the resulting match graph. Besides, the

experimental evaluation of the proposed vertex-centric algorithms for evaluating BDSim

allowed us to validate the effectiveness and efficiency of this approach.

As a third contribution, we designed the Ąrst fully distributed vertex-centric algorithms

for a scalable evaluation of strong simulation and strict simulation in massive graphs

(named D3S and D3S+, respectively). Our approach ensures that the locality ball

members perform strong simulation in a distributed way, hence avoiding duplication of

the graph data while increasing the algorithm scalability. Moreover, even though our

approach still requires exchanging the matching information between the data graph

vertices, D3S outperforms prior work signiĄcantly, notably in applications where the

vertex similarity depends on multiple attributes. Therefore, unlike previous work that

would ship and duplicate all the vertex information, D3S will only require shipping the

matching information. Consequently, D3S allows strong simulation to support further

extensions on the semantic similarity adopted. Based on the same approach, we designed

D3S+ as an extension of D3S which inherits its different properties for the evaluation of

strict simulation.

Finally, we designed and implemented the Ąrst parallel edge-centric approach for evaluat-

ing graph simulation and dual simulation. We proposed the distributed data structure

ST that ensures a Ąne-grain parallelism. PGSim, which is our parallel algorithm for

evaluating graph simulation, relies on ST that allows it to reach linear scalability and

handle the problem of skewed degree distribution present in real-world graphs. Moreover,

the vertex-centric programming algorithms would incur heavy message passing even for

vertices residing on the same machine, which slows down the processing of a distributed

graph and results in many rounds of computation. In contrast, PGSim uses shared

memory abstraction to propagate updates along the different rounds of the algorithm.

Furthermore, the parallel algorithm PDSim uses a split-and-combine approach based on

ST and PGSim to increase the degree of parallelism when evaluating dual simulation.

This approach is faster even than the vertex-centric graph simulation. PDSim can be

then used as a building block in the evaluation of BDSim and strong simulation.

Conclusions and Perspectives 138

Some of the conclusions of this research work are the following. The new adaptive

GPM model BDSim strikes a balance between tractability and Ćexibility while offering

guarantees on the preservation of connectivity, duality, closeness and locality of the

input pattern graph. Thanks to its conĄgurable parameter ŞkŤ, BDSim can be used for

different application needs depending on the required level of Ćexibility. Furthermore,

we conĄrmed in this thesis that among the TLAV programming models, no one can

be considered the best for designing distributed GPM algorithms for all existing GPM

models. As shown by the conducted experiments, our edge-based algorithm for evaluating

graph simulation outperforms the vertex-centric version by up to one order of magnitude,

hence validating our Ąndings about the importance of all the TLAV paradigms. On the

other side, many studies have shown that subgraph isomorphism and strong simulation

algorithms are better designed with a subgraph-centric programming model. In fact, the

model itself imposes a locality constraint which requires a data vertex to have access

to a multi-level neighborhood in order to compute its matching information. Moreover,

we proved, through the proposal of a fully distributed vertex-centric algorithm of strong

simulation, that the Pregel-based vertex-centric paradigm also gives interesting results

with strong simulation when employed properly.

Future directions

Among the perspectives of this thesis, we suggest addressing the following three points.

First, we intend to work on the proposal of parallel algorithms for relaxed GPM in

attributed and weighted graphs. Indeed, these graphs carry more information that is

currently present in real-world graphs and combining all the available vertex and edge

attributes in the matching process guarantees a better reliability in the returned results.

In another research direction, we plan to address another important challenge; relaxed

GPM in the context of highly dynamic graphs. We want to answer the following questions

regarding the contributions made in this thesis. ŞIn BDSim, will the proposed vertex-

centric algorithms remain efficient in highly dynamic graphs?Ť. The next question is

ŞHow good can D3S and D3S+ perform on frequent graph updates?Ť. A last important

question that is worth answering is ŞWhether or not the distributed data structure ST

will maintain the same performance when update events arrive at a high frequencyŤ.

Furthermore, learning graph matching has been the subject of several recent studies

whether it is addressing subgraph matching and graph matching directly as in [92, 81,

72, 56] or solving problems that are useful in graph pattern matching such as Ąnding

Conclusions and Perspectives 139

the maximum common subgraph between two input graphs as in [6]. However, these

works only focused on subgraph isomorphism that can be rigid for many applications.

Therefore, a challenging task in learning subgraph matching is to learn a relaxed model

of subgraph matching that will be based on the semantics of the available data. With

these considerations, different Ćexibility levels will be permitted depending on the query

purpose and the application domain with its own deĄnition of similarity between graphs.

Bibliography

[1] Abuhaiba, I. S. (2007). Offline signature veriĄcation using graph matching. Turkish
Journal of Electrical Engineering & Computer Sciences, 15(1):89Ű104.

[2] Acosta-Mendoza, N., Gago-Alonso, A., and Medina-Pagola, J. E. (2012). Frequent
approximate subgraphs as features for graph-based image classiĄcation. Knowledge-
Based Systems, 27:381Ű392.

[3] Afrati, F. N., Fotakis, D., and Ullman, J. D. (2013). Enumerating subgraph instances
using map-reduce. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 62Ű73, Brisbane, QLD. IEEE.

[4] Ammar, K., McSherry, F., Salihoglu, S., and Joglekar, M. (2018). Distributed
evaluation of subgraph queries using worst-case optimal low-memory dataĆows. Proc.
VLDB Endow., 11(6):691Ű704.

[5] Anwar, A. and Mahmood, A. N. (2016). Anomaly detection in electric network
database of smart grid: Graph matching approach. Electric Power Systems Research,
133:51Ű62.

[6] Bai, Y., Xu, D., Wang, A., Gu, K., Wu, X., Marinovic, A., Ro, C., Sun, Y., and
Wang, W. (2020). Fast detection of maximum common subgraph via deep q-learning.
arXiv preprint arXiv:2002.03129.

[7] Bhattarai, B., Liu, H., and Huang, H. H. (2019). Ceci: Compact embedding cluster
index for scalable subgraph matching. In Proceedings of the 2019 International
Conference on Management of Data, pages 1447Ű1462, Amsterdam, Netherlands.
ACM.

[8] Bi, F., Chang, L., Lin, X., Qin, L., and Zhang, W. (2016). Efficient subgraph matching
by postponing cartesian products. In Proceedings of the 2016 International Conference
on Management of Data, pages 1199Ű1214, San Francisco, California, USA. ACM.

[9] Bodaghi, A. and Teimourpour, B. (2018). Automobile insurance fraud detection using
social network analysis. In Applications of Data Management and Analysis, pages
11Ű16. Springer.

[10] Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., and Ferro, A. (2013). A subgraph
isomorphism algorithm and its application to biochemical data. BMC bioinformatics,
14(S7):S13.

Bibliography 141

[11] Borthakur, D. (2007). The hadoop distributed Ąle system: Architecture and design.
Hadoop Project Website, 11(2007):21.

[12] Bröcheler, M., Pugliese, A., and Subrahmanian, V. S. (2010). Cosi: Cloud oriented
subgraph identiĄcation in massive social networks. In 2010 International Conference on
Advances in Social Networks Analysis and Mining, pages 248Ű255, Odense, Denmark.
IEEE, IEEE.

[13] Brynielsson, J., Högberg, J., Kaati, L., Mårtenson, C., and Svenson, P. (2010).
Detecting social positions using simulation. In 2010 International Conference on
Advances in Social Networks Analysis and Mining, pages 48Ű55. IEEE.

[14] Carletti, V., Foggia, P., Greco, A., Saggese, A., and Vento, M. (2018). Comparing
performance of graph matching algorithms on huge graphs. Pattern Recognition Letters,
134:58Ű67.

[15] Carletti, V., Foggia, P., Greco, A., Vento, M., and Vigilante, V. (2019). Vf3-light: A
lightweight subgraph isomorphism algorithm and its experimental evaluation. Pattern
Recognition Letters, 125:591Ű596.

[16] Carletti, V., Foggia, P., Saggese, A., and Vento, M. (2017). Challenging the time
complexity of exact subgraph isomorphism for huge and dense graphs with vf3. IEEE
transactions on pattern analysis and machine intelligence, 40(4):804Ű818.

[17] Carletti, V., Foggia, P., and Vento, M. (2015). Vf2 plus: An improved version of vf2
for biological graphs. In International Workshop on Graph-Based Representations in
Pattern Recognition, pages 168Ű177, Beijing, China. Springer.

[18] Chakrabarti, D., Zhan, Y., and Faloutsos, C. (2004). R-mat: A recursive model for
graph mining. In Proceedings of the 2004 SIAM International Conference on Data
Mining, pages 442Ű446. SIAM.

[19] Chaudhuri, B., Demir, B., Bruzzone, L., and Chaudhuri, S. (2016). Region-based
retrieval of remote sensing images using an unsupervised graph-theoretic approach.
IEEE Geoscience and Remote Sensing Letters, 13(7):987Ű991.

[20] Chen, H., Liu, M., Zhao, Y., Yan, X., Yan, D., and Cheng, J. (2018). G-miner: an
efficient task-oriented graph mining system. In Proceedings of the Thirteenth EuroSys
Conference, pages 1Ű12, Porto, Portugal. ACM.

[21] Chen, J., Gu, Y., Wang, Q., Li, C., and Yu, G. (2020). Partition-oriented subgraph
matching on gpu. In Wang, X., Zhang, R., Lee, Y.-K., Sun, L., and Moon, Y.-S.,
editors, Web and Big Data, pages 53Ű68, Cham. Springer International Publishing.

[22] Chikkerur, S., Cartwright, A. N., and Govindaraju, V. (2006). K-plet and coupled
bfs: a graph based Ąngerprint representation and matching algorithm. In International
Conference on Biometrics, pages 309Ű315. Springer.

[23] Conte, D., Foggia, P., Sansone, C., and Vento, M. (2004). Thirty Years of Graph
Matching in Pattern Recognition. International Journal of Pattern Recognition and
ArtiĄcial Intelligence, 18(03):265Ű298.

Bibliography 142

[24] Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. (2001). An improved
algorithm for matching large graphs. Proceedings of the 3rd IAPR Workshop on
Graph-Based Representations in Pattern Recognition, 219(2):149Ű159.

[25] Csun, S. and Luo, Q. (2018). Parallelizing recursive backtracking based subgraph
matching on a single machine. In 2018 IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS), pages 1Ű9, Singapore, Singapore. IEEE.

[26] Dean, J. and Ghemawat, S. (2008). Mapreduce: SimpliĄed data processing on large
clusters. Commun. ACM, 51(1):107Ű113.

[27] Dias, V., Teixeira, C. H., Guedes, D., Meira, W., and Parthasarathy, S. (2019).
Fractal: A general-purpose graph pattern mining system. In Proceedings of the 2019
International Conference on Management of Data, pages 1357Ű1374, Amsterdam
Netherlands. ACM.

[28] Diestel, R. (2005). Graph theory. 2005. Grad. Texts in Math, 101.

[29] Du, R., Yang, J., Cao, Y., and Wang, H. (2018). Personalized graph pattern
matching via limited simulation. Knowledge-Based Systems, 141:31Ű43.

[30] Duchenne, O., Joulin, A., and Ponce, J. (2011). A graph-matching kernel for object
categorization. In 2011 International Conference on Computer Vision, pages 1792Ű1799.
IEEE.

[31] Dustin, W. S. (2019). Social media statistics 2020: Top networks by the numbers.
https://dustinstout.com/social-media-statistics/. Accessed: 2020-03-01.

[32] Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., and Wu, Y. (2010). Graph Pattern
Matching: From Intractable to Polynomial Time. Proceedings of the VLDB Endowment,
3(1-2):264Ű275.

[33] Fan, W., Wang, X., and Wu, Y. (2013a). ExpĄnder: Finding experts by graph
pattern matching. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 1316Ű1319. IEEE.

[34] Fan, W., Wang, X., and Wu, Y. (2013b). Incremental graph pattern matching. ACM
Trans. Database Syst., 38(3).

[35] Fan, W., Wang, X., and Wu, Y. (2014a). Querying big graphs within bounded
resources. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 301Ű312.

[36] Fan, W., Wang, X., Wu, Y., and Deng, D. (2014b). Distributed graph simulation:
Impossibility and possibility. Proceedings of the VLDB Endowment, 7(12):1083Ű1094.

[37] Fan, W., Yu, W., Xu, J., Zhou, J., Luo, X., Yin, Q., Lu, P., Cao, Y., and Xu, R.
(2018). Parallelizing sequential graph computations. ACM Transactions on Database
Systems (TODS), 43(4):1Ű39.

[38] Fard, A., Nisar, M. U., Miller, J. A., and Ramaswamy, L. (2014). Distributed and
Scalable Graph Pattern Matching: Models and Algorithms. International Journal of
Big Data (ISSN 2326-442X), 1(1):1Ű14.

https://dustinstout.com/social-media-statistics/

Bibliography 143

[39] Fard, A., Nisar, M. U., Ramaswamy, L., Miller, J. A., and Saltz, M. (2013). A
distributed vertex-centric approach for pattern matching in massive graphs. In 2013
IEEE International Conference on Big Data, pages 403Ű411, Santa Clara, CA, USA.
IEEE.

[40] Filip, S. M. (2014). A scalable graph pattern matching engine on top of Apache
Giraph. PhD thesis, VU University Amsterdam.

[41] Fischer, A., Suen, C. Y., Frinken, V., Riesen, K., and Bunke, H. (2013). A fast match-
ing algorithm for graph-based handwriting recognition. In International Workshop on
Graph-Based Representations in Pattern Recognition, pages 194Ű203. Springer.

[42] Flake, G. W., Lawrence, S., Giles, C. L., and Coetzee, F. M. (2002). Self-organization
and identiĄcation of web communities. Computer, 35(3):66Ű70.

[43] Foggia, P., Percannella, G., and Vento, M. (2014). Graph matching and learning in
pattern recognition in the last 10 years. International Journal of Pattern Recognition
and ArtiĄcial Intelligence, 28(01):1450001.

[44] Foundation, T. A. S. (2011). Apache giraph. https://giraph.apache.org/. Accessed:
2021-01-20.

[45] Fuchs, P., Boncz, P., and Ghit, B. (2020). Edgeframe: Worst-case optimal joins
for graph-pattern matching in spark. In Proceedings of the 3rd Joint International
Workshop on Graph Data Management Experiences & Systems (GRADES) and Network
Data Analytics (NDA), pages 1Ű11, Portland OR USA. ACM.

[46] Gallagher, B. (2006). Matching Structure and Semantics : A Survey on Graph-Based
Pattern Matching. Technical Report FS-06-02, 6:45Ű53.

[47] Gao, J., Liu, P., Kang, X., Zhang, L., and Wang, J. (2016). Prs: parallel relaxation
simulation for massive graphs. The Computer Journal, 59(6):848Ű860.

[48] Gao, J., Zhou, C., Zhou, J., and Yu, J. X. (2014). Continuous pattern detection
over billion-edge graph using distributed framework. In 2014 IEEE 30th International
Conference on Data Engineering, pages 556Ű567, Chicago, IL, USA. IEEE.

[49] Garey, M. R. and Johnson, D. S. (1979). Computers and intractability: a guide to
np-completeness.

[50] Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The google Ąle system. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP
Š03, pages 29Ű43, Bolton Landing, NY, USA. Association for Computing Machinery.

[51] Gurajada, S., Seufert, S., Miliaraki, I., and Theobald, M. (2014). Triad: a distributed
shared-nothing rdf engine based on asynchronous message passing. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of data, pages
289Ű300, Utah USA. ACM.

[52] Han, M., Kim, H., Gu, G., Park, K., and Han, W.-S. (2019). Efficient subgraph
matching: Harmonizing dynamic programming, adaptive matching order, and failing
set together. In Proceedings of the 2019 International Conference on Management of
Data, pages 1429Ű1446, Amsterdam Netherlands. ACM.

Bibliography 144

[53] Han, W.-S., Lee, J., and Lee, J.-H. (2013). Turboiso: Towards ultrafast and robust
subgraph isomorphism search in large graph databases. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data, SIGMOD Š13, pages
337Ű348, New York, New York, USA. Association for Computing Machinery.

[54] Harish, P. and Narayanan, P. J. (2007). Accelerating large graph algorithms on the
gpu using cuda. In International conference on high-performance computing, pages
197Ű208. Springer.

[55] He, H. and Singh, A. K. (2008). Graphs-at-a-time: Query language and access
methods for graph databases. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD Š08, pages 405Ű418, Vancouver, Canada.
Association for Computing Machinery.

[56] He, J., Huang, Z., Wang, N., and Zhang, Z. (2021). Learnable graph matching:
Incorporating graph partitioning with deep feature learning for multiple object tracking.
arXiv preprint arXiv:2103.16178.

[57] Henzinger, M. R., Henzinger, T. A., and Kopke, P. W. (1995). Computing simulations
on Ąnite and inĄnite graphs. In Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 453Ű462, USA. IEEE.

[58] Hung, B. W. and Jayasumana, A. P. (2016). Investigative simulation: Towards
utilizing graph pattern matching for investigative search. In 2016 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining (ASONAM),
pages 825Ű832. IEEE.

[59] Hunger, M. (2014). Neo4j 2.0: Eine Graphdatenbank für alle. entwickler. Press,
Eltville, Germany.

[60] Jüttner, A. and Madarasi, P. (2018). Vf2++-an improved subgraph isomorphism
algorithm. Discrete Applied Mathematics, 242:69Ű81.

[61] Kalavri, V., Vlassov, V., and Haridi, S. (2017). High-level programming abstrac-
tions for distributed graph processing. IEEE Transactions on Knowledge and Data
Engineering, 30(2):305Ű324.

[62] Kao, J.-S. and Chou, J. (2016). Distributed Incremental Pattern Matching on
Streaming Graphs. In Proceedings of the ACM Workshop on High Performance Graph
Processing - HPGP Š16, volume 1828, pages 43Ű50, New York, New York, USA. ACM
Press.

[63] Katz, G. J. and Kider, J. T. (2008). All-pairs shortest-paths for large graphs on the
gpu. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware, pages 47Ű55.

[64] Khan, S., Nawaz, M., Guoxia, X., and Yan, H. (2019). Image correspondence with
cur decomposition-based graph completion and matching. IEEE Transactions on
Circuits and Systems for Video Technology, 30(9):3054Ű3067.

Bibliography 145

[65] Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., and Kalnis, P.
(2013). Mizan: A system for dynamic load balancing in large-scale graph processing.
In Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys
Š13, pages 169Ű182, Prague, Czech Republic. Association for Computing Machinery.

[66] Kim, K., Seo, I., Han, W.-S., Lee, J.-H., Hong, S., ChaĄ, H., Shin, H., and Jeong, G.
(2018). TurboĆux: A fast continuous subgraph matching system for streaming graph
data. In Proceedings of the 2018 International Conference on Management of Data,
pages 411Ű426, Houston TX USA. ACM.

[67] Kumar, S. and Spafford, E. H. (1994). A pattern matching model for misuse intrusion
detection.

[68] Lai, L., Qin, L., Lin, X., and Chang, L. (2015). Scalable subgraph enumeration in
mapreduce. Proceedings of the VLDB Endowment, 8(10):974Ű985.

[69] Lai, L., Qin, L., Lin, X., Zhang, Y., Chang, L., and Yang, S. (2016). Scalable
distributed subgraph enumeration. Proceedings of the VLDB Endowment, 10(3):217Ű
228.

[70] Lai, L., Qing, Z., Yang, Z., Jin, X., Lai, Z., Wang, R., Hao, K., Lin, X., Qin,
L., Zhang, W., et al. (2019). Distributed subgraph matching on timely dataĆow.
Proceedings of the VLDB Endowment, 12(10):1099Ű1112.

[71] Lajevardi, S. M., Arakala, A., Davis, S. A., and Horadam, K. J. (2013). Retina
veriĄcation system based on biometric graph matching. IEEE transactions on image
processing, 22(9):3625Ű3635.

[72] Lan, Z., Yu, L., Yuan, L., Wu, Z., and Ma, F. (2021). Sub-gmn: The subgraph
matching network model. arXiv preprint arXiv:2104.00186.

[73] Lee, J., Han, W.-S., Kasperovics, R., and Lee, J.-H. (2012). An in-depth comparison
of subgraph isomorphism algorithms in graph databases. Proceedings of the VLDB
Endowment, 6(2):133Ű144.

[74] Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset
collection.

[75] Levchuk, G., Colonna-Romano, J., and Eslami, M. (2017). Application of graph-
based semi-supervised learning for development of cyber cop and network intrusion
detection. In Disruptive Technologies in Sensors and Sensor Systems, volume 10206,
page 102060D. International Society for Optics and Photonics.

[76] Li, J., Cao, Y., and Ma, S. (2017). Relaxing graph pattern matching with explana-
tions. In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pages 1677Ű1686, Singapore Singapore. ACM.

[77] Li, J., Li, J., and Wang, X. (2018). A vertex-centric graph simulation algorithm for
large graphs. In Xu, Z., Gao, X., Miao, Q., Zhang, Y., and Bu, J., editors, Big Data,
pages 238Ű254, Singapore. Springer.

Bibliography 146

[78] Lin, W., Xiao, X., Xie, X., and Li, X.-L. (2016). Network motif discovery: A gpu
approach. IEEE transactions on knowledge and data engineering, 29(3):513Ű528.

[79] Liu, C., Chen, C., Han, J., and Yu, P. S. (2006). Gplag: Detection of software
plagiarism by program dependence graph analysis. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
Š06, pages 872Ű881, New York, NY, USA. Association for Computing Machinery.

[80] Lladós, J. and Sanchez, G. (2004). Graph matching versus graph parsing in graphics
recognitionŮa combined approach. International Journal of Pattern Recognition and
ArtiĄcial Intelligence, 18(03):455Ű473.

[81] Lou, Z., You, J., Wen, C., Canedo, A., Leskovec, J., et al. (2020). Neural subgraph
matching. arXiv preprint arXiv:2007.03092.

[82] Lu, S. W., Ren, Y., and Suen, C. Y. (1991). Hierarchical attributed graph rep-
resentation and recognition of handwritten chinese characters. Pattern Recognition,
24(7):617Ű632.

[83] Luo, L., Wong, M., and Hwu, W.-m. (2010). An effective gpu implementation of
breadth-Ąrst search. In Design Automation Conference, pages 52Ű55. IEEE.

[84] Ma, S., Cao, Y., Fan, W., Huai, J., and Wo, T. (2011). Capturing topology in graph
pattern matching. Proceedings of the VLDB Endowment, 5(4):310Ű321.

[85] Ma, S., Cao, Y., Huai, J., and Wo, T. (2012). Distributed graph pattern matching.
In Proceedings of the 21st International Conference on World Wide Web, WWW Š12,
pages 949Ű958, Lyon, France. Association for Computing Machinery.

[86] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N.,
and Czajkowski, G. (2010). Pregel: A system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data, SIGMOD Š10, pages 135Ű146, Indianapolis, Indiana, USA. Association for
Computing Machinery.

[87] Mekouar, S., Zrira, N., and Bouyakhf, E. H. (2018). Community outlier detection in
social networks based on graph matching. International Journal of Autonomous and
Adaptive Communications Systems, 11(3):209Ű231.

[88] Menelet, A. and Bichot, C.-E. (2021). Characterization of android malware based
on subgraph isomorphism.

[89] Mhedhbi, A. and Salihoglu, S. (2019). Optimizing subgraph queries by combining
binary and worst-case optimal joins. Proc. VLDB Endow., 12(11):1692Ű1704.

[90] Newman, M. E. (2004). Detecting community structure in networks. The European
physical journal B, 38(2):321Ű330.

[91] Ngo, H. Q., Ré, C., and Rudra, A. (2014). Skew strikes back: New developments in
the theory of join algorithms. ACM SIGMOD Record, 42(4):5Ű16.

Bibliography 147

[92] Nie, W., Ding, H., Liu, A., Deng, Z., and Su, Y. (2020). Subgraph learning for
graph matching. Pattern Recognition Letters, 130:362Ű369.

[93] Ogaard, K., Roy, H., Kase, S., Nagi, R., Sambhoos, K., and Sudit, M. (2013).
Discovering patterns in social networks with graph matching algorithms. In Greenberg,
A. M., Kennedy, W. G., and Bos, N. D., editors, Social Computing, Behavioral-Cultural
Modeling and Prediction, pages 341Ű349, Berlin, Heidelberg. Springer.

[94] Pearce, R. (2012). Highly asynchronous visitor queue graph toolkit.

[95] Pei, W.-Y., Yang, C., Meng, L.-Y., Hou, J.-B., Tian, S., and Yin, X.-C. (2018).
Scene video text tracking with graph matching. IEEE Access, 6:19419Ű19426.

[96] Peng, P., Zou, L., Özsu, M. T., Chen, L., and Zhao, D. (2016). Processing sparql
queries over distributed rdf graphs. The VLDB Journal, 25(2):243Ű268.

[97] Plantenga, T. (2013). Inexact subgraph isomorphism in mapreduce. Journal of
Parallel and Distributed Computing, 73(2):164Ű175.

[98] Qiao, M., Zhang, H., and Cheng, H. (2017). Subgraph matching: on compression
and computation. Proceedings of the VLDB Endowment, 11(2):176Ű188.

[99] Qiu, X., Cen, W., Qian, Z., Peng, Y., Zhang, Y., Lin, X., and Zhou, J. (2018).
Real-time constrained cycle detection in large dynamic graphs. Proceedings of the
VLDB Endowment, 11(12):1876Ű1888.

[100] Ren, X. and Wang, J. (2015). Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. Proceedings of the VLDB Endowment,
8(5):617Ű628.

[101] Ren, X. and Wang, J. (2016). Multi-query optimization for subgraph isomorphism
search. Proceedings of the VLDB Endowment, 10(3):121Ű132.

[102] Reza, T., Klymko, C., Ripeanu, M., Sanders, G., and Pearce, R. (2017). Towards
practical and robust labeled pattern matching in trillion-edge graphs. In 2017 IEEE
International Conference on Cluster Computing (CLUSTER), pages 1Ű12, Honolulu,
HI. IEEE.

[103] Reza, T., Ripeanu, M., Sanders, G., and Pearce, R. (2020). Approximate pattern
matching in massive graphs with precision and recall guarantees. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, pages
1115Ű1131, Portland OR USA. ACM.

[104] Reza, T., Ripeanu, M., Tripoul, N., Sanders, G., and Pearce, R. (2018). Prune-
juice: Pruning trillion-edge graphs to a precise pattern-matching solution. In SC18:
International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 265Ű281, Dallas, Texas, USA. IEEE.

[105] Rostrup, S., Srivastava, S., and Singhal, K. (2013). Fast and memory-efficient
minimum spanning tree on the gpu. International Journal of Computational Science
and Engineering, 8(1):21Ű33.

Bibliography 148

[106] Roy, A., Mihailovic, I., and Zwaenepoel, W. (2013). X-stream: Edge-centric graph
processing using streaming partitions. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP Š13, pages 472Ű488, Farminton,
Pennsylvania. Association for Computing Machinery.

[107] Sadowski, G. and Rathle, P. (2014). Fraud detection: Discovering connections with
graph databases. White Paper-Neo Technology-Graphs are Everywhere, 13.

[108] Salihoglu, S. and Widom, J. (2013). Gps: A graph processing system. In Proceedings
of the 25th International Conference on ScientiĄc and Statistical Database Manage-
ment, SSDBM, pages 1Ű12, Baltimore, Maryland, USA. Association for Computing
Machinery.

[109] Schätzle, A., Przyjaciel-Zablocki, M., Berberich, T., and Lausen, G. (2016). S2x:
Graph-parallel querying of rdf with graphx. In Wang, F., Luo, G., Weng, C., Khan,
A., Mitra, P., and Yu, C., editors, Biomedical Data Management and Graph Online
Querying, pages 155Ű168, Cham. Springer International Publishing.

[110] SeraĄni, M., De Francisci Morales, G., and Siganos, G. (2017). Qfrag: Distributed
graph search via subgraph isomorphism. In Proceedings of the 2017 Symposium on
Cloud Computing, pages 214Ű228, Santa Clara, CA. ACM.

[111] Shang, H., Zhang, Y., Lin, X., and Yu, J. X. (2008). Taming veriĄcation hardness:
an efficient algorithm for testing subgraph isomorphism. Proceedings of the VLDB
Endowment, 1(1):364Ű375.

[112] Shao, B., Wang, H., and Li, Y. (2013). Trinity: A distributed graph engine on a
memory cloud. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD Š13, pages 505Ű516, New York, New York, USA.
Association for Computing Machinery.

[113] Shao, Y., Cui, B., Chen, L., Ma, L., Yao, J., and Xu, N. (2014). Parallel subgraph
listing in a large-scale graph. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, pages 625Ű636, Utah USA. ACM.

[114] Shemshadi, A., Sheng, Q. Z., and Qin, Y. (2016). Efficient pattern matching for
graphs with multi-labeled nodes. Knowledge-Based Systems, 109:256Ű265.

[115] Shi, Q., Liu, G., Zheng, K., Liu, A., Li, Z., Zhao, L., and Zhou, X. (2017). Multi-
Constrained Top-K Graph Pattern Matching in Contextual Social Graphs. Proceedings
- 2017 IEEE 24th International Conference on Web Services, ICWS 2017, 6(1):588Ű595.

[116] Shi, X., Zheng, Z., Zhou, Y., Jin, H., He, L., Liu, B., and Hua, Q.-S. (2018). Graph
processing on gpus: A survey. ACM Computing Surveys (CSUR), 50(6):1Ű35.

[117] Simmhan, Y., Kumbhare, A., Wickramaarachchi, C., Nagarkar, S., Ravi, S.,
Raghavendra, C., and Prasanna, V. (2014). Goffish: A sub-graph centric framework
for large-scale graph analytics. In Silva, F., Dutra, I., and Santos Costa, V., editors,
Euro-Par 2014 Parallel Processing, pages 451Ű462, Cham. Springer International
Publishing.

Bibliography 149

[118] Stauffer, M., Fischer, A., and Riesen, K. (2018). Keyword spotting in historical
handwritten documents based on graph matching. Pattern Recognition, 81:240Ű253.

[119] Stein, M., Frömmgen, A., Kluge, R., Wang, L., Wilberg, A., Koldehofe, B., and
Mühlhäuser, M. (2018). Scaling topology pattern matching: A distributed approach.
self, 1:n2.

[120] Sun, S. and Luo, Q. (2020a). In-memory subgraph matching: An in-depth study. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data, SIGMOD Š20, pages 1083 Ű 1098, Portland, OR, USA. Association for Computing
Machinery.

[121] Sun, S. and Luo, Q. (2020b). Subgraph matching with effective matching order
and indexing. IEEE Transactions on Knowledge and Data Engineering, pages 1Ű1.

[122] Sun, Z., Wang, H., Wang, H., Shao, B., and Li, J. (2012). Efficient subgraph
matching on billion node graphs. Proceedings of the VLDB Endowment, 5(9):788Ű799.

[123] Ta, A.-P., Wolf, C., Lavoue, G., and Baskurt, A. (2010). Recognizing and local-
izing individual activities through graph matching. In 2010 7th IEEE International
Conference on Advanced Video and Signal Based Surveillance, pages 196Ű203. IEEE.

[124] Teixeira, C. H., Fonseca, A. J., SeraĄni, M., Siganos, G., Zaki, M. J., and Aboulnaga,
A. (2015). Arabesque: a system for distributed graph mining. In Proceedings of the
25th Symposium on Operating Systems Principles, pages 425Ű440, Monterey California.
ACM.

[125] Tian, Y., Balmin, A., Corsten, S. A., Tatikonda, S., and McPherson, J. (2013).
From "think like a vertex" to" think like a graph". Proceedings of the VLDB Endowment,
7(3):193Ű204.

[126] Tran, H.-N., Cambria, E., and Hussain, A. (2016). Towards gpu-based common-
sense reasoning: Using fast subgraph matching. Cognitive Computation, 8(6):1074Ű
1086.

[127] Tran, H.-N., Kim, J.-j., and He, B. (2015). Fast subgraph matching on large graphs
using graphics processors. In Proceedings of the 20th International Conference on
Database Systems for Advanced Applications, pages 299Ű315, Hanoi, Vietnam. Springer,
Cham.

[128] Ullmann, J. R. (1976). An Algorithm for Subgraph Isomorphism. Journal of the
ACM, 23(1):31Ű42.

[129] Valiant, L. G. (1990). A bridging model for parallel computation. Communications
of the ACM, 33(8):103Ű111.

[130] Veldhuizen, T. L. (2012). Leapfrog triejoin: a worst-case optimal join algorithm.

[131] Vento, M. (2015). A long trip in the charming world of graphs for Pattern
Recognition. Pattern Recognition, 48(2):291Ű301.

Bibliography 150

[132] Vineet, V., Harish, P., Patidar, S., and Narayanan, P. (2009). Fast minimum
spanning tree for large graphs on the gpu. In Proceedings of the Conference on High
Performance Graphics 2009, pages 167Ű171.

[133] Wang, H., Li, N., Li, J., and Gao, H. (2018a). Parallel algorithms for Ćexible
pattern matching on big graphs. Information Sciences, 436-437:418Ű440.

[134] Wang, J., Ren, X., Anirban, S., and Wu, X.-W. (2019a). Correct Ąltering for
subgraph isomorphism search in compressed vertex-labeled graphs. Information
Sciences, 482:363Ű373.

[135] Wang, K., Zuo, Z., Thorpe, J., Nguyen, T. Q., and Xu, G. H. (2018b). Rstream:
marrying relational algebra with streaming for efficient graph mining on a single
machine. In 13th ¶USENIX♢ Symposium on Operating Systems Design and Implemen-
tation (¶OSDI♢ 18), pages 763Ű782, Carlsbad, CA, USA. USENIX association.

[136] Wang, L., Wang, Y., Yang, C., and Owens, J. D. (2016a). A comparative study on
exact triangle counting algorithms on the gpu. In Proceedings of the ACM Workshop
on High Performance Graph Processing, pages 1Ű8.

[137] Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., and Owens, J. D. (2016b).
Gunrock: A high-performance graph processing library on the gpu. In Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 1Ű12.

[138] Wang, Z., Gu, R., Hu, W., Yuan, C., and Huang, Y. (2019b). Benu: Distributed
subgraph enumeration with backtracking-based framework. In 2019 IEEE 35th In-
ternational Conference on Data Engineering (ICDE), pages 136Ű147, Macao, Macao.
IEEE.

[139] Winans, M., Faupel, D., Armstrong, A., Henderson, J., Valentine, E., McDonald,
L., Walters, D., Waite, J., Trapani, M., and Magill, E. (2016). 10 Key Marketing
Trends for 2017 and Ideas for Exceeding Customer Expectations. ftp://ftp.www.ibm.
com/software/in/pdf/10_Key_Marketing_Trends_for_2017.pdf.

[140] Wiskott, L., Krüger, N., Kuiger, N., and Von Der Malsburg, C. (1997). Face
recognition by elastic bunch graph matching. IEEE Transactions on pattern analysis
and machine intelligence, 19(7):775Ű779.

[141] Wu, X., Theodoratos, D., Skoutas, D., and Lan, M. (2020). Leveraging double
simulation to efficiently evaluate hybrid patterns on data graphs. In Huang, Z., Beek,
W., Wang, H., Zhou, R., and Zhang, Y., editors, Web Information Systems Engineering
Ű WISE 2020, pages 255Ű269, Cham. Springer International Publishing.

[142] Xiaogang, X., Zhengxing, S., Binbin, P., Xiangyu, J., and Wenyin, L. (2004). An
online composite graphics recognition approach based on matching of spatial relation
graphs. Document Analysis and Recognition, 7(1):44Ű55.

[143] Xin, R. S., Gonzalez, J. E., Franklin, M. J., and Stoica, I. (2013). Graphx: A
resilient distributed graph system on spark. In First international workshop on graph
data management experiences and systems, pages 1Ű6, New York, USA. ACM.

ftp://ftp.www.ibm.com/software/in/pdf/10_Key_Marketing_Trends_for_2017.pdf
ftp://ftp.www.ibm.com/software/in/pdf/10_Key_Marketing_Trends_for_2017.pdf

Bibliography 151

[144] Yan, D., Bu, Y., Tian, Y., and Deshpande, A. (2017). Big Graph Analytics
Platforms. Foundations and Trends® in Databases, 7(1-2):1Ű195.

[145] Yan, D., Cheng, J., Lu, Y., and Ng, W. (2014). Blogel: A block-centric framework
for distributed computation on real-world graphs. Proceedings of the VLDB Endowment,
7(14):1981Ű1992.

[146] Yan, D., Cheng, J., Lu, Y., and Ng, W. (2015). Effective techniques for message
reduction and load balancing in distributed graph computation. In Proceedings of
the 24th International Conference on World Wide Web, WWW Š15, pages 1307Ű1317,
Republic and Canton of Geneva, CHE. International World Wide Web Conferences
Steering Committee.

[147] Yan, D., Cheng, J., Özsu, M. T., Yang, F., Lu, Y., Lui, J. C., Zhang, Q., and
Ng, W. (2016a). A general-purpose query-centric framework for querying big graphs.
Proceedings of the VLDB Endowment, 9(7):564Ű575.

[148] Yan, D., Guo, G., Chowdhury, M. M. R., Özsu, M. T., Ku, W.-S., and Lui, J. C.
(2020). G-thinker: A distributed framework for mining subgraphs in a big graph.
In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages
1369Ű1380, Dallas, TX, USA, USA. IEEE.

[149] Yan, D., Huang, Y., Cheng, J., and Wu, H. (2016b). Efficient processing of very
large graphs in a small cluster.

[150] Ye, M., Li, J., Ma, A. J., Zheng, L., and Yuen, P. C. (2019). Dynamic graph
co-matching for unsupervised video-based person re-identiĄcation. IEEE Transactions
on Image Processing, 28(6):2976Ű2990.

[151] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., Stoica, I., et al. (2010).
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95.

[152] Zeng, K., Yang, J., Wang, H., Shao, B., and Wang, Z. (2013). A distributed graph
engine for web scale rdf data. Proceedings of the VLDB Endowment, 6(4):265Ű276.

[153] Zeng, L., Zou, L., Özsu, M. T., Hu, L., and Zhang, F. (2020). Gsi: Gpu-friendly sub-
graph isomorphism. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pages 1249Ű1260.

[154] Zhang, L. and Gao, J. (2018). Incremental Graph Pattern Matching Algorithm for
Big Graph Data. ScientiĄc Programming, 2018:1Ű8.

[155] Zhang, L., Wang, H., Li, C., Shao, Y., and Ye, Q. (2017). Unsupervised anomaly
detection algorithm of graph data based on graph kernel. In 2017 IEEE 4th Interna-
tional Conference on Cyber Security and Cloud Computing (CSCloud), pages 58Ű63.
IEEE.

[156] Zhang, P., Holk, E., Matty, J., Misurda, S., Zalewski, M., Chu, J., McMillan, S.,
and Lumsdaine, A. (2015). Dynamic parallelism for simple and efficient gpu graph
algorithms. In Proceedings of the 5th Workshop on Irregular Applications: Architectures
and Algorithms, pages 1Ű4.

Bibliography 152

[157] Zhang, S., Li, S., and Yang, J. (2009). Gaddi: distance index based subgraph
matching in biological networks. In Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology, pages 192Ű203,
Saint Petersburg Russia. ACM.

[158] Zhang, T., Gao, Y., Qiu, L., Chen, L., Linghu, Q., and Pu, S. (2020). Distributed
time-respecting Ćow graph pattern matching on temporal graphs. World Wide Web,
23(1):609Ű630.

[159] Zhao, J., Han, R., Gan, Y., Wan, L., Feng, W., and Wang, S. (2020). Human
identiĄcation and interaction detection in cross-view multi-person videos with wearable
cameras. In Proceedings of the 28th ACM International Conference on Multimedia,
pages 2608Ű2616.

[160] Zhao, P. and Han, J. (2010). On graph query optimization in large networks.
Proceedings of the VLDB Endowment, 3(1-2):340Ű351.

[161] Zhong, D., Shao, H., and Du, X. (2019). A hand-based multi-biometrics via deep
hashing network and biometric graph matching. IEEE Transactions on Information
Forensics and Security, 14(12):3140Ű3150.

[162] Zhou, C., Gao, J., Sun, B., and Yu, J. X. (2014). MOCgraph : Scalable Distributed
Graph Processing Using Message Online Computing. Vldb, 8(4):377Ű388.

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivations and challenges
	Contributions
	Thesis organization

	I Context and Background
	1 Preliminaries
	1.1 Introduction
	1.2 Terminologies
	1.3 Problem definition
	1.4 Applications of graph pattern matching
	1.5 Structural Graph Pattern Matching
	1.5.1 Graph isomorphism
	1.5.2 Subgraph isomorphism
	1.5.3 Algorithms for subgraph isomorphism
	1.5.4 Parallel algorithms for subgraph isomorphism
	1.5.5 Limitations of subgraph isomorphism

	1.6 Relaxed Graph Pattern Matching
	1.6.1 Graph simulation
	1.6.2 Dual simulation
	1.6.3 Strong simulation
	1.6.4 Strict simulation
	1.6.5 Tight simulation
	1.6.6 Bounded simulation
	1.6.7 Relaxation simulation
	1.6.8 Surjective simulation
	1.6.9 Taxonomy simulation
	1.6.10 Multi-constrained simulation
	1.6.11 Limited simulation
	1.6.12 Time-respecting simulation
	1.6.13 Double simulation

	1.7 Chapter summary

	2 Graph Pattern Matching in Massive Graphs: State-of-the-art
	2.1 Introduction
	2.2 Distributed graph processing
	2.3 Programming models for distributed graph processing
	2.3.1 Timing
	2.3.2 Communication
	2.3.3 Execution model

	2.4 Distributed graph pattern matching approaches
	2.4.1 Querying distributed data graphs
	2.4.2 Distributed structural graph pattern matching
	2.4.3 Distributed relaxed graph pattern matching
	2.4.4 Classification of distributed GPM approaches

	2.5 Chapter summary

	II Parallel and Distributed Algorithms for Relaxed GPM
	3 Distributed Graph Pattern Matching via Bounded Dual Simulation
	3.1 Introduction
	3.2 Bounded Dual Simulation (BDSim)
	3.3 Distributed evaluation of BDSim
	3.3.1 Extracting short cycles from the query graph
	3.3.2 Vertex-centric algorithm for dual simulation
	3.3.3 Vertex-centric algorithm for detecting invalid matches
	3.3.4 Vertex-centric algorithm for filtering invalid matches

	3.4 Theoretical guarantees
	3.4.1 Convergence of the distributed algorithms
	3.4.2 Correctness of the distributed algorithms

	3.5 Experimental evaluation
	3.5.1 Experimental data sets
	3.5.2 Experimental setup
	3.5.3 Pattern generation
	3.5.4 Experimental results

	3.6 Chapter summary

	4 A Distributed and Scalable Approach for Strong Simulation
	4.1 Introduction
	4.2 D3S: A distributed and scalable approach for strong simulation
	4.2.1 Overview of D3S
	4.2.2 Vertex-centric dual simulation
	4.2.3 Vertex-centric neighborhood discovery
	4.2.4 Vertex-centric strong simulation

	4.3 D3S+ : Distributed and scalable evaluation of strict simulation
	4.4 Experimental evaluation
	4.4.1 Distributed implementation
	4.4.2 Experimental environment
	4.4.3 Experimental results

	4.5 Chapter summary

	5 An Efficient Parallel Edge-Centric Approach for Relaxed GPM
	5.1 Introduction
	5.2 Parallel edge-centric graph simulation
	5.2.1 Data structures
	5.2.2 Parallel graph simulation via PGSim
	5.2.3 Convergence and Correctness of PGSim

	5.3 Parallel edge-centric dual simulation
	5.3.1 A split-and-combine approach for parallel dual simulation
	5.3.2 Convergence and Correctness of PDSim

	5.4 Experimental evaluation
	5.4.1 Distributed implementation of PGSim and PDSim
	5.4.2 Experimental environment
	5.4.3 Experimental results

	5.5 Chapter summary

	Conclusions and Perspectives
	Conclusion
	Future directions

	Bibliography

