
HAL Id: tel-03687032
https://theses.hal.science/tel-03687032

Submitted on 3 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Road Traffic Models for Validation of Autonomous
Vehicle Functionalities

Lu Zhao

To cite this version:
Lu Zhao. Road Traffic Models for Validation of Autonomous Vehicle Functionalities. Embedded
Systems. Université Gustave Eiffel, 2021. English. �NNT : 2021UEFL2035�. �tel-03687032�

https://theses.hal.science/tel-03687032
https://hal.archives-ouvertes.fr


  

 

 

 
 

 

Road Traffic Models  

for Validation of Autonomous Vehicle Functionalities  
 

 

Thèse de doctorat de l'Université Gustave Eiffel 
 

École doctorale n° 532 :  

MATHÉMATIQUES ET SCIENCES ET TECHNOLOGIES  

DE L'INFORMATION ET DE LA COMMUNICATION (MSTIC) 
 

Spécialité de doctorat : Mathématiques appliquées et applications des mathématiques 
Unité de recherche : COSYS-GRETTIA 

 

Thèse présentée à l’Université Gustave Eiffel,  
le 17/12/2021, par  

 

Lu ZHAO 
 

Composition du Jury 

 

  

Feng CHU 

Professeure, Université d’Evry 
 Présidente 

Romain Billot 

Professeur, IMT Atlantique 
 Rapporteur 

Tai-Yu Ma  

Chercheur, LISER, Luxembourg 
 Rapporteur 

Georges Yannis 

Professeur, Université Nationale 

Technique d’Athènes 

 Examinateur 

Maria Nadia Postorino 

Professeure University of Bologna 
 Examinatrice  

Rodolphe Gelin 

Expert en IA, Renault    
 Co-Encadrante en entreprise  

 

Encadrement de la thèse 

   
Nadir Farhi  

Chercheur, UGE 
 Directeur de thèse 

Zoi Christoforou  

Chercheuse, UGE, ENPC  
 Co-Encadrante 

Nadia Haddadou  

Référent en connectivité, Renault    
 Co-Encadrante en entreprise 

Yves Tourbier  

Expert en optimisation, Renault    
 Co-Encadrant en entreprise 

   
 





Mathematics is the language with which God has written the universe.

– Galileo Galilei.





Acknowledgements

I am deeply grateful my thesis director Nadir FARHI, and my academic co-supervisor Zoi
CHRISTOFOROU, for their guidance, support, and patience in helping me with all my work.
I am also very grateful to my industrial supervisors, Nadia HADDADOU, Yves TOURBIER,
Rodolphe GELIN, for their insightful advice during these three years.

I would like to express my gratitude to all the members of the jury, Romain BILLOT, Tai-Yu MA,
Feng CHU, Georges YANNIS, Maria Nadia POSTORINO, Rodolphe GELIN for participating in
this thesis committee and for providing their availability in my PHD thesis defense. My sincere
thanks to the two reviewers, Romain BILLOT, Tai-Yu MA for taking the time to review my PhD
thesis and for their very valuable comments.

I would like to sincerely thank the community of PhD students at Renault, especially Clara
GANDREZ, Edouard LEURENT, Marc NABHAN, Jean MERCAT, Sonia ASSOU, Matthias
COUSTE, Benoit LAUSSAT, Jia-Jun WU, Han-Wei GAO for the good times and atmosphere we
had at Renault. It was a pleasure to discuss some technical issues with Edouard LEURENT and
Jean MARCAT. It was very helpful for me to progress my work. I would like to thank Edouard
LEURENT and Marc NABHAN for their PhD thesis. They gave me a good example to write
my thesis.

I sincerely thank all my colleagues at Renault, Sebastien, Martine, Soukaina, Sopheaktra,
Jean-Luc, Sylvain, Eric, Gregory, Nelson, and many others for the good times we spent together
over meals and coffee breaks. I also extend my sincere thanks to all my colleagues at the
GRETTIA laboratory at Gustave Eiffel University. I thank Yeltsin VALERO for discussing all
my work and for helping with some collaborative projects.

Finally, and most importantly, I am deeply grateful to my parents and my boyfriend, Yan,
for their unwavering emotional support and unfailing help. Thank you to my dog, Paola, for
giving me companionship and for letting me walk out during the confinement of Covid.





Abstract

There is a growing interest in autonomous driving as it is expected that fully autonomous
vehicles can reduce car accidents and improve overall traffic safety. However, autonomous
driving is a complex process combining sensing, perception, prediction, computation, and
decision. In addition, the traffic environment is dynamic and involves interactions among road
users. Therefore, driving tests are essential to validate the autonomous vehicle’s functionalities.
Real-world driving tests seem to be a great challenge as fatal accidents cannot be prevented
yet. Alternatively, performing driving tests by simulation can reduce time and cost, and avoid
potentially dangerous situations. The increasing use of traffic simulation for many studies
highlights the importance of a good understanding and modeling of human driving behavior.

This thesis mainly focuses on microscopic traffic modelling for human driving models, with the
aim of creating, with numerical simulation, a realistic vehicular traffic, which is useful for the
validation of autonomous vehicle’s features. The main contributions of this thesis consist in 1)
an approach ofmicroscopic trafficmodeling for car-collision generation in numerical simulation,
based on real data-sets, 2) a Q-learning model for mimicking human lane-change in a highway
road, and 3) a LSTM neural network model for replicating simultaneously car-following and
lane-change behavior.

Car-collision generation in numerical traffic simulation. I proposed an approach of car-
collision generation in numerical traffic simulation considering different car-following behav-
iors. After the investigation of different driver profiles in a real traffic data-set, I classified
three driving profiles, where I distinguished aggressive and inattentive driver profiles from the
normal profile. I then proposed to increase the proportion of the two ‘extreme’ driver profiles
(aggressive and inattentive) in the whole traffic population by replacing the normal drivers, to
simulate in a traffic simulator, SUMO (Simulation of Urban Mobility), and observe eventually
the occurrence of car-collisions. I was able to formulate a relationship between the ratios of
these two driver profiles over the entire driver population, and the number of car collisions.
This analysis used part of the NGSIM 101 data-set and was validated on another part of the
same data-set. I also studied the severity of the generated collisions. I found that collisions
involved between an inattentive driver as the leader and an aggressive driver as the follower
are the most frequent ones, while collisions between two inattentive drivers are the severest
ones.

Lane change modeling using reinforcement learning. The second work in my PHD is on the
lane change modeling, where a reinforcement learning model has been developed. The model
aims to imitate real lane change decisions, based on the NGSIM traffic data-set. I proposed a



Q-learning model for the human lane change decisions. The model shows good performances
in mimicking human decisions with up to 95% of success. Moreover, the model uses numerical
traffic simulation (SUMO) to complete the unknown situations in the real data-set. We observed
that 13% additional traffic conditions were created by the traffic simulation environment.

LSTMneural network for human driving behavior. In the third work of my PHD, I proposed
an LSTM neural network model for car-following and lane-changing behaviors modeling on
road networks. In this work, I proposed different models with different input designs and
compared them. The selected model shows good performances on both predicting the longi-
tudinal speed and the lateral position of cars. Moreover, the obtained results show that the
selected model outperforms the classical IDM (Intelligent Driver Model) in the accuracy of
replicating car-following behavior. The models were implemented on the NGSIM 101 and the
HighD traffic data-sets.

Finally, I did some adaptation of proposed models and implemented them with different
combinations in the SUMO traffic simulator. In these experiments, all private cars were con-
trolled by our models, while other types of vehicles (trucks and motorcycles) were controlled
by the default SUMO model. I compared the models and derived their performance for both
the NGSIM 101 and the HighD traffic data-sets. I concluded that the AI-based models (a car-
following model using neural network and a lane-changing model using Q-learning) provide
better performance compared to the physical models. However, the simulation using those
models was calibrated on the NGSIM data-set and was not found to be equally at representing
HighD traffic. Finally, the NGSIM-calibrated IDM model is less sensitive to traffic data and can
be used to simulate unknown traffic like the HighD data-set, but it requires re-calibration with
the maximum speed of vehicles in the traffic.
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Resumé des Travaux de Thèse

La conduite autonome soulève un intérêt croissant et l’on s’attend à ce que les véhicules en-
tièrement autonomes puissent réduire les accidents de la route et améliorer la sécurité globale
du trafic. Un véhicule autonome est un véhicule entièrement automatisé qui est capable de
rouler sur la route dans toutes les conditions, sans intervention d’un conducteur. Cependant,
le système de véhicule autonome est très complexe, et consiste en un système de perception, un
système de décision et un système de contrôle. En outre, l’environnement routier est dynamique
et implique de nombreuses interactions entre les usagers de la route. Par conséquent, les tests
de conduite sont essentiels pour valider des fonctionnalités du véhicule autonome. Les tests de
conduite dans le monde réel semblent être un grand défi, car des accidents mortels pourraient
être provoqués par un véhicule autonome. Alternativement, la simulation numérique permet
de réduire le temps et les coûts, et d’éviter les situations potentiellement dangereuses pour la
validation des véhicules autonomes. L’intérêt croissant proté à l’utilisation de la simulation
numérique du trafic routier souligne l’importance d’une bonne compréhension et d’une bonne
modélisation du comportement de conduite humaine.

Dans cette thèse, le travail se concentre principalement sur la modélisation microscopique du
trafic pour les modèles de conduite humaine, dans le but de créer des simulations numériques
du trafic routier les plus réalistes possibles, à utiliser ensuite pour la validation et les tests des
fonctionnalités de véhicules autonomes. Les principales contributions de cette thèse consistent
en 1) une approche de modélisation microscopique du trafic pour la génération de collisions
inter véhiculaires dans la simulation numérique, basée sur une base de données réelles, 2)
un modèle par l’apprentissage par renforcement pour imiter le changement de voie humain
sur une autoroute, et 3) un modèle de réseau neuronal, en utilisant le modèle LSTM, pour
reproduire simultanément le comportement de poursuite et le comportement de changement
de voies.

Génération de collisions par la simulation numérique de trafic Mon premier travail dans
cette thèse est l’analyse du comportement du conducteur en ce qui concerne la loi de poursuite.
En outre, dans le but de tester la réaction d’un véhicule autonome en cas d’accident dans
le trafic, j’ai proposé une approche pour la génération de collisions entre véhicules. Après



avoir étudié différents profils de conducteurs dans un ensemble de données de trafic réelles,
j’ai classifié trois profils de conducteurs, en distinguant les profils agressif et inattentif, du
profil normal. J’ai ensuite proposé d’augmenter la proportion des deux profils de conducteurs
(agressif et inattentif) dans la population totale du trafic, et de simuler le trafic à l’aide du
simulateur SUMO (Simulation of Urban Mobility), pour observer les occurrences éventuelles
de collisions de voitures. Par cette méthode, j’ai caractérisé une relation entre les ratios de ces
deux profils de conducteurs sur l’ensemble de la population de conducteurs dans le trafic, et
le nombre de collisions de voitures. Cette approche est étudiée sur une partie de l’ensemble
de données NGSIM 101, et ensuite, validée sur une autre partie de cette base de données. J’ai
également étudié la gravité des collisions générées dans la simulation. J’ai constaté que les
collisions impliquées par un conducteur leader inattentif suivi par un conducteur agressif, sont
les plus fréquentes; tandis que les collisions impliquées entre deux conducteurs inattentifs sont
les plus graves.

Modélisation du changement de voie par apprentissage par renforcement Après avoir étudié
le comportement des conducteurs en termes de poursuite (car-following), le deuxième travail de
ma thèse porte sur la modélisation des changements de voie, où un modèle d’apprentissage par
renforcement a été développé. Le modèle permet d’imiter les décisions réelles de changement
de voie, en se basant sur l’ensemble de données de trafic NGSIM. En conséquence, le modèle
montre de bonnes performances dans l’imitation des décisions humaines de changement de
voie, avec jusqu’à 95 % de précision. En outre, le modèle utilise la simulation numérique
du trafic (SUMO) pour compléter les situations inconnues dans la base de données réelles,
où nous avons observé que 13 % des conditions de trafic supplémentaires sont créées par
l’environnement de simulation du trafic.

Modèle de comportement de conduite humaine par le réseau neuronal LSTM Dans le
troisième travail, j’ai proposé un modèle pour prédire le comportement de poursuite et le
comportement de changement de voies en même temps, en utilisant les réseaux neuronaux
LSTM. Dans ce travail, j’ai proposé différents modèles avec différentes conceptions des variables
d’entrée; puis je les ai comparés. Le meilleur modèle sélectionné montre de bonnes perfor-
mances pour la prédiction de la vitesse longitudinale et de la position latérale des voitures.
De plus, les résultats obtenus montrent que ce modèle sélectionné est plus performant que
le modèle classique IDM (Intelligent Driver Model) dans la précision de la reproduction du
comportement de poursuite. J’ai d’abord implémenté les modèles proposés sur la base de
l’ensemble de données NGSIM 101, ensuite sur l’ensemble de données HighD.

Enfin, j’ai implémenté les modèles proposés avec différentes combinaisons et quelques adap-
tations dans le simulateur de trafic SUMO, afin de simuler l’ensemble du trafic. Dans ces
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implémentations, toutes les voitures sont contrôlées par nos modèles proposés, alors que les
autres types de véhicules, y compris les camions et les motos, sont contrôlés par le modèle
SUMO par défaut. J’ai comparé les modèles et dérivé leurs performances dans la simulation
numérique du trafic, pour les deux trafics présentés respectivement dans la base de données
NGSIM 101 et la base de données HighD. J’ai trouvé que les modèles basés sur l’IA (un mod-
èle de poursuite utilisant un réseau neuronal et un modèle de changement de voie utilisant
l’apprentissage par renforcement) fournissent de meilleures performances, par rapport aux
modèles physiquesCependant, la simulation utilisant ces modèles proposés et calibrés avec la
base de données NGSIM n’arrive pas à reproduire correctement le trafic de la base de données
HighD. Le modèle IDM calibré par NGSIM est moins sensible aux données de trafic et peut
être utilisé pour simuler un trafic inconnu comme les données de HighD, mais il requiert une
recalibration avec la vitesse maximale des véhicules qui correspond à la condition de trafic
dans le base HighD.
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Chapter 1

Introduction

Traffic has a significant importance in our daily life, and traffic problems attract researches’
attentions, because of its complexity and the uncertainty that arises from human interaction.
Researchers are interested in understanding the traffic flow dynamics and the human driving
behavior for several reasons : 1) the increase in traffic demand and the limited capacity of road
cause a lot of jams; 2) the construction of road infrastructure and driving rules limit human
driving behavior; 3) traffic accidents occur every day, which may be caused by the inattention
of human drivers; 4) finding useful methods to optimize traffic is essential to improve traffic
conditions. This interest of understanding of road traffic dynamics and human driving behavior
helps the improvement of road traffic modeling and numerical simulation. In addition, those
research works lead to some further advances of some new applications in the future regarding
to the intelligent traffic system, such as the novel driver assistance system, and some works on
predicting the long-term evolution of traffic for optimizing traffic flow.

1.1 Problem statement

According to the UN, 68% of the world population is projected to live in urban areas by 2050
from 55% today (United Nations, 2018 n.d.). Mobility needs in cities are thus expected to
grow, at least proportionally to this rate, leading to an increase of car traffic. On the other
hand, urban space is scarce and new road infrastructure is not always a feasible solution.
The increasing imbalance between demand and supply is expected to aggravate congestion
phenomena and exacerbate all relevant externalities: delays and travel time variability, user
discomfort, noise and emissions, car crashes. As a result, traffic management remains a hot
topic as it allows a better usage of the existing capacity to counter for additional demand. Also,
traffic analysis continues to attract research attention as new data become available, new tools
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Introduction

become accessible (such as simulation), network optimization techniques are evolving, new
technologies allow for the implementation of cutting-edge techniques.

Some researchers and policy makers believe that the arrival of ICVs (Intelligent Connected
Vehicles) and AVs (Autonomous Vehicles)will provide a viable solution to urban mobility
(Sjoberg et al., 2017; Jiajia Liu and Jianhao Liu, 2018; Laris, 2018). Others argue that ICVs may
prove highly beneficial in terms of safety and mobility extension of certain groups (seniors,
etc), but can bring some unintended effect caused by this new class of travel, such as empty
runs (Pakusch et al., 2018). In any case, all analysts and stakeholders agree on the fact that the
expected benefits are not to be observed in the short-term.

The car industry, in particular, needs to validate and test ICVs in real driving situations both
in the field and on simulators; the latter mainly for the case of accidents and other extreme-case
scenarios. A transitional period will first occur with increasing levels of automation where
the cohabitation of both human and non-human driving vehicles need to be considered.
Highways are expected to be concerned first as they provide a better controlled environment
compared to city centers. The transitional phase attracts significant research interest as it is
expected to be critical for the future full-scale deployment of ICVs and their characteristics:
legislative, technical and operational.

The first step towards describing the critical transitional period is to accurately describe
driving behaviors. Driving behavior includes a number of decisions made by the driver under
variable driving conditions (speed choice, position on the pavement, distance to preceding
vehicle, lane-changing maneuver, acceptance gap), but also some rather intrinsic attributes
such as reaction time. It is known and well established that driver behaviors are strongly
heterogeneous across individuals and, even, across choices of the same individual under
different conditions and states. In fact, human factors that are not easily quantified and
assessed, such as fatigue, have an important impact upon driving behavior. Consequently, an
individual’s behavior is hard to be predicted and the collective behavior of a group of drivers is
predictable at a certain level of certainty and error. Most behavioral studies use average values
of the choice parameters for statistical aggregation. However, a more detailed analysis would
provide additional insight and contribute to the better understanding of traffic dynamics over
the transitional phase.

Secondly, the aspect of the safety outcome should be put forward after relevant quantitative
analysis in order to validate ICVs and increase their acceptability rate as well as the confidence
of the general public. Currently, traffic data related to incidents and accidents (both pre-
and post-crash) remain scarce. Collisions are rare events and naturalistic experiments or full-
coverage CCTV (Closed-circuit television) data do not capture them in sufficient numbers to
perform statistical analysis. As a result, crashes are poorly represented in traffic simulators
also. Regarding pre-crash patterns, risky situations and traffic conflicts lead to collisions with a

2



1.2 Industrial context

specific probability that is not always data-proven. Regarding to post-crash patterns, simulators
fail to reproduce the ground-truth and, in most cases, they simply remove all implicated
vehicles (SUMO safety, 2021 n.d.). Secondary accidents are thus not considered even though
studies show that they represent half of total crashes. The problem is even greater when it
comes to ICVs as crash data are almost non-available. In conclusion, a more sophisticated
representation of crashes in traffic simulators proves to be necessary for the test and validation
of ICVs.

Thirdly, nowadays many tools and knowledge bases become available and have not been
fully exploited in the purpose of better understanding human driving and proposing high-
performance solution of this cohabitation of human diving and non-human driving. Those
tools include (i) new disaggregated data (especially from traffic cameras and drones), (ii) latest
developments of traffic software integrating ICV functionalities, (iii) new powerful methods
(such as deep learning, reinforcement learning) suitable for modelling from data, and (iv)
latest research results from a constantly growing corpus of literature. As a result, we identify
here an urgent need for integration and synthesis of existing tools and knowledge in order to
propose a holistic approach for the representation and assessment of the cohabitation period,
its possible characteristics and risks.

In response to previous remarks and observations, the present thesis focuses on traffic
modelling in the context of validation and testing of ICVs especially during the critical
period of cohabitation of human and non-human driving. The case studies target urban
highways and heterogeneous human driving behaviors under variable traffic dynamic states.
From a methodological standpoint, effort was made to integrate many new tools that had not
been fully exploited before: real world traffic data, sophisticated modeling and simulation
techniques and statistical methods.

1.2 Industrial context

The present PhD thesis was realized in an industrial context as it was partly financed by
Renault, the leading car industrial stakeholder in France. This paragraph summarizes industrial
challenges.

1.2.1 Autonomous Vehicles

An autonomous vehicle is a vehicle that is capable of sensing its environment and moving
safely itself in the road traffic. Autonomous vehicles have been developed following a tradi-
tional robotics pipeline and there are three main modules in the autonomous vehicle system:
Perception, Decision, Control. I show the architecture and an image of autonomous vehicle
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in the Figure 1.1. The autonomous vehicles need to be equipped with a variety of sensors to

Figure 1.1 – Autonomous vehicle architecture

perceive their surroundings, such as radar, lidar, sonar, GPS and inertial measurement units.
The Perception module takes sensor data as input and produces a high-level reconstruction and
recognition of the scene. The Decision module then chooses the desired behavior and trajectory
of the vehicle, based on the current situation Finally, the Control module manipulates forces, by
the way of steering and throttle controls, to follow the desired trajectory decided by the decision
module. The decision and control is the most complex part, and in the context of Autonomous
Driving, the decision and control module is often implemented with a hierarchical structure
whose layers work at different timescales.

• Route Planning: The highest level is the route planning, in which, vehicle chooses a route
through the given road network. Such a route is formulated as a problem of finding a
cost-minimization path on a road network.

• Behavior Decision Making: After choosing the optimal path from route planning, the
autonomous vehicle should be able to navigate the selected route and interact with
other traffic components depending on the rules of road, road conditions, and signals of
infrastructure. In this layer, an appropriate behavior can be selected based on respecting
every constraint. So in this layer, it takes optimal route path decided from Route Planning,
combining the information of other agents in the road (other vehicles around, obstacles),
road signs (eg. speed limit), rules of road (eg. propriety of right) as inputs.

• Motion Planning: Once the Behavioral Layer decides on which driving scenario to be
performed, the decision arrive into the motion planning to get a path and trajectory
considering comfortable of passenger and avoidance of collision with obstacle.

• Vehicle Control: In order to execute the trajectory calculated inMotion Planning path, the
vehicle controller is used to select appropriate inputs to figure out the motion and correct
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errors. This layer aims to enhance and make the system more stable. It takes path and
trajectory found in before layers and puts out the steering, throttle or brake commands.

The system of autonomous vehicle control is complex, each layer carries out an appreciate
decision in each time step while taking the result of layer before and other environment
and estimation information as inputs. Otherwise, a good decision making depends of the
capacity of estimation environment information and decision model. Every decision need to
be computed based on scenario (task of behavior decision making), road conditions (highway,
urban, national way), surrounding vehicles types (moto, normal car, truck) and their behavior.
The final motion decision need consider about safety, comfort of passenger and capacity of the
vehicle.

1.2.2 Validation of autonomous vehicles

As indicated above, the autonomous vehicle represents a highly complex system. A failure
can occur during any stage of this process, which will result in a wrong behavior on the road.
Nowadays, the self-driving software testing is realized by million lines of codes included in all
the algorithms of perception, decision, and control for the autonomous vehicle. However, it is
not enough to ensure the testing of the autonomous vehicle facing on all the various situations
in the traffic (Koopman and Wagner, 2016; Koopman and Wagner, 2017; Hutchison et al.,
2018). According to the authors in (Kalra and Paddock, 2016), to make a car 95% as safe as an
experienced driver, autonomous vehicles would have to be driven hundreds of millions of miles
and need to be failure-free. Even to make sure the autonomous vehicle is 10% or 20% safer
than humans, hundreds of billions of miles autonomous driving are needed to demonstrate
their reliability in terms of fatalities and injuries (Kalra and Paddock, 2016). Alternatively, due
to the increase of computer simulation techniques, traffic simulations can benefit the training
and testing of autonomous vehicles (Belbachir et al., 2012; Chao et al., 2020). In simulation
methods of the validation of autonomous vehicle, we can differentiate three principal methods:

1. Data-driven resimulation : Representing the collected real driving scene directly in
numerical simulators of data recorded during real driving testing to resimulate what
happens in the road numerically. In this way, we can insert autonomous vehicle in the
traffic to see how it works in the traffic. The resimulation of driven data allows checking
the performance of each components of autonomous vehicle during driving. That is
the most simple way by numerical simulation to make sure if the perception system
recognizes well the traffic scene, if the decision system makes a good decision, and
the controller works well. Resimulation could be the first test step for some software
updating.
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2. Model-based simulation: This approach is entirely numerical and it generates numerical
traffic data. We can easily parameterize the behavior of each vehicle and obtain various
traffic conditions. In this approach, the test of autonomous vehicle is expected to be
divided into two types : Scenario-Based Validation and Validation in a large-scale traffic.

• Scenario-based Validation: In this method, we define specific scenarios to test
separately the functionalities of the autonomous vehicle. such as scenario for testing
Adaptive Cruise Control (ACC), scenario for testing the Automatic Emergency
Braking (AEB), scenario for testing lane changing and so on.

• Validation in a large-scale traffic: Finally, we expect the simulation of traffic can
achieve as a high level of reality, that the autonomous vehicle can drive in simulation
like driving in the real world for a long trajectory.

3. Virtual immersive simulator: A person drives a real vehicle that is connected to the
environment through simulator software using virtual reality glasses or a 180-degree
high-resolution screen. This technique is useful in studying the ergonomics and behavior
of drivers using autonomous driving modes, while the realism of the scenario remains
always a challenge.

All these simulation approaches of the validation of autonomous vehicle need a reconstruction
of a realist traffic in simulation environment. That encourages a hard research work on the
road traffic modelling and human driving behavior modelling.

1.2.3 Some relative projects in Renault

Renault, as known as one of the biggest automobilemanufacturers in theworld, also has a highly
interest of developing the autonomous vehicle and investing in autonomous vehicle simulation
to complete tasks of the validation of autonomous vehicle, by the real-driving testing. Renault
participates in some European projects on the validation of autonomous vehicle. The project
PEGASUS (Pütz et al., 2017) develops a validation framework with a database containing
relevant traffic scenarios. Scenarios can then be generated for a single use case by choosing
certain values for all inputs, and can be launched into a Renault in-house simulation software
called SCANeR Studio (Champion et al., 1999). As well, Renault collaborates with other
participants in the project UDRIVE (Nes et al., 2019), which has established a rich cross-
European naturalistic driving database to study the human driving behavior. This databases
provides extensive, reliable insights into driving behavior in real traffic as a foundation for
improving the safety and sustainability of European road traffic. In addition, Renault has a
long-term strategy on launching a massive simulation more and more accessible, which is
useful to complement real test-driving. However, the models in SCANeR Studio for simulating
the traffic have many limitations, which avoid to have human-like vehicle movements, that is
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why the models used in SCANeR Studio need to be improved and to be updated. Moreover,
the simulation of several accidents in the traffic via numerical simulation is interesting for
the validation of the autonomous vehicle in dealing with traffic accidents. However, for the
generation of traffic with accidents, this modelling mechanism is even not completely cited in
the existent traffic simulators for the research work, such as SUMO, Vissim, Aimsum. Therefore,
the proposition of simulating accidents is also an objective of this thesis.

1.3 Scope and objectives

Therefore, we are interested in this thesis in microscopic traffic models, focusing on the human
driving maneuvers (longitudinal and lateral decision making in driving task), related to vehic-
ular interactions. By this kind of models, we would like to build a realistic traffic environment
for testing and validating some autonomous vehicle’s features in the future. There are some
interesting topics for this thesis:

Car-followingmodels Car-followingmodels describe the longitudinal behavior of the vehicle.
A car-following model is complete if it is able to describe all situations including acceleration
and cruising in free traffic, following other vehicles in stationary and non-stationary situations,
and approaching slow or standing vehicles, and red traffic lights. However, CF models have
been well developed compared to lane changing models. It is important to well calibrate
car-following models.

Lane changing models Lane changing models describe the lateral behavior of the vehicle.
Considering LC behavior, the modeling efforts are not as many as in the CF behavior. This
is due to the complexity of the LC behavior, which is affected by the surrounding vehicles
(of the considered vehicle) and by the traffic flow environment (Toledo, Koutsopoulos, and
M. Ben-Akiva, 2007). In some reviews of lane changing models (Toledo, Koutsopoulos, and
M. Ben-Akiva, 2007; Moridpour, Sarvi, and Rose, 2010; Z. Zheng, 2014), the authors present
several rule-based lane changing models, but they tend to exhibit limited performance due to
the uncertainty and to the complexity of the driving environment. For this reason, Machine
Learning methods, and especially Reinforcement Learning (RL) ones, provide an alternative
approach, which has shown a great success in many different domains, such as robotics, video
game playing, dialogue chat bot, etc.

A simultaneous model for car-following and lane changing As well known, two driving
behaviors are generally distinguished in the microscopic traffic modeling: Car-Following
(CF) and Lane Change (LC), which describe respectively longitudinal and lateral vehicular
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movements. Researchers begin to consider the development of models which can describe
the car-following as well as the lane changing behaviors, in the same time. This is important
because these two behaviors are related each other.

Traffic accidents One of the major challenges of autonomous vehicles is communicating with
other vehicles and accurately recognizing the patterns of human driving behavior in mixed
traffic (Schwarting, Alonso-Mora, and Rus, 2018). As well known, human driving behavior
is not perfect and million deaths occur each year due to traffic accidents, among that, 90% of
accidents are produced because of driver’s mistakes and inattention(Singh, 2015). Therefore,
the process of testing autonomous vehicles in dealing with traffic accidents is very important.
However, the relationship between different driver profiles and the car-collision occurrences
has not been understood clearly. Meanwhile, the procedure of car-collisions generation in
traffic numerical simulators is not fully integrated. By this point of view, it is interesting to
identify the driver profiles in a traffic data, and understanding their relationship with accident
occurrence.

To clarify, the purpose of this thesis is to provide additional insight in the test and validation
of ICVs by exploiting and further developing recently developed methods and tools. The
specific thesis objectives can be summarized as follows:

1. Enhancing car-collision generation in numerical traffic simulation

2. Exploring the impact of the presence of different driving profiles in the same traffic stream
in terms of both car-following behavior and collision severity

3. Enhancing the realism of lane-changing behaviors using reinforcement learning

4. Enhancing the realism of simultaneous car-following and lane-changing behaviors using
neural networks

The level of traffic analysis adopted was microscopic. The disaggregated traffic databases used
were the NGSIM 101 dataset and the HighD dataset. The main traffic simulator was SUMO
(Simulation of Urban Mobility). All the data and tools are fully described in the following
chapters.

1.4 Outline and Contributions

The remainder of the manuscript is organized as follows:

Chapter 2 reviews the state of the art for the traffic modelling, from classical models to the
models using artificial intelligence.
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Chapter 3 presents our first researchwork on the analysis of driver behavior and proposition
of a novel approach of vehicular-collision generation in numerical traffic simulator. This work is
based on a real traffic dataset, the NGSIM dataset, and considered only car-following behavior.

Chapter 4 describes the secondwork inmy PHD, where we proposed a lane changingmodel
using Reinforcement Learning. This is a model with imitation of real lane change decision
from the NGSIM dataset.

In Chapter 5, a long short-term memory (LSTM) neural network model is proposed to
replicate simultaneously car-following and lane-changing behaviors. This work is done first
using the NGSIM dataset, and then validated using the HighD dataset.

Chapter 6 illustrates the simulation results on simulating a whole traffic, where we control
all the vehicles in the traffic using our proposedmodels. In order to understand the performance
of each model, we implemented these models with some adaptation in SUMO for the case of
NGSIM and HighD and analyzed data sensitivity of all proposed models.
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Chapter 2

Literature Review

In the recent years, many contributions have been made on road traffic modeling, based
on several approaches and disciplines, including physics, mathematics, machine learning,
behavioral psychology, etc. That leads to a better understanding of driver behavior and traffic
flow dynamics. Mathematical models can be roughly classified into macroscopic, microscopic
and mesoscopic models. Macroscopic models describe the collective state of traffic in terms of
space-time fields for local density, speed, and flow; while microscopic models describe traffic
flow from the perspective of individual drivers and vehicles. Mesoscopic models, on the other
hand, combine the strengths of microscopic and macroscopic models to simulate traffic at
different levels of detail. This chapter reviews the most recent approaches and methods of road
traffic modeling and simulation.

Contents
2.1 Overview of road traffic modelling and simulation . . . . . . . . . . . . . . . 12

2.2 Little words on macroscopic traffic modelling . . . . . . . . . . . . . . . . . . 13

2.3 Classical microscopic traffic models . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Modelling of driving behavior by artificial intelligence . . . . . . . . . . . . 23

2.5 Traffic safety and Accidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Road traffic simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Road traffic data-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

11



Literature Review

2.1 Overview of road traffic modelling and simulation

As indicated above, road trafficmodels can be classified by distinguishing the scale of modeling.
In one of the most recent publication of the SUMO (Simulation of Urban Mobility) traffic
simulator (Lopez et al., 2018), four scales have been considered:

• Macroscopic : presents traffic flow on the basis of continuous fluid dynamics theory,
which handles the description of aggregated information such as density (number of
vehicles per km), mean speed (km/h), and the vehicular flow (number of vehicles per
hour). Macroscopic models describe vehicle’s behavior and interactions at a low level of
detail, focusing on reproducing aggregated behaviors measured with quantities such as
flow density and traffic flux (Chao et al., 2020). At this level of modelling, the vehicles’
behavior is homogeneous. Such models are limited for simulating street level traffic,
which requires the representation of detailed interactions among individual vehicles.

• Microscopic : each vehicle and its dynamics are modeled individually. Microscopic
models are developed for modelling heterogeneous behaviors of agents in the traffic, for
diverse road typologies, and interactions among surrounding vehicles. In microscopic
models, car-following models and lane changing models are two fundamental ones. They
describe respectively the vehicle longitudinal and lateral movement.

• Mesoscopic: a mixture of macroscopic and microscopic. Mesoscopic models are an
intermediate approach between macroscopic and microscopic approaches. The core idea
of the mesoscopic models is to describe traffic flow dynamics in an aggregate manner
while representing the behaviors of individual drivers using probability distribution
functions(Chao et al., 2020). Herein, vehicle movement is mostly simulated using queue
approaches and single vehicles are moved between such queues.

• Sub-microscopic : each vehicle and also functions inside the vehicle are explicitly simu-
lated, for example, the engine’s rotation speed in relation to the vehicle’s speed or the
driver’s preferred gear switching actions. In such models, the vehicle dynamics are
generally complex.

One of the advantages of macroscopic models is the computation and simulation time, which
is very low compared to the ones needed in microscopic models. Consequently, large networks
can be modeled and numerically simulated. However, the vehicle individual behavior is not
considered in macroscopic models. For the validation of autonomous vehicle features, one
needs to test and validate the safety aspects of the autonomous vehicle’s decision making for
its movements. It is obvious that the numerical simulation of the local interactions of vehicles
is important in this case. Microscopic and/or sub-microscopic traffic models are then necessary.
They are more accurate for the modeling of individual vehicle behavior. Sub-microscopic
traffic models allow more detailed computations compared to simple microscopic simulations.
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Figure 2.1 – Four different approaches for traffic modelling and simulation

Furthermore, sub-microscopic models require longer computation times, which restrains the
size of the networks to be simulated.

We are interested in this thesis in microscopic traffic models, focusing on the human driving
manoeuvres (longitudinal and lateral decision making in driving task), related to vehicular
interactions. By this kind of models, we would like to build a realistic traffic environment for
testing and validating some autonomous vehicle’s features in the future.

My literature review on the traffic flow modeling is mainly based on one book and some
research articles. The book (Treiber and Kesting, 2013b) offers a comprehensive and didactic
account of the different aspects of vehicular traffic flow dynamics, and the calibration mech-
anism for the traffic flow models. In (Kotusevski and Hawick, 2009; Chao et al., 2020), the
authors summarized the traffic simulation techniques including different simulation soft-wares,
traffic models, traffic data-sets, with some new applications in Autonomous Vehicles. In this
chapter, I will begin with a short talk on macroscopic models, then give a review on road traffic
microscopic models, with more details.

2.2 Little words on macroscopic traffic modelling

Macroscopic traffic models are generally based on a flow-density (or equivalently speed-
density) relationship, traditionally called the fundamental diagram. The latter is obtained from
collected traffic data, and presents generally at least two traffic phases: a free flow phase where
the vehicular flow increases with the car-density, and where the vehicles run freely; and a
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congestion phasewhere the vehicular flowdecreaseswith the car-density, andwhere congestion
appears. Macroscopic models are generally capable to reproduce important phenomena in road
traffic such as the backward propagation of congestion, as well as the shock-wave propagation.
One of the most known macroscopic model is the first order one, called the model of Lighthill
Whitham and Richards (LWR) (Khan and Gulliver, 2018). This model combines simply the
conservation equation of traffic with a fundamental diagram curve formula. Several other
models, mainly second order ones have been developed, in particular to include the acceleration
variable into the traffic modeling, such as Payne–Whitham (PW) model (Grewal and Payne,
1976).

2.3 Classical microscopic traffic models

Car-Following (CF) and Lane-Changing (LC) maneuvers describe vehicular longitudinal and
lateral interactions on the road respectively. They are two fundamental models for the mi-
croscopic traffic modeling and simulation. CF models describe the movements of a vehicle
in response to the actions of its leading vehicle (LV), while LC models describe the choice of
lane in a multi-lane roads. CF models generally compute the vehicle continuous longitudinal
movement, e.g. speed or acceleration. Lane changing models are different from car-following
models. The decision of LC is a discrete choice, i.e., performing a lane change, or not. Neverthe-
less, discrete decisions and actions can also pertain to the longitudinal dynamics; for example,
when approaching a yellow traffic light, drivers have to decide whether it is safe to pass or not
safe, need to stop. In a traffic simulation system, it is often essential to apply discrete choices,
that involves several levels of decision:

1. Strategic level aims at choosing the destination, the mode, and the route.

2. Tactical level includes changing lanes to enter a priority road. This includes also cooperative
behavior such as allowing another vehicle to merge at a point of lane closure. However,
modeling the tactical level is notoriously difficult and is only attempted in the most
elaborate commercial simulators (Treiber and Kesting, 2013b).

3. Operative level, the actual decision is made at this level; e.g. the decision of changing lane,
stay on the same lane, stop for the yellow traffic light; etc.

4. Post-decision level, the actions executing the decision are simulated, e.g. performing the
lane change or keeping to one’s lane, waiting or entering a priority road, or cruising
versus stopping at the traffic light.

The CF and LC models we consider here are restricted to the operative and post-decision levels.
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2.3.1 Car-following models

A car-following model describes the movements of vehicles in response to the actions of their
respective leading vehicles (LV). In a CF model, variables on the individual movement of each
vehicle are considered: xn (position), vn (speed), an(acceleration); see Fig. 2.2, where n is the
index of the considered (following) vehicle, and n − 1 is the index of the leader one. Some
relative variables are also used, such as ∆x = xn−1 − xn (the inter-vehicular distance, which is
the rear-to-front bumper distance of two vehicles), ∆v = vn−1 − vn (the relative speed), and
∆a = an−1 − an (the relative acceleration).

Figure 2.2 – Car-following scenario description

Car-following models are based on the principle of stimulus-response, assuming that every
(following) car responds at time t + ∆t to a stimulus of its leader car at time t. The time step ∆t

represents the discritization in time, including implicitly the reaction time of the following car.

Among the main car following models, we distinguish First order models (formula (2.1))
from second order ones (formula (2.2)), where ẋn(t) and ẍn(t) denote respectively the car
speed and the car acceleration of vehicle n at time t.

ẋn(t + ∆t) = f(∆x(t), ẋn−1(t)) (2.1)

ẍn(t + ∆t) = f(∆x(t), ∆v(t), ẋn(t), ẋn−1(t), . . .) (2.2)

Several interesting reviews on car-following can be found in the literature (Brackstone and
Mark, 1999; Mohammad and Z. Zheng, 2014; Aghabayk, Sarvi, and Young, 2015). I briefly
present here the most commonly used. The first car-following models were proposed in 1950s.
Since then, a large number of models were developed; we cite the Gazis-Herman-Rothery
model (Gazis, Herman, and Rothery, 1961), the optimal velocity model (Bando et al., 1995), the
models proposed by Helly (Helly, 1959), Gipps (Gipps, 1981), and Wiedemann (Wiedemann,
1974), and the intelligent driver model (Treiber, Hennecke, and Helbing, 2000). Car-following
models can be classified into five categories (M. Zhu, Xuesong Wang, Tarko, et al., 2018):
stimulus-based, safety distance, desired measures, optimal velocity, and psycho-physical mod-
els.

15



Literature Review

Gazis-Herman-Rothery (GHR) model

The GHR model (Chandler, Herman, and Montroll, 1958) is a stimulus–response model in
which drivers perform their acceleration/deceleration depending on car-speeds, relative car-
speeds with respect to leading vehicles, and inter-vehicle distances.

an(t + ∆t) = αvn(t)β ∆v(t)
∆x(t)γ

(2.3)

Where, α, β, γ are parameters of the model.

Gipps model

The Gipps model (Gipps, 1981) was developed based on the required safety-distance between
two consecutive vehicles to avoid car-collision. The speed of the follower vehicle is chosen to
always maintain a minimum distance with the leader vehicle, in order to prevent collision,
even when the leader vehicle brakes suddenly. In this model, the safe gap with the leading
vehicle needs to exceed a minimum value s0 plus a stopping distance. The worst case scenario
is when the leading vehicle suddenly decelerates and stops. In this case, the following vehicle
needs to brake to stop too. To guarantee safety, the final distance to leading vehicle should not
become smaller than the minimum gap s0. The safe distance can be formulated as follows :

ssafe = s0 + vnT + v2
n

2b
−

v2
n−1
2b

(2.4)

where v2
n

2b and v2
n−1
2b describe the necessary stopping distance for the following vehicle n and

for the leading vehicle n− 1 respectively, b is the maximum deceleration, and T is a reaction
time for the following driver. In this way, the safe speed and the real speed taken in t + ∆t of
vehicle can be formulated as follows :

vsafe(∆x, vn−1) = −b∆t +
√

b2∆t2 + v2
n−1 + 2b(∆x− s0) (2.5)

v(t + ∆t) = min[v + a∆t, v0, vsafe(∆x, vn−1)] (2.6)

where a is the vehicle maximum acceleration, v0 is the desired speed for the driver; see Tab. 2.1
where examples for the values of the Gipps model parameters are given.

Krauss model

The Krauss model (Krauß, 1998) is also based on a safety distance and it is car-following model
by default in SUMO (Simulation of Urban Mobility) traffic simulator. As for the Gipps model,
the Krauss model calculates directly the follower speed v(t + ∆t) with a delay of reaction
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Table 2.1 – Parameters of the Gipps’ model and typical values in different scenarios (Treiber and Kesting,
2013b)

Parameter’s name Highway City
Desired speed v0 120 km/h 54 km/h
reaction time T 1.1 s 1.1 s
Minimum distance s0 3.0 m 2.0 m
Acceleration a 1.5 m/s2 1.5 m/s
Deceleration b 1.0 m/s2 1.0 m/s

time T . The speed is carried out from a desired speed with a perturbation of random human
imperfection (µ). The Krauss model is an extension of the Gipps one, in which, the safe distance
is taken into account to avoid car-collisions. So that the desired speed is also carried out from
the comparison among: safe speed, maximal speed, and the maximal speed supposed using
maximal acceleration. The safe speed is submitted to the condition of collision avoidance.

v(t + ∆t) = max(0, vdes(t)− µ) (2.7)

vdes(t) = min[v + a∆t, v0, vsafe(∆x, vn−1)] (2.8)

vsafe(∆x, vn−1) = vn−1(t) + ∆x(t)− vn(t)T
vn−1(t)+vn(t)

2b + T
(2.9)

In this model, b, a are the maximal deceleration and maximal acceleration, respectively, v0 is
the desired speed of the following driver, and T is its reaction time.

Wiedemann model

The Wiedemann model (Wiedemann, 1974) and Wiedemann 99 (VISSIM, 2012) are psycho-
physiological models. The Wiedemann model is the car-following model by default in Vissim
simulator. It describes the psycho-physiological aspects of driving behavior in terms of four
discrete driving regimes, for different modes of operation, divided into ‘no reaction zone’
(free-road), ‘closing in’, ’must decelerate’, and ‘car-following’ by human perceptual. In each of
these regimes, different acceleration functions a(s, v, ∆v) apply. The boundaries between the
regimes are given by nonlinear equations of the form f(s, v, ∆v) = 0 defining curved areas in
three-dimensional state space (s, v, ∆v), spanned by the exogenous variables (M. Zhu, Xuesong
Wang, and Y. Wang, 2018).

Full velocity difference(FVD) model

The FVD model (Jiang, Wu, and Z. Zhu, 2001) resembles to the optimal velocity model devel-
oped in (Bando et al., 1995). The acceleration function consists in a term proportional to an
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optimal velocity v∗(∆xn) and a term that takes into account the velocity difference as a linear
stimulus :

a(t + ∆t) = α[ v∗
n(∆x(t)− vn(t))] + λ∆v(t) (2.10)

λ =

 λ0 if ∆x(t) ⩽ sc

0 if ∆x(t) > sc

(2.11)

where α and λ0 are constant sensitivity coefficients, sc is a threshold between car-following
and free driving, and v∗

n(∆x(t)) is the optimal velocity depending on the headway to the lead
vehicle, which can be defined as :

v∗
n(∆x(t)) = v0

2

[
tanh(∆x(t)

b
− β)

]
− tanh(−β) (2.12)

where v0 is the desired speed of the following vehicle, β and b are parameters.

Intelligent Driver Model (IDM)

The IDM (Treiber, Hennecke, and Helbing, 2000) output is the acceleration chosen by the
follwing driver :

a(t + ∆t) = a

[
1−

(
vn

v0

)δ

−
(

s∗(vn, ∆v)
∆x

)2]
, (2.13)

where

s∗(vn, ∆v) := s0 + max
(

0, vnT + vn∆v

2
√

ab

)
, (2.14)

where T is a minimal time headway, a and b are maximal acceleration and deceleration respec-
tively, s0 is the minimal gap and v0 is the desired speed which describe also the (maximal)
desired speed. This model can describe vehicles’ behaviors in a free road and the car-following
dynamics.

On a free road, the acceleration respects a relation with the current speed : a[1− (vn
v0

)δ]. It
decreases to zero when approaching the desired speed. The parameter δ controls the reduction
of the acceleration value. The decision of decelerating depends on the desired distance s∗ and
the actual gap. When the actual gap is close to s∗, the acceleration is nearly zero. Meanwhile,
when approaching a slower vehicle, s∗ increases and it decreases when the leader is faster. In
addition, see Table 2.2 and Table 2.3 for the examples of IDM model parameters.
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Table 2.2 – Parameters of IDM for different vehicle types (Treiber and Kesting, 2013b)
Parameter’s name Car Truck
Desired speed Vdesired 120 km/h 80 km/h
Minimal Time headway T 1.5 s 1.7 s
Minimal gap s0 2.0 m 2.0 m
Maximal Acceleration a 0.3 m/s2 0.3 m/s
Maximal Deceleration b 3.0 m/s2 2.0 m/s
Acceleration exponent δ 4 4

Table 2.3 – Parameters of IDM in different scenarios (Treiber and Kesting, 2013b)
Parameter’s name Highway City traffic
Desired speed Vdesired 120 km/h 54 km/h
Minimal Time headway T 1.0 s 1.0 s
Minimal gap s0 2.0 m 2.0 m
Maximal or comfortable Acceleration a 1.0 m/s2 1.0 m/s
Maximal or comfortable Deceleration b 1.5 m/s2 1.5 m/s
Acceleration exponent δ 4 4

2.3.2 Lane change models

Lane change models determine lane change choices on multi-lane roads and speed adjustments
related to lane changing. Considering lane changing behavior, the modeling efforts are not as
many as in the CF behavior. This is due to the complexity of the LC behavior, which is affected
by the surrounding vehicles and by the traffic flow environment (Toledo, Koutsopoulos, and
M. Ben-Akiva, 2007). Fig. 2.3 illustrates surrounding vehicles in LC models.

Figure 2.3 – The considered surrounding vehicles in the LC models

Lane change models are combined with car-following ones in order to have a complete mi-
croscopic traffic model. When the car-following model is parameterized to simulate aggressive
drivers, the lane-changing driver profiles should be aggressive as well, without introducing
new parameters. In some reviews of lane changing models (Toledo, Koutsopoulos, and M.
Ben-Akiva, 2007; Moridpour, Sarvi, and Rose, 2010; Z. Zheng, 2014), the authors propose
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several rule-based lane changing models. More specifically, LC includes two components :
the decision to consider a lane change and the decision to execute the lane change. Lane
change decisions are often categorized into mandatory (MLC) or discretionary (DLC). MLC
is performed when the driver must leave the current lane to reach the planned destination.
DLC is performed in order to gain a speed advantage or a better driving environment. In (Z.
Zheng, 2014), the authors mentioned that the major for LC models in the literature can be also
categorized into two groups: 1) models that aim to capture the lane changing decision-making
process, where the LC decision is taken only depending on the drivers motivation; 2) models
that aim to quantify the impact of lane changing behavior on surrounding vehicles, where the
LC decision is taken related to a predictive impact for the overall traffic agents. Furthermore,
gap acceptance models are used to model the execution of lane changes and with the purpose
of traffic safety. We are interested in this thesis in mostly DLC models that the decision of lane
changing is motivated by a gain in speed, and in the safety of execution of lane changing, which
is important. I summarize below an overview of classical LC models types; see 2.4.

Figure 2.4 – An overview of LC models types

Gipps’ LC model:

In the Gipps’ LC model (Gipps, 1986), the decision of lane change is based on the following
factors:

• whether it is physically possible and safe to change lanes without an unacceptable risk of
collision,

• the location of permanent obstructions,

• the presence of special purpose lanes such as transit lanes,
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• the driver’s intended turning movement,

• the presence of heavy vehicles,

• the possibility of gaining in speed

In the Gipps’ model, which is deterministic, a driver decides to maintain the desired speed
or prepare for the LC maneuver, depending on the distance to the intended LC. Moreover, this
model assumes that a lane changing takes place only when it is safe, and the gap is enough in
the target lane. This model has a serious limitation in congested and incident-affected condition.
In the model of Yousil and Hunt (Yousif and Hunt, 1995), a similar logic is used to model
the decision of lane changing. Instead of a deterministic process of each rule, the model of
Yousil and hunt introduces randomness, to make the model more realistic. More specifically,
the probability for a driver to start a mandatory LC at a distance xn from the downstream node
(or incident, lane drop, etc.) is defined as follows :

pn =

 exp[(xn − x0)2/σ2
n] if xn > x0

1 if xn ⩽ x0
(2.15)

MOBIL (Minimizing Overall Braking Induced by Lane Changes)

MOBIL model (Kesting, Treiber, and Helbing, 2007) is a discrete decision of lane change
maneuver, which is used by combining with a longitudinal acceleration model. According to
this model, a vehicle n ∈ [1, Nv] decides to change lane when:

1. it is safe to cut-in:

ãn ≥ −bsafe;

2. there is an incentive, for the ego-vehicle and possibly its followers:

ãn − an︸ ︷︷ ︸
the vehicle

+p

 ãf − af︸ ︷︷ ︸
old follower

+ ãf ′ − af ′︸ ︷︷ ︸
new follower

 ≥ ∆ath;

where f is the old follower in the current lane, f ′ is the new follower in the target lane. ãx

and ax, x ∈ {n, f, f ′} are the future and current acceleration if the lane change takes place
and the future acceleration ãx is predicted by a longitudinal acceleration model (e.g. IDM).
The parameter p ∈ [0, 1] models the politeness. p = 0 means a very altruistic behavior, and
p ∈ [0, 0.5] is realistic behavior, while p = 1 means very egoistic. We notice that the safety
criterion is not ignored: p < 0: very malicious that the driver does not respect safety criterion.
δath is a threshold to respect an overall acceleration if lane change takes place. bsafe is the
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maximum braking imposed to a vehicle for the lane changing. See Tab. 2.4 for the example of
MOBIL model’s parameters.

Table 2.4 – Parameters of MOBIL model (Kesting, Treiber, and Helbing, 2007; Treiber and Kesting,
2013b)

Parameter’s name value
Politeness factor p [0,0.5]
Maximum safe deceleration bsafe 4m/s2
Threshold ath 0.2 m/s2

By application of the right priority rule onmost European highways, left lane should only be
used for the purpose of overtaking, and passing in the right lane is forbidden unless the traffic
is congested. In this case, the ’keep-right’ directive of the lane-usage rule is implemented by a
constant bias ∆abias in addition to the threshold ∆ath. Thus, the MOBIL model is reformulate
to :

• left to right : ãeur
n − an + p(ãf − af ) > ∆ath −∆abias

• right to left : an − ãeur
n + p(af ′ − ãf ′) > ∆ath + ∆abias

where

ãeur
n =

 min(an, ãn) if vn > vlead > vcrit

an otherwise

where ãeur
n is the acceleration in the right lane, ãn is the acceleration in the left lane, vlead is the

speed of the preceding vehcile in the left lane, vn is the speed of lane changer in the right lane
and vcrit is a critical speed below which the traffic is congested, e.g. vcrit = 60km/h. ∆abias can
be set to 0.3m/s2.

Cellular automata based LCD models

A typical CA (CA= (ε, Σ, N, δ)model includes four key components : the physical environment
(ε), the cells’ states (σ), the cells’ neighborhoods (N), and local transition rules (δ), which
uses integer variables to describe the dynamical properties of the system. In traffic CA models,
the road is divided into cells of a certain length ∆x, and the time is discretized into steps of ∆t.
Each road cell can be occupied by a vehicle or it can be empty. In (Barlovic et al., 1999), the
author proposes a microscopic traffic model (car-following and lane changing) based on CA,
in which the motion of a vehicle performs with respect to following rules:

• Collision-free acceleration : v
(1)=min(vi,vmax,gi)
i ,

• Randomisation : with a certain probability p do v
(2)
i = max(v(1)

i − 1, 0)

• Movement: xi = xi + v
(2)
i
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Where gi is the gap (the number of empty cells) with the preceding vehicle, xi is the vehicle’s
position. If a driver wants to change lane, he has to take into consideration the gaps gs and gp

(in Fig2.5) on the alternative lane in order to prevent crashes.

Figure 2.5 – An example of CA model

2.4 Modelling of driving behavior by artificial intelligence

Replicating vehicles’ trajectories is one of the primary objectives of modeling vehicles’ motion
in traffic flow. We can find many classical models for CF and LC models. Although these
traditional models have produced great achievements in microscopic traffic simulation, they
have limitations :

• Limitation of trajectory accuracy. For example, most current car-following models are
simplified, i.e., they contain only a small number of parameters (desired speed, minimal
time headway, minimal safe distance...etc.). Simplification leads to suitable analytical
properties and rapid simulations. However, it also renders themodels limited in flexibility
and accuracy, because using few parameters can hardly model the inherently complex
driving process.

• Poor generalization capability. Classical models calibrated with empirical data try to
emulate drivers’ output (e.g., speed and spacing) by finding the model parameters that
maximize the likelihood of the actions taken in the calibration dataset. As such, the
calibrated car-following model cannot be generalized to traffic scenarios and drivers that
were not represented in the calibration dataset.

• Absence of adaptive updating. For example, most parameters of car-following models
are fixed to reflect the average driver’s characteristics.

To address the above limitations, instead of handcraft manual models, for the driving behavior,
machine learning provides an alternative approach based on data analysis that automates
analytical model building. It is a branch of artificial intelligence based on the idea that systems
can learn from data, identify patterns and make decisions with minimal human intervention.
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2.4.1 Deep Neural networks

During the last decades, deep learning (deep neural networks) methods, a group of specific
machine learning methods aiming at building data based, haven shown excellent performances
in many fields (e.g. natural language processing, image processing, finance trading strategy,
etc.) In the field of microscopic road traffic flow modeling, researchers are interested in
developing models which can describe and reproduce the vehicle motion in the real road traffic.
The use of deep learning approaches for the microscopic modeling of road traffic flow is also
becoming increasingly popular, as the physical models are limited in the face to such complex
systems.

Though first proposed in the 50’s (Rosenblatt, 1958), neural networks became utterly
successful since only about a decade ago; thanks to i) the availability of huge amounts of data
(mass data), ii) the amazing growth of the available computing power, and iii) the newly
developed optimization algorithms (efficient variants of classical gradient algorithms). A
neural network (NN) is an interconnected collection of artificial neurons. An artificial neuron
transforms given input values into an output value by multiplying the inputs by weights and
by running them through an activation function:

Ŷ = ϕ(w ·X) (2.16)

where Ŷ is the output, ϕ is the activation function, w is the vector of weights, and X =
(x1, x2, . . . , xn) is the input vector with n input features. Examples of popular activation func-
tions are the Sigmoid function, the Hyperbolic Tangent (tanh) and the Rectied Linear Unit
(ReLU). Several Neurons can be arranged into one layer, then many layers can be arranged
together and become a deep neural network. Formally, the output Ŷ of a multi-layer neurons
with an input X and with k layers, is given as follows :

 fk(x) = ϕk(wk · x)

Ŷ = fk(fk−1(..f1(X)))
(2.17)

In order to learn the weights of a neural network in the context of supervised learning, a loss
function must be defined, suitable to the problem to handle. This function should denote how
close the predictions provided by the neural network are to the expected predictions called as
actual labels (Y ). After choosing the loss function, the goal is to globally minimize this error
(loss function L). One of the existing method in the learning process to update the weights, is
the Stochastic Gradient Descent (SGD).

In practice, to efficiently train a neural network, epochs and mini-batches are defined for
the weights updating process. A mini-batch refers to a subset (with m individual samples) of
the whole training set, to compute a partial gradient and update the weights accordingly. An
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epoch refers to processing the whole training set once. A neural network training algorithm
can be summarized as follows :

Algorithm 2.1: Neural network learning procedure (Stochastic Gradient Descent)
1 Data: input X, output Y,
2 Parameter :batch size = m, learning rate = α
3 for number of epochs do
4 for number of mini-batches do

• sample a batch xm from the training data set

• predict ŷm

• compute the loss function Lm = L(ŷm, ym)

• update weights : wi ← wi − α 1
m

∑m
j=1∇Lj(wi)

Long short-TermMemory (LSTM) neural networks

Long short-Term Memory (LSTM) neural networks (Hochreiter and Schmidhuber, 1997) are a
kind of recurrent neural networks (RNNs), which are able to learn time series with keeping a
memory of previous sequences (Gers, Schmidhuber, and Cummins, 1999). The idea of RNNs is

Figure 2.6 – LSTM neural network architecture (Gers, Schmidhuber, and Cummins, 1999). A LSTM cell
consists of 3 gates (forget gate, input gate and output gate), where sigm denotes the sigmoid function,
tanh denotes the tangent function, [, ] denotes a concatenation.

to be able to connect previous information to the present task, where previous information has
long-term effect on the present behavior. On Fig. 2.6 we have a LSTM neural network, where a
sequence of LSTM cells are used to connect the input signal (x0, x1, ...xt, xt+1, . . .). A LSTM
cell consists of 3 gates (forget gate, input gate, output gate), and each cell can give an output ht

(as shown in Fig. 2.6). The forget gate decides how much to “forget” from the previous cell
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state ct−1. The input gate determines the amount of new information to be stored in memory,
based on new input xt and the previous output information ht−1. The output gate computes
the new output by combining the previous cell state and the output of input gate. We give
below the operation function of the 3 gates of a LSTM cell :

1. Forget Gate :
ft = σ(wf [ht−1, xt] + bf )

2. Input gate :
it = σ(wi[ht−1, xt] + bi])

c̃t = tanh(wc[ht−1, xt] + bc)

3. Output gate:
ot = σ(wo[ht−1, xt] + bo])

4. LSTM cell state :
ct = ft ∗ ct−1 + it ∗ c̃t

5. LSTM cell output:
ht = ot ∗ tanh(ct)

LSTM for driving modelling : Some Related works

Several studies have been performed on LSTM networks for human driving behavior modeling,
and/or human driving forecasting. We cite (Xie et al., 2019), where authors developed a
LC model (the LC decision prediction combining the LC execution trajectory) using neural
networks. In (Xie et al., 2019), the execution of lane changing trajectory used LSTM neural
network. In (Y. Zhang et al., 2018), the authors proposed a simultaneous CF and CL model
using LSTM neural network, with a constraint of time headway condition to retrain the neural
network when this condition is not satisfied. In (Altché and La Fortelle, 2017), the authors used
a LSTM network for vehicle trajectory prediction from 1s to 10s in the future. All these works
show that LSTM is essentially useful for the prediction of human driving behavior. However,
different studies used different model structures, and they used also different input designs for
the neural networks.

2.4.2 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a mathematical approach for learning by interaction in a com-
plex and uncertain environment, where an agent tries to maximize the total amount of a reward
received from the environment. Different from the supervised learning method, RL guides
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the agent to discover most rewarded actions by trial-and-error exploration in the environment,
meanwhile agent’s action affects the environment changes also. Many researchers have shown
the great efficiency of using RL for car-driving modeling. Reinforcement learning(RL) is a
general framework for decision-making under uncertainty. It provides an agent who intends to
solve optimal control problems based on Markov Decision Processes(MDP).

Markov decision process

A Markov decision process (MDP) describes the sequential decision making process, denoted
(S, A, P, R, γ), where S is the state space, A is the discrete action set, P denotes the transition
probabilities,R(S, A) is the rewards, and γ is a discount factor. The objective is to seek a policy
π(a|s) applied in every time step, thatmaximises the the future return (Gt), which is discounted
by γ (the discount factor), with 0 ≤ γ ≤ 1. Gt is defined as:

Gt = Rt + γRt+1 + γ2Rt+2 + ... =
∞∑

k=0
γkRt+k, (2.18)

where Rt+k is the reward given at time step t + k. The return value Gt should be a random
variable along a trajectory τ = (s0, a0, s1, a1, . . .) which indicates the accumulated rewards
induced by the policy π(at|st) and the system dynamics P (st+1|st, at). The discount factor
γ essentially determines how much the distant rewards impacts the agent’s decision of each
action. If γ = 0, the agent will be completely short-sighted and takes care only of the immediate
reward produced by the action. If γ = 1, the agent will evaluate each action based on the total
of all future rewards; see (Sutton and Barto, 2018) for a further comprehension of MDP and
reinforcement learning.

State Value Function and Action-State Value function

The state value function, denoted V π(s), is defined as the expected return of the policy when
starting with a given state s :

V π(s) = E[G|s0 = s] (2.19)

The state-action value function, denoted Qπ(s, a), is defined as the expected return when
starting with a given state s and a given action a :

Qπ(s, a) = E[G|s0 = s, a0 = a] (2.20)
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State Value Function and Action-State Value function Optimality

As mentioned above, the objective of a reinforcement learning task is to obtain a policy which
can achieve a great return for the agent. The policy with the greater expected return than all
other policies consists in the optimal policy, denoted π∗. Therefore, we can obtain the optimal
policy by maximizing either the state-value function or the the action-value function. We also
define the optimal state-value function V ∗(s) and the optimal action-value function Q∗(s, a) as
follows :

∀s ∈ S, V ⋆(s) =∆ Qπ⋆(s) = max
π

V π(s);

∀(s, a) ∈ S ×A, Q⋆(s, a) =∆ Qπ⋆(s, a) = max
π

Qπ(s, a).

Based on the Bellman principle of dynamic programming (see for example in (Sutton and
Barto, 2018)), the Bellman equation on V ∗(s) is written as follows :

V ∗(s) = max
a

qπ∗(s, a)

= max
a

Eπ∗ [Gt|st = s, at = a]

= max
a

Eπ∗ [
∞∑

k=0
γkRt+k+1|st = s, at = a]

= max
a

Eπ∗ [Rt+1 + γ
∞∑

k=0
γkRt+k+2|st = s, at = a]

= max
a

E[Rt+1 + γV ∗(st+1)|st = s, at = a]

(2.21)

The Bellman equation on Q∗(s, a) is written as follows :

Q∗(s, a) = E[Rt+1 + γ max
a′

Q∗(st+1, a′)|st = s, at = a] (2.22)

Model-free and Model-based approaches

Reinforcement learning algorithms can be grouped into two main families, called Model-free
and Model-based. Model Based algorithms attempt to estimate P (st+1|at, st) and R(st, at) of
the MDP, based on a history of transitions D = {(st, at, rt, st+1)}, using for example Maximum
Likelihood Estimation, with a hypothesis for dynamics function :

max
P̂

∏
t

P̂ (st+1 | st, at) (2.23)
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and reward function :

min
R̂

∑
t

∥R(st, at)− R̂(st, at)∥2 (2.24)

Thus, the estimated MDP(S, A, P, R, γ) can be achieved and the optimal policy π∗ can be
computed by dynamic programming. In the other side, model-free algorithms aim at getting
the optimal policy π∗ directly, without knowing the P (st+1|at, st) in the MDP.

Model-free methods

Value-based methods: Among the model-free algorithms, the Value-based methods op-
timizes the value function by evaluation and improvement. Then, from the optimal value
function, the optimal policy is attained by selecting the action at a state with the largest optimal
value.

Policy-based methods: Differently, in the Policy-based methods, the agent learns policies
directly, where we define an objective function which could be the value function of the initial
state s0 for policy πθ :

J(θ) = Vπθ
(s0) (2.25)

and aiming at finding : θ∗ = arg maxθ J(θ) = arg maxθ Vπθ
(s0)] It can be formulated by the

gradient ascent :

∇J(θ) = ∇Vπθ
(s0)] (2.26)

Actor-Critic: Actor-Critic methods are a combination of value and policy based methods
consisting of 1) the “Critic” to estimate the value function and 2) the “Actor” to update the
policy distribution in the direction suggested by the Critic (e.g. with policy gradients). In
Figure 2.7, a simple Actor-Critic algorithm is shown :

We give in Table 2.5 some famous reinforcement learning algorithms :
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Figure 2.7 – Simple Actor-Critic algorithm (Zhou, 2020)

Algorithm type
Q-learning

(Watkins and Dayan, 1992) Value-based

Sarsa
(Sutton and Barto, 2018) Value-based

Deep Double Q-learning
(Van Hasselt, Guez, and Silver, 2016) Value-based

REINFORCE (Sutton and Barto, 2018) Policy-based.

A3C
(Mnih et al., 2016) Actor-Critic

DDPG
(Lillicrap et al., 2015) Actor-Critic

PPO
(Schulman et al., 2017) Actor-Critic

Table 2.5 – Summary of some famous reinforcement learning algorithms.
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Reinforcement learning for lane-changing model: some related works

Reinforcement Learning (RL) gains increasingly great performance among other methods
for modelling and automating driving behaviour. Especially for lane-changing decisions, for
which previously existed models were less efficient at describing the complexity of the driver’s
behaviour, RL methods perform as good as rule-based models, or in some cases, even better.
Some works in RL approach the decision learning problem using discrete state and/or action
spaces, while other works treat use continuous spaces. Depending on this decision regarding
the description of the state and actions spaces, different RL algorithms have been applied either
to describe both longitudinal and lateral vehicle movement or only one of them.

In (L. Wang et al., 2019), the authors developed an ego-efficient lane-change strategy using
Q-learning, and also tested the effects of the strategy on the network level through Aimsum
traffic simulation platform. The possible actions considered were three included a left lane
change, a right lane change, and no change of lane. The state consisted of nine variables which
included the ego-vehicle’s acceleration gain from a lane change, the acceleration gain of the
surrounding vehicles as well as the mean acceleration difference between the middle lane
and the other lanes, for a number of vehicles downstream the ego-vehicle, and its standard
deviation. All variables were discretized corresponding to six predefined intervals. The reward
is defined as the acceleration gain, that allows to optimize the traffic condition by maximizing
the controlled vehicle speed. In the experiment, the simulated traffic environment consists of
two kinds of vehicles (ego-vehicles, controlled by teh IDMmodel (Intelligent Driver Model)
for car-following, and RL for lane changing. Normal vehicles are controlled by the IDM model
for car-following and the Gipps model for lane changing. Numerical simulation showed an
improvement in speed of the vehicle adopting the lane-changing strategy developed with RL.
The impact on the network was also positive, as more vehicles adopted this strategy, but only
while the percentage of these vehicles remained below 60%.

Another approach was followed by (P. Wang, H. Li, and Chan, 2019) where the authors
used an actor-critic algorithm for the automation of lane changing decisions. Using the Deep
Deterministic Policy Gradient (DDPG), they extended the problem to a continuous action
space considering the yaw acceleration as the lateral control variable. The state representation
included the ego-vehicle’s speed, position, orientation and acceleration, the speed and position
of vehicles in the target lane, the road geometry, etc. The reward function took into account
the lateral dynamics, punishing large yaw rates and yaw acceleration, the maneuvering time,
and the position deviation. The results from numerical simulation showed that, after sufficient
training, the agent learned efficiently how to make a smooth lane-changing maneuver with a
success rate of 100%.

(Ye et al., 2020) also used an actor-critic algorithm to propose a method for automating lane-
changing decisions. They proposed a model for mandatory lane-changes developed using the
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Proximal PolicyOptimization algorithm. In thiswork aswell the state spacewas continuous, but
the action space was discrete. The state representation included the ego-vehicle’s longitudinal
speed, position and acceleration, the lateral position and speed, as well as the relative distance
of the surrounding vehicles, the longitudinal speed, acceleration and lateral position. Four
surrounding vehicles were taken into account : the leading and following vehicle in the current
lane and the leading and following vehicle in the target lane. The action space was designed
in both lateral and longitudinal direction, and included 6 possible actions. The action was a
combination of deciding whether to keep or change a lane, as well as abort a lane-changing
maneuver, and selecting which leading vehicle to follow longitudinally. The reward function
was designed so as to incorporate comfort, safety and efficiency of the lane change. It included
a part for evaluation of the lateral and longitudinal jerk, another part for evaluation of the
travel time and relative distance to the target lane, and a part for the evaluation of the collision
risk. The numerical simulation results showed that the agent could learn successfully the lane
changing strategy with a success rate of 95% and a collision rate of 2%, which outperformed
the trained rule-based agent used as a reference.

With the aim to study both longitudinal and lateral movements, (Hoel, Wolff, and Laine,
2018) proposed a model for the automation of both speed and lane-changing decisions based
on Deep Q-Learning. Using this algorithm, which aims to approximate the optimal Q-function
with a deep neural network, they were able to treat the state space as continuous in contrast
with simple Q-learning. In this work the state consisted of 27 variables which represented the
ego-vehicle’s normalised speed, the existence of lanes beside it, the normalised relative speed
and position of the surrounding vehicles, and a value between (-1) and 1 depending on the
lane of each surrounding vehicle with respect to the ego-vehicle. The action space was discrete
but included also decisions for acceleration or deceleration along with keeping or changing the
lane. In (Hoel, Wolff, and Laine, 2018), the reward was positive and based on the normalized
driven distance during a time step, while also penalising with (-10) in the condition of collision
or driving out of the road. A small negative reward of (-1) was also assigned to lane-changes
in order to limit their number. Two agents were implemented: an agent which developed with
DQN a strategy only for lane-changing, and used the IDM model for car-following, and an
agent trained to control both speed and lane-changing. Using the IDM and MOBIL models as
a reference, the results showed similar performance with the reference model for the first, but
better performance for the second, indicating that maybe longitudinal and lateral decisions
should not be studied separately. Finally, the application to both a highway driving case and
an overtaking case with oncoming traffic illustrated the generality of their method.

In Table 3.2, I give out the overview of these related works using reinforcement learning
based algorithms for the driving modelling, which I presented above. I indicate how state,
action and reward variables have been defined.
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Source State Action Reward
(L. Wang et al.,
2019)

ego-vehicle’s accelera-
tion gain, surrounding
vehicles acceleration
gain, mean acceleration
difference between
the middle lane and
the other lanes for 10
vehicles downstream
and standard deviation

left lane-change,
right lane-change,
lane keeping

Acceleration gain

(Hoel, Wolff, and
Laine, 2018)

ego-vehicle’s nor-
malised speed, exis-
tence of lanes beside
it, normalised relative
speed and position of
the surrounding vehi-
cles, a value between -1
and 1 depending on the
lane of each surround-
ing vehicle with respect
to the ego-vehicle

left lane-change,
right lane-change,
lane keeping

normalized
driven distance
during a time
step, -10 for col-
lision, -10 out of
the road, -1 for
lane-change

(P. Wang, H. Li,
and Chan, 2019)

ego-vehicle’s speed, po-
sition, orientation and
acceleration, target lane
vehicles’ speed and po-
sition, road geometry

yaw acceleration a function pun-
ishing large yaw
rates, yaw acceler-
ation, maneuver-
ing time, and po-
sition deviation

(Ye et al., 2020) ego-vehicle’s longitudi-
nal speed, position and
acceleration, lateral po-
sition and speed, sur-
rounding vehicles’ rel-
ative distance, longitu-
dinal speed, accelera-
tion and lateral position.
(surrounding vehicles:
leading and following
vehicle in the current
lane and in the target
lane.

a combination of
deciding whether
to keep or change
a lane, as well
as abort a lane-
changing maneu-
ver, and selecting
which leading ve-
hicle to follow lon-
gitudinally

a function for eval-
uation of the lat-
eral and longitudi-
nal jerk, the travel
time and relative
distance to the tar-
get lane, as well as
the collision risk.

Table 2.6 – Overview of environment description in reinforcement learning based algorithms for the
driving modeling.
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2.5 Traffic safety and Accidents

Another topic of interest in this thesis is the car-collision occurrencemodeling. We are interested
in generating car-collisions by numerical simulation of the road traffic, in order to evaluate
how the autonomous vehicle can deal with a traffic with car-collisions and accidents. In
this field, a large body of literature focuses on the traffic safety, especially exploring the link
between ambient traffic conditions and collision occurrences (Shi et al., 2018) or crash injury
severity (Savolainen et al., 2011). On highways specifically, the authors of (Salem, Farhi, and
Lebacque, 2013) provide evidence that crashes have a specific relationship with traffic flow
characteristics (volume, density, speed). In (Christoforou, Cohen, and Karlaftis, 2011), the
authors identified the impact of general geometric parameters, weather, and traffic flow on
different types of crashes (rear-end, sideswipe, multiple vehicle involved) based on a French
traffic and crash data-set. Other studies employed statistical and machine learning approaches,
such as Multivariate Probit models (Christoforou, Cohen, and Karlaftis, 2011) or Support
Vector Machine (Dong, Huang, and L. Zheng, 2015), to investigate the relationship between
influencing traffic factors and crash occurrences. Another approach consists in using traffic
simulation for crash modeling. In (Azevedo, Cardoso, and M. E. Ben-Akiva, 2018), the authors
proposed models for three types of crashes depending on vehicle interactions and maneuvers,
and estimated the parameters of the models via simulation. In (J. Wang et al., 2017), the authors
studied the impact of driving violations (driving over speed limit, slow driving, and abrupt
hard braking) on crash occurrence, for different traffic conditions through simulation.

2.6 Road traffic simulators

There exists a wide variety of traffic simulators based on microscopic models, multi-agent or
cellular automata. However, most of the simulators are for a business purpose, and therefore
provide very few design details, such as Aimsun (Casas et al., 2010a), PTV Vissim (Fellendorf
and Vortisch, 2010a), Paramics (Cameron and Duncan, 1996). Some open source alternatives
exist also, such as SUMO (Lopez et al., 2018), MATSim (Horni, Nagel, and Axhausen, 2016)
and MITSIMLab (M. Ben-Akiva et al., 2010). In a recent publication (Luo et al., 2020), the
authors present their simulator SUMMIT and compare it with some other simulators in the
context of testing autonomous vehicles in terms of realworld maps integration, possibility of
simulating unregulated behaviors, possibility of simulating dense traffic, and realistic visual &
sensors; see Table2.7 below.

In this thesis, we used principally SUMO traffic simulator, and we realised some works
also using SCANeR studio driving simulator, which is a Renault internal simulator for the
autonomous vehicle.
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Simulator real-world
maps

unregulated
behaviors Dense traffic realistic visual

& sensors
SimMobilityST ✓ x ✓ x
SUMO ✓ x ✓ x
TORCS x ✓ x ✓
Apollo x x x ✓
Sim4CV x x x ✓
GTAV x x x ✓
CARLA x x x ✓
Autono ViSim x ✓ ✓ ✓
Forced-based
simulator x x ✓ ✓

SUMMIT ✓ ✓ ✓ ✓

Table 2.7 – Comparison between SUMMIT and existing driving simulators.(Luo et al., 2020)

2.6.1 SUMO traffic simulator

"Simulation of Urban MObility", or "SUMO", is an open source, microscopic, multi-modal
traffic simulator (Lopez et al., 2018), including modeling of road vehicles, public transport and
pedestrians. It is released since 2001 and is available for many state-of-the-art microscopic traffic
models. SUMO provides traffic simulations, including synthetic road network creation, real
road network import, traffic and emission computation, and simulation visualisation. SUMO
allows to generate a large number of different measures. The outputs are collected into files or
a socket connection following the common rules for writing files. In addition, SUMO can be
enhanced with custommodels, and it provides various APIs to remotely control the simulation.

Figure 2.8 – SUMO screenshot(SUMO, 2021)
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In principal, in SUMO, the microscopic driving dynamics of road vehicles are determined
by the interplay of several models briefly listed below(Erdmann, 2014):

• Car-following model: determines the speed of a vehicle in relation to the vehicle ahead
of it.

• Intersection model: determines the behavior of vehicles at different types of intersections
in regard to right-of-way rules, gap acceptance and avoiding junction blockage.

• Lane-changingmodel: determines lane choice onmulti-lane roads and speed adjustments
related to lane changing.

2.6.2 SCANeR studio driving simulator

Renault has been developing driving simulators since several years. SCANeR studio is the
driving simulator software which includes vehicle dynamics, traffic generation, visual and
kinaesthetic modules for driving simulators. SCANeR studio provides a default traffic vehicle
model which controls the traffic vehicle’s movement in real time (Champion et al., 1999). The
architecture of SCANeR studio is shown in Figure 2.9.

Figure 2.9 – Architecture of the SCANeR studio driving simulator.

2.7 Road traffic data-sets

Regarding to traffic data collection, the traffic can be directly observed by cameras on top of a
tall building or by cameras fixed in a drone. Then, using some object-tracking algorithms, the
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trajectories, i.e. the positions of each vehicle over time, can be extracted from the video. By
this process, vehicles within a given road section are captured in this way, a microscopic traffic
trajectory data-set is achieved. These kinds of data-set can be used for studying both on the
human driving behavior and the traffic flow. In this thesis, we have used two traffic trajectory
data-sets : NGSIM (Alexiadis et al., 2004) and HighD (Krajewski et al., 2018). The work in
the Chapter 3 and in the Chapter 4 are based on NGSIM dataset. The work in the Chapter 5
is first based on NGSIM dataset, then we have validated the model using HighD dataset. In
addition, the work in the Chapter 6 is on NGSIM data-set and HighD data-set to understand
and compare the sensitivity of each proposed models. I give in this section some descriptions
of the NGSIM and the HighD data-sets.

2.7.1 NGSIM data-set

NGSIM 101 (Alexiadis et al., 2004) is an open data-set released by the US Federal Highway
Administration (FHWA). The dataset acquisition camera and the road section map is shown in
Figure 2.10. In NGSIM 101 dataset, all vehicle trajectories are provided with a rate of 10Hz,

(a) NGSIM traffic camera installation (b) NGSIM 101 road section

Figure 2.10 – NGSIM 101 dataset acquisition camera and road section map

during the rush hour from 7:50 a.m.to 8:35 a.m, on a highway section in Los Angeles, California,
covering 640 meters of length. This section of road has 5 normal lanes and one auxiliary lane
connecting an on-ramp and an off-ramp. NGSIM 101 dataset is divided into three files of
sub-data-sets and each sub-data-set contains 15 minutes traffic data, which cover the traffic
from 7:50 a.m. to 8:05 a.m., from 8:05 a.m. to 8:15 a.m., and from 8:20 a.m. to 8:35 a.m. In total,
more than 6000 individual drivers real-time trajectories are recorded, which represent a total
of 800 hours vehicle-trajectories in various traffic densities. Our studies focus mainly on the
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traffic in the 5 main lanes with the assumption that the driver behavior in the auxiliary lane is
particular and different from the driver behavior in the main straight lanes.

Figure 2.11 – NGSIM 101 dataset traffic flow (number of vehicles in traffic and traffic mean speed for
each time frame) for three 15-minute periods respectively : from 7:50 a.m. to 8:05 a.m., from 8:05 a.m. to
8:15 a.m., and from 8:20 a.m. to 8:35 a.m..

In Figure 2.11, we present traffic volumes and speeds during each of the three time periods.
It can be observed that, in the beginning of the first 15 minutes, the mean speed is between 10
and 15 m/s. After that, traffic becomes denser resulting to a sudden fall of the mean speed. In
the second and third 15-minute time periods, traffic is more congested and mean speed varies
between 5 and 10 m/s.

2.7.2 HighD data-set

Similarly to the NGSIM dataset, the HighD dataset (Krajewski et al., 2018) is a dataset of
vehicle trajectories recorded on German highways. The vehicular traffic was recorded at six
different locations and includes more than 110 500 vehicles using the camera from a drone(see.
Figure 2.12). Each vehicle’s trajectory, including vehicle type, size and manoeuvres, is auto-
matically extracted. Using state-of-the-art computer vision algorithms, the positioning error is
typically less than ten centimeters. Although the dataset was created for the safety validation
of highly automated vehicles, it is also suitable for many other tasks such as the analysis of
traffic patterns or the parameterization of driver models.The HighD dataset provides totally
60th sub-datasets with different road sections and different time periods. Differently from
the NGSIM dataset, the HighD dataset has a higher resolution and its data frequency is 25Hz,
while the data frequency of the NGSIM dataset is 10Hz.
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Figure 2.12 – HighD dataset recording setup includes a drone that hovers next to German highways
and captures traffic from a bird’s eye view on a road section with a length of about 420 m (Krajewski
et al., 2018)
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Chapter 3

Analysis of driver behavior and
inter-vehicular collision : a data-based
traffic modeling and simulation
approach

The emergence of Intelligent Connected Vehicles (ICVs) is expected to contribute to resolving
traffic congestion and safety problems. However, it is inevitable that ICV safety issues in mixed
traffic (involving ICVs and human driven vehicles) will be a critical challenge. The numerical
simulation of scenarios involving a mix different driving profiles is expected to be an important
safety assessment tool to use in the process of testing and validating ICVs. Numerical simulation
should be specifically important regarding extreme scenarios, including car collisions, which
are rarely captured in real-world data-sets and can be generated numerically. In this work, we
propose a novel approach for car-collision generation in numerical simulations based on the
assumption that car-collision occurrences are mostly associated with certain specific driver
profiles. Using the NGSIM 101 data-set, we identify three different driver profiles: aggressive,
inattentive and normal drivers. We then replicate car-collision occurrences by varying the
percentages of these three driver profiles in the simulated environment, allowing us to establish
a relationship between driver profiles and car-collision occurrences. We also investigate the
severity of generated car-collisions and classify them with respect to the driver profiles of
the cars involved in the collisions. Our approach of replicating car-collision occurrences in
numerical simulations will facilitate the testing and validation of ICVs in the future, especially
regarding the testing of ICV functionalities in dealing with traffic accidents.

Contents
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3.1 Motivation

3.1 Motivation

With the development of the information and the telecommunication technologies, along with
the rapid growth of New Energy Vehicles (NEVs), Intelligent Connected Vehicles (ICV) have
become an increasingly active research topic. ICVs are expected to reshape future mobility and
contribute to mitigating road traffic congestion and safety problems (Fagnant and Kockelman,
2015).

One of the major challenges of ICVs is communicating with other vehicles and accurately
recognizing the patterns of human driving behavior in mixed traffic (Schwarting, Alonso-Mora,
and Rus, 2018). As we know, human driving behavior is not perfect and million deaths occur
each year due to traffic accidents, among that, 90% of accidents are produced because of driver’s
mistake and inattention(Singh, 2015). Therefore, the process of testing ICVs in dealing with
traffic accident is very important. Moreover, the validation and the testing of ICVs in mixed
traffic consisting of ICVs and human driven vehicles, are necessary to ensure the security of
ICVs functionalities. However, performing physical tests of ICVs is not only time-consuming,
but it is sometimes dangerous as well, especially in the traffic with accidents. The numerical
traffic simulation is an alternative tool to test and validation autonomous vehicle. One can
generate easily massive scenarios even dangerous ones with vehicular collisions, which happen
rarely in the real life. It is important to understand human driver behaviors in order to observe
the collision related driver profiles. However, the relationship between different driver profiles
and the car-collision occurrences has not been understood clearly. Meanwhile the procedure of
car-collisions generation in traffic numerical simulators is not fully integrated. We propose in
this chapter an approach for generating vehicular-collision in numerical traffic simulation with
the purpose of facilitating the testing and validation of ICVs in the future.

3.2 Background

It is well known that traffic numerical simulation is established by using mathematical models
to reconstruct road traffic (Chao et al., 2019), and can be performed on many scales (i.e.
microscopic, mesoscopic, macroscopic, etc.). In particular, for the validation of the ICVs
behavioral decision system, microscopic traffic simulators are particularly interesting, as they
focus on replicating the vehicles’ individual behaviors in details, in order to create an entire
traffic environment. Various microscopic traffic simulators have been developed; we cite
SUMO (Krajzewicz et al., 2012), VISSIM (Fellendorf and Vortisch, 2010b), and AIMSUN (Casas
et al., 2010b). However, the vehicle collision generation mechanism has not yet been described
completely in any of those simulators.
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As well known, drivers have different driving patterns. Therefore, several driver profiles
can be distinguished and observed from real driven data, e.g. real vehicle trajectories. Next
Generation simulation (NGSIM) published four vehicle trajectory data-sets (NGSIM (Alexiadis
et al., 2004)), which have been widely used by many researchers in transportation (He, 2017).
More recently, data-sets on motion trajectory of traffic objects detected by autonomous vehicle
equipment were published (e.g. Waymo data (Waymo, 2019), Argoverse (argoverse, 2019),
nuScenes (nuscenes, 2019), etc.). These data-sets can be used to observe the single human
driver behavior (Marina Martinez et al., 2018). However the whole traffic situation is not
captured in these data-sets. The driving profile identification is mostly based on clustering
approaches with real driven data (Júnior et al., 2017). Many open data-sets on vehicular
traffic are nowadays available and could be applied for studying and analyzing human driving
behavior, but driving profile patterns are not given directly in the data-sets. The authors
of (Meiring and Myburgh, 2015) reviewed various methods of classification of driving styles:
’normal’, ’aggressive’, ’inattentive’ and so on. Aggressive drivers are often characterized by risky
speeding (such as abrupt instantaneous speed change, over limit speed, excessive acceleration
or deceleration) and frequent lane changing behavior (Aljaafreh, Alshabatat, and Al-Din,
2012). Inattentive drivers can be characterized by long reaction time and forced sudden lane
change with an instantaneous deviation from normal behavior (Meiring and Myburgh, 2015).
Some studies used clustering approaches (K.-T. Chen and H.-Y. W. Chen, 2019) to classify
the different drivers profiles, but this kind of methods have the uncertainty in the result of
classification, the algorithm complexity, and the need of specific data-sets, which makes the
method hard to generalize.

In the other hand, vehicle collisions are rarely observed. In (Abdulhafedh, 2017), several
vehicle collision related data-sets have been summarized. However, most of these data-sets
provide only vehicle collision statistics, without involving car-trajectories. Nevertheless, the
Strategic Highway Research Program 2-Naturalistic Driving Study (SHRP2-NDS, 2016) pro-
vides a data-set where several accident situations are captured, yet in terms of quantification of
the vehicle collision causes and impacts, it seems to be unsatisfactory. Therefore, a captured
vehicle collision study would be an untouched research area.

Aswhatwe can find, a large body of literature on road traffic safety explores the link between
ambient traffic conditions and collision occurrences (Shi et al., 2018) and/or vehicle-collision
injury severity (Savolainen et al., 2011). On highway specifically, the authors of (Salem, Farhi,
and Lebacque, 2013) provide evidence that vehicle collisions have a specific relationship with
traffic flow characteristics (volume, density, speed). In (Christoforou, Cohen, and Karlaftis,
2011), the authors identified the impact of general geometric parameters, weather, and traffic
flow on different types of collision (rear-end, sideswipe, multiple vehicle involved) based
on French traffic and vehicular statistic data. Some other studies employed statistical and
machine learning approaches, such as Multivariate Probit models (Christoforou, Cohen, and
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Karlaftis, 2011) or Support Vector Machine (Dong, Huang, and L. Zheng, 2015) to investigate
the relationship between influencing traffic factors and vehicle collision occurrences. Several
previous works consist in using traffic simulation for vehicle collision modeling. In (Azevedo,
Cardoso, and M. E. Ben-Akiva, 2018), the authors proposed models for three types of vehicle
collision depending on vehicle interactions and maneuvers, and estimated the parameters
of the models via simulation. In (J. Wang et al., 2017), the authors studied the impact of
driving violations (driving over speed limit, slow driving, and abrupt hard braking) on car-
collision occurrence for different traffic conditions through simulation. Nevertheless most of
the literature treats the road traffic safety, without considering driving profiles.

In this work, we propose a novel approach for car-collision (collision between cars) genera-
tion in numerical simulation by varying the percentages of different driver profiles in the traffic,
aiming at establishing a relationship between driving profiles and car-collision occurrences.
The profiles are extracted from the NGSIM database and integrated in the traffic simulator
SUMO (Lopez et al., 2018), using the calibrated Intelligent Driver Model (IDM), which is one
of the most human-like car-following model (Vasconcelos et al., 2014; M. Zhu, Xuesong Wang,
Tarko, et al., 2018).

Our purposes in this work are: 1) Extracting driver profiles from a real driven data, NGSIM
101 data-set; 2) Replicating different driver profiles using microscopic traffic model after a
calibration; 3) Establishing a method of reproducing realistic traffic simulation based on micro-
scopic road traffic modelling in SUMO simulator; 4) Generating car-collisions by appropriately
varying the percentages of the driver profiles; 5) Characterizing the relationship between the
car-collision occurrences with the driver profiles; and 6) Observing the severity of the generated
car-collisions.

3.3 Materials and Method

In this section, the concerned materials and the proposed method will be presented. The
approach structure is illustrated in Figure 3.1. We study the driver profiles from car-trajectories
and we propose the definition of an ’aggressive’ driver profile as the one who leaves always
short time-headways with respect to the leader vehicle, and an ’inattentive’ driver profile
as the one with particularly long reaction time, compared to the other drivers. We classify
all the drivers with intermediate values of reaction time and time-headway at the ’normal’
driver profile. The thresholds for the three driver profiles are derived from the NGSIM 101
data-set (Alexiadis et al., 2004). After the classification of the driver profiles, the specific
driver profiles (aggressive and inattentive) are represented using calibrated IDM model (the
IDMmodel with an extension of reaction time), and the road traffic is then simulated using
SUMO (“Simulation of Urban MObility”) (Lopez et al., 2018). The IDM model calibration is
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performed by using a genetic algorithm, to find the optimal set of IDM parameters with an
objective minimize the predefined error between real driver trajectory and the output of the
IDMmodel. In essence, we artificially increase the percentage of drivers with ’extreme’ profiles
(aggressive or inattentive) and, then, count and analyse the car-collisions generated by traffic
simulation. In the numerical simulation experiments, we proposed 4 different experiments.

Figure 3.1 – Steps of the approach

The remaining of the presentation of this work is structured as follows: In Section 3.4, we
present the classification of driver profiles from the NGSIM 101 dataset, and this part includes
1) the presentation of the NGSIM 101 dataset 2) the proposition of different driver profiles,
and 3) the profiles extracted from NGSIM 101 dataset. In Section 3.5, we present SUMO traffic
simulator, the choice of car-following model, IDMmodel, and the calibration of the IDMmodel
for aggressive driver profiles and inattentive driver profiles, as well as for the normal driver
profiles. Section 3.7 shows in details for the 4 simulation experiments for the generation of
vehicular collisions. Section 3.8 presents the results obtained from numerical simulations
and the investigation of the relationship between generated car collisions and driver profiles.
Section 3.9 presents the validation of the approach with a different database. Section 3.10 deals
with the severity of simulated car-collisions with respect to different driving profiles. Finally,
Section 3.11 summarizes major findings and provides recommendations for further research.

3.4 Classification of driver profiles from the NGSIM 101 dataset

A driver profile can be defined as the average driving behavior of a given driving class (Itkonen
et al., 2017). Driving behavior is related to driver baseline skills, socio-demographics (age,
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gender, occupation... etc.) and current state (fatigue, distraction... etc.). From driven data,
driver’s characteristic can be illustrated by the speed, the acceleration, the jerk, and some other
relevant traffic indicators, such as time-headway (THW) and time to collision (TTC) (Itkonen
et al., 2017). THW and TTC are critical safety indicators for car-following behavior (Suweda,
2016). THW measures the time passed for reaching the leader’s position while running at
current speed, while TTC is usually used for judging the moment to start braking, and in the
control of braking (Ayres et al., 2001). Several studies show that the distribution of THW is
related to driving speed and also to traffic flow conditions. According to (WINSUM and Heino,
1996), a negative correlation between the car-speed and THW can exist. In (Maurya et al., 2016),
it was shown that the speed and THW follow different distribution patterns under different
traffic density levels. In this work, the classification of different driver profiles begins with the
observations from the NGSIM data.

3.4.1 NGSIM 101 dataset description

A brief description of the NGSIM 101 data-set has been given in section 2.7.1. In this data-set,
it provides totally 3 subsets of 15-minute traffic registration. In this work, we applied the
proposed approach based on the first 15-minute data-set. The second 15-minute data-set is then
used for the method validation. We note that we are interested here in understanding driving
profiles in terms of the car-following behavior, without lane change or other behaviors. After
a data processing of the first 15-minute part, we selected approximately 1500 car trajectories
(drivers) from a total population of 1993 vehicle trajectories, to extract specific driver profiles.
The selection was based on the following condition: each car must always have a leading car
(downstream) whose trajectory is continuous at least over 40s. In addition, the same data
processing was made for the second 15-minutes of data and resulted to the selection of 1300
car trajectories out of a total of 1495.

3.4.2 Proposition of driver profiles classification

In this work, the classification of different driver profiles begins with observing the vehicle
time headway (THW) from the NGSIM data. Figure 3.2 shows the distribution of each car
driver’s maximum THW, mean THW, minimum THW, and standard deviation of THW, for the
1993 vehicle trajectories of the first 15 min NGSIM 101 data-set. Figure 3.2 provides evidence
on the heterogeneity of human driving profiles as the mean THW ranges from near 0s to 5s
and the minimum of THW ranges from near 0s to more than 3s. Based on this preliminary
findings, we propose the definition of three profiles: (i) ’aggressive’: shorter car time-headway,
(ii) ’inattentive’: longer reaction time, and (iii) ’normal’ for intermediate values of reaction
time and car time-headway. We notice that since the reaction time cannot be detected in the real
driven data, we estimate and suppose that the reaction time is approximate to the minimum
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Figure 3.2 – The distribution of the maximum THW, the mean THW, the minimum THW and the
standard deviation of THW the first 15 minutes data of NGSIM 101 dataset. The unit on the x-axis is
seconds.

THW value, which is the minimum safe time gap that the driver estimate with the leading
vehicle during his whole trajectory (longer than 400 time steps, explained in section 4.3.4). The
definitions of the the two driver profiles (aggressive and inattentive) are formalized below.

1. Aggressive driver profile: A driver i is considered to be aggressive with respect to a
threshold t∗ on the time headway THW if

THW(i) := 1
T

T∑
t

THW(i, t) < t∗ (3.1)

We will explain in section 3.4.3 how we fixed the threshold t∗ in our approach.

2. Inattentive driver profile (drivers with long reaction time): A driver i is considered to be
inattentive (with a long reaction-time ) with respect to a threshold t̃ on the time headway
THW if

min THW(i) := min
t

THW (i, t) > t̃ (3.2)

We will explain in section 3.4.3 how we fixed the threshold t̃ in our approach.

3. Normal driver profile : the drivers whose profiles are not aggressive or inattentive are
called normal. They have intermediate values of reaction time and time headway.
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3.4.3 Specific driver profiles in the NGSIM data-set

In a traffic data-set with a large number of trajectories, it is always possible to distinguish
’good’ drivers from ’risky’ ones. Following the definition of the two ’extreme’ driver profiles
of section 3.4.2, we consider the following four driver profile groups in the NGSIM dataset:
group 1: the 2.5% most aggressive drivers, group 2: the second 2.5% most aggressive drivers,
i.e. situated between the 2.5 and 5-percentile of mean THWs, group 3: the 2.5%most inattentive
drivers, and group 4: the second 2.5% most inattentive drivers (drivers ranked between 2.5%
and 5% in terms of inattentiveness). The four groups are defined as follows:
Let us denote the set Iagg(t) of the drivers i whose THW (i) is less than t:

Iagg(t) := {i, THW (i) < t}. (3.3)

Now, we denote by N the total number of drivers of the considered data-set, and by Nagg(t)
the cardinal (number of elements) of Iagg(t):

Nagg(t) := Card(Iagg(t)). (3.4)

Finally, we denote by pagg(t) the proportion of the number of drivers in Iagg(t) with respect to
the total number of drivers (N):

pagg(t) := Nagg(t)/N. (3.5)

Let us now define t∗
1 and t∗

2 as follows:

t∗
1 = p−1

agg(0.025) := max{t, pagg(t) ≤ 0.025}, (3.6)

t∗
2 = p−1

agg(0.05) := max{t, pagg(t) ≤ 0.05}. (3.7)

Groups 1 and 2 are then defined as follows:

Group 1 = Iagg(t∗
1) = Iagg

(
p−1

agg(0.025)
)

, (3.8)

Group 2 = Iagg(t∗
2) \ Iagg(t∗

1) = Iagg

(
p−1

agg(0.05)
)
\ Iagg

(
p−1

agg(0.025)
)

. (3.9)

The groups 3 and 4 are defined similarly, that is:

Iinatt(t) := {i, min THW (i) > t}, (3.10)

Ninatt(t) := Card(Iinatt(t)), (3.11)

pinatt(t) := Ninatt(t)/N, (3.12)

t∗
3 = p−1

inatt(0.025) := min{t, pinatt(t) ≤ 0.025}, (3.13)
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t∗
4 = p−1

inatt(0.05) := min{t, pinatt(t) ≤ 0.05}, (3.14)

Group 3 = Iinatt(t∗
3) = Iinatt

(
p−1

inatt(0.025)
)

, (3.15)

Group 4 = Iinatt(t∗
4) \ Iinatt(t∗

3) = Iinatt

(
p−1

inatt(0.05)
)
\ Iinatt

(
p−1

inatt(0.025)
)

. (3.16)

Applying the definitions of groups 1, 2, 3, and 4 above, we obtain the thresholds of Table 3.1
on THW for groups 1 and 2, and on min THW for groups 3 and 4; see also Figure 3.3. In
Figure 3.4a and Figure 3.4b, we give the distribution of the average THW and minimum THW
values respectively for the selected aggressive drivers and inattentive drivers. We can see that
the value of minimun THW for two groups of aggressive drivers’ ranges from about 0.1s to 0.8s.
On the other side, the average THW of inattentive drivers is far larger than that of aggressive
drivers, which ranges from about 2s to 5s.

Type of drivers Indicator Threshold
1st aggressive (group 1) mean THW ⩽ 0.82s

2nd aggressive(group 2) mean THW [0.82s, 0.94s]
1st inattentive (group 3) min THW ⩾ 1.84s

2nd inattentive (group 4) min THW [1.656s, 1.84s]

Table 3.1 – 4 groups specific drivers and obtained threshold of profile definition

Figure 3.3 – THW (THW_mean) and min THW (THW_min) distribution of all drivers in the first
15 mins period data, group 1 in orange, group 2 in green, group 3 in red and group 4 in purple. The
remainder drivers (blue points) are considered as drivers with ’normal’ driving profile.
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(a) aggressive drivers (b) inattentive drivers

Figure 3.4 – THW (THW_mean) and min THW (THW_min) distribution for the selected aggressive
drivers and inattentive drivers

3.5 SUMO traffic simulator and the choice of car-following model

Once we extracted the different driver profiles from NGSIM 101 data-set, we need a traffic
simulator to simulate the NGSIM traffic and the microscopic traffic model for representing the
driver profiles. We choose SUMO (“Simulation of Urban MObility”) as the traffic numerical
simulator to apply our proposition, which have beed already presented in the Section 2.6.1. As
we are interested only in car-following behavior in this work, the generation of different driver
profiles is performed by calibrating a car-following model. Many interesting reviews on car-
following can be found in the literature (Brackstone andMark, 1999; Mohammad and Z. Zheng,
2014; Aghabayk, Sarvi, and Young, 2015). We briefly present here some of the most commonly
used. GHR model (Chandler, Herman, and Montroll, 1958) is a stimulus–response model
in which drivers perform their acceleration/deceleration depending on car-speeds, relative
car-speeds with respect to leading vehicles, inter-vehicle distances, and drivers’ reaction time.
Wiedemann (1974) car-following model is used in Vissim simulator and describes the psycho-
physiological aspects of driving behavior in terms of four discrete driving regimes. This model
considers different modes of operation, divided into ‘no reaction zone’ (free-road), ‘closing
in’, ’must decelerate’, and ‘car-following’ by human perceptual thresholds (Mohammad and
Z. Zheng, 2014). Gipps model (Gipps, 1981) and Krauss model (Krauß, 1998) are based on
safety distance. In the Gipps model, drivers update their car-speeds with respect to keep a
minimum safety distance to the leader ones, in order to avoid collisions and while considering
the extreme case of a leader car braking suddenly. Krauss model (Krauß, 1998) is the car-
following model by default in SUMO simulator. It extends the Gipps model by modeling the
imperfection of human driver with stochastic terms of car-speed. This propriety makes (or is
supposed to make) the model more realistic. The IDM car-following model was first published
in (Treiber, Hennecke, and Helbing, 2000) which improved the initial results produced by
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the Gipps’ model. The acceleration is calculated as a function of the desired speed and the
desired space headway. The IDM model is suitable for both free flow and congestion phases
(Mohammad and Z. Zheng, 2014). This attribute makes the model more efficient and facilitates
its calibration with real driven data.

We chose here the IDM car-following model (Treiber, Hennecke, and Helbing, 2000), which
is already implemented in SUMO, and it is shown by several research works that IDM is the
most human-like car-following among certain compared models (Vasconcelos et al., 2014; M.
Zhu, Xuesong Wang, Tarko, et al., 2018). Let us briefly recall the IDM model. The model is
described by the following formulas :

dV

dt
= a

[
1−

(
V

V0

)δ

−
(

s∗(V, ∆V )
s

)2]
, (3.17)

where

s∗(V, ∆V ) := s0 + max
(

0, V T + V ∆V

2
√

ab

)
, (3.18)

with

dV/dt: vehicle acceleration

V : vehicle speed

s: inter-vehicular distance

∆V : relative speed with leading vehicle

a: maximum acceleration

b: maximum deceleration

V0: desired speed

δ: exponential parameter of speed, we fixed it at 4 referring to (Treiber, Hennecke, and
Helbing, 2000)

s0: minimal inter-vehicular distance with leading vehicle

T : desired time headway (desired THW)

The output of the IDM model is the acceleration dV/dt given as a function of the influencing
factors (the inputs of the model): the own speed V, the inter-vehicular distance s and the
relative speed ∆V with respect to the leading vehicle.
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3.5.1 Reaction time in car-following models

We notice that the original IDM car-following model does not include reaction time as a
parameter (Aghabayk, Sarvi, and Young, 2015). Nevertheless, in a recent development of
SUMO simulator (Lopez et al., 2018), the authors improved thework on reaction timemodeling.
They indicated that reaction time could be introduced in the driving model (car-following and
lane change models) as an additional parameter. In the work we present here, we introduced a
reaction time parameter into the IDM car-following model. In SUMO, the simulation step can
be set to ∆t, and the driver reaction time is a time delay to make a decision both for updating
acceleration or lane changing depending on the present state of traffic. This delay of decision
time (reaction time) can be set as (n ∗ ∆t), where n is an additional parameter which we
determine by calibration.

3.6 Car-following model calibration method

To achieve a realistic representation of traffic behavior, the calibration with real driven data
for the traffic model has to be applied. Two main types of calibration of car-following models
exist: 1) Estimation of driving model parameters accounting for the physical meanings of each
parameter (Lu et al., 2016), inwhich, parameters can be extracted directly fromvehicle trajectory
data; 2) Calibration of driving models, which can be constructed as an optimization problem.
In the second approach, the objective function and the optimization method is selected so
as to minimize the distance between the simulated vehicle trajectories by the model and real
vehicle trajectories, and in order to find the optimal set of parameters. Several mathematical
optimization methods and algorithms such as Newton, Gauss-Newton, gradient descent,
and Levenberg-Marquardt are presented for car-following model parameters optimization
in (Treiber and Kesting, 2013a). The authors of (Treiber and Kesting, 2013a) proved that
genetic algorithms (GA) are also effective to solve optimization problems for car-following
model calibration. Many of the recent works on car-following model calibration used GA
methods (Vasconcelos et al., 2014; M. Zhu, Xuesong Wang, Tarko, et al., 2018). Their works
show that GA optimisation method is efficient for car-following model calibration. In Table 3.2,
an overview is given regarding to the several recent works on car-following models calibration
by optimisation methods.
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Articles Car-flowing
model

Optimization
algorithm

Objective
function Data Result

(Pourabdollah,
2017)

Krauss,
IDM,

wiedemann
GA

Normalized
MSE
for

energy
demand

Microscopic
data

within 200
different
trips

IDM
is best

to represent
drivers behaviors

and
energy demand

(Li,2016) GHR,
IDM

Nelder-Mead
(NM),

sequential
quadratic

programming
(SQP),
GA

Sum of
square

error (SSE)
for position
and velocity

NGSIM data

GA gives
the best

result for the
calibration, IDM is
better than GHR

(Zhu,2018)

GHR,
GIPPS,
IDM,
FVD,

wiedemann

GA

RMSE
of spacing

and
velocity

42 Chinese
drivers
on urban

expressway

IDM is the best
and more stable

(Treiber,2014) IDM
Levenberg
-Marquardt
algorithm

SSE of gaps,
acceleration,
and speed

NGSIM data

Calibration
based on

gaps error is
more reliable

Table 3.2 – Overview of calibration of car-following models.

3.6.1 Pre-definitions of IDMmodel calibration

In our approach, the identification of drivers with ’extreme’ profiles is carried out by calibrating
the IDM model parameters, using real driven data. We use here the same method used in (M.
Zhu, Xuesong Wang, Tarko, et al., 2018), where a genetic algorithm (GA) is applied and a
measure of error is defined as the objective function. The used GAmethod is the default model
in Matlab 2020b (R2020b, 2020) and for the algorithm description, it is presented in the book
(Singiresu S. Rao, 2020). As what is presented, GA is inspired by biologic evolution carried
out by mechanisms of inheritance, selection, mutation and recombination to find the optimal
solution among all generations (sets of parameter groups).

In our work, the GA is implemented to find the optimal values of the IDMmodel parameters
for each driver trajectory with the following procedure (same as what is presented in (M. Zhu,
Xuesong Wang, Tarko, et al., 2018)):

1. A population of N individuals is initialized depending on the predefined parameter
boundaries, each representing a set of parameters of the IDM model.

2. Computation of the fitness of each individual in the population, and the faintness is
determined by a predetermined objective function ( RMSPE on the vehicle position).
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3. Crossover between randomly selected pairs of individuals (parents) and mutation within
randomly selected individuals to produce the next generation (children)

4. Repeat steps 2 and 3 until the termination criteria are met.

The goodness of each individual (a parameter group) is evaluated by the objective function.
In general, the mean square error (MSE) is widely used for calibration of car-following models.
Here, another error metric is used as presented in (M. Zhu, Xuesong Wang, Tarko, et al., 2018),
the root mean square percentage errors (RMSPE).

RMSPE(θ) =

√√√√ 1
P

P∑
i=0

(xsimul
i (θ)− xdata

i (θ))2

xdata
i (θ)2 , (3.19)

where xdata
i (respectively xsimul

i ) denotes the car trajectory (positions in time) from data
(respectively from simulation), and where θ represents all the parameters of the considered
model. The car longitudinal position is chosen as the target variable in the objective function.

The IDM model calculates car acceleration, as described in equation (3.20), based on
the drivers reaction time (n ∗ ∆t). Car’s speed and position are calculated as follows in
equation (3.21) and (3.22), based on the Euler Method.

asimul(t + n∆t) = IDM(θ; variables(t)) (3.20)

vsimul(t + ∆t) = vsimul(t) + asimul(t) ∗∆t (3.21)

xsimul(t + ∆t) = xsimul(t) + vsimul(t) ∗∆t (3.22)

In this work, the parameters which need to be calibrated are: a (maximal acceleration), b

(maximal deceleration), V0 (desired speed), s0 (minimal inter-vehicular distance to leading
vehicle) and T (desired THW), as well as the additional parameter n for the reaction time
(n ∗∆t). In addition, the parameter δ (exponential parameter of speed) is fixed at δ = 4 as
proposed in (Treiber, Hennecke, and Helbing, 2000).

In the calibration process of the IDMmodel with the reaction time parameter for the extreme
driver profiles, upper and lower bounds are needed to be set for all the parameters of IDM. For
the reaction time and desired THW parameters, the bounds for these two parameters are different
for the aggressive and inattentive driver profiles. For aggressive drivers, we chose the desired
THW ranges from 0.1 to 4 s, while the reaction time is from 0.1 to 2 s. For inattentive drivers,
we chose the desired THW ranges from 1 to 4 s while the reaction time goes from tri − 0.3 to
tri + 0.3 seconds, where tri is the value of min THW(i); see section 3.4.2 and we approximate
the driver’s reaction time to be around tri. For the other parameters, the bounds are the same
for both aggressive and inattentive parameters. Thus, the desired speed (V0) ranges from 10 to
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40 m/s, s0 ranges from 0.1 to 10 m, maximum acceleration and maximum deceleration range
from 0.1 and 5 m/s2 as what is proposed in (M. Zhu, Xuesong Wang, Tarko, et al., 2018).

For drivers with ‘normal’ profile, we simulate them using an average profile. Their calibra-
tion of IDM parameters is extracted directly from the data-set by their physical meanings and
combined with the default values in SUMO simulator.

3.6.2 IDMmodel calibration result for extreme driver profiles

Asmentioned above, the calibration of extreme driver profiles is considered as the optimization
problem with the aim at minimizing the error between the simulated car-trajectories by IDM
model and the real ones available from the data-set using a genetic algorithm. Moreover, we
repeated the genetic algorithm 10 times for every driver trajectory, in order to approach the
global optimum solution for the parameters of the calibration.

Firstly, we observed that the IDMmodel with the reaction time parameter is efficient for
replicating the human driver behavior; see. A.1. The result by IDMmodel with the extension of
reaction time is better than the original IDMmodel without reaction time parameter. Therefore,
we use the IDM model with the reaction time parameter to present the driver profiles in
numerical simulated traffic .

The results of calibration for the 4 specific groups of drivers are given in Tables A.1 - A.4 of
Appendix A.2. For the calibration on the car-trajectories variable (car-positions in time), we
obtained for all 4 driver profile groups an RMPSE ranging in (1% ,2%). From the calibration
results, given in Tables A.1 - A.4, we notice that group 1 driver profiles have shorter reaction
times and desired headway times compared to group 2 driver profiles. On the other hand,
group 3 driver profiles have longer reaction times and desired headway times compared to
group 4 driver profiles. Moreover, the desired THW(parameter T in formula (2.14)) of attentive
drivers is much larger than the one of aggressive drivers.

3.7 Numerical simulation experiments setup

The reproduction of the NGSIM traffic data by numerical simulation consists of the creation
of the road section, the selection of the microscopic traffic model (IDM car-following model,
plus the default lane changing model in SUMO), and the simulation using SUMO. NETEDIT
(SUMO, 2019a) tool of SUMO simulator allows to create manual map network of NGSIM,
presented as a road of 640 meters with 5 straight lanes. The creation of each vehicle is provided
by its longitudinal origin position, longitudinal destination position, entering lane, and entering
time (in seconds). This necessary information is extracted from the car trajectory data. In
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addition, during the simulation, SUMO can detect physical collisions (front and back bumper
meet or overlap) (SUMO, 2019b). We can get the collision counts at the end of each simulation.

Four experiments of car-collision simulation are proposed for different combinations of the
two selected groups of drivers. Each experiment is carried out using different combinations
of one group of aggressive drivers and one group of inattentive drivers. Driver profiles used
in simulation are described in Table 3.3, and the different groups of driver profiles have been
described in Section 3.4.3.

Name of experiment Aggressive drivers group Inattentive drivers group
Experiment 1 (E1) 2.5% 1st aggressive drivers 2.5% 1st inattentive drivers
Experiment 2 (E2) 2.5% 2nd aggressive drivers 2.5% 1st inattentive drivers
Experiment 3 (E3) 2.5% 1st aggressive drivers 2.5% 2nd inattentive drivers
Experiment 4 (E4) 2.5% 2nd aggressive drivers 2.5% 2nd inattentive drivers

Table 3.3 – Numerical simulation experiments

As what we proposed in above, for example, for the experiment E1 (Table 3.3) which is the
first experiment, we use 2.5% of first aggressive driver profiles, 2.5% of first inattentive driver
profiles, and 95% of “normal drivers” as the initial scenario of the traffic. This corresponds
to the original traffic condition of the first 15-minute sub-dataset in NGSIM 101 dataset. We
simulate the traffic in SUMO for this first scenario, where all the driver profiles use their own
calibrated parameters of the IDM model. The results are shown in Figure 3.5, where we give
the mean traffic speed from the real data and the mean traffic speed presented from numerical
simulations in SUMO. We can see that the traffic simulation represents well the state of traffic
(car-speed) over time, compared to the real data.

We assume then the car-collisions can be generated in each simulation by increasing the
number of aggressive and/or inattentive drivers in the traffic. The increasing of the percentages
of extreme driver profiles is done artificially and randomly by replacing the same number
of ’normal’ drivers by the selected extreme driver profiles. Thus, we reset the simulation by
increasing the rates of drivers associated to each extreme driver profile (2.5% in the origin
data-set, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50% in simulation). For each
simulation, once the rates of the extreme driver profiles are fixed, all the other drivers are taken
as ’normal’.
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Figure 3.5 – The average traffic flow speed from real data (blue) and the simulated average car speed
(orange) in SUMO of the initial traffic of the first 15 minutes sample, where 2.5% are aggressive drivers
simulated using their own IDM calibrated parameters, and 2.5% are inattentive drivers simulated using
their own IDM calibrated parameters. The remaining driver profiles (95%) are normal drivers in the
traffic.

3.8 The results for vehicular collision generation

In this section, we give the results of the numerical simulations for the car collision generation.
In subsection 3.8.1, we provide the number of collisions generated by numerical simulation
based on the first 15 minutes data. The results are presented for the 4 predefined scenarios.
Moreover, in order to understand the relationship between the driver profiles and the generated
car-collisions, we give in subsection 3.8.2 a deeper analysis of the collisions obtained in the
numerical simulation experiment 1 (E1). In subsection 3.8.3, we show that the number of
simulated car-collisions can be written as a function of the rates of aggressive and inattentive
driver profiles in the traffic.

After the presentation of the obtained results on the first 15-minutes sub-dataset, we give in
section 3.9 the results for the validation of the proposed approach using the second 15-minute
time period of the NGSIM 101 dataset.
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3.8.1 Number of collisions by numerical simulation

We start with the implementation of experiment E1. We observed that the number of collisions
occurred in each simulation is various even when using the same rate of specific drivers. This is
due to the random distribution of the specific (aggressive and inattentive) driver profiles over
all the drivers. Nevertheless, we observed that the mean number of car-collisions converges
in simulation time, for each case. Thus, the presented collision counts in each case shown in
the following tables are the average value over 10 simulations for each case. The number of
collisions obtained by numerical simulation is given in Tables 3.4-3.7 for each experimentation
(E1, E2, E3, E4) respectively.

1st aggressive drivers
(horizontal)
1st inattentive drivers
(vertical)

2.5% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

2.5% 0 0 1 3 3 5 6 7. 11 11 13
5% 0 0 2 4 5 7 10 10 12 18 19
10% 4 4 7 10 12 16 21 26 29 38 43
15% 5 7 11 17 21 27 31 37 46 53 52
20% 8 11 16 18 24 31 38 46 56 64 69
25% 11 13 20 26 36 45 50 57 66 72 82
30% 12 16 22 30 39 49 60 62 75 87 92
35% 17 20 29 37 46 52 60 73 78 92 99
40% 19 22 28 35 50 55 65 76 88 96 106
45% 23 25 33 46 58 65 78 88 92 106 123
50% 25 32 42 52 62 74 87 95 105 118 124

Table 3.4 – Experiment 1: Simulated collision counts for different percentages of 1st aggressive and
1st inattentive drivers. For example, in the case that 25% for aggressive, and 25% for inattentive, the
remaining 50% are normal drivers.

2nd aggressive drivers
(horizontal)
1st inattentive drivers
(vertical)

2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt 0 0 1 3 4 5 7
5%_inatt 0 1 2 3 5 7 8
10%_inatt 4 5 5 9 13 16 17
20%_inatt 10 11 15 22 25 35 43
30%_inatt 12 14 17 24 32 39 52
40%_inatt 21 21 34 36 47 53 63
50%_inatt 27 29 37 48 61 69 80

Table 3.5 – Experiment 2: Simulated car-collision counts for different percentages of 2nd aggressive
and 1st inattentive drivers.
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1st aggressive drivers
(horizontal)
2nd inattentive drivers
(vertical)

2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt 0 0 2 4 4 8 10
5%_inatt 0 1 1 6 6 9 11
10%_inatt 2 2 2 9 15 18 20
20%_inatt 5 11 10 18 28 35 56
30%_inatt 11 11 18 25 38 54 69
40%_inatt 19 16 28 45 53 78 97
50%_inatt 24 29 32 55 73 82 101

Table 3.6 – Experiment 3: Simulated car-collision counts for different percentages of 1st aggressive and
2nd inattentive drivers..

2nd aggressive drivers
(horizontal)
2nd inattentive drivers
(vertical)

2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt 0 0 1 2 2 4 8
5%_inatt 0 1 2 2 4 5 6
10%_inatt 2 1 2 4 6 10 14
20%_inatt 4 5 8 14 14 16 30
30%_inatt 8 12 12 16 28 30 42
40%_inatt 16 16 22 24 28 34 52
50%_inatt 25 20 26 38 42 52 58

Table 3.7 – Experiment 4: Simulated car-collision counts for different percentages of 2nd aggressive
and 2nd inattentive drivers.

In Table 3.4, the simulated collision counts are shown along with different rates of specific
profiles for E1. The results indicate clearly that the number of inter-vehicular collision occur-
rences increases with the considered number of aggressive and/or inattentive driver profiles.
The results for E2, E3, and E4 are given respectively in Tables 3.5-3.7. The number of obtained
collisions is lower compared to the ones of Table 3.4. The number of collisions obtained with
E4 is the lowest one compared to the other three experiments. This result shows that a different
risk level is associated to each profile. The first group of aggressive driver profiles could poten-
tially cause more collisions than the second group of aggressive driver profiles (comparison of
E1 and E2 results). Similarly, the first group of inattentive driver profiles could cause more
collisions than the second group of inattentive driver profiles (comparison of E3 and E4 results).
Interestingly, in the four experiments, no collisions occurred when the percentage of ’extreme’
drivers was small. With the increase of the rate of each specific driver profile, the number of
collisions increases. However, this increase seems to be different from one experiment to an
other; see Figure 3.6, where each line presents the number of collisions in the simulation of
each four experiments, under the condition that aggressive drivers and inattentive drivers have
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the same rate in the traffic. The Experiment 1, where we generated collisions based on varying
the percentage of the most aggressive and the most inattentive drivers, can generate more
collisions than the other three experiments. The Experiment 4 has probably the lest number
of collisions, where we generated collisions based on varying the percentage of the second
aggressive and the second inattentive drivers.

Figure 3.6 – Simulated car-collision counts for the four experiments, where aggressive and inattentive
drivers have same rate (axis-x) in traffic (based on the first 15-min data). For example, 2.5% (axis-x)
means each profile (aggressive, inattentive) takes 2.5% in the traffic.

3.8.2 Analysis of collisions obtained in Experiment 1 (E1)

We further analyze here the results obtained in E1 (Table 3.4) to investigate the relationship
between generated car collisions and driver profiles. Figure 3.7 depicts the number of the
simulated collisions as a function of the two rates of aggressive and inattentive driver profiles.
More precisely, Figure 3.7 shows the contours of this function, which takes indeed the values
of the result shown in Table 3.4. From Figure 3.7, it seems that the sum of the two rates of
aggressive and inattentive driver profiles is important in determining the number of collisions.
Indeed, we can see on Figure 3.7 that the contours resemble to decreasing straight lines with
slope (-1). However, the contours are not linear, which means that the sum of the rates of
aggressive and inattentive driver profiles, although important, is not the unique parameter
for the determination of the number of collisions. This will be confirmed in the next section,
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where, using statistical regression, we approximate the number of collisions with a non linear
function of the two rates of aggressive and inattentive driver profiles.

Figure 3.7 – Counter curves of the number of generated car-collisions, function of the percentages of
aggressive and inattentive driver profiles if the traffic, for scenario E1 on first 15-minute data. Abbrevia-
tions "ag" and "long" mean "aggressive" and "inattentive" respectively.

As mentioned above in section 3.7, a car-collision is observed in SUMO when a following
vehicle (veh2) collides the rear-end of the proceeding vehicle (veh1). We can get information on
the profiles of the two vehicles involved in each collision. The distribution of rear-end collisions
produced by different driver profiles (aggressive, normal, and inattentive) in percentage is
shown in Figure 3.8. Abbreviations ag, long, and nor are used to indicate aggressive, inattentive,
and normal driver profiles respectively. In Figure 3.8, we give the percentages of the number
of collisions caused by each pair of driver profiles rates. Thus, collisions caused by the pair
inattentive(veh1)-aggressive(veh2) of driver profiles, in this order, account for the largest ratio,
which is 28.99 % of the whole number of simulated collisions.
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Figure 3.8 – Distribution of involved driver profile types in simulated rear-end collisions (E1 based on
first 15-minute data), veh1 indicates the leading vehicle, veh2 indicates the following vehicle. The suffix
ag, long, nor are the aggressive, inattentive, normal driver profiles respectively.

3.8.3 The number of collisions as a function of the rates of aggressive and inatten-
tive driver profiles in traffic

According to the results given in Table 3.4, the relationship between the number of simulated
collisions and the rates of aggressive and inattentive driver profiles is shown in Figure 3.7.
In order to better understand this relationship, we use statistical regression and assume that
car-collision counts (Y) are proportional to the percentage of aggressive drivers (x1 %) and
the percentage of inattentive drivers (x2 %), which can be formulated as Y = f(x1, x2).

We have first tried linear regression and the result is shown in section A.3.1 of Appendix A.3,
which concludes that the assumption of linearity in not convincing. Indeed, we observe
from Table 3.4 (red cases), for example, that the number of collisions generated with 30 % of
aggressive driver profiles and 30 % of inattentive driver profiles is 60. Holding on this 60%,
however, with 25% (also respectively 20%, 15%, 10%, 35%, 40%, 45%, and 50%) of aggressive
driver profiles, and 35 % (also respectively 40 %, 45 %, 50 %, 25 %, 20 %, 15 %, and 10 %) of
inattentive driver profiles, the number of generated collisions is less substantial, although the
sum of all the pairs of considered rates of aggressive and inattentive driver profiles is 60 %.
Moreover, it seems that the number of generated collisions decreases with the increasing of
the absolute difference between the rates of aggressive and inattentive driver profiles. In other
terms, the number of generated collisions increases with the uniformity of mixing both profiles
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(aggressive and inattentive). Based on this observation, we propose to add a quadratic term
of the approximation of the relationship between the number of generated collisions and the
rates of aggressive and inattentive driver profiles.

Ŷ = f(x1, x2) = max
(
0, β0 + β1 ∗ x1 + β2 ∗ x2 + β3 ∗ (x1 − x2)2

)
, (3.23)

where Ŷ is the estimation of car-collision counts; x1 % is the percentage of aggressive drivers
and x2 % is the percentage of inattentive drivers; We lower bound the function by zero, since
the number of collisions cannot be negative. We obtained the following coefficients: β0 =
−23.35, β1 = 1.4201, β2 = 1.3602, and β3 = −1.4377, with RMSE = 4.864; Let us note that
another non-linear regression has been tested in section A.3.2 of Appendix A.3. However, the
results are not better than the ones obtained by the regression (3.23).

We notice here that β3 < 0. First, the fact that β3 ̸= 0 confirms the significance of the effect
of the absolute difference between the two rates of aggressive and inattentive driver profiles on
the number of generated collisions. Second, the fact that β3 is negative confirms our hypotheses,
that the number of generated collisions decreases with the increase of the absolute difference
between the rates of aggressive and inattentive driver profiles.

In Figure 3.9, the number of collisions for each percentage of the two drivers profiles is
presented, as well as the surface obtained by the non-linear regression.
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3.9 Validation of the approach on the second 15-minute time period
of data

In this section, the same approach (summarized in Figure 3.1) for car-collision generation
is carried out based on the second 15-min time period of the NGSIM 101 data-set, with the
purpose of validation of the approach, where 1495 vehicles are registered in this period on the 5
normal traffic lanes. Similarly to the work using the first 15-minute data, we begin by selecting
the 4 driver profiles groups by the percentage of 2.5%. As the result, the thresholds on THW

(mean THW) and min THW for each driver profile are shown in Table 3.8. The thresholds
obtained for the 4 groups of drivers are similar to the ones obtained based on the first 15-minute
period of data (comparison of Table 3.8 and Table 3.1). In addition, the simulation of the
original traffic in SUMO for this period is shown in Figure 3.10. This Figure shows that the
traffic simulation is well calibrated for the second period of data, with initial percentage of
aggressive drivers and inattentive drivers (2.5% for each group) in the traffic, and the limit
speed conditions on the two sides of the road.

Type of drivers Indicator Threshold
1st aggressive (group 1) mean THW ⩽ 0.86s

2nd aggressive (group 2) mean THW [0.86s, 0.98s]
1st inattentive (group 3) min THW ⩾ 1.99s

2nd inattentive (group 4) min THW [1.74s, 1.99s]

Table 3.8 – Selected drivers and the associated threshold for the second 15-minute data.

Figure 3.10 – Average traffic flow speed of real data (blue) and simulation (orange) in SUMO for the
second 15-min data.
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3.9.1 Number of collisions by numerical simulation based on the second 15-minute
data

The simulated resulting collisions, for the 4 experiments (E1-E4), are shown in Tables 3.9-3.12.
Furthermore, Figure 3.11 shows the number of generated collisions for the four experiments.

1st aggressive drivers
(horizontal)
1st inattentive drivers
(vertical)

2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt 0.0 2.0 4.0 9.0 11.0 17.0 20.0
5%_inatt 3.0 5.0 7.0 12.0 15.0 22.0 26.0
10%_inatt 11.0 14.0 16.0 21.0 30.0 34.0 39.0
20%_inatt 25.0 28.0 34.0 42.0 50.0 65.0 70.0
30%_inatt 34.0 39.0 45.0 51.0 56.0 68.0 79.0
40%_inatt 47.0 52.0 57.0 70.0 79.0 91.0 105.0
50%_inatt 58.0 60.0 68.0 79.0 82.0 102.0 115.0

Table 3.9 – Experiment 1: Simulated car-collision counts by varying respectively the percentage of 1st
aggressive and 1st inattentive drivers for second 15-min period.

2nd aggressive drivers
(horizontal)
1st inattentive drivers
(vertical)

2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt 0.0 1.0 2.0 5.0 7.0 12.0 16.0
5%_inatt 4.0 5.0 6.0 9.0 13.0 15.0 19.0
10%_inatt 9.0 10.0 12.0 16.0 18.0 24.0 29.0
20%_inatt 22.0 25.0 26.0 32.0 37.0 41.0 44.0
30%_inatt 38.0 37.0 37.0 44.0 45.0 55.0 61.0
40%_inatt 44.0 48.0 52.0 56.0 61.0 67.0 78.0
50%_inatt 58.0 59.0 60.0 68.0 84.0 83.0 88.0

Table 3.10 – Experiment 2: Simulated car-collision counts by varying respectively the percentage of 2nd
aggressive and 1st inattentive drivers over the second 15-minute period.

The result using the second 15-minute period data is close to the result using the first 15-
minute period. The simulated collisions using the second 15-minute data show the same trend
as the first 15-minute data, where Experiment E1 simulates the greatest number of collisions,
while E4 simulates the lowest number of collisions.
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1st aggressive drivers
(horizontal)
2nd inattentive drivers
(vertical)

2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt 0.0 1.0 4.0 10.0 12.0 19.0 20.0
5%_inatt 2.0 3.0 5.0 10.0 11.0 19.0 24.0
10%_inatt 6.0 7.0 8.0 14.0 18.0 26.0 31.0
20%_long 16.0 18.0 18.0 25.0 30.0 37.0 43.0
30%_inatt 22.0 26.0 29.0 33.0 38.0 47.0 54.0
40%_inatt 29.0 34.0 35.0 43.0 52.0 58.0 68.0
50%_inatt 33.0 33.0 40.0 50.0 53.0 69.0 72.0

Table 3.11 – Experiment 3: Simulated car-collision counts by varying respectively the percentage of 1st
aggressive and 2nd inattentive drivers over the second 15-min period.

2nd aggressive drivers
(horizontal)
2nd inattentive drivers
(vertical)

2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt 0.0 1.0 2.0 7.0 9.0 10.0 15.0
5%_inatt 2.0 4.0 6.0 8.0 11.0 16.0 16.0
10%_inatt 5.0 6.0 7.0 10.0 12.0 17.0 19.0
20%_inatt 13.0 15.0 18.0 20.0 22.0 27.0 30.0
30%_inatt 20.0 22.0 23.0 26.0 31.0 35.0 38.0
40%_inatt 28.0 28.0 31.0 32.0 37.0 42.0 43.0
50%_inatt 30.0 32.0 32.0 37.0 40.0 45.0 46.0

Table 3.12 – Experiment 4: Simulated collisions number by varying respectively the percentage of the
2nd aggressive drivers and the 2nd inattentive drivers of second 15-min data.

3.9.2 The number of collisions and the rates of different driver profiles in traffic
based on the second 15-minute data

The results of the number of collisions for experiment E1 based on the second 15-min data
are given in Table 3.9 and Figure 3.12. Therefore, as for the first 15-min time period data, a
non-linear regression is performed (Equation 3.23), where we get the following coefficients:
β0 = 0,−8.154, β1 = 1.580, β2 = 0.8502, and β3 = −0.7575, with an RMSE = 3.761.

In Figure 3.13, the number of collisions for each percentage of two drivers profiles is
presented, as well as the surface obtained by the non-linear regression by the proposition
(Equation 3.23).
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Figure 3.11 – Simulated car-collision counts for the four experiments, where aggressive and inattentive
drivers have same rate (axis-x) in traffic (based on the second 15-min data). For example, 2.5% (axis-x)
means each profile (aggressive, inattentive) takes 2.5% in the traffic.

Figure 3.12 – E1: Simulated car-collision counts for different percentages of aggressive and inattentive
drivers based on second 15-minute data. The suffix ag, long are the aggressive, inattentive driver profile
respectively.
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3.10 Analysis of car-collision severity

All the simulated car-collisions can be further used to explore car-collision severity. Several
works have investigated the relationship of rear-end car-collision severity to car speed. In (Ju-
rewicz et al., 2016), the authors reported that the critical impact speed was approximately 55
km/h for rear-end collisions. In addition, in (Elvik, 2013), the authors claim that the change of
speed before and after the car-collision is a critical indicator for car-collision severity outcomes.

In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its
speed (3.24). In the case of front-rear collision of two moving cars, the kinetic energy is related
to the relative speed of the front vehicle and the rear car (3.25).

KE = 1
2m ∗ v2 (3.24)

KE ∝ ∆v (3.25)

Relative speed could thus be an important surrogate to indicate the severity of collision.
In simulations with 50% drivers being aggressive and the other 50% being inattentive, 866
collisions were generated (with 5 simulations). Among all collisions, 220 (25.4%) concerned
aggressive-aggressive couples of driver profiles, 408 (47.1%) concerned inattentive-aggressive,
107 (12.4%) concerned inattentive-inattentive, and 131 (15.1%) concerned aggressive-inattentive.
In Figure 3.14, the distribution of relative speed for these 866 simulated collisions is shown.
collisions implicating inattentive(veh1)- aggressive(veh2) drivers account for the largest rate of
all simulated collisions. All generated collisions have a relative speed below 50 km/h. Further-
more, collisions are more severe when they implicate two inattentive drivers, since the mean
relative speed is at 23.27 km/h, which is more critical than in the other cases. Car-collision
severity is much lighter between two aggressive drivers who have an average relative speed at
15.7 km/h.

SCANeR Studio (AVSimulation, 2019)(Champion et al., 1999) is a driving simulation soft-
ware, which also includes Bullet physic engine (a free and open-source software of simulation
of collision detection, soft and rigid body dynamics). It provides the opportunity to simulate
vehicle collisions with a vehicle physical model. For every simulated car-collision in SUMO, the
involved two vehicles’ trajectory can be registered. Then the car-collision scene can be replayed
in SCANeR Studio. Thus, the result of a car-collision simulated in SUMO can be re-simulated in
SCANeR Studio; see Figure 3.15. In Figure 3.16, the collision force for certain replayed collisions
is shown. Each point corresponds to one re-simulated car-collision by SCANeR. It seems that
the force is a super-linear function of the relative speed; see Figure 3.16. However, this fact
needs more investigations and should be considered in our future research. The objective will

71



Analysis of driver behavior and inter-vehicular collision : a data-based traffic modeling and
simulation approach

Figure 3.14 – The distribution of relative speed for simulated collisions (µ indicates the mean value
for each sub-figure), Abbreviations "ag" and "inatt" denote "aggressive" and "inattentive" driver profile
respectively. It shows that the most collisions are occurred between inattentive-aggressive drivers, while
the most severe (dangerous) collisions are produced between inattentive-inattentive drivers.

be to couple SUMO traffic simulator with SCANeR studio (the immersive driving simulator)
in order to build a high performance system to test and validate autonomous vehicles.

Figure 3.15 – SCANeR screenshot for a collision.
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Figure 3.16 – The collision force by SCANeR as a function of the relative speed (Y-axis for collision
force (Newton) and X-axis for relative speed of collision (km/h)).

3.11 Conclusion and perspectives

In this work, the main contributions consist in 1) extracting three proposed driver profiles
based on real driven data-set; 2) replicating them in simulated environment; and 3) establishing
a relationship between car-collision occurrences and these different driver profiles by varying
their percentages in the whole traffic via virtual simulation.

Based on the NGSIM 101 data-set, two specific driver profiles which are related to car-
collisions on road networks have been characterized, defined as i) aggressive drivers who keep
short time-headways with their leaders, and ii) inattentive drivers with long reaction-times.
All the other driver profiles are considered as "normal" with intermediate values of reaction
time and time-headway. These three driver profiles have been simulated by using the Intelligent
Driver Model (IDM) car-following model, with an extension including driver reaction time.
In order to represent the real driver profiles, the IDM model is calibrated using a genetic
algorithm. Finally, by increasing the percentage of the two extreme driver profiles (aggressive
and inattentive) over the whole traffic in virtual traffic simulation, we investigated the effect of
these driver profiles on the car-collision occurrences.

The results of the numerical simulations show that the percentages of the aggressive and
inattentive driver profiles over the whole driver population are determinant in the car-collision
occurrences and in the resulting severity outcomes. One of the important results we obtained
in this work is the characterization of the relationship between the ratios of these two driver
profiles over the whole drivers population, and the car-collision occurrences counts. We have
also classified the occurred car-collisions and analyzed their severity, in particular with respect
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to the relative speed between the cars which cause the collisions. Another important result of
this research is that, the generated car-collisions involved between an aggressive driver as a
leader and an inattentive driver as a follower occupy the most frequent collision occurrences,
meanwhile the generated car-collisions involved between two inattentive drivers are the most
severe ones.

The safety validation of Intelligent Connected Vehicles is essential and could be critical for
their deployment. In order to complete the demonstration of the reliability of the system’s
safety, autonomous vehicles need to be driven for hundreds of millions of miles. However, the
huge cost of such physical tests, combining with its inherent danger of testing situations where
collisions can happen, makes the numerical simulation of scenarios mixing different driver
profiles as an important safety assessment tool for ICVs testing. Indeed, during the deployment
phase of ICVs, the recognition of drivers’ profiles should be considered to avoid collision
generation. As shown in our experiments, based on our approach, different traffic scenarios can
be generated with different driver profiles in traffic simulation. For future research, this work
is expected to highly facilitate future ICVs testing and validation for the car manufacturing
industry via numerical traffic simulation.
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Chapter 4

Imitation of Real Lane-Change
Decisions Using Reinforcement
Learning

Microscopicmodeling of human driving consists generally in combining both car-following and
lane-change models. While the human car-following process has been extensively developed
and well modeled, the lane-change behavior is more complex to understand and still remains
to be explored. Classical lane-change models are usually rule-based and handcrafted, that
tend to exhibit limited performance. Machine Learning algorithms, particularly Reinforcement
Learning (RL) ones, provide an alternative approach and have recently achieved high success
in modeling difficult decision-making processes in many fields. We propose in this chapter
a reinforcement learning based model for the human lane-change behavior, with an online
calibration of real lane-change decisions, extracted from the NGSIM data-set. We use the traffic
vehicular simulator SUMO (“Simulation of Urban MObility”) to create a numerical simulation
environment. The utilization of numerical traffic simulation allows us enriching the data-set,
for training the agent to find an optimal policy for lane change. Thus, about 13% additional
traffic situations, not present in the real data, are created by the traffic simulation environment.
The trained agent is collision-free and human-like. It is able to reproduce well lane-change
behaviors in real data and those in the additional simulated data. Indeed, our RL model can
perform up to 95.37% of the real decisions observed in the data-set.
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4.1 Motivation

4.1 Motivation

Driving behaviour models describe the drivers manoeuvring decision in different traffic condi-
tions, which are important for traffic researches and for microscopic traffic simulation. Car-
following (CF) and lane-change (LC) models are the two fundamental models in human
driving modelling. CF models have been well developed. They describe the longitudinal
behavior when a given vehicle follows the leading one. Most of literature reviews focus on
summarizing car-following models (Mohammad and Z. Zheng, 2014; Aghabayk, Sarvi, and
Young, 2015). Considering LC behavior, the modeling efforts are not as many as in the CF
behavior. This is due to the complexity of the LC behavior, which is affected by the surrounding
vehicles (of the considered vehicle) and by the traffic flow environment (Toledo, Koutsopoulos,
and M. Ben-Akiva, 2007). In some reviews of lane changing models (Toledo, Koutsopoulos,
andM. Ben-Akiva, 2007; Moridpour, Sarvi, and Rose, 2010; Z. Zheng, 2014), the authors present
several rule-based lane changing models, but they tend to exhibit limited performance due to
the uncertainty and to the complexity of the driving environment. For this reason, Machine
Learning methods, and especially Reinforcement Learning (RL) ones, provide an alternative
approach, which has shown a great success in many different domains, such as robotics, video
game playing, dialogue chat bot, etc.

Reinforcement Learning (RL) is a general framework for learning-based sequential decision
making. With reinforcement learning, an agent can learn to solve problems where the decision
process is facing previously unknown situations through trial and error. Therefore, using
reinforcement learning combined with simulated traffic environment, vehicles can be trained
to develop a lane changing strategy, trying an action at a situation, and observing the result of
this action. Being rewarded for good actions and penalised for bad ones, they learn how to act
optimally through the experience, which is quite useful considering all the different situations
that might exist, and how difficult it would be to program the vehicle’s actions in all these
situations.

Many researchers have shown the great efficiency of using RL for car-driving modeling.
In (L. Wang et al., 2019), the authors developed an ego-efficient lane-change strategy using
Q-learning and also tested the effects of the strategy on the network level through Aimsum
traffic simulation platform. With the aim to study both longitudinal and lateral movements,
the authors of (Hoel, Wolff, and Laine, 2018) proposed a model for the automation of both
speed and lane-change decisions based on Deep Q Learning. Another approach was followed
by (P. Wang, H. Li, and Chan, 2019) who used an actor-critic algorithm for the automation of
lane-change decisions, and the problem has been solved using the Deep Deterministic Policy
Gradient. In (Ye et al., 2020), an actor-critic algorithm is also used to propose a method for
automating lane-change decisions. The authors of (Ye et al., 2020) proposed a model for
mandatory lane-changes, developed using the Proximal Policy Optimization algorithm. All

77



Imitation of Real Lane-Change Decisions Using Reinforcement Learning

this relative works are using only simulation environments and propose intelligent lane-change
models, but the calibration with real human driving behavior has not been mentioned in these
relevant works. However, real human driving behavior needs to be considered to make the
model more realistic. Even for autonomous vehicle, a human-like driving model could be more
comfortable for the passengers.

4.2 Background of Imitation Human Driving Behavior

Imitation learning, also called behavior cloning or learning from demonstration, is a form of
supervised learning that can learn a policy from off-line collected data D(S∗, A∗), where S∗

indicates the real state of real world and A∗ is the corresponding action (Schaal, Ijspeert, and
Billard, 2003; Ross, Gordon, and Bagnell, 2011). This method is recently used for car-driving
modeling. In (Codevilla et al., 2018), the authors presented an end-to-end vision-based driving
model by supervised learning using deep neural networks, which is a model to predict the
driving actions from camera input. However, using only real data is limited due to the lack of
situation in the collected data-set.

Indeed, RL methods allow the agent to learn on-line by taking mistakes through the rein-
forcement signal from the external environment. The agent then tries to reinforce its action to
improve future performance. Therefore, a signal can be formulated to guide the agent to learn
from real data. As presented in (Y. Zhang et al., 2018; M. Zhu, Xuesong Wang, and Y. Wang,
2018), the authors used real data to learn a policy of car-following through RL. They associate a
positive reward when the action is the same as in the data-set, for a state present in the collected
data. Otherwise, the action is penalised with a negative reward.

Deriving from this idea and aiming at learning from both the simulation environment and
the real lane changing decisions, we propose in this chapter an approach for lane changing
modeling using the Q-learning algorithm (Watkins and Dayan, 1992) with an on-line imitation
of the human lane-change decision from the NGSIM 101 data-set. In this work, our major
contribution is the use of Q-learning algorithm, and the calibration of the lane changing
decisions extracted from the NGSIM 101 data-set. In addition, we use the traffic vehicular
simulator SUMO to create a numerical simulation environment, that allows us enriching the
data-set for training the agent to find an optimal policy for lane change. The results show that
the policy is sufficiently trained and closed to the real human behavior. In order to understand
the learned policy, we use a color map visualisation to show the distribution of lane changes as
functions of several couples of states.
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4.3 A model for imitation of the real lane change behavior from the
NGSIM dataset

As mentioned above, we propose in this study a lane changing model based on a Q-learning
algorithm with an on-line calibration with human lane changing decision. With the purpose of
obtaining a human-like and collision-free lane changing strategy, we apply this study based
on the NGSIM 101 data-set. We use the vehicular simulator SUMO to build a traffic dynamic
environment. In this section, we first introduce in sub-section 4.3.1, the architecture of our
method. We then give the definitions of the state and the action variables for the lane changing
model, in sub-section 4.3.3. We describe the NGSIM data-set as well as the preparation of the
lane changing decision data in sub-section 4.3.4. In sub-section 4.3.5, we give the discretization
of the state variables. Finally, we give in sub-section 4.3.6, the definition we use here for the
reward, with the concept of learning the real lane changing decision.

4.3.1 Method architecture

We Illustrate in Fig.4.1 the architecture of our approach of lane changing modeling using
Q-learning and online calibration with real data.

Figure 4.1 – Illustration of the lane changing model using reinforcement learning and online calibration
with real data.

We use the vehicular traffic simulator SUMO (“Simulation of Urban MObility”) (Lopez et
al., 2018) to create a simulation environment. The controlled vehicle (the agent) exchanges with
the simulated traffic environment and is trained to develop a lane changing strategy through
evolving the policy by the return from the environment. In addition, real lane changing
decisions extracted from the NGSIM data-set are used for online calibration of the target vehicle
lane changing actions. As presented in Fig. 4.1, once a current policy πk applies an action a
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at a given state s, SUMO combining real data D(S∗, A∗) returns a new state s′ and a reward
R. Then, with the data (s, a, s′, R), the policy can be updated by the Q-learning algorithm to
get a new policy (πk+1). Then by iterating, the optimal policy can be found by trial-and-error
with the environment. Referring to (Y. Zhang et al., 2018), where mimicking the real behavior
has been studied, at a given state, which is present in the collected data, the reward could be
positive when the action is the same as in the data; otherwise, the action needs to be penalised
by a negative reward.

4.3.2 Q-learning

Q-learning (Watkins and Dayan, 1992) is an algorithm of RL, which is model-free and with
the purpose to optimize the action-value function defined as Q(s, a). This Q-value function
expresses the expected return of taking action a following a policy π and being at state s:

Qπ(st, at) = Eπ [Gt|s0 = s, a0 = a]

= Eπ

[ ∞∑
k=0

γkRt+k|s0 = s, a0 = a

]
,

(4.1)

where Gt, s0, a0, k, γk and Rt denote respectively ....

According to the Bellman principle, the optimal action value function Q∗(s, a) is the maxi-
mum action-value function over all policies, which can be formulated as :

Q∗(s, a) = E
[
R + γ max

a′
Q∗(s′, a′)

]
= Rt + γ E

[
max

a′
Q∗(s′, a′)

]
.

(4.2)

In theory, the value of a state is relative to the values of its successor states. The value Q(s, a)
of the current state must equal the discounted Q(s′, a′) of the expected next state, plus the
immediate reward. Therefore, for the optimal Q∗(a, s), the optimal policy is to select an action
a′, that maximizes the expected value of Q∗(s′, a′). At the end, the optimal policy is attained by
selecting at each state the action with the largest optimal Q-value :

π∗(s) = arg max
a

Q∗(s, a) (4.3)
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Algorithm 4.1: Q-learning

1 initialize;
2 Q(s, a), S, A, discount factor γ, learning rate α

3 Repeat (for each episode):
4 while not converged do
5 choose a from s using policy derived from Q (e.g., ε-greedy or decaying-ε-greedy

policy)
6 take action a, observe R, s′

7 Q(s, a)← Q(s, a) + α[R + γ maxa′ Q(s′, a′)−Q(s, a)]
8 S ← S′

9 end

The Q-learning Algorithm 4.1 is an off-policy RL algorithm, in the sense that the learned
policy can be different from the policy used to choose an action. The algorithm uses the
Temporal Difference (TD) method, which learns by bootstrapping from current estimate,
where R + γ maxa′ Q(s′, a′) named TD target, is a target function for Q(s, a) in the current
estimate.

4.3.3 Definition of the state and action variables

Figure 4.2 – The presentation of traffic environment for the control of the lane changing behavior of the
target vehicle (in pink).

For the reinforcement learning, once we define the task that the agent needs to accomplish,
the definition of the state, action and reward variables are important. The authors of (L. Wang
et al., 2019; Hoel, Wolff, and Laine, 2018; P. Wang, H. Li, and Chan, 2019; Ye et al., 2020) have
used different ways to represent the traffic including that of the target controlled vehicle and of
its surrounding vehicles. We propose in our approach a new structure of the representation of
the target vehicle (vehicle n) and of its surrounding vehicles (vehicles a, b, c, d, e, and f) as
shown in Fig. 4.2. We consider here 7 state variables; see Figure 4.2 :

81



Imitation of Real Lane-Change Decisions Using Reinforcement Learning

Vn: target vehicle speed

∆Vpreceding: Vn − Vd

Disab: inter-vehicular distance between a and b

Disef : inter-vehicular distance between e and f

∆Vab_n: (Va + Vb)/2− Vn

∆Vef_n: (Ve + Vf )/2− Vn

linfo: the current lane of target vehicle. 0: in the leftest lane; 1: in the rightest lane; 2 in
the other intermediate lanes; 3: out of road.

In the case where the target vehicle is in the leftest (respectively, rightest) lane, then Disab

(respectively, Disef) is set to zero, and the relative speed ∆Vab_n (respectively, ∆Vef_n) is set
to −Vn.

The action is the lane change decision, which belongs to {0,1,2}: 0: do not change the lane,
1: change to the right lane and 2: change to the left lane.

4.3.4 The NGSIM 101 data-set

As we mentioned previously, a brief description of the NGSIM data-set has been given in the
section 2.7.1. NGSIM 101 dataset consists of three files of sub-data-sets for 15 minutes traffic
data and 1500-2000 vehicles in each 15-minute data. Therefore, we can extract all the lane
changing trajectories in the three files of NGSIM 101 dataset. Indeed, we are interested in the
trajectories of lane changing without a motivation of going to the off-ramp. With this objective,
a pre-processing of data is done and we obtained all the available lane changing trajectories are
presented in Fig.4.3.

For imitating the real lane changing behavior, the state variables at the moment that the
driver decides to change lane need to be extracted. We estimate approximately the beginning
of lane changing from vehicle trajectories as the moment that the driver decides to change lane.
We use the same method as the one used in (Thiemann, Treiber, and Kesting, 2008) to capture
the beginning of lane changing behavior and get the set of lane changing data (S+, A+). In the
other side, other trajectories not in the lane-changing trajectories can be regarded as no change
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Figure 4.3 – Vehicle trajectories of lane changing in the NGSIM 101 data-set. The point (0s,0m) is the
moment when vehicle changes the index of lane.

lane moments. We can get by that a set of no lane changing data (S−, A−). The data D(S∗, A∗),
where (S∗, A∗) = (S+, A+) ∪ (S−, A−), is prepared for learning real lane change decisions. In
the collected data D(S∗, A∗), we save the 7 state variables as well as the corresponding action,
as defined above in section 4.3.3.

4.3.5 Discretization of the state Variables

The first 6 state variables are empirically discretized and the discretization is corresponding
to the NGSIM data. We set each variable to 5 possible values, (0,1,2,3,4), to represent five
sub-intervals, divided according to the quantiles 20%, 40%, 60%, and 80%; see Tab. 4.1. The
five sub-intervals are [0%, 20%[, [20%, 40%[, [40%, 60%[, [60%, 80%[ , [80%, 100%].

In addition, the data D(S∗, A∗) is discretized by the same methods, and after removing all
duplicates in the NGSIM data, we obtain 13199 distinct couples of (s∗, a∗).

4.3.6 Learning lane change decision in NGSIM data-set

The reward estimates how good the agent performs an action in a current state. With the
objective of imitating the real actions (those of the data-sets), we use the reward to define how
close is the agent’s behavior to the real driver behavior.
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Table 4.1 – Quantile values in the NGSIM data for the first 6 state variables.
Variables 20% 40% 60% 80%
Vn(m/s) 8,43 10,75 12,51 15,08
∆Vpreceding (m/s) -1.37 -0.5 0,06 0,94
Disab (m) 6,61 17,04 24,11 33,84
Disef (m) 10,65 19,23 26,31 36,78
∆Vab (m/s) -5,88 -1,86 -0,432 0,84
∆Vef(m/s) -3,49 -0,57 0,68 2,15

We denote the collected dataD(S∗, A∗), which contains a set of groups of (s∗, a∗). Regarding
imitation learning, we look for a policy πθ(s) which takes the same action a∗ if (s, a∗) ∈ D.
Therefore, the reward for an action a which follows the policy πθ(s) and s ∈ S∗, (s, a∗) ∈ D is
defined as follows.

reward =

 1, if πθ(s) ≡ a∗

-1, if πθ(s) ̸= a∗
(4.4)

However, we need to consider that the target vehicle can meet an unknown state s not
present in the collected data. In this case, the action a∗ taken by the closest s∗ ∈ S∗ need to be
applied. The distance between the SUMO simulation state and the real state in collected data is
calculated using the Euclidean norm (∥·∥2), and the closest s∗ is taken as the arg min

s∗
∥s∗ − s∥2.

The reward is defined as in (4.4).

In the other side, we give a punishment (negative reward) for the collision appearances
and for out of road situations. For any action that causes a collision or an out-of-road situation,
the reward is taken equal to −c, and this reward is defined as follows:

reward = −c if crash or out-of-road situation. (4.5)

where c is a positive constant. We set the reward in this case to c = 50 during the simulation
experiment.

4.3.7 Simulation Experiment

We use the simulator SUMO to reproduce the NGSIM traffic after calibration. The reproduction
of the NGSIM traffic data by numerical simulation consists in the creation of the road section,
the selection of the microscopic traffic model (IDM car-following model, plus the default
lane changing model in SUMO), and the model’s parameters. We chose here the IDM car-
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following model (Treiber, Hennecke, and Helbing, 2000), which is already implemented in
SUMO. The IDM parameters are calibrated using the NGSIM vehicle’s real trajectory with a
genetic algorithm (Zhao et al., 2020). Besides that, the creation of each vehicle is provided by
its longitudinal origin position, longitudinal destination position, entering lane, and entering
time (in seconds). This necessary information is also extracted from NGSIM 101 data-set. All
the details of the preparation of simulation of NGSIM traffic in SUMO are presented in the
Section 3.7 of chapter 3.

Training setup

Using the SUMO’s associated Python API, named traffic control interface (TraCI), we can access
the vehicle sequential information in the environment, and execute the lane change decision
with our model, in order to control the target vehicle lane changing dynamics. Regarding
the training of our model, we choose only one target vehicle to control from its origin to its
destination, in every episode of simulation. We deactivate completely the default lane changing
model for the chosen target vehicle. Moreover, the target vehicle is controlled by the IDM for
car-following, and by the Q-learning algorithm for lane changing. We control the target vehicle
to make a decision every 1 second. For each lane change, the target vehicle can arrive the target
lane in 1 second. The other vehicles are considered as traffic vehicles, and they are controlled
by the IDMmodel for car-following and by the SUMO default lane changing model, for lane
changing behavior. Model configuration for each vehicle is shown in Tab 4.2. Furthermore, The
SUMO simulation frequency is set to 10Hz. The visualisation of traffic simulation in SUMO is
shown in 4.4, where the red vehicle is the target one at each episode.

The setting up of Q-learning hyper-parameters is shown in Tab. 4.3. As we mentioned it
in section 2.4.2, γ is a parameter which represents how important the future return for the
immediate action. As we model here human behavior, which is not perfect to anticipate so far
for the decision of an action, we take here γ = 0.55 that the impact of the decision making is
approximate to zero after 3 steps (3 seconds) far away, because 0.553 ≈ 0.16 and 0.554 ≈ 0.09.
Moreover, the epsilon-greedy policy provides the agent’s exploration of all possible couples of
(s, a). We use here a decaying-epsilon-greedy policy algorithm, where the ε is a decreasing
sequence on the number of episodes (n): εn = e−n/d, where d is a parameter, taken here
d = 3000.

Table 4.2 – Model Configuration for each type vehicle
Behavior Target vehicle Traffic vehicles
CF model IDM IDM
LC decision Q-learning SUMO default model

Application of LC 1 second 1 second
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Table 4.3 – Configuration of Hyper-parameters of Q-learning
Parameter name Value

ε decaying parameter (d) 3000
Discount factor γ 0.55
Learning-rate α 0.05

Figure 4.4 – Screenshots of SUMO simulation. The red car is the target car in two different episodes

4.4 The results

4.4.1 The results for a first tested model without imitation from NGSIM Data

In the first proposition, we consider that the motivation of lane changing behavior is simply
the gain in speed for the target vehicle. In this context, the reward of lane changing decision is
the ’Speed gain’, where the agent maximizes always the speed to take a decision of lane change.
The states and actions have the same definitions as in section 4.3.3. Unlike what is presented
in 4.3.6, the reward is defined as :

reward =

 Speed Gain (vt+1 − vt)

- 10 if crash or out-of-road situation
(4.6)

For this model, the results are shown in the Appendix B.2. The results of the evolution of
the total reward of each episode are shown in Fig. B.1. The expectation of the total reward tends
to converge after 40000 simulation episodes. Moreover, the crash and the out of road situations
do not occur any more at the last episodes after about 41000; see Fig. B.2, where 1 means the
presence of collisions or out-of-roads and 0 means no presence of the event. However, using
this model, the number of lane changes for the vehicles in the last 200 episodes ranges from 1
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to 20 times, which is shown in Figure B.3. This result seems unrealistic, since changing lane 20
times in a road of 600m is not really human-like.

4.4.2 The results for imitation of human lane change model

We have created a traffic simulation environment, based on the human driving data from the
NGSIM 101 data-set, and have used the Q-learning algorithm proposed above in order to mimic
the real lane changing decision of human drivers. The limitation of the real data and the lack
of traffic situations prevents the supervisor learning approach to cover all driving situations.
The simulation traffic environment completes the unknown situations in the collected data. In
the NGSIM 101 data-set, we distinguish about 13000 different state-action couples, while by
numerical simulation, the vehicles have visited more than 16000 different couples of (s, a). We
choose different cars in traffic as the target one at each episode, among randomly 800 chosen
cars. The result of the evolution of the total reward of each episode is shown in Fig. 4.5. The
expectation of the total reward tends to converge after 12000 simulation episodes. Moreover,
the crash and the out of road situations do not occur any more at the last episodes; see Fig. 4.6,
where 1 means the presence of collisions or out-of-roads and 0 means no presence such events.

Figure 4.5 – Total reward evolution. Blue line is
the total reward for each episode. Orange line
presents the average for each 20 episodes

Figure 4.6 – Crash and out of road occurrence
evolution. 1 means presence of the event, 0 means
no presence of the event

From the last 800 episodes, the model has been already converged (Fig 4.5) and has non
presence of neither collision nor out-of-road (Fig 4.6). Moreover, the distribution of the number
of lane changes for the last 1000 vehicles is provided in Figure 4.7. From this result, the number
of lane changes is most realistic. In order to measure the accuracy of lane change behavior
imitation, see Tab. 4.4, we collected all visited states of vehicles in the last 800 episodes, and
we found that 87.09% of the states are present in the real data, while 12.23% of the states have
the closest sate in the collected data with a distance of 1, as defined in sub-section 4.3.6. In
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Figure 4.7 – Distribution of number of lane changes for the vehicles in the last 1000 episodes

addition, 95.37% of the taken actions are present in the real data-set; see Tab. 4.4. This accuracy
of imitation of real human behavior shows that our lane changing model is human-like.

Table 4.4 – Comparison of the real and simulated states and actions
simulation states present in the data-set 87.09%
simulation states with distance of 1 to the data-set 12.23%
simulation states with distance of 2 to the data-set 0.80%
simulation actions present in the data-set 95.37%
simulation actions not present in the data-set 4.63%

In order to illustrate the learned policy, and to understand its logic, we plot it as functions
of several couples of states: a = f(V n, ∆Vpreceding), a = f(V n, ∆Vef_n), a = f(V n, Disef ) and
a = f(Disab, Disef ) illustrated with color maps in Fig. 4.8-(A), (B), (C), and (D) respectively.
We recall that we have 5 discrete values for each state variable. We use RGB color to represent
the action (change left (in red), change right (in green) and stay on lane (in blue). The grey
level show the probability of each action in each case. The black cases are the states never
visited. In addition, we have 4 views in each figure: the three views on the right side show
each action respectively for change left, change right, and stay on current lane; plus a main
view with combination of all actions.

In Fig. 4.8-(A), the x-axis represents the speed of the target vehicle, while the y-axis repre-
sents the relative speed of the target vehicle, with respect to the preceding vehicle. We can see
from this figure that the controlled vehicle tends to maneuver a lane change in the cases when
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(A) a = f(V n, ∆Vpreceding) (B) a = f(V n, ∆Vef_n)

(C) a = f(V n, Disef ) (D) a = f(Disab, Disef )

Figure 4.8 – Color maps for the learned policy. red: change left, green: change right, blue: stay in the
current lane.
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the preceding vehicle obstructs it, i. e. when the controlled vehicle’s speed is small and the
relative speed with the preceding vehicle (∆Vpreceding) is big (see cases (0,4), (1,4), (2,4) in
Fig. 4.8-(A). Lane changes are less observed for high speeds of the controlled vehicle.

From Fig. 4.8-(B), we observe that the agent tends to change to the left lane for low values
of ∆Vef_n, and to the right lane for high values of ∆Vef_n. In other terms, the agent decides to
go to the lane with a high relative speed, i. e. where the controlled vehicle’s speed will increase
significantly. Moreover, it seems that there is a curve ∆Vef_n = 3− Vn, on Fig. 4.8-(B), under
which the agent tends to change to the left lane, and over which it tends to stay on its current
lane. We do not yet fully understood this observation. On Fig. 4.8-(C), we can see that the
vehicle tends to change right when the inter-vehicular distance with respect to vehicles e and
f, is sufficiently large. On Fig. 4.8-(D), it is obvious that lane changes are possible only when
at least one of the inter-vehicular distances on the left and right lanes is sufficiently large. All
these observations of learned strategy of lane changing are interesting to understand and to
validate this lane changing model using RL.

4.5 Conclusion

In this work, we proposed a vehicular lane change model using Q-learning with on-line
calibration on the real human lane change decision data. It is a data-based model, which aims
to mimic the real lane change decisions taken by human drivers. We applied this study based
on the NGSIM 101 data-set and used the vehicular simulator SUMO to complete the data
and to cover all the state and action variable spaces. A big number of episodes have been
considered for the training, during each of them the controlled vehicle (the agent) executes our
Q-learning algorithm to take decisions on its lane change, where the other vehicles run under
traffic models included in SUMO (car-following and lane-change). Moreover, our Q-learning
algorithm permits to complete the unobserved situations, and to propose actions for the states
not present in real data. Thus, about 13% additional traffic situations, not present in the real
data, are created by the traffic simulation environment.

We have shown that with the approach proposed in this article we canmimic and reproduce
real lane change decisions observed in traffic data, up to a rate of 95%. Finally, we have illustrated
the obtained optimal policy by means of color maps, and discuss preliminary conclusions on
the determinant states and thresholds on states in the decision process of lane changing. For
future research, we aim at understanding more about this lane change model, and trying to
test this model in other road traffic conditions.
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Chapter 5

Long Short-Time Memory Neural
Networks for Human Driving Behavior
Modelling

In this chapter, a long short-term memory (LSTM) neural network model is proposed to
replicate simultaneously car-following and lane-changing behaviors in road networks. By
combining two kinds of LSTM layers and three input designs of the neural network, six variants
of the LSTMmodel have been created. These models were trained and tested on the NGSIM
101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position
respectively. Then, we compared the LSTMmodel with a classical car-following model (the
Intelligent Driving Model (IDM)) in the part of speed decision. In addition, the LSTM model
is compared with a model using classical neural networks. After the comparison, the LSTM
model demonstrates higher accuracy than the physical model IDM in terms of car-following
behavior and displays better performance with regard to both car-following and lane-changing
behavior compared to the classical neural network model.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 NGSIM 101 data-set and Data preparation . . . . . . . . . . . . . . . . . . . . 94

5.4 Model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Intelligent driver model (IDM) . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Model validation using HighD dataset . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

91



Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

5.1 Introduction

In the last decades, deep learningmethods, a specific set of machine learningmethods designed
to build models based on sample data, have shown excellent performance in many fields (e.g.
natural language processing, image processing and financial trading strategies). In the field
of microscopic road traffic, where researchers are interested in modeling individual vehicle
movements on road networks, the use of deep learning is also becoming increasingly popular.

As well known, two driving behaviors are generally distinguished in the microscopic traffic
modeling: Car-Following (CF) and LaneChange (LC),which describe respectively longitudinal
and lateral vehicular movements. In the literature review, one of the first car-following models
is the GHR model (Chandler, Herman, and Montroll, 1958). Among the most famous models,
we cite the Wiedemann model (Mohammad and Z. Zheng, 2014), Gipps model (Gipps, 1981),
Krauss model (Krauß, 1998) and Intelligent driver model(IDM) (Treiber, Hennecke, and
Helbing, 2000). Some reviews of car-following models can be found in (Brackstone and Mark,
1999; Mohammad and Z. Zheng, 2014; Aghabayk, Sarvi, and Young, 2015). In addition, in
order to model the imperfect human driver, the authors of (Treiber, Kesting, and Helbing, 2006;
Lindorfer, Mecklenbraeuker, and Ostermayer, 2018) carried out some extensions based on
car-following models, to describe mathematically for the reaction time, the anticipation, and
estimation errors of human drivers. For lane changemodels, we cite (Toledo, Koutsopoulos, and
M. Ben-Akiva, 2007; Moridpour, Sarvi, and Rose, 2010; Z. Zheng, 2014) as reviews, authors have
shown that the lane change decision is usually taken based on several sub-models of the driver’s
lane change motivation (e.g. mandatory LC and discretionary LC; or free, cooperative, and
forced LC). We can observe that, compared to CFmodels, which are well developed, LCmodels
are more complex and rule-based with many hand-crafted parameters. LC models generally
show limited performance and are hard to calibrate, and to catch with human lane-changing
behavior (Z. Zheng, 2014).

On the other hand, a number of data-driven CF and LC models using machine learning
methods have been developed (Q. Wang, Z. Li, and L. Li, 2014; Xie et al., 2019; Xiao Wang et al.,
2017). It has been demonstrated that, comparing with physical models, the machine learning
based ones, including deep learning methods, provide a better performance for the accuracy of
trajectories, and for the replication of traffic flow characteristics.

Long short-Term Memory (LSTM) neural networks (Hochreiter and Schmidhuber, 1997)
are recurrent neural networks (RNNs), able to learn time series with keeping a memory of
previous sequences (Gers, Schmidhuber, and Cummins, 1999). Several studies have been
applied using LSTM for human driving behavior modeling or human driving forecasting, such
as in (Xie et al., 2019), where the authors developed a LC model (the LC decision prediction
combining the LC execution trajectory). In the latter model (Xie et al., 2019), the execution of
the lane change decisions is formulated based on a LSTM neural network. In (Y. Zhang et al.,
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2018), the authors proposed a simultaneous CF and CL model using a LSTM neural network,
and with a constraint on the car time headway, which permits to retrain the neural network
in the case where the time headway is not satisfied. Moreover, in (Altché and La Fortelle,
2017), the authors proposed a LSTM model for vehicle trajectory prediction from 1s to 10s in
the future. All these works show that LSTM modeling is essentially useful for the prediction
of human driving behavior. However, different studies used different model structures, with
different input designs for the neural networks.

In this chapter, we propose a LSTM model to learn human driving CF and LC behavior
simultaneously. Our model is based on the relevant works in (Y. Zhang et al., 2018; Altché
and La Fortelle, 2017), where the sequential decision for longitudinal (speed and acceleration)
and lateral (position or lane number) movements are taken simultaneously. We propose two
different designs for the model architecture, using neural networks with LSTM layer, and three
designs for the input variables. By studying different combinations of the model architectures
and the input designs, we aim at discovering the best combination of architecture and input
design. The models are trained and tested on the NGSIM 101 dataset (Alexiadis et al., 2004).
The model performance is evaluated in terms of prediction accuracy on longitudinal speed
and lateral position. The obtained result is compared with a physical car-following model, the
Intelligent Driver Model (IDM) (Treiber, Hennecke, and Helbing, 2000), and with another
model using classical neural networks.

5.2 Problem statement

In the state-of-the-art, we can find that Car-following and Lane Change behaviors are usually
considered and modelled independently. However, in the real world, human drivers can hardly
split the driving task into two independently tasks (Y. Zhang et al., 2018). We propose in
this work to model simultaneously CF and LC decisions using a LSTM neural network. The
experiment is applied on the NGSIM 101 dataset. Our model is based on an existent work
presented in (Altché and La Fortelle, 2017).

The prediction of the driving decision making (e.g. speed, position, etc.) can be considered
as a regression problem by LSTM architecture, where the vehicle’s present behavior is related
to current traffic conditions. The latter conditions consist of all the information of surrounding
vehicles (presented by their own trajectory), and also of the vehicles’ own previous behavior
in the passed time. We denote by X the space of observable features, and by O the motion
prediction outputs for the target vehicle. With this assumption, for LSTM neural networks, the
input is a sequence of history observations (X = (x1, x2, ...xk)). x ∈ X denotes the information
on the target vehicle history as well as the history information of its surrounding vehicles at
each time step. The variable k is the length of time series in the input. The output of the neural
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network is the prediction of the target vehicle motion Ŷ ∈ O. We aim at using supervised
learning approach and train a regression function f such that the predicted outputs Ŷ = f(X)
match the actual values (real data) as closely as possible.

As in (Altché and La Fortelle, 2017), we use here the Keras deep learning framework,
where an extended LSTM model has been implemented. The algorithm is described in (Gers,
Schmidhuber, and Cummins, 1999). The models are trained and tested on the NGSIM 101
dataset (Alexiadis et al., 2004), which is an open highway traffic dataset containing about
6000 vehicle trajectories. In this work, we evaluate totally two different model architectures
combining three different input designs. Among the different combinations, we aim to discover
the most efficient model.

In the following sections, we will present the NGSIM 101 dataset (section 4.3.4). Then,
we will describe the model structure, including the models description, the proposition of
the different designs for input variables, and the definition of output variables (section 5.4).
In order to show the result with comparison with a physical traffic model (Intelligent driver
model (IDM) (Treiber, Hennecke, and Helbing, 2000)), we will demonstrate the calibration
method of the IDM model in the section 5.5. At the end, we will illustrate the obtained results
in section 5.6.

5.3 NGSIM 101 data-set and Data preparation

As we mentioned previously, a brief description of the NGSIM data-set has been given in the
section 2.7.1.

In our study, we focused only on car trajectories in the five main lanes. In addition, we are
only interested in discretionary lane changes, which are independent on entering and leaving
the road. The authors of (Altché and La Fortelle, 2017) observed that the data is noised for
the vehicle’s position, velocity, and acceleration signals. Therefore, in this work, we firstly
pre-processed the data-set using the same method as in (Altché and La Fortelle, 2017), where
we apply a first order Savitzky-Golay filter (Savitzky and Golay, 1964) to smooth each vehicle
longitudinal and lateral position, and then we recompute their corresponding velocities and
accelerations.

5.4 Model structure

The model we propose in this chapter is based on an existent work presented in Altché and La
Fortelle, 2017, where a LSTM neural network is used to predict the future car trajectories from 1s
to 10s. We investigate here different neural network architectures with different input designs,
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for both longitudinal and lateral vehicle movements. We use the neural network structure
in Altché and La Fortelle, 2017 as the reference network, as shown in Fig. 5.1. Furthermore, we
propose a second architecture using two layers of LSTM, instead of one layer; see Fig. 5.2.

Figure 5.1 – M1: The reference architecture (Altché and La Fortelle, 2017) uses a first layer of 256 LSTM
cells, followed by two dense (fully connected) hidden layers of 256 and 128 neurons respectively and a
final dense output layer containing as many neurons as the number of outputs.

Figure 5.2 – M2: Neural network with two layers of LSTM

In addition, in order to compare with the models with LSTM, we proposed use another
two structures with only fully connected neural networks (see. Fig. 5.3 and Fig. 5.4).

Figure 5.3 – MNN : Neural network without LSTM

Figure 5.4 – MNN2: Neural network without LSTM

5.4.1 Input variables

Several previous works have been performed regarding the use of deep neural networks to
model human driving behavior (Altché and La Fortelle, 2017; X. Zhang et al., 2019). Different
designs of the input variables of the models have been proposed. In (Altché and La Fortelle,
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2017), the authors have varied the selected surrounding vehicles, where they tested two
scenarios: one with vehicles (a, b ,c, d, e, f) and the other one with vehicles (a, b, c, d, e,
f, s); see Fig. 5.5. They found that the results without vehicle s are better than the ones
with vehicle s. Based on this result, we decided to consider in this work only (a,b,c,d,e,f) as
surrounding vehicles.

Figure 5.5 – Considered vehicles in neural network inputs, the red vehicle is the target vehicle to predict
its longitudinal speed and lateral position

For the input variables, the authors of (X. Zhang et al., 2019) considered only one input
variable which is the vehicle positions of the surrounding vehicles. In order to better understand
the effect of different input variables on the human driving behavior using LSTM neural
network, we consider in this article different variables. Moreover, we propose three different
input designs, see Tab. 6.2. The considered input variables are defined as follows.

1. Input design 1: in this design, we apply all possible input variables for the vehicle move-
ments, including its longitudinal position, lateral position, speed, acceleration and vehicle
size. For the surrounding vehicles, we consider position, speed, acceleration, as well as the
relative distance and speed with respect to the target vehicle. We notice that the variable
time-to-collision (TTC) has also been considered as an input variable in (Altché and
La Fortelle, 2017). which we do not consider here, because we think that this information
is redundant with the two variables of relative speed and distance.

The following input variables are considered for the target vehicle (red vehicle in Fig. 5.5):

• longitudinal position xtarget and lateral position ytarget

• longitudinal speed vtarget and longitudinal acceleration atarget

• vehicle length ltarget and vehicle width wtarget

The following input variables are considered for the surrounding vehicles ((a,b,c,d,e,f)
in Fig. 5.5):

• longitudinal position xi and lateral position yi
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• longitudinal speed vi and longitudinal acceleration ai

• vehicle length li and vehicle width wi

• relative speed ∆vi = vtarget − vi

• longitudinal distance slong_i = xtarget − xi

• lateral distance slat_i = ytarget − yi

For the input design 1, we have a total of 60 input variables of the model.

2. Input design 2: in the second input design, we are interested in finding the performance
influence by using different inputs. Comparing with the first design, we consider here
that the relative variables with respect to the target vehicle are more important than the
absolute ones. The acceleration is ignored in this design to avoid redundancy. In addition,
we defined a new variable for noticing the presence of surrounding vehicle i, named as
presence pi (0 for non presence, and 1 for presence). If vehicle i is not present, all the
relevant value (li, wi, ∆vi, slong_i, slat_i) for this vehicle are set to 0. For the input design 2,
we have a total of 41 input variables of the model.

3. Input design 3: In this design we take all the input variables of design 1 and design 2.
Similarly, if a vehicle i is not present, then all the relevant value (xi, yi, vi, aili, wi, ∆vi

, slong_i, slat_i) for this vehicle are set to zero. For the input design 3, we have a total of 66
input variables of the model.

xtarget ytarget vtarget atarget ltarget wtarget xi yi vi ai li wi ∆vi slong_i slat_i pi

input design 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
input design 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
input design 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5.1 – input designs

5.4.2 Output variables

As described in the sections before, our problem is set to learn the decision of human driving
behavior using LSTM neural networks by prediction of car-following and lane changing be-
havior, with the condition of keeping a memory of vehicle previous action information and
the previous motion information, as well as the current motion information of surrounding
vehicles. We choose to use the longitudinal speed and lateral position as output, because for
the longitudinal positions, the values can become quite large compared to the lateral positions.
As mentioned in section 5.4.1, for the inputs, we use khist sequences information in the history
as inputs. Therefore, we define the two outputs of the model to control the vehicle in real
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time, which are vtarget(khist + 1) and xtarget(khist + 1). The index khist goes up to 50 in our
experiments.

5.4.3 Training and Test experiments

The NGSIM 101 dataset is separated into 3 sub-datasets, and each sub-dataset corresponds
to 15-minute traffic data. We train the neural network using the first 15 minutes data, and
test separately with the second and third 15-min sub-datasets. In practice, to train the neural
network, epochs and mini-batches are defined for the weights updating process. A mini-batch
refers to a subset (m individual samples) of the whole training set, to compute a partial gradient
and update the weights accordingly. An epoch refers to processing the whole training set once.
We used the Adam algorithm (Kingma and Ba, 2014), which is a stochastic gradient algorithm
and has been implemented in Keras framework. For the loss function of neural network, we
used the Mean Square Error (MSE). The learning rate is another parameter, which determines
how big a step is taken toward the descent direction to the minimum of loss function when
updating the weights in neural networks. Therefore, regarding hyper-parameters for training
the neural networks, the configuration is shown in Table 5.2.

Parameter name Value
batch size 128

number of epochs 20
learning rate 0.01

Table 5.2 – Configuration of some Hyper-parameters

5.5 Intelligent driver model (IDM)

We propose to compare our LSTM model with an existing physical car-following model. In
this purpose, we choose the Intelligent driver model (IDM) (Treiber, Hennecke, and Helbing,
2000). The IDMmodel is a classical car-following model used in various microscopic traffic
simulators, such as SUMO (Krajzewicz et al., 2012), VISSIM (Fellendorf and Vortisch, 2010b),
and AIMSUN (Casas et al., 2010b). Authors in (M. Zhu, Xuesong Wang, Tarko, et al., 2018;
Pourabdollah et al., 2017) found that the IDMmodel is one of themost human-like car-following
models. There are several methods for calibrating microscopic models. We use in this paper
the same method as in (M. Zhu, Xuesong Wang, Tarko, et al., 2018), where a genetic algorithm
is applied for each driver data to find the optimal IDM parameters. The objective function used
to calibrate the IDM model is the root mean square error (RMSE) of the vehicle speed. The
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IDMmodel is written as in 3.18, and the parameters considered to be calibrated are pre-defined
in 3.6.1.

Figure 5.6 – RMSE distribution on the car-speed variable from the calibration of the IDMmodel. The
RMSE value is presented for each driver data in the first 15 minutes of the NGSIM 101 data-set.

As the result, we give in Figure 5.6 the distribution of the RMSE on the car-speed variable,
obtained from the calibration of the IDM model. The RMSE value is presented by every driver
data in the first 15-minutes of the NGSIM 101 data-set (about 1900 vehicles). We notice that
from Figure 5.6, the RMSE of calibrated IDMmodel for each driver ranges (mostly) from about
0.5 to 1.5 (m/s).

5.6 Results

We present in this section the results of our proposed LSTM model by comparison with the
IDM model for speed decision, and with the model of classical neural networks, for both
longitudinal speed and lateral position.

Firstly, Fig. 5.7 gives the loss evolution of our proposed LSTM models in the training phase,
for different input designs. The loss value presented here is the default Keras mean error (MSE)
between label and prediction. In the case of having two outputs, the error is the average MSE
of the two outputs. Fig. 5.7 shows the training loss during 20 epochs. We can see that for all
the different models, the loss decreases and converges. We can also infer from Fig. 5.7 that the
proposed LSTMmodels with input design 2 give the best results in terms of the MSE evolution
in training phase.

In order to compare the results of all models, we use here a metric denoted by ’Mean driver
RMSE’ which calculates the average error between the real data and the predicted value from
the outputs of each model, for every driver in the data-set. It is defined as follows :

Mean driver RMSE = 1
D

D∑
i=1

√√√√ 1
ni

ni∑
t=1

(yt − ŷt)2 (5.1)
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Figure 5.7 – The evolution of loss during the training for different models using different input designs.

where D is the number of drivers in each sub-dataset; ni is the total number of sequences of
the vehicle trajectory, in every sub-dataset i; yt is the value of the considered variable in the
real data; and ŷt is the output of the model for the considered variable (car-position, car-speed,
etc.). Here, the output of the IDM model is the longitudinal speed, while for LSTM model, the
outputs are the longitudinal speed and the lateral position. The ’Mean driver RMSE’ on the
car-speed variable for the IDMmodel is 0.9263 (see the RMSE distribution in Fig. 5.6). This
error is far from the accuracy provided by the LSTM models, as it is shown below.

Mean-driver-RMSE Train Test1 Test2
Speed (m/s) lateral Position (m) Speed (m/s) lateral Position (m) Speed (m/s) lateral Position (m)

M1_input1 0.2819 0.1308 0.27 0.14 0.294 0.1389
M2_input1 0.1524 0.1608 0.1767 0.167 0.1964 0.1709
M1_input2 0.056 0.024 0.05 0.024 0.051 0.023
M2_input2 0.0686 0.0848 0.0688 0.0752 0.0695 0.0669
M1_input3 0.4188 0.1185 0.4356 0.1353 0.4155 0.1494
M2_input3 0.2465 0.1331 0.3248 0.1305 0.3021 0.1396
MNN_input2 0.2495 0.1266 0.2565 0.1229 0.2749 0.1209
MNN2_input2 0.1423 0.1338 0.1389 0.16415 0.1503 0.1802

Table 5.3 – Mean RMSE for each different model using different input design and for training, test1,
test2 respectively.

The ’Mean driver RMSE’ for the different models in terms of longitudinal velocity and lateral
position is given in Table 5.3. These results in Table 5.3 show that M1_design_2 provides a best
performance among all presented models, thus, the accuracy both in longitudinal velocity and
lateral position is the best, as well as for training and tests. Models using input design 2 have
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better performance than models using other input designs. In addition, models using LSTM
are better than models using only classical neural networks (comparing M1_input2, M2_input2
and MNN_input2, MNN2_input2 in Table 5.3). In Fig. 5.8, we show some trajectory prediction
results for the LSTMmodel (model 1 with input design 2: M1input2) during the training phase.
We show the longitudinal velocity and lateral position predictions for two drivers. In Fig. 5.9,
we show some trajectory prediction results of the LSTM model (model 1 with input design
2: M1input2) in the test phase for the other two drivers. Fig. 5.8 and Fig. 5.9 show the high
accuracy achieved by the M1input2 model.
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Figure 5.8 – Result of M1_input2 model for the speed and lateral position respectively for the drivers 10,
97, 125 in training data-set.
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Figure 5.9 – Result of M1_input2 model for the speed and lateral position respectively for the drivers
275, 1358 in the test data-set and the driver 849 in test2 data-set.
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5.7 Model validation using HighD dataset

As we presented above, the result of different models based on NGSIM 101 dataset show the
M2_input2 has a best performance among all the tested models. In this section, I will present
the result of all proposed models using another dataset, HighD (Krajewski et al., 2018).

5.7.1 HighD dataset

As what I presented in the previous chapter, in the Section 2.7.2, a brief presentation of HighD
dataset is given. As the same application using NGSIM 101 dataset, we choose a part of HighD
dataset and separated it into one part for training, one part for first test, and one part for the
second test. HighD dataset is larger than NGSIM 101 dataset. It contains 60 files of registration
available in the whole HighD dataset and about 2000 vehicle-trajectories in each file. The six
recorded roads are all straight roads with two directions and each direction has two or three
lanes.

In the experiment for the validation of the proposed models by HighD dataset, among
60 files availble in HighD dataset, we chose randomly 10 files within about 20000 vehicle
trajectories as the training dataset, 5 different files within about 10000 vehicle trajectories as
the dataset in test1 and another 5 files with about 10000 vehicle trajectories as the dataset in
test2. First, we obtained the result of the evolution of loss value in the training phase (see.
Figure 5.10). As the same, the loss value presented here is the default Keras mean error (MSE)
between real data and prediction. In our case, the outputs contains the prediction of speed
and the prediction of lateral position, the loss value is the average MSE of these two outputs.
From the Figure 5.10, it shows the similar result that we trained the model using NGSIM
dataset, where the models using second input design (M1_input2 and M2_input2) have better
performance than other models using other type of input designs. Furthermore, they are better
in terms of results in training result, Test1 and also Test2 (see. Table 5.4).

Mean-driver-RMSE Train Test1 Test2
Speed (m/s) lateral Position (m) Speed (m/s) lateral Position (m) Speed (m/s) lateral Position (m)

M1_input1 0.071583 0.044184 0.07242 0.043247 0.06659 0.046756
M2_input1 0.037969 0.037736 0.037002 0.039664 0.040165 0.042509
M1_input2 0.010865 0.016171 0.010465 0.016323 0.011431 0.015859
M2_input2 0.033533 0.019365 0.031219 0.019708 0.036982 0.020328
M1_input3 0.209486 0.038016 0.189182 0.034586 0.187857 0.035655
M2_input3 0.034134 0.021585 0.032075 0.022203 0.035832 0.021433

Table 5.4 – HIGHD dataset : Mean RMSE for each different model using different input design and for
training, test1, test2 respectively.
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Figure 5.10 – The evolution of loss during the training for different models using different input designs
by HighD dataset.
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5.8 Conclusion

We have presented in this chapter an LSTM neural network model for car-following and lane-
changing on road networks. The experiments have been applied on the NGSIM 101 data-set
for the training and tests. Furthermore, we applied the same experiment on another data-set
HighD data-set, the result is similar to the result of that on NGISM 101 data-set. The obtained
results show that the LSTM neural network model has outstanding performance in terms of
accuracy for longitudinal speed and lateral position variables. In comparison with the physical
microscopic traffic model IDM (Intelligent Driving Model), the LSTMmodel has significant
improved performance on the car-following part. This can be explained by the fact that physical
traffic models have generally a small number of parameters, rather than neural network models.
In addition, we have compared the LSTMmodel with a classical neural network model, and
concluded that the model using LSTM has better performance than the classical neural network
model.Our perspectives on this research direction are: 1) implementation the model on traffic
simulators, such as SUMO (Simulation of Urban Mobility) to simulate a more realistic road
traffic, and 2) extension of the model, in particular for considering several driver profiles.
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Chapter 6

Highway Traffic simulation in SUMO
using proposed models

We present in this chapter the implementation in SUMO of the car-following and lane-change
models proposed and adapted in the preceding chapters. The objective is to simulate the whole
highway traffic, where we control all the cars in the traffic by our proposed models. Meanwhile,
the other types of vehicles, consisting of trucks and motorcycles, are controlled by the default
models in SUMO. Different combinations of car-following models with lane changing models
are tested and analyzed, aiming at understanding the performance of each model combination.
Moreover, we used these different combinations of models to simulate the NGSIM traffic and
the HighD traffic data-sets, in order to analyze the sensibility of all the proposed models on
these two data-sets.

In this chapter, section 6.1 presents the analysis of the data we worked on, including the
NGSIM data-set and the HighD data-set, with the purpose of understanding these two traffic
data-sets, and therefore derive the main resemblances and differences. Section 6.2 gives the
details on the implementation of the models in SUMO. Section 6.4 and section 6.5 give out
respectively the results of simulation for the NGSIM traffic and the HighD traffic.
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6.1 Microscopic traffic datasets : NGSIM and HighD

The traffic analysis began with some statistics of traffic (macroscopic indicators), including
the traffic average speed, the car-density as well as the speed-density diagram (fundamental
diagram).

NGSIM 101 dataset

As seen in the previous chapters (Chapter 3, 4, and 5), the works are mainly based on the
NGSIM dataset. In Figure 6.1, a visualisation of the vehicle positions is shown.

Figure 6.1 – Screenshot of the visualisation of NGSIM 101 traffic, the figure axis-x show the distance in
meter (eg. 100m, 200m) to the leftest point of the road section, and the index from 0 to 4 indicating each
lane from right to left.

Macroscopic traffic characteristics overview Traffic macroscopic analysis is significant to
show the traffic conditions. To analyze the NGSIM 101 dataset, we show firstly the vehicle
longitudinal position trajectory in Figure 6.2, for the first 15-minute, second 15-minute and
third 15-minute periods in Figure 6.2a, Figure 6.2b, and Figure 6.2c respectively. The vehicle
speed trajectories are shown in Figure 6.3, and also for the first 15-minute, second 15-minute
and third 15-minute periods, respectively in Figure 6.3a, Figure 6.3b, and Figure 6.3c.

A congestion phenomenon can be illustrated by a shock of position deferential in the vehicle
trajectories (a large reducing of the slope in vehicle position trajectory, see Figure 6.2). Similarly,
a congestion can also be shown by a shock-wave in the car-speed trajectories, where a shock of
speed shows the local minimum of travelling speed in consecutive vehicle speed trajectories
(see Figure 6.3). We can observe the traffic of NGSIM has some congestion, which sometimes
starts from the middle of the road section (Figure 6.2a). From Figure 6.3, we can observe that
the vehicle-speed goes up and down.

To understand the traffic on each lane, we do some investigation for the first 15 minute data.
In Figure 6.4a, we show the mean traffic speed of each lane for the first minutes data. We can
see that the average traffic speed evolves similarly in each lane, where the speed oscillates up
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and down. In particular, we can observe that in the lane 4, which is the leftest lane and the
highest speeding lane in general, the change of speed is the most one while the speed is slower
than in the other lanes. Concerning the vehicle density, which is another macroscopic traffic
indicator, it can be defined as the number of vehicles in each lane (here, the length of NGSIM
road section is fixed (640m)). In Figure 6.4b, we show the evolution of the vehicle-density in
each lane. From this figure, we can observe that the number of vehicles in the lane 4 is the
biggest one, which has an effect on the traffic speed on lane 4, the slowest one (see Figure 6.4a).

After observing the traffic speed and traffic density separately, the traffic fundamental
diagram (speed-density diagram) can be displayed. For each lane in the first 15-minute period
data of the NGSIM 101 dataset, the speed-density diagram is shown in Figure 6.5, while the
speed-density diagram for the 3 periods of the NGSIM 101 dataset is shown in Figure 6.6. We
can see that there exists some similarity on the traffic speed-density diagrams between the lanes
(Figure 6.5), and also some similarity of the traffic speed-density diagrams for the 3 periods
in the NGSIM dataset (Figure 6.6). We can see that the traffic is congested: the vehicle speed
decreases with the increasing of the traffic density.
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(a) First 15-minute period NGSIM 101 data : The vehicle longitudinal position (m) by Frame time (0.1s)

(b) Second 15-minute period NGSIM 101 data : the vehicle longitudinal position (m) by Frame time (0.1s)

(c) Third 15-minute period NGSIM 101 data : the vehicle longitudinal position (m) by Frame time (0.1s)

Figure 6.2 – NGSIM 101 dataset: Vehicle trajectories (longitudinal position in meter) by time (Fram ID
in 0.1s)
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(a) First 15-minute period NGSIM 101 data : The vehicle longitudinal velocity (m/s) by Frame time (0.1s)

(b) Second 15-minute period NGSIM 101 data : the vehicle longitudinal velocity (m/s) by Frame time (0.1s)

(c) Third 15-minute period NGSIM 101 data : the vehicle longitudinal velocity (m/s) by Frame time (0.1s)

Figure 6.3 – NGSIM 101 dataset: Vehicle longitudinal velocities (m/s) by time (Fram ID in 0.1s)
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(a) The traffic mean speed in each lane evolution in each frame (0.1s)

(b) The number of vehicles in each lane evolution in each frame (0.1s)

Figure 6.4 – First 15-minute period in NGSIM 101 dataset: Traffic speed evolution and traffic density
evolution in each lane
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Figure 6.5 – First 15-minute period in NGSIM 101 dataset: The speed-density diagram in each lane

Figure 6.6 – NGSIM 101 dataset: The speed-density diagram of the whole traffic for the periods of first
(NGSIM 0 in the figure), second (NGSIM 1 in the figure), third (NGSIM 3 in the figure) 15-nimute data
in NGSIM 101 dataset.
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The HighD dataset

We choose randomly the 13th sub-dataset to compare with the NGSIM dataset. In this sub-
dataset, the traffic is captured on a bi-direction highway road section of length 420m. There are 3
lanes in each direction. We selected all the drivers in one direction (direction id = 2 in the data),
and there are about 14 minutes registration of traffic consisting of 1317 vehicles’ trajectories.
There are about 10s of trajectory for each vehicle (see in Figure 6.7 where a screenshot for the
visualisation of this sub-dataset is given).

Figure 6.7 – The visualisation of vehicle position of the 13th sub-dataset HighD dataset, the figure axis-x
show the distance in meter (eg. 100m, 200m, 300m) to the leftest point of the road section, and the index
from 0 to 2 indicating each lane from right to left.

In Figure 6.8a, we show the vehicle position trajectory in the HighD dataset, and we can
find the vehicle trajectory is smooth without any shocks, in contrary to the NGSIM dataset
(Figure 6.2). In Figure 6.8b, we show the mean traffic speed on each lane, where we can see
that it evolves similarly in each lane (at a high level), where the speed does not oscillate as in
the NGSIM traffic. We can also observe that on lane 2, which is the leftest one, the average
speed is the highest one among the three lanes. In Figure 6.8c, we show the evolution of the
vehicle-density diagram for each lane, and from this figure, we can observe that the number of
vehicles is almost the same in average on the three lanes, and it ranges from 2 to about 12 in 420
meter. This vehicular density is much lower than that of the NGSIM dataset, see Figure 6.4b).
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(a) The vehicle longitudinal position(m) by the Frame ID (0.025s) for the 13th sub-dataset in HighD dataset

(b) The traffic mean speed in each lane evolution in each frame (0.025s)

(c) The number of vehicles in each lane evolution in each frame (0.025s)

Figure 6.8 – The 13th sub-dataset in HighD dataset: Traffic speed evolution and traffic density evolution
in each lane
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6.1.1 Comparison of NGISM dataset and HighD dataset

To show the difference between the NGSIM 101 and the HighD datasets, we give in Figure 6.9a,
Figure 6.9b and Figure 6.9c, a comparison between the NGSIM 101 first 15 minute period data
and the 13th sub-dataset of HighD dataset, in terms of traffic mean speed, traffic density, and
the speed-density diagram. The HighD traffic is not as dense as the one in the NGSIM 101
dataset; see Figure 6.9b). This can also be seen in Figure 6.9a and Figure 6.9c.

In the following sections, we simulate in SUMO, the two traffics of NGSIM and HighD with
different combinations of car-following and lane-change models. In section 6.2, we first give
the adaptation and the implementation of our proposed models used in Chapter 3, Chapter 4,
and Chapter 5. Then, in section 6.4 and section 6.5, we give the results of simulation of the first
15 minutes period traffic in the NGSIM dataset and the traffic of 13th sub-dataset in the HighD
datset.
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(a) The comparison of NGSIM traffic mean speed and
HighD traffic mean speed

(b) The comparison of NGSIM traffic density and
HighD traffic density

(c) The comparison of NGSIM traffic speed-density diagram and HighD traffic speed-density diagram

Figure 6.9 – Three subfigures

Figure 6.10 – The comparison of NGSIM 101 dataset and HighD dataset : the first 15 minute period data
in NGISM 101 dataset and the 13th sub-dataset in HighD dataset
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6.2 Implementation of the models in SUMO

As well known, car-following and lane changing models are the two fundamental models in
microscopic traffic. In this thesis, we used the car-following model IDM (intelligence driver
model) in Chapter 3, which is a well known car-following model, and is already available in
SUMO. In Chapter 5, we proposed a human-like driving model using LSTM neural network,
simultaneously for car-following and lane-changing behavior control. The latter model controls
the vehicle movement by predicting the decision on speed and lateral position, based on the
vehicle own movements and on the states of its surrounding vehicles in the historic steps. As
shown above, the neural network based model can be more efficient in predicting the human
driving behavior, than the classical physical microscopic model, e.g. the intelligent driver
model (IDM). Indeed, the neural network based model performs a good accuracy for the real
vehicle trajectory data. In Chapter 4, we have shown that classical physical lane change models
have limited performance, and the reinforcement learning provides an alternative method for
lane changing modelling. Q-learning algorithms have been used with online calibration on
human lane change, based on the NGSIM data. The results have also shown a good accuracy
for human lane change imitation.

In this section, we study the use of different combinations of car-following models and
lane changing models, including 1) the calibrated IDM model, 2) an adapted neural network
based car-following model, 3) the SUMO default lane changing model and 4) our proposed
reinforcement learning based lane changingmodel. We simulate the NGSIM andHighD traffics,
and compare different combinations.

6.2.1 Calibration of the IDMmodel

The IDMmodel needs to be calibrated to present the real human behavior. For the car-following
model calibration, we have presented previously in Section 3.6 the method of calibration for
the selected extreme profiles (aggressive and inattentive), but with the purpose of generation
of car collisions (in numerical simulation) by increasing the number of extreme drivers in
the traffic (see. Chapter 3). In this section, with the objective of generalizing the calibration
work, and in order to reuse the calibrated model for other use cases, we propose the use of
the NGSIM data to calibrate the IDMmodel and to obtain a set of IDM parameters. This set
of parameters is the average value of parameters calibrated through all drivers trajectories
registered in the first 15 minute period NGSIM 101 dataset. We use here the same method as in
the one in section 3.6 for calibrating all drivers presented in NGSIM data-set, and we choose
the parameters’ boundaries with an assumption to be suitable for each driver. Let us recall that
the calibration is performed using a genetic algorithm to find the optimal parameters of the
IDM model for each diver in the NGISM data-set, with the purpose of minimising a proposed
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error in position. The error is defined as the root mean square percentage errors (RMSPE) :

RMSPE(θ) =

√√√√ 1
P

P∑
i=0

(xsimul
i (θ)− xdata

i (θ))2

xdata
i (θ)2 , (6.1)

The boundary of each parameter (upper and lower bounds) are given as an input to the genetic
algorithm. In Table 6.1 we show the chosen boundary of each parameter of the IDM model,
and we calculate the result for errors between the real data and the output of the calibrated
IDM model, including RMSE for speed, and RMPSE for the position. We show in Table 6.1
the mean value, the standard deviation, the median, and the value of the quantile at 25% and
75% for each parameter and each error value. Table 6.1 shows the performance of IDM model
and the calibration by the genetic algorithm. We have the RMSE on the car-speed at 1.004m/s
for about 1900 drivers, and the RMSE on the car-position at about 9.1m, with only 4.4% of
RMPSE. The performance of the IDMmodel calibration can be also observed in Figure 6.12,
where we show the result of calibration of the IDM model for 4 selected drivers. We give in
each sub-figure the driver’s real speed and the speed computed by the calibrated IDM model.

Parameters and error Bounds Mean std median 25% 75%
V0 (m/s) [10, 40] 25.07 8.70 22.33 18.54 30.10
T (s) [0.1, 4] 1.53 0.75 1.52 1.06 1.94
S0 (m) [0.1, 10] 2.53 3.50 0.10 0.1 4.48
Reaction time (s) [0.1, 0.5] 0.2 0.12 0.13 0.12 0.14
a (m/s2) [0.1, 6] 4.6 2.1 6.0 3.16 6.0
b (m/s2) [0.1, 6] 5.6 1.27 6.0 6.0 6.0
RMSE speed (m/s) 1.004 0.37 0.93 0.75 1.18
RMSE position (m) 9.152 19.69 5.67 3.76 8.92
RMPSE position (%) 4.4 28.0 2.41 1.6 3.6

Table 6.1 – Calibration results for all drivers of the first 15-minute period data in NGSIM dataset.

FromFigure 6.11, we see that the parameters V 0 and T arewell distributed in their respective
intervals. However, the parameters a and b are rather close to the upper limit 6 m/s2. This
result corresponds to what is found in (M. Zhu, Xuesong Wang, Tarko, et al., 2018). We use
the column of the mean value in Table 6.1 as the calibrated parameters of IDM to simulate the
traffic in SUMO.
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Figure 6.11 – The distribution of the calibrated IDM model parameters for all drivers in the first 15
minute period data in NGSIM 101 dataset

Figure 6.12 – Some result examples for the IDM model calibration, each sub-figure shows the real speed
in NGSIM and the predicted speed using calibrated IDM model
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6.2 Implementation of the models in SUMO

6.2.2 Car-following model using Neural network

The model that we proposed in our research work in Chapter 5 is a model using LSTM neural
network, where we compared three different input designs as shown in Table 6.2. Since this
model has a lot of inputs, We propose a simplification of the model in order to implement it in
SUMO and to simulate road traffic in SUMO.

xtarget ytarget vtarget atarget ltarget wtarget xi yi vi ai li wi ∆vi slong_i slat_i pi

input design 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
input design 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
input design 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6.2 – input designs

In order to implement a neural network car-following model in SUMO to simulate the
NGSIM and the HighD traffics, I propose to use a simpler car-following model with a classical
neural network trained by theNGSIMdata. Themodel uses only the features shown in Table 6.3.
In addition, the target vehicle position is a variable depending on the traffic map, where the
traffic road length is not constant. We don not use here the target absolute variables, but
relative values with the surrounding vehicles, which are more representative. Moreover, for
the surrounding vehicles, we considered only the leading vehicle and the following vehicle
of the target vehicle, which are the most two important participants for the car-flowing speed
controlling.

All the used features of target vehicles :

• longitudinal position xtarget(t)

• longitudinal speed vtarget(t)

• vehicle length ltarget and vehicle width wtarget

All the features of the leading vehicle and following vehicle are :

• relative speed ∆vi(t) = vtarget(t)− vi(t)

• longitudinal distance slong_i(t) = xtarget(t)− xi(t)

• vehicle length li and vehicle width wi

• presence pi : 0 for non presence, 1 for presence
if vehicle vi is no present, all the relevant value (li, wi, ∆vi, slong_i, slat_i) for this vehicle
set to be 0.

In this input design, we have a total of 13 features as inputs of the neural network.
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xtarget ytarget vtarget atarget ltarget wtarget xi yi vi ai li wi ∆vi slong_i slat_i pi

input design2 SUMO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6.3 – Input design2 in SUMO implementation

Neural Network model

The neural network model is changed. We reduce the input features, and take only one output
of the model, which is the longitudinal speed. In this context, we supposed using a classical
fully connected neural networks (mathew2012neural), without the LSTM architecture; see
Fig. 6.13. The neural network model for car-following is shown in Fig.6.14.

Figure 6.13 – Example of a fully connected artificial neural network

Figure 6.14 – Example of a fully connected artificial neural network

We give in Table 6.4 the RMSE for all models trained and tested using the NGSIM data-set.
The car-following model proposed for SUMO implementation has a similar accuracy as the
best model we obtained in Chapter 5. Therefore, we think that this car-following model using
a fully connected neural network can replicate the human car-following driving behavior.
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6.2 Implementation of the models in SUMO

Mean-driver-RMSE Train Test1 Test2
Speed (m/s) lateral Position (m) Speed (m/s) lateral Position (m) Speed (m/s) lateral Position (m)

M1_input1 0.2819 0.1308 0.27 0.14 0.294 0.1389
M2_input1 0.1524 0.1608 0.1767 0.167 0.1964 0.1709
M1_input2 0.056 0.024 0.05 0.024 0.051 0.023
M2_input2 0.0686 0.0848 0.0688 0.0752 0.0695 0.0669
M1_input3 0.4188 0.1185 0.4356 0.1353 0.4155 0.1494
M2_input3 0.2465 0.1331 0.3248 0.1305 0.3021 0.1396
MNN_input2 0.2495 0.1266 0.2565 0.1229 0.2749 0.1209
MNN2_input2 0.1423 0.1338 0.1389 0.16415 0.1503 0.1802
CF by classical NN for SUMO 0.09 0.0760 0.0764

Table 6.4 – Mean RMSE for the different models with different input designs, and for training, test1 and
test2 respectively.

Implementation of the neural network CF model

In SUMO, the car-following model is controlled by a parameter called ’speed mode’, and this
parameter is presented by a 5-bit value. The given integer is a bitset (bit0 is the least significant
bit) with the following fields:

• bit0: Regard safe speed

• bit1: Regard maximum acceleration

• bit2: Regard maximum deceleration

• bit3: Regard right of way at intersections

• bit4: Brake hard to avoid passing a red light

We set the speedmode at 1 for controlled vehicle, in order guaranty safety (avoid car-collisions).
For all the other situations, the speed is controlled by our neural network car-following model,
proposed for the implementation in SUMO.

6.2.3 Lane change model using Reinforcement Learning

The proposed lane change model is the the model we presented in Chapter 4. This model is
also calibrated using the NGSIM 101 data-set.

Implementation of the lane changing model based on reinforcement learning in SUMO

The lane change model discriminates four reasons to change lanes:

• strategic (change lanes to continue the route)

• cooperative (change in order to allow others to change)

• speed gain (the other lane allows for faster driving)
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• obligation to drive on the right

This strategy of lane change control has a parameter named ’lane change mode’ and to disable
all autonomous changing but still handle safety checks in the simulation, either one of the
modes 256 (collision avoidance) or 512 (collision avoidance and safety-gap enforcement) may
be used. We set the lane change mode at 256 to disable all lane change strategy of SUMO, but
we need to check for collision avoidance when our lane change model demands a change lane.
To be noticed, the lane change order by our lane change model can be prevented by SUMO if
safety is not guaranteed.

Controlling one car in the traffic

The implementation began with testing in the NGSIM scenario for controlling only one car
using the neural network based car-following model and the lane changing model using
reinforcement learning. The result in simulation for the vehicle speed control is presented
in Figure 6.15. It seems that the vehicle is well controlled by our proposed model, and has
a different speed policy comparing to the sumo default model. We show in Table. 6.16a the

Figure 6.15 – Example of a controlled vehicle speed in SUMO

results for the lane change using SUMO LC default model, and in Table. 6.16b the results by
our proposed model. The controlled car changes only once its lane by using the default model
in SUMO, meanwhile, it changes 4 times using our lane change model with reinforcement
learning.
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6.3 Different combinations of models for Highway traffic simulation
in SUMO

Once we tested the control of one vehicle in simulation using the proposed CF and LC models,
we begin the simulation of the whole traffic (NGSIM and HighD) aiming at testing all the
combinations given in Table 6.5.

Car-following models Lane changing models

Models in SUMO IDM default IDM calibrated
with NGSIM CF by NN LC default SUMO LC by RL

Sumo_default ✓ ✓
Model1 ✓ ✓
Model2 ✓ ✓
Model3 ✓ ✓
Model4 ✓ ✓

Table 6.5 – A summary of all the tested models in simulation

6.4 Results of the Simulation of NGSIM traffic

In Figure 6.17, we show a screenshot for the visualisation of NGSIM traffic in SUMO. We
present the results in two parts consisting of traffic average speed evaluation and number of
lane changes evaluation.

Figure 6.17 – Screenshot for the simulation of NGSIM traffic

Traffic Speed evaluation

The comparison of the average traffic speed between real data and simulated traffic using differ-
ent combination of models is shown in Figure 6.18. We give the RMSE between the NGSIM data
and the simulated traffics using different combinations on traffic average speed, respectively for
sumo_default model, model1, model2, model3 and model4 in Table.6.6. We observe that the
model2, which uses CF model by neural network and LC model using reinforcement learning
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6.4 Results of the Simulation of NGSIM traffic

has the best performance among all the tested models. The traffic speed-density diagram of
the simulated traffic obtained from SUMO is shown in Figure 6.19. We show the speed-density
diagram produced by each simulated model. We observe that the Model2, which uses the CF
by neural network and LC by reinforcement learning has the best performance; see Figure 6.19.
We then focus on the two best models by the criteria shown in Table 6.6, which are the model2
and the model1. We show their diagram of speed-density in Figure 6.20. Therefore, by the
result shown in Table 6.6 and the result shown in Figure 6.20, we observe that model2 has the
best performance for simulating the NGSIM traffic compared with the real data.

Figure 6.18 – NGSIM simulations : Traffic average speed simulation for all cars controlled by different
models, respectively for sumo_default model, model1, model2, model3 and model4 (see Table. 6.5 for
the presentation of all models)

RMSE sumo_default model1 model2 model3 model4
m/s 1.4323 1.3759 1.2670 1.5810 1.5424

Table 6.6 – NGSIM simulations : RMSE between traffic average speed in simulation for all cars controlled
respectively by sumo_default model, model1, model2, model3 and model4 (see Table. 6.5 for the
presentation of all models), with real NGSIM traffic average speed
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Figure 6.19 – NGSIM simulations : The display of speed-density diagram for different models and the
real NGSIM data

Figure 6.20 – The display of speed-density diagram the real NGSIM data, and the result simulated by
the model1 and model2, which are the best models regarding Table 6.6.

128



6.4 Results of the Simulation of NGSIM traffic

Vehicles Lane-changing number evaluation

The lane change distribution of each cars is shown in Figure 6.21. Comparing to the real
distribution of number of lane changes in the NGSIM data-set, the distribution of lane changing
number produced by all models in simulation is similar to that of the real data. However, we
notice that the result of simulation for the lane changing are obtained under the SUMO collision
avoidance check (when the LC is done by our model). Therefore, even the lane changing model
using reinforcement learning is shown as a collision-free in Chapter 5. In order to exted the
model for controlling all the cars’ LC in the traffic instead of controlling only one car, we need
to introduce safety and car-collision avoidance in the lane changing modeling.

Figure 6.21 – NGSIM simulations : Vehicles’ lane changes number distribution for all models, including
the NGSIM dataset
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6.5 Results of the Simulation of the HighD traffic

In the previous section, we have shows the simulation results for the NGSIM traffic. In this
section, we present the results of simulations for the HighD traffic. In the HighD data-set,
we choose the scenario of the 13th sub-dataset among from a total of 60 sub-datasets. The
13th sub-dataset contains traffic data on a 3-lane road map on the highway with 1217 vehicles
in the traffic during 17 minutes. Similarly to the evaluation of simulations for the NGSIM
traffic, we are also interested in the presentation of traffic speed evaluation and lane changing
evaluation for the simulations of HighD traffic. In Figure 6.22, we show a screenshot of the
HighD simulation in SUMO. As already indicated in section 6.1, the NGSIM and the HighD
traffics are different in terms of traffic density speed. We reuse the proposed models studied for
the NGSIM data-set (Table6.5), to simulate the HighD traffic and to observe the performances
of each model.

Figure 6.22 – Screenshot for the simulation of HighD traffic

Traffic Speed evaluation

For the traffic speed evaluation, we evaluate the simulation using different combinations of CF
and LC models; see Table 6.5). In Figure 6.23, we show the results of HighD traffic simulations
regarding the average traffic speed. We firstly tested the IDMmodel calibrated with the NGSIM
data-set. The parameter maximum speed (V0 in Table 6.1) of IDM needs to be re-calibrated to
simulate the HighD traffic. The average (on drivers) of the maximum speed in the NGSIM
traffic is 25.07m/s (see V0 in Table 6.1), while for the HighD traffic, we rather take 40m/s for
the maximum speed.

We show in Figure 6.24 the result of the HighD traffic simulations, for different models. for
the SUMO default model with the maximum speed 40m/s, the model1 using calibrated IDM
model with the maximum speed 40m/s and the SUMO default lane change model, the model2,
the model3 and the model4 presented in Table 6.5. In Table 6.7, we compute the RMSE error
between the simulation result and the real data of the HighD dataset, in terms of traffic average
speed. We observe that the model1 using the calibrated IDM model with the maximum speed
at 40m/s and the SUMO default lane change model is the best one; while the model4 using the
CF by neural network and default SUMO LC model is the second best model for simulating
the HighD traffic. The model2 and model3 give a traffic speed very different from the real data.
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6.5 Results of the Simulation of the HighD traffic

Figure 6.23 – HighD simulations: Simulate HighD using IDM model with parameters calibrated by
NGSIM

Figure 6.24 – HighD simulations: Simulate HighD using all proposed models
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The LC behavior in the HighD dataset should be very different from the behavior in the NGSim
dataset, that is why Model2 and Model3 both have the worst performance (both of them have
the CL by reinforcement learning, and this model is trained using NGSIM dataset). For the
model4, it uses the neural network CF trained by the NGSIM dataset, with good performances
for simulating the HighD traffic in terms of the speed-density; that is what we can see by the
speed-density diagram of Figure 6.25 and Figure 6.26.

RMSE sumo_default Sumo_default_v_max40 model1_v_max40 model2 model3 model4
m/s 4.7 2.44 1.1465 9,2501 13,7630 2,3572

Table 6.7 – HighD simulations : RMSE of traffic average speed in simulation for all cars controlled
repectively by all the proposed models

Figure 6.25 – HighD simulations : The display of speed-density diagram for different models and the
real HighD data
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6.5 Results of the Simulation of the HighD traffic

Figure 6.26 – The display of speed-density diagram the real HighD data, and the result simulated by the
model1 with the re-calibration of max speed and the model4, which are the two best models regarding
to table6.7.
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Vehicle Lane-changing evaluation

For the number of lane changes, we show its distribution for each car in Figure 6.27, for different
models and for the real data. From this figure, we find that the model2 and mode3, which are
the models using LC by reinforcement learning, have a bad performance for replicating the real
driving behavior in terms of the number of lane changes. Other models, SUMO default model
with the maximum speed at 40m/s and the model1 using calibrated IDM model based on
NGSIM dataset with the maximum speed at 40m/s, and the model4 has a similar performance
on lane changing, where all the simulated vehicles have zero lane change during the simulation.
In the real data, several vehicles has one lane change. The problem of lane changing behavior
modeling needs to be further worked on, since the LC model using reinforcement learning
trained on the NGSIM dataset cannot simulate a very different traffic as the one of the HighD
data-set (in terms of lane changing behavior).

Figure 6.27 – HighD simulations : Vehicles’ lane changes number distribution for all models, including
the HighD dataset

6.6 Conclusion

The NGSIM traffic is very heavy, while the HighD one is very light. The neural network
and reinforcement learning models trained only on the NGSIM data-set are not suitable for
simulating traffic as different as the HighD one, from the NGSIM one. The IDM model, which
uses physical parameters, is easy to extend with human factors (such as the reaction time) and
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6.6 Conclusion

it can be used to generate car-collisions. The NGSIM-calibrated IDM model is less sensitive to
data, and can be used to simulate other traffics like theHighD one, but it requires a re-calibration
with the maximum vehicle speed.

135





Chapter 7

Conclusion and Perspectives

Driving behavior models describe the driver’s maneuvering decisions under different traffic
conditions which are crucial for microscopic traffic simulation systems and important in several
research areas such as traffic safety, capacity analysis, and assignment studies. On the other
hand, there is a growing interest in autonomous driving, which is a rather challenging topic
because it involves the automated operation of vehicles in many different situations. We
expect that fully autonomous vehicles can reduce car accidents and improve overall traffic
safety. However, the complex system of autonomous vehicles combining the perception,
decision, the control system and the traffic environment is a dynamically changing environment
which involves many interactions between road users. Driving tests are essential to validate
and to ensure the functionalities of the vehicle. Driving tests in the real world are a big
challenge because fatal accidents involving autonomous vehicles may happen during the test.
Digital simulation can reduce the cost and time and avoid potentially dangerous situations
for validation of Advanced Driver-Assistance Systems (ADAS) and autonomous driving. All
those increasing uses of traffic simulation for many studies highlight the importance of a good
understanding and modelling of human driving behavior.

7.1 Conclusion on our contributions

In this thesis, the works are focused principally on human driving models, consisting of
car-following and lane change models. We have also proposed a model for generation of
car-collisions in numerical simulation, for the validation of autonomous vehicle features in
dealing with traffic accidents.

Classical models in microscopic traffic modelling started with concepts of physics based on
the classical Newtonian mechanics, and then augmented by behavioral aspects and driving
rules. This kind of physical models have already been completely integrated in many traffic
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simulators, such as SUMO, Aimsun, Vissim, etc. We have firstly investigated the classical
models in Chapter 3, aiming at proposing a novel approach of car-collision generation method
in numerical simulation. We have derived and distinguished different driver profiles, including
aggressive, inattentive and normal drivers, based on the real traffic from the NGSIM data-set.
Within this first work, we proposed a calibration mechanism for a chosen car-following model
(IDM model), using a genetic algorithm. The objective of the calibration of the IDM model is
for representing the different real driver profiles in numerical simulation. We then proposed
to increase the percentage of ’extreme’ profiles (aggressive and inattentive) in numerical
simulation, in order to generate car-collisions. This work has been experimented based on the
first period 15-minute data of the NGSIM 101 data-set. We have then validated our proposed
approach using the second 15-minute period data. One of the important results we obtained in
thiswork is the characterization of the relationship between the ratios of these twodriver profiles
over the whole drivers population, and the car-collision occurrences counts. We have also
classified the occurred car-collisions and analyzed their severity, in particular with respect to the
relative speed between the cars which cause the collisions. Furthermore, we have investigated
the severity of the generated collisions, and find that the generated car-collisions involved
between an aggressive driver as a leader and an inattentive driver as a follower occupy the
most frequent collision occurrences, meanwhile the generated car-collisions involved between
two inattentive drivers are the most severe ones.

In the other chapters of this thesis, we focused on artificial intelligence algorithms which
have already demonstrated their efficiency in data-based modelling, during the last years.
These algorithms provide alternative methods for modelling human driving behaviors. With
this objective, we investigated and applied some machine learning algorithms for modelling
human driving behavior, including a model for lane change using Reinforcement Learning (in
Chapter 4) and a model combining car-following and lane changing behavior prediction using
Long Short-Term Memory (LSTM) (in Chapter 5).

In Chapter 4, we proposed a Q-learning model for the modelling of human lane change
decisions. The model demonstrates good performances in mimicking the human lane changing
decisions (up to 95%). Moreover, the model uses numerical simulation to complete the data
with unknown situations. We observed a percentage of 13% of additional traffic situations
created by the traffic simulation environment. Training in a simulated traffic environment
allows the improvement of the model performance. In Chapter 5, we presented a LSTM neural
network model combining car-following and lane-changing on road networks. In this work, we
proposed several models with different input designs to investigate the best one. The derived
model has shown a good performance on both predicting the longitudinal speed and the lateral
position. Moreover, the obtained results show that this model has a better performance than the
classical physical model IDM in terms of the accuracy of replicating the car-following behavior.
We experimented firstly the proposed models on the NGSIM 101 data-set, and then on the
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HighD 101 data-set. We have observed that the use of relative variables between vehicles as
inputs (input design 2) gives the best result compared to the other input designs. All our tested
models have significant performances in the accuracy of the prediction of longitudinal speed
and lateral position simultaneously.

At last, in Chapter 6, we implemented the proposed models with different combinations
and some adaptations in SUMO, for simulating the whole traffic, where all the private cars are
controlled by our models, while other kinds of vehicles including trucks and motorcycles are
controlled by the default model in SUMO. The objective in this part was to compare the models
and see the performance of traffic simulation in both the NGSIM 101 and the HighD data-sets.
Traffic simulation with our proposed car-following model using neural networks, and with our
lane changingmodel using reinforcement learning gives the best results in simulating the traffic
of the NGSIM dataset. The models using artificial intelligence provide a better performance,
even in the simulation of all the cars in the traffic for the NGSIM dataset. However, as indicated
in section 6.1, there exists large differences between the NGSIM data-set and the HighD data-set.
The simulation using the proposed models calibrated with the NGSIM dataset is not so good
for replicating the HighD traffic. The NGSIM-calibrated IDMmodel is less sensitive to data,
and it can be used to simulate unknown traffic like the HighD one. However, it requires a
re-calibration with the maximum vehicle speed in traffic.

7.2 Perspectives

Modelling and simulation of realistic traffic is an essentially difficult problem. In this thesis,
we investigated and proposed some microscopic traffic models, calibrated and validated with
the NGSIM 101 and the HighD data-sets, and tested in numerical simulation with SUMO.
Observation and analysis of real traffic data being the first work for the traffic modelling, the
acquisition of big amounts of traffic data with different traffic conditions and scenarios, is
to be considered in order to improve the efficiency of the models. It is then important to
also improve the process of traffic data collection, under different traffic conditions, different
networks, different driver profiles, etc. We note that the NGSIM traffic data have been collected
with NGVIDEO (NGSIM, 2020), a customized software application developed for extracting
the vehicle trajectory data from the video. The techniques of extracting vehicle trajectories
from video are available by some methods using neural network models, consisting of camera
calibration methods, and multi-objects tracking methods. We have tested some algorithms
for automatic extraction of vehicle trajectories from videos, using a combination of an object-
detection algorithm, Yolo5 (Jocher, 2020) and an object-tracking algorithm, DeepSort (Wojke,
Bewley, and Paulus, 2017), with the code referenced by Mikel Brostrom (Brostrom, 2020). This
application of extracting vehicle trajectory from video is presented in the Appendix C. Using
this kind of methods, we can succeed extract more traffic data providing vehicle trajectories
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data from video in order to enrich the traffic data-set with different traffic conditions, such as
fluid dense, congested, full congested.

Furthermore, one of the important questions for the developed models is: are they able
to reproduce a traffic which is very different from the one used for their calibration ? (The
NGSIM 101 data-set includes congested traffic where many driver interactions are present,
while, the HighD data-set is recorded from a less congested and lighter traffic, where the
interactions between drivers are not very frequent). Actually, in Chapter 6 we have seen that,
for physical models like the IDM model, the response to the question can be positive, even
though some macroscopic calibration with the new data-set is sometimes needed (calibration
of the maximum speed in our case). We have also seen that machine learning models are in
general more dependent on the data than the physical ones, which makes the reproduction of
other traffics more difficult. The perspectives in this direction is to develop mixed models (i.e.
physical and data-based) able to benefit from the advantages of both physical and data-based
models, without suffering from their disadvantages. The question is then to find the good mix !

Let us now give some perspectives for the developed models. First, regarding our proposed
car-collision generation method, we define three different driver profiles. Then the car-collision
generation method is applied artificially by increasing the proportion of aggressive and inat-
tentive drivers in traffic. This work is only an experiment based on the NGSIM 101 data-set.
An interesting work would be to test the method with another data-set (the HighD one for
example), derive different driver profiles, and try to generate car-collisions by numerical simu-
lations. For our proposed lane change model using Q-learning and online calibration of the
NGSIM data-set, we have obtained some good performances. However, as well known, with
the development of reinforcement learning, deep reinforcement learning, allowing continuous
approximations would further enhance model performance, and it provides the possibility
to consider more variables in the input of the model. Some new deep reinforcement learning
algorithms have been developed recently, such as the Deep Double Q-learning (Van Hasselt,
Guez, and Silver, 2016), A3C (Mnih et al., 2016), DDPG (P. Wang, H. Li, and Chan, 2019) and
PPO (Ye et al., 2020). It is then interesting to test such new algorithms formodelling lane change
for vehicular traffic. In the other side, for the model using LSTM neural network, we found that
the inputs using relative variables between the target vehicle and its surroundings vehicles can
improve the model prediction accuracy of target vehicle’s speed and lateral position. It would
be interesting to consider these variables in the model of lane changing using reinforcement
learning. Finally, for the LSTM model, it performs well in replicating real human driving
behavior, but the structure of the model, which requires consideration of 50 sequences in the
vehicle history trajectory, makes the model difficult to implement in a traffic simulator, which
also poses a challenge in terms of computation time. A simpler model structure with similar
performance needs to be considered in the future.
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Appendix A

Complements on Chapter 3

A.1 Comparison of original IDM model and the IDM model with
extension of reaction time

In Figure A.1, the result of the speed from calibrated IDM with a modelled reaction time and
the speed from dataset for two drivers is shown. In Figure A.2, the result of the longitudinal
position simulated by the calibrated IDM (before adding reaction time parameter and after
adding reaction time parameter) are given. By these two figures, we can find that the calibrated
IDM with the reaction time parameter represents the real human driving behaviour more
efficiently.

Figure A.1 – The comparison of original IDM model and the IDM model with the extension of reaction
time, the calibration result for speed replication. The speed from calibrated IDM without reaction time
(yellow), the speed from calibrated IDM with modelled reaction time (red) and real speed from dataset
(bleu) for driver 1323 and driver 767. The tables show the optimal parameters of IDM with reaction
time by genetic algorithm for driver 1323 and driver 767.
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Figure A.2 – The comparison of original IDM model and the IDM model with the extension of reaction
time, the calibration result for longitudinal position replication. The calibration of longitudinal position
result for two drivers (id 767, id 1323) and their value parameters for IDM with the modelled reaction
time. Three curves are given: the simulated position by calibrated IDM without reaction time (sim-
Before), the simulated position by calibrated IDM with reaction time (simReact) and real data (real
position).

A.2 Calibration Result for specific drivers

The results of calibration for 4 specific groups of driver in the 15-minute data of NGSIM 101
dataset are given as follows: in Table A.1 for drivers of group 1, in Table A.2 for drivers of
group 2, in Table A.3 for drivers of group 3, and in Table A.4 for drivers of group 4. These tables
show themean, the median, the standard deviation, the 25% quantile, and 75% quantile, of each
parameter and for each group drivers. The tables give also the bounds for the genetic algorithm.

Parameters and error Bounds Mean std median 25% 75%
V0 (m/s) [10, 40] 26.25 7.69 23.03 20.29 32.01
T (s) [0.1, 4] 1.08 0.12 1.03 1.0 1.09
S0 (m) [0.1, 10] 0.74 1.1 0.1 0.1 1.1
Reaction time (s) [0.1, 2] 0.45 0.2 0.5 0.3 0.6
a (m/s2) [0.1, 5] 4.49 0.95 5.0 4.52 5.0
b (m/s2) [0.1, 5] 4.92 0.28 5.0 5.0 5.0
RMPSE position (%) 2.34 0.9 2.14 1.78 2.92

Table A.1 – Calibration results for the driver profiles of group 1 (2.5% 1st aggressive drivers).
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Parameters and error Bounds Mean std median 25% 75%
V0 (m/s) [10, 40] 25.95 8.94 22.22 19.22 36.42
T (s) [0.1, 4] 1.21 0.21 1.16 1.02 1.34
S0 (m) [0.1, 10] 0.39 0.67 0.1 0.1 0.33
Reaction time (s) [0.1, 2] 0.55 0.16 0.5 0.5 0.68
a (m/s2) [0.1, 5] 4.69 0.92 5.0 5.0 5.0
b (m/s2) [0.1, 5] 4.87 0.61 5.0 5.0 5.0
RMPSE position (%) 1.03 2.09 1.55 2.7 1.03

Table A.2 – Calibration results for the driver profiles of group 2 (2.5% 2nd aggressive drivers).

Parameters and error Bounds Mean std median 25% 75%
V0(m/s) [10, 40] 22.33 8.81 19.8 15.75 24.16
T (s) [1, 4] 2.38 0.71 2.43 1.8 2.83
S0 (m) [0.1, 10] 3.8 3.84 1.94 0.1 7.56
Reaction time (s) [tri − 0.3, tri + 0.3 ] 2.16 0.61 2.2 2.0 2.38
a (m/s2) [0.1, 5] 3.86 1.46 4.7 2.94 5.0
b (m/s2) [0.1, 5] 4.86 0.67 5.0 5.0 5.0
RMPSE position (%) 1.72 0.99 1.41 1.13 2.11

Table A.3 – Calibration results for the driver profiles of group 3 (2.5% 1st inattentive drivers).

Parameters and error Bounds Mean std median 25% 75%
V0 (m/s) [10, 40] 25.18 9.38 21.94 18.02 32.89
T (s) [1, 4] 1.98 0.58 2.05 1.48 2.47
S0 (m) [0.1, 10] 3.65 3.73 2.02 0.1 7.83
Reaction time (s) [ tri − 0.3, tri + 0.3] 1.73 0.49 1.8 1.72 1.9
a (m/s2) [0.1, 5] 3.99 1.64 5.0 3.59 5.0
b (m/s2) [0.1, 5] 4.85 0.6 5.0 5.0 5.0
RMPSE position (%) 1.68 0.9 1.43 1.15 1.89

Table A.4 – Calibration results for the driver profiles of group 4 (2.5% 2nd inattentive drivers).

A.3 Regression of the number of simulated car-collisions for first 15
minutes data

A.3.1 Linear regression

In order to find the relationship between simulates crashes number and the rate of specific
profile drivers for the result shown in Table 3.4, We obtain: Ŷ = f(x1, x2) = β0 +β1∗x1 +β2∗x2,
with β0 = −29.5569, β1 = 1.4068 and β2 = 1.3468. The obtained root mean square error RMSE
= 9.7838. In Figure A.3, the number of crashes for each percentage of two drivers profiles is
presented, as well as the plane obtained by regression. This result allows us to estimate the
proportion between aggressive and inattentive driver profiles generating the same number of
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crashes:
β2/β1 = 13/14 ≈ 1.

Although the linear regression is satisfying with RMSE = 9.7838, and R2 = 0.9045, we can
see on Figure A.3 that we need still improve the approximation.

Figure A.3 – E1: Linear regression of number of simulated crashes, The suffix ag, long are the aggressive,
inattentive driver profile respectively

A.3.2 First test of non-linear regression based on the first 15-minute data

In this subsection, we suppose the number of generated collisions based on the first 15-minute
data has a non-linear relation with the percentage of each driver profile, where the formula is
as below :

Ŷ = f(x1, x2) = β0 + β1 ∗ (x1 + x2) + β2 ∗ (x1 − x2)2 (A.1)

The result of coefficients :

Ŷ = f(x1, x2) = −23.3532 + 1.3901 ∗ (x1 + x2)− 1.4377 ∗ (x1 − x2)2 (A.2)

where the coefficient of determination R2 = 0.9683. RMSE (root mean square error)= 5.630
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A.4 Regression result of the number of simulated car-collisions for
second 15 minutes data

As the same, we investigated the regression function for the generated collision counts based on
the second 15-minute data. By the same way as that for the first 15-minute data, we test firstly
the linear regression, and then, a polynomial regression is tested, consisting of two different
functions.

Linear regression :

We obtained : Ŷ = f(x1, x2) = β0 + β1 ∗ x1 + β2 ∗ x2, with β0 = −10.5262, β1 = 1.537 and
β2 = 0.807. where RMSE (root mean square error) = 6.16

Polynomial regression:

By the proposition in the Equation A.1, we find for the generated collision number, it respects
to :

Ŷ = f(x1, x2) = −8.1540 + 1.2 ∗ (x1 + x2)− 0.7 ∗ (x1 − x2)2 (A.3)

where RMSE (root mean square error)= 9.478.
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B.1 Introduction

In this appendix, all other implementations of lane changemodels using reinforcement learning
are presented.

B.2 Initial model using Q learning for lane change decision mod-
elling

In the first proposition, we consider that the motivation of lane changing behavior usually is
the speeding, that the driver wants to speed up. In this context, the reward of lane changing
decision is the ’Speed gain’, where the agent maximizes always the speed to take a decision
of lane change. As presented in the section 4.3.3, the states and actions are used the same
definitions. Unlike what is presented in 4.3.6, the reward is defined as :

reward =

 Speed Gain (vt+1 − vt)

- 10 if crash or out-of-road situation
(B.1)

The result of the evolution of the total reward of each episode is shown in Fig. B.1. The
expectation of the total reward tends to converge after 40000 simulation episodes. Moreover,
the crash and the out of road situations do not occur any more at the last episodes after about
41000; see Fig. B.2, where 1 means the presence of the collision or out-of-road and 0 means no
presence of the event. However, using this model, the number of lane changes for the vehicles
in the last 200 episodes ranges to once to 20 times, which is shown in Figure B.3. This result
seems unrealistic that human driver can not change lane 20 times in a road section of 600m.
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Figure B.1 – Total reward evolution. Blue line is
the total reward for each episode. Orange line
presents the average for each 20 episodes

Figure B.2 – Crash and out of road occurrence
evolution. 1 means presence of the event, 0 means
no presence of the event

Figure B.3 – Distribution of number of lane changes for the vehicles in the last 200 episodes
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Appendix C

Automated counting of vehicles in the
traffic and extraction of vehicle
trajectories : vehicle detection and
vehicle-trajectory tracking from video

Historically, traffic data has been sourced from traffic cameras and sensors, as well as on-board
sensors on vehicles. In section 2.7, we have presented the data-sets which we worked on for my
PHD works, NGSIM and HighD. This kind of data-sets are very important for human driving
behavior research, which contain vehicle trajectories, and are usually extracted from videos by
object-tracking methods. The methods of object-tracking are widely studied in the computer
vision domain, and have many advances using deep learning methods in the recent years.
Here, we proposed and tested a pipeline for automated extraction of vehicle trajectories from
videos, using a combination of an object-detection algorithm, Yolo5 (Jocher, 2020) and an object-
tracking algorithm, DeepSort (Wojke, Bewley, and Paulus, 2017), with the code referenced
by Mikel Brostrom (Brostrom, 2020). Furthermore, once we extract the objects trajectories
in the video (in each image frame), the camera calibration is necessary to find the matrix, to
convert the image coordinates to real world coordinates. We used an open-source software
for the camera calibration, named as T-calibration, provided by an European project funded
by Horizon 2020 (Lund University, 2018). As a result, we made a complete application for
counting automatically different type of vehicles, including cars, trucks, motorcycles, bicycles
in the traffic and extraction of vehicle trajectories from recorded traffic videos. This application
can be used for the acquisition of a large-scale traffic data-set with different traffic conditions
and for further research on human driving behavior. The pipeline has four steps:

1. Collect traffic video
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2. Customization of detection zone and vehicle counting line

3. Yolo5 + DeepSort for multi-object tracking

4. Camera calibration to find the matrix for converting the coordinates in the video to real
world coordinates

C.1 Collection of traffic video

We are interested in the mixed traffic with a bicycle path, in which we can find cars, trucks
motorcycles, bicycles and pedestrians. The selected location for collect of traffic video is near
the Pont de Bir Hakeim in Paris for a section of Voie Georges Pompidou along the Seine River.
In Figure C.1, we show the location of camera detection zone in Google Map. The camera
real view is presented in Figure C.2. The validated detection road section is about 120m in
length, containing a one-direction normal vehicle lane and bicycle lanes for two directions. The
duration of the video we have token is 13 minutes during the rush hour at one afternoon in the
week. The video frequency is 25Hz.

Figure C.1 – Camera Detection Zone Figure C.2 – Camera real view

C.2 Customization of detection zone and vehicle counting line

In the application we made, the customization of detection zone and vehicle counting line is
implemented to facilitate the utilisation of the application. We need to choose a detection zone
in order to ignore the objects in the other zone and the counting lines can be drawn by the user
to choose the counting area. Here we give an example in Figure C.3 for the counting line and
in Figure C.4 for the detection zone.
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C.3 Yolo5 + DeepSort for multi-object tracking

Figure C.3 – Detection lines for the count
of different type of vehicles

Figure C.4 – Detection Zone for extraction
vehicle trajectories

C.3 Yolo5 + DeepSort for multi-object tracking

In multi-object tracking (MOT) problem, tracking-by-detection is a popular method where
objects are firstly detected in each frame and represented as bounding boxes, then by the result
of object detection, tracking is the assignment of the same objects from the previous frame
to the current frame. In other words, we would like to detect all objects in the video, and
during the video, one object need have only one identification from its first appearance to its
disappearance in the video.

The object detection algorithms using deep learning can be classified into two groups,
classification based algorithms and regression-based algorithms. You only look once (YOLO) is
a state-of-the-art, real-time object detection algorithm and one of regression-based algorithms
for predicting the classes and bounding boxes for the entire image at once. YOLO has already
been evolved from YOLO (Redmon, Divvala, et al., 2016), YOLOV2 (Redmon and Farhadi,
2017), YOLOV3 (Redmon and Farhadi, 2018), YOLOV4 (Bochkovskiy, C.-Y. Wang, and Liao,
2020), to the most recent YOLOV5 (Jocher, 2020), which is the most performant and fastest
version.

Simple Online and Realtime Tracking (SORT) (Bewley et al., 2016) is an efficient approach
to multiple object tracking with a focus on simple, effective algorithms. In SORT, a Kalman
filter is used to firstly give the estimation and prediction of objects in the current frame by
knowing the previous positions. This prediction information can be used for the correction of
the position given by the detection algorithm. Then, in assigning new detections in the current
frame to existing targets observed in previous frames, each target’s bounding box geometry is
estimated by predicting its new location in the current frame. The assignment cost matrix is
then computed as the intersection-over-union (IOU) distance between each detection and all
predicted bounding boxes from the existing targets. The assignment is solved optimally using
the Hungarian algorithm. The DeepSort (Wojke, Bewley, and Paulus, 2017) is an improved
version of SORT including appearance information extracted by deep neural networks. This
deep appearance descriptor is offline pre-trained on a large-scale person re-identification data-
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set. During the tracking on real time, the deep appearance information is also an input for
Hungarian algorithm to optimise the objects assignment.

For this step, we used the code referenced by Mikel Brostrom (Brostrom, 2020). The
YOLOV5 has been trained using a large object detection data-set, COCO data-set (Lin et al.,
2014), in which, all objects we want to detect in the traffic are included. The deep appearance
descriptor in DeepSort is pre-trained using MOT challenge dataset (Leal-Taixé et al., 2015).
We observed that this appearance descriptor pre-trained on person data-set is effective for
other type of objects we want to detect. We show the result of YOLOV5 + DeepSort for the
multi-object tracking in our collected video in Figure C.5.

Figure C.5 – Result of using YOLOV5 + DeepSort

C.4 Camera calibration to find the matrix for converting the coordi-
nates in the video to real world coordinates

Once we apply the YOLOV5 + DeepSort for the tracking for whole of our collected video, the
vehicle trajectories in the image can be obtained by the position of the center of the bounding
box in each frame. However, to convert the objects coordinates in the image to real world image,
the calibration of the camera needs to be applied to find a matrix for the transformation of
image coordinates to real world coordinates. We used an open-source software for the camera
calibration, named as T-calibration, provided by an European project funded by Horizon
2020 (Lund University, 2018). By this application, we can get automatically the calibration
result of camera by giving the reference points in the camera view image and the orthographic
image of the detection zone. We show the reference points in the camera image in Figure C.6,
and the referent points in the orthographic image in Figure C.7.
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Figure C.6 – The reference points in the
camera view image. The reference points
in this image are indicated in the ortho-
graphic image

Figure C.7 – The orthographic image of
the road section from Google Earth. The
reference points in the camera view image
are indicated in this image

C.5 Preliminary Results

We will give some preliminary results by our collected video. As a result, we extracted the
vehicle trajectories from video and provided a .sqlite format table including all the vehicle
positions by time. The vehicle trajectories are obtained in Figure C.8. In Figure C.9, we show
the vehicle speed distribution for different types of vehicles.

Figure C.8 – Vehicle trajectories extraction presented in the orthographic Google Earth image
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Figure C.9 – Different vehicle speed distribution

C.6 Perspectives

This work is tested and implemented with another PHD student, Yeltsin VALERO, working
on Microscopic modelling of Personal Displacement Equipment (PDE) under mixed traffic
and shared space conditions, with the objective to prepare the data-set for further using in the
projects for studying the human driving behavior in mixed traffic.

For this project, one challenge for measuring the performance of our method is the lack
of ground-truth data. In future work, we will evaluate the learned models using human
annotations as ground-truth. In the other hand, change the view of camera is important for
better detection. We can use the view like in the HighD and NGSIM data-set. That will facilitate
the camera calibration task and reduce the calibration error to make the transformation of
vehicle coordinates in image to real world coordinates.
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