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Hugues Chollet Chargé de recherche, Université Gustave Eiffel Invité
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Abstract

The wheel-rail contact constitutes the link between the rolling stock and

the track dynamics. The variety of different applications within the railway

network necessitates different levels of modelling. For simulations carried

out over railway tracks that are several kilometres long, approximate wheel-

rail contact models are generally sufficient. Conversely, some applications

require more sophisticated models, such as in the estimation of wear in urban

rail networks, or during the crossing of singularities of the track such as in

switches and crossings (S&C).

Three criteria may be used to broadly classify the different wheel-rail

contact modelling approaches: the assumptions about the location of the

contact, the calculation of the normal forces (from the Hertzian ellipse to

non-Hertzian contact), and the calculation of tangent forces (from analytical

expressions to Kalker’s complete theory). Contact modelling is an active

field of research, especially in railway dynamics, where certain case studies

may require assessing the three-dimensional transient response of rolling

stock over long distances, and simultaneously solving the contact problem

for each wheel up to 100000 times per second. A compromise is, therefore,

often required between the computational efficiency and the precision of

the modelling techniques. Moreover, the implementation of wheel-rail

contact methods in multibody systems (MBS) software requires efficient

and reliable methods of coupling the wheel-rail contact solution and the

transient dynamics of the bodies closest to the contact interface (wheelset

and track). The load transfers between bodies must also be handled with

care.

The aim of this thesis is to describe, test, and extend the capabilities

in terms of wheel-rail contact modelling of the MBS software VOCO, the

railway dynamics code developed at Université Gustave Eiffel. Currently,

VOCO allows real-time simulations, following two approaches, one Hertzian,

and a non-Hertzian method considering non-elliptical contact patches. The

present work proposes a new semi-analytical boundary element (BE) method
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for determining the wheel-rail contact zone and the associated normal stress

distribution. The contact pressure is assumed beforehand to take the form

of an elliptical distribution in the rolling direction and evaluated using

the BE method. The number of system unknowns is reduced via the

discretisation strategy, and using a semi-analytical methodology enables

fast computation speeds, an indispensable requirement in railway dynamics.

Moreover, comparisons with other methods commonly used in MBS codes

show a significant improvement in the normal contact results using Kalker’s

CONTACT software as the reference.

To address the tangential contact problem, an extension of Kalker’s

FASTSIM algorithm is presented. The new algorithm permits the handling

of non-Hertzian contact through a local approach. Several aspects of the

tangential contact modelling are investigated, the proposed algorithm being

validated through a design of experiments. The new normal contact method

is combined with the tangential contact algorithm, which then represents a

new rolling contact model for the whole contact problem and provides the

possibility of using a more detailed approach in the context of multibody

dynamics.

Parallel to the development of new contact methods, a comparison of

the contact modelling approaches used in different commercial and academic

MBS codes has been made within the scope of an international benchmark

on S&C. Following the benchmark, a collaborative study has been initiated

to assess the wheel-rail contact results in detail, emphasising some delicate

configurations which may occur in S&C, such as the conformal contact, the

sharp-edge contact and impact loads. Future works should consist of the

implementation of the new methods developed in this study, in VOCO.

Keywords: railway dynamics; wheel-rail contact; contact mechanics;

rolling contact; switches and crossings; multibody.
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Résumé

Le contact roue-rail constitue la liaison entre le matériel roulant et la

dynamique de voie. La variété des problématiques ferroviaires nécessite

différents niveaux de modélisation. Pour les simulations effectuées sur des

voies de plusieurs kilomètres de long, des modèles approximatifs de contact

sont généralement suffisants. À l’inverse, certaines applications nécessitent

des modèles sophistiqués, comme pour l’estimation de l’usure dans les

réseaux ferroviaires urbains, ou lors du franchissement de singularités de

la voie telles que les appareils de voie (ADV).

Trois critères peuvent être utilisés pour classer les différentes approches

de modélisation du contact roue-rail : les hypothèses sur la localisation du

contact, le calcul des forces normales (de l’ellipse Hertzienne au contact non-

Hertzien), et le calcul des forces tangentes (des expressions analytiques à la

théorie complète de Kalker). La modélisation du contact est un domaine

de recherche actif, en particulier en dynamique ferroviaire, où certains cas

d’études peuvent exiger le calcul de la réponse transitoire d’un matériel

roulant sur de longues distances, et simultanément la résolution du contact

pour chaque roue jusqu’à 100000 fois par seconde. Un compromis est donc

nécessaire entre efficacité en temps de calcul et précision des résultats. De

plus, l’implémentation des méthodes de contact dans les logiciels multicorps

(MBS) nécessite des méthodes efficaces et fiables de couplage entre la

résolution du contact roue-rail et la dynamique transitoire des corps les plus

proches de l’interface de contact (essieu et voie). Les transferts de charge

entre corps doivent également être traités avec soin.

L’objectif de cette thèse est de décrire, tester et d’étendre les capacités

du logiciel MBS VOCO, le code de dynamique ferroviaire développé à

l’Université Gustave Eiffel, en termes de modélisation du contact roue-

rail. Actuellement, VOCO permet des simulations en temps réel, suivant

deux approches, une Hertzienne et une non-Hertzienne prenant en compte

des empreintes de contact non-elliptiques. Le présent travail propose une

nouvelle méthode semi-analytique par éléments de frontière (BE) pour
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déterminer la zone de contact roue-rail et la distribution de contraintes

normales associée. La pression de contact est supposée à priori elliptique

dans la direction du roulement et est évaluée à l’aide de la méthode

BE. Le nombre d’inconnues du système est réduit et l’utilisation d’une

méthodologie semi-analytique permet de réduire le temps de calcul. De

plus, les comparaisons avec d’autres méthodes couramment utilisées dans les

codes MBS montrent une amélioration significative des résultats en utilisant

le logiciel CONTACT de Kalker comme référence.

Pour traiter le problème du contact tangentiel, une extension de

l’algorithme FASTSIM de Kalker est présentée. Le nouvel algorithme

permet de traiter le contact non-Hertzien par une approche locale. Plusieurs

critères à satisfaire dans la modélisation du contact tangentiel sont

considérés et l’algorithme proposé est validé par un plan d’expériences. La

nouvelle méthode de contact normal est couplée à l’algorithme de contact

tangentiel, ce qui constitue un nouveau modèle de contact roulant et offre

la perspective d’utiliser une approche plus détaillée dans les codes de

dynamique ferroviaire.

Parallèlement au développement de nouvelles méthodes de contact, une

comparaison des approches utilisées dans différents codes MBS commerciaux

et académiques est effectuée dans le cadre d’un benchmark international sur

les ADV. À la suite de ce benchmark, une étude collaborative est initiée pour

évaluer les résultats de contact roue-rail, en mettant l’accent sur certaines

configurations délicates qui peuvent apparaitre dans les ADV, tels que le

contact conforme, le contact à bord vif et les impacts. Les travaux futurs

devraient comprendre l’implémentation dans VOCO des nouvelles méthodes

développées dans cette étude.

Mot clés : dynamique ferroviaire; contact roue-rail; mécanique du

contact; contact roulant; appareils de voie; multicorps.
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Honoré, you have supported me from day one of this project and have

always pushed me to be better, to be thorough and clear in presenting my

ideas. Thank you for having your office door open for in-depth discussions,

for your advice (especially the one to pay closer attention to details!) and

your guidance over the past three years. Hugues, I will treasure the chats

we had about everything and more. Thank you for your insights, for your

honest feedback, and all your invitations to go hiking which I wish I could

have taken up more often. Michel, you have been the best support all this

time whether it was professionally or personally (and even in administrative

matters!). Supervising a thesis on a daily basis is never easy, thank you

for the time you took to explain things that weren’t always easy to explain.

Whatever little I have learnt about railway dynamics, it is because of you,

and for that I will forever be grateful. Thank you for opening up this

wonderful field to me and I hope we will have opportunities to continue

working together in the future.

To all my colleagues at COSYS, GRETTIA, and NAVIER: thank

vii



you for making coming into work such a fun and pleasant experience.

Emmanuel, thank you especially for all your honest comments and feedback,

for accepting the role of an “unofficial” supervisor. My thanks also goes out

to all the wonderful people at ESI Group and the ANRT, who supported and

financed this work with interest: Anne, Mustapha, Cédric, Paco... A special

mention is also deserved for the industrial partners from SNCF Reseau,

Vossloh, Alstom, and Vibratec who participated in the various follow-up

committees and always provided useful suggestions.

I want to thank Professor Yves Renard and Professor Frédéric Lebon

for agreeing to be the referees for this work, for their detailed reports and

their insights, and finally for the gainful discussions and questions during

the thesis defense. I want to thank Ms. Vanessa Lleras for agreeing to be

a part of the jury, for taking out the time to go through the manuscript,

and for her interesting questions. I would finally like to give my thanks

to Professor Yann Bezin for his perceptive comments and the rewarding

exchanges, as well as for organising the benchmark on switches and crossings,

which provided interesting modelling challenges and fruitful results for the

entire railway dynamics community, including some of the work presented

in this manuscript.

To my fellow Phd students, Mohamed, Maria, Younes, Demeng: you all

have become close friends over this journey we shared. Mohamed, thanks

for all the shopping deals and thieb/mafé recipes you shared, for being my
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Introduction

Rail is often seen as one of the most safe, innovative, and sustainable modes

of transport, providing an attractive response to the continuing demand for

a shift to greener alternatives. Many issues linked to the ever-increasing

population density and urbanisation such as road traffic congestions or

air and noise pollution can be addressed by a systematic change to rail

for the transport of people and freight. With 2021 being declared as the

European Year of Rail by the European Union, the onus is more than ever

on the different players in the railway industry to deliver more competitive

and resource-efficient solutions through research and innovation, replacing

physical testing, which is often very expensive, with virtual prototyping and

simulations to qualify and approve rolling stock and railway infrastructure.

The challenge at hand in railway dynamics is to evaluate the dynamic

response of the system in different running conditions, with a focus on the

wheel-rail contact forces whose variations are mainly due to the changing

geometry of the track.

Recreating real-life scenarios through case studies in railway dynamics

may imply simulations that must be carried out over several kilometres of

track. The process for assessment of the running characteristics of railway

vehicles for the European network is set by the European Standard EN

14363. The approval of a new vehicle based on its dynamic behaviour

requires testing or simulations over a large panel of tracks covering different

operating conditions in terms of geometry (curve radius, gradients), and

quality (vertical and lateral irregularities). Moreover, several vehicle

configurations must be studied, covering different possible fault modes.

Keeping these constraints in mind, approximate numerical methods offer

the most practical solutions to simulate the running behaviour of railway

vehicles. The rolling stock is commonly represented as a multibody system

(MBS). The MBS approach consists of representing the kinematics of a

complete system through a finite number of bodies. These bodies are

interconnected with each other and with their surroundings through linear
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or nonlinear springs and dampers. Bodies are usually rigid with 6 degrees

of freedom (dof), but flexibility can be incorporated through modal stiffness

and damping properties computed using FE tools as and when required. The

specific design of rolling stocks leads to a distinction between the wheelset

and the other bodies of the vehicle. The wheel may undergo high-frequency

variations of wheel-rail forces, for instance, due to contact jumps between

the tread and the flange or sudden changes of the rail geometry such as

in turnouts. On the other hand, the other bodies reactions are low-pass

filtered by the suspensions. An MBS modelling of the rolling stock is relevant

in railway dynamics because most of its flexibility is ensured by the links

between its bodies.

The wheel-rail contact may be viewed as the link between the wheelset

and the track infrastructure and is integral to all research related to vehicle-

track interaction in railway dynamics. The contact forces govern the

dynamic behaviour of the vehicles. The contact zone is also subjected to

high levels of stress in small concentrated areas, leading to several damage

phenomena. As a direct result of the numerous functions that must be

ensured at the wheel-rail contact level (load transfer, guidance, braking-

traction), the modelling of wheel-rail contact is of utmost importance in

MBS railway dynamics and must be handled with care.

The rolling contact model considered as the primary reference in this

study is Kalker’s variational theory, which is implemented in the CONTACT

software. The contact problem in CONTACT is solved via the boundary

element (BE) method. CONTACT has been developed extensively over

the past years, broadening its range of applicability with some extensions

such as falling friction or third body layer, which are out of the scope of

the present work. Similar development efforts have also been made to

enhance the program’s speed versus accuracy trade-off. This has led to

the implementation of CONTACT as an add-on in several railway MBS

packages (SIMPACK, GENSYS, NUCARS and Universal Mechanism). The

relatively high computational cost of CONTACT still inhibits MBS users

from using it extensively in railway dynamics cases studies, and various

approximate methods are instead implemented in most MBS software,

including VOCO (Voitures en courbe), the explicit railway dynamics code

developed at Université Gustave Eiffel over the past three decades.

An important hypothesis in Kalker’s theory is the quasi-identity of the

contacting bodies, which is linked to the identical material properties of

the wheel and the rail. The contact is also assumed to be concentrated

on a three-dimensional half-space, for which the surface response is known

analytically through the theory of Boussinesq and Cerruti. The quasi-
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identity assumption results in the decoupling of the normal and tangent

problems. Thus, wheel-rail contact modules implemented in MBS codes are

a combination of a normal and a tangential contact method, that solve the

whole rolling contact problem sequentially.

Chapter 1 starts with a brief overview of the different modelling

strategies used in railway MBS, with a particular interest in the modelling of

the wheel-rail contact. Some of the common contact methods implemented

in railway dynamics codes are presented. As far as the normal contact

is concerned, focus is made on methods which consider non-elliptical

contact patches, as they provide a finer assessment of contact stresses

when compared to the Hertzian methods where the patch is constrained

to be elliptical. For the tangential contact, most methods, including the

popularly used FASTSIM algorithm, are restricted to Hertzian contact

patches, although a few non-elliptical variants exist in the literature.

Chapter 2 outlines the development of a new boundary element

method for determining the wheel–rail contact zone and the normal stress

distribution within it. A reduced BE formulation of the contact between

two elastic half-spaces is proposed. Together with additional assumptions

based on the Hertzian theory applied locally, the normal contact problem is

solved following a semi-analytical methodology. The novel method is then

validated using the results from CONTACT as a reference, with theoretical

as well as wheel-rail profiles. A comparison of the obtained results and

the required computational resources is also carried out versus some of the

approaches presented in Chapter 1.

As the original FASTSIM algorithm is restricted to Hertzian contact

patches, a strip-based approach is proposed to extend it to non-elliptical

contact cases. Chapter 3 presents this local approach based on curvature

properties in detail, which was first introduced by Ayasse & Chollet along

with the semi-Hertzian normal contact method. A new variant is introduced

using a weighing process, which is then shown to provide more consistent

results through a design of experiments. The combination of this algorithm

with the normal contact method presented in Chapter 2 represents a new

solution for the whole rolling contact problem. This is shown to be

promising, even if the contact location and the contact kinematics are

supposed to be known beforehand in the cases tested here.

Chapter 4 deals with case studies in railway dynamics involving

S&C within the context of an international benchmark of academic and

commercial MBS codes. A collaborative study investigates the pros and

cons of the different wheel-rail contact models when handling specific contact

configurations that may occur in S&C simulations.

3





Chapter 1

Overview of wheel-rail

contact models used with the

multibody systems approach



1.1. Introduction Chapter 1

1.1 Introduction

The last few decades have been characterised by exponential developments

in the hardware capabilities of personal computers. Numerical modelling

and simulation of complex mechanical systems have now become routine

tasks that can be accomplished with relative ease. This is in stark contrast

to only a few decades ago when computer systems were a novelty and

highly specialised according to their intended applications. In general, the

computational approach begins with the idealisation of a system of interest.

This idealisation process introduces suitable hypotheses to ensure that the

system of interest can be represented reliably to the desired level of accuracy,

but at the same time remain simple enough to allow efficient and fast

simulations. These two requirements are essentially contradictory, which

further underlines the difficulty of modelling a real (non-idealised) physical

system or phenomenon.

The model of the idealised system is expressed using mathematical

equations that represent its physical behaviour, and the interactions

between the different system parameters. Some parameter values, for

instance, damping or friction coefficients, may remain unknown and must

be introduced via statistical approaches. Solutions of the mathematical

equations are sought using different numerical techniques and interpreted,

with the modelling considered satisfactory if the numerical predictions agree

with the experimental findings within an acceptable tolerance [1].

The various mechanical components of the system of interest may be

modelled differently, either through continuous systems, finite element (FE)

systems, or multibody systems (MBS) approaches. While there is some

freedom of choice for the approach that is selected for a given application,

the number of degrees of freedom (dof) characterising the behaviour of

the physical model and the corresponding equations of motion do play an

influencing role. For continuous systems, analytical solutions exist at any

location but are restricted to simple geometries, for instance, simple beams,

circular plates etc. Modelling with FE systems is very flexible as they

do not present any restrictions concerning the geometry, which is usually

represented through non-rigid elements like rods, beams, plates etc., with a

finite number of dofs at the nodes. The behaviour of the system between

the nodes is subsequently assessed through appropriate shape functions.

The MBS approach, on the other hand, consists of representing the

kinematics of a complete system through a finite number of bodies or

elements. These bodies or elements are interconnected with each other

and with their surroundings through linear or nonlinear springs, viscous
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dampers, force-controlled actuators or a combination thereof. MBS bodies

are usually rigid, but flexibility can be incorporated through modal stiffness

and damping properties computed using FE tools as and when required.

The equations of motion of an MBS are written as the following initial value

problem:

Mÿ +Cẏ +Ky = F , (1.1)

where M is the lumped mass matrix (in the case of rigid bodies), K is the

stiffness matrix, C is the damping matrix, y is the vector of the vehicle

dofs, and F is the external force vector. For railway vehicle dynamics, if one

neglects the aerodynamic forces and the traction/brake forces, the external

force F consists of the wheel-rail contact forces.

The problem at hand, therefore, is to evaluate the dynamic response of

the system when a train circulates in the railway network, with a focus on the

wheel-rail contact forces. Their variations are mainly due to the changing

geometry of the track when the train runs at a given speed, as well as the

time-history of the y vector. The equations of motion may be solved fully at

each of a series of very small time steps to update the initial value problem

for the succeeding time step, all the while ensuring that the size of each

step is small enough for the solution to remain numerically stable [2]. The

number of dofs of MBS can be reduced by introducing inflexible, kinematical

connecting elements like joints and bearings, which enforce constraints on

the movements of the bodies. The masses representing different components

of the system are interlinked through the different springs, dampers and

actuators, each of which itself is assumed to be massless. The specific design

of rolling stocks leads to a distinction between the wheelset and the other

bodies of the vehicle. The wheel may undergo high-frequency variations

of wheel-rail forces, for instance, due to contact jumps between the tread

and the flange or sudden changes of the rail geometry such as in turnouts.

On the other hand, the other bodies reactions are low-pass filtered by the

suspensions. An MBS modelling of the rolling stock is relevant in railway

dynamics because most of its flexibility is ensured by the links between its

bodies.

1.2 The multibody systems approach for railway

applications

Several MBS software, specifically adapted for railway vehicle dynamics

applications, have seen substantial developments in recent years. These

include, but are not limited to, GENSYS, MEDYNA, NUCARS, SIMPACK,

7
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Figure 1.1: Example of the inertial and body coordinate systems

Universal Mechanism, VAMPIRE, VI-Rail, and VOCO. These simulation

packages allow the automatic formulation of the equations of motion for

many types of mechanical systems, via a user interface for the input of

the vehicle and track parameters, which aids the modelling procedure. In

the following sections, some key aspects of the railway multibody systems

approach are highlighted, using the MBS code VOCO as an example when

required. This is by no means a complete coverage of all the formalisms

used in different MBS codes, but rather an overview of how railway systems

are commonly modelled and analysed in multibody system dynamics, with a

particular focus on the modelling of the wheel-rail contact. Some modelling

and simulation techniques used in MBS software are also highlighted later

on in Chapter 4 when handling specific case studies in railway dynamics

with VOCO. For a more generalised in-depth analysis, the interested reader

may refer to the books by Shabana et al. [3], Shabana [4], or Popp and

Schiehlen [1].

1.2.1 Coordinate systems and associated degrees of freedom

The equations of motion describing the behaviour of each component are of

central importance in any MBS model. Equally important is the definition

of a coordinate system that is used to formulate these equations. As

opposed to a standard multibody approach where bodies may undergo large

displacements and rotations [4], guided transportation allows the following

additional assumptions:

• The relative displacements and rotation with respect to the track

geometry are limited as the vehicle motion is prescribed to follow the

8
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Figure 1.2: Rotations between different coordinate systems

track;

• Although the absolute displacements and rotations may be large, the

relative ones between the bodies constituting the vehicle are generally

small, except for the wheel rotation.

Choosing an appropriate coordinate system that is adapted for railroad

vehicle formulations ensures the sparse matrix structure of the dynamic

equations and the ease of implementation in MBS algorithms. In VOCO, the

general curvilinear track coordinate system is implemented using the theory

from [5]. This formulation is advantageous as it enables vehicle dynamics

analysis on straight, curved as well as transition curves without making the

kinematic and dynamic equations of motion too complex.

For the analysis, several coordinate systems are needed. The inertial

coordinate system R0 (X0, Y0, Z0) is an absolute Cartesian reference where

the origin is fixed at the beginning of the track and located in the track

plane at the track centre-line, as shown in Figure 1.1. Following the right-

hand system, X0 denotes the initial rolling direction which is tangent to the

track centre-line, Y0 is the lateral axis pointing towards the left rail with

respect to the rolling direction, and Z0 is pointing upwards. The mobile

track coordinate system Rf (Xf , Yf , Zf ) is located at the track length of

a given body at a given time. Its origin is at the track level on the track

centre-line, with the longitudinal direction Xf , the lateral direction Yf and

the vertical direction Zf similarly following the right-hand system. The

origin of the track system moves with the speed of the vehicle V along the

track centre-line, following the curves and the track gradients. The mobile

body coordinate system Rv (Xv, Yv, Zv) is a local system belonging to each

body, as shown in Figure 1.1, where the origin of the coordinate system is

the same as in the previous case, and the axes are aligned with the principal

axes of the body [6]. The orientation of the local mobile body system is

the result of three successive rotations as shown in Figure 1.2 with the yaw

angle β around Z0, the pitch angle θ around Yf , and the roll angle ψ around

9
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Figure 1.3: Origin of the mobile track coordinate system and the cant

angle ψ

Xv. The value of the yaw angle may be higher than 2π radians, for instance,

in a closed test track. However, the pitch and roll angles are kept small in

most railway applications. If β is large, the value of the relative yaw α of

a body with respect to the track is small. θ is related to the slope, which

does not usually exceed three per cent in most of the railway tracks. The

roll angle ψ, also called the cant angle, is prescribed to help negotiate curves

via an elevation of the outer rails, as shown in Figure 1.3, with 2e being the

nominal track gauge.

1.2.2 Railway vehicle dynamics and motion scenarios

The dynamics of railway vehicles can be categorised into vertical,

longitudinal, and lateral dynamics. The study of vertical dynamics deals

with the railway vehicle’s response to track irregularities, transition zones

(turnouts, bridges etc.) or rail corrugation. Longitudinal dynamics is related

to the effects related to the acceleration and braking actions of a train

set as it travels along the track, which may lead to complex interactions

between the different vehicles [7]. The lateral dynamics on the other hand

is concerned with the vehicle behaviour in straight or curved tracks and is

generally related to motion stability, safety and track loading, as required

by the European Standard EN 14363 [8].

Hunting is one of the important characteristics of the motion of railroad

vehicles, which is linked to the conicity of the wheel profiles as well as the

rigidity of the wheelset assembly. The hunting phenomenon can be defined

as the lateral oscillatory motion of the rigid wheelset with respect to its

initial position on the track, as shown in Figure 1.4. In the absence of

friction forces, the wheelset undergoes a periodic sinusoidal motion called
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Figure 1.4: The hunting phenomenon

the kinematic yaw of wavelength λ which is given by Klingel’s formula:

λ = 2π

√
Re

Γ
, (1.2)

where R is the nominal rolling radius, and Γ is the equivalent conicity

calculated according to the European Standard EN 15302 [9] or the UIC

519 leaflet [10].

If frictional forces are taken into account, they tend to mitigate the

hunting motion. These forces depend on the vehicle speed. The critical

speed of the vehicle is defined as the speed at which this hunting motion

becomes unstable, which may also lead to derailment. Derailment refers to

the complete loss of contact between the wheel and the rail following a wheel

climb due to high lateral forces. A commonly used criterion for derailment

is the ratio between the resultant wheel-rail lateral Y and vertical Q forces

acting on the wheel. The limit of the Y/Q ratio can be determined using

Nadal’s formula [3]:
Y

Q
=

tan γf − µ

1 + µ tan γf
, (1.3)

where γf denotes the flange angle, as shown in Figure 1.5, and µ is the

coefficient of friction.

In steady curving, the cant plays an important role to ensure that the

centrifugal forces are balanced out by the lateral forces. If the vehicle travels

with a speed that is above the speed where the two forces balance out, the

vehicle is said to have a cant deficiency. The cant deficiency is defined as:

cd = 2e

(
V 2

gRc
− ψ

)
, (1.4)

where V is the train speed, Rc is the radius of the curve, and g is the

gravitational acceleration. The cant deficiency is at most 160 mm in France.
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Figure 1.5: Wheel climb and the contact forces

When cd is negative, the train is said to be in cant excess. Cant excess

represents the amount by which the vertical elevation between the two

parallel rail needs to be reduced so that the vehicle speed becomes equal

to the balance speed.

1.2.3 Vehicle and track modelling

In the context of railway multibody systems, a standard vehicle model

consists of the carbody, the two bogie frames, and the four wheelsets, as

shown in Figure 1.6. Each pair of wheelset is connected to its corresponding

bogie frame through the primary suspension system, while the secondary

suspension accounts for the connection between the bogies and the carbody.

For the modelling of low-frequency motion, the bodies are generally

assumed to be rigid, with six dofs assigned to the centre of mass. This

is considered to be sufficiently adequate to investigate problems such as ride

comfort, vehicle stability, and curving behaviour. VOCO normally considers

each body of the vehicle as a rigid structure, although the flexibility of

suspended bodies (carbody, bogie frame, etc.) can also be incorporated

through FE results for studies involving ride comfort, stress analysis of

lightweight vehicles, etc. As far as the wheelset is concerned, only its

torsional flexibility is taken into account. For the vehicle shown in Figure 1.6,

each component has six degrees of freedom1, resulting in a total of 42 dofs

for the entire model. Wheel axle structural flexibility may have significant

effects on the vehicle-track interaction, especially in applications where

the interest lies in evaluating the damage, wear, and fatigue effects, or

in the vibrations of the wheelsets and rails [11]. The tasks of modelling

the primary and secondary suspension systems, as well as the different

connecting elements, is an important sub-aspect of the vehicle modelling

procedure.

1Excluding the dofs linked to the rolling contact model
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Figure 1.6: A standard vehicle model

Figure 1.7: A standard ballasted track

A traditional ballasted track consists of rails, sleepers, rail pads and

fasteners connecting the rails and the sleepers, the ballast and sub-ballast

layers and the foundation. In order to model the different components shown

in Figure 1.7, the rail is modelled using beams that are discretely supported

by a bed of springs and dampers. For low-frequency studies, a co-running

track model may be considered, which is a lumped parameter representation

of different components and linked to each wheelset, moving with the same

speed as the vehicle. In VOCO, it is possible to take into account the

dynamic flexibility of the track via a model where the rail is modelled using

finite elements beams, the sleepers by rigid solids, and other components

(ballast, subgrade etc.) through linear or nonlinear support elements. A

different possibility can be to adopt a co-simulation approach together with

a FE software modelling the track.

13
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1.2.4 Wheel–rail contact modelling in the context of

multibody systems

The modelling of the dynamic interaction between the wheel and the

rail is a complex task, and one of the fundamental problems that must

be addressed while developing any MBS formulation for railroad vehicle

dynamics. The wheel-rail contact problem is characterised by large forces

that are transmitted in small zones, which may change abruptly depending

on the contact geometry, the kinematics, and the frictional properties. In

general, the constraint approach and the elastic approach are the two main

approaches that can be used in MBS formulations to implement the wheel-

rail contact module [3].

The constraint approach describes the wheel-rail contact using nonlinear

kinematic constraint equations, and the normal contact forces are calculated

as constraint forces. Virtual interference or local deformation between the

wheel and the rail is not permitted, and the contact is considered to be

rigid. This leads to a model in which the wheelset has four degrees of

freedom, with the vertical and roll motions being dependent on the lateral

motion of the wheelset. The constraint approach also only allows one contact

point per wheel-rail pair, and a non-conformal contact is assumed. In

the formulations based on the elastic approach, no additional constraint is

introduced. The normal contact force is expressed as a compliant force with

assumed stiffness and damping between the two bodies influenced by Hertz’

contact theory. The wheelset has six degrees of freedom, and separation

between the two is allowed. This in turn permits more precise modelling of

many simulation scenarios, such as derailment, which is not always possible

with the constraint approach. Regardless of the approach that is used, the

wheel-rail contact module must broadly handle three main functions [11]:

• Determining the contact points on the wheel and rail surface profile

through a contact point search algorithm;

• The contact kinematics, which involves the calculation of the creepages

at the contact points;

• The contact mechanics, which is the problem of determining the

normal and tangential components of the contact forces.

The modelling of the impact force also constitutes an important aspect,

especially in simulations containing switches and crossings, due to the

impact-contact seen at the crossing nose. The most basic contact force

models are those based on Hertz’ theory [12], where no energy dissipation
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is considered during the impact process. However, even a collision between

two perfectly elastic bodies dissipates energy due to the internal damping,

and some initial kinetic energy is lost through vibrations, heat, sound

and other forms [13]. Thus, elastic models must be further enhanced to

incorporate this energy loss. One of the most widely used concepts to take

energy dissipation and the nonlinear viscous-elastic behaviour into account is

through a coefficient of restitution, and several models have been developed

using this approach in recent years [14, 15].

1.2.4.1 Contact search

The contact may be treated as a two or three-dimensional problem,

depending on the parameters that are used to describe the wheel and

rail profiles. Determining the location of the contact points online is not

straightforward, and most elastic force models reduce the three-dimensional

contact problem to a two-dimensional one. In the two-dimensional approach,

the contact points are searched solely in the vertical plane. The location of

the points of contact can be determined by using lookup tables or by using

a discrete nodal search or else by solving a set of algebraic equations [16]:

• Lookup tables may be used when the computational efficiency is of

primary importance, and the interpolation of a pre-computed table

replaces the contact search, given the relative kinematics of the wheel

and rail;

• In the nodal search approach, the profile of the wheel and rail is

described using discrete nodal points, and the distance between these

nodes is used to determine the points on the wheel and the rail that

may come into contact;

• In the algebraic approach, the geometric constraints are described

using normal and tangential vectors at the wheel and rail that

determine the potential points of contact by imposing a minimum

distance condition.

A nodal search with two curves representing the transversal profiles of the

wheels and rails, or lookup tables are usually the strategies considered for

MBS formulations when solving algebraic equations online may not be very

efficient.
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1.2.4.2 Contact kinematics

Following the contact detection, the longitudinal, lateral and spin creepages

at the contact point are determined through kinematic analysis of the two

contacting surfaces. First introduced by Carter in 1926 [17], “creepage”

refers to the small slip in the contact area due to the difference between the

tangential strains of two elastic bodies in the presence of friction. If there is

a relative translation motion between the two bodies, the rolling motion is

accompanied by sliding, which splits the contact area into two zones. In the

adhesion or stick region, the relative velocity of the particles is compensated

by the elastic deformation of the bodies and the two bodies “stick” to each

other. In the remaining region, also within the contact area but outside

the adhesion zone, the relative velocity of each particle exceeds the elastic

contribution and the particles start to slide over each other, a phenomenon

referred to as micro-slip [18, p. 242]. This micro-slip effect was also observed

by Reynolds, who was studying the case of a rubber cylinder rolling on a

metal plane [19].

For railway applications, creepages are normalised relative velocities

between both contacting bodies considered to be rigid. The expressions

for the creepages described in the tangent plane used in the MBS context

are given as:

νxL,R =
V − rL,Rω ∓ eα̇

V
, (1.5)

νyL,R =
ẏ
V − α

cos γ
, (1.6)

φL,R = −sin γ

R
, (1.7)

where νx
1 and νy are called longitudinal and lateral creepages, and φ is

called the spin. The subscripts L and R denote the left and right wheel,

respectively. R is the nominal rolling radius of the wheel, r is the local

rolling radius of the wheel, V is the translational velocity, ω is the angular

velocity, α is the yaw angle of the wheelset, and γ is the contact angle.

The description of the different creepages, commonly considered for railway

applications, is shown in Figure 1.8. It should be noted that some terms

of the relative velocities have been neglected in the expressions (1.5)-(1.7):

some authors prefer to compute the exact relative velocities to evaluate the

creepages [20].

1In practice, the expression for νx also contains an additional term that takes into account

the advance of the contact point as a function of the yaw angle α
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(a)

(b)

(c)

Figure 1.8: Description of the different creepages for railway applications:

(a) longitudinal creepage, (b) lateral creepage, and (c) spin creepage
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1.2.4.3 Contact mechanics

Contact mechanics is defined as the study of unilateral interaction of two

or more bodies over a point or a surface. As all real bodies are essentially

soft or flexible, the surface deformation implies that the resulting forces are

transmitted between them through a “contact area”, which is now under

the influence of a stress distribution. This contact area can, in turn, be

concentrated in a small region when compared to the dimensions of the

contacting bodies, e.g., the contact between a wheel and a rail, or spread

over a larger or diversified area, e.g., the contact between a cylinder and an

elastic plane. Considering the contact to be locally concentrated permits

the approximation of the contacting bodies as elastic half-spaces bounded

by a plane.

Solving the problem of normal contact between two elastic bodies

consists of determining the zone of contact, i.e., the contact area, as well

as the associated normal stress distribution in the contact patch. The

solution of the tangential problem, on the other hand, involves using the

normal contact results and contact kinematics to evaluate the tangential

components of the wheel-rail contact forces, as well as the division of the

slip and adhesion regions within the contact patch.

The first elastic theory of contact mechanics is credited to the seminal

analytical work of Hertz [12], although with strong assumptions concerning

the curvatures of the contacting surfaces. These assumptions may lead

to approximate results in railway applications where the curvatures of the

profiles change along the width of the rail section. The Hertzian solution is

characterised by an elliptical contact patch, as shown in Figure 1.9, with a

semi-ellipsoidal normal pressure distribution acting within the contact area.

The solution of nonlinear contact problems using detailed finite element (FE)

or boundary element (BE) methods has grown together with the innovations

in modern computers. In decreasing order of complexity, it is possible

to classify the various approaches of computational contact mechanics for

continuous media as follows:

• FE methods, for cases with concentrated as well as diversified contact

problems;

• BE methods, with or without the half-space assumption for locally

concentrated contact problems;

• Analytical or semi-analytical approaches based on Hertz’ theory.

The use of discrete element methods offers a more realistic approximation

of the contact conditions in real-life applications. Discrete methods are based
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Figure 1.9: Example of a Hertzian contact ellipse with semi-axes a and b

on the principle of expressing the elastic field in terms of the loading in the

potential contact, which then leads to an influence function method [21,

p. 49]. Variational and BE methods allow approximating the contacting

bodies as half-spaces, for which the influence functions may be determined

analytically. The elastic response of the contacting bodies to surface loads

deviates from the response of the half-space, and there exists the possibility

of introducing the true behaviour of the bodies using numerically computed

influence coefficients via FE methods. Several authors have assessed the

contact problem in this manner, including Ahmadi, Keer and Mura [22] who

presented a quadratic programming solution for non-Hertzian normal and

sliding elastic contact. This method was subsequently further developed and

rigorously proved by Kalker [23] and is now implemented in the commercial

program CONTACT [24]. One can additionally cite the matrix inversion

method (MIM) by Johnson [18, 25], the methods by Kalker-van Randen

[26], de Mul-Kalker-Fredriksson [27], and Paul and Hashemi [28] where

various types of elements are chosen to discretise the contact area. The ad

hoc methods presented by Reusner [29] and Nayak-Johnson [30] for roller

bearings, and by Knothe & Le The for wheel-rail contact [31], also enable

a good estimation of the contact properties. The full normal problem has

also received much attention for the contact of rough surfaces [32, 33].

FE methods can be used for a wide range of applications and are not

restricted to the half-space assumption generally used with BE methods.

Thus, they allow the modelling of the real 3D geometry and can be used to

handle both small and large deformation contact problems. The inequality

constraint on the deformation field means that the contact problem is highly
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nonlinear even when we consider the case of linear elasticity with small

strain. Frictional contact presents more difficulties, as not only are the

inequality constraints in the normal direction present, but there is also

a special constitutive behaviour in the tangent direction at the contact

interface [34, p. 112]. Most FE codes nowadays handle contact problems

using either the penalty or the Lagrange multiplier method. Each of the

methods has its advantages and disadvantages, the Lagrangian multiplier

method enforces the contact constraints precisely, but the additional

unknowns may lead to issues with the numerical stability. The penalty

method on the other hand is easier to implement from a numerical viewpoint,

but the contact constraints are satisfied exactly only in the limit of infinite

penalty values. In comparison, the augmented Lagrangian method offers

more stability and robustness without any additional unknowns but is slow

to converge. Certain recent works have also used Nitsche’s method for

frictional contact problems, which offers good convergence and robustness

as compared to the classical penalty methods or mixed methods [35, 36].

The book by Kikuchi and Oden [37], the monograph by Wriggers [34] or

the book by Laursen [38], as well as the references mentioned within them

offer an in-depth study for readers who wish to understand the theoretical

and numerical background of modern finite element techniques for contact

mechanics.

Normal contact: Several researchers have treated the normal wheel-rail

contact problem using FE methods. Yan and Fischer [39] have investigated

the applicability of the Hertz contact theory to wheel-rail contact problems

by applying three-dimensional finite element models. The contact pressure

distributions for different types of rails concerning different initial contact

positions were found to agree with the Hertz theory only if the surface

curvature did not vary, or if plastification did not occur. Telliskivi and

Olofsson [40] have studied the influence of the half-space and elasticity

assumptions in the Hertzian as well as Kalker’s complete theory when

compared to elastoplastic FE solution, as shown in Figure 1.10. The results

using Hertz and CONTACT methods provided a maximum contact pressure

that was larger than the FE solution. A similar study has been carried

out by Wiest et al. [41] for the contact pressures obtained in the case

of railway switches. The results, in this case, were found to be in good

agreement with the Hertz theory and CONTACT within the elastic limit,

whereas plastification was shown to decrease the maximum contact pressure

considerably.

The effect of residual stress distributions, due to plastic deformations
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Figure 1.10: Comparison of the normal contact results obtained for worn

wheel-rail profiles using a FE software, CONTACT and Hertz’ theory.

From [40]

in the subsurface area, on the fatigue limit and cracking tendencies of the

material has been investigated by Bijak-Żochowski and Marek [42]. The

influence of wheel and rail profiles on the distribution of contact zones and

stresses has been studied by Sladkowski and Sitarz [43] and used for the

design improvement of operating wheels. Zhao and Li [44] have used a three-

dimensional transient FE model to solve the rolling contact problem for

arbitrary geometry. This model has been extended to include the influence

of plastification on the contact patch in [45]. The coupling between the

normal and tangential contact problems was found to become stronger when

plastic flow occurs. Blanco-Lorenzo et al. [46] have presented the study

of three-dimensional contact with friction when taking into account the

effects of conformity. Toumi et al. [47] have developed a three-dimensional

rolling wheel-rail contact model to study the normal and the tangential

contact problems as well as the creep force characteristics in elasticity and

elastoplasticity using explicit and implicit integration schemes. Approaches

focused on the local tribological analysis of the wheel-rail contact and the

rail corrugation process have also been presented in recent years by Saulot

[48] and Duan [49].

Even though the use of FE and BE methods for rolling wheel-rail contact
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problems has been around for around half a century now, from the point of

view of practical computational times, discrete methods continue to struggle

in terms of their capability to be used online in dynamic MBS simulations.

A very fine discretisation is usually required with FE approaches to

satisfactorily represent the contact patch boundaries, while classical BE

methods normally require iterative techniques over large potential contact

grids to verify the stress constraints. In MBS codes, a compromise is sought

between the level of accuracy that is deemed acceptable, and the time it

takes to solve the contact problem. For the normal contact problem, most

MBS software use either Hertz’ theory, or methods based on the theory of

virtual penetration (VP) of the contacting surfaces [50]. The contact area in

VP approaches is approximated using the area in which the surfaces would

interpenetrate geometrically (overlap) if there was no deformation. This

overlapping area is bigger than the actual contact patch, and a scaling factor

is used to prescribe the virtual penetration such that the interpenetration

zone approaches the real contact area. The technique used for determining

the scaling parameter is what broadly differentiates these VP approaches

[51]. There exists in parallel another family of models wherein the non-

elliptical part of the contact area is approximated using a series of individual

ellipses. This so-called multi-Hertzian method, proposed by Pascal and

Sauvage [52], is further developed by Ayasse et al. [53] to an analytical

approach. Some questions raised regarding these models, when compared

against VP methods in [50], have been addressed recently by Pascal [54].

Tangential contact: One of the first theories to evaluate the creep forces

was presented by Carter [17]. Nowadays, the tangential creep forces in

MBS codes are commonly computed with the FASTSIM algorithm [55],

assuming a steady state. The simplified theory behind FASTSIM is based

on the computation of the creepage coefficients cij with the help of Kalker’s

exact theory [56]. These coefficients are derived from the initial slope of

the tangent forces applied on an elliptical contact patch for small creepage

values. A newer version of the FASTSIM algorithm offers second order

accuracy by taking precise care of the contact conditions in the numerical

integration scheme employed [57].

The FaStrip algorithm [58] is proposed as an alternative to FASTSIM,

and is based on the strip theory, which extends the two-dimensional

rolling contact solution to three-dimensional contacts [59]. Corrections are

introduced in the original strip theory to obtain accurate estimations for

any contact ellipse size, and it is combined with a FASTSIM type algorithm

to handle spin. Both FASTSIM and FaStrip are iterative algorithms that
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require a discretisation of the contact ellipse into rectangular elements, and

express the tangent forces by integrating the tangential shears over the

discretised contact area. As opposed to this, fast analytical methods such

as the Vermeulen–Johnson model [60], the Shen–Hedrick–Elkins model [61]

and Polach’s model [62] use formulas giving the tangent forces directly as a

function of the unsaturated shears. Approaches such as the Book of Tables

by Kalker (USETAB) [63] use detailed methods like Kalker’s complete

theory [21] to develop lookup tables that are used in vehicle dynamics

simulations.

The coefficient of friction in vehicle dynamics is generally considered

as a known parameter and is a constant for the entire simulation. This

assumption is clearly not always accurate as the friction coefficient depends

on the operating conditions, and varies a lot between different circumstances

like the weather, or the presence of sand, foliage, lubricants or contaminants,

water, ice and snow etc. A detailed investigation on the various tribological

aspects of creep force modelling, arising from third body layers, can be

found in the state-of-the-art paper by Vollebregt et al. [64]. Numerical

algorithms based on Kalker’s simplified theory, which enable the modelling

of variable friction, have been presented by different authors [65, 66, 67, 68].

The Modified FASTSIM algorithm presented in [69] incorporates a variable

contact flexibility which depends on the ratio of the slip area to the area

of adhesion, together with a slip-velocity-dependent friction coefficient. A

stepping method based on FASTSIM to solve non-steady rolling contact

problems has been presented in [70]. A falling friction variant is also available

with Polach’s creep force model [71].

The main drawback for all of the above cited fast tangential methods is

that they remain restricted to elliptical contact patches, although FaStrip

has been extended to non-Hertzian patches [72]. Piotrowsky et al. [73] have

extended USETAB to be used in non-Hertzian cases, approximating the

contact patch by a single double-elliptical contact. Broadly, two approaches

may be used to extend FASTSIM type algorithms to non-elliptical contact

cases [74]. The first approach consists of regularising the non-Hertzian

contact patch to a single equivalent ellipse and using the global creepages

to determine the creep forces using one of the various Hertzian approaches

[55, 60, 61, 62]. While this approach works well in dynamic studies, it

cannot be used to study the contact stresses. The second approach consists

in extrapolating the original algorithm to a non-elliptic patch and using

creepages defined locally in cells or strips [74, 75, 76].

For the wheel-rail contact problems addressed in this thesis, the results

of the contact detection and contact kinematics processes are supposed to
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be known beforehand, assessed through the MBS code VOCO or taken from

the literature. To investigate the normal and tangential contact mechanics,

Kalker’s variational theory for elastic half-spaces [21] is used as the reference.

This approach, also referred to as Kalker’s complete theory for the rolling

contact problem, is outlined in the following section.

1.3 The rolling contact problem with Kalker’s

complete theory

The boundary element method is an appealing and computationally viable

technique that allows solving various problems, including the contact

between two bodies. It is especially relevant when the interest of the user

lies in the evaluation of only surface stresses and surface displacements,

rather than determining these quantities at every point in the interior of

the bodies. BE methods are particularly advantageous when the domain of

study is large, as only the surface boundary needs to be discretised now. If we

consider for example the problem of contact between two elastic bodies, the

mesh only applies to the potential contact surface unlike in the finite element

method which requires a mesh of the 3D geometry of both bodies. Different

formulations, including direct, indirect, and variational approaches, of BE

methods are available in the literature [18, 21, 77, 78]. The following

section presents Kalker’s variational contact theory, which is implemented

in the commercially available software CONTACT [24]. CONTACT has

been developed extensively over the past years as compared to Kalker’s

original version, in particular by Dr E. A. H Vollebregt, broadening its

range of applicability by including velocity-dependent friction laws [79], the

effects of roughness and contamination (the so-called “third body layer”)

[80], extensions for solving conformal contact problems [81], and via new

enhanced numerical solvers [33, 82]. Some added enhancements are out of

the scope of the present work, and we are mainly interested in the contact

problem of three-dimensional homogeneous elastic bodies, where the contact

occurs in a concentrated zone under the influence of dry friction.

In 1979, Kalker published his exact three-dimensional rolling contact

theory, which applies the principles of virtual work and complementary

virtual work to solve the contact problem. This was based on the previous

works by Fichera [83] or Duvaut and Lions [84] who established the

variational theory of frictional contact. The exact theory has been presented

in detail by Kalker in his monograph [21], and the following assumptions are

made initially:
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• The bodies are elastic, homogeneous and isotropic;

• The contacting surfaces have a continuous profile;

• The contact area is essentially flat and concentrated with respect to

the overall dimensions of the contacting bodies;

• The inertial effects are small compared to the contact stresses and may

be neglected which implies a quasi-static state.

The assumptions made here permit using the half-space approach, where the

two bodies are assumed to be semi-infinite elastic half-spaces. The analytical

solutions for the response of the bodies to surface loadings have already been

presented in detail by Boussinesq and Cerruti [85, 86] and are summarised

in Appendix A.

1.3.1 The elastic half-space and quasi-identity

We consider the case of two bodies of arbitrary surfaces that come into

contact. If the contact is non-conformal, the contact stresses are highly

concentrated in a small region of interest which lies close to the point of

contact. In many practical applications such as the wheel-rail contact, the

dimensions of this region of interest, i.e., the contact area, are small as

compared to the overall dimensions of the two bodies. One may thus assume

that these localised stresses are largely independent of the overall shape of

the bodies, and rather depend on the geometry of the contact interface. The

contact stresses can be consequently evaluated by considering each elastic

body as a semi-infinite space bounded by a plane surface. This assumption

of each body as an elastic half-space is highly useful, as it opens up the

possibility of using a wide variety of theories developed for the loading

of elastic half-spaces. The half-space approximation can be visualised in

Figure 1.11.

The half-space consideration for frictional contact problems is generally

accompanied by the quasi-identity assumption. For two homogeneous and

isotropic bodies with modulus of rigidity and Poisson’s ratio (G1, ν1) and

(G2, ν2), respectively, the combined modulus of rigidity G is given as:

1

G
=

1

2

(
1

G1
+

1

G2

)
, (1.8)

the combined Poisson’s ratio ν as:

ν

G
=

1

2

(
ν1
G1

+
ν2
G2

)
, (1.9)
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Figure 1.11: The half-space approximation. From [21]

and the difference parameter K as:

K

G
=

1

4

(
1− 2ν1
G1

− 1− 2ν2
G2

)
. (1.10)

Two bodies are said to be quasi-identical if the difference parameter K = 0.

This is true in the case of contact between a steel wheel and steel rail, and a

small value ofK is often neglected. Note that two geometrically symmetrical

bodies are also quasi-identical, irrespective of whether they are considered

as half-spaces or not. The addition of the quasi-identity assumption enables

the separation of the normal and tangent contact problems in the half-space

theory, which can then be solved sequentially. The existence and uniqueness

of quasi-identical frictional contact problems can also be proved, as done in

the works of Fichera [83] and Duvaut and Lions [84], as opposed to existence

only for non quasi-identical frictional contact problems [21].

1.3.2 The general contact problem

According to Hooke’s law, the linear elasticity relations between the stresses

σij and the strains ehk for the interiors of the two contacting bodies may be

written as [21]:

σij = Eijhkehk , (1.11)

where Eijhk are the elastic constants. Considering the half-space

assumption, the contact problem can be brought into surface-mechanical

form, where no attention is paid to the stresses, strains or displacements in

the interior of the contacting bodies. The relationship between the surface
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Figure 1.12: The general contact problem
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stresses p and the surface displacements u in a steady state can be written

as:

u(x) =

∫
C
A(x,x′)p(x′)dC , (1.12)

where p = [pn, px, py], and A(x,x′) is the influence function matrix

describing the displacement difference at x arising due to a unit load acting

on x′. The influence coefficients depend on the material properties, as well

as the geometries of the contacting bodies, and are obtained through the

theory of Boussinesq and Cerruti.

Several quantities need to be defined to express the general contact

problem. Consider two bodies of arbitrary shape defined by z1(x, y) and

z2(x, y), respectively, that come into contact as shown in Figure 1.12. The

origin of the Cartesian coordinate system is at the geometrical point of

contact. When the two contacting bodies are subjected to compression, the

surfaces deform locally, and the deformed distance ez(x, y) can be given as:

ez(x, y) = h(x, y) + uz(x, y)− δ , (1.13)

where h(x, y) = z1(x, y)− z2(x, y) is the separation or undeformed distance

between the two bodies, uz(x, y) = uz1(x, y)+uz2(x, y) is the normal elastic

displacement, and δ is the rigid body approach at the point of geometric

contact. For the tangential contact problem, the important quantity to be

defined is the relative slip velocity st of two particles on the surfaces of the

two contacting bodies:

st = wt + u̇t/V , (1.14)

where the relative rigid slip wt describes the velocity by which the

undeformed surfaces move with respect to each other, u̇ is the time derivative

of the surface displacements and V is the rolling velocity. For concentrated

contact problems, wt is given by:

wt = [νx − yφ νy + xφ] . (1.15)

The complete contact problem consists of determining the contact area

C, its subdivision into adhesion and slip areas A and S, respectively, and the

surface tractions p such that the following contact conditions are satisfied

for the considered domain [24]:

normal problem:

∀x ∈ C : ez = 0, pn ≥ 0 , (1.16)

∀x /∈ C : ez > 0, pn = 0 , (1.17)
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tangential problem:

∀x ∈ A : ||st|| = 0, ||pt|| ≤ g , (1.18)

∀x ∈ S : ||st|| > 0, pt = −g st
||st||

, (1.19)

∀x /∈ C : pt = 0 , (1.20)

pt = [px, py] , (1.21)

g(x) = µpn(x) . (1.22)

From the above condition, the contacting bodies cannot interpenetrate in the

deformed state, and the normal pressure within the contact area is assumed

to be always compressive. The surface tractions also vanish at the boundary

of the contact area. The tangential tractions are limited by Coulomb’s

friction law, and no slip occurs where the tangential traction falls below the

traction bound. Finally, the tangential tractions in the slip area are opposite

to the slip direction. The quasi-static frictional contact problem can now be

considered as a variational inequality and written as a minimisation problem

[21, p. 175]:

min
p
ϕ =

∫∫
P

1

2
p(x)A(x,x’)p(x′) + h(x)pn(x) + [Wt(x)− ut

′(x)]pt(x) dP

(1.23)

sub ∀x ∈ P : pn(x) ≥ 0, ||pt(x)|| ≤ g(x) ,

Wt = wtV (t− t′) .

Here, ut
′(x) denotes the tangential displacements [ux, uy] at the previous

time step and P denotes the potential contact area. With the quasi-

identity assumption and the accompanying decoupling of the normal and

tangential problems, the contact problem can be solved sequentially. Solving

the contact problem between two elastic solids sequentially first consists

in determining the contact area, as well as the normal stress distribution

acting on it. The normal contact results are subsequently used to determine

the tangential surface tractions. This one-step outer procedure is called

“Johnson’s process”. When the two bodies have different elastic properties,

the tangential tractions affect normal displacement differences and vice

versa, and the two problems are strongly coupled through the difference

parameter K (see Appendix A). Solving this coupled problem consists of

evaluating normal and tangential problems alternatively until the iteration

process converges to a tolerance value with the so-called “Panagiotopoulos”

process [87].

As the contact area is not known in advance, the minimisation problem

is solved for an arbitrary potential contact area P, wherein the contact
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conditions are evaluated. Several discretisation strategies for the potential

contact area have been used by different authors: the triangular elements

used by Kalker and van Randen [26], equal rectangular elements by de

Mul-Kalker-Fredriksson [27], and adapted rectangular mesh by Paul and

Hashemi [28]. In CONTACT, the potential contact area is discretised using

rectangular elements. Kalker developed the original active set algorithms

NORM, TANG, and KOMBI that were used to solve the frictional contact

problem [21]. Using rectangular elements results in influence coefficient

matrices that are of the block-Toeplitz-Toeplitz-block (BTTB) form. In

the recent versions of CONTACT, a purpose-built fast numerical solver for

BTTB matrices called NormCG is used for the normal contact problem,

which is based on a bound-constrained conjugate gradient method with a

fast Fourier transform (FFT) pre-conditioner [33]. This approach replaces

the active set NORM algorithm [21]. Similarly, the nonlinear tangential

problem with prescribed creepages is solved using case-specific iterative

solvers relying on the active set strategy, all of which enforce the traction

bounds in all the elements [82, 88, 89].

1.4 Normal contact problem using fast approaches

The case of normal contact between two continuous and non-conforming

bodies was first treated analytically by Hertz in 1882 [12], by assuming

friction-less contact and each body as an elastic half-space. The Hertzian

solution is characterised by an elliptical contact patch, with a semi-ellipsoidal

normal pressure distribution acting within the contact area. Analytical

solutions of the normal contact problem remain restricted to few cases

with simple geometries of the contact bodies. One may refer to the books

by Johnson [18] or Popov [90] for an overview of the different approaches

present in literature. For non-elliptic or non-Hertzian contact conditions,

several “virtual penetration” or VP methods have been developed in recent

years to avoid the computation of the surface deformation, including

the Linder model [91], the Kik-Piotrowski model [74], the semi-Hertzian

model (STRIPES) [76], the extended Kik-Piotrowski (EKP) model [92],

the modified Kik-Piotrowski (MKP) model [93], and the modified semi-

Hertzian method [94] amongst others. The method ANALYN [95] adds

an approximation of the surface deformation to the virtual penetration

methods. In this section, we look at the Hertzian approach in detail, along

with some commonly used virtual penetration approaches.
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1.4.1 Hertz’ theory

For someone so closely associated with the field of contact mechanics,

Heinrich Hertz’ major research developments came in electromagnetism

theory, achievements which have of course been immortalised by the naming

of the standard unit of frequency in his honour. It is also within the context

of this research that Hertz was first attracted to the contact of elastic solids.

While working as a research assistant for Hermann von Helmholtz at the

Physical Society of Berlin between 1880-1883, discussions on the optical

phenomena of Newton’s rings piqued Hertz’ interest. While a great deal was

already known about the interference patterns between the contacting glass

lenses, Hertz was interested in the influence of the local elastic deformation

of the contacting lenses when subjected to a normal contact force. The

questions he poses in the introduction to his now-famous paper [12, 96]:

“What surface is it, of which the surface of pressure forms an

infinitesimal part? What is the form, and what is the absolute

magnitude of the curve of pressure? How is the normal pressure

distributed over the surface of pressure?”,

give us an insight into his mindset while working on this problem.

Hertz subsequently proceeds to address these questions by drawing on

his background in electromagnetism and optical theory and thorough

mathematical proofs. The main results from Hertz’ classical theory are

presented here. The Hertzian contact solution begins with the following

assumptions:

• The surfaces in contact are perfectly smooth and non-conforming, with

no friction and only a normal pressure acting between them;

• The surfaces are homogeneous and isotropic, subjected to linear

kinematic equations and following the linear elastic material law;

• The two surfaces can be represented using second-order polynomials

locally;

• The dimensions of the contact area are very small as compared to the

contacting surfaces and thus may be considered locally to be the case

of contact between two semi-infinite half-spaces.

Two different mathematical concepts are then combined [97]:

1. The geometry of two curved surfaces which touch without deformation;
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2. The theory of potential applied to an elastic half-space bounded by a

plane surface.

As the two surfaces near the vicinity of the contact area can be represented

using second-order polynomials, the geometric separation between the two

surfaces in the x-y plane can be expressed as:

h(x, y) ≈ Ax2 +By2, (1.24)

where A and B represent the relative curvature of the two surfaces in the

longitudinal and lateral directions. If the principal axes of both surfaces are

aligned, the longitudinal A and lateral B curvatures are given by:

A =
1

2Rx1
+

1

2Rx2
,

B =
1

2Ry1
+

1

2Ry2
,

(1.25)

with Rx1,2 and Ry1,2 the radii of the two contacting surfaces in the x and y

directions, respectively.

The contact and separation conditions are given by Equation (1.16) and

Equation (1.17), respectively, which have been defined in previous sections.

Hertz hypothesised that the case of non-conformal contact allows restricting

ourselves to the area which is very close to the point of contact, as the local

stresses are extremely great compared with those occurring elsewhere in the

contacting bodies. The strains in this zone are also assumed to be sufficiently

small to lie within the scope of the linear theory of elasticity. The stresses

and surface deformations can subsequently be found, considering each body

as an elastic half-space bounded by the plane surface z = 0.

At the time when Hertz was working on his research, the theory of

potential had already been used to assess the deformation of semi-infinite

half-spaces, eminently by Boussinesq [85] for the case of point loading.

Hertz conjectured that the contact area is elliptical with semi-axes a and b,

perhaps influenced by his observations of interference fringes at the contact

of cylindrical lenses. He then proceeded to draw on the theory of potential

to show that an elliptical pressure distribution of the form:

pn(x, y) = p0

√
1−

(x
a

)2
−
(y
b

)2
, (1.26)

acting on the aforementioned elliptical contact area induces a normal

elliptical deformation given as:

uz =
(L−Mx2 −Ny2)

πE⋆
, (1.27)
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where L, M , and N are functions of the eccentricity and the maximum

normal pressure p0. E
⋆ denotes the combined Young’s modulus of elasticity

and is given as:
1

E⋆
=

1− ν21
E1

+
1− ν22
E2

. (1.28)

For bodies with the same material properties such that E1 = E2 = E and

ν1 = ν2 = ν, the combined Young’s modulus is defined as:

E⋆ =
E

2(1− ν2)
. (1.29)

An appropriate choice of values for a, b and δ in Equation (1.27) will then

satisfy the contact condition given by Equation (1.16). The expressions

for these parameters for different profiles of contacting bodies have been

detailed in various literature. The interested reader may refer to [18, Chap.

4] for in-depth derivations. Here, we proceed to give the final results for a

selected few contact cases.

1.4.1.1 Line contact of cylindrical bodies

For the case of line contact between two cylindrical bodies with their axes

parallel to the y-axis pressed together by a vertical force N ′ per unit length,

the contact area will be a strip of width 2a such that:

a =

√
4N ′Req
πE⋆

, (1.30)

p0 =

√
N ′E⋆

πReq
, (1.31)

where 1/Req is the relative curvature given as:

1

Req
=

1

R1
+

1

R2
. (1.32)

1.4.1.2 Point contact of spheres

For point contact between two solids of revolution, with Rx1 = Ry1 = R1

and Rx2 = Ry2 = R2 as shown in Figure 1.13, the contact area will be

circular with radius a such that:

a =
3

√
3NReq
4E⋆

, (1.33)
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Figure 1.13: Contact between two spheres with radii R1 and R2

δ = 3

√
9N2

16ReqE⋆2
, (1.34)

p0 =
3

√
6NE⋆2

π3R2
eq

, (1.35)

where N is the applied vertical load.

1.4.1.3 Contact between general profiles

In the case of contact between general profiles, where the separation is given

by Equation (1.24), the expressions for the different contact parameters

involve elliptic integrals whose values must be found from tables. These

expressions are generally pre-tabulated for engineering applications by

replacing the elliptic integrals with equivalent algebraic equations in terms

of the curvature ratio (A/B):

a = m 3

√
3

2
N

1

2E⋆
1

A+B
, (1.36)

b = n 3

√
3

2
N

1

2E⋆
1

A+B
, (1.37)

δ = r
3

√(
3

2
N

1

2E⋆

)2

(A+B) , (1.38)
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θ◦ 0 5 10 30 60 90 120 150 170 175 180

A/B 0 0.0019 0.0077 0.0717 0.3333 1 3.0 13.93 130.6 524.6 ∞
n/m 0 0.0212 0.0470 0.1806 0.4826 1 2.0720 5.5380 21.26 47.20 ∞
m ∞ 11.238 6.612 2.731 1.486 1 0.7171 0.4931 0.311 0.2381 0

r 0 0.2969 0.4280 0.7263 0.9376 1 0.9376 0.7263 0.4280 0.2969 0

Table 1.1: Hertz’ coefficients as functions of θ. From [76]

where m, n, and r are Hertz’ coefficients expressed as functions of the angle

θ, as shown in Table 1.1:

cos θ =
|A/B − 1|
A/B + 1

. (1.39)

The maximum normal pressure p0 is calculated using:

p0 =
3N

2πab
. (1.40)

For wheel-rail contact, the longitudinal A and lateral B curvatures from

Equation (1.25) can be rewritten as:

A =
1

2Rwx
=

cos γ

2R
, (1.41)

B =
1

2Rwy
+

1

2Rry
, (1.42)

where the subscripts w and r denote the wheel and the rail, respectively,

and R is the nominal rolling radius of the wheel. The term 1/2Rrx in the

longitudinal A curvature vanishes as the radius of the rail in the longitudinal

direction is assumed to be infinite.

For Equation (1.39) to be valid, only positive values of the curvature ratio

A/B can be considered. A negative value for the curvature ratio would imply

a situation which is not geometrically possible. In wheel-rail contact, the

A curvature is always positive, as evident from Equation (1.41), which then

implies that the B curvature should also remain positive for the Hertzian

theory to remain valid.

1.4.2 Virtual penetration methods for non-Hertzian contact

Although Hertzian and multi-Hertzian methods are commonly used in MBS

packages, a non-Hertzian contact model is required when the contact patch

is not elliptical [98]. In this section, the non-Hertzian contact is addressed

using virtual penetration (VP) methods. VP methods are based on the
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idea that the actual contact area can be approximated using the area in

which two surfaces touching each other at the geometrical point of contact

would intersect, if they are shifted towards each other by a distance δ. The

geometrical point of contact is defined as the point where the two surfaces

touch without transmitting any load. As the bodies cannot penetrate each

other in reality, local surface deformations arise and the contact area is

formed. It has been shown by Hashemi and Paul [99] that for the same δ,

the zone of intersection or the interpenetration region encircles this actual

contact area. This is true when the influence function describing normal

deflection of bodies is unidirectional, as in the case of Boussinesq’s influence

function [50]. Not only the area of the interpenetration region is larger, but

in a Hertzian case the aspect ratio of the contact ellipse is not the same as

the one given by Hertz’ theory.

In Equation (1.13), the surface deformation is totally neglected, and is

instead implicitly considered by reducing the rigid body approach δ to a

fraction of it. Thus, the deformed distance is now approximated as:

ez(x, y) ≈ h(x, y)− ϵδ , (1.43)

Scaling factors and shape correction strategies are subsequently used to

prescribe a virtual penetration ϵδ such that the interpenetration zone

approaches the real contact area. The interpenetration g(y) is defined as:

g(y) =

{
ϵδ − h(y) if h(y) ≤ ϵδ ,

0 if h(y) > ϵδ .
(1.44)

A point at a given y coordinate is said to be in contact if g(y) is greater than

zero. The technique used for determining ϵ is what broadly differentiates

the different virtual penetration approaches available in the literature [51].

The normal stress distribution in the direction of rolling is also assumed to

be elliptical in such methods in order to be consistent with Hertz’ theory. In

the following sections, some available VP methods are outlined briefly, with

a focus on the Kik and Piotrowski and the semi-Hertzian method, which are

used later in the case studies of Chapter 4.

1.4.2.1 Kik and Piotrowski’s method

In Kik and Piotrowski’s (KP) method [50, 74, 100], the scaling factor is

taken as a constant value with ϵ = 0.55. This value is obtained heuristically

by carrying out several realistic numerical simulations using CONTACT. A

similar value (ϵ = 0.5) was also found to give a good approximation of the

contact area by Vohla [101].
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The origin in KP method is located at the geometrical contact point

and contact conditions are satisfied only at the origin. The normal pressure

distribution over the contact patch is assumed to be semi-ellipsoidal, such

that:

pn(x, y) =
p0
a(0)

√
a2(y)− x2 , (1.45)

where p0 is the maximum normal pressure. The limits of the interpenetration

region in the longitudinal direction, used to define the contact area are

calculated as:

a(y) ≈
√
2Rg(y) . (1.46)

Equation (1.45) and Equation (1.46) imply that the normal pressure is

always maximum at the point of geometrical contact, which is not necessarily

true in the case of non-Hertzian contact [51]. Using Boussinesq’s theory from

Equation (1.12), the normal displacement at the origin is described by the

integral:

uz(0, 0) =
1− ν2

πE

p0
a(0)

∫∫
C

√
a2(y)− x2√
x2 + y2

dxdy . (1.47)

with uz(0, 0) = δ/2, as evident from Figure 1.12 and Equation (1.13) at

the geometrical point of contact. The maximum pressure can now be

numerically evaluated using the expression:

p0
a(0)

= δ
πE

2(1− ν2)

[∫∫
C

√
a2(y)− x2√
x2 + y2

dxdy

]−1

. (1.48)

The normal contact force is evaluated by integrating Equation (1.45) over

the contact area.

In a Hertzian case, the curvatures remain constant, and the curvature

ratio can be calculated as:

A

B
=

(
W

L

)2

, (1.49)

where L and W denote the length and the width of the uncorrected contact

patch, as shown in Figure 1.14. These length and width values are in turn

used to introduce the shape correction. The corrected length and width of

the contact area are defined as:

Wc =

√
LW

β0
, (1.50)

Lc =
√
β0LW , (1.51)
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Figure 1.14: Interpenetration region and definition of the origin in

Kik-Piotrowski’s method

where β0 is the aspect ratio a/b of the ellipse with curvature ratio A/B as

given in Table 1.1.

The width of the resulting contact patch is corrected by introducing

a “stretching/contracting” of the separation function across lateral y co-

ordinate. This correction is performed such that the geometrical point of

contact stays at its place. The length of the contact patch on the other

hand is corrected by the modification of the Hertzian radius of curvature in

the longitudinal direction [74]. Correcting the contact patch using such an

approach implies that each contact patch must be treated separately. The

KP method has been improved recently by using a different strategy for

the shape correction [93]. The method has also been improved to take into

account the effects of the wheelset yaw, which leads to asymmetric contact

patches [92].

1.4.2.2 Linder’s method

Linder’s method [50, 91] uses the same scaling factor as the KP method, with

ϵ = 0.55. The leading and the trailing coordinates of the interpenetration
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region are similarly computed as:

a(y) ≈
√
2Rg(y) . (1.52)

Each pair of points [±a(y), y] is assumed to lie on an ellipse, and the lateral

semi-axis of each ellipse is assumed to be the same and equal to:

be =
W

2
. (1.53)

The longitudinal semi-axis at each y co-ordinate is then calculated as:

ae(y) = g(y)
be√
b2e − y2

. (1.54)

The penetration δe(y) is calculated geometrically for each ellipse using the

interpenetration function [50]. With ae(y), be, and δe(y), it is possible to

calculate the normal load N(y), and finally the maximum pressure at each

lateral co-ordinate is given as:

p0(y) =
3N(y)

2πae(y)be

√
1−

(
y

be

)2

. (1.55)

1.4.2.3 The semi-Hertzian method

The semi-Hertzian or STRIPES method proposed by Ayasse and Chollet

[76] can trace its origins back to the same time as when the KP method was

being developed in the mid-90s, although it was only officially published in

2005.

Rather than having a fixed value, the scaling parameter ϵ in the

STRIPES method may be defined in terms of the curvature ratio. In a

Hertzian case, g(b) = 0 as seen from Figure 1.15. Furthermore, using

h(b) = Bb2 from Equation (1.24), we now have:

ϵ =
Bb2

δ
=
n2

r

1

1 +A/B
, (1.56)

with the semi-axis b defined using Equation (1.37). In MBS simulations,

when the resultant normal force N is the known parameter, the term ϵδ

rather than δ is the unknown quantity which is evaluated iteratively.

The STRIPES method differs from other VP methods in the fact that

it evaluates the normal contact force N by introducing the idea of a local

contact stiffness kl. The contact stiffness is independent of the contact

patch dimensions for a Hertzian ellipse with semi-axes a and b, as shown

in Figure 1.15. The normal force is assumed to be proportional to the
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Figure 1.15: The semi-Hertzian approach when considering an elliptical

contact patch

product of this contact stiffness with the virtual interpenetration. The

virtual interpenetration in the Hertzian case can be written as:

g(y) = B(b2 − y2) , (1.57)

with the normal force N :

N = kl

∫ b

−b
g(y)dy . (1.58)

Using Equation (1.37), Equation (1.57) and Equation (1.58), the contact

stiffness can be evaluated as:

kl =
E

2(1− ν2)

1 +A/B

n3
. (1.59)

For non-Hertzian contact, each strip is assigned a local stiffness which

depends on the local curvature values:

k(y) = klδy =
E

2(1− ν2)

1 +A(y)/B(y)

n3(y)
δy , (1.60)

where δy is the width of each strip. The normal contact force is finally

evaluated as the sum of the normal force per strip for all strips where g(y)

is greater than zero:

N =
∑

N(y) =
∑

k(y)g(y) . (1.61)

40



1.4. Normal contact problem using fast approaches Chapter 1

Figure 1.16: Determination of the virtual interpenetration g(y) for

wheel-rail profiles in STRIPES

The half-lengths of the contact area a(y) can be subsequently evaluated

to compute the contact pressure distributions. In order to be consistent with

Hertz’ theory, the shape of contact area is corrected using the longitudinal

and lateral curvatures A(y) and B(y), respectively. The chosen procedure is

to correct theA(y) curvature only, which corresponds to the rolling direction.

The corrected curvature Ac(y) is given as:

Ac(y)

A(y)
=

[n(y)/m(y)]2

A(y)/B(y)
. (1.62)

The half-length of the contact patch in the rolling direction a(y) is calculated

using the expression:

a(y) =

√
g(y)

Ac(y)
. (1.63)

In a Hertzian case, replacing Ac(y) with A in Equation (1.63) would give

the same semi-axis a as Equation (1.36). A second possibility involving

the correction of both the longitudinal and lateral curvatures has also been

presented in [76]. For small values of the aspect ratio a/b, this correction

leads to inconsistent results, and is thus not taken into consideration.

As discussed in Section 1.4.1.3, the Hertzian parameters are not defined

when the lateral B(y) curvature is negative. Consequently, B(y) is
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enforced to be always greater than zero by replacing any negative values

by infinitesimal positive values. Moreover, in the case where the curvature

B(y) is discontinuous, the normal forces will also be discontinuous. The

KP method avoids this issue, as only the geometry of the profile is used to

assess the normal contact force. This is more robust in dynamic simulations

as it avoids the computation of the curvatures. In STRIPES, a further

step involves the smoothing of the B(y) curvature before the calculation.

The smoothing filter is based on the Boussinesq approach, where the

characteristic width depends on the curvature value [76]. The smoothed

curvature Bs(y) is approximated as:

dBs(y)

dy
=
B(y)−Bs(y)

2
3Lo(y)

, (1.64)

where Lo is the characteristic length:

Lo(y) =
3

√
3

2
N

1− ν2

E

1

A(y) +B(y)
. (1.65)

Assuming that the pressure distribution is elliptic in the rolling x direction,

the normal pressure distribution is given as:

pn(x, y) = p0(y)

√
1−

(
x

a(y)

)2

, (1.66)

with the maximum pressure at the centre of each strip:

p0(y) =
2

π

N(y)

a(y)δy
. (1.67)

As opposed to the KP method, the geometrical point of contact does not

play an important role as far as the normal contact results are concerned,

and the maximum pressure value is independent of its location. Additionally,

this also implies that multiple contact points can be handled with relative

ease using Equation (1.44) and need not be separated as required in the

KP method. The whole wheel-rail normal contact problem, including

multiple contact, can be handled simultaneously by introducing the vertical

interpenetration δtz1, as shown Figure 1.16. For a given position of the wheel

and a given geometry of the rail, z(y) is defined as the vertical separation

between the wheel and the rail. z(y) is linked to h(y) through a projection

using the contact angle γ(y):

h(y) = z(y) cos γ(y) . (1.68)

1δtz may be considered equivalent to ϵδ when the contact angle is negligible
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Equation (1.44) defining the virtual penetration g(y) is similarly amended

by using a projection:

g(y) =

{
[δtz − z(y)] cos γ(y) if z(y) ≤ δtz ,

0 if z(y) > δtz .
(1.69)

1.4.3 ANALYN

The method ANALYN proposed by Sichani et al. [95] attempts to enhance

the virtual penetration approaches by introducing an approximation for the

surface deformation. The principle idea of this approximation is based on

the observation that there is a similarity between the elastic deformation on

the surface and the separation in a Hertzian contact. The expression for the

interpenetration function, in this case, is given as:

g(y) = δ − h(y)− β(y)h(y) , (1.70)

with the additional term β(y)h(y) taking into account the influence of the

surface deformation. Taking only positive values of g(y), the half-length of

the contact area a(y) is:

a(y) =

√
g(y)

(1 + α(y))A(y)
. (1.71)

The coefficients α(y) and β(y) are obtained using the results from Hertz’

theory (see Appendix in [95]):

α(y) =
r(y)

m2(y)

[
1 +

B(y)

A(y)

]
− 1 , (1.72)

β(y) =
r(y)

n2(y)

[
1 +

A(y)

B(y)

]
− 1 . (1.73)

The maximum pressure value p0(y) at the centre of the contact patch is:

p0(y) =
E

π(1− ν2)

1

n(y)r(y)

g(y)

a(y)
, (1.74)

and the pressure distribution pn(x, y) in elliptic in the rolling direction.

As in STRIPES, the Hertzian parameters are limited to positive

values of the B(y) curvature. The non-positive part of the curvatures is

therefore replaced by a polynomial function heuristically [95]. This inhibits

straightforward implementation in MBS codes, as seen in the recent switches

and crossing benchmark where only Hertz, KP and STRIPES methods were

used [102].
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1.5 Tangential contact problem in Hertzian

conditions

1.5.1 Carter’s theory

Frederick William Carter’s work on the contact of locomotive wheels and

rails in 1926 [17] was the first to introduce the idea that the driving wheel

subjected to a tangential force in any direction, besides rolling, also creeps

slowly in the general direction of the force. He defined this “creepage” as the

ratio of the distance gained by one surface over the other in the longitudinal

direction, to the distance traversed. The railway track is assumed to be

an elastic half-space, and the wheel an elastic cylinder. The two bodies

are also considered quasi-identical. With the further consideration that the

wheel is large compared to the contact area, the problem is one of an infinite

elastic medium bounded by a plane, under the influence of a certain local

distribution of pressure and tangential traction. Using Professor Love’s

mathematical analyses [103] on this subject, Carter then proceeded to

establish a relation between the longitudinal creepage and the tangential

contact force. Carter’s theory is significant from the point of view that

analytical solutions to the rolling contact problem can be obtained easily. A

similar problem was solved almost at the same time by Hans Fromm in his

doctoral thesis [104]. However, Fromm assumed that the two bodies were

elastic cylinders and not half-spaces.

The contact area in the rolling direction is split into an adhesion (or

stick) zone near the leading edge, where the creepage is constant; and a

slip zone near the trailing edge, where the tangential stress is bound by

Coulomb’s law of friction. Denoting the coefficient of friction as µ, the

tangential traction over the stick zone can be obtained by subtracting an

elliptic traction distribution from the traction bound:

px = p′x + p′′x , (1.75)

where p′x is the elliptic traction bound over the contact strip of length 2a:

p′x = µpn = µp0

√
1−

(x
a

)2
, − a ≤ x ≤ a , (1.76)

and p′′x is the elliptic traction bound over the adhesion zone when the slip

length is 2d:

p′′x = −
( c
a

)
µp0

√
1−

(
x− d

c

)2

, − a+ 2d ≤ x ≤ a , (1.77)
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Figure 1.17: Distribution of tangential tractions in Carter’s theory

such that c = a − d. In the slip zone, the tangential stress is bound by

Coulomb’s law:

px = µpn . (1.78)

The longitudinal stress direction opposes the direction of the slip. The

tangential stress distribution over the entire contact strip in Carter’s theory

is illustrated in Figure 1.17. The width of the slip zone is determined by the

magnitude of the creep force Fx such that [18, p. 253]:

d

a
= 1− c

a
= 1−

√
1− Fx

µN
, (1.79)

where N is the normal force. The resultant tangential strain in the strip

and Hertz’ relations for the maximum pressure p0 are subsequently used

to establish the relationship between the creep ratio νx, and the tangential

force [18, p. 253]:

νx = − µa

Req

[
1−

√
1− Fx

µN

]
, (1.80)
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Figure 1.18: Creep curve from Carter’s theory

where Req is defined using Equation (1.32). The relationship between the

creep force Fx and the creep ratio νx, as shown in Figure 1.18, is known as

a “creep curve”.

Finding the tangential traction by assuming full slip solution over the

entire contact area and subtracting a traction from the adhesion area, as

done in Equation (1.75), was also subsequently used by other researchers,

including in the theory of Johnson [105], the Vermeulen-Johnson [60]

solution, and the strip theories of Haines-Ollerton [106], Halling [107], and

Kalker [59]. However, neglecting the effect of the lateral and spin creepages,

as well the restriction to a one-dimensional analysis, implies that the Carter

theory is largely limited in terms of its application to the analysis of contact

problems involving complex railroad vehicles.

1.5.2 Johnson’s theories

In 1958, K. L. Johnson published two articles dealing with the problem

of three-dimensional elastic rolling contact of quasi-identical bodies. The

first paper addresses the case of rolling with pure creepage where the spin

is assumed to be absent [105]. The contact area is circular, which was

later extended to ellipses by Vermeulen and Johnson [60]. The contact

area is divided into two regions as done previously, the slip zone where the

tangential traction reaches the traction bound, and the adhesion or stick

zone where the slip vanishes. The adhesion zone is assumed to be an ellipse
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Figure 1.19: Stick-slip zone division according to Johnson [105], and

Vermeulen and Johnson [60] theories

with the same aspect ratio as the contact area, meeting the contact ellipse

at the leading edge as shown in Figure 1.19. The adhesion region does not

include the leading edge of the contact ellipse, and the slip and tangential

traction are in the same direction in the small area highlighted in red near

the leading edge. Thus, Equation (1.19) is not satisfied, and the solution is

only approximate. The input of the method are F̄t, the non-saturated creep

forces expressed as linear functions of the longitudinal and lateral creepages.

An exact derivation of F̄t has been developed by Kalker, as will be seen in

the next section.

Similar to Carter’s theory, the resultant tangential traction is obtained

by considering the sliding traction over the entire contact area and

subtracting a second traction acting only over the adhesion area.

Consequently, the no-slip condition is satisfied in the adhesion area, and the

tangential traction in the slip area equals the traction bound. The relations

for the creep force acting on the elliptical contact area shown in Figure 1.19
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from the Vermeulen-Johnson theory are given as [21, p. 75]:

pt = µp0
F̄t

F̄t

√1−
(x
a

)2
−
(y
b

)2
−

√
1−

(
x′

a′

)2

−
(
y′

b′

)2
 if x ∈ A ,

(1.81)

pt = µp0
F̄t

F̄t

√
1−

(x
a

)2
−
(y
b

)2
if x ∈ S , (1.82)

where

p0 =
3N

2πab
, (1.83)

F̄t = ||F̄t|| , F̄Tt = [F̄x, F̄y] . (1.84)

The semi-axis of the adhesion ellipse a′ is defined such that:

x′ = x+ a′ − a . (1.85)

From the Vermeulen-Johnson theory, we have:

a′

a
= 3

√
1− Ft

µN
, (1.86)

where the relationship between Ft and F̄t is given by a cubic saturation law:

Ft =

µN
[(

F̄t
µN

)
− 1

3

(
F̄t
µN

)2
+ 1

27

(
F̄t
µN

)3]
if F̄t ≤ 3µN ,

µN if F̄t > 3µN .

(1.87)

Johnson’s second paper [108] is significant because it introduced the idea

of a spin creepage that tends to “twist” the contact interface for the first

time. Johnson showed that in the case of pure spin, with the longitudinal

and lateral creepage equal to zero, the spin gives rise to a lateral creep force

and a moment about the z-axis. This is a no-slip theory, unlike partial slip in

the precedent case, where the coefficient of friction is assumed to be infinitely

large such that the slip vanishes in the entire contact area. The first to apply

the no-slip theory in three-dimensional frictional contact was Mindlin [109],

who solved the no-slip problem of two quasi-identical Hertzian bodies pressed

together. The two bodies are subsequently subjected to a displacement, and

a rotation about the z-axis relative to each other, without rolling.

The no-slip theory is also called the linear theory of rolling as the

longitudinal and lateral creep forces, as well as the creep moment, are linear

functions of the creepages and the spin. In [108], Johnson considers the case
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where Fy = 0. For a circular contact area, the relationship between the

lateral creepage and the spin is given as:

νy = −2

3

(2− ν)

(3− 2ν)
aφ , (1.88)

The moment about the z-axis is shown to be:

Mz =
32

9

(2− ν)

(3− 2ν)
Ga4φ . (1.89)

Kalker has compared Johnson’s linear spin theory and Vermeulen and

Johnson’s no-spin theory with the exact values in [21, p. 66], where he

presents the relative error between the exact and approximated coefficients

of proportionality for the creepages and spin.

1.5.3 Kalker’s theories

Along with Johnson, Professor Joost Kalker is perhaps one of the most

significant contributors to the theories of rolling contact mechanics in the

last fifty years or so. Many of his theories developed in the latter half of the

twentieth century are still in use today as references for new rolling contact

models. A good summary of all of Kalker’s theories can be found in his

monograph [21] or in several review publications [110, 111, 112].

1.5.3.1 Strip theory

The original strip theory for steady-state rolling by Haines and Ollerton

in 1963 [106] was extended to include the effect of lateral and small spin

creepage by Kalker in 1967 [59]. The shortcomings of the Vermeulen-

Johnson theory, as highlighted in Figure 1.19, are avoided as the contact

area is divided into thin strips parallel to the rolling x-axis. The two-

dimensional Carter’s solution is then applied to each strip, considering it

to be independent of the influence of its neighbour, as shown in Figure 1.20.

The strip theory is confined to slender ellipses, i.e., when the contact area

is considerably wider (twice or three times [110]) in the lateral y direction

than in the rolling x direction, and to small spin values. The failure to

approximate the three-dimensional creep-force law meant that the strip

theory was superseded by other relevant theories shortly after it had been

proposed. The strip theory has recently been revisited by Sichani et al. in

the method FaStrip [58] which will be addressed in Section 1.5.4.
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Figure 1.20: Stick-slip zone division and the traction distribution over each

strip according to strip theory

1.5.3.2 Linear theory

The linear theory was based on an idea by de Pater in 1956 which was then

developed by Kalker during his doctoral thesis [56]. Here, Kalker assumes

that the true slip vanishes at the leading edge and that the traction must be

zero when the particles enter the contact area [110]. The linear theory gets

its name from the fact that the creep-force law curve here is linear, assuming

no slip occurs over the contact area. Kalker’s non-dimensional coefficients

c11, c22, c23, and c33 are also introduced, which represent the constants of

proportionality between the creepages and the creep forces and moment.

The creep forces and the spin moment can be expressed in matrix form as:FxFy
Mz

 = −Gab

c11 0 0

0 c22
√
abc23

0 −
√
abc23 abc33


νxνy
φ

 . (1.90)

The longitudinal creep force Fx is independent of the lateral creepage νy
and the spin φ, while the lateral creep force Fy and φ are coupled, which also

corresponds to the definition of spin by Johnson [108]. Kalker’s coefficients

are functions of the Poisson’s ratio ν and the aspect ratio a/b of the contact
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ellipse, as shown in Table 1.2. The values of these coefficients for different ν

and a/b have been computed by Kalker using the complete theory in [56] and

compared to the approximate values found by Vermeulen and Johnson [60].

Kalker also subsequently provided empirical expressions for the creepage

coefficients in [113].

The linear theory is applicable in the case of quasi-identical bodies.

The expressions for the combined modulus of rigidity G, and the combined

Poisson’s ratio ν are defined using Equation (1.8) and Equation (1.9). When

it was put forth in the 1970s, the interest of this simplified approach was to

provide a stiffness coefficient for evaluating the critical speed of a linearised

bogie model, with the contact assumed to be of constant form under a

constant load. The most important contribution by Kalker was the rigorous

calculation of the cij coefficients, which were also verified experimentally for

the wheel-rail contact cases on test-benches [114], as this was an important

aspect in determining the risk of instability and derailment of railway

vehicles. With respect to more recent theories, the main drawback of the

linear theory is that it does not take into account saturation, and hence is

only applicable in the case of infinitesimal creepages.

1.5.3.3 Simplified theory: The FASTSIM algorithm

Kalker’s simplified theory [55] is perhaps the one that is most commonly

used in the railway industry codes for evaluating the tangential contact

results. The idea of the simplified theory is to replace the elastic body with

a set of springs. The tangential surface tractions and the tangential surface

displacements at a given point are assumed to be linearly proportional

through three flexibility parameters in the adhesion region, as shown

in Figure 1.21, and limited by a parabolic traction bound according to

Coulomb’s theory. This parabolic traction bound is shown to provide a

more accurate division of the stick-slip zone when compared to an elliptic

traction bound [55, 57]. The flexibility parameters depend on the creepage

and spin coefficients c11, c22, and c23 of the linear theory. The tangent

problem of the simplified theory is solved iteratively using the FASTSIM

algorithm developed by Kalker [55], which will be addressed in Chapter 3.

1.5.4 The FaStrip algorithm

The FaStrip [58] algorithm provides an alternative to FASTSIM, and is

based on the strip theory for three-dimensional rolling contact [59]. This

is combined with a FASTSIM type algorithm to determine the tangential

stress directions. The nonlinear stress distribution in the stick area, and
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c11 c22 c23 = −c32 c33

ν → 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5

g ↓

a
b



0.0 π2/4(1−ν) π2/4
π
√

g{1+ν( 1
2
Λ+ln 4−5)}

3(1−ν)
π2/16(1−ν)g

0.1 2.51 3.31 4.85 2.51 2.52 2.53 0.33 0.473 0.73 6.42 8.28 11.7

0.2 2.59 3.37 4.81 2.59 2.63 2.66 0.48 0.603 0.81 3.46 4.27 5.66

0.3 2.68 3.44 4.80 2.68 2.75 2.81 0.61 0.715 0.89 2.49 2.96 3.72

0.4 2.78 3.53 4.82 2.78 2.88 2.98 0.72 0.823 0.98 2.02 2.32 2.77

0.5 2.88 3.62 4.83 2.88 3.01 3.14 0.83 0.929 1.07 1.74 1.93 2.22

0.6 2.98 3.72 4.91 2.98 3.14 3.31 0.93 1.03 1.18 1.56 1.68 1.86

0.7 3.09 3.81 4.97 3.09 3.28 3.48 1.03 1.14 1.29 1.43 1.50 1.60

0.8 3.19 3.91 5.05 3.19 3.41 3.65 1.13 1.25 1.40 1.34 1.37 1.42

0.9 3.29 4.01 5.12 3.29 3.54 3.82 1.23 1.36 1.51 1.27 1.27 1.27

b
a



1.0 3.40 4.12 5.20 3.40 3.67 3.98 1.33 1.47 1.63 1.21 1.19 1.16

0.9 3.51 4.22 5.30 3.51 3.81 4.16 1.44 1.59 1.77 1.16 1.11 1.06

0.8 3.65 4.36 5.42 3.65 3.99 4.39 1.58 1.75 1.94 1.10 1.04 0.954

0.7 3.82 4.54 5.58 3.82 4.21 4.67 1.76 1.95 2.18 1.05 0.965 0.852

0.6 4.06 4.78 5.80 4.06 4.50 5.04 2.01 2.23 2.50 1.01 0.892 0.751

0.5 4.37 5.10 6.11 4.37 4.90 5.56 2.35 2.62 2.96 0.958 0.819 0.650

0.4 4.84 5.57 6.57 4.84 5.48 6.31 2.88 3.24 3.70 0.912 0.747 0.549

0.3 5.57 6.34 7.34 5.57 6.40 7.51 3.79 4.32 5.01 0.868 0.674 0.446

0.2 6.96 7.78 8.82 6.96 8.14 9.79 5.72 6.63 7.89 0.828 0.601 0.341

0.1 10.7 11.7 12.9 10.7 12.8 16.0 12.2 14.6 18.0 0.795 0.526 0.228

0.0 2π
(Λ−2ν)g (1+

3−ln 4
Λ−2ν )

2π
g [1+ (1−ν)(3−ln 4)

(1−ν)Λ+2ν ]
(1−ν)Λ+2ν

2π
3g

√
g[(1−ν)Λ−2+4ν]

π
4 [1−

ν(Λ−2)
(1−ν)Λ−2+4ν ]

Λ = ln(16/g2); g = min(a/b; b/a); ln 4 = 1.386

Table 1.2: Creepage coefficients cij from Kalker’s linear theory of rolling

contact for elliptical contact areas. From [21]
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Figure 1.21: Stick-slip zone division and the traction distribution over each

strip according to the simplified theory, with φ = 0

the use of an elliptic traction bound in the slip area in the strip theory,

results in better agreement with Kalker’s complete theory [87] as compared

to the simplified theory [55]. Nevertheless, the accuracy of the strip theory

is limited to slender contact ellipses, as well as to small values of spin. These

drawbacks are addressed in the method FaStrip to extend the strip theory

to more general contact cases. The strip theory incorporates Carter’s exact

solution for two-dimensional contact [17], and the tangential tractions px
and py in the adhesion region are given as:

px(x, y) =
µp0
a

[
κ
√
a(y)2 − x2− κ′

√
[a(y)− d(y)]2 − [x− d(y)]2

]
, (1.91)

py(x, y) =
µp0
a

[
λ
√
a(y)2 − x2− λ′

√
[a(y)− d(y)]2 − [x− d(y)]2

]
, (1.92)

where µ is the coefficient of friction, a(y) is the half-length of the contact

patch, d(y) is the half-length of the slip area, and κ, κ’, λ, and λ’ are the
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parameters dependent on the creepage and spin values:

a(y) = a

√
1−

(y
b

)2
, (1.93)

d(y) = a

√
η2 + (1− ψ2)(ξ − ψy

a )2 + ηψ

(1− ν)(1− ψ2)
, (1.94)

κ =
ξ − ψy

a√(
ξ − ψy

a

)2
+
(
η + ψd(y)

a

)2 = κ′ , (1.95)

λ =
η + ψd(y)

a

2√(
ξ − ψy

a

)2
+
(
η + ψd(y)

a

)2 = λ′ + ψ , (1.96)

where ν is the Poisson’s ratio, and ξ, η, and ψ are non-dimensional

parameters for the creepages and spin, respectively:

ξ = − G

2µp0
νx , (1.97)

η = − G

2µp0
(1− ν)νy , (1.98)

ψ = − G

2µp0
aφ . (1.99)

These expressions are found to give good results in Hertzian cases when the

semi-axes ratio is small. To improve the accuracy for all contact patches,

FaStrip imposes the assumptions of Kalker’s linear theory [87] such that the

integration of the tangential tractions results in the same creep forces [72].

This is achieved by multiplying the creepage and spin parameters ξ, η, and

ψ with correctional terms such that:

ξ′ = − 2

π2
G(1− ν)

µp0
c11νx , (1.100)

η′ = − 2

π2
G(1− ν)

µp0
c22νy , (1.101)

ψ′ = − 3

2π

G

µp0

√
abc23φ . (1.102)

The terms ξ, η, and ψ in Equations (1.94)-(1.96) are subsequently replaced

by ξ′, η′, and ψ′, respectively.

The stress directions in the slip area are evaluated using the FASTSIM

algorithm [55] detailed in Chapter 3, as it takes into account the effect of

the local spin value. However, unlike FASTSIM, FaStrip uses an elliptic
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traction bound in the slip area. For strips covered entirely by the slip area,

the three flexibility parameters from the simplified theory are replaced by a

single equivalent flexibility parameter as suggested by Kalker [87] to improve

the accuracy for higher values of creepages and spin [58].

The original version of FaStrip expresses the tangential tractions in terms

of a and b, the longitudinal and lateral semi-axes of the Hertzian contact

patch, and the maximum normal pressure p0. In a later publication, these

parameters are replaced with their local values a(y), b(y) and p0(y) to extend

the approach to non-elliptical contact patches [72]. For the contact patch

half-length a(y) and the maximum pressure distribution p0(y), the procedure

is more or less straightforward, as these are the output quantities of any

normal contact method. The assessment of b(y) is not as simple because

a clear definition in non-Hertzian cases is not readily available. A possible

solution is to assess b(y) using the relations from Hertz’ theory locally [115]:

b(y)

a(y)
=

n(y)

m(y)
. (1.103)

1.5.5 Heuristic solutions considering spin

Several heuristic solutions for the creep forces have been presented in the

literature. In the following sections, two of these heuristic approaches,

namely the one by Shen et al. [61] and Polach’s model [62], are outlined

briefly.

1.5.5.1 Shen-Hedrick-Elkins model

The method of Shen-Hedrick-Elkins (SHE) [61], is a combination of the

linear theory of Kalker and the cubic saturation law of Vermeulen and

Johnson. However, unlike the Vermeulen and Johnson approach [60], spin

creepage is taken into account in the SHE method. The creep forces F̄x and

F̄y are first evaluated using Equation (1.90) from the linear theory. Then

using the cubic saturation law, the resultant tangential force F̄t is limited

by the nonlinear value Ft as follows [61]:

Ft =

µN
[(

F̄t
µN

)
− 1

3

(
F̄t
µN

)2
+ 1

27

(
F̄t
µN

)3]
if F̄t ≤ 3µN ,

µN if F̄t > 3µN .

(1.104)

The nonlinear creep-force model is given by:[
Fx
Fy

]
= ε

[
F̄x
F̄y

]
, (1.105)
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where

ε =
Ft
F̄t

. (1.106)

The results using this heuristic model have been shown to be in good

agreement with those from Kalker’s simplified theory (FASTSIM), although

it does lead to unsatisfactory results when the spin is significant.

1.5.5.2 Polach’s model

In 1999, Polach presented a fast algorithm (as well as the computer code)

for the computation of wheel-rail creep forces for a given Hertzian contact

patch and the global creepages acting on it. Similar to the simplified theory,

the tangential stress grows linearly over the adhesion area, starting from the

leading edge, and is limited by an elliptic traction bound using Coulomb’s

law, as shown in Figure 1.22. According to these assumptions, the analytical

expression of the tangential force in the absence of spin is given by [3, 62]:

Ft =
2µN

π

(
ε

1 + ε2
+ arctan ε

)
, (1.107)

where ε is the gradient of the tangential stress in the adhesion area:

ε =
π

4

GabCh
µN

νc . (1.108)

The first term in Equation (1.107) roughly represents the contribution of

the adhesion zone and tends to 0 if ε tends to infinity. The second term is

associated with the slip zone and tends towards π/2 when ε tends towards

infinity. If ε is small, we obtain Kalker’s linear theory. Ch is a constant that

depends on Kalker’s coefficients cij such that:

Ch =

√(
c11

νx
νt

)2

+

(
c22

νy
νt

)2

. (1.109)

νc represents the corrected resultant creepage that takes the influence of spin

into account heuristically through a corrected lateral creepage νyc computed

using:

νyc =

{
νy if |νy + φa| ≤ |νy| ,
νy + φa if |νy + φa| > |νy| ,

(1.110)

with

νc =
√
ν2x + ν2yc , (1.111)

νt =
√
ν2x + ν2y . (1.112)
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Figure 1.22: Stick-slip zone division and the traction distribution over each

strip according to Polach’s theory without spin

The contribution of the spin creepage to the lateral tangential force is given

by:

Fyc =
9

16
aµNK

[
1 + 6.3(1− e−a/b)

]
, (1.113)

where K, δ and εc are defined using the following expressions:

K = |εc|
(
−δ

3

3
+
δ2

2
− 1

6

)
+

1

3
(1− δ2)1.5 , (1.114)

δ =
ε2c − 1

ε2c + 1
, (1.115)

εc =
8

3

Gb
√
ab

µN

[
c23νyc

1 + 6.3(1− e−a/b)

]
. (1.116)

The longitudinal and lateral creep forces Fx and Fy, respectively, are finally

given as:

Fx = −Ft
νx
νc

, (1.117)

Fy = −Ft
νy
νc

− Fyc
φ

νc
. (1.118)
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1.5.6 Lookup tables

Lookup tables (LUT) offer the fastest and most straightforward manner

of evaluating the creep forces. This approach consists of pre-calculating

a table with a detailed program, and then interpolating the table values

for the desired input conditions. Limited computing abilities in the early

1980s was partly the motivating factor for British Rail to develop one of

the first LUT for evaluating wheel-rail contact forces, using the solutions

provided by Kalker’s DUVOROL program [21]. Here, the aspect ratio of the

ellipses, the longitudinal creepage, the lateral creepage and the spin were the

varying input parameters used to construct the lookup table. Later, Kalker

enlarged this table using the results from CONTACT [63] with a total of

115,000 table entries. This table, called USETAB, was itself superseded by

an enhanced version where a finer discretisation was used for the contact

area [111]. USETAB has been shown to provide more precise results when

compared to other simplified approaches for Hertzian cases, using Kalker’s

complete rolling contact theory as the reference [116]. The LUT presented

so far are only applicable to Hertzian contact patches. For non-elliptical

contact patches, an equivalent ellipse must first be evaluated. Piotrowski et

al. [73] have developed the Kalker book of tables for non-Hertzian contact by

the regularisation of non-elliptical contact patches to single double-elliptical

contact (SDEC) patches. The number of entries to store, and the technique

used to interpolate them, play an important role in deciding the accuracy

of the LUT. Marques et al. [117] have presented two procedures for the

generation of enhanced LUT for wheel-rail contact models, where either the

interpolation accuracy is improved for a similarly sized LUT, or the size of

the LUT is condensed for a similar degree of accuracy. While LUT first made

their appearance when the hardware capabilities of the available computers

were largely restricted, they continue to be used in several MBS codes for

their ease of implementation and accurate1 results for wheel-rail contact

cases.

1.6 Conclusions

Safety, track fatigue analyses, and maintenance of railway vehicles are only

some of the applications that highlight the importance of the choice of wheel-

rail contact model used in MBS simulation software. The complexity of

different operations necessitates very different levels of modelling, and a

1As long as contact patches are assumed to be elliptical
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simplified and coarse model may often be sufficient for some applications.

For online simulations where the calculations must be carried out in real-

time over railway tracks which are several kilometres long, very approximate

wheel-rail contact models are generally used. Other applications require

more sophisticated models, as in the estimation of wear in urban rail

networks, or the assessment of rolling contact fatigue. The shape of the

contact area and the stress distribution within it categorise the different

normal contact models available in the literature [50, 110, 118, 119].

Most MBS codes use one of the different VP methods described in this

chapter to evaluate the normal contact results. A proposed improvement to

these models is through the introduction of an analytical approximation for

the surface deformation in the ANALYN method [95], although it does not

seem to have been used in an MBS code yet. While existing methods reliably

predict contact stresses in Hertzian conditions, the research of more accurate

solutions is still an open field in the context of railway dynamics, where a

compromise is required between the computing time and accuracy. Chapter

2 is dedicated to the development of a new semi-analytical approach for the

normal contact problem, which aims to improve the prediction of normal

contact stresses in non-Hertzian conditions.
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2.1 Introduction

The following chapter outlines the development of a new semi-analytical

boundary element method for determining the wheel–rail contact zone and

the normal stress distribution within it. The chapter largely follows the

same outline as in the original publication [120]. A reduced formulation

of the contact between two elastic half-spaces is used in the first part

together with a Hertzian model to solve the normal contact, following a

semi-analytical methodology. The novel method is then validated using

the results from CONTACT [24] as a reference, with theoretical as well as

wheel-rail profiles. A comparison of the obtained results and the required

computational resources is also carried out using the STRIPES [76] and

ANALYN [95] methods described in Chapter 1. Two alternative modelling

strategies are proposed as a part of the perspectives, before the conclusions.

2.2 Methodology

2.2.1 Theoretical background

We consider the problem describing the stress field in a semi-infinite half-

space, subjected to a concentrated normal surface force, which was studied in

detail by Boussinesq [85]. As seen previously, for the half-space consideration

to be valid locally, the contact area dimensions must be significantly smaller

than the principal radii of the contacting surfaces. This is generally true

when considering several common contact scenarios, including the tread

contact between wheels and rails. The following assumptions are also made:

• The bodies are elastic, homogeneous and isotropic;

• The contacting surfaces have a continuous profile;

• The two bodies are quasi-identical, which is the case of steel-steel

contact between the wheel and the rail.

These assumptions subsequently allow the normal and tangential problems

to be solved sequentially. One possible solution is using the potential theory

of Boussinesq [85], described exhaustively in the book by Johnson [18].

The normal elastic displacement uz(x, y) is related to the normal pressure

distribution pn(x, y) by the integral equation [121]

∀(x, y) ∈ P, uz(x, y) =

∫∫
C
pn(ξ, η)Azz(x, y; ξ, η)dξdη , (2.1)
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Figure 2.1: Two elastic bodies in contact

where P is the half-space domain under consideration, C is the contact area,

and Azz is Boussinesq’s influence function defined as:

∀(x, y; ξ, η) ∈ P2, Azz(x, y; ξ, η) =
1

πE⋆
1√

(x− ξ)2 + (y − η)2
. (2.2)

E⋆ is the combined Young’s modulus of elasticity for the two contacting

bodies described using Equation (1.29). With a defined rigid approach δ,

the only geometrical input required to solve the contact problem is the

separation between the two undeformed surfaces h(x, y), with the deformed

distance ez(x, y):

ez(x, y) = h(x, y) + uz(x, y)− δ . (2.3)

The conditions for contact and separation are as defined in Equation (1.16)

and Equation (1.17):

∀(x, y) ∈ C : ez = 0, pn ≥ 0 , (2.4)

∀(x, y) /∈ C : ez > 0, pn = 0 , (2.5)

which ensure that the normal pressure can only act within the contact zone,

vanishing at the boundary of the contact area. The two bodies are also

prevented from interpenetrating. The discretised form of the variational
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inequality eventually gives rise to a linear complementarity problem (LCP).

If the rigid approach δ is given, the problem to be solved can be completely

described by Equation (2.1) and Equation (2.4).

If the total resultant force N is known in advance, the following

equilibrium condition is added:

∀(x, y) ∈ C, N =

∫∫
C
pn(ξ, η)dξdη . (2.6)

2.2.2 Towards a reduced approach

The direct method to solve the contact problem is the matrix inversion

method (MIM) found in [18, p. 144]. The potential contact area in

the boundary element problem is overestimated in both the lateral and

the rolling directions, and divided into a rectangular grid, wherein the

contact constraints of Equation (2.4) and Equation (2.5) are evaluated.

The elements in which the pressure distribution has negative values are

discarded, and the procedure is repeated until all the remaining elements

satisfy the contact conditions. The elastic deformation is thus calculated at

each iteration for each element within the potential contact area, resulting

in a sizeable expenditure of computational resources. The drawback of using

such an approach is clear, as the direct method does not scale to large-sized

problems. Certain studies also use iterative techniques such as Gauss-Seidel,

which however remain restricted to relatively small contact grids. Most

recent works use either a conjugate gradient (CG) algorithm or a multi-grid

(MG) strategy, combined with fast algorithms such as multi-level summation

technique (MLMS) or fast Fourier transform (FFT) for equation solving

[32, 33]. The principle essence of these approaches remains the same: using

different numerical techniques for a faster solution of the complete LCP.

In the proposed new approach, the pressure distribution is additionally

assumed to be symmetric and elliptic about the x = 0 plane (i.e. in the

rolling direction) and the potential area of contact is discretised only in

the lateral y direction. A similar strategy for discretisation is also used

by Reusner for the treatment of roller bearings in [29], and by Knothe

and Le The for arbitrary elastic bodies in [31]. Along with the normal

stress distribution acting on each strip, Reusner considers the lengths of

the contact patch strips as additional unknowns, while Knothe and Le The

attempt to further reduce the computational complexity by showing that

the strip lengths in neighbouring elements should vary almost proportionally

with the variations in the load or the deflection.

The novel approach presented here is to instead consider the contact
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Figure 2.2: Contact area C divided into strips, and the normal pressure

distribution. Adapted from [31]

patch boundaries as a quasi-known quantity dependent on the form of the

normal stress distribution. The potential contact area is first divided into

thin strips with the larger dimension in the rolling direction, as shown in

Figure 2.2, from where the name MIM-1D is chosen for the new method. The

unknowns, in this case, reduce to the maximum pressure values p0i at the

centre of each strip i. At each iteration, the half-length of the contact strip

ai in the rolling direction is then computed as a function of the maximum

pressure distribution p0i , using an approximate analytical formulation based

on Hertz’ theory.

2.2.3 Discrete problem

The half-length and the half-width of each strip element are given as ai and

bi,
1 respectively. The pressure distribution over each strip is assumed to

be elliptical in the x direction, and constant in the y direction. Thus, the

expression for the pressure distribution over each strip may be written as:

pn(x, yi) = p0i

√
1−

(
x

ai

)2

, (2.7)

where p0i is the maximum pressure at the centre of the strip i. The

deformation and the separation at the centre are denoted as ui and hi,

12bi is the same as δyi used in STRIPES in Chapter 1
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respectively. Equation (2.1), Equation (2.3), and Equation (2.4) in discrete

form can be written as:

∀i ∈ [1, n], ui =

n∑
j=1

Aijp0j , (2.8)

∀i ∈ [1, n] ∋ (xi, yi) ∈ C, δ − ui − hi = 0 and p0i ≥ 0 , (2.9)

where n denotes the total number of elements in the potential contact area.

The terms Aij from Equation (2.8) are called the influence coefficients1, and

are defined as:

Aij =
2

πE⋆

∫ yj+bj

yj−bj

∫ aj

0

√
1− ( ξaj )

2√
(xi − ξ)2 + (yi − η)2

dξdη . (2.10)

The expression for Aij describes the influence of normal stress distribution

in the jth element to induce elastic displacement in the ith element. In the

previous work by Reusner [29], the influence factors are expressed in the

form of complete elliptic integrals. Knothe and Le The [31] determine these

functions using numerical integration, however, no further details have been

provided. In MIM-1D, the Aij terms are also evaluated numerically. The xi
terms are ignored, as they always remain zero. Equation (2.10) is written

as:

Aij =
2

πE⋆

∫ yj+bj

yj−bj

∫ aj

0

√
1− ( ξaj )

2 − 1√
ξ2 + (yi − η)2

dξdη

+

∫ yj+bj

yj−bj

∫ aj

0

dξdη√
ξ2 + (yi − η)2

]
. (2.11)

The first integral is regular and can be evaluated numerically using

Gaussian quadrature. The second integral is singular when the denominator

approaches zero. This expression represents the case of uniform normal

pressure acting on a rectangular area of 2ai×2bi, and an analytical solution

1The Aij terms here correspond to the normal influence coefficients Azzij
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of this problem has been presented in detail by Love [18, 122]. We have:

2

∫ yj+bj

yj−bj

∫ aj

0

dξdη√
ξ2 + (yi − η)2

= (y + bj) ln

 aj +
√

(y + bj)2 + a2j

−aj +
√
(y + bj)2 + a2j


+ (y − bj) ln

−aj +
√

(y − bj)2 + a2j

aj +
√
(y − bj)2 + a2j


+ 2aj ln

(y + bj) +
√

(y + bj)2 + a2j

(y − bj) +
√

(y − bj)2 + a2j

 ,

(2.12)

where

y = yi − yj .

An additional advantage of decomposing the original integral expression

in such a manner is the introduction of an analytical solution into the

numerical results. This consequently reduces the integration error linked

to the quadrature method. It also permits the use of lesser number of

integration points, and consequently faster calculation times. Prior to this

decomposition of the integral, an alternate strategy was to use a higher

number of integration points closer to the diagonal terms Aii. Equation (2.8)

in matrix form is written as:

uz = A pn , (2.13)

where the vectors pn and uz are given as {p01 , ..., p0n}T and {δ− h1, ..., δ−
hn}T , respectively. The matrix of influence coefficients A is:

A =

A11 . . . A1n

...
. . .

...

An1 . . . Ann

 . (2.14)

This is the method of resolution generally followed when the rigid approach

δ is known in advance. Unlike in the conventional approach, the matrix A

needs to be evaluated at the beginning of each iteration, as the size of the

elements in the x direction does not remain the same.

In the case where the normal force is prescribed instead of rigid body

approach δ, the normal contact problem is solved with an additional iteration
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for δ. The resultant force at the end of each iteration is calculated using

Equation (2.6) and Equation (2.7):

N = π

n∑
i=1

(aibi)p0i . (2.15)

The initial value of δ can be taken as the Hertzian rigid body approach. The

subsequent values of δ may be evaluated using a dichotomy or an iterative

scheme based on Hertz’ relations [31]:

δ(m+1) = δ(m)

[
N

Ñ (m)

] 2
3

, (2.16)

where Ñ (m) represents the resultant normal force at the end ofmth iteration.

2.2.4 Estimation of the contact patch half-length

The half-length of the contact patch ai is approximated using the equations

that apply in Hertzian cases. ai is updated at each iteration to define the

new potential contact zone, which is then used to construct the matrix A.

The equation for the Hertzian contact ellipse is:(x
a

)2
+
(y
b

)2
= 1 , (2.17)

where a and b are the semi-axes of the ellipse as defined in Section 1.4.1.3:

a = m 3

√
3

2
N

1

2E⋆
1

A+B
, (2.18)

b = n 3

√
3

2
N

1

2E⋆
1

A+B
. (2.19)

The normal pressure distribution pn(x, y) over the contact area is elliptical,

and given by:

pn(x, y) = p0H

√
1−

(x
a

)2
−
(y
b

)2
, (2.20)

with the maximum normal pressure at the centre of ellipse:

p0H =
3

2

N

πab
. (2.21)

Equation (2.17) over each strip can be written as:(ai
a

)2
+
(y
b

)2
= 1 . (2.22)
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Combining Equation (2.20) and Equation (2.22), the normal pressure

distribution in the longitudinal x direction for the ith strip is:

pn(x, yi) = p0H
ai
a

√
1−

(
x

ai

)2

. (2.23)

Comparing Equation (2.7) and Equation (2.23), it is possible to deduce:

p0i = p0H
ai
a

=
3

2

N

πab

ai
a
. (2.24)

Using the expressions for the semi-axes a and b defined previously, the

contact patch half-length can be found using:

ai =
π

2E⋆
m2n

A+B
p0i . (2.25)

This Hertzian expression for the contact patch boundary depends on the

curvatures of the profiles in contact, and the normal pressure at the centre

of the strip under consideration. In non-elliptic cases, the curvatures and

the Hertzian coefficients are replaced by their respective local values:

ãi =
π

2E⋆
m2
ini

Ai +Bi
p0i . (2.26)

The same expression for the half-length can also be obtained using the theory

of ANALYN (see Appendix B).

Hertz’ solution remains valid only for positive values of Bi. If the lateral

curvature is negative at a given point, a correction must be carried out.

Moreover, if the curvature is discontinuous, smoothing is also applied. This

correction and smoothing are done using the procedure described in [76].

The procedure involves two distinct steps described in Section 1.4.2.3:

1. First, the negative values of the lateral B curvature are limited to a

minimal positive value.

2. Secondly, a smoothing filter based on the Boussinesq approach is used.

The assessment of ãi is a delicate matter in MIM-1D. Equation (2.26) is

found to give good results in most cases when the curvature does not exhibit

extreme variations along the profile. This sensitivity to the curvatures is a

characteristic of all methods that use local values to estimate the half-length

of the contact patch in the rolling direction, as shown in [93]. Several other

solutions have also been tested, one of which will be presented later on in

Chapter 4 when treating the specific case of sharp-edge contact encountered

in switches and crossings.

68



2.2. Methodology Chapter 2

To improve numerical stability, it is possible to modify Equation (2.13)

using the normal force over each strip Ni. From Equation (2.15), we have:

Ni = πãibip0i . (2.27)

The system of equations in matrix form in this case is:

uz = Ã N , (2.28)

where N = {N1, ..., Nn}T . From Equation (2.13), we have:

A pn =

A11 . . . A1n

...
. . .

...

An1 . . . Ann


p01...
p0n

 =

A11 . . . A1n

...
. . .

...

An1 . . . Ann




N1
πã1b1
...
Nn

πãnbn

 = Ã N .

(2.29)

The modified matrix of influence coefficients Ã is now given by:

Ã =


A11
πã1b1

. . . A1n
πãnbn

...
. . .

...
An1
πã1b1

. . . Ann
πãnbn

 . (2.30)

From Equation (2.26) and Equation (2.27), the half-length of the contact

patch at the end of each iteration can be computed using the normal force

per strip:

ãi =

(
1

2E⋆
nim

2
i

Ai +Bi

1

bi
Ni

) 1
2

. (2.31)

2.2.5 Iterative resolution

Equation (2.26) is incorporated into the iterative algorithm presented in

Figure 2.3 to solve the contact problem described by Equation (2.13).

In the presented test cases, the potential contact area is taken as the

interpenetration zone using the Hertzian rigid body approach, as this is

sufficiently large to enclose the actual contact area [28]. The choice of

this potential contact zone is not found to have a significant impact on the

convergence of the proposed algorithm. When the problem is specified with

only a given penetration, the interpenetration area is the optimal choice.

To speed up the computation, the matrix of influence coefficients A is

constructed only using the elements i where the separation hi is less than

a predefined maximum value hmax. When the resultant normal force N

is known, the same algorithm is repeated for each value of δ(m), evaluated

using Equation (2.16). The total normal force at the mth iteration Ñ (m)

is computed using Equation (2.15). The algorithm, in this case, converges

when a user-defined tolerance value ϵ = |Ñ (m) −N | is attained.
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Start with potential contact area P > C & prescribed value of δ

Compute initial matrix of influence coefficients Aij
using the points such that δ ≥ hi

Solve the system uz = Apn

pn ≥ 0

Compute ãi & update Aij

Discard elements

for which p0i < 0

P ≈ C
Compute N

Convergence

No

Yes

Figure 2.3: MIM-1D algorithm with a given rigid body approach δ
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Figure 2.4: Separation profiles of the two contacting surfaces

2.3 Results and discussion

The proposed new approach, MIM-1D, is implemented as a Matlab function.

The approximate surface deformation method ANALYN [95], and the VP

method STRIPES [76] are also programmed using Matlab. The results from

the commercial version of the program CONTACT (v20.2) [24] are used as

the reference. It should be noted that the ANALYN results are sensitive

to the method used for the negative-curvature correction. In the original

publication, the negative lateral curvature values are replaced using a fifth-

degree polynomial. However, this correction strategy has not been explained

in further detail, and here this is done heuristically to obtain results as close

as possible to the ones presented in [95].

2.3.1 Theoretical profiles

2.3.1.1 Hertzian

To validate the new approach, a Hertzian case is considered with the contact

between a sphere (R = 40 mm) and a flat surface. The separation curve

between the two surfaces is shown in Figure 2.4a. Both bodies are made of

steel, with ν = 0.3 and E = 208 GPa. The rigid approach between the two

bodies is taken as 1 mm.

The contact patches obtained using different approaches and the

maximum pressure distribution p0(y) are shown in Figure 2.5. All the

methods can be observed to be in good agreement with each other. The

relative error in the contact area for MIM-1D is found to be within 1% of

Hertz’s analytical solution, which can be attributed to the accuracy of the
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numerical procedure used.

2.3.1.2 Non-Hertzian

The contact between a flat surface and a body of revolution (rolling radius

R = 400 mm) with a non-Hertzian theoretical profile developed using two

different radii R1 = 40 mm and R2 = 500 mm on either side of the point of

the first contact is considered next. The separation curve between the two

surfaces is shown in Figure 2.4b. The material properties are the same as

in the Hertzian case, with the bodies pushed 1 mm towards each other.

The results for the contact area and the maximum pressure distribution

are presented in Figure 2.6. From Figure 2.6a, MIM-1D and ANALYN

correspond reasonably well with the reference results from CONTACT. The

relative error in the contact area for MIM-1D is within 1% of the reference

results. STRIPES notably underestimates the width of the contact patch:

this is expected, as neglecting the surface deformation should lead to a

smaller contact zone. Although the pressure distribution curve for ANALYN

in Figure 2.6b follows the same trend as that of the reference, the peak of

the pressure curve remains significantly higher. The results using MIM-1D

can be observed to be in a better agreement with the reference method. A

characteristic “bottleneck” region in the contact shape may be observed at

around y = 0 mm. This can be attributed to Equation (2.26), which is used

to estimate the contact patch length. Even though the stress distribution

is relatively continuous over the entire contact zone, the ãi expression is

essentially Hertzian. The terms mi and ni depend on the procedure used to

compute the longitudinal and lateral curvatures A and B, respectively, the

negative curvature correction as well as the smoothing strategy.

When the profile changes abruptly (e.g. R1 = 40 mm to R2 = 500 mm

at y = 0 mm in Figure 2.4b, the discontinuity in curvatures might introduce

a visible discontinuity in the contact area as well. These discontinuities

may ultimately be treated in the pre-processing by using a more suitably

adapted curvature smoothing process. However, these do not seem to be

too significant usually in the case of wheel-rail contact, where the change in

profiles is more gradual and not restricted to a sole point as in the considered

theoretical cases.

Simulations are carried out using different potential contact zones to

check the influence of this input parameter on the convergence of the

proposed algorithm. The resultant normal forces are taken as 963 kN

and 2645 kN (corresponding to δ = 1 mm) for the Hertzian and the non-

Hertzian profiles, respectively. These results are presented in Figure 2.7.
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Figure 2.5: Results for a Hertzian profile using existing methods and

MIM-1D
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Figure 2.6: Results for a non-Hertzian profile using existing methods and

MIM-1D

The outer loop iterations denote the number of iterations on the value of

the applied rigid body approach δ(m) using Equation (2.16) to obtain the

required resultant normal force. On the other hand, the inner loop iterations

represent the average number of iterations required for the convergence of

the algorithm presented in Figure 2.3 for each value of δ(m). The choice of

the potential contact zone visibly does not have a significant impact on the

convergence.

2.3.2 Wheel-rail contact

The case of wheel-rail contact is presented using the standard wheel profile

S1002 over the rail profile UIC60, with an inclination of 1:40. The profiles
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Figure 2.7: Convergence of the proposed algorithm for different potential

contact areas

and their relative curvatures are presented in Figure 2.8. The material for

both the wheel and the rail is steel. The resultant normal contact force is

taken as 78500 N and the nominal rolling radius of the wheel R = 460 mm.

The results are presented for various positions of the wheel, displaced from

its centre position over the rail, denoted by ∆y. The sign convention is taken

the same as in [95], where a positive ∆y implies an outward movement of the

wheel. The discretisation size is taken as approximately 0.2 mm for all the

tested cases, which can be considered as a fine discretisation for wheel-rail

contact applications.

The test cases are chosen to remain in the tread region with low

contact angles, where the half-space assumption is not violated. From

Figure 2.9, the MIM-1D results match closely with the reference CONTACT

results in all the presented cases. This is highlighted more prominently

in the maximum pressure distribution over the contact patch length. It

can also be remarked that MIM-1D manages to accurately capture the

characteristic slight variations in the pressure distribution, such as those

presented in the tail end of the case ∆y = −1, a trait missing in the other

simplified methods. ANALYN remains more precise compared to the VP

methods, as neglecting the surface deformation in STRIPES again leads

to an underestimated contact zone. The negative curvature compensation

procedure used in STRIPES may have an effect as well [123]. This sensibility

of STRIPES related to the processing of the curvature is also found to be

true for ANALYN, with some fine-tuning required to obtain the desired

results. A correction strategy dependent on the applied contact force and

the separation may improve the results [95]. Figure 2.10 presents the relative
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comparison of the contact area for a range of ∆y values to the CONTACT

results, emphasising the improvement using the new method as compared

to existing fast approaches.

2.3.3 Computational cost

To make a representative comparison of the computational cost, MIM-1D

is tested for different mesh sizes using a Hertzian profile. This comparison

is done against the other presented methods i.e. STRIPES [76], ANALYN

[95], and CONTACT [24]. The computations are carried out using a 64 bits

2.70 GHz Intel processor. Only the time for the normal contact problem

is considered. The CPU time for CONTACT is taken directly from the

generated output file, while the other methods are measured using the

elapsed CPU time-averaged over a finite number of runs. These results

are shown in Table 2.1.

STRIPES and ANALYN report similar and the fastest CPU times,

which is expected as both methods are innately analytical. The latest

version of CONTACT, implemented in Fortran, uses a bound-constrained

conjugate gradient (BCCG) method with an FFT pre-conditioner which

permits reasonably quick solutions even with a very fine discretisation [33].

The MIM-1D implementation here simply employs Matlab’s inbuilt solver

yet permits a gain in runtime compared to CONTACT, in no small part due

to the reduced semi-analytical formulation of the method. Re-evaluating the
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Figure 2.9: Contact patch (left), and the maximum pressure distribution

p0(y) (right) for wheel-rail contact cases using MIM-1D and other methods

(from top to bottom): (a) ∆y = −1 mm, (b) ∆y = 0 mm, (c) ∆y = 1 mm

76



2.3. Results and discussion Chapter 2

-10 -5 0 5 10 15

Lateral y-coord (mm)

-10

-5

0

5

10

R
o

lli
n

g
 x

-c
o

o
rd

 (
m

m
)

STRIPES

ANALYN

CONTACT

MIM-1D

-10 -5 0 5 10 15

Lateral y-coord (mm)

0

500

1000

1500

P
re

s
s
u
re

 (
M

P
a
)

STRIPES

ANALYN

CONTACT

MIM-1D

(d) ∆y = 2 mm

-15 -10 -5 0 5 10

Lateral y-coord (mm)

-10

-5

0

5

10

R
o

lli
n

g
 x

-c
o

o
rd

 (
m

m
)

STRIPES

ANALYN

CONTACT

MIM-1D

-15 -10 -5 0 5 10

Lateral y-coord (mm)

0

500

1000

1500

2000

2500
P

re
s
s
u
re

 (
M

P
a
)

STRIPES

ANALYN

CONTACT

MIM-1D

(e) ∆y = 5 mm

Figure 2.9: cont. Contact patch (left), and the maximum pressure

distribution p0(y) (right) for wheel-rail contact cases using MIM-1D and

other methods (from top to bottom): (d) ∆y = 2 mm, and (e) ∆y = 5 mm
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Time (s)

Mesh size n∗ STRIPES ANALYN MIM-1D CONTACT

0.2 mm 100 1.5E-5 6.2E-5 2.0E-3 < 0.1

0.08 mm 250 3.1E-5 9.4E-5 2.9E-2 0.2

0.04 mm 500 9.3E-5 1.3E-4 9.2E-2 1.3

Table 2.1: Comparison of the CPU time with the different existing

approaches (∗the total number of elements for CONTACT is n× n)

matrix of influence coefficients at each iteration means that about two-thirds

of the CPU time can be spent on the Gaussian quadrature. This may be an

interesting guide for future developments, wherein accuracy can be traded

for faster computation speeds.

2.4 Alternative pressure distributions in the

rolling contact direction with MIM-1D

The main advantage of using strip elements to discretise the contact

area lies in the reduction of the number of unknowns from n2 to n

(when considering the case of an equally spaced grid). Nevertheless, the

requirement to numerically evaluate the influence functions of the elements

at each iteration, as opposed to only one pre-computation in the case

of conventional approaches, still leaves a little to be desired in terms of

potential improvement of the semi-analytical method proposed here. In

this section, we proceed to look at two possible alternatives to the elliptic

pressure distribution assumed in the rolling x direction, for which closed-

form expressions of the displacement may be obtained.

2.4.1 Uniform pressure distribution

Considering the pressure to be distributed uniformly over the entire strip is

perhaps the simplest alternative to the elliptic pressure distribution assumed

in Equation (2.7). In this case, we have

pun(x, yi) = pu0i . (2.32)

The new influence coefficients Au,ij are defined as:

Au,ij =
2

πE⋆

∫ yj+bj

yj−bj

∫ aj

0

1√
(xi − ξ)2 + (yi − η)2

dξdη , (2.33)
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for which the analytical solution is given by Equation (2.12). Using a

uniform pressure distribution over the length of the strip, of course, implies

that the maximum pressure at the centre of the strip is underestimated as

compared to the expected value when considering an elliptical distribution.

In order to continue using the same iterative approach with the half-length

of the contact area evaluated using Equation (2.31), we proceed to correct

the normal force per strip, obtained through the new influence coefficients,

by the following relation:

Ni =
Nu
i

0.9284
. (2.34)

This relation is approximated heuristically by comparing the results

obtained using the standard procedure for several Hertzian cases with

different aspect ratios of the contact ellipse.

2.4.2 Parabolic pressure distribution

Another interesting possibility is to consider that the normal pressure in the

rolling x direction follows a parabolic distribution. Kalker in his monograph

[21, p. 56] cites unpublished work where he implemented the same approach

in an ad hoc manner for industrial applications. In [124], de Mul et al. use

the parabolic pressure distribution for the analysis of non-Hertzian contact

cases. This parabolic pressure distribution is integrated analytically over

the surface element to obtain influence coefficients for the normal surface

displacement. Their approach consists in developing two contact equations

which are used to determine the contact pressures and the half-lengths of

the contact zone simultaneously. We use the MIM-1D approach as presented

previously, where the contact patch half-lengths are estimated using the local

expression for ai given in Equation (2.26). The parabolic expression for the

pressure distribution over each strip may be written as:

ppn(x, yi) = pp0i

[
1−

(
x

ai

)2
]
, (2.35)

which replaces Equation (2.7). The new influence coefficients Ap,ij are

defined as:

Ap,ij =
2

πE⋆

∫ yj+bj

yj−bj

∫ aj

0

1− ( ξaj )
2√

(xi − ξ)2 + (yi − η)2
dξdη , (2.36)
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which can then be determined analytically [124] as:

2

∫ yj+bj

yj−bj

∫ aj

0

1− ( ξaj )
2√

(xi − ξ)2 + (yi − η)2
dξdη =

1

a2j

[
4

3
a3j sinh

−1 y + bj
aj

+

(
2a2j +

(y + b)2

3

)
(y + b) sinh−1 aj

|y + bj |

−aj
3
(y + b)

√
a2j + (y + b)2

]
− 1

a2j

[
4

3
a3j sinh

−1 y − bj
aj

+

(
2a2j +

(y − b)2

3

)
(y − b) sinh−1 aj

|y − bj |

−aj
3
(y − b)

√
a2j + (y − b)2

]
.

(2.37)

Using the parabolic expression means that the maximum pressure pp0i at the

centre of each strip exceeds the maximum pressure obtained using the elliptic

expressions. Similar to the case with the uniform pressure distribution, the

following relation is used to correct the normal force values at each iteration:

Ni =
Np
i

1.054
, (2.38)

and hence the overall algorithm remains the same as the one presented

previously.

To present the two alternative approaches, as previously, we consider

the same wheel-rail contact cases for the different wheel positions presented

in Figure 2.9. The comparison between the different MIM-1D algorithms

are presented in Figure 2.11 and can be observed to be in relatively

good agreement with each other. Although the real pressure distribution

in the rolling x direction is close to a semi-elliptic function, the three

chosen distribution functions give close results for the contact areas and

the maximum pressures in the x = 0 plane. This is highlighted in

Figure 2.12, where the contact area and maximum normal pressure values

are compared with the reference results from CONTACT for a wide range

of wheel positions ∆y. Nevertheless, it is important to point out that

these alternatives should be looked upon purely as possible research avenues

to be explored in the future, as they have not yet been tested and

validated extensively. The zeroth-order approximations made heuristically

in Equation (2.34) and Equation (2.38) means that the algorithm is not

always as robust as in the case with semi-elliptic pressure distribution. These

alternatives however still open up the possibility of even faster solutions
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Figure 2.11: Comparison of the contact patch (left), and the maximum

pressure distribution p0(y) (right) for wheel-rail contact cases (from top to

bottom): (a) ∆y = −1 mm, (b) ∆y = 0 mm, (c) ∆y = 1 mm, using

different alternatives for the pressure in the rolling direction in MIM-1D
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Figure 2.11: cont. Comparison of the contact patch (left), and the

maximum pressure distribution p0(y) (right) for wheel-rail contact cases

(from top to bottom): (d) ∆y = 2 mm, and (e) ∆y = 5 mm, using different

alternatives for the pressure in the rolling direction in MIM-1D
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Figure 2.12: Comparison of the contact patch area (left), and the

maximum normal pressure (right) for a range of wheel positions using
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when using a semi-analytical approach, with the view of implementation in

MBS codes.

2.5 Conclusions

A simplified boundary element formulation is presented in this chapter

and tested against two existing approximate methods, and a complete

numerical method is used as the reference. In essence, this approach

further develops the strip discretisation strategy [29, 31] by using a semi-

analytical methodology to determine the contact patch dimension in the

rolling direction. The novel method, implemented in the algorithm MIM-

1D, provides a precise approach comparable to more rigorous complete

methods such as CONTACT, with lesser computing effort. The results from

the theoretical and wheel-rail test cases presented here allow the following

conclusions to be drawn:

• The proposed approach MIM-1D enables an improved approximation

of the pressure distribution and the contact area as compared to

the other existing VP [76] and approximate surface deformation [95]

methods;

• Comparison with a complete numerical method for wheel-rail contact

shows close agreement, with the relative error in the contact area as

compared to the reference results being less than 3% in all the tested

cases using theoretical and wheel-rail profiles;

• From Figure 2.9, the normal stress distribution obtained using MIM-

1D for the different test cases can be observed to be in better agreement

with the fully detailed method. The peaks of the maximum pressure

curve are also noted to conform well with the reference results. This

may be seen as a significant advantage in the calculation of the

tangential tractions and ultimately wear studies, which require the

normal contact stresses instead of the total normal forces;

• The reduction in the number of system unknowns as compared to

CONTACT due to a semi-analytical approach provides on an average,

a 10-fold speed up with the current Matlab implementation. This

should improve further by using a programming language closer to

machine language such as Fortran;

• Two alternative possibilities are presented for the semi-elliptic pressure

distribution assumed in the rolling x direction, considering it to
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instead be either uniform or parabolic. The availability of closed-form

expressions of the displacement for these pressure distributions opens

up the possibility of further optimisations when using a semi-analytical

approach, with the view of implementation in MBS codes.

It is important to keep in context that the latest versions of CONTACT

incorporate advanced numerical techniques to enable faster solving of the

normal contact problem [33]. Using similar numerical optimisation strategies

should permit further improvement in the performance of MIM-1D, and

these will be tested in future developments.

Any simplified method of course brings its own set of drawbacks.

Limitations concerning the generality of contact problems, especially when

using rough profiles, are the most obvious. Considering the pressure

distribution to be symmetric about the x = 0 plane also brings restrictions

on taking into account the effect of the yaw angle. The bottleneck regions

observed in certain cases, related to the abruptly changing curvatures,

may demand supplemental inspections. Further developments must also be

implemented to accurately treat the flange contact, where the contact angle

varies significantly in a small zone, thus violating the half-space assumption.

In terms of the implementation of MIM-1D in the MBS code VOCO,

the algorithm still needs refinement and robustness to compete with an

analytical method such as STRIPES. The eventual implementation should

account for the coupling with the tangential contact problem while taking

the effect of friction into account. This requires specific tangential contact

methods which enable the handling of non-Hertzian contact patches, an

aspect which will be investigated further in Chapter 3. The new approach

does not replace any of the previous ones but adds a new method in the

spectrum of fast versus detailed methods. With proper optimisation, solving

the normal contact problem using only strip elements should enable MIM-1D

to be used as a good reference for other coarse models commonly employed

in dynamic vehicle simulations.
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3.1 Introduction

The quasi-identity assumption enables the separation of the normal and

the tangential wheel-contact problems. The rolling contact problem in the

context of MBS is then solved sequentially: the normal contact followed by

the tangent one [21]. The FASTSIM algorithm [55] is widely used in MBS

software packages for the evaluation of the tangential wheel-rail contact

forces in a steady state. As the algorithm is restricted to Hertzian contact

patches, a strip-based approach is proposed to extend FASTSIM to non-

elliptical contact cases.

The following chapter presents this local approach based on curvature

properties in detail [125], which was first introduced by Ayasse & Chollet

along with the semi-Hertzian method [76]. Different settings for the traction

bound are explored to determine their influence on the contact stresses,

creep forces, and the limits of the saturation zone in the case of wheel-

rail contact. To validate this so-called FASTSIMSH approach, a design of

experiments is constructed for different non-Hertzian contact cases, with

different combinations of the longitudinal, lateral, and spin creepages. The

absolute error in the normalised creep forces is used as the quantity of

interest and compared with the reference results from CONTACT. The

semi-analytical method presented in the previous chapter is combined with

both FASTSIMSH and FaStrip algorithms to investigate their performance

compared to the fully detailed method with a comparison of the tangential

tractions, their directions and the stick-slip zone divisions. Finally, the

influence of the normal contact modelling on the tangential results is also

investigated by using two damage prediction models with the results from

MIM-1D [120] and STRIPES [76].

3.2 Extension of FASTSIM for steady state non-

Hertzian contact

3.2.1 The simplified theory

The FASTSIM algorithm based on Kalker’s simplified theory [55, 57]

is perhaps the most widely used method in railway industry codes for

evaluating the tangential contact parameters. The idea of the simplified

theory is to replace the elastic body by a set of independent springs, as

shown in Figure 3.1. Similar to a Winkler foundation, the tangential surface

tractions pt and the tangential surface displacements ut at a given point are

assumed to be linearly proportional through a flexibility parameter L. Thus:
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ut = Lpt . (3.1)

In a steady state, the relative slip st is defined as:

Figure 3.1: Elastic body represented as a set of independent springs.

Adapted from [21, p. 80]

st = wt −
∂ut

∂x
, (3.2)

with x being the rolling direction in the local reference system. For

concentrated contact problems, the creepages wt at a given point with

coordinates [x, y] are defined using Equation (1.15):

wt = [νx − yφ νy + xφ] , (3.3)

where νx, νy, and φ are the longitudinal, lateral, and spin creepages

respectively.

The slip st is first assumed to be zero in Equation (3.2) and the adhesion

region is supposed to cover the entire contact area. From Equation (3.2) and

Equation (3.3), the longitudinal and lateral displacements ux and uy are then

given as:

ux = (νx − φy)(x− ai) , (3.4)

uy = νy(x− ai) +
φ

2
(x2 − a2i ) , (3.5)

where ai denotes the half-length of the contact patch at the ith y-

coordinate. The contact patch considered in the FASTSIM theory is

Hertzian. Integrating the expressions for the displacements over this
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elliptical contact area C with semi-axes a and b gives,∫∫
C
ux dS = −8

3
a2bνx , (3.6)∫∫

C
uy dS = −8

3
a2bνy −

π

4
a3bφ . (3.7)

Kalker’s linear theory establishes the following expressions for the creep

forces in terms of the three creepages:

Fx =

∫∫
C
px,ns dS = −Gabc11νx , (3.8)

Fy =

∫∫
C
py,ns dS = −Gabc22νy −G(ab)

3
2 c23φ , (3.9)

where G is the modulus of rigidity, and c11, c22, and c23 are Kalker’s

coefficients, which are functions of the Poisson’s ratio ν and the ellipse ratio

b/a. The linear theory is exact for infinitesimal values of creepages. By

multiplying the Equation (3.8) and Equation (3.9) for the creep forces by

the flexibility parameter L, and by comparing them with the Equation (3.1),

Equation (3.6), and Equation (3.7), we obtain, not one, but instead three

expressions for L:

Lx =
8a

3Gc11
, Ly =

8a

3Gc22
, Lφ =

πa
√
a/b

4Gc23
. (3.10)

The expressions of the non-saturated shears ptns are given as:

px,ns = −

(
3

8
Gc11νx −

4

π
Gc23

√
b

a
yφ

)(
ai − x

a

)
, (3.11)

py,ns = −
(
3

8
Gc22νy

(
ai − x

a

)
+

2

π
Gc23

√
abφ

(
a2i − x2

a2

))
. (3.12)

These expressions correspond to the formulation with three flexibilities given

in Equation (3.10), although an alternate formulation is also possible using

only one flexibility parameter [55]. For the total forces, the use of three

flexibilities has been shown to offer better accuracy compared to using a

single flexibility for a range of parameter values (creepages and aspect ratio)

that occur for realistic vehicles [57].

In the FASTSIM algorithm, the ellipse is discretised into strips with

coordinate yi, of width δy and length 2ai. The ith strip itself is discretised

into elements of length δxi as shown in Figure 3.2. For each ith strip, the

tangential tractions pt are deduced iteratively, starting from the leading

88



3.2. Extension of FASTSIM for steady state non-Hertzian contact Chapter 3

edge (j = 0) where the tractions vanish to zero. The expression for the

tractions pta, with adhesion being first assumed at element j, is given by:

ptij,a = ptij−1 − δxi
∂ptij,ns

∂x
, (3.13)

where the partial derivatives of Equation (3.11) and Equation (3.12) are

given as:

∂pxns
∂x

=
1

a

(
3

8
Gc11νx −

4

π
Gc23

√
b

a
yφ

)
, (3.14)

∂pyns
∂x

=
1

a

(
3

8
Gc22νy +

4

π
Gc23

√
b

a
xφ

)
. (3.15)

The magnitude of the traction vector ptij at element [i, j] is limited by the

traction bound, which is Coulomb’s law applied locally:

ptij =


ptij,a, if ||ptij,a|| ≤ µpn ,

ptij,a

||ptij,a||
µpn, if ||ptij,a|| > µpn ,

(3.16)

where µ is the friction coefficient, and pn is the normal pressure.

3.2.2 From FASTSIM over an ellipse to FASTSIM over strips

To extend FASTSIM to non-elliptical patches, certain modifications must be

introduced in the expressions presented in the previous section. First, the

spin term φ associated with the longitudinal creepage νx in Equation (3.3)

vanishes, and the creepages at a given lateral coordinate yi become:

wti = [νxi νyi + xφi] , (3.17)

where the subscript i indicates local values for each strip. If the spin creepage

is supposed to be purely geometric, the neglected term from Equation (3.3)

accounts for the rolling radius variation. This variation is instead considered

in the local expression for the longitudinal creepage νxi. When the contact

angle γi does not vary much over the patch, the contribution of the spin in

the longitudinal component of wti can be approximated as:

yiφ ≈ −yi sin γi
R

=
δri
R

, (3.18)

where R is the nominal rolling radius and δri is the rolling radius variation.

Subsequently, the local expression for νxi, as shown in Figure 3.3, is given

as:

νxi = νx −
δri
R

. (3.19)
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Figure 3.2: The discretisation in FASTSIM

The advantage of the above expression is that it enables taking into account

any form of the rolling radius variation. Moreover, one does not need to

define the origin of the tangent plane explicitly according to a predefined

criterion (initial contact point, location of the maximum pressure or

barycentre of the normal pressure distribution [20]). The assumptions made

in Equation (3.17) and Equation (3.18) still introduce a slight approximation

of the linear theory in Equation (3.11) and Equation (3.12) for the non-

saturated shears, since the νx term is proportional to c11 and φ to c23 in the

original theory [76]. The spin creepage is supposed to be purely geometric,

φi = −sin γi
R

, (3.20)

and the lateral creepage in each strip is similarly given as,

νyi =
νy

cos γi
. (3.21)
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Figure 3.3: Description of the longitudinal creepage νxi for a strip located

in yi. From [76]

Equation (3.11) and Equation (3.12) for non-saturated shears ptns are

modified by defining each parameter as a function of local curvatures,

px,ns = −3

8
Gc11iνxi

ai
a

(
ai − x

ai

)
, (3.22)

py,ns = −3

8
Gc22iνyi

ai
a

(
ai − x

ai

)
− 2

π
Gc23i

√
ni
mi
φiai

ai
a

(
a2i − x2

a2i

)
,

(3.23)

where m and n denote the Hertzian coefficients for the longitudinal and

lateral semi-axes respectively. For non-elliptical patches, the ratio of the

longitudinal semi-axes ai/a is replaced by a coefficient ki, between zero and

one, whose value is ai/a in the case of an elliptical patch.

For convenience, the original FASTSIM algorithm uses normalised

creepages as input, which are defined as the ratio of the non-saturated forces

by the Coulomb’s limit, both expressed over the ellipse [55]. The output of

the algorithm are the normalised creep forces ft:

fx =
Fx
µN

, (3.24)

fy =
Fy
µN

, (3.25)

where N denotes the normal force acting over the contact patch.

A similar procedure is used when extending FASTSIM to non-elliptical

contact patches, the difference being that the normalised creepages are

expressed for each individual strip. In order to derive the expressions of

these entries of FASTSIM, the non-saturated forces Fti,ns are deduced from

the summation of Equation (3.22) and Equation (3.23) over each strip. Thus,

Fxi,ns = −3

4
Gc11iaikiδyiνxi , (3.26)

Fyi,ns = −3

4
Gc22iaikiδyiνyi −

8

3π
Gc23ia

2
i ki

√
ni
mi
δyiφi . (3.27)
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The normalised forces fti,ns, and the associated normalised creepages Axi,

Ayi, and Aφi are finally defined as,

fxi,ns =
Fxi,ns
µiNi

= −Axi , (3.28)

fyi,ns =
Fyi,ns
µiNi

= −Ayi −Aφi , (3.29)

where Ni denotes the normal force acting over each strip.

The final adjustment to the original FASTSIM algorithm concerns the

choice of the traction bound. Here, several possibilities may be explored:

taking the traction bound either as parabolic or semi-ellipsoidal in the

longitudinal x direction. According to Hertz theory, pn is semi-ellipsoidal.

However, a parabolic traction bound has been shown to present better

results in terms of the division of the stick-slip zones [55, 57]. Through

some mathematical manipulation, the expression of the normal pressure

distribution pn,p corresponding to the choice of a parabolic traction bound

in terms of normal force per strip is given as,

pn,p =
32

9π
ki
3

4

Ni

aiδyi

(
a2i − x2

a2i

)
. (3.30)

Similarly, the expression for the semi-ellipsoidal normal pressure distribution

pn,e is given as,

pn,e =
2

π

Ni

aiδyi

√
a2i − x2

a2i
. (3.31)

Using a parabolic expression can sometimes lead to cases where the shears

exceed the elliptic traction limit, which in turn implies that Coulomb’s law

is violated. In the proposed approach, the normalised output is weighted

using the Hertzian expression to be coherent with Coulomb’s theory. The

weighing process consists in multiplying the shear stresses obtained using

FASTSIM with a parabolic traction bound by the ratio pn,e/pn,p. This

weighted parabolic traction bound ensures that the condition ||pt||
µpn,e

≤ 1

is verified everywhere within the contact patch. The extended method is

subsequently referred to as FASTSIMSH , where the subscript denotes the

idea of the semi-Hertzian approach.

3.3 Results and discussion

In the following sections, the FASTSIMSH algorithm is tested in different

contexts. In the first case, numerical experiments are carried out to
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determine the optimal settings for the traction bound. A design of

experiments approach is subsequently used to validate the algorithm

by comparing the obtained creep forces to the results obtained using

CONTACT. Comparisons are also made with the FaStrip algorithm

described in Chapter 1 when using MIM-1D for the normal contact results.

Finally, the influence of normal contact modelling on damage prediction is

studied briefly.

3.3.1 Numerical experiments to determine the traction

bound

To demonstrate the effect of the different settings for the traction bound,

we consider a non-Hertzian contact case using worn profiles of the wheel-

rail pair S1002-UIC60 with an inclination 1:40 [126]. The nominal rolling

radius is taken as 460 mm. The material properties are those of steel, with

the modulus of rigidity G = 81890 MPa, and the Poisson’s ratio ν = 0.27.

The coefficient of friction µ is taken as 0.3. A multibody simulation of

the passenger vehicle from the Manchester Benchmark [127] running on

a curved track is used to obtain the steady state input parameters. The

normal contact force is 78.5 kN. The lateral position of the wheel over the

rail ∆y = 5.8 mm, where a positive value indicates an outward movement

of the wheel. The creepage values are taken as νx = 0.58 ‰, νy = 0.061

‰, and φ = 0.274 m−1, with the origin located at the point of geometrical

contact.

The normal contact results for the considered wheel position and normal

contact force are determined using CONTACT. The tangential stresses,

their directions and the stick-slip zone division using the various available

options are presented in Figure 3.4. The advantage of using a parabolic

traction bound as opposed to a semi-ellipsoidal one is clear, which is also

consistent with the results obtained previously by Kalker [55] and Vollebregt

[57]. Nevertheless, the parabolic traction bound sometimes results in cases

where the tractions exceed Coulomb’s limit. The weighted parabolic traction

bound ensures that the condition ||pt||
µpn,e

≤ 1 is verified everywhere within the

contact patch, as seen in Figure 3.4. The contact stresses and directions

using the weighted parabolic setting can be observed to be in a relatively

good agreement with the reference results obtained using CONTACT. The

presented approach also provides an adequate estimation of the stick and

slip zones, which is denoted using the solid line.
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(a) (b)

(c) (d)

Figure 3.4: Tangential tractions, their directions, and the stick-slip zone

division using different settings for the traction bound: (a) CONTACT,

(b) FASTSIMSH with semi-ellipsoidal traction bound, (c) FASTSIMSH

with parabolic traction bound, and (d) FASTSIMSH with weighted

parabolic traction bound

3.3.2 Validation of FASTSIMSH using CONTACT

In MBS codes, the creep forces rather than the contact stresses are

used during online vehicle dynamics simulations. The original FASTSIM

algorithm provides a good, fast estimation of the tangent forces, which is one

of the reasons for its popularity. To evaluate the performance of the extended

FASTSIMSH algorithm, we consider a combination of all three creepages

within a range of realistic values. The longitudinal and lateral creepages are

assumed to vary between 0 and 5 ‰, and the spin creepage from 0 to 5 m−1.

In the statistical studies presented in [57] and [116] for Hertzian contact

patches, the ellipse ratio is considered as an additional varying parameter.

Introducing a contact patch parameter in a non-Hertzian case is not so
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Figure 3.5: Absolute error in the normalised contact forces computed with

the FASTSIMSH algorithm w.r.t. CONTACT

simple, where the normal contact results differ considerably depending on

the method that is used [120]. We restrict ourselves to the five different

wheel positions for the nominal S1002-UIC60 (1:40) profiles, as done in

Chapter 2. Moreover, the normal contact results from CONTACT are used

as the input for the FASTSIMSH algorithm. A design of experiments is

constructed with 1000 simulations for each considered contact patch1, using

the FASTSIMSH algorithm with the weighted parabolic traction bound, and

CONTACT. A uniform grid with a discretisation of approximately 0.58 mm

is used for CONTACT. The same discretisation is used for FASTSIMSH

in the lateral direction. In the longitudinal direction, two settings for the

discretisation are used, with either 10 or 50 elements being considered for

each strip. The absolute error in the normalised creep forces with respect to

CONTACT, |fFASTSIMSH
x,y −fCONTACT

x,y |, as given by Equation (3.24), is used

as the quantity of interest to be assessed, and is presented in Figure 3.5 as

a function of the percentage of the total tested cases.

For the case of the normalised lateral creep forces fy, the maximum

absolute error using 10 elements seems relatively high at around 0.18,

although this drops significantly to about 0.06 for approximately 98% of

the tested cases. Using mx = 50, the absolute error in fy is found to be

15000 simulations in total
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less than 0.075 for all the tested cases, and similarly drops to below 0.03 for

about 98% of the simulations.

In the case of the normalised longitudinal creep forces fx, the absolute

error follows a similar trend, with comparatively better results. The error is

found to be below 0.085 and 0.045 for all the tested cases using 10 and

50 elements respectively, which drops to below 0.02 for 90% of all the

simulations that are carried out. In a previous study for a unique non-

Hertzian case, different normal contact methods were used and the error in

normalised creep forces was found to be less than approximately 0.1 for all

the simulations using FASTSIMSH [125]. The improvement in the results

presented here is unsurprising, as the effect of the normal contact modelling

is eliminated through the use of the reference program CONTACT for the

tangential input parameters. In general, with a moderate discretisation

being used in the longitudinal direction, the results of the FASTSIMSH

seems to agree relatively well with the performance of the original FASTSIM

algorithm for Hertzian contact cases [57].

3.3.3 Combination of MIM-1D with a rolling contact model

In the following section, the semi-analytical method MIM-1D presented

in Chapter 2 is combined with the FASTSIMSH as well as the FaStrip

algorithms. The performance of both algorithms is compared to the fully

detailed method through a comparison of the tangential tractions, their

directions and the stick-slip zone divisions. Three contact models are

considered to focus on the influence of the normal contact modelling on

the tangential contact results. We have:

1. The CONTACT software [24] based on Kalker’s complete theory for

the contact between two elastic half-spaces [87], which is used as the

reference;

2. The semi-analytical normal contact method MIM-1D [120] with

FASTSIMSH [125];

3. The semi-analytical normal contact method MIM-1D [120] with

FaStrip [58, 72].

Using the nominal S1002-UIC60 (1:40) profiles, two lateral positions of

the wheel with respect to the rail are considered, with ∆y = 0 mm and

∆y = −1 mm respectively, which result in two different non-Hertzian contact

cases. The normal contact results for different wheel positions using the

various available normal contact methods have already been presented in
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(a) ∆y = −1 mm
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Figure 3.6: The normal pressure distribution over the contact patch using

CONTACT and MIM-1D for given wheel positions: (a) ∆y = −1 mm, and

(b) ∆y = 0 mm

Chapter 2. Here, the normal pressure distribution over the contact area

for the two aforementioned wheel positions using CONTACT and MIM-1D

are presented in Figure 3.6 and can be noted to agree closely. The normal

contact force is 78.5 kN. The creepage values are taken as νx = 0.5 ‰, νy = 0

‰, and φ = 0.05 m−1, with the origin located at the point of geometrical

contact.

The tangential stresses, their directions and the stick-slip zone division

for the two cases are presented in Figure 3.7. Both FASTSIMSH and FaStrip

provide reasonably good estimations of the tangential contact results when

compared to reference results from CONTACT. In general, FASTSIMSH

tends to slightly underestimate the tangential tractions, while FaStrip tends

to slightly overestimate them for both of the considered wheel positions.

This trend has also been observed for other contact results not presented

here, and is not surprising when compared to the results already available

in the literature [72, 125]. The stick and slip zone division, represented
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(a) ∆y = −1 mm (b) ∆y = 0 mm

Figure 3.7: Tangential tractions, their directions, and the stick-slip zone

division using CONTACT, FASTSIMSH , and FaStrip for given wheel

positions: (a) ∆y = −1 mm, and (b) ∆y = 0 mm

98



3.3. Results and discussion Chapter 3

FASTSIMSH FaStrip CONTACT

∆y = −1 mm

{
|fx| 0.344 0.321 0.337

|fy| 0.052 0.059 0.063

∆y = 0 mm

{
|fx| 0.409 0.397 0.407

|fy| 0.051 0.059 0.066

Table 3.1: Comparison of absolute normalised longitudinal and lateral

creep forces using different rolling contact models presented in Figure 3.7

by the solid line in Figure 3.7, also follows the same trend, with a slight

overestimation in the case of FaStrip and a slight underestimation with

FASTSIMSH . The shear stress distribution is compared by plotting the

longitudinal and lateral shear stresses px and py for the considered contact

cases along the rolling direction at different lateral coordinates. These results

are presented in Figure 3.8 and Figure 3.9. FaStrip tends to capture the non-

linear distribution of the shear stress in the stick area, which is one of the

prominent advantages of using the strip theory. The shear stress distribution

using FASTSIMSH is also non-linear due to the weighting process, however,

it is captured less accurately as compared to FaStrip. Concerning the

longitudinal and lateral creep forces, both contact models provide similar

results, as shown in Table 3.1.

3.3.4 Comparison of rolling contact models used for damage

prediction

In most cases, using the detailed integral relations implies that the normal

stress distribution and the contact patch obtained using MIM-1D agree more

closely with the fully detailed method based on Kalker’s complete theory [21]

as compared to the simplified analytical approaches. This is an advantage

when the interest of the user lies in the prediction of damage or fatigue

analysis, which require the contact stresses instead of the total normal forces.

To highlight this advantage, two different approaches are used to evaluate

the damage within the wheel-rail contact area. In the first model, an energy

index presented in [128] and denoted as EI, is used locally for each element.

This permits the introduction of the local spin creepage:

EI = px(x, y)[νx − φy] + py(x, y)[νy + φx] . (3.32)

The second model used for the damage prediction is based on the idea

that energy dissipated at the contact patch could also be the source of
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Figure 3.8: Longitudinal and lateral shear stresses for the wheel position

∆y = −1 mm at the lateral coordinate y = 0 mm

-10 -5 0 5 10
0

100

200

300

 p
x
 (

M
P

a
)

CONTACT

FASTSIM
SH

FaStrip

-10 -5 0 5 10

Rolling x-coord (mm)

-20

0

20

p
y
 (

M
P

a
)

Figure 3.9: Longitudinal and lateral shear stresses for the wheel position

∆y = 0 mm at the lateral coordinate y = −11.59 mm
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Figure 3.10: Derived RCF damage index as a function of Tγ . Adapted

from [129]

damage and crack initiation. This model is characterised by the calculation

of the wear number, denoted as Tγ , which is an estimator of the dissipated

energy per metre of the distance travelled [129]. The value of Tγ helps

in identifying regions where material removal through wear would be the

dominant process, and those regions where the rolling contact fatigue (RCF)

damage would be likely to accumulate, which is highlighted in Figure 3.10.

In the region of mild wear, it can be assumed that the energy would be

likely to contribute to damage, whereas in the severe regime, cracks which

were about to initiate would be removed by the process of severe wear.

Furthermore, fatigue damage can also be extended to incorporate crack

propagation prediction1 [128]. The expression for Tγ is given as:

Tγ = Fxνx + Fyνy , (3.33)

where νx and νy are the longitudinal and lateral creepages respectively,

while Fx and Fy are the longitudinal creep force and the lateral creep force

respectively. While some authors additionally consider the product of the

spin moment with the spin creepage in Equation (3.33), for example, in

[24] or [130], the influence of this term for railway dynamics applications is

generally negligible compared to the previous two.

Similar to the previous section, three contact models are used to present

the tangential contact results. As the goal here is to investigate the influence

of the normal contact method on the damage prediction, this time we

include the semi-Hertzian method STRIPES. The two positions considered

1This is only valid for small cracks, as it ignores the characteristic that crack growth rate

is influenced by crack size
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Figure 3.11: Normal and tangential contact results using STRIPES with

FASTSIMSH for the wheel positions: (a) ∆y = −1 mm, and (b) ∆y = 0

mm
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previously are such that the first one (∆y = 0 mm) corresponds to a case

where the normal contact results using all three approaches are close to each

other, and the second one (∆y = −1 mm) such that the analytical approach

STRIPES leads to a comparatively large discrepancy with MIM-1D and the

reference results from CONTACT. The normal pressure distribution, the

tangential tractions, their directions and the stick-slip division when using

STRIPES for the two wheel positions are shown in Figure 3.11, which are

to be compared with those presented in Figure 3.6 and Figure 3.7. Here,

FASTSIMSH is used as the tangential contact method, although as shown

in the previous section, using FaStrip should lead to more or less similar

results. The different contact models considered this time are:

1. The CONTACT software;

2. The semi-analytical normal contact method MIM-1D with

FASTSIMSH ;

3. The analytical semi-Hertzian method STRIPES with FASTSIMSH .

The energy index distribution using the three contact models for the

considered wheel positions are presented in Figure 3.12.

At ∆y = 0 mm, the three contact models can be observed to be in

relatively good agreement with each other. This is not surprising, as the

normal contact results for the three approaches match closely. Nevertheless,

the more evenly distributed normal pressure obtained using STRIPES means

that the peak of the energy distribution at around yc = −11 mm is

underestimated compared to the other two models.

The results at the wheel position ∆y = −1 mm are visibly different,

which is linked to the dissimilarities in the normal contact results. MIM-1D

and CONTACT are observed to be in good agreement with each other. The

peak of the energy index using STRIPES is approximately of the same order,

which corresponds to the normal pressure results presented in the previous

chapter. However, the underestimation of the contact patch implies that

a large zone undergoing the majority of the energy dissipation is entirely

missed.

To present the results using the Tγ model, steady state input parameters

for the different contact models are obtained through a multi-body

simulation of the passenger vehicle from the Manchester Benchmark [127]

running on the curved track shown in Figure 3.13. This track consists of

a straight section, followed by a transition zone, and finally by a curve

with a constant radius of 245 m. The curve transition is 25 m long with a

linearly increasing curvature. The vehicle speed is taken as 100 km/h and
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Figure 3.12: The energy index EI distribution over the contact patch

using CONTACT, MIM-1D, and STRIPES for the wheel positions: (a)

∆y = −1 mm, and (b) ∆y = 0 mm
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Figure 3.13: Horizontal curvature for the left-curved track, wheel position

over the rail ∆y, and the normal contact forces N as functions of the track

position

the coefficient of friction is 0.3. The wheel-rail contact properties are the

same as those considered in the previous cases.

The wheel position over the rail ∆y and the normal contact force as

functions of the track position for the right wheel of the leading wheelset

are shown in Figure 3.13. These two parameters are used to determine

the normal contact results including the contact patch dimensions, the

normal pressure distribution, and the normal force per strip. The global

longitudinal, lateral and spin creepage values used to determine the

longitudinal and lateral creep forces are shown in Figure 3.14.

As in the case of the EI model, the creep forces are evaluated using

the FASTSIMSH tangential contact method, and compared to the reference

results from CONTACT. The longitudinal and lateral creep forces as

functions of the track position are presented in Figure 3.15. The creep

forces can be observed to be in relatively good agreement with the reference

results. This is expected as the FASTSIMSH algorithm has been shown to

provide a good estimation of the tangential contact forces [125]. In general,

MIM-1D provides values that are relatively closer to the CONTACT results

as compared to STRIPES linked to the better estimation of the normal

contact results. Figure 3.16 shows the evolution of the wear number Tγ as

a function of the vehicle’s position in the track. Variations begin to appear
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Figure 3.14: The longitudinal and lateral creepages, and the spin creepage

as functions of the track position
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Figure 3.15: The longitudinal and lateral creep forces as functions of the

track position
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Figure 3.16: Evolution of the wear number Tγ as a function of the track

position

between the three approaches about halfway through the curve transition as

the wheel moves outwards. This zone also corresponds to a high variation in

the longitudinal, lateral and spin creepages. The steady state values a few

metres after the end of the transition zone seem to be in better agreement

with each other. While the Tγ model provides a good fast estimate of the

damage conditions, it is not easy to convincingly separate MIM-1D and

STRIPES based on it alone, which explains the need of detailed approaches

such as the EI model when a more thorough investigation is required.

3.4 Conclusions

Two non-elliptical tangential contact methods, namely the FASTSIMSH and

the FaStrip algorithms, are coupled with the semi-analytical method MIM-

1D [120] presented in Chapter 2. The FASTSIM algorithm based on Kalker’s

simplified theory [55] has been adapted to be used in the case of steady

state non-Hertzian contact by using the local geometric properties of the

interacting bodies. It may be noted that other variants of FASTSIM for

non-elliptical patches exist [74], but they are rather based on mean curvature

as opposed to local ones, and the derivation of creepages is carried out

differently.

The FASTSIMSH approach is presented in detail and validated here.
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The tangential tractions, their directions and the stick-slip zone divisions

obtained with both the FASTSIMSH and the FaStrip approaches have been

compared for different wheel-rail contact cases, using the results from the

program CONTACT [24] as the reference. The following global conclusions

can be made subsequently:

• Numerical experiments are carried out to investigate the influence of

different settings used for the traction bound in FASTSIMSH . A new

variant is introduced using a weighing process which shows better

results than the formulation proposed in the original algorithm in

cases where the parabolic traction bound setting violates the local

Coulomb’s law. At the same time, the stick-slip zone division retains

the merits of the parabolic setting used in the original algorithm;

• The FASTSIMSH has been validated through a design of experiments

approach, considering different non-Hertzian cases with various

combinations of the three creepages. The absolute error in the

normalised creep forces is used as the quantity of interest. This error is

found to be within an acceptable range, and corresponds well with the

results already present in the literature for Hertzian contact [57, 116].

The absolute error in fy is found to be less than 0.075 for all the tested

cases, and drops to below 0.03 for about 98% of the simulations. For

fx, this error is found to be 0.045 for all the tested cases, which drops

to below 0.02 for 90% of all the simulations that are carried out;

• The FASTSIMSH and FaStrip algorithms provide comparable creep

forces results for two methods that are based on different theories.

FASTSIMSH uses a direct extension of the FASTSIM method, by

using parameters defined in every strip. The FaStrip algorithm uses

a corrected strip theory [59] for the tractions, and the FASTSIM

algorithm to determine the stress directions in the slip region.

Although the creep force results are comparable, the non-linear

pressure distribution in the strip theory corresponds better with the

detailed method used in CONTACT as compared to FASTSIMSH ;

• As the basic principle remains more or less the same, FASTSIMSH

is as fast as the original algorithm, and the same is also true for

FaStrip. From the point of view of implementation in MBS codes, the

FASTSIMSH method provides a relatively straightforward approach,

with the global parameters used in the original FASTSIM approach

replaced by their local values. FASTSIM is already widely used in the

108



3.4. Conclusions Chapter 3

railway industry, and using the presented method should offer a good

procedure for its extension to non-Hertzian contact patches;

• The influence of the normal contact modelling on the tangential

results is investigated by using two damage prediction models. The

normal contact results from MIM-1D and STRIPES are used with

FASTSIMSH and compared with CONTACT. Using the wear number

Tγ does not permit a clear differentiation between the two methods,

however, it provides a fast quantitative assessment of the damage

conditions in vehicle dynamics simulations. For applications where

a detailed investigation of the wear conditions in the contact patch is

required, a more thorough indicator such as the energy distribution

index may be used.

The new normal contact method MIM-1D coupled with either

FASTSIMSH or FaStrip represents a new solution for the whole rolling

contact problem, providing better results than the existing approximate

methods usually implemented in MBS codes. This is accomplished with less

computing effort than the reference method implemented in CONTACT.

The ultimate proof is to certify these rolling contact models through their

implementation in an MBS software, which would enable wide-ranging

studies not limited to the theoretical cases generally investigated in the

literature.

Parallel to the development of new contact methods, the existing one

in the MBS code VOCO has been benchmarked in an international study

dedicated to switches and crossings [102]. The next chapter describes

the approach used in VOCO to model the wheel-rail contact as well as

the railway dynamics. The results of the benchmark are also presented

briefly. Following the benchmark, a study of wheel-rail contact methods in

switches and crossings has been initiated with other universities. This study

represents another benchmark, exploring in more detail the results provided

by STRIPES and the Kik-Piotrowski methods described in Chapter 1. Some

results are also compared with the new normal contact method MIM-1D.
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4.1 Introduction

In continuation of the general overview on railway MBS presented in Chapter

1, this chapter begins by looking at the different steps of modelling and

simulation of railways systems when using the MBS code VOCO. This is

followed by the application of VOCO to handle two different cases studies

in railway vehicle dynamics. The first case deals with the participation in an

international benchmark of different commercial and academic MBS codes

for simulations concerning switches and crossings (S&C), which require

specific considerations. Following the benchmark, the assessment of wheel-

rail contact modelling has been particularly addressed in a collaborative

study with other universities, with special emphasis on non-Hertzian contact

and impact loads.

4.2 The MBS software VOCO

The multibody systems simulation code VOCO has been developed

extensively at the Université Gustave Eiffel over the past three decades

under different variants, specialising in wheel-rail contact and dynamics of

railway vehicles. It is mainly dedicated to mechanical engineers working in

the railway sector, as well as to railway operators, suppliers of rolling stock

and track infrastructure, or design engineers and project managers of new

systems, working on new or existing railway lines.

Through various ad hoc and proficient algorithms, VOCO is usually

in the range of achieving real-time simulation rates, despite being mainly

developed to implement advanced contact models in the past few years

[131]. The possibility of carrying out more sophisticated simulations exists

nevertheless, primarily for the multibody modelling of the track, mainly

in response to the demands of the railway industry. The following sections

outline the different steps of modelling and simulation using VOCO, defining

the different functions that can be handled by this software, the user settings,

and the main software output.

4.2.1 Software features

The software features of VOCO are governed by a great number of options.

Several variants are present, as shown in Table 4.1, depending on the

intended application and the desired level of complexity for the models to

be simulated. For instance, several dynamic conditions may be considered,

including constant acceleration, free acceleration, user imposed speed law,
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or braking/traction scenarios. Different types of vehicles may be considered

when carrying out simulations, mainly railway, but also rubber-tyred

tramway, rubber-tyred metro, or Guided Light Transit (French: Transport

sur Voie Réservée or TVR).

Wheelsets represent special types of bodies as they are connected to

the track through the rolling contact model. In addition to the common

properties (mass, inertia, centre of gravity, external forces), a given wheelset

may have rigidly connected wheels, independent wheels (where the rotations

of the two wheels are independent of each other), or connected wheels

with torsional elasticity (where the left and right wheel rotations are linked

through a linear stiffness). A given wheelset can also be a motored wheelset

(always with brakes), a carrier wheelset, a carrier wheelset without brakes,

or a motored wheelset with motor on the left/right side (and brakes). One

can assign a relative difference in nominal rolling radius between the left

and right wheels, which can be important when taking a curve, passing

through S&C, or when traversing a particular track defect. Considering

flexible bodies (excluding the wheelsets) is possible via flexible body files

generated from FE models via a modal reduction approach.

Bodies are linked together by connecting links and VOCO provides about

ten types of connection elements, including unidirectional bi-slope springs

with play, tridirectional springs and dampers, non-linear unidirectional

spring with play, non-linear spring with asymmetric plays, air cushions, bi-

slope dampers with stiffness in series and play, unidirectional or bidirectional

elements with controlled dry friction etc.

Theoretical or measured track geometries may be considered. A

theoretical track can be divided into a number of horizontal and vertical

zones. For each horizontal zone, the zone length, the radius at the end of

the zone, the cant at the end of the zone, and the gauge variation at the end

of the zone may be defined. Similarly, for each vertical zone, the zone length,

the zone start radius, and the zone end radius can be prescribed. Several pre-

defined forms (dips, troughs, bumps etc.) as well as user defined functions

can be introduced as track defects at a chosen longitudinal position in the

track. In the standard use of VOCO, no dynamic track model is considered

and the vibratory behaviour of the track is not taken into account within the

time loop. When the track dynamics are considered, options are provided

to take into account track dynamics without roll, track dynamics with roll,

track dynamics with structure, and track dynamics via the co-simulation

approach with an FE model of the track. Each of these models uses a cyclic

representation of the track, except for the co-simulation.

The fairly complex modelling, as well as the reliable behaviour of the
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Feature Options

Dynamic conditions Constant acceleration, free acceleration, user imposed

speed law, braking/traction

Vehicle model Railway, Guided Light Transit (GLV), rubber-tyred

tramway, rubber-tyred metro; rigid or flexible body

Wheelset model Rigid, rigid with independent wheels, torsional elastic

wheelset

Wheelset drivetrain Motored, carrier, carrier without brakes, left motored,

right motored

Connecting links About ten types of connections consisting of springs

and dampers with different dofs, linear or non-linear

Track geometry and

defects

Theoretical or measured

Dynamic track model Track dynamics without roll, track dynamics with roll,

track dynamics with structure, track dynamics with

the co-simulation approach

Normal contact Multi-Hertzian, semi-Hertzian, semi-Hertzian with

roll, semi-Hertzian with separation of rails

Tangential contact CHOPAYA, Shen-Hedrick-Elkins, Polach, Polach with

falling friction

Material behaviour at

contact

Elastic, perfect plasticity

Contact stiffness model Vertical and lateral springs and dampers with stiffness

and damping coefficients constant or variable with the

track position

Friction model Locally variable (flange/tread, strips), variable as

a function of the track position, transient with an

adhesion recovery model, variable as a function of

creepage and speed

Variable rail profiles S&C, check rail

Table 4.1: Overview of the different features in VOCO
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Figure 4.1: Definition of a vehicle model in VOCO

different contact models, is one of the main strengths of VOCO. The normal

contact is handled either through the semi-Hertzian (STRIPES) method

[76] or the multi-Hertzian approach [53]. The STRIPES method, described

in Section 1.4.2.3, is slower compared to the multi-Hertzian approach (in

the order of around 5 times), but allows precise calculation of contact

stresses with elliptical as well as non-elliptical contact patches. Options are

provided to take the roll into account, or the separation of rails when the

rail profile consists of multiple bodies (as in the case of S&C) and dynamic

track model is considered. The multi-Hertzian approach is faster than real

time, and generally sufficient if one is mainly interested in the overall results

(accelerations, wheel-rail contact forces, forces in the connecting elements).

The contact patches in this case are, however, restricted to ellipses, although

multiple contact can be handled.

The tangential contact parameters may be computed using the

CHOPAYAmethod, which is a functional approximation of the FASTSIMSH

approach described in Chapter 3. Similar to the Shen-Hedrick-Elkins (SHE)

method [61], CHOPAYA evaluates the creep forces using empirical relations

for given values of the local normalised creepages per strip. This functional

approximation of FASTSIMSH may also be used in a Hertzian context, and

it better approximates FASTSIM than the SHE method the when spin is

significant. Options are also provided to use the SHE method, the Polach

method [62], or the Polach with falling friction method [71], although these

are limited to the multi-Hertzian approach. The material behaviour within

the contact patch may be elastic or perfectly plastic [132].
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4.2.2 User settings

4.2.2.1 Vehicle and track modelling

The vehicle model in VOCO is represented as a set of bodies connected

by links. The model classically consists of three levels of solids, with

carbodies, intermediate solids (which include bogie frames, motors) and

wheelsets. Each layer is assigned a number, as shown in Figure 4.1, using the

indices (I, J,K) such that (I, 0, 0) always refers to a carbody, (I, J, 0) always

represents an intermediate structure, and (I, J,K) refers to a wheelset. For

each solid, the mass, inertia, and centre of gravity properties are defined

by the user and stored in the vehicle model file. It is also possible to

apply an external force on a solid. If the body flexibility is taken into

account, the associated flexible body file is linked to the vehicle model. The

Matlab interface allows the computation of the eigen frequencies, modal

damping, and the visualisation of the eigen modes, which serves as a model

verification tool as well as for the computation of the linear critical speed.

This critical speed is defined as the speed above which the hunting motion

becomes unstable. Saving the model results in the calculation of the static

equilibrium of the vehicle, which is necessary as the subsequent dynamic

calculations are made from an equilibrated vehicle, with initial static pre-

loads [133].

The track geometry and the track defects (if applicable) are also specified

at the input stage. If a dynamic track model is considered, the corresponding

track model file is included in the input.

4.2.2.2 Wheel-rail contact

For the wheel-rail contact, both theoretical and measured wheel and rail

profiles may be used. These profiles are smoothed to avoid numerical

artefacts, and the degree of smoothing is defined by the user at the input

stage. The contact parameters of STRIPES and CHOPAYA are pre-

tabulated. The user defines the interval of lateral movements of the wheel

relative to the rail ∆y, the number of strips used to discretise the rail profile,

as well as whether a search for gaps or discontinuities must be performed,

which is useful when considering S&C profiles.

The strips are not distributed at random: the zones in contact are

determined under a large virtual load. Zones where there is no contact

are coarsely meshed. Conversely, a finer mesh is used in zones with close

and conformal contact. The option for a uniformly distributed mesh is also

available. These settings are used for the creation of the contact tables. The
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Figure 4.2: Description of the different properties pre-tabulated in the

contact tables for a given position of the wheel ∆y

input parameters for the normal and tangential contact algorithms are stored

in the contact tables file. For any cross-section and any lateral position of the

wheel, the geometric contact properties used in the normal and tangential

contact algorithms are pre-tabulated as a function of the index of the cross-

section, the index of the wheel, left/right side, the index of the strip, and

the index of ∆y. The different properties pre-tabulated in the contact tables

are presented in Figure 4.2. In the time loop, a linear interpolation of these

properties is used between two given cross-sections and two given lateral

positions of the wheel.

For the creation of contact files, the rail cross-sections are represented

by cubic splines. To ensure a consistent interpolation between two cross-

sections, as in the case of S&C, the profiles are automatically divided into

bodies. For example, in the crossing shown in Figure 4.3 (not to scale), the

wing rail and crossing nose are coloured red and blue, respectively. One

spline is used per body. The strip discretization is indicated by the coloured

zone in Figure 4.3. In the lateral direction, rail profiles are discretised using

strips. The same number of strips is assigned to each body.

The wheel dynamics in VOCO is coupled to the rolling contact model

through a combination of springs and dampers in the lateral and vertical

directions, with spring stiffness Ky,z and the damping coefficients Cy,z such

that:
Y = −Ky(yw − yc)− Cy(ẏw − ẏc) ,

Q = −Kz(zw − zc)− Cz(żw − żc) ,
(4.1)

where Y and Q represent the lateral and vertical wheel-rail forces,

respectively, yw and zw denote the lateral and vertical positions of the wheel

deduced from the dofs of the wheelset, respectively, while zc and yc are the

vertical and lateral displacements of the wheel at the mean contact level,
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Figure 4.3: Example of profile discretization and separation into different

bodies for a crossing in VOCO

respectively. yc is defined such that:

yc = yr ±∆y , (4.2)

where yr is the lateral position of the rail as prescribed by the track geometry

and the defects as well as the track dynamics model if applicable. The ±
symbol is related to the adopted convention of a positive ∆y corresponding

to an outward movement of the wheel. Due to the addition of Equation (4.1),

two auxiliary dofs per wheel are added to the dofs of the wheelset: the lateral

position yc and the vertical interpenetration δtz seen in Section 1.4.2.3. zc
is defined such that:

zc = zr + tz , (4.3)

where zr represents the vertical motion of the rail as prescribed by the track

geometry and the defects as well as the track dynamics model if applicable.

tz denotes the wheel vertical kinematics with respect to the rail, as shown

in Figure 4.4. In the case of S&C, tz also varies as a function of the track

position and plays an important role in the vertical dynamics.

For the crossing shown in Figure 4.3, due to its conicity, the wheel

descends as it rolls along the wing rail, which is presented by the red curve
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Figure 4.4: Wheel vertical kinematics with respect to the rail

in Figure 4.5. The wheel starts climbing as it touches the crossing nose,

which is denoted by the blue curve. tz is then defined as the maximum

of both curves. The sudden change of the slope is the main excitation in

a crossing when the vehicle takes the tangent track (∆y ≈ 0). tz is pre-

tabulated as a function of ∆y and the index of the cross-section. The

stiffness and damping parameters Ky,z and Cy,z are user defined, depending

on the simulation conditions, for instance, if the wheel passes over a defect,

or whether a dynamic track model is included in the simulation. The stiffness

and damping coefficients can either be constant for the entire duration of

the simulation, or variable as a function of the track position.

Several options may also be used for the friction model. The coefficient of

friction can remain constant throughout the simulation, with values defined

on the tread and flange regions globally, or locally in each strip. The

friction values can also be variable as a function of the track position. The

adhesion recovery model described in [134] is also a possible option, where

the coefficient of friction is both space and time dependent. Using Polach’s

falling friction model [71], it is also possible to define friction as a function

of the creepage and the vehicle speed.

In addition to the initialisation parameters mentioned above, the global

dynamic settings defined by the user at the initialisation stage include

the vehicle speed, the acceleration (imposed or free), the duration of the

simulation, the frequency of output storage, and the time step used for the

solution of the equations of motion.
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Figure 4.5: Variation of tz as a function of the distance in the case of

crossing, for ∆y = 0

4.2.3 Software output

The software output may be divided into two parts, with global results for

the vehicles, and the local results related to the wheel-rail contact, as shown

in Table 4.2. The global output includes the wheel-rail contact forces for

each wheel, the displacements, the velocities and the accelerations of each

body in the MBS, as well as the resulting forces in the connecting links.

With regard to the local contact results, options are provided to visualise the

normal and tangential contact forces per strip for each wheel, the creepages

for each wheel, as well as the contact patches and contact stresses at a given

longitudinal position in the track.

4.3 The switches and crossings benchmark

The earliest railway networks used sliding rails to move vehicles between

tracks until the railway switch was invented in the early 19th century.

Switches and crossings (S&C), also known as turnouts, are now integral

components of the railway infrastructure. S&C enable a railway vehicle

travelling along a given rail to pass over or “switch” to the rail of a track

which crosses its path, and thus ensure a fluid railway traffic operation.

A train can traverse the turnout in a straight line without changing its
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Scope Output quantities

Global Wheel-rail contact forces

Displacements, velocities, and accelerations of each body

Forces in the connecting links

Local Normal and tangential contact forces per strip for each wheel

Longitudinal, lateral and spin creepages per strip for each

wheel

Contact patches and contact stresses

Table 4.2: Overview of the different output provided by VOCO

direction, called the through route, or run along the curve, which is called

the diverging route. As opposed to the rest of the network, there is usually

no cant to compensate curving acceleration in S&C. Moreover, there is no

transition zone between the tangent track and the curve of constant radius.

This implies that high lateral contact forces are usually observed in the

diverging route.

A few important components of a turnout are shown in Figure 4.6. A

switching machine or an actuator is used to operate the movable switch rail,

which switches the wheels of the train from one rail to another according to

the desired direction. The through route and diverging route rails cross each

other at the crossing nose (or the crossing frog), which allows the wheels to

travel along either of the intersecting paths. To switch the vehicle between

different tracks, the running rails must be interrupted at the crossing level,

leading to a void. This is to ensure that the wheel flanges of a train taking the

other route have space to pass through to the other side. The discontinuities

in the running rails may be avoided in the case of high-speed lines by using

movable frogs. Check rails or guard rails are provided on either side of the

crossing nose to enforce a constraint on the lateral position of the wheel.

The discontinuities resulting from the interruptions to the running rails

lead to high impact loads as the wheel jumps onto the rail. Due to the rapid

change of the rail geometry in S&C, high frequency responses (around 1

kHz) are obtained at the wheel-rail contact level. The dynamic wheel–rail

interaction due to variation of the geometry and stiffness properties along

the switch and the crossing panel, and the short transition zones also cause

excessive wear, damage and rolling contact fatigue. The speed at which a

train runs through the S&C needs to be carefully monitored, as high lateral

loads can lead to a risk of derailment in a diverging route. It is easy to
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Figure 4.6: Layout, components and nomenclature for a standard

right-hand side S&C. From [135]

understand why turnouts are seen as one of the most maintenance-intensive

components of the track.

While a number of MBS benchmarks have been carried out by different

universities and research groups, investigating a variety of modelling

and application aspects such as the vehicle dynamic behaviour [127],

vehicle–track interaction at high frequencies [136], wheel-rail contact

modelling [126], the pantograph–catenary interaction [137], and longitudinal

train dynamics simulations for freight trains [7], a benchmark on S&C

has been missing so far. It is partly out of this reason that a new

benchmark was announced at the International Association for Vehicle

System Dynamics (IAVSD) symposium, held in 2019, by researchers from

University of Huddersfield (UK) and Chalmers University of Technology

(Sweden) [138]. The hope is that a deeper understanding of the vehicle-

track interaction in S&C could lead to better design, better interpretation of

the damage and wear processes, and consequently better cost management

of maintenance operations for railway network operators. In order to be

handled by a maximum number of participants, the benchmark setting

do not correspond to a set of physical measurements. Therefore, the

results cannot be compared to an absolute reference. Some comparisons

with measured data are still available in the literature, including for

VOCO [135, 139, 140]. The S&C benchmark has received great interest,

with 9 individual software participants (including VOCO), and a total of

18 universities/research groups/software developers/consultancy companies.

The modelling descriptions and simulation tasks for the S&C benchmark,

including the input data set, has been presented in detail in [138].

Two different types of S&C configurations are considered: a Swedish

60E1-R760-1:15 and a British 56E1-R245-1:9.25. The denomination of a
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turnout refers, successively, to the nominal rail profile (60E1 or 56E1), the

curve radius (760 m or 245 m) and the value of the tangent between the

through and the diverging routes (1:15 or 1:9.25). The two configurations

present two different types of curving and load transfer conditions. The

passenger vehicle from the Manchester benchmarks is used as the vehicle

model [127], and the wheel profile is a nominal S1002 [126]. Each

participating institution was asked to submit a method statement for their

respective software, detailing mainly the implementation of the variable

track geometry, the interpolation procedure used for rail cross-sections, the

implementation of the track model, the modelling of the changing curve

radius when taking the diverging route, the wheel rail contact modelling

and the time integration method used. These method statements are

also available as a part of the provided data set, including the one for

VOCO [141]. A summary and comparative discussion on the modelling

and simulation approaches used by the different participants can be found

in the paper presenting the benchmark results [102].

In the following sections, we outline the new developments integrated

into VOCO as a direct outcome of the S&C benchmark participation: the

development of a co-running track model, as well as some improvements in

the modelling of the check rail and the contact stiffness. These developments

have also been presented in the available method statement [141]. Selected

results from the benchmark, with comparisons of the different MBS software

are also presented.

4.3.1 New developments in VOCO

4.3.1.1 Implementation of the co-running track model

As shown in Table 4.1, some track models are available in VOCO, but the one

prescribed by the benchmark was missing. The S&C benchmark track model

consists of a planar co-running system of masses and bushing elements,

which is replicated independently for each wheelset [102]. This is a two level

sprung mass system. Activating or disabling the different rail masses in the

co-running track model for a given simulation enables the representation of

the switch and crossing cases, as shown in Figure 4.7. The track massmt has

three degrees of freedom (vertical, lateral and roll), while all the rail masses

have two degrees of freedom (vertical and lateral). In the switch panel, the

rail masses 1, 3 and 4 are active to represent the opposite stock rail, switch

rail and main stock rail, respectively. For simulations in the crossing panel,

masses 1, 2 and 4 are active to represent the opposite stock rail, the check

rail and the crossing rail, respectively.
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Figure 4.7: Topology of the co-running track model used in the S&C

benchmark with masses and bushing elements. From [102]

The proposed co-running track model has been integrated as a new

feature in VOCO. The model is composed of lumped masses labelled with

double indices. The first index refers either to the left or the right rail, or

to other bodies in the track model (which in this case is the track mass).

The second index refers to a specific element of the selected given body. For

instance, there are two elements for the right rail in the switch model: the

stock rail and the switch rail. The bodies are numbered from the inside to the

outside of the track, for example, the check rail is always the first element.

This convention is adopted in order to match with the same convention used

in the wheel-rail contact model. The wheel-rail contact model of the crossing

panel is initially divided into two elements, representing the wing rail and

the crossing nose. In the initial approach, the crossing mass in the track

model was also divided into two masses linked by rigid springs. In order to

prevent possible discrepancies with other participants, the contact model of

the crossing was subsequently merged into a single element, allowing the use

of the proposed track model.

The track model is initially unloaded, and wheel loads are progressively

applied on the track model during the first few meters of the simulation.

At the entrance of the S&C panels, the track model is already in a steady

state, with non-zero displacements. The elementary co-running track model

allows very fast simulations, which in turn should ease the development of

new contact methods. These new methods can then be validated through

comparisons with more computationally expensive approaches, e.g. co-

simulation with FE codes.
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Figure 4.8: Modelling of the normal contact between the check rail and the

back flange of the wheel. From [141]

4.3.1.2 Modelling of the check rail

The determination of the contact patches in VOCO is based on the vertical

interpenetration of profiles through the semi-Hertzian method described in

Section 1.4.2.3. An almost vertical contact angle, as in the case of a check

rail, may therefore lead to numerical instabilities. Contact between the

wheel and the check rail is taken into account by an equivalent spring and

damper joint with a play in the normal direction, as shown in Figure 4.8

[140]. The play between the check rail and the wheel is a function of the

location on the track and is determined from the cross-sections of the check

rail. The joint stiffness is 100 kN/mm and its damping is 20 N.s/mm, and

these values are chosen heuristically.

While yaw is not an entry of the pre-computed contact table described in

Section 4.2.2.2, a first-order approximation of the contact point offset due

to the yaw, either backward or forward, is still taken into account. This

offset is also considered in the evaluation of the longitudinal creepage νx
(see Section 1.2.4.2). The length of this offset ds with respect to the rail

cross-section, as shown in Figure 4.9, is assumed to be:

ds =
√
2R(zCR + zflange) , (4.4)

where R is the nominal wheel radius, zCR is the distance between the top of

the rail and the top of the check rail, and zflange is the distance between the

top of the rail and the bottom of the vertical flange of the wheel, as shown

in Figure 4.8 and Figure 4.9.

In previous case studies, a total saturation within the contact patch was

assumed, with the tangential force acting solely in the transverse direction,

with no component in the longitudinal direction [140]. However, first
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Figure 4.9: Modelling of the normal contact between the check rail and the

wheel

comparisons with other benchmark participants showed longitudinal forces

may no longer be neglected. Total saturation is still assumed, but the model

is amended by evaluating creepages at the contact location in Figure 4.8 and

Figure 4.9. The spin creepage is neglected. Tangent forces are assessed using

the relations:

Fx = −µN νx√
ν2x + ν2y

, (4.5)

Fy = −µN νy√
ν2x + ν2y

, (4.6)

where Fx and Fy are the longitudinal and lateral tangential forces,

respectively, νx and νy are the longitudinal and lateral creepages,

respectively, µ is the friction coefficient, and N is the normal force acting

between the check rail and the wheel. Taking the longitudinal forces into

consideration in this manner seems to give good agreement with the results

from the other software developers in the benchmark.

4.3.1.3 Modelling of the contact stiffness

In simulations without a track model, lateral and vertical stiffness and

damping are introduced in VOCO at the contact level, and their respective

values are user-defined in the input files. These parameters account for the

combined track, contact and wheel stiffness, and their order of magnitude

corresponds to typical values used in railway dynamics, with stiffness equal

to 50 kN/mm, and the damping set to 200 N.s/mm [127]. When a track
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Figure 4.10: Modelling of the contact stiffness in VOCO: (a) standard

model, (b) new model with Hertzian stiffness

model is included in the simulation, these parameters are still considered,

but their value must be adapted in order to avoid a double consideration of

the track properties.

In the initial tests, when using the values for the stiffness and damping

500 kN/mm and 20 N.s/mm, respectively, the contact stiffness was found to

be too small to capture a short length phenomenon such as the combination

of the P1/P2 peaks of the normal impact forces that are expected in a

crossing [142]. Comparison between VOCO and an FE model in a rail

joint simulation indicates a better value for the stiffness should be around

1000 kN/mm [143]. Simulations with this order of magnitude present the

expected peaks, but also lead to some contact loss.

For the benchmark, the standard model is improved by replacing the

constant vertical stiffness Kz with a Hertzian stiffness kh, as shown in

Figure 4.10. The expressions used for the wheel dynamics in Equation (4.1)

are subsequently modified as follows:

Y = −Ky(yw − yc)− Cy(ẏw − ẏc) ,

Q = −kh(zw − zc)
3
2 − Cz(żw − żc) ,

(4.7)

The stiffness is set to a typical value of approximately 0.7E11 N/m
3
2 , which
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Figure 4.11: Comparison of the vertical wheel-rail Q forces obtained in a

crossing panel when using different settings for the contact stiffness

can be obtained by using Hertz’ theory from Equation (1.38):

kh =
2

3
r−

2
3

E

1− ν2
1√

A+B
, (4.8)

where r is the Hertzian coefficient used to assess the rigid body approach,

and A and B are the longitudinal and lateral curvatures, respectively.

The lateral stiffness is set equal to 500 kN/mm, and a damping of 20

N.s/mm in both directions is considered sufficient to take the dissipative

effects into account. These values of stiffness and damping are assessed

heuristically based on previous internal studies. The damping values may

still be assessed by assuming a complex contact stiffness such that:

K̃z = Kz(1 + jη) , (4.9)

with the damping ratio η of around 5%. As the complex stiffness is

not applicable in the time domain, one must define an equivalent viscous

damping Cz, whose value is defined by:

2πfCz = Kzη , (4.10)

where f is the characteristic frequency of around 1 kHz in order to capture

the P1/P2 peaks. With Kz around 1000 kN/mm, this leads to a Cz value

of approximately 10 N.s/mm.

Figure 4.11 shows the comparison of the vertical Q forces obtained in a

crossing panel when using different settings for the contact stiffness. When

using the standard model with a small stiffness, a single peak is found at
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Run S&C Panel Route Speed (km/h)

1 British Switch Through 100

2 British Switch Diverging 43

3 Swedish Switch Through 160

4 Swedish Switch Diverging 80

5 British Crossing Through 100

6 British Crossing Diverging 43

7 Swedish Crossing Through 160

8 Swedish Crossing Diverging 80

9 Identical to Run 2 but with a constant 56E1 profile

replacing the stock rail, and no switch rail

Table 4.3: S&C benchmark simulation cases. Adapted from [102]

approximately 0.57 s. Increasing the contact stiffness value provides a better

representation of the Q forces, with both the P1 and P2 peaks visible in

approximately the same time interval. However, using these values, a wheel

lift is also observed at around 0.6 s. Selecting the new model with the

Hertzian contact stiffness enables capturing both the P1/P2 peaks expected

in crossings, without the wheel lift observed in the previous case.

4.3.2 Simulation cases

The different simulation cases for the S&C benchmark are listed in Table 4.3,

with 9 runs in total, including Run 9 as a baseline comparison of each

participant’s simulation set-up and vehicle model [138]. The switch and the

crossing panels are evaluated separately to maintain the integrity of their

respective modelling and simulation approaches. The diverging crossing

case, however, involves running along the switch curve before reaching the

crossing. The varying S&C rail profiles are always located on the right-

hand side of the track, as shown in Figure 4.12. The markers in Figure 4.12

indicate the start of the S&C for the switch panel, and the intersection

point (IP) for the crossing panel, respectively. Only a select few results, in

particular for the wheel-rail contact parameters, are presented here. For

a comprehensive comparison between the results from different software

developers, one may refer to [102].
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Figure 4.12: Locations of the varying rail geometry for the benchmark

simulation cases in Table 4.3: Runs 1 & 3 (top left), Runs 2 & 4 (top

right), Runs 5 & 7 (bottom left) and Runs 6 & 8 (bottom right). From

[102]

4.3.3 Contact methods

Most MBS codes use one of the different VP methods or Hertz’ theory for the

normal contact, as described in Chapter 1. FASTSIM is the most popular

choice for evaluating the tangential contact parameters, and is commonly

combined with an equivalent ellipse when the contact patch is non-Hertzian.

Table 4.4 lists the various normal and tangential contact models that have

been used by the different software1 developers for the benchmark simulation

cases.

4.3.4 S&C benchmark results

4.3.4.1 Switch panel

If we consider the simulations in the switch panels in the through route, load

is transferred from the stock rail to the switch rail, and also briefly shared

between the two. Moving along the curved track in the case of the diverging

track implies that this brief contact with both rails lasts longer as compared

to the through route. The lateral wheelset dynamics leads to amplification

of wheel-rail contact forces, which is comparatively more significant in the

diverging direction.

Figure 4.13 and Figure 4.14 show some results for the Run 1 in the

through route with the British S&C. Here, the stock rail is shown on the

left, between 0 m and 5 m approximately. The switch rail is shown between

1 m and 6 m approximately, corresponding to the top left configuration

1Vampire was represented by VDG as a software user
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Software Developer Normal contact Tangential contact

GENSYS DEsolver/KTH/CQU Hertzian FASTSIM

MEDYNA ArgeCare Kik-Piotrowski FASTSIM

MUBODyn Instituto Superior

Técnico, Lisboa

Hertzian Polach

NUCARS

FIT

TTCI Hertzian Lookup

tables/FASTSIM

NUCARS

WNT

TTCI Hertzian Lookup tables

SDITT Southwest Jiaotong

University

Hertzian/semi-

Hertzian

FASTSIM

Simpack Dassault Systèmes Semi-Hertzian FASTSIM

Vampire Vehicle Dynamics

Group

Hertzian Lookup tables

VI-Rail VI-grade Kik-Piotrowski FASTSIM

VOCO Université Gustave

Eiffel/ESI Group

Semi-Hertzian CHOPAYA

Table 4.4: Methods used for the modelling of normal and tangential

wheel-rail contact for individual contact points by the different software

developers. Adapted from [102]

Figure 4.13: Contact position for the Run 1, considering the through route

with the British S&C. From [102]
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in Figure 4.12. Despite taking the through route, the diverging stock rail

implies that the contact position follows the curved track, before the sudden

jump onto the switch rail, as shown in Figure 4.13. The corresponding load

transfer from the stock rail onto the switch rail also leads to a dynamic

load amplification, as seen in the plot for the vertical wheel-rail Q forces

in Figure 4.14 at approximately 3.4 m. In the majority of cases (including

VOCO) the load transfer is not instantaneous but spans over approximately

20 cm. This is due to the flexible track model, if one takes into account the

relative displacement of the switch and stock rail, as shown in Figure 4.15.

An additional step is added to the contact determination, where the vertical

position of each body is offset to take into account the vertical displacement

of the flexible track model. In VOCO, the so-called separation of rails option

needs to be activated to capture this phenomenon [140].

The contact patch location during Run 2, with the diverging route, is

shown in Figure 4.16, corresponding to the top right configuration (mirrored)

in Figure 4.12. Here, an earlier contact with the switch rail as compared

to the through route can be observed. This is shared with the stock rail

initially, before the two-point contact continues onto the switch rail once

the wheel takes the curve. The contact patch size in Figure 4.17 shows the

contact on both the stock and switch rails. An increasing contact size on the

diverging stock rail can be observed, followed by a reduction of the patch

size as it is shared with the contact on the switch rail. This is followed by

a two-point contact on the switch rail, before a large contact patch increase

as the load transfers back to a one-point contact. The variation between

the different software highlight the differences that are mainly due to the

various contact methods used by the different software developers. This is

especially visible at the end of the switch panel, where a large variation in

the contact patch size can be observed. Some codes predict a double contact,

while others show only a single one.

A sharp-edge contact is observed in Run 3 and Run 4 of the S&C

benchmark when the vehicle takes the through and the diverging route with

the Swedish switch, respectively. As previously, the wheel initially follows

the direction of the stock rail before jumping onto the switch rail, with

a short period of double contact, as shown in Figure 4.18 and Figure 4.19.

Unlike the British S&C, in this case the wheel makes a very brief sharp-edge

contact at approximately 8 m as it moves to the switch rail. Even though

the order of the contact duration is very small (in the order of milliseconds),

the sharp-edge contact presents a situation which leads to damage of the

switch blade due to extreme normal contact pressures exceeding the elastic

limit of the rail material. The contact patch and the corresponding wheel-
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Figure 4.14: Vertical wheel-rail Q forces for the Run 1, considering the

through route with the British S&C. From [102]

Figure 4.15: Vertical offset of bodies in determination of contact points

due to the flexible track model

132



4.3. The switches and crossings benchmark Chapter 4

Figure 4.16: Contact position for the Run 2, considering the diverging

route with the British S&C. From [102]

Figure 4.17: Contact patch size for the Run 2, considering the diverging

route with the British S&C. From [102]
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Figure 4.18: Contact position for the Run 3, considering the through route

with the Swedish S&C. From [102]

Figure 4.19: Contact position for the Run 4, considering the diverging

route with the Swedish S&C. From [102]
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Figure 4.20: Sharp-edge contact between the switch rail and wheel in

VOCO for Run 3, when taking the through route with Swedish S&C

rail profiles for a given instant of time during Run 3, exhibiting the sharp-

edge contact between the switch rail and wheel in VOCO, are presented in

Figure 4.20. The specific case of a sharp-edge contact when using different

normal contact methods is further investigated in Section 4.4.3.2.

4.3.4.2 Crossing panel

If we consider the simulations in the crossing panels, there is a very rapid

transfer of load between the wing rail onto the crossing nose rail. Passing

from the wing rail onto the tapered crossing nose leads to a large vertical

dynamic impact-like load1. Moving up the crossing nose as the wheel

advances forward also gives rise to inertial forces, together with other lateral

and steering effects due to the rapid changes in effective rolling radius [102].

In the diverging route, the check rail running parallel to the stock rail

on the opposite side of the crossing imposes a constraint on the lateral

displacement of the wheelset. This ensures that the wheel does not clash

against the crossing nose. The dynamics is thus further complicated due

to the redistribution of forces between the opposite running rail, the check

rail and crossing wing. Figure 4.21 and Figure 4.22 show some results for

1This is also highlighted in Figure 4.5 showing the variation of the wheel vertical kinematics

tz with respect to the rail in the crossing panel
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Figure 4.21: Contact position for the Run 7, considering the through route

with the Swedish S&C. From [102]

Figure 4.22: Vertical wheel-rail Q forces for the Run 7, considering the

through route with the Swedish S&C. From [102]
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Figure 4.23: Contact position for the Run 8, considering the diverging

route with the Swedish S&C. From [102]

Figure 4.24: Lateral wheel-rail Y forces for the Run 8, considering the

diverging route with the Swedish S&C (top: check rail, bottom: crossing

rail). From [102]
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the Run 7, considering the through route with the Swedish S&C, which

corresponds to the bottom left configuration in Figure 4.12. The contact

patch location in Figure 4.21 can be seen to move steadily along the path of

the diverging wing rail before the contact transfers over on to the crossing

nose. The vertical Q forces in the crossing panel, as shown in Figure 4.22, are

characterised by a number of dynamic amplifications, first when the wheel

moves along the wing rail, followed by a larger peak when the load transfers

onto the crossing nose. A similar behaviour is also shown using VOCO in

Figure 4.11. Brief contact losses due to the wheel rebound on the rail can

also be observed for certain MBS codes. The P1/P2 peaks are found at a

distance of approximately 0.5 m from the IP of the turnout.

The contact patch location in the diverging route, as shown in

Figure 4.23, follows a similar trend as in the through route in general,

although the contact on the crossing occurs much nearer the rail gauge

corner. The influence of the check rail on the wheel results in high lateral

wheel-rail Y forces throughout the crossing panels, as shown in Figure 4.24.

The force on the crossing rail is initially positive which is pulling the axle

away from the crossing, before it changes directions as the wheelset is

dragged towards the track centre line due to the action of the check rail

[102]. The lateral forces reach their peak as we approach the point where

load is transferred from the wing rail to the crossing. Compared to the

other configurations, the crossing panel in the diverging route exhibits more

dispersion between MBS codes due to the delicate modelling of the check

rail.

4.3.5 Conclusions

The novel S&C benchmark provided an opportunity to incorporate several

new features into the MBS code VOCO, developed at the Université Gustave

Eiffel, including the new co-running track model, an improved modelling

of the check rail, and improved modelling of the impact-contact process.

The overall benchmark results from VOCO perform competitively against

other academic and commercial MBS codes. Even the modelling choices

where comparatively simpler approaches (e.g. pre-computed contact tables,

vertical and lateral bushing elements approximating the contact stiffness)

are used as compared to other software (e.g. online 3D optimisation

for the contact detection, velocity dependant Hertz-based impact models

with coefficient of restitution etc.) provide steady and reliable results

[102]. Importantly, the wheel-rail contact forces do not present any

anomalies, which further highlights the numerical stability of VOCO in
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realistic simulation conditions. Some conclusions from the benchmark can

be highlighted as follows:

• In the switch panel with the through route, the transfer between the

stock rail and the switch rail is relatively well modelled thanks to the

separation of rails;

• In the crossing panel with the through route, the expected P1/P2

peaks are obtained using the improved modelling of contact stiffness,

as well as a loss of contact especially in Run 5 (results not shown here);

• In the crossing panel with the diverging route, the modelling of the

contact between the wheel back flange and the check rail is found to

be consistent despite the simplifications.

Although a lot of results have been compared in the S&C benchmark,

there was no room to compare the local results such as the contact shape

or the normal pressure. This served as a motivation for some benchmark

participants to further study specific configurations with a focus on the

contact modelling procedures used in their respective MBS codes. This

collaborative study is presented in the following section.

4.4 Modelling of wheel-rail contact in the presence

of switches and crossings

As seen in the previous section, the passage of trains through zones

containing switches and crossings may lead to various instances of sharp-

edge contact on the switch blade, or impact scenarios with the crossing

nose. They may also lead to large conformal contact in the diverging route,

especially for worn profiles. Conformal contact is not specific to S&C,

but has received much attention in the railway dynamics community as its

modelling represents a significant challenge using the existing fast methods.

Kalker’s variational theory [87] has been adapted for conformal contact in

the latest implementations in the reference program CONTACT [20, 144],

although the half-space approximation used in CONTACT is still violated

for a sharp-edge contact.

The previous section shows a good agreement between the different

software in the modelling and results for the kinematics and wheel-rail forces.

Here, different aspects of the contact modelling in three MBS codes, namely,

VOCO, MUBODyn, and VI-Rail, are investigated in detail. This is based on

a collaborative study between few S&C benchmark participants, including
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Université Gustave Eiffel (France), Universidade de Lisboa, Universidade

do Minho, and Instituto Politécnico de Lisboa (Portugal), and University

of Huddersfield (UK) [145]. While only three software have been chosen

for this study, they cover a range of the available choices from the S&C

benchmark [102], with independent/commercial codes with an access to the

internal details (MUBODyn/VOCO), as well as a commercially marketed

MBS code, VI-Rail, where not as many details are provided. The goal is

to study the handling of several contact scenarios that may occur in the

negotiation of switches and crossings. Bearing that in mind, three different

idealised running scenarios are used for the test cases, to achieve sharp-

edge or conformal contacts that may be seen in the switch, and the impact

cases that take place at the crossing nose. The different aspects of the

contact modelling that are considered for the comparison are now outlined

for MUBODyn and VI-Rail, and compared to VOCO.

4.4.1 Aspects of contact modelling investigated for MBS

software comparisons

4.4.1.1 Handling of variable rail profiles

MUBODyn and VI-Rail use a similar approach to model the rails with

variable cross-section along the track via section breaks, as shown in

Figure 4.25b. A section break is recommended when the profile width for two

adjacent cross-sections differs by a certain tolerance. To build the section

break, the profile with the larger width is trimmed such that the remaining

part of the profile matches the profile with the smaller width. The trimmed

profile is placed at the same longitudinal coordinate as the original smaller

profile, and thus two cross-sections are defined at the same location. One

geometric interpolation is done leading up to this location, and a continuing

one from the same position as the two cross-sections match one another

exactly on the overlapping segment [102]. A cubic interpolation in the lateral

as well as the longitudinal direction is used to represent the 3D geometry of

the rail.

In VOCO, a linear interpolation is used in the longitudinal direction

to represent the 3D geometry of the rail. The rail cross-sections at each

longitudinal position in the track are represented by cubic splines. To

ensure a consistent interpolation between two consecutive cross-sections,

profiles are divided into bodies, as described in Section 4.2.2.2, and shown

in Figure 4.25a.
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Figure 4.25: 3D geometry interpolation for variable rail profiles: (a)

separation of profiles into bodies, and (b) using section breaks. Adapted

from [102]

4.4.1.2 Contact detection

MUBODyn uses an online 3D contact detection approach, taking in to

account the effects of yaw and roll [146]. The contact detection in VI-Rail

is not well documented, but the yaw and roll are considered [102]. VOCO

searches the contact in solely a 2D plane and the roll is taken into account.

4.4.1.3 Contact patch determination

In the MUBODyn version used in this study, the penetration function is

determined based on the modified Kik-Piotrowski (MKP) model proposed

in [93], which addresses some of the drawbacks of the original Kik-Piotrowski

(KP) method. The length of each strip is then obtained according to the

expressions given by the KP method [74]. VI-Rail also uses relations given

by the KP method. In VOCO, the semi-Hertzian or the STRIPES method,

as described in Section 1.4.2.3, is used.

4.4.1.4 Evaluation of the creep forces

After the contact patch determination, MUBODyn determines an equivalent

elliptical contact patch where the semi-axes a and b are evaluated to match

the same contact patch area and same width of the original non-Hertzian

contact patch, as described in [74]. This equivalent elliptical contact patch

is then used to evaluate the creep forces using Polach’s creep force model

[62], together with the global creepages defined at the point of maximum

penetration, as shown in Figure 4.26a. VOCO uses the CHOPAYA function,

described in Section 4.2.2.2, to evaluate the creep forces via the local
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Figure 4.26: Creepage assessed at: (a) the centre of the contact patch, (b)

each cell of a discretized a contact patch and, (c) each strip of a contact

patch. From [145]

normalised creepages per strip, as shown in Figure 4.26c. VI-Rail, on the

other hand, uses the version of FASTSIM which is based on the evaluation

of creepages for each cell within the contact patch [74, 147], as shown in

Figure 4.26b.

4.4.1.5 Normal contact/Impact

In VOCO, the impact-contact process is modelled using the lateral and

vertical stiffness and damping elements. Within the context of the

S&C benchmark, the vertical contact stiffness is replaced by its Hertzian

equivalent, as described in Section 4.3.1.3, which enables a better prediction

of the P1/P2 peaks of the impact forces expected in a crossing [141]. The

same model is used in the current study.

MUBODyn uses a Hertz-based model that allows some energy dissipation

in the contact via a coefficient of restitution, which accounts for the damping

and depends on the penetration depth, as follows:

N =


Kδnce if δ̇ ≤ −v0 ,

Kδn[ce + (1− ce)(3r
2 − 2r3)] if − v0 < δ̇ < v0 ,

Kδn if δ̇ ≥ v0 ,

(4.11)

where r = (δ̇ + v0)/2v0 is the transition parameter, K is the generalised

contact stiffness that depends on the wheel-rail contact conditions, δ is

the maximum virtual penetration of a contact patch, δ̇ is its the first time

derivative, n defines the degree of non-linearity (1.5 for wheel-rail contact

according to Hertz’ theory), ce is the restitution coefficient (typically 0.75),

142



4.4. Modelling of wheel-rail contact in the presence of S&C Chapter 4

Figure 4.27: Schematic representation of the different run cases: (a)

conformal contact, (b) sharp-edge contact, and (c) impact load on the

crossing nose. From [145]

and v0 is the penetration velocity tolerance (typically 0.1 m/s) [146]. VI-

Rail uses a parameter named as the “Hertzian damping ratio” [147] which

indicates that the normal contact force predicted in VI-Rail also depends

on the speed of penetration, but unfortunately the implemented model has

not been detailed in the software documentation.

4.4.2 Simulation cases

Three different scenarios are set up to explore the performance of the

different MBS codes presented in the previous sections. These simulation

cases are hereafter referred to as Run 1, Run 2 and Run 3, and are presented

schematically in Figure 4.27. The first two runs present the wheel-rail

contact conditions which may be observed when the vehicle negotiates a

diverging route through a switch. In Run 1, the cross-sections of both wheel

and rail are defined to achieve a large and conformal contact, as depicted in

Figure 4.27a. This is similar to the type of contact that is obtained as the

outer wheel is pushed against the rail when taking the diverging route. In

Run 2, the rail cross-section is defined to represent an intermediate profile of

the switch rail, which can have a very small radius of curvature, as shown in

Figure 4.27b. This “sharp-edge” contact represents a contact condition for

which the most common wheel-rail contact models, as described in Chapter

1, are not very realistic. Run 3 is used to investigate the impact at the

crossing nose, when the wheel load is transferred from the wing rail to

the crossing nose as schematically represented in Figure 4.27c with three
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consecutive conditions from top to bottom.

For all the test cases, a simple bogie model, based on the Manchester

benchmarks [127], running at 100 km/h is considered. The track model

is a co-running model, similar to the one used in the S&C Benchmark

[102]. The parameters used for the bogie as well as the track models are

given in Appendix D. The theoretical wheel and rail profiles used here are

parametrized to be easily reproducible, but don’t represent real profiles. The

parameters used to describe the different profiles, and the crossing layout,

are presented in detail in Appendix E. To ensure that the contact conditions

represented in Figure 4.27 effectively occur, a curved track is considered for

both Run 1 and Run 2. This curved track consists of a straight section of

5 m, followed by a curve transition of 25 m where the curvature changes

linearly, and finally followed by a curve of constant radius 245 m. A tangent

track is used in Run 3.

4.4.3 Results and discussion

4.4.3.1 Run 1: Conformal contact

Run 1 deals with the case of conformal contact as the vehicle takes the

diverging route. The largest contact patches are expected at the outer rail

where the flange contact occurs, and the wheel conforms to the rail profile,

as shown in Figure 4.27a. The results for both the leading and trailing

wheelsets are presented here, as opposed to the S&C benchmark, where only

the leading wheelset was studied. The lateral coordinates of the contact

positions on the outer (right) rail for the leading and trailing wheelsets are

shown in Figure 4.29. A value near 0 mm indicates a contact near the tread,

while a value near 40 mm indicates a flange contact, as can be seen from

Figure 4.28. Figure 4.30 shows the area of the contact patches for the outer

wheels of the leading and the trailing wheelsets.

For the leading wheelset, the wheelset dynamics predicted by the three

software are more or less similar, as highlighted by their respective contact

positions in Figure 4.29a, with one on the wheel tread and the other on

the flange. One may therefore conclude that the principal differences in the

contact areas are linked to the differences in the contact modelling, rather

than the effects of the wheelset dynamics. A good agreement is observed

between MUBODyn and VOCO for the smaller contact patch located on

the flange (which is close to a Hertzian ellipse). VI-Rail exhibits a slightly

larger contact area in this zone. This may be on account of the shape

correction in the original KP method [74], where the contact ellipse after

the correction still has the same area as the interpenetration area, which
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Figure 4.29: Positions of the contact patch on the rail for Run 1
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Figure 4.30: Area of the contact patches observed in the outer wheels for

Run 1
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is larger than the Hertzian ellipse [51]. For the larger contact patch on

the tread, MUBODyn and VI-Rail show more or less similar results, while

VOCO predicts a comparatively smaller contact area.

With respect to the trailing wheelset in Figure 4.29b, the contact

positions in VOCO show lower amplitude variation when compared to those

obtained by MUBODyn and VI-Rail. The dynamic results also exhibit

more variations between the three MBS codes than in the leading wheelset.

The largest contact area is observed here on the wheel tread at the end

of the transition curve at approximately 25 m, as shown in Figure 4.30b.

In general, VOCO and VI-Rail exhibit significant differences, with higher

contact areas obtained with VI-Rail. The results from MUBODyn show

close agreement to VI-Rail, notably at the beginning of the curve transition,

beyond which the wheelset dynamics have an influence on the contact

position, and consequently on the contact areas obtained using these two

approaches. This is again not surprising, as both MUBODyn and VI-Rail

use adaptations of the KP method [74, 93], while the semi-Hertzian method

STRIPES is used in VOCO.

The dimensions of the contact patch are compared for the outer trailing

wheel when it reaches the beginning and end of the curve transition, i.e., at

track distance equal to 0 m and 25 m, as shown in Figure 4.31. Note that VI-

Rail is not considered here. The available contact patches are compared with

the reference results from CONTACT [24]. The contact patches using the

MIM-1D approach described in Chapter 2 are also presented simultaneously.

The main input parameters required for CONTACT are the undeformed

distance (or the separation function), and the normal contact force. The

difference in the lateral position of the wheel with respect to the rail, in

particular during and after the curve transition, implies that the separation

obtained for the two software are different, and hence the two contact cases

are presented separately.

At 0 m, an elliptical contact patch is obtained using both software, as well

as with MIM-1D, and can be seen to be in good agreement with CONTACT

as well as with each other, as shown in Figure 4.31a and Figure 4.31c. In

this case, the contact point is observed at the origin of the wheel, where the

contact angle is approximately zero and the curvatures are locally constant.

Wider contact patches are observed at the end of the curve transition, as

shown in Figure 4.31b and Figure 4.31d, where the contact patches deviate

from the elliptical shape. The contact patch obtained with MUBODyn

still resembles a Hertzian ellipse, with a slight variation of the curvature

on one side, and this shows a good agreement with CONTACT. On the

other hand, the patch at 25 m for the contact position predicted by VOCO
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Figure 4.31: Contact patches of the outer trailing wheel for Run 1

obtained with VOCO, MIM-1D, MUBODyn and CONTACT for different

track positions: (a, c) 0 m, and (b, d) 25 m
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Figure 4.32: Normal pressure distribution in the contact patches of the

outer trailing wheel for Run 1 obtained with VOCO, MIM-1D, and

CONTACT for different track positions: (a) 0 m, and (b) 25 m
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is strongly non-Hertzian, and slightly underestimates the patch area when

compared with CONTACT. MIM-1D predicts a contact patch that is much

closer to the reference contact patch obtained using CONTACT. The normal

pressure distribution in the contact patches using VOCO, CONTACT and

MIM-1D are presented in Figure 4.32, and seem to be consistent with similar

non-Hertzian cases presented in the literature [95, 120]. With the rail and

wheel profiles parametrized to provide large conformal configuration, a slight

difference in the lateral displacement of the wheel induces a comparatively

high difference in the contact position and area obtained using the two MBS

codes used here.

The contact forces in the outer wheels of the leading and trailing

wheelsets are presented in Figure 4.33, including the normal contact force,

and the longitudinal and lateral creep forces. In general, MUBODyn and

VI-Rail show good agreement with each other for the normal contact forces,

in particular because they both use different variants of the KP method. For

the leading wheelset, the normal contact forces are characterised by a sharp

variation at the start of the curve transition as the contact area changes

suddenly and a second contact patch appears. The longitudinal creep forces

in the two contact patches tend to oppose each other due to the variation

of the rolling radius between both locations. Similar to the normal contact

forces, sharp peaks can also be observed for the lateral creep forces at the

beginning of the curve transition as the wheel flange makes a second contact

with the rail.

For the trailing wheelset, the normal contact forces present several

peaks corresponding to the swaying motion of the contact position seen

in Figure 4.29b. While a generally good agreement is observed between

all three MBS codes for the creep forces, MUBODyn does provide lower

values, especially in the case of the leading wheelset. These discrepancies

may be linked to the assumptions made regarding an equivalent ellipse in

MUBODyn when using Polach’s method, whereas VOCO and VI-Rail both

use different adaptations of FASTSIM for non-elliptical contact patches.

4.4.3.2 Run 2: Sharp-edge contact

Run 2 focuses on the sharp-edge contact that is typically observed when

the wheel makes contact with the switch blade. The contact positions on

the rail for the outer wheels of the leading and trailing wheelsets are shown

in Figure 4.34. Similar to Run 1, a value near 0 mm indicates a contact

near the tread, while a value near 40 mm indicates a flange contact, as seen

in Figure 4.28. As in the previous case, all three software predict similar
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Figure 4.33: Contact forces in the outer tailing wheels for Run 1
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Figure 4.34: Positions of the contact patch on the rail for Run 2

wheelset dynamics for the leading wheelset as evident from contact positions

shown in Figure 4.34a. For the trailing wheelset, MUBODyn and VI-Rail

predict similar contact positions during most of the simulation, although

the variations increase as the vehicle exits the curve transition zone and the

wheelset dynamics takes over. The initial contact position in VOCO differs

from those obtained with MUBODyn and VI-Rail and these differences also

persist for the remainder of the simulation.

Similar to the Run 1, contact patches obtained with VOCO, MIM-1D,

and MUBODyn, at the beginning and the end of the curve transition, are

shown in Figure 4.35 and compared with the results from CONTACT. At

the beginning of the curve transition, a half-elliptic shape is obtained with

both software, which corresponds to the contact case with the sharp-edged

rail profile. At the end of the curve transition, the size of the contact

patches increases as the outer wheel pushes against the rail profile. The

contact patches obtained using MUBODyn and CONTACT, as shown in

Figure 4.35b, correspond closely, while the contact patch provided by VOCO

shows a large difference when compared to the CONTACT results.

While the variations in the contact positions obtained using MUBODyn

and VOCO, and the corresponding differences in the undeformed distances

and normal contact forces, should have some influence on the contact

patches, the similarities in the CONTACT results obtained via independent

input from VOCO and MUBODyn suggests this may not be the sole reason

for the discrepancies. Further investigation reveals that this is rather linked

to the smoothing of the B curvature, which is inherent to the STRIPES

method [76]. STRIPES, as implemented in VOCO, involves the evaluation

of a contact stiffness per band ki, which is given as:
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Figure 4.35: Contact patches of the outer trailing wheel for Run 2

obtained with VOCO, MIM-1D, MUBODyn and CONTACT for different

track positions: (a, c) 0 m, and (b, d) 25 m
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Figure 4.36: Run 2 results for VOCO at 25 m: (a) lateral B curvature with

and without smoothing, and (b) corresponding contact patches including

CONTACT results
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Figure 4.37: Normal pressure distribution in the contact patches of the

outer trailing wheel for Run 2 obtained with VOCO, MIM-1D, and

CONTACT for different track positions: (a) 0 m, and (b) 25 m

ki =
E

2(1− ν2)

1 +Ai/Bi
n3i

δyi , (4.12)

where ni are the local Hertz’ coefficients for the lateral semi-axes, and δyi is

the width of each band. Using the smoothed curvature shown in Figure 4.36a

leads to higher contact stiffness, and consequently to a smaller contact patch.

Using the non-smoothed curvature leads to better results in terms of

contact surface, as shown in Figure 4.36b, but the abrupt change of curvature

at y = 0 leads to a sharp variation in the contact patch. Using the non-

smoothed curvatures does not have a significant effect on the contact forces.

An alternative procedure can be to trim the profile to remove the sharp-

edge, which may lead to more consistent contact patch results with the

other methods. Although the KP method used in MUBODyn is similar to

STRIPES in its strip-based approach, it circumvents this issue as the mean

curvatures rather than their local values are used for the evaluation of the

contact patch dimensions.

A similar issue is also encountered with MIM-1D when using

Equation (2.26) or Equation (2.31) to determine the half-length of the

contact patch within the iterative loop, which is appropriate and robust for

bodies whose profiles are both smooth and continuous. Johnson remarks

in [18, p. 150] that the presence of a sharp corner at the edge of the

contact, when using such a method, would lead to the pressure rising towards

infinity. With the expression of the half-length used in MIM-1D dependent

on both the pressure distribution and the local curvature properties, initial

results using the standard MIM-1D approach described in Chapter 2 led to
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Figure 4.38: Contact forces in the outer tailing wheels for Run 2
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unsatisfactory results when treating the sharp-edge contact presented here.

The expression for the half-length a(y) was subsequently modified by using

mean curvatures, inspired by the KP method, with Equation (1.63) given by

the semi-Hertzian theory. This was found to give better results, as shown

in Figure 4.35a and Figure 4.35b. The modified expression of a(y) used

with MIM-1D in this case is presented in detail in Appendix C. This is

a workaround which works well in the contact case considered here, but

provides less accurate results when considering the wheel-rail contact cases

treated in Chapter 2.

It should also be noted that the sharp-edge contact presents a situation

where any method using the half-space assumption, including CONTACT,

is not valid any more. Figure 4.37 shows the normal pressure distribution in

the contact patches of the outer trailing wheel obtained with VOCO, MIM-

1D, and CONTACT at 0 m and 25 m. The extreme pressure values near the

sharp-edge (at approximately y = 0) exceed the elastic limit of steel, and

plastification is likely to occur after the first few passages. Any result using

such methods must therefore be interpreted with extreme care.

The contact forces acting on the outer trailing wheel are plotted in

Figure 4.38. Similar to Run 1, the normal contact forces are relatively

in good agreement with each other, while the creep forces show differences

owing to the different tangential contact method used as well as the different

contact patches obtained with each software. MUBODyn seems to show

some numerical instabilities, such as the sharp peak at approximately 16 m

for the trailing wheelset, which are mainly caused due to the difficulties in

the online determination of the contact points near the sharp-edge.

4.4.3.3 Run 3: Impact

Run 3 focuses on the transfer of wheel load to the crossing nose, where an

impact-like situation is observed as a result of the geometry of the crossing

panel. The contact location along the crossing panel, as well as the normal

contact forces at specific intervals, are shown in Figure 4.39. As also seen

in the S&C benchmark, the contact position in the crossing panel initially

deviates laterally from its position, moving along the diverging wing rail,

before it jumps abruptly onto the crossing nose. This is followed by a brief

loss of contact as the wheel rebounds on the crossing before settling down.

The start of the crossing panel is located at 0 m. The first contact

with the crossing nose occurs at around 0.92 m, as seen in the plot for

interval 1 (from 0.9 m to 1.1 m). During this first impact, all three software

are in phase and agree closely. The plot for interval 2 (from 1.5 m to 2
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Figure 4.39: Normal impact forces in the outer wheel of the leading

wheelset at different intervals for Run 3
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m) shows the second impact with the nose, after the loss of contact at

the end of interval 1 when the wheel rebounds on the rail. Here, VI-Rail

predicts the second impact slightly sooner than both VOCO andMUBODyn.

While the contact search algorithm for VI-Rail is not well documented, this

may suggest that VI-Rail searches potential contact points along the entire

surface of the wheel, and not just in the 2D plane as done in VOCO, although

MUBODyn also uses a three-dimensional approach for the contact detection

[146] suggesting that this might not be the reason for the discrepancies.

Another possible explanation could be that the vertical velocity during the

rebound after the first impact is lower in VI-Rail compared to the other

software. This is possibly because of the damping used in the normal contact

model which causes the wheel to descend quicker and make an earlier second

contact with the crossing. The effect of the vehicle modelling in the MBS

codes, as well as the influence of the tangential forces is likely to be negligible

in Run 3, which is on a tangent track unlike during Run 1 and Run 2, and

the normal contact algorithm seems to be the key factor for explaining the

differences.

4.4.4 Conclusions

The collaborative study presented here allows investigation of the different

aspects of contact modelling used in three MBS codes, namely, VOCO,

MUBODyn, and VI-Rail, in detail, focusing on local contact results. With

three different test cases simulating different configurations that may be seen

in S&C, the study represents another benchmark that can serve as a guide

for current and future software developers. The following conclusions can

be made:

• In the case of conformal contact, fast contact methods seem to provide

sufficiently precise results as compared to the reference results from

CONTACT;

• The sharp-edge contact presents a contact configuration where any

approach using the half-space approximation is no longer valid.

Furthermore, the sharp discontinuity implies that normal contact

methods using local curvature properties may provide results that

are unsatisfactory. However, without a reliable reference, it is not

straightforward to determine the accuracy of contact results in such a

case;

• For the impact contact cases observed in the crossing nose, the

normal contact modelling plays an important role not only in the
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representation of the expected P1/P2 peaks, but also on the instant

when the second impact is detected by the contact search algorithm.

Searching for the contact only in the vertical plane may also be

insufficient in cases where the running rails are interrupted, due to

the presence of a discontinuity, such as in a crossing.

This latter study also permits the comparison of the computational

efficiency of three MBS software, which wasn’t done in the S&C benchmark.

In general, the compiling language, optimisation, and the pre-tabulation of

the contact parameters make VOCO the fastest code, achieving close to

real-time simulations, which is one of the main objectives of the developers.

The average CPU time per second of simulation using VOCO is about 15

seconds, 30 seconds for VI-Rail, and 1 hour for MUBODyn. MUBODyn took

a few hours per case as the S&C features in MUBODyn are new, and only

implemented in a non-compiled language, as opposed to VOCO or VI-Rail.

In general, wheel-rail contact modelling remains a challenging topic that

requires further research to improve the capabilities and precision of existing

MBS codes. Global results in terms of wheel-rail contact forces obtained in

this study are found to be generally in good agreement, as was already case

in the S&C benchmark [102]. Still, if one looks closely at the local results

such as the contact patches and normal stresses, more variations may emerge

which justifies the development of more accurate methods such as MIM-1D

or FASTSIMSH .
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This PhD work aims to address the need for efficient and accurate modelling

of the contact phenomenon for application to railway dynamics simulations.

A thorough investigation is carried out on the various rolling contact models

in the literature which are available for the prediction of wheel-rail contact

results, ranging from the analytical formulae presented by Hertz to Kalker’s

detailed variational theory. The choice of wheel-rail contact model used

in MBS software is foremost governed by the intended application of the

study. For the normal contact approximate analytical models based on

Hertz’ theory, may often be sufficient when numerous simulations must be

carried out per second for a train running over several kilometres of track.

The real geometry of the wheel and the rail imply contact conditions that

are strongly non-Hertzian, and virtual penetration methods are commonly

used in MBS codes to determine the wheel-rail contact in these cases. These

methods enable better modelling of the contact conditions compared to the

Hertzian theory while avoiding the precise but computationally expensive

fully detailed methods.

A similar issue is also encountered for the modelling of the tangential

contact, with many of the available methods restricted to Hertzian ellipses.

This implies that even MBS packages that use non-Hertzian modelling for

the normal contact are forced to revert to strategies such as equivalent

ellipses for the evaluation of the tangential creep forces. While these

approaches work sufficiently well in dynamic simulations, they cannot be

used to study the contact stresses or the slip-adhesion characteristics within

the contact patch, which are required for investigations of the rail wear or

damage. Thus, the research of more accurate solutions for both the normal

and the tangential contact problems is still an open field in the context of

railway vehicle dynamics.

In the first part, this work proposes the new method MIM-1D to

further enhance the precision of the normal contact solution. This is

achieved through a semi-analytical methodology, using strip elements
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instead of a 2D grid to discretise the potential contact area together with

the expressions from Boussinesq’s theory to evaluate the normal contact

pressures accurately. The length of the contact patch is supposed to

be a quasi-known quantity, dependent on the form of the normal stress

distribution and the profile curvatures, and is evaluated using an expression

based on the Hertzian theory applied locally. This ad hoc semi-analytical

approach offers better estimations of the contact patch and pressure

distribution when compared to the existing virtual penetration methods,

using the software CONTACT as the reference. While it is slower than

the virtual penetration methods, it is shown to be more computationally

efficient than the rigorous solution implemented in CONTACT, thus adding

a new method to the spectrum of fast versus detailed methods available in

the literature.

The FASTSIM algorithm is currently the most widely used approach in

MBS codes to assess the tangential creep forces. However, being restricted to

elliptical Hertzian cases means that workarounds such as equivalent ellipses

must often be used for the contact patch. The current work addresses this

shortcoming by presenting an updated version of the FASTSIM algorithm,

the so-called FASTSIMSH algorithm which was first introduced by Ayasse

& Chollet. This approach extends the original algorithm to non-Hertzian

contact patches by considering the local curvature properties, with the

creepages being assessed in each strip of the contact patch. Numerical

investigations are carried out to investigate the influence of different possible

settings for the traction bound in FASTSIMSH on the slip-stick zone

division and the tangential stresses. A new variant is introduced using a

weighing process which shows better results than the formulation proposed

in the original algorithm in cases where the parabolic traction bound

setting violates the local Coulomb’s law. The FASTSIMSH algorithm is

also validated for different non-Hertzian cases using a statistical design of

experiments. In the tested cases, this approach is shown to retain the merits

of the original algorithm when evaluating the creep forces, and at the same

time provides reasonably good approximations of the tangential contact

stresses. The normal contact method MIM-1D is also coupled with the

FASTSIMSH algorithm to investigate the influence of the normal contact

modelling on the tangential results, particularly for the case of damage

prediction. More accurate modelling of the normal contact via MIM-1D

combined with a fast non-Hertzian tangential contact method provides a new

solution for the whole rolling contact problem, showing better results than

the existing approximate methods usually implemented in MBS codes while

using less computing effort compared to the reference method implemented
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in CONTACT.

Alongside the development of new wheel-rail contact methods, this PhD

work also addresses case studies in railway dynamics within the context

of an international benchmark on switches and crossings, with a specific

focus on wheel-rail contact. Several new features have been integrated

into the MBS code VOCO including a new track model and improved

modelling of the check rail and the contact stiffness. Even the modelling

choices where comparatively simpler approaches (e.g. pre-computed contact

tables, vertical and lateral bushing elements approximating the contact

stiffness) are used as compared to other software (e.g. online 3D optimisation

for the contact detection, velocity dependant Hertz-based impact models

with a coefficient of restitution etc.) are shown to provide steady and

reliable results, thus justifying the choice of the developers to focus on

real-time simulation capabilities of VOCO. Following the benchmark, an in-

depth collaborative study has been carried out to investigate the influence

of different aspects of contact modelling on the dynamic behaviour of

the wheelset. This study presents the results using three MBS software,

including VOCO, with parametrized wheel and rail profiles to reproduce

contact conditions often encountered in S&C simulations. Between the

different MBS software, global results in terms of wheel-rail contact forces

are generally in good agreement, as is also highlighted in the S&C

benchmark. The local results such as the contact patches and normal

stresses may exhibit more variations, which in turn highlights the need for

more accurate modelling of the normal and tangential contact.

The new normal contact method MIM-1D in its standard version has

been shown to improve the contact patch and normal pressure computations

as compared to existing fast approaches. While using a semi-analytical

methodology permits a reduction in the computation time, re-evaluating the

matrix of influence coefficients at each iteration implies that up to two-thirds

of the CPU time can be spent on the Gaussian quadrature. As a further

perspective, it is proposed to replace the numerical integration in MIM-

1D with heuristic expressions to further improve computational efficiency

compared to CONTACT. Initial results are found to be promising and may

merit further investigations to improve precision and robustness.

In the present work, MIM-1D is only tested for a limited number of

contact cases, commonly used to validate new wheel-rail contact methods.

The future research direction should be to investigate and incorporate

improvements using different wheel-rail profiles, kinematic conditions, axle

loads etc. Even though Kalker’s variational theory is often used as the

reference for any new rolling contact model, the shortcomings of the half-
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space approach are again highlighted in the simulation cases tested in the

collaborative study. The calculation of the contact patch half-length in

MIM-1D has already been shown to be a delicate subject when treating

unique contact configurations such as a sharp-edge contact and warrants

further studies. A future research aspect may also be to carry out detailed

studies of the contact scenarios encountered in S&C simulations using

FE tools, which can then serve as the reference for the development of

fast methods adapted to treat these cases. The ultimate validation of a

complete rolling contact model, such as MIM-1D + FASTSIMSH or MIM-

1D + FaStrip, can only be through its implementation in an MBS software.

This would enable wide-ranging studies such as online damage analysis and

wear predictions and thus, not be limited to the theoretical cases generally

investigated in the literature.
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Appendix A

Theory of Boussinesq and

Cerruti

The normal stress distribution and normal displacements in an elastic half-

space due to a point loading was studied in detail by Boussinesq in 1885 [85].

A similar study had been done three years earlier by Cerruti who investigated

the action of tangential surface tractions [86] on the stress distribution and

displacements. Boussinesq and Cerruti’s analytical solutions use the theory

of potentials to give the surface displacements at any point of the semi-

infinite solid due to the action of a concentrated load acting on the semi-

infinite solid. In the surface mechanical form, the relation between the

displacements u and the stresses p can be given as:

u(x) =

∫
C
A(x,x’)p(x’)dC , (A.1)

where x = [x, y, z], x’ = [x′, y′, z′], p = [pn, px, py], and A(x,x’) is the

influence function matrix describing the displacement difference at x arising

due to a unit load in x’. The influence function depends on the geometry

of the body. Closed form solutions of the Boussinesq’s problem have been

determined for various simple forms such as in the works of Love [148] and

Sneddon [149] for a rigid cone, and Sneddon for flat-ended cylinders [150].

More importantly, the influence functions for the semi-infinite half-space can

be calculated analytically [103, 122]. One may refer to the book by Johnson

[18] for a synopsis of the results available in literature.

For the normal and tangential contact problem, the influence functions

are defined on the contacting surface, with x = [x, y, 0]. Under the influence

of a purely normal load pn acting on the contact surface C, the displacements
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at all the points can be given as:

ux1(x) = ux2(x) , (A.2)

uy1(x) = uy2(x) , (A.3)

uz1(x) = −uz2(x) , (A.4)

where the subscripts 1 and 2 denote the two bodies in contact. The relative

displacements due to the normal load can subsequently be expressed by

using the relevant expressions of the influence functions from the theory of

Boussinesq and Cerruti:

upnx (x) = ux1(x)− ux2(x) = − K

πG

∫∫
C

x− x′

r2
pn(x’)dC , (A.5)

upny (x) = uy1(x)− uy2(x) = − K

πG

∫∫
C

y − y′

r2
pn(x’)dC , (A.6)

upnz (x) = uz1(x)− uz2(x) =
1

πG

∫∫
C

1− ν

r
pn(x’)dC , (A.7)

where r =
√
(x′ − x)2 + (y′ − y)2, G is the combined modulus of rigidity,

and K is the difference parameter.

Following the same methodology, the relative displacements on the

surface due to pure longitudinal are calculated using the corresponding

influence functions:

upxx (x) = ux1(x)− ux2(x) =
1

πG

∫∫
C

[
1− ν

r
+
ν(x− x′)2

r3

]
px(x’)dC ,

(A.8)

upxy (x) = uy1(x)− uy2(x) =
1

πG

∫∫
C

ν(x− x′)(y − y′)

r3
px(x’)dC , (A.9)

upxz (x) = uz1(x)− uz2(x) =
K

πG

∫∫
C

x− x′

r2
px(x’)dC , (A.10)

and for the pure lateral loading as:

u
py
x (x) = ux1(x)− ux2(x) =

1

πG

∫∫
C

ν(x− x′)(y − y′)

r3
py(x’)dC , (A.11)

u
py
y (x) = uy1(x)− uy2(x) =

1

πG

∫∫
C

[
1− ν

r
+
ν(y − y′)2

r3

]
py(x’)dC ,

(A.12)

u
py
z (x) = uz1(x)− uz2(x) =

K

πG

∫∫
C

y − y′

r2
py(x’)dC . (A.13)
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The total surface displacement differences are finally obtained through the

superimposition of each of the individual displacement differences:

ux(x) = upxx (x) + u
py
x (x) + upnx (x)

=
1

πG

∫∫
C

{(
1− ν

r
+
ν(x− x′)2

r3

)
px(x’) +

ν(x− x′)(y − y′)

r3
py(x’)

− K
x− x′

r2
pn(x’)

}
dC , (A.14)

uy(x) = upxy (x) + u
py
y (x) + upny (x)

=
1

πG

∫∫
C

{
ν(x− x′)(y − y′)

r3
px(x’) +

(
1− ν

r
+
ν(y − y′)2

r3

)
py(x’)

− K
y − y′

r2
pn(x’)

}
dC , (A.15)

uz(x) = upxz (x) + u
py
z (x) + upnz (x)

=
1

πG

∫∫
C

{
K
x− x′

r2
px(x’) +K

y − y′

r2
py(x’) +

1− ν

r
pn(x’)

}
dC .

(A.16)

From the above expressions, the normal and tangential contact can be

observed to be coupled through the parameter K. When the two bodies

have the same material properties, K is zero and the bodies are said to

be quasi-identical. In these conditions, the normal and tangential problems

become decoupled and the above equations can be written in the following

form:

ux(x) =
1

πG

∫∫
C

{(
1− ν

r
+
ν(x− x′)2

r3

)
px(x’)

+
ν(x− x′)(y − y′)

r3
py(x’)

}
dC , (A.17)

uy(x) =
1

πG

∫∫
C

{
ν(x− x′)(y − y′)

r3
px(x’)

+

(
1− ν

r
+
ν(y − y′)2

r3

)
py(x’)

}
dC , (A.18)

uz(x) =
1

πG

∫∫
C

1− ν

r
pn(x’)dC . (A.19)

Analytical expressions for the integrals in the above relations can be found

in [18] or the appendix in [25, p. 150].
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Contact patch half-length

using ANALYN

The expression for the contact patch boundaries1 in ANALYN [95] is:

ai =

√
gi

(1 + αi)Ai
, (B.1)

where

gi = δ − (1 + βi)hi . (B.2)

Here, gi is the interpenetration, and the term βihi takes the surface

deformation into account analytically, as opposed to methods based on the

virtual penetration where the deformation is neglected. The coefficients αi
and βi are defined as:

αi =
ri
m2
i

(
1 +

Bi
Ai

)
− 1 , (B.3)

βi =
ri
n2i

(
1 +

Ai
Bi

)
− 1 , (B.4)

where Ai and Bi are the relative longitudinal and lateral curvatures,

respectively, while mi, ni, and ri are non-dimensional Hertzian coefficients

calculated using the local curvatures. The maximum pressure value p0i is:

p0i =
2E⋆

π

1

niri

gi
ai
. (B.5)

Squaring Equation (B.1) and taking into account the expression for αi, we

1ai represents the discretised value of the continuous value a(yi)
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have:

gi =
ri
m2
i

(Ai +Bi)a
2
i . (B.6)

Combining Equation (B.5) and Equation (B.6), the half-length of the contact

patch ai can finally be written as:

ai =
π

2E⋆
m2
ini

Ai +Bi
p0i , (B.7)

which is the same as Equation (2.26).
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Alternate expression for the

contact patch half-length

used in MIM-1D

The assessment of ai is critical in order to get consistent results in MIM-

1D. The chosen expressions Equation (2.26) or Equation (2.31) make use of

the local curvatures as well as the pressure (or normal force) distribution

obtained within the contact patch, and provide best results in the studied

cases as compared to other tested expressions. Still, this choice may

considerably deviate from the CONTACT results in profiles showing a large

gradient of surface curvature, as in the case of sharp-edge contact. This is a

shortcoming of the method, even though such profiles should be considered

with care, either due to the high values of pressures (leading to plastification)

or due to the use of methods based on the half-space assumption.

Another expression of the half-length is proposed here, which is not

based on the local values of the curvature, but rather on the assessment of

the curvatures of an equivalent ellipse, as done in the Kik-Piotrowski method

[74]. The half-length in the KP method is first approximated, as described

in Section 1.4.2.1, using the interpenetration region:

ai =

√
g(yi)

A
, (C.1)

with

g(yi) = ϵδ − h(yi) , (C.2)

A =
1

2R
. (C.3)
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In MIM-1D, ϵ is not computed, but the limits of the contact patch in

the plane x = 0 is known. Let yl and yr be the limits of the contact patch,

and ym be the location of the minimum of −h(yi) between yl and yr. Then,
g(yi) may be approximated using:

g(yi) = h(ym)− h(yi) + ο , (C.4)

where ο is a very small positive value to avoid a zero value for ai in

Equation (C.1), which would make the influence coefficient matrix C

singular. Comparing Equation (C.2) with Equation (C.4), it is clear that ϵδ

can be evaluated as:

ϵδ = h(ym) . (C.5)

As mentioned in Chapter 1, in every VP method, a correction must be

made in order to get the aspect ratio predicted by the Hertzian theory. In

the KP method [74], the correction is based on the estimation of the aspect

ratio of an equivalent ellipse. The mean lateral B curvature is evaluated

using the width of the contact patch W = yr − yl, such that:

B =
4h(ym)

W 2
. (C.6)

The longitudinal curvature is corrected using the semi-Hertzian theory:

Ac = B
( n
m

)2
, (C.7)

where m and n are the Hertzian coefficients given by Table 1.1 for the mean

curvature ratio A/B. Ac then replaces the A value in Equation (C.1) to

evaluate the half-lengths ai.
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Vehicle and track models

The following sections present the vehicle and track models used in

Section 4.4, and are adapted from [145].

D.1 Vehicle model

A simple bogie is considered as the vehicle model, which consists of a

bogie frame supported by two wheelsets through the primary suspension

as depicted in Figure D.1. The parameters used for this model are listed in

Table D.1 and are based on the passenger vehicle used in the Manchester

Benchmarks [127], with the exception that only half of the car body mass is

considered, and the series stiffness of the primary suspension elements are

removed.

D.2 Track model

The track model is a co-running model, similar to the one used in the S&C

benchmark [102], and is shown in Figure D.2. This is a lumped parameter

model with three mass elements, with two of them representing the left and

right rails, and the remaining mass representing a section of the sleeper-

ballast layers. Lateral and vertical spring and dampers elements are used to

connect the rails to the sleeper-ballast, and subsequently the sleeper-ballast

to the track foundation. The rail mass elements have planar motion, with

two degrees of freedom where they can move laterally and vertically, while

the sleeper-ballast can also exhibit roll motion about the longitudinal axis.

The parameters of the co-running track model are listed in Table D.2.
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Figure D.1: The bogie model. From [145]

Figure D.2: The co-running track model. From [145]
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Parameter Value

mw Mass of the wheelset (kg) 1813

Iw,roll Roll moment of inertia of the wheelset (kg.m2) 1120

Iw,pitch Pitch moment of inertia of the bogie wheelset

(kg.m2)

112

Iw,yaw Yaw moment of inertia of the bogie wheelset

(kg.m2)

1120

zw Height and nominal radius of the wheelset (m) 0.460

mb Mass of the bogie frame (kg) 18615

Ib,roll Roll moment of inertia of the bogie frame (kg.m2) 1722

Ib,pitch Pitch moment of inertia of the bogie frame

(kg.m2)

1476

Ib,yaw Yawmoment of inertia of the bogie frame (kg.m2) 3067

zb Height of the bogie frame (m) 0.600

Lw Distance between wheelsets (m) 2.560

La Half distance between axle-boxes (m) 1.000

kx Longitudinal stiffness (MN/m) 31.391

cx Longitudinal damping (kN.s/m) 15.000

Lx Length of the longitudinal spring (m) 0.450

ky Lateral stiffness (MN/m) 3.884

cy Lateral damping (kN.s/m) 2.000

Ly Length of the lateral spring (m) 0.400

kz Vertical stiffness (MN/m) 1.220

cz Vertical damping (kN.s/m) 4.000

Lz Deformed/undeformed length of the vertical

spring (m)

0.420/0.457

Table D.1: Parameter values for the bogie model shown in Figure D.1.

From [145]
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Parameter Value

mr Mass of the rail (kg) 60

ms Mass of the sleeper-ballast (kg) 1400

Is,roll Roll moment of inertia of the sleeper-ballast

(kg.m2)

450

D Distance between rails (m) 1.500

kp,y Lateral stiffness of the pad (N/m) 30

cp,y Lateral damping of the pad (N.s/m) 150

kp,z Vertical stiffness of the pad (MN/m) 150

cp,z Vertical damping of the pad (kN.s/m) 100

kg,y Lateral stiffness of the sleeper-ballast (N/m) 70

cg,y Lateral damping of the sleeper-ballast (N.s/m) 350

kg,z Vertical stiffness of the sleeper-ballast (MN/m) 140

cg,z Vertical damping of the sleeper-ballast (kN.s/m) 1400

Table D.2: Parameter values for the co-running track model shown in

Figure D.2. From [145]
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Parametrized wheel and rail

profiles

The following sections present the parametrization of the wheel and rail

profiles, as well as the crossing layout used in Section 4.4, and are adapted

from [145].

E.1 Wheel profile

The wheel profile is parametrized using the curved sections of three ellipses,

as depicted in Figure E.1. Each ellipse is defined by the two semi-axes ai
and bi, where i corresponds to the respective part of the wheel profile, with

‘T’ for the tread, ‘C’ for the concave part, and ‘F’ for the flange. The union

between ellipses is such that it always ensures the continuity of the first

derivative. The different parameters used to define the wheel profile, and

their corresponding values, are given in Table E.1.

E.2 Rail profile

The rail profiles are parametrized via the union of two ellipses that represent

the head or the top of the rail, and two straight lines that represent the

lateral faces, as shown in Figure E.2. Similar to the wheel parametrization,

each ellipse is defined by the two semi-axes ai and bi, where i corresponds to

the respective side of the rail profile, with ‘L’ and ‘R’ representing the left

and tight sides respectively. The continuity of the first derivative is ensured

at all points. The different parameters used to define the rail profile, and

their corresponding values, are given in Table E.2.
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Figure E.1: Schematic representation of the wheel profile parametrization.

From [145]

Parameter Value

R0 Nominal wheel radius (m) 0.46

∆sW Distance between points of the wheel profile (m) 0.0005

aT Vertical semi axis of the tread ellipse (m) 0.005

bT Horizontal semi axis of the tread ellipse (m) 0.150

aC Vertical semi axis of the concave ellipse (m) 0.020

bC Horizontal semi axis of the concave ellipse (m) 0.040

aF Vertical semi axis of the flange ellipse (m) 0.020

bF Horizontal semi axis of the flange ellipse (m) 0.020

u0 Lateral coordinate of the tread-concave ellipses

union (m)

-0.005

dfW Wheel slope at the flange-concave ellipses union

(-)

3

Table E.1: Parameter values for the wheel profile shown in Figure E.1.

From [145]
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Figure E.2: Schematic representation of the rail profile parametrization.

From [145]

Parameter Runs 1

& 3∗

(both)

Run 2

(left)

Run 2

(right)

R0 Height of the rail profile (m) 0.0 0.0 0.0

∆sr Distance between points of the rail

profile (m)

0.0005 0.0001 0.0001

aL Vertical semi axis of the left ellipse

(m)

0.021 0.021 0.021

bL Horizontal semi axis of the left

ellipse (m)

0.039 0.039 0.001

dfL Slope of the left straight line (-) 30 30 30

∆uL Width of the left straight line (m) 0.001 0.001 0.001

aR Vertical semi-axis of the right

ellipse (m)

0.021 0.021 0.021

bR Horizontal semi-axis of the right

ellipse (m)

0.039 0.001 0.039

dfR Slope of the right straight line (-) 30 30 30

∆uR Width of the right straight line

(m)

0.001 0.001 0.001

Table E.2: Parameter values for the rail profile shown in Figure E.2 (∗the

right rail of Run 3 also comprises a set of profiles that represent the

crossing). From [145]
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Figure E.3: Schematic representation of the crossing layout

parametrization. From [145]

E.3 Crossing layout

The crossing rail consists of the wing rail and the crossing nose, whose

cross-sections are parametrized through ellipses and straight lines, as in

the case of the rail profiles. The top and lateral views of the crossing are

presented in Figure E.3, where the rail profiles at three longitudinal track

positions are identified as ‘1’, ‘2’ and ‘3’ that refer to the three cross-sections

represented in Figure E.4. The wing rail deviates laterally in the interval

between position ‘1’ and ‘3’ according to the crossing angle α, and the wing

rail profile in this interval is wider than the one observed at position ‘1’ by

a factor of 1/ cosα due to the projection of the rail cross-section onto the

transverse plane of the track. From position ‘2’ up to position ‘3’, the rail

cross-section varies linearly until reaching the original cross-section observed

at position ‘1’. The different parameters used to define the crossing, and

their corresponding values, are given in Table E.3.
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Figure E.4: Cross-sections of the parametrized crossing panel at positions

‘1’, ‘2’ and ‘3’, as indicated in Figure E.3. From [145]
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Parameter Value

∆p Distance between rail profiles (m) 0.01

∆sr Distance between points of the crossing profile

(m)

0.0005

f0 Height of the rail (m) 0.0

ar Vertical semi axis of the ellipse (m) 0.021

br Horizontal semi axis of the ellipse (m) 0.039

dfr Slope of the right straight line (-) 30

∆ur Width of the right straight line (m) 0.001

α Crossing angle (°) 5

β Longitudinal angle of the crossing nose (°) 4

hN Height difference between the nose and wing rails

at position ‘2’ (m)

0.025

aN Vertical semi axis of the ellipse of the nose (m) 0.002

bN Horizontal semi axis of the ellipse of the nose (m) 0.002

c Distance between crossing nose and wing rail (m) 0.050

Table E.3: Parameter values for the crossing panel cross-sections shown in

Figure E.4. From [145]
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