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Abstract

Soil moisture remote sensing has been an active area of research over the
past few decades due to its essential role in agriculture and in the prediction
of some natural disasters. GNSS-Reflectometry (GNSS-R) is an emerging bi-
static remote sensing technique that uses the L-band GNSS signals as sources
of opportunity to characterize Earth surface. In this passive radar system, the
amplitudes of the GNSS signal reflected by soil and the GNSS signal received
directly from the GNSS satellites can be used to derive measurements of re-
flectivity from which the soil moisture content of the surface is determined.
The study of soil moisture content using reflectivity measurements can also
be applied for the detection of in-land water body surfaces.

In this dissertation, we propose in the first step a non-linear estimate of
the GNSS signal amplitude. This estimate is based on a statistical model that
we develop for the coherent detection of a GNSS signal quantized on 1 bit.
We show with experimentations on synthetic and real data that the proposed
estimator is more accurate than reference approaches and provide measure-
ments of the Signal-to-Noise Ratio (SNR) at a higher rate. When the reflected
GNSS signal is obtained in an airborne experiment, its evolution as a function
of time is piecewise stationary. The different stationary parts are associated
to different kinds of reflecting surfaces. We propose in a second step a change
point detector that takes into account the radar signal characteristics in order
to segment the signal. We show on synthetic data that the proposed change
point detector can detect and localize changes more accurately than reference
approaches present in the literature. This work is applied to airborne GNSS-
R observation of Earth. We propose in the third step, a new GNSS-R sensor
with its implementation on a lightweight airborne carrier. We also propose a
new front-end receiver architecture, a software radio implementation of the
receiver, and the complete instrumentation of the airborne carrier.

A real flight experimentation has taken place in the North of France ob-
taining reflections from different landforms. We show using the airborne
GNSS measurements obtained, that the proposed radar technique detects
different surfaces along the flight trajectory, and in particular in-land water
bodies, with high temporal and spatial resolution. We also show that we can
localize the edges of the detected water body surfaces at meter accuracy.

Keywords: GNSS signal processing; GNSS amplitude estimation; signal
segmentation; GNSS-Reflectometry; passive radar; airborne observation
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Résumé

L’estimation du taux d’humidité des sols par télédétection est un domaine de
recherche très actif car ses applications concernent l’agriculture et les catas-
trophes naturelles. La réflectométrie GNSS (GNSS-R) est une nouvelle tech-
nique d’observation de la terre basée sur un système radar bi-statique qui
utilise le signal GNSS en bande L comme source d’opportunité. Dans ce sys-
tème radar passif, le signal GNSS réfléchi par le sol est utilisé pour estimer
le taux d’humidité de la surface de réflexion. Il peut aussi être utilisé pour
détecter et localiser les zones humides.

Dans ce travail de thèse nous proposons dans un premier temps un esti-
mateur non linéaire de l’amplitude du signal GNSS. Cet estimateur est basé
sur un modèle statistique que nous proposons pour la détection cohérente du
signal GNSS quantifié sur 1 bit. On montre, grâce à une expérimentation sur
données synthétiques et sur données réelles, que l’estimateur proposé per-
met d’estimer le rapport signal à bruit d’un signal GNSS, avec une fréquence
et une précision plus importante que les techniques de références. Quand
le signal GNSS réfléchi est obtenu dans un vol aéroporté celui-ci est com-
posé de zones stationnaires qui représentent les différents types de surfaces
de réflexion. Nous proposons dans un deuxième temps un détecteur de rup-
ture qui prend en compte la nature du signal radar pour découper celui-ci
en zones stationnaires. On montre grâce à une expérimentation sur données
synthétiques que le détecteur proposé offre une meilleure détection et locali-
sation des ruptures que les méthodes de références. Ce travail est appliqué à
l’observation GNSS-R aéroportée. Nous proposons dans une troisième par-
tie l’étude et la mise en œuvre originale du capteur GNSS-R que nous avons
développé. Cette étude porte à la fois sur la conception du capteur, la réali-
sation du récepteur génie logiciel qui traite les données et l’implantation du
capteur sur un porteur de type autogyre.

Une expérimentation aéroportée, qui a été réalisée dans le nord de la
France, nous a permis d’obtenir des réflexions du signal GNSS pour dif-
férents types de sol. On montre que les traitements du signal et la technique
radar proposés permettent de détecter différents types de surfaces de réflex-
ion avec une résolution spatiale et temporelle importante. On montre aussi
que l’on peut localiser avec une précision métrique les zones en eau.

Keywords: Traitement du Signal GNSS; Segmentation du Signal; Réflec-
tométrie GNSS; Radar Passif; Observation Aéroportée
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General Introduction

Soil moisture is one of the key parameters in the hydrological cycle, i.e. the
continuous circulation of water between oceans, atmosphere and land in a
never-ending process [1, 2]. It directly influences the amount of evaporation,
infiltration, and the amount of water uptake by plants and was recognized as
an Essential Climate Variable (ECV) [3, 4]. In this context, measuring the soil
moisture content on a global scale can be of a great benefit for a large number
of applications. Disciplines such as hydrology, climatology, and agriculture,
require estimating the soil moisture content for prediction of potential flood
and drought hazards, understanding land–atmosphere energy balance, and
crop yield expectation [5–7]. The study of soil moisture content can be ap-
plied to observe the distribution of in-land water body surfaces.

Floodplains and in-land water body surfaces cover at least 12.1× 106 km2

( 8%) of landscapes on Earth [8, 9]. They play a significant role in the water
cycle through river flow variability, flood mitigation, groundwater recharge
and water quality improvement [10]. Despite its important role, little knowl-
edge has been acquired concerning the water stored in floodplains and wet-
lands as well as its temporal variations from regional to global scales until
remote sensing techniques emerged as potential instruments for soil mois-
ture and water body detection.

In this regard, soil moisture and water content remote sensing on a global
and regional scale has been an active area of research over the past few
decades. It has been proven that the microwave band that is optimal for
soil moisture remote sensing lies within the L-band [11, 12]. It is shown that
the soil dielectric constant value that governs the surface reflectivity can be
determined from only the top 0-5 cm of soil [12].

The Global Navigation Satellite Systems (GNSS) have been used as an ef-
fective tool for remote sensing, due to its unique characteristics. It uses the
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radio navigation signals as opportunistic bistatic radar transmissions, pro-
viding precise, continuous, free 24 hours detections and positioning capabil-
ities. The use of GNSS signals for remote sensing applications is referred to
as GNSS-Reflectometry (GNSS-R).

GNSS-R is an emerging bistatic remote sensing technique that uses the
GNSS signals (mainly GPS signals) as sources of opportunity to characterize
Earth surface. GNSS systems continuously transmit signals to Earth surface
at different L-bands ranging between 1 and 2 GHz. A GNSS-R sensor re-
ceives the direct GNSS signals from the satellites as well as those reflected
from Earth surface. The reflected signals carry information about the reflect-
ing surface such as its height, shape and moisture content. GNSS-R platforms
offer dedicated applications for Earth surface remote sensing on a local scale
using ground-based experiments, a regional scale using airborne campaigns,
and recently extending to a global scale using GNSS-R based space-borne
missions.

In GNSS-R, the soil moisture content can be derived from the reflectivity
measurements. These measurements are directly linked to the amplitudes of
the GNSS signals. In this regard, the ratio of the received carrier power level
to the noise power level can be used to observe the GNSS signal amplitude.
This ratio is referred to as the Carrier-to-Noise ratio (C/N0) when the noise
power is defined for a unit of bandwidth. It is seen as the normalized mea-
sure of the Signal-to-Noise Ratio (SNR). C/N0 observations have been uti-
lized for remote sensing applications by the GNSS-R community. The C/N0

of the direct and reflected GNSS signals are compared to retrieve some geo-
physical parameters of the reflecting surface [13–16].

This dissertation is dedicated to the study of airborne GNSS-R techniques
for soil moisture and water body detection using a low-altitude airborne car-
rier. We estimate the amplitudes of the direct and reflected GNSS signals at
high rate, from which the surface reflectivity of different reflecting surfaces
is derived. We develop a GNSS-R setup on-board a lightweight airborne car-
rier that can achieve the high temporal and spatial resolution requirements
of our application. The GNSS signals are segmented into stationary parts
based on the changes in the reflectivity measurements associated to different
areas of reflection. The general aims and contributions of this work can be
summarized as follows:
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– Development of GNSS signal processing techniques for airborne reflec-
tometry. These techniques involve the acquisition, tracking and dating
of the raw GNSS data in classical and master/slave configurations.

– Development of a novel probabilistic model that makes use of dedi-
cated GNSS signal processing techniques for on-line estimation of the
GNSS signal amplitudes and consequently the C/N0.

– Development of a novel GNSS signal segmentation system that makes
use of pre-existing tools and merge them with proposed models for
differentiating water body surfaces in landforms.

– Assessment of the proposed systems and methodologies on real data.
The data are recorded using an original GNSS sensor designed specifi-
cally for this work.

– Implementation of a novel quantitative analysis for water body detec-
tion and edge localization using the proposed radar technique over the
data collected along the whole flight trajectory.

The developed techniques will be presented through five chapters. The
first two chapters are mainly bibliographical, while the last three chapters are
dedicated for the presentation of the research work. In the first chapter, we
present a brief review of soil dielectric constant and emissions models that
allow to derive the soil moisture content of land using remote sensing tech-
niques. These techniques are classified as active and passive remote sensing
techniques, and thus are presented in this chapter, and in particular, remote
sensing using GNSS-R radar techniques. The principle of GNSS-R is high-
lighted in this chapter. The different geometric configurations of the reflec-
tometry system in the modeling of the signal reflection on Earth surface are
thoroughly discussed. We conclude this chapter by presenting various appli-
cations that have emerged and the main signal processing methods used in
the context of GNSS-R.

The second chapter presents a literature review of different carrier-to-
noise estimation techniques and its application to soil moisture retrieval us-
ing GNSS-R. This chapter introduces the GNSS signal model, in particu-
lar, the GNSS front end processing that leads to the derivation of the GNSS
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carrier-to-noise expression. This chapter also investigates various C/N0 esti-
mation algorithms for digital communications channels that have been pub-
lished in the literature over the last few decades. By evaluating the perfor-
mance of the C/N0 estimators presented, we select one particular estimator
to use in assessing the performance of the proposed C/N0 estimator that is
presented in this work. Soil moisture retrieval algorithms from the Signal-to-
Noise-Ratio (SNR) under different GNSS-R antenna configurations are de-
tailed in this chapter.

In the third chapter, we propose a model that estimates C/N0 at high
rate in order to maximize the time resolution of the observations. We show
in this chapter that in a 1-bit quantization receiver, the in-phase component
of the signal can provide a direct observation of the signal amplitude, and
therefore of the carrier-to-noise ratio. The non-linear expression that links
the maximum value of the in-phase correlation component to the signal am-
plitude is derived. In order to estimate the time varying amplitudes of the
signals, we propose an Extended Kalman Filter to reverse the non-linear ex-
pression with the noisy observations of correlation provided by the tracking
loop. The proposed model and filter inversion method are assessed on syn-
thetic and real data. We show that the proposed GNSS amplitude estimator
performs coherently with an existing GNSS receiver and with much higher
data rate which is essential in multi-path and dynamic GNSS-R applications.

In the fourth chapter, we propose a segmentation model that divides the
GNSS signals into stationary parts associated to different areas of reflection.
The amplitudes of the reflected GNSS signals change significantly with the
displacement of the satellites footprints from one area to another. In this
chapter, we define the model that characterizes such displacement. We de-
tect the changes in the reflected GNSS signal levels using an already proven
change point detector. Then, we propose an algorithm that localizes these
changes in an optimal working window. We also propose a merging algo-
rithm in order to decrease the number of false change detections. Signal
segmentation is implemented based on the different processing steps. This
chapter concludes by assessing the performance of the proposed system on
synthetic data and evaluating its performance on real GNSS airborne data.
We show in this chapter the feasibility of the proposed segmentation model
to segment real GNSS airborne signals.
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The fifth chapter is dedicated to the GNSS-R airborne experiment that
took place in the context of this work and its findings. In this chapter, we
introduce the airborne GNSS-R configuration adapted and the techniques
used for localizing the GNSS measurements. Then, the airborne experimen-
tal setup is described along with the utilized sensors and GNSS-R receiver
hardware. In this chapter, we demonstrate the architecture of our self-built
software receiver for processing the GNSS data acquired during the flight
experimentation. We make use of the developed models and systems in the
preceding chapters to apply a real radar signal segmentation on the airborne
GNSS measurements. This chapter concludes by providing a detailed analy-
sis of the proposed radar technique and its application to water body detec-
tion and edge localization as well as its feasibility to detect other surfaces in
landforms. We expose in this analysis the capacity of the proposed approach
to detect in-land water body surfaces. We also show that we can localize at
meter accuracy the edges of the detected water body surfaces.

Finally, a general conclusion is presented which takes stock of the work
described in this thesis and proposes future perspectives to further advance
in the topic.
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on GNSS signal processing), 2 international conference with proceedings, 3
international conferences without proceedings, 2 national communications
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Chapter 1

Remote Sensing of Soil Moisture

1.1 Introduction

Knowledge of distributed surface Soil Moisture Content (SMC) has been stud-
ied over the years, however it originally lacked observations of global data
over large surface areas and had to recur to numerical models [12]. Even
though in situ soil moisture sensors have been widely available, estimating
the soil moisture content of large surface areas using in situ observations is
generally impractical due to its complex installment procedure and equip-
ment relocation, expensive cost, and most importantly the relatively small
scanned surface area per use.

Remote sensing of soil moisture has been investigated using ground-based,
airborne and spaceborne radiometers and radars. In this regard, active and
passive sensors including radiometers, monostatic and bistatic radars have
been used for soil moisture estimation. The emitted electromagnetic radi-
ation (in passive remote sensing) or the reflected microwave radiation (in
active remote sensing) from the soil surface to the sensor represents the only
measurement for studying the soil properties remotely. This emitted or re-
flected radiation from a covered soil surface to the remote sensor no longer
represent the actual soil surface emission because part of the emitted / re-
flected radiation might be either absorbed or enhanced by the soil cover. Dif-
ferent active and passive models have been developed to take into account
the surface reflectivity, the effects of surface roughness, the soil physical tem-
perature, the effect of vegetation and all other factors that contribute to the
proper derivation of the soil moisture content.

GNSS-R is a method of remote sensing which uses GNSS navigation sig-
nals as ”Signals of Opportunity” in a bistatic radar system. Its main principle
is to receive and further extract information from the GNSS signals which
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were reflected off Earth surface. GNSS-R remote sensing provides numer-
ous advantages over other active and passive approaches. It offers the ability
to estimate land surface parameters (such as SMC) on a local, regional and
global scale. GNSS-R techniques use GNSS satellites as free source signal
transmitters with 24 hours on-line global coverage and detection capabilities
providing precise localization and dating of the received data [17]. Such sys-
tems are considered to be cost-effective compared to other techniques. In ad-
dition, GNSS-R sensors are generally light weight and thus can be mounted
on spacecrafts, aircrafts, Unmanned Aerial Vehicles (UAVS) or can be sim-
ply fixed on the ground. Since the GNSS satellites provide global coverage,
combining it with a dynamic GNSS-R receiver provides the ability to scan
large surface areas on a regional scale and quickly reach the area to monitor
at a reasonable time, which is the case in this dissertation where the GNSS-R
receiver is mounted on an aircraft.

This chapter addresses the fundamentals of soil moisture remote sens-
ing from L-band emissions. The differences between active and passive soil
moisture remote sensing techniques are highlighted and remote sensing us-
ing GNSS-R is introduced. Since this dissertation focuses on soil moisture
remote sensing using GNSS-R, the GNSS-R principles, geometry, method-
ologies, and applications are thoroughly investigated.

1.2 L-band emissions of land covers

Soil moisture remote sensing has been examined mainly in the microwave
region of the electromagnetic spectrum. Short wavelengths (e.g. X-band;
∼ 3 cm, ∼ 10 GHz) reflect information from the vegetation canopy, while
medium wavelengths (e.g. C-band; ∼ 6 cm, ∼ 5 GHz) reflects information
from both the soil and the vegetation canopy. Long wavelengths (e.g. L-
band; ∼ 30 cm, ∼ 1 GHz), on the other hand, can penetrate the canopy and
obtain signals reflected solely from the soil surface.

Consequently, the microwave band that works best for soil moisture re-
mote sensing lies within the L-band (1-2 GHz) [12, 18–20] because at these fre-
quencies: (1) the atmosphere is nearly transparent to electromagnetic waves,
(2) vegetation is semi-opaque allowing observations of the surface, (3) the
microwave measurement is strongly dependent on soil moisture, because the
sensitivity to changes in the dielectric constant, and hence in soil moisture, is



1.2. L-band emissions of land covers 11

very large, and (4) the measurements are independent of solar illumination
[12, 21]. Soil moisture affects the dielectric constant of the soil, and therefore
can be retrieved from measurements of the reflectivity or emissivity of the
surface [5].

Recent studies [22, 23] have exploited the use of the P-band (∼ 30 cm
wavelength) which could potentially provide soil moisture information for
the top ∼ 10 cm layer of soil. However, this band is not broadcasted by
the ”free-source” GNSS systems. In addition, questions over the ionospheric
effects on this and other low frequency radars have not been completely re-
solved [24]. The P-band would also require the use of larger antennas in
order to maintain the same spatial resolution as L-band at the same height.
Nevertheless, more satellite missions are expected to use the P-band in the
future for remote sensing of the vegetation biomass.

1.2.1 Soil dielectric constant model

The soil dielectric constant ε is an electrical property that determines the re-
sponse of the soil to an incident electromagnetic wave [25]. This response
is composed of a real ε′ and imaginary ε′′ part, which is negligible at low
frequencies (L, C, and X bands), and can be expressed as:

ε = ε′ + jε′′ (1.1)

ε′ determines the wave velocity and ε′′ determines the energy losses.

The soil dielectric constant depends on the volumetric SMC parameter.
For instance, the dielectric properties of water (ε ≈ 80) is much different than
that of soil (ε ≈ 4) [26]. However, the relationship between the soil dielec-
tric constant and the soil physical properties is not straightforward. In this
context, a large number of studies have been conducted over the past few
decades to determine the relationship between SMC and the dielectric con-
stant of the soil [27–29]. Most studies have used a semi-empirical approach
that contains a model of the complex dielectric constant and the volume frac-
tion of each of the soil components [26]. One of the most widely used models
is presented in [27]. This model starts by expressing the dielectric mixing
model as:

εα = Vsεs
α + Vaεa

α + Vfwεfw
α + Vbwεbw

α (1.2)
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where V represents the volume fraction and the subscripts s, a, fw and bw
refer to solid soil, air, free water, and bound water in the soil, respectively. α

is a constant geometric factor. Since the complex dielectric constant of bound
water is not well known, the following approximation is made [27]:

mv
βεfw

α = Vfwεfw
α + Vbwεbw

α (1.3)

where mv is the volumetric soil moisture. The value of the empirical constant
β depends on the textural composition of the soil. The value of the shape
factor α is established by using the soil model presented earlier to apportion
the soil water into bound and free volume fractions and to provide estimates
of εfw. According to [27], inserting these estimates and optimizing ε′ and ε′′

over all frequencies and soils yields α = 0.65 as a constant. The expression
(1.2) can be written as a function of a given soil bulk density ρb and particle
density ρs as [27]:

εα = 1 +
ρb

ρs
(εα

s − 1) + Vfwεα
fw + Vbwεα

fw − mv (1.4)

The final expression of the semi-empirical model is then expressed as:

ε =

(
1 +

ρb

ρs
(εα

s − 1) + mβ
vεα

fw − mv

)1/α

(1.5)

Using α = 0.65, the values of the soil-texture-dependent coefficient β are
optimized for each of the five soils ranging from sandy loam to silty clay as
in [27]. The resultant values are related to the soil texture of the five soils by :

βϵ
′ = (127.48 − 0.519S − 0.152C)/100 (1.6)

βϵ
′′ = (1.33797 − 0.603S − 0.166C)/100 (1.7)

where S and C are the percentages of sand and clay, respectively.

1.2.2 Soil emissions

The emissivity E of land covers does not only depend on the soil moisture
content , but also on the surface roughness [30] , soil temperature [31], veg-
etation canopy [32, 33] and snow cover [34]. Emissivity is inversely related
to the soil dielectric constant. For homogeneous and smooth surfaces, soil
emissivity can be approximated from the soil reflectivity Γ of a plane surface
as [35]:



1.2. L-band emissions of land covers 13

E = 1 − Γ = 1 − |RP(ε, γ)|2 (1.8)

where the surface reflectivity of the soil can be computed from the Fresnel
reflection coefficient RP as a function of the soil dielectric constant ε and the
incidence angle γ relative to the nadir using the horizontal RH(ε, γ) and ver-
tical RV(ε, γ) Fresnel reflection coefficients defined as [36]:

RH(ε, γ) =
cos γ−

√
ε−sin2 γ

cos γ+
√

ε−sin2 γ
(1.9)

RV(ε, γ) =
ε cos γ−

√
ε−sin2 γ

ε cos γ+
√

ε−sin2 γ
(1.10)

However, for a rough surface, the surface normals at all points are not
parallel as in the case of smooth surfaces, and thus the surface reflectivity
may no longer be obtained from the Fresnel equations. Assuming that the
radiation in a polarization state for a rough surface may be expressed as a
linear combination of the radiations in horizontal and vertical polarizations
for a smooth surface, the horizontal RR

H(ε, γ) and vertical RR
V(ε, γ) reflection

coefficients for a rough surface may be written as:

RR
H(ε, γ) = [(1 − Q)RH(γ) + QRV(γ)] e−hscosNs γ (1.11)

RR
V(ε, γ) = [(1 − Q)RV(γ) + QRH(γ)] e−hscosNs γ (1.12)

where Q is a parameter for polarization mixing due to surface roughness, and
e−hscosNs γ is the factor by which the smooth surface reflectivity is lowered
with hs being a parameter characterizing height and often accounts for the
intensity of the roughness effects. Ns is a parameter that accounts for multi-
angular and dual-polarization measurements [37]. In the initial study of [38],
Ns was set to 2. For low-frequency bands like the L-band, Ns can be set to 0,
and Q can be disregarded [35, 37]. Therefore, at L-band, the emissivity can
be corrected from surface roughness as:

ER = 1 − ΓR = 1 − Γe−hs (1.13)

where ΓR corresponds to the reflectivity of a rough surface. This means that
for a smooth surface (hs = 0), the emissivity is governed only by the specular
Fresnel reflectivity Γ. hs can be expressed as a function of the wavelength of
the signal λ and the standard deviation of the surface σs as:
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hs = 4 k2σ2
s (1.14)

where k = 2π
λ is the wave number.

The volumetric soil moisture mv decreases monotonically with the in-
crease of the emissivity E of bare soil. In this regard, if the surface roughness
conditions do not change much during the observations, this function can be
well approximated by a linear equation of the type [35, 38]:

E = −a0mv + a1 (1.15)

Moreover, soil emission is attenuated by the covered vegetation and its
contribution to the emitted radiation must be taken into consideration. For
low frequency bands such as the L-band, this effect can be approximated
by by a simple Radiative Transfer Model (RTM), referred to as the τ − ω

model [35, 39]. This basic model accounts for vegetation optical depth τ and
the single scattering albedo ω to parameterize, respectively, the vegetation
attenuation properties and the scattering effects within the canopy layer. In
practice, τ is linearly linked to the total vegetation water content Wv (kg/m2)
as [40]:

τ = b · Wv (1.16)

where b is a constant that can be calibrated for each crop type or for large
categories of vegetation (leaf-dominated, stem-dominated and grass) [37].

According to the τ −ω model, the total emission from soil and vegetation
is the sum of three terms: (1) the direct vegetation emission; (2) the vegeta-
tion emission reflected by the soil and attenuated by the canopy layer; and
(3) the soil emission attenuated by the canopy [37]. Assuming that the soil
temperature Ts and the vegetation temperature Tv are approximately equal
(i.e. Ts ≈ Tv), the total emissivity from soil and vegetation can be expressed
as:

ET = (1 − ω) (1 − µ)
(

1 + µΓR
)
+
(

1 − ΓR
)

µ (1.17)

where µ is an attenuation factor that can be derived from the optical depth
τ and the incidence angle γ as:
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µ = e
−τ

cos(γ) (1.18)

Another surface variable that should be accounted for when studying soil
emissivity is the thermal radiation or brightness temperature Tb of the soil
which is determined by the effective (physical) soil temperature Ts and emis-
sivity E [25, 41]. The brightness temperature Tb can be expressed as :

Tb = E · Ts (1.19)

For bare soil surfaces, Ts is a weighted sum of soil temperatures at sub-
surface levels accounting for the penetration depth [42]. However, if soil
temperature varies with depth and differs from the temperature of the vege-
tation, the effective temperature Teff of all emitting elements is required [35].
In most studies, Ts or Teff is derived from auxiliary remote sensing obser-
vations in the thermal infrared or microwave domain, from existing climate
data or from atmospheric models [43, 44]. Several simple formulations have
been developed to estimate the effective soil temperature from soil proper-
ties, and soil moisture and temperature profiles [45–47]. [47] introduced a
simple parametrization model of the effective soil temperature based on an
initial study presented in [45]. It is shown that the effective soil temperature
can be derived from the soil temperature at deep soil T∞ corresponding to a
depth between 50 cm and 1 m and on a surface temperature Tsurf correspond-
ing to a depth interval of 0-5 cm which can be expressed as:

Ts = T∞ + (Tsurf − T∞) · CT (1.20)

where CT is a parameter depending mainly on the frequency band and soil
moisture. In the initial study of [45], CT was computed as a function of the
frequency band only (CT = 0.246 at L-band). The literature in [47] later re-
fined equation (1.20) to account for the dependence of the parameter CT on
the soil moisture. This formulation is known as the Wigneron scheme and is
expressed as:

CT =

(
Ws

W0

)b0

(1.21)

where Ws is the 0-3 cm surface soil moisture, and W0 and b0 are semi-empirical
parameters depending on specific soil characteristics. In a second step, [48]
further improved the Wigneron scheme (equation (1.21)) by accounting for
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the dependence of the W0 and b0 parameters on soil texture.

Reflectivity measurements can be derived from the soil emissivity as in
equations (1.8) and (1.13) for smooth and rough surfaces, respectively. These
measurements are linked to the dielectric constant of the soil using the re-
flection coefficients. Finally, the soil moisture content is derived from the
dielectric constant according to the model presented in section 1.2.1.

1.3 Soil moisture remote sensing techniques

Several approaches have been employed to retrieve SMC from passive mi-
crowave satellites observations and from active radar techniques. Passive
sensors have been shown to be more resilient than active sensors in mi-
crowave remote sensing of Earth surface, particularly in retrieving surface
soil moisture content. In comparison to passive sensing, active sensing is
heavily influenced by scattering and attenuation caused by plant cover and
surface roughness effects. The lower spatial resolutions of spaceborne pas-
sive sensors, on the other hand, limit their applicability to a wide range of
applications. Active sensors, such as spaceborne radars, provide better spa-
tial resolution observations. However, estimating soil moisture using active
measurements is challenging due to difficulties in characterizing the scatter-
ing effects.

1.3.1 Passive microwave remote sensing of soil moisture

Passive microwave remote sensing at L-band (1–2 GHz) with frequent revisit
times is one of the most used approaches to monitor soil moisture at a global
scale [49]. It is based on the measurement of the brightness temperature Tb

of a target [50]. Brightness temperature measurements result in coarse res-
olution because the radiometer has to cover a sufficient surface to sense an
acceptable quantity of emissions. While L-band microwave sensors provide
maximum sensitivity to soil moisture, their long wavelength implies the need
for large antennas to achieve a useful spatial resolution in the km range using
the passive microwave brightness temperature measurements. For example,
to obtain a ground resolution of 50 km or less using classical solutions on
low-orbit satellites implies an antenna size of up to 20 m.
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1.3.1.1 Soil moisture retrieval algorithms

Overall, retrieving soil moisture from passive microwave brightness temper-
ature mainly consists of two stages. The first stage is to use a radiative trans-
fer model in order to link the brightness temperature Tb and the soil dielec-
tric constant ε. The second stage relates ε to SMC through dielectric mixing
models as presented previously. Since 1970s, RTMs have been refined for
both smooth and rough soils [51], and a general form of a Radiative Transfer
Equation (RTE) was introduced by [42, 46]. Several research efforts and cam-
paigns contributed to this development [52], which culminated in the ability
to model the parameters that affect Tb measurements [53].

Currently, the soil moisture inversion algorithms can be divided into four
categories [37]. The first is the 2-parameter (2-P) iterative approach which
can estimate several parameters simultaneously (specifically the soil mois-
ture and vegetation optical depth) based on the inversion of the L-band Mi-
crowave Emission of the Biosphere (L-MEB) model [39, 42]. The second is the
Single-Channel Algorithm (SCA), which retrieves soil moisture using a sin-
gle polarized brightness temperature sensor and a large amount of auxiliary
data [54]. The third algorithm is the polarization-index algorithm, which es-
timates soil moisture using the polarization index [55], and the fourth is the
intelligent inversion algorithm which is based on neural networks [56].

Despite the fact that these algorithms have indeed achieved good soil
moisture estimation results, the whole estimation process remains compli-
cated and involves a large number of input parameters, which are difficult
to measure and obtain (such as effective scattering albedo, soil texture, etc...)
[57].

1.3.1.2 Satellite missions for soil moisture estimation using passive mi-
crowave sensors

Currently, there are two L-band passive microwave spaceborne missions
specifically devoted to measure soil moisture: Soil Moisture and Ocean Salin-
ity mission (SMOS) launched by the European Space Agency (ESA) in Novem-
ber 2009 with contributions from the Centre National d’Etudes Spatiales
(CNES), France and the Centro para el Desarrollo Teccnologico Industrial
(CDTI), Spain [39, 42, 58], and Soil Moisture Active and Passive mission
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(SMAP) launched by the National Aeronautics and Space Administration
(NASA) in January 2015 [59–61].

The Soil Moisture and Ocean Salinity mission
The SMOS satellite, shown in Figure 1.1, is the first Earth Explorer Opportu-
nity Mission dedicated to Surface Soil Moisture (SSM) retrievals over conti-
nental surfaces and Sea Surface Salinity (SSS) over the oceans with a nominal
(extended) lifetime of 3 (5) years at 763 km altitude [58, 62]. The SMOS in-
strument, the Microwave Imaging Radiometer with Aperture Synthesis (MI-
RAS), is the first L-band (1.4 GHz) 2-D interferometric radiometer in space
[63, 64]. It provides brightness temperature measurements using microwave
emissions from the Earth surface to map levels of soil moisture, sea sur-
face salinity, sea ice thickness and others geophysical variables such as wind
speed over ocean and freeze/ thaw soil state [65, 66].

Source: ESA | (http://www.esa.int/)

FIGURE 1.1: SMOS in Orbit.

The spatial resolution of SMOS varies from 35 km at the Field of View
(FoV) centre to 50 km at the border [67]. SMOS derives global maps of soil
moisture and sea surface salinity every 3 days (temporal resolution), achiev-
ing a volumetric soil moisture accuracy of 4% (i.e. 0.04 m3/m3 volumetric hu-
midity or better for vegetation water content < 5 kg/m2) over non forested
areas of medium to low topography without snow of frozen soils [62, 68]. For
bare soils, for which the influence of near-surface soil moisture on surface
water fluxes is strong, it has been shown that a random error of 0.04 m3/m3

http://www.esa.int/
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allows a good estimation of the evaporation and soil transfer parameters [69].
Moreover, this value corresponds to the typical root mean square (rms) dis-
persion of in situ soil moisture observations [68]. Over oceans, SMOS maps
salinity down to 0.1 practical salinity units (psu, averaged over 10–30 days
in areas measuring 200 × 200 km) [58]. Figure 1.2 provides a global view of
the Earth soil moisture retrieved from SMOS Level 2 soil moisture product
(MIR_SMUDP2) for the week of October 18, 2020 to October 26, 2020.

Source: ESA | (https://earth.esa.int/)

FIGURE 1.2: A global view of the average values of soil mois-
ture data as derived from SMOS L2 product for the week of

October 18, 2020 to October 26, 2020.

The black and violet coloring depict little to no moisture, while blue to
yellow depict low to moderate levels of soil moisture. The red and orange
coloring depict high levels of soil moisture. The white color depicts a lack of
data in the map which is mainly due to contamination from radio frequency
interference coming from land sites or ships and presence of sea-ice.

The Soil Moisture Active and Passive mission
NASA’s SMAP mission (Figure 1.3) is an orbiting observatory with the main
goal of providing a global mapping of high-resolution surface soil moisture,
sea surface salinity, and landscape freeze/thaw state [49, 59]. SMAP has a
circular, polar, sun-synchronous, 6:00 AM/PM equator crossing orbit located
at 685 km altitude with a nominal lifetime of 3 years [70, 71]. SMAP’s pay-
load originally consisted of two instruments: An active Synthetic Aperture
Radar (SAR) and a passive radiometer operating at L-band. The Synthetic

https://earth.esa.int/
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Aperture Radar instrument actively emits signals at 1.26 GHz and measures
the backscatter from Earth surface, while the radiometer passively records
the microwave signals that Earth emits naturally [72]. The strength of the
emission is an indicator of the brightness temperature of the ground in that
location. Both the radar and the radiometer share a 6 m diameter reflector
antenna which rotates about its nadir axis.

Source: NASA | (https://smap.jpl.nasa.gov/)

FIGURE 1.3: Artist’s conception of SMAP. The SMAP spacecraft
has a 1000 km swath width providing a radiometer footprint of

about ∼ 36 km with 3-day revisit time.

SMAP was supposed to provide global coverage of SSM, SSS, and land-
scape freeze/thaw state at 3 different spatial resolutions: (i) high resolution
(∼ 3 km) provided by the active SAR on the expense of soil moisture accu-
racy, (ii) intermediate resolution (∼ 9 km) provided by both the radar and
radiometer, and (iii) low resolution (∼ 36 km) provided by the radiometer
with high soil moisture accuracy [71, 72]. In fact, the basic premise of the
SMAP mission was that merging of the high-resolution active (radar) and
coarse-resolution but high-sensitivity passive (radiometer) L-band observa-
tions would enable an unprecedented combination of accuracy, resolution,
coverage, and revisit-time for soil moisture and freeze/thaw state retrievals

https://smap.jpl.nasa.gov/
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[60]. However, the radar instrument onboard SMAP satellite ceased opera-
tions on July 7, 2015 due to a problem in the radar’s high-power amplifier
while the L-band radiometer is still operational as designed [73].

Currently, SMAP derives global maps of soil moisture and freeze/thaw
state from brightness temperature measurements at a spatial resolution of
∼ 36 km with a 3-day revisit time [74]. Similar to SMOS, the measurements
of global soil moisture are realized at the top 0-5 cm of the surface layer with
an error no greater than 0.04 m3/m3 over global land areas excluding regions
of snow and ice, open water, urban areas, and with a vegetation water con-
tent no greater than 5 kg/m2 [71]. Figure 1.4, provides a global coverage
of the Earth SSM (in m3/m3) and SSS (in psu) from SMAP Level 3 product
(L3_SM_P) for the day of October 19, 2020. Areas with the lowest moisture
are yellow-orange, and areas with the highest soil moisture are blue-purple.

SMAP L3 Soil Moisture and L3 SSS 10/19/2020

Source: NASA | (https://smap.jpl.nasa.gov/)

FIGURE 1.4: A global view of the average values of soil mois-
ture and sea surface salinity as derived from SMAP L3 product

for the day of October, 19 2020.

Other satellite missions
Another recent spaceborne mission that used the L-band passive remote sens-
ing technology is the Aquarius mission launched by NASA in June 2011 [75].

https://smap.jpl.nasa.gov/
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Aquarius employed a set of three L-band radiometers and scatterometers,
operating in a push-broom mode and covering a swath of about 300 km
[76]. Even though the primary mission objective of Aquarius was to pro-
vide global observations of sea surface salinity, it was also used for global
soil moisture before it was lost in June 2015. The C/X-band (~6/10 GHz)
Advanced Microwave Scanning Radiometer (AMSR-E) launched by NASA
in May 2002 also had the objective of sensing the soil moisture content, how-
ever, it ceased operations in December 2011 but was replaced by AMSR2 in
May 2012 [44].

1.3.2 Active microwave remote sensing of soil moisture

Active microwave sensors (e.g. radars) receive backscattering coefficients
from bare soil that have a strong correlation with soil moisture [77]. The chal-
lenging issue for soil moisture retrieval is that the relationship between soil
moisture and the backward scattering coefficient is not linear. The strength of
the echo is affected by roughness, vegetation cover, soil physical properties
(structure, composition, etc.) and radar parameters [78].

1.3.2.1 Backscattering models

In active remote sensing, the received signal power is compared to that sent,
thus allowing the backscattering coefficient σ0 to be determined. The coef-
ficient σ0 depends on the radar characteristics and the soil electrical prop-
erties. Vegetation layers have a thickness sufficient to shield the scattering
information from the soil surface, thus, vegetation is often regarded as the
most important factor affecting soil moisture retrieval accuracy along with
the surface roughness [79]. Active soil moisture remote sensing techniques
can offer a high spatial resolution, however they suffer from a relatively poor
accuracy. The key to improving the retrieval accuracy of soil moisture is to
remove effectively the effects of surface roughness and vegetation cover [80].
Frequency, polarization and incidence angle (γ) of the sensor have effects on
soil moisture retrieval that should also be taken into consideration. In active
techniques, the dielectric constant of the soil is computed from σ0, which is,
in turn, converted into soil moisture through dielectric models [46].

Over the past decades, researchers have achieved great success in terms of
soil moisture inversion for areas of bare soil or sparse vegetation cover. For
modeling the radar backscattered signal, three kinds of models have been



1.3. Soil moisture remote sensing techniques 23

used for soil-moisture estimation: the physical (theoretical) models, empiri-
cal models, and the semi-empirical models [81]. Physical models for active
soil moisture retrieval are based on simulations of σ0. In theory, there is a
similarity between these physical models and the RTM of passive microwave
systems. The Geometric Optic Model (GOM) [82], the Physical Optic Model
(POM) [46], , the Small Perturbation Model (SPM) [83], the Small Slope Ap-
proximation (SSA) [84], the Integral Equation Model (IEM) [85], and the Ad-
vanced Integral Equation Model (AIEM) [86] are the most important physi-
cal models. The empirical or semi-empirical models mainly include the Oh
model [87, 88], the Dubois model [89], and the Shi model [90].

In general, GOM is suitable under large surface roughness conditions,
POM under moderate roughness conditions and the SPM model is suitable
for relatively smooth, and a smaller correlation length surfaces. For SSA, only
the roughness slope is required to be small enough and its main advantage
is that it does not assume the correlation function to be slowly varying with
the wavelength scale [91]. The IEM, and later its extension the AIEM, are the
most referenced physical models. It is an RTE with physical basis, includ-
ing GOM, POM, and SPM, which makes it applicable over a large range of
roughness conditions. IEM shows both a high simulation accuracy and easier
operation in practical applications. The IEM basically computes σ0 consid-
ering the soil moisture content and surface roughness as unknown variables
with a prior knowledge of the radar configuration [85]. The AIEM predic-
tion accuracy is much improved compared to the original IEM [90]. Due
to a difficult description of surface roughness, retrieving soil moisture using
physical models is complicated and the empirical models are often preferred.

Empirical backscatter models result from several site experiment mea-
surements of the backscattering coefficient σ0 that are reflected from a par-
ticular soil surface to the radar sensor, and thus only valid under specific
conditions. This means that empirical models may not be applicable when
the set of conditions such as frequency, incidence angle, surface roughness,
and vegetation density is changed [92]. Semi-empirical models can be seen as
conciliation between empirical and physical models and could be used with-
out any required condition on surface roughness. Such models are derived
from experimental data to develop empirical fitting of backscatter measure-
ments for the soil surface and could be used without any required condition
on surface roughness [93]. The semi-empirical Oh model [88] employs the
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backscattering coefficients ratio with separate polarization to relate them to
volumetric soil moisture mv and surface roughness as [94]:

p =
σ0

hh
σ0

vv
=

[
1 − e−khrms

(
2mv

π

) 1
3Γ
]2

(1.22)

q =
σ0

hv
σ0

vv
= 0.23

√
Γ
(

1 − e−khrms
)

(1.23)

where p is the σ0 co-polarized ratio, q is the σ0 cross-polarized ratio, khrms

is the normalized root mean square height with k=2π
λ , and Γ is the Fresnel

surface reflectivity computed using the Fresnel reflection coefficients derived
in equations (1.9) and (1.10). Γ can be simply expressed as a function of the
dielectric soil constant using the following expression:

Γ =

∣∣∣∣1 −√
ε

1 +
√

ε

∣∣∣∣2 (1.24)

This model is valid for 9% < mv < 31% and 0.1 < khrms < 6. The main ad-
vantage of the Oh model is that only the root mean square height is required
as surface parameter. The semi-empirical Dubois model [89] considers the
backscatter at co-polarization only and defines the coefficients as:

σ0
hh = 10−2.75

(
cos1.5 γ

sin5 γ

)
100.028ε tan γ(khrms · sin γ)1.4λ0.7 (1.25)

σ0
vv = 10−2.35

(
cos3 γ

sin3 γ

)
100.046ε tan γ(khrms · sin γ)1.1λ0.7 (1.26)

The soil dielectric constant can then be formalized by inverting equa-
tions (1.25) and (1.26). This model is valid for mv ≤ 35%, khrms ≤ 2.5, and
30◦ < γ < 65◦. The Dubois model is suited well under bare to sparsely
vegetated regions [95]. The Shi model [90] computes σ0 through the IEM sin-
gle scattering process. This model works as a simple IEM for more practical
completion and easy inversion. Similar to the Dubois model, the Shi model
considers the backscatter at co-polarization only.

1.3.2.2 Active microwave sensors

Active microwave sensors, in contrast to passive sensors, use their own source
of energy to illuminate the target. The most typical example of such devices
is radars (operating with microwaves). There are imaging (two-dimensional)
and non-imaging (linear) active radar altimeters and scatterometers employed
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nowadays for ocean surface [96] and soil moisture studies [97]. Active satel-
lite missions that provided soil moisture data sets that are available widely
for research and applications use include: the C-band Advanced Synthetic
Aperture Radar (ASAR) launched by ESA and was operational from March
2002 until the unexpected loss of contact in April 2012 [98], and the opera-
tional Advanced SCATterometer (ASCAT) launched by ESA in October 2006
[99].

Radars can be modeled as remote sensing transmitters that generate high-
speed electromagnetic waves and emit it by the transmitting antenna. The
receiving antenna captures the reflected electromagnetic waves by desired
objects, and these waves are processed by the receiver to detect and measure
the parameters of remote targets. One of the most commonly used type of
radars in active remote sensing is monostatic radars.

Monostatic radars
Monostatic radars are radars where the transmitter and receiver are co-located,
i.e. it uses the same antenna to transmit and receive signals. As there is one
antenna used for transmission and reception, a duplexer is needed to sep-
arate the transmit chain from receive chain and vice versa. The monostatic
radar equation which relates the power of the reflected signal to that of the
transmitted signal is defined as:

Pr =
PtG2λ2σ

(4π)3d4
m

(1.27)

where Pr is the received power, Pt is the transmitted power, G is the an-
tenna gain, λ is the wavelength, σ is the scattering cross section, and dm is the
distance from the radar to the target.

Monostatic radar systems applies the backscattering phenomena to de-
rive soil moisture from the backscattering cross section. The scattering cross
section is defined as the amount of energy En scattered in a particular direc-
tion compared to a surface that radiates isotropically and it is given by:

σpq = σ0A =
4πd2

m
∣∣Enq

∣∣2∣∣Enp
∣∣2 (1.28)
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where σ0 denotes the backscattering coefficient per unit area of the surface A,
p denotes the transmitted polarization, q denotes the received polarization.

However, a perfectly smoothed surface will reflect no power back to the
radar. In contrast, it would reflect all the energy in a path with an angle
equal to the incident angle with respect to the surface normal. That is why
monostatic radars are very sensitive to the roughness of the reflecting sur-
face and don’t operate well in smooth surface conditions. Thus, monostatic
radar systems are limited to the measurements of rough surface backscat-
tered signals, unlike the case of the bistatic radars which can cope well in
smooth surface conditions. This is an important distinction to be made be-
tween monostatic and bistatic radars for surface remote sensing. An example
of monstatic radar configuration is the classical Synthetic Aperture Radar.

Synthetic Aperture Radar
Synthetic Aperture Radar (SAR) is a microwave imaging system with a high
spatial resolution (∼ 10 m − 1 km) [100]. Like all active systems, it has day
and night operational capabilities. One way of collecting imagery from space
on cloudy areas or at darkness conditions is to fly a SAR working at mi-
crowave frequencies [101]. SAR has been widely used in Earth-observing
radar satellites and space missions including: SMAP (before it ceased opera-
tions), European Remote-Sensing Satellite (ERS-1 and ERS-2), Sentinel-1 and
ASAR. The on-board SAR system receives the backscattering echoes from the
ground, and then these echoes are transformed to baseband and digitized. As
the satellite moves along its orbit, SAR looks out sideways from the direction
of travel, acquiring the radar echoes (See Figure 1.5) which return from the
radar swath of the Earth surface under observation.

SAR can, in principle, operate at any altitude with no variations in reso-
lution. The detected SAR image contains a measurement of the amplitude of
the radiation backscattered toward the radar by the objects (scatterers) con-
tained in each SAR resolution cell. This amplitude is mostly influenced by
surface roughness. Typically, exposed rocks and urban areas show strong
amplitudes, whereas smooth flat surfaces (like quiet water basins) show low
amplitudes, since the radiation is mainly mirrored away from the radar.
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62 Remote Sensing with Imaging Radar 

While this is an attractive concept it does lead to complexities when forming images 
from the radar echoes as discussed in the next section. Undertaking that analysis however 
leads to a quite remarkable result, viz. that the azimuth resolution obtainable with SAR is 
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lr =  m (3.8) 

 
where recall la is the length of the antenna carried on the spacecraft, measured in the 
along track direction. This indicates that the azimuth resolution is independent of slant 
range, and thus platform altitude, and independent of operating wavelength. Since ground 
range resolution is also height independent a SAR can, in principle, operate at any altitude 
with no variations in resolution. Consequently, spaceborne operation is acceptable. 
Because of the benefits of altitude independence and high resolution, SAR technology is 
also often used with aircraft based imaging radars. 

 

footprint of the real antenna on the ground is shown as rectangular for simplicity 
 
 
In contrast to real aperture (SLAR) systems described by (3.7), for SAR (3.8) shows 

the azimuth resolution depends directly (and not inversely) on the physical antenna 
length. This is an amazing result since it says that improvement in azimuth resolution can 
be made by reducing the antenna length. The penalty in doing so will be an increase in 
signal processing demand as seen in Appendix D. 
 
3.6  The Mathematical Basis for SAR 
 
Consider a slant range projection of the geometry of Fig. 3.9, shown in Fig. 3.10. We 
define the vehicle’s position along its track by the coordinate x; it has its origin broadside 
of a point target and is positive when the platform is prior to broadside. Likewise we 
define the time origin at broadside so that t is also positive before broadside is 
encountered. The platform’s along track velocity is v ms-1. 
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FIGURE 1.5: SAR Geometry

1.4 Remote sensing using GNSS-R

1.4.1 GNSS-R as a bistatic remote sensing radar technique

GNSS-R is a bistatic radar technique where the transmitter and the receiver
are not co-located. The transmitters are the GNSS satellites, the receiver is
a GNSS sensor that can be fixed on ground, or mounted on an aircraft or
spacecraft, and the target is an area of Earth surface. Therefore, it is always
expected that GNSS sensors receive at least two signals from two different
routes. One is the direct signal which propagates uninterrupted from the
transmitter to the receiver and the other is the reflected signal from an area
of Earth. Although a very rough surface can decrease the reflected signal
power in the bistatic case, this effect can be mitigated through proper signal
processing and continuous signal observations.

For land surfaces, the typical bistatic GNSS-R geometry consists of a trans-
mitter and receiver above the surface, with scattering taking place mainly
from a reflecting surface area surrounding a specular reflection point [36]. It
is well known that once a signal hits a reflection point on earth, scattering
will take place mainly from the region of the surface surrounding the specu-
lar reflection point. The geometry of the airborne bi-static GNSS-R setup im-
plemented in this dissertation is depicted in Figure 1.6. An overview of other

http://dx.doi.org/10.1007/978-3-642-02020-9
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GNSS-R geometries with single and dual antenna configurations is provided
in the next section.
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FIGURE 1.6: GNSS-R dual antenna geometry. An RHCP an-
tenna receives the direct signals and an LHCP antenna receives

the reflected signals from Earth surface.

In this dual antenna configuration, a GNSS-R receiver uses a Right-Hand
Circular Polarized (RHCP) antenna pointing toward the zenith for the recep-
tion of the direct signals from satellites and a Left-Hand Circular Polarized
(LHCP) antenna pointing towards the nadir for the reception of reflected sig-
nals after specular scattering. The specular point is defined as a reflection
point at which the incident and reflected angles are equal. It also provides the
shortest path in the GNSS-R geometry (i.e. transmitter-surface-receiver). For
a perfectly flat, dielectric surface, the specularly reflected power is strongly
coherent and governed solely by the Fresnel reflection coefficient of the active
narrow region from which the power is reflected [102]. In this case, the size of
the active region is usually considered to be the first Fresnel zone for which
the differential phase change across the surface is constrained to λ

2 , where
λ is the GPS signal wavelength (for GPS L1 signals: λ = 19.042 cm ) [36].
Consequently, the spatial resolution of GNSS-R receivers is mostly linked to
the size of the first Fresnel zone, which is a reason why GNSS-R provides a
better spatial resolution when compared to microwave radiometry sensors.

The GPS satellites are located at approximately 20, 180 km above Earth
surface. This means that no matter the height of a ground-based or airborne
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GNSS receiver on Earth surface, the distance from the transmitter to the re-
ceiver is much larger than the distance from the reflecting surface to the re-
ceiver. In this case, the semi-major axis a and semi-minor axis b of the first
Fresnel ellipse are dependent on the incidence angle γ, and the height of the
receiver above ground surface h by:

a =

√
2δh cos(γ)
cos2(γ)

, b =

√
2δh cos(γ)
cos(γ)

(1.29)

where δ is the the differential phase change across the surface (δ = λ
2 ). The

incident angle γ can be derived from the elevation angle of the satellite (θ)
where γ = π

2 − θ.

If GNSS signals are scattered by rough surfaces, the coherent component
of the reflected signal decreases and the power is scattered randomly in all di-
rections, with its magnitude smaller than the coherent component [36]. This
implicates that the coherency parameter of the reflected signal is high for rel-
atively smooth surfaces and low for very rough surfaces [103]. This param-
eter is essential for detecting the nature of the reflecting surface and more
importantly for the modeling of the GNSS signals when geophysical proper-
ties of Earth surface need to be estimated [104, 105].

For rough surfaces, the active scattering region expands beyond the first
Fresnel zone to a glistening zone [106]. The size of the glistening zone de-
pends on surface roughness. In general, the glistening zone size widens with
the increase in the surface roughness. In this case, the scattered power con-
sists of two parts: a specular coherent component, and an incoherent compo-
nent caused by the roughness [5]. The total power measured at the GNSS-R
receiver can be derived from the general bistatic radar total scatter power
defined in [36] as:

Pr
pq = Pc

pq + Pi
pq (1.30)

where p and q are polarizations for the incident and scattered signals, and
Pc

pq and Pi
pq are the coherent and incoherent power, respectively. On flat areas

(no topography) and smooth surfaces where the specularly reflected power
is strongly coherent, the bistatic radar equation for the coherent component
in the case of like polarized GPS bistatic radar can be written as [107]:
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Pc
LR =

Pt
r Gt

4π (d1 + d2)
2

Grλ2

4π
ΓLR (1.31)

where LR stands for the left polarized scattering, Pt
r is the transmitted signal

power, Gt is the transmitter antenna gain, Gr is the receiver antenna gain,
and λ is the wavelength. The variables d1 and d2 are the distances between
the specular point and the receiver, and the specular point and the satellite
respectively. The cross-polarization smooth surface reflectivity ΓLR can be
derived from the Fresnel reflection coefficients defined in equations (1.9) and
(1.10) as:

ΓLR = |RLR(ε, γ)|2 =

∣∣∣∣RV(ε, γ)− RH(ε, γ)

2

∣∣∣∣2 (1.32)

Similarly, the co-polarization Fresnel reflectivity ΓRR can be expressed as:

ΓRR = |RRR(ε, γ)|2 =

∣∣∣∣RV(ε, γ) + RH(ε, γ)

2

∣∣∣∣2 (1.33)

The changes in SMC, expressed by the dielectric soil constant ε, can then
be solved by inverting the Fresnel reflection coefficient. The incoherent com-
ponent can be expressed as follows [108]:

Pi
LR =

(λ)2

(4π)3
Pt

r GtGr

d2
1d2

2
σLR (1.34)

where σLR represents the bistatic radar cross section which is equivalent to
the scattering cross section in the monostatic case defined in equation (1.28)
and can be derived using the normalized backscattering radar coefficient σ0.
The reflectivity ΓR of rough surfaces can be derived from the Fresnel reflec-
tivity Γ and the roughness parameter hs as defined in equation (1.13).

In addition to these components, when retrieving the soil moisture con-
tent from vegetated lands, additional parameters should be considered in
order to remove the effect of vegetation on soil moisture estimation [109].
Currently, most GNSS-R techniques don’t provide direct information on the
coherency parameter nor on the vegetation cover. Regardless, measuring the
soil moisture content of flat (smooth) surface areas is the main concern of this
dissertation, and thus the effects of surface roughness on the reflected signals
are not studied.
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1.4.2 GNSS-R methodologies

GNSS-R techniques can be applied to retrieve some geophysical characteris-
tics of Earth surface (e.g. SMC). These methodologies can be broadly divided
into 2 groups. The first group uses a classical GNSS receiver with only one
antenna and it is only applicable in situ and for low-altitude flights. This
group relies on Interference Pattern Techniques (IPT) and multi-path effects.
The second group uses bistatic (dual-antenna) methods to analyze the GNSS
signals by utilizing specific receivers with at least two antennas. This group
is applicable for in situ, aircraft, and satellite measurements.

1.4.2.1 GNSS signal processing techniques

Concerning the GNSS signal processing techniques, there exist the conven-
tional GNSS-R (cGNSS-R) and the interferometric GNSS-R (iGNSS-R) in ad-
dition to IPT. In this dissertation, cGNSS-R is used which consists in corre-
lating the direct signal sd(t) or reflected signal sr(t) with a clean replica c(t)
generated by the receiver. The amplitude of correlation Yr

c corresponding to
cross-correlating the reflected GNSS signal with c(t) can be written as:

Yr
c (t0, τ, f ) =

1
Tc

∫ t0+Tc

t0

sr(t) c(t)dt (1.35)

where Tc is the coherent integration time and t0 is the time marking the be-
ginning of the coherent integration. τ is the code delay and f is the carrier
frequency of the local replica. In our research work, we apply cGNSS-R sig-
nal processing techniques on GPS L1 C/A signals. In this case, the GPS L1
signals are correlated with the Coarse/Acquisition (C/A) code generated by
the receiver. Then expression (1.35) is written as [110]:

Yr
c (t0, τ, f ) =

1
Tc

∫ t0+Tc

t0

sr(t)CA(t − τ)e−j2π f tdt (1.36)

In the case where a number of non-coherent integrations Kr is employed in
order to improve the SNR, Yr

c becomes:

〈
|Yr

c (τ, f )|2
〉
≈ 1

Kr

Kr

∑
k=1

|Yr
c (tk, τ, f )|2 (1.37)

where ⟨.⟩ denotes the averaging operator along time. Several advantages
of this technique include separating the signals through their exact Pseudo-
Random Noise (PRN) code and the ability to use smaller antennas for the
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tracking of the reflected signals as compared to iGNSS-R.

The locally generated codes usually have a narrower bandwidth than en-
crypted codes contained in some GNSS signals. For scatterometry applica-
tions, the width of the auto-correlation function is not critical, unlike the case
in altimetry applications where the width of the auto-correlation function de-
termines the range resolution of the application [111]. One way to overcome
the bandwidth limitation is the use of the iGNSS-R concept introduced in
1993 by Martin-Neira [112]. iGNSS-R consists of the cross-correlation of the
reflected and direct signals which allows to use the entire signal bandwidth,
including the encrypted codes that present a wider spectrum. In this case,
the amplitude of correlation Yr

i can be written as [110]:

Yr
i (t0, τ, f ) = 1

Tc

∫ t0+Tc
t0

sr(t)sd(t − τ)e−j2π f tdt (1.38)〈
|Yr

i (τ, f )|2
〉
≈ 1

Kr ∑Kr

k=1
∣∣Yi

r (tk, τ, f )
∣∣2 (1.39)

iGNSS-R allows not only the use of GNSS signals, but any other sources of
opportunity with possibly larger transmitted power and larger bandwidth.
The performance of the iGNSS-R is proportional to the SNR. As the direct
signal is correlated with the reflected signal, the wider signal bandwidth will
result in a higher thermal noise. Therefore, it is necessary to use a higher
gain direct and reflected signal receiving antennas to improve the SNR. In
this regard, the main drawbacks of iGNSS-R are the large antenna size (di-
rectivity) required for the up-looking antenna, the higher sensitivity to radio
frequency interference (compared to cGNSS-R), and the need to separate the
different satellites from their location when studying the power of the signals
with respect to different ranges of delay and Doppler values [111].

1.4.2.2 Single Antenna Interference

Single antenna interference methods are based on measuring the power or
phase fluctuations of the interference of the direct and reflected electric fields
as the GNSS satellite moves. There are 2 main categories of single antenna
interference: the interference pattern technique and the multipath method.

Interference Pattern Technique
The Interference Pattern Technique (Figure 1.7a), consists of the coherent ad-
dition of the direct and reflected signals in the receiving antenna [113]. This
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results in interference patterns (fading) with high and low frequency compo-
nents. As a result of fading the detected power oscillates, and its amplitude
varies with the soil reflection coefficient which is related to the dielectric soil
constant from which the soil moisture content can be retrieved [113].

Several works have been published regarding the use of IPT as a GNSS-R
method for soil moisture estimation in [19, 113–115].The literature in [113]
extends the use of the IPT from vertical polarization (V-Pol) only [19, 114] to
the use of both the vertical (V-Pol) and horizontal (H-Pol) polarizations. The
method uses the H-Pol to retrieve the amplitude of the interference pattern
which eliminates the amplitude ambiguities of V-Pol. The larger the value of
the reflection coefficient, the larger the amplitude of the interference pattern
[113]. This change is more noticeable using H-Pol than V-Pol making it more
accurate for soil moisture retrieval.

In order to estimate the interference patterns of both polarizations, the
Fresnel reflection coefficients RH and RV for H-Pol and V-Pol are first derived
using equations (1.9) and (1.10) respectively. Then the IPT equation in [19] is
reformulated to include the reflection coefficients of both polarizations as in
[113]. Using the IPT equation, the maxima Pqmax and minima Pqmin power
values can then be obtained as [113]:

Pqmax (θ, ε) = Fn (θ) ·
∣∣E0i

∣∣2 · |1 + |RP (θ, ε) ∥2 (1.40)

Pqmin (θ, ε) = Fn (θ) ·
∣∣E0i

∣∣2 · |1 − |RP (θ, ε) ∥2 (1.41)

where θ is the elevation angle, Fn (θ) is the antenna radiation pattern, E0i

is the incident electric field amplitude, and RP (θ, ε) is the Fresnel reflection
coefficient at P polarization. Then, the overall reflection coefficient at polar-
ization P for a whole interference pattern can be expressed as [113]:

∣∣R̂P(θ, ϵ)
∣∣ ≈

√
Pqmax (θ,ε)
Pqmin (θ,ε) − 1√
Pqmax (θ,ε)
Pqmin (θ,ε) + 1

(1.42)

In this equation, the reflection coefficient is a function of the elevation an-
gle θ and the dielectric soil constant ε.

∣∣R̂q(θ, ϵ)
∣∣ is an amplitude estimator

of the Fresnel Reflection coefficient using different elevation angles at polar-
ization P [113]. Thus, ε estimates are linked to the soil moisture content at
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different θ values.

Multi-path method
The multi-path method (Figure 1.7b) employs a standard ground-based nearly
hemispherical antenna to estimate the changes in the soil moisture content by
analyzing the temporal fluctuations in the phase of the Signal-to-Noise Ratio
(SNR) data for the direct and reflected signal [20, 116, 117]. It’s possible to
equip the antenna with an absorbing plane on the lower hemisphere to fil-
ter the signals picked up. The GPS-Interferometric Reflectometry (GPS-IR)
technique introduced in [20] employs an algorithm for detecting and possi-
bly correcting the changes in the SNR phase due to the effects of vegetation.
For low satellite elevations, the interference between the direct and reflected
signals induces an oscillatory pattern on the direct signals. The change in
the interference pattern of the direct and reflected signals are recorded in
SNR data as interferograms. In this technique, the SNRi interferogram is
expressed as [116]:

SNRi = A cos
(

4πH0

λ
sin(θ) + ϕ

)
(1.43)

where A is the amplitude of the signal, θ is the elevation angle of the satellite,
λ is the GPS wavelength, and ϕ is the SNR phase shift. H0 is within a few
centimeters of the height of the antenna phase center above the top of the soil
for bare flat surfaces.

Specific SNR metrics are derived to calculate the changes in the phase ϕ

due to vegetation in [20]. The changes in ϕ due to vegetation are removed
from the ϕ time series to maintain only the effect of the change in the soil
moisture content on ϕ, which are linked to the soil moisture estimates. Then
the soil moisture content (SMC) can be expressed as [20]:

SMCt = St∆ϕSMC,t + SMCresid (1.44)

where ∆ϕSMC,t is the expected phase change due to soil moisture at time t
after subtracting the effect of phase change due to vegetation, St is the ex-
pected slope between phase and soil moisture, and SMCresid is the residual
moisture content of the soil at the site which would be measured through the
use of gravimetry.
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FIGURE 1.7: Single antenna interference schemes. (a) repre-
sents the geometry of single antenna (usually Vertical Polar-
ized) GNSS-R for the IPT method, and (b) represents the ge-
ometry of a GNSS-R receiver with an omni-directional single

antenna (usually RHCP) for studying multipath effects.

1.4.2.3 Dual-Antenna GNSS-R methods

Dual-antenna methods are based on the separate reception of the direct and
reflected signals using two different antennas and on the separate measure-
ment of signal powers. Based on the antenna configuration, three possible
observing systems are identified:

a. An up-looking RHCP and a down-looking LHCP antenna: This is the
GNSS-R bistatic configuration described in section 1.4.1 and used in this
dissertation. In this method, measurements of reflectivity are derived us-
ing the bistatic radar equations defined in the previous section [5] or using
the ratio of the reflected signal over the direct signal [12, 118]. The reflec-
tivity is a function of the dielectric constant of the soil, the elevation angle,
and the surface roughness. Refer to section 1.4.1 for a detailed explanation
on this configuration and to Figure 1.6 for the geometry.

b. An up-looking antenna (RHCP) and two down-looking antennas (one
RHCP and one LHCP): With this configuration (Figure 1.8a), it is possible
to measure both the co-polar component of the terrain reflectivity by us-
ing the LHCP signal and the cross-polar component by using the RHCP
antenna [119, 120].

c. An up-looking RHCP and a down-looking LHCP antenna, receiving the
direct and the reflected signals respectively, but with horizontal (H) and
vertical (V) polarization for both directions: In this configuration (1.8b),
the ratio between the reflected over the direct power on the horizontal and
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vertical polarizations is written as function of the surface roughness and
reflectivity. For orthogonal polarization power ratio, the surface rough-
ness influence can be canceled. The final expression was verified to hold
under various scattering models, implying that it could be applied to a
wide range of surface roughness [121]. The dielectric constant ε is re-
trieved using the ratio of power densities scattered at HH and VV po-
larizations at various incidence angles γ [36]. This ratio is a function of
both the elevation angle and the dielectric constant. Therefore, for a better
computation of ε, measurements at minimum of two different elevation
angles θ using the minimum least square technique must be employed
[36].
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FIGURE 1.8: GNSS-R dual-antenna schemes of different observ-
ing strategies. In (a), the dual-antenna configuration consists of
one up-looking RHCP antenna and two down-looking RHCP
and LHCP antennas, while the geometry in (b) consists of an
up-looking RHCP and a down-looking LHCP antenna, with

horizontal and vertical polarizations for both directions.

The primary observable in GNSS-R dual-antenna configurations is the Delay-
Doppler Map (DDM) which is obtained by cross-correlating the direct or re-
flected signals with the PRN code replica respectively (in this case, cGNSS-R
is considered), shifted to have a range of different delays and Doppler val-
ues, thereby building up a map of direct or reflected power centered around
the delay and Doppler of the reflection point. This method is mainly em-
ployed for ocean applications and SMC measurements. The estimated co-
and cross-polarization Fresnel reflectivity, ΓLR and ΓRR, can be defined as the
ratio of the direct Yd

c and reflected Yr
c signal powers measured at different

polarizations as:
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ΓLR =

∣∣∣∣∣
〈

Yr
c,L
(
∆τ, f D)

Yd
c,R (0, f D)

〉∣∣∣∣∣
2

(1.45)

ΓRR =

∣∣∣∣∣
〈

Yr
c,R
(
∆τ, f D)

Yd
c,R (0, f D)

〉∣∣∣∣∣
2

(1.46)

where L and R stand for left and right hand circular polarizations, respec-
tively. ∆τ is the delay difference between the direct and reflected signal and
f D is the doppler frequency. For ground-based or low-altitude receivers, the
doppler frequency shift of the direct and reflected signals can be assumed
to be equal, and the dependency on f D can thus be dropped. The choice of
τ = ∆τ for the reflected signal and τ = 0 for the direct signal ensures that
the waveforms respective peaks are selected. The co- and cross-polarization
Fresnel reflectivity, ΓRR and ΓLR and its polarimetric ratio ΓLR

ΓRR
are the three

main observable parameters that can be obtained via DDM observations.

SMC retrieval using GNSS-R dual antenna configuration relies mostly on
estimating the SNR ratio of the reflected signals over the direct signals to ob-
tain measurements of reflectivity which can be related to the soil dielectric
constant and consequently to SMC. The relation between SNR and reflectiv-
ity in such configuration will be investigated thoroughly in chapter 2 section
2.4.3.

1.4.3 GNSS-R applications

GNSS-R is based on the measurements reflected by GNSS signals which are
employed to estimate Earth geophysical parameters. The reflecting surface
can be an ocean, in which case, the ocean altimetry, wind speed and salinity
can be estimated [112, 122–124], or land for estimating the snow depth [125,
126] and the soil moisture content [12, 26, 127].

1.4.3.1 Altimetry

The first historical application of GNSS-Reflectometry was the study of ocean
altimetry, that is, determination of the sea surface height. In 1993, the Passive
Reflectometry and Interferometry System (PARIS) concept was proposed by
Martin-Neira [112], which consisted of using GNSS reflected signals for mul-
tipoint mesoscale ocean altimetry. The aim of GNSS-R altimetry is to detect
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the height between the receiver and a reflecting surface and/or the vertical
location of the specular point (with respect to a reference ellipsoid or geoid).
The observables to deal with are the distances between transmitter, receiver,
and/or surface [128]. Although GNSS-R altimetry mainly involves measur-
ing the sea surface height, altimetry techniques can be applied to any surface,
but its performance will depend on the detecting environment. In most cases,
GNSS-R altimetry is applied on perfectly flat surfaces such as water [129] or
ice [130].

Several works have been developed using GNSS-R altimetry including
experimental ground-based and airborne campaigns for retrieving sea sur-
face height estimates from GNSS-R instrumentation [15, 122, 128, 131]. In
[17], a circular regression technique applied to GNSS-R altimetry was pre-
sented. This technique can be also referred to as carrier phase altimetry and
it provides a much better precision than group delay altimetry which relies
on the code delay of the direct and reflected signals.

1.4.3.2 Sea state and salinity

The study of sea state using GNSS-R mainly involves the characterization
of ocean wind and roughness as well as the ocean permittivity. The use of
GNSS reflected signals as wind scatterometers was first suggested in [132].
In fact, both GNSS reflectometry and wind scatterometers measure surface
roughness, not wind speed directly, and it is widely assumed that surface
roughness is closely linked to wind stress on sea surface rather than the wind
speed [111]. As the GNSS signal reflects off sea surface, its roughness might
scatter the signal in a wide range of output directions. In general, the re-
flected waveforms present lower amplitudes when roughness increases.

Many ocean applications require the wind stress, while meteorological
applications often prefer the effective wind at a certain altitude. Using air-
borne data collected in 1997, the literature in [132] first demonstrated the
potential for retrieving sea state from the dependence of the GNSS sea sur-
face reflection waveform width on wind speed. Since then, a variety of tech-
niques have been developed for retrieving surface mean square slope and
wind speed, and many have been tested using ground [124, 133] and air-
borne [134–136] field campaigns. Recently, ocean wind speed and surface
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roughness studies are carried out over relatively large areas using DDM ob-
servables from a receiver mounted on an aircraft or satellite.

For ocean surface, the permittivity at the L-band of the electromagnetic
spectrum is essentially given by the salinity and the temperature. The in-
version of the polarimetric measurements derived in the previous section is
used because it is sensitive to the permittivity of the reflecting surface. Few
studies have focused on ocean salinity using GNSS-R [137]. However, this
application is more complex to implement than altimetry or other sea state
applications because it requires terrain models for a usable estimate of ocean
salinity [124].

1.4.3.3 Cryosphere

GNSS signals penetrate snow to a depth of few meters, and is partially re-
flected by each layer of snow encountered. This allows the estimation of
snow and ice thickness from reflected GNSS signals. The delays of each re-
sulting component in the reflected signal make it possible to model the depth
of each layer as a function of the incidence angle or relative amplitudes be-
tween different polarizations [138].

Works on the characterization of ice thickness, surface roughness and per-
mittivity with GNSS-R have been proposed in [125, 126, 139]. The litera-
ture in [139] derived the condition of sea and fresh-water ice as well as the
freeze/thaw state of frozen ground from aircraft experiments with GNSS-
R. Studies on sea ice cover and ice age have also been carried out in [140].
The distinction between frozen and non-frozen areas of the ocean is obtained
by studying the temperature of the reflecting surface. Both permittivity and
surface roughness retrievals were achieved by analyzing the polarimetric re-
flectivity ratio in order to study the condition of sea-ice[141].

1.4.3.4 Soil moisture and vegetation

Ground-based experiments
Several ground-based experiments have been proposed to prove the GNSS-R
sensitivity to soil moisture [13, 19, 20, 41, 50, 106, 113–115, 117, 119]. Many
studies have employed information on multipath effects from ground-based
GNSS receivers to retrieve soil moisture content and biomass content sensing
[13, 20, 117]. In [19, 114, 115], the Interference Pattern Technique (IPT) was
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employed to estimate the soil moisture content. A Dual-Polarization GNSS-
R IPT was presented in [113] which is assumed to increase the accuracy of
the estimated soil moisture content. [119] conducted the LEiMON experi-
ment, a ground-based experimental campaign, that is based on continuous
polarimetric measurements of GNSS scattered signals in order to improve
the accuracy of the reflectivity measurements.

Airborne campaigns
The use of an aircraft as a GNSS-R platform offers dedicated applications for
regional scale Earth surface remote sensing. Typically, a GNSS-R dual an-
tenna configuration is used for airborne GNSS-R missions (which is the case
in this dissertation), although some low-altitude airborne missions have al-
ready used single antenna configurations.

Several airborne campaigns have shown the feasibility of retrieving soil
moisture using reflected GNSS signals [5, 12, 16, 41, 104, 142–148]. In [5],
an airborne soil moisture remote sensing experiment was conducted in order
to extract the soil moisture content from the measurements of the surface re-
flectivity by deriving the relation between the power of the GNSS signals, the
Fresnel coefficient and the soil moisture content. A continuation of this work
was presented in [12] in which a calibration method was also applied to both
the direct and reflected signal through several experimental procedures in
order to reduce fluctuations in reflectivity that are not related to surface fea-
tures. In this work, a GPS reflectometer was installed on an HC130 aircraft
during the Soil Moisture Experiment 2002 (SMEX02). Soil reflectivity and di-
electric constant were obtained by normalizing the power of the calibrated
reflected signal using the calibrated direct signal.

In 2015, [16] developed a GNSS-based sensor for UAVs and small manned
aircraft, used to classify lands according to their soil water content. The clas-
sification is based on the SNR ratio between the direct and reflected signals.
This experiment used a dual antenna configuration with one (RHCP) up-
looking antenna and two (RHCP and LHCP) down-looking antennas (see
Figure 1.8a). The sensor was mounted on two different platforms, a manned
ultra-light aircraft (Digisky’s Tecnam P92) and a UAV (Nimbus’ CFly). The
sensitivity of the approach was tested on an in-land water body surface. Its
main limitations arise from (1) the use of different components in the receiv-
ing channels, leading to power and phase variations between the LHCP and
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RHCP channels, and (2) the instrument’s antennas, which are affected by
cross-polarization isolation issues, thus preventing reliable polarimetric mea-
surements. Another study that used the same setup was developed in [146].
The expected coherence time of such setup was 0.1 - 0.5 seconds.

The literature in [144] performed several low-altitude airborne experi-
ments to determine GNSS-R sensitivity to soil moisture content using po-
larimetric measurements. In 2016, [148] introduced the GLObal navigation
satellite system Reflectometry Instrument (GLORI), dedicated to the study
of land surfaces (soil moisture, vegetation water content, forest biomass) and
in-land water bodies from airborne flights. This instrument used two hemi-
spherical GPS dual-frequency (L1 and L2) dual-polarization active antennas
and mainly relied on DDM with a total integration time of 1 second to obtain
measurements of surface reflectivity. The DDMs were analyzed from an alti-
tude of approximately 600m.

At the beginning of 2021, a study [149] performed a comparison of two
different data sets acquired with the Microwave Interferometer Reflectome-
ter (MIR), an airborne-based dual-band (L1/E1 and L5/E5a), multiconstella-
tion (GPS and Galileo) GNSS-R instrument. The plane flew at an altitude of
h ∼ 500 m at an average speed of v ≃ 75 m/s. In this work, the impact of sur-
face roughness and vegetation attenuation on the reflectivity of the GNSS-R
signal is assessed at both L1 and L5 bands and the effective integration time
had to be increased to 5 s to neglect surface roughness effects. This increase
in the integration time leads to an expected decrease in the spatial resolution.

Few studies [8, 16, 36] have been conducted concerning detection of in-
land water body surfaces using airborne GNSS-R techniques. These stud-
ies also lacked a parameter analysis concerning the localization accuracy
of the detected water body surfaces and the detection capacity of the pro-
posed techniques over a large flight trajectory and mostly recurred to very
few number of test areas.

Spaceborne missions
The potential of using GNSS-R to perform land Earth observations on a global
scale was first demonstrated from a spacecraft in 2003 with the UK Disaster
Monitoring Constellation (UK-DMC) mission [118], followed by TechDemoSat-
1 (TDS-1) launched in 2014 at ∼ 825 km orbit height [150]. In December
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2016, NASA successfully launched the Cyclone GNSS (CyGNSS) mission at
∼ 500 km orbit height. Other spaceborne missions include the 3CAT-2 of
Polytechnic University of Catalonia (UPC) and the GNSS REflectometry, Ra-
dio Occultation and Scatterometry (GREOS) developed by ESA. Currently,
spaceborne GNSS-R technology is developing rapidly with ESA planning to
launch ’HydroGNSS’ as a Scout Earth Observation small satellite mission in
2024. HydroGNSS will consist of dual satellites that use GNSS-R to sense Es-
sential Climate Variables (ECVs) such as soil moisture, inundation/wetlands,
freeze/thaw state, and biomass.

GNSS-R spaceborne missions promises enhanced resolution compared to
passive satellite missions for soil moisture remote sensing, though it still
suffers from a relatively low spatial and temporal resolution compared to
ground-based and airborne experiments. The primary GNSS-R spaceborne
missions (UK-DMC, TDS-1, and CyGNSS) employ cGNSS-R signal proccess-
ing techniques to obtain DDM observables which is the basic product con-
taining physical information of a surface.

Although most of the current GNSS-R missions were initially designed
and conceived to observe ocean altitudes, winds, and tropical cyclones, re-
cent studies have exhibited capabilities for sensing land surface attributes.
Currently, spaceborne GNSS-R studies for soil moisture detection mainly in-
clude data from UK-DMC, TDS-1, and CyGNSS, in which exhaustive demon-
stration of the sensitivity of spaceborne reflected GPS signals to changes in
the soil moisture has been carried out very recently using data from TDS-1
[109, 151, 152] and data from the CyGNSS mission [103, 105, 153–155].

1.5 Conclusion

Soil moisture content can be estimated by measuring the dielectric constant
to which the emissivity is related by passive sensors (radiometers), and to
the radar backscattering intensity by measuring through active radar sen-
sors. Microwave radiometers measure the thermal radiation of the soil sur-
face as a function of the soil dielectric constant, the viewing angle, and the
surface roughness. Radiometers suffer from poor spatial resolution because
the measurements are influenced by diurnal temperature fluctuations of the
soil surface and usually require very large antennas for soil moisture sensing.
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However, passive radiometers have higher accuracy than active monos-
tatic radars which rely on backscattering measurements because it is less sen-
sitive to surface roughness effects. In fact, active backscattering radars have
larger spatial resolution than passive techniques, however their accuracy is
hugely influenced by the surface roughness. Active monostatic radars mea-
sure rough surface backscattered signals and retrieve the soil moisture con-
tent by estimating the backscattering cross section which is a function of the
soil dielectric constant, the viewing angle, and the surface roughness. Mono-
static radars do not operate well in perfectly smoothed surface because no
power will reflect back to the radar making it irrelevant for soil moisture es-
timation in such cases. Bistatic radars, on the other hand, are less sensitive to
surface roughness effects and have higher spatial resolution than other active
and passive techniques.

GNSS-R implements a bistatic configuration that uses GNSS signals as
sources of opportunity to characterize Earth surface. Numerous advantages
are provided with this approach including the use of free-source transmit-
ters (i.e. the GNSS satellites) with 24 hours global coverage, the use of the
highly sensitive L-band signals for remote sensing, and the ability to utilize
high-end receiver hardware and dedicated software receiver configurations.
The possibility of estimating soil moisture content using GNSS-R methodolo-
gies has been extensively addressed using ground-based experiments and
airborne campaigns, and recently extended to investigate the feasibility of
measuring soil moisture using GNSS-R based spaceborne missions. This va-
riety of applications has provided GNSS-R techniques with the potential to
measure soil moisture on different land scales with high temporal and spa-
tial resolution. Based on the type of application intended, the appropriate
GNSS-R system configuration should be implemented.

In GNSS-R single antenna configuration, reflectivity measurements from
which the soil dielectric constant can be derived, are obtained by measuring
the power or phase fluctuations of the interference between the direct and re-
flected signals. In the dual-antenna configuration (which is the most suitable
for airborne and spaceborne applications), measurements of reflectivity are
obtained using the SNR of the reflected signal and the direct signal which is
the subject of the next chapter. In this work, we adapt an airborne GNSS-R
dual antenna configuration using cGNSS-R signal processing techniques.
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Chapter 2

Carrier-to-Noise Estimation :
Application to Soil Moisture
Retrieval using GNSS-R

2.1 Introduction

Telecommunication systems use the power of the received signal, normalized
by the noise power, as an indicator of the quality of reception. The Signal-
to-Noise Ratio (SNR) is called Carrier-to-Noise ratio (C/N0) when the noise
power is defined for a unit of bandwidth. C/N0 measurements are often used
in GNSS applications to monitor the receiver processing and its response to
noisy environments [156, 157], determine whether the code and carrier track-
ing loops are in lock, and to detect the signal-to-noise environment in order
to predict the performance of the receiver [113]. High rate variations in the
C/N0 are associated with multi-path disturbances [158], and low rate varia-
tions with indoor or in forest positioning [159].

The carrier-to-noise ratio is used to observe the amplitude of a GNSS sig-
nal. However, this amplitude can’t be directly estimated because the GNSS
antenna perceives a combination of all the GNSS signals from the satellites in
view, which results in mixing the received signals. In this context, the inver-
sion of the antenna measurements to retrieve the C/N0 of the signals from
each satellite in view is an unmixing problem. However, each GNSS satellite
signal can be differentiated with its Code Division Multiple Access (CDMA)
code [160]. The C/N0 of the received signals can, therefore, be derived from
the demultiplexing and demodulation processes [161].

In fact, each received signal can be expressed as a complex sum of a sine
function and a cosine function (i.e. 90 degrees out of phase). The sine part
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is denoted as the in-phase component and the cosine part as the quadrature
component of the signal. The stages of demodulation and demultiplexing
are realized respectively with a Phase Lock Loop (PLL) and a Delay Lock
Loop (DLL) providing the in-phase component I and quadrature component
Q measurements for each satellite. It can be shown that I are noisy observa-
tions of the signal amplitude and Q are observations of the noise [162]. In
the classical approach, the statistics of these two components are used to es-
timate the SNR, which is proportional to the signal amplitude. Finally C/N0

is derived from the product of the SNR with the noise equivalent bandwidth
of the receiver Radio Frequency (RF) front end.

Several C/N0 estimators have been proposed for GNSS applications in
order to maximize the accuracy with minimal implementation complexity.
Some estimators rely on knowledge of the transmitted data and are desig-
nated as data-aided. Other C/N0 estimators tend to estimate C/N0 directly
from the in-phase and quadrature components of the signal. However, most
C/N0 estimation algorithms extract the SNR and then convert it to C/N0

measurements.

In GNSS-R, the SNR (or C/N0) of the direct and reflected GNSS signals
are used to provide reflectivity measurements of a surface from which the
soil dielectric constant and soil moisture content can be derived. Different al-
gorithms have been proposed for the retrieval of soil moisture using the SNR
of GNSS signals depending on the geometry of the GNSS-R setup. Some al-
gorithms use the LHCP antenna signals only while other approaches utilize
both the LHCP and RHCP antenna signals in different configurations for the
retrieval of the SNR ratio.

This chapter first introduces the GNSS signal model, in particular that
of the GPS C/A, addressing the fundamentals of GNSS front end process-
ing that leads to the derivation of the C/N0 expression from the SNR and
the noise equivalent bandwidth of the receiver RF front end using the sta-
tistical properties of the two signal components. Then, some of the most
popular C/N0 estimation algorithms are highlighted while assessing their
performance in terms of accuracy and computational complexity. Finally, the
mechanisms for soil moisture content retrieval using the SNR of GNSS sig-
nals in different GNSS-R dual antenna configurations are presented.



2.2. Signal and system model 47

2.2 Signal and system model

2.2.1 GNSS front end processing

In a GNSS receiver, it is the statistics of the correlation provided by the code
and phase tracking loops that is used to estimate the carrier-to-noise ratio.
The accumulated correlator outputs on the prompt channel are usually the
input observations to the C/N0 estimators. This section is dedicated to GPS
C/A front end processing. A GPS C/A signal broadcasted by NAVSTAR
satellites consists of a CDMA code (C/A code) with a chipping rate of 1.023
MHz and a period of 1023 bits (1 ms). This PRN code spreads the 50 bits/s
navigation message. The resultant C/A signal is then modulated via Binary
Phase Shift Keying (BPSK) with a carrier frequency of fL1 = 1575.42 MHz
(L1 frequency). The signal is then sent through the communication channel.
The incoming signal sR(t) for a satellite l sensed by the GNSS antenna can be
expressed as:

sR(t) = ∑
l∈V

AR
l CAl(t + τl)nl(t + τl) sin

[
2π( fL1 + f D

l ) t + ϕR
l

]
+ ηR(t) (2.1)

where V is the set of visible satellites, AR
l (t) is the amplitude of the incoming

signal, and CAl(t) is the CDMA code of satellite l. nl(t) is the navigation
data signal, τl is the code delay, ϕR

l is the phase shift of the carrier, f D
l is

the Doppler frequency associated to satellite l and ηR(t) is a noise term. In
some GNSS signal propagation environments, especially in the ionosphere
and urban areas with heavy multipath, GNSS signals encounter not only an
additive noise but also a multiplicative noise [163]. In this dissertation, the
noise is assumed to be an Additive White Gaussian Noise (AWGN) and the
multiplicative noise is not taken into account.

This signal is processed in the receiver front end. The purpose of the RF
front end is to provide digital signal samples to the signal processing block.
The signal sR(t) sensed by the GNSS antenna is amplified using a Low Noise
Amplifier (LNA) due to the fact that the signals are immersed in noise. The
LNA is characterized by its gain and noise figure [164]. Then, the amplitude
of the signal is regulated using an Automatic Gain Control (AGC). After that,
the received signal is down converted with a local oscillator frequency fLO to
an intermediate frequency f IF before Analog-to-Digital Conversion (ADC).
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A scheme of the RF front end of a GNSS receiver is depicted in figure 2.1.
Consider the following GPS C/A signal s(t) after down conversion to an
intermediate frequency f IF:

s(t) = ∑
l∈V

K AlCAl(t + τl)nl(t + τl) sin(2π fl t + ϕl) + K η(t) (2.2)

where Al(t) is the amplitude of the signal, K is the gain of the AGC, and τ is
the code delay. fl and ϕl are respectively the frequency and the phase delay
of the carrier with fl = f IF + f D

l , η(t) is a zero mean additive Gaussian model
with a unit variance. In our model, we fix the noise power and therefore the
SNR variations are included in the amplitude value Al.
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FIGURE 2.1: RF front end of a GNSS receiver. In the RF front
end, the signal sR(t) sensed by the GNSS antenna is amplified
using a Low Noise Amplifier before being regulated by the Au-
tomatic Gain Control. Then, using a Frequency Synthesizer, the
received signal is down converted with a local oscillator fre-
quency fLO to an intermediate frequency f IF. Finally Analog-
to-Digital Conversion is applied to the down-converted signal
s (t) with a sampling frequency fs to obtain the digital signal si.

The expression of the signal s(t) after digitization can be written as:
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si = ∑
l∈V

KAlCAl(ti + τl)nl(ti + τl) sin(2π fl ti + ϕl) + Kηi (2.3)

A front end processes an in-phase component and a quadrature compo-
nent of the received signal with local replicas. A GNSS receiver applies signal
acquisition in a first stage. The purpose of the acquisition step is to estimate
an initial approximation of the code delay and the carrier frequency of a sig-
nal. At the end of this first stage, the receiver tracks the variations of these
parameters along with the phase delay as a function of time in a tracking
module consisting of a DLL and a PLL. In the tracking process, the message
of navigation is extracted and thus can be removed. The DLL process in-
volves refining the coarse value of the code delay by correlating the in-phase
I and quadrature-phase Q components of the signal with 3 locally generated
replicas of the PRN code. The 3 generated replicas designates the early (suf-
fix E), prompt (suffix P), and late (suffix L) versions of the PRN code. The
PLL corrects the Doppler and phase delay initial estimates.

In practice, the GNSS receivers are numerical, therefore the local replicas
generated at the receiver are digitized. The prompt local replicas are defined
for a satellite v by the following expressions:

civ,i = CAv(ti + τv) sin(2π fv ti + ϕv) (2.4)

cqv,i = CAv(ti + τv) cos(2π fv ti + ϕv) (2.5)

where ti is the time instant associated to the sampling frequency fs and τv is
the code delay. fv and ϕv are respectively the frequency and the phase delay
estimates of the carrier.

The in-phase component of correlation Iv and the quadrature component
Qv for each satellite v are obtained by integrating the sampled signals over
the coherent integration time Tc (therefore with fs Tc samples). For GPS C/A,
the integration time typically varies from the 1 ms GPS C/A code repetition
rate to the 20 ms navigation data message rate. In this regard, accumulat-
ing the received data over a small integration time provide SNR estimations
at higher rate, however, a larger integration time increases the SNR of the
signal. The accumulated in-phase, I, and quadrature, Q, samples from the
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prompt correlator are expressed as:

Iv = ∑
fs Tc
i=1 si civ,i (2.6)

Qv = ∑
fs Tc
i=1 si cqv,i (2.7)

The correlation outputs of the I and Q prompt channels are then passed
to the algorithms for C/N0 estimation. Figure 2.2 shows a general block di-
agram of the software receiver implemented in this effort for GPS C/A data
in the presence of AWGN interference from the receiver hardware.
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Data

InterferenceStored Data Software Receiver

  

  

FIGURE 2.2: Block diagram of a software receiver implemented
to get I and Q samples from raw GNSS data sets. The correla-
tion outputs prompt channels are then passed to C/N0 estimat-

ing algorithms.

2.2.2 Derivation of the carrier-to-noise ratio expression

The navigation signal at the output of the prompt correlator can be mod-
eled as a sequence of BPSK symbols in additive noise, with a symbol rate

equal to the inverse of the coherent integration time,
1
Tc

[165]. In this case,

the additive noise can be modeled as a discrete-time Gaussian process, white

over the bandwidth
1

2 Tc
. In practice, most GNSS receivers estimate the post-

correlation SNR and later converts it into C/N0 estimates. The SNR is de-
fined as the ratio of the useful data signal power Pd over the noise power Pn.
It can also be derived from the statistical properties of the 2 signal compo-
nents of correlation. In this context, a classical definition of the SNR is given
by [166, 167]:



2.2. Signal and system model 51

SNR =
Pd
Pn

=

(
mean(Iv)

std(Qv)

)2

(2.8)

where std and mean are respectively the standard deviation and mean es-
timates. The carrier-to-noise ratio (C/N0) can then be related to the SNR
through the normalized equivalent noise bandwidth [168]. In ideal code de-
lay and carrier tracking conditions, the normalized noise equivalent band-
width of the receiver RF front end BW can be expressed as [165]:

BW =
1
Tc

(2.9)

Consequently, the carrier-to-noise ratio in dB-Hz is expressed as:

C/N0 = 10 log(SNR) + 10 log(BW) (2.10)

Several methods are used to estimate the SNR and consequently C/N0

from the prompt correlator components, taking into account both perfor-
mance and implementation complexity. In the model that is derived in chap-
ter 3, C/N0 is estimated using the in-phase component of the signal as obser-
vation. The in-phase component of correlation is expressed as a function of
the amplitude of the GNSS signal. Assuming that the local code and carrier
are perfectly aligned with the received signals (i.e. τv = τl, fv = fl, ϕv = ϕl),
equations (2.6) and (2.7) can be written as:

Iv =
K Av fs Tc

2
+ K η I

v (2.11)

Qv = K ηQ
v (2.12)

where η I
v and ηQ

v are random noises distributed according to a centered Gaus-
sian distribution of variance fs Tc

2 . Then, the SNR of equation (2.8) is given by:

SNR =

(
mean(Iv)
std(Qv)

)2

=
A2

v fs Tc

2
(2.13)

In this equation, the SNR is proportional to the square of the amplitude of
the signal and independent of K, the AGC Gain. This is the reason why the
SNR is used as an observation of the signal amplitude. The carrier-to-noise
ratio in dB-Hz can then be expressed as:
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C/N0 = 20 log

(
Av
√

fs Tc√
2

)
+ 10 log (BW) (2.14)

where Av√
2

is the Root Mean Square voltage of the carrier and BW is the noise
equivalent bandwidth of the receiver RF front end. This is the equation that
is used in chapter 3 to derive C/N0 using the amplitude estimates.

2.3 C/N0 estimators

The C/N0 estimators are divided into 2 groups: the first group estimates
the C/N0 directly from the accumulated outputs of the prompt correlator,
whereas the second group estimates the SNR, which is then converted to
C/N0 using the noise equivalent bandwidth of the receiver RF front end.
The estimators performance is assessed in the presence of additive noise in
terms of estimation accuracy and computational complexity.

2.3.1 Direct Estimation of C/N0

2.3.1.1 Narrowband-Wideband Power Ratio Method (NWPR)

Also called the Standard Estimate (SE), the Narrowband-Wideband Power
Ratio (NWPR) is probably the most widely used C/N0 estimator [162, 169].
It is an incoherent method that involves the comparison of powers in two dif-
ferent noise bandwidths in order to estimate C/N0 directly without the need
to estimate the SNR. The wideband power PW is calculated over a noise band-

width of
1
Tc

. The narrowband power PN is taken over a noise bandwidth of

1
M Tc

for the accumulation time Tc. M is the total number of Tc blocks used

for coherent integration. Bit synchronization is neccessary to estimate the
C/N0 using this method [170]. The navigation bit transitions should be de-
termined in order to prevent summing over a bit transition that would result
in inaccurate estimates.

This method, described in [169, 171, 172], uses the accumulated in-phase
I and quadrature Q samples from the prompt P correlator [172]. It starts
by expressing the accumulated in-phase and quadrature samples from the
prompt correlator as:

IP =
√

2(C/N0)Tc sinc(π f D
e Tc)R(τe)cos(ϕe) + ηIP (2.15)
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QP =
√

2(C/N0)Tc sinc(π f D
e Tc)R(τe)sin(ϕe) + ηQP (2.16)

where Tc is the coherent integration time over which the correlator outputs
are accumulated for input to the discriminators, R is the correlation function,
τe is the signal – reference code phase error in code chips, f D

e is the frequency
tracking error, ϕe is the signal – reference carrier phase error, sinc(α) = sin(α)/α,
and η are normalized random noise samples following a zero mean unit vari-
ance Gaussian distribution [172].

Then, an expectation operator E() is used in [172] to check if the receiver
is correctly tracking the signal, in which case E() is written as:

E
(

sinc2(π f D
e Tc)R2(τe)

)
≈ 1 (2.17)

where f D
e ans τe are assumed to be close to zero when the local replicas are

aligned with the incoming signal. The expectations and variances of the noise
samples are given in [172] as:

E(ηIP
2) = E(ηQP

2) = 1

E(ηIP) = E(ηQP) = 0 (2.18)

From equations (2.15), (2.16) and (2.17), IP and QP can be rewritten as:

IPi =
√

2(C/N0)Tc cos(ϕe) + ηIP (2.19)

QPi =
√

2(C/N0)Tc sin(ϕe) + ηQP (2.20)

These samples are used to calculate the narrowband power PN, and the
wideband power PW as [172]:

PN =

(
M

∑
i=1

IPi

)2

+

(
M

∑
i=1

QPi

)2

(2.21)

PW =
M

∑
i=1

(
I2
Pi + Q2

Pi

)
(2.22)

These power quantities are calculated using samples within the same nav-
igation bit. For a coherent integration time that is equal to the code period in
GPS C/A signals (i.e. Tc = 1 ms), a maximum of M = 20 correlator values
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within a single navigation bit that has a bit rate of 50 Hz can be chosen. Thus
in order to avoid summation over transition bits, M ∈ [1, 2, 4, 5, 10, 20].

Substituting the sampled I and Q components in equations (2.19) and
(2.20) into PN and PW and applying equation (2.18), the expectation opera-
tors for PN and PW can be written as [172]:

E(PN) = 2(C/N0)TcM2 + 2M = 2M((C/N0)MTc + 1) (2.23)

E(PW) = 2(C/N0)TcM +
M

∑
i=1

2 = 2M((C/N0)Tc + 1) (2.24)

The narrow-to-wide power ratio PN/W is the ratio of the two power mea-

surements averaged over
N
M

iterations (N is the number of samples in the
averaging time interval) to reduce the noise. It can be expressed as:

PN/W =
M
N

N/M−1

∑
r=1

PN,r

PW,r
(2.25)

Then, applying the relevant mean properties for a measurement of the
form Z = X/Y [171], the expectation of the averaged narrow-to-wide power
ratio is given by [172]:

E(PN/W) ≈ M((C/N0)TcM + 1)
M + (C/N0)TcM

(2.26)

Finally, the measured carrier-to-noise ratio in dB-Hz after rearrangement
can be written as:

C/NNWPR
0 = 10 log

(
PN/W − 1
M − PN/W

)
+ 10 log

(
1
Tc

)
(2.27)

2.3.1.2 Correlator Comparison Method (CC)

An incoherent way to measure C/N0 directly using the accumulated in-phase
and quadrature components from the prompt correlator, is to compare the
Ip and Qp samples with an unsynchronized accumulated correlator output
IN that can be shared among all tracking channels. IN is measured post-
correlation to correctly reflect the receiver’s response to noise in different
parts of the signal spectrum [172]. This method [172, 173] uses a measure-
ment Z that can be written as:
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Z =

M
∑

i=1

(
I2
Pi + Q2

Pi
)

2
M
∑

i=1
I2
Ni

(2.28)

where M is the number of iterations averaged over to smooth noise [172].
If Z = X/Y where X and Y are averaged separately as in equation (2.28)
then:

X =
M

∑
i=1

(
I2
Pi + Q2

Pi

)
, Y = 2

M

∑
i=1

I2
Ni (2.29)

Using the Ipi and Qpi equations defined in (2.19) and (2.20) respectively,
and the statistical properties of the noise samples defined in equation (2.18),
the expectations of X and Y can be written as:

E(X) = 2M((C/N0)Tc + 1), E(Y) = 2M (2.30)

Subsequently, the expectation of Z can be written as [173]:

E(Z) =
(
(C/N0)Tc + 1

)(
1 +

2
M

)
(2.31)

Rearranging this equation, the carrier-to-noise ratio in dB-Hz using the
correlator comparison method can be written as [173]:

C/N0
CC = 10 log

(
M

M + 2
Z − 1

)
+ 10 log

(
1
Tc

)
(2.32)

It is worth noting that the correlator comparison method consistently pro-
duces noisier carrier-to-noise ratio measurements than the NWPR method,
but becomes less biased for very high C/N0 environments [172].

2.3.2 Estimation of C/N0 using SNR

2.3.2.1 Variance Summation Method (VS)

This incoherent method of C/N0 estimation was described thoroughly in
[174, 175]. It starts by defining the sample of measurement Z using the ac-
cumulated in-phase and quadrature components from the prompt correlator
as:

Zk = I2
v,k + Q2

v,k (2.33)
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Then, this method derives the mean Z̄ and variance σ2
Z of the resulting

time series Z as:

Z̄ =
1
k

fs Tc

∑
k=1

Zk (2.34)

σ2
Z =

1
k − 1

fs Tc

∑
k=1

Zk − Z̄ (2.35)

from which the accumulation power (after removing the AGC gain) can be
expressed as: (

f s Tc A
2

)2

=
√

Z̄2 − σ2
Z (2.36)

where fs Tc is the number of samples with fs being the sampling frequency
and Tc being the coherent integration time. For the I and Q noise compo-
nents, the variance of the noise accumulation terms is [174]:

σ2
IQ =

1
2

(
Z̄ −

√
Z̄2 − σ2

Z

)
(2.37)

from which the SNR can be obtained as:

SNRVS =

(
f s Tc A

2

)2

σ2
IQ

(2.38)

Finally, the carrier-to-noise ratio in dB-Hz can be expressed as a function of
SNR and BW:

C/NVS
0 = 20 log

(
f s Tc A
2σIQ

)
+ 10 log(BW) (2.39)

Notice that if the I and Q noise components are distributed according to
a centered Gaussian distribution of variance σ2

IQ = f sTc
2 , then the carrier-to-

noise ratio derived in expression (2.39) will be equal to that of expression
(2.14) derived in the previous section. These 2 equations relate C/N0 to the
signal amplitude using the in-phase component of the signal as observation.

2.3.2.2 Beaulieu’s Method (BL)

Norman C. Beaulieu introduced in [176] an intuitively motivated coherent
algorithm to measure C/N0 using the accumulated I and Q samples from
the prompt P correlator. This method achieves high accuracy with minimum
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complexity. The "observable" signal stream from the prompt correlator out-
put is sampled in order to calculate C/N0 and can be written as [176]:

rC[n] =
√

PdD[n] +
√

Pnη[n] (2.40)

where n is the discrete time, D[n] = ±ejθn are the navigation bit samples
(which can be determined and removed). θn is the residual carrier phase.
Pd and Pn are the power associated to the data and the noise respectively,
and η[n] = ηRe[n] + jηIm[n] expresses the complex noise samples. Then, the
following equations are defined [170, 176]:

P̂d,v = rC,Re[v]2 + rC,Im[v]2 (2.41)

P̂n,v = (|rC,Re[v]| − |rC,Im[v]|)2 (2.42)

where the random variable P̂d,v is the instantaneous signal-plus-noise power
of rC[v], which better approximates the signal power Pd as much as the noise
contribution is small. In Quadrature Phase Shift Keying (QPSK), |DRe[v]| =
|DIm[v]|. Thus, the random variable P̂n,v is an approximation of the instan-
taneous power of (ηRe[v] + ηIm[v]), i.e., of the total noise η[v]. In case of
BPSK modulated data, the navigation data bits appear at the in-phase cor-
relator output, while only noise is present at the output of the quadrature
branch. Thus, each sample rC,Im[v] can be replaced by the previous real sam-
ple rC,Re[v − 1], without significantly affecting the estimator performance. In
this case, Pd and Pn can be written as:

Pd,v =
1
2
(rC,Re[v]2 + rC,Re[v − 1]2) (2.43)

Pn,v = (|rC,Re[v]| − |rC,Re[v − 1]|)2 (2.44)

Then, the SNR can be defined as:

SNRBL =

[
1
N

N

∑
v=1

Pn,v

Pd,v

]−1

(2.45)

where N is the number of samples used to produce one SNR estimate.
Finally, C/N0 is the product of the SNR and the noise equivalent bandwidth
of the receiver’s RF front end (BW) given in dB-Hz as:

C/NBL
0 = 10 log(SNRBL) + 10 log(BW) (2.46)
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2.3.2.3 Moments Method (MM)

This incoherent method is based on the second- and fourth-order moments
of the input process to obtain a separate estimation of the carrier and noise
strengths in AWGN channels [165, 170, 177]. Take into consideration the sam-
pled signal at the output of the prompt correlator rC[n] defined in expression
(2.40). Using the theoretical formulation of the second- (M2 = E{|rC[n]|2})
and fourth- (M4 = E{|rC[n]|4}) order moments of the received constellation
in noise, the following MM estimation algorithm can be derived [177]:

M2 =
1
N

N

∑
v=1

|rC[v]|2 (2.47)

M4 =
1
N

N

∑
v=1

|rC[v]|4 (2.48)

Assuming that the signal and noise are zero-mean, independent random
processes, and the in-phase and quadrature components of the noise are in-
dependent, equations (2.47) and (2.48) are written as:

M2 = Pd + Pn (2.49)

M4 = kαP2
d + 4PdPn + kωP2

n (2.50)

where kα and kω are the kurtosis of the signal and the kurtosis of the noise,
respectively. For any M-ary PSK signal over complex AWGN channels, kα =

1 and kω = 2 so that the carrier power Pd and the noise power Pn can be
expressed as [170]:

Pd =
√

2M2
2 − M4 =

√√√√√2

 1
N

N

∑
v=1

|rC[v]|2
2

− 1
N

N

∑
v=1

|rC[v]|4 (2.51)

Pn = M2 − Pd = M2 −
√

2M2
2 − M4 (2.52)

then, the SNR is expressed as:

SNRMM =
Pd
Pn

=

√
2M2

2 − M4

M2 −
√

2M2
2 − M4

(2.53)
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Finally, the carrier-to-noise ratio can be derived according to equation
(2.10). This method provides a robust approach for estimating the C/N0 at
the expense of computational complexity.

2.3.2.4 Real Signal-Complex Noise Method (RSCN)

The Real Signal-Complex Noise (RSCN) method is a coherent approach de-
scribed in [170, 178, 179]. As previously mentioned, the output of the I cor-
relator is proportional to the noisy amplitude of the GNSS signal, while the
output of the Q correlator is just noise. This allows to estimate the noise
power at the output of the Q correlator. Consider the sampled signal stream
from the prompt correlator of equation (2.40), then we have [170]:

Pn =
2
N

N

∑
v=1

|rC,Im[v]|2 (2.54)

Pr =
1
N

N

∑
v=1

|rC[v]|2 (2.55)

where Pn is the power associated to the noise at the output of the Q correlator
and Pr is the total received signal power. The SNR can be written as:

SNRRSCN =
Pd
Pn

=
Pr − Pn

Pn
(2.56)

The carrier-to-noise ratio can then be estimated according to equation
(2.10). This method requires perfect carrier synchronization because it is
quite sensitive to any residual carrier phase offsets. A non-zero residual
phase offset denotes an increase in the noise power measured on the output
of the Q correlator.

2.3.2.5 Maximum Likelihood SNR Estimator (ML)

The Maximum Likelihood (ML) estimator described in [177, 180–183] is a
coherent data aided algorithm that performs well under the assumption of
known data bits. The ML method is an extension in QPSK modulation to the
squared Signal-to-Noise Variance estimator (SNV) proposed for BPSK mod-
ulation in [177]. Several versions of this estimator have been proposed with
[183] or without [180] perfect phase synchronization and for modern GNSS
signals that have pilot and data channels [182]. The ML estimator is based
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on recording the observations of Np samples of the complex received signal
given by [180]:

rk = Adk + nk, k = 1, 2, ..., Np (2.57)

where A is the signal amplitude, dk is a known preamble symbol belong-
ing to a QPSK alphabet, and nk is a zero-mean Gaussian complex circular
random variable with variance σ2

n . The SNR can then be written as:

SNR =
Pd

Pr − Pd
=

Pd
Pn

=
A2

σ2
n

(2.58)

where Pd is the useful signal power, Pr is the total received signal power,
and Pn is the noise power. Expression (2.57) can be written in terms of real
and imaginary parts as [180]:

rk = uk + jvk =
√

Pd(dI
k + jdQ

k ) +
√

Pn(zI
k + jzQ

k ) (2.59)

where I and Q denotes the in-phase and quadrature-phase components
of the signal, and zk represents the complex zero mean AWGN sample with
unit variance [180].

The ML SNR estimate can be derived as the ratio of the two ML power es-
timates Pd and Pn over Np observation samples. The two ML power estimates
are given as [181]:

Pd =

 1
Np

Np

∑
k=1

Re{rkd∗k}

2

(2.60)

Pn = Pr − Pd =
1

Np

Np

∑
k=1

|rk|2 − Pd (2.61)

Thus, the ML SNR estimate is expressed as:

SNRML =
Pd
Pn

=

[
1

Np

Np

∑
k=1

Re{rkd∗k}
]2

1
Np

Np

∑
k=1

|rk|2 −
[

1
Np

Np

∑
k=1

Re{rkd∗k}
]2 (2.62)

The carrier-to-noise ratio C/N0 in units of dB-Hz can then be derived
from the SNR estimates by:



2.3. C/N0 estimators 61

C/NML
0 = 10 log

(
SNRML

)
+ 10 log (BW) (2.63)

A modified structure of the ML data aided estimator, referred to as the
Modified Maximum Likelihood (MML) estimator, was proposed in [184] to
improve its accuracy. In this approach, the noise variance is estimated using
a non-existing PRN code that is not transmitted by any GNSS satellite. After
correlating the incoming signal with the non-existing PRN code, the resulting
complex correlator output is given as [184]:

r̃ext = Iext + jQext (2.64)

where Iext and Qext are the accumulated in-phase and quadrature compo-
nents after correlation with a non-existing code. The noise variance of the
correlator output can be estimated using r̃ext as [184]:

σ2
MML =

1
2(Np − 1)

Np

∑
i=1

∣∣∣∣∣r̃ext,i −
1

Np

Np

∑
m=1

r̃ext,m

∣∣∣∣∣
2

=
1

2(Np − 1)

Np

∑
i=1

[
(Iext,i − Īext)

2
+ (Qext,i − Q̄ext)

2
]

(2.65)

where Īext and Q̄ext are the sample means of the in-phase and quadrature
components. The mean component has been removed in order to account
for any residual signal component. The noise variance values estimated in
this approach are nearly unbiased. The MML SNR estimate is given by:

SNRMML =
A2

σ2
MML

=

[
1

Np

Np

∑
k=1

Re{rkd∗k}
]2

1
2(Np−1)

Np

∑
i=1

∣∣∣∣∣r̃ext,i − 1
Np

Np

∑
m=1

r̃ext,m

∣∣∣∣∣
2 (2.66)

2.3.3 Performance evaluation of the C/N0 estimators

The above estimators performance is compared hereafter using simulated
in-phase and quadrature correlator outputs in presence of AWGN with zero
mean and unit variance. The coherent integration time is set to Tc = 1 ms.
The number of samples used to produce one C/N0 estimate is set to N =
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1000. For NWPR and CC methods, M is set to 20. An ideal front-end is as-
sumed with perfect carrier synchronization (no frequency and phase tracking
errors). This process is averaged over 50 iterations.

In this study, the performance of NWPR, CC, VS, BL, RSCN, MM and
SNV is compared to true C/N0 values ranging between 20 and 80 dB-Hz
with a step of 5 db-Hz. This allows to compare the behavior of the estimators
in different C/N0 environments. SNV is referred in this section rather than
ML because the signals at the output of the GNSS data channels are BPSK
signals and all other estimators are adapted perfectly to this type of modula-
tion. In SNV, the SNR is derived as in equation (2.62).

Figure 2.3 shows the estimators performance in terms of estimated C/N0

values in dB-Hz as a function of the simulated (true) C/N0 values (black
dashed line). We also record the standard deviation of each method denoted
by the error bars at each corresponding C/N0 value.

From Figure 2.3a, we notice that the NWPR, SNV and RSCN estimators
have similar overall performance except for the range [20-35] dB-Hz, where
the SNV C/N0 estimates experience a higher estimation error than the other
two estimates, and the RSCN estimates are less accurate (higher std). These
three estimators perform coherently and accurately with minimal estimation
error under moderate C/N0 environment in the range [35-48] dB-Hz. How-
ever, the NWPR, SNV and RSCN methods saturate and thus become un-
reliable for higher C/N0 conditions (beyond 48 dB-Hz). The CC method
produces noisy and inaccurate C/N0 estimates as compared to other esti-
mators and thus considered to be unreliable under different C/N0 environ-
ments, though it becomes less biased in moderate C/N0 environment. The
VS method produces biased estimates in most C/N0 conditions.

On the other hand, we notice from Figure 2.3b that the Beaulieu’s method
performs generally well under different C/N0 environments, though the C/N0

estimated using BL method experiences a considerably high estimation error
in the range [20-35] dB-Hz. This error decreases significantly under moder-
ate and high C/N0 environments ([35-75] dB-Hz range) before it starts to in-
crease again beyond this range. Finally, the MM method shows a good over-
all C/N0 estimation performance where it operates accurately and coherently
with minimal estimation error under various C/N0 conditions except for low
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FIGURE 2.3: Assessing the performance of different C/N0 esti-
mators. The black dashed line represents the true C/N0 values
ranging between 20 and 80 dB-Hz with a step of 5 db-Hz. C/N0
is estimated for Tc = 1 ms, N = 1000 and M = 20 averaged over
50 iterations (thus producing 13 C/N0 mean values for each es-

timator). The error bars represent the std of the estimates.

C/N0 values where the error is more significant and the estimates are less
accurate. Since the C/N0 of a good GNSS signal strength typically ranges
between 35 to 55 dB-Hz, it can be concluded that Beaulieu’s Method and the
Moments Method are the two best approaches for GNSS C/N0 estimation,
though Beaulieu’s Method yields the best performance in terms of C/N0 es-
timation in this range (see zoomed part of Figure 2.3b). NWPR, SNV and
RSCN methods also perform well in moderate GNSS C/N0 environments.

In order to properly assess the performance of the different estimators, the
computational complexity should be evaluated. The second study concerns
the evaluation of complexity, in terms of number of real operations (addi-
tions, multiplications, and divisions) required to compute one C/N0 estimate
for the estimators that perform considerably well in GNSS C/N0 conditions
(i.e. MM, BL, NWPR, SNV and RSCN). The results of this study are reported
in Table 2.1.

From Table 2.1, it can be observed that the Moments Method is the most
computationally expensive method with the SNV method being the low-
est demanding estimator in terms of number of real operations followed by
RSCN. Beaulieu’s Method also has a considerably low number of operations
as compared to MM.
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TABLE 2.1: Evaluation of the computational complexity re-
quired to compute one C/N0 estimate for the different estima-

tors.

Method Additions Multiplications Divisions

MM 4N 5N + 5 1 + 1 square root

BL 3N + 1 3N + 3 N + 1

SNV 3N - 1 2N + 4 1

RSCN 3N + 1 3N + 3 1

NWPR 4N - N
M +1 2N + 2

( N
M
)

+ 2 N
M + 1

From these two studies, it can be concluded that Beaulieu’s Method yields
the best overall performance in terms of C/N0 estimation and computational
complexity under good GNSS C/N0 environments. Consequently, the per-
formance of our proposed method for on-line estimation of the GNSS carrier-
to-noise ratio is compared to Beaulieu’s Method in chapter 4 using real data.

2.4 Soil moisture retrieval from GNSS-R

Soil moisture retrieval process using GNSS-R dual antenna configuration
aims to link the received GNSS signals and the dielectric constant of the
soil ε. This link is established by relating the SNR observations of the di-
rect and reflected GNSS signals to the reflectivity measurements from which
the dielectric soil constant and consequently SMC can be derived. The re-
trieval of the SNR data is usually done in the post-processing phase using
SNR estimators such as those presented in the previous section. In this sec-
tion, different GNSS-R methodologies for SMC retrieval using the SNR data
as observations are introduced based on the different GNSS-R dual antenna
configuration presented in section 1.4.2.3.

2.4.1 SMC retrieval using LHCP reflected signals only

If the reflecting surface can be well approximated as a perfectly smooth sur-
face, then a specular reflection can be assumed. In such a case, the effect
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of surface roughness and incoherent components in the reflection can be ne-
glected and thus the surface reflectivity is limited to the first Fresnel reflec-
tion coefficients (i.e. ΓLR = |RLR(ε, γ)|2 for cross-polarization reflection) [16].
Then, the reflected GNSS signals results in being mainly LHCP, in particu-
lar considering the satellites with close to the zenith elevation. The dielectric
constant is retrieved from the SNR of the LHCP reflected signals which can
be processed by the open loop method [50]. The SNR can be expressed as the
power ratio of the reflected signal over the noise related to the LHCP channel
[36]:

SNRre f l
LR =

Pt
r Gt

4π (d1 + d2)
2

Gre f l
r λ2GD

4πPre f l
n

ΓLR (2.67)

where LR stands for the left polarized scattering with L denoting the left
hand polarization of the reflected signal and R indicating the right hand
polarization of the incident wave. Pt

r is the transmitted signal power, Gt is
the transmitter antenna gain, Gre f l

r is the receiver antenna gain, and λ is the
wavelength. The variables d1 and d2 are the distances between the specular
point and the receiver, and the specular point and the satellite respectively.
Pre f l

n is the noise power and GD is the processing gain due to the de-spread of
the PRN code. The cross-polarization smooth surface reflectivity ΓLR can be
derived from the Fresnel reflection coefficients as defined in equation (1.32).

By signal post-processing, the SNR can be estimated from which the Fres-
nel reflectivity is retrieved. The dielectric constant ε is then derived by com-
bining equations (1.9), (1.10), (1.32) and (2.67). Input parameters such as Pt

r ,
Gt, Gre f l

r , and GD are usually seen to be constants. Pn is related to the afore-
mentioned system parameters and should be estimated or calculated prop-
erly. d1, d2, and the incidence angle γ are geographic information related to
the satellite and receiver positions and can be calculated using GNSS-R ge-
ometry (such as that of Figure 1.6). SNR is the input parameter obtained from
signal post-processing using the SNR estimators.

2.4.2 SMC retrieval using LHCP reflected signals and RHCP

direct signals

In this approach, reflectivity measurements are obtained using the LHCP re-
flected signals and RHCP direct signals. The dielectric constant is obtained as
the power ratio of the SNR of the LHCP reflected signal over the SNR of the
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RHCP direct signal, provided that direct RHCP signals are processed with
the same approach to get SNR. The SNR expression of the peak power for
the direct RHCP signal is [50]:

SNRdir
RR =

Pt
r Gt

4π (d3)
2

Gdir
r λ2GD

4πPdir
n

(2.68)

where RR stands for the right hand polarization of both the incident wave
and the received signal. d3 is the distance between the GNSS satellite and
receiver. The ratio of the LHCP reflected and RHCP direct signals SNRs is
written as:

SNRre f l
LR

SNRdir
RR

=
d2

3

(d1 + d2)
2 ΓLR · Cp (2.69)

In this equation, d1, d2, d3 and γ can be obtained from the GNSS-R geom-

etry (Figure 1.6). Cp =
Gre f l

r

Pre f l
n

· Pdir
n

Gdir
r

is a calibration parameter that depends

on the hardware differences in the receiving chains, mainly due to antennas
and RF filtering gains [16]. The actual value of Cp must either be ignored if
there is no way to calibrate the system or calculated. One of the most used
calibration mechanisms for soil moisture purposes is the on-water (usually
using reflections from in-land water body surfaces) calibration, used in [12],
through multiple over-water overflights. This is because the reflected signal
power over calm water is well known given the incidence angle γ as com-
pared to over the terrain reflections where the uncertainty is much higher.

For more accurate calibration, a measurement campaign should be done
in situ for different soil types and moisture conditions using different sensors
over very large intervals of time. Then, the obtained results would be com-
pared with all the other sensors in the terrain. The dielectric soil constant
ε can then be obtained from equation (2.69) given all the input parameters
involved.

2.4.3 SMC retrieval using both LHCP and RHCP reflected

signals

The above retrieval algorithms are based on the assumption of having a
smooth reflecting surface with considerably high satellites elevation angles
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where the reflected signals are mainly observed using the LHCP link. How-
ever, in order to take into account the effects of surface roughness and to ob-
serve reflections of satellites with low elevation angles, SMC should be mea-
sured using both LHCP and RHCP reflected GNSS signals. In this regard,
the estimated reflected LHCP and RHCP SNRs are linked to the normalized
bistatic radar cross section σ0

pq. σ0
pq is a function of the dielectric properties of

the material and separates into a horizontal and a vertical polarization com-
ponent [16]. This approach estimates the dielectric constant of the soil using
the normalized backscattering cross section for the two circular polarizations
of the reflected GNSS signals. The SNR can be expressed for both the LHCP
and the RHCP reflections as [16]:

SNRre f l
LR =

Gt Gre f l
r,LR λ2 |σLR| Pt

r

(4π)3 d2
1 d2

2 Pre f l
n,LR

(2.70)

SNRre f l
RR =

Gt Gre f l
r,RR λ2 |σRR| Pt

r

(4π)3 d2
1 d2

2 Pre f l
n,RR

(2.71)

where the subscript LR indicates a left polarization of the reflected signal
and a right polarization of the incident wave. The subscript RR indicates a
right polarization for both the incident wave and reflected signal. σLR rep-
resents the cross-polarization radar cross section and σRR represents the co-
polarization radar cross section. All remaining parameters are as defined in
the previous sections. The co- and cross-polarization radar cross section can
be written as [16, 185]:

√
σLR =

√
Ar
2

(√
σ0

HH +
√

σ0
VV

)
(2.72)

√
σRR =

√
Ar
2

(√
σ0

HH −
√

σ0
VV

)
(2.73)

where σ0
HH and σ0

VV are the horizontal and vertical polarization components
of the normalized radar backscattering coefficient and Ar is the total illu-
minated area, or glistening zone, which depends on the GNSS-R geometry
[186]. Combining equations (2.70) and (2.71) with equations (2.72 ) and (2.73),
the ratio of the SNR of the LHCP reflected signal over the SNR of the RHCP
reflected signal can be written as:
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SNRre f l
LR

SNRre f l
RR

=

∣∣∣√σ0
HH +

√
σ0

VV

∣∣∣∣∣∣√σ0
HH −

√
σ0

VV

∣∣∣ · C′
p (2.74)

where C′
p =

Gre f l
r,LR

Pre f l
n,LR

·
Pre f l

n,RR

Gre f l
r,RR

is a calibration parameter similar to Cp.

In practice, σ0
HH and σ0

VV are functions of the soil dielectric constant and
the incidence angle and can be described through proper scattering models
that take into account various other physical parameters involved in the re-
flection phenomena [16]. σ0

HH and σ0
VV are polarization sensitive parameters

that can be related to the Fresnel reflection coefficients and other polariza-
tion independent surface roughness parameters through physical scattering
models such as GOM, POM and SPM described in the previous chapter. In
such a case, expression (2.74) can be re-written (ignoring C′

p) as [36]:

SNRre f l
LR

SNRre f l
RR

=
||RH(ε, γ)|+ RV(ε, γ)||
||RH(ε, γ)| − RV(ε, γ)|| (2.75)

where RH(ε, γ) and RV(ε, γ) are the Fresnel reflection coefficients defined in
equations (1.9) and (1.10) respectively. Note that this power ratio is indepen-
dent of the surface roughness and is only a function of the dielectric con-
stant and incident angle. If semi-empirical scattering models are used, such
as Oh model or Dubois model described in the previous chapter, then σ0

HH

and σ0
VV are written as a function of the Fresnel reflectivity and other surface

roughness dependent parameters (refer to equations (1.22), (1.23), (1.24) for
Oh model and equations (1.25) and (1.26) for Dubois model), and thus the
dielectric constant can be derived by substituting the corresponding equiv-
alent expressions of σ0

HH and σ0
VV in equation (2.74). After post processing

with the proper SNR estimator, the SNR for both LR and RR polarizations
are obtained as input parameters and ε can be derived. Finally, a dielectric
constant model (such as that described in section 1.2.1) is used to relate the
dielectric constant of the soil to the soil moisture content.

2.5 Conclusion

The carrier-to-noise ratio is the ratio of the received carrier power level to the
noise power level in a unit bandwidth. It can be seen as a normalized mea-
sure of the SNR which can be derived from the accumulated in-phase and
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quadrature components of the signal at the prompt channel. The in-phase
and quadrature components of correlation are provided by code tracking
loops and then passed to algorithms for C/N0 estimation. The GNSS signal
carrier-to-noise ratio can be written in terms of the signal amplitude using
the in-phase component of the signal as observation. This formulation will
be used in the next chapter in order to derive high rate GNSS C/N0 estimates.

Several C/N0 estimators have been introduced in this chapter and their
performance was compared in terms of estimation accuracy and number of
real operations required. The most widely used estimate is the Narrowband-
to-Wideband Power Ratio. This estimate uses the accumulated I and Q sam-
ples from the prompt correlator to directly estimate the C/N0. The NWPR
performs well under weak and moderate signal environments, but saturates
at higher C/N0 conditions. Another way to measure C/N0 directly using the
accumulated in-phase and quadrature components from the prompt correla-
tor is the Correlator Comparison method. The CC method perform poorly in
GNSS C/N0 environments and is highly sensitive to noise.

Beaulieu’s method is introduced as an intuitively motivated algorithm
that measures C/N0 by estimating the SNR using the accumulated I and Q
samples from the prompt channel. This method achieves high accuracy with
low complexity. The Moments-based method is an accurate C/N0 estima-
tor but has a high complexity cost. The Real Signal - Complex Noise shows
similar performances to NWPR. The Variance Summation method relates the
C/N0 to the signal amplitudes but produces biased observations of the C/N0

as compared to other estimators. The Maximum Likelihood Estimate and its
BPSK counterpart the Signal-to-Noise Variance estimator provides a good
compromise in terms of complexity and accuracy. It performs well under
low to moderate C/N0 environments but saturates at high levels.

We show that Beaulieu’s method provides the best trade-off performance
between accuracy and complexity under the typical GNSS C/N0 range and
thus will be used for comparison with our proposed on-line estimator of the
GNSS C/N0. It is important to note that all studied C/N0 estimators require
a relatively high integration time to produce reliable C/N0 estimates.

Finally, the soil moisture retrieval process using SNR data in GNSS-R dual
antenna configuration is presented. This is done by linking the SNR to the
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reflectivity measurements from which the soil dielectric constant and SMC
can be derived. SNR can be retrieved by using LHCP reflected signal only,
LHCP reflected and RHCP direct signals, or both LHCP reflected and RHCP
reflected signals. In this dissertation, we derive reflectivity measurements
from the ratio of the LHCP reflected signal over the RHCP direct signal.
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Chapter 3

A Probabilistic Model for On-line
Estimation of the GNSS
Carrier-to-Noise Ratio

3.1 Introduction

A GNSS antenna receives signals from different GNSS satellites in view at
a time. In a GNSS receiver, it is the statistic of the correlation provided by
the code tracking loop that is used to estimate the carrier-to-noise ratio. In
practice, the difficulty associated to the estimation of the C/N0 is the deriva-
tion of the statistical parameters of the two components in quadrature. This
estimation process assumes that the noise is stationary and the signal ampli-
tude is constant. This assumption is less restrictive for high rate estimations.
However, the accuracy of the estimation depends on the duration of the ob-
servation. In this context, accuracy and estimation rate are two ambivalent
parameters.

In a classical GNSS receiver, 1-bit or 2-bit quantization is sufficient. How-
ever, in some military applications, 8 bits are necessary to accurately process
the Power Spectral Density (PSD) of the signal in order to prevent GNSS
spoofing. We developed for this work, a bit grabber to record the data with
1-bit quantization. The PLL and FLL (Frequency Lock Loop) estimate the
parameters of the signal in our self-built 1-bit GNSS software receiver. The
software receiver processes the data on-line. The on-line loops correct the
phase delay error, the code delay error and the error in Doppler during the
tracking process. We show in a preceding work [187], that we can indeed
reach centimeter precise position estimates every 1 ms. In this case, observa-
tions of phase and Doppler were used to process the code delay of the GNSS
signal obtained every 1 ms. Concerning GNSS applications, the minimum
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length of integration Tc = 1 ms (code period for GPS C/A) is known and is
an objective in our development. We aim at high rate carrier-to-noise esti-
mation, namely the code repetition rate (e.g. 1 ms for GPS C/A), in order to
maximize the time resolution of carrier-to-noise observations.

In this chapter, we use 1-bit quantization because the digitized signals
are independent of the AGC. We show that the mean value of the in-phase
component of correlation I, provides a direct observation of the signal am-
plitude and therefore of C/N0. We estimate the GNSS signal amplitudes at
high rate (1 ms rate for GPS C/A) using 1 ms rate observations of I. High
rate C/N0 estimation is essential in multipath, and dynamic GNSS-R appli-
cations, where the C/N0 estimation rate determines the system’s ability to
cope with the rapid displacement of the GNSS receiver and defines the rate
at which the environment can be analyzed. However, the model that links
the signal amplitude to the 1 ms rate observations of I is non-linear and we
derive its expression. In this context, we propose an on-line estimate of the
amplitudes of the signals based on an Extended Kalman Filter (EKF) that
uses measurements of I as observations. The linearization of the measure-
ment equation that links I to the signal amplitude is then derived.

Based on the foregoing, this chapter is organized as follows: the next sec-
tion highlights the principles of 1-bit coherent detection. The third section
presents the GNSS one bit front end model while recalling some of the ba-
sic principles of the GNSS front end processing presented in the previous
chapter. In the fourth section, an on-line estimate of the signal amplitude in
the form of an EKF is introduced, while interpreting the non-linear expres-
sion that links the observations of I to the amplitudes of the signals. The
proposed methodology is assessed using both synthetic and real data in the
fifth section. We show using real data that, for a 1-bit quantization receiver,
the proposed estimator can achieve the same accuracy as a widely known
commercial GNSS receiver with a much higher data rate. Conclusions are
provided in the final section.

3.2 1-bit coherent detection principle

In this work, a probabilistic model of the front end architecture of a coherent
detector is proposed. Coherent detectors are used in several applications like
GNSS, telecommunication systems and radar systems. For this work, 1-bit
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GNSS software receiver is developed in order to estimate the signal parame-
ters. In this software, the accumulated in-phase component at the output of
the prompt correlator provides a direct observation of the signal amplitude
and therefore of C/N0. We assume that the DLL and PLL estimated param-
eters are perfectly aligned with the input signal, and thus the detections are
coherent detections.

We show in Figure 3.1, a reference signal (blue dashed line) and a noisy
signal (red line), i.e. after adding noise. In this study, the noise is a zero
mean additive Gaussian noise with unit variance, the sampling frequency is
100 KHz and the amplitude is fixed to 2. The noisy signal is a real signal
received by the receiver and the reference signal is a signal generated by the
receiver.
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FIGURE 3.1: Reference and noisy observations of an input sig-
nal (SNR=53 dB-Hz).

We present in Figure 3.2a, the classical architecture of a coherent detector.
From Figure 3.2a, the quantized digital signal samples are accumulated at the
output of the product over a specified integration time Tc in order to obtain
the in-phase component of correlation I. However, during the accumulation
process, not only the amplitudes of the signal are accumulated, but also the
additive noise. This is why the accumulated value is directly linked to the
C/N0. We assume that the amplitude of the signal remains constant over the
integration time. We show in Figure 3.2b , the digitized reference and noisy
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signals after applying 1-bit quantization. The 1-bit quantized coherent ref-
erence (i.e. signal without noise) and noisy signal are multiplied to obtain
the quantized detection samples at the output of the product (Figure 3.3a).
The detection samples at the output of the product take the value +1 when
the quantified real and reference signals have the same value and -1 other-
wise. The value -1 occurs due to the noise on the real signal. Finally, these
samples are accumulated over the coherent integration time Tc to obtain the
accumulated in-phase component of correlation I.
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FIGURE 3.2: 1-bit Coherent Detection principle. (a) the 1-bit
coherent detector architecture , and (b) the 1-bit quantized ref-

erence and real signals
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FIGURE 3.3: Coherent Detection principle. (a) The quantized
detection samples at the output of the correlator after multiply-

ing the 1-bit quantized reference and noisy signals.
(b) The sensibility of C/N0 to the accumulated in-phase com-

ponent of correlation I.
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To investigate the sensibility of C/N0 to the prompt correlator output I,
we present in Figure 3.3b, the accumulated in-phase component of correla-
tion I as a function of C/N0. For this Figure, the amplitude of the signal
ranges from 0.1 to 20 with a step of 0.1 producing 200 different C/N0 values.
The C/N0 is defined as:

C/N0 = 20 log

(
Av
√

fs Tc√
2

)
+ 10 log (BW) (3.1)

where Av√
2

is the Root Mean Square voltage of the carrier and BW is the noise
equivalent bandwidth of the receiver RF front end. We observe an increase in
the C/N0 with the increase in the value of the accumulated in-phase compo-
nent I until saturation at very high C/N0 environments (beyond 65 dB-Hz).
This increase is most sensible in the typical range of GNSS C/N0 (approxi-
mately 40 to 58 dB-Hz). Therefore, we can conclude that the in-phase com-
ponent of correlation is directly linked to the C/N0 and to the amplitude of
the signal.

3.3 GNSS front end

3.3.1 GNSS front end model

The RF front end, presented in section 2.2.1, provides digital signal sam-
ples of the GNSS signals sensed by a GNSS antenna. The AGC regulates
the GNSS signals through a feedback loop to preserve the signals within the
input range of the individual filters. After amplification and filtering, the
RF signals are converted to IF signals in order to reduce the bandwidth of
interest. Frequency synthesizers provide the frequency needed to shift the
RF content to IF as well as the sampling frequency fs. Then the Analog-
to-Digital (ADC) module with 1-bit quantization (in this case) converts the
analog IF signals to digital IF signals with a sampling period Ts =

1
fs

. The RF
front end of a GNSS receiver is depicted in Figure 2.1 of section 2.2.1.

Consider the GPS C/A signal si of equation (2.3) after down conversion
and digitization in a numerical GNSS receiver. In our approach, the naviga-
tion data message is extracted and removed from the signal through the code
tracking process. Then, si can be written as:
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si = ∑
l∈V

K Al(t)CAl(t + τl) sin(2π fl t + ϕl) + K η(t) (3.2)

where V is the set of visible satellites. Al(t) is the amplitude of the signal,
CAl(t) is the CDMA code of satellite l and τl is the code delay. fl and ϕl

are respectively the frequency and the phase delay of the carrier. f D
l is the

Doppler frequency associated to satellite l with fl = f IF + f D
l . η(t) is a zero

mean additive Gaussian noise with a unit variance and K is the gain of the
AGC. The digitized local replicas civ,i and cqv,i are defined as:

civ,i = CAv(ti + τv) sin(2π fv ti + ϕv) (3.3)

cqv,i = CAv(ti + τv) cos(2π fv ti + ϕv) (3.4)

where ti is the time instant associated to the sampling frequency fs and τv is
the code delay. fv and ϕv are respectively the frequency and the phase delay
estimates of the carrier.

In this chapter, the accumulated in-phase component of correlation Iv and
quadrature component Qv at the output of the prompt correlator are obtained
by integration of the sampled signals over one period of CDMA code (i.e
Tc = 1 ms) and are represented as:

Iv = ∑
fs Tc
i=1 si civ,i (3.5)

Qv = ∑
fs Tc
i=1 si cqv,i (3.6)

We assume that the local code and carrier are perfectly aligned with the
received signals (i.e. τv = τl, fv = fl, ϕv = ϕl), thus Iv and Qv can be derived
as:

Iv =
K Av fs Tc

2
+ K η I

v (3.7)

Qv = K ηQ
v (3.8)

where η I
v and ηQ

v are random noises distributed according to a centered Gaus-
sian distribution of variance fs Tc

2 .
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3.3.2 GNSS one bit front end model

We show in Figure 3.4, the processing block diagram of the in-phase compo-
nent in a GNSS receiver front end. In this Figure, sR(t) and s(t) are defined as
in equations (2.1) and (2.2) respectively. We show in Figure 3.5, the principle
of the Analog to Digital Conversion (ADC) on 1 bit.

ADC ∑
𝑠𝑠𝑅𝑅(𝑡𝑡) s(𝑡𝑡) si i𝑣𝑣,i 𝐼𝐼𝑣𝑣

sin(2𝜋𝜋𝑓𝑓𝐿𝐿𝐿𝐿𝑡𝑡) c𝑣𝑣,i

FIGURE 3.4: Radio frequency GNSS receiver block diagram.

-1

1

𝑓𝑠

s(𝑡) 𝑠𝑖s(𝑖 𝑇𝑠)

FIGURE 3.5: Analogic to Digital Conversion (ADC) with 1-bit
of quantization.

The expressions of the signals in Figure 3.4 are defined after digitization
by:

si =

⌊
∑
l∈V

KAlCAl(ti + τl) sin(2π fl ti + ϕl) + Kηi

⌋
>0

(3.9)

cv,i = ⌊CAv(ti + τv) sin(2π fv ti + ϕv)⌋>0 (3.10)

where si and cv,i are respectively the digitized signal and local replica. ⌊. . . ⌋>0

is a sign function that associates -1 to the negative values of the signal and +1
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to positive (or zero) values.

Our aim is to derive an expression that links the amplitude Av of the
received signal to the mean value of the in-phase component. In this context,
we define iv,i = si cv,i to take the value +1 when si is equal to cv,i and -1 when
they are different. Let’s define the mean value of iv,i as:

E(iv,i) = ∑
x∈{−1,1}

x P(iv,i = x)

= 2 P(iv,i = 1)− 1 (3.11)

where P(iv,i = x) is the probability of iv,i = si cv,i to take the value x.
In our GNSS front end model, the noisy samples iv,i are integrated on one
period of CDMA code (Tc = 1 ms). Assuming that the random values of iv,i

are identically distributed, we derive the mean value of Iv as follows:

E(Iv) = E(iv,i) Tc fs (3.12)

where Tc fs is the number of samples integrated over one period of code.
E(Iv) is defined by the probability P(iv,i = 1). We show in section 3.4.3 that
this probability is a function of Av.

3.4 Estimation of the GNSS signal amplitude

3.4.1 The Kalman filter

3.4.1.1 Principles of Kalman filter

The Kalman filter is an optimal recursive linear Minimum Mean-Squared Er-
ror (MMSE) estimator that estimates the state of a linear dynamic system
perturbed by noise. Because the true state of the system cannot be observed,
we must rely on measurements or observations that are immersed in noise.
The purpose of filtering is to extract the required information from a signal,
ignoring everything else effectively mitigating the noise in the process. Con-
sider a discrete, linear, time varying system in the state space notation, given
by equations (3.13) and (3.14).
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xk = Fkxk−1 + wk (3.13)

yk = Hkxk + vk (3.14)

Equation (3.13) is denoted as the state equation. It models the evolution
of the true state of the system over time. Equation (3.14) is known as mea-
surement or observation equation. It models the observations on the states.
xk and yk are the the state vector and the measurement vector, respectively.
k denotes the time instant and Fk denotes the state transition matrix of the
process from the state at instant k − 1 to the state at instant k. Hk is the mea-
surement matrix that relates the states to the observations. wk and vk are the
state and measurement noise vectors and are assumed to be zero mean white
Gaussian noise processes with co-variance matrices Qk and Rk, respectively.

The co-variance matrix R represents the confidence in the measurements
and can be determined based on the statistics of the noise on the measure-
ments. The co-variance matrix Q represents the uncertainty on the state
model. The value of Q is dependent on the application, and is determined
based on the constraints and aims of the application.

The Kalman filter, as well as the Extended Kalman filter, compute the op-
timal state recursively, using a predictor-corrector structure in which a pre-
diction is computed prior to the availability of the observation at current time
instant k, and the prediction is updated once the observation at time instant
k is available. The innovation ϵk of the filter can be interpreted as the new in-
formation that is available in the observation yk relative to all the past obser-
vations up to the instant k − 1. Thus, it can be utilized for detecting changes
in the measurements. The Kalman filter solution can be adopted for the non-
linear dynamic systems through an approximate linearization procedure and
the resulting filter is known as the Extended Kalman Filter (EKF). Consider
a non-linear dynamic system described by the state (3.15) and measurement
(3.16) equations.

xk = fk(xk−1) + wk (3.15)

yk = hk(xk) + vk (3.16)
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In this case, fk(.) and hk(.) denote the non-linear state transition function and
the measurement function, respectively. wk and vk are the zero mean white
Gaussian state and measurement noise vectors with co-variance matrices
Qk and Rk, respectively. The non-linear system dynamics can be linearized
through a first order Taylor approximation at each time instant, around the
most recent state estimate.

3.4.2 Kalman estimate of the signal amplitude

In our approach, we construct a state estimate that uses the in-phase compo-
nents of correlation as observations. The observations Iv,k, are processed by
the receiver at instant k every period of code (Tc = 1 ms). The state model
is a classical second order state equation used for data smoothing where the
second state is the rate of change of the first state.

For a satellite l in the set V of visible satellites, Al,k with l ∈ V are the
amplitudes of the received GNSS signals. We assume that the amplitudes
are constant during one period of the CDMA code. Let n = Card {V} be
the number of visible satellites. We consider n observations IV,k of the in-
phase component at each instant k. The aim is to estimate the n amplitudes
AV,k from the n observations IV,k. This problem is non-linear because the
expectation E(iv,i) in expression (3.12) is a non-linear function of the signal
amplitude.

The rate of change of Al,k is denoted as Ȧl,k. We consider the following
equations for our system :

xk = Fxk−1 + Bwk (3.17)

yk = hk(xk) + vk (3.18)

where, for n satellites, xk =
[
A1,k, . . . , An,k, Ȧ1,k, . . . , Ȧn,k

]T. With :
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F =



1 0 0 . . . 0 Tc 0 0 . . . 0
0 1 0 . . . 0 0 Tc 0 . . . 0
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 0 0 . . . 1 0 0 0 . . . Tc

0 0 0 . . . 0 1 0 0 . . . 0
0 0 0 . . . 0 0 1 0 . . . 0
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 0 0 . . . 0 0 0 0 . . . 1



(3.19)

B =



T2
c /2 0 . . . 0
. . . .
. . . .
0 0 . . . T2

c /2
Tc 0 . . . 0
. . . .
. . . .
0 0 . . . Tc


(3.20)

The observation is defined by yk = [I1,k, . . . , In,k, 0, . . . , 0]T. Where Iv,k is
given by :

Iv,k = hv,k (xk; θk) + ωk (3.21)

where hv,k (xk; θk) = E(Iv) is defined by expression (3.12). We show in the
next section that the expression of h(...) is a function of the parameters θk =[

τ̂1,k, f̂1,k, ϕ̂1,k, . . . , τ̂n,k, f̂n,k, ϕ̂n,k

]
. These GNSS signal parameters are provided

by the PLL and DLL components of the receiver. The receiver architecture
principle is presented in Figure 3.6.

As shown in Figure 3.6, the signal received from the satellites in view is
tracked by a Delay Lock Loop and a Phase Lock Loop. This tracking module
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FIGURE 3.6: Implementation of the proposed estimate in a
GNSS receiver.

provides, for each satellite, observations of the code delay, phase, Doppler
frequency and the in-phase component I which are used as an input to the
state filter. The EKF (state filter) processes these observations to estimate
the GNSS signal amplitude and the carrier-to-noise ratio of each satellite. In
our implementation of the EKF, we express h(xk) in the form of a linearized
expression H.xk instead of deriving h(xk) as a function of xk to find H.

3.4.3 Linearization of the measurement equation

3.4.3.1 Statistical front end model

The probability for the random variable iv,k to take the value +1 is a function
of the values of the local code and the received signal. These two signals
sampled and quantified on one bit take the values +1 or -1. This probability
is expressed as:
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P (iv,i = 1) = P (cv,i = 1) P (si = 1/cv,i = 1)

+ P (cv,i = −1) P (si = −1/cv,i = −1) (3.22)

where iv,k the product of si with cv,i is equal to one in both cases. Let us con-
struct the following model approximation of the sampled signal of satellite v
after digitization:

ŝi = ∑
v∈V

AvCAv(ti + τ̂v) sin(2π f̂v ti + ϕ̂v) (3.23)

si ≈ ⌊ŝi + ηi⌋>0 (3.24)

and

cv,i ≈
⌊

CAv(ti + τ̂v) sin(2π f̂v ti + ϕ̂v)
⌋
>0

(3.25)

In practice, the estimates τ̂v and f̂v, ϕ̂v are respectively provided by the
DLL and the PLL of the GNSS receiver presented in Figure 3.6. Therefore, Av

is the parameter to estimate. Expression (3.22) can be written as :

P (iv,i = 1) = P (cv,i = 1) P (ηi ≥ −ŝi/cv,i = 1)

+ P (cv,i = −1) P (ηi < −ŝi/cv,i = −1) (3.26)

The probabilities in expression (3.22) can then be approximated as:

P (cv,i = −1) =

fsTc

∑
i=1

|cv,i − 1|

2 fsTc
(3.27)

P (cv,i = 1) = 1 − P (cv,i = −1)

=

fsTc

∑
i=1

(cv,i + 1)

2 fsTc
(3.28)

An estimate of the first probability of expression (3.26) associated to the
additive random noise on the signal is defined as:
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P (η ≥ −ŝi/cv,i = 1) =
2

fsTc

∑
i=1

(cv,i + 1)

∑
{ĩ}1

v

P(η ≥ −ŝi) (3.29)

where the set {ĩ}1
v defines the values of the index i as i/cv,i = 1. The

noise is assumed to be distributed according to a Gaussian density with a
unit variance. The probability P(η ≥ −ŝi) is processed with the tabulated
error function as follows:

∑
{ĩ}1

v

P(η ≥ −ŝi) = ∑
{ĩ}1

v

∫ +∞

−ŝi

1√
2π

exp(
−x2

2
) dx

= ∑
{ĩ}1

v

1
2

er f c
(
−ŝi√

2

)
(3.30)

The second probability estimate of expression (3.26) associated to the ad-
ditive random noise on the signal is defined as:

P (η < −ŝi/cv,i = −1) = 1 − 2
fsTc

∑
i=1

|cv,i − 1|
∑
{ĩ}2

v

P(η ≥ −ŝi) (3.31)

where the set {ĩ}2
v defines the values of the index i as i/cv,i = −1. For a set

of estimates {τ̂v, f̂v, ϕ̂v}v∈V , the probability of expression (3.26) is a function
of {Âv}v∈V . In this context, the mean value of Iv is a function of Av.

3.4.3.2 Derivation of the linearized measurement equation

According to equations (3.11), (3.12) , and (3.26) we derive the following ex-
pression :

hv,k
(
{Av,k}v∈V ; {θv,k}v∈V

)
= 2Tc fs P (cv,i = 1) P (η ≥ −ŝi/cv,i = 1)

+2Tc fs P (cv,i = −1) P (η < −ŝi/cv,i = −1)− Tc fs (3.32)

Considering that the values of Iv are obtained at instants k, the preceding
expression can be written as below after simplification :
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hv,k
(
{Av,k}v∈V ; {θv,k}v∈V

)
= ∑

{ĩ}1
v,k

er f c
(
−ŝi√

2

)

− ∑
{ĩ}2

v,k

er f c
(
−ŝi√

2

)

+

fsTc

∑
i=1

|cv,i − 1| − Tc fs (3.33)

The GPS signal is very weak, so the values of ŝi are small. Therefore,
the following approximation (the first order of the Taylor Series expansion at
zero) of the er f c(...) function can be used:

er f c(x) ≈ 1 − 2√
π

x (3.34)

In this context, an approximation of the function hv,k(...) is given as :

hv,k
(
{Av,k}v∈V ; {θv,k}v∈V

)
≈

fsTc

∑
i=1

(cv,i + 1)

2
+

2√
2π

∑
{ĩ}1

v,k

ŝi

−

fsTc

∑
i=1

|cv,i − 1|

2
− 2√

2π
∑
{ĩ}2

v,k

ŝi

+

fsTc

∑
i=1

|cv,i − 1| − Tc fs (3.35)

and after simplification :

hv,k
(
{Av,k}v∈V ; {θv,k}v∈V

)
≈ 2√

2π

 ∑
{ĩ}1

v,k

ŝi − ∑
{ĩ}2

v,k

ŝi

 (3.36)

In order to find a linear expression between Iv,k and Av,k, we develop the
expression of ŝi :
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hv,k
(
{Av,k}v∈V ; {θv,k}v∈V

)
≈ 2√

2π

(
∑
v∈V

Av,k (3.37) ∑
{ĩ}1

v,k

CAv(ti + τ̂v,k) sin(2π f̂v,k ti + ϕ̂v,k)

− ∑
{ĩ}2

v,k

CAv(ti + τ̂v,k) sin(2π f̂v,k ti + ϕ̂v,k)




Finally, for a set V of n satellites in view we have the following linear
expression :

IV,k ≈ HAV,k + ωk (3.38)

with IV,k = [I1,k, . . . , In,k]
T and AV,k = [A1,k, . . . , An,k]

T. The expression of an
element hi,j of H is given by :

hi,j =
2√
2π

 ∑
{ĩ}1

v,k

CAv(ti + τ̂v,k) sin(2π f̂v,k ti + ϕ̂v,k)

− ∑
{ĩ}2

v,k

CAv(ti + τ̂v,k) sin(2π f̂v,k ti + ϕ̂v,k)

 (3.39)

We present in Figure 3.7 the different elements of H. In this matrix, we
note the cross-correlation contributions and the correlation contributions in
the observations Iv,k for each satellite. The component hi,j represents the con-
tribution of satellite j when a replica of the signal of satellite i is used to
demodulate and demultiplex the signal. In this context, for a component
Ii,k, hi,i is the correlation contribution of the signal from satellite i and hi,j is
the inter correlation contribution of the signal from satellite j. We define the
cross-correlation contribution hi,j ̸=i = ∑j ̸=i hi,j and the global contribution
hi,∀j = ∑n

j=1 hi,j. One of the interests of the proposed approach is to study
the effect of the cross-correlation contribution on the estimation. We show
by experimentation the impact of this contribution on the accuracy of the
estimated amplitudes of GNSS signals.
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FIGURE 3.7: Contribution of each satellite in the observations
Iv,k. Each element hi,j of H is processed using equation (3.39).
For a component Ii,k, hi,i is the correlation contribution of the
signal from satellite i and hi,j is the inter correlation contribution

of the signal from satellite j.

3.5 Experimentation

3.5.1 Assessment on synthetic data

The aim of this experimentation is to assess the proposed amplitudes estima-
tor on GPS C/A signals and study the effect of the correlation contribution
on the carrier-to-noise estimation. In order to be independent of the AGC
gain, we compare the carrier-to-noise ratio in dB-Hz using the expressions
below, derived from the classical definition of the SNR in equation (2.13) :

C/Nk
0 = 20 log

(
Av
√

fs Tc√
2

)
+ 10 log (BW) (3.40)

C/Nc
0 = 20 log

(
mean(Iv,k=1:1000)

std(Iv,k=1:1000)

)
+ 10 log (BW) (3.41)

where C/Nk
0 is the carrier-to-noise expression used in our approach based

on equation (2.14), and C/Nc
0 is a classical carrier-to-noise definition. Av√

2
is

the Root Mean Square voltage of the carrier and BW is the noise equivalent
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bandwidth of the receiver RF front end.

We show in Figure 3.8, the observations I1,k and E(I1,k) for satellite PRN
12 during 1 second (k=1:1000). This means that one value of I1,k and E(I1,k) is
obtained every millisecond. In this experimentation, AV,k = 0.05 for all satel-
lites in view and ηi, the Gaussian noise on the received signal, have a variance
1. The amplitudes of the signals are fixed to 0.05 and the noise power to 1 in
order to provide a true value of 43.98 dB-Hz (i.e. C/Nt

0 = 43.98 db-Hz) for
the carrier-to-noise ratio of GPS C/A signals. In Figure 3.8, we observe the
evolution of E(Iv,k) due to the global correlation contribution and the ran-
dom like evolution of Iv,k due to the global correlation contribution and the
noise on the received signal. We show by experimentation, that the statistics
of Iv,k and the classical SNR estimates are functions of the cross-correlation
contribution.
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FIGURE 3.8: Noisy observations I1,1:1000 and E(I1,1:1000) for
satellite PRN 12

We assess the statistic of Iv,k from the analysis of matrix H. This study
is independent of the amplitudes {Av,k}v∈V and of ηi the noise on the re-
ceived signal. C/Nc

0 is used to assess the cross-correlation contribution on
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the statistic of Iv,k. We report in Table 3.1, the Doppler frequency of the
visible satellites during the simulation as well as the standard deviation of
the cross-correlation contribution hi,j ̸=i processed over different satellites for
one second of observations, and the standard deviation of the contribution
hi,i calculated for every satellite along the observation time. We also report
in Table 3.1, the mean value and the standard deviation of the total contri-
bution hi,∀j = ∑n

j=1 hi,j processed over different satellites for one second of
observations. Finally, we calculate the classical carrier-to-noise ratio C/Nc

0

and the true carrier-to-noise ratio C/Nt
0 obtained using equation (3.40) with

AV,1:1000 = 0.05 for all satellites in view.

TABLE 3.1: Cross-correlation impact

Doppler freq. σhi,j ̸=i σhi,i h̄i,∀j σhi,∀j C/Nt
0 C/Nc

0

Sats f D
l (dB-Hz) (dB-Hz)

30 -3312 1054 386 10155 1125 43.98 42.75

28 -2422 1009 355 10109 1068 43.98 43.18

10 2224 1031 467 10145 1134 43.98 42.67

20 123 1077 4386 10179 4463 43.98 33.41

11 634 988 960 10155 1387 43.98 41.58

24 2268 918 463 10108 1036 43.98 43.1

19 3297 938 391 10149 1015 43.98 43.46

12 3987 1080 322 10144 1127 43.98 43.4

13 -2398 1049 374 10149 1114 43.98 42.9

15 -874 936 704 10109 1164 43.98 42.73

17 1873 1021 436 10126 1116 43.98 43.02

We notice in Table 3.1 that the mean contribution h̄i,∀j, proportional to the
mean value of Iv,k, is independent of the satellites, because the values of h̄i,∀j

are indeed close. However, the standard deviations σhi,∀j of the global contri-
bution are dependent of the satellites. The standard deviations σhi,j ̸=i associ-
ated to the cross-correlation contribution are close, so weakly dependent of
the satellites. The dependence is due to the correlation contribution of each
satellite defined as the standard deviation σhi,i . This standard deviation is
indeed a function of the Doppler frequency. For low Doppler, like satellites
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PRN 11 and 20, the standard deviation σhi,i and the standard deviation σhi,∀j of
the global contribution increase notably (in bold). Finally, we observe in Ta-
ble 3.1 that the carrier-to-noise ratio C/Nc

0 and the true carrier-to-noise ratio
C/Nt

0 are different. The difference is due to the cross-correlation contribution
of the satellites. This difference increases with the low values of the Doppler
frequency, which is noticed by the very low C/Nc

0 values for satellites PRN
11 and 20.

In practice, the carrier frequency fl of a down converted signal consti-
tutes of the intermediate frequency f IF

l and the Doppler frequency f D
l where

fl = f IF
l + f D

l . This means that for high f IF
l , the Doppler effect will be notably

mitigated, and the standard deviation of the correlation contributions will be
very close for every satellite. Thus, in order to study the Doppler effect on
the correlation contributions, we consider that f IF

l = 0 Hz and therefore,
fl = f D

l . This is only applicable for assessment on synthetic data. In the real
case, f IF

l is always present for any GNSS receiver which hugely alters the
Doppler effect.

We report, in Table 3.2, the mean and standard deviation of the total con-
tribution hi,∀j of satellite PRN 12. In this table, we show the total contribution
as a function of the number of visible satellites. We also report the classical
carrier-to-noise ratio C/Nc

0 and the true carrier-to-noise ratio C/Nt
0. With

Table 3.2, we conclude that the statistic of Iv,k is a function of the number
of satellites. The standard deviation σhi,∀j

indeed increases with the number
of satellites whereas the mean value of the global contribution is nearly con-
stant. The standard deviation is inversely proportional to C/Nc

0. The increase
in the standard deviation, leads to an expected decrease in C/Nc

0. Therefore,
the difference between C/Nc

0 and C/Nt
0 increases with the increase in the

standard deviation and thus with the number of satellites. This also proves
the influence of the correlation contribution of the satellites on the carrier-to-
noise estimation.

Finally, we present in Table 3.3, the estimate C/Nk
0 obtained with the pro-

posed approach. In this case, C/Nk
0 is processed with expression (3.40) and

the estimated amplitudes are provided by the Kalman filter every 1 ms. We
compare C/Nk

0 with the true carrier-to-noise ratio C/Nt
0 to prove the accu-

racy of the proposed approach. In Table 3.3, R and Q are the co-variance
matrices of the measurements and state noises respectively. Columns 3 and
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TABLE 3.2: The impact of the number of satellites

Number of Visible σhi,∀j
h̄i,∀j C/Nt

0 C/Nc
0

satellites satellites PRN (dB-Hz) (dB-Hz)

1 12 322 10149 43.98 43.69

2 12,17 467 10148 43.98 43.64

3 12,17,19 545 10149 43.98 43.51

4 12,17,19,13 687 10149 43.98 43.46

5 12,17,19,13,24 756 10148 43.98 43.42

6 12,17,...,24,28 829 10149 43.98 43.35

7 12,17,...,28,10 941 10149 43.98 43.22

8 12,17,...,10,15 995 10149 43.98 43.16

9 12,17,...,15,11 1034 10148 43.98 43.12

10 12,17,...,11,20 1085 10144 43.98 42.98

11 12,17,...,20,30 1127 10144 43.98 42.84

4 show respectively, the mean estimate and the standard deviation of the
carrier-to-noise ratio when the observations are not smoothed by the filter.
In columns 5 and 6, we report the same parameters when the observations
are smoothed by the filter.

Since I are noisy observations, the choice of the Kalman filter parameters
is important for the accuracy of the estimate. In our approach, we determine
the values of R and Q with the observations and the estimations. In this re-
gard, we determine a fixed value of R with the measurements of the noise on
the observations of the in-phase component of the signal. However, the tun-
ing of Q is dependent on the application and must be done according to the
constraints of this application. The value of Q is determined while taking into
consideration that there is a trade-off between the accuracy of the estimation
and the ability to follow the changes in the observations. In our approach,
we fix R and tune the value of Q to obtain the same accuracy as the No-
vAtel GNSS receiver, which is a widely known commercial scientific GNSS
receiver. In fact, the information provided by the NovAtel GNSS receiver is
used as a reference in many GNSS-R applications. Based on the forgoing,
we choose for our application a high co-variance matrix of the measurement
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noise R and a small covariance of the process noise Q because the variations
in the signal amplitude are low. For this experimentation, R=10,000,000,000
and Q=0.05.

TABLE 3.3: Estimated carrier-to-noise ratio

C/N0 (dBHz) C/Nt
0 C/Nk

0 R = Q C/Nk
0 R >> Q

Sats mean std mean std

30 43.98 43.32 3.01 43.85 0.24

28 43.98 43.57 2.72 43.92 0.22

10 43.98 43.52 2.97 43.99 0.24

20 43.98 43.37 6.03 43.88 0.26

11 43.98 43.4 3.31 43.99 0.18

24 43.98 43.55 2.75 43.91 0.32

19 43.98 43.52 2.82 43.98 0.22

12 43.98 43.31 2.86 43.91 0.19

13 43.98 43.56 2.77 43.92 0.24

15 43.98 43.57 2.86 43.97 0.24

17 43.98 43.72 2.78 44.01 0.25

From Table 3.3, we notice that the carrier-to-noise estimate C/Nk
0 does

not depend on the satellite, so its computation removes the cross-correlation
error. This can be clearly seen by comparing the mean of C/Nk

0 in columns 3
and 6 with C/Nc

0 in Table 3.1 for satellites PRN 11 and 20 obtained with 1000
samples of I. By comparing columns 3 and 4 with columns 5 and 6, we show
that the proposed filter smooths the estimate and improves its accuracy. The
values of the mean of C/Nk

0 in column 6 are indeed closer to the true carrier-
to-noise ratio C/Nt

0. From the preceding, we can conclude that the proposed
approach can remove the error due to the cross-correlation contribution and
improve the accuracy of the carrier-to-noise ratio estimate.

3.5.2 Assessment on real data

The experiment started at 15h20 UTC the 13th of December 2019 and lasted
for 1 minute. A NovAtel GNSS-850 antenna was mounted on the top of the



3.5. Experimentation 93

LISIC laboratory building at (50.953228◦N; 1.880285◦E). In this experiment,
a NovAtel OEM7 receiver was used to provide RINEX observation and nav-
igation files. The observation file contains data such as the total number of
satellites in view at each instant, the PRN codes of the satellites, and the
carrier-to-noise ratio for each signal at different instants. A Syntony Echo-L
bit-grabber was used to digitize the received signals. This experimentation
is dedicated to the use of GPS C/A signals. We present in Figure 3.9, the ex-
perimental setup.

NovAtel 
Receiver

Splitter

GNSS Antenna 

Syntony 
bit-grabber

NovAtel Signal Recordings

Antenna 
Powering

Down Conversion + 
1 bit Quantization

Conversion to RINEX 
files for observations

Raw Data

FIGURE 3.9: Experimental setup showing the connections be-
tween the various elements and its roles. The GNSS antenna,
powered by the NovAtel receiver, captures signals from all the
satellites in view. Then, the received signals enter a splitter
and are passed to the NovAtel receiver and to the Syntony bit-
grabber. Using the NovAtel signal recordings, RINEX files are
generated from which the carrier-to-noise ratio provided by the
NovAtel receiver are retrieved. The Syntony bit-grabber digi-
tizes the received signals with down conversion and 1-bit quan-
tization to provide raw data, which are processed to estimate

the carrier-to-noise ratio.

The data collected by the NovAtel receiver and the raw data provided
by the Sytnony bit-grabber are not synchronized. Therefore, data synchro-
nization is applied. In this regard, the received signals have several essential
components to be identified: the carrier frequency, the PRN code unique to
each satellite, the code delay, the phase delay, and the navigation message
from which the GPS time and pseudo-range can be retrieved. In order to
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recover these components and date the signals for synchronization, signal
acquisition and tracking are implemented. As a result, the message of navi-
gation is extracted, which is then used for signal dating.

The message of navigation provides timing information that allows to
calculate the seconds of the GPS week, which constitute the GPS time along
with the GPS week number. Then using the estimated GPS time of the digi-
tized signals and the GPS time of the signals provided by the RINEX obser-
vation file, data synchronization is applied for assessment of the proposed
approach. We present in Figure 3.10, a sky plot of the satellites constella-
tion which shows the positions of the satellites as recorded by the NovAtel
receiver.
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FIGURE 3.10: Constellation of the visible GPS satellites as
recorded by the NovAtel receiver

The assessment of the proposed GNSS signal amplitude estimator which
uses a 1-bit quantization GNSS receiver, is realized by comparing the carrier-
to-noise ratio C/Nk

0 obtained with the proposed approach and the carrier-to-
noise ratio C/Nr

0 provided by the RINEX observation file for each satellite
v via the NovAtel GNSS receiver. As in the synthetic case, we calculate the
estimated C/Nk

0 using equation (3.40), where the amplitudes of the signals
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are provided by the Kalman filter every 1 ms. In this experimentation, the
observations are smoothed by the Kalman filter with R=10,000,000,000 and
Q=0.0001.

We show in Figure 3.11, the C/Nr
0 provided by the NovAtel receiver ev-

ery 1 second and the C/Nk
0 estimated by the proposed approach every 1 ms

for different satellites (satellites PRN 19, 28, 12 and 15). We also report the
1 ms rate carrier-to-noise observations C/No

0 obtained using the amplitudes
derived from equation (3.38).

0 10 20 30 40 50 60

time [s]

25

30

35

40

45

50

C
/N

0
 [d

B
-H

z]

Satellite PRN 19

C/N0
o observation

C/N0
r  by NovAtel

C/N0
k  estimation

0 10 20 30 40 50 60

time [s]

40

45

50

55

C
/N

0
 [d

B
-H

z]

Satellite PRN 28

0 10 20 30 40 50 60

time [s]

34

36

38

40

42

44

46

48

50

52

54

C
/N

0
 [d

B
-H

z]

Satellite PRN 12

0 10 20 30 40 50 60

time [s]

52

53

54

55

56

57

58

C
/N

0
 [d

B
-H

z]

Satellite PRN 15

FIGURE 3.11: C/N0 estimation assessment. In this figure, C/Nr
0

is the carrier-to-noise ratio provided by the NovAtel receiver
every 1 second, C/Nk

0 is the carrier-to-noise ratio estimated by
the proposed approach every 1 ms and C/No

0 is the 1 ms rate
carrier-to-noise observations obtained using the amplitudes de-
rived from equation (3.38). Note that the intervals of the ordi-

nate axes are not fixed in the figures presented.

The obtained results show good agreement between the carrier-to-noise
ratio C/Nr

0 provided by the NovAtel GNSS receiver and C/Nk
0 estimated

by our approach. For satellite PRN 19, where C/N0 is relatively low and
its rate of change is approximately steady, the evolution of C/Nk

0 estimated
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by our model every 1 ms fits accurately the evolution of C/Nr
0 provided by

the NovAtel receiver every 1 s. The same observation can be deduced from
satellites PRN 28 and 12, where the evolution of our model estimate is co-
herent with the evolution of the C/Nr

0 even in the case of fast changes in
the carrier-to-noise observations as in satellite PRN 12. This also shows our
model’s ability to track the evolution of the carrier-to-noise observations pre-
cisely. However, it can be observed from satellite PRN 15, that for high C/N0

environments (⪆ 54 dB-Hz ), our model doesn’t perfectly fit the evolution of
C/Nr

0. This is due to the fact that in high C/N0 environments, the proposed
non-linear model doesn’t fit the erfc function which performs generally on
low and moderate values. This results in our model being less accurate for
high C/N0 environments.

Finally, we present in Table 3.4, C/Nr
0 provided by the NovATel receiver

and the mean (C/Nk
0 ) of the carrier-to-noise estimates C/Nk

0 for all satellites
in view provided by the Kalman filter every 1 ms. In this experimentation,
we assess the mean C/Nk

0 over 1 second of C/Nk
0 estimation to align with

the rate of observation provided by the NovAtel GNSS receiver. The mean
values C/Nk

0 calculated over 1 second of estimation are indeed very close to
C/Nr

0 provided by the NovAtel receiver for different satellites and at differ-
ent instants of time.

Therefore, we conclude that our approach, which uses a 1-bit quantiza-
tion GNSS receiver can provide an accuracy similar to that of the NovAtel
GNSS receiver. However, it is important to note that, for all satellites in view,
the proposed model provides C/N0 estimations at a much higher rate (1000
Hz) than the NovAtel GNSS receiver (1 Hz), which is proven to be crucial in
multipath, and dynamic GNSS-Reflectometry applications, where the C/N0

estimation rate defines the rate at which the environment can be analyzed.
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TABLE 3.4: Carrier-to-noise ratio mean estimation assessment

t= 5 sec t=25 sec t= 50 sec

Sats C/Nr
0 C/Nk

0 C/Nr
0 C/Nk

0 C/Nr
0 C/Nk

0

10 44.93 44.90 47.05 47.13 47.94 48.14

11 41.65 41.48 40.71 39.80 41.72 41.31

12 49.23 49.63 47.66 47.87 48.02 48.26

13 51.99 52.28 52.11 52.20 51.85 51.64

15 54.64 55.21 54.85 55.23 54.86 55.02

17 49.30 49.76 48.86 49.18 50.02 50.13

19 43.58 43.79 44.90 44.88 45.02 44.96

20 45.83 46.13 45.94 46.07 45.36 45.24

24 52.33 52.75 52.18 52.54 52.04 52.18

28 49.74 49.78 49.74 49.83 49.95 50.03

30 46.29 45.95 44.34 43.70 38.60 36.91

3.6 Conclusion

In this chapter, we propose an on-line estimate of the amplitudes of GNSS
signals in the form of an Extended Kalman Filter that uses the 1 ms rate of the
in-phase components of the signals as observations. In order to be indepen-
dent of the automatic gain control, 1-bit quantization digital receiver is used.
The estimated amplitudes of the signals provide direct observations of C/N0,
therefore the carrier-to-noise ratio is estimated. This estimator can provide
robust amplitude values and, consequently C/N0 estimations at a high rate
of 1000 Hz. In our model, we take into account the cross correlation between
the different satellites. We also take into account the receiver-satellite velocity
in the carrier frequency. The model in the context of this application shows
different complexities that can be included in the probabilistic model of a co-
herent detector. We assess the performance of the estimator using synthetic
and real data.

In modernized GNSS signals, there is a primary PRN code in addition to
a secondary code or/and a sub-carrier. To use the proposed method in such
cases, not only the message of navigation should be removed but also the sec-
ondary code. Otherwise, the pilot channel of the signal can be used (e.g. L5).
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For low frequency sub-carrier such as the Binary Offset Carrier modulation,
the proposed model can be modified to take into account other PRN codes
and secondary codes in the definition of the local replica and the model of
the received signal.

In the synthetic case, we show that the proposed approach can remove
the error due to the cross-correlation contribution and improve the accuracy
of the carrier-to-noise estimate when the data are smoothed by the filter. We
also show, in real experimentation, that the proposed estimator, which uses
a 1-bit quantization receiver, performs coherently with the widely known
NovAtel receiver. It is also noted that the proposed approach performs at a
much higher rate than the NovAtel GNSS receiver.

In the next chapter, we propose a change point detection algorithm in or-
der to segment the GNSS signals into stationary parts based on the changes
that occur on the signal amplitudes. We also assess the performance of our
GNSS amplitude estimator in the presence of abrupt changes in the observa-
tions.
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Chapter 4

Segmentation of the GNSS Signal
Amplitudes

4.1 Introduction

The aim of this chapter is to develop an automatic segmentation model that
divides the GNSS signals into stationary segments associated with different
mean signal levels based on the changes in the amplitudes of the reflected
GNSS signals. We propose in this chapter a mixture of an on-line/off-line
change point detection and localization algorithm. We separate the problem
of change point detection from that of change point localization.

In the presence of large amount of data that needs to be processed, an
on-line change detection process needs to be implemented. In this regard,
we use the CUSUM algorithm [188–190] to detect a change on-line. In the
CUSUM approach, the dynamic of the change is assumed to be known. For
this case, the CUSUM algorithm is considered to be the most efficient change
point detector [188, 189]. Moreover, the CUSUM change detector is capable
of detecting changes associated to the model of transition that we use in this
chapter.

After the changes are detected on-line, an off-line localization approach
is proposed to localize the change. We propose a Maximum Likelehood Esti-
mate for change localization. This approach is close to the optimal estimation
because we maximize in this case the size of the working window in which
the detected change point is localized.

In the presence of noise, the CUSUM detector provides false alarm detec-
tions. We propose an off-line interval merging algorithm to remove the false
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alarms and reduce the number of over detections. Finally, the signals are seg-
mented into stationary parts based on the locations of the change points after
integrating all the previous processes.

This chapter is organized as follows: the next section presents the change
point detection principle used in this work. The third section presents the
different processing steps of the proposed segmentation system. In the fourth
section, the proposed model is assessed using synthetic data and evaluated
on real data. Finally, conclusions are provided in the fifth section.

4.2 Change point detection principle

4.2.1 Generality

Change points are abrupt variations in time series data. Such abrupt changes
may represent transitions that occur between states. Change point detection
algorithms can be classified as "on-line" or "off-line" [188–191].

On-line or real-time change point detection algorithms [192–194] process
each data point as it becomes available, with the intent of detecting state
changes as soon as possible after it occurs, ideally before the availability of
the next data point. Such algorithms assess only the most recent change in
the time series, not previous changes.

In contrast, off-line change point detection algorithms [195–197] don’t use
live streaming data to process changes in a data sequence. Instead, they con-
sider the entire data set at once, and look back in time to recognize where the
change occurred. This means that in off-line processing all data are received
and processed at the same time. Furthermore, all change points are of inter-
est, not just the most recent change in the sequence.

In practice, no change point detection algorithm operates in perfect real-
time, because it must examine the new data point before determining if a
change point is detected between the old and the new data points. In this re-
gard, on-line algorithms differ from one another by the amount of new data
required to determine if a change point is detected. In general, off-line ap-
proaches are considered more accurate because they analyze the whole time
series at once while on-line approaches are seen to be faster. In fact, change
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point detection is linked to the problem of change point estimation. How-
ever, the aim of change point estimation is to localize and detect the changes
in the time series rather than just identifying that a change has occurred. In
this regard, change point estimations are used to characterize the type and
extent of a change.

In this chapter, we propose the following modelization for our system:

– We assume that the GNSS measurements obtained during the airborne
experiment are piecewise stationary.

– The noise on the observations is assumed to be additive, Gaussian and
centered.

– A transition model is adapted to characterize the changes in the am-
plitudes of the reflected GNSS signals associated to the displacement
of the satellites footprints from one area to another along the airborne
experiment.

– The system is implemented to operate efficiently on huge amounts of
data (GNSS measurements).

4.2.2 Transition model

In our radar application, the amplitude of the reflected GNSS signal changes
as a function of time. This amplitude is indeed a function of the surface of
reflection. The aim of this work is to present a change point detector that
divides the GNSS signal amplitude in stationary segments associated with
different areas of reflection.

We assume that the GNSS signal amplitude is proportional to the ground
reflectivity contained in the surface of the first Fresnel zone of the satellite
footprint. The first Fresnel zone is an ellipse centered on the specular reflec-
tion point. The displacement of this ellipse on the ground follows the satellite
trace. We show in Figure 4.1, the satellite footprints displacement from one
area to another. We show in Figure 4.2, the signal model in the working win-
dow. When the mean value of the GNSS signal amplitude is equal to m1, the
ellipse is on the first area, and when the mean value of the GNSS signal am-
plitude is equal to m2, the ellipse is on the second area.
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Working Window

𝑚𝑚1

𝑚𝑚2

Satellite footprint

Displacement 

FIGURE 4.1: Satellite footprints displacement from one area to
another.
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FIGURE 4.2: Signal model in a working window.

We can observe in Figure 4.2 the increasing evolution of the signal model
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between the mean values m1 and m2 associated to the satellite footprint dis-
placement from one area to another as shown in Figure 4.1. This increasing
evolution models a linear transition from a surface of low reflectivity (land)
to a surface of higher reflectivity (water body). We define in section 4.3.2
the start and end instants of the working window in order to optimize the
estimation.

4.3 On-line/Off-line change detection system

4.3.1 Change detection

4.3.1.1 Architecture of the change point detector

We show in Figure 4.3 the architecture of the change point detector. A Kalman
filter and a CUSUM algorithm are used to detect a change at instant ta

l,i and
to localize the change at the position nc

l,i. l is the satellite and i is an instant of
time. xk and yk are respectively the state and measurement equations. ϵk is
the innovation of the EKF and Sk is the covariance of the innovation. When
a change is detected an alarm is generated to initialize the Kalman filter.

Extended  
Kalman Filter CUSUM 

𝑦𝑘  

𝑥�𝑘 ,𝑃𝑘 

𝜖𝑘 , 𝑆𝑘 

Alarm 

𝑡̂𝑙,𝑖  a c  𝑛�𝑙,𝑖  

FIGURE 4.3: Architecture of the change point detector.

4.3.1.2 Implementation of the Kalman filter

We recall the state xk and measurement yk equations for our system:

xk = Fxk−1 + Bwk (4.1)

yk = hk(xk) + vk (4.2)
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All the parameters of this system are defined in chapter 3 section 3.4.2.
The predicted state covariance Pk/k−1 and state covariance Pk of the EKF are
processed with the following equations:

Pk/k−1 = FPk−1FT + BQBT (4.3)

Kk = Pk/k−1Hk(HkPk/k−1HT
k + R)−1 (4.4)

Pk = Pk/k−1 − KkHkPk/k−1 (4.5)

The predicted estimate state x̂k/k−1 and estimate state x̂k are processed with
the following expressions :

x̂k/k−1 = Fx̂k−1 (4.6)

x̂k = x̂k/k−1 + Kk(yk − hk(x̂k/k−1)) (4.7)

with hk(x̂k/k−1) = [h1,k (x̂k/k−1; θk) , . . . , hn,k (x̂k/k−1; θk) , 0, . . . , 0]T. Let us de-
fine the following auxiliary expressions for the innovation ϵk and the covari-
ance of the innovation Sk:

ϵk = yk − hk(x̂k/k−1) (4.8)

Sk = HkPk/k−1HT
k + R (4.9)

4.3.1.3 Implementation of the CUSUM detector

We assume a change has occurred in the mean of the innovation. The mean
value after the change is either µ+

1 = µ0 + ν or µ−
1 = µ0 − ν with ν, the

dynamic of the change, assumed to be known. In this work we use a two
side CUSUM algorithm [190]. The CUSUM detection process is defined by:

g+k =
(

g+k− + ϵk − µ0 − ν/2
)+

(4.10)

g−k =
(

g−k− − ϵk + µ0 − ν/2
)+

(4.11)

t̂a
l,i = min

{
k : (g+k ≥ λ) ∪ (g−k ≥ λ)

}
(4.12)

where (X)+ = max(X, 0) and ta
l,i is the ith instant of change detected for

satellite l. In the case of an innovation process where µ0 = 0, g+k and g−k , the
integration of the innovation process, evolves as a Gaussian random walk
before the change. After the change instant w + t defined in Figure 4.2, g+k
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and g−k are monotonic increasing functions.

According to the transition model defined in Figure 4.2, the theoretical
value of the detection threshold λ can be defined as λ = ∆t ν

2 − ν
2 with ν =

m2 − m1. In practice, ν is a parameter defined by the user. It represents the
minimum change dynamic that we want to detect. In our application, ∆t, the
length of the transition area in the change model, is defined with the satellite
elevation angle, as well as the speed and height of the airborne carrier.

In the CUSUM detection process, it is also possible to define a likelihood
estimate of the change instant. This estimator is based on a likelihood ra-
tio test. We define the following expressions for the CUSUM change point
localization process:

dk = ln
(

p(ϵk; θ1)

p(ϵk; θ0)

)
(4.13)

Dk =
k

∑
n=1

dn (4.14)

n̂c
l,i = argmin︸ ︷︷ ︸

1≤nc≤k

Dnc (4.15)

where the parameters of the distribution of ϵk are: θ1 after the change and
θ0 before the change. k is the instant at which a change is detected. dk is the
log-likelihood ratio that defines the following test:

ln
(

p(ϵk; θ1)

p(ϵk; θ0)

)
<H0
>H1 0 (4.16)

where H0 is the hypothesis that ϵk is the innovation before the change and
H1 is that after the change. According to this property Dk, decreases with the
increase of k before the change and increases with k after the change. In this
case, the minimum value of Dk is the localized change instant.

Finally, the Kalman-CUSUM change point estimate of Figure 4.3 is de-
scribed in Algorithm 1. In our implementation, we assume that the innova-
tion before and after the change is distributed according to a Gaussian dis-
tribution notice N(µ, σ) where µ and σ are respectively the mean and the
standard deviation of the distribution. The normalized innovation process
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ϵkS−1/2
k is distributed according to N(0, 1) before the change and N(ν, 1) af-

ter the change.

Data: Noisy observations: innovation ϵk.
Algorithm parameters: change dynamic ν, transition duration ∆t.
Result: change instant ta

l,i, change localization nc
l,i

Algorithm
——-Initialization——-
λ = ∆t ν

2
k = 1
i = 1
——-Implementation——-
while the algorithm is not stopped do

dk = ln
(

N(ϵkS−1/2
k −ν;1)

N(ϵkS−1/2
k ;1)

)
Dk = ∑k

n=1 dk
gp

k = max(gp
k−1 + ϵk, 0)

gm
k = max(gm

k−1 − ϵk, 0)
if (gp

k > λ)∪(gm
k > λ) then

t̂a
l,i = k

n̂c
l,i = argmin︸ ︷︷ ︸

1≤J≤k

Dj

i=i+1
——-Reset the Kalman filter———–
xk = yk
Pk = P1

end
k=k+1

end
Algorithm 1: Kalman-CUSUM change point algorithm

We note the absence of the factor ν
2 in the definition of the threshold in

Algorithm 1. This factor was introduced as an additional drift parameter on
the threshold that ensures that the change point is localized at the center of
the transition. In practice, the subtraction of the factor ν

2 from the threshold
value decreases the detection threshold and increases the number of false
detections (detection of noise) . Thus, it is removed in the detection process.

4.3.2 Change localization

In this work, the dynamic of the change is not known. We propose a Maxi-
mum Likelihood Localization Estimate (MLLE) for change point localization
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that replaces the CUSUM likelihood change localization estimate. We show
in Figure 4.4 the architecture of the proposed change point estimate.

Extended  
Kalman Filter CUSUM 

𝑦𝑘  

𝑥�𝑘 ,𝑃𝑘 

𝜖𝑘 , 𝑆𝑘 

Alarm 

MLLE 
 𝑛�e𝑙,𝑖𝑡̂𝑙,𝑖  a 

FIGURE 4.4: Architecture of the change point localization al-
gorithm. MLLE stands for Maximum Likelihood Localization

Estimate

According to the signal model of Figure 4.2 and assuming that the noise
is additive, white centered and Gaussian, we derive a maximum likelihood
estimate of t, the starting instant of the transition and ∆t, the duration of the
transition. The estimates are processed with the GNSS signal amplitudes ob-
servations in the working window (x̃n̂e

l,i−1
, . . . , x̃t̂a

l,i+1
). The GNSS amplitude

observations x̃k are obtained from the in-phase observations yk using expres-
sion (3.38) of chapter 3. n̂e

l,i is the localization of the ith change for satellite l
and t̂a

l,i is the ith detected change instant provided by the CUSUM detector
for satellite l. In the rest of the section, we will note n̂e

l,i as ne
i and t̂a

l,i as ta
i

to simplify notations. N is the number of samples in the working window
defined between ne

i−1, the previous localized change by MLLE and ta
i+1, the

next detected change by CUSUM.

In practice, the CUSUM detector detects a change after its actual position
(before localization). In this case, the working window is not optimal, but
nearly optimal with a difference of very small number of samples at the end
of the window. This number of samples represents the difference between
the detected ta

i+1 and localized ne
i+1 change point position at the instant i + 1.

To estimate the localized change instant ne
i , we define the likelihood func-

tion as:
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f (X̃ne
i−1

, . . . , X̃ta
i+1

) =
1

(σ1
√

2π)t
exp

−
∑

ne
i−1+t−1

n=ne
i−1

(x̃n − m1)
2

2σ2
1


1

(σf
√

2π)∆t
exp

−
∑

ne
i−1+t+∆t−1

n=ne
i−1+t (x̃n − fn)2

2σ2
f

 (4.17)

1
(σ2

√
2π)N−t−∆t+1

exp

−
∑

ta
i+1

n=ne
i−1+t+∆t(x̃n − m2)

2

2σ2
2


m1 and m2 are the mean values of the GNSS signal amplitude before and
after the change, respectively. fn is a sampling line that models the growth of
the reflectivity from m1 to m2 defined between (ne

i−1 + t, m1) and (ne
i−1 + t +

∆t, m2). We can express the negative log likelihood as follows:

−L( f . . . )) = t log(σ1
√

2π) +
∑

ne
i−1+t−1

n=ne
i−1

(x̃n − m1)
2

2σ2
1

+ ∆t log(σf
√

2π) +
∑

ne
i−1+t+∆t−1

n=ne
i−1+t (x̃n − fn)2

2σ2
f

(4.18)

+ (N − t − ∆t + 1) log(σ2
√

2π) +
∑

ta
i+1

n=ne
i−1+t+∆t(x̃n − m2)

2

2σ2
2

In practice, the parameters of the log likelihood function are estimated us-
ing empirical maximum likelihood estimation. The empirical variances are
defined by:

σ̂2
1 =

1
t

ne
i−1+t−1

∑
n=ne

i−1

(x̃n − m1)
2 (4.19)

σ̂2
f =

1
∆t

ne
i−1+t+∆t−1

∑
n=ne

i−1+t
(x̃n − fn)

2 (4.20)

σ̂2
2 =

1
N − t − ∆t + 1

ta
i+1

∑
n=ne

i−1+t+∆t
(x̃n − m2)

2 (4.21)
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We can derive the expression of the empirical maximum likelihood esti-
mate of t̂ and ∆̂t by:

(t̂, ∆̂t) = Argmin︸ ︷︷ ︸
t,∆t

{t log(σ̂1) +
∑

ne
i−1+t−1

n=ne
i−1

(x̃n − m1)
2

2σ̂2
1

+ ∆t log(σ̂f ) +
∑

ne
i−1+t+∆t−1

n=ne
i−1+t (x̃n − fn)2

2σ̂2
f

(4.22)

+ (N − t − ∆t + 1) log(σ̂2) +
∑

ta
i+1

n=ne
i−1+t+∆t(x̃n − m2)

2

2σ̂2
2

}

Finally, the empirical maximum likelihood estimate is given by:

(t̂, ∆̂t) = Argmin︸ ︷︷ ︸
t,∆t

{
t log(σ̂1) + ∆t log(σ̂f ) + (N − t − ∆t + 1) log(σ̂2)

}
(4.23)

In practice, the estimate value t̂ is searched in a working window of N
samples defined between ne

i−1 and ta
i+1. The estimate value ∆̂t is searched

between ne
i−1 + t̂ and ne

i−1 + t̂ + ∆tM − 1. The value of ∆tM is dependent
on the application. For our application to airborne GNSS-R data, ∆tM is a
function of the length of the major axis a of the first Fresnel zone ellipse as-
sociated with the satellite footprint. According to the signal model, the true
position of the border between two different areas which corresponds to the
true change point position is assumed to be at ne

i = ne
i−1 + t̂ + ∆̂t

2 . This posi-
tion can be in practice the beginning or the end of the edge of a water body
along the satellite footprint trace.

4.3.3 Change merging

At the end of the segmentation process the signal is divided into different
parts associated to different mean amplitude levels based on the estimated
change positions. However, we observe that the segments can be merged
based on a developed merging criteria to decrease the number of false detec-
tions and increase the length of the stationary parts in each area of reflection.
We show in Figure 4.5 the architecture of the segmentation algorithm that
integrates the merging processing step.
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FIGURE 4.5: Architecture of the change point algorithm with
merging.

The proposed merging process starts by defining the confidence interval
(expression (4.24)) of the mean estimate m for each segment of the signal.
This interval has a specific level of confidence that defines the percentage
of time the true mean µm lies in the interval estimate given. In our case,
the mean follows a Student’s t-distribution since the population standard
deviation σ is not known. Let us define the following expressions for the
change point merging process:

mi − Ei < µm
i < mi + Ei (4.24)

Ei = tα/2,i
s f

i√
n f

i

(4.25)

Ei is the maximum error of the estimate and is one-half of the width of
the confidence interval. s f

i is the unbiased sample standard deviation and n f
i

is the number of samples in the segment Si defined between n̂e
l,i−1 and n̂e

l,i.
The t-score is a factor of the level of confidence and the degree of freedom
d f which is related to the sample size (d f = n f

i − 1). α is the significance level
and α/2 represent the area in one tail for a confidence interval. The most
commonly used significance level is α = 0.05, implying a confidence level of
95%.

To determine whether the difference between two means is statistically
significant, we compare the confidence intervals for consecutive segments. If
the intervals overlap with high percentage, we note that the difference be-
tween the two means is not statistically significant and thus the 2 segments
in study can be merged. If there is no overlap or the 2 segments overlap with
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a percentage less than a predefined degree of overlap, the difference is sig-
nificant and the segments are not merged. We note the predefined degree of
overlap between the two intervals as the merging threshold λm.

Consider 2 successive segments Si and Si+1 of mean values mi and mi+1

and of maximum errors Ei and Ei+1, respectively. We define the associated
confidence interval of each segment as in equation (4.24). The ranges of each
confidence interval can be defined as:

d = mi+1 + Ei+1

c = mi+1 − Ei+1

b = mi + Ei

a = mi − Ei (4.26)

The merging process of Figure 4.5 is described in Algorithm 2. Figure 4.6
represents the 3 different cases of the confidence intervals that are considered
in our merging algorithm.

a b

c d

(a) Overlapping

c d

a b

(b) Inclusion

a b

dc

(c) Non-Overlapping

FIGURE 4.6: The different cases of the confidence intervals.

In the case of overlapping (Figure 4.6a), the percentage of overlapping p f

can be defined as:

p f =
overlapping region

overlapping region + nonoverlapping region
× 100

=
min(d, b)− max(c, a)

min(d, b)− max(c, a) + ||d − b|+ |c − a|| × 100 (4.27)

The 2 overlapped segments are merged if the following condition is satis-
fied:

p f ≥ λm (4.28)
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Data: amplitude observations x̃k, change points localized n̂e

Result: change points after merging ñe, segmentation m
Algorithm
——-Initialization——-
set values f or : α, CL, λm and λs; i = 1; j = 1
——-Implementation——-
while the algorithm is not stopped do

mi = mean(x̃n̂e
i−1

. . . x̃n̂e
i
); mi+1 = mean(x̃n̂e

i
. . . x̃n̂e

i+1
);

s f
i = std(x̃n̂e

i−1
. . . x̃n̂e

i
); s f

i+1 = std(x̃n̂e
i

. . . x̃n̂e
i+1

);

n f
i =length(x̃n̂e

i−1
. . . x̃n̂e

i
); n f

+1=length(x̃n̂e
i

. . . x̃n̂e
i+1

);

tα/2,i = tinv(CL, n f
i − 1) ; /* Student's T Critical Values */

tα/2,i+1 = tinv(CL, n f
i+1 − 1);

Ei = tα/2
s f

i√
n f

i

; Ei+1 = tα/2,i+1
s f

i+1√
n f

i+1

;

d = mi+1 + Ei+1; c = mi+1 − Ei+1 ; b = mi + Ei; a = mi − Ei;
if (min(d, b)− max(c, a) > 0) then

if (min(d, b) = d and max(c, a) = c) or (min(d, b) =
b and max(c, a) = a) then

—————–Inclusion——————–
ps = ||d − b| − |c − a||
if p f ≤ λs then

mi = mi+1 = mean(x̃n̂e
i−1

. . . x̃n̂e
i+1

) ; /* Merge */

else
ñe

j = n̂e
i

j=j+1;
end

else
—————–Overlapping——————–
p f = min(d,b)−max(c,a)

min(d,b)−max(c,a)+||d−b|+|c−a||
if p f ≥ λm then

mi = mi+1 = mean(x̃n̂e
i−1

. . . x̃n̂e
i+1

) ; /* Merge */

else
ñe

j = n̂e
i

j=j+1;
end

end
else

—————–No Overlapping——————–
ñe

j = n̂e
i ;

j=j+1;
end
i=i+1;

end
Algorithm 2: Merging algorithm
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In practice, λm is defined by the user and is dependent on the constraints
of the application.

If one segment is subset of the other, we are in the case of inclusion (Fig-
ure 4.6b). In this case, the decision of merging depends on the degree of
symmetry ps defined as:

ps = ||d − b| − |c − a|| ≤ λs (4.29)

where λs is a predefined threshold in the order of 10−2.

In fact, the degree of symmetry defines how close is the estimated mean of
the 2 segments. If the means are too close we merge, otherwise the segments
are considered asymmetrical. When the segments are not overlapped (Figure
4.6c), i.e. min(d, b) − max(c, a) < 0, the segments are not merged. As a
result, the number of change points after merging ñe

j will be lower than the
number of changes detected n̂e

i since we eliminate the false alarm detections.
Finally the signals are segmented based on the localized change points after
merging.

4.4 Experimentation

4.4.1 Assessment on synthetic data

4.4.1.1 Empirical distribution of the change point estimation

The aim of this experimentation is to assess the accuracy of the proposed
change point estimation algorithm on synthetic signal amplitude measure-
ments. We present in Figure 4.7, the generated signal amplitudes along 2 sec-
onds of observation. We also show the signal change model associated to it.
The decreasing transition of the signal in this case between the mean values
m1 and m2 as shown in Figure 4.7 models the satellite footprints displacement
from an area with high reflectivity to an area with lower reflectivity. In this
experiment, we choose m1 = 0.014 and m2 = 0.006 in order to emulate the
GNSS reflected signal amplitude levels that we observe in the real airborne
experiment. The Gaussian noise on the signal has a standard deviation of
0.001.
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We apply the change point detection and localization algorithm to extract
the estimated starting instant of the transition t̂, the estimated duration of
the transition ∆̂ t, and the estimated ending instant of the transition t̂ + ∆̂ t.
Consequently, the estimated change point position which corresponds to the
estimated location of the border between two areas would be at t̂ + ∆̂ t
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FIGURE 4.7: Different estimates of the start and end instants
of the transition (blue dashed lines) as well as the estimated
change point position (black dashed line) using the proposed
change point algorithm. We show in this figure the generated
signal amplitude measurements along with the signal change

model associated to it.

We show in Figure 4.7 different estimates of the start and end instants
of the transition (blue dashed lines) as well as the estimated change point
position (black dashed line) associated to different realizations of the signal
using the proposed algorithm. Figure 4.7a shows accurate estimation of the
start and end instants of the transition. Subsequently, the estimated posi-
tion of the border is at the true change point position. Figure 4.7b shows the
estimates when the detected starting instant is advanced and the detected
ending instant of the transition is delayed. Although, the estimates of the
transition start and end are indeed shifted, the estimated change point posi-
tion is still at the true position. We show why this effect makes the estimate
of the change position more accurate (lower standard deviation) than the es-
timates of the transition start and end.

To evaluate the proposed approach we apply a statistical analysis over
100 realizations of the simulated signal. We show in Figure 4.8 the empirical
distribution of the detected transition start and end instants as well as the
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estimated change point instant.
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FIGURE 4.8: The estimated values (in seconds) of the transition
start and end instants as well as the estimated change point po-
sition over 100 iterations using the proposed change point lo-
calization algorithm. The figure is zoomed on the area where

the distribution is concentrated.

We notice in Figure 4.8 that the statistics of the estimated change point
position follow an exponential distribution maximized at the true value of
the change point position. We report in Table 4.1 the statistical parameters
of the distributions. We observe that the standard deviation is indeed lower
for the change position estimate which is in agreement with the conclusions
derived from Figure 4.7.

TABLE 4.1: Statistical parameters of the empirical distributions.

Transition Change Transition

start position end

Mean(s) 0.08 1 1.2

Standard deviation(s) 0.04 0.038 0.047
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4.4.1.2 Comparison with state-of-the-art methods

To assess the accuracy of the proposed approach in terms of change point
localization, we compare the proposed change point localization approach
described section 4.3.2 with the CUSUM change point localiztion method de-
scribed in section 4.3.1. We show in Figure 4.9 the empirical distribution of
the estimated change point location, processed with 100 realizations of the
signal for the CUSUM and the proposed method (MLLE).
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FIGURE 4.9: A comparison of the estimated change point loca-
tion (in seconds) obtained by our proposed algorithm and by

the CUSUM method over 100 iterations.

We report in Table 4.2 the mean and the standard deviation of the empiri-
cal distributions obtained with 1000 realizations of the signal. These parame-
ters plus the number of detected changes are given as a function of the SNR.
In this experimentation, the true change point position is at 40 sec, the change
dynamic is ν = 1 and the standard deviation of the noise vary from 0.01 to 1.
The assessed methods are: the CUSUM, the Kalman Generalized Likelihood
Ratio (GLR) [198] and the proposed MLLE approach. The CUSUM localiza-
tion approach assumes that the dynamic of the transition is known, whereas
the GLR estimates this change dynamic to localize the change points. The
proposed MLLE apporoach for change localization do not take into account
the dynamic of the transition while localizing the detected changes.
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TABLE 4.2: Statistical parameters of the empirical distributions
of the different change point detectors as a function of the SNR.
The parameters are: the mean, the standard deviation and the

number of detected changes (Nbr).

CUSUM GLR MLLE

SNR (dB) Mean(s) Std(s) Nbr Mean(s) Std(s) Nbr Mean(s) Std(s) Nbr

58 39.73 1.09 1000 39.66 0.92 969 40.15 0.73 1000

40 39.61 1.92 1000 39.52 1.56 972 40.25 1.22 1000

30 39.67 2.68 1000 39.31 2.24 975 40.31 1.86 1000

20 38.64 6.41 1009 39.69 5.12 958 40.21 4.13 1009

12 17.18 15.88 1112 47.35 17.97 1172 43.27 11.73 1112

10 9.83 12.53 1192 50.63 20.37 1289 44.20 15.39 1192

8 5.53 7.92 1317 54.20 22.48 1484 46.57 18.71 1317

6 3.45 5.13 1465 55.84 22.53 1663 47.61 20.83 1465

0 1.66 1.38 2141 58.24 23.2 2158 49.94 25.68 2141

We observe in Table 4.2 that the standard deviation of the estimation in-
creases when the SNR decreases. In other words, the change point localiza-
tion accuracy decreases when the SNR decreases. The number of detected
changes for the CUSUM and MLLE localization techniques is the same be-
cause both methods use the same Kalman-CUSUM change detector. We also
observe that the number of detected changes becomes superior to 1000 and
increases even further with the decrease of the SNR in these two approaches.
The values superior to 1000 are associated to the over segmentation of the
signal. We solve the problem of over segmentation by integrating the merg-
ing process to the proposed approach.

For GLR, we notice an under detection phenomena with high and mod-
erate SNR. When the SNR becomes inferior to 20 dB, the GLR localization
accuracy decreases significantly and the number of false alarm detections
increases. This method estimates the change magnitude and detects a transi-
tion when the dynamic of the change is superior to a given threshold. When
the SNR decreases, the GLR algorithm can not distinguish between the tran-
sitions due to the noise and the transitions due to the real signal. This leads
to an increase in the number of false alarms associated to the detection of
noise. In this context, the accuracy decreases because we process the mean
localization with all the detected changes.



118 Chapter 4. Segmentation of the GNSS Signal Amplitudes

We can conclude from Table 4.2 that the proposed MLLE estimate is more
accurate than other state-of-the-art approaches. The standard deviation of
the empirical distribution of the change detection for our approach is indeed
lower than that for the other methods. For very low SNR (inferior to 20 dB),
the proposed approach proves to be more robust because the mean value of
the localization stays coherent with the true value unlike the CUSUM and
GLR localization approaches which become completely incoherent with the
true value of the mean when the SNR is inferior to 20 dB. Furthermore, the
proposed approach is the most accurate under various SNR environments
including the typical range of SNR for reflected GNSS signals from Earth
surface [20 dB - 45 dB]. Therefore, we can also conclude that our approach
has the capacity to segment real GNSS signals in a dynamic environment.

Finally, we report in Table 4.3 the statistical parameters of the empirical
distribution of the proposed MLLE approach before and after integrating the
merging algorithm to the segmentation process. In this study, the confidence
level is 95%, the merging threshold is λm = 90% and the symmetry thresh-
old is λs = 0.05. We notice from Table 4.3 a decrease in the number of de-
tections after integrating the merging algorithm to the proposed approach.
This decrease is associated to the decrease in the number of false alarm de-
tections after merging which significantly mitigates the over segmentation
phenomena of the signal. As a result, the mean of the empirical distribution
after integrating the merging algorithm becomes more coherent with the true
value.

4.4.2 Assessment on real data

4.4.2.1 Evaluation by laboratory experiment

In this section, we assess the performance of the proposed change point es-
timator using GPS C/A signals. For this purpose, we record 6 seconds of
raw GNSS data using the NovAtel GNSS-850 antenna introduced in section
3.5.2. We process 1 ms rate of GNSS signal amplitude measurements using
1 ms rate observations of the in-phase component of the signal based on the
model proposed in chapter 3 section 3.4.
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TABLE 4.3: Statistical parameters of the empirical distribution
of the proposed MLLE approach before and after integrating

the merging algorithm to the segmentation process.

MLLE

without merging with merging

SNR (dB) Mean Std Nbr Mean Std Nbr

12 43.27 11.73 1112 41.44 9.48 1016

10 44.20 15.39 1192 41.67 10.18 1035

8 46.57 18.71 1317 42.31 13.26 1072

6 47.61 20.83 1465 43.29 14.92 1116

0 49.94 25.68 2141 45.13 18.51 1454

In order to prove our estimator’s ability to detect abrupt changes in the
GNSS signal amplitudes, we generate a change in the signal while record-
ing the raw GNSS data. This abrupt change was implemented with the aid
of an attenuator designed by HP (8494A Attenuator). The attenuator was
set to 1 dB for approximately 0.5 seconds to generate the change. The abrupt
change is detected by our approach through the innovation of the Kalman fil-
ter with the CUSUM algorithm. In this context, whenever an abrupt change
is detected, the Kalman filter is re-initialized and the next measurement is
used as the current state. We apply the change point localization algorithm
described in section 4.3.2 to estimate the position of the change points after
detection. We show in Figure 4.10 the 1 ms rate amplitude observations in
the presence of abrupt change for PRN 2 satellite signal.

We report the change point locations estimated by our proposed change
point detector (black dashed lines) as well as the change point locations es-
timated by the CUSUM method (red dashed lines). In this case, a change is
detected using the CUSUM method when the cumulative sum drifts more
than 15 standard deviations beyond the target mean. We notice from Fig-
ure 4.10a that both methods were able to localize the change in the signal
amplitude level. Zooming in on the part where the change was simulated
(Figure 4.10b), we notice that both methods localized the first change at the
same instant at 1.946 s (the lines are coinciding in the Figure). However,
our proposed algorithm localized the second change more accurately where
we can notice a clear delay in the estimated change point location using the
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FIGURE 4.10: Assessment of the proposed change point detec-
tion algorithm with abrupt changes. We report the change point
locations estimated by our proposed algorithm (black dashed
lines) as well as the change point locations estimated by the
CUSUM method (red dashed lines) using 1 ms rate amplitude

observations.

CUSUM method. This further proves the accuracy of our proposed change
point estimation model.

In terms of execution time and computational load, both methods were
implemented in MATLAB using the same workstation with core i5-6600 pro-
cessor and 16 GB of RAM. The runtime to estimate the change point locations
using our method was 27 ms compared to 18 ms for CUSUM method. This
9 ms difference is compensable given the improvement in accuracy.

4.4.2.2 Comparison of the proposed C/N0 estimator with the state of the
art

We introduced in chapter 3 a low complexity C/N0 estimator with low com-
putational load, as a trade off with the accuracy of our estimates. In or-
der to prove our estimate’s ability to cope with rapid and abrupt changes
encountered in multipath and dynamic GNSS-R applications, we compare
the proposed C/N0 estimator with an accurate C/N0 estimate provided by
Beaulieu’s method presented in section 2.3.2.2. In this experiment, we use
the data recorded in section 4.4.2 in the presence of the abrupt change. The
change point is detected based on the algorithm proposed in section 4.3.
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We show in Figure 4.11, C/Nk
0 estimated by the proposed approach ev-

ery 1 ms according to equation (3.40) and C/NBL
0 estimated by Beaulieu’s

method according to equations (2.45) and (2.46) every 100 ms. We also report
the 1 ms rate carrier-to-noise observations C/No

0 with abrupt changes in the
amplitude measurements for PRN 2 satellite signal. In this experiment, the
parameters of the Kalman filter are set to R=10,000,000,000 and Q=0.0001 and
the threshold of detection is set to 2 times the standard deviation of the noise.
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FIGURE 4.11: C/N0 estimation assessment with abrupt change.
In this Figure, C/Nk

0 is the carrier-to-noise ratio estimated by
the proposed approach every 1 ms, C/NBL

0 is the carrier-to-
noise ratio estimated by Beaulieu’s method every 100ms, and

C/No
0 is the 1 ms rate carrier-to-noise observations.

From Figure 4.11a, we notice that the C/NBL
0 estimates provided by Beau-

lieu’s method every 100ms, have a higher variance than C/Nk
0 estimates pro-

vided by our approach every 1 ms. Furthermore, zooming in (Figure 4.11b)
on the part where the abrupt change in the observations has took place,
we notice that C/Nk

0 follows this change more accurately and rapidly than
Beaulieu’s method. In practice, there is a trade-off between accuracy and
capacity to follow a rapid change with respect to Beaulieu’s method. With
Beaulieu’s method, the capacity to follow an abrupt change is improved
when we decrease the processing step. However, the accuracy is decreased.
The trade-off is less critical with respect to the proposed estimate that can
be easily adapted to change point estimation. This further proves our es-
timate’s ability to cope with rapid and abrupt changes in the observations
and ensures the importance of high rate C/N0 estimations in multipath and
dynamic GNSS-R applications.
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4.4.2.3 Evaluation using airborne GNSS measurements

The airborne experiment will be described in details in chapter 5. We show in
Figure 4.12 the reflectivity measurements obtained with our GNSS-R receiver
embedded in a gyrocopter. The signal of reflectivity is the ratio of the ampli-
tude of the reflected GNSS signal by the soil and the amplitude of the direct
GNSS signal. This reflectivity increases with the water content of the soil.
Figure 4.12 shows abrupt changes in the signal associated to the reflection on
water bodies. In order to detect and localize water bodies, we apply an auto-
matic segmentation of the signal using the reflectivity measurements based
on the segmentation model presented in this chapter. The signal segmenta-
tion shown in Figure 4.12 is obtained after integrating the merging process.

0 1 2 3 4 5 6 7 8 9

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
N

S
S

 s
ig

na
l r
ef
le
ct
iv
ity

Satellite PRN 5
measurements
segmentation
change point

FIGURE 4.12: Reflectivity of a GNSS signal as a function of time
with the associated segmentation model. The signal is obtained

in an airborne experiment.

We show in Figure 4.13 the different steps of the signal segmentation.
The first step is the change point detection process (Figure 4.13a) with the
Kalman-CUSUM algorithm. The second step (Figure 4.13b) is the change lo-
calization process by the proposed maximum likelihood estimate (MLLE).
In the third step 4.13c, we over segment the signal based on the localized
change points. Each segment is defined by its mean and confidence interval.
In the fourth step, the stationary zones obtained with the change estimator
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are merged as shown in Figure 4.13d. Finally, signal segmentation after in-
tegrating the merging process is shown in Figures 4.13e and 4.13f with the
mean and confidence intervals associated to each segment.
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(a) detection
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(b) localization
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(c) over segmentation
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(d) merging
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(e) segmentation with
λm = 0.75
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λm = 0.9

FIGURE 4.13: The different steps of segmentation.
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The merging threshold is set to 75% and the degree of symmetry is set
to 0.05 in Figures 4.13d and 4.13e. Increasing the merging threshold to 90%
and decreasing the degree of symmetry to 0.02 will further increase the num-
ber of false detections as shown in Figure 4.13f. On the other hand, we can
observe from 4.13e that the confidence intervals of the remaining segments
after merging are non-overlapped and thus no more merging can be applied.
The choice of the merging threshold will affect the sensitivity of the proposed
radar technique to detect changes within the same surface which can be of
significant importance based on the application. In this regard, there is a
trade-off between sensitivity to detect changes in the surface and the number
of segments associated to the number of change point detections in the signal.

The results obtained in Figure 4.13 show the feasibility of our approach to
segment a real reflectivity signal obtained in an airborne experiment. In this
context, the proposed approach will be used in chapter 5 for the detection
and localization of in-land water body surfaces. This evaluation is realized
with signals of reflectivity obtained for different satellites along a trajectory
of 45 min long.

4.5 Conclusion

In this chapter, we propose a mixture of an on-line/off-line change point de-
tection and localization algorithm in order to segment the GNSS signals into
stationary parts based on the changes that occur on the signal amplitudes.
These changes are indeed associated with different areas of reflection. In our
approach, a change in the mean of the signal amplitude separates two dif-
ferent reflecting areas. After detecting a change using the innovation of the
Extended Kalman Filter by the CUSUM algorithm, we derive a maximum
likelihood estimate of the start and end instants of a transition in a nearly op-
timized working window. As a result, the estimated change point position is
derived from the estimated transition start and end instants. In the presence
of noise, the CUSUM detector can generate false alarm detections. In order
to mitigate the number of false detection, we propose an interval merging
algorithm based on the Student’s t-distribution.

We show that the proposed change point localization algorithm outper-
forms other state-of-the-art methods using synthetic data. The empirical
distribution of the proposed MLLE approach stays coherent with the true
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change position even in low SNR environments unlike other methods. We
also use synthetic data to evaluate the merging algorithm. We notice that the
number of detections indeed decreases as a result of merging which implies
a decrease in the over segmentation phenomena of the signal as a result of
false detections.

We also show, using real data, that the proposed MLLE approach per-
forms more accurately than the CUSUM localization algorithm at high rates
(1 ms rates) amplitude measurements. In a work that combines the two pro-
posed models for C/N0 estimation (chapter 3) and change point detection
(chapter 4), we evaluate using real data, our methods abilities to cope with
the abrupt changes in observations. This is done by comparing our C/N0 es-
timator with an accurate C/N0 estimate, namely Beaulieu’s estimate, in the
presence of abrupt changes in the 1 ms rate observations. The changes are
detected using the proposed change point detection algorithm. The experi-
mentation shows that there is a trade-off between accuracy and capacity to
follow a rapid change with respect to Beaulieu’s method, which is less criti-
cal with respect to the proposed estimator.

Finally, we show the different steps of the segmentation process on real
data in order to divide the GNSS signal into stationary parts associated with
different mean signal levels. We show on real data, that integrating the merg-
ing process into the segmentation algorithm decreases the number of false
detections and shows more stationary parts of the signal associated to differ-
ent areas of reflection. However, we also note that the choice of the merging
and symmetry threshold is critical in defining the sensitivity of the applica-
tion for detecting small changes in the signal.

The model studied in this chapter can be applied on dynamic GNSS-R
applications in order to derive some characteristics of the reflecting surface
(such as its size, height or moisture) and consequently, differentiate surfaces
based on their reflectivity. In fact, the changes in the amplitudes of the re-
flected GNSS signals are directly linked to the changes in the reflectivity of
different landforms. In case of airborne GNSS-R, it is crucial to obtain C/N0

and amplitude estimates at high rates to cope with the rapid displacement
of the airborne GNSS receiver. In such a dynamic environment, the reflectiv-
ity of different observed surfaces can change abruptly. Thus, the presented
work in this chapter is used in the airborne GNSS-R experiment of chapter
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5 for segmentation of the reflected GNSS signals with high rate reflectivity
measurements.
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Chapter 5

Airborne GNSS Reflectometry for
Water Body Detection

5.1 Introduction

This chapter is dedicated to the study of airborne GNSS-R techniques for
water body surface detection and edge localization using a lightweight low-
altitude airborne carrier. In this work, we differentiate surfaces based on the
reflectivity measurements. We derive high rate (20 ms rate) reflectivity mea-
surements associated with different areas of reflection from the estimated
GNSS signal amplitudes. We have shown in chapter 3, that for 1-bit quan-
tization in a digital receiver, the digitized signals are independent of the au-
tomatic gain control, and that dedicated GNSS signal processing provides
a direct observation of the GNSS signal amplitude. High rate GNSS mea-
surements are processed in order to cope with the rapid displacement of the
satellites footprints (i.e the reflecting surfaces) along the receiver trajectory.

We develop a GNSS-R setup onboard a gyrocopter. We estimate the 20 ms
rate of the GNSS signals amplitudes using 20 ms rate observations. How-
ever, since the reflected GNSS signals are very low in power, the tracking
loops (PLL and DLL) of the GNSS signal processing associated to the re-
flected signals are done in a master/slave configuration, while taking into
consideration the path difference between the direct and reflected signals.

The GNSS signals are then segmented into stationary parts with different
reflectivity measurements associated to different areas of reflection based on
the change point detection and localization algorithm that is developed in
chapter 4. In this work, we assume that a change in the mean of the reflec-
tivity measurements separates 2 areas of reflection. Finally, the reflectivity
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measurements defined in each segment of the signal are linked to the satel-
lites footprints (reflecting surfaces) for surface detection and edge localiza-
tion with a 50 Hz rate localization of the specular points of reflection. The
GNSS measurements are imposed on maps for assessment.

We show, along a real flight experimentation, that our proposed radar
technique is highly sensitive to changes in landforms. We show that we can
detect the positions of different in-land water body surfaces along the traces
of the satellites footprints. We also show that we can localize at meter ac-
curacy, the edges of water body surfaces, i.e. the border between water and
land. Finally, we verify that the proposed radar technique has the capacity
to differentiate surfaces in landforms that are scanned by the traces of the
satellites footprints such as: in-land water bodies, sandy beach, sea, land and
vegetation (forests/groves).

Based on the foregoing, this chapter is organized as follows: Section 2
introduces the airborne GNSS system that we utilize in this work. Section
3 demonstrates the airborne experimental setup used for the flight experi-
mentation along with the GNSS-R receiver hardware. Section 4 presents the
GNSS-R software receiver. In section 5, we introduce the context of the real
flight experimentation. Analysis of the data acquired during the flight for
surface detection and water body edge localization are provided in section 6.
Conclusions are provided in the final section.

5.2 Airborne GNSS system

5.2.1 Airborne bi-static GNSS-R configuration

GNSS-R consists in using GNSS signals received on Earth directly from the
GNSS satellites as well as after a reflection on Earth surface. In our imple-
mentation, we use the GNSS-R dual antenna geometry depicted in Figure
1.6. In this context, the direct GNSS signals are received by an RHCP antenna,
and the reflected GNSS signals are received by an LHCP antenna after spec-
ular scattering from different landforms along the flight trajectory as shown
in Figure 5.1. When a signal hits a reflection point on Earth, scattering occurs
primarily from the region of the surface surrounding the specular reflection
point.
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Direct Signal
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Signal

Reflecting Surface 
(Satellite Footprint)

FIGURE 5.1: Airborne GNSS-R Geometry

On flat areas with no topography, the specularly reflected power can be
derived solely from the Fresnel reflection coefficients. In this case, the spa-
tial resolution of the GNSS measurements is mostly linked to the size of the
first Fresnel zone. The co- and cross-polarization smooth surface reflectiv-
ity as well as its polarimetric ratio can be derived from the Fresnel reflection
coefficients. In this work, we process 20 ms rate amplitudes of the RHCP
and LHCP antenna signals in order to maximize the power of the GNSS sig-
nals compared to 1 ms rate measurements. The 20 ms rate reflectivity mea-
surements are defined as the ratio of the amplitudes of the reflected LHCP
antenna signals Ar

LHCP over the direct RHCP signals Ad
RHCP as shown below:

Γ(t) =
Ar

LHCP(t)
Ad

RHCP(t)
(5.1)

We associate this measurement with 20 ms rate specular point localiza-
tion.

5.2.2 Localization of the GNSS measurements

We present in Figure 5.2, a flow chart showing the implementation steps to
link the GNSS observations with the reflecting surfaces. The data are first
recorded during the flight and then processed off-line. The specular points
are localized as a function of the GPS time with the use of RINEX files and
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on-board drone card measurements as further described in appendix A.

The raw data recorded by the GNSS-R receiver corresponds to the sam-
ples of the direct and reflected GNSS signals at the output of the antennas
(after frequency down conversion). After data collection, proper GNSS sig-
nal processing techniques are applied for the extraction of the required GNSS
signal parameters. The digitized signals are processed by a PLL and a DLL
to obtain the GNSS data. The message of navigation is extracted in the pro-
cess and the GPS time of each data is derived after signal dating. We have
shown in chapter 3 that the GNSS data obtained at the output of the PLL and
DLL (i.e. in-phase component of the signal I, code delay, frequency delay
and phase delay) can be processed to obtain observations of the GNSS signal
amplitude as a function of the GPS Time. In this context, high rate (20 ms)
amplitude estimations are obtained using 20 ms rate observations of I.
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M

easurem
ents

RIN
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Raw Data
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localization
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(Data collection)
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to reflecting surfaces

FIGURE 5.2: Linking the GNSS observations to reflecting sur-
faces

As a result, 20 ms rate reflectivity measurements are derived as a func-
tion of the GPS Time. Then, the GNSS signals are segmented into stationary
parts based on the changes in reflectivity using the segmentation model de-
veloped in chapter 4. These segments are associated with different areas of
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reflections represented by the specular point localization. For this purpose,
the specular point coordinates and the reflectivity observations are linked us-
ing the GPS Time provided by on-board sensors and the GPS time extracted
from the digitized GNSS signals. We present in the next section, the airborne
experimental setup used for data collection.

5.3 Airborne experimental setup

5.3.1 Airborne GNSS-R system: on-board sensors

A GNSS-R setup on-board a gyrocopter with reduced size and weight has
been developed specifically for this work. This setup consists of a typical
GNSS-R sensor that uses an RHCP antenna and an LHCP antenna to capture
GNSS signals. The RHCP antenna is fixed on the nose of the gyrocopter in
order to receive direct GNSS signals and the LHCP antenna is mounted on
the bottom of the gyrocopter for proper reception of the GNSS signals after
reflection. A drone board sensor is also used in order to record the gyro-
copter attitude, altitude and position with respect to the GPS Time along the
duration of the flight. Figure 5.3 illustrates a scheme of the GNSS-R setup
on-board a gyrocopter.

3

1

2

4

FIGURE 5.3: GNSS-R setup on-board a gyrocopter. (1) RHCP
antenna, (2) LHCP antenna, (3) Drone Board Sensor and (4) Ex-

tra GNSS-R receiver hardware for data collection

Although the gyrocopter is a manned aircraft, it can fly at extremely low
altitudes with relatively low speeds while being very agile. This is vital in
our application which aims to maximize the spatial resolution of the air-
borne GNSS measurements. The size of the satellites footprints is indeed
dependent on the height of the receiver. The gyrocopter can cover a distance
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up to 500 km with 4 hours loft within a single flight. Flying at higher alti-
tudes would increase the coverage area and the amount of data collected by
the airborne GNSS-R system within the same flight duration, but that would
come at the expense of the spatial resolution of the application. Nevertheless,
there is always a trade-off between spatial resolution and global coverage.
We show in Figure 5.4 the gyrocopter that was used for the flight experimen-
tation with the different sensors embedded on it.

RHCP GNSS Antenna

LHCP GNSS Antenna

Drone Board Sensor

FIGURE 5.4: The gyrocopter that was used during the flight
with the sensors embedded on it.

In addition to the on-board sensors, the gyrocopter is loaded with the nec-
essary setup that constitute the GNSS-R receiver hardware for data collection
(labeled (4) in Figure 5.3) along with the GNSS antennas. This hardware is
introduced in the next section.

5.3.2 GNSS-R receiver hardware

5.3.2.1 Hardware architecture

Figure 5.5 presents a scheme of the GNSS-R receiver hardware. The GNSS
antenna signals are amplified using a Low Noise Amplifier (LNA) because
the signals are immersed in noise. A delay line is used to separate the RHCP
antenna signals and the LHCP antenna signals in time so that both signals
can be tracked independently using a single mono-channel bit grabber which
is an important distinction of this work.
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From Figure 5.5, the delay line constituting of a fiber optic coil delays the
LHCP antenna signal before it is combined with the RHCP antenna signal.
The composite signal (sum of direct and reflected GNSS signals) is then dig-
itized using a mono-channel bit grabber. The digitized direct and reflected
signal samples are stored in a storage device/card for signal processing using
our self-built GNSS software receiver.
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RHCP Antenna

Cable 1

Data storage unit

GNSS RF 
RHCP 
signal: 

Integrated 
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Delay line
(additional 

code delay     )

LHCP Antenna Data Analysis
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digitizer

Δf 
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Composite 
Signal: 
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GNSS RF 
LHCP 

signal: sLH 

FIGURE 5.5: GNSS-R receiver architecture

The usage of the delay line along with the mono-channel bit grabber al-
lows synchronous digitization of the GNSS signals from the two sensors.
This front-end receiver configuration provides a more robust approach than
classical GNSS-R multi-channel receiver setup which poses clock synchro-
nization problems between the different bit grabbers used for the recording
of the RHCP and LHCP antenna signals.

In addition, this front-end receiver has a sampling frequency up to 25 MHz
and a bit quantization up to 2 bits. In our approach, a sampling frequency of
25 MHz and 1 bit quantization are used. The bit grabber records the digitized
data in bytes format and thus its size will be considerably large depending
on the duration of the flight.

The GNSS-R setup on-board the gyrocopter during the flight is composed
of an L1-L5 bit grabber designed specifically for this work by a GNSS special-
ized firm called Syntony, a delay line, splitters/combiners, and power banks.
The GNSS-R setup that is situated on-board the gyrocopter is presented in
Figure 5.6.
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LHCP GNSS Antenna

(1)

(2)

(5)

(4) 

(5)

(5)

(3)

FIGURE 5.6: The GNSS-R setup on-board the gyrocopter during
the flight experimentation. The setup consists of: (1) Syntony
L1-L5 bit grabber, (2) delay line, (3) combiner, (4) splitters and

(5) power banks.

5.3.2.2 Effect of the delay line

The delay line introduces an additional delay on the LHCP antenna signal
denoted as ∆ f . This delay is known by the user and depends on the length
of the coil. In this work, the length of the fiber optic coil used is l f = 1504 m
providing an additional delay of ∆ f = 5.01 µs (taking into consideration that
the signal travels through the fiber optic coil at the speed of light).

Figure 5.7 shows a Delay Doppler Map (DDM) of an RHCP antenna sig-
nal split into two: an undelayed reference and a delayed signal that was
previously fed to the delay line. From this Figure, we notice that both signals
are separated by l f = 1504 m. The introduced delay is sufficient enough for
effectively separating the signals correlation peaks. However, we also notice
from Figure 5.7 that the delay line amplifies the power of the delayed signal
since higher power is associated to the delayed version. This effect can be
calibrated and effectively removed since it does not change with time.
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FIGURE 5.7: Effect of the delay line on an RHCP antenna signal
split into an undelayed and a delayed version. In this DDM
representation, both versions are separated in time associated

to the additional delay of ∆ f = 5.01 µs

Tracking the LHCP antenna signals independently is generally impracti-
cal because such noisy signals are known for being very low in power, and
thus the track of the signals can easily be lost. In our approach, both the
RHCP and LHCP antenna signals of a satellite are realized at different code
delays using a single-channel bit grabber. This provides a more practical sig-
nal processing approach for tracking the LHCP antenna signals which will
be further described in the next section.

5.4 GNSS-R software receiver

5.4.1 Receiver architecture

Figure 5.8 depicts the master/slave signal processing front end architecture
implemented in our own GNSS software receiver. The direct signal process-
ing can be derived from the classical GNSS demultiplexing and demodu-
lation processes. The stages of demodulation and demultiplexing are real-
ized respectively with a Phase Lock Loop (PLL), a Delay Lock Loop (DLL)
and a Frequency Lock Loop (FLL) providing the in-phase component Id

v and
quadrature component Qd

v measurements for each satellite signal, the mes-
sage of navigation, as well as the code delay τ̂d

v , Doppler f̂ d
v , and phase ϕ̂d

v
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estimates. The tracking process is realized with Tc = 20 ms of coherent inte-
grations.
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FIGURE 5.8: GNSS signal processing front end architecture.

In our application, it is indeed crucial to correct the Doppler frequency
due to the dynamic displacement of the airborne GNSS receiver along the
flight. Data message bit detection and synchronization are then applied us-
ing the corrected Doppler frequency and code delay estimates, in order to
track the signals with 20 ms of coherent integrations without any loss in
power due to the sign changes in the navigation message.

In the model aided tracking of the reflected signal, the DLL, PLL and FLL
are not implemented to correct the code, phase and frequency delay esti-
mates. The information regarding the code delay, and doppler frequency of
the direct signal are used in the 20 ms coherent integrations tracking of the
reflected signal. The estimated code delay of the reflected signal τ̂r(t) is de-
rived from the code delay of the direct signal τ̂d(t) and the additional delay
∆r(t) due to the path difference model (∆d(t) = (2 h(t) sinθ(t))/c) and the
effect of the delay line (∆ f = 5.01 µs).

Data synchronization is applied in order to synchronize the path differ-
ence variations due to the displacement of the airborne GNSS-R receiver with
the estimated code delay of the direct signal τ̂d(t). In our implementation,
both the direct and reflected signals are realized with the same Doppler shift
using a single mono-channel bit grabber, and therefore, f̂ d

v (t) = f̂ r
v(t). The
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phase of the reflected signal ϕ̂r(t) is only estimated in an open loop and is
not corrected.

Finally, 20 ms observations of the direct and reflected in-phase and quadra-
ture components of the signals are obtained. We show in the chapter 3 (ex-
pression (3.38)), that Ir

d and Ir
v are indeed observations of the amplitudes

Ad
l (t) and Ar

l (t) of the direct and reflected GNSS signals, respectively. Thus
20 ms rate measurements of Ad

l (t) and Ar
l (t) are obtained for the derivation

of the surface reflectivity.

5.4.2 GNSS data

A large amount of raw GNSS data was collected during the flight (∼ 45 min).
The bit grabber and antennas used in the experimentation are able to acquire
and record L1 and L5 signals. The data constitutes the sampled direct and
reflected GNSS signals that were digitized and stored by the Syntony L1-L5
bit grabber. Table 5.1 shows a summary of the type of data collected and its
size after decompressing.

TABLE 5.1: Data collected during the flight.

Description Size

L1-sig.bin 133.78 GB

L5-sig.bin 133.78 GB

Total 267.56 GB

We use the binary information provided by "L1-sig.bin" to process the
GPS C/A signals. We process the direct and reflected GNSS signals of the
GPS satellites in study for the whole flight excluding take-off and landing.
The tracking of both the direct and reflected GNSS signals is realized with
20 ms of coherent integrations. We apply the master/slave configuration
described in the previous section for the processing of the reflected GNSS
signals. The data processing was implemented using MATLAB on a work-
station with core i5-6600 processor and 16 GB of RAM. The execution time
was estimated at approximately 2 days.
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5.5 Flight Experimentation

5.5.1 Flight information

The flight took place in the North of France and started at 14h45 UTC, the
19th of October 2020 and ended at 15h30 of the same day lasting for 45 min.
The gyrocopter took-off from Calais–Dunkerque Airport located in Marck,
7 km east-northeast of Calais, in the Hauts-de-France region. We scanned
a large zone that borders the English Channel over a trajectory of ∼ 71 km
between Calais, Escalles and Ardres. This trajectory is shown in Figure 5.9.
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FIGURE 5.9: Flight trajectory.

The airborne GNSS-R platform flew along the coastline scanning areas
from the sea and sandy beach before crossing south-west in order to scan
water bodies contained in landforms. This study area was selected for exper-
imentation because it contains a number of different landforms over a rel-
atively small surface area especially that between Guînes and Ardres. This
specific region holds over 50 different water body surfaces (such as lakes,
ponds, rivers, swamps, etc...) with different nature and sizes. In addition,
there are some other interesting landforms such as plain land, groves and
forests that the flight will pass over. Such dynamic environment poses a ma-
jor challenge to the accuracy and capacity of our approach to detect and lo-
calize surfaces with high spatial and temporal resolution.



5.5. Flight Experimentation 139

During the flight, the gyrocopter maintained a low-altitude of approxi-
mately 315 m above the ground with an average speed of 95 km/h. The wind
speed was approximately at 25 km/h. Table 5.2 presents an overview of the
flight information.

TABLE 5.2: Flight Information

Description

Date 19/10/2020

Location North of France

Fight Duration 45 min

Distance Covered 71 km

Average Speed 95 km/h

Average Height 315 m

Wind Speed 25 km/h

Wind Direction North

5.5.2 Flight trajectory

Figure 5.10 depicts the traces of the satellites footprints along the flight tra-
jectory imposed on Google Earth software. The major axis size of the first
Fresnel zone that constitute the detected footprints ranges between 1306 m
for a minimum elevation angle of 3◦ and 16 m for a maximum elevation an-
gle of 75◦. The traces of very low elevation satellites are not shown in Figure
5.10.

In our application, we aim to study reflections from satellites with high el-
evation angles in order to maximize the spatial resolution of our application.
In addition, higher elevation satellite signals are associated with better gain
with respect to the LHCP antenna. In this regard, we fix the maximum size of
the major axis to 23 m, so the minimum satellite elevation to 50 o. An average
of 9 GPS satellites have been detected along the trajectory. 3 GPS satellite sig-
nals of elevation angles superior to 50 o were extensively analyzed to observe
the reflectivity of the different areas of reflections. These signals corresponds
to satellite PRNs 5, 7 and 30.
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FIGURE 5.10: The satellite footprint traces along the flight tra-
jectory imposed on Google Earth software. The traces of very

low elevation satellites are not shown in the figure.

We show in Figure 5.11a the value of the Fresnel ellipse major axis, (2 a),
as a function of the satellite elevation. In this figure, the height is fixed to
h = 315 m and the wavelength is λ = 19.042 cm for GPS C/A signals. We
show in Figure 5.11b the major axis of the footprints corresponding to satel-
lites PRNs 5, 7 and 30 as a function of the satellite elevation along the receiver
trajectory. From Figure 5.11b, we notice that the footprints of the 3 GPS satel-
lites in study satisfy the condition set for the maximum size of the major axis
and for the minimum satellite elevation along the whole flight trajectory.

Concerning the temporal resolution of the application, the raw data was
sampled at a frequency of 25 MHz and the GNSS measurements are real-
ized at a rate of 50 Hz. Taking into consideration the average speed of the
gyrocopter (95 km/h), the distance between two consecutive specular points
is approximately 0.5 m. This means that every 20 ms the footprints are dis-
placed by 0.5 m.

We apply the GNSS signal segmentation in the next section for water body
surface detection and edge localization.
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FIGURE 5.11: Effect of the satellite elevation angle and the dy-
namic displacement of the receiver on the size of the footprint.
In (a) we show the footprint major axis size as a function of
the satellite elevation angle. In (b) we show the major axis of
the footprints corresponding to satellites PRNs 5, 7 and 30 as a

function of the satellite elevation along the flight duration.

5.6 Data analysis

5.6.1 Radar signal segmentation

Figure 5.12 presents the GNSS measurements for an area located at (50.888515◦

N, 1.871803◦E) along the trajectory. On the upper figure, the traces of the
satellites footprints are represented by 20 ms rate localization of the specular
points of reflection. The colors of the points represent different reflectivity
measurements associated with different kinds of reflecting surfaces. We ob-
serve that satellite PRN 7 detects a swamp, whereas satellite PRN 5 detects
a wetland and a lake that is also detected by satellite PRN 30. The number
in brackets notes the satellite elevation angle. On the lower figures, we show
the GNSS reflectivity measurements and the automatic signal segmentation
associated to it using our proposed radar technique over 12 seconds of data
from this area. The graphs shown in Figure 5.12 are obtained after applying
the merging algorithm on the segmented signal.

We can notice from the graphs that a difference in the mean of the mea-
surements separates different areas of reflection. We remark a significant
increase in reflectivity corresponding to water body surfaces. We note an
increase of at least 0.13 in the reflectivity measurements for the satellites be-
tween land and water. This increase is not constant though and is dependent
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FIGURE 5.12: Automatic segmentation of the GNSS measure-
ments by the proposed radar technique for an area located at

(50.888515◦, 1.871803◦) along the trajectory.
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on the type of land and water that the signals are reflecting from. For exam-
ple, lower variations between land and water are observed in satellite PRN 5
as compared to satellite PRN 30 since the land reflections in satellite PRN 30
are partly affected by vegetation. The proposed radar technique detects dif-
ferent water bodies corresponding to different mean reflectivity levels shown
in blue segments on the graphs whenever the reflectivity measurements are
beyond a specified threshold (0.21 in this case). These segments are asso-
ciated with a blue coloring of the specular points on the Google Earth im-
age. The yellow coloring of the specular points is associated to land reflec-
tions. This demonstrates the automatic segmentation process by the pro-
posed radar technique for the detection of water body surfaces using high
rate reflectivity measurements.

We show in Figure 5.13 different types of water bodies detected along the
traces of the satellites footprints. We observe that the radar technique detects
in-land water bodies with various sizes and shapes and under different en-
vironments. It is worth noting that the approximate size is not the same for
all the surfaces of the same water body type. We notice that we detect large-
size contained water body surfaces such as lakes (Figure 5.13a), oxbow-lake
(Figure 5.13b) and big swamps (Figure 5.13c). The oxbow-lake detected has
a total approximate size of 480m × 135m (including the land in the middle of
the lake) along the trajectory. We also differentiate smaller contained water
body surfaces such as ponds (Figure 5.13d) and wetlands (Figure 5.13g).

In our study, we differentiate lakes from ponds based on the size of the
water body surface. We differentiate swamps from lakes and ponds based
on the characteristics of the water body and the surrounding environment.
Swamps are characterized by plant life dominated by trees and might be a
mix of very wet land and water. However, this is not always explicit by man-
ual inspection using Google Earth map imagery data.

Rivers of different widths along the trajectory are detected by the traces
of all 3 satellites due to its length. The river shown in Figure 5.13e has a
width of 21 m. We notice in Figure 5.13f, 2 small streams of 3.6 m and 5.76 m
m width, while we notice in Figure 5.13h that the proposed radar technique
was able to detect a small pool of 4.5m × 9m size along the trace of satellite
PRN 5 footprints. This shows the sensitivity of the proposed radar technique
to changes in landforms and shows the importance of high spatio-temporal
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(50.879548◦N, 1.919523◦E)

PRN 7 (59∘)

PRN 5 (64∘)

PRN 30 (72∘)

(e) River
(50.887720◦N, 1.878526◦E)

PRN 30 (72∘)

5.76 m

3.6 m

(f) Streams
(50.888385◦N, 1.868127◦E)

PRN 30 (72∘)

27 m

14 m

(g) Wetland
(50.883070◦N, 1.900203◦E)

PRN 5 (66∘)

9 m

4.5 m

(h) Pool
(50.886888◦N, 1.884547◦E)

FIGURE 5.13: Detection of water body surfaces in landforms
using the proposed automatic radar technique.
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resolution in the detection of in-land water body surfaces using low-altitude
airborne carrier.

5.6.2 Water body surface detection

The proposed radar technique is first applied for detecting water body sur-
faces in landforms. We represent the specular points of reflection correspond-
ing to the detected water body surfaces by our radar technique for the 3
satellites in study on IGN maps using QGIS software. IGN maps provide
up-to-date map schemes that clearly show the actual locations of the water
body surfaces at the day of the experimentation. The aim is to assess the per-
formance of the proposed method for water body surface detection. Figure
5.14 shows the detected water body surfaces using our proposed method for
the area between Guînes and Ardres represented by a blue coloring of the
specular points of reflection.

FIGURE 5.14: The detected water body surfaces using our pro-
posed radar technique for the area between Guînes and Ardres.
The specular points of reflection, represented by a blue color-

ing, are superimposed on IGN maps.

The proposed method detects water body surfaces whenever the reflectiv-
ity measurements are beyond a specified threshold. From the analysis of the
GNSS measurements obtained, the reflectivity threshold used in this study is
0.21 for the 3 satellites. We compare the number of water body surfaces pro-
vided by IGN maps along the satellite footprints traces with the percentage
of detections of these water bodies using our proposed approach. Table 5.3
details the results of the manual inspection applied between the IGN images
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and our radar technique for water body surface detection.

TABLE 5.3: Performance assessment of the proposed radar
technique for water body surface detection. Results of the man-
ual inspection applied between the IGN images and our radar

technique.

Water body
Number of surfaces Percentage of detection

using IGN maps using our radar technique

Lakes/ Large Swamps 20 100 %

Ponds/Swamps/Wetlands 17 94 %

Rivers/Canals 4 100 %

Streams/Brooks 6 83 %

Total 47 96 %

We show in Table 5.3 that our radar technique detects 96% of in-land wa-
ter body surfaces (i.e. 45 out of 47 surfaces) along the satellites footprint
traces as compared to the details provided by IGN maps. We detect 100% of
large-size contained water body surfaces (i.e. Lakes/Large swamps) and of
large waterways (such as rivers and canals). However, we miss 1 small-size
contained water body surface and 1 stream along the trajectory. We can not
clearly observe the reason using maps such as IGN or Google Earth as it is
not evident whether the miss is due to a detection inaccuracy or due to the
water bodies being masked by vegetation (such as trees or groves).

Although IGN provides updated map imageries, we can observe from
Figure 5.14 that these maps don’t provide sufficient information about the
water body characteristics (e.g. type, shape and approximate size) nor the
vegetation possibly covering it. Thus we propose to use satellite images pro-
vided by Google Earth software for water body edge localization.

5.6.3 Water body edge localization

The proposed radar technique is applied for localizing the edges of the de-
tected water body surfaces along the satellites footprints traces. In our study,
we represent the satellites traces by a localization of the specular points of re-
flection. In practice, Google Earth doesn’t provide up-to-date map images. In
this regard, the Google Earth images and the experimentation were obtained
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with one year of difference (Google Earth dates its imagery data to September
2019). That is why we first analyze the locations of the water body surfaces
that are used in this study using IGN, and then use Google Earth software
for the detailed experimentation. We select in our study the water body sur-
faces that can be clearly observed using both IGN maps and Google Earth.
Fortunately, the characteristics of the study area didn’t change much over the
coarse of 1 year, especially that the Google Earth images are obtained within
the same period of the year as that of the experimentation. Therefore, we can
assume that the water level was the same between the 2 dates.

We assess the accuracy of the proposed automatic edge localization tech-
nique using manual edge localization on Google Earth. This means that the
accuracy of our approach for edge localization will be affected by any inac-
curacies that Google Earth encounters while processing its map imagery. We
report in Figure 5.15, the detected edges of different water bodies by the pro-
posed radar technique and the edges obtained manually using Google Earth
images.

PRN 7 (58∘)

(a) Pond
(50.881810◦N, 1.912616◦E)

PRN 5 (66∘)

(b) Swamp
(50.885100◦N, 1.975158◦E)

PRN 7 (59∘)

(c) River
(50.887720◦N, 1.878526◦E)

4.9 m 1.47 m

PRN 5 (65∘)4.56 m

(d) Stream
(50.887528◦N, 1.880161◦E)

FIGURE 5.15: Examples of manual and automatic edge local-
ization of different water body surfaces along the traces of the

satellites footprints.
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At the edges of the water body surfaces, the satellite footprint covers the
border between land and water. We note in Figure 5.15, the introduction of
a light blue color for the specular points of reflection. This color is mostly
associated to the decreased reflectivity at the border between land and water,
and is defined using a decreased threshold that is set for each satellite based
on the analysis of the reflectivity measurements associated to the edges of the
water body surfaces in particular.

We show an agreement between the manual and automatic edge localiza-
tion for the pond, swamp, and river shown in Figures 5.15a, 5.15b, and 5.15c,
respectively. However, we report in Figure 5.15d a difference in edge local-
ization between the automatic and manual techniques for a stream. In this
example, the proposed radar technique detects the stream before its actual
location in Google Earth by +4.9m and localize the end of the water body
surface after its manual border end by +1.47m resulting in a total offset of
+6.37m between the two detections.

We report in Table 5.4 the parameters of the detected water body surfaces
by satellite PRN 5 for 100 sec of an area along the trajectory. The detected
water body surfaces by satellite PRN 5 trace in this area include the wetland,
lake, river and stream shown in Figures 5.12, 5.13e, and 5.15d, respectively.

TABLE 5.4: Parameters of the detected water body surfaces by
satellite PRN 5 trace between t=15h19m01s and t=15h20m41s.

Water body Wetland Lake River Stream

Approximate size (m) 40 × 48 125 × 141 W = 22 W = 4.56

Localization diff - Start (m) +3.45 0 +0.82 +4.9

Localization diff - End (m) 0 0 0 +1.47

Distance error- Total (m) 3.45 0 0.82 6.37

Automatic detection length (m) 52.21 171.3 24.57 10.93

Manual detection length (m) 48.76 171.3 23.75 4.56

We report the approximate size (in meters) for each of the mentioned sur-
faces. We also report the difference in localization between the automatic
and manual approach (in meters) for the starting and ending edges of the
detected water body surfaces. These values can be positive or negative. In
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addition, we record the total localization distance error (in meters), i.e. the
total absolute offset for the start and end edges of each water body as well as
the automatic and manual detection length (in meters), i.e. the length cov-
ered by the satellite footprints trace along the water body surface using the
proposed radar technique and Google Earth, respectively.

We observe in Table 5.4, accurate edge localization (i.e. perfect agreement)
for the lake by the proposed radar technique as compared to Google Earth.
The localization of the river edges are less accurate especially for the start of
the river but clearly better than that of wetland and stream. In this regard,
edge localization requires precise measurements. The localization accuracy
is affected by the characteristics of the water body surface (type, shape, size,
etc...) as well as the nature of the landforms surrounding the water body at
its edges. We can clearly observe that the stream reported in Table 5.4 and de-
picted in Figure 5.15d is small in size (4.56 m width), muddy, and surrounded
by vegetation. It is worth noting that this stream reported the lowest local-
ization accuracy among all the water body surfaces localized along the traces
of the 3 satellites footprints during the whole trajectory. Other streams such
as those shown in Figure 5.13f are accurately localized.

We apply the aforementioned parameter analysis for the detected water
body surfaces by the traces of the 3 satellites footprints along the whole tra-
jectory. We report in Table 5.5 the number of detections of each water body
type as well as the percentage of accurate edge localizations. We also record
the mean distance localization error (in meters) which is the absolute value of
the offset in meters between the manual and the automatic edge localization.
Finally, we record the localization difference standard deviation (in meters)
which represents the standard deviation of the difference in the starting and
ending edges.

In this study an accurate edge localization is recorded whenever a per-
fect agreement between the manual and automatic approaches is achieved
(i.e. whenever the total localization distance error is 0 ). We can observe in
the second column of Table 5.5, the percentage of accurate edge localizations.
We can also observe on the histogram of Figure 5.16, a comparison of the
number of accurate and inaccurate localization with respect to the total num-
ber of water body edge localizations per type. We notice that swamps had
the highest localization accuracy with 86.70% (26 perfect localizations out of
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TABLE 5.5: Assessment of the accuracy of proposed radar tech-
nique for water body edge localization. Statistical analysis of
the difference between the automatic and manual edge local-
ization for the detected water body surfaces by the traces of the

3 satellites footprints along the whole trajectory.

Percentage of Mean distance Localization

Water body Number of accurate edge localization error difference - std

detections localizations (in meters) (in meters)

Lakes 12 79.20% 0.59 0.69

Oxbow Lakes 4 62.50% 1.86 1.47

Ponds 11 72.70% 0.68 0.73

Pools 1 50.00% 0.82 0.41

Rivers/Canals 12 79.20% 0.63 0.93

Streams/Brooks 6 58.30% 1.75 1.38

Swamps 15 86.70% 0.36 0.50

Wetlands 4 75.00% 0.99 1.12

Total 65 76.2% 0.96 0.9

30) followed by lakes and rivers with an accuracy of 79.2% for each with the
same number of detections. The pool had the lowest edge localization ac-
curacy with 50% but from just 2 measurements. Apart from the only pool
detected by the trace of satellite PRN 5, streams/brooks noted the second
lowest edge localization accuracy with 58.3% from 12 localizations, followed
by oxbow lake.

We can also note from Table 5.5, that swamps had the least mean localiza-
tion error of 0.36 m and the lowest localization difference standard deviation
of 0.5 m (after the pool). Although lakes and rivers have the same percent-
age of accurate edge localizations, we notice that the lakes had lower mean
distance localization error and localization difference standard deviation, im-
plying better overall localization accuracy for lakes. Wetlands achieved slightly
better percentage of accurate localizations than ponds, but ponds recorded
better mean distance localization error and localization difference standard
deviation and with a higher number of detections. The oxbow lake and
streams reported the highest statistical errors in terms of the recorded mean
and std. We notice that the only oxbow lake detected along the trajectory
in Figure 5.13b was surrounded by vegetation on its borders. In addition,
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FIGURE 5.16: Statistics of water body edge localization by the
proposed radar technique per water body type.

as previously discussed, the streams along the trajectory are mostly muddy
and covered by trees. The results are in agreement with those derived in Ta-
ble 5.4, but applied for the whole study area and for the 3 satellites. We can
observe that the edge localization is affected by the type of the water body
surface as well as the characteristics of the landforms surrounding the water
body at its edges (vegetation biomass, roughness, etc...).

In total, the proposed radar technique achieved an overall water body
edge localization accuracy of 76.2% with a mean distance localization error
of 0.96 m and localization difference standard deviation of 0.9 m. From this
study, we conclude that we can achieve the metric accuracy with our auto-
matic approach as compared to manual localization using Google Earth tak-
ing into consideration the spatial resolution of our GNSS-R application and
the approximate distance between 2 consecutive specular points (∼ 0.5 m)
for a gyrocopter average speed of ∼ 95 km/h.

5.6.4 Detection of landforms

5.6.4.1 Differentiation of water body surfaces

We record in Table 5.6 the mean and the mean standard deviation of the re-
flectivity levels defined in the segments of the signals associated with the
different waterbody types for the three satellites in study. We can observe
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that these satellites have different average elevation (θ) and azimuth (α) an-
gles along the flight duration.

For each satellite in Table 5.6, we observe that streams/brooks reported
the lowest mean reflectivity which is expected due to its size and texture.
Wetlands, which are small wet areas on landforms, also recorded low mean
reflectivity measurements. Rivers, on the other hand, show higher mean re-
flectivity levels than streams and wetlands for the three satellites, but still
lower than lakes, ponds and swamps. We notice that the only detected pool
by satellite PRN 5 reports a high mean reflectivity level although it is small
in size. This is due to the fact that the bottom of the pool is mostly flat and
might contain highly reflective materials such as steel and glass.

The parts of the oxbow lake detected by satellites PRN 7 and 30 also
recorded very low mean reflectivity that is similar to streams or small rivers
in each case as compared to that of satellite PRN 5. This difference is due to
the trace followed by each of the satellites on the oxbow lake. We notice that
the detection length of satellite PRN 5 was ∼ 53.5 m which is much larger
than that covered by satellite PRN 7 (∼ 17 m) and satellite PRN 30 which
detects the oxbow lake 2 times with lengths of ∼ 11.57 m and ∼ 14.2 m. We
notice that the covered length by satellite PRN 5 is nearly the size of a pond
or small lake which explains the similarity in the mean reflectivity of oxbow
lake 0.37 as compared to lakes (0.35) and ponds (0.30).

Apart from the detected pool by satellite PRN 5, the reflectivity increases
with the increase in the size of the detected area in a water body as can be
seen from the reflectivity corresponding to lakes, ponds and swamps which
recorded the highest mean reflectivity levels as compared to smaller water
body surfaces. The increase in reflectivity is associated to the increase in the
detection length of a water body surface. As the size of the detected area in-
creases, more measurements are obtained solely from the water body surface
which are not affected by the roughness of the surfaces surrounding the wa-
ter body. As the detection length decreases, the reflections are obtained more
from the borders of the water body which decreases the reflectivity especially
if the water body is surrounded by vegetation.

The reflectivity is also affected by the characteristics of the water body
surface which explains the difference in the reflectivity between lakes, ponds
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TABLE 5.6: Statistics of reflectivity in the different segments of
the signal associated with the different waterbody types for the

three satellites in study.

Satellite PRN 5 (θ = 65◦, α = 280◦)
Water body Number of detections Mean reflectivity Mean reflectivity std

Lakes 6 0.35 0.10

Oxbow Lakes 1 0.37 0.12

Ponds 6 0.32 0.10

Pools 1 0.30 0.11

Rivers/Canals 4 0.28 0.08

Streams/Brooks 2 0.24 0.09

Swamps 6 0.29 0.08

Wetlands 1 0.27 0.11

Total 27 0.30 0.10

Satellite PRN 7 (θ = 57◦, α = 70◦)
Water body Number of detections Mean reflectivity Mean reflectivity std

Lakes 2 0.28 0.10

Oxbow Lakes 1 0.20 0.10

Ponds 3 0.27 0.10

Pool 0 NA NA

Rivers/Canals 4 0.23 0.09

Streams/Brooks 2 0.19 0.06

Swamps 5 0.26 0.09

Wetlands 0 NA NA

Total 17 0.24 0.09

Satellite PRN 30 (θ = 73◦, α = 145◦)
Water body Number of detections Mean reflectivity Mean reflectivity std

Lakes 4 0.27 0.08

Oxbow Lakes 2 0.24 0.09

Ponds 2 0.30 0.10

Pool 0 NA NA

Rivers/Canals 4 0.27 0.09

Streams/Brooks 2 0.21 0.06

Swamps 4 0.29 0.09

Wetlands 3 0.25 0.10

Total 21 0.26 0.09
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and swamps for the three satellites in study. In this regard, we observe that
lakes had the highest overall mean reflectivity measurements for the three
satellites followed by ponds then swamps.

On the other hand, we observe that each of the satellites record differ-
ent mean reflectivity for the same surface with satellite PRN 5 recording the
highest overall reflectivity followed by satellite PRN 30 then satellite PRN
7. Several factors can contribute to this difference. As previously discussed,
the traces followed by the 3 satellites are not the same, and thus the reflec-
tivity measurements vary depending on the reflecting surface characteristics
and the detection length by the satellites. The differences in azimuth angles
can also contribute to this. The azimuth angle of PRN 5 satellite with re-
spect to the tilt in the RHCP antenna implies that the trace of satellite PRN 5
footprints was generally on the back of the RHCP antenna during the mea-
surements which decreases the amplitude of the direct signal and increases
its reflectivity observations, in contrast to that of satellite PRN 7.

5.6.4.2 Differentiation of other surfaces

In this section, we show that the proposed radar technique has the capacity
to detect other surfaces in landforms such as: sea, sandy beach, groves and
land. Satellite PRN 30 has the highest elevation angle, and thus the lowest
footprint size. We can assume that satellite PRN 30 is the most sensitive to
changes in landforms and thus the traces of this satellite will be used in this
section for surface differentiation. We show in Figure 5.17 the detected sur-
faces corresponding to groves, sandy beach and sea by the proposed radar
technique along the trace of satellite PRN 30 footprints.

The color of the specular points is proportional to the reflectivity measure-
ments associated to different surfaces of reflection. From the analysis of Table
5.6, the mean reflectivity (Γ) of in-land water body surfaces detected by satel-
lite PRN 30 ranged between 0.21 and 0.3. This reflectivity level is denoted by
a blue coloring of the specular point of reflection. The light blue color that
was introduced in the previous section with an intermediate threshold for
water body edge localization represents areas with mean reflectivity between
0.18 and 0.21 for satellite PRN 30. We note in Figure 5.17, the introduction of
2 new colors associated to different reflectivity levels of the surfaces. The
dark blue color represents areas with reflectivity that is beyond 0.3 (Γ > 0.3).
The red coloring of the specular point of reflection is associated to areas with
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Γ > 0.30
0.21 < Γ < 0.30 
0.18 < Γ < 0.21 

0.10 < Γ < 0.16
Γ < 0.10

FIGURE 5.17: The detected surfaces corresponding to groves,
sandy beach and sea by the proposed radar technique along

the trace of satellite PRN 30 footprints.

very low mean reflectivity (Γ < 0.1). The yellow color is associated to other
land surfaces with 0.1 < Γ < 0.18.

We notice very high reflectivity measurements associated to sandy beach
where the specular points of reflection are mostly colored in dark blue in this
region. The reflections from sea are lower than those observed from sandy
beach and in-land water bodies and are represented mostly by a light blue
color. We also note very low reflectivity observations associated to groves
which are represented in red coloring of the specular point of reflection. It is
important to note that the mean reflectivity measurements associated to large
surface areas such as sandy beach and sea are not always stationary. This is
why we sometimes observe a decrease in the mean reflectivity associated to
small areas of the beach.

We show in Figure 5.18 another example of surface differentiation using
the GNSS measurements obtained from PRN 30 satellite signals. We observe
very low reflectivity measurements associated to the 2 forests detected in
this area. This is denoted by a red coloring of the specular point of reflection
along most of the detected area of the forest. The yellow color is associated
mainly to land reflections, whereas the in-land water bodies are detected in
blue. This further proves the detection capacity of the proposed radar tech-
nique.
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0.21 < Γ < 0.30
0.18 < Γ < 0.21
0.10 < Γ < 0.16

Γ < 0.10

FIGURE 5.18: Surface differentiation using the GNSS measure-
ments obtained from PRN 30 satellite signals.

Finally, we report in Table 5.7 the statistics of reflectivity associated to dif-
ferent kinds of reflecting surfaces over the whole trajectory for satellite PRN
30. It is important to note that the measurements associated to plain land
surfaces are not included in this study because its statistics are very complex
to derive in terms of the number of detected surfaces and its characteristics
in such a large study area.

TABLE 5.7: Statistics of reflectivity associated to different kinds
of reflecting surfaces.

Land form Mean reflectivity Mean reflectivity std

Sandy beach 0.34 0.07

Sea 0.21 0.04

In-land water body 0.26 0.09

Forests/Groves 0.09 0.005

We notice from Table 5.7 that the sandy beach recorded the highest mean
reflectivity followed by in-land water body surfaces then sea. This is because
the beach contains very wet sand which increases the moisture of the sur-
face. Calm water from the sea can also cover part of the sandy beach area
due to sea waves. In addition, the surface of the beach is mostly flat unlike



5.7. Conclusion 157

the sea where we can easily obtain a non-coherent reflection resulting from
the signal reflecting from several points due to the sea roughness especially
in such wind speed (25 km/h). Reflections from in-land water body surfaces
are affected by the type and size of the water body surface, the detection
length and the characteristics of the surfaces surrounding the water body at
its edges. It is also worth noting that the detection length of sandy beach
and sea are much larger than other surfaces which affects the measurements.
Finally, we observe that the surfaces covered by vegetation such as forests or
groves recorded the lowest mean reflectivity levels. This is because vegeta-
tion increases the surface roughness and decreases the reflectivity. We con-
clude from this study that our proposed radar technique is able to differenti-
ate different kinds of surfaces based on the mean reflectivity measurements
associated to each surface.

5.7 Conclusion

This airborne experiment studies the techniques for water body localization
using GNSS-R. A GNSS-R setup of reduced size and weight has been devel-
oped specifically to meet the requirements of this application. The utilization
of the delay line in the GNSS-R setup is a significance of this work. The delay
line produces a delay that is sufficient enough to track the direct and reflected
GNSS signals independently using a mono channel receiver which allows
perfect synchronization of the RHCP and LHCP links. The observations are
realized with high temporal and spatial resolution. We estimate 20 ms rate
of reflectivity measurements as the ratio of the amplitudes of the reflected
LHCP antenna signals over the direct RHCP antenna signals. The signals are
segmented into stationary parts associated with different areas of reflection.
We relate the 20 ms rate reflectivity measurements to the corresponding re-
flecting surfaces via a 20 ms localization of the specular point of reflection.

We apply a real flight experimentation using a low-altitude airborne car-
rier with high rate observations of the surface reflectivity. We show that
our method is able to differentiate surfaces, and thus detect water bodies on
landforms, based on the difference in reflectivity measurements associated to
each surface. We show that our radar technique is able to detect 96% of the
total number of water body surfaces on the traces of the satellites footprints
in study as compared to the up-to-date data provided by IGN maps.



158 Chapter 5. Airborne GNSS Reflectometry for Water Body Detection

In a second analysis, we apply a manual inspection between the auto-
matic edge localization provided by the radar technique and manual local-
ization using Google Earth in order to assess the edge localization accuracy
of the proposed approach. We show in this study that our proposed radar
technique is highly sensitive to the changes in landforms with metric edge
localization accuracy. The presence of vegetation on the border between land
and water body surfaces affects the localization accuracy and we show that
even in such cases the proposed radar is able to record a reasonable accuracy.

Finally, we show the capacity of the approach to differentiate surfaces in
landforms such as in-land water body surfaces, sea, sandy beach, vegeta-
tion and land. We show in this study that sandy beach recorded the highest
mean reflectivity followed by in-land water bodies then sea. We note that the
forests/groves recorded the lowest reflectivity measurements. This shows
the feasibility of the proposed automatic detection algorithm to investigate
the sea state or the vegetation biomass.
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General Conclusion

The work presented in this thesis focuses on GNSS signal processing tech-
niques applied to water body detection and edge localization using a low
altitude airborne carrier. We utilize a GNSS-R setup designed specifically
for this work on-board a lightweight carrier. The aim of the thesis is to de-
velop a radar technique for automatic GNSS signal segmentation in order
to differentiate surfaces, and in particular water bodies, in landforms based
on the reflectivity measurements associated to different areas of reflection.
We estimate 20 ms rate reflectivity measurements in order to cope with the
rapid displacement of the satellites footprints along the airborne experiment.
These measurements are associated to the reflecting surfaces by 20 ms rate
localization of the specular points of reflection. Several models and estima-
tors are proposed in the frame work of the research work.

The dissertation consists of five chapters, the first of which is dedicated to
remote sensing techniques for soil moisture detection. In this chapter, we ad-
dressed the fundamentals of soil moisture remote sensing from L-band emis-
sions. We highlighted the different active and passive remote sensing tech-
niques that are implemented in the literature review. We have shown that
passive radiometers suffer from poor spatial resolution, and active radars
suffer from low accuracy. The principle of GNSS-R as well as the different
signal processing methodologies performed by traditional GNSS-R receivers
were presented in this chapter. The different GNSS-R antenna configurations
and the information carried by the reflected signal in each scenario were thor-
oughly discussed along with the various GNSS-R ground-based, airborne
and space-borne applications. In this chapter, we demonstrated our deci-
sion to use conventional GNSS-R (cGNSS-R) signal processing techniques in
a dual-antenna configuration for the airborne experiment.

The second chapter is devoted to the modeling of the GNSS signal for
the derivation of the GNSS carrier-to-noise ratio. We also presented different
C/N0 estimators that are used by the GNSS-R community. The performance
of the presented estimators were compared in terms of estimation accuracy
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and computational complexity. We have shown that the C/N0 estimated by
Beaulieu’s method provided the best trade-off results. For soil moisture re-
trieval using GNSS-R, the SNR of the LHCP and RHCP GNSS antenna sig-
nals can be linked to the reflectivity measurements from which the soil dielec-
tric constant and consequently the soil moisture content can be derived. This
is due to the fact that the SNR provides direct observation of the GNSS signal
amplitudes. However, the processing of the GNSS signals for amplitude es-
timation is non-linear since the expression that links the in-phase component
of the signal to the signal amplitude is non-linear.

For this purpose, we propose in the third chapter, an on-line probabilis-
tic model for the estimation of the GNSS signal amplitudes and subsequently
the carrier-to-noise ratio at high rates taking into consideration the non-
linearity of the problem. We have shown in this chapter that in a 1-bit quanti-
zation receiver, the observations are independent of the automatic gain con-
trol, and thus, the in-phase component of the signal provides direct observa-
tion of the signal amplitude, and therefore of C/N0. We proposed a state filter
in the form of an Extended Kalman filter that estimates 1 ms rate GNSS sig-
nal amplitudes using 1 ms rate observations of the in-phase component of the
signals. We have shown using real data that, for a 1-bit quantization receiver,
the proposed estimator achieved the same accuracy as a widely known com-
mercial GNSS receiver with a much higher data rate of 1000 Hz. We also
showed using synthetic data that the proposed C/N0 estimator can remove
the error due to the cross-correlation contribution of the GNSS satellites and
thus improve the accuracy of the C/N0 estimations.

In the fourth chapter, we propose a mixture of an on-line/off-line change
point detection and localization algorithm for the segmentation of the GNSS
signals into stationary parts associated to different mean signal levels. In
this work, we assume that the GNSS measurements are piecewise station-
ary, and the noise on the observations are additive, Gaussian and centered.
The amplitudes of the reflected GNSS signals are proportional to the ground
reflectivity. We use a transitional model to characterize the changes in the
amplitudes of the reflected GNSS signals from one area to another. Since
we process large amounts of data, we have proposed to detect the changes
on-line using a Kalman-CUSUM algorithm. After change detection, we pro-
posed an off-line maximum likelihood localization estimate (MLLE) to local-
ize the detected changes in a working window that is close to optimality. In
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the presence of noise, the CUSUM change detector generates false alarm de-
tections and the signals would be over segmented. To solve the problem of
over segmentation, we proposed a merging algorithm that investigates the
difference between the statistical properties of the obtained stationary parts
in order to decrease the number of false change detections. As a result, the
segmentation showed more stationary parts associated to significantly dif-
ferent mean reflectivity signal levels.

We have assessed the performance of the automatic radar signal segmen-
tation model in comparison with other state-of-the-art methods. We have
shown that the proposed MLLE localization approach is more accurate than
the CUSUM and GLR localization approaches under various SNR environ-
ments using synthetic data. We also showed on synthetic data that the merg-
ing algorithm indeed decreased the number of false detections. Using real
data, we have shown that the proposed MLLE approach performed more ac-
curately than the CUSUM localization algorithm. We also showed on real
data that the proposed model for C/N0 estimation in chapter 3 performs
more accurately than Beaulieu’s method in the presence of abrupt changes
detected by the proposed change detection algorithm. The capacity of the
proposed system to segment real airborne GNSS signals of reflectivity was
also investigated by demonstrating the different processing steps of the radar
signal segmentation on GNSS data collected during the airborne experiment.

The fifth chapter is dedicated to the airborne experiment for water body
detection and edge localization using GNSS-R. We have presented in this
chapter the bi-static airborne GNSS-R system that is used in the flight exper-
imentation along with the on-board sensors and the GNSS-R receiver hard-
ware. The use of the delay line in the GNSS-R receiver hardware is a dis-
tinction of the work because it delays the reflected GNSS signals allowing
synchronous digitization of the direct and reflected GNSS signals on a mono
channel bit grabber. Since the reflected GNSS signals are very low in power,
they are processed in a master/slave configuration in our self built software
receiver, while taking into consideration the path difference between the di-
rect and reflected signals. The GNSS measurements are realized with high
temporal and spatial resolution.

We implemented the radar signal segmentation model on the GNSS mea-
surements obtained during the whole flight duration (45 min). We have
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shown that the proposed radar technique is able to detect 96% of in-land wa-
ter body surfaces provided by the up-to-date IGN maps along the footprint
traces of the satellites in study. We have also applied a manual inspection
between the automatic water body edge localization provided by the radar
technique and the manual localization using Google Earth for all the water
body surfaces detected. We show in this novel quantitative analysis that we
can detect and localize at meter accuracy the positions of different in-land
water body surfaces and their edges. The proposed radar technique has also
displayed high sensitivity to changes in landforms which is invested to dif-
ferentiate surfaces including: in-land water bodies, sea, sandy beach, vegeta-
tion and land.

Perspectives

One of the main perspectives of this work is to compare the results obtained
for water body detection and edge localization using the proposed radar
technique with the ground-truth data. This requires extensive in-situ mea-
surement campaigns with the use of precise GNSS-R positioning techniques
to accurately localize the starting and ending edges of the in-land water body
surfaces. In order to better analyze the variations in the reflectivity of a water
body surface, we can make use of real time images captured by action cam-
eras embedded on the bottom of the gyrocopter as part of the new GNSS-R
receiver setup.

We have seen from the analysis of the GNSS reflectivity measurements
that it is exceptionally complicated to characterize plain land surfaces and
thus derive the soil moisture content using 1-bit quantized realizations. The
next step would be the development and utilization of a larger bit quantiza-
tion digital receiver (e.g 4-bit quantization) that is able to provide information
about the AGC gain in order to relate the in-phase component of the signal
to the signal amplitude as in 1-bit quantized realizations. This is expected
to increase the SNR of the reflected GNSS signals and thus provide more in-
formation regarding the signal amplitudes. As a result, the sensitivity of the
proposed radar technique for the detection of the soil moisture content as
well as detection of other surfaces will be increased. In addition, for more
accurate reflectivity measurements the gain patterns of the antennas should
be taken into account.
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Another direction to advance in this topic is to further increase the tem-
poral resolution of the application. We have indeed shown that the proposed
radar technique achieves high temporal and spatial resolution compared to
similar approaches. However, the proposed amplitude estimator and seg-
mentation models proved to work accurately on even higher rates (1000 Hz)
which opens up the possibility of adapting the radar technique to 1 ms rate
observations instead of 20 ms rate.

One of the interesting aspects of the mono channel bit grabber used in this
work is the digitization of L1 and L5 signals. The next step in this direction
would be the processing of L5 signals and the fusion of L1 and L5 data to fur-
ther increase the observables of the reflected GNSS signals. An information
fusion algorithm based on statistical approaches would be developed for the
integration of the GPS L1 and L5 signals. The GPS L5 signals have higher
transmitted power than L1 signals and is expected to have deeper penetra-
tion capacity in land for more accurate reflectivity measurements allowing
more precise detection of other surfaces in landforms (other than in-land wa-
ter bodies).

The developed model for the estimation of the GNSS signal amplitudes at
high rates shows different complexities that can be included in a probabilis-
tic model of a coherent detector. A potential implementation of this model
would be the use of the phase information in the complex GNSS samples to
separate coherent and non-coherent reflections. Another possible application
that uses the phase information of the reflected signal is the carrier-phase al-
timetry which can be implemented to observe the sea state.

An interesting approach would be to combine machine learning algo-
rithms with the developed signal processing techniques for the classification
of detected surfaces in landforms, and in particular its soil moisture content,
based on the obtained reflectivity measurements as the models linking reflec-
tivity to soil moisture are highly non-linear and depend on many parameters.
This would open up the possibility for the classification of different vegeta-
tion covers using the proposed radar technique.
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Appendix A

Specular Point Localization

It is important to localize the reflecting surfaces from which each processed
signal has reflected, and thus detect which areas were scanned during the
airborne experiment. Therefore, we process besides the raw GNSS data, the
satellites and receiver’s positions to map the measurements obtained from
the airborne GNSS-R setup along the real flight experimentation.

In order to calculate the satellites positions along the receiver trajectory,
a NovAtel receiver records the ephemeris and almanacs of the satellites in
view (RINEX files). The actual geodetic coordinates and attitude of the re-
ceiver are recorded by the drone board sensor. The drone card (Pixhawk
card) processes and synchronizes, with respect to the GPS Time, sensors data
(GPS, IMU, electronic compass,. . . ) and provides measurements of position
and attitude at a rate of 5 Hz. The GPS data recorded by the drone board
sensor references the altitude of the receiver to the WGS84 ellipsoid which is
the same reference used by Google Earth for positioning.

In fact, georeferencing the specular points on maps are done based on the
ENU local coordinate system by assuming that the surface is locally flat and
that the surface height remains the same with that of the receiver projection
position. A scheme representing the calculation process is depicted in Figure
A.1.

A.1 Effect of Earth rotation on the satellites posi-

tions

In our work, we indeed take into account the effect of Earth rotation on the
satellites positions (Figure A.2). Let R1(xe

R, ye
R, ze
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Satellites
Geodetic 
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FIGURE A.1: Specular point localization process

ECEF coordinates of the satellite position with respect to the receiver before
and after Earth rotation, respectively. Then, the time ∆te associated to the
change in the ECEF frame (from red to light blue in Figure A.2) due to Earth
rotation can be expressed as:

∆te =

√
Xe + Ye + Ze

c
(A.1)

where c is the speed of light and:
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2
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2
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FIGURE A.2: Effect of earth rotation.
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The receiver at position R1 knows the signal emission time t0 and the
pseudo-range Pr0 for the satellite at position S0 (i.e. before Earth rotation).
The position R1 of the receiver is therefore processed with Pr0 and S0. The
position S1 of the satellite with respect to the receiver after Earth rotation can
be derived from S0 after a rotation around the z-axis of −Ωe∆te, where Ωe is
the pulsation of Earth rotation and is approximately equal to 7.292 × 10−5.

A.2 Computation of the azimuth and elevation An-

gles

The localization of the satellites footprints along a specific receiver trajectory
requires an accurate knowledge of the azimuth and elevation angles of the
satellites in view. For this purpose, a series of transformations between the
reference coordinate systems is first implemented. These transformations are
depicted in Figure A.3. The transformation from Earth-centered, Earth-fixed
(ECEF) to East, North, Up (ENU) frame requires setting a reference origin
point. In this regard, the dynamic GNSS receiver position at height h is cho-
sen to be the reference origin point at each instant along the flight trajectory.
Further information about the reference coordinate systems used for local-
ization of GNSS measurements can be found in appendix (refer to appendix
of reference coordinate systems). After transformation to the ENU frame the
next step is to calculate the azimuth and elevation angles.

 (𝐿𝑅 , 𝐿𝑅 , 𝐻𝑅)  𝑥𝑅
𝑒  , 𝑦𝑅

𝑒 , 𝑧𝑅
𝑒   𝐸𝐶𝐸𝐹  XYZ ECEF to XYZ ENU  0, 0, 0 𝐸𝑁𝑈  

XYZ ECEF to XYZ ENU LLH To XYZ ECEF 

LLH To XYZ ECEF XYZ ECEF to XYZ ENU 

XYZ ECEF to XYZ ENU LLH To XYZ ECEF 

LLH To XYZ ECEF 

orgxyz  𝑥𝑅
𝑒  , 𝑦𝑅

𝑒 , 𝑧𝑅
𝑒   𝐸𝐶𝐸𝐹  

𝑹𝒆𝒄𝒆𝒊𝒗𝒆𝒓  𝑹𝟏 : 

𝑹𝒆𝒄𝒆𝒊𝒗𝒆𝒓 𝑷𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏 (𝑹𝟐): 

𝑺𝒂𝒕𝒆𝒍𝒍𝒊𝒕𝒆  𝑺𝟏 : 

𝑺𝒑𝒆𝒄𝒖𝒍𝒂𝒓 𝑹𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝑷𝒐𝒊𝒏𝒕 (𝑺): 

(𝐿𝑅2
, 𝐿𝑅2

, 𝐻𝑅2
) 

(𝐿𝑆1
, 𝐿𝑆1

, 𝐻𝑆1 ) 

 𝑥𝑅2

𝑒  , 𝑦𝑅2

𝑒 , 𝑧𝑅2

𝑒  
𝐸𝐶𝐸𝐹

 

 𝑥𝑆1

𝑒  , 𝑦𝑆1

𝑒 , 𝑧𝑆1

𝑒  
𝐸𝐶𝐸𝐹

 

 𝑥𝑆
𝑒  , 𝑦𝑆

𝑒 , 𝑧𝑆
𝑒   𝐸𝐶𝐸𝐹  (𝐿𝑆 , 𝐿𝑆 , 𝐻𝑆) 

 0, 0, −ℎ 𝐸𝑁𝑈  

 𝑥𝑆1
 , 𝑦𝑆1

, 𝑧𝑆1
 
𝐸𝑁𝑈

 

 𝑥𝑆  , 𝑦𝑆 , −ℎ 𝐸𝑁𝑈  

orgxyz  𝑥𝑅
𝑒  , 𝑦𝑅

𝑒 , 𝑧𝑅
𝑒   𝐸𝐶𝐸𝐹  

orgxyz  𝑥𝑅
𝑒  , 𝑦𝑅

𝑒 , 𝑧𝑅
𝑒   𝐸𝐶𝐸𝐹  

orgxyz  𝑥𝑅
𝑒  , 𝑦𝑅

𝑒 , 𝑧𝑅
𝑒   𝐸𝐶𝐸𝐹  

FIGURE A.3: A series of transformations between the reference
coordinate systems

The azimuth angle α (Figure A.4a) is a horizontal angle measured clock-
wise from a north base line to a line that crosses a spot connecting the vertical
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projection from a satellite with the horizon and passing through the origin.
If (xS1 , yS1 , zS1) and (xR, yR, zR) are the ENU coordinates of the satellite and
the receiver respectively, the azimuth angle can be calculated as:

α = tan−1
(

X
Y

)
= tan−1

(
xS1 − xR

yS1 − yR

) (A.2)

The elevation angle θ (Figure A.4b) is the angle between the local hori-
zontal plane and the line pointing directly towards the satellite and is given
by:

θ = tan−1
(

Z√
X2 + Y2

)
(A.3)

where

X = xS1 − xR

Y = yS1 − yR

Z = zS1 − zR

Consequently, the semi-major axis a and semi-minor axis b of the first
Fresnel ellipse associated with the satellite footprint can be written as fol-
lows in terms of the satellite elevation angle:

a =

√
λh cos(π/2 − θ)

cos2(π/2 − θ)
(A.4)

b =

√
λh cos(π/2 − θ)

cos(π/2 − θ)
(A.5)

where λ is the GPS signal wavelength (≈ 19.042 cm for GPS C/A signals)
and h is the height of the gyrocopter.
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FIGURE A.4: Representation of the azimuth and elevation an-
gles of a satellite in view with respect to a receiver’s position.

A.3 Computation of the specular point coordinates

The specular point of reflection S is positioned at the center of the first Fres-
nel ellipse that constitute the satellite footprint. The ENU representation of
the airborne GNSS-R system geometry is depicted in Figure A.5.

RHCP Antenna

Reflecting Surface 

  

h

𝑆 (𝑥𝑆 , 𝑦𝑆 , −ℎ) 
d

𝑆1 (𝑥𝑆1
, 𝑦𝑆1

, 𝑧𝑆1
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𝑅1 (0, 0, 0) 

FIGURE A.5: ENU representation of the airborne GNSS-R ge-
ometry

To calculate the coordinates of the point S, the distance d between the
receiver’s projection on earth R2 and S should be determined. Applying the
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basics of such geometry, d can be deduced from the elevation angle and the
receiver height h as:

d =
h

tan (θ)
(A.6)

Having d, it is easy now to calculate the coordinates of the point S with the
use of the azimuth angle. This relation is depicted in Figure A.6. Therefore,
the coordinates of point S, the specular reflection point, are written as:

xS = sin(α)× d

yS = cos(α)× d

zS = −h

(A.7)

GNSS
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South

α d

S

x

y

R2 

FIGURE A.6: Relation between the distance d and the azimuth
angle

The coordinates of the points that constitute the first Fresnel ellipse of the
satellite footprint can be derived from the specular points coordinates, the
azimuth angles of the satellites and the major-axis size of the ellipse. Finally,
the ENU coordinates of the ellipse points and the set of specular reflection
points S are transformed back into ECEF coordinates and then into geodetic
coordinates for representation on maps (Google Earth, IGN,...). This process
is done every specified interval of time along the whole receiver trajectory.
In this work, we superimpose the 20 ms rate GNSS measurements on Google
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Earth software. These measurements are associated with a 20 ms rate lo-
calization of the specular reflection point only, since at such high rate, the
satellites footprints will be immensely overlapped.





173

Bibliography

[1] A Egido. “GNSS reflectometry for land remote sensing applications”.
In: Ph. D. dissertation (2013).

[2] Luca Brocca et al. “Soil as a natural rain gauge: Estimating global
rainfall from satellite soil moisture data”. In: Journal of Geophysical Re-
search: Atmospheres 119.9 (2014), pp. 5128–5141.

[3] Brigitte Mueller and Sonia I Seneviratne. “Hot days induced by pre-
cipitation deficits at the global scale”. In: Proceedings of the national
academy of sciences 109.31 (2012), pp. 12398–12403.

[4] Diego G Miralles et al. “El Niño–La Niña cycle and recent trends in
continental evaporation”. In: Nature Climate Change 4.2 (2014), pp. 122–
126.

[5] Dallas Masters, Penina Axelrad, and Stephen Katzberg. “Initial results
of land-reflected GPS bistatic radar measurements in SMEX02”. In:
Remote sensing of environment 92.4 (2004), pp. 507–520.

[6] Emanuele Santi et al. “Comparison between SAR soil moisture esti-
mates and hydrological model simulations over the Scrivia test site”.
In: Remote Sensing 5.10 (2013), pp. 4961–4976.

[7] Maria Jose Escorihuela et al. “SMOS based high resolution soil mois-
ture estimates for desert locust preventive management”. In: Remote
Sensing Applications: Society and Environment 11 (2018), pp. 140–150.

[8] Frédéric Frappart et al. “Automatic detection of inland water bodies
along altimetry tracks for estimating surface water storage variations
in the Congo Basin”. In: Remote Sensing 13.19 (2021), p. 3804.

[9] NC Davidson, Etienne Fluet-Chouinard, and CM Finlayson. “Global
extent and distribution of wetlands: trends and issues”. In: Marine and
Freshwater Research 69.4 (2018), pp. 620–627.

[10] M Acreman and J Holden. “How wetlands affect floods”. In: Wetlands
33.5 (2013), pp. 773–786.



174 Bibliography

[11] PE O’neill and TJ Jackson. “Observed effects of soil organic matter
content on the microwave emissivity of soils”. In: Remote sensing of
environment 31.3 (1990), pp. 175–182.

[12] Stephen J Katzberg et al. “Utilizing calibrated GPS reflected signals to
estimate soil reflectivity and dielectric constant: Results from SMEX02”.
In: Remote sensing of environment 100.1 (2006), pp. 17–28.

[13] Kristine M. Larson et al. “Using GPS multipath to measure soil mois-
ture fluctuations: initial results”. In: GPS Solutions 12.3 (2008), pp. 173–
177. ISSN: 1521-1886. DOI: 10.1007/s10291-007-0076-6. URL: https:
//doi.org/10.1007/s10291-007-0076-6.

[14] A. Azmani et al. “Soil Moisture Estimation using Land-Reflected GPS
L2C Bi-Static Radar Measurements”. In: Proceedings of the 23rd Inter-
national Technical Meeting of The Satellite Division of the Institute of Nav-
igation (ION GNSS 2010). 2010, pp. 1031–1038.

[15] Miguel Angel Ribot et al. “Normalized GNSS Interference Pattern
Technique for Altimetry”. In: Sensors 14.6 (2014), pp. 10234–10257.
ISSN: 1424-8220. DOI: 10.3390/s140610234. URL: http://www.mdpi.
com/1424-8220/14/6/10234.

[16] Micaela Troglia Gamba et al. “Prototyping a GNSS-based passive radar
for UAVs: An instrument to classify the water content feature of lands”.
In: Sensors 15.11 (2015), pp. 28287–28313.

[17] Jean-Christophe Kucwaj et al. “Circular regression applied to GNSS-R
phase altimetry”. In: Remote Sensing 9.7 (2017), p. 651.

[18] Eni G Njoku and Peggy E O’Neill. “Multifrequency microwave ra-
diometer measurements of soil moisture”. In: IEEE Transactions on
Geoscience and Remote Sensing 4 (1982), pp. 468–475.

[19] Nereida Rodriguez-Alvarez et al. “Soil moisture retrieval using GNSS-
R techniques: Experimental results over a bare soil field”. In: IEEE
transactions on geoscience and remote sensing 47.11 (2009), pp. 3616–3624.

[20] Clara Chew, Eric E Small, and Kristine M Larson. “An algorithm for
soil moisture estimation using GPS-interferometric reflectometry for
bare and vegetated soil”. In: GPS solutions 20.3 (2016), pp. 525–537.

[21] TJ Jackson and TJ Schmugge. “Surface soil moisture measurement
with microwave radiometry”. In: Acta Astronautica 35.7 (1995), pp. 477–
482.

https://doi.org/10.1007/s10291-007-0076-6
https://doi.org/10.1007/s10291-007-0076-6
https://doi.org/10.1007/s10291-007-0076-6
https://doi.org/10.3390/s140610234
http://www.mdpi.com/1424-8220/14/6/10234
http://www.mdpi.com/1424-8220/14/6/10234


Bibliography 175

[22] Joseph Knuble et al. “Airborne P-band Signal of Opportunity (SoOP)
demonstrator instrument; status update”. In: 2016 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS). IEEE. 2016, pp. 5638–
5641.

[23] Nan Ye et al. “Toward P-band passive microwave sensing of soil mois-
ture”. In: IEEE Geoscience and Remote Sensing Letters 18.3 (2020), pp. 504–
508.

[24] Ludovic Villard et al. “Forest biomass from radar remote sensing”.
In: Land surface remote sensing in agriculture and forest. Elsevier, 2016,
pp. 363–425.

[25] Alessandra Monerris, Thomas Schmugge, and G Jedlovec. “Soil mois-
ture estimation using L-band radiometry”. In: Advances in Geoscience
and Remote Sensing (2009).

[26] Brian W Barrett, Edward Dwyer, and Pádraig Whelan. “Soil moisture
retrieval from active spaceborne microwave observations: An evalua-
tion of current techniques”. In: Remote Sensing 1.3 (2009), pp. 210–242.

[27] Myron C Dobson et al. “Microwave dielectric behavior of wet soil-
Part II: Dielectric mixing models”. In: IEEE Transactions on geoscience
and remote sensing 1 (1985), pp. 35–46.

[28] James R Wang and Thomas J Schmugge. “An empirical model for the
complex dielectric permittivity of soils as a function of water content”.
In: IEEE Transactions on Geoscience and Remote Sensing 4 (1980), pp. 288–
295.

[29] Valery L Mironov et al. “Generalized refractive mixing dielectric model
for moist soils”. In: IEEE transactions on Geoscience and Remote sensing
42.4 (2004), pp. 773–785.

[30] S Saatchi, E Njoku, and U Wegmüller. “Synergism of active and pas-
sive microwave data for estimating bare soil surface moisture”. In:
Passive Microwave Remote Sensing of Land-Atmosphere Interactions:[ESA/NASA
International Workshop, Held at Saint Lary (France) from January 11–15,
1993]. Walter de Gruyter GmbH & Co KG. 2020, p. 205.

[31] Lun Gao, Morteza Sadeghi, and Ardeshir Ebtehaj. “Microwave re-
trievals of soil moisture and vegetation optical depth with improved
resolution using a combined constrained inversion algorithm: Ap-
plication for SMAP satellite”. In: Remote Sensing of Environment 239
(2020), p. 111662.



176 Bibliography

[32] Paolo Ferrazzoli, Leila Guerriero, and J-P Wigneron. “Simulating L-
band emission of forests in view of future satellite applications”. In:
IEEE Transactions on Geoscience and Remote Sensing 40.12 (2002), pp. 2700–
2708.

[33] Noemi Vergopolan et al. “Combining hyper-resolution land surface
modeling with SMAP brightness temperatures to obtain 30-m soil
moisture estimates”. In: Remote Sensing of Environment 242 (2020), p. 111740.

[34] Monika A Tomaszewska, Lan H Nguyen, and Geoffrey M Henebry.
“Land surface phenology in the highland pastures of montane Cen-
tral Asia: Interactions with snow cover seasonality and terrain char-
acteristics”. In: Remote Sensing of Environment 240 (2020), p. 111675.

[35] J-P Wigneron et al. “Retrieving near-surface soil moisture from mi-
crowave radiometric observations: current status and future plans”.
In: Remote Sensing of Environment 85.4 (2003), pp. 489–506.

[36] Yan Jia and Yuekun Pei. “Remote Sensing in Land Applications by
Using GNSS-Reflectometry”. In: Recent Advances and Applications in
Remote Sensing. IntechOpen, 2018.

[37] J-P Wigneron et al. “Modelling the passive microwave signature from
land surfaces: A review of recent results and application to the L-band
SMOS & SMAP soil moisture retrieval algorithms”. In: Remote Sensing
of Environment 192 (2017), pp. 238–262.

[38] JR Wang and BJ Choudhury. “Remote sensing of soil moisture con-
tent, over bare field at 1.4 GHz frequency”. In: Journal of Geophysical
Research: Oceans 86.C6 (1981), pp. 5277–5282.

[39] J-P Wigneron et al. “L-band Microwave Emission of the Biosphere (L-
MEB) Model: Description and calibration against experimental data
sets over crop fields”. In: Remote Sensing of Environment 107.4 (2007),
pp. 639–655.

[40] TJ Jackson and TJ Schmugge. “Vegetation effects on the microwave
emission of soils”. In: Remote Sensing of Environment 36.3 (1991), pp. 203–
212.

[41] Victor Klemas, Charles W Finkl, and Nijad Kabbara. “Remote sensing
of soil moisture: An overview in relation to coastal soils”. In: Journal
of Coastal Research 30.4 (2014), pp. 685–696.



Bibliography 177

[42] Yann H Kerr et al. “The SMOS soil moisture retrieval algorithm”. In:
IEEE transactions on geoscience and remote sensing 50.5 (2012), pp. 1384–
1403.

[43] M Owe, AA Van de Griend, and ATC Chang. “Surface moisture and
satellite microwave observations in semiarid southern Africa”. In: Wa-
ter Resources Research 28.3 (1992), pp. 829–839.

[44] IE Mladenova et al. “Remote monitoring of soil moisture using pas-
sive microwave-based techniques—Theoretical basis and overview of
selected algorithms for AMSR-E”. In: Remote sensing of environment 144
(2014), pp. 197–213.

[45] BJ Choudhury, TJ Schmugge, and T Mo. “A parameterization of effec-
tive soil temperature for microwave emission”. In: Journal of Geophys-
ical Research: Oceans 87.C2 (1982), pp. 1301–1304.

[46] Fawwaz Tayssir Ulaby. “Microwave remote sensing active and pas-
sive”. In: Rader remote sensing and surface scattering and emission theory
(1982), pp. 848–902.

[47] J-P Wigneron, Laurent Laguerre, and Yann H Kerr. “A simple pa-
rameterization of the L-band microwave emission from rough agri-
cultural soils”. In: IEEE Transactions on Geoscience and Remote Sensing
39.8 (2001), pp. 1697–1707.

[48] Jean-Pierre Wigneron et al. “Estimating the effective soil temperature
at L-band as a function of soil properties”. In: IEEE Transactions on
Geoscience and Remote Sensing 46.3 (2008), pp. 797–807.

[49] Dara Entekhabi et al. “The soil moisture active passive (SMAP) mis-
sion”. In: Proceedings of the IEEE 98.5 (2010), pp. 704–716.

[50] Komi Edokossi et al. “GNSS-Reflectometry and Remote Sensing of
Soil Moisture: A Review of Measurement Techniques, Methods, and
Applications”. In: Remote Sensing 12.4 (2020), p. 614.

[51] Eni G Njoku and Jin-Au Kong. “Theory for passive microwave re-
mote sensing of near-surface soil moisture”. In: Journal of Geophysical
Research 82.20 (1977), pp. 3108–3118.

[52] BJ Choudhury et al. “Effect of surface roughness on the microwave
emission from soils”. In: Journal of Geophysical Research: Oceans 84.C9
(1979), pp. 5699–5706.



178 Bibliography

[53] Fawwaz T Ulaby, Mohammad Razani, and Myron C Dobson. “Effects
of vegetation cover on the microwave radiometric sensitivity to soil
moisture”. In: IEEE Transactions on Geoscience and Remote Sensing 1
(1983), pp. 51–61.

[54] Jiangyuan Zeng et al. “A preliminary evaluation of the SMAP ra-
diometer soil moisture product over United States and Europe using
ground-based measurements”. In: IEEE Transactions on Geoscience and
Remote Sensing 54.8 (2016), pp. 4929–4940.

[55] Eni G Njoku and Steven K Chan. “Vegetation and surface roughness
effects on AMSR-E land observations”. In: Remote Sensing of environ-
ment 100.2 (2006), pp. 190–199.

[56] Emanuele Santi et al. “Application of artificial neural networks for
the soil moisture retrieval from active and passive microwave space-
borne sensors”. In: International Journal of Applied Earth Observation and
Geoinformation 48 (2016), pp. 61–73.

[57] Xingming Zheng et al. “A New Soil Moisture Retrieval Algorithm
from the L-Band Passive Microwave Brightness Temperature Based
on the Change Detection Principle”. In: Remote Sensing 12.8 (2020),
p. 1303.

[58] Yann H Kerr et al. “Overview of SMOS performance in terms of global
soil moisture monitoring after six years in operation”. In: Remote Sens-
ing of Environment 180 (2016), pp. 40–63.

[59] Dara Entekhabi et al. “SMAP handbook–soil moisture active passive:
Mapping soil moisture and freeze/thaw from space”. In: (2014).

[60] Narendra N Das et al. “The SMAP mission combined active-passive
soil moisture product at 9 km and 3 km spatial resolutions”. In: Remote
sensing of environment 211 (2018), pp. 204–217.

[61] Rocco Panciera et al. “The soil moisture active passive experiments
(SMAPEx): Toward soil moisture retrieval from the SMAP mission”.
In: IEEE transactions on geoscience and remote sensing 52.1 (2013), pp. 490–
507.

[62] Yann H Kerr et al. “The SMOS mission: New tool for monitoring key
elements ofthe global water cycle”. In: Proceedings of the IEEE 98.5
(2010), pp. 666–687.

[63] KD McMullan et al. “SMOS: The payload”. In: IEEE Transactions on
Geoscience and Remote Sensing 46.3 (2008), pp. 594–605.



Bibliography 179

[64] J-P Wigneron et al. “Two-dimensional microwave interferometer re-
trieval capabilities over land surfaces (SMOS mission)”. In: Remote
Sensing of Environment 73.3 (2000), pp. 270–282.

[65] Roger Oliva et al. “SMOS Third Mission Reprocessing after 10 Years
in Orbit”. In: Remote Sensing 12.10 (2020), p. 1645.

[66] Tianjie Zhao et al. “Retrievals of soil moisture and vegetation opti-
cal depth using a multi-channel collaborative algorithm”. In: Remote
Sensing of Environment 257 (2021), p. 112321.

[67] Jean-Pierre Wigneron et al. “SMOS-IC data record of soil moisture and
L-VOD: Historical development, applications and perspectives”. In:
Remote Sensing of Environment 254 (2021), p. 112238.

[68] Long Zhao et al. “The scale-dependence of SMOS soil moisture ac-
curacy and its improvement through land data assimilation in the
central Tibetan Plateau”. In: Remote sensing of environment 152 (2014),
pp. 345–355.

[69] Michael Berger et al. “Measuring the Moisture in the Earth’s Soil-
Advancing the Science with ESA’s SMOS Mission”. In: ESA bulletin
115 (2003), pp. 40–45.

[70] Dara Entekhabi et al. “The nasa soil moisture active passive (smap)
mission formulation”. In: 2011 IEEE International Geoscience and Re-
mote Sensing Symposium. IEEE. 2011, pp. 2302–2305.

[71] Konstantina Fotiadou et al. “Recovery of Soil Moisture Active Passive
(SMAP) Instrument’s Active Measurements via Coupled Dictionary
Learning”. In: Electronic Imaging 2018.15 (2018), pp. 229–1.

[72] Amen Al-Yaari et al. “Evaluating soil moisture retrievals from ESA’s
SMOS and NASA’s SMAP brightness temperature datasets”. In: Re-
mote sensing of environment 193 (2017), pp. 257–273.

[73] Steven K Chan et al. “Assessment of the SMAP passive soil moisture
product”. In: IEEE Transactions on Geoscience and Remote Sensing 54.8
(2016), pp. 4994–5007.

[74] Pang-Wei Liu et al. “Assessing Disaggregated SMAP Soil Moisture
Products in the United States”. In: IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 14 (2021), pp. 2577–2592.



180 Bibliography

[75] Lanjie Zhang, Ruanyu Zhang, and Qiurui He. “Sea Surface Salinity
Retrieval from Aquarius in the South China Sea Using Machine Learn-
ing Algorithm”. In: IGARSS 2020-2020 IEEE International Geoscience
and Remote Sensing Symposium. IEEE, pp. 5643–5646.

[76] DM Le Vine et al. “Aquarius: Status and recent results”. In: Radio Sci-
ence 49.9 (2014), pp. 709–720.

[77] Mehrez Zribi, Azza Gorrab, and Nicolas Baghdadi. “A new soil rough-
ness parameter for the modelling of radar backscattering over bare
soil”. In: Remote Sensing of Environment 152 (2014), pp. 62–73.

[78] Yuan Liu. “On sensitivity analysis and estimation of soil moisture
from radar responses”. PhD thesis. Université de Strasbourg, 2016.

[79] Hari Shanker Srivastava et al. “Large-area soil moisture estimation
using multi-incidence-angle RADARSAT-1 SAR data”. In: IEEE Trans-
actions on Geoscience and Remote Sensing 47.8 (2009), pp. 2528–2535.

[80] Ross Bryant et al. “Measuring surface roughness height to parameter-
ize radar backscatter models for retrieval of surface soil moisture”. In:
IEEE Geoscience and Remote Sensing Letters 4.1 (2007), pp. 137–141.

[81] Amer Ahmed, Yun Zhang, and Sue Nichols. “Review and evaluation
of remote sensing methods for soil-moisture estimation”. In: SPIE re-
views 2.1 (2011), p. 028001.

[82] Alex Stogryn. “Electromagnetic scattering from rough, finitely con-
ducting surfaces”. In: Radio Science 2.4 (1967), pp. 415–428.

[83] Stephen O Rice. “Reflection of electromagnetic waves from slightly
rough surfaces”. In: Communications on pure and applied mathematics
4.2-3 (1951), pp. 351–378.

[84] AG Voronovich. “Small-slope approximation in wave scattering by
rough surfaces, Engl. Transl”. In: Sov. Phys. JETP 62.1 (1985), pp. 65–
70.

[85] Adrian K Fung, Zongqian Li, and Kun-Shan Chen. “Backscattering
from a randomly rough dielectric surface”. In: IEEE Transactions on
Geoscience and remote sensing 30.2 (1992), pp. 356–369.

[86] Kun-Shan Chen et al. “Emission of rough surfaces calculated by the
integral equation method with comparison to three-dimensional mo-
ment method simulations”. In: IEEE Transactions on Geoscience and Re-
mote Sensing 41.1 (2003), pp. 90–101.



Bibliography 181

[87] Yisok Oh, Kamal Sarabandi, Fawwaz T Ulaby, et al. “An empirical
model and an inversion technique for radar scattering from bare soil
surfaces”. In: IEEE transactions on Geoscience and Remote Sensing 30.2
(1992), pp. 370–381.

[88] Yisok Oh, Kamal Sarabandi, and Fawwaz T Ulaby. “Semi-empirical
model of the ensemble-averaged differential Mueller matrix for mi-
crowave backscattering from bare soil surfaces”. In: IEEE Transactions
on Geoscience and Remote Sensing 40.6 (2002), pp. 1348–1355.

[89] Pascale C Dubois, Jakob Van Zyl, and Ted Engman. “Measuring soil
moisture with imaging radars”. In: IEEE transactions on geoscience and
remote sensing 33.4 (1995), pp. 915–926.

[90] Jiancheng Shi et al. “Estimation of bare surface soil moisture and sur-
face roughness parameter using L-band SAR image data”. In: IEEE
Transactions on Geoscience and Remote Sensing 35.5 (1997), pp. 1254–
1266.

[91] Davide Comite and Nazzareno Pierdicca. “Monostatic and bistatic
scattering modeling of the anisotropic rough soil”. In: IEEE Transac-
tions on Geoscience and Remote Sensing 57.5 (2018), pp. 2543–2556.

[92] KS Chen, SK Yen, and WP Huang. “A simple model for retrieving bare
soil moisture from radar-scattering coefficients”. In: Remote sensing of
environment 54.2 (1995), pp. 121–126.

[93] G D’urso and M Minacapilli. “A semi-empirical approach for surface
soil water content estimation from radar data without a-priori infor-
mation on surface roughness”. In: Journal of Hydrology 321.1-4 (2006),
pp. 297–310.

[94] Jamal Ezzahar et al. “Evaluation of backscattering models and sup-
port vector machine for the retrieval of bare soil moisture from Sentinel-
1 data”. In: Remote Sensing 12.1 (2020), p. 72.

[95] Millie Sikdar and Ian Cumming. “A modified empirical model for soil
moisture estimation in vegetated areas using SAR data”. In: IGARSS
2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.
Vol. 2. IEEE. 2004, pp. 803–806.

[96] Charles Elachi and Jakob J Van Zyl. Introduction to the physics and tech-
niques of remote sensing. John Wiley & Sons, 2021.



182 Bibliography

[97] Marco Trommler et al. Scientific information portal in the world wide web:
the global soil moisture archive 1992-2000 from ERS scatterometer data. na,
2002.

[98] He Wang et al. “Indian Ocean Crossing Swells: New Insights from
“Fireworks” Perspective Using Envisat Advanced Synthetic Aperture
Radar”. In: Remote Sensing 13.4 (2021), p. 670.

[99] Filipe Aires et al. “Statistical approaches to assimilate ASCAT soil
moisture information—I. Methodologies and first assessment”. In: Quar-
terly Journal of the Royal Meteorological Society (2021).

[100] Alberto Moreira. Synthetic aperture radar (SAR): Principles and applica-
tions. 2013.

[101] Richard Bamler. “Principles of synthetic aperture radar”. In: Surveys
in Geophysics 21.2 (2000), pp. 147–157.

[102] Hugo Carreno-Luengo, Guido Luzi, and Michele Crosetto. “First eval-
uation of topography on GNSS-R: An empirical study based on a dig-
ital elevation model”. In: Remote Sensing 11.21 (2019), p. 2556.

[103] Andres Calabia, Iñigo Molina, and Shuanggen Jin. “Soil Moisture Con-
tent from GNSS Reflectometry Using Dielectric Permittivity from Fres-
nel Reflection Coefficients”. In: Remote Sensing 12.1 (2020), p. 122.

[104] Yan Jia et al. “Estimation of surface characteristics using GNSS LH-
reflected signals: Land versus water”. In: IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing 9.10 (2016), pp. 4752–
4758.

[105] Maria Paola Clarizia et al. “Analysis of CYGNSS data for soil mois-
ture retrieval”. In: IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing 12.7 (2019), pp. 2227–2235.

[106] Jabir Shabbir Malik, Zhang Jingrui, and Najam Abbas Naqvi. “Soil
moisture content estimation using GNSS reflectometry (GNSS-R)”. In:
2017 Fifth International Conference on Aerospace Science & Engineering
(ICASE). IEEE. 2017, pp. 1–9.

[107] Roger D De Roo and Fawwaz T Ulaby. “Bistatic specular scattering
from rough dielectric surfaces”. In: IEEE Transactions on Antennas and
Propagation 42.2 (1994), pp. 220–231.

[108] DS Masters. “Surface remote sensing applications of GNSS bistatic
radar: Soil moisture and aircraft altimetry”. PhD thesis. Citeseer, 2004.



Bibliography 183

[109] Adriano Camps et al. “Sensitivity of TDS-1 GNSS-R reflectivity to soil
moisture: Global and regional differences and impact of different spa-
tial scales”. In: Remote Sensing 10.11 (2018), p. 1856.

[110] Hyuk Park et al. “Analysis of spaceborne GNSS-R delay-Doppler track-
ing”. In: IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 7.5 (2014), pp. 1481–1492.

[111] Valery U Zavorotny et al. “Tutorial on remote sensing using GNSS
bistatic radar of opportunity”. In: IEEE Geoscience and Remote Sensing
Magazine 2.4 (2014), pp. 8–45.

[112] Manuel Martin-Neira et al. “A passive reflectometry and interferom-
etry system (PARIS): Application to ocean altimetry”. In: ESA journal
17.4 (1993), pp. 331–355.

[113] Alberto Alonso Arroyo et al. “Dual-polarization GNSS-R interference
pattern technique for soil moisture mapping”. In: IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote Sensing 7.5 (2014),
pp. 1533–1544.

[114] Nereida Rodriguez-Alvarez et al. “Land geophysical parameters re-
trieval using the interference pattern GNSS-R technique”. In: IEEE
Transactions on Geoscience and Remote Sensing 49.1 (2010), pp. 71–84.

[115] Valery L Mironov et al. “The use of navigation satellites signals for de-
termination the characteristics of the soil and forest canopy”. In: 2012
IEEE International Geoscience and Remote Sensing Symposium. IEEE. 2012,
pp. 7527–7529.

[116] Kristine M Larson et al. “Use of GPS receivers as a soil moisture net-
work for water cycle studies”. In: Geophysical Research Letters 35.24
(2008).

[117] Valery U Zavorotny et al. “A physical model for GPS multipath caused
by land reflections: Toward bare soil moisture retrievals”. In: IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sens-
ing 3.1 (2009), pp. 100–110.

[118] Scott Gleason et al. “Detection and processing of bistatically reflected
GPS signals from low earth orbit for the purpose of ocean remote sens-
ing”. In: IEEE Transactions on Geoscience and Remote Sensing 43.6 (2005),
pp. 1229–1241.



184 Bibliography

[119] Alejandro Egido et al. “Global navigation satellite systems reflectom-
etry as a remote sensing tool for agriculture”. In: Remote Sensing 4.8
(2012), pp. 2356–2372.

[120] Nazzareno Pierdicca et al. “GNSS reflections from bare and vegetated
soils: Experimental validation of an end-to-end simulator”. In: 2011
IEEE International Geoscience and Remote Sensing Symposium. IEEE. 2011,
pp. 4371–4374.

[121] Emiliano Ceraldi et al. “On the use of the specular direction copo-
larised ratio for the retrieval of soil dielectric constant”. In: IGARSS
2003. 2003 IEEE International Geoscience and Remote Sensing Symposium.
Proceedings (IEEE Cat. No. 03CH37477). Vol. 7. IEEE. 2003, pp. 4144–
4146.

[122] Shuanggen Jin, Xiaodong Qian, and X Wu. “Sea level change from Bei-
Dou Navigation Satellite System-Reflectometry (BDS-R): first results
and evaluation”. In: Global and Planetary Change 149 (2017), pp. 20–25.

[123] Shuanggen Jin, GP Feng, and S Gleason. “Remote sensing using GNSS
signals: Current status and future directions”. In: Advances in space
research 47.10 (2011), pp. 1645–1653.

[124] F Soulat et al. “Sea state monitoring using coastal GNSS-R”. In: Geo-
physical research letters 31.21 (2004).

[125] Estel Cardellach et al. “Characterization of dry-snow sub-structure
using GNSS reflected signals”. In: Remote Sensing of Environment 124
(2012), pp. 122–134.

[126] Nereida Rodriguez-Alvarez et al. “Snow monitoring using GNSS-R
techniques”. In: 2011 IEEE International Geoscience and Remote Sensing
Symposium. IEEE. 2011, pp. 4375–4378.

[127] Dallas Masters et al. “GPS signal scattering from land for moisture
content determination”. In: IGARSS 2000. IEEE 2000 International Geo-
science and Remote Sensing Symposium. Taking the Pulse of the Planet: The
Role of Remote Sensing in Managing the Environment. Proceedings (Cat.
No. 00CH37120). Vol. 7. IEEE. 2000, pp. 3090–3092.

[128] E Cardellach et al. “GNSS-R ground-based and airborne campaigns
for ocean, land, ice, and snow techniques: Application to the GOLD-
RTR data sets”. In: Radio Science 46.6 (2011).



Bibliography 185

[129] George A Hajj and Cinzia Zuffada. “Theoretical description of a bistatic
system for ocean altimetry using the GPS signal”. In: Radio Science 38.5
(2003).

[130] Fran Fabra et al. “Phase altimetry with dual polarization GNSS-R over
sea ice”. In: IEEE Transactions on Geoscience and Remote Sensing 50.6
(2011), pp. 2112–2121.

[131] n G Ruffini et al. “The Eddy Experiment: Accurate GNSS-R ocean al-
timetry from low altitude aircraft”. In: Geophysical research letters 31.12
(2004).

[132] James L Garrison, Stephen J Katzberg, and Michael I Hill. “Effect of
sea roughness on bistatically scattered range coded signals from the
Global Positioning System”. In: Geophysical research letters 25.13 (1998),
pp. 2257–2260.

[133] Shuanggen Jin, Estel Cardellach, and Feiqin Xie. GNSS remote sensing.
Vol. 16. Springer, 2014.

[134] Estel Cardellach et al. “Mediterranean balloon experiment: Ocean wind
speed sensing from the stratosphere, using GPS reflections”. In: Re-
mote Sensing of Environment 88.3 (2003), pp. 351–362.

[135] Estel Cardellach and Antonio Rius. “A new technique to sense non-
Gaussian features of the sea surface from L-band bi-static GNSS re-
flections”. In: Remote Sensing of Environment 112.6 (2008), pp. 2927–
2937.

[136] James L Garrison et al. “Wind speed measurement using forward scat-
tered GPS signals”. In: IEEE Transactions on Geoscience and Remote Sens-
ing 40.1 (2002), pp. 50–65.

[137] Roberto Sabia et al. “Potential synergetic use of GNSS-R signals to
improve the sea-state correction in the sea surface salinity estimation:
Application to the SMOS mission”. In: IEEE Transactions on Geoscience
and Remote Sensing 45.7 (2007), pp. 2088–2097.

[138] Fran Fabra et al. “An empirical approach towards characterization of
dry snowlayers using GNSS-R”. In: 2011 IEEE International Geoscience
and Remote Sensing Symposium. IEEE. 2011, pp. 4379–4382.



186 Bibliography

[139] Attila Komjathy et al. “Sea ice remote sensing using surface reflected
GPS signals”. In: IGARSS 2000. IEEE 2000 International Geoscience and
Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Re-
mote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120).
Vol. 7. IEEE. 2000, pp. 2855–2857.

[140] Maria Belmonte Rivas. “Bistatic scattering of global positioning sys-
tem signals from Arctic sea ice”. PhD thesis. Citeseer, 2007.

[141] Maria Belmonte Rivas, James A Maslanik, and Penina Axelrad. “Bistatic
scattering of GPS signals off Arctic sea ice”. In: IEEE Transactions on
Geoscience and Remote Sensing 48.3 (2009), pp. 1548–1553.

[142] Francisco Martín et al. “Airborne soil moisture determination using
a data fusion approach at regional level”. In: 2011 IEEE International
Geoscience and Remote Sensing Symposium. IEEE. 2011, pp. 3109–3112.

[143] Nereida Rodriguez-Alvarez et al. “Airborne GNSS-R wind retrievals
using delay–Doppler maps”. In: IEEE transactions on geoscience and re-
mote sensing 51.1 (2012), pp. 626–641.

[144] Alejandro Egido et al. “Airborne GNSS-R polarimetric measurements
for soil moisture and above-ground biomass estimation”. In: IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sens-
ing 7.5 (2014), pp. 1522–1532.

[145] Nilda Sánchez et al. “On the synergy of airborne GNSS-R and Landsat
8 for soil moisture estimation”. In: Remote Sensing 7.8 (2015), pp. 9954–
9974.

[146] Y Jia et al. “GNSS reflectometry for remote sensing of soil moisture”.
In: 2015 IEEE 1st International Forum on Research and Technologies for
Society and Industry Leveraging a better tomorrow (RTSI). IEEE. 2015,
pp. 498–501.

[147] Wei Wan et al. “Initial results of China’s GNSS-R airborne campaign:
soil moisture retrievals”. In: Science Bulletin 60.10 (2015), pp. 964–971.

[148] Erwan Motte et al. “GLORI: A GNSS-R dual polarization airborne in-
strument for land surface monitoring”. In: sensors 16.5 (2016), p. 732.

[149] Joan Francesc Munoz-Martin et al. “Single-Pass Soil Moisture Retrieval
Using GNSS-R at L1 and L5 Bands: Results from Airborne Experi-
ment”. In: Remote Sensing 13.4 (2021), p. 797.



Bibliography 187

[150] Martin Unwin et al. “Spaceborne GNSS-reflectometry on TechDemoSat-
1: Early mission operations and exploitation”. In: IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote Sensing 9.10 (2016),
pp. 4525–4539.

[151] C Chew et al. “The sensitivity of ground-reflected GNSS signals to
near-surface soil moisture, as recorded by spaceborne receivers”. In:
2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
IEEE. 2017, pp. 2661–2663.

[152] Adriano Camps et al. “Sensitivity of GNSS-R spaceborne observations
to soil moisture and vegetation”. In: IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 9.10 (2016), pp. 4730–
4742.

[153] CC Chew and EE Small. “Soil moisture sensing using spaceborne GNSS
reflections: Comparison of CYGNSS reflectivity to SMAP soil mois-
ture”. In: Geophysical Research Letters 45.9 (2018), pp. 4049–4057.

[154] Christopher S Ruf et al. “A new paradigm in earth environmental
monitoring with the cygnss small satellite constellation”. In: Scientific
reports 8.1 (2018), pp. 1–13.

[155] Hugo Carreno-Luengo, Guido Luzi, and Michele Crosetto. “Impact
of the elevation angle on CYGNSS GNSS-R bistatic reflectivity as a
function of effective surface roughness over land surfaces”. In: Remote
Sensing 10.11 (2018), p. 1749.

[156] J. W. Betz and K. R. Kolodziejski. “Generalized Theory of Code Track-
ing with an Early-Late Discriminator Part I: Lower Bound and Coher-
ent Processing”. In: IEEE Transactions on Aerospace and Electronic Sys-
tems 45.4 (2009), pp. 1538–1556. ISSN: 0018-9251. DOI: 10.1109/TAES.
2009.5310316.

[157] J. W. Betz and K. R. Kolodziejski. “Generalized Theory of Code Track-
ing with an Early-Late Discriminator Part II: Noncoherent Processing
and Numerical Results”. In: IEEE Transactions on Aerospace and Elec-
tronic Systems 45.4 (2009), pp. 1557–1564. ISSN: 0018-9251. DOI: 10 .
1109/TAES.2009.5310317.

[158] C. J. Comp and P. Axelrad. “Adaptive SNR-based carrier phase mul-
tipath mitigation technique”. In: IEEE Transactions on Aerospace and
Electronic Systems 34.1 (1998), pp. 264–276. ISSN: 0018-9251. DOI: 10.
1109/7.640284.

https://doi.org/10.1109/TAES.2009.5310316
https://doi.org/10.1109/TAES.2009.5310316
https://doi.org/10.1109/TAES.2009.5310317
https://doi.org/10.1109/TAES.2009.5310317
https://doi.org/10.1109/7.640284
https://doi.org/10.1109/7.640284


188 Bibliography

[159] SA Weaver et al. Data from: How a GNSS receiver is held may affect static
horizontal position accuracy. 2015. DOI: doi:10.5061/dryad.8j616.
URL: https://doi.org/10.5061/dryad.8j616.

[160] Mohinder S Grewal, Lawrence R Weill, and Angus P Andrews. Global
positioning systems, inertial navigation, and integration. John Wiley &
Sons, 2007.

[161] B. W. Parkinson and J. Spilker. Global Positioning System: Theory and
Applications Volume 1. American Institute of Aeronautics and Astro-
nautics, Washington, 1996.

[162] E. Kaplan and C. Hegarty. Understanding GPS: Principles and Applica-
tions. Artech House, 2005. ISBN: 9781580538954. URL: https://books.
google.fr/books?id=-sPXPuOW7ggC.

[163] P Huang, Y Pi, and I Progri. “GPS signal detection under multiplica-
tive and additive noise”. In: The Journal of Navigation 66.4 (2013), pp. 479–
500.

[164] Maherizo Andrianarison. “New methods and architectures for high
sensitivity hybrid GNSS receivers in challenging environments”. PhD
thesis. École de technologie supérieure, 2018.

[165] Marco Pini, Emanuela Falletti, and Maurizio Fantino. “Performance
evaluation of C/N0 estimators using a real time GNSS software re-
ceiver”. In: 2008 IEEE 10th International Symposium on Spread Spectrum
Techniques and Applications. IEEE. 2008, pp. 32–36.

[166] John W Betz. “Effect of narrowband interference on GPS code tracking
accuracy”. In: Proceedings of the 2000 National Technical Meeting of The
Institute of Navigation. 2000, pp. 16–27.

[167] Mohammad Zahidul H Bhuiyan et al. “Performance evaluation of
carrier-to-noise density ratio estimation techniques for BeiDou Bl sig-
nal”. In: 2014 Ubiquitous Positioning Indoor Navigation and Location Based
Service (UPINLBS). IEEE. 2014, pp. 19–25.

[168] Sergio Benedetto and Ezio Biglieri. Principles of digital transmission:
with wireless applications. Springer Science & Business Media, 1999.

[169] James J Spilker Jr et al. Global positioning system: theory and applications,
volume I. American Institute of Aeronautics and Astronautics, 1996.

[170] Emanuela Falletti, Marco Pini, and Letizia Lo Presti. “Low complexity
carrier-to-noise ratio estimators for GNSS digital receivers”. In: IEEE
transactions on aerospace and electronic systems 47.1 (2011), pp. 420–437.

https://doi.org/doi:10.5061/dryad.8j616
https://doi.org/10.5061/dryad.8j616
https://books.google.fr/books?id=-sPXPuOW7ggC
https://books.google.fr/books?id=-sPXPuOW7ggC


Bibliography 189

[171] Michelle Marie Sayre. “Development of a block processing carrier to
noise ratio estimator for the global positioning system”. PhD thesis.
Ohio University, 2003.

[172] Paul D Groves. “GPS Signal-to-Noise Measurement in Weak Signal
and High-Interference Environments”. In: Navigation 52.2 (2005), pp. 83–
94.

[173] Xia Xue, Honglei Qin, and Hui Lu. “Signal power calibration of com-
plex urban kinematic navigation system simulator based on C/N0 es-
timation”. In: Measurement 136 (2019), pp. 415–428.

[174] Mohammad S Sharawi, Dennis M Akos, and Daniel N Aloi. “GPS
C/N0 estimation in the presence of interference and limited quanti-
zation levels”. In: IEEE transactions on aerospace and electronic systems
43.1 (2007), pp. 227–238.

[175] Mark L Psiaki, Dennis M Akos, and Jonas Thor. “A comparison of"
direct RF sampling" and" downconvert & sampling" GNSS receiver
architectures”. In: Proceedings of the 16th International Technical Meeting
of the Satellite Division of The Institute of Navigation (ION GPS/GNSS
2003). 2003, pp. 1941–1952.

[176] Norman C Beaulieu, Andrew S Toms, and David R Pauluzzi. “Com-
parison of four SNR estimators for QPSK modulations”. In: IEEE com-
munications letters 4.2 (2000), pp. 43–45.

[177] David R Pauluzzi and Norman C Beaulieu. “A comparison of SNR
estimation techniques for the AWGN channel”. In: IEEE Transactions
on communications 48.10 (2000), pp. 1681–1691.

[178] Marc-Antoine Fortin. “Robustness Techniques for Global Navigation
Satellite Systems (GNSS) Receivers”. PhD thesis. École de technologie
supérieure, 2015.

[179] M Petovello. “Carrier-to-noise density and AI for INS/GPS integra-
tion”. In: Inside GNSS 4.5 (2009), pp. 20–29.

[180] Stefano Cioni, Giovanni E Corazza, and Michel Bousquet. “An ana-
lytical characterization of maximum likelihood signal-to-noise ratio
estimation”. In: 2005 2nd International Symposium on Wireless Commu-
nication Systems. IEEE. 2005, pp. 827–830.

[181] R Gagliardi and C Thomas. “PCM data reliability monitoring through
estimation of signal-to-noise ratio”. In: IEEE Transactions on Communi-
cation Technology 16.3 (1968), pp. 479–486.



190 Bibliography

[182] Kannan Muthuraman and Daniele Borio. “C/N0 Estimation for Mod-
ernized GNSS Signals: Theoretical Bounds and Novel Iterative Es-
timator”. In: NAVIGATION, Journal of the Institute of Navigation 57.4
(2010), pp. 309–323.

[183] S. Satyanarayana, D. Borio, and G. Lachapelle. “C/N0 estimation: de-
sign criteria and reliability analysis under global navigation satellite
system (GNSS) weak signal scenarios”. In: IET Radar, Sonar Navigation
6.2 (2012), pp. 81–89. ISSN: 1751-8784. DOI: 10.1049/iet-rsn.2011.
0164.

[184] Shashank Satyanarayana, Daniele Borio, and Gérard Lachapelle. “C/N0
estimation: design criteria and reliability analysis under global navi-
gation satellite system (GNSS) weak signal scenarios”. In: IET Radar,
Sonar & Navigation 6.2 (2012), pp. 81–89.

[185] Eugene F Knott. Radar cross section measurements. Springer Science &
Business Media, 2012.

[186] Valery U Zavorotny and Alexander G Voronovich. “Bistatic GPS sig-
nal reflections at various polarizations from rough land surface with
moisture content”. In: IGARSS 2000. IEEE 2000 International Geoscience
and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role
of Remote Sensing in Managing the Environment. Proceedings (Cat. No.
00CH37120). Vol. 7. IEEE. 2000, pp. 2852–2854.

[187] Georges Stienne et al. “Cycle slip detection and repair with a circular
on-line change-point detector”. In: Signal processing 100 (2014), pp. 51–
63.

[188] Michèle Basseville and Igor V. Nikiforov. Detection of Abrupt Changes -
Theory and Application. Prentice Hall, Inc., 1993, p. 550.

[189] Fredrik. Gustafsson. Adaptive filtering and change detection. John Wiley
& Sons Ltd, 2000, p. 500.

[190] E. S. PAGE. “CONTINUOUS INSPECTION SCHEMES”. In: Biometrika
41.1-2 (June 1954), pp. 100–115.

[191] Samaneh Aminikhanghahi and Diane J Cook. “A survey of methods
for time series change point detection”. In: Knowledge and information
systems 51.2 (2017), pp. 339–367.

[192] Ryan Prescott Adams and David JC MacKay. “Bayesian online change-
point detection”. In: arXiv preprint arXiv:0710.3742 (2007).

https://doi.org/10.1049/iet-rsn.2011.0164
https://doi.org/10.1049/iet-rsn.2011.0164


Bibliography 191

[193] F. Desobry, M. Davy, and C. Doncarli. “An online kernel change detec-
tion algorithm”. In: IEEE Transactions on Signal Processing 53.8 (2005),
pp. 2961–2974. DOI: 10.1109/TSP.2005.851098.

[194] Gerrit JJ van den Burg and Christopher KI Williams. “An evaluation
of change point detection algorithms”. In: arXiv preprint arXiv:2003.06222
(2020).

[195] Charles Truong, Laurent Oudre, and Nicolas Vayatis. “Selective re-
view of offline change point detection methods”. In: Signal Processing
167 (2020), p. 107299.

[196] Venkata Jandhyala et al. “Inference for single and multiple change-
points in time series”. In: Journal of Time Series Analysis 34.4 (2013),
pp. 423–446.

[197] Siddhartha Chib. “Estimation and comparison of multiple change-
point models”. In: Journal of econometrics 86.2 (1998), pp. 221–241.

[198] Alan S. Willsky and Harold L. Jones. “A generalized likelihood ratio
approach to the detection and estimation of jumps in linear systems”.
In: IEEE Transactions on Automatic Control 21 (1976), pp. 108–112.

https://doi.org/10.1109/TSP.2005.851098




193

Résumé Étendu de la Thèse

L’eau contenue dans les sols et plans d’eau est un paramètre clé du cycle hy-
drologique [1, 2]. Les zones inondables et les plans d’eau couvrent au moins
8% des paysages sur Terre [8, 9]. Malgré son rôle important, peu de con-
naissances ont été acquises concernant l’eau stockée dans les zones humides
jusqu’à ce que les techniques de télédétection apparaissent comme des in-
struments potentiels.

La Réflectométrie GNSS (GNSS-R) est une technique de télédétection bis-
tatique émergente qui utilise les signaux des Systèmes Globaux de Navi-
gation par Satellites (principalement les signaux GPS, en bande L) comme
sources d’opportunité pour caractériser la surface terrestre. Un capteur GNSS-
R reçoit les signaux GNSS directs des satellites ainsi que les signaux réfléchis
par la surface de la Terre. Les signaux réfléchis transportent des informations
sur la surface réfléchissante.

En GNSS-R, l’humidité du sol peut être obtenue à partir des mesures de
réflectivité. Ces mesures sont directement liées aux amplitudes des signaux
GNSS. Le rapport entre le niveau de puissance de la porteuse reçue et le
niveau de puissance du bruit peut être utilisé pour observer l’amplitude du
signal GNSS. Ce rapport est appelé rapport porteuse sur densité de bruit
(C/N0) lorsque la puissance du bruit est définie pour une unité de largeur de
bande. Il s’agit d’une mesure normalisée du rapport signal à bruit (SNR).

Cette thèse est consacrée à l’étude de techniques GNSS-R pour la détec-
tion de plans d’eau à l’aide d’un capteur aéroporté à basse altitude. Nous es-
timons à un rythme élevé les amplitudes des signaux GNSS directs et réfléchis,
à partir desquels la réflectivité de la surface est dérivée. Nous développons
un capteur GNSS-R aéroporté léger permettant de répondre aux exigences
de haute résolution temporelle et spatiale de notre application. Les signaux
GNSS sont segmentés en parties stationnaires sur la base des ruptures dans
les mesures de réflectivité associées aux différentes zones de réflexion. Les
objectifs généraux et les contributions de ce travail peuvent être résumés
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comme suit :

– Développement de techniques de traitement des signaux GNSS pour la
réflectométrie aéroportée. Ces techniques impliquent l’acquisition, la
poursuite et la datation des données GNSS brutes dans des configura-
tions classiques et maître-esclave.

– Développement d’un nouveau modèle probabiliste utilisant des tech-
niques de traitement du signal GNSS dédiées pour l’estimation en ligne
des amplitudes du signal GNSS et, par conséquent, du rapport C/N0 à
un rythme élevé.

– Développement d’un nouveau système de segmentation des signaux
GNSS qui associe des outils préexistants avec les techniques proposées
pour différencier les surfaces des plans d’eau dans les reliefs.

– Évaluation des systèmes et méthodologies proposés sur données réelles.
Les données sont enregistrées à l’aide d’un capteur GNSS conçu pour
ce travail.

– Mise en œuvre d’une nouvelle analyse quantitative pour la détection
des plans d’eau et la localisation de leurs bords à l’aide de la technique
radar proposée, appliquée des données recueillies durant le vol.

Les techniques développées sont présentées dans ce manuscrit à travers
cinq chapitres. Dans le premier chapitre, nous présentons brièvement la con-
stante diélectrique du sol et les modèles d’émissions permettant de calculer
la teneur en humidité du sol. Un intérêt particulier est porté au principe de
GNSS-R dans ce chapitre. Les différentes configurations géométriques des
systèmes GNSS-R sont discutées en détail. Nous présentons également les
différentes applications du GNSS-R et les principales méthodes de traitement
du signal utilisées dans son cadre.

Le deuxième chapitre présente une revue de la littérature sur les dif-
férentes techniques d’estimation du rapport porteuse sur densité de bruit
et leur application à la détermination de l’humidité du sol par GNSS-R. Ce
chapitre présente le modèle des signaux GNSS, ainsi que le traitement GNSS
front-end pour aboutir à l’expression du rapport porteuse sur densité de
bruit. Ce chapitre étudie également les différents algorithmes d’estimation
de C/N0 qui ont été publiés dans la littérature au cours des dernières décen-
nies.
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Dans le troisième chapitre, nous proposons un modèle qui estime le rap-
port C/N0 à un rythme élevé afin de maximiser la résolution temporelle
des observations. Nous montrons dans ce chapitre que, dans un récepteur
à quantification 1 bit, la composante en phase du signal peut fournir une
observation directe de l’amplitude. Nous proposons un filtre de Kalman
étendu pour inverser l’expression non linéaire qui lie les amplitudes des sig-
naux, variables dans le temps, avec les observations bruitées de la corréla-
tion fournies par la boucle de poursuite. Nous montrons que l’estimateur
d’amplitude GNSS proposé fournit des résultats similaires à un récepteur
GNSS scientifique du commerce, mais avec un débit de données beaucoup
plus élevé.

Dans le quatrième chapitre, nous proposons un modèle de segmenta-
tion qui divise les signaux GNSS en parties stationnaires associées à dif-
férentes zones de réflexion. Des ruptures d’amplitude des signaux GNSS
réfléchis se produisent lorsque les empreintes des satellites évoluent d’un
type de surface de réflexion à un autre. Nous proposons un algorithme qui
localise les ruptures détectés dans le signal dans une fenêtre de travail op-
timale. Nous proposons également un algorithme de fusion afin de dimin-
uer le nombre de fausses détections de rupture. Ce chapitre se termine par
l’évaluation des performances du système proposé sur données synthétiques
et par l’évaluation de ses performances sur des données GNSS aéroportées
réelles.

Le cinquième chapitre est consacré à l’expérimentation GNSS-R aéroportée
réalisée dans le cadre de ce travail ainsi qu’à ses résultats. Dans ce chapitre,
nous présentons la configuration GNSS-R aéroportée, les techniques de traite-
ment ainsi que le matériel GNSS-R utilisés pour localiser les observations
GNSS-R. Nous évaluons l’architecture récepteur logiciel développée dans ce
travail de thèse pour le traitement des données GNSS aéroportées. Nous
exposons la capacité de l’approche proposée à détecter les plans d’eau à
l’intérieur des terres. Il est démontré que la technique proposée permet de
localiser au mètre près les bords des surfaces des plans d’eau détectés.

Dans ce qui suit, nous présentons les principales contributions de cette
thèse à travers une série de brèves sections.
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1 Modèle GNSS front-end

1.1 Traitement front-end des signaux GNSS

Cette section est consacrée au traitement front-end du signal GPS L1 C/A.
Considérons le signal GPS C/A s(t) après descente à une fréquence intermé-
diaire f IF :

s(t) = ∑
l∈V

K AlCAl(t + τl) sin(2π fl t + ϕl) + K η(t) (1)

où V est l’ensemble des satellites visibles, Al(t) est l’amplitude du signal,
K est le gain du contrôle automatique (AGC), et τ est le retard de code. fl

et ϕl sont respectivement la fréquence et le retard de phase de la porteuse
avec fl = f IF + f D

l , η(t) est un bruit additif Gaussien de moyenne nulle de
variance unitaire. Le signal s(t) après numérisation peut s’exprimer comme
suit :

si = ∑
l∈V

KAlCAl(ti + τl) sin(2π fl ti + ϕl) + Kηi (2)

Un front-end fournit une composante en phase et une composante en
quadrature du signal reçu à l’aide de répliques locales. Les répliques locales
synchronisées (Prompt) avec le signal reçu sont définies pour un satellite v
par :

civ,i = CAv(ti + τv) sin(2π fv ti + ϕv) (3)

cqv,i = CAv(ti + τv) cos(2π fv ti + ϕv) (4)

où ti est l’instant associé à la fréquence d’échantillonnage fs et τv est le retard
du code. fv et ϕv sont respectivement les estimées de la fréquence et du re-
tard de phase de la porteuse.

La composante en phase de la corrélation Iv et la composante en quadra-
ture Qv pour chaque satellite v sont obtenues en intégrant les signaux échan-
tillonnés sur le temps d’intégration cohérent Tc. Les échantillons accumulés
en phase, I, et en quadrature, Q, du corrélateur prompt sont exprimés comme
suit :
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Iv = ∑
fs Tc
i=1 si civ,i (5)

Qv = ∑
fs Tc
i=1 si cqv,i (6)

Les résultats de corrélation des canaux prompt I et Q sont ensuite trans-
mis aux algorithmes d’estimation de rapport C/N0.

1.2 Dérivation de l’expression du rapport porteuse sur den-

sité de bruit

Le rapport signal sur bruit SNR est dérivé des propriétés statistiques des
deux composantes du signal de corrélation. En supposant que le code local
et la porteuse sont parfaitement alignés avec les signaux reçus, les équations
(5) et (6) peuvent être écrites comme suit :

Iv =
K Av fs Tc

2
+ K η I

v (7)

Qv = K ηQ
v (8)

où η I
v et ηQ

v sont des bruits aléatoires distribués selon une distribution gaussi-
enne centrée de variance fs Tc

2 . Alors, une définition classique du SNR est
donnée par :

SNR =

(
mean(Iv)
std(Qv)

)2

=
A2

v fs Tc

2
(9)

Dans cette équation, le SNR est proportionnel au carré de l’amplitude du
signal et indépendant de K, le gain de l’AGC. Le rapport porteuse sur densité
de bruit peut alors être exprimé en dB-Hz comme suit:

C/Nk
0 = 20 log

(
Av
√

fs Tc√
2

)
+ 10 log (BW) (10)

où Av√
2

est la valeur efficace de tension du signal et BW est la largeur de bande
équivalente au bruit de l’étage d’entrée RF du récepteur. C’est cette équation
qui est utilisée dans notre travail pour dériver le rapport C/N0 à partir des
estimations d’amplitude.
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1.3 Modèle front-end GNSS à un bit

La Figure 1 montre le schéma fonctionnel de traitement de la composante en
phase dans un récepteur front-end GNSS. Dans notre approche, une quan-
tification de 1 bit est appliquée.

ADC ∑
𝑠𝑠𝑅𝑅(𝑡𝑡) s(𝑡𝑡) si i𝑣𝑣,i 𝐼𝐼𝑣𝑣

sin(2𝜋𝜋𝑓𝑓𝐿𝐿𝐿𝐿𝑡𝑡) c𝑣𝑣,i

FIGURE 1: Schéma fonctionnel du récepteur radiofréquence
GNSS.

Les expressions des signaux de la Figure 1 sont définies après numérisa-
tion par :

si =

⌊
∑
l∈V

KAlCAl(ti + τl) sin(2π fl ti + ϕl) + Kηi

⌋
>0

(11)

cv,i = ⌊CAv(ti + τv) sin(2π fv ti + ϕv)⌋>0 (12)

où si et cv,i sont respectivement le signal numérisé et la réplique locale. ⌊. . . ⌋>0

est une fonction de signe qui associe -1 aux valeurs négatives du signal et +1
aux valeurs positives ou nulles.

Nous définissons iv,i = si cv,i comme prenant la valeur +1 lorsque si est
égal à cv,i et -1 lorsqu’ils sont différents. Définissons la valeur moyenne de
iv,i comme :

E(iv,i) = ∑
x∈{−1,1}

x P(iv,i = x)

= 2 P(iv,i = 1)− 1 (13)

où P(iv,i = x) est la probabilité que iv,i = si cv,i prenne la valeur x. Dans notre
modèle GNSS front-end, les échantillons de bruit iv,i sont intégrés sur une
période de code CDMA (Tc = 1 ms). En supposant que les valeurs aléatoires
de iv,i sont identiquement distribuées, nous dérivons la valeur moyenne de
Iv comme suit :



2. Estimation de l’amplitude du signal GNSS 199

E(Iv) = E(iv,i) Tc fs (14)

où Tc fs est le nombre d’échantillons intégrés sur une période de code. E(Iv)

est défini par la probabilité P(iv,i = 1). Nous montrons dans la section 2.1
que cette probabilité est une fonction de Av.

2 Estimation de l’amplitude du signal GNSS

2.1 Linéarisation de l’équation de mesure

Construisons le modèle d’approximation suivant du signal échantillonné du
satellite v après numérisation :

ŝi = ∑
v∈V

AvCAv(ti + τ̂v) sin(2π f̂v ti + ϕ̂v) (15)

si ≈ ⌊ŝi + ηi⌋>0 (16)

and

cv,i ≈
⌊

CAv(ti + τ̂v) sin(2π f̂v ti + ϕ̂v)
⌋
>0

(17)

La probabilité que la variable aléatoire iv,k prenne la valeur +1 s’écrit
comme suit :

P (iv,i = 1) = P (cv,i = 1) P (ηi ≥ −ŝi/cv,i = 1) (18)

+ P (cv,i = −1) P (ηi < −ŝi/cv,i = −1)

Une estimation de la probabilité que la réplique locale soit positive peut
alors être écrite comme suit :

P (cv,i = 1) =

fsTc

∑
i=1

(cv,i + 1)

2 fsTc
(19)
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P(cv,i = −1) peut se calculer de manière similaire. Une estimée de la pre-
mière probabilité de l’expression (18) associée au bruit aléatoire additif sur le
signal est définie par :

P (η ≥ −ŝi/cv,i = 1) =
2

fsTc

∑
i=1

(cv,i + 1)
∑
{ĩ}1

v

P(η ≥ −ŝi) (20)

où l’ensemble {ĩ}1
v est constitué des valeurs de i telles que cv,i = 1. La proba-

bilité P(η ≥ −ŝi) est traitée avec la fonction d’erreur tabulée er f c comme suit
:

∑
{ĩ}1

v

P(η ≥ −ŝi) = ∑
{ĩ}1

v

∫ +∞

−ŝi

1√
2π

exp(
−x2

2
) dx

= ∑
{ĩ}1

v

1
2

er f c
(
−ŝi√

2

)
(21)

L’estimée de la deuxième probabilité de l’expression (18) associée au bruit
aléatoire additif sur le signal peut être dérivée comme l’expression (20) sur
l’ensemble {ĩ}2

v qui définit les valeurs de l’indice i telles que cv,i = −1. Selon
les équations (14), (14) et (18), nous dérivons l’expression suivante pour la
fonction de mesure non linéaire h(...) :

hv,k
(
{Av,k}v∈V ; {θv,k}v∈V

)
= ∑

{ĩ}1
v,k

er f c
(
−ŝi√

2

)

− ∑
{ĩ}2

v,k

er f c
(
−ŝi√

2

)
+

fsTc

∑
i=1

|cv,i − 1| − Tc fs

où θv,k = {τ̂v,k, f̂v,k, ϕ̂v,k} désigne les paramètres du signal GNSS fournis par
la boucle à verrouillage de phase (PLL) et la boucle à verrouillage de délai de
code (DLL) du récepteur. Le signal GPS étant de très faible rapport SNR, les
valeurs de ŝi sont faibles. L’approximation de Taylor suivante de la fonction
tabulée peut dans ce cas être utilisée afin de linéariser l’expression :

er f c(x) ≈ 1 − 2√
π

x (22)
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Après simplification, nous développons l’expression de ŝi pour trouver
une expression linéaire entre Iv,k et Av,k. Ainsi, pour un ensemble V de n
satellites en vue, nous avons l’équation linéaire suivante :

IV,k ≈ HAV,k + ωk (23)

avec IV,k = [I1,k, . . . , In,k]
T et AV,k = [A1,k, . . . , An,k]

T. H est une matrice qui
représente la contribution des satellites dans Iv,k et ωk est un bruit gaussien.
Nous présentons sur la Figure 2 les différents éléments de H. Pour une com-
posante Ii,k, hi,i est la contribution de corrélation du signal du satellite i et hi,j

est la contribution d’inter-corrélation avec le signal du satellite j. hi,∀j est la
contribution globale de tous les satellites dans Ii,k.

𝐼1,𝑘
𝐼2,𝑘
𝐼3,𝑘

.

.
𝐼𝑛,𝑘

=

ℎ1,1 ℎ1,2 ℎ1,3 . . .ℎ1,𝑛
ℎ2,1 ℎ2,2 ℎ2,3 . . .ℎ2,𝑛
ℎ3,1 ℎ3,2 ℎ3,3 . . .ℎ3,𝑛

.      .      .      . . .   .   

.       .      .      . . .   .  
ℎ𝑛,1 ℎ𝑛,2 ℎ𝑛,3 . . .ℎ𝑛,𝑛

𝐴1,𝑘
𝐴2,𝑘
𝐴3,𝑘

.

.
𝐴𝑛,𝑘

+𝜔𝑘  

ℎ𝑖,𝑖 : correlation contribution ℎ𝑖,𝑗≠𝑖 : cross-correlation contributions 

ℎ𝑖,∀𝑗 : global contributions 

FIGURE 2: Contribution de chaque satellite dans les Iv,k.

2.2 Estimation Kalman étendue de l’amplitude du signal

Nous proposons un filtre d’état sous la forme d’un filtre de Kalman étendu
qui utilise les composantes de corrélation du signal GNSS comme observa-
tions pour fournir des estimations de l’amplitude du signal GNSS à un taux
de 1 ms, période du code CDMA. Nous supposons que les amplitudes sont
constantes pendant cette durée. Le taux de variation de Av,k est noté Ȧv,k.
Nous considérons les équations d’état linéaires suivantes pour satellite v :

Av,k = Av,k−1 + Tc Ȧv,k−1 + ν1,k (24)

Ȧv,k = Ȧv,k−1 + ν2,k (25)
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ν1,k, ν2,k représentent les erreurs sur le modèle. Ils sont respectivement le
bruit d’état sur l’amplitude et le bruit d’état sur les variations d’amplitude.
L’équation de mesure non linéaire est définie par :

Iv,k = h
(
{Av,k}v∈V ; {θv,k}v∈V

)
+ ωk (26)

où h(...) est une fonction non linéaire et ωk est un bruit gaussien de variance
R. θv,k = {τ̂v,k, f̂v,k, ϕ̂v,k} désigne les paramètres du signal GNSS fournis par
la boucle à verrouillage de phase (PLL) et la boucle à verrouillage de délai
(DLL) du récepteur. Le principe de l’architecture du récepteur est présenté
dans la Figure 3.

DLL 
PLL 

DLL 
PLL 

DLL 
PLL 

𝑠R(𝑡) 

𝜏̂1,𝑘 , 𝑓1,k, 𝜙�1,𝑘

Tracking modules 

State 
Filter 

𝐶/𝑁01 

𝐶/𝑁02 

𝐶/𝑁0𝑛 

𝐼1,𝑘 

𝐼𝑛,𝑘 

𝐼2,𝑘 
𝜏̂2,𝑘 , 𝑓2,k, 𝜙�2,𝑘

𝜏̂𝑛,𝑘 , 𝑓n,k, 𝜙�𝑛,𝑘

FIGURE 3: Implémentation de l’estimation proposée dans un
récepteur GNSS.

2.3 Evaluation sur données réelles

L’objectif de cette expérimentation est d’évaluer l’estimateur d’amplitude
proposé, qui utilise un récepteur GNSS à quantification 1 bit, sur des signaux
GPS L1 C/A. L’évaluation est réalisée en comparant le rapport porteuse sur
densité de bruit C/Nk

0 obtenu en utilisant l’approche proposée avec le rap-
port porteuse sur densité de bruit C/Nr

0 fourni par le récepteur GNSS OEM7
NovAtel. Nous calculons l’estimation de C/Nk

0 en utilisant l’équation (10),
où les amplitudes des signaux sont fournies par le filtre de Kalman toutes
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les 1 ms. Nous montrons sur la Figure 4, les estimations de C/Nr
0 fournies

chaque seconde et les estimations de C/Nk
0 fournies chaque milliseconde

pour différents satellites. Nous rapportons également les observations du
rapport porteuse sur densité de bruit C/No

0 obtenues chaque milliseconde
en utilisant les amplitudes dérivées de l’équation (23).
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FIGURE 4: Évaluation de l’estimation du rapport C/N0.

Les résultats obtenus montrent un bon accord entre le rapport porteuse
sur densité de bruit C/Nr

0 fourni par le récepteur GNSS NovAtel et le rapport
C/Nk

0 estimé par notre approche dans différents scénarios. Par conséquent,
nous concluons que notre approche peut fournir une précision similaire à
celle du récepteur GNSS de NovAtel. Cependant, le modèle proposé fournit
des estimations de C/N0 à un taux beaucoup plus élevé (1000 Hz) que le
récepteur GNSS NovAtel (1 Hz).

3 Segmentation des signaux GNSS

3.1 Modèle de transition

Les amplitudes des signaux GNSS réfléchis sont directement proportionnelles
à la réflectivité de la première zone de Fresnel de réflexion des signaux satel-
litaires. Un modèle de transition est adapté pour caractériser les ruptures
d’amplitudes des signaux GNSS réfléchis associées au déplacement des em-
preintes des satellites d’un type de surface à un autre. Nous montrons sur la
Figure 5, le modèle de signal dans la fenêtre de travail.

Dans ce modèle, lorsque la réflexion se produit sur un premier type de
surface, la valeur moyenne de l’amplitude du signal GNSS est égale à m1. La
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FIGURE 5: Modèle de signal dans une fenêtre de travail.

valeur moyenne de l’amplitude du signal GNSS atteint ensuite la valeur m2

à mesure que la réflexion passe sur un deuxième type de surface.

3.2 Système de détection de rupture en ligne/hors ligne

3.2.1 Détection et localisation de rupture

Une approche Kalman CUSUM est utilisée pour détecter les ruptures en ligne
en utilisant l’innovation du filtre [190]. Le détecteur CUSUM, cependant, ne
détecte une rupture qu’après sa position réelle. Nous proposons un estima-
teur de localisation par maximum de vraisemblance (MLLE) pour un géo-
positionnement précis des bords des surfaces scannées. L’estimation pro-
posée est proche de l’optimalité car nous maximisons les tailles des fenêtres
de travail dans lesquelles les ruptures détectées sont localisés.

Selon le modèle de signal de la Figure 5 et en supposant que le bruit ad-
ditif est un bruit blanc gaussien de moyenne nulle, nous dérivons une esti-
mation du maximum de vraisemblance de t, l’instant de départ de la tran-
sition, et de ∆t, la durée de la transition. Les estimations sont traitées avec
les observations des amplitudes des signaux GNSS dans la fenêtre de travail
(x̃n̂e

i−1
, . . . , x̃t̂a

i+1
). Les observations de l’amplitude GNSS x̃k sont obtenues à

l’aide de l’expression (23). n̂e
i est la localisation de la iime rupture pour le

satellite l et t̂a
i est le iime instant de rupture fourni par le détecteur CUSUM.

N est le nombre d’échantillons dans la fenêtre de travail définie entre ne
i−1 et

ta
i+1. Pour estimer l’instant de rupture localisé ne

i , nous définissons la fonction
de vraisemblance comme suit :
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
m1 et m2 sont les valeurs moyennes de l’amplitude du signal GNSS avant et
après la rupture, respectivement. fn est une droite échantillonnée qui mod-
élise la croissance de la réflectivité entre (ne

i−1 + t, m1) et (ne
i−1 + t + ∆t, m2).

En pratique, les paramètres de la fonction de vraisemblance logarithmique
sont estimés à l’aide de l’estimation empirique du maximum de vraisem-
blance. Les estimations empiriques du maximum de vraisemblance t̂ et ∆̂t
sont dérivées de la somme pondérée du log de l’écart type à chaque segment,
par :

(t̂, ∆̂t) = Argmin︸ ︷︷ ︸
t,∆t

{
t log(σ̂1) + ∆t log(σ̂f ) + (N − t − ∆t + 1) log(σ̂2)

}
(28)

D’après le modèle, la position réelle de la frontière entre deux zones dif-
férentes est supposée se trouver en ne

i = ne
i−1 + t̂ + ∆̂t

2 .

3.2.2 Fusion de segments

En présence de bruit, l’algorithme CUSUM sursegmente les mesures d’amplitude
GNSS. Nous proposons un algorithme de fusion des segments qui utilise
leurs propriétés statistiques afin de diminuer le nombre de fausses alarmes
dans les ruptures détectées. Nous montrons sur la Figure 6 l’architecture de
l’algorithme de segmentation qui intègre l’étape de traitement de fusion.

Le processus de fusion proposé commence par définir l’intervalle de con-
fiance de l’estimation de la moyenne m pour chaque segment de signal. Dans
notre cas, la moyenne suit une distribution t de Student puisque l’écart type
réel σ n’est pas connu. La Figure 7 représente les 3 différents cas d’intervalles
de confiance considérés dans notre algorithme de fusion.
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FIGURE 6: Architecture de l’algorithme de rupture avec fusion.
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FIGURE 7: Positions relatives possibles des intervalles de confi-
ance.

Dans le cas du chevauchement, nous calculons le pourcentage de chevauche-
ment et s’il dépasse un seuil, nous fusionnons les segments. Dans le cas
de l’inclusion, nous comparons la différence de moyenne entre les segments
avec un seuil de symétrie pour déterminer si la fusion doit être mise en œu-
vre. Enfin, la moyenne des segments est recalculée après fusion.

3.3 Segmentation des mesures GNSS aéroportées réelles

Nous montrons sur la Figure 8 les mesures de réflectivité associées aux réflex-
ions sur le sol et sur des plans d’eau obtenues avec notre récepteur GNSS-R,
embarqué sur un autogire. Le signal de réflectivité augmente avec la teneur
en eau des surface scannées.

Les ruptures dans les mesures de réflectivité sont détectées en ligne dans
la première étape en utilisant l’approche Kalman-CUSUM (Figure 8a). Dans
la deuxième étape, nous localisons ces ruptures à l’aide de l’approche MLLE
proposée (Figure 8b). Ensuite, le signal est segmenté en segments station-
naires associés à différents niveaux de réflectivité moyenne. Nous montrons
en bleu l’intervalle de confiance associé à chaque segment. Nous observons
sur la Figure 8c un phénomène de sur-segmentation résultant de fausses
alarmes dans la détection de rupture par l’approche CUSUM. Nous inté-
grons le processus de fusion et nous segmentons à nouveau le signal (Figure
8d). Nous remarquons une diminution significative du nombre de fausses
alarmes.
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FIGURE 8: Différentes étapes de la segmentation.

4 Réflectométrie GNSS aéroportée pour la détec-

tion de plans d’eau

4.1 Configuration GNSS-R bi-statique aéroportée

Le GNSS-R consiste à utiliser les signaux GNSS reçus sur Terre directement
des satellites GNSS ainsi qu’après une réflexion sur la surface terrestre. Dans
notre implémentation, nous utilisons la géométrie à double antenne GNSS-R
décrite dans la Figure 9. Les signaux GNSS directs sont perçus par une an-
tenne à polarisation circulaire droite (RHCP), et les signaux GNSS réfléchis
sont perçus par une antenne à polarisation circulaire gauche (LHCP) après
diffusion spéculaire depuis les différentes surfaces scannées le long de la tra-
jectoire de vol.

Dans ce travail, nous traitons les amplitudes des signaux d’antenne RHCP
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FIGURE 9: Géométrie du système GNSS-R aéroporté

et LHCP toutes les 20 ms afin de mesurer la réflectivité de la surface. Les
mesures de réflectivité à 20 ms sont définies comme le rapport des ampli-
tudes des signaux d’antenne LHCP réfléchis Ar

LHCP sur les signaux directs
RHCP Ad

RHCP comme indiqué ci-dessous :

Γ(t) =
Ar

LHCP(t)
Ad

RHCP(t)
(29)

Nous associons cette mesure à la localisation du point spéculaire à un
taux de 20 ms.

4.2 Configuration matérielle du GNSS-R aéroporté

Un système GNSS-R a été conçu pour ce travail pour être embarqué à bord
d’un autogire, de taille et de poids réduits. Une antenne RHCP est inté-
grée au nez de l’autogire et une antenne LHCP est fixée sous l’autogire. Une
carte de vol de drone est également utilisée afin d’enregistrer la position de
l’autogire par rapport au temps GPS. La Figure 10 montre l’autogire utilisé,
équipé des différents capteurs intégrés.

L’autogire est également équipé d’élements utilisés pour la collecte des
données GNSS-R autres que les antennes. Le système GNSS-R utilise un
numériseur L1-L5 conçu spécialement pour ce travail par l’entreprise Syntony
GNSS, une bobine de fibre optique, de diviseurs/combineurs de signaux et
de batteries d’alimentation. La bobine de fibre optique introduit un retard
supplémentaire au signal de l’antenne LHCP avant qu’il ne soit combiné au
signal de l’antenne RHCP. Il s’agit d’une distinction importante de ce travail
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FIGURE 10: Autogire utilisé pour l’expérimentation, équipé des
différents capteurs.

thèse, car cette ligne à retard permet un traitement séparé des signaux direct
et réfléchis en utilisant un récepteur monocanal avec une synchronisation
parfaite.

4.3 Système logiciel GNSS-R aéroporté

Nous présentons dans la Figure 11 le système logiciel GNSS-R utilisé dans
notre expérimentation aéroportée.
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Combiner
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Digitizer
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Tracking

Reflectivity 
Estimation

Amplitude 
Estimation
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Drone Board 
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Specular Point 
Localization

Segments linked
to reflecting surfaces

FIGURE 11: Système GNSS-R aéroporté

Après avoir collecté les données GNSS brutes, des techniques de traite-
ment des signaux GNSS dédiées sont mises en œuvre dans notre récepteur
logiciel GNSS pour l’extraction des données GNSS requises. Le traitement
des signaux GNSS se fait dans une configuration maître/esclave. Il en ré-
sulte des observations GNSS liées aux signaux directs et réfléchis.
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Les données GNSS fournies par les boucles de poursuite des signaux di-
rects et réfléchis sont utilisées afin d’observer les amplitudes des signaux
GNSS. Ensuite, les mesures de réflectivité sont dérivées des amplitudes des
signaux GNSS en fonction du temps GPS. Les signaux GNSS sont segmentés
en intervalles stationnaires à partir du détecteur de rupture et de la tech-
nique de segmentation développés dans ce travail. Ces segments sont as-
sociés à différentes zones de réflexions représentées par la localisation des
points spéculaires.

4.4 Expérimentation en vol

4.4.1 Trajectoire de vol

Le vol a eu lieu dans le Nord de la France et a débuté à 14h45 UTC, le 19
Octobre 2020 et a duré 45 min. Nous avons scanné une large zone qui borde
la Manche sur une trajectoire de ∼ 71 km entre Calais, Escalles et Ardres.
La Figure 12 représente les traces des premières ellipses de Fresnel des em-
preintes des satellites d’angles d’élévation supérieurs à 50◦ le long de la tra-
jectoire de vol, tracées sur fond de carte IGN à l’aide du logiciel QGIS.

FIGURE 12: Traces d’empreintes satellitaires d’angles
d’élévation élevés le long de la trajectoire de vol (fond de

carte IGN).

4.4.2 Segmentation des signaux radar

Nous montrons sur la Figure 13, la segmentation automatique des mesures
GNSS par la technique radar proposée. Les traces satellites sont représen-
tées par les lieux des points de réflexion spéculaires, projetés sur Google
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Earth. Le modèle de segmentation divise les signaux en segments station-
naires en fonction des mesures de réflectivité obtenues pour les différents
signaux satellites. Lorsque les réflexions se font sur des plans d’eau, la réflec-
tivité augmente, permettant leur détection par l’approche proposée, associée
à une coloration bleue des segments et des points de réflexion spéculaires
correspondants.

4.4.3 Détection des plans d’eau

La technique radar proposée est d’abord appliquée à la détection de plans
d’eau à l’intérieur des terres. Nous comparons dans le Tableau 1 le nombre de
surfaces de plans d’eau indiquées par les cartes IGN le long des traces satelli-
taires ainsi que le pourcentage de détection de ces plans d’eau par l’approche
proposée.

TABLE 1: Résultats de l’inspection manuelle appliquée entre les
cartes IGN et notre technique radar.

Plans d’eau
Nombre utilisant Pourcentage détecté

les cartes IGN par notre approche

Lacs/ Grands Marécages 20 100 %

Étangs/Marécages/Zones Humides 17 94 %

Rivières/Canaux 4 100 %

Ruisseaux 6 83 %

Totale 47 96 %

Nous montrons dans le Tableau 1 que notre technique radar détecte 96%
des surfaces de plans d’eau intérieurs (c’est-à-dire 45 surfaces sur 47) le long
des traces satellitaires par rapport aux informations fournies par les cartes
IGN. Cela démontre l’importance d’une haute résolution spatio-temporelle
pour la surveillance de tels plans d’eau.

4.4.4 Localisation des bords des plans d’eau

Le système de segmentation du signal radar est également appliqué à la lo-
calisation des bords des plans d’eau. Pour cela, nous comparons une locali-
sation manuelle des bords via Google Earth avec la localisation automatique
des bords obtenue par la technique radar proposée. Au total, 65 surfaces de
plans d’eau ont été détectées le long des traces des trois satellites étudiés. La
Figure 14 montre le nombre total de localisations parfaites (pour lesquelles
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FIGURE 13: Segmentation automatique des mesures GNSS par
la technique radar proposée.
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la localisation automatique par notre approche est identique à la localisation
manuelle) et imparfaites, ainsi que le nombre total de bords localisés pour les
différentes surfaces de zones d’eau.
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FIGURE 14: Statistiques de localisation des bords des plans
d’eau par la technique radar proposée suivant leurs types.

D’après l’histogramme de la Figure 14, la technique radar proposée at-
teint un pourcentage total de localisation parfaite des bords de 76, 2%, c’est-
à-dire 99 localisations parfaites sur 130. De plus, l’analyse de la précision de
la localisation des bords des plans d’eau révèle une erreur moyenne totale de
localisation de 0, 96 m et un écart type total de la différence de localisation de
0, 9 m. Par conséquent, nous concluons que notre approche de localisation
automatique permet d’atteindre une précision de l’ordre du mètre.
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