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5-HMF 5-hydroxymethyl furfural 

BCF Tris(pentafluorophenyl)borane 
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dtbpy 4,4′-Di-tert-butyl-2,2′-dipyridyl 

FDCA 2,5-furandicarboxylic acid 

FFA Furfuryl alcohol 

GVL Gamma-valerolactone 

HFIP Hexafluoropropan-2-ol 

HMPA Hexamethylphosphoramide 
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PMP p-methoxyphenyl 

Py Pyridine 

TBAT  Tetrabutylammonium difluorotriphenyl silicate 
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 Despite depletion of fossil resources, products derived from the petroleum industries still remain the 

main source of carbon, whether for fuel or for fine chemicals. Therefore, the transformation of biomass 

derivatives, especially those coming from agricultural wastes, such as furfural and 5-

(hydroxymethyl)furfural (HMF), are of particular interest as renewable sought-after raw materials for 

the sustainable production of value-added compounds. In particular, the direct functionalization of 

furfural and derivatives by selective C–H activation is an emerging field that is attracting considerable 

attention. 

 Classical methods for achieving C–H functionalization often generate non-negligible amount of 

wastes (salts) or require high temperatures or harsh conditions. Catalytic C–H activation has been 

considered as a pinnacle of success by organic chemists, for their atom economy and the possibility to 

employ non-activated substrates. More importantly, selective C–H bond transformations represent a big 

challenge in unlocking a direct access to new molecules by controlling the regioselectivity of 

transformations. 

Catalytic C–H activation 

✅  Mild conditions 

✅  Functional group tolerance 

✅  Low level of wastes 

✅  Regioselectivity (governed by directing group) 

✅  No need for pre-functionalization 

 

 In this perspective, the formation of new bonds through direct transition metal (TM) catalyzed C–H 

activation process on furfural derivatives is an extremely attractive eco-compatible strategy and 

especially without prior modification of the redox state of the aldehyde function in C2 position. In 

particular, most of the reported examples address the functionalization at C5 of the furan ring, which is 

the richest site of the ring. In contrast, C3–H functionalization at the formyl-furan unit via directing 

groups, such as an imine functions, that bypass the natural C5 preference has been much less studied 

and remains a challenge (Figure 1). 

 

Figure 1. Directed C3-H activation of furfurylimines: the first objective 

 

 Arylsilanes have long been used, and still receive considerable attention, by the organic chemist 

community. These heteroarylsilanes represent robust carbanion surrogates endowed with a number of 

features such as ready availability, relatively low cost, low toxicity and excellent functional-group 

N

OH

H
[cat]
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tolerance. These attributes make them highly attractive building blocks in the context of sustainable 

chemical synthesis and many efforts have been devoted to develop methods for the construction of 

C(sp2)–Si bonds from various starting materials.  

Arylsilane 

✅  Availability 

✅  Low cost 

✅  Low toxicity 

✅  Functional group tolerance 

✅  High stability 

 

 In this context, in order to access versatile platforms derived from furfurals that could undergo 

numerous post-functionalizations, the C3 selective TM-catalyzed C–H-to-C–Si bond transformation 

was envisaged during this PhD. Special attention was then given to the activation of these silyl-furfural 

synthons for the subsequent formation of C–C bonds and C–X bonds, where X is a heteroatom, and thus 

the synthesis of an even broader range of polyfunctionalized furanic synthons (Scheme 1).  

 

Scheme 1. Post-functionalizations of C3-silyl-furfurals: the second objective 

 

 The manuscript will be divided in four chapters. The first chapter will be devoted to the state of the 

art regarding the functionalization of each of the three aromatic C–H bonds of furfural and derivatives 

via diverse methods. Then, the silylation methods by catalytic C–H activation will be reported, and some 

of them will be applied to the selective silylation at C3 of furfurylimine derivatives. Once the silylated 

platform has been created, the activation of the silyl moiety will be studied in two ways in order to set 

up different post-transformations. In chapter 3, the functionalization of the C(sp2)–Si bond through 

intramolecular activation of furfuryl alkoxides will be presented. Then, chapter 4 will be devoted to 

fluoride-mediated activation strategies. The latter will be divided into two subchapters dedicated 

respectively to the functionalization of C3-silylated furfuryl alcohols and C3-silylated furfural 

derivatives.

Si R3

O

OH

R

Activation of 

C(sp2)–Si bond
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Biomass valorization: furfural and 5-hydroxymethylfurfural  

 Despite advances in research, fossil resources are still the main source of (petroleum-based) raw 

materials, fuel and carbon. With the increase in global consumption, along with environmental and 

political related problems, there is an urgent need to reduce our dependency on these exhaustible 

resources. One of the alternatives to overcome this issue is the use of renewable biomass, constituted 

abundantly of carbohydrates, which are ideal precursors for the production of inexpensive and 

ecological chemicals.  

 Such prospect raises nevertheless issues associated to a negative impact on food production, as it 

might deviate food crops towards other uses. In this aspect, lignocellulosic materials (cellulose, 

hemicellulose and lignin), being non-edible, do not suffer from the above-mentioned drawbacks. More 

interestingly, they also represent the most abundant plant dry matter on earth which can be used as 

carbon source in biorefinery,[1] and is often present in high quantity in agricultural wastes, namely corn 

cobs, wood chips, oat hulls, bagasse and many more. Several useful molecules can be obtained by the 

hydrolysis and degradation of lignocellulose. Specifically, furfural (1) and 5-hydroxymethyl furfural (5-

HMF, 2) are produced in large quantities from these food crop residues and wastes from wood industry 

(Figure 2).  

 

Figure 2. Furfural and 5-hydroxymethyl furfural (5-HMF) 

   

 Furfural can be obtained in 18–84% yields from acid-catalyzed dehydration reaction of 

hemicellulose-rich materials, especially the arabinoxylane 3 polysaccharides. Cyclodehydration of the 

resulting pentose sugars, such as D-xylose (4a) and L-arabinose (4c), provides furfural (Scheme 2).[2] 

Currently, China is the biggest producer of furfural, representing 90% of the global world capacity (200 

kt/year).[3,4] 
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Scheme 2. Acid-catalyzed degradation of hemicellulose into furfural 

  

In addition, the acidic degradation of biomass containing hexoses leads in a very similar way to 5-

HMF. Different substrates can be used: the hexoses themselves such as D-fructose 5 (Scheme 3), oligo- 

and polysaccharides, as well as industrial waste.[5] 

 

Scheme 3. Conversion of D-fructose into 5-HMF 

  

 The US Department of Energy classified furfural and 5-HMF among the “Top 10” value added 

chemicals from biomass.[6],[7] It especially implies the use of these platform molecules[4] for the 

sustainable production of furan-based molecules which can be of key relevance for the manufacturing 

of industrial solvents (furan-based), biofuels (Me-THF), as monomer for plastics, or even in the 

pharmaceutical industry.[8],[9] The most important compounds obtained from furfural or 5-HMF are 

shown in Figure 3. 
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Figure 3. Main industrially relevant compounds obtained from furfural and 5-HMF 

 

 Among the principal issues for moving towards biomass development is the production cost, 

implementation of new industrial technologies and logistics. Of the world production of furfural (1), 

60–70% is converted to furfuryl alcohol, which is the main ingredient for furan resins employed in metal 

casting. The remaining part is used as: (a) extractant for aromatics and other polar compounds from 

lubricant oils and petroleum; (b) purification solvent for C4 and C5 hydrocarbons; (c) reactive solvent 

and wetting agents for phenolic resins; (d) nematode control agents for crops; (e) chemical feedstock 

for numerous derivatives, particularly for furan-containing compounds.[10] Hence, despite an obvious 

interest and competitiveness for the transformation of furfural, there are still limited applications as 

biomass-based material for added value chemicals. Towards this end, achieving selective 

functionalization of the heteroaromatic ring appears a key endeavor to access a larger array of potentially 

useful compounds and thereby valorize the furfural biomass-based materials.  

 

Selective functionalization of furfural derivatives 

 With the emergence of the concept of green chemistry, sustainable development and the need to 

increase atom economy in processes, transition-metal-catalyzed C–H bond activation reactions have 

gained paramount importance. This technique allows to decrease the number of steps generally 

necessary for the introduction and removal of functional groups, and thus to form C–C or C–X bonds 

by direct C–H bond functionalization. Accordingly, the functionalization and transformation of furfural 

derivatives by C–H bond activation is currently a competitive area of research, providing access to new 
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functionalized building blocks of interest to the pharmaceutical and agrochemical industries. As C–H 

bonds are strong and poorly polarized, their activation represents a challenge for the chemist. 

 Furfural is composed of a heteroaromatic ring, an aldehyde function and three different aromatic C–

H bonds (Figure 4). Only few methods allowing the transformation of these C–H bonds have been so 

far reported. In the following section, the different approaches implemented for the functionalization of 

each position of the furan ring will be discussed. 

 

Figure 4. Furfural 

2.1 C5-functionalization  

 It is well established that in furanic cores the C–H bonds  to the oxygen atom are the more reactive 

ones. Thus, not surprisingly, in the case of furfural, the strategies for C5-functionalization have so far 

attracted most of the attention. 

 

2.1.1 Arylation 

 One of the most common ways to functionalize furfural at C5 is the catalytic arylation reaction, 

which was been achieved with several transition-metal catalysts. The first example of C5-direct 

arylation applied to furfural 1 was developed by McClure and co-workers in 2001.[11] The reaction was 

carried out with PdCl2 as pre-catalyst, in the presence of aryl iodide, KOAc, Bu4NBr and in DMF at 110 

°C (Scheme 4). In this case, the selectivity is driven by the innate reactivity preference of the substrate 

for the C5 position. The yields are high, but a large excess of furfural is necessary, and this was attributed 

to competitive homocoupling of furfural. 

 

Scheme 4. McClure’s procedure for Pd(0)-catalyzed arylation at C5–H of an excess of furfural 
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 In 2009, an improved protocol for direct C5-arylation was also developed by Fagnou with a 

stoichiometric amount of furfural 1 and aryl bromide in the presence of Pd(OAc)2, Cy3P•HBF4 and 

K2CO3 as a base (Scheme 5a).[12][13] Substoichiometric amounts of pivalic acid are also mandatory to 

increase reactivity which can be attributed to a concerted-metalation-deprotonation (CMD) mechanistic 

pathway for C–H activation, wherein, the pivalate serves as a soluble proton transfer agent from the 

arene and palladium catalyst to the insoluble carbonate base. Under similar conditions, Soos and co-

workers also performed the arylation reaction with a preformed Pd(0) catalyst having (3,5-

bis(trifluoromethyl))triphenyl phosphine as ligand (Scheme 5b),[14] while an aerobic version was 

performed from bulky α‑hydroxyimine palladium complexes as pre-catalyst (Scheme 5c).[15] 

 

 

Scheme 5. Pd(0)-catalyzed arylation at C5–H of furfural as limiting reagent 

 

 Another method for the arylation of an aromatic ring is the decarboxylative coupling from an 

aromatic carboxylic acid. Su and co-workers reported in 2014 the sole example of this reaction on 

furfurals (Scheme 6).[16] The reaction, selective for the C5 position, is catalyzed by Pd(tfa)2, which 

performs the C–H activation on the furan, in the presence of Ag2CO3, which promotes the 

decarboxylation of the carboxylic acid. Transmetalation between Pd-furyl and Ag-aryl species, followed 

by reductive elimination, affords the cross-coupling product. 
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Scheme 6. C5 decarboxylative coupling of furfural with aromatic carboxylic acids 

 

 On a rarer basis, dual C–H activations of furfural 1 and simple arenes was achieved through Pd-

catalyzed oxidative aromatic coupling. Most of the cases involve the use of an excess of the furfural and 

the use of a stoichiometric amounts of an oxidant. The examples in Scheme 7 show the use of furfural 

1 as the limiting agent with NFPT (N-fluoropyridinium triflate) as oxidant[17] (Scheme 7a), and 

copper(II) acetate as oxidant in the second case (Scheme 7b).[18] These reactions are proposed to proceed 

through a Pd(II)-Pd(IV) catalytic cycle, wherein the substrates are activated by an electrophilic 

palladation mechanism. This pathway would prefer the C-5 over the C-4 position because of the 

resonance stability of the cation resulting from SEAr and the higher acidity of the C−H at C5 than that 

at the C4 position. 

 

Scheme 7. Pd(II)-catalyzed C5 oxidative arylation of furfural with simple arenes 

 

 C5-arylation was also achieved under copper-catalysis. You and co-workers reported a copper(I)-

iodide catalyzed cross-coupling involving p-iodomethoxybenzene and two equivalents of furfural 1 

(Scheme 8). The reaction yielded 72% of the arylated product.[19] 
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Scheme 8. Copper-catalyzed arylation at C5–H of furfural 

 

2.1.2 Alkenylation  

 As early as the 1980s, direct alkenylation of an excess furfural with diphenylacetylenes as the 

reactive partner was reported under rhodium catalysis (Scheme 9).[20] Harsh conditions, such as a high 

pressure of carbon monoxide and high temperatures were involved in this reaction to obtain the C5-

alkenylated product in 41% yield (based on the alkyne) as a mixture of Z:E isomers in 59:41 ratio. 

Regarding the alkyne, the reaction is a hydroarylation since a C–H bond of the substrate is activated by 

the metal, and then addition on the unsaturated reaction partner (in this case, the acetylene) occurs. 

 

Scheme 9. Rh-catalyzed C5-alkenylation of furfural with diphenylacetylene 

 

 Later, C5-alkenylation of C2- and C3-substituted furan substrates was performed under 

palladium(0)-catalysis through a similar alkenylation reaction using a Pd(dba)2/PCy3 catalytic system 

with a carboxylic acid additive (Scheme 10). Here, after coordination of the alkyne to the Pd(0) complex, 

the carboxylic acid reacts to generate an alkenylpalladium amylate complex. The regioselectivity is 

probably derived from the steric repulsion between bulky substituents on the alkynyl carbon and the 

palladium center. Then, a C–H activation of 1 (via the CMD pathway) takes place to give the 

corresponding single and double alkenylated products.[21] Reductive elimination of the alkenyl-

palladium-aryl complex leads to a syn-addition product, which is proposed to isomerize in the presence 

of amylic acid to give the anti-addition product. It should be noted that the reactive aldehyde group 

remains intact during this reaction.  

p-MeOC6H4Br (1 equiv.)
CuI (10 mol%)
1,10-phenantroline (20 mol%)

K3PO4 (2 equiv.)
DMF, 140 °C, 24 h

(2 equiv.)

O
OMeO

72%

O
O
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Scheme 10. Palladium/carboxylic acid-catalyzed alkenylation of furfural with alkynes 

 

 Interestingly, when a competitive reaction between furfural (2-furancarboxaldehyde) and 3-

furancarboxaldehyde was carried out under the same conditions (Scheme 11), C–H alkenylation 

occurred predominantly on the 3-furancarboxaldehyde regioisomer (at C2). This result suggests that an 

electron-deficient directing group enhances the reactivity of the C2–H bond in spite of a higher steric 

hindrance.  

 

Scheme 11. Competition experiments between 3-furancarboxaldehyde and furfural 

 

 C5-fluorosulfonylvinylation of furfural 1 was carried out under oxidative conditions with silver(I) 

acetate as oxidant, Pd(OAc)2 and a pyridine-based ligand (L1) in HFIP to yield a 

β-heteroarylethenesulfonyl fluoride in moderate yield (Scheme 12).[22] The electron-deficient 2-

pyridone ligand is crucial for this transformation in accelerating the C−H cleavage step as an inner base 

and stabilizing the active palladium catalyst. Similar Fujiwara-Moritani-type processes were also 

reported by Itahara from electron-poor alkenes, but in the presence of a stoichiometric amount of 

Pd(OAc)2.
[23,24] 
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Scheme 12. Pd-catalyzed C5 oxidative alkenylation of furfural with vinyl sulfonyl fluorides 

 

2.1.3 Alkynylation 

 The alkynylation of furfural 1 with phenylacetylene was also developed. Using Pd2(dba)3 as pre-

catalyst and an Ag(I)-based oxidation system, C5-alkynylated furfural was produced in 45% yield 

(Scheme 13). The reaction proceeds through the formation of an alkynyl-Ag(I) species,[25] which then 

transmetalates with a Pd(II) species (or Ar–[Pd(II)] generated through a CMD mechanism) from which 

reductive elimination produces the final product; thus, Ag(I) is implied not only as oxidant of Pd(0) to 

Pd(II), but also takes part in the formation of the reactive alkynyl intermediate. 

 

Scheme 13. C5-alkynylation of furfural with phenylacetylene 

 

2.1.4 Alkylation 

 Besides these catalytic C–H activation processes, functionalization at C5 was also achieved through 

stoichiometric metalation. In 1985, Chadwick reported the C5-regioselective metalation of furfural 

following protection of the aldehyde unit as an imidazolidine derivative (6) and treatment with n-BuLi. 

(Scheme 14).[26] The C5-lithiated intermediate 7 undergoes electrophilic substitution with an array of 

electrophiles, delivering C5-functionalized furfural derivatives following acidic work-up (which also 

induces aldehyde deprotection). 
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Scheme 14. Synthesis of C5-subtituted furfurals via a metallo-imidazolidine intermediate 

 

 A few years after, Roschanger showed that a similar strategy could be implemented on treatment of 

furfural with lithium N,O-dimethylhydroxylamide. No directing effect was observed  and deprotonation 

with n-BuLi occurred regioselectively at C5 (Scheme 15).[27] Trapping with iodomethane and 

deprotection led to C5-methylfurfural. Later, Killpack demonstrated that using lithium N-methyl 

piperazide (instead of lithium N,O-dimethylhydroxylamide) also allowed to achieve C5-metalation 

regioselectively.[28] 

  

 

Scheme 15. Use of lithium N,O-dimethylhydroxylamide as an in situ protecting agent for the aldehyde 

 

 Finally, Zhou and co-workers reported one example of the alkylation of furfural 1 with alkyl iodides 

under Pd(0) catalysis.[29] The reaction with cyclohexyl iodide in the presence of Pd(PPh3)4/dppp as 

catalytic system and Cs2CO3 as base, afforded predominantly the C5-alkylated product with only minor 

amounts of the C3-alkylated isomer in 80% combined yield (Scheme 16). Mechanistically, the authors 

propose a radical pathway with the formation of an alkyl radical and a Pd(I) intermediate. 
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Scheme 16. C5-alkylation of furfural with cyclohexyl iodide 

 

 Using FeCl2, a radical approach has also been developed by Nishikata to carry out the selective 

functionalization of furfural derivatives at the C5 position (Scheme 17).[30] The alkylation was 

performed in the presence of a tertiary alkyl bromide and diisopropylethylamine. It was proposed that 

the alkyl radical generated by single electron transfer (SET) adds to the C5 position. The resulting radical 

is then oxidized by Fe(III) and the cation trapped by bromide. The presence of base was proposed to be 

essential for the re-aromatization of the heteroaromatic ring. 

 

Scheme 17. Iron-catalyzed radical C−H alkylation 

 

2.2 C4-functionnalization 

 In contrast with the C5-position, direct selective C4-functionalization has received little attention. 

The C4-functionalized products are often achieved by the C2-formylation reaction of C4-substituted 

furans through the Vilsmeier-Haack reaction.[31] In addition, they are sometimes obtained as a side 

product from C5-arylation under acidic media. For instance, Itahara and co-workers reported that under 

harsh conditions : Pd(OAc)2 (1 equiv.), furfural and benzene (in large excess) as coupling partners, in 

acetic acid under reflux, a mixture of the C4- and C5-arylated product was obtained, with a slight 

preference for the C4-position (Scheme 18).[24] It is nonetheless important to highlight the absence of 

the C3-H activation was evidenced, which showed that it is a hardly accessible position. Under similar 

conditions in acetonitrile, it was noted that biphenyls and furfural dimer were obtained as side products 

of the reaction.[23] 
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Scheme 18. Pd(OAc)2-mediated oxidative aromatic coupling of furfural and benzene 

 

 Later, Doucet reported the selective Pd(0)-catalyzed C4-arylation of 5-methylfurfural using electron-

deficient aryl bromides. This cross-coupling was performed under low catalyst loading of dimeric 

(allyl)palladium chloride with KOAc as base (Scheme 19).[32] Here, the C5 position of the substrates 

tested is always substituted so that competition can only occur between C4- and C3-functionalization, 

and reaction at C4 is favored. Note however that such innate selectivity depends on the base used. 

Indeed, in the presence of bases other than KOAc (e.g. K2CO3, Cs2CO3, or K3PO4) arylation at C3 was 

observed leading to C3-arylated or C3,C4-diarylated compounds. The authors rationalized this behavior 

in terms of a preferred SEAr mechanism when KOAc is used (which involves a cationic palladium 

complex), as opposed to an insertion mechanism (Mizoroki-Heck type), favored in the presence of the 

other bases. However, the yields of 5-methyl furan 2-carboxaldehyde products are significantly lower 

than the ketone counterpart. This behaviour can relate to the use of an excess of furan substrate, because 

furfural is known to undergo decarbonylative processes under certain conditions unlike the ketone 

derivative.[33]  

 

Scheme 19. Pd(0)-catalyzed arylation at C4-H of furfural 

  

 While the above-discussed results establish that C4-functionalization may be achieved through 

Friedel-Crafts-type[34] reactivity, only a very limited amount of work has been accomplished towards 

this goal, which leaves much room for future work on this direction.  
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2.3 C3-functionnalization 

 Functionalization of the C–H bond at C3 of furfural derivatives has attracted considerable attention. 

Given that innate selectivity is rarely in favor of this position, selective functionalization relies mostly 

on directed activation strategies that take advantage from the carbonyl substituent at C2. 

 

2.3.1 Directed metalation 

 In 1985, Chadwick and co-workers developed methodologies for the selective functionalization of 

five-membered heteroarenes through directed metalation using amides as directing groups, and 

implemented this strategy for the C3-functionalization of the furan ring.[35] They noticed that poor yields 

were obtained with tertiary carboximido groups, while with secondary amides, better yields and 

selectivity were obtained. It was suggested that following deprotonation of the amide with one 

equivalent of s-BuLi, the resulting lithiated intermediate 8 directed the second deprotonation towards 

the C3–H, delivering 9. Subsequently, trapping of 9 with electrophiles, allowed to obtain various C3-

substitued furanamides (Scheme 20).  

 

Scheme 20. Directed-metalation of 2-carboxamide-furan 

  

 In another approach, Guo and co-workers,[36] and later Knochel,[37] considered the use of esters as 

directing groups for C3-metallation. It is known in the literature that the C5–H is the most acidic proton 

for this type of heteroaromatic ring, and the group of Knochel calculated pKa values through 

computational calculations of the different protons for the C2-carboxylate thiophene derivative as shown 

in Figure 5.  

 

Figure 5. pKa of C–H bonds for the C2-substituted thiophene derivative 
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 From these data, two different protocols were proposed by Knochel to perform the C5 or the C3 

functionalization selectively.[37]  In order to perform C5-metalation, TMPMgCl•LiCl was used. 

Metalation at this position is thermodynamically favoured, since H5 is the most acidic hydrogen atom. 

By contrast, deprotonation with TMPLi in the presence of either ZnCl2•2LiCl or CuCN•2LiCl allowed 

for directed metalation at C3 and subsequent functionalization through metal-catalyzed electrophilic 

substitution (Scheme 21). The later procedure allowed for direct C3-arylation (Scheme 21, left) and 

allylation reactions (Scheme 21, right). 

 

Scheme 21. Selective C3 metalation of 2-carboxylate furans 

 

 In addition to the previous reports, it should also be mentioned that similar examples of C3 metalation 

exist with symmetrical substrates bearing ester substituents at the C2 and C5 positions (Scheme 22).[38] 

Here, TMPMgCl•LiCl promoted the deprotonation at the C3 position (only one regioisomer can be 

produced), and the organometallic intermediate was trapped by an acyl chloride in the presence of 

CuCN•LiCl. This method is compatible with a number of functional groups, including bromide, cyano, 

silyl, and thiol.  

 

Scheme 22. Preparation of 2,3,5-trisubstituted furans 

 

2.3.2 Directed catalytic functionalization 

a. Arylation 

 Directed catalytic C3–H arylations of 2-acylfurans are quite rare. In an isolated example within a 

study not devoted to furan functionalization, DeBoef and coworkers reported that 2-acetyl-5-methyl 
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furan could be arylated at C3–H via iron-catalysis (Scheme 23).[39] Although the value of the 

transformation is clear, the generality of the method is still to be established, along with deeper 

knowledge of the reaction mechanism as well as the role of each additive and the need for excess of 

Grignard reagent. 

 

Scheme 23. Iron-catalyzed C3–H arylation of a 2-acylfuran 

  

 Another approach for catalytic C3-directed arylation relies on the Ru(II)-catalyzed cross-coupling 

reactions of 2-carboxamide furans. Here, the presence of a tertiary amide allows the coordination 

(through the oxygen atom) to the metal, and thus favoring regioselectivity at the C3-position. Two 

strategies were developed by Szostak and co-workers (Scheme 24). The first strategy involves a Suzuki-

Miyaura-like reaction[40] between the furanamide and phenyl boronic acid as coupling partner, in the 

presence of [RuCl2(p-cymene)]2, AgSbF6, Ag2O as mild base and Cu(OTf)2 under oxidizing conditions 

(conditions a); the arylated product was obtained in 91% yield. The second strategy involves a Hiyama-

Denmark-like reaction[41] between the amide and phenyl trimethoxysilane, in the presence of the same 

catalyst, AgSbF6 and copper(II) fluoride, which is required for the activation of the aryl silane 

(conditions b); The desired C3-arylated product was obtained in 78% yield. 

 

Scheme 24. Ru(II)-catalyzed C3-arylation of furan-2carboxamides 
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 Very recently, Ananikov reported the Pd(0)-catalyzed vicinal arylation of 2,5-diformylfuran in the 

presence of aryl iodides (Scheme 25).[42] No Pd-ligand is necessary and copper(I)-oxide is proposed by 

the authors to serve as halogen scavenger. These arylations work satisfactorily on the diformylated furan 

ring, but much less efficiently for analogous 2-formylfuran substrates substituted at C5 or non-

substituted, for which lower yields and low regioselectivity was observed. Supported by DFT studies, 

the authors propose a mechanism involving syn-insertion of the arylpalladium(II) complex into the 

double bond of the furan core, followed by syn-dehydropalladation. The latter step appears to be favored 

only in the case of the presence of a formyl function (as opposed to a carbomethoxy function), as it 

allows an energetically favored equilibration of the palladium complex via enolization, thus favoring an 

easy syn-dehydropalladation.  

 

Scheme 25. Formyl group-promoted catalytic C−H arylation of 2,5-diformylfuran 
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b. Alkylation 

 In the 1990s, Murai and co-workers showed that 2-acetylfuran undergoes selective alkylation at C3 

in the presence of catalytic RuH2(CO)(PPh3)3 and vinyl triethoxysilane, on heating at 135 °C in toluene 

(Scheme 26).[43,44] The mechanism of this reaction has been studied both experimentally and 

computationally. Coordination of the metal to the ketone function, followed by C3–H activation via an 

oxidative addition, leads to a metallacycle which permits regioselective functionalization. The 

subsequent insertion of the vinyl silane into the Ru–H bond, followed by a reductive elimination, gives 

the C3-alkylated product.[45,46]  

 

Scheme 26. Murai reaction on 2-acetylfuran 

  

 It was later reported that under similar conditions, aromatic aldehydes undergo decarbonylation,[33] 

thus thwarting directed alkylation. Murai proposed two different strategies to overcome this limitation: 

first, the introduction of a bulky group ortho to the aldehyde group; second,[47] the protection of the 

aldehyde as aldimine with Ru3CO12 as catalyst. The nature of the imine was very important here, as it 

proved to be inefficient towards sterically hindered imines and provided low yields with monodentate 

imines. While they proved efficient with several aromatic aldehydes, neither of these two approaches 

was considered with furfural derivatives.  

 In this context, our group recently reported the Ru(0)-catalyzed C3–H alkylation of furfural via the 

Murai reaction (Scheme 27).[48] Although (non-surprisingly) direct alkylation of furfural was not 

possible, only the temporary conversion of the formyl function into a bidentate amino-imine, which acts 

as directing group, enabled the desired coupling using catalytic Ru3(CO)12 in presence of vinyl silanes 

or styrenes. Interestingly, removal of the directing group took place during the purification step, 

delivering directly C3-alkylated furfural derivatives. 
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Scheme 27. Murai reaction of furfurylimines catalyzed by ruthenium 

 

 Following on this work, a carbonylative version of the alkylation reaction was achieved by working 

under CO atmosphere (1 bar) (Scheme 28).[49] Once again, the process is highly dependent on the nature 

of the imine directing group. While no reaction occurred with bidentate amino-imines or sterically 

demanding imines, the use of aromatic electron rich monodentate p-methoxyphenyl imine (PMP-imine) 

led to the formation of the C3-acylated products of furfural and other C5-substituted furfural derivatives. 

The latter could be obtained after column chromatography on silica-gel without hydrolysis of the PMP-

imines (which are more robust than the bidentate alkyl imines previously employed), and the aldehyde 

function could be recovered by subsequent hydrolysis. Following theoretical studies, it was proposed 

that the presence of CO in the reaction medium leads to the formation of mononuclear Ru(CO)3, which 

is the active catalytic species upon complexation with the monodentate imine.  

 

Scheme 28. C3-acylation of furfural and derivatives with aromatic imines 
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 More recently, our group also developed the directed Ru(0)-catalyzed C3–H alkenylation of furfuryl 

imines using electron poor alkenes as vinyl partners. Interestingly, this unprecedented dehydrogenative 

coupling does not need the presence of an additional sacrificial oxidizing agent (Scheme 29).[50]  

 

Scheme 29. Acceptorless Ru(0)-catalyzed C3–H alkenylation of furfuryl imines. 

 

 This C3 transformation was extended to arylation and alkenylation through a Ru(0)-catalyzed 

directed C–H activation using aryl/alkenyl boronic esters.[51] The reaction was proposed to proceed in a 

similar fashion on electron-rich aromatic imines, except a sacrificial hydride acceptor such as 

benzylidene acetone was added, in order to trap the hydride coming from the C–H activation step 

(Scheme 30). This reaction provides access, after imine hydrolysis, to C3–arylated or vinylated furfural 

derivatives. 

 

Scheme 30. C3–arylation of alkenylation of furfural and derivatives with aromatic imines 

  

 This methodology was then applied in collaboration between our team and that of Prof. C. Afonso. 

In this study, a chemoselective sequence including enzymatic desymmetrization by flow chemistry in 

the presence of Candida Antarctica Lipase B (CAL B), followed by arylation through Ru(0)-catalyzed 

C–H activation was developed to obtain differently trisubstituted furans from esters derived from 2,5-

furan dicarboxylic acid (FDCA) (Scheme 31).[52] Despite the presence of two functional groups: ester 

and amide, the reaction proceeded with a good regioselectivity controlled by the amide group in 

presence of RuH2(CO)(PPh3)3 as pre-catalyst. 
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Scheme 31. Chemoselective sequence: enzymatic monoamidation by flow chemistry/ C3-arylation in flask of FDC-derived 

esters 

 

Objectives 

 Due to the significance of furfural and 5-HMF as potential building blocks for industrially relevant 

compounds, it is highly desirable to achieve their functionalization through the selective formation of 

new bonds. Within a broad project directed towards the sustainable functionalization of bio-sourced 

furfurals, the selective formation of new bonds through direct transition metal catalyzed C–H activation 

process, without prior modification of the redox state of the aldehyde function, has become one of our 

emerging areas of research. 

 As demonstrated by our literature survey, direct selective functionalization of the C3 position is not 

well-established and remains less common than functionalization at the C5 position. In this context, it 

should first be underscored that the directed C3–H metalation reactions using lithium, magnesium or 

zinc amides was only implemented on acylfurans bearing ester[37] or amide[35] units, i.e., on substrates 

having a higher oxidation state than the parent aldehyde. Importantly, we also established that the 

directed metalation strategy is inefficient when directly applied to furfural derivatives, due to the 

degradation of the elusive C3-lithiated furan.[53]  

 Hence, our efforts to achieve the functionalization of furfurals focused on TM-catalyzed C–H 

activation process. Following a thorough exploration that considered several hypotheses, it is believed 

that C3–H activation is more probable to be achieved by nucleophilic transition metal catalysts that can 

undergo an oxidative addition step. On the contrary, electrophilic TM-complexes that elicit SEAr or 

concerted-metalation-deprotonation mechanisms are less favorable. So far, methods for selective C3-

alkylation, arylation and alkenylation have been developed in the group, but there is still much room for 

improvement in the valorization of furfural. 
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 Now, still with the idea of developing new methods of functionalization of furfural derivatives, and 

more particularly to lead to platforms that can allow us to introduce a variety of functions, we envisage 

a particularly attractive strategy involving the synthesis of C3-silyl furfural derivatives and the 

subsequent functionalization of the C(sp2)–SiR3 bonds formed (Scheme 32). It is known that 

organosilicon reagents are a powerful tool for chemists to perform a number of synthetically useful 

transformations. In this aspect such a C3-silylated-furfural platform could allow through C–Si bond 

functionalization approaches to access a number of original transformations involving C–C or C–

heteroatom bond-formations. 

 

Scheme 32. Objective: synthesis of C3-silyl furfural derivatives and the subsequent functionalization of the C–SiR3 bonds  

 

 In the next chapter, direct silylation methods will be briefly reviewed, as well as their applicability 

on furfural derivatives. 
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Introduction 

 Alkenyl-, aryl-, and heteroarylsilanes are robust carbanion surrogates endowed with a number of 

features such as ready availability, low toxicity and excellent functional-group tolerance. These 

attributes make them highly attractive building blocks in the context of sustainable chemical synthesis 

and many efforts have been devoted to develop methods for the construction of C(sp2)–Si bonds. In this 

section, we will discuss the different methods of silylation of aryl- and heteroaryl derivatives using 

directing and non-directing groups. Given the wealth of reports on such C(sp2)–Si bond-formation 

reactions, only the most relevant examples in the context of our work will be presented.  

 Arylsilanes have long been known and prepared traditionally by reaction of organometallic reagents 

(organolithium or Grignard reagents) with chlorosilanes[54][55] (Scheme 33). However, this approach can 

meet limitations associated with low functional group compatibility of the preparation of the arylmetal. 

The latter is achieved through reductive metalation of haloarenes or deprotonation of arenes. 

 

Scheme 33. Traditional methods for the preparation of arylsilanes from aryl-metal 

 

 Other methods for the preparation of (hetero)arylsilanes rely on cross-coupling reactions between 

hydrosilanes or disilanes and aryl halides (Scheme 34). These coupling reactions have been achieved 

using organometallic catalysts such as Rh(I) and Pd(0). Implementation of such approach requires 

nevertheless the pre-functionalization of the corresponding arene to its halide counterpart.[56–60] 

 

Scheme 34. Cross-coupling of aryl halides with hydrosilanes or disilanes 

 



 

 

44 

 Lately, dehydrogenative silylation systems involving the cross-coupling reaction of (hetero)arenes 

and hydrosilanes or disilanes have attracted a lot of interest as a more step- and atom-economic 

alternative to the two previous methods (Scheme 35).[61] Achieving control of the regio- and chemo-

selectivity during these transformations, and also preventing competitive protodesilylation of the 

substrate,[62] are the main issues that need to be solved to obtain a synthetically useful methodology. 

Many parameters have to be taken into account for this purpose, such as: i) the nature of the silicon 

moiety, which includes the number of the substituents and their corresponding natures (trialkyl, triaryl 

or trialkoxy silane), ii) its functional group tolerance and iii) the nature of the arene (and its directing 

group, if applicable). We will now address recent advances concerning the dehydrogenative silylation 

of non-activated C–H bonds. 

 

Scheme 35. Catalytic dehydrogenative silylation of C–H bonds 

 

Overview of dehydrogenative silylation methods 

 Non-directed dehydrogenative silylation of arenes has been achieved so far according to three main 

types of reactions, namely: (a) electrophilic substitution reactions, (b) free-radical silylation, and (c) 

transition-metal (TM) catalyzed reactions (Scheme 36). The site-selectivity in some cases is innate to 

the substrate, while in other cases, modulation reaction parameters, such as the ligand could bring about 

a preferential regioselectivity. 
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Scheme 36. Non-directed dehydrogenative silylation  

 

2.1 Electrophilic substitution 

 Sila-Friedel-Crafts reactions were developed from hydrosilanes. Different ways of activation of the 

Si–H bond have been envisaged in such cases. For example, in 2010 Kawashima reported the use of 

trityl cation for the hydride abstraction of a dialkylaryl hydrosilane providing a silylium ion which is 

prone to perform an intramolecular sila-Friedel-Crafts reaction with a tethered arene, in the presence of 

2,6-lutidine (Scheme 37a).[63] The intermolecular version of the reaction was also possible under similar 

conditions: triphenyl silane was converted into tetraphenyl silane (Scheme 37b), even though in this 

case, the silylated arene (benzene) was used as solvent. 
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Scheme 37. Sila-Friedel–Crafts reaction 

 

 The Oestreich group developed the regioselective intermolecular electrophilic C–H silylation of 

nitrogen-containing electron-rich arenes such as indoline or aniline derivatives, under iron Lewis-acid 

catalysis (Scheme 38).[64] The use of FeCl2 in combination with NaBArF
4 (also referred as 

[Na]+[B(C6F5)4]
-) showed a co-operative effect for the electrophilic aromatic substitution (SEAr), under 

base free conditions. It was suggested that the potential formation of “[FeCl]+[BArF
4]” allows the 

generation of a stabilized silylium cation, which allows for a Friedel-Crafts-type of reaction. The site-

selectivity is innate and favors the substitution para to the nitrogen atom. Note that dehydrogenative 

Si–N silylation was observed when arenes having free NH groups were used. Similar reactivity was 

observed with cationic Ru–S complexes, to afford the C3-silylated indole derivatives.[65] 

 

Scheme 38. Electrophile C–H silylation of electron-rich arenes 

 

 The use of Lewis acids such as B(C6F5)3 has also gained considerable interest for the Si–H bond 

activation.[66–68] Indeed, this is a Lewis acid of choice, combining considerable electrophilicity with 

sufficient size to "frustrate" the formation of Lewis adducts. B(C6F5)3 thus activates R3Si–H via a 

frustrated Lewis pair, leading to the generation of R3Si+. This silylium ion is transferred to the 

heteroarene leading to the formation of an arenium ion (C) and a borohydride. Finally, in the re-
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aromatization step with the [HB(C6F5)3]
– anion, H2 and the boron catalyst are (re)generated. After this 

step, in order to avoid a competing pathway leading to the reduction of arenes with H2, the addition of 

the pyridine base in catalytic amount provided better results. This reaction is also highly substrate 

dependent, for example, with 2-tert-butyl thiophene, a higher yield of silylated product could be 

obtained compared to the 2-methyl thiophene due to a catalytic hydrogenation of 2-tert-butyl-thiophene 

retarded by coordination of 2-tert-butyl-tetrahydrothiophene to B(C6F5)3. In addition, the Brønsted 

basicity of the heteroarene also plays an important part in H2 activation, and therefore the competitive 

reduction. As a consequence, a higher proportion of reduced N-TIPS indole was obtained compared to 

the 2-2-tert-butyl-thiophene (Scheme 39).[69]  

 

Scheme 39. Dehydro-/hydro-silylation catalyzed by B(C6F5)3  

 

 In 2016, Hou reported a boron-catalyzed C–H silylation of aniline under base-free conditions with 

hydrosilanes (Scheme 40).[70] It was also proposed that the interaction between the B(C6F5)3 and the 

hydrosilane weakens the Si–H bond. The electropositive silicon intermediate would therefore undergo 

a nucleophilic attack by the electron rich arene in para position, resulting in the intermediate ion pair. 

Upon rearomatization by deprotonation of the borohydride, the p-substituted aniline could be obtained, 

with the regeneration of the boron catalyst. 
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Scheme 40. Boron-catalyzed C−H bond silylation with hydrosilanes of anilines 

 

2.2 Radical silylation 

 Recently, a cross-dehydrogenative heteroaromatic C–H functionalization with hydrosilanes 

catalyzed by an alkaline earth metal reagent was reported.[71,72] The authors demonstrated that in the 

presence of trialkylsilanes, potassium tert-butoxide in catalytic amount, the C2-position of indoles was 

preferentially functionalized (Scheme 41). This reaction takes place in mild conditions, in the absence 

of hydrogen acceptors, ligands or additives, and is applicable on various N-, O- and S-containing 

heteroarenes. However, this silylation was found to be reversible, as when performed at higher 

temperatures or longer times, the regioselectivity turned out to be in favor of the thermodynamic 

product, C3-functionalized. Nevertheless, experimental and computational mechanistic studies did not 

allow the authors to decide between a radical or an ionic mechanism for these transformations.[72] 

 

Scheme 41. t-BuOK-catalyzed dehydrogenative silylation of indoles with hydrosilanes 

  

 Indeed, the formation of silicon-centered radicals is a useful strategy in the creation of C–Si bond 

through Si–H and C–H bond transformation. There are several ways of initiating such radical reactions. 

Peroxides have often been used as an initiator. Thermal assistance[73–75] or copper (I/II)[76][77][78]are often 

used for the generation of alkoxy radicals (Scheme 42). The latter can therefore perform hydrogen 

abstraction from hydrosilanes producing the reactive silyl radicals, which add to the aryl species. Upon 

oxidation of the aryl radical, and subsequent deprotonation, the silylated aryl is obtained.[77–79] 



 

 

49 

 

Scheme 42. Silicon-centred radicals involved in dehydrogenative silylation 

 

2.3 Transition-metal catalyzed silylation  

 Until now, most dehydrogenative silylation reactions achieved between hydrosilanes (or disilanes) 

and (hetero)arenes have been conducted using transition metal (TM) based-organometallic catalysts. 

As a general way of representing this reaction, there is the formation of a C(sp2)–Si bond and the release 

of H2 gas (or a hydrosilane) as represented in Scheme 43. In a (very) schematic mechanistic view, a 

silicon metal species [M]–SiR3, formed by the oxidative addition of a hydride metal intermediate to a 

hydrosilane (or a disilane) followed by the release of H2 (or hydrosilane), can perform the C–H 

activation step of the arene. A reductive elimination step leads to an arylsilane and regenerates the 

hydride–metal active species. As will be discussed hereafter, a number of variations to this general 

mechanism exist. 
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Scheme 43. Transition-metal catalyzed silylation with hydrosilanes or disilanes  

 

 Based on DFT calculations for the silylation of benzene, it has been shown that the reaction is 

thermodynamically unfavorable when performed with hydrosilane, by contrast to the one performed 

with disilane, which relates to the smaller bond dissociation energy of Si–Si bond (Scheme 44).[80] 

 

Scheme 44. C–H bond silylations based on bond-dissociation energies (DFT) 

 

2.3.1 Silylation involving disilanes 

 Benzodisilacyclobutenes proved to be useful reagents for arene C–H silylation. A Ni(0) catalyst 

could perform an insertion into the strained Si–Si bond and the resulting intermediate could undergo 

oxidative addition into a C–H bond of an arene (Scheme 45).[81] Succeeding reductive elimination leads 

to the silylated product. The remaining silicon atom acts as hydride acceptor which allows to close the 

catalytic cycle (Scheme 45). The effect of the different arenes according to steric considerations was 

put in evidence. Meta-substitution is favored with mono-substituted arenes (toluene, iso-

propylbenzene) and for m-xylene, while for p-xylene ortho-substitution is observed. 
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Scheme 45. Nickel-catalyzed reactions of benzodisilacyclobutene with aromatic compounds 

 

 Under iridium(I) catalysis, the synthesis of aryl halosilanes was developed starting from 1,2-di-tert-

butyl-1,1,2,2-tetrafluorodisilane (t-BuF2Si)2 and an excess of the arene partner in presence of a 

bipyridine ligand (Scheme 46).[82] The regio-selectivity was again governed by steric factors, with C–

Si bond-formation occurring predominantly in meta position. A lower regio-selectivity was obtained 

with OMe and Cl substituents.  

 

Scheme 46. Ir(I)/dtbpy-catalyzed aromatic C–H silylation by disilanes 

 

 Following on this work, Miyaura screened different bipyridine ligands in order to improve the 

regioselectivity of these reactions.[83] Optimized conditions permited the reaction between arenes (in 

lower excess; 10 equiv.) and 1,2-di-sec-butyl-1,1,2,2-tetrafluorodisilane (s-BuF2Si)2 as silylating agent 

and 2,9-diisopropyl-1,10-phenanthroline (dipphen), with a very good regioselectivity (Scheme 47). The 

reaction was also independent on the electronic nature of the substituents on the arene. 
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Scheme 47. Ir(I)/dipphen-catalyzed aromatic C–H silylation by disilanes 

  

 Chatani and co-workers reported the rhodium-catalyzed silylation of 2-arylpyridines with 

hexamethyldisilane.[84] The first step is an oxidative addition of rhodium(I) species into the Si–Si bond 

giving a [Rh]–SiR3 intermediate. Coordination of the pyridine part enhances the activation of an ortho 

C–H bond of the 2-arylpyridine, which is followed by a reductive elimination giving the corresponding 

silylated aryl-pyridine compounds (Scheme 48).[85] In addition, the C3 substitution on the pyridine ring 

provided a better selectivity for the monosilylated product with respect to the di-silylated product, which 

is related to the unfavorable conformation due to steric repulsion following the first silylation of the 

ring. Disilanes such as (t-BuMe2Si)2 and (Et3Si)2 did not give satisfying results, which could be related 

either to the C–H activation or the reductive elimination steps. Moreover, when other directing groups 

such as amide, imidazole and oxazoline were involved, low or poor results were obtained, which 

showed the substrate dependence of such reactions.  

 

Scheme 48. Rh-catalyzed silylation of 2-arylpyridines with disilane 

 

 In 1995, was reported one of the first imine-directed arene silylations via platinum-catalyzed C–H 

activation.[86] Pt–P(OCH2)3CEt was used to catalyze this silylation using disilanes. It was known that 

[Pt(0)] could perform oxidative addition onto Si–Si bonds.[87,88] The N-benzylidenealkylimines 

directing group permitted the formation of ortho-silylated products, mono- and bis-silylated. However, 

the reaction was still dependent on other parameters such as the ratio of aryl imine to disilane. For 
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example, an excess of imine compared to disilane (4:1 ratio) led to 82% yield in monosilylated product 

and 9% yield in disilylated product. Conversely, when this ratio is reversed, 23% yield in monosilylated 

and 52% yield in disilylated product was obtained (Scheme 49). 

 

Scheme 49. Pt-catalyzed ortho-silylation of benzylidenealkylimines 

 

2.3.2 Dehydrogenative silylation involving hydrosilanes 

The use of hydrosilanes as silicon donor has been considered. Non-directed silylation of arenes, as 

well as directed ortho-silylations with a number of directing groups such as amides, esters, oxazolines, 

alcohols, imines and others will be discussed in this section.[89] Among the group 8 and 9 catalysts such 

as ruthenium, rhodium and mainly iridium have been the most extensively studied and will be detailed 

in the next sections. Platinum[90–92] and iron[93]-catalyzed silylation, despite showing some potential, 

often require very high temperature (Pt catalysis) or have not been reported to catalyze directed 

silylations. 

 

a Effect of the hydrogen by-product 

 A key difference between systems relying on hydrosilanes as silicon donor and those relying on 

disilanes, is the requirement for removal or trapping with sacrificial hydride acceptors of released 

molecular dihydrogen to provide a driving force for the dehydrogenative silylation reaction. This point 

was well evidenced in a study by Hartwig and co-workers.[94] For example, the silylation of o-xylene, 

with an [Ir(cod)OMe] and 2,9-Me2Phen catalytic system in a closed vial with a hydrosilane led to 18% 

yield of the silylated compound, while in an opened system with a nitrogen inlet a much higher yield 

(77%) was obtained (Scheme 50). The nitrogen flow in this case, prevented the catalyst inhibition 

through the removal of H2 gas. The presence of hydrogen atmosphere as well seemed to significantly 

reduce the catalytic activity. 
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Scheme 50. Ir-catalyzed silylation of arenes with hydrosilanes: effect of N2 flow 

 

 The authors also reported the use of hydrogen acceptors for this purpose in a closed vessel, in 

comparison with an opened-system.[94] Although no real correlation could be established for the 

silylation yields, the reaction carried in a closed vessel with hydrogen acceptor was considered to be 

more convenient on a practical aspect, as well as to occur at a faster rate than with a nitrogen stream 

(Scheme 51). Some commonly used sacrificial hydrogen acceptors are: cyclohexene, norbornene (nbe), 

cyclooctadiene (cod), dimethyl-2-butene[62] and 3,3-dimethyl-1-butene (tbe). Several factors might be 

taken into consideration for the choice of the sacrificial hydrogen acceptor. For example, the steric bulk 

or the ring strain of the alkene, this might lower the rate of hydrosilylation of such molecules, whilst 

being prone to accept metal hydrides or molecular hydrogen. 

 

Scheme 51. Ir-catalyzed silylation of (hetero)arenes with hydrosilanes: effect of hydrogen acceptors 

 

b Ruthenium-catalyzed silylation 

 Initial studies involving ruthenium(II) catalysts were carried out by Berry in 1998, and showed the 

feasibility of dehydrogenative silylation of trifluoromethylbenzene in the presence of tbe as sacrificial 

hydrogen acceptor.[95] (η6-C6Me6)Ru(H)2(SiEt3)2 and [(η6-C6Me6)RuCl2]2 showed the best selectivity in 

favor of the formation of the aryl silane, compared to carbosilane formation by dimerization of 

triethylsilane or hydrosilylation of tbe (Scheme 52). Silylation yielded both the meta- and para-silylated 
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isomers in a 2:1 ratio; the ortho isomer was not detected. The absence of electron-withdrawing 

substituents was deleterious, leading to poorer results in the case of o- and m-xylene, or to the absence 

of reactivity in the case of p-xylene and mesitylene. 

 

Scheme 52. Ru-catalyzed silylation of trifluoromethylbenzene with hydrosilanes 

 

 Following their previous report for the silylation of heteroarenes using vinyl silanes,[96] Murai and 

co-workers developed a new strategy for the silylation with hydrosilanes of arenes bearing an oxazoline 

directing group.[97] The ortho-directing effect arises from the chelation of a ruthenium(0) catalyst, such 

as Ru3(CO)12, to the oxazoline moiety, promoting the C–H activation step through insertion into the C–

H bond. As mentioned above, in the absence of the sacrificial hydrogen acceptor (here tbe), a very poor 

yield (7%) of product was obtained. Thus, equimolar quantities of hydrosilane and tbe were 

systematically added, and a 5-fold excess with respect to the arene proved optimal, yielding 93% of 

desired product, when the reaction was performed with triethylsilane (Scheme 53). The reaction was 

however quite dependent on the steric bulk and the nature of the silane, because a lower yield (16%) 

was observed with tert-butyldimethylsilane, and it failed with tri-iso-propylsilane, triethoxysilane and 

ethoxydimethylsilane respectively. While this reaction proceeded smoothly with ortho- and para-

subtituted arenes, meta-substitution of such systems was quite problematic. Therefore, that study was 

pursued with these afore-mentioned substituted arenes using RuH2(CO)(PPh3)3 as catalyst, which led 

to improved results in most cases, to the exception of, electron-withdrawing substituents which lowered 

the reaction yields. 

 

Scheme 53. Ru(0)-catalyzed silylation of aryloxazolines with hydrosilanes  

 

 Ruthenium(0) catalyzed ortho-silylation is in fact applicable with a broad scope of nitrogen 

containing-directing groups, such as imines, amides and nitrogen containing heterocycles (Scheme 
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54).[98,99] Furthermore, ortho-silylation was also extended to non π-conjugated assistance chelation, wtih 

an amine as directing group. While the reaction proved to be efficient with N,N-dimethylbenzylamine; 

benzylpyridine, phenyl pyridyl ether and azole derivatives led to the formation of significant amounts 

of bis-silylation products. One major drawback is the regiocontrol of this reaction. In some cases, such 

as for 2-phenyl pyridine, the disilylated compound is obtained in considerable amounts, but in others, 

such as for 3-methyl-2-phenyl pyridine in which there is a proximal methyl group on the pyridine ring 

providing steric repulsion,[99,100] the amount is lower. 

 

Scheme 54. Ru(0)-catalyzed ortho-silylation with various nitrogen containing-directing groups 

 

 An acceptorless version of dehydrogenative silylation[101] exists with similar substrates using 

[RuCl2(p-cymene)]2 (1 mol%) as catalyst. The protocol was found to be efficient with Et3SiH, 

(Me3SiO)Me2SiH and (Me3SiO)2MeSiH, but inefficient with HSi(OEt)3. Nonetheless, high 

temperatures (200 °C) are necessary to achieve the silylation. 

 

 Quite recently, a strategy involving removable directing groups, known as boron-masking strategy, 

was developed to obtain the ortho-silylation of arylboronic acids. Protection as pyrazolylaniline (pza) 

boronic esters (Scheme 55, eq. 1)[102] or anthranilamide (aam) boronic esters (eq. 2)[103] allowed for 

efficient ortho-silylation with triethylsilane of the parent aryl boronic acids using RuH2(CO)(PPh3)3 as 

catalyst in the presence of norbornene. The steric bulk of the silane and its respective nature has an 

influence on the reaction since lower yields are obtained in the case of HSiMe2t-Bu, while the reaction 

failed with tri-isoproylsilane and triethoxysilane. 
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Scheme 55. Ortho-C–H silylation of arylboronic acids via removable directing group 

 

 Interestingly, a one-pot preparation / C2-silylation of 3-thiopheneboronic acids was performed, 

through the protection of the boronic acid with pyrazolylaniline followed by the C2 silylation following 

the previously mentioned procedure.[102] 

 

c Rhodium-catalyzed silylation 

 Silylation of arenes using hydrosilanes (or disilanes) under rhodium catalysis has long been reported, 

in presence of RhCl(CO)(PMe3)2 catalyst, triethylsilane and a large excess of the corresponding arene 

under irradiation.[104] It has been shown during benzene silylation that a too low Si/Rh ratio (0.1 mol% 

of catalyst) leads in majority to the biphenyl by-product, whereas with 1 mol% catalyst, 

triethylphenylsilane becomes the main product (Scheme 56). In terms of mechanism, the original 

proposal involving a triethylsilyl radical intermediate was later excluded on the basis of the behavior of 

toluene which undergoes silylation at the aromatic ring (at the meta and para positions) and not at the 

methyl group which would be expected in the case of a radical mechanism. The authors also proposed 

that using RhCl(CO)PMe3, under irradiation promotes C–H bond activation, at room temperature. 
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Scheme 56. Rh-catalyzed arene silylation under irradiation 

 

 In 1998, Berry investigated the synthesis of aryl silanes from mono-, di- and tri-substituted arenes, 

using [Cp*RhCl2]2 as catalyst, triethylsilane as silicon donor and tbe as hydrogen acceptor.[95] A 

competitive reaction between mono-substituted arenes and benzene evidenced a faster reaction rate for 

electron-poor arenes, which could be related to the C–H activation step being less energetically 

demanding. Owing to steric congestion, no noticeable ortho-silylation could be evidenced with 

substituted arenes, except with fluorobenzene, for which the formation of the three regioisomers was 

noted. Mono-substituted arenes led to the formation of mixtures of meta- and para-silylated isomers in 

a statistical distribution (Scheme 57). p-Xylene and mesitylene did not yield any arylsilane. 

 

Scheme 57. Influence of substituent on silylation of arenes catalyzed by [Cp*RhCl2]2 

 

 In these early studies, arenes are used in high excess and/or as solvent, despite being often the most 

valuable coupling partner. Other strategies using arenes as limiting reagent were developed next.  

 As discussed here above, undirected silylation of functionalized arenes gives a statistical distribution 

of regioisomers. Hence, the use of specific ligands to enhance the regioselectivity in such reactions was 

contemplated. In 2014, Hartwig developed a strategy which allowed for better regiocontrol based of the 
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steric congestion of the substituents.[105] This reaction between a stoichiometric amount of an arene and 

HSiMe(OSiMe3)2, using cyclohexene as sacrificial hydrogen acceptor, was catalyzed by [Rh(coe)2OH]2 

in the presence of a bulky bidentate phosphine ligand (L2) (Scheme 58). The silylation of 1,2-

disubstituted arenes occurred with good regioselectivity (>80% of major regioisomer) in favor of the 

isomer having the silicon moiety further away from the bulkiest substituent, and 1,3-disubstituted arenes 

gave rise only to one regioisomer. Nevertheless, electronic effects had also an impact on the 

regioselectivity of the reaction. For example, the electron-donating NMe2 group favored silylation in 

para-position, while electron-withdrawing CF3 favored silylation at the meta-position (to some extent). 

The reaction scope was also extended to 1,4-disubstituted arenes, which were obtained in good yield 

and regioselectivity, as well as heteroarenes such as indoles and benzofurans. 

 

Scheme 58. Rhodium-catalyzed intermolecular C−H silylation of arenes with high steric and electronic control 

 

 The nature of the ligand plays a crucial role to favor arene C–H silylation over competitive alkene 

hydrosilylation, as illustrated with the example depicted in Scheme 59. Electron-rich ligand L2 

enhances the electron-density of the metal center, which improves the capacity of the Rh–Si 

intermediate to perform C–H bond oxidative addition, thus leading ultimately to arylsilane formation. 

Conversely, with electron-deficient ligand L3 the oxidative addition to the arene C–H bond is less 

favorable and the alkene hydrosilylation pathway becomes predominant. 
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Scheme 59. Effect of ligand electronic properties on arene vs alkene silylation 

 

 An intramolecular version of the Rh-catalyzed arene C–H silylation in “acceptorless” conditions 

was disclosed by Takai for the preparation of silafluorenes from biarylhydrosilanes using RhCl(PPh3)3 

as catalyst (Scheme 60).[106] Though not mandatory, the presence of tbe improved nevertheless both the 

yields and rate of the reaction in some cases. As discussed previously, the silylation step is highly 

dependent on steric effects and thus regiocontrol was achieved in most cases through the inhibition by 

the R group at the ortho-position in the previous examples. The bulkiness of the substituents of the 

arene undergoing silylation is another important factor influencing the formation of the silacycle. For 

example, biphenylhydrosilanes bearing two bulky isopropyl groups led to the formation of the 

corresponding fluorene only in a very poor yield (12%). In terms of mechanism, it could be established 

in this work through deuterium labelling experiments that the C–H activation step is the rate-

determining step of the silafluorene-formation reaction. 

 

Scheme 60. Rhodium-catalyzed intramolecular C–H silylation of arenes 

  

 More recently, Shi reported a directed version of dehydrogenative silylation catalyzed by a Rh(II) 

catalyst. As illustrated in Scheme 61, phosphine-substituted biaryl derivatives undergo regioselective 

C–H silylation with a large variety of hydrosilanes using Rh2(OAc)4 as catalyst in the presence of 

norbornene. [107] In this case, the regioselectivity is controlled by the complexation of the phosphine 

moiety to rhodium, which directs the C–H activation event. In addition to the biaryl core, phosphines 
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having other motifs, including, N-aryl pyrrole, ferrocene- and binaphthalene were found to be suitable 

substrates. 

 

Scheme 61. Rhodium-catalyzed silylation of biaryl-type monophosphines with hydrosilanes 

 

 Although rhodium catalyzes intermolecular dehydrogenative silylation of aryl C–H bonds at 

relatively low temperatures, there still resides some major shortcomings. Firstly, a limited amount of 

functional groups are tolerated by the current catalytic systems. For instance, heavy halides and 

carbonyls lead to reduced products, while some nitrogen-based heteroarenes as well as nitrile groups 

poison the catalyst. In addition, some of the frequently used ligands, such as L2, are chiral and are quite 

costly. 

 

d Iridium catalyzed silylation 

 Iridium is one of the most commonly used metals when it concerns dehydrogenative silylation, and 

both undirected and directed silylations have been disclosed. 

 

Undirected iridium-catalyzed intermolecular silylations 

 The group of Hartwig reported a related Ir(I)-catalyzed protocol for the silylation of (hetero)arenes 

using HSiMe(OSiMe3)2 as silylating agent. Here, substituted phenanthroline ligand L4 is used, under a 

flow of N2 or norbornene as hydrogen acceptor (unless specified), and the arene is the limiting 

reagent.[94] This protocol was applied to various electron-rich, electron-neutral and electron-poor arenes, 

as well as C2-substituted (hetero)arenes (whenever applicable), showing the robustness of this catalytic 
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system (Scheme 62).[94] Experimental studies involving kinetic isotope effects and isolation of the 

intermediates as well as computational studies have allowed to determine the key steps of this reaction. 

C–H bond cleavage is rate-limiting for electron-rich arenes, while the C–Si bond formation is 

considered to be rate limiting in the case of electron-poor and electron-neutral arenes.[108]  

 

Scheme 62. Ir-catalyzed silylation of various unactivated electron-rich, -neutral and -poor arenes 

 

 In addition, the selective silylation of azole derivatives was achieved in high yields in the presence 

of norbornene as hydrogen acceptor (Scheme 63). The regioselectivity was again governed by the steric 

constraints of the molecule rather than by electronic effects, which favored silylation at the sterically 

less hindered position. 
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Scheme 63. Ir-catalyzed silylation of azoles 

 

 The same group reported also showcased the functional-group tolerance of this silylation procedure. 

This time, the reaction was run with (hetero)arenes as limiting agent, in the presence of cyclohexene as 

hydrogen acceptor an [Ir]/L5 catalyst.  This was applied to highly functionalized substrates bearing 

nitrile, ester, ketone and heavy halogen (only trace amounts of the reduction products were observed 

form iodoarenes) functions, as well as to a variety of sulfur-, oxygen- or nitrogen heteroarenes (Scheme 

64). Reaction of five-membered heteroarenes proceeded with high levels of regioselectivity for 

functionalization of the C−H bonds α to the heteroatoms. Silylation of heteroarenes in which the α-

positions are substituted or sterically hindered because of a large substituent on the nitrogen occurred 

at the β-positions. This includes also C–H silylation of pharmaceutical precursors (Ketotifen, 

Clopidogrel, Clonidine,…) offering opportunities for late-stage functionalization. 
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Scheme 64. Undirected iridium-catalyzed silylation of highly functional (hetero)-arenes 

 

 Very recently, a silylation strategy involving chiral bidentate nitrogen-based ligand L6 was 

developed, which was found to be highly efficient for the C-5 silylation of C-3 functionalized 

heteroarenes, including furans, thiophenes and pyrroles, with cyclohexene as hydrogen acceptor.[110] 

This method could by-pass the natural selectivity of the substrate for the C2 position (Scheme 65).  
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Scheme 65. Ir-catalyzed silylation of 5-membered heteroarenes: High sterically derived selectivity from a pyridyl-

imidazoline ligand 

 

 It is known from the literature that 2-methyl phenanthroline could catalyze dehydrogenative 

silylation processes of norbornene,[111] while Me4Phen results in the hydrogenation process to 

norbornane. This is why, in 2019, the same group investigated the ligand dependence of the silylation 

of unactivated arenes. Unlike what was previously reported,[109] the rate of the reaction was investigated 

with phenanthroline ligands for the silylation of benzene. As previously reported, L5 showed a higher 

activity after 27 h of reaction time.[109] However, for the initial reaction rates (less than 5000 s), the rate 

of silylation was 5-fold lower with L5 than with 2,9-Me2Phen (L4), a feature that had remained hidden 

by the significant drop in the latter’s catalytic activity over time. The author attributed it to the catalyst 

poisoning by H2.
[112] Based on the results of the different phenanthroline ligands, the C2 and C9 

substitution on the phenanthroline have seemingly a high influence on the initial silylation rate, while 

substitution on the other positions did not contribute to changes in the silylation rates (Scheme 66). 
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Scheme 66. Evaluation of phenanthroline ligand for the silylation of unactivated arenes 

 

 The high catalytic activity was ascribed to a thermodynamically favorable oxidative addition of C–

H bond. This step seems to be reversible taking into account experiments carried out with deuterated 

arenes. The active catalyst is the square pyramidal iridium (III) hydride complex (G)[109] obtained by 

reaction between [Ir(cod)(OMe)]2, 2,9-Me2phen, and excess heptamethyltrisiloxane, and characterized 

by NMR and mass spectroscopies. The presence of substituents in C2 and C9 position of phenanthroline 

ligand showed high steric strain between the methyl group (pink ball) and X (H and/or SiMe(OSiMe3)2). 

Oxidative addition into the aryl C–H bond resulted in a mono-capped trigonal prism geometry (H), 

creating a steric relief between the methyl and X (Scheme 67). In general, the stability of the pentavalent 

iridium (III) complex was dependent on the number of silane coordinated to the iridium.[108] Usually, 

L7IrSi3 is more stable than L7IrSi2H and L7IrSiH2, but, due to steric interactions, such is not the case 

for (2,9-Me2Phen)Ir(Si)3 and instead (2,9-Me2Phen)IrSi2H is the most probable intermediate. On the 

other side, disilyl hydride complexes undergo faster oxidative addition to arene C–H bonds than trisilyl 

iridium complexes due to important steric congestion which disfavors the approach of the arene. 

 

Scheme 67. Steric relief upon oxidative addition 

 

 In 2008, Falck reported the silylation of a wide variety of N-, S-, and O-heteroarenes with [Ir]/dtbpy 

catalytic system and HSiEt3 as silicon source.[113] This method featured a high level of regioselectivity 

for S- and O-heteroarenes ((benzo)-thiophene or -furan), with in rare cases to disilylation of those 

species. In the case of the indoles, electron-donating groups on the nitrogen enhance the reactivity 
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towards triethylsilane. While the initial idea for the mechanism was proposed by the authors to be by 

chelation assisted C–H activation by the heteroatom (nitrogen, oxygen or sulfur)), the C3 silylation of 

N-tosyl pyrrole led to suggest either a change in the mechanism, or a metal migration from C2 to C3 

(Scheme 68). 

 

Scheme 68. Efficient Ir-catalyzed C–H silylation of N-, S-, and O-heteroarenes 

 

 The nature and/or the size of the silane is another important factor governing the regioselectivity of 

the silylation.[105] For example, when silylation of triisopropyl(o-tolyloxy)silane is carried out in the 

presence of triethylsilane, meta-functionalization to the OTIPS group, which is the less-electron rich 

position, takes place. However, with HSiMe(OSiMe3)2, para-substitution is ascribed by the authors to 

minimize the steric clash with the bulky OTIPS group (Scheme 69). 

 

Scheme 69. Influence of the size of the silane in regards to the regioselectivity 

 

 Ishiyama and Miyaura disclosed the silylation of arenes with hydrosilatranes with the aim to install 

a silicon unit offering opportunities to perform post-functional transformations (Scheme 70).[114] The 
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catalytic system developed involved a combination of [Ir(cod)OMe]2 with a phenanthroline (dmphen) 

ligand. 1-Hydrosilatrane being a rather costly silane, it was used as limiting reagent, while arene was 

used in large excess in solventless conditions. The reaction was operated under a flow of nitrogen gas 

allowing for discharge of released H2, and in the presence of hydrogen scavengers the desired products 

did not form. The regioselectivity of the reaction was again governed by steric effects, with the most 

accessible C–H bond being the preferred silylation site. 

 

Scheme 70. Aromatic C–H silylation of arenes with 1-hydrosilatrane catalyzed by iridium(I)/dmphen 

 

 All these considerations coupled with some computational studies led the Hartwig group to propose 

a mechanism[108] for the silylation of electron-rich, electron-neutral, and electron-poor C−H bonds. 

These mechanisms occur through the same intermediate iridium complexes, but differ in the rate-

limiting step (RLS) and the resting state of the catalyst (Scheme 71). On the other hand, for reactions 

of electron-poor or electron-neutral arenes, the resting state of the catalyst is the 5-coordinate iridium 

disilyl hydride complex (I). The coordination of complex I, by the arene, leads to complex J, which by 

reversible oxidative addition of the C–H bond leads to complex K. This oxidative addition step is 

considered to be the rate-limiting step for electron-rich arenes. The heptavalent Ir(V) complex, K, is 

poised for reductive elimination, releasing the arylsilane and complex L. The reductive elimination of 

the arylsilane represents the rate-limiting step for electron-poor arenes. In the presence of another 

hydrosilane molecule, the latter can coordinate to complex L, to form M, followed by an oxidative 

addition and a subsequent reductive elimination, upon the release of H2, to generate the catalyst’s resting 

state I. 
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Scheme 71. Proposed catalytic cycles for the silylation of electron-rich or -poor aromatic C−H Bonds 

 

Iridium-catalyzed intramolecular dehydrogenative silylation 

 Silylation of arenes could also be performed in an intramolecular fashion. A one-pot procedure was 

described by Gevorgyan for the synthesis of fused heteroaromatic dihydrosiloles starting from styrene 

derivatives (Scheme 72).[115] The first step involves the hydrosilylation of the double bond with 

diphenylsilane in the presence of a Ni(0) catalyst. The second step then involves a dehydrogenative Si–

H/C–H cyclisation in ortho-position catalyzed by an [Ir]/Phen catalytic system in the presence of 

norbornene, and leads to the corresponding dihydrosiloles. This method grants access to a number of 

highly valuable building blocks consisting of different heteroarenes. C–Si bond could be formed during 

the cyclisation into different positions of the pyridine, except in the C2 position, while the other 

heteroarenes, such as furan, thiophene and pyrrole, could be functionalized in the C4-, C3- and C3- 

positions respectively. 
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Scheme 72. Synthesis of fused heteroaromatic dihydrosiloles 

 

 Similar strategies were also applied to aryl- and heteroaryl carbonyl derivatives as well as benzylic 

alcohols. Hydrosilylation of C=O bonds and dehydrosilylation of alcohols by reaction with 

diethylsilane, delivering the corresponding silyl ethers, were achieved first using an iridium catalyst.[116] 

Then, with an [Ir]/Phen catalytic system in the presence of norbornene at 100 °C, intramolecular C–H 

silylation was accomplished at the ortho position of the directing group (Scheme 73).[117,118] The 

oxasilole intermediates thus produced are relevant synthetic intermediates for which the C(sp2)–Si bond 

can be easily activated under basic conditions to promote Hiyama-type cross-coupling reactions or 

Tamao-Fleming oxidations.  

 

Scheme 73. Iridium-catalyzed arene ortho-silylation by formal hydroxyl-directed C-H activation 
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Later, the synthesis of azasilolane under similar conditions was reported from secondary benzylamines 

(Scheme 74).[119] 

 

Scheme 74. Synthesis of azasilolane 

 

Directed Iridium-catalyzed intermolecular dehydrogenative silylation 

 In addition to intramolecular dehydrogenative silylation with tethered silylethers, ortho-directed 

silylation of arenes can also be achieved directly under iridium catalysis using directing groups.  

In a first example, the 2-pyridyl moiety promoted regioselective ortho-silylation in 2-

arylpyridines.[120] The key element here is the use of Lewis acidic HSiFPh2 which coordinates to the 

nitrogen atom to give intermediate N (identified by 29Si NMR). Formation of such complex weakens 

the Si–H bond and makes that the Ir–Si intermediate (O) responsible for C–H activation through 

oxidative addition is generated in close vicinity of the ortho C–H bond. A 6-membered iridacycle (P) 

is generated, and evolves to the final product after a reductive elimination step (Scheme 75). It is 

noteworthy to mention that this silylation reaction did not proceed with HSiPh3, HSiEt3 and H2SiPh2. 

Accordingly, the authors suggested that the presence of the highly electronegative fluorine atom on the 

silyl group renders it more Lewis acidic. 

 

Scheme 75. Ir-catalyzed ortho-selective C–H silylation of aromatic compounds directed towards the synthesis of π-

conjugated molecules with Lewis acid–base interaction 
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 In 2017, Wang disclosed another system using HSiMe(OSiMe3)2 as silane and involving milder 

operating conditions (80 °C) (Scheme 76).[121] Here, [IrCl(COD)]2 in combination with 

diisopropylethylamine (DIPEA) was used as catalytic system, in the presence of tbe. The regioselective 

ortho C–H silylation of arenes bearing functional groups such as aldehydes and ketones was achieved 

following their transformation to imines. Imines have proven-efficiency for the ortho-direction and as 

such the silylation were first performed on these related imines. Accordingly, the reaction was also 

performed with directing groups such as, pyridine, amide, oxazoline, oxime ether, hydrazone and amine. 

It has to be pointed out, that the 2-phenyl pyridine, underwent directed silylation using 

HSiMe(OSiMe3)2 as silicon donor. Importantly, the approach was also applicable to heteroarenes, 

including the C3-silylation of furfural. 

 

Scheme 76. Iridium-catalyzed intermolecular directed dehydrogenative ortho C–H silylation 

 

3 C3-silylation of furfural derivatives: results and discussion 

With the outermost aim of valorizing furfural derivatives through C–H activation and in order to 

have a highly functionalizable platform, we focused on the development of a method for C3-directed 

silylation.  

However, it is worth to remember that the C5-position of the furfural is the most reactive position 

to perform the C–H activation. Therefore, in the absence of ortho-directing group, the functionalization 

is driven towards the C5-position. Thus, silylation conditions tested on acetal 10, obtained by simple 



 

 

73 

acetalization of furfural in the presence of trimethyl orthoformate,[122] led to 27% of the C5-silylated 

product 11 (Scheme 77). 

 

Scheme 77. C5-silylation of 2-(dimethoxymethyl)furan 

 

 In addition, we have verified that this silylation reaction cannot be performed using the aldehyde as 

the directing group, due to its degradation by decarbonylation processes. [33,123–125] However, 

hydrosilylation of the aldehyde function is known to occur at room temperature (Scheme 78).  

 

Scheme 78. Hydrosilylation of furfural at room temperature 

 

As mentioned in chapter I, ruthenium(0)-catalyzed reactions have recently been developed in the 

team for the C3–H functionalization of furfural derivatives, via the formation of imines acting as 

directing groups for the C–H activation step. Therefore, the installation of this type of easily accessible 

temporary groups was investigated for this study. 

 

3.1 Preparation of furfurylimines 

Various imines were accessed through a simple condensation reaction between the furfural 

derivatives and a primary amine in the presence of MgSO4 as drying agent (Scheme 79). This general 

procedure provided high or quantitative yields for a variety of imines. Furthermore, as discussed in 

Chapter 1, the related C–H transformations based on furfurylimines are dependent on the nature of the 

imine. Therefore, the preparation of a variety of imines, such as electron-enriched (14a-c, f) and 

electron-deficient aromatic imines (14d and 14e), as well as mono- (14g) and bidentate-aliphatic imines 

(14h-l) has been essential for the proper understanding and screening of the silylation reaction. 
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Scheme 79. Preparation of furfurylimines 

 

3.2 Ruthenium(0)-catalyzed silylation 

 Initial tests were performed on furfurylimines with Ru3(CO)12 as catalyst in the presence of 

trisubstituted hydrosilanes and a sacrificial hydride acceptor. Inspired by conditions reported in the 

literature, several optimizations of the different parameters that can influence this reaction were 

performed.  

 

3.2.1 Variation of the imine directing group 

Different furfurylimines were reacted with triethylsilane in the presence of 5 mol% Ru3(CO)12 and 

2.0 equivalents of tbe, in toluene at 120 °C (Table 1). In the case of aromatic imines derived from 

electron-poor anilines 14d and 14e (entries 4–5) and of alkylamine 14i (entry 6) only imine reduction 

to the corresponding furfurylamines 18x-Si-ah was observed. Conversely, C3-silylated furfurylimines 

18x-Si-a were formed when electron-rich 14a and 14b or -neutral imines 14c were considered (entries 

1–3), but large amounts of reduced products were still detected. 
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Table 1. Ru(0)-catalyzed silylation: imine investigations 

 

Entry R 18x-Si-aa 18x-Si-ah
a 

1 
 

14a 

62 (23%) 38 

2 
 

14b 

43 57 

3 
 

14c 

29 71 

4 
 

14d 

_ 100 

5 
 

14e 

_ 100 

6  

14i 

_ 100 

aRatio of 18x-Si-a to 18x-Si-ah. (*) 1H NMR yield using 3,4,5-trimethoxybenzaldehyde as internal standard 

 

3.2.2 Variation of the operating conditions 

Using the PMP-imine (14a), the influence of the operating parameters was investigated briefly 

(Table 2). Performing the reaction at 80 °C instead of 120 °C delivered the imine reduction product 

almost exclusively (entry 2), while operating at 140 °C led to the decomposition of the starting material 

 
 The numbering the imines are described as 14x: where x represents the R group of the imine. And in the final 

product, Si-a, represents the SiEt3. For example 18a-Si-a, corresponds to product coming from substrate 14a, with 

Si-a, functionalized with a SiEt3. 18x-Si-ah, here represents the product of hydrosilylation of imine 14x. 
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(entry 4). At 120 °C, reducing the reaction time from 19 h to 7 h had no impact on the yield in silylation 

and reduction products (entry 3), in spite of a lower conversion rate. This suggests that substrate or 

product degradation occurs over time. Due to the poor solubility of the ruthenium catalyst in toluene, 

the reaction was also performed in a mixture of n-hexane and CH2Cl2 (9/1) (entry 5), but in this solvent 

mixture imine reduction became clearly predominant. 

 

Table 2. Ru(0)-catalyzed silylation: temperature, time, solvent investigations 

 

Entry t (h) T (°C) Solvent Conversion (%) 18a-Si-a (%) 18a-Si-ah (%) 

1 19 120 Toluene 100 23 14 

2 19 80 Toluene >95 traces 58 

3 7 120 Toluene 70 22 14 

4 19 140 Toluene 100 _a  

5 19 120 n-hexane/ CH2Cl2 (9/1) 96 <5 90 

1H NMR yield calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. aA complex mixture was 

obtained. 

 

3.2.3 Variation of the sacrificial H-acceptor 

Careful analysis by 1H NMR of the crude reaction mixtures of the first trials showed that a significant 

amount of trans-3,3-dimethyl-1-(triethylsilyl)-l-butene (21) was being formed during the process. 

Furthermore, it was demonstrated that 21 was produced in quantitative yield if no furfurylimine was 

present in the reaction medium (Scheme 80). 

 

Scheme 80. Silylation of 3,3-dimethylprop-1-ene 
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A plausible mechanism for the formation of this side-product[126,127] involves oxidative addition of 

the Si–H bond to the Ru(0) catalyst, generating a Si–[Ru]–H intermediate, followed by migratory 

insertion of the alkene that might occur either into the [Ru]–H or the [Ru]–Si bond (Scheme 81). If the 

latter occurs, vinylsilane 21 can be generated following a subsequent β-H elimination. Note that the 

first pathway would lead to the formation of alkene hydrosilylation product (22a), which is not observed 

in our case.  

 

Scheme 81. Possible mechanism for the silylation of 3,3-dimethylprop-1-ene 

 

These considerations thus tend to indicate that in our furfurylimine silylation attempts, the rate of 

insertion of tbe into the Ru–Si bond is faster than that of oxidative addition to the furyl C–H bond, 

which consumes the hydrosilane reagent and precludes arene C–H functionalization. In order to avoid 

losing the silane partner through its reaction with the sacrificial hydrogen acceptor, two other commonly 

used derivatives, namely, benzylidene acetone and norbornene were contemplated. The reaction of the 

PMP-imine 14a in the presence of benzylidene acetone only led to product degradation and the 

conversion was not complete (Table 3, entry 2). Full conversion was observed using norbornene, but 

here as well a complex mixture was obtained (entry 3). Hence, tbe was the only hydrogen acceptor with 

which the C3-silylated furfurylimine 18a-Si-a was obtained (entry 1).  
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Table 3. Ru(0)-catalyzed silylation: H-acceptor investigations 

 

Entry H-acceptor Conversion (%) 18a-Si-a (%) 18a-Si-h (%) 

1  (tbe) 75 23 14 

2 
 

42 _ Complex mixture 

3 
 

100 _ Complex mixture 

1H NMR yield calculated using 3,4,5-trimethoxybenzaldehyde as internal standard 

. 

3.2.4 Variation of the silicon donor 

Then, other silanes were screened. Silylation with HSiMe(OSiMe3)2 occurred with a similar (low) 

yield as with HSiEt3 (Table 4, compare entries 1 and 2), while using Ph3SiH (entry 3) a complex mixture 

of products which we were unable to identify was recovered. The use of hexamethyldisilane (in the 

absence of tbe) was next contemplated, but no reaction was observed and the starting imine was 

recovered intact (entry 4).  

 

Table 4. Ru(0)-catalyzed silylation: silane investigations 

 

Entry Silane Conversion (%) 18a-Si-y (%) 

1 HSiEt3 100 23 

2 HSiMe(OSiMe3)2 100 20 

3 HSiPh3 100 _a 

4b Me3Si–SiMe3 0 _ 

1H NMR yield calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. aA complex mixture was 

obtained. bNo tbe added. 

 
 For the numbering of silylated furfuryl imine, Si-y represent the silane. For example, 14a functionalized with 

HSiMe(OSiMe3)3 (Si-b), corresponds to product 18a-Si-b. 
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In the light of these disappointing results for the Ru(0)-catalyzed approach for the C3-silylation of 

furfurylimines, we turned our attention towards rhodium and iridium catalysis. 

 

3.3 Iridium(I)-catalyzed C3-silylation 

3.3.1 Screening of catalysts 

In our model reaction involving PMP-furfurylimine 14a, Et3SiH and tbe as hydrogen acceptor, we 

first tested the performance of rhodium catalysts [RhCl(COD)]2 (Table 5, entry 1) and RhCl(PPh3)3 

(entry 2), and found that only imine reduction occurred. We thus focused on iridium catalysis building 

on the (unique) precedent for furfurylimine C3–H silylation reported by Li.[121] Using 2 mol% 

[IrCl(COD)]2 and 20 mol% of (i-Pr)2NEt, in hexane at 120 °C in a screwcapped tube under argon, the 

C3-silylated product 18a-Si-a was obtained in 65% yield with almost no imine reduction (entry 3). 

However, C3,C5-bis-silylated product 18a-Si-ab was also formed in 20% yield. By contrast, cationic 

Ir(I) catalyst [Ir(COD)(PPh2Me)]PF6 (entry 4) was found to be ineffective and all the starting material 

was recovered intact. This could be related to the formation of a stable 18-electron iridium complex 

after coordination of the imine, thwarting the catalytic activity. An Ir(II) approach involving [IrCl(Cp*)]2 

(entry 5) was also investigated, but again very low conversion was noted. Following these results, we 

decided to optimize the catalytic system based on [IrCl(COD)]2.  
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Table 5. Ir-catalyzed silylation: catalyst investigations 

 

Entry Catalyst Conversion 18a-Si-a (%) 18a-Si-ab (%) 18a-Si-ah (%) 

1 RhCl(PPh3)3 100 _ _ 100a 

2 [RhCl(COD)]2 100 _ _ 100a 

3 [IrCl(COD)]2 100 65 20 _ 

4 [Ir(COD)(PPh2Me)]PF6 _ _ _ _ 

5 [IrCl(Cp*)]2 7 7 _ _ 

1H NMR yield calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. aOnly the ratio of the 

products observed were reported. 

 

3.3.2 Influence of reaction time 

Knowing that the C5-position is the most reactive position, it was initially thought that the bis-

silylated product 18a-Si-ab could result from an over-silylation of the C3-silylated product (18a-Si-a). 

To get better insight into the origin of the bis-silylated product, 18a-Si-ab, the progress over time of our 

model reaction was monitored (Table 6). A reaction time of 2 h was insufficient to have a complete 

conversion of the imine and a relatively low yield was obtained for the C3-silylated product 18a-Si-a, 

with still bis-silylated product (18a-Si-ab) (entry 1). When the reaction was carried out over 4 h, an 

improvement in yield was evidenced (entry 2), while the addition of hydrosilane and 3,3-dimethylbut-

1-ene to a preheated solution comprising the imine, the iridium catalyst and the base, did not influence 

the ratio of 18a-Si-a and 18a-Si-ab (entry 3). However, over longer time periods (entries 4-5), the yield 

of 18a-Si-a dropped, while the yield of 18a-Si-ab seemed to be quite stable over time, which would 

assert that 18a-Si-ab is produced at the beginning of the reaction. But the origin of this product is still 

 
 The numbering of silylated furfuryl imines, 18a-Si-a, corresponds to product coming from substrate 14a, 

functionalized with SiEt3, which corresponds to silane Si-a. 18a-Si-ab, where b represents the 3,5-bis-silylated 

product of 14a with silane Si-a. 18a-Si-ah, here represents the product of hydrosilylation of imine 14a. 
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unclear. It should also be noted that in none of these cases, the C5-monosilylated product was 

evidenced. 

 

Table 6. Ir-catalyzed silylation: time optimization 

 

Entry Time (h) Conversion (%) 18a-Si-a (%) 18a-Si-ab (%) 18a-Si-ah (%) 

1 2 90 45 16 _ 

2a 4 100 75 10 _ 

3 4 100 75 10 _ 

4 6 100 65 20 _ 

5 8 100 56 22 _ 

1H NMR yield calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. aAddition of [IrCl(COD)]2 

(2 mol%), (i-Pr2)NEt (20 mol%) in hexane (0.2 M) to imine 14a (0.4 mmol), heated 120 °C, 20 min in a 

microwave vial, closed by a septum. Then, tbe (2 equiv.), followed by the HSiEt3 (2.5 equiv.) were added and 

the mixture was, heated for another 4.5 h.  

 

3.3.3 Optimization of the amount of hydrosilane  

 In the event of reducing the amount of 18a-Si-ab, the amount of hydrosilane was modulated. In Table 

7 can be evidenced that the best result was obtained with 1.5 equivalents of HSiEt3 (entry 2) leading to 

a lower amount of 18a-Si-ab in relation to the desired product, 18a-Si-a, while lower quantity of 

hydrosilane (entry 3), led to similar results as entry 1. However, when HSiEt3 and tbe were employed 

in large excess (entry 4), only the bis-silylated product was obtained, but the latter was obtained in 

relatively low yields.  
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Table 7. Ir-catalyzed silylation: optimization of equivalence of silane 

 

Entry x Conversion (%) 18a-Si-a (%) 18a-Si-ab (%) 18a-Si-ah (%) 

1 2.5 100 75  10  _ 

2 1.5 100 82  5 _ 

3 1.1 100 73 12 _ 

4a 4.0 100 _ 33 _ 

1H NMR yield calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. atbe (4 equiv.) was added. 

 

3.3.4 Variation of the directing group 

 The next stage of our method development involved screening different furfurylimines in the new 

optimized conditions, i.e.: [IrCl(COD)]2 (2 mol%), (i-Pr2)NEt (20 mol%), triethylsilane (1.5 equiv.), and 

3,3-dimethylprop-1-ene (2 equiv.) in hexane at 120 °C in a screwcapped tube under argon atmosphere 

during 4 h (Table 8). Imines derived from anilines having electron-donating substituents provided the 

best results with relatively good silylation yields and no trace of the reduction product 18x-Si-ah (entries 

1,2). As noted before, very good selectivity for the C3-silylation over disilylation had been obtained 

with PMP-imine 14a (entry 1). On the one hand, 2,4-dimethoxyphenylimine 14f showed an even better 

selectivity, where only the C3-silylated product was detected. The 2-methoxy substituent could 

contribute to a better chelation of the metal, limiting the C5–H activation (entry 3). Nevertheless, the 

yield obtained for the C3-silylated imine 18f-Si-a is lower than that obtained with PMP-imine (18a-Si-

a). On the other hand, the use of phenylimine 14c (entry 4) led to a significant degradation of the 

products, while the imines derived from anilines with electron-withdrawing substituents 14e were 

shown to be more prone to competing hydrosilylation (entry 5). 

 



 

 

83 

Table 8. Ir-catalyzed silylation: optimization of imine function 

 

Entry R Conversion (%) 18x-Si-a (%) 18x-Si-b (%) 18x-Si-c (%) 

1 
 

14a 

100 82 (46) 5 _ 

2 
 

14b 

100 74 12 _ 

3 
 

14f 

100 56 _ _ 

4 
 

14c 

79 13 _ 25 

5 
 

14e 

100 54 16 19 

6  
14g 

100 56 14 _ 

7  
14h 

8 Traces _ _ 

8  
14i 

90 80 (55) _ _ 

9 
 

14j 

35 26 _ _ 

10  
14k 

100 85 (46) _ _ 

11  
14l 

100 79 8 _ 

 1H NMR yield calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. (*) shows the 

isolated yield after (acid or silica gel) hydrolysis of the imine. 

 

 For aliphatic imines, monodentate imine 14g, derived from butylamine gave C3-silylated and di-

silylated products in 56% and 14% yield, respectively (entry 6). In order to see if the use of bidentate 
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directing groups could improve the selectivity of this reaction, different bidentate aliphatic imines were 

synthesized and tested. The first tests were performed with N,N'-amino-imines bearing two carbons 

between the two nitrogen atoms. While imines with a terminal N,N'-dimethylamine group (14h, entry 

7) or a piperidyl group (14j, entry 9) led to poor conversion, the one having a N,N'-diethylethane group 

14i (entry 8) gave the C3-silylated aldehyde in 55% yield after purification on silica gel. In the same 

fashion, bidentate imine possessing three carbon spacing displayed better yields (entry 10) compared 

to the two carbon spacing ones, which is in sharp contrast to the case of ruthenium catalyzed Murai 

reaction.[48] Furthermore, amino-imine 14l showed comparable yield to amino-imine 14i (compare 

entries 8 and 11). Two possible factors might be responsible for this difference. It might be intrinsic to 

the iridium catalyst, which accommodates better a 6-membered metallacycle, or related to a looser 

complexation of the second amine, which prevents the catalyst poisoning. Furthermore, 14k proved to 

be very selective, where only one product was obtained with high yield (entry 10), whereby 14l was 

formed in slightly lesser yield, but the di-silylated product was obtained (entry 11). The bidentate 

directing groups, in most of the cases, gave rise to C3-silylated product 18k-Si-a only. 

 

 Based on these results, PMP-imine 14a and amino-imines 14i and 14k provided the best yields. We 

decided to pursue this silylation study with these imines, where 14a proved to be robust, while 14i and 

14k provided excellent selectivity and yields. 

 

3.3.5 Solvent dependence 

 Several solvents were then tested with these three imines, mainly apolar ones given that typically 

for directed C–H activation, non-coordinating solvents often favor ortho-substitution (Table 9). Initial 

attempts with toluene (entry 2) showed slightly lesser yields, with 18x-Si-ah product also obtained, 

while the reaction in xylene (entry 3) met limitations in terms of incomplete conversion, and the 

presence of non-negligible amounts of side-product 18x-Si-ah. However, toluene showed some 

promising results with 64% and 68% yield with the PMP-imine 14a and bidentate imine 14i respectively 

(entry 2). As previously reported, when performed in n-hexane, the directed C3-silylation was achieved 

smoothly with the imines tested, with yields above 80% (entry 1). The boiling point of n-hexane being 

69 °C, which is well below the reaction’s temperature, might influence other reaction parameters, such 

as the pressure in the reaction vessel. Therefore, other aliphatic solvents such as cyclohexane (b.p 81 

°C) and heptane (b.p 98 °C) were evaluated, but unsatisfactory yields were obtained (entries 4-5). 

Acetonitrile (entry 6), was a poorly efficient solvent in the C–H activation of the furan ring, and was 

mainly responsible for reduction products. 
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Table 9. Ir-catalyzed silylation: solvent investigation 

 

Entry Solvent Imine Conversion (%) 18x-Si-a (%) 18x-Si-ab (%) 18x-Si-ah (%) 

1 n-hexane 

14a 100 82 5 _ 

14i 90 80 _ _ 

14k 100 85 _ _ 

2 toluene 
14a 100 64 9 11 

14i 100 68 _ 6 

3 xylene 
14a 71 29 _ 35 

14i 20 13 _ 8 

4 cyclohexane 14i 79 44 _ _ 

5 heptane 
14a 100 38 10 27 

14k 85 53 _ 4 

6 acetonitrile 
14a 41 10 _ 49 

14k 32 _ _ 15 

1H NMR yields are calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. 

 

3.3.6 Temperature dependence 

 Typically, high temperatures are often required for the C–H activation of arenes. In the case of a 

simple furan ring, the bond dissociation energy of the C3–H is around 494 kJmol-1,[128] while the Si–H 

activation of a typical trialkylsilane approximates 400 kJmol-1.  Therefore, energy could be provided to 

achieve this silylation reaction. Temperature screening is crucial for the optimization of this reaction. 

A temperature of 50 °C was not found to be sufficient for the silylation of furfurylimine (Table 10, 

entry 2). It is important to note that the selected imines can withstand the hydrosilylation reaction at 

this temperature, unlike carbonyls, alcohols and amines.[117] Increasing the temperature to 80 °C (entry 

3) favors the conversion of PMP-imine to 14a, but at this temperature, longer reaction might be 

required. On the other hand, the transformation of bidentate imines (14i and 14k) was quite low for 

temperatures below 120 °C (entries 2-4). Thus, 120 °C seemed to be the optimal temperature in 
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performing this transformation using these imines (entry 1), but at 140 °C, the silylated imines 18a-Si-

a, has a tendency to perform a second silylation step with the product 18a-Si-ab rising to 17% (entry 5).  

 

Table 10. Ir-catalyzed silylation: temperature investigation 

 

Entry T (°C) Imine Conversion (%) 18x-Si-a (%) 18x-Si-ab (%) 18x-Si-ah (%) 

1 120 

14a 100 82 5 _ 

14i 88 80 _ _ 

14k 100 85 _ _ 

2 50 14a _ _ _ _ 

3 80 
14a 59 49 _ _ 

14i 13 7 _ _ 

4 100 
14a 92 66 5 _ 

14i 10 5 _ _ 

5 140 
14a 100 68 17 7 

14i 100 68 15 _ 

1H NMR yields are calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. 

  

 This result is in contrast with previously reported conditions by Li,[121] where the silylation of 14a 

with HSiMe(OSiMe3)2 was carried out at 80 °C with the conditions reported, which gave rise to 62% 

of isolated product after hydrolysis. In our trial, under these conditions, a mixture of C3-mono-silylated 

furfuryl imine 18a-Si-e was obtained with 37% yield, along with the 3,5-bisilylated furfuryl imine 18a-

Si-eb in 23% yield. 
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3.3.7 Amount of catalyst and sacrificial H-acceptor 

 In a way to minimize the amount of heavy metal used in this reaction, the reaction was performed 

at 1 mol% of the catalyst with 14k under the optimized conditions. Only 62% conversion was observed, 

with a yield of 41% (entry 2). Interestingly, when performed with 5 mol% [IrCl(COD)]2, the reaction 

reached full conversion, but 52% yield was observed as well as 9% of the bis-silylated product (entry 

3). These results were significantly less good at higher catalytic loadings, probably due to the 

conversion of the C3-silylated product to the bis-silylated one.  

 As discussed at the beginning of this chapter, the use of a sacrificial hydrogen acceptor is necessary 

and/or more convenient for the reaction to proceed smoothly. Under the optimized conditions, the 

reaction was performed in the absence of 3,3-dimethylbut-1-ene, as well as with 1 equiv. and 2 equiv. 

In the absence of the hydrogen acceptor, only 5% yield of 18k-Si-a was obtained (entry 4), while a low 

(69%) conversion of the furfurylimine was evidenced with 1 equivalent of 3,3-dimethylbut-1-ene, 

yielding 54% of 18k-Si-a. This yield is significantly lower than the one obtained previously with 2 

equivalents of hydrogen acceptor (entry 1). 

 

Table 11. Effect of the amount of hydrogen acceptor 

 

Entry x (mol%) y (equiv.) Conversion (%) 18k-Si-a (%) 18k-Si-ab (%) 18k-Si-ah (%) 

1 2 2 100 85 _ _ 

2 1 2 62 41 _ _ 

3 5 2 100 52 9 _ 

4 2 0 36 5 _ _ 

5 2 1 69 54 _ _ 

1H NMR yield calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. 
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3.3.8 Influence of tertiary amine 

 Finally, we wanted to assess the importance of (i-Pr)2NEt, for this iridium-catalyzed silylation. 

Based on the reported results with PMP-imine, better yield was obtained with 20 mol% of (i-Pr)2NEt 

(Table 12, entry 1) in comparison with triethylamine (entry 2) and without additives (entry 3). In 

addition, triethylamine seemed to favor more the di-silylated product. 

 A significant difference in the yield was evidenced with and without (i-Pr)2NEt, 86% and 53% 

respectively, in the case of amino-imine 14k (entry 3). In addition, full conversion was not achieved 

without this additive, which might account for a faster reaction rate. 

 

Table 12. Importance of (i-Pr)2NEt 

 

Entry (i-Pr)2NEt Imine Conversion 18x-Si-a (%) 18x-Si-ab (%) 18x-Si-ah (%) 

1 20 mol% 
14a 100 82 5 _ 

14k 100 86 _ _ 

2a 20 mol% 14a 100 65 19 _ 

3 _ 
14a 100 73 8 _ 

14k 71 53 _ _ 

1H NMR yields are calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. aNEt3 used instead of 

(i-Pr)2NEt 

 

3.3.9 Silylation scope 

 With all these data and parameters in hand, a silylation scope was developed on furfural (1), 5-

methyl furfural (13) and (TBDMS)-protected 5-HMF (2a), via the formation of PMP-imines (14a, 15a, 

16a) and bidentate imines (14k, 15k and 16k) as directing groups. The optimized conditions, i.e.: 

[IrCl(COD)]2 (2 mol%), (i-Pr2)NEt (20 mol%), HSiR3 (1.5 equiv), and 3,3-dimethylprop-1-ene (2 

equiv.) in hexane at 120 °C in a screwcapped tube under argon atmosphere during 4 h, were investigated 

with various hydrosilanes. 
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 Due to the relative volatility of the C3-silylated furfuraldehydes, after concentration under reduced 

pressure of the volatiles, the crude was analyzed by 1H NMR in order to quantify the amount of obtained 

C3-silylated furfurylimines using 3,4,5-trimethoxybenzaldehyde as internal standard. Then, the crudes 

were subjected to hydrolysis and isolated by silica-gel column chromatography. 

 The silylation scope was first performed of PMP-imines (a), then applied to the bidentate amino 

imines (b). 

 

a. PMP-imine silylation scope  

 The silylation of these imines was performed under the above-mentioned optimized conditions 

(Scheme 82). After the analysis and quantification of the C3-silylated furfurylimines by 1H NMR, the 

crude mixture was subjected to hydrolysis prior to its purification. Due to their robustness, these imines 

were subjected to acid hydrolysis by treatment with HCl (1 M) in Et2O for 1 h at room temperature to 

recover to corresponding furfuraldehyde containing mixture. The latter was then purified by silica-gel 

column chromatography. 

 The silylation process was initially intended to develop mainly tri-alkyl(aryl)silanes and so, were 

applied HSiEt3, HSi(i-Pr)3, HSiMe2Bn, and HSiMe2t-Bu (final compounds 18-Si-a to 18-Si-d). 

However, the silylation can also be performed with HSiMe(OSiMe3)2 as silicon donor, which afforded 

decent yield (final compounds 18- to 20-Si-e). As previously commented, based on the 1H NMR yield, 

moderate to good yields were obtained, but the isolation of the C3-silylated aldehydes proved to be 

difficult for 18-Si-a to 18-Si-d. These silylated products were seemingly less volatile when substituted 

at the C5-position, as 1H NMR yields based on the imine are consistent with the isolated yields. It has 

to be mentioned that in general the C3-silylation performed with (TBDMS)-protected 5-HMF 

derivatives was less efficient compared to its 5-methyl analogue. In addition, HSiMe2t-Bu displayed 

lower silylation yields compared to the other trialkylsilanes, probably due to the steric dependence of 

this reaction. 
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Scheme 82. Silylation scope of furfurylimines owing PMP-based imines 

 

b. Bidentate amino-imine silylation scope 

 The C3-silylation of these furfurylimines was carried out following the above-optimized procedure 

(Scheme 83). Owing to the results obtained in section 0, these imines are expected to offer excellent 

selectivity for this reaction so the silylation was carried out with the same array of hydrosilanes 

previously used with PMP-imines. 

 Bidentate amino-imines are easily hydrolyzed. Thus, here, the crude mixture resulting from the 

silylation reaction was allowed to stir in a solution of Et2O, to which silica and water were added. The 

 
 The numbering of silylated furfuraldehydes, for example, hydrolysis of imine 18x-Si-a leads to aldehyde 18-Si-

a. 
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mixture was then concentrated, and purified by silica-gel column chromatography to afford the 

corresponding C3-silylated furfuraldehyde.  

 As a general trend, the C3-silylation provided relatively good yields with SiEt3 (18- to 20-Si-a) and 

SiMe2Bn (18- to 20-Si-d), but seemed to be extremely dependent on the steric bulk of the silane. For 

example, sterically more hindered silanes, such as Si(n-Pr)3 granted their corresponding products (18- 

to 20-Si-b) in low yields, while SiMe2t-Bu, did not afford their respective C3-silylated product (18- to 

20-Si-c). In addition, this imine was also poorly efficient with HSiMe(OSiMe3)2 as silylating agent. 

 In this aspect the bidentate amino-imines showed some limitations due to the steric constraints of 

the silanes. 

 

Scheme 83. Silylation scope of furfurylimines owing bidentate amino-imines 
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c. Failed atttempts 

 Apart from trialkylsilanes, silylation of PMP-imine 14–16a with other trisubstituted hydrosilanes 

was attempted (Scheme 84). For instance, using HSiMe2Ph and HSiMePh2 resulted in their 

corresponding products 18-Si-g and 18-Si-f, respectively in very low yields. 

 In order to get more evidence about the steric dependence of this reaction, the reaction was 

performed with more sterically demanding hydrosilanes, such as HSi(n-Bu)3, HSi(SiMe3)3 and HSiPh3, 

but none of these led to the corresponding product. 

 In the advent of performing this dehydrogenative silylation in the absence of an external hydrogen 

acceptor, the use of vinyldimethylsilane or diphenylallyl silane was envisaged to fulfil both the role of 

silicon source and sacrificial hydrogen acceptor. However, no C3-functionalized product could be 

evidenced and relatively poor conversion could be noticed.  

 In addition, the nature of the hydrosilane has a very important role. For example, alkoxysilanes, led 

to degradation and/ or reduction of the furfurylimines, as well as dihydrosilanes, which are known to 

be good reducing agents.  

 

Scheme 84. Failed C3-silylation attempts 
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d. Ortho-directed dehydrogenative silylation applied to other hetero(arenes) 

 This approach was extended to the ortho-silylation of other (hetero)arenes. For example, the ortho-

silylation of N-PMP-tolylmethanimine 22 was carried out with HSiEt3 as silicon source (Scheme 85). 

However, with our general protocol, 50% conversion of the substrate was noticed, and 32% of the 

product 23-Si-a. Therefore, the reaction was allowed to stir over a longer time period (16 h), but the 

yield and conversion only improved slightly, 39% and 63% respectively. 

 

Scheme 85. Iridium-catalyzed ortho-silylation of N-PMP-tolylmethanimine 

 

 Finally, pyrrole 2-carboxaldehyde was considered as a suitable starting substrate, given its direct 

availability from furfural via the Paal-Knorr synthesis,[130] or via a three-step sequence (carbonyl 

reduction / Achmatowicz rearrangement / Maillard condensation).[131] This substrate can thus be 

considered as a biomass-derived building block, too.[132,133] So, we decided to investigate about the 

ortho-silylation of 17a with HSiEt3, under the classical conditions, but again 46% conversion was 

evidenced after 16 h reaction, with 25% yield. By extension, an increase in catalytic loading 

[IrCl(COD)]2 (5 mol%), increase in temperature from 120 °C to 140 °C improved the yield to 49% 

(Scheme 86). 

 

Scheme 86. Iridium-catalyzed ortho-silylation of PMP-based pyrrole 

 

3.3.10 Proposed mechanism 

 In the light of our own observations, along with the mechanistic studies for the iridium-catalyzed 

dehydrogenative silylation performed by Hartwig and co-workers, we therefore propose a mechanism 

for this ortho-directed silylation of furfurylimines (Scheme 87). 

 Starting from the pre-catalyst, we propose the formation of a mono-nuclear complex in the presence 

of (i-Pr)2NEt. The formation of an iridium(III) intermediate results from the reaction with the 
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hydrosilane by oxidative addition into the Si–H bond. This step is followed by a reductive elimination, 

releasing HCl and the active-catalytic species, X1. The role of the amine is crucial, as it can trap 

resulting acid, forming the ammonium salt. 

 In the presence of HSiR3, the probable resting state of the catalyst is generated through the oxidative 

addition of X1 into the H–Si bond. The resulting iridium (III) disilyl hydride complex X2 is therefore 

coordinated to the furfurylimine. The pre-coordination of the [Ir(III)] complex X3, provides ortho-

direction via the imine to perform oxidative addition into the arene C3–H bond, giving an 

hexacoordinated iridacycle X4, which leads to the formation of the intermediate X5, after reductive 

elimination. In the presence of tbe, the C3-silylated furfurylimine is released and the latter, coordinated 

to the iridium (III) dihydride silyl complex X6. Successive migratory insertion of the alkene into the 

[Ir]–H bond gives X7, which is followed by reductive elimination, liberating 3,3-dimethylbutane and 

the active catalytic species X1, is recovered. 

 For now, the formation of 3,5-bissilylated furfurylimine is unclear, but hydrosilylation of aldimines 

have been described using cationic [Ir(I)] complex in the presence of HSiEt3.
[134] The generation of an 

iridium (III) silyl hydride was considered to be responsible of the reduction of imines. 
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Scheme 87. Proposed mechanism for directed C3-silylation of furfurylimine 

 

4 Conclusion 

 In summary, we have developed a strategy for the selective C3-silylation of furfural derivatives. 

This relatively simple, and quite robust process is catalyzed by [IrCl(COD)]2, in the presence of a bulky 

tertiary amine additive ((i-Pr)2NEt) and tbe as sacrificial hydrogen acceptor. The installation of an imine 

temporary directing group serves both for the ortho-directing effect, as well as protecting group towards 

side reactions such as hydrosilylation and decarbonylation processes of the aldehyde function. 

Furthermore, this synthetic strategy is highly dependent on the nature of the imine. For example, 

bidentate amino-imines are highly selective with trialkylsilanes for the C3-silylation, but inefficient 

towards sterically hindered silanes, and show some limitations towards hydrosilylation processes. 

Moreover, the PMP-imines, though slightly less selective, are more robust towards hydrosilylation, and 

thus can be applied generally to a wide range of silanes. While aryltrialkylsilanes are known to be very 
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stable, there are limited synthetic methods for the post-transformations, such as the Brook 

rearrangement and these require specific conditions. The preparations of synthetically useful motifs 

such as aryl-heptamethyltrisiloxane, or aryl siloxane are also quite interesting, as they are known to 

allow post-transformations, through Hiyama cross-coupling reactions. 

 Therefore, this methodology provided a silylation platform based on furfural derivatives which are 

derived from biomass. This platform is highly valuable as it allows a number of post-transformations 

when properly activated. The activation of these arylsilanes will be developed in the next two chapters. 

 



   

 

  

 

 

 

 

CHAPTER III: 

Carbon-to-Oxygen silyl migration 
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1 C(sp2)–Si bond functionalization through intramolecular 

activation by alkoxides 

This bibliographic section has been published as a review in Eur. J. Org. Chem. 2021, 1055-1071. 

Sebastien Curpanen made the literature search and wrote the first draft of this review during the first 

lockdown of 2020, as well as the front cover picture of the issue. 

 

Abstract. Organosilicon reagents are invaluable tools in the hands of the modern chemist that allow 

accomplishing a number of synthetically useful transformations. While some are standard reactions, 

other are more complex transformations, such as the Brook rearrangement and its variants. This carbon-

to-oxygen silyl migration represents a privileged method to generate transient carbanionic species well 

suited to undergo functionalization upon electrophilic substitution in the presence of an electrophile. 

This minireview focuses on recent advances in C(sp2)–Si bond functionalization through intramolecular 

activation by alkoxides. The key elements of reactivity will be highlighted in the introduction to allow 

the proper understanding of the migration process. Then, an overview of the reactivity of substrates 

incorporating the C(sp2)–Si motif and their synthetic applications will be provided. 

 

1.1 Introduction 

 Alkenyl-, aryl-, and heteroarylsilanes can be used as robust carbanion surrogates endowed with a 

number of features such as ready availability, low toxicity and excellent functional-group tolerance. 

These attributes make them highly attractive building blocks in the context of sustainable chemical 

synthesis and many efforts have been devoted to develop methods for the construction of C(sp2)–Si 

bonds. Yet, the counterpart to the assets related to the stability of these reagents is that their use as 

carbon nucleophiles is the need of specific strategies to activate the C(sp2)–Si bond. Intramolecular 

carbon-to-oxygen (C→O) silyl migrations offer the possibility to generate with high selectivity 

carbanionic species from C–Si bonds. Whereas this approach has been massively applied for the 

functionalization of C(sp3)–Si bonds, related C(sp2)–Si bond-functionalizations are comparatively 

rather scarce. This notwithstanding, a number of elegant methodologies has been gradually developed 

over the years. The aim of this minireview is to illustrate the high synthetic potential of this rapidly 

growing field of chemistry. Following some general considerations on intramolecular C→O silyl 

migrations, the most relevant strategies applied in the context of C(sp2)–Si bond functionalization will 

be discussed, focusing on recent advances and future perspectives. A final section will be devoted to 

the related field of C(sp2)–Si cross-coupling through intramolecular activation with alkoxides.  
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1.1.1 Background and general reactivity trends 

 In the early 1950s, Gilman discovered that whereas the reaction of triphenylsilylpotassium with 

formaldehyde[135] (or aliphatic ketones)[136] provided the “normal” addition product (i.e. 25), the reaction 

with benzophenone yielded alkoxysilane 26 (Scheme 88, top).[137] The same outcome was observed by 

Brook for the addition of other triphenylsilylmetal reagents on benzophenone,[138,139] and also upon 

deprotonation with active metals, organometallic species or organic bases of α-silylcarbinols 28 

(Scheme 88, bottom).[140,141] It was then established by Brook,[138,139,142,143] that the formation of silyl 

ethers in these reactions was the result of the [1,2]-C-to-O migration of the triorganosilyl group in α-

triorganosilyl alkoxides 27a–c. This type of rearrangement reaction was popularized as the “Brook 

rearrangement” and proved to be much more general-in-scope, allowing for 1,2-, 1,3-, 1,4- and 1,5-

migrations. 

 

Scheme 88. Seminal reports on C→O triorganosilyl migrations (Brook rearrangement) from α-triorganosilyl alkoxides 

 

1.1.2 Mechanistic considerations 

 The main mechanistic features underpinning these rearrangements were established at an early 

stage.[143] The migration is in fact a reversible process passing through a pentavalent silicon intermediate 

30 (Scheme 89). The observed high negative entropy is consistent with the formation of such a 

silacycle.[143] Once this intermediate is formed from an alkoxide 29, it can evolve through C–Si bond 

cleavage to give carbanion 31 and thereby complete a 1,2-, 1,3-, 1,4- or 1,5-C-to-O migration (Brook 

rearrangement). However, the reversibility of the process also makes possible to produce an alkoxide 

29 from a carbanion 31 through O-to-C migration (retro-Brook rearrangement). Both processes are 

useful in synthetic organic chemistry and have notably been beautifully combined in the Anion Relay 
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Chemistry concept developed by Smith,[144] wherein site-selective synthetic elaboration is achieved 

upon the transfer of a negative charge from one place to another.  

 

Scheme 89. The Brook and the retro-Brook rearrangements 

 

 The triorganosilyl migration being reversible, the relative stabilities of the starting and final product 

play a key role to determine the issue of the rearrangement. The driving force behind the C→O 

migration is often attributed to the high affinity of silicon for oxygen (BDE Si–O is 191.3 kcal/mol 

compared to 106.9 kcal/mol for the Si–C).[129] However, it also depends on the relative stability of the 

carbanion compared to that of the alkoxy anion generated. The thermodynamic considerations are in 

line with the difference in rate of the silyl migration (kinetics) in α-silylcarbinols bearing different 

substituents (R2, R3) on the carbon atom bonded to oxygen (Table 13). Electron-withdrawing groups 

promote the formation of the carbanionic species, whereas electron-donating groups destabilize this 

species, so a lower rate for the rearrangement is observed. The nature of the migrating triorganosilyl 

group also influences the kinetics of the rearrangement. With electron-withdrawing R1 groups, the 

rearrangement rate is increased, likely as the result of increased stabilization of the cyclic 

pentacoordinate silicon intermediate.[140,143,145–147] 
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Table 13. Rates for C→O migration in selected α-triorganosilylcarbinols 

 

Carbinol k2 (M
–1s–1) 

9-Triphenylsilyl-9-hydroxyfluorene 1.18 

Ph3SiCPh2OH 6.10 × 10–3 

Ph2MeSiCPh2OH 0.98 × 10–3 

PhMe2SiCPh2OH 1.50 × 10–4 

Me3SiCPh2OH 2.50 × 10–5 

Ph3SiCPhMeOH 4.30 × 10–6 

Ph3SiCMe2OH Too slow 

 

 The ease of C→O silyl migration also depends on the nature of the metal counter-cation. With 

coordinating or oxophilic metal cations such as lithium, the migration is less favorable, and therefore, 

adjustments of some experimental parameters become essential. For example, the use of polar solvents 

and/or additives with high dielectric constant is a common tactic to trigger this rearrangement[143,148] by 

promoting ion pair dissociation.[149,150] Furthermore, while C→O silyl migrations are usually performed 

at low temperatures, high temperatures may be needed to achieve formation of the pentacoordinate 

silicon intermediate in unfavorable cases.  

 Furthermore, independently of the intrinsic position of the equilibrium of the rearrangement step, 

the silyl migration may require the presence of an appropriate electrophile to occur. In this case, the 

aptitude of the carbanionic species to undergo electrophilic substitution becomes crucial, and operating 

under Barbier-type conditions mandatory. In these frequent situations, although the rearrangement 

equilibrium is not in favor of the O-silyl carbanionic species, the latter undergoes an irreversible 

electrophilic substitution more promptly than the C-silyl metal alkoxide. The reaction outcome is 

governed by the Curtin-Hammett principle: equilibration is fast compared with possible competing O- 

or C-functionalization, and the rate of formation of 33 is much higher than that of 32 (kc >> ko) (Scheme 

90). Consequently, only the Brook-product (33) is formed. Note that in this process the “electrophile” 

can be not only the stoichiometric reagent delivering the desired functionalization, but also the metal 

salt in the case of transition-metal catalyzed cross-coupling reactions. Finally, to be thorough, it should 

also be mentioned that there are also related cases (not shown in the scheme) wherein C-

functionalization is quantitatively achieved due to the reversibility of the O-functionalization.[151]  
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Scheme 90. Shifting of the silyl-migration equilibrium allowing for C–Si bond functionalization 

 

 The Brook rearrangement has attracted considerable interest and found many applications in organic 

synthesis. Some reviews and book chapters exist, describing applications, asymmetric transformations 

and mechanistic details.[144,147,152–157] An inspiring personal account on anion relay chemistry was 

published by Smith during the preparation of the present review.[154] However, synthetic methods 

relying on C(sp2)–Si bond functionalization upon activation through Brook rearrangements and related 

intramolecular activations by alkoxides, which are the focus of this minireview, have not been 

specifically surveyed previously.  

We have organized this review in two parts, according to the nature of the bond cleavage. In the first 

part (Brook rearrangement), C(sp2)–Si bond functionalization is achieved through “endocyclic” 

cleavage (Scheme 91, top). In this case the silyl ether moiety remains in the target compound. Usually, 

a trialkylsilane is used as the migrating group, and thus the selectivity of C–Si bond cleavage from the 

silacyclic intermediate is not an issue, as the formation of a more stable C(sp2) carbanion favours 

C(sp2)–Si over C(sp3)–Si bond-cleavage. In the second part, the reacting C(sp2)–Si bond undergoes 

“exocyclic” cleavage. In this case, no silyl migration occurs and the alkoxy unit “only” serves as 

intramolecular trigger (Scheme 91, bottom). Most of the tethers developed for this purpose so far 

involve a C(sp2)–Si linkage, and thus, here, the selectivity of the C(sp2)–Si bond cleavage from the 

cyclic hypervalent silicon intermediate can be an issue.[158] 
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Scheme 91. General approaches for C(sp2)–Si bond functionalization through intramolecular activation by alkoxides 

 

1.2 C(sp2)–Si bond functionalization through endocyclic cleavage 

 Selective functionalization of alkenes and aromatic rings bearing other functional groups is often 

rather problematic. In this context, C(sp2)–Si bond functionalization of alkenyl- or (hetero)aryl-silanes 

through the Brook rearrangement represents a useful alternative to metalation chemistry and offers 

specific opportunities for regio- and stereocontrol.  

 

1.2.1 C(sp2)–Si bond functionalization of alkenylsilanes 

 In 2001, the Takeda group developed a strategy for the stereoselective allylation of (Z)-γ-

trimethylsilyl allylic alcohols 34.[159] Successive treatment with copper(I) tert-butoxide and allyl halides 

in DMF, followed by the TBAF-assisted hydrolysis, yielded dienyl alcohols 35 with complete retention 

of configuration of the double bond (Scheme 92). The mechanism involves firstly the formation of a 

copper alkoxide that then rearranges by [1,4]-C(sp2)→O trimethylsilyl migration to give a vinylcopper 

species, which is then trapped by the corresponding allyl halide. In agreement with the intramolecular 

character of the rearrangement, formation of the E isomers (e.g. (E)-35e) was not observed from the 

parent (E)-γ-trimethylsilyl allylic alcohols. It is noteworthy that this activation method was also suitable 

to perform palladium-catalyzed cross-coupling reactions.  
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Scheme 92. Copper(I) tert-butoxide-promoted [1,4]-C(sp2)→O silyl migration of (Z)-γ-trimethylsilyl allylic alcohols 

 

 The synthetic value of this method triggered a number of synthetic applications that exploited 

trapping of the vinylcopper intermediate with a number of electrophiles. In a total synthesis of 

dolabelide D, vinylsilane 36 was methylated to yield 37 (Scheme 93).[160] In this case, the trimethylsilyl 

group served not only as platform for functionalization, but also as alcohol protecting group for 

subsequent transformations.  

 

Scheme 93. A key step for a total synthesis of dolabelide D 

 

 The same alkenyl anion generation strategy was followed in a (formal) total synthesis of strychnine, 

wherein allylic alcohol 38 was transformed into the pentacyclic product 40 (Scheme 94). Following 

deprotonation of the hydroxy function of 38 with NaHMDS, a [1,4]-C(sp2)→O trimethylsilyl migration 

was triggered by the addition of a copper(I) salt in presence of NMP or DMPU. At room temperature, 
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the transient vinylcopper anion 39 led only to the protodemetalated product 38-H. By contrast, at 65 

°C, intramolecular 1,4-addition on the α,β-unsaturated aldehyde occurred, yielding 5–10% of the 

cyclized product 40 that could not be accessed by other means.[161]  

 

Scheme 94. A key step for a formal total synthesis of strychnine 

 

 This approach was later applied with γ,γ’-bis(trimethylsilyl) allylic alcohols 41.[162,163] Specifically, 

CuCN/ lithium tert-butoxide in DMF/ THF triggered the [1,4]-Brook rearrangement, and trapping with 

an array of electrophiles led fully stereoselectively to trisubstituted vinylsilanes such as 42 (Scheme 

95). The key point of this reaction is that only the triethylsilyl group cis to the hydroxy undergoes the 

C(sp2)→O migration, as the triethylsilyl group trans to the alkoxy anion cannot take part in the 

formation of a cyclic hypervalent pentacoordinate silicon complex. Interestingly, in the formation of 

42d and 42e, [1,4]-silyl migration fully overrides a possible alternative [1,7]-silyl migration. 
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Scheme 95. Stereoselective [1,4]-Brook rearrangement/alkylation of geminal γ, γ’-bis-silyl allylic alcohols 

 

 The gem bis(triethylsilyl) alkene system was also used to study the competition between [1,4]- and 

[1,5]-C(sp2)–Si→O migration in the Brook rearrangement. Specifically, deprotonation with 

butyllithium of the 1,2-diol 43[164] followed by CuCN / DMF addition (to promote the silyl migration), 

and trapping with allylchloride gave only the [1,4]-silyl migration product 44 (Scheme 96). 

 

Scheme 96. Regioselective [1,4]-Brook rearrangement of geminal bis-silyl allylic 1,2-diol 

 

 The [1,4]-Brook rearrangement of (Z)-γ-trimethylsilyl allylic alcohols has also been embedded in 

multi-step sequences involving a preceding alkoxide-forming reaction. For instance, the 1,2-addition of 

an organolithium reagent to aldehyde 45 generates an alkoxy anion, which, activated in the presence of 

CuI and HMPA, undergoes the Brook rearrangement. The resulting organocopper intermediate can be 

trapped by an allyl bromide giving products such as 46a or 46b. Alternatively, in the presence of aryl 

or vinyl halides and of a palladium(0) catalyst, the corresponding arylated or alkenylated products (i.e. 

46c or 46d) can be obtained (Scheme 97).[165] 
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Scheme 97. Three-component anion relay couplings from an aldehyde/ vinyl silane linchpin 

 

 The strategy was also implemented with geminal bis(triethylsilyl) enals 47.[166] Upon 1,2-addition 

of organolithium reagents, the lithium alkoxides produced were treated with CuCN and an electrophile 

in DMF, to obtain trisubstituted vinylsilanes 48 in excellent yields and stereoselectivities (Scheme 98).  

 

Scheme 98. Three-component reaction to synthesize trisubstituted vinylsilanes from geminal bis(silyl)enals 
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trapped in the presence of electrophiles to yield adducts 51. Finally, treatment with PPTS in MeOH led 

to diols 52.[167]  

 

Scheme 99. Sequential [1,4]-O-to-O / [1,4]-C(sp2)-to-O silyl migrations 
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located carboxylic acid function provides a smooth way to activate the C–Si bond of vinyl silanes 53 

(Scheme 100).[168] Indeed, intramolecular carboxylic acid-triggered silane activation can be smoothly 

obtained with cesium carbonate. The resulting transient cyclic hypervalent silicon intermediates 54 can 

then be treated with aryl iodides in the presence of an appropriate Pd catalyst, to yield the corresponding 

(Z)-β-(aryl)acrylic acids 55. 
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Scheme 100. Cross-coupling of (Z)-β-(trialkylsilyl)acrylic acids via intramolecularly activation of vinyl silane 

 

 In 2015, Takeda reported on the C(sp2)–Si functionalization of enantiopure γ-(trimethylsilyl) 

homoallylic alcohols 56 giving products 57 upon [1,4]-C(sp2)→O trimethylsilyl migration followed by 

electrophilic substitution of the alkenyl carbanion (Scheme 101).[169] Allylation and alkylation reactions, 

such as those yielding 57a–b, were performed by treatment with t-BuOCu in the presence of alkyl- or 

allyl-halides. Vinylation or arylation reactions, such as those yielding 57c–d, were also feasible using 

vinyl or aryl halides as electrophiles, albeit only in the presence of an additional palladium-catalyst. 

These reactions have been shown to occur without variation in the diasteromeric ratio, which means 

that this method is well-suited in the context of stereoselective synthesis as it does not promote the 

epimerization of carbon stereocenters. 

 

Scheme 101. Stereoselective synthesis of β,γ-disubstituted tert-homoallylic alcohols 
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 As for the previous [1,4]-Brook rearrangement of (Z)-γ-trimethylsilyl allylic alcohols, the 

rearrangement of γ-(trimethylsilyl) homoallylic alcohols can also be included into multicomponent 

systems (most commonly, three-component systems), with the key step being the generation of an 

alkoxide ion. This includes bifunctional silylated linchpins bearing carbonyl and/or epoxide 

functions.[165] For instance, the alkoxide resulting from the nucleophilic addition of lithium dibutyl 

cuprate to epoxide 58 can be activated in the presence of copper(I) iodide in HMPA, triggering a [1,4]-

silyl migration (Scheme 102). The subsequent organocopper reagent can be trapped by an allyl bromide, 

leading to compounds 59a and 59b, or, in the presence of palladium(0) catalyst, be arylated to yield 

compounds 59c or 59d via cross-coupling reactions.[165] 

 

Scheme 102. Three-component anion relay coupling from epoxide vinyl silane linchpin 

 

 In a study performed by Smith in 2017, the requirements to achieve [1,4]- and [1,5]-C(sp2)→O silyl 

migrations from copper(I) alkoxides were investigated by a combination of experimental results and 

computations.[170] The [1,4]-C(sp2)→O silyl migrations on alkenyl systems most often involve internal 

alkenes, while terminal alkenes are less described. In line with these observations, theoretical studies 

using the DFT method (M06 with solvation) showed that the terminal alkene 61 is coordinated more 

strongly to copper(I) iodide than the internal one 60 (Figure 6 and Figure 7, compare the blue profiles). 

This leads to a striking silyl migration activation barrier difference between 61 and 60, the latter being 

13.8 kcal/mol easier due to its higher strain.  
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activation barrier for silyl migration is lower than for CuI. In the case of vinylsilane 61 bearing a 

terminal alkyne, silyl migration with CuMe (EA2) was computed to have an activation barrier lower by 

4.0 kcal/mol than with CuI (EA1) (Figure 7, compare blue and orange profiles). While these theoretical 

studies provide valuable insight to shed light on the influence of the nature of the copper species on the 

Brook-rearrangement, they should be taken with caution as the reacting copper species certainly differ 

in many other aspects (e.g. aggregation state, electronic nature).  

 

Figure 6. [1,4]-Vinyl Brook rearrangements involving an internal double bond and CuI 

 

Figure 7. [1,4]-Vinyl Brook rearrangements involving a terminal double bond and CuI or CuMe. 

 

 [1,5]-C(sp2)→O silyl migration is more difficult than the corresponding [1,4] one, as demonstrated 

in the same study by Smith,[170] and has been somewhat less described in the literature. The 

rearrangement of the silyl alkoxide 62, bearing one carbon atom more than 61 between the alkoxide 

and the alkene functions, requires a silyl migration activation barrier that is 3.7 kcal/mol higher than 

from 61 (Figure 7 and Figure 8, compare the orange profiles). This can be ascribed to a larger 

conformational change between the intermediate and the transition state for the [1,5]-rearrangement 

(15.3°) than for the [1,4]-counterpart. 
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Figure 8. [1,5]-Vinyl Brook rearrangements involving a terminal double bond and CuMe 

  

 The influence of conformational constraints in the substrates was further analyzed by considering 

the [1,5]-C(sp2)→O silyl migrations in conformationally rigid molecules with different tethers such as 

phenyl (63), cis-cyclohexyl (64) and trans-cyclohexyl (65) (Scheme 103). A number of electrophiles, 

including alkyl, benzyl and allyl halides, can be used to trap the anion arising from the Brook 

rearrangement and deliver 1,1-disubstituted alkenes. Arylation and alkenylation are also possible for 

these compounds, provided a palladium-catalyst is added.[170] 

 

Scheme 103. [1,5]-C→O silyl migrations in conformationally rigid molecules 
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for 63 (giving 66), 60°C for 64 (producing 67), and 100 °C under micro-wave irradiation for 65 

(yielding 68) (Scheme 103). In addition, the calculations demonstrated a good correlation between the 

extent of the required conformational change of the tether and the barrier for the [1,5]-Brook 

rearrangement. For instance, the rigidity of 63, combined with a minimum required conformational 

change, accounts for the low energy barrier to the rearrangement in this case. Furthermore, the 

difference between the ease of migration of cis-cyclohexyl 64 with respect to trans-cyclohexyl 65 can 

be rationalized on the grounds of differential dihedral angle (OC-C-C-CSi) distortion D. Indeed, the 

latter substrate is associated to a much energy demanding D (from 6.1° to 13.5°). The key points in 

terms of conformational changes, intermediates and transition states for this rearrangement, are 

represented in Table 14. 

 

Table 14. Computational study for the conformational change between transition state and its intermediate 
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 C(sp2)–Si bond functionalization of vinylsilanes through [1,3]-Brook rearrangements are much less 

common than [1,4]- and [1,5]-migrations. Nevertheless, Tsubouchi and Takeda exploited such a 

rearrangement to develop a strategy for the preparation of substituted silyl enol ethers starting from α-

silyl α,β-unsaturated ketones 69 (Scheme 104).[171] 1,4-Addition of organocopper reagents to these 

substrates leads to the formation of the corresponding copper enolates as an equilibrating mixture of 

two diastereoisomers (Z and E). Following addition of DMF and at higher temperature, [1,3]-C(sp2)→O 

triphenylsilyl migration becomes possible, but only for the Z isomer, which is the only one for which 

formation of a cyclic pentavalent silicon intermediate is feasible. Hence, the stereoselective formation 

of alkenylcopper intermediates is obtained, and their functionalization, with retention of the double-

bond geometry, can be performed through electrophilic substitution. This method provides direct access 

to tetrasubstituted silyl enol ethers 70, which are particularly useful reagents for the construction of 

quaternary stereogenic centres.[172] 

 

Scheme 104. Synthesis of substituted silyl enol ethers from α-silyl α,β-unsaturated ketones 
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afford compounds 72 (Scheme 105).[173] This is among the first examples of Brook rearrangement on 

aryl silanes. 

 

Scheme 105. t-BuOCu-promoted coupling of o-(1-hydroxyalkyl)arylsilanes with organic halides 
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Scheme 106. Hiyama-type cross-coupling reactions of 8-TBDMS-1-naphthols 

 

 As for some of the above discussed reactions with alkenylsilanes, the silyl-migration step can be 

combined with a preceding alkoxide-generating reaction. For instance, the nucleophilic addition of 

organolithium reagents to carbonyl derivative 75 was combined with subsequent Cu(I)-mediated [1,4]-

silyl migration, which allows for the selective functionalization of the aromatic ring in the ortho position 

to give alcohols 76 (Scheme 107).[165,175] It is important to note that the use of a Pd(0) catalyst in addition 

to copper is necessary for electrophilic substitutions with aryl- or vinyl-halides yielding products 76d–

f. 
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Scheme 107. [1,4]-silyl migration from ortho-TMS benzaldehyde 
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Scheme 108. Selective C(sp2)–Si migration of an aryl-silane versus of an alkenylsilane 

 

 Such Brook-promoted C(sp2)–Si activation reactions were also combined with anion relay 

processes. The example shown in Scheme 109 is based on initiation through the opening of an epoxide. 

Ring-opening of epoxide 81 with dimethyl cuprate gives rise to alkoxide 82. The addition of copper 

iodide in the presence of HMPA triggers a first [1,5]-O→O silyl migration (involving the TBDMS 

group) which provides copper alkoxide 83. Following a second [1,4]-C(sp2)→O silyl migration, the 

aryl anion (84) generated, is in turn trapped by an electrophile, leading to the final compound 85.[176]  

 

Scheme 109. Multiple transfer of silyl groups through sequential 1,5-O→O / 1,4-C→O migrations 
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 On a green chemistry perspective, one-pot multicomponent or sequential transformations are 

considered more environmentally friendly as they involve fewer purification steps, thus less product 

loss, and also, from an economic point of view, they are less expensive.[144]  

 In this context, recently, a procedure for the one-pot bidirectional difunctionalization through two 

consecutive Brook rearrangements of benzylic alcohol 62 bearing two ortho-trimethylsilyl groups was 

developed (Scheme 110). In these processes, following deprotonation with t-BuOLi, a first [1,4]-

C(sp2)→O trimethylsilyl migration occurs in the presence of DMF, copper(I) iodide and phenanthroline 

ligand L9. The aryl carbanion is then trapped by a first electrophile E1X1, leading to silyl ether 87, 

which can be converted in situ into alkoxide 87’ by addition of a fluoride source and lithium tert-

butoxide. The alkoxide thus formed is engaged in a second [1,4]-C(sp2)→O trimethylsilyl migration, 

which gives the difunctionalized compounds 88 by reaction with E2X2. This method can also be 

combined with palladium cross-coupling reactions to perform arylation and vinylation reactions.[177]  

 

Scheme 110. Sequential [1,4]-C(sp2)→O silyl migrations of 2,6-di(trimethylsilyl) benzyl alcohol 
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 The same strategy and similar operating conditions were also successfully applied to achieve the 

bifunctionalization of bis-ortho-trimethylsilyl benzhydrol derivative 89 leading to unsymmetrical 

diarylmethanols 90 (Scheme 111).[178] 

 

Scheme 111. Sequential [1,4]-C(sp2)→O silyl migrations of bis-ortho-trimethylsilyl benzhydrol 
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anion produced benefits from stabilization by the Cr(CO)3 moiety. Subsequent trapping with 

electrophiles is possible even in the absence of polar additives or Cu(I) salts.[179] This feature was nicely 

exploited to develop a Brook-based [3+2]-annulation reaction upon (stereoselective) addition of an ester 

enolate to 91 (Scheme 112).[180] Here, the transiently generated aryl anion undergoes a final 

intramolecular acylation to deliver 92. The chromium tricarbonyl can easily be detached after the 

transformation by simple exposure to air and sunlight.  
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Scheme 112. Brook rearrangement in silylarene chromium tricarbonyl complexes 

 

1.2.3 C(sp2)–Si bond functionalization of heteroarylsilanes 

 Heteroarenes are ubiquitous units in organic compounds, and their regioselective functionalization 

is a fundamental endeavor for synthetic chemists.[110] In this context, the Brook rearrangement is a 

useful tool for this purpose, as shown by the several studies on intramolecular [1,4]-C(sp2)→O silyl 

migrations of silylated furans and thiophenes. 

 Implementation of this tactic received particular attention for the preparation of (2,3)-disubstituted 

furans and thiophenes. Initial studies on the [1,4]-C(sp2)→O silyl migration in furan 93 and thiophene 

94, having a TBDMS group on position C2 and a hydroxymethyl group on position C3, showed that 

the reactions were highly solvent and counterion dependent (Table 15).[181] Whereas the Brook 

rearrangement leading to silyl ethers 95 and 96 proceeded smoothly using sodium or potassium hydride, 

as well as sodium hydroxide in DMF or THF (entries 1-2, 4-6), lithium or magnesium bases failed to 

promote the migration in THF (entries 7-8). The lack of reactivity of these Li and Mg derivatives was 

possibly due to the high oxophilic nature of these metal cations, resulting in a stronger coordination to 

oxygen.[181–183]  This limitation represented a significant flaw for synthetic applications, as the carbanion 

formed by the migration promoted with the sodium or potassium bases could not be trapped with 

electrophiles other than protons. 
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Table 15. [1,4]-C(sp2)→O silyl migrations 2-TBDMS-3-hydroxymethyl furan and thiophene derivatives. 

 

Entry Base Solvent t Yield (%) 

1 NaH (5 equiv.) DMF 5 min 88 

2 NaH (5 equiv.) THF 16 h 80 

3 NaH (5 equiv.) Et2O 7 d _ 

4 NaH (1 mol%) DMF 15 min 92 

5 KH (5 equiv.) THF 2 d 61 

6 NaOH (5 equiv.) DMF 1 h 64 

7 CH2=CHMgBr (1 equiv.) THF 1 d _ 

8 n-BuLi (1 equiv.) THF 1 d _ 

 

 Some years after, a similar behavior was observed for the base-promoted rearrangement of 3-

hydroxyalkyl-2-silylthiophenes 97a–c (Scheme 113).[184] After screening different additives, it was 

found that [1,4]-C(sp2)→O silyl migration can be obtained by treatment with t-BuLi in THF, in the 

presence of DMPU. Other common additives such as HMPA or 12-crown-4 ether lead to very poor 

results. The optimized experimental conditions are also appropriate for the silyl migration of different 

trialkylsilyl moieties and, most importantly, can be combined with the trapping of the anion produced 

with different electrophiles, including methyl iodide (98aa, 98ab), benzaldehyde (98ba, 98bb, 98bc) 

and benzophenone (98cc), leading to 2,3-difunctionalized thiophenes, while, with allyl bromide, a 

moderate yield is obtained for 98db.  
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Scheme 113. Silyl migration/alkylation of 3-hydroxyalkyl-2-silylthiophenes. 

 

 Additionally, this reaction can be carried out in a sequential one-pot reaction starting from 

bromothiophenes 99a–c (Scheme 114).[184] The first step involves a Br–Li exchange upon addition of 

tert-butyl lithium. The thus formed organolithium reagent is then trapped by an aldehyde to provide 

alkoxides 100a–c, which, under polar conditions and in the presence of an electrophile (alkyl halides, 

benzaldehyde or benzophenone), undergoes the silyl migration, leading to the final compounds 98. The 

yield of the one pot reaction from 99a–c to 98 is in concordance with the previous formation of 98 in 

two steps (Scheme 113).  

 

Scheme 114. One-Pot synthesis of 2,3-disubstituted thiophenes 
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of the alkyllithium reagents to the aldehydes generates the corresponding alkoxides, which undergo the 

Brook rearrangement. This crucial step is again carried out in a THF/DMPU (4/1) mixture, and the 

resulting carbanion can be trapped by benzaldehyde, for example. However, in the case of the furan 

derivative 104, the Brook rearrangement requires the use of an Et2O/HMPA[185] (1/1) mixture (Scheme 

115). 

  

Scheme 115. Synthesis of 2,3-disubstituted thiophenes and furans from 3-formyl heterocycles. 

 

 The work reported so far demonstrates the utility of C(sp2)→O silyl migration in the field of 

heteroarene functionalization. Though, only a limited number of substrate-types has been studied, and 

the topic is far from being at a mature stage. 
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elimination at the ortho position releases the corresponding aryne, which can undergo in situ trapping 

by a number of reaction partners (Scheme 116).[189] 

 

Scheme 116. Arynes generation from 3-hydroxy-2-(trialkylsilyl)aryl triflates 

 

 The thus generated 3-trialkylsiloxybenzynes can, for example, be regioselectively trapped by 

aniline, as shown with the formation of compound 106, or undergo a [4+2] cycloaddition reaction with 

2,5-dimethylfuran, leading to the bridged tricyclic product 108 (Scheme 117).[190] These examples 

showcase the power of this chemistry, which found many applications in synthesis.[191] 

 

Scheme 117. Some reactions of 3-trialkylsiloxybenzynes  
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C(sp2)→O silyl migration to give carbanion 111. Analogously to the previous example, β-elimination 

of the subsequent triflate yields the corresponding aryne 112, which can undergo a wide variety of inter- 
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Scheme 118. Aryne generation from (3-carbonyl)-2-(trialkylsilyl)aryl triflates 

 

1.3 C(sp2)–Si bond functionalization through exocyclic cleavage 

 The palladium-catalyzed Hiyama–Denmark cross-coupling reaction occupies a prominent position 

in the rich chemistry of organosilanes, and represents an important tool in organic synthesis, especially 

for the construction of C(sp2)–C(sp2) bonds from C(sp2)–Si bonds. Activation of the C(sp2)–Si bond 

towards transmetalation is a key requirement in this cross-coupling chemistry, and intramolecular 

alkoxide-promoted activation has been elegantly exploited as a mean to trigger the cross-coupling 

reaction of aryl- and alkenylsilanes under fluoride-free conditions.  

 As discussed in the introduction, intramolecular C–Si bond activation by alkoxides generates a 

hypervalent silicon intermediate embedded in a siloxycycle. In particular, the cleavage of a C–Si bond 

that is not part of this cycle is possible (exo-cyclic cleavage), which generates a carbanionic 

organometallic species along with a cyclic silyl ether byproduct. The organometallic intermediate 

formed is a suitable nucleophile for a number of cross-coupling reactions (Scheme 119). The selectivity 

of exo-cyclic vs endo-cyclic C–Si bond cleavage for the silacyclic intermediate is related to the stability 

of the resulting carbanion: typically, C(sp2)–Si bond cleavage is favored over C(sp3)–Si bond cleavage, 

unless the latter leads to particularly stabilized species such as benzylic or allylic organometallics.[192,193] 

Where the bias is not obvious, as for example the competition between two C(sp2)–Si bond cleavages 

giving carbanions of similar stability, the products of exo-cyclic cleavage are usually predominant. 

However, the reasons for this selectivity have not been clearly established and may differ on a case-by-

case basis. It has to be noticed, however, that the fundamental difference between endo- and exo-cyclic 

cleavage is that the former is a reversible process, while the latter is not. 
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Scheme 119. Alkoxide-promoted exo-cyclic cleavage of a C(sp2)–Si bond 

 

 It has been suggested that the transmetalation step in a cross-coupling reaction may proceed through 

two alternative pathways (Figure 9).[194] The first one involves assistance by the alkoxide through 114, 

wherein the transition metal atom directly interacts with the oxygen atom.[195] The alternative pathway 

involves a compound of the type of 115, where the silicon atom is coordinated by the counter-anion of 

the transition metal complex. Note that this second scenario complies with Muetterties’ rule which 

states that the more electronegative ligands (aryl and vinyl ligands in this case) occupy an axial position 

in such hypervalent compounds.  

 

Figure 9. Postulated pathways for silicon-to-transition-metal transmetalations in cross-coupling reactions of aryl- and 

alkenylsilanes 

 

1.3.1 C(sp2)–Si bond functionalization of alkenylsilanes 

 Hiyama and Nakao developed the [2-(hydroxymethyl)phenyl] dimethylsilyl (HOMSi) unit as trigger 

to perform base-promoted C(sp2)–Si cross-coupling reactions.[196] This method is highly attractive since 

the organosilane reagents are stable, and become reactive upon treatment with weak bases. One of the 

applications of this strategy was first investigated for the arylation of alkenylsilanes 116 (alkenyl–

HOMSi reagents). This reaction was carried out with aryl iodides in the presence of palladium 

dichloride and potassium carbonate (Scheme 120).[197] The reaction turned out to be tolerant to a wide 

range of aryl- or heteroaryl (117f and 117g) iodides and suitable for diverse alkenylsilanes, including 

terminal and internal disubstituted, as well as tri-substituted. In all cases, exquisite retention of the 

double bond geometry was observed. The reaction tolerated a series of functional groups in the aryl 

iodides (such as aldehyde, ester, ether and alcohol), giving the coupling products in good to excellent 

yields.  
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Scheme 120. Arylation of alkenyl-2-(hydroxymethyl)phenyl]-dimethylsilyl derivatives 

 

 As to the mechanism of this protocol, after the intramolecular activation through the formation of a 

cyclic hypervalent silicon species from 116, transmetalation by aryl-palladium(II) intermediates and 

subsequent reductive elimination gives the corresponding products 117. Although this method is 

intrinsically not atom economical, the cyclic silyl ether byproduct 118 can be conveniently recycled 

and reused by treatment with organolithium or organomagnesium nucleophiles.[194–199] 

 Alkenyl–HOMSi reagents 116 are also competent donors for rhodium-catalyzed 1,4-addition 

reactions to cyclic enones.[200] As depicted in Scheme 121, 1,2-disubstituted- (119a–d), as well as 1,1,2- 

(119e) and 1,2,2-trisubstituted (119f) alkenylsilanes participate readily in reactions with 5-, 6-, or 7-

membered cyclic enones. Again, retention of the double bond geometry of the alkenylsilanes is 

observed, and the mild activation conditions make the procedure highly functional-group tolerant with 

respect to the organosilane partner. Importantly, it has also been demonstrated that the method is 

amenable to enantioselective variants. 
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Scheme 121. Rhodium-catalyzed 1,4-addition to enones of alkenyl-2-(hydroxymethyl)phenyl]-dimethylsilyl derivatives 

 

1.3.2 C(sp2)–Si bond functionalization of arylsilanes 

 Aryl–HOMSi derivatives 120 also undergo arylation reactions under palladium catalysis. By 

contrast with the alkenyl–HOMSi, in this case, the addition of a copper(I) salt is mandatory Despite the 

role of the copper(I) salt being unclear,[194] it has been proposed that the transmetalation of the aryl 

group either occurs from silicon to palladium directly, or in two steps, following first silicon-to-copper 

transmetalation and then copper-to-palladium. Excellent yields are obtained with both electron-rich and 

electron-deficient aryl iodides, including heteroaryliodides (121e), with good tolerance of various 

functional groups (Scheme 122). In addition to phenylsilane (121a,e,f), C–Si arylation was also 

performed efficiently on electron poor aryl silanes (121b) as well as on 2-silylthiophene (121d), but 

was slightly less efficient for electron-rich aryl silanes (121c).[198,201] 
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Scheme 122. Arylation of aryl-2-(hydroxymethyl)phenyl]dimethylsilyl derivatives 

 

 Such arylation reactions of aryl–HOMSi reagents have found relevant applications for the synthesis 

of extended polyarene -systems. A first approach relies on halogenated aryl–HOMSi compounds.[202] 

Owing to the fact that the HOMSi trigger relies exclusively on the presence of a free hydroxy group, 

halogenated arenes having THP-protected HOMSi units can participate as electrophiles in cross-

coupling reactions with (unprotected) aryl–HOMSi nucleophiles without interference of the protected 

HOMSi moiety. Upon alcohol deprotection, the HOMSi trigger is “turned-on” and the adduct becomes 

a suitable nucleophilic partner for a following cross-coupling reaction. Entailing successive coupling 

and deprotection steps thus allows for the preparation of well-defined oligoarenes. 

 Bis-arylation strategies have also been considered on substrates bearing two (or more) halogenated 

groups,[203] or two (or more) HOMSi units.[199,204] For example, the double functionalization of one 

equivalent of bis-aryl bromide 122 was performed in the presence of two equivalents of arylsilane 123 

(Scheme 123, top) to deliver 124. Similarly, the bis-arylation product 127 was synthesized from two 

equivalents of bromobenzene 125 and bis-aryl silane 126 (Scheme 123, bottom).  
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Scheme 123. Bis-arylation strategies from (hetero)aryl-2-(hydroxymethyl) phenyl]dimethylsilyl derivatives 

 

 The strategy was also useful for the synthesis of polyarenes 128. The formation of such species is 

possible by either iterative cross-coupling,[194] or by copolymerization of dihalide-monoarenes 122 and 

aryl-bisHOMSi reagent 126 in equimolar quantities (Scheme 124).[205] 

 

Scheme 124. Synthesis of polyarenes from aryl-bis(2-(hydroxymethyl) phenyl]dimethylsilyl) derivatives 
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 Aryl–HOMSi reagents 120 participate readily to the same rhodium-catalyzed 1,4-addition reactions 

to enones discussed above for alkenyl–HOMSi reagents 116 (see Scheme 121). Interestingly, in the 

presence of chiral diene ligands L12 and L13, 1,4-adducts 129 can be obtained in high yield and 

excellent enantioselectivity (Scheme 125).[200] The procedure is suitable not only for cyclic enones 

(129a,b), including nitrogen-containing derivatives (129c,d), but also for acyclic enones (129e). 

 

Scheme 125. Enantioselective rhodium-catalyzed 1,4-addition to enones of aryl-2-(hydroxymethyl)phenyl]-dimethylsilyl 

derivatives 

 

 The development of another family of HOMSi silanes by Nakao and Hiyama, namely the 2-

(hydroxy-methyl)cyclohexyl substituted arylsilanes 130, allowed for the development of the first 

nickel-catalyzed silicon-based arylation leading to bis-aryl derivatives 131 (Scheme 126).[206] 

Importantly, this cross-coupling reaction can even be performed using aryl chlorides. The electronic 

nature of the aryl chloride has an influence on the reaction outcome. Indeed, electron-poor aryl chlorides 

give better yields (131b) than electron-rich ones (131a). Conversely, no significant difference based on 

the electronic character of the aryl silane is observed (compare 131c and 131d). Interestingly, 2- and 3-

aryl thiophenes can be obtained in reasonable yields (131e and 131f), as well as 3-aryl pyridines (131g), 

albeit with a lower yield. 
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Scheme 126. Arylation of aryl-2-(hydroxy-methyl)cyclohexyl derivatives 

 

 The nickel-catalyzed arylation of aryl-HOMSI derivatives 130 can also be achieved using as 

coupling partners aryl tosylates, which are readily available from phenols (Scheme 127).[206] For 

electron-rich aryl tosylates, PPh3 was used as ligand, while in the case of electron-poor aryl tosylates, 

PPh2Me was required. Interestingly, the same cross-coupling reaction was latter achieved with 

improved scope under cooperative palladium/copper catalysis.[207] 

NiCl2•dme (5 mol%)
Zn (10 mol%)
dppf (5 mol%)
PCy3 (5 mol%)
Cs2CO3 (2.0 equiv.)
Ar–Cl

Si

HO

Het-
or 
Ar

DME/DMF, 60–75 °C

Het-
or 
Ar

Ar

S

S

N

O
CF3

CO2Et

CO2Et

F3C

130 131

131a (62%) 131b (83%) 131c (77%)

131d (84%) 131e (63%) 131f (75%) 131g (56%)



 

 

135 

  

Scheme 127. Nickel-catalyzed cross-coupling of aryl (HOMSi) with aryl tosylates 

 

 The HOMSi activation approach has also been used to achieve copper-catalyzed C(sp2)–N bond-

forming reactions from C(sp2)–Si bonds. The reaction between arylsilanes 119 and hydroxylamines 

132, in the presence of lithium tert-butoxide and a catalytic system composed of a copper(I) salt and 

JohnPhos (L14) as ligand, gives the corresponding anilines 133 (Scheme 128).[208] The reaction is 

expected to involve the electrophilic amination of an aryl copper species arising from exo-cyclic C(sp2)–

Si cleavage of the hypervalent silicon intermediate, in turn generated by intramolecular addition of the 

pendant alkoxide anion to the silicon atom.  

 

Scheme 128. Copper-catalyzed C(sp2)–N bond-forming reactions from C(sp2)–Si bonds 

 

 A final (rare) example involving both endocyclic and exocyclic C(sp2)–Si bond cleavage has been 

disclosed by the group of Takeda (Scheme 129).[209] Thus, treatment of ortho-silylphenones 134 with 
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copper tert-butoxide and an organic halide generates the corresponding silyl enol ethers. Interestingly, 

the substitution pattern of the silicon atom can be altered during the reaction.  

 The mechanism of this protocol implies the initial reaction of the ortho-silylphenones 134 with 

copper(I) tert-butoxide to produce a copper(I) enolate (135), followed by the formation of the 

corresponding silacyclic intermediate 135’. The evolution of this intermediate differs according to the 

substitution of the silicon atom. On the one hand, with t-BuMe2Si (pathway a), C(sp2)–Si endocyclic 

cleavage triggers tert-butyldimethylsilyl C-to-O migration, which generates the expected ortho 

substituted tert-butyldimethylsilyl enol ether 136 upon trapping with R2X. On the other hand, with 

Me2PhSi (pathway b), bis(tert-butoxy)methylsilyl enol ether 137 is generated. 

 

Scheme 129. Copper(I) tert-butoxide-promoted cross-coupling of o-silylphenyl ketones: endocyclic and exocyclic 

cleavage 

 

 This result has been rationalized by the authors on the basis of a first C(sp2)–Si exocyclic cleavage 

from 135’b, to generate 138 and PhCu, and the subsequent addition of a first equivalent of t-BuOCu 

triggers the release of MeCu from the resulting pentavalent silicon intermediate (Scheme 130). Addition 

of a second equivalent of t-BuOCu triggers endocyclic C(sp2)–Si cleavage passing through intermediate 

139. Coupling of the thus generated arylcopper intermediate with the organic halide generates the final 

bis(tert-butoxy)methylsilyl enol ether 137.[209] 
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Scheme 130. Possible evolution of the oxasilacycle with an excess of CuOt-Bu 

 

1.4 Conclusion 

 As illustrated in this minireview, carbon-to-oxygen silyl migration provides an efficient way to 

generate C(sp2) carbanion surrogates with perfect control of the site selectivity, and thereby the 

opportunity to perform a wide range of transformations under mild reaction conditions. The approach 

is particularly useful for the functionalization of molecules for which metalation cannot be envisaged 

due to low or inappropriate site-selectivity, or because of the instability of the resulting carbanion. 

Another attractive feature of this chemistry is that it also contributes to the evolution towards more 

sustainable synthetic chemistry, amid others through the possibility to perform, through the anion relay 

chemistry, multi-component and multi-step one-pot reactions, and by extending, through the HOMSI 

silane technology, the scope of cross-coupling reactions relying on organosilanes.  

 C(sp2)→O silyl migration has been chiefly implemented for arene and alkene functionalization and 

has reached a certain degree of maturity for this purpose. By contrast, heteroarene functionalization has 

received considerably less attention so far, even though some reports demonstrate the viability of the 

approach. We thus foresee that achieving this interesting prospect will become in the near future an 

important focus of research in the field.  

 

2 Silyl-migration from C3-silylated furfural derivatives: results 

and discussion 

2.1 Synthesis of model C3-silylated furfuryl alcohols 

 Since most of the existing examples for the C(sp2)→O silyl migration involve alcohol derivatives, a 

model system was designed from the C3-silylated furfuryl alcohol (140-Si). Therefore, the 

derivatization of aldehyde 18-Si to the corresponding alcohols 140a-Si was first carried out in presence 

of n-butyllithium (Scheme 131). The preparation of the furyl trialkylsilanes was achieved in good 

yields, but not the C3-SiMe(OSiMe3)2 analogue, for which a complex inseparable mixture was obtained, 

probably due to the alkoxy groups on the silane moiety. 
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Scheme 131. Preparation of C3-silylated furfuryl alcohol. 

 

2.2 t-BuOCu-promoted silyl migration of arylsilanes 

 Before studying the silyl migration on C3-silylated furfurylalcohol 140-Si following the conditions 

disclosed by Takeda in 2004 (Scheme 105)[173] regarding the Cu(Ot-Bu)-mediated silyl migration 

starting from o-(1-hydroxypropyl)benzyltrimethylsilane, we decided to reproduce the reported results. 

 The reactions between of 2-(trimethylsilyl)-, and most importantly 2-(triethylsilyl)-benzylic alcohols 

(141-Si-m and 141-Si-a respectively) and allyl chloride were first reproduced in presence of CuI (0.5 

equiv.), t-BuOLi (1.2 equiv) in DMF at 0 °C. Initial results with freshly opened bottles of CuI and t-

BuOLi led to the desired coupling products in good yield. However, the results were not reproducible 

with aged reagents due to the cumbersome behavior of copper (I) tert-butoxide. Therefore, it was 

decided to store and handle CuI and t-BuOLi in a dry glovebox. The reactions represented in Scheme 

132 evidence similar results for the two trialkylsilyl moieties in relation to the C→O silyl migration 

(Scheme 132(a)). However, when the reaction was performed in a mixture of THF/DMPU (12/1) 

instead of DMF, the main reaction product is oxasilacycle 143 (55%) and only 15% of the allylated 

product 142-m (Scheme 132 (b)) was obtained. 

 
 140a-Si-x, where 140 represents the furfuryl alcohol obtained from 18-Si-x, a represents the butyl chain, from 

which from which results the nucleophilic addition of n-BuLi to the aldehyde function and Si-x represents the 

silane. 
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Scheme 132. Cu(Ot-Bu)-mediated silyl migration of 2-(trimethylsilyl)- and 2-(triethylsilyl)-benzylic alcohols 

 

2.3 t-BuOCu-promoted silyl migration of furfurylsilanes 

 These conditions were then addressed to the C3-silylated furfuryl alcohol (140a-Si-a) (Table 16). 

However, under conditions similar to the previous ones (entries 1 and 2), poor conversion of the 

substrate was evidenced, and no C(sp2)–allyl product was observed. The formation of furfuryl alkoxide 

ion, instead of triggering the [1,4]-silyl migration, promotes O-allylation. The exchange of allyl chloride 

by allyl bromide, only improved slightly the yield of O-allylated product (entry 2). 

The variation of several parameters, such as the solvent system, the temperature, the reaction time, the 

base, copper salt among others, was therefore undertaken. Some results following these trials are also 

reported in the experimental section (Table S25). Increasing the temperature or the time of the reaction 

mixture only improved the conversion and/or O-allylated product, but no other identifiable product was 

obtained (Entry 3). The influence of the base and/ metal ion was investigated. For example, the use of 

potassium tert-butoxide having a less coordinating counterion was contemplated, but did not improve 

the conversion (entry 4). The use of stronger bases, for example n-BuLi, only afforded 50 % conversion 

(entry 5). So, the problem, did not relate to the strength of the base. Poor conversions were in generally 

recorded for the Brook’s rearrangement (Table 16), which led us towards other strategies. 
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Table 16. First trials of Cu(Ot-Bu)-mediated silyl migration of C3-silylated furfuryl alcohol 140-Si-a 

 

Entry Solvent Conversion 144a-Si-a (%) 145a-Si-a (%) 146 (%) 147(%) 

1 DMF 43 _ 12  <5 

2a DMFc 62 _ 18  8 

3b DMFb 56 _ 12   

4c DMF) 37 _ 5   

5d DMF/THFd 50 _ 5   

1H NMR yields were determined using dimethylsulfone was used as internal standard. aAllyl bromide used 

instead of allyl chloride. bThe reaction was heated from 0 °C to 60 °C. ct-BuOK and CuCl used instead of t-

BuOLi and CuI. d n-BuLi (1.2 equiv.) used instead of t-BuOLi. 

 

 Alternatively, copper-free conditions with NaH as the base, based on Keay's 1989 work on 1,4-silyl 

migration of 3-[(triethylsilyl)oxymethyl]furan 93,[181] were tested on our C3-silylated furfuryl alcohol 

(140a-Si-a). However, no protodesilylated product was evidenced, and only degradation products were 

observed, as we had previously noticed in our C3-lithiation studies (Scheme 133).[53] 

 

Scheme 133. NaH triggering [1,4]-C→O silyl migration of 140-Si-a 

 

Another important aspect was the use of highly polar solvents or additives in attempts to favor 

C(sp2)→O silyl migration. Neither the use of HMPA nor DMPU improved the conversion nor delivered 

the Brook’s rearrangement product. For instance, on heating the reaction mixture to 80 °C in 

THF/HMPA (1/1), a mixture of products was obtained (Scheme 134). Four of the products could be 

identified and characterized. Two of these products were quite unexpected, namely 146 and de-

hydroxylated product 147. 
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Scheme 134. Cu(Ot-Bu)-mediated silyl migration of C3-silylated furfuryl alcohol 140a-Si-a in THF/HMPA 

 

 To account for the formation of 146 and 147, we hypothesized the following scenario: O-allylated 

compound 145a-Si-a undergoes reversible deprotonation resulting in the formation of organocopper 

145a’-Si-a. The latter can undergo a [2,3]-Wittig sigmatropic rearrangement through a cyclic 6-

membered transition state and give product 148 (Scheme 135).[210,211] Nevertheless, this product 148 

was not observed by 1H NMR of the crude. Instead, 146a-Si-a and 147a-Si-a were observed in 

equimolar quantities. In the presence of copper, another 6-membered transition, 149, was envisaged, 

where the alkoxide ions of 148 and 140a’-Si-a are coordinated to copper. Hydride transfer from 140a’-

Si-a brings about product 146, while 148 gets reduced (de-hydroxylation), to give 147. 

 

 

Scheme 135. Mechanistic hypothesis for the formations of 146 and 147 

 

 The use of other silyl units such as tert-butyldimethylsilyl, did not lead to any C-allylated product, 

despite good conversion (89%), which might relate to degradation of the substrate.  
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2.4 Barbier-type conditions 

 Attempts to perform the C(sp2)–Si functionalization reaction under “Barbier-type” conditions by 

adding n-BuLi to the C3-silylated furfuraldehyde (18-Si-c), followed by the addition of benzaldehyde, 

were unsuccessful. Instead of the envisioned C(sp2)→O silyl migration, only alcohol 140-Si-c was 

obtained (Scheme 136). Despite, the variety of aryl(trialkyl)silanes that have been reported in the 

literature, there are still limited applications for the transformation of the heteroarylsilane congeners. 

 

Scheme 136. One-pot synthesis of 2,3-disubstituted furan from 18-Si-c through, nucleophilic addition to the aldehyde 

followed by 1,4-Brook rearrangement  

 

2.5 Conclusion 

 Following these results, several hypotheses were considered, namely the stability of the aryl anion 

and geometrical reasons. In comparison with the previously reported benzyl alcohol 141-Si, where silyl 

migration was feasible, furfuryl alcohols (140-Si) provide the C-allylated product only in low yields if 

at all. A correct geometrical arrangement is necessary for the formation of the cyclic hypervalent silicon 

intermediate of the Brook rearrangement. As shown in Scheme 137, angles a and b are greater in the 

case of 5-membered heterocycles,[110] especially for the furan ring, than in the case of benzene. This 

could disfavor the formation of the cyclic pentavalent silicon intermediate, both due to the difficult 

approach of the alkoxide to the (het)aryl-silane and the low stability of the highly strained ring. 

Furthermore, other considerations such as the relatively low stability of the anion in the C3 position 

might also influence the migration of the silicon group. Indeed, the formation of the cyclic pentavalent 

silicon intermediate is reversible; the equilibrium might be poorly shifted towards the C→O silyl 

migration.  
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Scheme 137. Geometrical considerations 

 

 Finally, one can also envisage the formation of an alkoxide intermediate upon deprotonation of the 

furfuryl alcohol leading to two possible conformers (Scheme 138). One, 140a’-Si-a, which is 

coordinated to the lone pair of oxygen of the furan, hence providing extra-stabilization of the conformer 

and a second one, 140a’-Si-a where the oxygen is in the same plane as the silicon atom. In this case, 

the activation through the pentavalent cyclic silicon intermediate can only arise from the least stable 

conformer, and this would be deleterious for the reaction to proceed. Depending on the stability of the 

chelating group, energy has to be provided to limit this interaction. 

 

Scheme 138. Two possible conformations for deprotonated furfuryl alcohol 

 

 However, promising results were obtained for the reaction between 153a-Si-d bearing a 

dimethylbenzylsilyl group, and benzaldehyde, triggered by t-BuOCu in THF/HMPA. Interestingly, 1,2-

addition of furan to the benzaldehyde was not observed; but the nucleophilic addition of the benzyl 

anion to benzaldehyde was noticed, with the formation of product 156 (Scheme 139). We explain the 

formation of this product by a 1,4-silyl migration giving rise to a pentavalent silicon complex, from 

which is released a benzylcopper species. Here, exocyclic cleavage prevails over endocyclic cleavage 

because the benzylmetal is more stable than a putative furfurylmetal. Exocyclic cleavage also suggests 

the formation of an oxasilacycle 155. However, aqueous work-up of strained cycle, 155 led to its 

degradation, which explain for its absence from the crude of the 1H NMR spectrum. In addition, the 

product of allylation of benzyl anion was not observed previously, possibly due to its volatility.  
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Scheme 139. Formation of an oxasilacycle 

 

Following this result, several trials were performed by varying the base, the addition of an external 

nucleophile (MeLi, LiOCH2CH2OH, t-BuOK (in excess)), as well as additives, to activate 155 towards 

subsequent trapping by electrophiles: they were all unsuccessful. Failure to properly trigger the C3-

functionalization prompted us to think about other activation strategies, in particular using fluoride 

anions. 



 

 

 

 

 

 

 

CHAPTER IV: 

Fluoride-mediated transmetalation 
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1 Introduction 

 Another way to promote C(sp2)–Si bond functionalization of arylsilanes relies on activation by 

fluoride anions. Silicon has a high affinity for fluorine with a bond dissociation energy for Si–F of 

approximately 576 kJ•mol-1[129] and which is comparable to that of oxygen. Fluorine anions are therefore 

used to selectively target the silicon unit because of its marked nucleophilic affinity for the latter to 

generate a pentavalent silyl group (Figure 10). The concept of hypervalence (pentavalent or hexavalent) 

of silicon is considered to be largely due to its d-orbitals, and was considered by Oestreich to enhance 

the Lewis acidic character of the silicon species, independent of its formal charge.[212] This aspect is 

quite important for the proper understanding of this mode of activation (Chapter IV, section 0). 

 Upon formation of a silicon pentacoordinated species, the C–Si bonds of the organosilane are 

polarized and electrophilic substitution reactions become possible, including transmetalation reactions. 

The C–Si bond of the fragment associated to the more stable carbanion is the more reactive one in this 

context. It was rapidly recognized that heteroatom substitution on silicon giving additional polarization 

to the reacting C–Si bond was required to develop broad-in-scope protocols. Hence, aryl(halo)silanes, 

aryl(alkoxy)silanes, including trialkoxysilanes, dimethylsilanols and tetraorganosilanes that behaved as 

masked dimethylsilanols, and were converted into these active species on hydrolytic cleavage of labile 

groups such as 2-pyridyl, 2-thienyl, 3,5-bis(trifluoromethyl)phenyl, benzyl, allyl or hydrogen, have 

been extremely studied for this type of transformation. 

  

Figure 10. Simplified activation of the C(sp2)–Si bond by fluoride anion 

 

 In this context, we have considered this activation strategy for the functionalization of the C(sp2)–

Si bond of our furfuryl platforms along two approaches: a) functionalization of C3-SiMe2Bn furfuryl 

alcohols wherein the alcohol function has the possibility to participate in the activation process (Figure 

11) and b) functionalization of C3-SiMe(OSiMe3)2 furfuraldehydes (Figure 12). 
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Figure 11. Fluoride mediated-functionalization of furfuryl alcohols 

 

Figure 12.Metal–fluoride assisted functionalization of C3-silylated furfuraldehydes 

 

2 Fluoride-promoted cross-coupling reactions of 

organobenzyldimethylsilanes and cyclic siloxanes 

2.1 Case of alkenyl benzyldimethylsilanes 

 To the best of our knowledge, no direct cross-coupling reactions of aryl benzyldimethylsilanes have 

been reported. By contrast, alkenyl benzyldimethylsilanes have been used profusely as carbon donors 

in metal-catalyzed cross-coupling reactions. Some selected examples of such reactions are discussed 

hereafter to highlight the potential of this chemistry. 

 In 2003, one of the pioneer work involving SiMe2Bn as coupling partner, was disclosed for the 

palladium catalyzed cross-coupling reaction involving vinyl silanes and iodo-arenes.[213] In a first step, 

the vinyl silane was pre-activated at 0 °C in the presence of TBAF, for the de-benzylation process, 

which is able to promote its transmetalation following the addition of [Pd2dba3]•CHCl3 and a coupling 

partner (Scheme 140). This methodology was first applied to 1,1-disubstituted vinylsilanes, extended 

to trisubstituted vinylsilanes, then later to 2,2-disubstituted vinylsilanes.[214] This strategy was also 

involved in the arylation step, for the synthesis of lactimidomycin analogue.[215] However, it is not 

limited only to arylation but, was also efficient for the cross-coupling between vinylsilane and 

iodoalkenyl, where it was applied for the synthesis of carotenoids.[216] 
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Scheme 140. Palladium-catalyzed cross-coupling of di- and tri-substituted vinylsilanes 

 Fluoride-promoted cross-coupling reactions of alkenylbenzyldimethylsilanes were also reported 

under copper(I) catalysis. In 2014, Takeda reported the alkylation of alkenybenzyldimethylsilanes 

(Scheme 141).[217] The authors highlighted the importance of an anhydrous source of fluoride, as 

TBAF(t-BuOH)4 to attenuate the formation of the proto-desilylated side product. Two equivalents of 

this reagent were necessary to promote the transmetalation of the hypervalent silyl group to Cu(I). The 

alkenyl-copper, could therefore be trapped by an alkyl- or allyl-halide to give the corresponding 

products. This strategy can be applied to di- and tri- substituted alkyl dimethyl silanes as well as to 

homoallylic alcohols, whilst also keeping a complete retention of configuration. 

 

Scheme 141. Cu(I) promoted alkylation of alkenylbenzyldimethylsilanes 
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2.2 Case of cyclic siloxanes 

2.2.1 Fluoride mediated cyclic siloxanes synthesis 

 Recently, Anderson disclosed the synthesis of cyclic alkenyl siloxanes from benzyldimethylsilane-

substituted allylic and homoallylic alcohols.[218] Treatment of these alcohols with TBAF triggered a 

rapid debenzylation and the formation of the corresponding 5- and 6- membered cyclic alkenyl 

siloxanes. A catalytic amount of TBAF was necessary to fulfil the complete conversion of these 

substrate and furnish relatively good yield of the cyclic siloxane (Scheme 142). 

 

Scheme 142. Synthesis of cyclic alkenyl dimethylsiloxanes from alkynyl benzyldimethylsilanes 

 

 Interestingly, a similar behaviour was reported for a benzyldimethylsilane-substituted allylic acetate, 

in the presence of TBAF, providing 99% yield of the 5-membered cyclic siloxane.[218] Nevertheless, the 

homoallylic analogue gave only rise to acyclic silanol. Based on these evidences, the authors proposed 

a mechanism for this cyclization. On addition of the fluoride source, instantaneous debenzylation occurs 

and a silanol intermediate is formed. The nucleophilic hydroxyl group of the silanol, undergoes a 

transesterification with the proximal acetate, generating an alkoxide, which cyclizes on the 

acetoxysiloxane. Upon liberation of acetate, the 5-membered cyclic siloxane was obtained (Scheme 

143). 
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Scheme 143. Possible mechanism for the de-benzylation and formation of the cyclic siloxane 

  

 Such reactions are important because cyclic siloxanes are also competent carbon-donors for cross-

coupling reactions promoted by fluoride activation. 

 

2.2.2 Fluoride-mediated cross-coupling of cyclic siloxanes 

 The arylation and alkenylation of the 5-, 6-, 7-membered siloxanes has been described using 

Pd(dba)2 or [allylPdCl]2 as pre-catalyst, with iodobenzene and alkenyl -bromide or -iodide as coupling 

partners.[218–223] The cross-coupling was mediated by the presence of TBAF as fluoride anion source. 

The cleavage of the C(sp2)–Si bond prior to the transmetalation to palladium was proposed to be 

dependent on the stability of the cyclic siloxane. In this context, longer reaction times were necessary 

for the 6-membered siloxanes as compared to the 5-membered analogues. The conversion rate, is 

especially striking, for the alkenylation reactions, where the reaction time was 21 times higher with the 

6-membered cyclic siloxane in comparison with its 5-membered analogue (Scheme 144 (a)). The actual 

methodology also provides a stereo-controlled cross-coupling reaction, starting from enantioenriched 

cyclic siloxanes for the synthesis of Fostriecin fragment, Phoslactomycin B fragment, Leukotriene 

B,[218] bitungolide C[223] and Resolvins,[219] while it also represents an alternative to the classical Stille 

coupling. 

 This methodology is not only limited to intermolecular cross-coupling reactions, but can also be 

used in an intramolecular fashion. Denmark, established a strategy, based on 6-membered cyclic 

siloxane, for the macrocyclization to furnish a 9-membered ring. The cross-coupling between the 

alkenyl iodide and the oxasilacycle under [allylPdCl]2 and TBAF, provided the desired product in 61% 

yield (Scheme 144 (b)).[220,221] In this case, a high excess of TBAF was used to promote the 

transmetalation to palladium. In addition, longer reaction times were necessary, probably, relates the 

unfavorable, 9-membered ring cyclization. 
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Scheme 144. Palladium-catalyzed cross-coupling reaction between alkenyl- or aryl-halide and oxasilacycle  

 

 Regarding the mechanism of the activation, some synthetic intermediates were characterized for the 

6-membered siloxane.[218] In fact, it seems that the cyclic siloxanes dimerize to acyclic disiloxanes and 

it is this intermediates that undergo fluoride activation as shown in Scheme 145 top, and that become 

the active transmetalating species. Such mechanism is reminiscent of the transmetalating species 

previously reported by Denmark[224,225] for the palladium coupling of aryl halide and alkenyl silanol. 

The in-situ formation of alkenyl-silanolate species, granted access to an efficient transmetalation of the 

alkenyl group to palladium, prior for the formation of the coupling product.[224,225] In the case of the 5-

membered siloxanes, the mechanistic details still remain quite unclear because no intermediate has been 

isolated so far. It is suspected that acyclic disiloxanes are also formed, but that the activation towards 

transmetalation originates from a proximal alcohol function, as depicted in Scheme 145, bottom. 
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Scheme 145. Possible mechanisms for transmetalation of cyclic siloxane-derived intermediates. 

 

2.3 Fluoride-promoted functionalization of C3-SiMe2Bn-

substituted furfuryl alcohols 

2.3.1 Results and discussion 

 As described earlier, the reaction of 152-Si-d and benzaldehyde, in the presence of in-situ prepared 

Cu(Ot-Bu) delivered in 75% yield product 155 (Scheme 139) which most likely comes from exo-cyclic 

cleavage of a hypervalent aryl silicon intermediate. We decided therefore to focus our attention on the 

functionalization of dimethylbenzyl silyl furfuryl alcohols under fluoride-activation conditions, in 

particular through the formation of the corresponding oxasilacycles.  
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a. Activation of C3-silylated furfuryl alcohols 

 Inspired by the above-discussed reports by Anderson and co-workers, we considered the cyclization 

of the furfuryl alcohol substrates on treatment with fluoride anions (Table 17). The use of a catalytic 

quantity of TBAF (entry 1) did not promote the formation of 155, despite prolonged reaction times. We 

then observed that a stoichiometric amount of TBAF was necessary to fully activate the aryl silicon 

moiety (entry 2), but higher amount of TBAF did not really influence the C(sp2)–Si bond cleavage. 

Other sources of fluoride were considered. Neither CsF was efficient for this reaction, probably due to 

its poor solubility (entry 3), nor the anhydrous source of fluoride anion [Ph3SiF2]NBu4 (entry 4). In 

addition, polystyrene-supported fluoride was not an efficient activator of 153a-Si-d in THF at rt (entry 

5), but in benzene-d6 under reflux, led to the formation of the proto-desilylated product as major product 

along with an unidentifiable aryl–silicon species (entry 6). It is also important to mention that in addition 

to fluoride sources, we also considered activation by KOSiMe3, which proved inefficient (entry 7). 
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Table 17. Mode of activation of C3-silylated furfuryl alcohol 153-Si-d 

 

Entry Activator Time (h) Conversion (%) 155 (%) Remarks 

1 TBAF•3H2O (0.25 equiv.) 0.25 10b -  

2 TBAF•3H2O (1.0 equiv.) 0.25 100 98 

Reaction carried out 

in THF-d8. 

PhCH3 (86%) 

obtained. 

3 CsF (1.0 equiv.) 24 _ _  

4 [Ph3SiF2]NBu4 (1.0 equiv.) 24 44 Traces 
Corresponds to 

reported ratios. 

5 
 

(1.1 equiv.) 

0.25 _ _ 
Same result with 

benzene-d6 and THF 

6 
 

(1.1 equiv.) 

24 100 _ 

Benzene-d6 used 

instead of THF 

without stirring under 

reflux. Proto-

desilylated product 

and an un-identifiable 

product was obtained 

7 KOSiMe3 (1.5 equiv.) 24 20 - No change after 2 h 

1H NMR yields were determined using 3,4,5-trimethoxybenzaldehyde. 

 

 The isolation of the cyclic siloxane, 155, proved to be complicated; therefore, it was directly 

characterized from the crude both by NMR, and HRMS. Our attempt to isolate this product through 

silica gel chromatography led, to a mixture of several products. Similar results were obtained, for the 

washing of the crude organic extract with water, or aqueous HCl (1 M) solution (Figure 13, dark blue). 

But the washing of the crude extract with KOH (6 M) solution, led to the selective formation of 

disiloxane, which was later characterized by NMR and HRMS techniques (Figure 13, red), and 

corresponds to the disiloxanes. 

O

O

n-Bu

Si
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O

OH
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Figure 13. Degradation of 155 (black) in acidic (dark blue) and basic medium (red) 

 

 These cyclic siloxanes are of particular interest, because, they are easily activated using an 

organometallic reagent or a fluorine source. But, due to the difficult isolation of 155, the use of 

organometallic reagents mainly resulted in the deprotonation of acidic protons from ammonium ions 

and therefore, made their selective activation difficult. On this basis, because of the sensitive nature of 

these cyclic siloxanes, there is a need to develop of a one-pot procedure, involving both the activation 

of the C3-silylated furfuryl alcohol in the presence of TBAF, as well as its functionalization. 

 

b. Arylation of furfuryl alcohols 

 Following reported procedures by Anderson,[218] our initial attempt involved a one-pot sequential 

procedure starting from 140-Si-d, in which following the addition of TBAF, in THF, Pd(dba)2 and 

iodobenzene were added to perform the arylation (Scheme 146(a)). However, the proto-desilylated 

product was the only one observed. 

 It is known in the literature, that palladium cross-coupling reactions between aryl silanes and aryl 

halide often require copper (I) salt to proceed. It was proposed that silicon-to-copper transmetalation of 
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the aryl–silicon derivative occurs first, which allows then transmetalation to palladium which is 

responsible for the C–C bond-formation event.  Adapting procedures for the arylation of alkenyl silanes, 

with copper(I) co-catalysts, on pre-activation of 153a-Si-d by TBAF, in the presence of iodobenzene, 

CuI and Pd2dba3, the arylated product, 157aa was obtained in 70% yield (Scheme 146(b)). The arylation 

process performed reasonably well with (electron-rich) 4-iodoanisole as coupling partner, delivering 

157ab in 57% yield. Conversely, no arylation was observed with (electron-deficient) 1-iodo-4-

nitrobenzene. 

 

Scheme 146. Palladium-catalyzed arylation of 153a-Si-d 

 

 Finally, an attempt to perform the alkenylation of 152-Si-d with -bromostyrene, using the same 

procedure, did not provide any alkenylated product. No in-depth investigation of this type of 

functionalization was performed, which, leaves room for further optimization. Notably, the use of 

iodoalkenes for which the oxidative addition into the alkenyl–halide bond would be easier is sought to 

be considered. 

 In our following studies, we rather focused on transformations allowing for C(sp2)–C(sp3) bond 

formation. 

 

 
 The numbering of 157ab represents the product obtained from 153a-Si-d, where a represents the butyl chain 

and b the aryl. 140a-H, where H represents the protodesilylated product of 140a-Si-d.  
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c. Allylation and alkylation of furfuryl alcohols 

 In literature, few cases of allylation or alkylation of the furan ring have been reported; and most of 

this concerns the C5- and the C2-functionalization of these heteroaromatic rings. Selective C3-

transformations are quite challenging and often require an excess of the furfuryl derivatives, which 

would not be appropriate in our case because we envisage to use the furan substrates as the limiting 

reagents. 

 As discussed previously, treatment with 1 equivalent of TBAF (Figure 14, top) leads to the cyclized 

structure, 158. The same compound is observed when 3 equivalents of TBAF are added, along with 

another compound, probably a silanol, which could not be characterized (Figure 14, middle). We 

contemplated the possibility to perform electrophilic substitution of this activated intermediates in the 

presence of added electrophiles. However, this activation was not sufficient to promote direct allylation 

in the presence of allylchloride (Scheme 147, Figure 14, bottom) which demonstrated the requirement 

for metal catalysts to achieve such transformations.  

 

Scheme 147. Direct allylation test of 140a-Si-d in the presence of allylchloride 
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Figure 14: Activation of C3-silylated furfuryl alcohol for functionalization (Calibration of the 1H NMR was based on the 

ammonium salt) 

 

c1. Method development 

 Takeda and co-workers reported that, for the fluoride-promoted alkylation and allylation of alkenyl 

benzyldimethylsilanes with Cu(I) catalysts, the choice of the appropriate TBAF reagent plays a crucial 

role. We thus considered the optimization of this parameter. Therefore, the reaction between 153a-Si-

d and methallyl chloride was optimized taking as working conditions 1.5 equivalents of CuI and P(OEt)3 

as ligand in DMF. This reaction was strictly carried out under argon to prevent any side reactions to 

occur. The first trial with TBAF in solution in THF (Table 18, entry 1), provided the methallylated 

product 159aa in 30% yield, but a non-negligible amount of proto-desilylated product (153a-H) was 

evidenced, which could relate the presence of protic sources in the reaction medium. The solvent being 

anhydrous and freshly opened, along with the substrates and electrophile, freshly prepared and distilled 

respectively. The TBAF solution was therefore considered to be the protic source as commercially 

available anhydrous THF solutions of TBAF are reckoned to be highly hygroscopic. The use of 

molecular sieves as additive, appeared to be beneficial for the reaction, and a higher ratio of 159aa to 

153a-H was obtained (entry 2). We then shifted to TBAF(t-BuOH)4
[226] as an anhydrous fluoride anion 

source, and these conditions provided 159aa in good yield with quite low amounts of the proto-
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desilylated product (entry 3). Lastly, it should be noted that the number of equivalents of fluoride ions 

is crucial for efficient Si→Cu transmetalation as 32% of the proto-desilylated product was formed when 

1.2 equivalents were used instead of 2.4 equivalents (compare entries 3 and 4). 

 

Table 18. Optimization of fluoride reagent  

 

Entry TBAF reagent Time (h) Conversion (%) 159aa (%) 153a-H (%) 

1 TBAF in THF (1 M) (2.4 equiv.) over weekend 100 30 40 

2a TBAF in THF (1 M) (2.4 equiv.) 24 100 41 20 

3 TBAF(t-BuOH)4 (2.4 equiv.) 24 100 68 9 

4 TBAF(t-BuOH)4 (1.2 equiv.) 2.5 100 38 32 

1H NMR yields were calculated using Me2SO2 as internal standard. aMS 4Å was used as additive. 

 

 We then went on to optimize other reaction parameters (Table 19). It was found that the reaction 

was over after only 2 h and those identical yields were obtained as for the reaction during 24 h (entries 

1 and 2). Furthermore, as previously evidenced for the activation of the aryl–silane, low temperature (0 

°C) largely influences the activation of these silyl moiety, resulting in poor conversion of this species. 

Therefore, all the reactions were performed at temperature above 0 °C and mostly at 30 °C.  

 The presence of a ligand for copper proved beneficial for the reaction outcome. In its absence, poor 

reaction yield was evidenced, along with a higher proportion of proto-desilylated product 153a-H (entry 

3). One plausible explanation is related to the stability of the aryl–Cu species generated which could be 

increased by the ligand. Alternatively, the reactivity of the aryl–Cu towards the electrophile could be 

increased, making the electrophilic substitution step more efficient. No difference in yield was noted 

using pre-formed CuI•P(OEt)3 instead of CuI and free P(OEt)3 (entry 4). The presence of P(OEt)3 was 

nevertheless problematic because pure product isolation without contamination by the phosphite was 

barely possible. Thus, the reaction was carried out with PPh3 as ligand. The yield was significantly 

improved to 80 % in presence of over-stoichiometric amounts of CuI and PPh3 (entry 5) and no loss of 

efficiency was observed using 20 mol% of the same catalytic system (entry 6). In addition, with these 

reaction conditions, the isolation of pure methallylated product 159aa was straightforward. With a 

 
 The numbering of 159aa represents the product obtained from 153a-Si-d, where the first a represents the butyl 

chain and a methallyl electrophile. 153a-H, where H represents the protodesilylated product of 153a-Si-d. 
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lower loading (10 mol%) longer reaction times were necessary to achieve good levels of conversion 

and in that case the amount of protodesilylation increased significantly (entries 7 and 8). Here, starting 

from pre-formed CuI•PPh3 slightly improved the reaction yield under catalytic-in-copper conditions 

(entries 9 and 10). 

 Finally, the use of THF as solvent was considered. In these conditions the amount of 

protodesilylation was higher and thus the yield in allylation compound dropped. It could be that as DMF 

has a higher dielectric constant than THF, the nucleophilicity of the aryl–copper is and thus electrophilic 

trapping more favorable (entry 11). 
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Table 19. Optimization of catalytic system and operating conditions 

 

Entry CuI PR3 t (h) 159aa (%) 153a-H (%) 

1 CuI (1.5 equiv.) P(OEt)3 (1.5 equiv.) 24 68 9 

2 CuI (1.5 equiv.) P(OEt)3 (1.5 equiv.) 2 68 _ 

3 CuI (1.5equiv.) _ 2 40 23 

4 CuI•P(OEt)3 (1.5 equiv.) 2 67 26 

5 CuI (1.5 equiv.) PPh3 (1.5 equiv.) 2 80 _ 

6 CuI (20 mol%) PPh3 (20 mol%) 2 80 _ 

7 CuI (10 mol%) PPh3 (10 mol%) 2 28 _ 

8 CuI (10 mol%) PPh3 (10 mol%) 12 52 34 

9 CuI•PPh3 (1.5 equiv.) 2 80 _ 

10 CuI•PPh3 (20 mol%) 2 84 _ 

11a CuI•PPh3 (1.5 equiv.) 2 71 20 

1H NMR yields are calculated using dimethyl sulfone as internal standard, except entry 2, 1,4-dinitrobenzene 

where was used. aTHF used as solvent instead of DMF 

 

c2. Reaction scope 

 With these optimized conditions in hand, application of the methodology was considered for a range 

of furfuryl alcohols. Different classes of these alcohol derivatives were prepared by 1,2-nucleophilic 

addition of alkyl, vinyl and phenyl- lithium or Grignard reagents to furfurals (Scheme 148). In order to 

access a large scope of C3-functionalized synthetically useful intermediates, different functionalization 

reactions were contemplated.  
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Scheme 148. Transformation of C3-silylated furfural to alcohols 

 

 Firstly, methallylation and allylation reactions were studied. The dual activation by fluoride ion 

coupled with the intramolecular assistance of the alcohol function led to the C3-functionalized products 

in moderate to good yields (Scheme 149). Methallylation of the 5-methyl furfuryl alcohol derivatives 

was achieved in 65–84% yields and the nature of the substituent  to the alcohol had little influence on 

the C3-functionalization efficiency. Nevertheless, in the case of phenyl-substituted 19-Si-d, O-

allylation also took place, leading to 25% of side-product 159baa. We surmise that O-alkylation occurs 

during the reaction basic work-up (6 M aqueous KOH). Allylation was achieved in slightly lower yields 

(both with allyl chloride and allyl bromide) as demonstrated with the formation of 159ab.  

A drop in the yields was noticed when the reactions were performed on C3-silylated furfuryl alcohols, 

140a-Si-d and 140b-Si-d. For example, the methallylation of -butyl furfuryl alcohol yielded the 

desired 160aa in 42% along with 28% of the proto-desilylated product 140a-H, and both products could 

not be separated. In the case of -phenyl furfuryl alcohol, 140b-Si-d, the methallylated product, 160ba 

was formed in 54% yield, but here the process was hampered by the formation of 161 (10%), the origin 

of which still remains unclear. 

  

 
 For the numbering of 140z-Si-d, z represents the -substituent of the alcohol. 
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Scheme 149. Scope of allylation and metallylation of furfuryl alcohols 

 

c3. C3-alkylation reactions 

 Alkylation of the silylated furfuryl alcohols was considered next (Scheme 150). Methylation of the 

C3-position proceeded in quite good yield using methyl iodide as electrophile and either a 

stoichiometric or a catalytic amount of CuI•PPh3. It is interesting to note that a non-negligible decrease 

in the yield was noted when stoichiometric amounts of the copper complex were used (Scheme 150 

(a)). By contrast, functionalization of 153a-Si-d using iodoethane as electrophile was unsuccessful and 

led only to the formation of the proto-desilylated product 153a-H (Scheme 150 (b)), both running the 

reaction at 30 °C or at 50 °C. 
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 Furthermore, using benzylbromide as electrophile, C3-benzylation of 153a-Si-d was also achieved 

using CuI/P(OEt)3. But the reaction had to be run at 50 °C to afford the product 159aee with a relatively 

low yield. As previously mentioned, the use of P(OEt)3 made difficult the isolation of the coupling 

products, which led us later to CuI•PPh3. Furthermore, additional O-benzylation could not be prevented 

and only product 159aee was isolated, and no proto-desilylated product could be identified from the 

crude, nevertheless, its formation cannot be excluded. As previously, it is likely that O-benzylation 

occurs during the basic reaction work-up (Scheme 150 (c)). 

 

Scheme 150. Cu(I) catalyzed C3-alkylation of furfuryl alcohol 

 

c4. Mechanistic considerations 

 Following the 1H NMR analysis of the crude mixture of the reaction in Scheme 150 (a), a multiplet 

was evidenced in the aromatic region, which corresponds to the phosphine. Based on these observations, 

31P NMR analysis was later carried out to investigate about the identity of this species. It is well known 

that PPh3 affords the corresponding phosphonium salts on nucleophilic displacement of the halide of 

alkyl halides. To gain insight on the impact of this process in our reaction conditions we analysed by 

31P NMR the reaction media composed of 153a-Si-d, CuI•PPh3 (1.2 equiv.) and TBAF in THF-d8 and 

observed the formation of CH3PPh3
+ (21.5 ppm) along with a peak at –8.6 ppm that increased over time. 

This peak could be that of the ylide CH2PPh3 produced by deprotonation of CH3PPh3
+ (Figure 15). If 

such is the case, the base responsible for the deprotonation is likely to be the C3 metalated furyl–copper 
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organometallic and this process could be responsible (at least to some extent) for the formation of proto-

desilylation products.  

 

Figure 15. 31P studies for the consumption of ligand or reagent 

 

 On the basis of our experimental results and previously reported ones, a plausible mechanism 

scenario accounting for our C3–Si functionalization method is proposed in Scheme 151. The first step 

involves the activation of the furylsilane by fluoride ions. The formation of intermediate 155 was 

evidenced upon addition of one equivalent of fluoride anion to 153a-Si-d. The addition of excess TBAF, 

does not promote the cleavage of the C–Si bond unless a copper(I) salt is present. In that case, Si→Cu 

transmetalation occurs, delivering a C3-furyl–Cu species that can then undergo electrophilic 

substitution reactions giving 165.  

 Lower yields and conversion were noted when only one equivalent of TBAF was used instead of 

two, which can be ascribed to a poorly inefficient transmetalation from the pentavalent silicon 

intermediate 162. The improved results obtained with two equivalents of TBAF suggest that the 

formation of a hexavalent silicon species 163 might be plausible, and increases the efficiency of the 

transmetalation to copper.  

 Lastly, we have demonstrated that, when PPh3 is used, the proto-desilylated product 153a-H can be 

produced from the deprotonation of an in-situ generated phosphonium ion by 164. This deprotonation 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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is in competition with the nucleophilic reactions of the furyl-copper organometallic with electrophiles 

and hampers the C–Si bond functionalization. The extent of this process with P(OEt)3 and in the case 

of allylation and methallylation reactions still remains to be clarified. 

 

Scheme 151. Plausible reaction mechanism and side-reactions 

 

2.3.2 Conclusion and outlook 

 The hereby presented results provide a straightforward method for the functionalization of furfural 

and 5- methyl furfural derived alcohols at the C3-position with several electrophiles. Following the 

selective activation of the silicon moiety by both fluoride ions and the tethered alcohol function, C3-

arylation, allylation and alkylation of furfuryl alcohols in good to excellent yields was achieved. 

 The establishment of a catalytic-in-copper version of the cross-coupling reduces the load of 

necessary transition metal significantly, improving atom economy as well as sustainability. 

 An enantioselective version for the preparation of the secondary furfuryl alcohols can also be 

envisaged, in the presence of a chiral additive or ligand, which aims at targeting molecules bearing 

biological activities. 

 Furthermore, the interest in this kind of multi-functionalized furfural alcohols remains unwavering, 

in particular due to their ability to undergo further transformations, including ring-closing metathesis 

of allylated or vinylated products, reactions as well as Piancatelli or Achmatowicz rearrangements 
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(Scheme 152). The variety and applicability of this type of post-functionalization protocols grant access 

to a wide range of possibilities in regards to the synthesis of demanding molecule structures. 

 

Scheme 152. Perspectives for these furfuryl alcohols transformations 

 

2.4 Functionalization of C3-SiMe2Bn furfurylimines and related 

derivatives 

 Having demonstrated the feasibility to promote with fluoride anions silicon-to-copper 

transmetalation from C3-SiMe2Bn units, and thereby further C3-elaboration, we then envisaged to 

transpose the methods developed for furylalcohols to furfurylimine derivatives. Indeed, an important 

goal at the outset of our work was to achieve the C3-functionalization of furfural and its derivatives 

without modifying the redox state of the aldehyde. We quickly learned that direct functionalization of 

C3- SiMe2Bn furfural was not possible under TBAF-activation because it led to notable degradation 

(Scheme 153); no silanol nor siloxane derivatives could be detected by 1H NMR analysis of crude, nor 

the presence of an aldehyde function. We thus reasoned that working with the more robust PMP-imines 

could represent a valuable solution. In a qualitative analysis, the treatment of imine 19a-Si-d with 

TBAF•3H2O did not lead to substrate decomposition, but unfortunately only resulted in the formation 

of proto-desilylated imine 15a.  
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Scheme 153. Stability of 19a-Si-d and 19-Si-d towards TBAF•3H2O 

 

 We also contemplated the direct arylation procedure we previously optimized for the furfuryl 

alcohols. The reaction between 19a-Si-d and iodobenzene was carried out in the presence of TBAF (1 

M THF solution) using Pd2dba3 and CuI as catalysts (Table 20). Only proto-desilylated product, 15a 

resulted from this reaction. This could be rationalized by the impossibility to form a stable cyclic 

siloxane which would conduct to fast proto-desilylation following debenzylation. The same reaction, 

when performed with TBAF(t-BuOH)4 (2.4 equiv.) instead of TBAF in THF solution, gave 166/15a in 

1:3 ratio (entry 2), and a better 166/15a = 1:2 ratio was achieved when TBAF(t-BuOH)4 (1.2 equiv.) 

was employed (entry 3). 

 

Table 20. Attempted aryl cross-coupling with C3-SiMe2Bn furfurylimine 19a-Si-d  

 

Entry TBAF source Ratio 166:15a 

1 TBAF in THF (1 M) solution (2 equiv.) 0:100 

2 TBAF(t-BuOH)4 (2.4 equiv.) 25:75 

3 TBAF(t-BuOH)4 (1.2 equiv.) 33:67 

 

 Following the disappointing results with imines, but still with the aim to achieve functionalization 

while maintaining the same redox state as the aldehyde function, we contemplated the transformation 

of the aldehyde to an isolable hemiaminal. Using a reported protocol by Dixon,[227] lithium pyrrolate 

was prepared by reaction of n-BuLi with pyrrole in toluene, and added to aldehydes 18-Si-d and 19-Si-

d to obtain 167 and 168 respectively (Scheme 154). 
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Scheme 154. Preparation of furyl-pyrrole alcohol 

 

 By forming such hemiaminals, we reasoned that a similar behaviour to the furfuryl alcohols could 

be obtained, with the possible formation of a cyclic siloxane from the hydroxyl group of the hemiaminal 

upon debenzylation of the SiMe2Bn unit following treatment with TBAF•3H2O. The expected 

activation process was studied by 1H NMR in a reaction performed in THF-d8. In this experiment, the 

formation of cyclic- (or even acyclic) siloxanes was not detected, and instead furfural, pyrrole and 

toluene were produced (Scheme 155). 

 Our rationalization of this result is as following. According to the proposed mechanism for the 

activation of the benzyldimethylsilane (Chapter III, section 0), we assume that debenzylation of 167 

occurs first, liberating the benzyl anion. The latter is responsible for the deprotonation of the 

hemiaminal, which triggers elimination of the pyrrole with formation of C3-silylated furfural. This 

reversibility is in line with the reported observation by Dixon on these type of pyrrole carbinol.[228] In 

the absence of additional stabilization through cyclic siloxane formation, the C3-silylated furfural 

undergoes protodesilylation. 
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Scheme 155. Mechanism for the formation of furfuraldehyde from furyl-pyrrole alcohol, 167 

 

 In spite of these results, we decided nevertheless to attempt a Hiyama-Denmark-like cross-coupling 

on the hemiacetal derivative 168 using our reported procedure (Scheme 156). The reaction with 

iodobenzene, carried in the presence of catalytic amounts of Pd2dba3 and CuI, resulted unsurprisingly 

only in degradation of the starting material. 

 

Scheme 156.Attempted arylation to C3-silylated furyl-pyrrole alcohol 

 

 Failing to properly activate the C3-SiMe2Bn furfuraldehydes without decomposition or proto-

desilylation led us to consider alternative silicon units. 

 

3 Functionalization of C3-SiMe(OSiMe3)2 furfuraldehydes 

3.1 C3-halogenation of furfuraldehydes 

 It is classically known that aryltrialkyl silanes are susceptible to undergo halodesilylation by reaction 

with electrophilic halogen sources without the requirement of specific C–Si bond activation. In the 
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1970s, Eaborn reported the first examples of such reactions for the incorporation of an iodine atom (or 

Hg(OAc)).[229,230] The mechanism involves an ipso-substitution by the electrophile, which is made 

possible by the  -effect of the silyl group which is responsible for the stabilization of carbocations at 

the ortho position (Scheme 157). 

 

Scheme 157. Ipso-substitution of aryl silane 

 

 We attempted to apply this chemistry on our substrates, starting from 5-methyl-3-silylated furan 

carboxaldehydes as model substrates. In initial trials, was considered the reaction of substrate 18-Si-a 

having an SiEt3 unit with ICl as electrophilic iodine source. The reaction was performed at 0 °C, 25 °C 

and under reflux following reported protocols,[231] but only the starting material was recovered. A 

similar behavior was noted with 18-Si-e having an SiMe(OSiMe3)2 unit, which had also been reported 

to be competent for such transformation (Scheme 158).[232] 

 

Scheme 158. Attempt for iodination of 19-Si-a and 19-Si-e in the presence of ICl 

 

 Hartwig recently showed the feasibility of the halodesilylation reaction of aryl-SiMe(OSiMe3)2 

derivatives by reaction with N-halosuccinimides in the presence of AgF to activate the C–Si bond.[110] 

This method was therefore considered for the bromodesilylation of C3-silylated furfuraldehyde 18-Si-

e and promising results were obtained since C3-brominated furfuraldehyde 169b was obtained in a 

moderate 43% yield (Scheme 159). 

 

Scheme 159. Bromination of 18-Si-e with NBS in the presence of AgF 
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 Following on this result, iododesilylation reactions were considered (Table 21). However, under the 

reported protocols involving N-iodosuccinmide (NIS), only 27% of 170c was recovered along with 29% 

of the protodesilylated 13 (entry 1). Thus, further optimization of the halodesilylation procedures was 

undertaken. The use of undistilled acetonitrile, led to significant amount of protodesilylated product, 

13, and relatively poor yields were obtained with both NIS and I2 (entries 2-3). When I2 was used as 

electrophilic iodine source, longer reaction times only increased slightly the yield (entry 4). The best 

result was obtained with two equivalents of NIS, which resulted in 68% isolated yield of 170c (entry 

5). Again, in the absence of AgF, no noticeable product was observed, and only the starting material 

was recovered (entry 6). The role of AgF is not clear: it might induce the formation of a hypervalent 

silicon species that could be more reactive in an electrophilic aromatic substitution process or lead to 

the formation of a furyl-silver species. Furthermore, the addition of a CuI additive resulted in a poor 

conversion of the substrate (entry 7), which can also relate to the formation of a precipitate, obtained 

from the mixture AgF and CuI. The replacement of CuI by CuCN improved the conversion, but a lower 

yield, was still obtained in contrast to the reaction without copper (I) additives (entry 8). 

 

Table 21. Optimization of iodination processes through fluoride activation 

 

Entry "I+" souce Additives Remarks t (h) 170c (%) 13 (%) 

1 NIS (1 equiv)   6 27 29 

2 NIS (1 equiv)  CH3CN (not distilled) 6 11 20 

3 I2 (1 equiv.)  CH3CN (not distilled) 6 6 6 

4 I2 (1 equiv.)   Overnight 14 36 

5 NIS (2 equiv)   Overnight 68% _ 

6 NIS (1 equiv)  Absence of AgF 

Only 19-Si-e 

Overnight _ _ 

7a NIS (2 equiv) CuI (1 equiv.) Ratio 19-Si-e 

67% 

Overnight 33 _ 

8 NIS (2 equiv) CuCN (1 equiv.) 76% conversion Overnight 41 _ 

1H NMR yields calculated using Me2SO2 as internal standard. aOnly the ratio 19-Si-e/170c was reported. 

 

 

 With these optimized conditions in hand, a scope for the C3-halodesilylation of furfural related 

products was developed. The halogenation reactions were carried out with recrystallized N-

halosuccinmide (NXS) (2 equiv.), the corresponding C3-silylated furfuraldehyde (1 equiv.) and AgF (2 

equiv.) as activating agent, in freshly distilled CH3CN at 50 °C (Scheme 160).  
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 The reaction between 18-Si-e and N-halosuccinimides provided their respective C3-halogenated 

products in reasonable to good yields. Conversely, relatively lower yields were obtained with the 5-

methyl-3-silylated furfuraldehyde (19-Si-e), especially for the bromination. It should be noted that the 

reaction was carried out almost always with equimolar amounts of AgF and NXS. In the case of 20-Si-

e, four equivalents of NXS and AgF were used to carry out the reaction, in order to ensure full activation 

of the C(sp2)–Si bond, due to the presence of a tert-butyldimethylsilyl protecting group. Relatively good 

yield was obtained for the chlorination (171a), while a relatively low yield was obtained for iodination 

(171c). Quite surprisingly, no brominated product (171b) was obtained when the reaction was carried 

out with NBS. In fact, as a general trend, it was observed that poorer yields were obtained with NBS, 

especially in the case of the C5-substituted furfuraldehydes. It was surmised that radical bromination 

of the methyl group on furfural could be a competitive side reaction. 

 

Scheme 160. C3-halogenation of furfuraldehydes 

 

 In addition to C–Cl, C–Br and C–I bond formation, experiments were ran to achieve C–F bond-

formation from 5-methyl-3-silylated-furfuraldehydes (19-Si-e) using N-fluoropyridinium 
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tetrafluoroborate or F-TEDA (SelectFluorTM) as electrophilic fluoride source,[233] but no fluorine-

containing product could be evidenced (Scheme 161).  

 

Scheme 161. Attempted fluorination of 19-Si-e 

 

 In order to perform this transformation, it might be of particular relevance to carry out this reaction 

with N-fluorobenzenesulfonimide as electrophile. As an alternative, fluorination of aryl–

SiMe(OSiMe3)2, has also been reported using KHF2 (6 equiv.) as fluoride source, Cu(OTf)2 in 

acetonitirile at 60 °C to afford the fluorinated arenes.  

 In spite of this limitation, encouraged by the success in the activation by AgF of the C3–

SiMe(OSiMe3)2 bond of the furfural derivatives, and inspired by Hartwig’s reports on cross-coupling 

reactions involving aryl–SiMe(OSiMe3)2 nucleophiles, we considered applying the same activation 

strategy to achieve other types of C3-functionalizations.  

 

3.2 C3-alkenylation and -arylation of furfuraldehydes 

 Cross-coupling reactions with sp2 electrophiles were considered first. Most of these cross-couplings 

have been applied to alkenyl- or aryl- trialkoxysilanes or the corresponding disiloxanes.[235–237] 

  

 Ferreira reported the palladium cross-coupling reaction between vinyl silane, bearing an allylic 

alcohol function and ethyl-4-iodobenzoate.[238] This reaction with feasible in the presence of TBAF and 

Pd2dba3 as catalyst (Scheme 162 (a)). Similar strategy was adopted for the arylation of esters bearing 

vinyl silane or their ynamide analogue, where Pd(PPh3)4 was employed as catalyst, with KHF2 acting 

as a mild fluoride source (Scheme 162 (b)).[239] Ag2O has shown to have a crucial role in this reaction, 

because in its absence, relatively lower yields were obtained. Two hypotheses were proposed: the first 

one, being the generation of an organosilver species which could participate in the transmetalation step 

with palladium; while, the second hypothesis involve the ionization of the Pd–X bond of pre-formed 

Ar–Pd–X after oxidative addition into aryl halide, which would result in efficient transmetalation of the 

hypervalent aryl–silicon to palladium. This was later was supported by the absence of coupling product, 

when aryl triflate was used as coupling partner. 
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Scheme 162. Palladium-catalyzed aryl cross-coupling reaction with vinyl silanes, bearing allylic alcohol and ester 

 

 Under Pd(OAc)2/DCPE catalytic system, the cross-coupling between electron-poor arylsilane and 

electron-rich aryl iodide, could also provide the bis-aryl product (Scheme 163).[105] In this case, 

KOSiMe3, was used as activating agent, to promote transmetalation to the aryl–palladium species.  

 

Scheme 163. Palladium catalysed bis-arylation formation from arylsilanes catalyzed by KOSiMe3 

 

 Murata reported the palladium catalyzed cross-coupling between 3-phenyl-heptamethyltrisiloxane 

and 4-bromobenzotrifluoride as limiting reagent. In the presence of TBAF and PdCl2(PCy3)2 in a 

mixture of THF/H2O (5/1), afforded the coupling product in excellent yield (Scheme 164).[240] 

 

Scheme 164. PdCl2(PCy3)3–catalyzed cross-coupling between 3-phenyl-heptamethyltrisiloxane and 4-

bromobenzotrifluoride 
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 Later, the group of Hartwig established new protocols to perform cross-coupling between heteroaryl 

silanes and aryl-halide with the former mentioned used as limiting reagent. Two synthetic strategies 

were developed.[110] The first one was applied to the C2-silylated furan or thiophene derivatives for the 

the cross-coupling reaction with m-iodochlorobenzene. This reaction was performed in the presence of 

AgF as fluoride source and catalyzed by Pd(t-Bu3)2 to provide respectively 68% and 76% for the furan 

and thiophene derivatives (Scheme 165 (a)). In addition, variations in the procedure were done in order 

to perform this coupling with silyl azole. Here, the use of CsF was necessary along with 

Pd2dba3•CHCl3/BINAP catalyst, to provide the arylated product (Scheme 165 (b)). 

 

Scheme 165. Palladium-catalyzed arylation of silylated heteroarenes 

 

 Following on theses literature precedents, the reaction between 19-Si-e and iodobenzene was carried 

out using a Pd2dba3•CHCl3/BINAP catalytic system in the presence of AgF, and an excellent 81% yield 

of arylated product 173a was obtained, along with 16% of 13 (Scheme 166). Interestingly, the same 

reaction in the presence of CsF only led to the formation of the protodesilylated product 13, a result that 

underscores the importance of using AgF as fluoride source. 

 

Scheme 166. Choice of fluoride source for the aryl cross-coupling 

 

 The same conditions were next adopted for other arylation and alkenylation reactions (Scheme 167). 

Arylation of 18-Si-e and 19-Si-e with iodobenzene proceeded in reasonably good yield (48–81%) while 

in the case of 20-Si-e a significant drop was noted. The preparation of similar motifs have previously 

been reported by Oble and Poli, for the ruthenium catalyzed arylation of furfurylimines.[51] Alkenylation 
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of 5-methylfurfuraldehyde was performed with -bromostyrene to deliver 173b in 45% yield, as well 

as with 2-bromo-propene to deliver 173c, albeit in poor yield.  

 

Scheme 167. Arylation and alkenylation of C3-silylated furfuraldehydes 

 

3.3 C3-alkynylation of furfuraldehydes 

 Hiyama-Denmark-type cross-coupling reactions, devoted to the C(sp2)–C(sp) bond formation 

between alkynyl halides (or terminal alkynes) and aryl silanes have received far less attention as 

Sonogashira-type reactions between aryl halides and alkynylmetals remain the preferred approach for 

the preparation of aryl-substituted alkynes.[241–243] 

  

 In 2014, Guo reported the first alkynylation protocol for aryl trialkoxysilanes by reaction with 

alkynyl halides, catalyzed by Pd(dba)2 in the presence AgF and KHCO3.
[244] This reaction was carried 

out under aerobic conditions and this cross-coupling could also be performed with terminal alkynes 

instead of the halide analogues (Scheme 168). 
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Scheme 168. First reported alkynylation of aryl trialkoxysilane 

 

 Later, was disclosed a decarboxylatative version of the reaction between alkynyl carboxylic acids 

and arylsiloxanes, where instead of AgF and KHCO3, AgF2 was used to play both the role of fluoride 

additive and oxidant.[245] Such coupling was also achieved with Ni(acac)2/Phen as catalytic system using 

a combination of CsF as fluoride source for the siloxane activation and CuF2 as oxidant.[246,247]  

 

 So far, all the reported protocols for arylsiloxane alkynylation require the use of the organosilicon 

donor in excess. Furthermore, no procedure starting from aryl–SiMe(OSiMe3)2 derivatives was 

disclosed (nor starting from aryltrialkylsilanes). Having in mind these challenges and inspired by Guo’s 

protocols, the reaction between alkynyl bromide and 19-Si-e as limiting reagent, was carried out in the 

presence of Pd2dba3•CHCl3, AgF and KHCO3, under aerobic conditions (Scheme 169 (a)). Alkynylation 

delivering 175 was indeed observed, but only in relatively poor yield. Performing the cross-coupling 

reaction under anaerobic and base-free conditions (Scheme 169 (b)) led to similar yields. 

 

Scheme 169. Palladium-catalyzed alkynylation of 19-Si-e 

 

 While modest, these results remain promising and leave room for improvement. The use of 

oxidants such as CuF2 or AgF2 might be investigated. 
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3.4 C3-allylation and alkylation of furfuraldehydes 

 We then went on to consider the creation of C(sp2)–C(sp3) bonds, which represents one of the most 

challenging transformation, when it concerns selective functionalization of heteroarenes. With the lack 

of allylation or alkylation processes based on alkenyl- or aryl- SiMe(OSiMe3)2, we got inspired by the 

reaction diversity of alkoxysilanes proposed. So far, there are limited existing examples for the 

alkylation of these motifs, most of these C(sp2)–Si transformations have been implemented for the 

allylation reaction. 

  

 In 2014, Riant developed an efficient catalytic method to functionalize di- and tri-substituted vinyl 

siloxanes by allylation with allyl bromides (Scheme 170). This fluoride-mediated transformation 

involves the use of TBAT (tetrabutylammonium difluorotriphenyl silicate) as anhydrous fluoride source 

in stoichiometric amount and copper(I) iodide in catalytic quantities. The allylation occurred with 

perfect retention of the double bond geometry and the strategy was tolerant towards a wide range of 

functional groups. 

 

 

Scheme 170. Cu(I) catalyzed allylation of alkenyl trialkoxysilane 

 

 Alternatively, the authors also disclosed a benzylation protocol for these vinylsiloxanes, in the 

presence of TBAT as fluoride activator, [Cu(CH3CN)4]PF6 as catalyst and benzylbromide as 

electrophile (Scheme 171).[248] As for the allylation reaction, full retention of the alkenylsiloxane’s 

configuration was observed. 

 

Scheme 171. Cu(I)-catalyzed benzylation of Z- alkenyl trialkoxysilane 

 

 Ball developed another strategy to achieve the allylation of aryl triethoxysilanes. Given that Cu(I)–

F complexes are often reported to be quite unstable with respect to disproportionation, he considered 

the preparation of a stable copper (I) fluoride complex: (IPr)CuF (IPr= 1,3-bis(2′,6′-

diisopropylphenyl)imidazol-2-ylidene).[249] It was demonstrated that this reagent permits an efficient 
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activation of the C(sp2)–Si bonds of aryl triethoxysilanes and induces silicon-to-copper transmetalation 

to deliver an aryl–Cu(I)(IPr) complex. The latter can be isolated, in relatively good yields both with 

electron-rich and electron-deficient arenes. Alternatively, on treatment of these complexes with allyl 

bromide, the allylation product is obtained in good yield (Scheme 172).  

 

Scheme 172. (IPr)CuF-catalyzed allylation of allyl- and aryl- trialkoxysilane 

 

 Due to the limited reactivity of the aforementioned complex ((NHC)Cu–aryl), other (NHC)CuF 

complexes were prepared to perform additional allylic substitution reactions. For instance, the cross-

coupling with vinyl-epoxides was achieved in quite good yields,[250] and could be applied to 

heteroarenes, as depicted in Scheme 173. 

 

Scheme 173. (CySI)-CuF catalyzed cross-coupling between vinylepoxides aryl- trialkoxysilane 

 

 One of the rare examples focused on the alkylation reaction have been performed on 

vinyldisiloxanes was catalysed by [(allyl)PdCl]2.
[251] The activation of disiloxanes with TBAF, generate 

silanolates, which promotes the transmetalation to the alkyl–palladium species. This TBAF-assisted 

cross-coupling was subjected to benzylation reaction, with (primary and secondary) benzylic and allylic 

bromides, chlorides, tosylates and mesylates, but did not afford the alkylation with tertiary alkyl halides. 

In addition, allylation of these substrates can also be achieved using this protocol (Scheme 174). 
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Scheme 174. Palladium-catalyzed alkylation and allylation of vinyldisiloxanes 

 

3.4.1 Allylation reactions 

 In continuation of our thorough investigation of the allylation of C3-silylated furfuraldehydes, we 

attempted to achieve the same transformation by reaction of 19-Si-e with AgF (2 equiv.) in the presence 

of allyl bromide, according to the activation strategy we had previously applied successfully for the 

halodesilylation reaction (vide infra Table 22, entry 1). However, only the starting material was 

recovered under these conditions. The failure to promote the allylation with AgF made us turn back to 

consider copper-based strategies. In an ideal situation, the reaction with Cu–F complexes would allow 

the generation of an hypervalent silicon species and thereby to trigger the silicon-to-copper 

transmetalation.  

 

a. Preparation of Cu–F complexes 

 We thus engaged in the preparation of such Cu–F complexes. Some of them are air-sensitive and 

their preparation can require expensive ligands,[249,250] but we instead focused on easily accessible and 

air-stable complexes. Following a reported procedures,[252] complex 176 was prepared by the reaction 

of PPh3 and CuF2 in methanol under reflux (Scheme 175). Placing 176 under high vacuum at 90 °C 

delivered 177. Attempts to prepare analogue complexes from CuF2, with dppe or phenanthroline/PPh3 

(1/1), failed. Also, PPh3-ligand displacement from CuF(PPh3) by either dppe and phenanthroline for the 

same purpose did not give the desired complexes.  
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Scheme 175. Preparation of CuF(PPh3)3 complex 

 

b. Optimization of the allylation conditions 

 With complexes 176 and 177 in hands, we tested the allylation reaction of 19-Si-e with allyl bromide 

in DMF (Table 22). After two hours reaction in the presence of 1.2 equiv (PPh3)3CuF•2MeOH, the 

desired product 178a was indeed obtained, but with a relatively poor yield and along with proto-

desilylated product 13 (entry 2). The reaction was also incomplete after four hours (entry 3), which led 

to consider running it overnight (entry 4). Under these conditions, 58% yield of 178a was obtained, 

which was quite satisfying. The possibility to use (PPh3)3CuF•2MeOH in a substoichiometric amount 

was investigated, with 50 mol% of the latter (entry 5), which resulted in a poor conversion of the 

substrate. Contrarily, an increased quantity of the fluoride source led to a slightly improved yield (entry 

6). Interestingly, using (PPh3)3CuF without the methanol molecules in the complex, no proto-desilylated 

13 was noticed, which resulted in a slightly better yield in 178a (entry 7). 

 Optimization of the solvent was also investigated, but it should be noted that this study was mostly 

carried out using CuF(PPh3)•2MeOH. The reaction was performed in THF, but lower reaction yield 

was obtained (entry 8). It is known from literature,[149,150] that polar solvents or additives having higher 

dielectric constants favor ion-pair dissociation and lead to increased nucleophilicity of carbanion. Thus, 

the solvent system THF/HMPA was considered, but an even lower yield was obtained, which we 

attributed to degradation of the product (entry 9). Finally, the temperature (entry 10) did not seem to 

greatly influence the reaction. 
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Table 22. Optimization of allylation process 

 

Entry “F-” Solvent t (h) Remarks 178a (%) 13 (%) 

1 AgF (2 equiv) CH3CN 2 No conversion _ _ 

2 CuF(PPh3)3•2MeOH (1.2 equiv.) DMF 2 75% conversion 25 7 

3 CuF(PPh3)3•2MeOH (1.2 equiv.) DMF 4 88% conversion (36) 10 

4 CuF(PPh3)3•2MeOH (1.2 equiv.) DMF overnight _ 58 11 

5 CuF(PPh3)3•2MeOH (0.5 equiv.) DMF overnight 

Only ratios 

reported. 19-Si-e 

(35%)  

50 15 

6 CuF(PPh3)3•2MeOH (2.4 equiv.) DMF overnight _ 62 _ 

7 CuF(PPh3)3 (1.2 equiv.) DMF overnight _ 69 _ 

8 CuF(PPh3)3•2MeOH (1.2 equiv.) THF overnight _ 30 17 

9 CuF(PPh3)3•2MeOH (1.2 equiv.) 

THF/ 

HMPA 

(1/1) 

overnight _ 17 12 

10 CuF(PPh3)3•2MeOH (1.2 equiv.) DMF overnight 
30 °C instead of 

60 °C 
53 7 

1H NMR yields are calculated using Me2SO2 as internal standard. 

 

c. Reaction scope 

 Following the series of optimizations with the bench-stable Cu–F complex 177, the functionalization 

of 5-methyl furfuraldehyde derivative (19-Si-e) by reaction with other allylic bromides was considered 

(Scheme 176). The reaction with methallyl bromide led to the corresponding product of allylic 

substitution in quite good yield (67%). When performed with cinnamyl bromide, however, a moderate 

yield was obtained, where an inseparable mixture, containing 178c and 13 (1.0/0.10) respectively. 

Surprisingly, methyl 4-bromocrotonate, did not provide any product. 

 The scope was then extended to furfuraldehyde derivatives (18-Si-e), which afforded the allylated 

and methallylated products 179a and 179b in reasonably good yields. Unfortunately, 179a was not 

isolated and was probably lost during the vacuo concentration process due to its high volatility. 
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Scheme 176. Allylation scope of C3-silylated furfuraldehyde 

 

 This allylation procedure was transposed to the related C3-silylated furfurylimine (19a-Si-e). 

Unfortunately, only 20% of the C3-allylation product (178b) was obtained upon hydrolysis, but instead, 

the N-bis-allylated product (180) was obtained as the major product (Scheme 177). Further analyses 

have to be performed to explain the formation of product 180. 

 

Scheme 177. Attempt to perform the allylation of C3-silylated PMP-furfurylimine  
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3.4.2 Alkylation reactions 

 Alkylation processes were then studied. Methyl iodide and benzyl bromide were respectively used 

as electrophiles, as they have commonly been used for alkylation strategies. 

 The reaction between 19-Si-e and iodomethane or benzyl bromide was performed in the presence of 

CuF(PPh3)3 (1.2 equiv.), in DMF at 60 °C (Scheme 178). In the case of the former mentioned (Scheme 

178 (a)), a relatively low isolated yield of 181 was observed along with 10% of the protodesilylated 

product. Notwithstanding, because of the low molar mass of the product and side-product(s), the yield 

might be under-estimated. In the case of benzyl bromide (Scheme 178 (b)), an even lower yield of the 

coupling product could be evidenced. Another side-product, 183, which corresponds to the product 

coming from a Wittig reaction, was rather formed in considerable amounts. 183 was obtained in an E/Z 

= 1:1 ratio. 

 

Scheme 178. Attempt to perform methylation (a) and benzylation of C3-silylated furfuraldehyde 

 

 Our explanation for the presence of 183 is as follows (Scheme 179). It is known from literature,[252] 

that at room temperature, one or two phosphines of (Ph3P)3Cu–F are in their free-form (not coordinated 

to Cu(I)). They can thus react with benzyl bromide to generate the phosphonium salt, 184.  

The aryl-copper (I) species formed from the transmetallation step (185), acts as base for the 

deprotonation of the phosphonium salt. This gives protodesilylated 5-methyl furfuraldehyde (13) and 

the reactive ylide 186 which is responsible for the formation of 183, via a Wittig reaction (Scheme 179). 

This result is fully consistent with our observations discussed in Chapter IV, section 2.3.1 (c4. 

Mechanistic considerations).  
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Scheme 179. Proposed mechanism of formation of 183 

 

 To try to circumvent this limitation for the benzylation reactions promoted by CuF(PPh3)3, we first 

considered the use of catalytic amounts of the copper complex (Table 23, entry 1). However, as 

observed previously, this transmetalation did not fully proceed in these conditions and the addition of 

fluoride additives in stoichiometric amounts appears necessary to promote the alkylation at the C3-

position. The use of NEt3•HF for this purpose did not provide full conversion, and only protodesilylated 

product was obtained (entry 2). A similar behaviour was evidenced for TBAF(t-BuOH)4 (entry 3). 

Furthermore, the implication of CsF in this reaction, led to a non-negligible amount of 183 (entry 4), 

comparable to entry 1. Interestingly, AgF, afforded 40% of product 182, and no 183 was observed 

(entry 5). The pre-mixing of CuF(PPh3)3 with the benzyl bromide, provided 35% of product 183, while 

no other product could be observed (entry 6). This result could be related to the initial formation of the 

phosphonium, which promotes the formation of 183. But the in-situ preparation of other Cu–F sources 

in the presence of AgF as additive, did not result in the C3-benzylated product 182, but instead provided 

the protodesilylated product and degradation respectively (entries 7-8). 
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Table 23. Optimization for the benzylation of C3-silylated furfuraldehyde (19-Si-a) 

 

Entry. “F-” additives Remarks 182 (%) 13 (%) 183 (%) 

1 
CuF(PPh3)3 

(1.2 equiv.) 
 4 _ 54 

2 
NEt3•3HF 

(0.4 equiv.) 

Incomplete conversion. Only ratio of 19-Si-e 

to 13 reported (45:55). 
_ 55 _ 

3 
TBAF(t-BuOH)4 

(2 equiv.) 
 _ 20 _ 

4 
CsF 

(2 equiv.) 
 _ 12 38 

5 
AgF 

(2 equiv.) 
 40 20  

6 
AgF 

(2 equiv.) 

CuF(PPh3)3 (20 mol%) was stirred with Bn-

Br (1 equiv.)in DMF for 1 h at rt, before 19-

Si-e, AgF and Bn-Br (2 equiv.) were added. 

_ _ 35 

7 
AgF 

(2 equiv.) 

CuF2 (2 mol%) IPr•HCl (2 mol%), NaOt-Bu 

(12 mol%) used instead of CuF(PPh3)3. 

Incomplete conversion with a ratio of 19-Si-

e:13 (17:83). 

_ 83 _ 

8 
AgF 

(2 equiv.) 

(Ph3P)CuI (20 mol%) and AgF (2equiv.) 

were stirred for 30 min at rt, before 19-Si-e 

and Bn-Br were added. 

_ _ _ 

1H NMR yields were calculated using Me2SO2 as internal standard. 

 

 

 Under the same conditions, methylation by reaction with methyl iodide was also achieved in a 35% 

yield, with only 10% of the protodesilylated product 13 (Scheme 180). 

 

Scheme 180. Alkylation of C3-silylated furfuraldehyde 

 

3.5 C3-trifluoromethylation of furfuraldehyde 

 Recently, the trifluoromethyl group has gained lot of attention in medicinal chemistry due to C–F 

bond stability compared to C–H bonds. It also improves the lipophilicity of molecules due to its strong 

electron-withdrawing character.[253] We thus reasoned that the development of methodologies for the 

trifluoromethylation of the C3-silylated furfuraldehydes could certainly provide some added-value to 

the development of our synthetic platform around the furan carboxaldehyde derivatives. 



 

 

189 

 Trifluoromethylating reagents show different reactivities (Scheme 181): for example, some 

commonly reported electrophilic “CF3” sources include the Togni’s reagent[254] and Umemoto 

reagent,[255] while nucleophilic sources, include the Rupperts’ reagent,[256] Langlois’ reagent[257] and 

Chen’s reagent.[258] Other “CF3” sources showed yet different behaviours. For example, (phen)CuCF3 

can act as a radical “CF3
•” donor, but also as a “CF3

-” source or “CF3
+” source depending on copper’s 

oxidation state. The choice of the appropriate “CF3” reagent is thus decisive.  

 

Scheme 181. Common trifluoromethylating agent. 

 

 In 2016, Hartwig disclosed the first example of trifluoromethylation applied to arylsilanes.[259] The 

reaction between aryl–SiMe(OSiMe3)2 and (phen)CuCF3 was carried out in the presence of AgF as 

fluoride source in DMF. The use of benzoquinone as co-oxidant in open air provided best yields for 

this reaction (Scheme 182). 

 

Scheme 182. Trifluoromethylation of 2,5-dimethyl 3-silylated furan  

 

 This protocol for trifluoromethylation was thus applied to 19-Si-e in a one-pot procedure.[260] The 

air-sensistive reagents CuCl, t-BuOK and phenanthroline were used from the glovebox and pre-mixed, 

after which TMS–CF3 was added, to generate in-situ the (phen)CuCF3 complex. 19-Si-e, AgF and 

benzoquinone were then added under aerobic conditions. In our case, the reaction did not work. Despite 

multiple additional attempts, where the reaction was carried out without co-oxidant or in the presence 

of molecular oxygen, no trifluoromethylated product was noticed (Scheme 183). 
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Scheme 183. Attempt for trifluoromethylation of C3-silylated furfuraldehyde using (phen)CuCF3 

 

 So, we decided to use an electrophilic trifluoromethylating agent, such as the Umemoto’s reagent, 

in combination with activation by AgF. No furyl product could be evidenced, and only the 

dibenzothiophene was identified (Scheme 184). 

 

Scheme 184. Trifluoromethylation attempt with Umemoto’s reagent 

 

 In a final attempt for this reaction, (phen)Cu(CF3)3 was prepared and isolated according to Zhang’s 

protocols.[261] The reaction was performed under similar conditions, with AgF as the activating agent 

under oxygen atmosphere, and the desired trifluoromethylated product 187 was obtained in satisfactory 

yield (Scheme 185).  

 

Scheme 185. Trifluoromethylation of C3-silylated furfuraldehyde using (phen)Cu(CF3)3 reagent 

 

 It has to be noted that the reaction mixture was thoroughly degassed before being back-filled with 

O2. The volume of the container used, was taken into account, and relates to the volume of oxygen at 

atmospheric pressure (in mmol) required to re-oxidise the copper species.  

 On a mechanistic point of view, we consider a scenario similar to the one reported for the 

trifluoromethylation of arylboronic acids with (phen)Cu(CF3)3.It has been proposed that (phen)CuCF3 
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would first undergo an oxidation to Cu(III) which would allow the transmetalation of the pentavalent 

silicon species to copper, which releases a “CF3
-”. The presence of a pre-existing Cu(III) species, when 

performed with (phen)Cu(CF3)3, could probably provide an ease for transmetalation. After 

transmetalation, reductive elimination gives the desired product (Scheme 186). In order to sustain the 

process, oxidation of (phen)CuCF3 or (phen)Cu(CF3)2 is necessary. 

 

Scheme 186. Trifluoromethylation of C3-silylated furfuraldehyde 

 

3.6C3-amination of furfuraldehydes 

 Arene C–N bond formation has lately been achieved using aryltrialkoxysilanes. Amination 

procedures have been reported in the literature both through electrophilic amination processes,[262] 

where a tertiary amine bearing a good leaving group and through nucleophilic amination procedures, 

which can be carried out with primary and secondary amines.[263] Yet, nucleophilic amination 

procedures have more extensively been explored with aryl halides for the Buchwald-Hartwig 

amination[264,265] under palladium-catalyzed reactions, and with aryl boronic acids (or boronic esters), 

for the Chan-Lam amination.[266,267] 

 Lam and co-workers, developed a variant of the amination reaction of arylsilanes.[268] The generation 

of a hypervalent siloxane species with TBAF, is key for the efficient arylation of N–H containing 

compounds. Similar to conditions with arylboronic acids, the use of Cu(OAc)2 was necessary for the 

transmetalation of the hypervalent arylsiloxane to Cu(II). The authors also proposed a similar 

mechanism to the ones with aryl boronic acids (Scheme 187). 
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Scheme 187. Copper catalyzed arylation of amines, with arylsilane as limiting reagent 

 

 However, it is unclear concerning the oxidation state of the copper species from which results the 

reductive elimination. The aerial oxidation of 189 leads to the formation of the Cu(III) intermediate 

188, and can promote more efficient reductive elimination giving the N-arylated product and Cu(I) 

(Scheme 188). Alternatively, 189 undergo reductive elimination to give Cu(0) and N-arylated product. 

 

Scheme 188. Proposed mechanism of formation of aryl-amines by copper catalyzed reaction of aryl silane and an amine 

 

 Later, Cheng described the copper-TBAF catalyzed arylation of primary and secondary amines and 

amides with aryl trimethoxysilane.[269] These arylations were feasible under catalytic amounts of both 

TBAF and Cu(OAc)2, and the presence of electron-withdrawing phosphine ligands, provided efficiently 

the C–N coupling product. 

 Lately, Hartwig reported the oxidative coupling of arylsilanes with nitrogen nucleophiles.[270] This 

new procedure permits the arylation of the amines from aryl–SiMe(OSiMe3)2 used as limiting reagent. 

With a series of fluoride activator screened, the authors reported that the homocoupling (diaryl product), 

was obtained with fluoride sources less activating than CsF, NaF providing the best results. The reaction 

between arylsilanes and the corresponding amines was performed in DMSO, in the presence of 

Cu(OAc)2, Na2CO3 and NaF under aerobic conditions, and led to the arylation of these amines with 

electron-deficient arenes in reasonably good yields (Scheme 189). Interestingly, the reaction showed 
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some limitations with electron-rich arenes, where lower yields were obtained. The authors proposed the 

use of a more activating fluoride source (KHF2) to overcome this problem. 

 

Scheme 189. Copper catalyzed arylation of amines, with arylsilane as limiting reagent 

 

 In regards to the amination procedures reported by Hartwig,[270] the amination of furfuraldehyde 19-

Si-e with pyrrolidone was set as a model reaction, in the presence of Cu(OAc)2, Na2CO3 as base and 

NaF as fluoride source (Table 24). Using their conditions, only 17% of the product 190 (entry 1). This 

amination is known to work under aerobic conditions. Therefore, the reaction was performed with an 

air-circulation (ie with an entry of air and an exit outlet), which led to an improvement in the ratio of in 

favour of 190, but due to solvent evaporation over time, full conversion of the substrate could not be 

achieved (entry 2). The same reaction was carried out with a CaCl2 trap (to allow entry of dry air), and 

showed similar result, where 16% of 190 was obtained (entry 3). In addition, an increase in the amount 

of pyrrolidone as well as Cu(OAc)2, slightly improved the yield (entry 4), while the use of THF as 

solvent did not show any conversion of the substrate 19-Si-e, probably due to poor solubility of NaF in 

THF (entry 5). 

 In order to allow smooth and slower transmetalation of the hypervalent silicon species to copper, 

NaF (1 equiv.) was used, but poor yield of 190 was evidenced (entry 6). As reported in that former 

paper, the high solubility of the C–N coupling product bearing a pyrrolidone moiety was considered to 

be water-soluble. Further optimization was performed by considering a mixture of DMSO and THF 

(1/1) to carry out the reaction; an improved yield of 38% of 190 was obtained (entry 7). It has to be 

highlighted that the first organic extract (after 3 extractions with EtOAc) contained 27% of 190, while 

after a second extraction of the aqueous phase contained 12% of 190 can be recovered. AgF as fluoride 

additive only led to protodesilylation of 19-Si-e (entry 8). 
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Table 24. Optimization of amination and of 19-Si-e in the presence of pyrrolidone 

 

Entry w (equiv.) x (equiv.) y (equiv.) z (equiv.) 190 (%) 

1 2 3 2 2 17 

2a 2 3 2 2 50b 

3b 2 3 2 2 16 

4 4 4 4 2 28 

5c 4 4 4 2 _ 

6 4 4 4 1 7 

7d 4 4 4 1 38 

8e 2 3 2 2 _ 
1H NMR yields were calculated using 3,4,5-trimethoxybenzaldehyde as internal standard. aReaction performed 

under air circulation. Only ratios of 190:other product:19-Si-e were calculated (50:20:30). bReaction 

performed under air conditions, with a CaCl2 trap. cTHF used instead of DMSO. dTHF/DMSO (1/1) solvent 

mixture used. eAgF (2 equiv.) used instead of NaF. Only proto-desilylated product observed. 

 

 These optimized conditions were next applied with other amines, such as 2-aminopyrimidine, 

morpholine and pyrrole. Among these amines, only the first one provided the desired product, but in a 

very poor isolated yield (4%) (Scheme 190). 

 

Scheme 190. Arylation of 2-aminopyrimidine by arylsilane  
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4 Derivatization of C3-functionalized furfuraldehydes 

 Different transformations at the C3-position of furfuraldehyde derivatives, starting from the 

silylation step to the post-transformation of these molecules have been performed, without alteration of 

the redox state of the aldehyde. One of the key assets of keeping the redox state unchanged throughout 

the course of these transformations, is the possibility to use the furfuraldehyde motif to access novel 

complex molecules. First, the aldehyde function provides a platform for the preparation of tertiary 

alcohols (as shown in the previous sub-chapter), but can also be subjected to Wittig reaction, Ohira-

Bestmann and many more carbonyl-based reactions. Also, upon decarbonylation, a new class of C3-

substituted furans should be accessible. In addition, it is known from the literature that furfural 

derivatives can undergo several rearrangements,[271] including the aza-Piancatelli rearrangement[271,272] 

or the generation of pyridinium zwitterion (with 5-HMF derivatives),[273,274] that they can also be 

involved in Diels-Alder rearrangements[275] or used for the preparation γ-crotonolactone,[276] as well as 

engaged in the Biginelli reaction[277] or Knoevenagel reaction to give synthetically useful motifs 

(Scheme 191). 

 Up to now, a limited amount of these transformations have been reported on C3-functionalized 

furfuraldehydes. 
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Scheme 191. Perspectives of C3-functionalized furfuraldehydes, bearing an aldehyde function 

 

4.1 Aza-Piancatelli 

 The aza-Piancatelli rearrangement was performed on 18-Si-a, according to the reported procedures, 

in the presence of morpholine, and catalyzed by AlCl3 (Scheme 192). 

 

Scheme 192. Preparation of cyclopentenone, 192 from C3-substituted furfuraldehyde 19-Si-e 

 

 Under Lewis acid catalysis (AlCl3), the generation of 193 was made possible through the 

nucleophilic addition of the amine. The latter can be stabilized by the transient furan oxonium (193’), 



 

 

197 

which is subjected to a nucleophilic addition by the amine, resulting in ring-opening, to form 195. After 

conrotatory electrocyclization, 195 led to the formation of 196 (Scheme 193). 

 

Scheme 193. Mechanism for aza-Piancatelli rearrangement 

 

 It was reported that the cyclopentenone derivatives can be subjected to a 1,4-nucleophilic addition 

in the presence of an external nucleophile. In the case of 196, however, it can be envisaged in the 

presence of a nucleophile that the 1,4-addition to 196, promotes the 1,4-silyl migration, which can be 

trapped by an electrophile giving a cyclopentanone derivative.  

 

4.2 Pyridinium zwitterion from HMF 

 Afonso described the direct synthesis of pyridinium ion from 5-HMF derivatives. In attempts to 

prepare the corresponding pyridinium zwitterion, 198 was used in the presence of butylamine and 

formic acid. 197 was estimated to be obtained in 61% yield (Scheme 194), but due to solubility 

problems, the product could not be obtained pure. Also, the latter could not be recovered after silica-

gel chromatography. 

 

Scheme 194. Preparation of pyridinium zwitterion from C3-substituted HMF derivative 197 

 

 Following, the proposed mechanism by Afonso and co-workers,[278] imine 199 was generated by an 

acid-catalyzed imine formation. Under acid catalysis, water could act as a nucleophile and promote the 

ring opening to 203. The resulting ketone 203 is subjected to a nucleophilic addition by the nucleophilic 



 

 

198 

nitrogen, to give 205. As a consequence of dehydration, the final pyridinium compound 198 was 

obtained (Scheme 195). This mechanism was consistent with the DFT results reported by the same 

group as well as with the isotopic labelling of oxygen (H2
18O) 

 

Scheme 195. Proposed mechanism for the formation of pyridinium zwitterion from C3-substituted HMF derivative 197 

 

5 Conclusion and outlook 

 The development of synthetic strategies applied to furfuraldehydes allowed a wide range of 

transformations, including C–C to C–X bond formations from these C3-silylated furfuraldehydes. It is 

important to stress the fact that, these developed methodologies have consistently been used, with the 

furfuraldehydes as limiting reagent, and were compatible with the aldehyde functions. In addition, on a 

rarer basis, the creation of C(sp2)–C(sp3) bond formation with allyl and alkyl halides represent a novel 

way of preparing these furfural derivatives. With the C3-functionalization with this redox state of the 

furfuraldehyde, this opens doors to reaching new molecules, with potential utility in the pharmaceutical 

or chemical industries.  
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 This PhD work relates to the development of synthetic methods for achieving the selective C3-

functionalization of furfural and derivatives.  

 The first part of this work was devoted for the creation of a silylation platform. This was made 

possible, by taking advantage of the aldehyde function, to introduce a temporary imine directing group. 

The directed dehydrogenative C–H silylation of furfurylimines under iridium catalysis, gave rise to a 

wide range of C3-silylated furfuraldehydes. 

 The compelling attributes of silicon chemistry allowed the creation of synthetic platform, to provide 

an array of products, ranging from the C–C to C–X bond formations (Figure 16). Despite failure in 

triggering, the C-to-O silyl migration on C3-silylated furfuryl motifs, fluoride-mediated cross-coupling 

reactions led to more promising results, where a number of post-functional transformation, such as 

arylation, alkenylation, alkynylation, allylation and alkylation. But the synthetic scope was not only 

limited to the C–C bond formation, as amination and halogenation of these heteroarenes were 

developed.  

  

Figure 16. C3-silylated platform 

 

 In addition, synthetic protocols regarding the C(sp2)–Si bond transformations have therefore, been 

established for the valorization of these silylated biomass derivatives, and in this regard, the latter has 

systematically been used as limiting reagent. Furthermore, these synthetic methods, were tolerant to 
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aldehyde functions. Moreover, C3-silylated furfuraldehyde was also transformed to a number of 

furfuryl alcohols by addition of nucleophile. The then, formed alcohol was also subjected to further 

functionalization, notably for the C(sp2)–C(sp3) bond formations. Derivatization through rearrangement 

of C3-functionalized furfural has also been carried out, to grant access to novel classes of molecules.  

 With the access to the C3-synthons of the furan, across this silylated platform, the applicability of 

these high-added value molecules is another important aspect. Beyond applications as biofuels or 

biofuel additives, it remains essential to further promote eco- compatible synthetic chemistry for value-

added chemical compounds, especially in the means of resource availability. This work may contribute 

to a much-needed larger shift in the direction of more sustainable fine chemistry research and industrial 

application of biomass. 

Given prospects of the selective transformation of furfural, another PhD project was funded, which 

aims at selectively triggering the C4-position of the furfural derivatives. Two strategies can be 

envisaged for achieving the functionalization in this position (Scheme 196). These are: 

(a) In a first step, the dehydrogenative borylation of the furfurylimine, leading to the C3-borylated 

product. From literature, it was shown that the boronic ester, can be readily converted in the presence 

of pza or aam, for the generation of B(pza)[102] or B(aam),[103] which is a good directing group. This 

related directing group, would therefore, provide a platform to achieve the directed C4-functionalization 

(Scheme 196 (a)). 

(b) The protection of the furfural, formyl function with a non-directing group, such as an acetal, 

promotes therefore, the C5-functionalization. The functionalization with dialkyl hydrosilane,[116,117,118] 

or B(pza),[102] provides an approach to further ortho-functionalization (Scheme 196 (b)). 
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Scheme 196. Future work for C4-functionalization 
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General Information 

All reactions were carried out under an argon atmosphere by standard syringe and septa techniques. 

Reactions were run in flasks or ace pressure tubes with magnetic stirring. Glassware was dried under 

vacuum or taken directly from the oven and let cool under vacuum prior to use.  

Reagents and solvents were purchased from commercial sources and generally used as received. CH2Cl2 

and Et2O were dried on a Mbraun purification system MB SPS-800. THF from the MB SPS-800 was 

distilled over sodium and benzophenone under nitrogen flow prior to utilization. Acetonitrile and 

DMSO were distilled over calcium chloride and calcium hydride, respectively, before each use. N,N-

Dimethylformamide, 99.8%, Extra Dry over Molecular Sieve, AcroSeal®, was purchased from 

ACROS; HMPA from Sigma Aldrich and DMPU from TCI Europe. Copper (I) salts were purchased 

from Sigma Aldrich and lithium tert-butoxide from Alfa Aesar; both of which were stored in a 

glovebox. 

NMR spectra (1H, 13C, 19F, 31P) were recorded on a Bruker AM 300 MHz or a Bruker AVANCE 400 

MHz spectrometer. NMR experiments were carried out at room temperature in CDCl3. Chemical shifts 

are given in parts per million (ppm) using the CDCl3 residual non-deuterated signals as reference (δ 1H 

= 7.26 ppm; δ 13C = 77.16 ppm). The terms m, s, d, t and q represent multiplet, singlet, doublet, triplet 

and quartet, respectively. The term (br.) is used when the peak is broad, and the correct multiplicity 

cannot be assigned unambigously. Coupling constants (J) are given in Hertz (Hz). For previously 

unknown compounds, a combination of 1H, 13C and 2D experiments (COSY, HSQC, HMBC) was used 

to complete assignment of 1H and 13C signals.  

IR spectra were recorded with a Tensor 27 (ATR diamond) Bruker spectrometer, and reported as 

characteristic bands (cm-1). High-resolution mass spectra (ESI–MS or APCI–MS) were acquired using 

an LTQ-Orbitrap XL from Thermo Scientific (Thermo Fisher Scientific, Courtaboeuf, France) operated 

in positive ionization mode. Melting points were measured in capillary tubes on Stuart Scientific SMP3 

apparatus and are uncorrected.  

TLC were performed on Merck 60 F254 silica gel and revealed with either a ultra-violet lamp ( = 254 

nm) or a specific color reagent (potassium permanganate, p-anisaldehyde, etc.). A silica gel Merck 

Geduran® SI 60 (40-63 µm) was used for flash column chromatography. Preparative thin layer 

chromatography was realized with PLC silica gel 60 F254 (1 mm, 20x20 cm). 
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S1. Synthesis of the OTBDMS-protected HMF derivative  

2a 5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-carbaldehyde 

 

Following a reported procedure,[279] 5-(hydroxymethyl)furan-2-

carbaldehyde (HMF) 2 (2.52 g, 20 mmol, 1 equiv.) was dissolved CH2Cl2 

(100 mL). Imidazole (1.50 g, 22 mmol, 1.1 equiv.) was added at room 

temperature, and the mixture was stirred 15 min before the addition of 

tert-butyldimethylsilylchloride (2.33 g, 21.4 mmol, 1.07 equiv.). The 

mixture was allowed to stir overnight at room temperature. Water was 

then added to the organic phase, the aqueous phase was extracted thrice 

with CH2Cl2 and the organic phase dried over MgSO4. The solution was 

filtered and concentrated under reduced pressure, giving 3.65 g of 2a 

(76% yield). 1H NMR (300 MHz, CDCl3) δ 9.59 (s, 1H-1), 7.20 (d, J = 

3.6 Hz, 1H-3), 6.46 (d, J = 3.6 Hz, 1H-4), 4.74 (s, 2H-6), 0.92 (s, 9H-9), 

0.11 (s, 6H-7). These data are in good agreement with those reported in 

literature.[279] 

 

S2. Synthesis of the dimethylacetal of furfural 

10 2-(dimethoxymethyl)furan 

 

 

Following a reported procedure, a MeOH (20 mL) solution of furfural 

(1) (961 mg, 10 mmol, 1.0 equiv.) were added trimethyl orthoformate 

(4.25 g, 40 mmol) and p-TsOH•H2O (19 mg, 0.11 mmol). The mixture 

was stirred at 50 °C overnight. After the starting material was totally 

consumed (TLC monitoring, using cyclohexane/EtOAc 9/1 as eluent) the 

reaction was quenched with saturated aqueous NaHCO3, and extracted 

with Et2O. The organic phases were dried over MgSO4, filtered and 

concentrated under reduced pressure. The crude product was purified by 

silica gel chromatography (cyclohexane/EtOAc 85/15 as eluent) to 

obtain 1 g of 10 as a pale-yellow liquid (71% yield). 1H NMR (300 MHz, 

CDCl3) δ 7.41 (dd, J = 1.8, 0.9 Hz, 1H-5), 6.42 (dt, J = 3.3, 0.8 Hz, 1H-

4), 6.36 (dd, J = 3.3, 1.8 Hz, 1H-3), 5.43 (d, J = 0.8 Hz, 1H-1), 3.35 (s, 

6H-6). 13C NMR (75 MHz, CDCl3) δ 151.1 (C-2), 142.6 (C-5), 110.2 (C-
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4), 108.6 (C-3), 98.2 (C-1), 53.0 (C-6). These data are in good agreement 

with those reported in literature.[280]  

 

S3. Preparation of imine derivatives  

 

General procedure GP1: In a 50 mL round bottom flask was introduced the appropriate furfural 

derivative (10 mmol, 1 equiv.) followed by the corresponding amine (10 mmol, 1 equiv.) and MgSO4 

(2.41 g, 20 mmol). Anhydrous CH2Cl2 (20 mL) was added and the reaction mixture was placed under 

argon and left to stir overnight. The resulting mixture was then filtered, concentrated and analyzed by 

NMR. 

14a 1-(furan-2-yl)-N-(4-methoxyphenyl)methanimine 

 

Prepared according to GP1: the reaction of furfural (1) (0.961 g, 10 

mmol) with p-anisidine (1.232 g, 10 mmol) in the presence of 

MgSO4 (2.41 g, 20 mmol) in CH2Cl2 gave 2.053 g of 14a as a brown 

solid (quantitative yield). 1H NMR (400 MHz, CDCl3) δ 8.33 (s, 

1H-1), 7.62 (d, J = 1.5 Hz, 1H-5), 7.32 – 7.25 (m, 2H-7), 6.97 – 6.92 

(m, 3H-3, 8), 6.57 (dd, J = 3.4, 1.8 Hz, 1H-4), 3.85 (s, 3H-10). These 

data are in good agreement with those reported in literature.[48] 

14b 4-((furan-2-ylmethylene)amino)-N,N-dimethylaniline 

 

Prepared according to GP1: the reaction of furfural (1) (0.961 g, 10 

mmol) with N,N-dimethylbenzene-1,4-diamine (1.362 g, 10 mmol) 

in the presence of MgSO4 (2.41 g, 20 mmol) in CH2Cl2 gave 2.034 

g of 14b as a brown solid (95% yield). 1H NMR (400 MHz, CDCl3) 

δ 8.35 (s, 1H-1), 7.58 (d, J = 1.8 Hz, 1H-5), 7.33 – 7.26 (m, 2H-7), 

6.86 (dd, J = 3.4, 0.8 Hz, 1H-3), 6.79 – 6.71 (m, 2H-8), 6.53 (dd, J 

= 3.4, 1.8 Hz, 1H-4), 2.99 (s, 6H-10). These data are in good 

agreement with those reported in literature.[51] 

14c (E)-1-(furan-2-yl)-N-phenylmethanimine 
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Prepared according to GP1: the reaction of furfural (1) (0.961 g, 10 

mmol) with aniline (0.931 g, 10 mmol) in the presence of MgSO4 

(2.41 g, 20 mmol) in CH2Cl2 gave 1.754 g of 14c as a brown oil 

(quantitative yield). 1H NMR (300 MHz, CDCl3) δ 8.32 (s, 1H-1), 

7.65 (d, J = 1.7 Hz, 1H-5), 7.42 (dd, J = 8.4, 7.0 Hz, 2H-7), 7.26 (br. 

S, 3H-8, 9), 6.99 (d, J = 3.5 Hz, 1H-3), 6.59 (dd, J = 3.5, 1.7 Hz, 

1H-4). These data are in good agreement with those reported in 

literature.[281] 

14d N-(4-fluorophenyl)-1-(furan-2-yl)methanimine 

 

Prepared according to GP1: the reaction of furfural (1) (0.961 g, 10 

mmol) with 4-fluoroaniline (1.111 g, 10 mmol) in the presence of 

MgSO4 (2.41 g, 20 mmol) in CH2Cl2 gave 1.89 g of 14d as a brown 

oil (quantitative yield). 1H NMR (300 MHz, CDCl3) δ 8.28 (s, 1H-

1), 7.63 (br. s, 1H-5), 7.36 – 7.19 (m, 2H-7), 7.17 – 7.03 (m, 2H-8), 

6.97 (d, J = 3.2 Hz, 1H-5), 6.70 – 6.52 (m, 1H-4). These data are in 

good agreement with those reported in literature.[282]  

14e (E)-1-(furan-2-yl)-N-(4-(trifluoromethyl)phenyl)methanimine 

 

 

Prepared according to GP1: the reaction of furfural (1) (308 mg, 

3.21 mmol) with 4-(trifluoromethyl)aniline (517 mg, 3.21 mmol) in 

the presence of MgSO4 (750 mg, 6.22 mmol) in CH2Cl2 gave 735 

mg. The latter was recrystallized from hot n-hexane to give pure 14e 

as a brown solid (75% yield). 1H NMR (400 MHz, CDCl3) δ 8.26 

(s, 1H-1), 7.63 (m, 3H-5, 7), 7.30 – 7.27 (m, 2H-8), 7.02 (dd, J = 

3.5, 0.8 Hz, 1H-3), 6.59 (dd, J = 3.5, 1.8 Hz, 1H-4). These data are 

in good agreement with those reported in literature.[283]  

14f (E)-N-(2,4-dimethoxyphenyl)-1-(furan-2-yl)methanimine 

 

Prepared according to a reported procedure.[49] Furfural 1 (480 mg, 

5 mmol, 1.0 equiv.) was dissolved in anhydrous Et2O (50 mL) and 

2,4-dimethoxyaniline (0.8 g, 5 mmol, 1 equiv.) was added dropwise 

followed by the addition of molecular sieves (4 Å, 10 g) and p-

TsOH•H2O (10 mg, 0.05 mmol, 0.01 equiv.). The reaction mixture 

was let to stir overnight at room temperature. The molecular sieves 

were subsequently filtered and the filtrate concentrated under 
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reduced pressure to give 1.0 g (87% yield) of pure product 14f as 

brown oil. 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H-1), 7.57 (d, J 

= 1.7 Hz, 1H-5), 7.05 (d, J = 8.6 Hz, 1H-12), 6.91 (dd, J = 3.4, 0.7 

Hz, 1H-4), 6.56 – 6.45 (m, 3H-3, 8, 13), 3.87 (s, 3H-11), 3.82 (s, 

3H-10). These data are in good agreement with those reported in 

literature.[49,284]  

14g N-Butylfurfurylimine   

 

 

Prepared according to GP1: the reaction of furfural (1) (480 mg, 5.0 

mmol) with N-butylamine (366 mg, 5.0 mmol) in the presence of 

MgSO4 (1.2. g, 10 mmol) in CH2Cl2 gave 0.755 g of 14g as a brown 

oil (quantitative yield). 1H NMR (300 MHz, CDCl3) δ 8.07 (d, J = 

1.6 Hz, 1H-1), 7.49 (d, J = 1.8 Hz, 1H-5), 6.70 (d, J = 3.4 Hz, 1H-

3), 6.45 (dd, J = 3.4, 1.8 Hz, 1H-4), 3.57 (td, J = 7.0, 1.3 Hz, 2H-6), 

1.69 (p, J = 7.1 Hz, 2H-7), 1.45 – 1.26 (m, 2H-8), 0.93 (t, J = 7.3 

Hz, 3H-9). These data are in good agreement with those reported in 

literature.[285]   

14h N,N1-dimethyl-N2-(furan-2-ylmethylene)ethane-1,2-diamine  

 

Prepared according to GP1: the reaction of furfural (1) (961 mg, 10 

mmol) with N1,N1-dimethylethane-1,2-diamine (882 mg, 10 mmol) 

in the presence of MgSO4 (2.41 g, 20 mmol) in CH2Cl2 gave 1.66 g 

of 14h as a yellow oil (quantitative yield). 1H NMR (300 MHz, 

CDCl3) δ 8.05 (d, J = 1.6 Hz, 1H-1), 7.43 (d, J = 1.8 Hz, 1H-5), 6.72 

– 6.59 (d, J = 3.4 Hz, 1H-3), 6.39 (dt, J = 3.4, 1.7 Hz, 1H-4), 3.71 – 

3.59 (td, J = 6.9, 1.6 Hz, 2H-6), 2.59 (td, J = 7.0, 1.6 Hz, 2H-7), 

2.22 (d, J = 1.9 Hz, 6H-8). These data are in good agreement with 

those reported in literature.[48]   

14i N1,N1-diethyl-N2-(furan-2-ylmethylene)ethane-1,2-diamine 

 

Prepared according to GP1: the reaction of furfural (1) (0.961 g, 10 

mmol) with N1,N1-diethylethane-1,2-diamine (1.162 g, 10 mmol) in 

the presence of MgSO4 (2.41 g, 20 mmol) in CH2Cl2 gave 1.941 g 

of 14i as a yellow oil (quantitative yield). 1H NMR (400 MHz, 

CDCl3) δ 8.09 (t, J = 1.3 Hz, 1H-1), 7.49 (d, J = 0.7 Hz, 1H-5), 6.71 

(dd, J = 3.4, 0.8 Hz, 1H-4), 6.45 (dd, J = 3.4, 1.8 Hz, 1H-3), 3.70 – 
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3.64 (m, 2H-6), 2.80 – 2.74 (m, 2H-7), 2.58 (q, J = 7.1 Hz, 4H-8), 

1.03 (t, J = 7.1 Hz, 6H-9). These data are in good agreement with 

those reported in literature.[48]   

14j N-(furan-2-ylmethylene)-2-(piperidin-1-yl)ethanamine  

 

Prepared according to GP1: the reaction of furfural (1) (0.961 g, 10 

mmol) with 2-(pyperidin-1-yl)ethanamine (1.282 g, 10 mmol) in the 

presence of MgSO4 (2.41 g, 20 mmol) in CH2Cl2 gave 1.89 g of 14j 

as a brown oil (92% yield). 1H NMR (300 MHz, CDCl3) δ 8.09 (d, 

J = 1.4 Hz, 1H-1), 7.49 (d, J = 1.8 Hz, 1H-5), 6.71 (d, J = 3.4 Hz, 

1H-3), 6.45 (dd, J = 3.4, 1.8 Hz, 1H-4), 3.72 (td, J = 7.3, 1.3 Hz, 

2H-6), 2.72 – 2.60 (m, 2H-7), 2.54 – 2.36 (m, 4H-8), 1.57 (p, J = 

5.6 Hz, 4H-9), 1.42 (qd, J = 6.4, 4.1 Hz, 2H-10). These data are in 

good agreement with those reported in literature.[48]   

14k N-(furan-2-ylmethylene)-N3,N3-dimethylpropan-1,3-diamine  

 

Prepared according to GP1: the reaction of furfural (1) (480 mg, 5 

mmol) with N1,N1-dimethylpropan-1,3-diamine (511 mg, 5 mmol) 

in the presence of MgSO4 (1.20 g, 10 mmol) in CH2Cl2 gave 824 mg 

of 14k as a brown oil (91% yield). 1H NMR (300 MHz, CDCl3) δ 

8.09 (d, J = 1.4 Hz, 1H-1), 7.49 (d, J = 1.8 Hz, 1H-5), 6.71 (d, J = 

3.4 Hz, 1H-3), 6.46 (dd, J = 3.4, 1.8 Hz, 1H-4), 3.60 (td, J = 7.1, 1.4 

Hz, 2H-6), 2.37 – 2.26 (m, 2H-8), 2.22 (s, 6H-9), 1.89 (q, J = 7.2 

Hz, 2H-7). These data are in good agreement with those reported in 

literature.[48]   

14l N-(furan-2-ylmethylene)-N3,N3-diethylpropan-1,3-diamine  

 

Prepared according to GP1: the reaction of furfural (1) (480 mg, 5 

mmol) with N1,N1-diethylpropan-1,3-diamine (511 mg, 5 mmol) in 

the presence of MgSO4 (1.20 g, 10 mmol) in CH2Cl2 gave 1.012 g 

of 14l as a brown oil (97% yield). 1H NMR (300 MHz, CDCl3) δ 

8.09 (d, J = 1.4 Hz, 1H-1), 7.49 (d, J = 1.7 Hz, 1H-5), 6.71 (d, J = 

3.4 Hz, 1H-3), 6.46 (dd, J = 3.4, 1.8 Hz, 1H-4), 3.59 (td, J = 7.1, 1.3 

Hz, 2H-6), 2.60 – 2.42 (m, 6H-8, 9), 1.85 (p, J = 7.1 Hz, 2H-7), 1.00 

(t, J = 7.1 Hz, 6H-10). No 13C NMR, HRMS and IR were recorded. 

15a 4-methoxy-N-((E)-(5-methylfuran-2-yl)methylidene)aniline 
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Prepared according to GP1: the reaction of 5-methyl-2-furaldehyde 

(13) (1.10 g, 10 mmol) with p-anisidine (1.23 g, 10 mmol) in the 

presence of MgSO4 (2.41 g, 20 mmol) in CH2Cl2 gave, after 

recrystallisation in hot pentane, 2.15 g of 15a as a brown solid 

(quantitative yield). 1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H-1), 

7.28 – 7.22 (m, 2H-7), 6.97 – 6.89 (m, 2H-8), 6.81 (d, J = 3.3 Hz, 

1H-3), 6.17 (dq, J = 3.1, 1.0 Hz, 1H-4), 3.84 (s, 3H-10), 2.45 (s, 3H-

11). These data are in good agreement with those reported in 

literature.[286]  

15k N-(5-methylfuran-2-ylmethylene)-N3,N3-dimethylpropan-1,3-

diamine   

 

Prepared according to GP1: the reaction of 5-methyl-2-furaldehyde 

(13) (2.202 g, 20 mmol) with N1,N1-dimethylpropan-1,3-diamine 

(2.044 g, 20 mmol) in the presence of MgSO4 (4.815 g, 40 mmol) in 

CH2Cl2 gave 4.05 g of 15k as a brown oil (quantitative yield). 1H 

NMR (400 MHz, CDCl3) δ 7.98 (d, J = 1.4 Hz, 1H-1), 6.58 (d, J = 3.3 

Hz, 1H-3), 6.06 (d, J = 2.9 Hz, 1H-4), 3.58 (t, J = 7.1, 2H-6), 2.36 (s, 3H-

10), 2.32 (t, J = 7.4 Hz, 2H-8), 2.22 (s, 6H-9), 1.87 (p, J = 7.2 Hz, 2H-7). 

13C NMR (101 MHz, CDCl3) δ 155.57(C-5), 150.32 (C-2), 149.71 (C-

1), 115.99 (C-3), 108.06 (C-4), 59.96 (C-6), 57.68 (C-8), 45.62 (C-9), 

29.05 (C-7), 14.03 (C-10). HRMS: m/z calculated for C11H18N2OH 

[M+H]+ 195.1492, found 195.1492. IR: ν (cm-1) 2923, 2851, 2116, 

1647, 1472, 1016, 502. 

16a (E)-1-(5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)-N-

(4-methoxy phenyl)methanimine 

 

Prepared according to GP1: the reaction of 5-(((tert-

butyldimethylsilyl)oxy)methyl)furan-2-carbaldehyde (2a) (2.0 g, 

8.32 mmol) with p-anisidine (1.02 g, 8.32 mmol) in the presence of 

MgSO4 (2.05 g, 17 mmol) in CH2Cl2 gave 2.86 g of 16a as a yellow 

oil (quantitative yield). 1H NMR (300 MHz, CDCl3) δ 8.25 (s, 1H-

1), 7.26 – 7.19 (m, 2H- 7), 6.91 (m, 3H-3, 8), 6.40 (dd, J = 3.4, 0.9 

Hz, 1H-4), 4.76 (s, 2H-11), 3.82 (d, J = 0.8 Hz, 3H-10), 0.93 (d, J 

= 0.9 Hz, 9H-14), 0.11 (d, J = 0.9 Hz, 6H-12). These data are in 

good agreement with those reported in literature.[49] 
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16k 5-(((tert-butyldimethylsilyl)oxy)methyl)-N-(5-methylfuran-2-

ylmethylene)-N3,N3-dimethylpropan-1,3-diamine 

 

Prepared according to GP1: the reaction of 5-(((tert-

butyldimethylsilyl)oxy)methyl)furan-2-carbaldehyde (2a) (3.65 

g, 15.2 mmol) with N1, N1-dimethylpropan-1,3-diamine (1.55 g, 

15.2 mmol) in the presence of MgSO4 (3.66 g, 30.4 mmol) in 

CH2Cl2 gave 4.64 g of 16k as a brown oil (94% yield). 1H NMR 

(300 MHz, CDCl3) δ 8.04 (t, J = 1.2 Hz, 1H-1), 6.68 (d, J = 3.4 

Hz, 1H-3), 6.32 (d, J = 3.4 Hz, 1H-4), 4.71 (s, 2H-6), 3.59 (td, J 

= 7.1, 1.3 Hz, 2H-10), 2.38 – 2.28 (m, 2H-12), 2.22 (s, 6H-13), 

1.92 – 1.78 (m, 2H-11), 0.91 (s, 9H-9), 0.08 (s, 6H-7). 13C NMR 

(101 MHz, CDCl3) δ 157.5 (C-1), 150.9 (C-5), 150.0 (C-2), 114.8 

(C-3), 108.6 (C-4), 59.9 (C-10), 58.7 (C-6), 57.6 (C-12), 45.5 (C-

13), 28.9 (C-11), 25.9 (C-9), 18.5 (C-8), -5.2 (C-7). HRMS: m/z 

calculated for C17H32N2O2SiH [M+H]+ 325.2306, found 

325.2304. IR: ν (cm-1) 2930, 2857, 2096, 1645, 1464, 1257, 1079, 

837, 777. 

17a (E)-1-(1-benzyl-1H-pyrrol-2-yl)-N-(4-

methoxyphenyl)methanimine 

 

Following a reported procedure,[51] in a round-bottom flask 

equipped with a magnetic stirrer, 1-benzyl-1H-pyrrole-2-

carbaldehyde (926 mg, 5 mmol, 1 equiv.) was introduced and 

dissolved in anhydrous Et2O (50 mL). p-Anisidine (615 mg, 5 

mmol, 1 equiv.) was added dropwise followed by molecular sieves 

(4 Å, 10 g) and PTSA (10 mg, 0.05 mmol, 0.01 equiv.). The 

reaction mixture was stirred at room temperature overnight. The 

reaction course was followed by 1H-NMR spectroscopy: if the 

reaction was not complete, one of the reagents was added, and the 

reaction mixture was let stir until completion. The molecular sieves 

were removed by filtration, and the solvent was removed by 

evaporation at reduced pressure to give 1.49 g of the corresponding 

imine (quantitative yield) as a yellow solid. M.p.: 93-94 °C. 1H-

NMR (300 MHz, CDCl3):  8.32 (s, 1H-1), 7.37-7.23 (m, 3H-14, 

15), 7.23-7.17 (m, 2H-7), 7.08 (d, J = 9.1 Hz, 2H-13), 6.93-6.86 



 

 

215 

(m, 3H-5,8), 6.73 (dd, J = 3.9, 1.7 Hz, 1H-3), 6.29 (dd, J = 3.9, 2.7 

Hz, 1H-4), 5.80 (s, 2H-11), 3.83 (s, 3H-10). These data are in good 

agreement with those reported in literature.[51] 

 

S4. Silylation of furfural derivatives  

S4.1 Silylation using [Ir] catalyst 

 

General procedure GP2: In a dried screw-capped tube equipped with a stirring bar, were added 

successively the appropriate furfuryl imine (1.0 equiv.), [IrCl(COD)]2 (2 mol%), DIPEA (20 mol%), 

the corresponding hydrosilane (1.5 equiv.), 3,3-dimethyl propene (2.0 equiv.) and n-hexane (to reach 

0.25 M). The resulting solution was stirred at 120 °C for 4–6 h in an oil bath. Then, the reaction mixture 

was allowed to cool to room temperature and transferred to a round bottom flask containing a known 

amount of 3,4,5-trimethoxy benzaldehyde which was used as a standard for the NMR quantification. 

The solvent was removed under reduced pressure and the crude mixture was analyzed by 1H NMR in 

CDCl3. 

Purification and hydrolysis of the imines: 

PMP-imines: When possible, silylated PMP-imines were purified by rapid silica gel chromatography. 

However, due to a partial hydrolysis on silica, usually they were directly hydrolyzed in aqueous acidic 

medium.  

The C3-silylated furfuryl PMP-imine was hydrolyzed using 2 mL of 1 M HCl solution in 2 mL Et2O. 

The mixture was stirred for 30 min, then a brine solution was added to it prior for extraction with Et2O. 

The aqueous layer was extracted 3 times with Et2O, and the combined organic layers were dried over 

MgSO4 or Na2SO4, filtered and carefully concentrated under low reduced pressure (Note: Silylated 

furfural derivatives are quite volatile). The hydrolyzed crude was purified by silica gel chromatography, 

was concentrated under vacuum at 40 °C, 600 mbar for around 10-20 min. 

Bidentate imines: as bidentate imines are unstable on silica, they are directly hydrolyzed to aldehyde 

during chromatography purification.  
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To a solution of C3-silylated bidentate imine in Et2O was added a spatula of silica. The mixture was 

stirred then dried under vacuum at 40°C, 600 mbar. The product was purified by silica gel 

chromatography, concentrated under vacuum at 40 °C, 600 mbar for around 10-20 min.  

 

18a-Si-a (E)-N-(4-methoxyphenyl)-1-(3-(triethylsilyl)furan-2-yl) 

methanimine 

 

Prepared according to GP2 from the reaction of PMP-imine 14a (1.083 

g, 6.0 mmol) and HSiEt3 (1.44 mL, 9.0 mmol) at 120 °C for 4.5 h. The 

crude mixture was purified by a (rapid) silica-gel chromatography [eluent 

(99/1) pentane/Et2O] to afford 893 mg of C3-silylated PMP-imine 18a-

Si-a (47% yield) as an oil and in a second fraction 132 mg of bis-silylated 

PMP-imine 18a-Si-ab (7% yield) as an oil. 1H NMR (400 MHz, CDCl3) 

δ 8.33 (s, 1H-1), 7.62 (d, J = 1.6 Hz, 1H-5), 7.29 – 7.20 (m, 2H-7), 6.96 

– 6.90 (m, 2H-8), 6.52 (d, J = 1.5 Hz, 1H-4), 3.82 (s, 3H-10), 1.04 – 0.94 

(m, 9H-12), 0.91 – 0.79 (m, 6H-11). 13C NMR (101 MHz, CDCl3) δ 

158.5 (C-9), 156.3 (C-2), 146.5 (C-1), 144.8 (C-5), 144.6 (C-6), 124.0 

(C-3), 122.3 (C-7), 117.4 (C-4), 114.6 (C-8), 55.6 (C-10), 7.5 (C-12), 4.3 

(C-11). HRMS: m/z calculated for C18H25N1O2SiNa [M+Na]+ 338.1547, 

found 338.1547. IR: ν (cm-1) 2953, 2875, 1682, 1505, 1247, 836, 726. 

18a-Si-ab (E)-1-(3,5-bis(triethylsilyl)furan-2-yl)-N-(4-methoxyphenyl) 

methanimine   

 

1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 0.7 Hz, 1H-1), 7.25 – 7.17 

(m, 2H-7), 6.97 – 6.88 (m, 2H-8), 6.70 (d, J = 0.7 Hz, 1H-4), 3.83 (s, 3H-

10), 1.06 – 0.90 (m, 18H-12,14), 0.85 (m, 12H-11,13). 13C NMR (101 

MHz, CDCl3) δ 161.4 (C2 or 5), 160.7 (C2 or 5), 158.3 (C-9), 147.6 (C-

1), 145.3 (C-6), 128.6 (C-4), 122.3 (C-7), 122.3 (C-3), 114.5 (C-8), 55.6 

(C-10), 7.6 (C-14/12), 7.5 (C-14/12), 4.2 (C-11/13), 3.4 (C-11/13). 

HRMS: m/z calculated for C24H39NO2Si2Na [M+Na]+ 452.2410, found 

452.2412. IR: ν (cm-1) 2953, 2875, 1621, 1504, 1246, 1007, 725 

 

18-Si-a 3-(triethylsilyl)furan-2-carbaldehyde  
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Prepared according to GP2 from the reaction of PMP-imine 14a (81 mg, 

0.40 mmol) and HSiEt3 (100 μL, 0.60 mmol) at 120 °C for 4.5 h. The 

crude mixture was quantified by 1H NMR, providing 82% NMR yield of 

the C3-silylated PMP-imine 18a-Si-a and 5% of the bis-silylated imine 

18a-Si-ab. The crude was hydrolyzed following the detailed procedure 

and purified by silica-gel chromatography [eluent (99/1) to (95/5) 

pentane/Et2O]. 39 mg of the silylated aldehyde 18-Si-a (46% yield) was 

isolated as a yellow oil, and in a second fraction 2 mg of the bis-silylated 

aldehyde 18a-Si-ab (2% yield) as a yellow solid. The same yields were 

obtained from 2 mmol of imine. 1H NMR (400 MHz, CDCl3) δ 9.69 (s, 

1H-1), 7.68 (d, J = 1.5 Hz, 1H-5), 6.56 (d, J = 1.6 Hz, 1H-4), 0.98 – 0.90 

(m, 9H-7), 0.88 – 0.79 (m, 6H-6). 13C NMR (101 MHz, CDCl3) δ 178.9 

(C-1), 156.8 (C-2), 147.3 (C-5), 130.6 (C-3), 118.3 (C-4), 7.3 (C-6), 3.9 

(C-7). HRMS: m/z calculated for C11H18O2SiNa [M+Na]+ 233.0968, 

found 233.0969. IR: ν (cm-1) 2955, 2875, 1685, 1463, 1247, 765, 725.  

Note: This compound was also obtained according to GP2 from 

bidentate imine 18a-Si-k (361 mg, 2 mmol). In this case, after 

purification by silica-gel column chromatography, 250 mg of product 18-

Si-a (59% yield) was isolated  

18-Si-ab 3,5-bis(triethylsilyl)furan-2-carbaldehyde 

 

1H NMR (400 MHz, CDCl3) δ 9.74 (s, 1H-1), 6.71 (s, 1H-4), 1.06 – 0.89 

(m, 18H-7/ 7’), 0.89 – 0.79 (m, 12H-8/ 8’). 13C NMR (101 MHz, CDCl3) 

δ 179.2 (C-1), 165.5 (C-5), 160.6 (C-2), 129.5 (C-3), 128.5 (C-4), 7.5 (C-

7/ 7’), 7.4 (C-7/7’), 4.0 (C-6/6’), 3.2 (C-6/6’) HRMS: m/z calculated for 

C17H32O2Si2Na1 [M+Na]+ 387.1833, found 387.1833. IR: ν (cm-1) 2953, 2875, 

1621, 1504, 1246, 1007, 831, 724. 

 

19-Si-a 5-methyl-3-(triethylsilyl)furan-2-carbaldehyde 

 Prepared according to GP2 from the reaction of PMP-imine 15a (87 mg, 

0.40 mmol) and HSiEt3 (100 μL, 0.60 mmol) at 120 °C for 4.5 h. The 

crude mixture was quantified by 1H NMR, providing 70% NMR yield of 

the C3-silylated PMP-imine 19a-Si-a. The crude was hydrolyzed 

following the detailed procedure and purified by silica-gel column 
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chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 69 mg 

of the silylated aldehyde 19-Si-a (77% yield) as a yellow oil (72% yield 

was obtained at a 1.2 mmol of imine scale). 1H NMR (400 MHz, CDCl3) 

δ 9.55 (s, 1H-1), 6.20 (d, J = 1.0 Hz, 1H-4), 2.40 (d, J = 0.8 Hz, 3H-8), 

0.96 (t, J = 7.7 Hz, 9H-7), 0.89 – 0.75 (m, 7H-6). 13C NMR (101 MHz, 

CDCl3) δ 177.9 (C-1), 158.9 (C-5), 155.9 (C-2), 133.9 (C-3), 115.4 (C-

4), 13.8 (C-8), 7.4 (C-6), 4.1 (C-7).  HRMS: m/z calculated for 

C12H20O2SiNa [M+Na]+ 247.1125, found 247.1125. IR: ν (cm-1) 2954, 

2876, 1678, 1502, 1220, 973, 802, 779, 725 

Note: This compound was also obtained according to GP2 from 

bidentate imine 15k (77 mg, 0.40 mmol). In this case, after purification 

by column chromatography on silica-gel, 49 mg of product 19-Si-a (55% 

yield) was isolated. 

 

20-Si-a 5-(((tert-butyldimethylsilyl)oxy)methyl)-3-(triethylsilyl)furan-2-

carbaldehyde 

 

Prepared according to GP2 from the reaction of PMP-imine 16a (137 

mg, 0.40 mmol) and HSiEt3 (100 μL, 0.60 mmol) at 120 °C for 4.5 h. 

The crude mixture was quantified by 1H NMR, providing 62% NMR 

yield of the C3-silylated PMP-imine 20a-Si-a. The crude was hydrolyzed 

following the detailed procedure and purified over a silica-gel 

chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 75 mg 

of the silylated aldehyde 20-Si-a (53% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 9.63 (s, 1H-1), 6.43 (t, J = 0.8 Hz, 1H-4), 4.74 (d, 

J = 0.9 Hz, 2H-8), 0.99 – 0.93 (m, 9H-7), 0.92 (d, J = 0.6 Hz, 9H-10), 

0.87 – 0.80 (m, 6H-6), 0.10 (d, J = 0.6 Hz, 6H-9). 13C NMR (101 MHz, 

CDCl3) δ 178.7 (C-1), 160.5 (C-5), 156.0 (C-2), 132.3 (C-3), 115.3 (C-

4), 58.7 (C-8), 25.9 (C-10), 18.3 (C-11), 7.4 (C-7), 4.0 (C-6), -5.2 (C-9). 

HRMS: m/z calculated for C18H34O3Si2Na [M+Na]+ 377.1940, found 

377.1939. IR: ν (cm-1) 2954, 2857, 1682, 1504, 1252, 1090, 837, 778, 

725, 701. 

 

18a-Si-b 3-(tripropylsilyl)furan-2-carbaldehyde 
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Prepared according to GP2 from the reaction of PMP-imine 14a (81 mg, 

0.40 mmol) and HSi(n-Pr)3 (100 μL, 0.60 mmol) at 120 °C for 4.5 h. The 

crude mixture was quantified by 1H NMR, providing 82% NMR yield of 

the C3-silylated PMP-imine 18a-Si-b. The crude was hydrolyzed 

following the detailed procedure and purified by silica-gel column 

chromatography [eluent (99/1) to (95/5) pentane/Et2O]. 29 mg of the 

silylated aldehyde 18-Si-b (30% yield) was isolated as a yellow oil. 1H 

NMR (400 MHz, CDCl3) δ 9.71 (s, 1H-1), 7.69 (dd, J = 7.2, 1.5 Hz, 1H-

5), 6.57 (dd, J = 7.2, 1.5 Hz, 1H-4), 1.33 (m, 6H-7), 0.96 (m, 9H-8), 0.90 

– 0.80 (m, 6H-6). 13C NMR (101 MHz, CDCl3) δ 179.0 (C-1), 156.5 (C-

2),147.2 (C-5), 130.4 (C-3), 118.2 (C-4), 18.5 (C-8), 17.5 (C-7), 15.8 (C-

6), 7.4 (C-8), 4.0 (C-6). HRMS: m/z calculated for C14H24NaO2Si 

[M+Na]+ 275.1438, found 275.1438. IR: ν (cm-1) 2954, 2871, 1683, 

1462, 1183, 894, 763, 726, 701. 

Note: This compound was also obtained according to GP2 from 

bidentate imine 14k (72 mg, 0.40 mmol). In this case, after purification 

by column chromatography on silica gel, 18 mg of product 18-Si-b (23% 

yield) was isolated. 

 

19-Si-b 5-methyl-3-(tripropylsilyl)furan-2-carbaldehyde 

 

Prepared according to GP2 from the reaction of PMP-imine 15a (138 

mg, 0.40 mmol) and HSi(n-Pr)3 (100 μL, 0.60 mmol) at 120 °C for 4.5 

h. The crude mixture was quantified by 1H NMR, providing 87% NMR 

yield of the C3-silylated PMP-imine 19a-Si-b. The crude was hydrolyzed 

following the detailed procedure and purified by silica-gel column 

chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 73 mg 

of the silylated aldehyde 19-Si-b (68% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 9.55 (s, 1H-1), 6.18 (d, J = 1.0 Hz, 1H-4), 2.40 (d, 

J = 0.9 Hz, 3H-9), 1.40 – 1.28 (m, 6H-7), 0.96 (t, J = 7.2 Hz, 9H-8), 0.84 

– 0.77 (m, 6H-6). 13C NMR (101 MHz, CDCl3) δ 177.9 (C-1), 158.9 (C-

5), 155.7 (C-2), 134.7 (C-3), 115.3 (C-4), 18.5 (C-8), 17.5 (C-7), 15.9 

(C-6), 13.9 (C-9). HRMS: m/z calculated for C15H26O2SiNa [M+Na]+ 

289.1594, found 289.1594. IR: ν (cm-1) 2954, 2868,1678, 1501, 1197, 

1063, 1003, 775, 706. 
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20-Si-b 5-(((tert-butyldimethylsilyl)oxy)methyl)-3-(tripropylsilyl)furan-2-

carbaldehyde 

 

 

Prepared according to GP2 from the reaction of PMP-imine 16a (138 

mg, 0.40 mmol) and HSi(n-Pr)3 (100 μL, 0.60 mmol) at 120 °C for 4.5 

h. The crude mixture was quantified by 1H NMR, providing 68% NMR 

yield of the C3-silylated PMP-imine 20a-Si-b. The crude was hydrolyzed 

following the detailed procedure and purified by silica-gel column 

chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 96 mg 

of the silylated aldehyde 20-Si-b (63% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 9.63 (s, 1H-1), 6.42 (d, J = 0.8 Hz, 1H-4), 4.74 (d, 

J = 0.8 Hz, 2H-9), 1.40 – 1.29 (m, 6H-7), 0.96 (t, J = 7.2 Hz, 9H-8), 0.92 

(s, 9H-12), 0.86 – 0.78 (m, 6H-6), 0.10 (s, 6H-10). 13C NMR (101 MHz, 

CDCl3) δ 178.7 (C-1), 160.5 (C-5), 155.9 (C-2), 133.2 (C-3), 115.2 (C-

4), 58.7 (C-9), 25.9 (C-12), 18.5 (C-11), 18.5 (C-8), 17.5 (C-7), 15.8 (C-

6), -5.2 (C-10). HRMS: m/z calculated for C21H40O3Si2Na [M+Na]+ 

419.2408, found 419.2408. IR: ν (cm-1) 2954, 2866, 1683, 1504, 1254, 

1090, 1005, 836, 777. 

 

18-Si-d 3-(benzyldimethylsilyl)furan-2-carbaldehyde  

 

Prepared according to GP2 from the reaction of bidentate imine 14k (72 

mg, 0.40 mmol) and HSiMe2Bn (100 μL, 0.60 mmol) at 120 °C for 4.5 

h. The crude mixture was quantified by 1H NMR, providing 45% NMR 

yield of the C3-silylated PMP-imine 18k-Si-d and 5% of the bis-silylated 

imine 18k-Si-db. The crude was purified by silica-gel column 

chromatography [eluent (99/1) to (95/5) pentane/Et2O]. 42 mg of the 

silylated aldehyde 18-Si-d (43% yield) was isolated as a yellow oil, and 

in a second fraction 3 mg of the bis-silylated aldehyde 18-Si-db (3% 

yield) as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 9.52 (s, 1H-1), 

7.67 (d, J = 1.5 Hz, 1H-5), 7.19 (dd, J = 8.1, 6.6 Hz, 2H-10), 7.11 – 7.04 

(m, 1H-11), 6.97 – 6.91 (m, 2H-9), 6.51 (d, J = 1.5 Hz, 1H-4), 2.38 (s, 

2H-7), 0.32 (s, 6H-6). 
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13C NMR (101 MHz, CDCl3) δ 179.3 (C-1), 156.7 (C-2), 147.1 (C-5), 

138.9 (C-8), 131.0 (C-3), 128.4 (C-9/10), 128.4 (C-9/10), 124.6 (C-11), 

117.9 (C-4), 115.1 (C-8), 25.6 (C-7), -2.7 (C-6). HRMS: m/z calculated 

for C14H16O2SiNa [M+Na]+ 267.0812, found 267.0812. IR: ν (cm-1) 

3024, 1679, 1461, 1382, 1249, 1185, 1057, 821, 760. 

Note: This compound was also obtained according to GP2 from PMP-

imine 14a (805 g, 4.0 mmol). In this case, after purification by column 

chromatography on silica-gel, 553 mg of product 18-Si-d (57% yield) 

was isolated. 

18a-Si-db 3,5-bis(benzyldimethylsilyl)furan-2-carbaldehyde 

 

1H NMR (400 MHz, CDCl3) δ 9.63 (s, 1H-1), 7.23 (m, 4H-10/10’), 7.12 

(dtt, J = 7.4, 5.2, 2.9 Hz, 2H-11/11’), 6.98 (dt, J = 7.9, 1.6 Hz, 4H-9/9’), 

6.59 (s, 1H-4), 2.41 (d, J = 1.4 Hz, 4H-7/7’), 0.33 (s, 6H-6/6’), 0.32 (s, 

6H-6/6’). 13C NMR (101 MHz, CDCl3) δ 179.6 (C-1), 165.1 (C-5), 160.5 

(C-4), 139.0 (C-8/8’), 138.5 (C-8/8’), 129.5 (C-3), 128.4 (C-9/9’), 128.3 

(C-10/10’), 128.0 (C-2), 124.6 (C-11/11’), 124.5 (C-11/11’), 25.6 (C-

7/7’), 25.0 (C-7/7’), -2.7 (C-6/6’), -3.8 (C-6/6’). HRMS: m/z calculated 

for C23H28O2Si2Na [M+Na]+ 415.1520, found 415.1519.  

 

19a-Si-d (E)-1-(3-(benzyldimethylsilyl)-5-methylfuran-2-yl)-N-(4-methoxy 

phenyl)methanimine 

 

 

Prepared according to GP2 from the reaction of PMP-imine 15a (138 

mg, 0.40 mmol) and HSiMe2Bn (100 μL, 0.60 mmol) at 120 °C for 4.5 

h. The crude mixture was purified by (fast) silica-gel column 

chromatography [eluent (95/5) pentane/Et2O] to afford the C3-silylated 

PMP-imine 19a-Si-d as an oil. 1H NMR (400 MHz, CDCl3) δ 7.89 (s, 

1H-1), 7.15 (t, J = 7.5 Hz, 2H-10), 7.11 (d, J = 8.6 Hz, 2H-14), 7.00 (t, J 

= 7.4 Hz, 1H-11), 6.95 (d, J = 7.6 Hz, 2H-9), 6.89 (d, J = 8.6 Hz, 2H-13), 

6.09 (s, 1H-4), 3.83 (s, 3H-16), 2.41 (s, 3H-17), 2.34 (s, 2H-7), 0.30 (s, 

6H-6). 13C NMR (101 MHz, CDCl3) δ 158.4 (C-15), 155.6 (C-5), 155.3 

(C-2), 146.6 (C-1), 144.9 (C-12), 139.2 (C-8), 128.5 (C-9/10), 128.4 (C-

9/10), 126.8 (C-3), 124.5 (C-11), 122.4 (C-14), 114.4 (C-13), 113.8 (C-
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4), 55.6 (C-16), 26.5 (C-7), 13.8 (C-17), -2.0 (C-6). IR: ν (cm-1) 3060, 

2957, 1674, 1501, 1250, 1127, 828, 772.  

 

19-Si-d 5-methyl-3-(benzyldimethylsilyl)furan-2-carbaldehyde 

 

 

Prepared according to GP2 from the reaction of PMP-imine 15a (86 mg, 

0.40 mmol) and HSiMe2Bn (100 μL, 0.60 mmol) at 120 °C for 4.5 h. The 

crude mixture was quantified by 1H NMR, providing 84% NMR yield of 

the C3-silylated PMP-imine 19a-Si-d. The crude was hydrolyzed 

following the detailed procedure and purified by silica-gel column 

chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 76 mg 

of the silylated aldehyde 19-Si-d (74% yield) as a yellow oil. 1H NMR 

(300 MHz, CDCl3) δ 9.33 (s, 1H-1), 7.19 (d, J = 7.0 Hz, 2H-10), 7.09 (t, 

J = 7.0 Hz, 1H-11), 6.94 (d, J = 7.0 Hz, 2H-9), 6.15 (d, J = 1.0 Hz, 1H-

4), 2.39 (d, J = 0.9 Hz, 3H-12), 2.36 (s, 2H-7), 0.29 (s, 6H-6). 13C NMR 

(75 MHz, CDCl3) δ 178.2 (C-1), 158.7 (C-5), 155.7 (C-2), 138.8 (C-8), 

133.5 (C-3), 128.4 (C-10), 128.4 (C-9), 124.6 (C-11), 115.0 (C-4), 25.8 

(C-7), 13.8 (C-12), -2.5 (C-6). HRMS: m/z calculated for C15H18O2SiNa 

[M+Na]+ 281.0968, found 281.0969. IR: ν (cm-1) 3024, 2957, 1674, 

1501, 1251, 828, 772, 699. 

Note: This compound was also obtained according to GP2 from 

bidentate imine 15k (78 mg, 0.40 mmol). In this case, after purification 

by column chromatography on silica-gel, 58 mg of product 19-Si-d (56% 

yield) was isolated. 

 

20-Si-d 5-(((tert-butyldimethylsilyl)oxy)methyl)-3-(benzyldimethylsilyl) 

furan-2-carbaldehyde 

 

Prepared according to GP2 from the reaction of PMP-imine 16a (138 

mg, 0.40 mmol) and HSiMe2Bn (100 μL, 0.60 mmol) at 120 °C for 4.5 

h. The crude mixture was quantified by 1H NMR, providing 74% NMR 

yield of the C3-silylated PMP-imine 20a-Si-d. The crude was hydrolyzed 

following the detailed procedure and purified by silica-gel column 

chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 100 mg 

of the silylated aldehyde 20-Si-d (64% yield) as a yellow oil. 1H NMR 
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 (300 MHz, CDCl3) δ 9.44 (s, 1H-1), 7.19 (dd, J = 8.1, 6.6 Hz, 2H-10), 

7.09 (t, J = 7.3 Hz, 1H-11), 6.94 (d, J = 7.1 Hz, 2H-9), 6.38 (d, J = 1.1 

Hz, 1H-4), 4.72 (d, J = 0.8 Hz, 2H-12), 2.38 (s, 2H-7), 0.93 (s, 9H-15), 

0.30 (s, 6H-6), 0.12 (s, 6H-13). 13C NMR (75 MHz, CDCl3) δ 179.0 (C-

1), 160.2 (C-5), 156.0 (C-2), 138.8 (C-8), 132.4 (C-3)*, 128.4 (C-9/10), 

128.4 (C-9/10), 124.6 (C-11), 114.9 (C-4), 58.6 (C-12), 26.0 (C-15), 25.6 

(C-7), 18.5 (C-14), -2.6 (C-6), -5.2 (C-13). *13C 132.38 ppm correlation 

observed by HMBC for C3 position. HRMS: m/z calculated for 

C21H32O3Si2Na [M+Na]+ 411.1782, found 411.1783. IR: ν (cm-1) 2955, 

2857, 1680, 1505, 1251, 1189, 828, 773, 696. 

 

18-Si-c 3-(tert-butyldimethylsilyl)furan-2-carbaldehyde 

 

Prepared according to GP2 from the reaction of the PMP-imine 14a (81 

mg, 0.40 mmol) and HSiMe2tBu (100 μL, 0.60 mmol) at 120 °C for 4.5 

h. The crude was hydrolyzed following the detailed procedure and 

purified by silica-gel column chromatography [eluent (99/1) to (95/5) 

pentane/Et2O], to afford 35 mg of the silylated aldehyde 18-Si-c (41% 

yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 9.70 (d, J = 0.8 Hz, 

1H-1), 7.70 (dd, J = 1.6, 0.8 Hz, 1H-5), 6.58 (d, J = 1.6 Hz, 1H-4), 0.91 

(s, 9H-8), 0.34 (s, 6H-6). 13C NMR (101 MHz, CDCl3) δ 178.9 (C-1), 

156.9 (C-2), 147.1 (C-5), 131.8 (C-3), 118.6 (C-4), 29.8 (C-7), 26.4 (C-

8), -4.5 (C-6). HRMS: m/z calculated for C11H18O2SiNa [M+Na]+ 

233.0967, found 233.0968. IR: ν (cm-1) 2928, 2856, 1682, 1464, 1361, 

810, 680. 

 

19-Si-c 3-(tert-butyldimethylsilyl)furan-2-carbaldehyde 

 

Prepared according to GP2 from the reaction of PMP-imine 15a (86 mg, 

0.40 mmol) and HSiMe2t-Bu (100 μL, 0.60 mmol) at 120 °C for 4.5 h. 

The crude mixture was quantified by 1H NMR, providing 59% NMR 

yield of the C3-silylated PMP-imine 19a-Si-c. The crude was hydrolyzed 

following the detailed procedure and purified by silica-gel column 

chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 50 mg 

of the silylated aldehyde 19-Si-c (55% yield) as a yellow oil. 1H NMR 
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(400 MHz, CDCl3) δ 9.55 (s, 1H-1), 6.20 (q, J = 1.0 Hz, 1H-4), 2.40 (d, 

J = 1.0 Hz, 3H-9), 0.91 (s, 9H-8), 0.31 (s, 6H-6). 13C NMR (101 MHz, 

CDCl3) δ 177.9 (C-1), 158.6 (C-5), 155.9 (C-2), 134.7 (C-3), 115.7 (C-

4), 26.4 (C-8), 16.9 (C-7), 13.8 (C-9), -4.4 (C-6). HRMS: m/z calculated 

for C12H20O2SiNa [M+Na]+ 247.1124, found 247.1125. IR: ν (cm-1) 

3345, 2929, 2857, 1753, 1513, 1252, 839, 824. 

 

20-Si-c 5-(((tert-butyldimethylsilyl)oxy)methyl)-3-(tert-butyldimethylsilyl) 

furan-2-carbaldehyde 

 

Prepared according to GP2 from the reaction of PMP-imine 20a-Si-c 

(138 mg, 0.40 mmol) and HSiMe2tBu (100 μL, 0.60 mmol) at 120 °C for 

4.5 h. The crude mixture was quantified by 1H NMR, providing 75% 

NMR yield of the C3-silylated PMP-imine 20a-Si-c. The crude was 

hydrolyzed following the detailed procedure and purified by silica-gel 

column chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 

62 mg of the silylated aldehyde 20-Si-d (44% yield) as a yellow oil. 1H 

NMR (400 MHz, CDCl3) δ 9.63 (s, 1H-1), 6.43 (d, J = 1.0 Hz, 1H-4), 

4.74 (d, J = 0.9 Hz, 2H-9), 0.92 (s, 9H-8/12), 0.91 (s, 9H-8/12), 0.33 (s, 

6H-6), 0.10 (s, 6H-10). 13C NMR (101 MHz, CDCl3) δ 178.6 (C-1), 

160.3 (C-5), 156.1 (C-2), 133.5 (C-3), 115.5 (C-4), 58.7 (C-9), 26.5 (C-

8/12), 25.9 (C-8/12), 18.5 (C-11), 17.1 (C-7), -4.5 (C-6), -5.2 (C-10). 

HRMS: m/z calculated for C18H34O3Si2Na [M+Na]+ 377.1938, found 

377.1939. IR: ν (cm-1) 3346, 2954, 2885, 1743, 1683, 1505, 1253, 813.  

 

18-Si-e 3-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)furan-2-carbaldehyde 

 

Prepared according to GP2 from the reaction of the PMP-imine 14a (81 

mg, 0.40 mmol) and HSiMe(OTMS)2 (100 μL, 0.60 mmol) at 120 °C for 

4.5 h. The crude mixture was quantified by 1H NMR, providing 54% 

NMR yield of the C3-silylated PMP-imine 18a-Si-e and 23% of the bis-

silylated imine 18a-Si-eb. The crude was hydrolyzed following the 

detailed procedure and purified by silica-gel column chromatography 

[eluent (99/1) to (95/5) pentane/Et2O], to afford 65 mg of the silylated 

aldehyde 18-Si-e (51% yield) as a yellow liquid. 1H NMR (300 MHz, 
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CDCl3) δ 9.79 (d, J = 0.8 Hz, 1H-1), 7.66 (dd, J = 1.5, 0.8 Hz, 1H-5), 

6.57 (d, J = 1.5 Hz, 1H-4), 0.34 (s, 3H-6), 0.13 (s, 18H-7). These data are 

in good agreement with those reported in literature.[121] 

18-Si-e  

 

1H NMR (300 MHz, CDCl3) δ 9.82 (s, 1H-1), 6.78 (s, 1H-4), 0.33 (s, 

3H-6/6’), 0.32 (s, 3H-6/6’), 0.12 (d, J = 1.4 Hz, 36H-7). 

 

19-Si-e 5-methyl,3-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)furan-2-

carbaldehyde 

 

Prepared according to GP2 from the reaction of PMP-imine 15a (86 mg, 

0.40 mmol) and HSiMe(OTMS)2 (100 μL, 0.60 mmol) at 120 °C for 4.5 

h. The crude mixture was quantified by 1H NMR, providing 84% NMR 

yield of the C3-silylated PMP-imine 19a-Si-e. The crude was hydrolyzed 

following the detailed procedure and purified by silica-gel column 

chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 111 mg 

of the silylated aldehyde 19-Si-e (83% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 9.65 (s, 1H-1), 6.18 (q, J = 1.0 Hz, 1H-4), 2.40 (d, 

J = 1.0 Hz, 3H-8), 0.31 (s, 3H-6), 0.13 (s, 3H-7), 0.12 (s, 15H-7). 13C 

NMR (101 MHz, CDCl3) δ 178.3 (C-1), 158.7 (C-5), 155.3 (C-2), 135.1 

(C-3), 114.2 (C-4), 13.8 (C-8), 2.0 (C-7), 1.9 (C-7), 1.5 (C-6). HRMS: 

m/z calculated for C13H26O4Si3Na [M+Na]+ 353.1031, found 353.1032. 

IR: ν (cm-1) 2958, 1682, 1509, 1251, 1221, 836, 753. 

 

20-Si-e 5-methyl,3-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)furan-2-

carbaldehyde 
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Prepared according to GP2 from the reaction of PMP-imine 16a (138 

mg, 0.40 mmol) and HSiMe(OTMS)2 (100 μL, 0.60 mmol) at 120 °C for 

4.5 h. The crude mixture was quantified by 1H NMR, providing 64% 

NMR yield of the C3-silylated PMP-imine 20a-Si-e. The crude was 

hydrolyzed following the detailed procedure and purified by silica-gel 

column chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 

105 mg of the silylated aldehyde 20-Si-e (57% yield) as a yellow liquid. 

1H NMR (400 MHz, CDCl3) δ 9.71 (d, J = 3.3 Hz, 1H-1), 6.44 (t, J = 0.9 

Hz, 1H-4), 4.74 (t, J = 2.0 Hz, 2H-8), 0.92 (s, 9H-11), 0.32 (s, 3H-6), 

0.12 (m, 18H-7), 0.11 (s, 6H-9). 13C NMR (101 MHz, CDCl3) δ 178.8 

(C-1), 160.5 (C-5), 155.5 (C-2), 133.9 (C-3), 114.1 (C-4), 58.7 (C-8), 

25.9 (C-11), 18.5 (C-10), 1.9 (C-7), 1.5 (C-6), -5.2 (C-9). HRMS: m/z 

calculated for C19H40Na1O5Si4 [M+Na]+ 483.1846, found 483.1845.  

 

18-Si-f 3-(methyldiphenylsilyl)furan-2-carbaldehyde 

 

Prepared according to GP2 from the reaction of PMP-imine 14a (138 

mg, 0.40 mmol) and HSiMePh2 (100 μL, 0.60 mmol) at 120 °C for 4.5 

h. The crude mixture was quantified by 1H NMR, providing 35% NMR 

yield of the C3-silylated PMP-imine 18a-Si-f. The crude was hydrolyzed 

following the detailed procedure and purified by silica-gel column 

chromatography [eluent (99/1) to (95/5) pentane/Et2O], to afford 8 mg of 

the silylated aldehyde 18-Si-f (7% yield) as a yellow liquid, and in a 

second fraction 11 mg of the bis-silylated aldehyde 18-Si-fb (6% yield) 

as a yellow solid 1H NMR (400 MHz, CDCl3) δ 9.35 (s, 1H-1), 7.76 – 

7.67 (m, 1H-5), 7.55 – 7.50 (m, 5H-Ar), 7.44 – 7.41 (m, 2H-8), 7.41 – 

7.37 (m, 5H-Ar), 6.50 (d, J = 1.6 Hz, 1H-4), 0.90 (s, 4H-6). 13C NMR 

(101 MHz, CDCl3) δ 178.9 (C-1), 156.9 (C-2), 147.2 (C-5), 135.0 (C-8), 

134.7 (C-7), 130.4 (C-3), 130.2 (C-10), 128.4 (C-9), 119.0 (C-4), -2.5 

(C-6). HRMS: m/z calculated for C18H16O2SiNa [M+Na]+ 315.0812, 

found 315.0812. IR: ν (cm-1) 3069, 2955, 2925, 1428, 1304, 1026, 763, 

699. 

18-Si-fb 5,3-bis(methyldiphenylsilyl)furan-2-carbaldehyde 
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1H NMR (400 MHz, CDCl3) δ 9.42 (s, 1H-1), 7.60 – 7.48 (m, 10H-Ar), 

7.43 – 7.32 (m, 10H-Ar), 6.74 (s, 1H-4), 0.86 (s, 6H-6,6’). δ HRMS: m/z 

calculated for C31H28O2Si2Na, [M+Na]+ 511.1520, found 511.1522. IR: 

ν (cm-1) 2926, 2854, 1680, 1429, 1264, 1112, 941, 793, 732. 

 

18-Si-g 3-(dimethyl(phenyl)silyl)furan-2-carbaldehyde 

 

Prepared according to GP2 from the reaction of PMP-imine 14a (81mg, 

0.40 mmol) and HSiMe2Ph (100 μL, 0.60 mmol) at 120 °C for 4.5 h. The 

crude mixture was quantified by 1H NMR, providing 14% NMR yield of 

the C3-silylated PMP-imine 18-Si-g; the amount of bis-silylated imine 

18-Si-gb could not be determined due to signal overlapping. The crude 

was hydrolyzed following the detailed procedure and purified by silica-

gel column chromatography [eluent (99/1) to (95/5) pentane/Et2O]. 7 mg 

of the silylated aldehyde 18-Si-g (9% yield) was isolated as a yellow 

liquid, and in a second fraction 13 mg of the bis-silylated aldehyde 18-

Si-gb (12% yield) as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 9.58 

(s, 1H-1), 7.67 (d, J = 1.5 Hz, 1H-5), 7.59 – 7.51 (m, 2H-8), 7.39 (m, 3H-

9/10), 6.51 (d, J = 1.6 Hz, 1H-4), 0.62 (s, 6H-6). 13C NMR (101 MHz, 

CDCl3) δ 179.1 (C-1), 156.6 (C-2), 147.1 (C-5), 136.7 (C-7), 134.0 (C-

8), 131.5 (C-3), 129.8 (C-10), 128.2 (C-9), 118.4 (C-4), -1.8 (C-6). 

HRMS: m/z calculated for C13H14O2SiNa [M+Na]+ 253.0654, found 

253.0655. IR: ν (cm-1) 2922, 2852, 2192, 2139, 1971, 1686, 1634, 1540, 

1377, 1251, 1112, 810. 

18-Si-gb 5,3-bis(dimethyl(phenyl)silyl)furan-2-carbaldehyde 
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1H NMR (400 MHz, CDCl3) δ 9.62 (s, 1H-1), 7.56 (td, J = 7.5, 2.0 Hz, 

4H-8/13), 7.46 – 7.34 (m, 6H-Ar), 6.68 (s, 1H-4), 0.59 (s, 6H-6 or 11), 

0.59 (s, 6H-6 or 11). 13C NMR (101 MHz, CDCl3) δ 179.4 (C-1), 134.0 

(C-8/13), 133.9 (C-8/13), 129.8(C-9/10/14/15), 129.5(C-9/10/14/15), 

128.4 (C-4), 128.04 (C-9/10/14/15), 128.0 (C-9/10/14/15), -2.0 (C-6/11), 

-3.1 (C-6/11). *13C 164.90, 160.50 and 130.49 ppm correlation 

observed by HMBC for C5, C2 and C3 position respectively and 

correlation at 137.00 ppm corresponding to C7 and C12. HRMS: m/z 

calculated for C21H24O2Si2Na [M+Na]+387.1207, found 387.1209. IR: ν 

(cm-1) 2926, 2853, 1682, 1536, 1453, 1318, 1250, 1111, 943, 835, 810. 

 

11  (5-(dimethoxymethyl)furan-2-yl)triethylsilane 

 

Prepared according to GP2 from the reaction of acetal 10 (137 mg, 0.40 

mmol) and HSiEt3 (100 μL, 0.60 mmol) at 120 °C for 8 h. The reaction 

mixture was allowed to cool to room temperature, aqueous HCl (1 mL, 

1 M) was added and it was then stirred for 1 h. The layers were separated 

and the aqueous one was extracted 3 times with Et2O. The combined 

organics were washed with brine, dried over MgSO4 and concentrated 

under reduced pressure (600 mbar, 40 °C for 10–20 min). The residue 

was purified by silica-gel column chromatography [eluent (95/5) 

pentane/ether then to (90/10) pentane/Et2O; solvent evaporation at 40 °C 

under 600 mbar for around 10–20 min], to afford 29mg of 11 as a yellow 

oil (27% yield). 1H NMR (400 MHz, CDCl3) δ 6.59 (d, J = 3.2 Hz, 1H-

4), 6.40 (dd, J = 3.2, 0.8 Hz, 1H-3), 5.46 (d, J = 0.8 Hz, 1H-1), 3.33 (s, 

6H-8), 1.03 – 0.91 (t, J = 7.7 Hz, 9H-7), 0.76 (qd, J = 7.8, 1.1 Hz, 6H-6). 

13C NMR (101 MHz, CDCl3) δ 158.6 (C-5), 155.3(C-2), 121.2 (C-4), 

108.4 (C-3), 98.4 (C-1), 52.8 (C-8), 7.4 (C-7), 3.3 (C-6). HRMS: m/z 

calculated for C13H24O3SiNa [M+Na]+ 279.1387, found 279.1387. IR: ν 

(cm-1) 2949, 2837, 1653, 1419; 1110.  

 

24-Si-a  1-benzyl-3-(triethylsilyl)-1H-pyrrole-2-carbaldehyde 



 

 

229 

 

Prepared according to GP2 from the reaction of PMP-imine 17a (138 

mg, 0.40 mmol) and HSiEt3 (100 μL, 0.60 mmol) at 120 °C for 24 h. The 

reaction mixture was allowed to cool to room temperature, aqueous HCl 

(2 mL, 1 M) was added, and the mixture was stirred for 1 h. The layers 

were separated and the aqueous phase was extracted 3 times with Et2O. 

The combined organics were washed with brine, dried over MgSO4 and 

concentrated (600 mbar, 40 °C for 20 min). The crude was purified by 

silica-gel column chromatography [eluent (95/5) pentane/ether then to 

(90/10) pentane/Et2O; solvent evaporation at 40 °C under 600 mbar for 

around 10–20 min], to afford 292 mg of 22-Si-a as a yellow oil (49% 

yield). 1H NMR (400 MHz, CDCl3) δ 9.70 (d, J = 1.1 Hz, 1H-1), 7.34 – 

7.23 (m, 3H-11/12), 7.16 – 7.10 (m, 2H-10), 7.00 (dd, J = 2.4, 1.0 Hz, 

1H-5), 6.36 (d, J = 2.4 Hz, 1H-4), 5.62 (s, 2H-8), 1.02 – 0.94 (m, 9H-7), 

0.88 – 0.78 (m, 6H-6). 13C NMR (101 MHz, CDCl3) δ 180.5 (C-1), 137.9 

(C-9), 135.8 (C-2), 133.3 (C-3), 131.6 (C-5), 128.8 (C-11/12), 127.7 (C-

11/12), 127.3 (C-10), 117.7 (C-4), 52.4 (C-8), 7.6 (C-7), 5.0 (C-6). IR: ν 

(cm-1) 2952 2910, 2874, 1655, 1618, 1395, 1171, 1004, 716. 

 

21  (E)- 3,3-dimethyl-1-(triethylsilyl) but-1-ene 

 

 

Prepared from the reaction of the 3,3-dimethyl propene (130 μL, 1.0 

mmol) and HSiEt3 (120 μL, 0.75 mmol) at 120 °C in the presence of 

Ru3(CO)12 (17.3 mg, 0.025 mmol) in toluene (1.0 mL) for 7 h. The crude 

mixture was concentrated and analyzed by 1H NMR and the colorless 

liquid, seemed to contain 150.4 mg (99% yield) of the product 21. 1H 

NMR (400 MHz, CDCl3) δ 6.04 (d, J = 19.1 Hz, 1H-1), 5.42 (d, J = 19.1 

Hz, 1H-2), 1.00 (s, 9H-5), 0.96 – 0.88 (m, 9H-4), 0.55 (m, 6H-3). These 

data are in good agreement with those reported in literature.[126] 

 

S4.2 Silylation through directed metalation 

23-Si-m 2-(trimethylsilyl)benzaldehyde 
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According to reported procedures,[28] N,N,N-trimethylethylene diamine 

(0.467 mL, 3.6 mmol, 1.2 equiv.) was placed in a flame-dried round 

bottom flask under argon in THF (12 mL) at –78 °C. n-BuLi (1.56 mL, 

3.6 mmol, 1.2 equiv.) was added dropwise at this temperature and the 

mixture was allowed to stir for 15 min. Freshly distilled benzaldehyde 

(319 mg, 3.0 mmol, 1 equiv.) was then added at –78 °C. The mixture was 

stirred for 15 min and then n-BuLi (5.77 mL, 9.0 mmol, 3 equiv.) was 

added at –23 °C. The reaction mixture was kept at this temperature for 3 

h, then cooled again to –78 °C prior to the addition of TMSCl (2.3 mL, 

18 mmol, 6 equiv.). The mixture was then allowed to reach room 

temperature over 30 min. The subsequent reaction mixture was poured 

onto brine (20 mL) and stirred vigorously before being extracted with 

Et2O (x 3), dried over MgSO4 and concentrated under reduced pressure. 

Purification by silica-gel column chromatography (99/ 1 pentane/ Et2O) 

afforded 400 mg of 23-Si-m (75% yield) as a yellow liquid. 1H NMR 

(300 MHz, CDCl3) δ 10.17 (s, 1H-1), 7.93 – 7.87 (m, 1H-Ar), 7.75 –7.68 

(m, 1H-Ar), 7.61 – 7.51 (m, 2H-Ar), 0.36 (s, 9H-8). These data are in 

good agreement with those reported in literature.[287] 

 

23-Si-a 2-(triethylsilyl)benzaldehyde 

 

According to reported procedures,[28] N,N,N-trimethylethylene diamine 

(0.467 mL, 3.6 mmol, 1.2 equiv.) was placed in a flame-dried round 

bottom flask under argon in THF (12 mL) at –78 °C. n-BuLi (1.56 mL, 

3.6 mmol, 1.2 equiv.) was added dropwise at this temperature and the 

mixture was allowed to stir for 15 min. Freshly distilled benzaldehyde 

(319 mg, 3.0 mmol, 1 equiv.) was then added at –78 °C. The mixture was 

stirred for 15 min and then n-BuLi (5.77 mL, 9.0 mmol, 3 equiv.) was 

added at –23 °C. The reaction mixture was kept at this temperature for 3 

h, then cooled again at –78 °C prior to the addition of TESCl (3.0 mL, 

18 mmol, 6 equiv.). The mixture was then allowed to reach room 

temperature over 30 min. The subsequent reaction mixture was stirred 

vigorously with 20 mL brine and extracted with three times with diethyl 

ether, dried over MgSO4 and concentrated under reduced pressure. 

Purification by silica-gel column chromatography (99/ 1 pentane/ Et2O) 
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afforded 471 mg of 23-Si-m (71% yield-as a yellow liquid. 1H NMR 

(300 MHz, CDCl3) δ 10.21 (s, 1H-1), 7.96 – 7.91 (m, 1H-7), 7.70 – 7.65 

(m, 1H-4), 7.55 (m, 2H-5,6), 0.93 (m, 15H-8,9). These data are in good 

agreement with those reported in literature.[288] 

 

S5. Preparation of furfuryl alcohols 

S5.1 Furyl-alkyl alcohols 

General procedure GP3: In a flame-dried round bottom flask under argon, was placed the appropriate 

C3-silylated furfuraldehyde and dissolved in freshly distilled THF (0.3 M). The solution was cooled to 

–78 °C and then n-BuLi (1.2 equiv.) was added dropwise. The reaction mixture was allowed to stir at –

78 °C for 30 min and then quenched with an aqueous sat NH4Cl/NH3 = 2:1 solution. The mixture was 

diluted with Et2O and the aqueous phase was extracted three times. The combined organics were washed 

with brine, dried over MgSO4, filtered, concentrated under reduced pressure and purified by silica-gel 

column chromatography. 

 

140a-Si-a  1-(3-(triethylsilyl)furan-2-yl)pentan-1-ol 

 

Prepared according to GP3 from C3-silylated aldehyde 18-Si-a (367 

mg, 1.75 mmol). Purification by silica-gel column chromatography 

yielded 461 mg of 140a-Si-a (98% yield) as a yellow liquid. 1H NMR 

(400 MHz, CDCl3) δ 7.42 (d, J = 1.7 Hz, 1H-5), 6.28 (d, J = 1.7 Hz, 1H-

4), 4.62 (t, J = 7.1 Hz, 1H-1), 1.99 – 1.78 (m, 2H-6), 1.71 (s, 1H-OH), 

1.42 – 1.11 (m, 4H-7, 8), 1.01 – 0.93 (m, 9H-11), 0.89 (t, J = 7.2 Hz, 

3H-9), 0.82 – 0.68 (m, 6H-10). 13C NMR (101 MHz, CDCl3) δ 160.9 

(C-2), 141.7 (C-5), 115.2 (C-4), 111.9 (C-3), 68.5 (C-1), 36.1 (C-6), 28.2 

(C-7), 22.6 (C-8), 14.1 (C-9), 7.5 (C-11), 4.3 (C-10). HRMS: m/z 

calculated for C15H28O2SiNa [M+Na]+ 291.1751, found 291.1751. IR: ν 

(cm-1) 3350, 2955, 2875, 1756, 1678, 1416, 1127, 1016, 724. 

 

140a-Si-c 1-(3-(tert-butyldimethylsilyl)furan-2-yl)pentan-1-ol 
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Prepared according to GP3 from C3-silylated aldehyde 18-Si-c (209 mg, 

0.992 mmol). Purification by silica-gel column chromatography, yielded 

176 mg of 140a-Si-c (66% yield) as a yellow oil. 1H NMR (400 MHz, 

CDCl3) δ 7.41 (d, J = 1.7 Hz, 1H-5), 6.29 (d, J = 1.8 Hz, 1H-4), 4.65 

(dd, J = 7.7, 6.4 Hz, 1H-1), 2.00 – 1.78 (m, 2H-6), 1.34 (m, 4H-7, 8), 

0.89 (s, 12H-12, 9), 0.25 (s, 3H-10), 0.22 (s, 3H-10). 13C NMR (101 

MHz, CDCl3) δ 161.0 (C-2), 141.4 (C-5), 115.5 (C-4), 112.5 (C-3), 68.3 

(C-1), 36.1 (C-6), 28.2 (C-7), 26.5 (C-12), 22.6 (C-8), 17.1 (C-11), 14.1 

(C-9), -4.4 (C-10), -4.7 (C-10). HRMS: m/z calculated for 

C15H28O2SiNa [M+Na]+ 291.1751, found 291.1751. IR: ν (cm-1) 3401, 

2955, 2929, 2857, 1662, 1510, 1464, 1390, 1250, 1133, 832.  

 

140a-Si-d 1-(3-(benzyldimethylsilyl)furan-2-yl)pentan-1-ol 

 

Prepared according to GP3 from C3-silylated aldehyde 18-Si-d (256 

mg, 0.992 mmol). Purification by silica-gel column chromatography, 

yielded 200 mg of 140a-Si-d (61% yield) as a yellow oil. 1H NMR (400 

MHz, CDCl3) δ 7.41 (d, J = 1.8 Hz, 1H-5), 7.24 – 7.15 (m, 2H-13/14), 

7.12 – 7.05 (m, 1H-15), 6.98 – 6.91 (m, 2H-13/14), 6.27 (d, J = 1.7 Hz, 

1H-4), 4.39 (t, J = 7.0 Hz, 1H-1), 2.26 (d, J = 2.0 Hz, 2H-11), 1.89 – 

1.66 (m, 2H-6), 1.37 (s, 1H-OH), 1.34 – 1.23 (m, 3H-7, 8), 1.12 (tdd, J 

= 13.2, 6.5, 4.5 Hz, 1H-7), 0.88 (t, J = 7.1 Hz, 3H-9), 0.28 (s, 3H-10), 

0.25 (s, 3H-10). 13C NMR (101 MHz, CDCl3) δ 161.3 (C-2), 141.7 (C-

5), 139.8 (C-12), 128.4 (C-13/14), 128.3 (C-13/14), 124.5 (C-15), 114.6 

(C-4), 112.8 (C-3), 68.3 (C-1), 35.7 (C-6), 28.1 (C-7), 27.0 (C-11), 22.7 

(C-8), 14.1 (C-9), -2.0 (C-10), -2.0 (C-10). HRMS: m/z calculated for 

C18H26O2SiNa [M+Na]+ 325.1595, found 325.1594. IR: ν (cm-1) 3367, 

2929, 2861, 1684, 1575, 1494, 1453, 1377, 1251, 1186, 1109, 1033, 964, 

890, 824, 795, 763, 699, 630, 558, 479, 413. 

 

153a-Si-d 1-(3-(benzyldimethylsilyl)-5-methylfuran-2-yl)pentan-1-ol 
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Prepared according to GP3 from C3-silylated aldehyde 19-Si-d (1.121 

g, 4.33 mmol). Purification by silica-gel column chromatography, 

yielded 1.03 g of 153a-Si-d (75% yield) as a yellow oil. 1H NMR (400 

MHz, CDCl3) δ 7.20 – 6.92 (m, 5H-Ph), 6.20 (s, 1H-4), 4.40 (t, J = 6.6 

Hz, 1H-1), 2.29 (s, 3H-6), 2.26 (s, 2H-12), 1.86 – 1.67 (m, 2H-7), 1.36 

– 1.11 (m, 4H-8, 9), 0.88 (t, J = 7.2 Hz, 3H-10), 0.25 (d, J = 8.5 Hz, 6H, 

H-11). 13C NMR (101 MHz, CDCl3) δ 159,6 (C-5), 151,4 (C-2), 139.9 

(C-13), 128.4 (C-14/15), 128.3 (C-14/15), 124.4 (C-16), 119.8 (C-3), 

110.5 (C-4), 68.6 (C-1), 35.5 (C-7), 28.1 (C-8), 27.0 (C-12), 22.6 (C-9), 

14.1 (C-10), 13.3 (C-6), -2.1 (C-11). HRMS: m/z calculated for 

C19H28O2SiNa [M+Na]+: 339.1751, found 339.1752. IR: ν (cm-1) 3409, 

3024, 2956, 1678, 1250, 994, 699, 479.  

 

141-Si-m 11-(3-(trimethylsilyl)benzyl-2-yl)pentan-1-ol 

 

Prepared according to GP3 from C3-silylated aldehyde 23-Si-m (0.171 

g, 0.96 mmol). Purification by silica-gel column chromatography, 

yielded 80 mg of 141-Si-m (35% yield) as a colourless oil. 1H NMR (300 

MHz, CDCl3) δ 7.55 (d, J = 7.7 Hz, 1H), 7.49 (dd, J = 7.4, 1.5 Hz, 1H), 

7.41 (td, J = 7.6, 1.5 Hz, 1H), 7.26 (s, 4H), 4.90 (dd, J = 8.8, 4.1 Hz, 1H-

1), 1.92 – 1.47 (m, 4H-9,10), 1.44 – 1.23 (m, 5H-11, OH), 0.91 (t, J = 7.1 

Hz, 4H-12), 0.35 (s, 9H-8). 

 

141-Si-a 1-(3-(triethylsilyl)benzyl-2-yl)pentan-1-ol 

 

Prepared according to GP3 from C3-silylated aldehyde 23-Si-a (0.471 g, 

2.14 mmol). Purification by silica-gel column chromatography, yielded 

1.03 g of 141-Si-a (59% yield) as a colourless oil. 1H NMR (300 MHz, 

CDCl3) δ 7.59 – 7.53 (m, 1H-7), 7.48 – 7.37 (m, 2H-5,6), 7.30 – 7.22 (m, 

1H-4), 4.84 (dt, J = 9.2, 3.4 Hz, 1H-1), 1.90 – 1.76 (m, 1H-10), 1.63 (dd, 

J = 12.5, 3.2 Hz, 2H-OH, 10), 1.44 – 1.27 (m, 4H-11,12), 1.01 – 0.81 (m, 

18H-8,9,13). 

 

140H-Si-a (3-(triethylsilyl)furan-2-yl)methanol 
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Following a reported procedure,[211] a solution of the silylated aldehyde 

18-Si-a (54 mg, 0.256 mmol, 1 equiv.) in methanol (1.0 mL,) was cooled 

to 0 °C. NaBH4 (10 mg, 0.26 mmol, 1 equiv.) was added and the mixture 

was allowed to stir at this temperature for 4 h. The reaction mixture was 

concentrated and then partitioned in Et2O / water. The aqueous phase 

was extracted 3 times with Et2O, and the combined organics were dried 

over MgSO4 and concentrated under reduced pressure. The crude was 

purified by silica-gel column chromatography [eluent (90/ 10) pentane/ 

Et2O] to afford 15 mg of 140H-Si-a (28% yield) as a yellow oil. 1H 

NMR (400 MHz, CDCl3) δ 7.44 (d, J = 1.7 Hz, 1H-5), 6.32 (d, J = 1.8 

Hz, 1H-4), 4.60 (d, J = 5.9 Hz, 2H-1), 1.64 (t, J = 6.0 Hz, 1H-OH), 0.96 

(t, J = 7.8 Hz, 9H-7), 0.76 (qd, J = 7.7, 1.1 Hz, 6H-6). 13C NMR (101 

MHz, CDCl3) δ 158.7 (C-2), 142.2 (C-5), 115.5 (C-4), 113.1 (C-3), 58.1 

(C-1), 7.5 (C-7), 4.2 (C-6). 

 

140iPr-Si-a 2-methyl-1-(3-(triethylsilyl)furan-2-yl)propan-1-ol 

 

To an Et2O (2.0 mL) solution of the silylated aldehyde 18-Si-a (100 mg, 

0.475 mmol) at –30 °C, was added dropwise i-PrMgCl (0.26 mL, 0.52 

mmol, 1.0 M). The reaction mixture was stirred at this temperature for 5 

h, then quenched with a aqueous saturated NH4Cl. The aqueous phase 

was extracted 3 times with Et2O; the combined organics were dried over 

MgSO4 and concentrated under reduced pressure. The crude was purified 

by silica-gel column chromatography [eluent (90/ 10) pentane/ Et2O] to 

afford 32 mg of 140iPr-Si-a (27% yield) as a yellow oil. 1H NMR (400 

MHz, CDCl3) δ 7.41 (d, J = 1.7 Hz, 1H-5), 6.28 (d, J = 1.7 Hz, 1H-4), 

4.22 (dd, J = 8.7, 5.0 Hz, 1H-1), 2.23 – 2.13 (m, 1H-8), 1.76 (d, J = 5.7 

Hz, 1H-OH), 1.10 (d, J = 6.6 Hz, 3H-9/9’), 0.96 (td, J = 7.8, 2.5 Hz, 9H-

7), 0.81 – 0.69 (m, 9H-6, 9/9’). 13C NMR (101 MHz, CDCl3) δ 160.4 (C-

2), 141.6 (C-5), 115.1 (C-4), 112.7 (C-3), 74.2 (C-1), 33.9 (C-8), 19.4 

(C-9/9’), 19.3 (C-9/9’), 7.5 (C-7), 4.3 (C-6).  

S5.2 Furyl-aryl alcohols 

General procedure GP4: In a flame-dried round bottom flask under argon, was placed the appropriate 

C3-silylated furfuraldehyde (18-Si-d and 19-Si-d) and dissolved in freshly distilled THF (0.2 M 

solution). The solution was cooled to 0 °C, then PhMgBr (1.3 equiv.) was added dropwise (the rate of 
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addition was equal or lower than 0.125 mL/min). The mixture was allowed to stir at 0 °C for 1 h, then 

allowed to reach room temperature for another 2 h. The reaction mixture was quenched with a solution 

of saturated NH4Cl, CH2Cl2 was added and the aqueous phase was extracted three times with CH2Cl2. 

The combined organics were dried over Na2SO4, filtered, concentrated under reduced pressure and 

purified by silica-gel column chromatography. 

 

140b-Si-d  (3-(benzyldimethylsilyl)furan-2-yl)(phenyl)methanol 

 

Prepared according to GP4 from C3-silylated aldehyde 18-Si-d (244 

mg, 1.00 mmol). Purificationby silica-gel column chromatography 

[eluent (5/1 to 1/1) cyclohexane/ethyl acetate] yielded 268 mg of 140b-

Si-d (80% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.26 (d, 

J = 1.8 Hz, 1H-5), 7.21 – 7.09 (m, 5H-Ph), 7.06 (td, J = 7.7, 1.8 Hz, 2H-

Ph), 6.95 (dd, J = 8.3, 6.4 Hz, 1H-Ph), 6.84 – 6.78 (m, 2H-Ph), 6.15 (d, 

J = 1.8 Hz, 1H-4), 5.45 (d, J = 5.0 Hz, 1H-1), 2.15 (d, J = 3.2 Hz, 2H-

7), 1.79 (dd, J = 5.3, 1.7 Hz, 1H-OH), 0.15 (d, J = 4.4 Hz, 6H-6). 13C 

NMR (101 MHz, CDCl3) δ 159.7 (C-2), 142.4 (C-5), 141.2 (C-8/12), 

139.7 (C-8/12), 128.5 (CH-Ph), 128.4 (CH-Ph), 127.8 (CH-Ph), 126.5 

(CH-Ph), 124.5 (CH-Ph), 114.8(C-4), 113.9 (C-3), 70.1 (C-1), 27.0 (C-

7), -1.9 (C-6), -2.0 (C-6). HRMS: m/z calculated for C20H22O2SiH 

[M+H]+: 323.1462, found 323.1465. IR: ν (cm-1) 3377, 3025, 2956, 

1599, 1493, 1451, 1250, 1206, 1154, 1129, 1017, 895. 820, 792, 751, 

696, 629, 557, 479, 418.  

 

153b-Si-d (3-(benzyldimethylsilyl)-5-methylfuran -2-yl)(phenyl)methanol 

 

Prepared according to GP4 from C3-silylated aldehyde 19-Si-d (78 mg, 

0.30 mmol). Purificationby silica-gel column chromatography [eluent 

(5/1 to 1/1) cyclohexane/ethyl acetate] yielded 96 mg of 153b-Si-d (71% 

yield) as a light-yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.26 – 7.23 

(m, 4H-Ph), 7.24 – 7.17 (m, 2H-Ph), 7.16 (s, 1H-Ph), 7.06 – 7.00 (m, 

1H-Ph), 6.93 – 6.88 (m, 2H-Ph), 5.82 (q, J = 1.0 Hz, 1H-4), 5.47 (d, J = 

5.1 Hz, 1H-1), 2.21 (d, J = 2.6 Hz, 2H-8), 2.18 (d, J = 1.0 Hz, 3H-6), 

1.91 (d, J = 5.1 Hz, 1H-OH), 0.20 (d, J = 3.8 Hz, 6H-7). 13C NMR (101 

MHz, CDCl3) δ 158.0 (C-2), 152.2 (C-5), 141.5 (C-13), 139.8 (C-9), 
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128.5 (CH-Ph), 128.4 (CH-Ph), 128.4 (CH-Ph), 127.6 (CH-Ph), 126.6 

(CH-Ph), 124.6 (CH-Ph), 115.1 (C-3), 110.7 (C-4), 70.1 (C-1), 26.9 (C-

8), 13.4 (C-6), -1.9 (C-7), -2.0 (C-7). HRMS m/z calculated for 

C21H24O2SiH [M+H]+ 337.1618, found 337.1620. IR: ν (cm-1) 3377, 

3025, 2956, 1599, 1493, 1250, 895, 751, 557, 479. 

S5.3 Furyl-allyl alcohol 

153c-Si-d 1-(3-(benzyldimethylsilyl)furan-2-yl)but-3-en-1-ol 

 

In a flame-dried round bottom flask under argon, was placed C3-

silylated furfuraldehyde 19-Si-d, (258 mg, 1.0 mmol) and freshly 

distilled THF (10 mL, 0.1 M solution). The solution was cooled to 0 °C, 

then allyl magnesium bromide (4.28 mL, 1.30 mmol, 0.7 M) was added 

dropwise. The mixture was allowed to stir at 0 °C for 1 h and then 

allowed to reach room temperature for another 20 h. The reaction 

mixture was quenched with a saturated solution of NH4Cl and then 

diluted with CH2Cl2. The aqueous phase was extracted three times with 

30 mL CH2Cl2. The combined organics were dried over MgSO4, filtered, 

and concentrated under reduced pressure. Purification of the residue by 

silica-gel column chromatography [eluent (80/ 20) cyclohexane/ethyl 

acetate] afforded 300 mg of 153c-Si-d (70% yield) as a light-yellow oil. 

1H NMR (400 MHz, CDCl3) δ 7.20 (t, J = 7.4 Hz, 2H-11), 7.08 (t, J = 

7.4 Hz, 1H-12), 6.95 (d, J = 7.4 Hz, 2H-10), 5.85 (q, J = 1.0 Hz, 1H-4), 

5.67 (m, 1H-14), 5.13 – 5.04 (m, 2H-15), 4.36 (ddd, J = 7.8, 6.0, 4.5 Hz, 

1H-1), 2.61 – 2.42 (m, 2H-13), 2.28 (d, J = 1.0 Hz, 3H-6), 2.24 (s, 2H-

8), 1.55 (d, J = 4.5 Hz, 1H-OH), 0.23 (s, 3H-7), 0.21 (s, 3H-7). 13C NMR 

(101 MHz, CDCl3) δ 158.8 (C-2), 151.7 (C-5), 139.9 (C-9), 134.4 (C-

14), 128.5 (C-10/11), 128.3 (C-10/11), 124.4 (C-12), 118.1 (C-15), 

114.4 (C-3), 110.6 (C-4), 67.6 (C-1), 40.6 (C-13), 27.0 (C-8), 13.4 (C-

6), -2.0 (C-7), -2.0 (C-7). HRMS m/z calculated for C18H24O2SiH 

[M+H]+ 301.1618, found 301.1618. IR: ν (cm-1) 3424, 3080, 2954, 

1642, 1493, 1337, 1250, 994, 828, 558, 479. 
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S5.4 Furyl-pyrrol alcohol 

168 (3-(benzyldimethylsilyl)-5-methylfuran-2-yl)(1H-pyrrol-1-

yl)methanol 

 

Following a reported procedure,[227] in a flame-dried Schlenk tube was 

placed pyrrole (7 μL, 0.10 mmol) in freshly distilled toluene (1 mL) at 

0 °C. n-BuLi (60 μL, 0.095 mmol) was slowly added at 0 °C, then 

allowed to reach room temperature for 5 min. The solution was cooled 

to –78 °C prior to the addition of the silylated aldehyde 19-Si-d (26 

mg, 0.10 mmol) dissolved in toluene (0.2 mL) and allowed to stir 30 

min at this temperature. The reaction mixture was then quenched with 

a solution of acetic acid (1 M in THF) at –78 °C, then allowed to reach 

room temperature for 30 min, filtered over a silica-gel pad (20 mm) 

and eluted with ethyl acetate. The mixture was concentrated under 

reduced pressure and the residue purified by silica-gel column 

chromatography [eluent pentane/Et2O (80/ 20)] to afford 21 mg of 168 

(66% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.20 (t, J = 

7.5 Hz, 2H-10/9), 7.09 (t, J = 7.4 Hz, 1H-11), 6.94 (d, J = 7.4 Hz, 2H-

10/9), 6.74 (t, J = 2.1 Hz, 2H-13), 6.16 (m, 3H-1,14), 5.92 (s, 1H-4), 

3.00 (d, J = 6.8 Hz, 1H-OH), 2.31 (s, 3H-12), 2.23 (s, 2H-7), 0.21 (s, 

3H-6), 0.16 (s, 3H-6). 13C NMR (101 MHz, CDCl3) δ 153.4 (C-2), 

152.3 (C-5), 139.5 (C-8), 128.5 (C-9), 128.4 (C-10), 124.5 (C-11), 

119.2 (C-13), 116.3 (C-3,) 111.3 (C-4), 109.2 (C-14), 77.6 (C-1), 26.5 

(C-7), 13.4 (C-12), -2.4 (C-6), -2.2 (C-6).  

 

167 (3-(benzyldimethylsilyl)-furan-2-yl)(1H-pyrrol-1-yl)methanol 

 

Prepared according to the same procedure as 168 from C3-silylated 

aldehyde 18-Si-d (74 mg, 0.30 mmol). Purification by silica-gel 

column chromatography [eluent cyclohexane/ EtOAc (90/10)] 

afforded 28 mg of 167 (30% yield) as a yellow oil. 1H NMR (400 MHz, 

CDCl3) δ 7.47 (s, 1H-5), 7.20 (t, J = 7.4 Hz, 2H-10), 7.09 (t, J = 7.3 

Hz, 1H-11), 6.93 (d, J = 7.5 Hz, 2H-9), 6.72 (q, J = 2.0 Hz, 2H-12), 

6.33 (s, 1H-4), 6.17 (d, J = 2.3 Hz, 2H-13), 2.95 (d, J = 6.9 Hz, 1H-

OH), 2.25 (s, 2H-7), 0.25 (d, J = 3.8 Hz, 3H-6), 0.19 (s, 3H-6). HRMS: 



 

 

238 

m/z calculated for C18H21NO2SiNa [M+Na]+ 334.1234, found 

334.2352. IR: ν (cm-1) 3356, 3024, 2957, 2924, 2854, 1754, 1678, 

1600, 1378, 1251, 826, 700.  

 

S6. Attempts for silyl migration: Brook rearrangement 

 Brook rearrangement on benzylic alcohol 

142  1-(2-allylphenyl)pentan-1-ol 

To a dry microwave vial in the glovebox, was placed the corresponding 

CuI (29 mg, 0.15 mmol) and t-BuOLi (29 mg, 0.36 mmol). The vial was 

sealed, then removed from the glovebox. Previously degassed DMF (1.0 

mL), was added and allowed to stir 10 min at 0 °C, after which 141-Si-a 

(92 mg, 0.33 mmol) in DMF (2.0 mL) was degassed by freeze-pump 

thaw (3 times), and cannulated under argon followed by the addition of 

allyl chloride (29 µL, 0.36 mmol). The mixture was stirred at 30 °C for 

2 h. Then, was quenched with aqueous NH3 (10 mol%), extracted with 

Et2O, 3 times, dried over Na2SO4, filtered and concentrated under 

reduced pressure. The crude was analyzed and quantified by 1H NMR 

using Me2SO2 as internal standard (72% NMR yield). The mixture was 

washed twice with HCl (1 M), then NaCl to afford then the product 142-

a.  

The same protocol was applied to 142-Si-m on a (63 mg, 0.27 mmol) 

scale to afford 142-m with 71% NMR yield. 

 

1H NMR (400 MHz, CDCl3) δ 7.43 (dd, J = 7.5, 1.7 Hz, 1H-9), 7.22 – 

7.14 (m, 2H-8, 7), 7.14 – 7.06 (m, 1H-6), 5.92 (ddt, J = 16.5, 10.1, 6.2 

Hz, 1H-4), 5.01 (dq, J = 10.1, 1.6 Hz, 1H-5), 4.93 (dq, J = 17.1, 1.8 Hz, 

1H-5), 4.88 (dd, J = 8.1, 5.0 Hz, 1H-10), 3.46 – 3.31 (m, 2H-3), 1.76 – 

1.57 (m, 2H-11), 1.47 – 1.36 (m, 1H-12), 1.35-1.23 (m, 3H-12/13), 1.21 

(s, 1H-OH) 0.83 (t, J = 7.1 Hz 3H-14). 13C NMR (101 MHz, CDCl3) δ 

143.0 (C-1), 137.7 (C-4), 136.4 (C-2), 129.9 (C-6), 127.4 (C-7/8), 126.9 

(C-7/8) 125.8 (C-9), 115.9 (C-5), 70.3 (C-10), 38.2 (C-11), 36.8 (C-3), 

28.4 (C-12), 22.7 (C-13), 14.1 (C-14).  

 

Brook rearrangement on furfurylic alcohol 
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Mixture of products 

A/B/C/D 

 

 To a dry microwave vial in the glovebox, was placed the corresponding 

CuI (51 mg, 0.27 mmol) and t-BuOLi (22 mg, 0.27 mmol). The vial was 

sealed, then removed from the glovebox. Previously degassed THF (1.0 

mL), was added and allowed to stir 10 min at 30 °C, after which 140-Si-

a (43 mg, 0.16 mmol) in THF (1.0 mL) was degassed by freeze-pump 

thaw (3 times), and cannulated under argon and allowed to stir 10 min. 

Previously degassed HMPA (1.5 mL) was added, and stir 10 min, 

afterwhich, allyl chloride (0.37 mL, 0.45 mmol) was added and let to stir 

at 80 °C overnight. The reaction mixture was quenched with aqueous 

NH3 (10 mol%), extracted with Et2O, 3 times, dried over Na2SO4, 

filtered and concentrated under reduced pressure. The crude was 

analyzed and quantified by 1H NMR using Me2SO2 as internal standard. 

70% conversion of the substrate 140-Si-a was observed, as well as A 

(11%), B (4%), C (4%) and D (6%) The crude was attempted for 

purification by silica-gel chromatography [eluent pentane/Et2O (99/ 1) 

to (98/2)] to afford 24 mg of a fraction containing all A, B, C and D.  

 

Characteristic peak for the compound A (145a-Si-a): 1H NMR (400 

MHz, CDCl3) δ 7.45 (d, J = 1.7 Hz, 1H-5), 6.28 (d, J = 1.8 Hz, 1H-4), 

5.86 (m, 1H-11), 5.23 (dq, J = 17.3, 1.7 Hz, 1H-12), 5.13 (dq, J = 10.4, 

1.5 Hz, 1H-12), 4.33 (t, J = 7.0 Hz, 1H-1), 3.90 – 3.76 (m, 2H-10), 2.07 

– 1.90 (m, 1H-6), 1.82 – 1.64 (m, 1H-6). 13C NMR (101 MHz, CDCl3) 

δ. 159.2 (C-2), 141.9 (C-5), 135.2 (C-11), 116.5 (C-12), 114.9 (C-4), 

75.2 (C-1), 69.1 (C-10), 33.9 (C-6). 
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Characteristic peak for the compound B (146): 1H NMR (400 MHz, 

CDCl3) δ7.53 (d, J = 1.6 Hz, 1H-5), 6.53 (d, J = 1.6 Hz, 1H-4), 2.94 – 

2.86 (t, J= 7.4 Hz, 2H-6), 2.07 – 2.01 (q, J = 6.0 Hz, 1H-7). 13C NMR 

(101 MHz, CDCl3) δ 194.3 (C-1). 

 

Characteristic peak for the compound C (147): 1H NMR (400 MHz, 

CDCl3) δ 7.55 (d, J = 1.6 Hz, 1H-5), 6.55 (d, J = 1.6 Hz, 1H-4), 5.73 (m, 

1H-11), 5.03 – 4.88 (m, 2H-12), 3.52 (tt, J = 8.0, 5.8 Hz, 1H-1), 2.46 (m, 

1H-10), 2.31 – 2.20 (m, 1H-10). 13C NMR (101 MHz, CDCl3) δ 144.6 

(C-5), 136.1 (C-11), 118.8 (C-4), 116.5 (C-12), 46.3 (C-1). 

 

Characteristic peak for the compound D (144a-Si-a): 1H NMR (400 

MHz, CDCl3) δ 7.27 (s, 1H-5), 6.18 (s, 1H-4), 5.86 (m, 1H-11), 5.28 – 

5.12 (m, 2H-12), 4.66 (t, J = 7.1 Hz, 1H-1), 3.18 (d, 6.3 Hz, 2H-10), 0.51 

(q, J = 7.9 Hz, 6H-13). 13C NMR (101 MHz, CDCl3) δ 151.8 (C-2), 

140.8 (C-5), 136.9 (C-11), 117.9 (C-3), 115.5 (C-12), 111.8 (C-4), 66.8 

(C-1), 37.1 (C-6), 29.2 (C-10), 7.48 (C-14), 4.78 (C-13).  
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Figure S17. 1H NMR of the crude reaction mixture 

 

Figure S18. 13C NMR of the crude reaction mixture 
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 HRMS B: m/z calculated for C15H22O2Si1Na1 [M+Na]+ 289.1600, found 

289.1595 

HRMS A and D: calculated for C18H32O2Si1Na1 [M+Na]+ 331.2064, 

found 331.2063. 

159ab  1-(3-allylfuran-2-yl)pentan-1-ol 

 

The fraction containing a mixture of A, B, C and D was treated with 

TBAF in THF (0.2 mL, 0.2 mmol, 1 M) and allowed to stir 2 h at room 

temperature. The reaction mixture was diluted with 1 mL H2O, then 

extracted 3 times with Et2O, and the combined organic phase was dried 

over MgSO4, filtered and concentrated under reduced pressure.  

Characteristic peak for the compound: 1H NMR (400 MHz, CDCl3) 

δ 7.30 (s, 1H-1), 6.21 (s, 1H-2), 5.90 (ddt, J = 16.6, 10.8, 6.3 Hz, 1H-

11), 5.09 – 5.00 (m, 2H-12), 4.75 – 4.68 (m, 1H-5), 3.19 (d, J = 6.3 Hz, 

2H-10). 13C NMR (101 MHz, CDCl3) δ 151.4 (C-4), 141.4 (C-1), 137.1 

(C-11), 119.1 (C-3), 115.7 (C-12), 112.3 (C-2), 68.5 (C-5), 29.2 (C-10). 

Purification by silica-gel column chromatography [eluent pentane/ Et2O 

(98/2)] afforded 11 mg of 159ab (estimated to 8% yield, contaminated 

with pentane and silyl residuals) as a yellow oil. 

 

Other attempts of Brook rearrangement on furfurylic alcohol 

To a dry microwave vial in the glovebox, was placed the corresponding CuX and t-BuOM salt. 

The vial was sealed, then removed from the glovebox. Previously degassed solvent was added and 

allowed to stir 10 min at 0 °C, after which 140a-Si-a in the corresponding solvent was degassed by 

freeze-pump thaw (3 times), and cannulated under argon. Allyl chloride, was then added, and stirred at 

the respective temperature for 2 h. The reaction mixture was quenched with aqueous NH3 (10 mol%), 

extracted with Et2O, 3 times, dried over Na2SO4, filtered and concentrated under reduced pressure. The 

crude was analyzed and quantified by 1H NMR using Me2SO2 as internal standard. 
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Table S25. Other trials for Brook’s rearrrangement 

 

Entry 
x 

(equiv.) 

m 

(equiv.) 

n 

(equiv.) 

T 

(°C) 
Solvent Additives 

Conversion 

(%) 

144-

Si-a 

(%) 

145-

Si-a 

(%) 

146 

(%) 

147 

(%) 

1 1.2 1.2 1.2 30 

THF/ 

HMPA 

(1.5/1.

5) 

_ 20%  _ _ _ 

2 2 2 2 30 

THF/ 

DMPU 

(12/1) 

 29%  9 _ _ 

3 1.2 
1.2 

(n-BuLi) 
0.5 30 

DMF/ 

THF 

(3 mL/ 

0.6 

mL) 

LiCl 

(1.2 equiv) 
53% _ traces _ _ 

4 1.2 1.2 0.5 30 DMF 
LiCl 

(1.2 equiv) 
48%  5% traces traces 

5 1.2 
1.2 

(t-BuOK) 

0.5 

(CuCl) 
30 

DMF 

(3.0 

mL) 

_ 37% _ 5% 10%  

6 1.6 1.2 1.2 60 DMF  23% _    

7 2 2 2 30 

THF/ 

DMPU 

(12/1) 

 29% _ _ _ _ 

 

S7. Fluoride mediated cross-coupling of furfuryl alcohols  

S7.1 Preparation of TBAF(t-BuOH)4 

TBAF(t-BuOH)4 According to a reported procedure,[226] a commercially available 

anhydrous THF solution of TBAF (1M, 10 mL, 10 mmol) was 

concentrated. Then tBuOH (30 mL) was added, followed by n-hexane 

(6 mL). The mixture was stirred for 30 min at 90 °C, cooled to room 

temperature, and concentrated to ~half of the solution upon which the 

formation of a white crystalline solid was observed. The solid was 

filtered using a Büchner funnel and washed with t-BuOH rapidly. The 
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solid was kept under vacuum for 15–20 min and recovered. 5.3 g of 

TBAF(t-BuOH)4 (95% yield) was obtained as white crystals. 1H NMR 

(400 MHz, CDCl3) δ 3.49 ppm (t, J = 9.0 Hz, 8H-1), 1.67- 1.71 (m, 8H-

2), 1.44-1.48 (m, 8H-3), 1.27 (s, 36H-6), 1.01 (t, J =9.0 Hz, 12H-4). 19F 

NMR (376 MHz, CDCl3) δ 109.08. These data are in good agreement 

with those reported in literature.[226] 

 

S7.2 Preparation of CuI•P(OEt)3 

CuI•P(OEt)3 

 

According to a reported procedure,[289]
 Triethyl phosphite (92 µL, 

0.535 mmol, 1.05 equiv.) and copper(I) iodide (99 mg, 0.519 mmol, 

1.0 equiv.) were added to benzene (10 mL) at room temperature and 

let stir overnight. The solvent was removed in vacuum and the residue 

was washed with benzene (10 mL) over a Büchner funnel. 142 mg of 

CuI•P(OEt)3 (77% yield) were obtained as a white crystalline powder 

1H NMR (400 MHz, CDCl3) δ 4.12 (q, J = 7.2 Hz, 6H-1), 1.29 (t, J = 

7.2 Hz, 9H-2). These data are in good agreement with those reported 

in literature. 
[289] 

 

S7.3 Preparation of CuI•PPh3 

CuI•PPh3 

 

According to a reported procedure,[290]
 triphenylphosphine (161 mg, 

0.525 mmol) was dissolved in acetonitrile (2.0 mL) at 35 °C and added 

to a solution of copper(I) iodide (100 mg, 0.525 mmol) in acetonitrile 

(10.0 mL) at the same temperature. After a few seconds the 

iodo(triphenylphosphine)copper complex started to precipitate. The 

mixture was stirred for 1 h. The solid was filtered over a Büchner funnel, 

washed with acetonitrile (20.0 mL), and vacuum-dried. 231 mg of 

CuI•PPh3 (97% yield) were obtained as a white crystalline powder. 31P-

NMR (161 MHz, CDCl3) δ -49.46. These data are in good agreement 

with those reported in literature.[290] 
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S7.4 Hiyama-type cross-coupling allylation and alkylation reactions 

S7.4.1 Activation of silylated furfuryl alcohols 

158  3-butyl-1,1-dimethyl-1,3-dihydrofuro[3,2-c][1,2]oxasilole 

 

To a THF solution (0.2 M) of furfuryl alcohol 140a-Si-d (32 mg, 0.104 

mmol) was added TBAF•3H2O (35 mg, 0.11 mmol) and the mixture was 

stirred under argon overnight. It was then concentrated and analyzed by 

NMR. 1H NMR (400 MHz, CDCl3) δ 7.26 (s, 1H-5), 6.22 (s, 1H-4), 4.81 

(t, J = 7.2 Hz, 1H-1), 1.83 (m, 2H-7) 1.29 (m, 3H-8/9), 1.14 (m, 1H-9), 

0.85 (t, J = 6.9 Hz, 3H-10), 0.26 (s, 3H-6), 0.22 (s, 3H-6). 13C NMR 

(101 MHz, CDCl3) δ 164.3 (C-2), 139.8 (C-5), 115.3 (C-3), 114.3 (C-

4), 66.7 (C-1), 35.0 (C-7), 28.3 (C-8), 22.9 (C-9), 13.8 (C-10), 2.3 (C-

6). HRMS: m/z calculated for C11H19O2Si [M+H]+ 211.1149, found 

211.1147. 

 

155  3-butyl-1,1,5-trimethyl-1,3-dihydrofuro[3,2-c][1,2]oxasilole 

 

 

To a THF-d8 (0.5 mL) solution of 153a-Si-d (32 mg, 0.10 mmol) was 

added TBAF•3H2O (35 mg, 0.11 mmol) and the mixture was stirred 

under argon overnight. The mixture was analyzed by 1H NMR what 

evidenced the formation of 89% of oxasilole 155 and 85% of toluene. 

1H NMR (400 MHz, THF-d8) δ 5.80 (s, 1H-4), 4.77 (t, J = 7.0 Hz, 1H-

1), 2.24 (s, 3H-11), 1.83 (q, J = 7.2 Hz, 2H-7), 1.41 – 1.16 (m, 4H-8/9), 

0.93 (t, J = 7.0 Hz, 3H-10), 0.23 (s, 3H-6), 0.17 (s, 3H-6). 13C NMR 

(101 MHz, THF-d8) δ 164.3 (C-2), 149.3 (C-5), 117.2 (C-3), 111.1 (C-

4), 67.6 (C-1), 36.3 (C-7), 29.5 (C-8/9), 23.9 (C-8/9), 14.8 (C-10), 13.5 

(C-11), 2.9 (C-6), 2.3 (C-6). IR: ν (cm-1) 3727, 2963, 2877, 2360, 2341, 

1653, 912, 735. 
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S7.4.2 Copper-mediated cross-coupling allylation and alkylation 

reactions  

 

General procedure GP5: CuI•PPh3 (20 mol% or 120 mol%) was introduced in a flame-dried 

microwave vial which was then placed under argon atmosphere and sealed. In a Schlenk-tube, the 

appropriate C3-silylated furfuryl alcohol (1 equiv.) was dissolved in CH2Cl2 (1 mL), concentrated under 

reduced pressure and placed under argon. DMF (0.1 M) was added and the solution was degassed by 

doing 3 freeze-pump thaw cycles. TBAF(t-BuOH)4 was then added along with the corresponding 

electrophile, E–X (3 equiv.). The mixture was stirred for 2–3 min at room temperature, then cannulated 

into the vial containing the copper complex. The mixture was stirred for 2 h at 30 °C, then quenched 

with aqueous KOH (6 M, 1 mL). The mixture was extracted with cyclohexane/CH2Cl2 (9/1) (4 ×10 

mL), the combined organics were washed with water (10 mL), dried over MgSO4 and concentrated 

under reduced pressure. The residue was first analyzed by 1H NMR spectroscopy using Me2SO2 as 

internal standard and then purified by silica-gel column chromatography. 

 

159aa 1-(5-methyl-3-(2-methylallyl)furan-2-yl)pentan-1-ol 

  

Prepared according to GP5 from C3-silylated alcohol 153a-Si-d (95 mg, 

0.30 mmol) and methallyl chloride (88 mL, 0.90 mmol) using CuI•PPh3 

(27 mg, 0.060 mmol). The crude was analyzed by 1H NMR and the 

product quantified using dimethyl sulfone as internal standard providing 

84% NMR yield of 159aa and 1% of proto-desilylated product 153a-H. 

The crude was purified by silica-gel column chromatography [eluent 

(90/10) pentane/Et2O] to afford 52 mg of 159 (78% yield), as a pale-

yellow oil. 1H NMR (400 MHz, CDCl3) δ 5.78 (s, 1H-4), 4.73 (m, 2H-

1), 4.61 (m, 1H-12), 3.06 (s, 2H-10), 2.24 (s, 3H-14), 1.95 – 1.77 (m, 2H-

6), 1.71 (br. s, 4H-13, OH), 1.39 – 1.15 (m, 4H-8/7), 0.88 (d, J = 7.2 Hz, 

3H-9). 13C NMR (101 MHz, CDCl3) δ 150.8 (C-5), 150.0 (C-2), 145.0 

(C-11), 119.8 (C-3), 111.2 (C-12), 108.4 (C-4), 66.1 (C-1), 35.5 (C-6), 

33.5 (C-10), 28.1 (C-7), 22.6 (C-8), 22.4 (C-13), 14.1 (C-9), 13.7 (C-14). 

HRMS m/z calculated for C14H22O2H [M+H]+: 223.1693, found 

223.1693. IR: ν (cm-1) 3360, 3076, 1642, 1575, 1251, 993, 914, 416. 
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Note: The compound 159aa, was also obtained according to GP5, from 

153a-Si-d (95 mg, 0.30 mmol). In this case, CuI•PPh3 (204 mg, 0.45 

mmol), it afforded 79% NMR yield and 43 mg (65% yield) of 159aa 

upon purification was obtained. 

 

160aa 1-(3-(2-methylallyl)furan-2-yl)pentan-1-ol 

  

and 

140a-H 

 

Prepared according to GP5 from C3-silylated alcohol 140a-Si-d (91 mg, 

0.30 mmol) and methallyl chloride (88 mL, 0.90 mmol) using CuI•PPh3 

(27 mg, 0.060 mmol). Purification by silica-gel column chromatography 

[eluent (90/10) pentane/Et2O] afforded an inseparable mixture of 

products containing 160aa (42% NMR yield quantified with dimethyl 

sulfone as internal standard) and the protodesilylated product (28% NMR 

yield quantified with dimethyl sulfone as internal standard). NMR 

characterization of 160aa and 140a-H was possible from this mixture:  

160aa: 1H NMR (400 MHz, CDCl3) δ 7.30 (d, J = 1.8 Hz, 1H-5), 6.20 

(d, J = 1.8 Hz, 1H-4), 4.78 (s, 1H-12), 4.70 (s, 1H-12), 4.66 (q, J = 4.4 

Hz, 1H-1), 3.12 (s, 2H-10), 1.96 – 1.81 (m, 2H-6), 1.79 (d, J = 4.9 Hz, 

1H-OH), 1.71 (t, J = 1.1 Hz, 3H-13), 1.47 – 1.12 (m, 4H-7, 8), 0.89 (dt, 

J = 9.3, 7.1 Hz, 3H-9). 13C NMR (101 MHz, CDCl3) δ 151.8 (C-2), 144.8 

(C-11), 141.2 (C-5), 119.0 (C-3), 112.5 (C-12), 111.4 (C-4), 66.2 (C-1), 

35.5 (C-10), 33.3 (C-6), 28.0 (C-7), 22.4 (C-8), 14.1 (C-9). HRMS m/z 

calculated for C13H20O2H [M+H]+: 209.1536, found 209.1535. IR: ν (cm-

1) 3340, 2932, 1653, 1509, 1145, 997, 735.  

1-(furan-2-yl)pentan-1-ol (140a-H): 1H NMR (400 MHz, CDCl3) δ 

7.37 (dd, J = 1.9, 0.8 Hz, 1H-5), 6.32 (dd, J = 3.3, 1.8 Hz, 1H-4), 6.22 

(d, J = 3.2 Hz, 1H-3), 4.67 (m, 1H-1), 1.97 – 1.81 (m, 2H-6), 1.47 – 1.13 

(m, 4H-7, 8), 0.89 (m, 3H-9). These data are in good agreement with 

those reported in literature.[291] 

 

159ca 1-(5-methyl-3-(2-methylallyl)furan-2-yl)but-3-en-1-ol 
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Prepared according to GP5 from C3-silylated alcohol 153c-Si-d (91 mg, 

0.30 mmol) and methallyl chloride (88 mL, 0.90 mmol) using CuI•PPh3 

(163 mg, 0.36 mmol). The crude was analyzed by 1H NMR and the 

product quantified using dimethyl sulfone as internal standard providing 

72% NMR yield of 159ca and 5% of proto-desilylated product 153a-H 

The crude was purified by silica-gel column chromatography [eluent 

(90/10) pentane/Et2O] to afford 40 mg of 159ca (65% yield) as a pale-

yellow oil. 1H NMR (400 MHz, CDCl3) δ 5.86 – 5.70 (m, 2H-4, 12), 

5.24 – 5.06 (m, 2H-13), 4.76 (s, 1H-9), 4.70 (s, 1H-9), 4.69 – 4.62 (m, 

1H-1), 3.06 (s, 2H-7), 2.72 – 2.50 (m, 2H-11), 2.25 (d, J = 1.1 Hz, 3H-

6), 1.89 (d, J = 4.5 Hz, 1H-OH), 1.70 (s, 3H-10). 13C NMR (101 MHz, 

CDCl3) δ 151.0 (C-5), 149.2 (C-2), 144.9 (C-8), 134.4 (C-13), 120.1 (C-

3), 118.2 (C-13), 111.3 (C-9), 108.5 (C-4), 65.3 (C-1), 40.4 (C-11), 33.4 

(C-7), 22.4 (C-10), 13.7 (C-6). HRMS m/z calculated for C13H18O2H 

[M+H]+: 207.1380, found 207.1380. IR: ν (cm-1) 3424, 2954, 1642, 

1493, 1155, 915, 762, 699, 629, 558, 479. 

 

 

159ba (5-methyl-3-(2-methylallyl)furan-2-yl)(phenyl)methanol 

  

Prepared according to GP5 from C3-silylated alcohol 153b-Si-d (101 

mg, 0.30 mmol) and methallyl chloride (88 mL, 0.90 mmol) and using 

CuI•PPh3 (27 mg, 0.060 mmol). The crude was purified by silica-gel 

column chromatography [eluent (90/ 10) pentane/Et2O] to afford 40 mg 

of 159ba (56% yield) as a yellow liquid and 22 mg of 159baa (25% 

yield) as a yellow oil. 

159ba: 1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 7.4 Hz, 2H-12), 7.17 

(t, J = 7.5 Hz, 2H-13), 7.13 – 7.07 (m, 1H-14), 5.63 (d, J = 3.7 Hz, 2H-

1, 4), 4.62 – 4.51 (m, 2H-9), 2.87 (s, 2H-7), 2.17 (s, 1H-OH), 2.04 (s, 

3H-6), 1.51 (s, 3H-10). 13C NMR (101 MHz, CDCl3) δ 151.5 (C-5), 

148.8 (C-2), 144.8 (C-8), 141.6 (C-11), 128.4 (C-13), 127.6 (C-14), 

126.5 (C-12), 120.6 (C-3), 111.4 (C-9), 108.7 (C-4), 68.2 (C-1), 33.5 

(C-7), 22.4 (C-10), 13.7 (C-6). HRMS m/z calculated for C16H18O2H 
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[M+H]+: 243.1380, found 243.1380. IR: ν (cm-1) 3391, 2995, 1600, 

1493, 1145, 888, 732, 479.  

 

159baa: 
1H NMR (400 MHz, CDCl3) δ 7.30 – 7.21 (m, 5H-12,13,14), 

5.73 (s, 1H-4), 5.34 (s, 1H-1), 4.91 (s, 1H-9), 4.85 (s, 1H-9), 4.71 (s, 

1H-17), 4.65 (s, 1H-17), 3.83 (s, 2H-15), 3.02 (s, 2H-7), 2.14 (s, 3H-6), 

1.69 (s, 3H-18), 1.62 (s, 3H-10). 13C NMR (101 MHz, CDCl3) δ 151.7 

(C-5), 147.1 (C-2), 144.6 (C-8), 142.3 (C-16), 140.2 (C-11), 128.8 – 

127.1 (C-12,13,14), 121.0 (C-3), 112.6 (C-9), 111.6 (C-17), 108.3 (C-

4), 73.5 (C-1), 72.3 (C-15), 33.5 (C-7), 22.4 (C-10), 19.8 (C-18), 13.8 

(C-6). 

 

160ba (3-(2-methylallyl)furan-2-yl)(phenyl)methanol 

  

Prepared according to GP5 from C3-silylated alcohol 140b-Si-a (97 mg, 

0.30 mmol) and methallyl chloride (88 mL, 0.90 mmol) using CuI•PPh3 

(27 mg, 0.060 mmol). The crude was analyzed by 1H NMR and the 

product quantified using dimethyl sulfone as internal standard (45% 

NMR yield, 10% 161 and 1% protodesilylated product, 140b-H). The 

crude was purified by silica-gel column chromatography [eluent (90/ 10) 

pentane/Et2O] to afford 40 mg of 160ba (40% yield), as a yellow oil and 

5 mg of 161 (10%) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.39 

– 7.17 (m, 6H-5,11, 12, 13), 6.15 (d, J = 1.8 Hz, 1H-4), 5.80 (d, J = 4.4 

Hz, 1H-1), 4.72 (s, 1H-8), 4.64 (s, 1H-8) , 3.05 (s, 2H-7), 2.26 (d, J = 5.1 

Hz, 1H-OH), 1.62 (s, 3H-9). 13C NMR (101 MHz, CDCl3) δ 150.7 (C-

2), 144.6 (C-6), 141.8 (C-5), 141.3 (C-10), 128.5 (CH-Ar), 127.8 (CH-

Ar), 126.5 (CH-Ar), 119.7 (C-3), 112.7 (C-4), 111.7 (C-8), 68.3 (C-1), 

33.4 (C-7), 22.4 (C-9). HRMS m/z calculated for C15H16O2H [M+H]+: 

229.1223, found 229.1224. IR: ν (cm-1) 3359, 2915, 1652, 1493, 1177, 

891, 699, 418. 

161 furan-2-yl(phenyl)methanone 
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1H NMR (300 MHz, CDCl3) δ 7.98 (d, J = 7.2 Hz, 2H-7), 7.71 (dd, J = 

1.8, 0.8 Hz, 1H-5), 7.65 – 7.55 (m, 1H-9), 7.50 (tt, J = 6.8, 1.6 Hz, 2H-

8), 7.24 (dd, J = 3.6, 0.8 Hz, 1H-4), 6.60 (dd, J = 3.6, 1.7 Hz, 1H-3).These 

data are in good agreement with those reported in literature.[292] 

 

 

159ab 1-(3-allyl-5-methylfuran-2-yl)pentan-1-ol 

  

Prepared according to GP5 from C3-silylated alcohol 153a-Si-d (95 mg, 

0.30 mmol) and allyl chloride (73 mL, 0.90 mmol) using CuI•PPh3 (163 

mg, 0.36 mmol). The crude was analyzed by 1H NMR and the product 

quantified using dimethyl sulfone as internal standard (58% NMR yield) 

and 12% of proto-desilylated product 153a-H. The crude was purified by 

silica-gel column chromatography [eluent (90/10) pentane/Et2O] to 

afford 40 mg of 159ab (64% yield) as a pale-yellow liquid. 1H NMR 

(300 MHz, CDCl3) δ 5.97 – 5.72 (m, 2H-4, 11), 5.12 – 4.87 (m, 2H-12), 

4.59 (q, J = 7.0 Hz, 1H-1), 3.11 (dd, J = 6.3, 1.8 Hz, 2H-10), 2.22 (d, J = 

2.8 Hz, 3H-13), 1.95 – 1.71 (m, 2H-6), 1.30, (m, 4H-7/8), 0.94 – 0.75 (m, 

3H-9). 13C NMR (75 MHz, CDCl3) δ 150.8 (C-2), 149.5 (C-5), 137.2 (C-

11), 119.6 (C-3), 115.3 (C-12), 108.1 (C-4), 66.1 (C-1), 35.5 (C-6), 29.2 

(C-10), 28.1 (C-7), 22.5 (C-8), 14.1 (C-9), 13.6 (C-13). HRMS m/z 

calculated for C13H20O2H [M+H]+: 209.1536, found 209.1536. IR: ν 

(cm-1) 3356, 3079, 2956, 1640, 1574, 1036, 993, 785.  

Note: The compound 159ab, was also obtained according to GP5, from 

153a-Si-d (95 mg, 0.30 mmol). In this case, allyl bromide (78 µL, 0.90 

mmol) was used, which afforded 159ab (61% NMR yield) and proto-

desilylated product 153a-H (16%). 

The compound 159ab, was also obtained according to GP5, from 153a-

Si-d (95 mg, 0.30 mmol). In this case, CuI•PPh3 (27 mg, 0.06 mmol) and 

allyl bromide (78 µL, 0.90 mmol) were used, which afforded 159ab 

(41% NMR yield). 

 

159ac 1-(3,5-dimethylfuran-2-yl)pentan-1-ol 
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159aee 3-benzyl-2-(1-(benzyloxy)pentyl)-5-methylfuran 

  

A microwave vial was charged with CuI (71 mg, 0.375 mmol) and 

TBAF(t-BuOH)4 (334 mg, 0.60 mmol), sealed and flushed with argon. 

In a Schlenk tube was placed furfuryl alcohol 153a-Si-d (79 mg, 0.25 

mmol), which was previously dissolved and concentrated in CH2Cl2 

under inert atmosphere, P(OEt)3 (64 μL, 0.375 mmol) and DMF (3.0 

mL). The solution was degassed by freeze-pump-thaw and transferred 

via cannula to the microwave vial under inert conditions and. Freshly 

distilled benzyl bromide (89 μL, 0.75 mmol) was added at room 

temperature and the reaction mixture was allowed to stir at 30 °C for 2 

h. It was then quenched with aqueous KOH (6 M, 1 mL) and extracted 

with cyclohexane/CH2Cl2 (9/1), (4 ×10 mL). The combined organics 

  

Prepared according to GP5 from C3-silylated alcohol 153a-Si-d (95 mg, 

0.30 mmol) and iodomethane (56 mL, 0.90 mmol) using CuI•PPh3 (27 

mg, 0.06 mmol). The crude was analyzed by 1H NMR and the product 

159ac was quantified using dimethyl sulfone as internal standard (61% 

NMR yield) and 10% proto-desilylated product 153a-H. The crude was 

purified by silica-gel column chromatography [eluent (90/10) 

pentane/Et2O] to afford 40 mg of 159ac (64% yield) as a pale-yellow oil. 

1H NMR (400 MHz, CDCl3) δ 5.77 (s, 1H-4), 4.62 (td, J = 7.2, 3.9 Hz, 

1H-1), 2.23 (s, 3H-10/11), 1.97 (s, 3H-10/11), 1.95 – 1.76 (m, 2H-6), 

1.69 (d, J = 4.6 Hz, 1H-OH), 1.41 – 1.12 (m, 4H-7,8), 0.89 (t, J = 7.0 Hz, 

3H-9). 13C NMR (101 MHz, CDCl3) δ 150.6 (C-2/5), 149.2 (C-2/5), 

117.2 (C-3), 109.2 (C-4), 66.2 (C-1), 35.6 (C-6), 28.1 (C-7), 22.6 (C-8), 

14.1 (C-4), 13.6 (C-10/11), 9.8 (C-10/11). HRMS m/z calculated for 

C11H18O2H [M+H]+: 183.1380, found 183.1379. IR: ν (cm-1) 3356, 

2956, 1640, 1574, 1036, 993, 736, 698. 

Note: The compound 159ac, was also obtained according to GP5, from 

153a-Si-d (95 mg, 0.30 mmol). In this case, CuI•PPh3 (163 mg, 0.36 

mmol) was used, which afforded 159ac (51% NMR yield) and proto-

desilylated product 153a-H (7%). The crude was purified by silica-gel 

column chromatography [eluent (90/10) pentane/Et2O] to afford 27 mg 

of 159ac (50% yield) as a pale-yellow oil. 
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were washed with water (10 mL), dried over MgSO4 and concentrated 

under reduced pressure. The crude was purified by silica-gel column 

chromatography [eluent (100/1) cyclohexane/EtOAc] to afford 22 mg of 

159aee (25% yield) as a pale-yellow oil. 1H NMR (400 MHz, CDCl3) δ 

7.36 – 7.12 (m, 10H-Ph), 5.77 (s, 1H-4), 4.49 (d, J = 12.1 Hz, 1H-16), 

4.36 (t, J = 7.3 Hz, 1H-1), 4.28 (d, J = 12.1 Hz, 1H-16), 3.75 – 3.61 (m, 

2H-10), 2.26 (s, 3H-15), 2.08 – 1.94 (m, 1H-6), 1.91 – 1.78 (m, 1H-6), 

1.30 (m, 3H-7, 8), 1.23 – 1.07 (m, 1H-7), 0.87 (t, J = 7.1 Hz, 3H-9). 13C 

NMR (101 MHz, CDCl3) δ 151.5 (C-5), 147.6 (C-2), 140.9 (C-11), 138.9 

(C-17), 128.6 (CH-Ph), 128.5 (CH-Ph), 128.4 (CH-Ph), 127.8 (CH-Ph), 

127.5 (CH-Ph), 126.2 (CH-Ph), 122.6 (C-3), 108.1 (C-4), 72.4 (C-1), 

70.0 (C-16), 34.1 (C-6), 30.9 (C-10), 28.2 (C-7), 22.6 (C-8), 14.1 (C-9), 

13.8 (C-15). HRMS m/z calculated for C24H28O2Na [M+Na]+: 371.1982, 

found 371.1982. IR: ν (cm-1) 2952, 2842, 1266, 1551, 1407, 1112, 1014. 

 

S7.4.3 Pd-catalyzed Hiyama-type arylation of furfuryl alcohols 

 

General procedure GP6: A flame-dried Schlenk tube was charged with CuI (20 mol%) and Pd2dba3 

(2.5 mol%) and heated gently under vacuum by means of a heat gun. In another Schlenk tube, the 

appropriate iodoarene (1.7 equiv.) and silylated furfuryl alcohol (1 equiv.) were dissolved in freshly 

distilled THF. The solution was degassed by 3 cycles of freeze-pump thaw and degassed anhydrous 

TBAF (1 M in THF, 2.2 equiv.) was added. The mixture was allowed to stir for 10 min at 0 °C and 

transferred via cannula to the Schlenk tube containing the catalytic mixture. The resulting mixture was 

stirred for 2 h at room temperature, then concentrated and filtered through a short pad of silica-gel. 

Purification of the crude was achieved by silica-gel column chromatography using (90/10) 

cyclohexane/ethyl acetate as eluent. 

 

156aa 1-(5-methyl-3-phenylfuran-2-yl)pentan-1-ol 
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Prepared according to GP6 from C3-silylated alcohol 142-Si-b (60 mg, 

0.19 mmol) and iodobenzene (32 μL, 0.28 mmol). Purification by silica-

gel column chromatography yielded 34 mg of 156aa (74% yield) as a 

yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.31 – 7.27 (m, 4H-11/12), 

7.18 (ddt, J = 9.0, 6.5, 3.4 Hz, 1H-13), 6.01 (s, 1H-2), 4.65 (t, J = 7.2 Hz, 

1H-5), 2.23 (s, 3H-14), 1.95 – 1.71 (m, 3H-6/ O-H), 1.35 – 1.04 (m, 4H-

7/8), 0.78 (t, J = 7.0 Hz, 3H-9). 13C NMR (101 MHz, CDCl3) δ 151.3 

(C-1), 149.5 (C-4), 133.8 (C-10), 128.7 (C-11/12), 128.3 (C-11/12), 

126.9 (C-13), 124.4 (C-3), 107.7 (C-2), 66.5 (C-5), 35.5 (C-6), 28.2 (C-

7), 22.6 (C-8), 14.1 (C-9), 13.6 (C-14). HRMS m/z calculated for 

C16H20O2H [M+H]+: 245.1535, found 245.1536. IR: ν (cm-1) 2955, 2857, 

1575, 1456, 1289, 1246, 1108, 1015. 

 

156ab 1-(3-(4-methoxyphenyl)-5-methylfuran-2-yl)pentan-1-ol 

  

Prepared according to GP6 from C3-silylated alcohol 142-Si-b (37 mg, 

0.12 mmol) and 4-iodoanisole (41 mL, 0.18 mmol). Purification by 

silica-gel column chromatography yielded 18 mg of 156ab (57% yield) 

as a yellow liquid. 1H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 8.3 Hz, 

2H-11), 6.93 (d, J = 8.4 Hz, 2H-12), 6.07 (s, 1H-4), 4.72 (t, J = 7.3 Hz, 

1H-1), 3.83 (s, 3H-15), 2.31 (s, 3H-14), 2.06 – 1.77 (m, 2H-6), 1.83 (s, 

1H-OH), 1.46 – 1.19 (m, 4H-8,7), 0.88 (t, J = 7.0 Hz, 3H-9). 13C NMR 

(101 MHz, CDCl3) δ 158.8 (C-13), 151.1 (C-5), 149.0 (C-2), 129.3 (C-

11), 126.3 (C-10), 124.0 (C-3), 114.2 (C-12), 107.8 (C-4), 66.5 (C-1), 

55.4 (C-15), 35.5 (C-6), 28.2 (C-7), 22.6 (C-8), 14.1 (C-9), 13.7 (C-14). 

HRMS m/z calculated for C17H22O3Na [M+Na]+: 297.1461, found 

297.1460. IR: ν (cm-1) 2955, 2857, 2138, 1575, 1456, 1289, 1108, 1015. 

 

S8. Functionalization of C3-silylated furfuraldehydes 

S8.1 Halogenation  

 



 

 

254 

General procedure GP7: In a glovebox, a microwave vial fitted with a stir-bar was charged with AgF 

(2 equiv.) and sealed. The corresponding furfural derivatives was placed in a Schlenk tube, dissolved 

in CH2Cl2, concentrated, and then NXS (2 equiv.) was added (unless specified). Freshly distilled 

acetonitrile (0.1 M) was added under argon and the mixture was degassed by 3 freeze-pump-thaw 

cycles. It was then transferred via cannula to the microwave vial. The mixture was stirred at 50 °C 

overnight (otherwise mentioned). The reaction mixture was filtered through a short pad of silica-gel, 

which was washed with Et2O. The filtrate was concentrated under reduced pressure and the residue was 

purified by silica-gel column chromatography with (90/10) pentane /Et2O as eluent. 

 

170a 3-chloro-5-methylfuran-2-carbaldehyde 

  

Prepared according to GP7 from C3-silylated furfural 19-Si-e (33 mg, 

0.10 mmol), N-chlorosuccinimide (27 mg, 0.20 mmol) and AgF (25 mg, 

0.20 mmol). Purification afforded 2 mg of product 170a (11% yield) as 

a yellow oil. 1H NMR (400 MHz, CDCl3) δ 9.65 (s, 1H-1), 6.24 (d, J = 

1.1 Hz, 1H-4), 2.40 (d, J = 0.8 Hz, 3H-6). 13C NMR (101 MHz, CDCl3) 

δ 174.7 (C-1), 159.7 (C-5), 146.0 (C-2), 129.0 (C-3), 111.2 (C-4), 14.4 

(C-6). These data are in good agreement with those reported in 

literature.[27] 

 

170b 3-bromo-5-methylfuran-2-carbaldehyde 

 

 

Prepared according to GP7 from C3-silylated furfural 19-Si-e (99 mg, 

0.30 mmol), N-bromosuccinimide (107 mg, 0.60 mmol) and AgF (76 mg, 

0.60 mmol). Purification afforded 18 mg of product 170b (32% yield) as 

a yellow oil. 1H NMR (400 MHz, CDCl3) δ 9.51 (s, 1H-1), 7.18 (s, 1H-

4), 2.41 (s, 3H-6). 13C NMR (101 MHz, CDCl3) δ 176.7 (C-1), 156.9 (C-

5), 151.0 (C-2), 124.4 (C-4), 99.8 (C-3), 12.6 (C-6).These data are in 

good agreement with those reported in literature.[293] 

 

170c 3-iodo-5-methylfuran-2-carbaldehyde 
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Prepared according to GP7 from C3-silylated furfural 19-Si-e (33 mg, 

0.10 mmol), N-iodosuccinimide (45 mg, 0.20 mmol) and AgF (25 mg, 

0.20 mmol). Purification afforded 16 mg of product 170c (68% yield) as 

a yellow oil. 1H NMR (400 MHz, CDCl3) δ 9.51 (s, 1H-1), 6.40 (s, 1H-

4), 2.41 (s, 3H-6). 13C NMR (101 MHz, CDCl3) δ 176.8 (C-1), 160.5 (C-

5), 149.4 (C-2), 117.8 (C-4), 81.2 (C-3), 14.1 (C-6). These data are in 

good agreement with those reported in literature.[293] 

 

169a 3-chloro-furan-2-carbaldehyde 

  

Prepared according to GP7 from C3-silylated furfural 18-Si-e (95 mg, 

0.30 mmol), N-chlorosuccinimide (27 mg, 0.60 mmol) and AgF (76 mg, 

0.60 mmol). Purification afforded 31 mg of product 169a (78% yield) as 

a yellow oil. 1H NMR (400 MHz, CDCl3) δ 9.76 (s, 1H-1), 7.67 – 7.59 

(m, 1H-5), 6.59 (d, J = 1.9 Hz, 1H-4). 13C NMR (101 MHz, CDCl3) δ 

175.6 (C-1), 147.6 (C-5), 147.1 (C-2), 127.7 (C-3), 114.5 (C-4). HRMS: 

m/z calculated for C5H3ClO2H [M+H]+ 130.9894, found 130.9892. IR: ν 

(cm-1) 3151, 2926, 2855, 1678, 1562,1399, 1275, 1150, 1009, 768.  

 

169b 3-bromo-furan-2-carbaldehyde 

 

 

Prepared according to GP7 from C3-silylated furfural 18-Si-e (32 mg, 

0.10 mmol), N-bromosuccinimide (20 mg, 0.10 mmol) and AgF (25 mg, 

0.20 mmol) and allowed to stir at 50 °C for 1 h. The crude reaction 

mixture was purified by PTLC (80/20) pentane/Et2O to afford 7 mg of 

product 169b (40% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) 

δ 9.73 (s, 1H-1), 7.63 (s, 1H-5), 6.66 (t, J = 1.5 Hz, 1H-4). 13C NMR 

(101 MHz, CDCl3) δ 176.4 (C-1), 148.3 (C-2), 148.0 (C-5), 116.7 (C-4), 

112.6 (C-3). These data are in good agreement with those reported in 

literature.[294] 

 

169c 3-iodo-furan-2-carbaldehyde 
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Prepared according to GP7 from C3-silylated furfural 18-Si-e (95 mg, 

0.30 mmol), N-iodosuccinimide (135 mg, 0.60 mmol) and AgF (76 mg, 

0.60 mmol) and allowed to stir at 50 °C for 2 h. Purification afforded 55 

mg of product 169c (82% yield) as yellow oil, contaminated with traces 

of protodesilylated product. 1H NMR (400 MHz, CDCl3) δ 9.65 (s, 1H-

1), 7.63 (d, J = 1.7 Hz, 1H-5), 6.75 (d, J = 1.7 Hz, 1H-4). 13C NMR (101 

MHz, CDCl3) δ 177.5 (C-1), 150.3 (C-2), 148.7 (C-5), 121.1 (C-4), 78.2 

(C-3). HRMS: m/z calculated for C5H3IO2H [M+H]+ 222.9251, found 

222.9250. These data are in good agreement with those reported in 

literature.[294] 

 

171a 5-(((tert-butyldimethylsilyl)oxy)methyl)-3-chlorofuran-2-

carbaldehyde 

 

Prepared according to GP7 from C3-silylated furfural 20-Si-e (46 mg, 

0.10 mmol), N-chlorosuccinimide (53 mg, 0.20 mmol) and AgF (51 

mg, 0.40 mmol). The crude reaction mixture was purified by silica-gel 

column chromatography (80/20 pentane/Et2O) to afford 22 mg of 

product 171a (79% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) 

δ 9.70 (s, 1H-1), 6.47 (t, J = 1.0 Hz, 1H-4), 4.69 (d, J = 1.0 Hz, 2H-6), 

0.92 (s, 9H-9), 0.11 (s, 6H-7). 13C NMR (101 MHz, CDCl3) δ 175.3 

(C-1), 161.3 (C-5), 146.2 (C-2), 128.9 (C-3), 111.0 (C-4), 58.8 (C-6), 

25.9 (C-9), 18.4 (C-8), -5.3 (C-7). HRMS m/z: [M+H]+ Calculated for 

C12H19ClO3SiH 275.0865. Found 275.0866. IR: ν (cm-1) 2924, 2854, 

2167, 2012, 1729, 1684, 1581, 1462, 1257, 1131, 837, 779.  

 

171c 5-(((tert-butyldimethylsilyl)oxy)methyl)-3-iodofuran-2-

carbaldehyde 

 

 

Prepared according to GP7 from C3-silylated furfural 20-Si-e (46 mg, 

0.10 mmol), N-iodosuccinimide (78 mg, 0.35 mmol) and AgF (51 mg, 

0.40 mmol). Purification afforded 6 mg of product 171c (16% yield) as 

a yellow oil. 1H NMR (400 MHz, CDCl3) δ 9.59 (s, 1H-1), 6.62 (d, J = 

1.0 Hz, 1H-4), 4.72 (d, J = 1.0 Hz, 2H-6), 0.92 (s, 9H-9), 0.11 (s, 6H-

7). 13C NMR (101 MHz, CDCl3) δ 177.3 (C-1), 162.3 (C-5), 149.5 (C-
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2), 117.6 (C-4), 80.0 (C-3), 58.6 (C-6), 25.9 (C-9), 18.4 (C-8), -5.3 (C-

7). HRMS m/z: [M+H]+ Calculated for C12H19IO3SiH 367.0221. Found 

367.0221. IR: ν (cm-1) 2925, 2854, 2152, 1980, 1683, 1513, 1463, 1377, 

1131, 1100, 781, 444.  

 

S8.2 Arylation / Alkenylation 

 

General procedure GP8: A flame-dried microwave vial was charged with Pd2dba3•CHCl3 (3 mol%) 

and BINAP (6 mol%). The vial was flushed with argon three times, then placed in a glovebox where, 

AgF (2 equiv.) was introduced. The vial was sealed. In a dry Schlenk tube was placed the C3-silylated 

furfuraldehyde dissolved in CH2Cl2 and concentrated under argon. Then the appropriate iodoarene (1.5 

equiv.) and THF were added. The solution was degassed by three freeze-pump-thaw cycles, after which, 

it was transferred via cannula to the microwave vial containing the palladium catalytic system. The 

mixture was heated to 100 °C overnight. The mixture was allowed to cool down to room temperature 

and then filtered through a pad of silica-gel, eluting with diethyl ether. The crude was concentrated at 

40 °C, 500 mbar. The product was purified by silica-gel column chromatography [eluent (99/1) 

pentane/ether then to (90/10) pentane/Et2O; solvent evaporation at 40 °C, 500 mbar]. 

 

173a 5-methyl-3-phenylfuran-2-carbaldehyde 

  

Prepared according to GP8 from C3-silylated furfural 19-Si-e (95 mg, 

0.30 mmol) and iodobenzene (98 mg, 0.45 mmol). The crude was 

analyzed by 1H NMR and quantified using dimethyl sulfone as internal 

standard (83% NMR yield) and 16% of proto-desilylated product 13. 

Purification afforded 45 mg of 173a (81% yield) as a yellow oil. 1H 

NMR (400 MHz, CDCl3) δ 9.61 (s, 1H-1), 7.55 – 7.50 (m, 2H-Ph), 7.49 

– 7.38 (m, 3H-Ph), 6.37 (s, 1H-4), 2.45 (s, 3H-6). 13C NMR (101 MHz, 

CDCl3) δ 177.2 (C-1), 159.2 (C-5), 146.9 (C-2), 141.1 (C-3), 131.0 (C-

7), 129.2 (CH-Ph), 129.1 (CH-Ph), 129.1 (CH-Ph), 110.7 (C-4), 14.2 (C-

6). These data are in good agreement with those reported in literature.[51] 
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172a 3-phenylfuran-2-carbaldehyde 

  

Prepared according to GP8 from C3-silylated furfural 18-Si-e (95 mg, 

0.30 mmol) and iodobenzene (98 mg, 0.45 mmol). The crude was 

analyzed by 1H NMR and quantified using dimethyl sulfone as internal 

standard (46% NMR yield). The product was purified by silica-gel 

column chromatography [eluent pentane/Et2O (90/10)] to afford 25 mg 

of 172a (48% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 9.72 

(d, J = 0.8 Hz, 1H-1), 7.68 (dd, J = 1.8, 0.8 Hz, 1H-5), 7.57 – 7.52 (m, 

2H-Ph), 7.49 – 7.41 (m, 3H-Ph), 6.72 (d, J = 1.8 Hz, 1H-4). These data 

are in good agreement with those reported in literature.[51],[31] 

 

174a 5-{[(tert-Butyldimethylsilyl)oxy]methyl}-3-phenylfuran-2-

carbaldehyde 

 

 

Prepared according to GP8 from C3-silylated furfural 20-Si-e (138 mg, 

0.30 mmol) and iodobenzene (98.1 mg, 0.45 mmol). The crude was 

analyzed by 1H NMR and quantified using dimethyl sulfone as internal 

standard (27% NMR yield). 1H NMR (300 MHz, CDCl3) δ 9.68 (s, 1H-

1), 7.62 – 7.52 (m, 2H-Ph), 7.46 (m, 3H-Ph), 6.61 (s, 1H-4), 4.78 (s, 2H-

6), 0.95 (s, 9H-13), 0.14 (s, 6H-11).These data are in good agreement 

with those reported in literature.[51] 

 

173b (E)-5-methyl-3-styrylfuran-2-carbaldehyde 

  

Prepared according to GP8 from C3-silylated furfural 19-Si-e (99 mg, 

0.30 mmol) and cinnamyl bromide (E/Z= 87/13) (58 mg, 0.45 mmol).  

The product was purified by silica-gel column chromatography [eluent 

pentane/ Et2O (90/ 10)] to afford 29 mg of 173b (45% yield) as a yellow 

oil. 1H NMR (400 MHz, CDCl3) δ 9.81 (s, 1H-1), 7.53 (d, J = 7.2 Hz, 

3H-Ph,), 7.37 (t, J = 7.5 Hz, 3H-Ph, H7), 7.32 (d, J = 7.4 Hz, 1H-Ph), 

7.08 (d, J = 16.2 Hz, 1H-8), 6.49 (s, 1H-4), 2.40 (s, 3H-6). 13C NMR 

(101 MHz, CDCl3) δ 188.9 (C-1), 159.1 (C-5), 147.3 (C-2), 136.4 (C-3), 

135.1 (C-8), 134.9 (C-9), 128.9 (CH-Ph), 128.5 (CH-Ph), 127.1 (CH-Ph), 

116.8 (C-7), 106.7 (C-4), 14.2 (C-6). These data are in good agreement 

with those reported in literature.[51]  
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173c (E)-5-methyl-3-styrylfuran-2-carbaldehyde 

  

Prepared according to GP8 from C3-silylated furfural 19-Si-e (99 mg, 

0.30 mmol) and 2-bromo propene (54 mg, 0.45 mmol).  The crude was 

analyzed by 1H NMR and quantified using dimethyl sulfone as internal 

standard (15% NMR yield and 39% of proto-desilylated product, 13). 

The product was purified by silica-gel chromatography [eluent pentane/ 

Et2O (90/ 10)] to afford 19.3 mg of 173c of the unseparable mixture was 

obtained. 1H NMR (300 MHz, CDCl3) δ 9.64 (s, 1H-1), 6.21 (s, 1H-4), 

5.32 (s, 1H-8), 5.29 (m, 1H-8), 2.38 (s, 3H-6/9), 2.11 (s, 3H-6/9). No 

further analysis was performed on product to confirm its structure. 

 

S8.3 Alkynylation 

175 5-methyl-3-(phenylethynyl)furan-2-carbaldehyde 

  

A microwave vial was charged with AgF (76 mg, 0.60 mmol), 

Pd2dba3•CHCl3 (5 mg, 0.0045 mmol) and phenylalkynyl bromide (82 

mg, 0.45 mmol). The C3-silylated furfuraldehyde 19-Si-e (99 mg, 0.30 

mmol) was placed in a Schlenk tube and freshly distilled acetonitrile (3 

mL) was added under Ar atmosphere. The mixture was degassed by three 

freeze-pump-thaw cycles, and transferred via cannula to the microwave 

vial. The reaction mixture was kept under vigorous stirring overnight at 

60 °C. It was then cooled to room temperature, filtered through a silica-

gel pad, concentrated and analyzed by NMR. Purification by silica-gel 

column chromatography [eluent, pentane/diethyl ether (90/10)] afforded 

14 mg of product 175 (21% yield), containing traces of dba. 1H NMR 

(400 MHz, CDCl3) δ 9.60 (s, 1H-1), 7.31 – 7.15 (m, 5H-Ph), 6.16 (s, 1H-

4), 2.27 (s, 4H-6). 13C NMR (101 MHz, CDCl3) δ 175.4 (C-1), 159.3 (C-

5), 152.0 (C-2), 134.8 (C-Ph), 131.92-128.53-Ph, 122.1 (C-3), 112.0 (C-

4), 97.2 (C-8), 78.7 (C-7), 14.1 (C-6). HRMS: m/z calculated for 

C14H10O2Na [M+Na]+ 233.0573, found 233.0572. IR: ν (cm-1) 3344, 

2949, 2839, 2150, 1412, 1160.  
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S8.4 Allylation  

 

Preparation of CuF(PPh3)3: Following a reported procedure, CuF(PPh3)3 was prepared.[252] To a round 

bottom flask containing CuF2•2H2O (2.76 g, 20 mmol), was placed 200 mL methanol. PPh3 (18.4 g, 70 

mmol) was added, then, heated under reflux for 2 h. The mixture was cooled, and half of the solvent 

was removed under reduced pressure. The solution was cooled to 0 °C and allowed to crystallize 

overnight. The suspension was filtered, and the solid washed with cold methanol and filtered under 

vacuum to afford CuF(PPh3)•2MeOH. The white solid was then placed under reduced vacuum at 90 °C 

for 2 h, which led to 3.21 g of CuF(PPh3)3, 177 (19% over 2 steps). 1H NMR (300 MHz, CDCl3) δ 7.41 

– 7.28 (m, 15H), 7.27 – 7.14 (m, 9H). 31P NMR (162 MHz, CDCl3) δ 29.02, -3.65. 19F NMR (376 

MHz, CDCl3) δ -183.81.  

Note: The synthesis of CuF(PPh3)3•2MeOH (176) was performed on a 5 mmol scale, to give 0.789 g 

(17% yield). 1H NMR (400 MHz,CDCl3) δ 7.29 (dd, J = 10.6, 6.6 Hz, 15H), 7.18 (t, J = 7.1 Hz, 9H), 

3.48 (s, 1H). 31P NMR (162 MHz, CDCl3) δ 29.04, -3.22. 19F NMR (376 MHz, CDCl3) δ -183.99. 

 

 

General procedure GP9: A dry microwave vial was charged with (PPh3)3•Cu-F (1.2 equiv.) and placed 

under argon. The vial was sealed by means of a cap, and underwent 3 vacuum/argon cycles. In a Schlenk 

tube was placed the corresponding C3-silylated furan-2-carboxaldehyde (1.0 equiv.) and dissolved in 

CH2Cl2. The latter was concentrated under argon and then DMF (0.1 M) was added. The solution was 

degassed three times (vacuum/argon cycles) and then transferred via cannula to them microwave vial. 

Allyl bromide (3-6 equiv.) was then added and the mixture was allowed to stir at 60 °C overnight. It 

was then cooled and quenched with aqueous HCl (2 M). The mixture was extracted three times with 

Et2O, and the combined organics were washed with water and dried over Na2SO4. 

 

178a 3-allyl-5-methylfuran-2-carbaldehyde 
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Prepared according to GP9 from C3-silylated furfural 19-Si-e (99 mg, 

0.30 mmol), allyl bromide (78 μL, 0.90 mmol) and CuF(PPh3)3 (313 mg, 

0.36 mmol). The crude reaction mixture was purified by silica-gel 

column chromatography (90/10 pentane/Et2O) to afford 28 mg of 

product 178a (62% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) 

δ 9.54 (s, 1H-1), 6.01 (s, 1H-4), 5.82 (ddt, J = 16.7, 10.1, 6.5 Hz, 1H-8), 

5.09 – 4.97 (m, 2H-9), 3.41 (dt, J = 6.5, 1.6 Hz, 2H-7), 2.27 (s, 3H-6). 

13C NMR (101 MHz, CDCl3) δ 176.8 (C-1), 59.0 (C-5), 147.6 (C-2), 

138.2 (C-3), 135.0 (C-8), 117.0 (C-9), 111.5 (C-4), 29.3 (C-7), 14.2 (C-

6). HRMS: m/z calculated for C9H10O2H [M+H]+ 151.0754, found 

151.0751. IR: ν (cm-1).2924, 2852, 1665, 1525, 1414, 1373, 1290, 1199, 

993, 839. 

 

178b 5-methyl-3-(2-methylallyl)furan-2-carbaldehyde 

  

Prepared according to GP9 from C3-silylated furfural 19-Si-e (99 mg, 

0.30 mmol), methallyl bromide (91 μL, 0.90 mmol) and CuF(PPh3)3 (313 

mg, 0.36 mmol). The crude reaction mixture was purified by silica-gel 

column chromatography (90/10 pentane/Et2O) to afford 33 mg of 

product 178b (67% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) 

δ 9.64 (s, 1H-1), 6.09 (s, 1H-4), 4.84 (s, 1H-9), 4.77 (s, 1H-9), 3.44 (s, 

2H-7), 2.37 (s, 3H-6), 1.73 (s, 3H-10). 13C NMR (101 MHz, CDCl3) δ 

159.0 (C-5), 148.1 (C-2), 143.0 (C-8), 138.1 (C-3), 112.8 (C-9), 111.8 

(C-4), 33.4 (C-7), 22.3 (C-10), 14.2 (C-6). HRMS: m/z calculated for 

C10H12O2H [M+H]+ 165.0910, found 165.0908. IR: ν (cm-1) 2925, 2855, 

1670, 1530, 1441, 1187, 1078, 810, 760, 655, 606, 420.  

 

178c 3-cinnamyl-5-methylfuran-2-carbaldehyde 
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Prepared according to GP9 from C3-silylated furfural 19-Si-e (99 mg, 

0.30 mmol), cinnamyl bromide (177 mg, 0.90 mmol) and CuF(PPh3)3 

(313 mg, 0.36 mmol). The crude reaction mixture was purified by silica-

gel column chromatography (90/10 pentane/Et2O) affording 36 mg of 

product 178c (53% yield) as a yellow oil contaminated with traces of 

protodesilylated product 13. 1H NMR (400 MHz, CDCl3) δ 9.67 – 9.56 

(m, 1H-1), 7.21 (m, 5H-Ph), 6.41 (dd, J = 16.0, 4.9 Hz, 1H-9), 6.19 (m, 

1H-8), 6.08 (d, J = 5.0 Hz, 1H-4), 3.59 (t, J = 5.6 Hz, 2H-7), 2.30 (d, J = 

3.6 Hz, 3H-6). 13C NMR (101 MHz, CDCl3) δ 177.0 (C-1), 159.1 (C-5), 

147.6 (C-2), 138.1 (C-3)*, 137.1 (C-10), 134.0 (CH-Ph), 133.8 (CH-Ph), 

132.2 (C-9), 128.7 (CH-Ph), 127.6 (CH-Ph), 126.5 (C-8), 126.3 (CH-Ph), 

111.5 (C-4), 28.5 (C-7), 14.2 (C-6). *13C 138.15 ppm correlation 

observed by HMBC for C3 position. HRMS: m/z calculated for 

C15H14O2H [M+H]+ 227.1067, found 227.1063. IR: ν (cm-1) 2923, 2853, 

2152, 1669, 1527, 1375, 1293, 1072, 970, 823.  

 

179a 3-allyl-furan-2-carbaldehyde 

  

Prepared according to GP9 from C3-silylated furfural 18-Si-e (95 mg, 

0.30 mmol), allyl bromide (78 μL, 0.90 mmol) and CuF(PPh3)3 (313 mg, 

0.36 mmol). A 51% yield was determined by 1H NMR analysis of the 

crude with dimethylsulfone as internal standard. The crude reaction 

mixture was purified by silica-gel column chromatography (90/10 

pentane/Et2O) to afford 8 mg of product 179a (24% yield) as a yellow oil 

which was volatile and no further analysis could be performed. 1H NMR 

(400 MHz, CDCl3) δ 9.78 (s, 1H-1), 7.64 – 7.52 (s, 1H-5), 6.51 – 6.43 (s, 

1H-4), 5.93 (ddt, J = 16.7, 10.2, 6.5 Hz, 1H-7), 5.20 – 5.08 (m, 2H-8), 

3.58 (d, J = 6.4 Hz, 2H-6). No 13C NMR, HRMS and IR data were 

recorded. 

 

179b 3-(2-methylallyl)furan-2-carbaldehyde 
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Prepared according to GP9 from C3-silylated furfural 18-Si-e (95 mg, 

0.30 mmol), methallyl bromide (91 μL, 0.90 mmol) and CuF(PPh3)3 (313 

mg, 0.36 mmol). A 93% yield was determined by 1H NMR analysis of 

the crude with dimethylsulfone as internal standard. The crude reaction 

mixture was purified by silica-gel column chromatography (90/10 

pentane/Et2O) to afford 29 mg of product 179b (64% yield) as a yellow 

oil. 1H NMR (400 MHz, CDCl3) δ 9.76 (s, 1H-1), 7.56 (d, J = 1.7 Hz, 

1H-5), 6.44 (d, J = 1.7 Hz, 1H-4), 4.84 (s, 1H-8), 4.75 (s, 1H-8’), 3.50 

(s, 2H-6), 1.72 (t, J = 1.1 Hz, 3H-9). 13C NMR (101 MHz, CDCl3) δ 

178.0 (C-1), 148.9 (C-5), 147.3 (C-2), 142.8 (C-7), 135.7 (C-3), 114.8 

(C-4), 112.8 (C-8), 33.3 (C-6), 22.3 (C-9). HRMS m/z: [M+H]+ 

calculated for C9H10O2H 151.0754. Found 151.0752. IR: ν (cm-1) 2925, 

2855, 1670, 1599, 1530, 1376, 1251, 1187, 1078, 977, 760.  

 

S8.5 Alkylation  

181 3,5-dimethylfuran-2-carbaldehyde 

  

A microwave vial was charged with CuF(PPh3)3 (52 mg, 0.060 mmol) 

and AgF (76 mg, 0.60 mmol), sealed and placed under argon atmosphere. 

In a Schlenk tube was placed C3-silylated furfural 19-Si-e (99 mg, 0.30 

mmol) previously dissolved in CH2Cl2 and concentrated under inert 

atmosphere. Then, DMF (3 mL) was added and the solution was 

degassed by three freeze-pump-thaw cycles. The solution was transferred 

via cannula to the microwave vial and iodomethane (56 μL, 0.90 mmol) 

was added. The reaction mixture was heated at 60 °C overnight. It was 

then cooled, quenched with aqueous HCl (2 M), and extracted three times 

with Et2O. The combined organics were washed with water, and dried 

over Na2SO4. The crude was analyzed by 1H NMR and quantified using 

dimethyl sulfone as internal standard (35% NMR yield). The product was 

purified by silica-gel column chromatography [eluent pentane/ Et2O (90/ 

10)] to afford 7 mg of 181 (19% yield) as a yellow oil which was very 

volatile. 1H NMR (400 MHz, CDCl3) δ 9.63 (s, 1H-1), 6.06 (s, 1H-4), 

2.35 (s, 3H-6/7), 2.33 (s, 3H-6/7). 13C NMR (101 MHz, CDCl3) δ 158.9 

(C-5), 148.0 (C-2), 136.2 (C-3), 112.6 (C-4), 14.1 (C-6/7), 10.5 (C-6/7) 
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(note: aldehyde peak missing). HRMS m/z: [M+H]+ calculated for 

C7H8O2H 125.0597. Found 125.0597.  

 

182 3-benzyl-5-methylfuran-2-carbaldehyde 

  

A microwave vial was charged with CuF(PPh3)3 (52 mg, 0.060 mmol) 

and AgF (76 mg, 0.60 mmol), sealed and placed under argon atmosphere. 

In a Schlenk tube, was placed 19-Si-e (99 mg, 0.30 mmol) previously 

dissolved in CH2Cl2 and concentrated under inert atmosphere. Then, 

DMF (3 mL) was added and the mixture was degassed with three freeze-

pump-thaw cycles. The solution was transferred via cannula to the 

microwave vial containing copper, and benzyl bromide (107 μL, 0.90 

mmol) was added. The reaction mixture was heated to 60 °C overnight. 

It was then cooled, quenched with aqueous HCl (2 M), and extracted 

three times with Et2O. The combined organics were washed with water 

and dried over Na2SO4. The crude was analyzed by 1H NMR and 

quantified using dimethyl sulfone as internal standard (40% NMR yield 

and 20% of protodesilylated product). The product was purified by silica-

gel column chromatography [eluent pentane/ Et2O (90/ 10)] to afford 17 

mg of 182 (29% yield) as a yellow oil).1H NMR (400 MHz, CDCl3) δ 

9.69 (s, 1H-1), 7.38 – 7.12 (m, 5H-Ph), 6.01 (s, 1H-4), 4.10 (s, 2H-7), 

2.34 (s, 3H-6). HRMS: m/z calculated for C13H12O2H [M+H]+ 201.0910, 

found 201.0909. IR: ν (cm-1) 2923, 2853, 2072, 1659, 1528, 1445, 1376, 

1259, 976, 842. 

183 2-methyl-5-styrylfuran 

A microwave vial was charged with CuF(PPh3)3 (313 mg, 0.36 mmol), 

sealed and placed under argon atmosphere. In a Schlenk tube, was placed 

19-Si-e (99 mg, 0.30 mmol) previously dissolved in CH2Cl2 and 

concentrated under inert atmosphere. Then, DMF (3 mL) was added and 

the mixture was thoroughly degassed with three freeze-pump-thaw 

cycles. The solution was transferred via cannula to the microwave vial 

containing copper, and benzyl bromide (107 μL, 0.90 mmol) was added. 

The reaction mixture was heated to 60 °C overnight. It was then cooled, 

quenched with aqueous HCl (2 M), and extracted three times with Et2O.  
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The combined organics were washed with water and dried over Na2SO4. 

The product was purified by silica-gel column chromatography [eluent 

pentane/ Et2O (90/ 10)] to afford 47 mg of 183 (53% estimated yield, the 

product was not fully concentrated) as a yellow oil, the product was not 

fully concentrated) and a second fraction of 3 mg of product 182 (4% 

yield). 1H NMR (400 MHz, CDCl3) δ 7.57 – 7.15 (m, 10H-Ph), 6.97 (d, 

J = 16.2 Hz, 1H-1E), 6.84 (d, J = 16.2 Hz, 1H-7E), 6.39 (d, J = 12.7 Hz, 

1H-1Z), 6.31 (d, J = 12.6 Hz, 1H-7Z), 6.25 (d, J = 3.3 Hz, 1H-4E), 6.16 

(d, J = 3.3 Hz, 1H-4Z), 6.02 (d, J = 3.2 Hz, 1H-3E), 5.92 (d, J = 3.2 Hz, 

1H-3Z), 2.36 (s, 3H-6E), 2.26 (s, 3H-6Z). HRMS: m/z calculated for 

C13H12O1H [M+H]+ 185.0961, found 185.0960. These data are in good 

agreement with those reported in literature. [296] 

 

S8.6 Trifluoromethylation 

Preparation of trifluoromethylating agent 

(phen)Cu(CF3)3

 

Following a reported procedure for the one-pot synthesis of 

(phen)Cu(CF3)3,
[261] in the glove box, CuI (380 mg, 2 mmol), AgF 

(1.16 g, 8 mmol) and 1,10-phenanthroline (360 mg, 2 mmol) were 

introduced in a 50 mL Schlenk tube which was then closed by a 

septum. DMF (6 mL) was thoroughly degassed by three freeze-pump-

thaw cycles in another Schlenk tube, and then transferred via cannula 

to the tube containing the catalytic mixture. The mixture was kept 

away from light exposure using aluminium foil. After stirring 30 min 

at room temperature, TMS–CF3 (1.77 mL, 12 mmol) was added 

dropwise under continuous stirring and the mixture was allowed to stir 

overnight at room temperature. The crude was diluted with 20 mL 

DCM, filtered and the residue washed with 10 mL DCM. The organic 

layer was washed once with 10 mL H2O, then concentrated with silica 

gel prior to purification by column chromatography using 

cyclohexane/ethyl acetate (2/1) as eluent. The product was washed 

again with water to remove traces of DMF, and afforded 244 mg of 

(phen)Cu(CF3)3 (27% yield) as a yellow solid. 1H NMR (300 MHz, 

CD2Cl2) δ 9.43 (dd, J = 4.9, 1.5 Hz, 2H), 8.63 (dd, J = 8.2, 1.4 Hz, 

2H), 8.06 (s, 2H), 8.01 (dd, J = 8.2, 4.9 Hz, 2H). 19F NMR (282 MHz, 
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CD2Cl2) δ -24.40 (d, J = 11.2 Hz), -37.40 (q, J = 9.6 Hz). These data 

are in good agreement with those reported in literature.[261] 

 

Trifluoromethylating using (phen)Cu(CF3)3 

187 5-methyl-3-(phenylethynyl)furan-2-carbaldehyde 

 

In a 25 mL Schlenk tube equipped with a stirring bar was introduced the 

C3-silylated furfuraldehyde 19-Si-e (33 mg, 0.10 mmol) and DMF (1 

mL), previously degassed by three freeze-pump-thaw cycles and 

backfilled with dry O2. (phen)Cu(CF3)3 (54 mg, 0.12 mmol) and AgF 

(0.025 g, 0.20 mmol) were respectively added under oxygen atmosphere. 

The Schlenk was then closed with a glass stopper and heated to 50 °C, 

whilst under vigorous stirring. The reaction mixture was kept at 50 °C 

overnight. It was then diluted with diethyl ether and filtered over celite. 

The latter was then washed twice with 50 mL water, dried over Na2SO4 

and concentrated at 500 mbar, 40 °C. The product was purified by PTLC 

(80/20 pentane/ Et2O) to obtain 8 mg of 187 (44% yield) as a pale-yellow 

oil (. 1H NMR (300 MHz, CDCl3) δ 9.8 (s, 1H-1), 6.4 (s, 1H-4), 2.4 (s, 

3H-6). 19F NMR (282 MHz, CDCl3) δ -56.70. 13C NMR (101 MHz, 

CDCl3) δ 176.0 (C-1), 159.2 (C-5), 147.8 (q, 3J = 3.0 Hz, C-2), 126.8 (q, 

2J = 39.2 Hz, C-3), 121.5 (q, 1J = 268.7 Hz,-7), 107.6 (q, 3J = 3.0 Hz, C-

4), 14.1 (C-6). HRMS m/z: [M+H]+ calculated for C7H5F3O2H 179.0314, 

found 179.0315. IR: ν (cm-1) 2924, 2854, 1686, 1554, 1464, 1141, 1034, 

972, 907, 731.  

 

S8.7 Nucleophilic amination of aryl silane 

190 5-methyl-3-(2-oxopyrrolidin-1-yl)furan-2-carbaldehyde 

 

Following a modified procedure,[270] was introduced in an oven-dried 

screwcapped tube, Cu(OAc)2 (218 mg, 1.20 mmol), Na2CO3 (127 mg, 

1.20 mmol), pyrrolidone (91 μL, 1.20 mmol) and THF (1 mL). The 

mixture was stirred for 15 min at room temperature and C3-silylated 

furfuraldehyde 19-Si-e (99 mg, 0.30 mmol) and NaF (13 mg, 0.30 mmol) 

were added under air atmosphere, followed by freshly distilled DMSO 
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(1 mL). The tube was closed by means of a screw cap and heated at 80 

°C for 16 h. The reaction mixture was cooled to room temperature, 5 mL 

H2O were added and the mixture was extracted thrice with 4 mL ethyl 

acetate. The organic layer was washed twice with brine and dried over 

Na2SO4. The latter was concentrated and purified by silica-gel column 

chromatography [eluent (cyclohexane/ethyl acetate 1/1)] to afford 21 mg 

of 19 (38% yield) as a yellow liquid. 1H NMR (400 MHz, CDCl3) δ 9.75 

(s, 1H-1), 6.81 (s, 1H-4), 3.95 (t, J = 7.1 Hz, 2H-7), 2.59 (t, J = 8.1 Hz, 

2H-9), 2.38 (s, 3H-6), 2.23 (p, J = 7.6 Hz, 2H-8). 13C NMR (101 MHz, 

CDCl3) δ 176.8 (C-1), 174.8 (C-10), 159.0 (C-5), 140.9 (C-2), 135.4 (C-

3), 105.2 (C-4), 50.7 (C-7), 31.5 (C-9), 18.9 (C-8), 14.5 (C-6). HRMS 

(ESI) m/z: [M+Na]+ calculated for C10H11NO3Na 216.0631, found 

216.0632. IR: ν (cm-1) 2922, 2853, 2075, 1714, 1642, 1596, 1534, 1456, 

1369, 1202, 1090, 989, 842.  

 

191 5-methyl-3-(pyrimidin-2-ylamino)furan-2-carbaldehyde 

 

Following reported procedures,[270] an oven dried screwcapped tube was 

charged with Cu(OAc)2 (218 mg, 1.20 mmol), Na2CO3 (127 mg, 1.20 

mmol) and 2-aminopyrimidine (114 mg, 1.20 mmol). THF (1 mL) was 

added and the mixture was stirred for 15 min at room temperature. The 

C3-silylated furfuraldehyde 19-Si-e (99 mg, 0.30 mmol) and NaF 

(0.0126 g, 0.30 mmol) were added under air atmosphere followed by 1 

mL of freshly distilled DMSO. The tube was closed by means of a screw 

cap and heated at 80 °C for 16 h. The reaction mixture was cooled, 5 mL 

H2O added and the mixture was extracted thrice with 4 mL ethyl acetate. 

The organic layer was washed twice with brine, dried over Na2SO4, and 

concentrated. Purification by silica-gel column chromatography [eluent 

(cyclohexane/ethyl acetate 1/1)] afforded 2 mg of 191 (4% yield) as a 

yellow liquid. 1H NMR (400 MHz, CDCl3) δ 9.67 (d, J = 0.8 Hz, 1H-1), 

9.50 (s, 1H-NH), 8.49 (d, J = 4.8 Hz, 2H-9), 7.32 (S, 1H-4), 6.83 (t, J = 

4.8 Hz, 1H-10), 2.40 (d, J = 0.9 Hz, 3H-6). 13C NMR (101 MHz, CDCl3) 

δ 178.1 (C-1), 159.8 (C-5), 159.3 (C-8), 158.3 (C-9), 139.7 (C-2/3), 

138.8 (C-2/3), 114.2 (C-10), 104.4 (C-4), 29.8 (C-6). HRMS m/z: 
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[M+H]+ calculated for C10H9N3O2H 204.0768, found 204.0768. IR: ν 

(cm-1) 2923, 2853, 1641,1492, 1396, 1263, 1065, 845, 740.  

 

S9. Post-functionalization/ Derivatization 

S9.1 Aza-Piancatelli rearrangement 

192 (4S*,5R*)-4,5-dimorpholino-2-(triethylsilyl)cyclopent-2-en-1-one 

 

Following a reported procedure,[76] a MeOH (1.20 mL, 0.25 M) 

solution of C3-silylated furfuraldehyde 18-Si-a (63 mg, 0.30 mmol) 

and morpholine (52 mg, 0.60 mmol) was added to a dry flask 

containing AlCl3 (4 mg, 0.030 mmol) and 4Å molecular sieves (60 

mg) at room temperature. The mixture was vigorously stirred 

overnight at room temperature. The reaction was quenched with a 

buffered solution of AcOH/NaOAc at pH 5 (1 mL), then filtered 

through a short celite pad. The aqueous phase was extracted thrice 

with 3 mL CH2Cl2; the combined organics were washed twice with 2 

mL water, dried over MgSO4 and concentrated under reduced 

pressure. Purification by silica-gel column chromatography with 

eluent (95/5 CH2Cl2/EtOH) afforded 71 mg of 192 (65% yield) as a 

yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 2.1 Hz, 1H-2), 

3.76 (dd, J = 3.4, 2.1 Hz, 1H-3), 3.72 (t, J = 4.86 Hz, 4H-9), 3.67 (t, J 

= 4.86 Hz, 4H-11), 3.26 (d, J = 3.3 Hz, 1H-4), 2.83 (dt, J = 10.1, 4.6 

Hz, 2H-10), 2.72 – 2.52 (m, 6H-8,10’), 1.01 – 0.78 (m, 9H-7), 0.77 – 

0.63 (m, 6H-6). 13C NMR (101 MHz, CDCl3) δ 209.5 (C-5), 168.9 (C-

2), 147.5 (C-1), 68.8 (C-4), 68.2 (C-3), 67.5 (C-11), 67.3 (C-9), 50.3 

(C-10), 50.0 (C-8), 7.5 (C-7), 2.8 (C-6). HRMS m/z: [M+H]+ 

Calculated for C19H34N2O3SiH 367.2411. Found 367.242. IR: ν (cm-1) 

2954, 2926, 2874, 1696, 1513, 1413, 1377, 1251, 1116, 1007, 898, 

736.  

 

S9.2 Pyridinium salt from 5-HMF derivatives 

198 1-butyl-6-(hydroxymethyl)-5-phenylpyridin-1-ium-3-olate 
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C3-functionalized HMF 197, (13 mg, 0.06 mmol) was introduced in a 

microwave vial, followed by freshly distilled butylamine (5 mg, 0.07 

mmol), formic acid (4 µL, 0.019 mmol), EtOH (0.40 mL) and water 

(0.40 mL). The tube was sealed and heated at 80 °C for 3 days. The 

reaction was monitored by TLC (3/7 EtOAc/ MeOH). On completion, 

the mixture was diluted with 5 mL H2O, activated charcoal was added 

and it was filtered through a celite pad. The reaction mixture was 

concentrated under high vacuum at 60 °C, which afforded 10 mg of a 

brown-yellow solid (61% estimated yield) along with some starting 

material 198. The product was poorly soluble in CDCl3, partly soluble in 

CD3OD, D2O and acetone-d6 which led to poorly resolved NMR. 1H 

NMR (300 MHz, CDCl3) δ 8.14 (s, 1H-1), 7.41 (q, J = 7.3 Hz, 5H-Ph), 

6.52 (s, 1H-3), 4.70 (s, 2H-5), 3.58 (t, J = 7.2 Hz, 2H-7), 1.68 (q, J = 7.6 

Hz, 2H-8), 1.44 – 1.19 (m, 2H-9), 0.93 (t, J = 7.3 Hz, 3H-10).  
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Fonctionnalisation sélective du furfural et de ses dérivés 

Afin de se tourner vers une chimie synthétique plus écocompatible, il est nécessaire de synthétiser des 

intermédiaires et des produits à forte valeur ajoutée à partir de substrats provenant de la biomasse plutôt 

que ceux de ressources fossiles. Le furfural et le 5-(hydroxymethyl)furfural (HMF) sont répertoriés 

comme étant parmi les plus prometteurs. Ils sont obtenus à travers la déshydratation de la lignocellulose 

de la biomasse provenant des déchets agricoles. Ces molécules ont un grand potentiel en tant que 

plateformes renouvelables pour la production durable de chimie fine. Notamment, la fonctionnalisation 

directe du furfural, sans modification au préalable de l’état redox de la fonction aldéhyde par activation 

C–H sélective, est un domaine émergent qui suscite un intérêt considérable. Nous rapportons ainsi une 

C3–H silylation dirigée des dérivés du furfural par catalyse à l’iridium à travers des imines furfuryliques 

avec des triorganosilanes ou organodisilyloxysilanes en présence d’un piégeur d’hydrogène. Cette 
transformation donne accès à des plateformes encore plus polyvalentes, pouvant donner lieu à une 

diversité de molécules. Les post-fonctionnalisations – via des réactions de couplages croisés catalysées 

par des métaux de transitions (TM) et des réarrangements de type Brook – sont étudiées ; en particulier 

par l'activation aux fluorures. La deuxième stratégie permet un éventail de transformations post-

fonctionnelles à partir des furfuraldéhydes silylés pour la création des liaisons C–C et C–X, ce qui est 

assez prometteur. Une nouvelle plateforme de fonctionnalisation C3 a également été établie sur la base 

de furfuryl alcools dérivés de furfuraldéhydes silylés correspondant pour fournir une nouvelle classe de 

molécules, qui donnent suite à la formation de liaisons C–C en position C3. Par conséquent, la 

plateforme de silylation représente un outil puissant pour accéder à des produits hautement 

fonctionnalisés et ainsi, ouvre des portes pour l’obtention de produits à haute valeur ajoutée à partir de 

substrats provenant de la biomasse. 

Mots clés : Furfural, biomasse, silylation, réarrangement de Brook, cuivre, couplage-croisé 

 

Selective functionalization of furfural and its derivatives 

In order to develop an ever more eco-compatible synthetic chemistry, it is nowadays essential to 

synthesize intermediates and added-value chemical compounds starting from substrates derived from 

biomass rather than those from fossil resources. Furfural and 5-(hydroxymethyl)furfural (HMF) are 

among the most promising bio-based molecules. Obtained by dehydrating lignocellulosic biomass from 

agricultural residues and dedicated crops, these molecules have great potential as renewable platforms 

for the sustainable production of fine chemicals. In particular, the direct functionalization of furfural, 

without prior modification of the redox state of the aldehyde function, by selective C–H activation is 

an emerging field that is attracting considerable interest. Herein, we disclose a directed C3–H silylation 

of furfural derivatives under iridium catalysis. In the presence of a hydride scavenger, C3-silylation of 

the furfuryl imines can be achieved with triorganosilanes or organodisilyloxysilanes as silicon donor. 

This transformation gives access to even more versatile platforms that can be further functionalized 

using the C(sp2)–Si bond as handle. Post-functionalization through TM-catalyzed cross-coupling 

reactions or Brook-type rearrangements are investigated; especially through fluoride anion activation. 

The second mentioned strategy, permits a wide range of post-functional transformations based of the 

silylated furfuraldehyde from the creation of C–C bonds to the creation of C–X bonds, which is quite 

promising. A new C3-functionalization platform also established based on C3-silylated furfuryl 

alcohols derived from the corresponding furfuraldehydes to provide a novel class of molecules via the 

formation of C–C bonds in the C3 position. Therefore, the silylation platform represents a powerful 

tool to access highly functionalized products and open doors to achieve high-added value products from 

biomass-based substrates.  

Keywords: Furfural, biomass, silylation, Brook rearrangement, copper, cross-coupling 
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