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Abstract

Abstracts

3D simulations of the interactions between crack and dislocations

Fracture toughness of materials is not only controlled by macroscopic parameters like the geo-
metry of the studied sample but also by the microstructure. The defects of the crystalline structure
such as voids, inclusions or dislocations can also greatly impact toughness. To better understand
this, 3D simulations of a crack front interacting with dislocations will be carried out. These si-
mulations aim at measuring the variations of the stress intensity factors caused by the presence
of dislocations. To carry out these simulations, two preexisting models will be combined : Ex-
tended Finite Elements Method (XFEM) and Discrete Dislocation Dynamics (DDD). XFEM is an
evolution of the Finite Elements Methods that allows the study of a propagating crack without nee-
ding to remesh, it will control the studied volume, the applied loading and the crack position while
DDD controls the dislocations, their movement, and their multiplication. The accuracy of the crea-
ted model is tested by comparisons with atomistic simulations. To test the effect of dislocations
on toughness, several dislocations on different slip systems were studied. Other parameters such
as dislocation crack distance, line direction, and applied load were also studied. To compare the
studied model with existing simulation results, two crack orientations were selected. The studied
dislocations have different behaviors depending on their slip system. The results show dislocations
creating shielding, antishielding or a combination of both. These effects are only dependent of the
dislocation orientation, and do not change if the dislocation is farther from the crack, though the
intensity of the effect does change given these circumstances. Since the presence of dislocations is
associated to a shear stress in their glide planes, it is found that they have more effect on KII than
on KI . KII also controls the crack propagation angle, which means that the dislocations are one of
the main sources of crack deviation.

Simulation 3D des intéractions entre fissure et dislocations

La ténacité à la rupture est contrôlée non seulement par les paramètres macroscopiques comme
la géométrie de l’échantillon étudié mais aussi par la microstructure. Les défauts de la structure
cristalline comme les lacunes, les inclusions ou les dislocations peuvent aussi grandement impac-
ter la ténacité. Pour mieux comprendre ce phénomène, on mènera des simulations 3D d’un front
de fissure interagissant avec des dislocations. Ces simulations visent à mesurer les variations des
facteurs d’intensité des contraintes créées par la présence de dislocations. Pour cela, on combinera
deux modèles préexistants : la méthode des éléments finis étendus (XFEM) et la dynamique des
dislocations discrètes (DDD). XFEM est une évolution de la méthode des éléments fini qui permet
l’étude d’une fissure qui se propage sans avoir besoin de remaillage, elle contrôlera le volume étu-
dié, le chargement appliqué et la position de la fissure tandis que tant que la DDD contrôlera les
dislocations, leur mouvement et leur multiplication. La précision du modèle crée sera testée en le
comparant avec des résultats de simulations atomistiques. Pour mesurer qualitativement les effets
des dislocations sur la ténacité, plusieurs dislocations avec des différents systèmes de glissement
seront étudiées. D’autres paramètres comme la distance entre la fissure et la dislocation, la direc-
tion de la fissure, et le chargement appliqué seront aussi étudiées. Pour comparer le modèle étudié
avec des résultats provenant d’autres simulations, deux orientations de fissure seront simulées. Les
dislocations étudiées ont des effets sur la fissure différents en fonction de leur système de glisse-
ment. Les résultats montrent des dislocations créant soit de l’écrantage, doit de l’anti-écrantage
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Abstract

soit une combinaison des deux. Ces effets sont uniquement dépendants de l’orientation de la dis-
location et ne changent pas quand la dislocation est plus éloignée de la fissure, même si l’intensité
de l’effet change. De plus, les dislocations étant associées à un état de cisaillement local, elles
affectent plus fortement KII que KI . KII contrôle aussi l’angle de propagation de la fissure, ce qui
implique que les dislocations sont une des principales sources des déviations des fissures.
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Résumé de thèse

La fracture est un des problèmes en science des matériaux le plus étudié. Même les fractures
macroscopiques sont contrôlées par la microstructure du matériau, en particulier les défauts, qui
sont des sites préférentiels de nucléation de fissure et peuvent aussi influencer la direction de pro-
pagation de la fissure. Les dislocations, qui sont des défauts linéaires, sont la force conductrice
derrière la plasticité dans les structures cristallines. Elles ont été observées interagissant avec des
fissures. Les fissures sont aussi des sites de nucléation des dislocations. Ainsi, l’étude des interac-
tions de dislocations avec des fissure est de grande importance pour comprendre le comportement
des fissures.

Ils existent des travaux sur des simulations des interactions entre fissure et dislocations. La
majorité de ces travaux sont réalisés en utilisant des simulations atomistiques, ce qui limite gran-
dement la taille du volume qui peut être étudié. D’autres travaux utilisent de la dynamique discrète
des dislocations avec une fissure statique. Il y a un manque de travaux concernant des volumes mé-
soscopiques avec une fissure qui peut se propager.

Pour arriver à créer une simulation tridimensionnelle d’une fissure quasistatique avec une ou
plusieurs dislocations, deux méthodes existantes seront couplées. Pour la fissure, on utilisera la
méthode des éléments finis étendus qui permet une approche précise et indirecte d’une fissure qui
se propage. Le volume de la simulation sera défini en utilisant cette méthode. Pour les dislocations,
on utilisera de la dynamique discrète des dislocations, spécifiquement, la méthode de superposi-
tion. Cette méthode a été utilisé précédemment en couplage avec la méthode des éléments finis.
L’objectif de cette thèse et de créer un couplage fonctionnel entre les deux méthodes mentionnées
et vérifier les résultats obtenus en les comparant avec des résultats préexistants.

Cette thèse fait partie du projet MicroKIC, dirigé par le professeur Bitzek qui a pour but d’in-
vestiguer les origines microscopiques de la ténacité à la fracture. Ce projet cherche à comprendre
les procès microscopiques de la pointe de fissure pendant la fracture et d’étudier ses interactions
avec plusieurs éléments microstructurels. C’est pour ceci que notre étude se centre sur les interac-
tions fissure dislocations. Pour valider notre modèle, on comparera nos résultats avec ceux obtenus
avec des simulations atomistiques.

Les dislocations peuvent interagir avec une fissure de plusieurs façons. D’abord, elles peuvent
écranter la fissure. L’écrantage est le phénomène par lequel la présence de dislocations ralentira
l’avancée d’une fissure. Les dislocations peuvent même arrêter la propagation de la fissure.

De l’autre côté, les dislocations peuvent produire l’effet contraire, l’anti-écrantage. Cela est
plus rare, mais les dislocations peuvent aussi accélérer dans certains cas la propagation de la
fissure.

Quand les dislocations croisent une surface libre, celles-ci créent des marches sur les surfaces.
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Ce phénomène peut aussi provoquer l’émoussement des pointes de fissure ce qui ralenti aussi la
propagation. Ce phénomène n’est pas discuté ici car la représentation que l’on fait de la fissure ne
permet pas de modifier la géométrie de la pointe de fissure.

Les dislocations peuvent aussi nucléer en pointe de fissure, en particulier si les contraintes lo-
cales sont suffisamment élevées. Cette nucléation homogène peut aussi se produire ailleurs dans le
volume si les conditions de contrainte sont atteintes. La nucléation homogène reste un phénomène
plutôt théorique puisqu’un cristal réel sans défauts préexistants est presque impossible d’obtenir.

La méthode des éléments finis étendus (XFEM) est une méthode de simulation basée sur
la méthode des éléments finis qui permet la simulation de la propagation d’une fissure. Au lieu
d’utiliser un remaillage pour créer la fissure, les éléments finis étendus ajoute des fonctions qui
représentent la fissure sur les éléments qui sont fissurés.

Pour suivre la fissure, cette méthode utilise les fonctions de niveau. Les fonctions de niveau
sont des fonctions dont la valeur dépend de la distance entre le point où elle est calculée et une
surface. Pour une fissure tridimensionnelle, deux fonctions de niveau φ et ψ sont nécessaires pour
repérer la fissure. Le front de fissure est défini par φ et ψ étant nuls.

Puisqu’il n’y a pas de remaillage, la fissure est définie par des enrichissements aux nœuds des
éléments que la fissure croise. Ces éléments sont séparés en deux catégories, ceux qui contiennent
le front de fissure et ceux qui ont été traversés par la fissure. Les éléments traversés par la fis-
sure sont enrichis avec une fonction de saut qui représente l’ouverture de la fissure alors que les
éléments contenant le front de la fissure sont enrichis avec une fonction représentant le champ
asymptotique en pointe de fissure.

La propagation de la fissure est définie par l’énergie en front de fissure. Les points du front de
la fissure avanceront proportionnellement à leur énergie. L’angle de propagation est calculé avec
les valeurs de KI et KII . En particulier, c’est KII qui est responsable de la déviation de la direction
de propagation de la fissure.

La dynamique discrète des dislocations est une méthode de simulation qui permet de créer un
volume mésoscopique avec une densité de dislocations qui peut évoluer. Les dislocations sont la
majorité du temps des dislocations mixtes. Ces dislocations sont discrétisées par le logiciel en des
segments coins et des segments vis qui conforment la dislocation complète.

Une fois les dislocations discrétisées, cette méthode permet d’appliquer au volume un état
de déformation ou contrainte. La vitesse des segments de dislocation sera ensuite calculée pour
déplacer ces dislocations à t+dt. Une fois la nouvelle position des dislocations est calculée celles-
ci sont déplacées et leur nouveau champ de contraintes est calculé.

L’état des contraintes ainsi que la géométrie du volume initial peut être définie sur le logiciel de
simulation d’éléments finis Cast3M. C’est sur ce logiciel où on fera le couplage entre la méthode
des éléments finis étendus et la dynamique discrète des dislocations.

Le couplage a pour but de créer une simulation où une fissure qui peut se propager interagit
avec une ou plusieurs dislocations. Pour que ce couplage fonctionne correctement, il faut que les
deux codes utilisés travaillent ensemble et communiquent les données nécessaires aux simula-
tions. Cast3M est le logiciel qui contrôle l’avancement de la fissure. C’est aussi où la déformation
au volume initial est appliquée. C’est pour cela que Cast3M doit transmettre à TriDis l’état de
contraintes du volume.

Pour TriDis, une fois l’état des contraintes connu et appliqué aux dislocations, TriDis transmet
à Cast3M l’aire balayée par les dislocations pour vérifier si les dislocations ont arrivé à une confi-
guration stable. Le champ des contraintes crées par les dislocations est aussi transmis à Cast3M
qui l’utilisera pour être appliquée à la fissure et ainsi dévier sa propagation.

Un autre point important pour le couplage est les forces images. Les forces images corres-
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pondent à des dislocations virtuelles que les dislocations voient de l’autre côté des surfaces libres
qui sont l’opposé des dislocations réelles. Ainsi, le champ de contrainte des dislocations est pro-
jeté sur les surfaces libres du volume, c’est-à-dire les surfaces de la fissure ainsi que la surface
fissurée, et inversé pour créer les forces images. Ces forces sont à leur tour transmises à TriDis et
impactent donc les dislocations.

Pour faire avancer la fissure, deux valeurs sont nécessaires, la direction de propagation ainsi
que la valeur de cette propagation. Pour calculer la norme du vecteur de propagation, on utilisera
les facteurs d’intensité de contraintes calculés à chaque point de la fissure. Le calcul des facteurs
d’intensité de contraintes ce fait par la méthode G-θ . Cette méthode permet de calculer l’énergie
à chaque point du front de fissure en utilisant une vision Lagrangienne de la propagation de la
fissure. À partir de cette valeur, les facteurs d’intensité de contraintes peuvent aussi être calculés.
Avec les valeurs de KI et KII on peut calculer le vecteur de propagation de la fissure et ainsi la faire
avancer.

Ce calcul énergétique, extrêmement important, utilise le champ de contraintes autour du front
de la fissure. Pour mesurer l’impact des dislocations, et des forces images, on calcule ces éner-
gies deux fois ; la première en tenant en compte de tous les champs de contraintes présents et la
deuxième en prenant pas en compte ni les champs des dislocations ni les forces images pour ainsi
pouvoir isoler l’effet des dislocations sur les facteurs d’intensité de contraintes.

Une fois le couplage fonctionnel, les premières simulations réalisés quantifient l’impact des
paramètres du maillage sur les facteurs d’intensité de contrainte de la fissure. Ces simulations
ont permis aussi d’ajuster les paramètres des simulations ainsi que le maillage. Le maillage est
composé d’éléments CUB8, qui correspondent à des cubes. La taille d’élément a été choisie telle
qu’elle discrétise le volume assez finement pour avoir des résultats précis mais qui n’handicape
pas le temps de calcul. La fissure doit être placé au milieu d’un élément pour éviter des problèmes
de calcul.

Une fois les paramètres de maille établis, les simulations réalisées visent à comprendre les
effets de plusieurs paramètres sur leurs effets sur les facteurs d’intensité de contraintes du front de
fissure. Le fait qu’on cherche à comparer nos résultats avec des simulations similaires provenant
soit de simulations atomistiques soit de simulations en dynamique discrète des dislocations nous
amène à utiliser deux orientations différentes de fissure pour reproduire ces résultats.

La première orientation étudiée correspond à l’orientation utilisée pour les simulations atomis-
tiques d’une fissure qui interagit avec une dislocation. La première simulation menée utilisait les
mêmes paramètres que ceux de la simulation atomistique pour en pouvoir comparer les résultats.
Les résultats en question montrent un comportement très similaire des dislocations même si le
procès de stabilisation est différent. Les contraintes sur les différents systèmes de glissement ont
été aussi calculées pour être comparées. La distribution des contraintes permet de séparer les diffé-
rents systèmes de glissement en catégories en fonction de leurs symétries. Ceci permet de séparer
les douze systèmes de glissement en trois catégories. Les effets des dislocations appartenant à la
même catégorie ont été comparés pour vérifier si le comportement des dislocations de la même ca-
tégorie est similaire. Ces similitudes ont été précédemment observées. Nos résultats montrent une
tendance similaire, seule l’intensité de l’effet des dislocations sur l’énergie de la fissure change
d’une dislocation à l’autre de la même catégorie. Dans la même catégorie, la nature de l’effet de
la dislocation reste inchangée.

Pour compléter ces résultats, une simulation réalisée en atomistique est reproduite avec le
couplage DDD et XFEM. Cette simulation consiste en une seule dislocation se déplaçant devant
une fissure. Les résultats sont globalement comparables même si le procès de stabilisation de la
dislocation n’est évidemment pas le même.
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Les catégories mentionnées sont nommées Classe I, Class II et Classe III. Pour les dislocations
de la Classe I, on observe un fort effet d’écrantage. Il existe aussi un effet mineur d’anti-écrantage
pour ses dislocations. Ceci résulte en une fissure qui est ralentie devant la dislocation mais qui
essaye de la contourner en accélérant au tour de la dislocation.

Pour les dislocations de Classe II, on observe le comportement contraire, leur effet est majo-
ritairement d’anti-écrantage avec des zones d’écrantage. La fissure essaye de se propager ver la
dislocation le plus vite possible. En observant les courbes énergétiques, il y a une légère baisse
d’énergie au point le plus proche entre la fissure et la dislocation. Ainsi, même si globalement,
la présence de dislocations de Classe II accélère la propagation, la dislocation en soit la freine
légèrement.

Finalement, pour les dislocations de Classe III on observe un mélange des deux comportements
sans que l’écrantage ou l’anti-écrantage sont plus prédominant que l’autre. Il faut, cependant, tenir
en compte que l’une des dislocations étudiées ici est coplanaire avec la fissure ce qui la rend très
proche du front de fissure au point de le croiser. Ceci a sûrement un effet sur l’intensité de l’effet
plus que sur sa nature.

Après les études préliminaires, plusieurs paramètres concernant les dislocations sont étudiés
pour qualifier leurs effets sur les facteurs d’intensité de contraintes du front de fissure. Les ob-
servations réalisées concluent que la nature du système de glissement de la dislocation contrôle la
nature de l’effet de la dislocation de la fissure. Cet effet peut être de l’écrantage, de l’anti-écrantage
ou un mélange des deux. Chaque catégorie de dislocation a un type d’effet différent sur la fissure
comme décrit ci-dessus.

Les simulations sont étudiées à deux moments différents, d’abord avant la propagation des
dislocations et aussi une fois les dislocations sont stables. En sachant que la stabilisation des dis-
locations est atteinte quand l’aire balayait par les dislocations varie moins de cinq pourcents en dix
itérations des dislocations, cela implique que chaque configuration aura un temps de stabilisation
différent. C’est pour cela que les résultats pré-stabilisation sont considérés aussi.

L’intensité des effets crées par les dislocations est cependant influencée par un nombre d’autres
paramètres comme la distance entre la fissure et la dislocation ou le sens de la dislocation. Le pre-
mier paramètre étudié était la déformation imposée initiale. En effet, on a étudié une déformation
qui correspond à la moitié de la déformation utilisée. Les résultats observés sont cohérents puisque
les facteurs d’intensité des contraintes sont divisés en deux entre les deux configurations. La sta-
bilisation des dislocations se fait différemment aussi. En effet, la déformation étant plus faible,
la dislocation étudiée ne change pas de configuration puisque la déformation est trop faible pour
initier la propagation de la dislocation.

Un autre paramètre important étudié est la direction de la ligne de la dislocation. Deux dislo-
cations ayant le même vecteur de Burgers et le même plan de glissement peuvent se propager dans
des directions opposées. La question ici était si la nature de l’effet d’une dislocation sur l’énergie
du front de fissure dépendait de ci celle-ci avançait vers la fissure ou pas. Ainsi, les résultats ob-
tenus montrent que seule l’intensité de l’effet de la dislocation est modifiée et pas ça nature. Ceci
est aussi cohérent avec les résultats obtenus sur l’effet de la distance entre dislocations et fissure.

Plusieurs dislocations situées à différentes distances du front de fissure ont été étudiées. À plus
de 16 nm de la fissure, celle-ci ne perçoit plus le champ de contraintes de la dislocation. Ainsi,
plus les dislocations sont proches de la fissure, plus elles en influencent l’énergie.

Le nombre de dislocations a été aussi considéré. Il semble que l’effet des dislocations soit
amplifié par le nombre de dislocations présentes. Cette augmentation de l’effet des dislocations
est plus importante que la simple addition des effets individuels des dislocations.

Pour mieux comprendre l’effet du nombre de dislocations sur l’énergie du front de fissure trois
configurations sont étudiées pour chaque catégorie de dislocation ; 1, 3 et 5 dislocations seront
étudiés. Les dislocations ici étudiées sont placées devant la fissure telles que leur centre est à
8 nm de la fissure selon la direction de propagation et équidistantes les unes des autres. L’effet
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des dislocations s’additionne, mais pour le cas de cinq dislocations, l’effet et légèrement plus
important que celui des cinq dislocations individuelles.

Mis à part l’effet direct sur les valeurs de l’énergie de la fissure, on regarde aussi la longueur
de front de fissure qui a été affectée par les dislocations. Chaque dislocation semble influencer
une zone de longueur différente, certaines dislocations arrivent à influencer toute la longueur de la
fissure.

La deuxième orientation de fissure étudiée correspond à une des orientations étudiées avec
de la dynamique discrète des dislocations et une fissure statique. La comparaison des résultats ne
peut être que qualitative puisque notre volume et plusieurs ordres de grandeur plus petit puisque
la géométrie des simulations atomistiques a été conservée. La géométrie n’a pas été changée pour
pouvoir comparer les résultats obtenus entre eux. Le comportement des dislocations reste le même
entre nos simulations et les simulations de référence.

Les dislocations qu’on a étudiées précédemment sont aussi étudiées pour cette orientation.
Pour la première orientation, on a pu séparer les résultats en fonction des champs de contraintes des
différents systèmes de glissement et de leurs symétries. L’orientation de la fissure étant différente,
il n’y a plus les symétries qu’on avait observé sur la première orientation. C’est pour cela que les
comportements observés ne peuvent pas être généralisés. Chaque dislocation étudiée a un effet
différent sur les facteurs d’intensité de contraintes. Et comme observée, plus il y a de dislocations,
plus l’effet de celles-ci est magnifié au-delà d’une addition des effets indépendants.

Même si les catégories de dislocations ne sont pas applicables ici, on utilisera les mêmes
nomenclatures par soucis de simplicité. Les dislocations de Classe I ont un clair effet d’anti-
écrantage sur la fissure. Les résultats pour la simulation contenant trois dislocations ne semblent
pas cohérente avec les autres résultats. Ceci est surement dû à une différence de propagation entre
les simulations.

Pour les dislocations de Classe II, leur effet sur l’énergie du front de fissure est symétrique
à celui des dislocations de Classe I. Connaissant les systèmes de glissement des dislocations en
question ainsi que la position de la fissure par rapport à ceux-ci, ces résultats semblent cohérents.
Ainsi, les dislocations de Classe II ont aussi un effet d’anti-écrantage sur la fissure, augmentant
son énergie.

Quant aux dislocations de Classe III, elles écrantent l’énergie du front de la fissure. Ces résul-
tats montrent que c’est l’orientation de la dislocation ainsi que celle de la fissure qui contrôlent la
nature de leurs effets sur la fissure.

En conclusion, on a créé un couplage qui permet la simulation d’interactions entre une fissure
qui se propage et une densité de dislocations dans un environnement tridimensionnel. Pour vérifier
nos résultats on les a comparés à des simulations faites par d’autres méthodes en utilisant des
paramètres similaires voir identiques. On a pu aussi étudier l’effet de plusieurs paramètres des
dislocations sur les facteurs d’intensité des contraintes.
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General Introduction

General Introduction

Fracture is one of the most studied problems in materials science and yet plenty remains to be
discovered. Even at a macroscopic level, fracture is controlled by the microstructure of the mate-
rial. Defects in the material are preferential sites of crack nucleation [71] and can also define the
crack propagation path [22,28]. Dislocations are the main plasticity carrier in crystalline structures
and have been observed interacting with cracks [54,98] as well as nucleating from them [114]. As
such, the study of dislocation interactions with cracks is of great importance to understand crack
behavior.

There are existing works simulating the interactions between cracks and dislocations. Most
of these works use atomistic simulations [17, 129] which limits the size of the studied volume.
There exists a study at a mesoscale which used 3D discrete dislocation dynamics to investigate
dislocation/crack interactions [70]. However, this work was restricted to the case of a static crack.
The aim of this thesis is to use 3D discrete dislocation dynamics with a mobile crack and to
investigate the complex dislocation/crack interaction mechanisms during crack advance.

In order to achieve a three dimensional simulation of a moving crack interacting with one or
several dislocations we will be coupling two existing methods. For the crack, we will be using
eXtended Finite Element Method that allows a precise and indirect approach to crack propaga-
tion [126]. The simulation volume will be defined using this method. As for the dislocations, we
will be using Discrete Dislocations Dynamics,with the help of the superposition method [137].
This method has already been used successfully with the Finite Element Method before [45]. The
objective of this work is therefore to build a new model coupling the two presented methods and
verify the results obtained.

This thesis is part of the MicroKIC project funded by European Research Council (ERC-2016-
CoG number 725483) and led by Prof. E. Bitzek which aims at investigating the microscopic
origins of fracture toughness. This project aims to understand the microscopic crack-tip process
during fracture and study its interactions with various microstructural elements. This thesis work
will concentrate on crack-tip dislocations interactions. To verify our model, we will compare our
results with results obtained using atomistic simulations.

This manuscript is divided into five chapters :
Chapter One starts with an introduction to fracture mechanics and dislocations. It will also

review the existing theory, experiments and simulations on crack dislocation interactions.
Chapter Two will introduce various methods for the simulation of a crack. It will also describe

the extended finite element method theory, as well as its implementation in code.
Chapter Three will introduce dislocation dynamics simulation methods as well as our imple-

mentation of the coupling for the simulations of the interactions between crack and dislocations.
The main simulation parameters including the meshed geometry of the simulated volume will also
be described and their effects on the results will be analyzed.

Chapter Four will present the accuracy of the model. A study of several individual dislocations
to compare their effects between each other will be here presented. A simulation carried out with
our model will also be compared to an atomistic simulation carried out using the same parameters.

Chapter Five consists of a case study of the effect of different dislocation parameters on the
crack front energy for a given crack orientation. This study aims at a better understanding of the
effect of each individual parameter on the crack front energy and how dislocations influence it.
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Chapter Six consists of a case study with a different crack orientation. This second orientation
was chosen because it allowed our results to be qualitatively compared to previous studies of the
interactions between a crack front and dislocations.

This thesis will end with the conclusions and the perspectives for future studies.
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Chapitre 1. Bibliographic study of crack-dislocation interactions

1.1 Introduction

This chapter is a literature survey of fracture mechanics, dislocations and crack - dislocation
interactions. While not exhaustive, this chapter aims at establishing the bases on which this thesis
stands on.

If the reader wishes more information on this topics, the following publications are available.
Regarding dislocations, Hulls and Bacon book Introduction to dislocations [64] offers extensive
information on dislocations and their dynamics. For fracture mechanics, Zehnder’s book titled
Fracture mechanics [147] includes an ample coverage on the basics as well as more advanced
concepts on this subject.

Atomistic simulation is not the topic of this manuscript, but since some of our results will be
compared to atomistic simulations, it is still important to understand the method. More information
on Molecular Dynamics (MD) simulations can be found in Frenkel and Smit book Understanding
molecular simulation : from algorithms to applications [52].

1.2 Fracture mechanics

Fracture mechanics is essential in the study of crack propagation. It is specially important in
material science, as crack propagation usually precedes catastrophic failure of a material. Macro-
scopic failure of a material is linked to the microscopic and crystallographic defects existing in
said material. Since defects are such a prominent part of fracture study, the understanding of how
defects influence crack propagation is primordial to accurately predict material failure.

Crack stress field

A sharp crack creates a stress field in the volume defined in the elastic case as [127] :

σi j =
KI√
2πr

fi j(θ)+
KII√
2πr

gi j(θ)+
KIII√
2πr

hi j(θ) (1.1)

with r and θ the studied point coordinates and K the stress intensity factor for the correspon-
ding mode. This definition corresponds to Irwin’s analytical expression.

This stress field tends to infinity when close to the crack. This is due to the fact that the crack
is considered sharp, which creates this discontinuity even if a crack is actually never sharp at the
atomic scale. A way to correct this, is accounting for the plastic zone at the crack tip. As illustrated
in Figure 1.1, the stress at the plastic zone is considered constant.

Stress intensity factors

Stress intensity factors were established by Irwin [65] and are used as a way to predict the
stress state at the crack tip. The stress intensity factors, noted as K, which unit is MPa.m0.5, are
dependent on the sample geometry, crack length and the loading applied. Since K is related to the
crack growth, it can be used to establish failure criteria usually noted as KC.

As K can also be related to the strain energy release rate G, it will be used on this work for two
main purposes. First, to determine both the velocity and then direction of the crack propagation
and second to quantify the effect of dislocations on the crack front as we will compare the values
of K with and without the effect of dislocations.
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1.2. Fracture mechanics

FIGURE 1.1 – Elastic stress field created by a crack tip. If the plastic zone of the crack tip is taken
into account, the stress field of that zone will correspond to the yield stress σys (green line)

FIGURE 1.2 – Elementary loading modes for a three dimensional crack [143]

Loading modes for a crack

There are three main modes of loading for a crack as illustrated in Figure 1.2.

— Mode I : Opening mode

— Mode II : In-plane shear mode

— Mode III : Out-of-plane shear mode

Mode I corresponds to a tensile stress normal to the crack plane, mode II to a shear stress
parallel to the crack plane and perpendicular to its front and mode III to a shear stress parallel
to both the crack plane and front. To each of these modes is associated a corresponding value K
called the stress intensity factor. There is a second value, KC which corresponds to critical stress
intensity factor on the crack beyond which the crack advances. Usually, mode I cracks are the ones
considered for study, with their corresponding values KI and KIC.

Plane stress and plane strain conditions

In the case of 2D modeling, the system can be defined either in terms of plane strain or plane
stress modes. In the case of plane stress, the stress vector associated to the third dimension is
equal to zero. For plane strain, the strain along the third direction is equal to zero. Plane strain

7
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FIGURE 1.3 – Impact of the thickness of the studied sample on the fracture toughness [144]

like conditions can be achieved if one dimension of the specimen studied is much greater than the
other two dimensions.

Plane stress conditions are used to test the fracture toughness KC of a material since, as Figure
1.3 shows, KC can be obtained at plane stress conditions. As for plane strain conditions, they are
commonly used to conduct fracture toughness analysis as the crack growth observed occurs on a
cycle-by-cycle basis [8].

Energy release rate (Griffith’s theory)

In order to propagate, a crack needs a certain amount of energy. This energy is given by the
external forces applied to the volume and corresponds to the thermodynamic driving force of the
crack advance also known as energy release rate G. G corresponds to the energy available in
the solid for the crack to advance. There are some energy criteria that are used to determine the
propagation of a crack and if the crack can propagate. The first energy criteria was used for brittle
materials and was discussed by Griffith [56]. This criteria was reworked by Irwin [65] to take into
account ductile materials for small scale yielding and is defined as :

G = 2γ +Gp (1.2)

With γ the surface energy and Gp the plastic dissipation per unit area of crack advance. Grif-
fith’s original equation [56] did not include a term for dissipation resulting in unphysical high
surface energy values for ductile materials. In ductile materials, dislocations create a plastic zone
around the crack tip which accounts for the higher energy needed for the crack to propagate.

This criteria can also be defined using the stress intensity factor, for example in the case of
mode I in the framework of isotropic elasticity :

GI =

{
K2

I
E plane stress
(1−ν2)K2

I
E plane strain

(1.3)

With E Young modulus and ν Poisson coefficient. Equation 1.3 allows an easier way to cal-
culate G for a mode I crack as a dissipation term, that not only includes plastic dissipation but any
dissipatory term. It requires an extensive knowledge of the exact structure of the studied material.

8
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1.3 Introduction to dislocations

No real crystalline material is free of defects, which exist in several forms. For example, point
defects like vacancies and interstitial atoms or planar defects like stacking faults. In this work, we
will be studying particularly dislocations which are linear defects.

Definition of dislocations

The energy required to break a fragile material was described by Griffith [56] as depending
on the surface energy of the material. But for ductile materials, the stress actually needed to cause
the fracture is several orders of magnitude lower than the stress needed to break the atomic bonds.
This was explained by the presence of crack-like defects in the material as the theoretical shear
stress was higher than the real yield stress.

Ductile materials are also known for their plasticity. To explain this phenomenon, it was pro-
posed [101] that dislocation movement was at the origin of plastic deformation. It is important to
note that at that time, dislocations had not been observed yet but had been theoretically formulated
since 1907 [138].

FIGURE 1.4 – Illustration of an edge dislocation for the continuum view (a) and showing the
atoms of the material.(b) b corresponds to the Burgers vector of the dislocation [6]

FIGURE 1.5 – Illustration of a screw dislocation for the continuum view (a) and showing the atoms
of the material. (b) b correspond to the Burgers vector of the dislocation [6]

Dislocations are linear defects present in crystalline structures, they correspond to a sudden
change in atomic arrangement. Any dislocation can be decomposed in elementary segment cha-
racters named edge, illustrated in Figure 1.4 and screw, illustrated in Figure 1.5 dislocations. In
practice, dislocations in materials are usually a mix of these two dislocation types [64].
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FIGURE 1.6 – Line vector and Burgers vector illustrated for an edge dislocation. The red arrows
represents the Burgers circuit of the dislocation following the RHFS rule [48]

The Burgers vector defines the magnitude and direction of the lattice distortions created by a
dislocation in a crystal, so it can be used to describe a dislocation. This vector, denoted as b, can
be defined from a Burgers circuit using the Right Hand Finish to Start rule. A Burgers circuit is
an atom to atom closed path defined in a deformed crystal containing dislocations as illustrated
by the red rectangle in Figure 1.6. When a dislocation is present inside this loop, the same loop
defined in the undeformed perfect crystal will be no longer closed. The vector needed to close the
loop in the perfect crystal is the Burgers vector b = FS. The Burgers vector of an edge dislocation
is normal to the line vector of the dislocation while the Burgers vector of a screw dislocation is
parallel to the line vector.

System BC(d) BC(a) DB(a) DB(c) AB(d) AB(c)

Burgers vector [101] [101] [011] [011] [110] [110]

Slip plane (111) (111) (111) (111) (111) (111)

Schmid-Boas notation B4 D4 D1 C1 B5 C5

System DC(a) DC(b) AC(b) AC(d) AD(c) AD(b)

Burgers vector [110] [110] [011] [011] [101] [101]

Slip plane (111) (111) (111) (111) (111) (111)

Schmid-Boas notation D6 A6 A2 B2 C3 A3

TABLE 1.1 – Slip systems for face centered cubic crystals

Slip is defined by the displacement of a part of a crystal relative to the other part along crys-
tallographic planes caused by the passage of a dislocation. In their glide plane, dislocations are
shearing the crystal along a given slip direction which is the Burgers vector. The combination of
a slip plane and a slip direction is called a slip system. There are four slip planes and six slip
directions creating a total of twelve slip systems in face centered cubic crystals (FCC) which is the
crystal system that will be used in this thesis. These slip systems are listed in Table 1.1.

Another way to illustrate slip systems is using the Thompson tetrahedron in Figure 1.7. Each
face of the tetrahedron corresponds to a slip plane while the edges correspond to the Burgers
vectors of perfect dislocations.

Dislocation movement are the carrier of plasticity in materials. It is worth noting that dis-
location density is usually between 1010 m−2 and 1012 m−2 but it rapidly increases with plastic
deformation reaching values of 5×1015 m−2. Thermal treatment of the crystal can also lower the
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FIGURE 1.7 – Thompson tetrahedron illustrating the glide planes ((a),(b),(c),(d)) as well as the
dislocations Burgers vectors (edges of the tetrahedron) [24]

dislocation density to a density as low as 106 m−2 [64].

Stresses created by dislocations

Stress field of a single dislocation

In order to calculate the stress field created by a dislocation, an equivalent elastic distortion
can be used [68].

Screw dislocation For an infinite screw dislocation lying on the z-axis, the equivalent elastic
distortion is shown in Figure 1.8. As a cylinder of isotropic material is used, the equivalent stress
field is easily calculated from the displacement induced by the dislocation :

UUU(r,θ) =
b.θ
2π

. (1.4)

It is worth noting that using cylindrical coordinates facilitates these calculations.
Using the equivalent distortion we obtain the following stress for a screw dislocation :{

τθz = τzθ = Gb
2πr

σr = σθ = σz = τθr = τrθ = τrz = τzr = 0
(1.5)

With G the shear modulus and b the magnitude of Burgers vector. Since there are only dis-
placements in the z direction, this field is purely shear. In Cartesian coordinates the stress fields
corresponds to : 

τxz = τzx =−Gb
2π

y
x2+y2

τyz = τzy =
Gb
2π

y
x2+y2

σx = σy = σz = τxy = τyx = 0

(1.6)

11



Chapitre 1. Bibliographic study of crack-dislocation interactions

FIGURE 1.8 – (a) Screw dislocation in a crystal. (b) Cylinder subjected to an elastic distortion
equivalent of the dislocation caused by the infinite screw dislocation presented in (a) [64]

Edge dislocation The same approach can be used on edge dislocations though it leads to a more
complex expression of the stress field. The distortion of an infinite edge dislocation can again be
assimilated to the distortion created on a cylinder as illustrated in Figure 1.9.

FIGURE 1.9 – (a) Edge dislocation in a crystal. (b) Cylinder subjected to an infinite elastic dis-
tortion equivalent of the dislocation caused by the edge dislocation presented in (a) [64]

In cylindrical coordinates, the stress field of an infinite edge dislocation lying on the z-axis is :
σr = σθ =− Gb

2π(1−ν)
sinθ

r

τθr = τrθ = Gb
2π(1−ν)

cosθ

r

σz = ν(σr +σθ )

τθz = τzθ = τrz = τzr = 0

(1.7)

With G the shear modulus, b the Burgers vector magnitude and ν the Poisson’s ratio. This field
can be converted to Cartesian coordinates to obtain the following results :
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

σx =− Gb
2π(1−ν)y

(3x2+y2)
(x2+y2)2

σy =
Gb

2π(1−ν)y
(x2−y2)
(x2+y2)2

τxy = τyx =
Gb

2π(1−ν)x
(x2−y2)
(x2+y2)2

σz = ν(σx +σy)

τxz = τzx = τyz = τzy = 0

(1.8)

About the dislocation core It is worth noting that the equations above are all based on an equi-
valent elastic distortion within a cylinder. While broadly used for the study of dislocations, these
fields tend to infinite stresses when r tends to zero since the stress varies inversely with the dis-
tance to the center of the dislocation. There is a limiting radius of r0 = 5 ∼ 10 Å below which
the above elastic solution does not apply. The core of the dislocation is not a continuum, for an
accurate result the forces between individual atoms must be considered.

Dislocations interactions

Two dislocations can interact with each other. As seen above, the stress field of a dislocation
inversely varies with the distance to the center of the dislocation. Two dislocations of same Burgers
vector and same line direction will exert a repulsive force on each other. On the other hand, two
dislocations of opposite Burgers vector or opposite line orientation will attract each other and may
combine.

Peach Koehler force

FIGURE 1.10 – Movement of a dislocation of Burgers vector b. The dislocation of length ds moving
over a distance dl swipes an area dA = ds.dl

When a force is applied to a crystal containing dislocations, this force will act on the dis-
locations. If the dislocation moves and sweeps and area dA (see Figure 1.10), it will lead to an
increment of the plastic shear strain accumulated in the material equals to :

dΓ =
b.dA

V
(1.9)
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The magnitude of force F acting on a dislocation is defined from the work (dW ) done when a
unit length of dislocation (ds) moves a unit distance (dl) as illustrated in Figure 1.10 :

F =
dW
dsdl

=
dW
dA

= τb (1.10)

τ corresponds to the effective shear stress felt by the dislocation. This shear stress is resolved
on the dislocation glide system and is induced by the applied load and all the other dislocations
contained in the crystal.

Image forces

FIGURE 1.11 – Image force created by a free surface on a dislocation. Both the dislocation and the
image dislocation are equidistant from the free surface. This example is illustrated for an infinite
screw dislocation

Dislocations generate stresses on free surfaces but since these are traction free surfaces, the
boundary conditions induces image forces on the dislocation [64]. In the elementary case of an
infinite screw dislocation parallel to the free surface, this image force corresponds to the one
induced by a mirrored dislocation of opposite sign located outside the crystal. This gave the name
of image forces to the back forces exerted on dislocations induced by the presence of free surfaces.
These image forces are illustrated in Figure 1.11.

In the general case of dislocations with any possible line orientation and random Burgers
vector, the mirroring analysis is not valid any more. Nevertheless, the free surface will exert forces
on the dislocation which are still called image forces. As seen later in this thesis, the image forces
can be estimated by solving a boundary value problem where the traction free condition is enforced
at the surface, for example using an FEM calculation.

Dislocation movement

Dislocations move in two basic types of movement. Conservative motion, or glide, corresponds
to the movement where the dislocations move in the plane defined by their line and Burgers vec-
tors. Non-conservative motion, or climb corresponds to the movement where a dislocation moves
out of its glide surface. In the following, only conservative motion will be taken into account since
non-conservative motion is not relevant to our case studies.

Dislocation mobility

Dislocation mobility is a fundamental property of crystals impacting its plasticity. A disloca-
tion velocity v can be defined as [78] :
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v =
τ.b
B

(1.11)

with τ the shear stress, B a viscosity coefficient corresponding to the dislocation-phonon in-
teraction and b the magnitude of the Burgers vector.

Cross slip

FIGURE 1.12 – Cross slip mechanism A dislocation loop in the (111) slip plane (a) is moved due
to the stress applied on the (111) plane (b). Since the z part of the dislocation is pure screw, it
is free to expand on the other plane (c). The dislocation can cross slip again to the original slip
plane in what is called doucle cross slip (d) [64]

In face-centered cubic metals, screw dislocations are able to switch from one {111} type plane
to another {111} type plane. As described above, dislocations can move in the plane defined by
its line and Burgers vector. These vectors are co-linear for pure screw dislocations allowing them
to move on more than one plane. In the case of FCC, there exists two slip planes sharing a given
Burgers vector as shown on the Thompson tetrahedron 1.7. The cross slip mechanism is illustrated
in Figure 1.12 and it is thermally activated.

Dislocation nucleation

There are several dislocation nucleation mechanisms. Here, two of them will be presented in
detail, but it worth noting that other mechanisms exists including multiplication by climb, from
prismatic loops or by multiple cross glide. For more details on these mechanisms, the reader can
refer to Hulls Introduction to dislocations [64].

Frank-Read sources

Frank-Read sources, as illustrated in Figure 1.13, are dislocations pinned in the volume either
by other dislocations, precipitates or other obstacles in the volume. When a stress is applied, these
dislocations will bow out and loop around creating a new dislocation loop.

Nucleation at stress concentrations

Aside from the Frank-Read sources, there are other dislocation multiplication mechanisms.
Dislocation nucleation occurs when a dislocation is created in a zone of the crystal free of any de-
fects. This nucleation, also named homogeneous nucleation, can only occur under extreme condi-
tions which can be estimated [36] :
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FIGURE 1.13 – Frank-Read source mechanism. Shaded area corresponds to the zone where slip
occurred. [108]

τN '
G
30

, (1.12)

with τN the stress required for the nucleation to occur and G the shear modulus. In practice, the
stress τN is much higher than the stress at which plasticity starts. It is highly unlikely such stresses
are reached everywhere in the volume, though it could be reached locally. Therefore, on stress
concentration zones, such as the stress caused by an inclusion on the crystal or by the presence of
cracks, dislocations can nucleate.

1.4 Crack - dislocations interactions

Since dislocations create the plastic zones developped near the crack tip, their presence is
inherently tied to crack propagation, or lack thereof. Aside from the plastic zone, dislocations also
directly interact with the crack. These interactions can be observed, but the observation methods
cannot cut out all the possible parameters that affect dislocations and crack. Therefore, simulations
not only allow to study more specific and controlled cases but also to measure variables in a more
precise manner.

Theory of dislocation - crack interactions

Dislocations can interact in several ways with a crack which could mainly be decomposed
into shielding and antishielding effets. Shielding is defined when the presence of a dislocation is
lowering locally the stress intensity factors of a crack, it also affects the nucleation of dislocation
on the crack front. The concept of shielding was first proposed by Thompson and Weertman [131,
141]. Antishielding corresponds to a local increase in the local stress intensity factors of a crack
created by the presence of a dislocation.

Interactions between dislocations and cracks can be divided in two categories. First, the dislo-
cations nucleated from the crack itself and second the dislocations already present in the bulk of
the cracked material. Dislocations nucleated from the crack have usually a shielding effect since
they were generated in order to accommodate the crack advance. On the other hand, pre-existing
dislocations can have both effects. In this work, we will focus on the effect of a pre-existing dislo-
cation population on the crack.
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Between the crack tip and the plastic zone, there is evidence of a Dislocation-Free Zone (DFZ)
[15, 83]. This zone has been shown to be a consequence of the presence of a barrier to dislocation
emission from the crack tip. Dislocations are still able to enter this zone and interact directly with
the crack. This zone limit corresponds to the equilibrium between the crack force and the lattice
friction force [99].

The effect of the dislocations on the crack can be quantified by their effect on the stress in-
tensity factors. The method of conformal mapping [82] can be used to determine the shear stress,
τ , acting along the crack propagation direction at a distance x from a crack tip due to a screw
dislocation located at a distance r on a coplanar slip plane :

τ =−µb
2π

√
r
x

1
r− x

(1.13)

This configuration is specially useful for estimating the effect of dislocations emitted from the
crack. For a point at the vicinity of the crack tip (x→ 0), the stress field reduces the stress intensity
factor k by a magnitude of [73] :

kD = lim
x→0

√
2πxτ =− µb√

2πx
(1.14)

Denoting K the applied stress intensity factor, the local intensity factor k is equal to :

k = K + kD (1.15)

Therefore, if kD is negative, the stress intensity factor will decrease locally creating a shiel-
ding effect. On the other hand, for a positive kD, the presence of the dislocation will create an
antishielding effect on the crack.

Another mechanism observed between dislocations and crack is the blunting of the crack tip
by dislocations [142]. One of the theorized ways for this blunting is described by the emission of
dislocations at the crack tip. This emission can therefore blunt the crack tip by the formation of
the plastic steps on the crack surfaces. This will slow down its propagation as the stress is reduced
when the tip is not infinitely sharp.

Experimental observations

There are several methods that have been used to observe dislocation crack interaction such
as, etch pit studies [33], X-ray topography [61, 91], in situ TEM [62, 100] or AFM [115].

FIGURE 1.14 – SEM observation of dislocation emission from direct sources along the crack
front on silicon. Crack plane : {110}, propagation direction : {111}, T = 885K, brittle fracture at
K = 1.11KIC. Etch pattern of the crack surface. [115]

One of these studies, [115], is based on the AFM technique and focuses on Silicon samples
since it is a material often used as reference. In this study, several phenomena were observed using
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SEM (scanning electron microscope) like the dislocation emission from various sources on the
crack front, as illustrated in Figure 1.14. This emission is inhomogeneous and may use ledges on
the crack as nucleation sites. There is no evidence of spontaneous emission of dislocations which
is corroborated by what is known so far about spontaneous emission. As for the plastic zone,
it seems that it is mostly formed by either preexisting dislocations or dislocations emitted from
remote sources rather than being created by the crack front itself.

Simulations

The direct observation of dislocation crack interactions is extremely difficult and can be further
complicated by the lack of control over the dislocations and the exact geometry of the crack.
Simulations allow a complete control over the studied parameters as well as an ease to individually
test each parameter.

Atomistic simulations

FIGURE 1.15 – Example of a 3D arrangement of atoms with a crack used for atomistic simulations
[16]

Molecular dynamics is a simulation method consisting on solving numerically Newtons equa-
tion of motion for a system of interacting atoms using a discrete time step. This method is used in
several domains like chemistry [81], microbiology [51] or material science [60].

A 3D arrangement of atoms such as the one in Figure 1.15 can be used to study the interactions
between a crack and a dislocation. In the example of Figure 1.16, a dislocation loop is emitted from
the crack front after another dislocation interacts with it. As DDD simulations can be run using a
nanometric volume, we will be able to compare our results with what has been done in atomistic
simulations.

The limitation constraint of this method is the size of the simulation box. As all the atoms are
simulated, the simulations are usually of nanometric scale, which, while extremely accurate, limits
what can be simulated. Moreover the simulated time is limited to a few nanoseconds, the time step
being of the order of 10−15 s.

Discrete Continous Model

Discrete-Continous Model(DCM) has been used to simulate the effect of dislocations on a
crack front [70]. These simulations are carried out with a static crack in a micrometric volume
containing a large population of dislocations belonging to any of the twelve possible dislocation
systems of FCCC crystals.

Figure 1.17 corresponds to the final stage for a DCM simulation containing a crack. As the
crack was explicitly introduced in the simulated volume, the code had to be modified to be able to
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FIGURE 1.16 – Example of an atomistic simulation containing a crack and a dislocation and
their following interactions [16] : A 60º dislocation of Burgers vector DB(a) creating a stimulated
emission of a dislocation loop

FIGURE 1.17 – Configuration of a DCM simulation containing a crack and a dislocation micro-
structure (color lines). Each color represents a different dislocation slip system [70]

accommodate a concave surface. Comparisons with Crystal Plasticity were carried out to validate
the model.

These simulations were able to separate the different contribution factors to the total strain as
illustrated in Figure 1.18 as well as to measure the stability of a crack though they do not consider
the individual contribution of dislocations nor they could study the case of a propagating crack as
the studied crack was static.
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FIGURE 1.18 – Relative contributions to the total opening strain field ε33 in the DCM simulations :
εp the plastic strain in green, εe

c the elastic strain associated with the crack, εe
d the elastic strain

associated with the dislocation microstructure, εe the total elastic strain [70]

FIGURE 1.19 – 3D presentation of Frank-Read sources (red lines) interacting with different pre-
cipitate densities (grey spheres). The blue disk represents the crack in XFEM and the surrounding
green zone its propagation area [69]

Extended Finite Element Method and Dislocation Dynamics

A study by Keyhani et al. [69] has been carried out combining both eXtended Finite Element
Method and Dislocation Dynamics to represent plasticity both at a macro scale with a propagating
crack and at a micro scale with the dislocations as illustrated in Figure 1.19. This method combi-
nation was used to study the effects of precipitates on a crack propagation. This methodology is
similar to what has been done in this study but in our case, the crack opening takes into account
the dislocations fields and advances accordingly. Additionally, we concentrate in the crack front
stress intensity factors instead of the dislocation propagation.
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1.5 Conclusion

In this chapter the principles of fracture mechanics that will be used in this work were intro-
duced. Especially what concerns crack stress fields and their local stress intensity factors. Dislo-
cations were also introduced in this chapter as, alongside cracks, dislocations are the main focus
of this work. Dislocation movement and forces created by them were also reviewed.

Interactions between dislocations and crack were discussed, introducing their theoretical as-
pects and what has been observed experimentally and on various simulations.
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Chapitre 2. Extended finite element method

2.1 Introduction

There are several methodologies able to simulate crack propagation. In this chapter we will
review the main existing methods, and, in particular the eXtended Finite Element Method which
is the method used in this work. If the reader wishes more details on crack propagation simula-
tions they can refer to the French book from Pommier et al. titled La simulation numérique de
la propagation des fissures en milieux tridimensionnels, fonctions de niveau, éléments finis éten-
dus et critères énergétiques [106] which contains a practical and substantial explanation of three
dimensional crack simulations.

2.2 Continuum simulations methods for the study of crack propaga-
tion

Simulation for crack advancement has always been a complicated topic. Crack propagation
implies a change in the geometry of the studied volume, creating new surfaces as the crack propa-
gates. These new surfaces are numerically a problem since energy conservation is hard to achieve
using traditional simulations methods such as finite elements (FEM). There are nonetheless a va-
riety of methods used to simulate crack propagation, some of which are presented here.

Introduction to FEM

The bases of the finite element method was first developed during the fifties [5, 133], but
its name was coined later by Clough [34]. This method was created to numerically solve partial
differential equations problems.

The first step of this method is the discretisation. It consists in dividing the entirety of the stu-
died volume into elements that do not overlap and are connected by nodal points. These elements
usually are elemental geometry shapes like cubes or tetrahedra for the three dimensional cases.
Each element and its displacement is described by the positions of the nodal points. This method
consists on using an algorithm to determine an approximate result of the partial differential equa-
tions that define the volume’s equilibrium state. In FEM, the unknown is the displacement of the
mesh nodes. In each element, the displacement is interpolated from the nodal values using shape
functions. In the case of 8 node-elements as shown in Figure 2.1, the shape functions consists of
second order polynomials. In the case of linear elasticity, once introduced in the weak form of the
partial differential equation, it leads to a linear system to solve :

KKK.UUU = FFF , (2.1)

where U is the nodal displacement field.
When the global boundary conditions are known, the elastic problem can be solved and the

solution is unique.
Finite element method is used in a wide range of domains due to its ability to deal with complex

shapes, like the one illustrated in Figure 2.1. This method has been used in domains such as heat
transfer fluid dynamics [109], structure design [58] or even biology [104].

Node release scheme in FEM

The node release scheme was first developed by Newman [96]. This 2D method, illustrated in
Figure 2.2, consists in releasing the node delimitating the crack tip to represent its advancement.
At each release, the load is also adjusted since the resting area it is reduced [120]. This method
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FIGURE 2.1 – Example of a wheel meshed created with 8-node elements for a finite element
simulation [10]

FIGURE 2.2 – Node release scheme. The nodes of the mesh will be released to represent the crack
advancement

imposes a priori knowing the path the crack will take beforehand and forces the crack tip to always
be situated on a node.

While this method easily allows representing a crack in 2D, a 3D representation is more com-
plex, especially if the crack is not straight. The crack advancement per iteration is determined
by the mesh size, which is a parameter chosen by numerical needs, not using a material parame-
ter. In this model, the crack growth rate is an average, making the advancement in this scheme
arbitrary [86, 87].

This method has been mainly used to study fatigue cracks [112, 113, 121].

Remeshing methods

These methods, illustrated in Figure 2.3, consist in remeshing the volume near the crack tip
when it advances in the volume. This allows an accurate representation of the fields near the crack
tip. The algorithms used for these methods are often very complex since it requires to transfer
the state variables of the former mesh to the new one. Remeshing is mainly implemented in two
dimensional simulations and has been used to simulate interactions between cracks and inclusions
for either brittle or ductile materials [19, 20, 118].
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FIGURE 2.3 – Example of a crack trajectory obtained with a remeshing method [20]

There are two main error sources in these methods. First, once the remeshing is done, the
solution of the previous step needs to be projected on the new mesh. Being a finite element method,
the solution is not only discrete but the new mesh does not have the same nodes as the previous
one making it impossible to do a simple projection and still have balanced fields. A rebalancing
step is then added, but it does not guarantee there will be mechanical energy conservation during
the projection. The second error source is simply the fact that new surfaces are created at each
step. The discrete systems energy is heavily modified during the projections leading to a number
of numerical errors on the crack propagation itself if not done properly [110].

There are some other methods close to the remeshing method like the moving element method
[97], which consist in moving the nodes belonging to elements near the crack tip to take into
account the new crack position or the use of space-time finite elements, for which time schemes
can be treated with Galerkin type formulation for example [1, 63].

Element deletion method

FIGURE 2.4 – Element deletion method : The green elements will be removed to represent the
crack advancement

This method illustrated in Figure 2.4 consists in taking the elements that have reached a brea-
king criteria and setting their Young’s modulus to zero, thus deleting the element in question.
In some cases, the mass of the element is deleted too. This method is largely used in industrial
settings, but it can be very inaccurate [21, 75].

If the crack path does not coincide with the mesh, the crack path is more inaccurate. It has
been found that this method constantly underestimates the speed of cracks, making it unreliable.
It is also heavily dependent on the mesh size since it is the removal of the elements that creates the
crack [122].
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Cohesive elements method

FIGURE 2.5 – Cohesive elements method. An element (green) with no thickness is introduced
between the two starting elements

This method, based on the Dugdale-Barenblatt model [130], consists in introducing two di-
mensional elements between the elements that compose the studied mesh as illustrated in Figure
2.5. These surfaces have a behavior law that normally includes the link between the crack displa-
cement and the opening stress. These introduced elements modify the rigidity of the whole mesh
as they possess their own rigidity even if their thickness is equal to zero.

The main problem with this model is that it is heavily mesh dependent. Since cracks can only
propagate on interfaces, its geometry will be totally dependent on the mesh [146]. To avoid some
dependence, some works have used the cohesive elements to represent grain boundaries and study
intergranular fracture [145]. Despite this major issue, this method is still often used for crack
propagation in rocks [67, 145] and composite laminates [80].

There have been adaptations of the cohesive element method. For example in [25,37,103,148],
cohesive elements are only added to the mesh once the elements reach a certain stress near the
crack tip.

2.3 Extended finite element method (XFEM)

XFEM is based on the Finite Element method and uses the partition of unity presented bellow
to take into account the deformation produced by the crack [4,59,92,124]. Contrary to the remesh
methods, in XFEM the mesh remains the same during the entire simulation, but the elements that
contain the crack are harshly distorted [11, 149]. The crack position is tracked by the level set
method [102] and the propagation is determined from the estimation of the energy at the crack
front calculated by the G-θ method [111].

The partition of unity

This method was first used by Benzley [14], and was further formalized by Babuska and Me-
lenk [7, 88]. It has been used in a multitude of fields, aside fracture mechanics, such as fluid
mechanics [30, 31, 139, 140], phase transition [32, 90] or the modeling of inclusions [125]. The
partition of unity allows enriching the classic finite element method to represent a given function
on a given domain. The finite element interpolation of the displacement field at any point xxx is as
follows within an element Ωe :

uuu(xxx) |Ωe= ∑
i∈Nn

∑
α

dddα

i φ
α
i (xxx), (2.2)

with Nn the set of nodes on the element Ωe, dddα

i the displacement of node i in the α direction
and φ α

i the corresponding shape function.
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Since the degrees of freedom of a node are the same for all the elements connected on said
node, the interpolations in each element can be combined to give the global interpolation that will
be valid for every point xxx of the domain :

uuu(xxx) = ∑
i∈Nn(x)

∑
α

dddα

i φ
α
i (xxx), (2.3)

with Nn(xxx) the set of nodes of the element including xxx. It is possible to enrich the finite element
approximation of the displacement field the following way :

uuu(xxx) = ∑
i∈Nn(x)

∑
α

dddα

i φ
α
i (xxx)+ ∑

i∈Nn(x)∩NF

∑
α

dddα

i φ
α
i (xxx)F(xxx), (2.4)

with F(xxx) the enrichment functions on the ΩF domain and NF the nodes for which their sup-
ports intersect with the ΩF domain.

In order to account for the discontinuities a crack creates, two sets of enrichment functions are
added to the corresponding nodes [46] : the first function H , also known as Heaviside function,
corresponding to the discontinuity created by the crack on the volume, the second set of functions
F j for j = {1...4} corresponding to the crack tip enrichment.

This enrichment is defined in a cylindrical framework with r the distance to the crack tip and
θ the angle between the crack propagation direction and the concerned point. The functions are
defined as follows :

H (x,y) =

{
−1 for y < 0
+1 for y > 0,

(2.5)

F j(xxx) =
√

r{sin(
θ

2
),cos(

θ

2
),sin(

θ

2
)sin(θ),cos(

θ

2
)sin(θ)}. (2.6)

These enrichments are the ones used by Moës et al. [93] on the first development of this
method. They were generalized to three dimensions by Sukumar [125]. The generalization remains
very close to the two dimensional version, replacing the crack tip, previously a point, by a curve,
the crack, previously a curve, by a surface and using a volume as element support. These functions
are applied to different elements depending on where the crack is located in the mesh. It is worth
mentioning that the first of the four F j functions is discontinuous at the crack as it represents
the discontinuity induced by the crack tip. The functions defined by F j are derived from linear
elasticity and correspond to an approximation of the stress field created by the crack tip [50].

FIGURE 2.6 – Node enrichment for a two dimensional crack at time t (full symbols) and at time
t + δ t (hollow symbols). The crack advancement between the two times corresponds to the doted
line

As illustrated in Figure 2.6, the element containing the crack front will be enriched with the
F functions while the elements containing the surfaces of the crack are enriched with the Heavi-
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side function H . When the crack advances, the elements are once again enriched. The previous
enrichments are not removed since it would impact the energy equilibrium of the volume.

Level set method

The partition of unity method was used here to modify the interpolation inside the elements
intersected by the crack. Thus the crack needs to be tracked in order to accordingly enrich the
intersected elements. In order to track this interface, some methods use an explicit approach which
leads to the remeshing of the volume as the crack advances. Other methods, like the volume of
fluid method, allows the tracking of the interface by assigning a value at each element representing
what fraction of the element is in the interior of the established boundary. Instead of trying to define
the interface in an explicit way, the level set method, first developed by Osher and Sethian [102],
consists in using an Eulerian approach for the definition of the interface.

Method generalities

The level set method has been implemented in many fields [128] such as image processing
[84] or crystal growth and germination modeling [117]. Level set functions are used to model
interfaces [23, 29, 116]. An interface is modeled by a continuum function defined at every point
of the studied space and that results in the distance between said point and the interface. The
interface being oriented, the function will be signed depending on what side of the interface the
studied point is situated as illustrated in Figure 2.7.

FIGURE 2.7 – Definition of an interface using a level set function [107]

Application of the level set method to cracks

Representing a crack using level sets functions was first done by Stolarska [123] in 2D and
by Moës [94] in 3D. In a finite element mesh, the level set function is interpolated between the
nodes by the classic finite element functions, creating a field inside the mesh [12, 136]. In a 3D
environment, a crack is represented by a surface. In order to track a surface, two level set functions
are used, ψ and φ that are as illustrated in Figure 2.8. ψ separates the space in two, following the
crack surface while φ follows the crack front.

In order to track a moving crack, the level set methods need to be updated after each propaga-
tion step.

Algorithm

There are several algorithms that can be used to update the level set functions [89]. Several of
these algorithms were compared in a study by Duflot [44], where it was concluded that the easiest
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FIGURE 2.8 – Definition of a crack surface and front using two level set functions [107]

and most efficient algorithms are the ones using Hamilton-Jacobi type equations. The algorithm
that was introduced in Cast3M was developed by Gravouil et al. [55] and is as follows :

1. Calculation of the propagation speed and angle using the mechanical model

2. Extension of these quantities to the whole domain

3. Crack plane speed modification

4. Update and re-initialization of the crack plane

5. Update of the crack front

6. Orthogonalization and re-initialization of the crack plane

In order to calculate the propagation speed and angle, the stress intensity factors for the crack
need to be calculated.

Stress intensity factors measure : G - θ method

The G−θ method, first developed by Destuynder et al. [39], is a calculation method that allows
to calculate G, the thermodynamic force of the crack progress also known as energy release rate,
on the crack tip. This method consists in analyzing the dissipation of energy during an irreversible
process and in characterizing the contributions to the dissipation. The value of this energy allows
to ascertain the crack advancement. Thus, G can be used to measure dislocations effects on the
crack front by comparing the energies with and without dislocations on said front.

To achieve this calculation, a virtual kinematics of the crack tip named θθθ will be used.

Introduction to G

The studied volume is a solid S which includes a crack with a length of l. Ω(l) is defined as the
open set occupied by the solid, and C as the stiffness tensor. For the sake of simplicity, the solid
is supposed two-dimensional. In 2D, the applied forces are represented by f = ( f1, f2) while the
displacements are represented by u= (u1,u2). The associated deformations to these displacements
are :

εi j(uuu) =
1
2
(∂iu j +∂ jui) for i, j ∈ {1,2}. (2.7)
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W is defined as the potential energy of the system and the applied load as :

W =
1
2

∫
Ω(l)

Tr(CCCεεε(uuu)εεε(uuu))− fu. (2.8)

Thus W is dependent on the crack length l and the load fff . This energy is available in the solid for
the crack to advance.

Therefore, G, the energy release rate, can be defined as :

G =
−∂W

∂ l
(2.9)

Principle of virtual work

The principle of virtual [3] work states that for v a virtual kinematically admissible displace-
ment field : ∫

Ω(l)
Tr(CCCεεε(vvv)εεε(vvv)) = fv (2.10)

Since the displacement u is a solution of 2.10, it can be deduced from 2.8 that :

W =−1
2

∫
Ω(l)

Tr(CCCεεε(uuu)εεε(uuu)) (2.11)

Introduction to theta

FIGURE 2.9 – Crack in a volume with its vitual kinematics [39]

A series of open sets indexed with the scalar parameter ε > 0 is used as a series of configu-
rations during the virtual crack advance. The virtual crack advance field at any point of the crack
front is named θθθ(MMM). This open sets are such as :

Ω
ε = Fε(Ω) (2.12)

With Fε a map of R3 in R3 such as :

∀MMM ∈Ω,MMMε = Fε(MMM) = MMM+ εθθθ(MMM) (2.13)

With MMM being a point in the open set Ω and θθθ a vector field defined on Ω verifying the
following hypothesis [39] :

— θθθ parallel to the crack plan

— Fε(MMM)⊂Ω

— θθθ support is limited to the surroundings of the crack where no force is applied
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— the vector element are at least Lipschitz continuous

— the area created is unitary corresponding to an infinitesimal movement

θθθ is the virtual kinematics of the crack tip illustrated in Figure 2.9. These hypothesis allow an
easier problem resolution. The admissible propagation mechanisms, in other words the θθθ fields
verifying these hypothesis, cannot lead to crack branching. The θθθ field is a mathematical artifact,
only its restriction to the crack tip has a mechanical sense ; this field matches the advancement
speed of the crack.

Elasticity problem

For every open set Ωε there is a corresponding elasticity problem defined by the following
equations for all τττ virtual stress field and for all ννν kinematically admissible displacement field
[39] : 

∀τττ virtual stress field,
∫

Ωε

Tr(CCC−1
σσσ

ε
τττ) =

∫
Ωε

Tr
(

τττ
∂uuuε

∂MMMε

)
∀ννν admissible kinetic,

∫
Ωε

Tr
(

σσσ
ε ∂ννν

∂MMMε

)
=
∫

Γ1

fff ννν

(2.14)

With CCC the elasticity tensor, MMMε a generic point of Ωε , (σσσ ε ,uuuε) the stress and the displacement
fields, and Γ1 the boundary fraction where the force fff is applied. For sake of simplicity, it is
supposed that no force is applied on the variable part of Ωε . σσσ∗,uuu∗ are the Lagrangian variables
defined on Ω and associated to σσσ ε ,uuuε such as :{

σσσ∗ = σσσ ε ◦FFFε

uuu∗ = uuuε ◦FFFε
(2.15)

Equation 2.14 can then be rewritten as :
∫

Ω

Tr(CCC−1
σσσ
∗
τττ) =

∫
Ω

Tr
(

τττ
∂uuu∗

∂MMM

(
III + ε

∂θθθ

∂MMM

)
−111
)

∫
Ω

Tr

(
σσσ
∗ ∂ννν

∂MMM

(
III + ε

∂θθθ

∂MMM

)−1

det
(

III + ε
∂θθθ

∂MMM

))
=
∫

Γ1

fff ννν

(2.16)

for all τ and for all ν kinematic admissible displacement fields on Ω, with I the identity matrix.

Implicit functions theorem

For f (x,y) = 0, (x,y) ∈ R if f is smooth enough in the neighborhood of a point belonging
to the curve, ∃φ : R→ R at least as smooth as f for which locally the curve and the graph of φ

are combined. In other words, if (x0,y0) verifies the equation, if f is a smooth function and if its
partial derivative in respect to y at (x0,y0) is not zero then there is a neighborhood of (x0,y0) in
which the zone identifies itself to φ graph.

This condition is respected by θ since it is components are at least smooth [39]. Then :

(σσσ∗,uuu∗) = (σσσ0,uuu0)+ ε(σσσ1,uuu1)+ ε
2(σσσ2,uuu2)+ ε

2O(ε) where lim
ε→0

O(ε) = 0 (2.17)

With (σσσ p,uuup) defined such as : (σσσ0,uuu0) is the solution of the elasticity problem on Ω that veri-
fies (kadf : kinematically admissible displacement field). The stress tensor is a statically admissible
stress field. : 

∀τττ,
∫

Ω

Tr
(
CCC−1

σσσ
0
τττ
)
−
∫

Ω

Tr
(

τττ
∂uuu0

∂MMM

)
= 0

∀ννν kadf,
∫

Ω

Tr
(

σσσ
0 ∂ννν

∂MMM

)
=
∫

Γ1

fff ννν

(2.18)
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(σσσ1,uuu1) such as it is solution of :
∀τττ,

∫
Ω

Tr
(
CCC−1

σσσ
1
τττ
)
−
∫

Ω

Tr
(

τττ
∂uuu1

∂MMM

)
=−

∫
Ω

Tr
(

τττ
∂uuu0

∂MMM
∂θθθ

∂MMM

)
∀ννν kadf,

∫
Ω

Tr
(

σσσ
1 ∂ννν

∂MMM

)
=−

∫
Ω

Tr
(

σσσ
0 ∂ννν

∂MMM

)
divθθθ +

∫
Ω

Tr
(

σσσ
0 ∂ννν

∂MMM
∂θθθ

∂MMM

) (2.19)

(σσσ2,uuu2) such as it is solution of :

∀τττ,
∫

Ω

Tr
(
CCC−1

σσσ
2
τττ
)
−
∫

Ω

Tr
(

τττ
∂uuu2

∂MMM

)
=
∫

Ω

Tr

(
σσσ

0 ∂uuu0

∂MMM

(
∂θθθ

∂MMM

)2
)
−
∫

Ω

Tr
(

τττ
∂uuu1

∂MMM
∂θθθ

∂MMM

)
∀ννν kadf,

∫
Ω

Tr
(

σσσ
2 ∂ννν

∂MMM

)
=−

∫
Ω

Tr

(
σσσ

0 ∂ννν

∂MMM

(
∂θθθ

∂MMM

)2
)2

+
∫

Ω

Tr
(

σσσ
0 ∂ννν

∂MMM
∂θθθ

∂MMM

)
divθθθ+∫

Ω

Tr
(

σσσ
1 ∂ννν

∂MMM
∂θθθ

∂MMM

)
−
∫

Ω

Tr
(

σσσ
1 ∂ννν

∂MMM

)
divθθθ −

∫
Ω

Tr
(

σσσ
0 ∂ννν

∂MMM

)
Ad j

(
∂θθθ

∂MMM

)
(2.20)

With Ad j(∂θθθ/∂MMM) the second invariant of (∂θθθ/∂MMM).

Calculation of the potential energy derivatives

The potential energy of the system is defined such as :

W =−1
2

∫
Γ1

fff uuuε (2.21)

In order to access the energy release rate G the potential energy derivatives are calculated. W
derivatives in relation to the domain Ω in a virtual kinetic θθθ are defined with :

∂W
∂Ω

(θθθ) = limε → 0
W (Ωε)−W (Ω)

ε
∂ 2W
∂Ω2 (θθθ ,θθθ) = limε → 0

(∂W (Ωε)/∂Ω)(θθθ)− (∂W (Ω)/∂Ω)(θθθ)

ε

(2.22)

Taking (2.17) into account leads to :
∂W
∂Ω

(Ω)(θθθ) =−1
2

∫
Γ1

fff uuu1

∂ 2W
∂Ω2 (Ω)(θθθ ,θθθ) =−1

2

∫
Γ1

fff uuu2, etc.
(2.23)

Combining equations(2.19), (2.20), (2.22) and (2.23) the following expressions for the poten-
tial energy derivatives are found :

∂W
∂Ω

(Ω)(θθθ) =
1
2

∫
Ω

Tr
(

σσσ
0 ∂uuu0

∂MMM

)
divθθθ −

∫
Ω

Tr
(

σσσ
0 ∂uuu0

∂MMM
∂θθθ

∂MMM

)
(2.24)



∂ 2W
∂Ω2 (Ω)(θθθ ,θθθ) =

∫
Ω

Tr
(

σσσ
0 ∂uuu0

∂MMM
∂θθθ

∂MMM
∂θθθ

∂MMM

)
+

1
2

∫
Ω

Tr
(

σσσ
0 ∂uuu0

∂MMM

)
Ad j

∂θθθ

∂MMM

−1
2

∫
Ω

Tr
(

σσσ
0 ∂uuu0

∂MMM
∂θθθ

∂MMM

)
divθθθ − 1

2

∫
Ω

Tr
(

σσσ
0 ∂uuu1

∂MMM
∂θθθ

∂MMM

)
−1

2

∫
Ω

Tr
(

σσσ
1 ∂uuu0

∂MMM
∂θθθ

∂MMM

)
+

1
2

∫
Ω

Tr
(

σσσ
1 ∂uuu0

∂MMM

)
divθθθ

(2.25)

Equations (2.24) and (2.25) remain valid in two and three dimensions.

33



Chapitre 2. Extended finite element method

Link between energy derivatives and the stress intensity factors

In the three-dimensional case, the exact solution of the displacement field around the crack tip
is unknown. On the other hand, the behavior of the solution near the crack tip is well known in
the two-dimensional case. Equations (2.24) and (2.25) are used to estimate the energy release rate,
which is a vectorial value.

Following equation is valid for the two-dimensional case :

uuu0 = K0
1
√

rSSS1(ϕ)+K0
2
√

rSSS2(ϕ)+uuu0,R (2.26)

With uuu0 the displacement field solution of the 2D elasticity problem (2.16), (r,ϕ) the polar
coordinates around the crack tip as illustrated in Figure 2.10, SSS1(ϕ) and SSS2(ϕ) two vectors which
the components are two functions of the angle ϕ and the regular displacement uuu0,R, i.e. at least of
C1 class in the neighborhood of the crack tip.

FIGURE 2.10 – Bidimensional crack [39]

For an homogeneous isotropic material with E the Young modulus and ν the Poisson coeffi-
cient :

∂W
∂Ω

(Ω)(θθθ) =


− 1

E

[
(K0

1 )
2 +(K0

2 )
2
]

plane stress

−1−ν2

E

[
(K0

1 )
2 +(K0

2 )
2
]

plane strain
(2.27)

Link between the Rice integral and the energy release rate

Using the Stoke theorem another expression of the energy release rate is given using a contour
integral, the Rice integral [96].

The following energy release rate expression is therefore obtained :

∂W
∂Ω

(Ω)(θθθ) =
1
2

∫
C

Tr
(

σσσ
0 ∂uuu0

∂MMM

)
θθθ .nnn−

∫
C

nnnσσσ
0 ∂uuu0

∂MMM
θθθ (2.28)

With n the inward-pointing normal unit vector of the curve C which surrounds the crack tip.
Figure 2.11 illustrates the contour C which is inside a neighborhood v of the crack tip where θ is
constant.

Therefore :

θθθ =

1

0

 (2.29)
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FIGURE 2.11 – Rice integral contour for a crack tip [39]

The equation (2.28) is independent of θθθ as long as θθθ complies with the hypothesis described
in 2.3.

Expression and independence of G

Hence :
∂W
∂Ω

(Ω)(θθθ) =
1
2

∫
C

Tr
(

σσσ
0 ∂uuu0

∂MMM

)
n1−

∫
n1σσσ1 j∂1uuu0

j (2.30)

G independence regarding θθθ and the contour CCC results from the previous equation as well as
(2.27) where CCC and θθθ do not intervene.

Energy release rate calculations is based on a virtual kinetic θθθ defined to facilitate the calcula-
tion of G. By proving G independence not only towards θθθ but towards CCC too an easily calculable
expression is achieved.

On the second derivative of W

The second derivative of the potential energy equation (2.25) shows that it not only depends on
the stress state of the cracked structure but also on the strain variations during the cracks evolution,
i.e. (σσσ1,uuu1). The crack stability can then be defined by the positivity of the second derivative of
the energy.

Implementation of this method in Cast3M

The G-θ method is implemented in Cast3M using three procedures. This method was adapted
in Cast3M by Prabel [107] for the development of the XFEM on Cast3M. A procedure in Cast3M
is a function created using the gibiane language meaning that it does not need to be compiled with
the code. These three procedures consist in a general procedure called by the user, a procedure
that calculates the θ field and a third procedure that calculates the stress intensity factors. These
procedures allow non linear cases, but since those do not concern our work we will not mention
them further.

The procedure inputs include a list of parameters that describe the calculation parameters, the
volume mesh, the strain fields on said mesh, the level functions φ and ψ as well as the crack front.
Once these variables are input in the code and verified, the θθθ field is calculated.
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Calculation of the θθθ field

θθθ , which is the kinematically admissible virtual displacement of the crack, needs to be calcu-
lated to be able to determine the stress intensity factors. The first step of this process consists on
selecting all the elements of the volume that contain the crack front. The easiest way to do this
is to select the elements for which both φ and ψ are equal to zero. Additional element layers can
be selected, by which the code will select the elements in contact with this first layer of elements.
This volume selected here corresponds to the integral volume previously defined.

For each point of the crack, a local coordinate system is defined using the level set functions.
The gradients of both φ and ψ are calculated and used to calculate the vector τττ defined as :

τττ = gggrrraaadddψ ∧gggrrraaadddφ (2.31)

Which is then used to calculate θ using :

θθθ = gggrrraaadddφ ∧ τττ (2.32)

θθθ is perpendicular to gggrrraaadddφ and in the same directions as gggrrraaadddψ . Once calculated in the
volume, θθθ is extrapolated on the crack front and then normalized to comply with the hypothesis
defined in Section 2.3.

Calculation of the stress intensity factors

In order to determine the stress intensity factors, the displacement of the crack front is locked
so the different modes can be isolated. The local coordinate system of the crack front is then
calculated for both Cartesian and cylindrical coordinates. The local strain field on the crack front
is then created from the gradient of the displacement field solution of the boundary value problem.

First, the derivatives of the cylindrical coordinate system in relation to the global coordinate
system are calculated. These values are used to calculate the displacement in the local coordinate
system. Both the stress and displacement gradient are calculated on the local coordinate system
which are then used to calculate KI , KII , KIII for each point of the crack front.

Crack propagation simulation

The energy calculation method defined above is of capital importance for the calculation of the
crack advancement. The propagation is discrete and can also allow the crack propagation direction
to change according to the crack energy.

Crack advancement

Since the XFEM enriches the elements containing the crack surface as well as the crack front,
when advancing, the crack front needs to move at least to the next element. This is due to the
enrichment functions, particularly the ones concerning the crack front that create the crack front
stress field discontinuity. For them to work properly, the enrichment at t +dt needs to be done on
a different element. In order to do so, we impose that the crack front will move of at least 1.4×x1
with x1 being the element size. To take into account the energy difference at every crack front
point, the point with the lowest energy will move over a distance of 1.4× x1 and the rest of the
crack front will move proportionally to it depending on their energy values.

The crack front will eventually change its motion direction (i.e. crack plane) depending on the
local values of the stress intensity factors, especially KII . The angle will be calculated using the
following equation [107] :

βc = 2arctan

1
4

 KI

KII
− sign(KII)

√
8+
(

KI

KII

)2
 (2.33)
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This equation is based on linear rupture mechanics for the stress corresponding to the maximal
opening.

Since the crack propagation direction and intensity might lead to some points of the crack front
to move outside the volume, the code will ensure that new points belonging to the crack front are
created on the intersection between the crack front and the outer surface of the volume. To achieve
this, it will be first checked if the points are inside the volume, in the case they are not, these points
will be eliminated and a new point in the intersection between the outer surface of the volume and
the crack front will be created.

Crack arrest

Crack arrest can naturally happen when the crack front energy becomes too low to create the
new crack surfaces. The crack can also partially get arrested.

In this work, only a total crack arrest was implemented. In order to carry out this arrest, the
code compares the average energy of the crack to a critical energy value. If the crack’s energy is
higher than the critical value, the crack will be able to advance. Since we lacked the critical energy
value of the crack as well as the fact that this study is centered specifically on the dislocation
impact rather than the actual energy values, we only verified that the crack energy was positive
before propagation. The critical value can be modified as needed though.

As for partial crack arrest, it was not implemented in this code due to the functioning of the
XFEM. As explained above, the crack needs to change of element for the XFEM to work properly.
If one or more points of the crack where to not move, it will create a zone of very high energy
as the surrounding points of the crack would advance normally. This will results on the arrested
points to brutally advance on the next step of the simulation.

Regarding crack closure, the nature of XFEM makes it quite difficult to implement as it is not
designed for it.

2.4 Conclusion

In this chapter we introduced several crack propagation simulation methods, including the
eXtended Finite Element Method. This method consists on implementing the crack implicitly via
enrichments on the nodes the of the elements containing the crack. XFEM has been implemented
in the code Cast3M which will be used in this work for the simulation of the crack front presented
in the following Chapter.

37





3
Discrete dislocation dynamics

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Other existing DDD models . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

The Discrete-Continuous Model . . . . . . . . . . . . . . . . . . . . . . . . . 37
XFEM inspired method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 The DDD code TriDis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Dislocation stress fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Dislocation velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
On the time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Cross slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Deformation measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Coupling XFEM and DDD . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
From XFEM to DDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
From DDD to XFEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Stress intensity factor calculation . . . . . . . . . . . . . . . . . . . . . . . . . 45
Limits of the implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Material parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Mesh parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
DDD parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Computation times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

39



Chapitre 3. Discrete dislocation dynamics

3.1 Introduction

As said before, plasticity in metals is caused by dislocation movement under stress. Dislocation
behavior is well known and has been documented in many textbooks [2, 53, 64]. This knowledge
should allow the study of plasticity based on the movement of dislocations instead of studying
plasticity empirically. This would require not only knowing the position of every dislocation inside
the material at any given time but to also know their behavior with respect to defects and obstacles,
like other dislocations or grain boundaries, and in function of the stress applied to the material. To
do this for a macroscopic sample would be impossible as it would require too much computation
power, but the computational means available today allows these calculations to be done at the
microscopic scale.

The first dislocations dynamics codes able to simulate plasticity by calculating dislocation
interactions where developed at the end of the 90s. These codes were first developed to study cyclic
loading in two dimensions [38] or in three dimensions [41]. The evolution of the computation
technology allows nowadays for larger simulated volumes with more entities simulated. Several
codes exists including, aNumodis [27], ParaDis [72], µMEGAS [35] or TriDis [119].

In this Chapter, we will review the main existing DDD methods as well as explain in depth
the method behind TriDis which we will be using. Furthermore, we will expand on the coupling
of XFEM and DDD used for this work as well as the fixed parameters for the simulations carried
out.

3.2 Other existing DDD models

Most dislocation dynamics methods, including the one used for this work, are based on the
following principle. First, the space and the dislocations are discretized. Then the following al-
gorithm is applied : at time t, for every dislocation, the velocity is calculated, and then explicitly
integrated on the δ t time step. The dislocation segments are then displaced to obtain the t + δ t
configuration. There exist several way to enforce the boundary conditions such as the presence of
cracks, in DD simulations, namely the superposition method or the DCM method.

The Discrete-Continuous Model

This model is based on the idea that dislocations can be assimilated to inclusions with uni-
form plastic strain fields. This eigen strain representation of dislocation loops was first defined by
Mura [95], and a DDD model was implemented by Lemarchand [76], Groh [57], Vattré [135] and
Jamond [66] among others to become what we today know as the Discrete-Continuous Model.
These plastic strains belong to a group of nonelastic strains named eigenstrain. Eigenstrains are
mechanical deformations not caused by any external mechanical stress such as thermal expansion.

In the Discrete-Continuous Model simulations, only short range dislocation - dislocation in-
teractions are analytically treated. All other interactions such as external loads and long-range
dislocations stresses are numerically calculated by the finite elements method. An example of a
DCM code is µMEGAS [35].

XFEM inspired method

There is a dislocation dynamics method inspired of the eXtended Finite Element Method that
has been recently developed [79] to study dislocation dynamics. In order to represent the disloca-
tion effects in the volume, enrichment functions are added to the volume mesh representing not

40



3.2. Other existing DDD models

a crack as in the case for XFEM but a dislocation. This method is illustrated in Figure 3.1. Two
enrichment functions are created, defining the function Ψα(x) :

— Ψα
H(x) : Step enrichment function

— Ψα
C(x) : Dislocation core enrichment function

FIGURE 3.1 – Enrichment subdomains (SC and SH) and level sets (g(x) and f(x)) [79]

The step enrichment function is used to describe the displacement discontinuity across the slip
planes. This discontinuity is placed far from dislocation cores. On the other hand, the dislocation
core enrichment function represents the local singularity in the vicinity of a dislocation core. In
this 2D model, all dislocations are pure edge, which corresponds to the following enrichment
functions :

Ψ
α(x) =


Ψ

α
H(x) = NI(x)(H( f (x))−H( f (xI)) x ∈ SH

Ψ
α
C(x) = NI(ψ

α
C (x)−ψ

α
C (xI)) x ∈ SC

0 else

(3.1)

With f (x) and g(x) the level set functions used to describe the surface discontinuities induced
by the dislocation gliding, H(z) the Heaviside function, NI a general shape function and ψα

C the
dislocation core enrichment function. ψα

C is derived from the analytical solution of a dislocation
stress field in an infinite solid. As illustrated in Figure 3.1, f (x) = 0∪g(x) = 0 denotes the dislo-
cation core, and f (x) = 0∪g(x)< 0 denotes the plane where the dislocation glided and created a
discontinuity.

In order to model the dislocation nucleation at the crack tip, the Rice-Thomson model [132]
is used. Emitted dislocations are introduced as Frank-Read sources which correspond in 2D as a
set of two opposed sign edge dislocations that move away from the source. When the loop is large
enough, a dislocation is emitted while the other one is absorbed by the crack. In order to emit a
dislocation, the strain at the source needs to be large enough following :

fK ≥−( fimage + fstep) (3.2)

With fK the stress at the source, fimage the image force arising from the crack free surface the
crack free surface and fstep the force produced by the absorption of the edge dislocation by the
crack surface. These variables are depending on the dislocation emission critical stress intensity
factor which can be obtained by molecular dynamics simulations.

The crack is modeled using the cohesive zone method presented in 2.2 and advances when the
traction perpendicular to the cohesive surface reaches a predetermined critical value.
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This method was used with a single crystal and ignores grain boundaries interactions with the
dislocations as well as other dislocation sources. Being simulated in 2D, screw dislocations can’t
be added to the simulation, limiting the results.

3.3 The DDD code TriDis

The code used in our simulations corresponds to a DDD code. Specifically, the code we use
here is called TriDis [49]. It controls the dislocation movement as well as their interactions with
the simulated volume and with each other.

Discretization

In FCC materials, atoms are placed in a lattice like the one illustrated in Figure 3.2. In order
to simulate this space, a similar 3D lattice of points is created, upon which points the dislocations
will be attached. The discretization unit corresponds to the parameter xl of Figure 3.2.

FIGURE 3.2 – FCC atomic lattice with green atoms representing the atoms on the corners while
the blue ones represent the atoms on the face centers

xl also represents the minimal distance between two dislocation segments which means it
needs to be small enough to describe accurately plasticity while large enough to lessen compu-
tation time. The value for xl is often chosen to be the minimal distance for two dislocations of
opposite sign to annihilate which corresponds to around 10b [47], which means that xl = 10b with
b the Burgers vector norm. This means that the dislocations will be moving in a large FCC-like
lattice. This discretization is used for micrometric volumes. If the studied simulation box is of a
nanometric scale, xl = 0.1b can be used. While it might seem illogical for a dislocation to move
of less than an interatomic distance, it has been proven that this discretization is accurate with
dislocation behavior [43, 85].

Edge and screw segments an be defined as shown in Figure 3.3. This allows for any dislocation
loop to be divided in screw segments and edge segments [40] as illustrated in Figure 3.4. Every
dislocation segment is then individually considered for the following calculations, which is why
this model lends itself to parallelization.
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FIGURE 3.3 – Example of the placement of a [011] Screw segment and a [011] Edge segment (red
line) in a discretization unit. The line direction of the Edge segment is [211]

FIGURE 3.4 – Representation of a dislocation loop (shadowed) and its discretization (full thick
lines) [40]

Dislocation stress fields

The stress field created by a dislocation can be calculated using the isotropic elasticity theory.
For a dislocation following the z axis with a Burgers vector b (bx,by,bz) and limited by the points
r1(0,0,z1) and r2(0,0,z2) as illustrated in Figure 3.5, the stress it generates on a point r(x,y,z) can
be defined as [77] :

σσσ(r− r1)−σσσ(r− r2), (3.3)

with σσσ(r) defined as :



σxx(r) =
−bxy−byx

r(r−z) −
x2(bxy−byx)(2r−z)

r3(r−z)2

σyy(r) =
bxy+byx
r(r−z) −

y2(bxy−byx)(2r−z)
r3(r−z)2

σzz(r) =
z(bxy−byx)

r3 − 2ν(bxy−byx)
r(r−z)

σyz(r) =
y(bxy−byx)

r3 − νbx
r + (1−ν)bzx

r(r−z)

σzx(r) =
x(bxy−byx)

r3 +
νby

r −
(1−ν)bzy

r(r−z)

σxy(r) =
bxx−byy
r(r−z) −

xy(bxy−byx)(2r−z)
r3(r−z)2

, (3.4)

with ν the Poisson coefficient, and r the norm of r illustrated in Figure 3.5 (a).
Figure 3.5 (b) and (c) show an example of the stress created by an edge and a screw disloca-

tion around themselves. The sum of the stress created by all the dislocation segments creates the
internal stress in the volume σσσ int .
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FIGURE 3.5 – (a) notations for the above dislocation stress calculation, (b) σnb component around
an edge dislocation, (c) σnb component around a screw dislocation [42]

Dislocation velocity

While a transition regime exists during which dislocations accelerate, this regime can be over-
looked [105]. Effectively, the dislocation speed depends on the effective shear τ∗, that needs to be
higher than the friction stress of the volume τ f r, b the norm of the Burgers vector of the moving
segment i and B a viscosity coefficient corresponding to the dislocation-phonon interaction. This
speed vi is calculated with :

vi =
τ∗b
B

, (3.5)

with τ∗ defined with :

τ∗= τ
∗∗− sign(τ∗∗).τ f r, (3.6)

τ
∗∗ = {

[
1
b
(σσσapp +σσσ int +σσσ image)bbb

]
× l}.g+ τlt (3.7)

with b the Burgers vector, l the dislocation segment line vector, g its movement direction. The
contributions to the effective shear stress are :

— σσσapp the macroscopic stress field applied

— σσσ int the internal stress created by other dislocations

— σσσ image the stress created by the image forces

— τlt the line tension of the studied dislocation

On the time step

The algorithm used for the calculations is an explicit one which means that the time step used
is highly important as a too long time step may cause the dislocations to move past zones in the
volume where the stresses would modify the dislocation velocity. On the other hand, a too short
time step will highly increase the computation times but also cause problems with the discretiza-
tion of the volume as the time step needs to be at least large enough for the dislocation to move
over a few units of the discretization space. The temporal integration is carried out using an Euler
integration algorithm modified which is an implicit method. The time step used for nanometric
volumes is of 10−12 s.

Cross slip

Dislocation cross slip is determined by a parameter which describes the probability of a dislo-
cation to cross slip [18]. This parameter can artificially be set to zero. Otherwise, this parameter is
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determined by a stochastic procedure where at each time step, a cross slip probability is calculated
for each screw segment i as :

Pi = β
l
l0

δ t
t0

exp
(

τdev− τIII

kT
Vact

)
, (3.8)

with β a normalization coefficient such as Pi ∈ [0;1], l
l0

the screw segment length over a base
length (l0 = 1 µm), δ t

t0
the time step over a base time (t0 = 1s), (τdev− τIII) compares the resolved

shear on the slip plane, (τdev) with a reference stress (τIII), k the Boltzman constant, T the tempe-
rature and Vact the activation volume. Using this expression, the cross slip of every screw segment
is determined at each time step.

Displacement field of a dislocation loop

The fundamental of the calculation of the displacement field created by a dislocation will be
presented here. While not directly used in this work, some of the concepts exposed here will be
used to describe dislocation stability.

FIGURE 3.6 – Illustration of a dislocation loop used in the calculation of a dislocation loop
displacement field. (a) An arbitrarily shaped loop (b) A triangular loop [42]

The following equation [68] gives the displacement uuu at rrr created by a dislocation loop of
surface A :

um(rrr) =−
∫

A
bici jkl

∂

∂x′l
gmk(rrr′− rrr)dA j, (3.9)

with bbb the Burgers vector, ci jkl the elastic module tensor and gmk the Green tensor. Figure
3.6(a) illustrates the other used notations. With a surface integration of 3.9, the displacement of an
arbitrary dislocation loop at any point located in an infinite medium results in :

uuu(rrr) =− bbb
4π

Ω− 1
4π

∮
C

bbb×dlll′

R
− 1

8π(1−ν
∇

∮
C

bbb×RRR
R

.dlll′, (3.10)

which is known as the Burgers equation. Ω represents the solid angle, RRR = rrr′−rrr and R = ‖RRR‖.
The first term corresponds to the discontinuity on displacement when crossing the slip plane while
the two other terms of the equation are continuous.

This calculation can be very complicated for complex loop geometry. A solution proposed
in [9] is to decompose the loops in triangles, which results in :

uuu(rrr) =− bbb
4π

Ω+FFFab +FFFbc +FFFca (3.11)

using the parameters given in Figure 3.6 (b). This decomposition is particularly well adapted
for the edge-screw discretisation used in this model. Further clarifications on these displacement
calculations can be found in [42].
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While the displacement is not used here, the area swept by a dislocation loop is of uttermost
importance.

FIGURE 3.7 – (a) representation of a dislocation advancement and the variation of its swept area
dA corresponding to γ (b) γ at time t is represented by the blue area while at time t + dt it is
represented by the addition of the blue and yellow areas

In order to define this equilibrium state, let γ be the area swept by the dislocations. An illustra-
tion of the swept areas is provided in Figure 3.7. After ten DDD steps, γ is calculated. Following
Equation 3.12, if the relative variation of the area swept by the dislocations during these last 10
steps is inferior to 5%, we consider the dislocations to have reached a relaxed state. These values
were arbitrarily chosen.

|γt − γt−1|
|γt−1|

< 0.05 (3.12)

Studied results will be considered both for the unrelaxed and relaxed configurations.

Boundary conditions

In order to account for complex boundary conditions, the superposition method [134] is used.
This method uses the linear elasticity to divide complex problems in simpler ones that can be
solved individually. For example, in Figure 3.8, a problem with an applied force and a dislocation
is solved by considering the applied force individually and then the dislocation in an infinite space.

FIGURE 3.8 – Superposition method ; in order to obtain the global strain σσσ on M, the applied
forces and the dislocations forces are considered individually

This method has also been used for the following coupling of XFEM and DDD as explained
in the following Section.
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3.4 Coupling XFEM and DDD

In order to combine XFEM and DDD, we have to combine two different codes, Cast3M and
TriDis. Cast3M [26] was chosen because its source code is open, allowing to program supple-
mentary functions for the coupling. We aim at using both codes to have both a crack controlled
by Cast3M and a dislocation distribution controlled by TriDis. This coupling will be using the
isotropic elasticity model.

From XFEM to DDD

The two used softwares have to communicate between each other in order to carry out the
simulations. First, we will discuss the data transferred by the XFEM software to the DDD one.

Volume information

Before the crack starts moving in the studied volume, this volume needs to be sent to TriDis.
The main issue here is that the volume, or to be precise, the surfaces that separate the inside
from the outside of the sample are initialized in TriDis when it is launched. In order to send this
information, we created a file containing the volume coordinates. This file is then processed with a
Python script to create the input files of the volume required by TriDis. As long as we are studying
the same orientation and geometry, the same input files can be used as the volume does not change.

The crack surfaces are not send to TriDis. As said before, due to the nature of XFEM, the two
surfaces of the crack are represented by a single surface in Cast3M. This surface evolves with the
crack propagation and TriDis does not include a way to modify the starting volume during the
simulation. Furthermore, when the crack advances, the new surface created might cross some of
the existing dislocations, demanding an adjustment of said dislocations.

Initial dislocations information

Dislocations can be nucleated by either TriDis or Cast3M. In this context, nucleation means
the addition of new dislocation segments in the volume. These dislocations can either be manually
input, placed along a line ahead of the crack front or placed on points with the highest stresses.
Since dislocations are often placed using the crack front as reference, we used Cast3M to nucleate
them. The dislocation creation method included information such as : position, direction, orienta-
tion and nature. The spawned dislocations can either be Frank-Read sources or be artificially fixed.
Once created, it is up to TriDis to control them.

Applied stress field

The studied volume is subjected to an external stress used to open the crack in mode I. Other
modes or mixed modes are also possible, but our efforts will concentrate in mode I. This applied
stress alongside the stress of the crack calculated by the XFEM is used by TriDis to move the
dislocations. The stress field remains unchanged until the crack propagates, meaning that the stress
field remains the same for the dislocations while they stabilize.

From DDD to XFEM

The same way Cast3M shares data with TriDis, TriDis also shares data back. This data transfer
happens whenever the dislocation stability is verified, which is typically every ten DDD steps.
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Dislocation stress field

The first information sent to Cast3M is the stress field created by the dislocations at specified
FEM nodes. This field is calculated by the DDD software and is also used for the dislocations
themselves as their stress field influence each other. This field will be used to calculate the image
forces created by the surfaces as well as for the calculation of the stress intensity factors.

Image force

As presented in section 1.3, image forces are the forces a dislocation experiences in the pre-
sence of a free surface that drives it towards said free surface.

FIGURE 3.9 – Surfaces used for the image force calculation. Crack surfaces (light blue) and
volume free surface (dark blue)

This force is calculated on the free surfaces of the volume represented in Figure 3.9. The calcu-
lation only happens before the stability of the dislocations is tested in order to save on computation
time. It is calculated using the dislocation stress fields applied on the free surfaces. Once the cal-
culation done, it is send to the DDD software as the stress fields σσσapp +σσσ image so it can influence
on the dislocation movement. The image forces are also included on the calculation of the crack
energy following the superposition principle on Equation 2.30.

Dislocation swept area

At every step, TriDis calculate the value of the area that has been swept by the dislocations
in order to compute the cumulated plastic strain (see Section 3.3). We use this value to verify the
dislocation stability. Once every ten DDD iterations, the dislocation swept area is sent to Cast3M.
This value is then compared to the previous area value, and if the variation is inferior to 5%,
the dislocation configuration is deemed stable so the simulation can move on to crack energy
calculation as well as crack advancement.

Stress intensity factor calculation

In order to calculate the effect of the dislocations on the local stress intensity factors, the
dislocations stress field as well as the image forces need to be included on the stress intensity
factor calculation in Equation 2.30. As described in Section 2.3, the stress field of the volume
is used to calculate the stress intensity factors. Instead of only using the field generated by the
applied force and the crack opening, left field in Figure 3.10, we added to it the dislocations stress
field, center field in Figure 3.10, as well as the image forces stress field, right field in Figure 3.10.
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In the following sections, the stress intensity factors without the dislocations effect will always be
calculated as a reference.

FIGURE 3.10 – Individual stress fields used for the stress intensity factors calculations. (left) crack
stress field (center) dislocation stress field (right) image forces stress field

Limits of the implementation

The main limit of this implementation is the impossibility to account for crack closure. While
observed in atomistic simulations, our code is unable to replicate them due to the nature of XFEM
as well as the way the propagation of the crack is formulated. The new crack area created when
the crack advances is added to the previous crack surface. This means that it is not possible to add
a negative advancement of the crack front as it just adds a surface on top of the preexisting surface.

3.5 Simulation parameters

In the following section we will discuss on the general parameters used for the simulations.
These parameters are the non variable ones ; some parameters, such as the number of dislocations
or the type and value of the crack opening force will be modified as needed and presented with the
corresponding simulations.

Material parameters

The MicroKIC project was set to be done with BCC materials. For sake of simplicity, we
decided to start with FCC materials which removes the difficulties induced by using a thermally
activated velocity law for the screw dislocation segments. The first simulations were carried out
using austenitic 316L stainless steel parameters gathered in Table 3.1.

While stainless steel was useful as there was available data on it, it could not be used to
compare results with atomistic simulations. Their material of choice was nickel as it is what they
use for FCC simulations. The parameters used for nickel simulations are listed in Table 3.2.

Both materials are considered isotropic.
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Parameter Value Unit

b 0.254 nm

E 210.6 GPa

ν 0.3

µ 81 GPa

TABLE 3.1 – Parameters for austenitic 316L stainless steel

Parameter Value Unit

b 0.249 nm

E 207 GPa

ν 0.31

µ 82 GPa

TABLE 3.2 – Parameters for nickel

Mesh parameters

In order to accurately model the interactions between a crack and dislocations, the mesh used
for the volume needs to be properly chosen. The crack will be placed inside an element to avoid the
crack front being in between two elements which can cause computation problems. The following
simulations have been all carried out using stainless steel parameters. Two meshes were created
for this purpose.

The first one is a nanometric sized mesh. As one of the objectives of this work is to compare
DDD and atomistic simulations, we seek to reproduce said atomistic simulations in DDD. To do
so, we use the volume illustrated in Figure 3.11a. As atomistic simulations simulate all the atoms
present in a volume, their studied volumes are of nanometric size. DDD usually uses microme-
tric volumes, but the simulation parameters can be adjusted to simulate smaller volumes. More
information on DDD parameters can be found in 3.5.

For future reference, another mesh was also created represented in 3.11b. This mesh aims
at reproducing experimental results from a Cantilever experiment. Unfortunately, we were not
able to use this mesh to compare it with any results, but the work has been prepared for future
investigations when the comparison with experiments will be available.

(a) Basic mesh (b) Cantilever mesh

FIGURE 3.11 – Meshes created for the simulations
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Discretisation of the mesh

Element size is one of the main parameters for these simulations since the time step is de-
pendent on the mesh size. In order for the calculations to be precise, the crack needs to advance
through at least one element. This changes the element containing the crack tip and therefore al-
lows the enrichments to be made on previously non enriched elements, preserving the calculus
precision.

Since the volume does not change size, instead of referring to the discretization of the mesh
by the element size, we will use the number of elements there are in the y direction to simplify the
notation used.

Element size impacts also the calculation times as the more elements there are the longer the
simulation will run. Since element size is tied to the time step, the smaller the elements are, the
longer it will take to the simulation to completely break the mesh. In order to determine the impact
of the mesh size, different parameters are studied.

As for the boundary conditions, we enforce Dirichlet boundary conditions for the bottom nodes
where the three degrees of freedom are set to zero.

Crack front profile

FIGURE 3.12 – Different crack front profiles considered

Three profiles where considered initially for the crack, an elliptic, a parabolic and a straight
profile as illustrated in Figure 3.12. We aim to see if there is any important difference between the
three profiles in order to chose the ones that suits us the most. First, the energy at the crack tip is
studied for all the profiles. We seek to verify the consistency of the results for the same profile.

The following simulations were carried out on a cubic volume of 20× 20× 10 µm of size
without dislocations present. The material used for them was austenitic 316L stainless steel. The
loading used in this case consisted in an applied negative pressure on both the top and the bottom
surface of the volume of 100 MPa. Aside from comparing the profiles tested between them, these
simulations were carried out for different element size as to also verify its effects.

Parabolic profile The first tested profile corresponds to a parabolic profile (see Figure 3.12 left).
As can be observed in Figure 3.13 there is no consistence of the stress intensity profile along the
crack front nor when the mesh size is changed. There is some tendencies that can be observed, such
as a lower energy on the deeper point of the crack, but there is no regularity neither in continuity
of the derivative nor on the values found thus dismissing this profile for further use. Overall, a
variation of around 7% on KI is observed which is an acceptable error.

Elliptic profile In the case of an elliptic profile (see Figure 3.12 middle), the energy in Figure
3.14, the energy at the center of the crack front, corresponding to the deeper part of the crack,
is lower than at the outer parts of the crack as it is the most advanced point hence the one that
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FIGURE 3.13 – KI for parabolic crack profiles with variable element sizes

FIGURE 3.14 – KI for elliptic crack profiles with variable element sizes

will advance the least on the next crack propagation step. There is some variation on the energy
between the different element size, at its maximum, for the edges of the volume, this variation is
around 9% which, while higher than the variation on the parabolic profile it is still acceptable.

Straight profile The last studied profile is the straight one (see Figure 3.12 right). As observed
in Figure 3.15 the shape of the curve remains unchanged for different element sizes. The actual
value on the other hand does vary with the element size, but does so with no apparent correlation
between the variations and the element size. The maximum of the fluctuations is 5% which is an
acceptable error. The element size effect will be further studied in 3.5. In most of the experimental
investigation of crack propagation, the starting crack front is usually straight as it is easier to ma-
chine the samples with this geometry. This profile is the most suitable to be used on the following
simulations.

Crack profile comparison Finally we compare the three studied profiles to see if the obtained
values are consistent. As shown in Figure 3.16, it can be observed that KI of the elliptic profile
is much higher than the other profiles. This is mostly due to the fact that the crack sides are less
advanced than the center in a more pronounced way than the parabolic one. The parabolic profile
is the most unstable of the tested ones, both in shape and in value. The differences observed could
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FIGURE 3.15 – KI for straight crack profiles with variable element sizes

FIGURE 3.16 – KI plotted along the three studied profiles for several element sizes

also be created by the fact that some configurations are closer to the stable configuration than
others.

From the study of the three profiles, it is conlcuded that the profile that is the more suitable for
the simulations is the straight profile. Nonetheless the element size has an impact on these values.
Even if it is less regular than the straight profile, the elliptic profile is still more regular than the
parabolic profile which makes it also eventually suitable for simulations if a non linear crack front
is needed. The straight profile will therefore be the one used for the initial configuration unless
stated otherwise.

Study of the equivalent Von Mises stress In order to compare the effect of the mesh size on
the Von Mises equivalent stress, several simulations with different element sizes were carried out
without dislocations and with a constant load opening the crack in mode I with a negative pressure
applied to the top surface of 100 MPa. It is worth noting that the element size and number of
elements are used as equivalents in here to simplify the notations. The smaller the element size is,
the more elements there will be, so the number of elements along the length of the volume is used
here. Since the crack speed depends on the element size, this comparison is made before the crack
advances. In Figure 3.17 the equivalent Von Mises stress is compared for six different element
sizes.
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(a) 182×9 elements (b) 242×12 elements

(c) 302×15 elements (d) 362×18 elements

(e) 422×21 elements (f) 482×24 elements

FIGURE 3.17 – Von Mises equivalent stress for different element sizes. Case of a 20×20×10 µm
simulated volume with no dislocations and a mode I constant loading applied

For all the cases, the stress distribution within the volume is equivalent as expected. But, the
maximum stress on the crack tip changes. The finer the mesh is, the higher the stress on the
crack tip is. Since the stress near the crack tip rapidly increases the closer to the crack tip you
are, the larger the elements are, the lower the stress would be as it takes into account a bigger
area to calculate the stress. A finer mesh is therefore preferred to have more accurate results. The
asymmetry is caused by the crack position, it not being in the exact center of the volume but
slightly displace upward.

Effect of element size on the crack front stress intensity factors In section 3.5, we illustrated
not only the effect of the crack geometry but also the effect of the element size. Since we will work
on straight profiles, we use Figure 3.15 to observe the element size effect on the energy values.
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The element size variation results on a variation of KI of around 5%. This variation, while not
negligible is not unexpected as it is one of the main issues in finite element method [13]. As we
are not comparing these results to experimental ones nor we compare simulations with different
element size to each other we decide to use 363 elements for the future simulations with cubic
simulation volumes. This element size is a compromise between accuracy and calculation time.

Volume rotation

While for XFEM the orientation of the volume is inconsequential, for the DDD simulation, the
volume orientation defines the orientation of the crystal hence how the dislocations are oriented
in the volume compared to the crack. The chosen orientations are listed in Table 3.3. The crack
front is aligned with the x axis, the propagation direction is towards the y direction and the crack
plane normal corresponds to the z direction. The Cantilever mesh had a crack of the Atomistic
orientation presented in Table 3.3 as it was the orientation used in the experimental works.

The two orientations described in Table 3.3 were chosen because of existing works and results
that can be used to verify our results. The first mentioned orientation noted as Atomistic is the
one used in atomistic simulations carried out by Erik Bitzek and his team. Although atomistic
simulations can only simulate nanometric volumes, if the results between DDD and atomistic
simulations are similar, then it could be expected that the DDD simulations can be used accurately
to simulate micrometric volumes.

The second studied orientation is called Dense as the crack plane is situated on a dense plane of
the crystalline structure. It was also used in a study of the interactions between a static crack and
dislocations in DDD. These simulations were carried out using the discrete continuous method
[70]. Since we use a similar method, we thought that comparing both could lead to pertinent
results.

Name x y z

Atomistic [001] [110] [110]

Dense [121] [101] [111]

TABLE 3.3 – Studied volume orientations

In order to achieve the chosen orientations, the transformation is divided in two rotations. It
is worth noting that these rotations can potentially lead to a malfunction of the code. The way
Cast3M works, when the rotations are carried out, the coordinates of every node of the mesh
are modified instead of modifying the frame. If one of the rotation needs said coordinates to be
multiplied by an irrational number, such as

√
2 this might lead to small misalignment of the mesh.

These misalignments can cause problems in the G− θ method presented in 2.3. When the code
tries to select all the elements where the crack front is located, some elements will be selected
twice, so that the total number of elements is higher than it really is. When the code proceeds to
calculate the stress intensity factors on each element where the crack front is, it believes that there
are more elements than there actually are. The code then tries to calculate on elements that do not
exist thus failing and crashing the code.

This problem can be attenuated if the crack is inserted inside an element instead of between
two elements. Since the problem lies in the G−θ code, it needs to be corrected by modifying the
element selection section part of the code to avoid duplicating elements.

Aside from the code malfunction, we decide to verify if the rotation has an impact on the
value of KI calculated. Since dislocations are orientation dependent, these simulations are carried
out without them. The simulated volume is similar to the one plotten in Figure 3.11a but with a
size of 20×20×10 µm. Three cases are studied here, no rotation, a rotation around the z axis of
π

4 (also noted as partial rotation) and a rotation that brings the crack plane to the (111) plane (also
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noted as total rotation). To compare the results, KI is calculated for the three cases at the crack
front.

FIGURE 3.18 – KI for three different mesh rotations, (nul) no rotation (par) partial rotation (tot)
total rotation

As shown in Figure 3.18 the only difference that appears is for the (111) rotation (total rotation
case). This error stems from the same error that causes the G− θ bug, the mesh misalignment.
The difference between the values with and without rotation is less than 0.2% and thus should
not heavily impact on the results. Although it is still necessary to acknowledge this error for
the forthcoming simulations, we conclude that we can be confident that the effect of rotations is
correctly taken into account in the Cast3M X-FEM calculations.

Layers used in the G-θ calculation

As described above, the G-θ method needs an envelope around the crack front in order to
calculate the energy of said crack front. The way Cast3M and other finite element software achieve
this is by selecting the elements containing the crack front for one layer, and then the elements
surrounding these elements for the next layer and so on.

It is known that the number of layers used can affect the energy calculated with this method.
In order to free the results from this variable, we performed several simulations with different
number of layers to quantify the effect it has on the energy estimations. To accurately compare
these results, we will compare the average KI on the crack before it starts propagating. It is worth
mentioning that the more layers we use, the longer the calculation time is.

In Figure 3.19 we observe that a minimum number of layers are needed in order to get to a
stable energy value. In the forthcoming simulations, we arbitrarily decided to use four layers to
have a more accurate KI value while not penalizing the calculation time too much.

DDD parameters

TriDis not only uses the material parameters presented in 3.5 but also other parameters concer-
ning the behavior of dislocations as explained in Section 3.3. Two sets of parameters have been
used depending on the size of the studied volume. In order to reproduce atomistic simulations, the
scale of the studied volume needs to be nanometric as opposed to the regular studied volume that
is micrometric. Because of this, DDD parameters need to be also modified accordingly.

While not as explicitly seen as in XFEM, DDD also relies on a discretization of the space. The
DDD space discretization depends on the xl parameter presented in Figure 3.2, which defines the
mesoscale FCC lattice on which each dislocation segment is attached. This parameter is usually
chosen as : xl = 10b = 25.98 Å with b the Burgers vector. For a nanometric volume, xl should be
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FIGURE 3.19 – KI evolution for a variable envelope size used in the G-θ method

reduced to a size smaller than the actual distance between two atoms in a crystal, in our case, we
choose xl = 2.598×10−2Å. Note that we could think that elasticity theory should not be used at
distance smaller than the atomistic distance. However, prior simulations have proven that it is the
case [43, 85]. One could conclude that elasticity framework is robust down to the atomic scale.

There is also a discretisation size for the dislocation segments that is depending on xl. This
size is usually around 100 times xl.

In order for the simulation to run in a stable manner, it is important to also adapt the time step.
The smaller the discretization length is, the shorter the time step should be. For the nanometric
volume size, the time step is as small as 10−12 s.

Parameter Value Unit

T 300 K

τIII 0.056 GPa

Vact 1800 b3

TABLE 3.4 – Cross-slip parameters

Cross slip can also be controlled but since it is not the main topic here, and we will just recall
the parameters given in Table 3.4 for the Equation 3.8.

Computation times

The simulations last between thirty minutes up to two hours. The calculation that requires
the most time is the dislocation movement as it usually requires up to one hundred more steps
than the crack propagation. The more dislocations are present in the volume, the longer the DDD
calculation times are, which translates into an increase of the step calculation times. There is no
parallelization in the coupled scheme except the internal stress calculation in the DDD part and in
the linear solver for the FEM calculations.
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3.6 Conclusion

This Chapter reviewed the main DDD models and explained in depth the model used in this
work. In this Chapter we also introduced the code we worked on that couples XFEM and DDD.
The XFEM method and its implementation in Cast3M was described alongside the theory and
application of the stress intensity factor calculation method. The coupling of the two methods
require for them to communicate and send each other the needed information like, for example, the
stress fields corresponding to the crack opening or the dislocations. Finally, the fixed parameters
that will be used for the future simulations have also been described.
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4.1 Introduction

This chapter aims at verifying the accuracy of the model presented in Chapter 3. In order to do
this we will compare our results with results obtained with atomistic simulation as well as some
experimental results.

Firstly, the different dislocation types selected for the simulations will be categorized into
Classes which are defined by the symmetry of the stress seen by the dislocations. The different
dislocation Classes will be studied by analyzing the values of the stress intensity factors. Lastly, a
detailed comparison between an atomistic simulation and a discrete dislocation simulation will be
carried out.

4.2 Dislocation classes

Definition

I AC(b)≡ BD(a) BC(a)≡ AD(b)

II AC(d)≡ BD(c) BC(d)≡ AD(c)

III AB(d)≡ DC(a) AB(c)≡ DC(b)

TABLE 4.1 – Symmetries for the different dislocation classes

Dislocations for a (110) crack orientation can be classified on three classes listed in Table 4.1.
Dislocations belonging to the same class will have the same behavior as they will experience the
same forces. This class definition has been used for atomistic simulations in the case of a (110)
crack plane [001] crack front loaded in mode I [17] and here we seek to verify if the dislocation
behavior of two dislocations belonging to the same class is indeed equivalent, for an equivalent
dislocation position in regards of the crack, and if the forces they experience are similar.

Simulations parameters

Mesh orientation

The studied volume, of 75 nm of size, is oriented following Figure 4.1. This orientation was
chosen to be the same as the one studied in [17] : the crack plane is (110) and the crack front is
[001]. Mesh parameters are the same as the ones described in Chapter 3

Loading and boundary conditions

In order to verify the accuracy of our simulations, they will be carried out by imposing a
displacement on the upper surface nodes which will induce a tensile strain on the upper surface
of the volume following the z direction, opening the crack in mode I. This displacement, once
imposed, will remain the same throughout the entire simulation. For a sharp crack, we note εG the
critical strain above which the crack becomes unstable in atomistic simulations. We use the strain
values calculated in [16] and referred in Equation 4.1 as the critical applied strain εG. Our loading
will be of ε = 0.998εG that is to say that the applied load is just a 0.2% below the critical value so
that the crack is still stable. The set of loading application is illustrated in Figure 4.2.

εG = 0.01896⇒ ε = 0.998εG⇒ ε = 0.01892208 (4.1)
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FIGURE 4.1 – Orientation of the studied volume

FIGURE 4.2 – Boundary conditions used for the DDD calculations. The bottom nodes are all fixed
and a vertical displacement of magnitude uk = h× ε is applied to the top nodes

This strain will allow the dislocations to move freely while being in theory too low for the crack
to propagate. There is no crack propagation as in order to have comparable results the geometry
of the crack front needs to remain the same between simulations.

As for the boundary conditions, the bottom surface is blocked, as illustrated in Figure 4.2 and
the loading is applied on the top surface. None of the surfaces are free surfaces for the dislocations
and they cannot interact directly with the crack surfaces.

Dislocations

In order to study the different dislocation classes, two dislocations of each class will be studied.
The orientation of these dislocations is described in Table 4.2. All dislocations will be screw
dislocations of length l = 30 nm. The line direction is taken as the same as the Burgers vector
(positive screw segments). Dislocations will be placed such as the center of the dislocation is
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Class Class I Class II Class III

System BC(a) AD(b) BC(d) AD(c) AB(d) DC(a)

Burgers vector [101] [101] [101] [101] [110] [110]

Slip plane (111) (111) (111) (111) (111) (111)

TABLE 4.2 – Description of the studied dislocations including Burgers vectors and slip planes

placed at ∆d = 8 nm from the center of the crack front in the crack propagation direction y= [110].

Class I

Stress maps

(a) BC(a) (b) AD(b)

FIGURE 4.3 – Shear stress map induced by the solely presence of the crack and resolved on
different slip systems of Class I dislocations. Stresses are plotted in sections for the simulated
volume corresponding to the respective dislocation slip planes

Figure 4.3 show how the studied dislocations perceive the same resolved shear stress from
the crack and the applied loading only, without the effect of the dislocation. The stresses are
plotted in a section plane corresponding to the dislocation slip plane. The stress patterns show an
heterogeneous resolved shear stress with change of signs.

As the resolved shear stress fields are equivalent, we will be using the calculated values of the
Stress Intensity Factors to further verify if these two dislocation orientations are equivalent.

Dislocation symmetry

Setting In order to study Class I dislocations, we will be comparing the effect of a BC(a) dislo-
cation and an AD(b) dislocation on the stress intensity factors. The starting dislocations are illus-
trated in Figure 4.4. Both dislocations are oriented similarly in regards of the crack front while
still placed on their respective glide planes.

Once the dislocations move towards their respective relaxed configuration, illustrated in Figure
4.5, we observe that both are stable on a configuration very similar to the starting one. It is also
worth noting that the dislocations do not cross the crack front.

Unrelaxed configuration We consider first the effect of these dislocations on KI and KII , illus-
trated in Figure 4.6. Both dislocations have a shielding effect in average on the crack front as they
lower its energy. The effect created by the BC(a) dislocation is more than twice as high as the one
created by the AD(b) dislocation. Both dislocation have the same size of the affected zone on the
crack front energy.
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(a) BC(a) (b) AD(b)

FIGURE 4.4 – Initial configuration of the two studied Class I dislocations

(a) BC(a) (b) AD(b)

FIGURE 4.5 – Relaxed configuration of the two studied Class I dislocations

(a) Values of KI along the crack front for Class I
dislocations on the unrelaxed configuration

(b) Values of KII along the crack front for Class
I dislocations on the unrelaxed configuration

FIGURE 4.6 – Stress intensity factors for the studied Class I dislocations on the unrelaxed confi-
guration

Relaxed configuration After the dislocations reach a relaxed configuration, the stress intensity
factors of their respective cracks are illustrated in Figure 4.7. Overall, both dislocations still pro-
vide shielding to the crack front, but BC(a) has a local antishielding effect, making the crack try
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(a) Values of KI along the crack front for Class I
dislocations on the relaxed configuration

(b) Values of KII along the crack front for Class
I dislocations on the relaxed configuration

FIGURE 4.7 – Stress intensity factors for the studied Class I dislocations on the relaxed configu-
ration

to surround the dislocation instead of being attracted to it. The AD(b) dislocation effect has not
changed between configuration, which is due to the similarity between both configurations for this
dislocation.

Conclusion

Globally, the studied Class I dislocations provide a shielding effect on the crack. The disloca-
tion effect is enhanced by its propagation as shown by the relaxed configuration results. The BC(a)
dislocation develops a small antishielding effect around the shielding effect, making the crack go
around the dislocation. As for AD(b) the effect remains unchanged and the dislocation stabilizes
without propagation.

Class II

Stress maps

(a) BC(d) (b) AD(c)

FIGURE 4.8 – Shear stress map induced by the solely presence of the crack and resolved on
different slip systems of Class II dislocations. Stresses are plotted in sections for the simulated
volume corresponding to the respective dislocation slip planes

For Class II dislocations, their perceived stress is illustrated on Figure 4.8. For this case, the
perceived stress relative values are high compared to the previous studied case, particularly in front
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of the crack. This leads us to believe that for the dislocations to reach their stable configuration,
they will need to propagate more than the previous studied case.

Dislocation symmetry study

(a) BC(d) (b) AD(c)

FIGURE 4.9 – Starting configuration of the two studied Class II dislocations

Setting Two Class II dislocations will be studied here. These dislocations, illustrated in Figure
4.9, are screw dislocations of orientations BC(d) and AD(c).

(a) BC(d) (b) AD(c)

FIGURE 4.10 – Relaxed configuration of the two studied Class II dislocations

The dislocation relaxed configuration can be found in Figure 4.10. Both dislocations create
at least one dislocation loop before stabilizing. Both loops cross the crack front and a part of the
crack surface.

Unrelaxed configuration The results in Figure 4.11 correspond to the unrelaxed configuration.
Globally, the dislocations cause an antishielding effect on the crack. It is worth noting the symme-
try on the KI curve. This symmetry exists because the starting dislocations are also symmetric.

This symmetry is not quite as clear for KII , which could be caused by its values being too low
for such an effect to appear.
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(a) Values of KI along the crack front for Class
II dislocations on the unrelaxed configuration

(b) Values of KII along the crack front for Class
II dislocations on the unrelaxed configuration

FIGURE 4.11 – Stress intensity factors for the studied Class II dislocations on the unrelaxed
configuration

(a) Values of KI along the crack front for Class
II dislocations on the relaxed configuration

(b) Values of KII along the crack front for Class
II dislocations on the relaxed configuration

FIGURE 4.12 – Stress intensity factors for the studied Class II dislocations on the relaxed confi-
guration

Relaxed configuration Once the dislocations reach the relaxed configuration, we obtain the
results illustrated in Figure 4.12. The observed behavior is quite similar to the unrelaxed one. The
predominant effect on the crack front energy is still the antishielding one though a small shielding
zone does appear. The fact that the dislocations cross the crack front does not seem to affect the
obtained results.

Unlike the unrelaxed configuration, KII does show a mirror symmetry on its results. The dis-
location effect zone is large enough to cover the whole crack length.

Conclusion

Overall, the studied Class II dislocations provide an antishielding effect to the crack. This ef-
fect does not change even after the dislocations crossed the crack front. The dislocations symmetry
is translated to a symmetry of the results for the studied stress intensity factors. Independently of
the dislocation relaxation, the whole crack is under the effects of the studied dislocations.
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(a) AB(d) (b) DC(a)

FIGURE 4.13 – Shear stress map induced by the solely presence of the crack and resolved on
different slip systems

Class III

Stress maps

Stress maps perceived by the Class III dislocations are illustrated in Figure ??. Similarly to
Class I dislocations, the stress sign perceived by these dislocations varies all along their glide
plane. This sign variation can lead to a variety of dislocation behaviors. It is worth noting that the
overall stress perceived by these dislocations is higher than for Class I dislocations.

Dislocation symmetry

(a) AB(d) (b) DC(a)

FIGURE 4.14 – Starting configuration of the two studied Class III dislocations

Setting The starting configurations for the Class III dislocations illustrated in Figure 4.14 differ
greatly from each other. Dislocation AB(d) is co-planar with the crack which, knowing the posi-
tioning of the dislocation, makes it cross the crack front. This leads us to believe that the results
for this dislocation will be of much higher magnitude.

Once the dislocation relax, we obtain the configuration illustrated in Figure 4.15. Even if the
AB(d) dislocation is much closer to the crack front since its glide plane is coincident with the crack
plane, the two configurations are close in shape. Both dislocations do not need to propagate much
in order to reach a stable configuration.
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simulations

(a) AB(d) (b) DC(a)

FIGURE 4.15 – Relaxed configuration of the two studied Class III dislocations

(a) Values of KI along the crack front for Class
III dislocations on the unrelaxed configuration

(b) Values of KII along the crack front for Class
III dislocations on the unrelaxed configuration

FIGURE 4.16 – Stress intensity factors for the studied Class III dislocations on the unrelaxed
configuration

Unrelaxed configuration As suspected, the results for the AB(d) dislocation (blue curve) illus-
trated in Figure 4.16 are of a much larger magnitude than those for the DC(a) dislocation (green
curve). Both dislocations provide a very different effect on the crack. AB(d) provides both shiel-
ding and antishielding in equal measures while DC(a) only provides shielding. The values of KII

suggest a very drastic change of propagation angle, which is controlled by KII , around the dislo-
cation.

Relaxed configuration Once the dislocations relax, the same general behavior is observed. As
illustrated in Figure 4.17, the values for KI seem to be of a closer magnitude after relaxation. On
the contrary, KII still shows a difference of more than five times the absolute value between both
dislocations. The dislocation effect on KII is therefore more dependent on the crack-dislocation
distance.

As for KI , the values obtained could almost be considered a mirrored image of each other if
the value of DC(a) was higher. Overall, the results are consistent with the ones obtained for the
unrelaxed configuration.
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(a) Values of KI along the crack front for Class
III dislocations on the relaxed configuration

(b) Values of KII along the crack front for Class
III dislocations on the relaxed configuration

FIGURE 4.17 – Stress intensity factors for the studied Class III dislocations on the relaxed confi-
guration

Conclusion The differences observed on this Class are mainly due to the dislocation position.
Both dislocation stabilize close to their starting position. The dislocation effect varies from a dis-
location to the other but there seems to be a slight symmetry on the dislocations effect that might
be independent from the dislocation position.

Conclusion

We studied both the stress perceived by different dislocations as well as their effects on the
crack front stress intensity factors. We aimed to compare our results with atomistic simulation
results. Globally, the results obtained are what we expected. The stress fields perceived by the
dislocations of the same Class are equivalent. The dislocation effect on the crack front energy is
also equivalent, between dislocations of the same Class, except for Class III dislocations due to the
crack-dislocation distance not being equivalent for both studied cases. More on crack dislocation
distance will be discussed in Chapter 5.

4.3 Direct results comparative : Parameters

In order to further verify the accuracy of our simulations, we will now compare or DDD-
XFEM calculations to an atomistic simulation. To have an accurate comparison, both simulations
need to be done using the exact same parameters when possible. The atomistic simulation was
carried out by Erik Bitzek [16]. The simulation parameters used for these simulations will be
described next.

Mesh

The mesh used for both simulations corresponds to a cube of 75 nm of size. Both meshes
are oriented as shown in Figure 4.18. In XFEM, cracks do not change of nature and are always
considered as sharp. For atomistic simulations, as all atoms are studied, cracks can be not only
simulated as sharp or blunt but the nature of the crack can change during the simulation. For this
reason both simulations will be carried out with a mesh containing a sharp crack.
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FIGURE 4.18 – (a) Atomistic mesh, the dislocation displayed is just an illustration and does
correspond to the studied dislocation [16]. (b) XFEM mesh, the purple plane corresponds to the
crack position

Dislocation

(a) Atomistic configuration [16] (b) DDD configuration

FIGURE 4.19 – Dislocations configuration used on both simulations. In atomistic simulations, the
dislocation lines split in partial segments. Both volumes share the same orientation

For these comparative simulations, both will include a single screw dislocation of Class I,
specifically of the BD(a) system. Both starting configurations are illustrated in Figure 4.19. The
dislocation will be placed so it is at 8 nm of the crack front following the crack propagation direc-
tion.

Loading

The loading conditions used are those of plane strain. The strain applied on the mesh will
correspond to 0.998εG with εG being the Griffith strain presented in Section 4.2. The loading will
be opening the crack in mode I though no crack propagation occurs. It will be applied at the start
of the simulation and will not change of value.
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4.4 Direct results comparative : Results

Atomistic simulation results

FIGURE 4.20 – Snapshots of a screw dislocation interacting with a sharp crack. These results
were obtained in an atomistic simulation [16]

Figure 4.20 shows the stabilization of a dislocation and a crack in an atomistic simulation with
the parameters described above. Compared to DDD simulations, in atomistic simulations dislo-
cations have more freedom of movement while stabilizing. The simulated crack is a sharp crack,
meaning that it can either close or open during the simulation due to the dislocation influence and
the loading.

During this simulation the dislocations bows and oscillates while moving towards the crack
surface. The stable configuration reached puts the dislocation so it is bowed towards the crack
surface while remaining distant from the crack front.

Dislocation Dynamics results

This simulation was carried out to replicate the previous simulation using the DDD+XFEM
model and the same parameters. Unlike the atomistic simulation, the crack will not advance in this
simulation. This might cause some differences in the results as the crack stress field would vary.
The focus will be on the dislocation movement.

The results for this simulations are represented in Figure 4.21. Globally, the dislocation moves
away from the crack, though the center of the dislocation remains near the crack front, only slightly
moving away at the end of the simulation when the dislocation reaches a stable configuration. This
is most likely due to the effect of the image forces on the dislocation created by the crack surface.

Results comparison

Both simulation results share several similarities. First, neither dislocation crosses the crack
front nor interacts directly with it. The lower part of both dislocations have moved away from the
crack to reach a stable configuration, while the middle part of the dislocation remains close to the
crack front.

As these simulations were carried out using different methods, there are of course differences
in the results too. Firstly, the behavior of the upper part of the dislocation varies from one simula-
tion to the other. For the atomistic simulation, the dislocations moves towards the crack while for
the DDD simulation the dislocation moves away from it. Also, the dislocation movement is more
pronounced in the atomistic simulations.

These differences find their origins in several factors. First, both methods define dislocation
movement in different ways. Atomistic simulations is based on the movement of the atoms which
in turn moves the dislocation while in DDD the dislocations are explicitly defined as well as their
movement. It is worth noting that in atomistic simulations, dislocations are partial dislocations
which is not the case in DDD. On the other hand, DDD defines a dislocation as edge and screw
segments connected between each other. The crack on the atomistic simulation is allowed to freely
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(a) t = 0 s (b) t = 50×10−12 s

(c) t = 100×10−12 s

FIGURE 4.21 – Snapshots of a screw dislocation interacting with a sharp crack These results were
obtained with a DDD simulation

move which will inevitably influence the dislocation movement. The main difference behind the
movement difference in the damping of the dislocation. DDD overdamps the dislocation which
leads to its movements being limited compared to the atomistic simulation.

4.5 Conclusion

We compared to results obtained with atomistic simulations. First, we test several dislocations
of different orientations to see their effects on the stress intensity factors. Dislocation orientation
can be grouped by the effects they have on a crack. We tested if this classification still hold true
within our model. As the results presented show, this classification stands for our model.

In order to further validate our model, a simulation aiming at replicating the results of an ato-
mistic simulation was carried out. Both simulations used the same parameters. Overall, the same
dislocation behavior is observed between both simulations though some differences are apparent.
These differences are originated in the differences between both simulation methods. These first
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simulations give self confidence to the DDD-XFEM method so that it can be further used for more
detailed crack-dislocation investigations as presented in next Chapters.
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5.1. Introduction

5.1 Introduction

We seek to study the effect of dislocations, in particular their nature as well as their number
on the stress intensity factors. Dislocations can cause both shielding and antishielding effects on
the crack. Understanding what causes these effects is primordial to understand how cracks pro-
pagate and how the crack chooses a path to propagate on. Without dislocations present, the crack
will propagate in plane, it is the addition of the dislocations that can potentially make the crack
propagate out of plane.

The studied parameters will be the applied loading, the crack dislocation distance as well as
the number of dislocations. Simulations will be carried out on pure screw dislocations. We will be
using one dislocation of each Class described in Chapter 4.

5.2 Numerical parameters

Studied mesh parameters as well as discrete dislocation dynamics parameters are defined in
Section 3.5.

Crystal orientation

A single crystal system will be studied here. This orientation is noted O110 and is the same
orientation as used in Chapter 4 and recalled in Figure 5.1. O110 was chosen because it allowed
comparisons of our DDD results with atomistic simulations results. The crack is defined with a
crack plane (110), a crack front [001] and a propagation direction

[
110
]
.

Dislocations

Dislocations used in the following simulations are all of the same length, l = 30 nm. They all
are Frank-Read sources made of pinned screw segments that are able to create dislocation loops
at high stress. Screw dislocations were chosen as the starting dislocations for their ability to cross
slip if the conditions are met. Three dislocation orientations, described in Table 5.1, will be used.
As described in Chapter 4, for the O110 orientation, dislocations can be divided in three classes
depending on their interactions with a propagating crack. We decide to study one dislocation of
each class to see their effects on the stress intensity factors. The same dislocations will be studied
on the O101 orientation.

Class I Class II Class III

System CB(a) CB(d) AB(d)

Burgers vector
[
101
] [

101
] [

110
]

Line vector
[
101
] [

101
] [

110
]

Slip plane (111) (111) (111)

Schmid-Boas notation D4 B4 B5

TABLE 5.1 – Dislocations used in the simulations
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FIGURE 5.1 – Studied crack orientation O110. The studied volume is a cube of 75 nm of size

Dislocations are placed in front of the crack. The center of the dislocations are placed at 8 nm
of the crack front following the propagation direction y. Dislocations are placed at the center of
the crack length, if there is more than one dislocation, the remaining dislocations are spaced out
at regular intervals in front of the crack tip. Simulations will be carried out with one, three or five
dislocations in front of the crack.

Loading conditions

The simulations will be carried by imposing a displacement on the upper surface nodes which
will induce a tensile strain on the upper surface of the volume following the z direction, opening the
crack in mode I. This displacement, once imposed, will remain the same through the simulation.
According to the Griffith concept of energy balance [74], a crack is thermodynamically stable
when the energy released by the surface creation equals the reduction of strain energy by crack
advance. For a sharp crack, we note εG the critical strain for which said crack is stable. We use the
strain values calculated in [16] and referred in Equation 5.1 as critical strain. Our loading will be
of 0.998εG.

εG = 0.01896⇒ ε = 0.998εG⇒ ε = 0.01892208 (5.1)

In order to accurately compare the obtained results in this first investigation, the crack will
not be allowed to propagate since this propagation would be entirely dependent on the dislocation
configuration.
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Dislocation configurations

Starting dislocations placed in the volume are Frank-Read sources. Since the length is fixed

to L = 30nm, the theoretical critical stress for the Frank-Read mechanism is : τ = 2×0.63
Gb
L

=

836MPa. We study two dislocation configurations, the first one, before any dislocation movement
occurs that will be named from now on the unrelaxed configuration. The second one corresponds
to the relaxed configuration obtained when the dislocations have reached an equilibrium state after
propagation.

5.3 Studied results

Stress intensity factors

(a) Isolated crack effect on σzz (b) Isolated dislocation effect on σzz

(c) Image forces from the crack surfaces and the
volume front effect on σzz (d) Global value of σzz

FIGURE 5.2 – Decomposition of the stresses affecting KI on the crack tip. Crack surface is repre-
sented by the black wireframe, and the dislocation(screw, Class I (CB(a)) with a Burgers vector
of b = 1

2 [101], line vector of L = [101]) by the yellow line- σzz corresponds to the stress on the
direction of the applied force

As defined above, the studied cracks are open in mode I, making KI the only stress intensity
factor that should have a non-zero value. KI controls the crack advancement, hence why KI will
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be a studied parameter. Figure 5.2 illustrates the stress component σzz responsible for the crack
opening. It can be observed how the stress is concentrated at the crack tip, which it is expected
since the loading is applied in order to open the crack, and how the presence of the dislocation
alters the value of σzz leading us to believe the dislocation will impact KI . It is worth noticing that
in this case, the dislocations both increases and decreases locally the stress.

(a) Isolated crack effect on σzy (b) Isolated dislocation effect on σzy

(c) Isolated image force effect on σzy (d) Global value of σzy

FIGURE 5.3 – Decomposition of the stresses affecting KII on the crack tip. Crack surface is re-
presented by the black wireframe, and the dislocation (Class I (CB(a)) with a Burgers vector of
b = 1

2 [101]) by the yellow line ε = 0.01892208

Figure 5.3 illustrates σzy which is the stress component responsible for KII . Dislocation mo-
vement create shearing in the volume. This shearing can be observed in the variations that appear
in σzy, the once null value at the crack tip varies greatly with the presence of a dislocation. It is
also noted how the influence of the dislocation on σzy is far greater than its influence on σzz as
dislocations create mainly shear.

KIII will not be studied as it remains zero as there is no out of plane shear.
While KI controls the opening of the crack, KII controls the angle of the crack propagation

θc with respect to the horizontal (XY) plane following Equation 5.2. See also Figure 5.4 for the
definition of θc. This equation implies that if KII is negative the angle of propagation will be
positive and if KII is positive the angle will be negative.

θc = 2arctan

1
4

 KI

KII
− sign(KII)

√
8+
(

KI

KII

)2
 (5.2)

To quantify more globally the variations observed, the average stress intensity factors will be
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calculated as well as a percentile variation between the stress intensity factors with and without
dislocations influence. We will consider a decrease in KI a shielding effect and an increase an
antishielding effect.

Isolated dislocation effect on the stress intensity factors

During the stress intensity factor calculations, two sets of values are calculated. The first one,
only includes the effects of the crack itself and the applied strain. We will call these values from
now on K(xfem). On the other hand, the second set of values include the dislocation stress field as
well as the effect of the image forces created by the dislocations on the crack surfaces, giving the
real values of the stress intensity factors, that we will note K(global). It is worth noting that for a
same crack configuration, we always obtained the same values for K(xfem), validating that part of
the model.

Since we wish to study the dislocation effects, we will isolate it by simply calculating the
following :

K(dislocation) = K(global)−K(xfem) (5.3)

K(dislocation) gives a clearer view of the dislocation effects on the crack propagation.

Propagation angle

FIGURE 5.4 – Definition of the propagation angle θc

Using Equation 5.2 we will also calculate the propagation angle of the crack θc along the crack
front. The angle sign determines the overall direction of the crack as illustrated in Figure 5.4. The
variation of the propagation angle created by the dislocations will be one of the studied variables.

5.4 Initial strain variation

Parameters

Two initial tensile strains will be tested. The used strains are presented in Table 5.2. We seek
to verify if the dislocations impact on the crack propagation is proportional to the applied strain.
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ε1 0.01892208

ε0.5 0.00946104

TABLE 5.2 – Strain amplitudes studied on the following simulations

We will be studying the interactions between the crack and one screw dislocation of Class I
(CB(a)) with a Burgers vector of [101] and a length of 30 nm placed so its center is at 8 nm of the
center of the crack front in the propagation direction.

(a) Initial configuration (b) Relaxed configuration

FIGURE 5.5 – Dislocation evolution under an applied strain of εzz = ε0.5

Figure 5.5 illustrates the unrelaxed and relaxed configuration of the dislocation studied. As can
be noted in Figure 5.5b, ε0.5 is not high enough to make the dislocation move, it only oscillates
around its initial position. It is also worth noting that the dislocation does not interact directly
with the crack. We can suppose that the dislocation effect on the crack will be similar for both the
relaxed and unrelaxed configuration as the dislocation position remains nearly unchanged.

(a) Initial configuration (b) Relaxed configuration

FIGURE 5.6 – Dislocation evolution under an applied strain of εzz = ε1

Dislocation movement for the second strain tested, ε1, is illustrated in Figure 5.6. A higher
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dislocation movement is observed, though there is no dislocation loop crated and neither a direct
crack dislocation interaction. Since the dislocation moves towards the crack, we can suppose that
there will be a notable difference between the relaxed and unrelaxed configurations. ε1 is the strain
used for future simulations.

Results

Unrelaxed configuration

We start this study with the unrelaxed configuration. We chose to study this configuration be-
cause the dislocations haven’t moved yet, staying at the initial position which allows us to compare
more precisely the results without having to consider a possible difference between the dislocation
position.

(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 5.7 – KI along the crack front for the initial unrelaxed configuration and for the two
applied strain amplitudes. Dislocation contribution to KI has been isolated for clarity.

KI In Figure 5.7a, KI doubles between strain ε0.5 and ε1. This was expected since stress intensity
factors are inherently dependent on the loading conditions. Dislocation presence lowers KI , it
provides a shielding effect to the crack. It is worth mentioning that in Figure 5.7b, dislocations
affects the same length of crack no matter the loading applied. The dislocation effect on the crack
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is also shaped similarly, though the intensity of said effect does not seem to be proportional to the
applied strain.

As expected, the initial loading not only affects the stress intensity factors, but also the dislo-
cations effects on said factors. The dislocation effect is more than doubled. This results could be
due to the impact of the image forces on the crack front as they are also taken into account when
calculating the stress intensity factors. Note than when the dislocation is placed in front of the
crack center, the center of the crack front is not the closest point between crack and dislocation.
That is why the center of the valley for the dislocation effect on KI is slightly off center as the
point where the dislocation impact peaks does not correspond to the center of the crack but to the
closest point between the crack front and the dislocation line.

(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.8 – KII and propagation angle along the crack front for the initial unrelaxed configu-
ration and for the two applied strain amplitudes.

KII First and foremost, in Figure 5.8, we observe a difference in the base values of KII . Follo-
wing the same trend as KI , the value doubles when doubling the applied strain. As the applied
strain opens the crack in mode I, KII should be null, but there is a non-zero value. As mentioned
in Chapter 3, the crack needs to be slightly off center to ensure the simulations can run. This slight
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offset is responsible for the non null value of KII . The dislocation presence in both cases accen-
tuates the directional change of the crack. As for the propagation angle, it remains the same for
both strain values and it is slightly positive to account for the crack offset on the volume.

We observe a shape variation between the two cases ; for the strain ε0.5, KII shows some irre-
gularities. These irregularities do not seem to come from a computation error as the rest of results
extracted from the same simulation are coherent with other simulations. We can only assume that
for this value of strain, the dislocation effect on the stress intensity factors changes. We do have
the same behavior as presented before, where the dislocation effect is more than doubled when the
applied loading doubles. The influence zone of the dislocations remains unchanged.

Relaxed configuration

Secondly, we study the dislocations in the relaxed configuration. As shown before, for a strain
of ε0.5 the initial dislocation does not propagate, so we expect the results for this strain to remain
similar if not the same. On the other hand, for a strain of ε1, we expect to see the stress intensity
factors evolve further since the dislocation is able to propagate.

(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 5.9 – KI along the crack front for the relaxed configuration and for the two applied strain
amplitudes. Dislocation contribution to KI has been isolated for clarity.
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KI Since the stress intensity factors without the dislocation influence are only recalculated when
the crack propagates, their values do not change between configurations. As it was hypothesized,KI

for ε0.5 does not vary between configurations. On the other hand, for ε1, as can be observed in
Figure 5.9, the dislocation effect sharply increases due to the proximity of the dislocation to the
crack.

While the length of the crack front affected by the dislocation remains unchanged, the intensity
of said effect more than doubles for ε1. Around the zone where the dislocation shields the crack,
an increase in the value of KI can be observed. While the dislocation seems to stop the crack
propagation, the crack also seems to want to circumvent the obstacle. This effect can also be
observed for ε0.5 although in a minor way.

(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.10 – KII and propagation angle along the crack front for the relaxed configuration and
for the two applied strain amplitudes.

KII As observed for KI , there is the same increase on KII for ε1 as can be seen in Figure 5.10.
Likewise, the values for ε0.5 remain unchanged ; the smoother look of the curve is the result of the
change of scale in the graphic.

The variation of KII created by the dislocation results in an increase in the crack surface rough-
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ness as shown in the crack propagation angle results. As KII is positive and negative due to the
dislocation, the propagation angle alongside the crack tip will be both positive and negative re-
sulting in said surface roughness. We can hypothesize that, just like for KI , the crack tends to try
to avoid this kind of dislocation and tries to circumvent it. Since for ε0.5 we do not observe this
change of sign in KII , we can suppose that there is a threshold strain for which a dislocation will
create such an effect.

Average stress intensity factors

In order to quantify our results, we decide to calculate and compare the average stress intensity
factors for each simulation. The values with and without dislocations will be calculated as well
as a the percentile variation using the stress intensity factors without dislocations as a reference.
Both the relaxed and unrelaxed configurations are studied.

KI KII

ε0.5 ε1 ε0.5 ε1

No dislocations (MPa.m0.5) 0.39929 0.79858 -0.00069 -0.00138

Dislocations (MPa.m0.5) 0.39879 0.79723 -0.00100 -0.00196

Variation (%) -0.12 -0.17 45.48 42.76

TABLE 5.3 – Average values of the strain intensity factors for the two initial strains studied at the
unrelaxed configuration and quantification of the dislocation effects

First and foremost, as shown in Table 5.3, the dislocation free stress intensity factors are per-
fectly doubled from ε0.5 to ε1 as was observed in the graphics above. Since dislocations move
shearing the volume they are located in, the values of KII are the most affected by the presence
of dislocations in the volume. It is worth noting, that, before propagation, the percentile effect of
dislocations on the stress intensity factors are similar for the two studied strains.

KI KII

ε0.5 ε1 ε0.5 ε1

No dislocations (MPa.m0.5) 0.39929 0.79858 -0.00069 -0.00138

Dislocations (MPa.m0.5) 0.39879 0.79583 -0.00100 -0.00345

Variation (%) -0.12 -0.34 45.48 151.01

TABLE 5.4 – Average values of the strain intensity factors for the two initial strains studied at the
relaxed configuration and quantification of the dislocation effects

Once the dislocation relaxes, we can see in Table 5.4 that the values for ε0.5 remain the same
while the values for ε1 triple. It is the dislocation moving towards the crack that makes the stress
intensity values vary so sharply, and not the applied strain which increases proportionally with the
dislocation effect on them.

Conclusions

We studied the effect of the applied strain on the dislocation effect on the stress intensity
factors. Two configurations of the dislocations were studied, the relaxed and the unrelaxed ones.
For both configurations, the dislocation affected zone on the crack front remains the same, as
well as the qualitative effect, shielding the crack locally and changing its angle of propagation.
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But, what causes major impact on the stress intensity factors, is not the raw value of the applied
strain, but the dislocation movement it can create. As we observed on the study of the average
values of both KI and KII , the percentile variation remains the same for the unrelaxed configuration
but a sharp variation is observed on the relaxed configuration that can only be explained by the
difference in the dislocation position and the distance between crack and dislocation.

5.5 Dislocation crack distance

Dislocation crack distance is, as seen above, an important parameter to consider. That is why
the impact of said distance will be studied in the following simulations.

Parameters

The following simulations will be carried out using one screw dislocation of Class I (CB(a))
with a Burgers vector of [101] and a length of 30 nm. Three crack-dislocation distances will be
studied ; 8, 12 and 16 nm. These study cases are illustrated in Figure 5.11.

(a) d = 8 nm (b) d = 12 nm (c) d = 16 nm

FIGURE 5.11 – Initial configurations of the three study cases for different dislocation crack dis-
tances

The distances mentioned above are the distances between the center of the crack front and the
dislocation center measured along the Y=[101] direction. These dislocations making an angle with
the crack, the actual minimal distance between them and the crack front does not correspond to
the center of said dislocation but to one of its ends. Therefore, using Paraview, we measure the
actual minimal distance between the crack front and the dislocation which is measured along the
direction perlendicular to both lines. These results can be found in Table 5.5.

dini (nm) 8 12 16

dmin (nm) 7.3 8.8 11.5

TABLE 5.5 – Placement distance and real minimal distance between the dislocation and the crack
front. dini : distance dislocation center - crack, dmin : minimal distance measured between dislo-
cation line and crack front

The calculations will be performed for the initial unrelaxed configuration, i.e. when the crack-
dislocation distance is accurately defined so that the solely effect of this distance can be estimated.
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5.5. Dislocation crack distance

Results

KI

(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 5.12 – KI along the crack front for various crack dislocation distances. Dislocation
contribution to KI has been isolated for clarity.

Figure 5.12 shows the simulation results for KI . As can be observed, only the simulation for 8
nm yields a noticeable change in KI . Farther dislocations still have an effect on the crack, but it is
negligible compared to a closer dislocation.

In real cases, for a higher dislocation density case, the added effects of the farther dislocations
will have a much higher effect than a single dislocation would, making their cumulative effect
non negligible. The dislocations placed far from the crack front only retain a light shielding effect
compared to the dislocation placed near to the crack front.
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(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.13 – KII and propagation angle along the crack front for various crack dislocation
distances. Dislocation contribution to KII has been isolated for clarity.

KII

In the same vein as KI , the results for KII , illustrated in Figure 5.13, only shows a significant
change for the 8 nm case. Farther dislocations show a lower effect and only change slightly the
crack propagation angle in one direction contrary to the 8 nm case.

The relative effect is still important since dislocations shear the volume. It is worth mentioning
that for a base value of zero, any relative change is more significant and noticeable than for a higher
base value as it is the case for KI .

Average stress intensity factors

In Table 5.6, the average value of the stress intensity factors are listed. As seen before, both KI

and KII remain mostly unchanged for the farther studied dislocations. Since KII without disloca-
tions is close to zero, any relative variation created by the dislocations is very high. The impact of
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KI KII

8 nm 12 nm 16 nm 8 nm 12 nm 16 nm

No dislocations (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

Dislocations (MPa.m0.5) 0.79583 0.79849 0.79841 -0.00345 -0.00166 -0.00150

Variation (%) -0.34 -0.01 -0.02 151.01 20.61 8.89

TABLE 5.6 – Average values of the strain intensity factors for the studied crack dislocation dis-
tances

the further dislocations is negligible compared to the closer dislocation.

Conclusions

In order to study the impact of the dislocation crack distance and at which point a dislocation
does not affect the crack front energy we simulated a dislocation in front of the crack for different
distances varying from 8 to 16 nm. Only the closest dislocation, situated at 8 nm in front of the
crack, had a significant effect on the stress intensity factors, in both KI and KII . The further dislo-
cations, at 12 and 16 nm from the crack, display a very minimal interaction with the crack front,
though they do slightly shield the crack. For higher dislocation densities, their effect would be im-
portant enough to be taken into account. We will concentrate our simulation efforts in dislocations
placed at 8 nm of the crack to maximize the crack dislocation interaction.

5.6 Effect of dislocation sign

Up until now, the dislocations we studied moved towards the crack. Knowing that the crack
dislocation distance is an important factor on its impact on the stress intensity factors, we decide to
study two dislocations of opposite Burgers vector. Since these dislocations will move in opposite
directions, we can observe how this difference in propagation direction affects the crack energy
and the effect of the dislocation itself.

Parameters

The studied dislocations will be screw dislocations of Class I (CB(a)) and a length of 30
nm. The first studied dislocation will have a Burgers vector of [101], which corresponds to the
previously studied line direction, while the second one will have the opposite Burgers vector [101].
This dislocation was chosen because the dislocation of positive Burgers vector will move towards
the crack and the opposite dislocation will move away from it. We wish to see if the shielding
effect that has been noted previously remains if the dislocation moves in the opposite direction.

Both dislocations will be studied in the relaxed and unrelaxed states. As mentioned previously,
the dislocation with the [10-1] Burgers vector will move towards the crack as illustrated in Figure
5.14 while the dislocation with the [101] Burgers vector will move away from the crack as can be
observed in Figure 5.15.

Results

Unrelaxed state
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(a) Initial configuration (b) Relaxed configuration

FIGURE 5.14 – Evolution of a dislocation with a [101] Burgers vector

(a) Initial configuration (b) Relaxed configuration

FIGURE 5.15 – Evolution of a dislocation with a [101] Burgers vector

KI The unrelaxed results, illustrated in Figure 5.16 show a shielding effect created by both dis-
locations. The dislocation with a positive Burgers vector (blue curve) has an effect on the crack
front energy roughly three times higher than the dislocation with a negative Burgers vector. The
area of effect of both dislocations is roughly the same. The dislocation orientation has an effect
on how much the dislocation will affect the crack front energy but the nature of the effect remains
unchanged.

KII As for KII , the results are illustrated in Figure 5.17. Following the same trend as KI , the
dislocation with a positive Burgers vectors creates an effect three times higher than the dislocation
with a negative Burgers vector. Both dislocations still influence the same portion of the crack front
and both follow the same general shape.

Relaxed state

KI The results for KI for the relaxed configuration are illustrated in Figure 5.18. A clear value
difference between the two dislocations can be observed. Both dislocations still provide shielding
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(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 5.16 – KI along the crack front for dislocations of opposite Burgers vector for an unre-
laxed configuration. Dislocation contribution to KI has been isolated for clarity.

to the crack front but the dislocation with a negative Burgers vector has a lower effect. It can
also be observed that the positive Burgers vector dislocations created locally a small antishielding
effect.

The dislocation propagation direction does not determine the dislocation effect on the crack
front energy but it does greatly influence the magnitude of said effect. On the same note, the zones
of local antishielding also seem to be dependent on the distance between the dislocation and the
crack front.

KII As for KII , the results are illustrated in Figure 5.19. Both curves have a similar shape but the
results of the negative Burgers vector dislocation are negligible compared to the other curve. Even
if the nature of the effect remains unchanged, it seems that the intensity of said effect is greatly
dependent on the distance between the dislocation and the crack front. The crack front affected
length remains the same between the two studied cases.
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(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.17 – KII and propagation angle along the crack front for dislocations of opposite Bur-
gers vector for an unrelaxed configuration.

Average stress intensity factors

The average stress intensity factors for the unrelaxed configuration, compiled on Table 5.7,
show the aforementioned shielding created by the dislocations. The effect of the dislocation with
a negative Burgers vector is indeed less pronounced than the one with a positive Burgers vector.

Once the dislocation reaches the relaxed configuration, the average stress intensity factors,
gathered in Table 5.8, show a significant change. The shielding seen on the KI values is more
prominent, though the change for the dislocation with a negative Burgers vector is negligible. The
same can be said for the values of KII .

The dislocation effect on KII seems more dependent on distance between the crack front and
the dislocation than the effect on KI . The nature of the dislocation effect remains unchanged.
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(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 5.18 – KI along the crack front for dislocations of opposite Burgers vector for a relaxed
configuration. Dislocation contribution to KII has been isolated for clarity.

Conclusions

The effect of the Burgers vector direction was studied here. Both studied dislocations show to
have a shielding effect on the crack front energy. The dislocation propagation direction does not
influence the nature of the dislocation effect on the crack front energy.

The effect magnitude is tied to the Burgers vector direction since the effects are thrice as
important for the positive Burgers vector than for the negative one. It is also worth noting that KII

is more sensitive to the crack dislocation distance than KI .
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(a) KII along the crack front

(b) Dislocation contribution to KII

FIGURE 5.19 – KII and propagation angle along the crack front for dislocations of opposite Bur-
gers vector for a relaxed configuration.

5.7 Class I dislocations

After studying various parameters, now we will study the effect of the number of dislocations
on the stress intensity factors. First we will study dislocations of Class I.

Parameters

The studied dislocations will be screw dislocations of Class I (CB(a)), Burgers vector of [101]
and a length of 30 nm. Three simulations, aside the dislocation free simulation, will be carried out.
The loading applied for these simulations is : εzz = ε1 = 0.01892208

These simulations illustrated in Figure 5.20, have one, three and five dislocations respectively.
Dislocations are placed so the center of the dislocation group is located at 8 nm from the crack
front in the propagation direction. The dislocations are positioned at equal distance from each
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KI KII

[101] [101] [101] [101]

K No dislocation (MPa.m0.5) 0.79858 0.79858 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.79651 0.79801 -0.00230 -0.00171

Variation (%) -0.26 -0.07 66.96 24.45

TABLE 5.7 – Average values of the strain intensity factors for the studied Burgers vectors in an
unrelaxed configuration

KI KII

[101] [101] [101] [101]

K No dislocation (MPa.m0.5) 0.79858 0.79858 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.79533 0.79774 -0.00418 -0.00181

Variation (%) -0.41 -0.11 203.53 31.80

TABLE 5.8 – Average values of the strain intensity factors for the studied Burgers vectors in a
relaxed configuration

(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 5.20 – Initial configurations of the studied cases for different dislocation numbers

other in front of the crack occupying the available space without exiting the volume. Both the
relaxed and unrelaxed configurations will be considered.

(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 5.21 – Final configurations of the study cases for different dislocation amounts

The relaxed configuration is illustrated in Figure 5.21. We observe that some dislocations do
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cross the crack surface in this case.

Results

Unrelaxed configuration

(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 5.22 – KI along the crack front for various amounts of Class I dislocations for the unre-
laxed configuration. Dislocation contribution to KI has been isolated for clarity.

KI Figure 5.22 illustrates the results for KI plotted along the crack front in the initial unrelaxed
configuration. As can be noted, there is, at around 40 nm, a shared valley for one and three dis-
locations simulations. This valley coincides with the position of the dislocation center of both
simulations. The same valley can be seen for the five dislocations configuration but for a lower
value. A large antishielding effect can be observed to the right of the graphs. It corresponds to the
accumulation of all the dislocations effects.

This accumulation effect can be observed for the three dislocations simulation but is specially
marked for the five dislocations simulation. As can be seen, only four valleys corresponding to
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the dislocations positions can be clearly observed. There is a small variation at around 10 nm that
corresponds to the first dislocation. This is caused by the superposition of the dislocations affected
zone.

(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.23 – KII and propagation angle along the crack front for various amounts of Class I
dislocations for the unrelaxed configuration.

KII The dislocation impact on KII , illustrated in Figure 5.23 is very similar to the impact on KI .
Though the erasure of the valleys in KII created by the farther left dislocation is less marked.

The propagation angle varies in a range of values making the crack front rapidly change its
orientation increasing the crack surface roughness. There is also the end of the crack that instead of
propagating downwards will go in the opposite direction due to the cumulative dislocation effects.

Relaxed configuration
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(a) KI along the crack front

(b) Dislocation contribution to KI along the crack front

FIGURE 5.24 – KI along the crack front for various amounts of Class I dislocations for the relaxed
configuration. Dislocation contribution to KI has been isolated for clarity.

KI In Figure 5.24 we observe, compared to the unrelaxed configuration, a decrease of the inten-
sity of the antishielding zones. We thus obtain a general state of shielding on almost the whole
crack length. Each dislocation individual effect is still visible on the graphs.

It is worth mentioning that the point where the antishielding effect is at his highest for the
three dislocations simulation corresponds to the point where the dislocation crosses the crack.
Since there is no actual interaction with the surfaces, this antishielding effect might be caused
by the dislocation being behind the crack front. Globally, the behavior of multiple dislocations
remains very similar to the behavior of only one dislocation, providing a general shielding effect
in this case.

KII In general, we observe in Figure 5.25 the same general shape for KII as in the unrelaxed
configuration. In the same way as KI , there is a sharp increase in value on the right side of the
crack front. While generally the curve shape is similar, the values are smoothed over compared
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(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.25 – KII and propagation angle along the crack front for various amounts of Class I
dislocations for the relaxed configuration.

to the unrelaxed configuration. As a consequence, the crack will experience less changes of the
propagation planes.

As for the propagation angle, it will be mostly positive, but some negative values appear after
relaxation. Generally speaking, the relaxation seems to have smoothed the angle of the crack
propagation.

Average stress intensity factors

The results provided in Table 5.9 show a consistent increase in average values for both KI and
KII . There is a constant shielding created by the dislocations. It is interesting to point out that the
variation created by the dislocations is not proportional to the number of dislocations present in the
volume. The more dislocations there are, the strongest is the shielding effect and the propagation
angle variation.
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KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.79723 0.79322 0.78820 -0.00196 -0.00427 -0.00668

Variation (%) -0.17 -0.67 -1.30 42.76 210.40 385.71

TABLE 5.9 – Average values of the strain intensity factors for the studied Class I dislocations
amounts in the initial unrelaxed configuration

KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.79583 0.79393 0.77882 -0.00345 -0.00510 -0.01078

Variation (%) -0.34 -0.58 -2.47 151.01 270.55 683.91

TABLE 5.10 – Average values of the strain intensity factors for the studied Class I dislocations
amounts in the relaxed configuration

Once the dislocations relax, there is a general increase of their effect as shown in Table 5.10.
This effect is absent for the three dislocation simulation as its KI effect decreases. This is due to
the antishielding effect that was created when one of the dislocations crossed the crack. In general,
the dislocation effects are strengthened by the dislocation propagation, due mainly to the crack
dislocation distance.

Conclusions

In this section we studied the effect of different numbers of Class I dislocations on the stress
intensity factors. For these dislocations, we observed a general shielding effect, that is exacerbated
when the number of dislocations increases. This increase is not proportional to the number of
dislocations present in the volume. This suggest an interaction between the dislocation stress fields.
We also observed an antishielding effect that appears when a dislocation crossed the crack. It is
uncertain if this effect appears because the dislocation is behind the crack of because it crossed the
crack. As observed before, the propagation increases the dislocation effect as they end up closer to
the crack. It also seems that for the stabilized dislocations, the energy on the crack distribute itself
more equally along the crack front, leading to a more stable configuration.

5.8 Class II dislocations

After studying Class I dislocations and their effect on the crack energy, we will now analyze
Class II dislocations and their effects.

Parameters

The studied dislocations will be screw dislocations of Class II (CB(d)), Burgers vector of [101]
and a length of 30 nm. Three simulations, aside the dislocation free simulation, will be carried out.
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(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 5.26 – Initial configurations of the study cases for different number of dislocations

The initial dislocation configurations are illustrated in Figure 5.26. As was done for Class I
dislocations, these dislocations are placed so their centers are at 8 nm ahead of the crack front in
the crack propagation direction. Both unrelaxed and relaxed configurations will be analyzed.

(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 5.27 – Final configurations of the study cases for different number of dislocations

The dislocations relaxed configuration is illustrated in Figure 5.27. The starting dislocations,
being Frank-Read sources, have emitted one complete a dislocation loop before stabilizing. These
loops crossed the crack entirely. As said before, there is no specific interaction coded between the
crack surfaces and the dislocations.

Results

Unrelaxed configuration

KI Unrelaxed results for KI are illustrated in Figure 5.29. A prominent antishielding effect can
be observed. Unlike all the other studied cases, there is no shielding zone created by Class II
dislocations, only a very strong antishielding effect. Individual dislocation effect can be observed
in these results.

One single dislocation is able to influence the whole crack front as illustrated by the one
dislocation simulation (blue curve). The dislocation itself might not globally slow down the crack,
but, judging by the graph, it seems to accelerate it to go around said dislocation.

KII The dislocation influence on KII , illustrated in Figure 5.29, is also very high. The shortest
distance between the crack front and the dislocation coincides with the point where KII remains
unchanged. Each dislocation creates two very marked propagation direction changes around it,
making the crack go upwards.

Unlike the effect on KI , dislocations do not affect the entirety of the crack front when it comes
to KII . The propagation angle will greatly vary due to the dislocation presence, making the crack

103



Chapitre 5. Effect of dislocations on the stress intensity factors for the O110 orientation

(a) KI along the crack front

(b) Dislocation contribution to KI along the crack front

FIGURE 5.28 – KI along the crack front for various amounts of Class II dislocations for the
unrelaxed configuration. Dislocation contribution to KI has been isolated for clarity.

front wavy if it was to propagate with these values of KII

Relaxed configuration

KI Once dislocations relax, which is illustrated in Figure 5.30, we observe that although dislo-
cations mainly provide antishielding to the crack, a shielding effect appears. As seen in Figure
5.27, dislocation loops cross the crack front. This could cause an increase in antishieling as seen
for Class I dislocations.

Dislocation positions can still be determined using this results ; the lowest point between two
peeks correspond to the dislocation position. This also means that locally, each dislocation slows
down the crack even if globally they accelerate it.
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(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.29 – KII and propagation angle along the crack front for various amounts of Class II
dislocations for the unrelaxed configuration. Dislocation contribution to KII has been isolated for
clarity.

KII Following a similar trend than the results for KI , the results on KII illustrated in 5.31, show
a change of sign for KII . Now the crack will partially go downward too instead of all of it going
upwards.

Unlike the unrelaxed configuration, the crack front energy seems to be smoothed over ; the
crack front will still be wavy but less than it would have been with the unrelaxed configuration. The
dislocation affected zone is larger than in the unrelaxed configuration, due to the new proximity
between the crack and the dislocations.

Average stress intensity factors

The average values printed in Table 5.11 show the increase in both stress intensity factors pre-
viously discussed. The variation between values is not proportional to the number of dislocations
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(a) KI along the crack front

(b) Dislocation contribution to KI along the crack front

FIGURE 5.30 – KI along the crack front for various amounts of Class II dislocations for the
relaxed configuration. Dislocation contribution to KI has been isolated for clarity.

placed in the volume. The general antishielding effect is clearly illustrated here.
The antishielding trend continues on the results of Table 5.12 corresponding to the relaxed

case. There is a sharp increase on the antishielding for the three dislocations simulation, it is
probably due to a less extensive shielding zone created by the dislocations in comparison to the
other two study cases. Even if the dislocation relaxation leads to the creation of some shielding
zones on the crack front, globally, Class II dislocations create an antishielding effect.

Conclusions

We studied the effect of the amount of Class II dislocations on the stress intensity factors. It
is shown that these dislocations create an antishielding effect on KI . These dislocations, once they
reach the relaxed configuration, create a dislocation loop that crosses the crack. We hypothesize
that dislocations crossing the crack will create an antishielding effect, but in this case, a shielding
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(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.31 – KII and propagation angle along the crack front for various amounts of Class II
dislocations for the relaxed configuration. Dislocation contribution to KII has been isolated for
clarity.

effect was observed once the dislocations attained the relaxed configuration. There is also a similar
effect that happens for KII where the relaxation of the dislocations create a change of sign on
KII . We hypothesize that the dislocations that end up on the other side of the crack front create
the opposite effect on the crack front than the dislocations in the crack path. It remains to be
determined how the crack will react after the dislocations crosses the crack surfaces.
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KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.80718 0.82360 0.83544 -0.00285 -0.00559 -0.00903

Variation (%) 1.08 3.13 4.62 107.52 306.51 556.63

TABLE 5.11 – Average values of the strain intensity factors for the studied Class II dislocations
amounts in an unrelaxed configuration

KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.82557 0.89061 0.83725 -0.01545 -0.04915 -0.03267

Variation (%) 3.38 11.52 4.84 1023.10 3472.93 2275.24

TABLE 5.12 – Average values of the strain intensity factors for the studied Class II dislocations
amounts in a relaxed configuration

5.9 Class III dislocations

Let’s finish our investigation with Class III dislocations.

Parameters

The studied dislocations will be screw dislocations of Class III (AB(d)), Burgers vector of [110]
and a length of 30 nm. Three simulations, aside the dislocation free simulation, will be carried out.

(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 5.32 – Initial configurations of the study cases for different number of dislocations

Class III dislocations are coplanar with the crack in this orientation. Their center being placed
at 8 nm ahead of the crack, they intersect with the crack for 7 nm.

Due to the dislocation position, the dislocation movements are restrained by the crack stress
field. This causes the dislocations to stabilize without much propagation.

Results

Unrelaxed configuration
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(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 5.33 – Final configurations of the study cases for different number of dislocations

(a) KI along the crack front

(b) Dislocation contribution to KI along the crack front

FIGURE 5.34 – KI along the crack front for various amounts of Class III dislocations for the
unrelaxed configuration. Dislocation contribution to KI has been isolated for clarity.
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KI KI , illustrated in Figure 5.35, shows for all three cases a very similar effect as that created by
the single centered dislocation. Each dislocation created a clear mark on the crack energy,evolution
along the crack front making it easy to identify their position on the crack.

A single dislocation seems to be able to influence most of the crack length, most certainly
due to the dislocation proximity to the crack. Class III dislocations create both a shielding and an
antishielding effect on the crack, but the antishielding effect is more pronounced, making these
dislocations have an average antishielding effect.

(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.35 – KII and propagation angle along the crack front for various amounts of Class III
dislocations for the unrelaxed configuration. Dislocation contribution to KII has been isolated for
clarity.

KII Dislocations effect on KII , as can be seen in Figure 5.35, is also evidenced as clear marks
on the energy profile along the crack. The more dislocations present in the volume, the wavier the
crack front will be when it propagates as shown by the propagation angle.

Driven by the observed energy, the crack will move as much as possible to avoid the disloca-
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tions. It will move upwards to avoid the dislocations but it will also move along the opposite angle
around the crack, creating a Λ shape where the dislocation is located.

Relaxed configuration

(a) KI along the crack front

(b) Dislocation contribution to KI along the crack front

FIGURE 5.36 – KI along the crack front for various amounts of Class III dislocations for the
relaxed configuration. Dislocation contribution to KI has been isolated for clarity.

KI Once the dislocations are relaxed, the results illustrated in Figure 5.36 show a very similar
pattern as the unrelaxed ones. There is still a local shielding effect present, but it is less pronounced
than before. On the other hand, the antishielding effect has increased. Since the dislocations reach
a relaxed configuration without much propagation, it was expected for the results to remain similar
to the unrelaxed ones.

KII Similarly to KI , KII also remains close to its values in the unrelaxed configuration. In Figure
5.37 we observe that the most significant change is that the negative values or KII increase in a
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Chapitre 5. Effect of dislocations on the stress intensity factors for the O110 orientation

(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.37 – KII and propagation angle along the crack front for various amounts of Class III
dislocations for the relaxed configuration. Dislocation contribution to KII has been isolated for
clarity.

way that for some of the dislocations present in the five dislocation simulation there will be no
angle changes on those points. The positive values increase slightly, but the general behavior of
the crack will be unchanged compared to the unrelaxed configuration.

Average stress intensity factors

The average stress intensity factors calculated in Table 5.13 confirm what the graphics showed ;
there is a global antishielding effect created by the Class III dislocations. Moreover, the values
of KII show that the cumulative effect of the dislocations create a stronger effect than a single
dislocation could.

The simulation with one dislocation shows a minimal change in the global values as said
dislocation creates both a positive and a negative effect. Once more dislocations are added, there
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5.10. Dislocation class comparison

KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.79866 0.79967 0.80104 -0.00131 0.00116 0.00201

Variation (%) 0.01 0.14 0.31 -4.57 -184.30 -245.96

TABLE 5.13 – Average values of the strain intensity factors for the studied Class III dislocations
amounts in an unrelaxed configuration

is a stronger global effect that is created.

KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.79946 0.80012 0.80226 0.00094 0.00075 0.00438

Variation (%) 0.11 0.19 0.46 -168.41 -154.69 -418.09

TABLE 5.14 – Average values of the strain intensity factors for the studied Class III dislocations
amounts in a relaxed configuration

The relaxed configuration heightens the antishielding effect of the dislocations as well as the
direction change of the crack. The dislocation effect remains non proportional to the number of
dislocations present as shown in Table 5.14. KII does increase dramatically and remains positive
for all the case studied, but its raw values remain variable.

Conclusions

We studied the effect of Class III dislocations on the stress intensity factors. Generally spea-
king, they create an antishielding effect on the crack. As they are coplanar with the crack, their
position can strongly affect the results. Both KI and KII vary greatly along the crack front. This
will lead to a crack front that, once it propagates, will be wavy, increasing the global crack energy.
Of course this is a hypothetical case as the simulated dislocation crosses the crack front and does
not encounter a real surface.

5.10 Dislocation class comparison

We studied each dislocation class effect individually. Now we seek to compare their effect to
each other.

Parameters

The studied dislocations are the same that were previously studied. We will only consider the
cases with single dislocations present. As a reminder the dislocations studied, illustrated in Figure
5.38, are :

— Class I : (CB(a)), Burgers vector [101]
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Chapitre 5. Effect of dislocations on the stress intensity factors for the O110 orientation

(a) Class I (b) Class II (c) Class III

FIGURE 5.38 – Initial configurations of the study cases for different types of dislocation

— Class II : (CB(d)), Burgers vector [101]

— Class III : (AB(d)), Burgers vector [110]

All dislocations are 30 nm long. The applied strain is so : εzz = ε1 = 0.01892208

(a) Class I (b) Class II (c) Class III

FIGURE 5.39 – Final configurations of the study cases for different types of dislocations

We will also consider the relaxed configuration of the dislocations, illustrated in Figure 5.39.
As these dislocations interact differently with the crack stress fields, their relaxed configurations
vary greatly from one to another.

Results

Unrelaxed configuration

KI First, we compare the unrelaxed results for KI shown in Figure 5.40. Each dislocation has a
different effect on the crack, be it shielding, for Class I, antishielding, for Class II, or a mix of
both, for Class III. These results confirm the uniqueness of the different dislocation classes.

It is also worth noting that the dislocation with the highest effect on the crack, Class II, is the
one that will propagate the most to the point of creating a dislocation loop. On the other hand,
Class I, even if it has a Burgers vector that will lead the dislocation to cross the crack front, it
stabilizes mostly before it happens. As Class III is already touching the crack, there is not much to
say.

KII As for KII , illustrated in Figure 5.41, we also observe a very diverse energy variation created
by the dislocations. The highest dislocation impact is created by the Class III dislocation. This
dislocation is also the closest to the crack, thus increasing its effect on said crack.
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5.10. Dislocation class comparison

(a) KI along the crack front

(b) Dislocation contribution to KI along the crack front

FIGURE 5.40 – KI along the crack front for different dislocation classes in an unrelaxed configu-
ration. Dislocation contribution to KI has been isolated for clarity.

Class I dislocation has a similar effect to Class III but in a smaller scale. When the crack front
changes of angle in a direction, it will also partially change to the other direction in a lower scale.
On the other hand, Class II dislocations only modify the propagation angle around the dislocation
position.

Relaxed configuration

KI Once the dislocations are relaxed, we obtain the results illustrated in Figure 5.42. We observe
a dramatic increase of KI for the Class II dislocation. It was expected since it is the dislocation that
propagated the most. On the other hand, the Class III dislocation loses its shielding effect, now it
only pushes the crack to advance farther. At last, the Class I dislocation retains its shielding effect
and continues to affect the crack in the same way.

Regarding the dislocation affected zone, Class II dislocation is the one that has the most ex-
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Chapitre 5. Effect of dislocations on the stress intensity factors for the O110 orientation

(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.41 – KII along the crack front for different dislocation classes for the unrelaxed confi-
guration. Dislocation contribution to KII has been isolated for clarity.

tended effect on the crack front among the studied dislocations. It is possible that what affects the
crack front energy is not only the dislocation crack distance, as the Class III dislocation is much
closer than the Class II is, but also the shear created by the dislocations when they propagate. Since
the crack front is sheared by at least one dislocation loop when the Class II dislocation stabilizes,
this could be the reason of such a high value of KI .

KII For the relaxed configuration, illustrated in Figure 5.43, the general behavior of Class I and
Class III dislocations remains unchanged. On the other hand, Class II dislocations have a change in
their behavior. Aside from a general increase on KII values, we observe an increase in the left side
of the graph that only appeared on the relaxed configuration. As before, it is Class II which has the
highest effect on the stress intensity factors. Furthermore, Class I dislocation effect becomes more
pronounced than Class III dislocations. This shows that the dislocation distance is not a parameter
of first order for the dislocation influence on the crack stress intensity factors.
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5.10. Dislocation class comparison

(a) KI along the crack front

(b) Dislocation contribution to KI along the crack front

FIGURE 5.42 – KI along the crack front for different dislocation classes for the relaxed configu-
ration. Dislocation contribution to KI has been isolated for clarity.

Average stress intensity factors

As was expected from the previous results, Class II dislocation are shown to have the highest
impact on the stress intensity factors as visible in Table 5.15. Class I dislocations are the only ones
that provide shielding to the crack. On the other hand, the average values do not allow to determine
the overall effect of Class III dislocations since the shielding and antishielding effects cancel each
other out when calculating an average value.

Once the dislocations get to the relaxed configuration, the absolute average values, gathered
in Table 5.16, have all increased in various ways. For Class I, relaxation doubles the dislocation
effect while for Class II it triples it. As said before, Class III dislocations had both a shielding and
an antishielding effect. The fact that there is a difference in the average value indicates that the
antishielding effect took the upper hand and became the main effect created by this dislocation.
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(a) KII along the crack front

(b) Propagation angle of the crack front

FIGURE 5.43 – KII and propagation angle along the crack front for different dislocation classes
for the relaxed configuration. Dislocation contribution to KII has been isolated for clarity.

Conclusions

We have studied three types of dislocations belonging to different classes and compare their
effect on the stress intensity factors along the crack front. We observe how each dislocation Class
has a different effect on the crack energy. Class I dislocation provides shielding to the crack while
Class II provides antishielding and finally Class III provides both effects to the crack. It is worth
mentioning how the dislocation with the largest effect on the crack front, Class II dislocation, is the
only one that will propagate enough to create a dislocation loop that will cross the crack surface.
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5.11. Conclusion

KI KII

Class I Class II Class III Class I Class II Class III

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.79723 0.80718 0.79866 -0.00196 -0.00285 -0.00131

Variation (%) -0.17 1.08 0.01 42.76 107.52 -4.57

TABLE 5.15 – Average values of the strain intensity factors for the studied dislocations in an
unrelaxed configuration

KI KII

Class I Class II Class III Class I Class II Class III

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.79583 0.82557 0.79946 -0.00345 -0.01545 0.00094

Variation (%) -0.34 3.38 0.11 151.01 1023.10 -168.41

TABLE 5.16 – Average values of the strain intensity factors for the studied dislocations in a
relaxed configuration

5.11 Conclusion

We have studied the stress intensity factors by plotting its evolution along the crack front and
compute its average. Different parameters were considered. First, we studied the effect of the ap-
plied loading strain, from which we deduced that, even if the total influence of the dislocation
increases with a higher strain, it is the fact that the dislocation propagates that increases the energy
on the crack and not the strain itself. As for the crack dislocation distance, we deduced that dislo-
cations need to be closer to 9 nm from the crack for it to be able to influence on the stress intensity
factors. We lastly considered the dislocation sign, which affects the intensity of the dislocation
effect on the crack front energy but not its nature.

Various number of initial dislocations were studied too. It leads to results that indicate that
the effect on the stress intensity factors of the dislocations are not proportional to the number of
dislocations, it looks rather like an exponential relationship. Lastly, several dislocation types were
considered. Dislocations of Class I lead to a shielding of the crack, while Class II dislocations
created the opposite effect ; antishielding. As for Class III dislocations, we obtained a mix of
shielding and antishielding of the crack.
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Chapitre 6. Effect of dislocations on the stress intensity factors for the O101 orientation

6.1 Introduction

This chapters contains a study of the dislocations effect on the crack stress intensity factors
for the orientation noted as O101. This orientation corresponds to the one studied in [70]. The
referred study deals with dislocation crack interactions using DDD with DCM and a static crack
presented in 1.4. Therefore, the aim was to compare our results, however due to the differences
in procedures, this comparison is impossible. This study will focus on the individual effect of a
dislocation on the crack while the mentioned study tends to a more global approach.

Similarly to the study carried out in Chapter 5, we will study the effect of several dislocation
orientations on the crack as well as different amounts of initial dislocations.

6.2 Simulation parameters

Volume orientation

FIGURE 6.1 – Studied crack orientation O101. Volume of 75×75×75nm

The orientation noted O101 and illustrated in Figure 6.1 will be studied in this chapter. This
orientation places the crack plane on a dense {111} atomic plane. It was chosen because studies
of a similar crack interacting with dislocations already exist. The studied mesh corresponds to a
cube of 75 nm of size.

Dislocations

The dislocations studied are the screw dislocations described in Table 6.1, and are the same
as studied in Chapter 5. Even if these dislocations will be referred as dislocations belonging to
classes for simplicity sake, this class distinction is not relevant for this crack configuration.. The
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6.2. Simulation parameters

Class I Class II Class III

System CB(a) CB(d) AB(d)

Burgers vector
[
101
] [

101
] [

110
]

Line vector
[
101
] [

101
] [

110
]

Slip plane (111) (111) (111)

Schmid-Boas notation D4 B4 B5

TABLE 6.1 – Dislocations used for the simulations

class definition was based on the strain perceived by the dislocations, with the orientation change,
the strain distribution will change too. The dislocations will be placed so that their center is at 8
nm ahead of the crack front following the propagation direction of the crack.

Figure 6.2 illustrates the shear stress resolved on the dislocation slip system for each studied
dislocation. The fields seen by the dislocations belonging to Class I and Class II are symmetrical,
we can expect their behavior to be similar. As for Class III dislocations, they are subjected to a high
shear stress on their whole length, which should lead to a higher influence on the stress intensity
factors than the other dislocations.

Loading conditions

These simulations will be carried out under the same loading as in the simulations described
in Chapter 5. The volume will be subjected to an imposed strain applied to the upper surface of the
volume opening the crack in mode I. The applied strain will be of ε = 0.01892208 as it corresponds
to 0.998εG as described in Section 4.2. This strain allows dislocation mobility without having a
too large dislocation multiplication.
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Chapitre 6. Effect of dislocations on the stress intensity factors for the O101 orientation

(a) τCB(a)

(b) τCB(d)

(c) τAB(d)

FIGURE 6.2 – Shear stress created by the crack on the mentioned dislocations slip planes

6.3 Class I dislocations

First, we will study the effect of one or several class I dislocations on the stress intensity
factors. The studied dislocations will be screw dislocations of Class I (CB(a)), Burgers vector of[
101
]

, slip plane : (111) and a length of 30 nm.
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6.3. Class I dislocations

(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 6.3 – Initial configurations of the study cases for different number of Class I dislocations

Parameters

Three simulations will be carried out. Their initial state is illustrated in Figure 6.3. In these
simulations we vary the number of starting dislocations.

(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 6.4 – Final configurations of the study cases for different number of class I dislocations

The relaxed state of these simulations, illustrated in Figure 6.4, will also be analyzed. The
dislocations propagate away from the crack without creating a dislocation loop. Even if the dislo-
cations propagate away from the crack there is some points where the dislocations cross the crack
surface. This happens for the simulations containing one and five dislocations. These interactions
will probably increase the dislocation effect on the crack energy.

Results

Unrelaxed state

KI The results for KI for an unrelaxed state plotted in Figure 6.5 show that the dislocation posi-
tion can be easily evidened from the valleys created on the energy on the crack front. The curve
corresponding to the one dislocation case shows how much a single dislocation is able to influence
all the crack length. Is is found that class I dislocations present a high antishielding effect all along
the crack front.

Even if globally these dislocations have an antishielding effect, we observe locally a small
amount of shielding where the dislocation is closer to the crack front. Since KI increases around
the dislocation, the crack will want to surround the dislocation. The dislocations will not directly
slow down the crack, but they will nonetheless redirect it around themselves.

KII As shown in Figure 6.6, the effect of the dislocations on KII is not as simple as its effet on
KI . Just as for KI , one dislocation is enough to affect the entirety of the crack front.
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(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 6.5 – KI along the crack front for different number of Class I dislocations in for the
unrelaxed configuration. Dislocation contribution to KI has been isolated for clarity.

Unlike the other studied cases, the studied dislocations do not create a very clear mark on the
energy values. Here, we observe a general increase on the crack energy on the whole crack. The
zone surrounding the dislocations does seem to have an increase in energy in a lesser manner than
for the rest of the crack front. The crack propagation angle will change all in the same direction ;
downwards i.e. in the direction of (111).

Relaxed state

KI Once the dislocations have reached their equilibrium position for the given applied strain, we
obtain the values of KI illustrated in Figure 6.7. There is still a very clear antishielding effect on
the whole crack front. Unlike the unrelaxed state results, here it is impossible to identify the direct
effect of each singular dislocation on the energy. The fact that the dislocations have moved away
from the crack is probably the origin of the smoother results. The crack seems to be affected by
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6.3. Class I dislocations

(a) KII along the crack front

(b) Dislocation contribution to KII

FIGURE 6.6 – KII along the crack front for different number of Class I dislocations for the unre-
laxed configuration. Dislocation contribution to KII has been isolated for clarity.

the dislocations as a whole instead of each individual dislocations.

This is confirmed by the three dislocations case for which the dislocation lines never cross the
crack surface and where the KI profile is smoother.

KII KII profiles computed in the relaxed state in Figure 6.8 yield similar results than the ones ob-
tained for KI . There is no individual mark for each dislocation effect but there is a sharp increase
in values where the dislocations intersected the crack front. This is also due to the dislocations
moving away from the crack. The energy distribution is similar in all cases and it does not seem
to be proportional to the starting dislocations placed in the volume. Knowing the dislocation pro-
pagation pattern, seen in Figure 6.4, the farther the dislocations are, the lower the energy is.
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(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 6.7 – KI along the crack front for different number of Class I dislocations for the relaxed
configuration. Dislocation contribution to KI has been isolated for clarity.

Average stress intensity factors

The average stress intensity factors for the relaxed state compiled in Table 6.2 show how the
values of KI slightly increase with the number of dislocations present. The increase is proportional
to the number of present dislocations. Even if there is an increase, the average values remain very
close to the ones without dislocations present.

As for KII , it also increases proportionally to the number of starting dislocations. The high
variation is of course due to the shearing nature of the dislocations.

Once the dislocations have reached a stable state, the studied values in Table 6.3 show faint
evolution for KI . As was observed in the graphics, the three dislocation simulation has a lower
value than the two others due to the fact that no dislocation in that simulation ever crosses the
crack front. The energy increase is in accordance to the values previously seen in Chapter 5.

As for KII , the high discordance on the values is due to the fact that the base value is almost null
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6.3. Class I dislocations

(a) KII along the crack front

(b) Dislocation contribution to KII

FIGURE 6.8 – KII along the crack front for different number of Class I dislocations for the relaxed
configuration. Dislocation contribution to KII has been isolated for clarity.

and that along the crack front, KII changes of sign. The highest impact, happens for the simulation
with no direct crack dislocation interaction. Since we are looking at average values, they might
not be accurate considering the raw results previously studied.

Conclusions

We observed in these simulations that the studied dislocations create an antishielding effect.
Even with this antishielding, the crack still tended to have lower energies if a dislocation was right
in front of it. The dislocation propagates away from the crack front.

Even when the dislocations have moved away from the crack, they still managed to influence
its energy. The individual effect of each dislocation cannot be discerned once the dislocations get
relaxed ; their combined effect widen the affected zone and smoothed the curve. There is still some
dislocations crossing the crack surface in these simulations. These kind of interactions are shown
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Chapitre 6. Effect of dislocations on the stress intensity factors for the O101 orientation

KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.80082 0.80516 0.80897 -0.00057 0.00051 0.00178

Variation (%) 100.280 100.823 101.300 41.589 -36.985 -129.466

TABLE 6.2 – Average values of the stress intensity factors for the studied number of Class I
dislocations for the initial unrelaxed configuration

KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.82470 0.81925 0.85094 0.00846 -0.01502 -0.00673

Variation (%) 103.271 102.588 106.557 -615.108 1091.790 489.320

TABLE 6.3 – Average values of the stress intensity factors for the studied number of Class I
dislocations for the relaxed configuration

to exacerbate the dislocation effect on the crack front energy.
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6.4. Class II dislocations

6.4 Class II dislocations

The next studied dislocations will be Class II dislocations, i.e. the CB(d) case with one, three
and five initial screw dislocations.

Parameters

(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 6.9 – Initial configurations of the study cases for different number of Class II dislocation

The studied dislocations will be screw dislocations of Class II (CB(d)), Burgers vector of[
101
]
, slip plane of (111) and a length of 30 nm. Three simulations will be carried out each with

a different number of starting dislocations. The initial dislocations, illustrated in Figure 6.9, are
placed each at 8 nm ahead of the crack front following the y=

[
101
]

direction.

(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 6.10 – Final configurations of the study cases for different number of Class II dislocation

Once the dislocations have reached the relaxed configuration, illustrated in Figure 6.10, we
observe that they have moved away from the crack. It is worth noting that there is no dislocation
loop created by the starting dislocations though there is a dislocation that crosses the crack surface
for the one dislocation simulation case.

Results

Unrelaxed state

KI The dislocations effects, shown in Figure 6.11, are mostly of an antishielding nature. A single
dislocation is shown to affect a domain that includes the whole crack front.

The dislocations positions can be identified in the graphics by the valley created on the KI va-
lues. There is, for the one dislocation simulation case, a small shielding zone where the dislocation
is closer to the crack front. Therefore the crack front will try to surround the dislocation to move
past it.
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(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 6.11 – KI along the crack front for different number of Class II dislocations for the
unrelaxed configuration. Dislocation contribution to KI has been isolated for clarity.

KII Dislocations effect lower the values of KII as illustrated in Figure 6.12. Like for KI , a single
dislocation has a volume of influence that overlaps the whole crack front. The dislocation effect
on the crack front creates a very distinct shape on the energy profile.

The way the dislocations affect the crack front energy varies with the dislocation position, it
will become more wavy when advancing thus creating a less stable crack front. The crack front
will move generally upwards to avoid the dislocations.

Relaxed state

KI Once the dislocations have reached the relaxed configuration, they create a strong antishiel-
ding effect on the crack front energy as illustrated in Figure 6.13. Since the dislocations move
away from the crack front, there is no longer any individual dislocation effect observed on the
graphics. There is a small shielding effect on the single dislocation simulation (blue curve) which
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6.4. Class II dislocations

(a) KII along the crack front

(b) Dislocation contribution to KII

FIGURE 6.12 – KII along the crack front for different number of Class II dislocations for the
unrelaxed configuration. Dislocation contribution to KII has been isolated for clarity.

is due to a dislocation crossing the crack front locally.

The three dislocations cccase displays a similar behavior which seems to indicate that KI is
independent from the number of initial dislocations. Even if the dislocations have moved away
from the crack, they are still able to influence the whole crack front.

KII The results for KII , illustrated in Figure 6.14, display several similarities with those for KI .
There is no individual effect noticeable created by each dislocation, instead their effects combine
and affect the whole crack length. The results are also independent from the number of starting
dislocations. The crack front angle varies so the crack will change its habit plane to avoid the
dislocations.
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(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 6.13 – KI along the crack front for different number of Class II dislocations for the
relaxed configuration. Dislocation contribution to KI has been isolated for clarity.

Average stress intensity factors

The average stress intensity factors calculated in Table 6.4 for the unrelaxed configuration
show a proportional increase for these average values depending on the starting dislocation num-
ber. The values of KI show a global antishielding effect created by the dislocations. As for KII ,
the dislocation effect makes it decrease further, the computed values are still proportional to the
starting dislocation number.

Once the dislocations reach their relaxed configuration, the average intensity factors are recal-
culated and presented in Table 6.5. For KI , the average values increase with the number of starting
dislocations, increasing the antishielding provided by the dislocations. The resultant variation is
even proportional to the starting dislocation number.

As for KII , there is no clear trend for the average values. They do increase the more dislocations
there are, but since KII both includes positive and negative values, the average value just indicates
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6.4. Class II dislocations

(a) KII along the crack front

(b) Dislocation contribution to KII

FIGURE 6.14 – KII along the crack front for different number of Class II dislocations for the
relaxed configuration. Dislocation contribution to KII has been isolated for clarity.

towards which sign the values lean to. The great variation calculated was expected since it’s mostly
the dislocations that create the shear at the origin of KII .

Conclusions

Class II dislocation results show great similarities to the Class I dislocations results. These
similarities will be further studied in Section 6.6. Globally, KI provides antishielding to the crack,
with some localized zones of shielding created when the dislocations cross the crack front. For KII ,
the energy both increases and decreases locally. The crack angle will adapt in order to avoid the
dislocations as much as possible. As the dislocations move away from the crack, their individual
effect on the crack front disappears and is replaced by a global effect that influences the crack
much more regularly.
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KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.80083 0.80498 0.80956 -0.00221 -0.00323 -0.00406

Variation (%) 100.282 100.802 101.375 160.504 234.493 295.170

TABLE 6.4 – Average values of the stress intensity factors for the studied number of Class II
dislocations for the initial unrelaxed configuration

KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.82870 0.84977 0.86467 -0.01107 0.00530 0.01419

Variation (%) 103.771 106.410 108.276 804.788 -385.491 -1031.728

TABLE 6.5 – Average values of the stress intensity factors for the studied number of Class II
dislocations for the relaxed configuration

6.5 Class III dislocations

Last dislocation configuration to be studied is the Class III case as described below.

Parameters

(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 6.15 – Initial configurations of the study cases for different number of Class III disloca-
tions

The studied dislocations will be screw dislocations of Class III (AB(d)), Burgers vector of[
110
]
, slip plane (111) and a length of 30 nm. Three simulations will be carried out, their initial

state is illustrated in Figure 6.15. The starting dislocations are all coplanar with the crack.
The other studied configuration, illustrated in Figure 6.16, corresponds to the relaxed configu-

ration. These dislocations do not propagate away or towards the crack considering their starting
position. The dislocations nearly touch the crack front. We suppose this will cause the dislocation
effect on the crack front to be higher than for the other studied cases.
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6.5. Class III dislocations

(a) n = 1 (b) n = 3 (c) n = 5

FIGURE 6.16 – Final configurations of the study cases for different number of Class III disloca-
tions

Results

Unrelaxed state

KI The results for KI on the unrelaxed configuration are illustrated in Figure 6.17. We observe
that the dislocations have a shielding effect on the crack front. Each dislocation creates a singular
shielding effect that clearly marks the crack front energy.

It is worth noting that the highest shielding point does not correspond to the closest point
between the crack and the dislocation. Actually, on that point there is a slight antishielding effect,
though that is more likely due to it being the end point of the dislocation than because it is the
closest point between crack and dislocation since there is also some antishielding cause by the
other end of the dislocation. A single dislocation, even if it is very close to the crack, does not
affect the whole crack front.

KII As for KII , the results correspond to Figure 6.18. The dislocation presence lowers the values
of KII . Contrary to KI , the dislocation effect is exacerbated the closer the dislocation is to the crack
front. The dislocations zone of effect is also reduced compared to KI . This also causes KII to have
sharper variations.

Relaxed state

KI Once the dislocations reach their equilibrium position, the results obtained, illustrated in Fi-
gure 6.19, are very similar to the ones for the unrelaxed configuration. With the exception of the
five dislocation simulation (red curve), the obtained results retain the same geometry of the initial
configuration. For the simulations of one and three dislocations, the individual dislocations marks
are still visible. We also obtain the same result on both curves for the middle dislocation.

As for the five dislocations simulation case, the obtained results are probably due to the super-
position of the individual dislocation effects which, as has been shown for other cases, can erase
the singular dislocations marks. There is still some antishielding present in the curves, but it is
negligible compared to the shielding provided by the dislocations.

KII As for the KII results, illustrated in Figure 6.20 we obtain the same energy distribution as
for the unrelaxed configuration. The zone affected by the dislocations does not change in this
configuration. The results obtained for the middle dislocation in the simulations for one and three
dislocations are also very similar, meaning that the dislocations in the three dislocation simulation
have minimal interactions between each other.

137



Chapitre 6. Effect of dislocations on the stress intensity factors for the O101 orientation

(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 6.17 – KI along the crack front for different number of Class III dislocations for the
unrelaxed configuration. Dislocation contribution to KI has been isolated for clarity.

The main changes occur for the five dislocations simulation case. The individual dislocation
marks that could be observed for the unrelaxed configuration disappear here. It is most certainly
the same phenomenon that also happens for the calculations of KI .

Average stress intensity factors

The average stress intensity factors for the unrelaxed configuration, gathered in Table 6.6,
show a non-proportional variation created by the dislocations. The dislocations effects previously
mentionned are seen here too. There is an average shielding effect created by the dislocations, and
the values of KII decrease even further.

The average stress intensity factors for the relaxed configuration are compiled in Table 6.7. For
KI , we obtain the exact same results for the one and three dislocations simulations. This means
that there has been no evolution in how the crack front perceives these dislocations. This holds
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6.5. Class III dislocations

(a) KII along the crack front

(b) Dislocation contribution to KII

FIGURE 6.18 – KII along the crack front for different number of Class III dislocations for the
unrelaxed configuration. Dislocation contribution to KII has been isolated for clarity.

true for KII too. As for the five dislocations simulation, the dislocations effects are exacerbated as
was observed previously. These results are probably due to the fact that for this last simulations,
the dislocations interact with each other as they are close to one another, thus multiplying their
effects on the crack front.

Conclusions

The studied Class III dislocations are parallel to the crack surface, thus placing the dislocations
nearly at the crack front. Though dislocations are very close to the crack, it is not the closer point of
the dislocation to the crack front that creates the highest effect on KI . Class III dislocations provide
shielding to the crack front. It is worth noting that the extremities of the dislocations create a small
antishielding effect on the crack that is easily overpowered by the shielding. The zone of effect of
these dislocations is small enough that only the five dislocations simulations has some dislocation-
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(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 6.19 – KI along the crack front for different number of Class III dislocations for the
relaxed configuration. Dislocation contribution to KI has been isolated for clarity.

dislocation interactions. These interactions lead to a stronger shielding effect on the crack front.
As no dislocation crosses the crack, we do not know if said crossing could create an antishielding
effect on the crack.

KII yields very similar results to KI as there is no difference between the relaxed and un-
relaxed configurations for the one and three dislocations simulations but there is an increase in
the dislocations effect for the five dislocations simulation. The main difference between the two
stress intensity factors is that for KII , the point with the highest effect on the crack front energy
corresponds to the dislocation point that is closer to the crack front.
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6.6. Dislocation class comparison

(a) KII along the crack front

(b) Dislocation contribution to KII

FIGURE 6.20 – KII along the crack front for different number of Class III dislocations for the
relaxed configuration. Dislocation contribution to KII has been isolated for clarity.

6.6 Dislocation class comparison

Following our investigation of each dislocation class, we now seek to compare their effects.

Parameters

In order to compare the effect of the previously studied dislocations, we will study the effect
of a single dislocation of each class on the crack front. As a reminder the dislocations studied,
illustrated in Figure 6.21, are :

— Class I : (CB(a)), Burgers vector of
[
101
]

, slip plane (111)

— Class II : (CB(d)), Burgers vector of
[
101
]
, slip plane (111)

— Class III : (AB(d)), Burgers vector of
[
110
]
, slip plane (111)
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Chapitre 6. Effect of dislocations on the stress intensity factors for the O101 orientation

KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.79700 0.79409 0.78865 -0.00182 -0.00331 -0.00605

Variation (%) 99.801 99.437 98.756 132.554 240.378 439.954

TABLE 6.6 – Average values of the stress intensity factors for the studied number of Class III
dislocations for the initial unrelaxed configuration

KI KII

Number of dislocations 1 3 5 1 3 5

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.79700 0.79408 0.78474 -0.00182 -0.00331 -0.00842

Variation (%) 99.801 99.437 98.267 132.554 240.711 612.428

TABLE 6.7 – Average values of the stress intensity factors for the studied number of Class III
dislocations for the relaxed configuration

(a) Class I (b) Class II (c) Class III

FIGURE 6.21 – Initial configurations of the study cases for different types of dislocation

(a) Class I (b) Class II (c) Class III

FIGURE 6.22 – Final configurations of the study cases for different types of dislocations

The studied dislocations are 30 nm long, and the applied loading is so : εzz = ε1 = 0.01892208
The relaxed configuration, illustrated in Figure 6.22 will also be studied. It is worth noting

how similarly dislocations from Classes I and II behave.
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6.6. Dislocation class comparison

Results

Unrelaxed state

(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 6.23 – KI along the crack front for different dislocation classes for the unrelaxed confi-
guration and for a single dislocation. Dislocation contribution to KI has been isolated for clarity.

KI First, we compare the values for KI for the unrelaxed configuration illustrated on Figure 6.23.
The dislocation class with the highest impact on the crack front energy is Class III. It is also
the only class that provides a significant amount of shielding to the crack. On the other hand,
Class I and Class II provide an antishielding effect to the crack front. These two classes have
effects on the crack that create a symmetry on the energy profiles. This symmetry corresponds to
a glide reflection symmetry. This is due to the fact that the crack is on the c plane, so these two
dislocations, that share a line vector, are placed on the same place but move in different directions.

It is also worth noting that even if Class III dislocations are the closest to the crack front, it
is Class I and II dislocations that have the larger zone of effect on the crack front. The Class III
results is also not aligned with the other two results because of the angle the dislocation is at.
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(a) KII along the crack front

(b) Dislocation contribution to KII

FIGURE 6.24 – KII along the crack front for different dislocation classes for the unrelaxed confi-
guration and for a single dislocation. Dislocation contribution to KII has been isolated for clarity.

KII As for KII the results for the unrelaxed configuration are illustrated on Figure 6.24. Class
III dislocation has the highest localized effect on the crack front, lowering sharply KII . The effect
of this dislocation is situated on the closest point of the dislocation to the crack tip and affects a
smaller zone than the other two studied dislocations.

Class I and II dislocations have very similar results here too. But this time, the relative curves
are a point reflection of each other. It is worth noting that while at first glance, the results between
classes are quite different, they are actually quite close to each other in shape. Each dislocation
creates an imprint on the energy that has four energy low points. This pattern is also present
on Class III dislocations. The reason it is different is probably because most of the dislocation
influence is concentrated in one point of the crack due to the dislocation proximity instead of
being equally distributed along the crack front.

Relaxed state
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6.6. Dislocation class comparison

(a) KI along the crack front

(b) Dislocation contribution to KI

FIGURE 6.25 – KI along the crack front for different dislocation classes for the relaxed configu-
ration and for a single dislocation. Dislocation contribution to KI has been isolated for clarity.

KI Once the dislocations reach the relaxed configuration, we obtain the results for KI illustrated
in Figure 6.25. The symmetry observed between Class I and II still remains in this configuration.
Their antishielding effect has vastly increased. There is some shielding that appears too due to the
dislocations crossing the crack front.

On the other hand, Class III effect hasn’t evolved between the two configurations. This it
probably due to the fact that Class III dislocations have a very low propagation distance compared
to the other two Classes.

KII The results for KII for the relaxed configuration are shown in Figure 6.26. The values for the
Class III dislocation remain unchanged with the dislocation propagation, the propagation does not
influence this dislocation behavior. On the other hand, the effect of the other two classes has vastly
increased. Class I and II dislocation effect are still the point reflection symmetry of each other but
there is some minor differences between Class I and II results that are due to the difference on
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(a) KII along the crack front

(b) Dislocation contribution to KII

FIGURE 6.26 – KII along the crack front for different dislocation classes for the relaxed configu-
ration and for a single dislocation. Dislocation contribution to KII has been isolated for clarity.

propagation of these two dislocations. It is possible that the differences we observe between Class
III and the two other classes are also due to the differences in dislocation propagation.

Average stress intensity factors

The average stress intensity factors for the unrelaxed configuration are gathered in Table 6.8.
For KI , Class I and II have the same value and show a global antishielding effect. Whereas for
Class III, there is a clear shielding effect that appears to be, if considering the absolute values,
weaker than the antishielding effect created by the two other studied dislocation configurations.

Concerning KII , the values for Class I and Class II are both equidistant from the non dislocation
value. It confirms what was observed in the graphics. As for Class III, even if it had a minimal
value lower than the one for the other classes, Class II still has more impact globally on KII . Class
III effect zone is smaller than for the other dislocation configurations.
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6.6. Dislocation class comparison

KI KII

Class I Class II Class III Class I Class II Class III

K No dislocation (MPa.m0.5) 0.79858 0,79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.80082 0.80083 0.79700 -0.00057 -0.00221 -0.00182

Variation (%) 100.280 100.282 99.801 41.589 160.504 132.553

TABLE 6.8 – Average values of the strain intensity factors for the studied dislocations for the
initial unrelaxed configuration

KI KII

Class I Class II Class III Class I Class II Class III

K No dislocation (MPa.m0.5) 0.79858 0.79858 0.79858 -0.00138 -0.00138 -0.00138

K Dislocation (MPa.m0.5) 0.82470 0.82870 0.79700 0.00846 -0.01107 -0.00182

Variation (%) 103.271 103.771 99.801 -615.108 804.788 132.554

TABLE 6.9 – Average values of the strain intensity factors for the studied dislocations for the
relaxed configuration

Once the dislocations have relaxed, the average intensity factors are calculated and gathered in
Table 6.9. The values for Class III remain unchanged for both stress intensity factors confirming
what was said before about their lack of evolution after dislocation propagation.

On the other hand, there is an evolution for the two other classes. The antishielding present for
Class I and Class II for KI is still present, and is stronger than before. The values obtained for both
cases are very close. As for KII , the values are also equidistant from the non dislocation value.
Class I and Class II dislocations have also increased their effect on the crack front energy.

Conclusions

In this section we have compared the effects of the three studied dislocation classes and one
single dislocation for both the unrelaxed and relaxed configuration. For the Class III case, the
energy of this dislocation does not evolve from one configuration to the other. Furthermore, even if
the absolute maximum for Class III is higher than for the other cases, the global value is still lower
due to the dislocation effect zone being smaller. The dislocations marks on the energy profiles are
similar between the three cases though.

For Class I and Class II, we have observed a symmetry between the curves of the stress inten-
sity factors plotted along the crack front. This symmetry is reflectional for KI and point reflexional
for KII . Both stress intensity factors evolve with the relaxation of the dislocations and both results
remain almost identical through all the simulation.

In conclusion, for the same propagation of the studied dislocations, it seems that the distance is
the factor that weights more on the effect of the dislocations on the stress intensity factors. But, it
is the dislocation movement that seems to be the key factor influencing the stress intensity factors.
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6.7 Conclusion

Three dislocations classes have been simulated for this study. The first part of the study consis-
ted in the study of the effect of the dislocation number on the stress intensity factor for dislocations
of different nature. We observed that the dislocation effects are additive unless the size of the af-
fected zone overlap one another. When the overlay occurs, the dislocations effect on the crack
front energy grow larger.

Of the three studied classes, Class III dislocations are the ones that propagate the least. Their
effect on both initial and relaxed configurations remain unchanged unless there is dislocation-
dislocation interactions within the volume. For the unrelaxed state, Class III dislocations have the
highest impact on the crack front as they are closer to it. Once the dislocations relax, it is Class I
and Class II dislocations that have the highest effect as they propagate more, creating a stronger
stress field around the crack front.

It is worth mentioning that Class III dislocations provide shielding to the crack while Class I
and Class II dislocations provide antishielding unless the dislocations cross the crack front which
creates locally a shielding zone.

The different class dislocations where also compared to one another. We observed a symmetry
between the results of Class I and Class II. This symmetry is due to the fact that the crack plane
corresponds to the c plane, and since Class I and Class II dislocations share a line vector, they
start at the same point and move in two other faces of the Thompson tetrahedron, namely, the a
and the d planes respectively. This symmetry manifests differently for KI and KII . The symmetry
is reflectional for KI and point reflexional for KII .
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Conclusions

This study aimed at creating a model to simulate the interactions between dislocations and a
propagating crack. Once the model created, it was also tested to verify its accuracy and then used
to study the effect of dislocation on the stress intensity factors.

Two existing simulations methods were coupled in order to be able to model the interac-
tions between a crack and dislocations. The methods coupled were the eXtended Finite Element
Method (XFEM) and the Discrete Dislocations Dynamics (DDD). The softwares used for these
simulations were Cast3M, for the XFEM, and TriDis, for the DDD. The coupling created allowed
these softwares to communicate between each other.

Once the coupling was functional, the first simulations carried out quantified the impact of the
mesh parameters on the stress intensity factors of the volume. These simulations also allowed the
mesh and overall simulations parameters to be adjusted. With the mesh parameters established,
the simulations carried out aimed at understanding the effect of different dislocation parameters
on their effect on the stress intensity factors of the crack front. The studied parameters include
the dislocations slip system, their number, their distance to the crack front, their Burgers vector
direction and the strain applied to the volume. There were also simulations aiming at comparing
our results with similar simulation results from either atomistic simulations or discrete dislocation
dynamics simulations which led us to using two different crack orientations to be able to reproduce
the existing simulations.

The first crack orientation studied corresponded to the orientation used on atomistic simu-
lations of a crack interacting with a dislocation. The first simulation carried out used the same
parameters as the ones used on the atomistic simulation in order to replicate its results. The re-
sults obtained showed a very similar dislocation behavior even if the stabilization process of the
dislocation differed. Stress maps for the different slip system were also calculate for comparison.
The geometry of the stress maps allows the dislocations to be separated in categories depending
on its symmetry. The effects of dislocations belonging to the same category were compared as
it had been observed that dislocations of the same category behaved in a similar fashion towards
the crack. Our results showed a similar trending of behavior among dislocations of the same class
though the intensity of the observed behavior changed from one dislocation to the other.

After the preliminary studies, several dislocation parameters were studied to qualify their ef-
fect on the crack front stress intensity factors. Our observations concluded that the nature of the
dislocation slip system controls the dislocation behavior towards the crack, it being shielding, anti-
shielding or a mix of both. The intensity of the dislocation effect is influenced by other parameters
such as the distance between the crack and the dislocation or the dislocation line direction. The
number of dislocations present was also considered. It seemed that the dislocations effect was so-
mewhat further amplified by the number of dislocations present than what would be justified by a
simple addition of the singular dislocations effects.

The second crack orientation studied corresponds to one of the orientations studied for a dis-
crete dislocation dynamics model with a static crack. The results comparison can only be qua-
litative as our volume is considerably smaller as it was made to be compared with atomistic si-
mulations results. Globally, the dislocations behavior seems to be the same we observed. We also
studied the same dislocations studied previously, but as the crack orientation was different, the
stress perceived by the dislocations does not allow the dislocations to be separated into different
categories. Which is why these results cannot be generalized. Each studied dislocation created a
different effect on the crack front stress intensity factors, and, as previously observed, the more
dislocations, the higher in magnitude is the effect independently of the dislocation number.

While not being overly mentioned, the main accomplishment of this study is the implemen-
tation of a crack propagation model that takes into account the internal stresses generated by the
dislocations. Figure 6.27 is an example of this implementation. In this simulation, the crack pro-
pagation direction changes locally due to the presence of dislocations. Locally, the crack is also
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(a) Initial configuration (b) Final configuration

FIGURE 6.27 – Example of a crack (orange surface) propagation influenced by the presence of
surrounding dislocations (lines)

both slowed and accelerated by the dislocations which leads to a complex 3D shape of the crack
front.

We created a coupling that allows us to simulate the interactions between a propagating crack
front and dislocations in a three dimensional environment. Our results were compared to other
preexisting simulations results. We also were able to study the effect of several parameters on the
stress intensity factors of a crack front, and to influence the crack propagation with the presence
of one or several dislocations.

Perspectives

There are still a number of improvements that can be implemented in the simulation code used
for this thesis. First, the crack surfaces could be exported to TriDis so the dislocations present
in the simulation volume can interact with them. Dislocations should be able to exit the volume
by going through the crack surfaces. The main complication presented here is that both crack
surfaces are represented by the same surface so it needs to behave as a free surface from both sides
or be duplicated to be able to represent two surfaces. The dislocations crossing these surfaces
should not be able to interact with the dislocations remaining on the volume as they are now
outside said volume. On the same vein, TriDis would also need to be able to update the surfaces
conforming the volume to accommodate the crack propagation. Not only the surfaces will need to
be modified, but also the dislocations placed where the crack will propagate need to be identified
and accordingly modified. One way to achieve this will be to calculate the level set functions for
the dislocations ends to verify if it is crossing the crack and be able to act accordingly. The code
includes an implementation of a nucleation of dislocations function on the crack front but there is
no clear nucleation criteria used. An in-depth study of dislocation nucleation at crack tips should
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be carried out in order to have an accurate nucleation criteria.
The simulations were carried out using an FCC material. Initially, it was planned for a BCC

material to be used, but the dislocation behavior laws for TriDis are still been worked on at the
moment. It will be simple to adapt the current work for BCC materials once the behavior of
dislocations in BCC materials have been updated in TriDis.

This work centers around interactions with dislocations, but this model could also be imple-
mented with voids or inclusions that could interact with the crack front. These simulations will
broaden the understanding of the origins of fracture toughness and crack behavior.

In order to physically simulate a crack propagation, a value for KIC is needed since when
KI > KIC, the crack is able to advance. KIC can be obtained either experimentally, by recreating
the simulated volume and study its crack propagation, or by using results obtained by atomistic
simulations where the propagation of a crack is also studied.

Aside from TriDis, SIMaP also works on another DDD software called numodis. This soft-
ware, while requiring higher computation times than TriDis, allows for the simulation of partial
dislocations. It would be interesting to implement a similar model than the one presented here for
numodis in order to study the effects of partial dislocations on the crack front energy.
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