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A theoretical study of thermoelectric efficiency and

cooling power in organic molecular junctions

Fatemeh TABATABAEI

Abstract

Thermoelectricity is the conversion of heat to electricity and vice versa. As

Seebeck discovered, a voltage applied to an electronic device generates a heat

current, while a temperature difference can generate electricity. During the

past decades, the size of consumer electronics has been continuously decreas-

ing. The down-sizing of the electronic devices requires a more efficient heat

management. An interesting route towards this goal is the idea of using single

molecules as electronic components which gave rise to "molecular electronics".

In fact, the usage of organic molecules in thermoelectric applications has at-

tracted a great deal of attention due to their flexibility, relatively low price

and their eco-friendly nature. In this work, the thermoelectric properties of

molecular junctions based on oligo(phenyleneethynylene) (OPE3) derivatives

were studied. With the help of Density Functional Theory (DFT) calcula-

tions, models for the molecular junctions were constructed. The electronic

transport properties were obtained using Non Equilibrium Green’s Function-

Density Functional based Tight-Binding (NEGF-DFTB). Firstly, the effect

of side groups on the electronic conductance and thermopower of OPE3 de-

rivatives was quantified. It is shown that these derivatives provide structural

properties that are needed for highly efficient thermoelectric materials. Next,

the effect of cross-linking molecules on the thermoelectric efficiency was invest-

igated. Classical Molecular Dynamics (MD) was used to compute the phonon

transport across the junctions. Combining the results from ab-initio and MD

for electron and phonon transport, respectively, the thermoelectric efficiency

in terms of the figure of merit ZT was computed for OPE3 derivatives. We

have found that cross-linked molecules show a high ZT value, which makes

them good candidates to be used as cooling systems. Finally, we introduce

a circuit model that combines electron and phonon transport channels. This
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model allows to determine optimal parameter ranges in order to maximize

cooling. Overall, our results demonstrate that the OPE3 derivatives display

the necessary structural rigidity and compatible electronic structure to enable

high performance devices for cooling applications.

Supervisors: Prof. Dr. Thomas NIEHAUS and Dr. Samy MERABIA
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Introduction

“We must be clear that when it comes to atoms, language can be used

only as in poetry“

— Niels Bohr

The demand for down-scaling size of daily used electronic devices has been rising

[6, 7, 8]. The high heat dissipation in micro and nano devices necessitates optim-

izing the efficiency and their cooling [9, 3]. To this end, minimization of phonon

transport, construct electronic refrigerators and harvesting thermal energy is the

path. [10, 11, 12]. Building new molecular devices and understanding the electron,

heat and near field energy flux as well as overcome the limitations in this field is our

final goal in Energy Filtering Non-Equilibrium Devices (EFINED) project. This

project is a teamwork that merges theory, experiment and the development of the

device technology.

In the framework of EFINED project (see Fig.0.1), we simulated the electron and

phonon energy flux. The main question in our part is:

How much cooling happens in the candidate molecular junctions?

To answer this question, we computed:

• Electronic properties of the molecular junctions

• Thermal properties of the molecular junctions

1



Nomenclature

• Thermoelectric efficiency of the molecular junctions

Figure 0.1: Particle and energy fluxes in junction between hot and cold electrodes
during electronic cooling [1].

In the present work, chapter.1 is on "electron structure of solids" and a brief descrip-

tion of Density Functional Theory DFT, Density Functional Tight Binding Density

Functional based Tight-Binding (DFTB), and Non-equilibrium Green’s Function

Non Equilibrium Green’s Function (NEGF) to compute the electronic transport.

Chapter.2 covers a general introduction about "phonons in molecular systems",

where molecular dynamic MD simulations, and non-equilibrium molecular dynamic

Non-equilibrium molecular dynamics (NEMD) approach to calculate the phonon

transport are described.

Chapter.3 on "thermoelectricity in molecular systems", we showed how to calculate

thermoelectric efficiency using all the thermoelectric properties that have been

computed where the methods in first two chapters were employed.

In chapter.4, "Electronic conductance and thermopower of single molecular junc-

tions" were computed, where we studied the effect of side groups on the electronic

properties of OPE3 molecular junctions.

Chapter.5 was written on "Thermoelectricity of cross-linked molecular junctions",

where we computed the electronic and thermal transport of cross-linked molecular

2



Nomenclature

junctions and used these properties to calculate the thermopower and thermoelec-

tric efficiency.

At last, in chapter.6, "out of equilibrium", the main question was answered. The op-

timal cooling power were calculated for the molecular junctions under bias voltage.

Finally, applying an electro-thermal circuit model, the maximum cooling temper-

atures were computed.

3



Chapter 1

Electron structure of solids

“When you change the way you look at things, the things you look at

change. “

— Max Planck

1.1 Schrödinger equation for a many-body system

The electronic structure of a solid is based on the behaviour of electrons and the

nuclei in the system. To investigate this behaviour, quantum mechanics is the

proven theory to use. The heart of quantum mechanic is the Schrödinger equation

for a solid system with n electrons and N nuclei

HtotalΨtotal(R, r) = EtotalΨtotal(R, r), (1.1)

where Htotal is the Hamiltonian of the system, Ψtotal is the wave function, r and R

are representing the coordinate vector of all n electron and N nuclei, respectively,

and Etotal is the total energy for the system. More precisely, we can write the

Hamiltonian as following

Htotal = Tnn + Tee + Vee + Vnn + Vext, (1.2)

where Tnn is the kinetic energy of nuclei, Tee is the kinetic energy of electrons,

Vee is the Coulomb interactions between electrons, Vnn is the Coulomb interactions

between nuclei, and Vext is the Coulomb interactions between electrons and nuclei

4



1.1.1. Born–Oppenheimer approximation

and considered as an external potential [13, 14]. Throughout this thesis, we use

atomic units for all the equations.

1.1.1 Born–Oppenheimer approximation

Considering the fact that the mass of nuclei is considerably bigger than the mass of

electrons we can separate their motions from each other in solving the Schrödinger

equation of a many-body system [15]. This approach called "Born–Oppenheimer

approximation " helps us to break down the many-body Schrödinger equation to two

parts: nuclei and electrons. When applying Born–Oppenheimer approximation, we

consider that the nuclei are at a constant position. Therefore, we can neglect the

kinetic energy of nuclei in the Hamiltonian when solving the Schrödinger equation

for electrons. Additionally, the number of variables in our wave function decreases.

The other consequence of this approximation is that the Coulomb energy between

nuclei is constant. Furthermore, in the total wave function of the system, the

positions of nuclei are not varying anymore.

All in all, now we can write the Schrödinger equation for electrons as

HelectronsΨ(r) = EΨ(r), (1.3)

where Ψ(r) is the all-electron wave function. As for the Hamiltonian, the Tnn

cancels and Vnn is a constant term in the Hamiltonian, we consider it as a shift in

the potential and neglect it. Therefore, the Hamiltonian reads

Helectrons = Tee + Vee + Vext. (1.4)

Henceforth, the problem reduces to equation 1.3 for electrons.

1.2 Density functional theory

It is fair to say a significant amount of work in the field of quantum chemistry is

devoted to solving equation 1.3. In 1998, the Nobel prize in chemistry was given to

5



1.2. Density functional theory

Walter Kohn a theoretical physicist and John Pople a theoretical chemist. Walter

Kohn for his work of developing the base of DFT and John Pople for developing a

quantum chemistry package in order to calculate the electronic structure of atoms

and molecules. There was a key difference between Kohn and Pople approaches.

Kohn (DFT) focused on electronic density and Pople tried to extract all the prop-

erties of the system from the wave function. As Kohn mentioned in his Nobel prize

lecture, there are advantages and disadvantages to both theories.

As we take out a path in chemistry or physics, we are trained to think about

quantum physics in terms of wave functions. Solving the Schrödinger equation us-

ing wave function based approaches, has been satisfying. Moreover, in the case of

high accuracy needed or increasing the number of particles in the system the cal-

culation is time consuming. Additionally, when increasing the number of particles,

the physical behaviour is very complicated to understand and the time of calcula-

tion grows exponentially. Therefore, if the system does not have high symmetry,

these approaches become very expensive. On the other hand, density functional

theory derives the physical properties of the system from electron density of many-

body systems. This helps to have a better insight of many-body system’s nature.

Moreover, the time needed for DFT calculation does not grow exponentially with

respect to the number of atoms, it grows by the power of three.

Nevertheless, as not all the interactions between electrons in DFT is not known,

using wave function based methods holds an asset over DFT in that with a well

defined wave function and infinite computer time, it will reach the exact solutions

[16].

Without further discussion, let’s commence solving equation 1.3 in the framework

of DFT. Thence, consider an n-electron system.

Applying the Born–Oppenheimer approximation, we can write the Schrödinger
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1.2. Density functional theory

equation for electrons as below:


−1

2

n
∑

i=1

∇2
i +

1

2

n
∑

i=1

n
∑

j=1,j 6=i

1
∣

∣ri − rj

∣

∣

+
n
∑

i=1

Vext(ri)



Ψ(r1, r2, ..., rn) = EΨ(r1, r2, ..., rn).

(1.5)

Using Dirac representation, we can write:

Hel |Ψ〉 = E |Ψ〉 . (1.6)

The goal would be to find the ground state energy and to do so we need to minimize

the energy. We can do it using the variational theorem:

E0 = MinΨ 〈Ψ|Hel|Ψ〉 , (1.7)

where Ψ is normalized to the number of electrons in the system, meaning if we

define the density of electron at position r in a many-body system with n electrons

as below

ρ(r) = n

∫ ∫

...

∫

∣

∣Ψ(r, r1, ...., rn−1)
∣

∣

2
dr1....drn−1, (1.8)

then we will have:
∫

ρ(r)dr = n. (1.9)

The idea behind density functional theory is to formulate everything in terms of

the electron density [17].

DFT is based on Hohenberg–Kohn theorems. The first Hohenberg–Kohn theorem

asserts that the ground state of any interacting many-body system is a unique

functional of the electron density ρ(r) [17]:

E = E[ρ(r)]. (1.10)

The first Hohenberg–Kohn theorem proves that a functional of the electron density

E[ρ] exists but it does not talk about the form of this functional. The second

Hohenberg–Kohn theorem states that the electron density that minimizes the en-

ergy of the overall functional is the true electron density corresponding to the full

solution of the Schrödinger equation [17].

7



1.2. Density functional theory

Hence, instead of finding the all-electron wave function with 3n degrees of freedom,

we should find the electron density of the system with 3 degrees of freedom [17].

In principle, every property of the system that we extract from the electron wave

function can be derived from the electron density as well. It is time to finally

rephrase the equations in terms of density. In DFT instead of assuming an n-

electron system where all the electrons are correlated, we assume a system with n

non-interacting electrons, and this system shares the same electron density with

the true system. Electrons are indistinguishable fermions, hence, there is Pauli

repulsion interaction between them. Moreover, the movement of one electron is

affected by the presence of all the other electrons. All these effects are to be

described by the energy functional called "exchange-correlation functional". As a

result, the total electron wave function of the non-interacting system can be written

as a product of single electron wave functions, Ψi(r). And the electron density is

ρ(r) =
n
∑

i=1

Ψi(r)Ψ∗
i (r). (1.11)

Instantly, the energy functional in terms of electron density reads

E[ρ] = Ts[ρ] + Eext[ρ] + EH [ρ] + Exc[ρ], (1.12)

where

Ts[ρ] =
n
∑

i=1

∫

drΨi(r)
(

− ∇2

2

)

Ψi(r), (1.13)

is the kinetic energy of the non-interacting system, Eext is the external energy

functional and reads

Eext[ρ] =

∫

Vext(r)ρ(r)dr, (1.14)

where Vext is the external potential due to the Coulomb interaction between nuclei

and electrons, EH known as Hartree energy functional is the Coulomb interaction

between electrons

EH [ρ] =
1

2

∫

ρ(r)ρ(r′)

|r − r′| drdr′, (1.15)

and the last term ,Exc[ρ], is the exchange-correlation functional (we will talk more

about this term in sections 1.2.1). Straightforward, the Schrödinger equation for

8



1.2.1. Exchange-correlation functional

one electron reads
(

− ∇2

2
+ Vext(r) + VH(r) + Vxc(r)

)

Ψi(r) = ǫiΨi(r), (1.16)

where VH ≡ δEH [ρ]
δρ(r) , is the Hartree potential, Vxc ≡ δExc[ρ]

δρ(r) , is the exchange-

correlation potential, ǫi is the energy eigenvalue for single electron, and Ψi(r) is

single electron wave-function. This equation is called Kohn-Sham equation, which

describes the particles in the non-interacting system. These particles in the non-

interacting system are called "Kohn-Sham" particles.

In many-body scale even after applying Born-Oppenheimer approximation, we con-

sider the electrons interacting with each other and also with nuclei. Since each

electron has three degrees of freedom the dimension of the problem is 3n (n num-

ber of electrons). In DFT instead of considering all these interactions, we assume

that the Kohn-Sham particle is interacting with an effective potential from all the

other electrons in the system and we consider all of these effects inside the dens-

ity functional (Fig.1.1). DFT reduces the many-body problem with 3n degrees of

freedom to n single electron problems with only three degrees of freedom for the

electron density ρ(r).

1.2.1 Exchange-correlation functional

So far, everything in DFT is exact. The many-body problem has been reduced

to the single Kohn-Sham electron equation 1.16. We also know how to solve the

Kohn-Sham equation using self consistent approach which we will discuss in section

1.2.3. In equation 1.16 every term in the Hamiltonian is known, except the Vxc.

There has been a lot of effort to develop an exchange-correlation functional that

works for every many-body system.

Historically, the first functional introduced is the Local Density Approximation

(LDA). The exchange energy functional for to the uniform electron gas has been

calculated analytically by Dirac et al. [18] as

ELDA
x [ρ] = −3

4

( 3

π

)
1

3

∫

ρ(r)
4

3 dr, (1.17)

9



1.2.1. Exchange-correlation functional

Figure 1.1: In a many-body system, there are n electrons in the system which
interact with each other and each of them interacts with the nucleus (ion), vs in
DFT we consider the electron density of all the electrons interacting with the ion

and correlation term of the exchange-correlation functional is derived by Monte

Carlo simulations [19]. This functional has been used to predict the electronic

structure of solids with good accuracy [20], since the errors coming from the ex-

change and correlation parts cancel each other, which is known as "error compensa-

tion". As successful as this functional can be for such systems with uniform electron

density, it fails to describe all the physical properties of a many-body system.

Subsequently, by adding the gradient of density ∇ρ to the exchange-correlation

functional, the development of Generalized Gradient Approximations (GGA) exchange-

correlation functionals has been started. One of the GGA functionals has been

developed by Perdew, Burke, and Ernzerhof (PBE) [21, 22], and it is the most

used exchange-correlation functional in literature. We will also use this exchange-

correlation functional for our calculations [23].

With this in mind, further development of exchange-correlation functionals contin-

ued. The so called "Meta-GGA" functionals include the Laplacian of the electron

density ∇2ρ [24].

10



1.2.2. Basis sets

The more recent idea is the work of Becke in 1993 [25] which adds some contribution

of exchange energy of Hartree-Fock to the exchange-correlation functional. This

group of functionals are called Hybrid functionals.

Not to mention, there is some recent developments of functionals using the gener-

alized random phase approximation [26, 27].

We close the section with an illustration of accuracy for different types of function-

als known as Jacob’s ladder in quantum chemistry as discussed in [24]. We can

summarize the work of Perdew in the schematic illustration in Fig.1.2. In Hartree

land we do not consider any exchange-correlation for the electrons. In the first step

of the ladder, we add exchange-correlation and as we climb up the ladder we add

more and more accuracy to our exchange-correlation functional. But keep in mind

the higher we climb the more time consuming our calculations will be. In the end,

one should optimize accuracy versus computational cost. There is much more to

say about exchange-correlation functionals [28, 22].

1.2.2 Basis sets

The next term in equation 1.16 that we investigate in more depth is the wave

function of a single electron, Ψi. In order to have efficiency in solving the Kohn-

Sham equation by computers, we will try to have some algebraic equations instead

of partial differential ones. To that end, we state the single electron wave function

as a linear composition of an arbitrary basis set as

Ψi(r) =
∞
∑

µ=1

ci
µΦµ(r), (1.18)

where ci
µ are molecular orbital expansion coefficients and Φµ are basis functions.

In practice, we do not expand to an infinite number of basis functions. Eventually,

for any given problem there is an optimized number of basis sets which meets the

accuracy needed to extract electronic properties of the system.
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1.2.2. Basis sets

Figure 1.2: Illustration of Jacob’s ladder, using different types of exchange-
correlation functional

Therefore, solving equation 1.16 reduces to a general eigenvalue problem as below

∑

µ

(

HKS
νµ − ǫiSνµ

)

ci
µ = 0, (1.19)

where HKS
νµ = 〈Φν | ĤKS

∣

∣Φµ
〉

, is the Kohn-Sham Hamiltonian matrix, where Kohn-

Sham Hamiltonian operator is defined as ĤKS = [−1
2∇2 +Vext(r)+VH(r)+Vxc(r)],

ǫi is the eigenvalue corresponding to Ψi, and Sνµ =
〈

Φν

∣

∣Φµ
〉

, is the overlap matrix

between the basis functions.

Carrying on, we talk about electing proper basis sets for a given electronic system.

In this thesis DFT calculations have been performed on metallic surfaces and or-

ganic molecules. Therefore, we have periodic structures and molecular structures.

There are two main types of basis sets that are used in DFT calculations: atomic

orbitals basis sets, and plane waves basis sets. Further, we introduce these two

methods and their usage in our DFT calculations.
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1.2.2. Basis sets

Atomic orbital basis functions are solutions to the Schrödinger equation of free

atoms. When performing DFT calculations we can use Linear combination of

atomic orbitals (LCAO) method to construct the single electron wavefunction. The

simplest form of atomic orbital basis functions called Slater type orbitals reads

Φµ,ζlm(r) = Ylm(Θ, φ)rµ−1e−ζr, (1.20)

where Φµ,ζlm(r) is the basis function number µ , and Ylm(Θ, φ) is the angular part

of free atoms.

These basis functions are centred on atoms of the molecule, therefore the atomic

positions. Additionally, they are not orthogonal. But on the other hand, using the

LCAO method, a small basis set would be sufficient to describe a molecule.

In addition to the atomic orbitals basis sets that are localized, plane waves basis

sets are also used in DFT calculations. These basis sets are used in calculations for

periodic solids. The single electron wave function can be written as a superposition

of plane waves

ΨK
i (r) =

∑

G

ui(G) exp
(

i(K + G) · r
)

, (1.21)

where G are the reciprocal lattice vectors, ui(G) plane wave coefficients, and K

and r are reciprocal space vector and real space vector, respectively.

This basis set is not localized in space, which makes it suitable for periodic systems.

Furthermore, by adding more plane waves the calculation could systematically

converge. Besides, plane waves are mathematically simple. And last but not the

least, the number of plane waves that are needed to represent the single electron

wave functions depends strongly on their shape. This means when constructing

the wave functions for the region of core electrons and close to the nucleus, we

will need millions of plane waves to describe the wave function, and this makes

the calculations very computationally expensive. Fortunately, when it comes to

studying condensed matter, we are more interested in the behaviour of valence

electrons. Yet, the wave function is not smooth close to the core. There are two

causes for this oscillation of the wave function. Firstly, the wave functions should be
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1.2.3. Solving Kohn-Sham equation

Initial guess
ρ(r)

Obtain Hamiltonian and solve the Kohn-Sham equation
obtain the Ψi(r)

Compute electron density and total energy:
ρ(r), Etot(ρ(r))

Converged?

Output quantities:
ρ(r), eigenvalues, forces,...

No

Yes

Figure 1.3: Self consistent algorithm to solve Kohn-Sham equation

orthogonal to core electron states, and secondly, there is strong Coulomb potential

there. Instead, we can replace the atomic nucleus and the core electrons by an

effective smooth potential. This effective potential is called pseudopotential. When

implementing pseudopotential in DFT calculations, as we freeze the core electrons,

we have fewer electrons in the system, Thus, the calculations are systematically

faster [29, 30].

1.2.3 Solving Kohn-Sham equation

In this section as the last thing about equation 1.16, we will talk about self con-

sistent scheme to find the ground state energy [31, 32].

To calculate the ground state energy we should do these steps:

1. Guess a trial ρ(r).
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1.3. Density functional tight binding (DFTB)

2. Construct the Hamiltionian and solve the Kohn-Sham equation 1.16 and ob-

tain the single electron wave functions Ψi(r).

3. Calculate ρnew(r) from single electron wave function
(

ρ(r) =
∑n

i=1 Ψi(r)Ψ∗
i (r)

)

.

4. If the difference between the new electron density and the initial electron

density is less than a given threshold then stop the self consistent circle and

if not put the ρnew(r) as ρ(r) and repeat until convergence.

A flowchart of this algorithm is shown in Fig.1.3.

1.3 Density functional tight binding (DFTB)

Usually, if we want to choose a method for electronic structure calculations most

probably, one will use DFT. The size of the DFT community shows the efficiency

and accuracy of this theory. Yet, as we go to larger systems with a larger number

of atoms, the computational cost grows as µ3 with respect to the number of basis

functions, µ [33]. Additionally, when going to larger time scale the DFT calculations

become computationally demanding. In this part DFTB which is an approximation

method based on density functional theory, is introduced. Since it holds on to DFT

and quantum description, it is not an empirical method. To describe the core-core

interaction atomic short-range repulsion energy is introduced which is an analytical

expression fitted to ab initio interactions between atoms [34, 35, 36]. Yet, we have

to keep in mind that DFTB is not as accurate as DFT. Additionally, we have to

consider that DFTB is less transferable to systems which are beyond its fittings

database. But, the DFTB method is more transferable than tight binding TB [37]

method, since there are no empirical parameters. Yet, when using DFTB we do not

reach the length and time scale as TB. In case of the classical force field (FF) and

molecular mechanics (MM) we could reach a bigger length and time scale (µm),

but with less accuracy Fig.1.4.
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1.3. Density functional tight binding (DFTB)

Figure 1.4: Time scale vs. length scale for quantum mechanic (QM) calculations
(

density functional theory (Ab initio DFT), density functional based tight binding

(DFTB), tight binding (TB)
)

, classical force field (FF) and classical molecular
mechanic (MM)

In principle, DFTB is a Taylor expansion of the Kohn-Sham total energy around a

convenient electron density ρ0(r). To that end, we assume a system of independent

neutral atoms. Then we consider a density ρ0(r) correspond to this system. This

density does not include any charge transfer. We know that this is not the density

which minimizes the energy functional but we introduce

δρ(r) = ρ(r) − ρ0(r), (1.22)

where ρ(r) minimizes the energy functional and δρ(r) is a small electron density

fluctuation. The approach in DFTB is to write molecular potentials and basis

functions as compositions of Slater type functions. These Slater type functions

are obtained self-consistently for neutral atoms. In this thesis, we used the self

consistent charge density functional tight binding (SCC-DFTB) or DFTB2 up to

the second order energy expansion. The next section is on the derivation of SCC-

DFTB from DFT [36].
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1.3.1. Self consistent charge density functional tight binding (SCC-DFTB)

1.3.1 Self consistent charge density functional tight binding

(SCC-DFTB)

As we discussed in previous sections in DFT, we write the total energy of the

electronic system in terms of the electron density. The total energy of a solid

containing electrons and nucleus is the total energy of electrons plus the repulsive

energy of all nucleus [38].

Carrying on, we expand the total energy at ρ(r) to second order in fluctuation,

δρ(r), the total energy emerges as

E[ρ] ≈ 〈Ψi|
∑

i

(

− 1

2
∇2 + Vext + VH [ρ0] + Vxc[ρ0]

)

|Ψi〉

+
1

2

∫ ∫

( δ2Exc[ρ0]

δρ(r)δρ(r′)
+

1

|r − r′|
)

δρ(r)δρ(r′)d3rd3r′

− 1

2

∫

VH [ρ0](r)ρ0(r)d3r + Exc[ρ0] −
∫

Vxc[ρ0](r)ρ0(r)d3r + Enn(R).

(1.23)

This is the total energy expression for SCC-DFTB also known as DFTB2 [39, 40,

38]. If we expand the energy functional up to the third order of charge fluctuation,

we will have what we call DFTB3 [41]. In DFTB2 and DFTB3 a self consist-

ent charge (SCC) has been represented. The atomic charges are self-consistently

determined.

Considering the repulsive energy as

Erep[ρ0] = −1

2

∫

VH [ρ0](r)ρ0(r)d3r + Exc[ρ0] −
∫

Vxc[ρ0](r)ρ0(r)d3r + Enn(R),

(1.24)

and the band structure energy as

EBS =
∑

i

〈Ψi| H[ρ0] |Ψi〉 , (1.25)

where H[ρ0] = −1
2∇2 + Vext + VH [ρ0] + Vxc[ρ0], we could write the total energy

from equation 1.23 as

E[ρ] = EBS [ρ0] + Erep[ρ0] + E2[δρ, ρ0], (1.26)
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where E2[δρ, ρ0] contains all the terms that depend on second order density fluc-

tuation

E2[δρ, ρ0] =
1

2

∫ ∫

( δ2Exc[ρ0]

δρδ(r)ρ(r′)
+

1

|r − r′|
)

δρ(r)δρ(r′)d3rd3r′. (1.27)

From here we talk about each term in equation 1.26.

To compute the band structure energy we expand the single electron wave function

in the basis of atomic orbitals (section 1.2.2). Having said that we rephrase EBS

EBS =
∑

i

∑

µν

ci∗
µ ci

νH0
µν , (1.28)

where H0 = H[ρ0], and H0
µν =

〈

φµ

∣

∣H0[ρ0] |φν〉. These integrals are computed

for the system consisting of neutral atoms and are tabulated as a function of the

distance between two centers. It should be noted that the three center terms

are neglected. In order to compute Hamiltonian matrix elements in two centre

representation, we decompose the electron density of the Kohn-Sham system into

atomic contributions [38]. Not to mention, in order to calculate overlap integrals

and Hamiltonian elements the Slater-Koster transformation rules are used [37].

To compute the repulsive energy term it is assumed to be pairwise [34]. Corres-

pondingly, the repulsive term converts to

Erep =
∑

I<J

V IJ
rep(RIJ), (1.29)

where RIJ = RI − RJ is the distance between atom I and J and V IJ
rep(RIJ) is

the repulsive potential which is derived from DFT calculations. A set of reference

molecules are chosen. For each molecule, the energy difference between DFT total

energy and band structure energy EBS have been calculated as a function of bond

length. These parameters along with Hamiltonian and overlap matrices have been

tabulated in some files named Slater-Koster files in the DFTB+ package, so as a

user we will not need to do the parameterizations.

The last term in equation 1.26 depends on second order density fluctuations. Forth-

with, rather than computing double integrals, assume a whole space V is filled with
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VI which is the volume related to atom number I. Hence, computing double in-

tegrals in the continuous space V reduces to compositions of the functions in VI

of each atoms [38, 42, 43, 44]. Therefore, the charge fluctuation is composed of

atomic contributions. Consequently, this energy term could be written pairwise as

E2[δρ, ρ0] =
1

2

∑

IJ

γIJ(RIJ)∆qI∆qJ , (1.30)

where γIJ is approximated to a function that depends on interatomic distances,

For I = J it tends towards the Hubbard parameter for atom I [34]. Then, ∆qI are

net atomic charges, which are obtained using Mulliken charge analysis [45]. All in

all, we can write the total energy

E =
∑

i

∑

µν

ci∗
µ ci

νH0
µν +

1

2

∑

IJ

γIJ

(

RIJ

)

∆qI∆qJ +
∑

I<J

V IJ
rep

(

RIJ

)

. (1.31)

Instantly, the problem reduces to minimize the energy from equation 1.31. We

discuss this in the next section 1.3.2.

1.3.2 Secular equation in DFTB and self consistent solution

In this section we try to solve equation 1.31. To that end, using the variational

principle method of Lagrange multipliers, we obtain

∂

∂ci
µ

(

E−

∑

i

λi(
∑

µ

∑

ν

ci
µci

νSµν)
)

= 0, (1.32)

where λi are unknown Lagrange multipliers. Immediately, the equation for coeffi-

cients ci
µ reads

∑

ν

ci
ν(Hµν − λiSµν) = 0, (1.33)

where

Hµν = H0
µν +

1

2
Sµν

∑

K

(γIK + γJK)∆qK , µ ∈ I ν ∈ J. (1.34)

Equation 1.33 is called the DFTB secular equation and is the equivalent of the

Kohn-Sham equation in DFTB. Moreover, it should be noted λi, the unknown

Lagrange multipliers, are the eigenvalues of this equation.

Equations 1.33 and 1.34 can be solved using self-consistent method.
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Initial guess
∆qK

Calculate Hµν

Computing ci
ν and ∆qK(new)

∑

ν ci
ν(Hµν − λiSµν) = 0

∆qK converged?

Output quantities:
eigenvalues, forces,...

Yes

No

Figure 1.5: SCC-DFTB algorithm

• Firstly, the net atomic chargers ∆qK = 0 are set to zero.

• Secondly, Hµν is computed from 1.34.

• Thirdly, having Hµν and using equation 1.33 we obtain ci
ν coefficients and a

new ∆qK .

• Lastly, we continue this cycle until the ∆qK(new) − ∆qK is smaller than a

given threshold.

To give an illustration to this algorithm, look at Fig.1.5.
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1.4 Electronic transport in mesoscopic scale

The aim in this section is investigating the transport properties of nanostructures.

When a voltage is applied to a conductor, a current proportional to the applied

voltage is produced. The constant of this proportionality is the electronic con-

ductance which is a key parameter in the analysis of transport properties. For a

macroscopic conductor, Ohm’s law describes the electronic conductance

G =
σW

L
, (1.35)

where G is the value of conductance, σ is the electronic conductivity and is a

material-dependent parameter, L and W are the length and width of the sample,

respectively. However, in the atomic scale, quantum effects become important,

therefore, Ohm’s law is no longer valid.

To compute the conductance of a mesoscopic system, one needs to carefully de-

termine the transport regime according to the length scale of the system of interest.

A crucial length scale is a phase coherent length Lφ, which is the mean distance

between two inelastic collisions of electrons. If L < Lφ, where L is the length of

the sample, one is in the mesoscopic regime. Another critical length scale is the

electron mean free path, lel, which is the mean distance between two elastic colli-

sions of electrons. When L ≫ lel, the transport regime is called diffusive. On the

other hand, when L < lel the transport regime is ballistic, where electrons are only

scattered by the sample boundaries.Hence, the physics of electron transmission is

quantum and can not be described by classical mechanics. In the next subsec-

tions, the objective is to compute the conductance in the ballistic regime based on

microscopic principles.

1.4.1 Ballistic regime: the Landauer-Büttiker formalism

We shall introduce the Landauer-Büttiker formalism to compute quantum coherent

conductance at the microscopic scale [46]. The heart of this approach is that if
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there are no inelastic collisions, then one can relate all the transport properties to

the probability of electrons transmitting through the system. In other words, as

Landauer said himself: "conductance is transmission" [46]. Thus, the conductance

at energy E for a system in the ballistic regime reads

G(E) =
2e2

h
τ(E), (1.36)

where h is Planck’s constant and τ(E) is the transmission function of the system at

energy E, which is the probability of an electron with energy E transmitting from

one end of the system to the second end. Furthermore, G0 = 2e2

h ∼ (12.9kΩ)−1, is

defined as the quantum of conductance. So, if a mode has a perfect transmission

the conductance of that mode will be exactly one conductance quantum. All in all,

to compute conductance, one should solve the Schrödinger equation 1.1, extract all

the eigenmodes, and calculate the transmission for each mode. Then one should

do a summation over all the modes and add those together to reach the total

transmission.

In practice, the sample is connected to two electrodes (or leads) and grants us to

insert current or voltage (Fig.1.6). The conductor is the molecule plus an arbitrary

number of layers of the electrodes. These arbitrary layers are necessary to ensure

that charge density is changing smoothly at the boundaries of the conductor/lead,

so we can consider the leads bulk-like. When the leads are showing bulk-like prop-

erties, in thermal equilibrium, they behave as ideal electron reservoirs, with a well

defined temperature and chemical potential [47, 48]. The lead with the smaller

chemical potential is referred to as collector lead. The idea in the scattering ap-

proach is to relate all the transport properties to transmission probabilities. The

electron is preserved (and not scattered) in the whole conductor and it scatters

only at boundaries with the electron reservoirs. Inside the reservoirs, the electrons

are in thermal equilibrium, thus, they have the same temperature as the leads. We

compute the transmission of each eigenmodes for the system we described. Thus,
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1.4.1. Ballistic regime: the Landauer-Büttiker formalism

Figure 1.6: The system used in the ballistic regime. The conductor is connected
to two leads. The leads are considered semi-infinite. The colours on the lead and
conductor region are used as a visual guide only.

the conductance reads

G =
2e2

h

∫ ∞

−∞
dEτ(E)(E − µ)

(

− ∂f(E, µ)

∂E

)

, (1.37)

where µ is the chemical potential of the leads, and f(E, µ) is the Fermi-Dirac

distribution for the electrons defined as

f(E) = (e(E−µ)/kBT + 1)−1. (1.38)

Eventually, applying a voltage to the two end of the system causes a difference

in energy levels of the two leads, so we will have different values for the chemical

potential (assume µL < µR). Consequently, an electrical current will appear which

reads

I =
2e

h

∫ ∞

−∞
dEτ(E)[fL(E, µL) − fR(E, µR)], (1.39)

where fL(E, µL) and fR(E, µR) are the Fermi-Dirac distribution in the left and

right lead, respectively [46, 49].

Instantly, our problem reduces to find the transmission function to calculate the

transport properties of the system. We can derive the transmission from Green’s

functions. The Green’s function is a powerful tool which predicts us the response

at any point (inside or outside of the conductor) due to an unitary excitation at

the origin. Regardless of mathematical complexity, the Non-Equilibrium Green’s

Function method (NEGF) has gained popularity[50].
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1.4.1.1. Non-Equilibrium Green’s Function method

1.4.1.1 Non-Equilibrium Green’s Function method

When solving the transport problem, we can not assume local thermodynamic

equilibrium, since the global Fermi energy is not defined. But we can assume that

the leads have different chemical potential and are large enough so the electrons

are locally in equilibrium [47]. Both leads to be at equilibrium, the transmission

function in terms of Green’s function is [51]

τ(E) = Tr(ΓL(E)Gr(E)ΓR(E)Gr†(E)), (1.40)

where Gr and (Gr)† are retarded and advanced Green’s functions which read

Gr = [ES − H − Σr]−1 (1.41)

Gr† = [ES − H − Σr†]−1,

where Σr is the retarded self energy due to the interactions with the right lead,

Σr† is the advanced self energy due to the interactions with the leads, H is the

Hamiltonian of the conductor, and S is the overlap matrix in the conductor. Γ{L,R}

are the coupling of the conductor with the left L and right R lead, and reads

ΓL,R(E) = i[Σr
L,R(E) − Σr†

L,R(E)]. (1.42)

We could write the density matrix as below

ρ =
1

2πi

∫ ∞

−∞
dEG<(E), (1.43)

where G<(E) is the electron–electron correlation matrix, and it depends on the

density of occupied states [47]. The electron–electron correlation matrix can be

written as a function of the retarded Green’s function. The electron–electron cor-

relation matrix has been calculated by kinetic (KKB) equation [52]

G<,>(E) = Gr(E)Σr,r†(E)Gr†(E), (1.44)

where G> in contrast to G< is the part of electron–electron correlation matrix that

depends on the density of unoccupied states. When calculating the density matrix
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1.4.1.1. Non-Equilibrium Green’s Function method

it is more convenient to write G< as a composition of three terms. So the electron

density can be written as

ρ =

∫ ∞

−∞
dEfC(E)Gr(E) −

∫ ∞

−∞
dEfC(E)Gr†(E) (1.45)

+
∑

α=L,R

∫ ∞

−∞
dE[fα(E) − fC(E)]Gr(E)Γα(E)Gr†(E),

where fC(E) is the Fermi-Dirac distributions for the collector lead , and fα(E)

is the Fermi-Dirac distributions for the leads [47]. Equation 1.41 and 1.45 can

be solved self consistently. As stated in equation 1.41, in order to calculate the

Green’s function we need the Hamiltonian [53]. Thus, we could give an initial value

to electron density and calculate the Hamiltonian from the SCC-DFTB method.

Afterwards, using equation 1.41 the Green’s functions are computed. Having the

Green’s functions and using equation 1.45, a new value for electron density is

obtained. We repeat this cycle until the electron density is converged. Having the

converged electron density, one can obtain the Green’s functions for the last time

and compute the transmission function [52]. For an illustration look at Fig.1.7.
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1.4.1.1. Non-Equilibrium Green’s Function method

Initial guess
ρ(r)

Calculate Hamiltonian from SCC-DFTB

Computing Green’s function
and coupling of the leads with the conductor

Computing a new ρ(r) from Green’s function
and coupling of the leads with the conductor

ρ(new)(r) − ρ(r) < δ

Output quatities:
Conductance, Current,...

Yes

No

Figure 1.7: Self consistent algorithm in NEGF-DFTB method where δ is a given
threshold
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Chapter 2

Phonons in molecular systems

“Everything that living things do can be understood in terms of the

jiggling and wiggling of atoms.“

— Richard Feynman

2.1 Molecular dynamic simulations

To simulate the equilibrium and transport properties of a classical many-body

solid, Molecular Dynamic (MD) method is traditionally used. In a lot of aspects,

a MD simulation is similar to an experiment. In an experiment, we first set up the

system. Afterwards, we set up the measurement tools and do the measurement for

the property of interest during a certain time interval. In the presence of statistical

noises, which is very likely, we will do an average over a longer time. In a simulation,

first, we set up the molecular system with N classical particles. Then, we let the

system equilibrate applying Newton’s equation of motion until the properties of

interest do not change over time. And at last, we run the measurement. The way

to compute errors in the experiment and molecular dynamic simulation are similar,

as well. The examples of errors, we may not prepare the system correctly. We may

measure a given property before the system reaches an equilibrium state. In a way,

we could say when running MD calculations, we are experimenting on a computer

[54]. After solving Newton’s equation of motion (section 2.1.2), the trajectories of
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2.1. Molecular dynamic simulations

each atom is known. To measure any property of the system, we will need to write

the observable in terms of positions and momentum of the particles [55].

In MD simulation, we set up the system of N particles by giving a mass, a position

and a velocity. Then, we numerically solve the time-dependent Newton’s equation

of motion [56]

MI
d2RI

dt2
= −∂V (R)

∂RI
, (2.1)

where MI , RI and V (R), are mass of the particle I(I = 1, ..., N), the position

vector of atom I, and the inter-atomic potential, respectively. The inter-atomic

potential can be written as summation of individual atoms, pairs, triplets and so

on [57]

V =
∑

I

v1(RI) +
∑

I

∑

J>I

v2(RI , RJ) +
∑

I

∑

J>I

∑

K>J

v3(RI , RJ , RK) + ..., (2.2)

where the condition J > I is to prevent counting any pair twice, v1 corresponds to

the effect of an external field. The next terms represent particle interactions, v2 is

the pair potential, v3 is the triplet potential, etc. Not to mention, for an isotropic

system, the pair potential coefficient depends only on the distance between the two

atom, RIJ = |RI − RJ |, so that it can be written as v2(RIJ). The pair potential

includes a repulsive term at short distances, due to overlap between the electron

clouds. The triple part of the potential (v3) becomes important when it comes to

liquid densities.

The potentials used in computer simulations are most of the time approximated

by effective pair potentials which represent all the many-body effects and need

to reproduce the experimental data. We introduce now a commonly used pair

potential in computer simulations. This potential which is a simple Lennard-Jones

12–6 potential describes most notable features of real pairwise interactions [58]

V (RIJ) = 4ǫ

(

( σ

RIJ

)12
−
( σ

RIJ

)6
)

, (2.3)

where ǫ is the depth of potential wall defined as ’dispersion energy’, and σ is the

distance which the pairwise potential is zero. The potential has a long-range dipole-

dipole attraction part and a repulsive wall (due to Pauli repulsion) at distances less
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2.1.1. Force field in molecular dynamic calculations
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Figure 2.1: Illustration of the Lennard-Jones pair potential

than RIJ ∼ σ. Figure 2.1 represents the Lennard-Jones potential as a function of

the pair distance. One of the estimation for pair potential among two argon atoms

as a function of the distance which was fitted on ab initio calculations of argon

dimer has been shown a very good agreement with Lennard-Jones approximation

for pair potential [59].

2.1.1 Force field in molecular dynamic calculations

In MD simulations, empirical force field is traditionally employed to describe the

interactions in complex molecular system. Force field approximates the forces

between atoms within molecules called intra-molecular interactions and the forces

between the molecules called inter-molecular interactions. When developing a force

field for a molecular system, there are different type of atoms to consider and sev-

eral intra-molecular and inter-molecular potential parameters to fit. One can build

the force field from ab initio calculations. Fortunately, the parametrization of dif-

ferent types of force fields has been done over the last 50 years for most atoms

[60, 61, 62, 63, 64]. The force fields are a collection of equations and constants

fitted to the experiment or ab initio calculations to reproduce the configuration
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2.1.1. Force field in molecular dynamic calculations

Figure 2.2: A schematic illustration of a molecule in MD calculations

and structural properties of reference molecules. In MD, a molecule is described as

some charged points (atoms) linked by springs (bonds) to their first neighbours as

shown in Fig.2.2. In addition to these bonded interactions, there is van der Waals

and electrostatic interactions between atoms [65]. In this thesis we used Assisted

Model Building with Energy Refinement (AMBER) [63, 66] and Optimized Poten-

tials for Liquid Simulations (OPLS) [64, 67] force fields. These force fields share a

common functional form [68]

V (R) =
∑

bonds

kr(RIJ − Req)2 +
∑

angles

kθ(θ − θeq)2 +
∑

torsions

∑

f

kφ,f

(

1 + cos (fφ)
)

+
∑

I

∑

J>I

[

qIqJ

RIJ
+ 4ǫ

(

( σ

RIJ

)12
−
( σ

RIJ

)6
)]

,

(2.4)

where kr is the elastic constant of the bonds, Req is the equilibrium bond length

between two atoms, kθ is elastic constant for angles, θeq is the angle between two

atoms in equilibrium, f is the number of torsion degrees of freedom, kφ,f is elastic

constant for torsion, and q{I,J} are the electronic charge of atom I and J , respect-

ively. In practice, kr, Req, kθ, and θeq are fitted to vibrational frequencies data of

molecular fragments which belong to proteins and nucleic acids [69]. The torsion

parameters were fitted such that they reproduce the structural properties of small

model compounds. Hence, a torsion parameter is optimized for simple structures
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2.1.2. Solving the equations of motion

and applied to large molecules. This makes the force field more transferable [64].

The last term in equation 2.4 is the intra-molecular interaction containing Coulomb

energy and Lennard-Jones potential.

2.1.2 Solving the equations of motion

Once the choice of the force field has been done, one needs to solve the equations of

motion 2.1 to obtain the trajectory of the system in time. Starting from a physical

initial state for positions and velocities in which the system is in equilibrium, we

can use Verlet algorithm [56] to predict how the atomic positions and velocities

evolve during time. Having the position at time t and t − dt, the Verlet algorithm

predicts the position at time t + dt

RI(t + dt) = 2RI(t) − RI(t − dt) +
d2RI(t)

dt2
dt2 + O(dt4), (2.5)

where dt is small as such we can expand RI(t + dt) around it, and O(dt4) means

we are neglecting all the terms after the third order of the expansion. Similarly,

the velocity is computed as below:

vI(t) =
RI(t + dt) − RI(t − dt)

2dt
+ O(dt2), (2.6)

where vI(t) is the velocity of atom I at time t, O(dt2) means we are neglecting

all the terms after the first order of the expansion [70]. In our simulations it

is important to compute accurately the kinetic energy of the system, since it is

directly related to the system temperature. Hence, we will need to compute the

velocities more accurately. In order to gain accuracy in the determination of the

velocity, Velocity Verlet algorithm [71] predicts the position at time t + dt

RI(t + dt) = RI(t) + vI(t)dt +
1

2

d2RI(t)

dt2
dt2 + O(dt3), (2.7)

and velocity at time t + dt

vI(t + dt) = vI(t) +
1

2

(

d2RI(t)

dt2
+

d2RI(t + dt)

dt2

)

dt + O(dt2). (2.8)
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2.1.3. Initial state

Figure 2.3: Schematic illustration of the velocity Verlet algorithm a) Give current
position, velocity, and force b) Compute new positions c) Compute velocity at half
step d) Compute forces at new position e) Compute velocity at full step f) Advance
to next time step, repeat.

As illustrated in Fig.2.3 the first step of this algorithm is to give initial values to

the positions, velocities and forces to all the atoms. Then we update the positions

at time t + dt from equation 2.7. The velocity update takes two steps, first, the

velocity is computed at time t + 1
2dt using the forces at time t, then the forces are

computed at time t + dt and used to update the velocities at time t + dt. The

value of the time step dt depends on the problem considered. A larger time step

needs less computational time, however, it should be noted that the time step

should ensure that the dynamic properties of the system which have the highest

frequencies are well described. Moreover, the total energy of the system should be

conserved during the calculation.

2.1.3 Initial state

To insure stability during MD calculations, it is crucial to start from a physical

initial state. For solids, one can start from the equilibrium solid state positions,

where there are no forces on the individual atoms and the whole system. To start

the dynamics in the MD system, atoms should have initial velocities in random
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2.1.4. Periodic boundary condition

directions consistent with the desired temperature. One can sample the velocities

from a Maxwell-Boltzmann distribution as below

f(vI) =

(

MI

2πkBT

)1/2

e−MIv2

I
/2kBT , (2.9)

where kB is the Boltzmann constant, and T is the desired temperature of the

MD calculation. Maxwell derived this distribution in 1860 and later Boltzmann

investigated its physical origins [72, 73]. The distribution can be derived from the

state that maximizes the system entropy. At first, this distribution was used to

describe atom velocities in ideal gases, where they move freely in a box without

any interaction but some elastic collisions, which during that they exchange energy

and momentum in thermal equilibrium [74].

2.1.4 Periodic boundary condition

The conventional MD simulation system sizes are limited to a few hundred nano-

meters. As a consequence of this limitation, the properties of the simulated system

will be affected by finite size effects. To overcome this situation, Periodic boundary

conditions (PBC) [75] are commonly used. As shown in Fig.2.4, the central unit

cell is replicated throughout two-dimensional space to create an infinite lattice. To

ensure that the number of atoms in the unit cell is conserved, when an atom passes

the boundary of the unit cell, its periodic images move as well (see Fig.2.4). It is

crucial to investigate if the properties of the periodic system and the corresponding

macroscopic system are the same. It should be noted that the minimal size of the

unit cell should be larger than the range of any inter-molecular potential in the

system.

To summarize this section on MD calculation, we describe the MD algorithm [76]

in Fig.2.5.
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2.2. Thermodynamic properties in molecular dynamics

Figure 2.4: A two-dimensional periodic system in MD. Atoms and molecules can
enter and leave the unit cell (The unit cell is highlighted in yellow).

2.2 Thermodynamic properties in molecular dynamics

All the relevant thermodynamic properties of a classical many-body system can be

computed from the dynamics of the system. Thereupon, to measure an observable,

one should first express it in terms of positions and velocities of the atoms in the

system. For instance, using the equipartition principle the average kinetic energy

reads
〈

K
〉

=
1

2

〈

N
∑

I

MIv2
I

〉

=
3

2
NkBT, (2.10)

where the brackets show the average value, kB is the Boltzmann constant, and T is

the temperature. We use this equation to measure the temperature of the system

in MD simulations. The instantaneous temperature oscillates as a consequence of

the kinetic energy fluctuations. Another important thermodynamic quantity is the
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2.2. Thermodynamic properties in molecular dynamics

Initial positions and velocities

Move atoms:RI(t + dt) = RI(t) + vI(t)dt + 1
2

d2RI(t)
dt2 dt2

Update velocities: vI(t + dt) = vI(t) + 1
2

(

d2RI(t)
dt2 + d2RI(t+dt)

dt2

)

dt

Get forces

Move atoms:RI(t + 2dt) = RI(t + dt) + vI(t + dt)dt + 1
2

d2RI(t+dt)
dt2 dt2

Update velocities: vI(t + 2dt) = vI(t + dt) + 1
2

(

d2RI(t+dt)
dt2 + d2RI(t+2dt)

dt2

)

dt

Apply boundary conditions, temperature and pressure control as needed

Calculate physical quantities of interest

Move time and iteration step forward: t = t + dt

Repeat as long as needed

Figure 2.5: Simplified description of Molecular dynamic algorithm

pressure which can be written as:

P =
NkBT

V
+

1

3

〈

N−1
∑

I

N
∑

J>I

RIJ .MI
d2RIJ

dt2

〉

. (2.11)

And last but not the least, is the total energy of the system which is the sum over

kinetic energy and potential energy

〈

E
〉

=
〈

V
〉

+
〈

K
〉

=
〈

N−1
∑

I

N
∑

J>I

V (RIJ)
〉

+
1

2

〈

N
∑

i

MIv2
I

〉

. (2.12)

In MD simulations, to compute the thermodynamic properties of the system, one

should wait enough to reach the equilibrium. The equilibrium conditions could
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2.2.1. Non-equilibrium molecular dynamic (NEMD) steady state method

be reached with the constraint of having constant energy or temperature, con-

stant number of atoms, constant volume or pressure. The most used ensembles

are the canonical ensemble (NVT), microcanonical ensemble (NVE), and isobaric-

isothermal ensemble (NPT) [77]. Nonetheless, as most of the situations of interest

do not occur at equilibrium, it is convenient to measure the thermodynamic prop-

erties in NEMD state or using the so called direct method [70]. In the following,

we will describe the non-equilibrium method for thermal transport problems.

2.2.1 Non-equilibrium molecular dynamic (NEMD) steady state

method

In this section, the direct method for measuring thermal conductance is briefly

described [78]. Assume a system of two solid slabs which are connected by a

molecule. A temperature difference ∆T is applied across the system as shown in

Fig.2.6. The slab which has the higher temperature is called hot wall and the slab

which has the less temperature is called cold wall. In this method, the temperatures

of the hot wall and the cold wall are restrained at T + ∆T and T − ∆T values by

scaling the atomic velocities in the two walls. The thermal power exchange between

the hot wall and the cold wall and this yields to a heat flux across the system

Q =
dE

dt
, (2.13)

where Q is the heat flux, and E is the energy of the wall (cold or hot). The thermal

conductance is the ratio of this heat flux and the applied temperature difference

[79] and can be written as

κph =
Q

∆T
=

dE

dt∆T
, (2.14)

where κph is the thermal conductance, and ∆T is the temperature difference [80,

70]. After a transient regime during which heat diffuses from the hot to cold

wall, the system reaches a steady state, which ensures to obtain correct statistical

measurements [81].
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2.3. Phonons in molecular dynamic calculations

Figure 2.6: Applying a temperature difference on a system where two solid slabs
are connected by a molecule. The heat flux is imposed along the z-direction

2.3 Phonons in molecular dynamic calculations

A phonon is a quantum mechanical description of a vibrational modes in a lattice,

where a group of atoms is oscillating collectively at the same frequency. In classical

molecular dynamics, a phonon will be translated to a vibrational normal mode. All

the vibrations in the system could be described as a superposition of the vibrational

normal modes [82, 83, 84]. To compute the vibrational normal modes of the system

in equilibrium, in which their quantities gives rises to phonons, we expand the

potential energy of the system around the equilibrium position R
eq
I where the

position of atom I is RI = R
eq
I + uI . In the harmonic approximation, we have

V (RI) = V0(Req
I ) +

∑

I

∑

α

∂V

∂uI,α

∣

∣

∣

∣

∣

eq

uI,α +
∑

I,J

∑

α,β

∂2V

∂uI,α∂uJ,β

∣

∣

∣

∣

∣

eq

uI,αuJ,β , (2.15)

where α and β are x, y, and z directions. The first term is a constant and can

be safely ignored, and the second term is the forces on atoms at equilibrium and

vanishes. The third term describes the interaction between atom I and J . The
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2.3.1. Lattice dynamics calculations

term DIα
Jβ = ∂2V

∂uIα∂uJβ

, is the dynamical matrix. We can define the matrix

Dαβ(q) =
∑

IJ

∂2V

∂uIα∂uJβ

exp
(

iq.(RI − RJ)
)

, (2.16)

where the normal modes are given by the equation

Dαβ(q)eβ = ω2
qeβ, (2.17)

where uIα(R, t) =
∑

q eα(q) expi(ω(q)t−q.R), q is any wave vector, eβ is the eigen

vectors and ω2
q are the eigen values. The elements of the dynamical matrix are

classically equivalent to spring constants between the atoms and are used to com-

pute the phonon spectrum. The higher terms that are neglected in the harmonic

approximation will produce the effect of phonon-phonon interaction. The dynam-

ical matrix plays a crucial role to obtain, vibrational modes, frequencies, and mode

shapes, therefore, mapping the system from real space coordinates to phonon space

coordinates [82]. This calculation using the dynamical matrix is called harmonic

lattice dynamics [85]. Harmonic lattice dynamics calculations are just valid at zero

temperature, where the vibrational normal modes are harmonic. The anharmon-

icity which comes from finite temperature causes interactions between vibrational

normal modes, which leads to thermal expansion and finite thermal conductivity.

However, if the anharmonicity is not too strong, if we use the finite temperature

lattice constant along with harmonic lattice dynamics calculations, we can provide

a convenient description of the phonon dispersion of the system [86, 87].

2.3.1 Lattice dynamics calculations

Lattice dynamics calculations are employed to obtain the normal modes of a solid.

The goal is to calculate the frequency of each phonon as a function of its wavevector

which is called phonon dispersion. In this section lattice dynamic calculations for

a one dimensional di-atomic system is presented [85, 88, 89]. Consider a one di-

mensional system with two different types of atom as shown in Fig.2.7. K and k

are the elastic constants of the different bonds, UN and uN are the displacement
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2.3.1. Lattice dynamics calculations

Figure 2.7: Diatomic linear harmonic chain considered in harmonic approximation

of the N-th atom with mass M and m, respectively, and a is the lattice vector at

equilibrium. As the displacements are usually a few percent of inter atomic dis-

tance, the harmonic approximation is used. Moreover, only the nearest neighbour

interactions are considered.

The total harmonic energy in this model is given as

E =
1

2

∑

N

K(UN − uN )2 + k(uN−1 − UN )2. (2.18)

Considering nearest neighbour interactions, the equation of motion for N-th atom

with mass M becomes

M
d2UN

dt2
= − ∂E

∂UN
= −(K + k)UN + kuN−1 + KuN , (2.19)

and for the N-th atom with mass m is

m
d2uN

dt2
= − ∂E

∂uN
= −(K + k)uN + kUN−1 + KUN . (2.20)

The solution to the harmonic equation of motion is a periodic wave and the total

motion depends on travelling waves along the diatomic chain that fulfill the bound-

ary condition. Our purpose will be to find the frequencies correspond to these

waves. The motion of the N-th atom with mass M is a linear superposition of

travelling waves in the chain, the mathematical representation reads

UN (t) =
∑

q

Ũq exp
[

i(qna − ωqt)
]

, (2.21)

where q is the wave vector, ωq is the frequency corresponding to the wave vector,

and Ũq is the amplitude of the wave vector. Similarly, the equation of motion for

the N-th atom with mass m is

uN (t) =
∑

q

ũq exp
[

i(qna − ωqt)
]

, (2.22)
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Figure 2.8: Dispersion curve for the one-dimensional diatomic chain, where we
assume k = K. The maximum happens in the edge of Brillouin zone. ω1 =
(2K/M)1/2, ω2 = (2K/m)1/2 and ω3 = (2K( 1

M + 1
m))1/2

where ũq is the amplitude corresponding to the wave vector q. Substituting equa-

tions (2.21) and (2.22) into equations (2.19) and (2.20), we obtain the dispersion

relation as below:

ω2
q =

(M + m)(K + k)

2Mm
±

(

(M + m)2(K + k)2 − 16MmKksin2(ka/2)
)1/2

2Mm
.

(2.23)

Therefore, for the diatomic chain there are two solutions, which in dispersion dia-

gram are called "branches". As shown in Fig.2.8, the first branch corresponds to a

wave for which the two atoms move in the same phase and the second one is when

the two atoms move in opposite phase. When the atoms are moving in the same

phase, the branch is called "acoustic branch" and when two neighbour atoms are

moving in opposite phase, the branch is called "optical branch" [85].
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Chapter 3

Thermoelectricity in molecular

systems

“Turning temperature differences directly into electricity could be an

efficient way of harnessing heat that is wasted in cars and power plants.“

— David L. Chandler

Thermoelectricity is the direct conversion of heat into electricity and vice versa.

Applying a temperature difference through a material can produce electricity and

having an electric current along the material creates a temperature difference. Us-

ing efficient thermoelectric materials, it is possible to generate electricity, measure

temperature, and heating/cooling the electronic devices [90].

At the atomic scale, when a temperature gradient is applied, the charge car-

riers in the material will diffuse from the hot end to the cold end [91]. The

concept of using single molecules in the composition of electronic components,

also known as molecular electronics, to reach the increasing demand for minim-

ization of electronic circuits, looks promising [92, 93, 94, 95]. Transport charac-

teristics of molecular junctions have been exhaustively investigated to explore the

possibility of building molecular devices with desirable thermoelectric efficiency

[8, 96, 97, 94, 98, 99, 100, 101, 4, 7]. Yet, in both theory and experiment, it

is still challenging to study the thermoelectric properties of molecular junctions

[102, 11, 103]. Fundamentally, exploring thermal transport in molecular junctions

41



3.1. Seebeck and Peltier effect

Figure 3.1: Illustration of a system under a temperature gradient

is useful to spot the limits to classical transport theories at the nanoscale. Addi-

tionally, for developing high efficient energy conversion devices, studying thermal

transport of molecular junctions is essential [9, 104, 105]. Nonetheless, in the

last decade, with all the technical and computational advance, the thermoelectric

properties of molecular junctions had been widely explored both experimentally

and theoretically [8]. Besides, converting the extra heat produced in the electronic

device to electricity will increase the total efficiency. Therefore, it is interesting to

engineer the thermoelectric properties of conductive materials[106, 107, 6]. In this

chapter, we discuss the basic definitions of thermoelectricity.

3.1 Seebeck and Peltier effect

In 1821, T. J. Seebeck discovered the effect governing thermoelectric power genera-

tions in solids. Afterwards, this effect was investigated in more details by J. Peltier.

When two leads are in electric contact, there will be an electron flow from the lead

that has a higher occupation level to the one with a lower occupation level. The

occupation level depends on the Fermi energy of the metal. The Fermi energy is

between the energy levels occupied by electrons and the ones that are unoccupied.

The electron flow between the two leads occurs until the Fermi energies of both

leads coincide.
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3.1. Seebeck and Peltier effect

Assume a solid under a temperature gradient where the temperature of the hot

end is Th and the temperature of the cold end is Tc < Th (see Fig.3.1). To set the

temperature difference, heat must enter the hot lead and leave through the cold

lead. The electrons in the hot end are in a higher energy level as compared with the

cold end. Therefore, a charge current density ~j is produced. This current creates a

voltage difference ∆V in the solid. The electromotive force is linearly proportional

to the temperature difference. The so called Seebeck coefficient S is the ratio of

the voltage over the temperature difference [91]:

S = − ∆V

Th − Tc
. (3.1)

The sign of the Seebeck coefficient depends on the nature of charge transport.

If most of the charge carriers are electrons the Seebeck coefficient is negative,

conversely, if most of the charge carriers are holes it will be positive. The charge

current corresponding to the voltage is

I =
2e

h

∫ ∞

−∞
τ(E)(fL − fR)dE, (3.2)

where τ(E) is the electronic transmission, and f{L,R} is the Fermi-Dirac distribution

function for the electrons in the left L and right R lead [108].

When the transport is coherent meaning there is no inelastic scattering, we could

express the Seebeck coefficient in terms of transmission function τ(E). Having

defined Kn as below

Kn(µ) =
2

h

∫ ∞

−∞
dEτ(E)(E − µ)n

(

− ∂f(E, µ)

∂E

)

, (3.3)

where µ is the chemical potential, the Seebeck coefficient reads [109]

S =
K1(µ)

eTK0(µ)
. (3.4)

It should be noted that similar to electrons, phonons also cause some gradient

temperature contributing to thermal conductance, and could interact with the

charge carriers. Therefore, there is a phonon contribution to the Seebeck coefficient.
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3.1. Seebeck and Peltier effect

Figure 3.2: An electric circuit containing a molecular junction under a temperature
gradient

Yet, by cause of extensive phonon-phonon interactions, we can neglect phonon

contribution at high temperature [110].

Peltier also discovered that if an electric current flows from one lead to another, then

heat dissipates throughout the junction (Fig.3.2). The Peltier heat can be evolved

and heat up the junction or absorbed and cool down the junction. Net cooling

is accomplished when Peltier cooling is larger than Joule heating [3]. The power

associated with the total heat dissipated in the left lead PL within the Landauer-

Büttiker formalism, considering the coherent electronic transport, is calculated as

[3]

PL(TL, TR, V ) =
2

h

∫ ∞

−∞
(µL − E)τ(E, V )(fL − fR)dE, (3.5)

where µL is the chemical potential of the left lead, τ(E, V ) is the bias dependent

electronic transmission and V stands for an applied bias [91]. Note that the total

heat dissipation includes both Joule heating and Peltier effect, consequently, net

refrigeration happens when PL <0. We should mention, despite of all the theoret-

ical studies, due to technical difficulties in measuring pW level cooling [11], there

were not so many experimental results until recently [3].
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3.2. Thermoelectric efficiency and figure of merit

3.2 Thermoelectric efficiency and figure of merit

All the materials show thermoelectric effect, but not all of them are efficient to

be used in electro-thermal devices. During the last decades, there has been an

intensive effort to search for efficient thermoelectric materials. The basic challenge

in the quest of efficient thermoelectric materials is that they need to have a high

electric conductance and low thermal conductance, so one side of the material gets

hot while the other side is cold [91]. Hence, to achieve high efficiency, one needs a

careful tuning of the material electrical and thermal properties [2].

The efficiency of a thermoelectric molecular junction η is the ratio of energy sup-

plied to the load per heat energy adsorbed at the junction [110]. The efficiency

depends on the system electrical conductivity, Seebeck coefficient and its thermal

conductivity, which are all temperature dependent. The maximum efficiency of the

energy conversion process is described by the figure of merit ZT of the thermoelec-

tric material as [104, 110]

ηmax =
TH − TC

TH

√
1 + ZT − 1√

1 + ZT + TC

TH

, (3.6)

which converges to the efficiency of a Carnot engine when ZT −→ ∞,and ZT is

given as

ZT =
GS2T

κel + κph
, (3.7)

where G is the electrical conductivity, S is the Seebeck coefficient and κel(κph) is

the thermal conductivity of the electrons (phonons). The numerator GS2 is called

the power factor and appears often in the literature. It is directly related to the

output power that is generated in a thermoelectric device. It should be noted, if

the geometry is fixed and there is unlimited heat source, a material with higher

power factor will generate more energy. However, as for different applications the

thermoelectric device is optimized, they will operate at the maximum efficiency

which is characterized by ZT and not power factor [111].
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3.2. Thermoelectric efficiency and figure of merit

Since the electronic thermal conductivity depends on charge carries, it is related to

electrical conductivity. Once again if the transport is coherent, we could express the

electronic contribution to the thermal transport in terms of the transmission func-

tion τ(E). Having Kn from equation 3.3 the thermal conductivity of the electrons

can be written as [109]

κel =
K2(µ) − [K1(µ)]2/K0(µ)

T
. (3.8)

By contrast, the thermal conductivity of phonons depends on the lattice dynamics

and is independent of charge carriers [110]. The phonon contribution to the thermal

conductivity does not have a simple expression and depends on phonon-phonon

processes. However, we measure the phonon thermal conductivity using Eq.2.14.

Generally, a thermoelectric material displaying a relatively large value of ZT should

have a high electric conductivity, a high Seebeck coefficient and a low thermal

conductivity. Molecular junctions may have interesting thermoelectric transport

properties if their thermal conductance is minimized. Part of this work consists in

finding routs to reduce thermal transport across molecular junctions.
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Chapter 4

Electronic conductance and

thermopower of single molecular

junctions

“Everything is energy and that’s all there is to it. “

— Albert Einstein

Preamble: A large part of some sections in this chapter are literal excerpts of

the article "Electronic conductance and thermopower of single-molecule junctions

of oligo(phenyleneethynylene) derivatives" [2] written by Hervé Dekkiche, Andrea

Gemma, Fatemeh Tabatabaei, Andrei S. Batsanov, Thomas Niehaus, Bernd Gots-

mann and Martin R. Bryce. This article has been written collaboratively with the

experimental partners in EFINED project from Durham university, Durham, UK

and IBM, Zurich, Switzerland. To this article, I contributed by running the simu-

lations. At the beginning of every section I will mention whether the content of the

section is taken from this paper, or not. As for the short introduction, it is taken

from the article.

Governing the electrical, thermal and thermo-electric transport in molecular junc-

tions has a crucial role in the design and operation of energy conversion devices

used for new energy-saving technologies. It is highly desirable to achieve a large

47



4. Electronic conductance and thermopower of single molecular junctions
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Figure 4.1: The structure of new OPE3 derivatives studied in this chapter

thermopower for thermoelectic materials [2, 6, 7, 4, 9]. The use of solid material

for efficient thermoelectric materials had been studied and the results were prom-

ising. However, their price and their complex manufacture makes them inefficient

for wide usage [112]. Recently, the usage of organic materials in thermoelectric

devices has attracted a great attention as they are flexible, low cost, and climate-

friendly [113, 114]. Also high thermoelectric efficiency has been predicted for some

of them. Additionally, organic molecules show a conductive delocalised π electronic

system [115]. Overall, organic molecules can be used for thermoelectric devices.

In this chapter we compute the single-molecule conductance and thermoelectric

properties of new OPE3 derivatives where three is the number of phenylene rings

in the backbone. The structure of these molecules is shown in Fig.4.1. As men-

tioned in [2], we chose OPE3 derivatives as they are synthetically-versatile, highly-

conjugated, robust molecules and they have been widely studied in molecular elec-

tronics. OPE3 systems, in particular, can be conveniently assembled and measured

in metal–molecule–metal junctions. The wide agreement between conductance data

obtained for OPE3 junctions in different research groups, makes this an excellent

candidate for a systematic study on the influence of side groups. We chose the

dihydrobenzo[b]thiophene (DHBT) anchor as this group is known to bind efficiently
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4.1. OPE3-Ph vibrational density of states in DFT and DFTB

to metal electrodes, with high junction formation probability [116], and without

the problems associated with thiol anchors, such as oxidation and formation of

metal-thiolate clusters [117]. Using DFT and DFTB, the calculations were per-

formed to support the experimental results obtained by our partners in EFINED

project [2]. We demonstrate that these molecules show the structural features that

are required for thermal conductance studies.

4.1 OPE3-Ph vibrational density of states in DFT

and DFTB

Preamble: This section corresponds to my work during the project.

As a first step, the compatibility of DFT and DFTB has been investigated. For

this reason, we performed a normal mode analysis of OPE3-Ph in the gas phase to

identify characteristic vibrations that could be relevant for the thermal conductance

of the molecular junctions. We focus on modes of the terminal anchor groups

as well as some important vibrations of the molecular backbone. Calculations

were performed with DFTB using DFTB+ package and with DFT using the PBE

exchange-correlation functional and a 6 − 31G∗ basis set as implemented in the

NwChem code. Table 4.1 summarizes the main results.

The largest frequencies involving the backbone occur when the two triple carbon

bonds oscillate asymmetrically and symmetrically along the backbone direction

(By asymmetric oscillations we mean that while the triple bond on the left is

shrinking the one on the right is expanding and vice versa. Both of the triple bonds

expand and shrink at the same time for the symmetric motion.) The anchor groups

feature some low lying vibrations from approximately 300 to 500 cm−1 which are

at significant larger frequency than the phonon modes of gold [118], that extend

up to 200 cm−1. This would indicate low phonon transmission across the junction.

Interesting in this respect is the mode at 136 cm−1 in DFTB and 123 cm−1 in DFT

lying in the gold phonon bands. It corresponds to a rocking motion of the central
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4.2. Optimization and binding energy of OPE3-Ph on Au(111)

Description of vibrational mode ωDF T B(cm−1) ωDF T (cm−1)

central ring rocking 136 123
anchor group (asym.rocking) 318 301
anchor group (sym.rocking) 330 319

SC2 (asym.scissoring) 473 463
SC2 (sym.scissoring) 481 464

middle benzene (rocking) 659 614
middle benzene (asym. stretching) 1565 1426

triple bonds (sym. stretching) 2388 2223
triple bonds (asym. stretching) 2397 2237

Table 4.1: Comparison of vibrational modes as given by DFT and DFTB

ring which is accompanied by large changes in the total molecular length. We

predict that phonon transmission occurs mainly via this channel. Comparing the

results of DFTB and DFT, we find that the predictions are rather close with DFTB

providing in general larger frequencies. In general, both DFT and DFT/PBE are

expected to yield frequencies with an average accuracy of roughly 50 cm−1 with

respect to experiment [119].

4.2 Optimization and binding energy of OPE3-Ph on

Au(111)

Preamble: The content of this section is a literal copy of our collaborative pa-

per [2]. However, the straight binding configurations in DFT and DFTB are not

mentioned in the paper.

In this section binding energies of OPE3-Ph on Au(111) were computed. We em-

ployed DFT as implemented in Quantum ESPRESSO [120] and DFTB as developed

in DFTB+ package. For DFT, we used the PBE exchange–correlation functional

[21], and PAW pseudo-potentials [121]. Energy cutoffs of 70 Ry and 280 Ry were

used for the plane wave expansion of wave functions and electron density, respect-

ively. As for the gold surface, a 4-layer slab model of the (5 × 6) surface supercell

of Au(111) was relaxed at the Γ point. For the surface calculations, all the layers

50



4.2.1. Straight binding configurations in DFT

were allowed to move. The same settings were applied to model the adsorption of

OPE3-Ph on the surface except that during adsorption simulations only the top

two layers were allowed to move. As for DFTB calculations, we used the auorg-1-1

Slater-Koster set [39, 122, 123] with orbital dependent Hubbard parameters. A

periodic setup was used as well and the optimization was done at the Γ point.

Binding energies Eads were computed as

Eads = Ecmp − EAu(111) − Emol, (4.1)

where Ecmp is the total energy of the OPE3-Ph-Au(111) complex, Emol is the total

energy of OPE3-Ph relaxed in the gas phase, and EAu(111) is the total energy of

the relaxed surface. The size of the unit cell was chosen such that the distance

between the complex and its periodic image is at least 9 Å, to avoid interaction

between the surface and its periodic image.

4.2.1 Straight binding configurations in DFT

The binding configuration between gold and the molecule is not known in the

experimental measurements. We thereby computed the binding energy of OPE3-

Ph to ideal Au(111). This will give us a first impression of the relevant binding

motifs that should also be of relevance for the rough surfaces in break junctions.

DFT geometry optimizations were performed for OPE3-Ph on the Au(111) surface

using periodic plane wave calculations. First, we investigated structures where the

molecular backbone is orthogonal to the surface. The sulfur atom of the DHBT

anchoring group was positioned at the top, bridge, fcc and hcp positions of the

surface as shown in Fig.4.2.

The most stable binding configuration is the top position with an Au–S bond length

of 2.77 Å, as shown in Fig.4.2. The bridge structure shows a low adsorption energy

and a very long Au-S distance of 2.91 Å. Optimization of the fcc configuration leads

to a structure where the sulfur is nearly at a top position.
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4.2.2. Straight binding configurations in DFTB

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Optimal binding configurations of OPE3-Ph on Au(111) from periodic
DFT simulations. Side views and bond parameters for a) top b) bridge and c) fcc.
Top view for d) top e) bridge f) fcc (darker colour of Au atoms indicates larger
distance to the surface).

4.2.2 Straight binding configurations in DFTB

For the same binding configuration as Sec. 4.2.1, the optimization was done at the

Γ point using DFTB. The binding energies and Au-S bond lengths for different

binding configuration calculated using DFT and DFTB are listed in Table. 4.2. The

optimal structure when Sulfur is on the top position has been shown in Fig.4.3.

The Au-S bond length is pretty large (4.32Å) compared with DFT calculations.

For the binding energies, there is a large difference (at least 4.9 eV) between the

result of DFT and DFTB.Moreover, the periodic gold surface should remain in

its crystal structure (FCC symmetry) after geometry optimization but the atoms

can move slightly. Fig.4.3a shows that this is not the case when the geometry of

OPE3-Ph on gold surface is optimized in DFTB. Not only the gold atoms do not
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4.2.2. Straight binding configurations in DFTB

Structure
Binding energy (eV) Au-S (Å)

DFT DFTB DFTB DFT DFTB DFTB
PBE fixed PBE fixed

bridge -.11 -5.29 -.18 2.97 4.79 3.90
fcc -.13 -6.31 -.19 2.71 4.21 3.82
top -.17 -5.03 -.18 2.77 4.32 3.79

Table 4.2: Binding energies and Au-S bond lenght for different positioning of OPE3-
Ph on gold surface in DFT-PBE, DFTB, and DFTB-fixed where the gold atoms
are fixed using DFT-PBE

(a) (b)

Figure 4.3: Optimal binding configurations of OPE3-Ph on Au(111) from periodic
DFTB simulations and the bonding parameters when a) all the atoms are free to
move b) the gold atoms are fixed.

take a favorable shape but also the Au-S bond length has a large difference with

the one of DFT calculations. Hence, Slater-Koster parameterization in DFTB does

not work probably in the optimization of periodic gold surfaces.

Consequently, it was decided to do an optimization of OPE3-Ph on Au(111), where

the gold surface was fixed at its equilibrium position and only the atoms of the

molecule were allowed to move. For the top postition, the Au-S bond length is
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4.2.3. Tilted binding configurations in DFT

3.79Å, which is larger than the one obtained from DFT. The binding energy is

-0.18 eV, which is in a good agreement with DFT results.

It should be noted that in this part of the project as the DFTB optimization does

not work properly for the periodic gold surface, we needed to make a decision for

a new strategy to model the molecular junction. We have shown for OPE3-Ph on

Au(111) that if the gold atoms are fixed at their equilibrium position, we have a

good agreement for the resulting binding energies obtained by DFTB and DFT.

However, to build the molecular junction, a geometry optimisation is needed. To

this end, we use DFT to build the molecular junctions. Later on, this junction

was used for NEGF-DFTB calculations, since for a given structure the transport

calculations are faster in DFTB.

4.2.3 Tilted binding configurations in DFT

Afterwards, we explored also other possible binding configurations. The supercell

was built the same way as Sec.4.2.1 except that the molecule was placed on the top

of Au(111) in a tilted configuration. We considered three different positioning of

Sulfur on Au(111), top, bridge, and fcc. A top view of the optimal configuration,

binding energies and bonding angles are shown in Fig.4.4.

The most stable binding configuration is the top position with an Au–S bond length

of 2.55 Å, as shown in Fig.4.4. The bonding angles indicate a pyramidalisation of

sulfur, consistent with a coordinate bond where one of the S lone pairs interacts

with Au d-orbitals. The binding energy of OPE3-Ph for the most stable conformer

shows that the DHBT group provides an effective anchor. Moreno-García and

co-workers investigated the binding energy of several aurophilic functional groups.

Specifically, they looked at cyano (CN),amino (NH2), thiol (SH), 4-pyridyl (PY)

and the present DHBT and found the energetical ordering NH2 < DHBT ≈ CN

≈ PY < SH, where NH2 denotes the least stable anchor group. Although the

OPE3 molecular wire was coupled to an Au pyramid in the Moreno-García study,
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4.2.3. Tilted binding configurations in DFT

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Optimal binding configurations of OPE3-Ph on Au(111) from periodic
DFT simulations. Side views and bond parameters for a) top b) bridge and c) fcc.
Top view for d) top e) bridge f) fcc (darker colour of Au atoms indicates larger
distance to the surface). a,b,c copied from [2]. d,e,f reproduced from [2]

the reported binding energy of Eads = -0.41 eV is close to our result for the top

position [116]. The fcc structure shows a low adsorption energy and a very long Au-

S distance of 3.45 Å. Optimization of the bridge configuration leads to a structure

where the DHBT sulfur is nearly at a top position. In contrast to the more common

thiol anchor groups, DHBT features a sulfur lone pair with fixed orientation with

respect to the molecular plane, and this reduces the available conformational space.

Table. 4.3 shows the binding energies and Au-S bond length for various positioning

of OPE3-Ph on gold surface in straight and tilted binding configuration. In both

straight and tilted binding configurations, the top positioning of sulfur atom on gold

surface has the least binding energy. However, the tilted binding configurations

show more stable structure. Moreover, Au-S bond length for tilted configurations

are in conformity with experimental value [124]. Thereby, latter we use tilted

configuration to obtain the electronic transport properties of OPE3 derivatives.

55



4.3. NEGF-DFTB for junctions of OPE3 derivatives

Structure
Binding energy (eV) Au-S (Å)
straight tilted straight tilted

bridge -.11 -0.50 2.97 2.57
fcc -.13 -0.16 2.71 3.45
top -.17 -0.53 2.77 2.55

Table 4.3: Binding energy and Au-S bond length for different positioning of OPE3-
Ph on gold surface in straight and tilted binding configuration

Figure 4.5: Device geometry for DFTB transport simulations. Shown here is OPE3-
Ph(OMe)2 connected to semi-infinite gold leads. Reproduced from [2]

4.3 NEGF-DFTB for junctions of OPE3 derivatives

Preamble: The content of this section is a literal copy of our collaborative paper

[2]. However, the convergence test for the transmission and the conductance is not

mentioned in the paper.

NEGF-DFTB was employed to compute the thermoelectric properties of OPE3

derivatives. We used the auorg-1-1 Slater-Koster set [39, 122, 123] with orbital

dependent Hubbard parameters. A periodic setup was used, where the device is

repeated perpendicular to the transport direction along the surface. This necessit-

ates a solution of the Poisson equation in periodic boundary conditions to compute
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4.3.1. Convergence test for the transmission and the conductance

the charge density in the device region. The device in Fig.4.5, was prepared in mul-

tiple steps. At first, we optimized the geometry of the OPE3 derivatives between

two Au20 clusters in the gas phase using NWCHEM code [125]. The calculation was

performed using a 6-31G∗ basis set for C, H, S and lanl2dz_ecp basis set for Au.

For the exchange-correlation functional, PBE-GGA was used. Using Atomic Sim-

ulation Environment (ASE) [126], the Au20-molecule-Au20 was fixed between two

Au(111) surfaces accommodating three layers with 30 atoms per layer. Then, we

coupled this device to gold leads accommodating three layers that were repeated

in the transport direction. Not to mention, during all of this process the Au-S-

C angle, that we found in the gas phase geometry optimization, was preserved.

Consequently, tilting of the molecule to the surface was accurate.

4.3.1 Convergence test for the transmission and the conductance

To compute the transmission using DFTB-NEGF, the Poisson equation was solved

in the device region using a Green’s function solver. The parameters for the Green’s

function solver need to be converged. We solve Poisson equation to obtain the

transport properties. First convergence test was done for the accuracy for the

approximate solution of the Poisson equation. The minimal grid to sample the

transport device in the real space and the energy step along the real axis integration

for NEGF calculations were converged. For the complex contour integration of the

Green’s function, the number of Poles enclosed in the contour and the number of

points along the contour should be converged. After convergence test, the default

values in DFTB+ for Green’s function solver were used. Moreover, the transmission

function should be converged with respect to the k-point sampling of the leads. As

shown in Fig.4.6a, the energy dependent transmission was computed for different

k-point sampling from 2 × 2 × 2 to 11 × 11 × 11. As the mesh in k-point sampling

increases the dip around the Fermi energy starts to fade. Using the transmission

function, we calculated the conductance from Eq.1.37. The results is shown in

Fig.4.6b.
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Figure 4.6: a) Transmission function for different k-point sampling for OPE3-Ph
and b) Conductance of OPE3-Ph versus number of k-points. The x-axis shows n
for an n × n × n k-point set.
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Figure 4.7: DFTB transmission function τ(E) for three OPE3 derivatives. For
illustration the HOMO and LUMO energies of the isolated molecules in the gas
phase are at the top of the plot. The gas phase energy levels are shifted by a ∆ to
be aligned with Fermi energy of the substrate, where ∆ is the difference between
the middle of HOMO-LUMO gap for the device and the molecule. We calculated
∆OPE3-Ph= −1.45eV ,∆OPE3-PhOMe2 = −1.44eV , and ∆OPE3-An= −1.0eV .

To calculate the conductance, the behaviour of the transmission around the Fermi

energy has a crucial role. Hence, the value of conductance fluctuates for in-

sufficiently large k-point sampling. Finally, the value of conductance converges

to 1.60 × 10−4G0 with an accuracy of 10−6G0. In the following calculations, a

10×10×10 k-point sampling has been used in the construction of the lead self-

energy.

4.3.2 Results for OPE3 derivatives

In this section, we discuss about the transport properties of the OPE3 derivatives

using NEGF-DFTB. We computed the energy dependent transmission function

τ(E), which is related to electronic conductance as shown in Eq.1.37. The result

is shown in Fig.4.7. The side groups at the central OPE3 ring have a crucial
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4.3.3. Exploratory configurations for OPE3-Ph

role on the HOMO position. The HOMO shift of approximately 0.15 eV in OPE3-

Ph(OME)2 with respect to the HOMO level in OPE3-Ph is due to electron-donating

OMe group. The extension of the π system in OPE3-An has an even stronger

effect with a shift of 0.75 eV with respect to OPE3-Ph. The LUMO energy levels

do not show a big change in different derivatives. The electrical conduction occurs

through the orbital that is closest to the Fermi energy, thereby, the differences in

conductance for OPE3 derivatives is not large, as verified by our calculation and

experiment (see Table.4.4). While OPE3-An shows a perfect LUMO transmission,

both OPE3-Ph and OPE3-Ph(OMe)2 show low values for transmission. This is

most likely due to partial destructive interference of transmission paths through

energetically close lying molecular orbitals.

4.3.3 Exploratory configurations for OPE3-Ph

To examine the effect of different binding configurations on transmission, we per-

formed NEGF-DFTB calculations for possible configuration of a OPE3-Ph junc-

tion. We refer to the junction from the previous section, with Au20-molecule-Au20,

as Au20-tilted (see Fig.4.5). Additionally, we investigated four more possible junc-

tion configurations as shown in Fig.4.8. First, we considered the most stable struc-

ture from the binding energy calculation in section 4.2. So, the OPE3-Ph binds

directly to the flat gold surface. It should be noted, considering limited compu-

tational resources, the second electrode is symmetrically placed with respect to

the first electrode and no geometry optimization was done (flat surface- tilted,

Fig.4.8d). As discussed in Sec.4.2.1, another possible geometry with a higher en-

ergy was predicted where OPE3-Ph was placed perpendicular to the Au(111). This

junction is labelled flat surface-straight and shown in Fig.4.8b. Likewise, we con-

sidered binding through one Au atom where the OPE3-Ph is perpendicular to the

gold surface (adatom – straight, Fig.4.8a) and OPE3-Ph tilted between the gold

surfaces (adatom – tilted, Fig.4.8c). The fcc and hcp positioning of the Au atom

were studied. The computational parameters for all of these possible junctions are
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4.3.3. Exploratory configurations for OPE3-Ph

(a) adatom-straight (b) flat surface-straight

(c) adatom-tilted (d) flat surface-tilted

Figure 4.8: Possible OPE3-Ph junction configurations.

the same as for Au20-tilted.

The transmission results are shown in Fig. 4.9. As a result of the manual con-

struction of the junction without geometry optimization, the transmission for the

junctions in Fig.4.8 is noisy around the Fermi energy. Nonetheless, for the straight

junctions the HOMO/LUMO levels are shifted to higher energies with respect to

Au20-tilted and show transmission through the HOMO level, therefore, Seebeck

coefficients become positive. On the other hand, the adatom junctions shift the

HOMO/LUMO levels to lower energies with respect to flat surface junctions.
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4.4. Seebeck coefficients for OPE3 derivatives
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Figure 4.9: DFTB transmission for OPE3-Ph junction models in Fig.4.8 and the
Au20-tilted structure in Fig.4.5

4.4 Seebeck coefficients for OPE3 derivatives

Preamble: The content of this section is a literal copy of our collaborative paper

[2].

As discussed in section 3.1, the electronic transmission can be used to estimate See-

beck coefficients from equation 3.4. At low temperatures, applying the Sommerfeld

expansion the Seebeck coefficient reads [93]

S = −π2k2
BT

3e

τ ′(EF )

τ(EF )
, (4.2)

where EF is the Fermi energy, and the τ ′(EF ) denotes to the derivative of the

transmission function with respect to the energy, estimated at the Fermi energy.

The theoretical and experimental values for Seebeck coefficient and electric con-

ductance are reported in Table 4.4. The negative Seebeck coefficient which is an

indication of transport through LUMO is in agreement with the experimental val-

ues. Not to mention, for the additional exploratory calculations shown in section
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4.4. Seebeck coefficients for OPE3 derivatives

Gexp Gtheo Sexp Stheo

[10−4G0] [10−4G0] (µV/K) (µV/K)
OPE3-Ph 0.92 1.60 -11.4±0.5 -25.6

OPE3-Ph(OMe)2 2.03 3.86 -7.9±1.3 -27.0
OPE3-An 1.82 3.64 -8.7± 1.6 -37.1

Table 4.4: Conductance and Seebeck coefficient for OPE3-Ph, OPE3-PhOMe2 and
OPE3-An at 295 K. Experiments are described at [2].

4.3, the straight conformers feature HOMO/LUMO resonances that are consider-

ably shifted to higher energies with respect to Au20-tilted and therefore lead to

positive Seebeck coefficients. The adatoms have an opposite effect, such that the

adatom–tilted conformer comes closest to the fully relaxed Au20-tilted conformer.

Thence, the Fermi level positioning is influenced by sulfur pyramidalisation and the

bonding to undercoordinated Au atoms, both factors favouring a negative Seebeck

coefficient (Fig.4.9).

In experiment, OPE3-Ph has the lowest conductance and the largest Seebeck coeffi-

cient. Since the transmission derivative is usually dominating over the transmission

in the equation 4.2, this is consistent with a LUMO position of OPE3-Ph that is

slightly closer to Fermi energy than for OPE3-Ph(OMe)2 or OPE3-An. The DFT

simulations do not reproduce the trend for Seebeck coefficients in the OPE3 de-

rivatives. To some degree, these errors might be related to the known difficulties

of DFT and DFTB to predict the transport gap and the positioning of the Fermi

level [127]. All in all, our theoretical simulations confirm the experimental trans-

port mechanism with a small variability in the thermopower.
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Chapter 5

Thermoelectricity of cross-linked

molecular junctions

“Have no fear of perfection, you’ll never reach it.“

— Marie Curie

As discussed in chapter.3, molecular junctions can be used to remove heat from

nanoelectronic devices and convert the wasted heat to electricity [106]. However,

until recently due to technical difficulties, tuning the thermoelectric properties of

nano-junctions was not possible [128]. Notably, the recent innovative investigations

in which a large thermoelectric efficiency was achieved by tuning the thermoelectric

properties of a single-molecule junction, are reassuring [128, 129]. These studies

open up new prospects of molecular electronics applications as well as probing the

fundamental physics of thermoelectric conversion in nanoscale molecular junctions.

Using MD along with convenient force fields to compute thermal conductance has

been promising [130]. Since the molecular junction is at non-equilibrium during the

experiments, we chose to perform our MD calculation using the NEMD method.

The thermoelectric properties of single molecular junctions have been exhaustively

studied. However, most of these studies are focused on linear molecules like OPE3-

Ph or alkane-based molecular junctions. Here, cross-linked molecules were elected

as having a dimer will increase the electronic transmission compared with a linear

single molecule, consequently, the thermopower of the molecule. Also, the bridge
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5. Thermoelectricity of cross-linked molecular junctions
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Figure 5.1: The structure of the OPE3 derivatives studied in this chapter

at the cross-linked molecules may diffuses phonons and decrease the thermal con-

ductance. Moreover, studying cross-linked molecules is a way to go beyond single

molecule junctions and fabricate thin films [131]. Additionally, this study may be

considered as a first step to look at more complex molecular junctions.

In this chapter, we compute the single-molecule electronic and thermal conduct-

ance, thermopower and finally the thermoelectric efficiency of cross-linked OPE3

derivatives where three corresponds to the number of phenylene rings in the back-

bone. The structure of these molecules is shown in Fig.5.1. OPE3-CD, where CD

stands for constrained dimer, contains two OPE-Ph which are cross-linked by an

oxygen bridge. OPE3-CDR, where CDR means constrained dimer rigid, consists

of two OPE-Ph which are connected by double bonded carbon atoms. The wide

agreement between electronic conductance data obtained for OPE3 junctions by

different research groups, makes this an excellent candidate for a systematic study

on the influence of cross-linking. Using NEMD [130], DFT and DFTB, the calcu-

lations were performed to predict the thermoelectric efficiency of these molecules.

We show that these molecules show the transport properties that are needed for

thermoelectric applications.
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5.1. Thermal transport of dimer molecular junctions of OPE3 derivatives

Figure 5.2: The Au(111)-OPE3-Ph-Au(111) junction used in MD calculations

5.1 Thermal transport of dimer molecular junctions

of OPE3 derivatives

To compute the heat conductance across OPE3 derivatives, an Au(111)-OPE3-Ph-

Au(111) junction was prepared in multiple steps. First, the molecule in the gas

phase was optimized using DFT and the NWCHEM package. The calculation was

performed using a 6-31G∗ basis set. Using Atomic Simulation Environment (ASE)

[126], the molecule was fixed between two Au(111) surfaces accommodating six

layers with 144 atoms per layer. For an illustration see Fig.5.2.

The molecular dynamic calculations were performed considering the OPLS force

field and using the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) package. For the interaction between the gold surface and sulfur atoms

we used the force field parameters of the Morse potential defined as

VMorse(RIJ) = D0

(

exp2α(RIJ −Req) −2 expα(RIJ −Req)
)

, (5.1)
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5.1. Thermal transport of dimer molecular junctions of OPE3 derivatives

atom type characteristic
Au any atom in the surface
C* sp2 aromatic in 5-membered ring next to two carbons
CA any aromatic sp2 carbon
CT any aromatic sp3 carbon
H1 H attached to aliphatic carbon with one electron-withdrawing substituent
HA H attached to aromatic carbon
HC H attached to aliphatic carbon with no electron-withdrawing substituent
O sp3 oxygen in ethers
S sulfur in methionine and cysteine

Table 5.1: OPLS force field atomic characteristic

Figure 5.3: An illustration of OPE3-Ph molecule where using OPLS force field
atomic characteristic. Where the peach, purple, blue, green, brown and pink cor-
responds to CA, CT, HA, S, HC, C∗

where D0 is the well depth akin to the molecule dissociation energy, and α is

associated with the curvature of the potential at the equilibrium distance [5, 132,

133]. All the force field parameters are listed in Table.5.1 to 5.6. Additionally, an

illustration of different atom types in OPLS force field has been shown for OPE3-Ph

in Fig.5.3.
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5.1. Thermal transport of dimer molecular junctions of OPE3 derivatives

atom type RIJ(Å) ǫ(kcal/mol) atom type RIJ(Å) ǫ(kcal/mol)
Au 5.29 2.63 H1 0.0150 1.387
C* 0.0860 1.7 HA 0.0157 1.4870
CA 0.0860 1.7 HC 0.0150 1.459
CT 0.0860 1.7 O 0.1700 1.6837
CTr 0.0860 1.7 S 0.2500 2.0000

Table 5.2: OPLS force field Van der Waals parameters
Bond type kr(kcal/(mol Å2)) Req(Å) Bond type kr(kcal/(mol Å2)) Req(Å)
CA-CA 469 1.400 C*-CA 317 1.495

C*-S 227 1.810 C*-C* 367 1.52
C*-HC 367 1.080 CA-S 227 1.810
CA-HA 367 1.080 CA-CT 469 1.400
CTr-CA 20 1.400 CT-H1 331 1.09
CTr-CTr 800 1.100 CT-OS 313 1.405

Table 5.3: OPLS force field bond parameters
pair D0(kcal/mol) α(Å−1) Req(Å)
Au-S 9.04 1.378 2.903

Table 5.4: Morse potential parameters [5]

Angle type Kθ θ◦
eq Angle type K θ θ◦

eq

(kcal/(mol radian2)) (kcal/(mol radian2))
C*-C*-CA 50 114.70 CA-CA-S 62.1 122.55
C*-C*-HC 35 110.5 CA-CT-H1 35 120
C*-C*-S 50 114.70 CA-CT-OS 80.0 109.5

C*-CA-CA 63 120 CA-CTr-CT 63 180.0
C*-S-CA 63 134 CT-OS-CT 100.0 111.8

CA-C*-HC 35 111.2 H1-CT-H1 35 106
CA-CA-CA 63 120 H1-CT-OS 80.0 109.5
CA-CA-CT 63 120 HC-C*-HC 35 106
CA-CA-CTr 63 120 HC-C*-S 48.2 119.88
CA-CA-HA 35 120 Au-S-C* 50 107.285

Table 5.5: OPLS force field angle parameters

torsion f Kφ(kcal/mol) φ◦ torsion f Kφ(kcal/mol) φ◦

X-C*-CA-X 4 14.500 180.0 X-CTr-CTr-X 4 14.500 180.0
X-CA-CA-X 4 14.500 180.0 X-CA-S-X 3 1.8000 180.0
X-C*-C*-X 4 14.500 180.0 X-CT-OS-X 3 1.8000 180.0
X-CA-CT-X 4 14.500 180.0 X-C*-S-X 3 1.8000 180.0
X-CA-CTr-X 4 14.500 180.0

Table 5.6: OPLS force field torsion parameters
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5.1.1. Thermal conductance for OPE-Ph

5.1.1 Thermal conductance for OPE-Ph

The timestep was set to 0.01 fs, and after a energy minimization procedure, the

center of mass of the two surfaces were tethered to be fixed at their position by

soft springs. Next, the junction was equilibrated at room temperature in the NPT

ensemble for 1 ns. To obtain reasonable statistics, the calculation was performed

for 40 independent configurations. For each configuration the initial velocities

had been generated randomly. It should be noted that one can always run the

calculations for more configurations and decrease the uncertainty of the results.

After equilibration, we performed the thermal conductance calculations for 2 ns

using the steady state method. For the temperature difference between the walls,

we verified linearity of thermal conductance for a temperature difference of 100 K,

accordingly the temperature difference between the gold surfaces was set to 100

K for all the calculations. At last, the accumulated energy of the hot (cold) gold

surface, hot (cold) thermostat, versus time were plotted as shown in Fig.5.4a. A

linear fit to the data determined the slope of the plot and it was used to compute the

heat conductance from the Eq.2.14. An OPE3-Ph thermal conductance histogram

at room temperature is shown in Fig.5.4b, hence, thermal conductance at room

temperature is 21.99 ± 3.8 pW/K, where the first value is the thermal conductance

and the second value shows the uncertainty in our simulations. This result shows a

good agreement with the experimental value 20 ± 6 pW/K measured for the same

molecule junction [4].

5.1.2 Scaling behaviour of OPEn-Ph derivatives molecular

junction thermal conductance

The analysis was performed for OPE3 and the constrained dimer of the molecule,

now denoted OPE3CD (see Fig.5.1). The impact of temperature was studied to

determine if thermal transport is ballistic or diffusive. If it is ballistic, thermal

conductance is expected to be independent of temperature (in classical molecular
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5.1.2. Scaling behaviour of OPEn-Ph derivatives molecular junction thermal conductance
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Figure 5.4: Total accumulated energy versus time for Au(111)-OPE3-Ph-Au(111)
when the temperature difference between the gold surfaces is ∆T= 100 K and b)
The histogram of thermal conductance for OPE3-Ph at 300 K(40 seeds)
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5.1.2. Scaling behaviour of OPEn-Ph derivatives molecular junction thermal conductance

dynamics simulations, quantum effects are absent and all vibrational modes are

populated at any temperature). On the contrary, if the heat carriers are scattered

between the two heat reservoirs, one expects a thermal conductance decreasing

with temperature. As shown in Fig.5.5a, the value of thermal transport for the

dimers is twice the one of OPE3-Ph. This result is also validated by our thermal

transmission spectrum for the OPE3-Ph derivatives as shown in Fig.(5.6)

Moreover, Fig.5.5a indicates that thermal conductance is almost independent on

temperature for OPE3-Ph and OPE3-CDR derivatives, thence, the thermal trans-

port is certainly ballistic. The nature of thermal transport can also be evidenced by

length-dependent simulations. We performed thermal conductance calculation for

different lengths of OPEn-Ph derivatives (n=3,4,5). As can be seen in Fig.5.5b, for

OPEn-Ph and OPEn-CDR molecules, the thermal conductance is almost constant,

which is again consistent with the ballistic nature of thermal transport. It should

be noted, in the case of OPE4-CD and OPE5-CD, we do not observe a ballistic

behaviour. It may happen that in these cases, the phonon mean free path is smaller

than the molecule length. Phonon mean free path depends on the nature of the

bridge in the cross-linked molecules as well as the molecular architecture. To con-

firm this, one would need to calculate phonon lifetime and phonon mean free path

for each structure. Due to the lack of time, for the moment we did not do this step.

So far, most of the studies on heat transport in single molecular junctions focused

on linear molecules [134, 135, 131]. Therefore, we need further investigations to

comprehend the transport mechanism in cross-linked molecules.

To interpret the relative values of the conductance of the junctions, we obtained

transmission spectrum corresponding to OPE3 derivatives during thermal conduct-

ance calculations. The transmission spectrum is a measure of the transmission

through the sulfur-gold bond at the hot surface. More precisely, it is defined by [87]:

q(ω) =
1

∆t

∑

i∈Au,j∈S

f̃ij,α(ω)ṽ∗
i,α(ω) (5.2)

where ∆t is the interval between two configuration saving, the sum runs over
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5.1.2. Scaling behaviour of OPEn-Ph derivatives molecular junction thermal conductance
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Figure 5.5: a) Thermal conductance vs temperature for OPE3 derivatives b)
Thermal conductance vs length for OPEn derivatives at 300 K
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5.1.2. Scaling behaviour of OPEn-Ph derivatives molecular junction thermal conductance
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Figure 5.6: The transmission spectrum during thermal conductance calculations
for OPE3 derivatives averaged for 10 seeds at 300 K

all sulfur-gold bonds, f̃ij,α(ω) is the time-Fourier transform of the bonding force

between a sulfur atom and one of its gold neighbour, ṽi,α(ω) is the time Fourier

transform of the velocity of atom i, α denotes a spatial direction α ∈ x, y, z and ∗

denotes the conjugate of a complex number.

We computed the transmission spectrum for 10 independent configurations at room

temperature using eq.5.2. The MD calculation was done in the NVE ensemble and

we recorded the system dynamics every 100 fs to map over all the possible frequen-

cies for the junctions. The average transmission spectrum for OPE3 derivatives is

shown in Fig.5.6. The OPE3-CD transmission dominates at most of the frequen-

cies over OPE3-Ph and OPE3-CDR. All the modes with the frequency less than

the Debye frequency of gold (shown in Fig.5.6) contribute to thermal conductance.

In Fig.5.5a, we can see that the value for thermal conductance of OPE3-CDR

is almost twice of the one of OPE3-Ph. On the other hand, OPE3-CD shows a

higher thermal conductance compared with OPE3-Ph. The transmission spectrum
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5.2. Electronic transport of dimer molecular junctions of OPE3 derivatives

of OPE3 derivatives, confirms this results.

5.2 Electronic transport of dimer molecular junctions

of OPE3 derivatives

In this section, we investigate the electronic transport of OPE3 derivatives intro-

duced in this chapter. The electronic properties of OPEn-Ph, where n denotes

to the number of phenylene rings in the backbone, were computed using NEGF-

DFTB having the same settings as in section 4.3. The devices were constructed

in the same fashion. However, when checking the scaling behaviour, the different

oligomers were not fully relaxed to keep them planar, in order to address the in-

fluence of chain length without interplay with additional structural effects. As the

dimer molecules are larger than monomers, to have at least 9 Å distance between

the molecule and its periodic image, we need a larger surface area. So, the Au20-

molecule-Au20 was fixed between two Au(111) surface accommodating three layers

with 36 atoms per layer.

5.2.1 Scaling behaviour of OPEn-Ph molecular junction

electronic conductance

In order to investigate the scaling behavior of the molecular devices, we computed

the conductance for OPEn-Ph oligomers having different lengths (n=3. . . 6). The

electronic transmission is shown in Fig.5.7a, while the corresponding conductance

is given in Fig. 5.7b.

In agreement with the literature, [93], we observe an exponential decay of the

electrical conductance as a function of the length L, indicating that minimizing

the length L is required for high electron transport. Writing the conductance

G(L) = A exp−ξL, (5.3)
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Figure 5.7: a) Electronic transmission function and b) electrical conductance at
300 K as a function of the number of benzene rings in the OPEn-Ph oligomers
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5.2.2. NEGF-DFTB calculations for junctions of OPE3 derivatives

where A is a prefactor which depends on the order of magnitude of the conductance

value, what does it mean ? ,and the attenuation factor ξ is expected to depend on

the chemical nature of the molecules (conjugated vs. saturated), the presence of

electrophilic/electrophobic side groups and to a lower extent on the anchor groups

[136]. We find ξ = 0.35 Å−1, which agrees with the findings for other conjug-

ated molecules [137, 138]. The transport characteristics are thus well described by

sequential tunnelling model from ring to ring without reflection.

5.2.2 NEGF-DFTB calculations for junctions of OPE3

derivatives

The energy-dependent transmission function τ(E) of the OPE3 derivatives is shown

in Fig.5.8. In both OPE3-CD and OPE3-CDR, the bridge attached to the central

OPE3 ring has a crucial role in the HOMO position which results in the HOMO

shift of approximately 0.4 eV with respect to OPE3-Ph. For the LUMO, a shift of

0.1 eV towards EF is seen for both dimer molecules. The value of the transmission

at LUMO stays the same for all three molecules, but the width is clearly larger for

the dimers. As shown in Table.5.7, the conductance value for the dimers rises by

a factor of six with respect to the monomer, not by a factor of two as one would

possibly expect. The maximum conductance value is observed in OPE3-CD with

7.05 ×10−4G0. The Seebeck coefficient is negative for all the OPE3 derivatives as

the transport occurs through the LUMO [110]. The absolute value of the Seebeck

coefficients for the dimers increase compared with OPE3-Ph (see Table.5.7).

Some more analysis have been done to investigate the origin of the unusual rise

in the conductance values. Inspection of Fig. 5.8 reveals that there is a resonance

at 0.5 eV below the Fermi energy. To address the origin of this resonance, a

molecular orbital analysis was done for Au20-OPE3-Ph-Au20 and OPE3-Ph in the

gas phase. The HOMO and LUMO energy levels for OPE3-Ph in the gas phase

are shown in Fig.5.9a and 5.9b, respectively. The corresponding molecular orbitals

in the Au20-OPE3-Ph-Au20 complex were identified as shown in Fig.5.9c and 5.9d.
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Figure 5.8: NEGF-DFTB transmission function τ(E) for the three OPE3 derivat-
ives. For illustration the HOMO and LUMO energies of the isolated molecules in
the gas phase are at the top of the plot. The gas phase energy levels are shifted
by a ∆ to be aligned with Fermi energy of the substrate, where ∆ is the differ-
ence between the middle of HOMO-LUMO gap for the device and the molecule.
We calculated ∆ (OPE3-Ph)= −1.30eV ,∆ (OPE3-CD)= −1.45eV , and ∆ (OPE3-
CDR)= −1.22eV .

Next, we searched for new molecular orbitals between these two energy levels which

have a high contribution from the molecule and are absent in the bare OPE3-

Ph compound. This new levels are shown in Fig.5.9e and 5.9f and their energy

difference with respect to Fermi energy is about -0.6 eV. The energy difference of

these energy levels with Fermi energy is about -0.6 eV. Our analysis shows that these

molecular orbitals are due to the coupling of the molecule with leads, specifically,

the d orbital of Sulfur atoms in OPE3-Ph couples with the d orbital of gold atoms

in Au20. All things considered, we notice three main reason for the significant

increase in the conductance values. In the dimers the LUMO is shifted towards

the Fermi energy. Furthermore, the transmission at LUMO is broadened. Finally,
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5.3. Thermoelectric efficiency of dimer molecular junctions of OPE3 derivatives

(a) HOMO level in OPE3-Ph (b) LUMO level in OPE3-Ph

(c) HOMO level in Au20-OPE3-Ph-Au20 (d) LUMO level in Au20-OPE3-Ph-Au20

(e) HOMO-1 level of Au20-OPE3-Ph-Au20

with energy of E-EF =-0.59 eV
(f) HOMO level of Au20-OPE3-Ph-Au20 with
energy of E-EF =-0.58 eV

Figure 5.9: Molecular orbital analysis for OPE3-Ph and Au20-OPE3-Au20

there are new molecular states at the complex that seem to be more conductive for

the dimers.

5.3 Thermoelectric efficiency of dimer molecular

junctions of OPE3 derivatives

The figure of merit ZT for the different dimer molecular junctions were calculated

following the section 3.2. The calculated transmission may be used to estimate the

electronic thermal conductivity using equation 3.8. The Wiedemann–Franz law

states that the electronic thermal conductivity could be estimated by [10]

κel ≈ π2k2
B

3e2
GT, (5.4)

where G is the electrical conductance, and T is the temperature. As shown in

Table.5.7, we calculated the value of κel for OPE3 derivatives at room temperature.

Overall, the values of κel are negligible compared with κph. This means that
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5.3. Thermoelectric efficiency of dimer molecular junctions of OPE3 derivatives

G S κph κel ZT
Structure [10−4G0] [µV/K] [pW/K] [pW/K] ×10−4

OPE3-Ph 1.2 -36.80 21.99±3.8 0.069 1.72
OPE3-CD 7.05 -47.50 81.19±12 0.399 4.55

OPE3-CDR 6.30 -62.79 53.22±9.7 0.356 10.83

Table 5.7: Electronic conductance, Seebeck coefficient, phonon and electron con-
tribution to thermal transport and figure of merit for different OPE3 derivatives
at 300 K

.

thermal transport across the molecules we consider is mainly mediated by phonons.

Finally, the figure of merit ZT were calculated from Eq. 3.7. The results for room

temperature are shown in Table.5.7. The figure of merit for OPE3-Ph, OPE3-CD

and OPE3-CDR is 1.72 × 10−4, 4.55 × 10−4, and 10.83 × 10−4, respectively.

It would be desirable to sample a larger space of metal–molecule geometries to

approach the experimental conditions, but already at this stage, the theoretical

simulations confirm the main transport mechanism and thermal conductance values

of OPE3-Ph. As the value of electronic conductance and Seebeck coefficient are

overestimated in DFT and DFTB, there is variability in the values of thermopower

and ZT.

We should mention the values we obtained for figure of merit ZT of the OPE3

derivative junctions in this chapter are relatively large compared with the val-

ues obtained for other organic molecular junctions [139, 140, 141]. One of the

most challenging aspects of computing thermoelectric efficiency of the molecular

junctions using DFT (or DFTB), is the quantitative control of electronic predic-

tions. In general, in ab-initio calculations, the alignment between molecular energy

levels and Fermi energy of the metallic surface in the junctions is not controlled,

and therefore leads to inaccuracy of electronic transport properties. The disparity

comes from inaccuracy of the conventional exchange-correlation functionals. A suf-

ficient approach to get the agreement between DFT calculations and experiments

has been a great challenge in quantum chemistry and material science. Despite of

all the effort done to develop methods to overcome these challenges, their applica-
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5.3. Thermoelectric efficiency of dimer molecular junctions of OPE3 derivatives

tion encounters limits due to the computational cost [102]. However, we emphasize

that DFT calculations accompany the experiments as they can predict the most

favourable bonding configuration, the nature of transport, which molecular orbital

influence the conductance, and last but not least the trends of experimental data

can often be predicted accurately [142].

In summary, we investigated the thermoelectric properties of cross-linked derivat-

ives of OPE3-Ph molecular junctions. Regarding the thermal transport, we found

that it may increase at the most by a factor of three. Concerning the electronic

transport, the relative increase may reach factor six as seen for OPE3-CD and

OPE3-CDR. The figure of merit of cross-linked molecules may take relatively high

values, as observed for the OPE3-CDR junction.
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Chapter 6

Out of equilibrium current-voltage

characteristics and dissipated heat

“When matter is becoming disturbed by non-equilibrium conditions it

organizes itself, it wakes up. It happens that our world is a non-

equilibrium system“

— Ilya Prigogine

The advance of experimental techniques to measure the transport properties of mo-

lecular junctions has motivated many theoreticians to investigate these molecular

systems [143]. Most theoretical studies for single molecular junctions have been

done considering the system at equilibrium [144]. However, to take advantage of

a molecular junction, identifying charge and energy transport out of equilibrium

is a necessity [12, 108]. Studying current-voltage (I-V) characteristics of molecular

junctions gives us a fundamental insight of transport mechanism through molecular

junctions at non-equilibrium [141, 145, 146, 147]. It has been shown that the I-V

curves in molecular junctions are considerably dependent on the molecule-substrate

contact [148]. First principle calculations are a powerful tool that can be used along

with the experiment. It has been proven that the NEGF method is applicable to

calculate electronic properties of single molecular junctions. It has been observed

that these calculations predict the complexity of electronic conductance through

single molecular junctions which can not be reached by standard circuit theor-
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6.1. Current-Voltage characteristics

ies [149, 150, 151]. Moreover, recent experimental and theoretical studies made

it possible to measure and compute Peltier cooling in molecular junctions, which

is crucial to develop molecular-based cooling systems [3]. Applying an electrical

current flow to molecular junctions can generate refrigeration if Peltier cooling is

larger than Joule heating [3, 152].

In this chapter, the out of equilibrium characteristics of the OPE3 derivatives shown

in Fig.4.1 have been investigated. The I-V characteristics of OPE3 derivatives were

computed using DFTB. Furthermore, the bias dependent electronic transmission

computed in DFTB is used to calculate the Peltier heat dissipated in the leads.

Then, aligning the Fermi energy, the optimal cooling/heating power is obtained.

At the end, an electro-thermal circuit model will be introduced to calculate the

optimal temperature difference between the two leads in the molecular junctions.

6.1 Current-Voltage characteristics

NEGF-DFTB was employed to compute the thermoelectric properties of OPE3

derivatives out of equilibrium. The same molecular junctions as discussed in Sec.4.3

were used. A finite symmetric bias was applied to both leads such as the chemical

potential of the right and the left and the right lead for a negative voltage V

changed to µR = EF − V
2 and µL = EF + V

2 , respectively. Hence, a current flows

from the left lead to the right lead [3]. For the bias calculations, the transmission

should be converge with respect to the point sampling of the real axis in the Green’s

solver. As it turned out the default values was sufficient. As for the rest of the

parameters, we used the same setup as in Sec.4.3. For OPE3-Ph, the current values

were obtained in a ±1 V bias range. At higher bias values, the calculations for the

junctions did not converge. It is also experimentally challenging to realize the I-V

at high bias voltages.

Firstly, the potential in the device region was evaluated for the OPE3-Ph junction

under bias and was compared with the junction at equilibrium. As shown in Fig.6.1,
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6.1. Current-Voltage characteristics

(a) OPE3-Ph under bias 0 V (b) OPE3-Ph under bias -1 V

Figure 6.1: The potential in the device region for OPE3-Ph where the small circles
with the same color show the same coordinate in z direction. The color map shows
the potential value in the device region.

at equilibrium the potential is nearly symmetrical with respect to the center of the

molecule, which is expected as the device is symmetrical. However, for the junction

under bias, the potential drops linearly along the molecule with fluctuations on the

atomic scale and there are larger changes at the interface. It should be noted

that ideally, the potential in the metallic surfaces should be constant, but as the

simulated system is not large we see some perturbation and fluctuations in the

potential.

The transmission was computed for OPE3 derivatives under bias. The result is

shown for OPE3-Ph in Fig.6.2a. The higher the bias value, the more perturba-

tion occurs in the transmission. Furthermore, there is a notable change in the

transmission at 0.5 V bias due to the energy level at -0.5 eV.

The I-V curves for OPE3 derivatives are shown in Fig.6.2b. In general, the I-V

characteristics of OPE3 derivatives junctions are nonlinear, as reported for other

organic molecular junctions [103, 153, 103]. Additionally, the symmetry of I-V

curves proves that the coupling to the left and right leads is very similar in our

transport device [153]. As the bias value increases, OPE3-An and OPE3-PhOMe2

show a higher value of current compared with OPE3-Ph. For instance at bias 0.7
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Figure 6.2: a) Evolution of the electronic transmission under bias for OPE3-Ph.
b) The current as a function of bias for OPE3 derivatives.

Molecule HOMO-LUMO gap (eV) HOMO-LUMO gap (eV)
DFT/PBE DFTB

OPE3-Ph 2.10 2.54
OPE3-PhOMe2 2.11 2.32

OPE3-An 1.43 1.58

Table 6.1: HOMO-LUMO gap for OPE3 derivatives obtained by DFT-PBE and
DFTB in the gas phase

V, the highest value of current is 135.95 nA which is observed for OPE3-An. We

predicted higher current values in presence of side groups for OPE3.

Note that, in DFT based transport calculations, the absolute value of current is

overestimated as shown by Darancet and coworkers [12]. Yet, one should keep

in mind that in their work, they have predicted I-V characteristics of molecular

junctions using DFT-PBE method, while we used DFTB, hence, there is a large

quantitative difference between our results for the absolute value of current. One

of the reasons is that the DFTB HOMO-LUMO gaps are generally larger than

the DFT-PBE ones, hence, the conductance in DFTB is closer to the experiments,

consequently, the current values are closer to the experiments as well. To do a

comparison, in Table.6.1, we compare the gas phase HOMO-LUMO band gaps for

the OPE3 derivatives performed by DFTB+ and Nwchem with PBE exchange-

correlation functional using a 6-31G∗ basis set. Additionally, while working with

DFT, the basis set is larger compared to DFTB which leads to stronger coupling
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6.2. Heat dissipation out of equilibrium

Figure 6.3: An illustration of the Peltier effect in LUMO-dominated molecular
junctions levels. Qcool and Qheat denote cooling and heating power, respectively.
The Lorentzian shapes around HOMO and LUMO show the transmission [3].

between the molecule and the lead.

6.2 Heat dissipation out of equilibrium

The bias dependent transmission was used to calculate the heat dissipated in the

left lead from Eq.3.2. As mentioned in Sec.5.3, in DFTB calculations, there are

some errors in the alignment between molecular energy levels and Fermi energy

of the metallic surface in the junctions. In order to further explore the parameter

space, we also performed simulations for a shifted Fermi energy that is closer to the

LUMO resonance. In experiment a shift could be realized by gating the voltage.

After applying a negative bias voltage, a current flows from the left lead to the right

lead. In another word, electrons having the energy are injected to the right lead

and leave the left lead. The charge flow happens in the energy range between the

chemical potentials of the leads and in a small range above the chemical potential

of the right lead and below the chemical potential of the left lead. As shown in

Fig. 6.3, cooling in the left lead only happens when the electrons flow below the
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6.2. Heat dissipation out of equilibrium

Molecule bias (V) optimal bias (V) optimal optimal
PL (pW) EF shift (eV) PL (nW)

(EF DFTB) ( optimal EF )
OPE3-Ph 0.01 -0.64 -0.04 0.8 -8.25

OPE3-PhOMe2 0.01 -2.48 -0.03 0.9 -9.29
OPE3-An 0.02 -5.92 0.06 0.3 -11.29

Table 6.2: The optimal cooling for OPE3 derivatives (TL = TR = 300 K)

chemical potential of the left lead. Therefore, to reach net cooling in the left lead,

the electrons which transmit above the chemical potential of the right lead should

dominate. This can happen only when the transmission probabilities are larger at

µL + V/2 than the ones of µR − V/2, i.e. the LUMO dominated transmissions [3].

The calculations were done for OPE3 derivatives. The results are shown in Fig.6.4a,

6.4c, and 6.4e. As expected for LUMO based transport, the highest cooling occurs

for OPE3-An, due to the fact that the Fermi level is closer to LUMO compared

with other derivatives (see Fig.4.7).

By varying the temperature difference (∆T = TL − TR) between the two leads, the

bias dependent Peltier heat in the left lead was computed. As shown in Fig.6.4b,

6.4d, and 6.4f the cooling in this case is rather small compared with when we shift

the Fermi level towards LUMO. The results indicate that net cooling is possible

in a narrow voltage range around zero bias, which can be significantly enlarged by

shifting the Fermi energy towards LUMO. The result shows that in such a scenario

the cooling power is greatly increased.

The bias dependent transmission τ(E, V ) was interpolated for all the bias val-

ues between the data points. The total power was optimized with respect to the

interpolated transmission function for the Fermi energy predicted by the DFTB

calculation. Hence, the optimal bias and corresponding optimal PL were found.

Additionally, the Fermi level was shifted towards the LUMO and once again the

optimal bias and power were found.

The optimal cooling values and the corresponding voltages as well as optimal Fermi

shifts are written in Table.6.2. The highest cooling value is -11.29 nW, which
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Figure 6.4: The bias dependent net heating/cooling in OPE3 derivatives (TL = TR

= 300 K) where red shows positive values (heating) and blue shows negative values
(cooling) taking to account different values for shifting the Fermi energy towards
LUMO for a) OPE3-Ph, c) OPE3-PhOMe2, e) OPE3-An, temperature difference
between the leads for b) OPE3-Ph, d) OPE3-PhOMe2, f) OPE3-An.
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6.3. Electro-thermal circuit for OPE3 derivatives

is observed for OPE3-An for the Fermi shift of 0.3 eV towards LUMO. Overall,

the cooling power in OPE3 derivatives studied in this chapter, show relatively

larger cooling values compared with other organic single molecular junctions [3].

Once again, it should be noted that DFT overestimation of conductance values

and difficulty of effectively gating junctions over high gate voltages leads to the

overestimation of cooling values. However, our simulations show that side groups

increase the cooling power of OPE3.

6.3 Electro-thermal circuit for OPE3 derivatives

Firstly, we introduce the experimental setup which is used to measure the tem-

perature in the transport device used by our collaborators at IBM [4, 1]. In order

to measure heat and charge transport on single molecule scale, a micro-electro-

mechanical system (MEMS) was suspended using four silicon nitride beams, as

shown in Fig.6.5a. The characteristic thermal conductance of this support has

been estimated as κsupp
P h = 10−8 W/K [154]. In the central membrane of the device,

the thermometer and the gold surface are placed. The gold substrate creates an

electrical connection with the scanning tunnelling microscope (STM) tip. A gold

tip is used to perform the STM-Break Junction (STM-BJ) measurement. The

temperature measurements are performed by measuring the resistance of the four

beams.

The electro-thermal circuit is shown in Fig. 6.5b. When the net heating power is

negative, the left lead cools. However, in the phonon channel, the molecule and the

support show thermal conductance. In the experimental setup TR corresponds to

the tip and its temperature stays constant due to the good thermal contact with

the environment. Therefore, the temperature of the left lead is TL = TR + ∆T . At

equilibrium, one has:

P el
L + P th

supp + P th
mol = 0, (6.1)

where P el
L < 0 is the net heating power due to the electrons in the leads , P ph

supp =
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6.3. Electro-thermal circuit for OPE3 derivatives

(a) (b)

Figure 6.5: a) Experimental setup used to measure thermal properties of molecular
junction [4] b) Illustration of the electro-thermal circuit ( inspired from [1])

∆Tκsupp
ph is the heat loss due to the support, and P ph

mol = ∆Tκph
mol is the backflow of

heat along the molecule due to phonons. As we calculated in Sec.5.1, the thermal

conductance of the OPE3-Ph junction is 22 pW/K. Note that, even though P th
supp

and P th
mol are assumed to be constant over the temperature range studied, the net

heating power in the leads is a function of the temperature difference between the

leads as stated in Eq. 3.5.

Having said that, the temperature change between the leads reads

∆T =
P el

L (∆T )

κsupp
P h + κmol

P h

(6.2)

which requires a self-consistent solution for ∆T . In our calculations ∆T < 0

changes during the self-consistent cycle.

For OPE3-Ph, the optimal power with and without Fermi shift from Table.6.2 was

used to obtain the ∆T as a function of κph
supp. The results are shown in Fig.6.6a

and 6.6b. As can be seen, taking the Fermi energy from the DFTB calculations

as reference only marginal cooling may be realized. Shifting the Fermi energy to

its optimal value increases the reachable ∆T considerably. The results for OPE3-

PhOMe2 and OPE3-An are shown in Fig.6.6c and 6.6d, respectively. Overall, to
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Figure 6.6: ∆T versus thermal conductance of the support (initial TL = TR = 300
K) for a) OPE3-Ph with optimal bias and DFTB Fermi energy b) OPE3-Ph with
optimal bias and optimal Fermi energy c) OPE3-PhOMe2 with optimal bias and
optimal Fermi energy d) OPE3-An with optimal bias and optimal Fermi energy.

reach a decent-sized ∆T , the thermal transport of the support should be around

10−9 W/K. As expected, OPE3-An and OPE3-PhOMe2 show a higher temperature

change compared with OPE3-Ph.

To sum up, I-V characteristics for OPE3 derivatives were computed. A nearly

symmetrical coupling to the leads was found in the transport device. We predict in

bias values higher than 0.5 V, OPE3-An and OPE3-PhOMe2 show a higher value

for current compared with OPE3-Ph. The bias dependent transmission were used

to obtain the heat dissipated in the leads at non-equilibrium condition. Moreover,

to minimize the heating power the Fermi energy was shifted towards LUMO and

the optimal values were found in the range of nW cooling. Next, an electro-thermal

circuit was introduced which couples the electronic net cooling out of equilibrium
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6.3. Electro-thermal circuit for OPE3 derivatives

with thermal properties of the molecule and the setup. The temperature change of

OPE3 derivatives in this circuit model was obtained using optimal EF and power.

Overall, these results show that the OPE3 derivatives are promising candidates to

achieve cooling at the device level. The temperature differences shown in Fig.6.6

b-d, present clearly an optimistic upper bound. To reach these values one needs

to achieve a further minimization of (negative) heat loss to the support as well as

good electrostatic control.

91



Conclusion

“Do not go where the path may lead, go instead where there is no path

and leave a trail.“

— Ralph Waldo Emerson

The objective in this thesis was to compute the thermoelectric properties of OPE3

derivatives using ab-initio and molecular dynamics methods in the framework of

the EFINED project. Moreover, the limitations of the theories and the comparison

of their results with the experiment were studied.

First, we reviewed DFT and DFTB methods. We mentioned that to overcome the

size limitation in DFT, one can use DFTB to investigate electronic structure of

molecular systems [38, 44]. As shown in this work, the binding energies for a given

structure in DFT and DFTB correspond each other. However, for the periodic gold

surface, the Slater-Koster parameterization in DFTB can not be used for struc-

ture optimization. Accordingly, we used DFT to construct the transport device

and NEGF-DFTB to obtain electronic transport properties OPE3 derivatives. We

studied the effect of side groups on the electronic conductance and thermopower of

OPE3 molecular junctions, OPE3-Ph, OPE3-PhOMe2 and OPE3-An. Our results

were compared to the experiment results. In general the theoretical results are

overestimated compared with the experiments. However, our theoretical simula-

tions confirm the experimental transport mechanism with a small variability in the

thermopower. We have shown that these molecules show the structural features

92



6.3. Electro-thermal circuit for OPE3 derivatives

that are required for thermal conductance studies [2]. MD calculations were applied

to compute phonon transport in molecular junctions where the NEMD method was

used [54, 70]. Please summarize the main results obtained in MD, regarding bal-

istic transport, relative increase due to the bridge, and the interpretation you gave.

Combining the electron and phonon properties of OPE3 derivatives, we calculated

the ZT figure of merit for cross-linked molecular junctions: OPE3-Ph, OPE3-CD

and OPE3-CDR. The figure of merit for OPE3-Ph, OPE3-CD and OPE3-CDR is

1.72 × 10−4, 4.55 × 10−4, and 10.83 × 10−4, respectively. Finally, the optimal

cooling power were calculated for the molecular junctions under bias voltage. At

last, applying an electro-thermal circuit model, the maximum cooling temperatures

were computed.

As mentioned in this work, the biggest challenge in our theoretical study to compute

thermoelectric efficiency of the molecular junctions using DFT (or DFTB), is the

overestimation of electronic predictions which comes from the lack of control in

energy level alignment and inaccuracy of exchange-correlation functionals [102].

Nonetheless, the ab-initio calculations accompany the experiments as they can

predict the trends observed in experimental data [142]. Moreover, to approach the

experiment conditions, we could sample a larger surface in the molecular junctions.

Elaborate on transition to thin films, other bridges, etc..
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