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Résumé 

Les émissions de CO2 dues aux activités anthropogéniques causent de graves problèmes 

environnementaux, qui exigent le développement de technologies de réduction du CO2. 

L'utilisation chimique du CO2, en particulier la méthanisation du CO2 (CO2 + 4H2 = CH4 + 2H2O, 

ΔH298k=-165 kJ/mol), offre une voie pour convertir l'excès de CO2 en gaz naturel synthétique (CH4) 

en utilisant des énergies renouvelables. Les métaux de transition, tel que le nickel (Ni), ont été 

intensivement utilisés pour catalyser la réaction de méthanation du CO2 grâce à leurs hautes 

performances, leurs faibles coûts et leur grande accessibilité. Cependant, les catalyseurs à base de 

nickel rencontrent toujours des problèmes de frittage du métal et de stabilité dans le temps, ce qui 

limite leur application à grande échelle. Dans ce sens, des recherches se sont concentrées, ces 

dernières années sur le développement de catalyseurs à base de Ni très actifs et plus stables. 

Dans ce but, dans cette thèse, les effets du support et des promoteurs sur la performance des 

catalyseurs à base de Ni ont été étudiés pour la méthanation du CO2. Les études ont consisté en la 

préparation de nouveaux supports avec une structure et une morphologie unique et de catalyseurs 

supportés dopés par différents promoteurs. Les techniques de caractérisation telles que H2-TPR, 

CO2-TPD, physisorption de N2, XRD petit angle/grand angle, TEM, HRTEM, EDX, XPS, TGA-

MS, TPO, etc. ont été utilisées pour analyser les propriétés des catalyseurs et des supports. Ainsi, 

l'activité en méthanation a pu être corrélée aux propriétés physico-chimiques.  

Tout d'abord, des matériaux à faible coût tels que des catalyseurs Ni-Mg supportés sur de la 

diatomite et des oxydes mixtes dérivés d’hydrotalcites promus par l'yttrium ont été préparés par la 

méthode de précipitation-déposition et la méthode de coprécipitation. Leurs activités ont été 
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étudiées dans la méthanation du CO2. Ensuite une corrélation entre l'activité et les propriétés 

physico-chimiques a été proposée. 

Dans un second temps, des nanoparticules de CeO2 ont été synthétisées par la méthode 

hydrothermique. Celles-ci ont été ensuite imprégnées par des sels de Ni. Les catalyseurs Ni/CeO2 

dopés par différentes charges d'yttrium, ainsi obtenus, ont été étudiés en méthanation du CO2. La 

H2-TPR, l’XPS et les TGA ont confirmé l'augmentation des lacunes d'oxygène sur le support CeO2 

en raison de l'incorporation de Y. En outre, l'augmentation de la charge de Y peut favoriser la 

formation de « nano tiges » de CeO2 sur Ni/CeO2-Y par rapport aux « nano cubes » formés sur le 

catalyseur Ni/CeO2, ce qui pourrait expliquer l'augmentation des lacunes d'oxygène et de la surface 

spécifique. Enfin, la basicité des catalyseurs Ni/CeO2-Y a également été améliorée grâce à la 

présence de Y. Enfin, les catalyseurs Ni/CeO2-Y ont montré des performances catalytiques 

supérieures à celles du catalyseur Ni/CeO2. 

Enfin, des matériaux mésoporeux ordonnés avec une morphologie unique, tels que des SBA-15 et 

SBA-16, ont été synthétisés et utilisés pour préparer les catalyseurs Ni/SBA-15 et Ni/SBA-16. Des 

promoteurs tels que Ce, Y et Ce-Y ont été utilisés pour modifier ces catalyseurs Ni/SBA-15 et 

Ni/SBA-16. En présence de promoteurs, les performances des catalyseurs Ni/SBA-15 et Ni/SBA-

16 ont été améliorés pour la réaction de méthanation du CO2. Dans ces études, les activités de ces 

catalyseurs ont été corrélées aux propriétés physico-chimiques.  

En un mot, le support peut affecter de manière significative les performances des catalyseurs au 

Ni dans la méthanisation du CO2 en raison de sa texture, de sa structure, de sa morphologie, de ses 

propriétés redox, etc. Le dopage par des promoteurs peut apparemment améliorer l'activité de ces 

mêmes catalyseurs contenant du Ni et supportés. L’augmentation de leur activité peut être 
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corrélée la modification de la basicité, à la taille des cristallites de Ni, à la présence de lacunes 

d'oxygène et enfin à la morphologie des supports et des catalyseurs finaux.   

 

Mots clés : Méthanation du CO2, catalyseurs à base de Ni, diatomite, hydrotalcite, CeO2, yttrium, 

cérium, Ce-Y, SBA-15, SBA-16. 
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Abstract 

The CO2 emissions from anthropogenic activities have caused severe environmental problems, 

which demand the development of CO2 reduction technologies. CO2 chemically utilization 

especially CO2 methanation (CO2 + 4H2 = CH4 + 2H2O, ΔH298k=-165 kJ/mol) provides a route to 

convert the excess CO2 to synthetic natural gas (CH4) using renewable energy. Transition metal 

e.g., Ni has been intensively used to catalyze CO2 methanation reaction thanks to its high 

performance, low cost, and high accessibility. Nevertheless, Ni-based catalysts still encounter 

metal sintering and low stability problems, which limit their large-scale application. In such a case, 

the development of highly active and stable Ni catalysts has been the research focus. 

In this thesis, the effects of support and promoters on the performance of Ni catalysts in CO2 

methanation were studied. The studies consist of the preparation of supports with unique structure 

and morphology and supported Ni catalysts doped by different promoters. The characterization 

techniques such as H2-TPR, CO2-TPD, N2 physisorption, small-angle/large-angle XRD, TEM, 

HRTEM, EDX, XPS, TGA-MS, TPO, etc. were used to analyze the properties of catalysts and 

supports. Meanwhile, the methanation activity was correlated to the physicochemical properties.  

First, the low-cost materials like diatomite-supported Ni-Mg catalysts and LDH derived mixed 

oxides promoted by yttrium were prepared by the precipitation-deposition method and co-

precipitation method, respectively. Afterward, the activities of catalysts were investigated in CO2 

methanation. The correlation between activity and physicochemical properties was investigated. 

Secondly, the CeO2 nanoparticles were synthesized by the hydrothermal method followed by the 

Ni catalysts prepared by wet impregnation. The Ni/CeO2 catalysts doped by different loading of 

yttrium were investigated in CO2 methanation. The H2-TPR, XPS, and TGA confirmed the 
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increased oxygen vacancies over CeO2 due to the incorporation of Y. Also, the increase of Y 

loading could promote the formation of CeO2 nanorods over Ni/CeO2-Y compared to the 

nanocubes formed over Ni/CeO2 catalyst, which could account for the increased oxygen vacancies 

and surface area. The moderate basicity of Ni/CeO2-Y catalysts was also improved due to the 

presence of Y. In the activity test, Ni/CeO2-Y catalysts performed superior performance compared 

to Ni/CeO2 catalyst. 

Thirdly, the ordered mesoporous materials with unique morphology e.g, SBA-15 and SBA-16 

were synthesized and employed to prepare Ni/SBA-15 and Ni/SBA-16 catalysts. The promoters 

such as Ce, Y, and Ce-Y were used to modify the Ni/SBA-15 and Ni/SBA-16 catalysts. In the 

presence of promoters, both Ni/SBA-15 and Ni/SBA-16 catalysts were improved in CO2 

methanation reaction. The activities of such modified catalysts were correlated to the modified 

physicochemical properties.  

In a word, support can significantly affect the performance of Ni catalysts in CO2 methanation due 

to their texture, structure, morphology, and redox properties, etc. Doping by promoters can 

improve the activity of supported Ni catalysts, which are attributed to the modification of basicity, 

Ni crystal size, oxygen vacancies, and morphology.   

Keywords: CO2 methanation, Ni catalysts, diatomite, hydrotalcite, CeO2, yttrium, ceria, Ce-Y, 

SBA-15, SBA-16. 
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摘要 

人类起源的二氧化碳排放已经引起了严重的环境问题，例如全球变暖。这使得开发二氧化

碳减排技术变得越来越重要。 CO2的化学利用，尤其是 CO2的甲烷化（CO2 + 4H2 = CH4 + 

2H2O, ΔH298k= -165 kJ/mol）提供了使用可再生能源将过量的 CO2转化为合成天然气（CH4）

的技术路径。由于过渡金属镍 (Ni) 的高性能，低成本和高可获得性等特点，它已经被广

泛用于催化 CO2 甲烷化反应。然而，Ni 基催化剂仍然遭遇金属烧结和低稳定性的等问题，

这限制了它们的大规模应用。在这种情况下，开发高活性和高稳定性的 Ni 催化剂成为了

CO2甲烷化反应的研究重点。 

本文研究了载体和助剂对 Ni 催化剂在 CO2 甲烷化反应中性能的影响。这些研究包括制备

具有独特结构和形态的载体，以及不同助剂改性的负载型 Ni 催化剂。使用 H2-TPR，CO2-

TPD，N2物理吸附，小角/大角 XRD，TEM，HRTEM，EDX，XPS，TGA-MS，TPO等表

征技术来分析催化剂和载体的性能。同时，催化剂的活性和催化剂的理化性质也被关联起

来。 

首先，通过沉淀沉积法和共沉淀法分别制备了廉价载体负载的催化剂，如硅藻土负载的

Ni-Mg 催化剂和稀土元素钇改性的水滑石(LDH) 衍生的混合氧化物 Ni 催化剂。然后，考

察了催化剂在 CO2甲烷化反应中的活性。催化剂的活性变化被归于理化性质的改变。 

其次，通过水热法合成了 CeO2纳米颗粒。然后用湿浸渍法制备了 Ni 催化剂。研究了钇对

于 Ni/CeO2催化剂在 CO2甲烷化反应中的影响。 H2-TPR，XPS 和 TGA 表征证实了，掺入

Y 使得 CeO2上的氧空位数量增加。而且，与在 Ni/CeO2上形成的 CeO2纳米方块相比，
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Y 的添加可以促进 CeO2 纳米棒在 Ni/CeO2-Y 催化剂上的形成。 这解释了催化剂上氧空位

和表面积的增加。由于添加 Y，Ni/CeO2-Y 催化剂的中等强度碱性也增加了。在活性测试

中，Ni/CeO2-Y 催化剂的性能显著优于 Ni/CeO2催化剂。 

第三，合成了具有独特形貌的有序介孔材料，例如 SBA-15 和 SBA-16。并用合成的介孔

硅材料制备了 Ni/SBA-15 和 Ni/SBA-16 催化剂。同时，使用 Ce，Y 和 Ce-Y 等助剂改性

Ni/SBA-15 和 Ni/SBA-16 催化剂。在助剂改性下，Ni/SBA-15 和 Ni/SBA-16 催化剂在 CO2

甲烷化反应中的活性均得到显著改善。这种改性的催化剂的活性与被改变的催化剂的理化

性质相关。 

总而言之，载体由于其织构，结构，形态和氧化还原特性等，会显著影响 Ni 催化剂在

CO2 甲烷化反应中的性能。掺杂助剂可以显著改善负载型 Ni 催化剂的活性，这可以归因

于碱性，Ni 晶粒大小，氧空穴数量和形貌的变化。 

 

关键字：CO2 甲烷化，Ni 催化剂，硅藻土 (diatomite)，前驱体，水滑石 (hydrotalcite)，钇 

(Y)，二氧化铈 (CeO2)，Ce-Y，SBA-15，SBA-16。 
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1. General Introduction 

The combustion of fossil fuels and other industrial activities result in abundant emissions of 

greenhouse gases (GHGs), which consist of carbon dioxide (CO2), methane and nitrous oxide, etc. 

CO2 emission accounts for the majority of the GHGs emissions. The high CO2 concentration from 

anthropogenic activities in the atmosphere has resulted in serious environmental problems e.g. 

global warming. To mitigate the CO2 emissions, CO2 capture and storage (CCS) technologies have 

been developed to capture and store the CO2 from the atmosphere or industrial sectors. The 

captured CO2 can be stored underground or undersea. Besides storage, CO2 can also be utilized in 

many ways. The CO2 capture and utilization (CCU) technologies are developed to use the CO2 as 

feedstock to produce valuable products like fuels, chemicals, and materials, etc. The CCU routes 

like CO2-Enhanced Oil Recovery Technology (EOR) [1], chemical conversion [2,3], 

photochemical[4], electrochemical [5], and biochemical process [4], etc. have been widely studied 

aim to mitigate the CO2 emission and produce value-added products. Among these routes, the CO2 

chemical utilization methods received intensive attention due to their potential/present industrial 

application [3]. CO2 can be converted to methanol, formic acid, formaldehyde, methane, 

hydrocarbon, higher alcohol, syngas (CO and H2), etc. by CO2 hydrogenation [6–11]. The CO2 

hydrogenation to methane or CO2 methanation is considered the most potent method for CO2 

chemical conversion due to its several advantages.  

The CO2 methanation (CO2 + 4H2 = CH4 + 2H2O) is a thermodynamic favorable and exothermic 

reaction [12]. The reaction is favored at a low-temperature range under atmospheric pressure. Also, 

the high CO2 conversion and CH4 selectivity can be reached thermodynamically at moderate 

conditions. However, good catalytic systems are still needed to catalyze the reaction due to the 

dynamic barrier. The transition metals-based catalysts e.g. Pd, Rh, Ru, Pt, Ni, and Co were 



Chapter I General Introduction 

4 
 

developed to catalyze the CO2 methanation reaction. The noble metal-based catalysts such as Rh 

and Ru showed superior performance at low temperatures. However, the high cost and low 

availability limit their potential commercialization. In such a case, the Ni-based catalysts had been 

widely studied as to their low cost, high availability, and comparable activity compared to noble 

metals-based catalysts [13]. The activity and stability of the Ni-based catalysts depend on the 

properties of the catalysts such as active metal dispersion, Ni particle size, specific surface area, 

porosity, redox property, oxygen storage ability, and basicity, etc. As support, promoter, and 

preparation method have significant effects on the physicochemical properties of Ni-based 

catalysts, the researches on such aspects have attracted intensive attention to obtain catalysts with 

high activity and stability.  

In this thesis, the different supports like diatomite, hydrotalcite-derived mixed oxides, cerium 

oxide (CeO2), and mesoporous silica were used. All these supports were loaded with nickel to be 

used in the methanation process. Furthermore, promoters such as Y, Ce, and Y-Ce were selected 

to improve the performance of catalysts in CO2 methanation.     

This doctoral thesis consists of 7 chapters including a General Introduction, the presentation of the 

State-of-Art concerning the CO2 Utilization, the Experimental part. The Results start with the 

presentation of the possible use of Low-Cost Supports for CO2 Methanation. Then, Y-Promoted 

Novel Ceria Supported Ni Catalysts for CO2 Methanation are reported. Moreover, Mesoporous 

Silica Materials supported Ni catalysts are discussed. Finally, the Conclusion and Prospect are 

presented.  

Thus, in the second chapter, a thorough literature review of the CO2 utilization routes is made 

including the comparison of different CO2 reduction technologies and CO2 chemical utilization 

routes are presented. Then Catalysts of CO2 methanation with Noble metal-based catalytic systems 
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are discussed. The thermodynamics is then reported. Another sub-chapter deal with Transition 

metal-based catalytic systems, the Mechanisms of CO2 methanation. And, finally Assisted 

catalysis for CO2 methanation is presented.    

The third chapter introduces the experimental parts, which consist of the set-up for catalytic test 

and a large variety of physicochemical characterizations used to drive the structure-reactivity of 

the different studied catalysts.  

The fourth chapter deals with the low-cost supports prepared Ni catalysts for CO2 methanation. In 

detail, the diatomite-supported Ni-Mg catalysts are used to catalyze the reaction. Besides, the 

mixed oxides derived from layered-double hydrotalcite-based Ni catalysts are studied in the 

reaction. 

The fifth chapter investigated Y promoted novel ceria supported Ni catalysts for CO2 methanation. 

The positive effects of the yttrium are then studied in detail. 

The sixth chapter concentrates on two types of mesoporous silica SBA-15 and SBA-16 supported 

Ni catalysts. The promotion effect is also presented. Thus, the SBA-15 supported Ni catalysts 

promoted by Ce and Y are introduced. Meanwhile, the SBA-16 supported Ni catalysts doped by 

Ce or Y are also investigated. 

At last, in chapter 7 the conclusion of this thesis is presented and perspectives are reported. 

 

Thus, the aims of this thesis are: 
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➢ Investigate the effect of precursors on the performance of Ni-Mg catalysts supported on 

the low-cost support-diatomite for CO2 methanation to find a good Ni salt for the 

preparation of Ni catalyst. 

➢ Study the promotion effect of yttrium on the activity and physicochemical properties of 

hydrotalcite-derived mixed oxides for CO2 methanation to establish activity-

physicochemical relations on mixed oxides catalysts. 

➢ Design novel Ni/CeO2 catalysts and investigate the influence of yttrium loading on the 

performance of Ni/CeO2-Y catalysts in CO2 methanation. 

➢ Synthesize mesoporous silica materials and used them as supports of Ni catalysts to 

investigate the effects of mesoporous silica materials for methanation reaction. The effects 

of promoters like Ce, Y, and Y-Ce are also studied. 

Such results were used to evaluate the effects of support and promoter selections. The important 

influence of yttrium or ceria was emphasized. And the appropriate content of Y or Ce loading can 

be found to significantly improve the performance of Ni catalysts. At last, the dual promotion of 

Y-Ce additives was also demonstrated. 
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2. State-of-Art for the CO2 Utilization 

2.1 CO2 emissions and impacts  

Since the industrial revolution time, the consumption of energy especially fossil fuels (coal, oil, 

and natural gas) had been increasing significantly. Although new energy resources e.g. nuclear 

energy, solar, and hydropower, etc. have been developed to reduce the dependence on fossil energy, 

Most of the energy consumption is still based on fossil fuels. As shown in Fig.2.1, the primary 

energy supply from 1971 to 2018 nearly kept stable with the fossil fuels (coal, oil, and natural gas) 

accounting for the majority part (International Energy Agency, IEA). Meanwhile, the combustion 

of fossil fuels and other industrial activities resulted in the fast increase of CO2 concentration in 

the atmosphere. According to the world meteorological organization (WMO) greenhouse gas 

bulletin report in 2019, the atmospheric CO2 concentration has been increasing annually by 2-3 

ppm over the last decade [14]. In Fig.2.2, it can be seen that the annual worldwide CO2 emission 

has been increasing sharply since the last century and the peak of CO2 emission has not been 

reached until 2019. The quick increase of atmospheric CO2 concentration has caused many severe 

environmental problems e.g. global warming, climate change, sea level rising, and ocean 

acidification [15]. In Fig.2.3, it can be seen that the average global temperature has been increasing 

gradually since the 19th century. The international panel on climate change (IPCC) commission 

reported that human-induced GHGs emissions had caused the average temperature to increase 

approximately 1 °C above pre-industrial levels in 2017 and the temperature is increasing at 0.2°C 

per decade. To mitigate global warming, human society has been taking action to reduce CO2 

emissions. In 2015, the Paris Agreement aimed at reducing the CO2 emissions had been adopted 

by 196 parties in which the goal of the agreement is to limit global warming to 1.5 degrees Celsius 

compared to pre-industrial levels [16]. In order to reach this long-term target, the international 
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community needs to reach global peaking of GHGs emissions to achieve a climate-neutral world 

by mid-century. To achieve sustainable development for the human community, many countries 

have implemented emission reduction policies. For example, China has promised to achieve a 

carbon-neutral goal in 2060.  

 

Figure. 2.1. Total primary energy supply by fuel, 1971 and 2018. Adapted from [17]. 

Regarding the CO2 emissions reduction, besides limiting the consumption of fossil fuels, the CCS 

and CCU technologies also help to mitigate the emission. The CCS technology can use the CO2 

capture technology to concentrate the CO2 and store the resource in geologic ways. The CCU route 

can use renewable energy to convert CO2 to valuable resources.  
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Figure. 2.2. Annual total CO₂ emissions by world region. Global Carbon Project; Adapted from [18]. 

 

 

Figure. 2.3.  Average global temperature rise, adapted from [15] 
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2.2 The routes for CO2 storage and utilization 

2.2.1 The CO2 capture and storage (CCS). 

CO2 sources can be divided into CO2 point sources and atmospheric CO2 sources [19]. CO2 point 

sources mainly come from the fossil-fueling power plant, petroleum refining, ethylene production, 

cement production, iron and steel production, ethylene oxide production, hydrogen production, 

ammonia processing, natural gas processing, and ethanol production chemical plants, paper mills, 

and fermentation, etc. [20,21]. The CO2 capture routes consist of capturing CO2 from the 

atmosphere i.e. direct air capture (DAC) and CO2 point sources like the industry sector [21–25].  

Fig.2.4 shows a future scenario regarding the capture of CO2 sources in which the capture from 

fossil fuels accounts for the overwhelming majority. The CO2 emissions from the combustion of 

coal, oil, and gas accounted for nearly half of the fossil fuel CO2 emissions (30 gigatons annually ) 

or a quarter of the GHGs emissions [22,23]. CO2 emission from the combustion of fossil fuels 

including mobile and stationary emissions accounts for 93.74% of the total industrial emissions 

[21].  

For the capture from air, the atmospheric CO2 can be immobilized by biomass e.g. vegetation, 

plankton, and algae, etc., or chemical absorbents [22,26]. The direct capture of CO2 (DAC) by 

technological systems has been developed and applied in the production of CO2-free air, which is 

widely used in the industrial sector e.g. dry ice production and air separation plants [22]. In these 

routes, the sorbents like sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium 

carbonate (Na2CO3), amines are needed to sorb the CO2 and the captured CO2 is concentrated for 

storage (geologic or undersea storage [27]) or recycling. For the strong chemical bases such as 

NaOH and KOH, their regeneration needs high temperature, which costs abundant energy [22]. 



Chapter II State-of-Art for the CO2 Utilization 

 

13 
 

The regeneration of amines needs lower temperatures, making them appropriate absorbents. 

Besides these materials, the novel metal-organic-framework (MOF) materials hybrid ultra-

microporous materials (HUMs) were also been used to capture CO2 [28,29]. Such new materials 

can serve as physisorbed in DAC, which needs low temperature in the regeneration process [28].     

Generally, the purer the CO2 emission streams are the lower cost the separation systems are. Thus, 

capturing CO2 from stationary sites that have purer CO2 could significantly decrease the cost of 

the CCS system and improving the economic viability for CCS and climate change mitigation.   

A typical CCS system from the power plant diagram is displayed in Fig.2.5.  It shows the different 

components of a CCS system and their consequential effects on electricity production. The CO2 

was captured from the fossil fuel combustion in the power plant followed by compressing and 

transporting to storage sites e.g., underground or in salts [30,31]. The captured CO2 can also be 

directly used in technological applications like dry ice, soft drinks, and supercritical fluid, etc. 

[1,32,33]. 
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Figure. 2.4. The world captured CO2 by source in the Sustainable Development Scenario, 2020-2070; IEA, Paris. 

Adapted from [34]  

 

Figure. 2.5. Components of a CCS system, get permission and reproduce from the literature ref. [23]; Elsevier 2012 

copyright. 
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2.2.2 The CO2 capture and utilization (CCU) and why is CO2 utilization important? 

Besides the CCS technology, the CO2 capture and utilization (CCU) technologies also play very 

important roles in CO2 emissions control.  The CCS technology normally needs heavy investment 

especially for the CCS from the air. For example, it will lead to a sharp increase in electricity cost 

(5-57%) from power plants using CCS [31]. In such cases, the CCU technologies have attracted 

intensive attention in academic and industrial areas based on their benefits. The CCU technologies 

can not only help to reduce CO2 emissions but also produce valuable products. 

The CCU route is a technology that uses the captured CO2 to produce useful fuels, chemicals, and 

materials [33]. The CO2 chemical utilization technologies can directly convert the CO2 to fuels, 

chemicals, and materials [11,33]. The chemicals like urea, salicylic acid, and inorganic carbonates 

can be obtained by thermal processes. The chemicals/materials that needed catalytic processes 

concern the production of formic acid, other carboxylates, organic carbonates, carbamates, 

acrylates from ethene and CO2, and products from olefins, dienes, and alkynes reacting with CO2. 

The fuel production concentrates on syngas, methanol, higher alcohols, methane, and long-carbon 

chain hydrocarbon compounds. 

In addition to thermal catalysis, electro-catalysis, photo-catalysis, plasma-assisted catalysis, and 

biochemical routes concerning CO2 conversion have been also developed [4,35–37]. For instance, 

the production of biofuel via photocatalysis from microalgae using captured CO2 seems to be an 

alternative route [38]. Among these routes, the CO2 chemical utilization technologies have 

received the most intensive research interests due to mature technologies and high efficiency [33]. 

Meanwhile, the other novel approaches are still under research. 



Chapter II State-of-Art for the CO2 Utilization 

 

16 
 

Table 2.1 lists various routes towards CO2 chemical utilization. Six criteria such as Potential 

development and Economic perspectives, which influence the industrial application of CO2 

utilization technologies, were taken into account. Their degree of development was evaluated by 

the number from 1 to 4 and colors. The study was from the French Environment and Energy 

Management Agency (ADEME) [39]. The criteria used to investigate different CO2 utilization 

routes were as follow [2,39]: 

• Potential development: it indicates the time for the practical industrial facility, which is up 

to the lab research and development results. 

• Economic perspective: it shows the future of obtaining an economic value and reflects the 

difficulty to achieve economic value. 

• External use of energy: it indicates the cost of energy consumption per cost of the product. 

The energy cost can significantly affect the potential commercialization of the technology, 

which mainly refers to endothermic processes such as dry methane reforming. 

• Potential volume of use of CO2: it indicates the maximum annual amount of CO2 that can 

be transferred by the year 2050. 

• Time of sequestration: it refers to the time of CO2 fixation before it is emitted to the 

atmosphere. 

• Other environmental impacts: they indicate the application of toxic chemicals in the 

process and hazardous catalysts etc. 
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Table 2.1 Summary of the different routes in the CO2 utilization (adapted and modified from [2] ) 

Progress Potential 

development 

Economic 

perspectives 

External use of 

energy 

Potential 

volume of 

CO2 

Time of CO2 

sequestration 

Impacts on 

environment 

Industrializ

ation  

EOR 4 4 3 2 4 4 

Industrial use 4 4 3 2 1.5 4 

Organic 

synthesis 

4 3 2 3 3 3 

Short term Hydrogenation 3 3 2 4 2 3 

Algae open 

ponds 

3 3 4 4 2 4 

Medium 

term 

CXHy 

reforming 

2 uncertain 1 4 2 1 

Algae 

reactor 

2 2 4 4 2 4 

Long term Mineralization 1 1 1 3 4 3 

Thermochemic

al 

1 2 4 4 2 3 

Electrolysis 1 uncertain 2 4 2 2 

Photo Electro 

Catalysis 

1 uncertain 4 4 2 2 

Biochemical 1 uncertain 4 4 2 3 

Potential development: 1, more than 10 years → 4, industrial 

Economic perspectives: 1, difficult to estimate → 4, available industrial data 

External use of energy: 1, difficult to decrease → 4, no need 

Potential volume of CO2: 1, less than 10 million tons (Mt) → 4, more than 500 Mt 

Time of CO2 sequestration: 1, very short → 4, long term 

Impacts on the environment: 1, significant → 4, low (solvents or toxic chemicals, metal resources) 

 

The CO2 conversion to fuels can convert CO2 to energy-rich fuels at the expense of energy. 

However, energy consumption today still relies on fossil energy. Thus, the conversion of CO2 to 

fuels requires utilizing renewable energy rather than fossil energy for the sake of reducing CO2 

emissions.   
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CO2 hydrogenation reactions and CO2 reforming of methane had been studied intensively thanks 

to their high feasibility towards application. In these reactions, the H2 can be produced by water 

electrolysis or photocatalysis by using renewable energy like solar [40]. Then, the captured CO2 

reacts with H2 to form fuels like methane or methanol, etc. [41,42]. In these ways, the fluctuant 

renewable energy can be stored in the form of fuels/chemicals at the expense of CO2.      

   

2.3 Dry reforming of methane by CO2 

2.3.1 Introduction 

The dry reforming of methane reaction (DRM) can convert two types of GHGs to syngas (CO and 

H2). The dry reforming of methane (CH4 + CO2= 2CO + 2H2; ∆H298K=247 kJ/mol) is an 

endothermic reaction [43]. The obtained syngas from dry reforming can be used in Fisher-Tropsch 

synthesis or the production of oxygenated organic compounds [43,44]. However, as the extremely 

endothermic property of the reaction, it needs a reaction temperature higher than 700 ℃ to obtain 

a good conversion of CO2 and CH4 in the presence of catalyst [44]. At a low temperature e.g. 

450 ℃, the conversions of reactants were very low [11]. Meanwhile, the high temperature can 

result in the sintering of active metal and carbon deposition due to the occurrence of the side 

reactions, leading to the deactivation of catalyst [43].  

The CO/H2 molar ratio of syngas produced in DRM is close to 1, making the produced syngas 

appropriate for F-T synthesis. Nevertheless, the RWGS (CO2 + H2 = CO + H2O; ∆H298K=41.2 

kJ/mol) can result in the molar ratio of CO/H2 less than 1 [43]. The CH4 decomposition reaction 

(CH4  = C(s) + 2H2; ∆H298K=75 kJ/mol) and Boudouard reaction (2CO  = C(s) + CO2; ∆H298K=-

171 kJ/mol) can cause the coking formation on the surface of the catalyst, leading to the 
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deactivation of the catalyst [43]. Due to the endothermal property and high-temperature operation, 

the development of DRM catalysts focuses on the catalysts with good activity, high coke resistance, 

and anti-sintering properties.  

Many catalysts e.g. Pt [45], Rh [46], Ru [47], and Ni [11,48–51] had been carried out in the DRM 

reaction [43]. The noble catalysts like Pt and Rh have a high resistance to coke formation and 

exhibit high activity and stability. But their high cost and low availability limit the possible large-

scale application [52]. On the other hand, the non-noble catalysts like Ni or Co were also developed 

to catalyze the DRM reaction in which the Ni-based catalysts received extensive research interests 

[52,53]. The activity and stability of Ni catalysts depend on the properties of active metal, support, 

and promoters. 

The Ni catalysts supported on Al2O3 [54], CeO2 [55], ZrO2 [56], KIT-6 [50], SBA-15 [57], 

hydrotalcite [58], etc. were widely studied in DRM reaction. A good dispersion of the active metal 

leads to the high DRM activity of Ni catalysts. The textural property of the support and the metal-

support interaction play important roles in the activity and stability of Ni catalysts. A good 

selection of support needs to consider the porosity, surface area, robust ability, oxygen vacancies, 

redox ability, and basicity, etc. [52].  

Promoters were also used to improve the activity and stability of the catalysts. The promoters e.g. 

Y [51,59], Ce [49,51,60], Zr [61,62], La [63], Ce-Zr [62], etc. were  investigated in the Ni catalysts 

for DRM. Li et al. [64] studied the effect of Y2O3 on the SBA-15 supported Ni catalysts for DRM 

reaction. It was found that the adding of Y2O3 promoted the dispersion of Ni nanoparticles on the 

support and enhanced the Ni-support interaction. Thus, high activity and good stability were 

observed on 9 wt.% Y2O3 promoted catalyst.  Zhang et al. [65] found that the presence of ceria on 

Ni/SBA-16 catalyst resulted in the uniformly dispersed Ni particles inside the mesopores and 
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enhanced Ni-Ce interaction. The adding of ceria results in increased Ce3+ concentration and 

improved structural stability of the catalysts. The DRM test showed that the NiCe/SBA-16 kept 

stable conversion during the 100 h TOS test.            

Apart from the support and promoters, the preparation methods and novel materials were also 

studied to improve the activity and stability [66,67]. However, the advances in DRM reaction are 

far from commercialization. The coke deposition is still a major obstacle for industrial applications 

[52]. 

 

2.3.2 Power-to-syngas 

The methane reforming reactions can also be integrated into the PtG processes to produce syngas 

or hydrogen [68,69]. In the power-to-syngas (PtS) concept, the syngas is produced by reverse water 

gas shift (RWGS) and dry reforming of methane (DRM) reactions powered by renewable energy 

like solar. The flowcharts of power-to-syngas are displayed in Fig.2.6 in which the power-to-

methane route and conventional routes are also displayed.  Compared to conventional syngas or 

synthetic natural gas production, the Power-to-syngas/methane showed less environmental 

impacts [69]. The PtS process showed more environmental benefits and economic viability than 

the PtM process under existing conditions [69,70]. However, the PtM process can be more 

potential if more renewable electricity is used.  
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Figure. 2.6. Flowchart of Power-to-Syngas processes (rWGS and DRM) and Power to methane processes as 

compared with conventional routes; Adapted form [69] 

 

2.4 CO2 hydrogenation to methanol 

2.4.1 Introduction 

The CO2 hydrogenation reactions can produce various chemicals by changing the condition and 

catalysts [33]. A variety of reactions are shown in Table 2.2. The syntheses of formic acid, 

methanol, methane, higher alcohols, and higher hydrocarbon are exothermic reactions [8,71–73]. 

Meanwhile, the formation of formaldehyde and CO is endothermic [72].  Among these reactions, 
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the CO2 hydrogenation to methane and methanol attracted intensive interest. In this subchapter, 

the hydrogenation of CO2 to methanol is discussed. 

Table 2.2. Different CO2 hydrogenation reactions.  

Number Reaction Formula Product 

(1) CO2 + H2 → HCOOH Formic acid 

(2) CO2 + 2H2 → H2CO + H2O formaldehyde 

(3) CO2 + 3H2 → CH3OH + H2O methanol 

(4) CO2 + 4H2 → CH4 + 2H2O methane 

(5) CO2 + H2 →CnHm + H2O hydrocarbon 

(6) CO2 + H2 → CO + H2O Reverse-water-gas-shift 

(7) CO2 + H2 →CnHmOH + H2O Higher alcohol 

 

The reactions involved in CO2 hydrogenation to methanol were listed in Table 2.3. It can be seen 

from Table 2.3 that both the CO2 methanolization and CO methanolization are exothermic 

reactions, which are favored at low temperatures. The reverse water-gas-shift reaction, which is 

endothermic, also exists in the CO2 hydrogenation to methanol process [74]. From the 

thermodynamic calculation results of CO2 methanolization, the reaction is favored at low 

temperature, high pressure, and high H2/CO2 ratio [74]. However, the actual CO2 methanolization 

reaction also generally needs a temperature of higher than 50 ℃ and the presence of an appropriate 

catalyst [75]. Even in harsh conditions, the CO2 conversion and CH3OH selectivity were still very 

low [75].  
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Table 2.3. Reactions involved in CO2 hydrogenation to methanol process 

Type Formula ΔH298K (kJ·mol−1) Definition 

1 CO2 + 3H2 = CH3OH + H2O −49.4 CO2 methanolization 

2 CO + 2H2 = CH3OH -90.4 CO methanolization 

3 CO2 + H2 = CO + H2O 41.0 Reverse water-gas shift 

    

Methanol can be used as fuel directly for transportation or act as a chemical feedstock. CO2 

hydrogenation to methanol technology can not only alleviate the CO2 emissions but also produce 

value-added methanol. The heterogeneous catalysis on this reaction received intensive research 

interests. The catalytic systems mainly consist of transition metal-based catalysts and main group 

metal-based catalysts. The transition metal-based catalysts mainly focus on Cu-based catalyst and 

noble metal-based catalyst e.g., Pt and Pd [76–78]. Meanwhile, the main group of metal-based 

catalysts is made up of In2O3 catalysts and Ga-based catalysts [79,80]. Among them, the Cu-based 

catalyst was regarded as the most potential candidate for industrial application due to the low cost 

and high availability. 

The studies for Cu-based catalysts mostly focused on the active sites of catalyst, the effect of 

catalyst structure, and activation and deactivation mechanisms [74]. It was found that the 

synergistic effect between Cu and ZnO contributed to the formation of methanol over 

Cu/ZnO/Al2O3 catalyst in CO2 hydrogenation to methanol, in which the formate was considered 

as the reaction intermediate [76]. Sittichai et al. [81] studied the active sites of Cu catalysts in 

methanol synthesis. The XPS characterization revealed that only metallic Cu species existed on 

the surface of the catalysts. The Cu0 particle size and ZnO crystallinity were directly linked with 

the activity of such catalysts. Smaller Cu particles resulted in a higher TOF value in methanol 
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production. The Cu-ZnO synergy was also a key parameter for the methanol formation. Also, the 

Cu structure was demonstrated to be an important factor in methanol synthesis [74]. Thus Cu 

atomic plane can affect the catalytic activity of Cu catalysts in methanol synthesis in which the 

Cu(110) orientation plane was found more active in methanol formation rate compared to that on 

Cu(100) and polycrystalline copper, indicating the structural sensitivity of Cu catalysts [82]. Over 

the time on stream (TOS) process, as for methanation, a deactivation can occur for methanolization 

reaction. Thus, on Cu/ZnO/Al2O3 catalyst after a long TOS run, the agglomeration of ZnO particles 

and partial oxidation of metallic Cu were observed and were presented as key parameters for the 

deactivation of the studied catalysts in methanol synthesis [83].   

Furthermore, to improve the catalytic performance of catalysts in CO2 hydrogenation to methanol 

reaction, intensive research had been done regarding promoters, support, and preparation methods. 

Alkali and alkaline earth oxides had been reported to have a positive effect on Cu catalysts in 

methanol production [84]. It was found that the Ba promoter can improve the activity of Cu/Al2O3 

catalyst towards methanol synthesis while the potassium (K) promoter prefers to RWGS reaction 

[84]. Support oxides such as Al2O3, ZrO2, Ga2O3, and Cr2O3 were also used as modifiers or 

promoters for Cu/ZnO catalysts [85]. The other studies on additives mainly concentrate on the 

study of rare earth oxides (La or Ce) [86], amphoteric oxides (e.g., TiO2 and ZrO2) [87],  noble 

metal like Ag or Au [88,89], main group oxides (e.g., SiO2) [90], and materials with semiconductor 

properties e.g., g-C3N4, etc. [91].  

Regarding support, metal oxides like Al2O3, ZrO2, CeO2, and SiO2 are then the most studied 

materials. The properties of the support, which consist of texture, structure, acidity/basicity, and 

electronic property, can have a significant effect on the performance of the catalyst [74]. Moreover, 

it has been reported that the porosity of the support with ordered or unordered porosities can 



Chapter II State-of-Art for the CO2 Utilization 

 

25 
 

significantly affect the stability of for example CuZnO/SiO2 methanol synthesis catalysts [92]. The 

narrowest pore constrictions of the support can mitigate the growth of metal particle size and 

improve catalyst stability. The other materials such as layered double hydroxides (LDHs) and 

carbon nanotubes (CNTs) also receive more attention recently.  

The preparation method can change the catalyst structure and distribution of active sites over 

methanol synthesis catalysts. The most common method is the precipitation method, which allows 

high metal loadings and well-defined metal particles. Other methods such as the sol-gel method, 

liquid reduction, ammonia evaporation, microwave, and combustion method, etc. were also 

studied in these years [74,93,94].  

Although many efforts have been devoted to the development of methanol synthesis catalysts, the 

activity and yield of methanol are still not very high due to the thermodynamic and dynamic barrier.  

 

2.4.2 Power-to-methanol systems 

The conventional methanol synthesis consists of the coal gasification and subsequent syngas to 

methanol reaction. However, this route results in severe environmental problems like CO2 

emission and sulfur pollutants [95]. Therefore, the low carbon synthesis of methanol was studied 

to replace the conventional way. The CO2 hydrogenation to methanol route using solar energy 

attracted intensive attention due to its economic and environmental performance. For example, the 

solar energy-biomass-assisted CO2 hydrogenation to methanol system can reduce the 

environmental impacts to 57.5% compared to that of coal gasification system [95]. As displayed 

in Fig.2.7, the system uses the CO2 from the biomass power plant and H2 from biomass combined 

with the solar power plant to produce methanol. However, the cost of methanol by this system is 
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5 times more than that of coal gasification way. Thus, the studies focus on decreasing the cost of 

photovoltaic electricity and improving the efficiency of water electrolysis [95].  

 

 

Figure. 2.7. Diagram of solar energy-biomass assisted CO2 hydrogenation to methanol system; adapted from [95] 

Liquid sunshine is a concept that uses solar energy to chemically synthesize liquid fuels e.g. 

methanol [96]. Methanol can be used as vehicle fuel [97]. The studies on this topic hope to produce 

clean energy as an alternative fuel. Regarding the application possibilities, the large-scale liquid 

sunshine project was tested in China in 2020.  

Although many benefits of methanol, until now, the methanol production from CO2 hydrogenation 

using solar energy still encounters high capital cost and running cost. Thus, the power-to-gas e.g. 

syngas and methane routes have attracted intensive attention.   
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2.5 CO2 methanation  

2.5.1 Introduction 

CO2 methanation, also known as Sabatier reaction, was found by Paul Sabatier [98].  

CO2 + 4H2 = CH4 + 2H2O (ΔH298k=-165 kJ/mol, ΔG298k=-114 kJ/mol) 

This reaction is thermodynamically favorable and exothermic. Thus, this reaction can be carried 

out in moderate conditions with a high CO2 conversion [99]. Also, the produced methane can be 

transported by established pipeline systems. This technology can be used in the Renewable Power-

to-Gas (PtG) concept, which uses renewable energy to convert CO2 to CH4 [100]. By this route, 

the fluctuant renewable energy e.g. wind, solar, and hydropower can be stored in the form of CH4 

by PtG route.  

The CO2 reduction to CH4 pathways consists of thermochemical, electrochemical,  photochemical, 

and biological conversion processes [99,101]. The thermal catalysis of CO2 reduction received the 

most intensive research attention because of the mild reaction condition, simple reaction set-up, 

high activity, and high feasibility towards commercialization. The other pathways are still under 

research period. The catalytic low-temperature CO2 methanation is regarded as a potential route 

towards the large-scale application of CCU. 

Although the CO2 methanation reaction can reach a high activity and selectivity of CH4 at low 

temperature in the thermodynamic simulation process, it needs the presence of appropriate 

catalytic systems under practical conditions due to the existence of a dynamic barrier. Thus, the 

presence of catalysts is indispensable in this reaction. The VIII group transition metal-based 

catalysts e.g. Pd [102–104], Rh [105–110], Ru [111–118], Pt [119,120], Fe [109,121], Co [122–

129], and Ni [130,131,140–144,132–139] have been developed by scientists to catalyze the 
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reaction. For noble metal-based catalysts, the Ru and Ru-based catalysts generally showed superior 

activity. The studies regarding TiO2 supported catalysts found that the CO2 conversion or turnover 

frequency (TOF) followed the order of Rh>Ru>Pt>Pd [145]. The noble metal-based catalysts can 

catalyze the reaction at low temperatures (<200 ℃) under atmospheric pressure [102,106,146]. 

The studies on Rh/γ-Al2O3 catalyst for CO2 methanation found that the reaction could happen at 

as low as 100 ℃ with nearly 100% of CH4 selectivity [106]. The in situ diffuse reflectance infrared 

Fourier transform spectroscopy (DRIFTS) results confirmed that the CO was the main 

intermediate during the reaction[106].   

As the high cost and low availability of noble metals, the potential commercialization of the CO2 

methanation needs to find materials that possess the properties such as low cost, high availability, 

high activity, and CH4 selectivity as well as high stability. In such a case, the other transition metals 

e.g. Co and Ni have attracted more attention both in academic and commercial aspects [147]. 

 

2.5.2 Thermodynamic aspects of CO2 methanation 

2.5.2.1. The effect of temperature in CO2 methanation simulation 

The effects of temperature towards CO2 conversion and CH4 selectivity in CO2 methanation were 

simulated by the HSC Chemistry 5.0 software using the Gibbs free energy minimization method. 

The CO2 conversion and CH4 selectivity are calculated following Equation (1) and (2): 

 XCO2(%) =
FCO2,in− FCO2,out

FCO2,in
× 100%       (1) 

SCH4(%) =
FCH4,out

FCO2,in− FCO2,out
× 100%         (2) 
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The XCO2 and SCH4 represent the CO2 conversion and CH4 selectivity. The FCO2,in, FCO2,out, and 

FCH4,out represent the molar flow of CO2 or CH4 in which the “in” and “out” mean inlet and outlet, 

respectively.       

The possible reactions in CO2 methanation reactions were displayed in Table 2.4. We can List 

eight reactions that probably happened during the CO2 methanation process. Two of them are 

endothermic reactions and 6 reactions are exothermic thermodynamically.  

The results of the effect of temperature at 1 bar in methanation were displayed in Fig.2.8. The 

molar ratio of H2/CO2 was controlled at 4 with a gas hourly space velocity (GHSV) of 12,000. As 

shown in Fig.2.8a, the CO2 conversion decreases with the increase of temperature until 839 K and 

then increases gradually at atmospheric pressure. As displayed in Table 2.4, the methanation 

reaction is an exothermic reaction, which is favored under low temperatures. In Fig.2.8b, the CH4 

selectivity decreases gradually with the increase of temperature up to 773 K and then decreases 

sharply until nearly zero. Meanwhile, the selectivity of CO increases to nearly 100% as the 

temperature increasing up to 1173 K. The presence of CO, which is the main by-product in 

methanation reaction, was caused by the reversed water gas shift reaction (Table 2.4, CO2 + H2 = 

H2O + CO) [148].  
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Table 2.4. Reactions involved in the CO2 methanation process. 

Type Formula ΔH298K (kJ·mol−1) Definition 

1 CO2 +4H2 = CH4 +2H2O −165.0 CO2 methanation 

2 CO2 +H2 = CO + H2O 41.2 Reverse water-gas shift 

3 CO2 +2H2 = C+ 2H2O −90.1 CO2 reduction 

4 CO + 3H2 = CH4 +H2O −206.2 CO methanation 

5 2CO + 2H2 = CH4 +CO2 −247.3 Reverse CH4 dry reforming  

6 2CO = C+CO2 −172.4 Boudouard reaction 

7 CO + H2 = C+H2O −131.3 CO reduction 

8 CH4 = 2H2 + C 74.8 CH4 cracking 

 

The molar ratio changes of the species were shown in Fig.2.8c. It can be seen from Fig.2.8c that 

the molar fraction of CH4 decreases to nearly zero as the temperature increases up to 973 K and 

then keep stable.  A similar evolution trend is also found over the molar fraction of H2O, with a 

molar ratio of 12% found after 973 K. The change in the concentration of CH4 and H2O with the 

increase of temperature also proves that methanation reaction is favored in low temperature.  The 

molar fraction of CO2 increases gradually up to 823 K and then decreases with the increase of 

temperature. The concentration trends of H2 and CO experience a slow, sharp, and stable 

increasing trend individually during the temperature range. In the calculation, nearly no carbon 

was formed in the chosen conditions. As reported by Jung-Nam Park [103], the methanation 

reaction may experience the route CO, in which CO is the main intermediate, in which the CO2 

reacts with H2 to produce CO by reverse water gas shift, and the CH4 is formed by CO methanation 

[148]. The thermodynamic results reveal that the reaction temperature should not be very high to 

reach a high CO2 conversion at ambient pressure. However, the kinetic barriers determine that the 
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CO2 activation is too difficult at low temperatures, which means the presence of an appropriate 

catalyst is necessary for the reaction to take place [148,149].   

 

 

Figure. 2.8. Effect of temperature on CO2 conversion (a), CH4/CO selectivity (b), and molar ratio of specie (c) in 

methanation; Condition: 1 bar, H2/CO2/Ar (molar ratio)=60/15/25, GHSV=12,000 h-1 [141,142]. 

 

2.5.2.2. The effect of the pressure in CO2 methanation  

The thermodynamic effect of the Pressure on CO2 conversion and CH4 selectivity in CO2 

methanation were calculated and displayed in Fig.2.9. As shown in Fig.2.9a, the CO2 conversion 

at each pressure presents a gradually decreasing trend below 873 K. The increase of pressure 

causes the increase of CO2 conversion because the CO2 methanation reaction is a volume reducing 
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reaction, with the gas volume changing from 5 to 3 units. Thus, the increase of pressure can 

promote the reaction thermodynamically. However, when the reaction temperature exceeds 873 K 

at 1 bar, the CO2 starts to be converted through the reverse water-gas-shift reaction (Table 2.4, 

CO2 +H2 = CO + H2O) dominates the reaction [148]. The effect on CH4 selectivity is shown in 

Fig.2.9b. It is found that the CH4 selectivity decreases slowly when the temperature increases until 

773 K because of the exothermicity of methanation. Beyond 773 K, the sharp decrease of CH4 

selectivity is registered at each pressure, which is attributed to the effect of reverse water-gas-shift 

reaction. However, the increase of pressure can significantly promote the CH4 selectivity, which 

is attributed to the volume reducing property of methanation. Meanwhile, no carbon was registered 

in the studied pressure range. This can be explained by the effect of H2O formed in the reaction, 

which can suppress the formation of coke [148].  

The calculation results in this study are well consistent with the calculation results carried out 

elsewhere [106,148,150].  

 

Figure. 2.9. Effect of pressure on CO2 conversion (a) and CH4 selectivity (b) in methanation; Condition: H2/CO2/Ar 

(molar ratio)=60/15/25, GHSV=12,000 h-1 
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2.5.2.3. The effect of H2/CO2 ratio in CO2 methanation simulation 

The effect of the H2/CO2 ratio on methanation reaction was calculated and shown in Fig.2.10. It 

can be seen from Fig.2.10a that the H2/CO2 ratio notably affects the CO2 conversion. The increase 

in H2/CO2 ratio leads to a significant increase in CO2 conversion. The same phenomenon is also 

found for CH4 selectivity. In the case of the H2/CO2 ratio being 2, the CO2 conversion and CH4 

selectivity are just 75% and 30%, separately. Meanwhile, the CO2 conversion and CH4 selectivity 

are nearly 100% when H2/CO2 ratio reaches 4. A lot of carbon was formed below 773 K when the 

H2/CO2 ratio is 2. Almost no carbon deposition is registered when the H2/CO2 ratio exceeds 2. The 

CO2 reduction reaction (Table 2.4, CO2 +2H2 = C+ 2H2O) appeared when the H2/CO2 ratio is 2, 

which results in the abundant formation of carbon. 

 

Figure. 2.10. Effect of H2/CO2 ratio on CO2 conversion (a) and CH4 slectivity (b) in methanation; Condition: 1 bar, 

GHSV=12,000 h-1 
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2.5.3 Mechanisms of CO2 methanation 

2.5.3.1 The CO as intermediate of CO2 hydrogenation mechanism 

Nowadays the mechanism of CO2 methanation remains unclear. Regarding the intermediate that 

account for the formation of methane, there are mainly two mechanisms proposed [151].  One of 

them is the mechanism that carbon oxide plays as an intermediate in which CO2 is reduced to CO 

and subsequently the methane is produced by CO methanation [152]. The density functional theory 

on Ni(111) surfaces proposed three mechanisms in which the mechanism with a rate-determining 

step of CO→C+O has the lowest energy barrier [153]. The diagram of the scheme is shown in 

Scheme 1.  

 

 

Scheme 1. Mechanism of CO2 methanation with CO as an intermediate (M: metal, S: support ); Reproduced with 

permission from ref [154]. Copyright Elsevier 1997.  

 

The experimental studies on the Ni catalysts supported on activated carbon for CO2 methanation 

also confirmed that the CO was an indispensable intermediate in the formation process of methane 

[152].   
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Zhou et al. [155] studied the effect of TiO2 structure on Ni/TiO2 for CO2 methanation. The 

methanation over Ni/TiO2 catalyst with principle Ni (111) facet experienced the CO intermediate 

pathway. However, the catalyst with multi-planes of Ni followed the mechanism of formate 

species as an intermediate pathway in which the Ni only accounted for H2 dissociation.    

The mechanism study on the noble metal-based catalyst (Rh/γ-Al2O3) at low temperature and 

ambient pressure revealed that the methanation process followed the pathway without the 

formation of formate species [156,157]. Three steps can be listed as follows: 

CO2 (g) → CO2 (ads)                                            (1) 

CO2 (ads) → CO (ads) + O (ads)                           (2)    

CO (ads) + H (ads) →‧‧‧→ CH4 (ads) + H2O (ads) (3) 

The H(ads) species were formed in the dissociation process of H2.  However, it was also noted that 

CO2 adsorption could be a complicated process [157]. The oxidation of part of rhodium particles 

was also registered, which was attributed to its oxidation by O(ads). 

2.5.3.2 The formate intermediate mechanism 

The other proposed mechanism involves the formation of formate species during the reaction; this 

latter species is subsequently hydrogenated to methane [158,159]. This mechanism needs both the 

participation of support and active metal. It was reported that many intermediates e.g., hydrogen 

carbonate, bidentate carbonate, monodentate carbonate, bridged carbonate, formate, and nickel 

carbonyl hydride can be formed [158]. The properties of support can affect the variety of 

intermediates. As presented in Scheme 2 for the mechanism over Ni/Ce0.5Zr0.5O2 and Ni/γ-Al2O3 

catalysts, the H2 gas is adsorbed and dissociated on the surface of the Ni atom to produce H while 
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the CO2 molecules are adsorbed and dissociated on the support surface to form carbonate species. 

The carbonate (bidentate or monodentate) and hydrocarbonate species subsequently react with the 

H to form formate (bidentate or monodentate) species, which will be hydrogenated by H to 

produced methane as reported elsewhere [158]. For the Ni/γ-Al2O3 catalyst, it was demonstrated 

by FTIR that more hydrogen carbonates formed over the catalyst [160]. The hydrogen carbonate 

species were hydrogenated to bidentate formate species, which were hydrogenated to methane. 

For Ni/Ce0.5Zr0.5O2 catalyst, more monodentate carbonate rather than hydrogen carbonate species 

formed, thus leading to more monodentate formate species, which were hydrogenated to methane. 

The pathway of methane formation over Ni/Ce0.5Zr0.5O2 is faster than that over Ni/γ-Al2O3 catalyst 

[160]. This latter result is attributed to the difference of basicity, in which more medium basic sites 

over Ni/Ce0.5Zr0.5O2 are favorable for the formation of monodentate carbonate. 

Another important parameter is the nickel particle size. In the literature, the study on the effect of 

Ni particle size over Ni/SiO2 catalysts showed that the particle size of Ni also had significant 

effects on the pathway of methane formation [161].  



Chapter II State-of-Art for the CO2 Utilization 

 

37 
 

 

Scheme 2. Proposed mechanisms over Ni/Ce0.5Zr0.5O2 and Ni/γ-Al2O3 catalysts; Reproduced with permission from 

ref. [160]; Copyright Elsevier 2014. 

 

2.5.3.3 On the important presence of side reactions in CO2 methanation reaction 

In the thermodynamic analyses of CO2 methanation, it has been demonstrated that the species 

formed during the methanation process depend significantly on the reaction conditions. Under 

atmospheric pressure, the main by-product in thermodynamic analyses is carbon monoxide (CO), 

which originates from the RWGS reaction (H2 +CO2 →  CO + H2O) or reforming reactions 

[48,161]. Besides, the CO species can also be formed by the hydrogenation of formate species as 

intermediates [161]. The presence of CO can also cause the sintering of active metals (Ni, etc.), 

which is caused by the formation of Ni(CO)x species, leading to the agglomeration of Ni particles 

[162].  
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The H2O formed in methanation reaction can induce the formation of Ni-hydroxide at low 

temperature, which results in the consequent decrease of metallic nickel. The Ni-hydroxide species 

cannot be reduced to Ni metal fast and contribute to the sintering of Ni and the formation of hardly 

reducible Ni-aluminate, leading to partial deactivation of catalysts [163]. 

When the ratio H2/CO2 decreases, the carbon can also be formed due to parallel reactions such as 

the Boudouard reaction or/and CO2 reduction. It is worth noting that carbon deposition also occurs 

at high pressure over some catalytic systems [121].  

 

2.5.4 The catalysts for CO2 methanation 

2.5.4.1 Noble metal-based catalysts 

The noble metal-based catalysts such as Pt [145], Rh [107], Ru [118,164,165], and Pd [103,104] 

were also studied in CO2 methanation. Table 2.5 summarized some noble-metal-based catalysts as 

compared to transition metal catalysts in CO2 methanation. The noble metal-based catalysts could 

be very active at low temperatures.  

Paraskevi et al. [145] studied the catalytic performance of supported noble metal-based catalysts 

for CO2 methanation. It was then showed that the CO2 conversion of TiO2 supported noble metal 

catalysts decreased following the order Rh>Ru>Pt>Pd, with the Rh/TiO2 catalyst having the higher 

activity and selectivity of CH4. The Pt and Pd catalysts were mainly known to promote the RWGS 

reaction to produce CO. The Ru crystallite size had a significant effect on the performance of 

Ru/TiO2 and Ru/Al2O3 catalysts for CO2 methanation. Also, the CO acted as an important 

intermediate for Ru catalysts during the formation of methane [145].  
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For noble metal-based catalysts, the CO2 methanation is known to be structure sensitive reaction, 

which means the metal crystallite size has significant effects on the performance of the catalysts. 

The investigation of Rh/γ-Al2O3 for CO2 methanation showed that the larger particle size could 

promote the activity of the catalyst at a temperature lower than 458 K [107]. However, the activity 

of the catalyst could not be related to the particle size of the metal. The DRIFTS experiments 

showed that the CO was an active intermediate while the formate did not involve in the formation 

of methane. The doping of the additive can change the pathway of CO2 methanation for noble 

metal-based catalysts. It has been reported that the doping of Ce on Ru/Al2O3 catalyst can 

significantly improve the activity and selectivity of the catalysts, 30% Ce modified catalyst 

possessing the best performance, which could be attributed to the formation of intermediates like 

formate and carbonate [112]. These species can then react with H2 faster than with CO.    

The addition of Mg onto Pd/SiO2 catalyst could promote the formation of methane in CO2 

methanation reaction due to the stabilization of CO2 on MgO [103]. Also, the CO acts then as an 

important intermediate in the reaction. 

In conclusion, the Ru and Rh-based catalysts are most active for the noble metal catalysts in CO2 

methanation. The Ru and Rh catalysts are even active at a very low temperature near to ambient 

temperature with a very high CH4 selectivity [156,166]. The CO acts as a main intermediate in the 

methanation process [156]. Although the excellent properties of Ru/Rh catalyst, their potential 

commercialization is limited due to their low availability and high cost.     
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Table 2.5 Summary of the noble-metal-based catalysts as compared to transition metal catalysts in 

CO2 methanation.  

Catalysta Metal 

content 

(wt.%) 

Preparation 

methodb 

Reaction condition CO2 

conversion 

(%) 

CH4 

selectivi

ty (%) 

Ref. 

Temperature 

(℃) 

H2/CO2 

ratio 

GHSV/WH

SV 

Rh/MSN 

5 WI 350 4 
50,000 ml 

gcat
-1•h-1 

99.5 100 

[109] 

Ru/MSN 95.7 100 

Ir/MSN 9.5 83 

Ni/MSN 85.4 99.9 

Fe/MSN 4 92 

Cu/MSN 3.3 79 

Rh/TiO2 

0.5 WI 350 4 
90,000 ml 

gcat
-1•h-1 

72 99 

[145] 

Ru/TiO2 19 86 

Pd/TiO2 6 99 

Pt/TiO2 16 98 

Rh/SiO2 

3 WI 350 5 60, 000 h-1 Ni=Rh>Pd 
Rh>Ni>

Pd 

[71] 

Pd/SiO2 

Ni/SiO2 

Rh/Al2O3 

3 WI 350 5 60, 000 h-1 Rh>Pd>Ni 
Rh>Pd>

Ni 
Pd/Al2O3 

Ni/Al2O3 

Rh/CeO2 

3 WI 350 5 60, 000 h-1 Rh>Ni>Pd 
Rh>Ni>

Pd 
Pd/CeO2 

Ni/CeO2 

a MSN: mesostructured silica nanoparticles; b WI-wet impregnation. 
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2.5.4.2 Ni catalysts and other non-noble metal-based catalysts 

2.5.4.2.1. Ni-based catalysts 

Ni-based catalysts were widely investigated in CO2 methanation regarding their superiorities like 

good activity and CH4 selectivity, low cost, high availability, and high accessibility making it 

appropriate in potential commercial applications [142,167]. A variety of Ni catalysts with good 

activity and selectivity e.g. Ni/CeO2 [141], Ni/ZrO2 [168], Ni/CeO2-ZrO2 [150], Ni/SBA-15 [169], 

and Ni/SBA-16 [142] have been developed for CO2 methanation. Shohei et al. [170] synthesized 

the Ni/CeO2 catalyst by wet impregnation method and compared its activity and selectivity with 

Ni/α-Al2O3, Ni/TiO2, and Ni/MgO. It was found that the Ni/CeO2 catalyst showed the highest CO2 

conversion with CH4 selectivity reaching nearly 1. Zhao et al. [168] prepared the Ni/ZrO2 catalysts 

via combustion method using different combustion mediums and tested their activity in CO2 

methanation. It was shown that the combustion medium could significantly affect the 

physiochemical properties regarding Ni metal size, Ni dispersion, the crystal structure of the 

support, and Ni-support interaction of the catalyst, which significantly affected the activity and 

stability of the Ni/ZrO2 catalyst. The CO2 conversion of Ni/ZrO2 synthesized by the urea medium 

reached 60% at 573 K under ambient pressure.  

Although the superior performance of Ni-based catalysts, the problems of deactivation and poor 

stability still exist [171,172]. Thus, it is still a challenge to develop a highly stable Ni catalyst for 

CO2 methanation [173]. At a low-temperature range lower than 573 K, the deactivation of Ni 

catalysts in CO2 methanation was mostly caused by the sintering of Ni metal during the reaction 

process, which was caused by the formation of mobile nickel carbonyl originated from the 

interaction between Ni and CO [151,174–176]. At a high-temperature range of 623-723 K, the 
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coke may form owing to the Boudouard reaction and methane cracking. Apart from sintering of 

Ni metal and coke, the formation of Ni-hydroxide at low temperature was also found, which caused 

the decrease of the active phase of Ni [163]. Possible solutions toward tackling the problem were: 

(i) in adding promoter to improve the dispersion of Ni over the support or promote the formation 

of solid solution, (ii) in doping a metal to form an alloy, (iii) in modifying the support to obtain 

high surface area and pore volume, (iv) in making the catalyst with special structure, (v) in 

enhancing the metal-support interaction, and (vi) in changing the preparation method [173].  

In the literature, it was also reported the addition of a second metal (Fe, Co, Cu) on Ni/ZrO2 

catalysts for CO2 methanation [177]. Thus, the Fe-doped Ni/ZrO2 catalyst significantly enhanced 

the activity of Ni/ZrO2 catalyst at a low-temperature range when compared to the Co and Cu metals. 

The promotion of Fe could improve the dispersion and reducibility of Ni species and even promote 

the reduction of ZrO2, which enhanced the adsorption and dissociation of CO2 and H2. Thus, the 

activity of Ni/ZrO2 was improved. Moreover, the cerium had been reported to have positive effects 

on the mesoporous materials supported by Ni catalysts in CO2 methanation [142,178].   

Ewald et al. [172] studied the deactivation behavior of Ni-Al catalysts at 8 bar in CO2 methanation. 

In the latter study, it was found that the Ni/γ-Al2O3 catalyst synthesized by the impregnation 

method exhibited lower stability compared with the Ni-Al catalysts prepared by the co-

precipitation method. The stability of the Ni-Al mixed oxides increased with the decrease of Ni 

content, but the activity of the mixed oxides showed a reversed trend. The deactivation 

mechanisms found over the Ni-Al catalysts were caused by the Ni metal sintering, a loss of specific 

surface area, a decrease of CO2 adsorption capacity, decreasing medium basic sites, and structure 

change of the mixed oxide phase [172]. Moreover, the main deactivation reasons of impregnated 

catalysts were attributed to increased Ni particle size and decreased surface area. Also, the structure 
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and metal-support interaction could play predominant effects over some structure-sensitive 

catalysts in methanation. The special structure like hydrotalcite, phyllosilicate, and perovskite was 

reported to have good activity and stability towards CO2 methanation [131,138,144,179,180]. By 

tuning the metal-support interaction, a stronger metal-support interaction can promote the Ni 

dispersion and thus promote the activity and stability of Ni catalysts in CO2 methanation [181].    

Ye et al. [173] synthesized a series of Ni/SiO2 catalysts by different methods i.e. wet impregnation 

and ammonia evaporation method. The Ni/SiO2 (AEM) catalyst prepared by the ammonia 

evaporation method exhibited Ni phyllosilicate with the lamellar structure, which enhanced the 

Ni-support interaction of the catalyst. It also had a high BET surface area, good dispersion of Ni, 

and small Ni particle size. The stability test for CO2 methanation showed a higher yield of methane 

and better long-term stability than the impregnated Ni/SiO2 catalyst. Liu et al. [171] prepared the 

Ni/SBA-15-op catalyst by one-pot hydrothermal method and compared its activity with the 

Ni/SBA-15-im synthesized by conventional wet impregnation method. It was revealed that the 

Ni/SBA-15-op catalyst showed higher surface area, larger pore volume, and higher Ni dispersion 

compared to Ni/SBA-15-im. Thus, both better activity and stability were obtained over Ni/SBA-

15-op catalyst. 

 

A) On the effect of the Ni loading and Ni dispersion 

The performance of the Ni-based catalysts in CO2 methanation depends on Ni metal size and Ni 

dispersion [167,182]. The nickel particle size can be affected by the Ni loading, the preparation 

method, and the support properties. Thus, the Ni particle size of the Ni/SiO2 catalyst prepared by 

the deposition-precipitation method was affected by the parameters of the preparation method 
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[183]. The average Ni particle size of the catalyst derived from the Ni phyllosilicate phase was 

smaller than that of the Ni hydroxide derived catalyst. The Ni loading also has a significant effect 

on many Ni-based catalysts. Generally, the Ni particle size of the supported catalysts is smaller at 

low Ni loading and tends to increase for high Ni loadings [167]. For example, Ni nanoparticles 

supported over mesoporous SBA-16 reported in literature showed a decreasing trend towards Ni 

particle size as the increase of Ni loading [182]. In the same study, a catalyst with Ni loading of 

5.9 wt.% showed the smallest Ni particle size and exhibited the highest turnover frequency (TOF) 

in CO2 methanation reaction.  

Herein, we have listed the effect of Ni loading on the Ni particle sizes of some supported catalysts 

and illustrated the influence of Ni particle size on the activity of the catalyst in methanation. As 

shown in Fig.2.11, the Ni particle size of Ni/MSN catalyst (mesostructured silica nanoparticle) 

increases with the increase of Ni loading, with the biggest particle obtained on the sample of 10 

wt.% Ni loading [184]. The TOF and CO2 conversion showed sharply increased trends with the 

increase of Ni loading until 5 wt.% of Ni and then only increased a little. 

  

Figure. 2.11. Effect of Ni loading on the particle size and activity of Ni/MSN catalysts; Condition: GHSV = 50,000 

mL•gcat
-1h-1; H2/CO2 = 4/1; reaction temperature: 623 K [184]. 
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A similar trend was also found on Ni/γ-Al2O3 catalyst [185]. The increase of Ni loading resulted 

in the increase of Ni crystalline size from 10 to 25 wt.%, with the highest CO2 conversion obtained 

over 20Ni/γ-Al2O3 at 573 K. Generally, the increase of Ni loading can promote the activity of the 

catalyst due to more active metals for the reactant, but a high Ni loading may result in the 

aggregation of Ni species and decrease of Ni dispersion, which leads to the decrease of activity. 

Nevertheless, the effect of Ni content on the Ni crystalline size depends on the type of support. 

The increase of Ni content in hydrotalcite derived catalysts can lead to the decrease of Ni 

crystalline size for the reduced and spent catalysts [131].  In the CO2 methanation reaction, the 

activity of the catalyst increased as an increase of Ni content until 42.5 wt.% at the temperature 

range of 523-923 K.  

The preparation method also plays an important role in the dispersion of Ni catalysts.   The 

Ni/Al2O3 catalysts prepared by the co-precipitation method showed a higher Ni dispersion 

compared to the one prepared by the impregnation method due to the formation of surface NiAl2O4 

spinel phase [186].   

 

B) On the Influence of the support on the performance of Ni-based catalysts 

The support itself has a significant effect on the performance and stability of catalysts. The 

dispersion of Ni, the basicity, the metal-support interaction, and the morphology of the catalyst 

can be affected by the used support [160,167,187]. The support with high surface area and pore 

volume can confine the Ni particles inside the porous structure and thus improve the dispersion of 

Ni [142]. The mesoporous support like SBA-15, SBA-16, or KIT-6 with high surface area and 
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pore volume had been reported to promote the dispersion of Ni and lead to small Ni particles 

[60,179,188–190].  

The basicity of supported catalyst plays an important role because the support can also participate 

in the reaction due to its CO2 adsorption/desorption capacity. It has been reported that the 

Ni/Ce0.5Zr0.5O2 catalyst exhibited more medium basic sites compared to that of Ni/γ-Al2O3 catalyst. 

This medium basicity promoted the formation of monodentate carbonate, thus resulting in the 

formation of monodentate formate species, which was hydrogenated to methane with a higher rate 

[160]. Also, Ni/γ-Al2O3 catalysts showed lower performance than the Ni/Ce0.5Zr0.5O2 catalysts due 

to the lack of medium basic sites. CeO2 supported nickel catalysts were intensively studied in CO2 

methanation because of their superior performance and selectivity toward CH4, which could be 

attributed to the unique redox properties of cerium oxide [191]. The cerium oxide can be reduced 

partially to form defective sites on the support, which resulted in the formation of oxygen vacancies, 

which will promote CO2 adsorption and dissociation [192].   

The metal-support interaction is also controlling Ni particle size and oxygen availability of Ni-

based catalysts. The small particle size could be favored under strong metal-support interaction 

[193,194].  Lin et al. [195] investigated the effect of activation treatment on the metal-support 

interactions (MSI) of Ni/CeO2 catalysts. It was found that the Ni/CeO2 catalyst pre-treated under 

H2 atmosphere showed better activity and high selectivity compared to catalysts pre-treated under 

N2 or air atmosphere, which was attributed to the appropriate MSI generated in the pre-treatment, 

leading to the high dispersion of Ni, high amount of oxygen vacancies, and abundant weak basic 

sites on the catalyst [195]. Regarding regulating the MSI of the catalyst, the preparation method 

also plays a key role. Yan et al. [187] reported the Ni/Y2O3 catalyst prepared by impregnating Ni 

onto different Y precursors like Y2O3, Y4O(OH)9(NO3), and YO(NO3) for CO2 methanation. The 
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MSI of the catalyst was changed because of different Y precursors, in which the YO(NO3) material 

supported Ni catalyst showed the moderate metal-support interaction between Ni and Y2O3, 

leading to superior activity for CO2 methanation and good stability in CO-containing reactants 

[187]. In conclusion, a moderate metal-support interaction can thus improve the dispersion of Ni, 

and increase basicity and oxygen vacancies of Ni catalysts, leading then to a better activity and 

stability in CO2 methanation. 

The morphology of Ni-based catalysts also contributes to the activity and stability of catalysts in 

CO2 methanation. Bian et al. [196] prepared the Ni/CeO2 catalyst with different CeO2 

morphologies and carried it out in low-temperature CO2 methanation. The Ni/CeO2 (NR) catalyst 

with nanorod structure exhibited superior performance than Ni/CeO2 (NC) catalyst with nanocube 

structure. This high activity was attributed to the higher Ce3+ ratio on the surface of the catalyst. 

Zhou et al. [192] synthesized the CeO2 materials by hard-template, soft-template, and precipitation 

method and used them to prepare Ni/CeO2 catalysts. It was shown that the hard-template method 

prepared sample (NCT) showed a well-developed mesoporous structure with the highest SSA. 

Meanwhile, the soft-template prepared sample (NCS) displayed a disordered structure with a 

smaller pore diameter. The precipitation method prepared sample (NCP) only showed the 

nanoparticles with disordered structure. The NCT catalyst performed the highest CO2 conversion 

among the studied catalysts in methanation reaction. NCP catalyst showed then lower activity, 

which could be attributed to the low surface area and poor porosity. 

The most intensively used support such as CeO2 [158,191,196], ZrO2 [197], SiO2 [197], Al2O3 

[198], MgO [191,199], Y2O3 [187,198], Ce0.5Zr0.5O2 [200], TiO2 [147], carbon nanotube [201], 

zeolite [202], clays [203], SBA-15 [171], SBA-16 [142,204], and hydrotalcite [131,138,144,205–

208] were widely reported in the literature. Other transition metal oxide supports such as : Sm2O3 
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[198], ZrO2 [168], CeO2 [192], CexZr1-xO2 [209], Y2O3[210], have shown superior activity and 

stability when compared to Al2O3 based-catalyst. However, these supports contain VIII group 

metals which are not abundant and have high cost. 

Table 2.6 summarizes the main supports that have been studied intensively in CO2 methanation. 

As shown in the table, Ni catalysts supported on different support showed very different 

performance in CO2 methanation. As the difference of physicochemical properties for various 

supports, the physicochemical parameters of Ni catalysts were also deeply changed by the support. 

Therefore, the activity and selectivity of the catalysts were significantly affected. 

Hiroki et al. [198] synthesized the Ni catalysts supported on various supports by conventional 

incipient wet impregnation method and investigated their performance in CO2 methanation. The 

CO2 conversion comparison at 548 K under atmospheric pressure was displayed in Fig.2.12. The 

Y2O3 supported Ni catalyst showed the highest CO2 conversion compared to other metal oxide 

supported Ni catalysts, which could be partly attributed to the effects of basicity and surface 

intermediates during the reaction that presented on the materials  [198]. By FTIR technology, the 

Ni/Al2O3 catalyst proceeded by a CO methanation process. Only carbonates were found on 

Ni/La2O3 catalyst. Meanwhile, the formate species from the carbonates were detected on Ni/Y2O3 

catalyst. 
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Figure. 2.12. Comparison of CO2 conversion for Ni catalysts supported on different metal oxides; Condition: 548 K, 

atmospheric pressure, WHSV= 20,000 kg-1h-1.  

The CeO2 supported Ni catalysts reported in other literature exhibits superior activity and stability 

due to their effects of morphology and oxygen mobility property [196]. Furthermore, the ZrO2 and 

Ce0.5Zr0.5O2 also showed good activity because they also had oxygen storage capability. Jia et al. 

[136] prepared the Ni/ZrO2 catalyst by plasma decomposition of Ni precursor and compared its 

activity to that of Ni Ni/ZrO2 catalyst obtained by a conventional thermal decomposition. It was 

revealed that the plasma decomposition derived catalyst higher Ni dispersion, high concentration 

of Ni(111) plane, and stronger coordination between Ni and interfacial sites, leading to a fast H2 

dissociation and more oxygen vacancies, thus a higher activity was obtained compared to the 

thermally processed catalyst. Also, the mechanism in methanation was different regarding 

different catalysts; the plasma processed catalyst experienced a carbon oxide hydrogenation route 

while the thermally processed catalyst had a formate hydrogenation pathway. Regarding 
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Ni/CexZryO2 catalyst, it also proceeds through the formate species originated from carbonate 

hydrogenation with the CO species as a by-product [211].  

Ordered mesoporous silica such as SBA-15/16 can also be potential thanks to their high surface 

area and confinement of porous structure, making it possible to obtain small nanoparticles of Ni. 

The Ni nanoparticles over Ni/SBA-16 catalyst can reach 4.3 nm with a high surface area [142]. 

With the incorporation of Ce, good activity and stability can be obtained over the Ni/Ce/SBA-16 

catalyst.  

The hydrotalcite-derived mixed oxides catalysts also attracted attention because they not only 

generate small particles of active metals but also maintain high stability in the high-temperature 

range. For instance, the low loading of yttrium doped hydrotalcite derived Ni catalyst reached a 

CO2 conversion of 81% at 523 K under atmosphere pressure [144]. Its higher performance was 

attributed to the strong metal-support interaction, the high ratio of medium basic sites, and the 

small Ni particle size.  

Other novel materials were also applied as Ni-based catalysts for methanation. Thus, metal-organic 

framework (MOF) materials were used as support to prepare catalysts due to their high surface 

area of more than 1,000 m2•g−1. Lin et al. [212] synthesized the Ni@C (designated name by author) 

catalyst from MOF-derived hierarchical hollow spheres and used it in CO2 methanation. The as-

prepared catalyst possessed a high surface area and rich isolated active sites. The methanation test 

showed that the catalyst achieved a CO2 conversion of 100% and CH4 selectivity of 99.9% at 598 

K under atmospheric pressure and it also exhibited good stability at 523 K.  

In conclusion, the activity, selectivity, and stability of the Ni catalysts deeply depended on the 

properties of the support. Thus, the basicity, porosity, and redox property of the support can 
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substantially influence the methanation reaction. For example, over hydrotalcite-derived Ni 

catalysts, a linear correlation was found between the basicity of the catalysts and CO2 activity in 

methanation [131].  

 

Table 2.6 Catalytic performance of the Ni catalysts supported on different materials for CO2 

methanation.  

Material Ni 

content 

(wt.%) 

Preparation 

method⁕ 

Reaction condition CO2 

conversion 

(%) 

CH4 

selectivity 

(%) 

Ref. 

Temperature 

(℃) 

H2/CO

2 ratio 

GHSV/

WHSV 

γ-Al2O3 10 WI 300 4 5700 h−1 82 99 [213] 

Mesoporous 

γ-Al2O3 
15 WI 300 3.5 

9000 

mL/gcat‧h 
46 99 [185] 

Mesoporous 

γ-Al2O3 
20 WI 300 3.5 

9000 

mL/gcat‧h 
73 99 [185] 

Mesoporous 

γ-Al2O3 
25 WI 300 3.5 

9000 

mL/gcat‧h 
63 98 [185] 

No support 100 WI 400 5 
52,300 h-

1 
44 58 [214] 

Al2O3 125 WI 400 5 
52,300 h-

1 
42 81 [214] 

Al2O3 16 WI 500 5 
52,300 h-

1 
75 100 [214] 

Al2O3 39 WI 500 5 
52,300 h-

1 
81 93 [214] 

MgO 5.8 sonochemical 400 8 
47,760 h-

1 
85 98 [215] 

MgO 5.8 
co-

precipitation 
400 8 

47,760 h-

1 
63 - [215] 
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MgO 5.8 
solution 

combustion 
400 8 

47,760 h-

1 
71 - [215] 

TiO2 10 WI 350 4 
60,000 h-

1 
42 74 [216] 

TiO2 10 DBD-plasma 350 4 
60,000 h-

1 
60 98 [216] 

TiO2 6.17 
DBD-plasma-

rinse 
350 4 

60,000 h-

1 
72 99 [216] 

SiO2 5 WI 350 4 
60,000 

mL/gcat‧h 
48 94 [217] 

SiO2 10 WI 350 4 
60,000 

mL/gcat‧h 
53 95 [217] 

SiO2 15 WI 350 4 
60,000 

mL/gcat‧h 
54 95 [217] 

La2O3 50 CSCM 400 4 
120,000 

mL/gcat‧h 
60 88 [218] 

ZrO2 10 WI 350 4 
60,000 

mL/gcat‧h 
66 97 [136] 

ZrO2 8.68 DBD-plasma 350 4 
60,000 

mL/gcat‧h 
77 99 [136] 

CeO2 10 WI-CP 340 4 
45,000 

mL/gcat‧h 
67 100 [192] 

CeO2 10 WI-HTM 340 4 
45,000 

mL/gcat‧h 
90 100 [192] 

Ce-Zr 10 WI 300 4 
20,000 

mL/gcat‧h 
48 99 [219] 

SBA-15 15 OP 420 4 
10,000 

mL/gcat‧h 
75 99 [171] 

SBA-15 15 WI 420 4 
10,000 

mL/gcat‧h 
68 99 [171] 

MCM-41 20 precipitation 420 4 
9,000 

mL/gcat‧h 
72 98 [220] 

SBA-16 10 WI 400 4 
12,000 h-

1 
73 98 [142] 

USY 15 WI 400 4 
43000 

mL/gcat‧h 
68 93 [221] 
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hydrotalcite 20 precipitation 300 4 
12,000 h-

1 
87 99 [144] 

 

⁕WI-wet impregnation; DBD-plasma-rinse: rinse after dielectric barrier discharge (DBD) plasma decomposition; 

CSCM: colloidal solution combustion method; WI-CP: Support prepared by precipitation method with the catalyst 

prepared by wet impregnation; WI-HTM: HTM-KIT-6 hard template method for support, wet impregnation for 

catalyst; OP: one-pot hydrothermal method 

 

C) On the effect of the promotion on the performance of Ni-based catalysts in methanation reaction 

It is well reported that Ni catalysts without additives suffered from low CH4 selectivity, poor 

stability, and deactivation problems due to the metal sintering at high temperatures [222]. Thus, 

promoter elements such as: Mg [179], La [169,208,223], Ce [142,224,225], Zr [226], Y [141,227], 

Co [228,229], Fe [203,229] and Cu [215,229] etc. had been applied to improve the performance 

of Ni catalysts. The Ni/Al2O3, as a commonly studied catalyst in CO2 methanation due to its 

economic advantage, was doped by CeO2, La2O3, Sm2O3, Y2O3, and ZrO2. The catalytic 

performance of the synthesized catalysts was investigated by a series of technologies [230]. It was 

found that the addition of these promoters had a positive effect on the performance of the Ni/Al2O3 

catalyst, and the La-promoted catalyst showing the best activity and stability. At 573 K, the CO2 

conversion decreased as the following sequence: NiLa>NiCe>NiSm>NiY>NiZr>Ni/Al2O3. The 

authors attributed these results to the improvement of nickel reducibility, nickel dispersion, and 

the presence of moderate basic sites. The La additive is a very promising promoter for Ni/γ-Al2O3 

catalysts in CO2 methanation. Furthermore, the effect of La content on the performance of Ni/La-

γ-Al2O3 catalysts for CO2 methanation was also studied, in which the 14 wt.% La-doped Ni/La-γ-

Al2O3 catalyst showed the best performance with nearly 100% of CH4 selectivity at low 
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temperature  [231]. This latter result was assigned to the enhanced basicity of La-γ-Al2O3 support 

and the reducibility of NiO. The presence of La also showed a good improvement in CO2 

methanation for the Ni/SBA-15 catalyst, which was also a widely investigated catalytic system 

[169]. The perovskite structure of LaNiO3 was formed on Ni-La2O3/SBA-15(C) catalyst prepared 

by citrate complex method, leading to the enhanced interaction between La2O3 and Ni. Thus, high 

dispersion of Ni and small Ni particles (less than 5 nm) were obtained. In CO2 methanation, the 

Ni-La2O3/SBA-15(C) catalyst showed a high CO2 conversion of 90.7% and CH4 selectivity of 99.5% 

at 593 K [169]. The La-modified mesostructured cellular foam (MCF) supported Ni catalyst with 

phyllosilicate structure also showed a good performance in CO2 methanation as reported in a new 

study [223]. This is attributed to the small Ni particle size, high capacity of H2 and CO2 adsorption, 

and low activation energy.  

In Table 2.7, the Ni catalysts supported on different materials doped by various promoters for CO2 

methanation were summarized. As shown in Table 2.7, the adding of the promoter can cause a 

significant effect on the physicochemical properties of the Ni catalysts. The parameters like 

dispersion of Ni, the reducibility of Ni, the basicity of catalyst, metal-support interaction, oxygen 

vacancies, anti-sintering of Ni particles, etc. have been changed by the promoters. Thus, the 

activity, selectivity, and stability of catalysts were affected significantly. 

Table 2.7 Ni catalysts promoted by different additives reported in the literature.  

Catalyst Promote

r  

Loading 

(wt.%) 

Ni 

(wt.%) 

Effect of promoter addition Ref. 

NiUSY 

Ce 

15 5 
A large number of carbonates, promoting CO2 

conversion to CO. 
[225] 

Ni/SBA-16 10 10 
Increased Ce3+ ratio and oxygen vacancies, enhanced 

moderate basicity 
[142] 
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Ni/γ-Al2O3 15 15 

Increased metal-support interaction, medium basic sites, 

and adsorbed CO2. More Ni metal species and oxygen 

defects on the surface 

[232] 

Ni/MCM-

41 
Zr 

nZr/nSi=0.0

1, 0.03, 

0.1, 0.15 

10 

Strengthened Ni-Zr interaction which favored the 

spillover of H, increased surface oxygen species. 0.01 is 

the best Zr content, which showed the best performance 

[233] 

Ni/CeO2 Y 2 5 

The decreased particle size of CeO2, increased specific 

surface area and the number of oxygen vacancies, 

enhanced metal-support interaction, promoted the 

formation of CeO2 nanorods. 

[141] 

Ni/SBA-15 Mg 5 10 
Increased medium basic sites and promoted the 

formation of monodentate formate. 
[179] 

Ni/Al@Al2

O3 
K 0.5 10 

Decreased activity was attributed to decreased amount 

of Ni active sites and basic sites. 
[234] 

Ni-Al 

ordered 

mesoporous 

composite 

Ca 
NCa/nAl=1,

3,5,8,10 

nNi/nAl

=10 
Enhanced surface basicity and decreased active energy. [235] 

Ni/SiO2 La 10 10 
Better dispersion of Ni and a higher proportion of 

moderate strength basic sites. 
[236] 

Ni/SiO2 Cu 1 10 

Increased CO selectivity indicates favoring the RWGS 

reaction. Slightly increased the resistance of metal 

sintering 

[217] 

Ni/Zr-clay 
Co 

1 15 
Promoted the dispersion of NiO nanoparticles, increased 

quantity of the reduced active nickel species. 
[203] 

Ni-MgO 2 4.3 Decreased active energy, more active sites. [215] 

Ni/Zr-clay 

Fe 

1 15 Increased dispersion of Ni, increased Ni reducibility [203] 

Ni/(Mg, 

Al)Ox 

hydrotalcite 

1.2-18 12 
Increased Ni nanoparticle size, decreased Ni dispersion, 

enhanced CO dissociation, and basicity. 
[237] 

Ni-Al 10 44 
The formation of a Ni-Fe alloy increased the thermal 

stability of catalysts. 
[238] 

Ni-Al Mn 10 44 
A higher density of medium basic sites and an enhanced 

CO2 adsorption capacity. 
[238] 

Ni/bentonit

e 
V 3,5,8 20 

Enhanced H2 uptake and Ni dispersion, promoted the 

dissociation ability of CO. 
[239] 
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Besides the aforementioned catalytic systems, Lathanum was also used to improve the activity of 

hydrotalcite-derived Ni catalysts (HTN) in CO2 methanation [206,208]. It was found that the 2 wt.%  

of La-doped HTN catalyst showed the highest CO2 conversion at low temperature, which could be 

attributed to the increase of basicity caused by La incorporation. The different methods of promoter 

incorporation also have a significant effect on the performance of the La-doped HTN catalyst. The 

catalyst prepared by the ion-exchange method showed both the higher CO2 conversion and CH4 

selectivity at low temperature (573 K) as well as superior stability. This remarkable activity was 

attributed to the increase of medium basic sites and the presence of smaller Ni crystal size [206].  

Ceria (cerium oxide) is also known to be an important additive for Ni-based catalysts in various 

CO2 utilization reactions [142,232]. As for Ni/Al2O3 catalyst, it has been reported that the adding 

of Ce on Ni/Al2O3 catalyst can significantly promote the activity and CH4 selectivity in 

methanation. The optimum promotion was found with 15 wt.% of CeO2. This catalyst showed the 

best CO2 conversion and high CH4 selectivity at the temperature range from 523 to 673 K. In such 

catalysts, the presence of ceria promoted the higher dispersion of Ni, the smaller Ni particle size, 

the higher amount of medium basic sites, the higher oxygen deficiencies, and finally the higher 

surface ratio of Ni0 and Ce3+, all which contribute to a better activity and stability of the catalyst. 

Also, in such catalyst, the Ce4+ cation can be reduced to Ce3+ state under the pre-treatment of 

hydrogen, leading to the formation of oxygen vacancies, which can then lead to a promotion of the 

adsorption and dissociation of CO2 species [141]. Due to the unique redox and oxygen deficiency 

properties, the ceria is widely used as a promoter in the preparation of Ni catalysts.  

In the literature, the Ce doped Ni/SBA-16 catalysts were prepared and their catalytic performance 

was evaluated in CO2 methanation [142]. The results indicated that the presence of Ce led to the 

formation of oxygen vacancies, which could significantly promote the CH4 selectivity. The 



Chapter II State-of-Art for the CO2 Utilization 

 

57 
 

mesoporous SBA-16 can disperse the Ni and Ce species well and confine the Ni and Ce particles 

inside the mesoporous channels. The highest ratio of Ce3+, highest amount of medium basic sites, 

and good dispersion of Ce have been obtained over 10 wt.% Ce-doped Ni/SBA-16 catalyst, leading 

to the best activity and high CH4 selectivity.   

Zirconia or zirconium oxide also can act as the oxygen storage material and has been intensively 

studied in many CO2 utilization reactions [226,233]. Yang et al. [233] studied the effect of Zr on 

MCM-41 supported Ni catalyst for CO2 methanation. It was found that the adding of Zr 

strengthened interaction between Ni and Zr, leading to the spillover of H species adsorbed on the 

surface of Ni to the support, which is favorable for the hydrogenation of CO2-derived intermediates 

[233]. Also, the addition of Zr promoted the increase of oxygen species at the surface, and the 

decrease of strong basicity, which contribute to hinder the carbon deposition and the removal of 

deposited coke under reaction. However, an excess Zr on the support would be harmful to the 

activity of the catalyst due to the destruction of the ordered structure of the support.      

The alkaline earth like Mg can also be a good additive alternative for Ni catalyst [179,240]. Plaifa 

et al. [179] Ni-Mg phyllosilicate mesoporous SBA-15 catalysts with different Mg loading by 

ammonia evaporation method and applied them in CO2 methanation reaction. It was found that the 

presence of Mg of 5 wt.% onto Ni/SBA-15 catalyst could improve the increase of medium basic 

sites, which enhanced the methanation activity at low temperature. Also, the phyllosilicate 

structure could enhance the metal-support interaction, which suppressed the metal sintering, 

leading to good stability of the catalysts. The other alkaline earth metal oxides like Ca, Sr, and Ba 

were also studied for Ni catalysts [240]. The incorporation of alkaline earth on Ni/CeO2 catalysts 

can promote the dispersion of Ni, an increase of moderate basic sites, and more oxygen 

deficiencies of the catalyst, thus improve the activity of the catalysts. The activity test showed that 
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the Ca doped Ni/CeO2 catalyst performed the best activity due to the highest Ni dispersion and 

largest moderate basicity.  Besides the promotion of individual additives, the addition of two 

additives like Ce-Zr is also widely studied for Ni catalyst, which shows good modification [241]. 

Thus, the addition of Ce-Zr solid solution on activated carbon (AC) supported Ni catalyst can 

result in stronger interaction between Ni and Ce-Zr, higher dispersion of Ni, and high CO2 

adsorption ability, leading to high CO2 conversion and CH4 selectivity [241]. Li et al. [242] studied 

the effect of ceria promotion on the performance of Ni-La/ZrO2 catalyst in CO2 methanation. The 

results revealed that the Ni-Ce-La/ZrO2 catalyst showed better activity and high stability than the 

Ce or La modified Ni/ZrO2 and the non-modified Ni/ZrO2 catalyst. The adding of Ce on Ni-

La/ZrO2 catalyst could promote the activation of CO2 and the Ni nanoparticles of Ni-Ce-La/ZrO2 

catalyst had a high resistance to metal sintering.  

The additives with more than two metal oxides also had attracted intensive attention. The Ni 

catalysts supported on γ-Al2O3 based on composite oxide were employed in CO2 methanation [243]. 

The γ‑Al2O3−ZrO2−TiO2−CeO2 (equivalent loading for the additive, 15%) composite oxide 

supported Ni catalyst possessed higher Ni dispersion and better reducibility, leading to higher 

activity compared to that of Ni/γ-Al2O3 catalyst. 

2.5.4.2.2. Other non-noble metal-based catalysts for CO2 methanation 

Besides Ni catalyst, Iron (Fe) [121] and cobalt (Co) [29,244–246] catalysts were also studied in 

CO2 methanation. Zeynep et al. [121] studied Fe catalyst promoted by different additives in CO2 

methanation. It was found that the bare Fe catalysts showed very poor activity and CH4 selectivity 

and the Fe catalysts doped by promoters did not perform a comparable activity and CH4 selectivity 

as a comparison to Ni-based catalyst. Among the promoters, the Mg of 2 wt.% modified Fe catalyst 
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exhibited the best positive effect. At a harsh condition (8 bar), the highest CH4 yield reached 32% 

at 673 K for 2Mg/Fe2O3 sample. 

Co-based catalysts can exhibit comparable activity in comparison to Ni ones in CO2 methanation. 

Liang et al. [123] investigated alumina-supported Ni and Co catalysts in CO2 methanation.  It was 

found that the Co/Al2O3 catalyst showed higher activity than that of Ni/Al2O3. This is attributed to 

the better coordination effect between Co and alumina when compared to Ni on Al2O3. This 

coordination effect can promote the hydrogenation of intermediates such as bicarbonate, formate, 

and carbonate species. The CO2 can be activated on the surface of Co metal and subsequently 

mitigate and react with the hydroxyl in the alumina to form the intermediates. Such intermediates 

can be hydrogenated to methane over cobalt sites. Also, ZrO2 supported cobalt catalysts were also 

employed to catalyze the CO2 methanation reaction. It was reported that the Co/ZrO2 catalysts 

prepared by the organic acid-assisted impregnation method could exhibit superior activity 

compared to the catalyst prepared without organic acid [127]. Within these organic acids, 

carboxylic acids with a longer chain containing more carboxyl and hydroxyl groups showed good 

improvement for the catalytic performance of Co/ZrO2 catalysts as compared to the convention 

method prepared catalyst. Meanwhile, the amino acid could change the charge properties of the 

surface of ZrO2 by changing the pH and increase the Co dispersion, thus exhibited better 

performance than the conventional one. In all the organic acids, the Co/ZrO2 catalysts derived from 

the citric acid-assisted impregnation exhibited the best activity and the highest TOF value with a 

CO2 conversion of 85% and a CH4 selectivity of 99% as well as TOF of 1116 h−1 at 673 K and 30 

bars. This high activity was attributed to the improved Co dispersion and enhanced Co-ZrO2 

interaction, resulting in more oxygen vacancies and high CO2 adsorption capacity. The Co-based 
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catalysts prepared by the liquid reduction method can even reach high activity that is comparable 

to the noble metal-based catalysts at low temperature (<473 K) recently in the literature [126].  

Apart from being a catalyst itself, cobalt can also play an important role as a promoter in improving 

the performance of the Ni-based catalysts. Liu et al. [228] reported that the addition of Co could 

improve the activity of ordered mesoporous Ni-Co/Al2O3 catalyst, which was attributed to the 

enhanced H2 sorption capacity. Also, the ordered mesoporous structure contributed to achieving 

high stability. In conclusion, the Co-based catalysts can exhibit good performance in CO2 

methanation. However, Ni-based ones remained the most promising. 

 

2.5.6 Power-to-gas system (PtG) 

The flow chart of the PtG project was shown in Fig.2.13. The electricity from the renewable energy 

power plant or conventional power plant was used to electrolyze water to produce H2. The captured 

CO2 reacted with H2 to produce CH4. Then, CH4 was transported and used as fuel or raw material. 

The PtG process can act as an important energy storage route. Compared to existing storage ways, 

the PtG route has a longer discharge time as shown in Fig.2.14. 

The main energy consumption parts of the PtG route are the electrolysis part and the methanation 

part. For the electrolysis, it can be improved by applying a new electrolytic method like the solid 

oxides method. The methanation process can be promoted by controlling the reaction parameters 

and applying high-performance catalysts.  

The development of novel CO2 methanation catalysts is then the main topic of this thesis. 
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Figure 2.13. PtG technology flow chart; Adapted from [247] 

 

 

Figure 2.14. Storage routes for excess energy with the relationship between discharge time and storage capacity. 

Adapted from  [247]. 
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2.5.6.1. The PtG projects in European Union 

Table 2.8 lists some PtG projects in Europe, which use chemical/biological conversion systems. 

The European Union (EU) has the most PtG plants in the world now.  

Table 2.8 Power-to-Methane plants in European Union. Adapted and modified from [248] 

Installation 
Methanation 

principle 

Power 

[kW] 

*Electrolysis 
Status (Spring 

2021) 

Etogas - Audi AG Chemical 6300 Alkaline Operational 

Solothurn (Store&Go project) Biological 700 PEM Planned 

Niederaussem Chemical 300 PEM Finished 

Foulum - Electrochaea Biological 250 PEM Finished 

Alzey - Exytron (Exytron GmbH) Unknown 63 Alkaline Planned 

Rostock – Exytron Demonstrations Unknown 

twenty 

one 

Unkown Operational 

Stralsund (University of Applied Sciences 

Stralsund) 

Unknown 20 Alkaline Planned 

Rozenburg Chemical 10 PEM Operational 

*PEM – Polymer electrolyte membrane electrolysis. 

 

2.5.6.2. Non- European Union: The example of China  

As shown in Fig.2.15, the top 6 countries which have the highest renewable energy power 

generation capacities in the world were displayed. It can be seen that China has the biggest 

renewable energy power generation capacities. Although the biggest share of renewable energy, 

there are relatively few PtG (CH4) demonstration plants in China. Until now, there is only one PtG 

(H2) plant located in the province of Hebei, which uses surplus wind energy to produce hydrogen. 
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Even in EU, the most plants are located in Germany. However, given the ecological and economic 

benefits of the PtG route, there are plenty of potentials of such route in the storage of renewable 

energy. For example, wind and solar energy abandonment have been serious in China, which PtG 

technology can help to alleviate this situation. Moreover, if the carbon tax is considered in the 

future, policy factors and economic factors will be very beneficial to the development of PtG [247]. 

With the rapid development of renewable energy, the PtG process will be necessary to solve the 

storage problem.  

 

 

Figure 2.15. Renewable energy power generation capacities distribution in the world in 2016; adapted from [247]  
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3. Experimental part 

3.1 Catalyst preparation 

In this thesis, different catalysts were prepared by different synthesis strategies as shown in Fig.3.1.   

 

Figure 3.1. Syntheses strategies of the Ni catalysts in the thesis.  

Thus, depending on the synthesized catalyst we used deposition-precipitation, co-precipitation, 

hydrothermal synthesis, wet impregnation, etc. 

 

3.1.1 Low-cost diatomite supported catalysts  

This work was carried out during collaboration with the University of Belgrade. The preparation 

of support and catalysts was thus carried out in Serbia [249]. Crude diatomite material was supplied 

from Prilep (The Republic of North Macedonia). The crude material was mechanically, chemically, 
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and thermally treated to obtain the desired support properties. The supported Ni-Mg catalysts were 

prepared using the precipitation-deposition (PD) method. 

Precipitation of Ni and Mg species was performed by addition of anhydrous Na2CO3 to a salt 

solution containing Ni(SO3NH2)2, Ni(NO3)2, or Ni(CH3COO)2, and Mg(NO3)2 in a molar ratio of 

Ni/Mg=10. The resulting suspension was vigorously stirred and heated up to 90°C. The deposition 

of formed Ni-precipitates onto diatomite support (D) was carried out by the addition of hot (90°C) 

aqueous suspension of D to a slurry containing precipitates of Ni and Mg in molar ratio SiO2:Ni 

=1. The obtained suspension was aged again for 1 h under the same temperature after which it was 

vacuum filtered and thoroughly washed with hot (80°C) distilled water until neutral pH. Finally, 

the precipitates were dried in an air oven at 110 °C for 24 h and grounded to powder. After that, 

the samples were calcined at 550°C for 5 h. The same preparation procedure was employed for all 

the samples. The samples were designated as the NiMg/D-X (X=S-sulfamate, N-nitrate, or A-

acetate) according to the kinds of nickel salts. The Ni content (weight percent) of the samples 

determined by the ICP-OES method for NiMg/D-S, NiMg/D-N, and NiMg/D-A were 35.0 wt.%, 

36.3 wt. % and 36.6 wt. %, respectively.  

 

3.1.2 Mixed oxides derived from layered-double hydrotalcite (LDH) materials 

The co-precipitation method with sodium carbonate (Na2CO3) was carried out for the mixed oxides 

catalysts preparation based on the report [250]. The mixed oxides doped by different loading of 

yttrium were prepared. In detail, an aqueous solution of the following nitrates was used: Ni, Y, Al, 

and Mg, and added dropwise into Na2CO3 solution. NaOH (2 M) was also dripped into the mixture 

to adjust pH to 10±0.2. The ratio of M2+/M3+ was assumed as 3. The assumed loading of yttrium 
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was 0.4 wt.%, 2.0 wt.% or 4.0 wt.%. After co-precipitation, the suspension was left to react at 65 

ºC for 24 h. Then, this mixture was filtered under vacuum and washed with distilled water 

thoroughly. After filtration, the obtained cake was dried at 80 °C overnight and calcined in static 

air at 550 °C for 5 h with a heating rate of 5 °C/min. The samples were designated as MO-0Y, 

MO-0.4Y, MO-2.0Y, and MO-4.0Y. This work was done in the framework in collaboration with 

the AGH University.  

 

3.1.3 Y-promoted novel ceria supported Ni catalysts 

The catalysts were synthesized by a two steps method. First, CeO2, Y2O3, and yttrium-promoted 

CeO2 (denoted as CeO2-YX%) supports were prepared by the hydrothermal method. In a typical 

procedure, 6 g of cerium nitrate, Ce(NO3)3·6H2O (Aldrich, 99%) and an appropriate amount of 

yttrium nitrate hexahydrate, Y(NO3)3·6H2O, (Aldrich, 99%)were dissolved in 30 mL of H2O, then, 

40 mL of NaOH (2.5 mol L−1; Aldrich, >98%) were added to the solution under vigorous stirring. 

The resulting suspension was rapidly transferred into a 100 mL Teflon autoclave and heated in an 

oven at 120 °C for 24 h. After aging, the obtained precipitate was filtered and washed with 

deionized water until neutral pH. The resulting powder was dried at 80 °C overnight and calcined 

at 550 °C for 5 h in static air with a heating rate of 2 °C/min. The Y loadings with respect to CeO2 

are 0.5, 1.0, 2.0, 5.0 weight percent, respectively. CeO2 and Y2O3 pure oxides were prepared by 

the same method, starting from Ce(NO3)3·6H2O (Aldrich, 99%) or Y(NO3)3·6H2O precursors.  

The nickel catalysts were synthesized by the wetness impregnation method of the so prepared 

supports with an aqueous solution of Ni(NO3)2·6H2O. After the impregnation process, the solids 

were dried at 100 °C overnight and calcined at 550 °C for 5 h with a heating rate of 2 °C/min. The 
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nickel loading for all the samples is 5 wt.%. The resulting catalysts were labeled according to the 

weight loading of Ni and Y, i.e., 5Ni/CeO2, 5Ni/Y2O3, 5Ni/CeO2-Y0.5%, 5Ni/CeO2-Y1.0%, 

5Ni/CeO2-Y2.0%, and 5Ni/CeO2-Y5.0%. The samples were synthesized in the framework of 

collaboration with Prof. Liotta from CNR Italy. 

 

3.1.4 Ordered mesoporous SBA-15 and SBA-16 materials supported catalysts 

The mesoporous materials including SBA-15 and SBA-16 were prepared by hydrothermal method 

using Teflon bottler or a PTFE lined stainless steel hydrothermal autoclave as shown in Annex 2.  

SBA-15. Thus, SBA-15 was synthesized by the hydrothermal synthesis method as described by 

Han et al. [251]. In brief, Pluronic P123 (PEG-PPG-PEG, average molar weight=5800 g/mol, 

BASF) was dissolved in distilled water and the pH value of the aqueous solution was adjusted by 

adding HCl (37%, Sigma-Aldrich). After mixing thoroughly (45 min), TEOS (Tetraethyl 

orthosilicate, 98%, Sigma-Aldrich) was added dropwise to the above-mentioned solution and then 

stirred magnetically at 40 °C for 24 h. The molar ratio of the reaction mixture was controlled as 

TEOS/P123/HCl/H2O=1/0.0168/5.8/155. The resulting mixture was aged at 65℃ for 120 h. Then, 

the precipitate was filtered and washed with distilled water followed by drying in an oven at 110℃ 

for 12 h. The obtained solids were calcined at 550 °C for 5 h in flow air (20 ml/min) with a heating 

rate of 1 °C/min. 
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3.1.4.1. Synthesis of NiY/SBA-15 and NiCexY/SBA-15 catalysts  

Ni/SBA-15 catalysts doped by Y were prepared by a co-impregnation method in the presence of 

the surfactant cetyltrimethylammonium bromide (CTAB). The Y content (x) was controlled as 5, 

10, and 20 wt.% relative to SBA-15 support.  The Ni content was chosen as 15 wt.% for all samples. 

Typically, a certain quality of nickel nitrate (Ni(NO3)2·6H2O, >99%, Sigma-Aldrich), yttrium 

nitrate (Y(NO3)3·6H2O, >99%, Sigma-Aldrich), and CTAB (>99%, Sigma-Aldrich)  were 

dissolved in distilled water and magnetically stirring for 30 min. Subsequently, the SBA-15 

powder was added to the prepared solution and the magnetic stirring was maintained for 12h at 

ambient temperature. The CTAB/Ni molar ratio was controlled at 0.3. Afterward, the obtained 

slurry was evaporated in a rotary evaporator (60°C, 110r/min). After that, the material was dried 

in an oven at 100 °C for 12h and calcined at 550 °C under flow air for 5h with a heating rate of 

5 °C/min (20 mL/min). 

NiCe/SBA-15 catalysts modified with Y were prepared by the same technique as NiY/SBA-15 

with the presence of cerium nitrate (Ce(NO3)3·6H2O, >99%, Sigma-Aldrich). The yttrium content 

(x) in the NiCexY/SBA-15 catalysts varied from 2 to 10 wt.%, whereas a fixed amount of Ni (15 

wt.%) and Ce (10 wt.%) was adjusted. The as-prepared catalysts were labeled as 15Ni10Ce/SBA-

15 and 15Ni10CexY/SBA-15 (x= 2, 4, 10). 

3.1.4.2. Synthesis of SBA-16 supports  

SBA-16 materials were synthesized based on an improved method presented elsewhere [252]. 

Typically, 3 g of Pluronic F127 (EO106PO70EO106) copolymer (BASF) was dissolved with 144 g 

of distilled water in a Teflon bottle followed by adding 5.94 g of concentrated hydrochloric acid 

(HCl, 37 wt.%, Sigma Aldrich). After stirring for 20-30 min, 9 g of butanol-1 (BuOH, Sigma 
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Aldrich) was added into the aforementioned solution as a co-surfactant. The molar ratio of 

F127/BuOH was controlled as 1/3. After stirring for 1 h, 14.2 g of tetraethyl orthosilicate (TEOS, 

Sigma Aldrich) was added into the solution above at 40 °C, then the mixture was kept at 40 °C for 

24 h. Afterward, the container of the solution was placed under a static condition (electrical oven) 

at 80 °C for 48 h for the hydrothermal process. After that, the mixture was filtered and washed by 

distilled water thoroughly. Subsequently, the precipitant was dried at 100 °C for 12 h. Finally, the 

solid was calcined at 550 °C for 5 h with a heating rate of 5 °C/min under flowing air (20 mL/min) 

to remove the copolymer template F127. 

 

3.1.4.3. Ni/xCe/SBA-16 catalysts preparation 

Ni/SBA-16 and Ce-promoted Ni/Ce/SBA-16 catalysts with different Ce content were prepared by 

a two-step incipient wetness impregnation method assisted by ultrasonic considering its 

advantages compared to the co-impregnation method [253]. As reported in the literature, the Ni-

Ce/SBA-15 catalyst prepared by impregnating of Ce then by Ni presented smaller NiO particles 

and porosity compared with the co-impregnated catalyst and the catalyst impregnated first by Ni 

[254]. In the current work, cerium nitrate (Ce(NO3)3·6H2O, >99%, Sigma-Aldrich) was dissolved 

in distilled water, and then the SBA-16 support was added into the solution. The suspension was 

processed by ultrasonic for 1 h, after that, the mixture was placed at ambient temperature for 24 h 

to optimize the diffusion of ions inside the pores of the support. Afterward, the mixture was dried 

at 80 °C for 12 h. Finally, the material was calcined in an electrical furnace at 550 °C for 5 h with 

a heating rate of 5 °C/min in airflow (20 mL/min). Eventually, the as-synthesized SBA-16 and 

Ce/SBA-16 were used to prepared Ni/SBA-16 and Ni/Ce/SBA-16 catalysts. The same 
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impregnation method was used to prepare the catalyst, with replacing the solvent with ethanol 

(99%), which showed better performance for supported Ni catalysts relative to H2O [255].  The 

content of Ni was 10 wt.% relative to the support. The catalysts were then designated as 10Ni/SBA-

16 or 10Ni/xCe/SBA-16, where x represents the content of Ce, varying from 10 to 20 wt.%. All 

the reagents were purchased from Sigma-Aldrich or BASF (F127). 

 

3.1.4.4. Synthesis of Ni/xCeY/SBA-16 catalysts 

The Ni/xCeY/SBA-16 catalysts were prepared by a two steps impregnation method as introduced 

above.  Firstly, the xCeY/SBA-16 materials were prepared by wet impregnation of an aqueous 

solution of nitrate salts (Ce(NO3)3·6H2O, Y(NO3)3·6H2O, >99%, Sigma-Aldrich) on SBA-16. 

After impregnation, dry, and calcination, the obtained xCeY/SBA-16 samples were impregnated 

by the ethanol solution of Ni(NO3)2·6H2O with/without the presence of citric acid (>99%, Sigma-

Aldrich). The final catalyst precursors were obtained after subsequent impregnation, dry, and 

calcination. The weight content Ce and Ni was 10 wt.% with Y content varying from 2 to 10 wt.%. 

The samples were denoted as 10Ni/10Ce/SBA-16 and 10Ni/10CexY/SBA-16, respectively. The 

10Ni/SBA-16 sample was also prepared by the same process as a reference.  

 

3.2 Catalytic CO2 methanation 

3.2.1 Activity test  

The catalytic test was carried out in a fixed-bed reactor (Inner diameter of 10 mm). The catalyst 

(0.5 mL, density measured by a measuring cylinder of 5 mL) was loaded into the reactor under the 
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protection of quartz wool. A K-type thermocouple in contact with the catalyst bed was used to 

monitor the temperature. Before the test, the catalyst was pretreated in a gas mixture of Ar and H2 

(H2/Ar=5%, vol./vol.) with a flow rate of 100 mL/min for 1 h. After reduction and cooling down 

to the desired temperature, the activity test was performed from 200 to 450 ℃ in a reactive gas 

mixture (CO2/H2/Ar=60/15/25, 100 mL/min) with a temperature ramp of 10 ℃ per min (Fig.3.2a). 

At each step, the temperature was kept for 30 min for the steady-state test. The gas/weight hourly 

space velocity (GHSV/WHSV) is 12, 000 h-1 (per hour)/60, 000 gcat
-1•h-1(per gram of catalyst per 

hour).  The outlet gases were analyzed by a gas chromatograph equipped with a thermal 

conductivity detector (TCD) (490 Varian Micro-GC) from Agilent.   

The time-on-stream (TOS) test was performed on the same set-up. The feed gas with the same 

composition was fed into the catalyst after the reduction step.  As shown in Fig.3.2b, the isothermal 

test was carried out at 350 ℃ and kept for 6-7 h.  

The design drawing and the assembled real profile of the set-up were shown in Fig.3.3.  
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Figure. 3.2. Temperature programs used in activity test (a) and isothermal test of time-on-stream (b) for CO2 

methanation.  
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Figure. 3.3. Scheme (A) and real profile (B) for the CO2 methanation set-up. 
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3.2.2 Calculations 

The CO2 conversion (XCO2) and CH4 (SCH4) selectivity were calculated by the following equations: 

XCO2 (%) = 
[CO2]in−[CO2]out

[CO2]in
 =

nCO2,in × Qin−nCO2,out ×Qout

nCO2,in × Qin
 ×100        (Equation 1) 

SCH4 (%) = 
[𝐶𝐻4]𝑜𝑢𝑡

[CO2]in−[CO2]out
 =

nCH4,out × Qout

nCO2,in×Qin−nCO2,out×Qout
 ×100             (Equation 2) 

Which the [CO2]in and [CO2]out represent the gas molar flow of CO2 in inlet and outlet, 

respectively; [CH4]out is the gas molar flow of CH4 in the outlet; the nCO2, in and nCO2, out refers to 

the molar concentration of CO2 in inlet and outlet, respectively. The Qin and Qout represent the flow 

rate measured by a flowmeter (Fig. 3.3b) of inlet and outlet, respectively. 

The gas hourly space velocity (GHSV, h-1) of weight hourly space velocity (WHSV, mL/gcat·h
-1) 

value was calculated following the equation below (Equation 3 and 4): 

GHSV (h-1) = 
𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝒇𝒍𝒐𝒘 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑙𝑒𝑡 𝑔𝑎𝑠𝑒𝑠

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
 = 

𝑄𝑖𝑛

𝑉𝑐𝑎𝑡
  (Equation 3) 

WHSV (gcat·h
-1) = 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝒇𝒍𝒐𝒘 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑙𝑒𝑡 𝑔𝑎𝑠𝑒𝑠

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
 = 

𝑄𝑖𝑛

𝑚𝑐𝑎𝑡
  (Equation 4) 

 

TOF (S-1) value was calculated supposing that all the exposed Ni atoms participate in the reaction 

using the following equation (Equation 5) 

TOF(S-1)  = 
𝑛𝐶𝐻4(𝑚𝑜𝑙)

𝑛𝑁𝑖 (𝑚𝑜𝑙)∗𝑡(𝑠)
   (Equation 5) 
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3.3 Characterization of the supports and catalysts  

3.3.1 Temperature-programmed reduction in hydrogen (H2-TPR) 

In order to study the reducibility, metal particle distribution, and metal-support interaction 

[250,256], etc. of the catalyst or support, the temperature-programmed reduction in hydrogen (H2-

TPR) experiment was carried out for supports and catalysts. As the difference of interaction 

intensity between metal oxides and support and the particle size of crystallite, the metal oxides can 

be reduced by H2 at different temperatures. Besides, some materials like CeO2 and ZrO2 can also 

be reduced by H2 due to their redox properties [257].  

The experiment program, scheme, and set-up used in this thesis were shown in Fig.3.4. The 

apparatus from BEL Japan Inc. shown in Fig.3.4c was equipped with a thermal conductivity 

detector (TCD).  

As shown in Fig.3.4a, the sample was pretreated at 350℃ by helium (He) to blow out the 

impurities adsorbed on the surface of the sample before reduction. After pretreatment, a gas 

mixture of 5% H2/Ar was fed into the sample. When the baseline of the TCD signal was stable, 

the sample was heated to 900 ℃ (ramp: 10 ℃/min) and kept at 900 ℃ for 30 min. At last, the 

furnace was cooled down to ambient temperature. 
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Figure. 3.4. Experimental program (a), scheme (b), and set-up (c) used in the TPR process.  

 

3.3.2 Temperature-programmed desorption in CO2 (CO2-TPD) 

To obtain the basicity and CO2 adsorption ability on the surface of the sample, temperature-

programmed desorption in CO2 (CO2-TPD) experiment was performed. This technology allows 

getting the total basicity and basic site distribution of the samples. According to the desorption 

temperature, the basic sites were divided into 3 types i.e. weak (T<150 °C), medium (T=150-

550 °C), and strong basic sites (T>550 °C) [160,208,258,259]. The weak basic sites are attributed 

to CO2 desorption from adsorbed CO2 on the surface hydroxyl (OH-) species [258,259].  The 

medium was assigned to Lewis acid-base pairs [258]. The strong basic sites were attributed to bulk 

carbonate decomposition [258,260]. Given the FTIR results reported, the weak, medium, and 

strong basic sites were caused by the chemisorbed CO2 in the form of bicarbonate, bidentate 

carbonate, and unidentate carbonate, respectively [260]. 
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The TPD experiments were carried out in the same apparatus as TPR and the scheme of the 

experiment was shown in Fig.3.5. At first, the sample was reduced at the desired temperature 

(550 ℃) for 1 h under a gas mixture of 5% H2/Ar (50 mL/min). Then, the reduced sample was 

cooling down under H2 to 50 ℃ and blew by He to clean the surface followed by the adsorption 

of CO2 at the same temperature (10% CO2/Ar, 50 mL/min). After that, the adsorbed CO2 was 

blown by He (50 mL/min). At last, the TPD process was performed from 50 to 900 ℃ under He.       

 

Figure. 3.5. The experimental program of temperature-programmed desorption of CO2 (CO2-TPD). 

 

3.3.3 Physical adsorption of nitrogen (N2) 

The physical adsorptions of nitrogen (N2) experiments were carried out to obtain the textural 

properties like specific surface area (SSA), pore volume (Vp), and average pore size (Dp). The 

experiments were performed in a Belsorp Mini II apparatus (Fig.3.4) from BEL Japan Inc. Before 

measurement, the sample was degassed at 200 ℃ under vacuum conditions for 4 h. After that, the 
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N2 physical adsorption was carried out under liquid N2 temperature (-196 ℃). The SSA was 

calculated by the Brunauer-Emmett-Teller method (BET) using equation 6  [261,262]:    

𝑝

𝑉(𝑝0−𝑝)
 = 

(𝑐−1)

𝑉𝑚𝐶
×

𝑝

𝑝0
 + 

1

𝑉𝑚𝐶
     (Equation 6) 

      (Equation 7) 

Sg (m2/g) = 4.36×Vm/W          (Equation 8) 

P represents the partial pressure of N2 (Pa); P0 represents the saturated vapor pressure of liquid N2 

(Pa) at adsorption temperature; Vm is the monolayer adsorbed gas quantity (mL); V is adsorbed 

gas quantity; C is BET constant. Sg is the SSA of the sample (m2/g); NA is Avogadro's constant 

(6.02×1023); Am is the Equivalent maximum cross-sectional area of N2 molecules (0.162 nm2); W 

is the weight of the sample (g). When the N2 is used as adsorbate, the Sg can be calculated by 

equation 7.   

   

 

Figure. 3.6. BELSORB MINI Apparatus used in the physical adsorption of nitrogen (N2). 
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The pore volume and average pore diameter were calculated by the Barrett-Joyner-Halenda (BJH) 

method, which implements two fundamental assumptions i.e. the shape of the pore is cylindrical, 

and the adsorbed amount results from both physical adsorption on the pore walls and capillary 

condensation in mesopores [263]. Pore size distribution (PSD, nm) uses the classical Kelvin 

equation (equation 9); 

ln
𝑃

𝑃0
 = 

2𝛾𝑉𝑚

𝑟𝑅𝑇
     (Equation 9) 

where P/P0 is the relative pressure; γ is the surface tension of the adsorbate in the liquid form (N2); 

Vm (mol/L) is the molar volume of the liquid; R is the universal gas constant; r is the radius of the 

meniscus formed in the mesopore; T is temperature [263,264]. 

N2 physisorption isotherms can be classified into 6 types (Fig.3.7). As shown in Fig.3.7, the type 

I isotherm, also called Langmuir isotherm, was assigned to the adsorption in which pores were 

filled at low relative pressure with a cliffy uptake owing to the significant adsorbent-adsorbate 

interaction [263]. The type II isotherm normally happens on the non-porous materials and 

macroporous materials, where N2 molecules are absorbed in mono/multi-layers without restriction 

[263]. The type IV isotherm that has a hysteresis loop is often found on materials with micropores 

and mesopores in which capillary condensation happens due to the interactions between gas 

molecules and adsorbent mesopore surface [263]. The type III and V isotherms with initial zero 

slopes correspond to weak adsorbate-adsorbent interactions on the materials (e.g. polyethylene). 

Type VI refers to stepwise multilayer adsorption on a uniform non-porous sur- face that usually 

happens on graphite carbon [263]. 
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Figure. 3.7. The N2 adsorption-desorption isotherms; Adapted from [263]. 

 

Figure. 3.8. Types of hysteresis loops obtained by N2 physisorption; Adapted from [263]. 

According to the occurrence of capillary condensation in mesopores, the desorption isotherm is 

different from the adsorption one resulting in the formation of hysteresis loops. The loops consist 
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of 4 types as shown in Fig.3.8, which are associated with the pore shapes. The H1 is attributed to 

the uniform distribution of spherical and cylindrical narrow mesopores. H2 exists in inorganic 

oxides with a complex network of interconnected narrow pores. H3 are found in materials that 

have aggregated non-rigid plate-like particles (e.g. clay) [265]. Type H4 is characteristic of 

microporous materials that have narrow slit-like pores with type I isotherms [263]. 

Besides the BJH method, PSD (nm) is also often calculated by density function theory (DFT). The 

equation is below: 

Nexp(P/P0)=∫ 𝑁DFT(
𝑃

𝑃0
, 𝐷) × 𝑓(𝐷)𝑑𝐷

𝐷𝑀

𝐷𝑚
  (Equation 10) 

Where f(D) is an unknown PSD function; Dm and DM correspond to the minimum and maximum 

pore sizes in the kernel, respectively [263]. 

 

3.3.4 Chemisorption of hydrogen (H2 chemisorption) 

In order to obtain the active metal distribution, the H2 chemisorption was employed to determine 

nickel dispersion (Micromeritics, ASAP 2020). Before analysis, about 0.2 g of calcined sample 

was evacuated in helium at 40°C. The sample was subsequently reduced in situ at 550°C for 1.5 h 

in the flow of H2 (30 mL/min). The temperature was cooled down to 40°C, followed by the 

volumetric H2 chemisorption with pure hydrogen. The metal distribution (D) is calculated by the 

following equation [266]: 

D (%) = 
1.17X

Wf
  (Equation 11) 
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The average nickel crystallite diameter (surface-averaged, nm) was calculated using the equation 

12 [266]: 

dNi (nm) = 
971

D
   (Equation 12)   

Where the X is chemisorbed H2 in micromoles per gram of catalyst, W represents the weight 

percentage of Ni, and f is the fraction of Ni reduced to the metal.  

The Ni surface area was calculated by assuming that one hydrogen atom corresponds to one Ni 

atom and that the cross-sectional area of the Ni atoms is 6.49 × 10−20 m2 [267]. 

 

3.3.5 X-ray diffraction (Small-angle and Wide-angle) 

To obtain the structural properties e.g. phase composition and crystallite size of the samples, the 

X-ray diffraction technologies including small-angle and large-angle (SAXRD and WAXRD) 

were performed for the studied materials. The SAXRD was used to confirm the ordered structure 

of the ordered mesoporous materials. The samples after calcination (550 ℃, 5 h), reduction, and 

catalytic tests were characterized by WAXRD experiments.  

XRD measurements were carried out on PANalytical-Empyrean diffractometer equipped with Cu 

K (λ=1.5406Ǻ) radiation source, with the scanning range of 2 theta (θ) range from 5 to 90°, with 

a 0.02°/min step size. The WAXRD experiments were carried out with the 2θ range of 0.5-6.0° by 

a stepwise of 0.01°. Fig.3.8 shows a set-up, schematic diagram, and principles of X-ray 

diffractometer with main components. 

The average crystallite size (D, nm) of Ni metal and support were calculated by Scherrer equation: 
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𝐷ℎ𝑘𝑙(𝑛𝑚) =  
𝐾λ

𝛽ℎ𝑘𝑙𝑐𝑜𝑠θ
   (Equation 13) 

In which k is Scherrer parameter (0.9); λ is the radiation wavelength (λ=1.5406Ǻ), βhkl refers to 

the full width at half maximum of the reflection peak, and θ represents the Bragg diffraction angle. 

(A) 

 

(B) 
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(C) 

 

Figure. 3.8. A set-up (A), schematic diagram (B), and principles (C) of x-ray diffractometer with main components; 

Adapted from [268] 

 

3.3.6 Elemental composition analysis 

To obtain the element composition of catalysts, the X-Ray Fluorescence (XRF) in a Rigaku 

Supermini200 analyzer or XRF 1800 Shimadzu was used to evaluate the elemental composition 

of the studied catalysts. The experiment was performed under vacuum at 36.5 ºC in the presence 

of P-10 gas (a mixture of 10% CH4/Ar, flow 24.7 mL/min). A pulse height analyzer was used to 

calibrate the proportional counter (PC) detector. The calcined sample was homogeneously mixed 

with boric acid and pelletized under 10 bar. So prepared pellet was then covered by polypropylene 

film (6 μm) and put into a sample holder for analysis.  
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3.3.7 Transmission electron microscopy and Energy Dispersive X-ray spectroscopy  

To acquire the morphology information and metal size of the catalyst, the Transmission electron 

microscopy (TEM) and Energy Dispersive X-ray spectroscopy (EDX) analyses were carried out 

with JEM-2010 and JEM-2100Plus (JEOL, Tokyo, Japan) transmission electron microscopes for 

the reduced catalysts. Before measurement, the reduced samples were dispersed in ethanol, 

following the suspension being added dropwise on a copper grid covering with carbon film, then 

the prepared materials were used for the microscopy measurement.  

 

3.3.8 X-ray photoelectron spectroscopy 

To obtain the surface compositions and oxidation states of the catalysts, the X-ray photoelectron 

spectroscopy (XPS) measurements were performed with a VG Microtech ESCA 3000Multilab 

spectrometer, equipped with a dual Mg/Al anode, with an excitation source of unmonochromatized 

Al Kα radiation (1486.6 eV). The sample powders as received were analyzed as pellets, mounted 

on a double-sided adhesive tape. The pressure in the analysis chamber was in the range of 10-8 

Torr during data collection. The constant charging of the samples was removed by referencing all 

the energies to the Ce3d5/2 component at 882.1eV or C1s peak to 284.6 eV. Quick scans of the 

Ce3d region were performed before each analysis to evaluate possible reduction under the beam. 

Analyses of the peaks were performed with the software CasaXPS. Atomic concentrations were 

calculated from peak intensity using the sensitivity factors provided by the software. The binding 

energy values are quoted with a precision of ±0.15 eV and the atomic percentage with a precision 

of ±10 %.  
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3.3.9 Thermogravimetric analyses-mass spectrometer (TGA-MS) 

To obtain the information of possible carbon deposition on the spent catalysts, the 

thermogravimetric analysis (TGA) was performed on the spent catalysts by the Q5000 IR 

apparatus. Around 25 mg of material was heated starting from room temperature to 750 °C (heating 

rate of 10 °C/min). The measurements were performed in synthetic air. The amount of H2O and 

adsorbed CO2 were estimated by the mass loss registered in the TGA plots and mass spectrometer 

(MS) signal. 

 

3.3.10 Temperature-programmed oxidation (TPO)  

To investigate the possible surface carbon deposition effects on the catalysts, the temperature-

programmed oxidation (TPO) analyses were carried out on the spent catalysts by Quadstar Mass 

equipped with a Pfeiffer Vacuum. Around 30 mg of a sample was heated from ambient temperature 

to 800 °C with a heating rate of 5 °C/min. The measurements were performed in a 5% O2/Ar gas 

mixture (Volumetric percentage, 200 ml/min). During the mass spectroscopy analysis, the 

following desorbed species were recorded; mass-to-charge ratio (m/z): 44 (CO2) and 18 (H2O). 

The CO2 signal in the graph was enlarged 10 times for the analysis.  
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4. Low-cost materials for CO2 methanation 

 

4.1 Ni-Mg catalysts supported on diatomite  

4.1.1 Introduction 

In the past decades, climate changes caused by global warming had brought about serious impacts 

on the natural system and human society [15]. The reduction of CO2 emissions has gained 

legislative importance [33]. The greenhouse gases e.g. CO2, CH4, and nitrous gases, mainly come 

from industrial activities and population growth. CO2 emission, which mainly comes from fossil 

fuel consumption, accounts for most greenhouse gas emissions [269]. To mitigate climate change, 

the reduction of CO2 emissions is important to protect the environment and achieve sustainable 

development [4,15]. It is impossible for human societies to stop consuming fossil fuels soon. Thus, 

the technologies to capture, store, and utilize CO2 from the atmosphere or industrial plants would 

bring both economic and environmental benefits [270,271].  

CO2 reduction technologies can be divided into CO2 capture and storage (CCS) and CO2 capture 

and utilization (CCU) routes [272]. The CCU technologies consist of chemical and biological 

methods in which the chemical methods show the most potential now [38]. Catalytic CO2 

conversion routes to fuels and chemicals e.g. methane, methanol, or dimethyl ether received much 

interest due to their high value [3,4,269]. They can not only provide an alternative route to reuse 

the fossil carbon resources and closed the anthropogenic carbon cycle but also synthesized high-

value chemicals and fuels [3]. CO2 hydrogenation into methane over transition metal-based 

catalysts using renewable hydrogen from water electrolysis as an example has a huge potential to 

reduce the emissions and, at the same time, to store the excess renewable energy to equalize the 
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demand and capacity in a power to gas (PtG) process, which a few plants were already operated 

in European Union [100,165,230,273,274].  

CO2 methanation, also called Sabatier reaction, i.e. CO2 + 4H2 → CH4 + 2H2O (ΔG298K = -130.8 

kJ/mol), was a thermodynamically favorable and exothermic reaction  [98]. Compared to other 

chemical reactions of CO2 conversion, it showed more feasible potentials towards 

commercialization due to the high activity and moderate running conditions [7]. Moreover, the 

resulting CH4 or synthetic/substitute natural gas (SNG) can be directly injected into the existing 

infrastructure for storage, transportation, and usage [7,137,167]. However, the presence of 

appropriate catalytic systems is indispensable due to the kinetic barriers [126]. 

Transition metals mainly VIII metals such as Rh, Ru, Pd, Co, Ni, Pt, and Fe [71,119,230,275–

283,121,122,124,137,145,164,210,228] have been used for the formulation of supported metal 

catalysts. The noble metal-based catalysts like Rh and Ru showed high low-temperature activity 

and long-term stability, but their high cost limits the utilization on an industrial scale [258,284]. 

The Ni-based catalysts are much suitable due to their excellent CO2 conversion and CH4 

selectivity, high availability, and low cost compared to the noble metal catalysts 

[123,137,288,289,145,167,274,279,280,285–287]. However, Ni-based catalysts still have 

drawbacks like poor stability, sintering of active metals, or chemical poisoning [173]. 

Numerous efforts have been devoted to promoting the activity and stability of Ni-based catalysts. 

The doping of other metals in the preparation of Ni-based catalysts e.g. Fe, Ce, Y, and Mg, etc. 

[142,144,290,291] had been reported to enhance the activity and stability of Ni-based catalysts 

towards methanation. Among the dopants, Mg seems to be a good modifying promoter since it 

affects the activation of CO2 on Mg2+ and promotes the dispersion of Ni particles on the support, 

resulting in improved stability and carbon resistance [179].  
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Besides, the support also plays a decisive role in the metal-support interaction, which determined 

significantly the catalytic performance in CO2 methanation [179]. Many materials such as SiO2, 

Al2O3, TiO2, CeO2, ZrO2 [141,147,168,173,214] have been used for the preparation of Ni-based 

catalyst for CO2 methanation. It is proposed to design a Ni-based catalyst with special structures 

such as hydrotalcite and perovskite, which have a very high thermal stability against sintering 

[179,292]. Diatomite is a natural siliceous, porous, low density, hydrophobic material with high 

adsorption ability and thermal stability [293].  

Diatomite had been used in the synthesis of catalysts for different applications as described in 

Table 4.1. 

Table 4.1 Possible applications for Diatomite materials used as catalysts  

Number Reaction Reference 

1) CO oxidation [294] 

2) Degradation of organic pollutants [295] 

3) Transesterification of vegetable oil [296] 

4) Hydrogenation of vegetable oils [297] 

5) Photocatalytic activity [298,299] 

6) Heck and Suzuki reactions [300] 

 

However, until now the application of diatomite-supported nickel catalysts for CO2 methanation 

has not been attempted. Therefore, for the first time, the capability of diatomite-supported Ni 

catalyst for CO2 methanation was investigated. 

The present chapter aimed to investigate the effect of three different nickel precursor salts on the 

textural, phase-structural, reducibility, and basicity properties of diatomite supported Ni-Mg 

catalysts obtained by the same precipitation-deposition (PD) method, as well as their catalytic 

performance in the CO2 methanation. 
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4.1.2. Catalyst preparation and Physicochemical techniques 

The detailed preparation process was depicted in 3.1.1 of chapter 3. The calcined samples were 

denoted as Ni-Mg/D-S, Ni-Mg/D-N, and Ni-Mg/D-A (X=S-sulfamate, N-nitrate, or A-acetate) 

based on the nickel precursors.  

The textural properties of reduced and spent catalysts were analyzed by N2 adsorption-desorption 

in a BELSORP Mini II-BEL Japan instrument. Before measurement, the samples (60 mg) were 

degassed at 200 °C for 2 h aiming at cleaning the surface, then the measurement was conducted at 

liquid N2 temperature.  

The structural parameters of catalysts (reduced and after methanation) were examined by X-ray 

diffraction (XRD) method in a PANalytical-Empyrean diffractometer equipped with Cu Kα 

radiation source (λ=1.5406 Ǻ) within 2θ range from 10 to 90°, with a step-size of 0.02°/min. The 

reduced samples were obtained from the same reduction condition as the reaction, after the 

reduction, the samples were cooled down under Ar flow (100 mL/min) to ambient temperature. 

The reducibility of catalysts was studied by H2-TPR by a BELCAT-M type (BEL Japan Inc.) set-

up equipped with a conductivity detector (TCD). The samples (60 mg) were pretreated in helium 

(50 mL/min) at 100 °C for 2 h, and then the TPR experiment was carried out in a 5% H2/Ar mixture 

(50 mL/min) up to 700 °C by a heating rate of 10 °C/min.  

The basicity distribution of samples was measured by CO2-TPD in the same apparatus as TPR-H2, 

and the sample after TPR was pretreated by He at 80 °C for half an hour following the adsorption 

of CO2 (10% CO2/He, 50 mL/min) for 1 h, then the TPD was performed after desorbing the 

physically adsorbed CO2 in 30 min at 80 °C. 
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4.1.3 Texture properties and structural parameters of catalysts 

The textural properties of reduced and spent catalysts were displayed in Table 4.1. It can be seen 

from Table 4.1 that the highest specific surface area (SSA) was obtained on both reduced and spent 

Ni-Mg/D-N samples compared to the other two samples. 

Table 4.1 BET specific surface area, pore volume and mean pore size of the catalysts 

Sample aSSA [m2g-1] bVp [cm3g-1] crp [nm] ddNi [nm] 

reduced spent reduced spent reduced spent reduced spent 

Ni-Mg/D-S 48.4 54.4 0.12 0.26 2.1 1.6 10.9 8.5 

Ni-Mg/D-N 81.0 73.3 0.11 0.20 1.9 1.9 11.1 8.5 

Ni-Mg/D-A 42.9 45.0 0.10 0.10 1.9 1.2 11.5 8.1 

a Calculated from BET method  
b,c Calculated from BJH method 
d Calculated from the three strongest peaks of XRD by Scherrer equation  

 

Moreover, no large differences regarding SSA were observed between the reduced and spent 

catalysts, indicating that the surface of catalysts was not modified strongly during the reaction. 

Meanwhile, there were slight mesopore enlargements between the reduced and spent catalysts on 

Ni-Mg/D-S and Ni-Mg/D-N samples, meaning the internal pores may be modified during the 

reaction. The mean pore sizes of the catalysts had not changed largely after the reaction. In 

conclusion, the Ni-Mg/D-N sample possesses the highest SSA, leading to more exposure of active 

sites. 

The X-ray diffraction (XRD) patterns of the catalysts after reduction and test were shown in Fig. 

4.1. As shown in the patterns, the small broad diffraction peak at 2θ=21.5° for all samples is 

attributed to the diffraction of amorphous silica, and the weak peaks at 2θ=26.7° and 28° are 

assigned to the diffraction of quartz phase, and the three strongest peaks located at 2θ=44.6°, 51.9°, 

76.5° correspond to the metallic Ni planes of (1 1 1), (2 0 0) and (2 2 0) [301,302]. The particle 
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sizes of crystalline Ni0 were calculated in Table 4.1. It can be seen there is nearly no difference of 

metallic Ni for reduced or spent catalysts when the nickel salt was changed. After the reaction, the 

crystal size of Ni0 became smaller compared to the reduced catalysts, meaning the redistribution 

of Ni0 during reaction [144].  

 

 

Figure. 4.1. XRD pattern of the reduced (a) and spent (b) catalysts. 
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4.1.4. Reducibility, basicity distribution of catalysts 

The reducibility and basicity of catalysts were measured by H2-TPR and CO2-TPD. The profiles 

are displayed in Fig.4.2a and Fig.4.2b, respectively. Also, the H2 consumption amount and basic 

site distribution are calculated in Table 4.2 and Table 4.3. For the TPR-H2,  the curves of all 

samples can be divided into 3 peaks i.e. α, β, and γ, corresponding to the reduction of small NiO 

on the surface (Ca.300-400 °C), bulk NiO weakly interacting with the support (Ca.400-500 °C) 

and nickel silicate or small NiO particles in the pore that are difficult to reduce [303]. As shown 

in Table 4.2, compared to the Ni-Mg/D-S, temperatures of β and γ peaks for the other samples are 

higher, indicating stronger Ni-support interaction. The total H2 consumptions were similar, 

indicating that the reducible nickel species for the catalysts are similar.  

The desorption peaks of CO2 (Fig.4.2b) can be fitted into three peaks, representing weak, medium, 

and strong basic sites of the catalyst, respectively [160,258,259,303]. The highest basic sites of 

weak or medium and lowest strong basic sites (Table 4.3) were observed on NiMg/D-N catalyst.  

And the medium or weak basic sites of the other two samples are similar. 

 

Table 4.2 H2 consumption of catalysts calculated according to H2-TPR 

Catalyst Temperature [°C]  H2 consumption [mmolH2/g] Total [mmolH2/g] 

α β γ  α β γ 

NiMg/D-S 353 425 520  0.22 1.41 1.44 3.07 

NiMg/D-N 369 464 578  0.09 1.02 1.85 2.96 

NiMg/D-A 343 479 599  0.14 1.31 1.32 2.77 
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Figure. 4.2. (a) H2-TPR profiles of fresh catalysts; (b) CO2-TPD profiles of reduced catalysts; 
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Table 4.3 Basic site distribution calculated from TPD-CO2 on reduced catalysts. 

Catalyst Basic sites [μmol/g]   Distribution of basic sites [%] 

Weak Medium Strong Total basicity Weak Medium Strong 

NiMg/D-S 30.5 35.5 6.6 72.7  42.0 48.9 9.1 

NiMg/D-N 35.6 48.9 9.3 93.8  37.9 52.2 9.9 

NiMg/D-A 32.8 36.9 12.1 81.8  40.1 45.0 14.8 

 

4.1.5. Catalytic performance of catalysts for CO2 methanation 

The catalytic activity of catalysts in CO2 methanation reaction was performed in a tubular U-type 

quartz reactor under ambient pressure, the temperature of catalyst was monitored by a K-type 

thermocouple. Before the reaction, the sample (100 mg) was reduced in-situ by the H2 mixture 

(5% H2/Ar, 100 mL/min) at 700 °C with a ramp of 10 °C/min for 1 h. After the reduction, the 

furnace was cooled down to 250 °C, then the gas mixture (CO2/H2/Ar=15/60/25, 100 mL/min, 

WHSV=60,000 h-1·gcat
-1) was fed into the reactor. The products were analyzed in an Agilent 

Varian 4900 online micro chromatograph. The reaction was conducted from 250 °C to 450 °C with 

a step of 50 °C with a duration time of 30 min at each temperature. The CO2 conversion and CH4 

selectivity were calculated based on Equations 1 and 2 in chapter 3, respectively. 

The activities of the catalysts are thus presented in Fig.4.3 in which the thick black lines represent 

the thermodynamic plots of CO2 conversion and CH4 selectivity. The CO2 conversion for all 

catalysts at the range of 250-300 °C seems very low and it increases with the rising temperature. 

The CO2 conversion of Ni-Mg/D-N is higher than that of others at each temperature step. 

Regarding the CH4 selectivity, there is no large difference for all catalysts at the range of 250-300 

°C. However, the Ni-Mg/D-N sample always possesses the highest selectivity when temperature 

excesses 350 °C.  Ni-Mg/D-A shows the worst CH4 selectivity at the running temperature range.  
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Correlating the medium basic sites of catalysts with the CO2 conversion values at 350-450 °C, it 

can be found that the CO2 conversion increases with the increase of medium basic sites. The 

crystalline size of Ni0 after the test as shown in Table 4.1 decreased compared with that of reduced 

catalysts, indicating no sintering happened during the reaction. Ni-Mg/D-N shows the best CO2 

conversion and CH4 selectivity. Thus, it can be deduced that the nitrate nickel salt is the best 

candidate for diatomite-supported Ni catalysts for CO2 methanation.  

The highest activity of Ni-Mg/D-N catalyst could be attributed to the highest SSA, the small Ni0 

particle size, the highest medium/total basic sites, and good reducibility. It is reported that the H2 

dissociates on the surface of Ni0 and the CO2 adsorbs and dissociates on the weak or medium basic 

sites [160]. For Ni-Mg/D-N, the small Ni0 particle could provide more active sites for H2 

dissociation, and the high basic sites, especially the medium sites, are beneficial for the adsorption 

and dissociation of CO2, thus promote the activity in CO2 methanation [160]. 
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Figure. 4.3. CO2 methanation results on the catalysts (H2/CO2/Ar=60/15/25, WHSV=60,000 h-1gcat
-1), (a) CO2 

conversion; (b) CH4 selectivity 
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4.1.6 Conclusions of diatomite supported Ni-Mg catalysts  

In this study, the Ni-Mg catalysts supported on diatomite were prepared by the precipitation-

deposition method with different nickel salts. The effect of nickel salts on the performance of Ni 

catalysts in CO2 methanation was investigated by H2-TPR, CO2-TPD, N2 physisorption, and XRD 

methods. It was found that the Ni-Mg/D-N catalyst presented the best activity and selectivity, 

which could be ascribed to the small Ni0 particle, good reducibility, and the highest medium basic 

sites.  

However, the activity results of diatomite-based Ni catalysts in this chapter seem not satisfactory. 

The diatomite-supported catalysts in CO2 methanation still need more development to improve the 

activity.  
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4.2 Nickel-based mixed oxides derived from layered-double hydrotalcite (LDH) 

4.2.1 Introduction 

Layered double hydroxides (LDH) or hydrotalcite (HT) are materials with di- and tri-valent cations 

incorporated into the brucite-like layers. The layers of hydrotalcite are positively charged and 

anions present in the interlayer spaces are compensating the charge. It was reported in the literature 

that there is a wide range of cations that may be incorporated into the hydrotalcite structure, e.g., 

Li+, Ti4+, Sn4+, or Zr4+ [304]. The calcination of such materials leads to the formation of mixed 

nano-oxides with periclase-like structures, which show very interesting features [58,63,167,305–

307]. Redox or acid-base properties of such materials may be tailored to some extent by controlling 

hydrotalcite composition, as shown e.g. in NH3-SCR [308–312] or DRM [44,250,307,313–315] 

reactions. Another advantage of double-layered hydroxides is that the incorporated cations are 

usually homogenously distributed due to their random arrangement in the brucite-like layers. 

Moreover, such materials exhibit basic properties, which are of great interest when used as 

catalysts for the reaction of CO2 methanation [131,138,205,206,208,250,308,316]. 

Several aspects were already investigated in the case of hydrotalcite-derived catalysts for CO2 

methanation reaction such as (i) the effect of nickel content, (ii) the particle size of nickel 

crystallites, (iii) the reducibility of nickel species, (iv) the number and distribution of basic sites, 

and (v) the promotion with other metals such as La, Fe, etc. or the new preparation method 

[131,138,206,317–320].  

Fan et al. [321] studied Ni impregnated MgAl2O4 derived from hydrotalcite followed by 

calcination at 500 °C or treated by DBD plasma to decompose Ni precursor. The plasma treatment 

resulted in higher nickel dispersion of 7.1% for the plasma decomposition method prepared 

sample, compared to 6.0% for the traditionally calcined material. The authors claimed that smaller 
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metallic nickel particles resulted in enhanced activity in the reaction of CO2 methanation. Wang 

et al. [319] studied Ni/Al HTs promoted with 0.05 and 0.25% molar ratio of Fe and found that the 

introduction of Fe effectively enhanced the H2 adsorption capacity. Ni/Mg/Al hydrotalcite 

promoted with a wide range of Fe content (1.2-18 wt.% of Fe) were examined by Mebrahtu et al. 

[237]. It was found that the activity in CO2 methanation was effectively increased in the low-

temperature region when low amounts of iron were introduced. In our previous reports, we 

investigated the influence of Ni loading and the effect of La introduction on the catalytic activity 

of LDHs catalysts in CO2 methanation [131,206,208]. The incorporation of higher amounts of 

nickel, as well as the introduction of lanthanum, significantly enhanced the activity in CO2 

methanation reaction. This could be correlated with the increased number of medium-strength 

basic sites, which in the case of La-promoted catalysts was strongly dependent on the method of 

promoter introduction [131,160,322]. According to the study of Pan et al. [160] CO2 adsorbed on 

Ni/Ce0.5Zr0.5O2 may undergo hydrogenation easier than on Ni/Al2O3 because of the higher content 

of medium basic sites.   

Yttrium had been reported in the literature as a promising dopant in methane dry reforming (DRM) 

reaction (CO2 + CH4 = 2H2+ 2CO) [44,50,51,64,250,316,323,324]. The increased activity of the 

Ni-containing hydrotalcite was attributed to the enhanced dispersion of the active phase in 

comparison with the un-promoted materials [51,250,316]. The stability of the Zr- containing 

catalysts in DRM reaction was also enhanced by the introduction of Y, which was assigned to the 

formation of a solid-solution ZrO2-Y2O3, leading to the increased reducibility of bulk NiO [44]. 

Moreover, Bellido et al. [325] reported that ceria doped with yttrium showed enhanced oxygen 

mobility and oxygen vacancies. For CO2 methanation, Muroyama et al. [198] reported that Y2O3 

impregnated with Ni revealed very high activity in the low-temperature region in CO2 methanation 
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when compared to Ni supported on Al2O3, ZrO2, and CeO2 catalysts. It was attributed to the 

promoted decomposition of formate species formed during the reaction over Ni/Y2O3 catalysts.  

The purpose of this part is to study yttrium promoted Ni-containing hydrotalcite-derived catalysts 

for CO2 hydrogenation to methane. Our study is focused on the determination of the influence of 

Y introduction to Ni-containing layered double hydroxides on the catalytic performance in CO2 

methanation. The catalysts were synthesized using the co-precipitation method at a constant pH 

and with a fixed molar ratio of MII+/MIII+ =3.0. The assumed loading of yttrium introduced into 

hydrotalcite was 0.4, 2.0, and 4.0 wt.%. To correlate the changes in activity with the Physico-

chemical properties, the studied materials were characterized using various techniques such as X-

ray diffraction (XRD), low-temperature N2 sorption, X-ray fluorescence (XRF), temperature-

programmed reduction in H2 (H2-TPR), temperature-programmed desorption of CO2 (CO2-TPD), 

thermogravimetric analysis (TGA) and temperature-programmed oxidation (TPO). 

 

4.2.2 Catalyst preparation  

The Layered-double hydrotalcite incorporated with or without yttrium were prepared by the co-

precipitation method. The as-synthesized materials were calcined to obtain the mixed nano-oxides. 

The particular preparation process was described in 3.1.2 of Chapter 3. The samples were denoted 

as MO-0Y, MO-0.4Y, MO-2.0Y, and MO-4.0Y. The Characterization techniques used in this 

chapter are detailed in chapter 3. 

 

4.2.3 Structural parameters, elemental composition, and textural properties of nano-mixed 

oxides derived from hydrotalcite 
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Structural parameters calculated from the XRD diffractograms acquired for as-synthesized 

materials are reported in Table 4.4. The structural parameters a and c were obtained by the 

equations of a=2d(110) and c=d(003)+2d(006)+3d(009). The crystallographic parameter a (2d110) is 

associated with the average cation-cation distance in the hydroxide layers [63]. The parameter a is 

stable for all materials (3.06 Å), indicating the lack of possible distortions of the lattice. As stated 

by García-García et al. [326], yttrium can be incorporated into layers of double-layered 

hydroxides, though its ionic radius is somewhat larger than that of Al and Mg (Mg3+=0.86 Å, 

Al3+=0.675 Å, Y3+=1.04 Å) [250,327]. The obtained parameter c (d003 + 2d006+ 3d009), which refers 

to the triple thickness between brucite layers in hydrotalcite structure, decreased for low Y (under 

2 wt.%) modified samples in comparison to the non-modified material, except for MO-4.0Y, which 

increased to 23.51 Å (Table 4.4). For the MO-4.0Y, some deposition of Yttrium on the external 

surface may be assumed. Moreover, the distance between the brucite-like layers (c´=c/3) is in the 

range of 7.79-7.84 Å, showing the presence of interlayer anions, such as e.g. CO3
2- (7.65 Å) and 

NO3
- (8.79 Å) [304,328,329]. The structural parameters revealed that the yttrium loading up to 2.0 

wt.% could result in the introduction of this metal into the periclase-like structure. However, the 

higher content of the yttrium led to the increase of the interlayer space, which was possibly linked 

with the deposition of the metal on the surface of the layers. This agrees with the textural 

properties, as the specific surface area of MO-4.0Y significantly decreased compared with that of 

MO-2.0Y due to their partial blockage. 

The elemental composition of nano-mixed oxides obtained by calcination acquired from the XRF 

method is presented in Table 4.4. All samples revealed nickel content between 16 and 20 wt.%, 

whereas the content of yttrium was either the same (MO-0.4Y) or close to the nominal amount 

(MO-2.0Y and MO-4.0Y). According to Li et al. [64], Ni2+ can be substituted by Y3+, similarly as 
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observed in our study (Table 4.4). The calculated M2+/M3+ atomic ratios were fairly close to those 

assumed during the materials synthesis, indicating that the composition of LDHs may be easily 

controlled as reported before [62]. 

 

Table 4.4 Structural parameters (XRD), elemental composition (XRF), and textural properties 

(BET analysis) of yttrium modified nano-mixed oxides derived from hydrotalcite. Additionally, 

the nominal values are reported in brackets. 

Catalyst Structural 

parameters 

Elemental composition of the calcined 

materials 

 Textural properties of the 

calcined materials 

a  

[Å]a) 

c  

[Å]b) 

Ni [wt.%] Y [wt.%] M2+/M3+ [-]  SBET 

[m2/g] 

c) 

Vp 

[cm3/g] 

d) 

dp 

[nm]e) 

MO-0Y 3.06 23.45 20 - 3.6 (3.0)  120 0.6 19 

MO-0.4Y 3.06 23.38 21 0.4 (0.4) 3.5 (3.0)  120 0.5 15 

MO-2.0Y 3.06 23.42 18 1.8 (2.0) 3.4 (3.0)  192 0.6 14 

MO-4.0Y 3.06 23.51 16 3.4 (4.0) 3.7 (3.0)  153 0.7 18 

a) calculated from d-spacing of (110) plane; a = 2d110
  

b) calculated from appropriate d-spacings of (003), (006) and (009) planes; c = d003 + 2d006+ 3d009
 

c) specific surface areas calculated from the BET equation  

d) mesopore volumes obtained from the BJH desorption calculation method 

e) pore size distribution derived from the BJH desorption calculation method 

 

The textural parameters obtained from the N2 sorption isotherms for the calcined materials are 

listed in Table 4.4. All values agree with those previously reported in the literature 

[44,51,131,138,208,250,304,308,316,322]. The obtained specific surface areas ranged between 

120 and 192 m2.g-1 and the highest area was found for the MO-2.0Y catalyst. There are no 

significant differences regarding BET surface area and pore volume of Ni-containing double-

layered hydroxides-derived catalyst when the loading of yttrium is low (≤0.4%) compared with Y-

free sample, only the average pore size decreases as the increase of yttrium at a low loading of 



Chapter IV Low-cost materials for CO2 methanation 

 

 

110 
 

yttrium [250,316]. As described in the section before, the structural parameters showed that the 

yttrium loading up to 2.0 wt.% could result in the introduction of this metal into the periclase-like 

structure. However, the higher content of the yttrium increased the interlayer space, which was 

possibly linked with the deposition of the metal on the outer surface of the layers. This agrees with 

the textural properties, as the specific surface area of MO-4.0 Y significantly decreased due to 

their partial blockage. The volume of mesopores did not change significantly after yttrium 

promotion. However, pore diameters diminished for MO-0.4Y and MO-2.0Y catalysts, as 

compared to the non-promoted material, pointing to the formation of a higher number of smaller 

pores when yttrium was introduced into the brucite-like layers. 

 

 

Figure. 4.4. XRD profiles for reduced nano-mixed oxides modified with different yttrium loadings (0.4, 2.0, or 4.0 

wt.%) and compared to the un-promoted catalyst (MO-0Y). 
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Fig.4.4 shows XRD diffractograms of the reduced catalysts, in which metallic nickel phase (ICOD 

01-087-0712) is evidenced by the presence of reflections at 2θ ca. 44.5, 53 and 76.5°, 

corresponding to crystal planes of (111), (200) and (220), respectively. Moreover, reflections 

arising from the periclase-like structure at 2θ ca. 36.7, 43 and 62.5° are observed, which 

corresponds to mixed oxides obtained after thermal treatment of double-layered hydroxides 

[44,250,316]. Table 4.5 reports the size of Ni0 crystallites, calculated from the 2θ diffraction peak 

at ca. 52° (corresponding to (200) crystal plane of Ni0) using the Scherrer equation. The yttrium 

promotion resulted in a decrease of nickel crystallites size from ca. 13.7 nm for the parent MO to 

ca. 9.2 nm for MO-0.4Y. The values obtained for MO-2.0Y and MO-4.0Y catalysts were close to 

the one registered for the un-promoted catalyst, i.e. 12.5 and 12.3 nm, respectively. 

 

Table 4.5 Ni0 crystallite size for the reduced and spent materials calculated from XRD 

Catalyst Ni0 crystallite size 

Reduced samples [nm] a) Spent samples [nm] a) 

MO-0Y 13.7 9.3 

MO-0.4Y 9.2 7.9 

MO-2.0Y 12.5 7.6 

MO-4.0Y 12.3 7.5 

a) Calculated from the Scherrer equation at 2θ =52° 
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4.2.4 Reducibility of catalysts followed by H2-TPR 

 

Figure. 4.5. H2-TPR profiles for mixed oxides modified with different yttrium loadings (0.4, 2.0, or 4.0 wt.%) 

compared to the non-promoted catalyst (MO-0Y). 

 

Fig.4.5 shows the H2-TPR of calcined mixed oxides (MO). As demonstrated in other reports, the 

yttrium cannot be reduced under the conditions used in the measurements [64,325]. The reduction 

profile of MO-0Y has two main reduction bands that centered at 366 °C and 829 °C, which 

corresponds respectively to the reduction of nickel oxides weakly bonded with the double-layered 

hydroxides and nickel species that are incorporated into the structure of hydroxides 

[50,58,64,250,325,330]. The high-temperature peak shifts towards higher temperatures for all Y-

promoted catalysts (Table 4.6, 858-866 °C), which indicates stronger interaction between nickel 

oxide species and the support matrix in comparison with the Y-free sample [250]. For 2.0 and 4.0 

wt.% of Y, the shift of the latter peak was less pronounced, as shown in Table 4.6, indicating less 

strong metal-support interaction. This might be due to the segregation of yttrium or lattice 
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substitution of nickel species by yttrium [64]. The reduction peaks at temperatures lower than 600 

°C presented low intensity for Y-modified samples in comparison to the un-promoted catalyst 

(MO-0Y), which means that the loading of Y results in a decreased reducibility. This phenomenon 

was already observed in hydrotalcite derived mixed oxides catalysts modified by Y and Zr in CO2 

dry reforming reaction, in which the adding of Y and Zr resulted in a decrease of the reducibility 

of nickel [58,250]. As calculated in Table 4.6, the highest H2 consumption (1.67 mmol) was 

obtained for the Y-free mixed-oxide sample. After the introduction of yttrium, the H2 

consumptions (1.15-1.38 mmol) of yttrium-promoted mixed oxides decreased in contrast to the 

yttrium-free sample, demonstrating decreased reducibility of NiO for yttrium-promoted mixed 

oxides.  

 

Table 4.6 H2 consumption according to H2-TPR analyses 

Catalyst Temperature (°C)  H2 consumption (mmolH2/g) 

<600 >600  <600 >600 Total 

MO-0Y 386 829  0.37 1.30 1.67 

MO-0.4Y 320 866  0.07 1.09 1.16 

MO-2.0Y 327 858  0.11 1.27 1.38 

MO-4.0Y 444 858  0.05 1.10 1.15 

 

4.2.5 Basicity of the catalysts derived from CO2-TPD 

Fig.4.6 shows the CO2-TPD profiles of the reduced MO catalysts. Three types of CO2 desorption 

peaks could be observed with a maximum temperature of 138, 203, and 364 °C for the MO-0Y 

sample, which refers to weak, medium (intermediate), and strong basic sites, respectively 

[63,138,250,307]. Similar peaks were found for yttrium-promoted mixed oxides materials, with 

the maximum temperature of CO2 desorption peak shifted towards lower temperature with the 
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increasing yttrium content compared to the MO-0Y sample, indicating that the loading of Y 

changed the number and distribution of the basic sites. This phenomenon was also observed in 

other literature [250].    

 

Figure. 4.6. CO2-TPD profiles for mixed oxides catalysts 

 

As calculated in Table 4.7, the amount of different type of basic sites for the Y-modified samples 

increased with the increase of yttrium loading (from 0.4 to 4.0 wt%) and the total number of basic 

sites also increased with the increased Y content, with MO-4.0Y having the highest number of 

each type of basic sites as well as the total basic sites. Compared to the basicity of the MO-0Y 

sample, the materials with 0.4 wt.% and 2.0 wt.% of Y showed lower content of total basic sites 

and individual types of basic sites (weak, medium, or strong). But compared to that of the MO-

0Y, the percentage share of weak or intermediate basic sites for MO-0.4Y and MO-2.0Y was 

higher, with lower content of the share of strong basic sites, meaning that the doping of yttrium 
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significantly changed the distribution of basic sites on Y-modified samples. In conclusion, the 

introduction of Y with low content (0.4 wt.% and 2.0 wt.%) increases the share of medium basic 

sites at the expense of strong type. The highest share of medium-strength basic sites was found on 

the MO-0.4Y sample. 

 

Table 4.7 Basicity of the studied catalysts, calculated from TPD-CO2 for the reduced materials. 

Catalyst Basic sites [μmol/g]  Basic sites distribution [%] 

Weak Medium Strong Total basicity  Weak Medium Strong 

MO-0Y 16.4 43.9 46.3 106.6  15.4 41.2 43.4 

MO-0.4Y 9.4 33.7 14.6 57.7  16.2 58.5 25.3 

MO-2.0Y 11.6 35.2 26.4 73.2  15.8 48.1 36.1 

MO-4.0Y 41.4 91.5 91.2 224.1  18.5 40.8 40.7 

 

4.2.6 Catalytic performance tests for CO2 methanation 

The catalytic tests of CO2 methanation were performed in the same reactor presented above. Prior 

to the catalytic tests, the calcined materials were reduced in situ from room temperature to 900 °C 

with a heating rate of 5°C/min under reduction gas (5%H2/Ar: 100 ml/min) and kept 1 h at 900 °C. 

The reduction temperature was 900 °C because the nickel species could be reduced thoroughly at 

900 °C according to the TPR result, which was also used in other literature [131]. After the 

reduction, the reactor was cooled down to 200°C and the reaction mixture was introduced with a 

molar ratio of Ar/H2/CO2=25/60/15 and the GHSV of 12,000 h-1. Subsequently, the methanation 

tests were performed in the temperature range from 200 to 400 °C with a temperature step of 50 

°C, which are appropriate conditions for Ni-containing mixed oxides, as reported in many works 
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[131,322]. At each plateau of temperature, the catalyst was kept for 30 min, corresponding to a 

steady-state measurement. The flow rates of inlet and outlet were measured by flowmeter at each 

temperature when the reaction was stable (after 30-45 minutes of reaction). And the measured flow 

rates and the compositions obtained from GC were used to calculate the CO2 conversion (XCO2) 

and CH4 selectivity (SCH4) as reported in Chapter 3. 

Fig. 4.7 presents the CO2 conversion and Fig.4.8 presents the methane selectivity measured during 

catalytic experiments for the studied mixed oxides (MO) promoted with different amounts of Y as 

a function of reaction temperature. 

 

Figure. 4.7. CO2 conversion of the studied mixed oxides catalysts (MO-0Y, MO-0.4Y, MO-2.0Y, MO-4.0Y). 

Experimental conditions of CO2 methanation: GHSV=12000 h-1, total flow 100 mL/min, CO2/H2/Ar =15/60/25. 

 

The thick continuous line shown in Fig.4.7 represents the thermodynamic equilibrium calculated 

for the conditions used in this work [63,138]. According to thermodynamics, CO2 methanation is 

favored at low temperatures and it decreases with the increasing temperature due to the co-
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existence of parallel reactions, such as reverse water-gas shift (RWGS) or reforming [63,331]. The 

latter results in undesired side products, among them carbon monoxide [322]. All mixed oxides 

were catalytically active in CO2 methanation. The obtained conversions at 250 °C were much 

lower than the thermodynamic limitations, except for the MO-0.4Y catalyst. Depending on the Y-

loading a change in the catalytic performance of the catalysts was observed. Nevertheless, the 

increase of the catalytic activity was not directly correlated to the increase of yttrium loading. For 

both series of results registered at 250 °C and 300 °C, the sequence for the CO2 conversion was: 

MO-0.4Y > MO-2.0Y > MO-0Y > MO-4.0Y. CO2 conversion increased at 250 °C from 16% for 

MO-0Y to 40% and 81% for MO-2.0Y and MO-0.4Y, respectively, and at 300°C, from 71% for 

MO-0Y to 80% and 88% for MO-2.0Y and MO-0.4Y, respectively. At both temperatures, 250 °C, 

and 300 °C, the selectivity towards methane was higher than 98.5%, with very low differences 

between the Y-promoted catalysts (Fig.4.8). However, in the tested temperature range, both the 

CO2 conversion and CH4 selectivity for MO-4.0Y decreased in comparison to MO-0Y. This could 

have been caused by the deposition of the yttrium on the external surface of the support matrix and 

the weaker metal-support interaction, as confirmed by XRD and TPR-H2. 
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Figure. 4.8. CH4 selectivity of the studied mixed oxides catalysts (MO-0Y, MO-0.4Y, MO-2.0Y, MO-4.0Y). 

Experimental conditions of CO2 methanation: GHSV = 12000 h-1, total flow 100 ml/min, CO2/H2/Ar = 15/60/25. 

 

The enhancement of the activity of Y-promoted catalysts except MO-4.0Y can be partially 

explained by the smaller Ni0 crystallite size in comparison to the non-promoted sample, which is 

also found for La-promoted Ni-containing hydrotalcite-derived mixed oxides in CO2 methanation 

[206].  

Simultaneously, the MO-0.4Y catalyst showed the highest percentage share of intermediate-

strength basic sites. Pan et al. [332] claimed that Lewis acid-base sites are involved in the CO2 

methanation mechanism and the CO2 adsorbed on strong basic sites did not participate in the 

reaction and the medium-strength basic sites played an important role in the reaction. In the current 

study, a linear correlation between CO2 conversion and the percentage share of medium-strength 

basic sites can be drawn at 250 °C and 300 °C (Fig.4.9). It shows that the CO2 conversion increase 

as the increase of the percentage share of medium-strength basic sites. 
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Figure. 4.9. CO2 conversion at 250 °C and 300 °C versus percentage share of medium basic sites of tested catalysts, 

the black points represent CO2 conversion at 250 °C and the red points represent CO2 conversion at 300 °C 

 

The medium-strength basic sites play a significant role in the methanation process. Wierzbicki et 

al. [131,322] found that there was a good linear correlation between the number of medium-

strength basic sites and the CO2 conversion on the unpromoted and La-promoted LDHs catalysts. 

This work confirms that the percentage of medium-strength basic sites has a considerable influence 

in the case of carbon dioxide methanation on Ni-containing Y-modified mixed oxides catalysts.  

Besides, the TPR results show that MO-0.4Y has the highest intensity of metal-support interaction 

compared to that of other samples [333]. In conclusion, the decreased nickel particle size, increased 

share of medium-strength basic sites, and stronger metal-support interactions found for MO-0.4Y 

catalyst greatly contributed to the enhanced catalytic activity in CO2 methanation. 
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4.2.7 On the evolution of spent samples 

4.2.7.1. Structural Evolution 

Ni0 crystallite sizes calculated for the spent catalysts are reported in Table 4.5. A decrease in the 

crystallite size was found for the spent catalysts compared to that of the reduced samples, in 

agreement with Świrk et al. [250] and Dębek et al. [58] on similar materials for other CO2 

reactions. This can be explained by the loss of crystallinity of the Ni phase due to its possible re-

dispersion of nickel particles. The decreased crystallite size of Ni0 species also indicates that no 

sintering happened during the reaction. 

 

Figure. 4.10. XRD diffractograms of spent Y modified mixed oxides (0.4, 2.0, or 4.0 wt.%) as compared to the 

unpromoted catalyst (MO-0Y). 

 

After the methanation tests, no reflections corresponding to graphitic carbon (at 2θ=27˚) were 

observed in the diffractograms of the spent catalysts (Fig.4.10). Thus, extensive coking with 
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graphite formation may be excluded. This is in agreement with the studies of other authors e.g. 

Wierzbicki et al. [131], who confirmed the absence of carbon deposition on Ni/Al LDHs-like 

catalysts for CO2 methanation.  

 

4.2.7.2. Surface evolution 

 

Figure. 4.11. TGA plots of the studied catalysts (MO-Y0, MO-Y0.4, MO-Y2.0, MO-Y4.0) were tested in the 

methanation process. 

 

Thermogravimetric analyses were carried out for the spent catalysts to verify if other non-

crystalline carbon species may have been formed (Fig.4.11). From Fig.4.11, two mass loss regions 

can be observed for all tested MO samples, corresponding respectively to the removal of physically 

adsorbed water (<250°C) and a higher temperature region (>400°C) corresponding to oxidation of 

metallic nickel to nickel oxide and the removal of residues. From TGA, one can conclude that no 

significant amount of carbonaceous species was present on the surface of the spent catalysts. To 
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confirm this, temperature-programmed oxidation tests were performed from RT to 650 °C on MO-

0Y (Fig. 4.12a) and MO-0.4Y catalysts (Fig. 4.12b). 

 

(a) 

 

(b) 

 

Figure. 4.12. Temperature-Programmed Oxidation results followed by mass spectroscopy 

(H2O m/z=18 and CO2 m/z=44x10) on catalysts; a) unpromoted MO catalysts, b) MO-0.4Y. 

 

From Fig.4.12a and b, one can observe that CO2 formation corresponding to the decomposition of 

carbonaceous species (250-500°C) is very low, confirming insignificant amounts of the formed 
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carbonaceous species during the CO2 methanation reaction on the Y promoted catalysts. Thus, the 

main byproduct of the reaction is CO. 

 

4.2.8 Conclusions of mixed oxides from LDHs 

Yttrium-promoted Ni/Mg/Al hydrotalcite-derived catalysts were synthesized using the co-

precipitation method at constant pH. Then, the catalysts were characterized by low-temperature 

N2 sorption, X-ray diffraction, elemental analysis, and temperature-programmed 

reduction/desorption (H2-TPR and CO2-TPD), and tested as catalysts in CO2 methanation at GHSV 

=12000 h-1 using a mixture of CO2/H2/Ar =15/60/25. 

The addition of Y affected the CO2 adsorption capacity of the materials by changing the 

distribution of the basic sites, especially those of medium strength. As proven by H2-TPR, the 

yttrium promotion influenced the nickel/support interaction. After the introduction of yttrium, a 

shift of reduction peak towards higher temperatures was observed, which was attributed to the 

segregation of Y on the support. The Y addition affected strongly the catalytic activity in CO2 

methanation, increasing the CO2 conversion at 250 °C from 16% for MO-0Y to 40 and 81% for 

MO-2.0Y and MO-0.4Y, respectively. This could be explained by both increased distribution of 

medium-strength basic sites and significantly smaller metallic nickel particle size of Y-promoted 

catalysts. Additionally, the metallic nickel crystallite size decreased after the reaction, which points 

to the reorganization of Ni at the surface of the support, which could contribute to the increase of 

the catalytic activity in the moderate temperature region. The selectivity towards methane 

formation was found around 98 to 99% at 250°C. It is worth noting that the only products of the 

reaction registered were H2O, CH4, and CO. The XRD, TGA, and TPO analyses confirmed only 

traces of carbon in the spent catalysts. 
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The mixed oxides Ni catalysts derived from LDHs showed high activity and selectivity in CO2 

methanation. The yttrium promoter showed high improved performance for mixed oxides Ni 

catalysts. 

 

4.3. Conclusions and perspectives  

Ni catalysts based on CeO2, ZrO2, and MOF, etc. materials showed high activity and selectivity 

towards CO2 methanation [136,212,334]. However, such materials still have a high cost for large-

scale applications. The development of Ni catalysts based on low-cost materials or natural 

materials such as clays, ashes, and bentonite, etc. can help reduce the cost, which has received 

intensive attention [239,335–340].  

In this chapter, the diatomite-supported Ni catalysts and yttrium-promoted Ni/Mg/Al hydrotalcite-

derived catalysts were developed to catalyze the CO2 methanation reaction. Although the 

diatomite-supported Ni catalysts did not show high performance, they can be improved further by 

other methods, which will be studied in the future. Their promotion by elements such as La, Y, 

and Fe would be interesting in a future study. 

Ni-based hydrotalcite-derived catalysts are already known to be efficient catalysts for CO2 

methanation reaction. Promotion by Fe and La had shown interesting properties, however, the 

promotion by Y was never studied before. Herein, it was demonstrated that yttrium-promoted 

Ni/Mg/Al hydrotalcite-derived catalysts showed high performance at low temperatures during the 

reaction, indicating a high potential towards commercialization. Thus, the purpose of the next 

chapter is to use CeO2 and Y2O3 as supports for methanation reaction. 
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5.  Ni/CeO2 nanoparticles promoted by yttrium doping as catalysts for CO2 

methanation 

 

5.1 Introduction 

It is well known that noble metal-based catalysts perform good low-temperature activity and 

selectivity in CO2 methanation [106]. However, the high cost and low availability make them 

unappropriated towards application. In such a case, Ni catalysts supported on various oxides 

become good alternatives for methanation reaction thanks to their benefits of relatively high 

catalytic activity, low cost, and high availability [187]. Supports with high surface area, 

appropriate basicity, and strong metal-support interaction, play important roles in enhancing CO2 

conversion and selectivity towards CH4. Various supports have already been studied for nickel-

based catalysts, such as SiO2 [341], diatomite [143], α-Al2O3 [342], ZrO2 [343], hydrotalcite 

derived mixed oxides [131,138,206,208], MgO [344], TiO2 [345], mesoporous oxides [171,346–

348], CeO2, and Y2O3 [194,197,210,349,350]. As presented in chapter 4, low-cost materials like 

diatomite and hydrotalcite-derived mixed oxides were introduced. 

In the meantime, CeO2 had attracted plenty of interest because of its unique redox property. It can 

create oxygen vacancies during the redox process Ce (III)/Ce (IV), promoting the activation of 

CO2 [351]. Tada et al. [170] reported that Ni/CeO2 catalysts showed higher CO2 conversion and 

CH4 selectivity at low temperatures compared to Ni catalysts supported on α-Al2O3, TiO2, and 

MgO. Such effect was attributed to the formation of oxygen vacancies on the surface of partially 

reduced CeO2, promoting the activation of CO2 and adsorption of CO2 derivatives. Zhou et al. [192] 

prepared CeO2 with different structures and used the synthesized CeO2 as support to prepare 
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Ni/CeO2 catalysts. The characterization data and CO2 methanation results revealed that the 

Ni/CeO2 catalyst with a well-ordered mesoporous structure had high specific surface area, strong 

metal-support interaction, smaller Ni0 particle size, and higher dispersion of active species than Ni 

over other ceria oxides, thus showing the highest CO2 conversion and the best stability at T >260°C. 

The study of the CO2 methanation mechanism over Ni/CeO2 and Ni/Al2O3 catalysts revealed that 

the high methanation activity and selectivity of Ni/CeO2 were attributed to the presence at the 

nickel-ceria interface of active sites for CO2 dissociation, while dispersed metallic Ni particles 

activated H2 [159]. Thus, Ni/CeO2 based catalysts able to chemisorb and dissociate CO2 have been 

widely investigated.  

Although several reports claim Ni/CeO2 as a potential good catalyst for methanation, the catalytic 

stability with time on stream is still a brake to its industrialization due to the occurrence of side 

reactions. Many efforts have been devoted to promoting the activity and stability of Ni/CeO2 

catalysts e.g., tailoring the structure of CeO2, promoting the dispersion of nickel species, increasing 

the metal-support interaction [139]. Yu et al. [350] added in the preparation of Ni/CeO2 

nanoparticles g-C3N4 as a sacrificial and protective template. Several characterization methods 

used to investigate such catalysts revealed enhanced interaction between Ni and CeO2 and 

decreased Ni particle size on the modified catalyst, thus facilitating the adsorption and dissociation 

of the reactants with higher methanation activity and CH4 selectivity.  

Bian et al. [196] prepared Ni/CeO2 catalysts with tunable CeO2 structure i.e. ceria nanorods (NR) 

and ceria nanocubes (NC) and investigated their catalytic performance in CO2 methanation. 

Among the prepared catalysts, the Ni/CeO2 (NR) exhibited higher conversion and selectivity 

towards CH4 at low temperature, which was attributed to the higher concentration of Ce (III) on 

the surface.  
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Yttrium has been reported to be an effective promoter of nickel catalysts on double-layered 

hydroxides for CO2 methane reforming, because it enhances the redox properties of nickel, 

increases the specific surface area, and promotes weak and medium basic sites in comparison with 

non-modified samples [144,250]. 

Moreover, yttrium has been proven to stabilize ZrO2 at high temperatures [352]. Kesavan et al. 

[353] reported Ni/YSZ (Yttrium stabilized ZrO2) catalysts prepared by different methods for CO2 

methanation and found that the Ni/YSZ synthesized by wet impregnation with EDTA complex 

showed remarkable stability on time on stream, without deactivation under high CO2/H2 ratio. To 

the best of our knowledge, until now, almost no research concerning the effect of yttrium on 

Ni/CeO2 catalysts for CO2 methanation has been reported.  

In this chapter, Ni catalysts supported on yttrium-modified CeO2 prepared by the hydrothermal 

method were studied in CO2 methanation. The present work aims to investigate the relationship 

between the modification induced by yttrium promotion on the physicochemical properties and 

catalytic performances of Ni/CeO2 catalysts. For this purpose, the catalysts as calcined, reduced, 

or spent (after methanation test or steady-state test) samples were characterized by XRF, XRD, 

TEM/HRTEM, EDX, H2-TPR, CO2-TPD, N2 adsorption-desorption, XPS, and TGA techniques. 

The structure-activity relation was discussed. 

 

5.2 Catalyst preparation and physicochemical techniques 

The CeO2 nanoparticles and Ni/CeO2 nanoparticle catalysts were prepared by the hydrothermal 

method and wet impregnation method, respectively. The detailed processes were listed in 3.1.3 of 
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Chapter 3. The names of catalysts were designed as 5Ni/CeO2, 5Ni/Y2O3, and 5Ni/CeO2-Yx (Y 

content, wt.%), respectively. 

Elemental analysis of the catalysts was carried out using an X-ray fluorescence wave-dispersive 

spectrometer (XRF 1800 Shimadzu). According to XRF analyses, the real loading of Ni and Y in 

the prepared catalysts was equal to the nominal one ±10%. 

The specific surface areas (SSA), pore-volume, and pore size of the materials were measured by 

N2 adsorption-desorption isotherms using a Micromeritics ASAP2020 system (Carried out in the 

Italian lab, which is different from the Belsorp Mini II apparatus in 3.3.3). Before analysis, the 

samples were degassed in a vacuum at 250 °C for 2 h, then the measurement was performed at 

liquid nitrogen temperature (-196 °C). The Brunauer–Emmett–Teller (BET) method was used to 

calculate the SSA. The BJH method was applied to estimate the pore volume and average pore 

size.  

The crystalline structure of calcined, reduced, and spent samples was determined by Powder X-

ray diffraction patterns (XRD), performed on a Bruker D5000 diffractometer equipped with a Cu 

Kα anode and graphite monochromator (different from the apparatus in 3.3.5). The data were 

recorded in a 2θ range of 10°-80° or 20°-80° (depending on the crystalline nature of the samples) 

with a step size of 0.05° and time per step of 5 s. The crystalline phases of samples were analyzed 

according to ICSD files (Inorganic Crystal Structure Database). The mean crystallite size was 

calculated by the Debye-Scherrer equation shown in Eq. 13 (3.3.5). 

The reducibility of the catalysts was evaluated by temperature-programmed reduction (H2-TPR) 

measurements. The experiments were carried out in a Micromeritics Autochem 2950HP apparatus 

(different from the apparatus in 3.3.1) equipped with a thermal conductivity detector (TCD). 
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Before the TPR procedure, the samples (125 mg) were pretreated with the gas mixture 5% O2/He 

(50 mL/min) at 350 °C for 30 minutes, then the furnace was cooled down to room temperature 

under pure He flows. After pretreatment, the samples were heated from ambient temperature to 

1050 °C with a heating rate of 10 °C/min under the gas mixture of 5% H2/Ar (30 mL/min). The 

H2 consumption values were calculated, with a precision of ±10%, by integration of the TPR 

curves registered by TCD through a calibration procedure. On the basis of H2 consumption in the 

α peak, the oxygen vacancy content (%), V0 (%) was calculated according to the Eq. (5.1.1): 

V0(%)=
(mmol O2−/gcat)

(total mmol O2−/gcat)
 *100                                                     Eq. (5.1.1) 

where the mmol O2-/gcat correspond to the mmol of H2/gcat from α peak and the total mmol O2-/gcat 

where calculated on the basis of CeO2 or CeO2-Y content/gcat). 

Furthermore, the basicity of catalysts was investigated through CO2 temperature-programmed 

desorption (CO2-TPD) carried out in a BEL-M instrument as shown in 3.3.2 of Chapter 3 (BEL 

Japan Inc.) equipped with a thermal conductivity detector (TCD). Prior to adsorption, the samples 

(60 mg) were reduced under 5% H2/Ar flow (50 mL/min) at 550 °C. Then, the furnace was cooled 

down to 80 °C under the same condition, following pretreatment under pure He (50 mL/min) for 

15 min. Afterward, the adsorption of CO2 was performed in a CO2 mixture (10 % CO2/He, 50 

mL/min) for 1 h, then, pure He was then used to remove the physically adsorbed CO2 for 30 min 

at 80 °C. Finally, the temperature-programmed desorption procedure was carried out from 80 °C 

to 550 °C with a heating rate of 10 °C/min under pure He flow of 50 mL/min. 

Also, transmission electron microscopy (TEM) and Energy Dispersive X-ray spectroscopy (EDX) 

analyses were carried out with JEM-2010 and JEM-2100Plus (JEOL, Tokyo, Japan) transmission 
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electron microscopes shown in 3.3.7 of Chapter 3 for the reduced catalysts. Before measurement, 

the samples were reduced (reduction condition: 550 °C for 1 h in 5% H2/Ar). 

The X-ray photoelectron spectroscopy (XPS) measurements were performed with a VG Microtech 

ESCA 3000Multilab spectrometer, equipped with a dual Mg/Al anode, with an excitation source 

of unmonochromatized Al Kα radiation (1486.6 eV). See 3.3.8 of Chapter 3 for more detail.  

Moreover, thermogravimetric analyses (TGA) of the CeO2 supported catalysts, previously reduced 

at 550 °C for 1 h, were performed in a TGA/DSC1 STAR System (different form 3.3.9 in Chapter 

3) from Mettler Toledo Inc. The sample of 15 mg was pre-treated in N2 (30 mL/min) from 25 °C 

to 500 °C with a heating rate of 10 °C/min, holding time at 500 °C for 15 min, then, it was cooled 

down under N2 atmosphere to 150 °C. At 150 °C, the sample was saturated with pure O2 (30 

mL/min) for 1 h and cooled to 25 °C still under O2. Finally, the sample was heated, under N2 (30 

mL/min), from room temperature up to 600 °C (ramp rate 5°C/min), thus, the removal of physical 

and chemisorbed oxygen species occurred and the weight loss was taken into account in order to 

evaluate the surface oxygen vacancies content of the sample. The evolution of gaseous species 

occurring during the above four steps was monitored by online mass quadrupole (Thermostar TM, 

Balzers). 

 

5.3 Elemental content, textural properties, structural parameters, and surface compositions 

of the catalysts 

As determined by XRF analyses, the real loading of Ni and Y in the prepared catalysts was equal 

to the nominal one ±10%. In Table 5.2, the XRF-derived chemical composition is listed. The 

textural properties of the supports and calcined catalysts were measured by the N2 
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adsorption/desorption technique. The SSA, pore volume, and average pore size of the supports and 

catalysts are displayed in Table 5.1. The results show that the SSA, pore volume, and pore diameter 

values of Y-modified supports increase with the increase of yttrium loading from 0.5 to 5.0 wt % 

of Y. The textural properties of the calcined catalysts and supports were measured by the N2 

adsorption/desorption technique. The specific surface areas (SSA), pore volume, and average pore 

size of such samples are displayed in Table 5.1. It results that the SSA, pore volume, and pore 

diameter values of Y-modified catalysts increase with the increase of yttrium loading from 0.5 to 

2.0 wt.% of Y, then surface area and pore volume slightly decrease for 5 wt.% of Y compared to 

those of yttrium-free sample, while still higher pore diameter was observed for such sample, 

suggesting a change in the pore shape occurring at such high Y content. The highest values were 

obtained for the 5Ni/CeO2-Y2.0% sample that is characterized by SSA of 78.9 m2/g, pore volume 

equal to 0.29 cm3/g, and pore diameter of 12.9 nm. This finding suggests that yttrium promotes 

the improvement of textural properties of Ni/CeO2 based catalysts. Meanwhile, 5Ni/Y2O3 shows 

the lowest surface area and porosity.  

Positive effects induced by yttrium on the textural properties of different types of supports were 

also reported in the literature [44,50,250]. Swirk et al. [250] studied the effect of Y on Ni-based 

double-layered hydroxides for dry reforming of methane and found that doping Y inside the matrix 

promotes the increase of BET surface area. Similar results were found for Ce and Y promoted 

double-layered hydroxides showing higher BET surface area as compared to the Ce-promoted 

material without the presence of Y [51]. 
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Table 5.1 Textural properties of the calcined catalysts. 

Catalyst SSA (m2/g)a Pore Volume (cm3/g)b Pore diameter (nm)c 

CeO2 56.1 0.17 11.2 

CeO2-Y0.5% 65.3 0.22 11.9 

CeO2-Y1.0% 67.5 0.22 12.0 

CeO2-Y2.0% 90.5 0.34 13.1 

CeO2-Y5.0% 90.4 0.33 13.0 

Y2O3 74.7 0.18 4.7 

5Ni/CeO2 45.7 0.14 10.3 

5Ni/CeO2-Y0.5% 52.7 0.18 11.5 

5Ni/CeO2-Y1.0% 55.9 0.19 11.6 

5Ni/CeO2-Y2.0% 78.9 0.29 12.9 

5Ni/CeO2-Y5.0% 69.7 0.27 12.4 

5Ni/Y2O3 32.8 0.12 10.6 

a The specific surface area (SSA) was calculated by the BET method. 

b The pore volume and c pore diameter were calculated by the BJH method applied to the desorption curves. 

 

In order to investigate the structural properties of the catalysts, XRD measurements were registered 

for calcined, reduced, and spent samples. The XRD patterns are presented in Fig. 5.1.1-5.1.2 

(calcined), Fig. 5.2 (reduced) and Fig. 5.3 (spent, after methanation tests), respectively, along with 

the ICSD reference patterns of NiO (no. 24018), metallic Ni (no. 41508), CeO2 (no. 28753), Y2O3 

(no. 193377) and Ce0.9Y0.1O1.95 (no. 28808) solid solution. Depending on the nature of catalysts 

and on the treatment, different angular ranges are displayed. 

From Fig. 5.1.1a,b, distinct diffraction peaks of CeO2 were found for all the catalysts, while signals 

of the Y2O3 crystalline phase were detected only for the Ni/Y2O3 sample. In Fig. 5.1.1b the 
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diffraction pattern of Ni/CeO2-Y 5.0% was plotted for comparison to exclude any segregation of 

the yttria phase. No features at 2θ=43.25° corresponding to nickel oxide (NiO) were detected, 

suggesting high dispersion of nickel species. As for Y-modified CeO2 supported Ni-based catalysts, 

as it can be seen in Fig. 5.1.2a, where the enlarged patterns in the angular range 27-30 ° 2θ are 

reported, the Y doping does not induce any important changes in the CeO2 structure. The main 

peaks (111) are all centered between 28.55 ° 2θ (CeO2 ICSD reference no. 28753, cubic, space 

group FM-3M) and 28.57 ° 2θ (Ce0.9Y0.1O1.95 ICSD reference no. 28808, cubic, space group FM-

3M)) so it cannot be excluded that at the highest Y loading (5wt%) possibly a ceria-yttria solid 

solution is formed. Indeed, thanks to the similar ionic radius some Ce4+ ions can be replaced by 

Y3+ with oxygen vacancies formation to compensate for the excess negative charge [51,327]. 

However, due to the relatively low crystallinity of the samples, no structural refinements were 

performed. Furthermore, according to ICSD files (references no. 28753 and no. 28808) the 

structural parameters, d111 values, for CeO2 and Ce0.9Y0.1O1.95 references are almost coincident, 

3.122 and 3.1207 Å, respectively, so no significant differences are expected in our experimental 

patterns. On the other hand, if the introduction of Ni2+ into the ceria lattice should occur, a decrease 

of the lattice parameter of ceria is expected due to its smaller ionic radius (0.69 Å), however, it 

would generate new oxygen vacancies inducing a small expansion of the cell, so the two effects 

would cancel out. 

Meanwhile, a broadening of the diffraction peaks of CeO2 was also identified with the increasing 

dopant of yttrium, as can be seen from Fig. 5.1.2a. Accordingly, the particle sizes of CeO2 in 

calcined catalysts decreased as the increased content of Y, and the smallest size was obtained for 

5Ni/CeO2-Y5% sample (see Table 5.2). This could partially interpret the increasing BET surface 

area and porosity values reported in Table 5.1. As for Y2O3 supported Ni catalyst, it can be affirmed 
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that no distinct diffraction peaks of NiO at 43.25° neither at 37.25° 2θ are detectable even 

magnifying the patterns (see Fig.5.1.2b where the NiO reference file is compared with patterns for 

5Ni/Y2O3 and Y2O3 characterized by a peak at 43.39° 2θ).   

 

Figure. 5.1.1 XRD patterns of the catalysts calcined at 550 °C for 5 h : (a) Ni/CeO2 and NiCeO2-Y(0.5-5%) 

catalysts; (b) Ni/Y2O3 and Ni/CeO2-Y5%.  The reference ICSD files are also displayed. 

 

 

Figure. 5.1.2. XRD patterns in the enlarged range (a) 27-30 °, (b) 36-52 ° 2 of the catalysts calcined at 550 °C for 5 

h 

 

The XRD patterns of the reduced catalysts are presented in Fig. 5.2a,b where the enlarged ranges 

from 42 to 52 and 20 to 52° 2θ are displayed for Ni/CeO2, Ni/CeO2-Y (0.5-5%), and Ni/Y2O3, 
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respectively, along with the ICSD reference files. Such angular ranges were chosen in order to 

detect any features ascribable to metallic Ni. No diffraction peaks of metallic nickel at 44.4 ° 2θ 

are detectable in any case which means that the active nickel metals keep highly dispersed on the 

supports after reduction.  

 

Figure. 5.2. XRD patterns of the catalysts reduced at 550 °C for 1 h in the gas mixture 5% H2/Ar (100 mL/min). 

a) Ce based catalysts, b) 5Ni/Y2O3 

 

For spent catalysts (after methanation reaction) similar behavior as for the reduced catalysts was 

confirmed, see XRD patterns shown in Fig. 5.3.  

No diffraction peaks of NiO at 43.25 and 37.25° 2θ nor of Ni0 at 44.4° 2θ were detected for Y-

modified catalysts, meaning that no sintering of Ni specie (as Ni or as reoxidized NiO) occurs 

during the catalytic test. This finding confirms the high dispersion of nickel species and the 

occurrence of metal-support interaction stabilizing Ni even after reduction treatment and catalytic 

test.  
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The particle sizes of CeO2, CeO2-Y, and Y2O3 were calculated for calcined, reduced, and spent 

catalysts by the Debye-Scherrer equation and are listed in Table 5.2. The particle size for calcined 

samples decreases gradually with the increase of Y content, with the smallest size obtained on a 5 

wt.% Y-modified sample. For the reduced and spent samples, similar trends were also registered 

by comparing Ni/CeO2-Y samples at different Y loading, but the smallest particle size of the 

support was found on Ni/CeO2-Y 2.0%.  

 

Figure. 5.3. XRD patterns of catalysts after activity test; Reactivity condition: CO2/H2//Ar=15/60/25(vol./vol.), flow 

rate=100 mL/min, WHSV=60,000 mL·gcat
-1·h-1, atmospheric pressure, temperature range from 200 to 450 °C. 

 

By comparing the particle size of the support for each catalyst as calcined, reduced, or spent, it 

results that for Ni/CeO2 the size slightly increased upon reduction or catalytic test, while for 

Ni/CeO2-Y and Ni/Y2O3 catalysts, the particle sizes were nearly the same.  
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Table 5.2 Ni and Y loadings of the calcined catalysts as determined by XRF analysis and support 

particle size of the calcined, reduced, and spent samples 

Catalyst Ni (wt.%) a Y (wt.%) a Particle size of the support (nm) b 

Calcined Reduced Spent 

5Ni/CeO2 4.95±0.5 - 17.2 18.0 18.1 

5Ni/CeO2-Y0.5% 4.95±0.5 0.5±0.05 16.1 16.0 16.3 

5Ni/CeO2-Y1.0% 4.95±0.5 1.0 ±0.1 16.0 16.2 14.8 

5Ni/CeO2-Y2.0% 4.95±0.5 2.0±0.2 11.9 11.6 11.7 

5Ni/CeO2-Y5.0% 4.95±0.5 5.0±0.5 11.4 11.6 12.1 

5Ni/Y2O3 4.95±0.5 nd 13.3 13.7 13.6 

a Obtained from XRF analysis 

b Calculated by Debye-Scherrer equation fitting the 4 strongest peaks of CeO2 or Y2O3 in XRD patterns 

 

In brief, the XRD results of calcined, reduced, and spent samples indicate that the nickel species 

keep highly dispersed before/after reaction for all catalysts and the particle sizes of supports 

decreased due to Y doping. The unaffected structural properties of the catalysts after test illustrate 

the metal-support interaction in the catalysts, which suppress the sintering of catalyst particles 

[194]. 

The X-ray photoelectron spectroscopy (XPS) analysis performed over calcined samples was 

expected to identify the surface compositions and oxidation states of the catalysts. The region of 

Ce3d, Ni2p, Y3d, and O1s of the catalysts were recorded and analyzed by peak fitting procedure. 

The percentage of Ce (III)/Ce (IV), lattice oxygen (OL)/surface chemisorbed hydroxyl species 

(OOH), Ni/Ce or Y/Ce, the binding energy of O1s, Ni2p3/2, and Y3d5/2 are listed in Table 5.3. The 
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survey spectrum and the Y3d, O1s, Ni2p, and Ce3d regions of 5Ni/CeO2-Y2.0% are shown in Fig. 

5.4.  

As shown in Fig. 5.4, the doublet of Y3d with two peaks located at 157.4 eV (Y3d5/2) and 159.3 

eV (Y3d3/2) represents the Y3+ species [354]. There is no significant difference regarding the Y3d5/2 

position (presented in Table 5.3) between Y-modified catalysts and pure Y2O3 supported catalysts 

except slight shifts (±0.2 eV), which comply with other reports [355]. The presence of cerium does 

not influence the position of Y3d peaks, indicating a weak interaction between the two elements. 

The Y/Ce atomic ratio increase is not linear with the increase of Y content. Uneven distribution of 

Y between bulk and surface or the presence, in the higher Y content samples, of bigger particles 

of Y2O3 may be responsible for this behavior.  

The Ce3d region of 5Ni/CeO2-Y2.0% shows the typical complex profile, consisted of 10 peaks, 

which is arisen by the ligand-to-metal charge transfer transitions [356]. Many different approaches 

deal with the fitting of the Ce3d peak [357,358], in this study, the approach reported by Burroghs 

et al. [358] was used, with ten components that take into account the spin-orbit splitting of Ce3d5/2, 

Ce3d3/2, and others splitting caused by a redistribution of the entire energy spectrum after a core 

hole is created. There are four components (labeled as v0, u0, vi, ui) attributed to Ce (III) and six 

components (labeled as v, u, vii, uii, viii, uiii) attributed to Ce (IV). The data were fitted using the 

constrains between the corresponding components 3d5/2-3d3/2 given by Preisler et al. [359] The Ce 

(III) percentages calculated as (Iv0+Ivi)/ (Iv0+Ivi+Iv+Ivii+Iviii)*100, showed in Table 5.3, ranges 

between 9 and 19 %, and it can be concluded that the Ce (III) concentration increases with the 

increasing yttrium content, which was also demonstrated in other literature [360]. The dopant of 

Y promotes the formation of Ce3+, thus, more oxygen vacancies are created [361]. 
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The O1s region contained two contributions, one due to lattice oxygen (OL) with BE (Binding 

Energy) of 529.4 ±0.3 eV [355,362], the other attributed to the hydroxyl species chemisorbed on 

the surface (OOH) with BE of 531.5±0.4 eV[362]. As shown in Table 5.3, the relative amount of 

OOH increases with increasing Y up to 1-2% (within the experimental error) which could be 

assigned to the increase of Ce3+. Because the oxygen species adsorbed on Ce3+ showed higher 

stability than that of Ce4+ [363].   

The Ni2p3/2 profile with a peak centered at 855.0±0.2 eV along with a shake-up peak at 862±0.5 

eV is typical of Ni(II) [364]. Compared to the 5Ni/CeO2, the binding energy of Ni2p3/2 for the Y-

modified catalyst shows a small decrease (0.2-0.5 eV) in Table 5.3, indicating a slightly increased 

interaction between the Ni and the support [350,365]. 

Such finding further confirms the occurrence of metal-support interaction in Ni/CeO2-Y promoted 

catalysts as argued based on XRD data.  

The Ni/Ce atomic ratio decreases with the rise of Y content of the surface of the catalysts, except 

for Ni/CeO2-Y1.0%. This fact could be attributed to different factors, such as slightly bigger Ni 

particles, a different distribution of Ni on the surface due to changes in morphology, or the 

migration of Ni into the bulk likely forming Ni-Ce-O solid solution. 
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Table 5.3. XPS derived Ce (III) and Ce (IV) percentage, the binding energy of O1s, Ni2p3/2, and 

Y3d5/2 in eV and Ni/Ce and Y/Ce atomic ratio of the various Ni catalysts in the calcined state. In 

parenthesis, the relative percentage between OL and OOH is indicated.  

Catalyst Ce(III)-Ce(IV) O1s (eV) Ni2p3/2 (eV) Ni/Ce Y3d5/2 (eV) Y/Ce 

OL OOH 

5Ni/CeO2 11%-89% 529.5 

(54%) 

531,9 

(46%) 

855.3 0.23 - - 

5Ni/CeO2- Y0.5% 9%- 91% 529.6 

(54%) 

531,4 

(45%) 

854.9 0.16 157.3 0.54 

5Ni/CeO2- Y1.0% 12%-88% 529.6 

(40%) 

531.3 

(60%) 

854.8 0.23 157.6 0.72 

5Ni/CeO2- Y2.0% 16% - 84% 529.1 

(45%) 

532.7 

(54%) 

855.1 0.17 157.4 0.68 

5Ni/CeO2- Y5.0% 19 %-81% 529.7 

(60%) 

531.5 

(40%) 

855.0 0.16 157.7 0.86 

5Ni/Y2O3 - 529.4 

(45%) 

531.9 

(54%) 

855.2 - 157.4 - 

 



Chapter V Ni/CeO2 nanoparticles promoted by yttrium doping as catalysts for CO2 methanation 

 

 

143 
 

 

Figure. 5.4. XPS survey spectrum and XPS Y3d, O1s, Ni2p, and Ce3d profiles of the calcined 5Ni/CeO2-Y2.0% 

catalyst. 

 

5.4 On the reducibility of calcined catalysts 

To study the reducibility of the calcined catalysts and determine the optimal reduction condition 

for CO2 methanation, temperature-programmed reduction in H2 (H2-TPR) was performed on the 

calcined samples. The H2-TPR profiles are displayed in Fig. 5.5, the temperatures at the maxima 

of reduction peaks and H2 consumption values are listed in Table 5.4. To get more insight into the 

effect of Ni on the reduction properties of the supports, TPR experiments were registered also over 

selected supports as shown in Fig.5.5b and Table 5.4. As shown in Fig. 5.5, there are 3 main peaks 

Binding energy (eV)
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over Ni/CeO2 and Ni/CeO2-Y catalysts, which are labeled as α, β, and γ in the figure. The α peak, 

which started at a very low temperature (ca. 39 ºC) over 5Ni/CeO2 sample, was ascribed to the 

reduction of oxygen species chemisorbed on the oxygen vacancies that likely are generated by the 

partial substitution of CeO2 lattice by Ni2+ and Y3+ species, resulting in Ni-Ce-O solid solution or 

Y-Ce-O solid solution [201,350,366,367].  

It is worth noting that the α peak shifts toward higher temperature with the increase of Y loading 

until 2 wt.% of Y, and then shift a little toward lower temperature for the sample with 5 wt.% of 

Y. Moreover, the H2 consumption of the α peak (see Table 5.4) gradually increased with Y loading 

until 2 wt.% of Y, with the highest value. This finding could be explained by an increased 

concentration on the surface of the catalysts of Ce3+ ions able to chemisorb oxygen species 

reducible below 250 °C (see TGA curves and XPS analysis) and agrees with the change of the 

morphology of Ni/CeO2-Y catalysts by increasing the Y loading from 0 up to 5wt % (see TEM 

characterization). On the other hand, the shift of the α peak toward higher temperature until 2 wt.% 

of Y and the highest hydrogen consumption registered for such a peak suggest that doping ceria 

with 2 wt % of Y produces the highest oxygen vacancy concentration with strongly chemisorbed 

oxygen. 

It is also worth noting that no α peaks at around 200-250 °C were observed in the TPR profiles of 

CeO2 and CeO2−Y doped oxides (see Fig 5.5b), supporting the active role of Ni2+ in promoting the 

creation of oxygen vacancies in the catalysts. 

On the basis of H2 consumption in the α peak, considering that 1 mmol of H2 is supposed to react 

with 1 mmol of O2- species per oxygen vacancy, the V0 content (%) was calculated based on the 

Eq. 5.1.1 (see 5.2) and is given in Table 5.4. A similar trend as the hydrogen consumption in the α 

peak was found as a function of the Y loading.   
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(a) 

  

(b) 

 

Figure. 5.5. H2-TPR profiles of (a) catalysts and (b) selected supports; Operating condition: 5% H2/Ar flow rate of 

30 mL/min, a ramp of 10 °C/min. 
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The broad reduction peak, β, can be divided into 2 different features i.e. β1 and β2 (e.g. ca. 283 ºC 

and 360 ºC for 5Ni/CeO2 sample) that can be assigned to the reduction of NiO species that have 

different intensity of metal-support interaction [350,368]. The β1 peak can be attributed to the 

reduction of bulk NiO that has a weak interaction with the support or to un-interacted NiO 

crystallites [350,369]. The β2 corresponds to the NiO nanoparticles in intimate contact with the 

support [170]. The β1 and β2 peaks shift towards higher temperature at higher Y loading, from 0.5 

to 2 wt.%, confirming strong metal-support interaction with the best synergy achieved at 2 wt.% 

Y. Moreover, at high Y loading, the two features β1 and β2 become less defined overlapping into 

a single broad peak, suggesting that such a peak contains the contribution from several species that 

are reduced simultaneously. According to the literature and the results from Fig. 5.5b and Table 

5.4 [170,350,370], the reduction of the ceria surface occurs with a maximum at ∼490−505 °C. 

Therefore, the β peak may correspond to the concomitant reduction of nickel species and the ceria 

surface, and the broader the peak, such as that detected for 5Ni/CeO2−Y2.0%, the higher the 

intimate contact. 

 At a high-temperature peak (at T > 800 °C), labeled γ in Fig. 5.5,  is due to the bulk reduction of 

the CeO2-based oxides, although reduction of some NiO species strongly interacting with the 

support cannot be excluded [350,371]. 

According to the H2 consumption values reported in Table 5.4 and considering that the theoretical 

amount required for the overall reduction of NiO to metallic Ni is 0.85 mmol/gcat, based on a real 

Ni loading equal to 5 wt%, the β reduction peak (ranging between 0.73-0.78 mmol/gcat) may 

contain the contribution from some NiO in contact with ceria surface along with surface ceria 

reduction. The reduction of the remaining part of NiO together with some ceria bulk may occur at 

T > 800 °C. Similar H2 consumptions of the β peak were registered for Ni/CeO2 and Ni/CeO2-Y 
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catalysts confirming that the catalysts contain a comparable amount of NiO particles with similar 

size interacting with the ceria surface.  As it concerns the γ peak, the  H2 consumption decreases 

with the increase of Y content (0-5 wt.%), in accord with higher oxygen vacancies in the catalysts 

[192,350]. Such a trend was confirmed by XPS analysis (Table 5.3). and by TPR of selected 

supports. From the values listed in Table 5.4, it can be seen that moving from CeO2 to CeO2−Y0.5% 

and CeO2−Y 2.0%, the hydrogen consumption of the β peak gradually increased, especially for Y 

2.0%, in accordance with higher SSA. Conversely, the hydrogen consumption of the γ peak 

decreased and, on the whole, the β + γ uptake decreased in line with an increased oxygen vacancy 

concentration. 

For 5Ni/Y2O3, only a broad peak between 300-500 °C was registered with two maxima at 330 

and 435 °C and according to the previous notation, we will continue to label such peaks as β1 and 

β2. For comparison, the TPR of the Y2O3 support was registered to show a peak centered at 

∼550 °Cwith H2 consumption of 0.31 mmol/gcat (see Figure 5.5b and Table 5.4). The H2 

consumption value of β peak for 5Ni/Y2O3 is 1.29 mmol/gcat, which exceeds the theoretical value 

required for the total reduction of NiO to metallic Ni (0.85 mmol/gcat) and 1.16 mmol/gcat 

(corresponding to the sum 0.85 plus 0.31 mmol/gcat, i.e., the H2 consumption of the yttria oxide), 

suggesting that new oxygen vacancies are created in the Y2O3 after Ni deposition. Bellido et al. 

[325] studied the effect of Y2O3-ZrO2 composition on Ni/Y2O3-ZrO2 catalysts and they found that 

the reduction of pure Y2O3 support only accounted for a small fraction of the reduction in the H2-

TPR measurement. However, the reduction behavior of the Ni/Y2O3-ZrO2 supports was 

significantly influenced by the interaction among the species and the introduction of Y3+ into ZrO2 

and likely of Ni2+ create new oxygen vacancies to preserve overall electroneutrality. Based on the 

literature [325], the relatively low temperature of the peak maximum (333 °C) registered for 
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5Ni/Y2O3 and the H2 consumption higher than that required for NiO reduction (Table 5.4) were 

attributed to the presence of a high number of oxygen vacancies on the support interacting with 

NiO.  

 

 

Table 5.4. Reduction temperatures at the peak maximum (Tmax) and H2 consumption values of the 

calcined catalysts derived from H2-TPR.  

Catalyst Tmax (ºC)  H2 consumption 

(mmol/gcat) 

V0 (%)a 

α β γ  α β(β1+β2) γ  

5Ni/CeO2 207 283 873  0.26 0.76 0.73 2.36 

5Ni/CeO2- Y0.5% 209 286 861  0.29 0.73 0.67 2.62 

5Ni/CeO2- Y1.0% 209 286 861  0.30 0.73 0.62 2.70 

5Ni/CeO2- Y2.0% 240 354 872  0.44 0.75 0.59 3.95 

5Ni/CeO2- Y5.0% 225 297 843  0.33 0.78 0.43 2.92 

5Ni/Y2O3 - 333 -  - 1.29 - - 

CeO2 - 490 885  - 0.33 0.76 - 

CeO2-0.5%Y - 492 882  - 0.36 0.68 - 

CeO2-2.0%Y - 505 880  - 0.40 0.59 - 

Y2O3 - 550 -  - 0.31 - - 

a Oxygen vacancies (%) calculated from α peak 
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5.5 Morphologies of the catalysts derived from TEM and HRTEM characterization 

In order to gain more morphology information of the catalysts, the high-resolution transmission 

electron microscopy (HRTEM) and TEM analyses were conducted over the reduced samples using 

the same reduction condition as the activity test. The micrographs of reduced catalysts were shown 

in Fig.5.6-5.8.  

It can be seen from Fig. 5.6 that all the catalysts contain well-defined crystallites and that the 

introduction of Y tailors the particle sizes of CeO2 in the catalysts. In the absence of Y as shown 

in Fig. 5.6a, the CeO2 particles were nanoparticles (NPs) as irregular polyhedra with some 

aggregated particles exceeding 50 nm. In Fig. 5.6b, the CeO2 particles promoted with 0.5 wt.% of 

Y became smaller. Higher concentrations of Y nanorods (NRs) appeared (Fig.5.6c-e). It was 

difficult to evaluate the proportion of nanorods but we noted that on one side the NPs size 

decreased and on the other, the NRs became thinner. The influence of Y concentration on average 

grain size and the morphology is summarized in Table 5.5 where the measurements obtained from 

the TEM images are listed. The effect of the concentration of a doping element was already related 

by Saabari et al. [372]. The formation of nanorods with high exposed surface area detected from 

1 to 2 wt.% of Y complies with the increased intensity of the α peak, attributed to the reduction of 

oxygen species chemisorbed on oxygen vacancies and is in line with the highest SSA of the 

Ni/CeO2-Y2%. The aspects of the NRs are presented in Fig. 5.7. We see the decrease in the size 

of nanorods from 1 wt.% Y (Fig. 5.7a) to 5 wt.% Y (Fig. 5.7c). All catalysts are well crystallized 

as evidenced by the lattice planes. The nanorod of 5Ni/CeO2-Y2% (Fig. 5.7d) reveals the (111) 

and (220) planes corresponding to the distance of 3.12 and 1.91 Å, respectively. The NPs as for 

them showed frequently the (111) facets. Therefore, Y addition does not produce significant 

modification into the CeO2 lattice in agreement with XRD characterization. 
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For the pure Ni/Y2O3 sample, large aggregate nanoparticles of 10-15 nm were detected, see Fig. 

5.6f. 

From the reported data it can be concluded that the morphology of the reduced catalysts changed 

with the incorporation of Y. The particle size of CeO2 decreased as increasing Y loading with the 

formation of nanorods and such trend is in accord with the increase of SSA shown in Table 5.1. 

As previously reported in the literature, CeO2 morphology can be modulated depending on the 

preparation conditions, and nanorods formation is favored during the hydrothermal process [196]. 

By simple TEM analysis, the size distribution of Ni0 nanoparticles cannot be distinguished 

according to another author’s report [196]. In order to obtain more detailed information on nickel 

particle sizes, HRTEM images and EDX spectra were recorded and are shown in Fig.5.7-5.10, 

where the measured sizes of Ni0 nanoparticles are marked, mapping was also carried out. 

HRTEM images show that the Ni metallic particles are spherical and well dispersed on the support. 

The average size was ranging from 6-12 nm for all catalysts. The Ni metallic particles were 

detected by the lattice planes of 2.03 or 1.76 Å corresponding respectively to the (111) or (002) 

planes of the FCC (face center cubic) structure of nickel.  

The EDX spectra show that the signals of Ni and Ce keep stable with the increase of Y loading, 

indicating again high dispersion of Ni. For the 5Ni/CeO2-Y2.0% sample the composition 

homogeneity of Ni and Y was confirmed by Scanning TEM-Energy Dispersive X-ray 

Spectroscopy (STEM-EDX) mapping (Fig. 5.9 and Fig. 5.10). 
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Figure. 5.6. TEM micrographs of the catalysts reduced at 550 °C for 1 h in 5% H2/Ar (100 mL/min); (a) 5Ni/CeO2, 

(b) 5Ni/CeO2-Y0.5%, (c) 5Ni/CeO2-Y1.0%, (d) 5Ni/CeO2-Y2.0%, (e) 5Ni/CeO2-Y5.0%,(f) 5Ni/Y2O3. 
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Figure. 5.7. Nano-cubes and nano-rods from HRTEM micrographs: (a) 5Ni/CeO2-Y1.0% (b, d) 5Ni/CeO2-Y2.0% 

(c) 5Ni/CeO2-Y5.0% 
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Figure. 5.8. HRTEM micrographs of the catalysts; Condition: reduced at 550 °C for 1 h in 5% H2/Ar (100 mL/min); 

(a) 5Ni/CeO2, (b) 5Ni/CeO2-Y0.5%, (c) 5Ni/CeO2-Y1.0%, (d) 5Ni/CeO2-Y2.0%, (e) 5Ni/CeO2-Y5.0%, (f) 

5Ni/Y2O3. 
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Figure. 5.9. STEM-HAADF image and STEM-EDX mapping of the catalyst, (d), 5Ni/CeO2-Y2.0%; Condition: 

reduced at 550 °C for 1 h in 5% H2/Ar (100 mL/min). 

 

  

  

  

Figure. 5.10. EDX spectra of the catalysts; Condition: reduced at 550 °C for 1 h in 5% H2/Ar (100 mL/min); (a) 

5Ni/CeO2, (b) 5Ni/CeO2-Y0.5%, (c) 5Ni/CeO2-Y1.0%, (d) 5Ni/CeO2-Y2.0%, (e) 5Ni/CeO2-Y5.0%, (f) 5Ni/Y2O3. 
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Overall, Ni0 resulted well dispersed on CeO2-based catalysts as confirmed by XRD results. 

Moreover, Y doping promotes the decrease of the CeO2 particle size and the formation of CeO2 

nanorods.  

 

Table 5.5. Support particle size of the reduced samples deduced from TEM image analysis. 

Catalyst 

Size of Nanoparticles (nm) Size of Nanorods (nm) 

Min-Max Currently Length (min-max) Diameter (min-max) 

5Ni/CeO2 7 - 25 15 - - 

5Ni/CeO2-Y0.5% 6 - 22 13 - - 

5Ni/CeO2-Y1.0% 8 - 24 10 15 - 40 5 - 9 

5Ni/CeO2-Y2.0% 6 - 17 8 10 - 30 5 - 8 

5Ni/CeO2-Y5.0% 5 - 14 10 10 - 27 5.5 - 10 

5Ni/Y2O3 8 - 15 11 - - 

 

5.6 Evaluation of oxygen vacancies content and oxygen mobility by TGA analysis 

In order to evaluate the surface oxygen vacancies content and the oxygen mobility of the Ni/CeO2 

supported (Y-modified and Y-free) catalysts, temperature-programmed desorption curves of 

adsorbed oxygen (O2-TPD) were registered over the reduced catalysts by performing thermal 

gravimetric analyses (TGA). The acquired TGA profiles are displayed in Fig. 5.11. 
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Figure. 5.11. TGA profiles under N2 flow of reduced catalysts after saturation with pure O2. 

 

It can be seen from Fig. 5.11 that the reduced catalysts, after saturation with pure O2, undergo 

distinct weight losses under N2 atmosphere from room temperature until 600 °C as the desorption 

of adsorbed oxygen occurs. For simplicity, the curves were divided into three parts according to 

the weight loss slope in the different range of temperatures, i.e. sharp, fast and stable loss. So, the 

weight loss at the temperature below about 150 °C was ascribed to the removal of weakly adsorbed 

oxygen (physisorbed O2), between 150-400°C desorption of chemisorbed O2 takes place, while 

in the range 400-600 °C or even above 600 °C the removal of bulk oxygen species should occur 

[373]. In our case, a stable trend was observed up to 600 °C according to the TPR curves since 

ceria bulk reduction occurred above 800 °C.  

At low temperature and in the range 150-400 °C, the weight loss intensity increased as a function 

of Y loading, from Ni/CeO2 Y-free until 2 wt.%, then, for Y 5wt.% a decrease was observed, being 

the TGA curve of such sample intermediate between Y 2wt.% and Y1wt.%. Looking in detail at 
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the profile of 5Ni/CeO2-Y2.0%, the sharp weight loss occurring from room temperature up to 

110 °C corresponds to -0.82% while increasing the temperature up to 400 °C, an overall weight 

loss of -1.53% was registered. Assuming that O2 desorbs, the mmol of oxygen removed was 

calculated: below 150 °C 0.25 mmol O2/gcat (physisorbed oxygen) and in the overall 0.47 mmol 

O2/gcat up to 400 °C are desorbed. Therefore, the amount of chemisorbed O2 is equal to 0.22 

mmol/gcat. Such value is exactly the half amount of the H2 consumption value registered for the α 

peak in the TPR experiment (see Table 5.4). Considering that 1 mmol of H2 reacts with 1 mmol of 

O2- species per oxygen vacancy, such finding confirms that the α peak is due to the reduction of 

oxygen species adsorbed on the vacancies.   

In conclusion, TGA analyses confirmed that Y dopant promoted the formation of oxygen 

vacancies in our samples, the highest content being achieved for Y 2wt.%, according to other 

characterizations in this study and literature results [51,373–375]. 

 

5.7 Basicity distribution of the reduced catalysts derived from CO2-TPD analyses 

To investigate the basicity of the reduced catalysts, CO2-TPD experiments were performed on the 

above catalysts. The CO2-TPD profiles are plotted in Fig. 5.12, the concentration and distribution 

of basic sites are listed in Table 5.6. As shown in Fig. 5.12, the CO2 desorption curves can be 

divided into three regions according to the temperatures, i.e. T < 150 °C, between 200-450 °C and 

T > 450 °C, corresponding to the weak, medium and strong basic sites, respectively.[160,307]  

It is shown that the distribution of basic sites changed significantly with the increase of yttrium 

loading, in particular, the CO2 desorption peaks of Y-modified catalysts shifted towards higher 

temperature as the increase of Y until 2 wt.%.  
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Figure. 5.12. CO2-TPD profiles registered over reduced catalysts; Pretreatment condition: Reduction at 550 ◦C for 1 

h in 5% H2/Ar (50 mL/min), cooling down to 80 ◦C and He purging, then CO2 adsorption under 10% CO2/Ar for 1 h 

(50 mL/min). 

 

Moreover, as reported in Table 5.6, the concentration of weak and medium + strong basic sites (as 

overall amount) increase as the increase of Y (up to 2.0 wt%), with slightly decreased values for 

Y 5.0%. The highest basicity was registered for the 5Ni/CeO2-Y2.0% sample, while Ni/Y2O3 was 

in between Y1.0 wt% and Y 5.0 wt%.  
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Table 5.6. Basic sites distribution calculated from CO2-TPD for Y-promoted catalysts after 

reduction at 550 °C 

Catalyst Basic sites [mol/gcat] Distribution of basic sites [%] 

Weak Medium Strong Total 

basicity 

Weak Medium Strong 

5Ni/CeO2 18.2 13.3 63 95 19.2 14.1 66.7 

5Ni/CeO2- Y0.5% 22.1 8.8 87.4 118 18.7 7.5 73.8 

5Ni/CeO2- Y1.0% 25.1 23.7 76.7 126 20.0 18.9 61.1 

5Ni/CeO2- Y2.0% 35.4 75.5 140.7 251 14.1 30.0 55.9 

5Ni/CeO2- Y5.0% 32.3 71.3 129.0 233 13.9 30.6 55.5 

5Ni/Y2O3 30.9 55.9 77.8 165 18.8 34.0 47.2 

 

5.8 Catalytic performance of Ni based catalysts in CO2 methanation  

The catalytic performances in CO2 methanation reaction were investigated in a quartz reactor at 

atmospheric pressure introduced in Chapter 3. Prior to reaction, the sample (100 mg) was reduced 

in 5% H2/Ar (100 mL/min) at 550 °C for 1 h with a heating rate of 5 °C/min.  After cooling down 

to 200 °C, the reactant gas mixture, 100 mL/min, with a molar ratio of CO2/H2/Ar=15/60/25 was 

fed into the catalyst (WHSV=60,000 mL h-1gcat
-1). The CO2 conversion and CH4 selectivity were 

calculated according to equations in Chapter 3. 

The catalytic performance in CO2 methanation was investigated over the Ni catalysts supported 

over Y-modified CeO2, pure CeO2, and pure Y2O3, and the CO2 conversion and CH4 selectivity 

values are displayed in Fig. 5.13 along with the thermodynamic curves given for comparison. 

These results are in line with those presented in the literature in similar experimental conditions 

Table 5.7.  
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Figure. 5.13. Catalytic performances in methanation reaction as function of the temperature over the catalysts; (a) 

CO2 conversion (b) CH4 selectivity; Reaction conditions: WHSV=60,000 h-1gcat-1; CO2/H2/Ar=15/60/25; 

atmospheric pressure. 
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As shown in Fig. 5.13a, the highest CO2 conversions for all the catalysts were obtained at 400 °C, 

which were close to the theoretic value, except for the sample of 5Ni/CeO2-Y5.0%, which reached 

the highest conversion at 450 °C. In the temperature range of 250-350 °C, the CO2 conversion for 

Y-modified catalysts gradually increased as the increase of yttrium up to 2 wt.% Y, afterward, the 

activity declined sharply when yttrium content reached 5 wt.%, which was less active than the 

5Ni/Y2O3 catalyst. The 2 wt.% Y modified catalyst possessed the highest CO2 conversion 

compared to the other catalysts at 250-350 °C. From Fig. 5.13b, it can be found that the CH4 

selectivity of all catalysts at low temperature (200-250 °C) appears very close to that of the 

theoretical value. Afterward, by further increase the temperatures up to 300-450 °C, the selectivity 

of all catalysts decreases gradually, and the worst value was obtained for 5Ni/CeO2-Y5.0% and 

5Ni/Y2O3 at a temperature higher than 400 °C.  

In brief, the doping with yttrium into CeO2 has a significant effect on the activity and selectivity 

of the Ni catalysts towards the Sabatier’s reaction.  

The Ni catalyst supported over CeO2 modified by 2 wt.% Y possesses the best CO2 conversion and 

high CH4 selectivity at relatively low temperatures (i.e. 300-350 °C). 
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Table 5.7. The CO2 methanation performance of the catalysts compared with the results reported 

in the references 

Catalyst GHSV/WHSV Temperature 

(°C) 

CO2 conversion 

(%) 

CH4 selectivity Reference 

5Ni/CeO2 60,000 mL·g-1h-1 350  69.9 98.1 This work 

5Ni/CeO2-Y2% 60,000 mL·g-1h-1 350  81.2 99.1 This work 

10Ni/CeO2 22,000 mL·g-1h-1 340 91.1 - [376] 

5Ni/CeO2-ZrO2-AE 20, 000 mL·g-1h-

1 

350 54.0 99.5 [377] 

Ni/CeO2(CT) 45,000 mL·g-1h-1 340 91.1 100 [192] 

Ni-CeO2/SBA-15-V 60,000 mL·g-1h-1 350 60.0 99.0 [224] 

Ni-2CeO2/Al2O3 15,000 mL·g-1h-1 350 85.0 100 [378] 

15Ni/SBA-15-Op 10,000 mL·g-1h-1 350 42 81 [171] 

Ni/MCM-41 2,400 h-1 350 30 30 [346] 

Ni/SiO2 2,400 h-1 350 58 58 [346] 

Ni/Al2O3 2,400 h-1 350 62 61 [346] 

Ni/SBA-15 2,400 h-1 350 65 65 [346] 

Ni/ZSM-5 2,400 h-1 350 70 70 [346] 

Ni/ZrO2 4,8000 mL·g-1h-1 350 80 99 [168] 

Ni/La2O3 20,000 kg-1h-1 350 53 94 [198] 
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Ni/Sm2O3 20,000 kg-1h-1 350 70 97 [198] 

Ni/CeO2 20,000 kg-1h-1 350 73 97 [198] 

Ni/Al2O3 20,000 kg-1h-1 350 75 99 [198] 

Ni/ZrO2 20,000 kg-1h-1 350 75 99 [198] 

Ni/Y2O3 20,000 kg-1h-1 350 86 99 [198] 

Ni/ZrO2-P(DBD) 60,000 h-1 350 78 96 [136] 

MO-

0.4Y(hydrotalcite 

derived) 

12,000 h-1 350 89.1 99.2 [144] 

Ni/Zr/CNT(carbon 

nanotube) 

75,000 mL·g-1h-1 350 40.0 96.0 [201] 

Ni42.5(hydrotalcite 

derived) 

12,000 h-1 350 81.5 99.5 [131] 

Ni21La0.4(hydrotalcite 

derived) 

12,000 h-1 350 80.0 99.2 [206] 

Ni20Fe1.5(hydrotalcite 

derived) 

12,000 h-1 350 82 99 [205] 

 

5.9 Relationships between physicochemical properties and catalytic performances 

The mechanism of CO2 methanation over Ni/CeO2 catalysts has been studied in the literature 

[159,160]. It was attributed to the synergistic effect of two types of active sites, i.e. the active sites 

at the Ni-Ce-O interface for CO2 adsorption and dissociation as well as the Ni0 sites for H2 

adsorption and dissociation. The H2 dissociated to H- species on the surface of metallic nickel, and 

the CO2 adsorbed on the surface of the support and then dissociated to carbonate or hydrogen 

carbonate species, then the carbonate or hydrogen carbonate were hydrogenated to formate species 
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including monodentate and bidentate formate. The monodentate formate could be hydrogenated 

to methane faster than the bidentate formate species. The larger is the metallic nickel surface area 

formed on catalyst by small Ni particles, the more favorable the adsorption and dissociation of H2 

are.  The weak and medium basic sites were mainly useful for the dissociation of CO2 in the 

reaction [160]. 

As shown in Fig. 5.14 (a, b and c), good relations were found at increasing Y loading between CO2 

conversion at 300 °C and the number of basic sites (weak + medium) (mol/gcat) (Fig. 5.14a) as 

well as between CO2 conversion at 300 °C and the oxygen vacancies content, V0 (%) (see Table 

5.4) (Fig. 5.14b). A similar trend, at increasing Y loading, was observed between CO2 conversion 

at 300 °C and the temperatures of β reduction peak that is related to the strength of the metal-

support interaction of Ni over CeO2-Y catalysts.  

The CO2 conversion at 300 °C was chosen for comparison because at low temperature (<300 °C) 

the results of CO2 conversion were not very distinguishing. Meanwhile, the CO2 conversion of all 

catalysts increases with the increase of temperature (350-450 °C, Fig. 5.13), which also makes the 

difference of catalytic performance unnoticeable. Thus, the 300 °C can be an appropriate 

temperature for comparison. 
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Figure. 5.14. Correlation of CO2 conversion (at 300 °C) with (a) basic sites; (b) oxygen vacancies content, V0 (%); 

(c) temperature of β reduction peak in the TPR. The Y content represents the loading of Y for Ni/CeO2-Y catalysts, 

with 0% representing 5Ni/CeO2 
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So, based on the reported data and in agreement with the methanation reaction mechanism 

previously mentioned [159,160], it can be concluded that the decrease of CeO2 particles,  the high 

dispersion of nickel as well as the formation of more oxygen vacancies provide more active sites 

for the adsorption and dissociation of hydrogen and CO2. Moreover, the high metal-support 

interaction depresses the sintering of active metal. For the 5Ni/CeO2-Y2.0% sample, highly 

dispersed nickel particles provide more active sites for the adsorption and dissociation of hydrogen, 

the highest number of oxygen vacancies favors the adsorption of CO2 and the highest amount of 

medium basic sites promotes the formation of monodentate formate, which can be fast 

hydrogenated to methane [160]. Thus, the highest CO2 conversion and relatively high CH4 

selectivity were obtained on the catalyst. 

 

5.10 Steady-state test of Ni/CeO2 based catalysts in CO2 methanation  

The steady-state tests were performed on three selected Ni catalysts, by using the same set-up 

previously described in Chapter 3, for evaluating the stability of CO2 conversion and selectivity 

towards CH4. In a typical process, 100 mg of calcined sample was loaded into the reactor. After 

reduction, the sample was cooled down to 300 °C, then the gas mixture with molar ratio 

CO2/H2/Ar=15/60/25 (100 mL/min) was fed into the catalyst (WHSV=60,000 mL h-1gcat
-1). The 

products were analyzed by the TCD detector in GC (490 Varian, Agilent). The experiment was 

maintained at 300 °C for 7 h. 5Ni/CeO2-Y1.0% and 5Ni/CeO2-Y2.0% were selected for steady-

state tests at 300 °C for 7h. The temperature of 300 °C was selected due to the recognizable 

difference of CO2 conversion values shown in Fig. 5.13. The 5Ni/CeO2 sample was used for 

comparison. The selected catalysts were reduced in the same condition as for the CO2 methanation 

test, then were cooled down to 300 °C and the reaction gas mixture was fed into the reactor. The 
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steady-state test results are displayed in Fig. 5.15. It can be seen from Fig. 5.15a that the CO2 

conversion values of all samples decrease slightly at the beginning, then keep stable on stream. 

Both Y-promoted catalysts performed better than Ni/CeO2, with 5Ni/CeO2-Y2.0% showing the 

best CO2 conversion. The results of 5Ni/CeO2 were slightly higher than those shown in Fig. 5.13a. 

This was attributed to possible effects, within the experimental error of 5%, during the catalytic 

tests.  The selectivity to CH4 is shown in Fig. 5.15b, the values maintain nearly stable during the 

test and both Y-modified catalysts achieved higher selectivity than Ni/CeO2 catalyst. 

 

 

Figure. 5.15. CO2 methanation stabilities over 5Ni/CeO2, 5Ni/CeO2-Y1.0% and 5Ni/CeO2-Y2.0% catalysts (a) CO2 

conversion with error bars; (b) CH4 selectivity; Reaction condition: temperature 300 ◦C, WHSV=60,000 h-1gcat
-1, 

reaction gas mixture CO2/H2/Ar=15/60/25. 
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The slight difference in the conversions (lower than 3%) in between catalytic tests from 200 °C to 

450 °C and steady-state experiments can be explained by the fact that, in the former case, the 

catalysts were exposed to a lower temperature (250°C) for at least 30 min, as described in the 

experimental part, before reaching 300°C. 

 

5.11 Characterization of Ni/CeO2 based catalysts after steady-state test  

5.11.1 XRD patterns of the catalysts after steady-state test 

To investigate structural modifications of the catalysts after the steady-state test, XRD patterns 

were registered and are shown in Fig. 5.16. No diffraction peaks of metallic nickel or NiO were 

found, meaning that the nickel species remained highly dispersed on the support even after a 

steady-state test at 300 °C for 7h. This finding confirms the XRD results of the catalysts after the 

activity test. A perusal of Fig 5.16b (enlarged pattern in the range between 42 and 52° 2θ) shows 

a slight shift to higher angles of all CeO2 and CeO2−Y peaks in comparison with Fig 5.2a, 

especially in the case of 5Ni/CeO2−Y2.0%, in which the (202) peak is centered at 47.65° 2θ. This 

finding would point to further inward diffusion of Y3+ and Ni2+ into the ceria lattice, as suggested 

by the XPS analysis (see Table 5.9). In Table 5.8 the particle sizes of CeO2 support calculated by 

the Debye-Scherrer equation are listed. The values are in good agreement with those given in Table 

5.2, remarking that no sintering of ceria nanoclusters takes place at 300 °C under the reaction 

stream. The 5Ni/CeO2-Y2.0% maintained the smallest particle size of ceria.  Such results account 

for the good stability in CO2 conversion and CH4 selectivity registered being the sintering of active 

metals the main reason for deactivation in Sabatier’s reaction [192]. 
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Figure. 5.16. XRD pattern of the catalysts after steady-state test; Condition: After the steady-state test, the samples 

were cooled down to ambient temperature under pure He flow (100 mL/min) 

 

Table 5.8 The CeO2 particle sizes of catalysts after steady-state test 

Catalyst Particle size of CeO2
a 

(nm) 

5Ni/CeO2 17.3 

5Ni/CeO2-Y1.0% 16.0 

5Ni/CeO2-Y2.0% 12.1 

a Calculated by Debye-Scherrer equation fitting the 4 strongest peaks in XRD patterns. 
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5.11.2 XPS analysis of the catalysts after steady-state test 

To obtain the surface composition and oxidation states of the catalysts after a steady test, the XPS 

analyses of the spent catalysts were performed. The Ce3d, Ni2p, and O1s XPS regions of the 

samples are displayed in Fig. 5.17, respectively. The surface oxidation state, atomic ratio, and 

binding energies are shown in Table 5.9. As already shown in Fig. 5.1.4, the Ce3d spectra were 

fitted with 10 peaks, in which four peaks are attributed to Ce (III) and six peaks are attributed to 

Ce (IV).  Because of the small dimension of the nickel particles, surface re-oxidation occurs after 

catalytic reaction, likely during exposure to the atmosphere, so it was impossible to calculate the 

degree of nickel reduction.  

Compared to the XPS results of calcined samples (Table 5.3), a small decrease in the Ni/Ce ratio 

was found (Table 5.9). Conversely, the Y/Ce ratio decreased by an important extent, indicating a 

probable migration of yttrium into the bulk during steady-state reaction.  

The Ce (III) % of the samples nearly keep the same value as those of calcined samples, meaning 

that the surface Ce3+ species of the catalysts were oxidized during the test, while the values (%) of 

OOH decreased a little in comparison with those of the calcined samples, indicating decreased 

oxygen vacancies because of the occurrence of reoxidation. A decrease of the Ni/Ce ratio and a 

simultaneous shift of Ni2p3/2 peak at higher energies suggest a small increase of Ni particles size 

after the steady-state test and different interactions with the support.  

As previously stated for calcined samples, there is no significant difference regarding the binding 

energy of Y3d5/2.   
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Figure. 5.17. The XPS Ce3d, Ni2p, and O1s spectra of the samples after steady-state test; Steady-state test: 300 °C 

for 7 h in methanation reaction 
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Table 5.9 XPS derived Ce (III) and Ce (IV) percentage, Binding Energy of O1s, Ni2p3/2 and Y3d5/2 

in eV, Ni/Ce and Y/Ce atomic ratio for the samples after the steady-state test. In parenthesis, the 

relative percentage between OL and OOH is indicated.  

Catalyst Ce(III)-

Ce(IV) 

O1s (eV) Ni2p3/2 (eV) Ni/Ce Y3d5/2 (eV) Y/Ce 

OL OOH 

5Ni/CeO2 11%-89% 529.9 

(53%) 

532.8 

(47%) 

855.3 0.18 - - 

5Ni/CeO2-Y1.0% 11%-89% 529.9 

(47%) 

532.6 

(53%) 

855.6 0.16 157.8 0.38 

5Ni/CeO2-Y2.0% 16%-84% 530.1 

(49%) 

532.2 

(41%) 

855.7 0.16 158.2 0.42 

 

5.12. Conclusions and perspectives 

Y-modified CeO2 oxides have been successfully synthesized by the hydrothermal method and used 

as supports for Ni deposition by wetness impregnation. The catalytic performances were 

investigated in CO2 methanation reaction and are discussed in line with Physico-chemical 

characterizations of calcined, reduced, and spent catalysts. It has been proven that such Ni catalysts 

with proper Y loadings are suitable catalysts for CO2 methanation reaction between 250-350 °C 

with high selectivity towards methane formation. 

The specific surface area of Ni/CeO2-Y samples, the crystallite sizes of ceria, the oxygen vacancies 

content, and the interaction between NiO and CeO2 can be tuned by different Y content as shown 

by N2 adsorption/desorption, XRD, XPS, TPR, TEM, HR-TEM, TGA, CO2 TPD. All the catalysts 

contain well-defined crystallites and the introduction of Y tailors the particle sizes and shapes of 

CeO2 in the catalysts. Unpromoted CeO2 particles are large nano-cubes turning to nanorods by Y 

promotion, with an increase of these nanorods size of up to 2 wt% of Y addition.  
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Highly dispersed Ni active sites in strong interaction with the ceria-based oxide and the oxygen 

vacancies formed by Y addition are the key factors determining high catalytic activity and stable 

performances of the Ni/CeO2-Y catalysts. 

The Ni/CeO2-Y 2.0% with the highest number of oxygen vacancies able to activate CO2 and with 

the strongest metal-support interaction suppressing sintering of the Ni sites for H2 activation, was 

the best performing CO2 methanation catalyst.  

CeO2 is highly active support for Ni catalysts and Y is a good promoter to improve Ni/CeO2 

catalyst in CO2 methanation. Besides, CeO2 and Y2O3 can also be good supports or promoters for  

Ni catalysts. Thus, the effects of such promoters in Ni catalysts supported on mesoporous materials 

are presented in the next chapter. 
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6. Ordered mesoporous silica supported Ni catalysts for CO2 methanation 

 

6.1. Introduction 

In this section, two types of highly ordered mesoporous silicas are presented. SBA-15 (Santa 

Barbara Amorphous), which was developed by Zhao et al. [379], was synthesized and used to 

prepare Ni catalysts for CO2 methanation. SBA-15 has a two-dimensional p6mm hexagonal 

structure, with a well-ordered hexagonal array and one-dimensional channel structure as shown in 

Figure. 6.1 [379]. SBA-16, developed by the same team [379], was also synthesized and employed 

in Ni catalysts preparation. On the contrary, SBA16 has a three-dimensional cubic cage-like 

structure with an ultra-large cell parameter (Shown in Figure. 6.2) [252,380,381]. 

 

Scheme 6.1. Schematic illustration of the meso-channels of SBA-15 (a) and nano cage-like of SBA-16 (b). Adapted 

from [382]. 

 

As shown in Scheme 6.1, SBA-15 and SBA-16 have very distinctive structures. SBA-15 displays 

parallel pores and highly ordered hexagonal arrangement [382]. Meanwhile, SBA-16 possesses 

body-centered cage-like pores with cubic arrangement [382]. Considering the structure properties 
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of SBA-15 and SBA-16, they would be interesting materials in catalysis. Some reports have 

applied such materials in various CO2 utilization reactions as shown in Table 6.1.  Given the results 

above, mesoporous silica (SBA-15 and SBA-16) can be interesting to Ni catalysts in CO2 

methanation.  

 

Figure. 6.1. The hexagonal structure and ordered channels of SBA-15. Adapted from [382] 

 

 

Figure. 6.2. Diffractograms along with different projections of the Im3m structure of SBA-16. Adapted from [380]. 
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Table 6.1 The SBA-15 and SBA-16 utilized in various CO2 utilization reactions 

Catalyst Reaction Reference 

Ni/SBA-15 dry reforming of methane [383] 

Ni/Ce-SBA-15 dry reforming of methane [384] 

Ni/CeZr/SBA-15 dry reforming of methane [385] 

Ni/TiN-SBA-15 dry reforming of methane [386] 

Co-Ni/Sc-SBA-15 dry reforming of methane [387] 

Ni/Ce/SBA-15 CO2 methanation  [178] 

Ni-Mg/SBA-15 CO2 methanation [179] 

Ni-La2O3/SBA-15 CO2 methanation [169] 

Ni-Y/SBA-16 Cyclic Chemical Looping Steam 

Methane Reforming 

[388] 

Ni-Ce/SBA-16 dry reforming of methane [389] 

Ni-Mg/SBA-16 dry reforming of methane [390] 

Ni/SBA-16 CO2 methanation  [204] 

Ni/SBA-16 CO2 methanation [182] 

 

Thus, in this chapter, we will present first a study on SBA-15 supported catalysts doped by Ce and 

Y. Furthermore, Ni catalysts supported on SBA-16 are also presented. 

 

6.2. SBA-15 supported Ni catalysts doped by Y and Ce 

6.2.1 Introduction 

Oxide materials such as CeO2 [137], ZrO2 [201], Al2O3 [214,275], hydrotalcite [144,391], SiO2 

[161], etc. had received intensive research interests. In chapter 4 and 5, the low-cost materials and 

CeO2 were investigated. Meanwhile, the ordered mesoporous materials like SBA-15 

[171,179,221,224], MCM-41 [221,392,393], KIT-6 [50], and SBA-16 [142,204], have also been 

used as supports for the preparation of Ni catalysts thanks to their unique properties. Among 
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mesoporous silicas, Santa Barbara Amorphous-15 (SBA-15) has attracted significant attention due 

to its high specific surface area (up to 1160 m2/g), particular pore size distribution (50-300 Å), 

large pore volume (up to 2.5 cm3/g), well-ordered pore structure, and high thermal stability [66]. 

The highly ordered structure can limit the sintering of Ni particles at high temperatures, whereas 

an enhanced specific surface area and high pore volume contribute to the high dispersion of Ni 

active sites. SBA-15 has been extensively used as support for the preparation of Ni/SBA-15 

catalysts. Liu et al. [171] synthesized Ni/SBA-15 catalysts by one-pot hydrothermal method 

(Ni/SBA-15-op) and conventional impregnation method (Ni/SBA-15-Im), investigating their 

catalytic performance in CO2 methanation. It was found that Ni/SBA-15-op catalyst was more 

active than Ni/SBA-15-Im due to higher surface area, larger pore volume, and enhanced dispersion 

of nickel particles in Ni/SBA-15-op. Furthermore, the addition of promoters to Ni catalysts can 

significantly contribute to an improvement in catalytic efficiency. Bian et al. [178] synthesized the 

Ni/SBA-15 and Ni/Ce/SBA-15 catalysts by the sequential impregnation method and the dried 

Ni/Ce/SBA-15 (nitrate nickel) samples were processed by dielectric barrier discharge (DBD) 

plasma and calcination in air. It was found that the Ce addition to Ni/SBA-15 significantly 

improved the activity and selectivity of the catalyst, regardless of the calcination or DBD plasma 

process. After modification with ceria, the catalyst decomposed by plasma (Ni/Ce/SBA-15-P) 

performed the best activity, which was attributed to the high dispersion of Ni, better reducibility, 

and increased number of basic sites. Apart from the process of plasma decomposition, Ni/Ce/SBA-

15 catalysts calcined in air or vacuum were also reported in CO2 methanation [224]. The study 

illustrated that the catalyst obtained under vacuum thermal treatment (Ni-CeO2/SBA-15-V) 

showed better activity and selectivity compared to those thermally treated in the air (Ni-
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CeO2/SBA-15-air). This was attributed to the smaller particle size of Ni and CeO2, as well as 

highly dispersed Ni species, being in close vicinity to Ce.  

Other promoters, such as Zr [394,395], CexZr1-xO2 [396], Y [64], Mg [179,397] were also used to 

enhance performance of Ni/SBA-15 catalysts in various catalytic reactions. Cerium and zirconium 

were commonly applied to improve nickel-based catalysts due to their redox and oxygen storage 

abilities. In chapter 5, the modification with Y on the catalytic performance of Ni/CeO2 in CO2 

methanation was studied [141]. It found that the incorporation of yttrium could substantially 

promote the activity of Ni/CeO2. The positive effect of yttrium was assigned to the existence of 

smaller CeO2 crystal size, increased BET surface area, enhanced Ni-Ce metal-support interaction, 

and the increased oxygen vacancies for Y-doped Ni/CeO2 catalysts. 

Compared to the Ni catalysts promoted by one additive, the promotion with Ce-Zr or Ce-Y dual 

additives of Ni-based mesoporous catalysts have been studied on reactions, such as CO 

methanation and dry reforming of methane, which showed better performance in such reactions 

[385,398]. However, only a few studies focused on the Ni/SBA-15 catalyst modified by two 

promoters in CO2 methanation. Considering the benefits of CeO2 and Y2O3, here we investigated 

the effects of Ce and Y on the performances of SBA-15 supported Ni catalysts in CO2 methanation. 

Ni/SBA-15 catalysts with a fixed content of Ce (10 wt.%) and different loadings of Y (2, 4, 10 

wt.%) were synthesized by co-impregnation method and characterized by a variety of techniques, 

such as N2 physisorption, small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), 

transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), H2 

temperature-programmed reduction (H2-TPR), CO2 temperature-programmed desorption (CO2-

TPD), H2 chemisorption, and thermogravimetric analysis coupled with mass spectrometry (TGA-

MS). This study aims to investigate the influence of Y on NiCe/SBA-15 catalysts in CO2 



Chapter VI Ordered mesoporous silica supported Ni catalysts for CO2 methanation 

 

 

182 
 

methanation. The yttrium individually doped Ni/SBA-15 catalysts were also synthesized and 

tested in CO2 methanation as a comparison.  

 

6.2.2 Catalysts preparation and characterization 

The synthesis procedures of SBA-15 and subsequent supported Ni catalysts were introduced in 

3.1.4 (Chapter 3). Characterization techniques were shown in 3.3 (Chapter 3). 

 

6.2.3 Textural properties, structural parameters, metal distribution, and chemical surface 

composition of the studied catalysts 

The textural properties of the calcined samples were measured by N2 physisorption. N2 isotherms 

and pore size distributions are presented in Fig. 6.3. As shown in Fig. 6.3a, all samples with and 

without yttrium showed type IV isotherm with H1 hysteresis loop, clearly demonstrating the 

presence of mesoporous feature [399]. The parallel adsorption and desorption curves also indicate 

highly ordered cylindrical channels present in the samples. This shows that the ordered 2D 

structure was preserved after modification with promoters. With the increasing yttrium loading, 

the inflection step slightly shifts towards lower relative pressure (p/p0), indicating a slight 

reduction of ordered mesopores [179]. The specific surface area (SSA), pore volume (Vp), and 

average pore width (Dap) are presented in Table 6.2. In this study, SSA and Vp of the studied 

Ni/SBA-15 catalysts are similar to those described in other reports on Ni/SBA-15 catalysts 

[400,401]. Despite a significant decrease of SSA observed for the Ce-promoted samples, the 

obtained values are still high and comparable to those reported elsewhere [61,64,385]. This can be 

attributed to a cluster formation or deposition of promoter clogging the porous channels of the 
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support [385]. Moreover, this indicates that the surfactant CTAB, added in the preparation step, 

can be a suitable reagent used during the synthesis of Ni/SBA-15 catalysts. Furthermore, the 

presence of yttrium can positively influence the textural properties [141,144]. As presented in 

Table 6.2, SSA and Vp were higher when 4 wt.% of Y was used. Then, both SSA and Vp decreased 

for the sample containing 10 wt.% of Y loading. Fig. 6.3b depicts BJH pore size distribution 

measured for the studied catalysts. It can be seen that the pore size of all the samples mainly locates 

in the range of 2-8 nm. It can be seen that metal oxides (Ni and Ce) deposited onto the SBA-15 

support resulted in a decrease of average pore size from 6.8 nm for SBA-15 to 6.2 nm for 

15Ni10Ce/SBA-15. Moreover, the Y addition led to a slight decrease of average pore size from 

6.2 nm to 5.9 nm for 15Ni10Ce/SBA-15 and 15Ni10Ce10Y/SBA-15, respectively. This can be 

linked with an effect of the deposition of metal oxides inside the mesopores, which was also found 

for La-promoted Ni/SBA-15 catalyst [169]. One can note that the appropriate loading of Y (4 wt.%) 

led to an increase of specific surface area and pore volume in Ce-Y-promoted Ni/SBA-15 catalysts. 

Similar observations were found by Świrk et al.[49] for yttrium promoted Ni/Mg/Al hydrotalcite-

derived mixed oxides. Among the yttrium modified samples with 3, 4 and 8 wt.%, NiY4-DLH 

revealed the highest specific surface area.  

 



Chapter VI Ordered mesoporous silica supported Ni catalysts for CO2 methanation 

 

 

184 
 

 

 

 

Figure. 6.3. N2 adsorption-desorption isotherms a) and the BJH pore width distribution b) of the calcined catalysts. 

For clarity, the isotherms were vertically shifted. 
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The ordered structure of the calcined SBA-15, 15Ni10Ce/SBA-15, and 15Ni10Ce10Y/SBA-15 

were studied by Small-angle X-ray diffraction. Three peaks between 2θ = 0.5-4° were registered 

for all samples with the most intense at 2θ = 0.9° and two well-resolved at 2θ of ca. 1.5, and 1.8° 

corresponding to (100) (110) and (200) crystal planes, respectively. Their presence is attributed to 

the highly ordered 2D hexagonal structure (p6mm) which is a typical structure for SBA-15 

[251,402]. This shows that the co-impregnation with Ni, Ce, and Y allows maintaining the ordered 

mesoporous structure of SBA-15 catalysts, however, their peaks shifted toward higher angles (Fig. 

6.4) as the unit cell parameter decreased after modification with metals (Table 6.2). The calculated 

values are in the range of 11.2-11.9 nm, being in good agreement with those estimated in other 

literature reports [402,403]. The recorded decrease in unit cell parameter suggests that nickel, 

cerium, and yttrium species were partially deposited on the outer surface of SBA-15 support 

[251,404]. As presented in Fig. 6.4, the intensity of the diffraction peaks gradually decreased after 

modifications with Ni-Ce and Ni-Ce-Y. This can be explained by partial destruction of the pore 

structure orderliness of 15Ni10Ce/SBA-15 and 15Ni10Ce10Y/SBA-15 catalysts [169,405]. 

 

Figure. 6.4. Small-angle X-ray diffraction patterns of the calcined SBA-15, 15Ni10Ce/SBA-15 and 

15Ni10Ce10Y/SBA-15. 



Chapter VI Ordered mesoporous silica supported Ni catalysts for CO2 methanation 

 

 

186 
 

The structural properties of the calcined and reduced catalysts were characterized by wide-angle 

X-ray diffraction and the recorded patterns are depicted in Fig. 6.5. As shown in Fig. 6.5a, the 

diffraction peaks at 2θ=37.1, 43.1, 62.7, 75.2, and 79.3° were registered for all samples, which 

were assigned to the presence of cubic NiO, corresponding to the (111), (200), (220), (311) and 

(222) planes, respectively [406,407]. For the calcined 15Ni10Ce/SBA-15 sample, only NiO was 

registered as a segregate phase. No separate phase of cerium species was observed which may 

indicate their high dispersion. By increasing the Y loading, small diffraction peaks located at 28.9° 

and 33.1° appeared for the 15Ni10Ce10Y/SBA-15 sample, which may suggest the existence of 

Y2O3 (ICSD reference no. 193377) and CeO2 (ICSD reference no. 28753), respectively [141]. The 

modification with Y loading of 10 wt.% may lead to a slight decrease of the dispersion of yttria 

and ceria on the SBA-15 support due to the deposition of the metal species on the outer surface 

[51].  

By increasing the yttrium loading, a small shift of the diffraction peak of NiO was identified for Y 

and Ce modified samples. The diffraction peaks located at 37.08 and 43.11° on the 

15Ni10Ce/SBA-15 sample shifted to 37.27 and 43.34° for 15Ni10Ce10Y/SBA-15, indicating that 

the partial introduction of Ni2+ into CeO2 lattice may occur [141]. For the 15Ni10Ce10Y/SBA-15 

sample, apart from the possible reflection of Y2O3, the diffraction peaks centered at 28.56 and 

28.55° possibly arising from CeO2 (ICSD reference no. 28753) and Ce-Y solid solution (ICSD 

reference no. 28808, cubic, space group Fm3̅m), respectively, cannot be excluded because of their 

adjacent positions. Hence, it can be speculated that the solid solution of Y-Ce can be formed on 

yttrium and cerium containing samples. The formation of Y-Ce solid solution can be formed by 

the similar ion radius of Ce4+ (0.97 Å) and the Y3+ dopant (1.02 Å), which led to the replacement 

of Ce by Y in the lattice [408]. This may be demonstrated by subsequent XPS results. 
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Table 6.2. The textural properties, the crystallite size of NiO, and metallic Ni measured for the 

reduced samples.  

Catalyst 
SSA 

(m2/g)a 

Vp 

(cm3/g)b 

Crystallite size 

(nm)c 

Crystallite 

size of Ni° 

(nm)d 

Dispersion 

of Ni (%)d 

Lattice 

Parameter 

a (nm)e 
NiO Ni0 

SBA-15 973 1.09 n/p n/p n/p n/p 11.9 

15Ni10Ce/SBA-15 400 0.54 13 20 11.0 3.2 11.4 

15Ni10Ce2Y/SBA-15 410 0.55 14 22 12.1 3.1 n/m 

15Ni10Ce4Y/SBA-15 443 0.61 15 17 12.5 3.1 n/m 

15Ni10Ce10Y/SBA-15 395 0.53 15 21 11.4 3.4 11.2 

n/p: not present. n/m: not measured  

a Calculated by a BET calculation method. 

b Calculated by BJH desorption method. 

c Calculated from XRD by the Scherrer equation. 

d Calculated by H2 chemisorption assuming spherical nickel crystallites of uniform size. 

e Calculated from SAXS by a=2d(100)/√3 

 

Wide-angle XRD patterns of the reduced catalysts are depicted in Fig. 6.5b. The structural 

properties of the catalysts changed after reduction compared to the calcined samples. Only three 

peaks located at 2θ= 44.69, 52.03, and 76.60° were registered, which were assigned to the 

diffraction of metallic Ni, corresponding to (111), (200), and (220) planes, respectively [204]. The 

peak positioned at 2θ=28.60° was too weak to be identified, meaning the dispersion of yttria or 

ceria was improved after reduction. Similar to the calcined samples, a slight shift of the reflection 

from 2θ=44.69° for 15Ni10Ce/SBA-15 to 2θ=44.56° for 15Ni10Ce10Y/SBA-15 was found. 

Nevertheless, it is difficult to estimate whether the insertion of Ni into the Ce or Si structure 

occurred, as there was no clear diffraction peak of ceria, making the comparison of cell parameter 

impossible [409]. 
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The crystallite size of NiO and Ni° were calculated by the Scherrer equation and listed in Table 

6.2. It can be seen that the introduction of Y did not have a significant effect on the crystal size of 

NiO or Ni metal. Meanwhile, the crystallite size of metallic Ni increased compared to the NiO 

calculated for the calcined materials, which can be attributed to the phase change during the 

reduction step.  

H2 chemisorption experiments were carried out and the dispersion of Ni, as well as the estimated 

size of Ni° crystallites, are presented in Table 6.2. With the increasing Y loading up to 4 wt.%, the 

dispersion of Ni did not change significantly. Furthermore, there is no significant difference 

regarding the Ni° particle size, indicating that the addition of Y has only a slight effect on active 

sites. The difference of Ni° particle size obtained from different methods (XRD or H2 

chemisorption) can be attributed to the effect of different measurements or the not 100% reduction 

of nickel.  
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Figure. 6.5. XRD patterns of the catalysts promoted with cerium and cerium-yttrium; (a) calcined samples, (b) 

reduced samples 
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In order to confirm the unique structure of SBA-15 and to determine the dispersion of Y2O3, CeO2, 

and Ni° on the surface, the TEM and EDS analyses were conducted for the reduced catalysts. The 

micrographs are presented in Fig.6.6 with the preserved well-defined two-dimensional channels 

and the hexagonal pore arrangement. These results demonstrated that the distinct mesostructure 

was maintained after impregnation with metals. This result is consistent with the SAXS. Fig.6.6a 

shows micrographs of 15Ni10Ce/SBA-15 catalyst with big Ni particles that were probably formed 

by the agglomeration of nickel outside the mesoporous channels of SBA-15. On the contrary, 

15Ni10Ce10Y/SBA-15 catalyst presented well-dispersed Ni species inside the channels of the 

support, with only a few big particles found on the outer surface (Fig. 6.6b).  

 

 

 

Figure. 6.6. TEM micrographs of the reduced catalysts; Conditions: 550 °C for 1.5h under 5%H2/Ar; (a) 

15Ni10Ce/SBA-15, (b) 15Ni10Ce10Y/SBA-15. 
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Figure. 6.7. EDS elemental mapping analysis performed for the reduced catalysts: (a) 15Ni10Ce/SBA-15, (b) 

15Ni10Ce10Y/SBA-15 

 

EDS elemental mapping analysis was carried out for 15Ni10Ce/SBA-15 and 15Ni10Ce10Y/SBA-

15 and presented in Fig. 6.7a and b. In the former, cerium species were well dispersed over the 

support, whereas nickel was exposed in the form of big particles, as well as uniformly distributed 

nanoparticles. 15Ni10Ce10Y/SBA-15 revealed Y and Ce species evenly dispersed and less 

agglomerated particles of Ni. The reducibility of the studied catalysts will be described in detail in 

the next section.  
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To investigate the surface composition and oxidation states of the catalysts, the XPS 

characterization was performed for the reduced catalysts. The XPS spectra are shown in Fig. 6.8 

and the atomic ratio and binding energies were calculated in Table 6.3.  

As shown in Fig. 6.8a, the O1s spectrum can be deconvoluted into 3 peaks located at 530.6, 532.5, 

and 533.4 eV, which were attributed to the metal oxide (OOM), oxygen of silica (OOSi), and surface 

oxygen species adsorbed on oxygen defects (OOH), respectively [410,411]. As shown in Table 6.3, 

the increase of Y loading resulted in the increase of OOH species. Thus, it can be seen that the 

increment of Y loading leads to the increase of oxygen defects [373,375].  

As shown in Fig. 6.8b, the overlapped spectra can be deconvoluted into 3 peaks. The intensive 

peak located at 154.0 eV was assigned to the presence of Si2s. The two weak peaks positioned at 

157.5 and 159.8 eV were attributed to the presence of Y3d5/2 and Y3d3/2 [412]. As the increase of 

Y loading, the peak intensity of Y2O3 increases, indicating more yttria species deposited on the 

surface of the support. Also, no apparent peak shifts regarding Y3d5/2 were registered (Table 6.3). 

From Fig. 6.8c, it can be seen that the intensity of the Si2p peak, which locates at 103.1 eV, 

decreases with the increase of Y loading, which can be attributed to the coverage of Ni, Ce, and Y 

on the surface of the SBA-15 material.  

In Fig. 6.8d, the XPS spectra of Ni2p3/2 for the for 15Ni10Ce/SBA-15 catalyst consisted of two 

peaks located at 852.8 and 855.5 eV, which were attributed to the Ni0 and Ni2+ species, with a 

shake-up satellite peak at 860.7 eV [413].  As presented in Table 6.3, the Ni2p3/2  peak shifted 

towards higher binding energy as the increase of Y promotion, indicating the Ni species could also 

be incorporated into ceria lattice [373]. It can be observed in Table 6.3 that promotion of the 

catalyst with Y lead to a change in the Ni0/Ni2+ ratio. The addition of 2 wt.% Y resulted in the 

increase of surface Ni0 concentration. However, the Y loading higher than 2 wt.% led to the 
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decrease of the surface ratio of Ni0 species. Based on the XRD results, the Ni particle size over the 

SBA-15 support did not increase significantly with Y addition. However, the peak of Y2O3 may 

appear when the Y loading reached 10 wt.%. Thus, the decrease of Ni0 concentration may be 

caused by the excess Y species on the surface of SBA-15. Also, the adsorption of oxygen species 

on the surface of Ni0 species cannot be excluded. The surface ratio of Ni as shown in Table 6.3 

maintains stable with the increase of Y loading until 4 wt.% and then increases when Y loading 

reached 10 wt.%, indicating the increased Ni species concentration on the surface of the support 

for 10 wt.% Y loading promoted sample. 

The Ce3d XPS spectra of the catalysts were presented in Fig. 6.8e. With the increase of Y adding, 

the peak intensity of the Y-doped catalysts did not change largely as comparison with the peak 

intensity of Y-free catalysts. The Ce3d peak could be deconvoluted to 10 peaks labeled as uiii, uii, 

ui, u, u0, viii, vii, vi, v, and v0. The components labeled as u0, ui
, v

0, and vi were attributed to Ce3+ 

species, and the other components labeled as uiii, uii, u, viii, vii, and v were assigned to the presence 

of Ce4+ species [141]. From Table 6.3, it can be seen that the ratio of Ce3+/Ce over the Y-doped 

catalysts increased gradually as the increase of Y loading, with the highest ratio of Ce3+/Ce 

obtained over 10 wt.% Y promoted catalyst. Thus, it can be concluded that the dopant of Y 

promotes the formation of Ce3+, and thus more oxygen vacancies are created [361]. The Ce3d peak 

position in eV for Y-doped catalysts also shows a slight shift as the increase of Y loading towards 

lower binding energy as the increase of Y loading, which demonstrates the incorporation of Y and 

Ni inside the Ce lattice over the catalysts. This is consistent with the results from XRD. 
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Figure. 6.8. XPS spectra for the reduced samples; Condition: 550 °C reduced under 5% (v/v) of H2/Ar flow for 1.5h. 

(a) O1s, (b) Y3d, (c) Si2p, (d) Ni2p, (e) Ce3d 
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Table 6.3 XPS derived Ce3+ and Ni0 percentage, Binding Energy of Y3d5/2, Ni2p3/2 and Ce3d5/2 in 

eV, Ni, Ce, and Y atomic ratio for the samples after reduction. 

Catalyst 

Atomic ratio (%) Binding Energy (eV) 

Ni Ce Y Ni0/Ni2+ OOH/(OOM+OOSi+OOH) 
Ce3+/(Ce3++ 

Ce4+) 
Ni2p3/2 Ce3d5/2 Y3d5/2 

15Ni10Ce/SBA-15 1.14 0.56 - 21.8 9.0 48.2 855.5 881.8  

15Ni10Ce2Y/SBA-

15 
1.00 0.64 3.95 25.9 22.4 50.1 855.8 881.8 157.9 

15Ni10Ce4Y/SBA-

15 
1.04 0.55 4.10 19.1 23.0 51.5 856.0 881.7 157.9 

15Ni10Ce10Y/SBA-

15 
1.20 0.52 4.80 11.7 23.9 57.2 856.0 881.6 158.0 

 

6.2.4 Reducibility of the studied catalysts 

The reduction behavior was studied by the H2-TPR method and presented in Fig.6.9. Four peaks 

were revealed and labeled as α, β, γ, and δ for Ni15Ce10/SBA-15 and Ni15Ce10Yx/SBA-15 

catalysts (Fig.6.9a-b), and attributed to the reduction of Ni species with different degree of metal-

support interactions [414,415]. The peaks centered at the temperature lower than 400 °C (α and β) 

were attributed to the reduction of NiO species located at the external surface of SBA-15 [415,416]. 

The peaks centered at 400-500 °C (γ) and 600 °C (δ) were assigned to the reduction of NiO weakly 

and strongly interacting with the support, respectively [417]. Fig.6.9 revealed a shift of the 

reduction peaks towards lower temperature with the increment of the Y content, except for the 

sample with 2 wt.% of Y. This indicates that the reducibility of Y-promoted catalysts has been 

improved with the increasing loading of yttrium. Table 6.4 presents the H2 consumption calculated 

for Y-promoted NiCe/SBA-15 catalysts. The maximum of reduction peaks was lower except for  
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Figure. 6.9. H2-TPR profiles of the as calcined catalysts (a) and the enlarged mapping of the profiles of 

15Ni10Ce/SBA-15 and 15Ni10Ce10Y/SBA-15 (b) 
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those with 2 wt.% of Y-containing sample. The latter revealed maximum reduction peaks very 

similar to the 15Ni10Ce/SBA-15 catalyst. TEM micrographs showed an agglomeration of Ni 

particles in the reduced Ni15Ce10/SBA-15 sample, whereas the presence of Y facilitated the 

formation of small nickel particles. In this regard, the reducibility of Ni15Ce10Yx/SBA-15 

catalysts has been enhanced. 

 

Table 6.4. The reduction temperature peaks and the H2 consumption values of the studied catalysts 

during H2-TPR 

Catalyst 

Temperature (°C) H2 consumption (mmol·g−1) 

α β γ δ α β γ δ Total 

15Ni10Ce/SBA-15 299 397 483 665 0.15 0.70 1.30 0.65 2.80 

15Ni10Ce2Y/SBA-15 269 401 504 673 0.09 0.84 1.27 0.49 2.70 

15Ni10Ce4Y/SBA-15 223 394 455 649 0.02 0.52 1.38 0.63 2.54 

15Ni10Ce10Y/SBA-15 238 363 429 622 0.08 0.56 1.07 1.18 2.89 

 

6.2.5 Basicity of the studied catalysts 

An adequate number of basic sites is known to play a crucial role in the catalytic performance of 

CO2 methanation catalysts. Thus, the basicity of the studied catalysts was investigated by 

temperature-programmed desorption using CO2 as a probe molecule. CO2 desorption profiles are 

shown in Fig.6.10 and the basic site distribution is listed in Table 6.5. The CO2 desorption peaks 

can be classified into three types based on their temperature regions: <220 °C, 220-500 °C, 

and >500 °C correspondings to weak, medium, and strong basic sites, respectively [141,169,391]. 

As shown in Table 6.5, the medium basic sites and total basic sites increased with increasing Y 
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loading with the expense of strong basic sites. The highest amount of medium basic sites was 

obtained for 15Ni10Ce10Y/SBA-15 catalyst. Pan et al. [160] investigated the reaction route of 

CO2 methanation over Ni/Ce0.5Zr0.5O2 catalyst. The authors suggested that medium basic sites can 

promote the formation of monodentate carbonates, enhancing activity in CO2 methanation. Similar 

observations regarding the beneficial influence of medium basic sites were described elsewhere 

[141,179,391]. In the current study, the enhancement of moderate basicity can be attributed to the 

increase of the Ce3+ ratio shown in XPS. The incorporation of Y resulted in an increase of the Ce3+ 

ratio, thus more CO2 species were adsorbed on the generated oxygen vacancies [141].  

 

 

Figure. 6.10. CO2 desorption curves of the catalysts after reduction at 550 °C for 1.5h. 
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Table 6.5. The basic site distribution calculated from CO2-TPD for the reduced catalysts. 

Catalyst 

Basic sites [ mol/gcat] 
Total basic 

sites 

Distribution of basic sites [%] 

weak medium strong weak medium strong 

15Ni10Ce/SBA-15 6.7 23.0 24.6 54.3 12.4 42.3 45.3 

15Ni102YCe/SBA-15 3.2 38.5 11.8 53.5 6.0 72.0 22.0 

15Ni10Ce4Y/SBA-15 2.2 50.5 4.6 57.4 3.9 88.1 8.0 

15Ni10Ce10Y/SBA-15 5.4 64.4 2.6 72.5 7.5 88.9 3.6 

 

6.2.6 Catalytic performance in CO2 methanation       

The catalytic activity and CH4 selectivity of NiCe/SBA-15 catalysts promoted with Y are presented 

in Fig.6.11a and Fig.6.11b. The blue dash lines in both figures represent the thermodynamic 

equilibrium of CO2 conversion and CH4 selectivity in CO2 methanation for the assumed 

experimental conditions. CO2 conversion, obtained for the studied catalysts, increased with the 

increasing reaction temperature and reached nearly equilibrium at 450 °C. In the temperature range 

of 300-350 °C, in which the conversion values of the catalysts are distinguished, it can be seen that 

yttrium promoted catalysts showed higher CO2 conversion compared to that of Ni15Ce10/SBA-

15. Depending on the loading of yttrium, the following activity order was observed at 350°C: 10Ce 

(40.0%) < 2Y (44.0%) < 4Y (54.5%) < 10Y (61.2%), in which 10Ce refers to the 15Ni10Ce/SBA-

15 sample.  

Fig.6.11b shows selectivity to CH4, revealing a gradual decrease with the temperature rise. At 

temperatures lower than 300 °C, there is no difference in the CH4 selectivity for all catalysts as the 

CO2 conversion is negligible in this temperature region. In the temperature window between 300 

and 400 °C, the Y-free catalyst showed the lowest CH4 selectivity. Meanwhile, the series of Y-
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promoted catalysts showed equally high CH4 selectivity. It is worth noting that only carbon 

monoxide (CO) was registered as a side product in the studied reaction conditions. The formation 

of CO is mainly caused by the reverse water-gas shift reaction (CO2 + H2 = CO + H2O) [418]. 

According to the thermodynamics of the CO2 methanation reaction, the CO selectivity increases 

with the increasing temperature, consequently decreasing selectivity towards CH4 production 

[418,419]. It has been reported that the Ce promotion of Ni/SBA-15 catalyst can increase the 

activity and CH4 selectivity in CO2 methanation [178,224]. The presence of cerium can enhance 

the activation of CO2 at low temperatures, hence improve the activity and CH4 selectivity [221]. 

Herein, the promotive effect of Y on NiCeY/SBA-15 catalysts was observed. 

The catalytic performance of yttrium individually doped Ni/SBA-15 catalysts were also displayed 

in Fig.6.11c and d. It can be seen that the Ni/SBA-15 catalysts doped by yttrium show worse 

activities compared to those catalysts doped by Ce and Y. 

It has been reported that the methanation mechanism over Ni-containing SBA-15 and MCM-41 

mesoporous silicas undergoes the route of CO-free and without the participation of intermediates, 

such as carbonate and formate [221]. In the study of Bacariza et al. [221], FTIR analysis carried 

out for Ni/SBA-15 catalyst showed the adsorbed CO2 species on the surface of Ni metal 

transformed to carbonate species, following the formation of formate species, then led to the 

formation of methane. However, many carbonyl species could be formed over the catalysts, which 

accounted for the formation of CO and the feasible poisoning of metallic nickel. In the CO2 

adsorption experiment carried out with the assistance of FTIR, only CO species (probably 

originating from the CO2 disproportionation/dissociation reaction) were found over the bare SBA-

15 support, which suggests that the methanation reaction could not occur in the presence of Ni 

metal [221]. When Ce was loaded onto the Ni/SBA-15 catalyst, the carbonyl species that led to 
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the formation of CO decreased, consequently promoted the activation of CO2 and enhanced the 

formation of CH4. The promotion effect of Ce for Ni/SBA-15 catalyst in CO2 methanation was 

undisputed [178]. Moreover, the promoting effect of Y on Ni/CeO2 catalysts has been reported in 

CO2 methanation, in which the addition of Y can lead to an increase of weak and medium basicity, 

more oxygen vacancies, and enhanced metal-support interaction [141].  
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Figure. 6.11. The CO2 conversion (a) and CH4 selectivity (b) of NiCe/SBA-15 catalysts with and without yttrium in 

CO2 methanation; CO2 conversion (c) and CH4 selectivity (d) of yttrium promoted Ni/SBA-15 catalysts. 

 

In the current study, the presence of Y promoted the reduction of Ni species of 15Ni10CexY/SBA-

15 catalysts, as proven by the H2-TPR experiment. Meanwhile, the formation of solid solution of 

Y-Ce was demonstrated by XPS. Also, the addition of Y could lead to the increased ratio of 
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Ce3+/(Ce3++Ce4+), with 10 wt.% Y-modified catalysts having the highest ratio of Ce3+/(Ce3++Ce4+), 

and favoring an increase of oxygen vacancies. The latter is believed to promote the activation of 

CO2 [141]. Moreover, CO2-TPD results show that the presence of yttrium oxide can contribute to 

the increase of medium-strength basic sites, which are advantageous in CO2 methanation [160]. In 

our study, the 10 wt.% Y-modified catalysts presented the highest number of medium basic sites, 

which can explain the increased CO2 conversion and CH4 selectivity. 

By correlating the CO2 conversion at 350 °C with the ratio of Ce3+/(Ce3++Ce4+) (Fig.6.12a), a 

linear correlation can be found between Ce3+/(Ce3++Ce4+) ratio and the increasing Y loading. With 

increasing Y loading up to 10 wt.%, the ratio of Ce3+/(Ce3++Ce4+) and CO2 conversion increase 

linearly. Furthermore, CO2 conversion at 350 °C can be also correlated with the amount of medium 

basic sites as shown in Fig.6.12b. With the increasing Y content, both CO2 conversion and number 

of medium basic sites increased until 10 wt.% of Y. Promotion of 15Ni10Ce/SBA-15 catalysts 

with the appropriate loading of yttrium can improve the Ni dispersion and its reducibility, increase 

the ratio of Ce3+/(Ce3++Ce4+), and enhance the moderate basicity. All these factors can positively 

influence CO2 conversion and CH4 selectivity in CO2 methanation reaction.  
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Figure. 6.12. Correlation between the CO2 conversion at 350 °C with the ratio of Ce3+/(Ce3++ Ce4+) (a) and medium 

basic sites (b) with the 0 wt.% Y representing the NiCe/SBA-15 sample. 
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6.2.7 Stability tests of NiCe/SBA-15 and NiCeY/SBA-15 catalysts at 350 °C  

The stability tests were performed at 350°C for 15Ni10Ce/SBA-15, 15Ni10Ce4Y/SBA-15, and 

15Ni10Ce10Y/SBA-15 catalysts. Fig. 6.13a shows stable CO2 conversion values during 7 h of 

time-on-stream (TOS) experiments. The highest CO2 conversion was measured for 

15Ni10Ce10Y/SBA-15, in good agreement with previously conducted experiments (Fig. 6.11a). 

In Fig. 6.13b, the catalysts modified with 4 and 10 wt.% of Y showed nearly the same CH4 

selectivity values during the stability test. Nevertheless, the 15Ni10Ce/SBA-15 catalyst showed a 

slight loss in CH4 selectivity after the 2 h test, which may be caused by the formation of Ni 

carbonyls, leading to the possible sintering of Ni metal and formation of CO species [221]. Carbon 

monoxide is a side product of parallelly occurring reactions during CO2 hydrogenation, i.e. 

reverse-water gas shift [420]. On the other hand, carbon monoxide production can be associated 

with a deactivation of metallic nickel nanoparticles. Zurrer et al. [421] studied differently modified 

NiMg-MOF-74 mixed metals catalysts in CO2 methanation. The authors reported that the 

selectivity tends toward CO production rather than CH4 for the catalysts containing the most 

content of nickel (80Ni20Mg and 100Ni). Once the nickel particles are encapsulated by graphitic 

carbon, a reduction of the adsorbed CO intermediate is diminished due to a hydrogen deficient 

environment. Another explanation can be a change in the nickel-metal electronic state caused by 

the carbon shell formation. In the latter case, the resulting product can be carbon monoxide. Both 

hypotheses imply the importance of the usage of a carbon-resistant catalyst in CO2 methanation.  
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Figure. 6.13. The stability tests of CO2 methanation over selected NiCe/SBA-15 and NiCeY/SBA-15 catalysts; (a) 

CO2 conversion versus time; (b) CH4 selectivity versus time. Experimental conditions: 350 °C, 

H2/CO2/Ar=60/15/25, GHSV=12,000h-1. 
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6.2.8 Characterization of catalysts after CO2 methanation reaction 

6.2.8.1 XRD patterns of the catalysts after test 

Wide-angle XRD measurements were carried out to investigate the structural features of the 

catalysts after CO2 methanation. Fig.6.14 presents that nearly no changes of the diffraction peaks 

were registered, compared to the XRD results recorded for the reduced catalysts (Fig.6.5b). No 

reflection peak arising from graphitic carbon was observed. These observations can be ascribed to 

the good confinement of the SBA-15 structure which suppressed the sintering of nickel [179]. 

Nevertheless, the crystal size of metallic Ni metal was rearranged after the reaction (Table 6.6), 

which can be attributed to the formation of carbonyl species formed on the surface of Ni metal, 

leading to a partial deactivation of the catalyst [144,221].  

 

6.2.8.2 TGA-MS tests of catalysts after test 

Thermogravimetric analysis was performed to examine the existence of carbon deposits formed 

during CO2 methanation. The registered curves are shown in Fig. 6.15. Spent 15Ni10Ce10Y/SBA-

15 catalyst was decomposed in air, revealing the formation of products with mass signals of m/z= 

18 (H2O) and m/z= 44 (CO2). The first weight loss registered in the temperature range from 35 to 

200°C can be attributed to the removal of water molecules from the SBA-15 supported catalyst. 

The second mass change occurred between 200 and 400°C and can be related to desorption of the 

adsorbed molecules during the reaction, e.g. CO2 (m/z = 44). The mass gain is a result of Ni° 

oxidation into NiO crystallites [217]. The third mass change was recorded between ca. 400 and 

900°C which can be linked with possible oxidation of deposited carbon, however, that was not the 

case for our spent catalyst as no change of the m/z=44 signal was registered (C+O2=CO2). 
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Moreover, no mass difference was recorded above 800°C, excluding the existence of graphitic 

carbon.   

 

 

Figure. 6.14. XRD patterns of the catalysts after CO2 methanation tests.  

Table 6.6. Ni metal crystallite size calculated from XRD by Scherrer equation for the catalysts 

after methanation reaction.  

Catalyst Ni metal crystallite size (nm) 

15Ni10Ce/SBA-15 18.8 

15Ni10Ce2Y/SBA-15 17.6 

15Ni10Ce4Y/SBA-15 16.8 

15Ni10Ce10Y/SBA-15 16.4 
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Figure. 6.15. Thermogravimetric analysis coupled with mass spectrometry carried out for 15Ni10Ce10Y/SBA-15 

catalyst used in CO2 methanation for 7 h at 350 °C. 

 

6.2.9 Conclusions of Ce and Y promoted Ni/SBA-15 catalysts 

A series of NiCeY/SBA-15 catalysts were characterized and tested in CO2 methanation. The effect 

of yttrium promotion on SBA-15-supported Ni-Ce catalysts was investigated in CO2 methanation. 

The microscopy analyses revealed that modification with Y positively affects the distribution of 

Ni particles, being extensively dispersed inside the mesoporous channels of SBA-15 silica support. 

Moreover, yttrium as a promoter contributed to an increase of Ce3+/(Ce3++Ce4+) ratio and the 

number of medium basic sites, enhanced the reducibility of nickel species, and led to the formation 

of a Y-Ce solid solution. NiCeY/SBA-15 catalysts showed better catalytic performance in CO2 

methanation than Y-free catalyst, with the highest CO2 conversion and CH4 selectivity measured 

for 10 wt.% Y loading. Both 15Ni10Ce/SBA-15 and 15Ni10Ce10Y/SBA-15 catalysts revealed 
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stable CO2 conversion without an activity loss during 7 h of time-on-stream (TOS) experiment at 

350°C. In addition, the modification with yttrium favors selective CO2 hydrogenation towards CH4 

production. 15Ni10Ce10Y/SBA-15 showed excellent coking resistance and anti-sintering ability, 

which can be attributed to the confinement of the SBA-15 structure. Meanwhile, although 

increases of activity and selectivity of Ni/SBA-15 catalysts doped by yttrium were found, they 

were lower compared with Ce and Ce-Y doped NiCexY/SBA-15 catalysts. 

In conclusion, both Y and Ce show improved effects on the performance of Ni/SBA-15 catalysts 

in CO2 methanation. Ce is more superior than Y in individually promoting the activity of Ni/SBA-

15 catalyst. The Y-Ce doped Ni/SBA-15 shows the best activities compared to Ni/SBA-15 doped 

by one promoter.  
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6.3 SBA-16 supported Ni catalysts for CO2 methanation: on the effects of Ce or Y promoter 

 

6.3.1 Ce promoted Ni/SBA-16 catalysts for CO2 methanation 

6.3.1.1 Introduction 

Mesoporous silica materials have unique mesoporous structure and textural properties such as a 

high specific surface area (SSA), a large porous volume, and high thermal stability, which could 

confine the particle of Ni [389]. The mesoporous silica like SBA-15, KIT-6, MCM-41, and SBA-

16 had been widely used as supports in various catalytic reactions [50,389,422,423]. It was found 

that the mesoporous structure of the support could facilitate the formation of smaller Ni particles 

and suppress the mobility of Ni particles at high temperatures, thus promote the activity and 

stability of catalyst [422]. MCM-41, SBA-15, and USY zeolite had been employed as support in 

the preparation of Ni catalysts for CO2 methanation and it was found that the Ni species were 

highly dispersed in the mesoporous framework of the support [171,221,347,423]. However, the 

two-dimensional mesoporous materials like SBA-15 and KIT-6 still encounter insufficiently 

suppressing the sintering of Ni particles at high temperature as the movement of Ni particles in the 

channels or on the external surface, which is caused by the weak interaction between nickel and 

the support [424]. Thus, three-dimensional mesoporous material e.g., SBA-16 could be an 

alternative for the stabilization of Ni metal particles.  

The SBA-16 supported Ni catalysts have been already used in CO2 methanation reaction and other 

CO2 utilization reaction [182,204,389,425]. It was found that smaller particles were formed within 

the mesopores of SBA-16 material as the confinement effect of cubic cage-like mesopores and 

thick pore walls [204]. In addition, the Ce promoter had a remarkable effect on the structural 
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stability of the Ni particles and SBA-16 framework [389]. Moreover, it has also been reported that 

Ni catalysts supported on Ce-incorporated-SBA-16 showed a good activity toward the chemical 

looping steam methane reforming (CL-SMR) process and DRM reaction as the smaller Ni metal 

particles in the presence of Ce, which prevented the coke formation [389,425]. The undoped 

Ni/SBA-16 catalysts reported in the literature did not show satisfactory activities in CO2 

methanation. Thus, it is important to try to improve the performance of Ni/SBA-16 catalysts via 

doping various additives. Considering the advantages of the Ce promoter, it could be a promising 

additive for Ni/SBA-16 catalysts in CO2 methanation.  

In this chapter, the Ni/SBA-16 catalysts doped with different loading of Ce were synthesized and 

the effect of Ce loading on the catalytic performance of Ni/SBA-16 catalyst for CO2 methanation 

reaction was investigated. XRD, N2 physisorption, TEM/HRTEM, XPS, H2-TPR, and CO2-TPD 

technologies were used to characterize the physicochemical properties of the supports and catalysts 

to drive a correlation between the physicochemical properties of the catalysts and their activities 

in CO2 methanation. 

 

6.3.1.2 Materials preparation and characterization 

The SBA-16 material was synthesized by the hydrothermal method and the detailed process was 

depicted in 3.1.4.2 of chapter 3. 

The Ni/SBA-16 and Ce-promoted Ni/Ce/SBA-16 catalysts with different Ce content were 

synthesized by the wet impregnation method described in 3.1.4.2 of chapter 3. The catalysts were 

denoted as 10Ni/xCe/SBA-16 (x represents the weight percent relative to support). 
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The textural properties i.e. SSA, pore volume (Vp), and average pore size (rp) of the calcined 

materials (supports and catalysts) were measured by N2 adsorption-desorption technology 

described in chapter 3.  

The XRD and TEM/HRTEM experiments followed the process in chapter 3.  

The X-ray photoelectron spectra (XPS) were recorded for reduced samples on a Thermo Scientific 

ESCALAB 250Xi spectrometer (Thermo Fisher Scientific Inc.) (different from the apparatus 

shown in chapter 3)with an Al anode for Ka (1486.6 eV) radiation. The sample was reduced to 

500 °C for 1 h in a 5% H2/Ar mixture (100 mL/min) and then used for the XPS experiment. The 

charging effects were corrected by adjusting the binding energy of the C1s peak to 284.6 eV and 

the data was processed by the Thermo Avantage software attaching to the equipment. The Ce3d 

peak was split into ten components that considered the spin orbit splitting of Ce3d5/2 and Ce3d3/2. 

Four peaks labeled as v0 u0, vi, ui were attributed to Ce3+ species, and six peaks labeled as v, u, vii, 

uii, viii, uiii were attributed to Ce4+ species [332,426,427].  

The reducibility and basicity of the catalysts were evaluated by H2-TPR and CO2- TPD shown in 

chapter 3.  The pre-treatment condition for CO2- TPD was different from chapter 3 and described 

as below. Before CO2 adsorption, the sample (60 mg) was reduced in 5% H2/Ar flow (50 mL/min) 

at 500 °C for 1 h. Then, the adsorption and desorption process was carried out following the 

process in chapter 3. 

 

6.3.1.3 Catalytic activity test and stability test 

The catalytic activity of catalysts was evaluated by the same process shown in chapter 3. The 

reduction condition was from ambient temperature to 500 °C and then kept for 1 h with a ramp of 
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10 °C/min. The reduction temperature was deployed based on the methanation results under 

different pre-treatment temperatures in which 500 °C showed the best performance 

The stability test was performed in the same apparatus as the activity test. The sample (0.5 mL) 

was reduced at 500 °C for 1 h following cooled down to 350 °C for stability test, with the GHSV 

of 12,000 h-1. Then, it was maintained at 350 °C for 7 h. The CO2 conversion and CH4 selectivity 

were also calculated following the equations of Eq.1 and Eq.2 in chapter 3. 

 

6.3.1.4 Textural properties, structural properties, morphology, and surface states of elements  

The N2 sorption curves and pore distribution curves of the samples obtained from N2 adsorption-

desorption isotherms were displayed in Fig.6.16. The textural properties were displayed in Table 

6.7. As shown in Fig.6.16a, all samples have a type-IV N2 adsorption-desorption curve with a 

hysteresis loop located at a relative pressure of 0.40-0.75, suggesting that all samples have ink-

bottle mesopores [428]. After loading Ce onto the SBA-16 matrix, there is a decreasing trend 

regarding the hysteresis loop as the increasing Ce loading, indicating that the Ce was incorporated 

into the mesopores of SBA-16. A further slight decrease of the hysteresis loop is registered when 

Ni was loaded. The isotherms of pore size distribution, shown in Fig.6.16b, display that the 

diameter of primary mesopores of the samples is in the range of 2.6-4.0 nm. It can be seen from 

Table 6.7 that the fresh SBA-16 material had significantly high SSA and porosity (Vp and rp). After 

impregnating the Ce onto the SBA-16 matrix, the SSA and porosity of Ce-doped SBA-16 materials 

decreased apparently with the introduction of Ce. This can be attributed to the deposition and 

incorporation of Ce into the pores and onto the surface of SBA-16 [389]. Meanwhile, it was 

reported that the high calcination temperature could result in the decreases of SSA and mesopores 
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for ordered mesoporous silicas with spherical mesopores, which could partly account for the 

decrease of SSA and pore volume for the studied samples [389,429]. After nickel introduction into 

the SBA-16  and x/SBA-16, further decreases of SSA and Vp (Table 6.7) of catalysts compared 

with supports were observed for all Ni catalysts, suggesting that the incorporation of Ni into the 

pores resulted in the blockage of pores of the SBA-16 matrix as already mentioned elsewhere [389]. 

Moreover, the further shrinkage of the SBA-16 framework also partially happened during the 

calcination procedure of Ni catalyst, which also accounts for the decreased SSA and the Vp [389]. 

The pore size of catalysts, however, remained similar or slightly increased when compared to 

supports, which was also observed in different types of mesoporous silica-supported catalysts 

[64,189]. Also, the porous structures of SBA-16 for the catalysts remained after Ni and Ce 

introduction as demonstrated in TEM. In Fig.6.16, it was testified that the ordered structure with 

cubic cage-like pores of SBA-16 was formed for all catalysts.  
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Figure. 6.16. N2 adsorption-desorption isotherms of samples (a) and pore size distribution of samples (b). 

 

In conclusion, compared to Ni/SBA-16 catalyst, the SSA and Vp of Ce-promoted Ni/SBA-16 

catalysts decreased with the increase of Ce loading. The 10Ni/SBA-16 catalyst presented the 

highest SSA and pore volume, meanwhile, the 10Ni/20Ce/SBA-16 catalyst showed the lowest 

SSA and Vp. 

The SAXRD was performed for the SBA-16 material and displayed in Fig.6.17. As shown in Fig. 

6.17, two small peaks at 2θ=1.25 and 1.56 were observed for SBA-16 support, representing (200) 

and (211) reflection, respectively, indicating the existence of ordered mesopores in SBA-16 with 

body-centered cubic symmetry (Im3m) [430]. 
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Table 6.7 BET surface area, pore volume, mean pore diameter from N2 adsorption-desorption, and 
the particle size of nickel species calculated from XRD-on calcined samples. 

Sample aSBET (m2/g) bVp(cm3/g) brp (nm) Particle size (nm) 

cNiO dCeO2 

SBA-16 934 4.2 3.5 NA NA 

10Ce/SBA-16 536 2.0 2.7 NA NA 

20Ce/SBA-16 402 0.5 1.2 NA NA 

10Ni/SBA-16 630 0.8 4.0 4.3 NA 

10Ni/10Ce/SBA-16 484 0.7 2.7 7.7 10.8 

10Ni/20Ce/SBA-16 383 0.5 2.7 10.3 10.8 

NA: not applicable. 

a The specific surface area was calculated for the calcined sample by the BET method. 

b The pore volume and mean pore size was obtained for calcined samples from the BJH method. 

c The particle size of NiO was calculated based on the three strong diffraction peaks of the calcined sample by Scherrer Equation. 

d The particle size of CeO2 was calculated based on the four strong diffraction peaks of the calcined sample by Scherrer Equation. 

 

 

Figure. 6.17. Small-angle XRD (SAXRD) of the synthesized SBA-16 material 
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The structural properties of calcined and reduced catalysts were characterized by XRD 

measurements and the patterns were displayed in Fig.6.18. As shown in Fig.6.18a, the XRD 

patterns showed the existence of an amorphous silica peak at 2θ=23.2 ° for the SBA-16 support 

and all the calcined catalysts. Moreover, the intensity of the patterns corresponding to amorphous 

silica weakens for Ce-promoted catalysts due to the introduction of Ce, which can be caused by 

the highly dispersed Ce particles on the SBA-16. The diffraction peak of CeO2 at 2θ = 28.5 ° 

affects the diffraction intensity of SiO2 [415]. A similar effect was also shown over Ce or La-

promoted Ni/SBA-15 catalysts [431]. The diffraction peaks of NiO were registered for all the 

Ni/SBA-16 based catalysts, which are characterized by peaks at 2θ=37.2, 43.2, and 62.8 °. They 

were attributed to the diffraction of the (111), (200), and (220) plane of NiO, respectively [64]. 

Simultaneously, the diffraction peaks at 2θ=28.8°, 33.5°, 47.8°, 56.7°, and 70.1° were assigned to 

the diffraction of face-centered CeO2 cubic lattice [414,432]. The incorporation of Ce into the 

mesoporous structure of the SBA-16 matrix significantly affected the structure and distribution of 

Ni species. The diffraction peaks of NiO showed a narrowed trend as the increase of Ce loading 

in Fig.6.18a. The particle sizes of NiO and CeO2 nanoparticles were calculated in Table 6.7 using 

the Scherrer equation. It can be noted that the particle size of NiO increases with the increase of 

Ce loading. A similar phenomenon was also found by other authors. It had been reported for Ni-

Ce/SBA-15 (Ce-promoted Ni/SBA-15, with 6 wt.% Ce and 5 wt.% Ni) catalysts that the particle 

size of Ni for Ni-Ce/SBA-15 (impregnating Ce first following Ni) could be larger than that of 

Ni/SBA-15 catalyst but smaller than that of Ce-Ni/SBA-15(impregnating Ni first following Ce) 

catalyst [432]. Moreover, concerning the diffraction peaks of Ce, there is no significant difference 

when the Ce loading increases from 10 to 20 wt.%. The particle sizes of Ce were calculated in 

Table 6.6, with the same particle size (10.8 nm) of Ce for Ce-promoted catalysts. For reduced 
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catalysts, presented from Fig.6.18b, the broad diffraction peaks of Ni metal and NiO were 

registered for all catalysts, indicating that the Ni species cannot be reduced completely at 500 °C. 

There are no significant differences for the diffraction peaks of Ni species after reduction, meaning 

the Ni species keep stable after reduction. Furthermore, the peak intensity Ce for reduced catalysts 

remains stable after reduction, indicating the crystallinity and particle size of Ce keep stable. 

From XRD measurements, it can be concluded that the Ni species keep highly dispersed over 

Ni/SBA-16 catalyst. After the incorporation of Ce, the particle size of Ni species increases as the 

increase of Ce loading for Ni/Ce/SBA-16 catalysts, but the crystallinity and particle size of Ce 

keep stable. The co-existence of NiO and Ni metal was confirmed over reduced catalysts, with 

broad peaks of Ni species over catalysts, indicating the Ni species keep dispersed after reduction. 

And the crystallinity Ce also remains stable after reduction. 

In order to obtain the morphology information of the catalysts, TEM and HRTEM analyses were 

performed over the reduced samples and the images were displayed in Fig.6.19 and Fig.6.20. The 

TEM micrographs demonstrated that the ordered cage-like mesopores were well-formed in 

Ni/SBA-16 catalysts with or without Ce (Fig.6.19), although other organization along other 

directions may be observed depending on the deposition of the samples under the grid [389,433]. 

In Fig.6.19 (A2, B2, and C2), these images presented a cubic array of uniform channels when the 

incident electron beam was parallel to the main axis of the mesopores) and also unidirectional or 

cubic channels when the electron beam took different orientations concerning the sample (Fig.6.19, 

B2), which demonstrates that the order structure of SBA-16 was preserved despite the 

incorporation of Ce and Ni into the pores. 
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Figure. 6.18. XRD patterns of the Ni/SBA-16 based catalysts by varying Ce loading with SBA-16 as comparison; a) 

calcined samples at 550 °C in flowing air; b) reduced samples at 500 °C for 1.0 h under H2/Ar=5/95, flow rate: 100 

mL/min 
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The mesopore size measured by the HRTEM (Fig.6.20b) was about 6.6 nm with a wall thickness 

of 3.4 nm, which was different from the pore size measured by the BJH method. This can be 

assigned to the effect of different measurement methods. Fig.6.19B1 and Fig.6.19C1 confirmed 

also the cubic organization of the porosity of the Ce-promoted Ni/SBA-16 catalyst.  

For the 10Ni/SBA-16 sample (Fig.6.19A1), the nickel species were highly dispersed on the SBA-

16 matrix, with the measured Ni particle size of 3-5 nm. In Fig.6.20a, dark spots were assigned to 

the smaller Ni particles observed. On the other hand, the particle size of Ni species for 10 wt.% 

Ce-doped samples increased when compared to the unpromoted 10Ni/SBA-16 sample, with both 

NiO (7.7 nm) and Ni particles (6.0-7.5 nm) (Fig.6.20b) identified by the typical reticular distances 

of 2.4 and 2.03 Å, respectively.  The presence of CeO2 particles was confirmed by the lattice 

fringes of 3.12 and 1.91 Å corresponding, respectively, to the (111) or (220) planes. They were 

well dispersed within the support. Their average size is from 5 to 9 nm, which is in line with the 

result of XRD analyses. Moreover, it should be noticed that by increasing the Ce loading to 20 

wt.%, the quality of the dispersion of CeO2 decreased and aggregates of Ce were observed 

(Fig.6.19A1). The Ce species were not homogeneous on the SBA-16. Inside the porosity, by 

HRTEM (Fig.6.20c), larger Ni particles of around 8.2 nm and NiO particles of 9.2 nm, and CeO2 

particles of ca.7-9 nm can also be identified. There are differences regarding the particle size of Ni 

measured by XRD, which can be assigned to differences of techniques [250]. The XRD 

measurement only shows the particles with high crystallinity, but the TEM technique can measure 

the aggregated Ni particles without regard to whether the Ni particles are highly crystalline or not.  

In both cases, the nickel species were found to be in contact with CeO2 particles (Fig.6.20b and c). 

And, it can be concluded that the increase of the Ce loading led to the increase of Ni particles and 

the aggregates of Ce (20 wt.%). 
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Figure. 6.19. TEM micrographs of the reduced catalysts; Condition: 500 °C for 1 h (H2/Ar=5/95, 100 mL/min); 

10Ni/SBA-16 (A), 10Ni/10Ce/SBA-16 (B), 10Ni/20Ce/SBA-16 (C). 
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Figure. 6.20. HR-TEM micrographs of the reduced catalysts; Condition: 500 °C for 1 h (H2/Ar=5/95, 100 mL/min); 

10Ni/SBA-16 (a), 10Ni/10Ce/SBA-16 (b), 10Ni/20Ce/SBA-16 (c). 

 

In order to study the surface composition and chemical states of Ni and Ce on the reduced catalysts, 

XPS measurements were carried out over reduced catalysts. The XPS spectra of O1s, Ni2p, Ce3d, 
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and Si2p have been displayed in Fig. 6.21 and the surface atomic ratios of Ni, O, and Ce species, 

as well as the binding energies of Ni2p and Ce3d, were presented in Table 6.7.  In Fig. 6.21a, it 

can be seen that the peak located at 533.2 eV, which can be attributed to the superimposed O1s 

peaks from SiO2, NiO, and CeO2 (for Ce-doped samples), corresponding to the lattice oxygen (Oβ) 

[64]. The small peak that appeared at 530.3 eV corresponds to the adsorbed oxygen species (Oα) 

[64]. As shown in Table 6.8, the percentage of Oα increased with the increase of Ce loading which 

was agreed with that the presence of ceria promoting the oxygen mobility of catalysts [365]. In 

Fig. 6.21b, the peak located at 103.9 eV was assigned to the presence of Si2p3/2 [64]. The intensity 

of the Si2p3/2 peak decreased with the increase of Ce, which can be attributed to the effect of 

impregnated Ce on the surface. This is in line with the XRD results. In Fig. 6.21c, the Ni2p3/2 

binding energy located at 852.8 eV and 856±0.7 eV with a shake-up satellite at 862 eV were 

attributed to the existence of Ni metal and Ni2+ species, respectively [434]. The Ni2p3/2 binding 

energies of Ce-doped samples (Table 6.8) were lower than that of the Ce-free sample, indicating 

stronger metal-support interaction (MSI) on Ce-doped samples. And the percentage of metallic Ni 

increases from 4.5% for 10Ni/SBA-16 catalyst to 36.0% for 10Ni/20Ce/SBA-16 catalyst as the 

incorporation of Ce (Table 6.8), respectively, indicating that the doping of Ce promoted the 

presence of metallic Ni species on the surface of the catalysts. The XRD results in Fig.6.18b 

revealed the existence of metallic Ni over 10Ni/SBA-16. However, the XPS result shows nearly 

complete Ni2+ species, which can be attributed to the effect of adsorbed oxygen species on the 

surface of metallic Ni when exposed to oxygen. The adsorbed oxygen on the surface of Ni metal 

can promote the formation of a nickel oxide layer [435,436]. The Ni species over 10Ni/SBA-16 

catalyst were highly dispersed on the SBA-16 support, resulting in the small nanoparticles of Ni 
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species (4.3 nm Table 6.7), thus the surface of metallic Ni could be covered by abundant oxygen, 

forming nickel oxide layers [435,436].  

From XPS spectra, The Ce/Si atomic ratio increased with the increase of Ce loading, implying the 

higher dispersion of Ce species over 10Ni/10Ce/SBA-16 catalyst. The Ni/Si atomic ratio of 

10Ni/10Ce/SBA-16 was smaller than that of other catalysts, which could be assigned to the 

combined effects of small Ni nanoparticles over SBA-16 and coverage of Ni and Ce on the support. 

As confirmed in BET and XRD measurements, the loading of Ce and Ni resulted in a decrease of 

SSA, which could give rise to the decrease of Ni/Si ratio on the surface as the covered surface. In 

TEM, the smaller Ni particles over 10 wt.% Ce-doped catalysts relative to 20 wt.% Ce-doped 

catalyst was registered and homogeneous distribution of Ce was found on 20 wt.% Ce-doped 

catalyst. The combined effects led to the lowest Ni/Si ratio obtained on the 10Ni/10Ce/SBA-16 

catalyst. In Fig.6.21d, the Ce3d peaks were divided into 10 peaks using the deconvolution method 

labeled as u and v, and the molar ratio of Ce3+ species was calculated [332,426,427,437]. As shown 

in Table 6.8, the binding energy of Ce3d on 10Ni/20Ce/SBA-16 slightly shifted to a higher energy 

than those for 10Ni/10Ce/SBA-16. And for Ni species, one could see that the binding energy of 

Ni2p3/2 was higher on 10Ni/10Ce/SBA-16 than on 10Ni/20Ce/SBA-16, showing that the 

interaction between Ni and Ce is stronger on 10Ni/10Ce/SBA-16 sample. Furthermore, at the 

surface, the Ce content increased with the Ce loading. However, the Ce3+/(Ce3++Ce4+) ratio is 

higher on10Ni/10Ce/SBA-16 than on 10Ni/20Ce/SBA-16, which could be caused by the better 

dispersion of Ce on the surface and the substitution of Ce by Ni inside the lattice, leading then to 

more oxygen vacancies as suggested elsewhere [211,332,361,438].  
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Figure. 6.21. The XPS spectra over the reduced catalysts; Reduction condition: the same as TEM measurement; a) 

O1s, b) Si2p, c) Ni2p, d) Ce3d 

 

Thus, the promotion of Ni/SBA-16 catalysts by Ce induced the creation of oxygen vacancies, 

higher dispersion of Ni and Ce on the surface, and stronger metal-support interaction between Ni 

and Ce formed on 10 wt.% Ce-promoted catalysts compared to 20 wt.% Ce one. 
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Table 6.8 The binding energies of Ni2p3/2 and Ce3d5/2 and atomic ratios of Ni (Ni0 and Ni2+) on 
the catalysts. 

Catalyst 

Atomic ratio (%) Binding Energy 

(eV) 

Ce/S

i 

Ni/Si Ni0/(Ni2++ 

Ni0) 

Oα/(Oα+Oβ

) 

Ce3+/( Ce3+ 

+Ce4+) 

Ni2p3/2 Ce3d5/

2 

10Ni/SBA-16 - 4.5 4.5 3.3 - 856.4 - 

10Ni/10Ce/SBA-16 1.1 3.2 19.7 4.3 35.3 856.0 882.9 

10Ni/20Ce/SBA-16 1.4 6.2 36.0 6.3 25.7 855.3 883.1 

 

6.3.1.5 Reducibility of the catalysts originated from H2-TPR  

In order to study the reducibility of supports and catalysts, the temperature-programmed reduction 

of H2 was carried out. The plots are displayed in Fig.6.22. The maxima of reduction peak and H2 

consumption of the samples were calculated and presented in Table 6.9. As shown in Fig.6.22a, 

three reduction peaks of Ce-modified SBA-16 supports can be observed for the xCe/SBA-16 

samples. The silica could not be reduced during the employed condition. Thus, the reduction of 

the supports was attributed to the reduction of Ce species. According to the literature [375,439,440], 

reduction peaks of 10Ce/SBA-16 at 360-496°C and 757°C in Fig.6.22a were assigned to the 

reduction of surface and bulk Ce, respectively. As shown in Fig.6.22a, the β and γ peaks of 

20Ce/SBA-16 shifted to higher temperature compared to those of 10Ce/SBA-16, indicating that 

the surface ceria species were more difficult to be reduced over 20Ce/SBA-16, which was in line 

with the XPS result that more Ce3+ formed on 10Ni/10Ce/SBA-16. The total H2 consumption of 

20Ce/SBA-16, as shown in Table 6.9, was also higher than 10Ce/SBA-16. This could be attributed 

to the more reducible Ce species over 20Ce/SBA-16. 
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After Ni impregnation, the reducibility of Ni/xCe/SBA-16 catalysts was modified as the 

incorporation of Ce. As shown in Fig.6.22b, there are three reduction peaks centered at 332, 439, 

and 584 °C labeled as α, β, and γ, respectively for 10Ni/SBA-16 catalyst. Those reduction peaks 

located at 332 and 439 °C corresponded to the reduction of NiO crystallites weakly interacted with 

the SBA-16 support, meanwhile, the reduction peak positioned at 584 °C was attributed to the 

reduction of Ni phyllosilicate or Ni hydrosilicate species highly dispersed on the surface 

[389,415,441]. 

For the Ce-doped Ni/SBA-16 catalysts, H2 consumption peaks consisted of 5 peaks i.e. δ, α, β, γ 

and ε (Table 6.9), with two new peaks of δ and ε. Similarly, the peaks of α and β were attributed 

to the reduction of Ni-Ce biphasic oxides, and the peak of γ corresponded to the reduction of highly 

dispersed Ni crystallites [389]. The δ peak was attributed to the reduction of adsorbed oxygen 

species, while the ε peak is attributed to the reduction of Ce4+ to Ce3+ [256,414]. 

The Ni species can be incorporated into the CeO2 lattice because of its smaller ion radius, thus the 

charge unbalances and lattice distortion results in the formation of oxygen vacancies, which are 

easier for the adsorption of oxygen species [256]. From Fig.6.22b, the peaks of α, β, and γ for 

Ni/xCe/SBA-16 catalysts showed shifts towards higher temperatures with the increase of Ce 

loading, indicating the increase of the interaction between metal and support. As shown in Table 

6.9, the total H2 consumption excluding the effect of Ce reduction of the catalysts also increased 

with the increase of Ce loading, which demonstrates the Ni species are more difficult to be reduced 

over 20 wt.% Ce-promoted catalysts.  
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Figure. 6.22. a) H2-TPR plots of the Ce doped SBA-16 supports; b) H2-TPR plots of catalysts with xCe/SBA-16 as a 

comparison.  
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Table 6.9 H2 consumption and reduction peaks of the supports and catalysts. 

Catalyst Temperature (°C) H2 consumption (mmol/g) 

δ α β γ ε δ α β γ ε total 

10Ce/SBA-16 - 359 494 756 - - 0.01 0.17 0.12 - 0.30 

20Ce/SBA-16 - 297 522 781 - - 0.01 0.29 0.25 - 0.55 

10Ni/SBA-16 - 332 439 584 - - 0.17 0.66 0.63 - 1.46 

10Ni/10Ce/SBA-

16 

206 346 457 617 727 0.05 0.10 0.86 0.99 0.0

2 

2.03 

10Ni/20Ce/SBA-

16 

210 350 474 642 737 0.05 0.16 1.17 1.01 0.0

3 

2.42 

 

6.3.1.6 Basicity of the catalysts originated from CO2-TPD 

The CO2-TPD profiles were displayed in Fig.6.23. Four different desorption peaks of CO2 can be 

identified for the 10Ni/SBA-16 catalysts centered at 100, 170, 289, and 650 °C, respectively. The 

desorption peaks centered at 100 °C, 170-289 °C, and 650 °C were attributed to the weak basic 

sites, medium basic sites, and strong basic sites, respectively [442]. Since the silica does not adsorb 

significant amounts of CO2, it is reasonable to conclude that this activated adsorption occurs only 

on Ni species of 10Ni/SBA-16 catalyst [165,443]. 

As displayed in Table 6.10, the total basicity of the catalysts seemed not significantly different, 

with the highest total basicity obtained over the Ce-free catalyst. This can be attributed to the 

highly dispersed small Ni metal nanoparticles over the SBA-16 support, as confirmed in TEM, 

which adsorbed large amounts of CO2 [443]. For Ce-doped catalysts, the adsorbed CO2 could be 

assigned to the adsorption of Ni metal and the active sites of Ce. The introduction of Ce affected 
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the distribution of basic sites. The number of medium basic sites of Ce-doped catalysts was higher 

than that of the Ce-free sample. The highest amount of medium basic sites was obtained on the 

10Ni/10Ce/SBA-16 catalyst. As reported in the literature [160,206], medium basic sites played a 

more important role in the CO2 methanation process and the strong basic sites did not participate 

in the reaction. The number of medium basic sites was as follows: 10Ni/10Ce/SBA-

16>10Ni/20Ce/SBA-16>10Ni/SBA-16, which can also explain the differences in catalytic activity 

for CO2 conversion. 

 

Figure. 6.23. CO2-TPD curves of Ni/SBA-16 catalysts with or without Ce. 
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Table 6.10 Basic sites distribution calculated from CO2-TPD for Ni/SBA-16 based catalysts after 

reduction at 500°C 

Catalyst Basic sites [μmol/g] Distribution of basic sites [%] 

Weak Medium Strong Total 

basicity 

Weak Medium Strong 

10Ni/SBA-16 14.1 33.5 245.0 292.6 4.8 11.5 83.7 

10Ni/10Ce/SBA-

16 

6.3 43.4 210.0 259.7 2.4 16.7 80.9 

10Ni/20Ce/SBA-

16 

14.6 40.8 181.9 237.3 6.2 17.1 76.7 

 

6.3.1.7 Catalytic tests of the catalysts in CO2 methanation reaction 

The catalytic performances of the catalysts in CO2 methanation were investigated as a function of 

temperature. The results are displayed in Fig.6.24. The thick lines without a symbol on the top of 

the graphs represented the theoretical thermodynamic CO2 conversion and CH4 selectivity. From 

Fig.6.24a, it can be seen that the CO2 conversions of the catalysts followed the order: 10Ni/SBA-

16<10Ni/20Ce/SBA-16<10Ni/10Ce/SBA-16 at the range of 250-350 °C. At higher temperatures 

(400 °C), for all samples, CO2 conversions reached nearly the same value. Then at 450 °C, CO2 

conversions of all catalysts were nearing the theoretical values. From Fig.6.24b, the CH4 selectivity 

of all the catalysts increases with the increase of temperature and reaches the highest value at 

400 °C, which is nearly the theoretical value, then slightly decreases at 450 °C. The CH4 selectivity 

on Ce-modified catalysts is significantly higher than that of Ce-free catalyst at the range of 200-

350 °C, but they are similar from 400 to 450 °C. The selectivity of 10Ni/10Ce/SBA-16 was also 

slightly higher than those obtained on 10Ni/20Ce/SBA-16 at all temperatures except 250 °C. At 
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350 °C, the best CO2 conversion and highest CH4 selectivity are obtained over 10Ni/10Ce/SBA-

16. Thus, one can conclude that the 10 wt.% of Ce loading is appropriate content for Ce-doped 

Ni/SBA-16 catalysts for CO2 methanation. 

According to the literature [161,443], the Ni particle size significantly affected the CH4 selectivity 

of silica-supported Ni catalysts in CO2 methanation reaction. The small Ni particles could favor 

the formation of CO and the turnover frequency of CO formation. As for Ni/SBA-16 catalyst, in 

the current study, the active sites are mainly Ni metal sites, thus, the smaller Ni particle sizes favor 

the formation of CO, thus resulting in the poor CH4 selectivity at a low-temperature range 

(<350 °C). But the CH4 selectivity increases with the increase of temperature and reaches as high 

as Ce-promoted catalysts at 400 °C, which is attributed to the hydrogenation of CO to CH4, in 

which CO played as an important intermediate [161]. 

However, in the presence of Ce for the Ni/xCe/SBA-16 catalysts, the methanation reaction 

pathway changes as the Ce actively participates in the reaction [159,224]. In such case, the SBA-

16 support plays only as a skeleton to stabilize and disperse the Ni and Ce species, and the catalytic 

performance is determined by the combined effects of Ni and Ce species, which had also been 

demonstrated in other catalytic conversions of CO2 reactions over SBA-16, SBA-15 or KIT-6 

mesoporous silica materials supported catalysts [50,171,224,389]. The high dispersion of Ni and 

Ce species was obtained over 10Ni/10Ce/SBA-16 catalyst, resulting in easily reducible Ni and Ce 

species as confirmed by TPR characterization. Moreover, more molar ratio of Ce3+/(Ce3++Ce4+) 

obtained over 10Ni/10Ce/SBA-16, indicating more created oxygen vacancies over the catalyst, 

which can effectively activate CO2 in the reaction [160,196,211,332,350]. In this CO2 methanation 

pathway, the CO was only a main by-product that originated from the decomposition of formate 

intermediates over Ce3+ sites [211,350]. The CO2 species adsorbed over Ce3+ sites showed different 
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desorption behaviors over catalysts as revealed in CO2-TPD, forming different basic sites, in which 

the weak and moderate basic sites played a significant effect in the reaction [144,160,206,444].  

The Ni metal active sites were contributed to the activation and decomposition of H2, thus, the 

small Ni particles could provide more sites for the activation of H2 [211,445]. Compared to 20 wt.% 

Ce-doped catalyst, the smaller Ni particles of 10 wt.% Ce doped catalyst, as shown in HRTEM, 

could be more favorable in H2 activation.  

The synergistic effect between Ce and Ni promotes the formation of CH4. The interaction between 

Ce and Ni was higher over 10Ni/10Ce/SBA-16 than over 10Ni/20Ce/SBA-16, resulting in the 

better CO2 conversion over 10Ni/10Ce/SBA-16. 

In Fig.6.25 and Fig.6.26, correlating the catalytic performance with Ce3+/(Ce3++Ce4+) and medium 

basic sites, it was found that 10Ni/10Ce/SBA-16 showed the best CO2 conversion at 350 °C with 

the highest ratio of Ce3+/(Ce3++Ce4+) and the amount of medium basic sites.  
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Figure. 6.24. The catalytic performances of Ni/SBA-16 catalysts with or without Ce in CO2 methanation; a) CO2 

conversion, b) CH4 selectivity 
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Figure. 6.25. The correlation of CO2 conversion and CH4 selectivity at 350 °C with regard to the surface 

Ce3+/(Ce3++Ce4+) ratio calculated from XPS; The sample of 0 wt.% Ce loading represents the 10Ni/SBA-16 sample. 

 

 

Figure. 6.26. The correlation of CO2 conversion at 350 °C with medium basic sites. 
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6.3.1.8 Stability tests of the catalysts in CO2 methanation reaction 

The stability tests of the catalysts in CO2 methanation reaction were performed and the results 

were displayed in Fig.6.27. As shown in Fig.6.27, the 10Ni/SBA-16 and 10Ni/10Ce/SBA-16 

catalysts all show good stability regarding CO2 conversion and CH4 selectivity in the time on 

stream process. The good stability of Ni/SBA-16 catalysts could be attributed to the confinement 

of the SBA-16 structure, which can suppress the sintering of active sites [389]. 

 

 

Figure. 6.27. The stability tests of 10Ni/SBA-16 and 10Ni/10Ce/SBA-16 catalysts in CO2 methanation; Condition: 

350 °C, GHSV=12,000 h-1; a) CO2 conversion, b) CH4 selectivity. 
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6.3.1.9 XRD patterns of the catalysts after methanation test 

As shown in Fig.6.28, the diffraction peaks of Ni or Ce on spent catalysts remained stable as 

compared to those on reduced catalysts, indicating that no sintering occurs after time on stream of 

7 h. 

 

Figure.6.28. XRD patterns of the spent Ni/SBA-16 based catalysts with varying Ce loading. 
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6.3.1.10 The selection of pre-treatment temperature and Ce loading based on activity test 

 

 

 

Figure. 6.29. The CO2 methanation test of 10Ni/5Ce/SBA-16 catalyst reduced at different temperatures; a) CO2 

conversion (%), b) CH4 selectivity (%) 
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As shown in Fig.6.29c, the 5 wt.% Ce modified Ni/SBA-16 catalyst shows a worse activity 

compared to other catalysts at the testing temperature range. In Fig.6.29a and b, it also can be seen 

that the activity and CH4 selectivity decrease with the increase of reduction temperature until 

900 °C. Thus, it can be concluded that 10 wt.% Ce is appropriate content for Ce-promoted Ni/SBA-

16 catalyst in CO2 methanation and 500 °C is the best condition for the reduction process. 

 

6.3.1.11. Comparison of the Ni/Ce/SBA-16 and Ni/CeY/SBA-16 catalysts in CO2 methanation. 

A series of Ni/CeY/SBA-16 catalysts prepared by citric acid-assisted impregnation method as 

depicted in 3.1.4.5 of chapter 3. The catalysts were pretreated at 650 ℃ under 5% H2/Ar flow for 

1 h. The catalytic performance of catalysts was displayed in Fig.6.30. 

 As shown in Fig.6.30, the CO2 conversion and CH4 selectivity of Ni/Ce/SBA-16 catalyst were 

improved after doping Y in which 5 wt.% of Y showed the best promotion effect. 

However, the Ni/Y/SBA-16 catalyst performs comparative activity as compared to Ni/CeY/SBA-

16 catalyst. In such a case, it is interesting to study the effect of Y on Ni/SBA-16 catalyst, which 

will be discussed in the next sub-chapter.  
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Figure. 6.30. The catalytic performance of Ni/CexY/SBA-16 catalysts in CO2 methanation; Condition: 650 ℃ 

reduced for 1 h, GHSV=12,000; (a) CO2 methanation, (b) CH4 selectivity. 
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6.3.1.12 Conclusions 

In this study, the SBA-16 material with cage-type mesopores was successfully synthesized and 

used to prepare Ni/SBA-16 based catalysts for CO2 methanation. The effects of Ce promoter on 

the physic-chemical properties and catalytic performance of the catalysts were studied. It was 

found that the cage-type mesopores of the SBA-16 matrix, which could suppress the moving and 

sintering of active metals, leading to good dispersions of active metals. The smallest Ni particles 

were obtained over the Ce-free Ni/SBA-16 catalyst. Meanwhile, the increase of Ce loading led to 

larger Ni particles inside/outside the matrix. The Ni and Ce particles of catalyst were found to be 

smaller over 10 wt.% Ce-doped Ni/SBA-16 catalyst than over 20 wt.% Ce-doped catalyst. Besides, 

the dispersion degree of Ce decreased over 20 wt.% Ce-doped catalyst and aggregates of Ce were 

also registered. Moreover, a higher Ce3+/(Ce3++Ce4+) ratio formed on the surface of 10 wt.% Ce-

doped Ni/SBA-16 catalyst, favoring the activation and hydrogenation of CO2 species adsorbed 

Ce3+ active sites. Furthermore, the highest number of medium basic sites was obtained over 10 wt.% 

Ce-doped Ni/SBA-16 catalyst, which was favorable for the formation of CH4. Besides, the stronger 

Ni-Ce interaction was also formed over 10 wt.% Ce-doped Ni/SBA-16 catalyst.  

In the CO2 methanation, the CO2 conversion and CH4 selectivity of Ni/SBA-16 catalyst were lower 

than Ni/xCe/SBA-16 catalysts at low temperatures, which could be assigned to the lack of active 

sites for CO2 activation, which resulted in the CO2 species adsorbed on Ni/SBA-16 catalyst were 

easily converted to CO, leading to poor conversion and selectivity. The highest CO2 conversion 

and CH4 selectivity were obtained over 10 wt.% Ce-doped Ni/SBA-16 catalyst due to several 

advantages relative to 20 wt.% Ce-doped catalysts, such as the smaller particles of Ni and Ce, 

stronger Ni-Ce interaction, higher molar ratio of Ce3+/(Ce3++Ce4+), more oxygen vacancies, and 

more medium basic sites. 
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In brief, the SBA-16 is appropriate support for Ni catalysts dedicated to CO2 methanation. Also, 

Cerium is a good additive to improve Ni/SBA-16 catalyst. Besides, other promoters e.g., Y can 

also be interesting to modify Ni/SBA-16 catalyst, which will be discussed in the next chapter. 

 

6.4 SBA-15 versus SBA-16: a comparison of the catalytic properties 

6.4.1 Comparation of SBA-15 and SBA-16 supported catalysts in CO2 hydrogenation  

Table 6.11 presents the activity in methanation on the different supported materials, performed at 

350°C and 400°C after steady-state.  

Table 6.11 A summary of SBA-15 and SBA-16 supported catalysts in the presence of promoter. 

Catalyst CO2 conversion (%) CH4 selectivity (%) 

350 ℃ 400 ℃ 350 ℃ 400 ℃ 

15Ni/SBA-15 5.5 20.0 35.4 48.3 

15Ni10Y/SBA-15 18.0 62.4 87.7 88.0 

15Ni10Ce/SBA-15 40.0 68.6 92.5 92.3 

15Ni10Ce10Y/SBA-15 61.2 70.6 95.9 94.5 

     

10Ni/SBA-16-WIb 28.6 74.7 68.5 96.2 

10Ni/10Ce/SBA-16-WI 68.9 76.0 96.4 97.0 

10Ni/10Y/SBA-16-CAa 54.1 66.3 94.9 92.6 

10Ni/10Ce/SBA-16-CA 33.4 58.3 86.3 85.3 

10Ni/10Ce10Y/SBA-16-CA 57.4 68.4 94.3 92.1 

a Wet impregnation (ethanol) 

b Citric acid assisted impregnation. 
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In Table 6.11, the activity and selectivity of Ni/SBA-15 and Ni/SBA-16 catalysts were listed. It 

can be concluded that Ni/SBA-16 shows better activity compared with that of Ni/SBA-15. Also, 

the performance of Ni/SBA-15 can be improved by doping Ce and/or Y in which the Ce-Y doped 

Ni/SBA-15 shows the best performance.  

Both Ce and Y have shown a positive effect on the performance of Ni/SBA-16 catalyst in which 

Ce promoted Ni/SBA-16 catalyst prepared by wet impregnation shows the best performance. 

However, for citric acid-assisted impregnation prepared catalysts, the Y-doped Ni/SBA-16 catalyst 

performs comparative activity compared to the Ce-Y doped Ni/SBA-16 catalyst. The different 

activities can be linked with surface properties, basicity, the particle size of the catalysts as 

presented below. 

 

6.4.2 On the basicity properties: SBA-15 versus SBA-16 supported catalysts 

Table 6.12 presents the basic properties measured by CO2 TPD on the different supporting 

materials.  

As reported in Table 6.12, the basicity distribution of SBA-15 and SBA-16 supported catalysts 

were listed. The promotion with Ce and Y can change the basic site distribution of Ni/SBA-15 

catalysts. As observed, Y can promote the increase of medium basic sites with a subsequent 

decrease of strong basic sites. Cerium can significantly promote the increase of total basic sites of 

Ni/SBA-15. Finally, Ce-Y can promote the formation of even more medium basic sites.  

As for Ni/SBA-16 catalysts, Ni/SBA-16 shows more basic sites compared to Ni/SBA-15 and the 

presence of Ce promotes the increase of medium basic sites. 
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Table 6.12 Basicity comparison of SBA-15 and SBA-16 supported catalysts 

Catalyst Basic sites (µmol/mg) 

weak medium strong Total 

15Ni/SBA-15 15.8 10.2 8.3 34.3 

15Ni10Y/SBA-15 15.2 16.0 3.3 34.4 

15Ni10Ce/SBA-15 2.61 47.47 174.45 224.53 

15Ni10Ce10Y/SBA-15 4.87 65.94 150 220.81 

     

10Ni/SBA-16-WI  14.1 33.5 245.0 292.6 

10Ni/10Ce/SBA-16-WI 6.3 43.4 210.0 259.7 

 

To conclude, the Ni/SBA-16 presents more basic sites compared to that of the Ni/SBA-15 catalyst. 

Doping with a promoter such as Ce, Y, and Ce-Y can thus promote the basicity of the SBA-15 

supported Ni catalysts. 

 

6.4.3 Ni particle size comparison between SBA-15 and SBA-16 supported catalysts 

Table 6.13 reports the particle size calculated from the Scherrer equation from XRD on the 

different supported calcined materials.  

Table 6.13 shows the particle size of NiO of SBA-15 and SBA-16 supported catalysts. It can be seen 

that the promotion by Ce, Y, and Ce-Y lead to the decrease of NiO particle size of Ni/SBA-15. 

For SBA-16 supported catalysts, the presence of Ce leads to a slight increase in NiO particle size. 

The media NiO particle size of Ni/SBA-16 with/without Ce is smaller than that of Ni/SBA-15 

catalysts. 



Chapter VI Ordered mesoporous silica supported Ni catalysts for CO2 methanation 

 

 

246 
 

Table 6.13 Particle size of the calcined samples from XRD 

Catalyst Ni particle size (nm)a 

15Ni/SBA-15 18.0 

15Ni10Y/SBA-15 14.5 

15Ni10Ce/SBA-15 13.4 

15Ni10Ce10Y/SBA-15 15.3 

  

10Ni/SBA-16-WI  4.3 

10Ni/10Ce/SBA-16-WI 7.7 

 

Table 6.14 presents the particle size calculated from the Scherrer equation from XRD on the 

different supported reduced materials.  

Table 6.14 Particle size of the reduced samples from XRD 

Catalyst Ni metal particle size 

(nm)a 

15Ni/SBA-15 24.1 

15Ni10Y/SBA-15 16.0 

15Ni10Ce/SBA-15 19.5 

15Ni10Ce10Y/SBA-15 21.0 

  

10Ni/SBA-16-WI  6.4 

10Ni/10Ce/SBA-16-WI 7.2 

 

As shown in Table 6.14, the largest Ni metal particle was found on 15Ni/SBA-15 catalyst. The Ni 

metal particle size was smaller when Y, Ce, or Ce-Y was added. Compared to 15Ni10Ce/SBA-15, 

the particle size of Ni metal increased slightly.  
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As for SBA-16 supported catalysts, the particle size of Ni metal is much smaller than that of SBA-

15 supported catalysts. Doping Ce leads to a slight increase of Ni metal particle size over 

10Ni/10Ce/SBA-16-WI catalyst. 

 

6.4.4 Surface atom ratio comparison from XPS between SBA-15 and SBA-16 supported 

catalysts 

By XPS, the surface comparison of both Ni supported SBA-15. And SBA-16 catalysts were 

evaluated. The results are presented in Table 6.15.  

 

Table 6.15 Surface composition of the reduced catalysts from XPS 

Catalyst 
Atomic ratio (%) 

Ni Ce Y Ni0/Ni2+ OOH/O Ce3+/(Ce3++ Ce4+) 

15Ni10Ce/SBA-15 1.1 0.6 - 21.8 9.0 48.2 

15Ni10Ce10Y/SBA-15 1.2 0.5 4.8 11.7 23.9 57.2 

       

10Ni/SBA-16-WI  0.8 - - 4.7 3.3 - 

10Ni/10Ce/SBA-16-WI 0.08 0.01 - 24.5 4.3 35.3 

 

Table 6.15 shows the surface composition of reduced catalysts. It can be noted that the surface 

atom ratio of Ni and Ce on SBA-15 support is higher than on SBA-16 support.  

The highest Ni0/Ni2+ ratio was found on the 10Ni/10Ce/SBA-16 catalyst. Thus, this can explain 

that such catalysts are active in methanation since the Ni° species are well known to be the active 

site in the methanation reaction [232]. 
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On the contrary, the highest surface adsorbed oxygen species and highest Ce3+ ratio was found on 

15Ni10Ce10Y/SBA-15 catalyst. Thus, on this support, the importance of the oxygen vacancies led 

to high activity in methanation [366]. 

Thus, it is worth noting that depending on the support 2D or 3D structure, the surface properties 

have changed. 

 

6.5 Conclusion 

Ni catalysts supported on SBA-15 and SBA-16 are promising catalysts due to their high SSA, pore 

volume, and unique ordered mesostructure. It was shown here, that the presence of Ce or Y can 

promote the activity of Ni/SBA-15 catalysts in CO2 methanation. Meanwhile, the Ce-Y promoted 

Ni/SBA-15 catalyst showed the best activity. 

Compared to SBA-15, SBA-16 can be better alternative support for Ni catalysts due to its three-

dimension mesoporous structure. Ni/SBA-16 showed the smallest Ni particle size and high 

dispersion of Ni. In the presence of Ce, the medium basic sites and Ce3+ ratio increased over 

Ni/SBA-16-Ce, which resulted in higher activity.  

Although the Ce-Y promoters can promote the activity of the Ni/SBA-16 catalyst, the Y doped 

Ni/SBA-16 catalyst shows comparative activity. Thus, it can be interesting to study the effect of 

the only Y on the catalytic performance of the Ni/SBA-16 catalyst. 

 

 



VII Conclusion and perspective of this work 

249 
 

 

 

 

 

 

 

 

 

Chapter VII  

Conclusion and perspectives of this work 

 

 

 

 

 

 

 

 

 

 

 



VII Conclusion and perspective of this work 

250 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VII Conclusion and perspective of this work 

251 
 

7. Conclusion and perspectives of this work 

7.1 Conclusion 

In the first part of this work, low-cost materials such as diatomite and LDHs were employed to 

synthesize Ni catalysts. The effect of nickel salts on the performance of Ni catalysts in CO2 

methanation was investigated by H2-TPR, CO2-TPD, N2 physisorption, and XRD technologies. It 

was found that Ni-Mg catalyst derived from nickel nitrate presented the best activity and selectivity, 

which could be ascribed to the small Ni0 particle, good reducibility, and the highest medium basic 

sites. However, the activity of diatomite-based Ni catalysts seems not satisfactory. Thus, the 

diatomite-supported catalysts still need more research to improve the activity in CO2 methanation. 

As for LDHs derived Ni catalysts, the effect of Y on the performance of Ni catalysts was studied. 

It was found that the addition of Y affected the CO2 adsorption capacity of the materials by 

changing the distribution of the basic sites, especially those of medium strength. The yttrium 

promotion influenced the nickel/support interaction. The Y addition affected strongly the catalytic 

activity in CO2 methanation, increasing the CO2 conversion at 250 °C from 16% for MO-0Y to 40 

and 81% for MO-2.0Y and MO-0.4Y, respectively. This could be explained by both increased 

distribution of medium-strength basic sites and significantly smaller metallic nickel particle size 

of Y-promoted catalysts.  

The mixed oxides Ni catalysts derived from LDHs showed high activity and selectivity in CO2 

methanation. The yttrium promoter showed highly improved performance for mixed oxides Ni 

catalysts. 

In the second part, the CeO2 nanoparticles doped by Y were synthesized by the hydrothermal 

method and employed to prepared Ni catalysts. The catalysts were studied in CO2 methanation and 
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characterized by a series of physicochemical technologies. The catalytic test showed that doping 

Y could significantly improve the activity of the Ni/CeO2 catalyst. In the range of 250-350 °C, the 

Ni/CeO2-Y catalysts showed high activity and CH4 selectivity. By characterization, it was found 

that the specific surface area of Ni/CeO2-Y samples, the crystallite sizes of ceria, the oxygen 

vacancies content, and the interaction between NiO and CeO2 can be tuned by different Y content.  

All the catalysts contain well-defined Ni crystallites and the introduction of Y tailors the particle 

sizes and shapes of CeO2 in the catalysts. Unpromoted CeO2 particles are large nano-cubes turning 

to nanorods by Y promotion, with an increase of these nanorods size of up to 2 wt% of Y addition.  

Highly dispersed Ni active sites in strong interaction with the ceria-based oxide and the oxygen 

vacancies formed by Y addition are the key factors determining high catalytic activity and stable 

performances of the Ni/CeO2-Y catalysts. 

The Ni/CeO2-Y 2.0% with the highest number of oxygen vacancies able to activate CO2 and with 

the strongest metal-support interaction suppressing sintering of the Ni sites for H2 activation, was 

the best performing CO2 methanation catalyst. 

In the third part, two different mesoporous silica SBA-15 and SBA-16 were synthesized and used 

to prepare Ni catalysts. The effect of yttrium promotion on SBA-15-supported Ni-Ce catalysts was 

also investigated on these catalysts for CO2 methanation. The microscopy analyses (TEM, 

HRTEM, EDS) revealed that modification with Y positively affects the distribution of Ni particles, 

being extensively dispersed inside the mesoporous channels of SBA-15 silica support. Moreover, 

as shown by XPS, yttrium as a promoter contributed to an increase of Ce3+/(Ce3++Ce4+) ratio and 

the number of medium basic sites, enhanced the reducibility of nickel species, and led to the 

formation of a Y-Ce solid solution. NiCeY/SBA-15 catalysts showed better catalytic performance 
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in CO2 methanation than Y-free catalyst, with the highest CO2 conversion and CH4 selectivity 

measured for 10 wt.% Y loading. Meanwhile, 15Ni10Ce10Y/SBA-15 showed excellent coking 

resistance and anti-sintering ability, which can be attributed to the confinement of the SBA-15 

structure. However, although increases of activity and selectivity of Ni/SBA-15 catalysts doped 

by yttrium were found, they were lower compared with Ce and Ce-Y doped NiCexY/SBA-15 

catalysts. 

The effects of Ce promoter on the physical-chemical properties and catalytic performance of the 

Ni/SBA-16 catalysts were investigated. It was found that the cage-type mesopores of the SBA-16 

matrix, which could suppress the moving and sintering of active metals, leading to good 

dispersions of active metals. The smallest Ni particles were obtained over the Ce-free Ni/SBA-16 

catalyst. Meanwhile, the increase of Ce loading led to larger Ni particles inside/outside the matrix. 

The Ni and Ce particles of catalyst were found to be smaller over 10 wt.% Ce-doped Ni/SBA-16 

catalyst than over 20 wt.% Ce-doped catalyst. Besides, the dispersion degree of Ce decreased over 

20 wt.% Ce-doped catalyst and aggregates of Ce were also registered. Moreover, a higher 

Ce3+/(Ce3++Ce4+) ratio formed on the surface of 10 wt.% Ce-doped Ni/SBA-16 catalyst, favoring 

the activation and hydrogenation of CO2 species adsorbed Ce3+ active sites. Furthermore, the 

highest number of medium basic sites was obtained over 10 wt.% Ce-doped Ni/SBA-16 catalyst, 

which was favorable for the formation of CH4. Besides, the stronger Ni-Ce interaction was also 

formed over 10 wt.% Ce-doped Ni/SBA-16 catalyst.  

In the CO2 methanation, the CO2 conversion and CH4 selectivity of Ni/SBA-16 catalysts were 

found lower than for Ni/xCe/SBA-16 catalysts at low temperatures. This latter result could be 

assigned to the lack of active sites for CO2 activation, which resulted in the CO2 species adsorbed 

on Ni/SBA-16 catalyst were easily converted to CO, leading to poor conversion and selectivity. 
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The higher CO2 conversion and CH4 selectivity (<350 ℃) were obtained over 10 wt.% Ce-doped 

Ni/SBA-16 catalyst due to several advantages relative to 20 wt.% Ce-doped catalysts, such as the 

smaller particles of Ni and Ce, stronger Ni-Ce interaction, higher molar ratio of Ce3+/(Ce3++Ce4+), 

more oxygen vacancies, and more medium basic sites. 

 

7.2 Perspectives 

In CO2 methanation reaction, Ni particle size, high surface area, high pore volume, good basicity, 

enhanced Ni-support interaction, and high oxygen vacancies, etc. can significantly affect the 

activity and CH4 selectivity of Ni catalysts. The support and promoter have an important influence 

on such aspects. Based on the results of this work, several perspectives can be listed as follows: 

➢ The low-cost materials can be competitive in future industrialization. Diatomite-supported 

Ni catalysts need further improvement. LDHs derived Ni catalysts showed high activity 

and selectivity making them promising alternatives toward large-scale application.  

➢ Yttrium is an interesting promoter to modify the properties of Ni/CeO2 catalysts. The solid 

solution of Y-Ce can be interesting in the study of Y-doped Ni/CeO2 catalysts. 

➢ SBA-15 supported Ni catalysts showed good stability. However, further improvement 

researches should be carried out by doping other promoters, changing the preparation 

method, or modifying the support by ammonia, etc.  

➢ SBA-16 can be good support due to its three-dimension structure and good textural 

properties. Y-doped Ni/SBA-16 catalysts can be interesting in the next study.  
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Annexes 

Annex. 1. The titration set-up for precipitation (a) and Polytetrafluoroethylene (PTFE) lined 

hydrothermal autoclave (b) for syntheses of mesoporous materials. 

 

 

 


