N
N

N

HAL

open science

Computational method for the inference of therapeutic
targets and sequence of treatments

Jérémie Pardo

» To cite this version:

Jérémie Pardo. Computational method for the inference of therapeutic targets and sequence of treat-
ments. Bioinformatics [g-bio.QM]. Université Paris-Saclay, 2022. English. NNT: 2022UPASGO11 .

tel-03689701

HAL Id: tel-03689701
https://theses.hal.science/tel-03689701v1

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03689701v1
https://hal.archives-ouvertes.fr

—
<
o
@
—
@)
@)
)
Ll
)
LLl
W
Ll
T
—

NNT : 2022UPASGo11

[]
universite
PARIS-SACLAY

Méthodes d'inférence de cibles
thérapeutiques et de séquences de

traitement
Computational methods for the inference of therapeutic
targets and sequences of treatment

Theéese de doctorat de l'université Paris-Saclay

Ecole doctorale n°580,Sciences et technologies de I'information et de la
communication (STIC)

Spécialité de doctorat: Informatique

Graduate School : Informatique et science du numérigue

Référent : Université d'Evry val d’essone

These préparée dans I'unité de recherche Université Paris-Saclay, Univ Evry,
IBISC, 91020, Evry-Courcouronnes, France, sous la direction de Franck
Delaplace, Professeur a I’Université de Paris-Saclay - Univ. Evry, et de le
co-encadrement de Sergiu IVANOV, malitre de conférences a I'Université de
Paris-Saclay - Univ. Evry

Thése soutenue a Evry-Courcouronnes, le 3 février 2022, par

Jérémie PARDO

Composition du jury

Philippe Dague Examinateur

Professeur émérite, Université Paris-Saclay

Francois Fages Examinateur

Directeur de rechercher, INRIA Paris-Saclay (DR1)

Loic Paulevé Rapporteur & Examinateur
Chargé de recherche, CNRS (LaBRI)

Elisaveth Remy Présidente

Directrice de rechercher, CNRS (I12M)

Adrien Richard Examinateur

Chargé de recherche, CNRS (13S)

Syvain Sené Rapporteur & Examinateur
Professeur, Université d’'Aix Marseille (LIS)

Franck Delaplace Directeur de these
Professeur, Université Paris-Saclay - Univ. Evry

(IBISC)

Sergiu Ilvanov Co-encadrant de thése

Maitre de conférences, Université Paris-Saclay -
Univ. Evry (IBISC)

ECOLE DOCTORALE

®
universite
PARIS-SACLAY !

Sciences et technologies
de I'information et de
la communication (STIC)

Titre: Méthodes d'inférence de cibles thérapeutiques et de séquences de traitement
Mots clés: Réseaux booléens controlés - Séquence de contréle - Médecine des réseaux

Résumé: Un enjeu majeur de la médecine
des réseaux est l'identification des perturbations
moléculaires induites par les maladies complexes
et les thérapies afin de réaliser une reprogram-
mation cellulaire. L'action de la reprogramma-
tion est le résultat de |'application d'un contréle.
Dans cette thése, nous étendons le contrdle unique
des réseaux biologiques en étudiant le contrdle
séquentiel des réseaux booléens. Nous présentons
un nouveau cadre théorique pour I'étude formelle
des séquences de contréle. Nous considérons le
contrdle par gel de noeuds. Ainsi, une variable
du réseau booléen peut étre fixée a la valeur 0,
1 ou décontrolée. Nous définissons un modéle
de dynamique contrélée pour le mode de mise
a jour synchrone ou la modification de contrdle
ne se produit que sur un état stable. Nous ap-
pelons CoFaSe le probléme d'inférence consistant
a trouver une séquence de contrdéle modifiant la
dynamique pour évoluer vers une propriété ou un
état souhaité. Les réseaux auxquels sera appliqué
CoFaSe auront toujours un ensemble de variables
incontrélables. Nous montrons que ce probléme

est PSPACE-dur. L'étude des caractéristiques dy-
namiques du probléme CoFaSe nous a permis de
constater que les propriétés dynamiques qui im-
pliquent la nécessité d'une séquence de contréle
émergent des fonctions de mise a jour des variables
incontrélables. Nous trouvons que la longueur
d'une séquence de contrdle minimale ne peut pas
&tre supérieure 3 deux fois le nombre de profils
des variables incontrélables. A partir de ce résul-
tat, nous avons construit deux algorithmes inférant
des séquences de contréle minimales sous la dy-
namique synchrone. Enfin, |'étude des interdépen-
dances entre le contréle séquentiel et la topologie
du graphe d'interaction du réseau booléen nous
a permis de découvrir des relations existantes en-
tre structure et contréle. Celles-ci mettent en évi-
dence une borne maximale plus resserrée pour cer-
taines topologies que celles obtenues par I'étude
de la dynamique. L’'étude sur la topologie met
en lumiére l'importance de la présence de cy-
cles non-négatifs dans le graphe d'interaction pour
I'émergence de séquences minimales de contrdle de
taille supérieure ou égale a deux.

Title: Computational methods for the inference of therapeutic targets and sequences of treatment
Keywords: Boolean control network - Control sequence - Network medicine

Abstract: Network controllability is a major chal-
lenge in network medicine. It consists in finding
a way to rewire molecular networks to reprogram
the cell fate. The reprogramming action is typically
represented as the action of a control. In this the-
sis, we extended the single control action method
by investigating the sequential control of Boolean
networks. We present a theoretical framework for
the formal study of control sequences.We consider
freeze controls, under which the variables can only
be frozen to 0, 1 or unfrozen. We define a model
of controlled dynamics where the modification of
the control only occurs at a stable state in the syn-
chronous update mode. We refer to the inference
problem of finding a control sequence modifying
the dynamics to evolve towards a desired state or
property as CoFaSe. Under this problem, a set
of variables are uncontrollable. We prove that this
problem is PSPACE-hard. We know from the com-
plexity of CoFaSe that finding a minimal sequence
of control by exhaustively exploring all possible
control sequences is not practically tractable. By

studying the dynamical properties of the CoFaSe
problem, we found that the dynamical properties
that imply the necessity of a sequence of control
emerge from the update functions of uncontrol-
lable variables. We found that the length of a min-
imal control sequence cannot be larger than twice
the number of profiles of uncontrollable variables.
From this result, we built two algorithms inferring
minimal control sequences under synchronous dy-
namics. Finally, the study of the interdependen-
cies between sequential control and the topology
of the interaction graph of the Boolean network
allowed us to investigate the causal relationships
that exist between structure and control. Further-
more, accounting for the topological properties of
the network gives additional tools for tightening
the upper bounds on sequence length. This work
sheds light on the key importance of non-negative
cycles in the interaction graph for the emergence of
minimal sequences of control of size greater than
or equal to two.

Remerciements

Cette thése a été un travail long et sinueux. L'ensemble des résultats scien-
tifiques qui m'ont permis d'obtenir le grade de docteur n'aurait jamais pu exister
sans la présence de mon directeur de thése Franck Delaplace et la présence de mon
co-encadrant Sergiu lvanov. Je vous suis trés reconnaissant pour toute |'aide que
vous m'avez apportée durant ces quelques années de collaboration.

Merci Franck pour nos échanges parfois tumultueux qui ont souvent permis de
déméler mes idées et de recentrer le travail sur les points essentiels. Tes conseils
sur mes présentations orales m'ont toujours été d'une aide précieuse. Surtout,
merci d'avoir cru en moi et de m'avoir encouragé a faire cette thése. Réaliser une
thése sous ta direction fut un grand plaisir.

Merci Sergiu pour tout le soutien dont tu m’as fait part et nos nombreuses con-
versations scientifiques. Ta présence a souvent été un point d'équilibre pendant
nos réunions de recherche a trois. Je te remercie énormément pour le temps que
tu as investi dans mon manuscrit et correction de mes preuves. Etre ta premiére
expérience de direction de thése fut un grand plaisir.

Je tiens a remercier Elisaveth Remy d’avoir présidé le jury de ma thése. Je
tiens également a remercier les membres du jury Philippe Dague, Francois Fages
et Adrien Richard d’avoir accepté de faire partie de ce jury et pour leurs questions
pertinentes posées lors de ma soutenance. Je souhaite remercier plus particuliére-
ment Sylvain Sené et Loic Paulevé qui ont accepté de rapporter ma thése. Merci
pour leur relecture particuliérement minutieuse et I'ensemble de leurs commentaires

pertinents qui m'ont permis d'améliorer grandement la qualité de ce manuscrit.

A tous mes collégues membres permanents, secrétaires, stagiaires, doctorants
actuels ou anciens du laboratoire IBISC qui m'ont accueilli parmi eux, je vous
remercie pour tout ce bon temps que I'on aura passé ensemble.])'ai passé de super
moments de détente et de collaboration avec vous. J'en garde de nombreux et
agréables souvenirs.

Je souhaite aussi remercier mes amies qui ont réalisé le déplacement a ma

soutenance de thése. Vous voir a été un réel plaisir.

Pour finir, je souhaite remercier ma famille qui a été présente pour moi et qui

m'a soutenu et m'a supporté lors de cette longue aventure qu'a été ma thése.

Contents

1 Introduction 9
2 Boolean control network 15
2.1 Boolean networko 15
2.2 Boolean networks interaction graph 19
2.3 Boolean control network 22

3 Control sequence dynamics 27
3.1 Control sequence dynamics 27
3.2 Control sequence discovery 33
3.3 Complexity of CoFaSe 36

4 State of the art in control inference 41
4.1 One-step reprogramming 41
4.1.1 Simulation 41

412 Max-SAT ATPG 42

4.1.3 Attractors and Hamming distance oL 42

4.1.4 Stable motifs, 43

415 Grobner basis, 44

416 Primeimplicants 44

4.2 Sequential reprogramming L 45
4.3 Conclusion 46

5 Dynamical sequence analysis 49
5.1 Partitioning of the C'x-variables, 49
5.1.1 Partitioned dynamics. 50

5.1.2 Properties of equivalence classes. 51

5.2 Boundsonsequencesize 52
5.3 Bounds on sequence size for ConEvs dynamics 54

6 Control sequence inference algorithms 61
6.1 Inference of contracted control sequences 61
6.2 TCS-based inference L 68
6.3 Summary of the algorithms 71
6.4 Benchmarks 72
6.4.1 Experimental protocol 72

6.4.2 Description of the resultingdata 74

6.4.3 Discussion of the benchmarks L. 76

7 Structural sequence analysis
7.1 Impact of the interaction graph on the control
7.1.1 Cx-interaction graph
7.1.2 Necessary conditions for sequences

7.2 Cycle structural properties
7.2.1 The stable states of a positive cycle L.
7.2.2 Effects of the upstream variablesof acycle.
7.2.3 Cycledynamics

7.3 Maximal sizes of minimal sequences.
7.3.1 Boundsinthegeneralcase
7.3.2 Bounds for a single positive cycle

7.3.3 Discussion

8 Conclusion

Notation Index

79
80
80
82
85
85
86
88
92
93
98
102

105

115

1 - Introduction

Cell reprogramming consists in the control of molecular processes and modi-
fying gene expression to induce a particular cell behaviour naturally or artificially.
The potential outcomes of reprogramming have valuable benefits regarding the
essential challenges of health: cancerous targeted therapy, complex disease aetiol-
ogy, regenerative medicine, stem cells monitoring, etc. [33]. Despite the impressive
progress in cell reprogramming during the past decade, more breakthroughs are re-
quired before cellular reprogramming yields routine clinical use [59]. The main
issues lie in the discovery of reliable ways to trigger the reprogramming process
and to understand exactly how its mechanisms work. In this endeavour, the defi-
nitions of suitable theoretical frameworks and computational methods are crucial
for enabling the analysis and the design of the reprogramming patterns responsible

for the phenotypic switch.

Finding therapeutic targets is based on the study of molecular models of dis-
ease. These models are frameworks that define the causal relationship between
disturbances at the molecular level and the diseased or healthy forms of an or-
ganism. There are two complementary approaches for studying diseases at the
molecular level: empiricism and rationalism [29, 60].

The empirical method involves establishing statistical measures between sets of
patients’ symptoms and their molecular characteristics. The rational method relies
on developing mechanistic models that theorise the functioning of an organism and
explain the emergence of the symptoms of the disease via disturbances in the model.
Therefore, the discovery of targeted therapies can be based on high-throughput
screening, which tests, for example, the effectiveness of many molecules actions
without knowing their mode of action or predicts drug effects based on biological
models [56].

Whether empirical or rational methodology, developments in precision medicine
need computer science [14, 27]. The empirical methods suppose the ability to anal-
yse considerable masses of data resulting from the progress of molecular biology.
The rational methods imply the development of disease models and algorithms for

obtaining the desired predictions.

In this manuscript, we focus on a rational approach based on the study of

biological models. In [62], the authors relate mutations to their network effects:

9

nonsense mutation, out-of-frame insertion or deletion and defective splicing are
interpreted as node or arc deletions, whereas missense mutation and in-frame in-
sertion or deletion can be modelled as node or arc additions. Moreover, in [15],
the authors classify mutations according to how they affect signalling networks
and distinguish between mutations that constitutively activate or inhibit enzymes
(nodes) and mutations that rewire the interactions (arcs). Similarly, [16] interpret
targeted therapies as network rewiring. The effects of mutations and drugs can,
thus, be described as elementary topological actions on the network: the deletion
or insertion of nodes and arcs. Cell reprogramming is then viewed as network
alteration based on these topological actions. The impact of the actions on the
network should be evaluated from a model of dynamics translating the topologi-
cal actions into dynamical alteration of the trajectories. Accordingly, phenotypic
changes are assessed at the molecular level via the measurement of the state of par-
ticular molecules called biomarkers—observable indicators of biological processes
whose molecular signature variation discriminates the phenotypes [16, 55]. The
signatures must be observed over a significant period of time to testify their rele-
vance, and thus are assumed to be met concomitantly with a stability condition of
the biological system.

This approach is part of network medicine [6],which aims to address drug target
discovery and the elucidation of disease mechanisms through network analysis by
renewing the phenotype-genotype relationship into the association of a phenotype
to some network perturbations [53]. Albert-LaszI6 Barabasi states that biological
systems contain many components that are connected in complicated relationships
but are organised by simple principles. Using network theory, the organising princi-
ples can be comprehensively analysed by representing systems as complex networks.
Network medicine is based on the idea that understanding the complexity of gene
regulation, metabolic reactions, and protein—protein interactions, as well as using a
network representation of those processes, will shed light on the causes and mech-

anisms of diseases.This thesis is, therefore, rooted in the field of network medicine.

We choose to use Boolean networks as a network representation for the cel-
lular processes. Boolean networks are widely used to model biological systems in
network medicine. These networks are discrete dynamics systems introduced in
biology by McCulloch and Pitts [38] as a model for the transmission of information
between neurons, and by Stuart Kauffman [28] and Rene Thomas [57] to model
gene regulatory networks. The molecules of the system are represented as Boolean
variables. By convention, the value 1 corresponds to an active or present state,

and 0 to an inactive or absent state. Although Boolean networks are a rough

10

simplification of genetic reality, as genes are not simple binary switches, they can

correctly capture many expression patterns of genes [2, 10].

Recent research in computational biology has provided novel inference methods
for reprogramming a system to make its dynamics converge towards an expected
fate. These works use Boolean control networks (BCNs). Its a model specifying
the actions as controls on Boolean network. Various approaches have been pro-
posed, such as stuck-at fault models and SAT-based methods [32], motif-related
heuristics [01], algebraic approaches [39], and abductive methods [3]. These works
have been validated using real biological cases showing their adequacy for drug
therapy prediction. The state of art related to Boolean networks reveals that the
methods are currently focused on computing a single network action modelled as
a control input to reprogramme the dynamics in order to reach stable states that
meet some expected properties assessed at the molecular level.

However, more complex schemes may require a control sequence. For exam-
ple, in some biological cases, a sequence of mutations is observed, or a therapy
involves a scheduled protocol for administering drugs. Typically, tumorigenesis
results from a multi-step process governed by sequential genetic alterations. A col-
orectal tumour offers a paradigmatic system illustrating this sequential progression.
Fearon and Vogelstein demonstrated that colorectal cancer tumorigenesis relies on
a sequence of disturbances of three genes [22], called the "Vogelstein sequence’.
This sequence suggests that acquiring of a cancerous phenotype requires under-
going various intermediary stages and that, if these same disturbances occur in a
different order from that observed, the cell dies before developing its cancerous
potential.

Furthermore, in [31], the authors describe a systematic approach to identifying
efficient drug combinations in killing cancer cells depending on changes in the order
and duration of drug exposure. They found that some drug combinations (EGFR
inhibitor) can synergise the apoptotic response to DNA-damaging chemotherapy for
a subset of triple-negative breast cancers if the drugs are administered sequentially
but not simultaneously, leading to an appropriate dynamics rewiring of oncogenic
signalling networks.

Therefore, the study of sequential control is a natural extension of the previous
works. Investigating control sequences can, as a long-term perspective, possibly
explain the causes of diseases via sequences of perturbations and help discover
therapeutic regimens.

The subject of control sequence inference is vast and difficult. Related ques-

"

tions to this problem could find their foundation in the problems related to the
control of systems. We can cite, for example the control theory for linear systems,
in which control system design addresses the problem of making a concrete physical
system behave according to certain desired specifications by using a device called
a controller [58].We can also consider the study of the robustness of the network
and its boundary conditions, which offers insights into the behaviour of interacting

;171

In this manuscript, we only consider sequential control on Boolean networks, which

systems and can provide important leads for finding the desired controls [

is an under-researched area. The main studies on this subject are those of Man-
don et al. , who researched the temporal reprogramming of Boolean networks in
[35, 37, 36]. Given a trajectory, they identified the appropriate states at which
a control should be applied, and deduced the corresponding controls (perturba-
tions) to reach an expected state. The authors objective was minimising the total
number of perturbations, particularly regarding known one-step controls. These se-

ries of publications emphasiSe the computational complexity of sequence inference.

In this thesis, we are interested in the definition of a framework and computa-
tional methods for the inference of control sequences for Boolean networks. The

problem we pose is as follows:

If not all variables are controllable, how can we find a minimal control sequence
modifying the dynamics to evolve towards a desired state from an initial state if

such a state is not reachable with a one-step control?

In the model of controlled dynamics that we propose, we consider the con-
straints of its ultimate application in biology. We impose that objectives are de-
termined on stable states and that the modification of the control only occurs at a
stable state. Studying the dynamical characteristics (Chapter 5) of this framework
enabled us to bound the length of control sequences of minimal size. Furthermore,
studying the causality of sequential controls from the viewpoint of the interaction
graph (Chapter 7) offered key insights to reduce such bounds. This work helps
reveal the key importance of non-negative cycles in the interaction graph regarding

the emergence of minimal sequences of control of size greater than or equal to two.

This thesis is structured as follows: In Chapter 2, we present the Boolean
network model, its model of dynamics, and its interaction graph. We also recall the
formalism of the Boolean control network which is a function generating Boolean

networks according to control parameters. These control parameters enable us to

12

model structural disturbances of the Boolean network interaction graph. In this
manuscript, we particularly focus on the control of Boolean network nodes. More
precisely on control input that freezes nodes at a specific value.

In Chapter 3, we formalise the controlled dynamics that extend the Boolean
network dynamics by revealing how the system evolves through a sequence of con-
trol inputs. We explain the inference problem regarding finding a control sequence
that modifies the dynamics to evolve towards a desired state or property. This
problem is denoted as CoFaSe (i.e., Controlled Fate in Sequence). Finally, we
prove that the inference of a control sequence satisfying CoFaSe is PSPACE-hard.

In Chapter 4, we present in greater detail the state of art regarding the control
of Boolean networks. In particular, we discuss the similarities and differences to
the framework proposed by Mandon et al. in [35, 37, 36].

In Chapter 5, we describe the dynamical properties of the sequential inference
problem. By partitioning the network variables into a set of controllable and un-
controllable variables, we obtain concrete bounds regarding the length of minimal
control sequences. These upper bounds reduce the potential solution space of the
inference problem.

In Chapter 6, we propose two computational approaches for inferring minimal
sequences of control. The first approach always finds a minimal sequence of control
if such a sequence exists. The second approach may not always find a minimal
sequence of control but generally requires less computation time. In the final
section of this chapter, we benchmark and discuss the performance of the two
algorithms.

In Chapter 7, we study the relationship between sequential control and the
topology of the interaction graph of the Boolean network. Accounting for the
topological properties of the network provides additional tools for tightening the
upper bounds regarding sequence length. This approach enables us to study the
causal relationships between structure and control.

13

2 - Boolean control network

In this manuscript, we will formalise the Boolean network reprogramming by re-
lying on Boolean control network. A BCN extends the Boolean network by adding
Boolean controls. The reprogramming of Boolean networks leads to the modifica-
tion of their dynamics. We more specifically focus on a particular class of control
called the freezing control , in which a control input definitively freezes a variable

state to a specific value.

In this chapter, we first recall the main definitions of Boolean networks (Sec-
tion 2.1) and their interaction graph (Section 2.2). Then, we define the extension
to BCNs (Section 2.3).

2.1 . Boolean network

Boolean function. A Boolean function is defined as f : B® — B where
B = {0,1} is the Boolean domain and n is its number of arguments. Every
Boolean function can be expressed as a propositional formula with n variables
Z1,...,Tn. For example, f(z1,29,23) = (1 Ax3g) V (mx1 Axz2) is a Boolean

formula which have for variables 1, zo and x3.

Boolean network. A Boolean network is a discrete dynamical system defined
on a finite number of Boolean variables X = {x1,...,z,}. The network is defined

by a collection of Boolean functions,
F:B" — B",
F={x;= fi(x1,...,2n) | 1 <i<n},

in which each f; is a propositional formula computing the instantiation of x;. An

example of a Boolean network is presented in Figure 2.1.

r1 = (21 Axa) V (21 A —x3) V (—zp A g A x3)
F= Ty = (IL’l N ZL’g) V (_|l'1 A 1’2)
I3 =— (.I'l A 33’3) V (_|£L'1 A _|£L'2)

Legend: A Boolean network F with three variables z;, 22 and .

Figure 2.1: A Boolean network.

15

State. A state s belonging to the set of states S is an interpretation assigning
a Boolean value to the variables (i.e., s : X — B). The evolution of each variable
x; depends on its update Boolean function f; and a state s. Table 2.1 contains the
result of applying the set of Boolean functions of the Boolean network in Figure 2.1
to each state s € Sy.

V)
SN—
e

R O, O RFRk OOl
=
P

_ ok O o O = |l
NP

S{x1,22,23} ‘ fl
000
001
010
011
100
101
110
111

O === OO O

Legend: Application of the set of Boolean functions of the Boolean net-
work F' of Figure 2.1 to its set of states Sx.

Table 2.1: Application of the Boolean functions of a Boolean network.

Model of dynamics. The model of dynamics describes the evolution of states
for all variables via a labelled transition system (—, M, Sx), in which the states
are updated according to an updating policy M C 2% called the mode, which is a
cover of X (U,,cprm = X).

fix+ defines the restriction/projection of the function to X', such that f is
only defined for the elements of X’ C X.

Each transition relation (—C Sx x M x Sx) is labelled by the set of updated
variables m:

s g g o (Fum(s) Usx\m)-

The global transition relation is defined as: —= J,,,c/ = Apath! s —* ¢
characterises a trajectory from s to s'.

For example, if we consider the Boolean network of Figure 2.1 and the updating
policy M = {{z1,x2},{x3}}. The updating policy M means that from the state

011, it is possible to carry out one of the two following transitions:

—* is the reflexive and transitive closure of the transition relation.

16

* One transition in which the variables 1 and x5 are updated and the state
111 is reached.

* One transition in which the variable z3 is updated and the state 010 is

reached.

The updating policy M provides us with the following states graph:

{z1z2}{z3} {z3}
O{zs} {z122}
e
010 011
~ {z122}
\'&h H:
@110 {000| | 101@
= %
%, e
(100 | |001|

{z1z2H{z3} {z1z2}{z3}

Legend: Dynamics of the Boolean network F of Figure 2.1 under the up-
dating policy M = {{x1,z2},{z3}}. Arcs are labelled by the sets of up-
dated variables realizing the transitions.

Figure 2.2: Update mode of a Boolean network.

In biological modelling, various updating modes are proposed to model the
numerous constraints of the abstracted system. There is no consensus regarding
which updating mode for Boolean networks is the most representative of the bio-
logical reality. Thus, the choice of updating mode strongly depends on the nature
of the studied problem. Indeed, each updating mode has distinct features and can
have a wide range of effects on the dynamics of the Boolean network.

In this manuscript, we only introduce two of the most used updating modes:
the synchronous mode and the asynchronous mode. These two modes only rep-
resent a small part of the spectrum of update modes introduced in the literature.
For example, the updating functions may be composed, as in block-sequential [50]
and block-parallel [20] updating modes. Other updating modes may also make use
of parameters that at first sight cannot be directly captured by these determin-
istic updates [46]. Memory Boolean networks [24, 25] and Interval Boolean net-

works [12] respectively consider delay and duration and Most Permissive Boolean

17

networks [44] consider thresholds in their updating functions.

In the synchronous mode, all the variables are updated during a transition
(M = {X}). The synchronous update mode is deterministic since all transitions
are functions.?

By contrast, in the asynchronous mode, only one variable is updated per tran-
sition (M = {{xi}}z,ex). The asynchronous update mode is non-deterministic
since its transitions are ordinary relations (not functions). Figure 2.3 shows the
synchronous and asynchronous dynamics state graphs of the Boolean network of

Figure 2.1.

{z1 2 x3} {z1H{z2}{z3} {z2} {z2}{=z3}
{z1 @2 w3} O{TS}O{Il}
010], [oM 1M1 lo1o| | o1 M
iy ¥ 5)
\V& i) \w\\&/%_\ N
10| [ooo] [701] = [110 M~{o00] | 101@
‘e ‘e 2, 2,
®. . 2, 2,
90 0
(100 |” | 001 | (100 | |001|
{z1 @2 3} {z1 @2 x3} {z1H{z2Hzz} {z1}{z2}{z3}
Synchronous Asynchronous

Legend: Dynamics of the Boolean network F' of Figure 2.1 under two
update modes. Arcs are labelled by the sets of updated variables realizing
the transitions. On the left is the dynamics of F' under the synchronous
update mode. On the right is the dynamics of F' under the asynchronous
update mode.

Figure 2.3: Synchronous and Asynchronous update modes of a
Boolean network.

Equilibrium. An attractor A C Sy is a set of states from which only states
of A are reachable and in which all states of A are reachable from any state of A.

A is an attractor if and only if:

20ne result for each input value.

18

A#£DAVYs e AVs € Sy \A: —(s —"s)AVs, s € A: s —* 5.

A fixpoint attractor or stable state s is a particular attractor whose cardinality,
denoted |A|, is equal to 1. A state s is denoted as a stable state by the following
notation:

STBLf(s) S tmeM: s D s,

A cyclic attractor is an attractor of size |A| > 1 that forms a cycle in the
dynamics of the Boolean network. Note that under the synchronous update mode
of a Boolean network, an attractor can only be a fixpoint or a cyclic attractor.

A basin of attraction of an attractor A is a set of states in which each of its
states will always eventually reach a state of A. B is a basin of attraction of an
attractor A if:

ACBAVseB,3s € A: s —* 5§
NVs € BVs € Sx:s —*s = s € B.
In the left graph of Figure 2.3, the states 010, 100 and 001 are stable states.

Their largest basins of attraction are, respectively, {010}, {101,111,011, 110, 100},
and {000,001},

2.2 . Boolean networks interaction graph

Interaction graph. The interaction graph of a Boolean network captures the
interdependence of the network variables in the dynamics. For a Boolean network
F' with the set of variables X, its interaction graph is a directed graph (X, —),
which contains the arc x; —>x; if a change in z; may leads to a change in z;.

Formally, an interaction is defined as follows:

def
x;—>x; == 38,5 € Sx : 54, # S N SX\zy = s’X\xi A fi(s) # f(s).

Figure 2.4 shows the interaction graph of the Boolean network of Figure 2.1.

Signed interaction graph. The signed interaction graph extends the notion
of dependence by classifying arcs in three categories: a monotonic increase in z;

(sign 1), a monotonic decrease in z; (sign —1), or a non-monotonic interaction

19

é;}@@

Legend: Interaction graph of the Boolean network F of Figure 2.1.

Figure 2.4: The interaction graph of a Boolean network.

depending on the state of the other variable (sign 0). The signs are respectively

labelled by: + for 1, — for —1, and + for 0. Formally, the signed interaction

graph of a Boolean graph (X, —,), in which the relation z; —> x; is defined

in the same way as for the interaction graph, and o : (—) — {—1,0,1} is the

arc labelling function defined according to the following equations and graphically

represented by {—, +, +}:

def
€X; T T; = x; —>xj N\

Vs,s' € Sx i 8z, < 8 NSx\gy = S'X\xi = fi(s) < f5(s),
_ def
Ty —> xj = T, —>T; A\

Vs,s' € Sx ¢ Sz, < S, N Sx\ay = s’X\xi = fi(s) > fi(s).

The arcs for which neither of the two equations is true, receive the label +. Fig-

ure 2.5 displays the signed interaction graph of the Boolean network of Figure 2.1.

Legend: Signed Interaction graph of the Boolean network F of Figure 2.1.

Figure 2.5: The signed interaction graph of a Boolean network.

20

The arcs labelled + refer to positive arcs, whereas those labelled — refer to

negative arcs.

Cycle. In an interaction graph, a cycle is a finite sequence of distinct arcs in
the same direction that joins a sequence of vertices in which the only repeated
vertices are the first and last. In a signed interaction graph, the sign of a cycle is

the product of the sign of its arcs.

* A cycle is a positive cycle if the product of the signs is equal to 1 (i.e., if

and only if it contains an even number of ‘—" arcs and no ‘£’ arcs).

* A cycle is a negative cycle if the product of the signs is equal to —1 (i.e., if
and only if it contains an odd number of ‘—' arcs and no ‘£’ arcs).

* A cycle is a positive/negative cycle (positive and negative at the same time)
if the product of the signs is equal to 0 (i.e., if it contains at least a ‘£’
arc). Depending on the instantiation of the variables of the network, such

cycles can behave as positive or negative cycles.

« A cycle is a non-negative cycle if the product of the signs is not equal to

—1 (i.e., the cycle is a positive cycle or a positive/negative cycle).

For example, in the interaction graph of F'in Figure 2.5, the cycles {z2, x2}, {x3, 23},
are positive cycles, the cycle {x9, 3,22}, is a negative cycle and the cycles

{z1,21},{x1, 22, 23,21}, are positive/negative cycles.

Strongly connected component. A subgraph of a directed graph is called
a strongly connected component (SCC) if every vertex is reachable from every other
vertex. We can distinguish between trivial SCCs, which do not contain cycles, and
complex SCCs, which contain one or more cycles. Since an SCC with more than
one variable necessarily possesses a cycle, all trivial SCCs are of cardinality 1. All
signed interaction graphs can be partitioned into SCC modules. For an example of
a partitioned interaction graph into SCC modules, see Figure 2.6.

In the rest of this manuscript, we only study complex strongly connected com-

ponents. For the sake of clarity, complex SCCs are simply referred to as SCCs.

Upstream, downstream, and disconnected variables. For the sake
of proof in the remainder of this manuscript, we now define the notion of upstream,

downstream, and disconnected variables in regards to a set of variables as follows:

21

®

—®

i aa

Legend: Interaction graph partitioned into SCC modules where each
color corresponds to a distinct SCC. The variables z; to x4 belong to com-
plex SCCs in contrary to the variables y; to y which belong to trivial SCCs.

&

Figure 2.6: Interaction graph partitioned into SCC modules

Let A be a set of variables in the interaction graph of the network F'. The

variables of F' can be classified according to A into four sets:
+ A the set of the reference variables.

A ={z |z e X,x ¢ AT € A: x—>*2'} the set of variables
upstream of the set of variables A.

c AN = {z |z e X,x ¢ AT € A: 2’ —>*x} the set of variables
downstream of the set of variables A.

A* = X\ (AU A UA™) the set of variables disconnected from the set of

variables A.

For example, in Figure 2.6, if we take the set of variables A = {x;} we will have
A = {y1, 56}, A =0, and A = {2, 23, T4, Y2, Y3, Y4, Y5}, and if we take the
set of variables B = {x3,y4}, we will have B = {z2, 24, Y2,y3}, B> = {z4,y3}
and B* = {x1,y1,95, Y6 }-

2.3 . Boolean control network

The Boolean control network (BCN) extends the Boolean network by adding
controls on variables. A control is represented by an additional parameter whose
state is set simultaneously and instantaneously when a control is applied.

More formally, a Boolean control network Fy; is a function generating a Boolean
network from an interpretation ;1 € Sy of control parameters U = {u1, ..., uj, ..., un},
which is called a control input. This input is defined as follows:

= {xz :fi(xl,...,a;n,ul,...,um) ‘ 1 SZSTL},

22

For each instantiation of control input p, the Boolean control network Fy;
generates a Boolean network F),, modelling the application of a control on the
initial Boolean network F'.

The freezing control assigns a definite value to each variable. The two possible
freezing outcomes, 0 or 1, are supported by two parameters with two distinct
regimes: either they freeze the variable or remain idle. By convention, inspired by
the freezing temperature of water at 0°C', the freezing action is triggered when the
control parameter is set to 0, whereas 1 represents the idle situation. Implementing
of the freezing control on a Boolean network augments the formulas of the network
by adding the control parameter to obtain the expected control behaviour.

A control can be applied to a node. In this case, the control parameters are
applied to the formula of the frozen variable. For a formula f;, adding the control
parameters ul € U° and u} € U! to freeze the variable x; to 0 or 1, respectively,
leads to the following specification:

z; = filzy, ..., xn) Al for freezing to 0, (2.1)

zi = fi(z1, ..., a0) Vg for freezing to 1. (2.2)

A control can be applied an arc. In this case, the control parameters are applied
to the occurrence of variables in the functions of other variables. For a formula f;,
adding the control parameters uj; € U" and u;; € U" to freeze the variable z;

in the formula of x; to 0 or 1, respectively, leads to the following specification:

zi = fi(z1, ...,z A ugj, ceyTy) for freezing to 0, (2.3)
x; = fi(x1,...,2; V —|u2-1’j, ceeyTp) for freezing to 1. (2.4)

Many other types of controls are possible. In this manuscript, we focus on
the freezing of nodes and do not consider the control applied on arcs. U and
U' control parameters can be combined to trigger the freezing to different values
(ie., m; = fi(x1,...,xn) Auld V —ul). Subsequently, U = U UU! represents the
whole set of freezing control parameters, and u; € U represents a generic freezing

0 1
control parameter (u; or u;).

The active control set of a control input, /i, represents the set collecting all
the activated controls: 1 = {u | u(u) = 0}. Note that & and /i are equivalent
descriptions of the control since we can define one from the other. Subsequently,
for the sake of simplicity, a control y will be described using /i to avoid a long
description of the control including all inactive control inputs.

In Figure 2.7, we can see an example of the application of a control to the

23

z1 = ((x1 A—x2) V (21 A —23) V (21 Azg Axs) V ﬂu%) Auld

x3 = (x1 Ax3) V (—z1 A ~x9)
[oro] [om][] [o0] [on] [[m] :__0_1_9_:<—<—
[10] [ooo]| [101] [110] [o00]—>] 101] [110 |[—{000] [101]
[100]] 100 001 100 1 001!
1
0 Uy ucl)

Legend: The Boolean network F of Figure 2.1 is completed by the for-
mulas of the freezing controls to produce the Boolean control network
Fy140y. From left to right, the respective controls are: no freeze, x, is
frozento 1, z; is frozen to 0. The active control parameters are mentioned
below each dynamics. The dynamics are synchronous and the self-loops
on states are not shown. For the sake of clarity, the set of updated vari-
ables m on the transition was omitted. The stable states of each dynam-
ics are coloured in three shades of grey, and their contours are drawn in
different styles. Each contour style is associated with a different control
input.

Figure 2.7: The synchronous dynamics of a Boolean control network.

24

variable 21 on the Boolean network of Figure 2.1. The three depicted dynamics

respectively correspond to the following:
1. the absence of control,

2. the freezing of the variable 21 to 1 (u}

0),

3. the freezing of the variable 71 to 0 (uf

0).

We can see that applying different freezing controls results in different be-
haviours in the dynamics of the system. These dynamics changes lead to different

transitions and different equilibriums.

It is worth noticing that some variables are purposely uncontrolled to play the
role of observers used for freely reporting the evolution of the states of a system.
In biology, biomarkers play the role of these observers. An observer is always an
uncontrolled variable used to assess the evolution of the system. Therefore, the
uncontrolled variables are important for assessing the fate of the dynamical system.
The set of controlled variables is denoted C'x, and the set of uncontrolled variables
is Cx = X \ Cx. In our example in Figure 2.7, the C'x —variables are {2, 23},
and the C'x —variables are {z;}

The profile of a set of variables A denotes the instantiation of the variables of
A'in a given state s. In the sequel, the profiles of uncontrolled variables are denoted

‘Cx —profiles’, and the profiles of controlled variables are denoted ‘C'x —profiles’.

25

3 - Control sequence dynamics

We build on previous studies by characterising control sequences to explore
the inference of sequences of control,. Therefore, we need to define a frame-
work that enables us to describe the notion of sequentiality of control in Boolean
control networks. In this chapter, we define the control sequence dynamics and
related concepts (Section 3.1), present the problem of control sequence discovery

(Section 3.2), and discuss its complexity (Section 3.3).

3.1 . Control sequence dynamics

Controlled dynamics extend the Boolean network dynamics by specifying how
the system evolves through a sequence of control inputs.

A sequence of controls is formally defined by the function p: Nt — (U — B)
indexing control inputs, where p;,7 > 1, is the i-th control input in the sequence

and fu) stands for the sequence of size k starting with y; and ending in ju:
Hik) = (//Jla ce 7#143)

Controlled dynamic. Given a Boolean control network Fy;, the model of

controlled dynamics is defined as a labelled transition system that includes the

control inputs as labels (Sx, Sy x M, —), such that as transition is defined by:
is def

s B o S = (Fui) 1 (8) U 5x\1m- (3.1)

A control sequence iy leads, therefore, to the following trajectory (path) of size

k 4+ 1 and in which, for each transition, a control is applied:

gl KL, gi HOTL Gidl gk MRk, Gkl
In Equation 3.1 the state s’ denotes the i-th state of the sequence. Each
control is labelled by a pair of control and modality. For the sake of clarity, we
omit the mode if it is not needed for explanation, meaning we consider the union

. m
relation: = Unmenr L

State trace. The trace defines the sequence of visited states in the control

sequence trajectory: (s%)j<i<ki1.

27

x1 = (X1 Axo) V(21 A —x3) V (—2 A g A x3)
F{ué,ug,ué,ug} = To = ((ZEl A IL‘3) V <_\l'1 N 1’2) V —|u§) VAN Ug
T3 = ((Il A Z’g) V (ﬁZL'l N ﬁZL‘Q) V ﬁUé) N Ug

[oio] [om J«—[1| [010 |—>{ o |b| m |
—
[10] [ooo]| [101] [110] [ooo] [101]
[100] [001] 010 001
1 0
(D ug U3
[oio] [om |« 1] Lot o1 m
[mo] [ooo] \ [101] Ejo_\ 101
100 001 100 001
1 1 1 1 0
u2 u27 u3 u27 u3
[ot0] [om] [m] [ot0] [on] [m] [o0] [omn]| [m]
[10] [[ooo] |[[101] 110 :_5_6_3'><1o1
1100} oo1
0 0 1 0 0
Uy Ug, U3 Uy, U3

Legend: The Boolean network F' of Figure 2.1 is completed by the for-
mulas of the freezing controls to produce the Boolean control network
Frup w9l w9y From left to right, top to bottom, the respective controls
are: no freeze, x3 is frozen to 1, z3 is frozen to 0, x5 is frozen to 1, x5 and
xg are frozen to 1, x5 is frozen to 1 and x3 is frozen to 0, x5 is frozen to 0,
29 is frozen to 0 and z3 is frozen to 1, x5 and x5 are frozen to 0. The active
control parameters are mentioned below each dynamics. The dynamics
are synchronous and the self-loops on states are not shown. The stable
states of each dynamics are coloured in three shades of grey, and their
contours are drawn in different styles. Each 2—tuples of contour styles
and shades of grey is associated with a different control input. We can
notice that the centre graph where x2 and x3 is frozen to 1 have a unique
cyclic attractor and no stable states.

Figure 3.1: The synchronous dynamics of a Boolean control network.

28

For example, take the controlled Boolean network described in Figure 3.1 and
its different controls. Let the initial state be 010, the sequential application of
the sequence of control u[5] = ({u3}, {u3}, {us}, {ul},?) leads to the following
trajectory in the controlled dynamics:

{ud} {ud}

01 {us} {us}

010 000 0 011 110 -2 100. (3.2)

In Equation 3.2, the control inputs are represented by their active control set,
with elements indexed by the freeze value, and the stable states traversed by the

trajectory are in boldface. The state trace of the trajectory is thus:

(010,000,001,011,110,100)

Classes of sequences. Control sequences can be categorised into families
based on the evolution of the control between steps. The complexity of the se-
quential control evolution depends on the rule governing such control application
strategies. Indeed, a chosen strategy can impact the inference of a sequence. It
may exist a sequence of control for a given strategy that evolves a Boolean net-
work dynamics towards an expected state, when for another strategy such problem

cannot be solved. We propose two control application strategies:

+ Total Control Sequence (TCS): All the controls are triggered during the
first phase for all the controlled variables and remain active throughout the

sequence. The values to which the variables are frozen may change.

*+ Open Control Sequence (OCS): No constraints regarding control parameters

are imposed. A control can be changed or released freely.

The sequence described in the trajectory (3.2) is an OCS since x5 is controlled,
then uncontrolled. The TCS class is mainly used for proofs and algorithmic reasons.
This sequence has no realistic biological application of its own. Indeed, in the case
where we consider that C'x-variables correspond to biomarkers, controlling all genes
corresponding to C'x-variables is not realistically feasible in vitro and in vivo. The
OCS class is the most general class that may represent the action of the drugs on
molecular networks, potentially implying the modification and the relaxation of the

actions. The following inclusion between these families holds:

TCS ¢ OCS.

29

The control dynamics enable the change of control at any time in the dynamics.

This observation leads to the following proposition:

Proposition 3.1. For any control sequence p, there exists a total control se-
quence of the same size vy, € TCS generating the same state trace under the
synchronous mode.

i M

Proof. Take a control sequence y;; and an initial state. For a transition s* —
st 1 < i < k, two cases may occur for the control parameters of the con-
trolled variables, z; € Cx:

1. If one of the two control parameters u[;-, u; is already activated, then the
configuration remains the same for v.

2. If the control parameters are both idle (u? =1, ujl = 1), then we directly
fix the expected final state value by setting the control appropriately,
namely: v;(u}) = 0, v;(uj) = 1if s (x;) = 0 and
l/i(ug-)) = l,yi(ujl) =0if s l(x;) = 1.

As the update is synchronous, then all the values of the controlled variables
z; lead to the state s™!(xz;) in a controlled way. For uncontrolled variables,
z; € Cx, we have (fv); = (fu); since no modifications occur, meaning the
update is the same.

Since a transition only depends on the previous state that can be obtained
by applying of a TCS control input v;, we can define a TCS control input for
each step, finally leading to a total controlled sequence vy, simulating the
trajectory controlled by p from an st O

Proposition 3.1 states the observational equivalence between OCS and TCS
classes under the synchronous update mode, namely any OCS control sequence
state trace can be reproduced by a TCS sequence. Thus, under the control dynam-
ics, for each OCS control sequence, a TCS control sequence exists with the same
state trace. For example, the OCS sequence of control u[5] = ({u3}, {u9}, {ud}, {ul},0),
which generates the trajectory (3.2), has an equivalent TCS sequence of con-
trol /5] = ({u9, w3}, {ud, ud}, {ud, uil, {ud, ud}, {ul, ul})* with the same state
trace.

Let the initial state be 010, the control sequence 1/'[5] leads to the following

trajectory in the controlled dynamics. The control inputs are represented by their

'According to the definition of a TCS, 1/[5] is also an OCS sequence of control.

30

active control set, with elements indexed by the freeze value, and the stable states

traversed by the trajectory are in boldface.

{ug,ug} {ugul} {ugu3} {uzul}

{ud,ug}
—

010 000 001 011 110

100. (3.3)

In control sequence dynamics, allowing a change of control at any time has
no concrete application in biology. Knowing the state of the phenotype of a cell
at any time to administer a sequential therapy is impractical. On the contrary,
waiting for the cell to reach a stable phenotype before changing the administered
drug is practicable.

We could have considered other types of attractors; for example, a cyclic at-
tractor for which a subset of components does not vary is instantiated to a desired
phenotype. We have chosen to constrain ourselves to stable states due to them
being the easiest type of attractors to find. Based on this choice, we define the

following control dynamics:

Control Evolution based on Stable-State dynamics. The model of

controlled dynamics is said to be Control Evolution based on Stable-State dynamics

(ConEvs) if the modification of the control inputs instantiation only occurs at a

stable state. The change of control modifies the dynamics and releases the stability;
hence, the ConEvs dynamics fulfil the following property:
Vel B B R £ i = STBLp,, (5711,

given that s’ Hiy gitl Fil, st21<i<k. (3.4)

Under the ConEvs dynamics, we impose as a restriction that the property must

be validated on a stable state. When no state in the set of target states is stable

in the dynamics of at least one of the possible controlled Boolean networks?, the

CoFaSe problem will have no solution.

In ConEvs dynamics, changing the control is the only way to evolve the dy-
namics since a stable state is reached with the current instance of the Boolean
network, which results from applying a control input to the BCN. ConEvs dynam-
ics model either the different mutational steps in which a mutation rewires the

network reaching another phenotype, the molecular signature of which is stable,

2We also consider the empty control (i.e., the Boolean network not controlled).

31

or a therapeutic regimen where the drug administering depends on the therapeutic
evaluation modelled by a stable state assessment. The trajectory described in (3.2)
is ConEvs, in contrast to the trajectory described in (3.3), in which the control is
changed in state 011 which is not a stable state of F,1 1.

Under the ConEvs dynamics, Proposition 3.1 is false. Therefore, some OCS
sequences of control do not have a TCS equivalent sequence. Thus, it may exist
an OCS sequence of control that evolves a Boolean network dynamics towards a
desired state in which, for a TCS control strategy, the same problem is unsolvable.
The trajectory described in (3.2) is a prime example of an instance in which no
TCS equivalent sequence of control exists. The state trace of the Trajectory (3.2)
cross, in this order, the states 001, 011, and 110. To reproduce such trace, two
total controls would be needed since the Cx —variables are different in 001, 011
and 110. In Figure 3.1, no controlled Boolean networks have in their dynamics 011
as a stable state. Thus, under the ConEvs dynamics, there is no TCS sequence of
control that could reproduce the Trajectory (3.2) state trace.

Contracted control sequence. The contracted control sequence retains
only one instance of the control input for each sub-sequence with identical control
inputs. For ConEvs dynamics, the contracted control sequence can be considered
as the sequence making the dynamics evolve from stable states to stable states.
Note that under the synchronous update mode and the ConEvs dynamics, the ini-
tial control sequence can be easily retrieved by connecting the encountered stable
states for each F),, using a trajectory controlled by 1;. The contracted control se-
quence notation, is therefore, an alternative ConEvs representation of a sequence
of control, enabling a clearer visualisation of its control evolution. In the case of
Example (3.2), the contracted sequence is thus represented by the active controls

({ug} {uz}. 0).

In the rest of this manuscript, all the results are based on the synchronous
dynamics, in which all the variables are updated jointly. This choice was motivated
by the fact that, under this update mode, the practical computation time of the
reachability problem is reduced. Indeed, in the asynchronous update mode, one
needs to tackle the fact that state transition becomes a relation inducing non-
determinism, that should not be exhaustively explored to ensure the efficiency of

an algorithm.

3.2 . Control sequence discovery

32

Determining a control sequence that modifies the dynamics to evolve towards

an expected state can be stated as a reachability problem:

Let Sy, S, C Sx be two set of states, can we find a control sequence:
fe) = (11, . .., ;) such that there exists a path s* =5 ... 255 sk+1,

with: s* € S, and s**1 € S, ?

We refer to this problem as the ‘Controlled Fate in Sequence’ (CoFaSe) problem.

Consider, for example, the Boolean network from Figure 2.7. For this CoFaSe
problem, the initial states are S, = {000}, whereas the final states are S, =
{010,110}. x; is the sole controllable variable, whereas x5 and x3 are observers.
Therefore, for this CoFaSe problem, we must find a control sequence reaching any
state in which x5 = 1 and x3 = 0 from the initial state 000 by only controlling 1.

For all three possible controls (i.e., 1 not freeze, x1 freeze to 1 and z; freeze
to 0), no paths connect 000 to 010 or 000 and 110. However, the freeze of x;
to 1 leads to the state 111 (middle graph). From this state, the freeze of
to 0 (rightmost graph) finally leads to the state 010. This sequence of controls,
therefore, solves the above CoFaSe problem and the following trajectory. The
control inputs are represented by their active control sets, with elements indexed

by the freeze value, and the stable states traversed by the trajectory are in boldface.

{ui}

1 0 0
000 -2 001 100 218 191 29 011 M9 010, (3.5)

Applied to ConEvs dynamics, the CoFaSe problem implies that at least a state
appearing in S, is stable for F),, . We suggest that all states of S, should be stable
for uncontrolled F'. When this is not the case, we consider the stable states have
in their basin of attraction one of the initial states. For example, if we consider
for the Boolean network from Figure 2.7 with S, = {000} and S,, = {010,110},
to change the control, we would need to wait for Fj3(000)* to reach the stable
state 001. In this case, we simply consider that S, = {001}. In this case, the
TCS contracted control sequence ({ul}, {ul}) resolves CoFaSe under the ConEvs
dynamics with the following trajectory, in which all states are stable under the

previous control:

u1 * UO *
001 (v} 111 Y 010. (3.6)

In another example, let us consider the Boolean network from Figure 3.1 with
So = {010} and S, = {100}. In this case, the contracted OCS sequence
({u3}, {ud}, D) resolves CoFaSe under the ConEvs dynamics with the following

33

trajectory, in which all states are stable under the previous control:

{ug} * {ui} * 0*
010 — 001 —— 110 — 100. (3.7)

In biological modelling, the outcome of reprogramming can be formulated as a
condition on the biomarkers, checking whether the system has reached an expected
signature. Note that achieving a given state for controlled variables is trivial and
consists in merely assigning their expected values by setting the appropriate control
inputs. Therefore, the main problem lies in indirectly influencing the state variation
of the uncontrolled variables by applying freeze actions on controllable variables.

Minimal control sequences. We now define some properties related to the
size of sequences. We first consider the CoFaSe problem, in which the control can

be changed at any time:

* A sequence py is said to be minimal for the CoFaSe problem with respect
to Fyy, Sa, and S, if no control sequences v satisfy the CoFaSe problem,
such that [< k.

We now consider contracted control sequence under the ConEvs dynamics and
resolving the CoFaSe (Fy7, Sa, Su)-

* A contracted control sequence fi; is called minimal for the CoFaSe problem
with respect to Fyy, S, and S, if no contracted control sequence satisfying

the CoFaSe problem has a lower number of steps.

To define the following notions on contracted control sequence, we first need
to define the parsimony and minimality of a control input in a contracted sequence

transition:

*
* A control input s is called parsimonious for a contracted transition s
Ok
' NSTBLg, (') if ' € Sy, Sunst> s ASTBLp,(s)

*

* A control input s is called minimal for a contracted transition s = s A
. ¥ ..

STBLp,(s') if 1/ € Su, |1/] < |u|As— s A STBLp,(s'). A minimal

control input with respect to a given contracted transition is, by definition,

also parsimonious.

34

We now define the parsimony and control minimality of a contracted control

sequence:

* A contracted sequence p is called parsimonious if it yields a trajectory

1* k*
sl ML g2 gk HRT gkl

1

reaching a target state s**1 € S, from an

€ Sq, in which all the controls p;, with 1 < ¢ < k, are

parsimonious controls for the contracted transition s* —» s*t1.

initial state s

* A contracted sequence i) is called control minimal if it yields a trajectory

p1 ¥ M ¥
st B g2 gk BEy gkt

reaching a target state s**1 € S, from an initial
state s € S, in which all the controls Wi, with 1 <4 < k, are minimal
controls for the contracted transition st 25 si+1. If a sequence is control

minimal, it is by definition also parsimonious.

The following sequences are examples of minimal and control minimal con-

tracted control sequences:

* The TCS contracted control sequence ({ui}, {u{}) of Trajectory 3.6 is min-

imal and control minimal under the ConEvs dynamics.

* The OCS contracted control sequence ({u3}, {ul},0) of Trajectory 3.7 is
minimal and control minimal under the ConEvs dynamics. Note that no

TCS sequence solving this CoFaSe problem exists.

The following sequences are examples of minimal or control minimal contracted

control sequences, but not both:

* Let us consider the Boolean network from Figure 2.7 with S, = {000} and
S, = {010,110}. The TCS contracted control sequence ({ui},, {ul},
{ui}, {ul}) that resolves CoFaSe under the ConEvs dynamics with the fol-
lowing trajectory is a control minimal contracted control sequence but is not
minimal:

14 * * 0, * 1y * 0y *
001 b 111 % 100 M o1 2 1 M 010, (3.8)

* Let us consider the Boolean network from Figure 3.1 with S, = {010} and
S, = {100}. The OCS contracted control sequence ({u3}, {ul}, {u9, ul})
that resolves CoFaSe under the ConEvs dynamics with the following trajec-
tory is a minimal contracted control sequence but is not control minimal:

{ud} "

{ud}
010 2% 001 2224 110

*
{u3,ug}

100. (3.9)

35

Note that a minimal and control minimal sequence for a given CoFaSe problem
may not be the sequence with the minimal total number of perturbations (i.e.,
number of freeze or unfreezing of variables). Indeed, there may be a control

sequence with a minimal total number of perturbations that is not minimal in size.

3.3 . Complexity of CoFaSe

In this section, we show that the inference of a control sequence satisfying
CoFaSe is PSPACE-hard. Since the freezing to 0 and to 1 cannot be triggered
simultaneously for a single variable, the cardinality of possible controlled transi-
tions from a state is 31X . |M|. Finding a single parsimonious control without
considering a set of initial states is NP-complete [7]. Thus, the CoFaSe problem
is even less tractable than finding single controls (assuming that PSPACE # NP).
Therefore, finding the control sequence by exhaustively exploring possible control

spaces is not tractable.

To prove that CoFaSe inference is a PSPACE-hard problem, we lean on the
fact that the problem of reachability in Boolean networks working in synchronous
mode can actually be formalised as a CoFaSe problem. Indeed, reachability in a
Boolean network is precisely the CoFaSe problem for a Boolean control network
without controlled variables. Lemma 3.1 shows that this reduction is not merely
an artefact. Indeed, We can construct a network with a non-empty set of control
variables and reduce the CoFaSe problem for this network to a reachability problem
for a standard Boolean network.

Lemma 3.1. Deciding whether a control sequence exists for the CoFaSe prob-
lem in the synchronous mode is at least as hard as reachability in (uncontrolled)
Boolean networks in synchronous mode.

Proof. Take an n-variable Boolean network F' and construct a Boolean control
network F’ by adding to F the single control variable zy and defining the up-
date functions f/ of F’ in terms of the update functions f; of F' in the following
way:

fi = fihzo,1<i<n,

fo =0,

where f is the update function for .

Consider the controls yuy = d} and pp = df controlling x to 1 and 0 re-
spectively. The previous two properties ensure that the state graph of F}, is
that of F', with xyp = 1 added to each state, and that the state graph F/’L0 only

36

contains transitions to the state 0, which is the state in which all variables are
0.

Let X be the set of variables of F'. The set of variables of F” is thus X' =
X U {zo}. Fix a set of starting states S, C Sy and a set of target states
Sw € Sxr\ (SqU{0}), such that the states in both sets satisfy o = 1. The Co-
FaSe problem for the tuple (F”, Sy, S,,) has a solution if and only if the states
in S, x arereachable from S, y in F. Indeed, by construction of F’ and since
0 ¢ S,, the control sequence for this instance of CoFaSe may only be the sin-
gleton control sequence consisting of p;, and it must ensure the reachability
of S, from S, in F},;, whose state graph is trivially isomorphic to that of F.

In conclusion, an oracle for CoFaSe would allow to solve reachability in
Boolean networks working in the synchronous mode with, at most, polyno-
mial overhead, which proves the lemma statement. 0O

It is known that the complexity of the reachability in Boolean networks working
in synchronous mode is PSPACE-complete [44, 21].3 Below, we provide a sketch
of an alternative proof of this complexity based on a reduction from Deterministic
Linear Bounded Automaton (Lemma 3.2). In Lemma 3.3 we prove that the reach-
ability of Boolean networks with the synchronous mode is PSPACE. Finally, these
two lemmas result in the Theorem 3.1, which state the PSPACE-completeness of
the reachability problem for Boolean networks with the synchronous update mode.

Lemma 3.2. Given a Boolean network F with the variables X, a set of starting
states S, C Sx, and the set of target states S,, C Sx \ Sy, it is PSPACE-hard to de-
cide whether F can reach any of the states in S,, from a state in S,, in Ssynchronous
mode.

Proof. The proofidea isto polynomial-time reduce the acceptance problem of
a Deterministic Linear Bounded Automaton (a DLBA) to reachability for Boolean
networks working in synchronous mode.

An LBA is a Turing machine that is only allowed to use, at most, f(n) con-
tiguous tape cells, in which n is the size of the input and f is a linear function.
Deciding whether a DLBA accepts a given input string is a PSPACE-complete
problem (e.g., [23]).

Take a DLBA M and construct the Boolean network F' simulating M in the
following way. Define the Boolean variables A; ; and Q; 1, in which 7 indexes

3In [21], Dennunzio et al. prove that the reachability problem in reaction systems is
PSPACE-complete. Since reaction systems form a subclass of Boolean networks, the
PSPACE-hardness result is a lower complexity bound for the reachability problem in
Boolean networks.

37

the tape cells of M, j indexes the symbols in the tape alphabet of M, and k
indexes the states of M. The situation in which the i-th tape cell contains the
j-th symbol is represented by setting A; ; to 1. The situation in which M is in
the k-th state and the head is on the i-th tape cell is represented by setting
Qi to 1. F operates by stepwise simulating the evolution of M: rewriting
the ji-th symbol to the js-th symbol in the i-th tape cell is done by setting
A; ;, to0and A4; j, to 1, while moving the head from cell 4; to i2 and changing
the state from k; to &y is simulated by setting Q;, x, to 0 and Q;, x, to 1. The
synchronous dynamics of F, therefore, faithfully simulate M, because M is
deterministic.

For any input word w, the DLBA M reaches a configuration in the set of
accepting configurations Cy4 if and only F' can reach the encoding of one of
the configurations C'4 from the encoding of the initial configuration of M.
The statement of the lemma follows from the facts that the procedure of con-
structing F' from M is polynomial and that acceptance for DLBA is PSPACE-
complete. O

Lemma 3.3. Given a Boolean network F with the variables X, a set of starting
states S, C Sx, and the set of target states S, C Sx \ Sa, it is in PSPACE to
decide whether F' can reach any of the states in S,, from one of the states in S, in
synchronous mode.

Proof. The proof idea is to construct a DLBA M that accepts the input if and
only if the Boolean network F' can reach a state in S,, from a state in S,. The
initial configuration of M consists of the following three segments:

1. the list of binary vectors representing the states in S,, each vector writ-
ten in two copies;

2. thelist of binary vectors representing the states in S,,, each vector writ-
ten in one copy;

3. an | X|-bit binary counter initialised to 0, where |X| is the number of
binary variables of F.

In the remainder of the proof, we implicitly assume that the states of F
are represented as binary words. A state (z1,z9, ..., x,) is thus represented
by the word z1x5 ... xp,.

Consider a state s € S,. The initial configuration of M contains a sub-
string ss. M starts by simulating the transitions of F' on one copy of s and

38

replacing the other copy by the new state s’ = F'(s), thereby yielding the new
substring ss’. The subsequent operation of M is divided into macrosteps,
during which it carries out the following actions:

1. calculates the new state for each pair of states in Segment (1);

2. compares each new state with the states written in Segment (2); if one
of these comparisons is successful, M accepts, otherwise it continues
to the following substep;

3. checks if all the bits of the binary counter in Segment (3) are 1; if yes,
reject, otherwise, commence the next macrostep.

Intuitively, M simulates the deterministic synchronous dynamics of F' on
every state in Segment (1), accepts if it sees a target state from S, or rejects
after 21X1 steps. Counting to 21Xl = |Sx| ensures that the entire state graph
of F' reachable from S, is visited. Therefore, M accepts if and only if F' can
reach at least one state in S,, from at least one state in S,. Constructing
M from the triple (F,S,, S.) is a polynomial-time procedure, meaning that
an oracle for DLBA acceptance would allow deciding reachability for Boolean
networks working in the synchronous mode with polynomial overhead. This
point proves the statement of the lemma. 0O

Theorem 3.1 below is derived directly from Lemmas 3.2 and 3.3.

Theorem 3.1. Given a Boolean network F with the variables X, a set of starting
states S, C Sx, and the set of target states S,, C Sx \ Sy, it is PSPACE-complete
to decide whether F can reach any of the states in S, from one of the states in S,,.

Theorem 3.1 combined with Lemma 3.1, implies the complexity of CoFaSe
is at least PSPACE-hard. This point is stated in Theorem 3.2. Whether solving
CoFaSe is in PSPACE remains an open question.

Theorem 3.2. Deciding the existence of a control sequence for the CoFaSe prob-
lem in the synchronous mode is PSPACE-hard.

39

4 - State of the art in control inference

Algorithmic methods enabling the identification of control strategies of Boolean
networks in order to identify therapeutic targets have been the subject of a number
of publications in recent years. The controllability of biological systems has mostly
been done in one-step. Sequential controllability analysis, in contrast, is still in its
infancy. and has mainly been studied by Mandon et al. in [35, 37, 36, 34]. We

therefore explain their approach in detail and compare it with our works.

In this chapter, we first describe different approaches of one-step program-
ming in Section 4.1. In Section 4.2, we then describe the sequential programming
approach proposed by Mandon et al. Finally, we will conclude in Section 4.3 by
explaining the principal differences between the sequential paradigm proposed by
Mandon et al. and ours.

4.1 . One-step reprogramming

We briefly recall the existing approaches to one-step reprogramming, namely:
simulation, max-SAT ATPG,attractors and Hamming distance, stable motifs, Grob-
ner basis, and prime implicants. These approaches differ according to their opti-

misation objectives and control application.

4.1.1 . Simulation

To the best of our knowledge, one-step reprogramming for Boolean networks
was pioneered by Layek et al. in [30]. The authors present an approach for design-
ing cancer therapies by assimilating cancerous perturbations with stuck-at-fault
and bridging faults by analogy with the errors of electronic circuits. Relevant gene
regulation pathway information is first used to produce an acyclic Boolean net-
work. The resulting network has a set of input and output variables. The Boolean
network is then transformed into a digital circuit from which an enumeration and
classification of possible faults is realised.

Stuck-at-fault corresponds to the setting of a network variable to a particular
value (0 or 1). Bridging faults correspond to the removal or incorporation of new
interactions between system variables. A simulation-based method for implement-
ing and identifying stuck-at-fault failures is proposed. The authors first model,
from biological knowledge, the effect of existing n drugs. The authors then ex-

haustively simulate from a given initial state the 2" possible drug binary vectors. If

41

a particular drug is applied, it is assigned the value 1; otherwise, it is assigned the
value 0. A drugs vector is considered effective if, for single failures or combinations
of failures, its application to the system results in a healthy output state. The
method proposed in this article is therefore based on a ‘brute force’ method of the
exhaustive simulation of all possible single failures for acyclic Boolean networks.

4.1.2 . Max-SAT ATPG

In [32], Lin et al. propose an improvement on the method by Layek et al.
The authors present an efficient and extensible SAT-based ATPG! methodology
for cancer therapy and introduce the notion of optimality of therapies. The digital
circuit presented in [30], in addition to the testing conditions, is converted into a
conjunctive normal form (CNF). The conjunctive normal form is then augmented
with the desired output and solved using a weighted partial Max-SAT solver. Each
gene of the network is associated with an CNF formula. This formula is evaluated
at 1 if and only if the variables representing its inputs and outputs take on values
consistent with the gene truth table. An « failure is added to this formula as an
input variable. The simulation of the activation of the failure consists in adding a
clause o to the CNF, whereas the simulation of the non-activation of the failure
consists of adding a clause -« to the CNF. To select the drugs that guarantee
the best output from the network, weights are assigned to the clauses representing
exit variables in the conjunctive normal form so that the healthy state is associated
with the greatest weight, and the failed states the lowest with weight. In order to
prioritise treatments that minimise the number and cost of drugs, positive weights
proportional to the cost of a drug are assigned to failures corresponding to the
action of the drug.

4.1.3 . Attractors and Hamming distance

In [42, 43], Paul et al. propose an approach for finding single-step control,
enabling the Boolean network to reach one of the desired attractors from a given
initial state. The paper considers various types of control actions but focuses on
temporary simultaneous perturbations. The authors aim is to make the control
as least invasive as possible to the system as possible. This aim results in the
search for the most parsimonious control. Simultaneous temporary perturbations
were all applied for just a single time step at the same time. The perturbations

induce a change in the value of some variables, but these variables can later be

'Automatic Test Pattern Generation and Automatic Test Pattern Generator is an
electronic design automation method used to find an input that, when applied to a
digital circuit, enables to automatically distinguish between correct circuit behaviour
and faulty circuit behaviour caused by defects.

42

updated according to their original Boolean function. Thus, only the dynamics of

the Boolean network without control needs to be considered.

The problem of finding a minimal control driving the system from an initial
state to a desired attractor is PSPACE-hard. Thus, a simple global approach
performing computations on the entire network will not scale well for large networks.
Therefore, they propose a decomposition-based solution to this problem, which can
be significantly quicker than existing approaches on large networks. This approach
takes advantage of existing algorithms for computing the basin of attraction of an

attractor.

The central assumption of Paul et al. is that the computed basins of attrac-
tion are smaller than the size of the transition system. This factor reduces the
state space that needs to be considered and thus improves efficiency. A minimal
control is determined by finding the minimal Hamming distance between the initial
state and the state of a target attractor. The control can then be deduced from
the substitutions of variable values required to jump from the initial state to the
state of the target attractor. The algorithm presented in [43] performs efficiently
for networks with a low number of small strongly connected components in the
interaction graph as, in this case, the computed basins of attraction will also be

small.

4.1.4 . Stable motifs

In this article [61], Zafiudo et al. propose a network control approach that
combines the structural and functional information of a Boolean network to iden-
tify control targets. The method builds on the concept of stable motifs and their
relation to finding attractors. By connecting stable motifs with other stable motifs,
the presented algorithm identifies targets whose manipulation ensures the conver-
gence of the system to an attractor of interest form the original network dynamics.
Stable motifs are defined as interaction subgraphs composed of minimal strongly
connected components in which the states of the motif variables form a partial
fixed point that, once reached, will not be changed by the dynamics. Stable motif
control interventions are guaranteed to drive the network from all possible sets of
initial states to the target attractor state. This outcome can be explained by the
fact that controlling all cycles of a Boolean network results in a network with only
one attractor. Furthermore, the control only needs to be applied transiently for

the network to reach and stay in the desired attractors of the original network.

4.1.5 . Grobner basis

43

The authors of [39], Murrugarra et al., propose an approach that takes advan-
tage of the rich algorithmic theory of computer algebra to infer potential inter-
vention targets in synchronously updated Boolean networks. The paper considers
two types of control actions: the deletion of arcs and the deletion (or constant
expression) of nodes. The proposed methods are based on rewriting the Boolean
network, its control actions, and the desired property as a system of polynomial
equations. Three control actions are considered in the paper: the generation of
new steady states representing a desirable cell fate,; the removal of existing steady
states representing undesirable cell fates; and the blocking of regions in the state
space in which particular values of variables trigger an undesirable pathway or are
the signature of an abnormal cell. Based on these points, the authors obtain a
system of polynomial equations (or a single equation) that needs to be solved to
find the appropriate controls. The resolution of this system of equations is based
on the calculation of the Grobner basis. The controls inferred by using this ap-
proach do not guarantee the global reachability of a desired stable state because
the inferred control modified the state space by augmenting the size of a desired
stable state basin of attraction or removing undesired attractors.

4.1.6 . Prime implicants

Biane et al. propose in [9, 7, 8] an approach for inferring the minimal sets of
actions, enabling the reprogramming of Boolean networks updated synchronously
or asynchronously. The authors introduce the formalism of controlled Boolean
networks via arc freezing and variable freezing. The control formalism presented in
Section 2.3 is drawn from the work of Biane et al. who present two reprogramming

modes, possibility and necessity, in which, respectively:

+ At least a stable state of the controlled Boolean network validates the desired

property.

+ All stable states of the controlled Boolean network validate the desired prop-

erty.

Biane et al. prove that the computation of the parsimonious control strat-
egy, in which the network needs to have stable states validating a property, is a
problem of abductive inference in propositional logic. Using well-known methods
for computing the prime implicants of Boolean functions, the authors developed
algorithms computing all parsimonious control strategies.

The first algorithm recursively calculates all parsimonious control strategies.

The algorithm is based on integer linear programming and rewrites the Boolean

44

network, its control actions, and the desired property as a system of linear equa-
tions. This method also makes it possible to assign costs to reprogrammation and
thus compute control strategies minimizing this cost. This algorithm is also used
as a solver in one of the algorithms solving CoFaSe under the ConEvs dynamics
that we present later.

The second algorithm based on the binary decision diagram calculates all par-
simonious control strategies in one-step. This algorithm calculates the prime impli-
cants from the formula specifying the stability and property conditions represented
by a reduced ordered binary decision diagram. This algorithm obtains better per-

formance than the first algorithm in the case of the necessity reprogramming mode.

4.2 . Sequential reprogramming

In [35, 37, 36], Mandon et al. studied asynchronously updated Boolean net-
works and, more particularly, their interaction graph. The authors expected to find
all control sequences reaching a desired property from a set of initial states and
having a number of disturbances inferior to a defined limit. The authors considered
the total number of perturbations realised throughout the sequence. A minimal
sequence of control is considered to be a sequence with a minimal number of per-
turbations (i.e., a minimal number of controlled variables). The authors goal was
to find sequential controls with fewer perturbations to bring new reprogramming
solutions to biological networks for which one-step reprogramming strategies are
already known.

To modify the dynamics of a Boolean network, Mandon et al. perturb either
one of its functions or its current state. A function perturbation is considered to
be a permanent perturbation as it induces a permanent state change of nodes to
a desired profile of 1 or 0. Such perturbation is equivalent to node freezing. A
state perturbation is considered to be a temporary perturbation as it induces a
state change of nodes, but these nodes can later be updated according to their
original Boolean functions. A state perturbation can also be viewed as a jump in
the dynamics of the studied Boolean network.

Given a set of initial states and a set of target states, Mandon et al. classify

successful reprogramming strategies according to different ‘degrees of success':

* If the target is reachable in principle with the control strategy but might

never be reached then the strategy is called existential.

* If the target is always reached, then the strategy is called inevitable.

45

Paper [35] shows that the strongly connected components of the interaction
graph considerably influence the dynamics of the Boolean network. The authors
found that strongly connected components that contain loops are more important.
Paper [34] presents an algorithm that perturbs the strongly connected components
in a given order, using sequentiality to reduce the size of the perturbations. How-
ever, the proposed algorithm does not always return minimal solutions and works
only on networks with small strongly connected components.

Papers [36, 37] propose a second algorithm that relies on a transition graph with
k superposed layers corresponding to the number of k possible perturbations given
by the user. This second algorithm, which enables the network to be perturbed
in any state, returns a complete list of solutions for temporary and permanent
perturbations but only works on small networks due to its slowness.

In the framework of the papers [35], sequential reprogramming enables the net-
work to be perturbed in any state. The authors claim this process requires complete
observability of the system, which is very difficult to obtain experimentally in vivo
and in vitro. To make the sequential reprogramming practical, the authors designed
a sequential reprogramming strategy that uses attractors [42, 43] as intermediate
steps. This control update dynamics resembles our ConEvs dynamics but, unlike
ConEvs, enable a change of control on cyclic attractors. The authors propose a
third algorithm [36, 37] using this new update control dynamics and inspired by
their second algorithm, enabling only temporary perturbations. This algorithm is
quicker than the other proposed methods in some cases and returns shorter pertur-
bation sequences. However, the resulting sequences are fewer and generally have

a larger number of perturbations than those yielded by the second algorithm.

4.3 . Conclusion

The algorithmic methods developed in the literature to calculate control strate-
gies for Boolean networks differ in the objectives of the reprogramming, the mod-
elled perturbation, the dynamics and topology of the studied networks, and the
minimality of the solutions. For example, the one-step controllability methods
based on simulation in [30, 32] and attractors and Hamming distance in [42, 43]
seek to infer controls that drive the system from a stable state to an attractor
validating a desired property. In contrast, the one-step controlabillity methods
based on stable motifs [61], the Grobner basis in [39], and the prime implicants in
[9, 7, 8] seek to infer controls that drive the system from all stable states to a set
of attractors validating a desired property. In the literature, the main approaches

have some similarities but also some differences in term of goal and framework.

46

For example, determining a control driving the system from an initial state to a
desired attractor and determining a control resulting in a network with a given set
of property on its fixed point attractors are two problems with differing complexi-

ties. The first is PSPACE-hard, whereas the second is NP-hard. Such differences
mean that comparing these approaches can be a difficult exercise.

The sequential reprogramming framework we propose in this thesis differs from
that introduced in [35, 37, 36, 34]. We seek to infer a minimal contracted control
sequence in size. In contrast, Mandon et al. 's main objective was to minimise
the total number of perturbations, particularly regarding known one-step controls.
These fundamental differences in the objectives of the reprogramming and the
definition of minimality form real variations in the way sequential control is defined
and treated. Concretely, in all examples in which the algorithms by Mandon et al.
found a sequential control smaller than an existing one-step control, our algorithms
would return only a one-step control.

Another difference concerns the nature of perturbations: the third algorithm of
Mandon et al. presented in [36, 37] only addresses with temporary perturbations.
In this case, the dynamics graph of the controlled Boolean network does not change
with the control. This outcome differs from our paradigm of Boolean controlled
network, in which each control can result in a different dynamics graph. Thus, de-
spite similarities such as the importance of strongly connected components, which

we explore later, our method deals with a slightly different problem.

47

5 - Dynamical sequence analysis

Finding a minimal control sequence by exhaustively exploring all possible con-
trol sequences is not tractable. Indeed, since controllable variables can alternate
between being controlled to 1, 0 or uncontrolled indefinitely, the number of possi-
ble control sequences is infinite. Therefore, we need to design a method capable
of inferring an appropriate control sequence without performing an exhaustive ex-
ploration of all the sequences.

In the trajectory of a minimal sequence i, the set of intermediary states st
1 < i < k can be viewed as intermediary properties that must be reached before
reaching a target state. By seeking for factors that limit the set of possible inter-

mediary states, we should significantly reduce the search space in practice.

In order to find such factors, we study the dynamical properties of the Co-
FaSe problem generated by the opposition between C'x-variables and C'x-variables.
Proposition 3.1 states that when not in ConEvs dynamics, the dynamics of control-
lable variables can be ignored as they can be reproduced by a TCS sequence. This
statement offers insights into the critical role of the uncontrolled variables in the
resolution of the CoFaSe problem. As the variables in C'x are fully controlled by
the TCS sequence, their natural evolution is essentially discarded. Thus, visiting an
already encountered Cx-profile with a different Cx-profile is irrelevant for solving
a CoFaSe problem. Therefore, the dynamical properties that imply the necessity
of a sequence of control should emerge from the update functions of C'x-variables.

The same observation is true for solving CoFaSe under the ConEvs dynamics.

In this chapter, we explore the dynamical properties of the CoFaSe problem
emanating from the existence of a set of C'x-variables. In the first section, we study
the partitioning of the C'x-variables and their properties. In the second section,
we define a bound on the size of sequence in the CoFaSe problem. In the final

section, we present bounds for the ConEvs dynamics.

5.1 . Partitioning of the Cx-variables

This technical section defines the notions employed to solve the proofs of the

upper bounds on sequence length (Sections 5.2 and 5.3).

5.1.1 . Partitioned dynamics.

49

We focused on the partitioning of the states of the Boolean networks with
respect to their C'x-profiles. Starting from a model of dynamics, we defined the
quotient graph called partitioned dynamics, representing the transitions over the

partition. The following equivalence relation is used for its definition:
\V/S,SIGSXZSNS/@SCX:S,CVX. (5.1)

All the states with the same C'x-profile belong to the same partition. Formally,
the partitioned dynamics of the Boolean network Fy; is, thus, a labelled transition
system (Sg, , U,—»). [s] denotes the equivalence class of the state s according to

the equivalence relation (5.1). The transition is defined as follows:
[3}»[3’]ﬂs s'eSx,3pe Sy st s (5.2)

The resulting partitioned dynamics models the intrinsic dynamical interactions be-
tween the signature variations of the biomarkers and provides an overview of the

possible sequence-controlled evolution of the network.

Figure 5.1 displays the partitioned synchronous dynamics of the example Boolean

networks from Figure 2.7 and Figure 3.1.

Qe
G

jo=0)

Partitioned Partitioned
dynamics of dynamics of
F{U%W?} F{u27“27usvu3}

Legend: On the left is the synchronous partitioned dynamics of the
Boolean network Fy,1 0y of Figure 2.7 where Cx = {x2,23} and on the
right is the synchronous partitioned dynamics of the Boolean control net-
Work Fr,1 .9 41 49y Of Figure 3.1where Cx = {z1}. Equivalence classes are
represented by polygons containing the Cx-profile of the states belong-
ing to them.

Figure 5.1 Synchronous partitioned dynamics of two controlled
Boolean networks.

50

5.1.2 . Properties of equivalence classes.

In this subsection, we define the properties of equivalence classes and the

properties of states belonging to equivalence classes.

Target equivalence class. Take sasastate; if 3 € Sy, 38’ € Sx 15 &5
then [¢'] is defined as a target equivalence class of s. Propositions 5.1 and 5.2
provide observational properties of target equivalence classes and their states in

synchronous evolution.

Proposition 5.1. /n the synchronous mode, regardless of the control, each tran-
sition from a state leads to states belonging to a unique target equivalence class.

Proof. Assume an initial state s with s' and s? two states derived from the
one step synchronous evolution of, respectively, F,,, and F,,. Assume also
that the following is true:

. M1 1 12 2 1 2
dp, s €Sy is—s ANs—s /\SCX;«ES(:,X

By definition C'x-variables are not controllable. In synchronous mode,
the dynamics is determined by anterior states (i.e., applying different controls
cannot change the values of the C'y-variables, because one step is not enough
to propagate the updates). Thus, the states s' and s? cannot have different
equivalence classes by means of controls. This point contradicts the above
equation and substantiates the statement of this proposition. O

Proposition 5.2. In the synchronous mode, a state can reach any state of its
target equivalence class in a single step under an appropriate control.

Proof. The proposition follows from the fact that, in the synchronous mode,
all Cx-profiles are reachable by a total control in a single step O

Impermanent and enduring states. For a better understanding of the
evolution of states with respect to equivalence classes, we distinguish impermanent
states which cannot be stabilised whatever the applied control, from enduring
states that can be stabilised by an appropriate control. This point is formally

expressed as follows:

Vi € Sy :=STBLF,(s) impermanent state, (5.3)
du € Sy :STBLFN(s) enduring state. (5.4)

51

Any state s must either be impermanent or enduring: the definitions in Equa-
tions (5.3) and (5.4) are logical opposites. We can further derive Cy-related

properties from these definitions.

* If s is impermanent, s cannot be a stable state for any control. Therefore,
we can deduce the following equation V. : F),(s) # s. We know that this
point true even for the total control u”', which fixes the C'x-variables to
their values in s (i.e., (Fj,(s))cy = Scy). According to Proposition 5.1, no
matter the control, (F),(s))g, will always have the same profile. Thus, s

must be a state in which the C'x-variables must evolve at the next dynamics
step, Vi (Fu(s))ey 7 Scy-

* If s is enduring, then there must exist a control y where F),(s) = s. Accord-
ing to Proposition 5.1, no matter the control, (F),(s))s, will always have

the same profile. Therefore, Vi : (F.(s))e, = Soy -

Therefore, an arc between two equivalence classes [s] and [s] in the partitioned
dynamics implies the existence of a state in [s] whose target equivalence class is
[¢']. If [s] = [$], s must be an impermanent state. In the case where [s] # [¢],

s must be an enduring state. These dynamical properties are formally defined as

follows:
s is impermanent if: Vu € Sy:st s = S6y 7 S/C—,X,
s is enduring it Ve Sy st s — Sy = S’CX.

Figure 5.2 shows the partitioned dynamics of the Boolean networks from Fig-
ures 2.7 and 3.1, together with the impermanent and enduring states, as well as

their target equivalence classes.

5.2 . Bounds on sequence size

Proposition 5.2 and the definition of an impermanent state provide insights
into the resolution of the CoFaSe problem. The dynamical properties related to
equivalence classes enable us to define an upper bound on the length of minimal
control sequences. A minimal sequence solving the problem should jump from an
impermanent state to another until it reaches the equivalence class of a target
state. A trajectory induced by a minimal control sequence should not pass through
intermediary enduring states. Such an action would be redundant as all states of

an impermanent target equivalence class of a state s are always reachable with a

52

J/[oo1]Y,,/[100], o o
\\ 01 //‘&\ 000 // . N // \\
-1 Yoo - sLmo | 1 [000] 010 '\
R A ,-F A r[100][101 |"®=[011 || 001]”
o |2y /[110 | \)/ \ ,/
NEZ ?‘\ ot |, T T
Enduring and Enduring and
impermanent states impermanent states
of F{u%,u?} of F{u%,ug,ué,ug}

Legend: On the left are the enduring and impermanent states of the
Boolean network F{u},ug} of Figure 2.7 where Cx = {z2, 23} and on the
right are the enduring and impermanent states of the Boolean control
network Fy,1 0 .19 of Figure 3.1 where Cx = {x1}. The enduring states
of each equivalence class of the partitioned dynamics are coloured in grey
and the impermanent states, in white, are connected to their target equiv-
alence classes represented by a dotted circle.

Figure 5.2: Synchronous enduring and impermanent states and the
partitioned dynamics of two Boolean networks.

control from s.

Theorem 5.1 defines an upper bound on the size of minimal sequences that only
depends on the number of equivalence classes and, thus, of uncontrolled variables.
This theorem reveals the critical role of uncontrolled variables in determining the
control sequence. Indeed, the upper bound given by Theorem 5.1 (2|6X|) depends

on the number of Cx-variables.

Theorem 5.1. The size of the minimal control sequence i solving a given CoFaSe
problem is bounded by 21 for the synchronous mode: || < 21°x1.

Proof. Assume that py,, with k& > 21Cx1 is a minimal sequence solving the
CoFaSe problem (F},, S, S,,). The control sequence yy, yields the following
sequence of states: s 2% s2. . sk 25 gk with 1 € S, and s511 € S,
From Proposition (5.2), we know that all states of a target equivalence class
are reachable in one step under the appropriate control. Since only the up-
date of impermanent states evolves the uncontrolled variables, it is only pos-
sible to reach the next desired impermanent state or property from another
impermanent state.Then, the main steps for solving CoFaSe consist in find-
ing the minimal path, from a state of S, to a state of S,,, by traversing solely

impermanent through impermanent states of different equivalence classes.

53

Therefore, a minimal control sequence does not pass through two states with
identical equivalence class. Since py) is minimal, the states from s% to s* are
impermanent states and the equivalence classes from [s?] to [s*] are differ-
ent target equivalence classes of their former state. The sequence then spans
k — 1 > 2I°x| different equivalence classes. Since only 2/°x| C'x-profiles ex-
ist, for 2 < i < j < k + 1, the sequence must have a state s’ with the same
Cx-profile as s/. Note that 2 < i because the first state s' may not be an
impermanent state. Thus, from the state s'~! having for target equivalence
class [s?] = [s7], it is possible to reach s/ and to yield the following sequence

; M i j . Lo
st B gitl Dl o By gkt Hence, the sequence fiyg is not minimal,
thus contradicting the original assumption and proving the statement of the
theorem. O

For example, consider the Boolean network from Figure 2.7 with S, = {000}
and S,, = {010,110}. By following the minimal path between the equivalence
classes [000] and [110] or [010] in the right graph of Figure 5.2, we obtain the two

following minimal sequences solving the CoFaSe problem:

{d1} 101 {df} 1 {di}

000
o i}

0 0

{d?} 011 {do}

110.

00 101 010.

Consider now the Boolean network from Figure 3.1 with S, = {010} and
S = {100}. By following the minimal path between the equivalence classes [010]
and [100] in the left graph of Figure 5.2, we obtain the following minimal sequence
solving the CoFaSe problem:

d2,d3 d2,d3
010 tdrdi} 011 Lo.do} 100.

5.3 . Bounds on sequence size for ConEvs dynamics

Determining low upper bounds on the size of control sequences would indicates
that algorithms based on a direct exploration of the sequence space can be an
efficient solution for sequence inference. Theorem 5.1 establishes such an upper
bound, but it is proved for the particular context under which the control can be
changed at any state. This bound is not therefore directly applicable to ConEvs,
where control changes are only allowed at stable states.

The following theorems establish the upper bounds for this semantics. The-

orem 5.2 provides an upper bound of 21Cx| under the TCS control application

54

strategies and Theorem 5.3 provides an upper bound of 21Cx|+1 _ 1 ynder the
OCS control application strategies. Thus, the exhaustive exploration of all possi-
ble profiles for the C'x-variables should constitute an efficient approach for control
sequence computation in comparison with an exhaustive exploration of possible
control sequences. For the two theorems, we always consider that every initial

state is enduring.

Theorem 5.2. The size of the minimal contracted total control sequence p €
TCS solving the CoFaSe problem (F, S, S,,) for the ConEvs model of dynamics
under the synchronous mode is at most 2/°xI:

g | < 2191,

Proof. Consider the CoFaSe problem (Fys, Sq, S,,) and assume that y,) € TCS
is a minimal contracted total control sequence solving it for the ConEvs model
of dynamics. This control sequence leads to the trajectory 7' = s' LIN N
sk*1, with s' € S,, s**1 € S, and the states s/, 1 < i < k+ 1, being the stable
states at which the control is changed. We use the symbol 7 to refer to the
sequence of stable states, plus the initial and the final states: 7 = (si)lgigkﬂ.

Now assume that k& > 2/CxI. Since k is greater than the number of all
states over Cy, it must be that 7 contains two states with the same target
equivalence class. Assume these two states are at positions 1 <i < j < k—+1
(i.e., for [s!] = [s7]).

According to Proposmon 5.1, controlling s* with y; reaches the state s7tLin
one step. Indeed, s’ and s’ are enduring states; for s’ Y ¢ and s7 2 7, we

have s, = SC* . Furthermore, since [s’] = [s7], s’ is equal to s”, this leads to
X
. ;oM R * R
the trajectory T/ = s* 25" 2 ... s X7 g+l gk M5 gkt contradicting

our initial assumption that y; is minimal.

Therefore, any control sequence solving the CoFaSe problem for the ConEvs
model of dynamics with more than 2Cx| elements is not minimal, which proves
the statement of the theorem