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Abstract

In many scientific fields, studied data have an underlying graph or manifold
structure such as communication networks (whether social or technical), knowl-
edge graphs or molecules. A graph is composed of nodes, also called vertices,
connected together by edges. Recently, deep learning algorithms have become
state-of-the-art models in many fields and in particular in natural language
processing and image analysis. It led the way to a great line of studies to
generalize deep learning models to graphs. In particular, several formulations of
convolutional neural networks were proposed and research is carried to develop
new layers and network architectures to graphs. Those models aim at solving
different tasks such as node classification, link prediction or graph classification.
In this work, we study node, subgraph or graph embeddings produced by graph
neural networks. These embeddings at different scales encode hierarchical rep-
resentations of graphs. Based on these embedding techniques, we propose new
deep learning architectures to tackle node classification or graph classification
tasks.
First, we introduce Permutation Invariant Neural Network (PINN), a neural
network model invariant by node permutation, designed for graph classification.
We also present a handcrafted graph embedding from spectral analysis.
Second, we introduce StructAgg, a structural aggregation model that aims at
improving the accuracy on graph classification tasks by bringing more informa-
tion to the final graph embedding. Moreover, by identifying structural roles for
nodes in graphs, this model brings interpretability to the field of graph neural
networks.
Third, we propose a pooling layer based on edge cuts. Coarsening in graphs is
used to obtain several versions of a graph at different scales and to groupe nodes
that are topologically close into clusters. The novelty of this approach resides in
the fact that we focus on edges and not nodes to design the pooling layer.
Finally, we work on a clustering algorithm to uncover hierarchical communi-
ties. By modifying the modularity, we are able to design a procedure to find
communities at different scales in graphs.

1



2



List of publications

Hierarchical clustering with node pair sampling.
Bonald, T., Charpentier, B., Galland, A., and Hollocou, A. (2018).
KDD Workshop.
Reference [Bonald et al., 2018a]

Invariant embedding for graph classification.
Galland, A. and Lelarge, M. (2018).
ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Repre-
sentations.
Reference [Galland and Lelarge, 2019]

Graph structural aggregation for explainable learning.
Galland, A. and Lelarge, M. (2020).
Under review at ICLR 2021.

Graph neural network pooling by edge cut.
Galland, A. and Lelarge, M. (2020).
Under review at ICLR 2021.

3



4



Acknowledgement

First, I would like to express my gratitude to my advisor Marc Lelarge for his
support all along these three years. I would like to thank you for accepting me
as your student, for your useful insights and for your great contribution to this
work.
I am extremely gratful to my collegues and friends at the french Department of
Defense. It was great working together during this period. I would particularly
like to thank Alexandre and Pierre who were my internship advisors and who
helped a lot to make this PhD happen. I would also like to thank Adrien and
Joseph who were of great advises and who supported me during these three
years. I would also thank Matthieu and Edouard for their moral support during
these three years.
I would like to thank my committee members, professor Nicolas Vayatis, professor
Pierre Borgnat, professor Oana Balalau, professor Nicolas Tremblay and professor
konstantin Avrachenkov for serving as my committee members and taking some
time in their busy schedules and during this troubled time because of the COVID-
19.
I would like to thank all my friends for supporting and encouraging me during the
last three years. You were of great help for clearing my head during week-ends,
holidays and diners.
I would like to thank Nicole and Leo for their support and Carlos for his great
help and for taking some valuable time to read and correct all of my work.
Last but not least, I would thank my father and my mother, Anne, Abel and
Alma my brother and sisters and Jules for their encouragements and support. I
would finally like to thank Chloe for her love and her help all along these three
years. You have always succeeded in motivating me and chearing me up. This
experience would not have been possible without you.

5



6



Contents

1 Introduction 11
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.2 Embedding graphs at different scales . . . . . . . . . . . . 12

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Datasets description . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Node classification . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Graph classification . . . . . . . . . . . . . . . . . . . . . 16

2 Background and related work 19
2.1 Graph Signal Processing . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Spectrum Analysis . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Graph Fourier Transform . . . . . . . . . . . . . . . . . . 21
2.1.3 Signal Filtering . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.4 Graph Coarsening . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Convolutional Graph Neural Networks . . . . . . . . . . . . . . . 26
2.2.1 Spectral Graph Convolutions . . . . . . . . . . . . . . . . 26
2.2.2 Spatial Graph Convolutions . . . . . . . . . . . . . . . . . 27

2.3 Node Embedding and Kernel Methods . . . . . . . . . . . . . . . 28
2.3.1 Embedding Nodes by Topological Proximities . . . . . . . 28
2.3.2 Kernel methods . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Graph Invariant Embedding 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Notations and Problem Formulation . . . . . . . . . . . . . . . . 32
3.3 Handcrafted embedding . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Spatial Embedding . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Commute Times . . . . . . . . . . . . . . . . . . . . . . . 36

7



8 Contents

3.3.4 From Node Embeddings to Graph Embedding . . . . . . 37
3.3.5 Final Graph Embedding . . . . . . . . . . . . . . . . . . . 39

3.4 Permutation Invariance Neural Network (PINN) . . . . . . . . . 40
3.4.1 Invariance properties . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.1 Graph Classification . . . . . . . . . . . . . . . . . . . . . 45
3.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Node Structural Aggregation 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Wavelets for structural node embedding . . . . . . . . . . . . . . 52

4.3.1 Wavelets in Graphs for Node Structural Embedding . . . 53
4.3.2 Node Structural Embedding . . . . . . . . . . . . . . . . . 53

4.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.1 Structural Embedding . . . . . . . . . . . . . . . . . . . . 55
4.4.2 Structural Aggregation . . . . . . . . . . . . . . . . . . . . 57

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.1 Graph Classification . . . . . . . . . . . . . . . . . . . . . 59
4.5.2 Structural Role . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.3 Pattern Identification . . . . . . . . . . . . . . . . . . . . 61

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Graph Pooling by Edge Cut 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Pooling layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Top k Pooling [Gao and Ji, 2019] . . . . . . . . . . . . . . 70
5.3.2 Cluster Assignment [Ying et al., 2018] . . . . . . . . . . . 71
5.3.3 Edge based pooling [Diehl, 2019] . . . . . . . . . . . . . . 72
5.3.4 Attention Mechanisms [Veličković et al., 2017] . . . . . . . 73

5.4 Pooling architecture . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.1 GNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 Min cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.3 U-Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5.1 Graph Classification . . . . . . . . . . . . . . . . . . . . . 80
5.5.2 Node Classification . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Contents 9

6 Hierarchical graph clustering by node pair sampling 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Agglomerative clustering and nearest-neighbor chain . . . . . . . 87

6.3.1 Agglomerative algorithms . . . . . . . . . . . . . . . . . . 87
6.3.2 Classical distances . . . . . . . . . . . . . . . . . . . . . . 89
6.3.3 Ward’s method . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.4 The Lance-Williams family . . . . . . . . . . . . . . . . . 90

6.4 Node pair sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6 Link with modularity . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Conclusion 107
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



10 Contents



Chapter 1

Introduction

1.1 Motivations

1.1.1 Graphs

A graph is a mathematical structure used to model pairwise relations between
objects. It is composed of a set of entities, called nodes (or vertices) and a
set of connections between pairs of nodes, called edges. We can distinguish
different types of graphs. Graphs can be undirected, which means that edges
link two vertices symmetrically, or directed, in which edges link two vertices
asymmetrically. More formally, a graph G is an ordered pair (V,E) where V is
the set of vertices and E ⊆ V ×V is the set of edges. Additional information can
be attached to graph’s entities. We can have attributes on edges or attributes
on nodes. In all this work, we will consider all graphs to be undirected and most
graphs to be attributed graphs with attributes on nodes. We can see an example
of a graph in figure 1.1.
The structure of graph is very powerful to model a great variety of data. For
example, it is natural to model social networks by graphs where nodes are users
that are linked by edges that represent a type of relationship that characterizes
the network [Ugander et al., 2011]. But graphs can be used to model many
different types of data. We can find graphs in molecules, where nodes are atoms
that are linked together by a chemical bond. In chemical graphs, we often have
attributes available on nodes that reprensent the type of atom or on edges to
encode the type of chemical bond [Stark et al., 2010]. More generally, it is
possible to represent any set of objects that lie in a metric space by a k-nearest
neighbor graph [Connor and Kumar, 2010].
This multitude of cases in which graphs have a great importance makes it a field
of growing interest. In the 18th century, graph analysis focused on understanding

11



12 Chapter 1. Introduction

Figure 1.1: Example of a graph, Zachary’s karate club dataset [Zachary, 1977].
It is a social network of a karate club. The network captures 34 members of a
karate club, documenting links between pairs of members who interacted outside
the club.

and analyzing the graph structure by solving combinatorial and algorithmical
problems. Recently, with the progresses in deep learning on images, time series
or textual data, there has been a lot of research on how to generalize those
approaches to graph structured data. Those methods allow one to learn embed-
dings on graphs for different tasks (graph classification, node classification, link
prediction ...) and to develop algorithms tailored for these objectives.

In the two following sections, we will introduce the main challenges that are
tackled in graph analysis and different ways to answer them.

1.1.2 Embedding graphs at different scales

One of the main objectives adressed by deep learning (DL) is to perform repre-
sentation learning [LeCun et al., 1995, 2015, Goodfellow et al., 2016]. The goal is
to find a mapping from studied objects into a vector space of fixed dimensionality
Rd. Some fields of study focus on finding other spaces in which we can embed
objects in order to have a better discriminative power and other distances more
suited for the data. In this work, we will only study embeddings of data in
Rd, d being most of the time fixed as a hyperparameter. In DL algorithms, the
mapping is optimized for the task. For example in the case of word2vec [Mikolov
et al., 2013a], embeddings of words are initialized at random and optimized so
that the distance between the embeddings of two random words that are often
seen in the same sentence is smaller than the distance of the embeddings of two
words that do not appear in the same neighborhood. In the case of graphs there
are several different objectives that are listed bellow:
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Embedding nodes. By analogy with images, we are interested in finding a
representation for nodes just like we are interested in finding a pixel representation
in the case of images. An image can be considered as a special case of a graph
that has a grid like structure and in which nodes are pixels connected together
if they are close enough to each others. In this case, this can be used to perform
image segmentation by classifying pixels in different categories. Node embedding
has given rise to many applications. It can be used for link prediction [Zhang
and Chen, 2018, Al Hasan et al., 2006], the links predicted are the pairs of
nodes that aren’t connected and that have the lowest distance (the distance
being the distance defined by our objective to compute node embeddings). For
node classification, node embeddings are learned in a semi-supervised or an
unsupervised fashion to perform graph segmentation [Kipf and Welling, 2016,
Veličković et al., 2017, Bhagat et al., 2011]. Node embedding can also be used
to perform segmentation in clouds of points [Qi et al., 2017].

Embedding graphs. Node embeddings can also be used at a different scale
to analyse networks at the graph level. This allows to tackle other tasks such
as graph classification or regression on graphs [Gao and Ji, 2019, Ying et al.,
2018, Xu et al., 2018]. For example, graph classification can allow one to
classify molecules according to their topology and identify molecules with similar
properties. Another use case can be to regress a molecular property such as
the constrained solubility between different graphs representing molecules by
embeddings graphs in a vector [Irwin et al., 2012, Dwivedi et al., 2020].

Challenges. In this emerging field of graph embedding with neural networks
the main challenges in the past few years were the transposition of neural
network models defined on images or textual data to graphs. One of the most
effective models on grid-like structured data that was generalized to graphs is
convolutional neural networks (CNNs). The translation invariance, the locality
of filters and the hierarchical feature representation make them a very powerful
tool to analyse images. However, there are several aspects that do not generalize
from images to graphs:

• Nodes are not ordered in graphs compared to pixels in images. This
leads the way to several issues. The algorithm must be independant of the
ordering of nodes which is not the case for most objects defined on graphs
(such as the adjacency matrix). The mapping from a single graph must be
unique and musn’t depend on the order in which we read the nodes.

• Graphs have irregular neighborhoods. In images, filters are defined
at a certain scale and at this scale the number of neighbors of each pixel
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is fixed. It is thus easy to apply the same weight to all pixels. In graphs,
nodes can have different degrees, it is thus necessary to define a convolution
operator that enables a weight sharing strategy between nodes.

• Include features available on graphs. In most cases we have features
available on nodes and/or edges in addition to the topological structure
of the graph. Works on graph signal processing make it possible to apply
filters and to process this type of data along the topological structure
of the graph. Including all the information into the algorithm is a great
challenge and may improve its performance by a lot.

Finally, a challenge that applies to graphs and that can be solved by many
different methods including graph embedding is the problem of time evolving
graphs. Time evolving graphs can be encountered in evolving social communities
or in traffic networks in which weights or edges vary in time. One goal can
be to predict edges at a time T knowing the set of nodes and edges at times
t = 1, .., T − 1. This problem can be tackled by feature based matrix completion
[Richard et al., 2010] or by learning node states based on previous observations
[Yu et al., 2019]. The problem can also be to perform anomaly detection with
observations of evolving graphs [Akoglu et al., 2015, Henderson et al., 2012]. In
this work, we do not work on time dependent graphs. However, we tackled the
problem of finding structural roles in graphs which can be used for anomaly
detection as Rolx [Henderson et al., 2012]. Moreover, we worked on edge scoring
to perform pooling in graphs. This can be generalized to learn node feature with
a time dependancy to predict links in time evolving graphs. In future work, we
plan to generalize those methods to time evolving graphs for anomaly detection
or link prediction.

1.2 Contributions

Many algorithms were proposed to tackle the problems defined above. Even so,
there remain many aspects in graph neural networks that need answers and we
need novel methods to improve the field and existing algorithms. In this work
we study different aspects of graph neural networks to tackle graph classification
and node classification tasks.

• First, we study a way to tackle the isomorphism problem in graphs. In
order to aleviate the problem of node ordering, we develop an embedding
invariant by node permutation. We try two ways to develop such an
algorithm.
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– We first develop a handcrafted graph representation with classical
spectral graph embeddings.

– The second one is a neural network designed to be invariant by node
permutation.

• Second, we focus on an aggregation process that is a mapping from node
embeddings to a graph representation to perform graph classification. The
aggregation process brings interpretability to a class of models that are
difficult to interpret.

• Third, we study a pooling layer. As in the case of images in which the
pooling step aims at identifying hierarchical structures, we develop a
pooling layer based on edge cuts in graphs. The pooling layer allows us
to find similarities between nodes at different scales and to improve the
classification accuracies of both graph classification and node classification
tasks.

• Finally, we study a hierarchical clustering algorithm based on the opti-
mization of a measure derived from the modularity.

1.3 Notations

Unless mentioned otherwise, we consider that we are given an undirected graph
G = (V,E), where V is the set of nodes and E the set of edges. The size of the
graph is denoted by n = |V | and m = |E| denotes the number of edges. In most
cases we use information available on nodes and represented as a feature matrix
X ∈ Rn×f where f is the dimensionality of each node feature vector. We use A
to denote the adjacency matrix.

Aij =

wij if (i, j) ∈ E

0 otherwise

We denote by di the degree of node i

di =
n∑
j=1

Aij

We use D = diag(d1, ..., dn) to denote the degree diagonal matrix.
In all this work we use i and j to denote the ith and jth nodes of the graph.
We denote by N (i) the neighborhood of node i. N (i) = {j ∈ V |(i, j) ∈ E}.
Moreover, we define the k-hop neighborhood of node i by Nk(i).

Nk(i) = {j ∈ V |d(i, j) ≤ k}

where d(i, j) is the shortest-path distance between nodes i and j.
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1.4 Datasets description

To evalutate the efficiency of our algorithms, we use a series of benchmark
datasets for node classification or graph classification.

1.4.1 Node classification

For node classification we use three datasets: cora, citeseer and pubmed [Getoor,
2005].

Cora. The Cora dataset contains 2708 scientific publications classified into
one of seven classes. The citations network consists of 5429 links. Each publi-
cation in the dataset is described by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from the dictionary. The dictionary
consists of 1433 unique words.

CiteSeer. The CiteSeer dataset contains 3227 machine learning documents
with 3703 authors references to 165 author entities. For this dataset, the only
attribute information available is the author name. The full last name is always
given, and in some cases the author’s full first name and middle name are given
and in other times only the initials are given.

PubMed Diabetes. The Pubmed dataset consists of 19717 scientific publica-
tions from PubMed database pertraining to diabetes classified into one of three
classes. The citations network consists of 44338 links. Each publication in the
dataset is described by a TF/IDF weighted word vector from a dictionary which
consists of 500 unique words.

Dataset Nodes Features Classes Training Validation Testing Degree

Cora 2708 1433 7 140 500 1000 4

Citeseer 3327 3703 6 120 500 1000 5

Pubmed 19717 500 3 60 500 1000 6

Table 1.1: Node classification datasets.

1.4.2 Graph classification

For graph classification, we use two kinds of datasets.

Bioinformatics datasets [Yanardag and Vishwanathan, 2015]. The 7
bioinformatics datasets are: Mutag, PRC, Proteins, NCI1, NCI109, D&D. All
datasets contain two classes of molecules, for example, in NCI1, molecules are
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either active or inactive against a cerain type of cancer. The aim is to classify
the molecules according to their anti-cancer activity.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 D&D

Average
#Nodes per

Graph 18 14 39 30 30 284

#Graphs 188 344 1113 4110 4127 1178

#Classes 2 2 2 2 2 2

Table 1.2: Bioinformatics datasets. # Nodes per Graph is the average number
of nodes per graph in each dataset.

OGB datasets [Hu et al., 2020]. OGB stands for Open Graph Benchmark.
It is a recent database of datasets proposed by Hu et al. [2020] to address
several prediction tasks in graphs. It is composed of large-scale and diverse
benchmark datasets. It addresses tasks of node classification, link prediction and
graph classification. For all these tasks several datasets of different scales are
available. We use a dataset of graph classification to expand our experiments in
the later parts of the thesis. Indeed the bioinformatics datasets are composed of
a small number of graphs and using datasets with several thousands of graphs
makes the classification accuracy more reliable. The ogbg-molhiv dataset is
a molecular property prediction dataset. It is adopted from the MoleculeNet,
and are among the largest of the MoleculeNet dataset. Each graph represents
a molecule, where nodes are atoms, and edges are chemical bonds. Input node
features are 9-dimensional, containing atomic number and chirality, as well as
other additional atom features such as formal charge and whether the atom is in
the ring or not.

Name #Graphs

Average
#Node per

Graph

Average
#Edges per

Graph #Tasks Task Metric

ogbg-molhiv 41127 25.5 27.5 1
Binary

classification ROC-AUC

Table 1.3: OGB dataset for graph classification.
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Chapter 2

Background and related
work

2.1 Graph Signal Processing

We find examples of graph signals in many different fields. In chemistry when
studying graphs represented by molecules the graph signal may be the type
of atom that represents each node. In transportation networks, one may be
interested in studying the variation of temperature between different cities.
Graph signal processing is an emerging field that aims at bridging the gap
between signal processing techniques like wavelet analysis [Hammond et al., 2011,
Mallat, 2008] and graph theory such as spectral graph analysis [Von Luxburg
et al., 2008, Von Luxburg, 2007]. It is at the basis of spectral convolutions
presented in section 2.2.1 and of other concepts of section 4.3.2.

2.1.1 Spectrum Analysis

We consider in this section a weighted and undirected graph G = (V,E,X) where
V is the set of nodes, E the set of edges and X is a matrix of node features. Let
n = |V | be the number of nodes of G. Let A be the weighted adjacency matrix
of G:

Aij =

wij if (i, j) ∈ E

0 otherwise

Let D be the degree diagonal matrix of G, Dii =
∑
j Aij . From the degree

diagonal matrix and the adjacency matrix we define the Laplacian L:

L = D −A

19
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The Laplacian is the basis of numerous algorithms such as the spectral clustering
which is an unsupervised clustering algorithm. The Laplacian is a difference
operator, as, for any signal X ∈ Rn it satisfies:

(LX)i =
∑

j∈N (i)
Aij [Xi −Xj ]

Where the neighborhood N (i) is the set of vertices connected to vertex i by an
edge as defined previously. The Laplacian is a real symmetric matrix, it has
a complete set of orthonormal eigenvectors, which we denote by {ul}l=0,1,...,n

satisfying Lul = λlul for l = 0, 1, ..., n. These eigenvectors have associated real,
non-negative eigenvalues {λl}l=0,1,...,n. We can also write:

L = UΛUT

Where ul is the lth column of U .
Studying these eigenvalues allows us to characterize the graph and to cluster
nodes in the case of the spectral clustering algorithm. Zero is an eigenvalue with
multiplicity equal to the number of connected components of the graph. Small
eigenvalues are associated with a smoothly varying signal and high eigenvalues
with a signal varying a lot along nodes since we have:

(Lul)i =
∑

j∈N (i)

Aij [ul(i)− ul(j)] = ul(i)λl

Where ul(i) is the value of the vector ul on node i. Since {ul}l=0,1,...,n is an
orthonormal basis we have:

uTl Lul =
∑

(i,j)∈E

Aij [ul(i)− ul(j)]2 = λl

So the signal associated with small eigenvalues is smooth since [ul(i)− ul(j)]2 ≤
λl
Aij

is small for any (i, j) ∈ E as illustrated in figure 2.1. This understanding of
eigenvalues and eigenvectors is at the basis of the understanding of graph fourier
transform and signal filtering.
There exist other possible choices regarding the Laplacian of a graph G [Tremblay
and Borgnat, 2014b, Tremblay et al., 2018]:
The normalized Laplacian Lnorm defined by:

Lnorm = I −D− 1
2AD−

1
2

Lnorm is interesting because its eigenvalues are non-negative and are bounded
by 2 because of the normalization of the adjacency matrix. This is quite useful
in many cases and specially when working with functions that have a bounded
definition domain.
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The random walk Laplacian Lrw defined by:

Lrw = D−1L = I −D−1A

D−1A is a random walk operator that is not symmetric and that is used mostly
for algorithms that find their roots in random walks such as the PageRank
algorithm. Lrw is not symmetric but is diagonalizable in R because if u is an
eigenvector of Lnorm, D−

1
2u is an eigenvector of Lrw. Thus Lrw has the same

eigenvalues as Lnorm but its Fourier basis is not orthonormal.

(a) λ0 = 0: constant signal (b) λ1 = 2, 05: smooth signal(c) λ12 = 10, 97: non-smooth
signal

Figure 2.1: Graph signals associated with successive eigenvalues.

2.1.2 Graph Fourier Transform

The classical Fourier transform on a signal X is defined by:

X̂(ζ) =< X, e2iπζt >=
∫
RX(t)e−2iπζtdt

The complex exponentials e2iπζt are eigenfuntions of the one-dimensional Lapla-
cian operator d

dt2 . The Fourier transform can thus be seen as an expansion of
the signal X in terms of the eigenfunctions of the Laplacian operator.
The graph Fourier transform is defined in analogy with the Fourier transform
[Defferrard et al., 2016, Hammond et al., 2011, Ortega et al., 2017]. It is defined
via a choice of reference operator admitting a spectral decomposition. Let us
denote by R the reference operator admitting a spectral decomposition in R. As
seen in the previous section, we have

R = UΛU−1

where Λ ∈ Rn×n is a diagonal matrix and U ∈ Rn×n.
For a given operator R, the graph Fourier transform of a signal X ∈ Rn on the
vertices of G is the expansion of X in terms of the eigenvectors of this operator:

X̂(λl) =< X,ul >=
n∑
i=1

Xiul
T (i) (2.1)
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Where X̂(λl) is a notation that corresponds to the projection of signal X on the
eigenvector associated to eigenvalue λl. The inverse graph Fourier transform is
then given by:

Xi =
n−1∑
l=0

X̂(λl)ul(i) (2.2)

We can decompose the signal X on the vertices of a graph in terms of Fourier
coefficients and eigenvectors of the operator R.

Choice of reference operator. In all our work we consider only undirected
graphs and we use as reference operator R the graph Laplacian. There are two
reasons that motivate this choice. First, the Laplacian is the discretized version
of the continuous Laplacian which admits the Fourier modes as eigenmodes in
classical Fourier decomposition. By analogy with the classical Fourier Transform,
it is fair to use the Laplacian L. Second, the graph Laplacian has interesting
properties. As seen previously, since the graphs are undirected, the Laplacian
is symmetric and its eigenvalues are all real and positive by definition of the
operator.

2.1.3 Signal Filtering

We want to generalize the fundamental operation of signal filtering to graphs.
This operation will then be used to define several algorithms and in particular
convolutions on graphs. Graphs can be represented either in the vertex domain
or in the spectral domain. This allows us to define filtering either in the spatial
domain (vertices) or in the spectral domain and see how those filtering operations
are linked.

Graph filtering in the vertex domain is simply the fact of writing the
output Xout(i) at vertex i as the linear combination of the components of the
input signal at vertices within a k-hop neighborhood of vertex i:

Xout(i) = bi,iXin(i) +
∑

j∈Nk(i)

bi,jXin(j) (2.3)

Where {bi,j}(i,j)∈V 2 are filter parameters and Nk(i) is the k-hop neighborhood
of vertex i.

Graph spectral filtering. The Laplacian can be written as a sum of projectors
on its eigenspaces:

L =
∑
λ

λPrλ =
∑
k

λkuku
T
k (2.4)
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as defined by Tremblay et al. [2018]:

Definition 1. The most general definition of a graph filter is an operator that
acts separately on all the eigenspaces of L, depending on their eigenvalue λ.
Mathematically, any function

h :R 7→ R

λ 7→ h(λ)
(2.5)

defines a graph filter H such that

H =
∑
k

h(λk)ukuTk (2.6)

The filtering weight h(λ) attenuates or increases the importance of each eigenspace
in the decomposition of the signal. For an input signal Xin on the graph, the
action of the filter H is written as:

Xout = HXin =
∑
k

h(λk)PrλkXin (2.7)

It can also be written as:

Xout = HXin = Uh(Λ)UTXin (2.8)

where h(Λ) = diag(h(λ1), ...h(λn)).

A non-parametric filter is a filter whose parameters are all free, i.e. that can be
written like h(Λ) = diag(θ) where the parameter θ ∈ Rn is a vector of Fourier
coefficients.
The main limitation with non-parametric filtering is that filters are not localized
in space. A solution to overcome this issue is to use a Laplacian-based polynomial
spectral filter that would take the following form:

h(Λ) =
K−1∑
k=0

θkΛk (2.9)

Where θ ∈ RK is a vector of polynomial coefficients. This type of filter is also

localized because h(L) =
K−1∑
k=0

θkL
k and Lk is localized in a k-hop neighborhood

of each node. Since U is othonormal, we have h(UΛUT ) = Uh(Λ)UT . Moreover
they have a limited number of free parameters independant of the size of the
graph n, which is very useful for scalability to train learning algorithms. The cost
to filter a signal Xin as Xout = Uh(Λ)UTXin is still high with O(n2) operations
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because of the multiplication with the Fourier basis U . To overcome this problem,
a solution is to parametrize h(L) as a polynomial funtion that can be computed
recursively from L. This can be done with Chebyshev expansion [Hammond et al.,
2011, Shuman et al., 2011]. The graph spectral filtering is illustrated in figure 2.2.

Link between spectral and spatial filtering. We can make the link between
spatial and spectral filtering by taking a specific choice of parameters bi,j =
K−1∑
k=0

θkL
k
i,j [Ortega et al., 2017, Shuman et al., 2013]. This way we have:

Xout(i) =
n−1∑
l=0

X̂in(λl)h(λl)ul(i)

=
n∑
j=1

Xin(j)
K∑
k=0

θk

n−1∑
l=0

ul
∗(j)ul(i)

=
n∑
j=1

Xin(j)
K∑
k=0

θk(Lk)i,j

= bi,iXin(i) +
∑

j∈N (i,K)

bi,jXin(j)

(2.10)

Figure 2.2: Illustration of the filtering of a noisy signal on a graph. We have a
noisy signal on the graph on the left-hand side. By applying a low-pass filter we
are able to denoise the signal that we visualize on the graph on the right hand
side. The figure is a reproduction of results from Tremblay et al. [2018]
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2.1.4 Graph Coarsening

When working with images and more generally with euclidean data, coarsening
is a powerful tool to obtain representations of our original data at different scales.
In the case of images, applying successive CNNs followed by coarsening steps
were a great breakthrough for image classification tasks. However, the task of
coarsening is quite intuitive when working on images (pixels that are merged
are adjacent pixels) but not as simple when it comes to applying it on graph
structured data. Indeed, in graphs, there is no order of nodes and no regularity
regarding the number of neighbors of each node. Many different works proposed
different models to solve this problem.

The first kind of coarsening methods are deterministic methods that partition
the graph into sets of nodes that form clusters that represent nodes at the next
coarsened level. This kind of coarsening method is used by Defferrard et al.
[2016]. They use the algorithm Graclus [Dhillon et al., 2007], built on Metis
[Karypis and Kumar, 1998] that greedily identifies pairs of nodes to be merged
by optimizing a graph metric. This algorithm reduces the size of the graph by
approximately 2 after each coarsening step.

Another line of work tries to learn the coarsening step during there learning
of the algorithm. The learning strategy can be done in three different ways.
The first two are node based coarsening layers. First by learning an assignment
matrix for nodes to clusters [Ying et al., 2018, Tsitsulin et al., 2020, Bianchi
et al., 2019]. This is done by projecting node representation on a learnable
weight. The second node based coarsening layer is based on node deletion. By
computing importance scores on nodes, we are able to keep only few nodes that
are the most representative of the graph [Gao and Ji, 2019]. On the opposite
Diehl [2019] developped a pooling strategy based on edge representation. They
develop an edge contraction pooling strategy that aims at identifying edges to
be contracted which means pairs of nodes to be merged. Like for the Graclus
method, the size of the coarsened graph is divided by 2 after each coarsening
step.
In section 5 we’ll introduce a coarsening algorithm that aims at calculating scores
on edges in order to approach the minCUT problem. We studied a pooling layer
based on the deletion of edges in graphs. Deleting edges produces a sparser
graph with possibly multiple connected components that were seperated in the
process of edge cut. Those connected components are strongly connected groups
of nodes that represent nodes in the coarsened level.
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2.2 Convolutional Graph Neural Networks

In this section we introduce a model of graph neural network that we call
convolutional neural networks. Those models that are used in chapters 3, 4 and
5 are built upon signal processing algorithms in graphs presented in the previous
section. Graph convolutional network falls into two categories, spectral-based and
spatial-based. Spectral-based approaches define convolutions with spectral filters
introduced in Section 2.1.3, where the convolution is interpreted as removing
noise from a graph signal. Spatial-based approaches define convolutions by
information propagation. We will see in this section how both of these methods
are defined and the different models proposed over the years.

2.2.1 Spectral Graph Convolutions

In this section we review the different ways to define spectral graph convolutions
that are built upon the spectral signal processing methods.
Spectral networks were first introduced by Bruna et al. [2013] in order to learn
convolutional filters for graph classification problems. Their layers are defined

by X(l+1)
j = ρ(U

fl−1∑
i=1

Fl,i,jU
TX

(l)
i ), where Fl,i,j is a diagonal matrix of filters of

layer l, ρ is a non linearity and X(l) ∈ Rn×fl−1 is the input feature vector, with
features of dimension fl−1 for each node. Often, only the first d eigenvectors
of the Laplacian carry the smooth geometry of the graph, d depending on the
topology and the regularity of the graph. It is thus possible to replace U (the
eigenvector matrix of the Laplacian) by Ud, in which we have kept only the first
d eigenvectors. This allows us to have faster computation for this propagation
rule. Moreover in oder to be able to scale graph convolutions to large graphs,
it is preferable to have filters that don’t depend on the size of the graph. To
this end, it is possible to define filters as sum of K predefined function, such as
spline, and this way, instead of learning N values, we learn K coeffectients αk of

the sum F =
K∑
k=1

αkgk where gk are spline functions.

This approach was then simplified by Defferrard et al. [2016] by defining filters
from the Chebyshev polynomial decomposition [Hammond et al., 2011, Shuman
et al., 2011] defined in 2.1.3 to obtain filters that are strictly localized in a ball of

radius K. The propagation layer can be expressed by X(l+1) =
K−1∑
k=0

θkTk(L̃)X(l)

where L̃ = 2L
λmax

− I is the scaled Laplacian. The advantages of this approach
is the fact that filters are localized in a ball of radius K, which means K-hops
from the central vertex and this layer is more efficient computationally because
of the recursive formulation of the Chebyshev polynomials. Moreover, Deffer-
rard et al. [2016] use a graph coarsening algorithm to pool the graph between
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successive layers of convolution in order to identify features at different scales.
The algorithm used is Graclus [Dhillon et al., 2007] built upon Metis Karypis
and Kumar [1998] because it reduces the size of the graph by a factor two at
each level and offers a precise conrol on the coarsening and pooling size.
This method was then simplified by Kipf and Welling [2016] who proposed a
first order decomposition with Chebyshev polynomials, which results in a linear
formulation of filters in the Laplacian, which gives, for a single channel input
X(l+1) = θ(I + L̃)X(l), where θ is a learnable parameter. The formulation for
a multi-channel input is then X(l+1) = D̃

−1
2 ÃD̃

−1
2 X(l)Θ, where Ã = A + I is

the adjacency with added self-loops and D̃ is the corresponding degree diago-
nal matrix. This model corresponds to an average sum of neighbors’ features
weighted by the Laplacian. In their work they do not use pooling layer to obtain
versions of the graph at different scales but they only stack several layers of
Graph Convolutional Network (GCN) in order to tackle a node classification
task.
Several recent works made incremental modifications over GCN by exploring
alternative symmetric matrices such as Adaptative Graph Convolutional Network
(AGCN) [Li et al., 2018] or Dual Graph Convoluional Network (DGCN) [Zhuang
and Ma, 2018]. Let’s note that all these methods based on the spectral decom-
position of the graph are defined on undirected graphs and do not generalize
easily to directed graphs because of the asymmetry induced in the Laplacian.

2.2.2 Spatial Graph Convolutions

Analogous to the convolutional operation of a CNN on an image, spatial-based
methods define graph convolutions based on a node’s topological relation. An
image can be considered as a special case of a graph that has a grid like structure.
Similarly to images, spatial graph convolutions convolve the central node’s
representation with its neighbors’ features. The spatial-based convolutional
operation propagates node information along edges.
One of the first work towards spatial-based graph convolutions is Neural Network
for Graphs (NN4G) [Micheli, 2009]. NN4G learns mutual dependencies with
independant parameters at each layers, by learning two sets of parameters at
each layers, W that transforms central nodes’ features and Θ that transforms

neighbors features, hi(l) = ρ(W (l)T xi +
l∑

k=0

∑
j∈N (i)

Θ(k)T hj
(k)) where ρ is a non

linear function.
Recently many variants have been proposed and Gilmer et al. [2017] proposed
Message Passing Neural Network (MPNN) family fitting the vast majority of
models of that time. In their work, Gilmer et al. [2017] treat graph convolutions
as a message passing process in which information can be passed from one node
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to another along edges directly. MPNN runs K-step message passing iterations
to let information propagate further. The propagation rule is defined in terms of
a message function m and an update function u as:

Mi
(t+1) =

∑
j∈N (i)

mt(hi(t), hj(t), Ei,j)

hi
(t) = ut(hj(t),Mi

(t))

In this formulation hi(t) defines the hidden representation of node i after t steps
of message passing. The update function ut takes as input M t+1

i which is the
output of aggregation of the messages mt from each neighbor. The final layer
representation can be passed to an output layer to perform node-level prediction
tasks or to a readout function that aggregates these node representations to tackle
a graph-level prediction task. The readout function r generates a representation
of the entire graph based on node hidden representation, hG = r(hi(T )|i ∈ G).
Many algorithms that follow this construction were proposed by the graph
community to answer node classification tasks or graph classification tasks
[Veličković et al., 2017, Xu et al., 2018, Kipf and Welling, 2016, Battaglia et al.,
2016, Kearnes et al., 2016].

2.3 Node Embedding and Kernel Methods

In the machine learning community, graph convolutional networks are not the only
algorithms that allow us to embed nodes in a trainiable fashion. In this section
we present several methods that have an interest because of their theoretical
results and links with convolutional networks or because of their efficiency and
coherence in node embeddings.

2.3.1 Embedding Nodes by Topological Proximities

Graph convolutional networks produce node embeddings by aggregating the
information of nodes that reside in a K-hop neighborhood of the central node.
Previous to works on convolutions, some algorithms tried to produce a node
embedding Zi for node i as only a function of the node’s attributes Xi. The
learning strategy residing mainly in the objective function to be minimized.
These algorithms were inspired by works from the natural language processing
(NLP) community. In NLP, multiple techniques for unsupervised learning are
based on the assumption that similar words tend to appear in similar word
neighborhoods. In particular, Skip-gram [Mikolov et al., 2013b] aims at predicting
a word’s embedding based on the embeddings of its contextual words.
This idea has been transposed to graphs by generating random walks in graphs
and by making an analogy between random walks and sentences and words
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and nodes. A pioneer work in this field is DeepWalk [Perozzi et al., 2014] that
uses the Skip-gram algorithm to compute node embeddings based on random
walks generated uniformally on the graph. This method was improved by Grover
and Leskovec [2016] by generating random walks with two different strategies,
Breadth-first Sampling (BFS) and Depth-first Sampling (DFS). BSF samples
nodes that are not to far from the central node. Whereas DFS samples nodes
iteratively at increasing distances from the source node. The objectives behind
those two sampling strategies are different, one explores neighborhoods of nodes
whereas the other explores node that are far from the source node, the strategy
of Grover and Leskovec [2016] was to develop a neighborhood sampler that
interpolates between those two strategies. Node embeddings are then optimized
by gradient descend by maximizing the log-probability of observing a network
neighborhood Ns(i) for node i.
In the same spirit, [Tang et al., 2015] compute direct node embeddings by
minimizing the distance between embeddings of nodes that are at first-order
proximity (direct neighbors) or second-order proximity (at 2-hops in the graph).
In all those methods, negative sampling is used in order to separate embeddings
of nodes that don’t lie in the same part of the graph.

2.3.2 Kernel methods

Kernel methods are algorithms that learn by comparing pairs of objects using
similarity measures defined by kernels. Graph kernels were first proposed in
2003 [Gärtner et al., 2003, Kashima et al., 2003]. Graph kernels are particularly
useful to compute graph-level representation for graph classification tasks and
to approach the graph isomorphism problem. We introduce two classical graph
kernel methods.
The Weisfeiler-Lehman kernel is the most well known algorithm of this type
[Shervashidze et al., 2011, Weisfeiler and Lehman, 1968]. The Weisfeiler-Lehman
test is an iterative algorithm that aims at comparing two graph. The key idea
is to augment the node labels by the sorted set of node labels of neighboring
nodes and then to hash these new node representation to produce new node
labels. At each step we compare the sets of node labels. If they differ, graphs
are non-isomorphic, otherwise we continue until we have reached a predefined
number of steps.
A second well known kernel is graphlet-based kernel [Shervashidze et al., 2009].
In order to compare two graphs, we compare the occurences of motives present
in each graph, motives being drawn from a predefined bank of motives. These
motives are patterns of connections between nodes. They can be 2 nodes motives
(which means the number of edges), 3 nodes motives and so long. There exists
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four types of graphlets of size 3: disconnected, connected by only one edge,
connected by two edges and complete graphlet. There is a trade off to find
between the computationnal efficiency and the classification accuracy. If we use
a large bank of graphlets, the classification will be accurate but it will be very
costly to compute graph features.



Chapter 3

Graph Invariant Embedding

In this section we design a model to tackle a graph classification. First, we
design a handcrafted embedding derived from graph spectral analysis and study
its properties. We then use this embedding as input of a graph neural network
designed to capture correlations between nodes of different graphs in order
to classify graphs. We design this neural network to be invariant by node
permutation to make it as suited as possible to discriminate graphs and to
approach the isomorphism problem. To this end we adapted PointNet [Qi
et al., 2017], a neural network model on point sets for 3D classification and
segmentation to a setting of graphs. This model made for classification allows us
to discriminate graphs while being invariant by node permutation. This chapter
is based on the work presented in [Galland and Lelarge, 2019].

3.1 Introduction

As stressed in chapter 1, the main objective when using graph neural network
models is to classify nodes according to the topology of the graph and to features
that are available on nodes. However, in analogy with the field of computer vision
in which image classification has a predominant importance, graph classification
has a growing interest in the graph community. Indeed, graph classification
has many applications in diverse fields: bioinformatics, chemoinformatics or
social networks. To solve this problem, one needs to compute features that help
discriminate between graphs of different classes.

Graph classification is related to the fundamental problem of testing isomor-
phism of graphs, i.e. being able to tell whether two graphs are the same or
not up to a permutation of their nodes. Testing isomorphisms of graphs is a
notorious problem which is not known to be solvable in polynomial time nor

31
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to be NP-complete. This fundamental problem triggered a lot of efforts in the
theoretical computer science community. The last developments are: Babai
[2016] announced a quasipolynomial time algorithm for all graphs. Helfgott
discoverd a flaw in the proof, fixed by Babai with a confirmation by Helfgott
claiming a running time of 2O((logn)3) [Helfgott, 2017]. In this chapter, we are
interested in telling if two graphs are similar (as opposed to identical in the
graph isomorphism problem). This relaxation allows for potentially much faster
algorithms and for the ability to quantify the topological similarity of two graphs
in order to solve a graph classification problem.

Methods to learn representations that encode structure information about the
graph can be split in two categories: kernel based methods or graph neural
networks (GNN). Interestingly, in both cases, best performing methods are closely
related to the Weisfeiler-Lehman (WL) graph isomorphism test [Weisfeiler and
Lehman, 1968], see Shervashidze et al. [2011] for its connection with graph kernels
and Xu et al. [2018] for its connection with GNN. The WL’s test iteratively
updates a given node’s features by aggregating feature vector of its neighbors. In
their work, Babai et al. [1982] proposed an alternative algorithm for the graph
isomorphism problem based on spectral graph theory. Our aim in this chapter is
to demonstrate the relevance of ideas from spectral graph theory Spielman [2007]
to the graph representation learning problem. Moreover, we introduce a novel
and powerful graph feature representation called Spectral Graph Embedding
(SGE). We show that SGE is invariant for a large family of graphs and also
give intuition on why SGE has a great discriminative power. We also build a
permutation invariant neural network (PINN) to learn graph embeddings from a
given dataset.
The remainder of this chapter is organized as follows. In section 3.3 we introduce
four handcrafted embedding with invariance properties and derived from spectral
graph theory. In section 3.4 we introduce a neural network that has a high
discriminative power and that aims at identifying correlations between node
embeddings in order to solve a graph classification task. Finally, in section 3.5
we present experimental results on benchmark datasets.

3.2 Notations and Problem Formulation

We consider connected undirected graphs without self-loops, G = (V,E) where
V is the vertex set and E the edge set. The size of the graph is the number of
nodes and is denoted by n = |V |. The adjacency matrix is denoted by A. Let
d = A1 be the n-dimensional vector of degrees. Let D = diag(d) be the degree
diagonal matrix. From D and A we can define the Laplacian L = D − A and



3.2. Notations and Problem Formulation 33

the transition matrix for the random walk of the graph P = D−1A.

Two graphs G = (V,E) and H = (V, F ) are isomorphic if there exists a permuta-
tion π of V such that (i, j) ∈ E ⇒ (π(i), π(j)) ∈ F . We can express this relation
in terms of matrices associated with the graphs.

Every permutation may be realized by a permutation matrix. For a permutation
π, this is the matrix Π with entries given by

Π(i, j) =

1 if π(i) = j

0 otherwise

For a vector x, we see that (Πx)(i) = x(π(i)). Let A be the adjacency matrix of
G and let B be the adjacency matrix of H. We see that G and H are isomorphic
if and only if there exists a permutation Π such that ΠAΠT = B. Note that the
same relation can be written for the respective Laplacians. In this case, we will
write π(G) = H.

A graph embedding is a function F mapping graphs to vectors in Rd, where d is
the dimension of the embedding. A graph representation is invariant if for any
two isomorphic graphs G and H, we have F(G) = F(H).

An embedding of nodes is a function E , mapping a graph of size n to a vector
(E(G)(i))i∈V ∈ Rd×n. For a graph G, E(G)(i) ∈ Rd is the embedding of node i.
An embedding of nodes is equivariant if for any two isomorphic graphs G and H
such that π(G) = H for a permutation π, we have E(H)(i) = E(G)(π(i)) for all
i ∈ V .

From an embedding of nodes it is straightforward to create a graph embedding.
A very simple choice is just to sum the nodes’ representations:

F(G) =
∑
i∈V
E(G)(i)

Now, if the embedding of nodes E is equivariant, this will produce an invariant
graph embedding F , but the invariance property would be preserved if instead
of the sum, we apply any symmetric function as defined below:

Definition 2. A function f : Sn → Rm is symmetric if for any permutation σ
and any x ∈ Sn, we have f(x(1), ..., x(n)) = f(x(σ(1)), ..., x(σ(n)))

In all the following we will use this generic construction to build graph represen-
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tations from nodes’ embeddings.

3.3 Handcrafted embedding

In this section we introduce four handcrafted embeddings, three of them are
classical embeddings from spectral graph theory, the last one encodes the topol-
ogy of the graph with a spatial representation. Our final embedding is the
concatenation of those four graph representations. Moreover, we define a new
aggregation function that is a differentiable histogram to go from node level to
graph level embeddings.

3.3.1 Eigenvalues

We present an embedding based on eigenvalues of the graph Laplacian. When
dealing with graph embeddings that have invariance properties, it is trivial to
consider features such as the number of nodes, the number of edges, the diameter
of the graph or the number of connected components. We could concatenate all
these graph invariants to get an invariant embedding.

However, we also care about the discriminative power of the embedding, i.e. if
G and H are non-isomorphic, then we would like F(G) 6= F(H), F being the
embedding mapping. An invariant graph embedding with a perfect discrimina-
tive power would solve the graph isomorphism problem. In order to get an easily
computable graph embedding, we need either to relax the invariant property or
lower its discriminative power. We will do both in the sequel.

As presented in chapter 2, a powerful tool for graph analysis is graph spectral
decomposition. The graph Laplacian of a graph with n nodes is positive semi-
definite with eigenvalues λ1 = 0 < λ2 ≤ ... ≤ λn. Note that λ2 > 0 because
we assume that the graph is connected. Otherwise the number of eigenvalues
equal to 0 is equal to the number of connected components in the graph. The
embedding that we define must be of fixed size in order to be able to compare it
between graphs of different sizes. We fix k1 the size of this embedding. We define
F1(G) = (λ2, ..., λk1+1) if n ≥ k1 + 1 and F1(G) = (0, ..., 0, λ2, ..., λn) otherwise.
This embedding is constructed by padding the eigenvalue vector with 0 or by
truncating it in order to obtain in the end a vector of size k1. Note that padding
the eigenvalue vector with 0 if the size of the graph is smaller then k1 boils down
to adding single nodes to the graph until the graph is of size k1.
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3.3.2 Spatial Embedding

We now introduce a spatial embedding that encodes the topology of the graph
and that takes into account potentiel features that can be available on nodes.
We construct an embedding capturing the property of a random walk on the
graph. Remember that P kij is the probability for a random walk started in node
i to be in node j after k steps, hence 1TP k = (xk(1), ..., xk(n)) is a vector where
xk(j)/n is the probability for a random walk started uniformaly at random
on the graph to be in position j after k steps. Clearly, the vector 1TP k is an
equivariant embedding of nodes so that for any symmetric function f : Rn → Rm,
f(xk(1), ..., xk(n)) is an invariant feature of the graph.
If we have node features available, we use this propagation process on features
[Atwood and Towsley, 2016], we have P kX = (xk(1), ..., xk(n)). This vector is
also an equivariant embedding of nodes and the application of any symmetric
function f is an invariant feature of the graph. To compute features that capture
hierarchical patterns in the graph, we stack those embeddings for different values
of k.

Aggregation function. After having defined node embeddings we need an
aggregation function in order to create a graph representation from those node
representations. In most cases, the function used is a max or a mean of node
embeddings component-wise. In this work we wanted to define a more complexe
function that could take into account all node values. Ideally we would like to use
a histogram to aggregate node informations. But for works that will be presented
in section 3.4 we need this function to be differentiable. Moreover this function
must be symmetric. We thus introduce a novel function that approximates
histograms in a differentiable way.
We introduce

f(x1, ..., xn) = (l(x1, .., xn; ti))1≤i≤m (3.1)

where t1 < t2 < ... < tm are fixed parameters and

l(x1, ..., xn; t) =

∑
i

xie
txi∑

i

etxi
∈ R (3.2)

Note that l(.; t) is a symmetric function for any t so f is also a symmetric function.
Moreover, we have: l(x1, ..., xn; 0) = 1

n

∑
i

xi and lim
t−>∞

l(x1, ..., xn; t) = max
i
xi

and lim
t−>−∞

l(x1, ..., xn; t) = min
i
xi.

Proposition 1. For any (x1, ..., xn) ∈ Rn, the function t 7→ l(x1, ..., xn; t)
characterizes the multiset {x1, ..., xn}
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Proof. An argument from probability theory gives a simple proof. Consider a
random variable X with probability distribution on R consisting in picking an
element in the multiset {x1, ..., xn} with density Pt =

∑
i

etxi∑
j

etxj
δ(xi). Then we

have:
dl(x;t)
dt = Et[X2]− Et[X]2

and taking the following derivatives, will give the next moment of the distribution
Pt. Since Pt is a discrete distribution, it is characterized by its moment, hence
we can characterize Pt for any t and in particular P0 which is the uniform
distribution over the multiset {x1, ..., xn}.

In summary, our second graph embedding F2(G) ∈ Rk2m is obtained by concate-
nating the features defined in (3.1) and applied to the vector 1TP k or P kX, if
we have features on nodes, for values of k ∈ {1, . . . , k2} for a fixed parameter
k2.

3.3.3 Commute Times

We define a classical spectral embedding for nodes. Let X =
√

Λ+UT , where
Λ+ = diag(0, 1

λ2
, ..., 1

λn
) denotes the pseudo-inverse of Λ. The columns x(1), ..., x(n)

of X define an embedding of nodes in Rn. Each dimension corresponds to an
eigenvector of the Laplacian. The first component of each vector x(1), ...x(n)
is equal to 0 by construction. This corresponds to the first eigenvector of the
Laplacian which is constant and thus is not informative. Since Xu1 = 0, the
centroid of the n vectors is the origin:

n∑
i=0

x(i) = 0 (3.3)

The Gram matrix of matrix X is the pseudo-inverse of the Laplacian:

XTX = UΛ+UT = L+

In particular we can recover the Laplacian matrix by taking the pseudo-inverse
of XTX and hence the adjacency matrix and the graph itself. In words, the
graph is completely encoded in nodes’ embedding X, i.e. without any loss of
information.

We now give a random walk interpretation of this embedding. We consider the
random walk with transition rate Aij from node i to j: the walker stays at node
i an exponential time with parameter di, then moves from node i to node j
with probability Pij = Aij

di
. This defines a continuous-time Markov chain with
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generator matrix L and uniform stationary distribution. The sequence of nodes
visited forms a discrete-time Markov chain with transition P . Let Hij be the
mean hitting time of node j from node i. We can note that Hii = 0 for all node
i of the graph. The following results are standard, see [Lovász et al., 1993], we
follow the notation in [Bonald et al., 2018b]: Hij = n(x(j)− x(i))Tx(j), hence
the mean commute time between nodes i and j is:

Cij = Hij +Hji = n||x(i)− x(j)||2

The matrix of commute times caracterizes the graph:

Proposition 2. We can reconstruct the adjacency matrix from the matrix of
commute times.

Proof. Since Cij
n = ||x(i)||2 = 2x(i)Tx(j) + ||x(j)||2, we can recover the matrix

XTX = L+ from C if we know ||x(i)||2. But, thanks to 3.3, we have
∑
j

Cij/n =

n||x(i)||2 +
∑
j

||x(j)||2 and
∑
ij

Cij/n
2 = 2

∑
j

||x(j)||2, hence the proof of theorem

2.

The information of the graph is contained in the intrinsic geometry of vectors
x(1), ..., x(n). The intrinsic values of those vectors also carry relevant information.
According to Fiedler’s nodal domain theorem [Fiedler, 1975], for any k ≥ 2, let
Wk = {i ∈ V, xk(i) ≥ 0}. Then the graph induced by G on Wk has at most
k − 1 connected components. This implies that for low values of k, nodes i with
non-negative entries xk(i) tend to be well connected.

3.3.4 From Node Embeddings to Graph Embedding

In order to incorporate the geometric information in the node embeddings
x(1), . . . , x(n), we can proceed as above and construct a graph embedding
thanks to the symmetric functions `(.; t) of Proposition 1 applied to the vector
of x(i)’s componentwise.
Note however that this will not produce an invariant graph embedding. Indeed as
soon as an eigenvalue has multiplicity larger than 2, the associated eigenvectors
are defined up to a rotation. Even if all eigenvalues have multiplicity one, the
eigenvector is only defined up to a sign.
We now show how to construct an invariant graph embedding from the embedding
of the nodes under the assumption that all eigenvalues of the Laplacian have
multiplicity 1.
Consider two graphs G and H with respective Laplacians LG = UΛUT and
LH = V ΛV T , where Λ is the common diagonal matrix of eigenvalues. If Π is
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the matrix of an isomorphism from G to H, then, we have

ΠUΛUTΠT = V ΛV T .

As each entry of Λ is distinct, this looks like it would imply ΠU = V . But, the
eigenvectors are only determined up to sign, hence we only have the following
result:

Lemma 1. Assume LG an LH have the same distinct eigenvalues 0 = λ1 <

λ2 < · · · < λn. A permutation matrix Π satisfies ΠLGΠT = LH if and only if
there exists a diagonal ±1 matrix S such that:

ΠU = V S.

Proof. Let U1, . . . , Un be the columns of U and V1, . . . , Vn the columns of V .
The equality ΠLGΠT = LH gives:

V ΛV T =
n∑
i=1

ViλiV
T
i =

n∑
i=1

(ΠUi)λi(UTi ΠT ),

which implies that for all i:

ViV
T
i = (ΠUi)(ΠUi)T .

This in turn implies that Vi = ±ΠUi.
To go the other direction, assume ΠU = V S, so that

ΠLGΠT = ΠUΛUTΠT

= V SΛSV T

= V ΛSSV T = V ΛV T = LH ,

as S and Λ are diagonal and thus commute.

From this lemma, we see that for any k ∈ [1, n] and t ≥ 0, the embedding given
by:

`(xk(1), . . . , xk(n); t) + `(−xk(1), . . . ,−xk(n); t)
2 ∈ R,

where the function ` is defined by (3.2), is an invariant embedding of the graph,
provided the eigenvalues of this graph have all multiplicity one.
In practice, we will fix the parameters t1 < · · · < tm as in Section 3.3.2 as
well as a parameter k3 ≥ 2 and pick the first informative eigenvectors of the
Laplacian k ∈ {2, . . . , k3}. Note that our embedding loses the notion of Fiedler’s
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nodal domain because we do not have access anymore to the sign of the xk(i)’s.
However, we explain in the next section how to incorporate the more accurate
information contained in the commute times. At this stage, we created a graph
embedding F3(G) with dimensionm(k3−1) from the matrix (xk(i))1≤i≤n,2≤k≤k3 .

Graph embeddings from commute times. Moreover, in order to incor-
porate the information of the commute times matrix, we proceed in a very
straightforward manner. Instead of the Euclidean distances ||x(i)− x(j)||2, we
compute the dot products x(i)Tx(j) for 1 ≤ i, j ≤ n. Then, we flatten this
matrix to obtain a vector of size n2 and pass this vector through our symmetric
function l defined in 3.2.
Our embedding is thus defined by:

F4(G) = (l(x1, ..., xn; tk))1≤k≤m ∈ Rm (3.4)

which is clearly an invriant embedding of the graph. Note that even if we can
reconstruct the original graph from the matrix (x(i)Tx(j))1≤i,j≤n, our embedding
F4 defined in 3.4 will not allow to reconstruct the graph. Indeed, even if we had
access to the function t 7→ l((x(i)Tx(j))1≤i,j≤n; t), this function characterizes
only the multiset {x(i)Tx(j), 1 ≤ i, j ≤ n} which does not a priori characterize
the graph up to isomorphisms.

3.3.5 Final Graph Embedding

So far, we defined four different graph embeddings: F1(G) ∈ Rk1 defined in
Section 3.3.1; F2(G) ∈ Rk2m2 defined in Section 3.3.2; F3(G) ∈ Rm3(k3−1)

defined in Section 3.3.4 and F4(G) ∈ Rm4 defined in Section 3.3.4. Our final
graph embedding is the concatenation of these embeddings for fixed parameters
k1, k2, k3 and m2,m3,m4: FSGE(G) = (F1(G),F2(G),F3(G),F4(G)) which is a
vector of size k1 +m2k2 +m3(k3− 1) +m4, independent of the size of the graph.
All these embeddings are invariant graph embeddings except F3 which has been
shown to be invariant on the familly of graphs with Laplacian eigenvalues of
multiplicity one. In particular, for two graphs to give the same embedding FSGE ,
they need to be cospectral, i.e. have the same eigenvalues, with at least one
eigenvalue with muliplicity at least 2. This is only a necessary condition. Finding
the non-isomorphic graphs for which our embedding is not discriminative is out
of the scope of this paper. In Section 3.5, we will assess the discriminative power
of our embedding on benchmark datasets for graph classification.
At this stage, we should stress that our general method for computing graph
embedding is rather generic and several variations are possible. For example
Zhang et al. [2018b] constructs a graph kernel based on return probabilities of
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random walks. We can easily adapt this idea into our space embedding in Section
3.3.2 by replacing the vector 1TP k by the return probability vector defined by
diag(P k) = (P k11, . . . , P

k
nn). Our analysis is still valid as this vector is still an

invariant embedding of nodes. In the spectral domain, Verma and Zhang [2017]
introduces an embedding very similar to our embedding F4 based on the node
embedding

√
g(Λ)UT where g(Λ) = diag(0, g(λ2), . . . , g(λn)) for a monotonic

function g. In their experiments, they choose g(λ) = 1/λ corresponding to our
choice in Section 3.3.3 and then constructed an histogram of the commute times
to get a graph embedding.
We should stress that using a general function g in this context was already
proposed in Hammond et al. [2011] for the spectral construction of graph wavelets.
Indeed, the graph Fourier transform is defined in term of the graph Laplacian L.
Indeed for a signal S = (S1, . . . Sn) on the graph, the Fourier transform of S is
defined by Ŝ = UTS and for a so-called wavelet kernel g (i.e. a function with
g(0) = 0 and g(x)→ 0 as x→∞), the wavelet operator at scale t, T tg is defined
by:

T tgS = g(tL)S =
∑
i

Uig(tλi)UTi S, for t > 0.

Hence a natural generalization of our embedding F4 would be to include various
scale parameters by considering the node embedding

√
g(tΛ)UT for predefined

values of t.

3.4 Permutation Invariance Neural Network (PINN)

So far, our aim in constructing our graph embedding has been to get the
best possible embedding in term of disciminative power. As we did not make
any assumption on the families of graphs to disciminate, we used the graph
isomorphism problem as a proxy for the quality of our embedding. In other words,
our graph embedding is constructed in order to be able to distinguish graphs
in a worst case scenario. As explained in previous section, several extensions
of our embedding are possible. However, our embedding should remain in a
low dimensional space in order to be useful. Moreover, our embedding will not
depend on the dataset but some features might be much more useful on say social
graphs than for bioinformatics datasets. We now explore possible algorithms
able to learn embeddings from the data.

3.4.1 Invariance properties

As explained in the introduction, this problem in the specific context of graph
classification is not new and GNN have been devised exactly for this task. Our
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approach is rather orthogonal to the GNN approach also we will discuss this
point in more details in Section 3.4.2. In order to learn our graph embedding,
we assume that we start from an embedding of the nodes (E(G)(i))i∈V and
need to learn the symmetric function f able to create the best graph embedding
F(G) = f(E(G)(i)i∈V ) for the classification task on the given dataset.
If the embedding of the nodes is equivariant, then we know that the resulting
graph embedding is invariant. This is a desirable property of our embedding
which would ensure that the classifier gives always the same class for two
isomorphic graphs. The embedding of the nodes could be otained thanks to a
GNN or using the node embedding presented in Section 3.3.2 or 3.3.3. We do
not make any assumption on the embedding of nodes and now concentrate on
the learning of a symmetric function. Our main structure Theorem 1 shows that
the learning of a symmetric function f : Rk → R reduces to the learning of a
function h : Rk → RK and a function g : RK → R where K decreases with the
smoothness of the funtion f .

Theorem 1. Let f : Sn → Rm be a symmetric function. There exists a function
ϕ from the multisets with elements of S and cardinality n to Rm such that

f(x) = ϕ({x1, . . . , xn}).

Let consider the case S = [0, 1]k and that the function f is smooth as follows:
for all x, y ∈ Sn such that infσ supi |xσ(i) − yi| ≤ δ, we have |f(x)− f(y)| ≤ ε.
In this case, for K = d 3

δ e
k, there exists a function g : RK → R and a function

h : Rk → RK such that for all xi ∈ [0, 1]k,∣∣∣∣∣f(x1, . . . , xn)− g
(

n∑
i=1

h(xi)
)∣∣∣∣∣ ≤ ε. (3.5)

If moreover all the xi’s are distant by at least δ (i.e. mini 6=j |xi − xj | ≥ δ), then
with the same functions g and h, we have:∣∣∣f(x1, . . . , xn)− g

(
nmax
i=1

h(xi)
)∣∣∣ ≤ ε. (3.6)

In the case where S is countable, for any symmetric function f , there exists
h : S → R and g : R→ Rm such that f(x1, . . . , xn) = g (

∑n
i=1 h(xi)).

The proof is given below but some particular cases of our result appeared in the
literature. The countable case was already proved in Zaheer et al. [2017] for sets
and extended in Xu et al. [2018] for multisets. The uncountable case is stated as
an open problem in Zaheer et al. [2017]. Theorem 1 in Qi et al. [2017] proves
(3.6) for sets.
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Proof. We define by Nn(S) the set of point measures ν on S such that ν(S) = n.
If x = (x1, . . . , xn) ∈ Sn then the type of x is the element εx of Nn(S) defined
by

εx :=
n∑
i=1

δxi =
∑

y∈{x1,...,xn}

δy,

where the last sum is over the multiset {x1, . . . , xn}. The set Sn(ν) ⊂ Sn is
defined by, for ν ∈ Nn(S):

Sn(ν) = {y ∈ Sn : εy = ν}.

In words, this is the set of all vectors such that the multiset obtained from their
individual components is descrived by ν. In particular if ν =

∑k
`=1 ν`δx` for∑

` ν` = n and x1, . . . xk ∈ S, then the cardinality of Sn(ν) is |Sn(ν)| = n!∏
`
ν`!

.

By definition, for all x = (x1, . . . , xn) ∈ Sn,

f(x) = 1
n!
∑
σ∈Sn

f(xσ(1), . . . , xσ(n))

= 1
|Sn(εx)|

∑
y∈Sn(εx)

f(y).

In particular, we can write:

f(x) = ϕ({x1, . . . , xn}),

where ϕ is a function of the multiset {x1, . . . , xn} defined by the line just above.
We now prove (3.5). Let (Pj)j∈[K] be a partition of [0, 1]k in squares with
length d 3

δ e and let (yj)j∈[K] be the centers of these squares. We then define
h(x)j = 1(x ∈ Pj) for j ∈ [K]. Hence we have for all j ∈ [K],

n∑
i=1

h(xi)j = εx(Pj).

Now we define g as follows: for any ν = (ν1, . . . , νK) ∈ RK with
∑K

j=1 νj = n

and νj ∈ N, there exists a (unique) multiset {yj1 , . . . , yjn} of n centers such that
νj =

∑
y∈{yj1 ,...,yjn}

1(y ∈ Pj) and we define g(ν) = ϕ({yj1 , . . . , yjn}). Then (3.5)
follows from the fact that for a given x, the multiset of centers associated to
the vector (εx(Pj))j∈[K] is such that infσ supi |xσ(i) − yji | ≤ δ. If all the xi’s are
distant then we have εx(Pj). ∈ {0, 1} for all j so maxni=1 h(xi)j = εx(Pj) and
(3.6) follows.
The case where S is countable is simple: consider an injective mapping c : S → N
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and then define h(x) = n−c(x). The result then follows from the fact that
∑
h(xi)

characterizes the multiset.

3.4.2 Algorithm

Theorem 1 hints at a general strategy for inference over permutation invariant
objects, like sets or multisets. We can use deep neural networks to model and
learn the functions h and g in (3.5) in order to produce permutation invariant
networks. This idea was used in Qi et al. [2017] where an architecture based on
a multi-layer perceptron with shared weights was used in combination with a
max pooling layer (accross the batch) to aggregate information in order to give a
symmetric function acting on point clouds. Since point clouds are considered as
sets in R3, we see that using a max pooling layer instead of an averaging layer
is a valid option in view of (3.6). This approach was extended in Zaheer et al.
[2017] to deal with general sets. The architecture is explicited in figure 3.1.
Equivariant models are also introduced in Zaheer et al. [2017]. We recall the
definition of equivariant function:

Definition 3. A function f : Xn → Yn is equivariant if for any permutation σ
and any x ∈ Xn, we have f(xσ(1), . . . , xσ(n)) = (fσ(1)(x), . . . , fσ(n)(x)).

Note that the notion of equivariance can be made more general by replacing the
group of permutations by any other group Cohen and Welling [2016] (but this
will not be of interest in our setting).
Clearly, if a function is symmetric, then first passing its input through an
equivariant function from Sn to Sn will leave the function symmetric. In
particular as suggested in Zaheer et al. [2017], stacking equivariant layers will
produce an equivariant network and hence if a final symmetric layer is applied,
then we again obtain a symmetric network. This idea is explored further in
Lucas et al. [2018], where Theorem 1 in Lucas et al. [2018] shows that such
architectures with equivariant linear layers and with a final summation layer can
approximate any symmetric function.
From a practical perspective, it seems appropriate to consider more general
architectures using both ideas. Starting from the aproximation g(

∑
i h(xi)), we

see that the function (x1, . . . , xn) 7→ h(x1), . . . h(xn) is equivariant and can be
replaced by any equivariant function (x1, . . . , xn) 7→ h(x1, µ), . . . h(xn, µ) where
µ is an invariant function of (x1, . . . , xn). Hence, we can stack such layers, where
invariant information of the previous layers can be incorporated in the next
equivariant layer. From a theoretical perspective, this modification will not
increase the expressiveness of the network.
We feed the algorithm with input features that are arbitrary node embeddings.
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The algorithm is not dependent on the size of the graph since we apply a shared
fully connected layer to all nodes’ input representation and we then aggregate
the outputs over all nodes. The output of this method is thus of size the size of
the output linear layer and is thus independant of the size of the graph. We chose
node embeddings defined in section 3.3 as input of the premutation invariant
neural network, since the input must be node level embeddings, we use only F2

and F4.

Comparison with GNN: in contrast with our approach, GNN computes a
state at each node of a given graph by aggregating the information from the
neighboring nodes. In order to be able to transfer the learning process from one
graph to another, only symmetric functions can be learned Xu et al. [2018]. In
particular, our Theorem 1 applies and gives all the possible aggregation function
at a given node. Our method is rather orthogonal as our symmetric function is
applied on the whole graph instead of local pattern of the graph. In particular,
we can combine both methods by first using GNN to construct embedding of
the nodes and then use a permutation invariant neural network (PINN). Both
GNN and PINN can be learned simultanously.

Figure 3.1: PINN architecture. Node embeddings are collected in order to
generate an input matrix of size n× d. Successive shared multi-layer perceptrons
(MLP) are applied to input features are node features are aggregated after each
step and then concatenated to obtain a hierarchical representation of the graph.
A MLP is finally applied to these concatenated features to compute a score of
belonging to each labeled class. This network is trained in a supervised fashion.
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3.5 Experiments

3.5.1 Graph Classification

Datasets: We use the 6 bioinformatics datasets presented in chapter 1 and 5
social network datasets to compare our results with Verma and Zhang [2017]:
REDDIT-BINARY and REDDIT-MULTI, IMDB-BINARY and IMDB-MULTI
and COLLAB. The social network datasets are composed of ego-networks the
labels of the graphs are the nature of the entity from which we have generated
the ego-network. More details can be found in [Yanardag and Vishwanathan,
2015].

Experimental setup: After having computed the features for each graph, we
use a Random Forest for the classification. We set the parameters to 1000 for
the number of trees and we choose a max depth of 20 (we ran experiments
with max depth varying between 20 and 50 to quantify the importance of this
parameter and the results were the same). We use cross-validation by split-
ting each dataset into 10 folds and by preserving the class proportion in each
fold. We train our algorithm on 9 folds and then test it on the remaining one.
We then average the accuracy over all testing sets. We compare our method
with 6 state-of-art algorithms: Family of Graph Spectral Distances Verma and
Zhang [2017], Diffusion CNNs (DCNN) Atwood and Towsley [2016], Deep Graph
Kernel (DGK) Yanardag and Vishwanathan [2015]. Most methods do not use
node labels in their experiments, in order to compare ours to these methods
we didn’t use node labels in our algorithm. Concerning the parameters, we
set m2 = m3 = 11 and m4 = 21 for all experiments. We adapt parameters
k1, k2, k3 to the size of the graph. These parameters represent the number of
eigenvalues, the hopes at which we investigate the graph and the dimension
of the eigenvectors selected. We use three settings: for smaller graphs (PTC,
MUTAG) we set k1 = 5, k2 = 2, k3 = 5, for PROTEINS, NCI1, NCI109 and
IMDB-B and IMDB-M we set k1 = 50, k2 = 5, k3 = 50 and for bigger graphs
(DD, REDDIT-B, REDDIT-M, COLLAB) we set k1 = 100, k2 = 5, k3 = 100.
We built these three groups according to the number of nodes of the largest
graph in each dataset.

Results: From the results of Table 5.1 we can observe that SGE is challenging
with state-of-the-art methods. Indeed, on most datasets, SGE has a score very
close to the ones obtained by Verma and Zhang [2017] and SGE outperforms
FSGD on PTC dataset. From Table 3.2, SGE is challenging with all other
algorithms on social network datasets and outperforms FSGD on both REDDIT
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datasets.
For the permutation invariant neural network (PINN), we can see that this
models performs well on certain datasets such as PROTEINS but is less effective
on most datasets. This can be due to the fact that those datasets are quite
small in terms of number of graphs which makes it difficult to learn a neural
network model. Moreover, a limitation of PINN is that the topology of the
graph is taken into account into the input features used for the algorithm. But
most neural network models such as GCN [Kipf and Welling, 2016, Veličković
et al., 2017] aggregate features of neighbors into the central node which adds a
lot of information to the model. This model that is very effective on 3D cloud
of points may be less effective on graph datasets and may be dependant on the
features that are set as inputs.

Datasets overview: On IMDB-MULTI a low accuracy by all methods can
be explained by the fact that more than half of the graphs of each class are
complete graphs. We counted 789 complete graphs accross all classes which is
more than half of the dataset since IMDB-MULTI is composed of 1500 graphs.
Two complete graphs of same size N are not distinguishable by an embedding
of their structure. We compared the repartition of complete graphs by size in
each class. We observed that complete graphs of a given size N are not all in
the same class which makes it impossible for the classifier to classify properly
all complete graphs of size N . A good classifier would attribute all complete
graphs of size N to the class in which we find the largest number of complete
graphs of size N . This way we can count the number of mis-classification for
complete graphs of size N . We repeated the process over all unique sizes of
complete graphs present in our dataset and we obtained that 389 graphs are
miss-classified over the dataset composed of 1500 graphs. The best classifier
would thus have a classification of 74% and not 100%.
In order to distinguish those graphs we should use features on nodes which are
not available on this dataset.
Moreover for small datasets, namely PTC and MUTAG, a significant fraction
of graphs have an identical topology and are thus not distinguishable without
labels on nodes. In order to be able to differentiate them we should use node
labels in our methods which we plan to do in future works.

3.5.2 Discussion

In this chapter, we introduced two algorithms, one based on handcrafter em-
beddings and a learnable approach to develop an invariant neural network for a
graph classification task.
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Dataset MUTAG PTC PROTEINS NCI1 NCI109 D&D

Avg 18 14 39 30 30 284
#Graphs 188 344 1113 4110 4127 1178

DCNN 66.51 55.79 65.22 63.10 60.67 -
DGK 86.17 59.88 71.69 64.40 67.14 72.95
FSGD 92.12 62.80 73.42 79.80 78.84 77.10

SGE 89.37± 0.93 63.77± 0.31 73.85± 0.11 76.64± 0.10 75.38± 0.22 77.10± 0.21
PINN 81.22± 0.69 61.48± 0.29 75.65± 0.17 74.63± 0.05 73.33± 0.26 72.31± 0.14

Table 3.1: Classification accuracy on bioinformatics datasets

Dataset IMDB-B IMDB-M REDDIT-B REDDIT-M COLLAB

Avg 20 13 430 509 74
#Graphs 1000 1500 2000 4999 5000

DGK 66.96 44.55 78.04 41.27 73.09
FSGD 73.62 52.41 86.50 47.76 80.02

SGE 73.7± 3.2 49.60± 2.1 89.30± 2.2 51.13± 2.4 78.71± 2.0
PINN 71.02± 0.23 45.40± 0.22 87.88± 0.16 48.46± 0.12 74.64± 0.04

Table 3.2: Classification accuracy on social network datasets

The handcrafted embedding presented in 3.3 is based on classical spectral graph
representations.

In the work on PointNet, Qi et al. [2017] developped an invariant neural netwrok
to perform classification and segmentation of 3D data points. Inspired by
the invariance property of PointNet, we developped PINN that has a strong
discriminative power because it is able to identify correlations between node
representation by its weight sharing architecture. Moreover, this model, originally
developped to classify cloud of points, is particularly adapted to graph structured
data. Indeed, when trying to classify graphs, we need to embed each graph into
a vector invariant by node permutation. This is precisely what PINN allows us
to do. Nevertheless, there are two limitations to this kind of architectures.

• First, the neighborhood structure of graphs is not taken into account in the
network architecture but only in the initial representation of nodes that
is given as input to the algorithm. This limitation is overcame by Ying
et al. [2018] by aggregating features of neighbors of each nodes after having
performed fully connected layers. This allows to obtained embeddings that
will be much closer for nodes that are topologically close.

• The second limitation concerns the features that need to be set as inputs
of the algorithm. The choice of the input narrows us in a direction instead
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of learning all parts of the algorithm.



Chapter 4

Node Structural
Aggregation

In this Chapter we continue working on the problem of graph classification using
a different perspective. We develop an aggregation layer to identify structural
roles for nodes in graphs and to bring explainability to graph classification
algorithms. We design an algorithm trainable in an end-to-end fashion. The
work from this chapter is currently under review at ICLR 2021.

4.1 Introduction

Convolution neural networks [LeCun et al., 1995] have proven to be very efficient
at learning meaningful patterns for many articificial intelligence tasks. They
convey the ability to learn hierarchical information in data with Euclidean grid-
like structures such as images and text. Convolutional Neural Networks (CNNs)
have rapidly become state-of-the art methods in the fields of computer vision
[Russakovsky et al., 2015] and natural language processing [Devlin et al., 2018].
However in many scientific fields, studied data have an underlying graph or
manifold structure such as communication networks (whether social or technical)
or knowledge graphs. Recently there have been many attempts to extend
convolutions to those non-Euclidean structured data [Hammond et al., 2011,
Kipf and Welling, 2016, Defferrard et al., 2016]. In these new approaches, the
authors propose to compute node embeddings in a semi-supervised fashion in
order to perform node classification. Those node embeddings can also be used
for link prediction by computing distances between each node of the graph
[Hammond et al., 2011, Kipf and Welling, 2016].
Graph classification is studied in many fields. Whether for predicting the chemical

49
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activity of a molecule or to cluster authors from different scientific domains
based on their ego-networks [Freeman, 1982]. However when trying to generalize
neural network approaches to the task of graph classification there are several
aspects that differ widely from image classification. When trying to perform
graph classification, we can deal with graphs of different sizes. To compare them
we first need to obtain a graph representation that is independant of the size
of the graph. Moreover, for a fixed graph, nodes are not ordered. The graph
representation obtained with neural network algorithms must be independant
of the order of nodes and thus be invariant by node permutation. In Chapter
3 we persented a graph embedding invariant by node permutation for a graph
classification task. In this Chapter, we present an aggregation function that is
also invariant by node permutation but that aims at identifying structural roles
for nodes in graphs.
Aggregation functions are functions that operate on node embeddings to produce
a graph representation. When tackling a graph classification task, the aggregation
function used is usually just a mean or a max of node embeddings as illustrated
in figure 4.1b. But when working with graphs of large sizes, the mean over all
nodes does not allow us to extract significant patterns with a good discriminating
power. In order to identify patterns in graphs, some methods try to identify
structural roles for nodes. Donnat et al. [2018] define structural role discovery
as the process of identifying nodes which have topologically similar network
neighborhoods while residing in potentially distant areas of the network as
illustrated in figure 4.1a. Those structural roles represent local patterns in
graphs. Identifying them and comparing them among graphs could improve the
discriminative power of graph embeddings obtained with graph neural networks.
In this work, we build an aggregation process based on the identification of
structural roles, called StructAgg.
The main contributions of this work are summarized bellow:

1. Learned aggregation process. A differentiable aggregation process that
learns how to aggregate node embeddings in order to produce a graph
representation for a graph classification task.

2. Identification of structural roles. Based on the definition of structural
roles from Donnat et al. [2018], our algorithm learns structural roles during
the aggregation process. This is innovative because most algorithms that
learn structural roles in graphs are not based on graph neural networks.

3. Explainability of selected features for a graph classification task.
The identification of structural roles enables us to understand and explain
what features are selected during training. Graph neural networks often
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lack explainability and there are only few works that tackle this issue. One
contribution of this work is the explainability of the approach. We show
how our end-to-end model provides interpretability to a graph classification
task based on graph neural networks.

4. Experimental results. Our method achieves state-of-the-art results on
benchmark datasets. We compare it with kernel methods and state-of-
the-art message passing algorithms that use pooling layers as aggregation
processes.

(a) nodes with the same structural role
are classified together (same color).

(b) aggregation process to create a graph embed-
ding, the node features are summed to produce a
representation of the graph.

Figure 4.1: Identification of structural roles and aggregation of node features
over the whole graph.

4.2 Related Work

Recently there has been a rich line of research, inspired by deep models in images,
that aims at redefining neural networks in graphs and in particular convolutional
neural networks [Defferrard et al., 2016, Kipf and Welling, 2016, Veličković et al.,
2017, Hamilton et al., 2017, Bronstein et al., 2017, Bruna et al., 2013, Scarselli
et al., 2009]. Those convolutions can be viewed as message passing algorithms
that are composed of two phases [Gilmer et al., 2017]. A message passing phase
that runs for T steps is first defined in terms of message functions and vertex
update functions. A readout phase then computes a feature vector for the whole
graph using some readout function. In this work we will see how to define a
readout phase that is learnable and that is representative of meaningful patterns
in graphs.

Graph neural networks are used for a wide variety of tasks. For node classification
Hamilton et al. [2017] and Kipf and Welling [2016] learn node features that are
representative of the modular topology of the graph. Those features can also
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be used for link prediction [Zhang and Chen, 2018]. For both of these tasks,
the size of the graph does not matter since a single graph is set as input and a
feature vector is computed for each node. When addressing graph classification
problems the setting is not the same. We have a set of graphs of different sizes
and we need to learn a representation for the whole graph in order to address
the classification task. The readout phase of the message passing algorithm
is highly important in this case since we need to aggregate the information
of nodes to compute a graph representation that must be as discriminative as
possible, invariant to node permutation and independant of the size of the input
graph. There are several ways to develop a readout function that goes from
node embeddings to a representation of the entire graph. The simplest way to
answer this, is to use a simple aggregation function like the sum or the average
[Xu et al., 2018] of the node embeddings although more complex functions can
also be learned. Another way to address this issue is to apply a pooling layer
to the graph in order to obtain a smaller graph of fixed size [Gao and Ji, 2019,
Ying et al., 2018, Defferrard et al., 2016]. This process can be applied iteratively
to the input graph to obtain a hierarchical representation of the graph.

In this work we will see how to define a new aggregation process that is based
on the identification of structural roles for nodes in graphs [Gilpin et al., 2013,
Henderson et al., 2012, Ribeiro et al., 2017]. The identication of these roles
provides key insight into the organisation of a network and is a way to identify
meaningful patterns in graphs. A way to identify these structural roles is by
creating handcrafted features that encode local topology of nodes [Donnat et al.,
2018]. In this work, we will first see how to learn those roles during the training
of our classification algorithm. We will then see how to develop an aggregation
function that is based on these roles. We will finally compare this end-to-end
algorithm with state-of-the-art models on benchmark datasets. We will also see
how the identification of structural roles provides explainability to graph neural
network algorithm. More precisely, we will see that those structural roles allow
us to understand local topological patterns that are selected during training.

4.3 Wavelets for structural node embedding

In this section we present related works on node structural embeddings. We
present more specifically handcrafted embeddings based on wavelets [Donnat
et al., 2018] and we relate it to our work on node structural embedding based
on graph neural networks.
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4.3.1 Wavelets in Graphs for Node Structural Embedding

Wavelets are a powerful tool for signal processing [Mallat, 1999, Bruna and
Mallat, 2013]. There has been numerous works that aimed at redefining wavelets
on graphs [Hammond et al., 2011, Gama et al., 2019, Tremblay and Borgnat,
2014b]. With the appropriate scaling function, wavelets are useful to decompose
the signal into a hierarchical one that can be localized in space [Kipf and Welling,
2016, Hammond et al., 2011]. In their work, Donnat et al. [2018] use wavelets
to build node representations that encode neighborhood topologies in order to
embed nodes according to the structural role they play in graphs.

We recall that U is the eigenvector decomposition of the Laplacian L = D−A =
UΛUT and let λ1 < λ2 ≤ ... ≤ λn be the eigenvalues of L, Λ = Diag(λ1, ..., λn).
Let gs be a filter kernel wih scaling parameter s. Spectral graph wavelets
associated to function gs at scale s are defined as the signal resulting from the
modulation in the spectral domain of a Dirac signal centered in node v. The
spectral graph wavelet Ψv is then given by:

Ψv = UDiag(gs(λ1), ..., gs(λn))UT δv (4.1)

Where δv is the one-hot vector for node v. The mth wavelet coefficient of the
vector can thus be given by:

Ψuv =
n∑
l=1

gs(λl)UulUvl (4.2)

Eigenvectors associated with smaller eigenvalues carry slow varying signal as
explained in 2. Thus signals associated with smaller eigenvalues encourage nodes
that are neighbors to share similar values. In contrast, eigenvectors associated
with greater eigenvalues carry erratic signals. The functions gs allows us to
modulate the filters applied to the eigenvalues to select low pass and high pass
signals in order to separate the graph signal and detect meaningful patterns.

4.3.2 Node Structural Embedding

From wavelets in graphs, Donnat et al. [2018] design an embedding to encode
structural roles in graphs.
Spectral graph wavelets are first applied to the graph to obtain a diffusion
pattern for every node. For a given scale s, coefficients in each wavelet represent
the amount of energy that node v received from node u (Ψuv). We use u and
v to denote nodes to avoid confusion with the i of the characteristic function.
In all the rest of the thesis we use i and j to denote the ith and jth nodes.
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The basis assumption, that is demonstrated in this work, is that two nodes
that have similar neighborhoods have similar spectral wavelet coefficients. They
treat the wavelet coefficients as a probability distribution and characterize
it via empirical caracteristic function. For a probability distribution X, the
characteristic function is φX(t) = E[eitX ]. This function captures information
about all the moments of probability distribution X [Lukacs, 1970]. This way,
for a node v and a scale s, the caracteristic function of the graph wavelets is:

φv(t) =
n∑
u=1

eitΨuv (4.3)

The embedding they define is the real and imaginary parts of this characteristic
function evaluated at d evenly spaced points t1, ..., td concatenated:

χv = [Re(φv(t)), Im(φv(t))]t1,...,td (4.4)

Moreover, this embedding is evaluated at J different scales s to incorporate more
information on the propagation processes of the graphs. The final embedding
χv = [Re(φsjv (ti)), Im(φsjv (ti))]sj ,ti is of size 2dJ .

After having computed node embeddings with diffusion wavelets, they apply an
agglomerative clustering algorithm to cluster nodes according to their structural
role in graphs.

In analogy to GraphWave, in this work we compute node embeddings with
diffusion processes in graphs. We build hierarchical embeddings to encode
topological nodes’ neighborhoods. Moreover, our method allows us to include
features available on nodes in node embeddings in order to identifiy roles that
represent local topological patterns. We finally cluster nodes in an end-to-end
trainable fashion to identify structural roles for each node of graphs in our
dataset.

4.4 Method

In this Section we introduce the structural aggregation layer (StructAgg). We
show how we identify structural classes for nodes in graphs; how those classes
are used in order to develop an aggregation layer; and how this layer allows us to
compare significant structural patterns in graphs for a supervised classification
task.
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4.4.1 Structural Embedding

Graph neural networks. We build our work upon graph neural networks
(GNNs). Several architectures of graph neural networks have been proposed
by Defferrard et al. [2016], Kipf and Welling [2016], Veličković et al. [2017]
or Bruna and Li [2017]. Those graph neural network models are all based on
propagation mechanisms of node features that follow a general neural message
passing architecture [Ying et al., 2018, Gilmer et al., 2017]:

X(l+1) = MP (A,X(l);W (l)) (4.5)

where X(l) ∈ Rn×fl are the node embeddings computed after l steps of the GNN,
X(0) = X, and MP is the message propagation function, which depends on the
adjacency matrix. W (l) is a trainable weight matrix that depends on layer l. Let
fl be the dimension of the node vectors after l steps of the GNN, f0 = f .
The aggregation process that we introduce next can be used with any neural
message passing algorithm that follows the propagation rule 4.5. In all the
following of our work we denote by MP the algorithm. For the experiments, we
consider Graph Convolutional Network (GCN) defined by [Kipf and Welling,
2016]. This model is based on an approximation of convolutions on graphs defined
by [Defferrard et al., 2016] and that use spectral decompositions of the Laplacian.
The popularity of this model comes from its computational efficiency and the
state-of-the-art results obtained on benchmark datasets. This layer propagates
node features to 1-hop neighbors. Its propagation rule is the following:

X(l+1) = MP (A,X(l);W (l)) = GCN(A,X(l)) = ρ(D̃−1/2ÃD̃−1/2X(l)W (l))
(4.6)

Where ρ is a non-linear function (a ReLU in our case), Ã = A + In is the
adjacency matrix with added self-loops and D̃ii =

∑
j Ãij .

This propagation process allows us to obtain a node representation representing
its l-hop neighborhood after l layers of GCN. We build a hierarchical representa-
tion for nodes by concatenating their embeddings after each step of GCN. The
final representation Xstructi of a node i is given by:

Xstructi =
Ln

l=1
X

(l)
i (4.7)

Where L is the total number of GCN layers applied.

Identifying structural classes. Embedding nodes with MP creates embed-
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dings that are close for nodes that are structurally equivalent. Some use a
handcrafted node embedding based on propagation processes with wavelets in
graphs to identify structural clusters based on hierarchical representation of
nodes [Donnat et al., 2018]. By analogy, we learn hierarchical node embeddings
and an aggregation layer that identifies structural roles for node in graphs. Those
structural roles are consistent along graphs of a dataset which allows us to bring
interpretability to our graph classification task.
Node features Xstruct contain the information of their L-hop neighborhood
decomposed into L vectors each representing their l-hop neighborhood for l
varying between 1 and L. We will show next that nodes that have the same
L-hop neighborhood are embedded into the same vector.
To identify structural roles, we thus project each node embedding on a matrix

p ∈ Rfstruct×c where c is the number of structural classes and fstruct =
L∑
l=1

fl

is the dimensionality of Xstructi for each node i. We obtain a soft assignment
matrix:

C = softmax(Xstructp) ∈ Rn×c (4.8)

Where the softmax function is applied in a row-wise fashion. This way, Cij
represents the probability that node i belongs to cluster j.

Definition 4. Let i and j be two nodes of a graph G = (V,E,X). Let Nl(i) =
{i′ ∈ N |d(i, i′) ≤ l} be the l-hop neighborhood of i, which means all the nodes
that are at distance lower or equal to l of i, d being the shortest-path distance.
Let XNl(i) be the feature matrix of the l-hop neighborhood of u. Let Gi,l be the
subgraph of G composed of the l-hop neighborhood of i.
We say that u and v are l-structurally equivalent if there exists an isomorphism
ψ from Nl(j) to Nl(i) such that the two following conditions are verified:

• Gi,l = ψ(Gj,l)

• ∀j′ ∈ Nl(j), Xψ(j′) = Xj′

Theorem 2. Two nodes i and j that are L-structurally equivalent have the same
final embedding, Xstructi = Xstructj.

Proof. Let i and j be two nodes of a graph G = (V,E,X) that are L-structurally
equivalent.
Let P(l) be the following proposition:
Two nodes that are l-structurally equivalent for some l, have the same embedding
after l steps of GCN.
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Let’s prove this proposition by induction.
P(0) is true, two nodes that have the same embedding are 0-structurally equiva-
lent after 0 step of GCN.
Let P(l) be true and let’s prove P(l + 1).
Let i and j be two nodes that are l-structurally equivalent. After a step of GCN
we have:

X(l+1) = GCN(A,X(l))

So we have:

(D̃−1/2ÃD̃−1/2X(l))i =
∑

i′∈N (i)

aii′√
didi′

X
(l)
i′

Since i and j are l-structurally equivalent, there exists an isomorphism ψ such
that:

∀i′ ∈ Nl(i),∃j′ ∈ Nl(j) such that X(l)
i′ = X

(l)
ψ(j′) = X

(l)
j′

⇒
∑

i′∈N (i)

aii′√
didi′

X
(l)
i′ =

∑
j′∈N (j)

aψ(j)ψ(j′)√
dψ(j)dψ(j′)

X
(l)
ψ(j′) =

∑
j′∈N (j)

ajj′√
djdj′

X
(l)
j′

⇒ (D̃−1/2ÃD̃−1/2X(l))i = (D̃−1/2ÃD̃−1/2X(l))j

⇒ X
(l+1)
i = f(D̃−1/2ÃD̃−1/2X(l)W (l))i

= f(D̃−1/2ÃD̃−1/2X(l)W (l))j

= X
(l+1)
j

So two nodes i and j that are L structurally equivalent, are l structurally
equivalent for all l between 0 and L and thus, Xstructi = Xstructj because
Xstruct is the concatenation of embeddings after each layer.

4.4.2 Structural Aggregation

After having identified structural classes, we aggregate node embeddings over
those classes, as illustrated in figure 4.2. The goal is to obtain an embedding
that discriminates graphs that do not belong to the same class and that selects
similar patterns in graphs of the same class. Graphs that have similar properties
and thus similar node patterns should have nodes with similar roles and similar
embeddings.
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Figure 4.2: Aggregation of node features
over structural classes

Performing a structural aggrega-
tion. The structural aggregation aims
at comparing embeddings of nodes
that have similar roles in the graph.
When computing the distance between
two graphs, if those two graphs have
the same distribution of structural
roles, they will have embeddings that
are close. Nodes that are leaves or
nodes that are central in the graph
should be compared separately. Math-
ematically, the variance over all nodes
of the graph may be high and decomposing nodes per structural roles aims at
decreasing the variance per cluster and thus at bringing more information to the
final graph embedding.
The structural aggregation layer performs an aggregation per structural role.
This aggregation is a mean of embeddings of nodes that belong to the same
cluster. The final embedding is a concatenation of the mean embeddings of the
nodes per cluster of structural role.

Zgraph = CTX(L) ∈ Rc×fL

Proposition 3. The embedding Zgraph is invariant by node permutation.

Proof. Let P ∈ 0, 1n×n be any permutation matrix. Since P is a permutation
matrix we have PPT = I. We have PX(l+1) = GCN(PAPT , PX(l)).

Zgraph = CTX(L)

= (softmax(Xstructp))TX(L)

= (softmax(PTPXstructp))TPTPX(L)

Since the softmax is applied in a row-wise fashion, we have:

Zgraph = (PT softmax(PXstructp))TPTPX(L)

= (softmax(PXstructp))TPX(L)

= ZPgraph

Where ZPgraph is the embedding of our graph to which we have applied the
permutation P
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Moreover when performing soft classification, the output cluster assignment for
each node should generally be close to a one-hot vector so that each node has
a clear structural role identified. We therefore regularize the entropy of the
cluster assigmnent matrix by minimizing Lreg = 1

n

n∑
i=1

H(Ci.) where H(Ci.) is

the entropy of the assignment vector Ci. of node i. This is often done when
identifying classes for nodes. The same regularization is applied in [Ying et al.,
2018] to identify communities in graphs to develop a pooling layer.
Remarks.

• The structural classes identified by our algorithm are local. They contain
the information of the L-hop neighborhood of each node.

• Compared to the structural embedding presented in Donnat et al. [2018],
our algorithm needs multiple graphs and is trained in a supervised fashion.
Donnat et al. [2018] introduced a node embedding that allows us to
identify structural classes in a single graph. It is not straightforward how
to generalize this procedure to the case of a set of graphs. Indeed, when
dealing with a single graph, this procedure is very efficient at identifying
structural roles. However, those structural roles are defined per graph
and thus two nodes that have the same structural role but that lie in two
different graphs can have embeddings that differ and can thus be classified
in two different classes.

4.5 Experiments

4.5.1 Graph Classification

Datasets: We choose a wide variety of benchmark datasets for graph classifi-
cation to evaluate our model. The datasets can be separated in two types. 2
bioinformatics datasets: PROTEINS and D&D; and a social network dataset:
COLLAB. In the bioinformatics datasets, graphs represent chemical compounds.
Nodes are atoms and edges represent connections between two atoms. D&D
and PROTEINS contain two classes of molecules that represent the fact that a
molecule can be either active or inactive against a certain type of cancer. The
aim is to classify molecules according to their anti-cancer activity. COLLAB is
composed of ego-networks. Graphs’ labels are the nature of the entity from which
we have generated the ego-network. In Table 4.1 we report some information on
these datasets such as the maximum number of nodes in graphs, the average
number of nodes per graph, the number of graphs, the size of node features f (if
available) and the number of classes. More details can be found in [Yanardag and
Vishwanathan, 2015]. We also use the new database Open Graph Benchmark
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(OBG) to test our method on larger datasets [Hu et al., 2020]. We use the
ogb-molhiv dataset whose properties are listed bellow. Each graph represents
a molecule, where nodes are atoms, and edges are chemical bonds. Input node
features are 9-dimensional, containing atomic number and chirality, as well as
other additional atom features such as formal charge and whether the atom is in
the ring or not.

Experimental setup: We perform a 10-fold cross validation split which gives
10 sets of train, validation and test data indices in the ratio 8:1:1. We use
stratified sampling to ensure that the class distribution remains the same across
splits. We fine tune hyperparameters nroles the number of structural roles, lr
the learning rate and finally the dimensions of the successive layers respectively
chosen from the sets {2, 5, 10, 20}, {0.01, 0.001, 0.0001}, {8, 16, 32, 64, 128, 256}.
We fix l1 = 1 and l2 = 2. The sets from which our hyperparameters are selected
vary according to the sizes of graphs in each dataset. We do not set a maximum
number of epochs but we perform early stopping to stop the training which
means that we stop the training when the validation loss has not improved for
20 epochs. We report the mean accuracy and the standard deviation over the 10
folds on the validation set. We compare our method with kernel methods and
with a graph neural network that uses pooling layers [Ying et al., 2018]. We
should note that kernel methods do not use node features that are available on
bioinformatics datasets. For COLLAB, we don’t have any features available on
nodes. We compute the one-hot encoding of node degrees that we use as node
features for our algorithm.

Results: From the results of Table 4.1 we can observe that StructAgg is
competing with state-of-the-art methods. Indeed, on most datasets, StructAgg
has a score very close to those obtained by Ying et al. [2018] and Gao and Ji
[2019]. From Table 4.1, StructAgg outperforms all algorithms on COLLAB.
Moreover, StructAgg allows us to improve classification results from GCN on
ogb-molhiv dataset as illustrated in figure 4.2.

Name #Graphs
#Node per

Graph
#Edges

per Graph GCN strcutAgg

ogbg-molhiv 41127 25.5 27.5 0.7606± 0.0097 0.7701± 0.0102

Table 4.2: OGB dataset for graph classification. The score reported is the
ROC-AUC score.
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Dataset D&D PROTEINS COLLAB

Max #Nodes 5748 620 492
Avg #Nodes 284.32 39.06 74.49
#Graphs 1178 1113 5000

f 89 3 -
classes 2 2 3

Graphlet [Shervashidze et al., 2009] 74.85 72.91 64.66
Shortest-Path [Borgwardt and Kriegel,

2005] 78.86 76.43 59.10
1-WL [Shervashidze et al., 2011] 74.02 73.76 78.61
WL-OA [Kriege et al., 2016] 79.04 75.26 80.74

GraphSage [Hamilton et al., 2017] 75.42 70.48 68.25
DGCNN [Zhang et al., 2018a] 79.37 76.26 73.76
DIFFPOOL [Ying et al., 2018] 80.64 76.25 75.48
g-U-Nets [Gao and Ji, 2019] 82.43 77.68 77.56

StructAgg 78.42 ± 0.97 76.72 ± 2.53 80.26 ± 2.73

Table 4.1: Classification accuracy on bioinformatics datasets

4.5.2 Structural Role

We show some examples of molecules of a molecular dataset and the roles
identified by our algorithms. From figure 4.3 we can see that there is some
consistence in the assignment of nodes to structural roles. Moreover, a great
advantage of our method is that it takes into account node features that are in
our case a one-hot encoding of the atom type. Compared to Donnat et al. [2018]
whose embeddings do not include node features, our method identifies roles in a
macroscopic fashion by identifying similar roles in the whole dataset and not in
a single graph. Most methods rely on computed features that correspond to a
single graph and do not generalize to multiple graphs because of scales issues.
It is the case for GraphWave for which features computed in order to cluster
nodes per roles depend on the size of the graph. To compare our role assignment
with GraphWave, we computed assignments per graph and not along the whole
dataset. We can note that compared to GraphWave, our algorithm uses node
features to select structal roles.

4.5.3 Pattern Identification

Identifying roles in graphs boils down to identifying significant patterns. As
shown in subsection 4.5.2, the roles that we were able to identify represent
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Molecules drawn for a bioinformatics dataset. The colors represent
structural classes identified by our algorithm in figures 4.3a, 4.3c and 4.3e
compared to the output of GraphWave in figures 4.3b, 4.3d and 4.3f. To compare
the structural classes output by the two algorithms, 4.3a and 4.3b are the same
molecule, 4.3c and 4.3d also and 4.3e and 4.3f are the same molecule. To obtain
comparable results, we run our algorithm and output the structural classes for
each molecule. For each molecule, we then run GraphWave with the number of
classes from StructAgg being set as input of GraphWave.

coherent patterns in graphs. Graphs’ final embeddings are made of two parts.
Nodes’ embeddings that are the result of successive GCNs and the allocation of
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all nodes to different structural classes. We would like to quantify how much
information is contained in the structural roles and if the decomposition of the
graph in c classes improves our classification accuracy. To this end, from our
trained algorithm, we compute all allocation matrices of all graphs of a dataset.
In order to validate the fact that roles themselves have a high discriminative
power, we need to identify combinations of roles that are specific to different
classes. We thus want to identify the structural roles that compose each graph.
Let’s consider a graph G and an allocation matrix C ∈ Rn×c. We obtain a soft
assignment matrix. We compute on it a histogram per class over each node of
the graph. The feature vector is now a concatenation of all histograms per class.
We have:

FeatG =
cn

j=1
hist(C.j , bins) ∈ Rbins∗c

Where bins is the number of bins for the histogram. The histogram upper and
lower bounds are 0 and 1 because the values of C are the output of a softmax
function.
Let (G1, ..., Gd) be d graphs of labels (y1, ..., yd). After having computed all
graphs’ histograms we obtain d vectors (FeatG1 , ..., F eatGd) that we use as
imputs of a classifier. We use a SVM and we display the results in table
4.3 in order to compare the information that comes from the strutural roles
identification and the information that comes from node embeddings.
We can see that the accuracy is lower when we don’t consider node embeddings
which is consistent with the fact that a lot of information is contained in
the embeddings of nodes that are the outputs of GCNs. But the accuracy is
significantly higher than a random model which proves that we can identify some
patterns in the distribution of structural roles among graphs and that those
patterns are a good first approximation to separate classes in a dataset.

Dataset D&D PROTEINS COLLAB

StructAgg 78.42 ± 0.97 76.72 ± 2.53 80.26 ± 2.73

StructHist 74.54 ± 2.87 73.68 ± 2.03 70.94 ± 2.08

Table 4.3: Classification accuracy based on the histogram of the assignment
matrix (StructHist) compared to our algorithm (StructAgg).

4.6 Discussion

In this work we developped an aggregation process based on node structural role
identification. In this section we will discuss the similarity of those roles with
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those output by GraphWave [Donnat et al., 2018] and presented in section 4.2.

Our algorithm is designed for a task of graph classification. We embed each node
with a message passing algorithm. Node embeddings include the information of
their L-hop neighborhood after L layers of GCN (we use a GCN for experiments.
However, as said previously, we could use any algorithm following the message
passing rule 4.5). We identify structural roles, which are topological patterns in
graphs, by clustering each node into a predefined number of roles. This is done
in a trainable fashion by learning an assignment matrix for nodes in graphs. We
feed several graphs to our algorithm and solve a graph classification task, the
structural roles are useful to improve the classification accuracy and to possibly
interpret the patterns selected during the classification process. It is thus not ob-
vious how to modify it in order to embed a single graph’s nodes. Indeed, we could
use a U-Net architecture in order to tackle problematics on a single graph such
as node classification or link prediction. However, since structural role identifi-
cation is made during the aggregation phase, it is not obvious how to generalize it.

In the opposite direction, Donnat et al. [2018] define a node embedding that is
designed for a single graph. Roles identifed are consistent for a unique graph
and it is not obvious in this case how to define a node embedding that would be
consistent for different graphs and among them. This can be done by creating
a graph which is the concatenation of all graphs of our dataset. Applying
GraphWave would boil down to embedding all nodes of all graphs at the same
time. Identifying strucutral roles by clustering node embeddings would produce
structural roles that are consistent among all graphs. However, there are some
limitations to this methodology. Node embedding are scaled regarding the size
of the graph. This means that nodes that have the same role in graphs but that
belong to graphs of different sizes have embedding that differ with GraphWave.
This is thus not enough to identify roles that are consistent among graphs with
GraphWave.
To compare structural role embedding with GraphWave in Section 4.5.2, we
simply embedded single graphs with GraphWave and compared the results with
our structural role identification. To set the number of clusters as input, we
used the minimum between the number of clusters that we set as input of our
algorithm and the number of roles identified for the graph with StructAgg. This
isn’t optimal for GraphWave because it constraints the choice for the number of
structural roles.

Finally, StructAgg allows us to use features available on nodes to classify nodes
into structural roles. When dealing with grah structured data, we often have



4.6. Discussion 65

additional information on nodes and/or on edges. This information modeled by
feature vectors is to be taken into account when trying to identify structural
roles. Indeed in the present case, we are in a graph classification setting and
we want to classify molecules. We have node feature available that represent
the type of atom each node is in datasets DD and PROTEINS. For dataset
ogbg-molhiv, we also have chemical features on nodes such as the atomic number
of the chirality. These features characterize each node and play a great deal
in the identification of structural roles. Indeed, two nodes that have the same
topological connections but different atom types may play different roles in the
graph. One other advantage of our method compared to graphWave is to take
into account node features in node embeddings in order to be more accurate in
the classification of nodes into structural roles.
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Chapter 5

Graph Pooling by Edge Cut

In this Chapter we introduce a novel pooling layer for graphs. In analogy with
Convolutional Neural Networks on images for which pooling plays a great role,
we want to design a pooling layer to learn hierarchical features in graphs. We
design an algorithm trainable in an end-to-end fashion. The work presented in
this Chapter is currently under review at ICLR 2021.

5.1 Introduction

Convolution neural networks [LeCun et al., 1995] have been proven to be very
efficient at learning meaningful patterns for many articificial intelligence tasks.
They convey the ability to learn hierarchical informations in data with Euclidean
grid-like structures such as images and text. Convolutional Neural Networks
(CNNs) have rapidly become state-of-the art methods in the fields of computer
vision [Russakovsky et al., 2015] and natural language processing [Devlin et al.,
2018].
However in many scientific fields, studied data have an underlying graph or
manifold structure such as communication networks (whether social or techni-
cal) or knowledge graphs. Recently there has been many attempts to extend
convolution to those non-Euclidean structured data [Hammond et al., 2011, Kipf
and Welling, 2016, Defferrard et al., 2016]. In these new approaches, the authors
propose to compute node embeddings in a semi-supervised fashion in order to
perform node classification. Those node embeddings can also be used for link
prediction by computing distances between each node of the graph [Hammond
et al., 2011, Kipf and Welling, 2016].
Images can be seen as a special case of graph that lie on a 2D grid and where
nodes are pixels and edges are weighted according to the difference of intensity
and set between pairs of pixels that are close enough [Zhang et al., 2015, Achanta

67
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and Susstrunk, 2017, Van den Bergh et al., 2012, Stutz et al., 2018]. In the
emerging field of graph analysis based on convolutions and deep neural networks
models, it is appealing to try to apply models that worked best in the field of
computer vision to graphs. In this effort, several ways to perform convolutions
in graphs have been proposed [Hammond et al., 2011, Kipf and Welling, 2016,
Defferrard et al., 2016, Gilmer et al., 2017, Veličković et al., 2017, Xu et al.,
2018, Battaglia et al., 2016, Kearnes et al., 2016]. Moreover, when dealing with
image classification, an important step is pooling [Gao and Ji, 2019, Ying et al.,
2018, Defferrard et al., 2016, Diehl, 2019]. It allows us to extract hierarchical
features in images in order to make the classification more accuracte. While it
is easy to extract a coarsened image from an input image, it isn’t obvious how
to coarsen a graph since nodes are not ordered like pixels in an image. In this
work we present a novel pooling layer based on edge scoring and related to the
minCUT problem.
The main contributions of this work are summarized bellow:

1. Learned pooling layer. A differentiable pooling layer that learns how
to aggregate node in clusers to produce a pooled graph of reduced size.

2. Learned edge scores. During the pooling layer, we learn edge scores.
Scores are obtained by a function applied to all nodes couples that are
linked by an edge. This score outputs the topological proximity of two
nodes.

3. Approximation of the problem of minCUT. We develop a pooling
layer based on edge cuts. We regularize our problem by a term that
corresponds to the problem of Ncut in order to learn edge scores and
clusters that are consistent with the topology of the graph.

4. Experimental results. Our method achieves state-of-the-art results on
benchmark datasets. We compare it with kernel methods and state-of-
the-art message passing algorithms that use pooling layers as aggregation
processes.

5.2 Related Work

Recently there has been a rich line of research, inspired by deep models in images,
that aims at redefining neural networks in graphs and in particular convolutional
neural networks [Defferrard et al., 2016, Kipf and Welling, 2016, Veličković et al.,
2017, Hamilton et al., 2017, Bronstein et al., 2017, Bruna et al., 2013, Scarselli
et al., 2009]. Those convolutions can be viewed as message passing algorithms
that are composed of two phases Gilmer et al. [2017]. A message passing phase
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that runs for T steps and is defined in terms of message functions and vertex
update functions. A readout phase that computes a feature vector for the whole
graph using some readout function. In this work we will see how to define a
readout phase that is learnable and that is representative of meaningful patterns
in graphs.
In the field of graph neural networks, along the generalization of convolutions
and other deep neural models to graphs, the scientific community has proposed
several approaches to perform pooling in graphs. We can distinguish four types
of coarsening algorithms:

• Top-k: Like Gao and Ji [2019], the objective is to score nodes according
to their importance in graphs and then to keep only the nodes with the
top-k scores. Because this approach can produce sparse coarsen graphs, a
step of edge by adding edges at 2hops is necessary.

• Cluster identification: This is usually done by projecting nodes features
on a matrix to obtain an assignment matrix. Nodes that have close
embeddings are projected on the same cluster. After having obtained
the assignment, super nodes at the coarsened level can be computed by
aggregating all nodes that belong to the same cluster [Ying et al., 2018].

• Edge based pooling: An edge contraction pooling layer has recently
been proposed by Diehl [2019]. They compute edge scores in order to
perform contracting, which means that they merge two by two nodes that
are linked by the edges of the highest scores.

• Deterministic coarsening strategies: Finally, a way to perform pooling
in graphs can simply be to apply a deterministic clustering algorithm in
order to identify cluste s of nodes that will represent nodes in the coarsened
level [Defferrard et al., 2016, Ying et al., 2018]. The main drawback of it
is that the strategy isn’t learned and thus may not be the best suited for
the graph classification task.

In this work we define a new pooling layer that is based on edge cuts. Like
Diehl [2019] we focus our pooling method on edges instead of nodes. In their
work, Diehl [2019] calculate scores on edges to perform contraction pooling. This
means that at each pooling step, they merge pairs of nodes that are associated
with the highest edge scores, without merging nodes that were already involved
in a contracted edge. This methods results in pooled graphs of size divided by 2
compared to the previous graph.
There are several differences with the pooling layer that we propose in this work.
We want our pooling layer not to be constrained by a number of communities
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or by a predefined size of pooled graph. Moreover, our pooling layer works by
edge cuts and the goal is to remove edges that minimize the minCUT problem.
Once edges cut, the graph is no longer connected and is composed of several
connected components. These connected components correspond to nodes in
the coarsened level. In this work, we will first introduce the pooling architecture
based on edge scoring in section 5.4.1. We will then relate this pooling layer to
the minCUT problem in section 5.4.2. We will finally compare this pooling layer
to state-of-the-art methods on benchmark dataset on a graph classification task
and a node classification task in section 5.5.

5.3 Pooling layers

In this section we present related work on learnable pooling layers. Moreover,
we relate our edge scoring function and our pooling layer to other recent works
on graph neural networks.

5.3.1 Top k Pooling [Gao and Ji, 2019]

We first introduce the top-k pooling layer and more specifically the layer proposed
by Gao and Ji [2019]. Since there is no locality information among nodes in
graphs, it is impossible to apply classical pooling strategies that work on grid-like
structured data. The key idea proposed in their work is to score nodes in or-
der to obtain an order for nodes in graphs and to keep the k most important ones.

To this end, they employ a trainable projection vector p. By projecting all node
features to 1D, they can perform k max-pooling for node selection [Kalchbrenner
et al., 2014]. Given a node i with its feature vector xi, the scalar projection of
xi on p is yi = xip/||p||. Here, yi measures how much information of node i can
be retained when projected onto the direction of p. By sampling nodes, they
wish to preserve as much information as possible. They thus decide to keep the
nodes with the highest projection values on p. Let A(l) be the adjacency matrix
of the coarsened graph after layer l, X(l) be the feature matrix and p(l) be the
projection vector. The layer-wise propagation rule of the graph pooling layer l is

y = X(l)p(l)/||p(l)||
idx = rank(y, k)

ỹ = sigmoid(y(idx))
X̃(l) = X(l)(idx, :)

A(l+1) = A(l)(idx, idx)
X(l+1) = X̃(l) � (ỹ1T )
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where k is the number of nodes selected in the new graph. rank(y, k) is the
operation of node ranking, which returns indices of the k-largest values in y.
The idx returned by rank(y, k) contains the indices of nodes selected for the new
graph. A(l)(idx, idx) and X(l)(idx, :) perform the row and/or column extraction
to form the adjacency matrix and the feature matrix for the new graph. y(idx)
extracts values in y with indices idx followed by a sigmoid operation. 1 is a
vector with all components being 1, and � represents the element-wise matrix
multiplication.

Remarks.

• The pooling algorithm is illustrated in figure 5.1. The element-wise multi-
plication between the components of X̃ and ỹ makes the node selection
trainable by back-propagation.

• The node deletion implies that we can remove important connections and
more importantly, the coarsened graph can be disconnected. A way to
counter this effect can be to recreate lost connections in the graph by
adding edges that were two hops edges in the original graph.

Figure 5.1: gPool

5.3.2 Cluster Assignment [Ying et al., 2018]

The second pooling strategy is to obtain a cluster assignment matrix from nodes
embeddings. In their work, Ying et al. [2018]. They develop an end-to-end
learnable algorithm based on successive convolutions and pooling layers. They
use GNNs to embed nodes and to compute the assignment matrices.
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Learning the assignment matrix. They use generic GNNs to embed nodes.
The output node embedding after layer l is

Z(l) = GNNl,embed(A(l), X(l))

Where GNNl,embed denotes the GNN model at layer l to embed nodes, in contrast
with GNNl,pool that is the GNN model used at layer l to compute the assignment
matrix. In parallel of computing node embeddings, the node assignment matrix
S(l) to clusters is defined by node embeddings X(l):

S(l) = softmax(GNNl,pool(A(l), X(l))) ∈ Rnl×nl+1

where the softmax is applied in a row-wise fashion and nl and nl+1 denote
the sizes of the input graph of layer l and of the coarsened graph. The output
dimension of GNNl,pool is a hyperparameter and corresponds to a predefined
maximum number of cluster in layer l.

Pooling with an assignment matrix. After having computed the assign-
ment matrix S(l) and node embeddings Z(l) at layer l, they define the coarsening
strategy. The coarsened adjacency matrix A(l+1) and the new matrix of embed-
dings X(l+1) are defined as follow

X(l+1) = S(l)TZ(l)

A(l+1) = S(l)TA(l)S(l)

5.3.3 Edge based pooling [Diehl, 2019]

The two previous pooling strategies focused on nodes whether by deleting the less
imformative nodes or by calculating an assignment matrix in order to regroup
nodes by clusters. A third way to perform pooling is by an agglomerative way.
In their work, Diehl [2019] compute edge scores and perform contraction. They
identify pairs of nodes that are linked by edges with the highest scores and merge
them into a single node. They only merge nodes once so that the size of the
coarsened graph is approximately half of the size of the original graph.

Edge score. From node embeddings Xi and Xj for nodes i and j, the edge
raw score is

rij = W (Xi||Xj) + b

where W and b are learnable parameters and (Xi||Xj) denotes the concatenation
of vector Xi and Xj . The final score sij of edge (i, j) ∈ E is

sij = 0.5 + softmaxr.j (rij)

The 0.5 term is here to rescale to score so that the mean lies in the neighborhood
of 1 for better gradient flow and better performance in the classification.
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Edge contraction. Given the edge score, they then iteratively select edges
ranked by scores and contract nodes two by two. This roughly pools half of the
total nodes. New features X̂ are then computed by summing node features and
by rescaling it according to the edge score.

X̂ij = sij(Xi +Xj)

Moreover, we can add edge features to compute edge scores by concatenating
them with node features during the edge scoring procedure.

Remark. This is an agglomerative procedure in which each node starts in its
own cluster and at each step we merge two nodes into a same cluster and thus
reduce the size of the graph by 1. This procedure can be applied until all nodes
are in the same cluster and the remaining graph is composed of a single node.
In contrast, the pooling strategy that we will introduce next is a based on a
divisive approach (or top-down approach) where the graph is composed of a
single cluster that we successively split.

5.3.4 Attention Mechanisms [Veličković et al., 2017]

In this section we introduce the Graph Attention Networks (GAT) [Veličković
et al., 2017] that closely follows the work of Bahdanau et al. [2014]. The input of
this layer is a set of node features X = {X1, ..., Xn} where Xi ∈ Rf . The layer
produces a new set of features X′ = {X ′1, ..., X

′

n}.
In order to obtain sufficient expressive power to transform the input features
into higher-level features, at least one learnable linear transformation is required.
To that end, as an initial step, a shared linear transformation, parametrized
by a weight matrix, W ∈ Rf

′
×f , is applied to every node. We then perform

self-attention on the nodes—a shared attentional mechanism a : Rf
′

× Rf
′

7→ R
computes attention coefficients

eij = a(WXi,WXj)

That indicates the importance of node j’s feature to node i. In its most general
formulation, the model allows every node to attend on every other node, dropping
all structural information. We inject the graph structure into the mechanism
by performing masked attention—we only compute eij for nodes j ∈ Ni, where
Ni is some neighborhood of node i in the graph. To make coefficients easily
comparable with one another, they are normalized with a softmax that is applied
allong all nodes of a neighborhood

αij = softmaxj(eij) = exp(eij)∑
k∈Ni

exp(eij)
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This mechanism scores edges according to their relative importance to the
central node as illustrated in figure 5.2. The weights are then used to rescale
the importance of each node feature in the graph neural network formulation.
The output feature of node i is then

X
′

i = σ(
∑
j∈Ni

αijWXj)

To stabilize the learning process of self-attention, they have found extending their
mechanism to employ multi-head attention to be beneficial, similarly to Vaswani
et al. [2017]. Their output feature is thus the concatenation of K independant
attention mechanisms

X
′

i =
Kf

k=1
σ(
∑
j∈Ni

α
(k)
ij W

(k)Xj)

Where α(k)
ij are the attention coefficients of head k andW (k) is the corresponding

input linear transformation’s weight matrix.

Figure 5.2: Graph attention networks.

5.4 Pooling architecture

When designing a pooling layer, most algorithms need a number of classes for
the pooling layer that is usually set as a hyperparameter. This is very restrictive
especially when working on graphs of different sizes. Indeed, the pooling layer
should cluster nodes according to the topology of the graph without being
constrained by a number of classes. In this section we present our pooling layer
that is based on edge cutting and that does not necessitate any a priori on the
number of classes that needs to be found.
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5.4.1 GNNs

Let G = (V,E,X) be a graph composed of a set of nodes V , a set of edges E
and a node feature matrix X ∈ Rn×f0 where f0 is the dimensionality of node
features. We denote by A the adjacency matrix.
Graph neural networks. We build our work upon graph neural networks
(GNNs). There are several architectures of graph neural networks that have
been proposed by Defferrard et al. [2016], Kipf and Welling [2016], Veličković
et al. [2017] or Bruna and Li [2017]. Those graph neural network models are all
based on propagation mechanisms of node features that follow a general neural
message passing architecture [Ying et al., 2018, Gilmer et al., 2017]:

Z(l+1) = MP (A,Z(l);W (l)) (5.1)

where Z(l) ∈ Rn×fl are node embeddings computed after l steps of MP , Z(0) =
X, andMP is the message propagation function, which depends on the adjacency
matrix. W (l) is a trainable weight matrix that depends on layer l and fl is the
dimensionality of node embeddings.
The pooling layer that we introduce next can be used with any neural message
passing algorithm that follows the propagation rule 5.1. In all the following of
our work we denote by MP the algorithm. For the experiments, we consider
the Graph Convolutional Network (GCN) defined by [Kipf and Welling, 2016].
This model is based on an approximation of convolutions on graphs defined by
[Defferrard et al., 2016] and that use spectral decompositions of the Laplacian.
It is very popular because it is very efficient computationally and obtains state-
of-the-art results on benchmark datasets. This layer propagates node features to
1-hop neighbors. Its propagation rule is the following:

Z(l+1) = MP (A,Z(l);W (l)) = GCN(A,Z(l)) = ρ(D̃−1/2ÃD̃−1/2Z(l)W (l))
(5.2)

Where ρ is a non-linear function (a ReLU in our case), Ã = A + In is the
adjacency matrix with added self-loops and D̃ii =

∑
j Ãij is the degree diagonal

matrix associated with adjacency matrix Ã.
Scoring edges. After layer l, each node i in the graph has an embedding Z(l)

i .
To simplify notations, we consider all matrices to be associated to layer l and we
do not keep the exponent l. For example, we write feature of node i at layer l, Zi
and its dimensionality is denoted by f . Based on these embeddings, we develop
a scoring function that characterizes the importance of each edge of the graph.
The input of our scoring algorithm is a set of node features, {Z1, ..., Zn} ∈ Rn×f .
The scoring function produces a matrix S ∈ Rn×n associated with layer l,
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Sij = 1(i,j)∈E ∗ sij where sij is the score of edge (i, j).
In order to compute the score of each edge of the graph, we apply a shared
linear transformation, parametrized by a weight matrix Wpool ∈ Rf×d, to each
node of the graph, d being the output size of the linear transformation. We then
perform self-attention on nodes, as used in the Graph Attention Network (GAT)
[Veličković et al., 2017], by applying a shared weight a : R× R→ R to obtain a
score on edge (i, j) ∈ E:

sij = σ(a[WpoolZi||WpoolZj ]) (5.3)

Where σ is the sigmoid function, Wpool and a are trainable matrices associated
with layer l and [WpoolZi||WpoolZj ] ∈ R2d is a vector that is the concatenation of
WpoolZi and WpoolZj . Let’s note that this scoring function isn’t symmetric and
depends on the order of nodes. We can symmetrize this function by computing

sij = 1
2 (σ(a[WpoolZi||WpoolZj ]) + σ(a[WpoolZj ||WpoolZi]))

By applying the sigmoid function to the attention mechanism we compute an
importance of edges. The goal is to obtain a distribution on edges for whose
nodes that are close topologically have an edge which value is close to 1. In the
opposite case, we would like an edge to have a weight close to 0 if it links two
nodes that do not lie in the same community. By doing so we would like to solve
the minimum cut problem in graphs.

After having computed the edge score matrix, we keep a ratio r of edges that
correspond to edges with the r% higher scores. We obtain a threshold sthreshold
that corresponds to the rth percentile of the distribution of edge scores. This way,
we cut edges which scores are close to 0 in the graph. Edges with the smallest
scores represent edges that link nodes that aren’t in the same community and
thus by cutting those edges, we separate the graph into several clusters. We
denote by Scut the score matrix with values under sthreshold truncated to 0. Each
row is renormalized by the number of positive components. This renormalization
is useful in the following to compute node features in the coarsened level.

∀(i, j) ∈ V 2, Scutij = 1∑
j∈N (i)

1sij≥sthreshold
sij1sij≥sthreshold

We then extract the connected components of the new graph with cut edges.
Those connected components represent super nodes in the pooled graph. We
obtain a cluster assignment matrix C ∈ Rn×c, c being a free parameter that
isn’t fixed and that can vary during the training of the algorithm. After layer l,
the pooled adjacency matrix and the pooled feature matrix are thus:
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A(l+1) = A
(l)
pool = C(l)TA(l)C(l)

Z(l+1) = Z
(l)
pool = C(l)TS

(l)
cutZ

(l)

Remark. The multiplication by ScutZ makes the weights Wpool and a trainable
by back-propagation. Otherwise it wouldn’t be the case because the function
that outputs the matrix C by finding connected components from matrix Scut is
not differentiable.
Moreover, this multiplication weights the importance of each node feature in the
super node of the coarsened level. In order to compute the feature Zk of cluster
(or super node) k, we compute a node importance score scuti at layer l for each
node i of the graph:

scuti = 1∑
j∈N (i)

1
scut

(l)
ij
>0

∑
j∈N (i)

scutij

The feature Zk of cluster k is then a weighted mean of the features of nodes that
belong to cluster k:

Zk =
∑
i∈k

scutiZi

Moreover, for edge scores to be consistent with the minCUT algorithm, we add
a regularization term that we define in the next section.

5.4.2 Min cuts

Graph Cuts. In community detection, the min cut problem aims at finding the
separation, between disjoint subsets, that minimizes the cut. For two disjoint
subsets V1, V2 ⊂ V we define

cut(V1, V2) =
∑

i∈V1,j∈V2

Aij

Given a similarity graph with adjacency matrix A, the simplest and most direct
way to construct a partition is to solve the mincut problem. This consists of
choosing the partition V1, ..., Vc of V which minimizes

cut(V1, ..., Vc) =
c∑

k=1
cut(Vk, V̄k)

When solving this problem, the solution often boils down to separating one
indivual vertex from the rest of the graph. In order to circumvent this problem,
other objective functions can be defined such as RatioCut [Hagen and Kahng,
1992] or the normalized cut (NCut) [Shi and Malik, 2000]. Those objective
functions are defined as follow:

RatioCut(V1, ..., Vc) =
c∑

k=1

cut(Vk,V̄k)
|Vk|



78 Chapter 5. Graph Pooling by Edge Cut

(a)

(b) (c)

Figure 5.3: In figure 5.3a, scores are computed and edges with the smallest scores
(in red) are cut. After having cut edges, we identify connected components in
figure 5.3b (black lines on edges mean that those edges have been removed). We
finally merge nodes that belong to the same cluster and reconstruct the edges
between clusters as shown in figure 5.3c.

Ncut(V1, ..., Vc) =
c∑

k=1

cut(Vk,V̄k)
vol(Vk)

Where |Vk| is the number of vertices in Vk and vol(Vk) =
∑
i∈Vk

di. These new

objectives tend to produce balanced communities, in terms of number of edges
or in terms of weights inside the communities.
It can be proved that solving these objectives is equivalent to solving optimization
problems derived from spectral decompositions of graphs [Von Luxburg et al.,
2008]. An approximation of the Ratio Cut can be obtained by the minimazation
of the following problem:

min
H∈Rn×c

Tr(HTLH) s.t. HTH = I (5.4)

An approximation of the Normalized Cut can be obtained by minimizing the
following problem:

min
U∈Rn×c

Tr(UTD−1/2LD−1/2U) s.t. UTU = I (5.5)

In their work, Bianchi et al. [2019] develop a pooling layer that aims at minimiz-
ing the minCUT problem. By calculating an assignment matrix C as in [Ying
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et al., 2018] based on the projection of node embeddings on a cluster matrix,
they are able to minimize problem 5.4 by adding a regularization term that
depends on the assignation matrix C.

In our work, the assignment matrix C does not include the information of
learnable parameters since it is computed by looking at the connected components
of the graph after having cut the less informative edges. But the Normalized
Cut of the partition of the graph can be computed easily from the edge score
matrix S. If we compute the matrix Mcut = CTSC ∈ Rc×c, we obtain the super
node matrix in which each diagonal parameter represents the sum of the edge
weights inside each cluster (super node). Moreover,

c∑
j=1

Mcutij1i 6=j represents

the sum of the weights between cluster j and the rest of the graph. With those
two matrices, we can easily compute Ncut(V1, ..., Vc) at layer l for a graph G.
We thus add a regularization term equal to:

Lreg = Ncut(V1, ..., Vc) =
c∑
i=1

c∑
j=1

Mcutij1i6=j

Mcutii

(5.6)

5.4.3 U-Nets

U-Net was first developped for biomedical image segmentation [Ronneberger
et al., 2015]. U-Net is a convolutional neural network that contains two paths.
The first path is the contraction path (also called encoder) which is used to
capture the context in the image. The encoder is just a traditional stack of
convolutional and pooling layers. The second path is the symmetric expanding
path (also called decoder) which is used to enable precise localization using
transposed convolutions as illustrated in figure 5.4. Thus it is an end-to-end
fully convolutional network.

In order to perform node classification with a pooling architecture we use a
Graph U-Net model proposed by Gao and Ji [2019] and inspired by the works
of [Ronneberger et al., 2015]. Considering that images can be seen as special
cases of graphs that lie on regular 2D lattices, we can have a correspondance
between image segmentation and node classification in graphs. By using graph
convolutional layers, node information is propagated in order to identify clusters
of nodes that are topologically close and that are pooled together during the
training of the algorithm.
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Figure 5.4: Graph U-Nets model. It is composed of successive convolution and
pooling layers. After this encoder part, the decoder is composed of convolutions
and unpooling layers. Unpooling layers reconstruct the graph based on the
pooling layer of the encoder.

5.5 Experiments

5.5.1 Graph Classification

Datasets: We choose a wide variety of benchmark datasets for graph classifi-
cation to evaluate our model. The datasets can be separated in two types. 2
bioinformatics datasets: PROTEINS and D&D; and a social network dataset:
COLLAB. In the bioinformatics datasets, graphs represent chemical compounds.
Nodes are atoms and edges represent connections between two atoms. D&D
and PROTEINS contain two classes of molecules that represent the fact the a
molecule can be either active or inactive against a certain type of cancer. The
aim is to classify the molecules according to their anti-cancer activity. COLLAB
is composed of ego-networks. Graphs’ labels are the nature of the entity from
which we have generated the ego-network. More details can be found in [Ya-
nardag and Vishwanathan, 2015].

Experimental setup: We perform a 10-fold cross validation split which gives
10 sets of train, validation and test data indices in the ratio 8:1:1. We use
stratified sampling to ensure that the class distribution remains the same across
splits. We fine tune hyperparameters fl and dl the dimensions of features in
each layer, r the cut ratio, lr the learning rate respectively chosen from the
sets {256, 512, 1024}, {32, 64, 128}, {10%, 30%, 50%, 70%, 90%} and {0.01, 0.001}.
We do not set a maximum number of epochs but we perform early stopping to
stop the training which means that we stop the training when the validation loss
has not improved for 50 epochs. We report the mean accuracy and the standard
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deviation over the 10 folds on the test set. We compare our method with kernel
methods and with graph neural networks that use pooling layers [Ying et al.,
2018, Gao and Ji, 2019]. We should note that kernels methods do not use node
features that are available on bioinformatics datasets.
Results: From the results of Table 5.1 we can observe that our pooling layer is
challenging with state-of-the-art methods. Indeed, on most datasets, the score
of our model is very close to those obtained by Gao and Ji [2019] and our model
outperforms Ying et al. [2018] on these datasets. From Table 5.1, EdgeCut
competes with all algorithms on COLLAB.

Dataset D&D PROTEINS COLLAB

Max 5748 620 492

Avg 284.32 39.06 74.49

#Graphs 1178 1113 5000

Graphlet 74.85 72.91 64.66

Shortest-Path 78.86 76.43 59.10

1-WL 74.02 73.76 78.61

WL-OA 79.04 75.26 80.74

GraphSage [Hamilton et al., 2017] 75.42 70.48 68.25

DGCNN [Zhang et al., 2018a] 79.37 76.26 73.76

DIFFPOOL [Ying et al., 2018] 80.64 76.25 75.48

g-U-Nets [Gao and Ji, 2019] 82.43 77.68 77.56

EdgeCut 80.33 ± 0.05 76.42 ± 0.23 77.23 ± 0.11

Table 5.1: Classification accuracy on bioinformatics datasets

5.5.2 Node Classification

Datasets: For node classification we conduct our experiments on three real-world
datasets, Cora, citeseer and Pubmed. They are three citations networks where
nodes are articles that are linked together by an edge if there exists a citation
between them. All datasets contain attributes on nodes that are extracted from
the title and the abstract. Attributes represent sparse bag-of-word vectors.

Dataset Nodes Features Classes Training Validation Testing Degree

Cora 2708 1433 7 140 500 1000 4

Citeseer 3327 3703 6 120 500 1000 5

Pubmed 19717 500 3 60 500 1000 6

Table 5.2: Statistics on node classification datasets. The classification is made
with 20 nodes per class in the training set.



82 Chapter 5. Graph Pooling by Edge Cut

Experimental setup: We split the edges into a training, a test and a validation
set according to the splits used by Kipf and Welling [2016]. We fine tune
hyperparameters fl and dl the dimensions of features in each layer, r the cut
ratio, lr the learning rate respectively chosen from the sets {256, 512, 1024},
{32, 64, 128}, {10%, 30%, 50%, 70%, 90%} and {0.01, 0.001}. We do not set a
maximum number of epochs but we perform early stopping to stop the training
which means that we stop the training when the validation loss has not improved
for 50 epochs. We report the mean accuracy and the standard deviation after
several iterations of the algorithm on each set of hyperparameters. We compare
our method with graph neural networks that uses pooling layers and with other
graph neural networks referenced in table 5.3.
We denote by EdgeCut without regularization the version of our algorithm that
isn’t regularized by the minCUT term introduced in equation 5.6. We denote by
EdgeCut the version regularized. We conduct an ablation study and we show
results in table 5.3 to show the effects of the regularization term.
Architecture for node classification: In order to perform node classification
with a pooling architecture we use a Graph U-Net model proposed by Gao and
Ji [2019] and introduced in Section 5.4.3.

Models Cora Citeseer Pubmed

DeepWalk [Perozzi et al., 2014] 67.2% 43.2% 65.3%

Planetoid [Yang et al., 2016] 75.7% 64.7% 77.2%

Chebyshev [Defferrard et al., 2016] 81.2% 69.8% 74.4%

GCN [Kipf and Welling, 2016] 81.5% 70.3% 79.0%

GAT [Veličković et al., 2017] 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%

EdgeCut without regulazization 81.9 ± 0.8% 69.8 ± 0.7% 78.7 ± 0.3%

EdgeCut 82.3 ± 0.6% 70.9 ± 0.5% 79.1 ± 0.4%

Table 5.3: Classification accuracy on node classification datasets.

5.6 Discussion

In this work we studied a new pooling layer based on edge cuts in graphs. To
this end we compute scores on edges in order to quantify the importance of
each edge regarding the propagation of information on the graph. By cutting a
certain percentage of edges, we can uncover communities of topologically close
nodes in order to pool the graph. There are many advantages to this approach:

• By deleting edges, we are not constraint by a hyperparameter that wourld
represent the number of nodes of the coarsened level. The number of nodes
in the pooled graph only depends on the topology of the graph and may
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vary during the training.

• Moreover, scoring and ordering of edges can be controled by a regularization
term introduced in Section 5.4.2. The regularization term that aims at
minimizing the Ncut problem allows us to controle edge scores.

• Finally, by combining the regularization term and by gating edge scores,
we are able to identify less informative edges in order to remove them from
the graph to uncover strongly connected components.

Nevertheless, there are also limitation to this approach:

• Even if we don’t need to specify a number of nodes to find in the coarsened
level, we need to specify a percentage of edges to cut. This hyperparameter
is directly linked to the number of nodes of the coarsened level. Indeed, if
we set this ratio to 100%, we will remove all edges. All nodes will thus be
in their own community and thus the pooling layer will be useless. In the
opposite, if we set the ratio of cut edges to 0%, all connected components
will be regrouped into one single node and the coarsened graph will be
composed of single separated nodes.

• The value of this parameter is thus important even if hardly interpretable.
It is difficult to predict the number of nodes that will compose the coarsened
graph at the output of the pooling layer.
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Chapter 6

Hierarchical graph
clustering by node pair
sampling

In this chapter, we introduce a novel hierarchical clustering method for graphs.
The algorithm is agglomerative and based on a simple distance between clusters
induced by the probability of sampling node pairs. We prove that this distance is
reducible, which allows us to speed up the node aggregation through a technique
known as the nearest-neighbor chain scheme. Our algorithm is parameter-free
and provides a list of the most relevant resolutions of the graph. Furthermore,
we show that this approach is tightly related to modularity, and that it can be
used to choose the correct resolution parameter in the Louvain algorithm. This
chapter is based on the work presented in [Bonald et al., 2018a]

6.1 Introduction

Many datasets can be represented as graphs, being the graph explicitely embed-
ded in data (e.g., the friendship relation of a social network) or built through
some suitable similarity measure between data items (e.g., the number of papers
co-authored by two researchers). Such graphs often exhibit a complex, multi-
scale community structure where each node is invoved in many groups of nodes,
so-called communities, of different sizes.
One of the most popular graph clustering algorithm is known as Louvain in
name of the university of its inventors Blondel et al. [2008]. It is based on the
greedy maximization of the modularity, a classical objective function introduced
in Newman and Girvan [2004]. The Louvain algorithm is fast, memory-efficient,

85
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and provides meaningful clusters in practice. It does not enable an analysis of the
graph at different scales, however Fortunato and Barthelemy [2007], Lancichinetti
and Fortunato [2011]. The resolution parameter available in the current version
of the algorithm 1 is not related to clustering features like the number of clusters
and thus hard to adjust in practice.
In this Chapter, we present a novel algorithm for hierarchical clustering that
captures the multi-scale nature of real graphs. The algorithm is fast, memory-
efficient and parameter-free. It relies on a novel notion of distance between
clusters induced by the probability of sampling node pairs. We prove that this
distance is reducible, which guarantees that the resulting hierarchical clustering
can be represented by regular dendrograms and enables a fast implementation of
our algorithm through the nearest-neighbor chain scheme, a classical technique
for agglomerative algorithms Murtagh and Contreras [2012].
The rest of the Chapter is organized as follows. We present the related work in
Section 6.2. The notation used in the Chapter, the distance between clusters
used to aggregate nodes and the clustering algorithm are presented in Sections
6.4 and 6.5. The link with modularity and the Louvain algorithm is explained
in Section 6.6 and section 6.7 shows the experimental results.

6.2 Related Work

Most graph clustering algorithms are not hierarchical and rely on some resolution
parameter that allows one to adapt the clustering to the dataset and to the
intended purpose Reichardt and Bornholdt [2006], Arenas et al. [2008], Lambiotte
et al. [2014], Newman [2016]. This parameter is hard to adjust in practice, which
motivates the present work.
Usual hierarchical clustering techniques apply to vector data Ward [1963],
Murtagh and Contreras [2012]. They do not directly apply to graphs, un-
less the graph is embedded in some metric space, through spectral techniques
for instance Von Luxburg [2007], Donetti and Munoz [2004].
A number of hierarchical clustering algorithms have been developped specifically
for graphs. A first category consists of agglomerative algorithms, that are mainly
characterized by some distance between clusters. This distance may be based
on the modularity increase Newman [2004], on a random walk in the graph
Pons and Latapy [2005], on some notion of structural similarity, involving the
neighborhood of each node Huang et al. [2010], or on a correlation measure
between clusters Chang et al. [2011]. None of these distances has been proved to
be reducible, a key property of hierarchical clustering Murtagh and Contreras

1See the python-louvain Python package.



6.3. Agglomerative clustering and nearest-neighbor chain 87

[2012].
Non-agglomerative algorithms include the divisive approach of Newman and
Girvan [2004], based on the notion of edge betweenness, the iterative approach of
Sales-Pardo et al. [2007] and Lancichinetti et al. [2009], looking for local maxima
of modularity or some fitness function, and other approaches based on statistical
interence Clauset et al. [2008], replica correlations Ronhovde and Nussinov [2009]
and graph wavelets Tremblay and Borgnat [2014a].
Finally, the agglomerative approach of the Louvain algorithm also provides a
hierarchy Blondel et al. [2008]. This hierarchy is of limited practical interest,
however, since the modularity optimization is performed at some fixed resolution,
so that only part of the hiearchy is meaningful. We shall see that our algorithm
may be seen as a modified version of Louvain using a sliding resolution.

6.3 Agglomerative clustering and nearest-neighbor
chain

In this section, we present classic hierarchical clustering methods that do not
traditionally apply to graph nodes but to observations in a vector space Rk. In
particular, we present a classic family of algorithms, the agglomerative algorithms,
and we present the nearest-neighbor chain technique [Benzécri, 1982, Juan, 1982]
that we use to cluster graph nodes in this chapter.

6.3.1 Agglomerative algorithms

We are interested in clustering a set of n observations X = {x1, ..., xn} in Rk.
Note that, even if these observations cannot directly be graph nodes, they can
be the result of an embedding algorithms that maps nodes of G to vectors in
Rk (e.g. spectral embedding algorithms). We assume that we are given a norm
||.|| in Rk (typically the Euclidean norm, but it can also be any p-norm for
instance). There exist two large families of hierarchical clustering algorithms
that correspond to two approaches: the divisive approach and the agglomerative
approach.

Divisive approach. In the divisive approach (or top-down approach), we are
typically given a cut function (A,B) 7→ cut(A,B) that measures the quality of
a split between two clusters A,B ⊂ X as used in chapter 5. A small value of
cut(A,B) corresponds to two distant or dissimilar clusters A and B, whereas
a large value of cut(A,B) corresponds to clusters that are close to each other.
Divisive algorithms start from a situation where all observations are grouped in
one cluster, and then iteratively split clusters until there are only clusters of size



88 Chapter 6. Hierarchical graph clustering by node pair sampling

1. The typical divisive algorithm splits the largest cluster C at each step into
two subsets A and B, choosing the best cut, i.e. the smallest cut(A,B). More
precisely, this greedy divisive algorithm can be described as follows.

1. (Initialization) C ← {{1}, . . . , {n}};

2. While C contains a cluster with at least two observations.

• C ← arg maxC′∈C |C ′|

• A,B ← arg mina,b∈C,a∪b=C cut(a, b)

• C ← C ∪ {A,B} \ {C}

3. Return A,B and cut(A,B).

Note that, the maximum cluster size decreases at each step until we only obtain
clusters with isolated nodes. We see that the algorithm does not only output
one partition but a sequence of splits. The results that we observe at different
steps of the algorithm correspond to different scales in the dataset.

Agglomerative approach. In the agglomerative (or bottom-up) approach,
that we will adopt in this chapter, we start from individual clusters and merge
iteratively the two closest clusters according to a distance function (A,B) 7→
d(A,B) that measures the dissimilarity between clusters. More precisely, the
standard greedy agglomerative algorithm can be described as.

1. (Initialization) C ← {{1}, . . . , {n}};

2. For t = 1, ..., n− 1

• A,B ← arg mina,b∈C,a6=b d(a, b)

• C ← C ∪ {C} \ {A,B}

3. Return A,B and d(A,B).

Like the divisive method presented above, we see that the algorithm outputs
at each step two clusters and the distance between these clusters. The result
of this approach is typically represented as a dendrogram (see Figure 6.2). A
dendrogram is a special tree whose leaves correspond to individual observations
and whose other nodes correspond to the clusters C observed throughout the
execution of the algorithm. A and B are connected to C in the dendrogram if A
and B have been merged into C = A ∪B during the execution of the algorithm.
Moreover the position on the vertical axis of C = A ∪ B corresponds to the
distance between A and B, d(A,B). Therefore, the greater the difference in
height, the more dissimilarity between clusters. We immediately see the interest
of such approaches to study a dataset at multiple scales. Indeed, different levels
in the dendrogram correspond to different scales in the dataset.
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Remarks. In terms of pooling layer presented in precedent works, the dis-
tinction between the divisive approach and the agglomerative approach can be
illustrated by comparing the pooling layer introduced by [Diehl, 2019] and the
pooling layer the we introduced in chapter 5. Indeed, in their work, Diehl [2019]
calculate edge scores in order to successively merge pairs of nodes. This is an
agglomerative approach in which we start with all nodes in a different cluster
and clusters are merged until we obtain a single cluster. In our work, we use a
divisive approach by successively splitting clusters into smaller ones by cutting
edges.

6.3.2 Classical distances

The result of the greedy agglomerative approach presented above depends on the
choice of the distance function d : (A,B) 7→ d(A,B) to measure the dissimilarity
between clusters A,B ⊂ X. The classic distance measures that are commonly
used are

• the minimum distance, which leads to the so-called single-linkage clustering,
defined as

d(A,B) = min
x∈A,y∈B

||x− y||

• the maximum distance, which leads to the so-called complete-linkage clus-
tering, defined as

d(A,B) = max
x∈A,y∈B

||x− y||

• the average distance, which leads to the so-called average-linkage clustering,
defined as

d(A,B) = 1
|A||B|

∑
x∈A

∑
y∈B
||x− y||

These three distances have an important property in common: they are reducible.
A distance measure between clusters is said to be reducible if, for any pair of
mutual nearest neighbors A and B merged during the execution of the algorithm,
and for all cluster C, we have

d(A ∪B) ≥ min(d(A,C), d(B,C))

In other words, a distance measure is reducible if the distance between any merged
cluster A ∪B and any cluster C is larger than the individual distance between
A and C, or the distance between B and C. This property guarantees that
the sequence of distances d(A,B) found during the algorithm is non-decreasing.
Indeed, if d is reducible and if A and B are merged by the algorithm, then, for
any other cluster C ∈ C we have
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d(A ∪B,C) ≥ min(d(A,C), d(B,C)) ≥ d(A,B) = min
a,b∈C,a 6=b

d(a, b)

6.3.3 Ward’s method

Another classic distance used in the agglomerative approach is Ward’s distance
[Ward, 1963]. This distance arises from the analysis of the minimization problem
where the objective is to minimize

J(C) =
∑
C∈C

∑
x∈C
||x− µ(C)||2

where µ(C) is the centroid of cluster C:

µ(C) = 1
|C|

∑
x∈C

x

We recognize the objective function of the k-means problem when the means
correspond to the centroids of clusters. Ward’s distance is defined as the cost
of merging A and B. In other words, it is defined as d(A,B) = J(C \ {C} ∪
{A,B} − J(C). If we use S(C) to denote S(C) =

∑
x∈C
||x − µ(C)||2 so that

J(C) =
∑
C∈C

S(C), then we have

d(A,B) = S(A ∪B)− S(A)− S(B) = |A||B|
|A|+|B| ||µ(A)− µ(B)||2

6.3.4 The Lance-Williams family

The Lance-Williams method is an infinite class of agglomerative algorithms
where we have a recursive formula for updating distances between clusters at
each step. In a naive implementation of the greedy agglomerative approach
described above, it is necessary to recompute pairwise distances between clusters
after each merge, whereas, with the Lance-Williams method, we do not need to
recompute these distances at each step. An agglomerative algorithm belongs to
the Lance-Williams family if the updated distance d(a ∪ b, c) between a merged
cluster a ∪ b and any cluster c can be written as

d(a ∪ b, c) = αd(a, c) + βd(b, c) + γd(a, b) + δ|d(a, b)− d(b, c)|

where α, β, γ and δ are parameters that may depend on the cluster sizes. The
single-linkage, complete-linkage and average-linkage algorithms belong to this
family. Indeed, we have

• for the minimum distance: d(a∪b, c) = min(d(a, c), d(b, c)) = d(a,c)+d(b,c)−|d(a,c)−d(b,c)|
2

• for the maximum distance: d(a∪b, c) = max(d(a, c), d(b, c)) = d(a,c)+d(b,c)+|d(a,c)−d(b,c)|
2

• for the average distance: d(a ∪ b, c) = |a|d(a,c)+|b|d(b,c)
|a|+|b|
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Ward’s method also belongs to this family. Indeed, it can be shown that we have

d(a ∪ b, c) = (|a|+|c|)d(a,c)+(|b|+|c|)d(b,c)−|c|d(a,b)
|a|+|b|+|c|

From this formula, we can easily show that Ward’s distance is reducible.

6.4 Node pair sampling

The weights induce a probability distribution on node pairs,

∀i, j ∈ V, p(i, j) = Aij
w
,

and a probability distribution on nodes,

∀i ∈ V, p(i) =
∑
j∈V

p(i, j) = wi
w
.

Observe that the joint distribution p(i, j) depends on the graph (in particular,
only neighbors i, j are sampled with positive probability), while the marginal
distribution p(i) depends on the graph through the node weights only.
We define the distance between two distinct nodes i, j as the node pair sampling
ratio2:

d(i, j) = p(i)p(j)
p(i, j) , (6.1)

with d(i, j) = +∞ if p(i, j) = 0 (i.e., i and j are not neighbors). Nodes i, j are
close with respect to this distance if the pair i, j is sampled much more frequently
through the joint distribution p(i, j) than through the product distribution
p(i)p(j). For unit weights, the joint distribution is uniform over the edges, so
that the closest node pair is the pair of neighbors having the lowest degree
product.
Another interpretation of the node distance d follows from the conditional
probability,

∀i, j ∈ V, p(i|j) = p(i, j)
p(j) = Aij

wj
.

This is the conditional probability of sampling i given that j is sampled (from
the joint distribution). The distance between i and j can then be written

d(i, j) = p(i)
p(i|j) = p(j)

p(j|i) .

Nodes i, j are close with respect to this distance if i (respectively, j) is sampled
much more frequently given that j is sampled (respectively, i).

2The distance d is not a metric in general. We only require symmetry and non-negativity.



92 Chapter 6. Hierarchical graph clustering by node pair sampling

Similarly, consider a clustering C of the graph (that is, a partition of V ). The
weights induce a probability distribution on cluster pairs,

∀a, b ∈ C, p(a, b) =
∑

i∈a,j∈b

p(i, j),

and a probability distribution on clusters,

∀a ∈ C, p(a) =
∑
i∈a

p(i) =
∑
b∈C

p(a, b).

We define the distance between two distinct clusters a, b as the cluster pair
sampling ratio:

d(a, b) = p(a)p(b)
p(a, b) , (6.2)

with d(a, b) = +∞ if p(a, b) = 0 (i.e., there is no edge between clusters a and b).
Defining the conditional probability

∀a, b ∈ C, p(a|b) = p(a, b)
p(b) ,

which is the conditional probability of sampling a given that b is sampled, we get

d(a, b) = p(a)
p(a|b) = p(b)

p(b|a) .

This distance will be used in the agglomerative algorithm to merge the closest
clusters. We have the following key results.

Proposition 1 (Update formula). For any distinct clusters a, b, c ∈ C,

d(a ∪ b, c) =
(

p(a)
p(a ∪ b)

1
d(a, c) + p(b)

p(a ∪ b)
1

d(b, c)

)−1
.

Proof. We have:

p(a ∪ b)p(c)d(a ∪ b, c)−1 = p(a ∪ b, c),

= p(a, c) + p(b, c),

= p(a)p(c)d(a, c)−1 + p(b)p(c)d(b, c)−1,

from which the formula follows. �

Proposition 2 (Reducibility). For any distinct clusters a, b, c ∈ C,

d(a ∪ b, c) ≥ min(d(a, c), d(b, c)).
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Proof. By Proposition 1, d(a ∪ b, c) is a weighted harmonic mean of d(a, c) and
d(b, c), from which the inequality follows. �

By the reducibility property, merging clusters a and b cannot decrease their
minimum distance to any other cluster c.

6.5 Clustering algorithm

The agglomerative approach consists in starting from individual clusters (i.e.,
each node is in its own cluster) and merging clusters recursively. At each step
of the algorithm, the two closest clusters are merged. We obtain the following
algorithm:

1. (Initialization) C ← {{1}, . . . , {n}}; L← ∅

2. (Agglomeration) For t = 1, . . . , n− 1,

• a, b← arg mina′,b′∈C,a′ 6=b′ d(a′, b′)

• C ← C \ {a, b}; C ← C ∪ {a ∪ b}

• L← L ∪ {{a, b}}

3. Return L

The successive clusterings C0, C1, . . . , Cn−1 produced by the algorithm, with
C0 = {{1}, . . . , {n}}, can be recovered from the list L of successive merges.
Observe that clustering Ct consists of n− t clusters, for t = 0, 1, . . . , n− 1. By
the reducibility property, the corresponding sequence of distances d0, d1, . . . , dn−1

between merged clusters, with d0 = 0, is non-decreasing, resulting in a regular
dendrogram (that is, without inversions) Murtagh and Contreras [2012].
It is worth noting that the graph G does not need to be connected. If the
graph consists of k connected components, then the clustering Cn−k gives these
k connected components, whose respective distances are infinite; the k − 1
last merges can then be done in an arbitrary order. Moreover, the hierarchies
associated with these connected components are independent of one another
(i.e., the algorithm successively applied to the corresponding subgraphs would
produce exactly the same clustering). Similarly, we expect the clustering of
weakly connected subgraphs to be approximately independent of one another.
This is not the case of the Louvain algorithm, whose clustering depends on the
whole graph through the total weight w, a shortcoming related to the resolution
limit of modularity (see Section 6.6).
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Aggregate graph. In view of (6.2), for any clustering C of V , the distance
d(a, b) between two clusters a, b ∈ C is the distance between two nodes a, b of the
following aggregate graph: nodes are the elements of C and the weight between
a, b ∈ C (including the case a = b, corresponding to a self-loop) is

∑
i∈a,j∈bAij .

Thus the agglomerative algorithm can be implemented by merging nodes and
updating the weights (and thus the distances between nodes) at each step of
the algorithm. Since the initial nodes of the graph are indexed from 0 to n− 1,
we index the cluster created at step t of the algorithm by n+ t. We obtain the
following version of the above algorithm, where the clusters are replaced by their
respective indices:

1. (Initialization) V ← {1, . . . , n}; L← ∅

2. (Agglomeration) For t = 1, . . . , n− 1,

• i, j ← arg mini′,j′∈V,i′ 6=j′ d(i′, j′)

• L← L ∪ {{i, j}}

• V ← V \ {i, j}; V ← V ∪ {n+ t}

• p(n+ t)← p(i) + p(j)

• p(n+ t, u)← p(i, u) + p(j, u) for u ∈ V \ {n ∪ t}

3. Return L

Nearest-neighbor chain. By the reducibility property of the distance, the al-
gorithm can be implemented through the nearest-neighbor chain scheme Murtagh
and Contreras [2012]. Starting from an arbitrary node, a chain a nearest neigh-
bors is formed. Whenever two nodes of the chain are mutual nearest neighbors,
these two nodes are merged and the chain is updated recursively, until the initial
node is eventually merged. This scheme reduces the search of a global minimum
(the pair of nodes i, j that minimizes d(i, j)) to that of a local minimum (any
pair of nodes i, j such that d(i, j) = minj′ d(i, j′) = mini′ d(i′, j)), which speeds
up the algorithm while returning exactly the same hierarchy. It only requires a
consistent tie-breaking rule for equal distances (e.g., any node at equal distance
of i and j is considered as closer to i if and only if i < j). Observe that the
space complexity of the algorithm is in O(m), where m is the number of edges
of G (i.e., the graph size).

6.6 Link with modularity

The modularity is a standard metric to assess the quality of a clustering C (any
partition of V ). Let δC(i, j) = 1 if i, j are in the same cluster under clustering
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C, and δC(i, j) = 0 otherwise. The modularity of clustering C is defined by
Newman and Girvan [2004]:

Q(C) = 1
w

∑
i,j∈V

(Aij −
wiwj
w

)δC(i, j), (6.3)

which can be written in terms of probability distributions,

Q(C) =
∑
i,j∈V

(p(i, j)− p(i)p(j))δC(i, j).

Thus the modularity is the difference between the probabilities of sampling two
nodes of the same cluster under the joint distribution p(i, j) and under the
product distribution p(i)p(j). It can also be expressed from the probability
distributions at the cluster level,

Q(C) =
∑
a∈C

(p(a, a)− p(a)2).

It is clear from (6.3) that any clustering C maximizing modularity has some
resolution limit, as pointed out in Fortunato and Barthelemy [2007], because the
second term is normalized by the total weight w and thus becomes negligible for
too small clusters. To go beyond this resolution limit, it is necessary to introduce
a multiplicative factor γ, called the resolution. The modularity becomes:

Qγ(C) =
∑
i,j∈V

(p(i, j)− γp(i)p(j))δC(i, j), (6.4)

or equivalently,
Qγ(C) =

∑
a∈C

(p(a, a)− γp(a)2).

This resolution parameter can be interpreted through the Potts model of statisti-
cal physics Reichardt and Bornholdt [2006], random walks Lambiotte et al. [2014],
or statistical inference of a stochastic block model Newman [2016]. For γ = 0,
the resolution is minimum and there is a single cluster, that is C = {{1, . . . , n}};
for γ → +∞, the resolution is maximum and each node has its own cluster, that
is C = {{1}, . . . , {n}}.
The Louvain algorithm consists, for any fixed resolution parameter γ, of the
following steps:

1. (Initialization) C ← {{1}, . . . , {n}}

2. (Iteration) While modularity Qγ(C) increases, update C by moving one
node from one cluster to another.
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3. (Aggregation) Merge all nodes belonging to the same cluster, update the
weights and apply step 2 to the resulting aggregate graph while modularity
is increased.

4. Return C

The result of step 2 depends on the order in which nodes and clusters are
considered; typically, nodes are considered in a cyclic way and the target cluster
of each node is that maximizing the modularity increase.
Our algorithm can be viewed as a modularity-maximizing scheme with a sliding
resolution. Starting from the maximum resolution where each node has its own
cluster, we look for the first value of the resolution parameter γ, say γ1, that
triggers a single merge between two nodes, resulting in clustering C1. In view of
(6.4), we have:

γ1 = max
i,j∈V

p(i, j)
p(i)p(j) .

These two nodes are merged (corresponding to the aggregation phase of the
Louvain algorithm) and we look for the next value of the resolution parameter,
say γ2, that triggers a single merge between two nodes, resulting in clustering
C2, and so on. By construction, the resolution at time t (that triggers the t-th
merge) is γt = 1/dt and the corresponding clustering Ct is that of our algorithm.
In particular, the sequence of resolutions γ1, . . . , γn−1 is non-increasing.
To summarize, our algorithm consists of a simple but deep modification of the
Louvain algorithm, where the iterative step (step 2) is replaced by a single
merge, at the best current resolution (that resulting in a single merge). In
particular, clustering Ct (after t merges) is not the clustering produced by the
Louvain algorithm at resolution γt. We shall see that the number of clusters are
approximately the same, however, so that γt can also be used as the resolution
parameter of the Louvain algorithm to get approximately n− t clusters.

6.7 Experiments

Our hierarchical clustering algorithm, called Paris3, is available as a Python
package4. The experiments presented below are presented for illustrative purpose
only as, to the best of our knowledge, there is no standard approach or benchmark
to compare hierarchical clustering algorithms. The jupyter notebooks and
datasets used in the experiments are available online5 so that the reader can
reproduce the experiments presented here and test other parameters.

3Paris = Pairwise node Agglomeration with Resolution Incremental Sliding.
4See https://github.com/Charpenb/pyparis
5See https://perso.telecom-paristech.fr/bonald/mlg.zip
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Synthetic data. We start with a simple hierarchical stochastic block model,
as described in Lyzinski et al. [2017]. There are K = 2 levels, with 16 blocks of
10 nodes at level 1 and 4 blocks of 4 level-1 blocks at level 2, forming a total of
n = 160 nodes (see Figure 6.1).

Figure 6.1: A hierachical stochastic block model.

The connectivity parameters are µ = 2, α1 = 0.02, α2 = 0.01. The output of
Paris algorithm is shown in Figure 6.2 as a dendrogram where the distances (on
the y-axis) are in log-scale. The two levels of hierarchy clearly appear.

Figure 6.2: Dendrogram associated with the clustering of Paris on a hierrachical
stochastic block model of 16 blocks.

Finally, we show in Figure 6.3 the number of clusters with respect to the
resolution parameter γ for Paris (top) and Louvain (bottom). The results are
very close, and clearly show the hierarchical structure of the model (vertical lines
correspond to changes in the number of clusters). The key difference between
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both algorithms is that, while Louvain needs to be run for each resolution
parameter γ (here 100 values ranging from 0.01 to 20), Paris is run only once,
the relevant resolutions being direct outputs of the algorithm.
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Figure 6.3: Number of clusters with respect to the resolution parameter γ for
Paris (top) and Louvain (bottom) on the hierachical stochastic block model of
Figure 6.1.

Real data. We consider four real datasets, whose characteristics are summa-
rized in Table 6.1.
The first dataset, extracted from OpenStreetMap6, is the graph formed by the
streets of the center of Paris. To illustrate the quality of the hierarchical clustering
returned by our algorithm, we have extracted the two “best" clusterings, in terms
of ratio between successive distance merges in the corresponding dendrogram;
the results are shown in Figure 6.4. The best clustering gives two clusters, Rive
Droite (with Ile de la Cité) and Rive Gauche, the two banks separated by the
river Seine; the second best clustering divides the Rive Droite cluster into 3

6https://openstreetmap.org
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Graph # nodes # edges
OpenStreet 5,993 6,957
OpenFlights 3,097 18,193
Wikipedia Schools 4,589 106,644
Wikipedia Humans 702,782 3,247,884

Table 6.1: Summary of the datasets

sub-clusters.

Figure 6.4: Clusterings of the OpenStreet graph by Paris.

The second dataset, extracted from OpenFlights7, is the graph of airports with
the weight between two airports equal to the number of daily flights between
these airports. We run Paris and extract the best clusterings from the largest
component of the graph, as for the OpenStreet graph. The first two best
clusterings isolate the Iceland/Groenland area and Alaska from the rest of the
world, the corresponding airports forming dense clusters, lightly connected with
the other airports. The following two best clusterings are shown in Figure 6.5,
with respectively 5 and 10 clusters corresponding to meaningful continental
regions of the world.

7https://openflights.org
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Figure 6.5: Clusterings of the OpenFlights graph by Paris.



6.7. Experiments 101

Size Main pages
288 Scientific classification, Animal, Chordate,

Binomial nomenclature, Bird,...
231 Iron, Oxygen, Electron, Hydrogen,

Phase (matter),...
196 England, Wales, Elizabeth II of the United Kingdom,

Winston Churchill, William Shakespeare,...
164 Physics, Mathematics, Science,

Albert Einstein, Electricity,...
148 Portugal, Ethiopia, Mozambique,

Madagascar, Sudan,...
139 Washington, D.C., President of the United States,

American Civil War, Puerto Rico, Bill Clinton,...
129 Earth, Sun, Astronomy,

Star, Gravitation,...
127 Plant, Fruit, Sugar, Tea,

Flower,...
104 Internet, Computer, Mass media,

Latin alphabet, Advertising,...
99 Jamaica, The Beatles, Hip hop music,

Jazz, Piano,...

Table 6.2: The 10 largest clusters of Wikipedia for Schools among 100 clusters
found by Paris.
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The third dataset is the graph formed by links between pages of Wikipedia
for Schools8, see West et al. [2009], West and Leskovec [2012]. The graph is
considered as undirected. Table 6.2 shows the 10 largest clusters of Cn−100, the
100 last clusters found by Paris. Only pages of highest degrees are shown for
each cluster.
Observe that the ability of selecting the clustering associated with some target
number of clusters is one of the key advantage of Paris over Louvain. Moreover,
Paris gives a full hiearchy of the pages, meaning that each of these clusters is
divided into sub-clusters in the output of the algorithm. Table 6.3 gives for
instance, among the 500 clusters found by Paris (that is, in Cn−500), the 10
largest clusters that are subclusters of the first cluster of Table 6.2. Again, only
pages of highest degrees are shown for each cluster.

Size Main pages
71 Dinosaur, Fossil, Reptile,

Cretaceous, Jurassic,...
51 Binomial nomenclature, Bird,

Carolus Linnaeus, Insect, Bird migration,...
24 Mammal, Lion, Cheetah,

Giraffe, Nairobi,...
22 Animal, Ant, Arthropod,

Spider, Bee,...
18 Dog, Bat, Vampire, George Byron,

6th Baron Byron, Bear,...
16 Eagle, Glacier National Park (US), Golden Eagle,

Bald Eagle, Bird of prey,...
16 Chordate, Parrot, Gull,

Surtsey, Herring Gull,...
15 Feather, Extinct birds, Mount Rushmore,

Cormorant, Woodpecker,...
13 Miocene, Eocene,

Bryce Canyon National Park, Beaver, Radhanite,...
12 Crow, Dove, Pigeon,

Rock Pigeon, Paleocene,...

Table 6.3: The 10 largest subclusters of the first cluster of Table 6.2 among 500
clusters found by Paris.

The fourth dataset is the subgraph of Wikipedia restricted to pages related to
humans. We have done the same experiment as for Wikipedia for Schools. The
results are shown in Tables 6.4-6.5.
Finally, we give in Table 6.6 the running times of Louvain, Paris, and a spectral
algorithm9, for each of the 4 datasets. The experiments have been conducted

8https://schools-wikipedia.org
9The algorithm gives a hierarchical clustering using the Ward method applied to the spectral
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Size Main pages
41363 George W. Bush, Barack Obama,

Bill Clinton, Ronald Reagan, Richard Nixon,...
34291 Alex Ferguson, David Beckham,

Pelé, Diego Maradona, José Mourinho,...
25225 Abraham Lincoln, George Washington, Ulysses

S. Grant, Thomas Jefferson, Edgar Allan Poe,...
23488 Madonna, Woody Allen, Martin Scorsese,

Tennessee Williams, Stephen Sondheim,...
23044 Wolfgang Amadeus Mozart, Johann Sebastian Bach,

Ludwig van Beethoven, Richard Wagner,
Giuseppe Verdi,...

22236 Elvis Presley, Bob Dylan, Elton John,
David Bowie, Paul McCartney,...

20429 Queen Victoria, George III of the UK, Edward VII,
Charles Dickens, Charles, Prince of Wales,...

19105 Sting, Jawaharlal Nehru, Rabindranath Tagore,
Indira Gandhi, Gautama Buddha,...

18348 Edward I of England, Edward III of England,
Henry II of England, Charlemagne,
Henry III of England,...

14668 Jack Kemp, Brett Favre,
Peyton Manning, Walter Camp, Tom Brady,...

Table 6.4: The 10 largest clusters of Wikipedia Humans among 100 clusters
found by Paris.

on a 2.7GHz Intel Core i5 CPU with 8GB of RAM. We observe that Paris is
almost as fast as Louvain, while producing a much richer information on the
graph (hierarchical clustering vs. simple clustering); it is faster than the spectral
algorithm in most cases.

embedding of the graph, based on the 20 leading eigenvectors of the Laplacian matrix; the
implementation is based on the Python package scipy.
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Size Main pages
2722 Barack Obama, John McCain,

Dick Cheney, Newt Gingrich, Nancy Pelosi,...
2443 Arnold Schwarzenegger, Jerry Brown,

Ralph Nader, Dolph Lundgren, Earl Warren,...
2058 Osama bin Laden, Hamid Karzai, Alberto

Gonzales, Janet Reno, Khalid Sheikh Mohammed,...
1917 Dwight D. Eisenhower, Harry S. Truman,

Douglas MacArthur, George S. Patton,
Charles Lindbergh,...

1742 George W. Bush, Condoleezza Rice,
Colin Powell, Donald Rumsfeld, Karl Rove,...

1700 Bill Clinton, Thurgood Marshall,
Mike Huckabee, John Roberts, William Rehnquist,...

1559 Ed Rendell, Arlen Specter,
Rick Santorum, Tom Ridge, Mark B. Cohen,...

1545 Theodore Roosevelt, Herbert Hoover,
William Howard Taft, Calvin Coolidge,
Warren G. Harding,...

1523 Ronald Reagan, Richard Nixon,
Jimmy Carter, Gerald Ford, J. Edgar Hoover,...

1508 Rudy Giuliani, Michael Bloomberg,
Nelson Rockefeller, George Pataki, Eliot Spitzer,...

Table 6.5: The 10 largest subclusters of the first cluster of Table 6.4 among 500
clusters found by Paris.
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Graph Louvain Paris Spectral
OpenStreet 0.5 0.5 1.1
OpenFlights 0.8 0.8 0.9
SchoolsWikipedia 3.1 3.5 11.2
Wikipedia Humans 92 110 340

Table 6.6: Mean running times (in seconds).
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Chapter 7

Conclusion

The goal of this work was to study and propose novel algorithms in the fastly
evolving field of graph neural networks in order to perform graph classification
or node classification. The field of graph analysis with deep learning techniques
is quite young and there remains many unexplored paths. We identified several
aspects that haven’t been studied yet and tried to answer them. Nevertheless,
at the end of each work, we tried to remain critical and to analyse the positive
and negative aspects of all our works.
Deep learning models have achieved state-of-the-art results in many scientific
fields and it is quite natural to try to adapt these techniques to graph analysis,
field in which there were barely no work on deep learning previous to 2014. In
Chapters 1 we have introduced concepts of graphs and problematics that we
tackle in this thesis. Moreover, in Chapter 2, we have presented background
work on which rely current deep learning models and algorithms proposed in
Chapters 3, 4 and 5. The definition of deep learning models and more specifically
of filtering and convolutions on graphs is at the crossroads of several fields of
research. It emerges from the application of signal processing techniques to
graphs. This forces to define new concepts such as filtering on graphs which can
have several formulations as seen in Chapter 2. In the next paragraphs, we will
review algorithms proposed and the problems they answer.
In Chapter 3 we worked on embedding techniques for graph classification. We
proposed two approaches that have the same objective: producing graph em-
beddings invariant by node permutation. When working on graph classification
tasks by embedding graphs into finite dimensional vectors, it is important that
a graph read into two different orders of nodes is embedded into one unique
vector. Moreover, we want graph embeddings to contain a great discriminative
power in order to be accurate in the graph classification task. To this end
we developped a handcrafted graph embedding that originates from spectral

107
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analysis and that is the concatenation of four well known embeddings. We
showed through experiments on real life datasets that this embedding competes
with state-of-the-art graph classification methods. Moreover, in order to improve
this algorithms, we proposed a learned graph embedding invariant by node
permutation for graph classification. In this second part of the work, we study
two aspects of embeddings that are, the invariance by node permutation and
the independance regarding the size of the graph. Indeed, in order to compare
two graphs that may not be of the same size, their representation must have the
same shape. We adapted an architecture, originally for cloud of points named
PointNet [Qi et al., 2017] that provides a representation of points invariant by
permutation, to graphs. This method allows us to compute graph embeddings
invariant by node permutation. As seen in Chapter 3, the limitation of this
method is that it does not take enough into account the structure of the graph.
This is a limitation to find significant patterns between graphs. In the other
Chapters about graph neural networks, we use message passing algorithms and
more precisely GCNs to embed nodes and compare ourself with similar methods.
When working on graph classification, most algorithms generate node embeddings
that are then aggregated into a graph representation. The aggregation function
is often just a mean of a max of node embeddings seems not optimal. Therefore,
in Chapter 4, we proposed a new aggregation method that has several advantages.
First, the goal of this method is to improve graph classification accuracy on
benchmark dataset compared to using GCNs and an aggregation function that
would be a mean or a max of node embeddings. Second, the objective is to
bring interpretability to this type of algorithm that produces node and graph
representations that are hardly interpretable. This is done by classifying nodes
according to their roles in graphs. Indeed, nodes that lie in different parts of a
graph can have similar structural role. These roles represent the local topological
connectivity of nodes and thus connections patterns of nodes. We believe that,
identifying patterns in graphs would improve the classification accuracy and
would allow us to identify combinations of patterns that are representative of a
certain group of graphs in a dataset. We showed that we were able to detect
structural roles, and that these roles bring a certain amount of interpretability
to a graph classification task. Nevertheless, there remains some work to be done
in this line of research in order to have a better understanding of graph neural
networks and possibly develop new methods more adapted to a classification
task.
In the field of research of graph neural networks, instead of an aggregation
layer to go from node embeddings to a graph representation, we can also think
about using a pooling layer. Pooling layers allow one to detect hierarchical
patterns in graph by computing representations of graphs at different scales.
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Coarsening in graphs is not a simple task since nodes are not ordered and they
can have irregular neighborhoods. Several formulations have been proposed to
pool graphs. One of them focuses on nodes: we delete less informative nodes to
decrease the size of the graph or we identify clusters of nodes to group vertices
that are topologically close. Other formulations focus on edges, by performing
contraction pooling by grouping nodes two by two. Finally, the alternative to
learning a pooling strategy is to apply a deterministic clustering algorithm to
group nodes by communities and obtain a graph of smaller size. In Chapter 5,
we proposed a novel pooling layer, based on edges and more precisely on edge
cuts. This method originates from edge scoring which has several formulations.
Scores on edges that represent proximity of nodes allow us to detect edges that
link nodes that are not topologically close and that possibly belong to different
communities. Removing these edges allow us to highlight groups of nodes that
are strongly connected and that we use as clusters in the coarsened level. This
method has the great advantage of not being dependent of the number of clusters
that we need to find and thus to output super nodes that are consistent with
the topology of the graph. We validated our approach by experiments on graph
classification and node classification.
Finally, the work presented in Chapter 6 was slighly different because not con-
nected to graph neural networks. We tackled the problem of finding communities
in graphs and more precisely hierarchical communities. We based our approach
on the modularity which is a measure that is used to evaluate if a graph parti-
tioning is composed of clusters that are srtongly connected or if the clusters are
close to a random model. We defined an algorithm that outputs a partition of a
graph at different scales by modifying the modularity and by adding a resolution
parameter that controles the size of output communities. We define a distance
between clusters and use the nearest-neighbor chain technique traditionally used
to cluster vectors in Euclidean spaces. Future work could be done to automati-
cally extract the most relevant clusters from the dendrogram at different scales.
For instance, a way to perform this task would be to extract the levels that
correspond to the largest gaps between successive distances in the dendrogram,
or to take the levels corresponding to the largest distance ratios.

7.1 Future work

There are many applications to graph neural networks and many directions
that we would like to explore. One of them is graph generation. Many models
applied to images such as variational autoencoders or generative adversarial
networks can be applied to graphs to generate graphs that have certain properties.
Those models work well on images or textual data, however, generating graphs
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represents a greater challenge. In the case of molecules, molecules must verify
certain chemical properties to be valid molecules. Moreover, it is not easy to
generate both nodes, edges and node features. A recursive methodology to create
edges based on existing ones might work better then generating all edges at once.
Many different ways exist to generate graphs with the highest probability.
Moreover, graph generation can also be applied to code. Programs in different
languages can be represented by graphs. This can be used to classify graphs
according to the author or to the objective of the program. This can also be
used to generate code according to a task or to translate a program from one
language to another.

Finally, as introduced in Chapter 1, a final line of work on which we would
like to work next is time evolving graphs. There are many applications and
many different ways to tackle this kind of problem. We would like to generalize
our methods on edge scoring or structural role discovery to link prediction
and anomaly detection and in particular to cases in which graphs are time
dependent.
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MOTS CLÉS

graphe, réseaux, apprentissage profond, traitement du signal, classification, plongement, analyse spectrale

RÉSUMÉ

Les graphes sont présents dans de nombreux domaines de recherche, que ce soit pour représenter des molécules, des

réseaux sociaux ou des réseaux de transport. Un graphe est un outil mathématique utilisé pour représenter des relations

entre des objets. Il est composé de nœuds reliés entre eux par des liens, appelés arêtes. Récemment, les techniques

d’apprentissage profond ont prouvé leur efficacité dans de nombreux domaines tels que le traitement de texte ou l’analyse

d’images. Ce constat a motivé de nombreux travaux de recherche visant à généraliser les techniques d’apprentissage

profond à l’analyse de graphes. Ainsi des algorithmes se basant notamment sur des réseaux de neurones et des convo-

lutions ont été développés afin de répondre à des problématiques de classification de nœuds et de graphes. Au cours de

cette thèse nous analysons les représentations vectorielles des nœuds, des communautés ou de l’ensemble du graphe

qui émerge de ces modèles. Ces représentations à différentes échelles, encodent des informations hierarchiques sur le

graphe. En ce basant sur ces vectorialisations de graphes, nous proposons de nouvelles architectures afin de répondre

à des tâches de classification de nœuds et classification de graphes. Nous étudions plusieurs applications de ces nou-

velles techniques notamment le problème d’obtenir une représentation invariante par permutation des nœuds ou encore

l’interprétabilité de ces algorithmes.

ABSTRACT

In many scientific fields, studied data have an underlying graph or manifold structure such as communication networks

(whether social or technical), knowledge graphs or molecules. A graph is composed of nodes, also called vertices, con-

nected together by edges. Recently, deep learning algorithms have become state-of-the-art models in many fields and

in particular in natural language processing and image analysis. It led the way to a great line of studies to generalize

deep learning models to graphs. In particular, several formulations of convolutional neural networks were proposed and

research is carried to develop new layers and network architectures to graphs. Those models aim at solving different

tasks such as node classification, link prediction or graph classification. In this work, we study node, subgraph or graph

embeddings produced by graph neural networks. These embeddings at different scales encode hierarchical represen-

tations of graphs. Based on these embedding techniques, we propose new deep learning architectures to tackle node

classification or graph classification tasks. We study several applications of these new techniques. For example, we study

the problem of having a graph embedding invariant by node permutation and the interpretability of graph neural networks.

KEYWORDS

graph, network, deep learning, signal processing, classification, embedding, spectral analysis
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