
HAL Id: tel-03690426
https://theses.hal.science/tel-03690426v1
Submitted on 8 Jun 2022 (v1), last revised 10 Jun 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of vision and force control for physical
interaction with robotic manipulators

Alexander Oliva

To cite this version:
Alexander Oliva. Integration of vision and force control for physical interaction with robotic manip-
ulators. Robotics [cs.RO]. Université Rennes 1, 2022. English. �NNT : �. �tel-03690426v1�

https://theses.hal.science/tel-03690426v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

ÉCOLE DOCTORALE 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Automatique, Productique et Robotique

Par

Alexander OLIVA
Integration of vision and force control for physical interaction
with robotic manipulators

Thèse présentée et soutenue à Rennes, le 22/02/2022
Unité de recherche : Inria-Rennes/IRISA

Rapporteurs avant soutenance :

Andrea CHERUBINI Professeur, Université de Montpellier, LIRMM
Youcef MEZOUAR Professeur, Université Clermont-Auvergne, Sigma

Composition du Jury :

Président : Véronique PERDEREAU Professeure, Sorbonne Université, Paris, ISIR, France
Examinateurs : Joris DE SCHUTTER Professeur, KU Leuven, Leuven (Arenberg), RAM, Belgique

Andrea CHERUBINI Professeur, Université de Montpellier, LIRMM, France
Youcef MEZOUAR Professeur, Université Clermont-Auvergne, Sigma, France
Véronique PERDEREAU Professeure, Sorbonne Université, Paris, ISIR, France

Dir. de thèse : François CHAUMETTE Directeur de recherche Inria, Inria/IRISA Rennes, France
Co-dir. de thèse : Paolo ROBUFFO GIORDANO Directeur de recherche CNRS,IRISA/Inria Rennes, France

ii

To Tato...

« In fisica e in matematica è impressionante la sproporzione tra lo sforzo per
capire una cosa nuova per la prima volta e la semplicità e naturalezza del

risultato una volta che i vari passaggi sono stati compiuti. Nel prodotto finito,
nelle scienze come nella poesia, non c’è traccia della fatica del processo creativo

e dei dubbi e delle esitazioni che lo accompagnano. »

« In physics and mathematics, the disproportion between the effort to understand
something new for the first time and the simplicity and naturalness of the result
once the various steps have been completed is striking. In the finished product, in
the sciences as in poetry, there is no trace of the effort of the creative process

and the doubts and hesitations that accompany it. »

Giorgio Parisi, Physics Nobel Prize 2021.

i

Acknowledgments

This doctoral journey now draws to an end after a long trip that begun even
before I obtained my doctoral position in this fantastic laboratory and set foot
on Breton land. This manuscript summarizes and encapsulates the scientific and
experimental work that I have done over the last three and a half years in a
formal and concise manner, but the narrative style that is adopted in this type of
literature leaves no room for recounting the vicissitudes and experiences that one
faces both inside and outside of the laboratory. So I would like in this anecdote
to thank everyone who, in one way or another, contributed to the achievement of
this thesis work.

Robots have fascinated me since I was a child and I knew that the way forward
was toward understanding the laws that govern them and make them seem en-
dowed with life.... but passions sometimes succumb to more imperative reasons,
especially if pockets have a say; so, after university I began to work in indus-
try and began, reluctantly and in my late twenties, to get used to the idea that
maybe, in my spare time and as a hobby, I could devote myself to some “Maker”
projects in robotics. Then, one day, I was in L’aquila and went to visit my very
dear robotics professor, Costanzo Manes, whom I owe enormous gratitude to for
the extremely inspiring and motivating discussion we had that day, encouraging
me to seek what is truly important to me, and I must say that my personal and
professional life has never been the same since.

The transition to research occurred gradually. I first arrived beyond the Alps
as a research engineer at Inria (Grenoble), an institution to which I am eternally
grateful for everything it has given me over the years and which has always made
me feel like part of a big family. There, under the supervision of my friend Agostino
Martinelli (a.k.a. “Massiccio”), I took my first steps into the fascinating world of
research. The conversations we used to have about mountains and science until I
left for Rennes, also with Alessandro Renzaglia, were pure inspiration.

At the heart of these acknowledgements must be two extraordinary people and
researchers, my supervisors: Paolo Robuffo Giordano and François Chaumette,
whom, in addition to always being present and available (even late at night), gave
me complete freedom in conducting research and created the optimal conditions

ii

for allowing me to complete my doctorate, taking also into account the not trivial
historical context we faced. It was an honour and a privilege to be under their
supervision.

Much of the work I conducted in the lab was experimental, and this would
have been really arduous without the help and support of Fabien Spindler, with
whom it was always pleasant to work with and see in action working flawlessly.

During my third year, I had the opportunity to visit KU Leuven for a brief
but rewarding period owing to collaboration with Prof. Joris de Schutter and
Erwin Aertbeliën, whom I thank for welcome me to their laboratory and for the
stimulating discussions.

At this point, the list of people who must be thanked for any scientific or non-
scientific conversation is extensive. I’d like to thank Marco Cognetti in particular
because he always kept his office door open for any questions I had during my
first year of PhD. Thank you also to Claudio Pacchierotti and Marco Aggravi
for countless tips and assistance, to Claudio Gaz for the fruitful collaboration, to
Alberto Jovane, master of blender and Adam Khayam, wizard of any programming
paradigm. Thanks to Nicola De Carli and John Thomas, great office neighbours
for insightful talks... just thank you to all the RAINBOWERS, I cannot name
you all.

I would also like to thank my family for their unconditional support, regardless
of any decisions I may make in my life.

Last but not least, and as is always the case in these acknowledgements, one
tends to leave last to the person who had a substantial weight in the success of
the thesis, because without that person one should have had cloned oneself to be
able to lead a "normal" life. And you thank that person because has always been
by your side, every day to talk to you, because has always listened to you carefully
and knows every point of your research even if you never showed an equation. You
also thank that person for being able to give you your space when you were under
dead-line during holidays, a special event or even a PACS. For all these reasons
and thousands more, I thank you Naty.

I Hereby acknowledge the support of the Brittany region during my research
visit at the KU Leuven.

iii

Contents

Acknowledgments i

Contents iii

1 Introduction 1
1.1 On Vision-Force coupling: Motivation 2
1.2 Challenges . 5
1.3 Contributions . 6
1.4 Thesis structure . 7
1.5 Related publications . 11

Part I Preliminaries and State of the Art 13

2 Force control of manipulators 15
2.1 Introduction . 16
2.2 Manipulator kinematics . 16

2.2.1 Differential kinematics . 19
2.2.1.1 Second-order differential kinematics 20

2.2.2 Statics . 21
2.2.3 Twist and Wrench transformations 22

2.3 Dynamic model . 23
2.3.1 Parameter identification 24
2.3.2 Physical consistency of the dynamic parameters 26
2.3.3 Dynamic model in operational space 27

2.4 Force Control Schemes . 28
2.4.1 Hybrid position/force control 28
2.4.2 Impedance control . 30
2.4.3 Admittance control . 33

2.5 Conclusion . 35

iv

3 Vision Control 37
3.1 Introduction . 38
3.2 Camera model . 39
3.3 Visual Servoing . 40

3.3.1 IBVS: Image-Based Visual Servoing 42
3.3.2 PBVS: Pose-Based Visual Servoing 43
3.3.3 Stability analysis . 45

3.3.3.1 Stability analysis in the IBVS case 45
3.3.3.2 Stability analysis in the PBVS case 46

3.3.4 Mounted camera . 46
3.3.5 Feature trajectory tracking 47
3.3.6 Target tracking . 47

3.4 Second-order Visual Servoing . 47
3.5 Conclusion . 49

4 Vision-Force control 51
4.1 Introduction . 52
4.2 Hybrid Vision-Force control . 53
4.3 Visual-Impedance control . 54
4.4 External Hybrid Vision-Force control 55
4.5 Constraint-based methods . 58
4.6 Technological aspects . 60

Part II Feature Space Compliance 63

5 Feature Space Impedance 65
5.1 Introduction . 66
5.2 Manipulator model in feature space 67
5.3 Impedance control in feature space for a static target 68
5.4 Impedance control in feature space for a moving target 72
5.5 Increasing the visual data rate and estimating the target’s motion 73

5.5.1 EKF for IBVS with image points features 74
5.5.2 EKF for PBVS . 75

5.6 Simulations . 76
5.6.1 Task description and controllers implementation 77
5.6.2 Simulation Results . 78

5.7 Real experiments . 82
5.7.1 Implementation issues . 82

v

5.7.1.1 Data rate . 83
5.7.1.2 Ill-condition of the task Jacobian 84
5.7.1.3 Joints friction . 85
5.7.1.4 Illumination conditions 85

5.7.2 Results . 85
5.8 Summary . 87

6 Feature Space Admittance 89
6.1 Introduction . 90
6.2 Related works . 90
6.3 Feature Space Admittance . 92
6.4 The Extended External Hybrid Vision-Force Control Scheme . . 94

6.4.1 Force regulation . 95
6.5 Stability analysis . 96
6.6 Experiments . 97

6.6.1 Experimental Setup . 97
6.6.2 Peg-in-Hole Experiment 99
6.6.3 Extended External Hybrid vs External Hybrid 101

6.7 Fictitious forces . 103
6.8 Summary . 104

Part III Manipulator dynamic model and simulation 105

7 Dynamic model of the Franka Emika’s Panda robot 107
7.1 Introduction . 108
7.2 The Panda robot . 110
7.3 Identification procedure . 111

7.3.1 Friction estimation . 113
7.4 Retrieval of feasible parameters 114
7.5 Results . 117

7.5.1 Validation on a physics simulator 121
7.6 Summary . 125

8 FrankaSim 129
8.1 Introduction . 130
8.2 Related Works . 130
8.3 The simulator: FrankaSim . 132

8.3.1 Kinematics . 132

vi

8.3.2 Dynamics . 133
8.3.3 ViSP . 135
8.3.4 Visp_ros . 136
8.3.5 CoppeliaSim . 136
8.3.6 Software Architecture . 137

8.4 Experiments . 138
8.4.1 Single-Arm Experiment: Real vs Simulated 138
8.4.2 The Dual-Arm Experiment 140

8.5 Summary . 141

Part IV Conclusions and future directions 143

9 Conclusion 145
9.1 Summary and contributions . 145
9.2 Open issues and future perspectives 147

Appendix A Identification procedure comparison 149
A.1 Comparison of dynamic coefficients 149
A.2 Comparison of dynamic parameters 152

Appendix B Parameters retrieval using nonlinear and conditional
constraints 157

Bibliography 163

1

Chapter

1 Introduction

Contents
1.1 On Vision-Force coupling: Motivation 2

1.2 Challenges . 5

1.3 Contributions . 6

1.4 Thesis structure . 7

1.5 Related publications . 11

2

1.1 On Vision-Force coupling: Motivation

Robotics, the term that Isaac Asimov assumed in his short story “Liar!” in 1941,
refers to the science and technology studying robots, the mechanical machines
he imagined devoid of feelings and with a “positronic” brain programmed by
man. The term robot, on the other hand, appeared for the first time twenty years
earlier (1920) in the science-fiction play “R.U.R. (Rossum’s Universal Robots)” by
the Czech writer Karel Čapek in which artificial biological organisms, that may
be mistaken for humans, were assigned the task of replacing human beings in
subordinate jobs. This word, coined by Karel Čapek’s brother Josef, comes from
the Czech “robota” which means indeed “hard work” or “forced labour” and is
derived from rab, meaning “slave”. Even though this “modern” term dates back
to a century ago, our desire to build machines capable of replacing humans in any
disparate situation or in tedious, repetitive, or hazardous tasks has much more
ancient roots, today more fervent than ever.

(a) (b)

(c) (d)

Figure 1.1 – From Greek mythology to date: (a) Obverse of silver didrachma from Phaistos
depicting Talos (“TAΛΩN”),∼ 400 B.C.. (b) The Leonardo Da Vinci’s “Automaton knight”
∼1495. (c) Unimate: First industrial robot, 1961. (d) Boston Dynamics’ Atlas: the next
generation, 2016.

3

In the Greek mythology from the time of Homer, Talos was a bronze giant,
forged by Hephaestus, the blacksmith god of technology, to protect Europa in
Crete. The word automaton, “self-moving”, was first used by Homer (750-650
B.C.) to describe the many animated devices fabricated by Hephaestus. Fig-
ure 1.1a shows the obverse of a silver didrachma depicting Talos (“TAΛΩN”).
Figure 1.1b shows the Leonardo da Vinci’s “Automaton knight”, a humanoid au-
tomaton. In 1961, George Devol invented the world’s first industrial robot “Uni-
mate”, shown in Figure 1.1c. Finally, Figure 1.1d shows Atlas:the next generation,
developed by Boston Dynamics in 2016; it is likely to be the most advanced robot
ever built to date, being able to parkour on an obstacle track as well as perform
back-flips.

Modern factories are making large use of robotic manipulators to perform very
specific, restricted and deterministic tasks, e.g., welding, pick-and-place or spray-
ing (as shown in Figure 1.2), for which the exact sequence of the operations to
be performed is perfectly known a priori. With these restrictions and considering
the highly structured and well-controlled environments in which these robots are
routinely used, the design of the task control becomes relatively simple resort-
ing to path/trajectory planning techniques, which will benefit from the excellent
kinematic capabilities of industrial robots and the available prior knowledge of
the environment.

(a)

(b)

(c)

Figure 1.2 – (a) Tesla giga-factory assembly line: at each station several manipulators equipped
with arc welding machines apply the preprogrammed welding points. (b) Path planned for
an automated car-body spraying operation. (c) A SCARA robot performing pick-and-place
operations in a well-structured environment.

4

These robots have been used as mere multipurpose automatons, to automate
industrial production processes under the justification of greater productivity and
quality control, without really exploiting their tremendous flexibility compared to
fixed automated machines; this is also due to the fact that industrial manipula-
tors are unsophisticated and simple-minded with very poor decision making skills
right out of the box (commercial industrial robots are typically provided with
proprioceptive joint position sensors only). Indeed, flexibility is the real strength
that distinguishes man, the most versatile manipulator of nature, from machines.
This great flexibility derives in part from the ability to process multiple sensory
information; hence, our interest in projecting these sensing abilities into indus-
trial robots, being essential for reaching higher levels of flexibility and autonomy.
This will enable even small-sized companies with limited production volumes and
different products to benefit from this technology. The possibility of this scenario
was already envisioned by Bajcsy [1] four decades ago. The rise of the so-called
Cobots, or Collaborative Robots, are indeed one of the key technologies that are
driving the modern industrial revolution, also known as industry 4.0. Cobots are
a driving technology that is pushing hard on the smart production front, That is,
the forefront of new manufacturing technologies that foster collaboration among
all the elements involved in the manufacturing process, i.e., collaboration among
operators, machines, and tools.

Although path/trajectory planning approaches have proved their effectiveness
in well-structured applications, which among other things require a considerable
modeling and calibration engineering effort, those methods are hardly applicable
to the highly dynamic scenarios illustrated above, which could even involve vol-
untary or accidental contacts with a human operator or the environment. Sensor-
based control, on the other hand, offers more flexibility in dealing with the uncer-
tainties that characterize unstructured/dynamic or even non-rigid environments.

Of all the available sensing modalities, vision and force sensing are among
the most complementary and relatively inexpensive ones. Cameras are capable
of providing a rich description of the scene in which the manipulator moves, al-
lowing, for example, to accurately align the manipulator’s end-effector with an
object within an imprecisely calibrated or dynamically changing environment. In
contrast, force sensors provide much more accurate, albeit localised, contact in-
formation, enabling the control task to be performed with greater precision than
vision alone. With no surprise, vision and force sensing are the most widely
adopted sensory configuration in the context of physical human-robot interaction
(pHRI) among the sensing modalities (i.e., vision, force(tactile), audition and
distance) recently surveyed by Cherubini et al. [2].

5

Before delving into the difficulties that multi-sensory integration entails, the
scientific community has sought to address the need to describe and characterize
the control qualities of each specific sensory modality. Early vision and force sens-
ing research focused on identifying the strengths and shortcomings of the control
techniques associated with each of these sensors independently. Indeed, two strong
communities, that of force control and the visual-servoing one, have achieved a
number of significant breakthroughs in the past decades, bringing their respective
fields to a state of relatively advanced maturity. This thesis is halfway between
these two fields and aims at providing solutions to the challenging problem of the
coupling of vision and force sensing by proposing both innovative combined con-
trol strategies as well as the tools needed to support the study, e.g., in simulation,
and the implementation of those strategies.

Two decades ago, force and/or vision sensors were still an exception in indus-
trial settings and were mostly confined to the field of scientific research [3].

The need to develop novel integrated vision-force control techniques that are
safer, robust and highly performing is also driven by the ever increasing adoption
of Cobots in small and medium-sized businesses, where robots find themselves
sharing the workspace with human operators and other machinery.

1.2 Challenges

There is of course significant interest in integrated vision-force approaches, as the
development of combined vision-force applications is just a natural step in the
evolution of sensor-based robotics [3], allowing the advantages of both sensors to
be combined and the individual weaknesses to be overcome. However, extra needs
arise as a result of the integration process, and attaining an effective combined
use of vision and force is not straightforward. Vision and force sensors measure
fundamentally different quantities, which leads to inherent difficulties when try-
ing to combine data from the two sensors. Sensor integration approaches need a
common representation of the sensory input to be integrated, but force and vi-
sion sensors do not share such a common representation of the data they provide.
Furthermore, due to their distinct nature, the two sensors are often only useful
at distinct stages of the task at hand. On the other hand, the most common
force control schemes make use of wrist-mounted force/torque sensors, which are
capable of measuring any kind of force: gravitational, inertial or contact force.
The inertial coupling of the end-effector mass (and eventual payload) positioned
downstream of the sensor introduces a fundamental problem when the controlled
directions are shared between vision and force sensing. Further aspects character-

6

izing both sensors are the rates at which they can provide samples. Force/torque
sensors usually provide very high rate measurements (1 kHz) that require little
processing or interpretation for being used within a feedback control loop. Vi-
sion sensors, on the other side, run at much slower rates (typically 30 to 60 fps)
and their measurements require high levels of processing for being usable in a
control algorithm, which introduces non negligible latency in the availability of
the control signal. Considering that the servo rate of a manipulator must be at
least ten times greater than its mechanical resonance frequency [4], the restricted
feedback rate in vision systems is found to be the main issue restricting the appli-
cability of visual-servoing to real-world robot operations and its integration with
conventional sensor feedback systems that generate commands directly for the
low-level controller [5]. This is the case when one wants to take the manipulator’s
dynamics into account in the controller design. Finally, simplifying the models
used to describe the system, such as neglecting certain phenomena that are diffi-
cult to model, e.g. friction, can in practice have significant effects on the system
behaviour with consequent tracking performance degradation.

In this thesis we address several of these challenges such as:

• sensory integration, seen from the control perspective,

• increasing the sampling rate of visual information,

• mitigating the negative effects related to data latency, and

• system modelling and parameter identification.

1.3 Contributions

In this thesis we have contributed with the synthesis of controllers that realise
the sensory integration of vision and force directly in the sensor space, i.e., in
the visual feature space. These controllers achieve the highest degree of sensory
integration, as they allow to control every possible direction with both sensory
modalities.

In particular, one of the first contributions of this work was the mapping of
the physical forces acting on the manipulator into the visual feature space. This
allowed to derive, on one hand, an impedance control in the visual feature space,
and on the other hand to extend the concept of compliant frame into the feature
space. The former is an inverse dynamics controller, which allows the dynamics
of the manipulator to be taken into account in the controller synthesis which do
not require, in its simplest version, any force/torque sensor in order to operate.

7

Thanks to the mapping of forces into the visual feature space, it was possible to
define an admittance law in such space, which we used to extend the capabilities
of one of the vision/force control schemes in the literature.

Another aspect we tackled was the narrowing of the rate discrepancy between
sensors. The use of a Bayesian estimation framework allowed us to virtually
increase the availability of visual data at a higher rate and also to mitigate the
negative effects due to the latency of computer vision algorithms. The proposed
estimation models also allowed to reconstruct the velocity of a moving target
observed by the camera. These estimators can be easily used in different control
schemes.

The different control schemes developed in this work were validated through
extensive simulations and experiments on a real platform in our laboratory. For
what concerns the simulations, in this work we have also developed a physics co-
simulation environment that allows not only to rapidly prototype visual servoing
applications, but also to perform dynamic simulations with physical interaction
with the environment. Thanks to this simulator, it was possible to study step by
step all the problems and limitations of second-order visual servoing (a.k.a. Dy-
namic Visual Servoing) controllers. We could also design and test the estimators
that allowed us to increase the camera’s data rate, analyse its performance, and
assess the impact of delayed measurements caused by visual feature extraction
using computer vision techniques.

The realisation of this simulator was based on the model and estimated dy-
namic parameters of our manipulator. Another contribution of this thesis is indeed
the accurate identification of a set of feasible dynamic parameters and a model
of the dynamic friction of the robot joints thanks to the proposed framework for
parameters retrieval.

1.4 Thesis structure

This thesis work is organized in four main parts. The first one (Part I) contains
introductory background to the force control of robotic manipulators and visual
control. Then, the state-of-the-art on the coupling of vision and force sensing is
reviewed. The second part (Part II) highlights our contributions to the coupling
of vision and force sensing in the visual feature space, allowing a robotic manipu-
lator to actively achieve compliant motion, thanks to the model-based controllers
and techniques developed and issued in the following author’s publications [6, 7].
The third part (Part III) illustrates further contributions made on the dynamic
model identification and parameter retrieval for robotic manipulators, which is

8

a key ingredient both for designing superior controllers which take into account
the dynamics of the manipulator, as we did in Part II, and for performing more
accurate simulations. This part of the thesis is based on the author’s contribu-
tions [8, 9]. In the fourth part (Part IV) of the manuscript, we state the thesis
conclusions and give some future research directions. We finally report comple-
mentary technical information in the appendices relative to the supplementary
material of the author’s paper [8].

Outline of Part I

This part contains the preliminaries and techniques involved in this thesis and a
state-of-the-art review on the subject.

In Chapter 2 we provide all the necessary modelling background to deal with
the control of manipulators. In particular, some elements of the kinematics and
dynamics of a serial manipulator are given, as well as elements for the identification
of dynamic parameters. Finally, classical force control schemes are discussed.

In Chapter 3 we give an introduction to visual servoing control techniques for
both the cases of 2D and 3D features, showing some generalities and deriving the
kinematic control law. We then present some more advanced schemes for both
trajectory and target tracking and discuss the stability of the classic cases. We
conclude with the derivation of the second-order visual servoing.

In Chapter 4 we review the different integrated vision-force control schemes
present in the literature, highlighting their own strengths and weaknesses. This is
followed by a discussion on how this thesis work places itself with respect to the
state-of-the-art.

Outline of Part II

This part contains the author’s contributions on the coupling of vision and force
sensing at control level.

In Chapter 5, we present our results on second order visual servoing for both
the cases of static and moving targets while we explore the possibility of using
such controllers for physical interaction with the environment. We firstly derive
the feature space impedance controllers for tracking both motionless or moving
objects and then, we introduce two Extended Kalman Filters (EKF), based on the
visual servoing geometric model, for increasing the rate of the visual information
and estimating the target’s velocity. This filters are derived for both Pose-Based

9

Visual Servoing (PBVS) and Image-Based Visual Servoing (IBVS) with image
points as visual features. Simulations are carried out to validate the estimator
performance during a dynamic Peg-in-Hole insertion task with a moving part.
Experiments are also conducted on a real redundant manipulator with a low-
cost wrist-mounted camera. Details on several issues encountered during the
implementation are also discussed.

In Chapter 6 we illustrate the concept of compliant frame in the visual feature
space and we propose a general framework, namely the Extended External Hybrid
vision-force control scheme, for combining visual and force information in the vi-
sual feature space in a general fashion, since the treatment does not depend on the
chosen visual features. Vision and force sensing are coupled in the feature space,
avoiding both the convergence to a local minimum and the arising of inconsisten-
cies at the actuation level. Any task space direction is simultaneously controlled
by both vision and force. Compliance against interaction forces is achieved in
feature space, along the features defining the visual task. Experiments on a real
platform are carried out to evaluate the effectiveness of the proposed framework.

Outline of Part III

This part contains the author’s contributions on the identification of robot models
and the developed simulation tools.

In Chapter 7 we address the problem of extracting a feasible set of dynamic
parameters characterizing the dynamics of a robot manipulator. We start by
identifying through an ordinary least squares approach the dynamic coefficients
that linearly parametrize the model. From these, we retrieve a set of feasible link
parameters (mass, position of center of mass, inertia) that is fundamental for more
realistic dynamic simulations or when implementing in real time robot control
laws, using recursive Newton-Euler algorithms. The resulting problem is solved
by means of an optimization method that incorporates constraints on the physical
consistency of the dynamic parameters, including the triangle inequality of the link
inertia tensors as well as other user-defined, possibly nonlinear, constraints. As use
case, the approach is developed for our manipulator, i.e., the popular Panda robot
by Franka Emika, identifying for the first time its dynamic coefficients, an accurate
joint friction model, and a set of feasible dynamic parameters. Validation of the
identified dynamic model and of the retrieved feasible parameters is presented
for the inverse dynamics problem using, respectively, a Lagrangian approach and
Newton-Euler computations.

In Chapter 8 we present a new open-source simulator based on ROS and

10

CoppeliaSim for the Franka Emika Panda robot fully integrated in the ViSP [10]
ecosystem, a powerful library for Visual-Servoing. The simulator features the
dynamic model that has been accurately identified in the previous Chapter 7
from a real Panda robot, leading to more realistic simulations. The C++ API
is an extended replica of the ViSP class of the real robot allowing to narrow the
gap between simulation code and real control software deployment. Conceived as
a multipurpose research simulation platform, it is well suited for fast prototyping
and test of visual servoing applications as well as, in general, for any pedagogical
purpose in robotic manipulators. All the software, models and CoppeliaSim scenes
presented in this work are publicly available under free GPL-2.0 license.

Outline of Part IV

This part states the thesis conclusions and draws some possible future research
lines.

Chapter 9 synthesizes the conclusions of this thesis work and summarises the
main contributions made to the state-of-the-art. In addition, possible future re-
search directions that would be worth exploring are discussed and some open
questions are listed.

Outline of the Appendices

In Appendix A we compare the results of the dynamic parameter identification
obtained with our method and with the classical approach that uses exciting
trajectories. In Appendix B we show an example about the use of our optimization
framework for the retrieval of a feasible set of dynamic parameters using nonlinear
and conditional constraints on a 2R simulated robot.

11

1.5 Related publications

The following contributions were obtained during the course of this thesis work:

• C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano, and A. De
Luca,“Dynamic identification of the Franka Emika Panda robot with re-
trieval of feasible parameters using penalty-based optimization,” IEEE
Robotics and Automation Lett., 2019
Supplementary material and accompanying video:
https://ieeexplore.ieee.org/document/8772145/media#media.

• A. A. Oliva, P. Robuffo Giordano, and F. Chaumette, “A general visual-
impedance framework for effectively combining vision and force sensing in
feature space”, IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp.4441–4448, 2021.
Video: https://www.youtube.com/watch?v=Qw0Dnhq2uRQ

• A. A. Oliva, E. Aertbeliën, J. de Schutter, P. Robuffo Giordano, and F.
Chaumette, “Towards dynamic visual servoing for interaction control and
moving targets,” ICRA 2022 - IEEE International Conference on Robotics
and Automation, May 2022, Philadelphia, United States. (to appear)
Video: https://www.youtube.com/watch?v=fOSRnxd1dlE

• A. A. Oliva, F. Spindler, P. Robuffo Giordano, and F. Chaumette,
“FrankaSim: A Franka Emika’s Panda robot simulator with visual-servoing
enabled capabilities,” 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). (submitted)
Video: https://www.youtube.com/watch?v=Kxn3pXsK9h4&t=2s

https://ieeexplore.ieee.org/document/8772145/media#media
https://www.youtube.com/watch?v=Qw0Dnhq2uRQ
https://www.youtube.com/watch?v=fOSRnxd1dlE
https://www.youtube.com/watch?v=Kxn3pXsK9h4&t=2s

12

13

Part I Preliminaries
and State of the Art

14

15

Chapter

2 Force control of
manipulators

Contents
2.1 Introduction . 16

2.2 Manipulator kinematics 16

2.2.1 Differential kinematics 19

2.2.2 Statics . 21

2.2.3 Twist and Wrench transformations 22

2.3 Dynamic model . 23

2.3.1 Parameter identification 24

2.3.2 Physical consistency of the dynamic parameters 26

2.3.3 Dynamic model in operational space 27

2.4 Force Control Schemes 28

2.4.1 Hybrid position/force control 28

2.4.2 Impedance control . 30

2.4.3 Admittance control . 33

2.5 Conclusion . 35

16

2.1 Introduction

For many real-world robotic applications, interaction with the environment is a
fundamental requirement and the ability of robots in managing this interaction
often determines the successful execution of a task. For example, assembly or
polishing require to control the exchanged forces at contact by regulating them to
a specific value. The contact wrench between the end-effector and the environment
is the most complete and effective quantity describing the state of the interaction,
which is naturally described in the operational space [11].

For implementing an interaction control, either the exact knowledge of the
location and geometry of the environment is required for accurately planning the
task trajectory, or the robot needs to be equipped with force sensing capabili-
ties to adapt to uncertainties and avoid high contact forces along the constrained
directions. An effective way to deal with constrained motions is via active com-
pliance, which can be achieved through impedance control [12] by imposing a
mass-spring-damper behavior of the robot in contact with the environment. This
scheme, as well as compliance or stiffness control, belongs to the category of
indirect force control methods [13], since they achieve open-loop force control
via closed-loop position control. Many other approaches have been explored in
the past decades for including force sensing capabilities inside a motion control
scheme, such as the widely studied Hybrid Position/Force [14] that is based on the
task description [15], the parallel scheme [16] or, an approach based on external
force loops [17]. The ability of these methods to perform closed-loop force control
via explicit closure of a force feedback loop places them among the direct force
control methods [13].

2.2 Manipulator kinematics

A manipulator can be mechanically described as a kinematic chain consisting of
rigid bodies (links) connected by means of revolute or prismatic joints, which
constitute its degrees of freedom (DoF). One end of the chain is bounded to a
base (or the floor) while at the other extreme a tool is usually attached (see Fig-
ure 2.1). The overall motion of the structure is achieved through the composition
of elementary motions of each link with respect to the previous one due to the
motion of the qi-th joint (∀i = 1, ..., n). In order to manipulate the tool end point
(end-effector), the description of the pose (xe = [fp>e fφ>e]>), position (fpe) and
orientation (fφe), of such point is required.

17

This is referred to as the direct geometric model [13]

xe = K(q) (2.1)

being q ∈ Rn the vector of joint variables. To the pose vector (xe) is associated
an homogeneous transformation matrix fTe(fpe,f φe) ∈ SE(3) = R3 × SO(3)
representing the pose of the end-effector frame (Σe) expressed in floor frame (Σf)
(frame placed at the base of the manipulator):

fTe(fpe,f φe) =
 fRe(fφe) fpe

0 0 0 1

 =
 fne

fse
fae

fpe

0 0 0 1

 (2.2)

where fRe(fφe) ∈ SO(3) is the rotation matrix representing the orientation of
frame Σe expressed in frame Σf coordinates. fφe is the vector form of the ori-

Modified
Denavit-Hartenberg

parameters

i ai αi di θi

1 0 0 d1 q1

2 0 −π
2 0 q2

3 0 π
2 d3 q3

4 a4
π
2 0 q4

5 a5 −π
2 d5 q5

6 0 π
2 0 q6

7 a7
π
2 0 q7

fl 0 0 dfl 0
e 0 0 de −π

4

Figure 2.1 – Panda robot with its kinematic parameters according to the modified Denavit-
Hartenberg convention: d1 = 0.333 m, d3 = 0.316 m, d5 = 0.384 m, dfl = 0.107 m, de =
0.1034 m, a4 = 0.0825 m, a5 = −a4 m, a7 = 0.088 m.

entation representation which could be either one of the 12 possible Euler angles
representations, or the Axis/angle, or again, the unit quaternion representation.

18

Each column of the fRe(fφe) is a unit vector of the end-effector frame Σe, which
is placed conveniently from case to case. When the tool is a two finger gripper,
the origin of the frame is placed at the mean point between the fingers and the
unit vectors are chosen such that fse belongs to the plane in which the fingers
slide, fae points in the approach direction towards the object to be grasped, while
fne is normal to the sliding plane (See Figure 2.1).

It is evident that the pose of the end-effetor frame depends on the manipula-
tor’s configuration (q ∈ Rn) and it can be systematically computed as a recursive
product of homogeneous transformation matrices (i−1Ti(qi)) from the end-effector
to the base, each of which is a function of a single joint variable (qi). Therefore,
the overall coordinate transformation that expresses the pose of the end-effector
in base frame for the n = 7 joint manipulator in Figure 2.1 is given by

fTe(q) = fT1(q1) 1T2(q2) . . .6 T7(q7) 7Tfl
flTe (2.3)

in which the two rightmost transformations, i.e., from the last joint to the flange
(7Tfl) and from flange to end-effector frame (flTe), are constant. The refer-
ence frames along the kinematic chain are often placed following the Denavit-
Hartenberg [18] convention (DH). For the Panda robot from Franka Emika in
our example, the frames placement follows the Modified Denavit-Hartenberg [19]
convention, whose DH parameters are also reported in Figure 2.1.

The space in which the pose vector (xe) is defined is usually the space in which
the operations (or tasks), that are requested to the manipulator, are specified;
therefore it is called the operational space [11], while the space in which the vector
of joint variables q = [q1 . . . qn]> is defined is referred to as the joint space or
configuration space.

The direct geometric model equation, in both its forms (2.1) or (2.2), expresses
the (unique) relationship between the joint variables and the end-effector’s pose.
The inverse problem, on the other hand, refers to the problem of retrieving the
vector of joint variables once an end-effector pose is given. The resolution of
this problem is critical in order to transform the motion specifications defined
in the operational space for the end-effector, into the corresponding motion in
the joint space, allowing the required motion to be realized on the mechanical
structure. Furthermore, the inverse problem has no unique solution for redundant
manipulators (or, more broadly, when the number of joints is greater that the DoF
of the task space).

19

2.2.1 Differential kinematics

We have seen the relationship between the end-effector’s posture and the joint
variables. In this subsection, we will focus on their differential relationship, or the
relationship that exists between the end-effector’s linear (f ṗe ∈ R3) and angular
(fωe ∈ R3) velocity with the joint velocities q̇ ∈ Rn. Both relationships are linear
with respect to the joint velocities as follows:

f ṗe = JeP (q)q̇
fωe = JeO(q)q̇

(2.4)

being JeP ∈ R3×n and JeO ∈ R3×n respectively the matrices relative to the contri-
bution of the joint velocities to the linear (f ṗe) and angular (fωe) velocities of the
end-effector. One can then write the differential kinematic equation in compact
form as

fve =
f ṗe
fωe

 =
fve
fωe

 =
JeP (q)
JeO(q)

 q̇ = Je(q)q̇ (2.5)

where Je(q) ∈ R6×n is the configuration dependent geometric Jacobian matrix of
the manipulator.

It is sometimes convenient to express the end-effector’s velocity with respect
to another frame u of the kinematic chain instead of the base frame; it is often
the case for the end-effector frame (u = e). If the rotation matrix between the
base and the desired frame (u) is known (fRu) and using the relationship between
velocities expressed in two different framesuve

uωe

 =
fRu

>
O

O fRu
>

 fve
fωe

 = fR>u

fve
fωe

 (2.6)

where O is the matrix of all zero elements of proper dimension. Exploiting this
relationship, one can obtain the end-effector linear and angular velocities in its
own frame from the joint velocities as

eve =
eve
eωe

 = fR>e Je(q)q̇ = eJe(q)q̇ (2.7)

The method for computing the geometric Jacobian essentially follows a geo-
metric procedure that identifies the individual contributions of each joint velocity
to the linear and angular velocity components of the end-effector.

20

Another possibility to compute the Jacobian consists in deriving it directly
from the direct geometric model functions (K(q)) as

f ṗe = ∂ fpe
∂q

q̇ = JeP (q)q̇

f φ̇e = ∂ fφe
∂q

q̇ = Jeφ(q)q̇
(2.8)

the linear velocity of the end-effector can be obtained as the time derivative of
its position vector in the base frame (f ṗe), while for the orientation, the time
derivative of the minimal orientation representation does not coincide, in general,
with the vector of angular velocities (f φ̇e 6= fωe). Furthermore, the computation
of the Jacobian Jeφ(q) = ∂ fφe

∂q
is not straightforward since the function fφe is not

usually available in explicit form and its computation requires to pass through the
elements of the relative rotation matrix (fRe(fφe)). Formally deriving the direct
geometric model equation (2.1) one yields to the following differential kinematic
equation

ẋe =
f ṗe
f φ̇e

 =
JeP (q)
Jeφ(q)

 q̇ = JA(q)q̇ (2.9)

where
JA(q) = ∂K(q)

∂q
(2.10)

is called the analytic Jacobian, which results to be different from the geometric
Jacobian Je(q) computed using the geometric procedure. Exploiting the existing
relationship between angular velocity and time derivative of a minimal orientation
representation

fωe = Γ(fφe) f φ̇e (2.11)

where Γ(fφe) is a suitable representation dependent transformation matrix, it is
possible to find the link between the two Jacobians. Taking into account (2.5)
and (2.9)

fve =
 I3 O

O Γ(fφe)

 ẋe = ΓA(fφe)ẋe = ΓA(fφe)JA(q)q̇ (2.12)

where I3 is the 3× 3 identity matrix. We finally obtain

Je(q) = ΓA(fφe)JA(q) (2.13)

2.2.1.1 Second-order differential kinematics

Kinematic inversion algorithms are first-order algorithms in the sense that they
allow the inversion of a trajectory specified in terms of end-effector position and

21

velocity into the equivalent position and velocity of the joints. As we will see later,
inverting a trajectory specified in terms of position, velocity, and acceleration in
operational space may be necessary for control purposes. The manipulator, on
the other hand, is a naturally second-order mechanical system, as the dynamic
model will show. The derivation of the differential kinematic equation (2.5) allows
to write

f v̇e = J̇e(q, q̇)q̇ + Je(q)q̈ (2.14)

while the derivation of equation (2.9) yields

ẍe = J̇A(q, q̇)q̇ + JA(q)q̈ (2.15)

2.2.2 Statics

The goal of this subsection is to find the relationship between the forces
(ffe ∈ R3) and moments (fµe ∈ R3) acting on the end-effector (the wrench
he = [ffe

> fµe
>]>) and the forces/torques (τ ∈ Rn) at the joints (force for

prismatic, torque for revolute joints).
The considered manipulators are mechanical system with time-independent

holonomic constraints whose configurations only depend on the joint variables q
and not explicitly on time. This means that the virtual displacements (indicated
with δ) of the structure coincide with the elementary displacements (indicated
with d). Applying therefore the Virtual Work Principle we can obtain the desired
relation.

Let us consider the elementary work done by the two force systems. On one
hand, one has the force/torques acting on the joints, while in the other hand, one
has to split the contribution to the work performed by the forces and the moments
at the origin of the end-effector frame. The elementary works are then:

dWτ = τ> dq

dWh = ffe
>
dfpe + fµe

> fωe dt
(2.16)

where dWτ and dWh are respectively the elementary work performed by the joint
torques τ and the wrench he. dfpe and fωe dt

1 are the linear and the angular
displacements. Taking into account the differential kinematic equation (2.5)

dWh = ffe
>
JeP (q)dq + fµe

>
JeO(q)dq = h>e Je(q)dq (2.17)

1Due to the integrability problems related to the angular displacement it has been indicated
by fωe dt.

22

Because the virtual and elementary displacements coincide, the virtual work
equals the elementary work, then

δWτ = τ> δq

δWh = h>e Je(q)δq
(2.18)

and for the Virtual Work Principle, the manipulator is in static equilibrium if and
only if

δWτ = δWh ∀δq (2.19)

yielding to the well-known relation

τ = J>e (q)he (2.20)

which by virtue of the relation (2.13) can also be expressed as

τ = J>e (q)he = (ΓA(fφe)JA(q))>he = JA(q)>hA (2.21)

where of course
hA = ΓA(fφe)>he (2.22)

2.2.3 Twist and Wrench transformations

Figure 2.2 – Linear and angular velocity representations in different coordinate frames on the
same rigid-body. The Wrench-transformation is used to express the measured contact wrench
on the Force/Torque sensor frame (ΣA) into the end-effector frame (ΣB).

Let consider a fixed frame of reference Σw and a rigid-body in motion with
respect to such frame. Let ΣA and ΣB be two coordinate frames attached to the

23

rigid-body as shown in Figure 2.2. The linear and angular velocity relationship
between frames ΣA and ΣB with respect to the fixed frame Σw are given by:

wωw,B =w ωw,A
wṗw,B =w ṗw,A +w ωw,A × wpA,B

(2.23)

which, exploiting the matrix form of the cross-product, can be written in compact
form as wṗw,B

wωw,B

 =
 I −[wpA,B]×
O I

wṗw,A
wωw,A

 (2.24)

being [·]× the 3 × 3 skew-symmetric matrix operator. If the vectors are instead
expressed in their own frames

wpA,B = wRA
ApA,B

wṗw,A = wRA
Aṗw,A

wṗw,B = wRB
Bṗw,B = wRA

ARB
Bṗw,B

wωw,A = wRA
Aωw,A

wωw,B = wRB
Bωw,B = wRA

ARB
Bωw,B

and taking into account equation (2.24) and the properties of the skew-symmetric
matrix operator [13], one yields the Twist-transformation

Bvw,B =
Bṗw,B
Bωw,B

 =
BRA − BRA[ApA,B]×
O BRA

Aṗw,A
Aωw,A

 = BTA Avw,A (2.25)

being BTA the Twist-transformation matrix, which is a proper Jacobian matrix
that expresses the linear and angular velocities from a reference frame into an-
other. Due to the kineto-static duality [13], one can directly obtain the Wrench-
transformation as

AhA =
AfA
AµA

 =
 ARB O

[ApA,B]A×RB
ARB

 BfB
BµB

 = BTA
> BhB (2.26)

being the Wrench-transformation matrix AFB = BTA
>.

2.3 Dynamic model

The dynamic model of a robotic arm can be written using the Lagrange formula-
tion in the joint space as described in [13]:

B(q)q̈ +C(q, q̇)q̇ + Fvq̇ + Fssgn(q̇) + g(q) + J>e (q)he = τ (2.27)

where q̇, q̈ ∈ Rn are respectively the generalized joint velocities and acceler-
ations. B(q) ∈ Rn×n is the symmetric and positive definite inertia matrix,

24

C(q, q̇) ∈ Rn×n is the matrix of centrifugal and Coriolis effects, g(q) ∈ Rn is
the configuration dependent vector of gravitational forces, τe = J>e he ∈ Rn is
the joint vector corresponding to the external wrench he ∈ R6 acting on the end-
effector frame, τ ∈ Rn is the vector of joint actuation torques. Finally, Fvq̇ ∈ Rn

and Fssgn(q̇) ∈ Rn represents the joint vectors of viscous and coulomb friction.

Figure 2.3 – Kinematic characterization of the i-th link for the Lagrangian formulation.

2.3.1 Parameter identification

The dynamic model in the form (2.27) includes typically nonlinear functions of q,
q̇, q̈ and the dynamic parameters described here in detail further. For each link
`i, i = 1, . . . , n, let mi be its mass and let

iri,ci =

cix

ciy

ciz

, iJ`i =

Jixx Jixy Jixz

Jixy Jiyy Jiyz

Jixz Jiyz Jizz

 , (2.28)

be the position of the center of mass and the symmetric inertia tensor with respect
to the i-th link frame, respectively, see Figure 2.3.

At this stage, if we collect the dynamic parameters of all the robot links in the
three vectors

p1 =
[
m1 . . . mn

]>
,

p2 =
[
c1xm1 c1ym1 c1zm1 . . . cnxmn cnymn cnzmn

]>
,

p3 =
[
J >1 . . . J >n

]>
,

(2.29)

25

with p1 ∈ Rn, p2 ∈ R3n, p3 ∈ R6n and

Ji =
[
Jixx Jixy Jixz Jiyy Jiyz Jizz

]>
, (2.30)

it is possible to rearrange (2.27) as

Y (q, q̇, q̈) π(p1,p2,p3) = τ , (2.31)

where the vector π(p1,p2,p3) =
[
p>1 p>2 p>3

]>
∈ Rp [20]. Then, π appears

linearly in the dynamic model (2.31), multiplied by the regressor matrix Y of
known time-varying functions.

The dynamic identification procedure is performed by collecting M � n p

joint torque samples as well as M joint position samples, while the joint velocity
and the acceleration are computed by off-line differentiation. For each numerical
sample (τk, qk, q̇k, q̈k), with k = 1, . . . ,M , we have

Yk(qk, q̇k, q̈k)π = τk. (2.32)

By stacking these quantities in vectors and matrices, one has

Y π = τ , (2.33)

with τ ∈ RMn and Y ∈ RMn×p. According to [21], we can prune the stacked
regressor Y so as to obtain a matrix with full column rank Y R, and then identify
the dynamic coefficients by solving an ordinary least-squares (OLS) problem via
pseudoinversion

π̂R = Y
†
Rτ . (2.34)

With the solution π̂R ∈ Rρ of regrouped dynamic parameters, i.e., the dynamic
coefficients, we can provide a joint torque estimate as

τ̂ = YR(q, q̇, q̈)π̂R (2.35)

for validation on any new motion q(t). Finally, following [20], one can extract from
the identified vector π̂R a feasible set of dynamic parameters p̂ = (p̂1, p̂2, p̂3) (not
necessarily the true ones) such that πR(p̂1, p̂2, p̂3) = π̂R and the upper/lower
bounds on the components of pi, i = 1, 2, 3, are also satisfied. However, the
triangle inequality constraint of inertia tensors is not taken into account in [20],
as instead done in Section 7.4.

Details on the physical consistency and the triangle inequality are provided in
the next subsection.

26

2.3.2 Physical consistency of the dynamic parameters

The obtained estimation of the dynamic coefficients vector π̂R might be possibly
physically inconsistent (e.g., a negative link mass), and this can be caused, for
instance, by modeling errors or by noisy measurements. Recent works [22–24]
highlighted these physical constraints and provided frameworks to consider them
during the identification phase, by solving linear constrained optimization prob-
lems using the following cost function:

min
π
f(π) = ‖Y π − τ‖. (2.36)

Physical constraints regard the mass of each link, which has to be positive,
and the barycentric inertia tensor of each link, which has to be positive definite.
That is, for each link `i of the manipulator, one has:

mi > 0 (2.37)

and

I`i =

Iixx Iixy Iixz

Iixy Iiyy Iiyz

Iixz Iiyz Iizz

 � 0, (2.38)

where I`i is the inertia tensor of link `i with respect to its center of mass. Moreover,
it is always possible to express the barycentric inertia tensor in a diagonal form,
exploiting a particular rotation matrix R̄i, such as

I`i = R̄iĪ`iR̄
T
i , (2.39)

where Ī`i is the diagonal inertia tensor. Since the diagonal elements (Īi,x, Īi,y, Īi,z)
of Ī`i are also the eigenvalues of I`i , condition (2.38) can be rewritten as

Īi,x > 0 , Īi,y > 0 , Īi,z > 0 . (2.40)

These three inequalities are however included in the following triangle inequality:
Īi,x + Īi,y > Īi,z

Īi,y + Īi,z > Īi,x

Īi,z + Īi,x > Īi,y

(2.41)

which, with simple manipulations [24], leads to the following condition on I`i :
tr(I`i)

2 − λmax(I`i) > 0, (2.42)

since Īi,x+ Īi,y+ Īi,z = tr(I`i) and denoting with tr(I`i) and λmax(I`i), respectively,
the trace and the maximum eigenvalue of the inertia tensor I`i .

Therefore, in order to guarantee physical consistency of the dynamic parame-
ters, conditions (2.37) and (2.42) must be satisfied for each link and are therefore
added as constraints to the optimization problem (see Section 7.4).

27

2.3.3 Dynamic model in operational space

To develop a dynamic model in operational space capable of describing the behav-
ior of redundant and non-redundant manipulation structures, the dynamic model
in joint space should be used as a starting point for the description, as its appli-
cation is quite general. To that end, if one solves equation (2.27) in terms of joint
accelerations while ignoring for simplicity the joint friction torques, one obtains

q̈ = −B(q)−1C(q, q̇)q̇ −B(q)−1g(q) +B(q)−1J>e (q)(γe − he) (2.43)

in which in virtue of equation (2.20), the contribution to the joint actuation
torques has been expressed in terms of the equivalent forces at the end-effector as
τ = J>e (q)γe. We recall that the term he expresses the contribution to the end-
effector forces due to contact with the environment while γe is the contribution
to the end-effector forces due to the motor actuation torques.

The second-order differential kinematic equation (2.15) expresses the relation-
ship between joint and operational space accelerations through the robot analytic
Jacobian JA while in the Lagrangian equation of motion (2.27) appears the geo-
metric Jacobian Je. Similarly to relation (2.22), it is possible to write

γA = ΓA(fφe)>γe (2.44)

Replacing (2.43) into the second-order differential kinematic equation (2.15)
one obtains (omitting the dependencies on q and q̇ for the sake of notation sim-
plicity)

ẍe = J̇Aq̇ − JAB−1Cq̇ − JAB−1g + JAB−1J>A (γA − hA) (2.45)

that rearranged and naming the quantities (q̇ = J †Aẋe)

BA = (JAB−1J>A)−1 (2.46a)
CAẋe = BA(JAB−1C − J̇A)J †Aẋe (2.46b)
gA = BAJAB

−1g (2.46c)

yields to
BA(xe)ẍe +CA(xe, ẋe)ẋe + gA(xe) + hA = γA (2.47)

The obtained dynamic model in operational space is formally analogous to the
one in joint space.

28

2.4 Force Control Schemes

The ability to manage the physical contact between a robot and its environment
is a critical necessity for the accomplishment of a manipulation task. Pure motion
control is insufficient given the inevitable modelling errors and uncertainties that
can result in an increase in contact force, ultimately leading to unstable behaviour
during interaction, especially in rigid environments. Feedback and force control
are necessary to provide robust and flexible behaviour of the robotic system in un-
structured environments and to have a safe and reliable operation in the presence
of human operators.

In this section, we describe some of the most common force control methods
in the literature, that have also been used as base controllers for the integrated
vision-force methods we will discuss in Chapter 4.

2.4.1 Hybrid position/force control

Typically, a robotic task is separated into two main phases: a large motion, in
which only position control is used, and fine quasi-static motion, in which force
control is the primary concern. However, certain tasks may necessitate precise
hybrid control of both velocity and force along a dynamic trajectory.

Following Mason’s task description [15], Raibert and Craig [14] proposed a
technique capable of controlling either the velocity or the force exchanged by each
direction axis of a manipulator in compliant motion with the environment. The
essential idea behind their control technique is an architectural concept conceived
to disregard position errors along force-controlled axes and force errors along
position-controlled axes. On the basis of the relative error, a typical PD/PID
force or position controller is designed individually for each axis. This error is
calculated using kinematic transformations then, selection matrices (S in Fig-
ure 2.4), a key element of this controller to keep force- and position-controlled
directions separated, avoiding the arise of inconsistencies at the actuation level.
In particular, given the task geometry and the constraints imposed by the envi-
ronment, a subset of the controlled axis will be position/velocity controlled while
the remaining ones will be force-controlled (those along the constraints imposed
by the environment).

With reference to Figure 2.4, the motion of the workpiece which is rigidly
handled by the manipulator’s gripper, is constrained by the flat surface on which
it slides; linear velocity along the end-effector’s z-axis as well as angular velocities
about the x− and y-axis are constrained by the task geometry. Moreover, forces

29

Figure 2.4 – Hybrid force/motion control scheme while executing a cube in plane sliding task.
S = Sv is the matrix that selects the motion controlled directions, while Sf = I−S selects the
force controlled ones. The end-effector’s current and reference pose are indicated with symbols
xe and xde respectively while ẋe and ẋde represent its current and reference velocities. The
measured and desired end-effector’s external wrench are instead indicated with symbols ehe and
ehde . The position (2.51) and force (2.54) control laws produce the joint torque contributions
that are summed up in τ to servo the robot along the free motion and constrained Cartesian
directions respectively.

along x− and y-axis and moments about the z-axis cannot be arbitrarily imposed;
all those are called natural constraints. Conversely, the manipulator can be com-
manded to move along x− and y-axis and about z-axis while arbitrary moments
about x− and y-axis and forces along the z-axis can be required to the controller.
The latter are named Natural constraints and are used to determine the selection
matrix for the velocity subspace Sv. The selection matrix of the force subspace is
quickly obtained as Sf = I− Sv. For this particular example, selection matrices
are:

Sv =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

Sf =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

(2.48)

30

The joint torque controller has the following expression

τ = χ(Sv,∆x,∆ẋ) + Ψ(Sf ,∆f) (2.49)

χ(Sv,∆x,∆ẋ) = KpPJA
−1∆x+KpDJA

−1∆ẋ+KpI

∫
JA
−1∆x (2.50)

∆x = Sv(fxde −K(q)) (2.51)
∆ẋ = Sv(f ẋde − JA(q)q̇) (2.52)

Ψ(Sf ,∆f) = J>e Sf
ehde +KfPJ

>
e ∆f +KfI

∫
J>e ∆f (2.53)

∆f = Sf (ehde − eFF/T F/ThF/T) (2.54)

where JA−1∆x is a differential approximation valid only for small ∆x. Otherwise
it can be seen as the inverse kinematic problem which provides as solution the
joint space error qe; χ(Sv,∆x,∆ẋ) implements a PID controller on the positional
error ∆x while Ψ(Sf ,∆f) implements a force reference feedforward plus a PI on
the wrench error ∆f . Both force and position contributions to the joint torques
are “filtered out” by the relative selection matrices.

Several improvements to the presented hybrid control of manipulators have
been proposed since its formulation in 1981 for: compensating the interaction
effects due to dynamic coupling like in [11] or in [25] which also preserves the
dynamic orthogonality between force and velocity; for accounting for the followed
geometric curvature of the object surface [26, 27]; a robust version to dynamic
parameters is given in [28] while a generalization for controlling robots in contact
with dynamic environments is given in [29]. Kinematic stability issues due to
the inverse of the manipulator Jacobian and selection matrices are treated in [30]
and [31] respectively.

The presented hybrid position/force controller generates the torque commands
for the joints; nevertheless, following the same reasoning, a controller that gener-
ates the joint velocities instead of the torques can be synthesized. What matters
is the preservation of the orthogonal subspaces through the use of the selection
matrices.

2.4.2 Impedance control

The ratio of force output to motion input is known as mechanical impedance; reg-
ulating the impedance of a mechanism means adjusting the force of resistance to
external motion imposed by the environment. Impedance control seeks to imple-
ment a dynamic relationship between manipulator variables such as end-effector
position and wrench, rather than simply controlling these variables separately.
This concept was originally applied to manipulators by Hogan [12] in 1985. The

31

strategy that has been chosen to deal with the inertial behaviour of the manipu-
lator is to “hide” the underlying non-linear inertial dynamics of the manipulator
and impose a simpler one; that of a rigid body.

A control technique for such mechanical systems, which aims at linearizing
and decoupling the manipulator dynamics via feedback, is the well-known inverse
dynamics control. Nonlinearities such as Coriolis and centrifugal forces as well
as gravitational forces, can be cancelled by adding those terms in the control
input, while decoupling is achieved through the inertia matrix. The following
development follows more closely the development in [13].

From the manipulator’s equation of motion (2.27), we want to synthesize an
inverse dynamics controller in operational space that minimizes the error x̃e =
xde − xe. Choosing a joint space control input

u = B(q)α+N (q, q̇) (2.55)

where N (q, q̇) = C(q, q̇)q̇ + Fvq̇ + Fssgn(q̇) + g(q) and α is the new resolved
joint space acceleration controller to be properly designed. The manipulator (2.27)
under the action of such controller, is described by

q̈ = α−B−1 J>e (q)he (2.56)

which, exploiting the second-order differential kinematic equation (2.15) to link
joint and end-effector accelerations, suggest the expression of α

α = JA(q)−1M−1
d (Mdẍ

d
e +D ˙̃xe +Kx̃e −MdJ̇A(q, q̇)q̇) (2.57)

which includes a PD with acceleration feedforward in operational space, being
Md,D and K suitable positive definite matrices. Replacing equation (2.57) into
(2.56) and accounting for the second-order differential equation, one obtains the
closed-loop system equation

Md
¨̃xe +D ˙̃xe +Kx̃e = MdB

−1
A (q)hA (2.58)

where BA(q) = JA(q)−>B(q)JA(q)−1 is the inertia matrix of the manipulator
in operational space (see Section 2.3.3). The closed-loop system equation defines
a generalized mechanical impedance between the displacement vector x̃e and the
vector of resultant forcesMdB

−1
A (q)hA in the operational space. This impedance

is equivalent to a mechanical system characterized by the matrices of inertia (Md),
damping (D) and stiffness (K).

The presence of the configuration dependent inertia matrix BA(q)−1 keeps
the system dynamically coupled during the interaction. Using a Force/Torque

32

sensor, it is possible to measure the contact wrench (he) and use it to preserve
the linearity and decoupled properties of the system. Adding it then in the input
control law

u = B(q)α+N (q, q̇) + J>e he, (2.59)

fully compensates for the external forces, making the manipulator infinitely stiff
with respect to those forces; then with

α = JA(q)−1M−1
d (Mdẍ

d
e +D ˙̃xe +Kx̃e −MdJ̇A(q, q̇)q̇ − hA) (2.60)

in which −JA(q)−1M−1
d hA has been added to endow the system with a linear

impedance behaviour with respect to the vector hA, as the closed loop equation
shows

Md
¨̃xe +D ˙̃xe +Kx̃e = hA (2.61)

The control scheme of the impedance control in interaction with the environ-
ment is depicted in Figure 2.5.

Figure 2.5 – Impedance control scheme. The simplest version of the controller (eq. (2.57)) does
not require any Force/Torque measurement. This scheme relates to the controller eq. (2.60) and
inverse dynamics eq. (2.59).

At equilibrium, i.e., when the manipulator is at rest (q = q̇ = 0), the position
of the end-effector is given by

xe = xde −K−1hA (2.62)

When the manipulator is not in contact with the environment (hA = 0) the
actual position of the end-effector reaches the desired one (xe = xde). When in

33

contact with the environment, the positioning error is proportional to the inverse
of the chosen stiffness K and the equivalent contact wrench hA. It should be
noted that, with respect to the contact wrench he, the impedance is dependent
on the orientation of the end-effector due to the presence of the matrix ΓA(fφe)
(see (2.22)), making the choice of the impedance parameters difficult.

To avoid this problem it is sufficient to redesign the control input α with
respect to a different error vector in operational space

x̃ = −
dpd,e
dφd,e

 (2.63)

where dpd,e is the position error between the origin of the current and desired
end-effector frames and dφd,e is the orientation vector extracted from the rotation
matrix dRe(dφd,e). For further details refer to [13].

2.4.3 Admittance control

The choice of the impedance parameters in the impedance controller determines
its dynamic behaviour, both in free space and when in contact with the environ-
ment. Indeed if the interaction wrench is generated from contact with an envi-
ronment described by a mass-spring-damper, the interacting system manipulator-
environment is equivalent to a mechanical system made by the parallel of the two
impedances, and the resulting closed-loop dynamics along the constrained direc-
tions will differ from those in free space. Since the dynamic behavior of the system
is influenced by environmental rigidity, its stability is concerned as well.

Among the objectives to pursue when choosing the impedance parameters,
there is the need to ensure a high disturbance rejection factor given the model
uncertainties and the approximations induced in the computation of the inverse
dynamics. This factor is proportional to the gain K which also impacts the tra-
jectory tracking performances. Indeed, the impedance controller in free space is
nothing but an inverse dynamics position controller. It follows that tracking per-
formance will be more degraded the lower this parameter is chosen. It is therefore
evident that there is a trade-off between the tracking performance obtainable and
the compliance assigned to the manipulator. The more rigid the manipulator is
commanded to be, the better it will follow the reference trajectory and vice versa.

Separating the motion control and impedance control problems, as done in the
control scheme reported in Figure 2.6, could be a solution to the aforementioned
issues.

Let us suppose to have three reference frames, the current Σc, the desired Σd

and the compliant frame Σc∗ and that the compliant frame is coincident with the

34

Figure 2.6 – Admittance control scheme. It is composed by an internal “stiff” impedance
controller (pose control eq. (2.57)) and inverse dynamics eq. (2.55)) and an external “impedance
law” (eq. (2.66)).

desired frame. The pose of those frames with respect to a fixed frame are given
by

fTc =
 fRc

fpc

0 0 0 1

 ; fTd =
 fRd

fpd

0 0 0 1

 ; fTc∗ =
 fRc∗

fpc∗

0 0 0 1

 (2.64)

Let us also suppose that there are two pose errors, ec between the current and
the compliant frames and ēc between the desired and the compliant frame

c∗Tc(ec) = fTc∗
−1fTc −→ ec =

c∗pc∗,c
c∗φc∗,c

dTc∗(ēc) = fTd

−1fTc∗ −→ ēc =
dpd,c∗
dφd,c∗

 (2.65)

The latter error is used as displacement vector in an impedance equation subjected
to the action of a wrench he which makes the compliant frame move according to
the impedance law (2.66) (see Figure 2.7).

The admittance controller is based on this concept of compliant frame, which
is a Cartesian reference frame that describes the ideal end-effector’s behavior as a
result of impedance control. The linear and angular velocity and acceleration of
the compliant frame are computed integrating impedance equations of the form

Mt
¨̄ec +Dt

˙̄ec +Ktēc = he (2.66)

whereMt,Dt andKt are the parameters of a mechanical impedance between the
desired frame and the compliant frame.

35

(a) (b) (c)

Figure 2.7 – Compliant frame concept: (a) Desired and Compliant frames are coincident,
the Current frame tracks the compliant frame. (b) The system undergoes the action of an
external force. (c) The compliant frame is linked to the desired one with a mass-spring-damper
relationship.

The position, velocity and acceleration of the compliant frame are then used
as reference input to a “stiff” impedance controller, see Figure 2.6. The control
parameters for both the motion and the compliance controller can be designed
separately; ensuring high rejection factor and trajectory tracking performance for
the motion controller on one hand, and imposing the desired interaction behaviour
opportunely tuning the impedance parameters on the other. For stability purposes
of the whole controlled system, the bandwidth of the motion controller must be
greater than the one of the impedance.

2.5 Conclusion

In this introductory chapter, we examined the fundamental concepts of robot
kinematics, its dynamic model, dynamic parameter identification, and force con-
trol of manipulators. These notions form the foundation of knowledge required
to comprehend the content presented here. Furthermore, this chapter has allowed
us to illustrate the fundamental concepts, terminology and symbols that will be
used in the subsequent chapters.

On the other hand, as will be seen in Chapter 4, the motion/force control
schemes discussed above will constitute the basic schemes upon which the main
vision/force control schemes have been built, essentially replacing the motion loop
with a vision-based control loop.

The focus of the next chapter is on vision control, the second essential brick
on which this work is built on.

36

37

Chapter

3 Vision Control

Contents
3.1 Introduction . 38

3.2 Camera model . 39

3.3 Visual Servoing . 40

3.3.1 IBVS: Image-Based Visual Servoing 42

3.3.2 PBVS: Pose-Based Visual Servoing 43

3.3.3 Stability analysis . 45

3.3.4 Mounted camera . 46

3.3.5 Feature trajectory tracking 47

3.3.6 Target tracking . 47

3.4 Second-order Visual Servoing 47

3.5 Conclusion . 49

38

3.1 Introduction

Motivated by the desire of reducing or avoiding accurate environmental modeling,
robotic systems are more and more often equipped with external exteroceptive
sensors, like cameras, that allow them to acquire geometric information on the
environment in which they operate, without direct contact with it. This allows
such systems to perform the required tasks without having an accurate preliminary
knowledge of the environment.

The visual perception is a very versatile sensing modality and the extracted
information can be used for many purposes ranging from motion planning, lo-
calization and mapping, scene segmentation, control, just to name a few. This
kind of sensors becomes essential when a task has to be performed in a partially
known/unknown environment or when it is not completely rigid. Cameras make
then possible to account for environmental modeling errors as well as for inaccu-
racies in the identified geometric model of the manipulator.

A fundamental aspect that characterizes classical visual control, with respect
to motion and force control, is the fact that the controlled quantities are not
directly measured by the sensor, but are obtained from these downstream of rather
complex image processing and computer vision algorithms. Such algorithms allow
the extraction of digital information, known as visual features, relating to the
objects present in the images of a scene, that can be used to estimate the position
and orientation (pose) of the camera with respect to those objects.

Different other paradigms of visual control exist that do not make use of clas-
sical geometric features. For instance, [32] considers the luminance of the pixels
of the entire image as visual feature; this approach is known as photometric visual
servoing and belongs to the so called direct visual servoing methods. [33] proposed
a generic framework to consider histograms as visual features while [34] presented
a deep neural network-based method to perform 6 DOF visual servoing in which a
Convolutional Neural Network was trained to estimate the relative pose between
two images of the same scene.

The algorithmic and technological progress made over the past decades has
led to tightly intertwine the aspects of perception with those of action, by di-
rectly integrating the measurements provided by a vision system into closed-loop
control laws that deal with the extracted visual information. When visual mea-
surements are used in feedback in a control algorithm, we speak of visual control
or Visual-Servoing, and it is the main focus of this chapter. This term seems to be
firstly introduced by Hill and Park [35] in 1979 to distinguish their approach from
earlier “blocks world” experiments where the system alternated between picture

39

taking and moving, referred as look-then-move. That approach uses open-loop
visual measurements and therefore makes the system not very robust against un-
certainties due, for example, to the fact that the object may have moved while the
end-effector reaches the desired pose. Prior to the adoption of its current term,
Visual-servoing was generally referred to by the less specific term visual feedback.
The difference between visual-servoing and classical look-then-move systems can
be also seen from the data abstraction flow perspective from perception and ac-
tion [36] as shown in Figure 3.1.

Figure 3.1 – General hierarchical control structure of a classical look-then-move approach
(blue line) in contrast with a visual servoing system (dashed red line). Visual-servoing can be
considered as a low-level “shortcut” through the hierarchy, characterized by high bandwidth but
moderate image processing. Higher levels correspond to more abstract data representation and
lower bandwidth.

3.2 Camera model

Cameras are at the heart of any visual system and it is worth delving into their
mathematical characterization. A camera model describes the mathematical rela-
tionship between the coordinates of a point X = (X, Y, Z)> in three-dimensional
space and its projection on the image plane x = (x, y), see Figure 3.2. By far,
the most common camera model is the pinhole model, which makes the funda-
mental assumption that rays of light enter the camera through an infinitely small
aperture.

A scene’s 3D point X is firstly transformed in camera frame Σc coordinates
(cX = [cX,c Y,c Z]>) and then is projected, using a perspective transformation,

40

Figure 3.2 – Frontal pinhole imaging model: the image of a 3-D point cX is the point x at the
intersection of the ray going through the optical center Oc and the image plane at a distance f
in front of the optical center.

into the image plane which forms the corresponding point x = (x, y), we have:x = cX/cZ = (u− cx)/fα
y = cY /cZ = (v − cy)/f

(3.1)

being f the ratio between the focal length, which is the distance between the origin
of the camera frame and the image plane, and the pixel vertical dimension, α the
ratio of the pixel horizontal and vertical dimensions, cx and cy the coordinates
of the principal point in pixels. x̄ = (u, v) gives the coordinates of the image
point expressed in pixel units, and a = (cx, cy, f, α) is the set of camera intrinsic
parameters. Further details on imaging geometry and perspective projection can
be found in many computer vision text books [37,38].

3.3 Visual Servoing

Visual servoing techniques consist of using the information provided by one or
several cameras to control the movements of a robotic system. This allows to
execute a wide range of tasks spanning from locating the system with respect to
its environment, or tracking mobile objects, by controlling one or as many as all
of the camera’s n ≤ 6 degrees of freedom. Regardless the sensor’s configuration,
which can be both a mounted camera on the robot’s end-effector (eye-in-hand)
or one (several) scene camera(s) (eye-to-hand), the objective is twofold; on the

41

one hand, one must select a set of k possible visual data, in order to control the
desired m ≤ n degrees of freedom, while on the other hand, one must develop
a control law capable of carrying these data s(t) to reach the desired value sd

which defines when the task has been properly executed. It is also possible to
track a desired trajectory sd(t). The aim of all vision-based control schemes is to
minimize an error vector es = sd(t) − s(t), that is, making this value reach zero
and maintaining it there [39].

Figure 3.3 – 2-D and 3-D visual servoing: 2-D visual servoing is used to bring the camera’s
frame of reference from Σc∗ to Σc based on measurements s extracted directly from the image
(left). With 3-D visual servoing, the measurements s represent 3-D data estimated after a 3D
localization phase (right)

To study the system’s behavior, a model describing the relationship between
the chosen visual data s(t) ∈ Rk and the control variables is needed. The vector
sd contains the desired values of the features. Let us suppose the vector of visual
data to be defined by a differentiable application s : SE(3) −→ Rk:

s = s(m(t),a) (3.2)

the vector m(t) represents a set of image measurements (e.g., the image coor-
dinates of interest points or the image coordinates of the centroid of an object).
These image data are utilized to generate a s(m(t),a) vector of k visual features,
where a is a set of parameters that reflect further information (e.g., coarse camera
intrinsic parameters or 3-D models of objects). The visual datum can therefore
be modified by the motion of either the camera or the object it perceives. Once
s is chosen, the control scheme design can be quite simple designing, for exam-
ple, a velocity controller. The relationship that links the relative twist cv ∈ R6

between the camera and the object with the rate of change of the visual data can
be obtained differentiating equation (3.2), leading to:

ṡ = ∂s

∂p
ṗ = Ls

cv = Ls(cvc − cvo) = Ls
cvc + ṡo (3.3)

42

being Ls ∈ Rk×6 the well-known interaction matrix [40] related to s, cvc =
[cv>c cω>c]> and cvo = [cv>o cω>o]> the camera and object absolute twists in
camera frame respectively, while ṡo represents the contribution to the features’
velocity due to the target motion.

From the previous equation (3.3) and considering the time derivative of the
feature error for static target (cvo = 0) and constant desired features ṡd = 0,
ės(t) = ṡd − ṡ(t) = −ṡ(t), we immediately obtain

ės(t) = −Ls cvc (3.4)

Considering cvc as the input to the manipulator controller (cvcmdc), and to
ensure an exponential decoupled decrease of the error, we ask as a control objective
to have ės = −λes, that together with equation (3.4) we obtain

cvcmdc = λL†ses (3.5)

where L†s is chosen as the Moore-Penrose pseudo-inverse of Ls, that is, L†s =
(L>sLs)−1L>s when Ls is of full-rank (rank(Ls) = 6). This choice allows ‖ės −
λLsL

†
ses‖ and ‖cvcmdc ‖ to be minimal. When k = 6, if det(Ls) 6= 0 it is possible

to invert Ls, giving the control cvcmdc = λL−1
s es. In real visual servo systems, it

is impossible to know perfectly in practice either Ls or L†s. So an approximation
or an estimation of one of these two matrices must be realized. In the sequel, we
denote both the pseudoinverse of the approximation of the interaction matrix and
the approximation of the pseudoinverse of the interaction matrix by the symbol
L̂†s. Using this notation, the control law is in fact:

cvcmdc = λL̂†ses (3.6)

This is the basic design implemented by most visual servo controllers.
The main difference between visual servoing schemes is how features s are

designed. We will take a glance at two very different approaches in the next two
subsections of this chapter. First, we describe image-based visual servo control
(IBVS), which consists of a set of features that are readily available as image data.
Then, we describe pose-based visual servo (PBVS) control, in which s is a set of
three-dimensional parameters that must be estimated from image measurements.

3.3.1 IBVS: Image-Based Visual Servoing

In Image-Based Visual Servoing (IBVS) the visual features consist of 2D primitives
directly extracted from the image plane. Traditional control schemes use a set of
points in image plane coordinates, but many other primitives can be adopted [40],

43

like straight lines or image moments [41]. The image measurements are usually
obtained in pixel coordinates and the intrinsic parameters are used to go from
pixels to the features s.

For the case of image points features, it is possible to obtain the relative
interaction matrix by time derivation of the perspective model equation (3.1) (see
also Figure 3.2) and relating then the velocity of the 3D point to the camera
spatial velocity using the well-known equation cẊ = − cvc − cωc × cX, finally
yielding ẋ = Lx

cvc, with

Lx(x, cZ) =
−1/cZ 0 x/cZ xy −(1 + x2) y

0 −1/cZ y/cZ 1 + y2 −xy −x

 (3.7)

in which the value cZ is the depth of the point relative to the camera frame;
therefore, any control scheme that uses this form of the interaction matrix must
estimate or approximate this value. Similarly, the camera intrinsic parameters are
involved in the computation of x and y. Thus, Lx cannot be directly used and
has to be estimated or approximated L̂x.

To control the 6 degrees of freedom we need at least six independent features
to fully constrain the system. We can use then three image points (k = 6 two
coordinates per image point), but given the singularity problems related to this
choice, usually more than three points are used (k ≥ 6). The feature vector is
built as s = [x>1 x>2 x>3 . . .]>, while the interaction matrix is obtained by stacking
the individual interaction matrices of each point of the type (3.7)

Ls(s,Z) =

Lx(x1,

cZ1)
Lx(x2,

cZ2)
Lx(x3,

cZ3)
...

 (3.8)

The same idea holds for any other primitive we want to use, like straight lines,
which are represented in polar coordinates as shown in Figure 3.4

Results for more complex primitives (circles, spheres, and cylinders) are given
in [42].

Once enough features have been chosen to constrain all the task’s degrees of
freedom, we can apply control equation (3.6).

3.3.2 PBVS: Pose-Based Visual Servoing

Pose-Based Visual Servoing (PBVS), as previously stated, uses the pose parame-
ters of the frame attached to the camera with respect to another frame, usually

44

Figure 3.4 – 2D line representation in polar coordinates (ρ, θ).

the object frame, to define the vector of visual features s. The camera intrinsic
parameters and the 3-D model of the observed object must be known in order to
compute its pose from a set of measurements in a single image. This is a classical
problem in computer vision known as 3D localization problem. The parameteri-
zation used to define s is thus determined by the representation adopted for the
camera pose. We consider three different coordinate frames, the current camera
frame Σc, the desired camera frame Σd, and a reference frame Σo associated to the
object. If cTo is the homogeneous transformation matrix that expresses the pose
of the object in camera frame coordinates (Σc), dTo the object’s pose in desired
camera frame (Σd), one can express the pose error between the current and the
desired pose of the camera in the desired frame as

dTo
cT−1

o = dTc =
 dRc(dφc) dpc

0 0 0 1

 (3.9)

where for the orientation representation dφc = θu, the axis/angle is adopted. The
feature vector is then s = (dpc, θu). In this case sd = 0 and es = s, while the
interaction matrix is

LX =
dRc(dφc) O

O Lθu

 (3.10)

with
Lθu = I3 −

θ

2[u]× +
(

1− sinc(θ)
sinc2(θ2)

)
[u]2× (3.11)

where sinc(θ) = sin(θ)/θ.
This feature representation fully decouples the translational and rotational

motions allowing to achieve straight line motions of the end-effector in Cartesian

45

space using the kinematic control law equation (3.6)

cvcmdc = λL̂−1
X es (3.12)

3.3.3 Stability analysis

In order to assess the stability of the closed-loop visual servo systems, we can
resort to the Lyapunov analysis by considering the candidate function defined by
the squared error norm V = 1

2e
>
s es, whose derivative is given by

V̇ = e>s ės = −λe>sLsL̂
†
ses (3.13)

to which the error dynamics ės = ṡ = Ls
cvc and the controller cvcmdc = λL̂†ses

have been replaced revealing that the global asymptotic stability of the system is
obtained when the following sufficient condition is ensured:

LsL̂
†
s > 0 (3.14)

If the camera degrees of freedom equals the number of features (i.e., k = 6),
and if the features are chosen so that Ls and L̂†s have full rank 6, then the previous
condition is guaranteed if the approximation L̂†s is sufficiently accurate.

3.3.3.1 Stability analysis in the IBVS case

Most of the IBVS cases consider a redundant number of features (k > 6) and
therefore the stability condition stated before can never be attained. Since LsL̂†s ∈
Rk×k can at most have rank(LsL̂†s) = 6, it presents a non trivial null space. In
this case, feature configurations es ∈ ker(L̂†s) corresponds to local minima, thus
only local asymptotic stability can be obtained and further analysis is required.

Let us define a new error e′s = L̂†ses whose time derivative is

ė′s = L̂†sės + dL̂†s

dt
es (3.15)

and since, following [43], dL̂
†
s

dt
es = O(es)cvc, it results

ė′s = (L̂†sLs +O(es))cvc = −λ(L̂†sLs +O(es))e′s (3.16)

where O(es) −→ 0 when s −→ sd, resulting in the condition

L̂†sLs > 0 (3.17)

46

for ensuring local asymptotic stability. Indeed, only the linearized system ė′s =
−λL̂†sLse′s has to be considered if we are interested in the local asymptotic sta-
bility.

Even though local asymptotic stability can be ensured when k > 6, we cannot
ensure global asymptotic stability. Determining the size of the neighborhood
where the stability and the convergence are ensured is still an open issue, even if
this neighborhood is surprisingly large in practice [44].

On the other hand, when dealing with a large number of visual features (k > 6),
their selection and configuration is an important aspect to not underestimate as
they must be chosen carefully to avoid potential local minima in the workspace.
It is indeed possible to get stuck into a given configuration when

(sd − s) ∈ ker(L̂†s) (3.18)

since a zero velocity command will be generated even if s 6= sd (es 6= 0).

3.3.3.2 Stability analysis in the PBVS case

The stability properties of PBVS are quite appealing. Since Lθu given in equa-
tion (3.11) is singular only for θ = 2kπ, stability condition equation (3.14) guar-
antees the global asymptotic stability under the strong hypothesis that all the
pose parameters are perfectly known, leading to LXL̂−1

X = I6. In practice, how-
ever, even small errors in computing the points position in the image can lead
to pose errors that can impact significantly the accuracy and the stability of the
system [44].

3.3.4 Mounted camera

If we consider a camera mounted on the end-effector of a manipulator observing
a (possibly moving) object, the relation between the rate of change of the visual
features ṡ, the joint velocities of the robot q̇ and the target motion can easily be
obtained as:

ṡ = Ls
cv = Ls

cTe eJe(q) q̇ −Ls cvo = Ls
cTe eJe(q) q̇ − ṡo (3.19)

being eJe(q) the robot Jacobian in end-effector coordinates as saw in Section 2.2.1,
and cTe the twist-transformation matrix that transforms the end-effector twist
from the end-effector frame to the camera frame (see Section 2.2.3). For the sake
of readability, from now on the Jacobian dependency on the robot’s configuration
(q) will be omitted.

47

3.3.5 Feature trajectory tracking

Let now consider the case in which a desired feature trajectory ṡd(t) is planned.
When path planning and trajectory following are combined, the visual servoing
robustness with respect to modeling errors is considerably improved. The control
laws seen in the previous subsections can be adapted to take into account the
time-varying nature of the given trajectory such that the error es = sd−s remain
small. In particular, deriving the error we have now that

ės = ṡd − ṡ = ṡd −Lcsvc (3.20)

from which, by setting our control objective as before ės = −λes, one obtains the
following control law

cvcmdc = λL̂s
†
es + L̂s

†
ṡd (3.21)

The control law’s new second term anticipates the variation of ṡd, eliminating the
tracking error it would cause. When tracking a moving target, a similar form of
the control law will be attained, as we will see in the next.

3.3.6 Target tracking

Let consider now the case of regulation to a constant desired value sd of the
features following a moving target. Deriving again the error vector we obtain this
time

ės = ṡd − ṡ = −Lcsvc + ∂es
∂t

(3.22)

where the term ∂es/∂t = ṡo expresses the error variation due to the generally
unknown motion of the target. Using the same control objective as usual, we
obtain

cvcmdc = λL̂s
†
es + L̂s

† ∂̂es
∂t

(3.23)

where ∂̂es
∂t

is an estimation or approximation of the features velocity due to the
target motion. We proposed an estimation model within an Extended Kalman
Filter to estimate this term, which will be illustrated in Chapter 5. More details
on this subject can be found in [45].

3.4 Second-order Visual Servoing

Visual Servoing has been widely investigated in the last decades as it provides
a powerful strategy for robot control. Thanks to the direct feedback from spa-
tial sensors, it allows to reduce the impact of some modeling errors. The main

48

drawbacks with visual servoing, and more generally sensor-based control, is that
robots can only be controlled through its end-effector twist or its joints veloci-
ties. These schemes provide kinematic control laws that do not take the robot
dynamics into account. These control laws ensure an exponential decrease of the
monitored values in sensor-space, under the assumptions given in Section 3.3.3,
but when they are not met, tracking performance and convergence behavior can
be poor. Furthermore, despite the linear convergence in sensor space, the end-
effector’s motion is not predictable. Despite there exist varying gain strategies
that modify the temporal evolution of the system, the operational space dynamic
behaviour could not be satisfactory when the robot dynamics starts playing a role
(e.g., for fast motions or when in contact with the environment).

Another approach that can be exploited consists in going one step further and
to consider an acceleration model for the features. This strategy allows also to
obtain a natural and direct link with the dynamic model of the controlled system,
enabling full trajectory tracking in sensor-space.

In this section we briefly discuss the derivation of the second-order model for
the visual-servoing that can be found in [46,47].

Equation (3.3) expresses the link between the rate of change of the features
and the sensor’s velocity and differentiating it, one obtains the expression relating
the features acceleration and the sensor and object velocity and acceleration as:

s̈ = Ls (cv̇c − cv̇o) + L̇s (cvc − cvo) (3.24)

or, when differentiating (3.19) (eye-in-hand mount), the link with the joint vari-
ables can be done:

s̈ = L̇s
cTe eJe q̇ +Ls cṪe eJe q̇ +Ls cTe eJ̇e q̇ +Ls cTe eJe q̈ − s̈o. (3.25)

Equation (3.25) can be rearranged in a more compact form as:

s̈ = Js q̈ + hq − s̈o (3.26)

where Js = Ls
cTe eJe denotes the so called Feature Jacobian [48] and:

hq = (L̇s cTe eJe +Ls cṪe eJe +Ls cTe eJ̇e)q̇. (3.27)

Notice that for a eye-in-hand mount configuration the relative pose between the
end-effector and the camera is fixed, then the twist-transformation matrix is con-
stant, leading to cṪe = 0.

Consider the manipulator model equation (2.27) in free space (he = 0)

τ = Bq̈ +N (3.28)

49

in which we have compacted in N = Cq̇ + g + Fvq̇ + Fssgn(q̇). The inertia
matrix of the manipulator is a positive definite square matrix and is then always
possible to invert. We can then explicit the joint acceleration from the previous
q̈ = B−1(τ − N) equation and inject it in equation (3.26). For a motionless
target s̈o = 0, one obtains the link between the features acceleration and the joint
actuation torques of the manipulator

JsB
−1τ = s̈− hq + JsB−1N (3.29)

3.5 Conclusion

In this chapter we have introduced the basics of visual control, also known as
visual servoing, which represents the second cardinal point of this work. On the
one hand, we illustrated the terminology and nomenclature used, while on the
other, we highlighted the first and second order relationships that exist between
the relative motion of the visual features and the camera. The concepts shown
in this chapter are of paramount importance in regards of the development of the
results carried out in this thesis, as we will see from Part II onwards.

The next chapter lays the groundwork for the vision/force coupling discussed
in the literature, which we used as a starting point for our research.

50

51

Chapter

4 Vision-Force control

Contents
4.1 Introduction . 52

4.2 Hybrid Vision-Force control 53

4.3 Visual-Impedance control 54

4.4 External Hybrid Vision-Force control 55

4.5 Constraint-based methods 58

4.6 Technological aspects 60

52

4.1 Introduction

The sensory integration of vision and force, which combines visual servoing with
force control, is at the heart of this thesis work. Over the last two decades, much
research has been done on combining visual servoing techniques with force control
to take advantage of the complementarity of vision and force sensing. Cameras are
capable of providing a rich description of the scene, while force sensing can provide
local information about the contact itself. A combined vision/force arrangement
is becoming increasingly common, as in the context of physical human-robot in-
teraction [2], due to the greater computing power available and the ever lower
cost of vision systems, greatly increasing the spectrum of robotic tasks that may
be accomplished. However, due to the very different nature of these two sensing
modalities (e.g., difference in the measured physical quantities, data rates, delays,
etc.), obtaining an effective combined use of vision and force is not straightfor-
ward. Sensor integration approaches necessitate a shared representation of the
sensory input being fused. This common data representation is not given for
vision and force sensors [1]; the two sensing systems produce, as said before, fun-
damentally distinct quantities, namely force and position. Despite that, examples
in which a combined use of vision and force sensing has been successfully achieved
within an estimation (Bayesian [1,49,50] or incremental smoothing and mapping
(iSAM) [51,52]) framework are not isolated.

Transferring the problem from the perception level to the control level is an-
other way to approach the problem of visual force sensor integration. Nelson [53]
suggested three different ways for combining force and vision in a manipulator’s
feedback loop, which are: traded, hybrid, and shared control. For a given direc-
tion, traded control alternates between force control and visual servo in a mutually
exclusive manner. Hybrid control, as for its position/force counterpart saw in Sec-
tion 2.4.1, partitions the task directions into two orthogonal subspaces controlled
separately by vision or force. Shared control offers the highest level of sensor in-
tegration allowing for simultaneous control with both vision and force along any
task direction.

Most of the motion/force control strategies discussed in Chapter 2 have been
revisited by researchers and expanded by essentially replacing the motion control
loop with vision. As a result, those schemes may have the same strengths and
limitations as their position-based counterparts, which we are about to discuss.

53

4.2 Hybrid Vision-Force control

Several hybrid vision/force control schemes have been proposed and applied [53].
All of them follow the same architecture shown in Figure 4.1, which is equivalent
to the hybrid position/force control [14] presented in Section 2.4.1. The input to
the vision control law (VCL) is computed from desired sd and current s visual
features. As for the position/force case, it is necessary to ensure orthogonality
between vision vdv and force controlled subspaces vdf to avoid any conflict at the
actuation level. Hybrid control separates vision control and force control into
two separate control loops, that operate in orthogonal directions, as shown in
Figure 4.1. A diagonal selection matrix S and its complementary (I − S) are
introduced in the two control loops.

Figure 4.1 – Hybrid-based vision/force control scheme

The selection matrices are applied to vision and force errors defined in a com-
mon frame in operational space. The resulting motion is given by the output
contributions of vision and force as follows:

vde = Svdv + (I− S)vdf (4.1)

where vdv is the output of the Vision Control Law (VCL) according to the classical
visual servoing kinematic controller seen in Chapter 3, and vdf is the output of the
Force Control Law (FCL) taking into account the desired behavior of the system
according to the relationship between force and differential displacement by means
of the stiffness matrix (h = K dXe; Ẋe = ṡ3D = LX v, being LX the interaction
matrix corresponding to the 3D pose definition Xe, see Section 3.3.2). Visual
servoing is only possible with hybrid control in directions that are orthogonal to
the force feedback directions. The positioning error generated by a force pertur-
bation in the force controlled direction cannot be corrected by the vision-based

54

controller. The range of possible tasks for this controller, on the other hand, is
limited to those that can be described in terms of constraint surfaces [15].

Several improvements to this scheme were made by Baeten and De Schut-
ter [3] who have allowed shared control in a hybrid scheme using, whether possi-
ble, vision-based feedforward terms along the force controlled directions, and vice
versa, to improve the overall performance of the task.

4.3 Visual-Impedance control

Figure 4.2 – Impedance-based vision/force control scheme

As shown in Section 2.4.2, the impedance position/force control framework
allows to a priori define the way the manipulator shall react with respect to
external force disturbance. Using such a scheme, the six degrees of freedom can
be simultaneously position- and force-controlled. A programmable mechanical
impedance Z is thus provided to the end-effector:

F (p) = pZ(p)X(p) (4.2)

The robot is supposed to be equivalent to a mass-spring-damper second-order
system whose transfer function is:

pZ(p) = Mp2 +Dp+K (4.3)

where M ,D and K are respectively the desired inertia, damping and stiffness
matrices.

Impedance control can be accomplished in a variety of ways. Torque-based
impedance control, in which the low-level loop is a torque loop, and position-based
impedance control, in which a low-level position controller is used, are the two

55

main categories. Torque-based impedance control should be preferred for general
purposes in terms of performance because it can provide a wide range of target
impedances, including soft behaviors [54]. When this method was proposed [55],
the authors stated that “torque-based impedance control was not relevant to most
industrial applications, that used built-in joint position controllers in the robot’s
hardware controller. Thus, a position based impedance controller has been se-
lected” . By considering only a damping matrix in the position-based impedance
control, the mechanical impedance becomes Z(p) = D, which is also known as
accommodation control [56]. For vision/force impedance control (see Figure 4.2),
the final control vector can be written as vde = vdv + vdf , where vdv is the kinematic
screw computed by the vision control law, and vdf is computed by the force control
loop. Thus, the expression for impedance vision/force control can be written as:

vde = −λL†s(s− sd) +L−1
XD

−1(ehde − ehe) (4.4)

so that Ẋe = ṡ3D = LXv
d
f .

With such a serial scheme, it is possible that s 6= sd and ehe 6=e hde while
vde = 0. A local minimum can thus be attained or oscillatory phenomena can
occur. Consider moving the end-effector parallel to the contact surface in order to
reach the target. The vision system slips over the surface, guiding the end-effector
to its final position without friction. The controller, however, would fail if friction
were present. Indeed, the vision-based controller tangential velocity decreases
as it gets closer to the final position and, because of the friction component, it
will eventually become smaller than the opposite tangential velocity generated
by the force feedback. To avoid the system from blocking with a pure damping
impedance, the following condition must be met:

‖vdv‖ > ‖vdf‖ = D‖ehe‖ (4.5)

Friction produces static positioning error when using a proportional visual control
law like the one in equation (4.4). Although a proportional integral controller
could be used, combining integral correction with vision feedback and friction non
linearities could result in instabilities or in the emergence of limit cycles.

4.4 External Hybrid Vision-Force control

The External Hybrid Vision-Force control scheme was proposed by Mezouar et
al. [57] in 2007. This scheme is based on the concept of external control, pro-
posed by Perdereau et al. [58] in 1993. In this control scheme, force and vision

56

controllers are superposed in a hierarchical way. The juxtaposition of the force
control loop over the vision control loop provides various benefits over hybrid-
and impedance-based vision/force control, therefore addressing their shortcom-
ings. The manipulator is equipped with a wrist-mounted force/torque sensor and
a mounted camera (eye-in-hand).

More specifically, the force control loop is closed around an internal vision
control loop. The desired vector of image observation sd, used as input to the
vision-based controller, is modified by the force controller output, which is a rel-
ative position dXe, projected on sensor space by means of the interaction matrix
Ls. When the end-effector moves in free space, the output of the force controller
is null and the robot is controlled according to the vision-based controller output.
Otherwise the force controller modifies the reference trajectory of visual observa-
tions by adding a relative displacement ds to the reference. Let us see how this
feature displacement ds is obtained.

(a) (b)

Figure 4.3 – 1D contact on a surface. Contact is modeled as a spring of stiffness k. (a) The
manipulator tip applies a force fA on a surface reaching position xA. (b) The manipulator applies
a greater force fB on the contact surface penetrating in the material xB . The force variation
(fB − fA) produces a displacement variation dx = xB − xA proportional to the stiffness k.

Considering the 1D case in Figure 4.3, the force variation (fB − fA) between
the two configurations ((a) and (b)) is proportional to the environment stiffness k
and the displacement dx according to the equation

fB − fA = k(xB − xA) = k dx (4.6)

then, the displacement variation can be obtained as dx = 1
k
(fB − fA). For the

3D case, one has to consider the pose variation (error dXe) of the manipulator’s
end-effector in contact with the environment, while forces translate to wrenches.
In order to properly project afterwards the 3D displacement in the feature space,
one need to express all the involved twists and wrenches in the same reference

57

frame. Since the camera is rigidly attached to the last link of the manipulator, the
relative pose between the camera and the end-effector frames is constant, allowing
to express the wrench acting on the end-effector into the camera frame thanks to
the wrench transformation matrix (chc = cFe ehe) [13]. So, equation (4.6) in 3D
becomes

hB − hA = K dXe (4.7)

where dXe is the end-effector pose error vector associated to the Homogeneous
transformation matrix ATB(XA,XB) = wT−1

A (XA)wTB(XB), and depends on
the chosen orientation representation (in our case, the Axis/angle representation
have been used). Since we are expressing all the quantities in the camera frame, in
analogy with the pose-based visual servoing with 3D pose errors as features, the
differential relationship between the error variation and the twist of the camera is

ṡ3D = LX
cvc −→

dXe

dt
= LX

dX

dt
−→ dXe = LXdX (4.8)

which replaced in equation (4.7) and isolating the infinitesimal twist dX yields to

dX = L−1
X K−1(hB − hA) (4.9)

Equation (4.8) holds true no matter which orientation representation is used, but
the Jacobian that projects the velocities (in our case LX) will change accordingly.
One obtains then an infinitesimal displacement of the camera frame due to the
forces/torques acting on this frame which have to be now projected in the feature
space. By using the infinitesimal relationship in equation (4.8) but for a generic
image feature (ṡ = Ls

cvc) and replacing equation (4.9), one finally obtain the
projected displacement in image space as:

ds = LsL
−1
X K−1(hB − hA) (4.10)

which is the Force Control Law (FCL) used in the control scheme in Figure 4.4,
where hA and hB are respectively the measured chc = cFe ehe and the desired end-
effector wrenchs chdc = cFe ehde projected in camera frame. On the other hand,
the Vision Control Law (VCL) is the classical visual-servoing controller, saw in
Chapter 3, that minimizes the error between the vector of the current features
s and the vector of visual reference which was modified s∗ = sd + ds. It finally
outputs the desired end-effector twist vde .

In [57], authors have provided an exhaustive comparison of the External hybrid
scheme against Hybrid- and Impedance-based vision/force schemes showing how
this controller converges without problems whether the others have failed. The hi-
erarchical juxtaposition of the force control loop on the vision control loop provides

58

Figure 4.4 – External hybrid vision/force control scheme

several advantages according to the existing methods, i.e., selection matrices and
time-dependent geometric transformations are eliminated from the control loop,
leading to a controller design independent of the arm configuration. Since the
force control only acts on the reference trajectory, conflicts between force and vi-
sion controller are avoided. Furthermore, it has no effect on closed loop behavior,
and therefore in its stability properties, since the wrench input can be viewed as
a reference trajectory modifier [59].

As far as the external force loop is concerned, it should be stressed that it
has no effect on the reference trajectory as long as the manipulator is moving in
free space. The controller’s behaviour and stability properties are exactly those
of a classical visual servo scheme (inner loop), as shown in Chapter 3. Visual
servoing schemes rely on the low-level manipulator’s velocity controller to servo
the robot. Such low-level controllers are usually high stiffness PID-like controllers
implemented such as to guarantee that q(t) ≈ qd(t) and the manipulator can be
considered as an ideal positioning device. Once the end-effector comes into contact
with the environment, the sensed wrench is transformed into a feature displace-
ment ds through the inverse of the contact stiffness K (see equation (4.10)). If a
soft contact behaviour is required for the manipulations task, the combination of
the high stiffness of the joint controller and the consequent high gains involved in
the external loop (K−1) could lead to instability as we will show in Section 6.6.3.

4.5 Constraint-based methods

Constraint-based methods are an alternative way to integrate vision and force
sensing. There are different approaches in this category to perform the sensory
integration, like the Stack-of-Task [60] or the Whole-body control framework [61].

59

The Stack-of-Task framework [60] is a generalized inverse kinematics abstraction
layer that creates a hierarchical organization of different tasks, allowing them to
be executed, for example, giving higher priority to critical tasks. The Whole-
body control framework [61] formulation allows for secondary task objectives to
be controlled without dynamically interfering with the operational task.

Despite the fact that these frameworks were not really designed for sensory
integration, but rather for synthesizing the control commands that must comply
with different types of constraints imposed on the system, they have been suc-
cessfully used by [62] for combining vision and haptic (force) cues by coupling a
visual servoing controller with an impedance controller within the Stack-of-Task
framework [60]. In [63] it was shown that visual servoing tasks can be integrated
into a prioritized constraint-based torque control framework formulating it as just
another task/constraint for the whole-body controller [61] that can be combined
with force control tasks.

Another family of more general constraint-based methods meant for specifying
complex tasks of general sensor-based robot systems are represented by [64, 65].
The iTaSC framework [64], emerged as a specification formalism to generalise
and extend existing frameworks like the Operational Space Approach [11], Task
Function Approach [66], Task Frame Formalism [67], geometric Cartesian Space
control, and Joint Space control. In this framework, the use of feature coordinates,
defined with respect to object and feature frames, facilitates the task specification
and the introduction of uncertainty coordinates to model geometric uncertainty.
The etasl/etc [65] framework, is based on feature variables and the concept of
expression graphs. It avoids some of the common pitfalls in previous frameworks,
and provides a flexible and composable way to define robot control tasks. Those
frameworks allow over-specifying constraints along a given direction and resolve
the priority conflicts by adding weights to such constraints. The underlying op-
timization solver provides the joint commands. Using the [64] framework for-
malism, [68] reformulated the image-based visual servoing as a constraint-based
robot task, allowing for potential integration with force controlled tasks using such
framework.

We do not take into account any of these constraint-based strategies because
the focus of our research regards the pure sensory coupling aspects. Furthermore,
these frameworks have a high computational burden, limiting their applicability
to a robot like the one used in this study, which requires a control rate of 1kHz
to operate, if no further measures are taken.

60

4.6 Technological aspects

In the last 20 years the technological landscape of this field has changed consid-
erably. While Baeten [3] stated at the beginning of the century that vision and
force systems were rather confined to research areas with a few exceptions in the
industrial field, today, we can see that some manufacturers already provide their
own solutions deploying these systems directly integrated into their robots, as we
can see in Figure 4.5. Other companies on the other side, provide solutions with
standardised interfaces that can be adapted to different robots, as the Robotiq1

solution for Universal Robots2 shown in Figure 4.6, thus underlining the interest
in adopting this technology in industry due to their potential.

(a) (b)

(c)

Figure 4.5 – (a) Doosan Cobot M-Series: it is equipped with an optional “in house” smart
vision module. (b) Cobot Omron TM: is equipped with a screwing tool and a vision system
with lighting function for image enhancement. (c) ABB YuMi presents an integrated camera on
its gripper. All this robots are equipped with joint torque sensors.

1https://robotiq.com/
2https://www.universal-robots.com/

https://robotiq.com/
https://www.universal-robots.com/

61

Figure 4.6 – Robotiq integrated solution for cascading wrist-mounted Force/Torque sensor,
vision system and two finger gripper designed for the Universal Robots.

The adoption of built-in torque sensors into the joints and the significant
advances in collision detection techniques [69] have allowed manipulators to break
out of the safety cages in which they were confined to work, allowing them to
be used alongside human operators with a high degree of safety. Joint torque
sensors also allows to estimate the external wrench at the end-effector, avoiding
the need of an external Force/Torque sensor, although they are less accurate.
Despite the increasingly massive use of cameras in robotics applications, the use
of combined techniques of vision and force sensing does not present today the same
level of maturity as that demonstrated by both the collision detection and the use
of force sensing for interaction tasks. Cameras appear to be used primarily for
objects detection in the workspace and afterwards the interaction is managed using
traditional force control approaches (e.g., impedance control) not fully exploiting
the capabilities and complementarity of both sensors during all the execution
phases of the task at hand.

The objective of this thesis work is to provide new integrated vision/force
control strategies to meet market demands for this type of integrated solution by
closing the gap between existing technology and available control techniques.

In the next part, we deal with the problem of shared sensor integration, propos-
ing both dynamic (Chapter 5) and kinematic (Chapter 6) controllers that “fuse”
the sensing modalities in sensor space while we tackle several aspects related to
the implementation of the dynamic controller.

62

63

Part II Feature
Space Compliance

64

Compliant motion occurs whenever a manipulator performs a task while main-
taining the contact between the end-effector and the environment. When imposing
a PD-like controller to the manipulated system, its behaviour is similar to a mass-
spring-damper under the action of an external force. This part of the thesis is
devoted to illustrate our contributions on the derivation of controllers that can
deal with compliant motion along/about the visual features defining the visual
task, see Figure Part II. In the case of PBVS, a 3D pose reconstruction phase is
performed to estimate the position and orientation of the observed object in oper-
ational space. The visual feature in this case is the pose error vector between the
actual and desired camera frames. In the IBVS case instead, the visual features
(points, lines, moments, etc.) are directly extracted on the image plane. In this
work we refer to the more general space of all possible kinds of visual features as
the Visual Feature Space.

Figure Part II – Compliance achieved in different spaces: a PD-like controller brings the
actual configuration (green dot) into the desired configuration (red dot), from left to right, in
the joint space, in the operational space, in the operational space in the case PBVS and in the
image space. We refer to the Feature Space as the more general space containing any kind of
visual features, being them the parameters of a 3D pose, of image points, image lines, image
moments, etc.

65

Chapter

5 Feature Space Impedance

Contents
5.1 Introduction . 66

5.2 Manipulator model in feature space 67

5.3 Impedance control in feature space for a static target 68

5.4 Impedance control in feature space for a moving target 72

5.5 Increasing the visual data rate and estimating the
target’s motion . 73

5.5.1 EKF for IBVS with image points features 74

5.5.2 EKF for PBVS . 75

5.6 Simulations . 76

5.6.1 Task description and controllers implementation 77

5.6.2 Simulation Results . 78

5.7 Real experiments . 82

5.7.1 Implementation issues 82

5.7.2 Results . 85

5.8 Summary . 87

66

5.1 Introduction

As discussed in Chapter 3, Visual Servoing is a consolidated control technique that
allows to precisely position a vision sensor with respect to an observed object in
the scene. In the past decades, most research efforts focused on the modeling of the
existing relationships between descriptive features in the image and the motion of
the sensor at kinematic level [40,41], and in the development of control strategies to
guide the chosen visual features towards the desired ones as summarized in [44,45].
Although much research has been conducted in this sense, little attention has been
devoted to the use of second order models linking the features accelerations to the
robot torques via the robot dynamical model, with some early attempts dating
back more than two decades [40,70] up to some more recent contributions [46,47].
As well-known, explicitly taking into account the robot dynamics allows to design
controllers with superior performance, especially for what concerns the regulation
of forces and interaction with the environment. For instance, in many industrial
applications the interaction tasks are executed in static or quasi-static conditions
and can be solved at kinematic level. However if one wishes to reduce the execution
time, faster motions are required making the control task essentially dynamic [71].

Most of the above cited works mainly focused on the motion of the robot
in free space without taking into account possible physical interactions with the
environment. Indeed while [70] only compensates for the air drag forces acting
on the blimp, in [46], second-order visual-servoing is used to control solely the
unconstrained directions of an engraving task within a hybrid control scheme [14]
with a pure force controller acting along/about the constrained directions.

The goal of this chapter is to study the possibility of using second-order visual
servoing for interaction control, since, as we will show in Section 5.3, a second-
order visual-servoing controller under interaction with the environment boils down
to an impedance controller in the visual feature space, which is a force control
scheme belonging to the category of indirect force control methods [13].

In [6] which is further developed in the next chapter, we proposed an alter-
native to the impedance control in feature space - which results to be complex
to implement given the limitations discussed and addressed in this chapter - by
defining an admittance in feature space.

A contribution of this work is, therefore, to overcome these difficulties (i.e., low
camera data rate, feature extraction delays, ill-conditioning of the task Jacobian,
etc) and propose a true second-order visual servoing in feature space that can also
take into account the possible, and generally unknown, motion of the observed
target object to interact with the environment. This is achieved by modeling the

67

motion of the target in a second-order visual-servoing setting and by estimating its
unknown motion via a suitable Extended Kalman Filter (EKF). The EKF is also
instrumental for virtually increasing the data rate of the employed camera by pro-
viding high-rate estimations of the quantities needed by the derived torque-level
controller, without resorting to dedicated high frequency, and therefore expensive
vision systems like those in [5, 72]. The derivations of the filters’ states are spe-
cialized for the cases of Image-Based Visual Servoing (IBVS) with image points
as visual features and Pose-Based Visual Servoing (PBVS) while their respective
similarities and differences are pointed out.

The filters derived in this chapter can also be easily integrated into the control
scheme presented in the next chapter, both in case of static or moving target,
although the discussion and respective experiments were carried out considering
static targets only. The use of such filters, and the consequent increased data rate,
would make the system even more responsive, particularly on rigid contacts.

5.2 Manipulator model in feature space

In this section, the manipulator’s model in feature space under interaction with the
environment is derived thanks to a suitable coordinates transformation exploiting
the second order visual-servoing model derived in Section 3.4

The Lagrangian equation of motion of the manipulator (2.27) is a set of n
nonlinear and coupled second-order differential equations for which the inverse
dynamics control is a well-known control strategy for trajectory tracking aiming at
linearizing and decoupling the manipulator’s dynamics via feedback linearization,
assuming that its model is perfectly known. We can rewrite equation (2.27) such
as to explicit the joint accelerations:

q̈ = B(q)−1(τ −N (q, q̇)− eJ>e
ehe) (5.1)

having compacted in N (q, q̇) = (C(q, q̇)q̇ + g(q)) the terms relatives to the
Coriolis, centrifugal and gravitational force effects. After replacing equation (5.1)
into the second order visual servoing equation (3.26) and considering the observed
target to be motionless (cvo = 0), we find the law that governs the features motion:

JsB(q)−1τ = s̈− hq + JsB(q)−1N (q, q̇) + JsB(q)−1 eJ>e
ehe (5.2)

Taking into account the expression of the feature Jacobian Js = Ls
cTe eJe, the

wrench-transformation matrix that projects the external wrench acting on the
camera into the end-effector ehe = eFc chc, and recalling the relationship between

68

the twist and wrench transformation matrices cT>e = eFc [13], we can rearrange
the last member of (5.2) as:

Ls
cTe eJeB(q)−1 eJ>e

cT>e chc = LsBc(q)−1 chc (5.3)

where Bc(q)−1 = cTe eJeB(q)−1 eJ>e
cT>e is the inverse of the manipulator inertia

matrix projected in the camera frame. Equation (5.3) highlights how the external
wrench acting on the camera frame and expressed in the same frame chc, projects
in feature space as a virtual per unit of mass/inertia forces/torques (p.u.m.i.)
(accelerations) acting on the image features. By renaming some terms in (5.2) as:

fs = JsB(q)−1τ (5.4a)
bs = JsB(q)−1N (q, q̇) (5.4b)

fsext
= LsBc(q)−1chc (5.4c)

one obtains the manipulator model in feature space:

s̈− hq + bs + fsext
= fs (5.5)

The obtained model presents an analogy with the joint space model (2.27) but the
acceleration term s̈ do not present any inertia matrix, this means that the model
is inertia-normalized, and the quantities in equation (5.5) are not forces and/or
torques but they are relative forces and/or torques per unit of mass/inertia; indeed
they have the physical dimension of an acceleration (m/s2).

5.3 Impedance control in feature space for a
static target

As we have seen in Chapter 2, impedance control aims at achieving a dynamic
behaviour of the robot end-effector in contact with the environment equivalent to
a mass-spring-damper system subject to an external force. Our purpose here is
to replicate this behaviour between the current and desired visual features lying
on the image plane. Defining the image feature error vector es = (sd − s) ∈ Rk

as the difference between the desired sd and current s visual features, or, in the
case of 3D pose, es ∈ R6 as the pose error vector between the current Σc and
desired Σd camera frames as depicted in Figure 5.1, we formally want to obtain
the following behaviour in feature space:

Msës +Dsės +Kses = f (5.6)

69

Figure 5.1 – Desired mass-spring-damper behavior in the case of 3D pose (left) and four image
point visual features (right). The current Σc and desired Σd camera frames are sketched as well
as the object frame Σo. The current s (green) and the desired sd (red) image point features in
the image plane are depicted. The target is arranged in a coplanar square shape.

where Ms,Ds and Ks are positive definite k × k matrices representing the rel-
ative per unit mass/inertia virtual mass, viscous and stiffness parameters of the
impedance equation while f ∈ Rk is a vector of per unit mass/inertia virtual
forces (accelerations) acting on the features.

Let us suppose at this stage not to have any force measurement. The new
control input for the manipulator model in feature space (5.5) is the vector of per
unit of mass/inertia virtual forces us = fs which is chosen to compensate for any
dynamic term in the model (5.5). One then has:

us = α− hq + bs (5.7)

and by injecting it back into (5.5) yields:

α = s̈+ fsext
(5.8)

in which α ∈ Rk represents a resolved acceleration in feature space and constitutes
the new control input that has to be opportunely designed. A natural choice for
α is a PD controller with acceleration feed-forward:

α = s̈d +Dsės +Kses (5.9)

that replaced in (5.8) leads to the closed-loop dynamics of the system:

ës +Dsės +Kses = fsext
(5.10)

The behavior of the closed-loop system is the one sought in (5.6) in which Ms

coincides with the identity matrix. In static conditions ës = ės = 0, when the
manipulator is in free space (fsext = 0), it is easy to verify that the current
position of the visual features reaches the desired one (s = sd) while when it is

70

in contact with the environment, the static error is inversely proportional to the
relative per unit of mass/inertia stiffness matrix Ks. Indeed, when fsext 6= 0 in
equation (5.10), the position error of the visual features is given by:

es = K−1
s fsext = K−1

s LsBc(q)−1chc (5.11)

As we can see from the previous equation, the error is configuration dependent
due to the presence of the inertia matrix of the robot projected in camera frame.

By replacing (5.9) into (5.7) in which the feature space per unit of mass/inertia
force/torque vector us has the form (5.4a), leads to the resulting joint space
controller:

uτ = (JsB(q)−1)†(s̈d +Dsės +Kses + JsB(q)−1N (q, q̇)− hq) (5.12)

Even though we have considered the manipulator interacting with the environ-
ment in our derivation, if we do not have any force measurement, we arrive at the
same control law derived in [46, 47]. In fact, this is analogous to the impedance
control in the operational space case which is an inverse dynamic controller for
trajectory tracking in free space whose properties when in contact with the envi-
ronment have been taken into account.

Note that, in analogy to what was said in Subsection 3.3.3, in the IBVS case
with k > 6 features, there is the theoretical risk, although very unlikely in practice,
to specify unfeasible behaviours when the commanded feature space acceleration
lies in ker((JsB(q)−1)†) (see (5.12)). If for instance, one starts from a static
position and servo the robot to reach a desired constant one with respect to
a motionless target, from (5.12) one has uτ = (JsB(q)−1)†(Kses); if Kses ∈
ker((JsB(q)−1)†), the generated torque command uτ = 0 even if es 6= 0.

The drawback of this controller (5.12) is that the closed-loop system (5.10)
exhibits a configuration-dependent compliant behavior due to the presence of the
inertia matrix of the manipulator in the external wrench projection into the feature
space (see (5.11)). An easy way to overcome this issue and render the manipulator
behaviour isotropic with respect to the external wrench, i.e., letting a given ex-
ternal wrench in Cartesian space be mapped into the image space generating the
same per unit of mass/inertia force/torque vector regardless of the manipulator’s
configuration, is to measure the external forces being applied on the robot and
fully compensate for them. This will make the manipulator infinitely rigid with
respect to the measured forces but, thanks both to the fact that we have this
measure and that we know how to project the wrenches into the feature space, we
can impose the desired system’s behavior during the interaction.

71

Let us suppose to have a wrist mounted force/torque sensor that provides the
measured external wrench at the manipulator’s end-effector ehe. We can now add
it in the feature space controller (5.7) to fully compensate for those forces as:

us = α− hq + bs +LsBc(q)−1

chc︷ ︸︸ ︷
cFe ehe︸ ︷︷ ︸

fsext

(5.13)

Plugging this back again into (5.5), one obtains:

s̈ = α (5.14)

For control purposes it is convenient to impose a constant apparent inertia
matrix of the camera in order to have an homogeneous behavior along the Carte-
sian directions of the camera frame and manage the compliance along the visual
features by opportunely tuning the relative stiffnessKs and dampingDs matrices
of the impedance controller.

Figure 5.2 – By assigning a constant apparent inertia to the end-effector or camera frame,
we impose the desired interaction behavior along/about the Cartesian directions. We choose an
homogeneous inertial behavior so that the end-effector is equivalent to a sphere of mass. Applied
forces on the end-effector (purple arrow on the left image) will be homogeneously distributed
among the visual features (small arrows acting on the image lines (top-right) and image points
(bottom-right)).

This can be done by choosing as resolved accelerations in feature space the
controller:

α = s̈∗ +Dsės +Kses −LsB̄c
−1 cFe ehe (5.15)

being B̄c = diag(mcd ,mcd ,mcd , Jcd , Jcd , Jcd) in which mcd [kg] and Jcd [kg.m2] are
respectively the desired apparent mass and inertia that the camera should exhibit.
Industrial robots typically interact with the environment using a tool (the tool
tip), it can be useful then to exhibit isotropy on the end-effector frame (tool tip
frame) by choosing a constant diagonal inertia matrix B̄e, as done before for B̄c,

72

and then project it in the camera frame as B̄c
−1 = cTeB̄c

−1 cT>e . The resulting
joint space controller is therefore:

uτ = (JsB(q)−1)†
(
s̈∗ +Dsės+Kses + JsB(q)−1N (q, q̇)− hq+

fsext
−LsB̄c

−1 cFe ehe
) (5.16)

The closed-loop dynamics of the system is obtained by replacing (5.15) into (5.14)
resulting in:

ës +Dsės +Kses = LsB̄c
−1 cFe ehe (5.17)

Now, the projected external forces in feature space do not depend on the manip-
ulator’s configuration anymore (see (5.11)). This translates in a more intuitive
tuning of the impedance parameters since this controller would make the ma-
nipulator under interaction with the environment behave in the same manner
no matters its configuration while preserving the same stability properties of the
previous controller (5.12).

5.4 Impedance control in feature space for a
moving target

In this section we will consider the more general case of tracking a moving target
and, for simplicity of treatment, we will suppose not to have any force/torque
sensor mounted on the robot but that at least an estimate of the features’ velocity
and acceleration due to the target motion (ṡo, s̈o) is available. In the next section
we will detail how this estimation is obtained. Notice that the case in which a
Force/torque sensor is available is formally analogous.

As done in the previous section, replacing (5.1) into the full equation of the
second-order visual-servoing (3.26) results into:

JsB(q)−1τ = s̈+ s̈o − hq + JsB(q)−1N (q, q̇) + JsB(q)−1 eJ>e
ehe (5.18)

for which we rename the terms as in (5.4a)-(5.4c) obtaining:

s̈+ s̈o − hq + bs + fsext
= fs. (5.19)

We choose then a feature space control input us such as to compensate for any dy-
namic term, including the (usually unknown) acceleration term due to the target’s
motion

us = α− hq + bs + s̈o (5.20)

73

We then use the same acceleration resolved controller α as in equation (5.9)
and recalling the feature error definition es = sd−s, its time derivative ės = ṡd−ṡ
and equation (3.19), leading to the joint space torque controller

uτ = (JsB(q)−1)†
(
s̈∗ + s̈o +Ds(ṡd − Jsq̇ + ṡo) +Ks(sd − s)+

JsB(q)−1N (q, q̇)− hq
) (5.21)

where the new terms s̈o and Dsṡo compensate for the target motion.
All the considerations we have done in the previous section concerning the

dependency on the manipulator’s configuration on the wrench mapping into the
feature space holds true. Following the same reasoning done before we can obtain
an isotropic and configuration independent interaction behaviour, also in the case
of a moving target, by measuring the contact forces/torques.

5.5 Increasing the visual data rate and estimat-
ing the target’s motion

In the previous section, we derived a controller that linearizes and decouples the
dynamics of the system via feedback linearization but, even though most of the
terms in the controller can be easily computed, those related to the target own
motion are usually unknown and must thus be estimated. Since the target motion
is generally unknown, the simplest assumption one can do is to consider a constant
acceleration model corrupted by Gaussian noise. The target motion can be treated
as a disturbance [73] of the nominal motion of the features due to the motion of the
camera as in (3.3), in which part of the feature velocity is given by the (unknown)
target velocity ṡo = Ls

cvo.
To estimate the target motion we now describe two instances of an EKF for

the cases of image points and 3D pose error as visual features respectively. Note
that both filters could be used in a classical VS control scheme to compensate for
the target motion while here we exploit the entire state of the filters to implement
the control law (5.21) for (i) virtually increasing the visual measurements from the
camera (by running the filter at much higher frequency than the camera itself), and
for (ii) compensating for the target own motion and, thus, significantly reducing
the tracking error.

74

5.5.1 EKF for IBVS with image points features

The goal of the filter is to both increase the information rate of the camera and
to estimate the velocity of the moving target. The feature vector s will then be
part of the filter state whose dynamics following the visual-servoing kinematic
model (3.19). For each image point feature fi = (fxi , fyi), ∀i = 1, . . . , 4, the
associated interaction matrix (3.7) (see Section 3.3.1) requires the knowledge of
the depth of the point Z which is also estimated by the filter as long as the
trajectories are “exciting” enough. The depth dynamic is given by [74]

Ż = LZ(f, Z) cv =
[
0 0 −1 −fyZ fxZ 0

]
cv. (5.22)

Furthermore, to implement controller (5.21), the feature acceleration contribu-
tion due to the motion of the target (s̈o) is also needed. The continuous-
time state of the filter, stacking here four image points (s ∈ R8), is then
x(t) = [s(t) z(t) ṡo(t) s̈o(t)]> = [x1(t) x2(t) x3(t) x4(t)]> ∈ R28, and explicit-
ing the filter dynamics ẋ(t) = f(x(t),u(t)) +wt one has:

ẋ =

Ls(x1,x2)cTe eJeu− x3

LZ(x1,x2)(cTe eJeu−L†s(x1,x2)x3)
x4

0

+wt (5.23)

in which u(t) = q̇(t) is the plant input and wt = [w>1t
w>2t

w>3t
w>4t

]> ∈ R28 is a
vector of additive Gaussian noise wt ∼ N (0, Qk) . In the general case one does
not have a model of the target motion, therefore we assume the dynamics of the
acceleration of the features due to the target motion s̈o(t) to be approximately
constant (corrupted by some added noise), i.e., ...s o(t) = w4t

. Clearly if an accurate
motion model was available, it could be used, adjusting opportunely the filter
dynamics.

To update the process state estimate with the dynamics and its uncertainty,
represented by the covariance matrix Pk, we firstly need to linearize and discretize
it at the control period ∆T :

Ā = ∂f(x,u)
∂x

∣∣∣∣∣
x=xk,u=uk

(5.24)

Ak = eĀ∆T ≈ I + Ā∆T (5.25)
xk+1|k = xk|k + f(xk|k,uk)∆T (5.26)
Pk+1|k = AkPk|kA

>
k +Qk (5.27)

with uk = u(τ),∀τ ∈ [k∆T, (k + 1)∆T).

75

The state estimation improves during the measurement update phase based on
the measures yk. In our case, the measurement is the set of image point features
in the image plane, leading then to a linear measurement equation in the filter
state that is already in discrete time:

ηk+1 = sk+1 +Wsk+1 = Ck+1xk+1|k +Wsk+1 (5.28)

with Wsk+1 a vector of discrete-time white noise with auto-correlation matrix
Rk+1 ∈ R8×8, while Ck+1 = [I8 O8×20] is the measurement sensitivity matrix. It
then follows the measurement update phase:

Sk+1 = (Ck+1Pk+1|kC
>
k+1 +Rk+1) (5.29)

Kk+1 = Pk+1|kC
>
k+1S

−1
k+1 (5.30)

xk+1|k+1 = xk+1|k +Kk+1(yk −Ck+1xk+1|k) (5.31)
Pk+1|k+1 = (I−Kk+1Ck+1)Pk+1|k (5.32)

5.5.2 EKF for PBVS

The filter state for Pose-Based Visual Servoing (PBVS) is very similar to the
previous case but without the depth dynamics. The feature s is a pose error
vector whose rotational part is represented with the axis/angle representation
and the filter state is now x(t) = [s(t) ṡo(t) s̈o(t)]>= [x1(t) x2(t) x3(t)]> ∈ R18

with dynamics

ẋ =

Ls(x1)cTe eJe u− x2

x3

0

+wt. (5.33)

In order to update the state estimate with the process equations, one can follow
the same steps as in (5.24)–(5.27).

The “measurements” provided by the camera in the PBVS case is the relative
pose of the observed object w.r.t. the camera frame, expressed as the homoge-
neous transformation matrix cTo(yk). This leads to a discrete-time, non-linear
and implicit measurement equation w.r.t. both the measure and filter state:

ηk+1 = h(xk+1|k,yk+1). (5.34)

The measurement equation (5.34) is a constraint equation (h(x,y) = 0) and to
compute it, we first define the “closure” equation: cdTc(xk+1|k) cTo(yk+1) cdT−1

o =
I, being cdTo the desired pose of the camera with respect to the object (which is of
course known by design. See Figure 5.1). The pose vector associated to the left-
hand side of the closure equation must be zero, and this relationship represents

76

the measurement equation of the form (5.34). The measurement update equations
differ from those in (5.29)–(5.32) as follows:

Hk+1 = ∂h(x,y)
∂x

∣∣∣∣∣
x=xk+1|k,y=yk+1

(5.35)

Dk+1 = ∂h(x,y)
∂y

∣∣∣∣∣
x=xk+1|k,y=yk+1

(5.36)

Sk+1 = (Hk+1Pk+1|kH
>
k+1 +Dk+1Rk+1D

>
k+1) (5.37)

Kk+1 = −Pk+1|kH
>
k+1S

−1
k+1 (5.38)

xk+1|k+1 = xk+1|k + ηk+1h(xk,yk) (5.39)
Pk+1|k+1 = Pk+1|k +KkHkPk+1|k. (5.40)

Once the filter converges, one can obtain the target velocity from the estimated
disturbance state as cvo(tk) = L−1

s x3(tk) , as we similarly did using L†s in the
depth dynamics of the EKF for IBVS (see second component of (5.23)).

5.6 Simulations

In order to validate the tracking performance of the proposed EKFs and study
the feasibility of using second-order visual servoing in a task involving contacts
with the environment, we simulate a Peg-in-Hole task with a moving target using
FrankaSim [9], a co-simulation environment implemented in ViSP [10] and Cop-
peliaSim [75]. With FrankaSim it is possible to carry out dynamic simulations
with a Panda robot and process different sensor information. This simulator will
be further detailed in Chapter 8. The simulation was performed in synchronous
mode with a time step of 1 ms using Vortex physics engine, since it is capable
to deal with non-convex shapes. A vision sensor was mounted on the robot wrist
and we programmatically drop and delay the grabbed frames in order to simulate
a 30 fps (33 ms) camera rate with 10 ms of feature extraction delay. The visual
features are extracted from an AprilTag of the family 36h11 using ViSP’s detector
(AprilTag pose or its corners). A 5× 5 Gaussian mask is applied on the grabbed
images to smooth the AprilTag’s borders making the detection process more re-
alistic. This is a convenient way to simulate noise because, despite being easy to
add Gaussian noise around the detected pixel of points features, the uncertainties
on the estimated pose depend on the distance of the object from the camera [76].
White noise of the magnitude of the real robot was also added to the measured
joint velocities q̇ with standard deviation σ = 0.021 rad/s. The robot control loop
runs at 1 kHz as for the real one.

77

5.6.1 Task description and controllers implementation

The simulated task consists in inserting the peg held by the manipulator’s gripper
into the hole of a work-piece both of cylindrical shape with diameters of 9 and 10
mm respectively. The piece is placed on a moving platform whose lowest joints
turn at 0.5 rad/s in opposite directions allowing the upper part to undergo a purely
translational motion, while the last joint of the platform performs a sinusoidal
velocity motion of amplitude 0.2 rad/s and frequency 1/π Hz (see Fig. 5.3 and
video).

Figure 5.3 – Simulation setup: The Panda robot is in the initial configuration of the experi-
ment. World and base Σw ≡ Σb, camera Σc, end-effector Σe and target Σo frames are drawn.
An AprilTag is attached on the workpiece and tracked by the camera. The lower plate of the
platform rotates at ω1 = 0.5 rad/s, the second plate at ω2 = −ω1 while the last joint motion if
f(t) = 0.2sin(2t).

Although the task constrains all the 6 degrees of freedom (DoF) of the opera-
tional space, our robot is a redundant manipulator and to prevent the robot joints
to move along directions lying in the kernel of the task Jacobian Js, the null-space
directions must be damped or, in general, a suitable secondary task must be con-
sidered. Controller (5.21) is then modified into a more computationally efficient
form with the addition of a damping term in the null space of the task:

uτ = (JsB(q)−1)†
(
s̈d+Ds(ṡd −Ls cTe eJeq̇ − ṡo)+

Ks(sd − s) + s̈o − hq
)

+ c(q, q̇) + P⊥τN
(5.41)

in which the gravity term does not appear anymore since it is already compensated
by the robot (in both the real and simulated cases), and P⊥ is a Null-space

https://www.youtube.com/watch?v=fOSRnxd1dlE

78

projector that applies the secondary damping torques τN = −kdq̇ on ker(JsB−1).
Assuming the manipulator is in a non-singular configuration, in the PBVS case
the task Jacobian has dimension 6 × 7 with rank(JsB−1) = 6 and a Null-space
projector based on the dynamically consistent Inertia weighted pseudo-inverse
P⊥ = (I− J>s J̄s

>) can be computed [11], where J̄s = B−1J>s (JsB−1J>s)−1. On
the other hand, in the IBVS case the task Jacobian is 8×7 with rank(JsB−1) = 6
and more general methods must be used to find an orthogonal basis of ker(JsB−1),
e.g., resorting to a Singular Value Decomposition (SVD) [77].

5.6.2 Simulation Results

We ran several simulations for both proposed filters in which the estimates were
used in the controller (5.41) to accomplish the task described in Section 5.6.1.

During the first trials we noticed that the target’s velocity estimation already
showed a good performance but it was not perfect due to the low camera rate
and the lack of a motion model of the target. A small tracking error remains, so
we added an integral term which is activated when the feature error is sufficiently
small in order to compensate for any final error and correctly realize the insertion
task. The new controller is then

esint =

KI

∫
(sd − s)dt if ‖sd − s‖ ≤ ε

0 elsewhere

u = (JsB(q)−1)†
(
s̈d+s̈o − hq +Ds(ṡd −Ls cTe eJeq̇ + ṡo)+

Ks(sd − s) + esint
)

+ c(q, q̇) + P⊥τN + uτ (0)e−µt

(5.42)

Since for the real robot it is recommended to generate the torque commands
starting from zero (recall that gravity is internally compensated) we added a
rapidly decaying exponential term, whose initial value coincides with the torque
command at time t = 0, to guarantee a smooth start of the robot with a torque
command that starts from zero (u(0) = 0).

The following experiment for the IBVS case was carried out using con-
troller (5.42) with controller gains: Ks = diag(250) s−2,Ds = diag(50) s−1,KI =
diag(300) s−2 and kd = 20 kg.m.s−2 and filter parameters Rk+1 = diag(6.8e−06),
Qk+1 = diag(1e−06I8, 1e−06I4, 5e−04I8, 1e−06I8). The filter state was then ini-
tialized with the position values extracted at the first grabbed image, while

79

the depths were initialized at 0.2 m and considering the target starts at rest
x(0)=[s(0) z(0) ṡo(0) s̈o(0)]>= [s(0) 0.2 0 0]>.

The filter shows an excellent feature tracking and a good reconstruction of the
estimated target’s velocity (see Figure 5.4) once the depth estimation stabilizes.
As we can see from Figure 5.5, at the beginning of the experiment, in which the
camera is far and approaches the target, the motion is sufficiently exciting to
reconstruct the depth’s dynamics leading it to converge towards its true value but
then (after 1 s of experiment) when the camera is on top of the target, only the
small motion of the last joint of the turntable excites this dynamics. The depth
estimates remain almost constant for the rest of the experiment without further
converging towards the true values.

(a) (b)

-0.2

-0.1

0

0.1

0.2

0 0.5 1 1.5 2 2.5 3
-0.8

-0.4

0

0.4

(c)

0 0.5 1 1.5 2 2.5 3
-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2 2.5 3
-0.15

0

0.15

0.3

(d)

Figure 5.4 – Peg-in-Hole simulation by IBVS: (a): Initial configuration and camera view.
(b): Final configuration and camera view; the features paths in the image plane are visible
in green while the path followed by the camera is sketched in blue. (c): Target’s linear (top)
and angular (bottom) velocity estimated vs Ground-Truth. (d): Estimated vs Ground-Truth
features’ positions (top) and features’ error (es = sd − s).

While the depth estimation is converging (between 0 and 1 s) the reconstruc-
tion of the target velocity is affected causing the controller to badly compensate
for this velocity making the feature error to increase. Despite the sensibility of
the controller in regards of the feature’s depth, it was capable of successfully com-
pleting the task - thanks to its ability in reconstructing the feature’s depth under
the hypothesis of a sufficiently exciting motion - but this is not always the case,

80

0 0.5 1 1.5 2 2.5 3

0.2

0.3

0.4

0.5

Figure 5.5 – Peg-in-Hole simulation: Feature’s depth estimation Vs Ground-Truth. Under
sufficiently exciting trajectories, the filter is capable of reconstruct the depth’s dynamics. Once
the camera lies on top of the target (around 1 s), the motion is not exciting enough to allow the
estimates to further converge towards the true values.

and initializing the filter with another depth could lead to failure execution.
To circumvent the persistency of excitation issue, we assume that the forthcom-

ing IBVS experiments will include a "measured" of the features’ depth (extracted
from the Apriltag’s pose). The measurement equations (5.28) are then augmented
by the availability of the depth, being now

Rk+1 =
 Rs O8×4

O4×8 Rz

Ck+1 =

 I8 O8×4 O8×16

O4×8 I4 O4×16

in which Rz is the measurement noise covariance of the features depth.

We then repeated the same experiment for the PBVS and IBVS (with depth
measurements) cases using the same controller (5.42), gains, and filter parameters
of the previous experiment and their results are reported in Figures 5.6 and 5.7.

The choice of a constant acceleration model for the target motion is well
evident from the plotted curves in Figure 5.8; note how the angular velocity
about the y axis (cwoy) follows the target motion about the same direction
(f(t) = 0.2sin(2t)). In Figure 5.7c (bottom) it is possible to appreciate what
looks like a small horizontal shift between the Ground-Truth and the estimated
target’s pose. This is due to the crossing of the representation boundary at ϕi = π

and not because of the time delay, as one could think; the Kalman filter helps
mitigate the delay effects.

With the proposed process models, the filters were able to properly reconstruct
the disturbance (target velocity), thus succeeding in completing the task. Apart
from the very beginning of the simulation, which is affected by the transitory

81

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.3

0.4

0.5

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.15

0

0.15

0.3

(d)

Figure 5.6 – IBVS Peg-in-Hole simulation: Initial (a) and final (b) camera views and robot
configurations. It is possible to appreciate, in green, the features paths in the image plane
and camera path in blue. (c) Estimated Vs Ground-Truth feature’s depth. (d) Estimated Vs
Ground-Truth feature’s positions (top) and feature’s error (bottom).

(a) (b)

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4

-

- /2

0

/2

(c)

-0.2

-0.1

0

0.1

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4

- /8

- /16

0

/16

/8

(d)

Figure 5.7 – PBVS Peg-in-Hole simulation: Initial (left) and final (right) camera views and
robot configurations. Features position (top) and orientation (bottom) errors. On the right
image it is possible to appreciate, in green, the trajectory of the target corners in the image
plane. Convergence is successfully attained.

of the filter convergence and the effects the “smoothing” exponential (µ = 8),
the features trajectories shows a nice exponential decrease. Simulations suggest

82

-0.1

0

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

0

0.4

(a)

-0.1

0

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

0

0.4

(b)

Figure 5.8 – Peg-in-Hole simulations: Estimated target’s Linear (top) and angular (bottom)
velocity in camera frame Vs Ground-Truth for both the IBVS (a) and PBVS (b) cases.

that second-order visual-servoing controllers can be suitably used to deal with
interactions tasks. In the next section we deal with the real implementation of
such controllers.

5.7 Real experiments

An experiment for tracking a moving target on a turntable was performed on a
Franka Emika Panda robot equipped with a wrist mounted RealSense D435 cam-
era operating at 60 fps. Note that, no Force/Torque sensor is required to imple-
ment controller (5.42) . In the following we report the results of the second-order
visual servoing for the IBVS case, which is more complex than its PBVS counter-
part given both the sensitivity with respect to the feature depths, as we shown
before, and the difficulties related to the rank deficiency of the task Jacobian
(more details below). The simulations and experiments for both the IBVS and
PBVS cases presented in subsection 5.6.2 as well as some interaction experiments
using the filters and controllers reported in this chapter can be found in the video
reachable through this link https://www.youtube.com/watch?v=fOSRnxd1dlE.

5.7.1 Implementation issues

Most works have presented their results on second-order visual-servoing in simu-
lation and tackled just few of the real world issues like measurement noise [46,47],
or instead of generating the torque command from the features acceleration, a
velocity signal command is obtained from numerical integration and sent to the
robot, as in [78] for a MPC controller. In this work we aimed at pushing for-
ward the state of the art by tackling several implementation aspects of a real
implementation not covered in previous works.

https://www.youtube.com/watch?v=fOSRnxd1dlE

83

Figure 5.9 – Setup: Panda robot equipped with a RealSense D435 operating at 60 fps. The
center of the target is located at 22 cm from the center of the turntable, which is manually
operated.

5.7.1.1 Data rate

The main bottleneck of a second-order visual-servoing controller implementation
is certainly the low data rate coming from the vision sensor and the latency of the
computer vision algorithms for features extraction. It is important to evaluate
the performance of the vision system as the whole system controlling the robot.
When considering the lowest level servo rate of the robot controller, i.e., the joint
controller of the manipulator, it is generally accepted that the servo rate Ts should
staisfy the condition:

Ts <
Tm
10 (5.43)

where 1/Tm = fm is the mechanical resonance frequency of the manipulator’s
structure [5] (see [4] for more details). It is therefore necessary that the low level
robot’s controller operates with a feedback rate of 200 ∼ 1000 Hz, which means a
cycle time of 1 ∼ 5 ms since the mechanical resonance frequency of a manipulator
usually ranges from 20 ∼ 50 Hz. It is obvious that higher control frequencies are
desirable at any case and that conventional visual systems alone are too slow for
controlling a robotic system at torque level.

One of the main contributions of this chapter are the proposed EKFs which
virtually increase the data rate coming from the camera and helps alleviate the
negative effects of the computer vision latency, allowing us to effectively deal with
the issue of the servo rate discussed above. If this problem is not addressed, it
is practically impossible to implement such a control scheme without resorting to
expensive high-speed cameras.

84

5.7.1.2 Ill-condition of the task Jacobian

The computation of the control command (5.42) requires to pseudo-invert the
task Jacobian J = JsB

−1 ∈ Rk×n which in practice turns out to be strongly
ill-conditioned. This problem is due to the double effect of the ill-condition of
the inertia matrix [79] which is then combined with the image Jacobian, resulting
in a magnified singular values ratio. This issue is particularly pronounced when
the disparity between the masses and inertia tensors of the individual links is
large. Featherstone [80] has empirically found that the the condition number of
the inertia matrix can asymptotically grow with O(n4) of the number of bodies,
which applies to our case since we are servoing a 7-joints manipulator.

In the simulations, we computed the control command by direct pseudo-
inversion of the task Jacobian, through Singular Value Decomposition without
observing any issue on the demanded torques, as one can see from the simula-
tions on the video https://www.youtube.com/watch?v=fOSRnxd1dlE (min [0:06
- 0:55]). The task Jacobian is then

J = UΣV > (5.44)

with U ∈ Rk×k, Σ ∈ Rk×n and V ∈ Rn×n. Σ is a rectangular diagonal matrix
whose diagonal elements are the singular values. U and V are orthogonal matri-
ces. For the real robot, using the same control gains as in simulation, demanded
torques were unrealistic and incompatible with the joint torque limits, leading
the robot to abruptly stop due to the high command values requested. Lower-
ing down the control gains to obtain command values compatible with the joint
torque limits, we were unable to properly servo the robot. We then realized that
the task Jacobian was highly ill-conditioned.

A common approach in robotics to deal with ill-conditioned problems is to
perform a regularization, which allows for a numerically stable solution. Damped
Least Squares (DLS), also known as Levenberg-Marquardt method, is one of the
most common regularization techniques for solving the inverse kinematic problem
in the form

Ax = b

min
x

‖Ax−b‖2 +R‖x‖2

where R = diag(λ, . . . , λ) is a regularization diagonal matrix. In this case, find-
ing the solution to the problem is a compromise between preserving the control
requirements and maintaining the solution limited [77]. With this solution, the
singular values of the pseudo-inverse change from 1

εi
to εi

εi+λ (with εi the i-th singu-
lar value of the non-inverted matrix). However, we found that with a DLS-based

https://www.youtube.com/watch?v=fOSRnxd1dlE

85

regularization, rotations about x- and y-axis were far less “stiff” than the other
directions, leading to poor orientation tracking performance.

In order to adjust separately for each singular value the given damping
factor, we used a SVD-based regularization with a Gaussian function of the
singular value as regularization term, gi(εi) = m exp(− ε2i

2σ2), where m is the
height of the curve’s peak and σ controls the width of the “bell”. We set then
P = diag(g1(εi), . . . , gm(εm)), and compute the regularized solution as

x = V (Σ>Σ + P)†Σ>U>b.

5.7.1.3 Joints friction

In [8], the dynamic friction for our robot has been identified and we used the
released library to compensate for it adding this torque contribution in con-
troller (5.42). Unfortunately we do not have a good model for the dry/static
friction, and as a result small torques are actuating the robot, limiting the posi-
tioning performance close to the goal position; we have found this threshold to
be ∼ 0.5 Nm for our robot. This phenomenon particularly affects the last joint
since the controlled torques are often lower than this value. To alleviate this issue
as already mentioned in Section 5.6.2, an integral term on the features error was
added, allowing to reduce the remaining steady state error. Further increasing
the proportional gain could in fact lead to an unstable behaviour.

5.7.1.4 Illumination conditions

Despite evident when working with vision sensors, experiments are often con-
ducted under poor illumination conditions with consequent performance degra-
dation. In our case, it is of paramount importance to guarantee and maintain a
continuous an constant image stream to avoid that the data fusion of delayed vi-
sual measurements leads to catastrophic results. A good illuminated environment
stabilizes the feature extraction with ViSP to ∼ 8 ms while in regular conditions
it can oscillate from 8 to 20 ms. Spotlights were then placed around the experi-
mental platform also trying to avoid obscuring the target or blinding the camera
with reflections.

5.7.2 Results

The proposed EKF proves to be effective both in increasing the data rate of the
camera, providing an accurate estimate of the features (and depth) at higher

86

frequency, and in alleviating the effects of delays in the feature extraction process
as well as in providing an accurate estimate of the target velocity. In Fig. 5.10
we can see how the feature’s errors remains limited despite the fast motion (up
to 40 [cm/s] for the linear and almost 2 [rad/s] for the angular velocity of the
target) manually applied to the turntable. Once the target is kept at rest (t > 40
s), the feature errors slowly converge to zero. This is due to the high dry friction
in the joints that the integral term has to overcome. Dry friction remains the
main issue limiting the tracking accuracy of our implementation, while SVD-
based regularization managed to cope better with the strong ill-conditioning of
the task Jacobian than Damped Least Squares.

-0.4

-0.2

0

0.2

0.4

-2

-1

0

1

2

0 5 10 15 20 25 30 35 40 45 50 55 60

-0.2

-0.1

0

0.1

0.2

Figure 5.10 – Estimated target linear (top) and angular (middle) velocities in camera frame
compared to the feature errors (bottom). The circular motion produces a linear velocity com-
ponent tangential to the circle and from a frame on top of the target it produces a linear and
an angular velocity in camera frame along the x-axis and about the z-axis respectively.

In the video https://www.youtube.com/watch?v=fOSRnxd1dlE, some further
interaction experiments with different gains are carried out (min [2:12 - 2:23]). It
is possible to appreciate (left bottom window) how the robot does some “jerky”
motions. This happens when joint torque limits are violated. The ViSP wrapper
of the libfranka that manages the control loop is implemented in such a way that
the execution is recovered (a maximum of 10 times) after a violation occurs (e.g.,
by crossing joint torque limits, communication error due to packet loss, and so
on). A possible solution could be to saturate the commanded joint torques at the
expense of the tracking performance when the saturation is crossed.

https://www.youtube.com/watch?v=fOSRnxd1dlE

87

The last part of the same video (min [2:23 - 3:00]), shows the comparison of
two experiments with a slightly different inertial configuration of the robot since
a wrist-mounted Force/Torque sensor with its aluminium flanges (∼ 0.6 kg) is
present in one of the experiments (right window — note that the sensor is not
used). The presence of this “payload” redistributes the inertias in the kinematic
chain improving the condition number of the inertia matrix of the robot, causing
a smoother motion. This is also confirmed by the simulator since for the same
configuration of the robot, the one in figure 6.5, the condition number of the inertia
matrix of the real robot is ∼ 800, while for the simulated robot it is ∼ 300. This
is due to the identified parameters retrieval process, reported in Chapter 7, that
tends to uniformly distribute the solution among the links of the manipulator.

5.8 Summary

In this chapter, we presented our results on Second-Order visual servoing for in-
teraction control and moving targets. The proposed EKFs effectively tracks the
target motion and provides high rate visual information allowing for the imple-
mentation on a real platform with very good performance for the motion track-
ing. Several real-world implementation issues have been discussed alongside the
solutions adopted. We recognize in the dry friction the main cause limiting the
tracking performance of our implementation, especially at low speeds.

The derivations and results shown in this chapter are the result of the works
issued on the papers:

• A. A. Oliva, P. Robuffo Giordano, and F. Chaumette, “A general visual-
impedance framework for effectively combining vision and force sensing in
feature space,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp.4441–4448, 2021.
Video: https://www.youtube.com/watch?v=Qw0Dnhq2uRQ

• A. A. Oliva, E. Aertbeliën, J. de Schutter, P. Robuffo Giordano, and F.
Chaumette, “Towards dynamic visual servoing for interaction control and
moving targets,” ICRA 2022 - IEEE International Conference on Robotics
and Automation, May 2022, Philadelphia, United States. (to appear)
Video: https://www.youtube.com/watch?v=fOSRnxd1dlE

https://www.youtube.com/watch?v=Qw0Dnhq2uRQ
https://www.youtube.com/watch?v=fOSRnxd1dlE

88

89

Chapter

6 Feature Space Admittance

Contents
6.1 Introduction . 90

6.2 Related works . 90

6.3 Feature Space Admittance 92

6.4 The Extended External Hybrid Vision-Force Control
Scheme . 94

6.4.1 Force regulation . 95

6.5 Stability analysis . 96

6.6 Experiments . 97

6.6.1 Experimental Setup . 97

6.6.2 Peg-in-Hole Experiment 99

6.6.3 Extended External Hybrid vs External Hybrid 101

6.7 Fictitious forces . 103

6.8 Summary . 104

90

6.1 Introduction

As it was shown in the previous chapter, the feature impedance control cannot be
implemented as is with classical cameras due to their intrinsic technological limi-
tations, e.g., slow frame rate compared to the faster force/torque sensing, which
makes it impossible to control a manipulator at torque level. The low control
bandwidth resulting from the use of low-rate cameras is in contrast with the need
of high gains in the impedance controller for ensuring good tracking performances
and disturbance rejection. It follows that there exists a trade-off between the
trajectory tracking accuracy and the compliance given to the robot. We have suc-
cessfully overcome these limitations with the proposed Extended Kalman Filters
and by tackling the further real-world difficulties that have arisen. On the other
hand, when an interaction task can/must be performed in static or quasi-static
conditions, the dynamics of the manipulator can be neglected and one can use
the joint level manipulator’s velocity controller; in this way, the manipulator can
be seen as an ideal positioning device. The extra complexity needed to let the
impedance controller properly operate can be avoided using, for example, an ad-
mittance law in feature space coupled with a velocity resolved controller, which is
the subject of this chapter. In this case, thanks to the force/torque measurements
provided by a 6D Force/Torque sensor, we will be able to deform the visual tra-
jectory reference given to the robot according to the measured forces, being able
to provide compliance.

6.2 Related works

The hybrid vision/force scheme presented in Section 4.2 aims at controlling force
along constrained directions while vision controls the motion of the remaining
ones. The task geometry needs to be known a priori in order to properly design
the controller via a selection matrix for ensuring orthogonality between vision and
force controlled directions. Despite the use of feedforward terms to share the con-
trolled directions among vision and force, the intrinsic sensory separation enforced
by the underlying hybrid scheme, does not fully exploit the complementarity of
vision and force sensing.

As we have shown in Section 4.3, a position-based impedance controller was
used to achieve compliance in Cartesian space while an external vision control
loop is closed around the former [55]. The main disadvantage of this control
scheme is that it can get stuck in a local minimum where the simultaneous con-
vergence towards the force and visual reference will not be reached. Recently,

91

three image-based visual impedance control laws have been proposed [81]. Al-
though the presented first- and second-order controllers rely on the regulation of
the visual error, compliance of the end-effector carrying the object is achieved
along/about its Cartesian directions.

Mezouar et al. [57] developed the External/Hybrid vision/force control scheme
detailed in Section 4.4, to overcome the drawbacks of the Hybrid and Impedance-
based vision-force schemes, for which they have provided an exhaustive compar-
ative analysis. In their approach, the external wrench is transformed into a dis-
placement of the image feature reference. This transformation is equivalent to an
undamped spring which, as we show in Section 6.6, can start oscillating without
ever reaching the convergence of the task or, in more serious cases, can damage
the tool. We then seek for a higher order relation linking forces and features
motion. One of the first works aiming at figuring out this relationship for vision
driven robotic systems is [70], in which the visual servoing dynamics for a ball
target is derived and, by exploiting a general definition and pose invariance of the
Lagrangian function in the feature space, authors yields to an ad hoc simplified
model dynamics for the features and the system considered. Vice versa, we are
interested in the full Lagrangian model of the manipulator and in a generalized
treatment that is independent of the type of visual feature.

Carelli et al. [82] proposed a Hybrid force- and vision-based impedance con-
troller to perform a peg-in-hole task. Pose-based visual servoing was used to guide
the end-effector towards the hole. Interaction forces were fed back to correct small
errors of visual guidance by modifying the visual reference along the horizontal
plane while pure force control was used along the vertical axis. The use of selec-
tion matrices does not allow to use vision along the vertical axis. The interaction
wrench were fed back simply by changing the point of application through a coor-
dinate transformation. The Authors do not provide a mapping to project physical
forces into the feature space, so they could consider fictitious forces synthetically
generated in the image plane or physical forces in operational space, limiting the
range of applicability.

In the work presented in this chapter, we instead leverage on the derivation
of second order visual servoing shown in Section 3.4 that does not depend on the
particular choice of visual features: this allows us to derive a general framework
that can effectively combine vision and force sensing directly in feature space.
This differs from previous works on this topic since the derivation of second-order
models has often been formulated ad hoc from the definition of the considered
features. Furthermore, thanks to this formulation, the projection of the wrench
applied on the camera into the feature space can also be generalized. This led us

92

to use a feature admittance law coupled with a force control law to ensure precise
force regulation.

6.3 Feature Space Admittance

In Chapter 5 it was shown how the external wrench projects into the feature
space as virtual per unit of mass/inertia force/torque that acts on the visual
features. Exploiting this relationship and the concept of compliant frame, shown
in section 2.4.3, we can link the desired reference and the compliant one with a
second-order relationship that will be used to feed a vision control loop.

For the PBVS case, the admittance is equivalent to the one defined in the
operational space, as reported in [13], and depends on the chosen orientation
representation (e.g., Euler angles, axis/angle, etc). In this work we have adopted
the axis/angle representation for the 3D features. In our case, on the other side,
the task frame is the reference frame attached to the camera rather than to the
end-effector’s frame (see Figure 6.5).

For the IBVS case, the concept of compliant frame can be extended to the
image space taking into account the vector of the current features s, the vector
of the desired features sd and defining a new vector of compliant features s∗,
as shown in Figure 6.1. As for the PBVS case, the compliant feature vector is

(a) (b) (c)

Figure 6.1 – The Compliant frame concept extended to the feature space: (a) Desired and
Compliant features are coincident, the current features follow the compliant features. (b) The
sensor undergoes the action of an external force. (c) The compliant features are linked to the
desired ones with a mass-spring-damper relationship.

coincident with the desired one until it moves under the action of an external
per unit of mass/inertia force/torque fsext

. A controller will minimize the error
between current and compliant feature vectors es = (s∗ − s) while the error
ēs = (sd − s∗) between desired and compliant vectors will be linked through the
second order relationship:

Ms(s̈d − s̈∗) +Ds(ṡd − ṡ∗) +Ks(sd − s∗) = f̄sext
(6.1)

93

with f̄sext the external wrench projected in feature space with the constant inertia
as in (5.17). The difference between (5.17) and (6.1) are the features involved. In
the former, the current s and the desired sd features are considered while in the
latter, are the desired sd and the compliant s∗ feature vectors to be related. When
no external forces act on the end-effector, the compliant and desired reference
frames are coincident (Σ∗ ≡ Σd) or (s∗ = sd).

The feature reference position s∗, as well as its velocity ṡ∗ are obtained by time
integration of the impedance equation (6.1) by isolating s̈∗ and then integrating
it twice:

s̈∗ = s̈d +M−1
s (Ds(ṡd − ṡ∗) +Ks(sd − s∗)− f̄sext

) (6.2a)

ṡ∗ =
∫
s̈∗ dt (6.2b)

s∗ =
∫
ṡ∗ dt (6.2c)

It is interesting to notice that depending on both the type of visual feature
chosen and the values assigned to the impedance parameters for each feature, we
can have a different compliant behavior and this can be exploited to our advantage.
If for example we have four feature lines expressed in the polar coordinates, as
shown in Section 3.3.1 , one can opportunely tune the relative in per unit of
mass/inertia stiffness of the impedance law and achieve the desired behaviour.
Referring to Figure 6.2, the relative stiffness matrix was chosen in such a way we

Figure 6.2 – The four sides of the AprilTag are used as image line features. The reference
lines (thicker lines) experience a spring-like displacement according to the chosen impedance
parameters and the sensed forces.

are stiff with respect to linear displacements of the yellow and green lines as well
as for the rotations of all four lines while we are more compliant with respect to
linear displacements of the blue and red lines, allowing us to have the yellow and

94

green lines as a rail on which we can slide. The same reasoning applies to any
other visual feature defined in the image plane.

6.4 The Extended External Hybrid Vision-Force
Control Scheme

From what explained in the previous section, we are modifying the visual reference
according to the sensed force; therefore, we are not facing a regulation problem
anymore but a trajectory tracking one. To this end, an appropriate visual control
law is necessary in order to better track the moving visual reference [45, 48], as
we show in Section 3.3.5. In this case we have to track the trajectory ṡd(t), while
ṡ(t) = Ls

cvc because we are considering the target to be static cvo = 0. Imposing
as usual an exponential decoupled decrease of the task error as control objective
ės = −λes, being ės = ṡd(t)− ṡ(t) = ṡd(t)−Ls cvc, we obtain

cvc = λL†ses +L†sṡ∗ (6.3)

In the more general case in which also the target moves, an approximation of the
error rate of change can be computed as ̂̇es = des

dt
which contains ideally ės =

ṡd(t)−Ls cvc+ ṡo, i.e., the contribution to the error variation due to the changes
in the trajectory reference and the camera and target motion. Subtracting then
the feature velocity due to the camera motion, we can obtain an approximation
of both the trajectory changes and the target motion

cvc = λL†ses +L†s(̂̇es + Jsq̇) (6.4)

otherwise, we can of course use the results obtained in the previous chapter for
the tracking of a moving target and directly compensating for its motion, finally
obtaining

cvc = λL†ses +L†sṡ∗ +L†sṡo (6.5)

Combining this classical visual servoing control law with the feature space
admittance defined in the previous section we can build an interaction control
scheme as follows:

It is worth noticing that, since we are moving the compliant features s∗ around
the image plane, we should use the interaction matrix Ls(s∗) associated to those
features to project the external wrench into the feature space while for the vision
control law (VCL) (6.3) we use the interaction matrix associated to the current

95

Figure 6.3 – Basic control scheme: An outer admittance control loop is closed around an inner
vision control loop. The feature admittance enables the classical visual-servoing controller to
accommodate to interaction forces with the environment. Although s̈∗ is available, it is not
used in the VCL. The external loop is quite general and can be plugged in many vision control
schemes.

features Ls(s). When the controller tracks the compliant feature vector closely, we
could use the interaction matrix associated to the current features to approximate
the projection into feature space of the external wrench.

6.4.1 Force regulation

For many robotic applications the regulation of the exchanged forces with the
environment is of particular importance for the correct execution of the task itself.
It should be stressed that, since our controller achieves force control by regulating
the velocity setpoint, the amount of exerted force is a consequence of the positional
error and the chosen impedance stiffness. In particular, for the visual-feature
admittance law in Figure 6.3, at the equilibrium (i.e., ¨̄es = ˙̄es = 0) and referring
directly to the external wrench in the end-effector frame ehe, we have:

Ksēs = Ls(s∗)B̄c
−1 cFe ehe (6.6)

Our intention is to regulate the amount of exchanged force along/about a
certain direction to a specific value. To this purpose we use, together with the
visual-feature admittance, a PI controller based on the force error in operational
space (where the wrench is naturally defined) projected into the feature space.
We can replace then the second member of (6.1) with the following force control
law (FCL):

f̄∗sext
= Ls(s∗) B̄c

−1 cFe eh∗e with
eh∗e = KfP

(ehde − ehe) +KfI

∫
(ehde − ehe) · dt

(6.7)

96

being ehde the desired wrench in the end-effector frame, KfP
and KfI

two 6 × 6
positive gain matrices for the proportional and integral force error terms respec-
tively. The presence of the integral term in the controller creates a dominance
of the force loop over the internal positional loop. It is of course clear that
such a desired force/torque to be regulated has to be specified according to the
task geometry (along/about a constrained direction) otherwise velocities will arise
along/about unconstrained directions.

Once all the parts of the framework have been explained, it is possible to
put them all together. Figure 6.4 shows the block diagram of the proposed con-
troller: it presents a hierarchical structure in which a FCL, together with a feature
space admittance law, is closed around an inner vision control loop implementing
the VCL in (6.3). The reference trajectory sd(t) is opportunely modified by the

Figure 6.4 – Extended external hybrid vision/force control scheme. A feature space admittance
is used as reference modifier to achieve compliance along visual features directions. Force control
law ensures force regulation when the integral term is activated.

admittance (6.1) proportionally to the output of the FCL implementing (6.7).
We named the resulting controller as the Extended External Hybrid vision-force
control scheme since it presents the same structure of the External Hybrid (see
Section 4.4). The main advantage over the latter is that our framework offers more
flexibility in the choice of the compliant behavior we want to implement, thanks
to a greater number of parameters in the admittance that can be tuned, besides
giving the possibility to achieve force regulation. It will be shown in a comparative
experiment in Section 6.6.3 how this framework outperforms the External Hybrid
when a soft contact behaviour is required.

6.5 Stability analysis

As already pointed out, the proposed control scheme presents a hierarchical struc-

97

ture where an external force control loop is closed around an internal vision loop.
The external force loop is used to modify the reference trajectory from its planned
path, according to the sensed forces/torques and with a behaviour determined by
the impedance parameters. In order to study its stability, let us start from the
simplest case and gradually consider all possible cases.

If we assume that the manipulator moves in free space towards a motionless
target regulated by a constant desired task position, we are in the conditions of a
classical visual servoing control scheme. In this case, the stability conditions are
those given in Subsection 3.3.3.

If we now consider the more general case of trajectory and target tracking,
for which controller equation (6.5) is replaced in the time variation of the error
ės = ṡd − ṡ = ṡd −Lcsvc + ṡo, we obtain

ės = ṡd −Ls(λL̂†ses + L̂†sṡ∗ + L̂†ŝ̇so) + ṡo =

= ṡd − λLsL̂†ses −LsL̂†sṡ∗ −LsL̂†ŝ̇so + ṡo
(6.8)

Even if LsL̂†s > 0, the error will converge to zero only if the estimation of the
features velocities due to the target motion ̂̇so is sufficiently accurate so that

LsL̂
†
s
̂̇so = ṡo (6.9)

while for the trajectory tracking term ṡ∗, the trajectory to follow is usually known
ad can be fully compensated.

6.6 Experiments

In this section, we show the results of our proposed Extended External Hybrid
controller executing a Peg-in-Hole task. We then compare it to the External
Hybrid controller [57] in a critical situation. For a better understanding of this
work we suggest to refer to the relative video https://www.youtube.com/watch?
v=Qw0Dnhq2uRQ in which, in addition to the experiments here reported, we show
a trial using lines as visual features and another trial that simultaneously copes
with physical and fictitious forces to maintain the visual references in the field of
view.

6.6.1 Experimental Setup

The setup consists of a Panda robot with its control software running on a Desktop
PC with an Arch-Linux distribution patched with a Preemptive RT-Kernel 5.4.52-
rt31. A wrist mounted six axis force/torque sensor Alberobotics FT45 with force

https://www.youtube.com/watch?v=Qw0Dnhq2uRQ
https://www.youtube.com/watch?v=Qw0Dnhq2uRQ

98

Figure 6.5 – System setup and reference frames.

and torque ranges of Fz ± 1000N,Fx, Fy ± 500N and Mx,y,y ± 20Nm respectively
is present as well as a RealSense SR300 camera operating at 30 fps, mounted in a
eye-in-hand configuration (see Figure 6.5).

Force/torque sensors are capable of measuring any kind of force, being it grav-
itational, inertial or contact forces. We are interested only in the contact forces.
Since force measurements modify the visual reference, gravitational and inertial
effects should be compensated. If the payload is not well estimated, spurious
force/torque readings remain that cannot be compensated for, without resorting
to online estimation strategies of the payload parameters. These spurious read-
ings will be interpreted as forces/torques acting on the features reference and will
move them according to the admittance stiffness.

To make the system more robust against misestimation of the payload param-
eters (i.e., mass, inertia, and center of mass) or inertial effects, we can choose
higher values of the virtual per unit of mass/inertia stiffness of the admittance
at the expense of a more rigid system. In our setup, in addition to the standard
gripper, we have the camera, the force/torque sensor and some 3D printed parts
whose weight has to be estimated. An efficient way to estimate these parameters
is reported in [83] that relies on the identified coefficients of the robot dynamics
that can be found in [8] for our robot and will be the subject of Chapter 7. As we
use a wrist-mounted force/torque sensor, we need to compensate only for the pay-
load downstream the sensors flange. In all the reported experiments, a 3rd-order
Butterworth low-pass filters with cut-off frequency of 2Hz is used to smooth the
sensor readings of the Force/Torque sensor.

99

6.6.2 Peg-in-Hole Experiment

The task consists in inserting a peg into a hole present in a wood workpiece, both
with a diameter of 1 cm. The depth of the hole is 2 cm while the length of the
peg is 4 cm. An AprilTag of the 36h11 family of size 6.45 cm is applied to the
surface of the workpiece. The latter is supported by a wooden structure fixed to
the work table, which holds an inclined groove of about 45◦ with respect to the
horizontal plane on one side and about 10◦ on the other (see Figure 6.6(a)).

(a) (b)

Figure 6.6 – Peg-in-hole experiment setup: (a) The robot at the initial configuration. (b)
Forces exerted by the end-effector on the environment during phase 2: the task requires to apply
[5,−5,−15]N along the end-effector’s x-(blue), y-(green) and z-axis (red arrow) respectively.

The experiment consists of two phases. In the former the robot has to insert
the peg in the hole without computing any trajectory while in the latter it pushes
the peg towards the bottom of the hole and simultaneously applies lateral forces
such that the workpiece slides into the groove until a desired force is reached
along both directions. The task is executed using our proposed Extended Exteral
Hybrid controller (see Figure 6.3) for which the VCL gain is set to λ = 1.5 s−1. The
vision system guides the camera towards a desired final position of the features
in the image plane. This final position corresponds to the position in which the
peg, held by the robot gripper, is inserted in the hole at a depth of about 1.5 cm.
Using Visp [10], the AprilTag on the workpiece is tracked and the coordinates of
its corners are used as visual features s ∈ Rk, with k = 8. In Subection 3.3.1
we have shown the expression of the interaction matrix Ls ∈ R8×6 associated to
these features [48].

100

During the first phase of the task, the FCL only projects the external wrench
into the feature space allowing the system to accommodate for unmodeled inter-
action forces. So, according to (6.7), we have: f̄∗sext

= −LsB̄c
−1 chc, meaning

that KfP
= I8, the identity matrix of dimension 8× 8, KfI

= 0 s−1 and ehde = 0.
The admittance parameters have been chosen to have small interaction forces and
sufficient damping to attenuate the oscillations that can be triggered while main-
taining the overall reactiveness of the system (Ms = I8

kg
kg
, Ks = diag(300)N/m

kg
,

Ds = diag(200)N/m.s−1

kg
). During the second phase, that is the force regula-

tion phase, the FCL fully implements equation (6.7) with KfP
= diag(0.2),

KfI
= diag(5) s−1 so as to guarantee fast force convergence and limited over-

shoot while keeping the system stable. Being now the peg’s motion fully con-
strained inside the workpiece’s hole, we make the controller way more stiffer
(Ks = diag(20000)N/m

kg
, Ds = diag(400)N/m.s−1

kg
). The desired wrench is set

to ehde = [5N − 5N − 15N 0 0 0]> and is transformed to the camera frame as
chdc = cFe ehde. For both phases, the desired apparent constant inertia we want
the camera to exhibit is B̄c = cTeB̄e

−1 cT>e with B̄e = diag(1 I3 kg, 0.1 I3 kg.m
2).

(a) (b)

-0.2

0

0.2

0.4

-30

-15

0
10

0 5 10 15 20 25
-0.55

0

0.55

(e)

Figure 6.7 – Peg-in-hole experiment: (a): Initial camera view of the experiment. The green
crosses are the current features while the red crosses are the references. (b): Final camera view.
It is possible to appreciate (in green) the trajectory of the features in the image plane. (c):
Feature errors (s∗ − s), (d) End-effector forces and (e) moments.

101

The experimental setup and the framework’s behaviour during the task execu-
tion are shown in Figures 6.6 and 6.7 respectively. As we can appreciate from the
plots in Fig. 6.7c and the image points trajectory (almost straight) in Fig. 6.7b,
the visual task begins to converge exponentially until it hits the structure, not
being aware of it since there is neither a previous knowledge of the environment
nor a pre-calculated trajectory. The impact force in the approach direction is
approximately 35N and it projects into the feature space as virtual per unit of
mass/inertia forces/torques that pull the four point features reference towards
the target centroid causing the robot to slow down along this direction while it
continues converging along the others. The robot then approaches the hole and
the peg is successfully inserted. These two collisions are perfectly visible both in
Figure 6.7b (small saw-teeth close to the desired features) and Figure 6.7d (two
peaks along z-axis). Once the peg is within the hole, we observe that the visual
error converges allowing the system to autonomously switch to the second phase
in which the integral term in the FCL is activated. The lateral force pushes the
workpiece into the groove and against the wall of the structure. The integral
term makes the output of the FCL increase until the force error is nullified. The
integral term creates a dominance of the force loop over the internal (positional)
vision loop.

6.6.3 Extended External Hybrid vs External Hybrid

The external hybrid approach [57] has been shown to be successful where
impedance- and hybrid-based vision/force schemes have failed. Then follows our
interest in comparing this control scheme with the proposed one, as we inherit its
structure and extend it, eliminating its drawbacks.

In Section 4.4 we have shown that, for the External Hybrid controller [57], a
Cartesian displacement is firstly computed as dX = L−1

XK
−1(ehde − ehe) being

K ∈ R6×6 the contact stiffness. This displacement is then projected in feature
space using the interaction matrix ds = LsdX. Finally, the compliant reference
is obtained by adding the computed feature space displacement to the desired
reference s∗ = sd + ds.

To evaluate their relative performance over the task, we have executed different
trials with both methods, each starting and ending from a different position. This
time the workpiece is clamped on the work surface, preventing it from moving.
The results of one of these experiments is shown in Figure 6.8.

To make the comparison as fair as possible, we choose the same gain λ = 1.5 s−1

for both controllers and the proportional gain of the external hybrid, i.e., the

102

-0.6

-0.3

0

0.2

-40

-20

0
10

0 5 15 20
-0.5

0

0.5

1

(a)

-0.6
-0.3

0
0.3
0.6

-12

0

12

0 2 4 6 8 10
-0.5

0

0.5

(b)

Figure 6.8 – Peg-in-hole comparison: (a) the results obtained with our method and, (b) those
obtained with the external hybrid [57]. The images show the initial and final camera views
with the current and reference feature trajectories in green and red respectively. The plots
report, from top to bottom: the visual feature errors (s∗ − s), measured end-effector forces and
moments. ehde = [5N , 0 ,−20N , 0 , 0 , 0]>

contact stiffness, in such a way that both methods achieve the same displacement
of the visual reference when the same force is applied leading to choose K =
(LXL†sK−1

s LsB̄c
−1cFe)−1. On the other hand, B̄c, KfP

, KfI
and Ms are as in

the previous experiment, for both phases, while for this experiment we impose a
less stiff behaviour by choosing Ks = diag(200)N/m

kg
and Ds = diag(150)N/m.s−1

kg

for the first phase.

At the beginning, both methods starts converging towards the target with
exactly the same behaviour. In fact, as long as there are no interaction forces,
the reference is not modified and the task is a pure VS. When the peg approaches
the hole, it hits the border before entering. As shown in Figure 6.8, for both the
external hybrid and our method, the impact force along the approach direction
stays quite limited even though for our method it is slightly higher. This is due
to the presence of the damping term. Both methods succeed in the insertion of
the peg tip but the increase of lateral forces once the peg is inside the workpiece,
triggers the oscillation of the non-damped spring of the stiffness control for the
external hybrid method. If these oscillations remain limited, they do not allow
to reach the convergence of the visual reference while, in the event they explode
as it is the case, it can lead to damage the manipulated object or even the robot

103

tool. This experimental result has shown that endowing the feature’s motion
with a dynamic capable of damping their velocity, improves the performance of
the system, managing to dampen the oscillations that can be triggered.

6.7 Fictitious forces

The vector of per unit of mass/inertia force/torques in the feature space is an
artifact created to allow the physical forces to be mapped into the feature space.
However, a vector of artificial forces in the feature space could be generated.

(a)

(b) (c)

Figure 6.9 – Simultaneous interaction with both fictitious and physical forces. (a) Camera
view: the reference features (red +) moves under the action of the physical force (purple arrow).
A repulsive relative force field is generated on the left edge of the image plane (green arrows).
The current features are the corners of the AprilTag (green +). (b) 3D visualization of the
relative force intensity, the closer to the edge the higher. (c) Robotic system equipped with a
camera in a eye-in-hand configuration. The operator physically pulls the end-effector (purple
arrow) pushing the reference features towards the repulsive fictitious force field.

As can be seen from Figure 6.9, it is possible to generate, for example, a
repulsive linear relative in per unit of mass/inertia force field on the left edge of
the image plane, that prevents the reference to leave the Field-of-View when we
physically interact with the manipulator’s end-effector.

104

6.8 Summary

In this chapter we proposed a framework for dealing with the coupling of vision
and force sensing directly in the feature space. The proposed controller presents
the same hierarchical architecture of the External Hybrid vision/force control
scheme [57] but with a substantial difference in the way we manage the compli-
ant reference. Our controller, uses a second-order relationship between sensed
forces and displacement quantities, i.e., it implements an impedance law in fea-
ture space. This was possible thanks to the force map from Cartesian to feature
space shown in Chapter 5. This framework allows to treat the combination of
vision and force sensing in a unified way regardless the chosen visual features.
Unlike the Hybrid vision-force scheme, we can control simultaneously all the sys-
tem’s degrees of freedom with both vision and force sensing. The hierarchical
juxtaposition of the force control loop over the vision loop, avoids the rise of
inconsistencies at actuation level and the convergence towards local minima, as
for [57]. Furthermore, we have shown that simultaneous interaction with both
physical and fictitious forces (i.e. generated in the image plane) can be handled in
this framework to account for e.g., the physical interaction with the environment
and/or a visually generated repulsive force field in a collision avoidance tasks, as
well as the achievement of force regulation. Finally, we have shown that compli-
ance is achieved in feature space, along the feature that defines the visual tasks.
Due to the common architecture and properties shared with [57], we have named
our controller the “Extended External Hybrid vision/force” control scheme, which
features some improvements. The implementation results confirm the validity of
this approach.

The derivations and experiments shown in this chapter are the result of the
work published on the paper:

• A. A. Oliva, P. Robuffo Giordano, and F. Chaumette, “A general visual-
impedance framework for effectively combining vision and force sensing in
feature space,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp.4441–4448, 2021.
Video: https://www.youtube.com/watch?v=Qw0Dnhq2uRQ

https://www.youtube.com/watch?v=Qw0Dnhq2uRQ

105

Part III Manipulator
dynamic model and

simulation

106

107

Chapter

7 Dynamic model of the
Franka Emika’s Panda robot

Contents
7.1 Introduction . 108

7.2 The Panda robot . 110

7.3 Identification procedure 111

7.3.1 Friction estimation . 113

7.4 Retrieval of feasible parameters 114

7.5 Results . 117

7.5.1 Validation on a physics simulator 121

7.6 Summary . 125

108

7.1 Introduction

The knowledge of accurate dynamic models is of fundamental importance for
many robotic applications. It is necessary, in fact, for designing control laws with
superior performance in free motion or when interacting with the environment [13],
e.g., in strategies for the sensorless detection, isolation and reaction to unexpected
collisions [84] or when regulating force or imposing a desired impedance control
at the contact [85].

The controllers developed in Chapter 5 are indeed based on the manipulator
model, which allows for inverse dynamic control. The cancellation of the manipu-
lator dynamics is more effective the accurate the model is. On the other hand, as
we will see in the next chapter, knowledge of the dynamic parameters is required
for the dynamic simulation of the manipulator. Moreover, a first implementation
step on the simulator was required to study the problem of second-order visual-
servoing, followed by a second implementation step on the real platform. It would
have been extremely difficult to determine the source of errors or control malfunc-
tions, as well as their causes, without this intermediate step. The necessity of
estimating these parameters is evident from the aforementioned considerations.

To obtain an estimation of the dynamic model, regression techniques are widely
employed for industrial [86,87] or humanoid robots [88,89]. These techniques are
hinged on a fundamental property: the linear dependence of the robot dynamic
equations in terms of a set of ρ dynamic coefficients πR ∈ Rρ [20], also known
in the literature as base parameters [21], which are linear combinations of the
dynamic parameters of each link composing the robot. In particular, each link
has 10 parameters, specifying the mass, the position of the center of mass (CoM),
and the 6 elements of the symmetric inertia tensor. Then, a robot with l links
has a total 10 l of such parameters, denoted as p ∈ R10 l. In addition, one may
also include a number of parameters for modeling joint friction.

The regrouping of dynamic parameters, i.e., the dynamic coefficients, occurs
because not all the parameters are excitable during motion (and therefore some
of them have no influence on the robot dynamics), and others have an effect on
the dynamics only in combination, that is, they are not identifiable separately.
Hence, the dynamic parameters in p will appear as a combination and very rarely
as singletons in πR.

The identification of the dynamic coefficients πR is often sufficient for a number
of robotic applications, such as dynamic motion robot control and motion plan-
ning, since knowledge of πR allows for a numerical evaluation of the robot dynamic
model in the Euler-Lagrange (E-L) form. However, the retrieval of a set of feasible

109

numerical values for the dynamic parameters p is also relevant. This is the case,
for instance, when performing dynamic simulations via a CAD-based robotic sim-
ulator - like CoppeliaSim [75] - or when implementing torque-level control laws
(such as the feedback linearization) under hard real-time constraints. In this case,
a widely adopted solution is to use the recursive numerical Newton-Euler (N-E)
algorithm, which is preferred to the evaluation of the symbolic computationally
more expensive E-L approach (which relies on dynamic coefficients). However,
usual N-E routines require the knowledge of the dynamic parameters p of each
link in the kinematic chain, and not just of the dynamic coefficients πR. In [20],
the problem of recovering a complete set of values for the original robot parameters
starting from the identified dynamic coefficients was addressed. In general, this is
a nonlinear problem admitting an infinite number of solutions. However, not all
solutions are physically consistent (as example, negative masses may appear). To
discard unfeasible solutions, we considered upper and lower bounds on each com-
ponent of p by solving a constrained nonlinear optimization problem. Because
of the ill-conditioned nature of the solution space, we used global optimization
methods, such as simulated annealing.

The physical consistency of the identified dynamic parameters, as introduced
in [90], is currently attracting more and more attention. Researchers have treated
the problem of physical feasibility within the framework of linear matrix inequali-
ties (LMIs), solving the problem of the identification of a physically consistent set
of parameters by means of semi-definite programming (SDP) techniques [91]. Re-
cently, this framework has been enriched by the addition of the triangle inequality
of the inertia tensors [23,24], a constraint which was originally mentioned in [22],
providing the scientific community with a valuable tool for the dynamic identifi-
cation problem. The approach presented in this chapter can be considered as an
alternative to the LMI-SDP framework.

All these approaches act on the parameter identification phase, obtaining from
this dynamic coefficients that are typically different from the classic ordinary least
squares (OLS) solution [86,87].

The approach presented in [24, 91] requires to express constraints as linear
matrix inequalities, while the proposed optimization algorithm manages linear,
nonlinear and even conditional constraints (e.g., if-else), without any mathemat-
ical manipulation. This additional flexibility allows to handle directly nonlinear
constraints coming from the geometric shape of cylindrical or spherical links (like
for Universal Robots manipulators or for the sixth link of the KUKA LWR IV+),
or when the use of approximate box constraints may generate solutions which are
even unfeasible (e.g., a center of mass outside a convex link of the robot).

110

On the other hand, a drawback of the proposed algorithm is that convergence
to a global optimum in a finite number of steps cannot be guaranteed. It has to
be noted that, whatever method is adopted, it is very unlikely that the original
dynamic parameters are retrieved; indeed, the more constraints are supplied, the
closer the solution will be to the actual one. Thanks to the algorithmic nature of
the presented framework, a wide range of constraints can be easily added.

The proposed approach is general and can be applied to a large class of robot
manipulators. In this work, as case study, we apply it to the Franka Emika Panda
robot (see Figure 7.1), for which we have identified a complete set of feasible
dynamic parameters.

7.2 The Panda robot

Figure 7.1 – The Panda arm equipped with its gripper and interfaced with its controller. The
signal flows from and to the controller are depicted: The user sends a command to the libfranka
API that communicates with the FCI controller through Ethernet. This input is then converted
to a commanded torque τc to the robot that returns the measured joint torque τ , as well as
the joint positions q and velocities q̇. The FCI controller computes the numerical values for the
inertia matrix B(q), the gravity vector ḡ(q), the Jacobian J̄e(q), and the Coriolis term c̄(q, q̇)
as well. These data are sent back to the user through the libfranka API. More details can be
found at: https://frankaemika.github.io/docs/index.html.

The robot considered in the experiments and simulations all along this thesis
work, is the popular Panda robot manufactured by Franka Emika. Panda is a
torque-controlled cobot that is attracting a large interest both on research and
in small-sized business because of its safety, versatility, reliability and relatively
low price (less than 20 k€). Its total weight is about 18 kg and it is capable of
handling payloads up to 3 kg. It is a redundant manipulator with n = 7 revolute
joints, each of which is equipped with a link-side torque sensor. This robot can

https://frankaemika.github.io/docs/index.html

111

be controlled with five different interfaces: at joint level by sending torque τd,
position qd or velocity q̇d commands or by sending Cartesian pose Td or veloc-
ity vd commands to the Franka Control Interface (FCI) through the libfranka,
its open-source C++ API. Through this library it is possible to send real-time
control values (at 1 kHz) and have full access to the robot state, e.g., the joint
positions q and velocities q̇, as well as the link side torque vector τ . Moreover,
it returns the numerical values of the inertia matrix B(q), of the gravity vector
ḡ(q), as well as the Jacobian J̄e(q) and the Coriolis vector c̄(q, q̇) at a given joint
configuration q and velocity q̇. These data will be of fundamental importance
for the identification process of the dynamic model of the robot described in the
next section. Robots with the Research Interface can also be controlled using the
franka_ros metapackage [92], which integrates and exposes the complete libfranka
API to the ROS ecosystem. This metapackage also provides hardware abstrac-
tion and model description in Universal Robotic Description Format (URDF) to
simulate the robot in Gazebo [93].

The FCI controller is designed in such a way that the command inputs given
by the user are appropriately manipulated so that the motors generate the proper
torque τc for the commanded task. Figure 7.1 depicts all the above-mentioned
control signals.

7.3 Identification procedure

In order to derive the symbolic dynamic model of a robot with elastic joints,
such as the Franka Emika Panda, one may follow the procedure presented in [94],
separating the motor torques from the link-side torques. Nevertheless, the par-
ticular features offered by the robot controller allow us to simplify the modeling:
in fact, since the FCI controller is able to return the estimations of the link-side
torques (exploiting the motor position measures read from the encoders), we are
able to adopt the classical model structure as for a rigid joints robot, neglecting
the elasticity [95], and henceforth τ ∈ Rn is the vector of the link-side torques.

Exploiting the features offered by the controller of the Panda robot, as we
mention in Section 7.2), it is possible to avoid the classical procedure involving
exciting trajectories [96], and obtain the estimates of the gravitational and inertial
coefficients by collecting a set of static positions only by means of a reverse engi-
neering procedure (See Appendix A for a comparison of the dynamic coefficients
estimated through the reverse engineering process with those obtained from the
classical approach that exploits exciting trajectories). The same procedure had
been used to retrieve the dynamic coefficients of the KUKA LWR robot [95, 97]:

112

in that case, the gravitational and the inertial coefficients have been estimated
separately, while now a slightly different approach has been used, due to the fact
that many coefficients can be retrieved both from the inertia matrix and from
the gravity vector. As a first operation, one has to rearrange the symbolic iner-
tia matrix B(q) in a vector form (the inertia stack), by exploiting its symmetry.
Having for the Panda robot n = 7 joints, we obtain a vector b̃(q) ∈ Rm, with
m = n(n+ 1)/2 = 28 components, containing all the lower triangular elements of
B(q). Now, it is possible to obtain – as described in Section 2.3.1 – the symbolic
regressor Ys(q) from the column vector ς(q) ∈ Rm+n in such a way that

ς(q) =
 b̃(q)
g(q)

 = Ys(q)πs, (7.1)

where πs ∈ R10n is the vector containing both the gravitational and inertial dy-
namic parameters, which are the same – excluding joint friction and motor inertias
– as in vector π of eq. (2.33).

In order to obtain a numerical estimation of the dynamic coefficients vector, a
data acquisition procedure should be carried out: in the general case, performing
exciting trajectories is required in order to span all the admissible joint positions,
velocities and accelerations (see eq. (2.34)). Since ς(q) depends only on the joint
positions q, it is just sufficient to retrieve data by imposing static positions.

The libfranka API exposes the numerical evaluation of the gravity vector and
the inertia matrix of the Panda robot at the current link position. Therefore, it
is possible to collect a fair amount of data even only in a static way, i.e., bringing
the manipulator to a desired configuration and then retrieving and storing the
numerical values of the gravity vector and the inertia matrix. This acquisition
procedure can be performed during a motion as well. The main advantage of
imposing static joint positions is that this procedure avoids any influence of friction
and uncertainty (e.g., due to measure noise or to any unmodeled phenomenon).

The data is acquired and collected in a list of M different (special and/or
random) configurations, under the weak condition

Mn� p. (7.2)

For a generic configuration qk, with k = 1 . . .M , we have

ςk =
 bk
gk

 = Y skπs, (7.3)

where bk and gk represent, respectively, the numerical inertia stack vector and
the numerical gravity vector, as they are retrieved from the libfranka interface at
a given configuration qk, and Y sk = Ys(qk) is the evaluated regressor.

113

When all data are collected, they can be stacked into a vector ς such as:

ς =

ς1

ς2
...
ςN

 =

Y s1

Y s2
...

Y sN

πs = Y sπs. (7.4)

Nevertheless, the regressor Y s is typically rank-deficient: this implies that the
elements of the vector πs are not fully identifiable. Therefore, it is necessary to
drop linear dependent columns of the regressor in order to reach a full (column)
rank condition (i.e., by means of the Gauss-Jordan elimination technique). As a
consequence, some dynamic parameters will be grouped together accordingly, in
the form of dynamic coefficients [21]. Exploiting condition (7.2) on the minimal
number M of samples to retrieve, the ill-conditioning of the matrix is avoided.
Denoting as π̂s,R the vector containing the regrouped parameters (a.k.a. dynamic
coefficients), and as Y s,R the full rank numerical regressor, eq. (7.4) is solved using
a least squares technique as

π̂s,R =
(
Y
>
s,R Y s,R

)−1
Y
>
s,Rς = Y

†
s,Rς, (7.5)

where †, as usual, denotes pseudoinversion.
Once one has the dynamic coefficients estimation π̂s, from eq. (7.1), it is

possible to obtain the estimates ĝ(q) and B̂(q) as:

ς̂(q) =
 ˆ̃b(q)
ĝ(q)

 = Ys,R(q)π̂s,R, (7.6)

where Ys,R(q) is the symbolic regressor pruned of the dependent columns (ac-
cording to the full-rank matrix Y s,R) and B̂(q) is built from the estimated inertia
stack ˆ̃b(q). Finally, the estimation of the Coriolis and centrifugal forces vector
ĉ(q, q̇) is derived from B̂(q) using the Christoffel’s symbols according to [13].
The form of the inverse dynamics formula, providing an estimation of the joint
torques τ̂ needed to accomplish a given trajectory (q,q̇,q̈), is therefore:

τ̂ (q, q̇, q̈) = B̂(q)q̈ + ĉ(q, q̇) + ĝ(q). (7.7)

7.3.1 Friction estimation

If a validation trajectory is executed and the measured torques τ are compared
(after a filtering procedure) with the estimated torques τ̂ generated by eq. (7.7),

114

a difference in the two signals may be observed. This discrepancy is due to esti-
mation errors (e.g., due to the noise affecting the measurements) or to unmodeled
effects, such as joint friction. Typically, the latter effect, assumed to act separately
on each joint, is expressed as an additional torque τf,j, j ∈ {1, . . . , n}:

τf,j(q̇j) = fv,j q̇j + fc,jsign(q̇j) + fo,j, (7.8)

where fv,j and fc,j represent, respectively, viscous and Coulomb friction, while fo,j
is the Coulomb friction offset. Model (7.8), although being simple and effective,
has the main drawback of exhibiting sudden discontinuities in the neighborhood
of q̇j = 0. In order to attenuate this chattering, a sigmoidal friction model can be
used for avoiding discontinuities for low joint velocities. In case the viscous effects
are negligible and a symmetric behavior for positive and negative joint velocities
is observed (as for the Panda robot), τf,j(q̇j) can be expressed as the following
function:

τf,j(q̇j) = ϕ1,j

1 + e−ϕ2,j(q̇j+ϕ3,j)
− ϕ1,j

1 + e−ϕ2,jϕ3,j
, (7.9)

which is characterized by 3 parameters for each joint (ϕ1,j, ϕ2,j, ϕ3,j). In order
to estimate the 3n = 21 friction parameters for the Panda robot, trajectories
spanning all possible joint velocities can be executed for each joint (possibly,
keeping the others at rest). Computing the inverse dynamics for the previous
trajectories according to (7.7), the difference ∆τj = τj − τ̂j (where τj and τ̂j are,
respectively, the measured and the estimated joint torques) can be interpreted as
a measure of the friction effects. Solving a least squares problem, it is possible to
find the parameters that make the curve (7.9) to fit data at best – e.g., by means
of a Nelder-Mead routine.

The presented reverse engineering approach has the main advantage of allowing
an estimation of the dynamic parameters by exploiting only static measures (which
are affected by low noise) without the need of numerical derivations, which can
dramatically affect the results of the identification process. Moreover, having a
separate step for joint friction identification allows to repeat only this step (instead
of the whole identification process) when lubrication changes or when moving to a
new instance of the same robot. Conversely, we must rely on the numerical values
of ςk provided by the manufacturer.

7.4 Retrieval of feasible parameters

In [20], authors presented a framework for retrieving a feasible set of dynamic
parameters from the previously identified dynamic coefficients, by solving a non-
linear global optimization problem.

115

For some purposes, in fact, the estimated dynamic coefficients (linear combi-
nation of dynamic parameters, such as masses, position of the centers of mass and
inertia tensors) are not sufficient, and an estimation of the dynamic parameters
themselves is needed. This occurs, for instance, if the dynamic parameters values
are needed for simulating the robot behavior in a CAD software (like CoppeliaSim
as we will see in the next chapter), or if a Newton-Euler routine is used to compute
the joint torques estimation during the robot motion, with strict time constraints
(in this case, a Lagrangian approach may not fit the hard real-time requirements),
or in case one is interested in computing the wrenches acting on the robot joints.

The approach presented in [20] is able to return a possible and feasible set
of the dynamic parameters: in general, infinite solutions exist (among which the
real one) and the more constraints are given, the closer to the real solution is the
returned one.

Starting from the identified vector of dynamic coefficients π̂R, the following
transformations may be applied to the corresponding symbolic vector πR(p) (par-
allel axis theorem, see [13]):

Jixx → Iixx +mic
2
iy +mic

2
iz ; Jixy → Iixy − cixciymi

Jiyy → Iiyy +mic
2
ix +mic

2
iz ; Jixz → Iixz − cixcizmi

Jizz → Iizz +mic
2
ix +mic

2
iy ; Jiyz → Iiyz − ciycizmi

(7.10)

for each link `i, i = 1 . . . n. We can now rearrange the parameters vector p =[
p>1 p>2 p>3

]>
∈ R10n as:

p1 =
[
m1 . . . mn

]>
∈ Rn,

p2 =
[
c1x c1y c1z . . . cnx cny cnz

]>
∈ R3n,

p3 =
[
I>1 . . . I>n

]>
∈ R6n,

(7.11)

where
I i =

[
Iixx Iixy Iixz Iiyy Iiyz Iizz

]>
. (7.12)

It is possible to provide lower bounds (LB) and upper bounds (UB) to p based
on a priori information. In particular, condition (2.37) is managed by assigning a
lower bound of zero to each link mass. Upper bounds for the masses are assigned
exploiting, for instance, data retrieved from the datasheets of the robot. Moreover,
for each link, one can easily infer that the center of mass is located inside the
smallest parallel box which includes the link geometry, in the most general case.
The lower and upper bounds are then set in order to guarantee a physical meaning
to the obtained solution. In order to retrieve a possible set of dynamic parameter
p̂, we propose to solve the nonlinear optimization problem depicted in Algorithm 1.

116

Algorithm 1: Parameters retrieval
1 p0 ← LB + (UB − LB)u, with u ∼ U(0, 1);
2 ξ1 ← 0;
3 for k = 1, . . . , κ do
4 // Start the optimization from the previous step solution
5 pk,init ← pk−1;
6 // Solve the optimization problem using SA and Nelder-Mead as IP

min
pk

f(pk) = φ(pk) + ξkγ(pk)

= ‖π(pk)− π̂‖2 + ξk
∑
ι g(hι(pk))

s.t. LB ≤ pk ≤ UB

ξk+1 ← 10k (7.13)

7 end

The first two lines of Algorithm 1 are the initialization steps: the starting point
is randomly selected between the lower and the upper bounds using a uniform
distribution. Moreover, ξ1 is set to zero. Lines 3 − 6 of Algorithm 1 consist in
solving the constrained nonlinear optimization problem κ times: at a given step
k = 1 . . . κ, the initial state is the optimal solution found at step k − 1. The
objective function presents also an exterior penalty function, in which ξk is the –
progressively increasing – penalty coefficient: this function provides a penalty in
case one of any additive constraint hι(pk) is violated; function g(·) is chosen to
return a measure of the constraint violation. In particular, two kinds of constraints
have been included:

• for each link `i, the triangle inequality (2.42) must be satisfied;

• the total sum of the link masses must be in a given range, that is:

mrob,min ≤
∑
i

mi ≤ mrob,max. (7.14)

Note that the presented framework is extremely flexible, and further external
constraints can be easily included. The manifold generated by the cost function
f(pk) contains multiple local minima, and therefore a global optimization method,
like genetic algorithms [98] or simulated annealing (SA) [99] is mandatory to
address the problem (7.13). In the present case, we have used SA, applying a
more sophisticated interior-point (IP) Nelder-Mead local optimization algorithm

117

at the end of each SA iteration k. Moreover, Q runs have been launched having
a different random initial point p0, in order to span as much as possible the cost
function manifold.

The improvement of the parameters retrieval framework (with respect to the
one presented in [20]) has been proved necessary since the introduction of some
constraints (e.g. instance the triangle inequality of the inertia tensors) eventually
led the algorithm to get stuck in local minima. This was caused by recurring
abrupt changes in the cost function given by the constant penalty function adopted
before. Therefore, a violation-dependent penalty [100] has been implemented for
the present algorithm, solving this problem. Moreover, the sequence of successive
runs of the algorithm could in practice help in improving the solution.

The term φ(pk) of the parameters retrieval algorithm in eq. (7.13) requires to
be computed a previous identification step returning the coefficients estimation π̂.
Another possible φ(pk) function, yielding to a single-step procedure, is described
in Appendix A.

7.5 Results

In this section, results from the dynamic coefficients and joint friction estimations
for the Panda robot are reported, in addition to results from the parameters
retrieval procedure.

In order to obtain a numerical estimation of the dynamic coefficients πs,R (see
eq. (7.5)), the numerical values of the inertia matrix and the gravity vector are
retrieved from a set of M = 1010 static positions, spanning the whole joint space,
according to the robot documentation1. The symbolic vector ς(q) (see eq. (7.1))
has been computed according to [21], using the modified Denavit-Hartenberg con-
vention.

Since our robot is mounted on a table parallel to the ground, the first element
of the gravity vector (relative to joint 1) is not informative, and therefore it is
discarded.

Stacking all the numerical quantities of the data acquisition phase and af-
ter evaluating the corresponding regressor (see eq. (7.4)), we obtained that
rank(Y s) = 43: using the Matlab function rref, which implements Gauss-Jordan
elimination technique, we finally obtained the dynamic coefficients estimations

1The joint position bounds of the Franka Emika Panda robot can be found at: https:
//frankaemika.github.io/docs/control_parameters.html

https://frankaemika.github.io/docs/control_parameters.html
https://frankaemika.github.io/docs/control_parameters.html

118

π̂s,R according to eq. (7.5), from a regressor Y s,R whose condition number is
49. Moreover, the relative error percentage of predictions (defined in eq. (84)
of [91]) for the identification set is 0.031%. Computing their standard deviations
(see [87, 91]), we found that two coefficients exhibit a standard deviation greater
than 30%, and therefore they were discarded (since their estimations are not re-
liable). All the estimated dynamic coefficients are reported with their standard
deviations in the Appendix A, together with a comparison with the corresponding
coefficients obtained from the classical identification procedure (see eq. (2.34)).

From the identified dynamic coefficients π̂s,R, we were able to reconstruct the
inertia matrix B̂(q), the gravity vector ĝ(q) and the Coriolis and centrifugal force
vector ĉ(q, q̇) following a Lagrangian approach (see Sec. 7.3).

After deriving the inverse dynamic model (7.7), we validate it by comparing
the measured joint torques with the estimated ones during several motions. In
particular, the robot was commanded in velocity-mode by means of sinusoidal
trajectories in the joint space. In other words, each joint is commanded according
to the following equation:

q̇i,des(t) = Ai sin
(2 π
Ti
t
)
, i ∈ [1, . . . , n] (7.15)

where Ai is the amplitude of the velocity profile and Ti is the period of the sinu-
soidal signal for the i-th joint. The numerical values for Ai and Ti, i ∈ [1, . . . , n]
for a typical experiment are reported in Table 7.1, where 5458 samples were col-
lected. The joint torque signals were recorded (and filtered through a 4-th or-
der zero-phase digital Butterworth filter with a cutoff frequency of 1 Hz) during
this motion, and compared with our Lagrangian inverse dynamics estimations
τ̂ (q, q̇, q̈) (from eq. (7.7)), feeding that model with the measured joint positions
and velocities, and with the joint accelerations obtained by numerical differenti-
ation of the filtered velocities. The joint torque comparison is reported in Fig-
ure 7.2: the torque estimations are almost perfectly superimposing the measured
ones for joints 1 . . . 4, while the last joints show some discrepancies. One can
notice, though, that the difference between the two signals strongly depends on
joint velocities (it is more evident, e.g., for joint 7): this behavior is typical of
joint friction.

Therefore, we performed the estimation of the joint friction according to the
procedure reported in Section 7.3.1: we collected more than 10k samples of joint
velocities and torques during sinusoidal motions in (7.15); eventually, we found
that the friction model that best fits the data was given by a sigmoidal function
(7.9), which is characterized by 3 parameters per joint. These were estimated
by solving a nonlinear least squares problem by means of a Nelder–Mead routine

119

Figure 7.2 – Comparison between the torques of the derived E-L dynamic model. The red
lines represent the measured joint torques during the validation experiment reported in Tab 7.1,
while the green lines are the torque estimations τ̂ computed according to eq. (7.7)). The blue
lines represent the joint torque estimates comprehensive of the joint friction term (7.9). The
dashed and the dotted lines are the errors between the torque sensors readings and, respectively,
the torques estimates without and with the friction component.

(Matlab function fminsearch), using as fitting data the differences ∆τi between
the measured joint torques and the estimated torques τ̂i for each joint i separately.
The results of the fitting procedures are reported in Fig. 7.3, while Table 7.2 pro-
vides the numerical values of the parameters obtained with the fitting procedure
described in Section 7.3.1. These parameters refer to the equations (7.9) which
models the friction acting at the robot joints.

Table 7.1 – Amplitudes Ai and periods Ti, i ∈ [1, . . . , n] of the sinusoidal trajectories in
eq. (7.15) used for validating the friction acting on the robot joints.

1 2 3 4 5 6 7 units
Ai 2.21 -2.21 1.2 -2.1 -2.3 2.1 -2.5 rad/s

Ti 3.68 2.04 2.98 1.75 4.43 2.749 1.06 s

120

Table 7.2 – Estimated joint friction parameters.
Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 units

ϕ1 5.4615e-01 0.87224 6.4068e-01 1.2794e+00 8.3904e-01 3.0301e-01 5.6489e-01 N·m

ϕ2 5.1181e+00 9.0657e+00 1.0136e+01 5.5903e+00 8.3469e+00 1.7133e+01 1.0336e+01 s/rad

ϕ3 3.9533e-02 2.5882e-02 -4.6070e-02 3.6194e-02 2.6226e-02 -2.1047e-02 3.5526e-03 rad/s

Finally, adding the newly estimated joint friction components τ̂f (q̇) =[
τ̂f,1(q̇1) τ̂f,2(q̇2) . . . τ̂f,7(q̇7)

]>
to the previous estimations τ̂ , we obtained

a satisfactory compensation, as shown with the blue solid lines of Fig. 7.2.
Despite the estimated inverse dynamic model in Lagrangian form described

so far, is very cumbersome and computationally intensive for a 7 DoF robot, we
manage to release a C++ library, with some naive code optimizations, that reliably
works under hard real-time constraints 2 (the mean execution time of the model
is ∼ 0.05 ms on a Dell Latitude 7490 - Intel CORE i7-8650U - 32Gb RAM). For
performance purposes, a Newton-Euler (N-E) approach is often more appropriate
and effective to quickly return joint torque estimates, due to its recursive form.
Nevertheless, a N-E routine requires the dynamic parameters (masses, inertia
tensors and centers of mass of each link) of the robot. Exploiting the parameters
retrieval algorithm (7.13), though, we are able to extract a feasible set of dynamic
parameters, which provides the same dynamics (although there is no guarantee
that the estimated robot parameters set is coincident with the real one).

In order to implement Algorithm 1, the (bounded) simulated annealing Matlab
function simulannealbnd has been used, together with the IP hybrid function
fmincon; the problem parameters were Q = 100 (total number of independent
runs, providing Q solutions – possibly coincident, since there might exist multiple
minima) and κ = 10 (number of successive runs). The penalty functions g(hι(pk))
are chosen as the distance functions of the external constraints, that is:

g1,i = −min {0, tr(I`i)/2− λmax(I`i)} , i ∈ [1, . . . 7]

g2 = −min
{

0,mrob,max −
7∑
i=1

mi,
7∑
i=1

mi −mrob,min

}
(7.16)

where g1,i regards the triangle inequality on each inertia tensor (eq. 2.42), while g2

regards the constraint on the total mass of the robot (we chose mrob,min = 16 kg
and mrob,max = 20 kg).

2The Lagrangian C++ library can be found in the following repository https://github.
com/marcocognetti/FrankaEmikaPandaDynModel/tree/master/cpp.

https://github.com/marcocognetti/FrankaEmikaPandaDynModel/tree/master/cpp
https://github.com/marcocognetti/FrankaEmikaPandaDynModel/tree/master/cpp

121

-2 -1 0 1 2

-0.5

0

0.5
1
 [

N
m

]

-2 -1 0 1 2
-1

0

1

2
 [

N
m

]

-2 -1 0 1 2

-0.5

0

0.5

3
 [

N
m

]

-2 -1 0 1 2

-1

0

1

4
 [

N
m

]
-2 -1 0 1 2

-0.5

0

0.5

5
 [

N
m

]

-2 -1 0 1 2

dq/dt [rad/s]

-0.2

0

0.2

6
 [

N
m

]

-2 -1 0 1 2

dq/dt [rad/s]

-0.5

0

0.5

7
 [

N
m

]

Figure 7.3 – Joint friction estimates. The red dots are the differences ∆τj = τj − τ̂j for each
joint j, while the blue lines are the sigmoidal fitting functions. The effect of friction is clear for
joints 4 . . . 7, while its contribution to the total joint torque is slight for the other joints.

A feasible set of dynamic parameters p̂ has been then retrieved and its numer-
ical values are reported in Tabs. 7.4 and 7.5.

In order to validate this set, we inserted the retrieved dynamic parameters
in a N-E routine in order to compute the joint torques τ̂ne necessary to perform
a given validation trajectory in the joint space. In particular, we commanded a
sequence of sinusoidal trajectories (with different amplitudes and periods) to the
joints according to eq. (7.15). We then compared the measured joint torques τ
with the estimations τ̂ne+ τ̂f : the result of this comparison is reported in Fig. 7.4,
showing good results.

7.5.1 Validation on a physics simulator

In order to validate the set of identified parameters reported in Tables 7.4 and 7.5,
we built a robot model in CoppeliaSim [75], as shown in Figure 7.5, from which
we subsequently derived the simulator presented in Chapter 8 . We adjusted the
parameters for each link, in order to be compatible with the CoppeliaSim interface
(e.g., for each link, the inertia tensor in CoppeliaSim has to be expressed w.r.t.

122

0 5 10 15
-20

0

20

1
 [
N

m
]

0 5 10 15
-50

0

50

2
 [
N

m
]

0 5 10 15

-20

0

20

3
 [
N

m
]

0 5 10 15
-20

0

20

4
 [
N

m
]

0 5 10 15

-2

0

2

5
 [
N

m
]

0 5 10 15

time [s]

-2

0

2

6
 [
N

m
]

0 5 10 15

time [s]

-0.5

0

0.5

7
 [
N

m
]

measured

estimated with N-E

Figure 7.4 – Comparison between the torques τ̂ne (including friction τ̂f) from the N-E dynamic
model and the ones retrieved from the the joint torque sensors. The overlapping of two signals
shows the quality of the obtained parameters estimation p̂.

the given CoM reference frame).
The validation process follows the idea that if the identification of the robot

dynamic parameters is satisfactory, the measured torques on the real robot, apart
from friction which is not simulated in CoppeliaSim, should match the ones pro-
vided by the physics engines of the simulator when performing the same trajectory.

In particular, CoppeliaSim provides four different free licence physics engines.
A performance comparison of these engines is reported in Figs. 7.6 and 7.7. Both
the real and the simulated robot are commanded through sinusoidal joint velocity
inputs (spanning their maximum available range). Figure 7.6 shows, for each
joint, a filtered version of the measured torques of the real robot (solid blue lines)
vs. those provided by the different physics engines (light blue: Bullet 2.78, orange:
Bullet 2.83, yellow: ODE, and purple: Newton). As it can be seen, the simulated
torques for all engines have a good overlap with the measured ones. Figure 7.7
shows the mean and the standard deviation of the torque errors for each joint.

123

Figure 7.5 – The Franka Emika Panda robot in CoppeliaSim. The released model is available
by default since the version V4.0.0.

This error is defined as the difference between the measured torque on the real
robot and the one generated from the simulation. We can notice that the mean
torque errors are close to zero while the peaks of the standard deviations are
due to measurement noise on the real robot torque readings. In our experiments,
all engines showed a good numerical performance, as confirmed by the values in
Table 7.3, and looking at the results in joint space, ODE (although it is the most
noisy among the engines) and Bullet 2.83 seem to be the best performing engines
in CoppeliaSim.

Table 7.3 – Mean values of the torque errors at the robot joints for each physics engine available
in CoppeliaSim.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 units
Bullet 2.78 0.0554 1.7616 -0.7363 -0.0111 0.0735 0.0970 -0.0372 N·m

Bullet 2.83 0.0508 0.5735 -0.2617 -0.0844 0.0698 0.0628 -0.0386 N·m

ODE 0.0474 0.1782 -0.0986 -0.1493 0.0795 0.0397 -0.0386 N·m

Newton 0.1091 -0.8096 -0.1440 -1.4133 0.0989 0.0027 -0.0255 N·m

To confirm the quality of the proposed solution, we analyzed the performance
also in Cartesian space. To this aim, we compared the 3D pose (as obtained from
CoppeliaSim) of the end-effector of the simulated robot with the corresponding
pose obtained by reading the joint positions from the real robot and passing them
to the direct kinematics module. We defined then a position and an orientation
error (following the Roll-Pitch-Yaw convention), whose mean values are reported

124

Figure 7.6 – Comparison between the torques generated by the real robot during an experiment
(blue) and those obtained from the simulated Panda robot in CoppeliaSim using different physics
engines (Bullet 2.78, Bullet 2.83, ODE, Newton).

 1 2 3 4 5 6 7

-8

-6

-4

-2

0

2

4

6

8

10

T
o
rq

u
e
 e

rr
o
rs

 [
N

m
]

bullet2.78

bullet2.83

ODE

Newton

Errors between Real and V-REP Joint Torque

Figure 7.7 – Torque errors (w.r.t. the real robot) of the physics engines Bullet 2.78, Bullet
2.83, ODE, and Newton in CoppeliaSim during an experiment with the Panda robot for each of
its 7 joints. The boxes indicate mean values of the errors while the bars denote their standard
deviations.

in Fig, 7.8 for all physics engines available in CoppeliaSim. This comparison
is shown also in the video accompanying [8] (https://ieeexplore.ieee.org/
document/8772145/media#media).

The results support once again the quality of the estimated dynamic param-
eters, since the mean position error is below 1.5 cm and the mean orientation
error is below 3 degrees for all the engines. Particularly good results are obtained
with the ODE engine, with mean errors of less than 5 mm in position and below
1.2 deg in orientation. Moreover, the maximum errors for the worst performing

https://ieeexplore.ieee.org/document/8772145/media#media
https://ieeexplore.ieee.org/document/8772145/media#media

125

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

M
e
a
n
 L

-2
 n

o
rm

 o
f
p
o
s
it
io

n
 e

rr
o
r

[m
]

bullet2.78

bullet2.83

ODE

Newton

0

0.5

1

1.5

2

2.5

3

M
e
a
n
 L

-2
 n

o
rm

 o
n
 o

ri
e
n
ta

ti
o
n
 e

rr
o
r

[d
e
g
]

bullet2.78

bullet2.83

ODE

Newton

Figure 7.8 – The position (left) and orientation (right) mean error for the different physics
engines available in CoppeliaSim. While all the physics engines show a good performance, ODE
seems to outperform the others.

physics engine (Bullet 2.78) are 9.13 cm in position and 3.14 deg in orientation.
Notice that the velocity command in CoppeliaSim was given in open-loop. Fur-
thermore, the simulation step was set to 20 ms in order to run faster simulations
albeit leading to greater integration errors in the physics engines solver. Better
performance can be achieved with a smaller simulation step as we will see in the
results of the next chapter.

7.6 Summary

In this chapter we addressed the problem of extracting a feasible set of param-
eters that characterizes the dynamics of the robot. We identified the dynamic
coefficients through a standard least squares algorithm by means of a reverse en-
gineering approach. Thanks to an improved version of the algorithm proposed
in [20], we retrieved a set of feasible parameters by solving a nonlinear opti-
mization problem, taking into account several constraints including the physical
bounds on the dynamic parameters (such as the total mass of the robot) and
the triangle inequalities of the link inertia tensors. The proposed framework, was
validated by deriving the Lagrangian model of the Franka Emika Panda robot
and testing it through experiments. We also validated the extracted feasible set
of dynamic parameters using a Newton-Euler routine 3. To the best of the au-
thors’ knowledge, this was the first work that retrieves the dynamic coefficients
and a feasible parameter set for the Panda robot. A major feature of the proposed
framework is that it can be easily modified to include further (possibly) nonlinear

3The dynamic identification procedure presented in this chapter has been performed accord-
ingly to a reverse engineering approach. In the Appendix A, however, the reader can find also
the results of the classical identification approach.

126

constraints (e.g., based on a priori information on the robot). We have released
both the dynamic model and the parameters retrieval framework as open-source
code, so that they are available to the robotics community at the following website:
https://github.com/marcocognetti/FrankaEmikaPandaDynModel.

The results presented in this chapter are issued in the paper:

• C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano, and A. De Luca,
“Dynamic identification of the Franka Emika Panda robot with retrieval of
feasible parameters using penalty-based optimization,” IEEE Robotics and
Automation Letters, 2019

The supplementary material and accompanying video is reachable at https:
//ieeexplore.ieee.org/document/8772145/media#media.

https://github.com/marcocognetti/FrankaEmikaPandaDynModel
https://ieeexplore.ieee.org/document/8772145/media#media
https://ieeexplore.ieee.org/document/8772145/media#media

127

Table 7.4 – Lower and upper bounds for masses
and centers of mass of the Panda robot and their
corresponding estimated values.

parameter LB UB p̂ units
m1 0 10 4.970684 kg

m2 0 10 0.646926 kg

m3 0 10 3.228604 kg

m4 0 10 3.587895 kg

m5 0 10 1.225946 kg

m6 0 10 1.666555 kg

m7 0 10 7.35522e-01 kg

c1x -0.05 0.05 3.875e-03 m

c1y -0.05 0.05 2.081e-03 m

c1z -0.4 0.05 * m

c2x -0.05 0.05 -3.141e-03 m

c2y -0.15 0.05 -2.872e-02 m

c2z -0.05 0.05 3.495e-03 m

c3x -0.05 0.15 2.7518e-02 m

c3y -0.05 0.05 3.9252e-02 m

c3z -0.1 0.05 -6.6502e-02 m

c4x -0.15 0.05 -5.317e-02 m

c4y -0.05 0.15 1.04419e-01 m

c4z -0.05 0.05 2.7454e-02 m

c5x -0.05 0.05 -1.1953e-02 m

c5y -0.05 0.05 4.1065e-02 m

c5z -0.05 0.05 -3.8437e-02 m

c6x -0.05 0.15 6.0149e-02 m

c6y -0.05 0.05 -1.4117e-02 m

c6z -0.05 0.05 -1.0517e-02 m

c7x -0.05 0.05 1.0517e-02 m

c7y -0.05 0.05 -4.252e-03 m

c7z 0.04 0.15 6.1597e-02 m

Table 7.5 – Lower and upper bounds for the
inertia tensor elements of the Panda robot and
their corresponding estimated values.

parameter LB UB p̂ units
I1xx 0 1 7.0337e-01 kg·m2

I1xy -1 1 -1.3900e-04 kg·m2

I1xz -1 1 6.7720e-03 kg·m2

I1yy 0 1 7.0661e-01 kg·m2

I1yz -1 1 1.9169e-02 kg·m2

I1zz 0 1 9.1170e-03 kg·m2

I2xx 0 1 7.9620e-03 kg·m2

I2xy -1 1 -3.9250e-03 kg·m2

I2xz -1 1 1.0254e-02 kg·m2

I2yy 0 1 2.8110e-02 kg·m2

I2yz -1 1 7.0400e-04 kg·m2

I2zz 0 1 2.5995e-02 kg·m2

I3xx 0 1 3.7242e-02 kg·m2

I3xy -1 1 -4.7610e-03 kg·m2

I3xz -1 1 -1.1396e-02 kg·m2

I3yy 0 1 3.6155e-02 kg·m2

I3yz -1 1 -1.2805e-02 kg·m2

I3zz 0 1 1.0830e-02 kg·m2

I4xx 0 1 2.5853e-02 kg·m2

I4xy -1 1 7.7960e-03 kg·m2

I4xz -1 1 -1.3320e-03 kg·m2

I4yy 0 1 1.9552e-02 kg·m2

I4yz -1 1 8.6410e-03 kg·m2

I4zz 0 1 2.8323e-02 kg·m2

I5xx 0 1 3.5549e-02 kg·m2

I5xy -1 1 -2.1170e-03 kg·m2

I5xz -1 1 -4.0370e-03 kg·m2

I5yy 0 1 2.9474e-02 kg·m2

I5yz -1 1 2.2900e-04 kg·m2

I5zz 0 1 8.6270e-03 kg·m2

I6xx 0 1 1.9640e-03 kg·m2

I6xy -1 1 1.0900e-04 kg·m2

I6xz -1 1 -1.1580e-03 kg·m2

I6yy 0 1 4.3540e-03 kg·m2

I6yz -1 1 3.4100e-04 kg·m2

I6zz 0 1 5.4330e-03 kg·m2

I7xx 0 1 1.2516e-02 kg·m2

I7xy -1 1 -4.2800e-04 kg·m2

I7xz -1 1 -1.1960e-03 kg·m2

I7yy 0 1 1.0027e-02 kg·m2

I7yz -1 1 -7.4100e-04 kg·m2

I7zz 0 1 4.8150e-03 kg·m2

128

129

Chapter

8 FrankaSim

Contents
8.1 Introduction . 130

8.2 Related Works . 130

8.3 The simulator: FrankaSim 132

8.3.1 Kinematics . 132

8.3.2 Dynamics . 133

8.3.3 ViSP . 135

8.3.4 Visp_ros . 136

8.3.5 CoppeliaSim . 136

8.3.6 Software Architecture 137

8.4 Experiments . 138

8.4.1 Single-Arm Experiment: Real vs Simulated 138

8.4.2 The Dual-Arm Experiment 140

8.5 Summary . 141

130

8.1 Introduction

Software simulators are valuable proof-of-concept tools for validating methods,
theories and ideas in a simple and cost-effective way. They are useful for testing
and validating ideas and algorithms that would otherwise be hard to implement
due to limited resources or restrictions [101]. For instance, recently robot simula-
tors are being exploited for generating large amounts of training data for training
neural networks allowing to reach training levels that would be impossible with
data collected on real hardware [102,103].

Any robotic simulator must be able to simulate different kinds of robots, ac-
tuators and sensors with enough accuracy for closing the reality gap. The most
common robotic system that is featured by virtually any robotic simulator is a
manipulator arm for tasks involving motion control, pick-and-place, interaction
with the environment, and so forth. A correct dynamic modeling of a manipulator
is of paramount importance in relation to problems of motion simulation, analy-
sis of manipulation structures and control algorithms. Simulating the motion of
a manipulator allows indeed to safely test control strategies and trajectory plan-
ning techniques in a low-risk environment without the need to refer to a physically
available platform. Modern robotics simulators are flexible and dynamic and can
handle complex physics simulations as well as disparate sensors that a user may
need to evaluate. In this respect, the goal of this work is to propose a high-fidelity
and openly available simulator for a popular manipulator arm, the Panda robot
manufactured by Franka Emika, with in addition, as case study, the integration
and exploitation of the simulator for achieving visual-servoing tasks [44]. Indeed,
visual-servoing is a very popular set of techniques for controlling the motion of a
robot from visual input provided by one or more cameras, and in this chapter we
show how an accurate dynamical simulation of the Panda robot can be exploited
to perform realistic and non-trivial visual servoing schemes.

The robot considered in this work is, as the name of the simulator suggest, the
Panda robot by Franka Emika. For more details on the robot refer to Section 7.2.

8.2 Related Works

The manufacturer has not released, to the best of our knowledge, the official
dynamic parameters of the Panda robot and before the recent identification results
reported in [8], no parameters were publicly available. To overcome this drawback,
a first attempt to obtain an estimation of the dynamic parameters of the Panda
was made in [104] by taking the original URDF description files and the robot

131

meshes from the official repository and adding the missing gazebo-specific tags
and inertial parameters (mass, center of mass and inertia tensor) recovered from
a CAD-based software. Once the identified dynamic parameters became available,
some researchers started building their own simulators from the same repository
and tweaking the URDFs [105, 106] to achieve more realistic simulations both
in Gazebo and MuJoCo [107] respectively. In [108], the authors built a Panda
simulation platform using Simscape Multibody MATLAB Toolbox based on the
kinematic, dynamic and friction models identified in [8]. Simscape is neither open
nor free, and the developed code for the simulation cannot be transferred to real
implementations.

As reported in the surveyed literature in [101], the most important criterias for
choosing a simulator are: small reality gap (32%), to be open-source (24%),
light & fast (11%), simulation-to-real code transfer (9%), customization
(6%), others (5%), no inter-penetration between bodies (3%). Despite
Gazebo is the most used simulator in research, CoppeliaSim (formerly V-REP) [75]
scores the best in the previous criteria [101] while [109] pointed out that it offers a
number of useful features, such as multiple physics engines (Bullet, ODE, Vortex
and Newton), a comprehensive model library, the ability of a user to interact
with the world during simulation and, most importantly, mesh manipulation and
optimisation. Moreover, it automatically spawns new threads on multiple CPU
cores and therefore utilises the full amount of CPU power when necessary. It is
therefore suitable for high-precision modelling although it is the most demanding
in terms of resources among the compared simulators. In the reality gap analysis
conducted in [110] on a grasping task, CoppeliaSim with Newton and Vortex
performed 1st and 3rd respectively

Most of the reviewed works are based on Gazebo, which has some limitations
compared to CoppeliaSim which, despite its higher demand on resources, is more
accurate and faithful to reality. To the best of our knowledge, the simulator
proposed in this work is the only dynamic simulator supporting CoppeliaSim.
Besides offering the characteristics of the other Panda simulators in terms of kine-
matics, dynamic model parameters and ROS integration, this simulator further
offers full integration within the ViSP library [10], enabling it with visual-servoing
capabilities. There exist some other libraries allowing for rapid prototyping of
visual-servoing applications [111, 112], but probably ViSP is the most complete
open-source visual-servoing library.

The proposed simulator features a Lagrangian Dynamic model library that can
provide the Coriolis matrix of the manipulator and the estimated joint dynamic
friction, unlike dynamic models based on standard Newton-Euler algorithms. Fi-

132

nally, being the code of the simulator implemented as a replica of the ViSP class
that wraps the libfranka, it greatly facilitates the possibility of transfer verified
code to the real robot. This simulator lends itself well to simulate Dynamic Visual-
Servoing [46] or Vision-Force control schemes [6, 55, 57], relieving the user from
the burden of implementing his/her own simulation platform.

8.3 The simulator: FrankaSim

The simulator proposed in this work, is a co-simulator that includes several con-
veniently integrated components allowing for rapid prototyping and testing of
manipulator controllers. It is mainly based on ViSP code that provides a bulk
of utilities such as native support to linear algebra and transformation matrices,
among others, greatly simplifying both the simulator implementation itself as well
as the deployment of user defined controllers. ViSP further extends the simulator
control skills by enabling it with visual servoing control capabilities. A physical
simulation is performed in CoppeliaSim, in which one (or more) instance(s) of a
Panda robot can be used, with its identified dynamic model parameters [8]. The
communication between CoppeliaSim and the C++ instance of a simulated robot
takes place through ROS. All the software presented in this work, the CoppeliaSim
scenes and models as well as different experiments, for both the simulated and real
robot, are available on https://github.com/lagadic/visp_ros while step-by-
step tutorials can be found in the ROS wiki https://wiki.ros.org/visp_ros.

A high-level view of the architecture and operation of the simulator software
will be provided below, after having detailed the various components.

8.3.1 Kinematics

As we have shown in Chapter 2, a manipulator can be mechanically described
as a kinematic chain consisting of rigid bodies (links) connected by means of
revolute or prismatic joints, which constitute the DoF of the structure. One end
of the chain is bounded to the floor while at the other extreme a tool is usually
attached (see Fig. 8.1). The kinematic description of the Panda according to its
Denavit-Hartenberg parameters was shown in Section 2.2.

In this subsection, under the term kinematics we encompass either direct,
inverse and differential kinematics (see Chapter 2 for further details).

In FrankaSim, we delegate the issue of dealing with kinematics to the well-
known kinematics and dynamics library OROCOS_KDL [113]. The Orocos
project aims at providing kinematic and dynamic code usable in real time; it

https://github.com/lagadic/visp_ros
https://wiki.ros.org/visp_ros

133

Figure 8.1 – An instance of the Panda model in CoppeliaSim with its gripper and a wrist
mounted camera. The floor Σf , flange Σfl, end-effector Σe and camera Σc frames are depicted
as well as some transformation matrices between them.

contains code for rigid body kinematic representation and calculations for struc-
tures and their direct and inverse kinematic solvers.

8.3.2 Dynamics

The dynamic model of a manipulator provides a description of the relationship
between the actuation torques at the joints and the motion of the structure. The
Lagrange formulation of the equation of motion has been presented in Section 2.3.

In the previous chapter, an accurate dynamic model of the robot has been
identified and a set of feasible dynamic parameters retrieved. These parameters
have been adopted in the MATLAB Robotics toolbox1 [114] alongside many hand-
made URDFs of other simulators [105,106] and, more recently, were also included
in the official URDF model provided by the manufacturer2, making our identified
model, de facto, the standard model.

From the dynamic parameters identified in [8], the authors released both

1https://github.com/petercorke/robotics-toolbox-matlab/blob/master/models/
mdl_panda.m

2https://github.com/frankaemika/franka_ros/blob/develop/franka_description/
robots/panda_gazebo.xacro

https://github.com/petercorke/robotics-toolbox-matlab/blob/master/models/mdl_panda.m
https://github.com/petercorke/robotics-toolbox-matlab/blob/master/models/mdl_panda.m
https://github.com/frankaemika/franka_ros/blob/develop/franka_description/robots/panda_gazebo.xacro
https://github.com/frankaemika/franka_ros/blob/develop/franka_description/robots/panda_gazebo.xacro

134

a MATLAB and C++ libraries as open-source software3 under GPLv3 license
and a CoppeliaSim model of the Panda (arm only, see Figure 8.1). These li-
braries provide an estimate of the dynamic terms of the Lagrangian model (2.27)
(B̂(q), Ĉ(q, q̇), ĝ(q), τ̂f (q̇)) computed from the symbolic expressions of the equa-
tion of motion and identified parameters. The main limitation of this library is
that the model was identified until the flange of the Panda arm, making it useless
if one wants to attach a payload on it, e.g. the Panda Hand gripper, for which
we have also provided a model for CoppeliaSim within the simulator package (see
Fig 8.2).

In the work presented in this chapter, we have further extended this library,
parameterizing it with respect to both the payload parameters, as reported in [83],
and the gravitational acceleration vector. This way the library can provide the
same features offered by Newton-Euler (N-E) algorithms, i.e. adding payloads
to the chain or mounting the robot in a position different from vertical, while
providing the full Coriolis matrix and the viscous friction terms. This constitutes
an advantage w.r.t. standard N-E algorithms since they are not able to provide
neither the Coriolis matrix Ĉ(q, q̇) -or any of its columns- nor the mixed velocity
term Ĉ(q, q̇)q̇r, with q̇r a reference velocity different from the one used to compute
Ĉ(q, q̇) [115], but only the resulting vector ĉ(q, q̇) = Ĉ(q, q̇)q̇. These matrices
are needed, for instance, to evaluate the residual vector for collision detection and
safe reaction applications [116] or to implement passivity-based trajectory track-
ing control laws [117]. Although [115] has proposed a modified N-E algorithm to
overcome the aforementioned limitation of the standard N-E method, it is not im-
plemented in OROCOS_KDL nor it is provided by the libfranka. This motivates
the use of our library both to avoid implementing this method in OROCOS_KDL
from scratch and because this library can be easily integrated within the real robot
controller code without having the dependency of the KDL library.

To add a tool to the real robot, one has to pass through the Panda’s Desk web
interface to specify both the new pose of the end-effector in flange frame (Σfl) and
the dynamic parameters. Figure 8.2 reports those values for the real gripper. Due
to possible simulation malfunctioning with some physics engines, such as Bullet
and ODE mainly, when the difference between connected masses/inertias is too
large it is convenient to split the total mass of the gripper among the fingers and
the body uniformly, in order to avoid “strange” behaviours. By doing so, the total
mass will stay the same but the inertia tensor and the location of the center of

3https://github.com/marcocognetti/FrankaEmikaPandaDynModel

https://github.com/marcocognetti/FrankaEmikaPandaDynModel

135

Figure 8.2 – CoppeliaSim model of the Franka Hand gripper. End-effector position flre =
[0; 0; de]> [m] and orientation flRe=Rz(θe) and CoM position flrCoM =[−0.01; 0; 0.03]> [m] in
flange frame. Mass mL = 0.73 [kg] and inertia tensor IL = diag(0.001; 0.0025; 0.0017) [kg.m2].
θe=−45◦, de=0.1034[m].

mass of the overall gripper will differ from the real one. This is not an issue since,
as we will see in Section 8.3.5, we automatically gather this information from the
simulator and send it to the robot through ROS.

8.3.3 ViSP

ViSP4 or Visual Servoing Platform, is a modular C++ library developed and main-
tained by the Rainbow team (former Lagadic) at Inria/IRISA Rennes, France,
that allows for fast development of visual servoing applications. This library was
designed to be hardware independent, simple, portable and easily extendable.
Furthermore, it features a large class of elementary tasks with various visual fea-
tures ranging from image points, to image lines and moments, 3D pose estimation
and so forth, as well as providing native support for linear algebra operations,
visual trackers, plotters, and of course, visual-servoing controllers.

There is already a class in ViSP that wraps the libfranka robot API named
vpRobotFranka. This is a multi-thread implementation that runs the robot con-
trol routine in a separated thread at the control rate (1 kHz) allowing the main
program to continue its own execution; this means that from the same main(),
one can read and process information coming from other sensors, like cameras and
force/torque sensors, even at slower sampling rates. This implementation allows
to simultaneously control more than one robot at a time.

4https://visp.inria.fr

https://visp.inria.fr

136

8.3.4 Visp_ros

Visp_ros is a basket of generic ROS nodes that are based on the ViSP library and
exposes it to the ROS ecosystem. It contains a C++ library of classes that allows
using ROS with transparency and could be used like usual ViSP classes without
the need to write ROS specific code. The nodes developed in Visp_ros exploit all
the potential offered by both ViSP and ROS.

FrankaSim is developed as part of Visp_ros. The simulator vpRobotFrankaSim
class replicates the class vpRobotFranka present in ViSP for the real robot, provid-
ing the same methods, and extending it with few others to keep the same interface
and behavior on both the simulator and with the real robot. The ROS-specific
code is implemented in the vpROSRobotFrankaCoppeliasim class which inherits
from class vpRobotFrankaSim. It also contains CoppeliaSim-specific callbacks -
passing through ROS- to manage e.g. the synchronization between CoppeliaSim
and the C++ simulation code, the setting of the control mode. This is also a
multi-threaded implementation featuring, other than the main() process in which
the robot instance is declared, a “reading” thread, listening at the topic contain-
ing the robot state (q, q̇, τ), and a “writing” one, that continuously publishes the
joint velocity q̇cmd or torque τcmd commands depending on the selected control
mode. Specific methods to get the simulation time from CoppeliaSim, for adding
a tool, e.g. the Panda Hand, as well as internal flags to select a synchronous or
asynchronous simulation further extend the set of methods of the vpROSRobot-
FrankaCoppeliasim class. Preserving the same interface for the simulator classes
compared to the one that controls the real robot allows code reusability.

8.3.5 CoppeliaSim

CoppeliaSim is a versatile and scalable simulation framework offering a multi-
tude of different programming techniques for the controllers, and allows to embed
control functionalities in simulation models easing the programmers effort and re-
ducing the deployment complexity. It integrates four free physics engines (Bullet
2.78 & 2.83, ODE, Newton) and a more precise closed source engine (Vortex),
for which it is possible to obtain a free non-commercial license. It also provides
a large variety of ready to use sensors and support scripting via Lua. Using a
Lua script attached to the robot, we have automated some procedures such as
finding the dynamic and kinematic parameters of the load (gripper), retrieving
the absolute gravity vector in base frame or the choice of the control mode.

Thanks to the RosInterfaceHelper Lua script, it is possible to automatically
start/stop the CoppeliaSim scene simulation as well as to synchronize each simu-

137

lation step between the C++ code and the physical simulation. In order to make
the synchronization more transparent to the user, the triggers were embedded in
the vpROSRobotFrankaCoppeliasim class, and a flag has to be selected to enable
it.

Within the simulator we deployed the scenes of the experiments, the model of
the Panda Hand gripper (see Figure 8.2) and some AprilTags.

8.3.6 Software Architecture

Figure 8.3 – Block diagram of the main components of the FrankaSim architecture. An UML-
like diagram highlights the principal class relationships while a wide range of visualization and
debugging possibilities at ViSP (green), ROS (blue) and CoppeliaSim (red) levels is depicted.

A block diagram of the co-simulation environment with some of the C++
classes and dependencies in a UML-like diagram is shown in Figure 8.3. The
diagram is complemented with some data visualization utilities provided by the
various software components that help the user in analyzing the system perfor-
mance and/or debugging.

A simulation is built as a ROS node that benefits from both FrankaSim and
ViSP capabilities to implement one or multiple Panda robots controllers. The
scene rendering and the physics engine are supported by CoppeliaSim. Commu-
nication between FrankaSim and CoppeliaSim is performed using ROS commu-
nication level. The ROS node could be seen as a main() that firstly initializes

138

the simulation (e.g. establishing robot and camera connections, initialize posi-
tion and so on) and then enters an infinite while loop. At each iteration of the
loop, from the robot state measurements (position, velocity or torque) and, poten-
tially any other sensor measurement like an image acquired by a virtual camera, a
new joint/Cartesian velocity/torque command is computed and sent back to Cop-
peliaSim to update the scene rendering. There exists a mechanisms that allows
to perform a synchronous execution between the simulation step in CoppeliaSim
and the control program. Typically, for a visual servoing simulation, one itera-
tion of the loop could be synchronized at 20 ms (like for a real camera), while
for impedance control it is recommended to reduce this time step between 1 and
3 ms (the simulation will be more accurate with shorter time steps but will last
longer). FrankaSim has been designed in such a way as to hide ROS from the
user, making its use transparent. This approach makes it very easy to prototype
an application in simulation first, and then to deploy it on a real robot by just
changing few lines of code, as we will see in Section 8.4.1.

8.4 Experiments

In this section we present two experiments to evaluate on the one hand the reality
gap between the simulation and the real hardware both from the implementation
and the obtained results point of view and, on the other hand, to show the great
simulation potential of the proposed package.

8.4.1 Single-Arm Experiment: Real vs Simulated

In this experiment we consider the following joint impedance controller

τt = B(q)
(
Ke+Dė+ I

∫
e dt+ q̈d

)
+C(q, q̇)q̇ + τf (q̇)− τ0 e

−µt (8.1)

with τt the joint torque command at time t, qd(t) a desired joint trajectory,
e = qd − q, and K, D, I are the proportional, derivative and integral diagonal
gain matrices respectively. The exponential term allows for a smooth start of
the commands making the computed joint torques start from zero having set
τ0 = τt(0) equal to the computed torque at t = 0 while µ determines the decay
rate. A Panda arm equipped with its gripper and a camera attached to the flange
is controlled using (8.1). Figures 8.4 and 8.5 compare the joint positions and
torques measured on a real Panda arm versus a simulated one using FrankaSim
while applying a desired sinusoidal joint trajectory on joints 1, 3 and 4. As

139

expected, the obtained results on the real robot are noisier, but perfectly follow
those obtained in simulation. In the video related to this work we show also a
PBVS and an IBVS experiment with an AprilTag target where the visual-servo
behaviors are very close between the real and simulated cases. More than 95% of
the C++ code is common between real and simulated experiments. Only about
ten lines of code are simulator-specific to initiate communication with the robot
and the camera if the latter is used.

-1

0

1

-0.79

-0.785

-0.78

-0.2

0

0.2

-3

-2.5

-2

0

5

10
10

-3

0 5 10 15
1.55

1.6

0 5 10 15
0.78

0.785

0.79

Figure 8.4 – Real vs Simulated measured joint positions while tracking a desired joint trajectory
using controller (8.1). The total joint position Root Mean Square Error (RMSE) along the whole
trajectory ([0.5; 15] [s]) for all the joints is RMSEq = 0.006 [rad].

-5

0

5

10

15

-10

-5

0

-10

0

10

20

25

0

1

2

0 5 10 15
0

2

4

0 5 10 15
-1

0

1

Figure 8.5 – Real vs Simulated measured joint torques while tracking a desired joint trajectory
using controller (8.1). The total RMS torque error along the whole trajectory ([0.5; 15] [s]) for
all the joints is RMSEτ = 0.5546 [Nm].

https://www.youtube.com/watch?v=Kxn3pXsK9h4&t=1s

140

8.4.2 The Dual-Arm Experiment

This example was designed to showcase together most of the salient features of the
simulator, i.e., the possibility to handle multiple robots in the same program, the
ability to control the robot in velocity or in torque, the capacity of the presented
Lagrangian dynamic model library to fully compensate for the gravity and the
payload (gripper) even when not vertically mounted, the synchronous execution
with the physics simulator, as well as simulating a lower camera rate and a Visual-
admittance Pose-Based Visual-Servoing in interaction with the environment.

Figure 8.6 – Dual-Arm Experiment: two Panda robots constitute the arms of “Franko”. The
torque controlled left arm holds an AprilTag while following a circular trajectory. The right arm
implements an Extended External Hybrid controller to follow the AprilTag while dealing with
the collision with the environment. The circular and “D” shaped paths of both arms are visible
(blue lines). The camera view and some plotted curbs are shown in the bottom of the figure.

The simulation platform consists of a dual arm manipulator named “Franko”,
equipped with two Panda arms with their grippers and a wrist mounted camera
on the right arm. The left arm is torque controlled; it implements a computed
torque Cartesian controller and holds an AprilTag of the family 36h11. The right
arm implements an Extended External Hybrid controller [6] to visually follow the
AprilTag. At start, both arms are not servoed and the left one is only compen-
sating for the gravitational effects (both for the arm and the gripper), then it is
commanded to reach a desired pose in the workspace while the right arm is com-
manded to make sure that the AprilTag is centered in the image at a distance of
20 cm. Once the visual-servoing converges, the left arm starts tracking a circular
trajectory with the end-effector, causing the right arm to follow. There is an ob-
stacle on the worktable to which the gripper of the right arm collides with while

141

chasing the AprilTag, resulting in a “D” shaped trajectory (please see Fig. 8.6 and
related video for more in depth and clear understanding of this experiment).

8.5 Summary

In this chapter, we presented our simulator for the Franka Emika Panda robot.
The simulator has been designed with most of the criteria of importance to users
in mind i.e., small reality gap, open-source, simulation-to-real code transfer, cus-
tomization, etc. It has a number of features that make it unique compared to
other dynamic simulators for this robot; in fact, to date, it is the only one to
support CoppeliaSim and to integrate a library providing the Coriolis matrix and
the estimated dynamic friction as well as being fully integrated into the ViSP
ecosystem that enables it with visual servoing capabilities. The simulator is cur-
rently being used by researchers in the Rainbow team for prototyping and testing
novel sensor-based control strategies, to study second-order visual servoing, and
the combined use of vision and force sensing for precision assembly tasks. We
hope that providing the code to the entire community will allow increasing the
number of end-users and applications addressed.

The work presented in this chapter was extracted from the paper:

• A. A. Oliva, F. Spindler, P. Robuffo Giordano, and F. Chaumette,
“FrankaSim: A Franka Emika’s Panda robot simulator with visual-servoing
enabled capabilities,” 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). (submitted)

Video: https://www.youtube.com/watch?v=Kxn3pXsK9h4
The video related to this work shows some features of the simulator while

an IBVS and PBVS experiments are performed. Then, a complex multi-robot
simulation is showcased; the left arm is torque controlled while the right one is
commanded in velocity, using our Extended External Hybrid controller, which
allows the manipulator to deal with the impacts with the environment. Finally,
an experimental comparison between simulated and real robot executing the same
trajectory is shown followed by some further experiments carried out along the
thesis work.

https://www.youtube.com/watch?v=Kxn3pXsK9h4&t=1s
https://www.youtube.com/watch?v=Kxn3pXsK9h4

142

143

Part IV Conclusions
and future directions

144

145

Chapter

9 Conclusion

In this concluding chapter, we want to review the results obtained in this thesis
and point out what might be open points that need further attention.

9.1 Summary and contributions

The goal of this thesis was to understand how to effectively combine visual and
force information within the same control algorithm. The system considered is
a classical serial manipulator equipped with a wrist-mounted 6D force/torque
sensor and a monocular camera, regardless of its mounting (i.e., Eye-in-hand or
Eye-to-hand). What we have set out to accomplish was a shared integration of
vision and force sensing along all the controlled directions as well as a general
treatment, that was independent of the visual feature. This led us to explore
second-order models that relate the motion of the visual features in the image
plane to the forces acting on the end-effector of the manipulator. This research
allowed us, as shown in Chapter 5, to express the model of the manipulator in the
visual feature space and from there derive an impedance controller in the same
space. This type of controllers had been little studied in the literature with few
recent works which reported their advantages over the classical kinematic visual
servoing controllers. Those studies had been conducted to control the motion of
the manipulator in free space and their implementations were limited to simulated
environments only. Instead, we investigated these controllers and their feasibility
for interactions control both through simulations and by implementing them on
a real platform. We have proposed an estimator based on the kinematic model
of visual servoing to virtually increase the visual information and thus overcome
one of the biggest limitations of visual control, namely the low data rate from
the camera and latency associated with computer vision algorithms for extracting
visual features. This estimator also allows to estimate the velocity of the tracked
moving target. The results obtained are very promising; we have demonstrated the
feasibility of the practical use of these controllers in tasks of interaction with the
environment on the one hand, and on the other we have obtained, with classic low-

146

cost cameras, tracking performances comparable to those using dedicated high-
frequency cameras and specialized hardware.

On the other hand, when one needs to perform manipulation tasks interacting
with the environment under static or quasi-static conditions, the dynamics of the
manipulator can be neglected, and it might be convenient to rely on a velocity
resolved controller, which results much simpler than computed-torque ones. In
this regard in Chapter 6 we have proposed what we have called the Extended
External Hybrid Vision-Force Control scheme in which, thanks to an admittance
law in feature space, the visual reference is modified accordingly with the measured
external wrench allowing to achieve compliant motion, including soft behaviours.
This controller, due to its hierarchical structure, avoids both inconsistencies at
the actuation level and convergence towards local minima. Moreover, given the
presence of a force controller on the external loop, it is possible to regulate the
exchanged force/torque with the environment to a precise value. We have also
shown how this controller can simultaneously deal with both physical and fictitious
forces, the latter being generated in the image plane and that can be used, for
example, as repulsive force field preventing the visual features to leave the field
of view or in collision avoidance tasks to avoid the detected obstacles.

In both proposed controllers, vision and force sensory integration occurs in
visual feature space with consequent compliance achieved along the visual features
that define the visual task.

The impedance control presented in Chapter 5 imposes a system behavior
equivalent to a mass-spring-damper system in the visual feature space due to
the fact that, through feedback linearization, it cancels out the manipulator’s
dynamics and imposes the desired behavior. To do this, one needs to know the
model of the manipulator. In this regard in Chapter 7 we proposed a framework
for the retrieval of a feasible set of the identified dynamic model parameters of
the manipulator and we provided for the first time a set of these parameters for
our manipulator as well as an accurate model of the dynamic friction in its joints;
this model has become de facto the standard model adopted by the scientific
community for this manipulator.

From this identification procedure, a C++ library has been created which pro-
vides all the dynamic coefficients in the Lagrangian model. We have then further
developed this library and a dynamic simulator was developed, reported in Chap-
ter 8, which allowed us to obtain the results shown in Chapter 5. This simulator is
very useful to rapidly prototype visual servoing applications and allows to easily
switch, by modifying a few lines of code, to the implementation on the real robot.

This thesis work has covered several aspects both theoretical and practi-

147

cal/implementation on the problem of the coupling of vision and force control
for manipulators by providing both the necessary tools for its study and imple-
mentation. It has also provided innovative control schemes capable of addressing
the different interaction tasks that can be encountered in more or less structured
environments, responding therefore to the needs raised by the smart production.

9.2 Open issues and future perspectives

Despite the proposed EKFs track the target’s motion very well and provides high-
rate visual information, the control bandwidth is still insufficient to impose higher
control gains without becoming unstable. These filters allowed torque-level con-
trollers to be implemented on a real platform with low-cost cameras, but the stabil-
ity margins are limited if compared to those achieved with traditional impedance
control. Time domain passivity could be used to monitor and passivize the ex-
tra energy that time delays provide to the system as in [118], but directly in the
feature space.

Concerning the sensor integration problem, much research has been done in the
last three decades, including this thesis, to couple the contact information from
a force/torque sensor with the visual information provided by cameras within a
control loop. All the approaches surveyed in this thesis, except for some of the
constraint-based methods presented in Section 4.5, use a “task frame” concept in
one way or another to specify the task, at least the force goals of the task. This is a
legacy that carries over from the fact that integrated vision/force control schemes
are in essence repurposed motion/force schemes for which the contact modeliza-
tion have been done based on the assumption that there is a unique contact point
between the end-effector and the environment. However, this is not what actually
happens in real scenarios. The sensed contact wrench is the aggregate of all the
forces/torques acting downstream the wrist-mounted force/torque sensor [119],
and the resultant wrench of a contact situation can be indistinguishable from a
completely different other that generates the same measured wrench at the sen-
sor frame. A systematic and general contact model which is intuitive, flexible
and is able to deal with multiple, complex, and time-varying motion constraints
between non-polyhedral objects, was developed in [120]. They showed that it is
nevertheless possible to reconstruct a complex, multi-point contact situation from
the measurements of a force sensor alone, but full identification of 3D contact
situations with general and unknown objects is difficult. Humans, nature’s most
versatile manipulators possess a distributed sense of touch, which makes them
particularly adept at manipulating objects, reacting to, or even taking advan-

148

tage of the different perceived contacts. Furthermore, in a recent study, it was
shown that human visual and tactile sensory systems share common features in
object recognition processes [121]. It might be then worth investigating the use
of distributed force sensors, as suggested in [119], because they can provide richer
information about the contact than traditional wrist-mounted force/torque sen-
sors. In this context, the main question posed in this thesis would hold, but with a
slight difference: how to effectively combine vision and distributed force sensing?

There are many tactile sensors based on different physical principles that are
already advanced at commercial level. As for the human, artificial vision and
tactile sensing share common characteristics, that are more evident when using
a visuo-tactile sensor like gelsight [122]. The tactile images can be exploited in
a way similar to vision, unifying the processing of both visual and tactile data
taking advantage of the use of existing methods in the fields of computer vision
and visual servoing for the aspects of perception and control respectively

Not only distributed contact information, that is spatially localized in a small
surface (like the fingers) is of interest, but also sparse multiple contacts that can
occur on the mechanical structure of the manipulator may be; for instance in
situations where one has to carry/manipulate a large and/or too heavy object to
lift with only the terminal link; in these cases it could be advantageous to “em-
brace” the object by making contact on several points between the manipulator
and the object (imagine someone carrying a large box under the arm). Further
questions arise: how to servo the robot in order to achieve a desired multi contact
configuration?, which is an active field of research if we think at the in-hand ma-
nipulation problem. On the other hand, how to describe the combined vision/force
manipulation task? would perhaps require more attention.

In addition to multi-contact modelling, one also needs sensors capable of per-
ceiving these contacts. Using only proprioceptive sensors [123, 124] monitor the
residual and the robot generalized momentum for contact detection, isolation and
identification (a survey [69]); using probabilistic methods, [125] were able to locate
the point of contact on one of the manipulator’s links with good precision using
a particle filter, while with a similar approach [126] performs small exploratory
motions once contact was established to locate the contact. In a different way, the
use of artificial skins could be valuable in retrieving those contacts, but how can
the knowledge of this multiple contacts be coupled with visual cues in a meaningful
manner? is still an open question.

149

Appendix

A Identification procedure
comparison

A.1 Comparison of dynamic coefficients

The manufacturer does not provide any information on the dynamic parameters
of the Panda robot, and we have no ground truth values at our disposal for the
dynamic coefficients (a.k.a., base parameters) that have to be estimated.

Nevertheless, we have compared the dynamic coefficients obtained with the
reverse engineering approach in [8], that we discussed on Chapter 7, with those of
a classical identification method [127] that uses measurements of the joint positions
and joint torques only. In this case, static positioning is no longer sufficient and
the robot must execute sufficiently exciting trajectories in order to allow a reliable
estimation of the dynamic coefficients. In particular, following [91], we designed
the reference trajectories for the joints j ∈ {1, 7} as

qj(t) =
L∑
l=1

al,j
lωf

sin (lωf t)−
bl,j
lωf

cos (lωf t) + q0,j,

where L = 5 is the number of harmonics, ωf = 0.15π, and the coefficients al,j, bl,j
and q0,j are reported in Table A.1. These trajectories have been commanded to
the robot joints during 21 s, collecting a total of 20544 samples of positions and
torques per joint.

Since we noticed already that joint friction is not negligible for the robot under
study, we added in the robot dynamic model suitable friction functions to each
joint j ∈ {1, 7}, which are linear in the three parameters fv,j, fc,j, and fo,j (see
eq. (2.34)):

τf,j(q̇j) = fv,j q̇j + fc,jsign(q̇j) + fo,j.

These functions may suffer from sudden discontinuities in the neighbourhood of
q̇j = 0, j = 1, . . . , 7, but are adopted here because of their linearity in the defining
parameters.

The results of the identification process is summarized in Table A.2. The
first column provides the symbolic expressions of the dynamic coefficients. The

150

Table A.1 – Trajectory parameters for model identification of the Franka Emika Panda robot.
Joint j 1 2 3 4 5 6 7
a1,j -0.2031 -0.0699 0.3076 0.1269 -0.2773 0.2100 -0.2273

a2,j 0.1295 -0.5380 0.5864 -0.0253 -0.0857 -0.1194 -0.5636

a3,j -0.0090 -0.2015 -0.4813 -0.2405 0.4810 -0.0950 -0.2099

a4,j 0.2319 -0.5535 -0.1228 0.2178 0.5311 -0.0964 0.5725

a5,j -0.7598 0.2352 -0.5273 0.6984 -0.1639 -0.0399 -0.3748

b1,j -0.1136 -0.2437 0.3898 0.0401 0.5491 0.0692 0.2023

b2,j 0.6600 0.1820 -0.0268 -0.1503 0.1046 -0.6946 -0.2570

b3,j -0.1858 -0.2390 0.0179 0.2359 0.0407 -0.4442 -0.5010

b4,j 0.1867 -0.2647 0.4767 -0.2022 -0.0432 -0.5749 0.0774

b5,j 0.2357 0.4252 0.2726 0.3693 0.2448 -0.0698 -0.4833

q0,j -0.5850 -0.1744 -0.3373 -1.8767 -1.0631 1.7917 -0.7284

second and third columns show the values of the coefficients π̂R−E identified us-
ing the reverse engineering approach and, respectively, their standard deviations
%σ(π̂R−E). The regressor condition number is 48.9, while the relative error per-
centage is 0.0315%. The fifth and sixth columns show the values of the coefficients
π̂CLS identified through the classical method with exciting trajectories and, respec-
tively, their standard deviations %σ(π̂CLS). In this case, the regressor condition
number is 121.88, while the relative error percentage is 1.41%. Finally, the fourth
column reports the numerical value of the dynamic coefficients π(p̂) computed
by substituting the values of the dynamic parameters retrieved with our frame-
work [8] (see Chap. 7) in their symbolic expressions. It can be noted that these
values are slightly different from the original ones, showing that the ordinary least
squares solutions π̂R−E and π̂CLS are usually not physically consistent [91].

On the other hand, to estimate a set of dynamic coefficients which are phys-
ically consistent, the following one-step approach can be used. It is possible,
indeed, to change the term φ(pk) of the cost function in the Parameters Retrieval
Algorithm 1 in chapter 7, as:

φ(pk) =
∥∥∥Y π(pk)− τ

∥∥∥2
,

where Y is the stacked regressor, τ is the stacked measurements vector and π(pk)
is the coefficients vector computed from the current parameters vector pk. The
drawback of the use of this function φ (with respect to the one we reported in
chapter 7) is that it is computed from the cumbersome stacked regressor, thus af-
fecting the computational time. The identified dynamic coefficients π̂OSI obtained
from the previously described one-step identification procedure are reported in the
seventh column of Tab. A.2.

Note that the fourth column of Table A.2 has two missing entries for the
eight and twenty-fourth dynamic coefficients: these small coefficients are in fact

151

Table A.2 – Dynamic coefficients identified using our reverse engineering approach (π̂R−E)
and using a classical approach (π̂CLS), with their standard deviations (in percentage). The
coefficients π(p̂) are computed from the retrieved dynamic parameters p̂. Dynamic coefficients
π̂OSI are obtained from a one-step identification procedure.

Dynamic coefficients π̂R−E %σ(π̂R−E) π(p̂) π̂CLS %σ(π̂CLS) π̂OSI

J2yy + J1zz 0.0292166719319167 0.373464999260476 0.0373379631298541 0.0204364103682226 2.36090168554992 0.0132

J2xx−J2yy+J3yy+0.0998m3+0.632c3zm3+0.1067(m3+m4+m5+m6+m7) 0.981818362871487 0.0176017697538843 0.989623634551615 0.918812119094733 0.12021126487721 0.9485

J2xy -0.00519124422423026 1.56250607091839 -0.00398364337529688 -0.00328924846223289 11.0391711409267 0.0014

J2xz 0.0284199502364441 0.269753339175229 0.0102607714654092 0.00415827279030233 14.3569921920133 7.4640e-04

J2yz -0.00349341313716002 2.33296149141574 0.000768626805457974 -0.0154536414540448 2.3054111673656 -0.0113

J3yy + J2zz + 0.09985 m3 + 0.632 c3z m3 + 0.1067 (m4 +m5 +m6 +m7) 1.04277709862499 0.00913880051976703 1.03577961636038 0.934608341141512 0.0972895287336884 0.9491

J3xx − J3yy + J4yy − 0.0068 m4 0.0105900270669364 1.26639366187113 0.0115952028662261 0.0148617879406225 5.81492624535104 -0.0164

J3xy + 0.0825 c4z m4 -0.000212952994256617 30.362154615825 ---- 0.0126539359335843 3.56686186344772 -0.002

J3xz -0.0104385481552488 0.487399874522834 -0.00548819376576177 -0.00608661113924325 5.21289431802778 0.0021

J3yz -0.00484578939822065 1.23787966442069 -0.00437747027079482 -0.0137886404379563 2.39065216162938 -0.0055

J4yy + J3zz + 0.0068 m4 + 0.0136 m5 + 0.0136 m6 + 0.0136 m7 0.116875696122888 0.0690642374025275 0.124454379641766 0.0825491861219277 0.539445669597377 0.0922

J4xx − J4yy + J5yy + 0.768 c5z m5 + 0.1406 (m5 +m6 +m7) 0.53243122270191 0.0202220115117817 0.540830009861762 0.546156450936052 0.0951153240369647 0.5381

J4xy + 0.0317 m5 + 0.0317 m6 + 0.0317 m7 + 0.0825 c5z m5 0.150065576541699 0.0274046793405843 0.138763629896975 0.12021718586004 0.166544012462708 0.1255

Jxz4 0.00477223336242583 0.907940594558059 0.00390545637077114 0.0039942878536377 6.52849780592255 -0.0020

J4yz -0.00273179005775726 1.61771068964401 -0.00164409853610947 0.00784034630893363 3.47234203529251 1.8047e-04

J5yy + J4zz + 0.1543 m5 + 0.1543 m6 + 0.1543 m7 + 0.768 c5z m5 0.636935579516876 0.0102544668319368 0.632524072189963 0.619605971610654 0.0829425702599799 0.6089

J5xx − J5yy + J6yy + 0.0077 m7 0.032153688598929 0.273853880191597 -0.00749118756382638 0.0113908605848426 3.9130825847695 0.0137

J5xy -0.00373093470053514 0.957845342351179 -0.00151487508690249 0.00360033703880724 5.77183379287562 2.3992e-04

J5xz -0.00613311885722265 0.493163771229148 -0.00460057242062744 -0.0101595380396465 1.67641418026388 -0.0117

J5yz 0.00771532410759932 0.434454843989011 0.00216441377866959 0.00799849602524438 2.71328707999367 0.0077

J6yy + J5zz + 0.0077 m7 0.0180693692687778 0.316857102141596 0.0275646178962388 0.0216438275993359 1.63948495212235 0.0210

J6xx − J6yy + J7yy − 0.0077 m7 -0.00653174843772509 1.0591268329627 -0.000884713343309503 -0.0156911207208524 1.8290470363416 -0.0097

J6xy + 0.088 c7z m7 0.00536526100475549 0.533117731705522 0.00551140006361939 0.00140972185984143 8.96017184074576 0.0032

J6xz -1.29010222357792E-005 218.642951947916 ---- 0.00466040910538727 3.86439315464633 0.0039

J6yz 0.000820441198475142 3.30838131966642 -0.00011149560566302 0.000631001643519202 27.1286492805487 -1.0794e-04

J7yy + J6zz + 0.0077 m7 0.0250459324632208 0.177258273822703 0.030388912660974 0.0144969742256099 1.82265361166624 0.0204

J7xx − J7yy -0.00176759053030307 2.73778209818965 0.00242165389244933 0.00236141379604848 7.3233918251556 2.6087e-04

J7xy 0.00118532205571447 2.0320331695229 -0.000395430294146216 0.00487483554650531 1.86998080609363 0.0011

J7xz 0.00175781529296103 1.22993712958718 -0.00167239278929351 0.00233524165888097 4.88885570304326 0.0013

J7yz -0.000596936040654158 3.67559867359549 -0.00054879944912121 -0.00269495602553136 4.71739198098941 -0.0016

J7zz 0.00127244042127159 2.61291364603081 0.00490936463159561 -0.00426963114218529 4.46804771117889 0.0022

c2x m2 -0.00536870991776331 0.155126356721021 -0.00203460783952851 0.0287859108662679 1.89257090745338 0.0280

c2y m2 − 0.316 m4 − 0.316 m5 − 0.316 m6 − 0.316 m7 − 0.316 m3 − c3z m3 -3.10257562423396 0.000304900035457445 -3.10434336792372 -3.1362564554641 0.0105154837122877 -3.1353

0.0825 m4 + 0.0825 m5 + 0.0825 m6 + 0.0825 m7 + c3x m3 0.687355500831219 0.00140435627736313 0.684156438770866 0.680273023107252 0.0480775032145037 0.6814

c3y m3 − c4z m4 0.0233765365133791 0.0352910904024845 0.0282266905981094 -0.0121106270706461 1.22013217990525 -0.0103

c4x m4 − 0.0825 m6 − 0.0825 m7 − 0.0825 m5 -0.488836350422897 0.00156834564623313 -0.490080870249493 -0.472630292902374 0.0367798072434234 -0.4742

0.384 m5 + 0.384 m6 + 0.384 m7 + c4y m4 + c5z m5 1.71848566994063 0.00045070085766665 1.72068233187568 1.75173249241485 0.0192516301067527 1.7525

c5x m5 -0.0100041967045902 0.0643953740324495 -0.0146541895222708 -0.000503912493509591 26.569855964617 0.0015

c5y m5 − c6z m6 0.0770531295113475 0.00739674847168779 0.0823861609591039 0.0816837992151493 0.13623743568342 0.0815

0.088 m7 + c6x m6 0.165680379211635 0.0033594455916706 0.164967969875474 0.163721445813231 0.0744111762455879 0.1639

c6y m6 − c7z m7 -0.0677117737044103 0.00825760446226429 -0.0688323213466581 -0.0622560121354882 0.15272568276745 -0.0613

c7x m7 0.00623108688342054 0.0743590105306178 0.00773512225159871 0.00133680246679693 6.57812339642614 6.3142e-04

c7y m7 -0.00048808593311965 0.949033575145546 -0.00312768886416296 0.0047667686234629 1.67825171955328 0.0033

fv,1 0.0665266534059956 1.96584151621768 0.0628

fv,2 0.198746668762208 0.961542935001025 0.2088

fv,3 0.039926055264758 3.49705294041023 0.0361

fv,4 0.225710406362974 0.912430413683524 0.2174

fv,5 0.102266664468244 1.58679668848623 0.1021

fv,6 -0.0132100723685054 12.2606754655529 1.6128e-04

fv,7 0.0637878416456024 2.13884517364764 0.0632

fc,1 0.245023479550843 0.588949258058454 0.2549

fc,2 0.152329042413405 0.960241278437485 0.1413

fc,3 0.182652732613744 0.732398902308952 0.1879

fc,4 0.359108046187031 0.415181633314249 0.3625

fc,5 0.266921997663113 0.46678968591951 0.2728

fc,6 0.165805633616467 0.807745692948203 0.1529

fc,7 0.210904095871819 0.705536701742261 0.2097

fo,1 -0.107311659739619 0.693156685250328 -0.1069

fo,2 -0.156635309821668 2.95493513788316 -0.1601

fo,3 -0.0686346720012536 1.15656157885046 -0.0718

fo,4 -0.252209609088585 0.956307919122076 -0.2562

fo,5 0.00445732602659933 19.4632616331215 0.0079

fo,6 0.0910111791131084 0.839029697813094 0.0935

fo,7 -0.0126699291188763 6.26279708120922 -0.0070

discarded due to their large standard deviations (see the corresponding second

152

column in the table).
In conclusion, the similarity between the results obtained with the classical

method and with our approach indirectly confirms the validity of the set of dy-
namic coefficients in Table A.2 for the Panda robot.

A.2 Comparison of dynamic parameters

The dynamic parameters of the Panda robot, i.e., the mass, center of mass,
and inertia tensor of each link, have been retrieved by solving the nonlin-
ear optimization problem presented in Section 7.4 as well as by using the
LMI-SDP framework presented in [91], based on the Python code available
at https://github.com/cdsousa/wam7_dyn_ident. This code has been slightly
modified in order to include the triangular inequalities on the inertia tensors,
according to [24]. The results are reported in the two Tables A.3 and A.4.

In Tab. A.3, the value of c1z is reported as “∗” (don’t care) since it does not
have any influence on the dynamics (i.e., it does not appear in the E-L model,
and can take any value).

The used lower (LB) and upper (UB) bounds and the final value p̂ obtained
with our optimization algorithm are shown in the second to fourth columns. The
final parameters δ (including 21 friction parameters) obtained with the LMI-SDP
method are reported in the fifth columns. In particular, these latter values were
retrieved from the dynamic coefficients β?e by means of eq. (49) in [91], using
the same bounds (properly manipulated) that we adopted for our algorithm. The
resulting δ set was then slightly manipulated, in order to obtain for each link the
center of mass from the its first moment of inertia and the barycentric inertia
tensor from the inertia tensors w.r.t. the link frame.

Figure A.1 shows a comparison between the torques measured by the joint
torque sensors of the Panda robot during a validation trajectory and the estimated
torques generated from a Newton-Euler (N-E) routine using the p̂ parameters
and the δ parameters. In order to further validate the parameter sets p̂ and
δ, we also designed 10 new validation trajectories (each lasting for 10 seconds),
performing the same joint torque comparisons and then computing the mean
square error (MSE) for each trajectory. The concatenated joint trajectories are
reported in Fig. A.3, the concatenated joint torques in Fig. A.2, and the total
MSE in Table A.5. These results confirm that both estimates are reliable and
consistent.

https://github.com/cdsousa/wam7_dyn_ident

153

Table A.3 – Lower and upper bounds for
masses and centers of mass of the Panda robot
and their corresponding estimated values using
our approach (p̂) and the one in [91] (δ).

parameter LB UB p̂ δ (from [91]) units
m1 0 10 4.970684 2.0643e-05 kg

m2 0 10 0.646926 9.2017 kg

m3 0 10 3.228604 1.4575 kg

m4 0 10 3.587895 4.5856 kg

m5 0 10 1.225946 0.5231 kg

m6 0 10 1.666555 2.0604 kg

m7 0 10 7.35522e-01 0.1718 kg

c1x -0.05 0.05 3.875e-03 5.202e-08 m

c1y -0.05 0.05 2.081e-03 5.202e-08 m

c1z -0.4 0.05 * -0.1750 m

c2x -0.05 0.05 -3.141e-03 0.0015 m

c2y -0.15 0.05 -2.872e-02 -0.0578 m

c2z -0.05 0.05 3.495e-03 -0.0384 m

c3x -0.05 0.15 2.7518e-02 0.1096 m

c3y -0.05 0.05 3.9252e-02 0.05 m

c3z -0.1 0.05 -6.6502e-02 -0.1 m

c4x -0.15 0.05 -5.317e-02 -0.0485 m

c4y -0.05 0.15 1.04419e-01 0.15 m

c4z -0.05 0.05 2.7454e-02 0.0147 m

c5x -0.05 0.05 -1.1953e-02 -0.004 m

c5y -0.05 0.05 4.1065e-02 0.045 m

c5z -0.05 0.05 -3.8437e-02 -0.05 m

c6x -0.05 0.15 6.0149e-02 0.0732 m

c6y -0.05 0.05 -1.4117e-02 -0.0251 m

c6z -0.05 0.05 -1.0517e-02 -0.0276 m

c7x -0.05 0.05 1.0517e-02 -0.0326 m

c7y -0.05 0.05 -4.252e-03 0.0087 m

c7z 0.04 0.15 6.1597e-02 0.0396 m

Table A.4 – Lower and upper bounds for the
inertia tensor elements of the Panda robot and
their corresponding estimated values using our
approach (p̂) and the one in [91] (δ).

parameter LB UB p̂ δ (from [91]) units
I1xx 0 1 7.0337e-01 0.6 kg·m2

I1xy -1 1 -1.3900e-04 -3.2497e-14 kg·m2

I1xz -1 1 6.7720e-03 -6.4280e-09 kg·m2

I1yy 0 1 7.0661e-01 0.6 kg·m2

I1yz -1 1 1.9169e-02 -6.4280e-09 kg·m2

I1zz 0 1 9.1170e-03 2.0353e-06 kg·m2

I2xx 0 1 7.9620e-03 0.028 kg·m2

I2xy -1 1 -3.9250e-03 5.5650e-05 kg·m2

I2xz -1 1 1.0254e-02 0.0056 kg·m2

I2yy 0 1 2.8110e-02 0.0291 kg·m2

I2yz -1 1 7.0400e-04 -2.7636e-04 kg·m2

I2zz 0 1 2.5995e-02 0.0011 kg·m2

I3xx 0 1 3.7242e-02 2.0154e-06 kg·m2

I3xy -1 1 -4.7610e-03 -5.9144e-09 kg·m2

I3xz -1 1 -1.1396e-02 1.1523e-08 kg·m2

I3yy 0 1 3.6155e-02 2.0243e-06 kg·m2

I3yz -1 1 -1.2805e-02 6.0956e-09 kg·m2

I3zz 0 1 1.0830e-02 2.0164e-06 kg·m2

I4xx 0 1 2.5853e-02 2.0242e-06 kg·m2

I4xy -1 1 7.7960e-03 7.1405e-09 kg·m2

I4xz -1 1 -1.3320e-03 8.8917e-10 kg·m2

I4yy 0 1 1.9552e-02 2.0036e-06 kg·m2

I4yz -1 1 8.6410e-03 -2.2039e-09 kg·m2

I4zz 0 1 2.8323e-02 2.0260e-06 kg·m2

I5xx 0 1 3.5549e-02 2.0057e-06 kg·m2

I5xy -1 1 -2.1170e-03 1.6453e-10 kg·m2

I5xz -1 1 -4.0370e-03 -3.6824e-10 kg·m2

I5yy 0 1 2.9474e-02 2.0037e-06 kg·m2

I5yz -1 1 2.2900e-04 2.3080e-09 kg·m2

I5zz 0 1 8.6270e-03 2.0028e-06 kg·m2

I6xx 0 1 1.9640e-03 2.0026e-06 kg·m2

I6xy -1 1 1.0900e-04 1.5823e-09 kg·m2

I6xz -1 1 -1.1580e-03 2.0530e-09 kg·m2

I6yy 0 1 4.3540e-03 2.0070e-06 kg·m2

I6yz -1 1 3.4100e-04 -4.9387e-10 kg·m2

I6zz 0 1 5.4330e-03 2.0073e-06 kg·m2

I7xx 0 1 1.2516e-02 2.0026e-06 kg·m2

I7xy -1 1 -4.2800e-04 2.6159e-10 kg·m2

I7xz -1 1 -1.1960e-03 1.4055e-09 kg·m2

I7yy 0 1 1.0027e-02 2.0037e-06 kg·m2

I7yz -1 1 -7.4100e-04 -4.2047e-10 kg·m2

I7zz 0 1 4.8150e-03 2.0020e-06 kg·m2

154

Figure A.1 – Comparison between measured joint torques during a validation trajectory (blue
solid lines) and estimated torques generated from a N-E routine using the p̂ parameters from
our parameter retrieval method in [8] (see Chap. 7) (solid red lines) and the parameters δ from
the LMI-SDP framework in [91] (solid yellow lines). The torque errors are reported as well.

Table A.5 – Mean Square Error (MSE) [(Nm)2] of torque predictions using the parameters p̂
of our method [8] illustrated in chapter 7 and the parameters δ of LMI-SDP approach [91] in
validation experiments of Fig. A.3.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7
MSE p̂ 0.4068 1.0282 0.5951 0.4231 0.1749 0.0403 0.0267

MSE δ 0.4955 1.0155 0.2751 0.6627 0.0828 0.0508 0.0284

155

Figure A.2 – Joint torques recorded during the 10 validation trajectories reported in Fig. A.3.

Figure A.3 – Joint positions recorded during 10 validation trajectories (10 seconds each). The
associated joint torques are reported in Fig. A.2.

156

157

Appendix

B Parameters retrieval using
nonlinear and conditional

constraints

In order to retrieve a feasible set of dynamic parameters p̂ for the Panda robot,
only linear constraints were used, since the non-convex shapes of the links would
allow their centers of mass to be located even outside the link themselves. We
present here a simple example of retrieval of dynamic parameters where the use of
nonlinear constraints would be preferable, and which fits then in the framework
of our method, presented in Chapter 7.

Consider the spatial 2R robot with orthogonal joint axes in Fig. B.1. Its
(standard) Denavit-Hartenberg kinematic parameters are reported in Table B.1.
The robot body consists of two links: link 1 is a cylinder of height l1 = 1.5 m and
radius r1 = 0.15 m; link 2 has a total length of l2 = 0.8 m and is composed by
a cylinder of length l2 − l′2 and radius r2 = 0.08 m, connected at the end with a
truncated cone of length l′2 = 0.2 m and with radius r3 = 0.02 m for its smaller
base.

Figure B.1 – A spatial 2R robot with joints along axes z0 and z1.

The assumed ground truth values of the dynamic parameters preal are given
in the fourth column of Table B.2.

158

Table B.1 – DH table of the spatial 2R robot.

i ai αi di θi

1 0 π/2 l1 q1

2 l2 0 0 q2

Table B.2 – Lower and upper bounds for the
dynamic parameters of the 2R robot in Fig. B.1,
with real preal and estimated p̂ values.

parameter LB UB preal p̂ units
m1 0 10 8 4.5788 kg

m2 0 5 3 3.7828 kg

c1x −∞ ∞ 0.01 -0.016124 m

c1y -1.42 0.08 -0.75 -0.74408 m

c1z −∞ ∞ -0.02 -3.8e-04 m

c2x -0.8 0 -0.1 -0.24487 m

c2y −∞ ∞ 0 6.16e-06 m

c2z −∞ ∞ 0 -3.66e-03 m

I1xx 0 1 0.03 0.61296 kg·m2

I1xy -1 1 0 0.071738 kg·m2

I1xz -1 1 0 -0.0099797 kg·m2

I1yy 0 1 0.03 0.022982 kg·m2

I1yz -1 1 0 0.031154 kg·m2

I1zz 0 1 0.01 0.6172 kg·m2

I2xx 0 1 0.01 0.019819 kg·m2

I2xy -1 1 0 -4.525e-06 kg·m2

I2xz -1 1 0 -0.0077412 kg·m2

I2yy 0 1 0.04 0.35386 kg·m2

I2yz -1 1 0 -5.9342e-05 kg·m2

I2zz 0 1 0.04 0.34412 kg·m2

The symbolic form of the dynamic coefficients π2R ∈ R8 of this robot is:

π2R =

J1yy + J2yy − 0.64m2

J2xx − J2yy + 0.64m2

J2xy

J2xz − 0.8c2zm2

J2yz

J2zz − 0.8m2

0.8m2 + c2xm2

c2ym2

.

In order to estimate the values of the dynamic coefficients π2R, a numerical
simulation is performed using preal and the joint torques are recorded during an
exciting motion. Then the dynamic coefficients are properly estimated with an
ordinary least squares method.

At this stage, the algorithm for the retrieval of the dynamic parameters p̂ is

159

launched, using the bounds on physical feasibility reported in Table B.2, upper
and lower bounds on the total mass, 1 ≤ m1 + m2 ≤ 15, and linear constraints
on the inertia tensors (exploiting the triangular inequality). When using box
constraints on the position of the center of mass of each of the two links, the
solution would be searched in an extra volume (i.e., a parallelepiped) which is
Vlink1 = 4/π ' 1.27 times larger than the volume of the cylindric link 1 and
Vlink2 = 4/π (1 + 2l′2/l2) ' 2 times larger than the one of link 2. On the other
hand, considering that the distance of the center of mass from the major link axis
must be less than its radius, the previous (approximate) box constraints on the
center of mass of the two links can be replaced by the following (exact) nonlinear
and conditional (if-else) constraints gCoM1 and gCoM2 , to be used within our core
optimization Algorithm 1 in chapter 7:

α1 =r1 −
√
c2

1y + c2
1z,

α2 =

r2 −

√
c2

2y + c2
2z, if c2x<−l′2(

r2 + r3−r2
l′2

(l′2 + c2x)
)
−
√
c2

2y + c2
2z, otherwise,

gCoM1 = −min{0, α1}, gCoM2 = −min{0, α2}.

Taking advantage of the knowledge of the link shapes, these nonlinear constraints
ensure that each center of mass will lie inside the corresponding link shape but
that no feasible position is being excluded, thus yielding a complete solution. A
validation test was finally performed, comparing the joint torques on sinusoidal
trajectories that are computed using the real parameters with the joint torques
estimated by means of a N-E routine fed with the parameters p̂ reported in the
fifth column of Table B.2. The retrieved solution generates just the same dynamics
as obtained with the real parameters.

Another interesting quantity that can be estimated only when using the N-E
inverse dynamics algorithm is the wrench acting at the robot joint level, i.e., the
exchanged forces/moments between two successive links connected by a joint. To
this aim, it is very important to retrieve a set of dynamic parameters that is as
close as possible to the real one. To show this, we relaxed the constraints in order
to obtain a second solution set of dynamic parameters p̂′, which, however, contains
also non-feasible parameters (i.e., parameters that have no physical meaning).

In Fig. B.2, the yellow lines represent the estimated joint torques during a
validation experiment coming from a N-E routine that is being fed with the un-
feasible parameters p̂′. Despite this, reliable motion torque estimations can still
be appreciated. On the contrary, a strong inconsistency may be observed when
estimating the internal forces acting on the joints, obtained as a byproduct of

160

0 2 4 6 8 10 12 14 16 18 20

time [s]

-6

-4

-2

0

2

4

6

1
 [
N

m
]

0 2 4 6 8 10 12 14 16 18 20

time [s]

-20

-10

0

10

20

2
 [
N

m
]

actual torques

est. torque with feasible pars

est. torque with unfeasible pars

error (fesible pars)

error (unfeasible pars)

Figure B.2 – Validation of estimated parameters in Table B.2. A N-E routine fed with the
feasible parameters p̂ and with some unfeasible parameters p̂′ returns similar estimated torques
(respectively, red and yellow lines) along the motion. When comparing these estimates with the
actual torques recorded along a sinusoidal joint trajectory (blue lines, almost overlapped by the
red line), we notice that both sets provide a good torque estimation.

the standard N-E algorithm. As shown by the values of these estimated forces in
Fig. B.3, it can be seen that estimations obtained from the feasible parameters p̂
(red lines) are close to the real forces (blue lines), while estimations retrieved from
the unfeasible parameters p̂′ (yellow lines) are almost 106 times larger than the
real values “felt” at the joints. This confirms that a physically-consistent solution
which is close to the real one is mandatory for estimating the joint wrenches.

161

0 2 4 6 8 10 12 14 16 18 20
60

80

100

120

140

160

180

F
o
rc

e
 a

c
ti
n
g
 o

n
 j
o
in

t
1
 (

n
o
rm

)
[N

]

0 2 4 6 8 10 12 14 16 18 20

Time [s]

60

80

100

120

140

160

180

F
o
rc

e
 a

c
ti
n
g
 o

n
 j
o
in

t
2
 (

n
o
rm

)
[N

]

real force

est. force with feasible pars.

(10 6) est. force with unfeasible pars.

Figure B.3 – Internal forces acting on the joints of the simulated 2R robot during a sinusoidal
joint trajectory. Estimates of the internal forces obtained from a N-E routine are significantly
closer to the real internal forces (blue lines) if feasible (i.e., physically consistent) dynamic
parameters are provided to the routine, while estimates obtained from an unfeasible set p̂′ can
be even 106 times larger than real internal forces (note that the yellow line was scaled for the
ease of reading).

162

Bibliography 163

Bibliography

[1] R. Bajcsy, “Integrating vision and touch for robotics applications,” in Arti-
ficial Intelligence Applications for Business: Proceedings of the NYU Sym-
posium, May 1983, pp. 297 – 323.

[2] A. Cherubini and D. Navarro-Alarcon, “Sensor-based control for collabo-
rative robots: Fundamentals, challenges, and opportunities.” Front. Neuro-
robot., 2021.

[3] J. Baeten and J. De Schutter, Integrated Visual Servoing and Force Control
- The Task Frame Approach. Springer, 01 2003.

[4] R. P. Paul, Robot manipulators: mathematics, programming, and control:
the computer control of robot manipulators. MIT Press, 1981.

[5] Y. Nakabo and M. Ishikawa, “Visual impedance using 1 ms visual feedback
system,” in Proceedings. 1998 IEEE International Conference on Robotics
and Automation (Cat. No.98CH36146), vol. 3, 1998, pp. 2333–2338 vol.3.

[6] A. A. Oliva, P. Robuffo Giordano, and F. Chaumette, “A general visual-
impedance framework for effectively combining vision and force sensing in
feature space,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
4441–4448, 2021.

[7] A. A. Oliva, E. Aertbeliën, J. de Schutter, P. Robuffo Giordano, and
F. Chaumette, “Towards dynamic visual servoing for interaction control
and moving targets,” 2022 IEEE International Conference on Robotics and
Automation (to appear), May 2022.

[8] C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano, and A. De Luca,
“Dynamic identification of the Franka Emika Panda robot with retrieval of
feasible parameters using penalty-based optimization,” IEEE Robotics and
Automation Lett., 2019.

[9] A. A. Oliva, F. Spindler, P. Robuffo Giordano, and F. Chaumette,
“FrankaSim: A Franka Emika’s Panda sobot simulator with visual-servoing

164

enabled capabilities,” IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (submitted), 2022.

[10] E. Marchand, F. Spindler, and F. Chaumette, “Visp for visual servoing: a
generic software platform with a wide class of robot control skills,” IEEE
Robotics and Automation Magazine, vol. 12, no. 4, pp. 40–52, December
2005.

[11] O. Khatib, “A unified approach for motion and force control of robot ma-
nipulators: The operational space formulation,” IEEE Journal on Robotics
and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[12] N. Hogan, “Impedance control: An approach to manipulation: Part I-
Theory,” Journal of Dynamic Systems, Measurement, and Control, vol. 107,
no. 1, pp. 1–7, 03 1985.

[13] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modeling,
Planning and Control, 3rd ed. London: Springer, 2008.

[14] M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipu-
lators,” Journal of Dynamic Systems, Measurement, and Control, vol. 103,
no. 2, pp. 126–133, 06 1981.

[15] M. T. Mason, “Compliance and force control for computer controlled ma-
nipulators,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 11,
no. 6, pp. 418–432, 1981.

[16] S. Chiaverini and L. Sciavicco, “The parallel approach to force/position
control of robotic manipulators,” IEEE Transactions on Robotics and Au-
tomation, vol. 9, no. 4, pp. 361–373, 1993.

[17] J. De Schutter and H. Van Brussel, “Compliant robot motion ii. a control
approach based on external control loops,” The International Journal of
Robotics Research, vol. 7, no. 4, pp. 18–33, 1988.

[18] J. Denavit and R. Hartenberg, “A kinematic notation for lower-pair mech-
anisms based on matrices,” Trans ASME Journal of Applied Mechanics, p.
215–221, June 1955.

[19] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed. Pear-
son Prentice Hall, 2005.

165

[20] C. Gaz, F. Flacco, and A. De Luca, “Extracting feasible robot parameters
from dynamic coefficients using nonlinear optimization methods,” in Proc.
IEEE Int. Conf. on Robotics and Automation, 2016, pp. 2075–2081.

[21] W. Khalil and E. Dombre, Modeling, Identification and Control of Robots.
Hermes Penton London, 2002.

[22] S. Traversaro, S. Brossette, A. Escande, and F. Nori, “Identification of fully
physical consistent inertial parameters using optimization on manifolds,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct 2016, pp. 5446–5451.

[23] P. Wensing, S. Kim, and J.-J. E. Slotine, “Linear matrix inequalities for
physically-consistent inertial parameter identification: A statistical per-
spective on the mass distribution,” IEEE Robotics and Automation Letters,
vol. PP, pp. 1–1, 07 2017.

[24] C. Sousa and R. Cortesão, “Inertia tensor properties in robot dynamics iden-
tification: A linear matrix inequality approach,” IEEE/ASME Transactions
on Mechatronics, vol. PP, pp. 1–1, 01 2019.

[25] A. De Luca, C. Manes, and F. Nicolò, “A task space decoupling approach
to hybrid control of manipulators,” IFAC Proceedings Volumes, vol. 21,
no. 16, pp. 157–162, 1988, 2nd IFAC Symposium on Robot Control
1988 (SYROCO ’88), Karlsruhe, FRG, 5-7 October. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474667017546030

[26] T. Yoshikawa, “Dynamic hybrid position/force control of robot
manipulators–description of hand constraints and calculation of joint driv-
ing force,” IEEE Journal on Robotics and Automation, vol. 3, no. 5, pp.
386–392, 1987.

[27] T. Yoshikawa, T. Sugie, and M. Tanaka, “Dynamic hybrid position/force
control of robot manipulators-controller design and experiment,” IEEE
Journal on Robotics and Automation, vol. 4, no. 6, pp. 699–705, 1988.

[28] A. De Luca, C. Manes, and G. Ulivi, “Robust hybrid dynamic control of
robot arms,” in Proceedings of the 28th IEEE Conference on Decision and
Control,, 1989, pp. 2641–2646 vol.3.

[29] A. De Luca and C. Manes, “Hybrid force-position control for robots in
contact with dynamic environments,” IFAC Proceedings Volumes, vol. 24,

https://www.sciencedirect.com/science/article/pii/S1474667017546030

166

no. 9, pp. 177–182, 1991, 3rd IFAC Symposium on Robot Control 1991
(SYROCO’91), Vienna, Austria, 16-18 September 1991. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474667017510526

[30] W. D. Fisher and M. S. Mujtaba, “Hybrid position/force control: A
correct formulation,” The International Journal of Robotics Research,
vol. 11, no. 4, pp. 299–311, 1992. [Online]. Available: https:
//doi.org/10.1177/027836499201100403

[31] L. D. Joly and A. Micaelli, “Hybrid position/force control, velocity projec-
tion, and passivity,” IFAC Proceedings Volumes, vol. 30, pp. 325–331, 1997.

[32] C. Collewet and E. Marchand, “Photometric visual servoing,” IEEE Trans-
actions on Robotics, vol. 27, no. 4, pp. 828–834, 2011.

[33] Q. Bateux and E. Marchand, “Histograms-based visual servoing,” IEEE
Robotics and Automation Letters, vol. 2, no. 1, pp. 80–87, 2017.

[34] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke,
“Visual Servoing from Deep Neural Networks,” in RSS 2017 - Robotics
: Science and Systems, Workshop New Frontiers for Deep Learning in
Robotics, Boston, United States, Jul. 2017, pp. 1–6. [Online]. Available:
https://hal.inria.fr/hal-01589887

[35] J. Hill and W. T. Park, “Real time control of a robot with a mobile camera,”
Proc. 9th ISIR, pp. 233–246, Mar. 1979.

[36] P. Corke, Visual Control of Robots: High Performance Visual Servoing.
Research Studies Press Ltd, 1996.

[37] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach.
(Second edition). Prentice Hall, Nov. 2011. [Online]. Available: https:
//hal.inria.fr/hal-01063327

[38] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D Vision:
From Images to Geometric Models. SpringerVerlag, 2003.

[39] F. Chaumette, “Visual Servoing,” in Robot Manipulators: Modeling,
Performance Analysis and Control, Dombre, Etienne, Khalil, and
Wissama, Eds. ISTE, 2007, pp. 279–336. [Online]. Available: https:
//hal.inria.fr/hal-00920418

https://www.sciencedirect.com/science/article/pii/S1474667017510526
https://doi.org/10.1177/027836499201100403
https://doi.org/10.1177/027836499201100403
https://hal.inria.fr/hal-01589887
https://hal.inria.fr/hal-01063327
https://hal.inria.fr/hal-01063327
https://hal.inria.fr/hal-00920418
https://hal.inria.fr/hal-00920418

167

[40] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual servoing
in robotics,” IEEE Transactions on Robotics and Automation, vol. 8, no. 3,
pp. 313–326, 1992.

[41] F. Chaumette, “Image moments: a general and useful set of features for
visual servoing,” IEEE Transactions on Robotics, vol. 20, no. 4, pp. 713–
723, 2004.

[42] F. Chaumette, P. Rives, and B. Espiau, “Classification and realization of
the different vision-based tasks,” in Visual Servoing, ser. World Scientific
Series in Robotics and Intelligent Systems, 1993, vol. 7, pp. 199 – 228.
[Online]. Available: https://hal.inria.fr/hal-01548352

[43] E. Malis, “Visual servoing invariant to changes in camera-intrinsic param-
eters,” Robotics and Automation, IEEE Transactions on, vol. 20, pp. 72 –
81, 03 2004.

[44] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic approaches,”
IEEE Robotics Automation Magazine, vol. 13, no. 4, pp. 82–90, 2006.

[45] ——, “Visual servo control. ii. advanced approaches [tutorial],” IEEE
Robotics Automation Magazine, vol. 14, no. 1, pp. 109–118, 2007.

[46] S. Vandernotte, A. Chriette, P. Martinet, and A. S. Roos, “Dynamic sensor-
based control,” in 2016 14th International Conference on Control, Automa-
tion, Robotics and Vision (ICARCV), 2016, pp. 1–6.

[47] F. Fusco, O. Kermorgant, and P. Martinet, “A comparison of visual ser-
voing from features velocity and acceleration interaction models,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 4447–4452.

[48] F. Chaumette, S. Hutchinson, and P. Corke, “Visual servoing,” Handbook
of Robotics, 2nd edition, pp. 841–866, 2016.

[49] V. Lippiello, B. Siciliano, and L. Villani, “A position-based visual impedance
control for robot manipulators,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation, 2007, pp. 2068–2073.

[50] K. Nottensteiner, A. Sachtler, and A. Albu-Schäeffer, “Towards autonomous
robotic assembly: Using combined visual and tactile sensing for adaptive
task execution,” Journal of Intelligent & Robotic Systems, vol. 101, 03 2021.

https://hal.inria.fr/hal-01548352

168

[51] K. Yu and A. Rodriguez, “Realtime state estimation with tactile and visual
sensing. application to planar manipulation,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 7778–7785.

[52] K.-T. Yu and A. Rodriguez, “Realtime state estimation with tactile and
visual sensing for inserting a suction-held object,” in 2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), 2018, pp.
1628–1635.

[53] B. Nelson, J. Morrow, and P. Khosla, “Robotic manipulation using
high bandwidth force and vision feedback,” Mathematical and Computer
Modelling, vol. 24, no. 5, pp. 11–29, 1996. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0895717796001136

[54] D. Lawrence, “Impedance control stability properties in common implemen-
tations,” in Proceedings. 1988 IEEE International Conference on Robotics
and Automation, 1988, pp. 1185–1190 vol.2.

[55] G. Morel, E. Malis, and S. Boudet, “Impedance based combination of visual
and force control,” in Proceedings. 1998 IEEE International Conference on
Robotics and Automation (Cat. No.98CH36146), vol. 2, 1998, pp. 1743–1748
vol.2.

[56] D. E. Whitney, “Force Feedback Control of Manipulator Fine Motions,”
Journal of Dynamic Systems, Measurement, and Control, vol. 99, no. 2, pp.
91–97, 06 1977. [Online]. Available: https://doi.org/10.1115/1.3427095

[57] Y. Mezouar, M. Prats, and P. Martinet, “External hybrid vision/force con-
trol,” Intl. Conference on Advanced Robotics, 2007.

[58] V. Perdereau and M. Drouin, “A new scheme for hybrid force-position con-
trol,” in RoManSy 9, A. Morecki, G. Bianchi, and K. Jaworek, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 150–159.

[59] G. Morel and P. Bidaud, “A reactive external force loop approach to control
manipulators in the presence of environmental disturbances,” vol. 2, 05 1996,
pp. 1229 – 1234 vol.2.

[60] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile general-
ized inverted kinematics implementation for collaborative working humanoid
robots: The stack of tasks,” in 2009 International Conference on Advanced
Robotics, 2009, pp. 1–6.

https://www.sciencedirect.com/science/article/pii/0895717796001136
https://doi.org/10.1115/1.3427095

169

[61] O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dynamic behav-
ior and control of human-like robots,” Int. J. Humanoid Robotics, vol. 1,
pp. 29–43, 2004.

[62] D. J. Agravante, A. Cherubini, A. Bussy, P. Gergondet, and A. Khed-
dar, “Collaborative human-humanoid carrying using vision and haptic sens-
ing,” in 2014 IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 607–612.

[63] C. Cai and N. Somani, “Visual servoing in a prioritized constraint-based
torque control framework,” in 2018 IEEE/ACIS 17th International Confer-
ence on Computer and Information Science (ICIS). Los Alamitos, CA,
USA: IEEE Computer Society, jun 2018, pp. 309–314.

[64] J. D. Schutter, T. D. Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-based task
specification and estimation for sensor-based robot systems in the
presence of geometric uncertainty,” The International Journal of Robotics
Research, vol. 26, no. 5, pp. 433–455, 2007. [Online]. Available:
https://doi.org/10.1177/027836490707809107

[65] E. Aertbeliën and J. De Schutter, “etasl/etc: A constraint-based task spec-
ification language and robot controller using expression graphs,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014, pp. 1540–1546.

[66] C. Samson, M. Le Borgne, and B. Espiau, Robot Control: The Task Function
Approach. Caledron Press, Oxford, 1991.

[67] H. Bruyninckx and J. De Schutter, “Specification of force-controlled actions
in the "task frame formalism"-a synthesis,” IEEE Transactions on Robotics
and Automation, vol. 12, no. 4, pp. 581–589, 1996.

[68] T. de Laet, R. Smits, H. Bruyninckx, and J. de Schutter, “Constraint-
based task specification and control for visual servoing application
scenarios,” vol. 60, no. 5, pp. 260–269, 2012. [Online]. Available:
https://doi.org/10.1524/auto.2012.0996

[69] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot collisions: A survey
on detection, isolation, and identification,” IEEE Transactions on Robotics,
vol. 33, no. 6, pp. 1292–1312, 2017.

https://doi.org/10.1177/027836490707809107
https://doi.org/10.1524/auto.2012.0996

170

[70] Hong Zhang and J. P. Ostrowski, “Visual servoing with dynamics: control of
an unmanned blimp,” in Proceedings 1999 IEEE International Conference
on Robotics and Automation (Cat. No.99CH36288C), vol. 1, 1999, pp. 618–
623 vol.1.

[71] M. Vukobratović and D. Stokić, “Is dynamic control needed in robotic
systems, and, if so, to what extent?” The International Journal of
Robotics Research, vol. 2, no. 2, pp. 18–34, 1983. [Online]. Available:
https://doi.org/10.1177/027836498300200202

[72] M. Ishikawa, A. Namiki, T. Senoo, and Y. Yamakawa, “Ultra high-speed
robot based on 1 khz vision system,” in 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2012, pp. 5460–5461.

[73] N. Shahriari, S. Fantasia, F. Flacco, and G. Oriolo, “Robotic visual ser-
voing of moving targets,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013, pp. 77–82.

[74] A. D. Luca, G. Oriolo, and P. Robuffo Giordano, “On-line estimation of
feature depth for image-based visual servoing schemes,” in Proceedings 2007
IEEE International Conference on Robotics and Automation, 2007, pp.
2823–2828.

[75] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly v-rep):
a versatile and scalable robot simulation framework,” in Proc. of The
International Conference on Intelligent Robots and Systems (IROS), 2013.
[Online]. Available: www.coppeliarobotics.com

[76] T. Larsen, N. Andersen, O. Ravn, and N. Poulsen, “Incorporation of time
delayed measurements in a discrete-time kalman filter,” in Proceedings of
the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171),
vol. 4, 1998, pp. 3972–3977 vol.4.

[77] E. Simetti and G. Casalino, “A novel practical technique to integrate in-
equality control objectives and task transitions in priority based control,”
Journal of Intelligent & Robotic Systems, vol. 84, pp. 877–902, 2016.

[78] F. Fusco, O. Kermorgant, and P. Martinet, “Integrating features accelera-
tion in visual predictive control,” IEEE Robotics and Automation Letters,
vol. 5, no. 4, pp. 5197–5204, 2020.

https://doi.org/10.1177/027836498300200202
www.coppeliarobotics.com

171

[79] A. Maciejewski, “Dealing with the ill-conditioned equations of motion for
articulated figures,” IEEE Computer Graphics and Applications, vol. 10,
no. 3, pp. 63–71, 1990.

[80] R. Featherstone, “An empirical study of the joint space inertia matrix,” I.
J. Robotic Res., vol. 23, pp. 859–871, 09 2004.

[81] V. Lippiello, G. A. Fontanelli, and F. Ruggiero, “Image-based visual-
impedance control of a dual-arm aerial manipulator,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1856–1863, 2018.

[82] R. Carelli, E. Oliva, C. Soria, and O. Nasisi, “Combined force and visual
control of an industrial robot,” Robotica, vol. 22, no. 2, p. 163–171, 2004.

[83] C. Gaz and A. De Luca, “Payload estimation based on identified coeffi-
cients of robot dynamics — with an application to collision detection,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 2017, pp. 3033–3040.

[84] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot collisions: A survey
on detection, isolation, and identification,” IEEE Transactions on Robotics,
vol. 33, no. 6, pp. 1292–1312, Dec 2017.

[85] E. Magrini and A. De Luca, “Hybrid force/velocity control for physical
human-robot collaboration tasks,” in Proc. IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems, Oct. 2016.

[86] J. Hollerbach, W. Khalil, and M. Gautier, “Model identification,” in Hand-
book of Robotics, B. Siciliano and O. Khatib, Eds. Springer, 2008, pp.
321–344.

[87] A. Janot, P. Vandanjon, and M. Gautier, “A generic instrumental variable
approach for industrial robot identification,” IEEE Transactions on Control
Systems Technology, vol. 22, no. 1, pp. 132–145, Jan 2014.

[88] J. Jovic, A. Escande, K. Ayusawa, E. Yoshida, A. Kheddar, and G. Venture,
“Humanoid and human inertia parameter identification using hierarchical
optimization,” IEEE Transactions on Robotics, vol. 32, no. 3, pp. 726–735,
June 2016.

[89] V. Bonnet, P. Fraisse, A. Crosnier, M. Gautier, A. González, and G. Ven-
ture, “Optimal exciting dance for identifying inertial parameters of an an-

172

thropomorphic structure,” IEEE Transactions on Robotics, vol. 32, no. 4,
pp. 823–836, Aug 2016.

[90] V. Mata, F. Benimeli, N. Farhat, and A. Valera, “Dynamic parameter
identification in industrial robots considering physical feasibility,” Advanced
Robotics, vol. 19, no. 1, pp. 101–119, 2005.

[91] C. Sousa and R. Cortesão, “Physical feasibility of robot base inertial
parameter identification: A linear matrix inequality approach,” Int. J. of
Robotics Research, vol. 33, no. 6, pp. 931–944, 2014. [Online]. Available:
https://doi.org/10.1177/0278364913514870

[92] Franka Emika, “Ros integration for franka emika research robots,” https:
//github.com/frankaemika/franka_ros.

[93] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
vol. 3, 2004, pp. 2149–2154 vol.3.

[94] M. Spong, “Modeling and control of elastic joint robots,” ASME J. Dyn.
Syst. Meas. Control, vol. 109, no. 4, pp. 310–319, 1987.

[95] C. Gaz, F. Flacco, and A. De Luca, “Identifying the dynamic model used
by the KUKA LWR: A reverse engineering approach,” in 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), May 2014, pp.
1386–1392.

[96] J. Swevers, W. Verdonck, and J. De Schutter, “Dynamic model identification
for industrial robots,” IEEE Control Systems Mag., vol. 27, no. 5, pp. 58–71,
2007.

[97] A. Jubien, M. Gautier, and A. Janot, “Dynamic identification of the Kuka
LightWeight robot: Comparison between actual and confidential Kuka’s
parameters,” in 2014 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, July 2014, pp. 483–488.

[98] T. Mitchell, Machine Learning. McGraw-Hill, 1997.

[99] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.
Prentice Hall, 2009.

https://doi.org/10.1177/0278364913514870
https://github.com/frankaemika/franka_ros
https://github.com/frankaemika/franka_ros

173

[100] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Meth-
ods. Athena Scientific, Boston, MA, 1996.

[101] M. Santos Pessoa de Melo, J. Gomes da Silva Neto, P. Jorge Lima da Silva,
J. M. X. Natario Teixeira, and V. Teichrieb, “Analysis and comparison of
robotics 3d simulators,” in 2019 21st Symposium on Virtual and Augmented
Reality (SVR), 2019, pp. 242–251.

[102] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To,
E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep networks with
synthetic data: Bridging the reality gap by domain randomization,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2018, pp. 1082–10 828.

[103] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff,
and D. Fox, “Closing the sim-to-real loop: Adapting simulation random-
ization with real world experience,” in 2019 International Conference on
Robotics and Automation (ICRA), 2019, pp. 8973–8979.

[104] M. Križmančić, “Franka_gazebo,” https://github.com/mkrizmancic/
franka_gazebo.

[105] S. Sidhik, “Panda_simulator: Gazebo simulator for franka emika panda
robot supporting sim-to-real code transfer,” https://github.com/justagist/
panda_simulator, DOI: 10.5281/zenodo.3818280.

[106] ——, “Mujoco panda,” https://github.com/justagist/mujoco_panda.

[107] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012, pp. 5026–5033.

[108] A. Trabelsi, J. Sandoval, M. Ghiss, and M. A. Laribi, “Development of a
franka emika cobot simulator platform (csp) dedicated to medical applica-
tions,” in Advances in Service and Industrial Robotics, S. Zeghloul, M. A.
Laribi, and J. Sandoval, Eds. Cham: Springer International Publishing,
2021, pp. 95–103.

[109] L. Pitonakova, M. Giuliani, A. Pipe, and A. Winfield, “Feature and per-
formance comparison of the v-rep, gazebo and argos robot simulators,” in
Towards Autonomous Robotic Systems, M. Giuliani, T. Assaf, and M. E.

https://github.com/mkrizmancic/franka_gazebo
https://github.com/mkrizmancic/franka_gazebo
https://github.com/justagist/panda_simulator
https://github.com/justagist/panda_simulator
https://github.com/justagist/mujoco_panda

174

Giannaccini, Eds. Cham: Springer International Publishing, 2018, pp.
357–368.

[110] J. Collins, D. Howard, and J. Leitner, “Quantifying the reality gap in robotic
manipulation tasks,” in 2019 International Conference on Robotics and Au-
tomation (ICRA), 2019, pp. 6706–6712.

[111] P. Corke, “The machine vision toolbox: a matlab toolbox for vision and
vision-based control,” IEEE Robotics Automation Magazine, vol. 12, no. 4,
pp. 16–25, 2005.

[112] P. M. Khiabani, B. S. Aghdam, J. Ramezanzadeh, and H. D. Taghirad, “Vi-
sual servoing simulator by using ros and gazebo,” in 2016 4th International
Conference on Robotics and Mechatronics (ICROM), 2016, pp. 308–312.

[113] R. Smits, “KDL: Kinematics and Dynamics Library,” http://www.orocos.
org/kdl.

[114] P. Corke, “Robotics, Vision & Control,” Springer 2017, ISBN 978-3-319-
54413-7.

[115] A. De Luca and L. Ferrajoli, “A modified newton-euler method for dynamic
computations in robot fault detection and control,” in 2009 IEEE Interna-
tional Conference on Robotics and Automation, 2009, pp. 3359–3364.

[116] A. De Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger, “Collision
detection and safe reaction with the DLR-III lightweight robot arm,” in
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006, pp.
1623–1630.

[117] W. Chung, L.-C. Fu, and S.-H. Hsu, Motion Control. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 133–159. [Online]. Available:
https://doi.org/10.1007/978-3-540-30301-5_7

[118] P. Schmidt, J. Artigas, M. De Stefano, R. Balachandran, and C. Ott,
“Increasing the performance of torque-based visual servoing by applying
time domain passivity,” IFAC-PapersOnLine, vol. 48, no. 19, pp.
13–18, 2015, 11th IFAC Symposium on Robot Control SYROCO
2015. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2405896315026270

http://www.orocos.org/kdl
http://www.orocos.org/kdl
https://doi.org/10.1007/978-3-540-30301-5_7
https://www.sciencedirect.com/science/article/pii/S2405896315026270
https://www.sciencedirect.com/science/article/pii/S2405896315026270

175

[119] D. Ma, S. Dong, and A. Rodriguez, “Extrinsic contact sensing with relative-
motion tracking from distributed tactile measurements,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021, pp.
11 262–11 268.

[120] H. Bruyninckx, S. Demey, S. Dutré, and J. D. Schutter, “Kinematic models
for model-based compliant motion in the presence of uncertainty,” The
International Journal of Robotics Research, vol. 14, no. 5, pp. 465–482,
1995. [Online]. Available: https://doi.org/10.1177/027836499501400505

[121] S. Tabrik, M. Behroozi, L. Schlaffke, S. Heba, M. Lenz, S. Lissek,
O. Güntürkün, H. R. Dinse, and M. Tegenthoff, “Visual and tactile sensory
systems share common features in object recognition,” eNeuro, vol. 8, no. 5,
2021. [Online]. Available: https://www.eneuro.org/content/8/5/ENEURO.
0101-21.2021

[122] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot
tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12,
2017. [Online]. Available: https://www.mdpi.com/1424-8220/17/12/2762

[123] A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger, “Collision
detection and safe reaction with the dlr-iii lightweight manipulator arm,”
in 2006 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2006, pp. 1623–1630.

[124] S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger, “Collision
detection and reaction: A contribution to safe physical human-robot inter-
action,” in 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2008, pp. 3356–3363.

[125] L. Manuelli and R. Tedrake, “Localizing external contact using propriocep-
tive sensors: The contact particle filter,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016, pp. 5062–5069.

[126] J. Bimbo, C. Pacchierotti, N. G. Tsagarakis, and D. Prattichizzo, “Col-
lision detection and isolation on a robot using joint torque sensing,” in
2019 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 2019, pp. 7604–7609.

[127] M. Gautier and W. Khalil, “Direct calculation of minimum set of inertial
parameters of serial robots,” IEEE Trans. on Robotics and Automation,
vol. 6, no. 3, pp. 368–373, 1990.

https://doi.org/10.1177/027836499501400505
https://www.eneuro.org/content/8/5/ENEURO.0101-21.2021
https://www.eneuro.org/content/8/5/ENEURO.0101-21.2021
https://www.mdpi.com/1424-8220/17/12/2762

Titre : Intégration de la commande visuel et de la force pour l’interaction physique avec des
manipulateurs robotiques

Mot clés : Asservissement visuel; Commande de la forces; commande de conformité et

d’impédance; commande basé sur des capteurs; Manipulateurs

Résumé : Dispositions combinées vi-
sion/force deviennent de plus en plus cou-
rants dans les petites et moyennes entreprises
à mesure que les “Cobots” deviennent plus
abordables. Caméras peuvent fournir une
description détaillée de la scène, tandis qu’un
capteur de force fournis des informations lo-
cales mais très précises sur le contact. Ce-
pendant, en raison de la nature très différente
de ces modalités de détection, il n’est pas
simple d’obtenir une utilisation combinée effi-
cace. Dans cette thèse, nous traitons du cou-
plage de la vision et de la détection de la force
en tirant parti de leur complémentarité et en
permettant à un robot manipulateur de réali-

ser activement un mouvement conforme aux
directions de la tâche visuelle. Nous avons
développé des schémas de contrôle avancés
avec des estimateurs qui gèrent la différence
de taux de mise à jour entre les capteurs. De
plus, nous contribuons à la récupération des
paramètres du modèle dynamique pour les
manipulateurs, qui sont des ingrédients clés
à la fois dans les contrôleurs proposés, qui
prennent en compte la dynamique du mani-
pulateur, ainsi que pour effectuer des simula-
tions plus précises. Les résultats rapportés,
tant dans le simulateur développé que dans
les expériences réelles, montrent l’efficacité
des techniques proposées.

Title: Integration of vision and force control for physical interaction with robotic manipulators

Keywords: Visual-servoing; Force control; compliance and impedance control; Sensor-based

control; Manipulators

Abstract: Combined vision/force arrange-
ments are becoming more and more com-
mon in small and medium sized businesses
as “Cobots” becomes more affordable. Cam-
eras can provide a detailed description of the
scene, whereas force sensing can provide lo-
cal but highly precise information about the
contact. However, due to the very different na-
ture of these sensing modalities , obtaining an
effective combined use is not straightforward.
In this thesis we deal with the coupling of vi-
sion and force sensing leveraging their com-
plementarity and allowing a robot manipula-
tor to actively achieve compliant motion along

the visual task directions. We have devel-
oped advanced control schemes with estima-
tors that cope with the update rate discrep-
ancy between the sensors. furthermore, we
contribute to the dynamic model parameter re-
trieval for manipulators, which are key ingredi-
ents both in the proposed controllers, whose
take into account the manipulator’s dynamics,
as well as for performing more accurate sim-
ulations. The reported results, both in the de-
veloped simulator and with real experiments
show the effectiveness of the proposed tech-
niques.

	Acknowledgments
	Contents
	Introduction
	On Vision-Force coupling: Motivation
	Challenges
	Contributions
	Thesis structure
	Related publications

	Part I Preliminaries and State of the Art
	Force control of manipulators
	Introduction
	Manipulator kinematics
	Differential kinematics
	Second-order differential kinematics

	Statics
	Twist and Wrench transformations

	Dynamic model
	Parameter identification
	Physical consistency of the dynamic parameters
	Dynamic model in operational space

	Force Control Schemes
	Hybrid position/force control
	Impedance control
	Admittance control

	Conclusion

	Vision Control
	Introduction
	Camera model
	Visual Servoing
	IBVS: Image-Based Visual Servoing
	PBVS: Pose-Based Visual Servoing
	Stability analysis
	Stability analysis in the IBVS case
	Stability analysis in the PBVS case

	Mounted camera
	Feature trajectory tracking
	Target tracking

	Second-order Visual Servoing
	Conclusion

	Vision-Force control
	Introduction
	Hybrid Vision-Force control
	Visual-Impedance control
	External Hybrid Vision-Force control
	Constraint-based methods
	Technological aspects

	Part II Feature Space Compliance
	Feature Space Impedance
	Introduction
	Manipulator model in feature space
	Impedance control in feature space for a static target
	Impedance control in feature space for a moving target
	Increasing the visual data rate and estimating the target's motion
	EKF for IBVS with image points features
	EKF for PBVS

	Simulations
	Task description and controllers implementation
	Simulation Results

	Real experiments
	Implementation issues
	Data rate
	Ill-condition of the task Jacobian
	Joints friction
	Illumination conditions

	Results

	Summary

	Feature Space Admittance
	Introduction
	Related works
	Feature Space Admittance
	The Extended External Hybrid Vision-Force Control Scheme
	Force regulation

	Stability analysis
	Experiments
	Experimental Setup
	Peg-in-Hole Experiment
	Extended External Hybrid vs External Hybrid

	Fictitious forces
	Summary

	Part III Manipulator dynamic model and simulation
	Dynamic model of the Franka Emika's Panda robot
	Introduction
	The Panda robot
	Identification procedure
	Friction estimation

	Retrieval of feasible parameters
	Results
	Validation on a physics simulator

	Summary

	FrankaSim
	Introduction
	Related Works
	The simulator: FrankaSim
	Kinematics
	Dynamics
	ViSP
	Visp_ros
	CoppeliaSim
	Software Architecture

	Experiments
	Single-Arm Experiment: Real vs Simulated
	The Dual-Arm Experiment

	Summary

	Part IV Conclusions and future directions
	Conclusion
	Summary and contributions
	Open issues and future perspectives

	Appendix Identification procedure comparison
	Comparison of dynamic coefficients
	Comparison of dynamic parameters

	Appendix Parameters retrieval using nonlinear and conditional constraints
	Bibliography

