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ACRONYMS

ADR Adaptive Data Rate
CR Cognitive Radio
DOFG Decreasing Order Fairness Greedy
DORG Decreasing Order Reward Greedy
IoT Internet of Things
ISM Industrial Scientific and Medical
LCB Lower Confidence Bound
LoRa Long Range
LoRaWAN Long-Range Wide Area Network
LPWAN Low Power Wide Area Network
MAB Multi-Armed Bandit
MP-MAB Multi-Player Multi-Armed Bandit
NS Network Server
OSA Opportunistic Spectrum Access
PAC Probably Approximately Correct
PDR Packet Delivery Ratio
PER Packet Error Rate
PU Primary User
QoS Quality of Service
RL Reinforcement Learning
RSSI Received Signal Strength Indicator
SA Slotted ALOHA
SF Spreading Factor
SINR Signal to Interference and Noise Ratio
SNR Signal to Noise Ratio
SU Secondary User
TP Transmitting Power
TS Thompson Sampling
UCB Upper Confidence Bound
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NOTATIONS

N number of players
[N ] set of players
pn probability that player n sends a packet
K number of arms
[K] set of arms
θk mean reward of arm k
θ model θ = (θ1, ..., θK)
θ̂k estimated mean reward of arm k

θ̂ estimated model θ̂ = (θ̂1, ..., θ̂K)
ε approximation term
δ probability of failure
πkn probability that player n chooses arm k
πn policy of player n, πn = (π1

n, ..., π
K
n )

π policy of players, π = (π1, ..., πn)
πu uniform policy
π† decreasing order fair greedy policy generated by Algorithm 2
π∗θ optimal policy in model θ, which is deterministic, when it is clear in the context, we use π∗
µθ(π) mean reward in model θ of the policy π, when it is clear in the context, we use µ(π)

For a stochastic policy: µθ(π) = ∑K
k=1 θ

k∑N
n=1 pnπ

k
n

∏
n′ 6=n(1− pn′πkn′)

For a deterministic policy µθ(π) = ∑K
k=1 θ

kzklk

zk probability that arm k is not used by any other players, zk = ∏
n′∈[N ],kn=k(1− pn)

lk sum of activation odds on arm k of other players, lk = ∑
n′∈[N ],kn=k

pn
1−pn

kn arm assigned to player n
π[n] policy π when players n′ > n do not play
zk[n] probability that arm k is not used by any of the first n players
lk[n] sum of activation odds of the n first players for arm k
ρkn(π) probability that no other players have chosen arm k using policy π
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RÉSUMÉ

Cette thèse de doctorat étudie le problème d’optimisation de la performance des
réseaux de l’Internet des objets (IoT). L’objectif est de maximiser le succès des com-
munications dans les réseaux de l’IoT, en proposant des algorithmes de prise de décision
dynamiques efficaces pouvant être intégrés dans les futurs équipements IoT, tout en re-
spectant leurs contraintes de faible complexité et de faible consommation d’énergie. Pour
cela, l’apprentissage par renforcement (RL) est utilisé et le problème d’optimisation est
modélisé comme un problème de bandit multi-joueurs multi-bras (MP-MAB), adapté
aux réseaux IoT et permettant de surmonter de nombreuses hypothèses irréalistes dans
le cadre des réseaux IoT précédemment effectuées dans la littérature. Dans cette thèse,
deux approches différentes sont proposées pour traiter le problème d’optimisation. La
première approche permet de blacklister les mauvais canaux de propagation d’un réseau
en utilisant un algorithme collaboratif d’identification des meilleurs bras. La seconde ap-
proche consiste en deux politiques différentes qui attribuent de manière récursive chaque
équipement IoT à un canal ; la première politique se concentre sur le nombre de com-
munications réussies tandis que l’autre garantit un niveau d’équité entre les équipements.
Dans un premier temps, nous avons effectué l’étude numérique et expérimentale des dif-
férents algorithmes développés pendant cette thèse afin de montrer qu’ils étaient capables
de surclasser les autres algorithmes de la littérature. Dans un second temps, une partie
importante du travail a consisté en l’application des algorithmes développés au problème
concret de choix de la puissance d’émission et du facteur d’étalement dans un réseau
LoRa, en analysant les performances en termes de qualité de service et de consommation
d’énergie à l’aide d’un simulateur de réseau LoRa réaliste entièrement redéveloppé en C
durant la thèse.
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ABSTRACT

This PhD thesis studies the optimization problem of Internet of Things (IoT) net-
works performance. We aim to maximize the successful communications in IoT networks,
by proposing efficient dynamic decision-making algorithms that can be embedded in future
IoT devices, while respecting the low complexity and low energy consumption constraints
in IoT devices. For this sake, we use Reinforcement Learning (RL), and we model the op-
timization problem as a massive multi-player multi-armed bandit (MP-MAB) problem to
best suit IoT networks, while overcoming many unrealistic assumptions previously made
in the literature. In this manuscript, we propose two different approaches to handle the
optimization problem. The first blacklists bad channels after a collaborative best-arms
identification algorithm. The second consists of two different policies that recursively as-
sign each device to one channel; where one policy focuses on the number of successful
communications while the other guarantees a level of fairness between the devices. We
provide both numerical and experimental studies of our developed algorithms, and show
their out-performance over other algorithms proposed in the literature. Furthermore, we
test our algorithms using a realistic LoRa network simulator entirely redeveloped in C dur-
ing the thesis, and show the gain they achieve in terms of both successful communications
and energy consumption compared to other already implemented algorithms.
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RÉSUMÉ DES TRAVAUX DE THÈSE

Ce manuscrit conclut ma thèse de doctorat, qui a débuté en janvier 2019 et s’est
achevée en mai 2022. Mes recherches se sont déroulées à Orange Labs à Grenoble (France)
en collaboration avec IMT Atlantique à Rennes (France). Ces travaux ont été réalisés
sous la supervision du Docteur Nadège Varsier d’Orange Labs à Grenoble et du Docteur
Raphaël Féraud d’Orange Labs à Lannion, et sous la direction du Docteur Patrick Maillé
d’IMT Atlantique à Rennes.

Contexte de la thèse

L’internet des objets (IoT) est un terme nouveau, mais en même temps ancien. L’expression
“Internet des objets” a été inventée par le père de l’IoT, Kevin Ashton 1, lors d’une
présentation qu’il a faite en 1999. Il l’a utilisé pour relier l’idée de l’identification par ra-
diofréquence (RFID) au domaine alors nouveau de l’Internet [1]. Depuis lors, l’utilisation
de ce terme s’est développée et des milliards d’équipements sont déjà déployés dans le
monde entier. Les analystes de l’IoT prévoient que, d’ici 2025, il y aura probablement
plus de 27 milliards de connexions IoT [2] permettant un large éventail d’applications dif-
férentes. Ce large déploiement d’équipements IoT et la variété des applications génèrent
différents défis, principalement en termes de fiabilité et d’efficacité énergétique, ce qui
pousse les chercheurs et les développeurs à concevoir différents schémas d’accès radio ef-
ficaces. De même, la croissance rapide du marché de l’apprentissage automatique et son
applicabilité à un très large éventail d’applications ouvrent la voie à des équipements IoT
intelligents.

En conséquence, dans cette thèse, nous visons à améliorer les performances des réseaux
IoT, principalement en terme de fiabilité, tout en consommant le moins d’énergie possible
et en améliorant donc la durée de vie moyenne des batteries. Nous proposons d’utiliser les
techniques d’apprentissage par renforcement et, plus particulièrement, les bandits multi-
bras multi-joueurs (MP-MABs) pour un mécanisme efficace d’allocation des ressources.

1. Kevin Ashton était cofondateur et directeur exécutif de l’Auto-ID Center.
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“L’internet des objets a le potentiel de changer le monde, tout comme
l’internet l’a fait. Peut-être même plus.”

– Père de l’IoT, Kevin Ashton

Internet des objets Malgré la grande révolution de l’Internet des objets, il n’existe
pas encore de définition universellement utilisée. Nous présentons ici la définition sim-
ple de l’IoT fournie par Wikipedia [3]: “L’internet des objets décrit des objets physiques
qui sont dotés de capteurs, de capacités de traitement, de logiciels et d’autres technolo-
gies qui se connectent et échangent des données avec d’autres équipements et systèmes
via l’internet ou d’autres réseaux de communication”. La pluralité des définitions de l’IoT
provient des diverses applications et domaines de l’IoT. Tous les aspects de notre vie sont
concernés. L’IoT peut en effet permettre de considérables améliorations dans les domaines
de l’éducation, la santé ou la sécurité, ainsi que pour la prise de décision et la productivité
des entreprises dans le commerce de détail, la fabrication et de nombreux autres secteurs.
L’internet des objets et l’intelligence artificielle constituent une part importante de la
quatrième révolution industrielle[4]. Désormais, toutes sortes d’objets du quotidien peu-
vent être connectés à l’internet, de sorte que l’IoT compte plus d’appareils et de capteurs
intelligents que de personnes. Ces appareils et capteurs connectés collectent et partagent
des données à des fins d’utilisation et d’évaluation par de nombreuses organisations, no-
tamment des entreprises, des villes, des gouvernements, des hôpitaux et des particuliers,
générant des quantités massives de données. Afin de fournir et de prendre en charge tous
les types d’applications IoT, de nombreuses technologies aux caractéristiques différentes
sont disponibles.

Technologies sans fil pour l’IoT Les équipements IoT utilisent la technologie qui
correspond le mieux à leurs contraintes. L’IoT critique, qui couvre des applications telles
que la sécurité routière et la chirurgie à distance dans le domaine de la santé, nécessite une
fiabilité et une disponibilité élevées ainsi qu’une faible latence [5]. Ces applications sont
mieux servies par les technologies à courte portée telles que Wi-Fi, Bluetooth et ZigBee qui
offrent une couverture jusqu’à 1 km [6]. Les réseaux cellulaires tels que 2G/3G, 4G/LTE
et 5G sont adaptés aux applications longue portée (jusqu’à 16 km) et haut débit [6]. Les
réseaux grande distance et faible consommation d’énergie (LPWAN) conviennent quand
à eux aux applications qui nécessitent une large zone de couverture et une longue durée
de vie des batteries.
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Une contrainte commune aux équipements IoT est la faible consommation d’énergie,
comme dans le cas des compteurs intelligents et de la surveillance industrielle, car les
équipements sont en général déployés sans accès direct à l’électricité et fonctionnent sur
des batteries qui peuvent difficilement être changées. Les technologies LPWAN offrent,
en général, une large zone de couverture à des objets connectés contraints en énergie,
en débit, en complexité et donc en coût et la possibilité de déployer un grand nombre
d’équipements.

Le spectre des radiofréquences En termes de spectre RF, nous distinguons deux
types de technologie en fonction du spectre sur lequel elles opèrent : le spectre sous licence
ou sans licence (bandes de fréquences exemptes de licence). Le spectre sous licence corre-
spond à une partie de l’espace public des fréquences qui a été concédée par les autorités
nationales ou régionales à une entreprise privée, généralement un opérateur de réseau
mobile, à condition qu’elle fournisse un certain service au public, tel que la connectivité
cellulaire [7]. L’Internet cellulaire des objets (CIoT) fournit des technologies utilisant des
bandes sous licence pour des applications à longue portée, comme le standardise le pro-
jet de partenariat de troisième génération (3GPP) dans sa version 13. Ces technologies
cellulaires comprennent le GSM à couverture étendue pour l’internet des objets (EC-GSM-
IoT), l’évolution à long terme des communications de type machine de catégorie M1 (LTE
MTC Cat M1 ou LTE-M) et l’IoT à bande étroite (NB-IoT). Nous nous référons au livre
[7] pour plus de détails. Le spectre sous licence est toutefois généralement associé à des
coûts élevés.

A l’inverse, le spectre sans licence correspond à des portions de l’espace public des
fréquences dont on peut dire qu’elles restent publiques et donc exemptes de frais de licence
[7]. Parmi les bandes sans licence les plus populaires figurent les bandes industrielles, sci-
entifiques et médicales (ISM), centrées sur 2,4 GHz, 868/915 MHz, 433 MHz et 169 MHz,
selon la région d’exploitation [5]. En n’obligeant pas les opérateurs à obtenir une licence
coûteuse et une autorisation spéciale pour son utilisation, le spectre sans licence est une
option peu coûteuse et accessible à tous pour répondre aux besoins de communication.
Tout comme Wi-Fi, Bluetooth et ZigBee, les technologies LPWA fonctionnent générale-
ment dans les bandes ISM. SIGFOX et LoRa sont les technologies LPWA les plus connues
qui fonctionnent dans les bandes ISM sans licence. La technologie LoRa est présentée en
détail au chapitre 5.

Les réseaux LPWA ont suscité un intérêt considérable de la part du marché et des
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médias en raison de leur fonctionnement dans des bandes exemptes de licence et de leur
capacité à assurer une longue durée de vie des batteries des équipements, une faible
complexité de ces mêmes équipements et la connexion d’un très grand nombre d’objets.
Cependant, avec la forte augmentation du déploiement de l’IoT dans le monde, un prob-
lème majeur de coexistence des systèmes se pose. À l’intérieur du spectre sans licence, les
différents systèmes ne sont pas séparés dans le domaine des fréquences mais se chevauchent
dans le sens où ils peuvent utiliser les mêmes ressources en fréquences à tout moment, ce
qui provoque des interférences et donc des échecs de transmission.

Dans ce contexte, cette thèse vise à résoudre le problème suivant : Comment les
équipements IoT peuvent éviter les interférences entre eux et éviter les interférences avec
les réseaux coexistants partageant le même spectre, afin de fournir une fiabilité élevée tout
en respectant les contraintes IoT, et notamment en préservant une faible consommation
d’énergie ? Notre objectif est de rendre les equipements IoT intelligents en les program-
mant et en les configurant de manière à ce qu’ils puissent connaitre et choisir les meilleurs
paramètres de fonctionnement (par exemple, la puissance d’émission, la fréquence radio)
afin d’éviter les interférences et la congestion.

Nous proposons ici d’utiliser des algorithmes d’apprentissage par renforcement (RL)
et plus particulièrement des algorithmes de bandit multi-bras multi-joueurs (MP-MAB).

Courte introduction sur les Bandits Multi-Bras

Le terme MAB vient des machines à sous, connues sous le nom de bandits car elles
prennent généralement votre argent. Il s’agit d’une classe de problèmes de RL qui se
réfère à un jeu de décision en ligne où, dans la formulation classique du problème, telle
que présentée dans [8, 9], un ensemble de plusieurs bras (actions) dans un certain environ-
nement est associé à des séquences de récompenses (une séquence pour chaque bras) qui
sont tirées aléatoirement et indépendamment selon une distribution fixe mais inconnue.
Chaque séquence est disponible pour un agent (également appelé joueur) qui doit pren-
dre une série d’actions tout en observant la séquence de récompenses correspondante. La
figure 1 illustre ce cycle. L’objectif principal est de découvrir les meilleures actions, c’est-
à-dire celles qui offrent les récompenses les plus élevées, et de les exploiter. En particulier,
l’agent est confronté au dilemme “exploration-exploitation”: il doit essayer toutes les ac-
tions pour savoir laquelle est la meilleure (exploration), mais il doit converger rapidement
vers celle qu’il croit être la meilleure pour accumuler des récompenses (exploitation).
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Figure 1 – Interaction entre agent et environnement dans un bandit multi-bras

Une politique, ou stratégie d’allocation, est un algorithme qui choisit la prochaine
action à jouer en fonction de la séquence des jeux passés et des récompenses obtenues.
Une politique optimale est la politique qui maximise la récompense cumulative (c’est-à-
dire qui choisit le meilleur bras à chaque itération).

Mesure de la performance Si la politique optimale maximise la récompense cumula-
tive, alors elle devrait toujours tirer l’un des bras optimaux (il peut ne pas être unique),
mais cela n’est pas réaliste car le joueur ne connaît pas les véritables moyens, ni les
bras optimaux. Une mesure populaire du succès d’une politique pour résoudre le dilemme
exploration-exploitation est le regret, qui est la perte due au fait que la politique glob-
alement optimale n’est pas toujours suivie. Cette métrique est détaillée dans la section
2.1.2.

Applications Les problèmes de bandits à bras multiples se posent dans de nombreux
domaines d’application. L’étude [10] passe en revue les développements les plus récents
dans de multiples applications réelles des MABs, telles que la santé, la finance et les
télécommunications.

Classification des MABs En fonction du modèle de la fonction de récompense, il
existe différentes variantes du modèle MAB, que nous distinguons ci-dessous :

• Stochastique et Contradictoire: dans les MABs stochastiques [11], les récom-
penses sont générées indépendamment à partir de distributions stochastiques incon-
nues associées à chaque bras, tandis que dans les MABs contradictoires [12], aucune
hypothèse statistique n’est faite sur la nature du processus générant les récompenses
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des bras, mais un adversaire, plutôt qu’un processus stochastique bien conduit, a
un contrôle total sur les récompenses.

• Stationnaire et Non-stationnaire: les MABs stochastiques peuvent être classés
en MABs stationnaires et non-stationnaires. Dans les MABs stationnaires, les ré-
compenses sont générées à partir de distributions stochastiques qui ne changent pas
dans le temps, tandis que dans les MABs non-stationnaires, la distribution stochas-
tique d’au moins un bras peut changer à tout moment.

Identifier le modèle d’un MAB est utile pour formaliser un problème de bandit et le
résoudre avec les bons outils. Dans cette thèse, nous nous intéressons principalement aux
environnements stochastiques-stationnaires.

Bandits multi-bras multi-joueurs Le problème du bandit multi-bras multi-joueurs
(MP-MAB) est une classe de problèmes MAB où, au lieu d’un agent unique, il existe
un ensemble [N ] de N joueurs, où tous les joueurs ont accès au même ensemble de bras
[K], et doivent prendre des décisions à certains instants pré-spécifiés et observer le ré-
sultat correspondant. Dans ce modèle, la notion de collision est introduite, c’est-à-dire
que lorsque deux joueurs ou plus choisissent le même bras en même temps, ils subissent
tous une collision. Différents modèles de collision ont été proposés, mais le plus simple
consiste à donner une récompense de 0 à chacun des joueurs qui entrent en collision. Dans
ce contexte, les joueurs doivent apprendre à accéder aux bras tout en maximisant leurs
récompenses, ce qui nécessite d’éviter les collisions.

En plus de la minimisation du regret attendu cumulé, un autre objectif commun
généralement étudié dans les MABs multi-joueurs est l’équité. Il a été récemment étudié
dans [13] dans le sens où les algorithmes doivent garantir que pour tous les pas de temps
t (i.e. uniformément), chaque bras k est tiré au moins brk.tc fois en t rounds.

Dans cette thèse, nous modélisons notre problème comme un MAB multi-joueurs, et
plus spécifiquement un MP-MAB massif puisque le nombre de joueurs (c’est-à-dire les
équipements dans un réseau IoT) est possiblement plus grand que le nombre de bras.
Nous considérons l’équité dans le chapitre 4, mais dans un contexte différent, où elle fait
référence à la récompense attendue cumulative de chaque joueur. La modélisation du
problème est présentée en détail dans la section 2.2, et les algorithmes MP-MAB conçus
pour les réseaux de communication sont ensuite présentés dans la section 2.3.
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Énoncé du problème

Comme indiqué précédemment, dans cette thèse, nous visons à optimiser les commu-
nications dans un réseau IoT. Les équipements finaux choisissent intelligemment leurs
paramètres de communication à chaque transmission de manière à maximiser le taux de
communication global du réseau. Pour cela, nous modélisons notre problème comme un
MP-MAB où les équipements sont les joueurs et où toute ressource (ou combinaison de
ressources 2) qui caractérise les communications et satisfait nos conditions (présentées ci-
dessous) peut être un bras (i.e. fréquence radio, puissance d’émission, facteur d’étalement
pour LoRa, etc.). Dans la suite de ce document, nous désignerons les bras du réseau IoT
par des “canaux” qui ne correspondent pas nécessairement à des canaux radio, et les
termes “acteur”, “ nœud” et “équipement” sont équivalents.

Dans un réseau IoT, le nombre de nœuds est dans la plupart des cas supérieur au
nombre de canaux. Il n’est donc pas réaliste de considérer un nombre de joueurs inférieur
au nombre de bras, comme le supposent la plupart des travaux antérieurs. De plus, les
nœuds ne transmettent pas à chaque créneau horaire, mais la fréquence d’envoi des paquets
à la passerelle dépend de l’application (santé, sécurité, villes intelligentes, marketing,
domotique...). Pour plusieurs applications temps réel, l’équipement doit envoyer un paquet
lorsqu’un événement inconnu et non contrôlé se produit. Par exemple, l’équipement d’un
utilisateur peut interagir avec son environnement en temps réel, pour obtenir un feu vert
lorsque l’utilisateur se trouve face à un carrefour, une publicité lorsque l’utilisateur se
trouve devant un magasin, un ticket lorsqu’il monte dans le bus... C’est pourquoi nous
supposons dans la suite que chaque joueur a une probabilité d’envoyer un paquet à chaque
pas de temps. Considérant que la probabilité d’envoyer un paquet dépend principalement
du cas d’usage, nous supposons que chaque joueur connaît sa propre probabilité d’envoyer
un paquet. Nous supposons que le nombre de joueurs est connu par la passerelle, ce qui
est réaliste dans les protocoles IoT (la passerelle peut garder la trace de tous les appareils
dont elle a reçu des paquets), et que la passerelle envoie cette information à chaque joueur
au début du jeu.

Nous permettons aux appareils de partager des informations en envoyant des messages
à d’autres appareils via la passerelle en utilisant le protocole IoT, où certains octets dans
la charge utile de chaque paquet peuvent être dédiés au partage d’informations avec

2. un bras peut être une paire de ressources, par exemple (facteur d’étalement, puissance d’émission)
pour LoRa
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d’autres joueurs. Par exemple, dans les réseaux LoRa, la charge utile de chaque paquet
peut contenir jusqu’à 255 octets [14, 15]. Nous supposons que, dans le même paquet, 8
octets de la charge utile peuvent être utilisés pour envoyer un message aux autres acteurs.
Nous distinguons ici les deux termes : un paquet correspond aux transmissions régulières
d’un équipement, et un message correspond à l’information partagée entre les joueurs.
Lorsque l’équipement envoie un paquet, il est actif pendant de petites fenêtres de temps
et peut recevoir des paquets. Il reçoit également des accusés de réception de la passerelle
si sa transmission est réussie.

Nous considérons un réseau IoT avec un nombre fixe de nœuds finaux communiquant
avec une seule passerelle suivant un protocole slotted-Aloha. Ce réseau intelligent sous
contrôle coexiste géographiquement avec d’autres réseaux qui peuvent partager le même
spectre et interférer avec lui. Les collisions sont prises en compte lorsque deux ou plusieurs
nœuds envoient des données en même temps sur le même canal. Nous distinguons ici deux
types de collisions :

• Collision interne : se produit entre les nœuds du réseau contrôlé.

• Collision externe : se produit entre un nœud du réseau contrôlé et d’autres nœuds
de réseaux externes coexistants.

La figure 2 présente une illustration du problème de congestion, où les flèches de même
couleur correspondent à des transmissions de paquets sur les mêmes canaux. Elle différen-
cie les collisions internes et externes.

Par souci de généralité et de simplicité, nous considérons que lorsqu’une collision
interne ou une collision externe se produit, tous les paquets des équipements en collision
sont simplement perdus, tandis que l’issue d’une collision dépend du protocole IoT. Par
exemple, dans le protocole LoRa [14, 15], le paquet ayant la plus grande puissance reçue
peut être décodé tandis que les paquets ayant une puissance reçue inférieure sont perdus
[16] (dans le chapitre 5, nous étudions une application sur les réseaux LoRa). Les collisions
externes rendent les probabilités de transmission réussie (et donc les qualités des canaux)
différentes pour chaque canal.

Bien que nous distinguions deux types de collisions, nous ne considérons pas que des
collisions puissent se produire lorsque la passerelle envoie des accusés de réception. En
effet, ces collisions en liaison descendante nécessitent qu’au moins deux accusés de ré-
ception soient envoyés par la passerelle au même moment à des équipements situés au
même endroit, ce qui ne peut pas se produire avec une passerelle unique utilisant un
protocole crénelé dans le temps, et qui serait improbable dans un réseau IoT réel, où
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Figure 2 – Illustration des collisions internes et externes

un nombre fini de passerelles est déployé pour couvrir la zone maximale. De plus, les ap-
pareils ne peuvent pas détecter les canaux, c’est-à-dire qu’ils ne peuvent pas distinguer les
collisions internes et externes, mais ils observent seulement le succès ou l’échec de leurs
transmissions. Nous considérons que l’objectif est de maximiser le nombre attendu de
transmissions réussies tout en consommant le moins d’énergie possible. En effet, comme
les protocoles IoT utilisent les retransmissions pour assurer la qualité de service (QoS),
augmenter les transmissions réussies conduit évidemment à diminuer le nombre de pa-
quets envoyés et donc la consommation d’énergie. Notez cependant que, selon le problème
considéré, chaque canal peut avoir une consommation d’énergie différente. Toujours dans
un souci de généralité et de simplicité, nous considérons que les bras ont le même coût
énergétique dans les chapitres 3 et 4. Pour situer ce scénario dans le cadre des bandits
multi-joueurs à plusieurs bras, la récompense correspond à la réception ou non de l’accusé
de réception de la passerelle.

Enfin, notez que seuls les équipements peuvent estimer la qualité des canaux, car la
passerelle ne peut pas savoir que des paquets ont été envoyés par certains équipements si
une collision se produit. Par conséquent, l’estimation de la qualité du canal doit être faite
de manière décentralisée.
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Contributions de la thèse

Les contributions principales de cette thèse peuvent être résumées comme suit :

• Nous proposons d’abord de mettre sur liste noire les mauvais canaux dans les réseaux
IoT afin d’optimiser le taux de communication réussie de tous les équipements. Pour
cela, nous développons un algorithme d’exploration collaborative CBAIMPB grâce
auquel les équipements coopèrent pour trouver, avec un certain niveau de confi-
ance, un ensemble de canaux optimaux en utilisant des algorithmes d’identification
des meilleurs bras. Nous étudions analytiquement et expérimentalement les perfor-
mances de notre algorithme en termes de complexité d’échantillonnage et de coût
de communication.

• La deuxième contribution représente le travail majeur de cette thèse. Afin de sur-
monter les faiblesses de la première approche proposée, nous proposons deux poli-
tiques qui assignent chaque joueur à un bras auquel il se tient pendant la phase
d’exploitation : Decreasing-Order-Reward-Greedy (DORG) se concentre sur le nom-
bre de communications réussies et nous montrons qu’il est optimal dans certains
cas, tandis que Decreasing-Order-Fair-Greedy (DOFG) garantit en plus l’équité entre
les joueurs jusqu’à un certain niveau. Afin d’implémenter une approximation des
qualités du canal qui sont utilisées pour trouver les politiques, nous proposons un
algorithme d’exploration décentralisé avec des échanges d’informations contrôlés en-
tre les joueurs. Nous montrons que sa complexité d’échantillonnage est proche de
l’optimum et que, lorsque DORG est optimal, son pseudo-regret, lorsqu’il utilise le
modèle approximé, est optimal par rapport à l’horizon temporel T . Nous montrons
également que DOFG est toujours équitable lorsqu’on utilise le modèle approximé.
Enfin, nous fournissons des preuves expérimentales que les algorithmes proposés
sont plus performants que l’état de l’art en termes d’équité et de succès des com-
munications.

• Pour la contribution finale, nous redéveloppons un simulateur de réseau LoRa en
langage C et testons les algorithmes développés. Nous étudions le taux de commu-
nication réussi et la consommation d’énergie d’un réseau LoRa, et prouvons que nos
algorithmes sont plus performants que l’algorithme original Adaptive Data Rate
(ADR) actuellement implémenté dans les réseaux LoRa.

Outre les contributions susmentionnées, nous fournissons également le cadre open-
source de tous les algorithmes développés et les algorithmes MAB de pointe avec lesquels
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nous avons comparé les nôtres, ainsi que le code du simulateur de réseau LoRa.

Chapitre 1:
Introduction

Chapitre 2: MABs
Massifs et IoT

Chapitre 3: Exploration Collab-
orative dans Les MABs Massifs
Stochastiques à Multi-Joueurs

Chapitre 4: Exploration et
Exploitation Collaboratives dans
les Bandits Multi-Joueurs Massifs

Chapitre 5: MABs Multi-
Joueurs pour l’Optimisation
des Communications LoRa

Chapitre 6:
Conclusion Générale

et Perspectives

Figure 3 – La structure de la thèse
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Structure de la Thèse

La structure de cette thèse est présentée dans la figure 3 et peut être décrite comme
suit: Après une chapitre introductif (chapitre 1), nous présentons au chapitre 2 les bandits
multi-bras multi-joueurs et l’état de l’art de leurs applications pour les réseaux IoT.
Le chapitre 3 présente ensuite notre première approche de la mise sur liste noire des
canaux sous-optimaux, tandis que le chapitre 4 présente nos politiques DORG et DOFG et
l’algorithme d’exploration collaborative. Dans le chapitre 5, nous présentons l’application
des MABs aux réseaux LoRa en utilisant un simulateur de réseau LoRa. Enfin, nous
concluons et ouvrons des perspectives au chapitre 6.
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1

INTRODUCTION

This manuscript concludes my PhD thesis, which started in January 2019 and finished by
May 2022. My research was held in Orange Labs in Grenoble (France) in collaboration
with IMT Atlantique in Rennes (France). This work was done under the supervision of
Doctor Nadège Varsier from Orange Labs in Grenoble and Doctor Raphaël Féraud from
Orange Labs in Lannion, and under the direction of Doctor Patrick Maillé from IMT
Atlantique in Rennes.

In this introductory chapter, we first present the context of the thesis and the moti-
vation behind it in section 1.1. We then introduce the main contributions of this work in
section 1.2 and we terminate by presenting the structure of this manuscript in section 1.3.

1.1 Thesis Context

The Internet of Things (IoT) is a new, but at the same time an old term. The phrase
“Internet of Things” came to life by the father of IoT Kevin Ashton 1 during a presentation
he made in 1999. He used it to link the idea of radio frequency identification (RFID) to
the then new topic Internet [1]. Since then, the use of this term has flourished and billions
of devices are already deployed worldwide where IoT Analytics expect that by 2025,
there will likely be more than 27 billion IoT connections [2] allowing a wide range of
different applications. This wide and extensive expansion of IoT devices and the variety
of applications generate different challenges mainly in terms of reliability and energy
efficiency, which drive researchers and developers to design different efficient radio access
schemes. Similarly, the rapid growth of the Machine Learning market and its applicability
on a very wide range of applications paves the way to combine it with IoT, i.e. it is the
time to make IoT devices intelligent.

For this sake, in this thesis we aim to improve the performance of IoT networks
mainly in terms of reliability while consuming as little energy as possible and consequently

1. Kevin Ashton was cofounder and executive director of the Auto-ID Center.
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Introduction

improving the battery life. We propose to use Reinforcement Learning techniques and
more specifically the multi-player multi-armed bandits (MP-MAB) for an efficient resource
allocation mechanism.

“The Internet of Things has the potential to change the world, just as the
Internet did. Maybe even more so.”

– Father of IoT, Kevin Ashton

Internet of Things Despite the great revolution of Internet of Things, there is not yet
a universally unified definition. We hereby present the simple definition of IoT provided
by Wikipedia [3]: “The Internet of things describes physical objects that are embedded with
sensors, processing ability, software, and other technologies that connect and exchange data
with other devices and systems over the Internet or other communications networks”. The
plurality of IoT definitions comes from the various applications and domains of IoT. It has
intervened in all the aspects of our lives. It can greatly improve education, health, security,
as well as decision-making and productivity of enterprises in retail, manufacturing and
many other sectors. The Internet of Things along with artificial intelligence mark a sig-
nificant part of the fourth industrial revolution [4]. Now, all kinds of everyday objects can
be connected to the Internet, so that there are more smart devices and sensors on the IoT
than there are people. These connected devices and sensors collect and share data for use
and evaluation by many organizations including businesses, cities, governments, hospitals
and individuals generating massive amounts of data. In order to provide and support all
types of IoT applications, many different technologies with different characteristics are
available.

Wireless technologies for IoT IoT devices use the technology that best fits their lim-
itations. Critical IoT that covers applications including traffic safety and remote surgery
in healthcare need high reliability, availability and low latency [5]. Such applications are
best served by short-range technologies such as Wi-Fi, Bluetooth and ZigBee that pro-
vide coverage up to 1 km [6]. The cellular networks such as 2G/3G, 4G/LTE and 5G are
suitable for long-range applications (up to 16 km) [6]. Long-range technologies such as
Low-power Wide-Area Network (LPWAN) are suitable for applications that need wide
coverage and long battery lifetime.
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One common constraint in IoT devices is the low energy consumption such as in smart
metering and industrial monitoring, as they will be deployed without direct power access
and will be running on batteries that cannot be easily changed. LPWAN is a long-range
technology that is characterized by its low energy consumption as the LPWAN transceivers
can run on small, inexpensive batteries for up to 20 years. It provides wide coverage area
especially in challenging indoor places such as in basements, and it is characterized by its
low data rate, low cost and the ability to install massive number of devices.

Radio frequency (RF) spectrum In terms of RF spectrum, we distinguish between
two types of technologies depending on the spectrum they operate in: licensed or un-
licensed spectrum (license exempt frequency bands). Licensed spectrum corresponds to
a part of the public frequency space that has been licensed by national or regional au-
thorities to a private company, typically a mobile network operator, under the condition
of providing a certain service to the public such as cellular connectivity [7]. The Cellu-
lar Internet of Things (CIoT) provides technologies using licensed bands for long-range
applications as standardized by the 3rd Generation Partnership Project (3GPP) in its
Release 13. It includes Extended Coverage GSM for Internet of Things (EC-GSM-IoT),
Long Term Evolution Machine Type Communications Category M1 (LTE MTC Cat M1
or LTE-M) and Narrowband IoT (NB-IoT). The reader is referred to the book [7] for
more details. Licensed spectrum is, however, commonly associated with high costs.

On the other hand, unlicensed spectrum corresponds to portions of the public fre-
quency space that can be said to remain public and therefore free of licensing costs [7].
Among the most popular unlicensed bands are the Industrial, Scientific and Medical (ISM)
bands that are centered at 2.4 GHz, 868/915 MHz, 433 MHz, and 169 MHz, depending
on the region of operation [5]. By not requiring operators to obtain a costly license and
special permission for its use, unlicensed spectrum is an inexpensive and barrier-free op-
tion for meeting communication requirements. Along with Wi-Fi, Bluetooth and ZigBee,
LPWAN technologies commonly operate in the ISM bands. SIGFOX and LoRa are the
most common known LPWAN technologies that operate in the unlicensed ISM bands.
LoRa is presented in details in chapter 5.

LPWAN has attracted considerable market interest and media attention due to its
operation in license-exempt bands and its support for long device battery life, low device
complexity and high system capacity. However, with the great increase of IoT deployment
the world is witnessing and the high demand on LPWAN, a major problem of systems’
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coexistence arises. Inside the unlicensed band, the different systems are not separated
in the frequency domain but are overlapping in the sense that they may use the same
frequency resource at any time causing interference and hence transmission failures.

In this context, this thesis aims to solve the following problem: How can IoT devices
avoid interference amongst them and avoid interfering with coexisting networks sharing
the same spectrum, in order to provide high reliability while respecting the IoT constraints,
and in particular preserving low energy consumption? Our goal is to make the IoT devices
intelligent by programming and configuring them so that they are aware of the best
operating parameters (e.g. transmitting power, radio frequency) such that they avoid
interference and congestion.

We hereby, propose the use of the multi-player multi-armed bandit (MP-MAB) which is
a field of Reinforcement Learning (RL). MP-MAB learning is a sequential decision making
process, where a set of players (learners), of which each interacts with the environment
by recursively taking an action and then observing a reward which is a certain measure
of success of this action, produced by the environment and affected by the selections of
all players in the group. The goal of each player is to maximize its rewards, by trials and
errors. MP-MAB is presented in details in Chapter 2.

1.2 Thesis Contributions

In this thesis, we model the IoT optimization problem as a massive MP-MAB, where
the devices are the players and the communication parameters (such as radio channels)
are the arms, with collisions possibly preventing packet reception. Unlike previous works
in MP-MABs, a high number of players, possibly greater than the number of arms, aim
to optimize their communications while not sensing any type of information except the
success or failure of their transmissions. In this context, the main contributions of this
thesis can be summarized as follows:

• We first propose to blacklist bad channels in IoT networks in order to optimize
the successful transmission rate of all devices. For this sake we develop a collabora-
tive exploration algorithm CBAIMPB by which the devices cooperate to find with
a certain level of confidence a set of optimal channels by using best arms identi-
fication algorithms as subroutines. We study analytically and experimentally the
performance of our algorithm in terms of sample complexity and communication
cost.
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• The second contribution represents the major work of this thesis. In order to over-
come the weaknesses of the first proposed approach, we propose two greedy policies
that assign each player to one arm that it sticks to during the exploitation phase:
Decreasing-Order-Reward-Greedy (DORG) focuses on the number of successful trans-
mission and we show that it is optimal in some cases, while Decreasing-Order-Fair-
Greedy (DOFG) additionally guarantees fairness between players up to a certain level.
In order to implement an approximation of the channel qualities that are used to
find the greedy policies, we propose a decentralized exploration algorithm with con-
trolled information exchanges between players. We show that its sample complexity
is near optimal and when DORG is optimal, its pseudo-regret, when using the approx-
imated model, is optimal with respect to the time horizon T . We also show that
DOFG is still fair when using the approximated model. We finally provide experimen-
tal evidence that the proposed algorithms outperform the state-of-the-art in terms
of fairness and successful transmission.

• At the end, we redevelop a LoRa network simulator in C language and test our
developed algorithms. We study the reliability and the energy consumption of a
LoRa network, and prove that our algorithms outperform the original Adaptive
Data Rate (ADR) algorithm currently implemented in LoRa networks.

Along with the aforementioned contributions, we also provide the open-source frame-
work of all the developed algorithms and the state-of-the-art MAB algorithms we com-
pared ours with, as well as the LoRa network simulator code.

1.3 Thesis Structure

The structure of this thesis is presented in Figure 1.1 and can be described as follows: after
this introductory chapter, we present in Chapter 2 the multi-player multi-armed bandits
and the state of the art of their applications for IoT networks. Chapter 3 then presents
our first approach of blacklisting sub-optimal channels while Chapter 4 introduces our
greedy policies and the collaborative exploration algorithm. In Chapter 5, we present the
application of MABs on LoRa networks using a LoRa network simulator. At the end, we
conclude and open perspectives in Chapter 6.
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2

MASSIVE MABS AND IOT

Key Takeaways: In the previous chapter, we presented the high importance of IoT
and its challenges. In this chapter, we present the multi-player multi-armed bandits
which we aim to use to handle the optimization problem of the communications in
IoT networks. IoT devices are considered as players and the communication param-
eters are the arms. The devices aim to optimize their communications by avoiding
collisions with other devices inside and outside the network. Many previous works
handled the problem of optimizing IoT communications using MABs, and are pre-
sented in this chapter.

The remaining of this chapter is organized as follows: section 2.1 presents an overview on
multi-armed bandits including their classification, algorithms and applications. We then
present the formulation of the problem we handle in section 2.2, and finally we present a
review of the MAB applications on IoT networks in section 2.3.

2.1 Overview on Multi-Armed Bandits

As explained previously, in this thesis we make use of Reinforcement Learning techniques
in order to optimize communications in IoT networks. More particularly, we focus on
multi-armed bandits (MAB). MAB comes from slot machines, known as bandits as they
typically take your money. It is a class of RL problems that refers to an online decision-
making game where in the classical formulation of the problem, as presented in [8, 9], a
set of several arms (actions) in a certain environment; each is associated to a sequence of
rewards that are randomly and independently drawn according to a fixed but unknown
distribution, is available to an agent (also called a player) that must take a sequence of
actions while observing the corresponding sequence of rewards. Figure 2.1 illustrates this
cycle. The main objective is to discover the best actions, that is, those offering the highest
rewards, and to exploit them. In particular, the agent faces the so-called exploration-
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exploitation dilemma: it must try all actions to learn what is the best (exploration) but
needs to quickly converge to the (believed) best one to accumulate rewards (exploitation).

Figure 2.1 – Agent-environment interaction in a multi-armed bandit

A policy, or allocation strategy is an algorithm that chooses the next action to play based
on the sequence of past plays and obtained rewards. An optimal policy is the policy that
maximizes the cumulative reward (i.e. chooses the best arm at each iteration).

2.1.1 Classification of Multi-armed Bandits

Depending on the model of the reward function, there are different variants of the MAB
model, of which we distinguish between:

• Stochastic vs Adversarial: in stochastic MABs [11], the rewards are generated
independently from unknown stochastic distributions associated with each arm,
whereas in adversarial MABs [12] no statistical assumptions are made whatsoever
about the nature of the process generating the rewards of the arms, but an adver-
sary, rather than a well-behaved stochastic process, has a complete control over the
rewards.

• Stationary vs Non-stationary: stochastic MABs can be classified into stationary
and non-stationary MABs. In stationary MABs, the rewards are generated from
stochastic distributions that do not change in time, while in non-stationary the
stochastic distribution of at least one arm may change at any time.

Identifying the model of a MAB is useful to formalize a bandit problem and solve it with
the correct tools. In this thesis, we are mainly concerned with stochastic-stationary envi-
ronments. In the following, we present some algorithms (i.e. policies) that are commonly
used in solving MABs depending on their models.
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2.1.2 Algorithms for Multi-Armed Bandits

Multi-armed bandits have been extensively studied in the literature that provided many
algorithms to solve them. Before we present such algorithms, we first present how the
performance of MAB algorithms (or policies) is studied.

Performance Metric

If the optimal policy maximizes the cumulative reward, then it should always pull one of
the optimal arms (it can be not unique), but this is not realistic as the player does not
know the true means, nor the optimal arms. A popular measure of a policy’s success in
addressing the exploration-exploitation dilemma is the regret, which is the loss due to the
fact that the globally optimal policy is not followed all the times. Formally, let [K] be
the set of K ≥ 2 arms, and Xi,t be the unknown reward associated to arm i at time t.
Following policy π, at each time t = 1, 2, ... the player selects an arm kt and receives the
associated reward Xkt,t. Let tk(t) denote the number of times the player selected arm k

up to time t. Then, the regret of policy π after T plays is defined by

Rπ(T ) = max
i∈[K]

T∑
t=1

Xi,t −
T∑
t=1

Xkt,t (2.1)

and the expected regret is:

E[Rπ(T )] = E
[
max
i∈[K]

T∑
t=1

Xi,t −
T∑
t=1

Xkt,t

]
(2.2)

While the expected regret is the expectation of the regret with respect to the arm which is
optimal on the sequence of the rewards, another important averaged value that compares
to the optimal arm in expectation is the pseudo-regret, and it is defined as follows:

Rπ(T ) = max
i∈[K]

E
[
T∑
t=1

Xi,t −
T∑
t=1

Xkt,t

]
(2.3)

In the stochastic setting, where the environment draws the rewards from probability
distributions associated to the arms independently from the past and reveals them to
the player, let θk denote the mean reward of arm k, k∗ denote any optimal arm, and
θ∗ := θk∗ := maxk∈[K](θk) refer to the mean reward of an optimal arm. The remaining
arms are called sub-optimal arms and let ∆k = θ∗−θk denote the suboptimality parameter
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of arm k. Then, the pseudo-regret of π after T plays is defined as follows.

Definition 2.1: Pseudo-Regret

For a policy π, a bandit problem of K arms, where each arm k has a mean θk, the
pseudo-regret at horizon T is defined as:

Rπ(T ) = θ∗.T −
T∑
t=1

E[θkt ] (2.4)

=
(

K∑
k=1

E[tk(T )]
)
θ∗ − E

K∑
k=1

tk(T )θk (2.5)

=
K∑
k=1

∆kE[tk(T )]. (2.6)

In stochastic framework, the pseudo-regret presents the main quantity of interest. In the
following, we present two famous pseudo-regret lower bounds that elucidate what are the
best possible upper bounds that one can hope to achieve.

Pseudo-Regret Lower Bounds Lai and Robbins in [9], provided a distribution-
dependent pseudo-regret lower-bound that states that player’s pseudo-regret over T plays
can be as small as Ω(log T ). Their lower-bound applies to any one dimensional exponen-
tial distribution, but since in this work we are interested in Bernoulli distributions, we
hereby present their lower bound restricted to Bernoulli families in Theorem 2.1, that is
introduced and proved in [17].
First, we need to introduce the notion of Kullback-Leibler divergence for Bernoulli distri-
butions in the following definition.

Definition 2.2: Kullback-Leibler Divergence for Bernoulli distributions

The Kullback-Leibler divergence between a Bernoulli of parameter p ∈ [0, 1] and a
Bernoulli of parameter q ∈ [0, 1] is defined as

kl(p, q) = p log p
q

+ (1− p) log 1− p
1− q . (2.7)
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Then the distribution-dependent pseudo-regret lower-bound is presented as follows.

Theorem 2.1

Consider a strategy that satisfies E[tk(T )] = o(T a) for any set of Bernoulli reward
distributions, any arm k with ∆k > 0, and any a > 0. Then, for any set of Bernoulli
reward distributions the following holds:

lim inf
T−→+∞

Rπ(T )
log T ≥

∑
k:∆k>0

∆k

kl(θk, θ∗)
(2.8)

They prove that this bound is optimal in the following sense: there does not exist a strategy
for the player with a better asymptotic performance in any problem. This lower-bound
is of high interest to design efficient algorithms, and a large number of research work on
MAB algorithms has focused on finding algorithms whose regret upper bound matches this
lower-bound asymptotically. When the regret upper-bound matches the lower-bound with
the same constant as in the big-O notation, we say that the algorithm is asymptotically
optimal, otherwise the algorithm is said to be order-optimal if it matches the lower-bound
with a larger constant.

Another fundamental lower bound presented in theorem 2.2 is a distribution-independent
lower bound that states that for certain problems there is no algorithm that performs bet-
ter than Ω(

√
KT ) [18, 19].

Theorem 2.2

With a fixed time horizon T and number of arms K, for any bandit algorithm π,
there exists a bandit instance such that Rπ(T ) ≥ Ω(

√
KT ).

This lower bound is “worst-case”, leaving open the possibility that certain bandit algo-
rithms have low regret for many other problem instances.

Other than regret minimization, a commonly studied objective in MABs is best-arms
identification which will be presented in chapter 3 .
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Algorithms for MABs

We hereby introduce the common strategies that deal with MABs.
Stationary stochastic MABs. The most popular bandit algorithm that deals with

stationary stochastic MABs is the Upper Confidence Bound (UCB) algorithm [11]. It is
based on the principle of optimism in face of uncertainty: when the expected reward of
an arm is uncertain and the probability of it being the optimal action is high enough, the
policy favours the selection of that arm. The more an arm is sampled, the more accurate
is its estimate of rewards, which reduces the effect of optimism and eventually increases
the selection of the action with highest mean reward. Based on this, it builds a measure of
the uncertainty or variance in the estimate of each arm (i.e. UCB), then the arm with the
greatest average reward plus the UCB is selected each time. UCB is order-optimal (i.e. its
regret upper bound matches Lai and Robbins’ lower bound [9]). Upper Confidence Bound
1 Tuned (UCB1 Tuned) [20] and Kullback Leibler Upper Confidence Bound (KL-UCB)
[21] are two variants of UCB that are also used in stationary MABs and are respectively
order-optimal and asymptotically optimal.
Another commonly used algorithm is Thompson Sampling (TS). This is a Bayesian al-
gorithm proposed by Thompson in 1933 in a medical context (online selection of the
best treatment) [22]. It assumes a Bayesian prior distribution for each arm as a starting
point. Then, at each round it samples from each arm distribution, chooses the action
with highest sample, i.e. it chooses action with the probability that this action has the
highest expected reward under the posterior distribution, and it updates its distribution
using the Bayes’s rule with the received reward. The updated distribution is called the
posterior distribution. Authors in [23] provided finite analysis study of TS and proved it
has asymptotically-optimal regret upper bound.

Non-stationary stochastic MABs. One of the popular used algorithms to deal with
non-stationary stochastic MABs is Discounted UCB. It was first proposed by [24] and then
it has been analyzed by [25]. It works by penalizing the past rewards by multiplying them
with a discount factor in order to forget them and give more weight to new rewards.
Another way to forget about old rewards is by using a sliding window of a fixed size τ ,
so that only the last τ rewards are taken into account. This method is used in sliding-
window UCB [26]. Many other algorithms that deal with non-stationarity are provided in
the literature such as: Switching Thompson Sampling (STS) [27] , Switching Thompson
Sampling with Bayesian Aggregation (STSBA) [28], Discounted Thompson Sampling [29],
Thompson Sampling with sliding window [30] and REXP3 [31]. Also the authors in [32]
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propose several algorithms that handle non-stationarity with both unique best arm and
switching best arm settings.

Adversarial MABs In this type of bandits, the rewards are generated by a process
that cannot be considered stochastic. It can be seen as an adversary generating arbitrary
rewards that make the player’s policy achieve maximized regret. Hence, deterministic poli-
cies such as UCB cannot be applied since the adversary would easily know the selected
arm and would assign it a low reward. So, we need more robust algorithms. The first
and most well-known algorithm that deals with such bandits is Exponential weights for
Exploitation and Exploration (Exp3) [33]. It selects an arm according to distributions as-
signed to each arm, where each is a mixture of the uniform distribution and a distribution
which assigns to each action a probability mass exponential in the estimated cumulative
reward for that action. It achieves an order-optimal regret upper-bound of the same or-
der [33]. Exp3.P and Exp3.S are two variants of Exp3 that are also used in adversarial
environments [33].

The aforementioned algorithms were developed and analyzed for MAB problems with a
single player. Another class of MABs is the multi-player MAB problem which is presented
in the following section.

2.1.3 Multi-Player Multi-armed Bandits

The multi-player multi-armed bandit (MP-MAB) problem is a class of MAB problems
where instead of a single agent, there exists a set [N ] of N players, where all players have
access to the same set of arms [K], and have to make decisions at some pre-specified time
instants and observe the corresponding outcome. In this model, the notion of collisions is
introduced, i.e. whenever two or more players select the same arm at the same time, they
all suffer from a collision. Different collision models have been proposed, but the simplest
one consists in giving a 0 reward to each of the colliding players. In this context, the
players must learn to access the arms while maximizing their rewards which necessitates
avoiding collisions.

In addition to minimizing the cumulative expected regret, another common objective
usually studied in multi-player MABs is fairness. It was recently studied in [13] in the
sense that the algorithms must ensure that for all time steps t (i.e. uniformly), each arm
k is pulled at least brk.tc times in t rounds.

In this thesis, we model our problem as a multi-player MAB, and more specifically a
massive MP-MAB as the number of players (i.e. the devices in an IoT network) is possibly
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greater than the number of arms. We consider fairness in Chapter 4, but in a different
context, where it refers to the cumulative expected reward of each player. The modelling
of the problem is presented in details in section 2.2, and MP-MAB algorithms designed
for communication networks are then presented in section 2.3.

2.1.4 Applications of Multi-armed Bandits

Multi-armed bandit problems arise in a variety of application domains. The survey in [10]
provides a review of top recent developments in multiple real-life applications of MABs
such as in healthcare, finance, telecommunications and others. In this section we present
some of such applications.

Clinical Trials The original application of MABs has been the design of “ethical” med-
ical trials. An arm represents a treatment, and the reward follows a Bernoulli distribution:
a 0 reward means the treatment did not heal the disease, and a 1 indicates a success. The
mean of an arm here represents the mean success rate of a treatment. The doctor in a
clinical trial aims to find the best treatment, which is the one with the highest mean in the
shortest possible number of trials. For this sake, the doctor follows the “best arm identi-
fication” model (see Chapter 3 for details), while maximizing the rewards corresponds to
maximizing the number of patients being successfully treated, i.e. attain useful scientific
data while minimizing harm to the patients.

Recommendation Services In e-commerce and other digital domains, companies fre-
quently want to offer personalised product recommendations to their users. They collect
data on their customers’ preferences and try to match up customers with the product
that they are most likely to enjoy. For this sake, they would apply multi-armed bandits,
where the arms correspond to items to recommend (e.g., ads, articles or movies) and the
reward is the feedback from the customers. MABs then recommend products with the
highest expected value of interest. In this context, authors in [34] study slowly-varying
non-stationary models applied to recommender systems.

Cognitive Radio (CR) An application to cognitive radios has generated much inter-
est and has been extensively studied [35, 36, 37, 38, 39, 40, 41]. As defined in Wikipedia
Encyclopedia 1: a cognitive radio (CR) is a radio that can be programmed and configured

1. https://en.wikipedia.org/wiki/Cognitive_radio
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dynamically to use the best wireless channels in its vicinity to avoid user interference
and congestion. Such a radio automatically detects available channels in wireless spec-
trum, then accordingly changes its transmission or reception parameters to allow more
concurrent wireless communications in a given spectrum band at one location. This pro-
cess is a form of dynamic spectrum management. This management can be handled with
MABs that recommend the best transmission parameter for each communication based
on last observations of previous communications, and more specifically with MP-MABs
that moreover deal with multiple devices in a network.

Along with the aforementioned applications, a wide variety of successful applications
of single and multi-player MABs can be found in the literature, such as A/B testing [42],
Network routing [43], Dynamic pricing of items [44], tree search [45] , etc. As highlighted
before, this thesis work focuses on IoT applications. In the following section, we formalize
our bandit problem to best suit IoT networks.

2.2 Problem Statement

As previously stated, in this thesis we aim to optimize the communications in an IoT
network. The end-devices will intelligently select their communication parameters at each
transmission such that they maximize the overall successful transmission rate of the net-
work. For this sake, we model our problem as a MP-MAB where the devices are the players
and any resource (or combination of resources 2) that characterizes the communications
and satisfies our conditions (presented below) can be an arm (i.e. radio frequencies, trans-
mitting power, spreading factor for LoRa, etc.). In the rest of this document, we will refer
to the arms in IoT network by “channels” which does not necessarily correspond to radio
channels, and the terms “player”, “node” and “device” are equivalent.

In an IoT network, the number of nodes is in most cases greater than the number of
channels, so considering a number of players less than the number of arms as assumed
in most of previous works is unrealistic. Also, the nodes do not transmit at every time
slot, but the frequency of sending packets to the gateway depends on the application
(healthcare, security, smart cities, marketing, home automation...). Moreover, for several
real-time applications, the device has to send a packet when an unknown and uncontrolled
event occurs. For instance, a user’s device can interact with its environment in real-time,
to get a green light when the user faces a crossroad, an ad when the user is in front of

2. an arm can be a pair of resources, e.g. (spreading factor, transmitting power) for LoRa
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a shop, a ticket when getting on the bus... That is why in the following we assume that
each player has a probability of sending a packet at each time step. Considering that the
probability of sending a packet depends mainly on the use case, we assume that each
player knows its own probability of sending a packet. We assume that the number of
players is known by the gateway, which is realistic in IoT protocols (the gateway can keep
track of all the devices it has received packets from), and that the gateway sends this
information to each player at the beginning of the game.

We allow the devices to share information by sending messages to other devices through
the gateway using the IoT protocol, where some bytes in the payload of each packet can
be dedicated to share information with other players. For example, in LoRa networks
the payload of each packet can contain up to 255 bytes [14, 15], we assume that in the
same packet 8 bytes of the payload can be used to send a message to other players.
We hereby distinguish between the two terms: a packet that corresponds to the regular
transmissions of a device, and a message that corresponds to the information shared
between the players. When the device sends a packet, it is active during small time
windows and may receive packets. It also receives acknowledgements from the gateway if
its transmission is successful.

We consider an IoT network with a fixed number of end-nodes communicating with a
single gateway following a slotted-Aloha protocol. This intelligent under-control network
is geographically coexisting with other networks that may share the same spectrum and
interfere with it. Collisions are taken into account when two or more nodes send data at
the same time on the same channel. We hereby distinguish between two types of collisions:

• Internal collision: happens between the nodes in the controlled network

• External collision: happens between a node in the controlled network and other
nodes in external coexisting networks

Figure 2.2 presents an illustration of the congestion problem, where the arrows of the
same colors correspond to packet transmissions on the same channels. It differentiates
between internal and external collisions.

For the sake of generality and simplicity, we consider that when an internal collision or
an external collision occurs, all the packets of the colliding devices are simply lost, while
the outcome of a collision depends on the IoT protocol. For instance in LoRa protocol
[14, 15], the packet of the greatest received power might be decoded while the packets
with lower received powers are lost [16] (in Chapter 5 we consider an application on LoRa
networks). The external collisions make the probabilities of successful transmission (and
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Figure 2.2 – Illustration of internal and external collisions

hence the channels’ qualities) different for each channel.
Although we distinguish two types of collisions, we do not consider that collisions

could occur when the gateway sends acknowledgements. Indeed, these downlink collisions
require that at least two acknowledgements are sent from the gateway at the same time
to devices located at the same place, which cannot happen with a unique gateway using a
protocol slotted in time, and which would be unlikely in a real IoT network, where a finite
number of gateways is positioned to cover the maximum area. Also, the devices cannot
sense the channels; i.e. they cannot distinguish between internal and external collisions,
but they only observe the success or failure of their transmissions.

We consider that the aim is to maximize the expected number of successful trans-
missions while consuming as little energy as possible. Indeed, as the IoT protocols use
re-transmissions for ensuring the quality of service (QoS), increasing the successful trans-
missions obviously leads to decreasing the number of sent packets and hence the energy
consumption. Notice however, that depending on the considered problem, each channel
can have a different energy consumption. Again for the sake of generality and simplicity
we consider that the arms have the same energy cost in Chapters 3 and 4. To set this
scenario into the framework of multi-player multi-armed bandits, the reward corresponds
to the reception or not of the acknowledgement from the gateway.
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Finally, notice that, in the general case, the gateway cannot know that packets have
been sent by some devices if a collision occurs. As a consequence, the estimation of the
channel quality is done at the device side in a decentralized way.

Notations To ease the reading of the rest of this document, the reader is referred to
the list of notations on page 4.

Formulation Formally, we consider a large set [N ] of N devices (players) communi-
cating with a unique gateway on a limited number K of orthogonal channels (N ≥ K),
using an acknowledgement protocol slotted in time. Let [K] denote the set of K arms. At
each time slot t each player n ∈ [N ] has a constant probability pn to send a packet,
such that 1 > p > pn > 0, where p is the duty cycle that is imposed to the IoT
network in order to share the free bandwidth with other users. Without loss of gen-
erality, in the following we assume that: the indices of players are sorted in decreas-
ing order of their probability of sending a packet: p1 ≥ ... ≥ pN . At each time slot t,
the set Nt of players sending packets is selected by N independent Bernoulli samples:
Nt := {n ∈ [N ] such that an = 1, with an ∼ B(pn)}.

For a given time slot t, let kt,n (or kn when no confusion is possible) denote the arm
played by player n. The transmission of a packet is successful if it does not collide with
other packets. The random variable representing an external collision on arm k is denoted
by Ek ∼ B(θk) (equals 0 if collision, 1 otherwise). Similarly, internal collisions between the
controlled players are represented by the random variables (Ik)k∈[K] (equals 0 if collision, 1
otherwise) and depend on the implemented policy. After playing arm k, player n observes
the binary outcome Y k

n = EkIk, i.e., knows whether a collision occurred or not (through
an acknowledgement) but cannot distinguish external and internal collisions.

Again, we will call a policy a (possibly randomized) way for players to select the channel
to use for their next transmission. Formally, a policy π will be a vector of probability
distributions over the set of arms: π = (π1, ..., πN), with πn = (π1

n, ..., π
K
n ), where πkn ∈ [0, 1]

denotes the probability that player n chooses arm k for sending a packet. We denote by
µkn,θ(π) the expected reward in model θ = {θ1, ..., θK} of playing arm k by player n while
the other players follow policy π, where θk presents the mean reward of arm k. µkn,θ(π)
is the probability that no external collision occurs times the probability that no internal
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collision occurs; and as the players are selecting the arms independently we then have,

µkn,θ(π) = P(channel k is not used externally)

× P(∀n′ 6= n, n′ is not using channel k)

= θk
N∏

n′=1,n′ 6=n
P(n′ is not using channel k)

= θk
N∏

n′=1,n′ 6=n
(1− P(n′ is active)P(n′ picks k))

Hence we get,

µkn,θ(π) = θk
N∏

n′=1,n′ 6=n
(1− pn′πkn′). (2.9)

Equation (2.9) is basic for our work in the next chapters.

2.3 MP-MABs for Optimizing the Performance of
Communication Networks: State of the Art

Multi-player multi-armed bandits have gained a great interest for optimizing the per-
formance of communication networks in the last years, especially for dynamic spectrum
access. In this section, we present recent works that handle the use of MP-MABs for
optimizing the performance of communication networks.

Opportunistic Spectrum Access (OSA) OSA model is one of the most widely used
models for dynamic spectrum access. Spectrum sensing is the enabling function for OSA.
In OSA, as presented in [46], there are primary users PUs (licensed users) that have a
strict priority over secondary users SUs (unlicensed users). In this model the SUs op-
portunistically access the spectrum bands of PUs which are temporally unused. Before
transmission, the SUs in the OSA model need to know the busy/idle status of the spec-
trum bands which they are interested in. Thanks to their spectrum sensing capacity, they
can analyze and access the unused spectrum bands of the PUs, i.e., the spectrum holes,
so that the PUs’ QoS will not be degraded.

Decentralized multi-player multi-armed bandits have been studied for OSA in [47, 48,
38, 49]. As the users can differentiate between internal and external collisions, the objective
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of those works is to avoid collisions between concurrent SUs, that share the same channels,
while choosing the best channels, i.e. with the highest probabilities to be free of PUs. This
line of work makes the assumption that there are less players than channels (N ≤ K),
the collisions with other players are observed, and uses orthogonalization techniques to
avoid collisions. In [40], the authors propose to use internal collisions to estimate in a first
phase the number of players N and the value of arms and then a Musical Chair approach
(i.e. an approach where each player keeps hopping between the arms until it does not
encounter internal collisions so it hangs on it) to allocate each player on a different N -
best arm. In [50], the authors improve this approach by reducing the first phase to the
estimation of the value of arms and then use a trekking approach to allocate each player
on a different N -best arm without the knowledge of the number of players. In [39], the
authors propose a communication protocol based on controlled collisions that achieves
almost the same performance as a centralized algorithm. In [51], the authors improve this
result by electing a leader that explores the arms and allocates other players on different
estimated N -best arms. The leader communicates to other players the list of estimated
N -best arms when it changes using the same communication protocol as in [39]. This
algorithm is asymptotically optimal. An interesting extension of the problem setting was
proposed in [52] for handling the case where the mean rewards of arms are not the same
for each player.

This thread of research makes the assumption that sensing information is available,
which is unrealistic for the low-cost and low-energy consumption IoT end-devices as sens-
ing is known to be high-energy consuming as detailed in [53, 54]. Thus, the MAB model
that uses sensing can no longer be applied. Also, it assumes that the number of players is
small (N ≤ K), which is also unrealistic for IoT networks where the number of devices is
greater than the number of resources. We therefore, in this work, do not consider both as-
sumptions, but rather consider that it is possible that N ≥ K, and sensing information is
not possible but the devices can only observe the success or failure of their transmissions.

No sensing is possible Other research works consider the case when sensing is not
possible. In the same work in [39], the authors also propose an adaptation of their algo-
rithm to the case where sensing is not allowed, that preserves the logarithmic behavior
with respect to the time horizon. This approach has been improved in [55] thanks to the
use of Z-channel coding for modelling no collision information, quantization of transmitted
statistics and a tree structured communication, where a leader gathers the statistics and
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then decides for all players the best set of arms. In [56], the authors define the multi-player
stochastic multi-armed bandit as an anti-coordination game, where the goal is to quickly
reach an approximate Nash equilibrium. Finally, in [41] the difficult case of non-stochastic
multi-player multi-armed bandits is addressed.

Again, in all those works, the number of players is assumed to be below the number
of channels, which is not realistic for IoT networks.

Aloha-based Networks The optimization problem we propose to solve is related to
slotted Aloha protocol [57], where each player n transmits a packet with a probability pn
at the beginning of a slot. For instance in [58], the authors formulate the decentralized
throughput maximization problem in an Aloha network with a single channel in a way that
is close to our optimization problem. However that work considers a single channel, and
the decision variable is the sending probability pn rather than the choice of the channel.
If the probabilities of sending a packet are optimized, then the application constraints
of IoT (frequency of sending packets or real-time packets) cannot be respected. In [59],
the authors propose a best-response algorithm which solves the throughput maximization
problem for multi-channels Aloha protocol. They notably show that the best-response
algorithm converges to a Nash Equilibrium in a finite time. However they consider that
the channel capacities and the strategies of other players are known, and that each player
has the same probability to send a packet at each slot, which is unrealistic and restrictive
for IoT networks.

MP-MABs for IoT Finally, motivated by IoT networks, in [60, 61] the authors propose
a new problem setting where sensing is not allowed, the number of players is larger than
the number of channels, and the players asynchronously play: each player has the same
probability to send a packet at each time slot. The authors show experimentally that selfish
UCB, which consists in each player independently playing UCB [11], works surprisingly
well. This experimental result has been confirmed in the case of LoRa networks using
stochastic and non-stochastic multi-armed bandits [62] or in the case of IEEE 802.15.4
time-slotted channel hopping protocol [63] but with single-agent MABs. Despite its good
experimental performance, this algorithm has no theoretical guarantees, and it has been
shown that selfish UCB can fail badly on some cases [61].

We hereby conclude that the literature lacks of new approaches that handle the com-
munication optimization problem in IoT, while considering a realistic model of IoT net-
works.
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3

COLLABORATIVE EXPLORATION IN

STOCHASTIC MASSIVE MULTI-PLAYER

MABS

Key Takeaways: In this chapter, we introduce a general approach for the iden-
tification of poor-link quality channels. We develop and analyze a collaborative
decentralized algorithm that aims to find a set of m (ε,m)-optimal arms using an
explore-m algorithm (as introduced by [64]) as a subroutine, and hence blacklisting
the suboptimal arms in order to improve the QoS of IoT networks while reducing
their energy consumption. We prove analytically and experimentally that our al-
gorithm outperforms selfish algorithms in terms of sample complexity with a low
communication cost, and that although playing a smaller set of arms increases the
collision rate, playing only the optimal arms improves the QoS of the network.

External interference may severely affect the radio channels. However, not all radio chan-
nels experience the same level of interference. Thus, as discussed in [65] in order to mitigate
such inefficiency, the charged channels may be blacklisted. This concept allows IoT net-
works to operate only over high quality radio channels, blocking from use the heavily
interfered channels. This technique has been used by a number of standardization bodies
[66, 67]. In this chapter, we use the so-called best-arms identification algorithms, in or-
der to identify and whitelist optimal channels (i.e. equivalently blacklisting sub-optimal
channels). We develop and analyze a collaborative best-arms identification algorithm that
mitigates the energy consumption. The main contributions of this chapter are:

• developing of a collaborative (ε,m)-best arms identification algorithm

• providing a numerical and experimental analysis of the algorithm

• providing a C open-source framework of our developed algorithms
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The remainder of this chapter is organized as follows: we first present the state of the
art of the best-arms identification algorithms in section 3.1, then section 3.2 presents in
details our collaborative algorithm that aims to find a set of m-optimal arms. In section
3.3 we provide a performance analysis of the developed algorithm. We complete and
illustrate the analysis of our proposed algorithm in Section 3.4 with some experiments,
and we conclude the chapter in Section 3.5.

3.1 Best-Arms Identification

Maximizing the aggregated expected reward of a player is one objective in MABs (i.e.
minimizing the regret), another common objective is to identify the best arm(s) which
correspond(s) to the arm(s) with the highest expected reward. A player learns the ex-
pected rewards of the arms during the exploration phase, and exploits the set of optimal
arms afterwards. The problem of the best arms identification has been investigated thor-
oughly in the literature that studies several important questions arising in the probably
approximately correct (PAC) framework [68]. The first question is when can an agent
stop learning and start exploiting using the knowledge it obtained. The second question
is which strategy leads to minimal learning time. In this context, the problem is studied
in two distinct settings:

• the fixed budget setting: the duration of the exploration phase is fixed and is known
by the forecaster, and the objective is to maximize the probability of returning the
best arm, as in [69, 70, 71].

• the fixed confidence setting: the objective is to minimize the number of rounds needed
to achieve a fixed confidence to return the best arm, as in [72, 73, 71, 74, 75].

In our work, we focus on the fixed confidence setting; we aim to find the set of optimal
arms with a certain fixed level of confidence while minimizing the learning duration in
order to save energy.

Remark. An arm is said to be optimal with a confidence level 1 − δ (failure probability
δ) when this arm is optimal with probability at least 1− δ.

The literature distinguishes between two problems: explore-1 and explore-m, where the
former looks for a single optimal arm and the latter looks for a set of m arms. In the
following we summarize the work done in both cases.
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Explore-1. The work in [72, 70, 76, 32] studies the problem of identification of one
optimal arm (i.e. explore-1) by a single agent. In [72], the authors propose at first the
Naive algorithm where the player plays each arm a predefined number of times and
chooses the one with the highest empirical average as the optimal arm with a certain
confidence level 1 − δ. Alternatively, the Successive and Median Elimination algorithms
successively eliminate arms identified as suboptimal according to their empirical averages
until only one is left, which is then labeled as the optimal one. The authors in [32]
reformulate the MAB problem by generalizing it to the stationary stochastic, piecewise
stationary and adversarial bandit problems in order to take into account the cases where
the best arm changes over time. The work in [76] considers the problem of MP-MAB and
presents the decentralized problem where a set of multiple players collaborate to find the
optimal arm by asynchronously interacting with the same stochastic environment, while
ensuring the privacy of players’ shared information and controlling the communication
cost. The authors’ Decentralized Elimination algorithm uses any of the aforementioned
or other explore-1 algorithms as a subroutine, and the players share their decisions in a
decentralized manner to reach a global decision regarding the optimal arm. Our work in
this thesis is built on this work, but instead we look for m optimal arms rather than one.

Explore-m. The work in [64, 74, 73, 77] focuses on the explore-m problem. This work
aims to find for a tolerance level ε and with a confidence level 1−δ, a set of (ε,m)−optimal
arms rather than a single arm, i.e. with a probability at least 1− δ, every arm in the set
is (ε,m)−optimal. An (ε,m)−optimal arm is defined as follows:

Definition 3.1: (ε,m)-optimal arms

Considering that the arms are indexed in the decreasing order of their average re-
wards: θ1 ≥ θ2 ≥ .. ≥ θK , for a given tolerance level ε ∈ (0, 1) an arm k is said to be
an (ε,m)-optimal arm if:

θk ≥ θm − ε

We denote by Km,ε the set of (ε,m)-best arms in K.

The most common metric that measures the performance of any explore-m algorithm is
the sample complexity, which refers to the number of samples needed to find the set of
optimal arms. In this work, we define the sample complexity as presented below.
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Definition 3.2: Sample Complexity

For a given δ ∈ (0, 1), sample complexity is the total number of samples (or pulls)
needed by all players to find a set of m (ε,m)-optimal arms with a confidence level
1− δ.

Developers aim to minimize the sample complexity of an algorithm in order to find the
set of arms faster and minimize the energy consumption. For a given δ ∈ (0, 1) and
ε ∈ (0, 1), the authors in [64] extend the Naive algorithm to find the (ε,m)-best arms
forming the Direct algorithm (Algorithm 1). It returns with a high probability 1− δ a set
of m (ε,m)−optimal arms with a sample complexity O(K

ε2
log K

δ
).

Algorithm 1 Direct(K,m, δ, ε) [64]
1: for all k in [K] do
2: Sample arm k d 2

ε2
log K

δ
e times; let θ̂k be its average reward.

3: end for
4: Find S ⊂ [K] such that |S| = m, and ∀i ∈ S,∀j ∈ ([K]− S) : (θ̂i ≥ θ̂j)
5: Return S

They then present the Incremental algorithm that unlike Direct, proceeds through m

rounds. During each round, it selects an (ε, 1)-optimal arm with a high probability by
invoking the median elimination algorithm [72]. It ends up after m rounds with a set of
m (ε,m)-optimal arms. The sample complexity of both algorithms is improved with the
third algorithm Halving which modifies the median elimination algorithm to identify m
arms instead of 1 and achieves a sample complexity of O(K

ε2
log m

δ
).

A more powerful algorithm with a lower sample complexity LUCB (Algorithm 2) is
presented in [73]. It relies on the comparison of the lower and upper confidence bounds
on the empirical averages of the arms. It starts by sampling each arm once to compute
the first upper and lower confidence bounds (line 3), then at each round t after sampling
it computes the set J(t) containing the m arms of the highest empirical averages and
considers two critical arms, ut: the arm with the highest UCB not in J(t) (i.e. among
the K −m arms with the lowest empirical averages), and lt: the arm of the lowest LCB
in J(t) (i.e. among the m arms with the highest empirical averages), (line 7). It stops
exploring when the difference between the UCB and LCB of the critical arms is less than
ε: Uut(t)−Llt(t) ≤ ε (line 5), and returns them arms of the highest empirical averages (line
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10) . This algorithm works with any sampling strategy but the authors recommend the
greedy sampling strategy with respect to the stopping rule that samples the two critical
arms at each round as they are most likely to lead to a mistake.

Algorithm 2 LUCB(K,m, δ, ε) [73]
1: t = 1 (number of stage of the algorithm), B(1) =∞ (stopping index)
2: for all k in [K] do
3: Sample arm k and compute confidence bounds Uk(1), Lk(1)
4: end for
5: while B(t) > ε do
6: Draw an arm, t=t+1
7: Update confidence bounds, set J(t) and arms ut, lt
8: B(t) = Uut(t)− Llt(t)
9: end while

10: Return J(t)

Another algorithm that is based on the upper and lower confidence bounds is called
Racing and presented in [74]. Racing stated in Algorithm 3 was introduced first in the
context of model selection for finding the (single) best model in [78]. In contrast to LUCB,
it works by discarding and selecting arms recursively (discard the arms believed to be
suboptimal and select the arms believed to be optimal) until m arms are selected or
K − m arms are discarded. In Algorithm 3, S and D denote the sets of selected and
discarded arms respectively. With Racing at each round the player draws all remaining
arms (not selected nor discarded and contained in the set R), and computes the set J(t)
that unlike LUCB contains the m − |S| empirical optimal arms, and J(t)c = R − J(t)
(line 4). It consequently finds the critical arms ut ∈ J(t)c and lt ∈ J(t), then it selects
the empirical best arm kb if its LCB is larger than the UCBs of all arms in J(t)c, or to
discard the empirical worst arm kw if its UCB is smaller than the LCBs of all arms in
J(t) (lines(7-11)).
The two algorithms LUCB and Racing use upper and lower confidence bounds on the
mean of each arm based on Hoeffding’s inequality. One has the intuition that the smaller
these confidence regions are, the smaller the sample complexity of these algorithms will
be. Consequently, in [74] the authors introduce the use of confidence regions based on
Kullback-Leibler (KL) divergence [79] and define the KL-Racing and KL-LUCB algo-
rithms that lead to an improved sample complexity.

As we mentioned before, we build our work in this chapter on the method presented
in [76], where a collaborative, generic and decentralized algorithm is proposed to find
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Algorithm 3 Racing(K,m, δ, ε) [74]
1: R = [K] set of remaining arms, S = ∅ set of selected arms
2: D = ∅ set of discarded arms. t = 1 (current round of the algorithm)
3: while |S| < m and |D| < K −m do
4: Sample all the arms in R, update confidence intervals, and compute J(t) and J(t)c

5: Compute ut and lt
6: Compute kb and kw the best and worst empirical arms in R respectively
7: if (Uut(t)− Lkb(t) < ε) or (Ukw(t)− Llt(t) < ε) then
8: k = argmax

kb,kw

(
(Uut(t)− Lkb(t))1Uut (t)−Lkb (t)<ε; (Ukw(t)− Llt(t))1Ukw (t)−Llt (t)<ε

)
9: if k = kb select k: S = S ∪ {k}, else discard k:D = D ∪ {k}
10: Remove k: R = R \ {k}
11: end if
12: t = t+ 1
13: end while
14: return S if |S| = m, return S ∪R otherwise

an ε-approximation of the best arm using an explore-1 algorithm as a subroutine, while
protecting the privacy of players’ information contained in their shared messages against
any adversary and controlling the communication cost. However, the problem that we
address in this chapter is different, since we are looking for m of the best arms (up to
some ε > 0) instead of one arm while using the aforementioned explore-m algorithms as
a subroutine, while privacy is not a requirement. We use this last constraint relaxation
to improve the performance in terms of sample complexity. Finally here, collisions occur,
which was not considered by [76], and makes the problem harder since the true rewards
of the arms cannot be observed in case of collisions. In the next section, we propose a
collaborative algorithm in MP-MABs that aim to find a set of (ε,m)−optimal arms.

3.2 Collaborative Exploration Algorithm

The goal of the collaborative exploration problem is to design an algorithm that minimizes
the sample complexity to find a set of m (ε,m)-optimal arms, while controlling the num-
ber of exchanged messages between the players. The players are assumed to share some
information through a single gateway (no direct node-to-node communication). By play-
ing the arms and observing the corresponding rewards, the players decide what arms are
optimal and eliminate the sub-optimal arms, then they share this information through the
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gateway. Although sharing information would add more cost on the players, this should
help decrease the sample complexity.

The basic idea behind our approach is that in order to get a set of optimal arms with a
low failure probability δ, each player finds a set of optimal arms but with a higher failure
probability β > δ so the required number of samples by each player decreases. The players
send to the gateway the set of arms they suggest to eliminate. However, the suboptimal
arms are only really eliminated when at least a group of α players vote to eliminate them
by sending “vote” messages. Formally, we have:

P(failure of one player) < β, (3.1)

the global decision is taken after the votes of at least α players, and as the players are
voting independently, we have:

P(failure of α players) < βα (3.2)

and we need, P(failure of global decision) < δ (3.3)

so we need,

δ ≤ βα (3.4)

Consequently, the required number of players to eliminate an arm should be at least

α ≥
⌈

log δ
log β

⌉
.

3.2.1 Communication Protocol

The devices need to exchange some information in order to collaborate in our proposed
approach. In order to share information, the players send messages directly to the gateway,
and the latter will send usable information to all players.

In practice, a “vote” message can for example be of the form of a binary string λn =
(λn1 , ..., λnK) of lengthK, sent by player n, indicating the indices of the arms player n would
like to eliminate: λnk = 1 means player n suggests to eliminate arm k. A “vote” message is
sent to the gateway, and the latter waits until enough players vote to eliminate the same
arms, then it sends the indices of the arms to be globally eliminated to all players.

The communication protocol that is used in the following is based on the same principle
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as ALOHA, i.e. when a collision occurs the message is resent the next time the player is
active.

3.2.2 ArmSelection Subroutine

We use in our proposed collaborative algorithm the explore-m algorithms as subroutines.
Those algorithms determine the players’ sampling strategy of the arms, i.e. the exploration
policy. Since the players cannot observe the real rewards of the played arms θ (because
of internal collisions), we introduce a new constraint on the used subroutines. Let ρn,k,π
be the probability that no collision happens on arm k for player n when all players follow
policy π:

ρn,k,π =
∏
n′ 6=n

(1− pn′ .πkn′)

In order to get the same collision rate on all arms for all players, we start with a uniform
exploration policy π̃, i.e., with ∀n ∈ [N ],∀k ∈ [K], π̃kn = 1/K, then for every player n we
have:

ρn,k,π̃ = ρn,π̃ :=
∏

n′∈N\{n}

(
1− pn′

K

)

We recall Equation (2.9) that represents the expected reward µkn,θ(π) of the active player
n playing arm k, while the other players follow policy π:

µkn,θ(π) = θk
N∏

n′=1,n′ 6=n
(1− pn′πkn′). (3.5)

which is the mean reward of arm k multiplied with the probability that no other device
plays the same arm k.

With that uniform exploration policy π̃, we have, for each player n, µkn,θ(π̃) = θkρn,π̃,
so from (3.5)

θm − θk ≤ ε⇔ µmn,θ(π̃)− µnn,θ(π̃) ≤ ρn,π̃.ε (3.6)

As (3.6) illustrates, each player n can use its observed values Y k
n to estimate µkn,θ, so as

to find the set of (ε,m)-best arms by looking for (ε.ρn,π̃,m)-best arms. But this requires
the knowledge of ρn,π̃ and hence the values of the players’ active rates. Therefore, we will
impose that during a first phase, the players exchange their active rates by sending them
to the gateway, and the latter calculates and sends the value ε′ = ρπ̃.ε := ∏

n∈N

(
1− pn

K

)
.ε
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to all players. When player n receives the value of ε′, it calculates its value ε′n = ρn,π̃.ε :=∏
n′∈N/{n}

(
1− pn′

K

)
.ε = ε′/

(
1− pn

K

)
.

Our algorithm works in epochs, we distinguish between two types of epochs:
• Local elimination epoch ln Using the ArmSelection subroutine every player n finds a
set of sub-optimal arms (once or iteratively), and locally eliminates them. Let Kn(ln)and
Kn(ln) be the set of arms the player has locally eliminated and the set of remaining arms
of player n at epoch ln respectively. After each local elimination the epoch ln ends by the
player’s vote to eliminate this set of arms by sending messages.
• Global elimination epoch l When enough players vote to eliminate the same arms,
the arms are globally eliminated by all players at epoch l and the set K(l) of arms remains.

The arm selection subroutine used in our algorithm is defined below:

Definition 3.3: ArmSelection subroutine A

An ArmSelection subroutine A is an (ε,m)-best arms identification algorithm that
takes an approximation factor ε > 0, a confidence level 1 − β < 1 and a set of
remaining arms K(l) as inputs. It is run by every player n: at every time slot it
selects a remaining (not globally eliminated in K(l)) arm to be played. Under specific
conditions (depending on the subroutine used) it returns a set of suboptimal arms
Kn(ln) locally eliminated by player n, so player n votes to eliminate them and its
epoch ln ends.

Using the ArmSelection subroutine, a device selects an arm and plays it by sending
data to the gateway using the selected arm. Let tn be the total number of plays of player
n. We denote by Htn the sequence of played arm indices and rewards for player n up to
play tn, Htn = {(k1, y

n
k1), (k2, y

n
k2), .., (ktn , ynktn )}. Let f ∈ (0, 1], and L be the total number

of local eliminations of a single player, i.e. the value of ln when player n finds a set of
m local optimal arms with failure probability β. We list below two properties that the
ArmSelection subroutines should satisfy.
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Property 3.1: Remaining (ε,m)-optimal arms

For each player n, at each local elimination epoch ln the probability that there remain
less than m of the (ε,m)-best arms (the arms in Km,ε) in Kn(ln) is small. More
specifically,

∀ln ∈ {1, .., L},P({|Kn(ln) ∩ Km,ε| < m},Kn(ln − 1) ∩ Km,ε ≥ m) ≤ βf,

with β the probability of failure of the used subroutine.

Property 3.2: Finite Sample Complexity

For any confidence level 1−β < 1 and approximation factor ε > 0, the ArmSelection
subroutine finds in a finite time a set of (m, ε)-optimal arms. Formally,

∀β ∈ (0, 1),∀ε > 0,∃tn ≥ 1 s.t. P({Kn(L) ⊂ Km,ε}|Htn) ≥ 1− β

All the best-arms identification algorithms listed below satisfy the two properties. We
consider three classes of (ε,m)-optimal arms identification algorithms:
• The fixed-design algorithms use uniform sampling during a predetermined number
of samples, such as Direct algorithm in [64] (L = 1 and f = 1) that eliminates the k −m
sub-optimal arms at the end of the sampling phase.
• The successive elimination algorithms are based on uniform sampling and arm
eliminations. The arm, which cannot be an (ε,m)-optimal arm with a high probability, is
discarded from Kn(ln). Racing in [74] and its variant KL-Racing are successive elimination
algorithms (L = K −m and f = 1/(K −m)).
• The explore-then-commit algorithms are based on adaptive sampling and a stop-
ping rule. We focus on those of uniform sampling strategies. The stopping rule simply tests
if the difference between the maximum of upper confidence bound of suboptimal arms and
the lower confidence bound of the empirical best arm is higher than the approximation
factor ε. When the algorithm stops it eliminates the set of sub-optimal arms. LUCB in
[73] and its variant KL-LUCB in [74] are explore-then-commit algorithms (L = 1 and
f = 1).
Again, due to collisions, in order to correctly estimate µkn,θ, the sampling strategy of any
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used subroutine should be a uniform sampling strategy. In the following section we present
our collaborative algorithm for best-arms identification.

3.2.3 Collaborative Best Arms Identification in Multi-Player
Bandits

The Collaborative Best Arms Identification algorithm (see Algorithm 4) works as follows:
it takes as inputs, the approximation factor ε, the global failure probability δ, the ArmS-
election subroutine failure probability β, and the number of nearly-optimal arms to find
m. Every player n will run the ArmSelection subroutine A with an approximation factor
ε′n,l = ρn,l.ε = ∏

n′∈N/{n}

(
1− pn′

|K(l)|

)
.ε at global elimination epoch l in order to end up

with a set of (ε,m)-optimal arms. It outputs a common set of m (ε,m)-best arms for all
players. The step ackn := send(s, kn) used in our algorithm 4 means that the message s
is sent on channel kn to the gateway, and that a binary acknowledgement is waited for a
given duration. It returns the value of the acknowledgement to player n (ackn = 1 if the
message has been sent successfully and 0 otherwise).
The main steps of Algorithm 4 are the following:

• The players receive the gateway’s messages even if they are not active and update
their current sets of arms (line 2).

• The first time a player is active it sends its active rate to the gateway, and keeps
sending it by selecting channels uniformly whenever it is active until it receives an
acknowledgment (lines 10,12).

• Whenever a player n receives the value of ε′ from the gateway, it calculates its value
of ε′n,l (line 5).

• If an active player n has sent its active rate successfully and has no new informa-
tion to share with the gateway, it runs an ArmSelection subroutine with a failure
probability β, and its approximation factor ε′n,l when it is active. (line 19).

• If Kn(ln) 6= ∅, player n keeps trying to send the indexes of the arms in Kn(ln) to
the gateway until it succeeds (lines 13-17).

• If enough players want to eliminate an arm, it is eliminated from the global set of
arms K(l) with a low probability of failure δ, and the gateway sends the updated
set K(l) to all players (lines 24-28).

• When a player has found its set of m optimal arms while the global set of optimal
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Algorithm 4 Collaborative Best Arms Identification in Multi-Player Bandits:
CBAIMPB(K,N ,A,ε,δ,β,m)
Inputs: K, N , ε ∈ (0, 1], δ ∈ (0, 1), β ∈ (0, 1), m, an ArmSelection subroutine A
Output: a set of m arms K(l)
Initialization: t := 1, l := 1, K(l) := K, ∀n ∈ N ε′n := 0, tn := 1, ln := 1,Kn(ln) :=
K,ack1n := 0, ack2lnn := 0, ∀(n, k)λnk := 0
1: repeat
2: every player n ∈ N gets the messages from the gateway if any and updates Kn(ln)
3: for n ∈ N do
4: if player n receives ε′ from the gateway then
5: ε′n,l := ε′(

1− pn
|K(l)|

)
6: end if
7: end for
8: Nt is sampled from successive Bernoulli samples:Nt := {n ∈ N : an = 1 where an ∼

B(pn)}.
9: for n ∈ Nt do
10: if ack1n = 0 then
11: kn ∼ U(1, |K(l)|)
12: ack1n = send(pn, kn) // ack1n indicates if n has sent its active

rate successfully
13: else if ack2lnn = 0 and |Kn(ln)| > 1 and |Kn(ln)| > m then
14: kn ∼ U(1, |K(l)|)
15: ∀k ∈ Kn(ln) λnk := 1
16: ack2lnn = send(λn, kn) // ack2n indicates if n has sent its last

message ln successfully
17: if |Kn(ln)| > m then ln := ln + 1
18: else
19: Kn(ln) := A(ε′n,l, β,K(l)) // if an active player has no information

to send, it runs the ArmSelection subroutine and finds a set of
non-optimal arms

20: Kn(ln) := Kn(ln) \ Kn(ln)
21: end if
22: if |K(l)| > m then
23: for all k ∈ K(l) do

24: if ∑N
j=1 λ

j
k ≥

⌈
log δ
log β

⌉
then

25: K(l) := K(l) \ {k}, l := l + 1 // eliminate arm k if enough players
vote to eliminate it

26: end if
27: end for
28: the gateway sends K(l) to all players
29: end if
30: if |Kn(ln)| = m and |K(l)| > m then
31: tn := 1, ln := 1,Kn(ln) := K, Kn(ln) := ∅ // resetting player n
32: end if
33: end for
34: t := t+ 1
35: until ∀n ∈ N |Kn(ln)| = m
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has not been found yet, it is reset and restarts exploring the arms again so it can
then vote as a new player (line 31).

• When there are only m arms left in K(l), they are (ε,m)-optimal arms with a high
probability 1− δ, and the algorithm terminates (line 35).

3.3 Performance analysis

Communication Cost Theorem 3.1 states the upper bound of the communication cost
(total number of sent messages for sharing information by all players) with a confidence
level 1−η for obtaining a set of (ε,m)-optimal arms with a high confidence level 1−δ. Due
to collisions, the players need to send their messages several times until they succeed. In

the ideal case when no collisions happen the players need to send at least γ :=
⌈

log δ
log β

⌉
K−

m + N messages. Theorem 3.1 takes into account the number of re-transmissions when
collisions happen.

Theorem 3.1

Using an ArmSelection subroutine with a uniform sampling exploration strategy, the
total number of sent messages by algorithm CBAIMPB to find a set of (ε,m)-optimal
arms is with a probability 1− η less than:

γ


log η/γ

log(1−∑K
k=1

(1− p1/K)N−1

K
θk)

+ 1

messages, (3.7)

with γ =
⌈

log δ
log β

⌉
K −m+N .

Proof. An arm is eliminated when
⌈

log δ
log β

⌉
players vote to eliminate it. Hence, the

number of sent messages to eliminate K − m arms is at least
⌈

log δ
log β

⌉
(K − m).

Considering the settings of no collisions at most (
⌈

log δ
log β

⌉
− 1).m messages are sent
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to vote to eliminate the remaining m arms (but they are not globally eliminated)
and one extra message per player to share the active rates. Consequently at most⌈

log δ
log β

⌉
.K − m + N messages are sent by all players using any ArmSelection

subroutine if no collisions are taken into account.

On the other hand, considering the settings of collisions and re-transmissions, let
C(γ) be the random variable corresponding to the number of transmissions of player
n to send γ messages. C(1) follows a geometric distribution with a probability of

success p = µn(π̃) = ∑K
k=1

ρn(π̃)
K

θk, and probability of failure q = 1− p. Let F be the
number of failures before the success. We have:

P(C(1) ≤ F + 1) = 1− qF = 1− η,

=⇒ F =
⌈

log η
log q

⌉

Assuming that p1 ≥ p2, .., pN−1 ≥ pN , we get ρn(π̃) = ∏
n′ 6=n(1 − pn′/K) ≤ (1 −

p1/K)N−1. Consequently, the total number of transmissions needed to successfully
send γ messages is with probability 1− η :

C(γ) ≤ γ


log η/γ

log(1−∑K
k=1

(1− p1/K)N−1

K
θk)

+ 1

 transmissions.

Substituting γ by
⌈

log δ
log β

⌉
.K −m+N , we get an upper bound on the total number

of sent messages by the players using CBAIMPB algorithm and an ArmSelection
subroutine of uniform sampling strategy.

Exploration Duration For the analysis of the exploration duration of our algorithm,
let TA be the number of samples needed by the ArmSelection subroutine A to find a set
of (ε′,m)-best arms with probability of failure β, and T ∗ be the total number of time slots

when the algorithm terminates. Let NS be the set of the S =
⌈

log δ
log β

⌉
most likely players,

and let p∗ = minn∈NS pn. Theorem 3.2 provides the exploration duration of the algorithm
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CBAIMPB. This value depends on the ArmSelection subroutine used. Lemma 3.1 states
the time duration of CBAIMPB when Direct [64] algorithm is used as an ArmSelection
subroutine.

Theorem 3.2

Using an ArmSelection(β, δ,m, ε) subroutine with a uniform sampling exploration

strategy, with a probability at least (1 − δ)(1 − I1−p∗(T ∗ − TA, 1 + TA))

⌈
log δ
log β

⌉

CBAIMPB terminates after:

O

 1
p∗

TA +
√

1
2 log S

δ

time slots (3.8)

where Ia(b, c) denotes the incomplete beta function evaluated at a with parameters
b and c.

Proof. Let T ∗ and Tn respectively be the total number of time slots and the number of
samples of player n when the algorithm terminates. Tn is a binomial random variable
with parameters pn and T ∗. Then we have:

E[Tn] = pn.T
∗ (3.9)

Let TA be the number of samples needed by the ArmSelection subroutine to find

a set of (ε′,m)-best arms, and let Bδ,β be the set of the S =
⌈

log δ
log β

⌉
players that have

the highest Tn. The algorithm does not stop if the following event occurs: E1 = {∃n ∈
Bδ,β, Tn < TA}.

Applying Hoeffding’s inequality, we get:

P(Tn − pn.T ∗ ≤ −ε) ≤ exp−2ε2 = δ

S
(3.10)

Then, when E1 does not occur, ∀n ∈ Bδ,β, Tn ≥ TA, so we get that with a proba-
bility at most δ every player n ∈ Bδ,β has:

TA − pn.T ∗ ≤ −
√

1
2 log S

δ
(3.11)
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Then, when E1 does not occur we have with a probability at most δ:

T ∗ ≥ 1
pδ,β

.(TA +
√

1
2 log S

δ
) (3.12)

where pδ,β = minn∈Bδ,β pn
Equivalently, if E1 does not occur we have with a probability at least 1− δ:

T ∗ ≤ 1
pδ,β

.(TA +
√

1
2 log S

δ
) (3.13)

Let NS be the set of the S most likely players. Let n∗ = argminn∈NS pn, and
p∗ = minn∈NS pn. We consider the following event: E2 = {n∗ /∈ Bδ,β}. E2 is equivalent
to the event {Tn∗ < TA}. Then we have:

P(Tn∗ < TA) = I1−p∗(T ∗ − TA, 1 + TA), (3.14)

where Ia(b, c) denotes the incomplete beta function evaluated at a with parameters b
and c. Equation (3.14) comes from the relation between the incomplete beta function
and the cumulative binomial distribution.
We have, P(pδ,β = p∗) = P(∀n ∈ NS,P(Tn ≥ TA)).

Finally, knowing |NS| = S =
⌈

log δ
log β

⌉
, with a probability at least (1 − I1−p∗(T ∗ −

TA, 1 + TA))

⌈
log δ
log β

⌉
, we have pδ,β = p∗.
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Lemma 3.1

With a probability at least (1−δ)(1−I1−p∗(T ∗−TA, 1+TA))

⌈
log δ
log β

⌉
, the collaborative

direct algorithm stops after:

O

 1
p∗

 K

ε′n†
2 log(K

β
) +

√
1
2 log S

δ

time slots (3.15)

where n† = argminn∈N pn.

Proof. The Direct algorithm in [64] finds with a probability at least 1− β a set of m
(ε′,m)-optimal arms with:

O

K
ε′2

log(K
β

)
samples

Let n† = argminn∈N pn, so for every player n ∈ N , we have:

ρn†,π̃ =
∏

n′∈N/{n†}

(
1− pn′

|K|

)
≤ ρn,π̃ =

∏
n′∈N/{n}

(
1− pn′

|K|

)

=⇒ ε′n† ≤ ε′n

Hence we get that every player n finds with a probability at least 1 − β a set of m
(ε′,m)-optimal arms with:

O

 K

ε′n
2 log(K

β
)
 ≤ O

 K

ε′n†
2 log(K

β
)
samples

Then, by substitution Theorem 2 completes the proof.
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3.4 Experimental analysis

In order to illustrate and complete the analysis of our algorithm CBAIMPB, we imple-
mented the aforementioned algorithms in C and developed an open-source framework that
is available here 1. We conducted several experiments that are presented below.
Experiment 1: Cooperation vs Selfishness. We first compare CBAIMPB perfor-
mance using the Explore-m algorithms Direct, LUCB and Racing as subroutines with
their selfish versions. We run the algorithms with different values of N and K = 10, such
that ∀k, θk ∼ U(0, 1). Each player n has a probability to be active pn = 1/N . We consider
δ = 0.1, β = 0.9, ε = 0.2 and m = 4. We study the sample complexity as well as the
communication cost of our algorithm with different ArmSelection subroutines. The results
are averaged over 40 experiments and the figures show 95% confidence intervals.
Figure 3.1 (a) clearly shows that our cooperative algorithm with any ArmSelection sub-
routine outperforms the selfish versions of them in terms of sample complexity. Regarding
the subroutines, Racing outperforms LUCB and the latter has a lower sample complex-
ity than Direct algorithm in either the cooperative or the selfish versions. On the other
hand, Racing has the highest communication cost among the three algorithms as shown
in Figure 3.1 (b). This is because it is a successive elimination algorithm where the players
eliminate one arm successively and they send one message after each elimination, while
LUCB and Direct algorithms are of the explore-then-commit and fixed-design algorithms
respectively and they eliminate all the suboptimal arms when the stopping condition is
provided so one message is then sent.
Experiment 2: successful Transmission Rate. After the players find the set of opti-
mal arms, they need to exploit this set so that they increase their successful transmission
rate, i.e. the fraction of the successfully sent packets with respect to the total number
of packets. In order to study the advantage of playing a set of optimal arms instead of
playing all the arms (that would increase the collision rate), we compare the successful
transmission rate and the collision rate of all the players achieved by the two scenarios.
For simplicity, the exploitation policy we use is the uniform policy. We run the exploita-
tion phase with various values of N , such that the distribution of players is uniform and
the upper bound of the distribution is chosen such that the internal collision rate does
not exceed 0.2 when the number of players reaches 1300 and play the arms uniformly, so
∀n, pn ∼ U(5.4.10−4, 3.8.10−3). In scenario 1, the players share a set ofK = 10 arms, such

1. https://github.com/IoT-MABs
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Figure 3.1 – (a) Sample complexity (cooperation vs selfishness), (b) Communication cost
as a function of the number of players N

that ∀k, θk ∼ U(0, 1). In scenario 2, the players find and play a set of (ε = 0.1,m = 4)-
optimal arms of the 10 previously played arms. The exploitation phase lasts for a time
horizon T = 106 time slots. The results are averaged over 40 trials and the figures show
95% confidence intervals.

Figure 3.2 (a) clearly shows the advantage of playing a set of optimal arms instead of
playing all available arms. Although with a smaller set of arms the internal collision rate
increases as shown in Figure 3.2 (b), playing less arms of the highest qualities significantly
increases the successful transmission rate.

Experiment 3: Effect of the size of the optimal arms set. The change in the
successful transmission rate depends on the value of m that should be carefully tuned
and of course on the exploitation policy the players follow. In order to study the effect of
the size of the set of optimal arms, we fix the value of N = 1000 and modify the value of
m < K. The settings of this experiment are the same as in the previous one. Figure 3.3
shows the evolution of the successful transmission rate as well as the internal and external
collision rates as a function of the size of the set of optimal arms m. We can notice that
the successful transmission rate increases with the increase of m until a certain value then
it starts decreasing. This result is compatible with the variation of the collision rate. With
low values of m, the internal collision rate is high due to the competition between the
players on a small set of arms unlike the external collision rate which is low due to playing
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Figure 3.2 – (a) successful transmission rate, (b) Internal collision rate as a function of N

the optimal arms. As m increases, normally the internal collision rate decreases while the
external collision rate increases. Consequently, we conclude that the value of m should
be tuned such that we compromise between the internal and external collision rates that
depend on the players’ number and distribution, the arms’ number and distribution and
on the exploitation strategy followed by the players.

3.5 Conclusion

For the sake of identifying the optimal channels in an IoT network, we formulate our
problem as a MP-MAB problem, and we design and analyze a new approach that aims
to find a set of m optimal arms by running Explore-m algorithms that sample the arms
uniformly as subroutines. Our approach takes into account collisions between players
and does not assume any type of sensing or constraints on the number of players. The
players collaborate by sharing some information, and we show that the communication
cost is relatively low. We also prove experimentally that our algorithm outperforms the
selfish versions in terms of sample complexity, and that although playing a smaller set of
arms increases the collision rate, playing only the optimal arms increases the successful
transmission rate. However, we also show that this result is highly dependent on the size
of the optimal arms set m. It is also dependent on the players’ number and distribution,
the arms’ number and distribution, as well as the exploitation strategy followed by the
players. As a result, depending on the problem settings, we need to optimize the value of
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Figure 3.3 – (a) successful transmission rate, (b) Internal and external collision rate as a
function of m

m and the exploitation strategy which is still an open work for the future. Instead, in the
next chapter, we propose an exploration algorithm followed by exploitation policies that
improve the successful transmission rate.

The work accomplished in this chapter was published in the following article: “Collab-
orative exploration in stochastic multi-player bandits.” Hiba Dakdouk, Raphaël Féraud,
Nadège Varsier, and Patrick Maillé. In Asian Conference on Machine Learning, pp. 193-
208. PMLR, 2020.
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4

COLLABORATIVE EXPLORATION AND

EXPLOITATION IN MASSIVE

MULTI-PLAYER BANDITS

Key Takeaways: In this chapter, we propose a new approach to optimize the
performance of Internet of Things (IoT) networks. As the optimization problem is
intractable, we propose two greedy policies: the first one focuses only on the num-
ber of successful transmissions, while the second one also takes into account fairness
between players. In order to implement an approximation of the targeted policies,
we propose an explore-then-exploit approach; where for estimating the mean reward
of the arms, we propose a decentralized exploration algorithm with controlled infor-
mation exchanges between players. Then we state that the regret of the estimated
target policy is optimal with respect to the time horizon T . Finally, we provide some
experimental evidence that the proposed algorithms outperform several baselines.

In the previous chapter, we presented a collaborative algorithm that aims to find a set of
m-optimal arms to be exploited afterwards in order to optimize the successful transmission
rate in an IoT network. However, the previous study lacks the optimization of the value
of m, as well as the exploitation strategy of the m-optimal arms. In this chapter, we
consider the same realistic settings of an IoT network as in the previous chapter, and
we propose new policies to optimize the successful transmission rate of the network. The
main contributions of this chapter are:

• We propose two deterministic target greedy policies: DORG (decreasing-order-reward-
greedy) that aims to optimize the number of successful transmissions, while DOFG
(decreasing-order-fair-greedy) guarantees in addition some fairness between players.

• We study the optimality of DORG, and the fairness of DOFG.
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• We propose a decentralized collaborative exploration algorithm that outputs with
a high probability an approximation of the mean rewards of the arms.

• We provide a deep performance analysis of the proposed algorithms.

• We provide a regret lower bound of any explore-then-exploit algorithm.

• We provide a numerical analysis comparing our approach with several state-of-the-
art methods.

• We provide an open-source framework of our algorithms.

The remainder of this chapter is organized as follows. In section 4.1, we present the
problem and we provide the two greedy policies in sections 4.2 and 4.3. Section 4.4 presents
preliminary experiments that study the performance of the two greedy policies. In section
4.5, we study the explore-then-exploit algorithms, and we present the collaborative explo-
ration algorithm in section 4.6 along with its analysis. Section 4.7 contains the established
experiments and their results. Finally, we conclude the chapter in section 4.8.

To ease the reading of this chapter we recommend to refer to the list of notations on
page 4.

4.1 Problem Formulation

Considering the same settings mentioned before, we first formulate the objective function
to optimize. We recall Equation (2.9) that represents the expected reward in model θ of
playing arm k by player n while the other players follow policy π:

µkn,θ(π) = θk
N∏

n′=1,n′ 6=n
(1− pn′πkn′). (2.9)

Equation (2.9) shows the difficulty of the studied problem: the mean reward of an arm
for a given player depends on the probabilities of the other players to send a packet and
on the policies they follow. The aggregated average reward in model θ = {θ1, ..., θK} per
time slot over all players µθ(π) is:

µθ(π) =
K∑
k=1

θk
N∑
n=1

pn.π
k
n

∏
n′∈[N ]\{n}

(1− pn′πkn′). (4.1)

Equation (4.1) represents our objective function to be optimized. We aim to find a policy
π followed by the players such that equation (4.1) is maximized. This performance metric
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corresponds to the expected number of successful uplink transmissions per time slot in
an IoT network. We can notice that this optimization problem with respect to π has a
solution, since the objective function is continuous and the set of decision variables is com-
pact. However, the problem itself is not convex, and hence classical convex optimization
methods cannot be applied. While suspected, proving the NP-hardness of the problem
remains an open question.

Above all, we show in Theorem 4.1 that at least one solution is a deterministic policy,
where each player sticks to a single arm that it will always play for sending packets.

Definition 4.1: Deterministic policy

A policy π is said to be deterministic, when ∀n ∈ [N ],∃ kn, such that πknn =
1 and ∀k′ 6= kn, π

k′
n = 0.

Theorem 4.1

There exists a policy maximizing the overall network utility (equation (4.1)) that is
deterministic.

Proof. We may write the global objective as:

µ(π) = (4.2)
K∑
k=1

θk︸︷︷︸
mean reward of arm k

N∑
n=1

pn.π
k
n︸ ︷︷ ︸

probability that player n chooses arm k

N∏
n′=1,n′ 6=n

(1− pn′ .πkn′)︸ ︷︷ ︸
probability that no collision occurs

(4.3)

Let us assume that π∗ = {πn}n∈[N ] is optimal. Let us fix all player policies but
player n’s. Then, we notice that µ(π) is linear (see (4.2)) in each πkn, k = 1, ..., K,
meaning that the maximum is achieved for any k∗n ∈ argmaxk∈[K]

∂µ(π)
∂πkn

, and therefore
the optimal policy may have been chosen so that πn is deterministic: πk∗n = 1 and
∀k 6= k∗, πkn = 0. The same reasoning can be repeated for the other players, so that
there exists an optimal policy that is deterministic.
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Based on Theorem 4.1, from now on, we will only consider deterministic policies, and
we refer to the arm assigned to player n by kn. The expected reward per time slot in
model θ = {θ1, ..., θK} of any deterministic policy π can then be written as:

µ(π) =
N∑
n=1

pnθ
kn

∏
n′ 6=n, s.t. kn′=kn

(1− pn′) (4.4)

=
K∑
k=1

θk
∏

n∈[N ], s.t. kn=k
(1− pn)

︸ ︷︷ ︸
zk

∑
n∈[N ], s.t. kn=k

pn
1− pn︸ ︷︷ ︸

`k

where

z
k is the probability that all players assigned to arm k do not send packets

`k is the sum of the activation odds for all players assigned to arm k

In the following, we will propose two deterministic policies that aim to maximize the
network utility (equation (4.1)).

4.2 Reward greedy algorithm

We first present the Reward Greedy algorithm which is motivated by Lemma 4.1 stated
below.

Lemma 4.1

For a deterministic policy π, let µ(π[n]) denote the expected reward when only players
1, ..., n are playing (all players n′ > n are deactivated). Then we have the recursive
expression:

µθ(π[n]) = µθ(π[n− 1]) + pnθ
kn
(
1− `kn[n−1]

)
zkn[n−1],

where zk[n] is the probability that arm k is not used by any of the first n players, and
`k[n] is the sum of activation odds of the n first players for arm k.
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Proof. We have:

µ(π[n]) = µ(π[n− 1]) + µ(π[n])− µ(π[n− 1])

= µ(π[n− 1]) +
∑
k∈[K]

θkzk[n]`
k
[n] −

∑
k∈[K]

θkzk[n−1]`
k
[n−1]

= µ(π[n− 1]) + θknzkn[n]`
kn
[n] − θ

knzkn[n−1]`
kn
[n−1] (4.5)

= µ(π[n− 1]) + θkn
(
zkn[n]`

kn
[n] − z

kn
[n−1]`

kn
[n−1]

)
= µ(π[n− 1]) + θkn

(
(1− pn) zkn[n−1]

(
`kn[n−1] + pn

1− pn

)
− zkn[n−1]`

kn
[n−1]

)
= µ(π[n− 1]) + θkn

(
−pnzkn[n−1]`

kn
[n−1] + pnz

kn
[n−1]

)
= µ(π[n− 1]) + pnθ

knzkn[n−1]

(
1− `kn[n−1]

)
,

where the line (4.5) comes from the fact that zk[n] = zk[n−1] and `k[n] = `k[n−1] for all
k 6= kn.

Lemma 4.1 reveals a recursion relation over n of the expected total reward. Under
the assumption that the problem parameters are known, Lemma 4.1 paves the way to
the definition of Algorithm 5, which is a recursive algorithm that assigns player n to
arm kn (Line 2) such that the right-hand term of the recursive equation in Lemma 4.1 is
maximized.

Algorithm 5 Reward Greedy
(DORG if players are sorted in pn decreasing order)
Inputs: [K], [N ], {θk}k∈[K], {pn}n∈[N ]
Output: π
Init: per-arm inactivity probabilities: zk = 1.
Init: per-arm activation odds sums: `k = 0.
1: for n = 1 to N do
2: Set kn ∈ argmaxk∈[K] θ

kzk(1− `k).
3: Update zkn ← zkn (1− pn).
4: Update `kn ← `kn + pn

1−pn .
5: Set πknn = 1, and ∀k 6= kn, π

k
n = 0.

6: end for

The result is highly dependent on the order in which the players are added to the pool
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(an experimental evidence is presented in section 4.4), and we refer to the algorithm by
DORG which stands to decreasing-order-reward-greedy when the players are sorted in the
decreasing order of pn. Besides, Theorem 4.2 suggests the algorithm can lead to an actual
optimum.
We first present Lemma 4.2 that is used by Theorem 4.2.

Lemma 4.2

As long as `kn−1 ≤ 2, the reward-greedy criterion for Algorithm 5 decreases as we add
a new player n:

zk[n]

(
1− `k[n]

)
≤ zk[n−1]

(
1− `k[n−1]

)
. (4.6)

Proof. We look at the difference:

∀k 6= kn, zk[n]

(
1− `k[n]

)
− zk[n−1]

(
1− `k[n−1]

)
= 0 (4.7)

zkn[n]

(
1− `kn[n]

)
− zkn[n−1]

(
1− `kn[n−1]

)
= (1− pn)zkn[n−1]

(
1− `kn[n−1] −

pn
1− pn

)
− zkn[n−1]

(
1− `kn[n−1]

)
(4.8)

= (1− pn)zkn[n−1]

(
1− `kn[n−1]

)
− pnzkn[n−1]

− zkn[n−1]

(
1− `kn[n−1]

)
(4.9)

= −pnzkn[n−1]

(
1− `kn[n−1]

)
− pnzkn[n−1]

(4.10)

= −pnzkn[n−1]

(
2− `kn[n−1]

)
(4.11)

Since pn and zkn[n−1] are always positive, we may conclude.
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Then, Theorem 4.2 comes to show that there exists an ordering over the players so
that Algorithm 5 returns an optimal policy.

Theorem 4.2

If ∑n∈[N ]
pn

1−pn ≤ K + 1, then there exists an ordering over players σ∗ : [N ] → [N ]
such that Algorithm 5 returns an optimal policy.

Proof. Lemma 4.2 states that as long as `kn−1 ≤ 2, the reward-greedy criterion for
Algorithm 5 decreases as we add a new player n.

We prove below that this Lemma applies for all picked arms if∑n∈[N ]
pn

1−pn ≤ K+1.
By reductio ad absurdum, we assume that ∑n∈[N ]

pn
1−pn ≤ K + 1 and that there exists

some arm k and some player ordering σ (not necessarily σ∗) such that π∗(σ(N)) = k

and `kσ([N−1]) > 2, where π∗ is an optimal policy and σ([N−1]) denotes the N−1 first
indexes in the σ reordering. Then, there must exist an arm k′ for which `k′σ([N−1]) < 1,
otherwise we would have ∑n∈[N ]

pn
1−pn >

∑
n∈[N−1]

pσ(n)
1−pσ(n)

> K + 1. It means that, for
k′, the reward-greedy criterion zk′σ([N−1])

(
1− `k′σ([N−1])

)
is positive, and therefore larger

than that of k: zkσ([N−1])

(
1− `kσ([N−1])

)
, which is negative. As Lemma 4.1 states that

the reward-greedy criterion is incrementally optimal, it means that k′ would have
been a strictly better arm for player σ(N), which contradicts the assumption that π∗

is optimal.
Let an optimal policy π∗ be given, and let us construct the player ordering σ∗ such

that Algorithm 5 applied on the σ∗ ordering returns π∗. It is direct to understand that
Algorithm 5 applied on a σ∗ player ordering would retrieve π∗. Indeed, Algorithm 6
makes it so the players are ordered to be incrementally optimal. The last piece of the
proof is to check the existence of a player σ∗(n) assigned to a reward-greedy arm on
line 2.

79



Chapter 4 – Collaborative Exploration and Exploitation in Massive Multi-Player Bandits

Algorithm 6 Reconstruction of a player ordering that allows Algorithm 5 to return
π∗

Inputs: [K], [N ], {θk}k∈[K], {pn}n∈[N ], π∗

Output: σ∗ such that Algorithm 5 returns π∗

Init: per-arm inactivity probabilities: zk = 1.
Init: per-arm activation odds sums: `k = 0.
Init: Set of players remaining to be assigned: N = [N ].
1: for n = 1 to N do
2: Let σ∗(n) be an element of N such that π∗(σ∗(n)) ∈ argmaxk∈[K] θ

kzk(1− `k).
3: Update N ← N − {σ∗(n)}.
4: Update zkn ← zkn

(
1− pσ∗(n)

)
.

5: Update `kn ← `kn + pσ∗(n)
1−pσ∗(n)

.
6: end for

Again by reductio ad absurdum, we assume that there is no remaining player that
π∗ assigned to a reward-greedy arm k∗. Then, it means that until the last selection,
this arm will not be picked and another arm k will be picked instead. We showed at
the beginning of the proof that the reward-greedy criterion is only decreasing as the
arms are being selected, and that the reward-greedy criterion of an arm not being
selected, such as k∗, is constant. So it means that π∗(σ∗(N)) should be k∗, hence, the
contradiction.

We may therefore conclude the proof by stating that Algorithm 6 will never fail
to construct σ∗ and that Algorithm 5 applied to the σ∗ player ordering will return π∗.

Note that when ∀n, pn = p (the settings studied in [60]), Theorem 4.2 states that DORG
returns an optimal policy. The precondition of Theorem 4.2 clearly holds in IoT networks,
where the duty cycle p is commonly set to less than 0.01.

Although, DORG works on optimizing the network utility, it does not guarantee any
fairness between the players. In the following section, we present a new policy that takes
into account the fairness between the players along with optimizing the network utility.
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4.3 Fairness greedy algorithm

A consequence of Theorem 4.1 is that the resource assignment of an optimal deterministic
policy is a Pareto optimum: as the network utility is maximum, if a user increases its own
utility (equation (2.9)) another user has necessarily to decrease its utility (due to equation
(4.1)). Notice that a Pareto optimum does not provide any guarantee about the fairness
of the resource allocation among players. In this section, we design a policy to ensure
fairness among players which is defined as follows:

Definition 4.2: α-fairness

A policy π is said to be α-fair if minn∈[N ] µn,θ(π)
maxn∈[N ] µn,θ(π) ≥ α, where µn,θ(π) = ∑K

k=1 π
k
n.µ

k
n,θ(π)

Algorithm 7 Fairness Greedy
(DOFG if players are sorted in pn decreasing order)
Inputs: [K], [N ], {θk}k∈[K], {pn}n∈[N ]
Output: π
Init: per-arm inactivity probabilities: zk = 1.
1: for n = 1 to N do
2: Let kn ∈ argmaxk∈[K] θ

kzk

3: Update zkn ← zkn(1− pn)
4: Set πknn = 1, and ∀k 6= kn, π

k
n = 0.

5: end for

Building a fair policy can be done by balancing the load with respect to the mean
rewards of the arms. The fairness greedy algorithm (see Algorithm 7) assigns sequentially
each player to the arm that maximizes the reward of the arm times the probability of no
internal collision. The player scheduling also plays an important role and we prove a lower
bound on the fairness of Algorithm 7, when players are sorted in decreasing order of pn.
In that case we coin this algorithm DOFG, which stands for decreasing-order-fair-greedy.

In Theorem 4.3 we study the fairness of DOFG.

Theorem 4.3

DOFG generates α-fair policies, with α ≥ 1−maxn∈[N ] pn.
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Proof. For every arm, we have the following equality:

µn(π†) = θkn
∏

n′ 6=n, s.t. kn′=kn
(1− pn′) = θknzkn

1− pn
. (4.12)

We prove now that minn∈[N ] µn(π†) = µN(π†). We proceed by induction. The base
case is direct for N = 1. Now, we prove the induction step by assuming that it is true
for N and prove it for N + 1. We have to distinguish two cases whether kN equals
kN+1 or not.

Case kN = kN+1, then from Equation 4.12, we have µN+1(π†) = 1−pN
1−pN+1

µN(π†).
Since we know by construction that pN+1 ≤ pN , we may conclude that µN+1(π†) ≤
µN(π†).

Case kN ≤ kN+1, then stating that µN+1(π†) > µN(π†) would imply that kN was
not optimally selecting the arm at the previous step, which brings a contradiction.

Let us assume without loss of generality that player N has been assigned to arm
K. Since π†N has been chosen so that to maximize θkzk at iteration N , it means that:

min
n∈[N ]

µn(π†) = µN(π†) ≥ max
k∈[K]

θkzk. (4.13)

We also know that:

max
n∈[N ]

µn(π†) = max
n∈[N ]

θknzkn

1− pn
(4.14)

≤
maxk∈[K] θ

kzk

1−maxn∈[N ] pn
(4.15)

≤ 1
1− p1

min
n∈[N ]

µn(π†), (4.16)

which concludes the demonstration.

Theorem 4.3 implies that when the probability of sending packets of the most frequent
player is not high, which is the case in IoT networks, DOFG is a fair policy.

In the following section, we provide an experimental evidence on the performance and
fairness of DORG and DOFG.
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4.4 Preliminary Experiments

We perform several experiments to study and compare the performance of DORG and DOFG
as explained below.
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Figure 4.1 – Experiment 1: with a fixed number of arms K = 10, and for different values
of N (ranging from 16 to 512 on a log scale), the performance of DORG, DOFG, and Reward
Greedy (Algorithm 5) with random ordering is compared.

Experiment 1. The problem parameters are sampled as follows: ∀n ∈ [N ], pn ∼
U(0, 0.3) 1 and ∀k ∈ [K], θk ∼ U(0, 1). Figure 4.1 compares the performance of DORG,
DOFG, and Reward Greedy (Algorithm 5) with random ordering, where each point is

1. Such high values for pn are used to graphically observe the expected properties.
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the average of 10,000 runs. Figure 4.1a that compares the expected reward ratio of the
algorithms with respect to DORG, where π̄ denotes the policy to be compared with DORG,
reveals that sorting the players in decreasing order is a good policy. However, it has to
be noted that the difference between DORG and a random ordering is much thinner when
pn are smaller, as expected in a real setting. We also notice that DOFG expected reward
loss, as compared to DORG, is below 20% until N ≈ 75. Figure 4.1b illustrates the result
of Theorem 4.3, and indicates that the fairness lower bound is tight. It also shows that,
while DOFG only loses 20% rewards when N ≈ 75 as compared to DORG, its fairness is
approximately 30 times larger.
Further, on figure 4.1c, we notice that the expected number of channels experiencing
internal collisions per time slot stops increasing as N grows around N = 100. It is the
moment when the channels get completely saturated. N = 100 coincides with the point
where the fairness gets to 0 on figure 4.1b. We explain this phenomenon as follows: each
channel k fills up, up to the point when `k > 1. When all the channels reach this point,
adding new players to the network actually decreases the expected reward, and DORG’s
strategy condemns the arms with the lowest θk and use them as a garbage bin for new
players. These channels get so crowded that there is a collision on it with a very high
probability, in order to keep the other channels functionally unspoiled. In comparison, to
guarantee fairness DOFG does not throw away players on a bin channel.

Experiment 2. The same experiment is carried out but with fixed N = 200 and
different values of K ranging from 4 to 256 are conducted, and the results are presented
in Figure 4.2. As obvious, the performance of any algorithm improves as the number of
arms increases since the number of internal collisions decreases. The fairness level increases
with DORG and the reward greedy with random ordering as K increases since the players
have greater opportunities to be located on arms with high mean rewards and hence they
experience close expected rewards. As we notice in Figure 4.2c, the number of channels
with internal collisions starts decreasing at a certain point. This is because the players
are more and more assigned to different arms.
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Figure 4.2 – Experiment 2: with a fixed number of players N = 200, and for different
values of K (ranging from 4 to 256 on a log scale), the performance of DORG, DOFG, and
Reward Greedy (Algorithm 5) with random ordering is compared.

Experiment 3. We studied the case of lower values of pn. The same experiments
were carried out with a fixed number of arms K = 10 and different values of N ranging
between 128 and 16384, but with ∀n ∈ [N ], pn ∼ U(0, 0.01). The results are presented in
Figure 4.3. Compared to Figure 4.2, we can notice that the results of the Reward greedy
with random player scheduling tends to those of DORG when the values of pn are smaller
which is the case in IoT networks.
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Figure 4.3 – Experiment 3: with a fixed number of arms K = 10, and for different values
of N (ranging from 128 to 16384 on a log scale), the performance of DORG, DOFG, and
Reward Greedy (Algorithm 5) with random ordering is compared.

In the previous experiments, we assumed that the model θ and the probabilities to
send packets of the players pn are known. However, this is not true in IoT networks. Con-
sequently, this information will be learnt during a preceding exploration phase presented
and studied in the following.
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4.5 Explore-then-Exploit Approach

The choice of the policy depends on the metric to be maximized: for maximizing network
utility, DORG policy (Algorithm 5) should be used, while to guarantee some fairness among
players, DOFG policy (Algorithm 7) is to be used. However both policies necessitate the
model θ, which is unknown: hence exploration is necessary. To maximize the objective
metric, we propose an explore-then-exploit approach: an exploration algorithm shares the
probabilities of sending packets of players and outputs an ε-approximation of the model θ
(i.e. estimations of the arms’ mean rewards) with high probability for a sufficiently small
ε, and then a target policy is used during the exploitation phase (DORG or DOFG).

Definition 4.3: ε-approximation

θ̂k is said to be an ε-approximation of arm k, if the difference between it and θk is
less than ε : |θk − θ̂k| ≤ ε.

Several approaches are available for exploration. A first approach could be a selfish
exploration, where each player explores the value of arms with the packets it has to
send, and then computes the target policy. The drawback of selfish exploration is the
exploration time, which is driven by the least frequent player. As the probability of sending
packets of players is needed to compute the target policies in the exploitation phase, the
communication cost of selfish exploration is the number of transmissions needed to share
the probabilities of sending packets of players. Another approach could be to perform a
follow-the-leader exploration for estimating the mean rewards of arms: the gateway assigns
one single player to be in charge of exploration while the others do not send packets during
exploration phase in order to avoid internal collisions. As in IoT networks, the devices have
to respect the duty cycle, which can be of the same order as the probabilities of sending
packets of devices, it is advantageous to choose the most frequent player as the leader.
Follow-the-leader exploration explores faster than selfish exploration with the packets
the leader has to send, and the communication cost is only increased by K to send its
approximation of the mean reward of each arm. The main drawback of follow-the-leader
exploration is that during the exploration phase the packets of other players are lost.

We rather propose a decentralized collaborative exploration algorithm (Algorithm 8)
of lower sample complexity, exploration duration and low communication cost. Since the
gateway cannot observe the collisions (packet losses), the learning (exploration) should be
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done at the device (player) side, so our algorithm for exploring the mean rewards of arms is
decentralized and performed with the packets that the devices have to send. For computing
the exploration policy on each player, the probabilities of sending a packet have to be
shared at the beginning of the exploration phase. In order to reduce the exploration time
needed to find an ε-approximation of each arm, each player is responsible of a predefined
number of samples t∗n for each arm according to its probability of sending a packet, so
that all players would finish their estimations almost at the same time. At the end of
the exploration phase, each player sends its ε-approximation of each arm to other players
through the gateway. Then, the target policy can be computed in a centralized way (by
the gateway) or separately within each player. Our proposed algorithm is presented in
details in the following.

4.6 Collaborative Exploration in Multi-Player Ban-
dits

The basic idea of our proposed algorithm is collaboration: the players (nodes in a
network) divide the exploration mission between them, then they share the results at
the end by sending messages. As stated in section 2.2, a message can be sent with a
packet at the same time slot. It contains information to be sent to other players through
the gateway. We recall that in order to estimate the target policy, the players need to
know two things: the probabilities of sending packets of all players and the estimations
of the mean rewards of the arms. In the sake of simplifying notations, let’s assume that
p1 > p2, ..., pN−1 > pN in the following.

4.6.1 Description of the algorithm

Algorithm 8 presents our collaborative exploration algorithm. The sampling strategy
used is the Uniform Policy (line 4) π̃: ∀n,∀k, πkn = 1

K
. Then, player n can estimate the

mean rewards of the arms using:

θ̂kn = µ̂kn(π̃)
ρkn(π̃) , where (4.17)

ρkn(π̃) =
N∏

n′=1,n′ 6=n
(1− pn′πkn′) =

N∏
n′=1,n′ 6=n

(1− pn′/K) (4.18)
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Algorithm 8 Collaborative Exploration in Multi-Player Multi-Armed Bandits
Inputs: [K], [N ], ε ∈ [0, 1], δ ∈ (0, 1)
Output: θ̂ = {θ̂k,∀k ∈ [K]}
Init: t := 0; ∀n ∈ [N ] : t∗n :=∞, ack1n := 0; ∀(n, k) ∈ [N ]× [K]: ack2kn := 0, ack3kn := 0
1: repeat
2: Nt := {n ∈ [N ], an ∼ B(pn), an = 1}
3: for n ∈ Nt do
4: kn ∼ U(1, K)
5: Y kn

n (tknn ) := Iknn Ekn

6: µ̂knn (π̃) := ∑t=tknn
t=1 Y kn

n (t)/tknn
7: tknn := tknn + 1
8: if ack1n = 0 then
9: ack1n := send(pn)

10: else
11: if ∀i ∈ [N ], ack1i = 1 then

12: ∀i, t∗i :=
 pn log (2K/δ)

2ε2(∏n′ 6=1(1− pn′/K))2∑N
i=1 pi


13: end if
14: if ∃k, tkn ≥ t∗n then
15: if ack2kn = 0 then
16: ack2kn := send(θ̂kn)
17: else if ack3kn = 0 then
18: ack3kn := send(tkn)
19: end if
20: end if
21: end if
22: end for
23: t = t+ 1

24: until ∃N ′ ⊂ N ,


∀k ∑

n∈N ′
tkn ≥

∑
n∈N

t∗n

∀k ∑
n∈N ′

ack2kn = |N ′|

25: all players calculate θ̂k :=
∑
n∈N ′ θ̂

k
nt
k
n∑

n∈N ′ tkn

We can notice that in order to correctly estimate the means of the arms, each player needs
to compute the value of ρn(π̃) which depends on the probabilities of sending packets of
all players in the network (Equation (4.18)), so the exploration phase starts by sharing
the probabilities of sending packets between the players.
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Algorithm 8. Every player n sends its probability to the gateway that forwards it to all
other players (line 9). The function send(s) means that message s is broadcast to other
players through the gateway on a channel chosen uniformly over K. The function send(s)
returns 1 if an acknowledgement is received from the gateway and 0 otherwise. When
player n receives the probabilities of all other players (i.e. all players successfully send
their probabilities), it computes the required number of samples of each arm t∗n (lines
11,12) according to Lemma 4.3. When player n samples an arm k at least t∗n times, it
sends its estimation θ̂kn and tkn to other players (lines 14-18) each in a distinct message
(distinct time slots). θ̂kn is computed according to equation (4.17). The exploration phase
ends when the arms have been sampled enough by a subset of players (line 24) and the
estimations of this subset have been successfully sent. Finally, the players compute the
global estimations of the arms by combining the received local ones (line 25).

Lemma 4.3

With Algorithm 8, to obtain with a probability 1−δ an ε-approximation of the mean
rewards of arms, every player n needs to sample each arm at least

t∗n =
 pn log (2K/δ)

2ε2(∏n′ 6=1(1− pn′/K))2∑N
i=1 pi

 times.

where the player of the greatest probability to send packets is indexed by 1.

Proof. Due to equations 2.9 and 4.17, for a given probability of failure δ ∈ [0, 1], and
a given approximation factor ε, ∀n ∈ [N ], ∀k ∈ [K] we have:

P (|µk − µ̂kn| ≥ ε) ≤ δ

K
⇐⇒ P (|θk − θ̂kn| ≥ ε′n) ≤ δ

K
, (4.19)

where ε′n = ε.
∏
n′ 6=n(1− pn′/K).

Applying Hoeffding’s inequality:

P (|θkn − θ̂kn| ≥ ε′n) ≤ 2e−2tknε′n
2
. (4.20)

Therefore for obtaining an ε-approximation of arm k on player n with a probability
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1− δ
K
:

tkn ≥
log(2K/δ)

2ε′2n
⇐⇒ tkn ≥

log(2K/δ)
2ε2(∏n′ 6=n(1− pn′/K))2

For the sake of simplifying notations, we assume that p1 > p2, ..., pN−1 > pN , then
We have:

log(2K/δ)
2ε2(∏n′ 6=n(1− pn′/K))2 ≤

log(2K/δ)
2ε2(∏n′ 6=1(1− pn′/K))2 = t†

Now, as Algorithm 8 shares the estimations of the N players for finding ε-
approximation of arm k with high probability, we need ∑N

n=1 t
∗
n = t† samples. Hence,

if each player samples arm k at least t∗n =
⌈ pn log(2K/δ)
2ε2(∏n′ 6=1(1− pn′/K))2∑N

i=1 pi

⌉
times, an

ε-approximation of arm θk is obtained with a probability 1− δ
K
.

We analyze the performance of our exploration algorithm in the following.

4.6.2 Analysis of the algorithm

Due to internal and external collisions, messages sent by the players might be lost. In this
case, the corresponding player does not receive an acknowledgement and hence it keeps
sending its message until it observes a success. In Lemma 4.4, we provide an upper bound
on the number of transmissions needed to successfully send m messages.

Lemma 4.4

In Algorithm 8, so that player n sends successfully m messages, with a probability
1− δ player n needs to issue a number of transmissions C(m), which is at most:

m

 log(m/δ)

log
(

1−∑K
k=1

(1− p1/K)N−1

K
θk
)−1 + 1

 transmissions.
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Proof. Let C(1) be the random variable corresponding to the number of transmissions
of player n to successfully send one message. C(1) follows a geometric distribution

with a probability of success p = µn(π̃) = ∑K
k=1

ρn(π̃)
K

θk, and probability of failure
q = 1− p. Let F be the number of failures before the success. We have:

P(C(1) ≤ F + 1) = 1− qF = 1− δ,

=⇒ F =
⌈

log δ
log q

⌉

Assuming that p1 ≥ p2, .., pN−1 ≥ pN , we get ρn(π̃) = ∏
n′ 6=n(1 − pn′/K) ≤ (1 −

p1/K)N−1. Consequently, for sending m messages, with a probability 1− δ any player
needs at most :

C(m) ≤ m


log δ/m

log(1−∑K
k=1

(1− p1/K)N−1

K
θk)

+ 1

 transmissions.

Communication Cost. The communication cost presents the number of transmissions
needed to successfully send the messages of Algorithm 8. Theorem 4.4 states an upper
bound on the total number of transmissions issued by the N players for sharing the
probabilities of sending packets, and for sharing their estimations that is in the order of
O
(
NK log NK +N

δ

)
.

Theorem 4.4

When Algorithm 8 stops, the total number of transmissions issued by the players is,
with probability 1− δ, less than C(N(1 + 2K)), where

C(m) = m

 logm/δ
log

(
1−∑K

k=1
(1−p1/K)N−1

K
θk
)−1 + 1

.
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Proof. The required number of messages to send during Algorithm 8 is at most N(1+
2K). Using Lemma 4.4, the total number of transmissions done by all players to send
successfully their messages is with probability 1− δ:

C(N(1 + 2K)) ≤ N(1 + 2K)


log δ/(N(1 + 2K))

log(1−∑K
k=1

(1− p1/K)N−1

K
θk)

+ 1

 (4.21)

Exploration Duration. Theorem 4.5 states an upper bound on the number of time
slots needed by all players to finish their estimations of the mean rewards of the arms
and to share them. The left term in O (K/ε2 logK/δ) is the dominating term of the upper
bound of the sample complexity. It is near optimal in comparison to the lower bound of
K biased coin estimations in Ω (K/ε2 log 1/δ) [80]. The right term of the upper bound in
O
(
K/pN

√
logNK/δ

)
mainly depends on the least frequent player. This is due to the fact

that, in the worst case, before stopping Algorithm 8 has to wait until the least frequent
player has sent its estimations of the arms.

Theorem 4.5

With a probability at least 1−δ, Algorithm 8 stops while finding the ε-approximations
of model θ = {θ1, ..., θK} at:

t∗ ≤ K log 2K/δ
2ε2(1− p1/K)2N−2∑N

i=1 pi

+ K

pN

√1
2 log NK

δ
+ C(3)

 ,
where pN = minn∈[N ] pn, p1 = maxn∈[N ] pn, and C(3) is the needed number of sent
messages to successfully send 3 messages.
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Proof. A player n stops while finding its estimations when it plays each arm k at least
t∗n times (Lemma 4.3). Let tkn be the number of plays of arm k by player n before the
algorithm stops at time t∗. tkn is a binomial random variable with parameters t∗ and
pn/K. Then we have:

E[tkn] = pn
K
.t∗ (4.22)

The estimation does not terminate if this event occurs: E = {∃n ∈ [N ],∃k ∈
[K], tkn < t∗n + C(3)}.

Applying Hoeffding’s inequality we get:

P(tkn −
pn
K
.t∗ ≤ −ε) ≤ exp−2ε2 = δ

NK
(4.23)

Hence, when E does not occur =⇒ we have with probability at most δ:

∀n t∗n + C(3)− pn
K
.t∗ ≤ −

√
1
2 log NK

δ

=⇒ ∀n t∗ ≥

√1
2 log NK

δ
+ C(3) + pn

log 2K/δ
2ε2(∏n′ 6=1(1− pn′/K))2∑N

i=1 pi

 K

pn

=⇒ ∀n t∗ ≥ K

pn

√1
2 log NK

δ
+ C(3)

+K
log 2K/δ

2ε2(∏n′ 6=1(1− pn′/K))2∑N
i=1 pi

=⇒ t∗ ≥ K

pN

√1
2 log NK

δ
+ C(3)

+K
log 2K/δ

2ε2(1− p1/K)2N−2∑N
i=1 pi

,

Then, when E does not occur and hence the estimation terminates, we have with
probability at least 1− δ:

t∗ <
K

pN

√1
2 log NK

δ
+ C(3)

+K
log 2K/δ

2ε2(1− p1/K)2N−2∑N
i=1 pi

,

where pN and p1 are respectively the lowest and the greatest probability of sending a
packet among the players.

Regret Analysis. In this section, we provide upper and lower bounds on the pseudo-
regret. The pseudo-regret is defined as follows:
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Definition 4.4: Pseudo-regret

Let πt be a policy generated at time t by an algorithm, and µθ(πt) be its value in
model θ = {θ1, ..., θK}, we define the pseudo-regret with respect to an optimal policy
π∗θ as R(T ) = ∑T

t=1(µθ(π∗θ)− µθ(πt)).

For the regret study of our exploration algorithm we make use of Lemma 4.5.

Lemma 4.5

The expected instantaneous regret in the model θ of the target policy π∗
θ̂
using the

estimated model θ̂ with respect to the optimal policy π∗θ using the true model θ is
upper bounded by:

µθ(π∗θ)− µθ(π∗θ̂) ≤ 2Kε, (4.24)

where µθ(π) denotes the mean reward of the policy π in the model θ.

Proof.

µθ(π∗θ)− µθ(π∗θ̂) = µθ(π∗θ)− µθ̂(π
∗
θ) + µθ̂(π

∗
θ)− µθ̂(π

∗
θ̂
) + µθ̂(π

∗
θ̂
)− µθ(π∗θ̂) (4.25)

Then, we have:

• µθ(π∗θ)− µθ̂(π∗θ) = ∑K
k=1 z

klkθk −∑K
k=1 z

klkθ̂k ≤ Kε,

• µθ̂(π∗θ)− µθ̂(π∗θ̂) ≤ 0, since π∗
θ̂
is the best policy in the model θ̂.

• µθ̂(π∗θ̂)− µθ(π
∗
θ̂
) = ∑K

k=1 ẑ
k l̂kθ̂k −∑K

k=1 ẑ
k l̂kθk ≤ Kε.

Theorem 4.6 states that in the setting proposed by [60], the regret of Algorithm 8 followed
by DORG is in O

(
T 2/3

(
(logKT )/(1− p/K)NN

))
.
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Theorem 4.6

When δ = 1/T, ε = K/ 3
√
T , ∀n ∈ [N ], pn = p, the pseudo-regret with respect to the

optimal policy π∗θ of Algorithm 8 followed by the policy π∗
θ̂
is upper bounded by:

R(T ) ≤ T 2/3
(

2K2 + log 2KT
2(1− p/K)2N−2Np

)
+ K2

p

√1
2 logNKT + C(3)

+K

Proof. Let T be the time horizon, π̃ be the uniform policy used in Algorithm 8, which
outputs an ε-approximation with high probability of θ, and π∗θ be the optimal policy.
Let t∗ be the stopping time of the exploration phase. Then, the pseudo-regret with
respect to a target policy π∗θ of Algorithm 8 is expressed as:

E[R(T )] = t∗(µθ(π∗θ)− µθ(πu)) + (T − t∗)(µθ(π∗θ)− µθ(π∗θ̂)), (4.26)

where µθ(π∗θ̂) denotes the mean reward in the model θ of the optimal policy
using the estimated model θ̂. The left term of equation 4.26 is the instantaneous
pseudo-regret of the exploration policy πU , and the right term is the instantaneous
pseudo-regret of the estimated optimal policy π∗

θ̂
.

Theorem 4.5 allows us to upper-bound the stopping time of Algorithm 8 with t∗

on an event of high probability 1− δ:

t∗ ≤ K

pN

√1
2 log NK

δ
+ C(3)

+K
log 2K/δ

2ε2(1− p1/K)2N−2∑N
i=1 pi

(4.27)

When ∀n ∈ [N ], pn = p, we have:

t∗ ≤ K

p

√1
2 log NK

δ
+ C(3)

+K
log 2K/δ

2ε2(1− p/K)2N−2Np
(4.28)

The instantaneous pseudo-regret of uniform policy with respect to the optimal
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policy π∗θ is upper bounded by:

µθ(π∗θ)− µθ(π̃) ≤ K

and on the other hand we know by Lemma 4.5 that:

µθ(π∗θ)− µθ(π∗θ̂) ≤ 2Kε (4.29)

Then the pseudo-regret is controlled by the trivial upper bound KT on the com-
plementary event of probability less than δ:

E[R(T )] ≤ t∗(µθ(π∗θ)− µθ(π̃)) + (T − t∗)(µθ(π∗θ)− µθ(π∗θ̂)) + δKT (4.30)

Then, by setting δ = 1/T , the pseudo-regret of Algorithm 8 followed by a policy
π∗
θ̂
is:

E[R(T )] ≤ Kt∗ + (T − t∗)× 2Kε+K (4.31)

≤ Kt∗ + 2KεT +K (4.32)

≤ K2

p

√1
2 logNKT + C(3)

+ K2 log 2KT
2ε2(1− p/K)2N−2Np

+ 2KεT +K

(4.33)

(4.34)

Finally, by setting ε = K/ 3
√
T , we conclude the proof:

E[R(T )] ≤ T 2/3
(

2K2 + log 2KT
2(1− p/K)2N−2Np

)
+ K2

p

√1
2 logNKT + C(3)

+K

(4.35)

To show how tight this upper bound is we provide in Theorem 4.7 a lower bound on
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the pseudo-regret of any exploration algorithm that outputs an ε−approximation of each
arm θk and is followed by an optimal policy that uses the estimated model.

Theorem 4.7

When ε = K/ 3
√
T , there exists a model θ = {θ1, ..., θk} and a distribution of players

p1, ..., pN such that the pseudo-regret with respect to the deterministic optimal policy
π∗θ of any exploration algorithm that, with probability at least 1 − 1/T , outputs an
ε-approximation of every arm θk and which is followed by the optimal policy using
the estimated model is at least:

R(T ) ≥ Ω
(
T 2/3 log T

N

)
.

Proof. In the following we show that a lower bound holds for a class of models θ
and distribution of players p1, ..., pN . Without loss of generality, we assume in the
following that:

• θ1 ≥ θ2, ..., θK−1 ≥ θK ,

• p1 ≥ p2, ..., pN−1 ≥ pN .

Choice of a class of problems. The most difficult point for evaluating a regret
lower bound is that in the general case, the optimal policy, which maximizes the
mean reward (see equation (4.4)), is unknown. For handling this point we choose a
particular class of problems, where N = K+1. Then, we assume that the distribution
of players and the mean rewards of arms are such that:



∀k ∈ [K − 1] θk = θk+1 + ε,

p1 > p2 = ... = pK > pK+1,

p1(1− pK+1) + pK+1(1− p1) = p2,

p2(1− pK+1) + pK+1(1− p2) > p2,

∀k ∈ [K] ε
2pk

< θk.

(4.36)
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The optimal policy. When ε
2pk

< θk (equation (4.36)), superposing players on any
arm provides less reward than spreading players on the arms. Indeed, let ∆s be the
gap between the mean reward of two players k1, k2, k1 < k2 ≤ K assigned on different
arms, and the mean reward of two players assigned on the same arm:

∆s = pk1θ
k1 + pk2θ

k2 − pk1θ
k1(1− pk2)− pk2θ

k1(1− pk1), (4.37)

= pk2(θk2 − θk1) + 2pk1pk2θ
k1 , (4.38)

= −pk2ε+ 2pk1pk2θ
k1 > 0. (4.39)

Let ∆1,2 be the difference between the mean reward of policy that assigns player
K + 1 on arm 1 and the one that assigns it on arm 2.

∆1,2 = (p1(1− pK+1) + pK+1(1− p1))θ1 + p2θ
2 (4.40)

− p1θ
1 − (p2(1− pK+1) + pK+1(1− p2))θ2 (4.41)

= p2θ
1 − p1θ

1 + p2θ
2 − (p2(1− pK+1) + pK+1(1− p2))θ2 < 0 (4.42)

Now let ∆2,k be the difference between the mean reward of policy that assigns
player K + 1 on arm 2 and the one that assigns it on arm k > 2.

∆2,k = (p2(1− pK+1) + pK+1(1− p2))θ2 + p2θ
k (4.43)

− p2θ
2 − (p2(1− pK+1) + pK+1(1− p2))θk (4.44)

= (p2(1− pK+1) + pK+1(1− p2))(θ2 − θk)− p2(θ2 − θk) > 0 (4.45)

Hence, when equation (4.36) holds, the optimal assignment of players over arms
is:

π∗θ = (p1, θ
1), (p2, pK+1, θ

2), ..., (pK−1, θ
K−1), (pK , θK). (4.46)

The optimal exploration policy. As an ε-approximation of each arm is needed
to compute the optimal policy. The optimal exploration policy plays each arm the
same expected (with respect to the distribution of players p) number of times. When
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equation (4.36) holds, any optimal exploration policy belongs to the following set:

π∗E ∈ {m ∈ [K],∀n ∈ [K] \ {1}, k ∈ [K] \ {m} : (pn, θk), (p1, pK+1, θ
m)}. (4.47)

Hence any other assignment of players over arms generates more collisions.

Pseudo-regret decomposition. Let T be the time horizon. Let π∗E be the optimal
(in term of sample complexity) exploration policy that outputs an ε-approximation
with high probability of θ, i.e. each arm θk, and π∗θ be the optimal policy. We con-
sider the time t∗, where the optimal exploration algorithm π∗E outputs exactly an
ε-approximation of model θ. Then, the pseudo-regret with respect to the determinis-
tic policy π∗θ is expressed as:

R(T ) = t∗(µθ(π∗θ)− µθ(π∗E)) + (T − t∗)(µθ(π∗θ)− µθ(π∗θ̂)), (4.48)

where µθ(π∗θ̂) denotes the mean reward in the model θ of the optimal policy using
the estimated model θ̂.

Lower bound of the right term. The right term equation (4.48) is the instan-
taneous regret of the estimated optimal policy π∗

θ̂
. For stating a lower bound on this

term, we lower bound it by the minimal gap between the optimal policy and the
estimated optimal policy when a mistake in the ranking of two arms is done:

µθ(π∗θ)− µθ(π∗θ̂) ≥ min
k∈[K],θ̂k+1>θ̂k

(
µθ(π∗θ)− µθ(π∗θ̂)

)
, (4.49)

The minimal gap, between the mean reward of the optimal policy (see equation
(4.46)) and a policy where an arm is not well ranked, is obtained when the ranks of
arms 2 and 3 are inverted.
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µθ(π∗θ)− µθ(π∗θ̂) ≥ (p2(1− pK+1) + pK+1(1− p2))θ2 + p2θ
3

− p2θ
2 − (p2(1− pK+1 + pK+1(1− p2))θ3

≥ cpε, where cp > 0. (4.50)

Lower bound of the left term. The left term of equation (4.48) is the instan-
taneous regret of the optimal exploration policy π∗E. The optimal exploration policy
cannot be the optimal policy since estimating ε-approximations of arms necessitates
to play the same expected number of times the arms, and hence assigning p1 and
pK+1 on the same arm, which is not optimal. There are three possibilities:

• p1 and pK+1 are on arm 1:

µθ(π∗θ)− µθ(π∗E) ≥ p1θ
1 + (p2(1− pK+1) + pK+1(1− p2))θ2

− (p1(1− pK+1) + pK+1(1− p1))θ1 − p2θ
2,

• p1 and pK+1 are on arm m ∈ [K] \ {1, 2}:

µθ(π∗θ)− µθ(π∗E) ≥ p1θ
1 + pmθ

m + (p2(1− pK+1) + pK+1(1− p2))θ2

− p2θ
1 − (p1(1− pK+1) + pK+1(1− p1))θm − p2θ

2,

• p1 and pK+1 are on arm 2:

µθ(π∗θ)− µθ(π∗E) ≥ p1θ
1 + (p2(1− pK+1) + pK+1(1− p2))θ2

− p2θ
1 − (p1(1− pK+1) + pK+1(1− p1))θ2.

Hence we have:

µθ(π∗θ)− µθ(π∗E) ≥ cθ,p, (4.51)

where cθ,p > 0 is a constant depending on the problem parameters θ and p1, ..., pN .
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Lower bound of the regret. Now, injecting the lower bound of µθ(π∗θ)− µθ(π∗E)
(equation (4.51)) and the lower bound of µθ(π∗θ) − µθ(π∗θ̂) (equation (4.50)) in the
pseudo-regret decomposition (equation (4.48)), we obtain:

R(T ) ≥ t∗cθ,p + (T − t∗)cpε, (4.52)

≥ t∗cθ,p + Tε∆p − t∗cpε. (4.53)

The lower bound of number of samples for finding a bias ε of a coin is
Ω (1/ε2 log 1/δ) [80]. At each time step, a maximum of N players are sampled. Hence,
the time t∗ where π∗E finds exactly an ε-approximation of each arm θk is at least:

Ω
(
K

Nε2
log 1

δ

)
⇔ ∃c1 > 0, t∗ = c1

K

Nε2
log 1

δ
. (4.54)

We have:

R(T ) ≥ c1cθ,p
K

Nε2
log 1

δ
+ Tcpε− c1cpε

K

Nε
log 1

δ
. (4.55)

Finally setting δ = 1/T and ε =
√
K/ 3
√
T , obtain:

E[R(T )] ≥ Ω
(
T 2/3 log T

N
+ T 2/3 − K1/2

N
T 1/3 log T

)
. (4.56)

Hence, we have:

E[R(T )] ≥ Ω
(
T 2/3 log T

N

)
. (4.57)

Theorem 4.7 reveals the difficulty of the studied problem in comparison to multi-armed
bandits. Indeed, in the case of bandit the pseudo-regret lower bound of explore-then-
exploit algorithms is in Ω(

√
KT log T ) [81], and in the case of multi-player bandit there
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exists an explore-then-exploit algorithm with a regret upper bound in O(K
√
T log T ) [39].

The difference in power of T of the pseudo-regret lower bounds of bandits and massive
multi-player bandits is due to the fact that in the problem studied, the whole model θ is
needed to compute the optimal policy, and not only the best arm: when the exploration
stops, there is no guarantee that the arms are sufficiently sampled to compute the optimal
policy without mistakes of assignment of players over arms. The independence of K of
the pseudo-regret lower bound of massive multi-player bandits is due to the fact that at
each time step K players can sample the arms.

Fairness Analysis. As DOFG will be preceded by an exploration phase and will be
based on the estimations of the arms rather than the real values of the arms’ reward
means, its fairness level would be affected. We hereby present the new level of fairness
achieved by DOFG(θ̂) preceded by Algorithm 8.

Theorem 4.8

Applying Algorithm 8 followed by DOFG ( Algorithm 7) on θ̂ returns an α-fair policy
in the true model θ, with

α ≥ 1− p1 −
2Kε

maxn∈[N ]
θ̂knzkn

1−pn

.

Proof. Theorem 4.3 states that the policy returned by Algorithm 7, denoted as π†

has the following fairness guarantees:

α̂ =
minn∈[N ] µn,θ̂(π†)
maxn∈[N ] µn,θ̂(π†)

≥ 1− max
n∈[N ]

pn, (4.58)

with µn,θ̂(π†) denoting the expectation of rewards received by player n in estimated
model θ̂ when following policy π†. We may write it as follows:

µn,θ̂(π
†) = θ̂kn

∏
n′, s.t. kn′=kn

(1− pn′) = θ̂knzkn

1− pn
. (4.59)
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We therefore get:

α = minn∈[N ] µn,θ(π†)
maxn∈[N ] µn,θ(π†)

(4.60)

=
minn∈[N ]

θknzkn

1−pn

maxn∈[N ]
θknzkn

1−pn

(4.61)

≥
minn∈[N ]

θ̂knzkn

1−pn − ‖θ − θ̂‖∞
maxn∈[N ]

θ̂knzkn

1−pn + ‖θ − θ̂‖∞
since zkn

1− pn
≤ 1,∀n (4.62)

= α̂− 2‖θ − θ̂‖∞
maxn∈[N ]

θ̂knzkn

1−pn + ‖θ − θ̂‖∞
(4.63)

≥ 1− max
n∈[N ]

pn −
2‖θ − θ̂‖∞

maxn∈[N ]
θ̂knzkn

1−pn

(4.64)

Theorem 4.8 implies that, using ε-approximations of arms, with high probability DOFG
still has the same fairness guarantee minus a term that decreases with ε.

4.7 Simulation and Results

In order to illustrate and complete the analysis of the aforementioned algorithms, we first
compare the performance of collaborative exploration (Algorithm 8) with selfish explo-
ration, where each player explores selfishly, and with follow-the-leader exploration (FtL),
where only the most frequent player explores. Then we compare collaborative exploration
followed by DORG(θ̂) and DOFG(θ̂), with selfish UCB [60] and selfish Exp3 [19], which
respectively consist in independently playing UCB and Exp3 on each player, and with
CBAIMPB, where the players find (ε′,m)− optimal arms and exploit them uniformly
with m = 5, ε′ = 0.2. We run simulations with various values of N , and K = 10, such that
∀k, θk ∼ U(0, 1). The distribution of players is uniform and the upper bound of the distri-
bution is chosen such that the internal collision rate does not exceed 0.15 when the number
of players reaches 1300 while playing the arms uniformly, so ∀n, pn ∼ U(3.10−4, 2.2.10−3).
δ = 0.05, ε = 0.1. The curves are averaged over 40 trials and run on 106 time steps.
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Figure 4.4 – (a) exploration phase, (b) successful transmission rate, (c) internal collision
rate, (d) external collision rate, (e) fairness, (f) successful transmission rate versus time.
The successful transmission and collision rates are cumulative over time. θ̂C when collabo-
rative exploration is used, θ̂S when selfish exploration is used, and θ̂L when follow-the-leader
exploration is used. θ is the ground truth.
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In figure 4.4a, we observe that the exploration time of collaborative exploration is two
orders of magnitude less than follow-the-leader exploration and three orders of magnitude
less than selfish exploration but one order of magnitude more than CBAIMPB, which stops
exploration when it finds the best arms. Concerning the communication cost, we observe
that the communication cost of the collaborative exploration is only one order of magnitude
greater than other exploration algorithms, however it is more than two times less than
the upper bound stated in Theorem 4.4, which is in the order of O

(
NK log NK +N

δ

)
.

This is due to the fact that the stopping condition of Algorithm 8 does not imply that
all players have been sampled enough, but that the arms have been sampled enough. As
a consequence, all the estimations of all players do not need to be shared, but only those
of players that have finished their estimations.

The performance differences of the exploration policies affect the whole performance
of DORG(θ̂) and DOFG(θ̂), which consist of the exploration algorithm followed by the corre-
sponding exploitation phase. That is why in figures 4.4b and 4.4f, the successful transmis-
sion rate when using selfish exploration and follow-the-leader exploration are dramatically
less than the one of collaborative exploration. In figures 4.4b and 4.4f, DOFG(θ) is slightly
outperformed in terms of successful transmission rate by DORG(θ). DORG(θ̂) and DOFG(θ̂)
exhibit the same behavior, and we can notice that DORG(θ̂) and DOFG(θ̂) clearly outper-
form selfish UCB1, selfish Exp3 and CBAIMPB, and tend to perform as well as DORG(θ)
and DOFG(θ) as N increases (figure 2b). This improvement is due to their low external
collision rate (figure 2d) thanks to playing more the best arms, while because of playing
more the best arms their internal collision rate is higher (figure 2c). Finally, while Selfish
Exp3 is theoretically better suited for our problem setting, it is clearly outperformed by
Selfish UCB.

Concerning fairness, DOFG(θ̂) clearly outperforms selfish UCB1, selfish Exp3 and DORG(θ̂),
while DORG(θ̂) is outperformed by them when N is high (Figure 4.4e). CBAIMPB offers
a high fairness between players due to the uniform selection of the arms by all players
during both exploration and exploitation phases. The use of selfish exploration leads to
high fairness level due to its very long uniform exploration phase, in contrast to follow-
the-leader exploration that suffers of very low fairness level due to the fact that during
the exploration time, only the leader can send packets. The observed fairness of DOFG(θ)
in figure 4.4e differs from the theoretical one (Theorem 4.3). This is due to the fact that
the mean rewards of players are observed on a finite number of time slots (106). As time
passes the observed fairness tends to the theoretical fairness as shown below.
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Figure 4.5 – Fairness level achieved by DOFG(θ) as a function of time with 10 players.

Fairness Convergence. Figure 4.5 shows the progress of the fairness level achieved by
DOFG(θ) policy as time passes. The experimental settings are the same as those in section
4.7. The black plot corresponds to the theoretical fairness level proved in Theorem 4.3.
In order to reach the theoretical fairness level, the observed mean rewards of all players
have to reach their expected values. Due to the low probabilities of sending packets of the
players, this would take a long time. As shown by figure 4.5, the observed fairness tends
to the theoretical fairness in 108 time steps for 10 players.

The source code of all experiments accomplished in this chapter are available in an
open-source framework 2 published under the GNU GPL v2.0 license.

4.8 Conclusion

With the aim of optimizing transmission in IoT networks we have proposed an explore-
then-exploit approach. We have proposed two target policies DORG and DOFG that are
efficient with any number of players, and can handle internal and external collisions with-
out sensing. We have shown that DORG in the setting proposed in [60] (when ∀n, pn = p)
is optimal, and that DOFG is fair. Then, we showed that using an ε-approximation of the

2. https://github.com/Orange-OpenSource/MAB_IoT
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model θ, the pseudo-regret lower bound of DORG(θ̂) is optimal with respect to T and that
DOFG(θ̂) is fair up to an additive term that decreases with ε. Our experiments confirm the
good behavior of selfish UCB and CBAIMPB, but show that both are outperformed in
terms of network successful transmission rate by DORG(θ̂) and DOFG(θ̂), and in terms of
fairness by DOFG(θ̂). This work can be extended in many directions: studying explore-and-
exploit approach for the proposed problem, handling an evolving number of active players,
handling more general non-stationary environments, using an efficient change point detec-
tion [82], or by adapting Exp3-Coop [83] to competitive access to arms, handling players
with different mean rewards of arms, handling the energy cost of each arm using the
approaches developed in [52, 84], or using contextual bandits such as [85, 86]... Finally,
showing the NP-Hardness of the optimization problem stated in equation (4.1) is an open
problem.

The work accomplished in this chapter is submitted to the 38th Conference on Uncertainty
in Artificial Intelligence (UAI) 2022.
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5

MULTI-PLAYER MABS FOR OPTIMIZING

LORA COMMUNICATIONS

Key Takeaways: Long-Range Wide Area Network (LoRaWAN), a key technology
for the IoT, is a fast-growing communication system due to its advantages in opti-
mizing battery lifetime, capacity, range and cost. However, it faces many constraints
including energy consumption and quality of service. In this chapter, we present an
efficient way to manage the trade-off between energy consumption and packet losses
of LoRa nodes using MP-MAB algorithms for nodes to adjust their emission pa-
rameters. We implement our reinforcement learning methods on a LoRa network
simulator, and show that such learning techniques largely outperform the Adaptive
Data Rate (ADR) algorithm, currently implemented in LoRa devices, in terms of
energy consumption and packet losses.

In the previous chapters, we presented MP-MAB algorithms that aim to optimize the
communications in IoT networks. In this chapter, we study the efficiency of such algo-
rithms on one of the most deployed IoT technologies i.e. LoRaWAN, using a LoRa network
simulator. The contribution of this chapter is two-fold:

• We redevelop and extend a LoRa network simulator to simulate large intelligent
networks

• We model the LoRa communications optimization problem as a massive MP-MAB

• We study the performance of MP-MAB algorithms compared to ADR algorithm in
terms of both energy consumption and packet loss

The remainder of this chapter is organized as follows. We first provide an overview of
the LoRaWAN technology and the ADR algorithm in section 5.1. In section 5.2 we describe
the LoRa network simulator used for experimentation. In Section 5.3 we demonstrate
how we can apply massive multi-player multi-armed bandits to optimize the trade-off
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between energy consumption and packet loss in a LoRa network. Section 5.4 includes the
experiments and the numerical analysis, and we finally conclude in Section 5.5.

5.1 Overview on LoRaWAN Technology

LoRaWAN is a LPWAN protocol designed to wirelessly connect
battery operated ‘things’ to the Internet, and targets key IoT re-
quirements such as bi-directional communications, end-to-end se-
curity, mobility and localization services. LoRaWAN is designed
to optimize LPWANs for battery lifetime, capacity, range, and
cost. LoRa is the physical layer or the wireless modulation used
to provide the long range communication link. While many wireless systems use the Fre-
quency Shift Keying (FSK) modulation [87] for its high efficiency in achieving low power,
LoRa instead uses the chirp spread spectrum (CSS) modulation [88] which maintains the
same low power characteristics as FSK modulation but also significantly increases the
communication range; a LoRa gateway provides wide coverage reaching 2-5km, 15km and
45km in urban, suburban and rural areas respectively[89]. It was developed by Cycleo 1

and acquired by Semtech 2, the founding member of the LoRa Alliance.

5.1.1 Network Architecture

Unlike many existing deployed networks that utilize a mesh network architecture, Lo-
RaWAN nodes utilize the star architecture as shown in Figure 5.1. In a mesh network,
the end-nodes receive and forward the information of other nodes in order to increase the
communication range, however this adds complexity and reduces the battery lifetime. Un-
likely, LoRa star topology preserves battery lifetime while long-range connectivity can be
achieved. The LoRaWAN network end-nodes are not associated with a specific gateway,
but alternatively the data transmitted by a node can be received by multiple gateways
that forward this data to the network server. The latter will filter redundant received
packets and schedule acknowledgements through the optimal gateway.

1. a French startup created in 2009 and based in Grenoble
2. a California-based semiconductor company, founded in 1960
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Figure 5.1 – LoRa Network Architecture

5.1.2 LoRaWAN Regional Parameters

LoRaWAN as any LPWAN technology operates in the unlicensed Industrial Scientific and
Medical (ISM) frequency band. Two types of channel plans are considered:

• Dynamic channel plan: in which the majority of channels are defined after the join
process

• Fixed channel plan: where the majority of channels (or all channels) are defined
statically and known prior to the join process.

The LoRaWAN specification varies slightly from region to region based on the different
regional spectrum allocations and regulatory requirements. In Europe, LoRaWAN oper-
ates in the 863− 870 MHz frequency band referred to by EU868. It defines 16 channels
with 125/250 kHz bandwidth in a dynamic channel plan. The maximum output power
allowed by the European Telecommunications Standards Institute (ETSI) in Europe is
+14 dBm. There are duty cycle 3 restrictions under ETSI (< 1%) but no maximum trans-
mission or channel dwell time limitations 4[90].

3. It is a maximum percentage of time during which an end-device can occupy a channel
4. It is the amount of time needed to transmit on a frequency
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5.1.3 LoRaWAN Classes

A LoRaWAN network distinguishes between a basic LoRaWAN (called Class A) and op-
tional features (Class B, Class C . . . ). All LoRaWAN end-devices should implement at
least Class A functionality, and they may implement Class B and/or Class C functional-
ities [91].

Bi-directional end-devices (Class A)

Class A end-devices allow bi-directional communications whereby each uplink (UL)
transmission is followed by one or two short downlink (DL) receive windows (RX1 and
RX2). If no packet is received in RX1, the end-device shall open RX2. They start a
communication whenever they have data to send (ALOHA-type of protocol). This is the
lowest power end-device system for applications that only require DL shortly after the
end-device has sent an UL. A DL from the server at any other time will have to wait until
the next scheduled UL.

Bi-directional end-devices with scheduled receive slots (Class B)

Class B devices open extra receive windows at scheduled times in addition to the two
random receive windows of Class A.

Bi-directional end-devices with maximal receive slots (Class C)

Class C devices have almost continuously open receive windows, only closed when
transmitting. They need more power to operate than Class A or Class B, but they feature
the lowest latency for communications between servers and end-devices.

5.1.4 Network Capacity

The ability to manage the communication parameters of the end-devices in a LoRaWAN
network allows to increase the capacity of the network. LoRaWAN nodes follow a pseudo-
random channel hopping at each transmission so that simultaneous messages on multiple
channels can be received. The resulting frequency diversity makes the system more robust
to interference. The LoRa CSS modulation technique supports 6 orthogonal spreading
factors (SF) corresponding to 6 different data rates: SF7 (50 kbps) to SF12 (300 bps).
The signals are practically orthogonal to each other when different spreading factors are
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Figure 5.2 – Illustration of receive windows for DL emissions

utilized, so the gateway is able to receive multiple different data rates on the same channel
at the same time.

5.1.5 Channel Mask

The network server (NS) can limit an end-device to a given set of uplink frequency channels
amongst all the usable channels. It might use this strategy to reserve some channels for
certain classes of applications. However, it is recommended not to constrain an end-device
with a single channel, but keeping the possibility to hop across 2 channels at least.

5.1.6 Acknowledgement and Retransmission Procedures

LoRaWAN distinguishes between 2 types of frames: confirmed frames that shall be ac-
knowledged by the receiver and unconfirmed frames that shall not be acknowledged.
When the network receives a confirmed UL, it should send an acknowledgement using one
of Class A receive windows (RX1 and RX2) opened by the end-device after the send op-
eration (see Figure 5.2). UL confirmed and unconfirmed frames are transmitted nbTrans
times unless a valid Class A DL is received. The default value of nbTrans is 1, which
corresponds to a single transmission of each frame, and the valid range is [1, 15]. The end-
device should perform channel hopping between retransmissions and should wait after
each repetition until the receive windows have expired. The delay between retransmis-
sions may be different for each end-device. For confirmed frames, an end-device waits
RETRANSMIT_TIMEOUT seconds after RECEIVE_DELAY2 seconds have elapsed after the end
of the previous UL to receive an acknowledgement before it sends a new UL (retransmis-
sion or a new frame)[91].
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5.1.7 Adaptive Data Rate

Rate adaptation is an essential feature in LoRaWAN. The data rate used by an end-point
is dictated by the central NS based on the analysis of history of the received signal quality
of the end-node. Adaptive Data Rate (ADR) is only suitable for static devices. It should
not be applied on mobile devices since the radio channel changes dramatically with every
frame. In this part, we present a simple baseline way to implement this decision mechanism
recommended by Semtech [92] and to the best of our knowledge most of NSs operate
based on it. Its performance has been evaluated in [93]. This algorithm in its present form
is limited to EU868 ISM band, and to 6 data rates (SF12/125kHz to SF7/125kHz).

Each UL transmission might be received by several gateways that forward the frame
to the NS. For rate adaptation, the NS considers the set of the Signal to Noise Ratio
(SNR) of the last 20 received transmissions of each end-node denoted by SNR20. For each
transmission, it considers the SNR value that corresponds to the maximum value of the
various SNRs reported by the different gateways who received this given frame.

When the end-device is in stable conditions, it sets the ADR bit in the frame header to
1 informing the NS that it is ready to receive ADR commands. Then the NS starts collect-
ing the information about the UL transmissions of the device, and after 20 transmissions
the NS runs the ADR algorithm presented in Algorithm 9, where:

• margin_db is the installation margin of the network which is a device specific
static parameter. It is typically 10 dB in most networks [92].

• SNR(SF) is the required SNR to successfully demodulate a frame. It is a function
of the SF of the end-device’s last received frame and presented in Table 5.1

In Algorithm 9: the NS computes the number of steps Nstep to perform (line 2). If Nstep

is positive, it means that the SNR values are high, so the NS decreases the end-node’s
SF in order to decrease the time on air and save energy. When the lowest SF is reached
and there are still steps to perform, the NS decreases the transmitting power (TP) (lines
3-11). If Nstep is negative, and so the SNR values are low, the NS increases the TP of
the end-node (lines 12-16), but it does not try to increase the SF since the end-device
implements automatic data rate decay. At the end, the NS provides the SF and TP the
end-device should use starting from the next transmission.

On the other hand, the end-device periodically needs to validate that the network
still receives the uplink frames. Therefore, each time the UL frame counter is incre-
mented, the end-device shall increment an ADRACKCnt counter. After ADR_ACK_LIMIT
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Algorithm 9 NS ADR algorithm for a given end-device
Inputs: SF, TP, margin_db, SNR20, SFmin = 7, TPmin = 2 dBm
Output: SF, TP
Init: SNRmax = max(SNR20)
1: SNRmargin = SNRmax − SNR(SF)−margin_db

2: Nstep :=
⌊
SNRmargin

3

⌋
3: if Nstep > 0 then
4: while Nstep > 0 and SF > SFmin do
5: SF := SF− 1
6: Nstep := Nstep − 1
7: end while
8: while Nstep > 0 and TP > TPmin do
9: TP := TP− 3 dB
10: Nstep := Nstep − 1
11: end while
12: else
13: while Nstep < 0 and TP < TPmax do
14: TP := TP + 3 dB
15: Nstep := Nstep + 1
16: end while
17: end if

Table 5.1 – Spreading factors and their corresponding required SNR values to successfully
demodulate

SF Required SNR (in dB)
SF7 -7.5
SF8 -10
SF9 -12.5
SF10 -15
SF11 -17.5
SF12 -20

uplinks (ADRACKCnt ≥ ADR_ACK_LIMIT) without receiving a downlink response from the
network, the end-device shall set the ADR acknowledgment request bit ADRACKReq on
uplink transmissions. The Network is then required to respond with a DL frame within
the next ADR_ACK_DELAY frames. Upon receipt of any DL, the end-device shall clear the
ADRACKReq bit and reset the ADRACKCnt counter. If no DL is received within the next
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ADR_ACK_DELAY uplinks (i.e., after a total of ADR_ACK_LIMIT + ADR_ACK_DELAY trans-
mitted frames), the end-device shall try to regain connectivity by first setting TP to the
default power (the maximum TP), then switching to the next lower data rate that pro-
vides a longer radio range. The end-device shall further lower its data rate (increase the
SF) step by step every time ADR_ACK_DELAY uplink frames are transmitted. Once the
end-device has reached the default data rate (the lowest data rate), and transmitted for
ADR_ACK_DELAY uplinks with ADRACKReq =1 without receiving a DL, it shall re-enable
all default uplink frequency channels.

Notice that the ADR scheme is a heuristic and is not based on any optimization
objective, it modifies SF and TP depending on the SNR values. It also treats each device
individually regardless of other devices in the network. In this work, we contrarily aim
to optimize the global network capacity using massive MP-MAB using a LoRa network
simulator described in the next section.

5.2 LoRa Network Simulator

The authors in [16] have developed a LoRa network simulator in Matlab. We extended
this simulator to cover massive MP-MABs and run simulations for any time horizon T.
The new version is written in C and available at [94]. It is described below.

5.2.1 Network Structure

A hexagonal distribution of the LoRa gateways with omnidirectional layout is modelled
as shown in Figure 5.3. The gateways are located at the centers of the hexagonal cells
and the nodes are uniformly distributed in the cell coverage. The number of gateways and
nodes per cell are configurable as well as their heights. The inter-sight distance d is also
configurable depending on the simulated environment.

5.2.2 Network Operation

Although LoRaWAN uses pure ALOHA rather than slotted ALOHA (SA), authors in [95]
show that SA outperforms pure ALOHA in terms of packet error rate (PER), through-
put and collisions. Therefore, we choose SA rather than pure ALOHA to examine RL
techniques because they both need time synchronization.
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Figure 5.3 – Hexagonal distribution of gateway with inter-site distance d

Each node n transmits at the beginning of a time slot with a fixed probability pn. The
time slot is of a configurable duration that respects a duty cycle of 1%.

We consider devices of class A. The devices always receive an acknowledgement if their
UL is successful. In case of a packet loss, an end-device n retransmits its packet in the
next time slots with a probability p†n > pn whose value depends on the application. The
maximum possible number of retransmissions nbTrans is configurable and depends on
the device.

We consider the ADR algorithm presented previously in section 5.1.7 with ADR_ACK_DELAY =
32 and ADR_ACK_LIMIT = 64 as recommended by LoRa Alliance [90] for all regions.

5.2.3 Transmission Success and Collision Rules

The success of a transmission mainly depends on two important metrics: the Received
Signal Strength Indicator (RSSI) which characterizes the power level of a received
radio signal, and the Signal to Interference and Noise Ratio (SINR). A packet is
successfully received by a gateway if it does not collide with any other packets, and if its
RSSI is strictly greater than the antenna sensitivity. The antenna sensitivity depends on
the SF of the sent transmission as reported in Table 5.2.

On the other hand, a collision may occur when two or more frames sent on the same
radio channel are received simultaneously. Considering two colliding frames: frame a and
frame b, two types of collisions are modelled:
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Table 5.2 – Spreading factors and corresponding gateway antenna sensitivities [96]

SF
LoRa gateway antenna

sensitivity (dBm)
SF7 -123
SF8 -126
SF9 -129
SF10 -132
SF11 -134.5
SF12 -137

Table 5.3 – Spreading factors and corresponding inter-SF collision threshold [97]

SF
Inter-SF collision
threshold (dB)

SF7 -7.5
SF8 -9
SF9 -13.5
SF10 -15
SF11 -18
SF12 -22.5

• Intra-SF collisions: occurs when the colliding frames are of the same SF. The
frame with the highest power will be decoded if it is at least 6 dB higher than the
other LoRa frame: RSSIa −RSSIb ≥ 6 dB

• Inter-SF collisions: occurs when the colliding frames are of different SFs (SFa 6=
SFb). The frame is demodulated if the power difference is strictly greater than the
inter-SF collision threshold which depends on the SF of the corresponding frame
(see Table 5.3): frame “a” is demodulated if: RSSIa −RSSIb > Thr(SFa)

5.2.4 Propagation Model

Propagation is modeled by the universal Okumura-Hata model, which is an accurate and
widely used propagation model for predicting path loss in urban areas. Adaptations to
rural and suburban areas are also added as recommended by ETSI for GSM 900 MHz [98].
This model takes into account the effects of diffraction, reflection and scattering caused
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by city structures. It is generally used for frequency ranges of 150 MHz to 1500 MHz, for
a link distance varying from 1 km to 20 km and for antenna heights varying from 30 m to
200 m and from 1 m to 10 m for the transmitter and the base station antenna respectively
[99]. Typical indoor penetration losses are considered (18 dB, 15 dB, 12 dB and 10 dB for
dense urban, urban, suburban and rural environments respectively) along with additional
6 dB loss for deep indoor environments [100, 101].

5.2.5 Environment Modeling

Two main environmental aspects are modeled: shadowing and fast fading. Shadowing is
the effect causing the received signal power to fluctuate due to objects obstructing the
propagation path between the transmitter and the receiver. The resulting loss is modeled
as a random variable following a log-normal distribution with a standard deviation of 12
dB (resp., 6 dB) for outdoor (resp., indoor) settings. Fast fading or Rayleigh fading is
the variation of the signal power due to multipath propagation, and its resulting loss is
modeled using a Rayleigh distribution.

5.3 Modelling LoRa Communications as a Massive
Multi-Player Multi-Armed Bandit

We model the LoRa communications as a massive MP-MAB. At each transmission, a
node selects the corresponding SF and TP , and then observes a reward. We have a set
of 30 arms of pairs of (SF,TP) corresponding to the 6 possible spreading factors (SF7,
SF8, SF9, SF10, SF11 and SF12) and 5 transmitting power (2 dBm, 5 dBm, 8 dBm, 11
dBm and 14 dBm). Minimizing the energy consumption while maintaining a high packet
delivery ratio (PDR) are two incompatible objectives: as the SF and TP increase the
PDR increases and energy consumption increases. That is why our approach for handling
energy consumption is to introduce a parametric function used to penalize high-energy
consuming arms. We first normalize the values of the energy consumption of each arm
with respect to the largest possible consumed energy (the arm with the highest power
and greatest SF (SF12, 14 dBm)). Let ek ∈ (0, 1] be the value of the normalized energy
consumed on arm k. The values of ek are presented in Table 5.4. We can notice that the
energy consumption increases as TP and SF increase.
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We consider the following function of arm k:

ξα,q(ek) = (1− αek)q (5.1)

ξα,q(ek) is a decreasing function of the energy consumption ek. The parameters α ∈ [0, 1)
and q ≥ 1 allow to shape it. We will consider this function in the reward function in order
to penalize high-energy consuming arms with low rewards.

Table 5.4 – The normalized energy consumption per arm ek, where the colors from blue
to red correspond to the values from low to high

To handle packet delivery, the used propagation model takes into account all conditions
impacting it. As mentioned previously, a packet is successfully received if it does not
collide with any internal or external transmissions, and the RSSI is strictly greater than
the antenna sensitivity. To model packet delivery, we consider three random variables for
every arm k:

• Ek ∈ {0, 1} denotes the event ‘no external collision occurs’

• Ikn ∈ {0, 1} denotes the event ‘no internal collision occurs for node n’

• Dk
n ∈ {0, 1} denotes the event ‘no decoding error occurs’

Consequently, the event ‘transmission is successful’ for node n is denoted T kn ∈ {0, 1},
such that:

T kn = EkIknD
k
n. (5.2)

To handle both energy consumption and packet delivery we combine Equations (5.1)
and (5.2) in the reward function of node n playing arm k below:

Rk
n(α, q) = (1− αek)qT kn (5.3)
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Table 5.5 – The network configuration and input parameters

Channel Frequency 868 MHz
Bandwidth 125 kHz

Number of Gateways 1
Gateway noise figure 3 dB
Gateway antenna gain 5 dBi
Indoor penetration loss 15 dB

Additional deep indoor loss 6 dB
Gateway antenna height 30 m

End-device height 1.5 m
End-device antenna gain 0 dBi

Targeted C/N after despreading 6 dB

Note that, other forms of the reward functions can be also considered and further inves-
tigated in the future. After each transmission, a node n observes the success or failure
of its transmission and computes the corresponding reward. It selects the SF and TP of
its next transmission depending on the followed strategy. In the next section, with ex-
tensive experiments using the LoRa network simulator, we compare the performance of
several MAB algorithms with the ADR algorithm in terms of both energy consumption
and packet delivery.

5.4 Numerical Analysis

For our simulations, we consider a network operating in the LoRa European band 863−870
MHz. For simplicity we consider only one gateway and assume all transmissions are done
on one frequency channel (868 MHz). The network configuration and input parameters
are summarized in Table 5.5. We consider the worst case of a deep indoor LoRa network
in an urban city. The frame size is 11 bytes (4 bytes of payload for the consumption index
and 7 bytes Zigbee Cluster Library application protocol overhead) [16] corresponding to
a smart metering application.

We consider a set of N = 400 end nodes where each node n has a fixed probability
pn to send a packet at the beginning of a time slot. The distribution of the nodes is
uniformly chosen such that ∀n, pn ∼ U(7.10−4, 5.10−3). We consider the maximum number
of transmissions nbTrans =8. In case of a packet loss of any node n, it will increase its
probability to send packets to p†n = pn × 8 in order to be able to retransmit it before a
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new packet is needed to be sent. The communication parameters of the retransmissions
are chosen according to the policy the nodes follow.

In such settings, we compare the performance of ADR algorithm with selfish UCB
[60], collaborative exploration followed by DORG or DOFG, CBAIMPB, and Exp3 [19],
i.e. a commonly-used algorithm in non-stochastic environments. We consider the reward
function of (5.3) for the MAB algorithms with penalty factor α = 0.5 and q = 4 due to
the very slow increase of energy values near 0 and very fast increase near 1 as shown in
Table 5.4.

Although DORG and DOFG assume that the mean rewards of the arms are the same
for all the nodes which necessitates that all nodes be located at the same distance from
the gateway, we consider here that the nodes are uniformly distributed in the hexagonal
cell region centered by the gateway. We consider 3 different inter-sight distances d =
{500, 1000, 2000}. To simulate external traffic, we consider S = 200 static devices located
in the same area, each sends packets with a fixed probability p = 0.01. Our experiments
are designed so that 5.105 packets are sent by the network in total during one trial, and
the figures present the averaged values over 40 trials with 95% confidence intervals.

We perform two different experiments, each considering different external traffic.

Experiment 1 In the first experiment, we consider that the external nodes select an
arm k for each transmission with a probability lk ∼ U(0, 1), such that ∑K

k=1 l
k = 1, which

makes the environment stationary.
In Fig. 5.4 we present the average values of the total energy consumed by the end

nodes, the total number of lost packets and the total sum of rewards gained by the end-
devices. It clearly shows that the nodes when implementing the ADR algorithm suffer of
very high energy consumption and packet loss compared to the learning methods with
any inter-site distance. This directly leads to greater sum of rewards for all the learning
methods, and implies that MAB algorithms guarantee better management of the trade-off
between energy consumption and packet loss, and provides a better QoS.

As described in section 5.2.3, inter-SF and intra-SF collisions may occur and lead to
packet losses. Also, the propagation model introduces a decoding error, which depends
on the topography, the position of the node, and the position of the gateway. Notice that
this realistic propagation model violates two assumptions made by the theoretical model
described in previous chapters: the channels are orthogonal, and the arms’ qualities are
the same for all nodes. Retransmissions are also not taken into account in the utility
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Figure 5.4 – Experiment 1: Performance of the LoRa network with end nodes distributed
in hexagonal areas centered by the gateway with three different radii and external nodes
following a fixed policy

function (equation 4.1), and hence in the target policies DORG and DOFG.

Above all, despite there still being a gap between the theoretical model and the true
model, DORG and DOFG highly outperform ADR in terms of energy consumption and
packet loss and slightly outperform UCB by compromising energy consumption and packet
loss (see Fig. 5.4c), while the latter which is a selfish algorithm developed for single-
agent MABs shows to be highly robust against collisions and can compete with multi-
player MABs. We also notice that stochastic algorithms outperform Exp3 even though its
underlying assumptions are not violated.
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Experiment 2 In this experiment, we consider that the external nodes are LoRa devices
that follow the ADR algorithm. The results are presented in Figure 5.5.
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Figure 5.5 – Experiment 2: Performance of the LoRa network with end nodes distributed
in hexagonal areas centered by the gateway with three different radii and external nodes
following ADR algorithm

We notice that the results are very similar to those in the previous experiment: all
MAB algorithms outperform ADR, and our developed algorithms outperform other state-
of-the-art MAB algorithms. This is due to the fact that the nodes following ADR algorithm
do not change their selected arms frequently, but as shown in figure 5.6 the ratio of the
number of changes of the selected arms by all the external nodes with respect to the
number of plays at any distance is less than 0.15. This reveals that if there exist some
nodes not following our collaborative algorithms but the ADR, they will lose.
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Figure 5.6 – Average number of arm changes with respect to the number of plays

On the other hand, notice that the explore-then-exploit algorithms are more appropri-
ate for low-complexity devices (used in IoT networks) than UCB, Exp3 and other classic
MAB algorithms, since after the exploration phase ends no computation takes place at
the device side, unlike with UCB where the devices keep computing confidence bounds to
find the next arm to select.

The source code of all the experiments accomplished in this chapter are available in
an open-source framework 5 published under the GNU GPL v2.0 license .

5.5 Conclusion

In this chapter, we presented an application of MPMAB algorithms on LoRa networks in
the sake of optimizing their performance. For this purpose, we propose to replace the ADR
algorithm with massive MP-MAB algorithms to manage the trade off between the energy
consumption and the packet loss by selecting the spreading factor and the transmitting
power of the transmissions. Using a LoRa simulator that meets the LoRaWAN standards,
we experimentally show that the MPMABs outperform the standard ADR algorithm by
managing the trade off between the energy consumption and packet loss and achieving

5. https://github.com/Orange-OpenSource/MAB_IoT
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5.5. Conclusion

high reduction of both metrics at different distances from the gateway.

The work accomplished in this chapter is to be submitted to the IEEE Internet of Things
Journal.
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6

GENERAL CONCLUSION AND

PERSPECTIVES

This final chapter concludes the manuscript by summarizing the accomplished work and
our contributions in section 6.1 and opening new perspectives in section 6.2.

6.1 Conclusion

This thesis contributes to the research field of optimizing IoT networks performance using
machine learning. We organize this manuscript in six core chapters, including three with
technical contributions. We started first by introducing the motivations behind our work.
We provided a theoretical background on IoT, its importance, applications, constraints,
and limitations. We aimed in this work to make IoT devices intelligent by embedding
light decision-making algorithms, so that they can learn the surrounding environment
and select efficiently the communication parameters such that they avoid interference
with other devices to ensure reliability while consuming as little energy as possible. For
this sake, we used Reinforcement Learning techniques, and in particular multi-player
multi-armed bandit algorithms.

After the introduction, we provided a theoretical background on MABs before pre-
senting the modeling of the IoT optimization problem as a MP-MAB problem. In our
model, the devices in an IoT network are the players, the arms are the channels (i.e. the
communication parameters) and the reward is a Bernoulli random variable presenting the
success or failure of a transmission. The devices aim to maximize the number of successful
transmissions so they minimize the number of retransmissions and hence save energy. We
model congestion in the sense that if two players play the same arm at the same time, a
collision happens and all colliding packets are lost. Both internal and external interference
are modeled where the external interference affects the arms qualities (reward means) and
are different from one arm to another. Unlike most of the work in the literature handling
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dynamic spectrum access, we assumed that the devices cannot sense information i.e. they
only observe the success or failure of their transmissions without distinguishing internal
from external collisions, and the number of players is possibly greater than the number
of arms. We also consider that the players can share information together by sending
messages.

In such settings, we developed algorithms that aim to maximize the successful trans-
mission rate of the IoT network while consuming as little energy as possible, and we
provided numerical and experimental analysis of their performance.

Our first contribution is presented with a channel blacklisting approach provided in
Chapter 3. We developed a collaborative algorithm that aims to find a set of optimal
arms (best channels) with a certain confidence level. The basic idea of this approach is
that the players run best arms identification algorithms, that are already presented and
analyzed in the literature, as subroutines. The players share the output of the subroutines
together until they obtain a set of a predefined number of optimal arms with a high
level of confidence. The devices exploit the obtained set of optimal arms afterwards.
We provided a numerical and experimental analysis of the algorithm in terms of both
sample complexity and communication cost. We showed that playing the optimal arms
uniformly achieves a greater successful transmission rate than playing the whole set of
arms although the internal collision rate is greater. However, we showed that this result
is highly dependent on the size of the optimal arms set. Also it depends on the problem
settings and the exploitation strategy to be followed. Therefore, the number of optimal
arms to find should be optimized as well as the exploitation strategy to be followed.

To overcome the limitations of the first approach, we provided a new approach that
is presented in Chapter 4. We presented first the objective function we need to optimize,
which corresponds to the expected number of successful transmissions per time slot in
an IoT network, and we aim to find the policy followed by the players such that the
objective function is maximized. However, the optimization problem is intractable, but
we showed that at least one solution is a deterministic policy. Also, the fact that the
channels are shared with a number of players that is greater than the number of channels
raises the problem of fairness between players. We therefore proposed two greedy policies:
Decreasing-Order-Reward-Greedy (DORG) that focuses on the number of successful trans-
missions, and Decreasing-Order-Fair-Greedy (DOFG) that also guarantees fairness between
players. We proved that DORG is optimal in some cases, and DOFG is fair up to a cer-
tain level that depends on the players’ distribution. We then provided some preliminary
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experiments that study the performance of both policies.
Since the policies require the values of the channel qualities, we propose a decentral-

ized exploration algorithm with controlled information exchanges between players that
estimates these values. Its basic idea is to distribute the exploration task on the players
according to their probabilities of sending packets, so that they finish the estimation al-
most at the same time. We showed that its sample complexity is near optimal and when
DORG is optimal, its pseudo-regret, when using the approximated model, is optimal with
respect to the time horizon T . We also showed that DOFG is still fair when using the approx-
imated model. We finally provided experimental evidence that the proposed algorithms
outperform the state-of-the-art in terms of fairness and successful transmissions.

Finally, in order to test our algorithms on IoT networks, we provided an application
on LoRa networks in chapter 5. For this sake, we redeveloped a LoRa network simulator
to be adapted to our settings and tested our algorithms on it. After an overview on Lo-
RaWAN including the adaptive data rate (ADR) algorithm that is already implemented
in LoRa devices, we presented the LoRa network simulator including the environment
and propagation model, congestion model and others. We then presented our model of
LoRa communications as a massive MP-MAB, where the players are the end-devices and
the arms are couples of the spreading factors and transmitting power forming 30 different
arms. As the energy consumption is different from one arm to another, we formulated
a reward function that takes into account both transmission’s success or failure and the
energy consumed on the arm. In the experiments, we considered that our network is co-
existing with other devices sharing the same spectrum and sending to the same gateway.
We compared our algorithms with the ADR algorithm in terms of both successful trans-
mission rate and energy consumption, where we showed the high out-performance of our
algorithms in both terms.

6.2 Perspectives

This work opens several avenues for future work on massive MP-MABs for IoT networks.
The general model of the problem as well as the contributions in this work can be further
extended in different directions.

Problem model In this work, we assumed a fixed number of players and we consid-
ered a stationary stochastic environment. One direction to improve this work can be by
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handling more general non-stationary environments and handling an evolving number of
active players. For this, we might use efficient change point detection such as Bayesian
Online Change Point Detector proposed in [102] and improved in [82], or by adapting the
algorithm Exp3-Coop proposed in [83] to competitive access to arms. We also assumed
that the arms qualities are the same for all players in the network and they have the
same energy cost, which is not totally realistic in IoT. Indeed, the quality of the arms
may change from one player to another according to their geographical positions, also
as we have seen in Chapter 5 in LoRa networks, the arms do not always have the same
energy cost. To deal with this, one direction can be to use the approaches developed in
[52, 84] or use the contextual bandits such as in [85, 86] which is an extension of the MAB
model by making the decision conditional on the state of the environment, so the decision
is not only optimized based on previous observations, but is also personalized for every
situation.
Besides, in this work we considered a slotted-ALOHA transmission protocol where nodes
send at the beginning of the fixed-duration time slots. But, since the time-on-air of packets
varies (depending on the selected spreading factor), considering slotted-ALOHA necessi-
tates long-duration time slots which decreases the performance by creating collisions, i.e.
the long-duration of the time slot can be enough for multiple consecutive transmissions
on the same low SF (such as SF7) instead of one transmission at the beginning of the
time slot. Future works could overcome this by considering sub-slotting: one time slot
can be divided into several sub-slots of durations that depend on the time-on-air of the
transmission ( 1 sub-slot for SF12, 2 sub-slots for SF11, 4 for SF10,..etc.).

Best arms identification for sub-optimal channels blacklisting As previously
noted, our first approach that aims to find a set of optimal channels is lacking the optimiza-
tion of the size of the optimal set and the exploitation strategy. The network performance
afterwards is highly dependent on the size of the optimal set m, and the exploitation
strategy to be followed. Depending on the number of players and their distribution, and
with a uniform exploitation strategy, one simple idea can be to upper bound the internal
collision rate and hence compute the value of m. On the other hand, knowing the value of
m, the players can be distributed evenly over the optimal arms based on their probabilities
to send packets, so that the internal collision rate on each arm is almost the same.

Experimentation On the experimental side, we tested MP-MABs on a LoRa network
simulator considering that only one gateway is available. Future work could consider
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multiple gateways receiving packets and forwarding them to the network server as in
reality. Also, as stated before, different reward functions can be considered.

Moreover, a great contribution could be to establish real experiments testing different
MAB and MP-MABs as the literature is poor in such experiments. One way to achieve
this is by using the so-called pycom LoPy4 which is a Micropython-programmable board
that works with LoRa, Sigfox, WiFi and Bluetooth. Using such boards, one can establish
a network and test the algorithms.

Thanks for reading this document.
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Titre : Bandits Massifs Multi-Bras Multi-Joueurs pour les Réseaux de l’Internet des Objets

Mot clés : Internet des Objects, Apprentissage par renforcement, Bandit multi-joueurs multi-bras

Résumé : Cette thèse de doctorat étudie le pro-
blème d’optimisation de la performance des ré-
seaux de l’Internet des objets (IoT). L’objectif
est de maximiser le succès des transmissions
dans les réseaux de l’IoT, en proposant des al-
gorithmes de prise de décision dynamiques effi-
caces pouvant être intégrés dans les futurs équi-
pements IoT, tout en respectant leurs contraintes
de faible complexité et de faible consommation
d’énergie. Pour cela, l’apprentissage par renfor-
cement (RL) est utilisé et le problème d’optimisa-
tion est modélisé comme un problème de bandit
multi-joueurs multi-bras (MP-MAB), adapté aux
réseaux IoT et permettant de surmonter de nom-
breuses hypothèses irréalistes dans le cadre des
réseaux IoT précédemment effectuées dans la lit-
térature. Dans cette thèse, deux approches dif-
férentes sont proposées pour traiter le problème
d’optimisation. La première approche permet de
blacklister les mauvais canaux de propagation
d’un réseau en utilisant un algorithme collabora-

tif d’identification des meilleurs bras. La seconde
approche consiste en deux politiques différentes
qui attribuent de manière récursive chaque équi-
pement IoT à un canal ; la première politique se
concentre sur le nombre de transmissions réus-
sies tandis que l’autre garantit un niveau d’équité
entre les équipements. Dans un premier temps,
nous avons effectué l’étude numérique et expé-
rimentale des différents algorithmes développés
pendant cette thèse afin de montrer qu’ils étaient
capables de surclasser les autres algorithmes de
la littérature. Dans un second temps, une partie
importante du travail a consisté en l’application
des algorithmes développés au problème concret
de choix de la puissance d’émission et du facteur
d’étalement dans un réseau LoRa, en analysant
les performances en termes de qualité de ser-
vice et de consommation d’énergie à l’aide d’un
simulateur de réseau LoRa réaliste entièrement
redéveloppé en C durant la thèse.

Title: Multi-Player Multi-Armed Bandits for Internet of Things Networks

Keywords: Internet of Things, Reinforcement Leaning, Multi-player multi-armed bandits

Abstract: This PhD thesis studies the optimiza-
tion problem of Internet of Things (IoT) networks
performance. We aim to maximize the successful
transmissions in IoT networks, by proposing ef-
ficient dynamic decision-making algorithms that
can be embedded in future IoT devices, while
respecting the low complexity and low energy
consumption constraints in IoT devices. For this
sake, we use Reinforcement Learning (RL), and
we model the optimization problem as a massive
multi-player multi-armed bandit (MP-MAB) prob-
lem to best suit IoT networks, while overcoming
many unrealistic assumptions previously made
in the literature. In this manuscript, we propose
two different approaches to handle the optimiza-
tion problem. The first blacklists bad channels af-

ter a collaborative best-arms identification algo-
rithm. The second consists of two different poli-
cies that recursively assign each device to one
channel; where one policy focuses on the num-
ber of successful transmissions while the other
guarantees a level of fairness between the de-
vices. We provide both numerical and experimen-
tal studies of our developed algorithms, and show
their out-performance over other algorithms pro-
posed in the literature. Furthermore, we test our
algorithms using a realistic LoRa network simu-
lator entirely redeveloped in C during the thesis,
and show the gain they achieve in terms of both
successful transmissions and energy consump-
tion compared to other already implemented al-
gorithms.
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