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défendue le 16/05/2022

Jury :

Rapporteurs : Annick Lesne DR CNRS LPTMC
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Summary

Following the sequencing of the human genome in 2001, there has been an explosion

of novel high-throughput sequencing projects to interrogate the genome and its

functions, opening the so-called postgenomic era. Nowadays, experimental labs

generate terabytes of heterogeneous data, necessitating the development of novel

statistical and bioinformatic methods and models to process such big data, as well

as to make sense of the wide variety of experimental results.

For the last 10 years, I have been investigating on a large number of postge-

nomic topics, ranging from human genetics in asthma to phylogenetics of HIV

virus, transcription, chromatin, DNA secondary structures and DNA repair. This

thesis presents my research efforts on both the analysis of biological data, and the

development of novel statistical and computational models.

In the first chapter, I introduce the different topics, such as DNA, chro-

matin, postgenomic methods, human genetics and computational biology. In

the second chapter, I then describe my different contributions in data analysis,

including the discovery of rare variants associated with increased asthma risk, the

role of drug-näıve HIV-positive patients in transmitting antiretroviral resistance,

the global 3D genome reorganization due to hormone induction and the link

between chromatin loop extrusion and DNA repair. I also present different

statistical models to identify genomic factors in 1D that shape the genome in

3D, but also novel models for 3D domain identification, differential analysis and

predictions. Moreover, I present machine/deep learning approaches for predicting

DNA double-stranded breaks and active G-quadruplexes (G4s).

Finally, in the last chapter, I discuss about my future research projects, fo-

cusing on new deep learning models for predicting chromatin data across species,

biophysical experiments to characterize G4 SNPs, the identification of non-coding

SNPs as drivers of genome instability, and artificial intelligence for personalized

medicine.

Keywords: Computational Biology; Artificial Intelligence; Deep Learning;

Regulatory Genomics; 3D Genome; DNA Repair, G-quadruplex.



Résumé

Suite au succès du séquençage du génome humain en 2001, une explosion de

nouveaux projets de séquençage à haut débit a eu lieu afin d’interroger le génome

et ses fonctions, ouvrant la voie à l’ère ”postgénomique”. De nos jours, les

laboratoires génèrent des téraoctets de données hétérogènes, ce qui nécessite le

développement de nouvelles méthodes et modèles statistiques et bioinformatiques

pour traiter de telles données volumineuses, ainsi que pour donner un sens à la

grande variété de résultats expérimentaux.

Au cours des 10 dernières années, j’ai étudié un grand nombre de sujets

postgénomiques, allant de la génétique humaine dans l’asthme à la phylogénétique

du virus VIH, la transcription, la chromatine, les structures secondaires de l’ADN et

la réparation de l’ADN. Cette thèse présente mes efforts de recherche sur l’analyse

de données biologiques et le développement de nouveaux modèles statistiques et

informatiques.

Dans le premier chapitre, j’introduis les différents sujets, tels que l’ADN, la

chromatine, les méthodes postgénomiques, la génétique humaine et la biologie

computationnelle. Dans le deuxième chapitre, je décris ensuite mes différentes

contributions à l’analyse de données, dont la découverte de variants rares associés

à un risque accru à l’asthme, le rôle des patients séropositifs n’ayant jamais été

médicamentés dans la transmission de la résistance antirétrovirale, la réorganisation

globale du génome en 3D suite à une induction hormonale et le lien entre l’extrusion

de la boucle de la chromatine et la réparation de l’ADN. Je présente également

différents modèles statistiques pour identifier les facteurs génomiques en 1D qui

façonnent le génome en 3D, mais aussi de nouveaux modèles pour l’identification

de domaines 3D, leur analyse différentielle et leur prédiction. De plus, je présente

des approches d’apprentissage automatique et profond pour prédire les cassures

double brin de l’ADN et les G-quadruplexes (G4) actifs.

Enfin, dans le dernier chapitre, je discute de mes futurs projets de recherche,

en particulier de nouveaux modèles d’apprentissage en profondeur pour prédire

les données de chromatine entre les espèces, des expériences biophysiques pour

caractériser les SNP de G4, l’identification de SNP non codants en tant que moteurs

de l’instabilité du génome et l’intelligence artificielle pour la médecine personnalisée.

Mots clés : Biologie computationnelle; Intelligence artificielle; Apprentis-

sage profond; Génomique régulatrice ; Génome en 3D ; Réparation de l’ADN,

G-quadruplexe.
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1.3 Academic activities

1.3.1 Current collaborations

• Ivan Kulakovskiy (Institute of Protein Research RAS, Russia);

• Gaelle Legube (MCD, Toulouse);

• Catherine Tardin (IBPS, Toulouse);

• Jean-Christophe Andrau (IGMM, Montpellier);
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• Lang Li (CCBB, Indianapolis, USA).

1.3.2 Funding

• INRAe (funding to reduce teaching load in 2021): 11k¤;

• GSO (co-PI with C. Tardin) : 2.5 k¤x 2 = 5 k¤;

• 2-year-Master-internship program (apprentice) from CNRS: 36 k¤;

• CNRS défi modélisation du vivant : 24 k¤x 2 = 48 k¤;

• MRT PhD funding : 100 k¤;

• CRCT Univ. Toulouse III (funding to reduce teaching load in 2018): 10k¤;
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1.3.3 Teaching

I am supervising the teaching unit Biological data analysis (Master Biochemistry), and the

teaching unit Bioinformatics for postgenomics (Master Bioinformatics).

Teaching Degree Volume (hours)

Biostatics Master 1 Biochemistry 90 h per yr

Bioinformatics for NGS Master 1 Bioinformatics 50 h per yr

Intro. to bioinfo. Master 1 Biohealth 26 h per yr

GWAS Master 1 Biohealth 8 h per yr

Intro. to bioinfo. Bachelor 2/3 Bio 6 h per yr

Statistics Engineering Master 46 h (PhD)

Bioinfo/Data mining Master 2 Bioinformatics 37.33 h (PhD)

Probability Master Erasmus Mundus DMKM 18 h (PhD)

1.3.4 INSERM courses

• Organization committee of Atelier Inserm ”Machine Learning from Biology to Health”

(2021, Bordeaux).

• Teaching deep learning for genomics in R (1 day and half) (2021, Bordeaux).
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1.3.5 Other courses

• Teaching deep learning for genomics in R (1 day and half) for the Platform Biostatis-

tics of Toulouse (2021).

1.3.6 Organization of seminars

In october 2021, I launched a new online seminar on deep learning called DeepBio-

Health (https://groupes.renater.fr/sympa/info/deepbiohealth). The seminar aims

to facilitate exchanges between scientists interested in deep learning and its appli-

cations in the fields of biology, health and agronomy. This is an interdisciplinary

Toulouse working group that addresses both new models of deep learning and their

recent applications in genomics, medical imaging, oncology, agronomy, etc.

1.3.7 Scientific communication

• DECLICS: Dialogues Entre Chercheurs et Lycéens pour les Intéresser à la Construc-

tion des Savoirs (2018).

1.3.8 Supervision

• 1 PhD student: Sébastien Ober (nov 2021-now);

• 1 PhD student: Vincent Rocher (2018-2021);

• 1 PhD student with O. Cuvier: Alexandre Heurteau (2016-2020);

• 2 Master students (2015); 2 Master students (2018); 1 Master student (2020); 1

Master student apprentice (2019-2021); 2 Master students (2021).

1.3.9 Scientific committee

• INSERM workshop in Bordeaux (2021): Introduction to Machine Learning from

Biology to Health;

• SeqBIM workshop in Toulouse (2020);

• JOBIM workshop on deep learning in Montpellier (2020);

• Program committee at Intelligent Systems for Molecular Biology conference (rank A

conference);

• Scientific Advisory Board of Bioinformatics platform of Centre de Biologie Intégra-

tive;

• PhD thesis jury: 3 students (2018, 2021);

• PhD thesis committee: 2 students (2016).

1.3.10 University committee

• Computers and software for teaching committee of Univ. Toulouse III;
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1.3.11 Reviewer

• Nature Structural & Molecular Biology, Genome Research, Genome Biology, Na-

ture Communications, BMC Biology, Bioinformatics, NAR GB, BMC Bioinformatics,

BMC Genomics, IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics (TCBB), International Journal of Approximate Reasoning, The Biometrical

Journal, PLoS ONE, and many more.

• Junior group leader call at Centre de Biologie Intégrative.

1.3.12 Editor

Book on Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics, Oxford

University Press.

1.3.13 Talks

• 10/11/2021: Talk at DeepBioHealth, online.

• 01/10/2021: Talk at MIAT lab, INRAE, Toulouse.

• 14/09/2021: Invited talk at 100 Years of Genome Research 2021, Naples, Italy.

• 30/03/2021: Journal club of bioinfo at CBI, Toulouse.

• 28/06/2020: Symposium of deep learning for genomics, JOBIM, online.

• 06/03/2020: Talk at CBI, Toulouse.

• 11/02/2020: Talk at CNRS, Paris, to present results from funded project of CNRS

modelisation du vivant program.

• 17/06/2019: Talk at Chrocogen, INRAe, Toulouse.

• 15/05/2019: Talk at Hi-C days, Toulouse.

• 05/05/2019: Talk at Biopuces, INRAe, Toulouse.

• 02/03/2019: Invited talk at IGFL, Lyon.

• 11/10/2019: Genotoul Biostat Bioinfo Day 2019, Toulouse, France.

• 10/04/2018: Conference Rencontres Scientifiques des Grandes Causses, GDR ADN,

Millau, France.

• 18/01/2018: Workshop Biostat Bioinfo 2018, Toulouse, France.

• 11/01/2018: Workshop on Statistical Methods for Post Genomic Data (SMPGD),

2018, Montpellier. Poster.

• 15/11/2018: Invited talk at IGMM, Montpellier.

• 11/12/2017: Young Scientists Workshop - Genome Dynamics and Cancer, 2017, Mon-

tauban, France.

• 17/10/2017: Symposium Modelling Pathological Processes: from Molecules to Pop-

ulations, 2017, Toulouse, France.

• 06/07/2017: Conference JOBIM 2017, Lille, France.

• 15/06/2017: Conference MCEB 2017, Porquerolles, France. Poster.

• 02/12/2016: Genotoul Biostat Bioinfo Day 2016, Toulouse, France.
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• 14/10/2016: Conference CARTABLE 2016, Toulouse, France.

• 05/07/2016: Conference ICACG 2016, Toulouse, France.

• 28/06/2016: Conference JOBIM 2016, Lyon, France.

• 07/06/2016: Talk at SaAb team, MIAT, INRA, Toulouse, France.

• 26/02/2016: Talk at MAB team, LIRMM, Montpellier, France.

• 30/11/2015: Talk at CBI, CNRS/Université Paul Sabatier, Toulouse, France.

• 19/11/2015: Talk at IMT, Université Paul Sabatier, Toulouse, France.

• 28/09/2015: Conference Rencontres Scientifiques des Grandes Causses, GDR ADN,

Millau, France.

• 03/07/2015: Talk at MIAT, INRA, Toulouse, France.

1.4 Industrial activities

1.4.1 Artificial intelligence for spine surgery

Since 2020, I collaborate with a new start-up in personalized medicine called Rem-

edyLogic, based in New-York USA ( https://remedylogic.com/). RemedyLogic is

a company that helps insurance companies, self-insured employers, and patients

to improve outcomes and reduce the cost of back surgery. With the company, I

work on clinical artificial intelligence R&D, in particular for the development of

novel machine learning and AI models to recommend spinal surgery and alternative

conservative treatments such as physical therapy or medication.
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Science has discovered that, like any

work of literature, the human genome is

a text in need of commentary, for what

Eliot said of poetry is also true of DNA:

’all meanings depend on the key of

interpretation.’ What makes us human,

and what makes each of us his or her

own human, is not simply the genes that

we have buried into our base pairs, but

how our cells, in dialogue with our

environment, feed back to our DNA,

changing the way we read ourselves. Life

is a dialectic.

Jonah Lehrer, Proust Was a

Neuroscientist

Computational biology is an interdisciplinary science at the crossroad between

biology, computer science and mathematics. It can be defined as the science of

using mathematical models, algorithms, and large computing resources together

with complex biological experimental data to understand biological systems and

relationships, that could be out-of-reach otherwise. Computational biology has

many applications in science, including genomics, but also, evolution, biomodeling,

neuroscience, structural biology and pharmacology.

This chapter is an attempt to introduce in a concise manner the very diverse

concepts useful to understand computational biology applied to genomics. The

chapter starts by presenting biological concepts, such as the DNA molecule and its

forms, the transcription and chromatin, 3D genome folding, genome stability and

DNA repair. Then, genomics and omic technologies and data are introduced, and

illustrated with commonly used techniques for the study of transcription and chro-

matin, i.e. RNA-seq, ChIP-seq and Hi-C experiments. Lastly, the chapter presents

computational and mathematical fields, including big data, statistics, machine and

deep learning, heterogeneous data integration and personalized medicine.

2.1 DNA and G-quadruplex

DNA is a complex molecule carrying the instructions an organism needs to develop,

live and reproduce. DNA is composed of two complementary and antiparallel

strands (i.e. in opposite directions) facing each other and forming a double helix

[Watson & Crick 1953] (Figure 2.1A). Each strand is a polymer (or sequence)

of nucleotides. Each nucleotide is made up of 3 molecules: one molecule of

phosphoric acid, one molecule of deoxyribose and a nitrogen base. Four different

bases exist: adenine (A), guanine (G), cytosine (C) and thymine (T). Thus, the
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Figure 2.1: Deoxyribonucleic acid molecule (DNA). A) DNA molecule, presented

in its most common form (the B form). B) G-quadruplex of DNA, an example of

non-B DNA form.

genome constitutes a code formed from a 4-letter alphabet. In human, the size

of the genome is large, around 3.4 billion base pairs, which gives it great complexity.

The B form of DNA (B DNA) is believed to predominate in cells

[Watson & Crick 1953]. Yet, more than 20 non-B DNA structures have also been

reported in the genome [Georgakopoulos-Soares et al. 2018]. Among those struc-

tures, the G-quadruplex (G4) was discovered in the late 80’s [Sen & Gilbert 1988]

(Figure 2.1B). G4 sequence contains four continuous stretches of guanines

[Chen & Yang 2012]. Four guanines can be held together by Hoogsteen hy-

drogen bonding to form a square planar structure called a guanine tetrad (G-

quartet). Two or more G-quartets can stack to form a G4 [Chen & Yang 2012].

The quadruplex structure is further stabilized by the presence of a cation, es-

pecially potassium, which sits in a central channel between each pair of tetrads

[Bhattacharyya et al. 2016]. Numerous works suggest that non-B DNA structures

can regulate several essential processes in the cell, such as gene transcription,

DNA replication, telomere stability and V(D)J recombination [Spiegel et al. 2019].

Moreover, these non-B DNA structures are highly suspected to be impli-

cated in human diseases such as cancers or neurological/psychiatric disorders

[Ravichandran et al. 2019, Rhodes & Lipps 2015].

2.2 Transcription, chromatin and epigenetics

In the nucleus, DNA is not naked, but is instead associated with proteins, including

histones (forming nucleosomes), transcription factors and repair proteins to form

a complex structure, the so-called chromatin. Chromatin adopts different levels

of compaction to eventually form a chromosome (Figure 2.2A). At the edge

of chromosomes, specific regions called telomeres protect chromosomes, while
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Figure 2.2: Chromosome, chromatin and transcription. A) From DNA to chromo-

some. B) Transcriptional regulation of genes.

somewhere in the center, centromeres determine kinetochore formation and sister

chromatid cohesion. The properties of chromatin vary along the genome and

are regulated by epigenetic marks (DNA methylation and histone modifications).

Chromatin is composed of euchromatin that is lightly packed, enriched in genes,

and is often actively transcribed, and of heterochromatin that is tightly packed,

poor in genes, less accessible to ribonucleic acid (RNA) polymerases and therefore

less transcribed. Chromatin regulates many cellular processes such as tran-

scription [Hübner & Spector 2010, Ulianov et al. 2016], but also DNA replication

[Moindrot et al. 2012] and DNA repair [Uusküla-Reimand et al. 2016].

The genome is comprised of genes that play a central role in the cell

and participate in the development of the phenotype. In the human

genome, the number of genes is estimated to be between 20000 and 25000

[International Human Genome Sequencing Consortium 2001]. A gene is tran-

scribed by an RNA polymerase yielding to an RNA and eventually to a protein

(Figure 2.2B). Genes make up only part of the genome (less than 30%) and

gene coding regions, called exons, do not even occupy 3% of the genome.

During the last decade, non-coding regions have been extensively studied and

were shown to play many important roles including regulation, replication and

structure [Khajavinia & Makalowski 2007, modENCODE Consortium et al. 2010,

The ENCODE Consortium 2012]. A major role of specific non-coding regions,

the so-called promoters and enhancers, is to regulate gene expression through the

formation of DNA loops that are stabilized by transcription factors, architectural

proteins (CTCF and cohesin) and other proteins, and also enhancer RNAs

[Marsman & Horsfield 2012, Andersson et al. 2014, Carullo & Day 2019].
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2.3 The genome in 3D

Figure 2.3: The 3D genome.

Chromosomal DNA is highly compacted in 3D, such that about 2 meters of

this molecule fits into the microscopic nucleus of a human cell. The compaction

of the genome is not random, but is on the contrary structured as recently

revealed by mapping chromatin contacts using Hi-C (high-throughput chromo-

some conformation capture) [Lieberman-Aiden et al. 2009, Dixon et al. 2012]

and ChIA-PET (chromatin interaction analysis by paired-end tag sequencing)

[Fullwood et al. 2009] (Figure 2.3). In metazoans, compartments A and B were

the first revealed structures by chromatin contact mapping. Compartment A

tends to be active and gene rich, while compartment B is more inactive and gene

poor. Topologically associating domains (TADs) were then discovered with higher

mapping resolution. They represent a structural unit shared between cell types

and kept between species [Dixon et al. 2012]. TADs are essential for many key

cellular processes, such as the regulation of gene expression and DNA replication

[Dixon et al. 2012, Pope et al. 2014]. In addition, it has recently been shown that

the loss of 3D domains by a mutation can be linked to the onset of genetic diseases

and cancer [Lupiáñez et al. 2015, Hnisz et al. 2016].

Other important 3D structures are chromatin loops between distant

loci. They play key roles in gene expression regulation during development

[Kadauke & Blobel 2009, Andersson et al. 2014, Ghavi-Helm et al. 2014]. In

particular, in vertebrates, it was shown that loops that demarcate TADs are often
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marked by asymmetric CTCF motifs where cohesin is recruited [Rao et al. 2014].

Accordingly, depletions of CTCF and cohesin decrease chromatin contacts

[Zuin et al. 2014]. These results support the extrusion loop model where

CTCF and cohesin act together to extrude unknotted loops during interphase

[Sanborn et al. 2015]. Moreover, loop extrusion mediated by cohesin is a general

mechanism that has also been observed in yeast [Dauban et al. 2020].

In drosophila, additional proteins shaping the genome in 3D have been identified,

including BEAF-32, GAGA factor (GAF), Suppressor of Hairy-Wing (Su(HW)),

zeste-white 5 (Zw5) or the drosophila homologue of Brd4, Fs(1)h-L, Pita, and Zinc-

finger protein interacting with CP190 (ZIPIC) along with cofactors such as cohesin,

CP190 or Lethal (3) malignant brain tumor (L(3)mbt) [Van Bortle et al. 2014].

Moreover, long-range contacts are influenced by additional non-architectural fac-

tors including transcription or remodeling factors, or more generally by gene

density or transcriptional levels [Hou et al. 2012, Cubenas-Potts & Corces 2015,

Rowley et al. 2017]. Additionally, long-range contacts are favored depending on

the extent by which the RNA polymerase II (RNAPII) may remain stably “poised”

or “paused,” which would leave more opportunities for long-range contacts with

enhancers [Ghavi-Helm et al. 2014].

2.4 Genome stability and DNA repair

Eukaryotic cells are exposed every day to both exogenous (e.g. UV and pollutants)

and endogenous stresses (e.g. metabolic stress and DNA transactions) that can

lead to DNA damage [McKinnon & Caldecott 2007]. For instance, ultraviolet

(UV) exposure from the sun can induce several DNA damages and eventually

lead to mutations and diseases. However, DNA damages are also caused by

endogenous stresses which are the by-product of the normal cell activities. In living

cells, reactive oxygen species (ROS) are formed continuously as a consequence of

metabolic and other biochemical reactions and can lead to several types of DNA

damage. A vast amount of DNA damages is also caused by DNA transactions such

as DNA replication and transcription.

Among the various types of DNA lesions, DNA double strand breaks (DSBs)

are by far the most deleterious, since they can lead to chromosome rearrange-

ments [Mehta & Haber 2014, Kasparek & Humphrey 2011, Marnef et al. 2017,

Vitor et al. 2020]. Chromosome rearrangements are large-scale mutations

that include insertions, deletions, translocations, and fusions in the DNA

[Zhang et al. 2009, Carvalho & Lupski 2016]. Once DNA is broken, DNA repair

mechanisms identify and correct damages in the genome. There are two main

pathways to repair DSBs: non-homologous end joining (NHEJ) and homologous

recombination (HR) [Ceccaldi et al. 2016]. NHEJ directly ligates the break ends,

whereas HR uses a homologous sequence to guide repair. If DNA repair is

successful, the two ends of the same break are rejoined and the original DNA order

is restored. But if DNA repair fails, the two ends of different breaks are joined
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together, and a chromosomal rearrangement is generated.

An important mechanistic factor of chromosomal rearrangement is the

3D genome organization that can bring two linearly separated loci in phys-

ical proximity [Zhang et al. 2012]. In fact, DSBs can cluster together to

form repair foci that concentrate repair factors [Caron et al. 2015]. In par-

ticular, DSB clustering mostly occurs in damaged active genes during G1

[Aymard et al. 2017, Guénolé & Legube 2017]. Moreover, recent DSB mapping

combined with Hi-C experiments revealed that DSBs often occur at loop anchors

where CTCF and cohesin bind [Canela et al. 2017]. Interestingly, topoisomerase

2B (TOP2B), an enzyme known to mediate DSBs, physically interacts with CTCF

and cohesin at TAD borders [Uusküla-Reimand et al. 2016]. TOP2B is an enzyme

that controls and alters the topological states of DNA. In particular, TOP2B

catalyzes the transient breaking and rejoining of two strands of duplex DNA, which

allows the strands to pass through one another, and thus the relief of torsional

stress during transcription [Pommier et al. 2016].

Chromosome rearrangements have the potential to cause cancer, for instance, if

they mutate a tumor suppressor gene or activate an oncogene. Rearrangements are

also a relatively common cause of developmental disorders, occurring in 1 in 200

individuals, and often involve intellectual disabilities [MacIntyre et al. 2003]. More-

over, rearrangements contribute to psychiatric diseases, including schizophrenia and

bipolar disorder [Dwyer 2020, Craddock & Owen 1994].

2.5 Genomics and omics

2.5.1 Human Genome Project and the birth of genomics

In 2001, the human genome was sequenced by a large scientific

consortium, called the Human Genome Project (HGP) consortium

[International Human Genome Sequencing Consortium 2001]. The project in-

volved several countries and costed several billion dollars. This project was

seminal for genomics, since it mapped most human genes from the genome as

well as intergenic regions, and triggered the development of novel sequencing

methods, called next-generation sequencing (NGS) [Goodwin et al. 2016]. NGS

are high-throughput sequencing technologies that parallelize sequencing, yielding

millions of small sequences at once in a fast and cheap manner.

2.5.2 An explosion of omic methods

Following the HGP, there has been an explosion of NGS methods to interrogate

the genome and its functions leading to the development of ”omic technologies”,

opening the post-genomic era (Figure 2.4). Numerous methods are currently used

to study gene transcription, differential gene expression, and alternative splicing

(RNA-seq), but also nascent transcription (GRO-seq), and non-coding small RNAs
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Figure 2.4: The different omic methods for the study of transcription, DNA repair

and 3D genome.

(sRNA-seq) [Lowe et al. 2017]. To study chromatin, standard techniques are chro-

matin immunoprecipitation (ChIP-seq) to map transcription factor binding sites

and histone modifications, and DNAse-seq [Hesselberth et al. 2009] and ATAC-seq

(Assay for Transposase-Accessible Chromatin) [Buenrostro et al. 2013] to map ac-

cessible chromatin. 3D genome organization is mapped by chromatin conforma-

tion capture techniques including high-throughput chromatin conformation cap-

ture (Hi-C), circular chromatin conformation capture (4C-seq) or chromatin in-

teraction analysis by paired-end tag sequencing (ChIA-PET) [Fullwood et al. 2009,

Lieberman-Aiden et al. 2009, Zhao et al. 2006]. DNA damage such as DNA double-

strand breaks are currently mapped by BLESS (breaks labeling, enrichment on

streptavidin and next-generation sequencing) [Crosetto et al. 2013], BLISS (Breaks

Labeling In Situ and Sequencing) [Yan et al. 2017b] and END-seq (DNA end se-

quencing) [Canela et al. 2016].

2.5.3 Examples of omic experiments and data

There are a wide variety of omic data resulting from diverse experiments. Here, we

will focus on widely used NGS experiments for chromatin studies. RNA-seq con-

sists in extracting RNA molecules (for instance mRNA), reverse-transcribing them

to cDNAs, fragmenting cDNAs, amplifying fragments and then sequencing to pro-

duce reads (Figure 2.5A). Reads are mapped to genes (or any other transcription

annotation) and counted. ChIP-seq crosslinks DNA with interacting proteins, frag-
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Figure 2.5: Experiments and data used for the study of chromatin. A) RNA-seq

for transcription. B) ChIP-seq for protein binding to DNA or histone marks. C)

Hi-C for the genome in 3D.
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ments DNA with restriction enzymes, immunoprecipitates DNA with antibodies,

amplifies fragments and then sequences to produce reads (Figure 2.5B). Reads are

mapped to the genome and peaks are identified. Hi-C crosslinks DNA loci that are

interacting, although they can be far apart in 1D, fragments DNA with restriction

enzyme, fills ends and marks with biotin, ligates ends, immunoprecipitates with

antibodies, amplifies and then sequences to produce read pairs (Figure 2.5C). In a

pair of reads, the first read maps one DNA fragment (a particular locus), while the

other read maps another DNA fragment (another locus). By binning the read pairs,

a count matrix is obtained. Binning the read pairs into large bins helps reduce the

sparsity of data. In the count matrix, each cell is the count of corresponding read

pairs.

2.5.4 Single-cell paradigm

Omic methods were initially developed to analyze cell populations (e.g., millions of

cells), since detecting sufficient signal from a single cell represented an impossible

challenge. However, recent technological progresses now allow to study omic infor-

mation from individual cells with optimized NGS techniques, therefore providing a

higher resolution of cellular differences and a better understanding of cell-to-cell het-

erogeneity [Nawy 2014]. For instance, single-cell analysis in the mouse cortex and

hippocampus revealed unknown cell types by RNA-seq [Zeisel et al. 2015]. More-

over, single cell approaches were also crucial in cancer to reveal tumor heterogeneity

due to mutations carried by small populations of cells [Lawson et al. 2018].

2.6 GWASs and non-coding SNPs

Complex genetic diseases are caused by the combined effects of multiple mu-

tations with lifestyle and environmental factors [Visscher et al. 2017]. These

diseases are common in the population and include heart disease, diabetes,

schizophrenia and some cancers [Dorn & Cresci 2009, Billings & Florez 2010,

Collins & Sullivan 2013, Chung et al. 2010]. Over the past decade, genome-wide

association studies (GWASs) have successfully identified thousands of single

nucleotide polymorphisms (SNPs) associated with complex diseases in an unbiased

manner [Visscher et al. 2017].

However, GWASs uncovered that over 95% of GWAS associated SNPs are lo-

cated outside coding sequences, which made it difficult to gain insight into the

underlying biological mechanism [Maurano et al. 2012]. Interestingly, more than

75% of these SNPs overlap DNase I hypersensitive sites, which suggests a strong as-

sociation with regulatory elements [Maurano et al. 2012]. Thus, a non-coding SNP

might influence the expression of the target gene, either by altering its promoter or

by affecting an enhancer that is linked to the gene via looping [Cookson et al. 2009].

Understanding how SNPs can alter regulatory element activity, as well as, chromatin

looping with target genes thus represent a major issue for making sense of GWAS

results.
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2.7 Computational biology

2.7.1 Big data in genomics

Figure 2.6: Exponential growth of genomic data over the past two decades.

Since the completion of the Human Genome Project in 2001, extraordinary

progress has been made in NGS technologies, which has led to a dramatic decrease

in sequencing cost and its widespread use in biology, medicine, ecology and evolu-

tion. The amount of data has exponentially expanded, and genomics has entered

as other fields into the era of ”big data”. Big data refers to data whose charac-

teristics in terms of volume, velocity and variety necessitate the development of

novel technologies, algorithms and statistical models in order to extract key in-

formation which generally exceed the capacities of a single machine (Figure 2.6).

This led to major research efforts in bioinformatics, including genome assembly, se-

quence alignment, gene identification, protein structure prediction, differential anal-

ysis of gene expression, protein-protein interactions, genome-wide association stud-

ies, and phylogenetic and evolutionary studies [Lesk 2002, Azuaje & Dopazo 2005,

Horner et al. 2009, Andreas D. Baxevanis 2020].

2.7.2 Statistics for NGS data

Statistics is the scientific field that collect, analyze, interpret and present sample

data. Statistics is at the core of data analysis and thus plays a central role in

genomic and omic data. In particular, statistical models are heavily used for

analyzing NGS data, especially for differential analysis [Robinson et al. 2009].

For instance, NGS data essentially represent count data, since the experimental



20 Chapter 2. Introduction

measure is often the number of reads that map to a particular region of the

genome. For RNA-seq, the number of reads mapping to a gene is counted, whereas

for ChIP-seq, the number of reads mapping to a regulatory region is counted, and

for Hi-C, the number of read pairs within a bin pair is counted (Figure 2.5).

Since NGS data are counts, statistical models for count distribution are ade-

quate tools for analysis. The most basic distribution for count data is the Poisson

distribution:

P (X = k) =
e−λλk

k!
,

where λ = E[X] = V ar[X]. A major caveat of the Poisson distribution

for modeling NGS data is that the variance is expected to be equal to the

mean, whereas it is known that this assumption does not hold for NGS reads

[Robinson & Smyth 2007a]. Instead, the negative Binomial distribution is widely

used to model NGS counts [Robinson & Smyth 2007b]:

P (X = k) =
Γ(k + ϕ−1)

Γ(ϕ−1)Γ(k + 1)

(
1

1 + λϕ

)ϕ−1 (
λ

ϕ−1 + λ

)k

,

because it allows the variance to be independent from the mean:

V ar[X] = λ+ ϕλ2,

where λ = E[X], and ϕ is called the overdispersion parameter. Note that when

ϕ → 0, then the negative binomial distribution tends to the Poisson distribution.

Biologically speaking, the overdispersion allows to account for the biological

variability between samples. More complex distributions were also proposed to

model NGS data, in particular the zero-inflated (ZI) distributions (zero-inflated

Poisson or zero-inflated negative binomial). ZI distributions are useful when

frequent zero-valued observations are present in the data, which is often the case

for single-cell NGS data [Risso et al. 2018].

The generalized linear model (GLM) implements these count distributions

(among others) allowing a flexible generalization of the linear model (regres-

sion/ANOVA) useful for NGS data analysis. For instance, for the Poisson and

negative binomial distributions, the GLM is:

log
(
E
[
y|X

])
= Xβ (2.1)

where y is the dependent variable, X the set of independent variables and β the

model parameters. For differential analysis, the treatment factor is often encoded

as a dummy variable with values equal to zero for the control condition and values

equal to one for the treatment condition. The associated treatment factor coefficient

corresponds to the natural logarithm of the fold-change between the two condition

averages (Treatment / Control). The corresponding p-value allows to test if the

coefficient is significantly different from zero, therefore assessing the significance of

the fold-change between the two 2 conditions.
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2.7.3 Machine learning

Figure 2.7: The different categories of machine learning methods.

Machine learning methods are increasingly used to analyze omic data. Such

methods can be categorized into three approaches: (i) unsupervised learning, (ii) su-

pervised learning, and (iii) reinforcement learning [Hastie et al. 2009, Bishop 2007]

(Figure 2.7). The first two categories are the most used and developed to date for

omic data.

Unsupervised learning looks for previously undetected patterns in a data set

with no pre-existing labels and with a minimum of human supervision. Main

methods consist in either reducing the dimension to compress data information

(e.g. principal component analysis or t-distributed stochastic neighbor embedding)

or in identifying groups of similar observations, also called clusters (e.g. k-means or

hierarchical clustering). For instance, principal component analysis helps visualize

in a simple manner key information from a large amount of variables and has

many applications in omics such as representing ethnic variability from genetic

data [Zheng & Weir 2016]. Cluster analysis is used instead to identify groups of in-

dividuals such as unknown cell (sub-)types from tissues [Andrews & Hemberg 2018].

Supervised learning considers the task of learning a function g : X → Y that

maps an input space X to an output space Y based on example input-output

pairs. Supervised learning is used to predict the unknown value of a variable

(or more) given the values of other variables that are often easier or cheaper

to collect. There are many machine learning algorithms that are often used in

genomics, including artificial neural networks [Rosenblatt 1958], support vector

machines [Boser et al. 1992], random forests [Breiman 2001], extreme gradient

boosting [Chen & Guestrin 2016] and Bayesian networks [Jensen 1996]. In omics,

supervised learning had many successful applications in cancer type predictions

[Kourou et al. 2015], gene annotation [Mahood et al. 2020] or regulatory element

mapping [Lee et al. 2011].
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Reinforcement learning learns which actions to take in a given environment in

order to maximize some reward [Sutton & Barto 2018]. Thus, this approach learns

from mistake, similarly to humans. Reinforcement learning has tremendous applica-

tions in robotics, where a robot has to learn himself how to interact optimally with

an environment. To date, the applications of reinforcement learning for omic data

are very limited. However, recent preliminary studies suggest that reinforcement

learning could improve genome assembly [Xavier et al. 2020].

2.7.4 Deep learning

Figure 2.8: Difference between machine and deep learning.

Deep learning is a branch of machine learning that has gained consider-

able attention during the last years due to tremendous progress in the field

[Goodfellow et al. 2016]. Deep learning is mostly based on artificial neural net-

works, but for which multiple layers progressively extract higher-level information

from the raw input. The success of deep learning compared to machine learning

is linked to the larger amount of data available (big data), new gradient descent

algorithms and the use of graphics processing units (GPUs) speeding computations

by 100 times.

Nowadays, deep learning achieves the best results for image, textual and au-

dio data problems, for which data is complex and highly organized. Unlike ma-

chine learning, deep learning does not necessitate features previously built from

expert knowledge, but instead learns directly features from data (Figure 2.8).

Among deep learning models, convolutional neural networks (CNNs) were the

first successful models [Krizhevsky et al. 2012]. CNNs implement a convolutional

layer that consists of a set of learnable kernels capturing local patterns. In ge-

nomics, CNNs are used to predict regulatory elements from DNA sequence and
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to assess in silico the effect of a non-coding SNP on regulatory element activ-

ity [Alipanahi et al. 2015, Zhou & Troyanskaya 2015]. Recurrent neural networks

(RNNs) are another class of neural networks that is used for entire sequences of data

[Jain & Medsker 1999]. However, RNNs often fail to process long sequences because

of the vanishing gradient problem, and hence long short-term memory (LSTM)

were successfully introduced to tackle this issue [Hochreiter & Schmidhuber 1997].

More recently, LSTM was replaced by the Transformer model that implements the

attention layer which does not require the sequential data to be processed in a

sequential order, allowing much more parallelization than RNNs or LSTMs and

therefore considerably reducing training times [Vaswani et al. 2017]. Lastly, an-

other recent approach, called transfer learning, consisted in transferring knowledge

from a very complex and powerful network trained on a very large dataset to a sim-

ple network in order to increase performances when only a few data were available

[Tan et al. 2018].

2.7.5 Heterogeneous data integration

The study of a biological system is best approached by incorporating knowledge

from different perspectives in order to unravel the complexity of biology. Nowadays,

genomic and omic technogologies allow to generate data from a wide range of

experiments at different levels (mutation, transcription, chromatin modification,

protein binding, DNA damage, etc.). Moreover, there are more and more biological

databases from which experimental data can be freely and easily queried (Gene

Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/; Expression Atlas,

https://www.ebi.ac.uk/gxa/home; TCGA/ICGC, https://dcc.icgc.org/; UCSC

Genome Browser, https://genome.ucsc.edu). However, the use of omic data from

different experiments, as well as from different techniques, poses major challenges

for integrating heterogeneous data.

There are two main approaches for data integration. The first approach heav-

ily relies on expert knowledge from the biologist (hypothesis-driven approach). It

consists in combining usually data from 2 or 3 different experiments in such way

that this makes sense biologically. Often the biologist does not explore all the

data available, but instead makes strong hypotheses for data analysis by focusing

on certain candidate regions of the genome or certain candidate genes. While the

hypothesis-driven approach is preferred for small research projects from a team,

it is not relevant for big projects from a large consortium. Instead, a second ap-

proach can be chosen when the amount of data is too large to be exploited us-

ing restrictive hypotheses (data-driven approach). In the data-driven approach,

statistical and data mining approaches are used. For instance, a wide range of

multivariate methods such as principal component analysis, canonical correlation

analysis or partial least squares models can summarize key information from data

[Rohart et al. 2017]. Network-based methods also provide a natural framework for

data integration by detecting potential interactions between biological processes or

components at different scales [Amar & Shamir 2014, Lee et al. 2020]. When data
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integration is used for some prediction tasks, such as in precision medicine, then

machine learning algorithms provide a nice framework to integrate diverse data

[Mobadersany et al. 2018].

2.7.6 Personalized medicine

Figure 2.9: How patients can received personalized treatments using patient data

combined with artificial intelligence (AI) diagnosis.

For the past ten years, medicine has been at the heart of a technological

revolution in the way of considering, diagnosing and treating patients through

personalized medicine, also called precision medicine. Patients are less and less

considered as individuals from a homogeneous population for which an ideal

identical treatment or diagnosis would exist. Conversely, medicine increasingly

recognizes the uniqueness of each patient based on their genome, family history,

lifestyle, and environment.

Recent advances in genomics and omic sciences in general (e.g. transcriptomics,

metabolomics and proteomics), but also in medical imaging (e.g. MRI scanner and

fluorescent labeling), intestinal microbiology and pharmacodynamics, have made
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possible to accumulate a large number of genetic and physiological information for

patients and their illnesses. Current techniques now generate an ever-increasing

amount of medical data on patients, and medicine is considered to have entered

like other disciplines into the era of Big Data, where data is immense and must be

stored on bigger and bigger servers.

The availability of such large amounts of data at low cost is fueling the

development of new approaches for personalized medicine based on computer

algorithms, artificial intelligence, computational biology and biostatistics (Figure

2.9). Several types of data are used such as genomics and omics, health monitoring

or radiography from MRI for instance. Data are then stored in a database and

then processed using machine learning algorithms on supercomputers. Algorithms

then decide the best treatment for every patient.

For example, the subtyping of certain cancers, which identifies the best treat-

ment, is considered to be more efficient and more precise with the use of machine

learning than traditionally done by physicians. Another successful example is to

use a patient’s genome to predict the likelihood of later developing a complex

genetic disease like heart disease, allergies and asthma, neurological / psychological

diseases, as well as, certain cancers of genetic origin.

At the moment, artificial intelligence approaches to personalized medicine are

only in their infancy. New computational approaches must be developed in order to

improve predictions (i) by automatically integrating more and more heterogeneous

data of various kinds (omics, images, questionnaires, publications, etc.), (ii) by

analyzing larger volumes of data rapidly, (iii) by exploiting data available in

public databases such as ICGC / TGCA for cancer and GWAS Catalog for human

genetics, and (iv) by implementing reinforcement learning from patient feedback.
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In the longer run and for wide-reaching

issues, more creative solutions tend to

come from imaginative interdisciplinary

collaboration.

Robert J. Shiller

3.1 Introduction

During the last decade, I have been focusing my research efforts on making sense

of data and on developing novel computational methods for a variety of biological

problems centered on the genome and its functions. During my postdoctorates, I

had the chance to work on different topics including chromatin and cancer, human

genetics of asthma and phylogenetics of viruses.
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After being recruited as an assistant professor (mâıtre de conférences) at

University Paul Sabatier, most of my work was focused on the study of the

3D genome. In particular, I worked on the identification of protein binding

factors and insulator sequences that could influence the formation of 3D domains,

such as topologically associating domains (TADs), and the link with biological

processes such as DNA repair and transcription. Another research direction was

the development of machine and deep learning models for predicting genomic data,

such as endogenous DNA double-strand breaks and active G-quadruplexes, which

are related to chromatin, DNA repair and cancer.

But I also always attempted to incorporate into my research projects, concepts

and methods borrowed from genetics and evolution I acquired during my postdoc-

torates. For instance, I investigated the evolution of the 3D genome by inferring

CTCF loop characteristics directly from the genome sequence of vertebrate species,

and by demonstrating their phylogenetic conservation. Moreover, I studied the im-

pact of SNPs disrupting potential G-quadruplexes, and showed the link with gene

expression.

3.2 Human genetics of asthma

Asthma is a complex genetic disease characterized by the inflammation and

constriction of the airways. This disease affects more than 300 million people in the

world and thus represents a major public health issue. Even though genome-wide

association studies of common variants have successfully identified more than one

hundred genes linked to asthma, only a fraction of the heritability of the disease

could be identified. Among all the hypotheses, the role of rare variants has been

proposed as an explanation for this missing heritability characteristic of common

genetic diseases. The emergence of new sequencing technologies as well as the

constant decrease in their cost currently allows the analysis of rare variants, SNPs

and insertions-deletions, of a cohort of several thousand individuals or more.

During my postdoctoral fellowship at University of Chicago (Ober’s lab), I ana-

lyzed rare variants associated with asthma severity. Our laboratory had sequenced

278 individuals with asthma, including 93 African-Americans, 101 European-

Americans and 84 Latin Americans. In order to maximize the detection power

of rare variants, I employed an approach based on the accumulation of the effects

of rare variants of a gene, the so-called gene-based test [Wu et al. 2011]. I have

also annotated these variants in order to include in the tests only those predicted

to be functional and I only tested a limited number of candidate genes (approxi-

mately 300), to further reduce multiple testing issues. Although I have identified

rare variants present in the GSDMB gene located in locus 17q12-21 in European

Americans and Latin Americans, these results could not be replicated in a different

cohort. Failure to identify genetic variants reflected a classical scenario encountered

in human genetics: small size of the sample (about 300 individuals), as well as its

structure in three populations. In parallel, I was involved in another project on rare
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Figure 3.1: Phylogenetic analysis of antiretroviral resistance transmission from

treatment-näıve individuals. A) Phylotype analysis to identify viral clusters. B)

Frequency of antiretroviral resistance transmission from a drug-näıve source.

variants by Exome Chip for which 10 thousand individuals were available, and with

such larger sample size, we could identify rare ethno-specific variants of asthma

[Igartua et al. 2015].

3.3 Phylogenetics of HIV

Therapy combining antiretroviral (ARV) drugs has been proven highly effective in

controlling HIV (human immunodeficiency virus) infections and has significantly

improved patients’ survival and quality of life. However, resistances to drugs are

known to develop in treated individuals. Resistant viruses emerge through the

selective pressure induced by antiretrovirals, but can also be transmitted from

treated patients to treatment-näıve recipients. Usually the loss of fitness linked to

the presence of resistance mutations in the absence of ARV treatment is sufficient

to cause the virus to evolve back to its initial form (without resistance). Despite

this, the presence of these reservoirs means that, in some cases, the mutant form

continues to survive and to be transmitted in the absence of ARV treatment. So

the presence of these reservoirs poses a serious threat to the long-term efficacy of

the ARV therapy.

During my postdoctoral fellowship at Methods and Algorithms for Bioinformat-

ics (MAB) team (LIRMM, Montpellier), I used a new phylogenetic approach, called

Phylotype [Chevenet et al. 2013], to identify viral transmission clusters from 24,550

sequences of HIV-1 virus subtype B pol gene (Figure 3.1A). These sequences came

from the UK HIV Drug Resistance Data Collection database. Treatment resistance

clusters among HIV-positive individuals have been identified as containing at least 3

sequences with at least one shared resistance mutation, intra-clade genetic distance

maximum of 4% and basal branch support of at least 90%. The persistence time

of transmission chains was estimated using a molecular clock inference approach by

least squares. The results showed that at least 70% of resistance to ARVs originated
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Figure 3.2: Effect of estrogen (E2) on the compartmentalization of chromosome 6.

The chromosome was modeled in 3D using Hi-C data before (0h) and after estrogen

(4h). Active and inactive chromatin regions are stained red (compartment A) and

blue (compartment B), respectively.

from a näıve individual (Figure 3.1B) [Mourad et al. 2015].

3.4 The genome in 3D

The 3D genome was one of my research topic when I was a postdoctoral researcher

at Indiana University. Back in 2011, studying the 3D genome using NGS was

very new and exciting. Only few bioinformaticians were working on the topic, and

consequently, we had to develop in-house libraries and scripts for data processing.

After I was recruited in a chromatin lab in 2014, the 3D genome became one of

my major research topics, since there was already a boom in the field and a lot of

room for the development of computational methods and models to analyze Hi-C

data. Nowadays, Hi-C experiment has become a standard technique to interrogate

the 3D genome, and is routinely applied in research labs.

3.4.1 Estrogen induces global 3D genome reorganization in breast cancer

Estrogen is a class of sex hormone responsible for the development and regulation

of the female reproductive system, but whose exposure also increases breast

cancer risk. The action of estrogen is mediated by the estrogen receptor (ER),

a protein that binds to DNA and controls gene expression. Previous studies

showed that gene expression after estrogen stimulation is regulated through DNA

looping [Hsu et al. 2010, Hsu et al. 2013]. Moreover, estrogen is known to alter the

large-scale chromatin structure [Nye et al. 2002].
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During my postdoctoral fellowship at Indiana University, I analyzed Hi-C data

before/after estrogen induction [Mourad et al. 2014]. I observed that estrogen in-

duces a global change of the 3D conformation of chromosomes in breast cancer cells.

The addition of estrogen caused a gradual increase in the spatial compartmental-

ization of chromatin up to 4 hours (Figure 3.2). By integrating previous results

with gene expression and epigenetic data, I demonstrated the link with the global

regulation of the gene expression. After estrogen stimulation, gene-rich chromo-

somes, open and active regions of chromatin are in greater spatial proximity, thus

allowing genes to share transcriptional machinery and regulatory elements. At the

megabase scale, we also observed that the loci in differential interaction are enriched

in genes involved in cancer proliferation and estrogen response. In addition, these

loci showed higher estrogen receptor alpha binding and gene expression.

3.4.2 Prediction of 3D genome structure from epigenetic and chromatin
data

In a research highlight, we surveyed recent computational methods demon-

strating the strong link between 3D genome organization (Hi-C data) and

1D epigenetic and chromatin data (ChIP-seq, DNase-seq, Methylation array)

[Mourad & Cuvier 2015]. Such strong link suggests that the 3D genome, which

is costly to map experimentally, can be instead predicted using cheaper or publicly

available 1D genome data. For instance, 3D compartments A/B are usually inferred

from a principal component analysis of the correlation matrix from the Hi-C count

matrix. However, the correlation matrix can be predicted using a correlation matrix

computed from DNA methylation profiles across patients. Another work showed

that machine learning methods such as Bayesian additive regression trees can pre-

dict TADs by using epigenetic data from various human cell lines, including tumor

cells. Most notably, the localization of histone modifications and CTCF binding

sites as observed from ChIP-Seq data provide good predictors of TAD borders.

3.4.3 Generalized linear models for bridging the gap between 1D and 3D
genomes

Understanding the biological processes involved to shape the genome in 3D is a

major question. One paradigm is to consider that the 1D genome contributes to the

formation of 3D chromosomal structures such as 3D domains. In fact, several stud-

ies have shown that insulator binding proteins are enriched at 3D domain borders

[Phillips-Cremins et al. 2013], that CTCF and cohesin proteins are involved in ex-

trusion to form DNA loops [Rao et al. 2014, Sanborn et al. 2015, Rao et al. 2017],

and that phase separation of histone marks could explain the formation of

compartments [Jost et al. 2014]. Moreover, genomic elements, such as repetitive

sequences, were also shown to co-localize in 3D [Cournac et al. 2015]. Experiments

to demonstrate the role of a given protein often consist in depleting the protein.

Depletions are very costly and thus cannot be systematically used to study the role

of any DNA binding protein. Alternative computational methods are advantageous

compared to experimental depletions, since they make it possible without any
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cost to study the role of dozens or even hundreds of proteins whose ChIP-seq

data or DNA binding motifs are already available in databases such ENCODE

(https://www.encodeproject.org/) or JASPAR (http://jaspar.genereg.net/).

I proposed different generalized linear models (GLMs) to integrate and predict

the 3D genome from the 1D genome. In a first work, logistic regression was proposed

to model TAD border presence / absence depending on protein binding, genomic

elements, and DNA motif presence. In a second work, negative binomial regression

allowed to model Hi-C counts depending on the interaction between protein bind-

ing at different locations. In a third work, negative binomial regression modeled

Hi-C counts depending on the blocking effect of protein binding, which did not ne-

cessitate any prior TAD identification (TAD-free). In a fourth work, Poisson and

negative binomial regressions were used for TAD identification, differential analysis

and prediction.

3.4.3.1 TADfeat: identification of protein drivers of TAD borders

A current challenge is to identify the molecular drivers of 3D domains of higher-

order chromatin organization. However, few computational tools have been

proposed to study the link between insulating proteins or functional elements

(genomic factors) and the 3D domains such as TADs. A commonly used approach

is to test for genomic factor enrichment at the borders of TADs by Fisher’s exact

test. However, the enrichment test can only identify the genomic factors that

colocalize at TAD borders, but it is unable to determine which genomic factors

are more likely to influence the borders. For instance, two genomic features might

be both found significantly enriched at domain boundaries, but only one of them

might truly influence the domain border establishment or maintenance. This is due

to the colocalization (correlation) between the two genomic features. Statistically

speaking, correlation does not imply causation. Non-parametric models were also

used to predict TAD borders and have identified a subset of predictors. However

one factor may accurately predict boundaries without being causative.

I proposed a new approach based on multiple logistic regression to measure the

influence of factors on the boundaries of TADs [Mourad & Cuvier 2016]. Unlike

the enrichment test, the regression takes into account the conditional independence

between the factors and thus better identify the most influential factors (Figure

1, Scenario 1, from the article ”Computational Identification of Genomic Features

That Influence 3D Chromatin Domain Formation” below). In addition, the

regression can account for the interaction between factors, and therefore, can assess

the impact of the co-occurrence of factors on borders (Figure 1, Scenario 2, from

the article below). In Drosophila, I have shown that, among known architectural

proteins, BEAF-32 and CP190 are the main determinants of TADs. In humans,

the model identified known proteins CTCF and cohesin, as well as ZNF143 and

PRC2 as positive determinant borders. The model also revealed the existence

of several factors having a negative effect on borders, including P300, RXRA,
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BCL11A and ELK1. Based on the regression results, I proposed a new biological

model explaining the formation of 3D domains, where positive driver proteins

could favor attraction between loci, while negative driver proteins could instead

trigger repulsion (Figure 8, from the article below).
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Abstract
Recent advances in long-range Hi-C contact mapping have revealed the importance of the

3D structure of chromosomes in gene expression. A current challenge is to identify the key

molecular drivers of this 3D structure. Several genomic features, such as architectural pro-

teins and functional elements, were shown to be enriched at topological domain borders

using classical enrichment tests. Here we propose multiple logistic regression to identify

those genomic features that positively or negatively influence domain border establishment

or maintenance. The model is flexible, and can account for statistical interactions among

multiple genomic features. Using both simulated and real data, we show that our model out-

performs enrichment test and non-parametric models, such as random forests, for the iden-

tification of genomic features that influence domain borders. Using Drosophila Hi-C data at

a very high resolution of 1 kb, our model suggests that, among architectural proteins,

BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our

model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143

and Polycomb group proteins as positive drivers of domain borders. The model also reveals

the existence of several negative drivers that counteract the presence of domain borders

including P300, RXRA, BCL11A and ELK1.

Author Summary

Chromosomal DNA is tightly packed up in 3D such that around 2 meters of this long mol-
ecule fits into the microscopic nucleus of every cell. The genome packing is not random,
but instead structured in 3D domains that are essential to numerous key processes in the
cell, such as for the regulation of gene expression or for the replication of DNA. A current
challenge is to identify the key molecular drivers of this higher-order chromosome organi-
zation. Here we propose a novel computational integrative approach to identify proteins
and DNA elements that positively or negatively influence the establishment or mainte-
nance of 3D domains. Analysis of Drosophila data at very high resolution suggests that
among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D
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domains. In humans, our results highlight the roles of CTCF, cohesin, ZNF143 and Poly-
comb group proteins as positive drivers of 3D domains, in contrast to P300, RXRA,
BCL11A and ELK1 that act as negative drivers.

Introduction
High-throughput chromatin conformation capture (Hi-C) has emerged over the past years as
an efficient approach to map long-range chromatin contacts [1–3]. This technique has allowed
the study of the 3D architecture of chromosomes at an unprecedented resolution for many
genomes and cell types [4–7]. Multiple hierarchical levels of genome organization have been
revealed: compartments A/B [1], sub-compartments [8], topologically associating domains
(TADs) [4, 5] and sub-TADs [7]. Among those domains, TADs represent a pervasive structural
feature of the genome organization. TADs are stable across different cell types and highly con-
served across species.

A current challenge is to identify the molecular drivers of topological arrangements of
higher-order chromatin organization. There is a growing body of evidence that insulator bind-
ing proteins (IBPs) such as CTCF, and cofactors such as cohesin, act as mediators of long-
range chromatin contacts [5, 6, 9–11]. In human, depletion of cohesin predominantly reduces
interactions within TADs, whereas depletion of CTCF not only decreases intradomain contacts
but also increases interdomain contacts [12]. The densest Hi-C mapping in human has recently
revealed that loops that demarcate domains are often marked by asymmetric CTCF motifs
where cohesin is recruited [8]. In Drosophila, silencing of cohesin and condensin II have
recently demonstrated their roles on long-range contacts [13]. In addition, numerous IBPs,
cofactors and functional elements colocalize at TAD borders [11]. However it is unclear if all
these proteins and functional elements, or specific combinations of them, play a role in TAD
border establishment or maintenance. Computational approaches that integrate protein bind-
ing (chromatin immunoprecipitation followed by high-throughput DNA sequencing, ChIP-
seq) with Hi-C data may be well-suited to identify the key drivers of chromatin architecture.

Most computational approaches dedicated to chromosome conformation analysis have
focused on correcting contact matrices for experimental biases [6, 14–16] in order to assess
more precisely the significance of contact counts [17, 18], to identify chromatin compartments
[1, 15, 19], or to 3D model chromosome folding [1, 5, 20–22]. However few computational
methods have been proposed to study the roles of DNA-binding proteins and functional ele-
ments in chromosome folding. A simple yet widely used statistical method consists in assessing
enrichment of a genomic feature around 3D domain borders by Fisher’s exact or Pearson’s chi-
squared tests [4, 5, 7]. An important caveat of enrichment test is that it only identifies those
genomic features that colocalize at domain borders, but it cannot determine which genomic
features influence the domain border establishment or maintenance. For instance, two genomic
features might be both found significantly enriched at domain boundaries, but only one of
them might truly influence the domain border establishment or maintenance. This is due to
the colocalization (correlation) between the two genomic features. Statistically speaking, corre-
lation does not imply causation. Other works focused on the prediction of 3D domain borders
using (semi) non-parametric models and identified a subset of genomic features that are the
most predictive of TADs [23, 24]. However a genomic feature can efficiently predict 3D
domain borders without being influential [25].

In this paper, we propose a multiple logistic regression to assess the influence of genomic
features such as DNA-binding proteins and functional elements on topological chromatin
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domain borders. Compared to enrichment test and non-parametric models, multiple logistic
regression assesses conditional independence and thus can identify most influential proteins
with respect to domain borders. Moreover the multiple logistic regression model can easily
accommodate interactions between genomic features to assess the impact of co-occurences on
domain borders. We illustrate our model using recent Drosophila and human Hi-C data allow-
ing to probe TAD borders depending on multiple proteins and functional elements. Using
both simulated and real data, we show that our model outperforms enrichment test and non-
parametric models such as random forests for the identification of known and suspected archi-
tectural proteins. In addition, the proposed method identifies genomic features that positively
or negatively impact TAD borders with a very high resolution of 1 kb.

Results

The model
The proposed multiple logistic regression models the influences of p genomic features on 3D
domain borders:

ln
ProbðY ¼ 1jXÞ

1� ProbðY ¼ 1jXÞ ¼ b0 þ βX ð1Þ

Where X = {X1, . . ., Xp} is the set of p genomic features such as DNA-binding proteins and Y
is a variable that indicates if the genomic bin belongs to a border (Y = 1) or not (Y = 0). The
set β = {β1, . . ., βp} denotes slope parameters, one parameter for each genomic feature. The
model can easily accommodate interaction terms between genomic features (see Subsection
Materials and Methods, Analysis of interactions). By default, model likelihood is maximized
by iteratively reweighted least squares to estimate unbiaised parameters. However, when
there are a large number of correlated genomic features in the model, L1-regularization is
used instead to reduce instability in parameter estimation [26].

We illustrate the proposed model using two scenarios and compare it with enrichment test
(Fig 1). In the first scenario, protein A positively influences 3D domain borders, while protein
B colocalizes to protein A. In this scenario, enrichment test will estimate that the parameter
associated with protein A βA > 0 and the parameter associated with protein B βB > 0. In other
words, both proteins A and B are enriched at 3D domain borders. Multiple logistic regression
will instead estimate that parameters βA > 0 and βB = 0. This means that protein A positively
influences 3D domain borders, while protein B does not. This is because multiple logistic
regression can discard spurious associations (here between protein B and 3D domain borders).
One would argue that enrichment test can also be used to discard the spurious association if
the enrichment of protein B when protein A is absent is tested instead. However such condi-
tional enrichment test becomes intractable when more than 3 proteins colocalize to domain
borders, whereas multiple logistic regression is not limited by the numbers of proteins to ana-
lyze within the same model.

In the second scenario, the co-occurrence of proteins A and B influences 3D domain bor-
ders, but not the proteins alone. Enrichment test will find that each protein alone is enriched at
3D domain borders (βA > 0 and βB > 0) as well as their interaction (βAB> 0). The proposed
model will instead find that only the interaction between proteins A and B influences 3D
domain borders (βA = 0, βB = 0 and βAB > 0).

In addition to these two previous scenarios, another interest of the model is the possibility
to study the negative influence of a protein (or of a co-occurence of proteins) on TAD border
establishment of maintenance. In other words, its presence counteracts the establishment or
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maintenance of 3D domain borders. In such scenario, multiple logistic regression will estimate
a parameter β< 0 (see below).

Depending on the parameter estimation algorithm used (likelihood maximization or
L1-regularization), results are interpreted differently. If likelihood maximization is used, then a
protein beta parameter can be considered as significantly different from zero if the correspond-
ing p-value is lower than the familywise error rate (FWER) computed by Bonferroni procedure.
If L1-regularization is used instead, then p-values are not computed. A protein is considered as
influential if its beta parameter is different from zero. Using both algorithms, the beta parame-
ter is the only measure used to quantify how strong is the influence of a protein on the 3D
domain borders, and the p-value should not be used instead because it depends on the amount
of data available. Both algorithms are useful in practice. Likelihood maximization allows to
estimate beta parameters without any bias but influential proteins should be known in advance.
L1-regularization can be useful to select the influential proteins among a large set of correlated
candidates, but estimates will be biased.

Parameter estimation accuracy
Several characteristics of the analyzed ChIP-seq and functional element data might prevent the
accurate estimation of multiple logistic regression parameters β. The matrix X of genomic fea-
tures is sparse (numerous values equal zero) because genomic features are often absent from a

Fig 1. Illustration of the proposed multiple logistic regression to assess the influences of genomic features on 3D domain borders and
comparison with enrichment test.

doi:10.1371/journal.pcbi.1004908.g001
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particular genomic bin. Sparsity of matrix X is known to prevent convergence of maximum
likelihood maximization for parameter estimation [27]. Moreover some genomic features can
be correlated. For instance, different insulator binding proteins might bind to the same geno-
mic regions. For all these reasons, accurate estimation of parameters could fail in theory.
Hence we evaluated the accuracy of parameter estimation using simulations.

We simulated data that were similar to real ChIP-seq data (see Subsection Materials and
Methods, Data simulation, first paragraph). Both genomic coordinate data (e.g., ChIP-seq peak
coordinates) and quantitative data (e.g., ChIP-seq signal intensity log ChIP

Input
) were generated.

From the simulated data, multiple logistic regression model parameters were then estimated by
maximum likelihood. We first simulated 100 genomic coordinate and 100 quantitative datasets
that comprised 6 proteins and learned models without considering any interaction terms. In
Fig 2a, we plotted true against estimated parameter values. We reported a very good accuracy
for parameter estimation for both genomic coordinate and quantitative data with R2 = 99.5%
(p< 1 × 10−20) and R2 > 99.9% (p< 1 × 10−20) between true and estimated parameter values,
respectively. Because some proteins might be rare over the genome and only involved in some
3D domain borders, we studied parameter accuracy for simulated proteins with varied ChIP-
seq peak numbers. Parameter estimation was highly accurate even for proteins with a low num-
ber of peaks over the genome (R2 = 97.4% for 50 peaks; S1 Fig). In addition, we sought to assess
how parameter estimation is affected by 3D domain border inaccuracy of few kilobases. We
observed that with a border inaccuracy equal or lower than 2 kb, parameter estimation was still
accurate (R2> 70.9%, S2 Fig). We then simulated 100 genomic coordinate and 100 quantitative
datasets that comprised the same 6 proteins and learned models with all two-way (e.g. X1 X2)
interaction terms. In Fig 2b, we plotted true against estimated parameter values corresponding
to interaction terms only. Parameter estimation accuracy was still high for both genomic coor-
dinate data (R2 = 94.6%, p< 1 × 10−20) and quantitative data (R2 = 99.9%, p< 1 × 10−20). We
concluded that model parameter estimation was accurate for both marginal and two-way inter-
action of genomic features.

MLR outperforms enrichment test and random forests to identify drivers
of TAD borders
We then sought to assess how multiple logistic regression (MLR) efficiently identifies genomic
features that influence TAD borders, comparing with other approaches commonly used to
assess the link between TAD borders and genomic features. We compared our model with
enrichment test (ET) [4] and non-parametric model [23]. For the non-parametric model, we
used random forests (RF) which are very similar to the model used in [23], but for which a scal-
able implementation allowed high resolution analysis (https://github.com/aloysius-lim/bigrf).
For this purpose, we first simulated 100 datasets comprising 11 genomic features {X1, X2, . . .,
X11} that were similar to real ChIP-seq data (see Subsection Materials and Methods, Data simu-
lation, second paragraph). Among the genomic features, variables X1 and X10 were chosen to
be causal with an odds ratio of 4, which was comparable to odds ratios estimated from real data
(see below). We compared beta parameters from multiple logistic regression with beta parame-
ters from enrichment test and variable importances from random forests (Fig 3a). Enrichment
test correctly identified causal variables X1 and X10 as the most enriched (beta median = 1.3),
but also found highly enriched non-causal variables (beta median = 1). Random forests
detected X3 and X8 as the most influential variables for prediction (variable importance median
>2.75), although they were not causal genomic features. In contrast, multiple logistic regres-
sion correctly identified X1 and X10 as influential variables (beta median = 0.93) and discarded
non-causal variables (beta median = −0.03).
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We next simulated more complex scenarios for which the causal variables and their number
were randomly chosen for each simulation. In addition, simulations were carried out for differ-
ent odds ratios to study the influence of effect size. As previously, we compared multiple logis-
tic regression with enrichment test and random forests. For each method, we computed the
percentage of models that correctly ranked first the causal variables in terms of beta parameter
or variable importance (Fig 3b). We observed that both enrichment test and multiple logistic
regression successfully ranked first the causal variables even for a low odds ratio of 2 (93% of
models), whereas random forests mostly failed even for the easiest scenario (44% of models for
an odds ratio of 8; in the next paragraph, we will see that random forests poorly performed
here partly due to high data sparsity). We then compared empirical type I error rate for a sig-
nificance threshold α = 10−5 between enrichment test and multiple logistic regression for
which p-values on beta coefficients were available (Fig 3c). Even for a high odds ratio of 8,

Fig 2. Parameter estimation accuracy of multivariate logistic regression. a) Estimated versus true
parameter for marginal genomic features (the model does not include any interaction between genomic features).
b) Estimated versus true parameter for two-way interactions between genomic features (i.e. for any interaction
between two genomic features, see Subsection Materials andMethods, Analysis of interactions). Genomic
coordinate data are ChIP-seq peak coordinates. Quantitative data are ChIP-seq signal intensities log ChIP

Input.

doi:10.1371/journal.pcbi.1004908.g002

Identification of 3D Chromatin Organization Features

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004908 May 20, 2016 6 / 24



Fig 3. Comparisons betweenmultiple logistic regression (MLR), enrichment test (ET) and random forests (RF) on simulated and real data. a)
Comparison of MLR beta parameters with ET beta parameters and RF variable importances obtained from 100 simulated datasets including 11 genomic features.
Among the genomic features, variables X1 and X10 were chosen to be causal. For a method, a blue check mark denotes a causal or non-causal variable that was
correctly identified as causal (resp. non-causal). A black x mark denotes a causal or non-causal variable that was incorrectly identified as non-causal (resp.
causal). b) Percents of causal variables ranked first by ET, MLR and RF computed from 100 simulated datasets and varying odds ratios. Here the causal variables
and their number were randomly drawn at each simulation. c) Type I error rates for MLR and ET computed from 100 simulated datasets. RF were not included
because no p-values were available. The significance threshold αwas set to 10−5. Simulated data were the same as in b). d) Comparison of MLRwith ET and RF
to detect known or suspected architectural proteins in human using GM12878 cell ChIP-seq data. Receiver operating characteristic (ROC) curves were computed
fromWald’s statistics for ET, from beta parameters for MLR, and from variable importances for random forests. Computations were carried out at 1 kb resolution.

doi:10.1371/journal.pcbi.1004908.g003
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MLR had a low error rate of 16%. Conversely enrichment test showed a high error rate of 75%
even for an odds ratio of 2.

We also compared MLR with ET and RF using real data in human. For this purpose, we ana-
lyzed new 3D domains detected from recent high resolution Hi-C data at 1 kb for GM12878
cells for which 69 ChIP-seq data were available [8]. Multiple lines of evidence indicate that
CTCF and cohesin serve as mediators of long-range contacts [5, 6, 9–11, 28]. However several
proteins also colocalize or interact with CTCF, including Yin Yang 1 (YY1), Kaiso, MYC-associ-
ated zing-finger protein (MAZ), jun-D proto-oncogene (JUND) and ZNF143 [29]. In addition,
recent work has demonstrated the spatial clustering of Polycomb repressive complex proteins
[30]. Using the large number of available proteins in GM12878 cells, we could compare MLR
with ET and RF to identify known or suspected architectural proteins CTCF, cohesin, YY1,
Kaiso, MAZ, JUND, ZNF143 and EZH2. For this purpose, we computed receiver operating
characteristic (ROC) curves usingWald’s statistics for ET, beta parameters for MLR, and vari-
able importances for RF. We carried out computations at the very high resolution of 1 kb (see
Subsection Materials and Methods, Binned data matrix). ROC curves revealed that MLR clearly
outperformed ET and RF to identify architectural proteins (AUCMLR = 0.827; Fig 3d). Lower
performance of ET (AUCET = 0.613) was likely due to its inability to account for correlations
among the proteins (average correlation = 0.19). Regarding RF, its low performance (AUCRF =
0.558) could be explained by its well-known inefficiency with sparse data (at 1kb, there were
99.4% of zeros in the data matrix X). At a lower resolution of 40 kb (88.5% of zeros), RF per-
formed much better (AUCRF = 0.746) but still lower than MLR (AUCMLR = 0.815; S3 Fig).

To further validate MLR results with real data, we analyzed the impacts of single nucleotide
polymorphisms (SNPs) in the consensus CTCF motif in human. SNPs play an important role in
common genetic diseases and recent works have uncovered differential long-range contacts due
to variations in the CTCF motif [31–33]. SNPs in the consensus CTCF motif are thus expected
to affect, and most likely to decrease, the influence of CTCF motif on 3D domain border estab-
lishment or maintenance. We then tested if MLR was able to detect the impacts of SNPs on
CTCFmotif. For this purpose, we included within the same MLRmodel the wild-type (WT)
motif and the three alternative alleles for a given position in the motif. For instance, for the first
position, the MLR comprised genomic coordinates of theWTmotif CCANNAGNNGGCA and
the genomic coordinates of the mutated motifs ACANNAGNNGGCA, GCANNAGNNGGCA
and TCANNAGNNGGCA. Over 27 mutated CTCF motifs, 25 showed beta coefficients that
were lower than the one of WT CTCFmotif, indicating that the corresponding SNPs diminished
the influence of CTCF motif on TAD borders as expected (Fig 4). Because correlations among
the motif variables were very low (average correlation<0.01), ET performed as efficiently as
MLR to detect the influences of SNPs (AUCET = 0.926 and AUCMLR = 0.926), but RF was inaccu-
rate (AUCRF = 0.638; S4 Fig). For instance, for the first position, we observed that all three alter-
native alleles (A, G and T) diminished the influence of the motif with respect to 3D domain
borders. Some mutations even canceled the influence of CTCF motif (for instance, alleles A and
T on position 2). On the last position, allele G had a higher influence than theWTmotif. This
result was actually consistent with the ambiguity between allele A and G in the motif. Similar
results were obtained for consensus BEAF-32 motif CGATA inDrosophila (S5 Fig).

Using both simulated and real data, we concluded that multiple logistic regression correctly
identified causal variables and discarded spurious associations of non-causal variables with
TAD borders while both enrichment test and random forests failed. In addition, multiple logis-
tic regression successfully predicted expected effects of SNPs on CTCF and BEAF-32 motifs
known to influence long-range contacts in human and Drosophila, respectively. These pre-
dicted effects of SNPs could further serve to identify new regulatory variants in the context of
genome-wide association studies.
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Fig 4. Analysis of the impacts of single nucleotide polymorphisms on the consensus CTCFmotif in human GM12878 cells.

doi:10.1371/journal.pcbi.1004908.g004
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BEAF-32 influences TAD borders in Drosophila
We implemented the proposed model such that it can deal with either genomic coordinate
data or quantitative data. However, in the present study, we chose to focus on genomic coordi-
nate data as in [11, 34]. An advantage of this approach was that both DNA-binding proteins
and functional elements could be included within the same model. In addition, we observed
that logistic regression models built from genomic coordinate data usually outperformed those
obtained with quantitative data in terms of deviance ratio and AIC (model deviance ratios and
AICs are given in S1 Table).

The influences of genomic features such as DNA-binding proteins or gene transcription on
TAD border establishment or maintenance can be estimated by the proposed multiple logistic
regression. Using Drosophila Kc167 cell Hi-C data at 1 kb resolution, we assessed the effects of
insulator binding proteins, cofactors, gene transcription and functional elements on TAD bor-
ders. Although TADs were computed from 1 kb resolution Hi-C data, genomic features were
binned at an even higher resolution of 50 bp in order to better discriminate between genomic
features that influence TAD borders and those that do not, and to reduce standard errors of
model parameters (see Subsection Materials and Methods, Binned data matrix). In this subsec-
tion, we first focused on the effects of insulator binding proteins in driving TAD borders [35].

In Drosophila, there are five subclasses of insulator sequences [36]. Each subclass is bound
by a particular type of insulator binding protein (IBP): suppressor of hairy wing (Su(Hw)),
Drosophila CTCF (dCTCF), boundary-element-associated factor of 32 kDa (BEAF-32), GAGA
binding factor (GAF), and Zeste-White 5 (ZW5) [10]. In addition, the general transcription
factor dTFIIIC was recently identified as a new IBP [11]. We assessed enrichments of these
IBPs within TAD borders (Fig 5). We observed enrichments for all these IBPs (all coefficients

b̂ > 1:34 and all p-values p< 1 × 10−20). BEAF-32 was the most enriched IBP with a

Fig 5. Comparison between enrichments by enrichment tests and influences by multiple logistic
regression of insulator binding proteins at topologically associating domain (TAD) borders of wild-
typeDrosophila Kc167 cells. In both enrichment test and multiple logistic regression, beta parameters are
computed and displayed. Error bars show 95% confidence intervals of beta parameters.

doi:10.1371/journal.pcbi.1004908.g005
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coefficient b̂ ¼ 2:71, corresponding to an odds ratio ÔR ¼ 15:03, whereas GAF was the least

enriched IBP with a coefficient b̂ ¼ 1:34, corresponding to an odds ratio ÔR ¼ 3:82.
Multiple logistic regression yielded different results (Fig 5). All beta coefficients decreased

reflecting colocalization among the proteins (average correlation of 0.28). Despite these correla-
tions, the tight 95% confidence intervals reflect that betas were estimated with low standard
errors. This is due to the very large number of observations (>1 million) compared to the low
number of variables (6 variables) obtained for a binning at 50 bp. There were clear differences of
betas among the IBPs compared with enrichment analysis [5, 6]. Only BEAF-32 showed high

and significant beta (BEAF-32: b̂ ¼ 1:92, p< 1 × 10−20). For other IBPs, betas were significant

but much lower (b̂ < 0:95, p< 1 × 10−20). Thus although dCTCF, dTFIIIC, GAF and Su(Hw)
were enriched at TAD borders, multiple logistic regression revealed that they weakly influence
TAD borders. High enrichments of these proteins are due to their correlations with BEAF-32.
For instance, previous work showed that numerous dCTCF sites align tightly with BEAF-32
[37]. These results supported the role of BEAF-32 as most influential IBP of TAD borders.

Architectural proteins impact more TAD-based organization than
transcription
There has been an ongoing debate to know whether transcription or architectural proteins are
the main cause of TAD border demarcation [6]. Using enrichment test, we observed that active

transcription start sites (TSSs) were enriched at TAD borders (b̂ ¼ 1:82, p< 1 × 10−20), as well

as architectural proteins such as BEAF-32 (b̂ ¼ 2:72, p< 1 × 10−20). Using multiple logistic
regression, we then estimated the effects of transcription and of architectural proteins on TAD
borders within the same model (S6 Fig). We observed that active TSSs had a significant positive

effect in TAD border establishment/maintenance (b̂ ¼ 0:42, p< 1 × 10−20). This effect was

much lower than the one of architectural protein BEAF-32 (b̂ ¼ 2:59, p< 1 × 10−20). Our
model thus reveals that architectural protein BEAF-32 contributes much more to TAD-based
organization than transcription. However one might argue that the comparison between active
TSSs and BEAF-32 was not straightforward because the latter represented two distinct genomic
features, a functional element and a protein, respectively. Hence for a proper comparison
between transcription and architectural proteins, we compared within the same multiple logis-
tic regression the effects of the short isoform of Drosophila Brd4 homologue (Fs(1)h-S), a
major transcriptional factor involved in transcriptional activation, with the long isoform (Fs(1)
h-L), a recently identified architectural protein [38]. We observed that Fs(1)h-S had a signifi-

cant positive effect on TAD borders (b̂ ¼ 1:87, p< 1 × 10−20), but which was lower than the

one of Fs(1)h-L (b̂ ¼ 2:60, p< 1 × 10−20). Our results thus highlighted the prevalent roles of
architectural proteins compared to transcription, which was highly consistent with recent
results suggesting a lower impact of transcription [13].

The role of cofactors in Drosophila
Recent work supported the idea that IBPs may favor long-range contacts by recruiting cofac-
tors directly involved in stabilizing long-range contacts [8–10]. In Drosophila, several cofactors
were identified: condensin I, condensin II, Chromator, centrosomal protein of 190 kDa
(CP190), cohesin [10, 13, 39, 40] and Fs(1)h-L [38]. We first analyzed by multiple logistic
regression all abovementioned cofactors in their own to understand their relative contribution
to TAD borders (S7 Fig). Among the cofactors, CP190 had the highest influence on TAD bor-

ders in agreement with previous findings [5] (b̂ ¼ 1:12, p< 1 × 10−20). Because cofactors were
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expected to be recruited by IBPs to the chromatin [8, 9, 39, 40], we then regressed cofactors
with all IBPs and all IBP-cofactor interactions (see S2 Table). We observed that CP190 still pre-

sented a high beta (b̂ ¼ 1:13, p< 1 × 10−20), which reflect that additional IBPs are able to
recruit these cofactors in concordance with recent results [41].

An important question is to know if IBPs demarcate TAD borders depending on the pres-
ence of specific cofactors [10]. To answer this question, we assessed if the co-occurence of an
IBP with a cofactor could affect TAD borders by estimating the corresponding statistical inter-
action IBP-cofactor (Fig 6). Among the significant positive interactions, we reported effects for

Fig 6. Analysis of interactions between insulator binding proteins (IBPs) and cofactors at topologically
associating domain (TAD) borders of wild-typeDrosophilaKc167 cells. Beta parameter corresponding to each
interaction IBP-cofactor from the multiple logistic regression is plotted. Interaction terms are detailed in Subsection
Materials and Methods, Analysis of interactions. Error bars show 95% confidence intervals of beta parameters. Barren is a
subunit of condensin I, Cap-H2 is a subunit of condensin II and Rad21 is a subunit of cohesin.

doi:10.1371/journal.pcbi.1004908.g006

Fig 7. Analysis of functional elements usingmultiple logistic regression at topologically associating domain (TAD) borders of wild-type
Drosophila Kc167 cells. Error bars show 95% confidence intervals of beta parameters.

doi:10.1371/journal.pcbi.1004908.g007
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Su(Hw) with Rad21 (b̂ ¼ 0:44, p = 3 × 10−7), and lower effects of Su(Hw) with Chromator

(b̂ ¼ 0:29, p = 2 × 10−4), BEAF-32 with condensin I (Barren) (b̂ ¼ 0:27, p = 2 × 10−5), dTFIIIC

with Fs(1)h-L (b̂ ¼ 0:21, p = 0.001), dCTCF with condensin I (Barren) (b̂ ¼ 0:23,
p = 2 × 10−3). These positive interactions reflected synergistic effects of IBPs with cofactors. We
did not report any significant positive statistical interaction between dCTCF and cohesin as
observed in human [8]. In contrast to vertebrates, Drosophila CTCF does not appear to rely on
cohesin to establish or maintain interactions [42]. Of interest, our method further highlighted
strong and significant negative interactions that revealed antagonistic effects at domain bor-

ders, in particular for BEAF-32 with cofactor CP190 (b̂ ¼ �0:80, p< 1 × 10−20). As such, our
model may allow to retrieve both synergistic and antagonistic influences of co-factors, which
may better reflect the complexity behind the establishment or maintenance of TAD borders.

Analysis of functional elements in Drosophila
We sought to further investigate a wide variety of functional elements such as insulators and
regulatory sequences. Results are reported in Fig 7. Insulators were by far the most influential

functional elements with respect to domain borders (b̂ ¼ 5:07, p< 1 × 10−20), as established in
human [8, 31]. Regarding other functional elements, we found positive effects for repeat

regions (b̂ ¼ 0:71, p< 1 × 10−20), and especially for tandem repeats on TAD borders

(b̂ ¼ 1:10, p = 5 × 10−9). Repeat regions were previously reported to spatially cluster together

[43]. In addition, snoRNA genes had a positive influence on domain borders (b̂ ¼ 1:37,
p = 1 × 10−7), which may reflect their role in higher-order chromatin structure [44]. Further-

more, a negative impact on TAD border was detected for regulatory sequences (b̂ ¼ 1:87,
p = 6 × 10−10), strengthening the hypothesis that functional long-range contacts involving reg-
ulatory elements could compete with structural contacts [45] (see Discussion).

Positive and negative effects of proteins in human
We next analyzed the effects of DNA-binding proteins on 3D domains of human genome
where fewer architectural proteins have been uncovered [29]. To investigate the possible con-
tributions of these proteins, we analyzed new 3D domains detected from recent high resolution
Hi-C data at 1 kb for GM12878 cells for which a large number of ChIP-seq data were available
[8]. Over the 69 proteins analyzed, 51 proteins presented very high and significant enrichments

(all coefficients b̂ > 3 and all p-values p< 1 × 10−20). Multiple logistic regression instead

detected 15 proteins with significant positive effects on domain borders (all coefficients b̂ >

0:5 and all p-values p< 5 × 10−4; S3 Table). Our analyses confirmed that, in contrast to Dro-
sophila, CTCF and cohesin (subunit Rad21) presented the highest effects among all factors

(CTCF: b̂ ¼ 1:90, p< 1 × 10−20; cohesin: b̂ ¼ 1:91, p< 1 × 10−20), in complete agreement
with numerous studies showing their important roles in shaping chromosome 3D structure in

mammals [8, 9, 12]. ZNF143 had the third highest effect (b̂ ¼ 1:85, p< 1 × 10−20), in total
agreement with a very recent study demonstrating its role in long-range contacts [46]. In addi-
tion, multiple logistic regression identified EZH2, the catalytic subunit of the Polycomb repres-
sive complex 2 (PRC2), as a protein that significantly impacted TAD borders (4th highest

effect: b̂ ¼ 1:32, p< 5 × 10−11). In contrast, multiple logistic regression estimated a null beta

for candidate architectural proteins JUND (b̂ ¼ 0:04, p = 0.85), Kaiso (b̂ ¼ 0:43, p = 0.10) and

a very low beta for MAZ (b̂ ¼ 0:23, p = 3 × 10−4). Although these three proteins colocalize or
interact with CTCF, our model suggests that they might not impact TAD borders. We also
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notably identified several factors associated with transcriptional activation that had significant

negative influences on TAD borders. These proteins included RXRA (b̂ ¼ �1:37,

p = 3 × 10−4), P300 (b̂ ¼ �1:22, p = 1 × 10−10), BCL11A (b̂ ¼ �0:82, p = 1 × 10−9) and ELK1

(b̂ ¼ �0:74, p = 4 × 10−9), reinforcing the view that transcription could also interfere with
TAD borders depending on context.

Large-scale analysis of DNA motifs in human
In the previous subsection, analyses of DNA-binding proteins were limited by available ChIP-
seq data. Here we alleviated this limitation by analyzing transcription factor binding site
(TFBS) motifs available from the large MotifMap database [47]. Given the large number of
TFBS motifs (544 motifs), we used L1-regularization for parameter estimation. We identified

213 positive drivers (all coefficients b̂ > 1) and 75 negative drivers (all coefficients b̂ < 1),
meaning that a large number of TFBSs actually play a role in TAD border establishment or

maintenance. CTCF motifs ranked first (b̂ ¼ 45:34) in complete agreement with recent studies
[8, 31]. But our model also uncovered other TFBSs whose roles in TAD borders are less well

known such as EGR-1 (b̂ ¼ 34:04), p53 (b̂ ¼ 25:55), MIZF (b̂ ¼ 22:46), GABP (b̂ ¼ 21:94)
and many others (for a complete list, see S4 Table). For instance, p53 is a major tumor suppres-
sor gene and the most frequently mutated gene (>50%) in human cancer [48]. Regarding nega-

tive drivers, we identified ALX4 (b̂ ¼ �35:82), EGR4 (b̂ ¼ �26:72), ZNF423 (b̂ ¼ �23:97).
All these results highlighted the great potential of TFBS motif analysis allowing the study of a
very large number of DNA-binding proteins.

Discussion
Here, we describe a multiple logistic regression (MLR) to assess the roles of genomic features
such as DNA-binding proteins and functional elements on TAD border establishment/mainte-
nance. Based on conditional independence, such regression model can identify genomic fea-
tures that impact TAD borders, unlike enrichment test (ET) and non-parametric models.
Using simulations, we demonstrate that model parameters can be accurately estimated for
both marginal genomic features (no interaction) and two-way interactions. In addition, we
show that our model outperforms enrichment test and random forests for the identification of
genomic features that influence domain borders. Using recent experimental Hi-C and ChIP-
seq data, the proposed model can identify genomic features that are most influential with
respect to TAD borders at a very high resolution of 1 kb in both Drosophila and human. The
proposed model could thus guide the biologists for the design of most critical Hi-C experi-
ments aiming at unraveling the key molecular determinants of higher-order chromatin
organization.

Enrichment test shows slight differences of enrichments among architectural proteins. This
could suggest that domain borders are determined by the number and levels of all proteins
present at the border rather than the presence of specific proteins [11, 13]. However MLR
instead reveals that only some architectural proteins influence the presence of 3D domain bor-
ders. Moreover, MLR retrieves both positive and negative contributions among most influen-
cial proteins, depending on contexts such as co-occurence. From these novel results, we
propose a biological model for 3D domain border establishment or maintenance (Fig 8). In
this model, three kinds of proteins are distinguished: positive drivers (βMLR > 0), negative driv-
ers (βMLR < 0), and proteins that are enriched or depleted at borders but are not drivers (βET >
0 or βET < 0, and βMLR = 0). Positive drivers favor attraction between domain borders leading
to the formation of 3D domains. CTCF and cohesin are well-studied positive drivers in
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mammals [8, 10]. By contrast little is known about negative drivers of 3D domain borders that
could favor repulsion between specific chromatin regions [49]. Repulsion phenomenon could
be the result of allosteric effects of loops in chromatin [45]. Negative drivers could also regulate
disassembly of protein complex that mediate long-range contacts [50].

In Drosophila, MLR identifies BEAF-32, a well-characterized IBP, as a positive driver of
TAD borders [51, 52]. Conversely, other IBPs including dCTCF, dTFIIIC, GAF and Su(Hw)
are found significantly enriched at TAD borders, but present weak or no influences, in agree-
ment with recent works [53]. Regarding cofactors, CP190 presents a high and significant posi-
tive influence on domain demarcation, in agreement with previous findings [5]. Regarding
functional elements, although our data highlight that insulators are by far the main positive
drivers of TAD borders, they also show that additional elements, that are known to colocalize
in 3D [18, 43, 44], play a role including repeat regions. Moreover, MLR suggests that snoRNA
genes are novel functional elements that positively influence border demarcation. Recent
works suggest that active chromatin and transcription also play a key role in chromosome par-
titioning in TADs [53]. Here our results reveal that both architectural proteins and transcrip-
tion contribute to TAD borders. In contrast, regulatory regions are identified as negative
drivers of TAD borders. One possible explanation is that such regulatory regions are involved
in functional long-range contacts with gene promoters that would compete with the formation
of more structural contacts at the origin of TADs [45]. Alternatively, a negative influence may
be linked to the transient nature of certain functional contacts [54].

Almost half of dCTCF and cohesin sites are overlapping in Drosophila, and knockdown of
dCTCF results in a strong decrease of cohesin binding [11]. As such, one might expect syner-
gistic effects of dCTCF with cohesin (also called statistical interaction) in driving TAD borders.
However, such conclusion could not be drawn. Following statistical theory, it is not because
two variables are correlated (here dCTCF and cohesin colocalize), that it implies a synergistic
effect of the two variables on TAD borders. Although dCTCF and cohesin are both enriched at

Fig 8. Model for 3D domain border establishment or maintenance.

doi:10.1371/journal.pcbi.1004908.g008
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TAD borders, MLR does not detect a significant interaction of dCTCF with cohesin. Instead
we observe a high interaction of Su(Hw) with cohesin. Negative interactions that reflect antag-
onistic effects between architectural proteins are found between IBP BEAF-32 and cofactor
CP190. These antagonistic effects suggest that cofactors might not always help IBPs in stabiliz-
ing loops [10]. One explanation is that cofactors could sometimes compete with IBPs for long-
range protein-protein interactions.

In human, MLR identifies well-studied architectural proteins CTCF and cohesin as the
most influential positive drivers of 3D domains, in complete agreement with their established
roles in shaping chromosome 3D structure [8, 9, 12]. MLR also points out the positive influ-
ences of ZNF143 and PRC2 proteins whose recent studies have uncovered their roles in con-
trolling spatial organization [30, 46]. In addition, our model reveals the roles of additional
factors including RXRA, P300, BCL11A and ELK1 as negative drivers of 3D domain borders.
P300 was previously shown to be depleted at domain borders [55]. Here we find that P300 and
three other proteins can counteract the establishment or maintenance of domain borders. P300
is a well-known regulator of cell growth and division, and helps prevent the growth of cancer-
ous tumors [56]. Interestingly, the three other proteins RXRA, BCL11A and ELK1 are also
related to cancer [57–59]. Furthermore, the analysis of a large number of TFBS motifs con-
firmed the role of CTCF in TAD border formation [8, 31]. But this analysis also uncovered
many other TFBSs, such as p53, a major tumor suppressor gene [48].

The proposed method relies on the accurate identification of 3D domains. To further
improve our understanding of the key drivers of 3D domain borders, Hi-C experiments at a
higher resolution are needed. In addition, a variety of methods have been recently developed
for 3D domain inference, and no consensus has been reached yet to determine which method
is the most appropriate. Another important question is to understand the roles of key drivers
in chromatin interactions within domains. For instance, it is essential to identify proteins that
influence functional interactions between enhancers and promoters that regulate gene expres-
sion. Although far more complex, it is of note that similar regression approach may largely
help in retrieving positive from negative patterns in these contexts.

Materials and Methods

Hi-C data and topologically associating domains
For Drosophila 3D domain analysis, we used publicly available high-throughput chromatin
conformation capture (Hi-C) data from Gene Expression Omnibus (GEO) accession
GSE63515 [13]. Hi-C experiments were done for wild-type Drosophila melanogaster Kc167
cells with DpnII restriction enzyme. Hi-C data were binned at 1 kb resolution. Contact matri-
ces were normalized using ICE method [15] implemented in the R package HiTC (http://www.
bioconductor.org/packages//2.11/bioc/html/HiTC.html). From the normalized contact matri-
ces, TAD genomic coordinates were identified using HiCseg method [19].

For human 3D domain analysis, we used publicly available 3D domains of GM12878 cells
identified by the Arrowhead algorithm from Gene Expression Omnibus (GEO) accession
GSE63525 [8].

ChIP-seq data
For Drosophila analysis, we used publicly available binding profiles of chromatin proteins of
Drosophila melanogaster wild-type embryonic Kc167 cells. ChIP-seq data for CP190, Su(Hw),
dCTCF and BEAF-32 were obtained from GEO accession GSE30740 [60]. ChIP-seq data for
Barren (condensin I), Cap-H2 (condensin II), Chromator, Rad21 (cohesin), GAF and dTFIIIC
were obtained from GEO accession GSE54529 [11]. ChIP-seq data for Fs(1)h-L and Fs(1)h-LS
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were obtained from GEO accession GSE42086 [38]. ChIP-seq peaks were called using MACS
1.4.2 (https://github.com/taoliu/MACS). Fs(1)h-S peaks were defined as peaks from Fs(1)h-LS
that did not overlap any Fs(1)h-L peak.

For human analysis, we used publicly available ChIP-seq peaks of 69 chromatin proteins
(ATF2, ATF3, BATF, BCL11A, BCL3, BCLAF1, BHLHE40, BRCA1, CEBPB, CHD1, CHD2,
CTCF, E2F4, EBF1, EGR1, ELF1, ELK1, ETS1, EZH2, FOS, FOXM1, IKZF1, IRF3, IRF4,
JUND, MAFK, MAX, MAZ, MEF2A, MEF2C, MTA3, MXI1, MYC, NFATC1, NFE2, NFIC,
NFYA, NFYB, NRF1, P300, PAX5, PBX3, PIGG, PML, POU2F2, RAD21, REST, RFX5,
RUNX3, RXRA, SIN3A, SIX5, SP1, SRF, STAT1, STAT3, STAT5A, TAF1, TCF12, TCF3,
USF1, USF2, YY1, ZBTB33, ZEB1, ZNF143, ZNF274, ZNF384 and ZZZ3) of GM12878 cells
from ENCODE [61].

Functional elements
For Drosophila analysis, we used RNA-seq data from wild-type Kc167 cells to map active tran-
scription start sites (TSSs) [62]. For all other functional elements, we used flybase reference
genome annotation (http://flybase.org/).

DNAmotifs
For human analysis, we used transcription factor binding site (TFBS) motifs from the Motif-
Map database (http://motifmap.ics.uci.edu/).

Binned data matrix
From TAD coordinates, ChIP-seq data and functional element mapping, we constructed
50-base and 1-kb binned data matrices that were further used for multiple logistic regressions
with Drosophila and human data, respectively. A matrix was composed of a column variable Y
that indicated if the genomic bin belonged to a TAD boundary (Y = 1) or not (Y = 0). To define
TAD boundaries, we extracted 1 kb and 20 kb regions that were centered around the positions
demarcating two TADs in Drosophila and human genomes, respectively. The other column
variables X = {X1, . . ., Xp} were the set of p genomic feature variables of interest. If genomic
coordinate data were used (e.g., ChIP-seq peak or functional element coordinates), variable Xi

denoted the presence (Xi = 1) or absence (Xi = 0) of the genomic feature i within the genomic
bin. Note that if a genomic coordinate only overlapped x% of the genomic bin, then Xi = x%. If
quantitative data were used (e.g., ChIP-seq signal intensity log(ChIP/Input)), variable Xi was
the average value within the genomic bin.

Enrichment test
Enrichment test assesses the enrichment of a genomic feature within chromatin domain bor-
ders. The genomic feature of interest can be protein-DNA binding sites detected from ChIP-
seq experiment. Chromatin domain borders can be borders between topologically associating
domains identified from Hi-C experiment.

From the contingency table (Table 1), one can test the odds ratio that reflects the magnitude
of enrichment (OR> 1) or depletion (OR< 1) of the genomic feature within the domain bor-
ders. The test consists in assessing the following null (H0) and alternative (H1) hypotheses
about odds ratio OR:

H0 : OR ¼ 1 ð2Þ

H1 : OR 6¼ 1 ð3Þ
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The odds ratio is the ratio of the inside border odds (500/5000) to the outside border odds

(2000/2000000). Here ÔR ¼ 500=5000

2000=200000
¼ 10.

Previous enrichment test can be reformulated as a simple logistic regression model:

ln
ProbðY ¼ 1jXiÞ

1� ProbðY ¼ 1jXiÞ
¼ b0 þ bXi ð4Þ

Variables Xi 2 X and Y are described in Subsection Materials and Methods, Binned data
matrix. In the simple logistic regression, the slope parameter β is the natural logarithm of the
abovementioned odds ratio OR. Thus β> 0 means enrichment, while β< 0 reflects depletion.
Using logistic regression model, parameter β can be tested by Wald’s test. The Wald’s statistic
is calculated as:

W ¼ b̂ � b�
ŝb

¼ b̂ � 0

ŝb

¼ b̂
ŝb

ð5Þ

Where β� is the beta parameter value under H0 assumption (β� = 0) and ŝb denotes the stan-

dard error of parameter β. StatisticW follows a normal distribution.
An important drawback of enrichment test relies on the fact that it does not account for

potential colocalizations (i.e. correlations) among the genomic features of interest. The pres-
ence of correlations might prevent the identification of the genomic features that really drive
the establishment or maintenance of domain borders. For instance, if two genomic features are
significantly enriched, this might not mean that both are involved in the establishment or
maintenance of the borders. One feature might truly affect borders while the other feature
might only be correlated to the former. There is thus a need for a model that could identify
those enriched features that drive the presence of borders.

Multiple logistic regression
The proposed multiple logistic regression is an extension of the simple logistic regression for p
genomic features:

ln
ProbðY ¼ 1jXÞ

1� ProbðY ¼ 1jXÞ ¼ b0 þ bX ð6Þ

Where X = {X1, . . ., Xp} is the set of p genomic features of interest and β = {β1, . . ., βp} denotes
the set of slope parameters (one parameter for each genomic feature). As for simple logistic
regression, each βi 2 β coefficient can be tested by a Wald’s test.

By default, multiple logistic regression β0 and β parameters are estimated by iteratively
reweighted least squares. However, when there are a large number of correlated genomic fea-
tures in the model, L1-regularization is applied and parameters are learned by coordinate
descent [26]. The L1-regularization lambda that gives the lowest mean cross-validated error is
selected. To assess quality of fit for a model, we use the deviance ratio defined as the ratio of the

Table 1. Example of a contingency table to assess enrichment (or depletion) of a genomic feature
within the domain borders.

Presence of the feature Absence of the feature

Inside border 500 5000

Outside border 2000 200000

doi:10.1371/journal.pcbi.1004908.t001
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fitted model deviance to the saturated model deviance. We also use Akaike information crite-
rion (AIC).

The matrix X is sparse and the Wald’s test might be biased when data are sparse [27].
Hence likelihood ratio test (LRT) that is not affected by data sparseness can be used instead. To
test parameter βi with LRT, two models are built: a first modelM1 over all variables X, and a
second modelM2 over all variables except Xi (X \ Xi). Then the following Di statistic is calcu-
lated:

Di ¼ �2ln
LM1

LM2

 !
ð7Þ

Where LM1
is the likelihood ofM1 and LM2

is the likelihood ofM2. Statistic Di follows a chi-

squared distribution with one degree of freedom. The better accuracy of LRT comes at the cost
of more intensive computations. In practice, we observe that Wald’s test p-values are close to
LRT p-values.

In the multiple logistic regression setting, parameter βimeasures the effect of genomic feature
Xi on the presence of borders conditional on the other genomic features that belong to X \ Xi. A
value of βi> 0 or βi< 0 means that the genomic feature Xi positively or negatively influences
the presence of borders, respectively. A value of βi = 0 reflects the fact that the genomic feature
Xi does not affect the presence of borders. If two genomic features X1 and X2 are colocalized and
only X1 drives the establishment or maintenance of domain borders, then only the correspond-
ing β1 parameter will be significantly different from zero. However the above formulation of the
model does not account for potential statistical interactions between genomic features.

Analysis of interactions
Interaction terms can be included in the multiple logistic regression to account for potential
interactions between genomic features. For instance, one can include in the model an interac-
tion term between two genomic features X1 and X2:

ln
ProbðY ¼ 1jX1;X2Þ

1� ProbðY ¼ 1jX1;X2Þ
¼ b0 þ b1X1 þ b2X2 þ b12X1X2 ð8Þ

The product X1 X2 is the statistical interaction term between the two genomic features X1 and
X2. Parameter β12 measures the effect of interaction X1 X2 on the presence of borders.

Data simulation
In order to assess the accuracy of multiple logistic regression parameter estimation, we simu-
lated data that were the most similar to the real genomic data using the following procedure.
First, for a simulation s, a set of observation rows was randomly drawn with resampling from
matrix X (nonparametric bootstrap). This resampling allowed to keep the original correlation
structure among the variables. The bootstrapped data matrix was denoted Xs. Second βs ¼
fbs

1; :::; b
s
pg parameter values were drawn from a normal distributionN ðm; sÞ with mean μ = 0

and variance σ = 1. Parameter bs
0 (intercept) value was drawn from a normal distribution with

same variance but with mean μ = −4.5. This setting of the mean of bs
0 allowed to control the

number of values Y = 1 close to the one observed from real data (the number of borders in real
data was low). Third a quantitative variable Zs was calculated using the regression formula:
Zs ¼ bs

0 þ βsXs. A probability variable Probs was calculated by the inverse logit function: 1/
(1 + exp(−Zs)). Then each probability value from Probs was used to draw a value for Ys using
binomial distribution.
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We also used simulated data to compare multiple logistic regression with enrichment test
and random forests. As previously, for a simulation s, we used non-parametric bootstrap and
kept the correlation structure of original data. Among the variables, a subset of variables Xc 2
X was chosen to be causal, i.e. to influence the presence of borders. We chose a generative
model that was non-linear and non-additive not to favor multiple logistic regression over other
models. For this purpose, we set a probability p0 of the presence of a border in a bin if all causal
variable values were inferior to 0.5. We also set a probability p1 (with p1 > p0) if at least one
causal variable had a value superior or equal to 0.5. Values of p0 and p1 were chosen according
to the number of borders in real data. Then, for each bin, the value for Ys was drawn using a
binomial distribution with either p0 or p1 depending on the causal variable values.

Implementation and availability
The multiple logistic regression is implemented in R language. The model is available in the R
package “HiCfeat” which can be downloaded from the Comprehensive R Archive Network
and from the web page of Raphaël Mourad (https://sites.google.com/site/raphaelmouradeng/
home/programs).
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3.4.3.2 HiCglmi: identification of protein complex mediating looping

DNA loops result from the physical contact of two separated loci brought in 3D

proximity. Those loops are essential to numerous key processes in the cell, such

as gene expression [Jin et al. 2013] and DNA replication [Pope et al. 2014]. For

instance, the expression of a gene is often regulated by regulatory elements that

are far linearly on the genome, but that are in 3D contact with the gene promoter.

In addition, several studies have shown that the disruption of DNA loops can lead

to genetic diseases and cancers [Lupiáñez et al. 2015, Hnisz et al. 2016]. Under-

standing how DNA loops are formed and what are their molecular determinants is

thus a fundamental issue.

I proposed a generalized linear model with interactions (GLMI) to identify the

molecular determinants of loops, including protein and DNA sequence (Equation

1 and Figure 1, from the article ”Uncovering direct and indirect molecular deter-

minants of chromatin loops using a computational integrative approach” below)

[Mourad et al. 2017]. GLMI has multiple assets over existing approaches such as

enrichment test, correlation and random forests. Compared to enrichment test

[Dixon et al. 2012, Djekidel et al. 2015] or correlation [Pancaldi et al. 2016] that

respectively assesses the protein enrichment or correlation at highly confident loops,

GLMI quantitatively links the frequency of all long-range contacts to complex

co-occupancies of proteins while accounting for known Hi-C biases and polymer

background. Moreover, GLMI accounts for colocalizations among protein binding,

a strong issue when analyzing protein binding sites known to largely overlap over

the genome. In contrast to random forests [He et al. 2014] which are efficient

predictive models, but sometimes poor explanatory ones, GLMI allows to identify

key chromatin loop driver proteins and motifs. GLMI can also uncover numerous

mechanisms behind loop formation using higher-order interaction terms and proper

confounding variables. For instance, GLMI can determine if a cofactor is necessary

to mediate long-range contacts between distant protein binding sites.

Using real Drosophila Hi-C and ChIP-seq data, we validate numerous GLMI

predictions of long-range contacts that involve insulator binding proteins, cofactors

and motifs, and which were confirmed by previous microscopy and mutational stud-

ies. For instance, our model estimates long-range contacts between distant BEAF-

32 motifs, which were previously observed with both fluorescence cross-correlation

spectroscopy [Vogelmann et al. 2014] and high-resolution microscopy [23]. In ad-

dition, our model finds a mediating role of CP190 in bridging long-range contacts

between distant BEAF-32 and GAF binding sites, in agreement with mutational

experiments [19]. Of interest, GLMI analyses highlight a role of cohesin in stabi-

lizing long-range contacts between CTCF sites in Drosophila, similarly to its role

in human [7]. Supporting this role, we show that such influence is reduced upon

cohesin subunit Rad21 depletion. It has to be noted that the absence of complete

loss of contacts between CTCF sites after Rad21 depletion can be explained by the

fast turnover of chromosome-bound cohesin in interphase [56]. Moreover, GLMI
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outperforms enrichment test, correlation and random forests in the identification

of known architectural proteins and motifs, and in the detection of the effects of

mutations in the dCTCF motif.
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Abstract

Chromosomal organization in 3D plays a central role in regulating cell-type specific tran-

scriptional and DNA replication timing programs. Yet it remains unclear to what extent the

resulting long-range contacts depend on specific molecular drivers. Here we propose a

model that comprehensively assesses the influence on contacts of DNA-binding proteins,

cis-regulatory elements and DNA consensus motifs. Using real data, we validate a large

number of predictions for long-range contacts involving known architectural proteins and

DNA motifs. Our model outperforms existing approaches including enrichment test, random

forests and correlation, and it uncovers numerous novel long-range contacts in Drosophila

and human. The model uncovers the orientation-dependent specificity for long-range con-

tacts between CTCF motifs in Drosophila, highlighting its conserved property in 3D organi-

zation of metazoan genomes. Our model further unravels long-range contacts depending

on co-factors recruited to DNA indirectly, as illustrated by the influence of cohesin in stabiliz-

ing long-range contacts between CTCF sites. It also reveals asymmetric contacts such as

enhancer-promoter contacts that highlight opposite influences of the transcription factors

EBF1, EGR1 or MEF2C depending on RNA Polymerase II pausing.

Author summary

Chromosomal DNA is tightly packed in three dimensions (3D) such that a 2-meter long

human genome can fit into a microscopic nucleus. Recent studies have revealed that such

packing of DNA is not random but instead structured into functional DNA loops. Those

loops are essential to numerous key processes in the cell, such as genome expression and

DNA replication. In addition, disruption of DNA loops can lead to genetic diseases and

cancers. Understanding how DNA loops are formed and what are their molecular deter-

minants is thus a fundamental issue. In this work, we propose a computational model to

identify the molecular determinants of loops, including protein and DNA sequence. Most

notably, the model offers insights in the different mechanistic scenarios behind loop for-

mation. Using this model, we uncover numerous novel DNA loops and underlying
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mechanisms in Drosophila and human. We find that the orientation-dependent specificity

between CTCF motifs is conserved in metazoans. We show how loops between DNA-

binding proteins can be mediated by additional cofactors. Our analyses further reveal

opposite influences of transcription factors depending on RNA Polymerase II pausing.

Introduction

Chromosomal DNA is tightly packed in three dimensions (3D) such that a 2-meter long

human genome can fit into a nucleus of approximately 10 microns in diameter [1]. Such 3D

structure of chromosome has recently been explored by chromosome conformation capture

combined with high-throughput sequencing technique (Hi-C) at an unprecedented resolution

[2–4]. Multiple hierarchical levels of genome organization have been uncovered such as com-

partments A/B [5] and topologically associating domains (TADs) [2, 3]. In particular, TADs

represent a pervasive structural feature of the genome organization and are highly conserved

across species. Functional studies revealed that spatial organization of chromosome is essential

to numerous key processes such as for the regulation of gene expression by distal enhancers

[4] or for the replication-timing program [6].

The comprehensive analysis of 3D chromatin drivers is currently a hot topic [7]. A growing

body of evidence supports the role of insulator binding proteins (IBPs) such as CTCF, and

cofactors like cohesin, as mediators of long-range chromatin contacts [3, 8, 9]. In human,

high-resolution Hi-C mapping has recently revealed that loops that demarcate domains were

often marked by asymmetric CTCF motifs where cohesin is recruited [10]. Depletions of

CTCF and cohesin decreased chromatin contacts [11]. However the impact of these depletions

was limited suggesting that other proteins might be involved in shaping the chromosome in

3D. For instance, numerous IBPs, cofactors and functional elements were shown to colocalize

at TAD borders [9, 12]. The identification of 3D chromatin drivers is thus an active avenue of

research. Computational approaches that integrate the large amount of available protein bind-

ing data (chromatin immunoprecipitation followed by high-throughput DNA sequencing,

ChIP-seq), functional elements (promoters and enhancers), and DNA motifs, with Hi-C data

may be well-suited to identify novel factors that participate in shaping the chromosome in 3D

[13].

In this paper, we propose a model to comprehensively analyze the roles of genomic features,

such as DNA-binding proteins or motifs, in establishing or maintaining chromatin contacts.

The proposed model offers insights in the different mechanistic scenarios behind loop forma-

tion, because of its ability to rigorously assess the effect of protein complex on long-range con-

tact frequency. Using real data, the model successfully predicted numerous long-range

interactions involving motifs and proteins as highlighted in previous independent studies.

Moreover, our model outperformed current approaches to identify architectural proteins and

motifs, and to detect the effects of single nucleotide polymorphisms (SNPs) in the dCTCF

motif. In addition, our model is the only approach able to assess the effect of a cofactor in

mediating long-range contacts between distant protein binding sites, such as cohesin with

CTCF. Using recent Drosophila and human Hi-C data at high resolution, combined with a

large number of ChIP-seq, RNA-seq, CAGE-seq and DNA motif data, we revealed numerous

novel motifs, insulator binding proteins, cofactors and functional elements that positively

or negatively impact long-range contacts depending on transcriptional activity or motif

orientation.

Uncovering determinants of chromatin loops
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Results and discussion

The model

We propose to use a generalized linear model with interactions (GLMI) to analyze the effects

of genomic features such as architectural protein co-occupancies on chromatin contacts at

genome-wide level:

logðE½yjX�Þ ¼ b0 þ bX

¼ b0 þ bddþ bBBþ bCCþ bgg
ð1Þ

Variable y denotes the number of Hi-C contacts for any pair of bins on the same chromosome.

Variable set X = {d, B, C, g} comprises several variable subsets: the log-distance variable d, the

bias variables B, the confounding variable set C and the genomic variable of interest g. The

log-distance variable d accounts for the background polymer effect (log-log relation between

distance and Hi-C count) [14]. Bias variables B = {len, GC, map} are known Hi-C biases

including fragment length (len), GC-content (GC) and mappability (map) that are computed

as in [15] (S1 Appendix, Bias variable computation). Including those bias variables into the

model allows to correct for biases in Hi-C data. Bias normalization by matrix balancing meth-

ods [16] is avoided, because these methods might remove effect of genomic variable of interest.

Variable g represents the genomic feature of interest, whose associated βg parameter value

reflects its effects on chromatin contacts. Variable set C comprises confounding variables

included to properly estimate βg. Model (1) is very general and can be developed in multiple

versions depending on the variable g of interest. In the following paragraphs, we will see the

different kinds of variables g. The corresponding models are detailed in Subsection Materials

and Methods, The different models.

We illustrate the different model variables in Fig 1. For simplicity, we illustrate our model

with protein binding sites, yet the same model is applicable to many other genomic features

such as motifs or promoters. Let consider a pair of bins that we call left bin (L) and right bin

(R). The attribution for left and right bins is arbitrary. Let also consider 3 genomic features Fi

(whose binding is colored in blue in Fig 1), Fj (in red) and Fk (in green) that represent binding

sites of 3 different proteins. For the genomic feature Fi, occupancy variables ziL and ziR denote

the occupancies of Fi on left and right bins, respectively. For an occupancy variable, a value of

0/1 means absence/presence of the corresponding feature on the bin, e.g. absence/presence of

the protein on the bin (a value between 0 and 1 means partial overlap of the feature). Occu-

pancy variables are used to build 4 main kinds of model variables as follows.

A “homologous interaction” variable nii is the product of ziL and ziR (nii = ziL × ziR). The

associated bnii
parameter reflects the extent by which the genomic feature Fi interacts with itself

through chromatin contacts (Fig 1a). For instance, distant CTCF binding sites were shown to

form loops in human [10, 17].

A “heterologuous interaction” variable nij is the average of the product ziL × zjR and the

product zjL × ziR (nij ¼
1

2
ðziL � zjR þ zjL � ziRÞ), because both products are identically associ-

ated to y. The associated bnij
parameter reflects the extent by which the genomic feature Fi

interacts with another genomic feature Fj through chromatin contacts (Fig 1b). For instance,

enhancers are in long-range contacts with promoters to regulate target gene expression

[14, 18].

A “homologous interaction cofactor” variable ciik is the product of an interaction variable

nii and an interaction variable nkk (ciik = nii × nkk = ziL × ziR × zkL × zkR). Here we consider the

cofactor Fk as a protein that does not directly bind to DNA, but which is instead bound by an

Uncovering determinants of chromatin loops
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insulator binding protein Fi (IBP) to DNA, such as cohesin is recruited by CTCF to DNA.

Hence we expect that a cofactor will be found at both bins L and R in contact, e.g. cohesin ring

entraps both chromatin fibers and is thus observed at both bins [10, 17]. That explains why ciik

is the product of nii and nkk. The associated bciik
parameter reflects the extent by which chroma-

tin contacts between genomic feature Fi and itself are mediated by a genomic feature Fk, the

cofactor (Fig 1c).

A “heterologous interaction cofactor” variable cijk is the product of an interaction variable nij

and an interaction variable nkk (cijk ¼ nij� nkk ¼
1

2
ðziL� zjR � zkL � zkR þ zjL� ziR� zkL� zkRÞ).

Here we consider the cofactor Fk as a protein that does not directly bind to DNA, but which is

instead bound to two IBPs Fi and Fj. For instance, a loop can be mediated by CP190 that binds

to BEAF-32 and GAF sites that are distant [19]. The associated bcijk
parameter reflects the extent

by which chromatin contacts between genomic features Fi and Fj are mediated by a third geno-

mic feature Fk, the cofactor (Fig 1d).

In the previous paragraphs, we introduced numerous variables that were the products of

simpler variables, namely the occupancy variables. In (generalized) linear regression, those

product variables are called “interaction” terms. To detect such interaction effects, one usually

needs a large number of observations. We will see in the next subsections that the tremendous

amount of data provided by Hi-C experiments allows to detect such interaction effects with

accuracy. The model and the different variables will be illustrated with real world scenarios in

the next subsections.

Fig 1. Illustration of the proposed model and variables in the context of protein ChIP-seq data. a) Homologous interaction variable. b)

Heterologous interaction variable. c) Homologous interaction cofactor variable. d) Heterologous interaction cofactor variable. The 3 proteins Fi, Fj and Fk

are colored in blue, red and green, respectively. Here Fi and Fj are insulator binding proteins (IBPs), and Fk is a cofactor (recruited by IBPs).

https://doi.org/10.1371/journal.pcbi.1005538.g001
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Prediction of known factors and validation with experimental data

We first sought to validate our model using experimental data. For this purpose, we focused

on the Drosophila model because several insulator binding proteins (IBPs) that mediate long-

range interactions have been well characterized in this organism. Drosophila IBPs comprise

suppressor of hairy wing (Su(Hw)), Drosophila CTCF (dCTCF), boundary-element-associated

factor of 32 kDa (BEAF-32), GAGA binding factor (GAF), Zeste-White 5 (ZW5) [20], the gen-

eral transcription factor dTFIIIC [9] and DNA replication-related element factor (DREF) [7].

We analyzed Kc167 Hi-C data at 10 kb resolution and focused on 20kb-1Mb distances for

which contact frequencies were accurately measured experimentally [21]. At this distance

range, the log-log relation between Hi-C count and distance was linear (R2 = 0.99, S1 Fig), sup-

porting the use of the log-distance term in the model. The data comprised approximately 1

million of observations, which allowed to detect higher-order interactions with enough preci-

sion (tight parameter confidence intervals reflected by low p-values, see below). Because of Hi-

C count overdispersion, we used negative binomial regression as the most appropriate specifi-

cation of the generalized linear model.

It has been shown that BEAF-32 motifs can form long-range interactions with each other

using both fluorescence cross-correlation spectroscopy [22] and high-resolution microscopy

[23]. Following this observation, we first validated our model by successfully estimating long-

range contacts between the BEAF-32 CGATA motifs using model (2) (b̂nii
¼ 6:7� 103,

p< 10−20; Fig 2a; model (2) and all other models used in the following are described in Sub-

section Materials and Methods, The different models). This result was confirmed as we

observed that the Hi-C count increased with co-occupancy of BEAF-32 motifs (variable nii)

(Fig 2b). We also observed long-range contacts between dCTCF motifs (b̂nii
¼ 2:4� 104,

p = 3 × 10−14), highlighting their important roles in loop formation in Drosophila as observed

in human [10, 17]. Over the 7 known IBPs, the model correctly identified all IBP motifs as

involved in long-range contacts among themselves (Fig 2c). Next the same approach was

used to evaluate the model’s ability to discriminate between the 7 IBP motifs (true positives)

and 83 other DNA-binding protein motifs (false positives). This approach obtained good pre-

dictions (area under the curve (AUC) = 0.855; Fig 2d). Among the motifs that we considered

as false positives, M1BP and Ttk69K motifs presented high and significant interaction effects

(M1BP: b̂nii
¼ 1:7� 105; Ttk69K: b̂nii

¼ 2:3� 104, p< 10−12, resp.). These results suggested

that M1BP and Ttk69K might represent new insulator-binding protein candidates. Accord-

ingly, M1BP protein binds to the promoters of paused genes that were shown to be involved

in long-range contacts [18, 24]. Ttk69K protein has a homomeric dimerization BTB/POZ

domain that could help bridging two distant proteins through long-range contacts [22].

We then used GLMI to study the role of cofactors that cannot directly bind to DNA, but are

instead recruited by IBPs, and are required to mediate or stabilize long-range contacts between

two IBP binding sites. In Drosophila, well-known cofactors include condensin I, condensin II,

Chromator, centrosomal protein of 190 kDa (CP190), cohesin [19–22], Fs(1)h-L [25] and

lethal (3) malignant brain tumor (L(3)Mbt) [7]. Most notably, fluorescence cross-correlation

spectroscopy (FCCS) experiments have shown that CP190 is required to bridge long-range

contacts between two BEAF-32 binding sites [22]. Using ChIP-seq peak data with model (4),

we estimated a significant and positive effect of CP190 in mediating long-range contacts

between BEAF-32 sites (b̂ciik
¼ 878, p< 10−20; Fig 2e), in complete agreement with recent

work [22]. Similar result was obtained for Chromator in mediating long-range contacts

between BEAF-32 sites (b̂ciik
¼ 3:4� 103, p< 10−20) [22]. In addition, previous BEAF-32

mutation by our group has revealed that cofactor CP190 is also required to bridge long-range
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Fig 2. Biological validation of the model. a) Long-range contacts between BEAF-32 motifs. b) Hi-C count as a function of interaction variable nii of

BEAF-32 motifs. c) Long-range contacts between same insulator binding protein (IBP) motifs. d) Receiver operating characteristic (ROC) curves of long-

range contacts between same motifs. Known IBP motifs (true positives) are compared to other protein motifs (false positives). e) Effect of CP190 in

mediating long-range contacts between IBP sites. f) Effect of known cofactors in mediating long-range contacts between distant BEAF-32 and GAF

binding sites. Barren, Cap-H2 and Rad21 are subunits of condensin I, condensin II and cohesin, respectively. g) Effect of cohesin in mediating long-range

contacts between dCTCF sites. h) Effect of cohesin in mediating long-range contacts between distant dCTCF binding sites in wild-type (WT) compared to

Rad21 KD cells.

https://doi.org/10.1371/journal.pcbi.1005538.g002
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contacts between BEAF-32 and GAF binding sites [19]. Using ChIP-seq peak data with model

(5), we estimated a significant and positive effect of CP190 in bridging distant BEAF-32 and

GAF sites (b̂cijk
¼ 1:3� 103, p< 10−20; Fig 2e) [19]. We applied the same modeling approach

to the 6 other known cofactors and found that all were associated with significant positive

effects in mediating contacts between BEAF-32 and GAF binding sites (all betas b̂cijk
> 326, all

p-values p< 10−20; Fig 2f). Because CP190 was also shown to mediate long-range contacts

between BEAF-32 and dCTCF, and between BEAF-32 and Su(Hw) [19], we estimated the cor-

responding cofactor effects. We again found significant positive effect of CP190 between

BEAF-32 and dCTCF (b̂cijk
¼ 892, p< 10−20), but our method only detected a slightly signifi-

cant mediating effect of CP190 between BEAF-32 and Su(Hw) (b̂cijk
¼ 175, p = 0.02). In

human, the most studied cofactor is cohesin that is able to entrap two chromatin fibers thereby

stabilizing long-range contacts between CTCF sites [10, 17]. Hence we assessed the impact of

cohesin in mediating long-range contacts between two dCTCF binding sites in Drosophila. We

found a significant and positive effect of cohesin (b̂ciik
¼ 105:8, p< 10−20; Fig 2g), thus sup-

porting a conserved function of cohesin in stabilizing long-range contacts between CTCF sites

in metazoans.

We further tested our model for cofactor effects using perturbed conditions such as the

removal of these cofactors, as obtained through knocking-down (KD) followed by Hi-C

experiment. Of note, Hi-C experiments are expensive and complex to carry out, and the pos-

sibility to predict long-range contacts upon such KD is of major importance. We compared

the impact of cohesin in the context of long-range contacts bridging CTCF sites in WT and

Rad21 (cohesin subunit) KD Hi-C data. Our model estimated a significant but lower cofactor

effect of cohesin in Rad21 KD (b̂ciik
¼ 75:7, p = 9 × 10−12), compared to WT (b̂ciik

¼ 105:8,

p< 10−20). The difference between WT and Rad21 KD associated coefficients was negative

and significant (beta difference = −30.1, p = 0.027), corresponding to a beta decrease of 28%

(Fig 2h). This result therefore validated the estimated effect of cohesin in mediating distant

dCTCF binding sites, which decreased upon cohesin depletion as expected.

Using real data, we concluded that our model successfully predicted the roles of IBP motifs

in long-range contacts between distant loci, as well as the roles of known cofactors in bridging

distant IBP binding sites. The GLMI predictions were validated in the literature and using pro-

tein KD followed by Hi-C experiment.

GLMI outperformed existing methods

We then compared GLMI with existing methods for their ability to identify genomic features

known to be involved in long-range contacts. For this purpose, we compared GLMI with (1)

enrichment test (ET) on highly confident chromatin interaction pairs as previously [26], (2)

correlation (Cor) on highly confident chromatin interaction pairs [27] and (3) random forests

(RF) discriminating highly confident chromatin interaction pairs from non-interacting pairs

[28]. As a first and simple benchmark, we assessed the different methods to identify long-

range contacts between protein binding sites of the same proteins (model (2)). We evaluated

the ability to discriminate between architectural proteins known to be involved in long-range

contacts (13 true positives including IBPs and cofactors) and random protein peaks (100 false

positives) using receiver operating characteristic (ROC) curves. We observed that all four

methods were very efficient to detect long-range contacts between known architectural protein

binding sites (Fig 3a). In particular, GLMI and Cor showed perfect predictions (AUC = 1). RF

and ET were also very accurate (AUC > 0.94). Previous benchmark was an easy task because it
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relied on random protein peaks whose binding was very different from real protein binding.

For a more realistic benchmark, we then evaluated the ability to discriminate between motifs

whose proteins are known to be involved in long-range contacts (7 true positives) and other

DNA-binding protein motifs (83 false positives) using ROC curves. Using this benchmark, all

the four methods performed less well (Fig 3b). However we found that GLMI clearly outper-

formed the three other methods to detect long-range contacts between DNA motifs known to

be involved in chromatin interactions (AUCGLMI = 0.855).

Another benchmark consisted in identifying long-range contacts between binding sites of

a protein and active promoters. Here, as previously, we evaluated the ability to discriminate

between architectural proteins known to be involved in enhancer-promoter contacts (13

true positives including IBPs and cofactors) and random protein peaks (100 false positives)

using ROC curves. We observed that all four methods were very efficient to detect long-

range contacts between known architectural protein binding sites and active promoters (Fig

3c). In particular, GLMI and Cor showed excellent predictions (AUCGLMI = 0.985 and

AUCCor = 1). We then evaluated the ability to discriminate between motifs whose proteins

are known to be involved in enhancer-promoter contacts (7 true positives) and other DNA-

binding protein motifs (83 false positives) using ROC curves. Both GLMI and Cor performed

Fig 3. Comparisons between generalized linear regression with interactions (GLMI), highly confident chromatin interaction pair detection

followed by pair type enrichment (ET), highly confident chromatin interaction pair detection followed by correlation (Cor) and random forests

(RF). a) Receiver operating characteristic (ROC) curves of the four methods to distinguish between known protein peaks (13 true positives) and random

peaks (100 false positives). Long-range contacts are assessed between a protein and itself (homologous contacts). b) ROC curves of the four methods to

distinguish between known protein motifs (7 true positives) and other DNA-binding protein motifs (83 false positives). Long-range contacts are assessed

between a motif and itself (homologous contacts). c) ROC curves of the four methods to distinguish between known protein peaks and random peaks.

Long-range contacts are assessed between a protein and promoters (enhancer-promoter contacts). d) ROC curves of the four methods to distinguish

between known protein motifs and other DNA-binding protein motifs. Long-range contacts are assessed between a motif and promoters (enhancer-

promoter contacts). e) Percent of dCTCF motif SNP that have a homologous interaction variable beta lower than the one of the dCTCF concensus motif. f)

Comparison table of the methods.

https://doi.org/10.1371/journal.pcbi.1005538.g003
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well (AUCGLMI = 0.797 and AUCCor = 0.807; Fig 3d). Conversely, ET and RF showed lower

perfomance (AUCET = 0.728 and AUCRF = 0.601).

We next analyzed the impacts of mutations in the consensus dCTCF motif. Single nucleo-

tide polymorphisms (SNPs) play an important role in common genetic diseases and recent

works have uncovered differential long-range contacts due to variations in the CTCF motif in

human [17, 29, 30]. Hence we evaluated the methods to detect the impacts of single nucleotide

mutations in the dCTCF motif. For this purpose, we considered the dCTCF consensus motif

AGGTGGCG (wild-type motif) [31] and generated dCTCF motifs with single nucleotide

mutations for each position (mutated motifs). For instance, for the first position, the mutated

motifs were TGGTGGCG, GGGTGGCG and CGGTGGCG. Over the 24 possible mutated

motifs (8 positions × 3 alternative nucleotides), GLMI detected 17 motifs (71%; Fig 3e) with

homologous interaction variable betas that were lower than the one of the wild-type motif,

indicating that the corresponding mutations diminished the ability of dCTCF to bridge long-

range contact. Compared to GLMI, other approaches showed lower performance (Cor: 14/24;

RF = 10/24; ET = 8/24).

In addition to its better prediction performances, our model presents several theoretical

advantages over the three other methods as summarized in Fig 3f. All the methods can assess

long-range contacts between protein binding sites. However, GLMI is the only model that, at

the same time, (1) accounts for the contact frequency which can vary among highly confident

loops, (2) can deal with the presence of colocalization among proteins using conditional inde-

pendence, (3) allows variable selection using lasso or stepwise, and (4) can assess the effect of

cofactors by including higher-order interaction terms.

Analysis of insulator binding protein motifs in Drosophila

Given the biological validation of our model, we next sought to address the roles of IBP motifs

in establishing or maintaining long-range interactions in Drosophila. We first assessed how

IBP motifs were coupled to form loops (i.e. for all combinations of distant IBP motifs). For this

purpose, we estimated homologous and heterologous interaction variable effects for any cou-

ple of IBP motifs using models (2) and (3), and using the same Hi-C data, distance range and

resolution as above (Fig 4a). The strongest long-range contacts were between dCTCF and

DREF motifs (b̂nij
¼ 2:8� 104, p< 10−20), between dCTCF motifs (b̂nii

¼ 2:4� 104,

p< 10−20) and between DREF motifs (b̂nii
¼ 2� 104, p< 10−20). High levels of long-range

contacts were also found between BEAF-32 and DREF motifs (b̂nij
¼ 1:9� 104, p< 10−20)

and between BEAF32 and dCTCF motifs (b̂nij
¼ 1:9� 104, p< 10−20). Thus in Drosophila,

chromatin loops not only involve dCTCF motifs but also DREF and BEAF-32 motifs that all

work together. We then explored if these long-range contacts depended on the distance

between motifs. At short distance (<100kb), long-range contacts were mainly detected

between DREF motifs (b̂nii
¼ 1:8� 104, p< 10−20), whereas at long distance (> 750kb), they

were more frequent between dCTCF and DREF motifs (b̂nij
¼ 3:5� 104, p = 7 × 10−9) (Fig

4b). In addition, long-range contacts between dCTCF motifs peaked at 500 kb. Our results

therefore raise the possibility that long-range contacts between IBP motifs could be distant-

dependent. This observation might provide a molecular explanation for the observed hierar-

chical nature of 3D chromatin structure [32, 33], for which loops could be formed at different

scales by the interplay of specific proteins.

Next we sought to comprehensively test whether motif orientation could influence long-

range contacts, as originally shown for CTCF motifs in human [10] and more generally
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in mammals [34]. We distinguished the motifs that were on the positive DNA strand

(denoted +), from those that were on the negative DNA strand (denoted -). Then it was pos-

sible to compute four types of homologous interaction variables: nii+− = ziL+ × ziR− (orienta-

tion! ), nii−+ = ziL− × ziR+ (orientation !), nii−− = ziL− × ziR− (orientation  ),

nii++ = ziL+ × ziR+ (orientation!!). The corresponding models are detailed in Subsection

Materials and Methods, The different models. Here we processed data at 1 kb resolution for

better accuracy in distinguishing the different orientations. Similarly to in human and

mammals, we found significant long-range contacts for motifs in convergent orientation

(b̂nii
¼ 570, p = 2 × 10−3), and no significant contacts for the 3 other possible orientations

( !,!! and  ; Fig 4c), revealing conservation of convergent CTCF mediated loops

in agreement with 4C analyses [35]. We then assessed motif orientation for all other IBP

motifs. Of note, the orientation of DREF TATCGATA motifs could not be assessed because

of its palindromic property. For BEAF-32, dTFIIIC and Su(Hw) motifs, we could not detect

any strong orientation effect (Fig 4c). Conversely, for GAF and ZW5 motifs, we found

stronger contacts for motifs in divergent orientation ( !) compared to convergent orien-

tation (! ), suggesting a different mode of binding of the corresponding protein to DNA

Fig 4. Analysis of long-range contacts between insulator binding protein (IBP) motifs. a) Long-range contacts between IBP motifs, as measured by

interaction variable betas estimated using models (2) and (3). b) Long-range contacts between IBP motifs depending on the distance. c) Long-range

contacts between IBP motifs depending on the motif pair orientation.

https://doi.org/10.1371/journal.pcbi.1005538.g004
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or a different constraint depending of its interaction with cofactors. Thus motif orientation

in loops depends on the protein involved, and the dependence on convergent orientation of

motifs does not apply to all insulator binding proteins.

Analysis of insulator binding protein sites in Drosophila

IBP binding sites might significantly vary depending on the cell type and stage. Hence we rean-

alyzed the roles of IBP binding in Kc167 Drosophila cells using available ChIP-seq data (same

cell type with Hi-C data; ZW5 data were not available). As in the previous subsection, we esti-

mated interaction effects for any couple of IBP motifs using models (2) and (3). Similarly to

the analysis of IBP motifs, we observed high levels of long-range contacts involving DREF and

dCTCF (Fig 5a). In particular, we found strong long-range contacts between distant DREF

Fig 5. Analysis of long-range contacts between insulator binding protein (IBP) sites. a) Long-range contacts between IBP sites, as measured by

interaction variable betas estimated separately (models (2) and (3)). b) Graph of long-range contacts (betas) between IBP sites estimated in a). c) Long-

range contacts between insulator binding sites, as measured by interaction variable betas estimated jointly (model (10)). d) Comparison between

homologous and heterologous interaction variable betas. e) Graph of long-range contacts (betas) between IBP sites estimated in c).

https://doi.org/10.1371/journal.pcbi.1005538.g005
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binding sites (b̂nii
¼ 147, p< 10−20) and between dCTCF and DREF binding sites (b̂nij

¼ 133,

p< 10−20). However, we also observed strong long-range contacts between DREF and dTFIIIC

(b̂nij
¼ 119, p< 10−20), and between DREF and GAF (b̂nij

¼ 112, p< 10−20), which could not

be detected by previous analysis of IBP motifs. We then built a graph using estimated betas by

adding an edge between two proteins Fi and Fj with a weight b̂nij
, and by adding an edge

between a protein Fi and itself with a weight b̂nii
(Fig 5b). Analysis of the graph clearly revealed

the role of DREF as a hub, i.e. DREF was involved in many long-range contacts with other

IBPs, such as BEAF-32, DREF, dTFIIIC and GAF. Such DREF-mediated loops might be in

apparent contradiction with recent experiments showing that DREF motifs tag proximal acti-

vation of housekeeping genes, in contrast to long-range activation of developmental genes

[36]. However such DREF-mediated loops can be explained by long-range contacts between

promoters (b̂nii
¼ 203, p< 10−20).

Previous results should be carrefully interpreted since IBPs often linearly colocalize (i.e. cor-

relate) with each other on the chromosome [31]. Such correlations can lead to “indirect” long-

range contacts between IBPs. For instance, if a loop is maintained by two distant dCTCF bind-

ing sites, and that BEAF-32 colocalizes to dCTCF, then it is likely that we will also observe

loops between distant BEAF-32 and dCTCF sites, and even between BEAF-32 sites. The

impact of such correlations between proteins in the study of 3D chromatin has been discussed

in details [12]. Models (2) and (3) could not account for such correlations between IBPs

because only one interaction variable term was included. Instead one should use another

model that includes all possible interaction variable terms between IBPs (model (10), see Sub-

section Materials and methods, The different models). To better discard indirect long-range

contacts between the 6 IBPs, we thus re-estimated interaction variable beta parameters using

model (10) that included all marginal variables (6 variables, one for each IBP) and all interac-

tion variables (21 variables, one for each combination of IBPs). Using model (10), we obtained

rather different results (Fig 5c). We still observed strong long-range contacts between DREF

binding sites (b̂nii
¼ 25, p< 10−11). However other long-range contacts were observed such as

between BEAF-32 sites (b̂nii
¼ 30, p< 10−20). In turn, such analysis showed that an IBP tended

to interact more with itself (homologous interactions) than with another IBP (heterologous

interactions) (p = 0.018; Fig 5d), in agreement with insulator bodies observed by microscopy

[37]. In addition, the model (10) allowed to infer negative and significant interaction effects,

such as between distant DREF and BEAF-32 (b̂nij
¼ � 25, p< 10−11), which could not be

detected before. This negative effect means that BEAF-32 and DREF tend to avoid each other

in long-range contacts, i.e. they tend to have a repulsive effect. This might reflect the known

antagonistic relationship between BEAF-32 and DREF in competing for binding to overlap-

ping binding sites [38, 39]. As previously, we built a graph of betas and could detect groups of

IBPs that may cluster together through long-range contacts as found for the two connected

components BEAF-32/dTFIIIC/GAF and DREF/Su(Hw)/dCTCF, respectively (Fig 5e). Inter-

estingly, these two classes of IBPs that worked together in 3D were different from the two clas-

ses that were previously identified by 1D analysis: dCTCF/BEAF-32 and Su(Hw), respectively

[40]. Such observations strenghtened the importance of analyzing protein complexes in 3D in

complement to 1D analysis (see Discussion).

Analysis of DNA-binding protein sites in human

In human and mammals, the main model of loop formation involves CTCF and cohesin [10,

17]. According to this model, a loop may form by the homodimerization of two CTCF proteins
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bound to two distant CTCF motifs that are in convergent orientation [10]. The loop also

involves cohesin that is recruited by CTCF and that has the ability to entrap the two DNA

fibers inside a ring. In addition to CTCF and cohesin, other architectural proteins have been

recently uncovered such as ZNF143 [41] and PcG proteins [42]. In order to systematically ana-

lyze proteins mediating loops, we considered integrating available protein binding data (73

proteins) together with high-resolution Hi-C data in human GM12878 cells using our GLMI

model. As previously done for Drosophila, we analyzed Hi-C data at 10 kb resolution and

focused on 20kb-1Mb distances [10]. At this distance range, the Hi-C data comprised a very

large number of bin pairs (around 22 millions), and hence, its analysis often required subsam-

pling to few million pairs to achieve tractable regression parameter estimation. As for Drosoph-
ila, the log-log relation between Hi-C count and distance was linear at this distance range

(R2 = 0.992, S2 Fig), supporting the use of the log-distance term in the model.

We first investigated contacts between distant CTCF binding sites using model (2). As

expected, we observed strong long-range contacts (b̂nii
¼ 37, p = 6 × 10−12) [10]. Moreover

high levels of long-range contacts were detected between cohesin subunit Rad21 binding sites

as expected (b̂nii
¼ 89, p< 10−20; Fig 6a) [10], as well as between cohesin subunit SMC3

(b̂nii
¼ 75, p< 10−20). We then used the same approach to estimate long-range contacts for all

73 proteins available (S1 Table). Among the proteins that significantly interacted among them-

selves, we found several proteins known to colocalize to CTCF binding sites including YY1

(b̂nii
¼ 31, p< 10−20), MAZ (b̂nii

¼ 16, p< 10−20) and JUND (b̂nii
¼ 258, p = 10−9) [7]. We

also found P300, an important transcriptional coactivator [43] (b̂nii
¼ 264, p< 10−20). In addi-

tion, histone marks including H3K27me3, H3K36me3, H3K4me2, H3K4me3, H3K9ac and

H3K9me3 showed homologous long-range contacts, as previously shown by polymer simula-

tions [44] (all b̂nii
> 0:05, p< 10−20). Curiously, H4K20me1 sites presented repulsive effects

with each other (b̂nii
¼ � 0:07, p< 10−20), indicating that distant H4K20me1 marked sites

may avoid each other. We further estimated the well-known influence of cohesin in mediating

long-range contacts between distant CTCF binding sites in human using model (4) [8, 10].

Interestingly, we found that the effect of cohesin depended on the distance between CTCF

binding sites, with no significant contacts for short distances (20-300kb: b̂ciik
¼ � 3� 103,

p = 0.63; 300-700kb: b̂ciik
¼ � 1� 104, p = 0.15) and significant contacts for long distances

(700-1000kb: b̂ciik
¼ 4� 104, p = 3 × 10−6) (Fig 6b). This suggested that cohesin is required for

stabilizing CTCF-mediated loops for long distances, but is not necessary for short distances for

which homodimerization of CTCF might be sufficient. We also sought for other proteins

whose loops could be mediated by cohesin for long distances (S2 Table). Most notably, we

found that cohesin positively influences long-range contacts between architectural protein

ZNF143 binding sites (b̂ciik
¼ 4:8� 104, p = 2 × 10−9), between PolII binding sites (b̂ciik

¼ 446,

p = 6 × 10−16), and between transcriptional factor binding sites (EGR1, ELF1, FOXM1, MAZ,

MXI1, NRF1, YY1), which suggests a wider role for cohesin in mediating long-range contacts.

Further analyses of long-range contacts for every couple of proteins were performed using

model (10) that included together all possible interaction variables. We considered 73 proteins,

7 histone modifications, active enhancers and active promoters. The model thus comprised

(82 × 83)/2 = 3403 interaction variables. To deal with such a large number of interaction vari-

ables, we used a Poisson lasso estimation [45]. An interaction variable beta of zero was

expected to reflect the absence of direct long-range contact between two proteins. From the

estimated betas, we built a first graph that we called “attraction graph” by adding an edge
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Fig 6. Analysis of long-range contacts between architectural protein binding (IBP) sites in human GM12878 cells. a) Long-range contacts

between CTCF sites, and between Rad21 sites, as measured by interaction variable betas estimated using model (2). b) Effect of cohesin in mediating

long-range contacts between CTCF sites. c) Attraction graph of long-range contacts between DNA-binding protein sites estimated using positive

interaction variable betas from model (10). d) Highest node centrality scores from the attraction graph as measured by eigen decomposition. e) Repulsion

graph of long-range contacts between DNA-binding protein sites estimated using negative interaction variable betas from model (10). f) Highest node

centrality scores from the repulsion graph as measured by eigen decomposition.

https://doi.org/10.1371/journal.pcbi.1005538.g006
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between two proteins Fi and Fj if b̂nij
> 0, and by adding an edge between a protein Fi and itself

if b̂nii
> 0 (Fig 6c). To identify hubs in the graph, we used eigenvector centrality that reflected

how central is a node (Fig 6d). Both active and repressed chromatin marks as well as enhancers

were the most central nodes (H3K9ac: score = 1; H3K9me3: score = 0.98; H3K4me3:

score = 0.948; Enhancer: score = 0.84). Among DNA-binding proteins, CTCF and Rad21

showed high values (CTCF: score = 0.619; Rad21: score = 0.555). Surprisingly, however, other

proteins MEF2C and FOXM1 presented the highest values (MEF2C: score = 0.725; FOXM1:

score = 0.692). Previous studies showed that MEF2C is necessary for bone marrow B-lympho-

poiesis (GM12878 is a lymphoblastoid cell line) [46], and that FOXM1 has an important role

in maintenance of chromosomal segregation [47]. We then looked for cliques in the graph, i.e.
a group of nodes that were all connected to each other (complete list in S3 Table). As expected,

we found a clique composed of CTCF and the cohesin subunits Rad21 and SMC3, that are

known to mediate together loops [10]. But we also found novel protein complexes that were

specific to lymphocyte B such as the clique IKZF1/RFX5/PolII. IKZF1 plays a role in the

development of lymphocytes [48], RFX5 is involved in bare lymphocyte syndrome [49] and

polymerase II catalyzes gene transcription. In addition, we found many cliques involving Poly-

merase III (PolIII) such as the cliques MEF2C/RUNX3/PolIII and MEF2C/WHIP/PolIII,

which might reflect the influence of architectural protein RNA polymerase III-associated fac-

tor (TFIIIC) at tRNA genes [2, 50].

Very little is known about repulsion effects between distant binding sites. Such repulsive

effects could result from allosteric effects of loops [51], or factors that disassociate protein com-

plexes involved in loops [52]. To investigate repulsive effects, we built a second graph that we

called “repulsion graph” by adding an edge between two proteins Fi and Fj if b̂nij
< 0, and by

adding an edge between a protein Fi and itself if b̂nii
< 0 (Fig 6e). The repulsion graph was

very different from the attraction graph. Different histone marks were central in the repulsion

graph, including H3K36me3 (score: 1) and H4K20me1 (score: 0.974), except histone mark

H3K9me3 (score: 0.798) that was central in both the attraction and repulsion graphs (Fig 6f).

Interestingly, we found that enhancers presented a high centrality score in the repulsion graph

(score: 0.766), as found in the attraction graph. This result highlights the ability of enhancers

to specifically interact with distant protein partner binding sites while avoiding others. Sup-

porting this interpretation, we found enhancers to be in attraction with CFOS, NRF1 or

POU2F2, and in repulsion with RXRA, NFE2 or P300. We then looked at pairs of proteins that

were in repulsion. Most notably, we found CTCF to be in repulsion with EZH2, which might

result from steric effects of CTCF-mediated loops [10] with Polycomb-mediated loops [42].

The influence of DNA-binding proteins on enhancer-promoter

interactions in human

Enhancer-promoter (EP) interactions play an essential role in the regulation of gene expres-

sion [14, 18]. Therefore, we explored the roles of DNA-binding proteins in establishing or

maintaining EP interactions. Before assessing the role of proteins, we first measured long-

range contacts between active enhancers and promoters depending on gene expression using

model (3) (Fig 7a). We observed an attraction effect between active enhancers and highly

expressed gene promoters (b̂nij
¼ 2, p = 3 × 10−5), and conversely, a repulsion effect between

active enhancers and low expressed gene promoters (b̂nij
¼ � 1:7, p< 1 × 10−20), in complete

agreement with the established positive influence of long-range contacts on gene expression

[53]. To identify the influence of DNA-binding proteins, we then assessed the presence of
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long-range contacts between lymphocyte B transcriptional activator binding sites (ChIP-seq

data) and promoters using the same model (3). All lymphocyte B transcriptional activators

including BCL11A, EBF1, EGR1, MEF2C, PAX5 and TCF12 showed long-range contacts with

highly expressed gene promoters, compared to weakly transcribed gene promoters (Fig 7b).

This clearly showed that lymphocyte B transcriptional activators regulate expression of target

genes through long-range contacts. Among the proteins available, we could not identify any

that acted as silencers, i.e. proteins whose long-range contacts are high with low expressed

gene promoters and low with highly expressed gene promoters. However when we focused on

histone modifications, we found that long-range contacts of H3K27me3 mark were stronger to

weakly transcribed gene promoters (b̂nij
¼ 0:06, p< 10−20), compared to highly expressed

gene promoters (b̂nij
¼ � 0:2, p< 10−20) (Fig 7c). This suggested that H3K27me3 mark not

Fig 7. Influence of DNA-binding proteins and histone marks on enhancer-promoter contacts in human GM12878 cells. a) Enhancer-promoter

contacts depending on gene expression, as measured by interaction variable betas estimated using model (3). b) Long-range contacts of transcriptional

factors with promoters depending on gene expression. c) Long-range contacts of histone modifications with promoters depending on gene expression. d)

Long-range contacts of transcriptional factors with promoters depending on PolII pausing or elongation.

https://doi.org/10.1371/journal.pcbi.1005538.g007
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only acts as a transcriptional silencer in linear proximity [54], but could also repress target

genes at distance through loops. Conversely, active marks such as H3K4me3 and H3K9ac

interacted more with highly expressed genes. Because enhancer-promoter contacts were previ-

ously shown to be associated with Polymerase II pausing [18], we then assessed enhancer-pro-

moter interactions depending on gene transcription pausing. As expected, we found higher EP

contacts at paused genes (b̂nij
¼ 62:2, p = 10−3), compared to genes in elongation (b̂nij

¼ 49:3,

p = 2 × 10−3). We then looked at the influence of DNA-binding proteins (Fig 7d). For instance,

EBF1 sites showed higher long-range contacts with promoters of genes in pause (b̂nij
¼ 39:7,

p = 1 × 10−13), compared to those in elongation (b̂nij
¼ 17:8, p = 3 × 10−5), in agreement with

[18]. But, surprisingly, we also found that BCL11A sites showed higher long-range contacts

with promoters of genes in elongation (b̂nij
¼ 72:8, p< 10−20) than with genes in pause

(b̂nij
¼ 60:9, p = 2 × 10−11). These observations suggest that, depending on the protein

involved, long-range contacts with promoters are not always associated with pausing, but

could also be linked to elongation.

Conclusion

Here, we propose to use a generalized linear regression with interactions (GLMI) to study the

roles of genomic features such as DNA-binding proteins, motifs or promoters to bridge long-

range contacts in the genome, depending on transcriptional status or motif orientation. GLMI

has multiple assets over existing approaches such as enrichment test, correlation and random

forests. Compared to enrichment test [2, 55] or correlation [27] that respectively assesses the

protein enrichment or correlation at highly confident loops, GLMI quantitatively links the fre-

quency of all long-range contacts to complex co-occupancies of proteins while accounting for

known Hi-C biases and polymer background. Moreover, GLMI accounts for colocalizations

among protein binding, a strong issue when analyzing protein binding sites known to largely

overlap over the genome. In contrast to random forests [28] which are efficient predictive

models but sometimes poor explanatory ones, GLMI allows to identify key chromatin loop

driver proteins and motifs. GLMI can also uncover numerous mechanisms behind loop for-

mation using higher-order interaction terms and proper confounding variables. For instance,

GLMI can determine if a cofactor is necessary to mediate long-range contacts between distant

protein binding sites.

Using real Drosophila Hi-C and ChIP-seq data, we validate numerous GLMI predictions of

long-range contacts that involve insulator binding proteins, cofactors and motifs, and which

were confirmed by previous microscopy and mutational studies. For instance, our model esti-

mates long-range contacts between distant BEAF-32 motifs, which were previously observed

with both fluorescence cross-correlation spectroscopy [22] and high-resolution microscopy

[23]. In addition, our model finds a mediating role of CP190 in bridging long-range contacts

between distant BEAF-32 and GAF binding sites, in agreement with mutational experiments

[19]. Of interest, GLMI analyses highlight a role of cohesin in stabilizing long-range contacts

between CTCF sites in Drosophila, similarly to its role in human [7]. Supporting this role, we

show that such influence is reduced upon cohesin subunit Rad21 depletion. It has to be noted

that the absence of complete loss of contacts between CTCF sites after Rad21 depletion can be

explained by the fast turnover of chromosome-bound cohesin in interphase [56]. Moreover,

GLMI outperforms enrichment test, correlation and random forests in the identification of

known architectural proteins and motifs, and in the detection of the effects of mutations in the

dCTCF motif.
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The proposed model also uncovers several novel results. In Drosophila, GAF and ZW5

motifs are shown to act in divergent orientation to form loops, in contrast to CTCF motifs that

are found in convergent orientation in Drosophila and human [10, 17], suggesting a different

mode of action of corresponding proteins. In addition, we identify two groups of proteins that

act in 3D to form loops. The first group comprises BEAF-32, dTFIIIC and GAF, and the other

group includes DREF, Su(Hw) and dCTCF. Those groups are different from the ones observed

with 1D analysis only (i.e. linear colocalization on the genome) [40], highlighting the impor-

tance of 3D analysis using GLMI. In human, we identify numerous long-range contacts

between protein binding sites. In addition to the well-known protein complex CTCF/RAD21/

SMC3, we uncover new protein complexes that are specific to lymphocyte B such as IKZF1/

RFX5. We also found that enhancers could be either in long-range contact or repulsion with

certain protein binding sites, highlighting potential specificity in selecting protein partners for

long-range contacts. Our observations therefore support the idea that enhancer-promoter con-

tacts are not solely driven by insulators or TAD borders that physically constrain such long-

range interactions [29, 36, 57]. Rather, enhancer-promoter contacts may also be encoded by

the specificity of protein-protein interactions. In addition, our results suggest that repressive

mark H3K27me3 does not only repress genes that are contigous [54], but it could also repress

from a distance through the juxtaposition of H3K27me3 with genes in 3D. We also find that,

depending on the protein involved, long-range enhancer-promoter contacts are not always

favored by PolII pausing [18], which may highlight distinct mechanisms by which proteins

can influence transcription-associated long-range contacts.

There are several limitations of the proposed approach. First, the present analysis is

restricted to a 10-kb resolution because of the quadratic complexity of Hi-C data. Second, our

analysis is limited by the amount of higher-order interaction variable parameters that can be

learned within the same model (full model) using current parameter learning programs. Most

notably, all possible interaction cofactor variables cannot be included in the same model

because of the cubic complexity of such model, and hence they are learned separately instead

(using models (4) and (5)). In addition, although generalized linear models can include inter-

actions of any order involving large protein complexes (for instance, complexes of more than 4

proteins), parameter learning is limited by the availability of data and computational resources.

Increasing depth of Hi-C data will allow inference of more complex models in the near future.

Moreover the development of new big data learning algorithms could be used to process the

data at a higher resolution that would allow in-depth analysis of 3D chromatin drivers [58].

An alternative to the exploration of all possible higher-order interactions together might be to

guide the search using prior information, such as protein-protein interaction network [55].

Lastly, in order to explore all possible higher-order interaction variables within the same

model (full model), one should use a lasso regression model with hierarchically constrained

interactions [59].

Materials and methods

Hi-C data

We used publicly available high-throughput chromatin conformation capture (Hi-C) data

from Gene Expression Omnibus (GEO) accession GSE62904 [21]. Hi-C experiments have

been done for Drosophila melanogaster wild-type and Rad21 knock-down Kc167 cells with

DpnII restriction enzyme. Hi-C data were binned at 1 and 10 kb resolutions.

For human data analysis, we used publicly available Hi-C data of lymphoblastoid cells

GM12878 cells from Gene Expression Omnibus (GEO) accession GSE63525 [10]. We used

Hi-C data binned at 10 kb resolution.
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ChIP-seq data

For Drosophila analysis, we used publicly available binding profiles of chromatin proteins of

Drosophila melanogaster wild-type embryonic Kc167 cells. ChIP-seq data for CP190, Su(Hw),

dCTCF and BEAF-32 were obtained from GEO accession GSE30740 [60]. ChIP-seq data for

Barren (condensin I), Cap-H2 (condensin II), Chromator, Rad21 (cohesin), GAF and dTFIIIC

were obtained from GEO accession GSE54529 [9]. ChIP-seq data for DREF and L(3)Mbt were

obtainted from GEO accession GSE62904 [21]. ChIP-seq data for Fs(1)h-L and Fs(1)h-LS

were obtained from GEO accession GSE42086 [25]. Peak calling was done using MACS 2.1.0

(https://github.com/taoliu/MACS).

For human analysis, we used publicly available binding peaks of 73 chromatin proteins

(RAD21, CTCF, YY1, ZBTB33, MAZ, JUND, ZNF143, EZH2, ATF2, ATF3, BATF, BCL11A,

BCL3, BCLAF1, BHLHE40, BRCA1, CEBPB, CFOS, CHD1, CHD2, CMYC, COREST, E2F4,

EBF1, EGR1, ELF1, ELK1, FOXM1, GABP, IKZF1, IRF4, MAX, MEF2C, MTA3, MXI1,

NFATC1, NFE2, NFIC, NFKB, NFYA, NFYB, NRF1, NRSF, P300, PAX5, PBX3, PML, POL2,

POL3, POU2F2, RFX5, RUNX3, RXRA, SIN3A, SIX5, SMC3, SP1, SPI1, SRF, STAT1, STAT3,

STAT5, TBLR1, TBP, TCF12, TCF3, TR4, USF1, USF2, WHIP, ZEB1, ZNF274, ZZZ3) and his-

tone marks (H3K27me3, H3K36me3, H3K4me2, H3K4me3, H3K9ac, H3K9me3, H4K20me1)

of GM12878 cells from ENCODE [61]. We downloaded peaks that were uniformly processed

(Uniform Peaks).

Functional elements

For human analysis, we divided promoters into quartiles of gene expression using RNA-seq

data [61]. We also divided promoters into quartiles of gene pausing and into quartiles of gene

elongation using PolII ChIP-seq data [61]. For enhancer mapping, we used lymphocyte of B

lineage differentially expressed enhancers identified from the Fantom5 project [62].

DNA motifs

For both Drosophila and human analyses, we used transcription factor binding site (TFBS)

motifs from the MotifMap database (http://motifmap.ics.uci.edu/).

Power-law distribution testing

The proposed GLMI assumed a linear relation between logarithm of Hi-C counts and the loga-

rithm of distance between bins as previously shown in [5]. This assumption only holds locally,

i.e. for a specific distance scale. Hence we restricted GLM modeling to a certain range of dis-

tances, e.g. for 20kb to 1Mb. In addition, we tested this assumption on data before using

GLMI. We considered that this assumption holds when the R2 > 0.95.

Occupancy variables z

Before computing variables for the GLMI presented above, intermediate variables from the

genomic features such as DNA-binding proteins needed to be calculated. Intermediate “occu-

pancy” variable zi denoted the presence (zi = 1) or absence (zi = 0) of the protein Fi within the

genomic bin. If the protein only overlapped 60% of the genomic bin, then zi = 0.6.
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The different models

Here are described the different models derived from model (1) that we used. In order to assess

a homologous interaction variable nii = ziL × ziR (here g = nii), model (1) becomes:

log E yjX½ �ð Þ ¼ b0 þ bddþ bBBþ bCCþ bgg

¼ b0 þ bddþ bBBþ bmi
mi þ bnii

nii

ð2Þ

Following the hierarchy principle in (generalized) linear models, the assessment of a statistical

interaction variable, such as nii = ziL × ziR, must include both ziL and ziR as confounding vari-

ables. Because ziL and ziR are identically associated to y (the attribution for left and right bins is

arbitrary), their values are averaged to give mi ¼
1

2
ðziL þ ziRÞ. Hence C = mi is used as a con-

founder of nii.

In order to assess a heterologous interaction variable nij ¼
1

2
ðziL � zjR þ zjL � ziRÞ (here

g = nij), model (1) becomes:

log E yjX½ �ð Þ ¼ b0 þ bddþ bBBþ bCCþ bgg

¼ b0 þ bddþ bBBþ bmi
mi þ bmj

mj þ bnij
nij

ð3Þ

Following the hierarchy principle, ziL, ziR, zjL and zjR have to be included as confounding vari-

ables. As previously, ziL and ziR are averaged to give mi ¼
1

2
ðziL þ ziRÞ. Similarly, zjL and zjR are

averaged to give mj ¼
1

2
ðzjL þ zjRÞ. Hence C = {mi, mj} is used as confounder of nij.

In order to assess a homologous interaction cofactor variable ciik = nii × nkk (here g = ciik),

model (1) becomes:

logðE½yjX�Þ ¼ b0 þ bddþ bBBþ bCCþ bgg

¼ b0 þ bddþ bBBþ bmi
mi þ bmk

mk þ bmik
mik þ bnii

nii þ bnkk
nkk þ bnik

nik

þ bnii�mk
ðnii �mkÞ þ bnkk�mi

ðnkk �miÞ þ bciik
ciik;

ð4Þ

Here variable ciik is a four-way interaction term and hence there are a large number of con-

founding variables included in variable set C = {mi, mk, mik, nii, nkk, nik, nii × mk, nkk × mi}.

We need to introduce a new type of variable, noted mij, the average of product ziL × zjL and

product ziR × zjR (mij ¼
1

2
ðziL � zjL þ ziR � zjRÞ). For a detailed explanation of the confounder

set C, see S1 Appendix, Confounder sets.

In order to assess a heterologous interaction cofactor variable cijk = nij × nkk (here g = cijk),

model (1) becomes:

logðE½yjX�Þ ¼ b0 þ bddþ bBBþ bCCþ bgg

¼ b0 þ bddþ bBBþ bmi
mi þ bmj

mj þ bmk
mk þ bmik

mik þ bmjk
mjk

þ bnij
nij þ bnjk

njk þ bnik
nik þ bnkk

nkk

þ bnij�mk
nij �mk þ bnkk�mi

nkk �mi þ bnkk�mj
nkk �mj þ bcijk

cijk:

ð5Þ

Here variable cijk is a four-way interaction term and hence there are a large number of con-

founding variables included in variable set C = {mi, mj, mk, mik, mjk, nij, njk, nik, nkk, nij × mk,

nkk × mi, nkk × mj}. For a detailed explanation of the confounder set C, see S1 Appendix, Con-

founder sets.

In addition, we formulated models for homologous interaction variables, depending on

motif pair orientation. For a pair of motifs in convergent orientation (! ), model (1)
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becomes:

logðE½yjX�Þ ¼ b0 þ bddþ bBBþ bCCþ bgg

¼ b0 þ bddþ bBBþ bziLþ
ziLþ þ bziR�

ziR� þ bniiþ�
niiþ�

ð6Þ

with nii+− = ziL+ × ziR−. Symbol “+” denoted motifs that were on the forward DNA strand,

while symbol “-” denoted motifs that were on the reverse DNA strand. For instance, variable

ziL+ was the occupancy of a motif on the forward DNA strand within genomic bins.

For a pair of motifs in divergent orientation ( !), model (1) becomes:

logðE½yjX�Þ ¼ b0 þ bddþ bBBþ bCCþ bgg

¼ b0 þ bddþ bBBþ bziL�
ziL� þ bziRþ

ziRþ þ bnii� þ
nii� þ;

ð7Þ

with nii−+ = ziL− × ziR+.

For a pair of motifs in same orientation (!!), model (1) becomes:

logðE½yjX�Þ ¼ b0 þ bddþ bBBþ bCCþ bgg

¼ b0 þ bddþ bBBþ bziLþ
ziLþ þ bziRþ

ziRþ þ bniiþþ
niiþþ;

ð8Þ

with nii++ = ziL+ × ziR+.

For a pair of motifs in same orientation (  ), model (1) becomes:

logðE½yjX�Þ ¼ b0 þ bddþ bBBþ bCCþ bgg

¼ b0 þ bddþ bBBþ bziL�
ziL� þ bziR�

ziR� þ bnii� �
nii� � ;

ð9Þ

with nii−− = ziL− × ziR−.

Moreover, we formulated an additional “full” model where all possible homologous and

heterologous interaction variables were included. For instance, if we study two proteins Fi and

Fj that tend to linearly colocalize, then the following “full” model would be:

logðE½yjX�Þ ¼ b0 þ bddþ bBBþ bCCþ bGG;

¼ b0 þ bddþ bBBþ bmi
mi þ bmj

mj þ bnii
nii þ bnjj

njj þ bnij
nij;

ð10Þ

where G is the set of all possible homologous and heterologous interaction variables. Here

G = {nii, njj, nij} for two proteins Fi and Fj. The confounder set C = {mi, mj} includes all mar-

ginal variables.

Implementation

The general linear regression with interactions is implemented in R language. The model is

available in the R package “HiCglmi” which can be downloaded from the Comprehensive R

Archive Network.
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3.4.3.3 HiCblock: TAD-free analysis of insulators

Standard approaches to identify architectural proteins involved in TAD for-

mation rely on the previous mapping of TADs. Once TADs are mapped,

enrichment tests or multiple logistic regression can be further used to char-

acterize which proteins are more likely to influence the presence of borders

[Dixon et al. 2012, Mourad & Cuvier 2016]. However, an important drawback

of the enrichment test and multiple logistic regression is that they rely on

accurate TAD mapping, which is problematic for multiple reasons: (i) TAD

mapping strongly depends on the algorithm used [Shin et al. 2016], (ii) TADs

only capture a fraction of the information from Hi-C data, and other important

3D domains, including A/B compartments [Lieberman-Aiden et al. 2009], loop

domains [Rao et al. 2014] and subTADs [Jin et al. 2013] were discovered and (iii)

TAD borders are blurry [Van Bortle et al. 2014].

I proposed a TAD-free model to directly estimate the blocking effects of ar-

chitectural proteins, insulators and DNA motifs on long-range contacts, making

the model intuitive and biologically meaningful (Equation 1 and Figure 1, from

the article ”TAD-free analysis of architectural proteins and insulators” below)

[Mourad & Cuvier 2018]. The model allows analyzing the whole Hi-C information

content (2D information) instead of only focusing on TAD borders (1D information).

The model outperformed multiple logistic regression at TAD borders in terms of

parameter estimation accuracy and was validated by enhancer-blocking assays. In

Drosophila, the results supported the insulating role of simple sequence repeats and

suggested that the blocking effects depend on the number of repeats. Motif analysis

uncovered the roles of the transcriptional factors pannier and tramtrack in blocking

long-range contacts. In human, the results suggested that the blocking effects of

the well-known architectural proteins CTCF, cohesin and ZNF143 depend on the

distance between loci, where each protein may participate at different scales of the

3D chromatin organization.
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ABSTRACT

The three-dimensional (3D) organization of the
genome is intimately related to numerous key bi-
ological functions including gene expression and
DNA replication regulations. The mechanisms by
which molecular drivers functionally organize the 3D
genome, such as topologically associating domains
(TADs), remain to be explored. Current approaches
consist in assessing the enrichments or influences
of proteins at TAD borders. Here, we propose a TAD-
free model to directly estimate the blocking effects
of architectural proteins, insulators and DNA motifs
on long-range contacts, making the model intuitive
and biologically meaningful. In addition, the model
allows analyzing the whole Hi-C information content
(2D information) instead of only focusing on TAD bor-
ders (1D information). The model outperforms multi-
ple logistic regression at TAD borders in terms of
parameter estimation accuracy and is validated by
enhancer-blocking assays. In Drosophila, the results
support the insulating role of simple sequence re-
peats and suggest that the blocking effects depend
on the number of repeats. Motif analysis uncovered
the roles of the transcriptional factors pannier and
tramtrack in blocking long-range contacts. In human,
the results suggest that the blocking effects of the
well-known architectural proteins CTCF, cohesin and
ZNF143 depend on the distance between loci, where
each protein may participate at different scales of the
3D chromatin organization.

INTRODUCTION

In higher eukaryotes, chromosomes are packed in three
dimensions and form complex structures (1). Such three-
dimensional (3D) structure has recently been investigated
by chromosome conformation capture combined with high-
throughput sequencing technique (Hi-C) at an unprece-
dented resolution (2–4). Hi-C experiments reveal multiple
levels of genome organization including compartments A/B

(5) and topologically associating domains (TADs) (2,3).
Most notably, TADs are relatively constant between dif-
ferent cell types and are highly conserved across species.
These TADs play important roles in key cell processes
such as long-range regulation of genes by enhancers (4) or
replication-timing regulation (6).

The identification of architectural proteins and func-
tional elements involved in shaping the genome in 3D repre-
sents an intensive field of research (7). Seminal works using
enhancer-blocking assays (EBAs) revealed that functional
elements called insulators (or boundary elements) can sup-
press the activation of a promoter by a distant enhancer
when interposed (8,9). Multiple evidence actually supports
the role of insulator binding proteins (IBPs) such as CTCF,
and co-factors like cohesin, as mediators of long-range
chromatin contacts (3,10–13), which may in turn result in
blocking enhancers from contacting promoters by forming
alternative DNA loops. In mammals, high-resolution map-
ping of long-range contacts has recently revealed that loops
occur at domain boundaries and bind CTCF in a conver-
gent orientation where cohesin is recruited (12,14). Deple-
tion of CTCF and cohesin decreased chromatin contacts
(13). However, the impact of those depletions was limited
suggesting that other proteins might be involved in shaping
the chromosome in 3D. Accordingly, other IBPs, co-factors
and functional elements were also shown to colocalize at
TAD borders (11,15).

A classical approach to identify proteins involved in shap-
ing the 3D genome structure consists in assessing their en-
richments at TAD borders (2,3,12). Among a set of enriched
proteins, multiple logistic regression (MLR) can be further
used to characterize which proteins are more likely to influ-
ence the presence of borders (15). However, an important
drawback of the enrichment test and MLR is that they rely
on accurate TAD mapping, which is problematic for multi-
ple reasons: (i) TAD mapping strongly depends on the al-
gorithm used (16), (ii) TADs only capture a fraction of the
information from Hi-C data, and other important 3D do-
mains including A/B compartments (5), loop domains (12)
and subTADs (4) were discovered and (iii) TAD borders are
blurry (11).

Here, we propose a model named ‘blocking model’, to
systematically analyze the roles of architectural proteins
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and functional elements in blocking long-range contacts
between loci. The proposed model does not rely on TAD
mapping from Hi-C data. Thus, the model’s outcome is
not affected by the blurriness of borders. Instead of testing
the enrichment/influence of protein binding at TAD bor-
ders, the model directly estimates the blocking effect of pro-
teins on long-range contacts between flanking loci, mak-
ing the model intuitive and biologically meaningful. The
model only depends on a simple biological parameter: the
distance between insulated loci. The model directly ana-
lyzes the Hi-C contact matrix, thus taking advantage of the
whole Hi-C information content (2D information) instead
of only focusing on TAD borders (1D information). More-
over, the model successfully predicts in silico the outcomes
from low-throughput enhancer blocking assays, thus en-
abling genome-wide analyses. Using recent Drosophila and
human Hi-C data at high resolution, combined with a large
number of ChIP-seq and DNA motif data, we revealed nu-
merous combinations of proteins, functional elements and
DNA motifs that block long-range contacts depending on
scale and synergistic/antagonistic effects.

MATERIALS AND METHODS

Hi-C data

For Drosophila data analysis, we used publicly available
high-throughput chromatin conformation capture (Hi-C)
data of embryonic Kc167 cells from Gene Expression Om-
nibus (GEO) accession GSE62904 (17). We also used Kc167
Hi-C data from GEO accession GSE89112 (18). Hi-C data
were binned at 1, 2 and 5 kb resolutions.

For human data analysis, we used publicly available Hi-
C data of lymphoblastoid GM12878 cells from GEO acces-
sion GSE63525 (12). We used Hi-C data binned at 10, 40
and 100 kb resolution.

ChIP-seq data

For Drosophila data analysis, we used publicly available
protein-binding profiles of Kc167 cells (except for Pnr
whose data were from 6–8 h embryos). ChIP-seq data
for CP190, Su(Hw), dCTCF and BEAF-32 were obtained
from GEO accession GSE30740 (19). ChIP-seq data for
Barren (condensin I), Cap-H2 (condensin II), Chromator,
Rad21 (cohesin), GAF and dTFIIIC were obtained from
GEO accession GSE54529 (11). ChIP-seq data for Fs(1)h-L
were obtained from GEO accession GSE42086 (20). ChIP-
seq data for Ttk69k were obtained from GEO accession
GSE34698 (21). ChIP-seq peak calling was done using
MACS 2.1.0 with default parameters for all proteins (https:
//github.com/taoliu/MACS). ChIP-chip peaks for Pnr were
directly downloaded from (22).

For human data analysis, we used publicly available bind-
ing peaks of 73 chromatin proteins (Rad21, CTCF, YY1,
ZBTB33, MAZ, JUND, ZNF143, EZH2, ATF2, ATF3,
BATF, BCL11A, BCL3, BCLAF1, BHLHE40, BRCA1,
CEBPB, CFOS, CHD1, CHD2, CMYC, COREST, E2F4,
EBF1, EGR1, ELF1, ELK1, FOXM1, GABP, IKZF1,
IRF4, MAX, MEF2C, MTA3, MXI1, NFATC1, NFE2,
NFIC, NFKB, NFYA, NFYB, NRF1, NRSF, P300, PAX5,
PBX3, PML, POL2, POL3, POU2F2, RFX5, RUNX3,

RXRA, SIN3A, SIX5, SMC3, SP1, SPI1, SRF, STAT1,
STAT3, STAT5, TBLR1, TBP, TCF12, TCF3, TR4, USF1,
USF2, WHIP, ZEB1, ZNF274 and ZZZ3) of GM12878
cells from ENCODE (23). We downloaded peaks that were
uniformly processed (Uniform Peaks).

DNA motifs

To scan the genome for motif occurrences, we used Find
Individual Motif Occurrences (FIMO) with default param-
eters and with position-specific priors (PSPs) to improve
the identification of true motif occurrences (24). GM12878
DNase data from ENCODE were used as PSPs (23). The
motif information was taken either from the litterature (us-
ing consensus motif) or from JASPAR database (http://
jaspar.genereg.net/).

For Drosophila data analysis, we used transcription
factor-binding site (TFBS) motifs from the JASPAR
database. For some proteins, we used instead motif con-
sensuses from the litterature: BEAF-32 (CGATA) (25),
dCTCF (AGGTGGCG) (26), Su(Hw) (TGCATATTT)
(27), GAF (GAGAGA) (28), ZW5 (GCTGMG) (29),
DREF (TATCGATA) (30), M1BP (GGTCACACT) (31),
Ttk69k (GGTCCTGC) (32), dTFIIIC A box (TGGN
NNAGNNG), Pita (GGTTNNNNNNNNNGCT) (29),
ZIPIC (AGGGNTG) (29), Ibf (ATGTANAA) (33), Elba
(CCAATAAG) (34) and Zelda (CAGGTAG) (35).

For human data analysis, we also used TFBS motifs from
the JASPAR database. In human, motifs with <2000 occur-
rences were removed from the analysis to reduce uncertainty
in the � estimation.

The blocking model

To illustrate the blocking model, we first plotted the exam-
ple of a Drosophila genomic region with embryonic Kc167
cell Hi-C heatmap and ChIP-seq peaks of well-known ar-
chitectural proteins (Figure 1A). We observed that all ar-
chitectural proteins BEAF-32, dCTCF, dTFIIIC, GAF and
Su(Hw) accumulated on a specific locus (green frame) that
acted as an insulator of long-range contacts between flank-
ing regions. This observation suggested that the binding
of those proteins blocked long-range contacts (Figure 1B),
thereby contributing to the formation of 3D domains.

By integrating Hi-C data with ChIP-seq data or DNA
motif data, we propose to model the blocking effects of pro-
tein bindings with a generalized linear model:

log
(
E

[
y|d, B, I

]) = β0 + βdd + βBB − β II (1)

where, variable y denotes Hi-C count for any pair of bins on
the same chromosome. The log-distance variable d accounts
for the background polymer effect (power law decay rela-
tion between distance and Hi-C count modeled by a log–
log linear relation) (36). Bias variables B = {len, GC, map}
are known Hi-C biases including fragment length (len), GC-
content (GC) and mappability (map) that are computed as
in (37). Including those bias variables into the model allows
correcting for biases in Hi-C data. Note that bias variables
do not need to be included in the model if Hi-C counts
were previously normalized by matrix balancing (38). Vari-
able set I = {i1, ..., ip} represents the p blocking variables
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Figure 1. Illustration of the blocking model. (A) Example showing that the accumulation of insulator-binding proteins (IBPs) is associated with a blocking
effect of long-range contacts between flanking loci in Drosophila (see green frame). (B) Schema representing the blocking effect of protein binding on long-
range contacts between two loci, such as between an enhancer and a promoter.

of interest. A blocking variable stores a value correspond-
ing to a ‘blocking region’ (Figure 1B), which is the region
in-between two bins whose Hi-C contacts are measured.
For ChIP-seq data, a blocking variable is defined as the av-
erage of the base coverage computed from the log2 fold-
enrichments of peaks found into the blocking region di-
vided by the length of the blocking region. A base within a
peak has a coverage value equal to the log2 fold-enrichment
of the peak and a base outside a peak has a coverage value
equal to zero. For DNA motif data, a blocking variable
is defined as the number of motif occurrences found into
the blocking region divided by the length of the blocking
region. The corresponding �i parameter value reflects the
blocking effect of the protein on Hi-C counts. A positive
value (�i > 0) reveals a blocking effect on long-range con-
tacts. Conversely, a negative value (�i < 0) shows a facilitat-
ing effect on contacts. A null value (�i = 0) means that the
protein does not have any effect in blocking or facilitating
contacts.

Using the model, one can also assess the co-blocking ef-
fects of two or more proteins using statistical interaction
terms:

log
(
E

[
y|d, B, i1, i2

]) = β0 + βdd + βBB

−βi1 i1 − βi2 i2 − βi12 i1i2 (2)

where, variables i1 and i2 are two blocking variables. The
product i1i2 is a second-order statistical interaction. The
corresponding parameter βi12 reflects the co-blocking effect
of the two proteins on contacts. A positive value (βi12 > 0)
reveals a synergistic effect of the two proteins in blocking
contacts. Conversely, a negative value (βi12 < 0) shows an
antagonistic effect of the two proteins in blocking contacts.
In equation (2), a second-order interaction was included,
but higher-order interactions (products of more than two
variables) can be included to model co-blocking effects of
more than two proteins.

The model only depends on a single parameter: the dis-
tance range between insulated loci. This parameter has a
strong biological meaning since it reflects the analysis scale
of hierarchical 3D genome organization. For instance, in
Drosophila, we will focus on Hi-C data for 20–50 kb dis-
tances which are below the median size of TADs (median
size of 60 kb (3)), therefore allowing TAD-scale analyses.
But we will also vary the scale of analysis in human (see be-
low).

In some situations, we standardize the blocking variables
before computing the model. Standardization allows to re-
duce the effect of very large differences in the blocking vari-
ables between different proteins when estimating the �s and
makes the latter more comparable in magnitude. In fact,
these blocking variable differences might be due to very
large differences in the ChIP-seq signal and the number of
peaks that might not be linked to the real blocking activ-
ity of proteins. For instance, when analyzing human ChIP-
seq data, we found that the highest �s were often associated
to proteins with few binding sites when no standardization
was used, and that these �s were strongly reduced after stan-
dardization (see below).

Because of Hi-C count overdispersion, we use negative
binomial regression as the most appropriate specification
of the generalized linear model. However, Poisson regres-
sion with lasso shrinkage can also be used. We believe that
the choice between both depends mainly on the number of
variables to analyze. On the one hand, if there are a few can-
didate variables (<10), it is interesting to estimate � param-
eters together with corresponding P-values to assess sig-
nificance using negative binomial regression. On the other
hand, if there are a large number of variables (10 or more),
it is more convenient to use Poisson lasso regression in or-
der to select the key variables and to account for correla-
tions among the variables (frequent in ChIP-seq and motif
occurrence data).
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The model is available in the R package ‘HiCblock’
which can be downloaded from the Comprehensive R
Archive Network (https://cran.r-project.org/web/packages/
HiCblock/index.html). For the negative binomial regres-
sion, model �s are learned by iterative weighted least
squares (glm.nb function from MASS R package with
default parameters). For the Poisson lasso regression,
model �s are learned by cyclical coordinate descent
and lambda parameter is estimated with 10-fold cross-
validation (cv.glmnet function from glmnet R package with
default parameters).

Simulation of random protein-binding sites and motif occur-
rences

For Poisson lasso regression in human, we simulated pro-
tein binding sites by randomly drawing genomic regions
from the genome whose numbers and fold-enrichments
were similar to those observed from real proteins. We then
used these random proteins to compute associated � coeffi-
cients with the Poisson lasso regression. We expected these
�s to be close to zero but with a certain standard devia-
tion σ̂ . We then used this standard deviation to compute a
confidence interval as 0 ± 1.96 × σ̂ under the null hypothe-
sis that a random protein did not have any blocking or fa-
cilitating effect on long-range contacts. For DNA motifs,
we used a slightly different approach. We randomly draw
14 base DNA sequences (random motifs) whose number of
occurrences over the genome were similar to those of real
DNA motifs. We scanned the genome for random motif oc-
currences. Then, we used these random motif occurrences to
compute associated � coefficients with the Poisson lasso re-
gression. As for random proteins, we used these �s to com-
pute a confidence interval under the null hypothesis.

RESULTS

Model validation with enhancer-blocking assays

We first sought to validate our model using EBAs from
Drosophila. EBA is a classical low-throughput method that
can be used to show the ability of an insulator sequence to
block the activation of a promoter by a distant enhancer
when interposed between them (39) (Figure 2A). We used
the model to predict the blocking effect of an insulator re-
gion depending on protein binding. For this purpose, we
used a compilation of EBA results from (11). It consisted
of 32 regions with varying reported insulating activity (15
regions with insulating activity and 17 regions with no in-
sulating activity). In the first benchmark, we selected the
15 regions with insulating activity (positive class). In or-
der to have a large set of regions with no insulating activ-
ity, we generated >100 control regions (negative class) by
randomly drawing from the Drosophila genome with sizes,
GC and repeat contents similar to those of the abovemen-
tioned 15 regions (40). For each region, we computed block-
ing variables I = {i1, ..., ip} using p ChIP-seq data from
Kc167 cells. We also used β̂I = {β̂i1 , ..., β̂i p } model parame-
ters independently learned from Kc167 Hi-C data from Li
et al. (17) at 2 kb resolution and for 20–50 kb distances,
for which Hi-C coverage was high. Model parameters were

Figure 2. Validation of the model with enhancer-blocking assays (EBAs)
from Drosophila and human. (A) Illustration of the EBAs. (B) ROC curves
of the prediction of insulating regions (positives) as compared to randomly
drawn regions (negatives) in Drosophila. Area under the ROC curve (AUC)
is plotted. (C) ROC curves of the prediction of insulating regions (pos-
itives) as compared to non-insulating regions (negatives) in Drosophila.
(D) Blocking effects of GATA SSRs depending on the repeat count in
Drosophila. (E) Blocking effects of GATA SSRs depending on the repeat
count in human.

not learned from EBA assays to prevent overestimation of
predictive performance. We predicted insulating activities of
the regions by the matrix product β̂I I. We then assessed the
accuracy of our model’s predictions using receiver operat-
ing characteristic (ROC) curve and the area under the ROC
curve (AUC). We found that predicted insulating activity
was very close to the observed insulator activity from EBA
(AUC = 0.981; Figure 2b). In the second benchmark, we
did not use generated controls but instead the 17 regions re-
ported to have no insulating activity as negative class. We
again predicted insulating activity, and found that predic-
tions were still good (AUC = 0.808; Figure 2C). We found
that changing Hi-C data resolution to 1 or 5 kb only slightly
affected predictions for the two benchmarks (Supplemen-
tary Figure S1). In the third benchmark, we assessed the
blocking effect of simple sequence repeats (SSRs) of GATA
that were shown to have an insulating activity by EBAs
in both drosophila and human (41). In drosophila, we esti-
mated a blocking effect for SSRs that comprised >4 repeats
(Figure 2D and Supplementary Table S1). In particular, we
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Figure 3. Analysis of IBPs in Drosophila. (A) Enrichment of IBPs at TAD
borders, depending on the TAD mapping algorithm used. (B) Blocking
effect (�) estimated separately. (C) Blocking effect (�) estimated jointly.
(D) MLR �s estimated from TAD borders (15). (E) Parameter estimation
accuracy of the proposed model compared to MLR.

found a significant blocking effect for SSRs with five to six
repeats (β̂ = 0.046, P = 2 × 10−8). SSRs with >6 repeats
were too few to detect any significant blocking effect (only
8 SSRs with 7 to 8 repeats and 9 SSRs with >11 repeats).
In human, we detected significant blocking effects for all
GATA repeat counts (P < 10−20) at short distances (100–
250 kb at 10 kb resolution; Figure 2E and Supplementary
Table S2). Most notably, we found the highest blocking ef-
fects for SSRs with 9 to 10 repeats (β̂ > 0.07, P < 10−20),
revealing that the blocking effect depends on the number of
repeats. For larger distances (950–1000 kb), we could only
detect a slight blocking effect for eight repeats, suggesting
that SSR blocking effect acted at short distance (Supple-
mentary Figure S2 and Table 3). Using EBAs, we thus con-
cluded that the model was successfully validated.

Analysis of insulator proteins and comparison with current
approaches

A major problem of testing protein enrichment at TAD bor-
ders is that different algorithms have been developed for
TAD mapping which can yield large differences of enrich-
ments for the same protein (42). Accordingly, we observed
that the enrichments of BEAF-32, dCTCF, dTFIIIC, GAF
and Su(Hw) could greatly vary depending on the TAD al-
gorithm used in Drosophila (Figure 3A). For instance, GAF
presented an odds ratio (OR) of 4.3 with HiCseg (43), an
OR of 4 with Arrowhead (12), whereas it only showed an
OR of 2.5 with TopDom TADs (16). Conversely, dCTCF

presented an OR of 3.7 with HiCseg, and ORs around 5
with Arrowhead and TopDom.

Instead of testing protein enrichments at TAD borders,
we used our model to directly assess the blocking effect of
protein binding on long-range contacts. We first estimated
separately the blocking effects of IBPs, by including only
one IBP in the model at a time. This allowed to compare
with previous enrichments. We used Kc167 Hi-C data from
Li et al. (17) at 2 kb resolution and focused on 20–50 kb dis-
tances. Using our model, we found that BEAF-32, dCTCF
and dTFIIIC showed the strongest blocking effects (Fig-
ure 3B), which was similar to the enrichments observed at
TAD borders (Figure 3A) and previously observed by Sex-
ton et al. (3). Because the blocking effect might be influ-
enced by the number of protein-binding sites, we sampled
different numbers of peaks from BEAF-32 and estimated
the corresponding �s. As expected, we found that � accu-
racy was lower for smaller number of peaks (Supplementary
Figure S3). We also observed that the blocking effect was in-
flated, but such inflation remained reasonable (+63%), even
for 1000 sampled peaks which represented only 15% of all
BEAF-32 peaks.

Because IBPs often colocalize linearly (e.g. correlate) on
the chromosome, one might estimate a blocking effect for
a protein, although the protein does not directly impede
long-range contacts (15). Hence, we re-estimated blocking
effects of IBPs jointly (e.g. by including all IBPs within the
same model). BEAF-32 presented the highest blocking ef-
fect (β̂ = 0.86, P < 10−20) compared to the other proteins
(Figure 3C), similarly to previously published MLR analy-
sis at TAD borders (15) (Figure 3D). Our model also esti-
mated a negative � for dTFIIIC, suggesting that the protein
could in fact facilitate long-range contacts between flanking
regions, contrary to what is found by the separate estima-
tion (previous paragraph). This meant that dTFIIIC block-
ing effect estimated by separate estimation was in fact due
to the colocalization (correlation) of dTFIIIC with other
IBPs such as BEAF-32 (correlation between dTFIIIC and
BEAF-32 blocking variables equals 0.59, P < 10−20). Our
model outperformed MLR in terms of parameter estima-
tion accuracy. Standard errors of beta parameters were dra-
matically lower than the ones from MLR, revealing the
higher performance of our model in assessing blocking ef-
fects of proteins (Figure 3E). To further compare our new
model with MLR, we assessed the ability to discriminate
between known architectural proteins (11 true positives in-
cluding IBPs and co-factors) and random protein peaks
(200 false positives) using ROC curves (Supplementary Fig-
ure S4). Based on the absolute values of �s, we found that
our blocking model was highly accurate (AUC = 0.991) and
performed better than MLR (AUC = 0.827). Moreover, we
performed the joint analysis of IBPs for different binning
resolutions (1 and 5 kb) and found similar results with 2 kb,
revealing that the resolution did not have a big impact on
the estimation of blocking effects (Supplementary Figure
S5). In addition, we analyzed recent Hi-C data with higher
coverage from Eagen et al. (18) at 1 kb resolution and ob-
tained results that were close to those obtained from Li et al.
data (Supplementary Figure S6). Thus, by processing the
whole Hi-C matrix information, instead of focusing only on

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkx1246/4758612
by SCD - Universite Toulouse III user
on 19 December 2017



6 Nucleic Acids Research, 2017

Figure 4. Analysis of protein binding DNA motifs in Drosophila. (A)
Blocking effect (�) in function of motif abundance (|β̂| > 0.2 are shown in
red; known architectural proteins are written in blue). (B) Example show-
ing the accumulation of M1BP motifs and DNase I hypersensitive sites
between 3D domains. (C) Example showing the accumulation of Pita and
Pnr motifs between 3D domains. (D) Example showing the accumulation
of Ttk69k motifs between 3D domains.

TAD borders, the proposed model was more accurate than
MLR.

Numerous protein-binding DNA motifs act as blockers

We next sought to analyze the blocking effects of protein-
binding DNA-motifs (Figure 4A and Supplementary Table
S4). Interestingly, our model found motif 1-binding pro-
tein (M1BP) as the motif with the strongest blocking ef-
fect (β̂ = 1.46), which was recently found to be enriched at
TAD borders during development (35) and was implicated
in transcriptional pausing of genes (31). Such transcrip-
tional pausing was recently shown to be involved in long-
range contacts (44). When we looked at Hi-C heatmaps,
we observed that M1BP motifs accumulated at the bor-
ders of 3D domains (Figure 4B; DNase I hypersensitiv-
ity is shown to represent the potential activity of the mo-
tifs). We also identified other motifs with strong blocking
effects including bcd (β̂ = 0.65), Pita (β̂ = 0.63), vis (β̂ =
0.60), Pnr (β̂ = 0.59) and Ttk69k (β̂ = 0.55). Among those

proteins, Pita was a recently discovered insulator protein
able to target CP190 to chromatin (45) and was found at
3D domain borders (Figure 4C). When we used Ttk69k
ChIP-seq and Pnr ChIP-chip data, we found that both
Ttk69k and Pnr colocalized at or near architectural pro-
tein peaks (Supplementary Figure S7a). For instance, Pnr
was enriched at condensin I (Barren), CP190, BEAF-32
and Chromator peaks (Supplementary Figure S7b). Inter-
estingly, Ttk69k was mostly enriched near architectural pro-
teins but did not overlap them, except for condensin I, sug-
gesting that Ttk69k might participate to the formation of
3D domains in a very specific way (Supplementary Fig-
ure S7c). Accordingly, we found numerous Pnr and Ttk69k
motifs located between 3D domains (Figure 4C and D).
We also identified architectural proteins ZW5 (β̂ = 0.33),
dCTCF (β̂ = 0.32) and Ibf (β̂ = 0.29). Of note, Ibf was
shown to be a novel CP190 interacting protein with in-
sulating activity (33). When we compared with MLR, we
also found that M1BP presented a very high positive in-
fluence on TAD borders (β̂ = 8.65; Supplementary Table
S5). However another motif, Zelda, presented the highest
positive influence (β̂ = 9.32), whereas the same motif was
identified as a long-range contact facilitator with the block-
ing model (β̂ = −0.41; Supplementary Table S4). This sug-
gests that the blocking model can capture effects on long-
range contacts that could not be assessed by the analysis at
the TAD border level. Using the blocking model, we could
conclude that many proteins including pannier, a transcrip-
tional regulator involved in several developmental processes
(46) and tramtrack 69k, a widely expressed transcriptional
factor (TF) related to cell fate specification, cell prolifer-
ation and cell-cycle regulation (47), might represent novel
candidate architectural proteins in Drosophila.

Co-blocking effects of insulator-binding proteins and co-
factors

Long-range contacts not only involve IBPs but also co-
factors that regulate or stabilize them (11,12,48). Hence, we
sought to analyze potential effects of IBPs and co-factors in
co-blocking long-range contacts. We first modeled the co-
blocking effects of protein pairs using second-order statis-
tical interactions (for every protein pair, we estimated a co-
blocking effect). We detected 38/55 significant interactions
after Bonferroni correction. Among the significant interac-
tions, the model identified 19 positive co-blocking effects
(β̂ > 0), reflecting protein pairs that synergistically blocked
long-range contacts (Supplementary Table S6). We repre-
sented these synergistic blocking effects by a network of
proteins (Figure 5A). In agreement with (49), CP190 co-
blocked contacts with BEAF-32 (β̂ = 0.76, P < 10−20) and
with GAF (β̂ = 0.67, P < 10−20). Interestingly, we found
that Condensin II (Cap-H2) played a central role in help-
ing other proteins to block contacts, including dCTCF (β̂ =
1.33, P = 4 × 10−13), Barren (β̂ = 0.78, P < 10−20), dT-
FIIIC (β̂ = 0.70, P = 10−6) and GAF (β̂ = 0.68, P = 2
× 10−10). dTFIIIC also represented an important protein
for co-blocking effects. Conversely, Fs(1)h-L had only one
co-blocking partner, dTFIIIC. The model also estimated
19 negative co-blocking effects (β̂ < 0), reflecting protein
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Figure 5. Effects of IBPs and co-factors in co-blocking long-range con-
tacts. (A) Synergistic blocking effects estimated by positive second-order
interaction �s. An edge between two protein nodes i and j means β̂i j > 0.5.
(B) Antagonistic blocking effects estimated by negative second-order inter-
action �s. An edge between two protein i and j nodes means β̂i j < 0.5. Blue
cross: physical interaction reported in Flybase.

pairs that had antagonistic effects in blocking long-range
contacts (Figure 5B and Supplementary Table S6). Most
notably, we found numerous antagonistic effects of CP190
in blocking contacts with other proteins, such as dTFIIIC
(β̂ = −2.33, P < 10−20), Su(Hw) (β̂ = −1.78, P < 10−20),
Chromator (β̂ = −1.68, P < 10−20), dCTCF (β̂ = −0.87,
P < 10−20) and Fs(1)h-L (β̂ = −0.53, P = 4 × 10−6). In-
terestingly, Su(Hw) had a slight blocking effect on long-
range contacts (β̂ = 0.20, P < 10−20; Figure 3C), but when
combined with CP190, they presented a strong antagonis-
tic effect which reduced its blocking effect (β̂ = −1.78, P
< 10−20; Figure 5B). Among the synergistic and antago-
nistic effects, we found that many corresponded to physical
interactions reported in Flybase and previous studies (49),
supporting the idea that physical interactions may account
for some of them. Analysis of second-order interactions
thus revealed the complexity behind the establishment of
3D domains. This may notably depend on numerous syner-
gistic and antagonistic effects of IBPs with key architectural
co-factors such as structural maintenance complex (SMC)
family of proteins including cohesin and condensin (50,51).

Analysis in human

We then analyzed blocking effects of proteins and DNA
motifs in human, depending on the scale of 3D genome or-
ganization. For this purpose, we used GM12878 Hi-C data
for varying distance ranges: [200–400 kb], [400–600 kb],
[600–800 kb], [800–1000 kb], [1000–1300 kb], [1700–2000
kb], [2700–3000 kb], [2700–3000 kb], [3700–4000 kb] and
[4700–5000 kb]. We performed analyses at 40 kb resolution
to have sufficient coverage at long distance (even though for
short distance higher resolution could be used). By varying
the distance range, we could assess blocking effects at dif-
ferent scales, thus allowing the analysis of the well-known
hierarchical nature of 3D domains (52). Because of the large
number of variables (>50), we used Poisson lasso regres-
sion. Moreover, for ChIP-seq data analysis, we scaled the
blocking variables because the ChIP-seq peak numbers and
fold-enrichments greatly varied between proteins and that
prevented further comparison of �s. For each analysis, we

Figure 6. Analysis of protein binding and DNA motif in human. (A)
Blocking effects of architectural proteins depending on the distance be-
tween loci. (B) Blocking effects of TFs depending on the distance between
loci. (C) Blocking effects of protein binding motifs depending on the dis-
tance between loci. For all three subfigures, we also plotted confidence in-
tervals under the null hypothesis that a random protein or DNA motif did
not have any effect on long-range contacts.

also computed confidence intervals under the null hypoth-
esis that a protein or DNA motif did not have any block-
ing or facilitating effect on long-range contacts (see ‘Mate-
rials and Methods’ section, simulation of random protein-
binding sites and motif occurrences).

We first focused on known architectural proteins CTCF,
Rad21 (cohesin subunit) and ZNF143. Remarkably, we ob-
served that the blocking effects of architectural proteins
strongly depended on the distance between loci (Figure
6A and Supplementary Table S7), a question that could
not be addressed by previous enrichment or MLR analy-
ses at TAD borders. For instance, CTCF blocking effects
peaked around 3 Mb. Interestingly, the main looping part-
ner of CTCF, cohesin, had a blocking effect that peaked at
a lower distance, from 1000 to 2000 kb. Another partner
of CTCF, ZNF143, also showed a different blocking effect
that strikingly peaked at 800–900 kb. This means that al-
though CTCF, cohesin and ZNF143 were known to act to-
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gether in establishing chromatin loops (7), they might par-
ticipate at different scales. We next studied the blocking
effects of TFs (Figure 6B and Supplementary Table S7).
Compared to architectural proteins, TFs were less abundant
over the genome (around few thousands peaks, compared
to tens of thousands of peaks for architectural proteins).
Among the strongest blockers, we found ATF2, FOXM1,
PML and POU2F2, whose effects also depended on dis-
tance. POU2F2 effect peaked at 3800 kb, and FOXM1
and PML both peaked at 3 Mb. Interestingly, some TFs,
such as ATF2, presented high blocking effects for very
large distance (>5 Mb). Thus, although TFs were less fre-
quent over the genome than architectural proteins, they
might collectively contribute significantly to the establish-
ment or maintenance of 3D organization. Lastly, we ana-
lyzed protein-binding DNA motifs (Figure 6C and Supple-
mentary Table S8). CTCF motif showed a strong blocking
effect that peaked from 1000 to 2000 kb, at a shorter dis-
tance than found using ChIP-seq data. However, another
motif, TFAP2C, presented the strongest blocking effect, es-
pecially at long distance. TFAP2C has been implicated in
breast cancer oncogenesis, and was previously shown to be a
collaborative factor in estrogen-mediated long-range inter-
action and transcription (53). We also identified ELK4 and
PAX1 as strong blockers at long distance. ELK4 is a mem-
ber of the Ets family of transcription factors, and PAX1, is
essential during fetal development. We thus concluded that
architectural proteins, but also transcription factors, shaped
the 3D human genome at different genomic scales.

DISCUSSION

In this paper, we propose a model to comprehensively study
the roles of architectural proteins, insulators and DNA mo-
tifs in blocking long-range contacts between flanking loci at
different scales, thereby demarcating the genome into func-
tional 3D domains. The proposed approach is TAD-free: it
does not rely on any TAD mapping algorithm, it does not
focus on TADs but instead on all possible 3D domains at
all scales, and it is not affected by the blurriness of TAD
borders. The model is validated by numerous EBAs. It out-
performed previous MLR of TAD borders (15) in terms of
blocking effect estimation accuracy. The model is flexible
and can identify both synergistic and antagonistic effects of
architectural proteins depending on the presence of specific
IBPs and co-factors.

The proposed model also uncovers a number of results. In
Drosophila, we find that the blocking effect for the GATA
SSRs depends of the number of repeats, and in particular,
we estimate a significant blocking effect for 5–6 repeats. In
human, we find that GATA repeat effect peaks for 9–10 re-
peats. Moreover, analysis of motifs identifies pannier and
tram track as two novel candidate architectural proteins. In-
terestingly, the protein pannier is a member of the GATA
family known to bind to GATA motifs (46), which may ex-
plain the insulating activity of GATA repeats by recruiting
multiple pannier proteins contiguously to DNA. Moreover,
tram track has a homomeric dimerization BTB/POZ do-
main that could help bridging two distant proteins through
long-range contacts (54) and that is known to interact with
GAF (55). Analysis of co-blocking effects between archi-

tectural proteins further suggests a role for co-factor con-
densin II in helping other proteins to block contacts. Con-
versely, CP190 presents numerous antagonistic effects with
other proteins, meaning that it reduces their blocking activ-
ities. Such co-blocking analyses thus reveal the modulating
effects of specific proteins in blocking contacts with other
proteins. In human, analyses for varying distance ranges un-
cover strong distance-dependent blocking effects depending
on the protein or DNA motif, that could not be addressed
by enrichment test or MLR at TAD borders. For instance,
we find that CTCF, cohesin and ZNF143 blocking effects
peak at different distances, although the three proteins are
known to act together in establishing chromatin loops (7).
This suggests that they may participate at different 3D chro-
matin scales, or alternatively that their mechanisms of ac-
tion is not always associated with their binding. Support-
ing this idea, recent results showed that cohesin is recruited
at transcription start sites and positioned to CTCF sites by
transcription-mediated translocation (56). In addition, we
observed changes of the � sign depending on the distance.
For instance, ZNF143 presented a blocking effect at short
distance (<2500 kb) and a facilitating effect at longer dis-
tance. This can be due to ZNF143-mediated loops at short
distance that have allosteric effects on long distance inter-
actions (57).

There are different reasons why we restricted our analysis
within a limited distance range, e.g. 20–50 kb in Drosophila
(and not 20–1000 kb, for instance). First, at the high resolu-
tion of 2 kb, most of the Hi-C signal is observed within short
distance (20–50 kb). Second, our model assumes a power
law decay between Hi-C count and distance (equivalent to
a log–log linear relation between Hi-C count and distance)
which only holds for a limited distance range. Third, not
restricting the analysis to a limited distance range can lead
to heavy computational burden. One simple way to analyze
Hi-C data within a wider distance range would be to ana-
lyze data at 10–20 kb resolutions.

There are several limitations of the proposed approach.
First, model learning can be computationally demanding in
time and memory depending on the distance range or Hi-C
data resolution. New big data learning algorithms could be
used to process the data at a higher resolution that would al-
low in-depth analysis of 3D chromatin drivers (58). Second,
the model makes the assumption that the accumulation of
protein binding blocks long-range contacts, but other sce-
narios could explain the formation of borders. For instance,
attraction/repulsion forces between histone marks can pre-
dict the folding of chromatin (59). Third, in human, we ob-
served large changes of �s over distance, for instance for
protein ZNF143 and DNA motif TFAP2C(var.3). Because
lasso regression is not designed to estimate beta standard
deviations, the significance of the difference between two
�s obtained for two different distances cannot be tested.
Instead, one could use a standard regression with selected
variables to assess the significance.
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The model is available in the R package ‘HiCblock’
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Archive Network (https://cran.r-project.org/web/packages/
HiCblock/index.html).
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3.4.3.4 TADreg: TAD identification, differential analysis and prediction

Over the past years, tremendous efforts have been made to develop methods for TAD

identification from Hi-C data [Zufferey et al. 2018]. The methods can be broadly

classified into 4 categories: linear score, statistical model, clustering and network

features [Zufferey et al. 2018]. The first methods split the genome into bins and

define a linear score (insulation score) associated with each bin [Dixon et al. 2012,

Crane et al. 2015, Rao et al. 2014, Shin et al. 2016]. The second methods rely

on statistical models of the interaction distributions [Levy-Leduc et al. 2014,

Weinreb & Raphael 2015, Serra et al. 2017]. The third methods cluster regions

of the genome [Oluwadare & Cheng 2017, Haddad et al. 2017]. The fourth

methods consider the Hi-C data as a graph adjacency matrix and TADs as

communities to detect [Chen et al. 2016, Yan et al. 2017a, Norton et al. 2018].

However, very few methods were developed to detect differential TADs be-

tween experiments [Zaborowski & Wilczynski 2016, Sadowski et al. 2019,

Cresswell & Dozmorov 2020]. Moreover, few methods were also proposed to

predict the impact of chromosomal rearrangement in reshaping TADs, and

more generally the 3D genome [Bianco et al. 2018, Huynh & Hormozdiari 2019,

Sadowski et al. 2019, Kaplan 2019, Belokopytova et al. 2020].

I proposed a versatile regression framework that generalizes the insulation score

by estimating a relative score and adding a sparsity constrain (”Sparse Insulation

Model”, SIM), but also allows differential TAD analysis (”Differential Insulation

Model”, DIM) and Hi-C data prediction after chromosomal rearrangement (”Pre-

diction Insulation Model”, PIM) (from submitted article ”TADreg : A versatile

regression framework for TAD identification, differential analysis and rearranged

3D genome prediction” below). The proposed model provides a rigorous statis-

tical framework for modeling the interaction distribution, where the model pa-

rameters represent sparse insulation scores that have an intuitive interpretation

and are easy to visualize (Figures 1A and 1B, article below). Our model assumes

additivity of insulation parameters as previously proposed by [Rowley et al. 2017,

Mourad & Cuvier 2018, Huynh & Hormozdiari 2019, Kaplan 2019]. By adding in-

teraction terms in the model, the regression framework can naturally be used for dif-

ferential TAD border identification between two different Hi-C experiments. More-

over, the regression can predict Hi-C data in the case of structural variants, thereby

allowing to explore the deleterious impact of the de novo enhancer-promoter inter-

actions. Using recent high resolution human and mouse Hi-C data, I found that

our approach ranked among the top TAD callers, when evaluated using external

assessment designed not to favor any tool. Moreover, it identified new features of

the genome, we called TAD facilitators, which were demonstrated to be biologi-

cally relevant. Our approach could also identify numerous differential TAD borders

involved in cortical neuron differentiation. Such borders were depleted in CTCF

compared to embryonic stem cells and enriched in a large number of known neu-

ronal transcription factors including NFATC1/3, NEUROD2, HiC1 and Dmbx1.

Lastly, my approach outperformed state-of-the-art algorithm PRISMR to predict



3.4. The genome in 3D 97

Hi-C data after chromosomal rearrangement.



TADreg: a versatile regression framework 
for TAD identification, differential analysis 
and rearranged 3D genome prediction
Raphaël Mourad* 

Introduction
In higher eukaryotes, chromosomes are packed into three dimensions (3Ds) and form 
complex structures [1]. Such 3D structure of chromosomes has recently been investi-
gated by chromosome conformation capture combined with high-throughput sequenc-
ing technique (Hi-C) at an unprecedented resolution [2–4]. Hi-C experiments revealed 
multiple levels of genome organization including compartments A/B [5] and topologi-
cally associating domains (TADs) [2, 3]. Most notably, TADs are relatively constant 
between different cell types and are highly conserved across species. Those TADs play 
central roles in key cell processes such as for the long-range regulation of genes by 
enhancers [4] or for the replication-timing regulation [6].

Abstract 

Background/Aim:  In higher eukaryotes, the three-dimensional (3D) organization of 
the genome is intimately related to numerous key biological functions including gene 
expression, DNA repair and DNA replication regulations. Alteration of 3D organization, 
in particular topologically associating domains (TADs), is detrimental to the organism 
and can give rise to a broad range of diseases such as cancers.

Methods:  Here, we propose a versatile regression framework which not only identi-
fies TADs in a fast and accurate manner, but also detects differential TAD borders across 
conditions for which few methods exist, and predicts 3D genome reorganization after 
chromosomal rearrangement. Moreover, the framework is biologically meaningful, has 
an intuitive interpretation and is easy to visualize.

Result and conclusion:  The novel regression ranks among top TAD callers. Moreo-
ver, it identifies new features of the genome we called TAD facilitators, and that are 
enriched with specific transcription factors. It also unveils the importance of cell-type 
specific transcription factors in establishing novel TAD borders during neuronal differ-
entiation. Lastly, it compares favorably with the state-of-the-art method for predicting 
rearranged 3D genome.

Keywords:  Chromatin interaction, Hi-C, ChIP-seq, Insulator binding protein, 
Generalized linear model
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Over the past years, tremendous efforts have been made to develop methods for TAD 
identification from Hi-C data [7]. The methods can be broadly classified into 4 catego-
ries: linear score, statistical model, clustering and network features [7]. The first methods 
split the genome into bins and define a linear score (insulation score) associated to each 
bin [2, 8–10]. The second methods rely on statistical models of the interaction distributions 
[11–13]. The third methods cluster regions of the genome [14–16]. The fourth methods 
consider the Hi-C data as a graph adjacency matrix and TADs as communities to detect 
[17–19]. However, very few methods were developed to detect differential TADs between 
experiments [20–22]. Moreover, few methods were also proposed to predict the impact of 
chromosomal rearrangement in reshaping TADs, and more generally the 3D genome [21, 
23–26].

We propose a versatile regression framework that generalizes the insulation score by esti-
mating a relative score and adding a sparsity constrain (“Sparse Insulation Model”, SIM), 
but also allows differential TAD analysis (“Differential Insulation Model”, DIM) and Hi-C 
data prediction after chromosomal rearrangement (“Prediction Insulation Model”, PIM). 
The proposed model provides a rigorous statistical framework for modeling the interac-
tion distribution, where model parameters represent sparse insulation scores that have an 
intuitive interpretation and are easy to visualize. Our model assumes additivity of insulation 
parameters as previously proposed by [24, 25, 27, 28]. By adding interaction terms into the 
model, the regression framework can naturally be used for differential TAD border identifi-
cation between two different Hi-C experiments. Moreover, the regression can predict Hi-C 
data in the case of chromosomal rearrangements such as deletion and inversion, thereby 
allowing to explore the deleterious impact of de novo enhancer-promoter interactions on 
genetic diseases and cancers.

Using recent high resolution human and mouse Hi-C data, we found that our approach 
ranked among the top TAD callers, when evaluated using external assessment designed not 
to favor any tool. Moreover, it identified new features of the genome we called TAD facilita-
tors, which were demonstrated to be biologically relevant. Our approach could also iden-
tify numerous novel TAD borders emerging during cortical neuron differentiation. Such 
borders were depleted in CTCF compared to embryonic stem cells and enriched in a large 
number of known neuronal transcription factors including NFATC1/3, NEUROD2, HiC1 
and Dmbx1. Lastly, our approach outperformed state-of-the-art algorithm PRISMR to pre-
dict Hi-C data after chromosomal rearrangement.

Materials and methods
Hi‑C data

We used publicly available Hi-C data of lymphoblastoid GM12878 and lung IMR90 cells 
from Gene Expression Omnibus (GEO) accession GSE63525 [9]. We also used publicly 
available Hi-C data of mouse embryonic stem (ES) and cortical neuron (CN) cells from 
GEO accession GSE96107 [29]. Hi-C data were binned at 25 and 50 kb resolutions and nor-
malized by matrix balancing [30].

Capture Hi‑C data

We used publicly available capture Hi-C data of wild-type (WT) and mutant distal 
limb buds of E11.5 mice from Gene Expression Omnibus (GEO) accession GSE92294 
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[23]. Hi-C data were binned at 10 kb resolution and normalized by matrix balancing 
[30].

ChIP‑seq data

We used publicly available binding peaks of 73 chromatin proteins (Rad21, CTCF, 
YY1, ZBTB33, MAZ, JUND, ZNF143, EZH2, ATF2, ATF3, BATF, BCL11A, BCL3, 
BCLAF1, BHLHE40, BRCA1, CEBPB, CFOS, CHD1, CHD2, CMYC, COREST, E2F4, 
EBF1, EGR1, ELF1, ELK1, FOXM1, GABP, IKZF1, IRF4, MAX, MEF2C, MTA3, MXI1, 
NFATC1, NFE2, NFIC, NFKB, NFYA, NFYB, NRF1, NRSF, P300, PAX5, PBX3, PML, 
POL2, POL3, POU2F2, RFX5, RUNX3, RXRA, SIN3A, SIX5, SMC3, SP1, SPI1, SRF, 
STAT1, STAT3, STAT5, TBLR1, TBP, TCF12, TCF3, TR4, USF1, USF2, WHIP, ZEB1, 
ZNF274, ZZZ3) of GM12878 cells from ENCODE [31]. We downloaded peaks that 
were uniformly processed (Uniform Peaks).

We also used publicly available CTCF ChIP-seq data of mouse embryonic stem (ES) 
and cortical neuron (CN) cells from GEO accession GSE96107 [29].

JASPAR motifs

To scan the mouse genome for motif occurrences, we used FIMO with default param-
eters (meme-suite.org). The motif position weight matrices were downloaded from 
JASPAR database (http://jaspar.genereg.net/).

TAD manual annotation

We used manual annotation of GM12878 TADs at 50 kb from Dali and Blanchette 
[32]. As previously described by Dali and Blanchette, TADs were manually traced on 
GM12878 Hi-C maps from the full data set at 50 kb resolution for regions 40-45 mb 
of 10 different, randomly chosen, chromosomes (chr2, chr3, chr4, chr5, chr6, chr7, 
chr12, chr18, chr20 and chr22). Briefly, interaction maps of the regions of interest 
were plotted using HiCplotter. In Adobe Illustrator, dotted squares were manually 
traced around visually identifiable TADs on the interaction map plots. Regions anno-
tated as TADs had the following properties: (i) sharp visual contrast between within 
and across TAD interaction frequencies, over the entire TAD region; (ii) minimum 
size of 250 kb. To give all tools an equal chance, Dali and Blanchette created a dense 
set of TAD annotations that included any identifiable TAD structure. For example, 
if two potential TADs were overlapping, both were retained, irrespective of whether 
one had stronger visual support than the other. TAD boundaries were allowed to 
overlap or be nested, as long as there is a clearly traceable square along the diagonal. 
Bed files with TAD ranges were manually created and used for tool comparison.

Since 29% of genomic bins could be considered as relevant TAD borders using this 
annotation, we considered as TAD borders those supported by at least two TADs that 
were manually identified.

Insulation score

For a bin i ∈ {1, ..., p} , the insulation score was defined as [8]:
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where Mi was the number of Hi-C counts that occurred across bin i (up to some dis-
tance) on the same chromosome.

Sparse insulation model (SIM)

We first removed the distance effect (polymer effect) from the normalized Hi-C counts 
using a generalized additive model with a negative binomial distribution:

Variable y denoted normalized Hi-C count for any pair of bins on the same chromo-
some. The log-distance variable d accounted for the background polymer effect. The 
local power law decay relation between distance and Hi-C count was modeled by regres-
sion spline [33]. We noted that if bias variables such as GC content, mappability and 
fragment length were added to the model [34], then the model could also handle unnor-
malized Hi-C data. Regression residuals (noted z) were then used as input for a linear 
model. Using residuals allowed us to then use best subset selection (L0 penalty) for 
which there is only linear model implementation in R (see as follows).

Then, a linear model called the “sparse insulation model” (SIM) was proposed to esti-
mate the insulating effects of genomic loci on long-range interactions:

Variable set X = {x1, ..., xp} represented the p insulation variables, one for each bin of 
the chromosome. For a bin i ∈ {1, ..., p} , the insulation variable xi was set to one when 
the bin lied in-between the two bins whose interaction counts were measured by Hi-C, 
and was set to zero otherwise. The corresponding βxi parameter value reflected the effect 
of the bin i on Hi-C counts. A negative beta value ( βxi < 0 ) revealed an insulation effect 
on long-range contacts. Conversely, a positive beta value ( βxi > 0 ) showed a facilitat-
ing effect on contacts. A null beta value ( βxi = 0 ) meant that the bin had no effect on 
contacts.

Best subset selection was used to select the best insulation variables when estimating 
the βX parameters by adding an L0 penalty:

as done using the L0Learn R package (https://cran.r-project.org/web/packages/
L0Learn). Parameter � was obtained by 10 fold cross-validation of the mean square error 
(L0Learn.cvfit function with default parameters).

Often the number of insulation variables was too big for L0Learn R package (>5000) 
and we had to prefilter the variables. For this purpose, we used lasso regression (glm-
net R package, https://cran.r-project.org/web/packages/glmnet/) and kept variables with 
|β̂xi | > 0.2 . This allowed to reduce the number of variables to few thousands for L0Learn 
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to work, while still keeping most relevant variables. We found that prefiltering yielded 
betas that were similar to the ones obtained without prefiltering (Additional file 1: Figure 
S1).

Differential insulation model (DIM)

The model could be extended to identify differential TAD borders between two differ-
ent Hi-C experiment matrices (e.g. between two conditions). For this purpose, we first 
ran SIM for each Hi-C experiment matrix independently. Only the union of bins with 
|β̂xi | > 0 from both SIMs were kept for differential analysis (we noted the new bin set 
S = {s1, ..., sq} ). To prevent bin uncertainty between experiments, only one bin was kept 
among two consecutive bins. Bins from S were then used to build a novel model for dif-
ferential analysis called the “differential insulation model” (DIM).

The differential insulation model was written as follows:

Variable e denoted the experiment from which the Hi-C count is measured. Variable sje 
was the interaction term between the insulation variable sj and the experiment variable 
e , computed as the product between both variables. For a bin j, a negative beta value 
( βsje < 0 ) revealed higher insulation effect on long-range contacts for the 2nd experi-
ment compared to the 1st experiment, while a positive value ( βsje > 0 ) meant lower 
insulation effect. A null value ( βsje = 0 ) showed no differential effect. Because the model 
used as input only bins previously identified by the sparse insulation model, there was 
no need to use any penalty for parameter estimation. Moreover, the absence of a penalty 
term allowed to estimate differential effects without bias.

Prediction insulation model (PIM)

The model could be modified to predict Hi-C data, which we called the “prediction insu-
lation model” (PIM). For this purpose, we modeled the Hi-C count by a generalized lin-
ear model (Poisson regression):

Here, since we didn’t need to identify sharply the borders with L0 penalty, we could use 
directly the Poisson regression. PIM could be used to predict Hi-C data after chromo-
somal rearrangement. For this purpose, PIM was first trained using wild-type Hi-C data 
(no rearrangement). Then, the distance variable ( d ) and the insulation variables ( X ) 
were modified in a way to account for the chromosomal rearrangement. In the case of 
a deletion, the distance variable values were shrunk by the length of the deletion (pro-
ducing a new distance variable noted d′ ), and all insulation variables spanning the dele-
tion were set to zero (producing new insulation variables X′ ). In the case of an inversion, 
bins spanning the inversion were flipped and the distance variable and insulation vari-
ables were recomputed accordingly. The new variables ( d′ and X′ ) together with the 
trained PIM model (with parameters β̂0 , β̂d and β̂X ) were used to predict Hi-C data after 
rearrangement:
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Results and discussion
Identification of TAD borders and facilitators

We proposed the sparse insulation model (SIM) to estimate the insulating/facilitat-
ing effects of genomic loci on long-range interactions (Fig. 1A). SIM required only one 
parameter, the maximal distance between two bins from the Hi-C matrix, which we set 
here to bin size ×10 in order to reduce computational burden. We illustrated the model 
with high-depth Hi-C data at 25 kb resolution from human IMR90 lung cells, whose 
TADs could be easily visualized. We plotted the example of a 10-Mb-long genomic 
region of chromosome 1 (Fig. 1B). We first computed the insulation score (IS) to identify 
loci of high insulation. The insulation score is a standard measure reflecting the aggre-
gate of interactions occurring across each interval. It is often used by experimentalists 
because of its simple and quantitative interpretation: the lower, the higher the insulation 
effect of the loci on overlapping contacts [8]. We observed peaks of negative IS, reflect-
ing the presence of TAD borders with varying strengths (Fig. 1C). Alternatively, IS also 
revealed regions facilitating long-range contacts (score above zero).

(7)log(E[y|d′,X′]) = β̂0 + β̂dd
′ + X′β̂X

Fig. 1  Illustration of the sparse insulation model (SIM) and identification of TAD borders and facilitators. A 
Schema representing the insulation effects modeled by SIM on long-range contacts between two bins (two 
loci), such as between an enhancer and a promoter. B Hi-C heatmap from IMR90 cells at 25 kb resolution. C 
Insulation score. D SIM beta (no penalty). E SIM beta (L0 penalty). F CTCF enrichment profile depending on 
border strength (beta). G DNA binding protein enrichment compared to background for several proteins 
at TAD borders identified by our model (negative betas) depending on protein abundance. H DNA binding 
protein enrichment compared to background for several proteins at TAD facilitators identified by our model 
(positive betas) depending on protein abundance
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Using SIM, we estimated instead sparse insulation scores (beta parameters). For a bin 
i, the βxi parameter has a nice and intuitive interpretation: it is the insulation score, after 
accounting for the insulating/facilitating effects of the other bins. If no penalty is used to 
learn beta parameters, the betas correspond to a relative score (Fig. 1D). Using this rela-
tive score, we observed sharp peaks instead of wide valleys with the standard IS which 
prevented accurate location of TAD borders. Moreover, if an L0 penalty is used, then the 
regression leads to a sparse estimation of the insulation score. This helped to identify the 
exact location of bins with insulating/facilitating effects (Fig.  1E), in contrast to IS. In 
SIM, a negative beta value ( βxi < 0 ) reveals an insulation effect on long-range contacts 
(the bin is an insulator). Conversely, a positive beta value ( βxi > 0 ) shows a facilitating 
effect on contacts (the bin is a facilitator). A null beta value ( βxi = 0 ) means that the bin 
has no effect on contacts.

In the genomic region, SIM could detect ten TAD borders ( β̂ < 0 ). Using SIM, TADs 
could be simply defined as regions in-between two consecutive TAD borders. Visual 
inspection of the Hi-C matrix clearly revealed that our TAD identification was rele-
vant (Fig. 1B). Moreover, SIM could identify TAD borders with varying strengths. We 
found three strong TAD borders ( β̂ < −2 ; red arrows), five moderate TAD borders 
( −1.2 < β̂ < −2 ; orange arrows) and two weak TAD borders ( β̂ ≈ −1.1 ; yellow arrows). 
Moreover, the model uncovered one region with facilitating effects ( β̂ > 0 ; blue arrow).

We then looked at the enrichment of the CTCF protein, a major 3D genome organ-
izer, at TAD borders over the whole genome depending on the beta value. Here, we 
used GM12878 Hi-C data for which there are ChIP-seq data for a very large number of 
proteins, which helped us to comprehensively assess the role of DNA-binding proteins 
(see bellow). Overall, we found a strong two-fold enrichment of CTCF at TAD borders 
(Fig.  1F). Moreover, we observed that stronger TAD borders presented higher CTCF 
enrichment (2-fold for β̂ < −0.5 ; 2.2-fold for β̂ < −1.5 ), meaning that border strength 
estimated by SIM scaled accordingly with CTCF presence. Then, we evaluated enrich-
ment for all available protein binding ChIP-seq data, and observed as previously shown 
the highest enrichments for CTCF, RAD21, SMC3, ZNF143, YY1 and POL2 (Fig. 1G) [2, 
35, 36]. SIM could also identify regions facilitating contacts e.g. regions with β̂ > 0 (we 
called “TAD facilitators”), unlike most TAD detection tools. IS could also detect facilita-
tors, but without accurate location, thereby preventing enrichment analysis. Using SIM, 
we found that lymphocyte transcription factors (TFs) BATF, EBF1, NFIC, RUNX3 and 
SPI1 were enriched at such facilitator regions (Fig. 1H). Such high enrichment revealed 
that TAD facilitators were indeed biologically meaningful regions.

Thus, we could conclude that SIM had an intuitive interpretation in terms of insu-
lating/facilitating quantitative effects, which could also sharply identify TAD borders 
unlike the insulation score. Moreover, our model could accurately identify a novel class 
of 3D elements that we called TAD facilitators, which were highly enriched in cell spe-
cific TFs.

Performance and comparison with state‑of‑the‑art tools

SIM was very accurate to identify TAD borders. We compared it to 7 other algorithms 
including Armatus, Arrowhead, DomainCaller, TADbit, TADtree, TopDom, HiCseg 
using human GM12878 Hi-C data as from [32] (Fig. 2). At both 25 kb and 50 kb, SIM 
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identified a small number of TAD borders (2691 and 2711, respectively), such as HiC-
Seg (2835 and 2835, respectively) and TopDom (2738 and 2568, respectively) (Fig. 2A). 
Conversely, Armatus identified much more TAD borders (7567 and 4265, respectively) 
(Fig.  2A). Overall, we found that the number of borders identified by SIM (as well as 
HiCseg and TopDom) was only slightly impacted by Hi-C data resolution, unlike for the 
other algorithms. We also compared the TAD borders identified by SIM for different 
normalizations of the Hi-C data (Knight-Ruiz (KR) [30], iterative correction and eigen-
vector decomposition (ICE) [37] and square root vanilla coverage (VC SQRT) [38]), 
and globally found similar results at 50 kb resolution (Additional file 1: Figure S2). We 
then compared TAD border prediction concordance with manual annotation of TADs 
at 50 kb from [32] (Fig. 2B). These manually annotated TADs represented an external 
assessment which was designed not to favor any tool. We found that 58.5% of borders 
predicted by SIM were also found by manual annotation, which ranked first SIM. More-
over, SIM was able to detect 24.2% of manually annotated borders. In comparison, the 
large numbers of TAD borders detected by Armatus (>4000 at 50 kb) or TADbit (>3500 
at 50 kb) were proportionally less confirmed by manual annotation ( 34.6% and 46.9% , 
respectively).

We then assessed TAD border prediction concordance between the different tools. 
At 50 kb, 82.8% of borders detected by SIM were also identified by the other tools, and 
35.2% of other tools’ borders were called by SIM, which was similar to the top tools, 
HiCSeg and TopDom (Fig. 2C). At 25 kb, 76.5% of borders detected by SIM were also 

Fig. 2  Comparison with existing TAD calling methods using GM12878 Hi-C dataset. A Number of TAD 
borders called by each method (50 kb resolution). B TAD border prediction concordance with manual 
annotation from [32] (50 kb). C TAD border prediction concordance between methods (50 kb). D TAD border 
prediction concordance between methods (25 kb)
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identified by the other tools, and 21.4% of other tools’ borders were called by SIM, which 
was similar to HiCSeg, TopDom and DomainCaller (Fig. 2D). Thus, SIM ranked among 
the best tools to predict TAD border. Meanwhile, SIM was relatively fast and memory 
efficient. For chromosome 1 with 25 kb resolution and considering a maximal distance 
of 250 kb, SIM ran in only 151 seconds for one core and around 6.9 Gb.

Identification of novel borders during cell differentiation

The 3D genome is dynamic, especially during the developmental process, and global 
reorganization was previously reported during differentiation [29]. However, very few 
methods were developed for differential analysis of TADs [20, 22]. Using our versatile 
regression framework, we could easily implement differential TAD analysis in order to 
identify novel TAD borders, or alternatively depleted TAD borders, during cell differ-
entiation. For this purpose, interaction terms were added in the model to account for 
differential insulation effects depending on the cell type. We called this model the dif-
ferential insulation model (DIM). The corresponding interaction betas were then used to 
assess differential TAD border strength.

To illustrate differential analysis, we studied mouse embryonic stem cells (ESs) differ-
entiation into cortical neurons (CNs) using ultra-deep coverage Hi-C, where novel TAD 
borders were shown to colocalize with developmental genes that were activated [29]. We 
first focused on a 5-Mb-long genomic region of chromosome 18 around the develop-
mental gene Zfp608. In ES cells, we observed a big TAD in the middle of the Hi-C map 
(Fig. 3A, C). In CN cells, this big TAD was split into two new TADs separated by a novel 
border located at 55 Mb overlapping the gene Zfp608 (Fig. 3B, D). Using the two Hi-C 
maps, DIM accordingly identified a strong and significant differential TAD border at 55 
Mb ( β̂ ≈ −1.8 , p < 10−70 ; blue arrow; Fig. 3E), reflecting TAD split during differenti-
ation. Moreover, DIM could also reveal less obvious differences in border strength. In 
particular, DIM detected two smaller differential TAD borders ( β̂ < 1.2 , p < 10−8 ; red 
arrows), which corresponded to borders present in ES cells and lost in CN cells.

We then ran differential analysis by DIM genome-wide. We observed a higher num-
ber of TAD borders after differentiation (fold-change = 1.1; Fig. 3F, left), meaning that 
new TADs were created after differentiation. If we only considered strong TAD borders, 
we observed an even larger number of TAD borders after differentiation (fold-change 
= 1.51 for abs(beta)> 1 ; fold-change = 2.82 for abs(beta) > 1.5 ). Moreover, the abso-
lute values of DIM betas in CN were significantly higher than in ES (fold-change = 
1.11, p-value = 0.01; Fig. 3G), suggesting that those new TADs were particularly strong 
and insulated. We then compared CTCF enrichment at CN-specific borders and ES-
specific borders (Fig. 3H). We found that although CTCF was very enriched at ES bor-
ders (fold-change = 1.64), it was far less enriched at CN borders (fold-change = 1.07), 
suggesting that the novel TAD borders were maintained by other factors than CTCF. 
It was previously showed that novel TAD borders located to neural transcription fac-
tors Pax6, NeuroD2, and Tbr1 [29]. However, their analysis was limited by available 
ChIP-seq data. Here, instead, we systematically assessed the enrichment of 579 protein 
binding DNA motifs at novel CN borders (Fig. 3I). We found a tremendous amount of 
motifs enriched at novel borders. All enriched motifs were known neural TFs, including 
Foxd3, NFATC3, NEUROD2, HiC1, Dmbx1, Hmx2 and NFATC1. This result suggested 
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that chromatin was reorganized due to not only Pax6, NeuroD2, and Tbr1, but also to 
numerous other TFs involved in neural differentiation. In comparison, ES borders were 
strongly enriched in known stem cell TFs, such as Hoxb5, EMX2, PAX4. Thus, we could 
conclude that cell type specific TFs played a major role in reshaping the genome in 3D 
during differentiation.

Predictions of Hi‑C data after chromosomal rearrangements

Our versatile regression framework could also be used to faithfully model the 3D genome 
and predict Hi-C data. In particular, predicting the effects of chromosomal rearrange-
ment on 3D genome is an important challenge, since 3D genome alteration can impact 
essential cellular processes such as enhancer-promoter transcriptional regulation. How-
ever, until now, only few methods were developed for this task. Hence, we assessed the 
ability of the model to predict Hi-C data after chromosomal rearrangement. In this case, 
we called this model the prediction insulation model (PIM). For this purpose, PIM was 
trained on wild-type (WT) Hi-C data, producing a model with parameters β̂0 , β̂d and 
β̂X . Then, in the PIM model, the distance variable ( d ) and the insulation variables ( X ) 
were modified in a way to account for the chromosomal rearrangement. For instance, in 
the case of a deletion, the distance variable values were shrunk by the length of the dele-
tion (producing a new distance variable noted d′ ), and all insulation variables spanning 

Fig. 3  Differential analysis of TAD borders with the Differential Insulation Model (DIM). A Hi-C heatmap 
in mouse embryonic stem (ES) cells. B Corresponding Hi-C heatmap in cortical neuron (CN) cells. C 
Identification of TAD borders in ES cells (spase insulation model beta is plotted). D Identification of TAD 
borders in CN cells (spase insulation model beta is plotted). E Identification of differential TAD borders (DIM 
beta is plotted). For each beta, an adjusted p-value is plotted to show significance. F Number of cell-type 
specific borders, for varying differential border strengths. G Absolute value of beta between CN specific 
borders and ES specific borders. H CTCF enrichment at CN specific borders compared to ES specific borders. 
I DNA-binding protein motif enrichment (fold-change) at CN specific borders. J DNA-binding protein motif 
enrichment (fold-change) at ES specific borders
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the deletion were set to zero (producing new insulation variables X′ ). The new variables 
together with the trained PIM model were used to predict Hi-C after deletion.

PIM prediction accuracy was assessed using 10 kb resolution capture Hi-C experiments 
performed in E11.5 limb buds from WT and mutant mouses with a deletion or an inver-
sion [23]. For the DelB/DelB mutant (homozygous deletion), we found very accurate Hi-C 
data predictions as compared to observed data in the mutation mouse (Fig.  4A). Most 
notably, PIM was able to finely model the distance effect, the numerous TADs, but also 
the complex hierarchies of TADs. Prediction accuracy was very high as measured by Pear-
son correlation between log-counts r = 0.882 and Spearman correlation between counts 
rs = 0.879 (Fig. 4A). In comparison, the state-of-the-art model PRIMSR achieved compa-
rable performance in terms of Pearson and Spearson correlations ( r = 0.821 , rs = 0.895 ; 
Fig.  4B). But, when distance effect was removed using stratum adjusted correlation in 
order to only capture the biological variability, PIM performed better than PRISMR (PIM: 

Fig. 4  Prediction insulation model (PIM) predicts rearranged 3D genome with high accurary and comparison 
with PRISMR using mouse data from [23]. Models were trained using wild-type Hi-C data to predict 
rearranged Hi-C data (for PRISMR, we used predictions provided by the authors). A PIM prediction for DelB/
DelB genotype and comparison with observed data. B PRISMR prediction for DelB/DelB genotype. C PIM 
prediction for DelBs/DelBs genotype and comparison with observed data. D PRISMR prediction for DelBs/
DelBs genotype. E PIM prediction for InvF/InvF genotype and comparison with observed data. F PRISMR 
prediction for InvF/InvF genotype
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r′ = 0.883 and PRISMR: r′ = 0.582 ; Fig. 4A, B), reflecting its better ability to model bio-
logical variability underlying TADs and sub-TADs. We next compared PIM and PRIMSR 
using other mouse mutants. For the DelBs/DelBs mutant, we also found that PIM and 
PRISMR achieved similar performance in term of r and rs (PIM: r = 0.857 , rs = 0.842 ; 
PRISMR: r = 0.832 , rs = 0.897 ; Fig. 4C, D), but PIM predictions compared favorably in 
term of biological variability with r′ (PIM: r = 0.845 ; PRISMR: r = 0.671 ; Fig.  4C, D). 
Lastly, we predicted data for an inversion (InvF/InvF). As for deletions, we found that PIM 
yielded better predictions than PRISMR in term of biological variability with r′.

Conclusion
In this article, we propose a versatile regression framework for Hi-C data analyses. Our 
framework was designed for TAD identification (SIM model), but also differential analy-
sis (DIM model) and Hi-C data predictions after chromosomal rearrangement (PIM 
model). First, SIM accurately detected TAD borders in a quantitative manner, and was 
ranked among the top TAD callers when comparing with state-of-the-art methods on an 
unbiased dataset. Moreover, SIM also identified a novel class of elements we called facil-
itators which facilitated long-range contacts as opposed to borders, and were shown to 
be associated with specific transcription factors. Second, DIM identified novel borders 
during neuronal differentiation. Such novel borders were particularly enriched for other 
factors than CTCF, in particular, numerous transcriptional factors specific to neurons 
including Foxd3, NFATC3, NEUROD2, HiC1, Dmbx1, Hmx2 and NFATC1. In compari-
son, ES specific borders were enriched in stem cell TFs. Third, PIM accurately predicted 
rearranged 3D genome in mouse mutants, when trained with wild-type Hi-C data. Such 
approach is very promising to assess the impact of chromosomal rearrangements on the 
3D genome. Moreover, PIM compared favorably with state-of-the-art PRISMR in terms 
of biological variability captured by Hi-C data.

There are several limitations of the proposed framework. First, the proposed frame-
work is designed for the analysis of bulk Hi-C data, i.e. data from a population of cells. 
However, single-cell experiments are getting widely used in 3D genome studies, and 
necessitate the development of new tools. The proposed framework must be further 
extended for data that are too sparse, which is the case for single cell data. The use of 
an empirical Bayes approach to estimate regression betas across cells might be a elegant 
solution for this purpose. Second, the same framework can be further extended for other 
Hi-C data analysis tasks. For instance, the regression can be used to infer frequently 
interacting regions (FIREs) and differential FIREs from Hi-C data [39]. Third, variable 
selection for the SIM model is based on best subset selection using L0Learn R package. 
However, one problem is that L0Learn cannot work with more than 5000 variables on 
a standard computer, and for the largest chromosomes, prefiltering is done using lasso 
regression and a threshold of |β̂xi | > 0.2 to sufficiently reduce the number of variables 
for processing. However, this prefiltering might affect best subset selection. Other pre-
filtering approaches not relying on an arbitrary thresholding can be used instead. For 
instance, knockoff can be used for removing unnecessary variables while controlling 
the false discovery rate (FDR) [40]. Alternatively, bootstrap stability investigation can be 
used [41]. Fourth, SIM is methodologically similar to other TAD callers based on the 
computation of a linear score such as TopDom [10] or those based on statistical models 
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of the interaction distributions such as HiCseg [11]. We thus expect SIM to call similar 
TAD borders (performances between SIM, TopDom and HiCseg were similar, Fig.  2). 
But SIM is very different from other TAD callers based on clustering [14–16] or graphs 
[17–19], and thus SIM is more likely to miss those TADs. Fifth, compared to other TAD 
callers, SIM is conservative for the detection of TAD borders, meaning that fewer but 
correct TADs were called rather than many TADs including a few false positives. This 
stringency is related to the use of best subset selection. The use of other variable selec-
tion procedures could be investigated to assess if more TAD borders could be identified.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04614-0.

Additional file 1. Figure S1. Comparison of betas between SIM with prefiltering by lasso regression and SIM with-
out prefiltering. Figure S2. Comparison of TAD borders identified by SIM for different normalizations of the Hi-C data 
(Knight-Ruiz (KR)), iterative correction and eigenvector decomposition (ICE) and square root vanilla coverage (VC 
SQRT) at 50 kb resolution.

Acknowledgements
The author is grateful to Nicodemi’s lab (INFN Sezione di Napoli, Italy) for Hi-C capture data and for providing PRISMR 
predictions. The author is also thankful to all the other labs that generated Hi-C and ChIP-seq data used in this article.

Authors’ contributions
RM conceived and designed the project. RM implemented the model and analyzed the data. RM wrote the manuscript.

Funding
This work was supported by the University of Toulouse and the CNRS.

Availability of data and materials
An R package called “TADreg” was developed and is available at: https://github.com/raphaelmourad/TADreg.

Declaration

Abbreviations
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
I declare that the authors have no competing interests as defined by BMC, or other interests that might be perceived to 
influence the results and/or discussion reported in this paper.

Received: 19 October 2021   Accepted: 16 February 2022

References
	1.	 Halverson JD, Smrek J, Kremer K, Grosberg AY. From a melt of rings to chromosome territories: the role of topologi-

cal constraints in genome folding. Rep Progress Phys. 2014;77(2):022601.
	2.	 Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes 

identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–80.
	3.	 Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G. Three-dimen-

sional folding and functional organization principles of the Drosophila genome. Cell. 2012;148(3):458–72.
	4.	 Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen C-A, Schmitt AD, Espinoza CA, Ren B. A high-resolution map of the 

three-dimensional chromatin interactome in human cells. Nature. 2013;503(7475):290–4.
	5.	 Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner 

MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dek-
ker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 
2009;326(5950):289–93.

	6.	 Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Hansen RS, Canfield TK, Thurman RE, Cheng Y, 
Gulsoy G, Dennis JH, Snyder MP, Stamatoyannopoulos JA, Taylor J, Hardison RC, Kahveci T, Ren B, Gilbert DM. Topo-
logically associating domains are stable units of replication-timing regulation. Nature. 2014;515(7527):402–5.



Page 14 of 14Mourad ﻿BMC Bioinformatics           (2022) 23:82 

	7.	 Zufferey M, Tavernari D, Oricchio E, Ciriello G. Comparison of computational methods for the identification of topo-
logically associating domains. Genome Biol. 2018;19(1):217.

	8.	 Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, Uzawa S, Dekker J, Meyer BJ. Condensin-driven remod-
elling of X chromosome topology during dosage compensation. Nature. 2015;523:240–4.

	9.	 Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander 
ES, Aiden EL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 
2014;159(7):1665–80.

	10.	 Shin H, Shi Y, Dai C, Tjong H, Gong K, Alber F, Zhou XJ. TopDom: an efficient and deterministic method for identifying 
topological domains in genomes. Nucleic Acids Res. 2016;44(7): e70.

	11.	 Levy-Leduc C, Delattre M, Mary-Huard T, Robin S. Two-dimensional segmentation for analyzing Hi-C data. Bioinfor-
matics. 2014;30(17):i386–92.

	12.	 Weinreb C, Raphael BJ. Identification of hierarchical chromatin domains. Bioinformatics. 2015;32(11):1601–9.
	13.	 Serra F, Bau D, Goodstadt M, Castillo D, Filion GJ, Marti-Renom MA. Automatic analysis and 3D-modelling of Hi-C 

data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput Biol. 2017;13(7):1–17.
	14.	 Oluwadare O, Cheng J. ClusterTAD: an unsupervised machine learning approach to detecting topologically associ-

ated domains of chromosomes from Hi-C data. BMC Bioinform. 2017;18(1):480.
	15.	 Haddad N, Vaillant C, Jost D. IC-finder: inferring robustly the hierarchical organization of chromatin folding. Nucleic 

Acids Res. 2017;45(10):e81–e81.
	16.	 Randriamihamison N, Vialaneix N, Neuvial P. Applicability and interpretability of Ward’s hierarchical agglomerative 

clustering with or without contiguity constraints. J Classif. 2020.
	17.	 Chen J, Hero AOI, Rajapakse I. Spectral identification of topological domains. Bioinformatics. 2016;32(14):2151–8.
	18.	 Yan K-K, Lou S, Gerstein M. MrTADFinder: a network modularity based approach to identify topologically associating 

domains in multiple resolutions. PLoS Comput Biol. 2017;13(7):1–22.
	19.	 Norton HK, Emerson DJ, Huang H, Kim J, Titus KR, Gu S, Bassett DS, Phillips-Cremins JE. Detecting hierarchical 

genome folding with network modularity. Nat Methods. 2018;15:119–22.
	20.	 Zaborowski R, Wilczynski B. DiffTAD: detecting Differential contact frequency in topologically associating domains 

Hi-C experiments between conditions. bioRxiv. 2016.
	21.	 Sadowski M, Kraft A, Szalaj P, Wlasnowolski M, Tang Z, Ruan Y, Plewczynski D. Spatial chromatin architecture altera-

tion by structural variations in human genomes at the population scale. Genome Biol. 2019;20(1):148.
	22.	 Cresswell KG, Dozmorov MG. TADCompare: an R package for differential and temporal analysis of topologically 

associated domains. Front Genet. 2020;11:158.
	23.	 Bianco S, Lupiáñez DG, Chiariello AM, Annunziatella C, Kraft K, Schöpflin R, Wittler L, Andrey G, Vingron M, Pombo A, 

Mundlos S, Nicodemi M. Polymer physics predicts the effects of structural variants on chromatin architecture. Nat 
Genet. 2018;50(5):662–7.

	24.	 Huynh L, Hormozdiari F. TAD fusion score: discovery and ranking the contribution of deletions to genome structure. 
Genome Biol. 2019;20(1):60.

	25.	 Kaplan N. Explicit probabilistic models for exploiting and explaining the 3D genome. In: Proceedings of statistics for 
post genomic data (SMPGD 2019); 2019.

	26.	 Belokopytova PS, Nuriddinov MA, Mozheiko EA, Fishman D, Fishman V. Quantitative prediction of enhancer-pro-
moter interactions. Genome Res. 2020;30(1):72–84.

	27.	 Rowley MJ, Nichols MH, Lyu X, Ando-Kuri M, Rivera ISM, Hermetz K, Wang P, Ruan Y, Corces VG. Evolutionarily con-
served principles predict 3D chromatin organization. Mol Cell. 2017;67(5):837-852.e7.

	28.	 Mourad R, Cuvier O. TAD-free analysis of architectural proteins and insulators. Nucleic Acids Res. 2018;46(5): e27.
	29.	 Bonev B, MendelsonCohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot J-P, Tanay A, Cavalli 

G. Multiscale 3D genome rewiring during mouse neural development. Cell. 2017;171(3):557–72.
	30.	 Knight PA, Ruiz D. A fast algorithm for matrix balancing. IMA J Numer Anal. 2012.
	31.	 The ENCODE Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 

2012;489(7414):57–74.
	32.	 Dali R, Blanchette M. A critical assessment of topologically associating domain prediction tools. Nucleic Acids Res. 

2017;45(6):2994–3005.
	33.	 Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chro-

matin interaction data. Nat Rev Genet. 2013;14(6):390–403.
	34.	 Hu M, Deng K, Selvaraj S, Qin Z, Ren B, Liu JS. HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinfor-

matics. 2012;28(23):3131–3.
	35.	 Moore B, Aitken S, Semple C. Integrative modeling reveals the principles of multi-scale chromatin boundary forma-

tion in human nuclear organization. Genome Biol. 2015;16(1):110.
	36.	 Mourad R, Cuvier O. Computational identification of genomic features that influence 3D chromatin domain forma-

tion. PLoS Comput Biol. 2016;12(5): e1004908.
	37.	 Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, Dekker J, Mirny LA. Iterative correction 

of Hi-C data reveals hallmarks of chromosome organization. Nat Methods. 2012;9(10):999–1003.
	38.	 Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, Aiden EL. Juicer provides a one-click system for 

analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3(1):95–8.
	39.	 Crowley C, Yang Y, Qiu Y, Hu B, Abnousi A, Lipiński J, Plewczyński D, Wu D, Won H, Ren B, Hu M, Li Y. FIREcaller: detect-

ing frequently interacting regions from Hi-C data. Comput Struct Biotechnol J. 2021;19:355–62.
	40.	 Barber RF, Candès EJ. Controlling the false discovery rate via knockoffs. Ann Stat. 2015;43(5):2055–85.
	41.	 Royston P, Sauerbrei W. Bootstrap assessment of the stability of multivariable models. Stand Genom Sci. 

2009;9(4):547–70.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



112 Chapter 3. Contributions to research

3.4.4 3D genome and evolution

In vertebrates, a large portion of chromatin loops is mediated by CTCF. The

loops are often marked by asymmetric CTCF motifs where cohesin is re-

cruited [Rao et al. 2014]. These results support the extrusion loop model where

CTCF and cohesin act together to extrude unknotted loops during interphase

[Sanborn et al. 2015].

CTCF is an 11-zinc-finger (ZF) protein that is functionally conserved in verte-

brates and Drosophila melanogaster [Hore et al. 2008, Heger et al. 2012]. CTCF-

binding sites and Hox gene clusters were shown to be closely correlated throughout

the animal kingdom, suggesting the conservation of the Hox-CTCF link across

the Bilateria, as principal organizer of bilaterian body plans [Heger et al. 2012].

Comparative Hi-C further showed that CTCF motif position and orientation are

conserved across species and that divergence of CTCF binding is correlated with

divergence of internal 3D domain structure [Vietri-Rudan et al. 2015]. These

observations suggest that the genome could undergo a continuous flux of local

conformation changes by CTCF motif turnover that allow or prevent the de novo

enhancer-promoter interactions and misexpression [Gómez-Maŕın et al. 2015].

Thus, the comparative analysis of CTCF-mediated looping across species is crucial

to understand how gene expression or other key processes evolve. However, 3D

genome analysis relies on complex and costly Hi-C experiments, which currently

limits their use for evolutionary studies over a large number of species.

I proposed a novel approach to study the 3D genome evolution in vertebrates

using the genome sequence only, e.g. without the need for Hi-C data [Mourad 2019].

The approach is simple and relies on comparing the distances between convergent

and divergent CTCF motifs (ratio 3DR, Equation 1 and Figure 1, from the article

”Studying 3D genome evolution using genomic sequence” below). I showed that

3DR is a powerful statistic to detect CTCF looping encoded in the human genome

sequence, thus reflecting strong evolutionary constraints encoded in DNA and

associated with the 3D genome. Moreover, I found that 3DR varies depending on

the chromosome region, such as 3D (sub-)compartments, suggesting that 3DR is

not homogeneous along the genome and might functionally define 3D chromatin

state. When comparing 3DR across vertebrates, the results revealed that the

distance between convergent motifs which underlie CTCF looping and TAD

organization evolves over time.

To conclude, I showed that the DNA sequence encodes loop extrusion, and that

CTCF looping can be studied in species for which no Hi-C data are available, e.g.

the majority of species. Moreover, I showed that phylogenetic methods such as

ancestral character reconstruction can be used to infer CTCF looping in ancestral

genomes. Therefore, 3DR makes it possible to study the evolution of CTCF looping

across a large number of species, which is impossible with the Hi-C technique.
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Abstract

Motivation: The three dimensions (3D) genome is essential to numerous key processes such as the regulation of
gene expression and the replication-timing program. In vertebrates, chromatin looping is often mediated by CTCF,
and marked by CTCF motif pairs in convergent orientation. Comparative high-throughput sequencing technique
(Hi-C) recently revealed that chromatin looping evolves across species. However, Hi-C experiments are complex and
costly, which currently limits their use for evolutionary studies over a large number of species.

Results: Here, we propose a novel approach to study the 3D genome evolution in vertebrates using the genomic se-
quence only, e.g. without the need for Hi-C data. The approach is simple and relies on comparing the distances be-
tween convergent and divergent CTCF motifs by computing a ratio we named the 3D ratio or ‘3DR’. We show that
3DR is a powerful statistic to detect CTCF looping encoded in the human genome sequence, thus reflecting strong
evolutionary constraints encoded in DNA and associated with the 3D genome. When comparing vertebrate
genomes, our results reveal that 3DR which underlies CTCF looping and topologically associating domain organiza-
tion evolves over time and suggest that ancestral character reconstruction can be used to infer 3DR in ancestral
genomes.
Availability and implementation: The R code is available at https://github.com/morphos30/PhyloCTCFLooping.
Contact: raphael.mourad@univ-tlse3.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromosomes are tightly packed in three dimensions (3D) such that
a 2-m long human genome can fit into a nucleus of �10 microns in
diameter (Halverson et al., 2014). Over the past years, the 3D
chromosome structure has been comprehensively explored by
chromosome conformation capture combined with high-throughput
sequencing technique (Hi-C) at an unprecedented resolution (Dixon
et al., 2012; Jin et al., 2013; Sexton et al., 2012). Multiple hierarch-
ical levels of genome organization have been uncovered. Among
them, topologically associating domains (TADs) (Dixon et al., 2012;
Sexton et al., 2012) and chromatin loops (Rao et al., 2014) represent
pervasive structural features of the genome organization. Moreover,
functional studies revealed that spatial organization of chromo-
somes is essential to numerous key processes such as for the regula-
tion of gene expression by distal enhancers (Jin et al., 2013;
Lupiá~nez et al., 2015) or for the replication-timing program (Pope
et al., 2014).

A growing body of evidence supports the role of insulator bind-
ing proteins such as CTCF, and cofactors like cohesin, as mediators
of long-range chromatin contacts (Phillips-Cremins et al., 2013;
Sexton et al., 2012; Van Bortle et al., 2014). In mammals, depletions
of CTCF and cohesin decreased chromatin contacts (Zuin et al.,
2014). Moreover, high-resolution Hi-C mapping has recently
revealed that loops that demarcate domains were often marked by

asymmetric CTCF motifs where cohesin is recruited (Rao et al.,
2014). These results support the extrusion loop model where CTCF
and cohesin act together to extrude unknotted loops during inter-
phase (Sanborn et al., 2015).

CTCF is an 11-zinc-finger protein that is functionally conserved
in vertebrates and Drosophila melanogaster (Heger et al., 2012;
Hore et al., 2008). CTCF-binding sites and Hox gene clusters were
shown to be closely correlated throughout the animal kingdom sug-
gesting the conservation of the Hox-CTCF link across the Bilateria,
as principal organizer of bilaterian body plans (Heger et al., 2012).
Comparative Hi-C further showed that CTCF motif position and
orientation are conserved across species and that divergence of
CTCF binding is correlated with divergence of internal domain
structure (Vietri-Rudan et al., 2015). These observations suggest
that the genome could undergo a continuous flux of local conform-
ation changes by CTCF motif turnover that allow or prevent de
novo enhancer–promoter interactions and misexpression (Gómez-
Marı́n et al., 2015). Thus, the comparative analysis of CTCF-
mediated looping across species is crucial to understand how gene
expression or other key processes evolve. However, 3D genome ana-
lysis relies on complex and costly Hi-C experiments, which currently
limits their use for evolutionary studies over a large number of
species.

Here, we propose a novel approach to study the 3D genome evo-
lution in vertebrates using the genome sequence only, e.g. without
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the need for Hi-C data. Therefore, this approach allows a compre-
hensive analysis of vertebrate 3D genomes whose number is expo-
nentially increasing due to ongoing large sequencing projects such as
the Vertebrate Genomes Project (VGP). The approach is simple and
relies on comparing the distances between convergent and divergent
CTCF motifs (using a ratio we named the 3D ratio or ‘3DR’).
We show that 3DR is a powerful statistic to detect CTCF looping
encoded in the human genome sequence, thus reflecting strong evo-
lutionary constraints encoded in DNA and associated with the 3D
genome organization. Moreover, we found that 3DR varies depend-
ing on the chromosome region, such as 3D (sub-)compartments, sug-
gesting that 3DR is not homogeneous along the genome and might
functionally define 3D chromatin state. When comparing 3DR
across vertebrates, our results reveal that the distance between con-
vergent motifs which underly CTCF looping and TAD organization
evolves over time and suggest that ancestral character reconstruction
can be used to infer 3DR in ancestral genomes.

2 Materials and methods

2.1 Hi-C data, compartments, subcompartments and

TADs
In human, we computed compartments A/B using Juicer Tools
(Durand et al., 2016). For this purpose, we used publicly available
Hi-C data from GM12878 cells from Gene Expression Omnibus
(GEO) accession GSE63525 (Rao et al., 2014). For subcompart-
ments, we downloaded the genomic coordinates from GEO
GSE63525. For TAD borders and loop anchors, we downloaded re-
spectively Arrowhead domains and HiCCUPS loops called from
GM12878 Hi-C data from GEO GSE63525.

2.2 Isochores
In human, we called isochores using isoSegmenter program on hg38
assembly (Cozzi et al., 2015).

2.3 Replication timing
In human, we used GM12878 Repli-seq from ENCODE (The
ENCODE Consortium, 2012).

2.4 CTCF motif calling
We used the vertebrate CTCF motif position frequency matrix
MA0139.1 from the JASPAR database (http://jaspar. genereg.net/).
We scanned CTCF binding sites on the following genome assem-
blies: ailMel1, allMis1, anoCar2, apiMel2, aplCal1, aptMan1,
balAcu1, bosTau8, braFlo1, calJac3, calMil1, canFam3, cavPor3,
ce11, cerSim1, choHof1, criGri1, danRer10, dipOrd1, dm6,
droYak2, echTel2, equCab2, eriEur2, felCat8, fr3, gadMor1,
galGal4, gasAcu1, geoFor1, gorGor3, hetGla2, hg38, latCha1,
loxAfr3, macEug2, melGal1, melUnd1, micMur2, mm10,
monDom5, musFur1, myoLuc2, nomLeu3, ochPri3, oreNil2,
ornAna2, oryCun2, oryLat2, otoGar3, oviAri3, panPan1, panTro5,
papAnu2, petMar2, ponAbe2, proCap1, pteVam1, rheMac3, rn6,
saiBol1, sarHar1, sorAra2, speTri2, strPur2, susScr3, taeGut2,
tarSyr2, tetNig2, triMan1, tupBel1, turTru2, vicPac2, xenTro7. For
this purpose, we used MEME FIMO program with default parame-
ters (http://meme-suite.org/doc/fimo.html).

2.5 CTCF ChIP-seq peak
In human, we used CTCF ChIP-seq peaks for several cell lines from
ENCODE (https://genome.ucsc.edu/encode/).

2.6 Deepbind
To improve binding predictions for CTCF, we used deepbind to pre-
dict binding on the 500 base region surrounding motif occurrence
(http://tools.genes.toronto.edu/deepbind/). We used the deepbind
model trained on CTCF ChIP-seq data, noted D00328.018.

2.7 Conservation score
We computed the average conservation score of the 50 bases sur-
rounding the CTCF binding sites using hg38 phastCons scores from
UCSC Genome Browser (https://genome.ucsc.edu/). For other
assemblies, we liftovered hg38 phastCons scores.

3 Results and discussion

3.1 CTCF-mediated looping in 3D and 1D genome point

of view
In vertebrates, the 3D genome is organized in chromatin loops often
mediated by CTCF and cohesin: the CTCF-mediated loops. In par-
ticular, CTCF sites at loop anchors occur predominantly (>90%) in
a convergent orientation, i.e. with a forward motif on the left anchor
and a reverse motif on the right anchor (Rao et al., 2014) (Fig. 1A).
From a 1D genome point of view, the CTCF-mediated looping
implies that two motifs in convergent orientation should be located
farther apart than two motifs in divergent orientation (Fig. 1B).
Thus, based on this implication, we sought to compare the distances
between contiguous motifs depending on their orientation as a mean
to study 3D genome from genomic sequence in species for which Hi-
C data were not available.

For this purpose, we estimated the following ratio 3DR:

3DR ¼ medianðd! Þ=medianðd !Þ; (1)

that was the ratio of two medians: the median of the distances be-
tween two contiguous motifs in convergent orientation (noted
‘! ’), and the median of the distances between two contiguous
motifs in divergent orientation (noted ‘ !’). We hypothesized that
a 3DR significantly greater than one reflects CTCF looping in the
genome. Because 3DR was a ratio of distance medians, it accounted
for the genome size effect and could thus allow comparisons be-
tween different genomes whose sizes may vary.

Additionally, we estimated another ratio used as a control:

3DC ¼ medianðd!!Þ=medianðd  Þ (2)

that was the ratio of two medians: the median of the distances be-
tween two contiguous motifs in the same forward orientation (noted
‘!!’) and the median of the distances between two contiguous
motifs in same reverse orientation (noted ‘  ’). Following the 1D
genome point of view, the control ratio was supposed to show no
difference between the two orientations. Deviations of 3DC from 1
might reflect biases in the genome that were not related to CTCF
looping. To assess the significance of ratio 3DR (and 3DC), we used
the Wilcoxon rank-sum test. This test could assess differences of dis-
tances even if the distances did not follow a normal distribution.

3.2 Validation of 3DR as a measure of CTCF-mediated

looping
We first studied the ratio 3DR using the human genome. For this
purpose, the human genome hg38 assembly was used and vertebrate
CTCF motifs (JASPAR MA0139.1) were called along the genome.

Fig. 1. CTCF-mediated looping in 3D and 1D genome points of view. (A) The

CTCF-mediated looping in 3D. (B) The 1D genome point of view of CTCF-medi-

ated looping
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The distance between any two consecutive motifs was computed. To
only keep motifs with a higher chance of binding, motifs whose
binding scores were lower than a specific quantile threshold were
removed. We found that 3DR strongly increased with the binding
score and was maximal for a quantile threshold of 80% (Fig. 2A).
However, the confidence interval of 3DR was higher for 80% than
for lower quantiles, because too many binding sites were discarded.
Thus, as a trade-off, a quantile of 70% was then considered as a
threshold for further analyses, because it better allowed comparison
of 3DR between species with sufficient statistical power (statistical
power depends on the number of binding sites).

We found that the distance between two contiguous motifs in
convergent orientation was significantly higher than between two
contiguous motifs in divergent orientation, as expected by the 1D
genome point of view of CTCF-mediated looping (3DR ¼ 1.28,
Wilcoxon test P<3�10�17; Fig. 2B). The 3DR was computed
based on 6426 convergent motif pairs and on 6370 divergent motif
pairs. In comparison, the distance between two motifs in forward
orientation was not significantly different from the distance between
two motifs in reverse orientation, as expected by the 1D genome
point of view (3DC ¼ 0.97, P¼0.41). The bootstrapped distribu-
tions of the distance medians were also computed for convergent
and divergent motifs, respectively (Supplementary Fig. S1). The two
distributions were far apart, reflecting the significant differences of
medians. Because the accuracy of the distance between motifs
depended on the genome assembly, the ratio was assessed for old
and more recent assemblies. As expected, 3DR increased with recent
assemblies (Supplementary Fig. S2). However, these improvements
were very modest, revealing that the assembly version did not have a
big impact on the estimation of 3DR in human.

We then used CTCF GM12878 ChIP-seq data to remove motifs
not bound by CTCF in vivo. The ratio 3DR was much higher than
previously and very significant (3DR¼1.69, P<5�10�51;
Fig. 2C), reflecting the important difference in distance between
motifs overlapping CTCF peaks depending on orientation. In vivo
information thus helped us to remove false positive motif occur-
rences and to estimate 3DR with more power. We next assessed
3DR using CTCF peaks from all ENCODE cell lines
(Supplementary Table S1). Interestingly, we found that 3DR varied
depending on cell type. Moreover, 3DR was especially low for

embryonic stem cells and cancer cells, reflecting lower CTCF loop-
ing and thus lower organization of the genome in 3D domains in
these cells. However, in practice, only genome assemblies were
available for most species and no ChIP-seq data were available.
Hence, to circumvent this issue, CTCF ChIP-seq peaks surrounding
the motifs were predicted using convolutional neural network learn-
ed from human data (Alipanahi et al., 2015). This ratio estimated
using predicted peaks was noted 3DRp. The ratio 3DRp was higher
than the one computed from motifs only (3DRp¼1.44,
P<2�10�34; Fig. 2D), revealing the better ratio estimation using
peak prediction.

We next filtered motifs located inside 3D domain borders, since
those motifs were more likely to influence the 3D genome. For this
purpose, we used Arrowhead domains from GM12878 Hi-C data
(Rao et al., 2014). We extended domain borders to 20 kb on each
side and only kept motifs belonging to borders. Accounting for 3D
domain borders strikingly improved 3DR (3DR¼5.67,
P<7�10�27; Fig. 2E). We also filtered motifs located at loop
anchors (Rao et al., 2014). Again, we extended loop anchors to
20 kb on each side and kept motifs belonging to anchors.
Surprisingly, we found a much lower 3DR than for 3D domain bor-
ders (3DR ¼ 1.77, P<2�10�15; Supplementary Fig. S3).

CTCF binding sites located at 3D domain borders were previous-
ly shown to be evolutionary conserved (Vietri-Rudan et al., 2015).
Hence, we sought to improve 3DR computation by discarding non-
conserved motifs. This ratio estimated using conservation was noted
3DRc. This approach greatly improved the ratio (3DRc ¼ 1.64,
P<7�10�44; Fig. 2F). If both conservation and predicted peaks
were used together, the ratio was even higher (3DRc ¼ 1.80,
P<5�10�52). We also computed 3DR within synteny blocks, but
only observed a slight improvement (3DR ¼ 1.30, P<3�10�9;
Supplementary Fig. S4). Thus, accounting for conservation score
allowed to further improved ratio estimation.

As a control, we computed 3DR for Drosophila genomes (mela-
nogaster and yakuba) and Caenorhabditis elegans. In
D.melanogaster, recent high resolution Hi-C data showed the absence
of loops mediated by CTCF motifs in convergent orientation (Eagen
et al., 2017). Accordingly, 3DR was computed for melanogaster and
yakuba genomes and were close to one and not significant (dm6:
3DR ¼ 0.93, P¼0.15; droYak2: 3DR¼1.02, P¼0.41;

A B C

FED

Fig. 2. Ratios 3DR and 3DC computed from the human genome assembly. (A) Ratio 3DR for different binding score thresholds. (B) Distance between consecutive CTCF

motifs depending on motif orientation. (C) Ratio 3DR when accounting for CTCF ChIP-seq data for different cell lines. (D) Distance between consecutive CTCF motifs de-

pending on motif orientation, when accounting for predicted CTCF ChIP-seq data. (E) Distance between consecutive CTCF motifs depending on motif orientation, when

accounting for TAD borders. (F) Distance between consecutive CTCF motifs depending on motif orientation, when accounting for conservation score
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Supplementary Fig. S5). In addition, in C.elegans, CTCF has been lost
during nematode evolution (Heger et al., 2009). In agreement, 3DR
was also close to one and not significant (ce11: 3DR ¼ 1.02,
P¼0.22; Supplementary Fig. S5).

Analysis of the human genome thus validated the 1D genome
point of view of CTCF-mediated looping. Such looping can be easily
estimated from the genomic sequence alone by computing the 3DR
ratio of distances depending on motif orientation. Moreover, control
results revealed the ability of 3DR to be equal to one for genomes
that are known not to harbor CTCF-mediated loops.

3.3 Ratio 3DR varies with 3D compartments and

isochores
We then computed 3DR depending on the underlying genomic and
chromatin regions in the human genome (Supplementary Table S2).
We first investigated if 3DR could differ depending on megabase 3D
genome compartments, known as A/B compartments, that were
shown to divide the genome into gene rich, active and open chromatin
(compartment A) and into gene poor, inactive and close chromatin
(compartment B) (Lieberman-Aiden et al., 2009). We found that 3DR
was greater in compartment B (3DR ¼ 1:40; P < 3� 10�8) than in
compartment A (3DR ¼ 1:21; P < 3� 10�8; Fig. 3A), with a slight-
ly significant difference (P¼0.03). Accordingly, chromatin loops
were larger in compartment B than in compartment A (fold-change-
¼1.4, P<1�10�20; Supplementary Fig. S6). At high resolution
(25kb), compartments A/B were further shown to be composed of
subcompartments A1, A2 (active) and B1, B2, B3, B4 (inactive) (Rao
et al., 2014). We found that 3DR varied between subcompartments.
Subcompartments A1 and A2 presented 3DR values close to the 3DR
computed genome-wide (A1: 3DR ¼ 1:20; P < 4� 10�4; A2:
3DR ¼ 1:30; P < 4� 10�4; Fig. 3B). Conversely, B subcompart-
ments showed high variability of 3DR. B1 and B3 showed 3DR values
greater than the genome-wide 3DR (B1: 3DR ¼ 1:45; P < 4� 10�6;
B3: 3DR ¼ 1:64; P < 2� 10�10; Fig. 3B), while B2 and B4 had
3DR values that were lower than the genome-wide 3DR (B2: 3DR ¼
1.13, P¼0.27; B4: 3DR ¼ 0.87, P¼0.76; Fig. 3B). When comparing
A and B subcompartments, we found a significant difference between
A1 and B3 (P¼0.0011). We next analyzed 3DR depending on DNA
replication timing. We found a 3DR value close to the genome-wide
value for early replicating regions (3DR ¼ 1:27; P < 2� 10�4;
Fig. 3C), but a high 3DR value for late S replicating regions
(3DR ¼ 1:57; P < 2� 10�5; Fig. 3C).

Another important feature of the genome is the GC-content that
varies considerably along the chromosomes. In particular, the gen-
ome was shown to be composed of isochores which are large DNA
segments of homogeneous GC-content (Costantini et al., 2006) and
that were recently shown to be correlated with subcompartments
(Jabbari and Bernardi, 2017). We then computed 3DR depending

on isochore class (L1, L2, H1, H2 and H3) and observed differences
between classes. In particular, L1 isochores (lowest GC-content)
showed the highest 3DR value (3DR ¼ 1:64; P < 5� 10�7;
Fig. 3D), which was considerably larger than the one estimated
genome-wide. Interestingly, L1 3DR value was very close to sub-
compartment B3 3DR value. Conversely, H3 isochores (highest GC-
content) showed the lowest 3DR value (3DR ¼ 1.08, P¼0.15;
Fig. 3D), which was lower than the genome-wide 3DR.

The 3DR ratio thus varied with the underlying genomic and
chromatin context. Most notably, we found that 3DR was higher in
compartment B, in mid-late replication timing regions and in low
GC-content isochores, which were associated with heterochromatin.

3.4 CTCF looping in mammals
We then estimated 3DR for available mammal genomes. Because
the accuracy of 3DR estimation depended on the number of motif
pairs, we computed 3DR for genomes with a sufficient number of
pairs (>8000). We found that all mammals presented a 3DR value
that was superior to one and significant (Fig. 4A; Supplementary
Table S3). The Tasmanian devil and the pika presented the highest
values (3DR > 1.5), whereas the horse and the guinea pig showed
the lowest values (3DR close to 1.2). It was very interesting to see
that 3DR estimation could be significantly different from one even
for assemblies whose qualities were much lower than hg38, such as
papAnu2 (scaffold N50 ¼ 586 kb, scaffold L50 ¼ 1481;
3DR ¼ 1:37; P < 9� 10�22) and ornAna2 (scaffold N50 ¼ 959 kb,
scaffold L50 ¼ 309; 3DR ¼ 1:44; P < 7� 10�18).

We also predicted CTCF ChIP-seq peaks surrounding the motifs,
and estimated 3DRp. The ratio 3DRp was superior to 3DR estimated
from motifs only (Fig. 4A; Supplementary Table S4). Interestingly,
although the convolutional neural network we used was trained
from human data, it could dramatically increase the ratio for most
species. For instance, 3DRp was higher than 3DR for the dog
(canFam3: 3DR¼1.20, 3DRp ¼ 1.49, 24% increase) and even for
the platypus (ornAna2: 3DR¼1.44, 3DRp ¼ 1.68, 17% increase).
We also filtered conserved motifs and computed 3DRc (Fig. 4A;
Supplementary Table S5). The ratio 3DRc was even higher than
3DRp for most species. For example, 3DRc were higher than 3DR
and 3DRp for the dog (canFam3: 3DR¼1.20, 3DRc ¼ 1.79, 49%
increase) and the platypus (ornAna2: 3DR¼1.44, 3DRp ¼ 1.99,
38% increase). However, a major drawback of 3DRc and 3DRp was
their larger confidence intervals, and that is the reason why we kept
3DR for further analyses.

We next investigated if 3DR was influenced by the genome size,
which could explain the observed differences of 3DR between spe-
cies. No significant correlation was found between the genome size
and 3DR (Fig. 4B), confirming that 3DR was not biased by the gen-
ome size, and thus allowing 3DR comparison between species. No
significant correlation was also found with the median chromosome
size (Supplementary Fig. S7). We also assessed if 3DR was influ-
enced by the density of motifs in the genome (number of motifs per
Mb), and no significant correlation was found (Fig. 4C). For in-
stance, the platypus and rat genomes presented a 3DR value around
1.45, but contained 4.66 motifs per Mb and 13.33 motifs per Mb,
respectively. Moreover, we found no link between 3DR and GC-
content between mammals (Supplementary Fig. S8A).

The 3DR ratio can thus be used to study the 3D genome organ-
ization in CTCF loops in mammals even for species whose Hi-C
data were not available. Moreover, we found important differences
of 3DR between mammals. For instance, we found that species that
were evolutionary distant, such as the human and the Tasmanian
devil, presented an important difference of 3DR.

3.5 Phylogenetic analysis of CTCF looping in

vertebrates
We then estimated 3DR for vertebrate species in order to investigate
differences between mammals, reptiles, amphibians and fishes. As
for mammals, we found no link between 3DR and genome size or
motif density among vertebrates (Supplementary Fig. S9). However,
we observed a weak but significant link between 3DR and

A B

C D

Fig. 3. Ratio 3DR computed for different chromatin regions in human. (A) Ratio

3DR estimated for 3D genome compartments A/B. (B) Ratio 3DR depending on 3D

genome subcompartments. (C) Ratio 3DR and replication timing. (D) Ratio 3DR

depending on GC-content isochores
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GC-content (r¼0.346, P¼0.007; Supplementary Fig. S8B and C).
Ratios 3DR were next plotted on the phylogenetic tree to investigate
the potential link between CTCF looping and evolution (Fig. 5).
Among the vertebrates, most jaw fishes presented very high 3DR val-
ues, especially the tetraodon (tetNig2: 3DR ¼ 1.65, P<2�10�27)
and fugu (fr3: 3DR ¼ 1.59, P<4�10�60). The zebrafish instead pre-
sented a low 3DR ¼ 0.98, which was inconsistent with recent Hi-C
results supporting loop formation by CTCF in convergent orientation
(Kaaij et al., 2018). This low 3DR in zebrafish could be related to its
low genome GC-content, compared to the tetraodon and fugu pre-
senting both high 3DR and GC-content (Supplementary Fig. S8B). In
addition, the amphibian Xenopus showed a very high 3DR value
(xenTro7: 3DR ¼ 1.63, P<3�10�79). Interestingly, using peak pre-
diction models trained on human data, the 3DRp values were even
higher: tetraodon (3DRp ¼ 1.84, P<8�10�90) and Xenopus (3DRp

¼ 1.85, P<2�10�24). Lampreys which are jawless fishes that
diverged from the jawed vertebrate lineage more than 500 million
years ago also revealed a significant ratio (3DR ¼ 1.30,
P<7�10�9), supporting the ancient establishment of CTCF looping
prior to vertebrates (Heger et al., 2012).

The different assemblies did not have the same quality, which
thus introduced some inaccuracy in the estimation of 3DR, especial-
ly for species that were recently sequenced (those with an assembly
number close to one). Despite 3DR inaccuracy due to heterogeneous
assembly quality, we found that evolutionary close species tended to
have a similar 3DR value (Mantel test P¼5�10�5), revealing con-
servation of 3DR among species (Fig. 5). For instance, two relatively
close species in the tree, the rat (rn6: 3DRp ¼ 1.44, P<1�10�27)
and the mouse (mm10: 3DRp ¼ 1.47, P<3�10�36) presented very
similar 3DR values (P¼0.61). Hence, ancestral 3DR reconstruction
could be carried out (Fig. 5). It revealed that a large 3DR value was
acquired in the common ancestor of the rat and the mouse
(Supplementary Fig. S10). Similar findings were observed for the
American pika (ochPri3) and the European rabbit (oryCun2), and
also for the Tasmanian devil (sarHar1) and the opossum
(monDom5).

Another important parameter contributing to CTCF looping is
the CTCF motif density in bilaterian genomes (Heger et al., 2012).
Hence, we estimated CTCF motif density in vertebrates and
observed a strong conservation (Mantel test P<1�10�5;
Supplementary Fig. S11). Jaw fishes showed high motif densities,
such as the fugu (fr3: 40.58 motifs/Mb). Conversely, birds showed
very low motif densities, such as the chicken (galGal4: 7.05 motifs/
Mb). Mammals presented varying densities, for instance 4.66 for the

A B

C

Fig. 4. Ratio 3DR computed from mammal genomes. (A) Ratios 3DR, 3DRp and 3DRc computed from all mammal genome assemblies. For each assembly, 3DR is plotted at

the top, 3DRp in the middle and 3DRc at the bottom. (B) Ratio 3DR versus genome size. (C) Ratio 3DR versus motif density (number of motifs per Mb). Note: Chinese ham-

ster was not plotted, since it was a very strong outlier (21.3 motifs per Mb)

Fig. 5. Phylogenetic analysis of 3DR in vertebrates. Ancestral 3DR reconstruction

was done using maximum likelihood inference
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platypus (ornAna2) and 21.4 for the Chinese hamster (criGri1).
Among mammals, we observed very homogeneous clades, such as
primates, whose motif density varied from 7.45 to 9.76. Moreover,
we found that CTCF motif density was evolutionary conserved
(Mantel test P<1�10�5), which suggested that ancestral motif
density reconstruction could be done. Inference of ancestral density
uncovered interesting results, such as the low density for the primate
ancestor as compared to the higher density for the muridae ancestor.

Results revealed the evolutionary conservation of 3DR among
vertebrates. 3DR thus represented a useful tool to study 3D genome
evolution, in addition to CTCF motif density. The two parameters
could be used to study CTCF looping in ancestral genomes by using
ancestral character reconstruction.

4 Conclusion

In this article, we propose a novel approach to study the 3D genome
evolution in vertebrates using the genomic sequence only, without
the need of costly and challenging Hi-C data to produce. Therefore,
the approach allows a comprehensive analysis of vertebrates whose
genome assemblies are now available and whose number will expo-
nentially increase with large sequencing projects such as the VGP
aiming to sequence 66 000 extant vertebrate species. The proposed
approach is very simple and makes very few assumptions. It relies
on the CTCF motif which is known to be conserved across verte-
brates and the CTCF looping model that implies a 1D genome point
of view where convergent motifs are expected to be more distant
than divergent motifs. The approach can be further improved by
using predicted CTCF ChIP-seq peaks or by using the conservation
score surrounding the CTCF motif, reflecting strong conservation of
the DNA context surrounding CTCF motifs in vertebrates, especial-
ly for mammals. Using the human genome as a reference, we valid-
ate the 1D genome point of view and demonstrate that the ratio of
distances between convergent and divergent motif pairs (ratio 3DR)
can assess the presence of CTCF looping. These results reflect strong
evolutionary constraints encoded in the genome that are associated
with the 3D genome organization.

The proposed approach also uncovers a number of results.
We found that 3DR varies with the underlying genomic and chro-
matin regions, such as 3D compartments and sub-compartments,
isochores and replication timing. Moreover, the analysis of 3DR
combined with CTCF ChIP-seq peaks showed a lower value for
3DR in cancer and embryonic cells compared to normal cell lines.
Thus, depending on the cell state, 3DR can be modulated by CTCF
binding in vivo, thereby regulating CTCF looping. Regarding 3DR
in different species, we show most notably that 3DR is evolutionary
conserved among vertebrates. Species that are phylogenetically close
tend to have a ratio that is closer than species that are phylogenetic-
ally far. Among vertebrates, several fishes and amphibians show the
highest ratio, whereas reptiles show low values. In mammals, ances-
tral character reconstruction reveals that the genome of the ancestor
of the rat and mouse likely evolved to have a high 3DR value. A pre-
vious study showed the linear divergence of CTCF binding sites with
evolutionary distance, and the birth of new genes associated with
the birth of new CTCF binding sites (Ni et al., 2012). Here, our ap-
proach suggests that the distance between convergent motifs
which underlies CTCF looping and TAD organization evolves over
time between vertebrates, and thus further reinforces the notion that
it represents an important factor contributing to 3D genome
evolution.

There are several limitations of the proposed approach. First, we
could not identify any 3D genome feature such as TAD or loop size
that correlates with 3DR differences observed between species, which
might be due to the small number of available Hi-C datasets in differ-
ent vertebrate species. Thus, 3DR differences between species, such as
between the human and the mouse genomes, should be quantitatively
interpreted with caution. Second, we find a non-significant 3DR value
for the zebrafish (danRer10) which is in contradiction with recent Hi-
C data (Kaaij et al., 2018), thus revealing the inadequacy of 3DR for
certain species. The positive link of 3DR with GC-content in verte-
brates (and more particularly between jaw fishes) suggests that the

low 3DR in zebrafish is related to its low genome GC-content, as com-
pared to tetraodon and fugu which present both high 3DR and high
GC-content. However, the link with GC-content is not strong and
some species such as the Tasmanian devil or the opossum have a high
3DR with a low GC-content. Analysis of only high-quality vertebrate
assemblies similarly reveals a positive but weak link (Supplementary
Fig. S8C). If we use only CTCF motifs present in synteny blocks com-
mon between zebrafish and tetraodon, then a higher 3DR value is
found although not significant (3DR ¼ 1.15, P¼0.22). There are
other reasons why 3DR might not robustly identify the presence of
CTCF-mediated loops in some species, such as the zebrafish. For in-
stance, it is possible that the high density of CTCF motifs (40 motifs
per Mb) makes the estimation of 3DR less reliable, since most motifs
are not used as loop anchors. It might also be difficult to accurately es-
timate 3DR for genomes with small domains, because it could make
the distance difference between convergent and divergent motifs
smaller. Another reason might be the contribution of other proteins in
mediating loops, for instance YY1 or Polycomb (Schoenfelder et al.,
2015; Weintraub et al., 2017). Third, 3DR can be underestimated due
to false positive motifs, as the CTCF protein does not bind to all
detected motifs in vivo. Fourth, the estimation of distances between
CTCF motifs depends on the genome assembly quality. Thus, for draft
genomes, it is likely that the 3DR ratio will not be accurately esti-
mated, especially when scaffolds are small. Fifth, deep learning models
can be used to improve 3DR for species without any available ChIP-
seq data, but the models were learned from human data and thus
CTCF peak prediction is expected to be less accurate for species that
are very distant from human. Sixth, phylogenetic conservation of 3DR
can be accurately assessed for species that are within the same clade
(as primates or muridaes), or more generally evolutionary close.
Conversely, it is difficult to assess phylogenetic transmission of 3DR
for the lamprey, since we have only one sequenced genome within the
clade. Seventh, the estimation of 3DR is less accurate when we focus
on certain genomic regions in human, such as isochores or compart-
ments. For instance, we find a value of 1.08 for H3 isochores, but this
does not mean that CTCF-mediated loops are absent from those
regions. In fact, the corresponding 95% confidence interval is very
large (between 0.87 and 1.30), meaning that 3DR could not be esti-
mated accurately due to a lack of statistical power, and precluding the
detection of CTCF-mediated loops by 3DR.
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120 Chapter 3. Contributions to research

Figure 3.3: Insulator protein mutants impair H3K27me3 micro-domains depending

on CP190 recruitment. A) Scheme representing the 3D-based formation of micro-

domains involving the indicated molecular players of long-range interactions. B)

Scheme representing the impact of BEAF-32 looping mutants on insulator-mediated

LRIs by GAF /dCTCF and CP190 co-factors that results in both distant spreading

onto micro-domains and (gain) in local spreading at borders.

3.4.5 3D genome and heterochromatin (Alexandre Heurteau)

Trimethylation of lysine 27 on histone H3 (H3K27me3) by the Polycomb 2 repressor

complex (PRC2) is a feature of facultative heterochromatin associated with the

repression of cell type specific genes [Cao et al. 2002, Morey & Helin 2010].

The faithful inheritance of the H3K27me3 chromatin marks by replica-

tion ensures the stability of the transcriptional silence mediated by PRC2

over cell generations, thus protecting cellular identities. H3K27me3 marks

form repressive domains over the genome, where PRC2 writing and read-

ing activities enable the spreading along the chromosome within domains.

Insulators act as chromatin barriers to block the spreading outside repres-

sive domains [modENCODE Consortium et al. 2010, Negre et al. 2010]. In

drosophila, dCTCF, and other insulator-binding proteins such as BEAF-32,

GAF and CP190, are specifically enriched at heterochromatin domain borders

[Van Bortle et al. 2012, Van Bortle et al. 2014, Vogelmann et al. 2014]. Such

proteins are also known to be involved in shaping the genome in 3D, which suggests

a strong interplay between the formation of H3K27me3 domains and the genome

in 3D.

Heurteau et al. analyzed the spreading of heterochromatin H3K27me3

marks depending on insulator-binding proteins and long-range interactions (LRIs)

[Heurteau et al. 2020]. They showed that removal of insulator proteins BEAF-

32 leads to H3K27me3 spreading locally, across borders (Figure 3.3). In addi-

tion, BEAF-32 promotes spreading onto distant euchromatin sites named “micro-

domains”. Systematic measurements of LRIs suggest that H3K27me3 micro-

domains do not form due to the weakness of TAD borders. Rather, micro-domains
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were visible at sites showing high levels of LRIs, including distant dCTCF and

GAF insulator sites bound by the looping co-factor CP190. Also, micro-domain

formation appears to depend on such specific insulator-mediated LRIs utilized

to spread H3K27me3 to distant sites through looping. Supporting these results,

specific synthetic mutants that impair LRIs compromise distant spreading over

micro-domains. Distant spreading at micro-domains is further associated with

insulator-based control of genes and it influences H3K27me3 throughout develop-

mental stages of Drosophila. The data highlight how specific LRIs encoded by

insulator-mediated loops contribute to the regulation of H3K27me3 spreading over

the distance. Heurteau et al. propose that micro-domains reflect how insulators par-

ticipate to chromatin folding dynamics in 3D, aside additional factors required to

separate heterochromatin nano-compartments from nearby euchromatin domains.

3.4.6 3D genome and DNA double strand break repair

3.4.6.1 Loop extrusion as a mechanism for DSB repair foci formation (Vincent

Rocher)

Among DNA damages, DNA double-strand breaks (DSBs) are by far

the most deleterious, since they can lead to chromosome rearrangements

[Marnef et al. 2017, Vitor et al. 2020]. There is a strong link between the genomic

localization of DSBs and the chromatin environment [Lensing et al. 2016]. For

instance, the DSB repair pathway choice between the two main pathways, non-

homologous end joining (NHEJ) and homologous recombination (HR), depends

on the chromatin landscape. HR tends to occur in transcriptionally active genes,

as compared to NHEJ. In particular, the trimethylation of histone H3 on lysine

36 (H3K36me3), that correlates with elongating RNA Pol II, acts as a critical

determinant for HR. However, little is known about the link between DSB repair

and the 3D genome [Arnould & Legube 2020].

Using 4C and Hi-C experiments, Coline Arnould, Vincent Rocher et al. found

that the histone mark γH2AX, which is induced by DSBs, was spread along

the chromatin within domain boundaries that coincide with TAD boundaries

[Arnould et al. 2021]. This result implied that the TAD is the functional unit of

DSB repair (Figure 1 from the article ”Loop extrusion as a mechanism for DNA

double-strand breaks repair foci formation” below). Moreover, the recruitment of

cohesin at the DSB site, and the emergence of stripes at the Hi-C matrix profile,

revealed one-sided loop extrusion on both sides of the DSB, where DSB cohesin

loading or fixation allowed the DSB locus to act as a loop anchor (Figure 2 from

the article below). Coline Arnould, Vincent Rocher et al. found that the TAD struc-

ture remains globally unchanged, except stronger interactions between the DSB loci

and its neighboring sequences. Such interaction increase was abolished in cohesin

depleted cells, confirming the role of loop extrusion in this process (Figure 3 from

the article below). During this process, the phosphorylated ATM (pATM), the en-

zyme recruited at the DSB and responsible for the phosphorylation of H2AX, was

brought into physical proximity with the neighboring sequences. In the light of
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these results, Coline Arnould, Vincent Rocher et al. proposed that the loop extru-

sion is responsible for spreading the gH2AX mark at the neighboring sequences by

pATM recruited at the DSB loci (Figure 4 from the article below).
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Article

Loop extrusion as a mechanism for 
formation of DNA damage repair foci

Coline Arnould1, Vincent Rocher1, Anne-Laure Finoux1, Thomas Clouaire1, Kevin Li2, 
Felix Zhou2, Pierre Caron1, Philippe. E. Mangeot3, Emiliano P. Ricci4, Raphaël Mourad1, 
James E. Haber2, Daan Noordermeer5 & Gaëlle Legube1 ✉

The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome 
integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the 
establishment of megabase-sized, chromatin domains decorated with 
phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of 
DNA-damage response foci1. It is unclear how these foci are rapidly assembled to 
establish a ‘repair-prone’ environment within the nucleus. Topologically associating 
domains are a key feature of 3D genome organization that compartmentalize 
transcription and replication, but little is known about their contribution to DNA 
repair processes2,3. Here we show that topologically associating domains are 
functional units of the DNA damage response, and are instrumental for the correct 
establishment of γH2AX–53BP1 chromatin domains in a manner that involves 
one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a 
model in which H2AX-containing nucleosomes are rapidly phosphorylated as they 
actively pass by DSB-anchored cohesin. Our work highlights the importance of 
chromosome conformation in the maintenance of genome integrity and 
demonstrates the establishment of a chromatin modification by loop extrusion.

DNA DSBs induce the formation of DNA-damage response (DDR) 
foci, which are microscopically visible and characterized by spe-
cific chromatin modifications (γH2AX, ubiquitin accumulation 
and histone H1 depletion) and the accumulation of DDR factors 
(53BP1 and MDC1)4–6. Previous evidence indicated that chromo-
some architecture may control the spread of γH2AX. Indeed, γH2AX 
domain boundaries were found in some instances to coincide with 
topologically associating domain (TAD) boundaries7. Moreover, 
super-resolution light microscopy revealed that CTCF, which binds 
at TAD boundaries and thereby constrains the loop-extruding activ-
ity of the cohesin complex that shapes these domains in undamaged 
cells, is juxtaposed to γH2AX foci8. In addition, 53BP1 can form 
nanodomains that frequently overlap with TADs, as detected by DNA 
fluorescence in situ hybridization (DNA-FISH)9. High-resolution 
chromatin immunoprecipitation with sequencing (ChIP–seq) map-
ping after the induction of multiple DSBs at annotated positions 
(using human DIvA (DSB inducible via AsiSI) cells)10 revealed that 
the spreading of these DDR focus components on nearby chroma-
tin follows a highly stereotyped pattern5 (one example shown in 
Fig. 1a). We hypothesized that such patterns could be governed 
by pre-existing high-order chromatin structure established before 
DSB induction.

γH2AX spreads within TADs
To relate the spreading of DDR focus components to chromosome 
conformation, we performed circular chromosome conformation 
capture coupled to high-throughput sequencing (4C–seq) experi-
ments in undamaged human DIvA cells. As viewpoints we selected three 
genomic locations that are damaged in DIvA cells following activa-
tion of the AsiSI restriction enzyme as well as one undamaged control 
region. The chromatin conformation around these three viewpoints in 
undamaged condition was notably similar to the distribution of γH2AX 
determined post DSB induction (Fig. 1a, b, Extended Data Fig. 1a), sug-
gesting that initial chromosome architecture dictates γH2AX spreading 
and downstream events such as accumulation of MDC1, ubiquitin and 
53BP1 following DSB. To prove that DDR domains do not spread into 
neighbouring self-interacting domains, we focused on a DSB located on 
chr1, for which spreading of DDR foci components is profoundly asym-
metrical (Fig. 1c, red track). 4C–seq performed at two viewpoints sepa-
rated by 470 kb revealed the existence of two adjacent self-interacting 
domains with a boundary corresponding to the abrupt drop in γH2AX 
(Fig. 1c, blue track; TAD boundary is indicated by the dotted line). 
This strongly suggests that pre-existing chromatin domains, estab-
lished before any damage occurs, constrain the spread of DDR foci. 
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To generalize this finding, we performed high-throughput chromosome 
conformation capture (Hi-C) and CTCF ChIP–seq in undamaged DIvA 
cells (Extended Data Fig. 1b-d). Notably, computed TAD borders and 
CTCF-bound genomic loci coincided with a sharp decrease in γH2AX 
signals (Fig. 1d, e, Extended Data Fig. 1e). Consistent with this, γH2AX, 
MDC1 and 53BP1 were substantially more enriched in the damaged TADs 
than in neighbouring TADs (Extended Data Fig. 1f), although spreading 
through boundaries was observed to some extent, in agreement with 
the moderate insulation properties of TAD boundaries11.

To further investigate whether TADs dictate γH2AX spreading, we 
used the CRISPR–Cas9 system to induce a single DSB at designated 
positions within the same TAD, and investigated both chromosome 
conformation and γH2AX distribution. Cas9-induced DSBs recapit-
ulated the γH2AX spreading observed when DSBs were induced at 
the same genomic locations by AsiSI (Extended Data Fig. 1g), thus 
confirming that γH2AX spreading is independent of the method of 
DSB induction. Moving the DSB to a further downstream position 
in the TAD triggered a change in the γH2AX profile that was notably 
similar to the 3D interaction pattern of this genomic region, but it 
remained constrained within the same TAD (Fig. 1f). Together, these 
data indicate that the mechanisms that govern the spatial organi-
zation of chromosomes into self-interacting domains facilitate and 
demarcate the formation of γH2AX domains. Given that γH2AX seeds 
further signalling events that lead to the stable assembly of DDR foci, 

this suggests that genome organization within TADs is critical for the 
response to DNA damage.

In human cells, ATM is the main DDR kinase that catalyses H2AX 
phosphorylation upon DSB detection, as indicated by a strong decrease 
in γH2AX upon inhibition of ATM12 (Extended Data Fig. 1h–j) but not 
of DNAPK12 or ATR (Extended Data Fig. 1i, j). To gain more insights into 
the mechanism that mediates the establishment of γH2AX on entire 
self-interacting domains, we further profiled ATM. Binding of activated 
ATM (autophosphorylated on S1981) was restricted to the immediate 
vicinity of the DSB (less than 5-kb span), in sharp contrast to the pattern 
observed for γH2AX (Fig. 1g, Extended Data Fig. 1k). This indicates that 
phosphorylation of H2AX is not mediated by the linear spreading of 
the kinase on entire TADs.

Cohesin-mediated loop extrusion at DSBs
The organization of the genome into TADs is driven by the activity of 
cohesin13,14, a ring-shaped protein complex, which was initially identi-
fied for its essential role in sister chromatid cohesion. Notably, there 
is strong evidence that cohesin helps to maintain genome integrity15,16, 
and cohesin accumulates at sites of damage, which may be consistent 
with a role in sister chromatid cohesion during homologous recombi-
nation in S/G2 phase cells17–20. However, cohesin enrichment at DSBs 
has been identified throughout the cell cycle, which argues against 
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an exclusive role for cohesin in homologous recombination7,16. To 
get insights into cohesin binding at DSBs at high resolution, we per-
formed calibrated ChIP–seq profiling of the SCC1 cohesin subunit 
in both undamaged and damaged conditions. Notably, cohesin was 
enriched at sites of damage spanning 2–5 kb around the DSB (Fig. 2a), 
leading to the formation of peaks at DSB sites that were nearly as high 
as pre-existing cohesin peaks at CTCF binding sites (Extended Data 
Fig. 2a, b). This enrichment depended on the cohesin loader NIPBL, 
on ATM activity and on the MRN complex subunit MRE11 (Extended 
Data Fig. 2c).

Cohesins structure TADs by an active, ATP-dependent, loop extru-
sion mechanism21–24. Once loaded onto chromatin, cohesin leads to the 
formation and enlargement of DNA loops that are eventually arrested 
at boundary elements. A large fraction of boundary elements is bound 
by the CTCF insulator protein. Increased cohesin around DSBs could 
thus indicate locally increased loop extrusion at the site of damage. 
We analysed 3D genome organization by Hi-C before and after DSB 
induction in DIvA cells, focusing on the frequency of cis interactions 
around DSBs. Differential (+DSB/−DSB) aggregate Hi-C maps were 
further computed around DSBs and around TAD borders as a con-
trol (Extended Data Fig. 2d). Notably, a pattern of ‘stripes’ appeared 
on both sides of the DSBs following DSB induction (Fig. 2b (white 
arrows), Extended Data Fig. 2d, e). These stripes or lines were previ-
ously reported to arise from arrested loop extrusion at CTCF-bound 
loci22,24–27. Indeed, our averaged Hi-C contact matrixes around TAD bor-
ders revealed, as expected, similar stripes, but these were independent 

of DSB induction (Extended Data Fig. 2d). We further performed aggre-
gate plot analysis (APA) to assess looping between the DSB position 
and neighbouring anchors. Notably, the APA score increased following 
production of DSBs (Fig. 2c, Extended Data Fig. 2f) indicating that 
the DSBs themselves display the potential to arrest loop extrusion, 
although to a lesser extent than classical loop anchors (CTCF-bound 
loci) (Extended Data Fig. 2g).

It was previously determined which repair pathway (that is, homolo-
gous recombination or non-homologous end joining (NHEJ)) is prefer-
entially used at different DSBs induced by AsiSI in DIvA cells28. Notably, 
an equivalent stripe pattern was observed at DSBs repaired by either 
homologous recombination or NHEJ (Fig. 2d). Consistent with these 
data, SCC1 accumulates in a 4-kb window around DSBs irrespective of 
the pathway used for repair (Fig. 2e). Together, these data suggest that 
cohesin accumulates on either side of a DSB, irrespective of the pathway 
used for repair, to induce divergent one-sided loop extrusion towards 
(and thereby to increase contacts with) the surrounding regions on 
both sides of the break.

To further investigate DSB-anchored loop extrusion, we performed 
4C-seq before and after DSB induction, using viewpoints located at the 
exact positions of three DSBs induced in DIvA cells (same viewpoints 
as in Fig. 1). Notably, the overall structure and boundaries of TADs were 
well-maintained after DSB induction (Extended Data Fig. 3a), indicat-
ing that chromosome conformation within TADs is not completely 
reshuffled upon damage induction. Yet, as expected from Hi-C data, we 
detected increased interactions between viewpoints and surrounding 
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loci after DSB induction (Extended Data Fig. 3b–d), which was not 
the case when using a control undamaged sequence as a viewpoint 
(Extended Data Fig. 3c, d). If DSB-anchored, cohesin-mediated loop 
extrusion is responsible for the enhanced interaction frequency of the 
DSB with neighbouring sequences after DSB induction, such behav-
iour should be abolished following cohesin depletion. Indeed, 4C-seq 
experiments revealed that depletion of SCC1 by short interfering RNA 
(siRNA) (Extended Data Fig. 3e, f) strongly impaired the overall increase 
in contacts between the DSBs and their neighbouring sequences in 
damaged TADs (Fig. 2f, Extended Data Fig. 3g, h). We further performed 
Hi-C in damaged and undamaged conditions following depletion of 
SCC1. As expected from previous studies14,29, depletion of SCC1 led to 
the dissolution of TADs and to stronger compartmentalization (plaid 
pattern) on Hi-C maps (Extended Data Fig. 4a). Notably, depletion of 
SCC1 abolished the stripe pattern induced at DSBs following damage 
(Fig. 2g). Given that ATM is involved in recruitment of SCC1 at DSBs 
(Extended Data Fig. 2c), we used 4C-seq to assess the consequences 
of pharmaceutical inhibition of ATM kinase activity on the interaction 
frequency after DSB induction. ATM inhibition strongly reduced the 
ability of the DSB to engage contacts with proximal sequences within 
damaged TADs (Extended Data Fig. 4b, c), consistent with defective 
SCC1 recruitment at DSBs under these conditions (Extended Data 
Fig. 2c).

These data indicate that the ability of the DSB to contact neighbour-
ing loci within the damaged TAD is a proper DNA damage response 
and cannot be explained solely by physical disruption of the DNA. It 
depends on ATM activity and on the cohesin complex, in agreement 
with a DSB-anchored loop extrusion mechanism.

Loop extrusion in γH2AX domain formation
We further investigated whether cohesin-mediated loop extrusion 
that takes place at DSBs is instrumental for deposition of γH2AX. In 
this scenario, γH2AX should spread linearly from the DSB site over 
time. To achieve high synchronization of γH2AX deposition within 
the cell population, we induced DSBs (by OHT treatment) but con-
comitantly inhibited ATM activity (using an ATM inhibitor), thereby 
‘poising’ γH2AX establishment. Relieving ATM inhibition allowed fast 
and synchronous accumulation of γH2AX (Extended Data Fig. 5a). Using 
ChIP–seq with this experimental setup, we observed linear and bidirec-
tional spreading of γH2AX from the DSBs that proceeded at a speed of 
approximately 0.6 kb s−1, consistent with a loop-extrusion-dependent 
mechanism21,23 (Fig. 3a, Extended Data Fig. 5b).

To investigate whether cohesin-mediated loop extrusion contrib-
utes to the formation of DDR foci, we analysed γH2AX profiles in 
SCC1-deficient cells. Both ChIP with microarray (ChIP–chip)7 and ChIP–
seq showed altered γH2AX spreading in SCC1-deficient cells compared 
to SCC1-proficient cells (Fig. 3b, Extended Data Fig. 5c, d) that coincided 
with a loss of cis contacts upon cohesin depletion (Fig. 3b, Extended 
Data Fig. 5c). Of note, the decrease in γH2AX in cohesin-depleted cells 
was small (about 5–10%) compared to the decrease in 4C-seq signal 
(30%), which may indicate that other factors (for example, SMC5/6) 
could contribute to loop extrusion-mediated γH2AX establishment 
and/or that intra-TAD chromatin dynamics contribute to γH2AX depo-
sition.

Cohesin is released from chromatin by the accessory WAPL and 
PDS5 factors. Consequently, depletion of these factors triggers an 
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increase in the lengths of chromatin loops that is proposed to arise 
from a more processive, cohesin-mediated loop extrusion29,30. Notably, 
we observed extended spreading of γH2AX in WAPL-depleted cells 
(Fig. 3c, Extended Data Fig. 5e), which is consistent with the idea that 
loop extrusion contributes to γH2AX deposition. This was accompa-
nied by a decrease in γH2AX within TADs (Extended Data Fig. 5f). Given 
that WAPL depletion, while enlarging loops, also decreases intra-TAD 
chromatin interactions30, this suggests that intra-TAD chromosome 
dynamics also contribute to full deposition of γH2AX.

To investigate whether such a cohesin-dependent mechanism could 
account for the establishment of DDR foci in budding yeast, we depleted 
PDS5 using an auxin-inducible system in a Saccharomyces cerevisiae 
strain31 that carries three HO endonuclease cleavage sites32. Consist-
ent with our observations in human WAPL-depleted cells, extended 
spreading of γH2A occurred following depletion of PDS5 in yeast cells 

(Fig. 3d). Notably, PDS5 deficiency triggered a decrease in γH2A levels 
adjacent to the DSBs (Extended Data Fig. 5g), similarly to WAPL deple-
tion in human cells.

Together, these data suggest that cohesin accumulation at DSBs 
initiates a one-sided loop extrusion process on either side of the break 
that helps to establish phosphorylation of H2AX and spreads until 
it reaches a strong boundary element (that is, a TAD border). This 
cohesin-dependent mechanism is conserved from yeast to human.

Cohesin changes in damaged TADs
Previous work has indicated that radiation triggers a genome-wide 
increase in cohesin and reinforcement of TADs33,34. Consistent with 
this, we found that SCC1 enrichment was increased at cohesin-binding 
sites after break induction, coinciding with increased loop strength 
(Extended Data Fig. 6a, b). DSB-induced increases in loop strength and 
SCC1 accrual were more pronounced in damaged TADs than in undam-
aged TADs and decreased with the distance to DSBs (Fig. 4a, Extended 
Data Fig. 6c–g). Thus, our data indicate a generalized increase in SCC1 
occupancy and loop strength throughout the genome after DSB pro-
duction that is weakly exacerbated within TADs that are subjected to 
DSB. The SMC1 and SMC3 cohesin subunits have been reported to be 
phosphorylated by ATM following DSB induction35, and these modifica-
tions are essential for reinforcement of cohesin on the genome after 
irradiation34. ChIP–chip analyses indicated that phosphorylated SMC1 
(pSMC1 S966) and SMC3 (pSMC3 S1083) accumulated on entire TADs 
around DSBs (Extended Data Fig. 7a). ChIP–seq against pSMC3 S1083 
confirmed that phosphorylated SMC3 increased at cohesin-bound sites 
and loop anchors in damaged TADs (Fig. 4b, Extended Data Fig. 7b, c).  
The accumulation of these DSB-induced, ATM-mediated cohesin modi-
fications around DSBs may regulate cohesin properties, such as loop 
extrusion velocity or chromatin unloading, which could translate into 
increased cohesin residence time at boundary elements and may help 
to isolate DDR domains from adjacent chromatin.

A model for γH2AX domain formation
In summary, our data show that TADs are the template for the spread-
ing of many DSB repair signalling events, such as the phosphorylation 
of H2AX (in agreement with a recent report36), the eviction of histone 
H1 and the accrual of 53BP1, MDC1 and ubiquitin, allowing DSB sig-
nalling at the megabase scale. Our results suggest a DSB-anchored 
cohesin-mediated loop extrusion model that would mediate phospho-
rylation of H2AX (Fig. 4c). In this model, cohesin accumulates rapidly 
on both sides of a DSB in a manner that is fostered by ATM, NIPBL and 
the MRN complex. Whether this is due to prior ongoing loop extrusion 
arresting at DSB or to de novo loading of the cohesin complex still needs 
to be determined. Divergent one-sided loop extrusion takes place at the 
DSB, which in turn allows the locally recruited ATM to phosphorylate 
H2AX containing nucleosomes as the chromatin fibre is pulled by the 
cohesin ring. Given that current estimates of cohesin-mediated loop 
extrusion suggest a rate of 0.5–2 kb s−1 in vitro21,23, such a mechanism 
would allow rapid assembly of DDR foci, with the entire megabase-sized 
chromatin domain being modified in about 10–30 min, which fits with 
the observed rate of assembly of γH2AX foci9. This model is consist-
ent with the finding that in yeast, the ATM orthologue Tel1 mediates 
H2A phosphorylation in a manner that agrees with a 1D sliding model 
rather than a 3D diffusion model37; and with the recent observation38, 
using light-induced activation of Cas9, that γH2AX is established at a 
speed of about 150 kb min−1 and can in some instance reach up to 30 Mb. 
Moreover, our data also indicate that, upon DSB induction, the loop 
strength is reinforced, cohesin accumulates at loop anchors and the 
cohesin complex itself is modified by ATM within damaged TADs. We 
propose that ATM-mediated phosphorylation of the cohesin complex 
may alter the properties of cohesin, such as loop extrusion velocity or its 
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capability to load onto or unload from chromatin. These changes may 
further reinforce H2AX phosphorylation thanks to intra-TAD chromatin 
dynamics following initial loop-extrusion-dependent establishment 
of γH2AX.

Recent work supports the key role of TAD borders and loop extrusion 
in the maintenance of genome architecture and stability, including rear-
rangements of immunoglobulin loci39,40, and in DSB occurrence through 
topoisomerase reactions41,42. Our study shows that genome architecture 
is also instrumental for the correct establishment of γH2AX and DDR 
foci, expanding the function of genome organization within TADs to 
the response to DNA damage. We propose that arresting loop extrusion 
provides an efficient and rapid way to signal a DSB and assemble a DDR 
focus, while boundary elements help to constrain DDR signalling to 
DSB-surrounding, self-interacting chromatin domains. This creates a 
specific repair-prone chromatin compartment with modified dynamics 
properties, which may, for example, reduce the search time for DNA 
end rejoining and homology search, and/or concentrate repair factors.
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Methods

Cell culture and treatments
DIvA (AsiSI-ER-U20S)10 cells generated in our laboratory were grown 
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 
10% SVF (Invitrogen), antibiotics and 1 μg/ml puromycin (DIvA cells) 
at 37 °C under a humidified atmosphere with 5% CO2. Cells were not 
further authenticated, and were regularly tested and found nega-
tive for mycoplasma contamination. For DSB induction, cells were 
treated with 300 nM 4-hydroxytamoxifen (4OHT) (Sigma, H7904) 
for 4 h. For ATM inhibition, cells were pretreated for 1 h with 20 μM 
KU-55933 (Sigma, SML1109) and treatment continued during subse-
quent 4OHT treatment. For ATR inhibition, cells were pretreated for 
1 h with 2 μM ETP-46464 (Sigma, SML1321) and treatment continued 
during subsequent treatment with 4OHT or hydroxyurea (HU) (1 h at 
1 mM (Sigma, H8627)). For kinetics experiment (Fig. 3a), cells were 
pretreated for 1 h with 20 μM KU-55933 (Sigma, SML1109) and treat-
ment continued during subsequent 4OHT treatment before cells were 
washed three times with 1× PBS and released after 0 min, 5 min, 15 min 
or 1 h. siRNA transfections were performed with a control siRNA (siCtrl): 
CAUGUCAUGUGUCACAUCU; and an siRNA targeting SCC1 (siSCC1): 
GGUGAAAAUGGCAUUACGG; or WAPL (siWAPL): CGGACUACCC 
UUAGCACAA; or NIPBL (siNIPBL): GCUCGGAACAAAGCAAUUA; or MRE11 
(siMRE11): GCUAAUGACUCUGAUGAUA, using the 4D-Nucleofector and 
the SE cell line 4D-Nucleofector X kit L (Lonza) according to the manu-
facturer’s instructions, and subsequent treatment(s) were performed 
48 h later. For CRISPR–Cas9-mediated DSB induction, sgRNA (AsiSI site 
position: CGCCGCGATCGCGGAATGGA or position further within the 
TAD: GGGCCAGTCGCGGCACTCGC) were delivered in U2OS cells using 
the ‘nanoblades’ technology, which relies on direct cell transduction 
with a virus-derived particle containing the Cas9–sgRNA ribonucleo-
protein43,44. Cells were analysed 24 h after transduction. For calibrated 
ChIP–seq experiment, mouse chromatin was obtained from E14TG2a 
ES cells, grown on gelatinized dishes in DMEM (Gibco) supplemented 
with 10% fetal bovine serum (EmbryoMax ES Cell Qualified FBS, Sigma 
Aldrich), 1× MEM nonessential amino acids, 1 mM sodium pyruvate, 
50 μM 2-mercaptoethanol (Gibco) and 1 U/μl LIF (ESGRO Recombi-
nant Mouse LIF, Sigma Aldrich). mES cells were obtained from A. Bird 
(WTCCB) and were not further authenticated. They were not tested 
for mycoplasma contamination.

To make the S. cerevisiae strain yFZ014, a linearized TIR1 gene was 
obtained through restriction enzyme digestion of plasmid pJH2955 
with PmeI1 and inserted into the leu2 locus of strain YSCL00432. Inser-
tion of TIR145 was verified by PCR with primers internal to TIR1 and 
leu2. yFZ016 was made by PCR amplification of plasmid pJH2898 to 
produce a 9myc-AID::KAN PCR product with homologies at each end 
to the C terminus of PDS5; this PCR product was inserted using stand-
ard yeast transformation protocols to produce a PDS5::9myc-AID 
fusion protein. A western blot was used to verify the degradation of 
PDS5::9myc-AID in yFZ014 and yFZ016 after auxin addition. DSBs were 
induced as described33.

Immunofluorescence
DIvA cells were plated on glass coverslips and fixed with 4% paraformal-
dehyde for 15 min at room temperature, permeabilized with 0.5% Triton 
X-100 in PBS for 10 min then blocked with 3% BSA in PBS for 30 min. 
Cells were then incubated with the primary antibody (Extended Data 
Table 1) diluted in PBS–BSA overnight at 4 °C, washed with 1× PBS and 
incubated with the appropriate anti-mouse or anti-rabbit secondary 
antibodies (conjugated to Alexa 594 or Alexa 488, Invitrogen), diluted 
1:1,000 in PBS–BSA, for 1 h at room temperature, followed by DAPI 
staining. Coverslips were mounted in Citifluor (Citifluor, AF-1). Image 
acquisition was performed with MetaMorph on a wide-field micro-
scope (Leica, DM6000) equipped with a camera (DR-328G-C01-SIL-505, 
ANDOR Technology) using 40× or 100× objectives. For quantification, 

cells were acquired with a 40× objective and analysed using Columbus 
software (Perkin Elmer). γH2AX foci were detected using method D in 
Colombus software.

Western blot
For detection of SCC1, WAPL, NIPBL and MRE11, cells were incubated in 
RIPA buffer (50 mM Tris at pH 8, 150 mM NaCl, 0.5% deoxycholate, 1% 
NP-40, 0.1% SDS) for 20 min on ice and centrifuged at 13,000 rpm for 
10 min to remove insoluble material. SDS loading buffer and reducing 
agent were then added to the supernatant. For detection of pCHK1, 
cells were resuspended in 100 μl histone extraction buffer (1% SDS, 
1% Triton, 10mM Tris pH7.5, 0.5M NaCl, phosphatase 0.01× (Sigma, 
P5726) and complete protease inhibitors 1× (Sigma, 11873580001)) 
and sonicated twice for 10 s with an amplitude of 30% before addition 
of SDS loading buffer and reducing agent. All protein extracts were 
resolved on 3–8% NuPAGE Tris-acetate gels (Invitrogen) and trans-
ferred onto PVDF membranes (Invitrogen) according to the manufac-
turer’s instructions. Membranes were blocked in TBS containing 0.1% 
Tween 20 (Sigma, P1379) and 3% nonfat dry milk for 1 h followed by 
overnight incubation at 4 °C with primary antibodies (Extended Data 
Table 1). The appropriate horseradish peroxidase-coupled secondary 
antibodies were used to reveal the proteins (anti-mouse at 1:10,000 
(Sigma, A2554) and anti-rabbit at 1:10,000 (Sigma, A0545)) using a 
luminol-based enhanced chemiluminescence HRP substrate (Super 
Signal West Dura Extended Duration Substrate, Thermo Scientific). 
Pictures of the membranes were acquired with the ChemiDoc Touch 
Imaging System and were visualized using Image Lab Touch software. 
Uncropped blots are presented in Supplementary Fig. 1.

Hi-C
Hi-C experiments were performed in DIvA cells using the Arima Hi-C 
kit (Arima Genomics) according to the manufacturer’s instructions. 
Cells (1 × 106) were used by condition and experiments were performed 
in duplicate. In brief, cells were cross-linked with 2% formaldehyde 
for 10 min at room temperature, lysed, and chromatin was digested 
with two different restriction enzymes included in the kit. Ends were 
filled-in in the presence of biotinylated nucleotides, followed by sub-
sequent ligation. Ligated DNA was sonicated using the Covaris S220 
to an average fragment size of 350 bp with the following parameters 
(peak incident power, 140; duty factor, 10%; cycles per burst, 200; treat-
ment time, 70 s). DNA was then subjected to double-size selection 
to retain DNA fragments between 200 and 600 bp using Ampure XP 
beads (Beckman Coulter). Biotin-ligated DNA was precipitated with 
streptavidin-coupled magnetic beads (included in the kit). Hi-C library 
was prepared on beads using the NEBNext Ultra II DNA Library Prep Kit 
for Illumina and NEBNext Multiplex Oligos for Illumina (New England 
Biolabs) following instructions from the Arima Hi-C kit. The final librar-
ies were subjected to 75-bp paired-end sequencing on a Nextseq500 
platform at the EMBL Genomics core facility (Heidelberg). Hi-C reads 
were mapped to hg19 and processed with Juicer using default settings 
(https://github.com/aidenlab/juicer). Matrix-balanced Hi-C count 
matrices were generated at multiple resolutions (250 kb, 100 kb, 50 kb,  
25 kb, 10 kb and 5 kb) and visualized on Juicebox and on Hi-Glass.

4C–seq
The 4C–seq experiments were realized as described46 with minor 
modifications. In brief, 15 × 106 DIvA cells were cross-linked with 2% 
formaldehyde for 10 min at room temperature, lysed and digested 
with MboI (New England Biolabs). Two or three rounds of 4 h of diges-
tion with MboI were necessary. Digested DNA was then ligated with a 
T4 DNA ligase (HC) (Promega), and purified and digested with NlaIII 
overnight (New England Biolabs). After a second ligation step, DNA was 
purified before proceeding to library preparation. For DNA purifica-
tion steps, AMPure XP beads (Beckman Coulter) were used diluted at 
1:10 in 20% PEG solution (PEG 8000 (Sigma) 20%, 2.5 M NaCl, Tween 
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20 20%, Tris pH 8, 10 mM, EDTA 1 mM). For 4C–seq library preparation, 
800–900 ng of 4C–seq template was amplified using 16 individual PCR 
reactions with inverse primers (PAGE-purified) including the Illumina 
adaptor sequences and a unique index for each condition (Extended 
Data Table 2). Libraries were purified with the QIAquick PCR Purification 
Kit (Qiagen), pooled and subjected to 75-bp single-end sequencing on 
a Nextseq500 platform at the I2BC Next Generation Sequencing Core 
Facility (Gif-sur-Yvette). Each sample was then demultiplexed using 
a specific python script from the FourCSeq R package47, thus assign-
ing each read to a specific viewpoint based on its primer sequence 
into separate fastQ files. bwa mem was then used for mapping and 
samtools for sorting and indexing. A custom R script (https://github.
com/bbcf/bbcfutils/blob/master/R/smoothData.R)48 was used to 
build the coverage file in bedGraph format, to normalize using the 
average coverage and to exclude the nearest region from each view-
point (viewpoint-containing restriction fragment and the two adjacent 
restriction fragments). Then the bedGraph file was converted into a 
BigWig file using the bedGraphToBigWig program from UCSC.

ChIP–qPCR, ChIP–seq and ChIP–chip
For Fig. 1a, ubiquitin, H1, γH2AX and 53BP1 ChIP–seq data were retrieved 
from ref. 5. ChIP experiments for pATM, MDC1 and phosphorylated 
cohesins were performed in DIvA cells as described10 with 200 μg of 
chromatin per immunoprecipitation. Prior to library preparation, 
samples from multiple ChIP experiments were pooled and sonicated for 
15 cycles (30-s on, 30-s off, high setting) with a Bioruptor (Diagenode) 
then concentrated with a vacuum concentrator (Eppendorf). CTCF and 
γH2AX (Fig. 3, Extended Data Figs. 5d, f) ChIP experiments were realized 
as follows. In brief, cross-linked cells were first lysed for 10 min at 4 °C 
in 500 μl lysis buffer 1 (10 mM Tris pH 8, 10 mM NaCl, 0.5% NP-40, com-
plete protease inhibitor (Sigma, 11873580001)) then for 10 min at 4 °C 
in lysis buffer 2 (50 mM Tris pH 8, 10 mM EDTA, 0.5% NP-40, complete 
protease inhibitor (Sigma)) and subsequently sonicated in 15-ml coni-
cal tubes with a Bioruptor Pico (Diagenode) in the presence of 800 mg 
sonication beads (20 cycles of 30-s on/30-s off) to an average fragment 
size of 250 pb. Chromatin (200 μg) was then immunoprecipitated as 
described10. The antibodies used are detailed in Extended Data Table 1. 
Sequencing libraries were prepared by using 10 ng of purified DNA 
(average size 250–300 bp) with the NEBNext Ultra II Library Prep Kit 
for Illumina (New England Biolabs) using the application note for ‘Low 
input ChIP–seq.’, and subjected to 75-bp single-end sequencing on a 
Nextseq500 platform at the EMBL Genomics core facility (Heidelberg).

For the SCC1-calibrated ChIP–seq, we used a spike-in method49. In 
brief, cross-linked DIvA cells or mouse embryonic stem cells (ES cells) 
were lysed and fragmented as for CTCF and γH2AX. Prior to immuno-
precipitation with SCC1 antibody, 20% of chromatin from mouse ES cells 
(40 μg) was added to chromatin prepared from treated or untreated 
human DIvA cells (200 μg). Sequencing libraries were prepared from 
immunoprecipitation and input samples using the NEBNext Ultra II 
Library Prep Kit for Illumina and subjected to 75-bp single-end sequenc-
ing on a Nextseq500 platform at the EMBL Genomics core facility  
(Heidelberg). First, SCC1 was aligned on the mouse genome (mm10) 
with bwa to map only the reads used as a reference for the normalization 
(spike-in). Remaining unmapped reads were re-converted into a fastQ 
file using bam2fastq and mapped to the human genome (hg19) using 
bwa. Samtools was used for sorting and indexing, and reads mapped to 
the mouse genome were used as a normalization factor, as described49 
and using the following formula: (inputctrl × readsexp)/(inputexp × read-
sctrl), in which inputctrl is the total number of reads mapped in ES input 
(mouse) and inputexp is the total number of reads in DIvA input. readsctrl 
and readsexp were, respectively, the number of reads from immunopre-
cipitated samples mapped on the mm10 genome and the hg19 genome.

For calibrated SCC1 ChIP–qPCR, the immunoprecipitated samples 
from DIvA cells were normalized by the signal of the immunoprecipi-
tated sample from ES cells on a mouse cohesin-positive site (using 

primers in Extended Data Table 2). Data were analysed using the Bio-Rad 
CFX manager software.

For the ChIP–chip experiments, the immunoprecipitated samples 
of γH2AX, pSMC1 S966, pSMC3 S1083 and input samples were ampli-
fied as described10, labelled and hybridized on Affymetrix tiling arrays 
covering human chromosomes 1 and 6 (at the Genotoul GeT-biopuces 
facility, Toulouse). Scanned array data were normalized using Tiling 
Affymetrix Software (TAS) (quantile normalization, scale set to 500), 
analysed as described10,12 and converted into .wig files using R/Biocon-
ductor software, when necessary, for visualization using the Integrated 
Genome Browser (https://www.bioviz.org/).

For the ChIP experiment in yeast, individual colonies of yFZ014 and 
yFZ016 were grown in YEP + 3% lactic acid (YEP-Lac) until log phase 
growth with a final cell concentration between 5 × 106 cells per ml and 
8 × 106 cells per ml. Degradation of Pds5::9myc-AID in yFZ016 was 
induced by addition of auxin (Sigma Aldrich no. I3750) at a final con-
centration of 1 mM and confirmed by western blotting. For chromatin 
immunoprecipitation, 45 ml of culture was fixed and cross-linked with 
1% formaldehyde for 10 min, after which 2.5 ml of 2.5 M glycine was 
added for 5 min to quench the reaction. Cells were pelleted and washed 
3 times with 4 °C TBS. Yeast cell walls were disrupted by beating the cells 
with 425–600 μm glass beads for 1 h in lysis buffer at 4 °C. The lysate 
was sonicated for 2 min to obtain chromatin fragments of about 500 bp  
in length. Debris was then pelleted and discarded, and an equal volume  
of lysate was immunoprecipitated using γ-H2A antibody for 1 h at 
4 °C, followed by addition of Protein-A agarose beads (Sigma-Aldrich 
no. 1719408001) for 1 h at 4 °C. The immunoprecipitate was then washed 
twice in 140 mM NaCl lysis buffer, once with 0.5 M NaCl lysis buffer, 
once with 0.25 M LiCl wash buffer and once with TE. Crosslinking was 
reversed at 65 °C overnight followed by addition of proteinase K and 
glycogen for 2 h. Protein and nucleic acids were separated by phenol 
extraction. LiCl was added to a final concentration of 400 mM. DNA 
was precipitated using 99.5% EtOH. A second precipitation step was 
carried out using 75% EtOH and the DNA resuspended in TE. Sequencing 
libraries were prepared and sequenced as for ChIP–seq in human cells.

Hi-C, 4C–seq and ChIP–seq analyses
Hi-C heat maps. Hi-C heat map screenshots were generated using the 
Juicebox stand-alone program (https://github.com/aidenlab/Juicebox/
wiki/Download). To build the average heat maps, sub-matrices for cis 
interactions around DSBs were extracted using Juicer, for both ob-
served and observed over expected matrices. We computed log2(ratio 
after/before DSB) using both Hi-C replicates, and averaged for each 
bin of the final matrix.

Insulation score and TAD calling. Insulation score was computed us-
ing Hi-C matrices at 50-kb resolution with matrix2insulation.pl (https://
github.com/dekkerlab/crane-nature-2015). As parameters, we used 
is = 800000 and ids = 100000. TADs were called using Hi-C matrices at 
50-kb resolution with TopDom R package and window size parameter of 10 
(https://github.com/HenrikBengtsson/TopDom). To filter out very weak 
TAD borders (corresponding to sub-TAD borders), we filtered TAD borders 
with an insulation score below a threshold of −0.05. For Extended Data 
Fig. 2d, 80 TADs were also randomly selected from TopDom output, which 
did not contain any of the best 80 cleaved DSBs, to be used as controls.

Loops anchors and APA. Loops were called using the Juicer Tools HiC-
CUPS program at 10 kb and 25 kb resolutions (https://github.com/aid-
enlab/juicer/wiki/HiCCUPS). Aggregate peak analysis (APA) was done 
using the Juicer Tools APA program at 10-kb resolution (https://github.
com/aidenlab/juicer/wiki/APA). We retrieved 525 loops between the 
174 best cleaved DSBs and nearby loop anchors (<1 Mb) for replicate 1 
(Fig. 2c), and 552 for replicate 2 (Extended Data Fig. 2f). The fold change 
between signal (central pixel) and background (upper left corner 5 × 5 
pixels) was computed. For Extended Data Fig. 6f, APAs were generated 



for loops filtered on their size (<200 kb) and around the best 80 cleaved 
DSBs. We retrieved 597 and 17,206 loops in damaged (80 damaged TADs) 
and undamaged TADs, respectively, in replicate 1, and 645 and 19,150 
for replicate 2. The fold change between signal (central pixel) and back-
ground (lower left corner 5 × 5 pixels) was computed. APA heat maps were 
reprocessed using ggplot2 to display counts at the same colour scale 
between −DSB and +DSB conditions. For Extended Data Fig. 6g, loop 
strength was extracted from APA files enhancement.txt corresponding to 
enrichment fold change (peak to mean, P2M). Differential loop strength 
was the log-ratio of two conditions loop strengths (+DSB/−DSB).

ChIP–seq analyses. ChIP–seq data were processed as described5, except 
for yeast ChIP–seq, which was aligned on the S. cerevisiae R64-1-1 as-
sembly, and without PCR duplicate removal. SCC1 and CTCF peaks were 
identified using MACS2 with the callpeak algorithm, with default setting, 
using input as control and the SCC1 ChIP–seq data before break induction 
as sample. For SCC1, before breaks, 46,184 peaks were identified, with 
median and mean sizes of 628 and 742, respectively. For CTCF before 
breaks, 96,801 peaks were identified, with median and mean sizes of 339 
and 500, respectively. Overlap between CTCF peaks and CTCF motifs was 
then performed, to associate a peak with the orientation of its motif. For 
representation of genomic tracks, the data were further smoothed using 
sliding windows as indicated. bamCompare fromdeeptools, with the 
parameters –binSize = 50,–operation = log2 and with default normaliza-
tion (readCount) was used to generate differential tracks. For kinetics 
analysis (Extended Data Fig. 5b), γH2AX domain boundaries around the 
best cleaved DSBs were manually retrieved thanks to visualization of the 
50-kb smoothed data on a genome browser (IGB) at different time points. 
The distribution of γH2AX spread is further shown as a box plot (n = 71).

4C–seq. For differential analyses of the 4C–seq data, the log2 ratio 
between two .bam files was computed using bamCompare from deep-
tools, with the parameters –binSize = 50 and–operation = log2. Ex-
tended Data Figure 3d shows the mean and s.e.m of the 4C–seq ratio 
on 1 Mb around each viewpoint, obtained across four independent ex-
periments (control viewpoints, n = 3; DSB viewpoints, n = 11). Extended 
Data Figures 3h, 4c show the distribution (box plots) of the 4C–seq ratio 
on 1 Mb around DSB viewpoints obtained across two (siSCC1) or three 
(ATMi) independent experiments (n = 8).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All high-throughput sequencing data (Hi-C, ChIP–seq, 4C–seq) have 
been deposited to Array Express (https://www.ebi.ac.uk/arrayexpress/) 

under accession number E-MTAB-8851. ChIP–chip data have been 
deposited to Array Express under accession number E-MTAB-8793. 
Uncropped blots are shown in Supplementary Fig. 1. Other data (ChIP–
qPCR and raw microscopy data) are available upon request.

Code availability
Source codes are available from https://github.com/LegubeDNARE-
PAIR/LoopExtrusion.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | γH2AX spreads within prior TADs as revealed by 4C–
seq. a, 4C–seq tracks before DSB induction obtained for three independent 
biological replicates and γH2AX ChIP–seq track after DSB induction for 
different viewpoints (red arrows) localized at three AsiSI sites (black arrows). 
ChIP–seq data were smoothed using 100-kb span and 4C–seq data using a 50-kb  
span. b, Example of the Hi-C pattern obtained on chromosome 1 at a 500-kb 
resolution (left) together with a magnification at a 10-kb resolution (right).  
c, CTCF and calibrated-SCC1 ChIP–seq tracks. d, Average profile of CTCF  
ChIP–seq around all loop anchors on the genome (determined using this Hi-C 
dataset, Methods), validating both CTCF ChIP–seq and Hi-C datasets. e, γH2AX 
ChIP–seq after DSB induction. 4C–seq and CTCF ChIP–seq peak position 
before DSB induction are shown (peaks in blue contain a CTCF motif in the 
forward orientation and peaks in red a CTCF motif in the reverse orientation).  
f, Box plot showing γH2AX (top), 53BP1 (middle) and MDC1 (bottom) ChIP–seq 
quantification within the damaged TAD and neighbouring TADs for the best 
cleaved DSBs in DIvA cells (Methods). Centre line, median; box limits, first and 
third quartiles; whiskers, maximum and minimum without outliers; points, 
outliers (n = 153). g, γH2AX tracks around a DSB induced by CRISPR–Cas9  

(top, ChIP–chip, expressed as log2[sample/input], smoothed using 100-probe 
windows) and by AsiSI at the same position (bottom, ChIP–seq, 50-kb 
smoothed). h, Top, immunofluorescence experiment showing γH2AX and DAPI 
staining before and after DSB induction with or without ATM inhibitor as 
indicated (scale bars, 10 μm). Bottom, quantification of γH2AX intensity 
(expressed in arbitrary units (A.U.)) in the above conditions. One 
representative experiment is shown (out of n = 3 biological replicates). Box 
plots as in f. –DSB, n = 117 nuclei; +DSB, n = 97 nuclei; +DSB + ATMi, n = 95 nuclei. 
i, Validation of ATR inhibitor efficiency. Western blot showing the effect of 
ATRi on the phosphorylation of CHK1 following treatment with hydroxyurea 
(HU) (n = 2). For gel source data, see Supplementary Fig. 1. j, γH2AX ChIP–seq 
tracks after DSB induction in untreated cells or in cells treated with an inhibitor 
of ATM or ATR at two DSB sites (20-kb smoothed). The differential γH2AX 
signal obtained after DSB induction (expressed as the log2 ratio ATMi/
untreated or ATRi/untreated, grey tracks) is also shown (n = 1). k, Average 
profile of pATM (S1981) (left) and γH2AX (right) ChIP–seq on a 2-Mb window 
around the 80 best-cleaved DSBs in DIvA cells.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Cohesin recruitment and loop extrusion occurs at 
DSBs. a, Calibrated SCC1 ChIP–seq tracks before (grey) and after (black) DSB 
induction (n = 1). SCC1 enrichment at DSB site is indicated by a red arrow.  
b, Average profile of SCC1 ChIP–seq signal centred on the 80 best-induced 
DSBs (left) or centred on all CTCF peaks of the genome (right) on a 10-kb 
window. c, Calibrated ChIP–qPCR of SCC1 in the indicated conditions at three 
DSB sites or a negative control region. Insets, western blots validating 
depletion of the proteins NIPBL (n = 1) and MRE11 (n = 2) by the corresponding 
siRNAs. For gel source data, see Supplementary Fig. 1. Mean ± s.e.m. for 
technical replicates (n = 4) of a representative experiment (out of n = 2 
biological replicates). d, Averaged Hi-C matrix before (−DSB) and after DSB 
induction (+DSB) (observed/expected) and of the log2 ratio between damaged 
and undamaged cells centred on the 80 best-induced DSBs (top) or centred on 
eighty random TAD borders (bottom) (50-kb resolution, 5-Mb window; 
combined replicates). e, Averaged Hi-C contact matrix of log2[+DSB/−DSB] 

centred on the eighty best-induced DSBs in the two independent biological 
replicates. f, APA plot on a 200-kb window (10-kb resolution) before (−DSB) and 
after DSB induction (+DSB) in biological replicate no. 2 (replicate no. 1 shown in 
Fig. 2c). APAs are calculated between the DSBs and loop anchors (n = 552 pairs). 
The fold change between the signal (central pixel) and the background (upper 
left corner 5 × 5 pixels) is indicated. g, For comparison with f, APA plot on a  
200-kb window (10-kb resolution) before DSB induction computed between 
classical loop anchors that are near DSB sites (<500 kb; n = 674 pairs for 
replicate 1 and n = 737 pairs for replicate 2). The fold change between the signal 
(central pixel) and the background (upper left corner 5 × 5 pixels) is indicated. 
The loop strength (quantified by the fold change between signal and 
background on the APA plot) is higher at loop anchors (g, replicate 1 fold-
change = 5.4; replicate 2 fold-change = 5.8) than the loop strength observed at 
DSBs after break induction (Fig. 2c, replicate 1, fold-change = 2; f, replicate 2, 
fold-change = 2.3).
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Loop extrusion at DSBs detected by 4C–seq.  
a, 4C–seq tracks (10-kb smoothed) before and after DSB induction, obtained 
for three biological replicates using viewpoints localized at three DSB sites 
(arrows). b, 4C–seq tracks before (blue) and after (purple) DSB induction, at 
two DSB viewpoints. Differential 4C–seq (log2[+DSB/−DSB]) is also shown 
(black). c, Differential 4C–seq (log2[+DSB/−DSB]) for three viewpoints located 
at DSB sites and on a control region as indicated. d, Differential 4C–seq signal 
(log2[+DSB/−DSB]) computed on 1 Mb around four independent viewpoints 
located at DSBs (DSBs viewpoints, n = 11) and one control region (control 
viewpoint, n = 3), across four independent biological experiments (Methods). 
Two-sided Wilcoxon test; mean ± s.e.m. e, Western blot showing depletion of 

SCC1 by siRNA (n = 3). For gel source data, see Supplementary Fig. 1.  
f, Differential (log2) 4C–seq track in siSCC1-treated cells versus control siRNA-
treated cells (in undamaged conditions) for three viewpoints. g, Genomics 
tracks showing 4C–seq signals before and after DSB induction in control siRNA- 
or siSCC1-treated cells and the differential 4C–seq signal in control siRNA- or 
siSCC1-treated cells (log2[+DSB/−DSB]; 10-kb smoothed). h, Average 
log2[+DSB/−DSB] 4C–seq, on 1 Mb around four DSB viewpoints (two biological 
experiments) upon treatment with control siRNA or siSCC1 (Methods) (n = 8). 
Two-sided Wilcoxon test. Centre line, median; box limits, first and third 
quartiles; whiskers, maximum and minimum without outliers; points, outliers.
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Extended Data Fig. 4 | ATM activity is required for loop extrusion at DSBs.  
a, Hi-C maps before DSB induction of a region of chromosome 17 in control and 
SCC1-depleted cells. Left, 100-kb resolution; right, 25-kb resolution.  
b, Genomic tracks of 4C–seq before and after DSB induction in untreated or 
ATM-inhibitor-treated cells and of differential 4C–seq signal (log2[+DSB/−DSB] 

or log2[+DSB + ATMi/−DSB]; 10-kb smoothed). c, Cis interactions computed as 
in Extended Data Fig. 3h for four DSB viewpoints across three biological 
experiments, in control condition or upon ATM inhibition. Two-sided Wilcoxon 
test. Centre line, median; box limits, first and third quartiles; whiskers, 
maximum and minimum without outliers; points, outliers (n = 8).



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Altered loop extrusion modifies γH2AX spreading.  
a, Quantification of γH2AX intensity after DSB induction (OHT, 4 h) and upon 
ATM inhibition followed by different times after ATMi release (0 min, n = 172 
nuclei; 5 min, n = 183 nuclei; 15 min, n = 171 nuclei; 30 min, n = 197 nuclei; 1 h, 
n = 189 nuclei). Treatment with OHT for 4 h without ATMi is also shown (n = 182 
nuclei). One representative experiment is shown (out of n = 2 biological 
replicates). Centre line, median; box limits, first and third quartiles; whiskers, 
maximum and minimum without outliers. b, Spread of γH2AX (in bp) at the 
indicated time points after release from ATMi around the best cleaved DSBs 
(n = 71). Centre line, median; box limits, first and third quartiles; whiskers, 
maximum and minimum without outliers; points, outliers. c, Black, 4C–seq 
track before DSB induction using a DSB viewpoint. Purple, differential γH2AX 
signal obtained after DSB induction by ChIP–chip in SCC1-depleted versus 
control cells (expressed as γH2AX log2[siSCC1/siCtrl]). Light blue, differential 

4C–seq signal obtained in SCC1-depleted versus control cells before DSB 
induction (log2[siSCC1/siCtrl]). d, Genomic tracks of γH2AX ChIP–seq signal 
after DSB induction in control (red) or SCC1-depleted (pink) cells and of the 
differential γH2AX signal obtained after DSB induction (log2[siSCC1/siCtrl], 
purple) at two DSB sites. e, Western blot validating the effect of the siRNA 
targeting WAPL on the WAPL protein level (n = 2). For gel source data, see 
Supplementary Fig. 1. f, Genomics tracks of γH2AX ChIP–seq after DSB 
induction in control or WAPL-depleted cells and of the differential γH2AX 
signal obtained after DSB induction (log2[siWAPL/siCtrl]) at two DSB sites and 
one control (no DSB) genomic locus (20-kb smoothed). g, Genomics tracks of 
the differential γH2A ChIP–seq signal (log2[+DSB/−DSB]) before (no IAA) or 
after PDS5 degradation (IAA) at two DSB sites (HO sites) in S. cerevisiae 
(SacCer3, coordinates in bp) (n = 1).



Extended Data Fig. 6 | Increased genome-wide, DSB-induced, cohesin 
binding is enhanced within damaged TADs. a, Top, contact matrix (5-kb 
resolution) showing log2[observed/expected] before or after DSB induction on 
a region showing a loop on chromosome 20 and devoid of AsiSI site (no DSB). 
Loops anchors are circled and indicated by red and blue bars. Bottom, genome 
browser screenshot showing the SCC1-calibrated ChIP–seq on the same region 
before and after DSB induction. Cohesin enrichment at the loop anchors (blue 
and red bars) is increased after DSB (black arrows) compared to before DSB 
(grey arrows), in agreement with increased loop strength (grey and black 
circles, top). b, Violin plots showing SCC1 enrichment at cohesin peaks 
(n = 46,194) before and after DSB induction. Paired one-sided Wilcoxon test.  
c, Genomic tracks of γH2AX (red) and SCC1 ChIP–seq signal before (blue) and 
after (purple) DSB induction. The ratio between before and after DSB induction 
(grey) is also shown (log2[+DSB/−DSB]; 10-kb smoothed). d, Quantification of 
SCC1 recruitment on loop anchors at different distances from DSB sites as 
indicated (from left to right, n = 1,610, 3,161, 1,930, 3,232, 4,786, 25,263, 

114,461). Centre line, median; box limits, first and third quartiles; whiskers, 
maximum and minimum; points, outliers. e, γH2AX ChIP–seq signal and Hi-C 
signal at different distances from a damaged TAD on chromosome 1 before  
(−DSB) and after DSB induction (+DSB). Green circles, chromatin loops. f, APA 
plot on a 200-kb window (10-kb resolution) before (−DSB) and after DSB 
induction (+DSB) calculated for all loop anchors, in damaged and undamaged 
TADs. The fold change between the signal (central pixel) and the background 
(lower left corner 5 × 5 pixels) is indicated. g, Differential loop strengths in 
undamaged or damaged TADs (Methods), computed from Hi-C data obtained 
before and after DSB, from replicates 1 and 2. P values between before and after 
DSB are indicated (Wilcoxon test, μ = 0). The increased loop strength following 
DSB is significantly higher in damaged TADs than in undamaged TADs (paired 
two-sided Wilcoxon test) in both Hi-C replicate experiments. Replicate 1: 
undamaged, n = 2,936; damaged, n = 264. Replicate 2: undamaged, n = 3,181; 
damaged, n = 302. Box plots as in d.
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Extended Data Fig. 7 | DSB-induced phosphorylation of cohesin occurs in 
damaged TADs. a, Genomic tracks showing γH2AX, pSMC3 S1083 and pSMC1 
S966 ChIP–chip signals expressed as log2[sample/input] after DSB induction. 
Two damaged genomic locations are shown. b, Average profile of pSMC3 S1083 
(expressed as log2([+DSB/−DSB] ChIP–seq signal) around the 80 best-induced 
DSBs on a 4-Mb window. c, Quantification of pSMC3 S1083 signal on loop 
anchors in damaged or undamaged TADs. P values between before and after 

DSB are indicated (paired two-sided Wilcoxon test). The increased pSMC3 
S1083 enrichment on loop anchors following DSB is significantly higher in 
damaged TADs than in undamaged TADs (two-sided Wilcoxon test). 
Undamaged, n = 9,040; damaged, n = 1,626. Centre line, median; box limits, 
first and third quartiles; whiskers, maximum and minimum without outliers; 
points, outliers.



Extended Data Table 1 | Antibodies used in this study



Article
Extended Data Table 2 | Primers used in this study

NNN is the position of the optional index.



3.4. The genome in 3D 145

3.4.6.2 ATM-dependent formation of a novel chromatin compartment (Vincent

Rocher)

Using capture Hi-C experiments to study the clustering of induced DSBs at

defined loci in the human genome, the team previously demonstrated that DSBs

physically cluster, but only when induced within transcriptionally active genes

[Aymard et al. 2017]. Damaged gene clustering mainly occurs in G1 cell-cycle

phase and corresponds to delayed repair. In addition, clustering of DSBs depends

on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and

the linker of nuclear and cytoplasmic skeleton (LINC) complex, which suggests

a role of active mechanisms to promote clustering. However, the role of DSB

clustering has remained enigmatic given that the physical proximity of several

DSBs can also trigger translocations by illegitimate rejoining of two DNA ends,

thus increasing genome instability, questioning the selective advantage of DSB

clustering for DNA repair. Moreover, deeper analyses of DSB clustering was

limited by the resolution of capture Hi-C data at 100 kb resolution.

Using Hi-C experiments at high resolution (5-10 kb), Coline Arnould, Vincent

Rocher et al. revealed that the clustering of DSBs involves the formation of a new

chromatin sub-compartment (called “D” compartment) driven by ATM and associ-

ated with γH2AX and 53BP1 (Figures 1 and 3 from the submitted article ”Loop

extrusion as a mechanism for DNA double-strand breaks repair foci formation” be-

low). Formation of “D” compartment mainly occurs during G1 phase, is cohesin

independent and is increased by DNA-PK pharmacological inhibition (Figure 2).

Most notably, a subset of DNA damage responsive genes upregulated after DSB

induction also physically relocate to the D sub-compartment, supporting a role for

DSB clustering in activating the DNA Damage Response (Figure 3). However, 3D

clustering of DSBs also comes at the expense of an increased translocations rate,

which is responsible for genomic instability in cancer (Figure 4).
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Abstract 

DNA Double-Strand Breaks (DSBs) repair is essential to safeguard genome integrity but 

the contribution of chromosome folding into this process remains elusive. Here we 

unveiled basic principles of chromosome dynamics upon DSBs in mammalian cells, 

controlled by key kinases from the DNA Damage Response. We report that ATM is 

responsible for the reinforcement of topologically associating domains (TAD) that 

experience a DSB. ATM further drives the formation of a new chromatin sub-

compartment (“D” compartment) upon clustering of damaged TADs decorated with 

H2AX and 53BP1. “D” compartment formation mostly occurs in G1, is independent of 

cohesin and is enhanced upon DNA-PK pharmacological inhibition. Importantly, a subset 

of DNA damage responsive genes that are upregulated following DSBs also physically 

localize in the D sub-compartment and this ensures their optimal activation, providing a 

function for DSB clustering in activating the DNA Damage Response. However, these 

DSB-induced changes in genome organization also come at the expense of an increased 

translocations rate, which we could also detect on cancer genomes. Overall, our work 

provides a function for DSB-induced compartmentalization in orchestrating the DNA 

Damage Response and highlights the critical impact of chromosome architecture in 

genomic instability.  
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Main  

DNA Double-Strand Breaks (DSBs) are highly toxic lesions that can trigger translocations or 

gross chromosomal rearrangements, thereby severely challenging genome integrity and cell 

homeostasis. Chromatin plays a pivotal function during DNA repair, which is achieved by 

either non-homologous end joining or homologous recombination pathways1. Yet, little is 

known about the contribution of chromosome architecture into these processes. DSBs activate 

the DNA Damage Response (DDR) that largely relies on PI3K kinases, including ATM and 

DNA-PK, and on the establishment of megabase-sized, H2AX-decorated chromatin domains 

that act as seeds for subsequent signaling events, such as 53BP1 recruitment and DDR foci 

formation2,3.  

Importantly, H2AX spreading is largely influenced by the pre-existing chromosome 

conformation in topologically associating domains (TADs)4–6 and we recently reported that 

loop-extrusion, which compacts the chromatin and leads to TADs formation, is instrumental 

for H2AX spreading and DDR foci assembly5. Moreover, irradiation induces a general 

chromatin response reinforcing TADs genome wide7. At a larger scale, previous work in 

mammalian cells revealed that DSBs display the ability to “cluster” within the nuclear space 

(i.e., fuse) forming large microscopically visible repair foci, composed of several individual 

repair foci8–10. DSB clustering depends on the actin network, the LINC (a nuclear envelope 

embedded complex)9,11,12, as well as on the liquid-liquid phase separation properties of 

53BP113,14. The function of DSB clustering has remained enigmatic given that juxtaposition of 

several DSBs can elicit translocation (i.e: illegitimate rejoining of two DNA ends)10, 

questioning the selective advantage of DSB clustering/ repair foci fusion15.  

 

ATM drives an acute reinforcement of damaged TADs. 
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In order to get comprehensive insights into chromosome behavior following DSBs, we analyzed 

3D genome organization using Hi-C data generated in the human DIvA cell line where multiple 

DSBs are induced at annotated positions upon hydroxytamoxifen (OHT) addition16. Our 

previous analyses using H2AX ChIP-seq and direct DSB mapping by BLESS allowed us to 

identify 80 robustly induced DSBs on the human genome3. Using differential Hi-C maps, we 

found that intra-TAD contacts frequencies were strongly increased within TADs that 

experience a DSB (i.e. damaged TADs, Fig. 1a, right panel red square) compared to undamaged 

TADs, while contacts with neighboring adjacent domains were significantly decreased (Fig. 1a, 

right panel blue square, Fig. 1b). Interestingly, in some instances, the DSB itself displayed a 

particularly strong depletion of contact frequency with adjacent chromatin (Fig. 1c black arrow) 

indicating that the DSB is kept isolated from the surrounding environment, outside of its own 

TAD.  

We further investigated the contribution of PI3-Kinases involved in response to DSB by 

performing Hi-C in presence of inhibitors of ATM and DNA-PK, which respectively negatively 

and positively impact H2AX accumulation at DSBs (in contrast to ATR inhibition, which does 

not noticeably alter H2AX foci formation in DIvA cells)5,17. Notably, DNA-PK inhibition 

exacerbated the increase in intra-TAD contacts following DSB induction, while ATM 

inhibition abrogated it (Fig. 1d, Fig. S1a). TAD structures visualized on Hi-C maps are believed 

to arise thanks to cohesin-mediated loop extrusion18. Our previous work indicated that a 

bidirectional, divergent, cohesin-dependent loop-extrusion process takes place at DSBs5. This 

DSB-anchored loop extrusion can be visualized on differential Hi-C maps by a “cross” pattern 

centered on the DSB (Fig. 1e). Notably, ATM inhibition impaired loop extrusion, while DNA-

PK inhibition strongly increased it (Fig. 1e). Moreover, depletion of the cohesin subunit SCC1, 

which abolishes DSB-induced loop extrusion5, decreased the reinforcement of intra TAD-

contacts in damaged, H2AX-decorated, chromatin domains (Fig. 1f, Fig. S1b).  
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Altogether these data indicate that ATM triggers cohesin-mediated loop extrusion arising from 

the DSB and the insulation of the damaged TADs from the surrounding chromatin.  

 

ATM drives clustering of damaged TADs, in a cell cycle regulated manner 

We further analyzed Hi-C data with respect to long-range contacts within the nuclear space. Hi-

C data revealed that DSBs cluster together (Fig. 2a, red square away from the diagonal), as 

previously observed using Capture Hi-C9. The higher resolution of this Hi-C dataset now 

enables us to conclude that DSB clustering takes place between entire H2AX-decorated TADs 

and can happen between DSBs induced on the same chromosome (Fig. S2a) as well as on 

different chromosomes (Fig. S2b). Of interest, some H2AX domains were able to interact with 

more than a single other H2AX domain (Fig. 2b, black arrows). Notably, this ability to form 

clusters of multiples TADs (also known as TADs cliques19) upon DSB induction correlated 

with several DSB-induced chromatin features that occur at the scale of an entire TAD3, 

including H2AX, 53BP1 and ubiquitin chains levels as well as the depletion of histone H1 

around DSB detected by ChIP-seq (Fig. 2c). Moreover, it also correlated with initial RNAPII 

occupancy prior DSB induction indicating that DSBs prone to cluster and form damaged TAD 

cliques are those occurring in transcribed loci (Fig. 2c). 

We further examined the effect of cohesin depletion on damaged TAD clustering. Inspection 

of individual DSBs indicated that SCC1 depletion by siRNA did not alter clustering (Fig. 2d). 

Quantification of trans interactions between all DSBs also indicates that SCC1 depletion did 

not modify the ability of damaged TAD to physically interact together (Fig. S2c). Additionally, 

we found that inhibition of ATM compromised DSB clustering, whilst inhibiting DNA-PK 

activity triggered a substantial increase in DSB clustering (Fig. 2e, Fig. S2d).  
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Given the conflicting data regarding the cell cycle regulation of DSB clustering8,9,12, we further 

investigated DSB clustering in synchronized cells. DSB clustering (i.e. damaged TAD-TAD 

interaction) could be readily detected by 4C-seq when using a DSB as a view point, as shown 

by the increase of 4C-seq signal observed on other DSBs induced on the genome (Fig. 2f). We 

used five individual view-points: one control view point located on an undamaged locus, and 

four viewpoints at DSBs sites, three of which being “cluster-prone” DSBs, and one efficiently 

induced DSB which is unable to cluster with other DSBs. 4C-seq experiments performed before 

and after DSB induction in synchronized cells indicated that DSB clustering is readily 

detectable during G1 and is strongly reduced during the other cell cycle stages (see an example 

Fig. S2e). G1-specific DSB clustering was observed only when using as viewpoints “clustering-

prone” DSBs, but not when using the undamaged control locus or the DSB unable to cluster 

(Fig. 2g). 

Taken altogether, our results indicate that upon DSB formation, TADs that carry DSBs are able 

to physically contact each other in the nuclear space (i.e. cluster) in a manner that is entirely 

dependent on ATM, exacerbated upon DNA-PK inhibition, and mostly independent of the 

cohesin complex. Damaged TAD clustering mostly takes place in G1 and correlates with TAD-

scale DSB-induced chromatin modifications (H2AX, Ubiquitin accumulation and H1 

depletion) as well as 53BP1 accumulation. 

 

A new “D” sub-compartment forms following DSB induction 

Previous work identified the existence of two main, spatially distinct, self-segregated, 

chromatin “compartments” in mammalian nuclei. These chromatin compartments were 

determined by Principal Component Analysis (PCA) of Hi-C chromosomal contact maps where 

the first principal component allowed to identify loci that share similar interaction pattern, and 
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that can be visualized linearly using eigenvectors. Further correlations with epigenomic features 

revealed that these two spatially segregated compartments correspond to active (the “A” 

compartment or euchromatin) and inactive chromatin (the “B” compartment or 

heterochromatin)20. The identification of A/B compartment using our Hi-C datasets revealed 

that DSB induction does not trigger major changes in genome compartmentalization into 

euchromatin versus heterochromatin (Fig. S3a). Saddle plots further confirmed that neither 

DSB treatment nor the pharmacological inhibition of DNAPK and ATM significantly modified 

the ability of the genome to segregate into active A and inactive B compartments (Fig. S3b). 

Moreover, DSB induction did not generally lead to compartment switch of the underlying 

chromatin domain, except in very few cases: Among the 80 DSBs induced by AsiSI, 58 DSBs 

were induced in the A compartment and all of them remained in the A compartment following 

DSB induction (see an example Fig. S3c top panel). Conversely, among the 22 DSBs induced 

in the B compartment, only 4 showed a shift from B to A (see two examples Fig. S3c middle 

and bottom panels). We further investigated the relationship between the compartment type and 

the ability of DSBs to cluster together. Of interest, DSB clustering was detectable mostly for 

DSBs in the A compartment (Fig. S3d).  

Beyond the main classification between A/B compartments, sub-compartments have since been 

identified using higher resolution Hi-C maps, which correspond to subsets of heterochromatin 

loci (B1-B4) and of active loci (A1-A2)21. Of interest, such sub-compartments also correspond 

to microscopically visible nuclear structures such as nuclear speckles (A1)22 or Polycomb 

bodies (B1)21 for instance. Given that previous studies have long identified large, 

microscopically detectable H2AX bodies following DNA damage and that our Hi-C data 

revealed clustering of damaged TADs, we postulated that DSBs may also induce a sub-

compartment, in particular within the A compartment (i.e,: some A compartment, damaged-

loci further segregate from the rest of the active compartment). In order to investigate this point, 
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we applied PCA analysis on differential Hi-C maps (i.e. contact matrices of +DSB/-DSB) on 

each individual chromosome. The first Chromosomal Eigenvector (CEV, PC1) allowed us to 

identify a DSB-induced chromatin compartment mainly on chromosomes displaying a large 

number of DSBs (chr1,17 and X) (Fig. S4a, Fig. 3a,). Notably, a similar analysis on Hi-C maps 

generated upon DNA-PK inhibition, which impairs repair17 and increases DSB clustering (Fig. 

2), allowed to identify this compartment on more chromosomes (such as chr6 for instance, Fig. 

S4b, bottom track). This sub-compartment displayed a very strong correlation with H2AX-

decorated chromatin following DSB (Fig. 3a, Fig. S4a-d) and was henceforth further named 

“D” sub-compartment (for DSB-induced compartment). Yet, further inspection revealed that 

the D sub- compartment is not solely generated through the clustering of damaged chromatin 

(i.e. TADs that carry DSBs and are enriched in H2AX). Indeed, we could identify chromatin 

domains, not containing any DSB and not decorated by H2AX, that associate with the D sub-

compartment after damage (blue rectangle Fig. 3b). After exclusion of H2AX-covered 

chromatin domains, correlation analysis using chromosomes 1,17 and X, on which the D sub-

compartment was readily detected, indicated that non-damaged loci that tend to segregate with 

the D compartment are enriched in H2AZac, H3K4me3 and H3K79me2 (Fig. S4e, Fig. 3b). 

Conversely, these loci targeted to the D compartment displayed a negative correlation with 

repressive marks such as H3K9me3 (Fig. S4e). A similar trend was observed when D sub-

compartment was computed from the Hi-C data obtained in presence of the DNA-PK inhibitor 

and correlation analysis performed on all chromosomes showing D compartmentalization (i.e, 

chr 1,2,6,9,13,17,18,20 and X) (Fig. S4e bottom panel). Altogether our data indicate that upon 

DSB production on the genome, damaged TADs, covered by H2AX/53BP1, form a new 

chromatin compartment that segregates from the rest of the genome and in which some 

additional undamaged loci that exhibit chromatin marks typical of active transcription can be 

further targeted.  
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A subset of DNA damage responsive genes segregates with the D sub-compartment to 

achieve optimal activation.  

In order to decipher the nature of the active genes targeted to the D compartment, we further 

explored the DNA motifs enriched on “D” genes compared to “non D” genes, i.e. genes 

recruited to the D compartment, versus the one that do not display targeting to the D 

compartment (discarding all genes directly comprised in H2AX domains). Notably, the top 

enriched motifs included OSR1, TP73, Nkx3.1 and E2F binding sites, which are tumor 

suppressor and /or known to be involved in the DNA damage response (Fig. S4f)23–26, 

suggesting a direct physical targeting of DNA damage responsive genes to the “D” sub-

compartment. In agreement, visual inspection revealed that some known p53 target genes which 

are upregulated following DSB induction were associated with the D compartment, even when 

as far as >20MB from the closest DSB (see an example Fig. 3c). To test the hypothesis that 

DNA damage responsive genes are recruited to the D compartment, we performed RNA-seq 

before and after DSB induction and retrieved genes that are upregulated following DSB 

induction. Notably, genes upregulated following DSB induction displayed a higher D 

compartment signal compared to genes that were either not regulated or downregulated after 

DSBs (Fig. 3d). Of note, if some of the upregulated genes were indeed targeted to the D 

compartment, this was not the case for all of them. Importantly, the upregulated genes targeted 

to the D-compartment were not in average closer to DSBs than the upregulated genes not-

targeted to the D compartment (Fig. S4g), ruling out a potential bias due to the genomic 

distribution of AsiSI DSBs.  

In order to determine whether recruitment of those genes to the D sub-compartment contribute 

to their activation following DNA damage, we investigated the consequence of disrupting DSB 
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clustering (and hence formation of D compartment) by depleting the SUN2 component of the 

LINC complex, previously found as a DSB-clustering promoting factor9,11. SUN2 depletion 

altered the transcriptional activation of genes found to be upregulated and targeted to the D sub-

compartment upon DSB in DIvA cells (Fig. 3e). 

Altogether these data indicate that DSB induction triggers the formation of a novel chromatin 

sub-compartment that comprises not only damaged TADs, decorated by H2AX and 53BP1, 

but also a subset of genes upregulated following DNA damage, for which targeting to D sub-

compartment is required for optimal activation. Altogether this suggests a role of the D sub-

compartment, and hence DSB clustering, in the activation of the DNA Damage Response.  

 

DSB-induced reorganization of chromosome folding favors translocations.  

Importantly, while our above data suggest a beneficial role of DSB clustering in potentiating 

the DDR, it may also be detrimental, since bringing two DSBs in a close proximity may fosters 

translocations (illegitimate rejoining of two DSBs), as previously proposed10. We therefore 

assessed by qPCR the frequency of translocations events occurring in DIvA cells post-DSB 

induction, in conditions where we found altered DSBs clustering and D compartment 

formation.   

Notably, translocations are increased in G1 compared to S/G2-synchronized cells (Fig. 4a), in 

agreement with an enhanced DSB clustering observed in G1 cells (Fig. 2). Moreover, DNA-PK 

inhibition, that increased D-compartment formation (Fig. 2e, Fig. S2d, Fig. S4b) also strongly 

increased translocation frequency (Fig. 4b). On another hand, depletion of 53BP1 (Fig. S5a), 

previously found to mediate repair foci phase separation13, as well as a treatment with 1,6-

hexanediol, which disrupts phase condensates (Fig. S5b), decreased translocations (Fig. 4c). 

Similarly, depletion of SUN2, member of the LINC complex and of ARP2, an actin branching 
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factor (Fig. S5a), reported as mediating DSB clustering9,11,12, decreased translocations (Fig. 4c). 

Surprisingly, depletion of the cohesin subunits SMC1 or SCC1 also decreased translocation 

frequency (Fig. 4d, Fig S5c). This was unexpected since SCC1-depleted cells do not display 

clustering defects (Fig. 2).  

Given that the two translocations assessed by our qPCR assay are both intra-chromosomal 

translocations (i.e.: rejoining of two distant DSBs located on the same chromosome) we 

hypothesized that translocation frequency at the intra-chromosomal level may also be regulated 

by the DSB-induced loop extrusion that depends on the cohesin complex. In order to investigate 

more broadly translocation events between multiple DSBs induced in the DIvA cell line, we 

designed a novel multiplexed amplification protocol followed by NGS sequencing. In control 

cells, we could readily detect increased translocation frequency upon induction of DSB 

compared to control genomic locations (Fig. S5d). Strikingly, depletion of SCC1 decreased the 

frequency of intra-chromosomal translocations, while leaving inter-chromosomal 

translocations unaffected (Fig. 4e). In contrast depletion of SUN2 and ARP2 decreased both 

intra- and inter-chromosomal translocations (Fig. 4f-g). Taken together these data suggest that 

both the DSB-induced loop extrusion and the formation of the D sub-compartment through 

clustering of damaged TADs, display the potential to generate translocations.  

Given our above finding that a subset of genes upregulated following DSB induction can be 

physically targeted to the D compartment after break induction (Fig. 3), we further hypothesized 

that such a physical proximity may account for some of the translocations observed on cancer 

genomes. We retrieved breakpoint positions of inter-chromosomal translocations of 1493 

individuals across 18 different cancers types (from27), and assessed their potential overlap with 

genes targeted to the D sub-compartment (reproducibly detected in the three Hi-C replicates on 

chr1,17 and X, on which D sub-compartment could be identified accurately). D-targeted genes 

were further sorted as either upregulated, downregulated or not significantly altered following 
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DSB induction, and compared to their counterparts not targeted to the D compartment. We 

found that genes that are upregulated following DSB induction and that are targeted to the D 

compartment displayed a significant overlap with translocations breakpoints, in contrast to 

genes that are not targeted to the D compartment (non-D) (Fig. 4h). Altogether these data 

indicate that the relocalization of upregulated genes during the DNA Damage response in the 

DSB-induced sub-compartment likely accounts for some of the translocations detected on 

cancer genomes. Given that DDR genes comprise a number of tumor suppressor genes, such a 

physical proximity of these genes with DSBs within the D sub-compartment formed in response 

to DNA damage, may be a key mechanism driving oncogenesis, through fostering the instability 

of tumor suppressor genes. 

 

Conclusion 

Altogether this work shows that DSB-induced changes in chromosome architecture is an 

integral component of the DNA Damage Response, but also acts as a double-edged sword that 

can challenge genomic integrity through the formation of translocations.  

Our data suggest that a chromatin sub-compartment arises when H2AX/53BP1-decorated 

domains, established by ATM-induced loop extrusion post DSB, self-segregate from the rest of 

chromatin. This may, at least in part, occur thanks to the LLPS properties of 53BP113,14,28. This 

DSB-induced (“D”) sub-compartment further recruits a subset of genes involved in the DNA 

damage response and contributes to their activation (Fig. S5e). This model is in agreement with 

previous work which identified 53BP1 as critical for p53 target genes activation29, with the 

findings that disrupting 53BP1 droplet formation alters checkpoint activation13 and with the 

fact that enhanced 53BP1 phase separation triggers an elevated p53 response30 as does the loss 

of TIRR, a protein that regulates 53BP1 association to DSBs31,32. We propose that the formation 
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of the “D” sub-compartment allows to precisely tune the magnitude of the DDR with respect to 

DSB load and persistency, providing a function for these enigmatically large H2AX/53BP1-

decorated chromatin domains and to DSB clustering. Furthermore, this observation may 

provide a rationale for why so many transcription factors (including p53) were found recruited 

at DSBs repair foci33. While initially thought to allow chromatin remodeling in order to enhance 

DSB repair, the recruitment of transcription factors to DSB repair foci may in fact rather reflects 

the relocalization of DDR genes within the D compartment (hence at physical proximity of the 

DSB). 

Yet, this comes at the expense of potential translocations, as both loop extrusion and 

coalescence of damaged TAD are able to bring linearly distant DSBs in close physical 

proximity (Fig. S5e). Importantly, we found that the genes upregulated in response to DSB and 

relocated to the D compartment displayed significant overlap with translocation breakpoints 

identified by whole genome sequencing in patient cancer samples. In agreement with an 

increased occurrence of structural variants on tumor suppressor genes27, we propose that the 

physical targeting of DNA damage responsive genes to the D compartment, by bringing DSBs 

and DDR genes in close spatial proximity, may occasionally trigger deleterious rearrangements 

on genes involved in the control of cell proliferation and apoptosis upon DNA damage, and 

may hence act as a critical driver of oncogenesis by disrupting the integrity of tumor suppressor 

genes. 
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Methods 

 

Cell culture and treatments 

DIvA (AsiSI-ER-U20S)16 and AID-DIvA (AID-AsiSI-ER-U20S)34 cells were grown in 

Dubelcco’s modified Eagle’s medium (DMEM) supplemented with 10% SVF (Invitrogen), 

antibiotics and either 1 µg/mL puromycin (DIvA cells) or 800 µg/mL G418 (AID-DIvA cells) 

at 37 °C under a humidified atmosphere with 5% CO2. To induce DSBs, cells were treated with 

300nM 4OHT (Sigma, H7904) for 4 h. For ATM or DNA-PK inhibition, cells were pretreated 

for 1 h respectively with 20μM KU-55933 (Sigma, SML1109) or 2μM NU-7441 (Selleckchem, 

S2638) and during subsequent 4OHT treatment. Treatment with 10% 1,6-hexanediol (Sigma, 

240117) was performed for 3 min before the end of the 4OHT treatment. For cell 

synchronization, cells were incubated for 18 h with 2 mM thymidine (Sigma, T1895), then 

released during 11 h, followed by a second thymidine treatment for 18 hr. S, G2 and G1 cells 

were then respectively treated with OHT at, 0, 6 or 11 h following thymidine release and 

harvested 4 h later. siRNA transfections were performed using the 4D-Nucleofector and the SE 

cell line 4D-Nucleofector X kit L (Lonza) according to the manufacturer’s instructions, and 

subsequent treatment(s) were performed 48 h later. siRNA transfections were performed using 

a control siRNA (siCTRL): CAUGUCAUGUGUCACAUCU; or using a siRNA targeting 

SCC1 (siSCC1): GGUGAAAAUGGCAUUACGG; or SMC1 (siSMC1): 

UAGGCUUCCUGGAGGUCACAUUUAA; or 53BP1 (si53BP1): 

GAACGAGGAGACGGUAAUA; or SUN2 (siSUN2): CGAGCCTATTCAGACGTTTCA; or 

ARP2 (siARP2): GGCACCGGGUUUGUGAAGU. 
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Translocation assay 

Translocation assays after siRNA transfection or 1,6-Hexanediol treatment were performed at 

least in triplicates in AID-DIvA cells as described in35. Translocation assay in synchronized 

cells was performed in DIvA cells following a 4OHT treatment (n=4 biological replicates). Two 

different possible translocations between different AsiSI sites were assessed by qPCR using the 

following primers: Translocation1_Fw: GACTGGCATAAGCGTCTTCG, 

Translocation1_Rev: TCTGAAGTCTGCGCTTTCCA, Translocation2_ Fw: 

GGAAGCCGCCCAGAATAAGA, Translocation2_Rev: TCTGAAGTCTGCGCTTTCCA. 

Results were normalized using two control regions, both far from any AsiSI sites and γH2AX 

domain using the following primers: Ctrl_chr1_82844750_Fw: 

AGCACATGGGATTTTGCAGG, Ctrl_chr1_82844992_Rev: 

TTCCCTCCTTTGTGTCACCA, Ctrl_chr17_9784962_Fw: 

ACAGTGGGAGACAGAAGAGC, Ctrl_chr17_9785135_Rev: 

CTCCATCATCGCACCCTTTG. Normalized translocation frequencies were calculated using 

the Bio-Rad CFX Manager 3.1 software69. 

Amplicon –seq 

AID-DIvA cells were treated with or without 300nM 4OHT for 4 h followed by treatment with 

indole-3-acetic acid for 14 h. Cells were then lysed in cytoplasmic lysis buffer (50mM HEPES 

pH7.9, 10mM KCl2, 1.5mM MgCl2, 0.34M sucrose, 0.5% triton X-100, 10% glycerol, 1mM 

DTT) for 10 minutes on ice, then washed once in cytoplasmic lysis buffer before lysis in 

genomic extraction buffer (50mM Tris pH8.0, 5mM EDTA, 1% SDS, 0.5mg/mL proteinase K). 

Lysate was incubated at 60°C for 1 h. Genomic DNA was then ethanol precipitated on ice for 

1h, pelleted at 19,000g for 20 min and washed twice in 75% ethanol. Genomic DNA was then 

used in a multiplex PCR reaction that amplified 25 target sites; 20 AsiSI cut sites and 5 uncut 
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control sites (Supplementary Table 1). Amplicons were size selected using SPRIselect beads 

(Beckman, B23318) and subjected to DNA library preparation via the NEBNext Ultra II kit 

(NEB, E7645L). Libraries were pooled at equimolar concentrations and sequenced via an 

Illumina NextSeq 500 system using paired end 150 cycles. The data was analyzed via our 

custom tool mProfile, available at github.com/aldob/mProfile. This identified the genomic 

primers used in the original genomic PCR reaction to amplify each read in the pair. Translocated 

reads were therefore identified as those where each read in a pair was amplified by a different 

primer set, and this was normalized to the total reads that were correctly amplified by these 

primer sets.  

RT-qPCR 

RNA was extracted from fresh DIvA cells before and after DSB induction using the RNeasy 

kit (Qiagen). RNA was then reverse transcribed to cDNA using the AMV reverse transcriptase 

(Promega, M510F). qPCR experiments were performed to assess the levels of cDNA using 

primers targeting RPLP0 (FW: GGCGACCTGGAAGTCCAACT; REV: 

CCATCAGCACCACAGCCTTC), RNF19B (FW: CATCAAGCCATGCCCACGAT; REV: 

GAATGTACAGCCAGAGGGGC), PLK3 (FW: GCCTGCCGCCGGTTT; REV: 

GTCTGACGTCGGTAGCCCG), FAS (FW: ATGCACACTCACCAGCAACA; REV: 

AAGAAGACAAAGCCACCCCA) or GADD45A (FW: ACGATCACTGTCGGGGTGTA; 

REV: CCACATCTCTGTCGTCGTCC). cDNA levels were then normalized with RPLP0 

cDNA level, then expressed at the percentage of the undamaged condition. 

Immunofluorescence 

DIvA cells were grown on glass coverslips and fixed with 4% paraformaldehyde during 15 min 

at room temperature. Permeabilization step was performed by treating cells with 0,5% Triton 

X-100 in PBS for 10 min then cells were blocked with PBS-BSA 3% for 30min. Primary 
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antibodies targeting RNA PolI (Santa Cruz sc48385) or PML (Santa Cruz sc-966 (PG-M3)) 

were diluted 1:500 in PBS-BSA 3% and incubated with cells overnight at 4°C. After washes in 

1X PBS, cells were incubated with anti-mouse secondary antibody (conjugated to Alexa 594 or 

Alexa 488, Invitrogen), diluted 1:1000 in PBS-BSA 3%, for 1h at room temperature. After a 

DAPI staining, Citifluor (Citifluor, AF-1) was used for coverslips mounting. Images were 

acquired with the software MetaMorph, using the 100X objective of a wide-field microscope 

(Leica, DM6000), equipped with a camera (DR-328G-C01-SIL-505, ANDOR Technology).  

Western Blot 

Western Blot experiments were performed as in5 using primary antibody targeting SUN2 

(Abcam ab124916 1:1000), ARP2 (Abcam ab128934 1:1000), 53BP1 (Novus Biologicals 

NB100-305 1:1000), SCC1 (Abcam ab992 1:500) or SMC1 (Abcam ab75819 1:1000). 

RNA-seq 

RNA-seq was performed as described in35. RNA-seq were mapped in paired-end to a custom 

human genome (hg19 merged with ERCC92) using STAR. Count matrices were extracted using 

htseq-count with union as resolution-mode and reverse strand mode. Differential expression 

analysis was made on the count matrix using edgeR with two replicates per condition and 

differential genes were determined with log-ratio test (LRT). Whole genome coverage was 

computed using deeptools and bamCoverage to generate bigwig using bam files (without PCR 

duplicate suppression). Using a cutoff of 0.1 for the adjusted p-value and 0.5 log2 fold-change 

(~41% increase/decrease of expression), we were able to determine 286 up-regulated and 125 

down-regulated genes with 11 of them directly damaged by a DSB. Differential coverage 

between two conditions was performed using BamCompare from deeptools with setting binsize 

parameter at 50bp. Log2FC was calculated by edgeR in differential expression analysis. 
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4C-seq 

4C-seq experiments performed in synchronized cells, before and after DSB induction were 

performed as in5. Briefly, 10-15×106 DIvA cells per condition were cross-linked, lysed and 

digested with MboI (New England Biolabs). DNA ligation was performed using the T4 DNA 

ligase (HC) (Promega), and ligated DNA was digested again using NlaIII (New England 

Biolabs). Digested DNA was religated with the T4 DNA ligase (HC) (Promega) before to 

proceed to 4C–seq library preparation. 16 individual PCR reactions were performed in order to 

amplify ~800ng of 4C-seq template, using inverse primers including the Illumina adaptor 

sequences and a unique index for each condition (Supplementary Table 2). Libraries were 

pooled and sent to a Nextseq500 platform at the I2BC Next Generation Sequencing Core 

Facility (Gif-sur-Yvette).  

4C-seq data were processed as described in5. Briefly, bwa mem was used for mapping and 

samtools for sorting and indexing. A custom R script 

(https://github.com/bbcf/bbcfutils/blob/master/R/smoothData.R) was used to build the 

coverage file in bedGraph format, to normalize using the average coverage and to exclude the 

nearest region from each viewpoint. Differential 4C-seq data were computed using 

BamCompare from deeptools with binsize=50bp. Average of total Trans interactions between 

viewpoints and DSB were then computed using a 1Mb window around the breaks (80 best) and 

after exclusion of viewpoint-viewpoint (Cis) interactions. 

Hi-C 

Hi-C data obtained before and after DSB induction and upon CTRL or SCC1 depletion in DIvA 

cells were retrieved from5. Hi-C experiments with or without DSB induction and upon ATM or 

DNA-PK inhibition were performed in DIvA cells as in5. Briefly, 1 million cells were used per 

condition. Hi-C libraries were generated using the Arima Hi-C kit (Arima Genomics) by 
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following the manufacturer instructions. DNA was sheared to an average fragment size of 350-

400 pb using the Covaris S220 and sequencing libraries were prepared on beads using the NEB 

Next Ultra II DNA Library Prep Kit for Illumina and NEBNext Multiplex Oligos for Illumina 

(New England Biolabs) following instructions from the Arima Hi-C kit. 

Hi-C data analyses 

Hi-C heatmaps. Hi-C reads were mapped to hg19 and processed with Juicer using default 

settings (https://github.com/aidenlab/juicer). Hi-C count matrices were generated using Juicer 

at multiple resolutions: 100 kb, 50 kb, 25 kb, 10 kb and 5 kb. Hi-C heatmaps screenshots were 

generated using Juicebox (https://github.com/aidenlab/Juicebox/wiki/Download). Aggregate 

heatmaps were computed on a set of sub-matrices extracted from originals observed Hi-C 

matrices at 50kb resolution or 100kb resolution. Region of 5Mb around DSBs (80 best) were 

extracted and then averaged. Log2 ratio was then computed using Hi-C counts (+DSB/-DSB) 

and plotted as heatmaps.  

Cis Contacts Quantification. For cis contact quantification interaction within H2AX domains 

(-0.5/+0.5Mb around 80 best DSBs) were extracted from the observed Hi-C matrix at 100kb 

resolution, and log2 ratio was computed on damaged vs undamaged Hi-C counts (+DSB/-DSB). 

Adjacent windows (-1.5Mb-0.5Mb and +0.5Mb-1.5Mb around 80 best DSBs) were retrieved 

to quantify interactions between damaged domains and adjacent undamaged domains. 

Boxplots: Centre line, median; box limits, first and third quartiles; whiskers, maximum and 

minimum without outliers; points, outliers. Significance was calculated using non-parametric 

Wilcoxon test.  

Trans contact quantification. To determine interaction changes in trans (inter-chromosomal) 

we built the whole-genome Hi-C matrix for each experiment by merging together all chr-chr 

interaction matrices using Juicer and R. The result is a genome matrix with 33kx33k bin 
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interactions for 100kb resolution. Interactions between bins inside damaged TADs (240X240 

for 80 DSBs) were extracted and counted for each condition, log2 ratio was calculated on 

normalized count (cpm), and plotted as boxplots. Boxplots: Centre line, median; box limits, 

first and third quartiles; whiskers, maximum and minimum without outliers; points, outliers. 

TAD Cliques. TAD Cliques were computed using the igraph R package on an undirected graph 

representing DSB clustering. This graph was computed on the differential Hi-C matrix (+DSB/-

DSB) counts, at 500 kb resolution, considering a change of ~86% of interaction (0.9 in log2) 

as between two DSBs as a node on the graph. Averaged signal of ChIP-seq values 

(53BP1/H2AX/H1/Ubiquitin FK2) were then computed for each categories of cliques using 

500kb windows around DSB. For prior RNAPII occupancy, the signal was computed on 10kb 

around DSBs. 

A/B compartment. To identify the two mains chromosomal compartments (A/B), the extraction 

of the first eigenvector of the correlation matrix (PC1) was done on the Observed/Expected 

matrix at 500kb resolution using juicer eigenvector command. The resulting values were then 

correlated with ATAC-seq signal in order to attributes positives and negatives values to the A 

and B compartment, respectively, on each chromosomes. The Observed/Expected bins were 

arranged based on the PC1 values and aggregated into 21 percentiles, to visualize A-B 

interactions on our experiments (saddle plots). 

D compartment. To identify the D compartment, we retrieved the first component (PC1) of a 

PCA made on the differential observed Hi-C matrix 𝑙𝑜𝑔2 (
𝑑𝑎𝑚𝑎𝑔𝑒𝑑

𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑
) at 100kb resolution. 

Each matrix was extracted from the .hic files using Juicer and the ratio was computed bin per 

bin. Pearson Correlation matrices were then computed for each chromosome, and PCA was 

applied on each matrix. The first component of each PCA was then extracted and correlated 

with the positions of DSB. A PC1 showing a positive correlation with DSB was then called D 
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compartment, and PC1 showing negative correlation with DSBs were multiplied by -1. We 

were able to extract the D compartment on chromosomes 1,17 and X for +DSB/-DSB and 

chromosomes 1,2,6,9,13,17,18,20 and X for +DSB/-DSB in DNA-PKi condition. D 

compartment (first component of the PCA) was converted into a coverage file using rtracklayer 

R package. Using the same package, D compartment value was computed around DSBs and 

genes at 100kb resolution, and plotted as boxplot. Boxplots: Centre line, median; box limits, 

first and third quartiles; whiskers, maximum and minimum without outliers; points, outliers. 

Transcription factor motif analysis. TF-binding motifs were extracted on the promoter regions 

(-500bp/TSS) of genes with positive value of D compartment (2161) vs genes with negative 

value (2112) using motifmatchr and TFBSTools R packages on JASPAR2020 database. Motifs 

were sorted by significance using fisher exact test and adjusted with Benjamini-Hochberg 

procedure between motifs found on gene inside the D compartment versus genes outside D 

compartment.  

Translocation breakpoints. For translocation breakpoints, data from27 were retrieved, and only 

breakpoints for interchromosomal structural variant selected (N=28051). Genes reproducibly 

enriched in Compartment D in the three biological replicates, on chr1, 17 and X (N=604) as 

well as genes not enriched in Compartment D (N=1439) were retrieved. The significance of the 

overlap between genes and breakpoints was determined using the regioneR package36 using 

resampling test with PermTest. Briefly, we selected 1000 times a control set of genes, with 

same size and on the same chromosome as our original gene set. We tested the overlap between 

each genes and breakpoints, to determine a distribution of the number of overlaps between 

control set and breakpoints. We further tested if the overlap between our gene set (D 

compartment or non D compartment) and breakpoints was significant, by counting the number 

of times we got more overlap in control than in our gene set. 
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Figures Legends 

 

Figure 1: Cohesin and ATM-dependent TAD reinforcement in response to DSBs.  

(a) Hi-C contact matrix of the log2 (+DSB/-DSB) in DIvA cells. A region of the chromosome 

1 is shown at three different resolutions: 250 kb (left panel), 100 kb (middle panel) and 25 kb 

(right panel). The γH2AX ChIP-seq signal following DSB induction is shown on the top panel 

and indicates the DSBs position. The red square highlights a damaged TAD, within which cis 

interactions are enhanced, while the blue square highlights decreased interaction between the 

damaged TAD and its adjacent TAD. One representative experiment is shown.  

(b) Boxplot showing the differential Hi-C read counts (as (log2 +DSB/-DSB)) within H2AX 

domains containing the 80 best induced DSBs (red) or between these 80 damaged domains and 

their adjacent chromatin domains (blue). P-values, non-parametric wilcoxon test tested against 

=0. 

(c) Hi-C contact matrix of log2 (+DSB/-DSB) on a region located on chromosome 17 at 50 kb 

resolution. The contacts engaged by the DSB itself are indicated with a black arrow. γH2AX 

ChIP-seq track (+DSB) is shown on the top panel. One representative experiment is shown.  

(d) Hi-C contact matrix of the log2(+DSB/-DSB) without inhibitor (top panel), with DNA-PK 

inhibitor (middle panel) or with ATM inhibitor (bottom panel). A damaged region of the 

chromosome 1 is shown at a 25 kb resolution. Grey track represents the insulation score pre-

existing to DSB induction (from Hi-C –DSB) 

(e) Averaged Hi-C contact matrix of the log2 (+DSB/-DSB) in untreated cells (left panel), upon 

DNA-PK inhibition (middle panel) or upon ATM inhibition (right panel), centered on the 80 

best-induced DSBs (50 kb resolution on a 5 Mb window).  
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(f) Hi-C contact matrix of the log2(+DSB/-DSB) on a region located on chromosome 1 at a 50 

kb resolution in DIvA cells transfected with a control siRNA or a siRNA directed against SCC1.  

 

Figure 2: Cell cycle regulated, ATM-dependent but cohesin- and DNA-PK-independent 

clustering of damaged-TADs.  

(a) Hi-C contact matrix of the log2 (+DSB/-DSB) on a region of the chromosome 1 at two 

different resolutions: 250 kb (left panel) and 100 kb (right panel). γH2AX ChIP-seq track 

following DSB induction is shown on the top panel and on the right. One representative 

experiment is shown.  

(b) Hi-C contact matrix of the log2 (+DSB/-DSB) on a region of the chromosome 17 at 250 kb 

resolution. γH2AX and 53BP1 ChIP-seq tracks following DSB induction are shown on the top 

panel and on the left. The black arrows indicate clustering of one DSB on the chromosome 17, 

with several other DSBs on the same chromosome. One representative experiment is shown.  

(c) H2AX domains were categorized based on their propensity to not interact with any other 

H2AX domain (single), with one other H2AX domain (TAD-TAD) or with multiple other 

H2AX domains (TAD cliques containing 3 to 6 DSBs). ChIP-seq levels of γH2AX (+DSB), 

53BP1 (+DSB), H1 (log2 +DSB/-DSB), Ubiquitin chains detected with the FK2 antibody (log2 

+DSB/-DSB) or pre-existing RNAPII (-DSB) within the corresponding domains were 

computed across each category.  

(d) Left panel: Hi-C contact matrix of the log2(+DSB/-DSB) upon Ctrl (upper right) or SCC1 

depletion (lower left). A region of the chromosome 1 is shown at 250 kb resolution. The γH2AX 

ChIP-seq track following DSB induction is shown on the top and on the right. Right panel: 

magnification of the black square, showing Hi-C contacts between the two H2AX domains.  
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(e) Hi-C contact matrix of the log2 (+DSB/-DSB) without inhibitor, with a DNA-PK inhibitor 

or with an ATM inhibitor as indicated. A region of the chromosome 1 is shown with a 250 kb 

resolution. γH2AX ChIP-seq track following DSB induction is shown on the top. Bottom panel: 

magnification, showing Hi-C contacts between the two H2AX domains.  

(f) Genomics tracks showing differential 4C-seq (log2 (+DSB/-DSB)) (smoothed with a 10 kb 

span) obtained using a DSB located on chr20 as a viewpoint (red arrow), H2AX ChIP-seq and 

BLESS, on a ~8 Mb window of chromosome 20 (top panel) and on a ~8 Mb window of 

chromosome 17 (bottom panel). Black arrows represent interactions between the DSB targeted 

by the viewpoint and two other DSBs, one located on the same chromosome (chr20) and one 

located on another chromosome (chr17). One representative experiment is shown.  

(g) Trans interactions (log2 ratio +DSB/-DSB) between the view point and the other DSBs 

(n=79) were computed from 4C-seq experiments in synchronized cells (G1, S and G2 as 

indicated). Three cluster-prone DSBs, one not cluster-prone and one control undamaged locus 

were used as viewpoints. P, non-parametric paired wilcoxon test. 

 

Figure 3. Formation of a DSB-specific sub-compartment that ensures optimal activation 

of the DDR.  

(a) Genomic tracks of γH2AX ChIP-seq and first Chromosomal eigenvector (CEV) computed 

on differential (+DSB/-DSB) Hi-C matrix on chromosome 1 (top panel) and chromosome X 

(bottom panel). Three biological replicate experiments are shown as well as the CEV obtained 

upon DNA-PK inhibition.  

(b) Genomic tracks of γH2AX (red), H3K79me2 (black) and H3K4me3 (yellow) ChIP-seq, and 

the first Chromosomal Eigenvector computed on the differential Hi-C (CEV, blue). The brown 
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rectangles highlight genomic regions present in D sub-compartment that carry a DSB and are 

enriched in H2AX. In contrast the blue rectangle shows a genomic region that is devoid in 

H2AX and DSB, but is nevertheless found in the D sub-compartment. 

(c) As in (a) but with a zoom on an undamaged region of the chromosome 1 that displayed 

positive D sub-compartment signal. The differential RNA-seq (log2 (+DSB/-DSB)) for this 

region containing the p53-target gene GADD45A is also shown (green).  

(d) Boxplot showing the quantification of the D compartment signal computed from Hi-C data 

(+DSB+DNA-PKi/-DSB) on genes that are not regulated following DSB induction (Not-

regulated genes, grey), genes that are upregulated following DSB induction (Upregulated 

genes, red) or genes that are downregulated following DSB induction (Downregulated genes, 

blue), identified by RNA-seq. 

(e) RT-qPCR quantification of the expression level of four genes (RNF19B, FAS, PLK3 and 

GADD45A) before and after DSB induction in cells transfected with control or SUN2 siRNA. 

n=4 independent experiments.  

 

Figure 4. DSB-induced loop extrusion and D-compartment formation drive 

translocations. 

(a) qPCR quantification of translocations frequency for two independent translocations 

following DSB induction in cells synchronized in the G1, S or G2 phase (n=4 independent 

replicates). P= paired t-test, * P<0.05, ** P<0.001, ***P<0.0005 

(b) qPCR quantification of translocations frequency for two independent translocations 

following DSB induction with or without DNA-PK inhibitor (n=4 independent replicates).  
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(c) qPCR quantification of translocations frequency for two independent translocations 

following DSB induction in Control, 53BP1, SUN2 or ARP2 depleted cells or upon 1,6-

Hexanediol treatment (n≥3 independent replicates).  

(d) As in (c) but upon Control, SMC1 or SCC1 depletion (n=4 independent replicates).  

(e) Intra-chromosomal (blue) or inter-chromosomal translocations (yellow) were quantified 

using multiplexed amplification followed by high throughput sequencing (amplicon-seq) 

between 20 different DSBs induced in DIvA cell line, upon Ctrl or SCC1 depletion (log2 

siSCC1/siCTRL) (n=4 independent replicates). P-values, non-parametric wilcoxon test tested 

against =0. intra vs inter-chromosomal, P=paired wilcoxon test. 

(f) As in (e) but the quantification was performed in SUN2 depleted cells (n=4 independent 

replicates).  

(g) As in (e) but the quantification was performed in ARP2 depleted cells (n=4 independent 

replicates).  

(h) Observed (green) and expected (obtained through 1000 permutations) overlap between 

breakpoint positions of inter-chromosomal translocations identified on cancer genomes and 

genes targeted to the D compartment, either upregulated, downregulated or not regulated 

following DSB induction (identified by RNA-seq) as indicated, compared to their counterparts 

not targeted to the D compartment. 
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182 Chapter 3. Contributions to research

3.5 G4s as novel promoters and G4 SNPs

Until recently, DNA structures alternative to B-DNA, such as G4s, were mainly

studied in vitro. However, recent advances in the genome-wide mapping in vivo

of G4s have shown their essential role in processes such as transcription, repli-

cation and DNA repair [Hänsel-Hertsch et al. 2016, Hänsel-Hertsch et al. 2020,

Marnef et al. 2017, Spiegel et al. 2021]. However, the link between the structure of

non-B DNA and their function has only started to be revealed.

In a collaboration with Cyril Esnault and Jean-Christophe Andrau, we

demonstrated that G-quadruplexes can act as promoter elements and chromatin

organizers (article submitted). Most notably, we discovered that G4s are located

at the deepest point of nucleosome exclusion at promoters, and we found that they

correlate with maximum promoter activity. Moreover, G4s exclude nucleosomes

not only at promoters but also at intergenic areas, and are associated with a strong

nucleosome positioning potential. Importantly, G4 stabilisation results in global

reduction of proximal promoter pausing and +1 nucleosome barrier, suggesting a

role in RNA Polymerase II pausing regulation.

In addition, using genetic analyses of SNPs that are known to affect gene ex-

pression (eSNPs) from GTEx and TGCA databases, we could assess the influence of

predicted G4s in promoting transcriptional activity. We found that SNPs increas-

ing predicted G4 propensities in promoters, as defined upstream of the TSS, did

also increase accordingly the expression of the target genes, as compared to SNPs

decreasing predicted G4 propensities. Remarkably, this observation did not hold

true for SNPs altering G4s downstream the TSS (control SNPs outside promoters).

These results thus supported the role of G4 as promoter elements, similarly to the

classical definition of promoters as a combination of transcription factor binding

sites.

3.6 Machine and deep learning for genomics

3.6.1 PredDSB: Predicting double-strand DNA breaks using epigenome
marks or DNA

DNA double-strand breaks (DSBs) result from the attack of both DNA strands

by multiple sources, including radiation and chemicals. Recent techniques allow

the genome-wide mapping of DSBs at high resolution, enabling the comprehensive

study of their origins. Several high-throughput sequencing techniques have been

developed, such as BLESS [Crosetto et al. 2013], GUIDE-seq [Tsai et al. 2015],

END-seq [Canela et al. 2016] and DSBCapture [Lensing et al. 2016]. One of the

most recent techniques, DSBCapture, allowed to map more than 80 thousand

endogenous DSBs at a resolution lower than 1 kb in human. To date, DSBs

have been mapped at high resolution only for a few number of cell lines due

to high sequencing costs and experimental difficulties. This has prevented the
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comprehensive study of the double-strand break landscape in the human genome

across diverse cell lines and tissues.

There is a strong link between DSB occurrence and chromatin landscape.

DSBs and associated DNA repair mechanisms are linked to epigenetic marks,

including H3K4me1/2/3 histone modifications and chromatin accessibility

[Lensing et al. 2016], as well as the concentration of repair proteins at the sites

of breaks [Kinner et al. 2008, Price & D’Andrea 2013]. If there is a strong link

between DSBs and chromatin, then the mapping of DSBs along the genome can be

computationally predicted using the huge amount of publicly available chromatin

data for cell lines [The ENCODE Consortium 2012] and tissues [Consortium 2017].

Moreover, a computational approach would demonstrate the extent to which

histone modifications or DNA patterns allow to predict and regulate the cellular

response to double-stranded breaks.

Hence, I devised a computational approach based on random forests to pre-

dict DSBs using the epigenomic and chromatin context [Mourad et al. 2018]. This

was the first demonstration that endogenous DSBs can be computationally pre-

dicted given the epigenomic and chromatin context. The predictions achieved ex-

cellent accuracy (AUROC>0.97) at high resolution (<1kb) using available ChIP-seq

and DNase-seq data from public databases (Figure 3a from the article ”Predicting

double-strand DNA breaks using epigenome marks or DNA at kilobase resolution”

below). DNase, CTCF binding and H3K4me1/2/3 were among the best predic-

tors of DSBs, reflecting the importances of chromatin accessibility, activity and

long-range contacts in determining DSB sites and subsequent repairing (Figure 3b

from the article below). Since CTCF binding and chromatin marks are known to

be computationally predictable from the DNA sequence, the proposed model was

also used to predict DSB sites directly from the DNA sequence using DNA mo-

tif occurrences and DNA shape. The model could predict DSB sites using DNA

sequence only (AUROC = 0.838), reflecting the contribution of TFBS motifs, in-

cluding CTCF but also AP-1 protein complex, tumor proteins p53, p63 and p73,

and the contribution of DNA shapes (Figure 7 from the article below).
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METHOD Open Access

Predicting double-strand DNA breaks
using epigenomemarks or DNA at kilobase
resolution
Raphaël Mourad1*, Krzysztof Ginalski2, Gaëlle Legube3 and Olivier Cuvier1

Abstract

Double-strand breaks (DSBs) result from the attack of both DNA strands by multiple sources, including radiation and
chemicals. DSBs can cause the abnormal chromosomal rearrangements associated with cancer. Recent techniques
allow the genome-wide mapping of DSBs at high resolution, enabling the comprehensive study of their origins.
However, these techniques are costly and challenging. Hence, we devise a computational approach to predict DSBs
using the epigenomic and chromatin context, for which public data are readily available from the ENCODE project.
We achieve excellent prediction accuracy at high resolution. We identify chromatin accessibility, activity, and
long-range contacts as the best predictors.

Keywords: Double-strand breaks, Epigenetics, Chromatin, Machine learning

Background
Double-strand breaks (DSBs) arise when both DNA
strands of the double helix are severed. DSBs are caused by
the attack of deoxyribose and DNA bases by reactive oxy-
gen species and other electrophilic molecules [1]. DSBs
are particularly hazardous to a cell because they can lead
to deletions, translocations, and fusions in the DNA, col-
lectively referred to as chromosomal rearrangements [2].
DSBs are most commonly found in cancer cells. Several
high-throughput sequencing techniques have been devel-
oped for the genome-wide mapping of DSBs in situ such
as BLESS [3], GUIDE-seq [4], END-seq [5], and DSBCap-
ture [6]. One of the most recent techniques, DSBCapture,
was used to map more than 80 000 endogenous DSBs at a
resolution lower than 1 kb in human. To date, DSBs have
been mapped at high resolution only for a few cell lines
due to the high sequencing costs and experimental diffi-
culties. This has prevented the comprehensive study of the
DSB landscape in the human genome across diverse cell
lines and tissues.
Chromatin immunoprecipitation followed by high-

throughput DNA sequencing (ChIP-seq) and DNase I
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1LBME, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS,
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hypersensitive site sequencing (DNase-seq) data are pub-
licly available for dozens of cell lines and tissues from
the ENCODE [7] and Roadmap Epigenomics [8] projects.
On the one hand, recent studies have shown that the
mapping of regulatory elements such as enhancers and
promoters can be accurately predicted using available
epigenome and chromatin data [9, 10]. Other studies have
shown that the epigenome can be predicted by combi-
nations of DNA motifs and DNA shape [11–14]. On the
other hand, DSBs and the resulting DNA repair mecha-
nisms have been shown to be linked to epigenome marks,
including H3K4me1/2/3 and chromatin accessibility [6].
Accordingly, PRDM9-mediated trimethylation of H3K4
(H3K4me3) was originally shown to play a critical role in
regulating DSBs associated with meiotic recombination
hotspots [15–17]. Moreover, the repair of DSBs involves
both post-translational modification of histones, in partic-
ular γ -H2AX, and concentration of DNA-repair proteins
at the site of damage [18, 19]. It remains unclear to what
extent DNA motifs or histone modifications predict or
regulate the cellular response to DSBs in other devel-
opmental stages. Here, we thus sought to test whether
publicly available epigenome and chromatin data, or DNA
motifs and shape, could be used to predict DSBs.
In this article, we demonstrate, for the first time, that

endogenous DSBs can be computationally predicted using

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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the epigenomic and chromatin context, or using DNA
sequence and DNA shape. Our predictions achieve excel-
lent accuracy (area under the receiver operating char-
acteristic curve or AUROC > 0.97) at high resolution
(< 1 kb) using available ChIP-seq and DNase-seq data
from public databases. Despite the highly imbalanced
data when predicting DSBs genome-wide, our approach
detects a reasonable number of false positives (area under
the precision–recall curve or AUPR = 0.459). DNase,
CTCF binding, and H3K4me1/2/3 are among the best
predictors of DSBs, reflecting the importance of chro-
matin accessibility, activity, and long-range contacts in
determining DSB sites and subsequent repairing. We also
successfully predict DSB sites using DNA motif occur-
rences only (AUROC = 0.839) and identify the CTCF
motif as a strong predictor. In addition, DNA shape anal-
ysis further reveals the importance of the structure-based
readout in determining DSB sites, complementary to the
sequence-based readout (motifs).

Results and discussion
Double-strand break prediction approach
Our computational approach for predicting DSBs is
schematically illustrated in Fig. 1. In the first step, we
analyzed public DSBCapture data from Lensing el at. [6],
which is the most sensitive and accurate genome-wide
mapping of DSBs to date (Fig. 1a). DSBCapture captures

DSBs in situ and it can directly map them at single-
nucleotide resolution. DSBCapture peaks were called with
less than 1-kb resolution (median size of 391 bases). The
DSBCapture peaks obtained from two biological repli-
cates were intersected to yield more reliable DSB sites.
Endogenous breaks were captured for normal human
epidermal keratinocytes (NHEKs), for which numerous
ChIP-seq and DNase-seq data are publicly available from
the ENCODE project [7]. In the second step, we integrated
and mapped different types of data within DSB sites and
non-DSB sites. To prevent bias effects, non-DSB sites
were randomly drawn from the human genome with sizes,
GC, and repeat contents similar to those of DSB sites [20]
(Fig. 1b). ChIP-seq and DNase-seq peaks in NHEKs, as
obtained from the ENCODE project, were mapped to cor-
responding DSB and non-DSB sites [7]. We also mapped
p63 ChIP-seq peaks from keratinocytes [21]. We further
searched for potential protein-binding sites at DSB and
non-DSB sites using motif position weight matrices from
the JASPAR 2016 database [22], and predicted DNA shape
at DSB and non-DSB sites using Monte Carlo simula-
tions [23]. In the third step, a random forest classifier was
built to discriminate betweenDSB sites and non-DSB sites
based on epigenome marks or DNA (Fig. 1c). Random
forest variable importance values were used to estimate
the predictive importance of a feature. We also compared
random forest predictions with another popular method,

a b c

Fig. 1 Double-strand break (DSB) prediction using epigenome marks or DNA. The prediction approach has three steps. aMapping of DSBCapture
sequencing data and DSB peak calling. bMapping of features at DSB and non-DSB sites. Features include epigenomic and chromatin data from the
ENCODE project, DNA motifs from the JASPAR database, and DNA shape predictions. c Prediction of DSB sites using features. AUC area under the
curve, ds double strand, DSB double-strand break, PCR polymerase chain reaction
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lasso logistic regression [24]. Using lasso regression, we
assessed the positive, negative, or null contribution of a
feature to DSBs.We then split the DSB dataset into a train-
ing set to learn model parameters by cross-validation, and
into a testing set to compute the receiver operating char-
acteristic (ROC) and precision–recall (PR) curves, as well
as AUROC and AUPR, to evaluate prediction accuracy.

Double-strand breaks are enriched with epigenomemarks
and DNAmotifs
We first sought to assess comprehensively the link
between DSBs and epigenome marks or DNA motifs. As
previously shown [6, 25], several epigenomic and chro-
matin marks colocalized at DSBs (Fig. 2a). Among the
most enriched marks were DNase I hypersensitive sites,
H3H4 methylation, and CTCF (Fig. 2b). For instance,
91% of DSBs colocalized to a DNase site, whereas this
percentage dropped to 11% for non-DSB regions. This
corresponded to an odds ratio (OR) of 89.3. Similarly, high
enrichment was found for H3K4me2 (74% versus 11%;
OR = 22.4) and for the insulator protein CTCF (25% ver-
sus 2%; OR = 19), which may involve its interactions with
the insulator-related cofactor cohesin, which has been
shown to protect genes from DSBs [26]. As such, DSBs
mostly localized within open and active regions that were
often implicated in long-range contacts [27]. Interestingly,
DSBs also colocalized with tumor protein p63 binding
(19.4% versus 1%; OR = 23.8), a member of the p53 gene
family [28, 29]. In addition, we could distinguish DNase
and CTCF sites that were enriched at the center of DSBs
from histone marks that were found at the edges of DSB
sites (Fig. 2c). Therefore, the strong enrichment of epige-
nomic and chromatin marks at DSB sites suggests that
DSB regions could be accurately predicted using avail-
able ChIP-seq and DNase-seq data from public databases,
including ENCODE and Roadmap Epigenomics.
Previous enrichment analyses of DNA-binding proteins

were limited by the ChIP-seq data available. Hence, we
sought DNA motifs that may be enriched at DSB sites
as a way to obtain a more comprehensive list of candi-
date DNA-binding proteins. Of the 454 available motifs
from the JASPAR 2016 database, 134 were significantly
enriched (p < 0.05, Bonferroni correction), indicating
that DSBs were associated with a large number of protein-
binding sites (Fig. 2d). Among the most enriched and
frequent motifs, we identified numerous motifs specifi-
cally recognized by protein cofactors of the transcription
factor complex AP-1. This included JUND (OR = 1.40,
12% of DSBs), JUNB (OR = 1.27, 19% of DSBs), the het-
erodimer BATF::JUN (OR = 1.31, 10% of DSBs), and also
FOS (OR = 1.37, 20% of DSBs), FOSL1 (OR = 1.37, 17%
of DSBs), and FOSL2 (OR = 1.27, 18% of DSBs). Among
the most enriched but less frequent motifs, we expect-
edly found CTCF (OR = 1.54, 1.7% of DSBs), as well as

members of the tumor protein family p53, i.e., p53 itself
(OR = 1.54, 0.2% of DSBs), p63 (OR = 1.49, 0.3% of
DSBs), and p73 (OR = 1.54, 0.1% of DSBs) [28, 29]. Such
enrichment of DNA motifs at DSB sites, therefore, sup-
ports that DNA sequence can alone predict some of the
DSBs encountered.

Prediction using epigenomic and chromatin data
Given the strong link between DSBs and epigenomic and
chromatin marks, we sought to build a classifier to dis-
criminate DSB sites from non-DSB sites based on the
presence or absence of such marks. For this, we used
random forests, which are very efficient classifiers for
predicting a feature. They can capture non-linear and
complex interaction effects [30]. We split the data into a
training set to learn model parameters and a testing set
to evaluate prediction accuracy. Using this classifier, we
obtained excellent predictions of DSBs based on the epige-
nomic and chromatin marks available (AUROC = 0.970
and AUPR = 0.985; Fig. 3a; Additional file 1: Figure S1).
Bootstrap analysis of 2000 replicates revealed that these
predictions were very robust (95% confidence interval, CI,
of AUROC: [0.968,0.972]). We also computed the variable
importance (VI), which reflects the importance of a mark
as a predictor (Fig. 3b). Among the marks, DNase showed
the highest variable importance (VI = 0.180), reflect-
ing the known higher chromatin accessibility after DNA
damage [19] or the involvement of chromatin-remodeling
complexes in DSB processing [31]. Other good predictors
were CTCF (VI = 0.042), p63 (VI = 0.031), H3K4me1
(VI = 0.028), H3K4me2 (VI = 0.019), H3K4me3 (VI =
0.012), and H3K27ac (VI = 0.010), highlighting the roles
of active chromatin, but also long-range contacts and
DNA damage response in predicting DSB sites.
A drawback of variable importance lies in its inability to

distinguish between the positive or negative contribution
of the predictive mark on DSBs. For this reason, we also
used lasso logistic regression to predict DSBs [24]. With
this second model, we obtained excellent predictions,
although slightly less accurate (AUROC = 0.967, CI95%:
[0.966,0.971]; AUPR = 0.982; Additional file 1: Figure S2).
From lasso regression, we could assess the positive or
negative contributions of the predictive marks using beta
coefficients (Fig. 3c). We also performed logistic regres-
sion without any regularization and obtained very similar
coefficients (Additional file 1: Figure S3). This allowed
us to compute p values associated with the coefficients.
We found that all variables, except H3K79me2, H3K9ac,
and H4K20me1, were significantly associated with DSBs
(Additional file 1: Table S1). We identified positive pre-
dictive contributions of DNase, CTCF, p63, H3K4me1,
and H3K4me2 marks, as previously revealed by enrich-
ment analysis. We also uncovered negative predictive
contributions of H3K9ac, H3K36me3, and H3K79me2.
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Fig. 2 Epigenomic, chromatin, and DNA motif profiles of double-strand breaks (DSBs). a A genome browser view of DSBs with histone marks,
chromatin openness (DNase-seq), and DNA-binding proteins. b Colocalization frequencies of epigenomic marks and DNA-binding proteins at DSB
sites, compared to non-DSB sites. c Average profiles of epigenomic marks and DNA-binding proteins at DSB sites. d Enrichment of DNA motifs at
DSB sites, as measured by the odds ratio and the percentage of DSB loci with a motif. DSB double-strand break

In agreement, H3K9ac was shown to be rapidly and
reversibly reduced in response to DNA damage [32].
Moreover, H3K36me3 may negatively impede DSBs by
restricting chromatin accessibility through nucleosome
positioning [33] or more directly by favoring the repair of
DSBs [34].
We next sought to build a classifier using only one or

two epigenomicmarks, because thismay be able to predict
DSB sites even for cells for which only a few data points

are available. We found that DNase I sites alone were
sufficient to achieve good prediction accuracy (AUROC =
0.919 andAUPR= 0.962; Fig. 3d; Additional file 1: Figure S4),
whereas H3K4me2 was not sufficient (AUROC = 0.816
and AUPR = 0.907; Fig. 3d; Additional file 1: Figure S4).
Combinations of DNase with H2A.Z or H3K4me1 yielded
very accurate predictions (AUROC = 0.952 and AUPR =
0.977; AUROC = 0.951 and AUPR = 0.976, respectively;
Fig. 3d; Additional file 1: Figure S4), close to the model
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Fig. 3 Prediction of double-strand breaks using epigenomic and chromatin data with random forests. a Receiver operating characteristic curve for
the prediction of double-strand breaks. Area under the ROC curve (AUROC) is plotted. b Variable importance of epigenomic and chromatin
variables. c Lasso logistic regression coefficients. d Different predictive models including all variables, DNase only, H3K4me2 only, DNase+H2A.Z, or
DNase+H3K4me1. AUROC area under the receiver operating characteristic curve

including all marks. Because DNase was a strong predic-
tor, we explored where DNase was absent at DSBs to iden-
tify other marks that could be predictive here. We thus
built a classifier using only DSBs that did not overlap any
DNase site. DSB sites were still predicted well (AUROC
= 0.869 and AUPR = 0.792; Additional file 1: Figure
S5a and S5b), and CTCF and H3K4me1 were the most
highly predictive variables (Additional file 1: Figure S5c).
This revealed enhancer looping as a major driver of DSBs,
in agreement with recent studies showing that DSBs form
at loop anchors [35] and that CTCF facilitates DSB repair
[36]. These results demonstrate that DSBs can be accu-
rately predicted at less than 1-kb resolution using just a
small amount of data.

Comparison with BLESS experiment and validation using
an independent dataset
We then compared previous DSB predictions with DSBs
identified by BLESS experiments [3, 6]. We also included

in the comparison DSBCapture DSBs as the gold standard
because of its higher sensitivity compared to BLESS:
84 821 DSBs were found by DSBCapture compared to
18 510 DSBs found by BLESS [6]. We first looked at pre-
dicted DSB sites surrounding the two genes MYC and
MAP2K3 (Fig. 4a). For MYC, random forests correctly
identified the four DSBs that were detected by DSBCap-
ture, but erroneously predicted one DSB (yellow circle),
whereas BLESS identified only one DSB out of four. For
MAP2K3, random forests successfully predicted all DSBs
detected by DSBCapture, whereas BLESS identified only
three DSBs out of 11.
We then compared predictions with BLESS at the

genome-wide level (Fig. 4b). We observed that random
forests correctly predicted 18 084 out of 18 510 DSB sites
(97.70%) found by BLESS, while it also successfully identi-
fied an additional 63 587 out of 66 591 DSB sites (95.49%)
found by DSBCapture that were not detected by BLESS.
The model misclassified only 1552 out of 83 225 predicted
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Fig. 4 Comparison of predicted and BLESS double-strand breaks (DSBs) and validation with an independent dataset. a Comparison for the MYC and
MAP2K3 genes. b Venn diagram illustrating the overlaps between DSBCapture, random forest DSBCapture-trained model predictions, and BLESS
DSBs. c Venn diagram illustrating the overlaps between DSBCapture, random forest BLESS-trained model predictions, and BLESS DSBs. d Comparison
of receiver operating characteristic (ROC) curves between DSBCapture-trained and BLESS-trained models. Areas under the ROC curves (AUROCs) are
plotted. e ROC curve for the prediction of DSBs trained on replicate 1 and tested on the same replicate. f ROC curve for the prediction of DSBs
trained on replicate 1 and tested on replicate 2. AUROC area under the ROC curve, DSB double-strand break, ROC receiver operating characteristic

DSB sites (1.86%). However, this previous prediction
comparison should be carefully interpreted, because the
model was learned from DSBCapture and then used to
predict DSBCapture and BLESS DSBs.
To demonstrate the power of model-based predictions

further, we devised another computational experiment,
which consisted of training the model with BLESS DSBs
and then predicting DSBCapture DSBs to test if the model
could predict DSBCapture DSBs that were not detected

by BLESS. Very interestingly, we found that the model was
able to predict an additional 55 048 out of 84 821 DSBs
(64.90%) that were detected by DSBCapture but not by
BLESS, and it identified only 605 DSBs out of 73 363 pre-
dicted DSBs (0.82%), which may be false positives not
detected by DSBCapture and BLESS (Fig. 4c).
We then sought to compare models learned using DSB-

Capture and BLESS DSBs with a fair benchmark. For
this, we devised the following strategy. A first model was
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learned from DSBCapture and was used to predict BLESS
DSB sites (the DSBCapture-trained model), and a second
model was learned from BLESS and was used to predict
DSBCapture DSB sites (the BLESS-trained model). We
found that both models had very good prediction per-
formance (AUROCmodel1 = 0.9776 and AUPRmodel1 =
0.971; AUROCmodel2 = 0.9662 and AUPRmodel2 = 0.983;
Fig. 4d; Additional file 1: Figure S6).
In the previous section, we evaluated the accuracy of

model predictions using a testing dataset that was from
the same data as the training data (DSBs that over-
lapped between two replicates were split into a training
dataset and a testing dataset). Here, we assessed model
predictions by training random forests on one biolog-
ical replicate and by testing prediction accuracy on a
second biological replicate. For this, we used the two
available DSBCapture biological replicates [6]. Accord-
ingly, we used ENCODE epigenomic and chromatin data
for which two biological replicates were available: DNase,
CTCF, H3K4me3, H3K27me3, and H3K36me3. The first
(respectively, second) replicates of the ENCODE data
were associated with the first (respectively, second) DSB-
Capture replicate. Using only those five DNase-seq and
ChIP-seq items, the model that was learned with the first
replicate achieved accurate predictions on the testing data
from the first replicate (AUROC = 0.891 and AUPR =
0.906; Fig. 4e; Additional file 1: Figure S7a). Note that the
observed lower accuracy compared to that in the previous
section (Fig. 3a,d) can be explained by the small amount
of available epigenomic and chromatin data, and the lower
reliability of DSBs identified using only one DSBCap-
ture replicate. To validate the model on an independent
dataset, we predicted DSBs from the second replicate
using themodel trained on the first replicate together with
DNase-seq and ChIP-seq data for the second replicate.
We obtained accurate predictions close to that obtained
for the first replicate (AUROC = 0.889 and AUPR = 0.913;
Fig. 4f; Additional file 1: Figure S7b). These accurate pre-
dictions demonstrate that using a classifier trained with
epigenome and chromatin data is a reliable strategy for
predicting DSBs.

The impact of controls on prediction
To assess if the high predictive accuracy of the model
was inflated due to the way we selected non-DSB sites
(the negative class), we devised different strategies. We
first focused on gene promoters and built a random forest
classifier to discriminate between promoters with DSBs
(16 801 sites) and promoters without (48 838 sites). As
previously done, we computed the ROC curve but we also
included the PR curve to account for class imbalance. We
obtained very good performance for both the ROC curve
(AUROC = 0.941; Fig. 5a) and the PR curve (AUPR =
0.860; Fig. 5b). Second, we built a classifier to discriminate

between gene bodies with DSBs (2187 sites) and gene bod-
ies without (34 573 sites). We also obtained a very good
ROC curve (AUROC = 0.943; Fig. 5c), but with a lower
PR curve because of the higher class imbalance in gene
bodies (AUPR = 0.538; Fig. 5d). Third, we built a classifier
to discriminate between enhancers with DSBs (7373 sites)
and enhancers without (38 521 sites). We again observed
a very good ROC curve (AUROC = 0.933; Fig. 5e) and
good PR (AUPR = 0.705; Fig. 5f). Fourth, we evaluated
predictions over the whole genome in an unbiased way.
For this, we split the genome into 250-base bins. Then we
built a classifier to discriminate between bins with DSBs
(189 132 bins) and bins without (11 362 262 bins). Using
this approach, we obtained very good ROC accuracy
(AUROC = 0.967) but with lower PR accuracy (AUPR
= 0.459) due to the high class imbalance, revealing a
high number of false positives detected genome-wide by
our method. We concluded that the excellent accuracy of
model-based predictions was not inflated due to the way
non-DSB sites were selected over the genome.

Prediction in another cell type
To validate our model-based predictions further, we used
the random forest learned from DSBs in one cell type
(NHEK) to predict DSBs in another cell type (U2OS). For
this, we used data that were available for both NHEK and
U2OS cells: DNA-seq, CTCF, H3K4me1/3, H3K9me3,
H3K27ac, H3K27me3, H3K36me3, and POL2B. The val-
idation is illustrated in Additional file 1: Figure S8. In
summary, we trained a random forest with DSBCapture
DSBs and DNase-seq and ChIP-seq data in NHEKs. We
then predicted DSBs in U2OS cells using the NHEK-
trained random forest with U2OS DNA-seq and ChIP-seq
data. We validated the predictions with U2OS DSB data.
To evaluate prediction accuracy, we used the DSB data

(DSBCapture [6] and BLESS [37]) that were generated for
a specific cell line called U20S AID-DIvA. These DSB data
were the only ones available in U20S. This cell line was a
U2OS cell line that expressed the AsiSI restriction enzyme
inducing DSBs at targeted sites [38]. To focus on endoge-
nous DSBs, we kept only DSB data that did not overlap
AsiSI sites. Most likely, only a fraction of all endoge-
nous DSBs in U2OS could be mapped because DSB read
coverage was low outside AsiSI sites.
In the first benchmark, we computed ROC and PR

curves to evaluate the accuracy of model-based pre-
dictions. We compared our DSB predictions to a list
of 2327 DSB sites identified by DSBCapture peak call-
ing and 6443 non-DSB sites that were randomly drawn.
Although this endogenous DSB list was far from complete,
we obtained good prediction accuracy (AUROC = 0.835;
CI95%: [0.824,0.846]; AUPR = 0.881; Fig. 6a; Additional
file 1: Figure. S9). In agreement, we found that U2OS
DSB prediction using a U2OS-trained random forest
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Fig. 5 Prediction of double-strand breaks (DSBs) using different controls. a Receiver operating characteristic (ROC) curve of a random forest
discriminating between promoters with DSBs and promoters without. Area under the ROC curve (AUROC) is plotted. b Precision–recall (PR) curve of
the random forest used in (a). Area under the PR curve (AUPR) is plotted. c ROC curve of a random forest discriminating between gene bodies with
DSBs and gene bodies without. d Precision–recall curve of the random forest used in (c). e ROC curve of a random forest discriminating between
enhancers with DSBs and enhancers without. f Precision–recall curve of the random forest used in (e). g ROC curve of a random forest
discriminating between 250-base bins with DSBs and 250-base bins without. h Precision–recall curve of the random forest used in (g). AUPR, area
under the PR curve, AUROC area under the ROC curve, DSB double-strand break, PR precision–recall, ROC receiver operating characteristic

yielded only slightly better predictions than using a
NHEK-trained random forest (AUROC = 0.859; CI95%:
[0.849,0.868]; AUPR= 0.904; Additional file 1: Figure S10).
Moreover, DNase and CTCF had the highest variable
importance, as found in NHEKs (Fig. 6b). Unfortunately,
we could not carry out the same ROC and PR curve anal-
yses with the BLESS data because not enough DSB sites
were identified by peak calling.
In the second benchmark, we split the genome into

250-base bins and then predicted DSBs genome-wide.
The model identified 87 190 bins with a high DSB score
(predicted DSBs) and 77 510 bins with a low DSB score
(predicted controls). As expected, we found a high enrich-
ment of both DSBCapture and BLESS reads at predicted
DSBs compared to predicted controls (Fig. 6c). On aver-
age, both DSBCapture and BLESS signals accordingly
increased with the predicted DSB signal (Additional file 1:
Figure S11a,b). Fortunately, there were also ChIP-seq
data available for XRCC4, a DNA repair protein involved
in non-homologous end-joining. Hence, we looked at
whether XRCC4 was recruited at predicted DSBs. We
found a high enrichment of XRCC4 at predicted DSBs
compared to predicted controls (Fig. 6c), and an increase
of the XRCC4 signal depending on the predicted DSB
signal (Additional file 1: Figure S11c). In addition,
ChIP-seq data were available for γ -H2AX, a histone mark

that is induced at a megabase domain scale after DSBs,
but is depleted on the few kilobases surrounding the
exact break point [38, 39]. Accordingly, we observed that
γ -H2AX was depleted at predicted DSBs compared to
predicted controls (Fig. 6c), andwe found a decrease of the
γ -H2AX signal with the predicted DSB signal (Additional
file 1: Figure S11d).
Additionally, we performed genome-wide DSB predic-

tions in two other cell types for which endogenous DSB
data were available, namely KBM7 (chronic myelogenous
leukemia) andMCF-7 (breast cancer). For KBM7 cells, we
used DNase-seq, CTCF, H3K4me1/me3, and H3K9me3
for prediction and BLISS for validation [40]. The model
identified 163 113 bins with a high DSB score (predicted
DSBs) and 115 204 bins with a low DSB score (predicted
controls). We found an enrichment of BLISS reads at pre-
dicted DSBs compared to predicted controls (Additional
file 1: Figure S12a). On average, the BLISS signal accord-
ingly increased with the predicted DSB signal (Additional
file 1: Figure S12b). For MCF-7 cells, we used DNase-seq,
CTCF, H3K4me1/me3, H3K9ac/me3, and H3K27me3 for
prediction and END-seq for validation [35]. The model
identified 54 746 bins with a high DSB score (predicted
DSBs) and 84 576 bins with a low DSB score (predicted
controls). As expected, we found an enrichment of
END-seq reads at predicted DSBs compared to predicted
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Fig. 6 Prediction of double-strand breaks (DSBs) using a random forest learned from DSBs in one cell type (NHEK) to predict DSBs in another cell
type (U2OS). a Receiver operating characteristic (ROC) curve to predict U2OS DSBs using the NHEK-learned random forest. Area under the ROC
curve (AUROC) is plotted. b Variable importance from the prediction of U2OS DSBs using the U2OS-learned random forest. c Average profiles of
DSBCapture, BLESS, XRCC4, and γ -H2AX at predicted DSB regions compared to non-DSB regions over the whole genome. AUROC area under the
ROC curve, DSB double-strand break, ROC receiver operating characteristic

controls (Additional file 1: Figure S12c). On average, the
END-seq signal accordingly increased with the predicted
DSB signal (Additional file 1: Figure S12d). We also tested
whether our predictions in MCF-7 cells overlapped
etoposide (ETO) induced DSBs mapped by END-seq.
Interestingly, we found a strong enrichment of ETO
END-seq reads at predicted DSBs compared to predicted
controls (Additional file 1: Figure S12e). On average, the
END-seq signal accordingly increased with the predicted
DSB signal (Additional file 1: Figure S12f).
All these results revealed that the strongest predictors

including DNase and CTCF were the same in two dif-
ferent cell types, and that accordingly, a random forest
learned in one cell type can efficiently predict DSBs in
another cell type.

Prediction from DNAmotifs and shape
We then explored the possibility of predicting DSBs based
onDNA sequence using DNAmotif occurrences.We built

a random forest classifier using 454 available motifs from
the JASPAR 2016 database and obtained good prediction
accuracy (AUROC = 0.827; CI95%: [0.819,0.831]; AUPR
= 0.910; Fig. 7a; Additional file 1: Figure S13a). Several
motifs from the transcription factor complex AP-1 were
good predictors, such as FOS::JUN (VI = 0.016) and FOS
(VI = 0.009) (Fig. 7b), which were previously shown to
be enriched at DSB sites (see Section “Results and dis
cussion”, DSBs are enriched with epigenome marks and
DNA motifs). Using lasso regression, we improved pre-
vious predictions (AUROC = 0.839; CI95%: [0.829,0.840];
AUPR = 0.919; Fig. 7a; Additional file 1: Figure S13a).
Based on lasso regression, we found that the CTCF motif
had the highest beta coefficient (β = 3.22), corresponding
to OR = 25 (Fig. 7c), supporting recent evidence showing
that long-range contacts are involved in DNA repair
[25, 35, 41]. Furthermore, motifs of tumor proteins p53,
p63, and p73 had high coefficients (β > 2.03, OR >

7.6), in agreement with previous predictions based on
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Fig. 7 Prediction of double-strand breaks (DSBs) using DNA motifs and shape. a Receiver operating characteristic (ROC) curve for the DSB
predictions using DNA motifs from the JASPAR 2016 database. Random forest (RF) and lasso logistic regression were compared. b The 20 highest
DNA motif variable importance values. c The 20 highest DNA motif lasso coefficients. d ROC curve for the DSB predictions using DNA motifs with
DNA shape. AUROC area under the ROC curve, DSB double-strand break, RF random forest, ROC receiver operating characteristic

ChIP-seq data (see above). We also found motifs
recognized by factors involved in heavy metal response
(MTF-1: β = 2.08, OR = 8), in oxidative stress response
(NRF1: β = 0.93, OR = 2.53; REST: β = 1.75, OR =
5.75), in endoplasmic reticulum stress (ATF4: β = 0.97,
OR = 2.64), and in estrogen-induced DNA damage
(ESR1: β = 0.88, OR = 2.41). To assess the significance of
those motifs, we built a logistic regression model without
any regularization including all motifs with β > 0.5. We
found that most motifs (22/29) were significantly associ-
ated with DSBs (p < 0.05 after false discovery correction;
Additional file 1: Table S2). Many of the above mentioned
proteins have been shown to interact with each other.
For instance, NRF1 associates with Jun proteins of the
AP-1 complex [42]. ESR1 associates with AP-1/JUN and
FOS to mediate estrogen element response-independent
signaling [43].

DNA shape was recently shown to predict transcrip-
tion factor binding sites and gene expression [14, 44].
Thus, we assessed if DNA shape could similarly serve
to predict DSBs together with motifs. For this, we pre-
dicted four DNA shape features using simulations: minor
groove width (MGW), propeller twist (ProT), roll (Roll),
and helix twist (HelT) of DSB sites at base resolution.
From each feature, we computed 12 predictors includ-
ing quantiles (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100%) and the variance to describe the distribution of
the feature within a DSB site. We used the resulting 48
variables combined with motif occurrences to predict
DSBs with random forests and obtained better accuracy
(AUROC = 0.838 and AUPR = 0.915; Fig. 7d; Additional
file 1: Figure S13b) compared to using motifs alone
(AUROC = 0.827 and AUPR = 0.910; Fig. 7a; Additional
file 1: Figure S13a). Among the DNA shape variables,
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ProT median and MGW variance had the highest vari-
able importance (VI = 0.01 and VI = 0.01, respectively).
Using lasso regression, we also obtained better predic-
tions (AUROC = 0.858), compared to using motifs only
(AUROC = 0.839 and AUPR = 0.928; Fig. 7d; Additional
file 1: Figure S13b). These results reflect the importance of
DNA shape in determining DSB sites, in agreement with
studies showing that narrow minor grooves (created by
either sequence context or DNA bending) limit access of
reactive oxygen species [45].

Conclusions
DSBs are a major threat to a cell and they are associated
with cancer development. Over the past years, new tech-
niques have been developed to map DSBs at high reso-
lution and genome-wide level. However, these techniques
are costly and challenging. Here, we show, for the first
time, that such DSBs can be computationally predicted
using public epigenomic data, even when the availabil-
ity of data is limited (e.g., DNase I and H3K4me1). By
using state-of-the-art computational models, we achieve
excellent prediction accuracy, paving the way for a better
understanding of DSB formation depending on develop-
mental stage or cell-type specific epigenetic marks. Thus,
our computational approach should allow the genome-
wide mapping of DSBs in numerous cell lines and tissues
using the ENCODE and Roadmap Epigenomics databases.
There are multiple perspectives for this work. Recent

developments from deep (convolutional) neural networks
[13, 46] can improve model predictions and decrease the
number of false positives at the genome level. In addition,
our current model did not account for the impact of
copy number variation in cancer cells on prediction, and
future studies should integrate copy number variation as
a quantitative predictor variable in the model to correct
for this bias.

Methods
Double-strand breaks
All double-strand DNA break data used are summa-
rized in Table 1. We used double-strand DNA breaks
mapped by DSBCapture and BLESS in human epidermal

keratinocyte (NHEK) cells from the Gene Expression
Omnibus (GEO) accession GSE78172 [6]. DSBCap-
ture and BLESS peaks were called using MACS 2.1.0
on human genome assembly hg19 (https://github.com/
taoliu/MACS). The peaks obtained from two biological
replicates were intersected to yield more reliable DSB sites
for model predictions.
We used double-strand DNA breaks mapped by

DSBCapture and BLESS in AID-DIvA cells, a U2OS cell
line (human bone osteosarcoma epithelial cells) express-
ing the AsiSI restriction enzyme fused to a modified
estrogen receptor ligand-binding domain [38]. Upon
tamoxifen treatment, AsiSI induces sequence-specific
DSBs at GCGATCGC sites. DSBCapture data were from
tamoxifen-treated cells from GEO accession GSE78172
[6]. DSBCapture peaks were called using MACS 2.1.0 on
human genome assembly hg19. BLESS data were from
untreated cells arrested in G1 phase from ArrayExpress
accession E-MTAB-4846 [37]. Because of the low cov-
erage of BLESS data, a sufficient number of DSB peaks
could not be called.
We used double-strand DNA breaks mapped by BLISS

in KBM7 cells (human myeloid leukemia) from NCBI
Sequence Read Archive at SRP099132 [40]. We also
used double-strand DNA breaks mapped by END-seq
in untreated and etoposide-treated MCF-7 cells (human
breast cancer) from GSE99197 [35].

ChIP-seq and DNase-seq data
All ChIP-seq and DNase-seq data used are summarized
in Table 2. We used ChIP-seq uniform peaks (CTCF,
POL2B, EZH2, H3K4me1/me2/me3, H3K9me1/me3/ac,
H3K27me3/ac, H3K36me3, H3K79me2, H4K20me1, and
H2A.Z) and DNase-seq uniform peaks for NHEKs
from the ENCODE project [7] (https://genome.ucsc.edu/
encode).We also used p63 ChIP-seq of keratinocytes from
GEO accession GSE59827 [21].
For U2OS cells, we used DNase-seq andH3K27ac ChIP-

seq peaks from GEO accession GSE87831 [47]. We used
H3K4me1 and POL2B ChIP-seq peaks from GEO acces-
sion GSE73742 [48]. We used H3K4me3 and H3K27me3
ChIP-seq peaks from GSE35573 [49]. We used H3K9me3

Table 1 Double-strand DNA break data summary

Cell line Treatment Technique Number of replicates Accession

NHEK No treatment DSBCapture 2 GSE78172

NHEK No treatment BLESS 2 GSE78172

U2OS 4-hydroxytamoxifen DSBCapture 1 GSE78172

U2OS No treatment BLESS 1 E-MTAB-4846

KBM7 No treatment BLISS 1 SRP099132

MCF-7 No treatment END-seq 1 GSE99197

MCF-7 Etoposide END-seq 1 GSE99197
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Table 2 ChIP-seq and DNase-seq data summary

Cell line Treatment Technique Number of replicates Accession

NHEK No treatment CTCF, H3K4me3, H3K27me3,
H3K36me3 ChIP-seq

2 ENCODE uniform peaks

NHEK No treatment EZH2, H3K4me1/me2,
H3K9me1/me3/ac, H3K79me2,
H4K20me1, H2A.Z, H3K27ac, POL2B
ChIP-seq

1 ENCODE uniform peaks

NHEK No treatment DNase-seq 2 ENCODE uniform peaks

NHEK No treatment p63 ChIP-seq 1 GSE59827

U2OS No treatment DNase-seq, H3K27ac ChIP-seq 1 GSE87831

U2OS No treatment H3K4me1, POL2B ChIP-seq 1 GSE73742

U2OS No treatment H3K4me3, H3K27me3 ChIP-seq 1 GSE35573

U2OS No treatment H3K9me3, H3K36me3 ChIP-seq 1 ENCODE

U2OS No treatment CTCF ChIP-seq 1 ChIP-Atlas

U2OS 4-hydroxytamoxifen XRCC4, γ -H2A.X ChIP-seq 1 E-MTAB-1241

KBM7 No treatment DNase-seq 1 ChIP-Atlas

KBM7 No treatment H3K9me3 ChIP-seq 1 GSE60056

K562 No treatment CTCF, H3K4me1/me3 ChIP-seq 1 ENCODE

MCF-7 No treatment H3K4me1/me3, H3K9ac/me3,
H3K27me3 ChIP-seq

1 GSE23701

MCF-7 No treatment DNase-seq and CTCF ChIP-seq 1 ENCODE

and H3K36me3 ChIP-seq peaks from ENCODE [7]. We
used CTCF ChIP-seq peaks from the ChIP-Atlas database
(http://chip-atlas.org/). We used XRCC4 and γ -H2A.X
ChIP-seq for tamoxifen-treated DIvA cells from ArrayEx-
press accession E-MTAB-1241 [37].
For KBM7 cells, we used DNase-seq from the ChIP-

Atlas database, and H3K9me3 ChIP-seq from GSE60056
[50]. Instead of KBM7, we used K562 (chronic myel-
ogenous leukemia) for CTCF, H3K4me1/me3 ChIP-seq
from the ENCODE project [7] (https://genome.ucsc.
edu/encode). For MCF-7 cells, we used H3K4me1/me3,
H3K9ac/me3, and H3K27me3 ChIP-seq without treat-
ment (DMSO) from GSE23701 [51, 52]. We used DNase-
seq and CTCF ChIP-seq from ENCODE [7].

DNAmotifs
We used motif position frequency matrices for tran-
scription factor binding sites from the JASPAR 2016
database (http://jaspar.genereg.net). We called transcrip-
tion factor binding sites over the human genome using
the position weight matrices and a minimum matching
score of 80%.

DNA shape
We predicted four DNA shape features using Monte
Carlo simulations: minor groove width (MGW) and
propeller twist (ProT) at base pair resolution and roll
(Roll) and helix twist (HelT) at base pair step resolution
using R package DNAshapeR (https://bioconductor.org/
packages/release/bioc/html/DNAshapeR.html).

Random forest and lasso regression
We used R package ranger (https://cran.r-project.org/
web/packages/ranger) to compute the random forest clas-
sification efficiently [30]. We used the default package
parameters: num.trees=500 and mtry is the square
root of the number of variables. Variable importance
was computed using the mean decrease in accuracy in
the out-of-bag sample. To discriminate between DSB and
non-DSB sites, we randomly selected genomic sequences
that matched sizes, GC, and repeat contents of DSB
sites using R package gkmSVM (https://cran.r-project.
org/web/packages/gkmSVM). To learn the model, we
mapped epigenomic data, DNA motifs, and DNA shape
as follows. For epigenomic data including ChIP-seq and
DNase-seq data, we used peak genomic coordinates of
a feature (for instance, CTCF binding sites) and consid-
ered the presence (x = 1) or absence (x = 0) of the
corresponding feature at the DSB site. If a feature peak
overlapped only 60% of the DSB site, then x = 0.6. For
DNA motifs, we computed the number of motif occur-
rences within DSB and non-DSB sites. For DNA shape,
we computed four features including MGW, ProT, Roll,
and HelT of DSB sites at base resolution. For each DNA
shape feature, we then computed 12 predictors, includ-
ing quantiles (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100%) and the variance to describe the distribution of
the feature within a DSB site. The DSB data were next
split into two sets: the training set used for learning
the model and a test set used for assessing prediction
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accuracy. We also used R package glmnet (https://cran.
r-project.org/web/packages/glmnet/index.html) to com-
pute lasso logistic regression with cross-validation. To
assess the prediction accuracy of random forest and lasso
regression, we computed the ROC curve and AUROC.
To estimate the confidence interval for AUROC, we
used the pROC R package (https://cran.r-project.org/
web/packages/pROC). We also computed the PR curve
and AUPR to assess prediction accuracy when the classes
were very imbalanced, especially for genome-wide analy-
ses. For this, we used the PRROC R package (https://cran.
r-project.org/web/packages/PRROC).

Additional file

Additional file 1: Additional figures and tables. Figures S1–13 and
Tables S1, S2. (PDF 1618 kb)
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3.6.2 DeepG4: A deep learning approach to predict cell-type specific active
G-quadruplex regions (Vincent Rocher)

G4s are important DNA secondary structures that are known to regu-

late several essential processes in the cell, such as gene transcription,

DNA replication, DNA repair, telomere stability and V(D)J recombina-

tion [Spiegel et al. 2019]. Moreover, G4s are highly suspected to be impli-

cated in human diseases such as cancer or neurological/psychiatric disorders

[Cimino-Reale et al. 2016, Asamitsu et al. 2019, Hänsel-Hertsch et al. 2020].

G4 structures can be predicted from the DNA sequence. The most ba-

sic algorithms consisted in finding all occurrences of the canonical mo-

tif G3+N1−7G3+N1−7G3+N1−7G3+ (or the corresponding C-rich motif)

[Huppert & Balasubramanian 2005, Huppert & Balasubramanian 2006]. How-

ever, looking for a canonical motif lacked flexibility to capture the wide variety

of sequences underlying G4 structures. More flexible algorithms instead assessed

G-richness and G-skewness or alternatively sequence features including k-mers,

and more recently involved machine/deep learning. However, current algorithms

aimed to predict G4s in vitro, but were not designed to assess the ability of G4

sequences to form in vivo (e.g. G4 activity). Indeed, many G4s are formed in

vitro but not vivo, and thus have no activity in the cell [Hänsel-Hertsch et al. 2016].

Vincent Rocher et al. proposed a novel method, named DeepG4, aimed to pre-

dict cell-type specific active G4 regions (regions that were mapped both in vitro

and in vivo in a given cell type) from DNA sequence and chromatin accessibility

[Rocher et al. 2021]. DeepG4 implements a CNN, which is trained using a com-

bination of genome-wide in vitro (G4-seq) and in vivo (G4 ChIP-seq) peak DNA

sequences, together with chromatin accessibility measures (e.g. ATAC-seq). For

this purpose, DeepG4 exploits the genomic context (a 201-base region) of a G4,

which comprises the potential G4 forming sequence, but also other DNA motifs that

may play a role in G4 activity. Moreover, adding chromatin accessibility, which is

publicly available for most cell lines, tissues and cancers, into the model allows to

predict G4 regions that are active depending on the cell-type, since it was previ-

ously shown that in vivo G4 peaks strongly colocalize (98%) with regions identified

by either FAIRE-seq or ATAC-seq, or both [Hänsel-Hertsch et al. 2018]. DeepG4

achieved excellent accuracy at predicting cell-type specific active G4 regions (area

under the receiver operating characteristic curve or AUROC > 0.98) (Figure 3 from

the article ”DeepG4: A deep learning approach to predict cell-type specific active

G-quadruplex regions” below). Moreover, DeepG4 identified key DNA motifs that

were predictive of active G4 regions (Figure 4 from the article below). Among those

motifs, Vincent Rocher et al. found specific motifs resembling the G4 canonical mo-

tif (or parts of G4 canonical motif), but also numerous known transcription factors

which could play important roles in enhancing or inhibiting G4 activity directly or

indirectly. By mapping active G4 regions that encapsulate one or more potential

G4s, DeepG4 represents a complementary approach to existing algorithms based

on regular expressions or propensity scores, which can be further used to precisely
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localize the G4s within the active G4 regions. Lastly, Vincent Rocher et al. used

our new algorithm to map active G4 regions in multiple tissues and cancers as a

comprehensive resource for the G4 community. Such active G4 regions represent

novel therapeutic targets of recent G4-ligand drugs that are currently being tested.
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Abstract

DNA is a complex molecule carrying the instructions an organism needs to develop, live and

reproduce. In 1953, Watson and Crick discovered that DNA is composed of two chains form-

ing a double-helix. Later on, other structures of DNA were discovered and shown to play

important roles in the cell, in particular G-quadruplex (G4). Following genome sequencing,

several bioinformatic algorithms were developed to map G4s in vitro based on a canonical

sequence motif, G-richness and G-skewness or alternatively sequence features including k-

mers, and more recently machine/deep learning. Recently, new sequencing techniques

were developed to map G4s in vitro (G4-seq) and G4s in vivo (G4 ChIP-seq) at few hundred

base resolution. Here, we propose a novel convolutional neural network (DeepG4) to map

cell-type specific active G4 regions (e.g. regions within which G4s form both in vitro and in

vivo). DeepG4 is very accurate to predict active G4 regions in different cell types. Moreover,

DeepG4 identifies key DNA motifs that are predictive of G4 region activity. We found that

such motifs do not follow a very flexible sequence pattern as current algorithms seek for.

Instead, active G4 regions are determined by numerous specific motifs. Moreover, among

those motifs, we identified known transcription factors (TFs) which could play important

roles in G4 activity by contributing either directly to G4 structures themselves or indirectly

by participating in G4 formation in the vicinity. In addition, we used DeepG4 to predict active

G4 regions in a large number of tissues and cancers, thereby providing a comprehensive

resource for researchers.

Availability: https://github.com/morphos30/DeepG4.

Author summary

DNA is a molecule carrying genetic information and found in all living cells. In 1953,

Watson and Crick found that DNA has a double helix structure. However, other DNA

structures were later identified, and most notably, G-quadruplex (G4). In 2000, the

Human Genome Project revealed the widespread presence of G4s in the genome using

algorithms. To date, all G4 mapping algorithms were developed to map G4s on naked

DNA, without knowing if they could be formed in a given cell type. Here, we designed a
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novel artificial intelligence algorithm that could map G4 regions active in the cell from the

DNA sequence and chromatin accessibility. Moreover, we identified key transcriptional

factor motifs that could explain G4 activity depending on cell type. Lastly, we used our

new algorithm to map active G4 regions in multiple tissues and cancers as a comprehen-

sive resource for the G4 community.

Introduction

Deoxyribonucleic acid (DNA) is a complex molecule carrying genetic instructions for the

development, functioning, growth and reproduction of all known living beings and numerous

viruses. In 1953, Watson and Crick discovered that DNA is composed of two chains forming a

double-helix [1]. However, other structures of DNA were discovered later and shown to play

important roles in the cell. Among those structures, G-quadruplex (G4) was discovered in the

late 80’s [2]. G4 sequence contains four continuous stretches of guanines [3]. Four guanines

can be held together by Hoogsteen hydrogen bonding to form a square planar structure called

a guanine tetrad (G-quartets). Two or more G-quartets can stack to form a G4 [3]. The quad-

ruplex structure is further stabilized by the presence of a cation, especially potassium, which

sits in a central channel between each pair of tetrads [4]. G4 can be formed of DNA [5] or

RNA [6].

G4s were found enriched in gene promoters, DNA replication origins and telomeric

sequences [5, 7]. Accordingly, numerous works suggest that G4 structures can regulate several

essential processes in the cell, such as gene transcription, DNA replication, DNA repair, telo-

mere stability and V(D)J recombination [5]. For instance, in mammals, telomeric DNA con-

sists of TTAGGG repeats [8]. They can form G4 structures that inhibit telomerase activity

responsible for maintaining length of telomeres and are associated with most cancers [9, 10].

G4s can also regulate gene expression such as for MYC oncogene where inhibition of the activ-

ity of NM23-H2 molecules, that bind to the G4, silences gene expression [11]. Moreover, G4s

are also fragile sites and prone to DNA double-strand breaks [12]. Accordingly, G4s are highly

suspected to be implicated in human diseases such as cancer or neurological/psychiatric disor-

ders [13–15].

Following the Human Genome project [16], computational algorithms were developed to

predict the location of G4 sequence motifs in the human genome [17, 18]. First algorithms

consisted in finding all occurrences of the canonical motif G3+ N1−7 G3+ N1−7 G3+ N1−7 G3+, or

the corresponding C-rich motif (quadparser algorithm) [19, 20]. Using this canonical motif,

over 370 thousand G4s were found in the human genome. Nonetheless, such pattern matching

algorithms lacked flexibility to accomodate for possible divergences from the canonical pat-

tern. To tackle this issue, novel score-based approaches were developed to compute G4 pro-

pensity score by quantifying G-richness and G-skewness (G4Hunter algorithm) [21], or by

summing the binding affinities of smaller regions within the G4 and penalizing with the desta-

bilizing effect of loops (pqsfinder algorithm) [22]. Recently, new sequencing techniques were

developed to map G4s in vitro (G4-seq) [23], and G4s in vivo (G4 ChIP-seq) [24] as regions of

few hundred bases. Machine and deep learning methods were proposed to predict such G4

regions, i.e. regions comprising the G4(s) along with flanking sequences. For instance, Quad-

ron—a machine learning approach—was proposed to predict G4s based on sequence features

(such as k-mer occurrences) from a region of more than 100 bases, and trained using in vitro

G4 regions with G4-seq [25]. By combining with regular expressions, Quadron could predict if

a region was found in vitro, but also the exact location and stability value of G4(s) within the
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region. Other deep learning approaches had lower resolution for mapping G4s (around 200

bases), but they showed higher prediction performance. PENGUINN, a deep convolutional

neural network (CNN), was trained to predict G4 regions in vitro [26]. Another CNN,

G4detector, was also designed to predict G4 regions forming in vitro [27]. Thus, all current

approaches aimed to predict G4 regions forming in vitro, but were not designed to assess the

ability of G4 sequences to form in vivo (e.g. G4 activity).

Here, we propose a novel method, named DeepG4, aimed to predict cell-type specific active

G4 regions (regions that were mapped both in vitro and in vivo in a given cell type) from DNA

sequence and chromatin accessibility. DeepG4 implements a CNN which is trained using a

combination of genome-wide in vitro (G4-seq) and in vivo (G4 ChIP-seq) peak DNA

sequences, together with chromatin accessibility measures (e.g. ATAC-seq). For this purpose,

DeepG4 exploits the genomic context (a 201-base region) of a G4, which comprises the poten-

tial G4 forming sequence, but also other DNA motifs that may play a role in G4 activity. More-

over, adding chromatin accessibility, which is publicly available for most cell lines, tissues and

cancers, into the model allows to predict G4 regions that are active depending on the cell-type,

since it was previously shown that in vivo G4 peaks strongly colocalize (98%) with regions

identified by either FAIRE-seq or ATAC-seq, or both [28]. DeepG4 achieves excellent accuracy

at predicting cell-type specific active G4 regions (area under the receiver operating characteris-

tic curve or AUROC> 0.98). Moreover, DeepG4 identifies key DNA motifs that are predictive

of active G4 regions. Among those motifs, we found specific motifs resembling the G4 canoni-

cal motif (or parts of G4 canonical motif), but also numerous known transcription factors

which could play important roles in enhancing or inhibiting G4 activity directly or indirectly.

By mapping active G4 regions that encapsulate one or more potential G4s, DeepG4 represents

a complementary approach to existing algorithms based on regular expressions or propensity

scores, which can be further used to precisely localize the G4s within the active G4 regions.

Materials and methods

G4 data

We downloaded G4 ChIP-seq data for HaCaT, K562 and HEKnp cell lines from Gene Expres-

sion Omnibus (GEO) accession numbers GSE76688, GSE99205 and GSE107690 [24, 28, 29].

For every cell line, replicates were mapped to hg19 and merged for peak calling using macs2

with default parameters (https://pypi.org/project/MACS2/). We downloaded G4P ChIP-seq

(similar to G4 ChIP-seq) peaks already mapped to hg19 for A549, H1975, 293T and HeLa-S3

cell lines from GEO accession number GSE133379 [30]. We used peaks from both replicates

(when there were two available replicates). We downloaded processed G4-seq peaks mapped

to hg19 from GEO accession number GSE63874 [23]. We used G4-seq from the sodium (Na)

and potassium (K) conditions. No filtering step was performed on peak selection.

Active G4 sequences

We defined positive DNA sequences (active G4 region sequences) as forming both in vitro

and in vivo G4s as follows. We only kept G4 ChIP-seq peaks overlapping with G4-seq peaks.

We then used the 201-bp DNA sequences centered on the G4 ChIP-seq peak summits.

As negative (control) sequences, we used sequences randomly drawn from the human

genome with sizes, GC content (% GC), and repeat content (tandem repeat number from Tan-

dem Repeat Finder mask from hg19 genome) similar to those of positive DNA sequences

using genNullSeqs function from gkmSVM R package (https://cran.r-project.org/web/

packages/gkmSVM).
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Chromatin accessibility

We downloaded processed DNase-seq bigwig files for different cell lines from ENCODE [31],

and processed ATAC-seq bigwig files for HaCaT cell line from GSE7668. We downloaded pro-

cessed ATAC-seq bigwig files from ICGC cancer cohorts from https://gdc.cancer.gov/about-

data/publications/ATACseq-AWG [32].

ChromHMM annotations

We downloaded ChromHMM annotations for ENCODE cell lines from http://hgdownload.

cse.ucsc.edu/goldenpath-hg19/encodeDCC/wgEncodeBroadHmm/ [33].

BRCA cancer mutations

We downloaded breast cancer processed mutation data from ICGC BRCA-US cohort from

the portal https://dcc.icgc.org.

JASPAR DNA motifs

We used position weight matrices (PWMs) for transcription factor binding sites from the JAS-

PAR 2018 database (http://jaspar.genereg.net).

DeepG4 model

DeepG4 is a feedforward neural network composed of several layers illustrated in Fig 1. DNA

sequence is first encoded as a one-hot encoding layer. Then, a 1-dimension convolutional

layer is used with kernels to model DNA motifs. A local average pooling layer is next used.

Then, the global max pooling layer extracts the highest signal from the sequence. Dropout is

used for regularization. A dense layer then combines the different kernels and the activation

sigmoid layer allows to compute the score between 0 and 1 of a sequence to be an active

Fig 1. DeepG4 model architecture. Here, one-hot encoding is a numerical encoding of a 201-bp DNA sequence as a 201 × 4 matrix where each column

corresponds to a DNA letter (A, C, G or T), and for instance, a value of one in the first column corresponds to a letter A in the sequence at a given position.

For one-hot encoding, colored cells indicate ones, while white cells indicate zeroes.

https://doi.org/10.1371/journal.pcbi.1009308.g001
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G4. The model is described in details in Subsection Results and Discussion, Deep learning

approach.

Best hyperparameters including the number of kernels (900), kernel size (20 bp), kernel

activation (relu), pool size (12 bp), drop-out (0%), epoch number (20), number of neurons

in the dense layer (100) and the optimizer choice (rmsprop) were selected by Bayesian optimi-

zation [34]. In S1 Fig, we illustrated how changing the hyper-parameters influenced the

accuracy.

DNA motifs from DeepG4

The first layer of DeepG4 contains kernels capturing specific sequence patterns similar to

DNA motifs. In order to obtain DNA motifs from the first layer (convolutional layer) of

DeepG4, we proceeded as follows (see S2 Fig). For a given kernel, we computed activation

values for each positive sequence. If a positive sequence contained activation values above 0

(motif hits), we extracted the sub-sequence having the maximum activation value (best motif

hit sequence). The set of sub-sequences was then used to obtain a position frequency matrix

(PFM) by computing the frequency of each DNA letter at each position for the kernel.

Each kernel PFM was then trimmed by removing low information content positions at

each side of the PFM (threshold >0.9). PFMs whose size were lower than 5 bases after trim-

ming were removed. PWMs were next computed from PFMs assuming background probabil-

ity of 0.25 for each DNA letter as done in JASPAR.

Because many PWMs from DeepG4 were redundant, we used the motif clustering program

matrix-clustering from RSAT suite (http://rsat.sb-roscoff.fr/) with parameters: median,

cor = 0.6, ncor = 0.6. We used PWM cluster centers as DNA motifs for further analyses.

DeepG4 implementation and sequence availabity

DeepG4 was implemented using Keras R library (https://keras.rstudio.com/). DeepG4 is avail-

able at https://github.com/morphos30/DeepG4. All fasta files used for training and predictions

were also deposited.

Performance analyses of DeepG4 and DeepG4�

Performance analyses of DeepG4 and DeepG4� presented in this article can be obtained using

a pipeline and a docker available at https://github.com/morphos30/DeepG4ToolsComparison.

Results and discussion

Deep learning approach

Our computational approach, called DeepG4, for predicting active G4 regions is schematically

illustrated in Fig 2. In the first step (Fig 2A), we retrieved recent genome-wide mapping of in

vitro G4 peak human sequences using G4-seq data [23] and of in vivo G4 peak human

sequences using G4 ChIP-seq data [24]. Both methods mapped G4 regions at the resolution of

few hundred base pairs, within which the exact locations of the G4s are unknown. By overlap-

ping G4 ChIP-seq peaks with G4-seq peaks, we could identify a set of G4 peaks that were

formed both in vitro and in vivo, and which we considered as “active G4 regions”. Moreover,

we retrieved accessibility mapping data (DNase-seq / ATAC-seq) for the corresponding

regions from the same cell line as the G4 ChIP-seq data.

In the second step (Fig 2B), we extracted the DNA sequences from active G4 regions (posi-

tive sequences). As negative sequences, we used sequences randomly drawn from the human

genome with sizes, GC, and repeat contents similar to those of positive DNA sequences. For
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both positive and negative sequences, we computed the corresponding average chromatin

accessibilities. Positive and negative sequences, together with average chromatin accessibility

values, were then used to train our deep learning classifier called DeepG4. DeepG4 is a feedfor-

ward neural network composed of several layers. The DNA sequence (left input) is first

encoded as a one-hot encoding layer. Then, a 1-dimension convolutional layer is used with

900 kernels (also called filters) and a kernel size of 20 bp to capture weighted DNA motifs pre-

dictive of active G4 regions. The optimal number of kernels and kernel size were determined

by Bayesian optimization. A local average pooling layer with a pool size of 12 bp is next used

(pool size selected by Bayesian optimization). This layer is important: it allows to aggregate

kernel signals that are contiguous along the sequence, such that a G4 sequence can be modeled

as multiple contiguous small motifs containing stretches of Gs. For instance, a G4 sequence

can be defined by two contiguous motifs GGGNNNGGG separated by 5 bases, yielding the

canonical motif GGGNNNGGGNNNNNGGGNNNGGG. Then, the global max pooling layer

extracts the highest signal from the sequence for each kernel, and is concatenated with the

average chromatin accessibility value (right input). Dropout is used for regularization. A dense

layer then combines the different kernel signals. The activation sigmoid layer allows to com-

pute the score between 0 and 1 of a sequence to be an active G4 region.

In the third step (Fig 2C), we used DeepG4 to predict the G4 region activity (score between

0 and 1) for a novel DNA sequence and its corresponding chromatin accessibility. We split the

sequence set (set of positive and negative sequences) from HaCaT cell line (from GEO

GSE76688 accession) into a training set to learn model parameters, a validation set to optimize

hyper-parameters by Bayesian optimization and a testing set to assess model prediction accu-

racy. For this purpose, we computed the receiver operating characteristic (ROC) curve and the

Fig 2. Illustration of DeepG4. A) Mapping of active G4 region sequences both in vitro and in vivo using NGS techniques. B) Deep learning model

training using active G4 regions and control sequences. C) G4 activity prediction, evaluation and motif identification.

https://doi.org/10.1371/journal.pcbi.1009308.g002
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area under the ROC (AUROC), as well as the precision-recall (PR) curve and the area under

the PR (AUPR). DeepG4 motifs are extracted from the convolutional layer.

G4 predictions with DeepG4

We then evaluated the prediction performance of DeepG4. In term of AUROC, DeepG4

obtained excellent predictions of active G4 regions from HaCaT cells on the testing set (Fig

3A; AUROC = 0.988). On an independent ChIP-seq experiment done with the same cell line

(from GEO GSE99205 accession), prediction performance of DeepG4 also showed very high

accuracy (AUC = 0.986; Fig 3A). We then evaluated the ability of DeepG4 trained on one cell

line (HaCaT) to predict G4s in another cell line (e.g. K562). We first browsed the genome

where G4 regions were mapped by ChIP-seq as active in K562. For instance, we looked around

the oncogene KRAS known to be regulated by a G4 in its promoter (Fig 3B). ChIP-seq mapped

one active G4 region in the promoter of KRAS, which was also predicted with high score by

DeepG4 (score > 0.95). On the left side of KRAS, another active G4 region was mapped exper-

imentally within CASC1 gene and was also predicted by DeepG4. On another locus, ChIP-seq

mapped three main active G4 regions, located inside the genes C5orf28 (TMEM267), C5orf34

and PAIP1 (Fig 3C). These three regions were also predicted as active G4 regions with high

score (score> 0.95). DeepG4 also mistakenly predicted with medium score two other regions

within C5orf34 (score� 0.6, red stars), which were not mapped by ChIP-seq.

Overall, DeepG4, which was trained using HaCaT cell line data, could well predict in other

cell lines. For instance, the AUROC was very high for HEKnp (AUROC = 0.97; Fig 3D). For

K562, HeLaS3 and H1975, AUROCs were also very good (K562: AUROC = 0.963; HeLaS3:

AUROC = 0.948; H1975: AUROC = 0.948), except for 293T and A549, which presented good

but slightly lower accuracy (293T: AUROC = 0.921; A459: AUROC = 0.912). We then evalu-

ated predictions over the whole genome in an unbiased way. For this purpose, we split the

genome into 200-base bins, and evaluated DeepG4 ability to discriminate between bins corre-

sponding to active G4 regions (tens of thousands of bins) and other bins (millions of bins).

Despite this highly imbalanced data, DeepG4 showed good prediction accuracy as measured

by AUPR for HaCaT (AUPR = 0.291, independent experiment), K562 (AUPR = 0.309), 293T

(AUPR = 0.176), A549 (AUPR = 0.124) and H1975 (AUPR = 0.129) (Fig 3E). For some cell

lines, predictions were less good (HEKnp: AUPR = 0.019; HeLaS3: AUPR = 0.08).

We previously hypothesized that chromatin accessibility could help to produce cell-type

specific predictions. To verify this assumption, chromatin accessibility was removed from

DeepG4 model (yielding an alternative model called DeepG4�). Removing chromatin accessi-

bility significantly lowered cell-type specific prediction accuracy. For instance, the AUROC

of HaCaT (independent) was 0.939 for DeepG4� as compared to 0.986 for DeepG4, which

represented an important difference (Fig 3F). We also found a large difference for HEKnp

(DeepG4�, AUROC = 0.854; DeepG4, AUROC = 0.970). In terms of accuracy and false discov-

ery rate (FDR) metrics, DeepG4� performed slightly less well than DeepG4 (Fig 3H). Regard-

ing genome-wide predictions, removing chromatin accessibility also significantly lowered

prediction performance (Fig 3G). For instance, for HaCaT (independent), we obtained an

AUPR of 0.120 with DeepG4� and an AUPR of 0.291 with DeepG4. Regarding accuracy met-

ric, DeepG4� performed less well than DeepG4, but slightly better in term of FDR (Fig 3I). We

also assessed predictions on promoters to distinguish the promoters with active G4 regions

from the promoters without active G4 regions. DeepG4� performed less well than DeepG4 in

term of AUPR and accuracy, but slightly better in term of FDR (Fig 3J).

These results thus demonstrated the ability of DeepG4 to accurately predict cell-type spe-

cific active G4 regions from DNA sequences and chromatin accessibility. Moreover, results
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Fig 3. Prediction performance of DeepG4 to predict active G4 regions (regions where G4s form both in vitro and in vivo). A) Prediction

performance of DeepG4. The model was trained and evaluated using HaCaT cell data. Predictions were evaluated on the testing set of

sequences (same experiment as training set), but also on an independent set of sequences (from a different ChIP-seq experiment). Receiver

operating characteristic (ROC) curve and area under the ROC curve (AUROC) were plotted. B) Genome browser of HaCaT-trained DeepG4

predictions and G4 ChIP-seq around KRAS gene in K562 cells. C) Genome browser of HaCaT-trained DeepG4 predictions and G4 ChIP-seq

around C5orf34 gene in K562 cells. D) Prediction performance of DeepG4 trained using HaCaT data and evaluated on other cell lines. E)

Genome-wide prediction performance of DeepG4 trained using HaCaT data and evaluated on other cell lines. Predictions are computed for

every 200-b bins of the genome. Area Under the Precision-Recall curve is plotted (AUPR). F) Prediction performance of DeepG4� trained

using HaCaT data and evaluated on other cell lines. DeepG4� is identical to DeepG4 except that chromatin accessibility is not used as input.

G) Genome-wide prediction performance of DeepG4� trained using HaCaT data and evaluated on other cell lines. H) Comparison of

DeepG4 and DeepG4� prediction performances, in terms of accuracy and false discovery rate (FDR) metrics. I) Comparison of DeepG4 and

DeepG4� genome-wide prediction performances, in terms of accuracy and false discovery rate (FDR) metrics. J) Comparison of DeepG4 and

DeepG4� promoter prediction performances, in terms of AUPR, accuracy and false discovery rate (FDR) metrics.

https://doi.org/10.1371/journal.pcbi.1009308.g003
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also revealed the importance of incorporating chromatin accessibility into DeepG4 for cell-

type specific predictions.

Identification of important motifs from DeepG4

The first layer of DeepG4 convolutional neural network encapsulated kernels that encoded

DNA motifs predictive of active G4s. Hence, we extracted from the first layer the kernels and

converted them to DNA motif PWMs to better understand which motifs were the best predic-

tors of G4 activity. DeepG4 identified 900 motifs, many of them were redundant. To remove

redundancy, we clustered the motifs using RSAT matrix-clustering program and kept the clus-

ter motifs (also called root motifs in the program) for subsequent analyses. Cluster motifs

could be divided into two groups: a group of de novo motifs and a group of motifs that resem-

bled known TFBS motifs. To distinguish between these two groups, we used TomTom pro-

gram (MEME suite) which mapped the cluster motifs to JASPAR database. DeepG4 motifs

matching JASPAR were considered as known TFBS motifs, while motifs that did not match

were classified as de novo motifs.

We first assessed the ability of DeepG4 motifs to predict active G4 regions. Hence, we com-

puted DeepG4 cluster motif variable importances using random forests and found strong pre-

dictors (Fig 4A). In order to visualize the cluster motifs on a map, we used multi-dimensional

scaling (MDS), where we also plotted the original kernel motifs used to build the cluster

Fig 4. DNA motifs identified by DeepG4. A) Variable importances of DeepG4 cluster motifs, as estimated by random forests. Clustering of DeepG4

kernel motifs was done by RSAT matrix-clustering program to obtain cluster motifs. B) Multidimensional scaling (MDS) of DeepG4 motifs. As an input,

matrix-clustering correlation matrix between kernel motifs was used. C) Logos of cluster motifs with highest variable importances. D) Number of kernel

motifs containing one or more GG+ stretches. A GG+ stretch is defined as a stretch of 2 or more Gs in the motif consensus sequence. E) Number of kernel

motifs containing G stretches depending on stretch length. F) Average profiles measuring the enrichment of cluster motifs centered around active G4

regions or canonical G4 motifs.

https://doi.org/10.1371/journal.pcbi.1009308.g004
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motifs. We found that the first MDS component reflected the guanine stretch length (higher at

the right side), while the second component represented the G content (higher at the bottom)

(Fig 4B).

Many strong predictors were de novo motifs which ressembled the G4 canonical motif or

parts of the canonical motif. For instance, cluster 1 comprised 4 stretches of GG+, thus almost

forming a canonical G4 motif (Fig 4C). Cluster 2 comprised three stretches of GG+, could

thus be considered as three quarters of a canonical G4 motif. We then counted GG+ stretches

(stretches of 2 or more guanines) from the kernel motifs and found that many kernel motifs

contained more than one GG+ stretch (Fig 4D). Moreover, the guanine stretches were of vary-

ing lengths, ranging from one G up to 5 Gs (Fig 4E). Among the best predictors, we also found

several motifs corresponding to known TFBS motifs (Fig 4C). For instance, the third best pre-

dictor, cluster 3, almost perfectly matched FOS motif MA0476.1 (q-value = 2 × 10−10). Other

strong predictors, such as cluster 4, matched KLF5 motif MA0599.1 (q-value = 0.09). It was

very interesting to observe that such motif corresponding to one half of a canonical G4 motif

also matched a known TFBS motif, which supported the complex interplay between G4s and

TFBS protein binding [35].

We then assessed the enrichment of DeepG4 cluster motifs around active G4 regions and

around canonical G4 motifs (Fig 4F). Motifs ressembling G4 canonical motif or parts of it,

such as clusters 1 and 2, were enriched at both active G4 regions and canonical G4 motifs, thus

representing actual G4 structures. But other motifs that were very different from the G4

canonical motif, such as cluster 3, were strongly enriched at active G4 regions, but depleted at

the exact location of canonical G4 motifs. Interestingly, cluster 3 was enriched close to the

canonical G4 motifs (around 300 bp, framed in green), suggesting that cluster 3 (FOS motif

MA0476.1) did not participate directly to the G4 structure, but could act in the vicinity to sup-

port G4 activity. Conversely, we also found a motif composed mainly of Ts (poly(T) tract), the

cluster 5 motif, which was depleted in active G4 regions, but which was at the same time

enriched in the vicinity of canonical G4 motifs (framed in blue). This suggests that such poly

(T) motif could inhibit the activity of G4 motifs by acting in the vicinity.

These observations revealed the important role of TFBS motifs that could act directly in G4

activity as part of G4 structure, as previously shown for SP1 in vitro [36], or could participate

indirectly to support or inhibit G4 activity in the vicinity of G4s such as FOS motif (AP-1

complex).

Genome-wide predictions in tissues and cancers

Using DeepG4, we could map active G4 regions genome-wide in many different tissues and

cancers for which no G4 ChIP-seq experiments were available, but for which we could find

publicly available chromatin accessibility data (ATAC-seq or DNase-seq). Hence, we made the

mapping available on the DeepG4 Github repository as a resource for the G4 community.

We first browsed the genome at known oncogenes and looked at predicted active G4

regions (Fig 5A). In MYC, we predicted many active G4 regions in the promoter but also in

the exons and introns. Predicted G4 activity was rather stable and did not vary across the tis-

sues and cancers. In another gene, FUS, we found that the promoter contained an active G4

region that was very stable across tissues and cancer (left side), but we also could identify

another G4 region toward the transcription end site (TES, right side) that was not predicted to

be active in tissues, but predicted to be active in some cancers (framed in red), in particular in

MESO (Mesothelioma), UCEC (Uterine Corpus Endometrial Carcinoma) and BLCA (Bladder

Cancer), and inactive in some other cancers including GBM (Brain Cancer) and LGG (Brain

Lower Grade Glioma) (Fig 5B). Thus, DeepG4 could identify regions of variable G4 activity.
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Fig 5. Genome-wide prediction of active G4 regions in tissues and cancers. A) Genome browser of DeepG4 predictions at MYC

and FUS genes in tissues and cancers. B) Relationship between DeepG4 predicted G4 activity and the amount of mutations,

depending on the mutation class. Cancer cohort abbreviations (e.g. MESO) are detailed in S1 Table. C) Annotations of predicted

stable and variable active G4 regions. D) Mutation rates in BRCA breast cancer depending on predicted G4 region activity.

https://doi.org/10.1371/journal.pcbi.1009308.g005
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Overall, only a minority of predicted G4 regions varied across the tissues and cancers (around

10%). When we annotated these regions and compared with stable G4 regions, we observed

that 29% of stable G4 regions located within promoters, whereas only 16% of variable G4

regions colocalized with promoters (Fig 5C). Instead, we found variable G4 regions in intronic

and intergenic regions. We further explored the role of variable G4 regions by using annota-

tions from ENCODE in multiple cell lines from ChromHMM tool [33]. We found that

variable G4 regions were enriched at strong enhancers as compared to stable G4 regions

(p = 0.011, Fig 5D), and we also found a near-significant enrichment at insulator regions

(p = 0.063, Fig 5D) in agreement with previous studies showing enrichment near CTCF at 3D

domain (topologically associating domain, TAD) borders [37].

Since G4s are known mutagenic regions when unresolved, we then looked at the link

between G4 activity and mutation rates in BRCA breast cancer (Fig 5E). We found a strong

positive link between high G4 activity and SNP and small indel mutation rates, meaning that

when G4s were formed in vivo they had a higher chance of yielding mutations and therefore

this suggests that the chromatin landscape could greatly influence G4 impact on genome insta-

bility at a local scale.

Conclusion

In this article, we propose a novel deep learning method, named DeepG4, to predict active G4

regions from DNA sequence and chromatin accessibility. The proposed method is designed to

predict active G4 regions i.e. regions that are detected both in vitro and in vivo, unlike previous

algorithms that were developed to predict G4s forming in vitro (naked DNA). For this pur-

pose, our method exploits the genomic context of G4s, which comprises the G4(s) as well as

other motifs in the vicinity that may play a role in G4 activity (i.e. transcription factor motifs).

Moreover, adding chromatin accessibility into the model allows to predict active G4 regions

depending on the cell type. Our novel method which maps active G4 regions in a cell-type spe-

cific manner at 201-bp resolution is complementary to existing algorithms based on regular

expression (e.g. quadparser) and scores (e.g. G4Hunter), which map the exact location of

potential G4 forming sequences and propensities. Moreover, DeepG4 provides a useful tool

for mapping active G4 regions for cell lines, tissues and cancers for which no experimental

data are available to date. Therefore, DeepG4 comprehensive predictions in tissues and cancers

will represent a useful resource for the G4 community.

DeepG4 uncovered numerous specific DNA motifs predictive of active G4s. Many motifs

resembled the canonical G4 motif (G3+ N1−7 G3+ N1−7 G3+ N1−7 G3+) or even parts of it. Most

notably, many motifs corresponded to half or 3/4 of the canonical motif. The combination of

these G4 parts, which is captured by DeepG4 as a deep neural network, brings flexibility in G4

modeling. Strikingly, some motifs completely or partly matched known TFBS motifs including

KLF5 motif MA0599.1 and FOS (AP-1) motif MA0476.1, suggesting that they could contribute

directly to G4 structures themselves or participate indirectly in G4 activity in the vicinity

through the binding of transcription factors. In line with this result, it was previously found

that G4s are enriched in the vicinity of the architectural protein CTCF at 3D domain (topolog-

ically associating domain, TAD) borders [37]. Moreover, it has been shown that SP1 binds to

G4s with a comparable affinity as its canonical motif [36], and that G4s are TF hubs [35]. It

was also surprising to find a poly(T) motif (cluster 5 motif) depleted in active G4 regions but

enriched in the vicinity of canonical G4 motifs, suggesting that such motif could inhibit the

activity of canonical G4 motifs in its vicinity.

In addition, we used DeepG4 to predict active G4 regions genome-wide in many tissues

and cancers, thereby providing a resource for the chromatin and G4 community. Interestingly,
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we identified two types of active G4 regions, those stable across tissues and cancers, and those

less frequent that are variable. We found that variable active G4 regions are located within

intronic and intergenic regions, and could act as enhancers and insulators, unlike stable G4

regions that are more enriched in promoters.

There are several limitations of the proposed approach. First, one limit of DeepG4 (as well

as the other existing machine/deep learning methods) is that it requires a region of several

hundred bases, thereby restricting the resolution of G4 mapping. Once an active G4 region is

mapped, methods such as G4Hunter or pqsfinder have to be used to identify the exact position

of the G4(s) within the region. Our model could be improved by adding novel neural layers in

order to find as well the exact location of potential G4 sequences. Second, DeepG4 does not

process the DNA sequence in a strand-specific manner, thus a given motif could be redun-

dantly encoded in both strands within the convolutional layer. However, post-processing of

DeepG4 motifs using methods such as matrix-clustering alleviates such problem by mapping

complementary motifs (same motifs on different strands) to each other to merge them into

cluster motifs. Third, the prediction performance of DeepG4 strongly depends on existing

datasets that are limited, potentially inaccurate and biased, especially regarding in vivo map-

ping. Once more techniques for in vivo G4 mapping will be developped, DeepG4 will need to

be retrained in order to improve prediction accuracy. Moreover, since DeepG4 was trained

based on human data, predictions on non-mammalian genomes are expected to be less accu-

rate. Fourth, DeepG4 is limited to predict active G4s but a similar approach could be used to

predict any active non-B DNA structure using permanganate/S1 nuclease footprinting data

[38].

Supporting information

S1 Fig. Prediction accuracy estimated from the validation set depending on hyper-parame-

ters, as found from Bayesian optimization. For each hyper-parameter, the optimum is

marked as a red triangle.

(TIF)

S2 Fig. Extraction and processing of DNA motifs from DeepG4 convolutional layer.

(TIF)

S1 Table. Cancer cohort abbreviations from ICGC project.

(TIF)
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4.1 Introduction

In this last chapter, I present my future research projects and directions in com-

putational biology. Some projects are in progress, for instance, the development

of new models for the prediction of chromatin features such as protein binding

sites using genomic sequences across different species, during a visiting professor

position (délégation) at MIAT lab of INRAE. In particular, I am working on

a novel deep learning model combining convolutional layers with graph neural

network layers in order to borrow predictive information from both the target

DNA sequence (sequence to be predicted) and also orthologous sequences from

other related species, respectively.

I also plan to develop with Legube’s team future long-term projects that are

novel and risky in the field of DNA repair. For instance, I previously showed

that DNA motifs, such as CTCF binding motif, could be strong predictors of

endogenous DNA double-strand break (DSB) hotspots. This result suggests that

mutations, such as SNPs, can drive genome instability when disrupting a CTCF

motif. In the past, research efforts carried out to identify heritable mutations

involved in cancer and neuronal/psychiatric diseases found several DSB repair

pathway genes, such as BRCA1 and BRCA2. Beside SNPs affecting DSB repair

genes (coding SNPs), I propose a novel genetic paradigm where non-coding SNPs

could contribute to genome instability, and therefore, act as genetic drivers of

cancer predisposition and neuronal/psychiatric diseases. However, to date, there is

no experimental evidence supporting this hypothesis and potential SNPs affecting

DSB frequency (dsbSNPs) should be mapped.

Beside academic research, I am launching a start-up for research and develop-

ment in personalized medicine. With the ”loi Pacte”, I will have more flexibility to

further extend such scientific activities. The start-up will aim (i) to scientifically

advice industrial partners that are developing novel personalized medicine tools,

and (ii) to potentially develop our own personalized medicine services.

4.2 Prediction of chromatin data in other species

The 3DR ratio was proposed to study 3D genome evolution in vertebrates using

the genome sequence only [Mourad 2019]. This work suggested that chromatin can

be highly conserved across phylogenetically related species. Moreover, the genome

sequence could help to predict 3D chromatin information in species for which Hi-C

data are not available.

Given the exponentially increasing number of genomes getting sequenced, one

ambitious computational project would be to develop novel models for annotating

every non-coding functional regions (identified from ChIP-seq, Hi-C, ATAC-seq, ...)

using newly available genomic sequences. For instance, one important question is

to determine if we can predict transcription factor, histone mark or accessible chro-
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matin peaks in one species by training a convolutional neural network (CNN) in

other species for which huge amount of data are available. The human and mouse

could be considered as training references, given the comprehensive mapping of data

in those species. Using the human- and mouse-trained CNNs, one could predict

non-coding functional regions of related species such as mammals, and potentially

vertebrates. This could be of great interest for species with high agronomic value,

such as the pig, the cow and the sheep, that are phylogenetically close to the hu-

man or mouse and whose genomic sequences became recently available. Such CNN

model should also include the phylogenetic distances between the target species

(whose genome annotation is to be predicted) and the reference species used for

training, and possibly integrate orthology information among species, and graph

neural networks can be adapted for this purpose.

4.3 Biophysical experiments on G4 SNPs

DeepG4 could be used to predict the existence of SNPs altering G4 activity

(G4SNPs). The mapping of G4SNPs genome-wide is of great importance for a

better characterization of DNA determinants of G4 activity, since SNPs would

help to decipher which parts of the G4 canonical motif or any other adjacent DNA

motifs, such as transcription factor motifs, are of great impact in vivo. Moreover,

mapping G4SNPs could also identify a novel causal molecular mechanism by which

SNPs affecting DNA secondary structures can increase disease susceptibility of

genetic diseases. However, our previous identification of G4SNPs only relied on in

silico DeepG4 predictions and indirect functional studies (e.g. gene expression).

To date, there are no experimental results that directly support the existence of

G4SNPs.

In collaboration with Catherine Tardin, an expert in DNA biophysics from IPBS

laboratory (Toulouse), we will carry out biophysical experiments to determine the

invitro characteristics of predicted G4SNPs. Moreover, we will assess the in vivo

activity of SWI/SNF remodelers [Bashyam et al. 2019] on DNA containing pre-

cisely positioned nucleosomes and G4SNPs using single molecule tools, called high

throughput tethered particle motion, that permits real-time monitoring of the con-

formational dynamic of hundreds of single DNA [Brunet et al. 2015] and also using

atomic force microscopy [Rousseau et al. 2010].

4.4 Non-coding SNPs as drivers of genome instability

I previously demonstrated that DNase, CTCF binding and motif, and

H3K4me1/2/3 could predict DSB occurrence along the genome, reflecting the im-

portance of chromatin and DNA sequence in determining DSB sites and subsequent

repairing [Mourad et al. 2018]. Other works showed the importance of non-B DNA

structures, such as G4s, in causing DSBs [Georgakopoulos-Soares et al. 2018].

However, the causal mechanisms linking the genomic and epigenomic determinants

(i.e. the chromatin) to DSB formation and repair are still poorly understood. In
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Figure 4.1: SNPs can help decipher causality between chromatin and genome

instability. A) Potential scenario where a SNP alters a CTCF motif, leading to

CTCF binding perturbation, and consequently to DSB frequency variation. B)

Potential scenario where a SNP alters a G4 motif, leading to pertubed G4 formation,

and consequently to DSB frequency variation.

particular, it is unknown if chromatin determinants are associated to DSBs because

they cause them (causative model) or because they are caused by them (reactive

model). Moreover, the impact of DNA mutations on DSB frequency and the link

with genetic diseases are still unknown.

One future project will identify DSB allelic imbalance SNPs (named dsbSNPs)

from the recently available mapping of endogenous DSBs by the team using

phosphorylated ATM (pATM) ChIP-seq. Allelic imbalance will detect significant

DSB frequency differences between the two paternal and maternal alleles at

heterozygous loci within a single genome. One candidate model considers that a

SNP that alters a CTCF motif would affect CTCF binding and therefore impact

DSB frequency (Figure 4.1A). Another candidate model assumes that a SNP

that disrupts a G4 would affect G4 formation (G4SNP) and consequently DSB

frequency (Figure 4.1B). By integrating dsbSNPs with epigenetic (histone marks,

DNase and CTCF) data, we will try to decipher the causal mechanism(s) behind

DSB frequency. We plan to validate dsbSNPs by CRISPR/Cas9 and by assessing

their impacts on DSB frequency and translocation. Moreover, we will validate

causal mechanism(s) by assessing CRISPR/Cas9 SNPs’ influence on intermediate

processes such as CTCF binding, chromatin accessibility and histone marks.

Thus, this approach will allow us to understand how genomic, and epigenomic

determinants altogether causally affect the formation of endogenous DSBs.

In this project, we will also develop a novel paradigm explaining how SNPs can

cause genetic diseases including cancer and neurological/psychiatric disorders by

increasing genome instability. Over the past years, non-coding SNPs were shown to

affect gene regulation (the so-called eSNPs), contributing to disease susceptibility

[Nicolae et al. 2010]. In this project, we will seek to demonstrate a novel molecular

mechanism by which SNPs can increase disease susceptibility by impacting the

frequency of endogenous DSBs. The accumulation of dozens of dsbSNPs or even
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more at key positions in the genome is likely to contribute to genetic diseases. The

project will therefore contribute to a better understanding of the etiology of complex

genetic diseases by uncovering a novel molecular mechanism of SNPs involved in

DSBs and consequently in chromosomal rearrangements. Moreover, the project is

complementary to the identification of G4SNPs, and the study of their impact on

genetic diseases.

4.5 Z-DNA structures as key determinants of endogenous

DSBs in neurological disorders

Recently, my Master’s students, Elissar Nassereddine and Martin Tournaire, iden-

tified (GT)n short tandem repeats (STRs) strongly enriched at newly mapped en-

dogenous DSBs by pATM ChIP-seq developed by the team. Around 15% of pATM

peaks overlapped with a (GT)n STR. Such STRs are known to potentially form

Z-DNA secondary structures, which are associated with increased genome insta-

bility [Georgakopoulos-Soares et al. 2018]. Moreover, pATM peaks were associated

with genes involved in neuronal processes. However, those pATM peaks were not

found within gene promoters as previously found [Canela et al. 2017], but instead

within enhancers suggesting an unknown mechanism driving such endogenous DSBs

in neurons. To test experimentally which factors are driving the formation of en-

dogenous DSBs, we will map pATM peaks in different conditions including curaxin

to stabilize Z-DNA, but also DRB to inhibit transcription by RNA polymerase II.

4.6 STR length is associated with high genome instability

Since STRs could undergo expansion or shortening, we then assessed if STR length

between different genomic positions was associated with genome instability. We

found that longer (GT)n STRs were positively correlated with higher genome in-

stability. Interestingly, STR expansion is a very well-known and important cause of

rare neurological genetic diseases such as myotonic dystrophies, Fragile X syndrome

and Huntington’s disease [Depienne & Mandel 2021]. Moreover, in general, neuro-

logical diseases (but also neurons from healthy patients) have been often associated

with high genome instability, in particular large numbers of chromosomal rearrange-

ments known to be caused by endogenous DSBs [Lee & Lupski 2006]. Based on our

results, we predict that STR expansion will lead to higher pATM binding, reflecting

higher risk of endogenous DSBs at the STR loci. Not only rare neurological genetic,

but also common neurological genetic diseases identified by GWASs and associated

with STR length, could be explained by a higher genomic instability caused by

longer STR alleles. Our current genomic demonstration was based on the compar-

ison between STRs from different loci, and thus lacks a proper genetic comparison

between short and long alleles. Hence, we plan to carry out novel experiments to

compare pATM ChIP-seq data between control patients and affected patients that

carry STR expansion.



220 Chapter 4. Future research projects

4.7 Mapping of endogenous DSBs at single-cell level

Currently, endogenous DSBs were mostly mapped at the cell population level, and

nothing is known about the heterogeneity of the breakome (DSB pattern of the

genome). Moreover, it is unknown if the breakome depends on the cell stage

and differentiation. Hence, a novel PhD student, Sébastien Auber, will investi-

gate how pATM binding varies across cells by developing single-cell approaches

[Rotem et al. 2015, Ramani et al. 2017]. Moreover, in order to study neurological

disorders, such experiment will be carried out in mini-brain models that reconstitute

the arrangement of structural tissues and some of the complex biological functions

of the human brain.

4.8 Candidate gene screening using public cancer databases

DNA repair pathways are triggered by the cell to maintain its genome integrity and

stability when exposed to DNA damages. If DNA repair genes are deregulated,

there is a higher chance of initiation and progression of cancer. Depending on the

DNA repair pathway affected (non-homologous end joining, homologous recombi-

nation, microhomology-mediated end joining, ...), the genomic signature of cancer

(somatic mutation patterns) will vary, since each pathway has specialized in the

repair of certain mutations (SNPs, insertion-deletions, tandem repeats, transloca-

tions, ...). By integrating gene deregulation with genomic signature in cancers using

publicly available databases, such as from TCGA/ICGC consortiums, we can pre-

dict novel candidate genes potentially involved in DNA repair pathways. This first

gene screening will then lead to further investigation by experimentalists from the

team (Nadine Puget and her students), who routinely assess DNA repair associated

phenotypes in depleted cells.

4.9 AI for personalized medicine

As in other Western countries, the French population is aging and this is leading

to the emergence of an ever-increasing number of diseases, as well as a galloping

inflation of health costs for the country. In addition, France is undergoing medical

desertification of regions far from urban areas, making access to specialists difficult

for a segment of the population. In this context, personalized medicine makes it

possible to address these problems by considerably reducing health-related costs as

well as the need for specialist doctors by using automatic diagnosis.

I will create a start-up in AI for personalized medicine. In this start-up, I will

be the scientific expert (”concours scientifique”) regarding:

• The scientific expertise of personalized medicine for biotechnology companies.

Often companies have great resources for engineering, product marketing,

sales, but lack a scientific vision and a deep understanding of the latest sci-

ence advances. For instance, I will provide my expertise in biostatistics for
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the use of published longitudinal studies of patients and published genetic

studies (GWASs), my expertise of bioinformatics for the use of omic data and

associated public databases, and my expertise in machine learning models and

approaches for diagnostic predictions.

• The development of new tools for diagnosis. I will develop novel compu-

tational biology tools for the diagnosis of human diseases such as cancer,

genetic diseases and chronic diseases using omic approaches (structural vari-

ants, gene expression profiles with RNA-seq / DNA chips, chromatin data),

genetic databases (GWAS catalog, GTEx, ...) or deep learning predicted

SNP impacts (DeepBind, DeepG4, ...), but also using other types of data like

questionnaires, doctor’s reports, medical imaging (MRI), etc.
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meer and Gaëlle Legube. Loop extrusion as a mechanism for formation of

DNA damage repair foci. Nature, vol. 590, no. 7847, pages 660–665, Feb

2021. (Cited on page 121.)



224 Bibliography

[Asamitsu et al. 2019] Sefan Asamitsu, Masayuki Takeuchi, Susumu Ikenoshita,

Yoshiki Imai, Hirohito Kashiwagi and Norifumi Shioda. Perspectives for ap-

plying G-quadruplex structures in neurobiology and neuropharmacology. In-

ternational Journal of Molecular Sciences, vol. 20, no. 12, June 2019. (Cited

on page 198.)

[Aymard et al. 2017] François Aymard, Marion Aguirrebengoa, Emmanuelle Guil-

lou, Biola M. Javierre, Beatrix Bugler, Coline Arnould, Vincent Rocher,

Jason S. Iacovoni, Anna Biernacka, Magdalena Skrzypczak, Krzysztof Gi-

nalski, Maga Rowicka, Peter Fraser and Gaëlle Legube. Genome-wide map-
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laume Andrey, Martin Vingron, Ana Pombo, Stefan Mundlos and Mario

Nicodemi. Polymer physics predicts the effects of structural variants on

chromatin architecture. Nature Genetics, vol. 50, no. 5, pages 662–667, April

2018. (Cited on page 96.)

[Billings & Florez 2010] Liana K. Billings and Jose C. Florez. The genetics of type

2 diabetes: What have we learned from GWAS? Annals of the New York

Academy of Sciences, vol. 1212, no. 1, pages 59–77, November 2010. (Cited

on page 18.)

[Bishop 2007] Christopher M. Bishop. Pattern recognition and machine learning

(information science and statistics). Springer, 1 édition, 2007. (Cited on
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Frédéric Beckouët. Regulation of Cohesin-Mediated Chromosome Folding by

Eco1 and Other Partners. Molecular Cell, vol. 77, no. 6, pages 1279–1293.e4,

2020. (Cited on page 14.)

[Depienne & Mandel 2021] Christel Depienne and Jean-Louis Mandel. 30 years of

repeat expansion disorders: What have we learned and what are the remain-

ing challenges? The American Journal of Human Genetics, vol. 108, no. 5,

pages 764–785, 2021. (Cited on page 219.)

[Dixon et al. 2012] Jesse R. Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan

Li, Yin Shen, Ming Hu, Jun S. Liu and Bing Ren. Topological domains in

mammalian genomes identified by analysis of chromatin interactions. Na-

ture, vol. 485, no. 7398, pages 376–380, May 2012. (Cited on pages 13, 58,

85 and 96.)



228 Bibliography

[Djekidel et al. 2015] Mohamed N. Djekidel, Zhengyu Liang, Qi Wang, Zhirui Hu,

Guipeng Li, Yang Chen and Michael Q. Zhang. 3CPET: finding co-

factor complexes from ChIA-PET data using a hierarchical Dirichlet pro-

cess. Genome Biology, vol. 16, no. 1, pages 288+, December 2015. (Cited

on page 58.)

[Dorn & Cresci 2009] GeraldW. Dorn and Sharon Cresci. Genome-wide association

studies of coronary artery disease and heart failure: where are we going?

Pharmacogenomics, vol. 10, no. 2, pages 213–223, February 2009. PMID:

19207022. (Cited on page 18.)

[Dwyer 2020] D. S. Dwyer. Genomic chaos begets psychiatric disorder. Complex

Psychiatry, vol. 6, no. 1-2, pages 20–29, February 2020. (Cited on page 15.)

[Fullwood et al. 2009] Melissa J. Fullwood, Mei Hui H. Liu, You Fu F. Pan, Jun Liu,

Han Xu, Yusoff Bin B. Mohamed, Yuriy L. Orlov, Stoyan Velkov, Andrea

Ho, Poh Huay H. Mei, Elaine G. Chew, Phillips Yao Hui Y. Huang, Willem-

Jan J. Welboren, Yuyuan Han, Hong Sain S. Ooi, Pramila N. Ariyaratne,

Vinsensius B. Vega, Yanquan Luo, Peck Yean Y. Tan, Pei Ye Y. Choy,

Senali Abayratna D. Wansa, Bing Zhao, Kar Sian S. Lim, Shi Chi C. Leow,

Jit Sin S. Yow, Roy Joseph, Haixia Li, Kartiki V. Desai, Jane S. Thomsen,

Yew Kok K. Lee, R. Krishna Murthy Karuturi, Thoreau Herve, Guillaume

Bourque, Hendrik G. Stunnenberg, Xiaoan Ruan, Valere Cacheux-Rataboul,

Wing-Kin K. Sung, Edison T. Liu, Chia-Lin L. Wei, Edwin Cheung and

Yijun Ruan. An oestrogen-receptor-α-bound human chromatin interactome.

Nature, vol. 462, no. 7269, pages 58–64, November 2009. (Cited on pages 13

and 16.)

[Georgakopoulos-Soares et al. 2018] Ilias Georgakopoulos-Soares, Sandro Mor-

ganella, Naman Jain, Martin Hemberg and Serena Nik-Zainal. Noncanon-

ical secondary structures arising from non-B DNA motifs are determinants

of mutagenesis. Genome Research, vol. 28, no. 9, pages 1264–1271, August

2018. (Cited on pages 11, 217 and 219.)

[Ghavi-Helm et al. 2014] Yad Ghavi-Helm, Felix A. Klein, Tibor Pakozdi, Lucia

Ciglar, Daan Noordermeer, Wolfgang Huber and Eileen E. Furlong. En-

hancer loops appear stable during development and are associated with paused

polymerase. Nature, vol. 512, no. 7512, pages 96–100, August 2014. (Cited

on pages 13 and 14.)
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Branco, Jens Hjerling-Leffler and Sten Linnarsson. Cell types in the mouse

cortex and hippocampus revealed by single-cell RNA-seq. Science, vol. 347,

no. 6226, pages 1138–1142, March 2015. (Cited on page 18.)

[Zhang et al. 2009] Feng Zhang, Claudia M.B. Carvalho and James R. Lupski.

Complex human chromosomal and genomic rearrangements. Trends in Ge-

netics, vol. 25, no. 7, pages 298–307, June 2009. (Cited on page 14.)

[Zhang et al. 2012] Yu Zhang, Rachel P. McCord, Yu-Jui Ho, Bryan R. Lajoie,

Dominic G. Hildebrand, Aline C. Simon, Michael S. Becker, Frederick W.

Alt and Job Dekker. Spatial organization of the mouse genome and its role

in recurrent chromosomal translocations. Cell, vol. 148, no. 5, pages 908–921,

March 2012. (Cited on page 15.)

[Zhao et al. 2006] Zhihu Zhao, Gholamreza Tavoosidana, Mikael Sjölinder, Anita
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Summary

Following the sequencing of the human genome in 2001, there has been an explosion

of novel high-throughput sequencing projects to interrogate the genome and its

functions, opening the so-called postgenomic era. Nowadays, experimental labs

generate terabytes of heterogeneous data, necessitating the development of novel

statistical and bioinformatic methods and models to process such big data, as well

as to make sense of the wide variety of experimental results.

For the last 10 years, I have been investigating on a large number of postge-

nomic topics, ranging from human genetics in asthma to phylogenetics of HIV

virus, transcription, chromatin, DNA secondary structures and DNA repair. This

thesis presents my research efforts on both the analysis of biological data, and the

development of novel statistical and computational models.

In the first chapter, I introduce the different topics, such as DNA, chro-

matin, postgenomic methods, human genetics and computational biology. In

the second chapter, I then describe my different contributions in data analysis,

including the discovery of rare variants associated with increased asthma risk, the

role of drug-näıve HIV-positive patients in transmitting antiretroviral resistance,

the global 3D genome reorganization due to hormone induction and the link

between chromatin loop extrusion and DNA repair. I also present different

statistical models to identify genomic factors in 1D that shape the genome in

3D, but also novel models for 3D domain identification, differential analysis and

predictions. Moreover, I present machine/deep learning approaches for predicting

DNA double-stranded breaks and active G-quadruplexes (G4s).

Finally, in the last chapter, I discuss about my future research projects, fo-

cusing on new deep learning models for predicting chromatin data across species,

biophysical experiments to characterize G4 SNPs, the identification of non-coding

SNPs as drivers of genome instability, and artificial intelligence for personalized

medicine.

Keywords: Computational Biology; Artificial Intelligence; Deep Learning;

Regulatory Genomics; 3D Genome; DNA Repair, G-quadruplex.
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