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Summary

Following the sequencing of the human genome in 2001, there has been an explosion
of novel high-throughput sequencing projects to interrogate the genome and its
functions, opening the so-called postgenomic era. Nowadays, experimental labs
generate terabytes of heterogeneous data, necessitating the development of novel
statistical and bioinformatic methods and models to process such big data, as well
as to make sense of the wide variety of experimental results.

For the last 10 years, I have been investigating on a large number of postge-
nomic topics, ranging from human genetics in asthma to phylogenetics of HIV
virus, transcription, chromatin, DNA secondary structures and DNA repair. This
thesis presents my research efforts on both the analysis of biological data, and the
development of novel statistical and computational models.

In the first chapter, I introduce the different topics, such as DNA, chro-
matin, postgenomic methods, human genetics and computational biology. In
the second chapter, I then describe my different contributions in data analysis,
including the discovery of rare variants associated with increased asthma risk, the
role of drug-naive HIV-positive patients in transmitting antiretroviral resistance,
the global 3D genome reorganization due to hormone induction and the link
between chromatin loop extrusion and DNA repair. 1 also present different
statistical models to identify genomic factors in 1D that shape the genome in
3D, but also novel models for 3D domain identification, differential analysis and
predictions. Moreover, I present machine/deep learning approaches for predicting
DNA double-stranded breaks and active G-quadruplexes (G4s).

Finally, in the last chapter, I discuss about my future research projects, fo-
cusing on new deep learning models for predicting chromatin data across species,
biophysical experiments to characterize G4 SNPs, the identification of non-coding
SNPs as drivers of genome instability, and artificial intelligence for personalized
medicine.

Keywords: Computational Biology; Artificial Intelligence; Deep Learning;
Regulatory Genomics; 3D Genome; DNA Repair, G-quadruplex.




Résumé

Suite au succes du séquengage du génome humain en 2001, une explosion de
nouveaux projets de séquencage a haut débit a eu lieu afin d’interroger le génome
et ses fonctions, ouvrant la voie a l’ére ”postgénomique”. De nos jours, les
laboratoires génerent des téraoctets de données hétérogenes, ce qui nécessite le
développement de nouvelles méthodes et modeles statistiques et bioinformatiques
pour traiter de telles données volumineuses, ainsi que pour donner un sens a la
grande variété de résultats expérimentaux.

Au cours des 10 derniéres années, j’ai étudié un grand nombre de sujets
postgénomiques, allant de la génétique humaine dans ’asthme a la phylogénétique
du virus VIH, la transcription, la chromatine, les structures secondaires de ’ADN et
la réparation de ’ADN. Cette thése présente mes efforts de recherche sur ’analyse
de données biologiques et le développement de nouveaux modeles statistiques et
informatiques.

Dans le premier chapitre, j’introduis les différents sujets, tels que I’ADN, la
chromatine, les méthodes postgénomiques, la génétique humaine et la biologie
computationnelle. Dans le deuxieme chapitre, je décris ensuite mes différentes
contributions a ’analyse de données, dont la découverte de variants rares associés
a un risque accru a l'asthme, le role des patients séropositifs n’ayant jamais été
médicamentés dans la transmission de la résistance antirétrovirale, la réorganisation
globale du génome en 3D suite a une induction hormonale et le lien entre ’extrusion
de la boucle de la chromatine et la réparation de PADN. Je présente également
différents modeles statistiques pour identifier les facteurs génomiques en 1D qui
faconnent le génome en 3D, mais aussi de nouveaux modeles pour l'identification
de domaines 3D, leur analyse différentielle et leur prédiction. De plus, je présente
des approches d’apprentissage automatique et profond pour prédire les cassures
double brin de 'ADN et les G-quadruplexes (G4) actifs.

Enfin, dans le dernier chapitre, je discute de mes futurs projets de recherche,
en particulier de nouveaux modeles d’apprentissage en profondeur pour prédire
les données de chromatine entre les especes, des expériences biophysiques pour
caractériser les SNP de G4, I'identification de SNP non codants en tant que moteurs
de I'instabilité du génome et I'intelligence artificielle pour la médecine personnalisée.

Mots clés : Biologie computationnelle; Intelligence artificielle; Apprentis-
sage profond; Génomique régulatrice ; Génome en 3D ; Réparation de ’ADN,
G-quadruplexe.
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CHAPTER 1

Curriculum Vitee

1.1 Professional experience

2021-now  Visiting Prof. at SaAB team, MIAT lab, INRAE
Research: Deep Learning for genomics.

2018-2021  Assist. Prof. at Univ. Toulouse III, MCD, CNRS, UMR 5077
Research: Bioinformatics/Machine Learning of chromatin and DNA repair.
Team: Legube.
Teaching: Biostatistics/bioinformatics of omic data.

2014-2018  Assist. Prof. at Univ. Toulouse III, LBME, CNRS, UMR 5099
Research: Computational models and approaches to identify
molecular determinants of gene expression and 3D chromatin.
Teaching: Biostatistics/bioinformatics of omic data.

2013-2014 Postdoc. at LIRMM, CNRS UMR 5506, Montpellier
Research: Bioinformatic approach to study drug-resistant HIV viruses.
Supervision: Olivier Gascuel.

2012-2013 Postdoc. at University of Chicago, USA
Research: Human genetic study of asthmatic patients (GWAS).
Supervision: Dan Nicolae and Carole Ober.

2011-2012 Postdoc. at Indiana University, USA
Research 1: Study of 3D chromatin by analysis of Hi-C data
Research 2: Identification of biological markers using time series gene expression.
Supervision: Lang Li.

2008-2011 PhD in computer science at University of Nantes
Supervision: Philippe Leray and Christine Sinoquet.
Award : theése remarquable de I’Université de Nantes.

2008-2011 Lecturer at University of Nantes
Degrees: Ingénieur/Master 2 Bioinfo/Master 1 data mining,
Teaching (113h eq TD): data mining, machine learning, bioinformatics,
biostatistics, omic data.
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1.2 Publications

1.2.1 In submission (2 articles)

1] Coline Arnould, Vincent Rocher, Aldo Bader, Emma Lesage, Nadine
Puget, Thomas Clouaire, Raphaél Mourad, Daan Noordemeer, Martin Bushell and
Gaglle Legube. ATM-dependent formation of a novel chromatin compartment regu-
lates the response to DNA double strand breaks and the biogenesis of translocations.

2] Cyril Esnault, Encarnacion Garcia-Oliver, Amal Zine El Aabidine, Eu-
génia Basyuk, Alja Kozulic-Pirher, Magdalena Karpinska, Marie-Cécile Robert,
Alexia Pigeot, Yu Luo, Daniele Verga, Raphael Mourad, Jean-Louis Mergny,
Edouard Bertrand and Jean-Christophe Andrau. G-quadruplexes are promoter
elements controlling nucleosomes exclusion and RNA Polymerase II pausing.

1.2.2 As assistant professor (11 articles, 2014-now)

[1] Raphael Mourad. TADreg : A versatile regression framework for TAD
identification, differential analysis and prediction, 23(1):82, 2022. BMC Bioinfor-
matics.

1] Sarah Cohen, Aude Guenolé, Aline Marnef, Thomas Clouaire, Na-
dine Puget, Vincent Rocher, Coline Arnould, Marion Aguirrebengoa, Matthieu
Genais, Dipti Vernekar, Raphaél Mourad, Valérie Borde, Gaglle Legube. A
POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon
excessive RNA:DNA hybrid accumulation, 13(1):2012, 2022. Nature Communica-
tions.

2] Coline Arnould, Vincent Rocher, Thomas Clouaire, Pierre Caron,
Philippe. E. Mangeot, Emiliano. P. Ricci, Raphaél Mourad, Daan Noordermeer,
Gaélle Legube. Loop extrusion as a mechanism for DNA double-strand breaks
repair foci formation, 590(7847):660-665, 2021. Nature.

3] Vincent Rocher, Matthieu Genais, Elissar Nassereddine and Raphaél
Mourad. DeepG4: A deep learning approach to predict cell-type specific active
G-quadruplex regions, 17(8):e1009308, 2021. PLoS Computational Biology.

[4] Raphaél Mourad. Studying 3D genome evolution using genomic sequence,
36(5):1367-1373, 2019. Bioinformatics.

[5] Raphaél Mourad, Krzysztof Ginalski, Gagélle Legube and Olivier Cuvier.
Predicting double-strand DNA breaks using epigenome marks or DNA at kilobase
resolution, 19:34, 2018. Genome Biology.

6] Raphaél Mourad and Olivier Cuvier. TAD-free analysis of architectural
proteins and insulators, 46(5):e27, 2018. Nucleic Acids Research.

[7] David Umlauf and Raphaél Mourad. From fundamental principles to
disease and cancer, 90:128-137, 2018. Seminars in cell & developmental biology.

8] Raphaél Mourad, Lang Li et Olivier Cuvier. Uncovering direct and indi-
rect molecular determinants of chromatin loops using a computational integrative
approach, 13(5):e1005538, 2017. PLoS Computational Biology.

9] Raphaél Mourad and Olivier Cuvier. Computational identification of
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genomic features that influence 3D chromatin domain formation. PLoS Computa-
tional Biology, 12(5):e1004908, 2016.

[10] Raphaél Mourad and Olivier Cuvier. Predicting the spatial organization
of chromosomes using epigenetic data. Genome Biology, 16(1):182, 2015.

1.2.3 As postdoc and PhD student (9 articles, 2008-2014)

1] Raphaél Mourad, et al., Olivier Gascuel, Stéphane Hué on behalf of
the UK HIV Drug Resistance Database & the Collaborative HIV and Anti-HIV
Drug Resistance Network. A phylotype-based analysis highlights the role of drug-
naive HIV positive individuals in the transmission of antiretroviral resistance in the
United Kingdom. AIDS, 29(15):1917-1925, 2015.

2] Catherine Iguartua, et al. Ethnic-specific associations of rare and low-
frequency DNA sequence variants with asthma. Nature Communications, 6:5965,
2015.

3] Raphaél Mourad, et al. and Lang Li. Estrogen induces global reorganiza-
tion of chromatin structure in human breast cancer cells. PLoS ONE, 9(12):e113354,
2014.

[4] Raphaé&l Mourad, Christine Sinoquet, Nevin L. Zhang, Tengfei Liu and
Philippe Leray. A Survey on Latent Tree Models and Applications. Journal of
Artificial Intelligence Research, 47:157-203, 2013.

[5] Raphaél Mourad*, Pengyue Zhang, Yang Xiang, Kun Huang, Tim Huang,
Kenneth Nephew, Yunlong Liu and Lang Li. A dynamic time order network for
time-series gene expression data analysis. BMC System Biology, 6(Suppl3):S9,
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1.2.4 Scientific book (1 book)

[1] Christine Sinoquet, Raphaél Mourad. Probabilistic Graphical Models for
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1.3 Academic activities

1.3.1 Current collaborations

Ivan Kulakovskiy (Institute of Protein Research RAS, Russia);

Gaelle Legube (MCD, Toulouse);

Catherine Tardin (IBPS, Toulouse);
Jean-Christophe Andrau (IGMM, Montpellier);
Monsef Benkirane (IGH, Montpellier);

Lang Li (CCBB, Indianapolis, USA).

1.3.2 Funding
e INRAe (funding to reduce teaching load in 2021): 11k€;
GSO (co-PI with C. Tardin) : 2.5 k€x 2 = 5 k€;

2-year-Master-internship program (apprentice) from CNRS: 36 k€;

CNRS défi modélisation du vivant : 24 k€x 2 = 48 k€;

MRT PhD funding : 100 k€;
CRCT Univ. Toulouse IIT (funding to reduce teaching load in 2018): 10k<€;
IDEX starting grant Univ. Toulouse III: 14k€;

ANRS pays du sud: 2 yrs postdoc (declined because hired as Assist. Prof.).

1.3.3 Teaching

I am supervising the teaching unit Biological data analysis (Master Biochemistry), and the
teaching unit Bioinformatics for postgenomics (Master Bioinformatics).

Teaching Degree Volume (hours)
Biostatics Master 1 Biochemistry 90 h per yr
Bioinformatics for NGS | Master 1 Bioinformatics 50 h per yr
Intro. to bioinfo. Master 1 Biohealth 26 h per yr
GWAS Master 1 Biohealth 8 h per yr
Intro. to bioinfo. Bachelor 2/3 Bio 6 h per yr
Statistics Engineering Master 46 h (PhD)
Bioinfo/Data mining Master 2 Bioinformatics 37.33 h (PhD)
Probability Master Erasmus Mundus DMKM | 18 h (PhD)

1.3.4 INSERM courses

e Organization committee of Atelier Inserm "Machine Learning from Biology to Health”

(2021, Bordeaux).

e Teaching deep learning for genomics in R (1 day and half) (2021, Bordeaux).
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1.3.5 Other courses

e Teaching deep learning for genomics in R (1 day and half) for the Platform Biostatis-
tics of Toulouse (2021).

1.3.6 Organization of seminars

In october 2021, I launched a new online seminar on deep learning called DeepBio-
Health (https://groupes.renater.fr/sympa/info/deepbiohealth). The seminar aims
to facilitate exchanges between scientists interested in deep learning and its appli-
cations in the fields of biology, health and agronomy. This is an interdisciplinary
Toulouse working group that addresses both new models of deep learning and their
recent applications in genomics, medical imaging, oncology, agronomy, etc.

1.3.7 Scientific communication

e DECLICS: Dialogues Entre Chercheurs et Lycéens pour les Intéresser a la Construc-
tion des Savoirs (2018).

1.3.8 Supervision
e 1 PhD student: Sébastien Ober (nov 2021-now);
e 1 PhD student: Vincent Rocher (2018-2021);
e 1 PhD student with O. Cuvier: Alexandre Heurteau (2016-2020);

e 2 Master students (2015); 2 Master students (2018); 1 Master student (2020); 1
Master student apprentice (2019-2021); 2 Master students (2021).

1.3.9 Scientific committee

e INSERM workshop in Bordeaux (2021): Introduction to Machine Learning from
Biology to Health;

e SeqBIM workshop in Toulouse (2020);
e JOBIM workshop on deep learning in Montpellier (2020);

e Program committee at Intelligent Systems for Molecular Biology conference (rank A
conference);

e Scientific Advisory Board of Bioinformatics platform of Centre de Biologie Intégra-
tive;

e PhD thesis jury: 3 students (2018, 2021);

e PhD thesis committee: 2 students (2016).

1.3.10 University committee

o Computers and software for teaching committee of Univ. Toulouse III;
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1.3.11 Reviewer

Nature Structural & Molecular Biology, Genome Research, Genome Biology, Na-
ture Communications, BMC Biology, Bioinformatics, NAR GB, BMC Bioinformatics,
BMC Genomics, IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB), International Journal of Approximate Reasoning, The Biometrical

Journal, PLoS ONE, and many more.

e Junior group leader call at Centre de Biologie Intégrative.

1.3.12 Editor

Book on Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics, Oxford

University Press.

1.3.13 Talks

10/11/2021:
01/10/2021:
14/09/2021:
30/03/2021:
28,/06,/2020:
06,/03,/2020:
11,/02/2020:

Talk at DeepBioHealth, online.

Talk at MIAT lab, INRAE, Toulouse.

Invited talk at 100 Years of Genome Research 2021, Naples, Italy.
Journal club of bioinfo at CBI, Toulouse.

Symposium of deep learning for genomics, JOBIM, online.

Talk at CBI, Toulouse.

Talk at CNRS, Paris, to present results from funded project of CNRS

modelisation du vivant program.

17/06,/2019:
15,/05,/2019:
05,/05,/2019:
02/03/2019:
11/10/2019:
10/04,/2018:

Talk at Chrocogen, INRAe, Toulouse.

Talk at Hi-C days, Toulouse.

Talk at Biopuces, INRAe, Toulouse.

Invited talk at IGFL, Lyon.

Genotoul Biostat Bioinfo Day 2019, Toulouse, France.

Conference Rencontres Scientifiques des Grandes Causses, GDR ADN,

Millau, France.

18,/01,/2018:
11/01/2018:

Workshop Biostat Bioinfo 2018, Toulouse, France.
Workshop on Statistical Methods for Post Genomic Data (SMPGD),

2018, Montpellier. Poster.

15/11/2018:
11/12/2017

Invited talk at IGMM, Montpellier.
Young Scientists Workshop - Genome Dynamics and Cancer, 2017, Mon-

tauban, France.

17/10/2017: Symposium Modelling Pathological Processes: from Molecules to Pop-
ulations, 2017, Toulouse, France.

06/07/2017: Conference JOBIM 2017, Lille, France.
15/06/2017: Conference MCEB 2017, Porquerolles, France. Poster.

02/12/2016:

Genotoul Biostat Bioinfo Day 2016, Toulouse, France.
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e 14/10/2016:
e 05/07/2016:
e 28/06/2016:
e 07/06/2016:
e 26/02/2016:
e 30/11/2015:
e 19/11/2015:
e 28/09/2015:

Conference CARTABLE 2016, Toulouse, France.

Conference ICACG 2016, Toulouse, France.

Conference JOBIM 2016, Lyon, France.

Talk at SaAb team, MIAT, INRA, Toulouse, France.

Talk at MAB team, LIRMM, Montpellier, France.

Talk at CBI, CNRS/Université Paul Sabatier, Toulouse, France.
Talk at IMT, Université Paul Sabatier, Toulouse, France.

Conference Rencontres Scientifiques des Grandes Causses, GDR ADN,

Millau, France.

e 03/07/2015:

Talk at MIAT, INRA, Toulouse, France.

1.4 Industrial activities

1.4.1 Artificial intelligence for spine surgery

Since 2020, I collaborate with a new start-up in personalized medicine called Rem-
edyLogic, based in New-York USA ( https://remedylogic.com/). RemedyLogic is
a company that helps insurance companies, self-insured employers, and patients
to improve outcomes and reduce the cost of back surgery. With the company, I
work on clinical artificial intelligence R&D, in particular for the development of

novel machine learning and AI models to recommend spinal surgery and alternative

conservative treatments such as physical therapy or medication.
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Science has discovered that, like any
work of literature, the human genome is
a text in need of commentary, for what
Eliot said of poetry is also true of DNA:
‘all meanings depend on the key of
interpretation.” What makes us human,
and what makes each of us his or her
own human, is not simply the genes that
we have buried into our base pairs, but
how our cells, in dialogue with our
environment, feed back to our DNA,
changing the way we read ourselves. Life
is a dialectic.

Jonah Lehrer, Proust Was a
Neuroscientist

Computational biology is an interdisciplinary science at the crossroad between
biology, computer science and mathematics. It can be defined as the science of
using mathematical models, algorithms, and large computing resources together
with complex biological experimental data to understand biological systems and
relationships, that could be out-of-reach otherwise. Computational biology has
many applications in science, including genomics, but also, evolution, biomodeling,
neuroscience, structural biology and pharmacology.

This chapter is an attempt to introduce in a concise manner the very diverse
concepts useful to understand computational biology applied to genomics. The
chapter starts by presenting biological concepts, such as the DNA molecule and its
forms, the transcription and chromatin, 3D genome folding, genome stability and
DNA repair. Then, genomics and omic technologies and data are introduced, and
illustrated with commonly used techniques for the study of transcription and chro-
matin, i.e. RNA-seq, ChIP-seq and Hi-C experiments. Lastly, the chapter presents
computational and mathematical fields, including big data, statistics, machine and
deep learning, heterogeneous data integration and personalized medicine.

2.1 DNA and G-quadruplex

DNA is a complex molecule carrying the instructions an organism needs to develop,
live and reproduce. DNA is composed of two complementary and antiparallel
strands (i.e. in opposite directions) facing each other and forming a double helix
[Watson & Crick 1953] (Figure 2.1A). Each strand is a polymer (or sequence)
of nucleotides. Each nucleotide is made up of 3 molecules: one molecule of
phosphoric acid, one molecule of deoxyribose and a nitrogen base. Four different
bases exist: adenine (A), guanine (G), cytosine (C) and thymine (T). Thus, the
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Figure 2.1: Deoxyribonucleic acid molecule (DNA). A) DNA molecule, presented
in its most common form (the B form). B) G-quadruplex of DNA, an example of
non-B DNA form.

genome constitutes a code formed from a 4-letter alphabet. In human, the size
of the genome is large, around 3.4 billion base pairs, which gives it great complexity.

The B form of DNA (B DNA) is believed to predominate in cells
[Watson & Crick 1953]. Yet, more than 20 non-B DNA structures have also been
reported in the genome [Georgakopoulos-Soares et al. 2018]. Among those struc-
tures, the G-quadruplex (G4) was discovered in the late 80’s [Sen & Gilbert 1988]
(Figure 2.1B). G4 sequence contains four continuous stretches of guanines
[Chen & Yang 2012]. Four guanines can be held together by Hoogsteen hy-
drogen bonding to form a square planar structure called a guanine tetrad (G-
quartet). Two or more G-quartets can stack to form a G4 [Chen & Yang 2012].
The quadruplex structure is further stabilized by the presence of a cation, es-
pecially potassium, which sits in a central channel between each pair of tetrads
[Bhattacharyya et al. 2016]. Numerous works suggest that non-B DNA structures
can regulate several essential processes in the cell, such as gene transcription,
DNA replication, telomere stability and V(D)J recombination [Spiegel et al. 2019].
Moreover, these non-B DNA structures are highly suspected to be impli-
cated in human diseases such as cancers or neurological/psychiatric disorders
[Ravichandran et al. 2019, Rhodes & Lipps 2015].

2.2 Transcription, chromatin and epigenetics

In the nucleus, DNA is not naked, but is instead associated with proteins, including
histones (forming nucleosomes), transcription factors and repair proteins to form
a complex structure, the so-called chromatin. Chromatin adopts different levels
of compaction to eventually form a chromosome (Figure 2.2A). At the edge
of chromosomes, specific regions called telomeres protect chromosomes, while
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Figure 2.2: Chromosome, chromatin and transcription. A) From DNA to chromo-
some. B) Transcriptional regulation of genes.

somewhere in the center, centromeres determine kinetochore formation and sister
chromatid cohesion. The properties of chromatin vary along the genome and
are regulated by epigenetic marks (DNA methylation and histone modifications).
Chromatin is composed of euchromatin that is lightly packed, enriched in genes,
and is often actively transcribed, and of heterochromatin that is tightly packed,
poor in genes, less accessible to ribonucleic acid (RNA) polymerases and therefore
less transcribed. Chromatin regulates many cellular processes such as tran-
scription [Hiibner & Spector 2010, Ulianov et al. 2016], but also DNA replication
[Moindrot et al. 2012] and DNA repair [Uuskiila-Reimand et al. 2016].

The genome is comprised of genes that play a central role in the cell
and participate in the development of the phenotype. In the human
genome, the number of genes is estimated to be between 20000 and 25000
[International Human Genome Sequencing Consortium 2001]. A gene is tran-
scribed by an RNA polymerase yielding to an RNA and eventually to a protein
(Figure 2.2B). Genes make up only part of the genome (less than 30%) and
gene coding regions, called exons, do not even occupy 3% of the genome.
During the last decade, non-coding regions have been extensively studied and
were shown to play many important roles including regulation, replication and
structure [Khajavinia & Makalowski 2007, modENCODE Consortium et al. 2010,
The ENCODE Consortium 2012]. A major role of specific non-coding regions,
the so-called promoters and enhancers, is to regulate gene expression through the
formation of DNA loops that are stabilized by transcription factors, architectural
proteins (CTCF and cohesin) and other proteins, and also enhancer RNAs
[Marsman & Horsfield 2012, Andersson et al. 2014, Carullo & Day 2019].
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2.3 The genome in 3D

Compartment A

Compartment B

Figure 2.3: The 3D genome.

Chromosomal DNA is highly compacted in 3D, such that about 2 meters of
this molecule fits into the microscopic nucleus of a human cell. The compaction
of the genome is not random, but is on the contrary structured as recently
revealed by mapping chromatin contacts using Hi-C (high-throughput chromo-
some conformation capture) [Lieberman-Aiden et al. 2009, Dixon et al. 2012]
and ChIA-PET (chromatin interaction analysis by paired-end tag sequencing)
[Fullwood et al. 2009] (Figure 2.3). In metazoans, compartments A and B were
the first revealed structures by chromatin contact mapping. Compartment A
tends to be active and gene rich, while compartment B is more inactive and gene
poor. Topologically associating domains (TADs) were then discovered with higher
mapping resolution. They represent a structural unit shared between cell types
and kept between species [Dixon et al. 2012]. TADs are essential for many key
cellular processes, such as the regulation of gene expression and DNA replication
[Dixon et al. 2012, Pope et al. 2014]. In addition, it has recently been shown that
the loss of 3D domains by a mutation can be linked to the onset of genetic diseases
and cancer [Lupianez et al. 2015, Hnisz et al. 2016].

Other important 3D structures are chromatin loops between distant
loci. They play key roles in gene expression regulation during development
[Kadauke & Blobel 2009, Andersson et al. 2014, Ghavi-Helm et al. 2014]. In
particular, in vertebrates, it was shown that loops that demarcate TADs are often
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marked by asymmetric CTCF motifs where cohesin is recruited [Rao et al. 2014].
Accordingly, depletions of CTCF and cohesin decrease chromatin contacts
[Zuin et al. 2014].  These results support the extrusion loop model where
CTCF and cohesin act together to extrude unknotted loops during interphase
[Sanborn et al. 2015]. Moreover, loop extrusion mediated by cohesin is a general
mechanism that has also been observed in yeast [Dauban et al. 2020].

In drosophila, additional proteins shaping the genome in 3D have been identified,
including BEAF-32, GAGA factor (GAF), Suppressor of Hairy-Wing (Su(HW)),
zeste-white 5 (Zwb) or the drosophila homologue of Brd4, Fs(1)h-L, Pita, and Zinc-
finger protein interacting with CP190 (ZIPIC) along with cofactors such as cohesin,
CP190 or Lethal (3) malignant brain tumor (L(3)mbt) [Van Bortle et al. 2014].
Moreover, long-range contacts are influenced by additional non-architectural fac-
tors including transcription or remodeling factors, or more generally by gene
density or transcriptional levels [Hou et al. 2012, Cubenas-Potts & Corces 2015,
Rowley et al. 2017]. Additionally, long-range contacts are favored depending on
the extent by which the RNA polymerase II (RNAPII) may remain stably “poised”
or “paused,” which would leave more opportunities for long-range contacts with
enhancers [Ghavi-Helm et al. 2014].

2.4 Genome stability and DNA repair

Eukaryotic cells are exposed every day to both exogenous (e.g. UV and pollutants)
and endogenous stresses (e.g. metabolic stress and DNA transactions) that can
lead to DNA damage [McKinnon & Caldecott 2007]. For instance, ultraviolet
(UV) exposure from the sun can induce several DNA damages and eventually
lead to mutations and diseases. However, DNA damages are also caused by
endogenous stresses which are the by-product of the normal cell activities. In living
cells, reactive oxygen species (ROS) are formed continuously as a consequence of
metabolic and other biochemical reactions and can lead to several types of DNA
damage. A vast amount of DNA damages is also caused by DNA transactions such
as DNA replication and transcription.

Among the various types of DNA lesions, DNA double strand breaks (DSBs)
are by far the most deleterious, since they can lead to chromosome rearrange-
ments [Mehta & Haber 2014, Kasparek & Humphrey 2011, Marnef et al. 2017,
Vitor et al. 2020]. Chromosome rearrangements are large-scale mutations
that include insertions, deletions, translocations, and fusions in the DNA
[Zhang et al. 2009, Carvalho & Lupski 2016]. Once DNA is broken, DNA repair
mechanisms identify and correct damages in the genome. There are two main
pathways to repair DSBs: non-homologous end joining (NHEJ) and homologous
recombination (HR) [Ceccaldi et al. 2016]. NHEJ directly ligates the break ends,
whereas HR uses a homologous sequence to guide repair. If DNA repair is
successful, the two ends of the same break are rejoined and the original DNA order
is restored. But if DNA repair fails, the two ends of different breaks are joined
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together, and a chromosomal rearrangement is generated.

An important mechanistic factor of chromosomal rearrangement is the
3D genome organization that can bring two linearly separated loci in phys-
ical proximity [Zhang et al. 2012].  In fact, DSBs can cluster together to
form repair foci that concentrate repair factors [Caron et al. 2015]. In par-
ticular, DSB clustering mostly occurs in damaged active genes during G1
[Aymard et al. 2017, Guénolé & Legube 2017]. Moreover, recent DSB mapping
combined with Hi-C experiments revealed that DSBs often occur at loop anchors
where CTCF and cohesin bind [Canela et al. 2017]. Interestingly, topoisomerase
2B (TOP2B), an enzyme known to mediate DSBs, physically interacts with CTCF
and cohesin at TAD borders [Uuskiila-Reimand et al. 2016]. TOP2B is an enzyme
that controls and alters the topological states of DNA. In particular, TOP2B
catalyzes the transient breaking and rejoining of two strands of duplex DNA, which
allows the strands to pass through one another, and thus the relief of torsional
stress during transcription [Pommier et al. 2016].

Chromosome rearrangements have the potential to cause cancer, for instance, if
they mutate a tumor suppressor gene or activate an oncogene. Rearrangements are
also a relatively common cause of developmental disorders, occurring in 1 in 200
individuals, and often involve intellectual disabilities [MacIntyre et al. 2003]. More-
over, rearrangements contribute to psychiatric diseases, including schizophrenia and
bipolar disorder [Dwyer 2020, Craddock & Owen 1994].

2.5 Genomics and omics

2.5.1 Human Genome Project and the birth of genomics

In 2001, the human genome was sequenced by a large scientific
consortium, called the Human Genome Project (HGP) consortium
[International Human Genome Sequencing Consortium 2001].  The project in-
volved several countries and costed several billion dollars. This project was
seminal for genomics, since it mapped most human genes from the genome as
well as intergenic regions, and triggered the development of novel sequencing
methods, called next-generation sequencing (NGS) [Goodwin et al. 2016]. NGS
are high-throughput sequencing technologies that parallelize sequencing, yielding
millions of small sequences at once in a fast and cheap manner.

2.5.2 An explosion of omic methods

Following the HGP, there has been an explosion of NGS methods to interrogate
the genome and its functions leading to the development of ”"omic technologies”,
opening the post-genomic era (Figure 2.4). Numerous methods are currently used
to study gene transcription, differential gene expression, and alternative splicing
(RNA-seq), but also nascent transcription (GRO-seq), and non-coding small RNAs
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Figure 2.4: The different omic methods for the study of transcription, DNA repair
and 3D genome.

(sRNA-seq) [Lowe et al. 2017]. To study chromatin, standard techniques are chro-
matin immunoprecipitation (ChIP-seq) to map transcription factor binding sites
and histone modifications, and DNAse-seq [Hesselberth et al. 2009] and ATAC-seq
(Assay for Transposase-Accessible Chromatin) [Buenrostro et al. 2013] to map ac-
cessible chromatin. 3D genome organization is mapped by chromatin conforma-
tion capture techniques including high-throughput chromatin conformation cap-
ture (Hi-C), circular chromatin conformation capture (4C-seq) or chromatin in-
teraction analysis by paired-end tag sequencing (ChIA-PET) [Fullwood et al. 2009,
Lieberman-Aiden et al. 2009, Zhao et al. 2006]. DNA damage such as DNA double-
strand breaks are currently mapped by BLESS (breaks labeling, enrichment on
streptavidin and next-generation sequencing) [Crosetto et al. 2013], BLISS (Breaks
Labeling In Situ and Sequencing) [Yan et al. 2017b] and END-seq (DNA end se-
quencing) [Canela et al. 2016].

2.5.3 Examples of omic experiments and data

There are a wide variety of omic data resulting from diverse experiments. Here, we
will focus on widely used NGS experiments for chromatin studies. RNA-seq con-
sists in extracting RNA molecules (for instance mRNA), reverse-transcribing them
to cDNAs, fragmenting cDNAs, amplifying fragments and then sequencing to pro-
duce reads (Figure 2.5A). Reads are mapped to genes (or any other transcription
annotation) and counted. ChIP-seq crosslinks DNA with interacting proteins, frag-
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ments DNA with restriction enzymes, immunoprecipitates DNA with antibodies,
amplifies fragments and then sequences to produce reads (Figure 2.5B). Reads are
mapped to the genome and peaks are identified. Hi-C crosslinks DNA loci that are
interacting, although they can be far apart in 1D, fragments DNA with restriction
enzyme, fills ends and marks with biotin, ligates ends, immunoprecipitates with
antibodies, amplifies and then sequences to produce read pairs (Figure 2.5C). In a
pair of reads, the first read maps one DNA fragment (a particular locus), while the
other read maps another DNA fragment (another locus). By binning the read pairs,
a count matrix is obtained. Binning the read pairs into large bins helps reduce the
sparsity of data. In the count matrix, each cell is the count of corresponding read
pairs.

2.5.4 Single-cell paradigm

Omic methods were initially developed to analyze cell populations (e.g., millions of
cells), since detecting sufficient signal from a single cell represented an impossible
challenge. However, recent technological progresses now allow to study omic infor-
mation from individual cells with optimized NGS techniques, therefore providing a
higher resolution of cellular differences and a better understanding of cell-to-cell het-
erogeneity [Nawy 2014]. For instance, single-cell analysis in the mouse cortex and
hippocampus revealed unknown cell types by RNA-seq [Zeisel et al. 2015]. More-
over, single cell approaches were also crucial in cancer to reveal tumor heterogeneity
due to mutations carried by small populations of cells [Lawson et al. 2018].

2.6 GWASs and non-coding SNPs

Complex genetic diseases are caused by the combined effects of multiple mu-
tations with lifestyle and environmental factors [Visscher et al. 2017].  These
diseases are common in the population and include heart disease, diabetes,
schizophrenia and some cancers [Dorn & Cresci 2009, Billings & Florez 2010,
Collins & Sullivan 2013, Chung et al. 2010]. Over the past decade, genome-wide
association studies (GWASs) have successfully identified thousands of single
nucleotide polymorphisms (SNPs) associated with complex diseases in an unbiased
manner [Visscher et al. 2017].

However, GWASs uncovered that over 95% of GWAS associated SNPs are lo-
cated outside coding sequences, which made it difficult to gain insight into the
underlying biological mechanism [Maurano et al. 2012]. Interestingly, more than
75% of these SNPs overlap DNase I hypersensitive sites, which suggests a strong as-
sociation with regulatory elements [Maurano et al. 2012]. Thus, a non-coding SNP
might influence the expression of the target gene, either by altering its promoter or
by affecting an enhancer that is linked to the gene via looping [Cookson et al. 2009)].
Understanding how SNPs can alter regulatory element activity, as well as, chromatin
looping with target genes thus represent a major issue for making sense of GWAS
results.
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2.7.1 Big data in genomics
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Figure 2.6: Exponential growth of genomic data over the past two decades.

Since the completion of the Human Genome Project in 2001, extraordinary
progress has been made in NGS technologies, which has led to a dramatic decrease
in sequencing cost and its widespread use in biology, medicine, ecology and evolu-
tion. The amount of data has exponentially expanded, and genomics has entered
as other fields into the era of ”"big data”. Big data refers to data whose charac-
teristics in terms of volume, velocity and variety necessitate the development of
novel technologies, algorithms and statistical models in order to extract key in-
formation which generally exceed the capacities of a single machine (Figure 2.6).
This led to major research efforts in bioinformatics, including genome assembly, se-
quence alignment, gene identification, protein structure prediction, differential anal-
ysis of gene expression, protein-protein interactions, genome-wide association stud-
ies, and phylogenetic and evolutionary studies [Lesk 2002, Azuaje & Dopazo 2005,
Horner et al. 2009, Andreas D. Baxevanis 2020].

2.7.2 Statistics for NGS data

Statistics is the scientific field that collect, analyze, interpret and present sample
data.
genomic and omic data.
analyzing NGS data, especially for differential analysis [Robinson et al. 2009].
For instance, NGS data essentially represent count data, since the experimental

Statistics is at the core of data analysis and thus plays a central role in
In particular, statistical models are heavily used for
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measure is often the number of reads that map to a particular region of the
genome. For RNA-seq, the number of reads mapping to a gene is counted, whereas
for ChIP-seq, the number of reads mapping to a regulatory region is counted, and
for Hi-C, the number of read pairs within a bin pair is counted (Figure 2.5).

Since NGS data are counts, statistical models for count distribution are ade-
quate tools for analysis. The most basic distribution for count data is the Poisson

distribution: Nk
e A
P(X=k)= T
where A\ = E[X] = Var[X]. A major caveat of the Poisson distribution

for modeling NGS data is that the variance is expected to be equal to the
mean, whereas it is known that this assumption does not hold for NGS reads
[Robinson & Smyth 2007a]. Instead, the negative Binomial distribution is widely
used to model NGS counts [Robinson & Smyth 2007b]:

rEEne F(l;(—]i)?fkrl) (1 +1>\¢>¢1 <¢—1A+A>k,

because it allows the variance to be independent from the mean:
Var[X] = X+ ¢)2,

where A = F[X], and ¢ is called the overdispersion parameter. Note that when
¢ — 0, then the negative binomial distribution tends to the Poisson distribution.
Biologically speaking, the overdispersion allows to account for the biological
variability between samples. More complex distributions were also proposed to
model NGS data, in particular the zero-inflated (ZI) distributions (zero-inflated
Poisson or zero-inflated negative binomial). ZI distributions are useful when
frequent zero-valued observations are present in the data, which is often the case
for single-cell NGS data [Risso et al. 2018].

The generalized linear model (GLM) implements these count distributions
(among others) allowing a flexible generalization of the linear model (regres-
sion/ANOVA) useful for NGS data analysis. For instance, for the Poisson and
negative binomial distributions, the GLM is:

log (E[y[X]) = X3 (2.1)

where y is the dependent variable, X the set of independent variables and 3 the
model parameters. For differential analysis, the treatment factor is often encoded
as a dummy variable with values equal to zero for the control condition and values
equal to one for the treatment condition. The associated treatment factor coefficient
corresponds to the natural logarithm of the fold-change between the two condition
averages (Treatment / Control). The corresponding p-value allows to test if the
coefficient is significantly different from zero, therefore assessing the significance of
the fold-change between the two 2 conditions.
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Figure 2.7: The different categories of machine learning methods.

Machine learning methods are increasingly used to analyze omic data. Such
methods can be categorized into three approaches: (i) unsupervised learning, (ii) su-
pervised learning, and (iii) reinforcement learning [Hastie et al. 2009, Bishop 2007]
(Figure 2.7). The first two categories are the most used and developed to date for
omic data.

Unsupervised learning looks for previously undetected patterns in a data set
with no pre-existing labels and with a minimum of human supervision. Main
methods consist in either reducing the dimension to compress data information
(e.g. principal component analysis or t-distributed stochastic neighbor embedding)
or in identifying groups of similar observations, also called clusters (e.g. k-means or
hierarchical clustering). For instance, principal component analysis helps visualize
in a simple manner key information from a large amount of variables and has
many applications in omics such as representing ethnic variability from genetic
data [Zheng & Weir 2016]. Cluster analysis is used instead to identify groups of in-
dividuals such as unknown cell (sub-)types from tissues [Andrews & Hemberg 2018].

Supervised learning considers the task of learning a function g : X — Y that
maps an input space X to an output space ) based on example input-output
pairs. Supervised learning is used to predict the unknown value of a variable
(or more) given the values of other variables that are often easier or cheaper
to collect. There are many machine learning algorithms that are often used in
genomics, including artificial neural networks [Rosenblatt 1958], support vector
machines [Boser et al. 1992], random forests [Breiman 2001], extreme gradient
boosting [Chen & Guestrin 2016] and Bayesian networks [Jensen 1996]. In omics,
supervised learning had many successful applications in cancer type predictions
[Kourou et al. 2015], gene annotation [Mahood et al. 2020] or regulatory element
mapping [Lee et al. 2011].
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Reinforcement learning learns which actions to take in a given environment in
order to maximize some reward [Sutton & Barto 2018]. Thus, this approach learns
from mistake, similarly to humans. Reinforcement learning has tremendous applica-
tions in robotics, where a robot has to learn himself how to interact optimally with
an environment. To date, the applications of reinforcement learning for omic data
are very limited. However, recent preliminary studies suggest that reinforcement
learning could improve genome assembly [Xavier et al. 2020].

2.7.4 Deep learning
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Figure 2.8: Difference between machine and deep learning.

Deep learning is a branch of machine learning that has gained consider-
able attention during the last years due to tremendous progress in the field
[Goodfellow et al. 2016]. Deep learning is mostly based on artificial neural net-
works, but for which multiple layers progressively extract higher-level information
from the raw input. The success of deep learning compared to machine learning
is linked to the larger amount of data available (big data), new gradient descent
algorithms and the use of graphics processing units (GPUs) speeding computations
by 100 times.

Nowadays, deep learning achieves the best results for image, textual and au-
dio data problems, for which data is complex and highly organized. Unlike ma-
chine learning, deep learning does not necessitate features previously built from
expert knowledge, but instead learns directly features from data (Figure 2.8).
Among deep learning models, convolutional neural networks (CNNs) were the
first successful models [Krizhevsky et al. 2012]. CNNs implement a convolutional
layer that consists of a set of learnable kernels capturing local patterns. In ge-
nomics, CNNs are used to predict regulatory elements from DNA sequence and
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to assess in silico the effect of a non-coding SNP on regulatory element activ-
ity [Alipanahi et al. 2015, Zhou & Troyanskaya 2015]. Recurrent neural networks
(RNNs) are another class of neural networks that is used for entire sequences of data
[Jain & Medsker 1999]. However, RNNs often fail to process long sequences because
of the vanishing gradient problem, and hence long short-term memory (LSTM)
were successfully introduced to tackle this issue [Hochreiter & Schmidhuber 1997].
More recently, LSTM was replaced by the Transformer model that implements the
attention layer which does not require the sequential data to be processed in a
sequential order, allowing much more parallelization than RNNs or LSTMs and
therefore considerably reducing training times [Vaswani et al. 2017]. Lastly, an-
other recent approach, called transfer learning, consisted in transferring knowledge
from a very complex and powerful network trained on a very large dataset to a sim-
ple network in order to increase performances when only a few data were available
[Tan et al. 2018].

2.7.5 Heterogeneous data integration

The study of a biological system is best approached by incorporating knowledge
from different perspectives in order to unravel the complexity of biology. Nowadays,
genomic and omic technogologies allow to generate data from a wide range of
experiments at different levels (mutation, transcription, chromatin modification,
protein binding, DNA damage, etc.). Moreover, there are more and more biological
databases from which experimental data can be freely and easily queried (Gene
Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/; Expression Atlas,
https://www.ebi.ac.uk/gxa/home; TCGA/ICGC, https://dcc.icgec.org/; UCSC
Genome Browser, https://genome.ucsc.edu). However, the use of omic data from
different experiments, as well as from different techniques, poses major challenges
for integrating heterogeneous data.

There are two main approaches for data integration. The first approach heav-
ily relies on expert knowledge from the biologist (hypothesis-driven approach). It
consists in combining usually data from 2 or 3 different experiments in such way
that this makes sense biologically. Often the biologist does not explore all the
data available, but instead makes strong hypotheses for data analysis by focusing
on certain candidate regions of the genome or certain candidate genes. While the
hypothesis-driven approach is preferred for small research projects from a team,
it is not relevant for big projects from a large consortium. Instead, a second ap-
proach can be chosen when the amount of data is too large to be exploited us-
ing restrictive hypotheses (data-driven approach). In the data-driven approach,
statistical and data mining approaches are used. For instance, a wide range of
multivariate methods such as principal component analysis, canonical correlation
analysis or partial least squares models can summarize key information from data
[Rohart et al. 2017]. Network-based methods also provide a natural framework for
data integration by detecting potential interactions between biological processes or
components at different scales [Amar & Shamir 2014, Lee et al. 2020]. When data
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integration is used for some prediction tasks, such as in precision medicine, then
machine learning algorithms provide a nice framework to integrate diverse data
[Mobadersany et al. 2018].

2.7.6 Personalized medicine
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Figure 2.9: How patients can received personalized treatments using patient data
combined with artificial intelligence (AI) diagnosis.

For the past ten years, medicine has been at the heart of a technological
revolution in the way of considering, diagnosing and treating patients through
personalized medicine, also called precision medicine. Patients are less and less
considered as individuals from a homogeneous population for which an ideal
identical treatment or diagnosis would exist. Conversely, medicine increasingly
recognizes the uniqueness of each patient based on their genome, family history,
lifestyle, and environment.

Recent advances in genomics and omic sciences in general (e.g. transcriptomics,
metabolomics and proteomics), but also in medical imaging (e.g. MRI scanner and
fluorescent labeling), intestinal microbiology and pharmacodynamics, have made
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possible to accumulate a large number of genetic and physiological information for
patients and their illnesses. Current techniques now generate an ever-increasing
amount of medical data on patients, and medicine is considered to have entered
like other disciplines into the era of Big Data, where data is immense and must be
stored on bigger and bigger servers.

The availability of such large amounts of data at low cost is fueling the
development of new approaches for personalized medicine based on computer
algorithms, artificial intelligence, computational biology and biostatistics (Figure
2.9). Several types of data are used such as genomics and omics, health monitoring
or radiography from MRI for instance. Data are then stored in a database and
then processed using machine learning algorithms on supercomputers. Algorithms
then decide the best treatment for every patient.

For example, the subtyping of certain cancers, which identifies the best treat-
ment, is considered to be more efficient and more precise with the use of machine
learning than traditionally done by physicians. Another successful example is to
use a patient’s genome to predict the likelihood of later developing a complex
genetic disease like heart disease, allergies and asthma, neurological / psychological
diseases, as well as, certain cancers of genetic origin.

At the moment, artificial intelligence approaches to personalized medicine are
only in their infancy. New computational approaches must be developed in order to
improve predictions (i) by automatically integrating more and more heterogeneous
data of various kinds (omics, images, questionnaires, publications, etc.), (ii) by
analyzing larger volumes of data rapidly, (iii) by exploiting data available in
public databases such as ICGC / TGCA for cancer and GWAS Catalog for human
genetics, and (iv) by implementing reinforcement learning from patient feedback.
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In the longer run and for wide-reaching
issues, more creative solutions tend to
come from imaginative interdisciplinary
collaboration.

Robert J. Shiller

3.1 Introduction

During the last decade, I have been focusing my research efforts on making sense

of data and on developing novel computational methods for a variety of biological

problems centered on the genome and its functions. During my postdoctorates, I

had the chance to work on different topics including chromatin and cancer, human
genetics of asthma and phylogenetics of viruses.
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After being recruited as an assistant professor (maitre de conférences) at
University Paul Sabatier, most of my work was focused on the study of the
3D genome. In particular, I worked on the identification of protein binding
factors and insulator sequences that could influence the formation of 3D domains,
such as topologically associating domains (TADs), and the link with biological
processes such as DNA repair and transcription. Another research direction was
the development of machine and deep learning models for predicting genomic data,
such as endogenous DNA double-strand breaks and active G-quadruplexes, which
are related to chromatin, DNA repair and cancer.

But I also always attempted to incorporate into my research projects, concepts
and methods borrowed from genetics and evolution I acquired during my postdoc-
torates. For instance, I investigated the evolution of the 3D genome by inferring
CTCF loop characteristics directly from the genome sequence of vertebrate species,
and by demonstrating their phylogenetic conservation. Moreover, I studied the im-
pact of SNPs disrupting potential G-quadruplexes, and showed the link with gene
expression.

3.2 Human genetics of asthma

Asthma is a complex genetic disease characterized by the inflammation and
constriction of the airways. This disease affects more than 300 million people in the
world and thus represents a major public health issue. Even though genome-wide
association studies of common variants have successfully identified more than one
hundred genes linked to asthma, only a fraction of the heritability of the disease
could be identified. Among all the hypotheses, the role of rare variants has been
proposed as an explanation for this missing heritability characteristic of common
genetic diseases. The emergence of new sequencing technologies as well as the
constant decrease in their cost currently allows the analysis of rare variants, SNPs
and insertions-deletions, of a cohort of several thousand individuals or more.

During my postdoctoral fellowship at University of Chicago (Ober’s lab), I ana-
lyzed rare variants associated with asthma severity. Our laboratory had sequenced
278 individuals with asthma, including 93 African-Americans, 101 European-
Americans and 84 Latin Americans. In order to maximize the detection power
of rare variants, I employed an approach based on the accumulation of the effects
of rare variants of a gene, the so-called gene-based test [Wu et al. 2011]. I have
also annotated these variants in order to include in the tests only those predicted
to be functional and T only tested a limited number of candidate genes (approxi-
mately 300), to further reduce multiple testing issues. Although I have identified
rare variants present in the GSDMB gene located in locus 17q12-21 in European
Americans and Latin Americans, these results could not be replicated in a different
cohort. Failure to identify genetic variants reflected a classical scenario encountered
in human genetics: small size of the sample (about 300 individuals), as well as its
structure in three populations. In parallel, I was involved in another project on rare
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Figure 3.1:  Phylogenetic analysis of antiretroviral resistance transmission from
treatment-naive individuals. A) Phylotype analysis to identify viral clusters. B)
Frequency of antiretroviral resistance transmission from a drug-naive source.

variants by Exome Chip for which 10 thousand individuals were available, and with
such larger sample size, we could identify rare ethno-specific variants of asthma
[Igartua et al. 2015].

3.3 Phylogenetics of HIV

Therapy combining antiretroviral (ARV) drugs has been proven highly effective in
controlling HIV (human immunodeficiency virus) infections and has significantly
improved patients’ survival and quality of life. However, resistances to drugs are
known to develop in treated individuals. Resistant viruses emerge through the
selective pressure induced by antiretrovirals, but can also be transmitted from
treated patients to treatment-naive recipients. Usually the loss of fitness linked to
the presence of resistance mutations in the absence of ARV treatment is sufficient
to cause the virus to evolve back to its initial form (without resistance). Despite
this, the presence of these reservoirs means that, in some cases, the mutant form
continues to survive and to be transmitted in the absence of ARV treatment. So
the presence of these reservoirs poses a serious threat to the long-term efficacy of
the ARV therapy.

During my postdoctoral fellowship at Methods and Algorithms for Bioinformat-
ics (MAB) team (LIRMM, Montpellier), I used a new phylogenetic approach, called
Phylotype [Chevenet et al. 2013], to identify viral transmission clusters from 24,550
sequences of HIV-1 virus subtype B pol gene (Figure 3.1A). These sequences came
from the UK HIV Drug Resistance Data Collection database. Treatment resistance
clusters among HIV-positive individuals have been identified as containing at least 3
sequences with at least one shared resistance mutation, intra-clade genetic distance
maximum of 4% and basal branch support of at least 90%. The persistence time
of transmission chains was estimated using a molecular clock inference approach by
least squares. The results showed that at least 70% of resistance to ARVs originated
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Figure 3.2: Effect of estrogen (E2) on the compartmentalization of chromosome 6.
The chromosome was modeled in 3D using Hi-C data before (Oh) and after estrogen
(4h). Active and inactive chromatin regions are stained red (compartment A) and
blue (compartment B), respectively.

from a naive individual (Figure 3.1B) [Mourad et al. 2015].

3.4 The genome in 3D

The 3D genome was one of my research topic when I was a postdoctoral researcher
at Indiana University. Back in 2011, studying the 3D genome using NGS was
very new and exciting. Only few bioinformaticians were working on the topic, and
consequently, we had to develop in-house libraries and scripts for data processing.
After I was recruited in a chromatin lab in 2014, the 3D genome became one of
my major research topics, since there was already a boom in the field and a lot of
room for the development of computational methods and models to analyze Hi-C
data. Nowadays, Hi-C experiment has become a standard technique to interrogate
the 3D genome, and is routinely applied in research labs.

3.4.1 Estrogen induces global 3D genome reorganization in breast cancer

Estrogen is a class of sex hormone responsible for the development and regulation
of the female reproductive system, but whose exposure also increases breast
cancer risk. The action of estrogen is mediated by the estrogen receptor (ER),
a protein that binds to DNA and controls gene expression. Previous studies
showed that gene expression after estrogen stimulation is regulated through DNA
looping [Hsu et al. 2010, Hsu et al. 2013]. Moreover, estrogen is known to alter the
large-scale chromatin structure [Nye et al. 2002].
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During my postdoctoral fellowship at Indiana University, I analyzed Hi-C data
before/after estrogen induction [Mourad et al. 2014]. I observed that estrogen in-
duces a global change of the 3D conformation of chromosomes in breast cancer cells.
The addition of estrogen caused a gradual increase in the spatial compartmental-
ization of chromatin up to 4 hours (Figure 3.2). By integrating previous results
with gene expression and epigenetic data, I demonstrated the link with the global
regulation of the gene expression. After estrogen stimulation, gene-rich chromo-
somes, open and active regions of chromatin are in greater spatial proximity, thus
allowing genes to share transcriptional machinery and regulatory elements. At the
megabase scale, we also observed that the loci in differential interaction are enriched
in genes involved in cancer proliferation and estrogen response. In addition, these
loci showed higher estrogen receptor alpha binding and gene expression.

3.4.2 Prediction of 3D genome structure from epigenetic and chromatin
data

In a research highlight, we surveyed recent computational methods demon-
strating the strong link between 3D genome organization (Hi-C data) and
1D epigenetic and chromatin data (ChIP-seq, DNase-seq, Methylation array)
[Mourad & Cuvier 2015]. Such strong link suggests that the 3D genome, which
is costly to map experimentally, can be instead predicted using cheaper or publicly
available 1D genome data. For instance, 3D compartments A /B are usually inferred
from a principal component analysis of the correlation matrix from the Hi-C count
matrix. However, the correlation matrix can be predicted using a correlation matrix
computed from DNA methylation profiles across patients. Another work showed
that machine learning methods such as Bayesian additive regression trees can pre-
dict TADs by using epigenetic data from various human cell lines, including tumor
cells. Most notably, the localization of histone modifications and CTCF binding
sites as observed from ChIP-Seq data provide good predictors of TAD borders.

3.4.3 Generalized linear models for bridging the gap between 1D and 3D
genomes

Understanding the biological processes involved to shape the genome in 3D is a
major question. One paradigm is to consider that the 1D genome contributes to the
formation of 3D chromosomal structures such as 3D domains. In fact, several stud-
ies have shown that insulator binding proteins are enriched at 3D domain borders
[Phillips-Cremins et al. 2013], that CTCF and cohesin proteins are involved in ex-
trusion to form DNA loops [Rao et al. 2014, Sanborn et al. 2015, Rao et al. 2017],
and that phase separation of histone marks could explain the formation of
compartments [Jost et al. 2014]. Moreover, genomic elements, such as repetitive
sequences, were also shown to co-localize in 3D [Cournac et al. 2015]. Experiments
to demonstrate the role of a given protein often consist in depleting the protein.
Depletions are very costly and thus cannot be systematically used to study the role
of any DNA binding protein. Alternative computational methods are advantageous
compared to experimental depletions, since they make it possible without any
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cost to study the role of dozens or even hundreds of proteins whose ChIP-seq
data or DNA binding motifs are already available in databases such ENCODE
(https://www.encodeproject.org/) or JASPAR (http://jaspar.genereg.net/).

I proposed different generalized linear models (GLMs) to integrate and predict
the 3D genome from the 1D genome. In a first work, logistic regression was proposed
to model TAD border presence / absence depending on protein binding, genomic
elements, and DNA motif presence. In a second work, negative binomial regression
allowed to model Hi-C counts depending on the interaction between protein bind-
ing at different locations. In a third work, negative binomial regression modeled
Hi-C counts depending on the blocking effect of protein binding, which did not ne-
cessitate any prior TAD identification (TAD-free). In a fourth work, Poisson and
negative binomial regressions were used for TAD identification, differential analysis
and prediction.

3.4.3.1 TADfeat: identification of protein drivers of TAD borders

A current challenge is to identify the molecular drivers of 3D domains of higher-
order chromatin organization. However, few computational tools have been
proposed to study the link between insulating proteins or functional elements
(genomic factors) and the 3D domains such as TADs. A commonly used approach
is to test for genomic factor enrichment at the borders of TADs by Fisher’s exact
test. However, the enrichment test can only identify the genomic factors that
colocalize at TAD borders, but it is unable to determine which genomic factors
are more likely to influence the borders. For instance, two genomic features might
be both found significantly enriched at domain boundaries, but only one of them
might truly influence the domain border establishment or maintenance. This is due
to the colocalization (correlation) between the two genomic features. Statistically
speaking, correlation does not imply causation. Non-parametric models were also
used to predict TAD borders and have identified a subset of predictors. However
one factor may accurately predict boundaries without being causative.

I proposed a new approach based on multiple logistic regression to measure the
influence of factors on the boundaries of TADs [Mourad & Cuvier 2016]. Unlike
the enrichment test, the regression takes into account the conditional independence
between the factors and thus better identify the most influential factors (Figure
1, Scenario 1, from the article "Computational Identification of Genomic Features
That Influence 3D Chromatin Domain Formation” below). In addition, the
regression can account for the interaction between factors, and therefore, can assess
the impact of the co-occurrence of factors on borders (Figure 1, Scenario 2, from
the article below). In Drosophila, I have shown that, among known architectural
proteins, BEAF-32 and CP190 are the main determinants of TADs. In humans,
the model identified known proteins CTCF and cohesin, as well as ZNF143 and
PRC2 as positive determinant borders. The model also revealed the existence
of several factors having a negative effect on borders, including P300, RXRA,
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BCL11A and ELK1. Based on the regression results, I proposed a new biological
model explaining the formation of 3D domains, where positive driver proteins
could favor attraction between loci, while negative driver proteins could instead
trigger repulsion (Figure 8, from the article below).
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Abstract

Recent advances in long-range Hi-C contact mapping have revealed the importance of the
3D structure of chromosomes in gene expression. A current challenge is to identify the key
molecular drivers of this 3D structure. Several genomic features, such as architectural pro-
teins and functional elements, were shown to be enriched at topological domain borders
using classical enrichment tests. Here we propose multiple logistic regression to identify
those genomic features that positively or negatively influence domain border establishment
or maintenance. The model is flexible, and can account for statistical interactions among
multiple genomic features. Using both simulated and real data, we show that our model out-
performs enrichment test and non-parametric models, such as random forests, for the iden-
tification of genomic features that influence domain borders. Using Drosophila Hi-C data at
a very high resolution of 1 kb, our model suggests that, among architectural proteins,
BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our
model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143
and Polycomb group proteins as positive drivers of domain borders. The model also reveals
the existence of several negative drivers that counteract the presence of domain borders
including P300, RXRA, BCL11A and ELK1.

Author Summary

Chromosomal DNA is tightly packed up in 3D such that around 2 meters of this long mol-
ecule fits into the microscopic nucleus of every cell. The genome packing is not random,
but instead structured in 3D domains that are essential to numerous key processes in the
cell, such as for the regulation of gene expression or for the replication of DNA. A current
challenge is to identify the key molecular drivers of this higher-order chromosome organi-
zation. Here we propose a novel computational integrative approach to identify proteins
and DNA elements that positively or negatively influence the establishment or mainte-
nance of 3D domains. Analysis of Drosophila data at very high resolution suggests that
among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D
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domains. In humans, our results highlight the roles of CTCF, cohesin, ZNF143 and Poly-
comb group proteins as positive drivers of 3D domains, in contrast to P300, RXRA,
BCL11A and ELK1 that act as negative drivers.

Introduction

High-throughput chromatin conformation capture (Hi-C) has emerged over the past years as
an efficient approach to map long-range chromatin contacts [1-3]. This technique has allowed
the study of the 3D architecture of chromosomes at an unprecedented resolution for many
genomes and cell types [4-7]. Multiple hierarchical levels of genome organization have been
revealed: compartments A/B [1], sub-compartments [8], topologically associating domains
(TADs) [4, 5] and sub-TADs [7]. Among those domains, TADs represent a pervasive structural
feature of the genome organization. TADs are stable across different cell types and highly con-
served across species.

A current challenge is to identify the molecular drivers of topological arrangements of
higher-order chromatin organization. There is a growing body of evidence that insulator bind-
ing proteins (IBPs) such as CTCF, and cofactors such as cohesin, act as mediators of long-
range chromatin contacts [5, 6, 9-11]. In human, depletion of cohesin predominantly reduces
interactions within TADs, whereas depletion of CTCF not only decreases intradomain contacts
but also increases interdomain contacts [12]. The densest Hi-C mapping in human has recently
revealed that loops that demarcate domains are often marked by asymmetric CTCF motifs
where cohesin is recruited [8]. In Drosophila, silencing of cohesin and condensin I have
recently demonstrated their roles on long-range contacts [13]. In addition, numerous IBPs,
cofactors and functional elements colocalize at TAD borders [11]. However it is unclear if all
these proteins and functional elements, or specific combinations of them, play a role in TAD
border establishment or maintenance. Computational approaches that integrate protein bind-
ing (chromatin immunoprecipitation followed by high-throughput DNA sequencing, ChIP-
seq) with Hi-C data may be well-suited to identify the key drivers of chromatin architecture.

Most computational approaches dedicated to chromosome conformation analysis have
focused on correcting contact matrices for experimental biases [6, 14-16] in order to assess
more precisely the significance of contact counts [17, 18], to identify chromatin compartments
[1, 15, 19], or to 3D model chromosome folding [1, 5, 20-22]. However few computational
methods have been proposed to study the roles of DNA-binding proteins and functional ele-
ments in chromosome folding. A simple yet widely used statistical method consists in assessing
enrichment of a genomic feature around 3D domain borders by Fisher’s exact or Pearson’s chi-
squared tests [4, 5, 7]. An important caveat of enrichment test is that it only identifies those
genomiic features that colocalize at domain borders, but it cannot determine which genomic
features influence the domain border establishment or maintenance. For instance, two genomic
features might be both found significantly enriched at domain boundaries, but only one of
them might truly influence the domain border establishment or maintenance. This is due to
the colocalization (correlation) between the two genomic features. Statistically speaking, corre-
lation does not imply causation. Other works focused on the prediction of 3D domain borders
using (semi) non-parametric models and identified a subset of genomic features that are the
most predictive of TADs [23, 24]. However a genomic feature can efficiently predict 3D
domain borders without being influential [25].

In this paper, we propose a multiple logistic regression to assess the influence of genomic
features such as DNA-binding proteins and functional elements on topological chromatin
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domain borders. Compared to enrichment test and non-parametric models, multiple logistic
regression assesses conditional independence and thus can identify most influential proteins
with respect to domain borders. Moreover the multiple logistic regression model can easily
accommodate interactions between genomic features to assess the impact of co-occurences on
domain borders. We illustrate our model using recent Drosophila and human Hi-C data allow-
ing to probe TAD borders depending on multiple proteins and functional elements. Using
both simulated and real data, we show that our model outperforms enrichment test and non-
parametric models such as random forests for the identification of known and suspected archi-
tectural proteins. In addition, the proposed method identifies genomic features that positively
or negatively impact TAD borders with a very high resolution of 1 kb.

Results
The model

The proposed multiple logistic regression models the influences of p genomic features on 3D
domain borders:

N Prob(Y = 11X)
1 —Prob(Y = 1|X)

:ﬂo +BX (1)

Where X = {Xj, .. ., X} is the set of p genomic features such as DNA-binding proteins and Y
is a variable that indicates if the genomic bin belongs to a border (Y = 1) or not (Y = 0). The
set B =1{B1, ..., By} denotes slope parameters, one parameter for each genomic feature. The
model can easily accommodate interaction terms between genomic features (see Subsection
Materials and Methods, Analysis of interactions). By default, model likelihood is maximized
by iteratively reweighted least squares to estimate unbiaised parameters. However, when
there are a large number of correlated genomic features in the model, L1-regularization is
used instead to reduce instability in parameter estimation [26].

We illustrate the proposed model using two scenarios and compare it with enrichment test
(Fig 1). In the first scenario, protein A positively influences 3D domain borders, while protein
B colocalizes to protein A. In this scenario, enrichment test will estimate that the parameter
associated with protein A 4 > 0 and the parameter associated with protein B g > 0. In other
words, both proteins A and B are enriched at 3D domain borders. Multiple logistic regression
will instead estimate that parameters 84 > 0 and iz = 0. This means that protein A positively
influences 3D domain borders, while protein B does not. This is because multiple logistic
regression can discard spurious associations (here between protein B and 3D domain borders).
One would argue that enrichment test can also be used to discard the spurious association if
the enrichment of protein B when protein A is absent is tested instead. However such condi-
tional enrichment test becomes intractable when more than 3 proteins colocalize to domain
borders, whereas multiple logistic regression is not limited by the numbers of proteins to ana-
lyze within the same model.

In the second scenario, the co-occurrence of proteins A and B influences 3D domain bor-
ders, but not the proteins alone. Enrichment test will find that each protein alone is enriched at
3D domain borders (84 > 0 and Bz > 0) as well as their interaction (843 > 0). The proposed
model will instead find that only the interaction between proteins A and B influences 3D
domain borders (84 =0, Bz =0and B45 > 0).

In addition to these two previous scenarios, another interest of the model is the possibility
to study the negative influence of a protein (or of a co-occurence of proteins) on TAD border
establishment of maintenance. In other words, its presence counteracts the establishment or
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Scenario 1 (no interaction):

- Protein A influences 3D domain borders.

- Protein B colocalizes to protein A.
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Scenario 2 (interaction):

domain borders, but not the proteins alone.
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Fig 1. lllustration of the proposed multiple logistic regression to assess the influences of genomic features on 3D domain borders and

comparison with enrichment test.

doi:10.1371/journal.pcbi. 1004908.9001

maintenance of 3D domain borders. In such scenario, multiple logistic regression will estimate
a parameter § < 0 (see below).

Depending on the parameter estimation algorithm used (likelihood maximization or
L1-regularization), results are interpreted differently. If likelihood maximization is used, then a
protein beta parameter can be considered as significantly different from zero if the correspond-
ing p-value is lower than the familywise error rate (FWER) computed by Bonferroni procedure.
If L1-regularization is used instead, then p-values are not computed. A protein is considered as
influential if its beta parameter is different from zero. Using both algorithms, the beta parame-
ter is the only measure used to quantify how strong is the influence of a protein on the 3D
domain borders, and the p-value should not be used instead because it depends on the amount
of data available. Both algorithms are useful in practice. Likelihood maximization allows to
estimate beta parameters without any bias but influential proteins should be known in advance.
L1-regularization can be useful to select the influential proteins among a large set of correlated
candidates, but estimates will be biased.

Parameter estimation accuracy

Several characteristics of the analyzed ChIP-seq and functional element data might prevent the
accurate estimation of multiple logistic regression parameters 3. The matrix X of genomic fea-
tures is sparse (numerous values equal zero) because genomic features are often absent from a
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particular genomic bin. Sparsity of matrix X is known to prevent convergence of maximum
likelihood maximization for parameter estimation [27]. Moreover some genomic features can
be correlated. For instance, different insulator binding proteins might bind to the same geno-
mic regions. For all these reasons, accurate estimation of parameters could fail in theory.
Hence we evaluated the accuracy of parameter estimation using simulations.

We simulated data that were similar to real ChIP-seq data (see Subsection Materials and

Methods, Data simulation, first paragraph). Both genomic coordinate data (e.g., ChIP-seq peak

ChIP

coordinates) and quantitative data (e.g., ChIP-seq signal intensity log nput

) were generated.

From the simulated data, multiple logistic regression model parameters were then estimated by
maximum likelihood. We first simulated 100 genomic coordinate and 100 quantitative datasets
that comprised 6 proteins and learned models without considering any interaction terms. In
Fig 2a, we plotted true against estimated parameter values. We reported a very good accuracy
for parameter estimation for both genomic coordinate and quantitative data with R* = 99.5%
(p<1x 107%% and R*> > 99.9% (p<1lx 107%°) between true and estimated parameter values,
respectively. Because some proteins might be rare over the genome and only involved in some
3D domain borders, we studied parameter accuracy for simulated proteins with varied ChIP-
seq peak numbers. Parameter estimation was highly accurate even for proteins with a low num-
ber of peaks over the genome (R = 97.4% for 50 peaks; S1 Fig). In addition, we sought to assess
how parameter estimation is affected by 3D domain border inaccuracy of few kilobases. We
observed that with a border inaccuracy equal or lower than 2 kb, parameter estimation was still
accurate (R> > 70.9%, S2 Fig). We then simulated 100 genomic coordinate and 100 quantitative
datasets that comprised the same 6 proteins and learned models with all two-way (e.g. X; X3)
interaction terms. In Fig 2b, we plotted true against estimated parameter values corresponding
to interaction terms only. Parameter estimation accuracy was still high for both genomic coor-
dinate data (R* = 94.6%, p < 1x 107%°) and quantitative data (R* = 99.9%, p < 1x 1072%). We
concluded that model parameter estimation was accurate for both marginal and two-way inter-
action of genomic features.

MLR outperforms enrichment test and random forests to identify drivers
of TAD borders

We then sought to assess how multiple logistic regression (MLR) efficiently identifies genomic
features that influence TAD borders, comparing with other approaches commonly used to
assess the link between TAD borders and genomic features. We compared our model with
enrichment test (ET) [4] and non-parametric model [23]. For the non-parametric model, we
used random forests (RF) which are very similar to the model used in [23], but for which a scal-
able implementation allowed high resolution analysis (https://github.com/aloysius-lim/bigrf).
For this purpose, we first simulated 100 datasets comprising 11 genomic features {X;, X5, . . .,
X1} that were similar to real ChIP-seq data (see Subsection Materials and Methods, Data simu-
lation, second paragraph). Among the genomic features, variables X; and X, were chosen to
be causal with an odds ratio of 4, which was comparable to odds ratios estimated from real data
(see below). We compared beta parameters from multiple logistic regression with beta parame-
ters from enrichment test and variable importances from random forests (Fig 3a). Enrichment
test correctly identified causal variables X; and X, as the most enriched (beta median = 1.3),
but also found highly enriched non-causal variables (beta median = 1). Random forests
detected X; and X; as the most influential variables for prediction (variable importance median
>2.75), although they were not causal genomic features. In contrast, multiple logistic regres-
sion correctly identified X; and X, as influential variables (beta median = 0.93) and discarded
non-causal variables (beta median = —0.03).
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Fig 2. Parameter estimation accuracy of multivariate logistic regression. a) Estimated versus true
parameter for marginal genomic features (the model does not include any interaction between genomic features).
b) Estimated versus true parameter for two-way interactions between genomic features (i.e. for any interaction

between two genomic features, see Subsection Materials and Methods, Analysis of interactions). Genomic

ChiP

coordinate data are ChlP-seq peak coordinates. Quantitative data are ChlP-seq signal intensities log e

doi:10.1371/journal.pcbi.1004908.9g002

We next simulated more complex scenarios for which the causal variables and their number
were randomly chosen for each simulation. In addition, simulations were carried out for differ-
ent odds ratios to study the influence of effect size. As previously, we compared multiple logis-
tic regression with enrichment test and random forests. For each method, we computed the
percentage of models that correctly ranked first the causal variables in terms of beta parameter
or variable importance (Fig 3b). We observed that both enrichment test and multiple logistic
regression successfully ranked first the causal variables even for a low odds ratio of 2 (93% of
models), whereas random forests mostly failed even for the easiest scenario (44% of models for
an odds ratio of 8; in the next paragraph, we will see that random forests poorly performed
here partly due to high data sparsity). We then compared empirical type I error rate for a sig-
nificance threshold & = 107> between enrichment test and multiple logistic regression for
which p-values on beta coefficients were available (Fig 3c). Even for a high odds ratio of 8,
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MLR had a low error rate of 16%. Conversely enrichment test showed a high error rate of 75%
even for an odds ratio of 2.

We also compared MLR with ET and RF using real data in human. For this purpose, we ana-
lyzed new 3D domains detected from recent high resolution Hi-C data at 1 kb for GM 12878
cells for which 69 ChIP-seq data were available [8]. Multiple lines of evidence indicate that
CTCF and cohesin serve as mediators of long-range contacts [5, 6, 9-11, 28]. However several
proteins also colocalize or interact with CTCF, including Yin Yang 1 (YY1), Kaiso, MYC-associ-
ated zing-finger protein (MAZ), jun-D proto-oncogene (JUND) and ZNF143 [29]. In addition,
recent work has demonstrated the spatial clustering of Polycomb repressive complex proteins
[30]. Using the large number of available proteins in GM12878 cells, we could compare MLR
with ET and RF to identify known or suspected architectural proteins CTCF, cohesin, YY1,
Kaiso, MAZ, JUND, ZNF143 and EZH2. For this purpose, we computed receiver operating
characteristic (ROC) curves using Wald’s statistics for ET, beta parameters for MLR, and vari-
able importances for RF. We carried out computations at the very high resolution of 1 kb (see
Subsection Materials and Methods, Binned data matrix). ROC curves revealed that MLR clearly
outperformed ET and RF to identify architectural proteins (AUCy; z = 0.827; Fig 3d). Lower
performance of ET (AUCgr = 0.613) was likely due to its inability to account for correlations
among the proteins (average correlation = 0.19). Regarding RF, its low performance (AUCg =
0.558) could be explained by its well-known inefficiency with sparse data (at 1kb, there were
99.4% of zeros in the data matrix X). At a lower resolution of 40 kb (88.5% of zeros), RF per-
formed much better (AUCgr = 0.746) but still lower than MLR (AUCjy;r = 0.815; S3 Fig).

To further validate MLR results with real data, we analyzed the impacts of single nucleotide
polymorphisms (SNPs) in the consensus CTCF motif in human. SNPs play an important role in
common genetic diseases and recent works have uncovered differential long-range contacts due
to variations in the CTCF motif [31-33]. SNPs in the consensus CTCF motif are thus expected
to affect, and most likely to decrease, the influence of CTCF motif on 3D domain border estab-
lishment or maintenance. We then tested if MLR was able to detect the impacts of SNPs on
CTCF motif. For this purpose, we included within the same MLR model the wild-type (WT)
motif and the three alternative alleles for a given position in the motif. For instance, for the first
position, the MLR comprised genomic coordinates of the WT motif CCANNAGNNGGCA and
the genomic coordinates of the mutated motifs ACANNAGNNGGCA, GCANNAGNNGGCA
and TCANNAGNNGGCA. Over 27 mutated CTCF motifs, 25 showed beta coefficients that
were lower than the one of WT CTCF motif, indicating that the corresponding SNPs diminished
the influence of CTCF motif on TAD borders as expected (Fig 4). Because correlations among
the motif variables were very low (average correlation <0.01), ET performed as efficiently as
MLR to detect the influences of SNPs (AUCgr = 0.926 and AUCy,;x = 0.926), but RF was inaccu-
rate (AUCgr = 0.638; 54 Fig). For instance, for the first position, we observed that all three alter-
native alleles (A, G and T) diminished the influence of the motif with respect to 3D domain
borders. Some mutations even canceled the influence of CTCF motif (for instance, alleles A and
T on position 2). On the last position, allele G had a higher influence than the WT motif. This
result was actually consistent with the ambiguity between allele A and G in the motif. Similar
results were obtained for consensus BEAF-32 motif CGATA in Drosophila (S5 Fig).

Using both simulated and real data, we concluded that multiple logistic regression correctly
identified causal variables and discarded spurious associations of non-causal variables with
TAD borders while both enrichment test and random forests failed. In addition, multiple logis-
tic regression successfully predicted expected effects of SNPs on CTCF and BEAF-32 motifs
known to influence long-range contacts in human and Drosophila, respectively. These pre-
dicted effects of SNPs could further serve to identify new regulatory variants in the context of
genome-wide association studies.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004908 May 20, 2016 8/24



@ PLOS COMPUTATIONAL
2 : BIOLOGY Identification of 3D Chromatin Organization Features

CTCF consensus motif: CCANNAGNNGGCA

ANNAGNNGGCA NNAGNNGGCA CCHNNAGNNGGCA
s ) g 60-
240- gm- g
g '% 20- '%
3 [ MR FL SNy
Y ' ' LG, LA G T, LA LG ' T,
WT SNPs WT SNPs WT SNPs
CCANI\BbNNGGCA CCANNA@NNGGCA CCANNAGNNHGCA
] .- . 3
£ . Sl M [
L é ] |A C TI L ] L ; I -i—l
WT SNPS WT SNPs WT SNPs
CCANNAGNNG@CA CCANNAGNNG CCANNAGNNGGCH
& 40- g 40- %
S 20- S 20- s
a-- -.ﬁ N |
E 0- 1 1 1 E 0- 1 1 I . E 0- 1 1 1
WT b SNPs I I WT I I SNPs I LWT I I SNPs

Fig 4. Analysis of the impacts of single nucleotide polymorphisms on the consensus CTCF motif in human GM12878 cells.

doi:10.1371/journal.pcbi.1004908.9004
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BEAF-32 influences TAD borders in Drosophila

We implemented the proposed model such that it can deal with either genomic coordinate
data or quantitative data. However, in the present study, we chose to focus on genomic coordi-
nate data as in [11, 34]. An advantage of this approach was that both DNA-binding proteins
and functional elements could be included within the same model. In addition, we observed
that logistic regression models built from genomic coordinate data usually outperformed those
obtained with quantitative data in terms of deviance ratio and AIC (model deviance ratios and
AICs are given in S1 Table).

The influences of genomic features such as DNA-binding proteins or gene transcription on
TAD border establishment or maintenance can be estimated by the proposed multiple logistic
regression. Using Drosophila Kc167 cell Hi-C data at 1 kb resolution, we assessed the effects of
insulator binding proteins, cofactors, gene transcription and functional elements on TAD bor-
ders. Although TADs were computed from 1 kb resolution Hi-C data, genomic features were
binned at an even higher resolution of 50 bp in order to better discriminate between genomic
features that influence TAD borders and those that do not, and to reduce standard errors of
model parameters (see Subsection Materials and Methods, Binned data matrix). In this subsec-
tion, we first focused on the effects of insulator binding proteins in driving TAD borders [35].

In Drosophila, there are five subclasses of insulator sequences [36]. Each subclass is bound
by a particular type of insulator binding protein (IBP): suppressor of hairy wing (Su(Hw)),
Drosophila CTCF (dCTCF), boundary-element-associated factor of 32 kDa (BEAF-32), GAGA
binding factor (GAF), and Zeste-White 5 (ZW5) [10]. In addition, the general transcription
factor dTFIIIC was recently identified as a new IBP [11]. We assessed enrichments of these
IBPs within TAD borders (Fig 5). We observed enrichments for all these IBPs (all coefficients

B > 1.34andall p-values p < 1 x 107°%). BEAF-32 was the most enriched IBP with a
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Fig 5. Comparison between enrichments by enrichment tests and influences by multiple logistic
regression of insulator binding proteins at topologically associating domain (TAD) borders of wild-
type Drosophila Kc167 cells. In both enrichment test and multiple logistic regression, beta parameters are
computed and displayed. Error bars show 95% confidence intervals of beta parameters.

doi:10.1371/journal.pcbi.1004908.9005
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coefficient § = 2.71, corresponding to an odds ratio OR = 15.03, whereas GAF was the least
enriched IBP with a coefficient = 1.34, corresponding to an odds ratio OR = 3.82.

Multiple logistic regression yielded different results (Fig 5). All beta coefficients decreased
reflecting colocalization among the proteins (average correlation of 0.28). Despite these correla-
tions, the tight 95% confidence intervals reflect that betas were estimated with low standard
errors. This is due to the very large number of observations (>>1 million) compared to the low
number of variables (6 variables) obtained for a binning at 50 bp. There were clear differences of
betas among the IBPs compared with enrichment analysis [5, 6]. Only BEAF-32 showed high

and significant beta (BEAF-32: B =192, p < 1x107°%). For other IBPs, betas were significant

but much lower (ff < 0.95, p < 1 x 107*°). Thus although dCTCF, dTFIIIC, GAF and Su(Hw)
were enriched at TAD borders, multiple logistic regression revealed that they weakly influence
TAD borders. High enrichments of these proteins are due to their correlations with BEAF-32.
For instance, previous work showed that numerous dCTCF sites align tightly with BEAF-32
[37]. These results supported the role of BEAF-32 as most influential IBP of TAD borders.

Architectural proteins impact more TAD-based organization than
transcription

There has been an ongoing debate to know whether transcription or architectural proteins are
the main cause of TAD border demarcation [6]. Using enrichment test, we observed that active

transcription start sites (TSSs) were enriched at TAD borders (B =182,p<1x 10729, as well

as architectural proteins such as BEAF-32 (f = 2.72, p < 1x107%°). Using multiple logistic
regression, we then estimated the effects of transcription and of architectural proteins on TAD
borders within the same model (S6 Fig). We observed that active TSSs had a significant positive

effect in TAD border establishment/maintenance ([} =042,p<1x 1072°). This effect was

much lower than the one of architectural protein BEAF-32 (B = 2.59, p<1x107%%). Our
model thus reveals that architectural protein BEAF-32 contributes much more to TAD-based
organization than transcription. However one might argue that the comparison between active
TSSs and BEAF-32 was not straightforward because the latter represented two distinct genomic
features, a functional element and a protein, respectively. Hence for a proper comparison
between transcription and architectural proteins, we compared within the same multiple logis-
tic regression the effects of the short isoform of Drosophila Brd4 homologue (Fs(1)h-S), a
major transcriptional factor involved in transcriptional activation, with the long isoform (Fs(1)
h-L), a recently identified architectural protein [38]. We observed that Fs(1)h-S had a signifi-
cant positive effect on TAD borders (B =1.87, p < 1x107°%), but which was lower than the
one of Fs(1)h-L ( B = 2.60, p < 1 x1072%). Our results thus highlighted the prevalent roles of
architectural proteins compared to transcription, which was highly consistent with recent
results suggesting a lower impact of transcription [13].

The role of cofactors in Drosophila

Recent work supported the idea that IBPs may favor long-range contacts by recruiting cofac-
tors directly involved in stabilizing long-range contacts [8-10]. In Drosophila, several cofactors
were identified: condensin I, condensin II, Chromator, centrosomal protein of 190 kDa
(CP190), cohesin [10, 13, 39, 40] and Fs(1)h-L [38]. We first analyzed by multiple logistic
regression all abovementioned cofactors in their own to understand their relative contribution
to TAD borders (57 Fig). Among the cofactors, CP190 had the highest influence on TAD bor-

ders in agreement with previous findings [5] (§ = 1.12, p < 1 x 10~2°). Because cofactors were
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Fig 6. Analysis of interactions between insulator binding proteins (IBPs) and cofactors at topologically
associating domain (TAD) borders of wild-type Drosophila Kc167 cells. Beta parameter corresponding to each
interaction IBP-cofactor from the multiple logistic regression is plotted. Interaction terms are detailed in Subsection
Materials and Methods, Analysis of interactions. Error bars show 95% confidence intervals of beta parameters. Barren is a
subunit of condensin |, Cap-H2 is a subunit of condensin Il and Rad21 is a subunit of cohesin.

doi:10.1371/journal.pcbi.1004908.9006

expected to be recruited by IBPs to the chromatin [8, 9, 39, 40], we then regressed cofactors
with all IBPs and all IBP-cofactor interactions (see S2 Table). We observed that CP190 still pre-
sented a high beta (§ = 1.13, p < 1 x 1072°), which reflect that additional IBPs are able to
recruit these cofactors in concordance with recent results [41].

An important question is to know if IBPs demarcate TAD borders depending on the pres-
ence of specific cofactors [10]. To answer this question, we assessed if the co-occurence of an
IBP with a cofactor could affect TAD borders by estimating the corresponding statistical inter-
action IBP-cofactor (Fig 6). Among the significant positive interactions, we reported effects for
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Fig 7. Analysis of functional elements using multiple logistic regression at topologically associating domain (TAD) borders of wild-type
Drosophila Kc167 cells. Error bars show 95% confidence intervals of beta parameters.

doi:10.1371/journal.pcbi.1004908.9007
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Su(Hw) with Rad21 (B = 0.44, p = 3 x 1077), and lower effects of Su(Hw) with Chromator
(B =0.29,p=2x 10™*), BEAF-32 with condensin I (Barren) (E =0.27,p=2x 107°), dTFIIIC

with Fs(1)h-L (# = 0.21, p = 0.001), dCTCF with condensin I (Barren) ( = 0.23,

p =2 x107%). These positive interactions reflected synergistic effects of IBPs with cofactors. We
did not report any significant positive statistical interaction between dCTCF and cohesin as
observed in human [8]. In contrast to vertebrates, Drosophila CTCF does not appear to rely on
cohesin to establish or maintain interactions [42]. Of interest, our method further highlighted
strong and significant negative interactions that revealed antagonistic effects at domain bor-
ders, in particular for BEAF-32 with cofactor CP190 ([} =—0.80,p<1x 1072%). As such, our
model may allow to retrieve both synergistic and antagonistic influences of co-factors, which
may better reflect the complexity behind the establishment or maintenance of TAD borders.

Analysis of functional elements in Drosophila

We sought to further investigate a wide variety of functional elements such as insulators and
regulatory sequences. Results are reported in Fig 7. Insulators were by far the most influential
functional elements with respect to domain borders ( B =5.07, p < 1x107%°), as established in
human [8, 31]. Regarding other functional elements, we found positive effects for repeat

regions ([3 =0.71, p < 1 x 107%°), and especially for tandem repeats on TAD borders

(f =1.10, p =5 x10""). Repeat regions were previously reported to spatially cluster together
[43]. In addition, snoRNA genes had a positive influence on domain borders ( B = 1.37,

p =1x107), which may reflect their role in higher-order chromatin structure [44]. Further-
more, a negative impact on TAD border was detected for regulatory sequences (B =1.87,

p =6 x 107'%), strengthening the hypothesis that functional long-range contacts involving reg-
ulatory elements could compete with structural contacts [45] (see Discussion).

Positive and negative effects of proteins in human

We next analyzed the effects of DNA-binding proteins on 3D domains of human genome
where fewer architectural proteins have been uncovered [29]. To investigate the possible con-
tributions of these proteins, we analyzed new 3D domains detected from recent high resolution
Hi-C data at 1 kb for GM12878 cells for which a large number of ChIP-seq data were available
[8]. Over the 69 proteins analyzed, 51 proteins presented very high and significant enrichments

(all coefficients § > 3 and all p-values p < 1 x 107%°

). Multiple logistic regression instead
detected 15 proteins with significant positive effects on domain borders (all coefficients § >
0.5 and all p-values p < 5 x 10~% S3 Table). Our analyses confirmed that, in contrast to Dro-
sophila, CTCF and cohesin (subunit Rad21) presented the highest effects among all factors
(CTCE: f§ = 1.90,p < 1x107%% cohesin: § = 1.91, p < 1 x 107%°), in complete agreement
with numerous studies showing their important roles in shaping chromosome 3D structure in
mammals [8, 9, 12]. ZNF143 had the third highest effect (fi = 1.85,p < 1x107%%), in total
agreement with a very recent study demonstrating its role in long-range contacts [46]. In addi-
tion, multiple logistic regression identified EZH2, the catalytic subunit of the Polycomb repres-
sive complex 2 (PRC2), as a protein that significantly impacted TAD borders (4th highest
effect: f = 1.32, p < 5x107"). In contrast, multiple logistic regression estimated a null beta
for candidate architectural proteins JUND ([} = 0.04, p = 0.85), Kaiso ([3 =0.43,p=0.10) and
a very low beta for MAZ (B =0.23, p =3 x107%). Although these three proteins colocalize or
interact with CTCF, our model suggests that they might not impact TAD borders. We also

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004908 May 20, 2016 13/24



®PLOS

COMPUTATIONAL

BIOLOGY

Identification of 3D Chromatin Organization Features

notably identified several factors associated with transcriptional activation that had significant
negative influences on TAD borders. These proteins included RXRA (f=-1.31,
p=3x107%,P300 (f = —1.22,p=1x10"'%), BCL11A (§ = —0.82, p = 1 x 10~°) and ELK1
(B =—0.74, p =4 x 107°), reinforcing the view that transcription could also interfere with
TAD borders depending on context.

Large-scale analysis of DNA motifs in human

In the previous subsection, analyses of DNA-binding proteins were limited by available ChIP-
seq data. Here we alleviated this limitation by analyzing transcription factor binding site
(TFBS) motifs available from the large MotifMap database [47]. Given the large number of
TFBS motifs (544 motifs), we used L1-regularization for parameter estimation. We identified

213 positive drivers (all coefficients p > 1)and 75 negative drivers (all coefficients B <1),
meaning that a large number of TFBSs actually play a role in TAD border establishment or

maintenance. CTCF motifs ranked first (§ = 45.34) in complete agreement with recent studies
[8, 31]. But our model also uncovered other TFBSs whose roles in TAD borders are less well

known such as EGR-1 ( = 34.04), p53 (§ = 25.55), MIZF (§ = 22.46), GABP (§ = 21.94)
and many others (for a complete list, see S4 Table). For instance, p53 is a major tumor suppres-
sor gene and the most frequently mutated gene (>50%) in human cancer [48]. Regarding nega-

tive drivers, we identified ALX4 (f = —35.82), EGR4 (§ = —26.72), ZNF423 (§ = —23.97).
All these results highlighted the great potential of TFBS motif analysis allowing the study of a
very large number of DNA-binding proteins.

Discussion

Here, we describe a multiple logistic regression (MLR) to assess the roles of genomic features
such as DNA-binding proteins and functional elements on TAD border establishment/mainte-
nance. Based on conditional independence, such regression model can identify genomic fea-
tures that impact TAD borders, unlike enrichment test (ET) and non-parametric models.
Using simulations, we demonstrate that model parameters can be accurately estimated for
both marginal genomic features (no interaction) and two-way interactions. In addition, we
show that our model outperforms enrichment test and random forests for the identification of
genomic features that influence domain borders. Using recent experimental Hi-C and ChIP-
seq data, the proposed model can identify genomic features that are most influential with
respect to TAD borders at a very high resolution of 1 kb in both Drosophila and human. The
proposed model could thus guide the biologists for the design of most critical Hi-C experi-
ments aiming at unraveling the key molecular determinants of higher-order chromatin
organization.

Enrichment test shows slight differences of enrichments among architectural proteins. This
could suggest that domain borders are determined by the number and levels of all proteins
present at the border rather than the presence of specific proteins [11, 13]. However MLR
instead reveals that only some architectural proteins influence the presence of 3D domain bor-
ders. Moreover, MLR retrieves both positive and negative contributions among most influen-
cial proteins, depending on contexts such as co-occurence. From these novel results, we
propose a biological model for 3D domain border establishment or maintenance (Fig 8). In
this model, three kinds of proteins are distinguished: positive drivers (8y;.r > 0), negative driv-
ers (Byrr < 0), and proteins that are enriched or depleted at borders but are not drivers (Sgr >
0 or Bgr < 0, and Bk = 0). Positive drivers favor attraction between domain borders leading
to the formation of 3D domains. CTCF and cohesin are well-studied positive drivers in
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Fig 8. Model for 3D domain border establishment or maintenance.

doi:10.1371/journal.pcbi.1004908.9008

mammals [8, 10]. By contrast little is known about negative drivers of 3D domain borders that
could favor repulsion between specific chromatin regions [49]. Repulsion phenomenon could
be the result of allosteric effects of loops in chromatin [45]. Negative drivers could also regulate
disassembly of protein complex that mediate long-range contacts [50].

In Drosophila, MLR identifies BEAF-32, a well-characterized IBP, as a positive driver of
TAD borders [51, 52]. Conversely, other IBPs including dCTCF, dTFIIIC, GAF and Su(Hw)
are found significantly enriched at TAD borders, but present weak or no influences, in agree-
ment with recent works [53]. Regarding cofactors, CP190 presents a high and significant posi-
tive influence on domain demarcation, in agreement with previous findings [5]. Regarding
functional elements, although our data highlight that insulators are by far the main positive
drivers of TAD borders, they also show that additional elements, that are known to colocalize
in 3D [18, 43, 44], play a role including repeat regions. Moreover, MLR suggests that snoRNA
genes are novel functional elements that positively influence border demarcation. Recent
works suggest that active chromatin and transcription also play a key role in chromosome par-
titioning in TADs [53]. Here our results reveal that both architectural proteins and transcrip-
tion contribute to TAD borders. In contrast, regulatory regions are identified as negative
drivers of TAD borders. One possible explanation is that such regulatory regions are involved
in functional long-range contacts with gene promoters that would compete with the formation
of more structural contacts at the origin of TADs [45]. Alternatively, a negative influence may
be linked to the transient nature of certain functional contacts [54].

Almost half of dCTCF and cohesin sites are overlapping in Drosophila, and knockdown of
dCTCEF results in a strong decrease of cohesin binding [11]. As such, one might expect syner-
gistic effects of dCTCF with cohesin (also called statistical interaction) in driving TAD borders.
However, such conclusion could not be drawn. Following statistical theory, it is not because
two variables are correlated (here dCTCF and cohesin colocalize), that it implies a synergistic
effect of the two variables on TAD borders. Although dCTCF and cohesin are both enriched at
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TAD borders, MLR does not detect a significant interaction of dCTCF with cohesin. Instead
we observe a high interaction of Su(Hw) with cohesin. Negative interactions that reflect antag-
onistic effects between architectural proteins are found between IBP BEAF-32 and cofactor
CP190. These antagonistic effects suggest that cofactors might not always help IBPs in stabiliz-
ing loops [10]. One explanation is that cofactors could sometimes compete with IBPs for long-
range protein-protein interactions.

In human, MLR identifies well-studied architectural proteins CTCF and cohesin as the
most influential positive drivers of 3D domains, in complete agreement with their established
roles in shaping chromosome 3D structure [8, 9, 12]. MLR also points out the positive influ-
ences of ZNF143 and PRC2 proteins whose recent studies have uncovered their roles in con-
trolling spatial organization [30, 46]. In addition, our model reveals the roles of additional
factors including RXRA, P300, BCL11A and ELK1 as negative drivers of 3D domain borders.
P300 was previously shown to be depleted at domain borders [55]. Here we find that P300 and
three other proteins can counteract the establishment or maintenance of domain borders. P300
is a well-known regulator of cell growth and division, and helps prevent the growth of cancer-
ous tumors [56]. Interestingly, the three other proteins RXRA, BCL11A and ELK1 are also
related to cancer [57-59]. Furthermore, the analysis of a large number of TFBS motifs con-
firmed the role of CTCF in TAD border formation [8, 31]. But this analysis also uncovered
many other TFBSs, such as p53, a major tumor suppressor gene [48].

The proposed method relies on the accurate identification of 3D domains. To further
improve our understanding of the key drivers of 3D domain borders, Hi-C experiments at a
higher resolution are needed. In addition, a variety of methods have been recently developed
for 3D domain inference, and no consensus has been reached yet to determine which method
is the most appropriate. Another important question is to understand the roles of key drivers
in chromatin interactions within domains. For instance, it is essential to identify proteins that
influence functional interactions between enhancers and promoters that regulate gene expres-
sion. Although far more complex, it is of note that similar regression approach may largely
help in retrieving positive from negative patterns in these contexts.

Materials and Methods
Hi-C data and topologically associating domains

For Drosophila 3D domain analysis, we used publicly available high-throughput chromatin
conformation capture (Hi-C) data from Gene Expression Omnibus (GEO) accession
GSE63515 [13]. Hi-C experiments were done for wild-type Drosophila melanogaster Kc167
cells with DpnlI restriction enzyme. Hi-C data were binned at 1 kb resolution. Contact matri-
ces were normalized using ICE method [15] implemented in the R package HiTC (http://www.
bioconductor.org/packages//2.11/bioc/html/HiTC.html). From the normalized contact matri-
ces, TAD genomic coordinates were identified using HiCseg method [19].

For human 3D domain analysis, we used publicly available 3D domains of GM12878 cells
identified by the Arrowhead algorithm from Gene Expression Omnibus (GEO) accession
GSE63525 [8].

ChiIP-seq data

For Drosophila analysis, we used publicly available binding profiles of chromatin proteins of
Drosophila melanogaster wild-type embryonic Kc167 cells. ChIP-seq data for CP190, Su(Hw),
dCTCF and BEAF-32 were obtained from GEO accession GSE30740 [60]. ChIP-seq data for
Barren (condensin I), Cap-H2 (condensin II), Chromator, Rad21 (cohesin), GAF and dTFIIIC
were obtained from GEO accession GSE54529 [11]. ChIP-seq data for Fs(1)h-L and Fs(1)h-LS

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004908 May 20, 2016 16/24



®PLOS

COMPUTATIONAL

BIOLOGY

Identification of 3D Chromatin Organization Features

were obtained from GEO accession GSE42086 [38]. ChIP-seq peaks were called using MACS
1.4.2 (https://github.com/taoliu/MACS). Fs(1)h-S peaks were defined as peaks from Fs(1)h-LS
that did not overlap any Fs(1)h-L peak.

For human analysis, we used publicly available ChIP-seq peaks of 69 chromatin proteins
(ATF2, ATF3, BATF, BCL11A, BCL3, BCLAF1, BHLHE40, BRCA1, CEBPB, CHD1, CHD2,
CTCF, E2F4, EBF1, EGR1, ELF1, ELK1, ETS1, EZH2, FOS, FOXM1, IKZF1, IRF3, IRF4,
JUND, MAFK, MAX, MAZ, MEF2A, MEF2C, MTA3, MXI1, MYC, NFATCI1, NFE2, NFIC,
NFYA, NFYB, NRF1, P300, PAX5, PBX3, PIGG, PML, POU2F2, RAD21, REST, RFX5,
RUNX3, RXRA, SIN3A, SIX5, SP1, SRF, STATI, STAT3, STAT5A, TAF1, TCF12, TCF3,
USF1, USF2, YY1, ZBTB33, ZEB1, ZNF143, ZNF274, ZNF384 and ZZZ3) of GM12878 cells
from ENCODE [61].

Functional elements

For Drosophila analysis, we used RNA-seq data from wild-type Kc167 cells to map active tran-
scription start sites (TSSs) [62]. For all other functional elements, we used flybase reference
genome annotation (http://flybase.org/).

DNA motifs

For human analysis, we used transcription factor binding site (TFBS) motifs from the Motif-
Map database (http://motifmap.ics.uci.edu/).

Binned data matrix

From TAD coordinates, ChIP-seq data and functional element mapping, we constructed
50-base and 1-kb binned data matrices that were further used for multiple logistic regressions
with Drosophila and human data, respectively. A matrix was composed of a column variable Y
that indicated if the genomic bin belonged to a TAD boundary (Y = 1) or not (Y = 0). To define
TAD boundaries, we extracted 1 kb and 20 kb regions that were centered around the positions
demarcating two TADs in Drosophila and human genomes, respectively. The other column
variables X = {Xj, . . ., X,,} were the set of p genomic feature variables of interest. If genomic
coordinate data were used (e.g., ChIP-seq peak or functional element coordinates), variable X;
denoted the presence (X; = 1) or absence (X; = 0) of the genomic feature i within the genomic
bin. Note that if a genomic coordinate only overlapped x% of the genomic bin, then X; = x%. If
quantitative data were used (e.g., ChIP-seq signal intensity log(ChIP/Input)), variable X; was
the average value within the genomic bin.

Enrichment test

Enrichment test assesses the enrichment of a genomic feature within chromatin domain bor-
ders. The genomic feature of interest can be protein-DNA binding sites detected from ChIP-
seq experiment. Chromatin domain borders can be borders between topologically associating
domains identified from Hi-C experiment.

From the contingency table (Table 1), one can test the odds ratio that reflects the magnitude
of enrichment (OR > 1) or depletion (OR < 1) of the genomic feature within the domain bor-
ders. The test consists in assessing the following null (H,) and alternative (H;) hypotheses
about odds ratio OR:

H,:OR=1 ()

H, :OR+#1 (3)
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Table 1. Example of a contingency table to assess enrichment (or depletion) of a genomic feature
within the domain borders.

Presence of the feature Absence of the feature
Inside border 500 5000
Outside border 2000 200000

doi:10.1371/journal.pcbi.1004908.t001

The odds ratio is the ratio of the inside border odds (500/5000) to the outside border odds
(2000/2000000). Here OR = —2X/500_ _ (),

2000/200000
Previous enrichment test can be reformulated as a simple logistic regression model:
Prob(Y = 1|X))

N prob(v = 1jx) Do H X )
Variables X; € X and Y are described in Subsection Materials and Methods, Binned data
matrix. In the simple logistic regression, the slope parameter f is the natural logarithm of the
abovementioned odds ratio OR. Thus § > 0 means enrichment, while < 0 reflects depletion.
Using logistic regression model, parameter 5 can be tested by Wald’s test. The Wald’s statistic
is calculated as:

(5)

Where 3+ is the beta parameter value under Hy, assumption (B« = 0) and 6 denotes the stan-
dard error of parameter f3. Statistic W follows a normal distribution.

An important drawback of enrichment test relies on the fact that it does not account for
potential colocalizations (i.e. correlations) among the genomic features of interest. The pres-
ence of correlations might prevent the identification of the genomic features that really drive
the establishment or maintenance of domain borders. For instance, if two genomic features are
significantly enriched, this might not mean that both are involved in the establishment or
maintenance of the borders. One feature might truly affect borders while the other feature
might only be correlated to the former. There is thus a need for a model that could identify
those enriched features that drive the presence of borders.

Multiple logistic regression

The proposed multiple logistic regression is an extension of the simple logistic regression for p
genomic features:

a Prob(Y = 11X)
1 — Prob(Y = 1|X)

= ﬁo +pX (6)

Where X = {X;, ..., X} is the set of p genomic features of interest and # = {8, . . ., B,} denotes
the set of slope parameters (one parameter for each genomic feature). As for simple logistic
regression, each f3; € B coefficient can be tested by a Wald’s test.

By default, multiple logistic regression 5, and 8 parameters are estimated by iteratively
reweighted least squares. However, when there are a large number of correlated genomic fea-
tures in the model, L1-regularization is applied and parameters are learned by coordinate
descent [26]. The L1-regularization lambda that gives the lowest mean cross-validated error is
selected. To assess quality of fit for a model, we use the deviance ratio defined as the ratio of the
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fitted model deviance to the saturated model deviance. We also use Akaike information crite-
rion (AIC).

The matrix X is sparse and the Wald’s test might be biased when data are sparse [27].
Hence likelihood ratio test (LRT) that is not affected by data sparseness can be used instead. To
test parameter §; with LRT, two models are built: a first model M, over all variables X, and a
second model M, over all variables except X; (X \ X;). Then the following D; statistic is calcu-

lated:
L
D, — —oln| 220 7)
Ly,

Where L, is the likelihood of M, and L, is the likelihood of M,. Statistic D; follows a chi-
squared distribution with one degree of freedom. The better accuracy of LRT comes at the cost
of more intensive computations. In practice, we observe that Wald’s test p-values are close to
LRT p-values.

In the multiple logistic regression setting, parameter §; measures the effect of genomic feature
X; on the presence of borders conditional on the other genomic features that belong to X \ X;. A
value of §; > 0 or ; < 0 means that the genomic feature X; positively or negatively influences
the presence of borders, respectively. A value of §; = 0 reflects the fact that the genomic feature
X; does not affect the presence of borders. If two genomic features X; and X, are colocalized and
only X drives the establishment or maintenance of domain borders, then only the correspond-
ing B, parameter will be significantly different from zero. However the above formulation of the
model does not account for potential statistical interactions between genomic features.

Analysis of interactions

Interaction terms can be included in the multiple logistic regression to account for potential
interactions between genomic features. For instance, one can include in the model an interac-
tion term between two genomic features X; and X5:

Prob(Y = 11X, X,)
n
1—Prob(Y = 1|X,X,)

= ﬁo + ﬁ]X] + ﬁZXZ + ﬁ12X1X2 (8)

The product X; X, is the statistical interaction term between the two genomic features X; and
X,. Parameter f3,, measures the effect of interaction X; X, on the presence of borders.

Data simulation

In order to assess the accuracy of multiple logistic regression parameter estimation, we simu-
lated data that were the most similar to the real genomic data using the following procedure.
First, for a simulation s, a set of observation rows was randomly drawn with resampling from
matrix X (nonparametric bootstrap). This resampling allowed to keep the original correlation
structure among the variables. The bootstrapped data matrix was denoted X*. Second #° =
{B3 -, B,} parameter values were drawn from a normal distribution N (1, 0) with mean =0

and variance o = 1. Parameter f3, (intercept) value was drawn from a normal distribution with
same variance but with mean y = —4.5. This setting of the mean of f§;, allowed to control the
number of values Y = 1 close to the one observed from real data (the number of borders in real
data was low). Third a quantitative variable Z° was calculated using the regression formula:

Z* = f, + p’X". A probability variable Prob’® was calculated by the inverse logit function: 1/

(1 + exp(—Z°)). Then each probability value from Prob* was used to draw a value for Y* using
binomial distribution.
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We also used simulated data to compare multiple logistic regression with enrichment test
and random forests. As previously, for a simulation s, we used non-parametric bootstrap and
kept the correlation structure of original data. Among the variables, a subset of variables X, €
X was chosen to be causal, i.e. to influence the presence of borders. We chose a generative
model that was non-linear and non-additive not to favor multiple logistic regression over other
models. For this purpose, we set a probability p, of the presence of a border in a bin if all causal
variable values were inferior to 0.5. We also set a probability p; (with p; > po) if at least one
causal variable had a value superior or equal to 0.5. Values of p, and p; were chosen according
to the number of borders in real data. Then, for each bin, the value for Y* was drawn using a
binomial distribution with either py or p; depending on the causal variable values.

Implementation and availability

The multiple logistic regression is implemented in R language. The model is available in the R
package “HiCfeat” which can be downloaded from the Comprehensive R Archive Network
and from the web page of Raphaél Mourad (https://sites.google.com/site/raphaelmouradeng/
home/programs).
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3.4.3.2 HiCglmi: identification of protein complex mediating looping

DNA loops result from the physical contact of two separated loci brought in 3D
proximity. Those loops are essential to numerous key processes in the cell, such
as gene expression [Jin et al. 2013] and DNA replication [Pope et al. 2014]. For
instance, the expression of a gene is often regulated by regulatory elements that
are far linearly on the genome, but that are in 3D contact with the gene promoter.
In addition, several studies have shown that the disruption of DNA loops can lead
to genetic diseases and cancers [Lupidnez et al. 2015, Hnisz et al. 2016]. Under-
standing how DNA loops are formed and what are their molecular determinants is
thus a fundamental issue.

I proposed a generalized linear model with interactions (GLMI) to identify the
molecular determinants of loops, including protein and DNA sequence (Equation
1 and Figure 1, from the article "Uncovering direct and indirect molecular deter-
minants of chromatin loops using a computational integrative approach” below)
[Mourad et al. 2017]. GLMI has multiple assets over existing approaches such as
enrichment test, correlation and random forests. Compared to enrichment test
[Dixon et al. 2012, Djekidel et al. 2015] or correlation [Pancaldi et al. 2016] that
respectively assesses the protein enrichment or correlation at highly confident loops,
GLMI quantitatively links the frequency of all long-range contacts to complex
co-occupancies of proteins while accounting for known Hi-C biases and polymer
background. Moreover, GLMI accounts for colocalizations among protein binding,
a strong issue when analyzing protein binding sites known to largely overlap over
the genome. In contrast to random forests [He et al. 2014] which are efficient
predictive models, but sometimes poor explanatory ones, GLMI allows to identify
key chromatin loop driver proteins and motifs. GLMI can also uncover numerous
mechanisms behind loop formation using higher-order interaction terms and proper
confounding variables. For instance, GLMI can determine if a cofactor is necessary
to mediate long-range contacts between distant protein binding sites.

Using real Drosophila Hi-C and ChIP-seq data, we validate numerous GLMI
predictions of long-range contacts that involve insulator binding proteins, cofactors
and motifs, and which were confirmed by previous microscopy and mutational stud-
ies. For instance, our model estimates long-range contacts between distant BEAF-
32 motifs, which were previously observed with both fluorescence cross-correlation
spectroscopy [Vogelmann et al. 2014] and high-resolution microscopy [23]. In ad-
dition, our model finds a mediating role of CP190 in bridging long-range contacts
between distant BEAF-32 and GAF binding sites, in agreement with mutational
experiments [19]. Of interest, GLMI analyses highlight a role of cohesin in stabi-
lizing long-range contacts between CTCF sites in Drosophila, similarly to its role
in human [7]. Supporting this role, we show that such influence is reduced upon
cohesin subunit Rad21 depletion. It has to be noted that the absence of complete
loss of contacts between CTCF sites after Rad21 depletion can be explained by the
fast turnover of chromosome-bound cohesin in interphase [56]. Moreover, GLMI
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outperforms enrichment test, correlation and random forests in the identification
of known architectural proteins and motifs, and in the detection of the effects of
mutations in the dCTCF motif.
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Abstract

Chromosomal organization in 3D plays a central role in regulating cell-type specific tran-
scriptional and DNA replication timing programs. Yet it remains unclear to what extent the
resulting long-range contacts depend on specific molecular drivers. Here we propose a
model that comprehensively assesses the influence on contacts of DNA-binding proteins,
cis-regulatory elements and DNA consensus motifs. Using real data, we validate a large
number of predictions for long-range contacts involving known architectural proteins and
DNA motifs. Our model outperforms existing approaches including enrichment test, random
forests and correlation, and it uncovers numerous novel long-range contacts in Drosophila
and human. The model uncovers the orientation-dependent specificity for long-range con-
tacts between CTCF motifs in Drosophila, highlighting its conserved property in 3D organi-
zation of metazoan genomes. Our model further unravels long-range contacts depending
on co-factors recruited to DNA indirectly, as illustrated by the influence of cohesin in stabiliz-
ing long-range contacts between CTCF sites. It also reveals asymmetric contacts such as
enhancer-promoter contacts that highlight opposite influences of the transcription factors
EBF1, EGR1 or MEF2C depending on RNA Polymerase Il pausing.

Author summary

Chromosomal DNA is tightly packed in three dimensions (3D) such that a 2-meter long
human genome can fit into a microscopic nucleus. Recent studies have revealed that such
packing of DNA is not random but instead structured into functional DNA loops. Those
loops are essential to numerous key processes in the cell, such as genome expression and
DNA replication. In addition, disruption of DNA loops can lead to genetic diseases and
cancers. Understanding how DNA loops are formed and what are their molecular deter-
minants is thus a fundamental issue. In this work, we propose a computational model to
identify the molecular determinants of loops, including protein and DNA sequence. Most
notably, the model offers insights in the different mechanistic scenarios behind loop for-
mation. Using this model, we uncover numerous novel DNA loops and underlying
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mechanisms in Drosophila and human. We find that the orientation-dependent specificity
between CTCF motifs is conserved in metazoans. We show how loops between DNA-
binding proteins can be mediated by additional cofactors. Our analyses further reveal
opposite influences of transcription factors depending on RNA Polymerase II pausing.

Introduction

Chromosomal DNA is tightly packed in three dimensions (3D) such that a 2-meter long
human genome can fit into a nucleus of approximately 10 microns in diameter [1]. Such 3D
structure of chromosome has recently been explored by chromosome conformation capture
combined with high-throughput sequencing technique (Hi-C) at an unprecedented resolution
[2-4]. Multiple hierarchical levels of genome organization have been uncovered such as com-
partments A/B [5] and topologically associating domains (TADs) [2, 3]. In particular, TADs
represent a pervasive structural feature of the genome organization and are highly conserved
across species. Functional studies revealed that spatial organization of chromosome is essential
to numerous key processes such as for the regulation of gene expression by distal enhancers
[4] or for the replication-timing program [6].

The comprehensive analysis of 3D chromatin drivers is currently a hot topic [7]. A growing
body of evidence supports the role of insulator binding proteins (IBPs) such as CTCF, and
cofactors like cohesin, as mediators of long-range chromatin contacts [3, 8, 9]. In human,
high-resolution Hi-C mapping has recently revealed that loops that demarcate domains were
often marked by asymmetric CTCF motifs where cohesin is recruited [10]. Depletions of
CTCEF and cohesin decreased chromatin contacts [11]. However the impact of these depletions
was limited suggesting that other proteins might be involved in shaping the chromosome in
3D. For instance, numerous IBPs, cofactors and functional elements were shown to colocalize
at TAD borders [9, 12]. The identification of 3D chromatin drivers is thus an active avenue of
research. Computational approaches that integrate the large amount of available protein bind-
ing data (chromatin immunoprecipitation followed by high-throughput DNA sequencing,
ChIP-seq), functional elements (promoters and enhancers), and DNA motifs, with Hi-C data
may be well-suited to identify novel factors that participate in shaping the chromosome in 3D
[13].

In this paper, we propose a model to comprehensively analyze the roles of genomic features,
such as DNA-binding proteins or motifs, in establishing or maintaining chromatin contacts.
The proposed model offers insights in the different mechanistic scenarios behind loop forma-
tion, because of its ability to rigorously assess the effect of protein complex on long-range con-
tact frequency. Using real data, the model successfully predicted numerous long-range
interactions involving motifs and proteins as highlighted in previous independent studies.
Moreover, our model outperformed current approaches to identify architectural proteins and
motifs, and to detect the effects of single nucleotide polymorphisms (SNPs) in the dCTCF
motif. In addition, our model is the only approach able to assess the effect of a cofactor in
mediating long-range contacts between distant protein binding sites, such as cohesin with
CTCEF. Using recent Drosophila and human Hi-C data at high resolution, combined with a
large number of ChIP-seq, RNA-seq, CAGE-seq and DNA motif data, we revealed numerous
novel motifs, insulator binding proteins, cofactors and functional elements that positively
or negatively impact long-range contacts depending on transcriptional activity or motif
orientation.
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Results and discussion

The model

We propose to use a generalized linear model with interactions (GLMI) to analyze the effects
of genomic features such as architectural protein co-occupancies on chromatin contacts at
genome-wide level:

10g(E[y|X]) = B +pX

— p 4Bt BB RC B M

Variable y denotes the number of Hi-C contacts for any pair of bins on the same chromosome.
Variable set X = {d, B, C, g} comprises several variable subsets: the log-distance variable d, the
bias variables B, the confounding variable set C and the genomic variable of interest g. The
log-distance variable d accounts for the background polymer effect (log-log relation between
distance and Hi-C count) [14]. Bias variables B = {len, GC, map} are known Hi-C biases
including fragment length (len), GC-content (GC) and mappability (map) that are computed
asin [15] (S1 Appendix, Bias variable computation). Including those bias variables into the
model allows to correct for biases in Hi-C data. Bias normalization by matrix balancing meth-
ods [16] is avoided, because these methods might remove effect of genomic variable of interest.
Variable g represents the genomic feature of interest, whose associated 3, parameter value
reflects its effects on chromatin contacts. Variable set C comprises confounding variables
included to properly estimate 3, Model (1) is very general and can be developed in multiple
versions depending on the variable g of interest. In the following paragraphs, we will see the
different kinds of variables g. The corresponding models are detailed in Subsection Materials
and Methods, The different models.

We illustrate the different model variables in Fig 1. For simplicity, we illustrate our model
with protein binding sites, yet the same model is applicable to many other genomic features
such as motifs or promoters. Let consider a pair of bins that we call left bin (L) and right bin
(R). The attribution for left and right bins is arbitrary. Let also consider 3 genomic features F;
(whose binding is colored in blue in Fig 1), F; (in red) and Fy (in green) that represent binding
sites of 3 different proteins. For the genomic feature F;, occupancy variables z;; and z;z denote
the occupancies of F; on left and right bins, respectively. For an occupancy variable, a value of
0/1 means absence/presence of the corresponding feature on the bin, e.g. absence/presence of
the protein on the bin (a value between 0 and 1 means partial overlap of the feature). Occu-
pancy variables are used to build 4 main kinds of model variables as follows.

A “homologous interaction” variable n;; is the product of z;; and z;r (n; = z;1 X Z;z). The
associated f§, parameter reflects the extent by which the genomic feature F; interacts with itself
through chromatin contacts (Fig 1a). For instance, distant CTCF binding sites were shown to
form loops in human [10, 17].

A “heterologuous interaction” variable n; is the average of the product z;; x z;z and the
product zj; X zig (n; = 5 (2, X Z; +z; X 2,)), because both products are identically associ-
ated to y. The associated ﬁnij parameter reflects the extent by which the genomic feature F;

interacts with another genomic feature F; through chromatin contacts (Fig 1b). For instance,
enhancers are in long-range contacts with promoters to regulate target gene expression
[14, 18].

A “homologous interaction cofactor” variable ¢ is the product of an interaction variable
n;; and an interaction variable ny (C;ix = ny; X Ny = Z;; X Z;g X Zp X Zir). Here we consider the
cofactor Fy as a protein that does not directly bind to DNA, but which is instead bound by an
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https://doi.org/10.1371/journal.pchi.1005538.9001

insulator binding protein F; (IBP) to DNA, such as cohesin is recruited by CTCF to DNA.

Hence we expect that a cofactor will be found at both bins L and R in contact, e.g. cohesin ring
entraps both chromatin fibers and is thus observed at both bins [10, 17]. That explains why ¢;;
is the product of n;; and ny. The associated f§, parameter reflects the extent by which chroma-

tin contacts between genomic feature F; and itself are mediated by a genomic feature Fy, the
cofactor (Fig 1c).

A “heterologous interaction cofactor” variable ¢ is the product of an interaction variable n;
and an interaction variable ny (¢, = ny; X ny, =5 (2 X Zg X 2y X Zi + 2y X Zig X Zy X Zyy).

Here we consider the cofactor Fy as a protein that does not directly bind to DNA, but which is
instead bound to two IBPs F; and F;. For instance, a loop can be mediated by CP190 that binds
to BEAF-32 and GAF sites that are distant [19]. The associated ﬁcijk parameter reflects the extent

by which chromatin contacts between genomic features F; and F; are mediated by a third geno-
mic feature Fy, the cofactor (Fig 1d).
In the previous paragraphs, we introduced numerous variables that were the products of

simpler variables, namely the occupancy variables. In (generalized) linear regression, those
product variables are called “interaction” terms. To detect such interaction effects, one usually
needs a large number of observations. We will see in the next subsections that the tremendous

amount of data provided by Hi-C experiments allows to detect such interaction effects with
accuracy. The model and the different variables will be illustrated with real world scenarios in
the next subsections.
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Prediction of known factors and validation with experimental data

We first sought to validate our model using experimental data. For this purpose, we focused
on the Drosophila model because several insulator binding proteins (IBPs) that mediate long-
range interactions have been well characterized in this organism. Drosophila IBPs comprise
suppressor of hairy wing (Su(Hw)), Drosophila CTCF (dCTCF), boundary-element-associated
factor of 32 kDa (BEAF-32), GAGA binding factor (GAF), Zeste-White 5 (ZW5) [20], the gen-
eral transcription factor dTFIIIC [9] and DNA replication-related element factor (DREF) [7].
We analyzed Kc167 Hi-C data at 10 kb resolution and focused on 20kb-1Mb distances for
which contact frequencies were accurately measured experimentally [21]. At this distance
range, the log-log relation between Hi-C count and distance was linear (R* = 0.99, S1 Fig), sup-
porting the use of the log-distance term in the model. The data comprised approximately 1
million of observations, which allowed to detect higher-order interactions with enough preci-
sion (tight parameter confidence intervals reflected by low p-values, see below). Because of Hi-
C count overdispersion, we used negative binomial regression as the most appropriate specifi-
cation of the generalized linear model.

It has been shown that BEAF-32 motifs can form long-range interactions with each other
using both fluorescence cross-correlation spectroscopy [22] and high-resolution microscopy
[23]. Following this observation, we first validated our model by successfully estimating long-
range contacts between the BEAF-32 CGATA motifs using model (2) (8 py = 6.7 % 10°
p < 107%%; Fig 2a; model (2) and all other models used in the following are described in Sub-
section Materials and Methods, The different models). This result was confirmed as we
observed that the Hi-C count increased with co-occupancy of BEAF-32 motifs (variable n;)
(Fig 2b). We also observed long-range contacts between dCTCF motifs B ny = 2.4 % 10%,

p =3 x 107", highlighting their important roles in loop formation in Drosophila as observed
in human [10, 17]. Over the 7 known IBPs, the model correctly identified all IBP motifs as
involved in long-range contacts among themselves (Fig 2c). Next the same approach was
used to evaluate the model’s ability to discriminate between the 7 IBP motifs (true positives)
and 83 other DNA-binding protein motifs (false positives). This approach obtained good pre-
dictions (area under the curve (AUC) = 0.855; Fig 2d). Among the motifs that we considered
as false positives, M1BP and Ttk69K motifs presented high and significant interaction effects
(M1BP: ﬁn,i = 1.7 x 10%; Ttk69K: B"ii = 2.3 x 10*, p < 107'2, resp.). These results suggested
that M1BP and Ttk69K might represent new insulator-binding protein candidates. Accord-
ingly, M1BP protein binds to the promoters of paused genes that were shown to be involved
in long-range contacts [18, 24]. Ttk69K protein has a homomeric dimerization BTB/POZ
domain that could help bridging two distant proteins through long-range contacts [22].

We then used GLMI to study the role of cofactors that cannot directly bind to DNA, but are
instead recruited by IBPs, and are required to mediate or stabilize long-range contacts between
two IBP binding sites. In Drosophila, well-known cofactors include condensin I, condensin 11,
Chromator, centrosomal protein of 190 kDa (CP190), cohesin [19-22], Fs(1)h-L [25] and
lethal (3) malignant brain tumor (L(3)Mbt) [7]. Most notably, fluorescence cross-correlation
spectroscopy (FCCS) experiments have shown that CP190 is required to bridge long-range
contacts between two BEAF-32 binding sites [22]. Using ChIP-seq peak data with model (4),
we estimated a significant and positive effect of CP190 in mediating long-range contacts

between BEAF-32 sites (Bc,-,-k = 878, p < 107 Fig 2e), in complete agreement with recent
work [22]. Similar result was obtained for Chromator in mediating long-range contacts
between BEAF-32 sites (Bcﬁk = 3.4 x 10%, p < 107%°) [22]. In addition, previous BEAF-32
mutation by our group has revealed that cofactor CP190 is also required to bridge long-range
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contacts between BEAF-32 and GAF binding sites [19]. Using ChIP-seq peak data with model
(5), we estimated a significant and positive effect of CP190 in bridging distant BEAF-32 and

GAF sites (j o = L3 X 10%, p < 107%% Fig 2e) [19]. We applied the same modeling approach
to the 6 other known cofactors and found that all were associated with significant positive
effects in mediating contacts between BEAF-32 and GAF binding sites (all betas i o > 326, all

p-values p < 107 Fig 2f). Because CP190 was also shown to mediate long-range contacts
between BEAF-32 and dCTCF, and between BEAF-32 and Su(Hw) [19], we estimated the cor-
responding cofactor effects. We again found significant positive effect of CP190 between

BEAF-32 and dCTCF (8 o = 892,p < 107°%), but our method only detected a slightly signifi-
cant mediating effect of CP190 between BEAF-32 and Su(Hw) ([3% = 175,p=0.02). In

human, the most studied cofactor is cohesin that is able to entrap two chromatin fibers thereby
stabilizing long-range contacts between CTCF sites [10, 17]. Hence we assessed the impact of
cohesin in mediating long-range contacts between two dCTCF binding sites in Drosophila. We
found a significant and positive effect of cohesin B o = 105.8,p < 10 Fig 2g), thus sup-
porting a conserved function of cohesin in stabilizing long-range contacts between CTCF sites
in metazoans.

We further tested our model for cofactor effects using perturbed conditions such as the
removal of these cofactors, as obtained through knocking-down (KD) followed by Hi-C
experiment. Of note, Hi-C experiments are expensive and complex to carry out, and the pos-
sibility to predict long-range contacts upon such KD is of major importance. We compared
the impact of cohesin in the context of long-range contacts bridging CTCF sites in WT and
Rad21 (cohesin subunit) KD Hi-C data. Our model estimated a significant but lower cofactor
effect of cohesin in Rad21 KD (8, = 75.7, p=9 x 10~*?), compared to WT (§, = 1052,

p < 107%°). The difference between WT and Rad21 KD associated coefficients was negative
and significant (beta difference = —30.1, p = 0.027), corresponding to a beta decrease of 28%
(Fig 2h). This result therefore validated the estimated effect of cohesin in mediating distant
dCTCEF binding sites, which decreased upon cohesin depletion as expected.

Using real data, we concluded that our model successfully predicted the roles of IBP motifs
in long-range contacts between distant loci, as well as the roles of known cofactors in bridging
distant IBP binding sites. The GLMI predictions were validated in the literature and using pro-
tein KD followed by Hi-C experiment.

GLMI outperformed existing methods

We then compared GLMI with existing methods for their ability to identify genomic features
known to be involved in long-range contacts. For this purpose, we compared GLMI with (1)
enrichment test (ET) on highly confident chromatin interaction pairs as previously [26], (2)
correlation (Cor) on highly confident chromatin interaction pairs [27] and (3) random forests
(RF) discriminating highly confident chromatin interaction pairs from non-interacting pairs
[28]. As a first and simple benchmark, we assessed the different methods to identify long-
range contacts between protein binding sites of the same proteins (model (2)). We evaluated
the ability to discriminate between architectural proteins known to be involved in long-range
contacts (13 true positives including IBPs and cofactors) and random protein peaks (100 false
positives) using receiver operating characteristic (ROC) curves. We observed that all four
methods were very efficient to detect long-range contacts between known architectural protein
binding sites (Fig 3a). In particular, GLMI and Cor showed perfect predictions (AUC = 1). RF
and ET were also very accurate (AUC > 0.94). Previous benchmark was an easy task because it
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https://doi.org/10.1371/journal.pcbi.1005538.9003

relied on random protein peaks whose binding was very different from real protein binding.
For a more realistic benchmark, we then evaluated the ability to discriminate between motifs
whose proteins are known to be involved in long-range contacts (7 true positives) and other
DNA-binding protein motifs (83 false positives) using ROC curves. Using this benchmark, all
the four methods performed less well (Fig 3b). However we found that GLMI clearly outper-
formed the three other methods to detect long-range contacts between DNA motifs known to
be involved in chromatin interactions (AUCg; pr = 0.855).

Another benchmark consisted in identifying long-range contacts between binding sites of
a protein and active promoters. Here, as previously, we evaluated the ability to discriminate
between architectural proteins known to be involved in enhancer-promoter contacts (13
true positives including IBPs and cofactors) and random protein peaks (100 false positives)
using ROC curves. We observed that all four methods were very efficient to detect long-
range contacts between known architectural protein binding sites and active promoters (Fig
3¢). In particular, GLMI and Cor showed excellent predictions (AUC g = 0.985 and
AUCc,, = 1). We then evaluated the ability to discriminate between motifs whose proteins
are known to be involved in enhancer-promoter contacts (7 true positives) and other DNA-
binding protein motifs (83 false positives) using ROC curves. Both GLMI and Cor performed
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well (AUC g1 =0.797 and AUCc,, = 0.807; Fig 3d). Conversely, ET and RF showed lower
perfomance (AUCgr = 0.728 and AUCgg = 0.601).

We next analyzed the impacts of mutations in the consensus dCTCF motif. Single nucleo-
tide polymorphisms (SNPs) play an important role in common genetic diseases and recent
works have uncovered differential long-range contacts due to variations in the CTCF motif in
human [17, 29, 30]. Hence we evaluated the methods to detect the impacts of single nucleotide
mutations in the dCTCF motif. For this purpose, we considered the dCTCF consensus motif
AGGTGGCG (wild-type motif) [31] and generated dCTCF motifs with single nucleotide
mutations for each position (mutated motifs). For instance, for the first position, the mutated
motifs were TGGTGGCG, GGGTGGCG and CGGTGGCG. Over the 24 possible mutated
motifs (8 positions x 3 alternative nucleotides), GLMI detected 17 motifs (71%; Fig 3e) with
homologous interaction variable betas that were lower than the one of the wild-type motif,
indicating that the corresponding mutations diminished the ability of dCTCF to bridge long-
range contact. Compared to GLMI, other approaches showed lower performance (Cor: 14/24;
RE = 10/24; ET = 8/24).

In addition to its better prediction performances, our model presents several theoretical
advantages over the three other methods as summarized in Fig 3f. All the methods can assess
long-range contacts between protein binding sites. However, GLMI is the only model that, at
the same time, (1) accounts for the contact frequency which can vary among highly confident
loops, (2) can deal with the presence of colocalization among proteins using conditional inde-
pendence, (3) allows variable selection using lasso or stepwise, and (4) can assess the effect of
cofactors by including higher-order interaction terms.

Analysis of insulator binding protein motifs in Drosophila

Given the biological validation of our model, we next sought to address the roles of IBP motifs
in establishing or maintaining long-range interactions in Drosophila. We first assessed how
IBP motifs were coupled to form loops (i.e. for all combinations of distant IBP motifs). For this
purpose, we estimated homologous and heterologous interaction variable effects for any cou-
ple of IBP motifs using models (2) and (3), and using the same Hi-C data, distance range and
resolution as above (Fig 4a). The strongest long-range contacts were between dCTCF and

DREF motifs (3, = 2.8 x 10", p < 107*°), between dCTCF motifs (8, = 2.4 x 10",
p < 107°°) and between DREF motifs ([}n,i =2 x 10%, p < 107%°). High levels of long-range
contacts were also found between BEAF-32 and DREF motifs (ﬁ ny = 1.9 x 10', p < 1079

and between BEAF32 and dCTCF motifs (Bn,j = 1.9 x 10%, p < 107*°). Thus in Drosophila,

chromatin loops not only involve dCTCF motifs but also DREF and BEAF-32 motifs that all
work together. We then explored if these long-range contacts depended on the distance
between motifs. At short distance (<100kb), long-range contacts were mainly detected

between DREF motifs (B "y = 1.8 x 10*, p< 107%), whereas at long distance (> 750kb), they
were more frequent between dCTCF and DREF motifs ([3%_ =3.5 x 10", p=7x10") (Fig

4b). In addition, long-range contacts between dCTCF motifs peaked at 500 kb. Our results
therefore raise the possibility that long-range contacts between IBP motifs could be distant-
dependent. This observation might provide a molecular explanation for the observed hierar-
chical nature of 3D chromatin structure [32, 33], for which loops could be formed at different
scales by the interplay of specific proteins.

Next we sought to comprehensively test whether motif orientation could influence long-
range contacts, as originally shown for CTCF motifs in human [10] and more generally
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https://doi.org/10.1371/journal.pcbi.1005538.004

in mammals [34]. We distinguished the motifs that were on the positive DNA strand
(denoted +), from those that were on the negative DNA strand (denoted -). Then it was pos-
sible to compute four types of homologous interaction variables: n;;, - = z;;, X z;z_ (orienta-
tion —+«), n;;_, = z;;_ X Z;g.. (orientation «——), n;;__ =z;;_ X z;z_ (orientation «—+«),

N, =Zj, X z;g, (orientation ——). The corresponding models are detailed in Subsection
Materials and Methods, The different models. Here we processed data at 1 kb resolution for
better accuracy in distinguishing the different orientations. Similarly to in human and
mammals, we found significant long-range contacts for motifs in convergent orientation

0 n =070, p=2x 107°), and no significant contacts for the 3 other possible orientations
(«—, —— and «+«; Fig 4c), revealing conservation of convergent CTCF mediated loops
in agreement with 4C analyses [35]. We then assessed motif orientation for all other IBP
motifs. Of note, the orientation of DREF TATCGATA motifs could not be assessed because
of its palindromic property. For BEAF-32, dTFIIIC and Su(Hw) motifs, we could not detect
any strong orientation effect (Fig 4c). Conversely, for GAF and ZW5 motifs, we found
stronger contacts for motifs in divergent orientation («+——) compared to convergent orien-
tation (—+—), suggesting a different mode of binding of the corresponding protein to DNA
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or a different constraint depending of its interaction with cofactors. Thus motif orientation
in loops depends on the protein involved, and the dependence on convergent orientation of
motifs does not apply to all insulator binding proteins.

Analysis of insulator binding protein sites in Drosophila

IBP binding sites might significantly vary depending on the cell type and stage. Hence we rean-
alyzed the roles of IBP binding in Kc167 Drosophila cells using available ChIP-seq data (same
cell type with Hi-C data; ZW5 data were not available). As in the previous subsection, we esti-
mated interaction effects for any couple of IBP motifs using models (2) and (3). Similarly to
the analysis of IBP motifs, we observed high levels of long-range contacts involving DREF and
dCTCE (Fig 5a). In particular, we found strong long-range contacts between distant DREF

Here interaction variable betas were estimated separately using models (2) and (3).
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binding sites (Bn,-, = 147, p < 107*°) and between dCTCF and DREF binding sites (anj =133,
p < 107*°). However, we also observed strong long-range contacts between DREF and dTFIIIC
([Aini}_ =119,p < 1072%), and between DREF and GAF ([Ain[j =112,p < 1072%), which could not

be detected by previous analysis of IBP motifs. We then built a graph using estimated betas by

adding an edge between two proteins F; and F; with a weight B "y and by adding an edge

between a protein F; and itself with a weight B », (Fig 5b). Analysis of the graph clearly revealed
the role of DREF as a hub, i.e. DREF was involved in many long-range contacts with other
IBPs, such as BEAF-32, DREF, dTFIIIC and GAF. Such DREF-mediated loops might be in
apparent contradiction with recent experiments showing that DREF motifs tag proximal acti-
vation of housekeeping genes, in contrast to long-range activation of developmental genes
[36]. However such DREF-mediated loops can be explained by long-range contacts between
promoters (Bnu =203,p < 107%).

Previous results should be carrefully interpreted since IBPs often linearly colocalize (i.e. cor-
relate) with each other on the chromosome [31]. Such correlations can lead to “indirect” long-
range contacts between IBPs. For instance, if a loop is maintained by two distant dCTCF bind-
ing sites, and that BEAF-32 colocalizes to dCTCEF, then it is likely that we will also observe
loops between distant BEAF-32 and dCTCEF sites, and even between BEAF-32 sites. The
impact of such correlations between proteins in the study of 3D chromatin has been discussed
in details [12]. Models (2) and (3) could not account for such correlations between IBPs
because only one interaction variable term was included. Instead one should use another
model that includes all possible interaction variable terms between IBPs (model (10), see Sub-
section Materials and methods, The different models). To better discard indirect long-range
contacts between the 6 IBPs, we thus re-estimated interaction variable beta parameters using
model (10) that included all marginal variables (6 variables, one for each IBP) and all interac-
tion variables (21 variables, one for each combination of IBPs). Using model (10), we obtained
rather different results (Fig 5c). We still observed strong long-range contacts between DREF

binding sites B = 25,p < 107""). However other long-range contacts were observed such as

between BEAF-32 sites (f§ =30, p < 107%%). In turn, such analysis showed that an IBP tended
to interact more with itself (homologous interactions) than with another IBP (heterologous
interactions) (p = 0.018; Fig 5d), in agreement with insulator bodies observed by microscopy
[37]. In addition, the model (10) allowed to infer negative and significant interaction effects,

such as between distant DREF and BEAF-32 (Bnl] = —25,p < 10~'"), which could not be

detected before. This negative effect means that BEAF-32 and DREF tend to avoid each other
in long-range contacts, i.e. they tend to have a repulsive effect. This might reflect the known
antagonistic relationship between BEAF-32 and DREF in competing for binding to overlap-
ping binding sites [38, 39]. As previously, we built a graph of betas and could detect groups of
IBPs that may cluster together through long-range contacts as found for the two connected
components BEAF-32/dTFIIIC/GAF and DREF/Su(Hw)/dCTCF, respectively (Fig 5e). Inter-
estingly, these two classes of IBPs that worked together in 3D were different from the two clas-
ses that were previously identified by 1D analysis: dCTCF/BEAF-32 and Su(Hw), respectively
[40]. Such observations strenghtened the importance of analyzing protein complexes in 3D in
complement to 1D analysis (see Discussion).

Analysis of DNA-binding protein sites in human

In human and mammals, the main model of loop formation involves CTCF and cohesin [10,
17]. According to this model, a loop may form by the homodimerization of two CTCF proteins
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bound to two distant CTCF motifs that are in convergent orientation [10]. The loop also
involves cohesin that is recruited by CTCF and that has the ability to entrap the two DNA
fibers inside a ring. In addition to CTCF and cohesin, other architectural proteins have been
recently uncovered such as ZNF143 [41] and PcG proteins [42]. In order to systematically ana-
lyze proteins mediating loops, we considered integrating available protein binding data (73
proteins) together with high-resolution Hi-C data in human GM12878 cells using our GLMI
model. As previously done for Drosophila, we analyzed Hi-C data at 10 kb resolution and
focused on 20kb-1Mb distances [10]. At this distance range, the Hi-C data comprised a very
large number of bin pairs (around 22 millions), and hence, its analysis often required subsam-
pling to few million pairs to achieve tractable regression parameter estimation. As for Drosoph-
ila, the log-log relation between Hi-C count and distance was linear at this distance range
(R* = 0.992, S2 Fig), supporting the use of the log-distance term in the model.

We first investigated contacts between distant CTCF binding sites using model (2). As
expected, we observed strong long-range contacts 0 py = 3T, p=6X% 107'%) [10]. Moreover
high levels of long-range contacts were detected between cohesin subunit Rad21 binding sites

as expected ([? = 89,p < 1072 Fig 6a) [10], as well as between cohesin subunit SMC3

B = (9P < 107°%). We then used the same approach to estimate long-range contacts for all
73 proteins available (S1 Table). Among the proteins that significantly interacted among them-
selves, we found several proteins known to colocalize to CTCF binding sites including YY1
(B, =3Lp<107°),MAZ (B, =16,p<10")and JUND (B, = 258,p=10")[7]. We
also found P300, an important transcriptional coactivator [43] (Bnﬁ = 264, p < 107%°). In addi-
tion, histone marks including H3K27me3, H3K36me3, H3K4me2, H3K4me3, H3K9ac and
H3K9me3 showed homologous long-range contacts, as previously shown by polymer simula-
tions [44] (all B n > 0.05,p < 107%°). Curiously, H4K20mel sites presented repulsive effects

with each other (8 . = —0.07,p< 107*°), indicating that distant H4K20mel marked sites
may avoid each other. We further estimated the well-known influence of cohesin in mediating
long-range contacts between distant CTCF binding sites in human using model (4) [8, 10].
Interestingly, we found that the effect of cohesin depended on the distance between CTCF
binding sites, with no significant contacts for short distances (20-300kb: B o = —3 X 10°,

p = 0.63; 300-700kb: ﬁc,ik = —1 x 10", p = 0.15) and significant contacts for long distances

(700-1000kb: Bcﬁk =4 x 10", p = 3 x 107°) (Fig 6b). This suggested that cohesin is required for
stabilizing CTCF-mediated loops for long distances, but is not necessary for short distances for
which homodimerization of CTCF might be sufficient. We also sought for other proteins
whose loops could be mediated by cohesin for long distances (52 Table). Most notably, we
found that cohesin positively influences long-range contacts between architectural protein
ZNF143 binding sites (Bcﬁk = 4.8 x 10", p =2 x 107°), between PolII binding sites (Bc“k = 446,
p=6x107"°), and between transcriptional factor binding sites (EGR1, ELF1, FOXM1, MAZ,
MXI1, NRF1, YY1), which suggests a wider role for cohesin in mediating long-range contacts.
Further analyses of long-range contacts for every couple of proteins were performed using
model (10) that included together all possible interaction variables. We considered 73 proteins,
7 histone modifications, active enhancers and active promoters. The model thus comprised
(82 x 83)/2 = 3403 interaction variables. To deal with such a large number of interaction vari-
ables, we used a Poisson lasso estimation [45]. An interaction variable beta of zero was
expected to reflect the absence of direct long-range contact between two proteins. From the
estimated betas, we built a first graph that we called “attraction graph” by adding an edge
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Fig 6. Analysis of long-range contacts between architectural protein binding (IBP) sites in human GM12878 cells. a) Long-range contacts
between CTCF sites, and between Rad21 sites, as measured by interaction variable betas estimated using model (2). b) Effect of cohesin in mediating
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between two proteins F; and F; if p w > 05 and by adding an edge between a protein F; and itself

if », > 0 (Fig 6¢). To identify hubs in the graph, we used eigenvector centrality that reflected
how central is a node (Fig 6d). Both active and repressed chromatin marks as well as enhancers
were the most central nodes (H3K9ac: score = 1; H3K9me3: score = 0.98; H3K4me3:
score = 0.948; Enhancer: score = 0.84). Among DNA-binding proteins, CTCF and Rad21
showed high values (CTCF: score = 0.619; Rad21: score = 0.555). Surprisingly, however, other
proteins MEF2C and FOXM1 presented the highest values (MEF2C: score = 0.725; FOXM1:
score = 0.692). Previous studies showed that MEF2C is necessary for bone marrow B-lympho-
poiesis (GM12878 is a lymphoblastoid cell line) [46], and that FOXM1 has an important role
in maintenance of chromosomal segregation [47]. We then looked for cliques in the graph, i.e.
a group of nodes that were all connected to each other (complete list in S3 Table). As expected,
we found a clique composed of CTCF and the cohesin subunits Rad21 and SMC3, that are
known to mediate together loops [10]. But we also found novel protein complexes that were
specific to lymphocyte B such as the clique IKZF1/RFX5/Polll. IKZF1 plays a role in the
development of lymphocytes [48], REX5 is involved in bare lymphocyte syndrome [49] and
polymerase II catalyzes gene transcription. In addition, we found many cliques involving Poly-
merase III (PollII) such as the cliques MEF2C/RUNX3/PolIll and MEF2C/WHIP/Polll],
which might reflect the influence of architectural protein RNA polymerase I1I-associated fac-
tor (TFIIIC) at tRNA genes [2, 50].

Very little is known about repulsion effects between distant binding sites. Such repulsive
effects could result from allosteric effects of loops [51], or factors that disassociate protein com-
plexes involved in loops [52]. To investigate repulsive effects, we built a second graph that we

called “repulsion graph” by adding an edge between two proteins F; and F; if p ny < 0, and by

adding an edge between a protein F; and itself if B »; < 0 (Fig 6e). The repulsion graph was
very different from the attraction graph. Different histone marks were central in the repulsion
graph, including H3K36me3 (score: 1) and H4K20mel (score: 0.974), except histone mark
H3K9me3 (score: 0.798) that was central in both the attraction and repulsion graphs (Fig 6f).
Interestingly, we found that enhancers presented a high centrality score in the repulsion graph
(score: 0.766), as found in the attraction graph. This result highlights the ability of enhancers
to specifically interact with distant protein partner binding sites while avoiding others. Sup-
porting this interpretation, we found enhancers to be in attraction with CFOS, NRF1 or
POU2F2, and in repulsion with RXRA, NFE2 or P300. We then looked at pairs of proteins that
were in repulsion. Most notably, we found CTCEF to be in repulsion with EZH2, which might
result from steric effects of CTCF-mediated loops [10] with Polycomb-mediated loops [42].

The influence of DNA-binding proteins on enhancer-promoter
interactions in human

Enhancer-promoter (EP) interactions play an essential role in the regulation of gene expres-
sion [14, 18]. Therefore, we explored the roles of DNA-binding proteins in establishing or
maintaining EP interactions. Before assessing the role of proteins, we first measured long-
range contacts between active enhancers and promoters depending on gene expression using
model (3) (Fig 7a). We observed an attraction effect between active enhancers and highly

expressed gene promoters (/3 wy = 2Pp=3X 10~°), and conversely, a repulsion effect between

active enhancers and low expressed gene promoters (B”v = —1.7,p < 1x107%°), in complete

agreement with the established positive influence of long-range contacts on gene expression
[53]. To identify the influence of DNA-binding proteins, we then assessed the presence of
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https://doi.org/10.1371/journal.pchi.1005538.g007

long-range contacts between lymphocyte B transcriptional activator binding sites (ChIP-seq
data) and promoters using the same model (3). All lymphocyte B transcriptional activators
including BCL11A, EBF1, EGR1, MEF2C, PAX5 and TCF12 showed long-range contacts with
highly expressed gene promoters, compared to weakly transcribed gene promoters (Fig 7b).
This clearly showed that lymphocyte B transcriptional activators regulate expression of target
genes through long-range contacts. Among the proteins available, we could not identify any
that acted as silencers, i.e. proteins whose long-range contacts are high with low expressed
gene promoters and low with highly expressed gene promoters. However when we focused on
histone modifications, we found that long-range contacts of H3K27me3 mark were stronger to

weakly transcribed gene promoters 0 ny = 0.06, p < 107>°), compared to highly expressed
gene promoters B = "02p< 10°%) (Fig 7c). This suggested that H3K27me3 mark not
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only acts as a transcriptional silencer in linear proximity [54], but could also repress target
genes at distance through loops. Conversely, active marks such as H3K4me3 and H3K%ac
interacted more with highly expressed genes. Because enhancer-promoter contacts were previ-
ously shown to be associated with Polymerase II pausing [18], we then assessed enhancer-pro-
moter interactions depending on gene transcription pausing. As expected, we found higher EP

contacts at paused genes (anj = 62.2, p = 107%), compared to genes in elongation (Bng =49.3,
p=2x107%). We then looked at the influence of DNA-binding proteins (Fig 7d). For instance,

EBF1 sites showed higher long-range contacts with promoters of genes in pause 0 ny = 39.7,

p=1x10""%), compared to those in elongation ('[}"v = 17.8,p =3 x 107°), in agreement with
[18]. But, surprisingly, we also found that BCL11A sites showed higher long-range contacts

with promoters of genes in elongation (B ny = 72.8, p < 107%°) than with genes in pause

0] ny = 009, p=2x 107'"). These observations suggest that, depending on the protein

involved, long-range contacts with promoters are not always associated with pausing, but
could also be linked to elongation.

Conclusion

Here, we propose to use a generalized linear regression with interactions (GLMI) to study the
roles of genomic features such as DNA-binding proteins, motifs or promoters to bridge long-
range contacts in the genome, depending on transcriptional status or motif orientation. GLMI
has multiple assets over existing approaches such as enrichment test, correlation and random
forests. Compared to enrichment test [2, 55] or correlation [27] that respectively assesses the
protein enrichment or correlation at highly confident loops, GLMI quantitatively links the fre-
quency of all long-range contacts to complex co-occupancies of proteins while accounting for
known Hi-C biases and polymer background. Moreover, GLMI accounts for colocalizations
among protein binding, a strong issue when analyzing protein binding sites known to largely
overlap over the genome. In contrast to random forests [28] which are efficient predictive
models but sometimes poor explanatory ones, GLMI allows to identify key chromatin loop
driver proteins and motifs. GLMI can also uncover numerous mechanisms behind loop for-
mation using higher-order interaction terms and proper confounding variables. For instance,
GLMI can determine if a cofactor is necessary to mediate long-range contacts between distant
protein binding sites.

Using real Drosophila Hi-C and ChIP-seq data, we validate numerous GLMI predictions of
long-range contacts that involve insulator binding proteins, cofactors and motifs, and which
were confirmed by previous microscopy and mutational studies. For instance, our model esti-
mates long-range contacts between distant BEAF-32 motifs, which were previously observed
with both fluorescence cross-correlation spectroscopy [22] and high-resolution microscopy
[23]. In addition, our model finds a mediating role of CP190 in bridging long-range contacts
between distant BEAF-32 and GAF binding sites, in agreement with mutational experiments
[19]. Of interest, GLMI analyses highlight a role of cohesin in stabilizing long-range contacts
between CTCEF sites in Drosophila, similarly to its role in human [7]. Supporting this role, we
show that such influence is reduced upon cohesin subunit Rad21 depletion. It has to be noted
that the absence of complete loss of contacts between CTCF sites after Rad21 depletion can be
explained by the fast turnover of chromosome-bound cohesin in interphase [56]. Moreover,
GLMI outperforms enrichment test, correlation and random forests in the identification of
known architectural proteins and motifs, and in the detection of the effects of mutations in the
dCTCF motif.
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The proposed model also uncovers several novel results. In Drosophila, GAF and ZW5
motifs are shown to act in divergent orientation to form loops, in contrast to CTCF motifs that
are found in convergent orientation in Drosophila and human [10, 17], suggesting a different
mode of action of corresponding proteins. In addition, we identify two groups of proteins that
act in 3D to form loops. The first group comprises BEAF-32, dTFIIIC and GAF, and the other
group includes DREF, Su(Hw) and dCTCF. Those groups are different from the ones observed
with 1D analysis only (i.e. linear colocalization on the genome) [40], highlighting the impor-
tance of 3D analysis using GLMI. In human, we identify numerous long-range contacts
between protein binding sites. In addition to the well-known protein complex CTCF/RAD21/
SMC3, we uncover new protein complexes that are specific to lymphocyte B such as IKZF1/
RFX5. We also found that enhancers could be either in long-range contact or repulsion with
certain protein binding sites, highlighting potential specificity in selecting protein partners for
long-range contacts. Our observations therefore support the idea that enhancer-promoter con-
tacts are not solely driven by insulators or TAD borders that physically constrain such long-
range interactions [29, 36, 57]. Rather, enhancer-promoter contacts may also be encoded by
the specificity of protein-protein interactions. In addition, our results suggest that repressive
mark H3K27me3 does not only repress genes that are contigous [54], but it could also repress
from a distance through the juxtaposition of H3K27me3 with genes in 3D. We also find that,
depending on the protein involved, long-range enhancer-promoter contacts are not always
favored by Polll pausing [18], which may highlight distinct mechanisms by which proteins
can influence transcription-associated long-range contacts.

There are several limitations of the proposed approach. First, the present analysis is
restricted to a 10-kb resolution because of the quadratic complexity of Hi-C data. Second, our
analysis is limited by the amount of higher-order interaction variable parameters that can be
learned within the same model (full model) using current parameter learning programs. Most
notably, all possible interaction cofactor variables cannot be included in the same model
because of the cubic complexity of such model, and hence they are learned separately instead
(using models (4) and (5)). In addition, although generalized linear models can include inter-
actions of any order involving large protein complexes (for instance, complexes of more than 4
proteins), parameter learning is limited by the availability of data and computational resources.
Increasing depth of Hi-C data will allow inference of more complex models in the near future.
Moreover the development of new big data learning algorithms could be used to process the
data at a higher resolution that would allow in-depth analysis of 3D chromatin drivers [58].
An alternative to the exploration of all possible higher-order interactions together might be to
guide the search using prior information, such as protein-protein interaction network [55].
Lastly, in order to explore all possible higher-order interaction variables within the same
model (full model), one should use a lasso regression model with hierarchically constrained
interactions [59].

Materials and methods
Hi-C data

We used publicly available high-throughput chromatin conformation capture (Hi-C) data
from Gene Expression Omnibus (GEO) accession GSE62904 [21]. Hi-C experiments have
been done for Drosophila melanogaster wild-type and Rad21 knock-down Kc167 cells with
DpnlI restriction enzyme. Hi-C data were binned at 1 and 10 kb resolutions.

For human data analysis, we used publicly available Hi-C data of lymphoblastoid cells
GM12878 cells from Gene Expression Omnibus (GEO) accession GSE63525 [10]. We used
Hi-C data binned at 10 kb resolution.
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ChlP-seq data

For Drosophila analysis, we used publicly available binding profiles of chromatin proteins of
Drosophila melanogaster wild-type embryonic Kc167 cells. ChIP-seq data for CP190, Su(Hw),
dCTCF and BEAF-32 were obtained from GEO accession GSE30740 [60]. ChIP-seq data for
Barren (condensin I), Cap-H2 (condensin II), Chromator, Rad21 (cohesin), GAF and dTFIIIC
were obtained from GEO accession GSE54529 [9]. ChIP-seq data for DREF and L(3)Mbt were
obtainted from GEO accession GSE62904 [21]. ChIP-seq data for Fs(1)h-L and Fs(1)h-LS
were obtained from GEO accession GSE42086 [25]. Peak calling was done using MACS 2.1.0
(https://github.com/taoliu/MACS).

For human analysis, we used publicly available binding peaks of 73 chromatin proteins
(RAD21, CTCF, YY1, ZBTB33, MAZ, JUND, ZNF143, EZH2, ATF2, ATF3, BATF, BCL11A,
BCL3, BCLAF1, BHLHE40, BRCA1, CEBPB, CFOS, CHD1, CHD2, CMYC, COREST, E2F4,
EBF1, EGR1, ELF1, ELK1, FOXM1, GABP, IKZF1, IRF4, MAX, MEF2C, MTA3, MXI1,
NFATCI, NFE2, NFIC, NFKB, NFYA, NFYB, NRF1, NRSF, P300, PAX5, PBX3, PML, POL2,
POL3, POU2F2, REX5, RUNX3, RXRA, SIN3A, SIX5, SMC3, SP1, SPI1, SRF, STAT1, STATS3,
STATS5, TBLR1, TBP, TCF12, TCF3, TR4, USF1, USF2, WHIP, ZEB1, ZNF274, ZZZ73) and his-
tone marks (H3K27me3, H3K36me3, H3K4me2, H3K4me3, H3K9ac, H3K9me3, H4K20mel)
of GM12878 cells from ENCODE [61]. We downloaded peaks that were uniformly processed
(Uniform Peaks).

Functional elements

For human analysis, we divided promoters into quartiles of gene expression using RNA-seq
data [61]. We also divided promoters into quartiles of gene pausing and into quartiles of gene
elongation using Polll ChIP-seq data [61]. For enhancer mapping, we used lymphocyte of B
lineage differentially expressed enhancers identified from the Fantom5 project [62].

DNA motifs

For both Drosophila and human analyses, we used transcription factor binding site (TFBS)
motifs from the MotifMap database (http://motifmap.ics.uci.edu/).

Power-law distribution testing

The proposed GLMI assumed a linear relation between logarithm of Hi-C counts and the loga-
rithm of distance between bins as previously shown in [5]. This assumption only holds locally,
i.e. for a specific distance scale. Hence we restricted GLM modeling to a certain range of dis-
tances, e.g. for 20kb to 1Mb. In addition, we tested this assumption on data before using
GLMI. We considered that this assumption holds when the R* > 0.95.

Occupancy variables z

Before computing variables for the GLMI presented above, intermediate variables from the
genomic features such as DNA-binding proteins needed to be calculated. Intermediate “occu-
pancy” variable z; denoted the presence (z; = 1) or absence (z; = 0) of the protein F; within the
genomic bin. If the protein only overlapped 60% of the genomic bin, then z; = 0.6.
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The different models

Here are described the different models derived from model (1) that we used. In order to assess
a homologous interaction variable n; = z;; x z; (here g = n;;), model (1) becomes:

log ElylX]) = B, +Bd+ BB+ B.C+ ﬁgg

= By +p.d+ BB+ ﬁmimi + ﬁn,-,nii @
Following the hierarchy principle in (generalized) linear models, the assessment of a statistical
interaction variable, such as n;; = z;; X z;z, must include both z;; and z;z as confounding vari-
ables. Because z;; and z;z are identically associated to y (the attribution for left and right bins is
arbitrary), their values are averaged to give m, = ; (z,; + z;). Hence C = m; is used as a con-
founder of n;;.
In order to assess a heterologous interaction variable n; = ;(z, x z;; +2; X z;) (here

g = n;)), model (1) becomes:

log (ElylX]) = f,+Bd+p;B+p.C+ ﬁgg

3
By + B.d+ BB+ ﬁm,mi + ﬁmjmj + ﬁn,-]nij ®)

Following the hierarchy principle, z;;, z;z, z;; and z;z have to be included as confounding vari-
ables. As previously, z;; and zg are averaged to give m; = 1 (z, + z,). Similarly, z;; and z; are
averaged to give m; = ;(z; + z;;). Hence C = {m;, mj} is used as confounder of nj;.

In order to assess a homologous interaction cofactor variable ¢;; = n; x ng (here g = ¢;),
model (1) becomes:

log(E[y|X]) = B, +p,d+ BB+ p.C+ ﬁgg
= ﬂ() + ﬁdd + ﬁBB + ﬂmimi + ﬁmkmk + ﬁm,-kmik + ﬁn,-,-nii + ﬁnkknkk + :Bn,-knik (4)

+ ﬂniixmk (nii X mk) + ﬁnkkxm,(nkk X mi) + ﬁc,ikciiw

Here variable c;; is a four-way interaction term and hence there are a large number of con-
founding variables included in variable set C = {m;, my, my, n;;, Ny, Ny, n; X My, N X M.
We need to introduce a new type of variable, noted my;, the average of product z;;, x z;; and
product z;z x zjg (my; = § (2, X 2, + 2, X 2;)). For a detailed explanation of the confounder
set C, see S1 Appendix, Confounder sets.

In order to assess a heterologous interaction cofactor variable ¢, = n;; x ny (here g = c;),
model (1) becomes:

log(E[y|X])

By + B.d + BB + p.C + ng
By + B.d + BB + ﬁmimi + ﬁmjmj + ﬁmkmk + ﬁm,kmik + ﬁmjkmjk
ﬁn,.jnij + anknjk + ﬁn,»knik + ﬁnkknkk

ﬁnijxmknij xmy + B, ., 0y X m,;+ ﬁnkkxm]vnkk X my; + ﬁcijkcijk'

. (5)
+

Here variable c; is a four-way interaction term and hence there are a large number of con-
founding variables included in variable set C = {m;, my, my, mj;, mj, ng, N, N, Ny, N X My,
Ny X m;, Ny X my}. For a detailed explanation of the confounder set C, see S1 Appendix, Con-
founder sets.

In addition, we formulated models for homologous interaction variables, depending on
motif pair orientation. For a pair of motifs in convergent orientation (—+«—), model (1)
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becomes:

log(Ely(X]) = B,+B.d+pB+BC+ ﬁgg

(6)
= B+ Bd+pB+ ﬁz[HZz’LJr + B Zin T B

i it —

« »

with n;, =z;;, X z;z_. Symbol “+” denoted motifs that were on the forward DNA strand,
while symbol “-” denoted motifs that were on the reverse DNA strand. For instance, variable
z;1.+ was the occupancy of a motif on the forward DNA strand within genomic bins.

For a pair of motifs in divergent orientation («——), model (1) becomes:

log(Ely|X]) = B+ B d+pB+BC+fg

(7)
= By +B.d+ BB+ Bz,L,ZiL— + ﬁz,-RAZiR+ + Bn,-,.,+nii—+a
with n;_,=2Zj_ XZpp,.
For a pair of motifs in same orientation (——), model (1) becomes:
log(E[y|X]) = B, +B.d+pB+p.C+ ﬂgg (®)
= py+pd+ BB+ ﬂz,HziH + ﬁz,»R,zim + ﬁn[i++nii++7
with nji,, = 21, X Zig,.
For a pair of motifs in same orientation («+—+«), model (1) becomes:
log(Ely|X]) = B,+B.d+pB+.C+ B.g 9)

= By+pd+ B+ ﬁz,L, Z;_ + ﬁziR,Zin + ﬁn,i,,nii——7

withn;__=2z;;_ X zZ;z_.

Moreover, we formulated an additional “full” model where all possible homologous and
heterologous interaction variables were included. For instance, if we study two proteins F; and
F; that tend to linearly colocalize, then the following “full” model would be:

log(E[y|X]) = B, +p.d+ BB+ B.C+B.G,

10
Byt B BB B B+ fn oy
where G is the set of all possible homologous and heterologous interaction variables. Here
G = {n;; nj;, n;} for two proteins F; and F;. The confounder set C = {m;, m;} includes all mar-
ginal variables.

Implementation

The general linear regression with interactions is implemented in R language. The model is
available in the R package “HiCglmi” which can be downloaded from the Comprehensive R
Archive Network.
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3.4.3.3 HiCblock: TAD-free analysis of insulators

Standard approaches to identify architectural proteins involved in TAD for-
mation rely on the previous mapping of TADs. Once TADs are mapped,
enrichment tests or multiple logistic regression can be further used to char-
acterize which proteins are more likely to influence the presence of borders
[Dixon et al. 2012, Mourad & Cuvier 2016]. However, an important drawback
of the enrichment test and multiple logistic regression is that they rely on
accurate TAD mapping, which is problematic for multiple reasons: (i) TAD
mapping strongly depends on the algorithm used [Shin et al. 2016], (ii) TADs
only capture a fraction of the information from Hi-C data, and other important
3D domains, including A/B compartments [Lieberman-Aiden et al. 2009], loop
domains [Rao et al. 2014] and subTADs [Jin et al. 2013] were discovered and (iii)
TAD borders are blurry [Van Bortle et al. 2014].

I proposed a TAD-free model to directly estimate the blocking effects of ar-
chitectural proteins, insulators and DNA motifs on long-range contacts, making
the model intuitive and biologically meaningful (Equation 1 and Figure 1, from
the article "TAD-free analysis of architectural proteins and insulators” below)
[Mourad & Cuvier 2018]. The model allows analyzing the whole Hi-C information
content (2D information) instead of only focusing on TAD borders (1D information).
The model outperformed multiple logistic regression at TAD borders in terms of
parameter estimation accuracy and was validated by enhancer-blocking assays. In
Drosophila, the results supported the insulating role of simple sequence repeats and
suggested that the blocking effects depend on the number of repeats. Motif analysis
uncovered the roles of the transcriptional factors pannier and tramtrack in blocking
long-range contacts. In human, the results suggested that the blocking effects of
the well-known architectural proteins CTCF, cohesin and ZNF143 depend on the
distance between loci, where each protein may participate at different scales of the
3D chromatin organization.
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ABSTRACT

The three-dimensional (3D) organization of the
genome is intimately related to numerous key bi-
ological functions including gene expression and
DNA replication regulations. The mechanisms by
which molecular drivers functionally organize the 3D
genome, such as topologically associating domains
(TADs), remain to be explored. Current approaches
consist in assessing the enrichments or influences
of proteins at TAD borders. Here, we propose a TAD-
free model to directly estimate the blocking effects
of architectural proteins, insulators and DNA motifs
on long-range contacts, making the model intuitive
and biologically meaningful. In addition, the model
allows analyzing the whole Hi-C information content
(2D information) instead of only focusing on TAD bor-
ders (1D information). The model outperforms multi-
ple logistic regression at TAD borders in terms of
parameter estimation accuracy and is validated by
enhancer-blocking assays. In Drosophila, the results
support the insulating role of simple sequence re-
peats and suggest that the blocking effects depend
on the number of repeats. Motif analysis uncovered
the roles of the transcriptional factors pannier and
tramtrack in blocking long-range contacts. In human,
the results suggest that the blocking effects of the
well-known architectural proteins CTCF, cohesin and
ZNF143 depend on the distance between loci, where
each protein may participate at different scales of the
3D chromatin organization.

INTRODUCTION

In higher eukaryotes, chromosomes are packed in three
dimensions and form complex structures (1). Such three-
dimensional (3D) structure has recently been investigated
by chromosome conformation capture combined with high-
throughput sequencing technique (Hi-C) at an unprece-
dented resolution (2-4). Hi-C experiments reveal multiple
levels of genome organization including compartments A/B

(5) and topologically associating domains (TADs) (2,3).
Most notably, TADs are relatively constant between dif-
ferent cell types and are highly conserved across species.
These TADs play important roles in key cell processes
such as long-range regulation of genes by enhancers (4) or
replication-timing regulation (6).

The identification of architectural proteins and func-
tional elements involved in shaping the genome in 3D repre-
sents an intensive field of research (7). Seminal works using
enhancer-blocking assays (EBAs) revealed that functional
elements called insulators (or boundary elements) can sup-
press the activation of a promoter by a distant enhancer
when interposed (8,9). Multiple evidence actually supports
the role of insulator binding proteins (IBPs) such as CTCF,
and co-factors like cohesin, as mediators of long-range
chromatin contacts (3,10-13), which may in turn result in
blocking enhancers from contacting promoters by forming
alternative DNA loops. In mammals, high-resolution map-
ping of long-range contacts has recently revealed that loops
occur at domain boundaries and bind CTCF in a conver-
gent orientation where cohesin is recruited (12,14). Deple-
tion of CTCF and cohesin decreased chromatin contacts
(13). However, the impact of those depletions was limited
suggesting that other proteins might be involved in shaping
the chromosome in 3D. Accordingly, other IBPs, co-factors
and functional elements were also shown to colocalize at
TAD borders (11,15).

A classical approach to identify proteins involved in shap-
ing the 3D genome structure consists in assessing their en-
richments at TAD borders (2,3,12). Among a set of enriched
proteins, multiple logistic regression (MLR) can be further
used to characterize which proteins are more likely to influ-
ence the presence of borders (15). However, an important
drawback of the enrichment test and MLR is that they rely
on accurate TAD mapping, which is problematic for multi-
ple reasons: (i) TAD mapping strongly depends on the al-
gorithm used (16), (ii) TADs only capture a fraction of the
information from Hi-C data, and other important 3D do-
mains including A /B compartments (5), loop domains (12)
and subTADs (4) were discovered and (iii) TAD borders are
blurry (11).

Here, we propose a model named ‘blocking model’, to
systematically analyze the roles of architectural proteins
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and functional elements in blocking long-range contacts
between loci. The proposed model does not rely on TAD
mapping from Hi-C data. Thus, the model’s outcome is
not affected by the blurriness of borders. Instead of testing
the enrichment/influence of protein binding at TAD bor-
ders, the model directly estimates the blocking effect of pro-
teins on long-range contacts between flanking loci, mak-
ing the model intuitive and biologically meaningful. The
model only depends on a simple biological parameter: the
distance between insulated loci. The model directly ana-
lyzes the Hi-C contact matrix, thus taking advantage of the
whole Hi-C information content (2D information) instead
of only focusing on TAD borders (1D information). More-
over, the model successfully predicts in silico the outcomes
from low-throughput enhancer blocking assays, thus en-
abling genome-wide analyses. Using recent Drosophila and
human Hi-C data at high resolution, combined with a large
number of ChIP-seq and DNA motif data, we revealed nu-
merous combinations of proteins, functional elements and
DNA motifs that block long-range contacts depending on
scale and synergistic/antagonistic effects.

MATERIALS AND METHODS
Hi-C data

For Drosophila data analysis, we used publicly available
high-throughput chromatin conformation capture (Hi-C)
data of embryonic Kc167 cells from Gene Expression Om-
nibus (GEO) accession GSE62904 (17). We also used Kc167
Hi-C data from GEO accession GSE89112 (18). Hi-C data
were binned at 1, 2 and 5 kb resolutions.

For human data analysis, we used publicly available Hi-
C data of lymphoblastoid GM 12878 cells from GEO acces-
sion GSE63525 (12). We used Hi-C data binned at 10, 40
and 100 kb resolution.

ChIP-seq data

For Drosophila data analysis, we used publicly available
protein-binding profiles of Kcl67 cells (except for Pnr
whose data were from 6-8 h embryos). ChIP-seq data
for CP190, Su(Hw), dCTCF and BEAF-32 were obtained
from GEO accession GSE30740 (19). ChIP-seq data for
Barren (condensin I), Cap-H2 (condensin II), Chromator,
Rad21 (cohesin), GAF and dTFIIIC were obtained from
GEO accession GSE54529 (11). ChIP-seq data for Fs(1)h-L
were obtained from GEO accession GSE42086 (20). ChIP-
seq data for Ttk69k were obtained from GEO accession
GSE34698 (21). ChIP-seq peak calling was done using
MACS 2.1.0 with default parameters for all proteins (https:
/Igithub.com/taoliu/MACS). ChIP-chip peaks for Pnr were
directly downloaded from (22).

For human data analysis, we used publicly available bind-
ing peaks of 73 chromatin proteins (Rad21, CTCF, YY1,
ZBTB33, MAZ, JUND, ZNF143, EZH2, ATF2, ATF3,
BATF, BCL11A, BCL3, BCLAF1, BHLHE40, BRCAI,
CEBPB, CFOS, CHDI1, CHD2, CMYC, COREST, E2F4,
EBF1, EGRI1, ELF1, ELK1, FOXM1, GABP, IKZF1,
IRF4, MAX, MEF2C, MTA3, MXI1, NFATCI1, NFE2,
NFIC, NFKB, NFYA, NFYB, NRF1, NRSF, P300, PAXS,
PBX3, PML, POL2, POL3, POU2F2, RFX5, RUNX3,

RXRA, SIN3A, SIXS, SMC3, SP1, SPI1, SRF, STATI,
STAT3, STATS, TBLR1, TBP, TCF12, TCF3, TR4, USFI,
USF2, WHIP, ZEBI1, ZNF274 and ZZZ7Z3) of GM12878
cells from ENCODE (23). We downloaded peaks that were
uniformly processed (Uniform Peaks).

DNA motifs

To scan the genome for motif occurrences, we used Find
Individual Motif Occurrences (FIMO) with default param-
eters and with position-specific priors (PSPs) to improve
the identification of true motif occurrences (24). GM 12878
DNase data from ENCODE were used as PSPs (23). The
motif information was taken either from the litterature (us-
ing consensus motif) or from JASPAR database (http:/
jaspar.genereg.net/).

For Drosophila data analysis, we used transcription
factor-binding site (TFBS) motifs from the JASPAR
database. For some proteins, we used instead motif con-
sensuses from the litterature: BEAF-32 (CGATA) (25),
dCTCF (AGGTGGCG) (26), Su(Hw) (TGCATATTT)
(27), GAF (GAGAGA) (28), ZW5 (GCTGMG) (29),
DREF (TATCGATA) (30), M1BP (GGTCACACT) (31),
Ttk69k (GGTCCTGC) (32), dTFIIC A box (TGGN
NNAGNNG), Pita (GGTTNNNNNNNNNGCT) (29),
ZIPIC (AGGGNTG) (29), Ibf (ATGTANAA) (33), Elba
(CCAATAAG) (34) and Zelda (CAGGTAG) (35).

For human data analysis, we also used TFBS motifs from
the JASPAR database. In human, motifs with <2000 occur-
rences were removed from the analysis to reduce uncertainty
in the B estimation.

The blocking model

To illustrate the blocking model, we first plotted the exam-
ple of a Drosophila genomic region with embryonic Kc167
cell Hi-C heatmap and ChIP-seq peaks of well-known ar-
chitectural proteins (Figure 1A). We observed that all ar-
chitectural proteins BEAF-32, dCTCF, dTFIIIC, GAF and
Su(Hw) accumulated on a specific locus (green frame) that
acted as an insulator of long-range contacts between flank-
ing regions. This observation suggested that the binding
of those proteins blocked long-range contacts (Figure 1B),
thereby contributing to the formation of 3D domains.

By integrating Hi-C data with ChIP-seq data or DNA
motif data, we propose to model the blocking effects of pro-
tein bindings with a generalized linear model:

log (E[yld, B, I]) = By + Bud + BB — BI (1)

where, variable y denotes Hi-C count for any pair of bins on
the same chromosome. The log-distance variable d accounts
for the background polymer effect (power law decay rela-
tion between distance and Hi-C count modeled by a log—
log linear relation) (36). Bias variables B = {len, GC, map}
are known Hi-C biases including fragment length (len), GC-
content (GC) and mappability (map) that are computed as
in (37). Including those bias variables into the model allows
correcting for biases in Hi-C data. Note that bias variables
do not need to be included in the model if Hi-C counts
were previously normalized by matrix balancing (38). Vari-
able set I = {ij, ..., i,} represents the p blocking variables
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Figure 1. Illustration of the blocking model. (A) Example showing that the accumulation of insulator-binding proteins (IBPs) is associated with a blocking
effect of long-range contacts between flanking loci in Drosophila (see green frame). (B) Schema representing the blocking effect of protein binding on long-

range contacts between two loci, such as between an enhancer and a promoter.

of interest. A blocking variable stores a value correspond-
ing to a ‘blocking region’ (Figure 1B), which is the region
in-between two bins whose Hi-C contacts are measured.
For ChIP-seq data, a blocking variable is defined as the av-
erage of the base coverage computed from the log, fold-
enrichments of peaks found into the blocking region di-
vided by the length of the blocking region. A base within a
peak has a coverage value equal to the log, fold-enrichment
of the peak and a base outside a peak has a coverage value
equal to zero. For DNA motif data, a blocking variable
is defined as the number of motif occurrences found into
the blocking region divided by the length of the blocking
region. The corresponding B; parameter value reflects the
blocking effect of the protein on Hi-C counts. A positive
value (; > 0) reveals a blocking effect on long-range con-
tacts. Conversely, a negative value (B; < 0) shows a facilitat-
ing effect on contacts. A null value (; = 0) means that the
protein does not have any effect in blocking or facilitating
contacts.

Using the model, one can also assess the co-blocking ef-
fects of two or more proteins using statistical interaction
terms:

log (E[yld, B,i1,i2]) = fo+ Bad + BB

_ﬁilil - ﬁiziz - ﬁilziliz (2)

where, variables i; and i, are two blocking variables. The
product iji, is a second-order statistical interaction. The
corresponding parameter f;,, reflects the co-blocking effect
of the two proteins on contacts. A positive value (S, > 0)
reveals a synergistic effect of the two proteins in blocking
contacts. Conversely, a negative value (8;,, < 0) shows an
antagonistic effect of the two proteins in blocking contacts.
In equation (2), a second-order interaction was included,
but higher-order interactions (products of more than two
variables) can be included to model co-blocking effects of
more than two proteins.

The model only depends on a single parameter: the dis-
tance range between insulated loci. This parameter has a
strong biological meaning since it reflects the analysis scale
of hierarchical 3D genome organization. For instance, in
Drosophila, we will focus on Hi-C data for 20-50 kb dis-
tances which are below the median size of TADs (median
size of 60 kb (3)), therefore allowing TAD-scale analyses.
But we will also vary the scale of analysis in human (see be-
low).

In some situations, we standardize the blocking variables
before computing the model. Standardization allows to re-
duce the effect of very large differences in the blocking vari-
ables between different proteins when estimating the Bs and
makes the latter more comparable in magnitude. In fact,
these blocking variable differences might be due to very
large differences in the ChIP-seq signal and the number of
peaks that might not be linked to the real blocking activ-
ity of proteins. For instance, when analyzing human ChIP-
seq data, we found that the highest s were often associated
to proteins with few binding sites when no standardization
was used, and that these Bs were strongly reduced after stan-
dardization (see below).

Because of Hi-C count overdispersion, we use negative
binomial regression as the most appropriate specification
of the generalized linear model. However, Poisson regres-
sion with lasso shrinkage can also be used. We believe that
the choice between both depends mainly on the number of
variables to analyze. On the one hand, if there are a few can-
didate variables (<10), it is interesting to estimate (3 param-
eters together with corresponding P-values to assess sig-
nificance using negative binomial regression. On the other
hand, if there are a large number of variables (10 or more),
it is more convenient to use Poisson lasso regression in or-
der to select the key variables and to account for correla-
tions among the variables (frequent in ChIP-seq and motif
occurrence data).
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The model is available in the R package ‘HiCblock’
which can be downloaded from the Comprehensive R
Archive Network (https://cran.r-project.org/web/packages/
HiCblock/index.html). For the negative binomial regres-
sion, model Bs are learned by iterative weighted least
squares (glm.nb function from MASS R package with
default parameters). For the Poisson lasso regression,
model Bs are learned by cyclical coordinate descent
and lambda parameter is estimated with 10-fold cross-
validation (cv.glmnet function from glmnet R package with
default parameters).

Simulation of random protein-binding sites and motif occur-
rences

For Poisson lasso regression in human, we simulated pro-
tein binding sites by randomly drawing genomic regions
from the genome whose numbers and fold-enrichments
were similar to those observed from real proteins. We then
used these random proteins to compute associated 8 coeffi-
cients with the Poisson lasso regression. We expected these
Bs to be close to zero but with a certain standard devia-
tion 6. We then used this standard deviation to compute a
confidence interval as 0 £ 1.96 x ¢ under the null hypothe-
sis that a random protein did not have any blocking or fa-
cilitating effect on long-range contacts. For DNA motifs,
we used a slightly different approach. We randomly draw
14 base DNA sequences (random motifs) whose number of
occurrences over the genome were similar to those of real
DNA motifs. We scanned the genome for random motif oc-
currences. Then, we used these random motif occurrences to
compute associated 3 coefficients with the Poisson lasso re-
gression. As for random proteins, we used these Bs to com-
pute a confidence interval under the null hypothesis.

RESULTS
Model validation with enhancer-blocking assays

We first sought to validate our model using EBAs from
Drosophila. EBA is a classical low-throughput method that
can be used to show the ability of an insulator sequence to
block the activation of a promoter by a distant enhancer
when interposed between them (39) (Figure 2A). We used
the model to predict the blocking effect of an insulator re-
gion depending on protein binding. For this purpose, we
used a compilation of EBA results from (11). It consisted
of 32 regions with varying reported insulating activity (15
regions with insulating activity and 17 regions with no in-
sulating activity). In the first benchmark, we selected the
15 regions with insulating activity (positive class). In or-
der to have a large set of regions with no insulating activ-
ity, we generated >100 control regions (negative class) by
randomly drawing from the Drosophila genome with sizes,
GC and repeat contents similar to those of the abovemen-
tioned 15 regions (40). For each region, we computed block-
ing variables I = {ij, ..., i,} using p ChIP-seq data from
Kc167 cells. We also used g; = {ﬁil, Bip} model parame-
ters independently learned from Kc167 Hi-C data from Li
et al. (17) at 2 kb resolution and for 20-50 kb distances,
for which Hi-C coverage was high. Model parameters were
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Figure 2. Validation of the model with enhancer-blocking assays (EBAs)
from Drosophila and human. (A) Illustration of the EBAs. (B) ROC curves
of the prediction of insulating regions (positives) as compared to randomly
drawn regions (negatives) in Drosophila. Area under the ROC curve (AUC)
is plotted. (C) ROC curves of the prediction of insulating regions (pos-
itives) as compared to non-insulating regions (negatives) in Drosophila.
(D) Blocking effects of GATA SSRs depending on the repeat count in
Drosophila. (E) Blocking effects of GATA SSRs depending on the repeat
count in human.

not learned from EBA assays to prevent overestimation of
predictive performance. We predicted insulating activities of
the regions by the matrix product 8;1. We then assessed the
accuracy of our model’s predictions using receiver operat-
ing characteristic (ROC) curve and the area under the ROC
curve (AUC). We found that predicted insulating activity
was very close to the observed insulator activity from EBA
(AUC = 0.981; Figure 2b). In the second benchmark, we
did not use generated controls but instead the 17 regions re-
ported to have no insulating activity as negative class. We
again predicted insulating activity, and found that predic-
tions were still good (AUC = 0.808; Figure 2C). We found
that changing Hi-C data resolution to 1 or 5 kb only slightly
affected predictions for the two benchmarks (Supplemen-
tary Figure S1). In the third benchmark, we assessed the
blocking effect of simple sequence repeats (SSRs) of GATA
that were shown to have an insulating activity by EBAs
in both drosophila and human (41). In drosophila, we esti-
mated a blocking effect for SSRs that comprised >4 repeats
(Figure 2D and Supplementary Table S1). In particular, we
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found a significant blocking effect for SSRs with five to six
repeats (B = 0.046, P = 2 x 10%). SSRs with >6 repeats
were too few to detect any significant blocking effect (only
8 SSRs with 7 to 8 repeats and 9 SSRs with >11 repeats).
In human, we detected significant blocking effects for all
GATA repeat counts (P < 1072%) at short distances (100—
250 kb at 10 kb resolution; Figure 2E and Supplementary
Table S2). Most notably, we found the highest blocking ef-
fects for SSRs with 9 to 10 repeats (8 > 0.07, P < 10~20),
revealing that the blocking effect depends on the number of
repeats. For larger distances (950-1000 kb), we could only
detect a slight blocking effect for eight repeats, suggesting
that SSR blocking effect acted at short distance (Supple-
mentary Figure S2 and Table 3). Using EBAs, we thus con-
cluded that the model was successfully validated.

Analysis of insulator proteins and comparison with current
approaches

A major problem of testing protein enrichment at TAD bor-
ders is that different algorithms have been developed for
TAD mapping which can yield large differences of enrich-
ments for the same protein (42). Accordingly, we observed
that the enrichments of BEAF-32, dCTCEF, dTFIIIC, GAF
and Su(Hw) could greatly vary depending on the TAD al-
gorithm used in Drosophila (Figure 3A). For instance, GAF
presented an odds ratio (OR) of 4.3 with HiCseg (43), an
OR of 4 with Arrowhead (12), whereas it only showed an
OR of 2.5 with TopDom TADs (16). Conversely, dCTCF
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presented an OR of 3.7 with HiCseg, and ORs around 5
with Arrowhead and TopDom.

Instead of testing protein enrichments at TAD borders,
we used our model to directly assess the blocking effect of
protein binding on long-range contacts. We first estimated
separately the blocking effects of IBPs, by including only
one IBP in the model at a time. This allowed to compare
with previous enrichments. We used Kc167 Hi-C data from
Lietal (17) at 2 kb resolution and focused on 20-50 kb dis-
tances. Using our model, we found that BEAF-32, dCTCF
and dTFIIIC showed the strongest blocking effects (Fig-
ure 3B), which was similar to the enrichments observed at
TAD borders (Figure 3A) and previously observed by Sex-
ton et al. (3). Because the blocking effect might be influ-
enced by the number of protein-binding sites, we sampled
different numbers of peaks from BEAF-32 and estimated
the corresponding Bs. As expected, we found that B accu-
racy was lower for smaller number of peaks (Supplementary
Figure S3). We also observed that the blocking effect was in-
flated, but such inflation remained reasonable (+63%), even
for 1000 sampled peaks which represented only 15% of all
BEAF-32 peaks.

Because IBPs often colocalize linearly (e.g. correlate) on
the chromosome, one might estimate a blocking effect for
a protein, although the protein does not directly impede
long-range contacts (15). Hence, we re-estimated blocking
effects of IBPs jointly (e.g. by including all IBPs within the
same model). BEAF-32 presented the highest blocking ef-
fect (8 = 0.86, P < 10-2°) compared to the other proteins
(Figure 3C), similarly to previously published MLR analy-
sis at TAD borders (15) (Figure 3D). Our model also esti-
mated a negative B for dTFIIIC, suggesting that the protein
could in fact facilitate long-range contacts between flanking
regions, contrary to what is found by the separate estima-
tion (previous paragraph). This meant that dTFITIC block-
ing effect estimated by separate estimation was in fact due
to the colocalization (correlation) of dTFIIIC with other
IBPs such as BEAF-32 (correlation between dTFIIIC and
BEAF-32 blocking variables equals 0.59, P < 10-2°). Our
model outperformed MLR in terms of parameter estima-
tion accuracy. Standard errors of beta parameters were dra-
matically lower than the ones from MLR, revealing the
higher performance of our model in assessing blocking ef-
fects of proteins (Figure 3E). To further compare our new
model with MLR, we assessed the ability to discriminate
between known architectural proteins (11 true positives in-
cluding IBPs and co-factors) and random protein peaks
(200 false positives) using ROC curves (Supplementary Fig-
ure S4). Based on the absolute values of Bs, we found that
our blocking model was highly accurate (AUC =0.991) and
performed better than MLR (AUC = 0.827). Moreover, we
performed the joint analysis of IBPs for different binning
resolutions (1 and 5 kb) and found similar results with 2 kb,
revealing that the resolution did not have a big impact on
the estimation of blocking effects (Supplementary Figure
S5). In addition, we analyzed recent Hi-C data with higher
coverage from Eagen et al. (18) at 1 kb resolution and ob-
tained results that were close to those obtained from Li ez al.
data (Supplementary Figure S6). Thus, by processing the
whole Hi-C matrix information, instead of focusing only on
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Figure 4. Analysis of protein binding DNA motifs in Drosophila. (A)
Blocking effect () in function of motif abundance (| 4| > 0.2 are shown in
red; known architectural proteins are written in blue). (B) Example show-
ing the accumulation of M1BP motifs and DNase I hypersensitive sites
between 3D domains. (C) Example showing the accumulation of Pita and
Pnr motifs between 3D domains. (D) Example showing the accumulation
of Ttk69k motifs between 3D domains.

TAD borders, the proposed model was more accurate than
MLR.

Numerous protein-binding DNA motifs act as blockers

We next sought to analyze the blocking effects of protein-
binding DNA-motifs (Figure 4A and Supplementary Table
S4). Interestingly, our model found motif 1-binding pro-
tein (M1BP) as the motif with the strongest blocking ef-
fect (B = 1.46), which was recently found to be enriched at
TAD borders during development (35) and was implicated
in transcriptional pausing of genes (31). Such transcrip-
tional pausing was recently shown to be involved in long-
range contacts (44). When we looked at Hi-C heatmaps,
we observed that M1BP motifs accumulated at the bor-
ders of 3D domains (Figure 4B; DNase I hypersensitiv-
ity is shown to represent the potential activity of the mo-
tifs). We also identified other motifs with strong blocking
effects including bed (8 = 0.65), Pita (8 = 0.63), vis (B =
0.60), Pnr (8 = 0.59) and Ttk69k (8 = 0.55). Among those

proteins, Pita was a recently discovered insulator protein
able to target CP190 to chromatin (45) and was found at
3D domain borders (Figure 4C). When we used Ttk69k
ChIP-seq and Pnr ChIP-chip data, we found that both
Ttk69k and Pnr colocalized at or near architectural pro-
tein peaks (Supplementary Figure S7a). For instance, Pnr
was enriched at condensin I (Barren), CP190, BEAF-32
and Chromator peaks (Supplementary Figure S7b). Inter-
estingly, Ttk69k was mostly enriched near architectural pro-
teins but did not overlap them, except for condensin I, sug-
gesting that Ttk69k might participate to the formation of
3D domains in a very specific way (Supplementary Fig-
ure S7c). Accordingly, we found numerous Pnr and Ttk69k
motifs located between 3D domains (Figure 4C and D).
We also identified architectural proteins ZWS5 (8 = 0.33),
dCTCF (B =0.32) and Ibf (8 = 0.29). Of note, Ibf was
shown to be a novel CP190 interacting protein with in-
sulating activity (33). When we compared with MLR, we
also found that M1BP presented a very high positive in-
fluence on TAD borders (4 = 8.65; Supplementary Table
S5). However another motif, Zelda, presented the highest
positive influence (8 = 9.32), whereas the same motif was
identified as a long-range contact facilitator with the block-
ing model (8 = —0.41; Supplementary Table S4). This sug-
gests that the blocking model can capture effects on long-
range contacts that could not be assessed by the analysis at
the TAD border level. Using the blocking model, we could
conclude that many proteins including pannier, a transcrip-
tional regulator involved in several developmental processes
(46) and tramtrack 69k, a widely expressed transcriptional
factor (TF) related to cell fate specification, cell prolifer-
ation and cell-cycle regulation (47), might represent novel
candidate architectural proteins in Drosophila.

Co-blocking effects of insulator-binding proteins and co-
factors

Long-range contacts not only involve IBPs but also co-
factors that regulate or stabilize them (11,12,48). Hence, we
sought to analyze potential effects of IBPs and co-factors in
co-blocking long-range contacts. We first modeled the co-
blocking effects of protein pairs using second-order statis-
tical interactions (for every protein pair, we estimated a co-
blocking effect). We detected 38/55 significant interactions
after Bonferroni correction. Among the significant interac-
tions, the model identified 19 positive co-blocking effects
(B > 0), reflecting protein pairs that synergistically blocked
long-range contacts (Supplementary Table S6). We repre-
sented these synergistic blocking effects by a network of
proteins (Figure 5A). In agreement with (49), CP190 co-
blocked contacts with BEAF-32 (8 = 0.76, P < 10-2) and
with GAF (B = 0.67, P < 10~2). Interestingly, we found
that Condensin II (Cap-H2) played a central role in help-
ing other proteins to block contacts, including dCTCF (8 =
1.33, P = 4 x 10713), Barren (8 = 0.78, P < 10~2), dT-
FIIIC (8 =0.70, P = 10°) and GAF (8 =0.68, P = 2
x 1071%). dTFIIIC also represented an important protein
for co-blocking effects. Conversely, Fs(1)h-L had only one
co-blocking partner, dTFIIIC. The model also estimated
19 negative co-blocking effects (8 < 0), reflecting protein
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A Synergistic blocking effects

B Antagonistic blocking effects

Figure 5. Effects of IBPs and co-factors in co-blocking long-range con-
tacts. (A) Synergistic blocking effects estimated by positive second-order
interaction Bs. An edge between two protein nodes i and j means f; ;> 0.5.
(B) Antagonistic blocking effects estimated by negative second-order inter-
action Bs. An edge between two protein i and j nodes means ;; < 0.5. Blue
cross: physical interaction reported in Flybase.

pairs that had antagonistic effects in blocking long-range
contacts (Figure 5B and Supplementary Table S6). Most
notably, we found numerous antagonistic effects of CP190
in blocking contacts with other proteins, such as dTFIIIC
(B =—-233, P <10°2), Su(Hw) (8 = —1.78, P < 1072),
Chromator (8 = —1.68, P < 10~2°), dCTCF (8 = —0.87,
P < 1072%) and Fs(1)h-L (8 = —0.53, P = 4 x 107°). In-
terestingly, Su(Hw) had a slight blocking effect on long-
range contacts (8 = 0.20, P < 10~2%; Figure 3C), but when
combined with CP190, they presented a strong antagonis-
tic effect which reduced its blocking effect (8 = —1.78, P
< 10~%; Figure 5B). Among the synergistic and antago-
nistic effects, we found that many corresponded to physical
interactions reported in Flybase and previous studies (49),
supporting the idea that physical interactions may account
for some of them. Analysis of second-order interactions
thus revealed the complexity behind the establishment of
3D domains. This may notably depend on numerous syner-
gistic and antagonistic effects of IBPs with key architectural
co-factors such as structural maintenance complex (SMC)
family of proteins including cohesin and condensin (50,51).

Analysis in human

We then analyzed blocking effects of proteins and DNA
motifs in human, depending on the scale of 3D genome or-
ganization. For this purpose, we used GM 12878 Hi-C data
for varying distance ranges: [200-400 kb], [400-600 kb],
[600-800 kb], [800-1000 kb], [1000-1300 kb], [1700-2000
kb], [2700-3000 kb], [2700-3000 kb], [3700-4000 kb] and
[4700-5000 kb]. We performed analyses at 40 kb resolution
to have sufficient coverage at long distance (even though for
short distance higher resolution could be used). By varying
the distance range, we could assess blocking effects at dif-
ferent scales, thus allowing the analysis of the well-known
hierarchical nature of 3D domains (52). Because of the large
number of variables (>50), we used Poisson lasso regres-
sion. Moreover, for ChIP-seq data analysis, we scaled the
blocking variables because the ChIP-seq peak numbers and
fold-enrichments greatly varied between proteins and that
prevented further comparison of Bs. For each analysis, we
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Figure 6. Analysis of protein binding and DNA motif in human. (A)
Blocking effects of architectural proteins depending on the distance be-
tween loci. (B) Blocking effects of TFs depending on the distance between
loci. (C) Blocking effects of protein binding motifs depending on the dis-
tance between loci. For all three subfigures, we also plotted confidence in-
tervals under the null hypothesis that a random protein or DNA motif did
not have any effect on long-range contacts.

also computed confidence intervals under the null hypoth-
esis that a protein or DNA motif did not have any block-
ing or facilitating effect on long-range contacts (see ‘Mate-
rials and Methods’ section, simulation of random protein-
binding sites and motif occurrences).

We first focused on known architectural proteins CTCF,
Rad21 (cohesin subunit) and ZNF143. Remarkably, we ob-
served that the blocking effects of architectural proteins
strongly depended on the distance between loci (Figure
6A and Supplementary Table S7), a question that could
not be addressed by previous enrichment or MLR analy-
ses at TAD borders. For instance, CTCF blocking effects
peaked around 3 Mb. Interestingly, the main looping part-
ner of CTCEF, cohesin, had a blocking effect that peaked at
a lower distance, from 1000 to 2000 kb. Another partner
of CTCF, ZNF143, also showed a different blocking effect
that strikingly peaked at 800-900 kb. This means that al-
though CTCEF, cohesin and ZNF143 were known to act to-
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gether in establishing chromatin loops (7), they might par-
ticipate at different scales. We next studied the blocking
effects of TFs (Figure 6B and Supplementary Table S7).
Compared to architectural proteins, TFs were less abundant
over the genome (around few thousands peaks, compared
to tens of thousands of peaks for architectural proteins).
Among the strongest blockers, we found ATF2, FOXMI,
PML and POU2F2, whose effects also depended on dis-
tance. POU2F2 effect peaked at 3800 kb, and FOXM1
and PML both peaked at 3 Mb. Interestingly, some TFs,
such as ATF2, presented high blocking effects for very
large distance (>5 Mb). Thus, although TFs were less fre-
quent over the genome than architectural proteins, they
might collectively contribute significantly to the establish-
ment or maintenance of 3D organization. Lastly, we ana-
lyzed protein-binding DNA motifs (Figure 6C and Supple-
mentary Table S8). CTCF motif showed a strong blocking
effect that peaked from 1000 to 2000 kb, at a shorter dis-
tance than found using ChIP-seq data. However, another
motif, TFAP2C, presented the strongest blocking effect, es-
pecially at long distance. TFAP2C has been implicated in
breast cancer oncogenesis, and was previously shown to be a
collaborative factor in estrogen-mediated long-range inter-
action and transcription (53). We also identified ELK4 and
PAXI1 as strong blockers at long distance. ELK4 is a mem-
ber of the Ets family of transcription factors, and PAX1, is
essential during fetal development. We thus concluded that
architectural proteins, but also transcription factors, shaped
the 3D human genome at different genomic scales.

DISCUSSION

In this paper, we propose a model to comprehensively study
the roles of architectural proteins, insulators and DNA mo-
tifs in blocking long-range contacts between flanking loci at
different scales, thereby demarcating the genome into func-
tional 3D domains. The proposed approach is TAD-free: it
does not rely on any TAD mapping algorithm, it does not
focus on TADs but instead on all possible 3D domains at
all scales, and it is not affected by the blurriness of TAD
borders. The model is validated by numerous EBAs. It out-
performed previous MLR of TAD borders (15) in terms of
blocking effect estimation accuracy. The model is flexible
and can identify both synergistic and antagonistic effects of
architectural proteins depending on the presence of specific
IBPs and co-factors.

The proposed model also uncovers a number of results. In
Drosophila, we find that the blocking effect for the GATA
SSRs depends of the number of repeats, and in particular,
we estimate a significant blocking effect for 5-6 repeats. In
human, we find that GATA repeat effect peaks for 9-10 re-
peats. Moreover, analysis of motifs identifies pannier and
tram track as two novel candidate architectural proteins. In-
terestingly, the protein pannier is a member of the GATA
family known to bind to GATA motifs (46), which may ex-
plain the insulating activity of GATA repeats by recruiting
multiple pannier proteins contiguously to DNA. Moreover,
tram track has a homomeric dimerization BTB/POZ do-
main that could help bridging two distant proteins through
long-range contacts (54) and that is known to interact with
GAF (55). Analysis of co-blocking effects between archi-

tectural proteins further suggests a role for co-factor con-
densin II in helping other proteins to block contacts. Con-
versely, CP190 presents numerous antagonistic effects with
other proteins, meaning that it reduces their blocking activ-
ities. Such co-blocking analyses thus reveal the modulating
effects of specific proteins in blocking contacts with other
proteins. In human, analyses for varying distance ranges un-
cover strong distance-dependent blocking effects depending
on the protein or DNA motif, that could not be addressed
by enrichment test or MLR at TAD borders. For instance,
we find that CTCEF, cohesin and ZNF143 blocking effects
peak at different distances, although the three proteins are
known to act together in establishing chromatin loops (7).
This suggests that they may participate at different 3D chro-
matin scales, or alternatively that their mechanisms of ac-
tion is not always associated with their binding. Support-
ing this idea, recent results showed that cohesin is recruited
at transcription start sites and positioned to CTCF sites by
transcription-mediated translocation (56). In addition, we
observed changes of the B sign depending on the distance.
For instance, ZNF143 presented a blocking effect at short
distance (<2500 kb) and a facilitating effect at longer dis-
tance. This can be due to ZNF143-mediated loops at short
distance that have allosteric effects on long distance inter-
actions (57).

There are different reasons why we restricted our analysis
within a limited distance range, e.g. 2050 kb in Drosophila
(and not 20-1000 kb, for instance). First, at the high resolu-
tion of 2 kb, most of the Hi-C signal is observed within short
distance (20-50 kb). Second, our model assumes a power
law decay between Hi-C count and distance (equivalent to
a log-log linear relation between Hi-C count and distance)
which only holds for a limited distance range. Third, not
restricting the analysis to a limited distance range can lead
to heavy computational burden. One simple way to analyze
Hi-C data within a wider distance range would be to ana-
lyze data at 10-20 kb resolutions.

There are several limitations of the proposed approach.
First, model learning can be computationally demanding in
time and memory depending on the distance range or Hi-C
data resolution. New big data learning algorithms could be
used to process the data at a higher resolution that would al-
low in-depth analysis of 3D chromatin drivers (58). Second,
the model makes the assumption that the accumulation of
protein binding blocks long-range contacts, but other sce-
narios could explain the formation of borders. For instance,
attraction/repulsion forces between histone marks can pre-
dict the folding of chromatin (59). Third, in human, we ob-
served large changes of Bs over distance, for instance for
protein ZNF143 and DNA motif TFAP2C(var.3). Because
lasso regression is not designed to estimate beta standard
deviations, the significance of the difference between two
Bs obtained for two different distances cannot be tested.
Instead, one could use a standard regression with selected
variables to assess the significance.

AVAILABILITY

The model is available in the R package ‘HiCblock’
which can be downloaded from the Comprehensive R
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3.4.3.4 TADreg: TAD identification, differential analysis and prediction

Over the past years, tremendous efforts have been made to develop methods for TAD
identification from Hi-C data [Zufferey et al. 2018]. The methods can be broadly
classified into 4 categories: linear score, statistical model, clustering and network
features [Zufferey et al. 2018]. The first methods split the genome into bins and
define a linear score (insulation score) associated with each bin [Dixon et al. 2012,
Crane et al. 2015, Rao et al. 2014, Shin et al. 2016]. The second methods rely
on statistical models of the interaction distributions [Levy-Leduc et al. 2014,
Weinreb & Raphael 2015, Serra et al. 2017]. The third methods cluster regions
of the genome [Oluwadare & Cheng 2017, Haddad et al. 2017].  The fourth
methods consider the Hi-C data as a graph adjacency matrix and TADs as
communities to detect [Chen et al. 2016, Yan et al. 2017a, Norton et al. 2018].
However, very few methods were developed to detect differential TADs be-
tween  experiments [Zaborowski & Wilczynski 2016,  Sadowski et al. 2019,
Cresswell & Dozmorov 2020].  Moreover, few methods were also proposed to
predict the impact of chromosomal rearrangement in reshaping TADs, and
more generally the 3D genome [Bianco et al. 2018, Huynh & Hormozdiari 2019,
Sadowski et al. 2019, Kaplan 2019, Belokopytova et al. 2020].

I proposed a versatile regression framework that generalizes the insulation score
by estimating a relative score and adding a sparsity constrain ("Sparse Insulation
Model”, SIM), but also allows differential TAD analysis ("Differential Insulation
Model”, DIM) and Hi-C data prediction after chromosomal rearrangement ("Pre-
diction Insulation Model”, PIM) (from submitted article "TADreg : A versatile
regression framework for TAD identification, differential analysis and rearranged
3D genome prediction” below). The proposed model provides a rigorous statis-
tical framework for modeling the interaction distribution, where the model pa-
rameters represent sparse insulation scores that have an intuitive interpretation
and are easy to visualize (Figures 1A and 1B, article below). Our model assumes
additivity of insulation parameters as previously proposed by [Rowley et al. 2017,
Mourad & Cuvier 2018, Huynh & Hormozdiari 2019, Kaplan 2019]. By adding in-
teraction terms in the model, the regression framework can naturally be used for dif-
ferential TAD border identification between two different Hi-C experiments. More-
over, the regression can predict Hi-C data in the case of structural variants, thereby
allowing to explore the deleterious impact of the de novo enhancer-promoter inter-
actions. Using recent high resolution human and mouse Hi-C data, I found that
our approach ranked among the top TAD callers, when evaluated using external
assessment designed not to favor any tool. Moreover, it identified new features of
the genome, we called TAD facilitators, which were demonstrated to be biologi-
cally relevant. Our approach could also identify numerous differential TAD borders
involved in cortical neuron differentiation. Such borders were depleted in CTCF
compared to embryonic stem cells and enriched in a large number of known neu-
ronal transcription factors including NFATC1/3, NEUROD2, HiCl and Dmbx1.
Lastly, my approach outperformed state-of-the-art algorithm PRISMR to predict
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Hi-C data after chromosomal rearrangement.
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Methods: Here, we propose a versatile regression framework which not only identi-
fies TADs in a fast and accurate manner, but also detects differential TAD borders across
conditions for which few methods exist, and predicts 3D genome reorganization after
chromosomal rearrangement. Moreover, the framework is biologically meaningful, has
an intuitive interpretation and is easy to visualize.

Result and conclusion: The novel regression ranks among top TAD callers. Moreo-
ver, it identifies new features of the genome we called TAD facilitators, and that are
enriched with specific transcription factors. It also unveils the importance of cell-type
specific transcription factors in establishing novel TAD borders during neuronal differ-
entiation. Lastly, it compares favorably with the state-of-the-art method for predicting
rearranged 3D genome.
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Introduction

In higher eukaryotes, chromosomes are packed into three dimensions (3Ds) and form
complex structures [1]. Such 3D structure of chromosomes has recently been investi-
gated by chromosome conformation capture combined with high-throughput sequenc-
ing technique (Hi-C) at an unprecedented resolution [2—4]. Hi-C experiments revealed
multiple levels of genome organization including compartments A/B [5] and topologi-
cally associating domains (TADs) [2, 3]. Most notably, TADs are relatively constant
between different cell types and are highly conserved across species. Those TADs play
central roles in key cell processes such as for the long-range regulation of genes by
enhancers [4] or for the replication-timing regulation [6].

©The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third

party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http:/creativecommons.org/publi
cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
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Over the past years, tremendous efforts have been made to develop methods for TAD
identification from Hi-C data [7]. The methods can be broadly classified into 4 catego-
ries: linear score, statistical model, clustering and network features [7]. The first methods
split the genome into bins and define a linear score (insulation score) associated to each
bin [2, 8—10]. The second methods rely on statistical models of the interaction distributions
[11-13]. The third methods cluster regions of the genome [14—16]. The fourth methods
consider the Hi-C data as a graph adjacency matrix and TADs as communities to detect
[17-19]. However, very few methods were developed to detect differential TADs between
experiments [20—22]. Moreover, few methods were also proposed to predict the impact of
chromosomal rearrangement in reshaping TADs, and more generally the 3D genome [21,
23-26].

We propose a versatile regression framework that generalizes the insulation score by esti-
mating a relative score and adding a sparsity constrain (“Sparse Insulation Model’, SIM),
but also allows differential TAD analysis (“Differential Insulation Model; DIM) and Hi-C
data prediction after chromosomal rearrangement (“Prediction Insulation Model’, PIM).
The proposed model provides a rigorous statistical framework for modeling the interac-
tion distribution, where model parameters represent sparse insulation scores that have an
intuitive interpretation and are easy to visualize. Our model assumes additivity of insulation
parameters as previously proposed by [24, 25, 27, 28]. By adding interaction terms into the
model, the regression framework can naturally be used for differential TAD border identifi-
cation between two different Hi-C experiments. Moreover, the regression can predict Hi-C
data in the case of chromosomal rearrangements such as deletion and inversion, thereby
allowing to explore the deleterious impact of de novo enhancer-promoter interactions on
genetic diseases and cancers.

Using recent high resolution human and mouse Hi-C data, we found that our approach
ranked among the top TAD callers, when evaluated using external assessment designed not
to favor any tool. Moreover, it identified new features of the genome we called TAD facilita-
tors, which were demonstrated to be biologically relevant. Our approach could also iden-
tify numerous novel TAD borders emerging during cortical neuron differentiation. Such
borders were depleted in CTCF compared to embryonic stem cells and enriched in a large
number of known neuronal transcription factors including NFATC1/3, NEUROD2, HiC1l
and Dmbx1. Lastly, our approach outperformed state-of-the-art algorithm PRISMR to pre-
dict Hi-C data after chromosomal rearrangement.

Materials and methods

Hi-C data

We used publicly available Hi-C data of lymphoblastoid GM12878 and lung IMR90 cells
from Gene Expression Omnibus (GEO) accession GSE63525 [9]. We also used publicly
available Hi-C data of mouse embryonic stem (ES) and cortical neuron (CN) cells from
GEO accession GSE96107 [29]. Hi-C data were binned at 25 and 50 kb resolutions and nor-
malized by matrix balancing [30].

Capture Hi-C data
We used publicly available capture Hi-C data of wild-type (WT) and mutant distal
limb buds of E11.5 mice from Gene Expression Omnibus (GEO) accession GSE92294
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[23]. Hi-C data were binned at 10 kb resolution and normalized by matrix balancing
[30].

ChIP-seq data
We used publicly available binding peaks of 73 chromatin proteins (Rad21, CTCEF,
YY1, ZBTB33, MAZ, JUND, ZNF143, EZH2, ATF2, ATF3, BATF, BCL11A, BCL3,
BCLAF1, BHLHE40, BRCA1, CEBPB, CFOS, CHD1, CHD2, CMYC, COREST, E2F4,
EBF1, EGR1, ELF1, ELK1, FOXM1, GABP, IKZF1, IRF4, MAX, MEF2C, MTA3, MXI1,
NFATC1, NFE2, NFIC, NFKB, NFYA, NFYB, NRF1, NRSF, P300, PAX5, PBX3, PML,
POL2, POL3, POU2F2, RFX5, RUNX3, RXRA, SIN3A, SIX5, SMC3, SP1, SPI1, SRF,
STAT1, STAT3, STAT5, TBLR1, TBP, TCF12, TCF3, TR4, USF1, USF2, WHIP, ZEB1,
ZNF274, 7773) of GM12878 cells from ENCODE [31]. We downloaded peaks that
were uniformly processed (Uniform Peaks).

We also used publicly available CTCF ChIP-seq data of mouse embryonic stem (ES)
and cortical neuron (CN) cells from GEO accession GSE96107 [29].

JASPAR motifs

To scan the mouse genome for motif occurrences, we used FIMO with default param-
eters (meme-suite.org). The motif position weight matrices were downloaded from
JASPAR database (http://jaspar.genereg.net/).

TAD manual annotation
We used manual annotation of GM12878 TADs at 50 kb from Dali and Blanchette
[32]. As previously described by Dali and Blanchette, TADs were manually traced on
GM12878 Hi-C maps from the full data set at 50 kb resolution for regions 40-45 mb
of 10 different, randomly chosen, chromosomes (chr2, chr3, chr4, chr5, chr6, chr7,
chr12, chrl8, chr20 and chr22). Briefly, interaction maps of the regions of interest
were plotted using HiCplotter. In Adobe Illustrator, dotted squares were manually
traced around visually identifiable TADs on the interaction map plots. Regions anno-
tated as TADs had the following properties: (i) sharp visual contrast between within
and across TAD interaction frequencies, over the entire TAD region; (ii) minimum
size of 250 kb. To give all tools an equal chance, Dali and Blanchette created a dense
set of TAD annotations that included any identifiable TAD structure. For example,
if two potential TADs were overlapping, both were retained, irrespective of whether
one had stronger visual support than the other. TAD boundaries were allowed to
overlap or be nested, as long as there is a clearly traceable square along the diagonal.
Bed files with TAD ranges were manually created and used for tool comparison.

Since 29% of genomic bins could be considered as relevant TAD borders using this
annotation, we considered as TAD borders those supported by at least two TADs that

were manually identified.

Insulation score
For abini € {1, ..., p}, the insulation score was defined as [8]:
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M.
ISl‘ = 10g2 (lpl>; (1)
P i=1 Mi

where M; was the number of Hi-C counts that occurred across bin i (up to some dis-
tance) on the same chromosome.

Sparse insulation model (SIM)
We first removed the distance effect (polymer effect) from the normalized Hi-C counts
using a generalized additive model with a negative binomial distribution:

log (E[yld]) = Bo + f(d) (2)

Variable y denoted normalized Hi-C count for any pair of bins on the same chromo-
some. The log-distance variable d accounted for the background polymer effect. The
local power law decay relation between distance and Hi-C count was modeled by regres-
sion spline [33]. We noted that if bias variables such as GC content, mappability and
fragment length were added to the model [34], then the model could also handle unnor-
malized Hi-C data. Regression residuals (noted z) were then used as input for a linear
model. Using residuals allowed us to then use best subset selection (LO penalty) for
which there is only linear model implementation in R (see as follows).

Then, a linear model called the “sparse insulation model” (SIM) was proposed to esti-
mate the insulating effects of genomic loci on long-range interactions:

E[z|X] = Bo + XBx 3)

Variable set X = {x1, ...,X,} represented the p insulation variables, one for each bin of
the chromosome. For a bin i € {1, ..., p}, the insulation variable x; was set to one when
the bin lied in-between the two bins whose interaction counts were measured by Hi-C,
and was set to zero otherwise. The corresponding S, parameter value reflected the effect
of the bin i on Hi-C counts. A negative beta value (8, < 0) revealed an insulation effect
on long-range contacts. Conversely, a positive beta value (8, > 0) showed a facilitat-
ing effect on contacts. A null beta value (8y;, = 0) meant that the bin had no effect on
contacts.

Best subset selection was used to select the best insulation variables when estimating
the By parameters by adding an LO penalty:

N
1
min —Zl(z;,ﬂo + XiBx) + MIBxllo (4)
Po.Bx N =1

as done using the LOLearn R package (https://cran.r-project.org/web/packages/
LOLearn). Parameter A was obtained by 10 fold cross-validation of the mean square error
(LOLearn.cvfit function with default parameters).

Often the number of insulation variables was too big for LOLearn R package (>5000)
and we had to prefilter the variables. For this purpose, we used lasso regression (glm-
net R package, https://cran.r-project.org/web/packages/glmnet/) and kept variables with
|/§xi| > 0.2. This allowed to reduce the number of variables to few thousands for LOLearn
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to work, while still keeping most relevant variables. We found that prefiltering yielded
betas that were similar to the ones obtained without prefiltering (Additional file 1: Figure
S1).

Differential insulation model (DIM)

The model could be extended to identify differential TAD borders between two differ-
ent Hi-C experiment matrices (e.g. between two conditions). For this purpose, we first
ran SIM for each Hi-C experiment matrix independently. Only the union of bins with
| Bxl-| > 0 from both SIMs were kept for differential analysis (we noted the new bin set
S = {s1,..,84}). To prevent bin uncertainty between experiments, only one bin was kept
among two consecutive bins. Bins from S were then used to build a novel model for dif-
ferential analysis called the “differential insulation model” (DIM).

The differential insulation model was written as follows:

q
E[zlS,e} = ﬂ0+Sﬂs+ﬁee+Z,3siesje (5)
j=1

Variable e denoted the experiment from which the Hi-C count is measured. Variable s;e
was the interaction term between the insulation variable s; and the experiment variable
e, computed as the product between both variables. For a bin j, a negative beta value
(Bsje < 0) revealed higher insulation effect on long-range contacts for the 2nd experi-
ment compared to the 1st experiment, while a positive value (Bs. > 0) meant lower
insulation effect. A null value (,Bsie = 0) showed no differential effect. Because the model
used as input only bins previously identified by the sparse insulation model, there was
no need to use any penalty for parameter estimation. Moreover, the absence of a penalty
term allowed to estimate differential effects without bias.

Prediction insulation model (PIM)

The model could be modified to predict Hi-C data, which we called the “prediction insu-
lation model” (PIM). For this purpose, we modeled the Hi-C count by a generalized lin-
ear model (Poisson regression):

log (E[yld, X]) = Bo + Bad + XBx (6)

Here, since we didn’t need to identify sharply the borders with LO penalty, we could use
directly the Poisson regression. PIM could be used to predict Hi-C data after chromo-
somal rearrangement. For this purpose, PIM was first trained using wild-type Hi-C data
(no rearrangement). Then, the distance variable (d) and the insulation variables (X)
were modified in a way to account for the chromosomal rearrangement. In the case of
a deletion, the distance variable values were shrunk by the length of the deletion (pro-
ducing a new distance variable noted d’), and all insulation variables spanning the dele-
tion were set to zero (producing new insulation variables X'). In the case of an inversion,
bins spanning the inversion were flipped and the distance variable and insulation vari-
ables were recomputed accordingly. The new variables (d' and X’) together with the
trained PIM model (with parameters Bo, Ba and /§ x) were used to predict Hi-C data after

rearrangement:
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log(E[y|d’,X']) = fo + fad’ + X'By

Results and discussion

Identification of TAD borders and facilitators

We proposed the sparse insulation model (SIM) to estimate the insulating/facilitat-
ing effects of genomic loci on long-range interactions (Fig. 1A). SIM required only one
parameter, the maximal distance between two bins from the Hi-C matrix, which we set
here to bin size x10 in order to reduce computational burden. We illustrated the model
with high-depth Hi-C data at 25 kb resolution from human IMR90 lung cells, whose
TADs could be easily visualized. We plotted the example of a 10-Mb-long genomic
region of chromosome 1 (Fig. 1B). We first computed the insulation score (IS) to identify
loci of high insulation. The insulation score is a standard measure reflecting the aggre-
gate of interactions occurring across each interval. It is often used by experimentalists
because of its simple and quantitative interpretation: the lower, the higher the insulation
effect of the loci on overlapping contacts [8]. We observed peaks of negative IS, reflect-
ing the presence of TAD borders with varying strengths (Fig. 1C). Alternatively, IS also
revealed regions facilitating long-range contacts (score above zero).
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Fig. 1 lllustration of the sparse insulation model (SIM) and identification of TAD borders and facilitators. A
Schema representing the insulation effects modeled by SIM on long-range contacts between two bins (two
loci), such as between an enhancer and a promoter. B Hi-C heatmap from IMR90 cells at 25 kb resolution. C
Insulation score. D SIM beta (no penalty). E SIM beta (LO penalty). F CTCF enrichment profile depending on
border strength (beta). G DNA binding protein enrichment compared to background for several proteins

at TAD borders identified by our model (negative betas) depending on protein abundance. H DNA binding
protein enrichment compared to background for several proteins at TAD facilitators identified by our model
(positive betas) depending on protein abundance
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Using SIM, we estimated instead sparse insulation scores (beta parameters). For a bin
i, the B, parameter has a nice and intuitive interpretation: it is the insulation score, after
accounting for the insulating/facilitating effects of the other bins. If no penalty is used to
learn beta parameters, the betas correspond to a relative score (Fig. 1D). Using this rela-
tive score, we observed sharp peaks instead of wide valleys with the standard IS which
prevented accurate location of TAD borders. Moreover, if an LO penalty is used, then the
regression leads to a sparse estimation of the insulation score. This helped to identify the
exact location of bins with insulating/facilitating effects (Fig. 1E), in contrast to IS. In
SIM, a negative beta value (Bx, < 0) reveals an insulation effect on long-range contacts
(the bin is an insulator). Conversely, a positive beta value (B, > 0) shows a facilitating
effect on contacts (the bin is a facilitator). A null beta value (8, = 0) means that the bin
has no effect on contacts.

In the genomic region, SIM could detect ten TAD borders (8 < 0). Using SIM, TADs
could be simply defined as regions in-between two consecutive TAD borders. Visual
inspection of the Hi-C matrix clearly revealed that our TAD identification was rele-
vant (Fig. 1B). Moreover, SIM could identify TAD borders with varying strengths. We
found three strong TAD borders (B < —2; red arrows), five moderate TAD borders
(—12 < B < -2 orange arrows) and two weak TAD borders (B~ —1.1; yellow arrows).
Moreover, the model uncovered one region with facilitating effects (8 > 0; blue arrow).

We then looked at the enrichment of the CTCF protein, a major 3D genome organ-
izer, at TAD borders over the whole genome depending on the beta value. Here, we
used GM12878 Hi-C data for which there are ChIP-seq data for a very large number of
proteins, which helped us to comprehensively assess the role of DNA-binding proteins
(see bellow). Overall, we found a strong two-fold enrichment of CTCF at TAD borders
(Fig. 1F). Moreover, we observed that stronger TAD borders presented higher CTCF
enrichment (2-fold for B < —0.5; 2.2-fold for B < —1.5), meaning that border strength
estimated by SIM scaled accordingly with CTCF presence. Then, we evaluated enrich-
ment for all available protein binding ChIP-seq data, and observed as previously shown
the highest enrichments for CTCF, RAD21, SMC3, ZNF143, YY1 and POL2 (Fig. 1G) [2,
35, 36]. SIM could also identify regions facilitating contacts e.g. regions with B >0 (we
called “TAD facilitators”), unlike most TAD detection tools. IS could also detect facilita-
tors, but without accurate location, thereby preventing enrichment analysis. Using SIM,
we found that lymphocyte transcription factors (TFs) BATF, EBF1, NFIC, RUNX3 and
SPI1 were enriched at such facilitator regions (Fig. 1H). Such high enrichment revealed
that TAD facilitators were indeed biologically meaningful regions.

Thus, we could conclude that SIM had an intuitive interpretation in terms of insu-
lating/facilitating quantitative effects, which could also sharply identify TAD borders
unlike the insulation score. Moreover, our model could accurately identify a novel class
of 3D elements that we called TAD facilitators, which were highly enriched in cell spe-
cific TFs.

Performance and comparison with state-of-the-art tools

SIM was very accurate to identify TAD borders. We compared it to 7 other algorithms
including Armatus, Arrowhead, DomainCaller, TADbit, TADtree, TopDom, HiCseg
using human GM12878 Hi-C data as from [32] (Fig. 2). At both 25 kb and 50 kb, SIM
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identified a small number of TAD borders (2691 and 2711, respectively), such as HiC-
Seg (2835 and 2835, respectively) and TopDom (2738 and 2568, respectively) (Fig. 2A).
Conversely, Armatus identified much more TAD borders (7567 and 4265, respectively)
(Fig. 2A). Overall, we found that the number of borders identified by SIM (as well as
HiCseg and TopDom) was only slightly impacted by Hi-C data resolution, unlike for the
other algorithms. We also compared the TAD borders identified by SIM for different
normalizations of the Hi-C data (Knight-Ruiz (KR) [30], iterative correction and eigen-
vector decomposition (ICE) [37] and square root vanilla coverage (VC SQRT) [38]),
and globally found similar results at 50 kb resolution (Additional file 1: Figure S2). We
then compared TAD border prediction concordance with manual annotation of TADs
at 50 kb from [32] (Fig. 2B). These manually annotated TADs represented an external
assessment which was designed not to favor any tool. We found that 58.5% of borders
predicted by SIM were also found by manual annotation, which ranked first SIM. More-
over, SIM was able to detect 24.2% of manually annotated borders. In comparison, the
large numbers of TAD borders detected by Armatus (>4000 at 50 kb) or TADbit (>3500
at 50 kb) were proportionally less confirmed by manual annotation (34.6% and 46.9%,
respectively).

We then assessed TAD border prediction concordance between the different tools.
At 50 kb, 82.8% of borders detected by SIM were also identified by the other tools, and
35.2% of other tools’ borders were called by SIM, which was similar to the top tools,
HiCSeg and TopDom (Fig. 2C). At 25 kb, 76.5% of borders detected by SIM were also

Page 8 of 14
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identified by the other tools, and 21.4% of other tools’ borders were called by SIM, which
was similar to HiCSeg, TopDom and DomainCaller (Fig. 2D). Thus, SIM ranked among
the best tools to predict TAD border. Meanwhile, SIM was relatively fast and memory
efficient. For chromosome 1 with 25 kb resolution and considering a maximal distance
of 250 kb, SIM ran in only 151 seconds for one core and around 6.9 Gb.

Identification of novel borders during cell differentiation

The 3D genome is dynamic, especially during the developmental process, and global
reorganization was previously reported during differentiation [29]. However, very few
methods were developed for differential analysis of TADs [20, 22]. Using our versatile
regression framework, we could easily implement differential TAD analysis in order to
identify novel TAD borders, or alternatively depleted TAD borders, during cell differ-
entiation. For this purpose, interaction terms were added in the model to account for
differential insulation effects depending on the cell type. We called this model the dif-
ferential insulation model (DIM). The corresponding interaction betas were then used to
assess differential TAD border strength.

To illustrate differential analysis, we studied mouse embryonic stem cells (ESs) differ-
entiation into cortical neurons (CNs) using ultra-deep coverage Hi-C, where novel TAD
borders were shown to colocalize with developmental genes that were activated [29]. We
first focused on a 5-Mb-long genomic region of chromosome 18 around the develop-
mental gene Zfp608. In ES cells, we observed a big TAD in the middle of the Hi-C map
(Fig. 3A, C). In CN cells, this big TAD was split into two new TADs separated by a novel
border located at 55 Mb overlapping the gene Zfp608 (Fig. 3B, D). Using the two Hi-C
maps, DIM accordingly identified a strong and significant differential TAD border at 55
Mb (,3 ~ —1.8, p < 10779 blue arrow; Fig. 3E), reflecting TAD split during differenti-
ation. Moreover, DIM could also reveal less obvious differences in border strength. In
particular, DIM detected two smaller differential TAD borders (8 < 1.2, p < 107; red
arrows), which corresponded to borders present in ES cells and lost in CN cells.

We then ran differential analysis by DIM genome-wide. We observed a higher num-
ber of TAD borders after differentiation (fold-change = 1.1; Fig. 3F, left), meaning that
new TADs were created after differentiation. If we only considered strong TAD borders,
we observed an even larger number of TAD borders after differentiation (fold-change
= 1.51 for abs(beta)> 1; fold-change = 2.82 for abs(beta) > 1.5). Moreover, the abso-
lute values of DIM betas in CN were significantly higher than in ES (fold-change =
1.11, p-value = 0.01; Fig. 3G), suggesting that those new TADs were particularly strong
and insulated. We then compared CTCF enrichment at CN-specific borders and ES-
specific borders (Fig. 3H). We found that although CTCF was very enriched at ES bor-
ders (fold-change = 1.64), it was far less enriched at CN borders (fold-change = 1.07),
suggesting that the novel TAD borders were maintained by other factors than CTCE.
It was previously showed that novel TAD borders located to neural transcription fac-
tors Pax6, NeuroD2, and Tbrl [29]. However, their analysis was limited by available
ChIP-seq data. Here, instead, we systematically assessed the enrichment of 579 protein
binding DNA motifs at novel CN borders (Fig. 3I). We found a tremendous amount of
motifs enriched at novel borders. All enriched motifs were known neural TFs, including
Foxd3, NFATC3, NEUROD2, HiC1, Dmbx1, Hmx2 and NFATCI. This result suggested
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Fig. 3 Differential analysis of TAD borders with the Differential Insulation Model (DIM). A Hi-C heatmap

in mouse embryonic stem (ES) cells. B Corresponding Hi-C heatmap in cortical neuron (CN) cells. C
Identification of TAD borders in ES cells (spase insulation model beta is plotted). D Identification of TAD
borders in CN cells (spase insulation model beta is plotted). E Identification of differential TAD borders (DIM
beta is plotted). For each beta, an adjusted p-value is plotted to show significance. F Number of cell-type
specific borders, for varying differential border strengths. G Absolute value of beta between CN specific
borders and ES specific borders. H CTCF enrichment at CN specific borders compared to ES specific borders.
1 DNA-binding protein motif enrichment (fold-change) at CN specific borders. J DNA-binding protein motif
enrichment (fold-change) at ES specific borders

that chromatin was reorganized due to not only Pax6, NeuroD2, and Tbrl, but also to
numerous other TFs involved in neural differentiation. In comparison, ES borders were
strongly enriched in known stem cell TFs, such as Hoxb5, EMX2, PAX4. Thus, we could
conclude that cell type specific TFs played a major role in reshaping the genome in 3D

during differentiation.

Predictions of Hi-C data after chromosomal rearrangements

Our versatile regression framework could also be used to faithfully model the 3D genome
and predict Hi-C data. In particular, predicting the effects of chromosomal rearrange-
ment on 3D genome is an important challenge, since 3D genome alteration can impact
essential cellular processes such as enhancer-promoter transcriptional regulation. How-
ever, until now, only few methods were developed for this task. Hence, we assessed the
ability of the model to predict Hi-C data after chromosomal rearrangement. In this case,
we called this model the prediction insulation model (PIM). For this purpose, PIM was
trained on wild-type (WT) Hi-C data, producing a model with parameters 30, ,3,,1 and
/§ - Then, in the PIM model, the distance variable (d) and the insulation variables (X)
were modified in a way to account for the chromosomal rearrangement. For instance, in
the case of a deletion, the distance variable values were shrunk by the length of the dele-
tion (producing a new distance variable noted d’), and all insulation variables spanning
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the deletion were set to zero (producing new insulation variables X'). The new variables
together with the trained PIM model were used to predict Hi-C after deletion.

PIM prediction accuracy was assessed using 10 kb resolution capture Hi-C experiments
performed in E11.5 limb buds from WT and mutant mouses with a deletion or an inver-
sion [23]. For the DelB/DelB mutant (homozygous deletion), we found very accurate Hi-C
data predictions as compared to observed data in the mutation mouse (Fig. 4A). Most
notably, PIM was able to finely model the distance effect, the numerous TADs, but also
the complex hierarchies of TADs. Prediction accuracy was very high as measured by Pear-
son correlation between log-counts r = 0.882 and Spearman correlation between counts
rs = 0.879 (Fig. 4A). In comparison, the state-of-the-art model PRIMSR achieved compa-
rable performance in terms of Pearson and Spearson correlations (r = 0.821, r; = 0.895;
Fig. 4B). But, when distance effect was removed using stratum adjusted correlation in
order to only capture the biological variability, PIM performed better than PRISMR (PIM:

A DelB/DelB B DelB/DelB
10kb 10kb
Observed S Observed S

PIM &

r=0.882 rs=0.879 r'=0.883 r=0.821 r¢=0.895 r'=0.582
C DelBs/DelBs D DelBs/DelBs
10kb 10kb
Observed < Observed <
PIM D
r=0.857 rs=0.842 r'=0.845 r=0.832 rs=0.897 r'=0.671
E InvF/InvF F InvF/InvF
“10kb -10kb

Observed / Observed /

&
r=0.836 rs=0.788 r'=0.712 r=0.795 rs=0.779 r'=0.682
Fig. 4 Prediction insulation model (PIM) predicts rearranged 3D genome with high accurary and comparison
with PRISMR using mouse data from [23]. Models were trained using wild-type Hi-C data to predict
rearranged Hi-C data (for PRISMR, we used predictions provided by the authors). A PIM prediction for DelB/
DelB genotype and comparison with observed data. B PRISMR prediction for DelB/DelB genotype. C PIM
prediction for DelBs/DelBs genotype and comparison with observed data. D PRISMR prediction for DelBs/
DelBs genotype. E PIM prediction for InvF/InvF genotype and comparison with observed data. F PRISMR
prediction for InvF/InvF genotype
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r' = 0.883 and PRISMR: v’ = 0.582; Fig. 4A, B), reflecting its better ability to model bio-
logical variability underlying TADs and sub-TADs. We next compared PIM and PRIMSR
using other mouse mutants. For the DelBs/DelBs mutant, we also found that PIM and
PRISMR achieved similar performance in term of r and r; (PIM: r = 0.857, r; = 0.842;
PRISMR: r = 0.832, r; = 0.897; Fig. 4C, D), but PIM predictions compared favorably in
term of biological variability with ' (PIM: r = 0.845; PRISMR: r = 0.671; Fig. 4C, D).
Lastly, we predicted data for an inversion (InvF/InvF). As for deletions, we found that PIM
yielded better predictions than PRISMR in term of biological variability with r’.

Conclusion

In this article, we propose a versatile regression framework for Hi-C data analyses. Our
framework was designed for TAD identification (SIM model), but also differential analy-
sis (DIM model) and Hi-C data predictions after chromosomal rearrangement (PIM
model). First, SIM accurately detected TAD borders in a quantitative manner, and was
ranked among the top TAD callers when comparing with state-of-the-art methods on an
unbiased dataset. Moreover, SIM also identified a novel class of elements we called facil-
itators which facilitated long-range contacts as opposed to borders, and were shown to
be associated with specific transcription factors. Second, DIM identified novel borders
during neuronal differentiation. Such novel borders were particularly enriched for other
factors than CTCE, in particular, numerous transcriptional factors specific to neurons
including Foxd3, NFATC3, NEUROD?2, HiC1, Dmbx1, Hmx2 and NFATCI. In compari-
son, ES specific borders were enriched in stem cell TFs. Third, PIM accurately predicted
rearranged 3D genome in mouse mutants, when trained with wild-type Hi-C data. Such
approach is very promising to assess the impact of chromosomal rearrangements on the
3D genome. Moreover, PIM compared favorably with state-of-the-art PRISMR in terms
of biological variability captured by Hi-C data.

There are several limitations of the proposed framework. First, the proposed frame-
work is designed for the analysis of bulk Hi-C data, i.e. data from a population of cells.
However, single-cell experiments are getting widely used in 3D genome studies, and
necessitate the development of new tools. The proposed framework must be further
extended for data that are too sparse, which is the case for single cell data. The use of
an empirical Bayes approach to estimate regression betas across cells might be a elegant
solution for this purpose. Second, the same framework can be further extended for other
Hi-C data analysis tasks. For instance, the regression can be used to infer frequently
interacting regions (FIREs) and differential FIREs from Hi-C data [39]. Third, variable
selection for the SIM model is based on best subset selection using LOLearn R package.
However, one problem is that LOLearn cannot work with more than 5000 variables on
a standard computer, and for the largest chromosomes, prefiltering is done using lasso
regression and a threshold of | ﬁxi| > 0.2 to sufficiently reduce the number of variables
for processing. However, this prefiltering might affect best subset selection. Other pre-
filtering approaches not relying on an arbitrary thresholding can be used instead. For
instance, knockoff can be used for removing unnecessary variables while controlling
the false discovery rate (FDR) [40]. Alternatively, bootstrap stability investigation can be
used [41]. Fourth, SIM is methodologically similar to other TAD callers based on the
computation of a linear score such as TopDom [10] or those based on statistical models
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of the interaction distributions such as HiCseg [11]. We thus expect SIM to call similar
TAD borders (performances between SIM, TopDom and HiCseg were similar, Fig. 2).
But SIM is very different from other TAD callers based on clustering [14-16] or graphs
[17-19], and thus SIM is more likely to miss those TADs. Fifth, compared to other TAD
callers, SIM is conservative for the detection of TAD borders, meaning that fewer but
correct TADs were called rather than many TADs including a few false positives. This
stringency is related to the use of best subset selection. The use of other variable selec-
tion procedures could be investigated to assess if more TAD borders could be identified.
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3.4.4 3D genome and evolution

In vertebrates, a large portion of chromatin loops is mediated by CTCF. The
loops are often marked by asymmetric CTCF motifs where cohesin is re-
cruited [Rao et al. 2014]. These results support the extrusion loop model where
CTCF and cohesin act together to extrude unknotted loops during interphase
[Sanborn et al. 2015].

CTCF is an 11-zinc-finger (ZF) protein that is functionally conserved in verte-
brates and Drosophila melanogaster [Hore et al. 2008, Heger et al. 2012]. CTCF-
binding sites and Hox gene clusters were shown to be closely correlated throughout
the animal kingdom, suggesting the conservation of the Hox-CTCF link across
the Bilateria, as principal organizer of bilaterian body plans [Heger et al. 2012].
Comparative Hi-C further showed that CTCF motif position and orientation are
conserved across species and that divergence of CTCF binding is correlated with
divergence of internal 3D domain structure [Vietri-Rudan et al. 2015]. These
observations suggest that the genome could undergo a continuous flux of local
conformation changes by CTCF motif turnover that allow or prevent the de novo
enhancer-promoter interactions and misexpression [Gémez-Marin et al. 2015].
Thus, the comparative analysis of CTCF-mediated looping across species is crucial
to understand how gene expression or other key processes evolve. However, 3D
genome analysis relies on complex and costly Hi-C experiments, which currently
limits their use for evolutionary studies over a large number of species.

I proposed a novel approach to study the 3D genome evolution in vertebrates
using the genome sequence only, e.g. without the need for Hi-C data [Mourad 2019].
The approach is simple and relies on comparing the distances between convergent
and divergent CTCF motifs (ratio 3DR, Equation 1 and Figure 1, from the article
"Studying 3D genome evolution using genomic sequence” below). I showed that
3DR is a powerful statistic to detect CTCF looping encoded in the human genome
sequence, thus reflecting strong evolutionary constraints encoded in DNA and
associated with the 3D genome. Moreover, I found that 3DR varies depending on
the chromosome region, such as 3D (sub-)compartments, suggesting that 3DR is
not homogeneous along the genome and might functionally define 3D chromatin
state. When comparing 3DR across vertebrates, the results revealed that the
distance between convergent motifs which underlie CTCF looping and TAD
organization evolves over time.

To conclude, I showed that the DNA sequence encodes loop extrusion, and that
CTCF looping can be studied in species for which no Hi-C data are available, e.g.
the majority of species. Moreover, I showed that phylogenetic methods such as
ancestral character reconstruction can be used to infer CTCF looping in ancestral
genomes. Therefore, 3DR makes it possible to study the evolution of CTCF looping
across a large number of species, which is impossible with the Hi-C technique.
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Abstract

Motivation: The three dimensions (3D) genome is essential to numerous key processes such as the regulation of
gene expression and the replication-timing program. In vertebrates, chromatin looping is often mediated by CTCF,
and marked by CTCF motif pairs in convergent orientation. Comparative high-throughput sequencing technique
(Hi-C) recently revealed that chromatin looping evolves across species. However, Hi-C experiments are complex and
costly, which currently limits their use for evolutionary studies over a large number of species.

Results: Here, we propose a novel approach to study the 3D genome evolution in vertebrates using the genomic se-
quence only, e.g. without the need for Hi-C data. The approach is simple and relies on comparing the distances be-
tween convergent and divergent CTCF motifs by computing a ratio we named the 3D ratio or ‘3DR’. We show that
3DR is a powerful statistic to detect CTCF looping encoded in the human genome sequence, thus reflecting strong
evolutionary constraints encoded in DNA and associated with the 3D genome. When comparing vertebrate
genomes, our results reveal that 3DR which underlies CTCF looping and topologically associating domain organiza-
tion evolves over time and suggest that ancestral character reconstruction can be used to infer 3DR in ancestral

genomes.

Availability and implementation: The R code is available at https://github.com/morphos30/PhyloCTCFLooping.

Contact: raphael.mourad@univ-tlse3.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromosomes are tightly packed in three dimensions (3D) such that
a 2-m long human genome can fit into a nucleus of ~10 microns in
diameter (Halverson et al., 2014). Over the past years, the 3D
chromosome structure has been comprehensively explored by
chromosome conformation capture combined with high-throughput
sequencing technique (Hi-C) at an unprecedented resolution (Dixon
et al., 2012; Jin et al., 2013; Sexton et al., 2012). Multiple hierarch-
ical levels of genome organization have been uncovered. Among
them, topologically associating domains (TADs) (Dixon et al., 2012;
Sexton et al., 2012) and chromatin loops (Rao et al., 2014) represent
pervasive structural features of the genome organization. Moreover,
functional studies revealed that spatial organization of chromo-
somes is essential to numerous key processes such as for the regula-
tion of gene expression by distal enhancers (Jin et al., 2013;
Lupianez et al., 2015) or for the replication-timing program (Pope
etal., 2014).

A growing body of evidence supports the role of insulator bind-
ing proteins such as CTCF, and cofactors like cohesin, as mediators
of long-range chromatin contacts (Phillips-Cremins et al., 2013;
Sexton et al., 2012; Van Bortle et al., 2014). In mammals, depletions
of CTCF and cohesin decreased chromatin contacts (Zuin et al.,
2014). Moreover, high-resolution Hi-C mapping has recently
revealed that loops that demarcate domains were often marked by

asymmetric CTCF motifs where cohesin is recruited (Rao et al.,
2014). These results support the extrusion loop model where CTCF
and cohesin act together to extrude unknotted loops during inter-
phase (Sanborn et al., 2015).

CTCEF is an 11-zinc-finger protein that is functionally conserved
in vertebrates and Drosophila melanogaster (Heger et al., 2012;
Hore et al., 2008). CTCF-binding sites and Hox gene clusters were
shown to be closely correlated throughout the animal kingdom sug-
gesting the conservation of the Hox-CTCF link across the Bilateria,
as principal organizer of bilaterian body plans (Heger et al., 2012).
Comparative Hi-C further showed that CTCF motif position and
orientation are conserved across species and that divergence of
CTCF binding is correlated with divergence of internal domain
structure (Vietri-Rudan et al., 2015). These observations suggest
that the genome could undergo a continuous flux of local conform-
ation changes by CTCF motif turnover that allow or prevent de
novo enhancer-promoter interactions and misexpression (Gomez-
Marin et al., 2015). Thus, the comparative analysis of CTCF-
mediated looping across species is crucial to understand how gene
expression or other key processes evolve. However, 3D genome ana-
lysis relies on complex and costly Hi-C experiments, which currently
limits their use for evolutionary studies over a large number of
species.

Here, we propose a novel approach to study the 3D genome evo-
lution in vertebrates using the genome sequence only, e.g. without
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the need for Hi-C data. Therefore, this approach allows a compre-
hensive analysis of vertebrate 3D genomes whose number is expo-
nentially increasing due to ongoing large sequencing projects such as
the Vertebrate Genomes Project (VGP). The approach is simple and
relies on comparing the distances between convergent and divergent
CTCF motifs (using a ratio we named the 3D ratio or ‘3DR’).
We show that 3DR is a powerful statistic to detect CTCF looping
encoded in the human genome sequence, thus reflecting strong evo-
lutionary constraints encoded in DNA and associated with the 3D
genome organization. Moreover, we found that 3DR varies depend-
ing on the chromosome region, such as 3D (sub-)compartments, sug-
gesting that 3DR is not homogeneous along the genome and might
functionally define 3D chromatin state. When comparing 3DR
across vertebrates, our results reveal that the distance between con-
vergent motifs which underly CTCF looping and TAD organization
evolves over time and suggest that ancestral character reconstruction
can be used to infer 3DR in ancestral genomes.

2 Materials and methods

2.1 Hi-C data, compartments, subcompartments and
TADs

In human, we computed compartments A/B using Juicer Tools
(Durand et al., 2016). For this purpose, we used publicly available
Hi-C data from GM12878 cells from Gene Expression Omnibus
(GEO) accession GSE63525 (Rao et al., 2014). For subcompart-
ments, we downloaded the genomic coordinates from GEO
GSE63525. For TAD borders and loop anchors, we downloaded re-
spectively Arrowhead domains and HiCCUPS loops called from
GM 12878 Hi-C data from GEO GSE63525.

2.2 Isochores
In human, we called isochores using isoSegmenter program on hg38
assembly (Cozzi et al., 2015).

2.3 Replication timing
In human, we used GM12878 Repli-seq from ENCODE (The
ENCODE Consortium, 2012).

2.4 CTCF motif calling

We used the vertebrate CTCF motif position frequency matrix
MAO0139.1 from the JASPAR database (http://jaspar. genereg.net/).
We scanned CTCF binding sites on the following genome assem-
blies: ailMell, allMis1, anoCar2, apiMel2, aplCall, aptManl,
balAcul, bosTau8, braFlo1, calJac3, calMill, canFam3, cavPor3,
cell, cerSim1, choHofl, criGril, danRer10, dipOrdl, dmé,
droYak2, echTel2, equCab2, eriEur2, felCat8, fr3, gadMorl,
galGal4, gasAcul, geoForl, gorGor3, hetGla2, hg38, latChal,
loxAfr3, macEug2, melGall, melUndl, micMur2, mm10,
monDomS$, musFurl, myoLuc2, nomLeu3, ochPri3, oreNil2,
ornAna2, oryCun2, oryLat2, otoGar3, oviAri3, panPanl, panTro$,
papAnu2, petMar2, ponAbe2, proCapl, pteVam1, rheMac3, rné6,
saiBoll, sarHarl, sorAra2, speTri2, strPur2, susScr3, taeGut2,
tarSyr2, tetNig2, triMan1, tupBell, turTru2, vicPac2, xenTro7. For
this purpose, we used MEME FIMO program with default parame-
ters (http://meme-suite.org/doc/fimo.html).

2.5 CTCF ChIP-seq peak
In human, we used CTCF ChIP-seq peaks for several cell lines from
ENCODE (https://genome.ucsc.edu/encode/).

2.6 Deepbind

To improve binding predictions for CTCF, we used deepbind to pre-
dict binding on the 500 base region surrounding motif occurrence
(http://tools.genes.toronto.edu/deepbind/). We used the deepbind
model trained on CTCF ChIP-seq data, noted D00328.018.

A CTCF-mediated looping in 3D B 1D genome point of view

N

Aimplies B Convergent  Divergent
motifs motifs

1D distance between convergent motifs
is higher than between divergent motifs.

Loops are formed by two CTCF
motifs in convergent orientation.

=}> Forward CTCF motif <= Reverse CTCF motif €__—> cohesin ‘ CTCF ‘

Fig. 1. CTCF-mediated looping in 3D and 1D genome points of view. (A) The
CTCF-mediated looping in 3D. (B) The 1D genome point of view of CTCF-medi-
ated looping

2.7 Conservation score

We computed the average conservation score of the 50 bases sur-
rounding the CTCF binding sites using hg38 phastCons scores from
UCSC Genome Browser (https://genome.ucsc.edu/). For other
assemblies, we liftovered hg38 phastCons scores.

3 Results and discussion

3.1 CTCF-mediated looping in 3D and 1D genome point

of view

In vertebrates, the 3D genome is organized in chromatin loops often
mediated by CTCF and cohesin: the CTCF-mediated loops. In par-
ticular, CTCF sites at loop anchors occur predominantly (>90%) in
a convergent orientation, i.e. with a forward motif on the left anchor
and a reverse motif on the right anchor (Rao et al., 2014) (Fig. 1A).
From a 1D genome point of view, the CTCF-mediated looping
implies that two motifs in convergent orientation should be located
farther apart than two motifs in divergent orientation (Fig. 1B).
Thus, based on this implication, we sought to compare the distances
between contiguous motifs depending on their orientation as a mean
to study 3D genome from genomic sequence in species for which Hi-
C data were not available.

For this purpose, we estimated the following ratio 3DR:

3DR = median(d_,._) /median(d__,), (1)

that was the ratio of two medians: the median of the distances be-
tween two contiguous motifs in convergent orientation (noted
‘—<«’), and the median of the distances between two contiguous
motifs in divergent orientation (noted ‘——’). We hypothesized that
a 3DR significantly greater than one reflects CTCF looping in the
genome. Because 3DR was a ratio of distance medians, it accounted
for the genome size effect and could thus allow comparisons be-
tween different genomes whose sizes may vary.
Additionally, we estimated another ratio used as a control:

3DC = median(d_._,) /median(d._.) (2)

that was the ratio of two medians: the median of the distances be-
tween two contiguous motifs in the same forward orientation (noted
‘——’) and the median of the distances between two contiguous
motifs in same reverse orientation (noted ‘—«). Following the 1D
genome point of view, the control ratio was supposed to show no
difference between the two orientations. Deviations of 3DC from 1
might reflect biases in the genome that were not related to CTCF
looping. To assess the significance of ratio 3DR (and 3DC), we used
the Wilcoxon rank-sum test. This test could assess differences of dis-
tances even if the distances did not follow a normal distribution.

3.2 Validation of 3DR as a measure of CTCF-mediated
looping
We first studied the ratio 3DR using the human genome. For this

purpose, the human genome hg38 assembly was used and vertebrate
CTCF motifs (JASPAR MA0139.1) were called along the genome.

0202 YouelN GO UO Jasn aiolqig SHND-LSINI Ad 60£98GG/29€ L/G/9€/40BIISAE-9]01E/SONEWIOJUIOIG/ WO dNO"dlWapede//:sdiy Wwoly papeojumoq



3D genome evolution

1369

The distance between any two consecutive motifs was computed. To
only keep motifs with a higher chance of binding, motifs whose
binding scores were lower than a specific quantile threshold were
removed. We found that 3DR strongly increased with the binding
score and was maximal for a quantile threshold of 80% (Fig. 2A).
However, the confidence interval of 3DR was higher for 80% than
for lower quantiles, because too many binding sites were discarded.
Thus, as a trade-off, a quantile of 70% was then considered as a
threshold for further analyses, because it better allowed comparison
of 3DR between species with sufficient statistical power (statistical
power depends on the number of binding sites).

We found that the distance between two contiguous motifs in
convergent orientation was significantly higher than between two
contiguous motifs in divergent orientation, as expected by the 1D
genome point of view of CTCF-mediated looping (3DR = 1.28,
Wilcoxon test P <3 x10~'7; Fig. 2B). The 3DR was computed
based on 6426 convergent motif pairs and on 6370 divergent motif
pairs. In comparison, the distance between two motifs in forward
orientation was not significantly different from the distance between
two motifs in reverse orientation, as expected by the 1D genome
point of view (3DC = 0.97, P=0.41). The bootstrapped distribu-
tions of the distance medians were also computed for convergent
and divergent motifs, respectively (Supplementary Fig. S1). The two
distributions were far apart, reflecting the significant differences of
medians. Because the accuracy of the distance between motifs
depended on the genome assembly, the ratio was assessed for old
and more recent assemblies. As expected, 3DR increased with recent
assemblies (Supplementary Fig. S2). However, these improvements
were very modest, revealing that the assembly version did not have a
big impact on the estimation of 3DR in human.

We then used CTCF GM 12878 ChIP-seq data to remove motifs
not bound by CTCF in vivo. The ratio 3DR was much higher than
previously and very significant (3DR=1.69, P<35x107°%
Fig. 2C), reflecting the important difference in distance between
motifs overlapping CTCF peaks depending on orientation. In vivo
information thus helped us to remove false positive motif occur-
rences and to estimate 3DR with more power. We next assessed
3DR using CTCF peaks from all ENCODE cell lines
(Supplementary Table S1). Interestingly, we found that 3DR varied

embryonic stem cells and cancer cells, reflecting lower CTCF loop-
ing and thus lower organization of the genome in 3D domains in
these cells. However, in practice, only genome assemblies were
available for most species and no ChIP-seq data were available.
Hence, to circumvent this issue, CTCF ChIP-seq peaks surrounding
the motifs were predicted using convolutional neural network learn-
ed from human data (Alipanahi et al., 2015). This ratio estimated
using predicted peaks was noted 3DR,,. The ratio 3DR,, was higher
than the one computed from motifs only (3DRI, =1.44,
P <2 x107%% Fig. 2D), revealing the better ratio estimation using
peak predlctlon.

We next filtered motifs located inside 3D domain borders, since
those motifs were more likely to influence the 3D genome. For this
purpose, we used Arrowhead domains from GM12878 Hi-C data
(Rao et al., 2014). We extended domain borders to 20 kb on each
side and only kept motifs belonging to borders. Accounting for 3D
domain  borders strikingly improved 3DR (3DR=35.67,
P <7x107%7; Fig. 2E). We also filtered motifs located at loop
anchors (Rao et al., 2014). Again, we extended loop anchors to
20kb on each side and kept motifs belonging to anchors.
Surprisingly, we found a much lower 3DR than for 3D domain bor-
ders (3DR = 1.77, P < 2 x 10~ '%; Supplementary Fig. S3).

CTCF binding sites located at 3D domain borders were previous-
ly shown to be evolutionary conserved (Vietri-Rudan et al., 2015).
Hence, we sought to improve 3DR computation by discarding non-
conserved motifs. This ratio estimated using conservation was noted
3DR.. This approach greatly improved the ratio (3DR. = 1.64,
P <7x10"*; Fig. 2F). If both conservation and predicted peaks
were used together, the ratio was even higher (3DR, = 1.80,
P <5x107%2). We also computed 3DR within synteny blocks, but
only observed a slight improvement (3DR = 1.30, P<3x 1077
Supplementary Fig. S4). Thus, accounting for conservation score
allowed to further improved ratio estimation.

As a control, we computed 3DR for Drosophila genomes (mela-
nogaster —and  yakuba) and  Caenorbabditis  elegans. 1In
D.melanogaster, recent high resolution Hi-C data showed the absence
of loops mediated by CTCF motifs in convergent orientation (Eagen
et al., 2017). Accordingly, 3DR was computed for melanogaster and
yakuba genomes and were close to one and not significant (dmé:

depending on cell type. Moreover, 3DR was especially low for 3DR = 0.93, P=0.15; droYak2: 3DR=1.02, P=0.41;
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Fig. 2. Ratios 3DR and 3DC computed from the human genome assembly. (A) Ratio 3DR for different binding score thresholds. (B) Distance between consecutive CTCF
motifs depending on motif orientation. (C) Ratio 3DR when accounting for CTCF ChIP-seq data for different cell lines. (D) Distance between consecutive CTCF motifs de-
pending on motif orientation, when accounting for predicted CTCF ChIP-seq data. (E) Distance between consecutive CTCF motifs depending on motif orientation, when
accounting for TAD borders. (F) Distance between consecutive CTCF motifs depending on motif orientation, when accounting for conservation score
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Supplementary Fig. S5). In addition, in C.elegans, CTCF has been lost
during nematode evolution (Heger et al., 2009). In agreement, 3DR
was also close to one and not significant (ce1l: 3DR = 1.02,
P =0.22; Supplementary Fig. S5).

Analysis of the human genome thus validated the 1D genome
point of view of CTCF-mediated looping. Such looping can be easily
estimated from the genomic sequence alone by computing the 3DR
ratio of distances depending on motif orientation. Moreover, control
results revealed the ability of 3DR to be equal to one for genomes
that are known not to harbor CTCF-mediated loops.

3.3 Ratio 3DR varies with 3D compartments and

isochores

We then computed 3DR depending on the underlying genomic and
chromatin regions in the human genome (Supplementary Table S2).
We first investigated if 3DR could differ depending on megabase 3D
genome compartments, known as A/B compartments, that were
shown to divide the genome into gene rich, active and open chromatin
(compartment A) and into gene poor, inactive and close chromatin
(compartment B) (Lieberman-Aiden et al., 2009). We found that 3DR
was greater in compartment B (3DR = 1.40, P < 3 x 107%) than in
compartment A (3DR = 1.21, P < 3 x 107%; Fig. 3A), with a slight-
ly significant difference (P=0.03). Accordingly, chromatin loops
were larger in compartment B than in compartment A (fold-change-
=14, P<1x107%% Supplementary Fig. S6). At high resolution
(25kb), compartments A/B were further shown to be composed of
subcompartments A1, A2 (active) and B1, B2, B3, B4 (inactive) (Rao
et al., 2014). We found that 3DR varied between subcompartments.
Subcompartments A1 and A2 presented 3DR values close to the 3DR
computed genome-wide (Al: 3DR =120, P < 4x107% A2
3DR=1.30,P < 4x 107%; Fig. 3B). Conversely, B subcompart-
ments showed high variability of 3DR. B1 and B3 showed 3DR values
greater than the genome-wide 3DR (B1: 3DR = 1.45, P < 4 x 107%;
B3: 3DR =1.64, P < 2 x 107'% Fig. 3B), while B2 and B4 had
3DR values that were lower than the genome-wide 3DR (B2: 3DR =
1.13, P=0.27; B4: 3DR = 0.87, P=0.76; Fig. 3B). When comparing
A and B subcompartments, we found a significant difference between
A1 and B3 (P=0.0011). We next analyzed 3DR depending on DNA
replication timing. We found a 3DR value close to the genome-wide
value for early replicating regions (3DR =1.27, P < 2 x107%
Fig. 3C), but a high 3DR value for late S replicating regions
(3DR = 1.57, P < 2 x 10~5; Fig. 3C).

Another important feature of the genome is the GC-content that
varies considerably along the chromosomes. In particular, the gen-
ome was shown to be composed of isochores which are large DNA
segments of homogeneous GC-content (Costantini et al., 2006) and
that were recently shown to be correlated with subcompartments
(Jabbari and Bernardi, 2017). We then computed 3DR depending

on isochore class (L1, L2, H1, H2 and H3) and observed differences
between classes. In particular, L1 isochores (lowest GC-content)
showed the highest 3DR value (3DR=1.64,P < 5x1077;
Fig. 3D), which was considerably larger than the one estimated
genome-wide. Interestingly, L1 3DR value was very close to sub-
compartment B3 3DR value. Conversely, H3 isochores (highest GC-
content) showed the lowest 3DR value (3DR = 1.08, P=0.15;
Fig. 3D), which was lower than the genome-wide 3DR.

The 3DR ratio thus varied with the underlying genomic and
chromatin context. Most notably, we found that 3DR was higher in
compartment B, in mid-late replication timing regions and in low
GC-content isochores, which were associated with heterochromatin.

3.4 CTCF looping in mammals

We then estimated 3DR for available mammal genomes. Because
the accuracy of 3DR estimation depended on the number of motif
pairs, we computed 3DR for genomes with a sufficient number of
pairs (>8000). We found that all mammals presented a 3DR value
that was superior to one and significant (Fig. 4A; Supplementary
Table S3). The Tasmanian devil and the pika presented the highest
values (3DR > 1.5), whereas the horse and the guinea pig showed
the lowest values (3DR close to 1.2). It was very interesting to see
that 3DR estimation could be significantly different from one even
for assemblies whose qualities were much lower than hg38, such as
papAnu2 (scaffold Nso = 586kb, scaffold Ls, = 1481;
3DR =1.37, P < 9 x 10732) and ornAna2 (scaffold N5y = 959kb,
scaffold Lsy = 309; 3DR = 1.44, P < 7 x 10°1%).

We also predicted CTCF ChIP-seq peaks surrounding the motifs,
and estimated 3DR,,. The ratio 3DR,, was superior to 3DR estimated
from motifs only (Fig. 4A; Supplementary Table S4). Interestingly,
although the convolutional neural network we used was trained
from human data, it could dramatically increase the ratio for most
species. For instance, 3DR,, was higher than 3DR for the dog
(canFam3: 3DR =1.20, 3DR, = 1.49, 24% increase) and even for
the platypus (ornAna2: 3DR =1.44, 3DR,, = 1.68, 17% increase).
We also filtered conserved motifs and computed 3DR,. (Fig. 4A;
Supplementary Table S5). The ratio 3DR, was even higher than
3DR,, for most species. For example, 3DR, were higher than 3DR
and 3DR, for the dog (canFam3: 3DR =1.20, 3DR, = 1.79, 49%
increase) and the platypus (ornAna2: 3DR=1.44, 3DR, = 1.99,
38% increase). However, a major drawback of 3DR. and 3DR,, was
their larger confidence intervals, and that is the reason why we kept
3DR for further analyses.

We next investigated if 3DR was influenced by the genome size,
which could explain the observed differences of 3DR between spe-
cies. No significant correlation was found between the genome size
and 3DR (Fig. 4B), confirming that 3DR was not biased by the gen-
ome size, and thus allowing 3DR comparison between species. No
significant correlation was also found with the median chromosome
size (Supplementary Fig. S7). We also assessed if 3DR was influ-
enced by the density of motifs in the genome (number of motifs per
Mb), and no significant correlation was found (Fig. 4C). For in-
stance, the platypus and rat genomes presented a 3DR value around
1.45, but contained 4.66 motifs per Mb and 13.33 motifs per Mb,
respectively. Moreover, we found no link between 3DR and GC-
content between mammals (Supplementary Fig. S8A).

The 3DR ratio can thus be used to study the 3D genome organ-
ization in CTCF loops in mammals even for species whose Hi-C
data were not available. Moreover, we found important differences
of 3DR between mammals. For instance, we found that species that
were evolutionary distant, such as the human and the Tasmanian
devil, presented an important difference of 3DR.

3.5 Phylogenetic analysis of CTCF looping in

vertebrates

We then estimated 3DR for vertebrate species in order to investigate
differences between mammals, reptiles, amphibians and fishes. As
for mammals, we found no link between 3DR and genome size or
motif density among vertebrates (Supplementary Fig. S9). However,
we observed a weak but significant link between 3DR and
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GC-content (r=0.346, P=0.007; Supplementary Fig. S8B and C).
Ratios 3DR were next plotted on the phylogenetic tree to investigate
the potential link between CTCF looping and evolution (Fig. 5).
Among the vertebrates, most jaw fishes presented very high 3DR val-
ues, especially the tetraodon (tetNig2: 3DR = 1.65, P<2 x 107%)
and fugu (fr3: 3DR = 1.59, P < 4 x 107°°). The zebrafish instead pre-
sented a low 3DR = 0.98, which was inconsistent with recent Hi-C
results supporting loop formation by CTCF in convergent orientation
(Kaaij et al., 2018). This low 3DR in zebrafish could be related to its
low genome GC-content, compared to the tetraodon and fugu pre-
senting both high 3DR and GC-content (Supplementary Fig. S8B). In
addition, the amphibian Xenopus showed a very high 3DR value
(xenTro7: 3DR = 1.63, P < 3 x 10~7%). Interestingly, using peak pre-
diction models trained on human data, the 3DR,, values were even
higher: tetraodon (3DR, = 1.84, P < 8 x 1079 and Xenopus (3DR,,
= 1.85, P<2x107*%). Lampreys which are jawless fishes that
diverged from the jawed vertebrate lineage more than 500 million
years ago also revealed a significant ratio (3DR = 1.30,
P <7 x 107%), supporting the ancient establishment of CTCF looping
prior to vertebrates (Heger et al., 2012).

The different assemblies did not have the same quality, which
thus introduced some inaccuracy in the estimation of 3DR, especial-
ly for species that were recently sequenced (those with an assembly
number close to one). Despite 3DR inaccuracy due to heterogeneous
assembly quality, we found that evolutionary close species tended to
have a similar 3DR value (Mantel test P =5 x 107°), revealing con-
servation of 3DR among species (Fig. 5). For instance, two relatively
close species in the tree, the rat (rn6: 3DR, = 1.44, P <1 x 107%)
and the mouse (mm10: 3DR, = 1.47, P < 3 x 1073 presented very
similar 3DR values (P=0.61). Hence, ancestral 3DR reconstruction
could be carried out (Fig. 5). It revealed that a large 3DR value was
acquired in the common ancestor of the rat and the mouse
(Supplementary Fig. S10). Similar findings were observed for the
American pika (ochPri3) and the European rabbit (oryCun2), and
also for the Tasmanian devil (sarHarl) and the opossum
(monDomS$).
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Fig. 5. Phylogenetic analysis of 3DR in vertebrates. Ancestral 3DR reconstruction
was done using maximum likelihood inference

Another important parameter contributing to CTCF looping is
the CTCF motif density in bilaterian genomes (Heger et al., 2012).
Hence, we estimated CTCF motif density in vertebrates and
observed a strong conservation (Mantel test P<1x1075;
Supplementary Fig. S11). Jaw fishes showed high motif densities,
such as the fugu (fr3: 40.58 motifs/Mb). Conversely, birds showed
very low motif densities, such as the chicken (galGal4: 7.05 motifs/
Mb). Mammals presented varying densities, for instance 4.66 for the
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platypus (ornAna2) and 21.4 for the Chinese hamster (criGril).
Among mammals, we observed very homogeneous clades, such as
primates, whose motif density varied from 7.45 to 9.76. Moreover,
we found that CTCF motif density was evolutionary conserved
(Mantel test P <1 x 107°%), which suggested that ancestral motif
density reconstruction could be done. Inference of ancestral density
uncovered interesting results, such as the low density for the primate
ancestor as compared to the higher density for the muridae ancestor.

Results revealed the evolutionary conservation of 3DR among
vertebrates. 3DR thus represented a useful tool to study 3D genome
evolution, in addition to CTCF motif density. The two parameters
could be used to study CTCF looping in ancestral genomes by using
ancestral character reconstruction.

4 Conclusion

In this article, we propose a novel approach to study the 3D genome
evolution in vertebrates using the genomic sequence only, without
the need of costly and challenging Hi-C data to produce. Therefore,
the approach allows a comprehensive analysis of vertebrates whose
genome assemblies are now available and whose number will expo-
nentially increase with large sequencing projects such as the VGP
aiming to sequence 66 000 extant vertebrate species. The proposed
approach is very simple and makes very few assumptions. It relies
on the CTCF motif which is known to be conserved across verte-
brates and the CTCF looping model that implies a 1D genome point
of view where convergent motifs are expected to be more distant
than divergent motifs. The approach can be further improved by
using predicted CTCF ChIP-seq peaks or by using the conservation
score surrounding the CTCF motif, reflecting strong conservation of
the DNA context surrounding CTCF motifs in vertebrates, especial-
ly for mammals. Using the human genome as a reference, we valid-
ate the 1D genome point of view and demonstrate that the ratio of
distances between convergent and divergent motif pairs (ratio 3DR)
can assess the presence of CTCF looping. These results reflect strong
evolutionary constraints encoded in the genome that are associated
with the 3D genome organization.

The proposed approach also uncovers a number of results.
We found that 3DR varies with the underlying genomic and chro-
matin regions, such as 3D compartments and sub-compartments,
isochores and replication timing. Moreover, the analysis of 3DR
combined with CTCF ChIP-seq peaks showed a lower value for
3DR in cancer and embryonic cells compared to normal cell lines.
Thus, depending on the cell state, 3DR can be modulated by CTCF
binding in vivo, thereby regulating CTCF looping. Regarding 3DR
in different species, we show most notably that 3DR is evolutionary
conserved among vertebrates. Species that are phylogenetically close
tend to have a ratio that is closer than species that are phylogenetic-
ally far. Among vertebrates, several fishes and amphibians show the
highest ratio, whereas reptiles show low values. In mammals, ances-
tral character reconstruction reveals that the genome of the ancestor
of the rat and mouse likely evolved to have a high 3DR value. A pre-
vious study showed the linear divergence of CTCF binding sites with
evolutionary distance, and the birth of new genes associated with
the birth of new CTCF binding sites (Ni et al., 2012). Here, our ap-
proach suggests that the distance between convergent motifs
which underlies CTCF looping and TAD organization evolves over
time between vertebrates, and thus further reinforces the notion that
it represents an important factor contributing to 3D genome
evolution.

There are several limitations of the proposed approach. First, we
could not identify any 3D genome feature such as TAD or loop size
that correlates with 3DR differences observed between species, which
might be due to the small number of available Hi-C datasets in differ-
ent vertebrate species. Thus, 3DR differences between species, such as
between the human and the mouse genomes, should be quantitatively
interpreted with caution. Second, we find a non-significant 3DR value
for the zebrafish (danRer10) which is in contradiction with recent Hi-
C data (Kaaij et al., 2018), thus revealing the inadequacy of 3DR for
certain species. The positive link of 3DR with GC-content in verte-
brates (and more particularly between jaw fishes) suggests that the

low 3DR in zebrafish is related to its low genome GC-content, as com-
pared to tetraodon and fugu which present both high 3DR and high
GC-content. However, the link with GC-content is not strong and
some species such as the Tasmanian devil or the opossum have a high
3DR with a low GC-content. Analysis of only high-quality vertebrate
assemblies similarly reveals a positive but weak link (Supplementary
Fig. S8C). If we use only CTCF motifs present in synteny blocks com-
mon between zebrafish and tetraodon, then a higher 3DR value is
found although not significant (3DR = 1.15, P=0.22). There are
other reasons why 3DR might not robustly identify the presence of
CTCF-mediated loops in some species, such as the zebrafish. For in-
stance, it is possible that the high density of CTCF motifs (40 motifs
per Mb) makes the estimation of 3DR less reliable, since most motifs
are not used as loop anchors. It might also be difficult to accurately es-
timate 3DR for genomes with small domains, because it could make
the distance difference between convergent and divergent motifs
smaller. Another reason might be the contribution of other proteins in
mediating loops, for instance YY1 or Polycomb (Schoenfelder et al.,
2015; Weintraub et al., 2017). Third, 3DR can be underestimated due
to false positive motifs, as the CTCF protein does not bind to all
detected motifs in vivo. Fourth, the estimation of distances between
CTCF motifs depends on the genome assembly quality. Thus, for draft
genomes, it is likely that the 3DR ratio will not be accurately esti-
mated, especially when scaffolds are small. Fifth, deep learning models
can be used to improve 3DR for species without any available ChIP-
seq data, but the models were learned from human data and thus
CTCEF peak prediction is expected to be less accurate for species that
are very distant from human. Sixth, phylogenetic conservation of 3DR
can be accurately assessed for species that are within the same clade
(as primates or muridaes), or more generally evolutionary close.
Conversely, it is difficult to assess phylogenetic transmission of 3DR
for the lamprey, since we have only one sequenced genome within the
clade. Seventh, the estimation of 3DR is less accurate when we focus
on certain genomic regions in human, such as isochores or compart-
ments. For instance, we find a value of 1.08 for H3 isochores, but this
does not mean that CTCF-mediated loops are absent from those
regions. In fact, the corresponding 95% confidence interval is very
large (between 0.87 and 1.30), meaning that 3DR could not be esti-
mated accurately due to a lack of statistical power, and precluding the
detection of CTCF-mediated loops by 3DR.

Funding
This work was supported by the University of Toulouse and by the CNRS.

Conflict of Interest: none declared.

References

Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA- and
RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831-838.

Costantini,M. et al. (2006) An isochore map of human chromosomes.
Genome Res., 16, 536-541.

Cozzi,P. et al. (2015) Segmenting the human genome into isochores. Evol.
Bioinformatics Online, 11,253-261.

Dixon,].R. et al. (2012) Topological domains in mammalian genomes identi-
fied by analysis of chromatin interactions. Nature, 485, 376-380.

Durand,N.C. et al. (2016) Juicer provides a one-click system for analyzing
loop-resolution Hi-C experiments. Cell Syst., 3, 95-98.

Eagen,K.P. et al. (2017) Polycomb-mediated chromatin loops revealed by a
sub-kilobase resolution chromatin interaction map. Proc. Natl. Acad. Sci.
USA, 114, 8764-8769.

Gomez-Marin,C. et al. (2015) Evolutionary comparison reveals that diverging
CTCEF sites are signatures of ancestral topological associating domains bor-
ders. Proc. Natl. Acad. Sci. USA, 112, 7542-7547.

Halverson,].D. et al. (2014) From a melt of rings to chromosome territories:
the role of topological constraints in genome folding. Rep. Prog. Phys., 77,
022601.

Heger,P. et al. (2009) Loss of the insulator protein CTCF during nematode
evolution. BMC Mol. Biol., 10, 84.

Heger,P. et al. (2012) The chromatin insulator CTCF and the emergence of
metazoan diversity. Proc. Natl. Acad. Sci. USA, 109, 17507-17512.

0202 YouelN GO UO Jasn aiolqig SHND-LSINI Ad 60£98GG/29€ L/G/9€/40BIISAE-9]01E/SONEWIOJUIOIG/ WO dNO"dlWapede//:sdiy Wwoly papeojumoq



3D genome evolution

1373

Hore,T.A. et al. (2008) The evolution of epigenetic regulators CTCF and
BORIS/CTCFL in amniotes. PLoS Genet.,4,e1000169-11.

Jabbari,K. and Bernardi,G. (2017) An isochore framework underlies chroma-
tin architecture. PLoS One, 12,e0168023-12.

Jin,F. et al. (2013) A high-resolution map of the three-dimensional chromatin
interactome in human cells. Nature, 503, 290-294.

Kaaij,L.J. et al. (2018) Systemic loss and gain of chromatin architecture
throughout zebrafish development. Cell Rep., 24, 1-10.e4.

Lieberman-Aiden,E. et al. (2009) Comprehensive mapping of long-range inter-
actions reveals folding principles of the human genome. Science, 326,
289-293.

Lupianiez,D.G. et al. (2015) Disruptions of topological chromatin domains
cause pathogenic rewiring of gene-enhancer interactions. Cell, 161,
1012-1025.

Ni,X. et al. (2012) Adaptive evolution and the birth of CTCF binding sites in
the Drosophila genome. PLoS Biol., 10,e1001420-16.

Phillips-Cremins,].E. et al. (2013) Architectural protein subclasses shape 3D
organization of genomes during lineage commitment. Cell, 153,
1281-1295.

Pope,B.D. er al. (2014) Topologically associating domains are stable units of
replication-timing regulation. Nature, 515, 402-405.

Rao,S.S.P. et al. (2014) A 3D map of the human genome at kilobase resolution
reveals principles of chromatin looping. Cell, 159, 1665-1680.

Sanborn,A.L. et al. (2015) Chromatin extrusion explains key features of loop
and domain formation in wild-type and engineered genomes. Proc. Natl.
Acad. Sci. USA, 112, E6456-E6465.

Schoenfelder,S. et al. (2015) Polycomb repressive complex PRC1 spatially con-
strains the mouse embryonic stem cell genome. Nat. Genet., 47,
1179-1186.

Sexton,T. et al. (2012) Three-dimensional folding and functional organization
principles of the Drosophila genome. Cell, 148, 458-472.

The ENCODE Consortium. (2012) An integrated encyclopedia of DNA ele-
ments in the human genome. Nature, 489, 57-74.

Van Bortle,K. et al. (2014) Insulator function and topological domain border
strength scale with architectural protein occupancy. Genome Biol., 15, R82.

Vietri-Rudan,M. et al. (2015) Comparative Hi-C reveals that CTCF underlies
evolution of chromosomal domain architecture. Cell Rep., 10, 1297-1309.

Weintraub,A.S. et al. (2017) Yyl is a structural regulator of
enhancer-promoter loops. Cell, 171, 1573-1588.¢28.

Zuin,]. et al. (2014) Cohesin and CTCF differentially affect chromatin archi-
tecture and gene expression in human cells. Proc. Natl. Acad. Sci. USA, 111,
996-1001.

0202 YouelN GO UO Jasn aiolqig SHND-LSINI Ad 60£98GG/29€ L/G/9€/40BIISAE-9]01E/SONEWIOJUIOIG/ WO dNO"dlWapede//:sdiy Wwoly papeojumoq



120 Chapter 3. Contributions to research

A B

‘ Insulators type 2 ._// ,spreading
1

trans

\
e,
% Micr?)’-domains

H3K27me!
domains

H3K27me3
dom::ﬁs ." ) (b Insulator-mutant
Micro-domains
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3.4.5 3D genome and heterochromatin (Alexandre Heurteau)

Trimethylation of lysine 27 on histone H3 (H3K27me3) by the Polycomb 2 repressor
complex (PRC2) is a feature of facultative heterochromatin associated with the
repression of cell type specific genes [Cao et al. 2002, Morey & Helin 2010].
The faithful inheritance of the H3K27me3 chromatin marks by replica-
tion ensures the stability of the transcriptional silence mediated by PRC2
over cell generations, thus protecting cellular identities. @ H3K27me3 marks
form repressive domains over the genome, where PRC2 writing and read-
ing activities enable the spreading along the chromosome within domains.
Insulators act as chromatin barriers to block the spreading outside repres-
sive domains [modENCODE Consortium et al. 2010, Negre et al. 2010]. In
drosophila, dCTCF, and other insulator-binding proteins such as BEAF-32,
GAF and CP190, are specifically enriched at heterochromatin domain borders
[Van Bortle et al. 2012, Van Bortle et al. 2014, Vogelmann et al. 2014]. Such
proteins are also known to be involved in shaping the genome in 3D, which suggests
a strong interplay between the formation of H3K27me3 domains and the genome
in 3D.

Heurteau et al. analyzed the spreading of heterochromatin H3K27me3
marks depending on insulator-binding proteins and long-range interactions (LRIs)
[Heurteau et al. 2020]. They showed that removal of insulator proteins BEAF-
32 leads to H3K27me3 spreading locally, across borders (Figure 3.3). In addi-
tion, BEAF-32 promotes spreading onto distant euchromatin sites named “micro-
domains”.  Systematic measurements of LRIs suggest that H3K27me3 micro-
domains do not form due to the weakness of TAD borders. Rather, micro-domains
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were visible at sites showing high levels of LRIs, including distant dCTCF and
GAF insulator sites bound by the looping co-factor CP190. Also, micro-domain
formation appears to depend on such specific insulator-mediated LRIs utilized
to spread H3K27me3 to distant sites through looping. Supporting these results,
specific synthetic mutants that impair LRIs compromise distant spreading over
micro-domains. Distant spreading at micro-domains is further associated with
insulator-based control of genes and it influences H3K27me3 throughout develop-
mental stages of Drosophila. The data highlight how specific LRIs encoded by
insulator-mediated loops contribute to the regulation of H3K27me3 spreading over
the distance. Heurteau et al. propose that micro-domains reflect how insulators par-
ticipate to chromatin folding dynamics in 3D, aside additional factors required to
separate heterochromatin nano-compartments from nearby euchromatin domains.

3.4.6 3D genome and DNA double strand break repair

3.4.6.1 Loop extrusion as a mechanism for DSB repair foci formation (Vincent
Rocher)

Among DNA damages, DNA double-strand breaks (DSBs) are by far
the most deleterious, since they can lead to chromosome rearrangements
[Marnef et al. 2017, Vitor et al. 2020]. There is a strong link between the genomic
localization of DSBs and the chromatin environment [Lensing et al. 2016]. For
instance, the DSB repair pathway choice between the two main pathways, non-
homologous end joining (NHEJ) and homologous recombination (HR), depends
on the chromatin landscape. HR tends to occur in transcriptionally active genes,
as compared to NHEJ. In particular, the trimethylation of histone H3 on lysine
36 (H3K36me3), that correlates with elongating RNA Pol II, acts as a critical
determinant for HR. However, little is known about the link between DSB repair
and the 3D genome [Arnould & Legube 2020].

Using 4C and Hi-C experiments, Coline Arnould, Vincent Rocher et al. found
that the histone mark vH2AX, which is induced by DSBs, was spread along
the chromatin within domain boundaries that coincide with TAD boundaries
[Arnould et al. 2021]. This result implied that the TAD is the functional unit of
DSB repair (Figure 1 from the article "Loop extrusion as a mechanism for DNA
double-strand breaks repair foci formation” below). Moreover, the recruitment of
cohesin at the DSB site, and the emergence of stripes at the Hi-C matrix profile,
revealed one-sided loop extrusion on both sides of the DSB, where DSB cohesin
loading or fixation allowed the DSB locus to act as a loop anchor (Figure 2 from
the article below). Coline Arnould, Vincent Rocher et al. found that the TAD struc-
ture remains globally unchanged, except stronger interactions between the DSB loci
and its neighboring sequences. Such interaction increase was abolished in cohesin
depleted cells, confirming the role of loop extrusion in this process (Figure 3 from
the article below). During this process, the phosphorylated ATM (pATM), the en-
zyme recruited at the DSB and responsible for the phosphorylation of H2AX, was
brought into physical proximity with the neighboring sequences. In the light of
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these results, Coline Arnould, Vincent Rocher et al. proposed that the loop extru-
sion is responsible for spreading the gH2A X mark at the neighboring sequences by
pATM recruited at the DSB loci (Figure 4 from the article below).
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Therepair of DNA double-strand breaks (DSBs) is essential for safeguarding genome
integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the

establishment of megabase-sized, chromatin domains decorated with
phosphorylated histone H2AX (yH2AX), which act as seeds for the formation of
DNA-damage response foci'. It is unclear how these foci are rapidly assembled to
establish a ‘repair-prone’ environment within the nucleus. Topologically associating
domains are akey feature of 3D genome organization that compartmentalize
transcription and replication, but little is known about their contribution to DNA
repair processes*>. Here we show that topologically associating domains are
functional units of the DNA damage response, and are instrumental for the correct
establishment of yYH2AX-53BP1 chromatin domains in a manner that involves
one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a
modelinwhich H2AX-containing nucleosomes are rapidly phosphorylated as they
actively pass by DSB-anchored cohesin. Our work highlights the importance of
chromosome conformationin the maintenance of genome integrity and
demonstrates the establishment of a chromatin modification by loop extrusion.

DNA DSBs induce the formation of DNA-damage response (DDR)
foci, which are microscopically visible and characterized by spe-
cific chromatin modifications (yH2AX, ubiquitin accumulation
and histone H1 depletion) and the accumulation of DDR factors
(53BP1and MDC1)* %, Previous evidence indicated that chromo-
some architecture may control the spread of yH2AX. Indeed, yH2AX
domainboundaries were found in some instances to coincide with
topologically associating domain (TAD) boundaries’. Moreover,
super-resolution light microscopy revealed that CTCF, which binds
at TAD boundaries and thereby constrains the loop-extruding activ-
ity of the cohesin complex that shapes these domainsinundamaged
cells, is juxtaposed to yH2AX foci®. In addition, 53BP1 can form
nanodomains that frequently overlap with TADs, as detected by DNA
fluorescence in situ hybridization (DNA-FISH)®. High-resolution
chromatinimmunoprecipitation with sequencing (ChIP-seq) map-
ping after the induction of multiple DSBs at annotated positions
(using human DIVA (DSB inducible via AsiSI) cells)' revealed that
the spreading of these DDR focus components on nearby chroma-
tin follows a highly stereotyped pattern’ (one example shown in
Fig.1a). We hypothesized that such patterns could be governed
by pre-existing high-order chromatin structure established before
DSB induction.

YH2AX spreads within TADs

To relate the spreading of DDR focus components to chromosome
conformation, we performed circular chromosome conformation
capture coupled to high-throughput sequencing (4C-seq) experi-
mentsinundamaged human DIvA cells. As viewpoints we selected three
genomic locations that are damaged in DIVA cells following activa-
tion of the AsiSIrestriction enzyme as well as one undamaged control
region. The chromatin conformation around these three viewpointsin
undamaged condition was notably similar to the distribution of yH2AX
determined post DSBinduction (Fig.1a, b, Extended Data Fig.1a), sug-
gesting thatinitial chromosome architecture dictates yH2AX spreading
and downstream events such as accumulation of MDC1, ubiquitinand
53BP1following DSB. To prove that DDR domains do not spread into
neighbouring self-interacting domains, we focused ona DSB located on
chrl, for which spreading of DDR foci components is profoundly asym-
metrical (Fig. 1c, red track).4C-seq performed at two viewpoints sepa-
rated by 470 kb revealed the existence of two adjacent self-interacting
domainswith aboundary correspondingto the abruptdropin yH2AX
(Fig. 1c, blue track; TAD boundary is indicated by the dotted line).
This strongly suggests that pre-existing chromatin domains, estab-
lished before any damage occurs, constrain the spread of DDR foci.
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Fig.1| TADs are functional units thatgovern the establishment of DDR
chromatindomains. a,4C-seqtrackin undamaged cells (-DSB) and ChIP-seq
tracks of histone H1(H1.2) and ubiquitin (Ub; FK2) (log,(+DSB/-DSB)) as well as
YH2AX, MDCl1 and 53BP1 (+DSB) asindicated. ChIP-seq and 4C-seq datawere
smoothed using 50-kb and 10-kb spans, respectively. b, 4C-seq tracks before
DSBinduction (-DSB) and yH2AX ChIP-seq tracks after DSBinduction (+DSB)
(smoothed using a 50-kb span) for viewpointslocated at three AsiSIsitesor a
controlregion. Onerepresentative experimentis shown (out of n=3).c, yH2AX
ChIP-seq (+DSB) and 4C-seq (-DSB) tracks (10-kb smoothed) for viewpoints at
the AsiSlsite or 470 kb upstream of the AsiSl site. d, Top, Hi-C contact matrix of
aregion of chromosome1in DIVA cells before DSBinduction. One

Togeneralize this finding, we performed high-throughput chromosome
conformation capture (Hi-C) and CTCF ChIP-seqin undamaged DIVA
cells (Extended Data Fig. 1b-d). Notably, computed TAD borders and
CTCF-bound genomic loci coincided with a sharp decrease in yH2AX
signals (Fig.1d, e, Extended DataFig. 1e). Consistent with this, yH2AX,
MDCl1and 53BP1were substantially more enriched in the damaged TADs
thaninneighbouring TADs (Extended Data Fig. 1f), although spreading
through boundaries was observed to some extent, in agreement with
the moderate insulation properties of TAD boundaries™.

To further investigate whether TADs dictate yH2AX spreading, we
used the CRISPR-Cas9 system to induce a single DSB at designated
positions within the same TAD, and investigated both chromosome
conformation and yH2AX distribution. Cas9-induced DSBs recapit-
ulated the yH2AX spreading observed when DSBs were induced at
the same genomic locations by AsiSI (Extended Data Fig. 1g), thus
confirming that YH2AX spreading is independent of the method of
DSB induction. Moving the DSB to a further downstream position
in the TAD triggered a change in the yH2AX profile that was notably
similar to the 3D interaction pattern of this genomic region, but it
remained constrained within the same TAD (Fig. If). Together, these
data indicate that the mechanisms that govern the spatial organi-
zation of chromosomes into self-interacting domains facilitate and
demarcate the formation of yYH2AX domains. Given that yH2AX seeds
further signalling events that lead to the stable assembly of DDR foci,
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representative experimentis shown (out of n=2). Below, yH2AX ChIP-seq after
DSBinduction, 4C-seqsignal, insulationscores, TAD borders computed from
Hi-Cdataand CTCF ChIP-seq peaks before DSBinduction. Peaksin blue and
red contain CTCF motifsin the forward and reverse orientations, respectively.
e, Average profile of yH2AX ChIP-seq after DSB induction centred on the
closest TAD border to the174 best-induced DSBs (damaged TAD on the right).
f,Blue, 4C-seqtrack (10-kb smoothed) before DSBinduction (-DSB) using
viewpoints asindicated. Red, yH2AX ChIP-chip tracks (log,[sample/input],
smoothed using 500-probe span) after DSBinduction with CRISPR-Cas9.

g, YH2AX and pATM (S1981) ChIP-seq (n=1) tracks after DSBinductiononan
8-Mb window (top) and a15-kb window (bottom) around an AsiSl site.

thissuggests that genome organization within TADs is critical for the
response to DNA damage.

In human cells, ATM is the main DDR kinase that catalyses H2AX
phosphorylationupon DSB detection, asindicated by astrong decrease
in YH2AX upon inhibition of ATM* (Extended Data Fig. 1h-j) but not
of DNAPK" or ATR (Extended Data Fig. 1i,j). To gain more insights into
the mechanism that mediates the establishment of yH2AX on entire
self-interacting domains, we further profiled ATM. Binding of activated
ATM (autophosphorylated on S1981) was restricted to the immediate
vicinity ofthe DSB (less than 5-kb span), in sharp contrast to the pattern
observed for yH2AX (Fig.1g, Extended DataFig. 1k). Thisindicates that
phosphorylation of H2AX is not mediated by the linear spreading of
the kinase on entire TADs.

Cohesin-mediated loop extrusion at DSBs

The organization of the genome into TADs is driven by the activity of
cohesin™*, aring-shaped protein complex, which was initially identi-
fied for its essential role in sister chromatid cohesion. Notably, there
is strong evidence that cohesin helps to maintain genome integrity’>'¢,
and cohesinaccumulates at sites of damage, which may be consistent
witharoleinsister chromatid cohesion duringhomologous recombi-
nation in S/G2 phase cells”*°. However, cohesin enrichment at DSBs
has been identified throughout the cell cycle, which argues against
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Fig.2|DSB-anchored cohesinmediatesloop extrusion.a, Genomictracks of
SCCland XRCC4 ChIP-seqat two DSBs. b, Averaged Hi-C contact matrix of
log,[+DSB/-DSB] (n=2biological replicates) centred on the 80 best-induced
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aggregate peak analysis (APA) plotted ona200-kb window (10-kb resolution)
before and after DSB induction, calculated between the DSBs and nearby loop
anchors (n =525 pairs). The fold-change (FC) between the signal (central pixel)
and the background (upper left corner 5x 5 pixels) isindicated. d, Averaged
differential Hi-C contact matrix (+DSB/-DSB) (n=2biological replicates)
around 30 homologous recombination-repaired DSBs, 30 NHEJ-repaired DSBs

an exclusive role for cohesin in homologous recombination™®. To
get insights into cohesin binding at DSBs at high resolution, we per-
formed calibrated ChIP-seq profiling of the SCC1 cohesin subunit
in both undamaged and damaged conditions. Notably, cohesin was
enriched at sites of damage spanning 2-5 kb around the DSB (Fig. 2a),
leading to the formation of peaks at DSB sites that were nearly as high
as pre-existing cohesin peaks at CTCF binding sites (Extended Data
Fig.2a, b). This enrichment depended on the cohesin loader NIPBL,
on ATM activity and on the MRN complex subunit MRE11 (Extended
Data Fig. 2c).

Cohesins structure TADs by an active, ATP-dependent, loop extru-
sionmechanism?2*, Once loaded onto chromatin, cohesin leads to the
formation and enlargement of DNA loops that are eventually arrested
atboundary elements. A large fraction of boundary elementsisbound
by the CTCF insulator protein. Increased cohesin around DSBs could
thus indicate locally increased loop extrusion at the site of damage.
We analysed 3D genome organization by Hi-C before and after DSB
induction in DIVA cells, focusing on the frequency of cis interactions
around DSBs. Differential (+DSB/-DSB) aggregate Hi-C maps were
further computed around DSBs and around TAD borders as a con-
trol (Extended Data Fig. 2d). Notably, a pattern of ‘stripes’ appeared
on both sides of the DSBs following DSB induction (Fig. 2b (white
arrows), Extended Data Fig. 2d, e). These stripes or lines were previ-
ously reported to arise from arrested loop extrusion at CTCF-bound
loci®***?.Indeed, our averaged Hi-C contact matrixes around TAD bor-
dersrevealed, as expected, similar stripes, but these wereindependent

-25MB DSB +2.5MB -2.5MB DSB +2.5 MB-2.5MB No DSB +2.5 MB

SCCH1 read count on 4 kb (x105)

-DSB

siCtrl

log,[HIC count (+DSB/-DSB)]
I
N

-25MB DSB +2.5MB -2.5MB DSB +2.5MB

and 30 random undamaged sites. e, Box plot of the SCC1 ChIP-seq enrichment
before and after DSB on 4 kb around DSBs repaired by homologous
recombination (yellow) or NHEJ] (green) and random undamaged sites (grey)
(n=30).Paired two-sided Wilcoxon test. Centre line, median; box limits, first
and third quartiles; whiskers, maximum and minimum without outliers; points,
outliers. f, Differential 4C-seq track in control (black) or SCCI siRNA condition
(blue) (arepresentative experimentis shownfromn=2).g, Averaged
log,[+DSB/-DSB] Hi-C matrix upon control or SCCIsiRNA, around 80
best-induced DSBs (100-kb resolution) (n=1).

of DSBinduction (Extended Data Fig. 2d). We further performed aggre-
gate plot analysis (APA) to assess looping between the DSB position
and neighbouring anchors. Notably, the APA score increased following
production of DSBs (Fig. 2c, Extended Data Fig. 2f) indicating that
the DSBs themselves display the potential to arrest loop extrusion,
although to alesser extent than classical loop anchors (CTCF-bound
loci) (Extended Data Fig. 2g).

Itwas previously determined which repair pathway (that is, homolo-
gous recombination or non-homologous end joining (NHE))) is prefer-
entially used at different DSBs induced by AsiSl in DIVA cells?. Notably,
an equivalent stripe pattern was observed at DSBs repaired by either
homologous recombination or NHE] (Fig. 2d). Consistent with these
data, SCClaccumulatesina4-kbwindow around DSBsirrespective of
the pathway used for repair (Fig. 2e). Together, these data suggest that
cohesinaccumulates oneither side of aDSB, irrespective of the pathway
used for repair, toinduce divergent one-sided loop extrusion towards
(and thereby to increase contacts with) the surrounding regions on
both sides of the break.

Tofurtherinvestigate DSB-anchored loop extrusion, we performed
4C-seqbefore and after DSB induction, using viewpoints located at the
exact positions of three DSBsinduced in DIVA cells (same viewpoints
asinFig.1). Notably, the overall structure and boundaries of TADs were
well-maintained after DSBinduction (Extended DataFig. 3a), indicat-
ing that chromosome conformation within TADs is not completely
reshuffled upon damage induction. Yet, as expected from Hi-C data, we
detectedincreased interactions between viewpoints and surrounding
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Fig.3|DSB-anchoredloop extrusion mediates yH2AX spreading. a, yH2AX
ChIP-seqtracks at three DSBsites upon DSBinduction at different time points
after release of ATM inhibition (ATMi) (expressed as log,[+DSB + ATMi + time
after washes/+DSB + ATMi + 0 min after washes]) (20-kbsmoothed, n=1).

b, Top, genomic track showing differential (log,[siSCC1/siCtrl]) yH2AX
enrichment obtained after DSB induction (20-kb smoothed). Bottom,
differential 4C-seqsignal obtained in SCC1-depleted versus control cells
before DSBinduction (log,[siSCC1/siCtrl]) (n=1).c, Genomic tracks showing
the CTCF signal before DSBinduction, the yH2AX ChIP-seqsignal after DSB

loci after DSB induction (Extended Data Fig. 3b-d), which was not
the case when using a control undamaged sequence as a viewpoint
(Extended Data Fig. 3c, d). If DSB-anchored, cohesin-mediated loop
extrusionisresponsible for the enhancedinteraction frequency of the
DSB with neighbouring sequences after DSB induction, such behav-
iour should be abolished following cohesin depletion. Indeed, 4C-seq
experimentsrevealed that depletion of SCC1by shortinterfering RNA
(siRNA) (Extended DataFig. 3e, f) strongly impaired the overallincrease
in contacts between the DSBs and their neighbouring sequences in
damaged TADs (Fig. 2f, Extended DataFig. 3g, h). We further performed
Hi-C in damaged and undamaged conditions following depletion of
SCCL. As expected from previous studies*?, depletion of SCClled to
the dissolution of TADs and to stronger compartmentalization (plaid
pattern) on Hi-C maps (Extended Data Fig. 4a). Notably, depletion of
SCClabolishedthe stripe patterninduced at DSBs following damage
(Fig. 2g). Given that ATM is involved in recruitment of SCC1 at DSBs
(Extended Data Fig. 2c), we used 4C-seq to assess the consequences
of pharmaceutical inhibition of ATM kinase activity on theinteraction
frequency after DSB induction. ATM inhibition strongly reduced the
ability of the DSB to engage contacts with proximal sequences within
damaged TADs (Extended Data Fig. 4b, c¢), consistent with defective
SCClrecruitment at DSBs under these conditions (Extended Data
Fig.2c).

These dataindicate that the ability of the DSB to contact neighbour-
ing loci within the damaged TAD is a proper DNA damage response
and cannot be explained solely by physical disruption of the DNA. It
depends on ATM activity and on the cohesin complex, in agreement
with a DSB-anchored loop extrusion mechanism.
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DSB3 (AsiSI)

inductionin control or WAPL-depleted cells and the differential yH2AX signal
obtained after DSBinduction (expressed as log,[siWAPL/siCtrl],20-kb
smoothed) at two DSB sites (n=1).d, Genomic tracks showing the differential
YH2A ChIP-seqsignal (log,[+DSB/-DSB]) before or after PDS5 degradation
using auxin (indole-3-aceticacid (IAA)) at one DSB site (HO site) (top) andina
control region (without DSB) (bottom) in S. cerevisiae expressing PDS5 fused to
anauxin-inducible degron (PDS5-AID). The differential signal between after
and before PDS5 degradation (IAA/nolAA)isalsoshown (purple) (n=1). Data
aresmoothed witha2-kb span.

Loop extrusionin yH2AX domain formation

We further investigated whether cohesin-mediated loop extrusion
that takes place at DSBs is instrumental for deposition of yH2AX. In
this scenario, yYH2AX should spread linearly from the DSB site over
time. To achieve high synchronization of yH2AX deposition within
the cell population, we induced DSBs (by OHT treatment) but con-
comitantly inhibited ATM activity (using an ATM inhibitor), thereby
‘poising’ YH2AX establishment. Relieving ATM inhibition allowed fast
and synchronous accumulation of yYH2AX (Extended Data Fig. 5a). Using
ChIP-seqwith this experimental setup, we observed linear and bidirec-
tional spreading of yH2AX from the DSBs that proceeded at aspeed of
approximately 0.6 kbs™, consistent withaloop-extrusion-dependent
mechanism?-? (Fig. 3a, Extended Data Fig. 5b).

To investigate whether cohesin-mediated loop extrusion contrib-
utes to the formation of DDR foci, we analysed yH2AX profiles in
SCCl-deficient cells. Both ChIP with microarray (ChIP-chip)”and ChIP-
seq showed altered yH2AX spreading in SCC1-deficient cells compared
to SCCl-proficient cells (Fig. 3b, Extended Data Fig. 5¢, d) that coincided
with a loss of cis contacts upon cohesin depletion (Fig. 3b, Extended
DataFig.5c). Of note, the decrease in yH2AXin cohesin-depleted cells
was small (about 5-10%) compared to the decrease in 4C-seq signal
(30%), which may indicate that other factors (for example, SMC5/6)
could contribute to loop extrusion-mediated yH2AX establishment
and/or thatintra-TAD chromatin dynamics contribute to yH2AX depo-
sition.

Cohesin is released from chromatin by the accessory WAPL and
PDSS5 factors. Consequently, depletion of these factors triggers an
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log,[+DSB/-DSB] (20-kb smoothed). c, Model. Cohesin-mediated loop
extrusion ensures yH2AX establishment on the entire damaged TAD. 1, Loop
extrusion constantly occursonthe genome. 2, The occurrence of a DSB creates
aroadblock for cohesin-mediated loop extrusion, leading to accumulation of
cohesinat the site of damage. 3, Cohesin blocked at the DSB continues to
mediate one-sided loop extrusion (arrows). ATM, recruited at theimmediate
vicinity of the break, phosphorylates H2AX-containing nucleosomes as they
areextruded. Meanwhile, cohesinis also phosphorylated by ATM. 4, The same
processtakes placeonbothsides of the DSB, leading to divergent one-sided
loop extrusion on either side of the break and ensuring bidirectional spreading
of YH2AX. 5, Loop extrusion triggers enlargement of yH2AX-modified
chromatin and halts atboundary elements such as CTCF-bound loci that
demarcate TAD borders. The speed of loop extrusion (measuredin vitro as
0.5-2kbs™) ensures that the entire damaged TAD is phosphorylated in

10-30 min, givingrise to aDDR focus. Cohesinis shown as aring encircling
DNA, butitisnotknownyet whether orhowacohesinringentraps DNA during
loop extrusion.

increase in the lengths of chromatin loops that is proposed to arise
fromamore processive, cohesin-mediated loop extrusion®**°, Notably,
we observed extended spreading of yH2AX in WAPL-depleted cells
(Fig. 3¢, Extended Data Fig. 5e), which is consistent with the idea that
loop extrusion contributes to YH2AX deposition. This was accompa-
nied by adecrease in yH2AX within TADs (Extended Data Fig. 5f). Given
that WAPL depletion, while enlarging loops, also decreases intra-TAD
chromatin interactions®, this suggests that intra-TAD chromosome
dynamics also contribute to full deposition of yH2AX.

Toinvestigate whether sucha cohesin-dependent mechanism could
account for the establishment of DDR fociin budding yeast, we depleted
PDS5 using an auxin-inducible system in a Saccharomyces cerevisiae
strain® that carries three HO endonuclease cleavage sites®. Consist-
ent with our observations in human WAPL-depleted cells, extended
spreading of yH2A occurred following depletion of PDS5in yeast cells

(Fig.3d). Notably, PDS5 deficiency triggered adecreasein yH2A levels
adjacent to the DSBs (Extended DataFig. 5g), similarly to WAPL deple-
tion in human cells.

Together, these data suggest that cohesin accumulation at DSBs
initiates aone-sided loop extrusion process on either side of the break
that helps to establish phosphorylation of H2AX and spreads until
it reaches a strong boundary element (that is, a TAD border). This
cohesin-dependent mechanism is conserved from yeast to human.

Cohesin changesin damaged TADs

Previous work has indicated that radiation triggers a genome-wide
increase in cohesin and reinforcement of TADs*?*. Consistent with
this, we found that SCC1enrichment was increased at cohesin-binding
sites after break induction, coinciding with increased loop strength
(Extended DataFig. 6a,b). DSB-induced increasesinloop strength and
SCClaccrualwere more pronounced indamaged TADs thaninundam-
aged TADs and decreased with the distance to DSBs (Fig. 4a, Extended
DataFig. 6¢-g). Thus, our dataindicate ageneralized increase in SCC1
occupancy and loop strength throughout the genome after DSB pro-
duction that is weakly exacerbated within TADs that are subjected to
DSB. The SMC1 and SMC3 cohesin subunits have been reported to be
phosphorylated by ATM following DSB induction®, and these modifica-
tions are essential for reinforcement of cohesin on the genome after
irradiation®. ChIP-chip analyses indicated that phosphorylated SMC1
(pSMC1S5966) and SMC3 (pSMC3 S1083) accumulated on entire TADs
around DSBs (Extended Data Fig. 7a). ChIP-seq against pPSMC3 S1083
confirmed that phosphorylated SMC3 increased at cohesin-boundsites
andloop anchorsin damaged TADs (Fig. 4b, Extended DataFig. 7b, c).
The accumulation of these DSB-induced, ATM-mediated cohesin modi-
fications around DSBs may regulate cohesin properties, such as loop
extrusion velocity or chromatin unloading, which could translate into
increased cohesinresidence time atboundary elements and may help
toisolate DDR domains from adjacent chromatin.

A model for YH2AX domain formation

Insummary, our data show that TADs are the template for the spread-
ing of many DSB repair signalling events, such as the phosphorylation
of H2AX (in agreement with a recent report®), the eviction of histone
H1and the accrual of 53BP1, MDC1 and ubiquitin, allowing DSB sig-
nalling at the megabase scale. Our results suggest a DSB-anchored
cohesin-mediated loop extrusion model that would mediate phospho-
rylation of H2AX (Fig. 4¢). In this model, cohesin accumulates rapidly
onboth sides of a DSB in amanner that is fostered by ATM, NIPBL and
the MRN complex. Whether thisis due to prior ongoing loop extrusion
arresting at DSB or to de novo loading of the cohesin complex still needs
tobe determined. Divergent one-sided loop extrusion takes place at the
DSB, whichin turn allows the locally recruited ATM to phosphorylate
H2AX containing nucleosomes as the chromatin fibre is pulled by the
cohesinring. Given that current estimates of cohesin-mediated loop
extrusion suggest a rate of 0.5-2 kb s™ in vitro®?*, such a mechanism
would allow rapid assembly of DDR foci, with the entire megabase-sized
chromatin domainbeing modified inabout 10-30 min, which fits with
the observed rate of assembly of yH2AX foci®. This model is consist-
ent with the finding that in yeast, the ATM orthologue Tell mediates
H2A phosphorylationin amanner that agrees with a 1D sliding model
rather than a 3D diffusion model®; and with the recent observation’®,

using light-induced activation of Cas9, that yH2AX is established at a
speed of about150 kb min™and caninsome instance reach up to 30 Mb.
Moreover, our data also indicate that, upon DSB induction, the loop
strength is reinforced, cohesin accumulates at loop anchors and the
cohesin complex itselfis modified by ATM within damaged TADs. We
propose that ATM-mediated phosphorylation of the cohesin complex
may alter the properties of cohesin, such asloop extrusion velocity or its

Nature | www.nature.com | 5
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capability toload onto or unload from chromatin. These changes may
furtherreinforce H2AX phosphorylation thanks tointra-TAD chromatin
dynamics following initial loop-extrusion-dependent establishment
of yH2AX.

Recent work supports the key role of TAD borders and loop extrusion
inthe maintenance of genome architecture and stability, including rear-

rangements of immunoglobulinloci®*°,and in DSB occurrence through

topoisomerase reactions**?, Our study shows that genome architecture
is also instrumental for the correct establishment of yH2AX and DDR
foci, expanding the function of genome organization within TADs to
theresponseto DNA damage. We propose that arresting loop extrusion
provides anefficient and rapid way to signala DSB and assemble aDDR
focus, while boundary elements help to constrain DDR signalling to
DSB-surrounding, self-interacting chromatin domains. This creates a
specific repair-prone chromatin compartment with modified dynamics
properties, which may, for example, reduce the search time for DNA
endrejoining and homology search, and/or concentrate repair factors.
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Methods

Cell culture and treatments

DIVA (AsiSI-ER-U20S)' cells generated in our laboratory were grown
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% SVF (Invitrogen), antibiotics and 1 pg/ml puromycin (DIVA cells)
at 37 °Cunder a humidified atmosphere with 5% CO,. Cells were not
further authenticated, and were regularly tested and found nega-
tive for mycoplasma contamination. For DSB induction, cells were
treated with 300 nM 4-hydroxytamoxifen (4OHT) (Sigma, H7904)
for 4 h. For ATM inhibition, cells were pretreated for 1 h with 20 uM
KU-55933 (Sigma, SML1109) and treatment continued during subse-
quent 4OHT treatment. For ATR inhibition, cells were pretreated for
1hwith2puM ETP-46464 (Sigma, SML1321) and treatment continued
during subsequent treatment with 4OHT or hydroxyurea (HU) (1 h at
1 mM (Sigma, H8627)). For kinetics experiment (Fig. 3a), cells were
pretreated for 1 h with 20 uM KU-55933 (Sigma, SML1109) and treat-
ment continued during subsequent4OHT treatment before cells were
washed three times with1x PBS and released after O min, 5min, 15min
or1h.siRNAtransfections were performed with a control siRNA (siCtrl):
CAUGUCAUGUGUCACAUCU; and an siRNA targeting SCCI (siSCCI):
GGUGAAAAUGGCAUUACGG; or WAPL (siWAPL): CGGACUACCC
UUAGCACAA; or NIPBL (siNIPBL): GCUCGGAACAAAGCAAUUA; or MRE11
(siMRE11): GCUAAUGACUCUGAUGAUA, using the 4D-Nucleofector and
the SE cellline 4D-Nucleofector X kit L (Lonza) according to the manu-
facturer’sinstructions, and subsequent treatment(s) were performed
48 hlater. For CRISPR-Cas9-mediated DSB induction, sgRNA (AsiSI site
position: CGCCGCGATCGCGGAATGGA or position further within the
TAD: GGGCCAGTCGCGGCACTCGC) weredeliveredin U20S cells using
the ‘nanoblades’ technology, which relies on direct cell transduction
with avirus-derived particle containing the Cas9-sgRNA ribonucleo-
protein****, Cells were analysed 24 h after transduction. For calibrated
ChIP-seq experiment, mouse chromatin was obtained from E14TG2a
ES cells, grown on gelatinized dishes in DMEM (Gibco) supplemented
with 10% fetal bovine serum (EmbryoMax ES Cell Qualified FBS, Sigma
Aldrich), 1x MEM nonessential amino acids, 1 mM sodium pyruvate,
50 pM 2-mercaptoethanol (Gibco) and 1 U/pl LIF (ESGRO Recombi-
nant Mouse LIF, Sigma Aldrich). mES cells were obtained from A. Bird
(WTCCB) and were not further authenticated. They were not tested
for mycoplasma contamination.

To make the S. cerevisiae strain yFZ014, a linearized TIRI gene was
obtained through restriction enzyme digestion of plasmid pJH2955
with Pmelland insertedinto the leu2locus of strain YSCLO042, Inser-
tion of TIRI* was verified by PCR with primers internal to T/RI and
leu2. yFZ016 was made by PCR amplification of plasmid pJH2898 to
produce a 9myc-AID::KAN PCR product with homologies at each end
to the C terminus of PDS5; this PCR product was inserted using stand-
ard yeast transformation protocols to produce a PDS5::9myc-AID
fusion protein. A western blot was used to verify the degradation of
PDS5::9myc-AID inyFZ014 and yFZ016 after auxin addition. DSBs were
induced as described®.

Immunofluorescence

DIvA cells were plated on glass coverslips and fixed with 4% paraformal-
dehyde for 15 minat room temperature, permeabilized with 0.5% Triton
X-100 in PBS for 10 min then blocked with 3% BSA in PBS for 30 min.
Cells were then incubated with the primary antibody (Extended Data
Table1) diluted in PBS-BSA overnight at 4 °C, washed with 1x PBS and
incubated with the appropriate anti-mouse or anti-rabbit secondary
antibodies (conjugated to Alexa 594 or Alexa 488, Invitrogen), diluted
1:1,000 in PBS-BSA, for 1 h at room temperature, followed by DAPI
staining. Coverslips were mounted in Citifluor (Citifluor, AF-1). Image
acquisition was performed with MetaMorph on a wide-field micro-
scope (Leica, DM6000) equipped witha camera (DR-328G-C01-SIL-505,
ANDOR Technology) using 40x or 100x objectives. For quantification,

cellswereacquired witha40x objective and analysed using Columbus
software (Perkin EImer). yH2AX foci were detected using method D in
Colombus software.

Western blot

For detection of SCC1, WAPL, NIPBL and MREL11, cells wereincubated in
RIPA buffer (50 mM Tris at pH 8,150 mM NaCl, 0.5% deoxycholate, 1%
NP-40, 0.1% SDS) for 20 min on ice and centrifuged at 13,000 rpm for
10 minto removeinsoluble material. SDS loading buffer and reducing
agent were then added to the supernatant. For detection of pCHK1,
cells were resuspended in 100 pl histone extraction buffer (1% SDS,
1% Triton, 10mM Tris pH7.5, 0.5M NaCl, phosphatase 0.01x (Sigma,
P5726) and complete protease inhibitors 1x (Sigma, 11873580001))
and sonicated twice for 10 s with anamplitude of 30% before addition
of SDS loading buffer and reducing agent. All protein extracts were
resolved on 3-8% NuPAGE Tris-acetate gels (Invitrogen) and trans-
ferred onto PVDF membranes (Invitrogen) according to the manufac-
turer’sinstructions. Membranes were blocked in TBS containing 0.1%
Tween 20 (Sigma, P1379) and 3% nonfat dry milk for 1 h followed by
overnightincubation at4 °C with primary antibodies (Extended Data
Table1). The appropriate horseradish peroxidase-coupled secondary
antibodies were used to reveal the proteins (anti-mouse at 1:10,000
(Sigma, A2554) and anti-rabbit at 1:10,000 (Sigma, A0545)) using a
luminol-based enhanced chemiluminescence HRP substrate (Super
Signal West Dura Extended Duration Substrate, Thermo Scientific).
Pictures of the membranes were acquired with the ChemiDoc Touch
Imaging System and were visualized using Image Lab Touch software.
Uncropped blots are presented in Supplementary Fig. 1.

Hi-C

Hi-C experiments were performed in DIVA cells using the Arima Hi-C
kit (Arima Genomics) according to the manufacturer’s instructions.
Cells (1x10°) were used by condition and experiments were performed
in duplicate. In brief, cells were cross-linked with 2% formaldehyde
for 10 min at room temperature, lysed, and chromatin was digested
with two different restriction enzymes included in the kit. Ends were
filled-in in the presence of biotinylated nucleotides, followed by sub-
sequent ligation. Ligated DNA was sonicated using the Covaris S220
to an average fragment size of 350 bp with the following parameters
(peakincident power, 140; duty factor,10%; cycles per burst, 200; treat-
ment time, 70 s). DNA was then subjected to double-size selection
to retain DNA fragments between 200 and 600 bp using Ampure XP
beads (Beckman Coulter). Biotin-ligated DNA was precipitated with
streptavidin-coupled magnetic beads (included inthekit). Hi-C library
was prepared on beads using the NEBNext UltrallDNA Library Prep Kit
for Illumina and NEBNext Multiplex Oligos for lllumina (New England
Biolabs) following instructions from the ArimaHi-Ckit. The final librar-
ies were subjected to 75-bp paired-end sequencing on a Nextseq500
platformat the EMBL Genomics core facility (Heidelberg). Hi-C reads
were mapped to hgl9 and processed with Juicer using default settings
(https://github.com/aidenlab/juicer). Matrix-balanced Hi-C count
matrices were generated at multiple resolutions (250 kb, 100 kb, 50 kb,
25kb, 10 kb and 5 kb) and visualized on Juicebox and on Hi-Glass.

4C-seq

The 4C-seq experiments were realized as described*® with minor
modifications. In brief, 15 x 10° DIVA cells were cross-linked with 2%
formaldehyde for 10 min at room temperature, lysed and digested
with Mbol (New England Biolabs). Two or three rounds of 4 h of diges-
tion with Mbol were necessary. Digested DNA was then ligated with a
T4 DNA ligase (HC) (Promega), and purified and digested with Nlalll
overnight (New England Biolabs). After asecond ligation step, DNA was
purified before proceeding to library preparation. For DNA purifica-
tion steps, AMPure XP beads (Beckman Coulter) were used diluted at
1:10in 20% PEG solution (PEG 8000 (Sigma) 20%, 2.5 M NaCl, Tween
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2020%, TrispH 8,10 mM, EDTA1mM). For 4C-seq library preparation,
800-900 ng of 4C-seq template was amplified using 16 individual PCR
reactions with inverse primers (PAGE-purified) including the lllumina
adaptor sequences and a unique index for each condition (Extended
DataTable2).Libraries were purified with the QIAquick PCR Purification
Kit (Qiagen), pooled and subjected to 75-bp single-end sequencing on
aNextseq500 platformat the 2BC Next Generation Sequencing Core
Facility (Gif-sur-Yvette). Each sample was then demultiplexed using
a specific python script from the FourCSeq R package*, thus assign-
ing eachread to a specific viewpoint based on its primer sequence
into separate fastQ files. bwa mem was then used for mapping and
samtools for sorting and indexing. A custom R script (https://github.
com/bbcf/bbcfutils/blob/master/R/smoothData.R)*® was used to
build the coverage file in bedGraph format, to normalize using the
average coverage and to exclude the nearest region from each view-
point (viewpoint-containing restriction fragment and the two adjacent
restriction fragments). Then the bedGraph file was converted into a
BigWig file using the bedGraphToBigWig program from UCSC.

ChIP-qPCR, ChIP-seq and ChIP-chip
For Fig.1a, ubiquitin, H1,yH2AX and 53BP1 ChIP-seq data were retrieved
from ref. . ChIP experiments for pATM, MDC1 and phosphorylated
cohesins were performed in DIVA cells as described™ with 200 pg of
chromatin per immunoprecipitation. Prior to library preparation,
samples from multiple ChIP experiments were pooled and sonicated for
15cycles (30-s on, 30-s off, high setting) with a Bioruptor (Diagenode)
then concentrated withavacuum concentrator (Eppendorf). CTCF and
YH2AX (Fig. 3, Extended Data Figs. 5d, f) ChIP experiments were realized
asfollows. In brief, cross-linked cells were first lysed for 10 min at 4 °C
in 500 pllysis buffer 1 (10 mM Tris pH 8,10 mM NaCl, 0.5% NP-40, com-
plete protease inhibitor (Sigma, 11873580001)) then for 10 minat4 °C
in lysis buffer 2 (50 mM Tris pH 8,10 mM EDTA, 0.5% NP-40, complete
protease inhibitor (Sigma)) and subsequently sonicated in 15-ml coni-
caltubes withaBioruptor Pico (Diagenode) inthe presence of 800 mg
sonication beads (20 cycles of 30-s on/30-s off) to an average fragment
size of 250 pb. Chromatin (200 pg) was then immunoprecipitated as
described™. The antibodies used are detailed in Extended Data Table 1.
Sequencing libraries were prepared by using 10 ng of purified DNA
(average size 250-300 bp) with the NEBNext Ultra Il Library Prep Kit
for Illumina (New England Biolabs) using the application note for ‘Low
input ChIP-seq., and subjected to 75-bp single-end sequencing on a
Nextseq500 platform at the EMBL Genomics core facility (Heidelberg).
For the SCCl-calibrated ChIP-seq, we used a spike-in method®. In
brief, cross-linked DIVA cells or mouse embryonic stem cells (ES cells)
were lysed and fragmented as for CTCF and yH2AX. Prior toimmuno-
precipitation with SCClantibody, 20% of chromatin frommouse ES cells
(40 pg) was added to chromatin prepared from treated or untreated
human DIVA cells (200 pg). Sequencing libraries were prepared from
immunoprecipitation and input samples using the NEBNext Ultra Il
Library PrepKit for llluminaand subjected to 75-bp single-end sequenc-
ing on a Nextseq500 platform at the EMBL Genomics core facility
(Heidelberg). First, SCC1 was aligned on the mouse genome (mm10)
withbwatomap only the reads used as areference for the normalization
(spike-in). Remaining unmapped reads were re-converted into a fastQ
file using bam2fastq and mapped to the human genome (hg19) using
bwa. Samtools was used for sorting and indexing, and reads mapped to
the mouse genome were used as anormalization factor, as described*
and using the following formula: (input.,, x reads,,,)/(input,, x read-
Sq), inWhichinput,,is the total number of reads mapped in ES input
(mouse) and input,,, is the totalnumber of reads in DIVA input. reads
andreads,,, were, respectively, the number of reads fromimmunopre-
cipitated samples mapped on the mm10 genome and the hgl9 genome.
For calibrated SCC1 ChIP-qPCR, the immunoprecipitated samples
from DIVA cells were normalized by the signal of the immunoprecipi-
tated sample from ES cells on a mouse cohesin-positive site (using

primersin Extended Data Table 2). Datawere analysed using the Bio-Rad
CFX manager software.

For the ChIP-chip experiments, the immunoprecipitated samples
of YH2AX, pSMC1 5966, pSMC3 S1083 and input samples were ampli-
fied as described™, labelled and hybridized on Affymetrix tiling arrays
covering human chromosomes1and 6 (at the Genotoul GeT-biopuces
facility, Toulouse). Scanned array data were normalized using Tiling
Affymetrix Software (TAS) (quantile normalization, scale set to 500),
analysed as described®?and converted into .wig files using R/Biocon-
ductor software, when necessary, for visualization using the Integrated
Genome Browser (https://www.bioviz.org/).

For the ChIP experimentinyeast, individual colonies of yFZ014 and
yFZ016 were grown in YEP + 3% lactic acid (YEP-Lac) until log phase
growth with a final cell concentration between 5 x 10° cells per ml and
8 x 10° cells per ml. Degradation of Pds5::9myc-AID in yFZ016 was
induced by addition of auxin (Sigma Aldrich no. 13750) at a final con-
centration of ImMand confirmed by western blotting. For chromatin
immunoprecipitation, 45 ml of culture was fixed and cross-linked with
1% formaldehyde for 10 min, after which 2.5 ml of 2.5 M glycine was
added for 5minto quench thereaction. Cells were pelleted and washed
3timeswith4 °CTBS. Yeast cell walls were disrupted by beating the cells
with 425-600 pum glass beads for 1 hin lysis buffer at 4 °C. The lysate
was sonicated for 2 minto obtain chromatin fragments of about 500 bp
inlength. Debris was then pelleted and discarded, and an equal volume
of lysate was immunoprecipitated using y-H2A antibody for 1 h at
4 °C, followed by addition of Protein-A agarose beads (Sigma-Aldrich
n0.1719408001) for1hat4 °C. Theimmunoprecipitate was then washed
twice in 140 mM NaCl lysis buffer, once with 0.5 M NaCl lysis buffer,
once with 0.25 M LiCl wash buffer and once with TE. Crosslinking was
reversed at 65 °C overnight followed by addition of proteinase K and
glycogen for 2 h. Protein and nucleic acids were separated by phenol
extraction. LiCl was added to a final concentration of 400 mM. DNA
was precipitated using 99.5% EtOH. A second precipitation step was
carried out using 75% EtOH and the DNA resuspended in TE. Sequencing
libraries were prepared and sequenced as for ChIP-seq in human cells.

Hi-C, 4C-seq and ChIP-seq analyses

Hi-C heat maps. Hi-C heat map screenshots were generated using the
Juicebox stand-alone program (https://github.com/aidenlab/Juicebox/
wiki/Download). To build the average heat maps, sub-matrices for cis
interactions around DSBs were extracted using Juicer, for both ob-
served and observed over expected matrices. We computed log,(ratio
after/before DSB) using both Hi-C replicates, and averaged for each
bin of the final matrix.

Insulation score and TAD calling. Insulation score was computed us-
ing Hi-Cmatrices at 50-kb resolution with matrix2insulation.pl (https://
github.com/dekkerlab/crane-nature-2015). As parameters, we used
is =800000 and ids =100000. TADs were called using Hi-C matrices at
50-kb resolution with TopDom R package and window size parameter of 10
(https://github.com/HenrikBengtsson/TopDom). Tofilter out very weak
TADborders (corresponding to sub-TAD borders), wefiltered TAD borders
withaninsulation score below a threshold of —0.05. For Extended Data
Fig.2d, 80 TADs were alsorandomly selected from TopDom output, which
did not containany of the best 80 cleaved DSBs, to be used as controls.

Loops anchors and APA. Loops were called using the Juicer Tools HiC-
CUPS program at 10 kb and 25 kb resolutions (https://github.com/aid-
enlab/juicer/wiki/HiCCUPS). Aggregate peak analysis (APA) was done
using the Juicer Tools APA program at 10-kb resolution (https://github.
com/aidenlab/juicer/wiki/APA). We retrieved 525 loops between the
174 best cleaved DSBs and nearby loop anchors (<1 Mb) for replicate 1
(Fig.2c),and 552 forreplicate 2 (Extended Data Fig. 2f). The fold change
between signal (central pixel) and background (upper left corner 5x 5
pixels) was computed. For Extended Data Fig. 6f, APAs were generated



forloopsfiltered ontheir size (<200 kb) and around the best 80 cleaved
DSBs. Weretrieved 597 and 17,206 loops in damaged (80 damaged TADs)
and undamaged TADs, respectively, in replicate 1, and 645 and 19,150
forreplicate 2. The fold change between signal (central pixel) and back-
ground (lower left corner 5 x 5 pixels) was computed. APA heat maps were
reprocessed using ggplot2 to display counts at the same colour scale
between —DSB and +DSB conditions. For Extended Data Fig. 6g, loop
strength was extracted from APA files enhancement.txt corresponding to
enrichment fold change (peak to mean, P2M). Differential loop strength
was the log-ratio of two conditions loop strengths (+DSB/-DSB).

ChIP-seq analyses. ChIP-seq datawere processed as described’, except
for yeast ChIP-seq, which was aligned on the S. cerevisiae R64-1-1 as-
sembly, and without PCR duplicate removal. SCC1and CTCF peaks were
identified using MACS2 with the callpeak algorithm, with default setting,
usinginputas control and the SCC1 ChIP-seqdatabefore break induction
as sample. For SCC1, before breaks, 46,184 peaks were identified, with
median and mean sizes of 628 and 742, respectively. For CTCF before
breaks, 96,801 peaks were identified, withmedian and mean sizes of 339
and 500, respectively. Overlap between CTCF peaks and CTCF motifs was
thenperformed, to associate a peak with the orientation of its motif. For
representation of genomictracks, the datawere further smoothed using
sliding windows as indicated. bamCompare fromdeeptools, with the
parameters -binSize =50,-operation=log2 and with default normaliza-
tion (readCount) was used to generate differential tracks. For kinetics
analysis (Extended DataFig. 5b), yH2AX domain boundaries around the
best cleaved DSBs were manually retrieved thanks to visualization of the
50-kbsmoothed dataonagenomebrowser (IGB) at different time points.
Thedistribution of yH2AX spread is further shownas abox plot (n=71).

4C-seq. For differential analyses of the 4C-seq data, the log, ratio
between two .bam files was computed using bamCompare from deep-
tools, with the parameters -binSize = 50 and-operation =log2. Ex-
tended Data Figure 3d shows the mean and s.e.m of the 4C-seq ratio
on1lMbaround each viewpoint, obtained across fourindependent ex-
periments (control viewpoints, n=3; DSB viewpoints, n=11). Extended
DataFigures 3h, 4c show the distribution (box plots) of the 4C-seqratio
on1Mb around DSB viewpoints obtained across two (siSCCI) or three
(ATMi) independent experiments (n=8).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

All high-throughput sequencing data (Hi-C, ChIP-seq, 4C-seq) have
beendeposited to Array Express (https://www.ebi.ac.uk/arrayexpress/)

under accession number E-MTAB-8851. ChIP-chip data have been
deposited to Array Express under accession number E-MTAB-8793.
Uncropped blots are shownin Supplementary Fig. 1. Other data (ChIP-
qPCR and raw microscopy data) are available upon request.

Code availability

Source codes are available from https://github.com/LegubeDNARE-
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Extended DataFig.1|yH2AX spreads within prior TADs asrevealed by 4C-
seq.a,4C-seqtracksbefore DSBinduction obtained for three independent
biological replicatesand yH2AX ChIP-seq track after DSBinduction for
different viewpoints (red arrows) localized at three AsiSl sites (black arrows).
ChIP-seqdatawere smoothed using100-kb spanand 4C-seq datausing a 50-kb
span. b, Example of the Hi-C pattern obtained on chromosome1ata500-kb
resolution (left) together with amagnificationata10-kbresolution (right).

¢, CTCF and calibrated-SCC1 ChIP-seq tracks. d, Average profile of CTCF
ChIP-seqaroundallloop anchors onthe genome (determined using this Hi-C
dataset, Methods), validating both CTCF ChIP-seq and Hi-C datasets. e, yH2AX
ChIP-seqafter DSBinduction.4C-seqand CTCF ChIP-seq peak position
before DSBinduction are shown (peaksinblue containa CTCF motifin the
forward orientation and peaks in red a CTCF motifinthe reverse orientation).
f,Box plot showing YH2AX (top), 53BP1 (middle) and MDC1 (bottom) ChIP-seq
quantification within the damaged TAD and neighbouring TADs for the best
cleaved DSBs in DIVA cells (Methods). Centre line, median; box limits, firstand
third quartiles; whiskers, maximum and minimum without outliers; points,
outliers (n=153).g, YH2AX tracks around aDSB induced by CRISPR-Cas9

(top, ChIP-chip, expressed as log,[sample/input], smoothed using 100-probe
windows) and by AsiSl at the same position (bottom, ChIP-seq, 50-kb
smoothed). h, Top,immunofluorescence experiment showing yH2AX and DAPI
staining before and after DSBinduction with or without ATM inhibitor as
indicated (scale bars, 10 pm). Bottom, quantification of yH2AX intensity
(expressed inarbitrary units (A.U.)) in the above conditions. One
representative experimentisshown (out of n=3biological replicates). Box
plotsasinf.-DSB, n=117 nuclei; +DSB, n=97 nuclei; +DSB + ATMi, n =95 nuclei.
i, Validation of ATR inhibitor efficiency. Western blot showing the effect of
ATRionthe phosphorylation of CHK1 following treatment with hydroxyurea
(HU) (n=2).For gel source data, see Supplementary Fig.1.j, yH2AX ChIP-seq
tracks after DSBinductioninuntreated cells orin cells treated with an inhibitor
of ATM or ATR at two DSB sites (20-kb smoothed). The differential yH2AX
signal obtained after DSBinduction (expressed as the log, ratio ATMi/
untreated or ATRi/untreated, grey tracks) is alsoshown (n=1).k, Average
profile of pATM (S1981) (left) and YH2AX (right) ChIP-seq on a2-Mbwindow
aroundthe 80 best-cleaved DSBs in DIVA cells.
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Extended DataFig.2|Cohesinrecruitmentandloop extrusion occurs at
DSBs. a, Calibrated SCC1ChIP-seq tracks before (grey) and after (black) DSB
induction (n=1). SCClenrichment at DSBsiteisindicated by ared arrow.

b, Average profile of SCC1 ChIP-seq signal centred on the 80 best-induced
DSBs (left) or centred on all CTCF peaks of the genome (right) ona10-kb
window. ¢, Calibrated ChIP-qPCR of SCClin theindicated conditions at three
DSBsites or anegative control region. Insets, western blots validating
depletion of the proteins NIPBL (n=1) and MRE11 (n=2) by the corresponding
siRNAs. For gel source data, see Supplementary Fig.1.Mean £ s.e.m. for
technicalreplicates (n=4) of arepresentative experiment (out of n=2
biologicalreplicates). d, Averaged Hi-C matrix before (-DSB) and after DSB
induction (+DSB) (observed/expected) and of the log, ratio between damaged
and undamaged cells centred on the 80 best-induced DSBs (top) or centred on
eightyrandom TAD borders (bottom) (50-kb resolution, 5-Mb window;
combined replicates). e, Averaged Hi-C contact matrix of log,[+DSB/-DSB]

centred ontheeighty best-induced DSBsin the two independent biological
replicates. f, APA plot ona200-kbwindow (10-kb resolution) before (-DSB) and
after DSBinduction (+DSB) in biological replicate no.2 (replicate no.1shownin
Fig.2c). APAsare calculated between the DSBs and loop anchors (n =552 pairs).
Thefold change between the signal (central pixel) and the background (upper
left corner 5x 5 pixels) isindicated. g, For comparison withf, APAplotona
200-kbwindow (10-kb resolution) before DSBinduction computed between
classicalloop anchors that are near DSBsites (<500 kb; n= 674 pairs for
replicate1and n=737 pairs for replicate 2). The fold change between the signal
(central pixel) and the background (upper left corner 5 x 5 pixels) is indicated.
Theloop strength (quantified by the fold change between signal and
background onthe APA plot) is higher atloop anchors (g, replicate 1 fold-
change=5.4; replicate 2 fold-change =5.8) than the loop strength observed at
DSBs after breakinduction (Fig. 2¢c, replicate 1, fold-change =2; f, replicate 2,
fold-change=2.3).



Article

a View Point View Point View Point b View Point
5 8] -DsB ¥ 127 -DSB % 6] -DsSB PR
* k) 3 € -DsB
k- 3 k] 3
S ol e 20 S — % Odeciim " — 8 0] s ik
S 8] +DSB K] 12] +DSB 8 6] +DSB T 1-5] I “ +DSB
['4 o)
£ (1] e ) ,,,A_.l‘, - Y . A.Lu,, E‘U_ 0 . Ak
3 81 -psB o 12]-DsB ~ 6]-DsB 208 DSB/-DSB
3 ¢ g g @
5 2 ol . -8 0 g0 Q 04 . . i TAD borders
¢ £ 8)+psB 5 21 +DsB = 1+DsB A T
- 8 ) 2 chr1 89 ) 91
2 g 0 0 S DSB1 (AsiS)
o 8 12 6 View Point
5 . -DSB o ]—DSB o |-DsB
# T ool ...J. e B 215 ,‘
5 8 8 12] ge 3 :I -DSB
L +DSB s | +DsB 5 | +DsB S
[ ) o) 0
& 0 ¥ ol — ___L-l.._. x o B 15 et
T T T T T . & +DsB
chrt 88 Ago chr17 56 A58 chi2t 32 A34 g 0 N
DSB1 (AsiSl) DSB2 (AsiSl) DSB3 (AsiSl) g 0.8] ' +DSB/-DSB
<
c . View Point d P=0.0055 04 i . S TAD borders
— : -
chr21 325 A 345
‘ DSB3 (AsiSl)
0 2o 020 .
38 :
&< . View Point
o@ 015 3 f Y
-1 = 3Z
- , =
chr1 88 A 9 % 0104 25y Ctrl
DSB1 (AsiSl) So .
. . go
1 View Point 82 005] 0 b i
5 E . 0.2
‘IV“ °g 0.00 ~ j é”'”f" Wl"“ Ty
< . log2(siSCC1/siCtrl
= 0 sz |+| -06
% 22 !
a 0.05 T A T T
£ chr1 88 ) 92
% -1 control DSBs DSB1 (AsiSl)
g chr17 5'5 A 5I8 viewpoint viewpoints § View Point
3 DSB2 (AsiSl) P I.
o
= 1 View Point e @
o o
Q
» = 0= s, I P T
: = :
g g 02 by
0 sictl sisceH § 05 | 10g2(siSCC/siCtr)
—_— o
;_ T IA T
R o} chr17 55 59
. ; 100 S—— scet @ DSB2 (AsiS)
chr21 32 Q View Point
DSB3 (AsiSl) 'er oin
1 View Point 50 —| W— | Tubuln 25— Ctil
v ]
» o 0 P
0 =t villngtrif ey e 08 m
06 jlogZ(siSCCJsigtr) pr
c:r17 44 A 6 : Y .
chr21 28 36
noDSB DSB3 (AsiSl)
g - h
View Point DSB viewpoints
45 P=0.0281
R siCtrl -DSB 02
c £
£ 9d—— —— S -
A%}
= sictrl +DSB 52 o
$ o g2
X 43 oa -0.1
o oL
® SiSCC1-DSB Yo -02
=4 O s WLy ‘é‘; S
siSCC1 +DSB
o Ctrl SCC1
Pad siCtrl +DSB/-DSB siRNA
©% 04
B804
=04 siSCC1 +DSB/-DSB
o o
52 o-{immpenmyoyhattermf ey
Q  -04d

T T T
chr1i7 55 A 59
DSB2 (AsiSl)

Extended DataFig. 3 |See next page for caption.



Extended DataFig. 3| Loop extrusion at DSBs detected by 4C-seq.
a,4C-seqtracks (10-kb smoothed) before and after DSB induction, obtained
forthreebiological replicates using viewpoints localized at three DSB sites
(arrows).b,4C-seqtracks before (blue) and after (purple) DSBinduction, at
two DSB viewpoints. Differential 4C-seq (log,[+DSB/-DSB]) is also shown
(black). ¢, Differential 4C-seq (log,[+DSB/-DSB]) for three viewpoints located
atDSBsitesand onacontrolregion asindicated. d, Differential 4C-seqsignal
(log,[+DSB/-DSB]) computed on1Mb around four independent viewpoints
located at DSBs (DSBs viewpoints, n=11) and one control region (control
viewpoint, n=3),across fourindependent biological experiments (Methods).
Two-sided Wilcoxon test; mean +s.e.m. e, Western blot showing depletion of

SCC1bysiRNA (n=3).For gel source data, see Supplementary Fig.1.

f, Differential (log,) 4C-seqtrack insiSCCI-treated cells versus control siRNA-
treated cells (inundamaged conditions) for three viewpoints. g, Genomics
tracks showing 4C-seqsignals before and after DSB inductionin control siRNA-
orsiSCCI-treated cells and the differential 4 C-seq signal in control siRNA- or
siSCCI-treated cells (log,[+DSB/-DSB]; 10-kb smoothed). h, Average
log,[+DSB/-DSB]4C-seq, on1Mb around four DSB viewpoints (two biological
experiments) upon treatment with control siRNA or siSCCI (Methods) (n=8).
Two-sided Wilcoxon test. Centre line, median; box limits, first and third
quartiles; whiskers, maximum and minimum without outliers; points, outliers.
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b, Genomic tracks of 4C-seqbefore and after DSB inductioninuntreated or
ATM:-inhibitor-treated cells and of differential 4C-seq signal (log,[+DSB/-DSB]

orlog,[+DSB +ATMi/-DSB];10-kb smoothed). ¢, Cisinteractions computed as
inExtended DataFig. 3h for four DSB viewpoints across three biological
experiments, in control condition or upon ATMinhibition. Two-sided Wilcoxon
test. Centreline, median; box limits, first and third quartiles; whiskers,
maximum and minimum without outliers; points, outliers (n=8).
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Extended DataFig. 5| Altered loop extrusion modifies yH2AX spreading.
a, Quantification of yH2AX intensity after DSBinduction (OHT, 4 h) and upon
ATMinhibition followed by different times after ATMirelease (0 min,n=172
nuclei; 5min, n=183 nuclei; 15min, n=171nuclei; 30 min, n=197 nuclei; 1h,
n=189 nuclei). Treatment with OHT for 4 hwithout ATMi is also shown (n=182
nuclei). Onerepresentative experimentis shown (out of n=2biological
replicates). Centre line, median; box limits, first and third quartiles; whiskers,
maximum and minimum without outliers. b, Spread of yH2AX (inbp) at the
indicated time points after release from ATMi around the best cleaved DSBs
(n=71).Centreline, median; box limits, firstand third quartiles; whiskers,
maximum and minimum without outliers; points, outliers. ¢, Black, 4C-seq
track before DSBinduction using a DSB viewpoint. Purple, differential yH2AX
signal obtained after DSBinduction by ChIP-chip in SCC1-depleted versus
control cells (expressed as YH2AX log,[siSCC1/siCtrl]). Light blue, differential

4C-seqsignal obtained in SCC1-depleted versus control cells before DSB
induction (log,[siSCC1/siCtrl]).d, Genomic tracks of yH2AX ChIP-seq signal
after DSBinductionin control (red) or SCC1-depleted (pink) cells and of the
differential yYH2AX signal obtained after DSB induction (log,[siSCC1/siCtrl],
purple) attwo DSBsites. e, Western blot validating the effect of the siRNA
targeting WAPL onthe WAPL proteinlevel (n=2). For gel source data, see
Supplementary Fig.1.f, Genomics tracks of yH2AX ChIP-seq after DSB
inductionincontrolor WAPL-depleted cells and of the differential yH2AX
signal obtained after DSBinduction (log,[siWAPL/siCtrl]) at two DSB sites and
one control (no DSB) genomic locus (20-kb smoothed). g, Genomics tracks of
the differential yH2A ChIP-seq signal (log,[+DSB/-DSB]) before (no 1AA) or
after PDS5degradation (IAA) at two DSB sites (HO sites) in S. cerevisiae
(SacCer3, coordinatesinbp) (n=1).
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Extended Data Table 1| Antibodies used in this study

Target
yH2AX (5139)

yH2AX (5139)

P-ATM (S1981)

MDC1
SCC1
SCC1
WAPL
NIPBL
MRE11
Tubulin
Myosin

Phospho-CHK1
(ser345)

P-SMC1 (S966)
P-SMC3 (S1083)

CTCF
yH2A (yeast)

Application
ChIP

IF

ChlP
ChIP
ChiP

Western Blot
Western Blot
Western Blot
Western Blot
Western Blot
Western Blot

Western Blot
ChlP
ChiIP

ChiP
ChlP

Reference
Merck Millipore 07-164

Merck Millipore 05-636 (clone JBW301)

Abcam ab81292
Abcam ab11171
Abcam ab992

Abcam ab992
Santa Cruz sc-365189
Bethyl Laboratories A301-779A
GeneTex GTX70212 (clone 12D7)
Sigma T6199
Sigma M3567

Cell Signaling 2348S
Epitomics EP2858Y
Bethyl Laboratories A300-480A

Millipore 07-729
Abcam ab15083

Quantity
2 g
1:1000

2 g
3 pg
4 ug
1:500
1:500
1:1000
1:4000
1:10000
1:2000

1:1000
2L
2 g

4 pL
2ug
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Extended Data Table 2 | Primers used in this study

Application

4C-seq

4C-seq

4C-seq

4C-seq

4C-seq

4C-seq

ChIP-gPCR
ChIP-gPCR
ChIP-gPCR
ChIP-gPCR

ChIP-gPCR

Name

ViewpointDSB1

ViewpointDSB2

ViewpointDSB3

Viewpointctrl region

Viewpoint CRISPR site

Viewpoint470 kb
upstream (Fig. 1c)

Ctrl region
DSB site 1
DSB site 2

DSB site 3

Cohesin posttive site
(mouse)

Forward primer
AATGATACGGCGACCACCGAGATC
TACACTCTTTCCCTACACGACGCTC
TTCCGATCTAACCTGGCAACTTATG
AATCAGGA
AATGATACGGCGACCACCGAGATC
TACACTCTTTCCCTACACGACGCTC
TTCCGATCTTCCTTACGATTATTTGT
GAATTTTG
AATGATACGGCGACCACCGAGATC
TACACTCTTTCCCTACACGACGCTC
TTCCGATCTGATTACGTAGAAGGGT
GCC
AATGATACGGCGACCACCGAGATC
TACACTCTTTCCCTACACGACGCTC
TTCCGATCTTCCTCAGGTTATCATC
CCAA
AATGATACGGCGACCACCGAGATC
TACACTCTTTCCCTACACGACGCTC
TTCCGATCTTTAAGCACCCTCCTCC
TAG
AATGATACGGCGACCACCGAGATC
TACACTCTTTCCCTACACGACGCTC
TTCCGATCTACAAGGAAGAAGCAG
GCATTCA

AGCACATGGGATTTTGCAGG
TCCCCTGTTTCTCAGCACTT

CCGCCAGAAAGTTTCCTAGA
CCTAGCTGAGGTCGGTGCTA

CAGAGATTTGCGGTGTTCGG

Reverse primer
CAAGCAGAAGACGGCATACGAGAT
NNNNNNGTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCTATGTCAAAA
GCCAAGGGGACA
CAAGCAGAAGACGGCATACGAGAT
NNNNNNGTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCTAAGCTAATT
CTGAGTTACATACATT
CAAGCAGAAGACGGCATACGAGAT
NNNNNNGTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCTAAGGCAAAT
GATAACCCTGT
CAAGCAGAAGACGGCATACGAGAT
NNNNNNGTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCTCACCTTCGC
TGTACCTTTG
CAAGCAGAAGACGGCATACGAGAT
NNNNNNGTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCTACCTTTACA
CCTCAAAACCT
CAAGCAGAAGACGGCATACGAGAT
NNNNNNGTGACTGGAGTTCAGACG
TGTGCTCTTCCGATCTTTGAAATGA
GTACTCTGCCATCCA

TTCCCTCCTTTGTGTCACCA
CTTCTGCTGTTCTGCGTCCT
CTCACCCTTGCAGCACTTG
GAAGAGTGAGGAGGGGGAGT

TTCACACCTAGAGGAGGGGT

NNN is the position of the optional index.



3.4. The genome in 3D 145

3.4.6.2 ATM-dependent formation of a novel chromatin compartment (Vincent
Rocher)

Using capture Hi-C experiments to study the clustering of induced DSBs at
defined loci in the human genome, the team previously demonstrated that DSBs
physically cluster, but only when induced within transcriptionally active genes
[Aymard et al. 2017]. Damaged gene clustering mainly occurs in G1 cell-cycle
phase and corresponds to delayed repair. In addition, clustering of DSBs depends
on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and
the linker of nuclear and cytoplasmic skeleton (LINC) complex, which suggests
a role of active mechanisms to promote clustering. However, the role of DSB
clustering has remained enigmatic given that the physical proximity of several
DSBs can also trigger translocations by illegitimate rejoining of two DNA ends,
thus increasing genome instability, questioning the selective advantage of DSB
clustering for DNA repair. Moreover, deeper analyses of DSB clustering was
limited by the resolution of capture Hi-C data at 100 kb resolution.

Using Hi-C experiments at high resolution (5-10 kb), Coline Arnould, Vincent
Rocher et al. revealed that the clustering of DSBs involves the formation of a new
chromatin sub-compartment (called “D” compartment) driven by ATM and associ-
ated with YH2AX and 53BP1 (Figures 1 and 3 from the submitted article "Loop
extrusion as a mechanism for DNA double-strand breaks repair foci formation” be-
low). Formation of “D” compartment mainly occurs during G1 phase, is cohesin
independent and is increased by DNA-PK pharmacological inhibition (Figure 2).
Most notably, a subset of DNA damage responsive genes upregulated after DSB
induction also physically relocate to the D sub-compartment, supporting a role for
DSB clustering in activating the DNA Damage Response (Figure 3). However, 3D
clustering of DSBs also comes at the expense of an increased translocations rate,
which is responsible for genomic instability in cancer (Figure 4).
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Abstract

DNA Double-Strand Breaks (DSBs) repair is essential to safeguard genome integrity but
the contribution of chromosome folding into this process remains elusive. Here we
unveiled basic principles of chromosome dynamics upon DSBs in mammalian cells,
controlled by key kinases from the DNA Damage Response. We report that ATM is
responsible for the reinforcement of topologically associating domains (TAD) that
experience a DSB. ATM further drives the formation of a new chromatin sub-
compartment (“D” compartment) upon clustering of damaged TADs decorated with
YH2AX and S53BP1. “D” compartment formation mostly occurs in G1, is independent of
cohesin and is enhanced upon DNA-PK pharmacological inhibition. Importantly, a subset
of DNA damage responsive genes that are upregulated following DSBs also physically
localize in the D sub-compartment and this ensures their optimal activation, providing a
function for DSB clustering in activating the DNA Damage Response. However, these
DSB-induced changes in genome organization also come at the expense of an increased
translocations rate, which we could also detect on cancer genomes. Overall, our work
provides a function for DSB-induced compartmentalization in orchestrating the DNA
Damage Response and highlights the critical impact of chromosome architecture in

genomic instability.
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Main

DNA Double-Strand Breaks (DSBs) are highly toxic lesions that can trigger translocations or
gross chromosomal rearrangements, thereby severely challenging genome integrity and cell
homeostasis. Chromatin plays a pivotal function during DNA repair, which is achieved by
either non-homologous end joining or homologous recombination pathways!. Yet, little is
known about the contribution of chromosome architecture into these processes. DSBs activate
the DNA Damage Response (DDR) that largely relies on PI3K kinases, including ATM and
DNA-PK, and on the establishment of megabase-sized, yH2AX-decorated chromatin domains
that act as seeds for subsequent signaling events, such as 53BP1 recruitment and DDR foci

formation??,

Importantly, yH2AX spreading is largely influenced by the pre-existing chromosome
conformation in topologically associating domains (TADs)*® and we recently reported that
loop-extrusion, which compacts the chromatin and leads to TADs formation, is instrumental
for yH2AX spreading and DDR foci assembly®. Moreover, irradiation induces a general
chromatin response reinforcing TADs genome wide’. At a larger scale, previous work in
mammalian cells revealed that DSBs display the ability to “cluster” within the nuclear space
(i.e., fuse) forming large microscopically visible repair foci, composed of several individual
repair foci®°. DSB clustering depends on the actin network, the LINC (a nuclear envelope
embedded complex)®'t12 as well as on the liquid-liquid phase separation properties of
53BP1'3!4, The function of DSB clustering has remained enigmatic given that juxtaposition of
several DSBs can elicit translocation (i.e: illegitimate rejoining of two DNA ends),

questioning the selective advantage of DSB clustering/ repair foci fusion®®.

ATM drives an acute reinforcement of damaged TADs.
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In order to get comprehensive insights into chromosome behavior following DSBS, we analyzed
3D genome organization using Hi-C data generated in the human DIVA cell line where multiple
DSBs are induced at annotated positions upon hydroxytamoxifen (OHT) addition®. Our
previous analyses using YH2AX ChlP-seq and direct DSB mapping by BLESS allowed us to
identify 80 robustly induced DSBs on the human genome®. Using differential Hi-C maps, we
found that intra-TAD contacts frequencies were strongly increased within TADs that
experience a DSB (i.e. damaged TADs, Fig. 1a, right panel red square) compared to undamaged
TADs, while contacts with neighboring adjacent domains were significantly decreased (Fig. 1a,
right panel blue square, Fig. 1b). Interestingly, in some instances, the DSB itself displayed a
particularly strong depletion of contact frequency with adjacent chromatin (Fig. 1c black arrow)
indicating that the DSB is kept isolated from the surrounding environment, outside of its own

TAD.

We further investigated the contribution of PI3-Kinases involved in response to DSB by
performing Hi-C in presence of inhibitors of ATM and DNA-PK, which respectively negatively
and positively impact yH2AX accumulation at DSBs (in contrast to ATR inhibition, which does
not noticeably alter yH2AX foci formation in DIVA cells)®>!’. Notably, DNA-PK inhibition
exacerbated the increase in intra-TAD contacts following DSB induction, while ATM
inhibition abrogated it (Fig. 1d, Fig. S1a). TAD structures visualized on Hi-C maps are believed
to arise thanks to cohesin-mediated loop extrusion®. Our previous work indicated that a
bidirectional, divergent, cohesin-dependent loop-extrusion process takes place at DSBs®. This
DSB-anchored loop extrusion can be visualized on differential Hi-C maps by a “cross” pattern
centered on the DSB (Fig. 1e). Notably, ATM inhibition impaired loop extrusion, while DNA-
PK inhibition strongly increased it (Fig. 1e). Moreover, depletion of the cohesin subunit SCC1,
which abolishes DSB-induced loop extrusion®, decreased the reinforcement of intra TAD-

contacts in damaged, yH2AX-decorated, chromatin domains (Fig. 1f, Fig. S1Db).



bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.467654; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Altogether these data indicate that ATM triggers cohesin-mediated loop extrusion arising from

the DSB and the insulation of the damaged TADs from the surrounding chromatin.

ATM drives clustering of damaged TADs, in a cell cycle regulated manner

We further analyzed Hi-C data with respect to long-range contacts within the nuclear space. Hi-
C data revealed that DSBs cluster together (Fig. 2a, red square away from the diagonal), as
previously observed using Capture Hi-C°. The higher resolution of this Hi-C dataset now
enables us to conclude that DSB clustering takes place between entire yH2AX-decorated TADs
and can happen between DSBs induced on the same chromosome (Fig. S2a) as well as on
different chromosomes (Fig. S2b). Of interest, some YH2AX domains were able to interact with
more than a single other yH2AX domain (Fig. 2b, black arrows). Notably, this ability to form
clusters of multiples TADs (also known as TADs cliques'®) upon DSB induction correlated
with several DSB-induced chromatin features that occur at the scale of an entire TAD?,
including yH2AX, 53BP1 and ubiquitin chains levels as well as the depletion of histone H1
around DSB detected by ChlIP-seq (Fig. 2c). Moreover, it also correlated with initial RNAPII
occupancy prior DSB induction indicating that DSBs prone to cluster and form damaged TAD

cliques are those occurring in transcribed loci (Fig. 2c).

We further examined the effect of cohesin depletion on damaged TAD clustering. Inspection
of individual DSBs indicated that SCC1 depletion by siRNA did not alter clustering (Fig. 2d).
Quantification of trans interactions between all DSBs also indicates that SCC1 depletion did
not modify the ability of damaged TAD to physically interact together (Fig. S2c). Additionally,
we found that inhibition of ATM compromised DSB clustering, whilst inhibiting DNA-PK

activity triggered a substantial increase in DSB clustering (Fig. 2e, Fig. S2d).
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Given the conflicting data regarding the cell cycle regulation of DSB clustering®°*2, we further
investigated DSB clustering in synchronized cells. DSB clustering (i.e. damaged TAD-TAD
interaction) could be readily detected by 4C-seq when using a DSB as a view point, as shown
by the increase of 4C-seq signal observed on other DSBs induced on the genome (Fig. 2f). We
used five individual view-points: one control view point located on an undamaged locus, and
four viewpoints at DSBs sites, three of which being “cluster-prone” DSBs, and one efficiently
induced DSB which is unable to cluster with other DSBs. 4C-seq experiments performed before
and after DSB induction in synchronized cells indicated that DSB clustering is readily
detectable during G1 and is strongly reduced during the other cell cycle stages (see an example
Fig. S2e). G1-specific DSB clustering was observed only when using as viewpoints “clustering-

prone” DSBs, but not when using the undamaged control locus or the DSB unable to cluster
(Fig. 29).

Taken altogether, our results indicate that upon DSB formation, TADs that carry DSBs are able
to physically contact each other in the nuclear space (i.e. cluster) in a manner that is entirely
dependent on ATM, exacerbated upon DNA-PK inhibition, and mostly independent of the
cohesin complex. Damaged TAD clustering mostly takes place in G1 and correlates with TAD-
scale DSB-induced chromatin modifications (yH2AX, Ubiquitin accumulation and H1

depletion) as well as 53BP1 accumulation.

A new “D” sub-compartment forms following DSB induction

Previous work identified the existence of two main, spatially distinct, self-segregated,
chromatin “compartments” in mammalian nuclei. These chromatin compartments were
determined by Principal Component Analysis (PCA) of Hi-C chromosomal contact maps where

the first principal component allowed to identify loci that share similar interaction pattern, and
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that can be visualized linearly using eigenvectors. Further correlations with epigenomic features
revealed that these two spatially segregated compartments correspond to active (the “A”
compartment or euchromatin) and inactive chromatin (the “B” compartment or
heterochromatin)?. The identification of A/B compartment using our Hi-C datasets revealed
that DSB induction does not trigger major changes in genome compartmentalization into
euchromatin versus heterochromatin (Fig. S3a). Saddle plots further confirmed that neither
DSB treatment nor the pharmacological inhibition of DNAPK and ATM significantly modified
the ability of the genome to segregate into active A and inactive B compartments (Fig. S3b).
Moreover, DSB induction did not generally lead to compartment switch of the underlying
chromatin domain, except in very few cases: Among the 80 DSBs induced by AsiSI, 58 DSBs
were induced in the A compartment and all of them remained in the A compartment following
DSB induction (see an example Fig. S3c top panel). Conversely, among the 22 DSBs induced
in the B compartment, only 4 showed a shift from B to A (see two examples Fig. S3c middle
and bottom panels). We further investigated the relationship between the compartment type and
the ability of DSBs to cluster together. Of interest, DSB clustering was detectable mostly for

DSBs in the A compartment (Fig. S3d).

Beyond the main classification between A/B compartments, sub-compartments have since been
identified using higher resolution Hi-C maps, which correspond to subsets of heterochromatin
loci (B1-B4) and of active loci (A1-A2)?L. Of interest, such sub-compartments also correspond
to microscopically visible nuclear structures such as nuclear speckles (A1)?? or Polycomb
bodies (B1)?* for instance. Given that previous studies have long identified large,
microscopically detectable yH2AX bodies following DNA damage and that our Hi-C data
revealed clustering of damaged TADs, we postulated that DSBs may also induce a sub-
compartment, in particular within the A compartment (i.e,: some A compartment, damaged-

loci further segregate from the rest of the active compartment). In order to investigate this point,
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we applied PCA analysis on differential Hi-C maps (i.e. contact matrices of +DSB/-DSB) on
each individual chromosome. The first Chromosomal Eigenvector (CEV, PC1) allowed us to
identify a DSB-induced chromatin compartment mainly on chromosomes displaying a large
number of DSBs (chrl,17 and X) (Fig. S4a, Fig. 3a,). Notably, a similar analysis on Hi-C maps
generated upon DNA-PK inhibition, which impairs repair'’ and increases DSB clustering (Fig.
2), allowed to identify this compartment on more chromosomes (such as chr6 for instance, Fig.
S4b, bottom track). This sub-compartment displayed a very strong correlation with yH2AX-
decorated chromatin following DSB (Fig. 3a, Fig. S4a-d) and was henceforth further named
“D” sub-compartment (for DSB-induced compartment). Yet, further inspection revealed that
the D sub- compartment is not solely generated through the clustering of damaged chromatin
(i.e. TADs that carry DSBs and are enriched in yH2AX). Indeed, we could identify chromatin
domains, not containing any DSB and not decorated by yH2AX, that associate with the D sub-
compartment after damage (blue rectangle Fig. 3b). After exclusion of yH2AX-covered
chromatin domains, correlation analysis using chromosomes 1,17 and X, on which the D sub-
compartment was readily detected, indicated that non-damaged loci that tend to segregate with
the D compartment are enriched in H2AZac, H3K4me3 and H3K79me2 (Fig. S4e, Fig. 3b).
Conversely, these loci targeted to the D compartment displayed a negative correlation with
repressive marks such as H3K9me3 (Fig. S4e). A similar trend was observed when D sub-
compartment was computed from the Hi-C data obtained in presence of the DNA-PK inhibitor
and correlation analysis performed on all chromosomes showing D compartmentalization (i.e,
chr 1,2,6,9,13,17,18,20 and X) (Fig. S4e bottom panel). Altogether our data indicate that upon
DSB production on the genome, damaged TADs, covered by yH2AX/53BP1, form a new
chromatin compartment that segregates from the rest of the genome and in which some
additional undamaged loci that exhibit chromatin marks typical of active transcription can be

further targeted.
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A subset of DNA damage responsive genes segregates with the D sub-compartment to

achieve optimal activation.

In order to decipher the nature of the active genes targeted to the D compartment, we further
explored the DNA motifs enriched on “D” genes compared to “non D” genes, i.e. genes
recruited to the D compartment, versus the one that do not display targeting to the D
compartment (discarding all genes directly comprised in yH2AX domains). Notably, the top
enriched motifs included OSR1, TP73, Nkx3.1 and E2F binding sites, which are tumor
suppressor and /or known to be involved in the DNA damage response (Fig. S4f)232°,
suggesting a direct physical targeting of DNA damage responsive genes to the “D” sub-
compartment. In agreement, visual inspection revealed that some known p53 target genes which
are upregulated following DSB induction were associated with the D compartment, even when
as far as >20MB from the closest DSB (see an example Fig. 3c). To test the hypothesis that
DNA damage responsive genes are recruited to the D compartment, we performed RNA-seq
before and after DSB induction and retrieved genes that are upregulated following DSB
induction. Notably, genes upregulated following DSB induction displayed a higher D
compartment signal compared to genes that were either not regulated or downregulated after
DSBs (Fig. 3d). Of note, if some of the upregulated genes were indeed targeted to the D
compartment, this was not the case for all of them. Importantly, the upregulated genes targeted
to the D-compartment were not in average closer to DSBs than the upregulated genes not-
targeted to the D compartment (Fig. S4g), ruling out a potential bias due to the genomic

distribution of AsiSI DSBs.

In order to determine whether recruitment of those genes to the D sub-compartment contribute

to their activation following DNA damage, we investigated the consequence of disrupting DSB
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clustering (and hence formation of D compartment) by depleting the SUN2 component of the
LINC complex, previously found as a DSB-clustering promoting factor®!t, SUN2 depletion
altered the transcriptional activation of genes found to be upregulated and targeted to the D sub-

compartment upon DSB in DIVA cells (Fig. 3e).

Altogether these data indicate that DSB induction triggers the formation of a novel chromatin
sub-compartment that comprises not only damaged TADs, decorated by yH2AX and 53BP1,
but also a subset of genes upregulated following DNA damage, for which targeting to D sub-
compartment is required for optimal activation. Altogether this suggests a role of the D sub-

compartment, and hence DSB clustering, in the activation of the DNA Damage Response.

DSB-induced reorganization of chromosome folding favors translocations.

Importantly, while our above data suggest a beneficial role of DSB clustering in potentiating
the DDR, it may also be detrimental, since bringing two DSBs in a close proximity may fosters
translocations (illegitimate rejoining of two DSBs), as previously proposed®. We therefore
assessed by gPCR the frequency of translocations events occurring in DIVA cells post-DSB
induction, in conditions where we found altered DSBs clustering and D compartment

formation.

Notably, translocations are increased in G1 compared to S/G2-synchronized cells (Fig. 4a), in
agreement with an enhanced DSB clustering observed in G1 cells (Fig. 2). Moreover, DNA-PK
inhibition, that increased D-compartment formation (Fig. 2e, Fig. S2d, Fig. S4b) also strongly
increased translocation frequency (Fig. 4b). On another hand, depletion of 53BP1 (Fig. S5a),
previously found to mediate repair foci phase separation'?, as well as a treatment with 1,6-
hexanediol, which disrupts phase condensates (Fig. S5b), decreased translocations (Fig. 4c).

Similarly, depletion of SUN2, member of the LINC complex and of ARP2, an actin branching
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factor (Fig. S5a), reported as mediating DSB clustering®'1?, decreased translocations (Fig. 4c).
Surprisingly, depletion of the cohesin subunits SMC1 or SCC1 also decreased translocation
frequency (Fig. 4d, Fig S5c). This was unexpected since SCC1-depleted cells do not display

clustering defects (Fig. 2).

Given that the two translocations assessed by our qPCR assay are both intra-chromosomal
translocations (i.e.: rejoining of two distant DSBs located on the same chromosome) we
hypothesized that translocation frequency at the intra-chromosomal level may also be regulated
by the DSB-induced loop extrusion that depends on the cohesin complex. In order to investigate
more broadly translocation events between multiple DSBs induced in the DIVA cell line, we
designed a novel multiplexed amplification protocol followed by NGS sequencing. In control
cells, we could readily detect increased translocation frequency upon induction of DSB
compared to control genomic locations (Fig. S5d). Strikingly, depletion of SCC1 decreased the
frequency of intra-chromosomal translocations, while leaving inter-chromosomal
translocations unaffected (Fig. 4e). In contrast depletion of SUN2 and ARP2 decreased both
intra- and inter-chromosomal translocations (Fig. 4f-g). Taken together these data suggest that
both the DSB-induced loop extrusion and the formation of the D sub-compartment through

clustering of damaged TADs, display the potential to generate translocations.

Given our above finding that a subset of genes upregulated following DSB induction can be
physically targeted to the D compartment after break induction (Fig. 3), we further hypothesized
that such a physical proximity may account for some of the translocations observed on cancer
genomes. We retrieved breakpoint positions of inter-chromosomal translocations of 1493
individuals across 18 different cancers types (from?7), and assessed their potential overlap with
genes targeted to the D sub-compartment (reproducibly detected in the three Hi-C replicates on
chrl,17 and X, on which D sub-compartment could be identified accurately). D-targeted genes

were further sorted as either upregulated, downregulated or not significantly altered following

11



bioRxiv preprint doi: https://doi.org/10.1101/2021.11.07.467654; this version posted November 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

DSB induction, and compared to their counterparts not targeted to the D compartment. We
found that genes that are upregulated following DSB induction and that are targeted to the D
compartment displayed a significant overlap with translocations breakpoints, in contrast to
genes that are not targeted to the D compartment (non-D) (Fig. 4h). Altogether these data
indicate that the relocalization of upregulated genes during the DNA Damage response in the
DSB-induced sub-compartment likely accounts for some of the translocations detected on
cancer genomes. Given that DDR genes comprise a number of tumor suppressor genes, such a
physical proximity of these genes with DSBs within the D sub-compartment formed in response
to DNA damage, may be a key mechanism driving oncogenesis, through fostering the instability

of tumor suppressor genes.

Conclusion

Altogether this work shows that DSB-induced changes in chromosome architecture is an
integral component of the DNA Damage Response, but also acts as a double-edged sword that

can challenge genomic integrity through the formation of translocations.

Our data suggest that a chromatin sub-compartment arises when yH2AX/53BP1-decorated
domains, established by ATM-induced loop extrusion post DSB, self-segregate from the rest of
chromatin. This may, at least in part, occur thanks to the LLPS properties of 53BP11*1428 This
DSB-induced (“D”’) sub-compartment further recruits a subset of genes involved in the DNA
damage response and contributes to their activation (Fig. S5e). This model is in agreement with
previous work which identified 53BP1 as critical for p53 target genes activation?, with the
findings that disrupting 53BP1 droplet formation alters checkpoint activation®® and with the
fact that enhanced 53BP1 phase separation triggers an elevated p53 response® as does the loss

of TIRR, a protein that regulates 53BP1 association to DSBs*'*2, We propose that the formation
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of the “D” sub-compartment allows to precisely tune the magnitude of the DDR with respect to
DSB load and persistency, providing a function for these enigmatically large yH2AX/53BP1-
decorated chromatin domains and to DSB clustering. Furthermore, this observation may
provide a rationale for why so many transcription factors (including p53) were found recruited
at DSBs repair foci®3. While initially thought to allow chromatin remodeling in order to enhance
DSB repair, the recruitment of transcription factors to DSB repair foci may in fact rather reflects
the relocalization of DDR genes within the D compartment (hence at physical proximity of the

DSB).

Yet, this comes at the expense of potential translocations, as both loop extrusion and
coalescence of damaged TAD are able to bring linearly distant DSBs in close physical
proximity (Fig. S5e). Importantly, we found that the genes upregulated in response to DSB and
relocated to the D compartment displayed significant overlap with translocation breakpoints
identified by whole genome sequencing in patient cancer samples. In agreement with an
increased occurrence of structural variants on tumor suppressor genes?’, we propose that the
physical targeting of DNA damage responsive genes to the D compartment, by bringing DSBs
and DDR genes in close spatial proximity, may occasionally trigger deleterious rearrangements
on genes involved in the control of cell proliferation and apoptosis upon DNA damage, and
may hence act as a critical driver of oncogenesis by disrupting the integrity of tumor suppressor

genes.
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Methods

Cell culture and treatments

DIVA (AsiSI-ER-U20S)! and AID-DIVA (AID-AsiSI-ER-U20S)** cells were grown in
Dubelcco’s modified Eagle’s medium (DMEM) supplemented with 10% SVF (Invitrogen),
antibiotics and either 1 pg/mL puromycin (DIVA cells) or 800 pg/mL G418 (AID-DIVA cells)
at 37 °C under a humidified atmosphere with 5% CO2. To induce DSBs, cells were treated with
300nM 40HT (Sigma, H7904) for 4 h. For ATM or DNA-PK inhibition, cells were pretreated
for 1 h respectively with 20uM KU-55933 (Sigma, SML1109) or 2uM NU-7441 (Selleckchem,
S2638) and during subsequent 40HT treatment. Treatment with 10% 1,6-hexanediol (Sigma,
240117) was performed for 3 min before the end of the 40HT treatment. For cell
synchronization, cells were incubated for 18 h with 2 mM thymidine (Sigma, T1895), then
released during 11 h, followed by a second thymidine treatment for 18 hr. S, G2 and G1 cells
were then respectively treated with OHT at, 0, 6 or 11 h following thymidine release and
harvested 4 h later. sSiRNA transfections were performed using the 4D-Nucleofector and the SE
cell line 4D-Nucleofector X kit L (Lonza) according to the manufacturer’s instructions, and
subsequent treatment(s) were performed 48 h later. SIRNA transfections were performed using
a control siRNA (siCTRL): CAUGUCAUGUGUCACAUCU; or using a siRNA targeting
SCC1 (siSCC1): GGUGAAAAUGGCAUUACGG; or SMC1 (siSMC1):
UAGGCUUCCUGGAGGUCACAUUUAA; or 53BP1 (si53BP1):
GAACGAGGAGACGGUAAUA,; or SUN2 (siSUN2): CGAGCCTATTCAGACGTTTCA; or

ARP2 (siARP2): GGCACCGGGUUUGUGAAGU.
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Translocation assay

Translocation assays after SIRNA transfection or 1,6-Hexanediol treatment were performed at
least in triplicates in AID-DIVA cells as described in®. Translocation assay in synchronized
cells was performed in DIVA cells following a 4OHT treatment (n=4 biological replicates). Two
different possible translocations between different AsiSI sites were assessed by qPCR using the
following primers: Translocationl_Fw: GACTGGCATAAGCGTCTTCG,
Translocationl_Rev: TCTGAAGTCTGCGCTTTCCA, Translocation2_ Fw:
GGAAGCCGCCCAGAATAAGA, Translocation2_Rev: TCTGAAGTCTGCGCTTTCCA.

Results were normalized using two control regions, both far from any AsiSI sites and YH2AX

domain using the following primers: Ctrl_chrl_82844750 Fw:
AGCACATGGGATTTTGCAGG, Ctrl_chrl_82844992_Rev:
TTCCCTCCTTTGTGTCACCA, Ctrl_chrl7_9784962 Fw:
ACAGTGGGAGACAGAAGAGC, Ctrl_chrl7_9785135_Rev:

CTCCATCATCGCACCCTTTG. Normalized translocation frequencies were calculated using

the Bio-Rad CFX Manager 3.1 software69.

Amplicon —seq

AID-DIVA cells were treated with or without 300nM 40HT for 4 h followed by treatment with
indole-3-acetic acid for 14 h. Cells were then lysed in cytoplasmic lysis buffer (50mM HEPES
pH7.9, 10mM KCI2, 1.5mM MgCl2, 0.34M sucrose, 0.5% triton X-100, 10% glycerol, 1mM
DTT) for 10 minutes on ice, then washed once in cytoplasmic lysis buffer before lysis in
genomic extraction buffer (50mM Tris pH8.0, 5mM EDTA, 1% SDS, 0.5mg/mL proteinase K).
Lysate was incubated at 60°C for 1 h. Genomic DNA was then ethanol precipitated on ice for
1h, pelleted at 19,0009 for 20 min and washed twice in 75% ethanol. Genomic DNA was then

used in a multiplex PCR reaction that amplified 25 target sites; 20 AsiSI cut sites and 5 uncut
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control sites (Supplementary Table 1). Amplicons were size selected using SPRIselect beads
(Beckman, B23318) and subjected to DNA library preparation via the NEBNext Ultra Il kit
(NEB, E7645L). Libraries were pooled at equimolar concentrations and sequenced via an
Illumina NextSeq 500 system using paired end 150 cycles. The data was analyzed via our
custom tool mProfile, available at github.com/aldob/mProfile. This identified the genomic
primers used in the original genomic PCR reaction to amplify each read in the pair. Translocated
reads were therefore identified as those where each read in a pair was amplified by a different
primer set, and this was normalized to the total reads that were correctly amplified by these

primer sets.

RT-qPCR

RNA was extracted from fresh DIVA cells before and after DSB induction using the RNeasy
kit (Qiagen). RNA was then reverse transcribed to cDNA using the AMV reverse transcriptase
(Promega, M510F). gPCR experiments were performed to assess the levels of cDNA using
primers targeting RPLPO (FW: GGCGACCTGGAAGTCCAACT, REV:
CCATCAGCACCACAGCCTTC), RNF19B (FW: CATCAAGCCATGCCCACGAT; REV:
GAATGTACAGCCAGAGGGGC), PLK3 (FW: GCCTGCCGCCGGTTT; REV:
GTCTGACGTCGGTAGCCCG), FAS (FW: ATGCACACTCACCAGCAACA; REV:
AAGAAGACAAAGCCACCCCA) or GADD45A (FW: ACGATCACTGTCGGGGTGTA;
REV: CCACATCTCTGTCGTCGTCC). cDNA levels were then normalized with RPLPO

cDNA level, then expressed at the percentage of the undamaged condition.

Immunofluorescence

DIVA cells were grown on glass coverslips and fixed with 4% paraformaldehyde during 15 min
at room temperature. Permeabilization step was performed by treating cells with 0,5% Triton

X-100 in PBS for 10 min then cells were blocked with PBS-BSA 3% for 30min. Primary
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antibodies targeting RNA Poll (Santa Cruz sc48385) or PML (Santa Cruz sc-966 (PG-M3))
were diluted 1:500 in PBS-BSA 3% and incubated with cells overnight at 4°C. After washes in
1X PBS, cells were incubated with anti-mouse secondary antibody (conjugated to Alexa 594 or
Alexa 488, Invitrogen), diluted 1:1000 in PBS-BSA 3%, for 1h at room temperature. After a
DAPI staining, Citifluor (Citifluor, AF-1) was used for coverslips mounting. Images were
acquired with the software MetaMorph, using the 100X objective of a wide-field microscope

(Leica, DM6000), equipped with a camera (DR-328G-C01-SIL-505, ANDOR Technology).

Western Blot

Western Blot experiments were performed as in® using primary antibody targeting SUN2
(Abcam ab124916 1:1000), ARP2 (Abcam ab128934 1:1000), 53BP1 (Novus Biologicals

NB100-305 1:1000), SCC1 (Abcam ab992 1:500) or SMC1 (Abcam ab75819 1:1000).

RNA-seq

RNA-seq was performed as described in®. RNA-seq were mapped in paired-end to a custom
human genome (hg19 merged with ERCC92) using STAR. Count matrices were extracted using
htseg-count with union as resolution-mode and reverse strand mode. Differential expression
analysis was made on the count matrix using edgeR with two replicates per condition and
differential genes were determined with log-ratio test (LRT). Whole genome coverage was
computed using deeptools and bamCoverage to generate bigwig using bam files (without PCR
duplicate suppression). Using a cutoff of 0.1 for the adjusted p-value and 0.5 log2 fold-change
(~41% increase/decrease of expression), we were able to determine 286 up-regulated and 125
down-regulated genes with 11 of them directly damaged by a DSB. Differential coverage
between two conditions was performed using BamCompare from deeptools with setting binsize

parameter at 50bp. Log2FC was calculated 