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Abstract

Tensors or multi-way arrays are useful tools to identify unknown quan-
tities thanks to the uniqueness of their decomposition. Tensor decomposi-
tions have been widely applied to obtain unknown components with physical
meanings in many applications such as medical image and signal processing,
hyperspectral images analysis, chemometrics, etc.

In this thesis, we investigate the application of tensor decomposition
for probability estimations, which are required for some targeted data/text
mining tasks such as unsupervised clustering of data/documents. Besides
criticizing the existing tensor decomposition algorithms for probability es-
timations, we propose to apply some proper constrained tensor decompo-
sitions, which result in more reliable and accurate estimations. Moreover,
we introduce an algorithm for constrained tensor decomposition, called Sim-
ple Forward-Backward Splitting (SFBS), which is based on Proximal Mini-
mization. SFBS performs better than state-of-the-art in decomposing noisy
tensors while computationally less expensive.

In addition, to evaluate the performance of tensor decomposition algo-
rithms, we introduce an index that we name CorrIndex, which provides in-
terpretable performance bounds, while keeping computational complexity to
a reasonable level. Furthermore, we propose a method of moment estimation
(standard averaging), which estimates the second and third order moments,
with the same performance of state-of-the-art, but based on a much simpler
concept, i.e. weighted averaging. Moreover, standard averaging performs
better in small dimensions, and provides some advantages in terms of com-
putational complexity.

Keywords— Tensor decomposition, Text mining, Unsupervised cluster-
ing, Hidden/latent variable, Third order moments, Forward-Backward Split-

ting, Proximal operator, Performance index, Permutation and scale ambigu-

ity






Résumé

Les tenseurs - ou les tableaux multi-indices - sont des outils utiles pour
identifier des quantités inconnues gréce a 'unicité de leur décomposition. Les
décompositions tensorielles ont été largement utilisées pour obtenir des com-
posantes inconnues ayant une signification physique dans de nombreuses ap-
plications, telles que le traitement d’images et de signaux médicaux, ’analyse
d’images hyperspectrales, la chimiométrie, etc.

Dans cette thése, nous étudions 'application de la décomposition ten-
sorielle pour 'estimation de probabilités, qui sont nécessaires pour certaines
taches ciblées de fouille de données/textes telles que le groupement non su-
pervisé de données/documents. Au dela de 'analyse critique des algorithmes
de décomposition tensorielle utilisés pour ’estimation de probabilités, nous
proposons des décompositions tensorielles sous des contraintes appropriées,
qui donnent lieu a des estimations plus fiables et plus précises. De plus, nous
introduisons un algorithme de décomposition tensorielle sous contraintes, ap-
pelé Simple Forward-Backward Splitting (SFBS), qui est basé sur une ap-
proche de minimisation proximale. SFBS est plus performant que 1’état de
I’art dans la décomposition des tenseurs bruités tout en étant moins cotiteux
en calcul.

En outre, pour évaluer la performance des algorithmes de décomposi-
tion tensorielle, nous introduisons un indice appelé CorrIndex, qui fournit
des limites de performance interprétables, tout en maintenant la complex-
ité de calcul & un niveau raisonnable. De plus, nous proposons une méth-
ode d’estimation des moments (moyenne standard), qui estime les moments
d’ordre deux et trois, avec les mémes performances que I’état de I'art, mais
basée sur un concept beaucoup plus simple, i.e. la moyenne pondérée. De
plus, le calcul de la moyenne standard est plus performant dans les petites

dimensions et présente certains avantages en termes de complexité de calcul.



viii
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1 INTRODUCTION

Considering vectors and matrices as one-way and two-way arrays, respec-
tively, the concept can be extended to tensors as multi-way arrays which can
have more than two dimensions. Although vectors/matrices can be seen as
tensors of order one or two, tensors usually refer to an array with more than
two ways [Com14,SDLF*17].

As tensors are useful tools to identify unknown quantities due to the
uniqueness of their decompositions, they have appeared in many applica-
tions so far, such as Blind Source Separation (BSS) based on data cumu-
lants [Com14|, component analysis in chemistry [Bro98|, estimation and lo-
calization of sources (Direction Of Arrival (DOA)) [RCM*16] and medical
image and signal processing [BACT14], to name a few.

In addition, the importance of tensors has been revealed in many tasks of
machine learning including classification [SDLF 17|, data fusion [CMDL*15]
and unsupervised clustering [AGH™14]. The latter has been widely appeared
in data/text mining [BNJ03, AGH"14, RCG18]|, and is performed by the
estimation of some statistical parameters in mixture models [AGH'14].

Throughout this thesis, we consider a particular mixture model, called
single-topic model [BNJ03], which can be used to describe a hidden relation
among observed data (see Section 3.2 and Fig. 3.1 for more detailed defi-
nition of single-topic model). In a single-topic model, a set of multi-view
(observed) variables are generated according to their corresponding hidden
(latent or non-observed) variable. For instance, a corpus of documents can
be described by a single-topic model: the topic of each document is seen as a

hidden variable and the words of that particular document are its multi-view
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variables generated according to its topic. Note that single-topic models are
not limited to describe a corpus of documents, it can also be useful in model-
ing social networks [AGH" 14] and movie recommendation systems [BNJ03].

It has been shown that whenever observed data can be modeled by a
single-topic model, some statistical parameters of the data are related to
the tensor of moments [AHK12b|. To be more precise, the probability of
the hidden variable (topic) and the conditional probability of multi-view
variables (words) can be estimated via the decomposition of the tensor of
third order moments, which is a method of moments [Pea94|. As mentioned
before, by employing these estimated probabilities, the targeted data/text
mining task (unsupervised clustering) can be performed by means of Bayes’
law [RCG18|.

The main goal of this thesis is to investigate the effect of the accuracy
of tensor decompositions on estimated probabilities. In other words, we aim
at answering the question of which type of tensor decomposition is more
appropriate for probability estimation. In addition, exploring the drawbacks
of the employed tensor decompositions for the above mentioned purpose in
the literature and trying to propose proper solutions are other goals of this
thesis.

The outcomes of the thesis are as follows:

(i) Regarding the estimation of the tensor of third order moments, we
investigate the effect of moment estimators on the accuracy of proba-
bility estimations and the required size of corpus. Moreover, we pro-
pose an estimator which performs as well as the best estimator in the
state-of-the-art but based on a much simpler concept, i.e. weighted
averaging. In addition, our moment estimator performs slightly better
for small dimension tensors and provides some advantages in terms of

computational complexity.

(ii) Concerning tensor decomposition algorithms, we show experimentally
that the probabilities estimated by algorithms employed in the litera-

ture are not always acceptable as probability values. More importantly,
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the employed tensor decomposition algorithms are not robust to ad-
ditive noise and suffer dramatically from rounding errors, especially

when working with a real corpus.

Nevertheless, we propose to consider proper constraints (such as non-
negativity or the simplex set) in tensor decompositions, which guaran-
tees reliable results for the estimated probabilities, and provides much
more accurate estimations. Moreover, these kinds of decompositions
are more robust to additive noise and perform better on real text

datasets.

In addition, we introduce an algorithm for constrained tensor decompo-
sitions based on the proximal concept, called Simple Forward-Backward
Splitting (SFBS), which performs better than other constrained ten-
sor decompositions especially in noisy scenarios and converges faster.
Further, we discuss how one can apply SFBS with sparsity constraints,
which is needed for other applications such as co-clustering [PS11].
Last but not least, due to utilizing a proximal regularization and the
proximal concept, SFBS has a complete convergence guarantee even

with non-convex constraints.

(iii) Due to permutation and scaling ambiguities in tensor decompositions,
it is not straightforward to evaluate the performance of tensor decom-
position algorithms. In this thesis, we introduce a performance index
that we coin CorrIndex, which is invariant to permutation and scaling
ambiguities. Contrary to existing methods in the literature, CorrIndex
is more reliable in ill-conditioned cases, and also provides interpretable
performance bounds, while keeping computational complexity to a rea-

sonable level.

This thesis is organized as follows. In Chapter 2, we review some pre-
liminaries about tensors and their decompositions. Chapter 3, explains the
relation between tensor decompositions and the data mining problem, which

is in the focus of attention of this thesis. Chapter 4 and Chapter 5, which

3
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are devoted to the main contributions of this thesis, describe performance in-
dices (including CorrIndex) and tensor decomposition algorithms (including
SFBS), respectively. Finally, Chapter 6 concludes the thesis and mentions

some perspectives.

Notation Throughout the thesis, arrays of numbers will be printed in
boldface. More precisely, one-way and two-way arrays will be denoted in
bold lowercase and bold uppercase, respectively, e.g. v and M. Arrays with
more than two indices will be denoted by bold calligraphic symbols, such as
A. Sets and spaces will be noted in script font, like 8. Entries of arrays v,
M and A will be noted v;, M;; and A;;j, without bold font (since they are

indeed scalar numbers).
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2.1 INTRODUCTION

In this chapter, we bring the required notations and preliminaries in this
report about the tensor and its decompositions. Moreover, the challenges
and limitations of tensor decompositions in practice will be discussed along

with the relevant methods to face these difficulties.
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2.2 TENSOR: NOTATIONS AND PRELIMINARIES

Tensor Tensors can be considered as a multi-linear maps from a vec-
tor space to another one |[Coml4|, or they are simply multi-way (multi-
dimensional or multi-index) numerical arrays [CZPA09, CMDL"15], or hy-
permatrices [Lim13|. The order of an array refers to the number of its
ways [Com00]. Vectors and matrices are one-way and two-way arrays, respec-

tively, but usually tensor refers to an array with three or more ways [SDLF*17].

Products

e Tensor/outer product (®): It can be explained easily by considering
an example. The tensor/outer product of a 3'% order tensor, A, with
entries A;;; and a 4th order tensor, B, with entries Bimnp is a 7% order
tensor like C = A ® B whose components are Cjjkimnp = Aijk Bimnp-

The orders add up under the tensor product.

e Contraction (eg): Unlike the tensor product, which increases the order,
the contraction decreases the sum of orders by 2 [Com14|. C = Ae; B
indicates the contraction product over mode-k between two tensors,
A and B, which is a summing up over the production of their mode-k
entries. Note that if the order of A and B are D and Ds, C is a tensor
of order Dy + Dy — 2. For instance, in the previous examples of A and

B, the contraction product over mode-2 is defined as follows:

C = A;B — Cikinp = ZAijkBljnp (2.1)
j

However, the contraction product between a matrix and a tensor of
higher dimension is treated based on the order of putting them. To
be more precise, G = A e, M is a contraction between the mode-k of
A and the first matrix index of M, but @ = P e, A is a contraction
between the mode-k of A and the second matrix index of P. This

permits the compatibility with the usual matrix-matrix product.

6
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In the following, two examples of the contraction product over the
mode-3 of a 3" order tensor, A, and two other matrices, namely M

and P, can be found:
g = AgM — Gijt = ZAijkMkt (2.2)
k

Q= PEA — Qijs = zk: A Py (2.3)

e Kronecker product (X): Assume that A and B are two matrices of size
I; x I and I3 x I4 respectively. Their Kronecker product is a matrix

C of size I113 x I>14 defined by:

[ A4B ApB ... ALB |

o | AuB Ay,B ... Ay,B
C—ARBY 21 21 215 (2.4)

_AlllB AIIQB A[1[2B_

e Khatri-Rao product (®): This product is actually a column-wise Kro-
necker product, and it should be performed between two matrices
with the same number of columns. If A"V*2 = [a;, as,...,ar,] and
B3*1z2 — (b by, ...,by,], where a; and b; are the i*" columns of the

matrices A and B respectively, then:

C=A0BY [a,®b;,a:8by,...,a;, by, (2.5)

Unfolding or matricizing For convenience, tensors are sometimes trans-
formed into matrices [Com14]. This transformation is called unfolding or
flattering and can be done in each mode. The resulting matrix in mode n is
called the mode-n unfolding [Com14] and is denoted by 7™,

Unfolding can be executed in several manners, but in this thesis we
shall use the one, which returns matrices with the same number of rows
as in the chosen mode. The obtained vector by fixing all indices except

one is called the fiber of tensor T71*2X-XIN ¢ 4 the mode-n fiber is
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Figure 2.1: The tensor A of dimension 2 x 2 x 2.

t Mode-n unfolding, i.e. 7™, is a matrix obtained

11,8250 bn— 1,504 10UV
by concatenating fibers mode-n in order of increasing indices [CMDL"15.
The following example expresses the unfolding of the tensor A of dimen-

sion 2 x 2 x 2, depicted in Fig. 2.1, in its three modes:

A _ A Az Az A

| A2in Asor Asiz Asx |
4@ — A Aoin Az Aoie

| Az Aot Awz Asx |
AG) — A Ao A Ao

| Anz Az Awzz Asx |

2.3 EXACT TENSOR DECOMPOSITION

In noiseless scenarios, an exact tensor decomposition is feasible. An advan-
tage of exact tensor decomposition over exact matriz decomposition is the
uniqueness of the decomposition under a mild condition (cf. Section 2.3.1).
Recall that the decomposition of a matrix as a summation of rank-1 matri-
ces is not unique, for example if M;x; = AI><KB§XK = Zf akbg, then
M = (AQ)(Q'B7) for any invertible matrix Q (QQ ™! =I).

8
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2.3.1 Canonical Polyadic (CP) tensor decomposition

A decomposable tensor of order N is a tensor product of N vectors [Com14],
ie., D =aV®a?...®a™. According to [Hit27], any tensor can be
written as a linear combination of a finite number of decomposable tensors,

R

T=> AD(r), (2.6)

r=1

where T is a tensor of order N, and D(r) = agl) ®a£2) . ..®a£N). The

decomposition described in (2.6) is called the Polyadic decomposition [Hit27],
and if it is unique, it is called the Canonical Polyadic (CP) decomposition
or also CANDECOMP or PARAFAC |Coml4|. In compact form, (2.6) can
be represented as T = [A; AL AQ) A(N)]], in which X is a coefficient
vector of size R containing the values of A, and a7(~1), a£2), .. aw(ﬂN) are the rth
columns of N loading matrices (factors) AW A®) AN respectively.
The N matrices A, A®) AW are called mode-1, mode-2, ..., mode-

N loading matrices, respectively, since their columns are responsible for the

construction of the first, second, ..., N** dimension of 7~ [CMDL*15].

Rank For each tensor, the minimum value of R for which (2.6) holds is
called the tensor rank [Com14|. Therefore, the rank of a decomposable tensor

1S one.

Uniqueness A sufficient condition of uniqueness of the CP decomposition

is as follows [Com21]:

N
2R+ N —1<> krank{A},
n=1
where N > 3 and krank{.} denotes the Kruskal' rank of a matrix.

However, a necessary condition can be obtained according to the expected

rank of a tensor for the uniqueness of its CP decomposition. Based on the

'The Kruskal rank of a matrix is defined as the maximum number k such that any k

columns of that matrix are linearly independent.

9
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number of knowns and unknowns in (2.6), the expected rank of a tensor is

defined as [Com14]:

Re 2 D
1—N—|—Zi]\;1ni ’

where N is the order of the tensor of dimensions ny X ... X ny and D =
1Y, ni. Tt has been shown in [COV14] that if D < 15000 and R < R° — 1
ensures almost surely the uniqueness of decomposition (2.6). As mentioned
before, if this polyadic decomposition is unique, it can be called the Canonical

Polyadic (CP) decomposition [Com14].

Unfolding of CP Note that the mode-n unfolding of the tensor T~ can be
expressed based on its CP decomposition, T~ = [A; AN A A(N)]]7 as

follows:
T
T™ = A diag(A) <A<N> ®...0 A oA Do @ A<1>> . (27)

where diag(A) is a diagonal matrix by holding A as its diagonal.

2.3.2  Tucker tensor decomposition

For any tensor of order N and of dimensions n; X ng X ... X ny, one can
find N loading matrices AW A AN of dimension ny x Ry, ng X
Ry, ..., ny X Ry respectively, and a core tensor, G, of dimension R; X Ry X

... X Ry (smaller than or equal to dimension of T") as follows:

T=A4ADeAPe. . AN ¢ g, (2.8)
1 2 N

T=[6;AM, A% . AN (2.9)

If G in (2.8) is diagonal, then it expresses the CP decomposition, otherwise

it is Tucker decomposition proposed by Tucker in 1966 [Tuc66].

Uniqueness The uniqueness condition of the CP decomposition stated in

Subsection 2.3.1 (R < R° — 1) can be refined by means of the dimensions

10
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Ry X Ry X ... X Ry as follows [COV14, Com21]:

N .
R < Hi:l R]z] —1.

In addition, the rank R of the tensor T~ and the dimensions Ry X Ro X ... X Ry

are related via the following inequalities [Com21]:
max{R;} <R < mjn{H R;}.
K3 7
J#i

Even if the minimal dimensions R; X Rg X ... x Ry are used in (2.8),
Tucker decomposition is not unique. It can be seen easily by replacing
each loading factor with its QR decomposition [Com21|, for example A =
Q(i)R(i), where the matrices R® are of dimensions R; x R; and Q(i)HQ(i) =

I. Therefore, (2.9) can be rewritten as below:
T=19:Q".Q?,. ...Q"M)], (2.10)
where the new core tensor G’ has the following form:

G =[6;RY, R? ... RN

2.3.3 Multi-Linear/Higher Order Singular Value Decompo-
sition (MLSVD/HOSVD)

Equation (2.10) can be seen as Tucker decomposition of 7~ under the con-
straint that all loading factors should be semi-unitary (i.e. Q(i)HQ(i) =1I).
This decomposition is also known as Multi-Linear/Higher-Order Singular
Value Decomposition (MLSVD/HOSVD) [Com14].

Therefore, any tensor 7~ admits a decomposition of MLSVD/HOSVD:

T: [I:g; Q(l)?Q(2)7"'7Q(N)]]7 (2.11)

where Q(i)HQ(i) = I and G is a core tensor of dimension Ry X Ry X ... X Ry.
Moreover, [Ry, Rg, ..., Ry] is called the multi-linear rank of the tensor

7 [DLDMV00].

11
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Calculating exact MLSVD/HOSVD Assume that a multi-linear rank,
[R1, Ra, ..., Rn], has been chosen such that an exact MLSVD/HOSVD of
T can be obtained. It can be shown that Q) in (2.11) is nothing else but

the matrix of left singular vectors of the i*" mode unfolding of T, i.e. T:
T — QO y®Y (2.12)

and X and V@ are the diagonal matrix of singular values and the matrix
of right singular vectors, respectively [Com21|. In addition, G in (2.11) can
be computed by the means of Q(i)H as follows:

nH

G=[7T:QW" 2" ... @M.

2.4 APPROXIMATE TENSOR DECOMPOSITION

Different types of rank (e.g. generic, typical) are discussed in [Com14, Sec-
tion V.B|. The generic rank is the rank that is encountered with the prob-
ability one |[CGLMO08, CBDC09|, when the entries of a tensor are drawn
independently according to a continuous probability distribution. In prac-
tice, almost always the tensor of data is corrupted by noise, which can be
considered as an additive random tensor whose entries are random variables
with continuous probability distributions. As a result, the rank of such a
noisy tensor is generic [Com14|. This generic rank is much larger than the
dimension, hence, its CP decomposition would not be unique.

Since the rank of the non-noisy part is much lower, it is typically preferred
to perform a low-rank or a low multi-linear rank approximation, which not
only eliminates partially the additive noise, but also results in less expensive
computations. More importantly, the low-rank approximation may then have

a unique CP decomposition.

2.4.1 Truncated MLSVD/HOSVD

Like truncated SVD in the matrix case, truncated MLSVD/HOSVD can be
obtained by keeping a part of the columns of Q(i) corresponding to the largest

12
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singular values. To be more precise, considering truncated multi-linear
rank R! < R;, truncated MLSVD/HOSVD of T is its MLSVD/HOSVD
by [RY, RS, ..., Ry

In addition to being well-posed, truncated MLSVD /HOSVD is also use-
ful as a pre-processing for other decompositions such as CP. These pre-
processings include noise reduction (as it is a low multi-linear rank approxi-
mation) and dimension reduction (if the core tensor estimated via truncated

MLSVD/HOSVD is used for the targeted decomposition).

2.4.2 Low-rank CP approximation

Most CP decomposition algorithms require the rank of tensor in advance.
Determining the rank in advance becomes more challenging in noisy scenar-
ios, since the rank is generic. CORCONDIA is a well-known method for
tensor rank estimation in terms of CP decomposition [BK03]. In addition,
as mentioned in Subsection 2.4.1, truncated MLSVD /HOSVD provides some
pre-processings for targeted decompositions such as CP. Therefore, one can
apply low-rank CP approximation on the core tensor estimated via truncated
MLSVD/HOSVD, which has a lower rank compared to the primary tensor
(due to the noise reduction) and has also lower dimensions, which result in
less expensive computations.

However, even if the rank of a tensor is estimated, the low-rank approxi-
mation is ill-posed [Com14|. In practice, in order to face this difficulty, some
constraints must be added to CP decomposition, as described in the next

Section.

2.5 CONSTRAINED CP DECOMPOSITION

Since in practice, data stored in the form of a tensor are usually corrupted
by noise, the best rank-R approximation must be estimated. Although low-
rank approximation is useful and unavoidable, generally it is ill-posed [HL13,

DSLO08]|, since the set of tensors of rank at most R is not closed [Com14].

13
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Therefore, imposing some constraints such as non-negativity [LCO09| or an-
gular separation [LC14| in CP decomposition is proposed in the literature to
overcome this difficulty.

We shall see the complete formulation of constrained CP decomposition
in Section 5.5.1. Here, we bring a general description of some prevalent

constraints in this context:

- Non-negativity: All the loading matrices and the coefficient vector
are supposed to be non-negative even if the tensor to decompose is
not completely non-negative due to noise. There is a rich literature on

tensor decomposition under this constraint [CMDL* 15, JMC18].

- Simplex: This constraint usually appears in the models involving a
probabilistic analysis [AGH"14] (cf. Section 3.3.1.1). All or a part of
the columns/rows of the loading matrices and/or the coefficient vector
in (2.6) should belong to a simplex set defined by: § £ {x : = >
0, lzflx = 1}

- Orthogonality: it can be imposed between the columns of loading
matrices or between decomposable tensors, D, in (2.6) [Com14,Kol01].
The former constraint is widely used in blind source separation after

the standardization stage [CJ10].

- Coherence: In order to guarantee the existence of a low-rank approxi-
mation, imposing orthogonality is sufficient but not necessary. In fact,
imposing a constraint on the coherences of loading matrices is suffi-
cient [SC15,NMC20,LC14]. This constraint limits the coherence, i.e.,
the minimal angle between the columns of loading matrices [Com14],
and this angle is generally much smaller than 7 /2. In addition, such an
angular constraint often has a physical meaning, especially in antenna

array processing [LC14|.

- Sparsity: In some applications [HLP14], it may be needed to impose

sparsity constraints on loading matrices or coefficient vectors. The
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exact sparsity constraint is also known as cardinality constraint, and
defines a non-convex set [HSL16|. The cardinality of a vector can be
measured by the ¢y pseudo-norm (or the counting norm), which is
the number of its non-zero entries. Since {j is a non-convex function,
sometimes its convex approximations such as the ¢; norm [PB14], or

Smoothed ¢y (SLO) [MBZJ08| are used instead.

2.6 CONCLUSION

In this chapter, we reviewed some preliminaries about tensor and its decom-
positions in terms of exact and approximate decompositions. In addition,
it was mentioned that imposing a proper constraint on the decomposition
would be very efficient in some particular applications such as the one in-
vestigated in this thesis, i.e. data/text mining. In the next chapter, the
relation between data/text mining with constrained tensor decomposition

will be discussed in more details.
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3.1 INTRODUCTION

In this chapter, firstly, we review a particular data model, which can be
used to describe a hidden relation among observed data. In addition, a task
of data mining (clustering by means of estimated probabilities) based on
this model will be described. Secondly, we shall explain an existing tensor
approach as well as other points of view to perform this task. We will see the

first step in utilizing the tensor approach is moment estimation, therefore,
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the last section of this chapter is devoted to discuss about different moment

estimators and their properties.

3.2 HIDDEN AND MULTI-VIEW VARIABLE MOD-

ELS

Most of events, which are in the center of interest for investigation, admit
the nature of multi-modality. The multi-modal property permits to observe
different aspects of a phenomenon, which is namely multi-modal data. This
can be seen in various natural (earthquakes, weather, ...) and human-made
(corpus of texts, news, social networks, ...) data [FCC16]. The entities
that relate and affect these multi-modal data together are hidden (latent)
aspects, which are called hidden (latent) variables [AGHT14]. Multi-view
models are useful in the context of multi-modal recordings (such as texts,
audios and videos for a particular event), and offer a means to improve the
estimation of particular features of latent variables that are present in several
recordings. In this respect, they are related to data fusion and data mining
(cf. Section 3.3).

Data mining covers a wide range of methods and tools utilized for dis-
covering knowledge from data [HPK11|. In the context of multi-modal data
(e.g. text, audio and video for the same event), mining can be considered
as the estimation of probabilities of the variables [RMD11, AHESK10|. As
it will be explained in Section 3.3, these probabilities can be applied for
some ultimate tasks such as unsupervised clustering [RCG18| and classifica-
tion [BNJ03]. Multi-view models are useful tools to represent the relation-
ships in this framework [Whi09].

Multi-view models or Latent Variable Models (LVM) refer to a vast range
of models in which one or some hidden variables exist [RCG18|. These
models originate in a simple model for describing documents, called unigram,
in which words of each document are drawn independently according to a

single multinomial distribution [BNJO3].
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Figure 3.1: The mixture of unigrams or single-topic model with its multi-view

variables (z;) and their corresponding hidden variable (h).

In this work, we assume the graphical model depicted in Fig. 3.1 as the
multi-view model. In this model, a set of multi-view (observed) variables,
{z1,2z9,...,xp} are represented that are generated according to a condi-
tional multi-nomial distribution conditioned to their corresponding hidden
(latent or non-observed) variable h. This model is called the mizture of un-
igrams [BNJ03], since it can be obtained by augmenting unigram models

with a random discrete hidden variable h, as the topic of each document.

The model in Fig. 3.1 is also known as the single-topic model [RCG18,
AGHT14|, since the multi-view variables (words in a corpus of documents)
are generated according to a single hidden variable (topic in each document).
However, there are also other more general models such as probabilistic
Latent Semantic Indexing (pLSI) [Hof99] and Latent Dirichlet Allocation
(LDA) |[BNJO03], which attempt to correspond multi-view variables to sev-
eral (not only one) hidden variables by means of a mixture of weights or
Dirichlet distribution on a set of hidden variables. These models as well as
other types of LVM such as Gaussian mixture and Hidden Markov Model
(HMM) [Jor04, AHK12b| are out of the scope of this dissertation.

Employing a model as in Fig. 3.1 is very common in several tasks of
data (e.g. text) mining [RCG18, AGH"14, BNJ03]. In Section 3.3, these

applications will be explained in brief.
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3.3 DATA MINING WITH HIDDEN AND MULTI-
VIEW VARIABLE MODELS

The daily increasing amount of online available textual data have raised
many challenging tasks such as unsupervised learning or clustering, which
can be investigated by text mining [HPK11|. Text mining as a special case of
data mining is the center of attention of this thesis. Although the graphical
model of Fig. 3.1 can be used for a wide range of learning problems [Murl2],
in this section, we customize the formulation for the particular problem of
text mining. The following explanation describes how one can encode textual
data (words) into numerical vectors, hence applying matrix/tensor analysis
on text become feasible. In addition, the required pre-processing steps to
extract keywords from each text are briefly explained in Section 5.6.3, yet
these steps are out of scope of this thesis.

Let L be the number of words in a given document, x, the observed
words, £ € L ={1,2,...,L}, and h a topic encoded into a discrete variable
taking K possible integer values, say from H = {1,2,..., K} with probability
©(k) = Prob(h = k). All words belong to a known encoded dictionary 2 =
{u1,...,up} of cardinality D. In other words, we can consider a mapping
Ye (generally not injective) from £ to {1,2,..., D} such that &, = wu,, (.
In the context of text mining, D would be the number of words and K the
number of topics. The number of documents, N, is generally larger than D.

Besides the probability of topics, the conditional probability of each word
given the topic is also an important parameter in text mining tasks, e.g. un-
supervised clustering of documents, as explained in the sequel. We denote
the conditional probability of each word w4 of the dictionary €2, given a par-
ticular topic, h = k, by fx(d) = Prob(x = ug4|h = k). Therefore, according
to the simplifying assumptions described in Section 3.3.1.1, the joint distri-

bution of X = [x1,...,x] can be written as:
K
Px (e (1), 1) = D (k) fi(ve(D) - fr(re(L)),  (3.1)
k=1
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Table 3.1: List of required notations and definitions

Notation Description
L Number of words
Ty

Observed words
teL={1,2,...,L}

Q={uy,...,uq,...,up} Encoded dictionary

Ye mapping x, to ug
H Set of K topics
K Number of topics
D Dictionary size
N, Corpus size

w(k) Probability of topic k

fr(d) Probability of ug condition to topic k

Conditional probabilities of
a = [fr(1), fx(2), ..., fr(D)]"

words to topic k

A=lay,as,...,ak] Conditional probability of words

which is referred to as the naive Bayes model. The main task is to estimate
the quantities appearing in the right-hand side of (3.1) from realizations of

X.

The term fi(7.(¢)) in (3.1) represents the conditional dependence of the
word xy in a document to its topic k. In other words, the number of oc-
currences of a particular word in a document with a particular topic can
be completely different from its occurrence in another document with an-
other topic. For example, the word “win” is much more probable in a sport
document than a document about cooking. On the other hand, the word
“meat” may occur more in the latter document. For the convenience, above

notations are listed in Table 3.1.

Estimating the probabilities in (3.1) is the first step in a variety of ma-
chine learning and data mining applications, some of which are described

below.
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Unsupervised clustering [RCG18] In the following, as an example, it is
explained how one can employ the estimated probabilities in order to cluster
documents in an unsupervised way. However, this approach is applicable for
other kinds of data admitting the graphical model in Fig. 3.1.

Assume that (k) and fy(7e(¢)) in (3.1) fork=1,...,Kand¢=1,...,L
have been recovered. The hidden topic, h, of a document, say text, can be
inferred according to the following conditional probability:
Prob(text|h = k)p(k)
le Prob(text|h = k:)(p(k:)’

Prob(h = k|text) = (3.2)

and Prob(text|h = k), according to the simplifying assumptions described

in Section 3.3.1.1, can be calculated as follows:

Prob(text|h = k) = Prob(u,, (1), .- Uy (1)s- -, Uy ()| = k)

L
[ Prob(u,, gl = k)
=1

Je(7e(0))

Il
=

~
Il
—

In fact, the document text is assigned to the topic k, which maximizes

Prob(h = k|text). Note that the equality in (3.2) is Bayes’ law.

Document classification [BNJ03] The choice of feature is very impor-
tant in some classification methods. In the document classification problem,
although the individual words of all documents can be treated as a rich
feature set, it is enormously large [Joa98|.

A solution would be a dimensionality reduction, which can be done by
considering the estimated conditional probabilities in (3.1). In other words,
fr(d) can be viewed as the d'" feature of a document titled by topic k.
Moreover, since d refers to the index of a word in the assumed dictionary,
the dimensionality reduction can be done, for instance, by keeping just two
words of each document, which have the highest conditional probabilities.

After extracting features, document classification can be performed by

applying a proper method such as Support Vector Machine (SVM) [SCO08|.

22



CHAPTER 3. DATA MINING AND TENSORS

Movie recommendation [BNJ03] This application can be performed
on a data set of users, which indicates their preferred movies. A portion
of indicated movies are used to train the recommendation system, while a
preferred movie of each user is held out for testing. The goal is to predict
the held-out movie for each user, which can be viewed as a recommended
movie in practice.

Considering users as the hidden variable and their preferred movies as
the multi-view variables, one can assign the held-out movie by estimating
the associated probabilities in (3.1), and then by following the procedure

described in the above mentioned application of unsupervised clustering.

3.3.1 Tensor approach

In this section, the relation between the left-hand side of (3.1) and moments
will be explained. In addition, two main tensor approaches for estimating
the probabilities on the right-hand side of (3.1) will be described. As these
methods utilize moments to estimate probabilities, they are considered as

the method of moments [Pea94].

3.3.1.1 Method of moments based on tensor decomposition

As mentioned before, the main goal is to estimate the probability of the
hidden variable (topic) and the conditional probability of multi-view vari-
ables (words). In this section, we show how these probabilities can be esti-
mated by means of moments and what is the role of tensor decomposition
in this vein. To this end, some assumptions are required that are listed

below [AGH"14, AHK12a]:

e conditional probabilities do not depend on the order of words (ex-

changablility), e.g.

Prob(ty, (p), Us, (g) Ury (r)|1) = Prob(u,, (), Uy, (), Uy, () [7)
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e words are conditionally independent given the topic, i.e.

(u“/e(p) ’h) AL (u'}’e(Q) ’h)

e words have the same conditional distribution given the topic, i.e.

(u'ye(p)|h) ~ (u'ye(q)|h)-
Note that although these assumptions cannot be thoroughly satisfied in real

textual data, such simplifying assumptions are required to identify probabil-
ities through a tensor approach. In this thesis, we consider dictionaries and
texts that satisfy these assumptions.

In the sequel, the second and third order moments will be needed:

PYE {x, 02, (3.3)

T Epfz, ® 2y ® 2}, (3.4)

where P is a D x D symmetric matrix and T~ a D x D x D symmetric tensor.
These moments do not depend on {p, g,r} provided these three integers are
all different, which ensures the conditional independence assumed in (3.1).
But note that {ve(p),7e(q),ve(r)} may not be different because 7, is not
injective.

xy is encoded to ug, and as in [AGH™ 14|, ug is chosen as the columns of
the D x D identity matrix. For example, ug for the i*® word in the dictionary

is as follows:
Ugg—iy(j) = , 1<j<D.

Because of this choice for ug, these moments exhibit the following relations:

K
P = Z(pk ar X ay, (35)
k=1
K
T=> ¢rar®a,®a, (3.6)
k=1
where aj, constructs the k™ column of a matrix, say matrix A. Note that

aj contains the values of fi(d) for all d and each k. We provide the proof

of (3.5) here, which is not in the literature:
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Proof.
ef a
Pe E{zp ® x4} = Eh{Em{‘Bpm} ® Ew{a’q‘h}}
, &K D D
2> o (D fuld)ua) ® (O frld)ua)
k=1 d=1 d'=1
K
= Z Pk Ak & Ak,
k=1
where

e a: the separation of E over (x,h) and using the conditional indepen-

dency of x,, z, given h;
e b: the definition of E;

e c: the specific encoding of ug into the columns of the D x D identity

matrix.

The proof of (3.6) is exactly similar. O

Rewriting (3.1) as (3.3) and (3.4) reveals the nice property that arrays
P and T are actually the joint probabilities of observations, i.e., P;; =
Prob{x, = u;, x4y = u;} and T;j; = Prob{x, = u;,xy = uj, x, = ui}.

Once the empirical approximation of the moments in (3.3) and (3.4) is
obtained, the probability of the hidden variable (topic) and the conditional
probabilities of multi-view variables (words), i.e. ¢ and A, can be estimated
via tensor decomposition according to (3.6). As we shall see in Chapter 5,
this decomposition may be either developed in a constrained manner (under
non-negative constraints as described in Section 5.5.2.1 or under simplex set
constraints as marked out in Section 5.5.2.2) or be handled in an uncon-
strained manner as will be expressed in Section 5.4. In addition, it may be
performed with or without utilizing the second order moments matrix, P.
The advantages and disadvantages of each method are investigated experi-

mentally in Section 5.6.2.
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3.3.1.2 Diagonalization of two moment matrices

In [AHKI12a|, a joint diagonalization algorithm is promoted uses two mo-
ment matrices, namely P and a matrix obtained by the contraction T'(n) =
T e37, where 1 is a randomly drawn vector. The idea may seem interest-
ing, but the algorithm unfortunately has never been implemented and tested,

according to the available literature.

The Algorithm A of [AHK12a] starts with an SVD of P as P =UXV .
Then, the matrix B(n) = UTT(n)V (UTPV)~! is computed, as well as its
K dominant eigenvectors, £;,. Then, an estimate of the columns of matrix
A (the conditional probabilities of multi-view variables) is given by ay =
Ug,, up to a scaling factor depending on how aj are normalized. The
“eigenvalues” of T can be obtained in a second stage by contraction as @y =

7'01 ak (D) ak o3 ak

3.3.2 Other methods and points-of-view

Expectation Maximization (EM) For decades, the most popular un-
supervised and heuristic approach to learn the parameters of a LVM model
was Expectation Maximization (EM) [DLR77|, which is an iterative local
search based on Maximum Likelihood (ML) [AGHt14].

Although EM has several merits such as the ease of understanding, im-
plementing and utility for any LVM, it suffers from slow convergence spe-
cially when the model dimension increases and also from suboptimal local
results [RCG18|. Moreover, not only it requires users to apply many heuris-
tics to obtain acceptable results, but also for some kinds of models such as
Latent trees, it is NP-hard [AGH"14].

In addition, supposing a prior (e.g. Dirichlet) is needed in some particu-
lar LVM - such as the LDA model [BNJO03| — and some existing EM meth-
ods [NMTMO0|, and increasing the generality of the model is more costly

and challenging in terms of unsupervised estimation procedure [AHK12a).
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Latent Semantic Analysis (LSA) [DDF190] Analysis of texts and
documents is a great challenge in Natural Language Processing (NLP), In-

formation Retrieval (IR) and information filtering [Hof99].

One of the problems in organizing, searching and understanding such a
vast amount of digitalized documents is learning the meaning and the usage
of the words with a data-driven model [Blel2|. In other words, one of the
big challenges is the transition from the lexical level (i.e. actual written
text) to the semantical level (i.e. the intention of the writer) [Hof99|. Some
issues such as polysems (i.e. a word with several meanings) and synonyms

(i.e. different words with similar meanings) make this challenge even harder.

Latent Semantic Analysis (LSA) [DDF*90] is a well-known method,
which maps the high dimensional space of the words of the vocabulary into
a lower dimensional space, called latent semantic space. This method works
with a matrix, W, whose rows and columns are referred to the documents
of the corpus and the words of the vocabulary, respectively. W (i, j) shows
how often the ™ word occurs in the i document, and the inner product of
two columns of W shows how much those two words are co-occurred!. LSA
computes a low rank approximation of W, say X, by means of the Singular
Value Decomposition (SVD) of W. Although the non-zero inner product of
the columns of X doesn’t depend on the co-occurrence of the corresponding
words, it shows some latent relation between them, such as synonym.

As LSA does not distinguish the types of latent relation (e.g synonym,
antonym, hypernym, hyponym?, ...), some other algorithms such as Prob-
abilistic LSA (PLSA) [Hof99], Polarity Inducing LSA (PILSA) [YQ12| and
Multi-Relational LSA (MRLSA) [CYM13] (which is based on tensor decom-

position) were proposed to improve the power of distinction between different

'In practice, instead of simply word frequency, TF-IDF score [SWY75] is used, which
better shows the importance of a word. TF-IDF consists of two factors, TF-IDF = TF x
IDF, where TF expresses the word frequency and IDF shows how much information a

words has, i.e. it is a common or rare word across all the documents [SWY75].
2For instance, “red” is hyponym of “color”, and “color” is hypernym of “red”, and “red”

is co-hyponym of “blue”.
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types of latent relation.

Unlike the method of moments, which tries to estimate some latent statis-
tics and the parameters of the observed data, LSA and its variants try to
measure semantic data relation such as synonym, antonym, hypernym, etc.
In addition, LSA and its variants are based on cosine similarity of the raw
observed data, whereas the method of moments attempts to estimate param-
eters using the empirical moments of the observed data. In general, LSA and
its variants are applicable to understand the semantical layer from the lexi-
cal level, while the method of moments are useful to extract the informative

features of each of documents in the corpus.

The approach used in this thesis In this thesis, we focus on the two-
phase tensor decomposition approach for data mining (i.e. estimating the
probabilities) with the graphical model in Fig. 3.1, which was described in
section 3.3.1.1. In order to make the procedure more clear, we bring a brief
review below:

In the first phase, the second and third order moments are approximated
by observing the multi-view variables (words). Then, in the second phase,
one tries to estimate the probabilities by decomposing or using the tensor of
third order sample moments (sometime the second order sample moments is
also used).

The more precise the sample moments are approximated in the first
phase, the more accurate estimation of the probabilities is obtained in the
second phase. We shall see the effect of moments approximation in Sec-
tion 5.6.2 in practice. In addition, in Section 3.4, some methods of moments

approximation are reviewed.

3.4 MOMENT ESTIMATION

As mentioned before, the first step in the procedure of data mining (the

probability estimation) by means of tensor decomposition described in Sec-
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tion 3.3.1.1 is the moment estimation. In this section, first, two generative
processes are expressed, then, some of the methods of the moment estima-
tion are reviewed (Section 3.4.3) and are introduced (Section 3.4.4). Finally,
these moment estimators are compared by some simulations in Section 3.4.5.

It is worth first reviewing some notations of Section 3.3:

e [: the number of words in a given document,

xp, 0 € L ={1,2,...,L}: the observed words in a document,

h: a topic encoded into a discrete variable taking K possible integer

values, say in H = {1,2,... k,..., K} with the probability ¢(k) =

Prob(h = k)
o O ={uy,...,uq,...,up}: the encoded dictionary of cardinality D
o fi(d) = Prob(x = ug4|h = k): the conditional probability of each word

ug of the dictionary €2, given a particular topic, h = k
e ay: a vector of dimension D containing the values of fi(d) for all d

L] A:[al,...,ak,...,a;{].

3.4.1 Generative process

In this subsection, we explain how one can generate a set of synthetic encoded
words that are related to the same topic (cf. Fig. 3.1), with these two

properties simultaneously:
e conditionally independent given the topic
e having the same conditional distribution

In the following, we describe two generative processes, which generate a
topic (as hidden variable) and words (as multi-view variables) such that the

above mentioned properties will be developed.
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3.4.1.1 Generative process based on the cumulative distribution

To generate a data set, we need first to define the distributions ¢(k) and fx(d)
for all (k,uq) € H x Q. The values of (k) are stored in a K-dimensional
vector . Similarly, the values of fi(d) are stored in a D x K matrix A.
But it is actually useful to use their cumulative distributions, ®(k) =
Prob(h < k) and Fj(d) with an appropriate encoding, as we shall see. The
values of ®(k) are stored in a K x 1 vector ® obtained from ¢ by cumulated
sum of its entries. Similarly, the values of Fj(d) are obtained by cumulated
sum of the entries of matrix A over first dimension and stored in a D x K

matrix F'. Our generative algorithm goes along the following lines:

e draw z € [0, 1] with uniform distribution, and pick a topic (hidden
variable), h = ®71(2), by selecting the first entry in ® that is larger

than z.

e assuming that A = k has been drawn in the first step, then, for each

te{1,2,...,L},

— draw zy € [0, 1] with uniform distribution, and pick a word (multi-
view variable), d = 7.({) = F} '(z), by selecting the first entry

in the k™ column of F' that is larger than z.

— set Ty = u, () = Uq.

3.4.1.2 Generative process based on the multinomial distribution

This generative process is stated in [RCG18|. After defining the distributions
(k) and fi(d) for all (k,ug) € H x Q, a topic and words are drawn based
on some multinomial distributions with event probabilities ¢ and A, re-
spectively. The “multinomial distribution” was firstly introduced by Ronald
Fisher in 1925 [Fis25]. Generally speaking, it is an extension of the bino-
mial distribution to an event with more than two outcomes [UC08]|. Some
required moments of the multinomial distribution are expressed in Remark 1.

The details of this generative algorithm are as follows:
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e draw the topic (hidden variable), h, according to a multinomial distri-

bution® with K event probabilities of >,

e assuming that h = k has been drawn in the first step, then, for each

¢e{1,2,...,L},

— draw a word (multi-view variable), d = ~.(¢), according to a

multinomial distribution with D event probabilities of akD X1

— set xy = Uny, (1) = Ud-

3.4.2 Moment consistency

Reminding that second and third order moments in (3.3) and (3.4) are de-

fined as follows:

P = E{z, © 2},

T E{z, ® x; ® z,}.

As it is shown in Section 3.3.1.1, by encoding x; to ug and by choosing w4
as the columns of the D x D identity matrix, the above mentioned moments
have the following matrix and tensor structure (mentioned in (3.5) and (3.6)):

K

P=> ¢pa®ay,
k=1
K

TZZgOk a, ®ap Q ag.
k=1

These moments, using the distributions ¢ and fi(d), can be considered
as true moments, while any sample estimate of (3.3) and (3.4) should con-
verge to the true moments P and T defined in (3.5) and (3.6). Hence, it
is essential to evaluate the consistency of the moment estimator in order to
make sure that sample moments indeed converge to the true joint proba-
bilities. It is preferred that this convergence occurs by observing the least

possible number of realizations of xy.

3This can be done with the commands mnrnd and numpy . random.multinomial in MAT-

LAB and Python, respectively.
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To this end, first, sample moments are calculated via a moment estima-
tor, then, the difference between true moments ((3.5) and (3.6)) and the
estimated ones will be reported in terms of Euclidean norm. Therefore, the
moment consistency can be considered as a measure of evaluating the per-
formance of moment estimators, and we shall compare some algorithms of

the moment estimation in Section 3.4.5 in terms of moment consistency.

3.4.3 State-of-the-art

3.4.3.1 Simple averaging [AFH"12]

This estimator is simply the averages of large number of realizations (a cor-
pus of documents), say N, to obtain an acceptable approximation of P
and 7. In each realization, a random encoded topic, k, is drawn in the
way described in the first step of generative processes in Sections 3.4.1.1
and 3.4.1.2. Then, according to the chosen topic, three random encoded
words (it is assumed that a document consists of at least three words) are
drawn, {x, = u g = U

, Ty = U, ()}, based on the second step of

Ye(p) Ye(q)

generative processes mentioned in Sections 3.4.1.1 and 3.4.1.2. At the end,
by using the following averages, an empirical approximation of the second

and the third order moments are obtained with sample moments below:

N,
1 (&3
P.= N. Z“ve(p) @ Uy, (q) (3.7)
¢ n=1
1 e
Te= 3 2. %) @ Urule) ® o r): (38)
¢ n=1

Note that in this method of estimation, the length of each document (L,,)
does not matter, and just three words (can be the first, the middle and the
last word) in each document participate in the sample moment estimation.
Due to these facts, providing a reasonable moment consistency with simple
averaging is very difficult and requires a large size corpus, i.e. large N, in (3.7)
and (3.8). We shall show this drawback of simple averaging in practice by

some simulations in Section 3.4.5.
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3.4.3.2 Zou’s estimator [ZHPA13]

For the rest of this section, a well-known concept in text mining, called bag-
of-words, is required, which is a representation of each document. Assume
that a document consists of L,, words (xy, ¢=1,...,L,) that are encoded
to ug = u,,(g). Then, the bag-of-words of such a document is a vector of

dimension D, and is defined as follows:

def
by =Y w0, (3.9)

where by, (d) shows how many times the d" word appears in the document

n.

PD><D TD><D><D

, :
The Zou’s estimator (P, ", T 7

) is as follows:

Prou(iyi) = ; i W (3.10)

Prou(i,j) = iim (3.11)
SPIE SVSAIV
Ty, 1) = ;é o8, (3.14)

where N, is the number of documents in the considered corpus. Equations
(3.10) to (3.14) express that in spite of simple averaging, Zou’s estimator
takes into account all the words of a document by utilizing b,,, as well as the

length of the document, L,,.
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3.4.3.3 Ruffini’s estimator [RCG18]

With the same assumptions of Zou’s estimator, Ruffini’s estimators, i.e. PRuffini

and T Ruffini, are defined as follows (i < j):

SN b (1) (ba(j) — 8i—)
SN L(Lo — 1) (319
S b ()bn ()b ()
SN L(Ly —1)(Ly — 2)
ZNC by (l)(bn(]) )bn(k)
SNy Ln(Ln — 1)(Ly — 2)
SN b (8) (b () — 1) (b (k) — 2)
SN Ln(Ln—1)(Ly—2)

PRufﬁni(iv ]) =

TRuftini (4, 7, k) = dicjck

+ O(i=j<k)v(i<j=F)

+ dizjmk

(3.16)

By employing bag of words of each document in the corpus, nominators of
the above expressions correspond to implementing moments (summation and
production of random variables), and their denominators are the coefficients,

which make this estimator unbiased.

Note that by computing the upper triangular part of Prufini and T Ruffini,
and then, by setting the lower triangular part identical to the upper side,

symmetrization would be done.

Like Zou’s estimator, all the words of the documents in a corpus along
with the length of each document have been also considered in Ruffini’s
estimator. However, in Zou’s estimator, the averaging is done for each doc-
ument, and then, all the documents are averaged together with the same

weight. But Ruffini’s estimator averages all the documents according to a

L,(L,—1
~ ( ) [RCG18|. There-
Zni1 Ln(Ln - 1)

for, if all the documents have the same length (L,, = L), the two estimators

particular weight for each of them, i.e.

will produce the same estimation. Moreover, Ruffini’s estimator is less sen-

sitive to the noise [RCG18].

It is shown that Ruffini’s estimator is unbiased [RCG18|. We make this
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proof easier to follow by providing much more details below (i # j):

. SN b ()b (5) }
E{ Pruffini (%, =K
{ Prusini (i, ) } {zfj;anwn—l)

1 Ne
TSN (L — 1) ZE{bn(Z)b

1 .
TS L) 553 REG (G = )

n=1 k=1
1

- )[Cov(b N

SNy Ln(Ln — ;;Sﬂ ()b I(J)| )
+ E(by(7)|h = k)E(bn(5)|h = k)]

I

(*) 1 K | | |
= T]yél Ln(Ln 2 kzlw nakl ) ( Z—F Lnak(z)lfnak(])]

>
K
= Z(p(k)ak(i)ak(j) = P(i,),

k=1

where “Cov(.,.)” denotes the covariance of two random variables, and the
equality (*) is due to the properties of multinomial distribution, which are

described in Remark 1.

Remark 1. Suppose that y is a random vector of dimension D holding
multinomial distribution, i.e. y ~ multinomial (t,[p1,...,pp]), where “t” is
the number of the trials of “D” events with probabilities [p1,...,pp|, and of
course Y5 pq = 1. According to the multinomial distribution [UC08], we

have:

o mean = E{y(d)} = tpq,
e variance = E{y(d),y(d)} = tpa(1 — pa),

o covariance = E{y(d),y(d")} = —tpapa
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Algorithm 1 Standard averaging for estimating the second order moments

Input: D, a corpus of N, documents of length [Ly,..., Ly, ]
Output: Psggand-ave

1: PStand-Ave = zeros(D,D)

2: forn=1,2,...,N. do

3: Save the index of words of document “n”.

4: Piepp= zeros(D,D)

5: count-pair = 0

6: for all possible pairs of words, ex. (word;, words) do
7 Piemp(wordy, words) = 1 + Piemp(wordy, words)
8: count-pair = 1 4 count-pair

9: end for
Ln Ptemp

N, A
Zn:l L,, count-pair

10: PStand—Ave = PStand—Ave +
11: end for

12: Symmetrize PStand-Ave

3.4.4 Proposed: Standard averaging

By taking into account the length and all the words (not only three) of each
document, we propose an algorithm, which we coin as standard averaging,
and can be seen as a weighted averaging based on the length of each docu-

ment.

Algorithm 1 describes standard averaging in details. TNote that sym-
metrization in line 12 is executed by computing +TP We observed
experimentally that this method of symmetrization shows a better perfor-
mance compared to that of Ruffini’s estimator in which the values of the
lower triangular part will be set identical to the upper one at the end of
the algorithm. The algorithm for the third order moments is similar, except
that in line 6, all possible triples would be considered. Note that the sym-

metrization of a third order tensor (cf. line 12) requires averaging over six

permutations of indices.
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Simulations in Section 3.4.5 show that standard averaging performs bet-
ter than the most recent estimator, i.e. Ruffini’s estimator, when the dimen-
sion of dictionary, D, is not very large. More details about performances
will be given in Section 3.4.5. Moreover, standard averaging provides some

advantages in terms of computational complexity:

e standard averaging requires less number of multiplications in the esti-

mation of T,

e the number of required additions in estimating P does not depend
on the size of dictionary (D), which is an advantage in case of large

dimension dictionaries.

Comparison of computational complexity in terms of number of multiplica-

tions and additions are explained in the next paragraph.

Computational complexity By assuming the same method of symmetri-
zation, we can compare the computational complexity of standard averaging
and Ruffini’s estimator in terms of multiplications and additions. In this
calculation, we consider the symmetrization of Ruffini’s estimator, i.e. setting
the lower triangular part identical to the upper one. Note that to symmetrize
the output of Algorithm 1 in this way, the symmetric pair of (word;, words),
i.e. (wordg, word;), will be ignored in the set of all possible pairs (line 6 of
Algorithm 1). Remind that, as P and T are symmetric, the number of their

D(D2+ 1) and (P51

free parameters are 5 ), respectively [Com14|.

One can observe that the number of required multiplications for comput-

D(D+1
ing P and 7 in (3.15) and (3.16) for Ruffini’s estimator are (1—|—NC)(2+)+

N, and (142N,) (D+371) + 2N, respectively. However, these values in stan-

3
D(D+1
(2+) + 2N, and NC(DJ?*I) 4+ 2N,.. Therefore,
in estimating 7, standard averaging costs fewer multiplications, and in es-

dard averaging are N,

timating P, the comparison depends on the values of N, and D.
The number of additions in computing P in (3.15) for Ruffini’s estimator

is (1+ 27]:[;1 L,)D + 3N,, while the same quantity for standard averaging is
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Table 3.2: Compare the number of required multiplications

Estimator P T
D(D+1
Ruffini (1+N,) ( 2+ ) + N | (142N)(PF?) + 2N,
D(D+1
standard averaging . (D+1) + 2N, N, (D;Q) + 2N,

2N .+2 ZnN;1 (L2 ) Therefore, the number of additions in standard averaging
does not depend on D, which could be preferable for large values of D. These

results are also mentioned in Table 3.2.

3.4.5 Simulations

All computer experiments reported in this section have been executed either
on a laptop with a processor of 3.1 GHz Intel Core i5, 16 GB RAM or on
a PC with a processor of 3.2 GHz Intel Core i5, 8 GB RAM, both running
macOS Mojav and MATLAB 2019a.

3.4.5.1 The effect of corpus size on the moment consistency

As mentioned before, simple averaging does not provide acceptable mo-
ment consistency and a naive way to compensate this drawback is increas-
ing the size of the corpus (the number of documents or realizations of the
topic/hidden variable and words/multi-view variables).

In order to show this challenge in practice, we generated N, realizations
of our synthetic data set, y = u,,(y), (according to the method explained in
Section 3.4.1.2) with the following parameter values: the number of hidden
variables (topics), K = 4; the number of multi-view variables (words), D =
8; the number of realizations for estimating moments (the size of corpus,
i.e. the number of documents), N, = [29 210 ... 217]. The minimum and
the maximum length of the generated documents are 3 and 100, respectively.

Lastly, we calculated sample moments with the moment estimators de-
scribed in Section 3.4.3 and 3.4.4, and then, compared them to the true
ones (3.5) and (3.6). Fig. 3.2 reports the discrepancy between both in terms
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Figure 3.2: The consistency of the moment estimates. The relative error in the
estimation of second order moments (P) and third order moments (7) are plotted
in solid and dotted line, respectively. Note that the plot of standard averaging
and Ruffini’s estimator are superimposed. In this figure, the larger the size of the
corpus, the fewer the number of corpuses, to keep the total block length (and hence

the computational load) constant.

of Fuclidean norm. As can be seen in Fig. 3.2, simple averaging estima-
tion, in the way described in Section 3.4.3.1, is consistent, if it performs on
a corpus of size N, > 10000. Ruffini’s estimator and standard averaging
have the same relative error (they are superimposed in Fig. 3.2), however,
we shall see the difference between the performance of Ruffini’s estimator
and of standard averaging in Section 3.4.5.2 by investigating the effect of

dictionary cardinality.

3.4.5.2 The effect of dictionary cardinality on the moment con-

sistency

In this section, we investigate the effect of dictionary cardinality, D, on the

performances of the moment estimators. For all the experiments, we con-
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sider a corpus of N, = 100 documents whose length L,, are chosen randomly
between a minimum (Lyi, = 3) and a maximum length (Lyax = 100). The
topics and the words of each document are generated according to the gen-
erative process described in Section 3.4.1.2. Each experiment averaged over
the results of 50 different probabilities ¢ and A. In these series of experi-
ments, we either plot the moment consistency versus a range of values of D
(the number of words) or K (the number of topics). We shall conclude that
standard averaging performs better than Ruffini’s estimator, when dictionary

cardinality, D, is less than 50.

Figures 3.3 and 3.4 show the relative error in estimating P and T versus a
range of values of D, when K is fixed to 10. Since in Fig. 3.3, the difference
of standard averaging and Ruffini’s estimator is not significantly obvious,
we plot the results of standard averaging and Ruffini’s estimator separately
in Fig. 3.4. For the same reason, in the rest of figures of this section, we
just show the results of standard averaging and Ruffini’s estimator, since
the results of simple averaging is much worse than standard averaging and

Ruffini’s estimator.

As it can be seen in Figs. 3.3 and 3.4, not only standard averaging is
a much more better estimator than simple averaging, but also it performs
slightly better than Ruffini’s estimator when dictionary cardinality, D, is less

than 50.

In order to show that the only critical parameter is dictionary cardinality
and not K, we performed two other experiments in Fig. 3.5 and Fig. 3.6.
In Fig. 3.5, we set a small value for D (D = 15), and plot the relative
errors versus a range of values of K, from 10 to 100. On the other hand,
in Fig. 3.6, we set a large value for D (D = 65), and then, plot the relative
error versus the same range of values of K. These two experiments admit
the same conclusion as before (standard averaging performs slightly better
than Ruffini’s when D is not very large), and also show that this conclusion
does not depend on the amount of K (although standard averaging performs

slightly better in estimating P even for large D = 65, the difference is
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Figure 3.3: Comparison between all mentioned estimators in estimating P and
T with K = 10, D = [10,20,30,...,100], N = 100, Lyyin = 3, Limax = 100, and
averaging over 50 different probabilities ¢, A, Left: The relative error of the second

order moments estimation, Right: The relative error of the third order moments
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Figure 3.4: A zoom of Fig. 3.3 for showing details.
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negligible).

As mentioned before, the length of a document, L, is a critical factor
in improving the performance. When dictionary cardinality is small, the
influence of document length is more significant, since the related words de-
pending on the topic are much more repetitive in such a document. Ruffini’s
estimator decreases this influence by the denominator in its formula, e.g. by
dividing by Zg;l L, (L, —1), while standard averaging is simply a weighted
averaging with respect to the length of all documents (e.g. by dividing over
ij;l L,). Therefore, standard averaging is able to better show the effect of
the length, L,,, in case of small D.

3.5 CONCLUSION

In this chapter, we described the hidden and multi-view variable model,
which can be fitted to several multi-modal events. Then, we explained a
task of data mining, i.e. probability estimation, which can be followed to
perform an ultimate data mining task such as an unsupervised clustering.
In Section 3.3, we described a tensor approach for this probability estima-
tion as well as some other existing methods and points of view. It is men-
tioned that the first step in utilizing the tensor decomposition to approxi-
mate the probabilities of hidden variables and the conditional probabilities
of multi-view variables is moment estimation. In Sections 3.4.3 and 3.4.4, we
described some existing methods of moment estimation as well as our pro-
posed method, standard averaging, along with some simulation comparisons
in Section 3.4.5, using a synthetic generative model.

The next two chapters are devoted to the second step of the tensor
approach for data/text mining, i.e. the constrained tensor decomposition
and the performance index needed to evaluate different decomposition algo-

rithms.
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Figure 3.5: Comparison between standard averaging and the Ruffini’s estimator

in estimating P and T with D = 15, K = [10, 20, 30,...,100], N, = 100, Ly, =

3, Limax = 100, and averaging over 50 different probabilities ¢, A, Left: The relative

error of the second order moments estimation, Right: The relative error of the third

order moments estimation.
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4.1 INTRODUCTION

As mentioned in Section 3.3.1, tensor decomposition is the second step in
estimating probabilities from observed data. In order to compare differ-
ent methods of decomposition, a proper performance index is needed to
be applied on the estimated coefficient vector and loading matrices. Due
to permutation and scaling ambiguities, evaluating these variables is not
straightforward. Section 4.2 explains the existing challenges with this issue.
In Section 4.3, the problem is formulated and a review of previous methods

and measures is provided. The proposed index, Corrindez, is presented in
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Section 4.4, and its comparison with other existing measures along with dis-
cussions about its advantages are provided in Sections 4.5. The content of
this chapter is mainly based on our paper [SCJBZ22|, which is published in

the journal Signal Processing, Elsevier.

4.2 CHALLENGES IN MEASURING PERFORMANCE

Permutation and scaling ambiguities are relevant issues in applications such
as tensor decomposition [Com14| and Blind Source Separation (BSS) [CJ10].
Scaling refers to multiplication by a diagonal matrix with non-zero entries,
which may be complex in the most general case, and permutation refers
to the column permutation of a matrix, which is equivalent to multiplica-
tion by a permutation matrix. Firstly, these two ambiguities are inherent
in tensor representations, by definition of tensors [Com14|. Secondly, in
BSS, statistical independence is not affected by scaling or permutation of the
sources [CJ10]. A mixing (or demixing) matrix can then only be estimated
up to these ambiguities under the independence assumption. Although it is
impossible to eliminate these ambiguities when working with real data sets,
where the original parameters are not available, it is feasible to overcome
these uncertainties in evaluating algorithm performance on synthetic data
sets. Furthermore, reasonable comparisons on synthetic data sets are very
helpful to choose adequately an appropriate algorithm to be applied on real
data sets. Therefore, in order to report reasonably the performance indices
of existing algorithms on synthetic data sets where the desired parameters
are accessible, it is important to employ proper methods to measure the
performances.

Assume that the original and estimated components have been normal-
ized, then the only remaining ambiguities are the permutation and scaling
with complex numbers of unit modulus. The existing approaches to mea-
sure the performances of the algorithms of BSS and tensor decomposition

can be classified in three main categories: “greedy approaches”, “graph-based
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methods” and “invariant indices”. Greedy approaches [FIW*20, CLDAO09,
CKACI14,BBK18| try to assign the most correlated components estimated
by an algorithm, and then compute the error of estimation or decomposition.
Although most of these methods return back an estimated permutation as
well as a performance index, they are not reliable in noisy conditions. In
other words, the reported index (which is a criterion to evaluate the perfor-
mance of algorithms in estimating components) by these kinds of methods
depends directly on the manner of computing and analyzing the correlation

matrix.

Graph-based methods [Kuh55, Gal83, Mun57| are originated from the
well-known optimal assignment problem [DP14], which is itself a particu-
lar case of the optimal transport problem [PC*19]. Although these kinds
of methods have the guarantee to find the optimal permutation, they are
computationally expensive (as we shall see, the minimum cost is approxi-
mately 8N?3 flops with a correlation matrix of size N x N), especially when

the correlation matrix is large.

However, the viewpoint of a third category, namely invariant indices
[Com94, MM94, ACY 96|, differs from the latter approaches. These invari-
ant indices measure the performance regardless of permutation and scaling,
and yield an index that can directly be used to compare algorithms. The
reported indices of [Com94, MM94, ACY196] are invariant to permutation
and scaling, and the index of [Com94| provides the guarantee of a zero
distance between estimated and original matrices up to column permuta-
tion and scaling, when the obtained index is zero. Nevertheless, the index
of [Com94| is not bounded from above. More importantly, the upper bounds
of indices of [MM94, ACY 96| have not been investigated, and it seems that
these bounds are not easy to interpret. In addition, these methods are in
the literature of source separation, and the indices introduced therein utilize
the inverse (or pseudo-inverse) of the mixing matrix, which may involve an

additional computational burden.

In next section, these three kinds of methods for measuring the perfor-
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mance along with the problem formulation will be explained.

4.3 STATE-OF-THE-ART

Let A = [ay,as,...,ay] € CMXN and A = [@1,@0,...,ay] € CM*N be the
original and estimated matrices respectively, where CM*¥ stands for the set
of M by N complex-valued matrices. Let us denote the set of permutations
of N elements by Perm(N), and denote by P, the matrix associated with
the permutation o € Perm(N). If the columns of A and A are normalized
by their Lo norms, scaling ambiguity reduces to post-multiplication by a
diagonal matrix A with entries of unit modulus.

Assume A = AP A+W , where the columns of A and A are normalized,
A is a diagonal matrix with unit modulus entries and W is the error of
estimation X, which can be modeled as an additive noise. Since relevant
issues in considered applications are permutation and scale ambiguity of
columns of A comparing to A, then right-multiplication of P,A is utilized

here. More formally, the goal is to measure the gap defined below:
(A, A) = min AP, A — Al (4.1)

This gap can be computed with or without estimating permutation o ex-
plicitly. Seeking the optimal permutation o can be written as the following

optimization problem:

N N
1 N .
argmin o E lla, — ag(n)H% = argmax E |a§ao(n)|. (4.2)
g n=1 g n=1

Let C;; = |af a;|, and denote by C the matrix whose entries are C;;. Then,
if the columns of A and A are normalized by their Lo norms, we have
0 < Cj; < 1. In the sequel, three main approaches of measuring the distance

between A and A appeared in the literature are reviewed.
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4.3.1 Methods based on correlation matrix

4.3.1.1 Greedy approach of [FIW'20]

In this approach, a; is assigned to a; if C;; has the maximum value in the
4t column of C'. This straightforward approach has two drawbacks. On one
hand, if two or more maximum values occurred in the same row, a reasonable
assignment could not be concluded. This happens for instance in far-field
antenna array processing when sources are angularly close, in the presence
of noise [SC15|. On the other hand, the delivered index is not reliable, since,
even if the index is zero, one cannot guarantee A= AP, A. The following

toy numerical example illustrates this problem.

Assume that in an experiment matrix C is:

0.8 03 0.1
C=108 09 05]. (4.3)
0.5 02 0.7

The concluded assignment by this method is (a1, aq), (ag,a2), (as,as),
which is obviously not acceptable because column as is selected twice. Com-
puting the square error via % 22:1 lan—aqm) |3 by considering the assump-
tion of normalized a,, and a4,y with respect to L2 norm and by substituting
the values of |a’a;| from Cj;, one obtains 3 —0.85— 0.9 — 0.7 = 0.55, which
is less than the exact error, 3 — 0.8 — 0.9 — 0.7 = 0.60 (the exact error is
given in Section 4.3.3 with the optimal permutation). This example shows
that this algorithm outputs a matrix P, that may not be a permutation.
This index is always optimistic since it searches in a set of assignments

larger than Perm(N). In fact, if a set A contains a set B, i.e. B C A, then

min f() < min f(z) (4.4)

for any function f(x). Therefore, the reported error is always smaller than

or equal to the exact error based on the optimal assignment.
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4.3.1.2 Greedy approach of [CLDA09,CKAC14]

In order to avoid a non-acceptable assignment, after detecting the maximum
value of each column of C, its row and column can be removed for the rest
of the algorithm. In other words, if in j** column of matrix C, Cjj is the
maximum value, then the i*” row and j** column of C will be ignored in the
search of the next maximum value.

This is a greedy approach, since the index depends on the order of
choosing the maximum values. For example, if this greedy algorithm is
applied on matrix C expressed in (4.3), the resulted assignment will be
(a1,a2), (az,a1), (as,as) provided that the columns are swept from left to
right. However, if the columns are swept in the opposite way, the assign-
ment will be (a1, a1), (az2,a2), (a3, as). Compared to the optimistic index,
the error output by this greedy approach by sweeping from left to right,
3—0.85—0.3—0.7 = 1.15, is larger than the exact error, 3—0.8—-0.9—0.7 =
0.60, while by sweeping from right to left, the reported error equals to the
exact error 0.6.

By imposing a column ordering, this greedy approach searches a set of
assignments smaller than Perm(N): following (4.4), one can conclude that
the error measurement is always pessimistic. Therefore, the reported er-
ror is always larger than or equal to the exact error based on the optimal

assignment.

4.3.1.3 Score measure [BBK18]

This index, which is also known as congruence [Ste09|, is customized for
tensors and is applied to evaluate the performance of a tensor decomposition
in terms of estimating all the loading matrices (defined below) together. Let
us explain the permutation ambiguity by means of a tensor decomposition
example called Canonical Polyadic (CP) [Com14]. The CP decomposition

of a third order tensor of rank 2 admits the following form:

2
FIXIXK _ Zaq(nl) ® (1,9) ® a]7(n3)’ (4.5)
r=1
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where ® denotes the outer (tensor) product, and aﬁxl) , a7(~2) and a7(n3) are some

vectors of size I,J and K, respectively. Equation (4.5) can be represented
in a compact form as T = [A(l),A(Q),A(3)]], where AW = [agi),agi)] is
called the mode-i loading matrix of 7". Observe that the permuted version
) _ [ (&) (@)

of loading matrices, i.e. Az(,i ay’,ay’],t = 1,2,3, results in the same

tensor as T in (4.5).

The score measure of the tensor T = [AM), A® AG)] is calculated
based on the correlation matrix C = CMY @ C® @ C®),| where @ is the
Hadamard product (element-wise product) and CZ-(;-C) = |a§k)Hd§-k) l,k=1,2,3.
This index is also greedy, since the assignment is concluded based on the
maximum values of C, which have been chosen in a way explained in Sec-
tion 4.3.1.2, and the corresponding score is an average of these selected val-

ues.

4.3.2 Methods based on graph matching

The optimal assignment (or optimal transport) problem is an old, well-
known and fundamental combinatorial optimization problem [Gal83, Mun57,
PC*19|. The first polynomial time algorithm for optimal assignment prob-
lems is the “Hungarian method” [Kuh55| also known as “Kuhn-Munkres”
[Mun57, TK04], and the complexity of the algorithm is approximately N*
flops [Mun57]. This algorithm has been employed in [TK04| for an optimal

pairing of the sources in BSS.

The optimal assignment problem can also be considered as a special case
of Maximum Weighted Matching (MWM), which is a well-known problem
in graph theory, for which several polynomial time algorithms exist [Gal83].
The best exact [DP14, DK69, DT59| and approximate [GT89] MWM algo-
rithms cost approximately 8N? and N? flops, respectively.

51



CHAPTER 4. PERFORMANCE INDEX

4.3.3 Methods based on optimal permutation

Searching for the optimal permutation o, i.e. for the optimal permutation
matrix P*, described at the beginning of Section 4.3, can be viewed as
finding some entries of C' such that no pair among them lies in the same row
or column, while the sum of these entries is maximum. One can formulate
this as the following optimization problem [PC*19]:

P*= argmin » D;;B,; st Pyly=Plly=1y,  (46)

P eRY N

where D = —C', 1y is a vector of ones of dimension N and the superscript
* denotes the optimal solution. In other words, we look for a bistochas-
tic matrix, i.e. a square matrix of non-negative real numbers, whose rows
and columns have unit L; norm [MOAT79]. By vectorizing (concatenating
columns) P, and D into vectors d and p, (4.6) can be rewritten in the

standard form of linear program [PC*19, Sec. 3.1]:

p* =argmind?p st. Qp= 1oy, (4.7)
peRY 2

where Q@ = 1L X In, INR1E]T € RQNXN2, Iy and X denote the iden-
tity matrix of size N and the Kronecker product, respectively. Yet, from
Birkhoff’s Theorem, the set of bistochastic matrices is a polyhedron! whose
vertices are permutations [HJ99, Theorem 8.7.1]. On the other hand, a fun-
damental theorem of linear programming [BT97, Theorem 2.7| states that
the minimum of a linear objective in a non-empty polytope (i.e. a finite
polyhedron) is reached at a vertex of the polytope. This permits to relax
the search for a permutation into (4.6) or (4.7): in fact, looking for the best
bistochastic matrix will eventually yield a permutation and this is the whole
power of this method, which employs linear programming to estimate the

permutation.
For example, by employing MWM or the linear program described above,

the optimal permutation in experiment (4.3) is the identity matrix.

Lconvex by definition.
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Recently, by improving some required computational steps, the running
time of implementing linear programming algorithms has been reduced to
approximately q2+% [CLS21| and q2+T18 [LSZ19] flops, where ¢ is the size
of unknown vector in the linear programming problem. Therefore, as ¢ =
N? in (4.7), the lowest complexity to find the optimal permutation of the
problem described at the beginning of Section 4.3 by the means of linear
programming is approximately N* flops. In addition, in [PCT19, KA21],
authors proposed sub-optimal solutions, called Auction algorithms, which

costs approximately N2 flops [KA21].

4.3.4 Indices invariant to permutation

Methods described in Section 4.3.1 try first to estimate the permutation, and
then measure some distances based on the estimated permutation. As it is
seen in Section 4.3.1.1, these methods may actually not return a permutation,
and there is no guarantee that €y(A, :4) = 0 even if the indices they output
are zero. Conversely, the algorithms of Section 4.3.2 behave better (in terms
of returning optimal permutation) but may become very costly for large

values of .

However, in the literature of source separation [CJ10], some indices have
been proposed to measure the gap (based on a specific definition of gap)
between original and estimated mixing matrices without inquiring to find
the corresponding permutation [Com94, MM94, ACY196]. Moreover, these

indices are zero if and only if €5(A, 2) = 0, which offers a valuable guarantee.

The indices proposed in [Com94, MM94, ACY'96] are based on S =
A'A (or § = At A for non-square A). The details of these indices are as

follows.
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4.3.4.1 Comon index [Com94]|

Comon’s index is a combination of L and Lo norms, and is calculated as:

N 2 NN 2
a(S) =Y D ISyl -1 +) 1Siil — 1|
=1 |j=1 =1 |i=1
N N | N
SIS =1+ > D oISl -1
=1 |j=1 =1 li=1

In [Com94], it has been proved that €; is invariant to permutation, i.e. e (A, A) =
e1(A, ﬁPpA). Moreover, it has been shown that e;(A, A) = 0 if and only if
A= AP;A, where o is the optimal permutation. However, €1 can increase
enormously, depending on the values of matrix S, hence, this index is not

bounded from above.

4.3.4.2 Moreau-Macchi index [MM94]

The index proposed in [MM94| measures a gap between matrix S and a

permutation matrix. It is defined as:

ST ol g A o | N
ST | & (ma [Si)? S\ & (maxe [Sy])2 )

Dividing by the maximum value (e.g.  (maxy |Si|)?) provides an upper

bound for e unlike €;.

4.3.4.3 Amari index [ACY"96]

This performance index takes the form:

N N N N
e&(8) =S ZM* 'y Zﬂ—l .
= \ i maxy |Sik| =\ maxy |Skj]

The only difference between Amari and Moreau-Macchi index is the power
2, which exists in e5. Therefore, calculating €3 is less costly compared to es.
In addition, as for ey, the division by the maximum value (e.g. maxy |S;|)

provides an upper bound for es.
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An accurate investigation of indices reviewed in this section reveals that
€1 is not bounded from above. Furthermore, the upper bounds on €5 and
€3 have not been studied in [MM94, ACY 96|, so that their upper bound
cannot be easily interpreted. Even if one normalizes the Amari and Moreau-
Macchi indices, the resulted upper bounds are reached when A has equivalent
columns and A is identity matrix. Therefore, the upper bounds of the Amari
and Moreau-Macchi indices do not correspond to the largest possible angular
gap between A and A.

In order to obtain interpretable upper bounds and to reduce computa-
tional cost, one may think of replacing S = ATA by C, but in this case the
property that €¢; = 0 is equivalent to ¢y = 0, for ¢ € {1,2,3} does not hold

anymore.

4.4 QOUR PROPOSED INDEX: CORRINDEX

In this section, we introduce, “Corrindez”’, which is based on a correlation
matrix. Reminding that we define C' = |AHA\|, where A € CM*N and
A € CM*N and modulus is applied entrywise. In addition, we assume that
the columns of A and A are normalized by their Ls norms.

Basically, if eg(A, A) = 0, N entries of C are one, since |ap| = |a@,| and
the columns of A and A are normalized to unit Lo norms. Remember that
it is desired that a performance index is zero if and only if €y(A, :4) = 0.
In order to satisfy these basic requirements in the matrix case, i.e. M > 1,

CorrIndex is defined as follows:

N N
1
CorrIndex(C) = IN Z \ max Ci — 1| + Z \ max Crj —1]1. (4.8)
i=1 j=1

1
The coefficient N keeps CorrIndex values in the range [0, 1]. Moreover,
modulus operator, i.e. |.|, guarantees a zero distance between A and A if
CorrIndex = 0 (cf. Proposition 2). In addition, according to (4.8), if the

distance between A and A is zero, then Corrlndex = 0. Therefore, the

55



CHAPTER 4. PERFORMANCE INDEX

two requirements mentioned above are simply satisfied by (4.8). Further,
CorrIndex is invariant to permutation and scaling (cf. Proposition 1).

Remark: It can be also observed that CorrIndex is bounded:
0 < CorrIlndex < 1. According to (4.8), unlike ez and €3, the upper bound
of Corrlndex is easier to interpret when M > 1, since it is achieved when
entries of C' are minimal (i.e. the largest possible angular distance between
A and ,Z) In particular, when M > 2N, C = 0 when all the columns of
A and A are orthogonal to each other, which yields Corrlndex = 1. Next,
as proved below, the zero lower bound is meaningful, since it corresponds to
eg = 0.

The one-row case: On the other hand in the row vector case, i.e. M =
1, as CorrIndex is based on (4.2), we should return back to the basic mini-
mization of finding optimal assignment (o), which is a restatement of (4.2)

as follows:
1 N
. . 2
arg;mn 3 g_l(an — Qg(n))” (4.9)

In order to satisfy (4.9) and to consider the scaling ambiguity, a new
matrix C with entries C;; = (|a;| — [@;])? is used to define CorrIndex for row
vectors:

HES. .
CorrIndex(C) = IN ;mkm Cir + Z min Cij|- (4.10)

j=1

)

Comparing (4.8) and (4.10) reveals that “max” and “1” have been re-
placed with “min” and “0”, respectively, which helps benefit from the same
properties as (4.8) in the vector case.

In the following, it is shown that CorrIlndex is invariant to scaling and
permutation, i.e. CorrIndex(A,g) = Corrlndex(A, APpA). Moreover, it

is shown that CorrIndex(C') = 0 if and only if A= AP,A, i.c. eo(A, fi) =0.
Proposition 1. Corrindez is invariant to permutation and scaling:
CorrIndex(A, A\) = Corr[ndex(APpA,A\) = C’orr[ndex(A,A\PpA). (4.11)

Proof. Assume that C, = [A” A| and Cy = |(APpA)HA\|. As modulus

operator is insensitive to matrix A, then Cy = P]I,{Cl, and since CorrIndex
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is invariant to row permutation according to (4.8), the proof is complete.
The same proof applies to C3 = |AH A\PPA], because of the invariance of

Corrlndex to column permutation. ]

Proposition 2. Suppose that A € CM*N and A e CMxN, Corrindez( A, ﬁ)

0 if and only zfA\ can be written as a permuted version of A:
CorrIndex( A, fi) —0 < A=AP,A. (4.12)

Proof. Firstly, if A = AP,A, then max; Cy, = 1,Vi and maxy Cy; =
1,Vj. Thus COI‘I‘IIldeX(A,A\) = 0. Secondly, we prove the converse. If
Corrlndex(A, fi) = 0, then it implies that max;, Cj, = 1, Vi and maxy, Cy; =
1,Vj. From these two equalities, it can be inferred that there is at least one 1
in each column and row of C. Let us assume C;; = |af a;| = 1. According to
the Cauchy—-Schwarz inequality and the assumption of normalized columns
of A and A, we have lafla;| < ||a;||||a;||, where the equality of two sides
occurs if and only if a; = a;. Since such a conclusion holds for all other

associated pairs of columns of A and X, therefore, A= AP A. O

As mentioned before, it is hard to assess the relative error made on load-
ing matrices in tensor decompositions, because of scaling and permutation
ambiguities [Com14|. So as to overcome these ambiguities, we can use Cor-
rIndex as a performance on estimating loading matrices. However, if we
report Corrlndex on each loading matrix separately, it would be an opti-
mistic index, since implicitly a different permutation would be permitted
for each loading matrix. Note that according to (2.6), the corresponding
columns of loading matrices construct a rank-1 tensor, hence to keep these
rank-1 components unchanged, it is required to permute all loading matrices
by the same permutation matrix. By permitting a different permutation
for each loading matrix, the overall tensor reconstruction error could be less
than the case in which all loading matrices have the same permutation.

In order to have a more reliable performance index, we can apply Cor-

rIndex to a matrix X, built upon loading matrices stacked one below the
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other. In other words, for the tensor described in (4.5), CorrIndex(X ,/)2)

applies to:
A AD
X=|4® |, X=| a®
A®) AB)

4.5 DISCUSSION AND COMPUTER RESULTS

A multi-aspect comparison between CorrIndex and other reviewed methods
has been carried out, and is reported in Table 4.1, where the methods of
Section 4.3.1 and 4.3.2 are referred by “Greedy” and “Graph”, respectively.
The number of multiplications of each stage, i.e. computing the input matrix
(C = \AHEI or §= ATE), estimating the permutation and computing the
index, are reported. In addition, the last column of Table 4.1 (“Significance
of upper bound”) indicates if the upper bound makes sense, i.e. returning the
maximum index value for the largest distance between A and A. According
to Table 4.1, it is inferred that Corrlndex has the lowest computational
complexity compared to the others in terms of the number of multiplications
besides its theoretical guarantee, its invariance to permutation and scaling
ambiguity and its meaningful bounds.

In the rest of this section, we report either the relative error (for the
greedy and graph-based methods), which is defined in (4.13) or the indices ¢;
(Moreau-Macchi, Amari, ... ). As greedy and graph-based methods estimate
the permutation, we report the relative error between normalized A and ;1,
by means of estimated matrix P, as follows:
|A—APy||r

lAlF

where ||.||p denotes the Frobenius norm. Reminding that P, is aimed to be

relative error =

(4.13)

a permutation matrix, but that it might not be, and the inferred assignment
of the columns by P, does not make sense (see Section 4.3.1.1).
The index and computation time of each index in a numerical experiment

is reported in Table 4.2 to evaluate the methods practically. This experiment
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Table 4.1: Approximate numbers of multiplications of computing each stage of

CorrIndex and other methods

Method C or S| Permutation | Index Significance
of upper bound

Greedy N2M 0 2MN No
Graph N2M 8N3 2MN Yes
Linprog N2M N4 2MN Yes
Comon [Com94] 11N3 - 2N? No
Moreau-Macchi [MM94] | 11N3 - 2N? No
Amari [ACY*96] 11N3 - 2N No
CorrIndex N2M - 1 Yes

is executed on a laptop with a processor of 3.1 GHz Intel Core i5, 16 GB
RAM, running macOS Mojave and MATLAB 2019a.

In order to show the drawbacks of greedy methods, this experiment is
done on some matrices, A € RM*N  whose columns are highly correlated.

RN of the columns of A is de-

For this purpose, a correlation matrix,
signed such that its diagonal and off-diagonal entries are 1 and -y, respec-
tively, where « is an arbitrary mutual coherence constant among the columns
of A. Then, by considering the Cholesky decomposition of R, i.e. R = LTL,
and a random orthogonal matrix UM*Y (U can be obtained by the QR de-
composition of a random matrix), we set A = UL. In this way, we have a
matrix A with the columns having the correlation of .

A s generated by permuting randomly the columns of A and adding a
noise matrix, W, of the same size as A with i.i.d. entries of Gaussian dis-
tribution with zero mean and unit variance, and weighted by the parameter
5. The variance 62 of the additive noise is adjusted such that we reach a
desired Signal to Noise Ratio (SNR) defined as:

> A )
22, 0PW (i, 5)*

At the end, the columns of A and A are normalized.
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Table 4.2: A numerical comparison on methods measuring the distance between
AP0 with the mutual coherence constant v = 0.75 and its permuted noisy
version A with SNR = —1.76 dB averaged over 50 realizations. The index in five
first rows of the table is the relative error defined in (4.13). On the other hand, the

last four indices of the table are defined differently and are hence not comparable.

Method Index Computing || Significance

time (ms) || of upper bound
Greedy of [FIW20] 0.37 0.9 No
Greedy of [CLDA09,CKAC14]| 1.05 5.3 No
Hungarian [Mun57] 0.86 4.5 Yes
MWM [DP14] 0.86 2.9 Yes
Linprog [PCT19] 0.86 1310 Yes
Comon [Com94| 1.8e4 3.3 No
Moreau-Macchi [MM94] 897.91 3.3 No
Amari [ACYT96] 3.2e3 2.9 No
CorrIndex 0.36 0.4 Yes

In the experiment of Table 4.2, M = 150, N = 100, with the mutual co-
herence constant vy = 0.75, 6 = 0.1 (which is equivalent to SNR = —1.76 dB),
and U is an orthogonal matrix obtained by concatenating the first N left-
singular vectors of a random matrix whose entries are chosen randomly from
a uniform distribution on (0,1). The reported values are averaged over 50

realizations.

The indices obtained by greedy methods and reported in Table 4.2 explic-
itly show the effect of coherence of input matrix on these types of methods.
For instance, according to the performed experiment, greedy methods ei-
ther report less (37%) or larger (105%) error than the exact index (86%).
Note that as greedy methods try first to estimate permutation P, and then
calculate the error between matrices AP, and ﬁ; hence, the indices com-
puted by greedy methods may be compared to the exact error computed by
graph-based methods. However, comparing other indices such as CorrIndex

with the exact error does not make sense, since these indices are intrinsically
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Table 4.3: A numerical comparison on methods measuring the distance between
AP0 with the mutual coherence constant v = 0.95 and its permuted noiseless
version A averaged over 50 realizations. The index in five first rows of the table is
the relative error defined in (4.13). The four last indices of the table are defined

differently and are hence not comparable.

Method Index Computing || Significance

time (ms) || of upper bound
Greedy of [FTWT20] 3.82e — 17 0.89 No
Greedy of [CLDA09, CKAC14] 0.10 5.2 No
Hungarian [Mun57] 0 2.7 Yes
MWM [DP14] 0 4.0 Yes
Linprog [PCT19| 0 1630 Yes
Comon [Com94] 2.14e — 13 3.3 No
Moreau-Macchi [MM94] 0 4.5 No
Amari [ACY 96| 3.35e — 16 3.8 No
CorrIndex 2.37e — 16 0.59 Yes

different from (4.13).

As can be seen in Table 4.2, Corrlndex is the fastest index. In addi-
tion, contrary to the indices of Comon, Moreau-Macchi and Amari, Cor-
rIndex returns a value in the bounded range [0,1]. One could normalize
the Moreau-Macchi and Amari indices in order to obtain bounded values,
but the signification of such upper bounds on these indices has never been

investigated.

The experiment of Table 4.2 corresponds to an inaccurate estimation of
A (i.e. SNR = —1.76), and all the performance indices (perhaps except the
greedy method of [FIW120], which yields 37%) demonstrate convincingly
the fact that estimation is not accurate. In order to evaluate the indices in
the opposite situation (accurate estimation), we perform another experiment
with the same setting as that of Table 4.2 except that Ais a permuted
noiseless version of A0*100 with ~ = 0.95. The result of this experiment is

reported in Table 4.3.
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Corrindex

-5 0 5 10 15 20 25 30
SNR (dB)

Figure 4.1: CorrIndex and noise. CorrIndex of a random matrix A%*? and its
permuted noisy version A. This figure confirms the fact that the larger ¢y, the

larger CorrIndex.

As it can be interpreted from the reported indices in Table 4.3, the greedy
method of [CLDA09,CKAC14]| does not report zero relative error between A
and A\, which is not correct. However, in spite of highly correlated columns
of A, all indices (except the greedy method of [CLDA09, CKAC14|) demon-
strate zero distance between A and A\, which is true. Comparing Table 4.2
and Table 4.3 reveals that the greedy methods are much more sensitive to

the correlation of the columns than other indices.

CorrIndex is based on (4.2), which tries to minimize the least square error
between A and A. Therefore, if the distance between A and A increases
due to the additive noise in ;l, CorrIndex will return a larger value. To show
this fact in practice, we performed an experiment whose result is depicted in
Fig. 4.1. Generating a random matrix A of dimension 6 x 4, A is obtained
by permuting its columns and by adding a noise matrix, W, of the same
size as A with independent and identically distributed (i.i.d.) entries of

Gaussian distribution with zero mean and unit variance, and weighted by
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the parameter §. The variance §2 of the additive noise is adjusted such that
we reach a desired SNR as described in (4.14).

Figure 4.1 confirms the fact that the larger ¢y, the larger CorrIndex.
Therefore, in evaluating different decomposition methods, the one with the
least CorrIndex would perform the best.

In Table 4.2, we show the effect of mutual coherence and noise on the re-
sults of each index. However, Fig. 4.2 investigates the effect of noise intensity,
which is measured by SNR. In this experiment, as in Table 4.2, we generate a
random matrix A of dimension 150 x 100 with the mutual coherence constant
v = 0.75 and averaged the results over 50 realizations. Then, the matrix A
is obtained by permuting randomly the columns of A and by adding a noise
matrix according to each SNR value. The goal of this experiment is to show
the drawbacks of greedy methods, and to do this, we compare the result
of the greedy methods of [FTIW*20, CLDA(09, CKAC14] by one of the graph-
based method (i.e. MWM |[DP14]|), which outputs the exact error. Therefore,
we can simply conclude the inaccuracy of [FTIW*20, CLDA09, CKAC14].

Figure 4.2 shows the relative error (4.13) between A as an estimation
of A. As the error output by MWM is exact, the difference between errors
output by the greedy methods of [FTW*20, CLDA09, CKAC14| and the one
by MWM show the inaccuracy of [FIW*20, CLDA09, CKAC14|. As it is
expected, the relative error by greedy method [FITW™'20| (resp. [CLDAO0Y,
CKAC14|) is optimistic (resp. pessimistic), since its reported error is smaller
(resp. larger) than the exact error. In addition, as SNR increases, this error
gets larger, which demonstrates that by decreasing the additive noise, the
influence of mutual coherence becomes more effective on the result of greedy

methods.

4.6 CONCLUSION

In this chapter, the problem of computing the distance between two matrices

up to permutation and scaling ambiguities is addressed. This problem occurs
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Figure 4.2: Drawbacks of greedy methods of [FTW*+20, CLDA(09, CKAC14]. Com-
pare the relative error between a random matrix A1 with the mutual coher-
ence constant v = 0.75 and its permuted noisy version A versus SNR reported by
greedy methods of [FIW'20, CLDA09, CKAC14] and by one of the exact indices,

i.e. MWM averaged over 50 realizations.
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for instance in tensor decompositions or in blind source separation. Existing
performance indices are classified in three main categories: “greedy methods”,
“graph-based methods” and “invariant indices”. These methods are reviewed,
and it is inferred that greedy methods are not reliable especially in noisy
situations (they are either optimistic or pessimistic). In addition, graph-
based methods and invariant indices are computationally expensive. We
propose a new performance index belonging to the class of invariant indices,
named Corrindez, whose upper and lower bounds are easy to interpret, while
being computationally cheap. In the rest of this thesis, we will evaluate the

performance of tensor decomposition methods by means of CorrIndex.
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5.1 INTRODUCTION

In this chapter, we study constrained and non-constrained tensor decom-
positions, as well as introducing our own constrained tensor decomposition,
Simple Forward-Backward Splitting (SFBS). As mentioned in Chapter 3,
the main step in data mining by tensors is to decompose properly the ten-
sor of third order moments. As we will show by simulation in this chapter,
constrained tensor decomposition results in a more accurate and more rea-
sonable (in the sense of being in the simplex set) estimation of probabilities
of hidden and multi-view variables, which is the first step for some targeted
data mining tasks such as unsupervised clustering. In addition, we review
some non-constrained decompositions, which have been employed for this
purpose, and will compare them experimentally and theoretically with con-
strained tensor decompositions.

Depending on the application, it is preferred to add some constraints to

the tensor decomposition, which results normally in much more accurate and
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reasonable solutions. Non-negativity, belonging to the simplex set, orthog-
onality and sparsity are some examples of key constraints often imposed in
some applications such as medical image and signal processing [CZPA09],
probability estimation in topic modeling (cf. Section 3.2) and dictionary

learning [HLP14].

Generally, the algorithms of constrained tensor decomposition are in-
spired from constrained matrix decomposition (factorization). For instance,
the algorithms mentioned in [CZPA(09| for Non-negative Tensor Factoriza-
tion (NTF) are extensions of Non-negative Matrix Factorization (NMF).
Moreover, many of the existing algorithms are based on Alternating Op-
timization (AQO) [SDLFT17| or its special case, Alternating Least Squares
(ALS) [CMDL™"15], in which the data fidelity term in AO is the least square

error.

Over the past decade, some algorithms have been proposed for con-
strained tensor decomposition based on AO or ALS [HSL16,XY13b, VCTMM17|,
where in each step, a constrained minimization over one parameter is car-
ried out. In each step, Alternating Direction Method of Multipliers (ADMM)
[BPC*11] or proximal methods [CP11] have been applied to solve the con-

strained minimization.

As our proposed method, SFBS, is based on the proximal concept, we
limit ourself to review briefly the state-of-the-art algorithms utilizing proxi-
mal approaches. Therefore, in this chapter, after reviewing some preliminar-
ies on the proximal concept in Section 5.2, some state-of-the-art algorithms
for constrained tensor decomposition based on the proximal concept are re-
viewed in Section 5.3. In Section 5.5, we propose our algorithm, i.e. SFBS,
and provide its convergence analysis. In Section 5.6, several experiments
have been performed to compare our algorithm with constrained and un-
constrained algorithms, in terms of performance. We also evaluate tensor
decomposition methods on a real text data set, called “20 Newsgroups”.
In Section 5.7, we discuss briefly about advantages and drawbacks of each

method based on the simulations and experiments in Section 5.6. Finally,
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Section 5.8 concludes the chapter along with explaining some future perspec-

tives.

5.2

PROXIMAL CONCEPT AND APPROACH

In this section, we explain the proximal concept, operators and methods

such as Forward-Backward Splitting, which is used in our proposed method

in Section 5.5. Firstly, some required definitions and properties of functions

are reviewed as follows:

*

Lower semi-continuity (Isc) [RWO09, Definition 1.5]: Suppose
R = [~o0,+00]. The function f : R™ ~ R is called lower semi-
continuous (lsc) on R™ if

lim [ inf f(z)] = f(@) (5.1)

228 zeB(z,€)
holds for every @ € R", where B(, ¢) is the closed ball:
— def —_
B(z,e) = {x|de(x, @) < €}, (5.2)

in which d.(x, ) is the Euclidean distance. See Fig. 5.1 for an example

of a lower semi-continuous function.

Sub-gradient [RW09, Definition 8.3]: Suppose R = [—o0, +00].
For a function f : R® — R and a point & for which f(Z) is finite, a
vector v € R" is said to be the sub-gradient of f at &, i.e. v € 0f(T), if
f(x) > f(®)+ (v, — )+ O(|z —Z|), where (.,.) and O(.) denote the
scalar (inner) product and limiting behavior of the remainder term!.
Note that 0 is the typical notation of sub-gradient, and it is replaced

with V for differentiable functions?.

'For two arbitrary functions p(.) and q(.), we say p(x) = O(q(z)) as = — =, if there

exist positive values § and M such that for all 0 < |z — Z| < 4, |p(x)| < Mq(x).
2A differentiable function has a single sub-gradient at each point.
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Figure 5.1: An example of a lower semi-continuous (Isc) function. The solid blue

dot indicates f(zo).

* Kurdyka-Lojasiewicz property (KL) [ABS13]: Let us denote the
domain of a function f by dom(f). The function f : R" — RU{+o0}
has the Kurdyka-Lojasiewicz property at * € dom(f) if there exist n €
(0, +0o0], a neighborhood U of * and a continuous concave function

¢ :[0,m) — Ry such that:

1) #(0) =

2 is differentiable on (0, 7),

)
) ®

3) ¢'(y) >0 for all y € (0,n),
)

4) The Kurdyka-Lojasiewicz inequality,

@' (f(@) — f(x")dist(0, 0f () = 1,

holdsforallz € U N {x|f(x*) < f(x) < f(x*) + n}, where dist(.)
denotes the distance function. In the rest of the report, this prop-

erty is referred to as “KL.”; in short.

In the context of optimization, the KL property is important, since
many problems include functions satisfying this property. As it is
explained in Remark 2, many semi-algebraic (cf. Remark 2 for def-

inition of semi-algebraic) functions have the KL property, however,
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xr

Figure 5.2: The projection of a vector £ € RY onto a closed convex set § ¢ RV

there are many other functions in real world problems, which are not

semi-algebraic but satisfy the Kurdyka-Lojasiewicz inequality.

* Graph of a function [XY13b, Section 2.2] The graph of the func-
tion f : R i (—o0,400] is denoted by Gr(f) € R4 ! and is defined
def
as Gr(f) = {(=, f(2)) : & € dom(f)}.

In the rest of this section, the proximal concept and approaches are reviewed.

5.2.1 Proximity operator

The projection of a vector & € RY onto a closed convex set § C RY is a
classical problem in signal processing, which is depicted in Fig. 5.2 and can

be formulated as [CZ197, Com93, YWS&2]:

. . . 1
projs(z) = argmin {my) e y||%} , (5.3)
yGRN 2

where 4g is the indicator function defined by:

0 1 S
sy 2] O YE (5.4)
o if y¢s

Let To(R™) be the class of lower semi-continuous functions f : RY
(—00, +00], with dom(f) # @. Then ig belongs to ['o(RY).

According to the proposition of Moreau in 1962 [Mor62], the definition of
Prozimity operator is obtained by replacing ig(y) in (5.3) with any arbitrary

function in To(RN):
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Proximity operator [CP11] For every z € R”, the unique solution of
the following minimization problem:

. 1
argmin (y) + 5l — 3 (55)
yeRN

is defined as the prozimity operator of the function f € I'g(RY), and it is
1

denoted by proxg(x). The term §Hw — y||3 is also called prozimal regular-

ization in the literature [HSL16,XY13b|. Thus, the proximity operator of f

Is proxy : RN +— R and it is characterized by:
p = proxs(z) & (x —p) € 9f(p), V(z,p) € RY x RV,
Note that df(p) is replaced by V f(p) for differentiable f.

The above definition indicates that prox;(z) is a point that minimizes f and
simultaneously is as close as possible to x. Therefore, prox(z) is also called
a proximal point of x with respect to f [PB14]|. See Table 10.2 in [CP11]
for a list of popular functions and their corresponding proximity operators.
However for the sake of clarity, Table 5.1 provides proximity operators of

some functions, which are discussed in this thesis.

5.2.2  Proximal methods

Although proximal methods have first appeared in the work of Martinet
[Mar70] in 1970, they have only been utilized in signal processing since
2001 [CWO05|, and their applications in various fields are getting more and
more prevalent. As mentioned before, a proximity operator can be viewed as
a generalized projection [PB14]. In addition to projection, there are several

interpretations, some of which we review from |[PB14,CP11]:

- The approximation of gradient step:
If f is twice differentiable at @ and its Hessian matrix is positive defi-

nite, then it can be shown that as A — 0:
prox,s(z) = ¢ — AV f(z) + O(N).
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Therefore, for small A, prox, f(:v) converges to a gradient step in f with
step length A. Thus, the proximity operator can be interpreted as an
approximation of a gradient step for minimizing f provided that A is
small enough. This fact shows a connection between proximity oper-
ators and gradient methods, and consequently the proximal operator
could be useful in optimization. It can be also expected that A will

have a similar effect as a step size in a gradient method.

- Fixed-point of prox, :
It can be proved that the fixed points of the proximity operator of f
are exactly the minimizers of f [PB14, sec 2.3], i.e. prox,s(z*) = x*
if and only if * minimizes f. This also reveals a close connection
between proximity operators and fixed point theory. Therefore, fixed
points of appropriate operators (proximity operators) can be utilized
as a solution for optimization problems. This interpretation will be

used in Theorem 1 of Section 5.2.3.

- Denoising:
A proximity operator can also be interpreted as a solution for denoising
in signal processing applications. Consider a noisy observation y € RV
of a signal £ € RV, y = & + w, where w models the additive noise.
The best recovery of the original signal x is usually formulated as:

arganin { 7(&) + 3y ~ <3} (5:6)

zeRN

1
where iHy — z||3 is the data fidelity term and f(x) takes into account
a prior knowledge about . According to the definition of proximity

operator, (5.6) is exactly equal to prox;(y).

5.2.3 Forward-Backward Splitting

In many signal processing applications, the cost function to be minimized is
the sum of two functions where one of them is usually non-differentiable or

even non-convex. By following a proximal approach, these kinds of problems
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can be solved by means of a particular algorithm called Forward-Backward
Splitting. Theorem 1 [CP11] explains the relation of minimizing such a cost

function with this algorithm.

Theorem 1 (Forward-Backward Splitting [CP11]). Suppose f : RY — R U
{+00} is a proper® lower semi-continuous function which has the KL property
and is bounded from below. If f can be split into two parts as f = h—+g, where
g is lower semi-continuous and h : RY +— R is a finite valued, differentiable

function with a B-Lipschitz continuous gradient, i.e., 38 such that:

[Vh(z) — Vh(y)l2 < Bllz — yll2,

then it can be shown [CW05] that the minimizer of f satisfies the following

fized point equation:
x = proz,,(x — yVh(zx)), (5.7)
where v € (0,400).

Equation (5.7) suggests an iterative approach, called the Forward-Backward
Splitting algorithm:

Tpr1 = proxX,,(zr — v Vh(zy)), (5.8)

where the values of ~; should be chosen from a suitable bounded interval.

Forward-Backward Splitting is a combination of two basic methods: a
proximal algorithm and a gradient approach [CP11]. Actually, if ¢ = 0,
then (5.8) is transformed to the gradient method of the differentiable function
h. On the other hand, when h = 0, (5.8) is the proximity operator of g, and
the minimizer of f is the fixed point of this operator.

Several variations of implementing Forward-Backward Splitting exist and
are reported in [CP11]. Two of them are restated (Algorithm 2 and Algo-
rithm 3) to which we will refer in the rest of this thesis.

In Algorithm 2, several parameters are required to be set by user, such

as a relaxation parameter, o, which cannot exceed 1. Algorithm 2 directly

3A function is proper, if its domain is not a null set.
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Algorithm 2 Forward-Backward Splitting [CW05, CP11, Algorithm 10.5]
Input: The function f = h + ¢ as defined in Theorem 1, 3, ¢y € RV

Output: The minimizer of f
1

1: Fix € € (0, min{1, B})
2: for k=0,1,2,... do
5 weles -

: e €6, = — €

p

4: Y = T — ")/th(:Bk)

5: o € [6, 1}
6: Tht1 = Tk + ak(prox'ykg(yk) —xy)
7: end for

implements the iterative approach described in (5.8), except doing an ex-
trapolation with ay in line 6 between the new point obtained from applying

the proximity operator and the previous estimation point (xy).

Algorithm 3 is based on Fast Iterative Shrinkage Thresholding Algorithm
(FISTA) proposed in [BT09a, BT09b| and can be considered as a proximal
gradient algorithm. In fact, instead of shrinkage function in FISTA, the

proximity operator is used.

The main difference between Algorithm 2 and Algorithm 3 is that in
Algorithm 3 the proximity operator is not employed on the previous iterate
x;, but rather on a very specific linear combination of the previous two
iterates, xy and xy_1 [BT09b].

Although Algorithm 3 is more user-friendly than Algorithm 2 in terms of
the number of required parameters to be set, the computation complexity of
Algorithm 2 is less than Algorithm 3 due to not calculating some coefficients
like tg, and Ag in lines 5 and 6 of Algorithm 3.

In many applications (including SFBS in Section 5.5), the function g is
an indicator function of a particular set (8), ig, and its proximity operator
is a projection onto that set [CP11, Table 10.2]. If the desired set is non-
convex, the projection onto it may not result to a unique point. It has been

proved |[ABS13]| that in spite of the multi-valued projection, the convergence
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Algorithm 3 Beck-Teboulle proximal gradient algorithm [CP11, Algorithm

10.7] based on FISTA [BT09b]
Input: The function f = h + ¢ as defined in Theorem 1, 3, o € RV

Output: The minimizer of f
1: Set zg = xg and tg =1
2: for k=0,1,2,... do
3: Y = 2k — B Vh(zy)

4: Tp1 = proxXg-1,(yy)
14 /42 +1
T
6: A =1+ k
tht1
T Zpy1 = T+ Ap(Tpg1 — )
8: end for

property of Theorem 1 is not influenced. Note that this interesting conclu-
sion is valid only if the assumptions of Theorem 1 are satisfied, the most

important being the KL property satisfied by A + ig.

5.3 CONSTRAINED ALGORITHMS BASED ON THE

PROXIMAL CONCEPT

In this section, some algorithms that use proximal approaches for constrained
(mostly non-negativity) CP decomposition are reviewed. Our proposed method

(SEFBS in Section 5.5) will be compared to all of them in Section 5.6.1.
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5.3.1 Problem formulation

The problem of IV order constrained CP decomposition can be expressed as
the following minimization:
min 1117’— A AL A M1
AL AN ’

$t.Cx,Cymy, 1< <N

where T is a N order tensor of dimension nq X ng X ... xny and rank R with
the coefficient vector Arx1 and N loading matrices Afl )X R ASQ)X Ry AS]VV)X R
In addition, Cx,C 4 represent the constraint over the coefficient vector A
and loading matrix A respectively.

Since minimizing the cost function of the CP decomposition over all load-
ing matrices is a non-convex problem, a common strategy to transform it to
a sequence of convex problems (if constraints are already convex) is Alternat-
ing Optimization (AO) framework [SDLF*17] or Block Coordinate Descent
(BCD) [Tse01]. In AO, by fixing all the loading matrices (by initialization
or using their previous estimation) except one of them, one tries to minimize
the cost function over just one loading matrix.

For example, ALS steps for a third order constrained tensor decomposi-
tion of dimensions ny xngxng and rank R, T = [1g; Agzll)va Aii)va Agi)xR]],

in an unfolding form, are as follows:

A, = argmin fHT( ) noms — A(AY @ ADYT|2 5 e 4(A)

ni1Xnans
n]XR
2 2 3 1
Al(c+)1 = argmin —HTﬁL,}anS - B(A;{ ) A;il) H% s.t.Cp(B)
no X R
AY —ar mmeT(S) —c(A? 0 AN T2 st.ec(C)  (5.9)
k+1 g n3xnina +1 k+1) IlF .

ngxR
where C.(-) represents the desired constraint over loading matrices, and it
can be added to its corresponding fidelity term in the form of generalized
regularization, e.g. an indicator function as defined in (5.4).

Non-negativity is a relevant constraint that has been employed in the

literature, but in this thesis, we discuss also other useful constraints such as

78



CHAPTER 5. CONSTRAINED AND NON-CONSTRAINED TENSOR
DECOMPOSITIONS

simplex set and sparsity.

5.3.2 Alternating Optimization-Alternating Direction Method
of Multipliers (AO-ADMM) [HSL16]

As mentioned in [PB14,CP11]|, Alternating Direction Method of Multipliers
(ADMM) [BPC*11] can be considered as a special case of the proximal
method. In [HSL16], a constrained CP decomposition by means of ADMM
is discussed.

AO-ADMM attempts to minimize each step of (5.9) by ADMM. The de-
tails of AO-ADMM for constrained CP decomposition can be found in [HSL16].
The proposed algorithm in [HSL16]| is capable of applying several constraints
on loading matrices, such as non-negativity, sparsity, smoothness, cardinal-
ity, etc.

The convergence of AO is briefly reviewed in [HSL16| based on the works
of [Tse01,RHL13|. Although it is mentioned that adding a proximal regular-
ization (cf. (5.5)) provides a unique solution which serves the convergence of
BCD, this regularization is omitted in the formulation of AO-ADMM for the
sake of convenience. The convergence of each step which is an ADMM algo-
rithm can be shown for convex functions [HSL16, BPC*11] and also recently
for some non-convex functions such as £;, 0 < ¢ <1[WYZ19], but not yet
for some others such as £y. Note that /; norm of the vector = of dimension
n for ¢ > 0 is defined as (3 1, \xi]q)%; however ¢y(x) pseudo-norm is the

number of the non-zero elements of x.

5.3.3 Alternating Proximal Gradient (APG) [XY13b]

In [XY13b|, the convergence of a general BCD algorithm is studied, where
for updating each block of unknown variables, three kinds of updates are
investigated, namely original, prorimal and prox-linear. In two of them,
proximal regularization is considered. This general BCD algorithm can be

applied on a vast variety of constrained optimization, including constrained
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tensor decomposition.

Based on the comparison done in [XY13b], prox-linear updating (i) yields
better objective values than original and proximal updating, (ii) is easier to
compute and (iii) often allows closed form solutions.

APG does not explicitly follow Forward-Backward Splitting procedure,
nevertheless its algorithm for non-negativity constraint ends in projection to
non-negative orthant along with updating a particular coefficient as in line
5 of Algorithm 3.

The convergence analysis in [XY13b] reveals that BCD with original up-
dating requires strong convexity to provide a particular convergence guar-
antee?, while by proximal and prox-linear updating, the global convergence
to a critical point is achieved under mild conditions such as satisfying KL

inequality or Lipschitz continuity.

5.3.4  Fast Non-negative Tensor Factorization-APG (FastNTF-
APG) |ZZZ+16]

FastNTF-APG [ZZZ7116] is a modified version of APG [XY13b| dedicated to
non-negative tensor decomposition. In [ZZZ16], it is mentioned that, con-
trary to classical algorithms of Non-negative Tensor Factorization (NTF),
which suffer from slow convergence especially in practical applications, FastNTF-
APG speeds up NTF and overcomes this bottleneck by combining APG with
the low rank approximation.

As APG, FastNTF-APG utilizes prox-linear updating, and its idea to
speed up convergence can be explained by following each step of (5.9). With-
out loss of generality, let us explain the idea motivating the first step. In order
to reduce the computational complexity, matrix TW in ’T(l)(A,(cg) ® Al(f))T
is replaced with its low rank approximation. This is also efficient for filtering
the noise out of 7).

As in APG, it is also needed in FastNTF-APG to compute the Lipschitz

4Subsequence converging to a Nash point [XY13b, Equation 2.3|
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constant of the gradient of %HT(D —A(A;CS)(DA,(CQ))TH% w.r.t. A (considering
again the update of the first loading matrix, to ﬁX the ideas). It is mentioned
in [ZZZ716| that the Lipschitz constant is ||(A} Yo A( hT (A(3 ® A N,
but as we prove in Appendix A, the Lipschitz constant is in fact the spectral
norm® of {(AY © AT(A® © APy,

Let us remark a point about the importance of the Lipschitz constant of
the gradient of the fidelity terms in (5.9). To employ the Forward-Backward
Splitting algorithm for minimizing the objective functions in (5.9), the fi-
delity term (e.g. f||7' (A(B) ©) A ) |2.) roles as the function “A” in
Theorem 1. In Theorem 1, “£” is the Lipschitz constant of the gradient of
“h”. On the other hand, “4” is the coefficient of Vh in the fixed point equa-
tion (5.7) in the Forward-Backward Splitting algorithm (cf. Theorem 1). As
we shall see in Section 5.5.4 (cf. Theorem 2), by choosing v € [0 ,ﬂ] the
convergence of Theorem 1 is guaranteed. Therefore, computing “3” (or the
Lipschitz constant of the gradient of the fidelity term) has a crucial role in
the convergence of algorithms, which are based on the Forward-Backward

Splitting algorithm.

5.3.5 Block Coordinate Variable Metric Forward-Backward
(BC-VMFEB) [CPR16, VCTMM17,VCTM*17|

BC-VMFB consists of two main steps: a gradient step related to the data
fidelity, which is assumed to be differentiable and has a §-Lipschitz gradient,
and a proximal step linked to the regularization term, for which a new prox-
imity operator should be calculated. This proximity operator of the function
© is associated with a symmetric positive definite matrix Z by the following

definition [VCTMM17]:

1
prox,,(v) = argmin _{lu — v} + p(v)
u

where ||z||% = (x, Zx), and (-, -) is the inner product. In the above definition

of the proximity operator, Z is called preconditioning matrix [VCTMM17].

®The spectral norm of a matrix is defined as its maximum singular value [Ber05.
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The definition of the proximity operator given in (5.2) may be obtained from
the above definition, if Z is the identity matrix. It is observed empirically
in [CMLZ18]| that utilizing preconditioning matrix speeds up the convergence
of Proximal Alternating Linearized Minimization (PALM) [BST14].

Let us bring two points about non-negative tensor decomposition by
means of BC-VMFB. Firstly, the convergence of BC-VMFB is studied in [CPR16],
and it is shown that if the cost function satisfies the KL property, then its
convergence to a critical point is guaranteed. Secondly, the algorithm pro-
posed in [VCTMM17] is designed to handle vectors, so each loading matrix

has to be vectorized before utilization.

5.4 NON-CONSTRAINED ALGORITHMS FOR SYM-
METRIC TENSOR DECOMPOSITIONS

As mentioned in Section 3.3.1.1, in order to estimate the probabilities of
hidden variables and the conditional probabilities of multi-view variables
(which are denoted by ¢ and A, respectively), it is required to decompose
the third order moments tensor (7). The focus of this section is on the non-
constrained decomposition for this purpose. Remind that the third order
moments (7)) and the second order moments (P) are related to the desired

probabilities according to (3.6) and (3.5), which are worth to be mentioned

again:
K
P=) grar0a
k=1
K
T = Z(pk ar @ aip R ag.
k=1

5.4.1 Robust tensor power method [AGH"14]

We describe in this section the approach of [AGHT 14], called “Robust tensor

power method”, whose drawbacks we shall investigate experimentally in Sec-
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tion 5.6.2. This method of decomposition is dedicated to symmetric tensors
and to the problem described in Section 3.3, where the empirical estimation
of the second order moments is also available in addition to the tensor of
third order moments. In [AGHT14|, the authors propose to use the two
moments (P and T) defined in (3.3) and (3.4) with exactly the same en-
coding explained in Section 3.3.1.1. Therefore, these moments satisfy (3.5)

and (3.6).

Matrix P is theoretically positive semi-definite, since P is a covariance
matrix (note that ¢y are non-negative numbers in (3.5)). Hence in a similar
way as had been done for Blind Source Separation [CJ10, Com94|, there
exists a “whitening” matrix W such that WTPW = I, where I is the
identity matrix; W can theoretically be easily obtained from the EigenValue
Decomposition (EVD) P = UDU", UTU = I, by setting W = UD /2,

Therefore,
K
E@d:L
k=1

in which ay def V?r WTay,. In other words, the matrix A € REXK contain-

ing ay as its columns is orthogonal, i.e. AAT=1.

As mentioned in Section 3.4, in practice, the matrix P can be estimated
via a particular encoding of multi-view variables x; and a moment estimator
for approximating (3.3), and consequently, P may have negative eigenvalues
(of course it is not the case with the encoding explained in Section 3.3.1.1 and
estimators described in Section 3.4) because of estimation errors. This issue
was not investigated in [AGHT 14], because they used left singular vectors of
P instead of eigenvectors to construct W (cf. Algorithm 4). Nevertheless,
the issue still remains, since left and right singular vectors are not imposed
to be the same. Next, this whitening matrix is applied to the tensor T to

yield:
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which have the following element-wise definition according to (2.2) [Com14]:

T(rts)= > Tt \W(rr\W(tt)W(s,s).

r/ s
This new tensor satisfies

K
T=Y 0" ar®a® ar.
k=1

The conclusion is that 7 ideally admits an orthogonal CP decomposition;
see e.g. [Coml14, Com94| for an introduction. Many algorithms have been
devised for this kind of decomposition, including the pair-sweeping CoM
algorithm, or Joint Approximate Diagonalization (JAD) algorithms [CJ10].
But authors in [AGH™14] utilized the tensor power iteration [DLCT95] to
extract the dominant “eigenvector®”, @, and the dominant “eigenvalue”, @, of
T and then proceeded by deflation, i.e. T« T- pa®ax a, to get the
remaining ones.

Unfortunately, except for the tensor power iteration [DLCT95], the pseudo
code in [AGH™14] is not complete in terms of describing the entire algorithm.
Our description in Algorithm 4 hopefully fills this lack. We used this algo-
rithm in our subsequent computer experiments in Section 5.6.2.

We shall show experimentally in Section 5.6.2 that in spite of its name,
Robust tensor power method is not robust to the additive noise. Actually,
robustness in [AGH"14] is considered as robustness to the initial point of
eigenvector (cf. line 4 of Algorithm 4). It is proved that any initial vector,

close enough to the solution, will converge to an eigenvector of T

Shifted Symmetric Higher-Order Power Method (SS-HOPM) [KM11]
Robust tensor power method [AGH™ 14] is based on Symmetric Higher-Order
Power Method (S-HOPM), which is a rank-1 approximation and tries to find

Recall that there exist several definitions of tensor eigenvectors [Lim05, QL17]. The
definition used in [AGH'14] — and hence here — is 7 e v ¢ v = \v, which has the undesir-
able property that A depends on the norm of v. In fact, if (A, v) is an eigenpair, then so

is (a\, av) for any nonzero a. This is analyzed in e.g. [QL17].
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Algorithm 4 Robust tensor power method [AGH'14]
Input: The empirical estimation of moments, i.e. 7 and P

Output: The estimation of desired probabilities, i.e. A and ¢

1: Whitening: P=USVT; W =US V2, T T o, We, We; W

2: for k=1,...,K do
3: for m=1,...,M; do

4: 1) draw an initial value for vector of unit 2-norm for ay.
5: 2) compute My power iteration updates in norm 2, i.e.:
~ o . t
6: t="T ;a3 ak; Ok < ||t]|o; ake{?.
k

7 end for
8: Pick the trial (m) having the largest @y.
9: Refine ay, pr by My extraneous iterations.

10: Deflation:T < T — Dap®a, ag

11: end for

12: De-whitening: B = (W), ay = §r.Bay; ¢r = (;2 fork=1,...,K

13: Back to norm 1: a = ||ag||1; ar + %; Ok % I;or k=1,...,K (our
suggestion)

the largest eigenvalue of a symmetric tensor [DLCT95]. Robust tensor power
method generalizes S-HOPM to a rank-K approximation by performing de-
flation after estimating each of K eigenvalues. S-HOPM does not have the
guarantee of convergence, unless for an even-order tensor whose correspond-
ing cost function is convex. Shifted Symmetric Higher-Order Power Method
(SS-HOPM) improves the convergence of SSHOPM by adding an additive
adjustable term, called shift, to the cost function. Although SS-HOPM like
S-HOPM requires also the order of tensor to be even for its convergence

analysis, it relaxes the convexity assumption on the cost function.

85



CHAPTER 5. CONSTRAINED AND NON-CONSTRAINED TENSOR
DECOMPOSITIONS

5.4.2  Singular Value based Tensor Decomposition (SVTD)
[RCG18]

In spite of other methods described heretofore, Singular Value based Tensor
Decomposition (SVTD) is based on matrix decomposition rather than ten-
sor decomposition. In addition, unlike Power method and its variants which
utilize the eigenvalues and the eigenvectors of the whitened third order mo-
ments, SVTD employs its singular values and singular vectors. Therefore,
as Robust tensor power method, SVTD also requires the second order mo-
ments for whitening the third order moments. Additionally, the first order
moments (or simply the average of multi-view variables) is also needed in
SVTD to estimate ¢.

SVTD can be viewed as the joint diagonalization of the second order mo-
ments (P) and a particular slice of the whitened third order moments (7);
see [RCG18, Algorithm 1] for much more details. The authors of [RCG18|
mentioned that SVTD has some advantages over Robust tensor power method
in terms of executing time and required memory space. However, the exper-
iments in [RCG18| reveal that its performance is the same as that of Robust

tensor power method.

5.5 PROPOSED TENSOR DECOMPOSITION SCHEME:
SIMPLE FORWARD-BACKWARD SPLITTING

(SFBS)

In this section, we describe SFBS, the method we propose for constrained
(e.g. non-negativity) CP decomposition. First, in Section 5.5.1, the cost
function, its solution by means of Forward-Backward Splitting and SFBS al-
gorithm, which is based on Algorithm 2 are introduced. Then, some preva-
lent constraints such as non-negativity and the simplex space along with

required modifications in SFBS algorithm for these particular constraints
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are discussed in Section 5.5.2. In Section 5.5.4, the convergence theorem for
SFBS is stated, whereas some required details of calculations can be found

in Appendix A.

5.5.1 Formulation and algorithm

In section 2.3.1, CP decomposition and some constraints are described. Let
us now formulate constrained CP decomposition and some prevalent con-
straints in this section.

Consider the N-th order tensor T~ € R1*2X-IN of rank R. Assume that
T =AW A@ AN where A € RE and AM™ € RI*E. A general
problem of the constrained CP decomposition of T~ can be formulated as

follows:

min ST =[x AD, A A2 (5.10)
A AM) 2

s.t. CA(N), € 4 (AM), 1 <n < N,

where Cx(A), C4m) (A(”)) are, respectively the constraints on the vector A
(including the above mentioned constraint, i.e. A € R, such as belonging
to the simplex set) and the matrix A

As mentioned in Section 5.3.2, a common strategy is to solve (5.10) via
ALS. Moreover, a constrained optimization can be transformed into an un-
constrained one by adding the indicator function of the constraint set to the
cost function. To be more precise, at the n'" step of ALS for solving (5.10),

we have:

1 n N 2 . n
%}QHT— [AD,. AW AT+ e (A™), (5.11)

where ¢ . (A™M) is defined as follows:

0 if A ¢ Cam

(At =
oo if AM ¢, wm

ZeA(n)

The vector A is omitted in (5.11), since it can be calculated by normalizing
loading matrices (A(”)). Otherwise, the vector A as one of the unknown

variables can be optimized in one of the steps of ALS.

87



CHAPTER 5. CONSTRAINED AND NON-CONSTRAINED TENSOR
DECOMPOSITIONS

Define W 2 (AN o .. .0 AMD o AP-D o .0 AT Then by the

mode-n unfolding of (5.11), we have:

1
ST AW 4 (n)
%32\\7' AW + e, () (A™). (5.12)

Observe that ¢ - (AM) is a lower semi-continuous function (cf. the
definition of lsc in page 70) for many prevalent constraints such as non-
negativity and the simplex set (see Section 5.5.2 for the definition of these
constraints) and %HT(”) — AMW |2, is finite valued”, differentiable and S-
Lipschitz continuous gradient where § = |[WW?||, denotes the spectral
norm of matrix WW 7 (see Appendix A for calculations). As mentioned be-
fore, the spectral norm of a matrix is equal to its maximum singular value.
Since WW7 is a symmetric matrix, its singular values are the squared of
those of W. Moreover, the cost function in (5.12) is proper, lower semi-
continuous with the KL property [ABS13] (see Section 5.5.4 for more ex-
planation). Consequently, all the required assumptions of Theorem 1 are
satisfied for (5.12), and according to this theorem, the minimizer of (5.12) is

the convergence point of the following fixed point equation:

A = prox {A™ — AP WWT — W'T(”)T)}.

WCA( )

Since the proximity operator of ’Yi@Am) is the projection onto C 4(»), we have:

. n n n T
A" =proje  {A" —y(AWWWT - WT )} (5.13)

SEBS is described in Algorithm 5. Although Algorithm 5 is based upon
Algorithm 2, we experimentally find the proper values of some parameters of
Algorithm 2 such as v and «y to obtain the best results. As it is expressed
in Algorithm 5, we ignore € and fix the value of v = % in all iterations over
k (we experimentally observed that e = 1.4 or e = 1.9 are almost always
proper values). In addition, we remove the effect of oy by setting it to 1 in

the linear updating of the estimated variable (Line 8 in Algorithm 5).

"Being finite-value is not boundedness, but it means that a function takes values in the

real line, i.e. (—o0, +00).
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Algorithm 5 The algorithm of SFBS
Input: T, € 4, initial Aén), nell,...,N] e
Output: Estimated A™ n e 1,...,N]

1: repeat

2: forn=1,2,...,N do

3: W=AMo.. .0 Ao AV o oA
4: B = {max(singular value(W))}?

5: set v = % and choose «.

6: for g =0,1,2,... do

e Y =AY — (AP wwT) - TwT)

8: Agj_)l = Aén) + ag(projeA<n) (Y) - Aén))

9: end for

10: end for

11: until some termination criterion

As SFBS, compared to the previous algorithms, requires less parame-
ters to be set (especially compared to APG, which needs a calculation of a
coefficient in each iteration), and also it is easy enough to understand and
implement, we call it Simple Forward-Backward Splitting (SFBS). Although
detailed descriptions about the advantages of SFBS compared to other meth-
ods (discussed in this thesis) are provided in Section 5.7, we list them below

in brief to complete the current section:

e Unlike other constrained methods, it is explained that how SFBS can
handle a variety of constraints such as the simplex set on all loading

factors along with a coefficient vector, A,

e Unlike Robust tensor power method, SFBS is capable of handling over-
complete cases (when the number of hidden variables, K, is larger
than the number of multi-view ones, D) in estimating probabilities (cf.

Section 3.3.1),

e Compared to APG, as one of the most efficient methods based on
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proximal concept, SFBS performs better in noisy scenario in terms of

relative reconstruction error as well as estimating loading factors,

e Unlike AO-ADMM, a complete convergence analysis is provided in
Section 5.5.4.

5.5.2 Some constraints

As mentioned before, the SFBS is not limited to any particular constraint.
Any constraint whose indicator function satisfies the assumptions of The-
orem 1 can be considered. In this section, the required modifications of
Algorithm 5 are described, for some widespread constraints, all of which are

Isc (cf. the definition of Isc in page 70).

5.5.2.1 Non-negativity

Non-negativity is one of the most common constraints in the literature.
In many applications such as image processing [CZPA09| or chemomet-
rics [LCO09|, the non-negativity of loading matrices is essential and helpful
in the performance of tensor decomposition. The non-negativity constraints
of (5.10) are expressed as: AW ¢ RIJXR and A € Rf.

The projection to the non-negative orthant is done with the max opera-
tor, thereby the line 8 of Algorithm 5 would be A(gi)l = Aén)—i—ag(max(Y, 0)—
AE,”) ). In other words, the proximity operator of the non-negativity con-
straint retains the non-negative elements of the array and replaces its nega-
tive values with zero.

As mentioned in Section 3.3.1.1, in order to estimate the probabilities
of hidden variables and the conditional probabilities of multi-view variables
(which are denoted by ¢ and A, respectively), it is required to decompose
the third order moments tensor (77). One possibility is to apply constrained
tensor decompositions such as SEFBS. Although it is better to consider ¢ and
A belonging to a simplex set, decomposing the third order moments tensor

under the non-negativity constraint of ¢p and A would be acceptable enough.
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Hence, one can use SFBS with the non-negativity constraint to estimate the

desired probabilities in the problem described in Section 3.3.

5.5.2.2 Simplex set

In the applications involving the probability estimation or the distribution
approximation, the simplex set (or the probability simplex) constraint un-
avoidably appears (cf. Section 3.3.1.1). A vector x € R belongs to the
simplex set ST, if {&T1 =1, 2; > 0,4 € [1,..., P]}. This constraint can be
written as {A™(:,j) e 8™, je[1,...,R],ne[l,...,N]} and A € ST

An algorithm for projecting a vector onto the simplex set is proposed
in [Conl6|. Therefore, the line 8 of Algorithm 5 would include a projection
algorithm to the simplex, whose input is Y.

An implementation trick. As simplex set is a crucial constraint in text
mining application (estimating probabilities), here we propose a practical
trick to handle this constraint over all parameters (the coefficient vector and
all loading matrices).

An efficient way to apply the simplex constraint to all the columns of
loading matrices A" n € [1,...,N] and to the coefficient vector A is to

(), By combi-

first combine A with one of the loading matrices, let us say A
nation, we mean A&N) = AW)Diag(X), where Diag(\) is a diagonal matrix
containing A on its diagonal. Then, the simplex constraint may be applied
to every column of every matrix A™ n € [1,...,N — 1], and only to the

vectorization of matrix AS\N). Each entry A, of A is eventually obtained by

normalizing the rth column of matrix A&N) with respect to ¢; norm, and

(V) It can then

the resulting normalized matrix yields an estimation of A
be proved easily that the estimated A and every column of loading matrix
AW indeed lie in the simplex set.

As mentioned before, constrained tensor decompositions such as SFBS
is a reasonable choice to estimate the desired probabilities in the problem

described in Section 3.3. Since we seek the probabilities, it is expected

that ¢ and A belong to a simplex set. Following the instructions of ap-
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plying the simplex set constraint described above, one can utilize SFBS

under the simplex set constraint to decompose the third order moments

tensor. If we denote the obtained coefficient vector and the loading factors

by X, IZ(\l) ,/Z\(\?) a% IZ-(E) 7/t\he estimated ¢ and A can be considered simply
~ AL L A@) L AG)

as A and 5 , respectively.

5.5.2.3 Sparsity with /y pseudo-norm (cardinality)

In some applications such as two-dimensional dictionary learning [HLP14|
and co-clustering [PS11], a constraint on the number of the non-zero elements
of loading matrices (or cardinality) is needed. This constraint is measured

with ¢y pseudo-norm and known as sparsity in compressive sensing [Don06|.

In the penalized form, an ¢y pseudo-norm term is added to the cost
function [Tib96]. Although ¢y is non-convex, the resulted cost function can
be solved by means of Theorem 1. As mentioned before, contrary to AO-
ADMM, the convergence of algorithms based on Theorem 1, including Al-

gorithm 5, is guaranteed for the ¢y pseudo-norm constraint.

In order to use Algorithm 5 with a cardinality constraint, the proximity
operator of £y should be calculated. It is mentioned in [ABS13,PB14] that
the proximity operator of ¢y is a function called hard-thresholding, defined

as follows:

y lyl>n

fiy) = :
! 0 |yl <n

(5.14)
To be more precise, according to (5.5) the proximity operator of ¢y is defined

as:

1
prox, ., (#) = argmin - |z — yl3 + 7]1yllo, (5.15)
yeRN

which is equal to [f %(1‘1)] N | (avector of size N whose elements are f %(wz)

for i € [1,...,N]). With this in mind, the line 8 of Algorithm 5 includes

applying hard-thresholding on each element of Y ([f %(Y(i,j))](izl,jzl)
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Table 5.1: Proximity operator of functions used in this thesis

Function Proximity operator

Indicator function of 8 (ig (5.4)) | Projection onto 8 (projg (5.3))

¢y pseudo-norm (cardinality) hard-thresholding (5.14)

/1 norm soft-thresholding (5.16)

5.5.2.4 Sparsity with /; norm

A common and convex approximation of the ¢y pseudo-norm is £; norm.
The resulting cost function obtained by replacing ¢y in (5.15) with ¢; norm
is called LASSO regression |Tib96, Don06|.

In order to minimize LASSO with Algorithm 5, the proximity operator
of ¢; should be computed. In [PB14], it is stated that according to (5.5), the
proximity operator of ¢1(x) is ff/ﬂ, which should be applied element-wise

on x. fris called soft-thresholding, and is defined as:

y—1n y>1n
foly) & 0 Jyl<n - (5.16)
y+n y<-n

As for £, f\s/ﬂ should be applied on each element of Y in the line 8 of

Algorithm 5, instead of a projection.

5.5.3 Constrained CP decomposition based on Proximal Forward-

Backward Splitting without AO [NMSC21]

Although all the algorithms discussed so far, including SFBS, are based on
AO, some other constrained decompositions such as our work in [NMSC21]
update all the loading factors together. To be more precise, in AO frame-
work, one tries to update one of the loading factors in each step, while the
other loading factors are constant (either by initialization or by updating
from previous iterations), the proposed algorithm in [NMSC21]| tries to es-

timate all the loading factors, simultaneously. To do this, firstly, all loading
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factors are concatenated into a one variable matrix, like X defined in (5.22).
Then, Forward-Backward Splitting is applied to minimize a constrained ob-
jective over the vectorization of X. For instance, in our work [NMSC21], the
considered constraint for CP decomposition is the coherence of the columns

of loading factors.

5.5.4 Convergence guarantee

In this section, we analyse the convergence of the SFBS algorithm. SFBS,
like other methods reviewed in Section 5.3, utilizes BCD or AO (to be ex-
act, ALS). Therefore, the convergence analysis is firstly studied for AO in
Section 5.5.4.1, and then, the convergence guarantee of each step (or block)

of AO (or BCD) is investigated in Section 5.5.4.2.

5.5.4.1 The convergence of AO with Proximal Minimization

The overall convergence of AO when the minimization in each step is carried
out by means of the proximal concept is proved in [XY13b,BST14|. Since the
convergence analysis provided in [BST14] is suitable for the algorithm based
on Proximal Forward-Backward, we refer the overall convergence of SFBS
(which is also based on Proximal Forward-Backward) to the analysis per-
formed in [BST14], namely, Proximal Alternating Linearized Minimization
(PALM).

Let us rewrite (5.10) in an unconstrained manner by means of constraints
regularization (i.e. indicator functions or £, norms), and mention some new
notations, which help us to discuss the required assumptions of PALM more

efficiently:

N
TN AW, AD AW = £y AW AG AN LN e (A 4ra(N),
n=1

(5.17)
where fy(.) is the fidelity term as follows:

Jah AD, 4B A = T [x AW, 4B A2,
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and r,,(.) or 7x(A) could be indicator functions or ¢, norm, depending on
the constraints on A™ and A.

In the sequel, the required assumptions of PALM are reviewed, and we
shall explain how SFBS, which follows PALM procedure, satisfies these as-
sumptions by considering (5.17). Let us first bring up some required points
through our explanation over assumptions.

Based on the definition of KL on page 71, some classes of functions that
satisfy the KL property are summarized in [XY13b, Section 2.2|, among
which we are interested in a particular class of functions, namely semi-
algebraic. The exact definition of semi-algebraic functions and some of their
properties can be found in Remark 2, which will be practical in the expla-

nation over the assumptions of PALM.

Remark 2. A set D C R? is called semi-algebraic if it can be represented as

follows [XY13b, Section 2.2/

D =J ({z € RYpi;(x) = 0, q;5(x) > 0}, (5.18)
i=1j=1

where p;j,qi; are polynomial functions. A function is semi-algebraic if its
graph (see page 72 for definition) is a semi-algebraic set.
Some of the elementary properties of semi-algebraic functions are noted

below:
1- Semi-algebraic functions satisfy the KL property.
2- The sum of semi-algebraic functions is semi-algebraic.
3- The sum of a polynomial and a semi-algebraic function is semi-algebraic.

4- The indicator functions of a polyhedral set (such as a non-negative set

and the probability simplez) is semi-algebraic.
5- l1,0s, 0o norms are semi-algebraic.

6- The sum of £y pseudo-norm and a polynomial is semi-algebraic [ABS13,

Ezample 5.4].
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The assumptions in [BST14| are mentioned as several parts in three cat-

egories, which are listed below:

Assumption 1

Assumption 2

(i):

(i):

(iii):

rn(.) and rx(A) are proper and lsc: since the domains of 7,(.) and
ra(A) are not null, these functions are proper, in addition, as men-
tioned before, indicator functions and £, norm are lsc according

to the definition of Isc on page 70.

. fqis a C! function (the class of functions with first order differ-

entiability): since fy is quadratic, therefore it is a C? function,

and hence it is a C! function.

inf ¥(.) > —oo,infr,(.) > —oo,infryx(A) > —oo: these assump-

tions are satisfied, since fg > 0, r,(.) > 0,7a(X) > 0.

. fq is globally Lipschitz (see below for a detailed definition): since

fa is quadratic, it is globally Lipschitz.

Globally Lipschitz [BST14, Assumption 2 (ii)]. For any
fized y, the function x — G(z,y) is Ci’ll(y), namely the partial
gradient V ,G(z,y) is globally Lipschitz with moduli L1 (y), that is

VoG (21,y) — VaG(22,y)|| < L1(y) [|[21 — 22|, V1,22 €R"

Likewise, for any fized x, the function y — G(z,y) is C}jzl(x)'

The following inequalities are trivially fulfilled, since Assump-

tion 2 (ii) is satisfied (cf. [BST14, Remark 3 (iii)]).

Inequalities 3.5 and 3.6 from [BST14]. For i = 1,2, there
exists A, A\ > 0, such that

3 K3

inf{L1(y’):j € N} >\ and inf{La(2?):j € N} >\,

sup{L1(y’) : j € N} > A\ and sup{La(2?):j € N} > \J,
where j is the index denoting a PALM iteration.
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(iv): The following inequality is satisfied for f;, whenever f; is a C?
function (cf. [BST14, Remark 3 (iv)|): since fy is quadratic, it is

a C? function.

Inequality 3.7 from [BST14|. V(G is Lipschitz continuous on
bounded subsets of R” x R™. In other words, for each bounded
subset By x By of R™ x R™, there exists Z > 0 such that for all
(zi,y;) € By X Bg,i =1,2:

(VoG (21,y1) — VoG(22,12), VyG(21,y1) — V,G(22,92)) ||

< Z||(x1 — xz2,51 — y2)||-

Assumption 3 ¥(.) satisfies the KL property: according to Remark 2, for most of
prevalent constraints such as non-negativity, the simplex set and /¢,
norm (p = 0,1,2,00), ¥(.) is semi-algebraic, hence satisfies the KL. In

the rest of this thesis, we call this assumption “KL assumption”.

5.5.4.2 The convergence of each step of AO

The convergence of each step of AO in SFBS, which is Forward-Backward
Splitting for each block of variable (cf. Theorem 1), is next discussed. It is
usually expected to have the global convergence when the cost function to be
minimized is convex [ABS13|, which means that the algorithm generates a
converging sequence to the solution regardless of the starting point. However,
if the objective function is non-convex, the monotonicity of the sequences
generated by descent methods will be broken and oscillatory behaviors may
appear [ABS13|. In order to achieve the convergence in such cases, it is
necessary to limit ourselves to functions with some particular properties,
such as KL [ABS13].

The convergence of Forward-Backward Splitting in Theorem 1 is proved
in [ABS13|, and the provided convergence analysis is not only applicable for
continuous and convex cost functions, but is also usable for non-smooth and

non-convex functions (or a non-convex set of constraints). It has been proved
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that the sequence xg generated by Theorem 1 converges to a critical point
of f = h + g, if the mentioned sequence is bounded [ABS13|. Therefore,
the convergence guarantee of each step of SFBS results from the following

theorem, quoted from [ABS13]:

Theorem 2 (The convergence of Forward-Backward Splitting [ABS13)).
Suppose f : RN s R U {+oo} is a proper lower semi-continuous function,
which has the KL property and is bounded from below. Assume that f can
be spilt into two parts as f = h + g, where g is lower semi-continuous and
h : RN — R is a finite valued, differentiable function with a B-Lipschitz
continuous gradient.

If the sequence gemerated by Algorithm 5 is bounded, then this sequence
will converge to a critical point of f. In addition, by choosing v € |0, %] (~y is
the coefficient of Vh in the fized point equation (5.7), and [ is the Lipschitz

constant of Vh), the values of the cost function are not increasing.

Let us explain that the assumptions in Theorem 2 are completely satis-
fied for each step of SFBS. According to Theorem 2, the objective function
in each step, i.e. (5.12), should be a proper lower semi-continuous (Isc) func-
tion, which has the KL property and is bounded from below. As mentioned
before, it is proper as its domain is not null. This function is Isc, since the fi-
delity term, 5[ 7™ — AM™W |2, is continuous and the regularization term,
equivalent to g in Theorem 2, is Isc (cf. Assumption 1 (i)). Finally, the ob-
jective function in (5.12) is bounded from below (since its values are always
non-negative), and satisfies KL according to the Remark 2. Assumptions
on h and g are the same as that of Theorem 1, and the same explanations
provided for Theorem 1 hold also here.

The only assumption to be discussed is that of generating a bounded se-
quence by SFBS, which is a critical assumption in Theorem 2. [ABRS10, Re-
mark 5| discusses about the assumptions, which guarantee the boundedness
of generated sequence. For instance, the coercivity [RW09, Definition 3.25]

of objective function is simply sufficient to obtain bounded sequence from
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SFBS. A function is coercive, if it is bounded below on bounded sets and

lim inf @ =0
x| =00 T

It can be observed that the objective function in (5.12) is coercive.

We now review the main theoretical and practical advantages of SFBS
described in Algorithm 5. Firstly, it can be applied even on non-convex and
non-smooth constraints such as cardinality [ABS13]|, and this does not affect
its convergence. Secondly, it does not require any critical setting of the pa-
rameters. The only parameters to be set are v and «, where the suggested
values in Algorithm 5 are almost always suitable. Thirdly, compared to state-
of-the-art methods such as APG and BC-VMFB, SFBS is easy enough to
understand and implement. Fourthly, contrary to BC-VMFB, SFBS works
with variables in matrix form, so there is no need to vectorize loading ma-
trices. This brings an advantage in working with large dimension tensors.
Moreover, as it is developed in the next section, SFBS can be adapted to

many different constraints.

5.6 SIMULATION

The computer experiments described in this section can be classified in three

main groups:

e Synthetic data: the decomposition of data tensor synthetically gen-

erated under the non-negative and the simplex constraint;

e Synthetic data with hidden relation®: the decomposition of the
third order moments tensor of synthetic data generated according to
the generative processes described in Section 3.4.1 under the non-

negative and the simplex constraint;

e Real data: the decomposition of the third order moments tensor of

a well-known text data set, namely 20 Newsgroups, which consists of

8By hidden relation, we mean the relation between hidden/latent variables (topics) and

multi-view variables (words), which is depicted in Fig. 3.1.
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approximately 20000 posts on 20 topics [Nig00|, under the simplex

constraint.

We compare SFBS with those described in Section 5.3, namely AO-
ADMM [HSL16|, APG [XY13b|, FastNTF-APG [ZZZ*16] and BC-VMFB
[VCTMM17]°. The software of CP decomposition via least squares, namely
Nway, from a well-known tensor Tool-box [BK*21] is also added in our com-
parisons. Algorithms are either tested on artificially generated tensors, which
are corrupted with additive noise, or on some artificially estimated third or-
der moments, which contain intrinsic noise due to the lack of accuracy in
estimating moments. In addition, some experiments on a real text data set
(20 Newsgroups) are also added to complete this chapter.

In order to compare the performances of algorithms fairly, we require
all the algorithms to iterate until either they reach a maximum predefined
number of iterations (denoted by iterations maz-number) or the variation
of relative objective value between two successive iterations is less than a
desired small value, namely €. If we denote the objective value in iteration
k by W(k), which is the difference between the input tensor and the estimated
tensor, the criterion to stop iterations is as follows:

Wik) — D(k—1) _ €1. (5.19)

AT (k) = o) <

In addition, the reported result of each experiment is averaged over sev-
eral realizations of the tensors, and for each realization, all the methods are
initialized by an identical set of initializations to choose the best initializa-
tion point. Therefore, it is possible that not the same initialization point
will be the best for all the methods, but nonetheless, the comparison is fair,

since the set of initializations is the same for all the considered methods.

9We would like to thank the corresponding authors of FastNTF-APG [ZZZ"16] and
BC-VMFB [VCTMM17], Guoxu Zhou and Caroline Chaux, respectively, who sent us the
MATLAB codes of their methods. The MATLAB codes of AO-ADMM [HSL16| and
APG [XY13b] are made available by the authors at [Hual5] and [XY13a], respectively.
Therefore, the original codes of authors have been used to obtain the results reported in

all figures of this section.
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In the sequel, we mention the number of the realizations of tensors and the
number of initialization points by average number and initialization number,
respectively.

All computer experiments reported in this section have been executed
either on a laptop with a processor of 3.1 GHz Intel Core i5, 16 GB RAM or
on a PC with a processor of 3.2 GHz Intel Core i5, 8 GB RAM, both running
macOS Mojav and MATLAB 2019a.

5.6.1 Synthetic data

According to the considered constraints (non-negativity or the simplex set),
we generate randomly (uniform distribution in the interval [0,1]) loading
matrices and a coefficient vector. Then, the noiseless tensor 7T, is computed
via (2.6).

In order to work in a noisy context, a noise tensor, 7T, with i.i.d. entries
of Gaussian distribution with zero mean and unit variance, of the same size
as T,, is weighted by the parameter o and added to T,. As T, has unit

2

variance, then the variance of o7, is 0. ¢ is adjusted such that we reach a

desired Signal to Noise Ratio (SNR) according to the following relation:

1 - 2

T s 7-0 71, ,k
SNR =10 10g10 lM Zld’k B ( J . ) 5
M 2aijk 9 Tn(isj, k)

(5.20)

where M is the total number of elements in tensors T, or T.

Denote by T the desired tensor to be decomposed, T = T, + 0 T,. After
decomposing T, the estimation of T, can be calculated through (2.6), as a
rank-R approximation, which we call 7. The relative reconstruction error

is computed as follows:

_ T - Toll%

e(T) = AT (5.21)

which will be reported as it is (not in the form of percentage!'®) for all the

experiments of synthetic scenarios. In addition to the reconstruction error,

YOFor example, if we report e(’f') = 1.5, it should not be interpreted as 1.5%, but as
150%.

101



CHAPTER 5. CONSTRAINED AND NON-CONSTRAINED TENSOR
DECOMPOSITIONS

we will report the error of estimating loading factors but according to the

points remarked in Remark 3.

Remark 3. As mentioned in Chapter 4, it is hard to assess the relative error
made on loading matrices, because of the scaling and the permutation ambigu-
ities of tensor decomposition [Com14[. So as to overcome these ambiguities,
we report CorrIndex measure described in Chapter 4 as the performance on
estimating loading factors. However, if we report Corrindex on each loading
factor separately, it would be an optimistic measure, since implicitly a specific
(not common) permutation is permitted for each loading matriz.

In order to have a more reliable performance index, we report Corrindez

based on the matriz X which consists of all loading factors together. In other

words, we report Corr[ndez(X,E(\), where X,X\ are defined as follows

A AWM
A®) - e

x=| |, x=|" | (5.22)
A A

Nevertheless, it is worth to report also exact errors based on the meth-
ods described in 4.3.2 (e.g. Hungarian), and compare them with the results

interpreted from Corrindez.

We should note two technical points about our practical implementations.
First, in order to compute Lipschitz constant (line 4 of Algorithm 5), one can
employ [norm(W)]? command in MATLAB, where W is the matrix composed
of constant loading matrices and is defined in line 3 of Algorithm 5. Second,
as all the investigated algorithms in this chapter require the rank R, as
their input, one could employ Corcondia [BK03| to obtain an estimation of
R. However, in synthetic scenarios, we are aware of real rank. In working
with real text data set, some points on choosing the rank are remarked in

Section 5.6.3.
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5.6.1.1 Non-negativity constraint

Small size tensors. In all simulations of this section, e; = 1072%, e = 1.9
and we repeat five times the loop of line 6 for each mode in Algorithm 5
(SEFBS algorithm).

Figure 5.3 shows the relative reconstruction error of the noiseless tensor
of size 10 x 10 x 10, of rank R = 6 with initialization number, average
number and iterations max-number, equal to 10, 10 and 5000, respectively
(cf. see page 101 for the definition of these parameters). As it can be seen
at the first glance, BC-VMFB, in spite of our effort to adjust its parameters
properly, results in a relative error around 1, which means 100% (remind
that we always report relative error according to (5.21) which is not in the
form of percentage). Although we consulted the corresponding author of
BC-VMFB about the parameters of their algorithm, we found it hard to
adjust several parameters of BC-VMFB. In fact, not only these parameters
depend on data, but also they have a critical effect on the final result of
the method. Therefore, it seems unnecessary to include BC-VMFB in the
rest of comparisons in this experiment. In addition, since FastNTF-APG
tries to decompose a low-rank approximation of the desired tensor, it can
be expected that the performance of FastNTF-APG is worse than APG.
As a result, we remove FastNTF-APG in some comparisons of this chapter.
Although most of the methods achieve reasonable performances, APG and
SEFBS converge rather faster.

In Fig. 5.4, the gap between X and X via Corrlndex and Hungarian
algorithms (which is an exact error) is reported for the same experiment of
Fig. 5.3. As it can be seen in Fig. 5.4, the same interpretation as that of
Fig. 5.3 can be concluded from CorrIndex and Hungarian. Moreover, the gap
between loading factors!! and their estimations (Fig. 5.5 - Fig. 5.7) reveals
the same conclusion, that is, APG and SFBS converge slightly faster than
others, whereas all the methods (except FastNTF-APG and BC-VMFB)

reach a reasonable performance.

H1n plots, we show the loading factors of a third order tensor by A, B, C.
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Figure 5.3: The reconstruction relative error in decomposing a tensor of dimension
10 x 10 x 10, of rank R = 6 under the non-negativity constraint over all loading
factors, in noiseless case with the following setting: ¢; = 10720, average number=

10, initialization number= 10, iterations max-number= 5000, e = 1.9.
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Figure 5.4: Compare the estimation of matrix X via CorrIndex (Left) and Hun-

garian (Right) in the same experiment as Fig. 5.3.
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Figure 5.5: Compare the estimation of matrix A via CorrIndex (Left) and Hungar-
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Figure 5.6: Compare the estimation of matrix B via CorrIndex (Left) and Hungar-

ian (Right) in the same experiment as Fig. 5.3.
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Figure 5.7: Compare the estimation of matrix C via CorrIndex (Left) and Hungar-

ian (Right) in the same experiment as Fig. 5.3.
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Since the relative error of loading factors (like what are represented in
Fig. 5.5 - Fig. 5.7) results almost the same result as the gap between X
and X via CorrIndex and Hungarian, in the rest of the experiments of this
section, we shall just report the relative reconstruction error and the gap

between X and X via CorrIndex and Hungarian (like Fig. 5.4).

Figure 5.8 indicates the relative reconstruction error of a noisy tensor of
size 10 x 10 x 10, of rank R = 6 with SNR = 10, initialization number = 20,
average number = 200 and iterations max-number = 1000. Figure 5.8 (Left)
compares all the methods together, whereas Figure 5.8 (Right) excludes BC-

VMEB in order to show the results of other methods more precisely.

As in Fig. 5.3, BC-VMFB does not perform properly in the experiment
of Fig. 5.8. In addition, although Nway carries out well in a noiseless case,
its performance is not acceptable in the noisy situation (cf. Fig. 5.8). As
mentioned before, FastNTF-APG replaces the noisy tensor with its low rank
approximation, which helps to filter the noise out. As it can be seen in
Fig. 5.8, the result of FastNTF-APG is better than APG in a noisy sce-
nario, whereas APG is one the best methods for the decomposition of a
noiseless tensor (cf. Fig. 5.3). Moreover, SFBS and AO-ADMM outperform
other methods in the experiment of Fig. 5.8. Therefore, the only algorithm
that performs properly and better than others in both noiseless and noisy

situations is SFBS.

In Fig. 5.9, the gap between X and X via Corrlndex and Hungarian
algorithms (which is the exact error) is reported for the same experiment of
Fig. 5.8. Although according to the relative reconstruction error in Fig. 5.8,
both AO-ADMM and SFBS outperform others, in estimating loading factors
(cf. Fig. 5.9), SFBS performs better than AO-ADMM. The performance on
estimating loading factors is critical in many applications such as data min-
ing and text mining explained in Chapter 3. In addition, as Nway performs
inadequately in the noisy case, this reveals the importance of considering con-
straints in the decomposition of tensors (remind that Nway executes simply

non-constrained CP decomposition).
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Figure 5.8: The reconstruction relative error including BC-VMFB (Left) and ex-
cluding BC-VMFB (Right) in decomposing a tensor of dimension 10 x 10 x 10,
of rank R = 6 under the non-negativity constraint over all loading factors,
in a noisy case with SNR = 10 and with the following setting: ¢; = 10720,
average number = 200, initialization number = 20, iterations max-number = 1000,

e=1.9.

011} 0.5
0.105 s ods
S a8l
0.1} s
c
0.095 | 2046
x >
w 0.09} 2
3 :
£0.085) X 0.44
5 5
3 o.08f =
So0.42)
£
0.075 | &
B
b 0.4
0.07 X
0.065 [ : : ‘ : i . ;
10 1073 102 107 10° 107 107 102 107 10°

time(sec) time(sec)

Figure 5.9: Compare the estimation of matrix X via CorrIndex (Left) and Hun-

garian (Right) in the same experiment as Fig. 5.8.

107



CHAPTER 5. CONSTRAINED AND NON-CONSTRAINED TENSOR
DECOMPOSITIONS

Large size tensors. Figures 5.10 and 5.11 correspond to the decompo-
sition of a noiseless tensor of size 100 x 100 x 100, of rank R = 3 with
initialization number , average number and iterations max-number, equal to
10, 10 and 5000, respectively (cf. see page 101 for the definition of these
parameters). Comparing the results in Fig. 5.10 and Fig. 5.11, it can be in-
ferred that all methods except BC-VMFB and FastNTF-APG allow to reach
an acceptable performance in terms of relative reconstruction error and es-
timation of loading factors. In addition, SFBS performs slightly better than
others. Therefore, the same interpretations can be concluded for large ten-
sors (of size 100 x 100 x 100) as those for small ones (of size 10 x 10 x 10)
in Fig. 5.3 and Fig. 5.4.

Figure 5.12 indicates the relative reconstruction error of a noisy tensor of
size 100 x 100 x 100, of rank R = 3 with SNR, initialization number, average
number and iterations max-number, equal to 10, 20, 200 and 1000, respec-
tively. As the decomposition of large noisy tensors is a difficult problem to
handle, FastNTF-APG is not anymore better than APG like the experiment
in Fig. 5.8. In addition, unlike Fig. 5.8, Nway reaches the same level of
relative error as others after convergence. Nevertheless, in this experiment,
AO-ADMM and SFBS outperform others and also SFBS is slightly better.

In Fig. 5.13, the gap between X and X via CorrIndex and Hungarian
algorithms (which is the exact error) is reported for the same experiment of
Fig. 5.12. As it can be seen in Fig. 5.13, SFBS performs slightly better in

estimating loading factors compared to the others.

5.6.1.2 Simplex constraint

In this section, we investigate practically the performance of tensor decom-
position algorithms under the simplex set constraint over all the columns
of all loading factors and over A. In the simulations of this section, we
set ¢ = 1072° and repeat five times the loop of line 6 for each mode in
Algorithm 5 (SFBS algorithm).

In this section, we compare SFBS with AO-ADMM, since, firstly, the

108



CHAPTER 5. CONSTRAINED AND NON-CONSTRAINED TENSOR

DECOMPOSITIONS
10°
s NG
S .
Q
Q
2 10°
©
[
c
S
©
2
% 10710 -|—SFBS
[ == I IR
o
b
o —-—-Nway
—»— BCVMFB
FastNTF
10'15 E 1 L I S b
103 102 107! 10° 10’ 102
time(sec)

Figure 5.10: The reconstruction relative error in decomposing a tensor of dimension

100 x 100 x 100, of rank R = 3 under the non-negativity constraint over all loading

factors, in a noiseless case with the following setting: ¢; = 1072°, average number =

10, initialization number = 10, iterations max-number = 5000, e = 1.9.

10° 10° =
c
8
=
©
s g
10°F 5, .
< T 10°
) >
> -]
2 5
E o 5
o0 S 4010
210
[
8 ——SFBS
‘; ........ ADMM
10715 ¢ w APG
—-—-Nway
L L 10-15 I L
1073 102 107 10° 10’ 102 102 102 107 10° 10’ 102
time(sec) time(sec)

Figure 5.11: Compare the estimation of matrix X via CorrIndex (Left) and Hun-

garian (Right) in the same experiment as Fig. 5.10.
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simplex constraint is directly considered and investigated by the authors
in [HSL16] as well as in their implementation. Secondly, according to the
results under the non-negativity constraint in Section 5.6.1.1, AO-ADMM is
the only algorithm, which has the closest performance to that of SFBS in
both noiseless and noisy cases.

The methodology for applying the simplex set constraint on all the
columns of all loading factors in addition to the vector of coefficients ()
is explained in Section 5.5.2.2, and we have utilized this methodology in our

simulations of the current section.

Noiseless cases. Figure 5.14 shows the relative reconstruction error of
the noiseless tensor of size 10 x 10 x 10, of rank R = 3 with initialization
number, average number, e and iterations max-number, equal to 10, 10, 1.5
and 20000, respectively, under the simplex set constraint over all the columns
of all loading factors in addition to A'2. By comparing Fig. 5.14 and Fig. 5.3,
it can be inferred that the simplex set is a more difficult constraint than
non-negativity to be achieved, since the maximum required iterations for
the simplex set constraint is 20000, and it is more than what is set for the
non-negativity constraint (i.e. 5000) for the convergence of the algorithms.
As it can be seen in Fig. 5.14, both SFBS and AO-ADMM achieve the same
level of relative error, however SFBS converges slightly faster.

In Fig. 5.15, the gap between X and X via CorrIndex and Hungarian
algorithm (which is the exact error) is reported for the same experiment
of Fig. 5.14. The same conclusion as before can be drawn from estimating
loading factors, that is, both SFBS and AO-ADMM perform well, however,
SEFBS converges a bit faster.

In order to show that Fig. 5.15 has sufficient information even under
the simplex set constraint (like the non-negativity constraint), we bring the
result of the estimation of first mode loading factor (A) in Fig. 5.16, which
has the same information as Fig. 5.15. As matrix X (cf. Fig. 5.15) does not

12See page 101 and Algorithm 5 for the definition of these parameters.
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Figure 5.14: The reconstruction relative error in decomposing a tensor of dimension
10 x 10 x 10, of rank R = 3 under Simplex set constraint over all the columns of all
loading factors and over A, in a noiseless case with the following setting: ¢; = 10729,
average number= 10, initialization number= 10, iterations max-number= 20000,

e = 1.5.
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Figure 5.15: Compare the estimation of matrix X via CorrIndex (Left) and Hun-

garian (Right) in the same experiment as Fig. 5.14.
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garian (Right) in the same experiment as Fig. 5.14.
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Figure 5.17: Compare the estimation of vector A via CorrIndex (Left) and Hun-

garian (Right) in the same experiment as Fig. 5.14.

include the information of the estimation of A, we compare the performance
of algorithms in the estimation of A in Fig. 5.17, which reveals the same

conclusion as the other plots of this experiment.

Noisy cases. Figure 5.18 show the relative reconstruction error of a tensor
of size 10 x 10 x 10, of rank R = 3 with SNR, initialization number, average
number, e and iterations max-number, equal to 10, 20, 200, 1.9 and 1000,
respectively, under the simplex set constraint over all the columns of all

loading factors in addition to A. Figure 5.19 represents the gap between X
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Figure 5.18: The reconstruction relative error in decomposing a tensor of dimension
10 x 10 x 10, of rank R = 3 under the simplex set constraint over all the columns
of all loading factors and over A, SNR = 10 with the following setting: ¢; = 10729,
average number= 200, initialization number= 20, iterations max-number= 1000,

e=1.9.

and X via CorrIndex and Hungarian algorithm (which is the exact error)
for the same experiment of Fig. 5.18. Both Fig. 5.18 and Fig. 5.19 show that
SEBS performs better than AO-ADMM and it converges slightly faster.

Figure. 5.20 shows the gap between A and X via Corrlndex and Hungarian
algorithm (which is the exact error) for the same experiment of Fig. 5.18.
The same conclusion can be drawn as before, that is, SFBS performs and
converges better and faster than AO-ADMM. It can be seen that the relative
error in Fig. 5.20 increases slightly, but note that decreasing monotonically
is essential for the relative reconstruction error (or objective function) not in
the estimation of loading factors or A, which is the case in all the experiments

such as the one expressed in Fig. 5.18.
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Figure 5.19: Compare the estimation of matrix X via CorrIndex (Left) and Hun-

garian (Right) in the same experiment as Fig. 5.18.
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5.6.2 Synthetic data with hidden relations

In order to follow much more easily the computer experiments of this sec-
tion, it is better to review briefly the notation of the data mining problem

described in Section 3.3:

e h: a hidden variable (topic) encoded into a discrete variable taking
K possible integer values, say in H = {1,2,...,k,..., K} with the
probability ¢(k) = Prob(h = k)

Q={uy,...,uq,...,up}: the encoded dictionary of cardinality D for

the multi-view variables (words), =

fr(d) = Prob(z = ug|h = k): the conditional probability of each word

ug of dictionary €2, given a particular topic, h = k
e ay: a vector of dimension D contains the values of fi(d) for all d
e A=Jay,...,ak,...,ag].

The goal is to estimate the probabilities A and ¢ by means of the decom-
position of the third order moments tensor (77) of the observed multi-view
variables (words), which can be employed for some targeted data mining
tasks such as unsupervised clustering. As it is described in Section 5.4, some
algorithms such as Robust tensor power method require also the second or-
der moments (P) for the decomposition of 7. In addition, some methods
of moment estimation, such as simple and standard averaging, have been

expressed in Section 3.4.

5.6.2.1 The drawbacks of Robust tensor power method [AGH"14]

In this section, we show experimentally the drawbacks of Robust tensor
power method, namely the negative estimated probability (which is also re-
ported in our paper [SCBZ19]| but we shall explain it completely in the sequel)
and the sensitivity to the additive noise. Figures 5.21 and 5.22 correspond to

a simulation, which reveals that the estimated probabilities by Robust tensor
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power method occasionally are not acceptable, since they include negative
values. Table 5.2, Fig. 5.23 and Fig. 5.24 experimentally prove that Robust

tensor power method is very sensitive to the additive noise.

Negative estimated probabilities. In the simulation of Fig. 5.21 and
Fig. 5.22, we generated some arbitrary probabilities, i.e. AS** and p**1,
which are depicted in Fig. 5.21 (left column) and Fig. 5.22 (top). Note that
in Fig. 5.21 (left column), four plots correspond to each column (each hidden
variable or topic, i.e. k) of the matrix A, and in each plot, the six values are
the conditional probabilities of multi-view variables (words), i.e. d, according
to their hidden variable (topic). Similarly, Fig. 5.22 (top), contains the
probabilities of four hidden variables (topics), i.e. k, in this simulation. Then,
by considering these probabilities, synthetic data with hidden relation are
generated via the generative procedure described in Section 3.4.1.1'3. The
method of moment estimation in this simulation to obtain empirical second
and third order moments is simple averaging with N. = 10°> documents for
averaging. Note that these documents construct a corpus of size N.. Finally,
we applied Robust tensor power method and the non-negative AO-ADMM
on these empirical moments, and obtained the estimation of A and ¢.

Middle and right column in Fig. 5.21 correspond to the estimation of
the columns of matrix A with the non-negative AO-ADMM and Robust
tensor power method, respectively. In order to compare the performances,
the plots of each row of Fig. 5.21 should be compared with each other. In
all the rows of Fig. 5.21 except the first row, the negative values can be seen
in the estimation of Robust tensor power method, which are not acceptable
as the estimated probabilities for the targeted data mining task.

The performances in estimating vector ¢ have been compared in Fig. 5.22,
where the figures in the middle and at the bottom correspond to the non-
negative AO-ADMM and Robust tensor power method, respectively. It is
clear that the result of the non-negative AO-ADMM is closer to the original

3To calculate cumulative distributions, the MATLAB function cumsum() can be used.
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vector .

Sensitivity to additive noise. In the sequel, we shall experimentally
show that Robust tensor power method does not perform well in presence of

additive noise. In order to assess this, we generated some arbitrary matrices

A10><3 3x1

and vectors °**. Then, we calculated their original corresponding

third and second order moments, i.e. T and P (cf. (3.5) and (3.6)). At
the end, we applied several tensor decomposition algorithms, including Ro-
bust tensor power method, on both the noiseless (Table 5.2) and the noisy
(Fig. 5.23 and Fig. 5.24) versions of T and P.

Table 5.2 reports the relative reconstruction error and the relative exact
error in estimating A and ¢ (measured with Hungarian algorithm) from
noiseless 7~ and P. These results averaged over 200 realizations of A and

. The considered algorithms in this experiment are as follows:
1 - Power method: Robust tensor power method

2 - Projected Power method: as the result of Robust tensor power
method is not in the simplex set, we modified this method by projecting

its result to the simplex set.

3 - Simplex AO-ADMM: AO-ADMM with the simplex set constraint
4 - Simplex SFBS: SFBS with the simplex set constraint

5 - Symmetric Simplex SFBS: unlike Simplex SFBS, we take into ac-
count the symmetric property of the third order moments tensor. To
be more precise, in calculating the objective function for the criterion
to stop the iterations of SFBS, we utilized an average of all estimated

loading factors.

141n this experiment, we work with true moments instead of their estimations. There-
fore, we do not need realizations of documents. Note that we need realizations of A and ¢
to generate different values of T~ and P, but with realizations of documents, the empirical

estimations in (3.8) and (3.7) are computed.
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Figure 5.21: Left column: an arbitrary conditional probability, A®**. Four plots

correspond to each column (each hidden variable or topic, i.e. k) of the matrix

A, which contains 6 probability values for each multi-view variables (d).

column: the estimation of the matrix A with the non-negative AO-ADMM. Right

column: the estimation of the matrix A with Robust tensor power method including

some negative estimated probabilities, which are not acceptable.
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Figure 5.22: Top: an arbitrary probability distribution ¢**! contains four values for
each hidden variable (topic), k. Middle: the estimation of ¢ with non-negative AO-
ADMM. Bottom: the estimation of ¢ with Robust tensor power method. Obviously,
the result of non-negative AO-ADMM is much more closer than Robust tensor

power method to the original probability distribution (top).

For the last three methods (i.e. Simplex AO-ADMM, Simplex SFBS and
Symmetric Simplex SFBS), we set initialization number to 20, iterations
max-number to 1000, e, = 10720 and e = 1.9. In addition, in order to have
a fair comparison with Power method, we set “M; = initialization number =
20” and “Msy = 5 X iterations max-number” in Algorithm 4, where 5 is due
to the five times of doing the loop of line 6 in Algorithm 5 (the same loop in
AO-ADMM is also done five times).

It can be inferred from Table 5.2 that all the considered methods perform
well in noiseless case, specially Projected Power method. These results show
that our implementation of Power method is reliable.

Although Power method and Projected power method perform very well
in the noiseless case, Fig. 5.23 and Fig. 5.24 show that these algorithms are
very sensitive to additive noise in 7~ and P. Note that in these figures SFBS,
SEBS-Symm, ADMM, Power and Power-proj refer to Simplex SFBS, Sym-
metric Simplex SFBS, Simplex AO-ADMM, Power method and Projected
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Table 5.2: Generating some arbitrary matrices A'°*3 and vectors 3>, then calcu-
lating their corresponding 7~ and P, averaging the results of decomposing noiseless

T over 200 realizations of A and ¢.

Algorithm Reconstruction | Error of A | Error of ¢

Power method 2.97 e-15 5.25 e—16 | 3.68 e—16
Projected Power method 9.19 e-16 5.10 e~16 | 7.70 e—16
Simplex AO-ADMM 4.11 e-5 1.50e—4 | 2404
Simplex SFBS 1.57 e-15 4.97 e—15 | 8.39 e—15
Symmetric Simplex SFBS 1.52 e-15 4.97 e—15 | 8.39 e—15

Power method, respectively.

All the settings in the experiment of Fig. 5.23 and Fig. 5.24 are the
same as that of Table 5.2, except that T and P are perturbed by additional
Gaussian noise at a specific SNR (cf. (5.20)). Figure 5.23 (Left) shows the
relative reconstruction error of algorithms versus a range of SNR values,
i.e. [10,20,30,40]. As it can be seen, Power method is highly sensitive to
the additive noise, and its relative reconstruction error can reach very large
values (such as 500). In Fig. 5.23 (Right), so as to distinguish the perfor-
mances of other algorithms, we remove Power method. Figure 5.23 (Right)
expresses that even by projecting the result of Power method to the simplex
set (Projected Power method), the performance of Power method cannot

become acceptable.

The relative error of estimation of A and ¢ are depicted in Fig. 5.24
(Left) and Fig. 5.24 (Right), respectively. As it is demonstrated in Fig. 5.24,
Power method and Projected Power method does not perform as well as
others such as SFBS. Moreover, Simplex SFBS and Symmetric Simplex SFBS
perform a bit better than AO-ADMM. Note that unlike reconstruction error,
the relative error of the estimation of A and ¢ is limited in the range of
[0,2], since we normalize the ¢ and the columns of A with Ly norm before

measuring the performance index.
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Figure 5.23: Left: The relative reconstruction error of decomposing third order

moments including Power method. Right: zoom of the left one, excluding Power

method. Averaging the results of decomposing noisy T according to a range of SNR

values, i.e. [10, 20, 30, 40] over 200 realizations of A and ¢, reveals that constrained

algorithms such as SFBS perform much more better than Power method and its

variants.
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Figure 5.24: Left: The relative error of the estimation of A measured by Hungar-

ian algorithm in the same experiment of Fig. 5.23. Right: The relative error of

the estimation of ¢ measured by Hungarian algorithm in the same experiment of

Fig. 5.23. Averaging the results of decomposing noisy T according to a range of

SNR values, i.e. [10,20, 30, 40] over 200 realizations of A and ¢, reveals that con-

strained algorithms such as SFBS perform much more better than Power method

and its variants. In addition, Symmetric Simplex SFBS and Simplex SFBS also
perform a bit better than AO-ADMM.
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5.6.2.2 Compare performances for synthetic data with hidden re-

lation

In this section, we evaluate the performance of several algorithms in esti-
mating probabilities for synthetic data with hidden relation. Note that in
Section 5.6.2.1, we generated synthetic A and ¢, then we obtained their
corresponding T~ according to (3.6), and finally, we fed the algorithms with
the noiseless or the noisy version of T .

Nevertheless, in this section, we generate some synthetic hidden (topics)
and multi-view variables (words), then we estimate the third order moments
tensor by means of moment estimators (cf. Section 3.4) and by observing the
generated synthetic variables. Finally, we feed the algorithms with the esti-
mated moments. The comparison of AO-ADMM and Robust tensor power
method is also investigated in our paper [SCJBZ19].

As explained in Section 3.4.1, such a synthetic data can be generated
by means of two different generative processes. In addition, as mentioned
in Section 3.4.2, it can be easily shown that (3.3) and (3.4) are respectively
equal to (3.5) and (3.6). Therefore, the sample estimates of (3.3) and (3.4)
should converge to the true moments P and 7T defined in (3.5) and (3.6).
To carry out this sample estimate, some moment estimators such as simple
averaging are reviewed in Section 3.4.3, as well as our proposed estimator,
standard averaging, in Section 3.4.4.

Hence, it is essential to check the consistency (cf. see Section 3.4.2 for a
definition of consistency) of generated data along with moment estimator in
order to make sure that sample moments indeed converge to the true joint

probabilities.

The effect of constraint on the performance. In this experiment, we
experimentally show the effect of considering a constraint on the precision of
probability estimation. In other words, we shall compare the performance of
non-constrained tensor decomposition such as Robust tensor power method

with the constrained one, such as AO-ADMM and SFBS, in terms of their
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precision in estimating probabilities.

As Robust tensor power method is introduced along with simple averag-
ing, firstly, we investigate the consistency of simple averaging on a synthetic
data generated by the generative process described in 3.4.1.1. To this end, we
generated some corpuses of size N, (i.e. each corpus contains N, documents),
where each document is constructed of synthetic words, &y = wu.(y), (in a way
explained in 3.4.1.1) with the following parameter values: K =4, D = 8 and
different amounts of N.. We chose a uniform distribution for ¢, and K ar-
bitrary distributions to build a synthetic matrix A. Lastly, we calculated
sample moments in (3.7) and (3.8) (i.e. simple averaging), and compared
them to the true ones (3.5) and (3.6). Fig. 5.25 reports the discrepancy
between both in terms of Euclidean norm. As can be seen in Fig. 5.25, the
generated data in the way described in 3.4.1.1 along with simple averaging

are consistent for N, > 10000.

As mentioned before, the main goal is the estimation of A and ¢. Next,
we report in this section the comparison results obtained with only one dictio-
nary size, D = 8, with a fixed number of topics, K = 4, and for various corpus
size up to N. = 2!7. Robust tensor power method is run with M; = 10 (the
number of iterations over each mode in line 3 of Algorithm 4) and My =5
(the number of power iteration updates in line 5 of Algorithm 4) as proposed
by the authors, and the non-negative AO-ADMM with initialization number
set to 100. Moreover, the results are obtained for one particular realization

of matrix A and vector ¢ (however similar results are obtained with other
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Figure 5.25: Moment consistency (cf. Section 3.4.2 for the definition of consistency).
Each black circle (resp. red cross) corresponds to the discrepancy between sample
third order moments (resp. sample second order moments) and true moments for
a specific corpus of documents with a particular corpus size, N.. The median
among corpuses of documents is also plotted in solid line for every corpus size.
Data generated by the generative process described in 3.4.1.1 are consistent for
N, > 10000. Sample moment computation is carried out via simple averaging. The

relative error is reported according to (5.21), and it is not in the form of percentage.

choice of A and ¢):

[0.162 0.211 0.000 0.000
0.082 0.130 0.000 0.000

0.022 0.235 0.000 0.403 [0.256]
4 |0196 0423 0000 0.038 o 0.163
0.174 0.000 0.276 0.119 0.201
0.104 0.000 0.133 0.439 0.380

0.113 0.000 0.119 0.000
0.147 0.000 0.473 0.000

In order to compare the performance of both methods, we run this sim-

ulation for increasing the corpus size (note that the larger the corpus size,
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Figure 5.26: The comparison of performances of Robust tensor power method and
non-negative AO-ADMM in estimating probabilities, i.e. A (top) and ¢ (bottom),
versus corpus size up to N, = 2!7, when the moment estimator is simple averag-
ing. The number of words and topics are fixed to D = 8 and K = 4, respectively.
Each black circle (resp. red cross) corresponds to the error of Robust tensor power
method (resp. non-negative AO-ADMM) in estimating ¢ or A for a specific corpus
of documents with a particular corpus size, N.. The median (resp. standard devi-
ation) among corpuses of documents is also plotted in solid (resp. dotted) line for

every corpus size.
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the fewer the number of documents, to keep a computational load constant).
To be more precise, by keeping the values of parameters D = 8, K = 4, we
increase exponentially the value of N, from 2'* to 2'7. For each value of N,
we generated several synthetic data sets of size N, in the way that has been
explained in Subsection 3.4.1, and then the methods have been applied to

the obtained data to compare relative errors as a function of corpus size.

The results are reported in Fig. 5.26; each black circle (resp. red cross)
corresponds to the error of Robust tensor power method (resp. non-negative
AO-ADMM) in estimating ¢ or A for a specific corpus of documents with a
particular corpus size, N.. To ease comparison, the median (resp. standard
deviation) among corpuses of documents is also plotted in solid (resp. dotted)

line for every corpus size.

As Fig. 5.26 shows, the error of constrained method such as non-negative
AO-ADMM converges faster to zero as the corpus size increases, and unlike
Robust tensor power method, non-negative AO-ADMM appears to be much
more robust because of its smaller standard deviation of the relative error.
Moreover, Fig. 5.26 (bottom) reveals that the difference in the performance
and standard deviation of Robust tensor power method is much larger in
estimating . Therefore, taking into account a proper constraint (such as
non-negativity) in the decomposition is very effective, especially in the esti-

mation of ¢.

Results for random A and ¢. When running extensive computer simu-
lations, one can assume a uniform distribution for the hidden variables (top-
ics), and K uniform distributions for the conditional probability of multi-
view variables (words) given the topic, which are actually the columns of
A. Once A and ¢ are obtained, one can proceed exactly the same way as
explained in Subsection 3.4.1 to generate synthetic datasets and compute

sample moments via simple averaging.

In Table 5.3 the results obtained for a particular value of K and a few

values of D, averaged over 20 independent trials. These extensive computer
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experiments confirm the robustness and superiority of constrained algorithms

such as non-negative AO-ADMM compared to Robust tensor power method.

Improve performance by standard averaging and simplex set con-
straint. We can modify the experiment of Fig. 5.26 from different aspects.
As expressed in Section 3.4.5, the sample moment estimated by standard
averaging requires a smaller corpus size compared to simple averaging to
converge to the true moments. In addition, as we seek the probabilities,
which belong to the simplex set, the decomposition would be more precise if
it is carried out under the simplex set constraint for ¢ and the columns of

A.

Therefore, one can feed decomposition algorithms mentioned in page 118
by the sample moments approximated via standard averaging. Moreover,
it is preferred to perform constrained algorithms such as AO-ADMM and
SFBS under the simplex set constraint. These modifications have been done
in the experiment of Fig. 5.27.

The experiment of Fig. 5.27 is performed for K = 3 (hidden variables
(topics)), D = 10 (multi-view variables (words)) and various corpus size up
to N, = 2! The synthetic data for this experiment are generated via the
generative process described in Subsection 3.4.1.2, which is based on multi-
nomial distribution. The considered corpuses are consist of documents with
minimum and maximum length of 3 and 100, respectively. We set initializa-
tion number to 20, iterations max-number to 1000, ¢, = 1072 and e = 1.9.
In addition, in order to have a fair comparison with Power method, we set
“Mj = initialization number = 20” and “Ms = 5 X iterations max-number”
in Algorithm 4, where 5 is due to the five times of doing the loop of line 6
in Algorithm 5 (the same loop in AO-ADMM is also executed five times).

Figure 5.27 (top) compares the performances of algorithms in estimating
A versus the corpus size. As it can be seen in Fig. 5.27 (top), the perfor-
mances of all algorithms except Power method are the same, which shows

that the projection to the simplex set or considering this constraint in the

128



CHAPTER 5. CONSTRAINED AND NON-CONSTRAINED TENSOR
DECOMPOSITIONS

Table 5.3: The median and standard deviation of error in estimating A and ¢, with
a corpus of size N, = 217 ~ 1.2 x 10%, and K = 4. In each cell, top: non-negative
AO-ADMM, bottom: Robust tensor power method. As it can be seen, the median
and standard deviation of the error of non-negative AO-ADMM is always less than

those of Robust tensor power method.

Median of relative error in estimating A
D 6 7 8 9 10

Non-negative AO-ADMM 0.09 | 0.08 | 0.07 | 0.10 | 0.07
Robust tensor power method || 0.38 | 0.18 | 0.24 | 0.18 | 0.12

Standard deviation of relative error in estimating A
D 6 7 8 9 10

Non-negative AO-ADMM 0.10 | 0.12 | 0.08 | 0.10 | 0.12
Robust tensor power method || 0.31 | 0.31 | 0.39 | 0.33 | 0.23

Median of relative error in estimating ¢
D 6 7 8 9 10

Non-negative AO-ADMM 0.14 | 0.10 | 0.11 | 0.10 | 0.13
Robust tensor power method || 0.66 | 0.28 | 0.31 | 0.29 | 0.23

Standard deviation of relative error in estimating ¢
D 6 7 8 9 10

Non-negative AO-ADMM 0.22 | 0.12 | 0.21 | 0.28 | 0.31
Robust tensor power method || 0.54 | 0.52 | 0.59 | 0.41 | 0.40
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Figure 5.27: The comparison of performances in estimating probabilities, i.e. A

(top) and ¢ (bottom), versus corpus size up to N, = 2!°, when the moment esti-

mator is standard averaging. The number of multi-view variables (words) and the

number of hidden variables (topics) are fixed to D = 10 and K = 3, respectively.
Robust tensor power method is run with M; = 5000 and M, = 20, and the ini-

tialization number and iterations max-number for constrained algorithms is 20 and

1000, respectively.
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decomposition will end in more precise estimations compared to pure Power
method.

Figure 5.27 (bottom) compares the performances of algorithms in esti-
mating ¢ versus the corpus size. Unlike the estimation of A, the performance
of different algorithms are not the same. Actually, the performance of Pro-
jected Power method is the worst, while the relative error of ¢o by Symmetric
Simplex SFBS is the least among other methods. Therefore, Symmetric Sim-
plex SFBS outperforms other methods in decomposing the tensor of third
order moments.

Let us remark two other points that can be inferred from Fig. 5.27.
First, by comparing Fig. 5.26 and Fig. 5.27, we can observe easily the effect
of moment estimators. In Fig. 5.27, which is based on standard averaging,
a corpus of size 1024 is sufficient for the moment consistency, hence, for an
acceptable estimation of probabilities. Nevertheless, in Fig. 5.26, a corpus
of size N, > 10000 is necessary to have a reasonable performance, since the
moment estimator is simple averaging. Second, for the smallest considered
corpus size in Fig. 5.27, i.e. N, = 32, the SNR = 7.62, which shows that our
assumption on the range of SNR in the synthetic data with hidden relation
(Fig. 5.23 and Fig. 5.24) was reasonable.

5.6.3 Real data

In this section, we describe our experiment on a part of a well-known text
data set, namely 20 Newsgroups, which consists of 11314 posts on 20 topics
available online [Lan95a, Lan95b, Nig00].

It is vey common to do some pre-processing steps in order to extract the
keywords of the corpus described above. standard steps of pre-processings
are as follows: removing stop words (including me, you, a, the, which, where,
...), tokenizing (transform a text into a list of words), removing punctua-
tions and unnecessary characters, lemmatizing (replacing with the infinitive,
e.g. replacing “took” with “take”). At the end, according to the frequency

of each word (called term-document frequency) in the corpus, a portion of
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words are kept as the representatives of the corpus also known as vocabulary
or dictionary.

By doing above mentioned pre-processing!® steps on the whole data set
and by keeping the words with more than 20% of the term-document fre-
quency, we are left with a dictionary of size 14 x 14 (D = 14 words).
Since, Power method and its variants cannot handle over-complete cases
(K > D), we are forced to choose K = 14 topics rather than K = 20,
though K = 20 is more suitable according to 20 topics exist in the con-
sidered data set (N, = 11314 posts on 20 topics). Therefore, the resulted
bag-of-words (cf. (3.9)) is a matrix of dimensions 14 by 11314.

After obtaining the bag-of-words, we fed the tensor decomposition algo-
rithms listed in page 118 with the estimated P and T~ via standard averaging.
In addition, we set the input rank of all the algorithms to K = 14 due to the
limitation of Power method and its variants. Eventually, by each algorithm,

14 AW s acquired.

a pair of estimated probabilities (¢

Although in this corpus, the number of documents for all the topics
are almost the same (which means that ¢ is expected to have a distribu-
tion close to the uniform distribution), the estimated ¢ by Robust power

method, i.e. @poyers 1S NOt only non-uniform, but also it is not a probability

distribution at all, since it does not lie in the probability simplex:

Prower = 0.00,0.02,0.14,0.03,0.08, 0.26, 0.39,
0.35,0.65,302.89,1.01,0.87,8.30, 0.95] .

As it can be observed in @pgyer, its tenth element dominates the others
which could be the consequence of rounding errors. Even if one projects
Ppower t0 the simplex set as mentioned before, and obtains @power-proj» it
would be meaningless according to the fact that “¢ is expected to have a

distribution close to the uniform distribution”, since we have:

T
@Power—proj = [0)0707070707070707 170707070 :

5We did these steps by means of corresponding packages such as “nltk”, libraries such

as “Gensim” and an implemented example available online [Pral8].
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On the other hand, the estimated ¢ by SFBS, i.e. pgpps, is as follows:

Pepps = [0.10,0.08,0.09, 0.09,0.10, 0.04, 0.02,
0.05,0.06,0.01, 0.06, 0.09, 0.08,0.12]7,

which is closer to uniform distribution than @pgyer proj- This again proves
that applying constrained tensor decomposition is more reliable than non-
constrained one.

In Section 5.6.2.1, we investigated two drawbacks of Robust tensor power
method, namely negative estimated probabilities and sensitivity to the ad-
ditive noise. Nevertheless, in this experiment, we detect a much more im-
portant drawback in employing Power method for real text data set, that is,
the dominant estimated element.

Although Projected power method resolves the problem of negative esti-
mated probabilities by projecting the estimated probabilities to the simplex
set, it is incapable to solve the problem of the dominant estimated element.
Therefore, utilizing non-constrained tensor decompositions such as Power
method and its variants is not a good solution in practice, however these
kinds of methods are considered as fast solutions for estimating probabili-
ties.

In order to be able to compare the performances of tensor decomposi-
tion algorithms on this real text data set, we need the ground truth val-
ues of the probabilities of topics, i.e. ¢, and the conditional probabilities
of each word given the topic, i.e. A. To do this, for the sake of conve-
nience, we worked with a portion of data set introduced at the beginning of
this section. We selected documents about four different topics, namely
“computer graphics” (labeled by comp.graphics), “baseball” (labeled by
rec.sport.baseball), “cryptography” (labeled by sci.crypt) and “Chris-
tianity” (labeled by soc.religion.christian). Then, by applying above
mentioned pre-processings on this portion of data, which contains 2375 doc-
uments, and by keeping the words with term-frequency between 20% and

50%, we had a dictionary with D = 17 words. As we desired to employ
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Ruffini’s estimator in this experiment, it was necessary to eliminate the doc-
uments including less than three words. By doing that, 1690 documents
remained in the corpus. So as to calculate the ground truth values of ¢,
we counted the number of documents belong to each topic (i.e. “computer
graphics”, “baseball”, “cryptography” and “Christianity”). Then, the ground
truth of ¢ is simply the division of the number of documents in each topic
by 1690. To calculate the ground truth of A, for each word in the obtained
dictionary, we counted its occurrences in the documents belong to a particu-
lar topic, and then we divided it by the total number of words used in those

documents (which belong to that particular topic).

As in the previous experiment, after obtaining the bag-of-words, we fed
the tensor decomposition algorithms listed in page 118 with the estimated P
and T via the Ruffini’s estimator. We set the input rank of all the algorithms
to K = 4, and eventually, we computed the performance of each algorithm by

~17x4

comparing estimated probabilities ((,54, A ) with the ground truth values
of ¢ and A.

The performances of each algorithm of this experiment in estimating
probabilities ¢ and A based on CorrIndex are reported in Table 5.4. As it can
be seen in Table 5.4, the performances of Power method and Projected Power
method in estimating ¢ are much worse than other constrained algorithms.
However, their performances in estimating A are a bit better than others.
In addition, all the constrained algorithms such SFBS perform properly in
both estimating ¢ and A.

The fact that Power method performs better in estimating A than in
estimating ¢ is probably due to the different manner of updating @ from
updating A in Power method. As it can be observed in line 6 of Algorithm 4,
the Lo norm of the columns of A are stored as the estimation of w. In
this way, a normalized matrix is reported as an estimation of A, which is
protected relatively from rounding errors. However, the non-normalized @

may suffer from rounding errors.
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Table 5.4: Performances in estimating probabilities ¢ and A in terms of CorrIndex:
the smaller the better. This experiment is carried out using a part of a well-known
text data set, namely 20 Newsgroups. To be more precise, documents of the selected

data set belong to four topics: “computer graphics”, “baseball”, “cryptography” and

“Christianity”.
Algorithm CorrIndex(p, @) | CorrIndex(A, A)
Power method 0.577 0.077
Projected Power method 0.703 0.077
Simplex SFBS 0.106 0.097
Symmetric Simplex SFBS 0.106 0.097
Simplex AO-ADMM 0.102 0.089

As the words in the obtained dictionary of this experiment'® are not
informative enough, it seems impossible to do an unsupervised clustering
based on the estimated probabilities A and . However, extracting informa-
tive words depends on employing proper pre-processing steps, which is out

of the scope of this thesis.

5.7 DISCUSSION

According to the performed experiments and theoretical arguments, in this
section, we wrap up the advantages and disadvantages of each method com-
pared to our proposed method, SFBS.

Concerning constrained algorithms, a theoretical drawback of AO-ADMM
is that the convergence of AO is not guaranteed because of ignoring the prox-
imal regularization (cf. Subsection 5.3.2). In addition, for the non-convex
constraint £y, the convergence of ADMM has not yet been proved, whereas

the complete convergence of SFBS is studied in Section 5.5.4. However, its

1als0, come, even, find, get, give, go, good, make, need, nntp-poste, people, see, take,

time, way, well.
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performance is as well as that of SFBS in most cases, such as noiseless and

noisy scenarios.

By comparing APG and SFBS, we can conclude that SFBS performs
better than APG in noisy cases (cf. Fig. 5.9), while it is also computationally
less expensive, due to not calculating any coefficient, unlike APG, which is
based on FISTA. Moreover, some methods such as BC-VMFB forces the user
to adjust several parameters that are very effective on the result, while the

only parameter of SFBS is e, for which we provided a proper range ([1.5, 1.9]).

Furthermore, unlike other constrained algorithms, we discussed how SFBS
can handle a variety of constraints, namely non-negativity, the simplex set
(for all loading factors plus the vector of coefficient), sparsity (¢p pseudo-

norm and ¢; norm).

Concerning non-constrained algorithms, SFBS is much more robust against
additive noise than Nway or Power method. Moreover, Power method and
its variants (such as SS-HOPM) does not have any convergence guarantee for
an odd-order tensor (including the tensor of third order moments), whereas

the complete convergence of SFBS is studied in Section 5.5.4.

Focusing on data (text) mining based on the method of moments and
by means of tensor decomposition, there is an intrinsic noise due to the
discrepancy between true moments and sample moments. Therefore, Power
method and its variants, which are not robust enough to the noise will face
a problem. Moreover, it is also possible that Power method or its variants
return non-acceptable negative values for estimated probabilities. Even if one
projects the result of Power method to the simplex set (i.e. Projected power
method), its performance in estimating ¢ would be the worst among others
(cf. Fig. 5.27 (bottom)). More importantly, as it is shown experimentally in
Section 5.6.3, another critical drawback of Power method in face of real text
data set is the dominant estimated element (i.e. a very large element in ¢,
which drops out ¢ from the simplex set), and this problem cannot be solved

with projection to the simplex set by Projected Power method.

In addition, in order to decompose the tensor of third order moments,
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Power method requires also second order moments for the whitening step.
Furthermore, since after whitening, Power method performs a kind of or-
thogonal tensor decomposition, hence, one of its limitations is that it can
only handle under-complete cases (i.e. when the number of hidden variables,
K, is smaller than that of multi-view ones, D).

However, SFBS is robust against additive noise (especially in estimating
o, cf. Fig. 5.27 (bottom)), returns the estimated probabilities in the simplex
set thanks to its constraint, requires only the tensor of third order moments
as input, and is able to handle over-complete cases (K > D), which is
necessary in some applications mentioned in [AHJK15]. The only drawback
of constrained algorithms such as SFBS compared to the Power method (and
especially SVTD, which is faster than the Power method) is that they are
more time consuming than Power method.

As a last point, the role of moment estimator should always be taken into
account, since it has a significant effect on decreasing the intrinsic noise and
decreasing the required data for consistency. Even the best decomposition
algorithm may not return acceptable results without being provided a good

estimation of moments as its input.

5.8 CONCLUSION AND PERSPECTIVE

In this chapter, we investigated constrained and unconstrained tensor decom-
positions. As mentioned before, the main goal is to estimate probabilities
by decomposing the third order moments tensor, and in the literature, usu-
ally some unconstrained tensor decompositions such as Robust tensor power
method are employed for this purpose.

We showed theoretically and experimentally that such a unconstrained
algorithms are not proper, since they probably return negative values, which
are not acceptable as probabilities (in this vein, we proposed Projected Power
method to solve this problem by projecting the results of Power method to

the simplex set); or they are very sensitive to additive noise and are unable
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to handle over-complete cases, where the number of hidden variables is more
than the number of multi-view ones. More importantly, we experimentally
showed that in employing Robust tensor power method on real text data set,
a very challenging problem arises, namely the dominant estimated element
drops out estimated probability vector (¢) from the simplex set. Moreover,

this issue cannot be solved by projecting onto the simplex set.

On the other hand, we showed that constrained tensor decompositions
return more acceptable estimations, since some constraints are taken into ac-
count, such as non-negativity and simplex set. We also introduced our con-
strained tensor decomposition, SFBS, which is based on Forward-Backward
Splitting.

We compared theoretically and experimentally SFBS with other algo-
rithms, and we concluded that SFBS performs either better than or as well
as AO-ADMM. Furthermore, there exists a complete convergence proof for
SFBS, which is not the case for AO-ADMM due to ignoring the proximal
regularization (which is essential for the convergence guarantee of AO) and

due to the lack of theoretical proof for the non-convex constraint £g.

We also explained that SFBS performs better than APG in noisy cases
and computationally costs less than APG because of not calculating any
coefficient, unlike APG. In addition, we discussed that not only BC-VMFB
performs poorly in decomposing tensors, but also it forces the user to adjust
several parameters, which are so effective on the result of this method. Yet,
SFBS consists of just one parameter (e), which is easy to set according to
the convergence condition and the spectral norm of the corresponding matrix

(e.g for the experiments of this section we proposed a range of [1.5,1.9]).

Compared to unconstrained algorithms such as Robust tensor power
method, not only SFBS performs better, but also it has the theoretical con-
vergence guarantee. Moreover, concerning the simplex set constraint, one
can assure that probabilities estimated by SFBS always lie in the proba-
bility simplex. Further, SFBS is much more robust against additive noise,

which is a very important feature in data (text) mining where there exists
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intrinsic noise due to the discrepancy between true moments and sample
moments. However, non-constrained algorithms, especially SVTD, converge
much more faster than iterative algorithms such as SFBS.

In addition to the intrinsic noise, working with large dimension third
order moments tensors is another big challenge of data mining by means
of tensor decomposition. Recall that the dimension of this tensor depends
on the number of multi-view variables (words) in the dictionary, which can
be very large in a real world text mining problem (around 5000). Unfortu-
nately, most of iterative constrained algorithms such as SFBS are very time
consuming, hence, intractable in practice.

As the most time consuming part in tensor decomposition algorithms
is the calculation of Khatri-Rao product of loading matrices, several meth-
ods have been proposed to reduce this computational complexity by sketch-
ing [KBGP18|] the data required for the calculation of Khatri-Rao prod-
uct in each iteration. One of the most successful methods in this vein is
CPRAND |BBK18|, which is a non-constrained CP decomposition and is
proper for large dimensions, since it employs sketching data for the calcula-
tion of Khatri-Rao product, called sample Khatri-Rao.

Recently, a constrained CP decomposition for large dimensions based on
Forward-Backward Splitting and the sketching concept has been introduced
in [FIWT20]. Although, it is claimed that this method is capable of handling
various types of constraints, but we find it inefficient for the simplex set
constraint, in spite of using the implementation provided by the authors.

Therefore, a future extension of SFBS would be employing CPRAND
idea (sample Khatri-Rao) in each iteration of SFBS. In this way, we will
have a constrained CP decomposition dedicated for large dimension tensors,

which handles properly constraints such as the simplex set constraint.
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Vectors and matrices as one-way and two-way arrays, respectively, can be
generalized to multi-way arrays or tensors. Tensors are known to be useful
to identify parameters, thanks to the mild uniqueness conditions required in
Canonical Polyadic tensor decomposition (3.6).

In this thesis, we focused on a particular data model, called single topic
(cf. Fig. 3.1), consisting of some multi-view variables which are related
to each other via a hidden/latent variable. A document can be described
properly by this model when its words role as some multi-view variables,
which are related to each other according to the topic of that document as
a hidden variable.

Estimating the probabilities of hidden variables, and also the conditional
probabilities of multi-view ones, are in the center of interest, since they
can be utilized for an ultimate data/text mining task such as unsupervised
clustering. On the other hand, these probabilities correspond to the tensor
of third order moments of observed data (e.g. words) via a particular tensor
format, called Canonical Polyadic (CP); see (3.6) for details.

In this thesis, generally, we investigated CP decomposition applications
in estimating the probabilities of hidden variables and the conditional prob-
abilities of multi-view variables.

In chapter 3, we explained that there are two main steps in estimat-
ing the probabilities via a tensor approach: firstly, estimate the third order
moments tensor by observing data which obeys the single topic model, sec-
ondly, decompose the estimated third order moments tensor by means of

proper tensor decomposition algorithms to obtain some reliable and accu-
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rate estimations of probabilities that can be used efficiently for an ultimate

data/text mining task such as unsupervised clustering.

At the end of chapter 3, we reviewed some existing moment estima-
tors, and criticized simple averaging, as a relevant moment estimator in the
literature, by experimentally showing its weakness in providing moment con-

sistency even on sufficiently large size corpuses.

As our moment estimator, we proposed standard averaging, which per-
forms much better than simple averaging, due to taking into account all the
words of each document as well as the length of each document. In this way,
we control the importance of each document in the estimation. Further,
compared to the state-of-the-art, standard averaging is based on a simpler
concept (weighted averaging), and is computationally less expensive in terms
of number of multiplications for estimating third order moments. In addi-
tion, the number of required additions for estimating second order moments

does not depend on the dictionary size.

In Chapter 4 and 5, we discussed about the second stage, i.e. tensor
decomposition algorithms, and also about required performance indices to
evaluate these different methods of decompositions. Recall that permutation
and scale ambiguities are inherent in tensor representations, by definition of
tensors [Com14|. Therefore, in order to cancel the effect of these ambigui-
ties in measuring the performance, one needs to employ proper performance

indices.

Chapter 4 is devoted to performance indices in which we carried out a
critical survey about the state-of-the-art. We showed theoretically and exper-
imentally that existing indices are either greedy (optimistic or pessimistic) or
computationally expensive. Moreover, we proposed a new performance in-
dex belonging to the class of invariant indices, called CorrIndex, whose upper
and lower bounds are easy to interpret, while being computationally cheap.
We compared tensor decomposition algorithms in Chapter 5 by means of

Corrlndex.

In Chapter 5, we investigated constrained and unconstrained tensor de-
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compositions to discover their advantages and disadvantages especially in
decomposing the tensor of third order moments to estimate probabilities.
We experimentally showed that although Power method and its variants are
relevant methods for this purpose, they are sensitive to additive noise and
not capable of handling over-complete cases, where the number of hidden
variables is larger than multi-view variables. More importantly, the prob-
abilities estimated by these unconstrained algorithms may include negative
values or dominant elements, which exclude estimated probabilities out of
the simplex set. One may think of projecting the estimated probabilities to
eliminate negative values but this solution is not useful for the problem of

dominant estimated element.

On the other hand, we proposed to employ constrained tensor decompo-
sitions such as AO-ADMM under non-negative or simplex set constraints in
order to have much more accurate estimations of probabilities. In this vein,
we proposed our constrained tensor decomposition, called Simple Forward-
Backward Splitting (SFBS), using Forward-Backward Splitting, a minimiza-
tion procedure based on proximal concept. The term “simple” shows two
aspects of our algorithm: first, compared to state-of-the-art, it is less com-
putationally costly, second, its algorithm is much easier to understand and
implement. Furthermore, we described how SFBS can handle a variety of
constraints. Moreover, a complete convergence analysis is provided, which is
not possible for AO-ADMM. More importantly, SFBS performs better than

state-of-the-art in noisy scenarios while being computationally cheap.

In summary, we investigated each required step of probability estima-
tion via a tensor approach. We studied theoretically and experimentally the
challenges of state-of-the-art in moment estimations and tensor decomposi-
tions. Moreover, we proposed our moment estimator (standard averaging),
our performance index (Corrlndex) and our tensor decomposition algorithm

(SFBS), which bring some advantages over existing methods and indices.

As mentioned at the end of Chapter 5, the main disadvantage of con-

strained tensor decomposition algorithms for large dimension (typically of
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the order D > 50) is that they are time consuming due to the calcula-
tion of Khatri-Rao product of loading matrices. Several methods have been
proposed to reduce this computational complexity by sketching the data re-
quired for the calculation of Khatri-Rao product in each iteration. One of
the most successful methods in this vein is CPRAND [BBK18|, which is a
non-constrained CP decomposition and is proper for large dimensions, since
it employs sketching data for the calculation of Khatri-Rao product, called
sample Khatri-Rao.

Therefore, a future extension of SEFBS would be to follow the CPRAND
idea (sample Khatri-Rao) in each iteration of SFBS. In this way, we would
have a constrained CP decomposition dedicated to tensors of large dimen-
sion, which handles properly constraints such as the simplex set constraint.

It is worth mentioning that recently some constrained decomposition
algorithms for large dimension tensors are proposed in [FIW*20]. However,
we found them improper under the simplex set constraint. Hence algorithms
in [FIW*20] could be adapted for this constraint, which is important in
estimating probabilities.

The procedure described in Sections 5.5.2.3 and 5.5.2.4 is useful when
sparsity constraints are applied on each element of loading factors. However,
if sparsity constraints are required for each column of loading factors (as in
co-clustering application [PS11]), ¢y and ¢; should be replaced by mixed
norms [Kow09| to ensure the sparsity of each column.

Although we focused on single topic model in this thesis, the content
can be extended to other data models such as LDA [BNJO03| and Markov
models [AGHT14].
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A LIPSCHITZ CONSTANT OF THE GRA-

DIENT OF THE FIDELITY TERM IN (5.12)

Let us define h(A™) and g(A™) as follows:

MA®) 2 T — ATWR

g(A™M) £ig (AM),

Ca(n)

where W = (AM o ... 0 AV oAV o .0 AT Note that the
objective function of (5.12) can be written as h(A™) 4+ g(A™).

Since h(A(")) has a quadratic form, the “Lipschitz” constant of its gra-
dient can be calculated. The gradient of h(A(”)) is computed as follows:

n 1 n n
BA™) = ST — AW

= %trace{(’T(”) — AW (T — AW}

" L AW WwwT

=V  h(A®™) = —wT!
In calculating the gradient, the following relations have been used [Duc07|:
V atrace{AB} = BT,

Vatrace{ABATC} = CTABT + CAB.

Now, the Lipschitz constant of V A<n>h(A(”)) can be calculated as follows:
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FIDELITY TERM IN (7?)

h(A™) is B-Lipschitz gradient, i.e.,

IV 40 (X)) =V 40 R(Y)|[F < B X = Y|p
[V 40 h(X) =V 4 h(Y) |
X =Y|r
VAo (X)) =V 4 h(Y) = (X = Y)WWT
(X - Y)WWT'||p
IX-Y|r

= [ = max

= f = max

Note that the definition of “spectral norm” of a matrix is:

4], 2 max AXIE
o Y
IXlIr0 (| X7

which is equal to the maximum singular value of A with X as a matrix.
Therefore, we have:

B=wWwW,.
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B.1 INTRODUCTION

La plupart des événements, qui sont au centre de l'intérét de ’étude, sont
de nature multimodale. Les entités qui relient et affectent ensemble ces
données multimodales sont des aspects cachés (latents), qui sont appelés
variables cachées (latentes) [AGH'14]. Les modeéles multi-vues ou modéles
a variables latentes (MVL) font référence a une vaste gamme de modéles
dans lesquels une ou plusieurs variables cachées existent [RCG18].

Tout au long de cette thése, nous considérons un modéle de mélange
particulier, appelé modéle & sujet unique [BNJ03| représenté sur la Fig. B.1,
qui peut étre utilisé pour décrire une relation cachée parmi les données ob-
servées (voir la Section 3.2 pour une définition plus détaillée du modéle a
sujet unique). Par exemple, un corpus de documents peut étre décrit par un
modéle a sujet unique : le sujet de chaque document est considéré comme
une variable cachée et les mots de ce document particulier sont ses variables

multi-vues générées en fonction de son sujet.

Figure B.1: Le modéle & sujet unique avec ses variables multi-vues (z;) et leur

variable cachée correspondante (h).
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Soit L le nombre de mots dans un document donné, x, les mots observés,
¢e L ={1,2,...,L}, et h un sujet codé par une variable discréte prenant
K valeurs entiéres possibles, disons de H = {1,2,..., K} avec la probabilité
©(k) = Prob(h = k). Tous les mots appartiennent & un dictionnaire codé
connu Q = {uy,...,up} de cardinalité D. Nous désignons la probabilité
conditionnelle de chaque mot wg du dictionnaire €2, étant donné un sujet
particulier, h = k, par fi(d) = Prob(x = uglh = k).

Comme mentionné précédemment, l'objectif principal est d’estimer la
probabilité de la variable cachée (sujet) et la probabilité conditionnelle des
variables multi-vues (mots).

A cette fin, certaines hypothéses sont nécessaires et sont énumérées ci-

dessous [AGH" 14, AHK12a] :

e Les probabilités conditionnelles ne dépendent pas de 'ordre des mots

(échangeabilité), e.g.

Prob(uy, (p)s Uy (g)s Wy (1) = Prob(wy, (g, s, (r)s Uy, ) [P)
e Les mots du sujet sont conditionnellement indépendants compte tenu
du sujet, i.e.
(Ure () 1) AL (2 (g) 1)
e Les mots du sujet ont la méme distribution conditionnelle étant donné
le sujet, i.e.

(U () [1) ~ (U (g D).

De plus, x; est codé en ug, et comme dans [AGHT 14|, on choisit pour
vecteurs uy les vecteurs de la base canonique, c’est a dire les colonnes de la
matrice identité D x D.

Dans la suite, les moments d’ordre deux et trois seront nécessaires :

P Ex{x, ® x4}, (B.1)

T Ex{x,® z,® x,}, (B.2)

ol ® désigne le produit tensoriel, P est une matrice symétrique D x D et

T un tenseur symétrique D x D x D.
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En raison de ce choix pour wug, ces moments présentent les relations

suivantes :
K
P = Z Pk ar ® ay, (B.3)
k=1
K
T=> orar®a,®ay, (B.4)
k=1

ol ay est la kiéme colonne d’une matrice notée A. Notez que aj contient
les valeurs de fi(d) pour tout d et chaque k.

Par conséquent, une fois que 'approximation empirique des moments
dans (B.1) et (B.2) est obtenue, la probabilité de la variable cachée (sujet)
et les probabilités conditionnelles des variables multi-vues (mots), i.e ¢ et
A, peuvent étre estimées via la décomposition tensorielle selon (B.4).

Dans le reste de cet appendice, nous étudions les estimations de moments
dans la section B.2. Les deux sections suivantes sont consacrées aux décom-
positions tensorielles et aux indices de performance requis pour évaluer les

algorithmes de décomposition.

B.2 ESTIMATION DES MOMENTS

B.2.1 L’état de art

B.2.1.1 Moyenne simple [AFH'12]

Cet estimateur est simplement la moyenne d’un grand nombre de réalisa-
tions (un corpus de documents), disons N., pour obtenir une approximation
acceptable de P et 7. Dans chaque réalisation, un sujet codé aléatoire, k,
est tiré de la maniére décrite dans la premiére étape des processus génératifs
dans les sections 3.4.1.1 et 3.4.1.2. Ensuite, en fonction du théme choisi,
trois mots codés aléatoires (on suppose qu’un document est constitué d’au
moins trois mots) sont tirés, {z, = u,, (), T, = u

Ty = Uy, ()}, €0 se

p)’ Ye(q)> e

basant sur la deuxiéme étape des processus génératifs mentionnés dans les

sections 3.4.1.1 et 3.4.1.2. A la fin, en utilisant les moyennes suivantes, une
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approximation empiriqgue des moments d’ordre deux et trois est obtenue avec
les exemples de moments ci-dessous :

1 Qe

P.= N. Z“'ye(p) @ Uny, (q)s (B.5)
¢ n=1
1 Qe
Te= Z Uy, (p) © U, (g) @ U (r)- (B.6)
¢ n=1

Notez que dans cette méthode d’estimation, la longueur de chaque doc-
ument (L,) n’a pas d’importance, et que seuls trois mots (pouvant étre le
premier, celui du milieu et le dernier mot) de chaque document participent
a l'estimation du moment de I’échantillon. En raison de ces faits, il est trés
difficile de fournir une cohérence de moment raisonnable avec une simple
moyenne et cela nécessite un corpus de grande taille, i.e une grande valeur

de N, dans (B.5) et (B.6).

B.2.1.2 L’estimateur de Ruffini [RCG18]

Supposons qu'un document soit constitué de L,, mots (xy, ¢ =1,...,Ly)
qui sont codés en ug = u, (p). Alors, le sac de mots d’un tel document est

un vecteur de dimension D, et est défini comme suit:

def
by, = Zu’}/e(f)a (B7)

ol by, (d) indique combien de fois le mot d'" apparait dans le document n.
Les estimateurs de Ruffini, i.e. Prugmni €t T Ruffini, sont définis comme
suit (7 < j) :
N, ) .
anl bn(l)(bn(]) - 5i=j) (B 8)
Sty Lu(Ln = 1)

e b ()b () bn (k)
ZNC L ( 1>(Ln_2

)

PRuf‘ﬁni(iv.j) =

TRuffini(%, 7, k) = dicj<k

+ O(i—j<k)v(i<j=k

27]:[;1 Ln(Ln - 1)(Ln - 2)
b by ot @D On) = Dalk) =2)
o Ln(Ln = 1)(Ln = 2)
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En employant le sac de mots de chaque document du corpus, les nomina-
teurs des expressions ci-dessus correspondent a la mise en ceuvre des moments
(sommation et production de variables aléatoires), et leurs dénominateurs
sont les coeflicients, qui rendent cet estimateur sans biais.

Notez qu’en calculant la partie triangulaire supérieure de Pgryumn; €t de
T Ruffini, Puis, en fixant la partie triangulaire inférieure identique a la partie

supérieure, la symétrisation serait parfaite.

B.2.2 Proposé : Moyenne standard

En prenant en compte la longueur et tous les mots (et pas seulement trois)
de chaque document, nous proposons un algorithme, que nous appelons stan-
dard averaging, et qui peut étre vu comme une moyenne pondérée basée sur
la longueur de chaque document.

L’algorithme 6 décrit en détail le calcul de la moyenne standard. Notez
que la symétrisation de la ligne 12 est exécutée en calculant P+2PT Nous
avons observé expérimentalement que cette méthode de symétrisation montre
une meilleure performance comparée a celle de 'estimateur de Ruffini dans
lequel les valeurs de la partie triangulaire inférieure seront fixées identiques a
la partie supérieure a la fin de I'algorithme. L’algorithme pour les moments
d’ordre 3 est similaire, sauf qu’a la ligne 6, tous les triplets possibles seront
considérés. Notez que la symétrisation d’un tenseur d’ordre 3 (cf. ligne 12)
nécessite de faire la moyenne sur six permutations d’indices.

Les simulations de la Section B.2.3 montrent que la moyenne standard
est plus performante que l'estimateur de Ruffini, lorsque la dimension du
dictionnaire, D, n’est pas trés grande. Plus de détails sur les performances
sont donnés dans la section 3.4.5. De plus, la moyenne standard présente

certains avantages en termes de complexité de calcul :

e la moyenne standard nécessite moins de multiplications dans I’estimation

de T,
e le nombre d’additions requises dans ’estimation de P ne dépend pas
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Algorithm 6 Moyenne standard pour I'estimation des moments du second

ordre
Entrée: D, un corpus de N, documents de longueur [Lq,..., Ly,]

Sortie: PStand—Ave
1: PStand-Ave = zeros(D,D)
2: forn=1,2,...,N. do
3: Sauvegarder I'index des mots du document “n”.

4: Piepp= zeros(D,D)

5: count-pair = 0
6: for toutes les paires de mots possibles, ex. (word;, words) do
7 Piemp(wordy, words) = 1 4+ Piemp(wordy, words)
8: count-pair = 1 4 count-pair
9: end for
L Py

10: PStand-Ave = PStand-Ave + N = e o .

Znil L,, count-pair
11: end for

12: Symétriser PSstand-Ave

de la taille du dictionnaire (D), ce qui est un avantage dans le cas de

dictionnaires de grande dimension.

B.2.3 Résultats de la simulation

Toutes les expériences informatiques rapportées dans cette section ont été
exécutées soit sur un ordinateur portable avec un processeur Intel Core i5
de 3,1 GHz, 16 Go de RAM, soit sur un PC avec un processeur Intel Core i5
de 3,2 GHz, 8 Go de RAM, tous deux exécutant macOS Mojav et MATLAB
2019a.

B.2.3.1 L’effet de la taille du corpus sur la cohérence du moment

Comme mentionné précédemment, le simple calcul de la moyenne ne permet
pas d’obtenir une cohérence des moments acceptable et une facon naive de

compenser cet inconvénient est d’augmenter la taille du corpus (le nombre de
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documents ou de réalisations du sujet/de la variable cachée et des mots/des
variables multi-vues).
Afin de montrer ce défi en pratique, nous avons généré N, réalisations

de notre ensemble de données synthétiques, &y = u,_(y), (selon la méthode

gt
expliquée dans la section 3.4.1.2) avec les valeurs de paramétres suivantes : le
nombre de variables cachées (sujets), K = 4 ; le nombre de variables multi-
vues (mots), D = 8 ; le nombre de réalisations pour l’estimation des moments
(la taille du corpus, 4. e. le nombre de documents), N, = [2%, 210 ... 217],
Les longueurs minimale et maximale des documents générés sont respective-
ment de 3 et 100.

Enfin, nous avons calculé les moments de ’échantillon avec les estima-
teurs de moments décrits dans la section B.2.1 et B.2.2, puis nous les avons
comparés aux moments réels (B.3) et (B.4). La Fig. B.2 rapporte 1'écart
entre les deux en termes de norme euclidienne. Comme on peut le voir sur
la Fig. B.2, 'estimation par moyenne simple, de la maniére décrite dans
la section B.2.1.1, est cohérente, si elle fonctionne sur un corpus de taille
N, > 10000. L’estimateur de Ruffini et la moyenne standard ont la méme
erreur relative (ils sont superposés dans la Fig. B.2), cependant, nous ver-
rons la différence entre les performances de I'estimateur de Ruffini et de la
moyenne standard dans la Section B.2.3.2 en étudiant I'effet de la cardinalité

du dictionnaire.

B.2.3.2 Effet de la cardinalité du dictionnaire sur la cohérence

des moments

Dans cette section, nous étudions ’effet de la cardinalité du dictionnaire, D,
sur les performances des estimateurs de moment. Pour toutes les expériences,
nous considérons un corpus de N, = 100 documents dont la longueur L,
est choisie aléatoirement entre une longueur minimale (Lp, = 3) et une
longueur maximale (Lpyax = 100). Les sujets et les mots de chaque document
sont générés selon le processus génératif décrit dans la section 3.4.1.2.

Les figures B.3 et B.4 montrent ’erreur relative dans l’estimation de P
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Figure B.2: La cohérence des estimations des moments. L’erreur relative dans
Pestimation des moments d’ordre deux (P) et d’ordre trois (7°) est tracée en
ligne continue et en pointillé, respectivement. Notez que les tracés du calcul de
la moyenne standard et de l'estimateur de Ruffini sont superposés. Dans cette fig-
ure, le nombre de corpus utilisés est fonction de leur taille: plus la taille du corpus
est grande, moins il y a de corpus; l'intérét de ce choix délibéré est de maintenir
constante la longueur totale du bloc de données (et donc la charge de calcul) pour

chaque point en abscisse.
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et T par rapport a une gamme de valeurs de D, lorsque K est fixé a 10.
Puisque dans la Fig. B.3, la différence entre le calcul de la moyenne standard
et l'estimateur de Ruffini n’est pas trés évidente, nous tragons les résultats
du calcul de la moyenne standard et de I'estimateur de Ruffini séparément
dans la Fig. B.4.

Comme on peut le voir sur les figures B.3 et B.4, non seulement la
moyenne standard est un estimateur bien meilleur que la moyenne sim-
ple, mais elle est également légérement plus performante que l'estimateur

de Ruffini lorsque la cardinalité du dictionnaire, D, est inférieure & 50.

B.3 INDICES DE PERFORMANCE

Les ambiguités de permutation et d’échelle sont des problémes pertinents
dans des applications telles que la décomposition tensorielle [Com14] et la
séparation aveugle de sources (BSS) [CJ10]. La mise a I’échelle fait référence
a la multiplication par une matrice diagonale & composantes non nulles,
qui peut étre complexe dans le cas le plus général, et la permutation fait
référence a la permutation des colonnes d’une matrice, ce qui est équivalent
4 la multiplication par une matrice de permutation.

Soit A = [ay,as,...,ay] € CM*N et A= [@1,as,...,ay] € CM*N
sont respectivement les matrices originales et estimées, o CM*¥ représente
I’ensemble des matrices & valeurs complexes M par N. Désignons I’ensemble
des permutations de N éléments par Perm(N), et désignons par P, la ma-
trice associée & la permutation o € Perm(/V). Si les colonnes de A et de
A sont normalisées par leurs normes Lo, 'ambiguité d’échelle se réduit a la
post-multiplication par une matrice diagonale A avec des composantes de
module unité (par exemple dans R, les valeurs sont égales a £1).

Supposons que A= AP ;A+W ot les colonnes de A et A sont normal-
isées, A est une matrice diagonale avec des composantes de module unité et
W est 'erreur d’estimation de A\, qui peut étre modélisée comme un bruit

additif. Plus formellement, I'objectif est de mesurer I’écart défini ci-dessous:
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Figure B.3: Comparaison entre tous les estimateurs mentionnés pour l'estimation de
P et de T avec K = 10, D = [10,20, 30, ...,100], N = 100, Ly, = 3, Limax = 100,
et calcul de la moyenne sur 50 de probabilités différentes ¢, A, Gauche : L’erreur
relative de 'estimation des moments du second ordre, Droite : L’erreur relative de

I'estimation des moments du troisiéme ordre.
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Figure B.4: Zoom de la Fig. B.3 pour montrer les détails.
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c0(A, A) = min AP, A — A} (B.10)

Cet écart peut étre calculé avec ou sans estimation explicite de la permuta-
tion o. La recherche de la permutation optimale o peut étre écrite comme

le probléme d’optimisation suivant :

N N
1 . X
argmin ; Z lan — ag(n)H% = argmaxz |a5a(,(n)|. (B.11)
o el o

n=1

B.3.1 L’état de l'art

B.3.1.1 Meéthodes basées sur la matrice de corrélation

Soit Cy; = |af’a,|, et désignons par C la matrice de corrélation dont les
composantes sont C;;. Si les colonnes de A et de A sont normalisées par
leurs normes La, nous avons 0 < Cj; < 1. Dans la suite, nous passons en
revue de maniére critique deux méthodes gloutonnes basées sur la matrice
de corrélation, et nous montrons, a ’aide d’un exemple simple, pourquoi ces

méthodes sont gloutonnes et peu fiables.

Approche gloutonne de [FIW120] Dans cette approche, a; est attribué

¢ colonne de C'. L’exemple

a a; si Cj; a la valeur maximale dans la gim
numérique jouet suivant illustre les effets pervers du caractére glouton de
cette approche simple.

Supposons que, dans une expérience, la matrice C' est:

0.8 0.3 0.1
C=10.8 09 0.5]. (B.12)
0.5 0.2 0.7

L’affectation proposée par cette méthode est (ai,az), (a2, aq), (as,as), ce

qui n’est évidemment pas acceptable car la colonne as est sélectionnée deux

fois. Si on calcule 'erreur quadratique via & S35 _ a, —a 2 en consid-
q q P n=1 a(n)ll2

érant I’hypothese de normalisation de a,, et a,(,) par rapport a la norme Ly
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et en substituant les valeurs de |a’a;| de C;;, on obtient 3—0.85—0.9—0.7 =
0.55, ce qui est inférieur a l'erreur exacte, 3 — 0.8 — 0.9 — 0.7 = 0.60 (I’erreur
exacte est donnée dans la section 4.3.3 avec la permutation optimale). Cet
exemple montre que cet algorithme produit une matrice P, qui peut ne pas

étre une permutation. Cet indice est toujours optimiste (cf. Section 4.3.1.1).

Approche gloutonne de [CLDA09,CKAC14] Afin d’éviter une affec-
tation non acceptable, aprés avoir détecté la valeur maximale de chaque
colonne de C| sa ligne et sa colonne peuvent étre supprimées pour le reste
de I'algorithme. Il s’agit d’une approche gloutonne, puisque 'indice dépend
de l'ordre de choix des valeurs maximales. Par exemple, si cet algorithme
glouton est appliqué a la matrice C exprimée en (B.12), laffectation ré-
sultante sera (a1, as), (az2,a1), (a3, as) a condition que les colonnes soient
balayées de gauche a droite. En revanche, si les colonnes sont balayées dans
le sens inverse, l'affectation sera (ai,a1), (a2,a2), (as,as). Par rapport
a l'indice optimiste, ’erreur produite par cette approche gloutonne en bal-
ayant de gauche a droite, 3 — 0.85 — 0.3 — 0.7 = 1.15, est plus grande que
lerreur exacte, 3 — 0.8 — 0.9 — 0.7 = 0.60, tandis qu’en balayant de droite
a gauche, l'erreur rapportée est égale a l'erreur exacte 0.6. Par conséquent,
I’erreur signalée est toujours supérieure ou égale a ’erreur exacte sur la base

de l'affectation optimale; cet indice est donc pessimiste.

B.3.1.2 Meéthodes basées sur le transport optimal

Probléme d’affectation optimale Le probléme d’assignation est un prob-
léme d’optimisation combinatoire ancien, bien connu et fondamental [Gal83,
Mun57,PC*19|. Le premier algorithme en temps polynomial pour les prob-
lemes d’affectation optimale est la “méthode hongroise” [Kuh55| également
connue sous le nom de “Kuhn-Munkres” [Mun57, TK04], et la complexité de
I’algorithme est approximativement O(N%) flops [Mun57]. Cet algorithme a

été utilisé dans |TKO04| pour un appariement optimal des sources dans BSS.
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Matching pondéré maximum (MWM!) Le probléme de I'affectation
optimale peut également étre considéré comme un cas particulier de 'matching
pondéré maximum (MWM), qui est un probléme bien connu en théorie
des graphes, pour lequel plusieurs algorithmes en temps polynomial exis-
tent [Gal83|. Les meilleurs algorithmes de MWM exacts [DP14,DK69,D*59]

et approximatifs [GT89] coiitent environ 8N? et N? flops, respectivement.

Programmation linéaire La recherche de la permutation optimale o,
i.e pour la matrice de permutation optimale P*, peut étre formulée ceci

comme le probléme d’optimisation suivant [PCT19] :

P* = argmin ZDijPPij st. Pply= P;‘,FI[N = 1p, (B.13)
PR
ou D = —C, 1y est un vecteur de 1 de dimension N et 'exposant x désigne

la solution optimale.

En vectorisant (concaténation des colonnes) P, et D en vecteurs d
et p, (B.13) peut étre réécrit sous la forme standard de programmation

linéaire [PCT19, Sec. 3.1]:

p* =argmindp st. Qp = 1o, (B.14)
pe]Rﬁ2

o1 Q=1L XIn IyR1E]T € R2VXN? T et ) désignent respectivement
la matrice identité de taille NV et le produit de Kronecker.

Récemment, en améliorant certaines étapes de calcul requises, le temps
d’exécution des algorithmes de programmation linéaire a été réduit & environ
q2+é [CLS21] et q2+T18 |[LSZ19] flops, ou ¢ est la taille du vecteur inconnu
dans le probléme de programmation linéaire. Par conséquent, comme ¢ = N2
dans (B.14), la complexité la plus faible pour trouver la permutation optimale
du probléme décrit au début de la section 4.3 au moyen de la programmation

linéaire est approximativement de N* flops.

"Maximum Weighted Matching
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B.3.1.3 Indices invariants a la permutation

Cependant, dans la littérature sur la séparation des sources [CJ10], certains
indices ont été proposés pour mesurer 1'écart (basé sur une définition spé-
cifique de I’écart) entre les matrices de mélange originales et estimées sans
chercher a trouver la permutation correspondante [Com94, MM94, ACY *96].
Les indices proposés dans [Com94, MM94, ACY 96| sont basés sur S =
A'A (ou S = AYA pour les matrices A non carrées). Les détails de

ces indices sont les suivants.

Indice de Comon [Com94| L’indice de Comon est une combinaison des

normes L et Lo, et se calcule comme suit :

2 2

N N N N
=D oISyl =1 #3118yl -1

i=1 |j=1 j=1 li=1

N N N
SISl =1+ 1D 18y -

1(5=1 7j=1l:i=1

Mz

7

La valeur de €; peut augmenter énormément, en fonction des valeurs de la

matrice S, par conséquent, cet indice n’est pas borné supérieurement.

Indice de Moreau-Macchi [MM94] L’indice proposé dans [MM94] mesure
un écart entre la matrice S et une matrice de permutation. Il est défini

comme suit :

ST S | & (max [ Sul)? S\ & (maxi[S)? )

La division par la valeur maximale (e.g. (maxy |S;|)?) fournit une borne

supérieure pour €s contrairement a €.

Indice de Amari [ACY"96] Cet indice de performance prend la forme :

N (18] .
Z Zmaxk\sk\ +jz::1 z;maxk\skj\_ '

=1 i=
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La seule différence entre 'indice d’Amari et celui de Moreau-Macchi est la
puissance 2, qui existe dans e5. Par conséquent, le calcul de e3 est moins
cotliteux que celui de es.

Une étude précise des indices examinés dans cette section réveéle que €1
n’est pas borné supérieurement. De plus, les bornes supérieures de e et
€3 n'ont pas ét¢ étudices dans [MM94, ACY196], de sorte que leur borne
supérieure ne peut étre facilement interprétée. Méme si 'on normalise les
indices d’Amari et de Moreau-Macchi, les limites supérieures obtenues sont
atteintes lorsque A a des colonnes équivalentes et que A est la matrice
identité. Par conséquent, les limites supérieures des indices d’Amari et de
Moreau-Macchi ne correspondent pas au plus grand écart angulaire possible

entre A et A.

B.3.2 Notre proposition d’index : CorrIndex

Rappelons que nous définissons C = |AH£\, ot A € CMXN ot A ¢ CM*N
et le module est appliqué pour chaque élément. En outre, nous supposons
que les colonnes de A et de A sont normalisées par leurs normes L.
Fondamentalement, si €y(A, 2) =0, N composantes de C sont égales a
1, puisque |a,| = |a,| et les colonnes de A et A sont normalisées par leurs
normes Ls. Rappelons que I'on souhaite qu’un indice de performance soit
nul si et seulement si €y(A, ;1) = 0. Afin de satisfaire ces exigences de base

dans le cas de la matrice, i.e. M > 1, Corrlndex est défini comme suit :

N N
1
CorrIndex(C) = N Z \ max Ci — 1] + Z \ max Crj —11].  (B.15)
i=1 j=1

Le coefficient % maintient les valeurs de Corrlndex dans l’intervalle
[0,1]. De plus, le module |.| garantit une distance nulle entre A et A si
CorrIndex = 0 (cf. Proposition 2). De plus, selon (B.15), si la distance
entre A et A est nulle, alors Corrlndex = 0. Par conséquent, les deux
exigences mentionnées ci-dessus sont simplement satisfaites par (B.15). De

plus, Corrlndex est invariant a la permutation et au changement d’échelle
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(cf. Proposition 1).

B.3.3 Résultats de la simulation

L’indice et le temps de calcul de chaque indice dans une expérience numérique
sont rapportés dans le Tableau B.1 pour évaluer les méthodes de maniére
pratique. Cette expérience est exécutée sur un ordinateur portable avec
un processeur Intel Core i5 de 3,1 GHz, 16 Go de RAM, exécutant macOS
Mojave et MATLAB 2019a.

Afin de montrer les inconvénients des méthodes gourmandes, cette expéri-
ence est réalisée sur certaines matrices, A € RM*N dont les colonnes sont
fortement corrélées. Dans I'expérience du Tableau B.1, M = 150, N = 100,
avec une cohérence mutuelle v = 0.75, 6 = 0.1 (ce qui est équivalent a
SNR = —1.76 dB), et U est une matrice orthogonale obtenue en concaté-
nant les N premiers vecteurs singuliers de gauche d’une matrice aléatoire
dont les composantes sont choisies aléatoirement & partir d’'une distribution
uniforme sur (0,1). Les valeurs indiquées sont des moyennes sur 50 de réal-
isations.

Comme on peut le voir dans le Tableau B.1, CorrIndex est 'indice le
plus rapide. De plus, contrairement aux indices de Comon, Moreau-Macchi
et Amari, Corrlndex retourne une valeur dans l'intervalle borné [0, 1]. On
pourrait normaliser les indices de Moreau-Macchi et d’Amari afin d’obtenir
des valeurs bornées, mais leur borne supérieure ne peut étre facilement in-
terprétée car elle ne correspond pas au plus grand écart angulaire possible
entre A et A.

CorrIndex est basé sur (B.11), qui tente de minimiser I'erreur des moin-
dres carrés entre A et A. Par conséquent, si la distance entre A et A aug-
mente en raison du bruit additif dans ;1, CorrIndex retournera une valeur
plus grande. Pour montrer ce fait en pratique, nous avons réalisé une ex-
périence dont le résultat est représenté sur la Fig. B.5. En générant une
matrice aléatoire A de dimensions 6 x 4, on obtient A en permutant ses

colonnes et en ajoutant une matrice de bruit, W, de méme taille que A avec
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Table B.1: Comparaison numérique des méthodes de mesure de la distance entre
APO*100 avec une cohérence mutuelle v = 0,75 et sa version bruitée permutée A
avec SNR = —1,76 dB en moyenne sur 50 de réalisations. L’indice dans les cing
premiéres lignes du tableau est 'erreur relative. En revanche, les quatre derniers

indices du tableau sont définis différemment et ne sont donc pas comparables.

Méthode Index Temps de Significativité
calcul (ms) || de la limite supérieure
Greedy of [FIW 20| 0.37 0.9 Non
Greedy of [CLDA09,CKAC14]| 1.05 5.3 Non
Hungarian [Mun57] 0.86 4.5 Oui
MWM [DP14] 0.86 2.9 Oui
Linprog [PC*19| 0.86 1310 Oui
Comon [Com94] 1.8e4 3.3 Non
Moreau-Macchi [MM94] 897.91 3.3 Non
Amari [ACY 96| 3.2¢3 2.9 Non
CorrIndex 0.36 0.4 Oui
10°

Corrindex
—
o
N

—h
S,
W

1074 : :
5 0 5 10 15 20 25 30

SNR (dB)

Figure B.5: CorrIndex et bruit. CorrIndex d’une matrice aléatoire A®** et de sa
version bruitée permutée A. Cette figure confirme le fait que plus le bruit est grand,

plus le CorrIndex est grand.
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10° —e— Greedy of [3]
—o— Greedy of [4,5]
« —MWM )
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o
5
-1 L
o 10
=
=)
]
[]
[r's
102 1
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Figure B.6: Inconvénients des méthodes gloutonnes de [FIWT20, CLDAO9,
CKAC14]. Comparez Perreur relative entre une matrice aléatoire A'°*1% avec
la cohérence mutuelle v = 0.75 et sa version permutée bruitée A en fonction du
rapport signal /bruit rapporté par les méthodes avgloutonnes de [FIW 20, CLDA09,
CKAC14] et par I'un des indices exacts, i.e MWM moyenné sur 50 réalisations.

des composantes indépendantes et identiquement distribuées (i.i.d.) de dis-
tribution gaussienne de moyenne nulle et de variance unitaire, et pondérées
par le paramétre §. La variance 62 du bruit additif est ajustée de maniére a

atteindre le SNR souhaité.

La figure B.5 confirme le fait que plus le RSB est faible, plus le Corrlndex
est grand. Par conséquent, lors de ’évaluation de différentes méthodes de
décomposition, celle qui présente le Corrlndex le plus faible sera la plus
performante.

La figure B.6 montre l'erreur relative entre A et A. Comme lerreur
produite par MWM est égale a I'erreur théorique, la différence entre les er-
reurs produites par les méthodes gloutonnes de [FIW*20,CLDA09, CKAC14]
et celle de MWM montre I'inexactitude de [FIW*20, CLDA09, CKAC14].

Comme on peut s’y attendre, l'erreur relative de la méthode gloutonne
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[FTW*20] (resp. [CLDA09,CKAC14]) est optimiste (resp. pessimiste), puisque
son erreur rapportée est plus petite (resp. grande) que lerreur exacte. De
plus, lorsque le SNR augmente, cette erreur devient plus grande, ce qui dé-
montre qu’en diminuant le bruit additif, 'influence de la cohérence mutuelle

devient plus visible sur le résultat des méthodes gloutonnes.

B.4 DECOMPOSITION TENSORIELLE

B.4.1 Décomposition tensorielle Canonique Polyadique (CP)

Un tenseur décomposable d’ordre N est un produit tensoriel de N vecteurs
[Com14], i.e., D = aP ®a®...@a™). Selon [Hit27], tout tenseur peut
étre écrit comme une combinaison linéaire d’'un nombre fini de tenseurs dé-

composables,
T=> AD(r), (B.16)

ou T est un tenseur d’ordre N, et D(r) = ag) ® a7(~2) .® agN). La décom-

position décrite dans (B.16) s’appelle la décomposition polyadique [Hit27], et
si elle est unique, elle est appelée la décomposition Canonique Polyadique
(CP) ou aussi CANDECOMP ou PARAFAC [Coml4]. Sous forme com-
pacte, (B.16) peut étre représentée par T = [A; AN A ,A(N)]], dans
lequel X\ est un wvecteur de coefficients de taille R contenant les valeurs A,

(n)

et a, ’ désigne la riéme colonne de la matrice A("), 1 <n < N. La matrice
A" est la matrice facteur du mode n [CMDL*15].
Le probléme de la décomposition CP d’ordre N sous contrainte peut étre
exprimé comme la minimisation suivante :
1
min ST = A AW, AR A2
I DA 13

$4.Cx,Cym, 1 <n <N

ol T est un tenseur d’ordre N de dimensions ny X ny... X ny et de rang

R, le vecteur de coefficient X est de dimensions R x 1, et les N matrices
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A(l), A(Q), .. ,A(N) sont de dimensions n1 X R,ny X R,...,ny X R, respec-
tivement. En outre, Cx,C 4n) représentent la contrainte sur le vecteur de
coefficient A et la matrice A respectivement.

Puisque la minimisation de la fonction de cott de la décomposition CP
sur toutes les matrices-facteurs est un probléme non-convexe, une stratégie
commune pour le transformer en une séquence de problémes convexes (si
les contraintes sont déja convexes) est le cadre d’Optimisation Alternée
(AO) [SDLF*17| ou Block Coordinate Descent (BCD) [Tse01]. Dans I’AO,
en fixant toutes les matrices-facteurs (par initialisation ou en utilisant leur
estimation précédente) sauf une, on essaie de minimiser la fonction de cott
sur une seule matrice-facteur

Par exemple, les étapes ALS pour une décomposition tensorielle con-

trainte d’ordre trois de dimensions nq xng xns et derang R, T = [1g; Asl)xm

Ag)x R Aflsx rl, sous une forme dépliante, sont les suivants :
1 3 2
Al(c+)1 = argmin fHTng)XnZnS — A(A,i ) o A](g ))T||%1 st.Ca(A)
n1XR
2 2 3 1)
AY, = argmin [T, ~ B © AT s1.€5(B)
ng X R
AD — argmin S| TP, _ (4?0 AD Y| st.Co(C)  (B.17)
k1 = AN S nyning k+1 k+1) lIFst.Co :
ng xR

ou C.() représente la contrainte souhaitée sur les matrices facteurs.

B.4.2 Séparation Avant-Arriére

Dans cette section, nous expliquons 'opérateur proximal et les méthodes
telles que le Séparation Avant-Arriére?, qui est utilisé dans la méthode que

nous proposons dans la Section B.4.4.

Opérateur de proximité [CP11] Pour tout € RV, I'unique solution du

probléme de minimisation suivant :

. 1
argmin f(y) + in—yH%, (B.18)
yeRN

2Forward-Backward Splitting
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est défini comme l'opérateur de proximité de la fonction f € T'g(RY), et il

est désigné par prox(z).

Dans de nombreuses applications de traitement du signal, la fonction de
colit & minimiser est la somme de deux fonctions dont I'une est généralement
non-différentiable ou méme non-convexe. FEn suivant une approche proxi-
male, ces types de problémes peuvent étre résolus a ’aide d’un algorithme

particulier appelé Séparation Avant-Arriére.

Theorem 3 (Séparation Avant-Arriére [CP11]). Supposons que f : RY
R U {400} est une fonction propre®, semi-continue inférieurement, qui pos-
séde la propriété KL et est bornée par le bas. Si f peut étre décomposée en
deuzx parties sous la forme f = h+ g, ot g est semi-continue inféricurement
et h: RN — R est une fonction différentiable & valeur finie avec un gradient

continu B-Lipschitz, i.e, 38 tel que :
IVh(z) = Vh(y)ll2 < Blle — yll2,

alors on peut montrer [CWO05] que le minimiseur de f satisfait [’équation de

point fize suivante :
x = proz,,(x — yVh(z)), (B.19)
oty € (0,400).

Plusieurs variantes d’implantation de I’agoritme de Séparation Avant-
Arriére existent, et sont rapportées dans [CP11]. Deux d’entre elles sont
reprises (Algorithme 7 et Algorithme 8) auxquelles nous ferons référence
dans la suite de cette these.

L’algorithme 8 est basé sur l'algorithme Fast Iterative Shrinkage Thresh-
olding (FISTA) proposé dans [BT09a, BT09b| et peut étre considéré comme
un algorithme de gradient proximal. En fait, au lieu de la fonction de rétré-

cissement dans FISTA, on utilise 'opérateur de proximité.

3Une fonction est propre si son domaine n’est pas un ensemble nul.
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Algorithm 7 Séparation Avant-Arriére [CW05,CP11, Algorithm 10.5]
Entrée: La fonction f = h + g telle que définie dans le Théoréme 1, 5,

iIZoERN

Sortie: Le minimiseur de f
1
1: Fixer € € (0, min{1, B})
2: for k=0,1,2,... do
5 weles—d
: Yk € - — €
g
4y, =z — % Vh(zy)

5: ay, € [e,1]
6:  xpy1 = g + ap(prox,,  (yg) — =)
7: end for

La convergence de ’algorithme de Séparation Avant-Arriére dans le théoréme 1
est prouvée dans [ABS13|, et 'analyse de convergence fournie n’est pas seule-
ment applicable pour des fonctions de coiit continues et convexes, mais est
également utilisable pour des fonctions non-lisses et non-convexes (ou un

ensemble de contraintes non-convexes).

B.4.3 L’état de art

B.4.3.1 Optimisation Alternée - Méthode des Multiplicateurs a
Direction Alternée (AO-ADMM) [HSL16]

L’algorithme AO-ADMM?* tente de minimiser chaque étape de (5.9) par
ADMM. Les détails de ’AO-ADMM pour la décomposition CP sous con-
trainte peuvent étre trouvés dans [HSL16|. La convergence d’AO est briéve-
ment examinée dans [HSL16] sur la base des travaux de [Tse01,RHL13]. La
convergence de chaque étape, qui est un algorithme ADMM, peut étre dé-
montrée pour les fonctions convexes [HSL16, BPCT11] et aussi récemment
pour certaines fonctions non-convexes telles que ¢, 0 < ¢ < 1 [WYZ19|,

mais pas encore pour certaines autres telles que £.

* Alternating Optimization - Alternating Direction Method of Multipliers
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Algorithm 8 Algorithme du gradient proximal de Beck-Teboulle [CP11,

Algorithm 10.7] basé sur FISTA [BT09b]
Entrée: La fonction f = h + g telle que définie dans le Théoréme 1, 3,

w()E]RN

Output: Le minimiseur de f
1: Set zg =xgand ty =1
2: for k=0,1,2,... do
3 yp =2z — B7Vh(zp)

4: Tp+1 = proxXg-14(yy)
14 /4ti +1
T
6  Ap=14 2
l+1
T Zgy1 = @ + M\p(Tpp1 — k)
8: end for

B.4.3.2 Gradient Proximal Alternatif (APG) [XY13b]

Dans [XY13b], la convergence d’un algorithme BCD général est étudiée, ou
pour mettre & jour chaque bloc de variables inconnues, trois types de mises

a jour sont étudiés, & savoir : original, proximal et prox-linear.

D’aprés la comparaison effectuée dans [XY13b|, la mise & jour prox-
linéaire (i) donne de meilleures valeurs de la fonction objectif que la mise
a jour originale et proximale, (ii) est plus facile a calculer et (iii) permet

souvent des solutions sous forme explicite.

L’algorithme APG® ne suit pas explicitement la procédure de Séparation
Avant-Arriére; néanmoins, pour satisfaire la contrainte de non-négativité, il
se termine par une projection sur ’orthant non-négatif ainsi que par la mise

a jour d’un coefficient particulier comme & la ligne 5 de I’Algorithme 8.

5 Alternating Proximal Gradient
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B.4.3.3 Factorisation tensorielle non-négative rapide-APG (FastNTF-
APG) |ZZZ116]

L’algorithme FastNTF-APGS [ZZZ16] est une version modifiée de APG [XY13b]
dédiée a la décomposition tensorielle non-négative. Dans [ZZZ716], il est
mentionné que, contrairement aux algorithmes classiques de factorisation
tensorielle non-négative (NTF), qui souffrent d’une convergence lente en par-
ticulier dans les applications pratiques [JMC18]|, FastNTF-APG accélére la

NTF et surmonte ce goulot d’étranglement en combinant APG avec I’approximation

de rang faible.

Comme dans APG, il est également nécessaire dans FastNTF-APG de
calculer la constante de Lipschitz du gradient de & ||77(!) —A(A;:’) @Al(f))TH%
par rapport & A (selon (B.17)). Il est mentionné dans [ZZZ116]| que la con-
stante de Lipschitz est H(A,(CS) ©) A,gz))T(A,gg) ©) A,(f))H F, Mais comme nous
le prouvons dans ’annexe A, la constante de Lipschitz est en fait la norme

spectrale” de {(A,(f)) O] A,(CQ))T(AS’) ©) A,(f))}.

B.4.3.4 Meétrique Variable Avant-Arriére par Bloc de Coordon-
nées (BC-VMFB) [CPR16, VCTMM17,VCTM"17]

L’algorithme BC-VMFB?® consiste en deux étapes principales : une étape
de gradient liée & la fidélité des données, qui est supposée étre différentiable
et avoir un gradient (B-Lipschitz, et une étape proximale liée au terme de
régularisation, pour laquelle un nouvel opérateur de proximité doit étre cal-
culé. On observe empiriquement dans [CMLZ18| que l'utilisation de cette
nouvelle définition de I'opérateur de proximité accélére la convergence de la

Minimisation Linéarisée Alternée Proximale (PALM) [BST14].

5Fast Non-negative Tensor Factorization-APG
"La norme spectrale d’une matrice est définie comme étant sa valeur singuliére maxi-

male [Ber05].
8Block Coordinate Variable Metric Forward-Backward
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B.4.3.5 Meéthode de la puissance itérée tensorielle robuste [AGH"14]

Dans [AGH"14], les auteurs proposent d’utiliser les deux moments (P et
T) définis dans (B.1) et (B.2). La matrice P est théoriquement semi-définie
positive, puisque P est une matrice de covariance (notez que @y sont des
nombres non-négatifs dans (3.5)). Par conséquent, de maniére similaire & ce
qui a été fait pour la séparation aveugle de sources |[CJ10,Com94|, il existe
une matrice de “blanchiment” W telle que WTPW = I, o I est la matrice
d’identité.

Ensuite, cette matrice de blanchiment est appliquée au tenseur 7~ pour

donner :

En d’autres termes, les composantes du tenseur blanchi sont, d’aprés (2.2) [Com14]:

Trts)= > Tt s\Wrr\W(tt)W(s,s).

!/t s

Ce nouveau tenseur satisfait
K
~ —1/2 - - -
T:Zcpk / ar @ ap K ag.
k=1

La conclusion est que T admet idéalement une décomposition CP orthogo-

nale; voir e.g. [Com14, Com94| pour une introduction.

Les auteurs de [AGH" 14| ont utilisé la méthode de la puissance itérée
tensorielle [DLC*95| pour extraire le “vecteur propre” dominant?, a, et la
“valeur propre” dominante, @, de T et ensuite procédé par déflation, i.e. T

T — 9 a® a® a, pour obtenir les autres.

9Rappellez-vous qu’il existe plusieurs définitions des vecteurs propres du tenseur
[Lim05,QL17]. La définition utilisée dans [AGH" 14] — et donc ici — est T e v v = Av, qui
a la propriété indésirable que A dépend de la norme de v. En fait, si (A, v) est un couple

propre, alors (a), av) l'est aussi pour tout « non nul. Ceci est analysé dans e.g. [QL17].

171



APPENDIX B. RESUME EN FRANCAIS

B.4.4 Algorithme proposé: Séparation Simple Avant-Arriére
(SFBS)

Dans cette section, nous décrivons SFBS, la méthode que nous proposons
pour la décomposition CP contrainte (e.g. non-négativité). Considérons
le tenseur d’ordre N, T € RI*[2X--IN de rang R. Supposons que T =
IA; AN A ,A(N)]], ou A€ ]Rf et A € RI"*E_ Un probléme général
de décomposition CP contrainte de T peut étre formulé comme suit :
ﬁ%émim&NQA@wwAmM% (B.20)

s.t. 3 CAN), € 4 (AM), 51 <n <N,

ou Cx(A),C A(n>(A(")) sont, respectivement, les contraintes sur le vecteur
X (y compris la contrainte mentionnée ci-dessus, i.e. A € RE comme
lappartenance a un simplex) et la matrice A,

Comme mentionné dans la section B.4.3.1, une stratégie commune con-
siste & résoudre (B.20) via ALS. De plus, une optimisation avec contraintes
peut étre transformée en une optimisation sans contraintes en ajoutant la
fonction indicatrice de ’ensemble des contraintes a la fonction de cotit. Pour

étre plus précis, a la n'®™¢ étape de I’ALS pour résoudre (B.20), nous avons :
o1 n 2 ) n
min = || 77— [AW,..., AW AN+ e (AT, (B.21)

A 2

o ig (A™) est défini comme suit :
, 0 if AMee,m
€ ) : (n)
o if A" ¢ eA(n)
Définissons W 2 (AM ©...0 APV oA D o .0 AT Alors en

développant en mode-n 'expression (5.11), on a :

1
ST — AW £ i (n)
%)12“7- AW + e, () (A™). (B.22)

Toutes les hypothéses requises du Théoréme 3 sont satisfaites pour (B.22),

et selon ce théoréme, le minimiseur de (B.22) est le point de convergence de
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Algorithm 9 L’algorithme de SFBS
Entrée: T, C 4., initiale Aén), nell,...,N], e
Sortie: Estimation de A" n e 1,...,N]

1: repeat

2: forn=1,2,...,N do

3: W=AMe...0 At oA D o oA
4: B = {max(valeur singuliére(W))}?

5: définir v = % et choisir ay.

6: for g =0,1,2,... do

7 Y =AY — (AP wwT) - TwT)

8: Aé@l = AgY + ag(proje  ,, (Y) = A

9: end for

10: end for

11: until Un certain critére de fin

I’équation & point fixe suivante :

A —prox,, {A® 4 AOWWT - wT™")),

71€A(n)

La SFBS est décrite dans I’Algorithme 9. Comme elle est exprimée dans

%,01‘15:

[WWT||, désigne la norme spectrale de la matrice WW?T | dans toutes

I’Algorithme 9, nous ignorons € et fixons la valeur de v, =

les itérations sur k (nous avons observé expérimentalement que e = 1.4 ou
e = 1.9 sont presque toujours des valeurs correctes).

SFBS est également assez facile & comprendre et & mettre en ceuvre, c’est
pourquoi nous 'appelons Simple Forward-Backward Splitting (SFBS). Bien
que des descriptions détaillées des avantages de SFBS par rapport aux autres
méthodes (discutées dans cette thése) soient fournies dans la Section 5.7,

nous les énumérons briévement ci-dessous pour compléter la présente section:

e Contrairement a d’autres méthodes sous contraintes, il est expliqué
comment la SFBS peut gérer une variété de contraintes telles que

I'appartenance & un simplex de toutes les matrices facteurs ainsi que

173



APPENDIX B. RESUME EN FRANCAIS

du vecteur A,

e Contrairement & la méthode de la puissance tensorielle robuste, la
SFBS est capable de gérer les cas “sur-complets” (lorsque le nombre
de variables cachées, K, est supérieur au nombre de variables multi-

vues, D) dans 'estimation des probabilités (cf. Section 3.3.1),

e Par rapport & APG, qui est 'une des méthodes les plus efficaces basées
sur le concept proximal, SFBS est plus performante dans un scénario
bruité en termes d’erreur de reconstruction relative et d’estimation des

matrices facteurs,

e Contrairement & AO-ADMM, une analyse de convergence compléte est

fournie dans la section 5.5.4.

Garantie de convergence La convergence globale d’AQO lorsque la min-
imisation & chaque étape est effectuée au moyen du concept proximal est
prouvée dans [XY13b,BST14|. L’analyse de convergence fournie dans [BST14]
convient a I’algorithme basé sur Proximal Forward-Backward; en conséquence
nous renvoyons le lecteur, pour la convergence globale de SFBS (qui est égale-
ment basée sur Proximal Forward-Backward), a ’analyse effectuée dans [BST14],
a savoir, Proximal Alternating Linearized Minimization (PALM). Dans la
section 5.5.4, nous avons discuté de la facon dont les hypothéses de conver-

gence requises de PALM sont satisfaites pour SFBS.

La garantie de convergence de chaque étape de SFBS résulte d’un théoréme
établi dans [ABS13|, qui traite de la convergence du fractionnement avant-
arriére, et les hypothéses de ce théoréme sont complétement satisfaites pour

chaque étape de SFBS.
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B.4.5 Résultats de la simulation

B.4.5.1 Contrainte de non-négativité

Dans toutes les simulations de cette section, e; = 1072%, e = 1.9 et nous répé-
tons cinq fois la boucle de la ligne 6 pour chaque mode dans 1’Algorithme 9
(algorithme SFBS).

La figure B.7 montre 'erreur relative de reconstruction du tenseur sans
bruit de taille 10 x 10 x 10, de rang R = 6, avec un nombre d’initialisations,
un nombre de moyennes, et un nombre d’itérations (max-number), égaux a
10, 10 et 5000, respectivement (cf. voir page 101 pour la définition de ces
paramétres). Comme on peut le voir a premiére vue, BC-VMFB, malgré
nos efforts pour ajuster ses paramétres correctement, résulte en une erreur
relative autour de 1, ce qui signifie 100% (rappelons que lerreur relative
n’est pas indiquée sous forme de pourcentage). Bien que nous ayons con-
sulté I'auteur correspondant de BC-VMFEB au sujet des paramétres de leur
algorithme, nous avons trouvé difficile d’ajuster plusieurs parameétres de BC-
VMFB. En fait, non seulement ces paramétres dépendent des données, mais
ils ont également un effet critique sur le résultat final de la méthode. Par
conséquent, il semble inutile d’inclure 'algorithme BC-VMFB dans le reste
des comparaisons de cette simulation. De plus, puisque FastNTF-APG es-
saie de décomposer une approximation de rang faible du tenseur désiré, on
peut s’attendre a ce que la performance de FastNTF-APG soit pire que celle
de APG. Par conséquent, nous supprimons FastNTF-APG dans certaines
comparaisons de ce chapitre. Bien que la plupart des méthodes atteignent
des performances raisonnables, APG et SFBS convergent plutédt plus rapi-
dement.

Dans la Fig. B.8, I’écart entre X et X via Corrlndex et I’algorithme
hongrois (qui est une erreur exacte) est indiqué pour la méme simulation que
la Fig. B.7. Comme on peut le voir sur la Fig. B.8, la méme interprétation que
celle de la Fig. B.7 peut étre conclue & partir de “Corrlndex” et “Hungarian”.

La figure B.9 indique lerreur relative de reconstruction d’un tenseur
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Figure B.7: Erreur relative de reconstruction lors de la décomposition d’un tenseur
de dimensions 10 x 10 x 10, de rang R = 6 sous la contrainte de non-négativité sur
tous les matrices facteurs, dans le cas sans bruit avec les paramétres suivants: €; =
1072%, nombre moyen= 10, nombre d’initialisation= 10, itérations max-number=

5000, e = 1.9.
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Figure B.8: Comparez lestimation de la matrice X via CorrIndex (& gauche) et

Hungarian (a droite) dans la méme expérience que Fig. B.7.
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bruité de taille 10 x 10 x 10, de rang R = 6 avec SNR = 10, nombre
d’initialisations = 20, nombre de moyennes = 200 et nombre maximal d’itérations
= 1000. La figure B.9 (Gauche) compare toutes les méthodes ensemble, tan-
dis que la figure B.9 (Droite) exclut BC-VMFB afin de montrer plus précisé-

ment les résultats des autres méthodes.

Comme dans la Fig. B.7, BC-VMFB ne fonctionne pas correctement dans
I’expérience de la Fig. B.9. De plus, bien que Nway s’en sorte bien dans un
cas sans bruit, sa performance n’est pas acceptable dans la situation bruitée
(cf. Fig. B.9). Comme mentionné précédemment, FastNTF-APG remplace le
tenseur bruité par son approximation de rang faible, ce qui permet de filtrer
le bruit. Comme on peut le voir sur la Fig. B.9, le résultat de FastNTF-
APG est meilleur que APG dans un scénario bruité, alors que APG est 'une
des meilleures méthodes pour la décomposition d’un tenseur sans bruit (cf.
Fig. B.7). De plus, SFBS et AO-ADMM surpassent les autres méthodes
dans l'expérience de la Fig. B.9. Par conséquent, le seul algorithme qui
fonctionne correctement et mieux que les autres dans les situations bruitées

et non bruitées est SFBS.

Dans la Fig. B.10, I’écart entre X et X via CorrIndex et I’algorithme
hongrois (qui est 'erreur exacte) est indiqué pour la méme expérience que
la Fig. B.9. Bien que selon ’erreur de reconstruction relative de la Fig. B.9,
AO-ADMM et SFBS surpassent les autres, dans ’estimation des matrices
facteurs (cf. Fig. B.10), SFBS est plus performant que AO-ADMM. La
performance sur ’estimation des matrices facteurs est critique dans de nom-
breuses applications telles que ’exploration de données et 1’exploration de
textes décrites dans le chapitre 3. De plus, les performances de Nway étant
insuffisantes dans le cas bruité, cela révéle 'importance de prendre en compte
les contraintes dans la décomposition des tenseurs (rappelons que Nway exé-

cute simplement une décomposition CP non-contrainte).
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Figure B.9: Erreur relative de reconstruction incluant BC-VMFB (gauche) et
excluant BC-VMFB (droite) dans la décomposition d’un tenseur de dimensions
10 x 10 x 10, de rang R = 6 sous la contrainte de non-négativité sur tous les
matrices facteurs, dans un cas bruité avec SNR = 10 et avec les paramétres suiv-
ants: €, = 1072%, nombre moyennes = 200, nombre d’initialisations = 20, nombre
maximal d’itérations = 1000, e = 1.9.
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Figure B.10: Comparaison entre ’estimation de la matrice X via CorrIlndex (a

gauche) et Hungarian (a droite) dans la méme expérience que la Fig. B.9.
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B.4.5.2 Contrainte du simplex

Dans cette section, nous étudions de maniére pratique les performances des
algorithmes de décomposition tensorielle sous la contrainte d’appartenance
au simplex des probabilités, sur toutes les colonnes de toutes les matrices
facteurs et sur A. Dans les simulations de cette section, nous fixons ¢; =
10720 et répétons cing fois la boucle de la ligne 6 pour chaque mode de
I’Algorithme 9. (algorithme SFBS).

Dans cette section, nous comparons SFBS avec AO-ADMM, puisque, pre-
miérement, la contrainte du simplexe est directement considérée et étudiée
par les auteurs dans [HSL16| ainsi que dans leur implantation. Deuxiéme-
ment, selon les résultats sous la contrainte de non-négativité dans la sec-
tion 5.6.1.1, AO-ADMM est l'algorithme qui a les performances les plus
proches de celles de SFBS dans les cas bruités et non bruités.

La méthodologie d’application de la contrainte du simplex sur toutes les
colonnes de toutes les matrices facteurs en plus du vecteur de coefficients ()
est expliquée dans la section 5.5.2.2, et nous avons utilisé cette méthodologie

dans les simulations de la présente la section.

Cas sans bruit. La figure B.11 montre l'erreur relative de reconstruc-
tion du tenseur sans bruit de taille 10 x 10 x 10, de rang R = 3 avec un
nombre d’initialisations, un nombre de moyennes, e et un nombre maximal
d’itérations, égaux a 10, 10, 1.5 et 20000, respectivement, sous la contrainte
du simplex (des probabilités) sur toutes les colonnes de toutess les matrices
facteurs en plus de A'°. En comparant la Fig. B.11 et la Fig. B.7, on peut
en déduire que le simplex est une contrainte plus difficile & atteindre que
la non-négativité seule, puisque le maximum d’itérations requises pour la
contrainte du simplex est de 20000, et c’est plus que ce qui est fixé pour la
contrainte de non-négativité (i.e. 5000) pour la convergence des algorithmes.
Comme on peut le voir sur la Fig. B.11, SFBS et AO-ADMM atteignent tous

deux le méme niveau d’erreur relative, mais SFBS converge légérement plus

10Voir page 101 et Algorithme 5 pour la définition de ces paramétres.
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vite.

Dans la Fig. B.12, I’écart entre X et X via Corrlndex et I’algorithme
hongrois (qui est 'erreur exacte) est indiqué pour la méme expérience que
la Fig. B.11. La méme conclusion que précédemment peut étre tirée de
I’estimation des matrices facteurs, c’est-a-dire que SFBS et AO-ADMM sont

tous deux performants, cependant, SFBS converge un peu plus rapidement.

Cas bruités. La figure B.13 montre lerreur relative de reconstruction
d’un tenseur de taille 10 x 10 x 10, de rang R = 3 avec SNR, nombre
d’initialisations, nombre de moyennes, e et nombre d’itérations max-number,
égaux a 10, 20, 200, 1.9 et 1000, respectivement, sous les contraintes du sim-
plex sur toutes les colonnes de tous les matrices facteurs en plus de A. La
figure B.14 représente 1’écart entre X et X via CorrIndex et I’algorithme
hongrois (qui est 'erreur exacte) pour la méme expérience de la Fig. B.13.
Les Fig. B.13 et Fig. B.14 montrent que SFBS est plus performant que AO-
ADMM et converge légérement plus rapidement.

La figure. B.15 montre ’écart entre A et X via CorrIndex et I’algorithme
hongrois (qui est I'erreur exacte) pour la méme expérience que la figure. B.13.
On peut tirer la méme conclusion que précédemment, c¢’est-a-dire que SFBS
fonctionne et converge mieux et plus rapidement que AO-ADMM. On peut
voir que l'erreur relative dans la Fig. B.15 augmente légérement. On note que
la diminution monotone de l'erreur de reconstruction relative (ou fonction
objectif) est essentielle, et non pas pour l'estimation des matrices facteurs
ou A, ce qui est le cas dans toutes les expériences telles que celle exprimée

dans la Fig. B.13.

Sensibilité au bruit additif. Dans la suite, nous montrerons expérimen-
talement que la méthode de la puissance tensorielle robuste n’est pas per-
formante en présence de bruit additif. Pour ce faire, nous avons généré des
matrices arbitraires A'°%3 et des vecteurs ¢®*!. Ensuite, nous avons calculé
leurs moments d’ordre 3 et 2 originaux correspondants, i.e. T et P (cf. (B.3)

et (B.4)). Enfin, nous avons appliqué plusieurs algorithmes de décomposition
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Figure B.11: Erreur relative de reconstruction lors de la décomposition d’un tenseur
de dimensions 10 x 10 x 10, de rang R = 3 sous les contraintes du Simplex sur
toutes les colonnes de toutes les matrices facteurs et sur A, dans un cas sans bruit
avec les paramétres suivants : €; = 10729 nombre de moyennes = 10, nombre

d’initialisations = 10, nombre maximal d’itérations max-number = 20000, e = 1.5.
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Figure B.12: Comparaison entre ’estimation de la matrice X via CorrIlndex (a

gauche) et Hungarian (a droite) dans la méme expérience que la Fig.B.11.
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Figure B.13: Erreur relative de reconstruction lors de la décomposition d’un tenseur
de dimensions 10 x 10 x 10, de rang R = 3 sous les contraintes du simplex sur toutes
les colonnes de toutes les matrices facteurs et sur A, SNR = 10 avec le paramétrage
suivant : €; = 1072°, nombre moyennes = 200, nombre d’initialisation= 20, itéra-

tions max-number= 1000, e = 1.9.
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tensorielle, dont la méthode de puissance tensorielle robuste, sur les versions
bruitées et non bruitées (Fig. B.16 et Fig. B.17) de T et P.

Bien que la méthode de la puissance et la méthode de la puissance pro-
jetée soient trés performantes dans le cas sans bruit, les figures B.16 et B.17
montrent que ces algorithmes sont trés sensibles au bruit additif dans T et
P.

La figure B.16 (Gauche) montre lerreur de reconstruction relative des
algorithmes en fonction d’une gamme de valeurs de SNR, i.e. [10, 20, 30, 40].
Comme on peut le constater, la méthode “Power” est trés sensible au bruit
additif, et son erreur de reconstruction relative peut atteindre des valeurs
trés élevées (comme 500). Dans la Fig. B.16 (droite), afin de distinguer les
performances des autres algorithmes, nous supprimons la méthode Power.
La figure B.16 (Droite) exprime que méme en projetant le résultat de la
méthode Power sur le simplex (méthode Projected Power), la performance

de la méthode Power ne peut pas devenir acceptable.

B.4.5.3 Comparaison entre les performances pour les données

synthétiques avec des relations cachées

L’effet de la contrainte sur la performance. Nous présentons dans
cette section les résultats de comparaison obtenus avec une seule taille de
dictionnaire, D = 8, avec un nombre fixe de sujets, K = 4, et pour différentes
tailles de corpus jusqu’a N, = 2'7. De plus, les résultats sont obtenus pour
une réalisation particuliére de la matrice A et du vecteur ¢ (des résultats
similaires sont toutefois obtenus avec d’autres choix de A et de ¢).

Les résultats sont présentés dans la Fig. B.18 ; chaque cercle noir (resp. croix
rouge) correspond a l'erreur de la méthode de puissance tensorielle robuste
(resp. non-négative AO-ADMM) dans 'estimation de ¢ ou A pour un cor-
pus spécifique de documents avec une taille de corpus particuliére, N.. Pour
faciliter la comparaison, la médiane (resp. écart-type) parmi les corpus de
documents est également représentée par une ligne pleine (resp. pointillés)

pour chaque taille de corpus.
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Figure B.16: Gauche: erreur de reconstruction relative de la décomposition des

moments d’ordre 3 incluant la méthode Power. A droite: zoom sur la gauche, sans

la méthode Power. La moyenne des résultats de la décomposition des noisy T

selon une plage de valeurs SNR, i.e. [10, 20, 30, 40] sur 200 de réalisations de A et

@, révele que les algorithmes contraints tels que SFBS sont bien plus performants

que la méthode Power et ses variantes.
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Figure B.17: Gauche: erreur relative de ’estimation de A mesurée par I’algorithme

hongrois dans la méme expérience que la Fig. B.16. Droite: erreur relative de

I’estimation de ¢ mesurée par ’algorithme hongrois dans la méme expérience que

la Fig. B.16. La moyenne des résultats de la décomposition de noisy T selon une

plage de valeurs SNR, i.e. [10,20,30,40] sur 200 réalisations de A et ¢, révéle

que les algorithmes contraints tels que SFBS sont beaucoup plus performants que

la méthode Power et ses variantes. De plus, SFBS Simplex Symétrique et SFBS

Simplex sont également un peu plus performants que AO-ADMM.
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Figure B.18: Comparaison des performances de la méthode de puissance tensorielle
robuste et de la méthode AO-ADMM non-négative dans I'estimation des proba-
bilités, i.e. A (en haut) et ¢ (en bas), en fonction de la taille du corpus jusqu’a
N, = 217, lorsque Iestimateur de moment est une simple moyenne. Le nombre de
mots et de sujets est fixé & D = 8 et K = 4, respectivement. Chaque cercle noir
(resp. croix rouge) correspond a lerreur de la méthode de puissance tensorielle
robuste (resp. AO-ADMM non-négative) dans 'estimation de ¢ ou A pour un
corpus spécifique de documents avec une taille de corpus particuliére, N.. La médi-
ane (resp. écart-type) parmi les corpus de documents est également tracée en ligne

pleine (resp. pointillés) pour chaque taille de corpus.
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Comme le montre la Fig. B.18, 'erreur de la méthode contrainte telle
que ’AO-ADMM non-négative converge plus rapidement vers zéro lorsque
la taille du corpus augmente, et contrairement & la méthode de puissance
tensorielle robuste, ’AO-ADMM non-négative semble étre beaucoup plus
robuste en raison de son plus petit écart-type de ’erreur relative. De plus,
la Fig.B.18 (en bas) révéele que la différence de performance et d’écart type
de la méthode de puissance tensorielle robuste est beaucoup plus importante
dans l'estimation de ¢. Par conséquent, la prise en compte d’une contrainte
appropriée (telle que la non-négativité) dans la décomposition est trés effi-

cace, notamment pour 'estimation de ¢.

B.4.6 Expériences sur des données réelles

Dans cette section, nous décrivons les expérimentations réalisées sur une par-
tie d’'un ensemble de données textuelles bien connu, & savoir 20 Newsgroups,
qui consiste en 11314 messages sur 20 sujets disponibles en ligne [Lan95a,
Lan95b, Nig00].

En effectuant quelques étapes de prétraitement sur I’ensemble des don-
nées et en conservant les mots ayant une fréquence supérieure a 20% de la
fréquence moyenne du corpus (term-document), nous obtenons un diction-
naire de taille 14 x 14 (D = 14 mots). Etant donné que la méthode Power
et ses variantes ne peuvent pas traiter les cas surcomplets (K > D), nous
sommes contraints de choisir K = 14 sujets plutdt que K = 20, bien que
K = 20 soit plus approprié étant donné que 20 sujets existent dans I’ensemble
de données considéré (N, = 11314 messages sur 20 sujets). Par conséquent,
le sac de mots résultant (cf. (B.7)) est une matrice de dimensions 14 par
11314.

Bien que dans ce corpus, le nombre de documents pour tous les sujets soit
presque le méme (ce qui signifie que ¢ devrait avoir une distribution proche
de la distribution uniforme), le vecteur ¢ estimé par la méthode de puissance
robuste, i.e. Ppyyers N'eSt pas seulement non uniforme, mais n’est pas non

plus une estimation de distribution de probabilité, puisque ses valeurs ne se
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trouvent pas dans le simplex de probabilités:

Brower = [0.00,0.02,0.14, 0.03, 0.08, 0.26, 0.39,
0.35,0.65,302.89, 1.01,0.87, 8.30, 0.95]~ .

Meéme si on projette @poyer SUr le simplexe comme mentionné précédem-
ment, et que I'on obtient Ppyyerprojs Cela n'aurait pas de sens; en effet “¢
est censé avoir une distribution proche de la distribution uniforme”, puisque

nous avons :

T
aPower—proj = [O) O) 07 05 07 07 07 07 07 17 07 07 07 0

D’autre part, le ¢ estimé par SFBS, i.e. pgpgg, est le suivant :

Pepps = [0.10,0.08,0.09,0.09, 0.10, 0.04, 0.02,
0.05,0.06,0.01, 0.06, 0.09, 0.08, 0.12],

qui est plus proche de la distribution uniforme que @poyer_proj- Cela prouve a
nouveau que ’application de la décomposition tensorielle contrainte est plus

fiable que la décomposition non contrainte.

B.5 CONCLUSION ET PERSPECTIVES

Dans cette thése, nous nous sommes concentrés sur un modéle de données
particulier, appelé single topic (cf. Fig. B.1), constitué de quelques vari-
ables multi-vues qui sont reliées entre elles par une variable cachée/latente.
Un document peut étre décrit correctement par ce modéle lorsque ses mots
jouent le role de variables multi-vues, qui sont liées les unes aux autres en
fonction du sujet de ce document en tant que variable cachée.
Nous avons étudié les applications de la décomposition Canonique Polyadique

(CP) pour l'estimation des probabilités des variables cachées et des probabil-
ités conditionnelles des variables multi-vues. Nous avons expliqué qu’il y a

deux étapes principales dans 'estimation des probabilités via une approche
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tensorielle: premiérement, estimer le tenseur des moments du troisiéme or-
dre en observant les données qui obéissent au modéle a sujet unique; deux-
iémement, décomposer le tenseur des moments du troisiéme ordre estimé au
moyen d’algorithmes de décomposition tensorielle appropriés.

Nous avons étudié chaque étape nécessaire a I'estimation de probabilité
via une approche tensorielle. Nous avons étudié théoriquement et expéri-
mentalement les défis relevés dans I’état de 'art sur les estimations de mo-
ments et sur les décompositions tensorielles. En outre, nous avons proposé
un estimateur de moments (moyenne standard), un nouvel indice de perfor-
mance (Corrlndex) et un algorithme de décomposition tensorielle (SFBS),
qui présentent certains avantages par rapport aux méthodes et indices exis-
tants.

Le principal inconvénient des algorithmes de décomposition tensorielle
sous contrainte pour les grandes dimensions (typiquement de I'ordre de D >
50) est qu’ils prennent du temps en raison du calcul du produit de Khatri-
Rao des matrices facteurs. Par conséquent, une future extension de SFBS
serait de suivre 'idée de CPRAND (décomposition CP randomisée) efficace
pour des tenseurs de rang faible, dans chaque itération de SFBS.

Bien que nous nous soyons concentrés sur le modéle a sujet unique dans
cette thése, le contenu peut étre étendu a d’autres modéles de données tels

que LDA [BNJ03] et les modeles de Markov [AGHT14].
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