
HAL Id: tel-03692446
https://theses.hal.science/tel-03692446

Submitted on 9 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speculative rewriting of recursive programs as loop
candidates for efficient parallelization and optimization

using and inspector-executor mechanism
Salwa Kobeissi

To cite this version:
Salwa Kobeissi. Speculative rewriting of recursive programs as loop candidates for efficient paral-
lelization and optimization using and inspector-executor mechanism. Other [cs.OH]. Université de
Strasbourg, 2021. English. �NNT : 2021STRAD012�. �tel-03692446�

https://theses.hal.science/tel-03692446
https://hal.archives-ouvertes.fr

Université deStrasbourg

École Doctorale Mathématiques, Sciences de l’Information et de
l’Ingénieur (MSII)

Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube)

THÈSE présentée par :

Salwa KOBEISSI
Soutenue le : 24/06/2021

Pour obtenir le grade de : Docteur de l’Université de Strasbourg
Discipline / Spécialité : Informatique

Speculative Rewriting of Recursive Programs
as Loop Candidates for Efficient

Parallelization and Optimization Using an
Inspector-Executor Mechanism

THÈSE dirigée par :
Philippe CLAUSS Professeur, Université de Strasbourg, France

RAPPORTEURS :
Christophe ALIAS
Denis BARTHOU

Chargé de Recherche, INRIA, École Normale Supérieure de Lyon, France
Professeur, Institut National Polytechnique de Bordeaux, France

EXAMINATEURS :
Alexandra JIMBOREAN
Pierre-EtienneMOREAU

Chargée de Recherche, Université de Murcie, Espagne
Professeur, Mines Nancy, Université de Lorraine, France

iii

Tomymarvellous mother,
who brightens my world with her pure heart and beautiful spirit,

whose brilliant eyes inspire my dreams and aspiration...

To my great father,
whose heart of gold is my treasure,

whose hands are engraved with lessons and powerful stories of perseverance and
determination...

To my dear brothers,
who always have my back,

whose success stories boost mymotivation...

To my love, my soulmate,
my home, the essence of my happiness,

my partner who holds my hand every step of the way and nurtures my ambition,
the one and only who flies with me beyond the boundaries of my imagination...

iv

v

Acknowledgements

Throughout my educational journey and, particularly, my Ph.D. studies, I have received
invaluable assistance and support that I would like to acknowledge.

I would like to express my sincere gratitude and appreciation to my advisor, Philippe
Clauss, for his mentorship, support and encouragement. It has been a great honor to
work with him and learn from him and his immense research experience. His energy and
enthusiasm for research and life, sense of humor, understanding and trust have always
motivated me throughout this challenging journey.

I would also like to express my gratitude to the reporters Christophe Alias and Denis
Barthou and the examiners Alexandra Jimborean and Pierre-Etienne Moreau for their
acceptance to serve on my Ph.D. thesis committee, their precious time and their insightful
review of my research work.

My gratitude extends to the French Institute for Research in Computer Science and
Automation (Inria) for the three-year funding opportunity to undertake my doctoral stud-
ies at the University of Strasbourg. Besides, I am grateful for the teaching opportunities
that I have been granted at the University of Strasbourg throughout my studies, particu-
larly for the ATER position at the Department of Computer Science at the Robert Schu-
man University Institute of Technology (IUT Robert Schuman) which has not only en-
riched my experience in academia, but has also helped funding my final Ph.D. year. A big
thank you to my colleagues at the IUT Robert Schuman, particularly Pierre Kraemer and
Mathieu Zimmermann, for their great support and cooperation.

In addition, I would like to convey my heartfelt gratitude to my colleagues and friends
at the ICube Laboratory. First of all, I would like to thank the members of my research
team ICPS. I would like to thank Jens Gustedt, Vincent Loechner, Stephane Genaud, Alain
Ketterlin, Cédric Bastoul, Berenger Bramas, Arthur Charguéraud and the others for wel-
coming me among them. I will not forget the good times together, especially the ca-
noe trip and the barbecue. Particularly, I would also like to thank Alain for his help
and collaboration. Besides, I can never forget my friends and ex-colleagues Harenome
Ranaivoarivony-Razanajato and Maxime Schmitt whom I would like to thank for their
help, encouragement, all the fun and fond memories. Also, I would like to thank my
friends Raquel Lazcano, Marek Felšöci and Paul Cardosi, with whom I shared the office
B229, for the motivation and the pleasant time that we spent together full of profound
conversations. I would like to thank them for staying by my side even after we were sepa-
rated by distance. Second, I would like to thank my partners at the Association for Young
Researchers at ICube (AJCI) for the good times. Third, I would like to thank my very first
ICube friends, Chifaa Dahik and Hassan Mortada, for listening, supporting me and cheer-
ing me up.

Since my first steps on my educational path, I have had the chance to be inspired and

vi

encouraged by many great educators: Wafaa Fakih, Mohamad Jaber, Samer Habre, the
late Mohsen Jawad and many others. I would like to express my deep appreciation for
them and their help that has shaped my path.

I am grateful beyond words for my family, my strong support system that I am lucky
to have.

I am extremely grateful to have my mother Alia, the greatest mother and the strongest
and kindest woman in the world, my first teacher, my forever-friend and the main source
of my dreams and ambitions. I would like to thank her for the countless things that she
has done for our sake, her love, selflessness, dedication to our education and future, non-
stop encouragement and support, wisdom, precious advice and optimism in life.

I am very grateful for my father Lotfi who is a great man of value who has taught me
and showed me how to be true to myself, stand up for what I believe in and achieve my
goals through hard work, eagerness and perseverance.

I am also thankful for my brothers Oussama, Sameh and Mohammad because they
have always believed in me and supported me. Having them by my side and learning
from their success stories have influenced much my development and path in life. In
fact, Oussama was the one that advised me to major in computer science. I would also
like to thank my cousin Samer who invested in me and my education.

Furthermore, I would like to thank the other members of my family, my family-in-law,
relatives, and friends who have always encouraged me to achieve my goals and dreams in
life.

At last but not least, a special thank you to the one who means the whole world to me,
to the one and only, my love and husband, Mohamed Jawad. The very first time we ever
met, the first conversation we ever had was about doctoral studies. Ever since then, we
have been together, I have been pursuing my studies, and he has always been there for
me. I am very grateful for his unconditional love, caring, understanding, inexhaustible
patience, powerful support, guidance, inspiration and motivation.

viii

ix

Contents

List of Figures xiv

List of Listings xvi

Abstract xvii

1 Introduction 1
1.1 Computing Performance: Growth and Challenges 2

1.1.1 Hardware Perspective . 2
1.1.2 Software Perspective: Parallel Computing 2

1.2 Motivation: Recursion Optimization . 4
1.3 Contributions . 4
1.4 Thesis Organization . 5

2 Background 7
2.1 The Polyhedral Model . 7

2.1.1 Mathematical Background and Notations 8
2.1.2 Polyhedral Representation of Programs 9
2.1.3 Dependence Analysis . 18
2.1.4 Legal Polyhedral Optimizing Transformations and Parallelization 22
2.1.5 Polyhedral Tools . 25
2.1.6 Limitations . 26

2.2 Speculative Loop Optimization . 27
2.2.1 Inspector-Executor Mechanism 30
2.2.2 Speculative Polyhedral Optimization with Apollo 32

2.3 Trace Modeling as Polyhedral Loops with NLR 33

3 State of the Art 35
3.1 Generality on Recursions . 36

3.1.1 Recursive Algorithms Design . 39
3.1.2 Recursive Codes: Implementation and Execution 43
3.1.3 Types of Recursion . 47
3.1.4 Runtime Analysis . 49

3.2 Optimizing Recursive Programs “as They Are” 55
3.2.1 Task Parallelism . 55
3.2.2 Polyhedral Modeling of Recursive Invocations 56

3.3 Transforming Recursive Programs as Loops 57

x CONTENTS

3.3.1 Recursion and Iteration: Two Sides of the Same Coin 57
3.3.2 Recursion Versus Iteration: Elegance/Efficiency Trade-off 58
3.3.3 Recursion Optimization: Loop at the End of the Tunnel 58
3.3.4 Limitations . 62
3.3.5 Beyond the Limits . 62

4 Dynamic Speculative Rewriting 65
4.1 Overview of the Rec2Poly Framework 66
4.2 Code Static Analysis and Preparation Phase 68

4.2.1 Static Analysis . 69
4.2.2 Code Preparation . 74

4.3 Offline Profiling Phase . 76
4.3.1 Instrumentation . 77
4.3.2 Nested Loop Recognition . 77

4.4 Code Generation Phase: Part Inspector 81
4.4.1 Fast Parallel Inspector . 81
4.4.2 Trace Generators . 82
4.4.3 Verifiers . 85
4.4.4 Parameter Saver . 85
4.4.5 Inspector Optimizations . 88
4.4.6 Inspector In Action: Verification Process 91

4.5 Code Generation Phase: Part Executor 95
4.5.1 Loops: from Design to Construction 95
4.5.2 Fully Affine Loop Model Optimization 97
4.5.3 Loops with Parametrically-Affine Memory Behavior 99

5 Benchmarks 103
5.1 Recursive Programs with Polyhedral Behaviors 103

5.1.1 Matrix Multiplication . 103
5.1.2 Heat . 109

5.2 Inspector-Executor . 114
5.2.1 Matrix Multiplication . 115
5.2.2 Heat . 118

5.3 Challenges: Limitations and Proposed Solutions 120

6 Conclusion and Perspectives 125
6.1 Summary of Contributions . 126
6.2 Future Perspectives . 126

Bibliography 129

A Résumé en Français 143
A.1 Introduction et Contexte . 143

A.1.1 Optimiseurs polyédriques . 143
A.1.2 Systèmes de spéculation au niveau thread 144

A.2 État de l’Art . 145
A.3 Problématique et motivation . 146

CONTENTS xi

A.4 Rec2Poly . 147
A.5 Phase d’Analyse Statique et de Préparation du Code 150

A.5.1 Analyse statique . 150
A.5.2 Préparation du Code . 152

A.6 Phase de Profilage Hors Ligne . 153
A.6.1 Instrumentation . 153
A.6.2 Reconnaissance de boucles imbriquées (NLR) 154

A.7 Phase de Génération de Code . 155
A.7.1 Génération d’Inspecteur Parallèle Rapide 155
A.7.2 Génération de l’Exécuteur . 159

A.8 Expériences . 160
A.8.1 Multiplication récursive de matrices 160
A.8.2 Multiplication récursive de matrices GEMM 161
A.8.3 Heat . 163

A.9 Conclusion . 164

xii CONTENTS

xiii

List of Figures

2.1 Iteration Domain Polyhedron . 12
2.2 Abstract Syntax Tree . 15
2.3 S1 Iteration Domain Polyhedron . 17
2.4 Polyhedron after Loop Skewing . 18
2.5 Dependence Graph . 20
2.6 Polyhedra . 24
2.7 Illegal Polyhedra . 24
2.8 Legal Polyhedra . 24
2.9 Thread Level Speculation System . 28
2.10 Sequential Execution . 29
2.11 Speculative Parallel Execution . 29
2.12 NLR model Example . 34

3.1 Recursion Example: Clock Spiral Droste Effect 35
3.2 Trees . 36
3.3 Fractals . 37
3.4 Factorial(n) Recursion Tree . 46
3.5 Factorial(4) Activation Tree . 46
3.6 Fibonacci(5) Recursion Tree . 47
3.7 Recurrence Tree . 52

4.1 Rec2Poly . 67
4.2 Example of a Call Graph of an Arbitrary Recursive Program 70
4.3 NLR Model for Affine Control and Memory Behavior 78
4.4 NLR Model for Linear Control and Parametrically-Affine Memory Behavior 80
4.5 Detailed Inspector Call Graph Example 87
4.6 For-Loop and its NLR Trace . 89
4.7 Trace Generator-Verifier in Action . 93
4.8 Executor Control Flow Graph Example 98
4.9 Parametrically Affine NLR Model . 100

5.1 Matrix Multiplication Control and Memory Behavior NLR Model 104
5.2 Control Flow Graph Example . 106
5.3 GEMM Program Call Graph . 107
5.4 NLR Model for the Control and Memory Behavior of GEMM 108
5.5 Heat Program Call Graph . 110
5.6 Heat Function Control Flow Graph . 111

xiv LIST OF FIGURES

5.7 NLR Model for the Control and Memory Behavior of Heat 113
5.8 Matrix Multiplication Experimental Results - Rec2Poly Speedup 116
5.9 Program GEMM Experimental Results - Rec2Poly Speedup 118
5.10 Heat - Optimized Inspectors Speedup w.r.t. Inspector I 119
5.11 Heat Inspector-Executor Experimental Results - Rec2Poly Speedup . . . 119
5.12 Barnes Control Behavior NLR Modeling Experiments 121
5.13 Recursion Behavior Loop Model with Variable Upper Bounds 123

A.1 Rec2Poly . 148
A.2 Exemple de graphe d’appel d’un programme récursif arbitraire 150
A.3 Modèle de boucles affines NLR du contrôle et du comportement mémoire 155
A.4 Modèle de boucle paramétriquement affines NLR du contrôle et du com-

portement mémoire . 155
A.5 Exemple de graphe d’appels détaillé pour un inspecteur 158
A.6 Modèle NLR du contrôle et du comportement mémoire du produit de

matrice récursif . 161
A.7 Résultats expérimentaux du programme Multiplication récursive de ma-

trices - Accélération de Rec2Poly . 162
A.8 Résultats expérimentaux du programme GEMM - Accélération de Rec2Poly 163
A.9 Résultats expérimentaux du programme Heat - Accélération de Rec2Poly 164

xv

List of Listings

2.1 Perfect Loop Nest . 10
2.2 Imperfect Loop Nest . 10
2.3 Example of a Valid SCoP: Matrix Multiplication Kernel 11
2.4 SCoP / Affine Loop Nest . 12
2.5 SCoP Example to Illustrate Access Functions 14
2.6 SCoP Example to Illustrate Scheduling 15
2.7 Affine Loop Nest . 17
2.8 Loop Nest After Loop Skewing . 18
2.9 SCoP to Illustrate Dependence Vectors 20
2.10 SCoP: Matrix-Vector Product . 23
2.11 SCoP: Matrix-Vector Product Transformed and Parallelized 25
2.13 While Loop . 28
2.14 Matrix-Vector Product Printing Memory Addresses Accessed 33

3.1 Recursive Factorial C Function . 43
3.2 Recursive Fibonacci C Function . 43
3.3 Recursive Matrix-Vector Product C Function : First Version 44
3.4 Recursive Matrix-Vector Product C Function : Second Version 44
3.5 Recursive Matrix-Vector Product C Function : Third Version 44
3.6 Indirect Recursion Example . 47
3.10 Iterative Factorial C Function . 58
3.11 Recursive Fibonacci C Function - Memoization 59
3.12 Iterative Fibonacci C Function - Tabulation 59
3.13 Iterative Fibonacci Function - Space Optimized 59
3.14 MatrixVectorProduct LLVM IR Function 60
3.15 MatrixVectorProduct LLVM IR Function with Tail Call Elimination . . . 61

4.1 Impacting Function . 75
4.2 Impacting Function after Globalization 75
4.3 For Loop at the Level of the LLVM IR . 88
4.4 Example of For-Loops Optimizable in the Inspector 91
4.5 Non-Optimizable Loop . 91
4.6 Non-Optimizable Loop . 91
4.7 Impacting Function of a Recursive Code After Code Preparation 100
4.8 Recursion-Equivalent Iterative Code . 101
4.9 Parallelized Iterative Code . 102

xvi LIST OF LISTINGS

5.1 Matrix Multiplication Recursive Function C Code 104
5.2 LLVM Basic Block “if.then3” Content 105
5.3 GEMM sgemm_trans2 Function C Code 107
5.4 Heat’s Compstripe Function C Code . 112
5.5 Matrix Multiplication Function if.then3 Basic Block LLVM IR 115

A.1 Fonction récursive en C du produit de matrices 161

xvii

Abstract

In this thesis, we introduce Rec2Poly, a framework for speculative rewriting of recursive
programs as affine loops that are candidates for efficient optimization and paralleliza-
tion. Rec2Poly seeks a polyhedral-compliant run-time control and memory behavior in
recursions making use of an offline profiling technique. When it succeeds to model the
behavior of a recursive program as affine loops, it can use the affine loop model to auto-
matically generate an optimized and parallelized code based on the inspector-executor
strategy for the next executions of the program. The inspector involves a light version of
the original recursive program whose role is to collect, generate and verify run-time in-
formation that is crucial to ensure the correctness of the equivalent affine iterative code.
The executor is composed of the affine loops that can be parallelized or even optimized
using the polyhedral model.

Résumé

Dans cette thèse, nous proposons Rec2Poly, un cadriciel pour la réécriture spéculative
des programmes récursifs sous forme de boucles affines qui sont candidates à une pa-
rallélisation et une optimisation efficaces. Rec2Poly cherche un flot de contrôle dyna-
mique et un comportement mémoire conformes au modèle polyédrique dans les récur-
sions, en utilisant une technique de profilage hors ligne. Lorsqu’il réussit à modéliser le
comportement d’un programme récursif sous forme de boucles affines, il peut utiliser le
modèle de boucle affine pour générer automatiquement un code optimisé et parallélisé
basé sur la stratégie inspecteur-exécuteur pour les prochaines exécutions du programme.
L’inspecteur implique une version allégée du programme récursif d’origine dont le rôle est
de collecter, générer et vérifier les informations d’exécution qui sont essentielles pour ga-
rantir l’exactitude du code itératif affine équivalent. L’exécuteur est composé des boucles
affines qui peuvent être parallélisées voire optimisées à l’aide du modèle polyédrique.

xviii ABSTRACT

1

Chapter 1

Introduction

“Any sufficiently advanced technology is indistinguishable frommagic.”
—Arthur C. Clarke

Throughout history, technological evolution has obviously influenced us and the devel-
opment of our societies, economies and the whole world. Since the mid-twentieth cen-
tury, with the beginning of the information age, the impact of the new technology has be-
come radical. Technological advancement has dramatically re-shaped essential aspects
of our lives and re-scaled to smaller dimensions our time and space. It has drastically
accelerated our world, facilitated our lives on many levels, and in some cases, just like
magic, made the impossible possible elevating our expectations and ambitions. Today
more than ever, we find ourselves living in a fast-paced, fast-evolving and a demanding
world with relatively limited resources. We find ourselves in need to keep up with its ever-
increasing progress speed and efficiently satisfy its demands and attain our aspirations.

For the last decades, among the most prominent technological innovations, comput-
ers have become an integral part of this world. They have become indispensable for us
in our daily life and to perform almost every effective and efficient work in any domain
whether it is scientific, educational, medical, industrial, agricultural or financial... More-
over, along with other technologies, they have played a salient role extending our world
to a new dimension, a virtual one. Virtual communities, virtual workplaces (through
telecommuting) and virtual reality have got real; telecommuting, for instance, has helped
numerous workers stay productive while safe and helped many businesses survive during
the Covid-19 pandemic since 2019. Computers have spread everywhere taking different
sizes and forms and serving various functionalities; we can find them embedded in our
cars or washing machines, wearable as smart watches, handheld smart phones, general
purpose laptops and desktops, supercomputers only existing in a few specific laboratories
on Earth, or computers exclusively designed for spaceships with a mission to the Moon
or Mars... Accordingly, computers have always needed to be up-to-date with the world’s
development and cope with humankind ambitious expectations. The research commu-
nity and the computer industry have been devoting continuous efforts to make comput-
ers much more robust, intelligent and optimized; so, they can process as much data as
possible, solve efficiently more complex problems and handle modern sophisticated ap-
plications while satisfying the ever-increasing demand for speed and high performance.

2 CHAPTER 1. INTRODUCTION

1.1 Computing Performance: Growth and Challenges

1.1.1 Hardware Perspective
In general, today, the substantial improvement in computer performance goes to decades
of optimizations and upgrades mainly dedicated to the hardware in accordance with
Moore’s law and Dennard scaling. Moore’s law was the outcome of predictions based
on observations made by Gordon Moore in 1965 [92] and 1975 [93] about the future of
integrated electronics and the semiconductor industry; it implied that the number of
components or transistors in an integrated circuit would double about every two years.
As for Dennard scaling, also known as MOSFET scaling, it was a scaling theory presented
by Robert H. Dennard et al. in 1974 [37]; it suggested that as transistors would get smaller,
both of the voltage and current would decrease such that transistors power density would
stay constant. Moore’s law combined with Dennard scaling meant that the performance
per watt would also grow exponentially with the transistors density. Ever since then,
keeping up with Moore’s law, manufacturers have managed to miniaturize, speed up and
cheapen transistors, and added more of them to the integrated circuits which has expo-
nentially boosted the clock rate and the whole computer performance. In fact, by com-
paring today’s Intel’s 14 nanometer processors to the first microprocessors, performance
has been boosted by about 3,500 times, energy efficiency has been improved by 90,000
times and price per transistor is decreased by about 60,000 times [97]. However, after
more than a half century of considerable advancement in computing power, this strategy
is reaching its peak. This is because, as transistors are becoming too small, Dennard scal-
ing techniques are becoming less reliable and more difficult and challenging to use due to
physical limitations [50], e.g., current leakage, increasing heat dissipation and overheat-
ing of the computer chips for which the cooling process requires high cost and power.

Alternatively, in order to satisfy the increasing demand for speed, hardware design-
ers have combined multiple cores in a processor and introduced the new generation of
multi-core processors and, then, multi-processor systems. Today, multi-processor com-
puters are powerful and prevalent in all domains including high performance computing.
Nevertheless, these computers still do not run at their full capacity because many of their
processors may be not wholly utilized. In order to fully exploit their powerful hardware
and obtain an optimal efficiency, the software must also be optimized and parallelized
consistently with the underlying processor architecture.

1.1.2 Software Perspective: Parallel Computing
Parallel Programming Languages

For the purpose of adapting software for the new underlying hardware, many languages
and extensions have been developed to design and write parallel programs (e.g., MPI [45],
OpenMP [35] and POSIX Threads [98], etc.). However, implementing a reliable parallel
software is still a notoriously difficult task for programmers. Facilitating this task can be
achieved by automating programs’ parallelization and optimization process at the level
of compilers.

1.1. COMPUTING PERFORMANCE: GROWTH AND CHALLENGES 3

Compilers

A compiler is a computer program that interprets the source code of a program and trans-
lates the programming language in which it is written into another one. Also, compilers
typically offer various optimization opportunities for programs. The purpose is to make
programs execute better in terms of performance, memory usage and energy consump-
tion. So, on a hardware platform, through a compiler, a software undergoes many opti-
mizing transformation phases; eventually, the final executable code and the initial source
code may differ, yet stay semantically equivalent. The optimization passes applied to the
code often modify or remove instructions and control and data structures. Nevertheless,
optimizations can apply at many different levels, and they may even transform the global
structure of the code; for example, modern mainstream compilers (e.g., Clang, GCC) can
eliminate tail-recursive calls by transforming them into loops.

Moreover, some advanced compilers and optimizers may go even further to automat-
ically parallelize sequential codes by detecting parallel regions in them and automatically
applying the corresponding transformations.

Polyhedral Optimizers On the one hand, many of such optimizers are based on the
Polyhedral Model (e.g., Polly [52], Pluto [21]). The Polyhedral Model is a source-level
(static) mathematical framework that contributes a substantial abstraction and repre-
sentation for programs, particularly, affine loop nests accessing multi-dimensional ar-
rays through affine array references, i.e., programs with static control parts (SCoPs). This
framework provides powerful analysis, and aggressive loop automatic optimizing and
parallelizing transformations (e.g., loop tiling, loop skewing, loop interchange). In the
area of program compilation and optimization of imperative codes, loops are signifi-
cant targets because they are common in programs and usually responsible for a huge
compute-intensive part of the whole programs’ executions. Yet, many programs may still
not take advantage of the polyhedral optimizations due to either superficial languages
idiosyncrasies (e.g., while loops), or radical language differences (e.g., recursive func-
tions). However, sometimes, it turns out that loops, that do not have an affine struc-
ture at compile-time and do not fit into the polyhedral model, may actually exhibit a
polyehdral-compliant behavior at run-time for at least great portions of the program ex-
ecution. Therefore, there may still be optimization opportunities hidden at compile-time
that can be uncovered and seized as soon as the run-time behavior is discovered.

Thread Level Speculation Systems On the other hand, there is the Thread Level Specu-
lation technique that speculatively executes parallel regions of the code before knowing
all input values and dependencies. Simultaneously, the sequential code is executed in
parallel in a separate thread. At run-time, memory accesses are tracked and verification
is performed, and in case an invalid speculation is proved (e.g., dependency violation),
a recovery mechanism is performed. Recovery involves aborting the invalid speculative
threads and re-initiating the sequential code from the last consistent point. This tech-
nique has been mainly dedicated to optimizing loop-structures. However, its success is
not guaranteed and the offered performance gain may not be great due to unbalanced
load, invalid speculations, the straightforward loop optimizations it offers unlike those
of the polyhedral optimizers and inter-thread communications in the process of detect-

4 CHAPTER 1. INTRODUCTION

ing dependency violations.

Automatic speculative POLyhedral Loop Optimizer In this regard, Apollo a specula-
tive polyhedral optimizer [132, 84] combines both approaches presented above. It has
been implemented to capture transient polyhedral behaviors of statically non-affine loops
by using dynamic profiling, and leverage the powerful polyhedral tools to optimize them
aggressively at run-time.

But, what about the non-loop structures like recursive functions that cannot benefit
from these automatic optimization and parallelization techniques? Are there alterna-
tives in their cases that offer satisfying performance gains?

1.2 Motivation: Recursion Optimization
In a program execution, recursive functions, like loops, are also among the most note-
worthy time-expensive structures responsible for a great part of the whole execution.
In general, recursions implement complex algorithms, even for high performance com-
puting, scanning and processing huge data structures, e.g., matrices, graphs and trees.
Notwithstanding that recursive functions are interesting candidates for optimization and
parallelization, they, unlike loops, do not benefit from advanced powerful automatic par-
allelization and optimization techniques. In the literature dealing with recursion opti-
mization, recursive functions can be:

• handled directly as they are [53, 85]. They are mainly parallelized based on task
parallelization such that several invocations are run simultaneously when the data
dependencies among the invocations allows it. Besides, there exist recent tech-
niques that allow polyhedral modeling of recursive invocations.

• firstly transformed into loops as it is always possible to replace a recursion by an
equivalent loop nest and vice versa [5]. Usually, static recursion-to-loop transfor-
mation generates loops whose structures are complex and not affine and, thus, can-
not benefit from further advanced optimizations.

However, the existing techniques do not capture when recursive codes can be rewrit-
ten as affine loops which are the most suitable candidates for efficient data locality and
powerful polyhedral optimizing and parallelizing transformations. Correspondingly, the
motivation of this thesis has been to take this chance and discover the optimization
opportunities the polyhedral model can offer to recursions whose run-time behavior is
affine.

1.3 Contributions
In this thesis, we present our speculative polyhedral recursion optimizer Rec2Poly.
Rec2Poly is a Clang/LLVM based framework devoted to the automatic transformation of
recursive codes into sequences of affine loop nests. It involves a static analysis and code
preparation phase to collect compile-time information about a target recursive code and

1.4. THESIS ORGANIZATION 5

prepare it for the next phases. Rec2Poly also involves an offline profiling phase that de-
tects a polyhedral-compliant behavior of the recursive code at run-time. The profiling
phase includes instrumentation of the control and the memory behavior of the func-
tions involved in the target recursions andNested Loop Recognition. In case the recursive
behavior trace can be modeled as an affine loop model, Rec2Poly commences its code
generation phase and replaces all the execution flow related to recursive functions by a
semantically equivalent affine iterative code based on the obtained model.

Furthermore, Rec2Poly applies polyhedral optimizing and parallelizing transforma-
tions to the so-generated sequences of loop nests.

However, since this transformation is based on offline profiling information, the be-
havior of the code may differ which means that the correctness of this transformation
is not guaranteed for a different input data. Thus, Rec2Poly’s approach is speculative
which requires a fast run-time verification mechanism to prove the validity of the per-
formed transformations. Accordingly, Rec2Poly generates a verification process based
on the inspector-executor paradigm [119, 112] in the final code generation phase. At run-
time, the inspector verifies that the affine loops are valid regarding the current execution
context and, in case they are valid, the executor launches the optimized parallel loops.
Also, to save time-overhead,Rec2Poly executes the original recursive code in parallel with
the inspector, so, in case an unpredicted behavior is detected, the original recursive code
proceeds its execution while all the other parallel threads are aborted.

This approach is considered as dynamic code rewriting. It has been inspired by the
Apollo approach, but instead of handling statically non-affine loops, it handles non-loop
structures, recursions. Rec2Poly’s originality is twofold:

1. it seeks a polyhedral-compliant run-time behavior in recursions, and

2. it uses an inspector-executor scheme to verify not only memory access patterns as
usual, but also the control flow against that of the affine loops.

1.4 Thesis Organization
This manuscript is organized as follows. Chapter 2 introduces the key concepts on which
our study is based on including the polyhedral model and its optimizations, speculative
loop optimization, and trace modeling as polyhedral loops with the Nested Loop Recog-
nition Algorithm. Chapter 3 constitutes the literature and the state of the art of recursions
and their optimization techniques. Then, Chapter 4 presents the main contribution of
this thesis and all about the so-called Rec2poly framework. Chapter 5 shows benchmarks
and experimental results of our approach. Finally, this manuscript ends with Chapter 6
with conclusions and future perspectives.

6 CHAPTER 1. INTRODUCTION

7

Chapter 2

Background

“In practical life we are compelled to follow what is most probable; in speculative thought
we are compelled to follow truth”

— Baruch Spinoza
“Mathematics, rightly viewed, possesses not only truth, but supreme beauty.”

— Bertrand Russell

In this chapter, we introduce the background and concepts behind our work. In Sec-
tion 2.1, we give an overview of the polyhedral model by presenting its theoretical math-
ematical notations, its main characteristics and components, and some of the notable ex-
isting polyhedral-based optimizers and softwares and their capabilities and limitations.
Then, in Section 2.2, we introduce the speculative loop optimization approach with the
inspector-executor paradigm and the Apollo framework. Finally, in Section 2.3, we present
the Nested Loop Recognition algorithm that is used to model traces as polyhedral loops.

2.1 The Polyhedral Model
The polyhedral or polytope model [21, 44] is a mathematical and geometrical framework
providing a powerful abstraction and representation of nested-loop programs that en-
ables advanced analysis and sophisticated transformations and optimization heuristics.
This model is dedicated to loop nests that have a specific structure satisfying restrictions
on loop bounds and data accesses at compile time; these loop nests are known as affine
loop nests or static control parts (SCoPs).

At some point during compilation, all traditional compilers represent source codes in
intermediate representations as abstract syntax trees (AST) or control flow graphs (CFG)
where usually their basic components are the instructions or statements composing the
code. However, these traditional representations are not sufficient to support power-
ful optimization and auto-parallelization because parallelism, specifically within loops,
occurs among statements instances rather than among statements; they are not ade-
quate to model dependences among instances and to enable complex loop optimizing
transformations (e.g., loop tiling, interchange, skewing, etc.) on the time-expensive loop-
structures.

8 CHAPTER 2. BACKGROUND

In comparison, the polyhedral model is distinguished because it handles each loop
iteration or each statement instance separately. It associates each iteration or tuple of
loop indices values with a lattice point contained in aZ-polyhedron bounded by affine in-
equalities. Representing loop nest as polyhedra helps reasoning about various advanced
valid transformations and optimizations that can be performed.

The polyhedral framework includes an accurate data dependence analysis that is per-
formed among the statements instances across different iterations of a target loop nest.
This analysis step is vital to prove the correctness of the optimizing transformations. If
the transformations do not violate the data dependences, then the optimized version of
the loop nest is semantically equivalent to the original loop nest.

The loop nest optimizations are linear transformations of the polyhedra representing
the iteration domains. Also, these transformations can be defined as scheduling matri-
ces specifying re-orderings of statement instances execution with respect to each other
across different iterations. Consequently, they convert the source polyhedra into another
equivalent form. Such analysis and transformations can be performed using linear pro-
gramming tools.

The theory of this model originated decades ago from a series of seminal contribu-
tions starting by “The Organization of Computations for Uniform Recurrence Equations”
by Karp, Miller, and Winograd in 1968 [61]. Since the 1980s, many techniques, tools and li-
braries have been developed making possible applying polyhedral optimizations on loop
nests like PIP [39], Polylib [81, 145], Omega [63, 107], ISL [142] and Pluto [21]. The re-
search community has continued with its efforts extending this concept and its applica-
tion and creating and improving the polyhedral techniques [107, 21, 142, 22, 42, 51, 73,
10, 17]. Accordingly, the polyhedral model has revolutionized the domain of automatic
optimization and parallelization of iterative programs. Now, even current production
compilers make use of the polyhedral model to compile programs for multi-core archi-
tectures such as R-Stream [44], GCC whose polyhedral framework is Graphite [104] and
Clang-LLVM that implements Polly [102] for polyhedral optimizations1.

In what follows in this section, we define basic mathematical notations on which the
polyhedral model stands. Then, we explain in more details the polyhedral representa-
tion of programs defining the notions of static control parts, iteration domains, access
functions and scheduling functions. Moreover, we discuss dependence analysis and op-
timizations in the polyhedral model. Finally, we present some polyhedral optimizers
including those that we used in this work, their capabilities and their limitations.

2.1.1 Mathematical Background and Notations
The following definitions and notations are based on the book entitled “Theory of Linear
and Integer Programming” by Alexander Schrijver [123].
Definition 2.1.1. (Affine Function). A Function f : Km −→ Kn is affine ⇐⇒ ∃ a matrix
A ∈Kn×m and a vector b⃗ ∈Kn such that ∀x⃗ ∈ Km:

f(x⃗) = Ax⃗+ b⃗

In other words, an affine function is a linear function with a translation such that a linear
function is affine whereas the converse is not necessarily true.

1Check out https://polyhedral.info/ to know more about the polyhedral community.

https://polyhedral.info/

2.1. THE POLYHEDRAL MODEL 9

Definition 2.1.2. (Affine Hyperplane). An affine hyperplane is an affine subspace of di-
mension (n− 1) of an affine n-dimensional space Kn. The affine hyperplane is the set of
all vectors x⃗ ∈ Kn defined by the linear equation:

a⃗ · x⃗ = b, where a⃗ ∈ Kn (⃗a 6= 0⃗) and b ∈ K
In general, a hyperplane is a subspace with a dimension that is less than that of its am-
bient space by only one. For instance, the hyperplanes of a three-dimensional space are
planes, those of a two-dimensional space are lines, and those of one-dimentional space
are points.

Definition 2.1.3. (Affine half-space). A hyperplane that splits the space into two half-
spaces, defined by the following inequalities

a⃗ · x⃗ ≤ b and a⃗ · x⃗ ≥ b, where a⃗ ∈ Kn (⃗a 6= 0⃗) and b ∈ K

Definition 2.1.4. (Convex Polyhedron). A convex polyhedron is the intersection of a fi-
nite number of affine half-spaces. A convex polyhedron P ⊂ Kn is defined by a set of
vectors inKn bounded by a set of affine contraints represented by matrixA ∈ Km×n and
a constraint vector b⃗ ∈ Km:

P = {x⃗ ∈ Kn | Ax⃗+ b⃗ ≥ 0⃗}

Definition 2.1.5. (Parametric Polyhedron). A parametric polyhedron denoted by the set
P (p⃗) is a polyhedron parametrized by the vector of symbolic values p⃗ ∈ Kp. It can be
defined by a matrixA ∈ Km×n, a matrix of symbolic coefficientsB ∈ Km×p and a vector
b⃗ ∈ Km:

P (p⃗) = {x⃗ ∈ Kn | Ax⃗+Bp⃗+ b⃗ ≥ 0⃗}

Definition 2.1.6. (Polytope). A polytope is a bounded polyhedron.

Definition 2.1.7. (Z-Polyhedron). It is polyhedron whose extreme points are of type in-
teger (K = Z). Also, it can be defined by the set of points of an affine lattice or integer
points in a polyhedron.

In our context, we are exclusively interested in the points with integer coordinates
contained in Z-polyhedra. A more accurate and detailed presentation of the polyhedral
model can be found in “Polyhedron Model” [44].

2.1.2 Polyhedral Representation of Programs
As mentioned earlier, one of the main features that distinguishes the polyhedral model
from the other classical program representations is that it provides information about
different execution instances of statements at compile time (representing them as points
of a Z-polyhedron) whenever possible.

10 CHAPTER 2. BACKGROUND

SCoP: The Scope of the Polyhedral Model
A target loop structure that fits the polyhedral model must have an execution control
flow and data dependences that are analyzable statically at compile time.

Accordingly, the polyhedral model is particularly dedicated for specific code parts
made up of sequences of affine for-loop nests where:

• Each loop has a unique iterator and loop bounds are affine expressions of the en-
closing loops iterators and parameters; a parameter is an integer variable whose
value is unknown at compile time but remains constant at run-time.

• The only allowed control structures other than the for-loops are conditionals which
are also affine expressions of the surrounding loop iterators and parameters; func-
tion calls and instructions that may break the control flow, e.g., break, goto or re-
turn, are not allowed.

• All other instructions are data access functions and memory instructions access-
ing either simple scalar variables or multi-dimensional array elements referenced
using affine functions on the outer loops indices and parameters.

Note that these loop nests may be either perfect or imperfect. Generally, a loop nest is
considered perfect if and only if all of its statements uniquely appear in the body of the
innermost loop; otherwise, it is considered as an imperfect loop nest. Listings 2.1 and 2.2
show examples of a perfect loop nest and an imperfect one respectively.

for (i = 0 ; i < N ; i++)
for (j = 0 ; j < N ; j++)

A[i][j] = B[i][j];//S(i,j)

Listing 2.1 – Perfect Loop Nest

for (i = 0 ; i < N ; i++) {
C[i]=0;//S1(i)
for (j = 0 ; j < N ; j++)

C[i]+=A[i][j]*B[j];//S2(i,j)
}

Listing 2.2 – Imperfect Loop Nest

Such code parts whose control and data dependences can be statically analyzed are
called static control parts or SCoPs for short [40, 42, 99, 17]. The definition of a SCoP can
be summarized as follows.
Definition 2.1.8. (Static Control Part (SCoP)). A SCoP is defined as a maximal set of con-
secutive statements, including data access functions and memory instructions to scalar
variables and multi-dimensional arrays, where the only allowed control structures are if-
statements and for-loops such that array indices, conditions and loop bounds are affine
functions of the enclosing loop iterators and parameters; parameters are symbolic val-
ues/variables defined outside a SCoP whose values are unknown at compile time but
remains constant during its execution.

An example of a valid SCoP is the iterative matrix multiplication shown in Listing
2.3. In this SCoP, there is a nest of three for-loops such that i, j and k are the iterators
corresponding to the outer, middle, and inner loops respectively. Also, there are two
statements S1(i, j), enclosed by the two outer loops, and S2(i, j, k) in the body of the
innermost loop such that their memory accesses are affine expressions of their enclosing
loops.

2.1. THE POLYHEDRAL MODEL 11

for (i = 0 ; i < N ; i++)
for (j = 0 ; j < N ; j++) {

C[i][j] = 0 ; //S1(i,j)
for (k = 0 ; k < N ; k++)

C[i][j] += A[i][k] * B[k][j] ; //S2(i,j,k)
}

Listing 2.3 – Example of a Valid SCoP: Matrix Multiplication Kernel

The Polyhedra of Iteration Domains
The polyhedral model represents at compile time the whole execution of a SCoP, i.e.,
all dynamic instances of its statements. A single dynamic instance of a statement is de-
scribed by an iteration vector that is defined as follows.

Definition 2.1.9. (Iteration vector). An iteration vector of a statement S is the vector
containing values of the iterators of all its surrounding loops. Each statement is executed
once for each of the iteration vectors. Correspondingly, an iteration vector describes an
occurrence of a certain statement at a specific iteration in a loop nest, i.e., a dynamic
instance of this statement. An iteration vector x⃗ ∈ Zn of a statement S can be defined
as:

x⃗ = (x1, ..., xn), where n is the depth of the enclosing loop nest.

S(x⃗) denotes a dynamic instance of S ∈ Zn that can be represented geometrically
using the coordinates of the corresponding iteration vector x⃗, i.e., (x1, ..., xn).

For instance, consider the affine loop nest or SCoP in Listing 2.4. It is composed of two
nested loops and an affine conditional statement enclosing a statement S1. The iterator
of the outer loop is i and that of the inner loop is j. The outer loop iterates from 1 to an
upper bound N such that N is a loop parameter, and the inner loop iterates from 1 until
its iterator j hits the upper bound N+i−2 which is an affine expression in terms of the
outer loop iterator i and the parameter N . Statement S1 is only executed when the loop
nest is executed and all the existing affine conditions are satisfied which are: 1≤ i≤N ,
1≤j ≤N+i−2, i≤j+3 and i≤N−j+4.

Then, the two-dimensional vectors of the form (i, j) where the values of iterators i
and j are valid with respect to the loop nest execution constraints are iteration vectors
of S1. Assuming that N is even and taking into consideration all the constraints, the set
of all points of the execution instances ofS1 in the order of execution would be as follows:

(1, 1), (1, 2), (1, 3), . . . , (1, N−1),
(2, 1), (2, 2), (2, 3), . . . , (2, N−1), (2, N),
(3, 1), . , (3, N), (3, N+1),
(4, 1), . , (4, N),
(5, 2), , (5, N−1),
. ,
(
N

2
+3,

N

2
), (

N

2
+3,

N

2
+1)

12 CHAPTER 2. BACKGROUND

All the execution points or instances of statement S1 constitute the so-called iter-
ation domain of S1 [17, 14] which can be expressed using the following mathematical
expression:

DS1 = {(i, j)∈Z2|(1≤ i≤ N) ∧ (1≤j≤N+i−2) ∧ (i≤j+3) ∧ (i≤N−j+4)}

Accordingly, the iteration domain is expressed using a system of affine inequalities
that represent the corresponding statement’s execution constraints. Also, the iteration
domain can be illustrated geometrically as a set of points within a parametricZ-polyhedron
bounded by these inequalities.

The polytope embodying the iteration domain of S1 in the affine loop nest shown in
Listing 2.4 is graphically displayed in Figure 2.1. It is two-dimensional because S1 is in
the body of a loop nest made up of only two loops. Every lattice point or a dot appearing
in the two-dimensional Cartesian coordinate system within the polytope corresponds to
a dynamic instance of the statement S1.

for (i = 1 ; i <= N ; i++)
for (j = 1; j <= N+i-2; j++)

if (i <= j+3 && i <= N-j+4)
S1(i,j);

Listing 2.4 – SCoP / Affine Loop Nest

i

j
i≥1

j≥1

i≤N

i≤j+3

i≤N−j+4

j≤N+i−2

0 1

1

N

N

Figure 2.1 – Iteration Domain Polyhedron
The iteration domain is the essence of the polyhedral model, and it can be more precisely
defined and expressed using a matrix representation as follows.

Definition 2.1.10. (Iteration Domain). The iteration domain of a statement S enclosed
by n loops is the set of integer lattice points corresponding to the execution instances
of S modeled as an n-dimensional parametric Z-polyhedron, DS(p⃗) ⊆ Zn, bounded by
affine inequalities representing the execution constraints such that:

DS(p⃗) = {x⃗ ∈ Zn | Ax⃗+Bp⃗+ b⃗ ≥ 0⃗}
where x⃗ is the iteration vector, p⃗ is the vector of parameters, A is the iterators coeffi-

cient matrix,B is the symbolic (parametric) coefficients matrix and b⃗ is a constant vector,
all encoded from the corresponding system of inequalities.

In what follows, on the left, we show the domain constraints of statement S1 in List-
ing 2.4 represented as a system of inequalities and, on the right, we show the correspond-
ing iteration domain expression using matrices encoding the constraints in a canonical
form.

2.1. THE POLYHEDRAL MODEL 13

i−1≥0
j−1≥0
−i+N≥0
i−j+N−2≥0
−i+j+3≥0
−i−j+N+4≥0

DS1 =

(
i
j

)
∈Z2

∣∣∣∣∣∣∣∣∣∣∣∣

1 0
0 1
−1 0
1 −1
−1 1
−1 −1

.
(
i
j

)
+

0
0
1
1
0
1

.N+

−1
−1
0
−2
3
4

≥ 0⃗

The following representation resulting from merging the coefficient matrices together

and the vectors, is a more compact and a more commonly used representation of the it-
eration domain:

DS1 =

(
i
j

)
∈Z2

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 −1
0 1 0 −1
−1 0 1 0
1 −1 1 −2
−1 1 0 3
−1 −1 1 4

.

i
j
N
1

 ≥ 0⃗

Point in Polyhedron: Points to Memory
Each instance of a statement or a point in the corresponding iteration polyhedron points
to exact memory locations accessed by this instance. This way all the information re-
quired to perform the accurate dependence analysis are acquired.
Definition 2.1.11. (Access Functions). The access functions of a statement S are the set
of affine functions that map all the statement instances with the exact memory locations
to which they read or write. Access functions of statement S can be represented as:

fS
{R,W}(x⃗) = Fx⃗+ f⃗

whereF ∈ Zd×n is the coefficient matrix of array subscripts, d is the dimension of the
array,n is the enclosing loop nest depth, x⃗ is an iteration vector ofS, f⃗ is a constant vector
∈ Zd and, finally, R and W precise whether the statement is read or write respectively.

In the polyhedral model, memory statements access one or more multi-dimensional
arrays through affine subscripts or, even, scalar variables that are treated, in this context,
as zero-dimensional arrays.

Note that a more compact representation of access functions is usually implemented
on computers, i.e.:

fS(v⃗) = F ′v⃗, where v⃗=

x⃗
p⃗
1

p⃗ is the vector of parameters, F ′ is a coefficient matrix ∈ Zd×(n+p+1) and p = |p⃗|.

In this SCoP, shown in Listing 2.5, instruction S1 is surrounded by three loops with
indices i, j and k and parameter N , and it accesses five memory locations: it reads from
C[i][j],A[i][k],B[N−k−1] and alpha and writes toC[i][j]. A andC are two-dimensional
arrays, B is a one-dimensional array and variable alpha is treated as a zero-dimensional
array.

14 CHAPTER 2. BACKGROUND

for (i = 0 ; i < N ; i++)
for (j = 0 ; j < N ; j++)

for (k = 0 ; k < N ; k++)
C[i][j] += A[i][k] * B[N-k-1] + alpha; //S1

Listing 2.5 – SCoP Example to Illustrate Access Functions
The access functions corresponding to S1 are listed below:

fS1
WC = fS1

RC =

[
1 0 0 0 0
0 1 0 0 0

]
.
(
i j k N 1

)⊺ 7−→ C[i][j]

fS1
RA =

[
1 0 0 0 0
0 0 1 0 0

]
.
(
i j k N 1

)⊺ 7−→ A[i][k]

fS1
RB =

[
0 0 −1 1 −1

]
.
(
i j k N 1

)⊺ 7−→ B[N− k− 1][j]

fS1
Rx =

[
0 0 0 0 0

]
.
(
i j k N 1

)⊺ 7−→ &(alpha)[0]

Scheduling
The iteration domain and access functions are still not sufficiently expressive to describe
the whole execution of an affine loop nest. For now, we only know which statements
instances are actually executed and where exactly they touch the memory. Yet, there
is no provided information about the initial execution order of these instances which
is essential for applying loop transformations and optimizations. Loop transformations
involve reordering the dynamic instances of statements, for this reason, their initial order
is a prerequisite and must be formally specified.

The polyhedral model determines the execution order of instances by associating a
logical execution date, i.e., a multi-dimensional timestamp as proposed by Feautrier [42]
and later by Kelly and Pugh [62] to every statement instance in a SCoP. Timestamps de-
fine instances orders; using them enables sorting the statements instances according to
the initial order of the sequential execution. Scheduling functions, defined below, are
used to assign logical execution dates to statements instances.

Definition 2.1.12. (Scheduling Function). The scheduling function of a statement S a.k.a
the affine schedule of S is a function that maps each dynamic instance of S to a logical
timestamp defining the relative execution order between statements in the SCoP:

∀x⃗ ∈ DS, θS(x⃗) = t⃗

The associated timestamps allow to order the instances of the statements according
to the lexicographical order.

Definition 2.1.13. (Lexicographical order). The lexicographical order, denoted by �, is
defined as:

(a1, ..., an) � (b1, ..., bn) ⇐⇒ ∃i : 1 ≤ i≤n,∀j : 1≤j<i, aj=bj ∧ ai<bi

2.1. THE POLYHEDRAL MODEL 15

An instance S(x⃗) executes before another instance S ′(y⃗) iff θS(x⃗) � θS
′
(y⃗).

If two statements map to the same logical execution date, they can be executed in
parallel or any arbitrary order with respect to each other.

Although it may seem that the iteration vectors can serve as multidimensional times-
tamps and that the iteration domain may adequately describe the order of dynamic in-
stances of statements, this is not true; this is because they do not capture the textual
ordering of statements, i.e., the execution order of statements regarding their position
w.r.t. the other statements within the loop nest.

for (i = 0; i < N; i++){ //L1
S1;
for (j = 0; j < N; j++) { //L2

S2;
S3;

}
S4;

}

Listing 2.6 – SCoP Example to Illustrate Scheduling

For instance, consider the loop nest in Listing 2.6 composed of two loops; we refer to
the outer loop with iterator i as L1 and to the inner loop with iterator j as L2. On one
hand, statements S1 and S4 are enclosed by L1 only, and they have the same iteration
vectors (composed of values of i only) during the whole execution despite the fact that
they are not actually executed at the same time: S1 executes first, loop L2 executes sec-
ond, then comes the turn of S4. On the other hand, S2 and S3 are enclosed in L2 and
they have the same iteration vectors through the whole execution. However, S2 executes
beforeS3. Moreover, all ofS1,S2,S3 andS4 execute for all values of iterator i, so at each
distinct iteration, their iteration vectors have the same value of i. In this case, iteration
vectors fail to indicate the correct relative execution order

Scheduling functions solve this issue by interleaving the iteration vectors with con-
stant values representing the relative textual order of statements at each common loop
level. A schedule can be obtained using the abstract syntax tree of the SCoP with Dewey
Decimal Numbers [42]. A number on the path from a source node to a destination node
represents the position of the statement/loop corresponding to the latter w.r.t. the loop
corresponding to the prior. The AST of the SCoP of 2.6 is shown in Figure 2.2.

Below to the left we have the timestamps of S1, S2, S3 and S4 respectively:

• θS1((i, j)) = (0, i, 0, 0, 0)

• θS2((i)) = (0, i, 1, j, 0)

• θS3((i)) = (0, i, 1, j, 1)

• θS4((i, j)) = (0, i, 2, 0, 0)

L1 : i

L2 : jS1 S4

S2 S3

0

0 1 2

0 1

Figure 2.2 – Abstract Syntax Tree

16 CHAPTER 2. BACKGROUND

Furthermore, an affine schedule of a statement S can be represented using a matrix
and can be redefined as:

θS(v⃗) = ΘS v⃗ where v⃗ =

x⃗
p⃗
1

 , ∀x⃗ ∈ DS

ΘS is the scheduling matrix of S such that ΘS ∈ Zdt×(n+p+1) with dt = |⃗t| = 2n+1,
p = |p⃗| and n is the loop nest depth.

A normalized representation of the scheduling matrix has been proposed by Cohen
et. al. [32, 14] encoding it as follows:

ΘS =

0 . . . 0 0 . . . 0 βS

AS
1,1 . . . AS

1,n Γ1,1 . . . ΓS
1,p ΓS

1,p+1

0 . . . 0 0 . . . 0 βS
2

AS
2,1 . . . AS

2,n Γ2,1 . . . ΓS
2,p ΓS

2,p+1

...
. . .

...
...

. . .
...

...

AS
n,1 . . . AS

n,n Γn,1 . . . ΓS
n,p ΓS

n,p+1

0 . . . 0 0 . . . 0 βS
n+1

The scheduling matrix encodes both static and dynamic information about the origi-

nal schedule of a statement S. It can be also used to precisely express the composition of
different transformations as any modification to this matrix changes the execution order
of the corresponding statement instances. It is made up of three sub-matrices: AS , ΓS

and βS such that:

1. AS ∈ Zn×n is the iteration ordering matrix operating on the iteration vectors.

2. ΓS ∈ Zn×(p+1) is the parametrized matrix, i.e., the matrix of loops parameters.

3. βS ∈ Zn+1 is the statement-scattering vector that encodes the relative textual po-
sition of the statements in the loop nest.

Accordingly, we can also re-describe the original execution order of the statements
in Listing 2.6 using this matrix format. The sub-matrices composing the scheduling ma-
trices corresponding to S1, S2, S3 and S4 are listed below:

AS1 =

[
1 0
0 1

]
AS2 =

[
1 0
0 1

]
AS3 =

[
1 0
0 1

]
AS4 =

[
1 0
0 1

]
ΓS1 =

[
0 0
0 0

]
ΓS2 =

[
0 0
0 0

]
ΓS3 =

[
0 0
0 0

]
ΓS4 =

[
0 0
0 0

]
βS1 =

[
0 0 0

]⊺
βS2 =

[
0 1 0

]⊺
βS3 =

[
0 1 1

]⊺
βS4 =

[
0 2 0

]⊺

2.1. THE POLYHEDRAL MODEL 17

Schedules: Transformations Triggers
Generally, loop transformations require reordering or restructuring the loops in a loop
nest. The polyhedral model enables such loop transformations by reordering the execu-
tion instances of the statements in the loop nests of interest.

Interesting sophisticated affine transformations can be achieved by applying a se-
quence of simpler transformations (e.g., loop interchange, or skewing). They are spec-
ified by affine scheduling functions that alter the original polyhedra of the statements
iteration domains into new polyhedra containing the same points, but in a different ex-
ecution order in a new coordinate system [11].

In scheduling functions, scheduling matrices are exploited to express different exe-
cution orders of the corresponding statements besides the initial sequential order.

“Matrices act. They don’t just sit there.”—William Gilbert Strang [128]

The modifications applied to the sub-matrices (AS ,βS and ΓS) of the scheduling ma-
trix ΘS of statement S in an affine loop nest impact directly the original execution order
representation of the instances of S which enables applying directly loop transforma-
tions.

Popular uni-modular loop transformations, e.g., loop interchange, reversal, and skew-
ing are possible by modifying the iteration vectors, i.e., modifying iteration ordering co-
efficients in AS .

For instance, consider the simple affine loop nest Listing 2.7 composed of an outer
loop whose iterator is i and an inner loop whose iterator is j enclosing one statement
S1. θoS1(v⃗) (below the listing) such that v⃗ = (i j 1)⊺ describes the original execution
order of S1’s instances using the scheduling matrix in normalized form. In Figure 2.3, we
have the polyhedron describing the iteration domain of S1 with the execution flow of its
dynamic instances marked by arrows. Note that since there are no loop parameters, the
scheduling matrix is simplified.

for (i = 1; i <= 3; i++)
for (j = 1; j <= 2; j++)

A[i][j]=...; //S1

Listing 2.7 – Affine Loop Nest

i

j

0 1

1

2

2

3

3

4

Figure 2.3 – S1 Iteration Domain Polyhedron

θS1o (v⃗)=

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0

v⃗=

0
i
0
j
0

In order to perform a certain loop skewing, it is sufficient to modify, in the original

scheduling matrix, the iteration ordering sub-matrix, as:

AS1 =

[
1 0
0 1

]
to

[
1 0
1 1

]
This change can be viewed in the scheduling matrix used in the new scheduling function

18 CHAPTER 2. BACKGROUND

responsible for skewing: θSs (v⃗). Listing 2.8 shows the affine loop nest after performing
loop skewing and the polyhedron in Figure 2.4 is the corresponding polyhedron. The
transformed polyhedron contains the same instances points as the initial polyhedron
but in a different order.

θS1s (v⃗)=

0 0 0
1 0 0
0 0 0
1 1 0
0 0 0

 v⃗=

0
i
0

i+j
0

for (i = 1; i <= 3; i++)

for (j = 1+i; j <= 2+i; j++)
A[i][j-i]=...; //S1

Listing 2.8 – Loop Nest After Loop Skewing

i

j

0 1

1

2

2

3

3
4

4

5

Figure 2.4 – Polyhedron after Loop Skewing
On the other hand, other loop transformations like shifting are expressed using the

coefficients of component ΓS , and transformations like Loop fission, loop fusion, and
code motion are applied by modifying the textual order encoded in βS .

Furthermore, although other interesting transformations like tiling require altering
the iteration domain, they are possible, and can be still expressed using scheduling func-
tions.

After this brief presentation of the optimizing transformations and how they can be
enabled in the polyhedral model, we discuss next the validity of these transformations
and when they can be reliably enabled.

2.1.3 Dependence Analysis
The validity or legality of polyhedral transformations and optimizations must be verified
and ensured. The new scheduling must preserve the semantics of the original program
which can be guaranteed by proving that data dependences among statements are not
violated [64, 18].
Definition 2.1.14. (Data Dependence). Two statements S and S ′ are said to be data de-
pendent, iff there exist instances S(x⃗) of S and S ′(y⃗) of S ′ such that they both access the
same memory location and at least one of these accesses is a write access. The existence
of a dependence can be formally expressed using the Bernstein Condition as follows:

[W (S) ∩R(S ′)] ∪ [R(S) ∩W (S ′)] ∪ [W (S) ∩W (S ′)] 6= ∅

such that W (Si) and R(Si) represent the sets of memory locations written and read by
the statement Si respectively and there exists a feasible run-time execution path from S
to S ′. If S(x⃗) is executed before S ′(y⃗) in the initial sequential order (θS(x⃗) � θS

′
(y⃗)),

then S ′ is considered to be dependent on S such that S is the source of this dependence
and S ′ is its destination, sink or target.

Generally, the semantics of a program are preserved if the initial execution order of
dependent statements remains unchanged even after program transformation and par-
allelization. For example, if in the original program an instance S(x⃗) writes to a memory

2.1. THE POLYHEDRAL MODEL 19

location that is supposed to be read afterwords by another instanceS ′(y⃗), then any trans-
formation that reorders these instances and executesS ′(y⃗) beforeS(x⃗) is invalid because
the value read by S ′(y⃗) may be wrong. Conversely, reordering independent statements
arbitrarily will not tamper with the original program semantics.

There exist several kinds of data dependences that must be respected which are dis-
tinguished according to the order and the type of the memory accesses performed (read
or write) as follows:

• RAW : read-after-write, flow or true dependence:
Statement S ′ is flow dependent on S, denoted as SδS ′ ⇐⇒ W (S) ∩ R(S ′) 6=∅,
i.e., S writes to a memory location before S ′ reads from it.

• WAR: write-after-read or anti-dependence:
Statement S ′ is anti-dependent on S, Sδ−1S ′ ⇐⇒ R(S) ∩W (S ′) 6=∅,
i.e., S reads a memory location before S ′ overwrites it.

• WAW : write-after-write or output dependence:
Statement S ′ is output dependent on S, SδoS ′ ⇐⇒ W (S) ∩W (S ′) 6=∅,
i.e., S writes to a memory location before S ′ overwrites it.

There may also occur a read-after-read (RAR) or input dependence in which all involved
statements instances access a memory location only for reading without modifying the
memory; accordingly, it is not considered as an actual dependence since reordering arbi-
trarily the execution of two reads will not affect the semantics of the program. Neverthe-
less, RARs can be still analyzed for the sake of improving data locality which is interesting
for some optimisations.

There are multiple techniques to eliminate WAR and WAW dependences[26], e.g.,
renaming, expansion, node splitting, etc., which enable more optimisation opportunities.
However, RAW dependence cannot be removed by these techniques, and the polyhedral
model does not adopt any of them.

For example, let us consider the Listing 2.9. There are two statements S1 and S2 in a
loop nest of depth equal to two. We refer to the outer loop, i.e., the first loop in the nest
whose iterator is i as L1 and to the inner loop or the second loop whose iterator is j as
L2. Besides, we have P as a parameter.

The memory locationA[i][j+1] read by the instance S1 at iteration (i, j) = (x1, x2)
such that 1 ≤x1< P and 1 ≤x2< P is later modified asA[i][j]by another instance ofS1
at iteration (y1, y2) such that y1=x1 and y2=x2+1. Then, S1 is (WAR) anti-dependent
on itself (S1 δ−1 S1).

The value of A[i][j] modified by the instance S1 at iteration (x1, x2) is later read as
A[i−1][j+1] by instance of S2 at iteration (y1, y2) such that y1 = x1+1 and y2 = x2−1.
So, S2 is said to be (RAW) flow dependent on S1 such that S1 and S2 are the source and
the target of this dependency respectively (S1 δ S2).

Also, the value of B[i][j] read by S1 at iteration (x1, x2) is rewritten later by an in-
stance of S2 at the same iteration (y1, y2) = (x1, x2) which means that there is an anti-
dependence (WAR) of S2 on S1 (S1 δ−1 S2).

Usually, a data dependence between statements can be visualized in a data depen-
dence graph.

20 CHAPTER 2. BACKGROUND

Definition 2.1.15. (Dependence Graph). A dependence graph G = (V,E) is a directed
graph composed of a set of verticesV representing the statements and edgesE represent-
ing the data dependences. Every edge e = (v, v′) ∈ E where v and v′ ∈ V corresponds to
a dependence from the source statement represented by v to the destination statement
represented by v′.

The dependence graph corresponding to the statements of Listing 2.9 is shown in
Figure 2.5.

for (i = 1 ; i < P ; i++)
for (j = 1 ; j < P ; j++) {

A[i][j] = B[i][j] + A[i][j+1]; //S1
B[i][j] = A[i-1][j+1] +1; //S2

}

Listing 2.9 – SCoP to Illustrate Dependence Vectors

S2

S1 WAR

WARRAW

Figure 2.5 – Dependence Graph

In order to perform a dependence analysis precise enough to enable applying correct
loops transformations, information about dependences among statements across itera-
tions must be accurately expressed.

In what follows we present two popular compact representations of data dependence
required for dependence analysis: dependence vectors and dependence polyhedron.

Dependence Vector
In loop dependence analysis as presented in [7], a dependence between two statements
S and S ′ in a loop nest is characterized by: a distance vector , a direction vector and the
level of dependence.

Definition 2.1.16. (Distance vector). A distance vector signifies the distance between the
source and the destination statements of a data dependence. Suppose that statement
S ′ depends on a statement S, and let S ′(y⃗) and S(x⃗) denote a pair of their instances
respectively. Then, S ′(y⃗) depends on S(x⃗) such that S(x⃗) is executed before S ′(y⃗) and
θS(x⃗) � θS

′
(y⃗). Accordingly, the distance vector is defined as:

d⃗ = (d1, d2, ..., dn) = y⃗ − x⃗ where n is the enclosing loop nest depth.

Definition 2.1.17. (Direction vector). The direction vector indicates the direction of the
dependence. it can be deduced from the sign of the distance vector and it can be repre-
sented by:

σ⃗ = sig(d⃗) = (sig(d1), sig(d2), ..., sig(dn)), such that ∀ element di ∈ {d1, ..., dn}:

sign(di) =

+ or 1 if di ≥ 0
− or −1 if di ≤ 0
0 if di = 0

2.1. THE POLYHEDRAL MODEL 21

Although direction vectors are less precise and less informative than the distance vec-
tors, in some situations, they can be sufficient to apply effectively some loop transforma-
tions like loop parallelization and interchange.

The leading element of a vector is its first non-zero element of this vector. The sign of
the leading element determines the lexicographic sign of the corresponding vector. If it
is positive, then the vector is considered to be lexicographically positive. Otherwise, the
vector is either negative or null.

Definition 2.1.18. (Dependence Level). Given the direction vector d⃗ = (d1, d2, ..., dn)
corresponding to a dependence of statement S ′ on S in a loop nest of depth n, the level
of d⃗, i.e., the level at which the dependence occurs, is defined as:

lev(d⃗) =

{
l where 1 ≤ l ≤ n if d⃗ 6= 0⃗ and dl > 0 (dl is the leading element)
n+ 1 if d⃗ = 0⃗

The distance and direction vectors must always be lexicographically non-negative.
Hence, the level is always non-negative; this allows determining if the dependence be-
tween the corresponding statements is loop-carried/loop-dependent, and, if so, helps
identifying the exact loop in the nest carrying this dependence.

Definition 2.1.19. (Loop-carried vs. Loop-independent Dependence). The dependence of
S ′ onS is considered to be loop-carried, i.e., carried by the lth loop in the loop nest enclos-
ing S and S ′ if 1 ≤ l ≤ n. It occurs when two different iterations of this loop touch the
same memory location. On the other hand, if l = n+1, i.e., d⃗ = 0⃗, then the dependence
is loop independent, i.e., not carried by any loop.

For example, reconsider the Listing 2.9:

• Statement S1 is said to be (WAR) anti-dependent on itself with:

– distance vector d⃗ = (x1, x2 + 1)− (x1, x2) = (0, 1)

– direction vector σ = (0,+)

– level lev(d⃗) = 2 =⇒ this dependence is carried by loop L2.

• Statement S2 is (RAW) flow dependent on S1 with:

– distance vector d⃗ = (x1 + 1, x2 − 1)− (x1, x2) = (1,−1)

– direction vector σ = (+,−)

– level lev(d⃗) = 1 =⇒ this dependence is carried by loop L1

• Also, S2 is (WAR) anti-dependent on S1 with:

– distance vector d⃗ = (x1, x2)− (x1, x2) = (0, 0)

– direction vector σ = (0, 0)

– level lev(d⃗) = 3 =⇒ It is a loop-independent dependence.

22 CHAPTER 2. BACKGROUND

Dependence Polyhedron
For each edge e in the dependence graph (example in Figure 2.5), the exact conflicting dy-
namic instances responsible for this dependence relation between statements can be ex-
pressed as a polyhedron, called the dependence polyhedronPe proposed by Feautrier [40]
and revisited in [33, 140, 105]. Suppose that statements S and S ′ are the source and the
target of a dependence; their dependence polyhedron is a subset of the Cartesian product
of their iteration domains defined by the following constraints :

• The instances responsible for the dependence must exist, i.e., their iteration vector
must belong to the iteration domain: x⃗ ∈ DS and y⃗ ∈ DS′

• They must access exactly the same memory location: fS(x⃗) = fS′
(y⃗)

• The source statement instance must be executed before that of the destination:
θS(x⃗) � θS

′
(y⃗)

Then, the dependence betweenS andS ′ can be expressed using the notation δ(S, S ′, Pe).
Let us reconsider the example in Listing 2.9, we can represent the anti-dependence

(WAR) ofS1 on itself as a dependence polyhedronPe containing all conflicting instances
S1((x1, x2)) and S1((y1, y2)) defined by the constraints represented by the inequalities
and equalities below:

Pe =

 ((x1, x2), (y1, y2))

∣∣∣∣∣
1 ≤ x1, x2, y1, y2 < P
y1 = x1, y2 = x2 + 1
x1 ≤ y1

→instances exist
→same mem. location accessed
→source before target

This representation is very useful since all the dependent instances are represented
in a polyhedron which can be also expressed using a matrix describing a set of affine
constraints.

2.1.4 LegalPolyhedralOptimizingTransformationsandParallelization
The polyhedral model optimizes loop nests by transforming them to exhibit parallelism
or to improve data locality.

As mentioned earlier, the polyhedral model applies loops transformations by reorder-
ing statements instances within these loops. Such transformations are expressed as a set
of scheduling matrices. Nevertheless, these transformations and schedules must be legal
respecting the semantical constraints defined by data dependences.

Definition 2.1.20. (Legality Property/Precedence Condition/Dependence Satisfaction):
Given a dependence δ(S, S ′, Pe), the schedule expressed by θS and θS

′ is legal if and only
if:

∀(x⃗, y⃗) ∈ Pe, θ
S(x⃗) � θS

′
(y⃗)

2.1. THE POLYHEDRAL MODEL 23

Mainly, there are two approaches to ensure the legality of polyhedral model transfor-
mations:

1. A posteriori approach that assures the legality of the transformation that is either
chosen by the user or obtained semi-automatically [29, 49] based on a violation
analysis [140]. This legality check is performed making use of (the inverse of) the
legality property which is for δ(S, S ′, Pe):

∃(x⃗, y⃗) ∈ Pe, θ
S′
(y⃗) � θS(x⃗)

The set satisfying this condition represents the pairs of dependent statements in-
stances whose order is inversed. If this set is empty, then the data dependences
are preserved and the new schedule is legal. This check must be performed for
all dependence polyhedra. The emptiness check is achieved by a Fourier-Motzkin
elimination restricted to integer solutions [123, 106]. In case the set is not empty,
i.e., the transformation is illegal, Vasilache [139] proposed a solution to correct it
by loop-shifting.

2. A priori approach that automatically finds legal transformations only. This is achie-
ved by building the space of legal transformations or schedules by taking into con-
sideration all legality constraints corresponding to all the dependences polyhedra
based on affine form of Farkas lemma [123] and Fourier-Motzkin elimination [41].
This approach is adopted by the affine scheduling algorithms[41, 42, 51, 21, 71, 72].

For instance, Listing 2.10 shows the kernel for matrix-vector product composed of two
affine nested loops: L1, the outermost loop in the nest whose iterator is i, andL2, the in-
nermost loop whose iterator is j. L1 and L2 both iterate starting a lower bound 0 to an
upper boundN which is a loop parameter. There are two statements: S1 enclosed byL1
and S2 enclosed by L2 and L1. In this example, we exclusively focus on the true depen-
dence of S2 on S1 (δ(S1, S2, Pe)). Due to this dependence, not every transformation
can be a legal transformation.

The corresponding dependence polyhedron Pe is shown to the right of this listing.

for (i = 0 ; i < N ; i++) { //L1
C[i]=0; //S1
for (j = 0; j < N ; j++) //L2

C[i]+=A[i][j]*B[j]; //S2
}

Listing 2.10 – SCoP: Matrix-Vector Product

Pe =

 ((x1), (y1, y2))

∣∣∣∣∣
0 ≤ x1, y1, y2 < N
y1 = x1

x1 ≤ y1

Figure 2.6 illustrates the polyhedra of the iteration domains of S1 and S2. Since S1
is enclosed by one loop, its iteration domain is one-dimensional, i.e., an affine segment,
and since S2 is enclosed by two loops, its polyhedron is two-dimentional, i.e., an affine
bounded plane (square in this case). These polyhedra also show the execution order of
the statements instances and the data dependences between them.

The original schedules of S1 and S2, θS1o (v⃗) and θS2o (v⃗) such that v⃗ = (i j 1)⊺ are as
follows.

24 CHAPTER 2. BACKGROUND

θS1o (v⃗)=

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

i
j
N
1

=

0
i
0
0
0

θS2o (v⃗)=

0 0 0 0
1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0

i
j
N
1

=

0
i
1
j
0

First, the same schedule for S1 is kept and that

of S2 is modified by interchanging the columns of
the original iteration ordering matrix component of
the scheduling matrix enabling a program transfor-
mation known as loops interchange.

The new scheduling function of S2 is:

θS2i (v⃗)=

0 0 0 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 0 0

i
j
N
1

=

0
i
1
j
0

Figure 2.7 shows the corresponding transformed

polyhedra of the iteration domains ofS1 andS2with
the new execution order and dependences of their in-
stances. The new polyhedra reveal that loops inter-
change is illegal. The data dependence of S2 on S1
after rescheduling must be respected by preserving
the precedence order as specified by the dependence
polyhedron i.e., for every iteration of L1, instances
of S1 must be executed before that of S2. How-
ever, some data dependences are inversed as some
instances of S2 are executed before those of S1 on
which they depend. Yet, other transformations are
still possible like loop fission. So, second, we perform
a loop fission on the original loop nest. The original
scheduling function of S1 remains unchanged.
Loop fission can be expressed by the following new
schedule of S2:

θS2fi (v⃗)=

0 0 0 1
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

i
j
N
1

=

0
i
1
j
0

The rescheduled polyhedra are shown in Figure 2.8.
Data dependences are all respected, and, so this
transformation is legal in this case.

S1 instances
S2 instances

Execution Order
Data Dependences

i

j

i

0

0

N

N

N

Figure 2.6 – Polyhedra

i

j

i

0

0

N

N

N

Figure 2.7 – Illegal Polyhedra

i

j

i

0

0

N

N

N

Figure 2.8 – Legal Polyhedra

2.1. THE POLYHEDRAL MODEL 25

Parallelism
After a legal transformation is chosen for the affine loop nest, parallelization opportuni-
ties can be furtherly investigated.

In the previous section, we defined the notions of loop independent and loop carried
dependences which are significant for determining if the loops involved in the depen-
dences can be parallel. A loop carrying no dependence can be made parallel.

This can be determined by augmenting the dependences polyhedra with an addi-
tional constraint to test if a certain loop at a certain level in the loop nest carries these
dependences. If all augmented dependences polyhedra are empty, this means that this
particular loop carries no dependence. Hence, it can exhibit parallelism.

#pragma omp parallel for
for (i = 0 ; i < N ; i++)

C[i]=0; //S1
#pragma omp parallel for
for (i = 0 ; i < N ; i++)

for (j = 0; j < N ; j++)
C[i]+=A[i][j]*B[j]; //S2

Listing 2.11 – SCoP: Matrix-Vector Product Transformed and Parallelized

In the matrix-vector product example, the dependences are loop independent. L1
does not carry any dependence, so it can be parallelized.

In Listing 2.11, we show the matrix-vector product code after performing loop fission.
L1 is splitted into two loops that can be parallelized using OpenMP.

The polyhedral model is greater than our presentation. More details and information
about it, its powerful analysis, transformations and code generation can be found in the
literature as in[11, 13, 105, 138].

2.1.5 Polyhedral Tools
In our study, we take advantage of numerous polyhedral tools and libraries that we present
in what follows.

As explained in a later chapter, the fruit of our work is a tool developed based on
Clang-LLVM. For that reason, our first choice for enabling polyhedral transformations
was Polly.

Polly2 [69] is a high-level loop and data-locality optimizer infrastructure for LLVM
that is enabled at the level of the LLVM intermediate representation (IR). It provides
analysis and classical legal loop transformations, especially loop tiling and fusion for the
purpose of enhancing data-locality. Moreover, Polly is capable of detecting SIMDization
opportunities and generating OpenMP parallel code.

However, to optimize more complex code parts, instead of Polly, we use Pluto (An
automatic parallelizer and locality optimizer for affine loop nests)3 [21, 20] which is a
popular automatic polyhedral loop optimizer. It performs source-to-source C reliable

2All about Polly at https://polly.llvm.org/
3All about Pluto at http://pluto-compiler.sourceforge.net/

https://polly.llvm.org/
http://pluto-compiler.sourceforge.net/

26 CHAPTER 2. BACKGROUND

codes transformations to apply parallelism and enhance data locality simultaneously.
Also, other than source codes, it can take as an input and handle a polyhedral Open-
Scop representation of a loop nest. Pluto is well-known for performing affine transfor-
mations that enable efficient tiling besides the other classical loop optimization, and it
automatically generates parallel OpenMP codes. Pluto uses Clan, Candl and Cloog-ISL,
for scanning the C code, computing dependences and generating the output code. Some
limitations of Pluto were addressed and tackled in PLUTO+[2].

In our tool, we do not apply polyhedral transformations at the source level. Instead,
we apply the optimizations at the IR level which Pluto cannot handle without OpenScop.

OpenScop [12] is a specification that defines a file format and data structures repre-
senting affine loop nests or SCoPs.

Clan standing for Chunky Loop ANalyzer [14] is a software/library which translates
affine loop nests/SCoPs existing in high level (C, C++, Java, etc.) programs into the poly-
hedral representation previously defined, OpenScop. This representation may be reliably
used by other polyhedral tools to perform powerful analyses and optimizations.

Candl as short for Chunky ANalyzer for Dependences in Loops[13] is a library and a
software devoted to data dependence analysis. It computes the dependence graph and
dependence polyhedra for a SCoP.

Cloog or Chunky Loop Generator [9] is a software and library used to generate code
for scanning parametrized Z-polyhedra.

2.1.6 Limitations
The polyhedral model offers powerful analyses and aggressive program optimizations. It
is quite useful because it tackles a set of the most compute-intensive and time-consuming
structures, loops.

However, the polyhedral model is still limited as classical polyhedral optimizers are
exclusively effective for a particular kind of loop nests which are affine for-loop nests.
On the other hand, generally, a complex program may contain more than just affine for-
loops, e.g., for-loops may have unknown bounds, involve breaks, exits and function calls
or include indirections and pointers, and, also, there may be while-loops, etc. In the poly-
hedral model, such code parts cannot be recognized as valid SCoPs, and they cannot be
accurately analyzed and reliably optimized at compile-time. This is because the dynamic
memory behavior of such structures cannot be precisely determined at compile-time, so
is the case with the existing data dependences. Therefore, a transformation statically
chosen and applied to such codes may turn to be illegal at run-time; accordingly, classi-
cal static optimizers do not optimize these codes.

Yet, there exists, Apollo [132, 84, 131, 83], an optimizer based on the polyhedral model,
discussed later in this chapter, that was implemented to capture statically non-affine
loop nests that exhibit affine dynamic memory behaviors compliant with the polyhe-
dral model. Then, using such an approach, these codes can be analyzed at run-time and
aggressively optimized using the polyhedral model whenever possible.

Nevertheless, loops are not the only compute-intensive structures that may exist in a
program: what about recursions?

For instance, consider the recursive matrix-vector product kernel in Listing 2.12. As
discussed earlier in this chapter, the iterative version of the matrix-vector product per-

2.2. SPECULATIVE LOOP OPTIMIZATION 27

fectly fits in the polyhedral model; however, the following recursive version, although it
touches the memory in a similar fashion at run-time, it is out of the scope of the poly-
hedral model. In general, even though there exist some attempts to allow polyhedral
modeling of recursive calls, which are addressed in Chapter 3, recursive structures are so
different from what the polyhedral model recognizes and analyzes in a code.

void MatrixVectorProduct(int A[N][N], int B[N]) {
static int row=0, column=0;
if (row >= N)

return;
if(column < N){

C[row]+=A[row][column]*B[column];
column++;
MatrixVectorProduct(A, B);

}
columns=0; row++;
MatrixVectorProduct(A, B);

}

Listing 2.12 – Recursive Matrix-Vector Product

In this thesis, we focus on introducing the recursive structures to the realm of the
polyhedral model, so that they benefit from its advanced analysis and optimization pow-
ers. For this purpose, we implemented Rec2Poly, presented later in this manuscript.

2.2 Speculative Loop Optimization
Another popular approach for optimizing loop structures is to optimistically execute
their iterations in parallel as if parallelism is guaranteed to respect the semantics of the
original sequential code. Then, later, at run-time, the validation is taken care of. This
approach is called thread-level speculation.

Thread-level speculation (TLS) or speculative thread-level parallelization [111, 125,
126] is a known run-time technique adopted by compilers mainly to optimize loops by
parallelizing them without even knowing all the required information and the precise
dependences at compile-time.

A simplified outline of the TLS system is shown in figure 2.9.
A typical TLS system is composed of two phases: the first phase is performed at com-

pile time (statically), and the second one is performed at run-time (dynamically).
At compile time, static analysis is firstly performed to get all the information obtain-

able and the data dependences detectable, so that these dependences are either stati-
cally resolved or taken into consideration for the transformations. It is also possible to
perform an offline profiling to gather some accessible dynamic information supposing
that the execution behavior is the same at run-time. Additionally, some systems gen-
erate expressible conditionals to uncover hidden dependences later at run-time. Then,
at this phase, the code blocks that must be executed sequentially and those that can be
executed simultaneously are identified.

Accordingly, loops iterations are speculatively executed simultaneously on parallel
threads. Some systems, at run-time, before directly parallelizing the loops, perform a

28 CHAPTER 2. BACKGROUND

Offline ProfilingStatic Analysis

Online Profiling Dependence
Prediction

Code Transformation
& Generation

Speculative Parallel
Execution

Verification
Rollback:

Restore Safe State

Sequential
Execution

Commit:
Construct Safe State

misspeculation

valid speculation

Run-time

Compile-time

Figure 2.9 – Thread Level Speculation System

partial online profiling of the code to determine additional dynamic information and
undiscovered dependences. Then, an optimizing transformation is chosen based on both
the dynamic and the static information obtained. The optimization applied is basically
a simple parallelization achieved by slicing the outermost loop into slices executed on
parallel threads.

However, since this parallelization technique depends on either inaccurate static anal-
ysis or partial dynamic profiling, some dependences may still be ambiguous, and it is
probable to encounter unsafe run-time operations. For this reason, the correctness of
this parallel execution must be verified at run-time.

At some points during execution, threads are monitored and validated by ensuring
that there is no data dependence violation. If their execution is valid, then the tempo-
rary states of the threads are committed saving the speculative data updates to the global
memory forming the safe state.

On the other hand, if a misspeculation or misprediction is detected in particular threads,
the invalid iterations are cancelled and the speculative updates are discarded. Then, a
rollback and backup operations are initiated to reach an earlier (most recent) safe state
instead of restarting the whole loop execution all over again. Usually, the faulty threads
re-execute the invalid iterations using another valid execution order (usually sequen-
tially) starting from the restored safe state. Also, it is possible to re-execute, in parallel
again, the non-valid iterations using a new schedule/transformation based on a new on-
line profiling.

while (condition) {
A[i] = ... ;

...
... = A[j] ;

}

Listing 2.13 – While Loop

2.2. SPECULATIVE LOOP OPTIMIZATION 29

For instance, consider the while loop code shown in the Listing 2.13. It accesses elements
in array A using references i and j. There may exist data dependences across this loop
iterations as there may occur conflicting accesses to the same elements of A. Traditional
static compilers may not be capable of detecting all the possible existing dependences in
such a loop, thus they do neither transform nor parallelize it.

In figure 2.10, we illustrate an example of a possible sequential execution of this loop
iterations. Each iteration is presented by a block and the arrows between the blocks rep-
resent the control flow of these iterations. We assume that this loop iterates four times
only.

Thread 1
A[1] = ... ;

...
... = A[0] ;

A[2] = ... ;
...

... = A[2] ;

A[3] = ... ;
...

... = A[4] ;

A[4] = ... ;
...

... = A[6] ;

Execution Time

Figure 2.10 – Sequential Execution
In the original sequential execution, we notice that there is a (WAR) anti dependence

occurring between the third and the fourth (last) iteration. The third iteration reads from
A[4], then the fourth iteration writes to the very same memory location.

A classical TLS system does parallelize such a loop without knowing that such a de-
pendence actually occurs between the iterations. In this example, a speculative paral-
lelization of this loop is performed by simultaneously executing its iterations, each on
a separate thread. The speculative parallel execution of the while loop is shown in fig-
ure 2.11

Thread 1

Thread 2

Thread 3

Thread 4

A[1] = ... ;
...

... = A[0] ;

A[2] = ... ;
...

... = A[2] ;

A[3] = ... ;
...

... = A[4] ;

A[4] = ... ;
...

... = A[6] ;

Execution Time

violation

Va
lid

3
Va

lid
3

Va
lid

3

A[4] = ... ;
...

... = A[6] ;

Re
-e
xe
cu

te

In
va
lid

7

Figure 2.11 – Speculative Parallel Execution

During the speculative execution, threads 1, 2 and 3 access different locations in

30 CHAPTER 2. BACKGROUND

memory meaning that there is no violation of any dependences. So, their parallel ex-
ecution is valid, and once they successfully terminate, their updates can be committed.
Yet, thread 4, executing at the same time with the rest of the threads, writes toA[4]which
is supposed to be read by thread 3 before this write/update. Hence, conflicting memory
accesses are encountered and a misspeculation is detected; the third and the fourth it-
eration cannot be executed in parallel. Then, the computations done by thread 4 are
cancelled, and it re-executes again after thread 3 completes its computations to ensure
that it respects the existing dependence and preserves the original program semantics.

The efficiency of TLS systems depend on the misspeculations occuring during the
optimized code execution; the less there are misspeculations, the better the performance
of the parallelized code is.

There exist two main types of TLS systems: (1) hardware-based and (2) software-
based. Hardware-based approaches utilize customized hardware that supports TLS. On
the contrary, software-based systems do not require a special support from the underly-
ing hardware. Also, in comparison with software-based systems, hardware-based systems
are more performant and efficient, but they are not as evolved to process general purpose
programs. Hardware-based sytems include Intel’s Transactional Synchronization Exten-
sions [148], The IBM’s Blue Gene/Q Chip [55] and Rock [28], etc. As for the software-
based TLS systems, there are many works including the LRPD test [111], Softspec [23],
POSH [74], etc.

In general, traditional TLS systems are still not considered aggressive loop optimizers
because:

• they may not improve data locality

• they may miss significant parallelization opportunities or only apply simple loop
transformations before parallelization

• exhaustive misspeculations still weigh them down

Nevertheless, there exist outsanding TLS software-based systems like VMAD [57, 58]
and Apollo [132, 84, 131, 83], the enhanced successor of VMAD, which made their mark in
this domain because they pushed the limitations restraining TLS systems by speculatively
enabling powerful polyhedral optimizations.

In this thesis, we push the limits of TLS systems even further to also cover non-loop
structures, recursions in particular. The use of TLS in the realm of recursions is original
and new which distinguishes our work more. In a later chapter, we present in details our
tool, Rec2Poly, which adopts a speculative verification technique known as the inspector-
executor strategy.

In what follows in this section, we introduce the inspector-executor mechanism, and
then we choose to present, out of the speculative loop optimizers, Apollo that was our
inspiration to combine both of the speculative approach and the polyhedral model.

2.2.1 Inspector-Executor Mechanism
The inspector-executor mechanism is a well-known technique in the domain of compi-
lation and optimization of programs used for guiding code transformations. It has been

2.2. SPECULATIVE LOOP OPTIMIZATION 31

seen and used in earlier works that are exclusively dedicated to loops speculative paral-
lelization [110, 36].

This technique involves two main processes:

1. Inspector

2. Executor

Both of the inspector and the executor can be automatically constructed from the
original loops to optimize. Whenever it is possible, the original loop is broken up into
two loops where:

• The first is executed by the inspector process: it is a light version of the loop that
helps monitoring the run-time execution and performing light computations to
guide loop transformations or simply verify their correctness. It calculates the
memory addresses that are supposed to be accessed, so it can precisely compute
data dependences and obtain loop upper bounds and other loop-related informa-
tion. This information is required to ensure a valid execution of the second loop.
Note that the inspector may also be optimized and parallelized to run as fast as
possible for a lowest possible time overhead.

• The second loop is executed by the executor process: it is a loop that actually per-
forms the existing memory accesses and computations. If possible, this loop can
be even reliably optimized and parallelized based on the information collected by
the inspector.

There is an interesting recent study by Strout et. al. [129] that reviews the history and
current state-of-the art for inspector–executor strategies. Also, it presents how the Sparse
Polyhedral Framework (SPF) enables the composition of inspector–executor transforma-
tions, etc. SPF [130] is a framework that specifies run-time reordering transformations
and algorithms for generating efficient inspector-executor code automatically which per-
mits implementing such transformations. Their work optimizes applications that manip-
ulate sparse data structures containing memory reference patterns that are unknown at
compile time due to indirect access.

Based on the state-of-the-art by Strout et. al. [129], the inspector–executor approach
was firstly introduced by Saltz et. al. [89, 120, 103].

The inspector was used to collect run-time information used by the executor in order
to guide distributed memory parallelization. In [89], the inspector’s role was to collect
dependences information. In later works [103, 68, 147, 121], inspectors became capable
of collecting more information, e.g., the processors occupied by data elements, commu-
nication schedules, loop iteration partitions, etc; then, executors could gather non-local
data, perform computations and, whenever necessary, scatter the results.

Moreover, the inspector-executor paradigm was used to guide shared memory paral-
lelization by combining static and runtime dependence testing; for example, the LPRD
test [112] speculatively detected parallelization, reduction, and privatization opportuni-
ties using a compressed bit map marking dependences at runtime. Furthermore, the
inspector-executor strategy was used to allow partial parallelization, i.e., parallelization

32 CHAPTER 2. BACKGROUND

in presence of dependences, such that the inspector detected partial parallelism by com-
puting all the dependences for a loop and placing iterations into irregular wavefronts [109,
141].

Besides parallelization, optimizations for improving data locality like improving data
reuse, reorganizing computations and performing data and iteration reordering transfor-
mations, especially for sparse codes, also relied on the inspector–executor paradigm. In
this area, there existed many studies, of which we mention [38, 90].

Additionally, many studies combined available inspector-executor optimizations and
parallelizations; for instance, distributed memory parallelization inspector–executor trans-
formation with affine transformations enabling vector/polyhedral optimizations [113].

However, a sequential inspector was considered respectively costly in an optimized
code. For this reason, there were conducted many research studies that parallelized the
inspector code [120, 70, 110]. Other studies investigated where an inspector code could
be placed to minimize the number of inspector executions [38, 121], developed partial
redundancy elimination [121, 3] and developed inter-procedural anaylses to discover ef-
fective points where the inspector could be called [3], etc. Such inspector optimization
and parallelization approaches are still relevant and can still be adopted to generate effi-
cient inspector-executor code.

Note that a remarkable work that uses the inspector-executor strategy is presented
next in this section which is Apollo [132, 84, 131, 83].

Rec2poly, the recursion optimizer introduced in this thesis in Chapter 4, uses this
mechanism for the first time to guide recursion-to-loop transformations instead of loop-
to-loop transformations. Also, we investigate many inspector optimizations in Rec2Poly
which are explained later in Chapter 4.

2.2.2 Speculative Polyhedral Optimization with Apollo
Apollo4 short for the Automatic speculative POLyhedral Loop Optimizer [132, 84, 131, 83]
is a Clang-LLVM based compiler framework dedicated to automatic speculative polyhe-
dral optimization and parallelization of loop nests composed of any kind of loops (for,
while...) existing in C/C++ programs. Its objective is to dynamically optimize loop nests
that exhibit a run-time behavior that is compliant with the polyhedral model. So, Apollo
extends the applicability of the polyhedral model to loop nests that do not have an affine
structure at compile-time.

It makes use of a an online profiling phase to build a speculative prediction model
that describes the dynamic memory behavior of the loop nest. If the behavior is affine,
then it chooses and applies efficient polyhedral transformation, optimizations and par-
allelizations at run-time.

Furthermore, Apollo needs to verify that the speculative loop transformation is still
valid at run-time, so it involves a verification strategy that is partially based on the inspector-
executor paradigm.

As mentioned earlier, Rec2Poly extends the Apollo approach to handle recursive codes.
Like Apollo, Rec2Poly makes use of a profiling technique, but to discover an affine behav-
ior for recursive functions. Rec2Poly goes even further in the profiling phase by discov-

4All about Apollo at https://webpages.gitlabpages.inria.fr/apollo

https://webpages.gitlabpages.inria.fr/apollo

2.3. TRACE MODELING AS POLYHEDRAL LOOPS WITH NLR 33

ering the control behavior in addition to the memory behavior. The control behavior is
required in our case since we are transforming recursive functions to a totally different
structure, loops. Finally, Rec2Poly applies the inspector-executor mechanism to verify
the recursive code against a loop model; For this reason, Rec2Poly needs to verify both of
the control and memory behaviors, whereas Apollo uses this technique to verify only the
memory behavior of loop nests against that of the predictive loop model.

2.3 Trace Modeling as Polyhedral Loops with NLR
The Nested Loop Recognition algorithm known as NLR [65] is an algorithm that takes as
input a sequence of integer tuples and constructs as an output sequences of loop nests
that produce the same original trace when executed.

There are many applications of the NLR algorithm including:

1. program behavior modeling for any measured quantity e.g., memory accesses, etc.

2. execution trace compressing

3. value prediction, i.e, extrapolating loops under construction (while reading input)
to predict incoming values.

To illustrate how NLR works, let us reconsider the iterative matrix-vector product
code in Listing 2.14 with statements printing the memory addresses accessed at run-time.
We added a printing statement in the body of the first loop in the code to print the ad-
dress of C[i], and another one in the body of the second one to print the addresses of
A[i][j] and B[j]. If this code is executed, a sequence of integer tuples will be printed.
Then, if this sequence is given as an input to NLR, the output will be a model made up of
a sequence of two affine loop nests as displayed in Figure 2.12. These loop nests include
affine expressions in terms of the surrounding loop indices. The first affine expression
corresponds to the accesses to Array C. The three affine expressions in the innermost
loop correspond to the accesses to Arrays A, B and C respectively. Such a model indicates
that the corresponding program has a polyhedral memory behavior.

The loops in the matrix-vector product code are already affine, and so the memory
addresses are abviously accessed in a polyhedral-compliant way which is also reflected
in the corresponding NLR model.

for(i = 0 ; i < N ; i++) {
C[i]=0;
printf("%ld\n",(long)(&C[i]));

for(j = 0 ; j < N ; j++) {
C[i] += A[i][j]*B[j];
printf("%ld\n%ld\n%ld\n",(long)(&A[i][j]),(long)(&B[j]),(long)(&C[i]));

}
}

Listing 2.14 – Matrix-Vector Product Printing Memory Addresses Accessed

34 CHAPTER 2. BACKGROUND

for i0 = 0 to 9
val 140729968340864 + 4*i0
for i1 = 0 to 9

val 140729968340912 + 40*i0 + 4*i1
,140729968340816 + 4*i1
, 140729968340864 + 4*i0

Figure 2.12 – NLR model Example

Nevertheless, as we mentioned before, not all codes initially include affine loops, and
there are codes that do not involve any loops at all. So, making use of the NLR algorithm
in order to detect an affine memory behavior in such codes helps enabling advanced op-
timizations for them.

In this thesis, in Rec2Poly, we make use of this algorithm which is explained later in
Chapter 4. We use it to model the behavior of recursive codes and discover the possibility
to transform them to affine loops and optimize them accordingly using the polyhedral
model.

Moreover, in this thesis, we present an extended version of the NLR algorithm that
captures partially affine behaviors which is also explained in Chapter 4.

To sum up, in this chapter, we have presented the approaches and techniques that
we have relied on to implement the recursion optimizer and parallelizer, the Rec2Poly
framework. In the next chapter, we explain all about recursions and review the state-
of-the-art of existing optimization and parallelization techniques dedicated to recursive
codes.

35

Chapter 3

State of the Art

“To iterate is human, to recurse divine.”
— L. Peter Deutsch

“Recursion is the root of computation since it trades description for time.”
—Alan J. Perlis

In the previous chapter, we discussed advanced au-
tomatic optimization techniques dedicated to itera-
tive codes of which we take advantage in this thesis
to optimize recursive codes. This is interesting since,
unlike recursive structures, iterative structures have
always benefited from powerful optimizations. Re-
cursion and iteration are both fundamental concepts
in computer science that involve performing compu-
tations repeatedly. They are so similar meaning that
it is promising to apply efficient optimization tech-
niques initially dedicated to iterative loop structures
on recursive structures; yet, they are so different mak-
ing this process complicated and not as straightfor-
ward as it may seem. Although they can be alternati-

Figure 3.1 – Recursion Example:
Clock Spiral Droste Effect

vely used in imperative programming languages, a recursive approach is usually so de-
scriptive and sophisticated, but an iterative approach is usually more efficient even with-
out further optimizations.

In this chapter, we introduce the target of our work, recursions and recursive pro-
grams, and we present the state of the art of this thesis. In the first section, we discuss
some generalities on recursions and recursive functions. We show how a recursive al-
gorithm is designed based on induction, how a recursive program is implemented and
executed. Also, we present the main types of recursion, and, then, its computational
complexity. On the one hand, in the second section, we address the latest works that
optimize recursions without manipulating the recursive structures. These optimizations
are mainly achieved through task parallelism or through polyhedral modeling. On the
other hand, in the last section, we discuss another approach for handling recursive func-
tions which involves transforming them into loops.

36 CHAPTER 3. STATE OF THE ART

3.1 Generality on Recursions
Recursion is no strange phenomenon for us.
A recursion occurs when a thing or entity is
defined in terms of smaller instances of it-
self. Even though we may not recognize it,
recursive entities also known as fractals are
part and parcel of our environment and na-
ture, e.g., trees, snail shells, rivers, broccoli,
fire, lungs, blood vessels, etc. For instance,
let us take a closer look at trees (see Fig-
ure 3.2). A tree, as a whole, can be seen as
a stem of which comes out branches. Simi-
larly, each of these branches can be seen as
a smaller stem of which grow out smaller

Figure 3.2 – Trees

branches, and so on; this recurrence ends by flowers blossoming or leaves blooming at
the end of the tiniest branches.

Moreover, as recursion is part of our nature, it can be, correspondingly, found in many
disciplines.

In art, droste effect shown in Figure 3.1 and Matryoshka doll, for instance, are con-
sidered recursive. In literature, there exists linguistic recursion; as an example, con-
sider the recursive sentence below retrieved from the Jeeves comic novel, “Thank you,
Jeeves” [146]:
“He can take a letter from you to her and then one from her to you and then one from you

to her and then one from her to you and then one from you to her and then one...”

In architecture and engineering, some structures may actually be recursive, e.g., stair-
cases and roads; a highway road usually branches to smaller roads, arterial roads, which
also branch to smaller collector roads that fork to narrower local streets leading to build-
ings, parks, etc.

Additionally and most importantly, recursion is a well-known concept in mathemat-
ics and sciences, especially in computer science which is our main emphasis in this chap-
ter. The concept of recursion in mathematics is strongly related to that in computer sci-
ence.

In mathematics, recursion is witnessed in fractal geometry where geometric fractal
patterns can be found in nature, and they are defined as rough or fragmented geomet-
ric shapes that can be decomposed into parts such that (almost) each of these parts is a
reduced-size copy of the whole” [82]. Fractals can be generated by solving simple equa-
tions repeatedly.

Also, similar to fractals, there are the finite subdivision rules which involve dividing
recursively a two-dimensional object, particularly a polygon, into smaller pieces. They
can be seen as a generalization of fractals because instead of repeating exactly the same
pattern over and over again, they allow slight variations in each subdivision. In compari-
son with fractals, subdivision rules make possible generating a more complex, more real
structure while maintaining an elegant fractal style [27].

Visual images or models of fractals and subdivision rules, that may even model nat-

3.1. GENERALITY ON RECURSIONS 37

Fractal Canopy Tree Sierpiński Triangle Levy Curve Hilbert Maze

Figure 3.3 – Fractals

ural entities, are of a significant use in biology, physics, art, etc. and they can be gener-
ated using computer graphics applications that perform the computations either itera-
tively (using loops) or recursively (using recursive codes). Some examples of fractals are
the canopy tree, Sierpiński triangle, Levy curve and Hilbert maze displayed in Figure 3.3.
These fractals, were automatically generated and drawn using Online Fractal Tools [96].

Furthermore, recursion appears in more abstract concepts, in mathematical formu-
las and definitions. Objects that can be recursively defined include factorials, Fibonacci
sequence, cantor ternary set, etc. A recursive definition of an element in such sequences
is expressed in terms of other, probably previous, elements in these sequences. Also, a
recursive definition of a function defines values of this function for some inputn in terms
of the values of the same function for smaller inputs. For instance, let us consider the fac-
torial function originally defined as:

Factorial(n) = n! = 1× 2× ...× (n− 1)× n ∀n ≥ 0

Similarly, if n > 0, the factorial for n− 1 is defined as:
Factorial(n− 1) = (n− 1)! = 1× 2× ...× (n− 1)

We observe that the factorial of the natural number n can be expressed as the product of
n and the value of the factorial given the smaller argument n− 1.

When a function can be expressed in terms of itself for smaller input/argument, then
it can be redefined using a recursive definition. A recursive definition constitutes two
types of expressions, the recursive case and the base case. The recursive case includes all
recursive expressions. In the factorial example, there is one recursive case which is:

Factorial(n) = (n− 1)!× n = factorial(n− 1)× n

As for the base case, it is the case when the output of the function can be trivially obtained
without the need of other output values of the function. In case of the factorial function,
the most trivial case is when the input is zero, as Factorial(0) = 0! = 1. Accordingly,
the factorial function can be redefined recursively as follows:

Factorial(n) =

{
1 if n = 0,
Factorial(n− 1)× n if n > 0

Another example is the Fibonacci sequence in which the nth term sn is defined using
the two preceding terms sn−1 and sn−2 such that s0 = 0 and s1 = s2 = 1. This sequence
can be defined using a recursive function of n that returns its nth term as follows:

38 CHAPTER 3. STATE OF THE ART

Fibonacci(n) =

0 if n = 0,
1 if n = 1,
Fibonacci(n− 1) + Fibonacci(n− 2) if n > 2

Such recursive definitions even provide algorithms, recursive algorithms, allowing
computers to perform such computations in a recursive fashion.

In computer science and programming, there are two main programming paradigms:
declarative/functional programming and imperative programming. On the one hand,
the declarative paradigm focuses on what the code actually achieves by defining the pro-
gram’s logic without explicitly describing the control flow. Examples of declarative lan-
guages include Haskell, Scala, Swift, etc. Executing repetitive computations are only pos-
sible in declarative programming through recursions.

On the other hand, the imperative paradigm, focuses on how an algorithm or a pro-
gram works such that the code explicitly describes the control flow and the instructions
that change the program’s state. Imperative programming languages include C, C++,
Java, etc. Executing instructions repeatedly in such languages is accomplished by two
approaches: iteration and recursion. Note that this thesis is within the compass of the
imperative programming paradigm, and it is particularly dedicated to C/C++ programs.

Iteration involves executing a sequence of instructions over and over again within a
looping structure (for loop, while loop, do loop, etc.). In contrast, recursion involves suc-
cessively decomposing complex problems into smaller and simpler subproblems that are
easier to express, compute, code and solve. Accordingly, the solutions of such problems
rely on smaller and simpler instances of their own. Recursive programs are implemented
using recursive structures (functions). A recursive approach is straightforward to adopt
and implement when:

• the initial problem is decomposable into subproblems

• as subproblems are successively broken down into smaller ones, they must even-
tually become so simple, so they can be solved without further subdivision

• the solutions of the subproblems must be combinable to produce at the end the
solution of the original problem.

Although such kind of problems can be usually solved by various, even iterative, al-
gorithms, using a recursive approach whenever possible improves and beautifies the de-
scription and eases the expression of computations especially of the problems that are
generic to parameters like search depths or problem dimensions.

However, recursive programs, like iterative programs, are compute-intensive because
they often involve performing a lot of computations repeatedly, and they may scan huge
data structures such as graphs, trees and matrices; this is why recursive structures and
iterative structures are interesting targets for optimization.

This section is mainly based on readings from the books “Thinking Recursively” [115]
by Eric S. Roberts and “Introduction to Recursive Programming” [116] by Maneul Rubio-
Sanchez.

In the rest of this section, our emphasis is on recursions and recursive algorithms
and codes. We start by explaining briefly how a recursive algorithm can be designed and
proved. Then, we present recursive functions structures in programs and their execution.

3.1. GENERALITY ON RECURSIONS 39

Also, we present the different types of recursions. Finally, we discuss run-time analysis of
programs, recursive programs in particular.

3.1.1 Recursive Algorithms Design
A computational problem is defined by its inputs, outputs/solutions and the statements
describing the relationship between them; an instance is a specific set of inputs values
enabling computing the solution to this problem. However, an algorithm describes how
to solve a problem by a finite set of instructions and computations given some input. Usu-
ally, there exist various algorithms capable of solving a certain problem; yet, a recursive
algorithm can be more descriptive, more elegant.

Designing and implementing a recursive algorithm and program for a problem re-
quires that we understand the latter and provide our own definition for it specifying: the
base cases and the recursive cases (similar to what is seen in the recursive mathematical
definitions). In this regard, one must determine the problem’s size, define the base cases,
decompose the problem and define the recursive cases accordingly based on induction.

Problem’s Size Determination

The problem’s size can be understood as a mathematical expression involving the input
parameters or other factors that define the problem’s complexity in terms of the num-
ber of operations needed by the algorithm to be designed to solve this problem. The size
may depend on one or more input parameters either directly, e.g., the size of the facto-
rial computation problem given n is n, or indirectly as a function of these parameters,
e.g., the size of the problem of computing the sum of the digits composing an input n
is the number of these digits, or the size of a problem handling multidimensional input
parameters (arrays, lists, etc.) may be the length/size of these parameters, etc.

However, the size is a property of the problem and not the algorithm, so it does not
necessarily determine the exact number of operations to perform to solve the problem.
On the other hand, the problem’s size actually helps understanding when the base case
is reached and how to reduce the size of the problem and decompose it. For instance,
adding the elements of a matrix can be implemented recursively. Given a square n × n
matrix containing n2 elements, the solution requires n2 − 1 (function of n) additions in
total. One may think that the size of this problem is n2, but it is only n; for example, it is
sufficient to decrease the size of the problem by decreasing n only. On the other hand,
given an n ×m dimensional matrix, the problem depends on two parameters n and m;
its size can be decreased by either decreasing n or m, so the size in this case is nm.

Also, the size may be defined in several ways such that the algorithm may differ de-
pending on the size considered. When the size is determined, the base cases of the prob-
lem can be defined and the problem can be decomposed.

Base Cases Definition

As explained earlier, base cases are instances of the problems that can be solved without
using recursion, i.e., without making use of further instances of this problem. In base
cases, results can be obtained trivially, sometimes even without performing any compu-

40 CHAPTER 3. STATE OF THE ART

tations. There must be at least one base case for the problem, else we will have an infinite
non-terminating recursion that may lead to a bug.

ProblemDecomposition
Then, whenever possible, the problem is decomposed into self-similar subproblems. This
can be achieved by successively simplifying the problem or reducing its size by consid-
ering smaller and simpler instances closer to the base cases. Not only does the problem
decomposition result in self-similar subproblems, but also it may bring about additional
different (non-self-similar) subproblems. The solutions of these subproblems are then
used to establish the recursive cases. A problem may even be decomposed in various
ways, e.g., by either decrementing the size by one or dividing it by two, etc.

Recursive Cases Definition
Based on the problem decomposition chosen and assuming that the solutions of the sub-
problems are readily available by relying on induction, recursive cases can be defined to
obtain the full solution of the original program. Recursive cases are derived by determin-
ing how we can modify, combine or extend the sub-solutions to arrive at the complete
solution to the original complex problem.

In what follows, we briefly revise the concept of mathematical proofs by induction
which is considered as the parallel of recursive thinking in mathematics and fundamental
to the design and the proof of correctness of recursive algorithms.

Induction
It is a proof technique in mathematical logic used to show that a particular statement
is true. In connection with recursion, there are mathematical and structural inductions
depending on the recursive problem and the data structures that we are dealing with.
Mathematical induction is a simpler proof method handling formulas in terms of some
natural number n. It proves that this statement holds for all possible values of n. A proof
by such an induction technique involves the following steps:

1. Base case or basis: It proves that the statement is true for the smallest value of n.

2. Inductive step: In this step, the inductive hypothesis is developed which is the as-
sumption that the formula is true for a general value of n. Then, relying on this
assumption, prove that the formula also holds for n+ 1.

This method can be extended to, structural induction, to prove statements about more
general and complex structures, e.g., trees, lists.

Accordingly, in both inductive and recursive techniques one must find: a set of sim-
ple/base cases for which the proof or the computation can be easily handled, and an ap-
propriate rule/pattern that can be applied repeatedly til a complete solution is acquired.
On the one hand, the inductive process starts with the base case, and then considers the
more general larger cases based on an assumption a.k.a the inductive hypothesis. On the
other hand, a recursive technique processes in the opposite direction; the recursive ap-
proach begins with the complex cases and the rule successively reduces the complexity

3.1. GENERALITY ON RECURSIONS 41

of the problem until only simple cases are left. Similarly, as there is the induction hypoth-
esis in induction, there is the notion called “leap of faith” in recursive programming.

The recursive “leap of faith” refers to the assumption that the recursive code to imple-
ment will also work correctly for the subproblems even though the details of the imple-
mentation are not actually seen. Therefore, one can construct recursive cases correctly
based on the “leap of faith”. Also, while we need to solve the different problems resulting
from the decomposition, we will not need to solve the self-similar subproblems since we
assume that their solutions are already available. A recursive algorithm is completed by
these recursive cases in addition to the base cases which are also correct and this is how
a correct recursive algorithm can be constructed.

Finally, based on these steps and concepts, a recursive algorithm can be developed
and implemented in a recursive program using recursive structures a.k.a recursive func-
tions; then, of course, it can be executed and tested.

As an example for designing a recursive algorithm, besides the recursive algorithm
that can be obviously retrieved from the recursive definition for the factorial and the Fi-
bonacci functions already shown, we show next how a recursive algorithm can be devel-
oped to solve the matrix-matrix multiplication problem; for simplicity, we eliminate a
dimension from this problem, and we choose to discuss a special case of the matrix mul-
tiplication problem, the matrix-vector multiplication (A.v⃗) of matrixA of size n×m and
vector v⃗ of size m.

A.v⃗=

A1,1 A1,m

...
.

. ...
... . .

. . . .
...

An,1 An,m

.

v1
...
...
vm

=

A1,1.v1+ · · ·+A1,m.vm

...

...
An,1.v1+ · · ·+A2,m.vm

The solution of this product is a vector of size n such that the entry on its ith row

(i ≤ n) is obtained by: ∑m
j=1Ai,j.vj

The size of the matrix-vector multiplication problem depends on the two dimensions:
m and n.

There exist many options for defining the base cases and decomposing this problem,
and, so, there exist many algorithms to solve it.

In some algorithms, the trivial multiplication occurs between a 1 × 1 matrix and a
vector of size 1 (or scalars multiplication), i.e., the base case is when the dimensions n =
m = 1. Others may also take into consideration the cases when there are empty matrices
and vectors, i.e., n = m = 0.

In such algorithms for instance, the solution can be obtained by dividing the matri-
ces and vectors dimensions by two. The row dimension of the matrix is divided by two
decomposing the matrix into two block matrices if the number of its rows is greater than
that of its columns, and the column dimension of the vector and the matrix is divided
by two, i.e., decomposing both the matrix and the vector into two parts otherwise. The
decomposition of the matrix-vector product can be illustrated as follows if we suppose
that n

2
< m ≤ n, so that the rows are partitioned firstly and the columns secondly.

42 CHAPTER 3. STATE OF THE ART

A.v⃗=

A1,1 A1,m

...
.

. ...
... . .

. . . .
...

An,1 An,m

.

v1
...
...
vm

A.v⃗=

A1,1 A1,m

...
.

. ...
... . .

. . . .
...

An,1 An,m

.

v1
...
...
vm

This decomposition is not performed once only; instead, in every subproblem, the sub-
matrices and sub-vectors are decomposed again and again til the base case is reached. If
we consider the base cases condition to be n = m = 1, so the smallest sub-problem to
be handled is the multiplication between one element of the matrix and one element of
the vector; their product is just a part of the solution of an element in the resulting vector.
Accordingly, the solution involves separately computing simpler products of the corre-
sponding smaller matrices and vectors and then adding the entries of output matrices
of the sub-solutions to build the full output matrix/vector. This algorithm may involve
other inputs than the dimensions of the matrices and vectors that help keeping track of
the decomposition.

Another algorithm is also possible by thinking of the base cases the other way around
and decomposing the problem accordingly. It involves as inputs, in addition to the matrix
and vector dimensions n and m, indices i and j corresponding to the matrix A’s rows
and columns respectively. A base case occurs when the multiplication is computed for
all the n rows and the m columns of A (or the m rows of v⃗), i.e., i = n and j = m.
In this approach, the decomposition is achieved by considering smaller parts of A by
successively ignoring one more row at a time. Then, the ith sub-problem handles the
block of A starting from the ith row til the nth row included. The base case is reached
when the matrix has no rows left to multiply, i.e., i = n.

A.v⃗=

A1,1 A1,m

...
.

. ...
... . .

. . . .
...

An,1 An,m

.

v1
...
...
vm

Furthermore, each “submatrix” and the vector, in the ith subproblem, can be broken

successively into smaller parts by considering one less column of A and one less row of
the vector v⃗ at a time. In the jth subsubproblem, the part of the matrix A considered
includes all the rows from the ith til the nth row and all the columns from the jth til the
mth column, and the part of the vector v⃗ handled starts from its jth row. Hence, the
second base case is reached when all columns entries of the “submatrix” are multiplied
with those of the vector, i.e., j = m.

3.1. GENERALITY ON RECURSIONS 43

A.v⃗=

A1,1 A1,m

...
.

. ...
... . .

. . . .
...

An,1 An,m

.

v1
...
...
vm

The recursive cases involve performing the multiplication only between the entry at

the first row and the first column of the submatrices of A and the first entry of the sub-
vector of v⃗ in a subproblem. In other words, in the recursive case, the product of Ai,j

and vj is computed and the result is added to the corresponding entry in the output vec-
tor before any further decomposition. Note that, before a decomposition, i or j must
be incremented accordingly. This approach is interesting since it mimics the traditional
matrix-vector iterative algorithm using two nested loops.

Similar recursive approaches can be implemented for the general matrix-matrix mul-
tiplication including one more base or recursive cases for the extra matrix dimension.

3.1.2 Recursive Codes: Implementation and Execution
Once the recursive algorithm is designed, it can be translated into a recursive code. A
recursive code consists of recursive functions. A recursive function is made up of blocks
of instructions for performing computations, control structures, particularly conditional
“if” statements, and function calls. In a recursive function, the recursive and base cases
are distinguished using conditional statements. The corresponding recursive definitions
are implemented using recursive function calls and other instructions required to de-
velop the complete solution. In contrast, the base cases blocks, executed when the stop
condition holds, do not involve recursive function calls at all; even, they may not involve
any computation at all. In imperative languages, recursive functions can also encom-
pass loop control structures and vice versa which is not an option in other programming
paradigms.

The analogy between the recursive definition and the recursive functions in program-
ming languages is evident and straightforward.

For instance, consider theC recursive functions in Listings 3.1, 3.2, 3.3 and 3.4 imple-
menting the recursive factorial function, the recursive Fibonacci function and the recur-
sive matrix-vector multiplication (both first and second approaches discussed earlier) re-
spectively. Listing 3.5 is another implementation of the second recursive approach solv-
ing matrix vector product inspired by the matrix multiplication implementation in [86].

int Factorial(int n)
{

if (n == 0) //base case
return 1;

//recursive case
return n * Factorial(n - 1);

}

Listing 3.1 – Recursive Factorial C Function

int Fibonacci(int n)
{

if (n <= 1)
return n;

return Fibonacci(n-1) + Fibonacci(n-2);
}

Listing 3.2 – Recursive Fibonacci C Function

44 CHAPTER 3. STATE OF THE ART

void MatrixVectorProduct(int ** A , int * B , int * C , int n , int m
, int base_r ,int base_c)

{
if (m<=1 && n<=1) //base case

C[base_r]+=A[base_r][base_c]*B[base_c];
//recursive cases
else if (n>m) { //split rows

MatrixVectorProduct(A, B, C, n/2, m, base_r, base_c);
MatrixVectorProduct(A, B, C, n - n/2, m, base_r + n/2, base_c);

}
else { //split columns

MatrixVectorProduct(A, B, C, n, m/2, base_r, base_c);
MatrixVectorProduct(A, B, C, n, m-m/2, base_r, base_c + m/2);

}
}

Listing 3.3 – Recursive Matrix-Vector Product C Function : First Version

void MatrixVectorProduct (int **A , int *B , int *C , int i, int j)
{

if (i >= ROWS) // all rows are handled
return;

if (j < COLUMNS) {// not all columns are handled
C[i]+=A[i][j]*B[j];
MatrixVectorProduct(A,B,C,i,j+1);

}
else // all columns at some row are handled

MatrixVectorProduct(A,B,C,i+1,0);
}

Listing 3.4 – Recursive Matrix-Vector Product C Function : Second Version

void MatrixVectorProduct (int **A , int *B , int *C)
{

static int i=0, j=0;
if (i >= ROWS)

return;
if (j < COLUMNS){

C[i]+=A[i][j]*B[j];
j++;
MatrixVectorProduct(A , B , C);

}
i++; j=0;
MatrixVectorProduct(A , B , C);

}

Listing 3.5 – Recursive Matrix-Vector Product C Function : Third Version

A recursion in programming takes place when a recursive function reaches itself through
a sequence of function calls, recursive calls. A function may even invoke itself in its own
body using different function parameters, i.e., it invokes simpler instances of itself that
require less recursive calls, less operations until reaching the base case.

3.1. GENERALITY ON RECURSIONS 45

Recursions Control Flow
The control flow of recursions majorly depends on the parameters values and the flow
control instructions enveloped in the involved recursive functions including conditionals
(if, if-else), loops (for, while, etc.), (recursive and non recursive) function calls and returns.

Normally, flow control instructions allow the program control to jump to an instruc-
tion that may not textually be the next instruction in the program. For instance, loop
structures may execute at least once or not at all. If the looping condition does not hold,
the instructions of the loop will be skipped and there will be a jump to the first instruc-
tion outside the loop body in the parent function; else, the instructions of the loop are
executed, and at the last instruction within the loop body, there will be a jump back to
the loop condition.

On the other hand, a function call pauses the execution of the current function, leads
to a jump to the first instruction in the function called; the function called executes,
and when it terminates and returns, the control jumps back to the calling function body
whose execution is resumed starting from the next instruction right after the returned
function invocation.

So, in recursion, when a function calls itself, the control will jump back to the func-
tion’s first instruction, and it re-executes all over again given different arguments. As long
as the recursive call is reached, this scenario is repeated over and over again. In the last
called function, when the stop condition is satisfied, i.e., the base case is reached, the
function terminates and the control jumps back to the calling function and so on until
the last active recursive function terminates. Yet, it is not just about “jumps” in function
calls; function calls, including recursive calls, involve accessing “the stack”.

Recursions Stack Up
Usually, during a program’s execution, with every function call, a stack frame composed
of the information about the activated or invoked function (e.g., function parameters,
local variables information, return address, etc.) is pushed to the top of the so-called
the program/call/control stack or “the stack” for short; the stack is a data structure that
is used for saving records about active functions in a program and for keeping track of
their execution order (last called function, first returns). When a function terminates
its execution, its associated stack frame is popped and the memory is de-allocated to be
used for other function calls. Then, if the stack frame is not empty, the function whose
stack frame is now on the top of the stack, which is the calling function, continues its
execution.

The stack is useful for implementing sequences of nested function calls and, of course,
recursions.

A recursion is implemented through the program’s stack. As long as the base case is
not reached, a recursive function repeatedly calls itself and adds as many stack frames as
it takes to the control stack. When a base case is reached in a recursive function call, the
corresponding function instance terminates and returns to the calling function instance,
the associated stack frame is pulled from the stack and the memory is freed. The process
does not terminate here; it continues until the last function terminates.

Accordingly, with every function return, a solution for a small instance of the original
problem is obtained and utilized as a part of the solution of a bigger sub-problem. The

46 CHAPTER 3. STATE OF THE ART

solution can only be complete when all calls return and the last sub-problem, the last
piece of the puzzle is slotted into place.

A recursion will always require an amount of memory storage depending on the stack
frames in the stack defined as the computational space complexity (explained later).

Nonetheless, the control stack may have a limited allocated amount of address space;
the number of stack frames that can be allocated at the same time is limited, so if a pro-
gram attempts to perform more recursive calls than the limit, especially in the case of
infinite recursions, it will crash because of a “stack overflow” error. Yet, it may still be
possible to allocate extra stack space to avoid this error for relatively big recursions.

Finally, it is worth mentioning that as recursions are implemented implicitly through
a stack, a recursive approach is considered a powerful and elegant solution to tackle prob-
lems that require explicitly managing and manipulating a stack or other similar data
structures, e.g., arrays, trees.

Recursion and Activation Tree

Recursive calls can be visualized as a recursion tree where every node corresponds to a
function call with specific arguments. A recursive function call is represented as an edge
from the node of the calling function instance to that of the callee; the children of a node
correspond to the function calls initiated by their parent node function call. The nodes
appear top-down starting from the root node til the leaf nodes which correspond to the
base cases. Besides, the values appearing in the nodes indicate the input values (parame-
ters) associated with the call. It can be extended to an activation tree that represents the
returns from functions after their completion and display the returned values (computed
bottom-up) beside the input/parameter values in the corresponding function node. In
Figure 3.4, we show an illustration of the general recursion tree for the recursion factorial
function when given an input n. To its right, in Figure 3.5, we show the activation tree for
the factorial function for a specific value of n = 4.

n

n− 1

n− 2
.
.
.
0

Figure 3.4 – Factorial(n) Recursion Tree

4 24

3 6

2 2

1 1

0 1

Input Output

Figure 3.5 – Factorial(4) Activation Tree

As an additional example, we show the recursion tree corresponding to the recursive
Fibonacci function with an input n = 5 in Figure 3.6.

3.1. GENERALITY ON RECURSIONS 47

5

4 3

3 2

1 0

2 1

1 02 1

1 0

Figure 3.6 – Fibonacci(5) Recursion Tree

We notice that the factorial recursion tree has a more linear shape while the Fibonacci
tree is more tree-like as it has branches. This is because every time the factorial function
executes, it calls itself only once from its own body; on the other hand, the Fibonacci
function calls itself twice in every new call execution. So, every node has two child nodes
corresponding to the two recursive function calls initiated. The structure of the recursion
tree depends on the type of the recursion which is explained next. Note that these tree
representations can be useful for debugging and may give an insight about the time and
space computational complexity of the corresponding recursions. Run-time analysis and
the computational complexity of recursions are discussed later in this section.

3.1.3 Types of Recursion
There are many types of recursions depending on how a function invokes itself, how many
recursive function calls exist and where they are placed in the body of the recursive func-
tion. Accordingly, recursions can be direct or indirect (mutual), multiple, nested, linear
or tail.

Direct vs. Indirect Recursion
A direct recursion occurs when a function directly calls itself from its own body code.
The recursive examples shown in this manuscript till now, the factorial and matrix-vector
product, are direct recursions. However, a recursion can still occur even if a function does
not call itself right away. Indirect or Mutual recursions occur when a set of functions call
each other in a cyclical order. For instance, if there are two functions such that one calls
another and then the latter calls back the prior, then these functions are involved in an
indirect recursion as illustrated in the Listing 3.6.

void F_1() {
//code
F_2();
//code

}
void F_2() {

//code
F_1();
//code

}

Listing 3.6 – Indirect Recursion Example

48 CHAPTER 3. STATE OF THE ART

Multiple or Tree Recursion
Multiple recursion takes place when a function calls itself multiple times. If the func-
tion invokes itself twice then it can be also described as a “binary recursion”. This type of
recursion is well-known and particularly used to implement “divide and conquer” algo-
rithms like recursive sorting algorithms, e.g., merge sort (Listing 3.7), quicksort, and many
others, e.g., Strassen’s matrix-multiplication (based on dividing the matrices dimensions
in halves) and Fibonacci function (Listing 3.2), etc.

void MergeSort(int * array, int left, int right)
{

if (left < right)
{

int middle = left+(right-left)/2;
MergeSort(array, left, middle);
MergeSort(array, middle+1, right);

Merge(array, left, middle, right);
}

}

Listing 3.7 – Multiple Recursive Merge Sort C Function

Nested Recursion
Nested recursion is a rare type of recursions that occurs when an argument of a recursive
function is defined through another recursive call. As an example of this type of recur-
sion, let us consider an alternative version of the recursive Fibonacci function shown in
Listing 3.8.

int Fibonacci(int n , int s)
{

if (n <= 2)
return 1+s;

return Fibonacci(n-1 , Fibonacci(n-2,0));
}

Listing 3.8 – Nested Recursive Fibonacci C Function

Linear Recursion
Linear recursion occurs when a recursive function has only one recursive function call
in its body, i.e., when a recursive function calls itself once only. The recursive factorial
function (Listing 3.1) is an example of such a type of recursions.

Tail Recursion
A tail recursion is when the recursive call is the last instruction to be executed in the re-
cursive function. For instance, the factorial example (Listing 3.1) may seem tail recursive,

3.1. GENERALITY ON RECURSIONS 49

but it is not so. This is because the recursive call of factorial with the argument n − 1 is
not the last instruction executed; the value returned by this recursive call is then multi-
plied by n in the calling function. Yet, the factorial function can be rewritten with a tail
recursion instead as shown in the following Listing 3.9

int Factorial(int n , int i)
{

if (n == 0)
return i;

return Factorial(n-1 , n*i);
}

Listing 3.9 – Tail Recursive Factorial C Function

Finally, there is also a head recursion where the recursive call is the first instruction
in the function.

3.1.4 Runtime Analysis
Algorithms run-time analysis or study of complexity enables determining the resources,
e.g., space and time, required by the algorithm in order to solve a problem. It can be
expressed as a function of the input size. This is an important measure since it helps
comparing the efficiency of different recursive or non-recursive algorithms. Computing
this measure precisely is usually difficult because its execution depends on other factors
than the input like the hardware, the programming language, the compiler, etc., so the
efficiency of algorithms is commonly studied by contemplating how the complexity be-
haves when the size of the problem is very large, i.e., when the input size tends to infinity;
this is known as the asymptotic behavior of the complexity. Thus, the complexity is usu-
ally expressed as an asymptotic notation that involves discarding the lower order-terms
and multiplicative constants when dealing with randomly large inputs; assuming that
the algorithm has only one size factor/input n, there exist the following notations:

• Big-O notation defining the set:
O(g(n))={f(n) : ∃c>0 ∧ n0>0 | 0 ≤ f(n) ≤ c.g(n),∀n>n0} such that:
If f(n) ∈ O(g(n)), then g(n) is an asymptotic upper bound for f(n). It specifies
the maximum amount of resources the algorithm needs in the worst case scenario.
Algorithms are commonly compared according to their efficiency in the worst case
corresponding to a problem instance of the same size requiring more resources.

• Big-Omega notation defining asymptotic lower bounds:
Ω(g(n))={f(n) : ∃c>0 ∧ n0>0 | 0 ≤ c.g(n) ≤ f(n),∀n>n0}
It specifies the lower bounds on the required resources.

• Big-Theta notation defining asymptotic tight bounds:
Θ(g(n))={f(n) : ∃c1>0, c2>0∧n0> 0 | 0≤c1.g(n)≤ f(n) ≤ c2.g(n),∀n>n0}
If the running time f(n) of an algorithm ∈ Θ(g(n)), then f(n) ∈ O(g(n)) and
f(n) ∈ Ω(g(n)), f(n) and g(n) share the same order of growth, and the algorithm
will always require, in the best and worst cases, an order of g(n) operations.

50 CHAPTER 3. STATE OF THE ART

The common computational complexity orders of growth are sorted considering large
values of n as follows:
1 (constant)< log n (logarithmic)< n (linear)< n log n < n2 (quadratic)< n3 (cubic)< 2n (exponential)< n! (factorial)

Computational Time Complexity
The computational time complexity is a mathematical measure that describes, in partic-
ular, the amount of time needed and the number of operations performed by the algo-
rithm in order to solve a problem. It is more straightforward to compute the complexity
of the iterative algorithms than that of the recursive algorithms. As for a recursive algo-
rithm, the number of operations carried out is specified through a recurrence relation.

Recurrence Relation A recurrence relation is a recursive mathematical function de-
scribing its computational cost. For instance, let us reconsider the recursive definition of
the factorial function:

factorial(n) =

{
1 if n = 0,
factorial(n− 1)× n if n > 0

In the base case (factorial(0)), the computation requires a finite number of operations,
let it be a. if n ≥ 1, the function will perform a fixed number of operations (multipli-
cation...) b in addition to performing again the factorial computation for input n − 1.
Let the function T given input n denotes the computational complexity of the factorial
function and it is defined as:

T (n) =

{
a if n = 0,
T (n− 1) + b if n > 0

The computational cost is computed by solving this recurrence. As follows, we briefly
discuss the main methods for solving common recurrence relations.

SubstitutionMethod This method consists of the two steps:

1. guessing the solution

2. proving that this solution is valid using mathematical induction

For example, for the recurrence of the factorial function, let us guess that the complexity
is linear w.r.t. input n with constants c and d to be determined.
Our guess is: T (n) ≤ cn+ d. Induction proof is as follows:

• Base Case: for n = 0, we have:
T (0) = a from the recurrence base case, and
T (0) ≤ d from our guess, which is true for all d ≤ a.

• Inductive Step: we suppose that the solution T (n) ≤ cn + d is correct for some
n > 0; we need to prove that this is also correct for n+ 1:
T (n+1) = T (n)+ b is obtained from the recurrence; we need to substitute cn+d
for T (n) from our hypothesis:
T (n+1) ≤ cn+ d+ b = cn+ c− c+ d+ b = c(n+1)+ b− c+ d ≤ c(n+1)+ d
which is true for b ≤ c.

3.1. GENERALITY ON RECURSIONS 51

So, T (n) ∈ O(n). Furthermore, we can go further than getting the asymptotic upper
bound only, and we can similarly show, in this example, that T (n) ∈ Ω(n). Therefore,
we determine that in the best and worst cases, the factorial algorithm takes an order of n
operations, i.e., T (n) ∈ Θ(n) and it is said that T (n) grows linearly w.r.t. n.

Backward Substitution, Iteration or Expansion Method In this method, we take the
recursive case of the recurrence relation, we expand the recursive terms on its right-hand
side several times (recursive steps) til we guess or detect a general pattern for the ith

step. Then, we find the value of i with which the base case is reached and substitute
this value for i in the pattern we have previously got. For example, this method is more
straightforward to use to solve the factorial recurrence. Starting from the recursive case
T (n) = T (n− 1)+ b; we expand it by replacing T (n− 1) by T (n− 2)+ b, then T (n− 2)
by T (n− 3) + b, so we get:

T (n) = T (n− 1) + b = [T (n− 2) + b] + b = T (n− 3) + 3b

We notice that the general pattern is:
T (n) = T (n− i) + ib

For some value of i, the base case defined for T (0) will be reached; T (n− i) reaches the
base case when i = n. We eliminate the variable i by substitution as follows:

T (n) = T (n− i) + ib = T (n− n) + nb = T (0) + bn = 1 + bn ∈ Θ(n)

RecursionTreeMethod Usually, the recursion tree (explained earlier) provides an idea
about the computational complexity of a recursion. If the tree is linear like that of the
factorial function, then the cost of a subproblem/call (disregarding the recursive calls
cost), which is Θ(1) in case of the factorial example, multiplied by the height of the tree
(n) determines the complexity (Θ(n)). However, if it is not, then the complexity depends
on the number of the tree nodes. For instance, if the recursion tree is a full binary tree of
height n, then the number of nodes will be 2n. Accordingly, we can hypothize about the
run-time of recursive algorithms whose recursion trees has a similar structure even if it
is not balanced and contains less nodes like that of the Fibonacci algorithm (Figure 3.6);
we can conclude that their run-time upper bound is O(n), but, this solution is neither
precise nor a tight bound.

Alternatively, the recursion tree method involves visualizing the recurrence as a re-
cursion tree where each node represents a subproblem or a recursive call and its value
represents the cost of the operations carried out by the corresponding call. The cost at
each node does not include the operations performed by further recursive call. The com-
putational time complexity can be determined by summing the nodes costs within each
tree level and then summing all the levels costs.

For example, let us take the merge sort function (Listing 3.7) that involves dividing its
problem size by two with every recursive call until the base case is reached where there
is only one element left in the array to sort; the array elements left to sort is defined as
n in the recurrence function T of the merge sort algorithm. The work done at the base
case is Θ(1); the recursive case, in addition to the fixed number of operations performed
through the non-recursive call to the function Merge that takes Θ(n), it also requires the

52 CHAPTER 3. STATE OF THE ART

operations performed by the recursive calls. Its recurrence relation is:

T (n) =

{
Θ(1) if n = 1,
2T (n/2) + Θ(n) if n > 1

The initial input of this recurrence is n, the recursive part involves two recursive calls
each with half the input n, and the cost of the non-recursive part is Θ(n). Accordingly,
the value of the root node will be n, and this node will have two children corresponding
to recursive calls each of size n

2
. Then, the values of the children nodes will be n

2
, and they

will have, in turn, children corresponding to T ((n/2)/2) in the next level, and so on. The
tree is illustrated in Figure 3.7.

cn

cn2 cn2

c n
22

c n
22

c n
22

c n
22

c n
23

c n
23

c n
23

c n
23

c n
23

c n
23

c n
23

c n
23

2log2nΘ(1)
+
..
.+

23c n
23

+
22c n

22

+
2cn2

+
cn
cost

he
igh

t=
lo
g 2
n

Figure 3.7 – Recurrence Tree
The expansion of the tree will stop, i.e., the leaves of the tree are reached when the base
case is met (n = 1); at this level the cost of work at each leaf isΘ(1), and the depth of the
tree is log2n. By observing the tree expansion, the cost of a node at a level i (starting at
level 0) is a constant multiplied by n

2i
, and the number of nodes is 2i. Then the cost is:

Θ(
∑logn

i=1 2i × c× n
2i
) = Θ(nlogn). However, the tree method does not necessarily gives

an accurate solution for the recurrence; it rather gives an insight or a good guess about
the time complexity without providing a proof.

Master Theorem This theorem serves as a quick method for computing the computa-
tional complexity of recursive algorithms based on divide and conquer that solve a sub-
problems whose size equals that of the original problem divided by b. It is exclusively
used to solve recurrence relation of the form:

T (n) =

{
c if n = 1,
aT (n/b) + f(n) if n > 1

such that a ≥ 1, b ≥ 1, c ≥ 0, and f is an asymptotically positive function. The asymp-
totic tight bound of T can be generally determined by the master theorem based on the
terms of the recursive case of its recurrence, aT (n/b) and f(n), according to these fol-
lowing three cases:

1. f(n) = O(nlogba−ϵ) with constant ϵ > 0 =⇒ T (n) ∈ Θ(nlogba)

2. f(n) = Θ(nlogba(logn)k) with k ≥ 0 =⇒ T (n) ∈ Θ(nlogba(logn)k+1)

3. f(n) = Ω(nlogba+ϵ) with ϵ > 0 and af(n/b) ≤ df(n) for some constant d < 1 and
a sufficiently large n =⇒ T (n) ∈ Θ(f(n))

3.1. GENERALITY ON RECURSIONS 53

If f(n) is a polynomial of degree k, the following simpler definition of the master theo-
rem can be applied:

T (n) =

Θ(nk) if a

bk
< 1

Θ(nklogn) if a
bk

= 1
Θ(nlogba) if a

bk
> 1

For example, let us consider again the merge sort function (Listing 3.7). We can also solve
its recurrence by applying the general master theorem (its first definition) such that:
a = 2, b = 2 and f(n) = Θ(n), so
f(n) = Θ(n) = Θ(nlogb a (log n)k) = Θ(nlog2 2 (log n)0) for k = 0.
Then, it falls in the second case whereT (n) ∈ Θ(nlog2 1 (log n)0+1), i.e.,T (n) ∈ Θ(n log n).
Moreover, in this example since f(n) is a polynomial of degree k = 1, we can make use of
the simplified master theorem; since a

bk
= 2

21
= 1, then we can directly apply the second

case which indicates that T (n) ∈ Θ(n1 log n), i.e., T (n) ∈ Θ(n log n).

The general Method The methods discussed earlier are effective for resolving recur-
rence relations particularly those where the recursive function appears once only in the
recursive case. However, there may exist recurrences that call themselves multiple times
in the following particular form:

T (n) = −a1T (n− 1)− · · · − akT (n− k) + P d1
1 (n)bn1 + · · ·+ P ds

s (n)bns

where ai and bi are constants, and P di
i (n) are polynomials of n of degree di. The defi-

nition is composed of the terms involving T called “T difference” terms and may involve
polynomial terms multiplied by an exponent of the input n (exponential terms). Here,
we only discuss the simplest forms of such recurrences a.k.a homogeneous recurrences,
and we show how they are solved using this method using a basic example, the recur-
rence of the classic recursive Fibonacci algorithm (whose code is in Listing 3.2). These
recurrences only consist of the “T difference” terms as:

T (n) = −a1T (n− 1)− · · · − akT (n− k)
Such types of recurrences can be solved by the following steps:

1. passing all the “T difference” terms on the right-hand side to the left hand-side:
T (n) + a1T (n− 1) + · · ·+ akT (n− k) = 0

It is a homogeneous recursion since what is left on the right hand side is 0, so we
can proceed with the following steps.

2. defining the associated characteristic polynomial by substituting xk−z forT (n−z)
for z = 0, ..., k:

xk + a1x
k−1 + · · ·+ ak−1x+ ak = 0

3. the k roots of this polynomial. Assuming that ri is its ith root, then it can be factor-
ized as follows: (x− r1)(x− r2) . . . (x− rk)

4. redefining T using the following non-recursive expression if all the roots are differ-
ent from each other: T (n) = C1r

n
1 + · · ·+ Ckr

n
k

where C1, ..., Ck are constants whose values will depend on the base cases of the
recurrence.

54 CHAPTER 3. STATE OF THE ART

5. Determining these constants by solving a system of k linear equations with k vari-
ables Ci, we need to find k initial values of T (T base cases) in order to construct
the k equations.

The recurrence relation of the recursive Fibonacci function is:

T (n) =

0 if n = 0,
1 if n = 1,
T (n− 1) + T (n− 2) if n > 1

This recurrence relation can be solved by applying the explained steps as follows:

1. T (n) = T (n− 1) + T (n− 2) → T (n)− T (n− 1)− T (n− 2) = 0.

2. The corresponding characteristic polynomial is: x2 − x− 1.

3. Factorized characteristic polynomial is: (x− 1+
√
5

2
)(x− 1−

√
5

2
).

The square roots are: r1 = 1+
√
5

2
and r2 =

1−
√
5

2
.

4. Non-recursive T expression is: T (n) = C1(
1+

√
5

2
)n + C2(

1−
√
5

2
)n.

5. The linear equation to solve is:
{

C1 + C2 = T (0) = 0
1+

√
5

2
C1 +

1−
√
5

2
C2 = T (1) = 1

Its solutions are: C1 =
1√
5

and C2 = − 1√
5
.

The solution of the Fibonacci recurrence is:
T (n) = 1

√
5(1+

√
5

2
)n − 1

√
5(1−

√
5

2
)n

The growth of this exponential function depends mainly on rn1 = (1+
√
5

2
)n because: r1 >

r2 and, asn goes to infinity, rn2 = (1−
√
5

2
)n approaches 0 since |r2| < 1. Also, in asymptotic

notations, we can ignore the constants, so T (n) ∈ Θ((1+
√
5

2
)n) ≈ Θ(1.618n). This is

compliant with what we know about the complexity of the Fibonacci using the recursion
tree earlier, yet accurate.

More details about this method (concerning non-homogeneous recurrences, etc.)
and more information about recursions in general are found in the book [116].

Computational Space Complexity
The computational space complexity describes the memory storage needed by an algo-
rithm. As for a recursive algorithm, since it is implemented through an implicit stack,
a.k.a the program stack, its space complexity depends on the largest number h of stack
frames placed on this stack (and their sizes) at any moment during execution. So, a recur-
sion will always require h units of memory (∈ Ω(h)) minimum. It can be also understood
as the height or depth of the recursion tree hmultiplied by the amount of memoryM re-
quired by each recursive call (the size of a stack frame). For example, the recursive tree
of the factorial example (Figure 3.4) has a depth of n and each stack frame requires only
a constant storage space (Θ(1)) for storing arguments, etc., so the space complexity is
Θ(n). This recursion is linear and it has a linear number of nodes, a linear depth and, ac-
cordingly, a linear space growth. As another example, let us consider the recursive tree of
the Fibonacci recursive algorithm (Figure 3.6). Although it has an exponential number

3.2. OPTIMIZING RECURSIVE PROGRAMS “AS THEY ARE” 55

of nodes, its depth is n for input n which is linear which determines the memory storage
requirements. This is because not all recursive calls are executed at the same time; a base
case (n = 0 orn = 1) is always reached aftern recursive calls maximum, so there will not
be more than n stack frames in the program stack at a time. Then, the space complexity
of the Fibonacci function is also linear w.r.t n, i.e., ∈ Θ(n).

3.2 Optimizing Recursive Programs “as They Are”
Recursive functions are time, compute and space intensive structures. For this reason var-
ious studies exist for the purpose of optimizing, improving data locality and parallelizing
them. Nevertheless, the proposed techniques are mainly static, not as aggressive as loop
dedicated optimization techniques, or dedicated to special forms of recursions. We cate-
gorize these works into two categories: (1) based on the classical task parallelization and
(2) based on polyhedral modeling.

3.2.1 Task Parallelism
Task parallelism is the decomposition of a task into smaller tasks that are distributed over
multiple processors and executed simultaneously. In recursive codes, task parallelism in-
volves concurrently executing recursive calls that are meant to solve sub-problems con-
stituting the original problem.

Automatic Task-based Parallelization of Recursions

Interesting works enabling automatic task parallelism techniques are presented as fol-
lows.

Rugina and Rinard [117] present a static compiler that parallelizes multiple recur-
sions, divide-and-conquer recursive functions in particular. In order to do so, it uncovers
independent recursive calls based on pointer analysis and symbolic analysis, and, ac-
cordingly, generates a code that executes these independent calls concurrently. Also, for
divide-and-conquer implementations, Gupta et al. [53] propose a compile-time frame-
work that makes use of inter-procedural symbolic array section analysis to capture the
independent multiple recursive calls and parallelize them automatically. It also enables
a speculative run-time parallelization technique when static analysis is not sufficient.
Besides, there is also an implemented tool called Huckleberry [34] that automatically
parallelizes recursive divide-and-conquer codes for multi-core platforms.

Another technique proposed by Morihata and Matsuzaki [94] enables automatic par-
allelization for recursive functions using quantifier elimination such that the input struc-
ture is decomposed into blocks that are run in parallel. In addition, Mizutani et al. [91]
present a different approach to parallelize recursive functions where programmers de-
cide themselves whether to use simple or dynamic load balancing depending on the re-
cursive functions workload. Accordingly, each invocation is executed in parallel until
a threshold that is also specified by the programmer. Saougkos et al. [122] propose an
automatic fine-grained parallelism extraction method for recursive functions involving
integer variables that are updated in a systematic fashion.

56 CHAPTER 3. STATE OF THE ART

Gupta et al. propose DECAF in a more recent work [54] which is a technique to opti-
mize recursive task parallel programs by reducing the task creation and termination over-
heads. Moreover, there is Adriadne [85] which is a compiler that extracts directive-based
parallelism from recursive function calls. It is wider than the scope of this category as it
extracts three forms of parallelism and a transformation for each of them: (1) recursion
elimination: recursion-to-iteration conversion, (2) parallel-reduction: recursion elimi-
nation and workload distribution into independent tasks, (3) thread-safe parallelizion of
recursive functions containing independent recursive calls. This work is revisited in the
next section.

Limitations

This optimization technique is still classical, unrefined and not as robust as the optimiza-
tions and parallelization opportunities that the polyhedral model offers for loops for in-
stance. Probably, rescheduling a recursive code may reveal significant more aggressive
optimizations.

3.2.2 Polyhedral Modeling of Recursive Invocations
As already seen with the polyhedral model, analysis and transformation are usually per-
formed statically at the level of the statements dynamic instances. Polyhedral analysis
and transformation have been exclusively dedicated to sequences of affine loop nests.
Since this model has been so powerful for such programs, interest in applying it to ana-
lyze and transform recursive programs to optimize them and improve their data locality
has risen.

One of the main works in this area is that of Amiranoff et al. [4] based on [31, 43]
that generates context-free language representations of general recursive programs pro-
viding dependence analysis among the instances and parallelizes them accordingly. Yet,
their optimizations are still simple and cannot handle nested recursions for instance.
Besides, there exist many recent works and frameworks that support other transforma-
tions and optimizations of recursive codes, e.g., nested loops and recursions interchange
and blocking [59, 60, 144], multiple recursive traversals fusion [108, 118, 100] and trans-
formation of multiple nested recursive functions [135]. However, these works are “ad
hoc” according to Sundararajah et al. [133] since they do not provide general ways of rea-
soning about combinations of recursions and loops and transformation correctness. An
interesting framework called PolyRec proposed by Sundararajah et al. [133, 134], combin-
ing the approaches mentioned above, represents recursive function dynamic instances
and their dependences as polyhedra, and applies polyhedral scheduling transformations
(e.g., interchange and code motion) that improve data locality and enables parallelism.
However, their approach is exclusively committed to particular forms or structures of
non-mutual recursions such that recursive invocations are nested and data is organized
in two trees, the inner and outer trees.

To sum up, there exist different approaches to optimize recursive calls. Although the
majority of the works fall under the category of the classic task parallelism, many interest-
ing works have got recently inspired by the polyhedral model and the powerful analysis
and transformations that it provides in the realm of iterative programs. However, all of

3.3. TRANSFORMING RECURSIVE PROGRAMS AS LOOPS 57

these approaches are still static, depend on the information only known at compile time,
dedicated to special recursive structures (mainly trees), or with restricted optimizations.

In our work, Rec2poly, does not need to know all the information at compile time
and does not rely on the type of the recursion it is handling as long as its behavior is
polyhedral-compliant. This is the main feature that distinguishes our approach, Rec2Poly.

3.3 Transforming Recursive Programs as Loops
In this section we discuss the relation between recursions and iterations and the rea-
sons behind the interest in recursion optimization mainly through recursion-iteration
transformation a.k.a recursion removal/elimination. There have been conducted inten-
sive studies on this subject especially between the 1970s and early 2000s. However, the
majority of the transformation techniques proposed back then were non-automatable or
not so powerful. Here, we focus on the options that we can rely on, today in modern com-
pilers in particular, to automatically optimize recursive codes in imperative languages.

3.3.1 Recursion and Iteration: Two Sides of the Same Coin
A recursion and an iteration can be alternatively used to perform repetitive computa-
tions to solve a problem. Recursion and iteration are implemented using different control
structures, recursive functions and loops respectively; recursive calls involve accessing an
implicit stack, a.k.a the program stack, while loops do not.

There are probably various approaches, recursive and non-recursive algorithms to
solve a certain problem. Whether one chooses to solve the problem using recursion or
iteration, there is always a way to convert the prior to the latter and vice versa. It is well-
known that a recursion can be simulated and rewritten using iterative control structures,
probably conditional loops, e.g., while loops, in addition to an explicit data structure that
mimics the program stack to save and keep track of the parameters and local variables.
This conversion is mainly achieved by putting, within the loop, the calculations to be per-
formed by the recursive functions, and replacing each recursive function call and return
by a push to and a pop from the stack respectively inside the loop. Tail recursions, in
particular, can be transformed into loops without the need of a stack; this is because a
tail recursive call is the very last instruction in a recursive function, and it actually does
not need or use stored information on the stack; so, this recursion-to-loop transforma-
tion can be done without an explicit stack. Reversely, iterations can be implemented as
recursions, as tail recursions in particular, using recursive functions instead of loops.

Usually, a recursive approach is effective, yet more elegant, to adopt than an iterative
approach when the latter involves manipulating a data structure, e.g., stack, queue or
array, etc; we can skip writing all the data structure access instructions inside a loop in
a program by simply implementing a recursion instead. Nonetheless, when there is no
need for such expensive data structures to solve a problem, even if an iterative approach
is less elegant, it is more efficient.

58 CHAPTER 3. STATE OF THE ART

3.3.2 Recursion Versus Iteration: Elegance/Efficiency Trade-off
If a recursive algorithm has the same computational complexity as an iterative one, the
recursive code usually stays less efficient. For example, let us compare both of the clas-
sical recursive and iterative factorials computation algorithms, in Listings 3.1 and 3.10
respectively; they both require an order of n computations. However, we consider the

int Factorial (int n)
{

int factorial=1;
while(n>0)
{

factorial = factorial*n;
n--;

}
return factorial;

}

Listing 3.10 – Iterative Factorial C Function

iterative algorithm to be more efficient, mainly, because of the fact that recursions are
implemented through the program stack while loops are not; the drawbacks are that:

• recursive functions require more memory (in the form of stack frames) than the
loop structures

• stacking/de-stacking operations in recursive calls induce computational overhead

• so many recursive calls may cause stack overflow and program crashes

Moreover, a recursive approach, particularly when it involves a multiple recursion, may
be considerably slower than its alternative iterative approach since it may solve overlap-
ping subproblems and perform redundant computations. For instance, let us consider
the classic recursive Fibonacci numbers algorithm (code in Listing 3.2). It requires an
exponential number of computations and recursive calls w.r.t. n in order to compute the
nth Fibonacci number. Its recursive definition is:

Fibonacci(n) = Fibonacci(n− 1) + Fibonacci(n− 2)
Computing Fibonacci of n requires that the function is called again for both inputs n− 1
and n − 2, and calling the Fibonacci function for n − 1 initiates another recursive call
for n − 2 and so on. So, Fibonacci for n − 2 is computed one more extra time, so is
Fibonacci(n−3), etc. Other computations may be repeated more than just twice. For ex-
ample, let us go back to the Fibonacci recursion tree (in Figure 3.6); when Fibonacci(5)
executes, it performs the same recursive calls and computations twice for n = 3 and
thrice for n = 2.

3.3.3 Recursion Optimization: Loop at the End of the Tunnel
Recursions with the redundant overhead due to overlapping recursive calls and computa-
tions can be optimized using dynamic programming [16] which speeds them up by stor-
ing the results of the executed function calls and returning the cached values when the

3.3. TRANSFORMING RECURSIVE PROGRAMS AS LOOPS 59

same inputs are encountered again in new executions; so, Fibonacci(k) for 1 < k < n is
only computed once. Dynamic programming techniques majorly include:

• Memoization [88]: Top-down recursive approach; for instance, memoization in
Fibonacci is achieved by saving computed numbers starting from Fibonacci(0),
so Fibonacci(n) is on the top of computations (Listing 3.11).

• Tabulation [19]: Bottom-up iterative approach, example is in Listing 3.12.

Both of these optimized versions require a linear time or number of computations
w.r.t. the inputn. Yet, the recursive approach is still less efficient due to the stack accesses.
Another space-optimized iterative version is in Listing 3.13, since we only need the last
two computed values, we can use some scalar constants replacing the array “mem” of size
n + 1. Furthermore, it is also possible to develop a faster iterative algorithm for the Fi-
bonacci numbers that requires a logarithmic time w.r.t. the input only.

int Fibonacci(int n) {
if (n<=1 && mem[n]==0)

mem[n] =n;
else if (mem[n]==0)

mem[n] =Fibonacci(n-1) +Fibonacci(n-2);
return mem[n];

}

Listing 3.11 – Recursive Fibonacci C Function - Memoization

int Fibonacci(int n) {
int mem[n+1];
int i;
mem[0] = 0;
mem[1] = 1;

for (i = 2; i <= n; i++)
mem[i] = mem[i-1] + mem[i-2];

return mem[n];
}

Listing 3.12 – Iterative Fibonacci C Function
- Tabulation

int Fibonacci(int n) {
int first = 0, second = 1, temp;
if (n == 0)

return first;
for (int i = 1; i <= n; i++) {

temp = first + second;
first = second;
second = temp;

}
return second;

}

Listing 3.13 – Iterative Fibonacci Function
- Space Optimized

Recursive programs can be memoized by hand. On the other hand, there have been im-
plemented many automatic techniques to apply dynamic programming techniques to
recursions based on memoization as in [95, 87, 46, 1] initially implemented for func-
tional languages. As for imperative languages, there exist many libraries and tools that
have been developed to efficiently automatize memoization for recursive functions such
as the functools functions cache and lru_cache decorators built-in in Python [47] and
C-Memo function memoization library for C programs [25]. Nevertheless, to our knowl-
edge, applying dynamic programming automatically has been always limited by caching
and straightforward recursive-to-recursive transformations. The iterative version, which

60 CHAPTER 3. STATE OF THE ART

is expected to be even more efficient, is not as straightforward to derive and it requires
more analysis and a deeper understanding of the computations execution order.

In general, in addition to these dynamic programming techniques, there exist many
studies concerned with recursion removal or recursion-to-iteration transformation [6,
24, 143, 56]. They present static approaches to transform recursions to tail recursions or
loops with or without using a stack or eliminating it whenever possible. Many of these
works are non-automatable, difficult to implement or may not guarantee performance,
storage or efficiency improvements. An interesting automatable recursion-to-iteration
transformation algorithm based on incrementalization is proposed in [77]. It also makes
use of an earlier work of a non-traditional dynamic programming technique also based on
incrementalization [76] to optimize non-linear recursions automated and implemented
in the prototype called CACHET [75]. There is also Adriadne [85], mentioned in the pre-
vious section, that provides recursion-to-loop transformation options.

In modern advanced compilers for imperative languages particularly C/C++ our main
target in this study (e.g., GCC [48], LLVM/Clang [30], etc.), the recursion-to-iteration
transformation mainly implemented and automated is exclusively dedicated to tail re-
cursions, the most straightforward transformation replacing the tail call by a jump back
to the entry of the function without the need to access the control stack or replace it with
an alternative data structure; this is because, as mentioned before, the information stored
due to this call in the stack is of no use later after its return. This optimization helps re-
duce computation (stack accesses) overhead and wasted storage space.

define void @MatrixVectorProduct(i32** %A, i32* %B, i32* %C) #0 {
entry:

...
%cmp = ...
br i1 %cmp, label %if.then, label %if.end

if.then: ; preds = %entry
br label %return

if.end: ; preds = %entry
...
%cmp1 = ...
br i1 %cmp1, label %if.then2, label %if.end9

if.then2: ; preds = %if.end
...
call void @MatrixVectorProduct(...)
br label %if.end9

if.end9: ; preds = %if.then2, %if.end
...
call void @MatrixVectorProduct(...)
br label %return

return: ; preds = %if.end9, %if.then
ret void

}

Listing 3.14 – MatrixVectorProduct LLVM IR Function

3.3. TRANSFORMING RECURSIVE PROGRAMS AS LOOPS 61

define void @MatrixVectorProduct(i32** %A, i32* %B, i32* %C) #0 {
entry:

...
br label %tailrecurse

tailrecurse: ; preds = %if.end9, %entry
...
%cmp = ...
br i1 %cmp, label %if.then, label %if.end

if.then: ; preds = %tailrecurse
br label %return

if.end: ; preds = %tailrecurse
...
%cmp1 = ...
br i1 %cmp1, label %if.then2, label %if.end9

if.then2: ; preds = %if.end
...
tail call void @MatrixVectorProduct(...)
br label %if.end9

if.end9: ; preds = %if.then2, %if.end
...
br label %tailrecurse

return: ; preds = %if.then
ret void

}

Listing 3.15 – MatrixVectorProduct LLVM IR Function with Tail Call Elimination

In LLVM-Clang, there is an optimization pass for tail call elimination (-tailcallelim) [80]
that checks if the callee is eligible for tail call elimination (i.e., does not need stack frame
info.) and transforms the corresponding (self) call followed by a return instruction with a
branch to the entry block or a basic block (labeled as “tailrecurse”) right after the entry of
the function, thus creating a loop. Trivial instructions between the call and the return do
not prevent this transformation. As an example, we show in Listing 3.14 the LLVM/Clang
human readable intermediate representation (IR) and notation of the matrix vector prod-
uct code (in Listing 3.5). The function encompasses two self recursive calls of which the
second one is tail and can be replaced by a loop. In Listing 3.15 , we show the optimized
version after applying tail call elimination as we previously described. Besides, LLVM/-
Clang can compile some recursive implementations (e.g., typical factorial or Fibonacci),
that are not tail recursive due to an associative expression, into efficient code; it trans-
forms the recursive functions to use an accumulator variable.

Additionally, besides recursion elimination through transformation into loops, recur-
sion elimination may be achieved by recursion flattening or recursive functions inlining
[136, 127]. Modern compilers apply inlining (inline expansion) by replacing the call in-
struction of a function by the code from its definition directly in the body of the calling
function; so, the inlined function instructions are executed without the need to create,

62 CHAPTER 3. STATE OF THE ART

add and remove stack frames. However, in case of recursive functions, a complete inline
expansion may not be a good option especially for those involving too many recursive
calls because it may lead to a code bloat; so, compilers either do not inline recursive calls
at all or inline them up to a certain depth [8].

3.3.4 Limitations
Recursion elimination has never been used to enable optimizing and parallelizing loop
transformations. Moreover, although a lot of works investigated the possibility to auto-
matically apply recursive-to-iterative transformations, such transformations are still not
sophisticated enough and they may not tackle complex recursive codes. For example,
Adriadne [85] performs recursion elimination, but it only supports recursive functions
whose parameters remain constant among recursive calls, except for one integer param-
eter, the index variable participating in all the conditions and the termination of the re-
cursive function. In addition, even powerful compilers are not capable of converting re-
cursions other than tail or simple linear recursions.

Nevertheless, generic equivalent iterative programs generated statically and auto-
matically from recursive programs may have either the call stack simulated using an ex-
pensive dedicated data structure, or conditional loops with dynamic termination condi-
tions, or complex loop structures with several conditional branches to mimic the original
recursive cases particularly if there are multiple recursive cases. In such cases, recursion
elimination may not lead to performance improvements and the resulting loops may not
be eligible candidates for further powerful loop-dedicated optimizations (e.g., polyhe-
dral optimizations). Even in the most trivial case of all, in the case of tail recursions, tail
calls elimination in compilers does not allow applying further aggressive loop-dedicated
transformations and optimizations to the generated loops because they do not necessar-
ily fit in the polyhedral model. Moreover, it is possible to have a recursive function with
multiple recursive calls, one of which is a tail call. If the tail call is eliminated by the com-
piler, the function remains recursive with a loop encompassing the other recursive calls.
As an example, we reconsider the matrix vector product LLVM IR function optimized by
tail call elimination by LLVM/Clang compiler in Listing 3.15; although the second call is
eliminated, there is still a recursive call in the core of this function. Such kind of loops
does not fit in the polyhedral model and cannot be captured by the currently available
advanced polyhedral (even speculative) optimizers dedicated to loops.

3.3.5 Beyond the Limits
All of these currently available automatic recursion transformations and optimizations
that are activated and applied at compile time based on a static analysis obviously lead
to more efficient executions. But, these optimizations are relatively limited in compar-
ison to the optimization options that actually exist for loop structures. Furthermore, in
case these optimizations involve transforming recursive functions into loops, the result-
ing loops structures may not necessarily be a good fit for powerful polyhedral optimiza-
tions. Yet, this does not mean that these loops cannot behave as polyhedral ones, and,
in such situation at compile time, polyhedral optimization opportunities that can be ex-
ploited may be left undiscovered.

3.3. TRANSFORMING RECURSIVE PROGRAMS AS LOOPS 63

In our work, we go beyond the classical limits that are set for recursion removal tech-
niques. Our transformation proposal is not solely dedicated to recursions with a special
structure, it is rather dedicated to recursions with a special behavior, a polyhedral one.
Accordingly, not only we rely on a static analysis, but also on a dynamic analysis to guide
our recursion-to-iteration transformation. So, we acquire an iterative code that is guar-
anteed to take advantage of powerful polyhedral optimizations. Therefore, we unveil so-
phisticated optimization opportunities for recursions and we seize them.

64 CHAPTER 3. STATE OF THE ART

65

Chapter 4

Dynamic Speculative Rewriting

“We often miss opportunity because it’s dressed in overalls and looks like work.”
— Thomas Edison

“If opportunity doesn’t knock, build a door.”
—Milton Berle

Although various optimization techniques dedicated to recursive codes exist, they are
classic, static or solely based on compile-time analysis. There may be a huge gap between
the statements outlined in a program source code and the instructions that are actually
performed by a given processor architecture. Due to this gap, static analysis alone may
only provide a hint about a program execution. Accordingly, significant optimization
opportunities, that may considerably enhance a program’s performance, may be missed
just because they cannot be discovered or the required information cannot be all known
at compile-time. Yet, it is still possible to reveal these opportunities and apply efficient
optimizations as soon as the actual run-time execution behavior of the program is dis-
covered. Techniques that seize these opportunities are said to be speculative; they are
based on a dynamic analysis technique and code rewriting and require dynamic verifi-
cation. Such optimization techniques have been dedicated to specific control structures
and memory access patterns, loops in particular. For instance, Apollo [132, 84] has made
possible applying advanced polyhedral optimizations that were only applicable to stati-
cally affine loops to non-affine loop structures, in particular to those that exhibit an affine
memory behavior at run-time. On the other hand, recursive structures, which may even
be considerably more time-consuming than loops, have not benefited of such techniques.
For this purpose, in this chapter, we present our unique solution to optimize recursions,
the Rec2Poly framework based on dynamic speculative code rewriting.

We previously introduced the proof of concept of Rec2Poly’s analysis, profiling and
recursion-to-optimized-loops transformation phases in our work [66]. Then, in a later
work [67], we presented the extension of these phases in addition to introducing the
verification feature based on the inspector-executor paradigm. Here, we revisit, discuss
and extend these studies and the inspector-related parts in particular.

This chapter is organized as follows. In the first section, Section 4.1, we present an
overview of the Rec2Poly framework. Then, we develop in details each phase of Rec2Poly
in a separate section. In Section 4.2, we introduce the static code analysis and prepara-

66 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

tion phase of recursive programs. In Section 4.3, we present our dynamic analysis pro-
filing phase to detect an affine recursive behavior. Then, in Section 4.4, we start with
the code generation phase by presenting how the code part required for the verification
is generated, and, in the final section, we show how the recursion-equivalent loops are
generated and optimized.

4.1 Overview of the Rec2Poly Framework
Rec2Poly is a speculative dynamic recursion optimizer based on the mainstream com-
piler LLVM/Clang [137]. It discovers, through an offline profiling technique, an affine
run-time behavior of recursive codes that manipulate large data structures, e.g., arrays,
etc. When successful, it builds a semantically equivalent code where all the execution
flow related to recursive functions is replaced with affine loops that enables aggressive
polyhedral loop optimizations and parallelizations. Rec2poly also generates a run-time
verification mechanism following an inspector-executor scheme [15, 112] to ensure the
validity of the generated iterative code for different input data. Accordingly, in order to
achieve that, Rec2Poly is composed of three major phases:

1. Code static analysis and preparation phase

2. Offline profiling phase

3. Inspector-Executor code generation phase

Analyses, transformations and optimizations in these phases are mainly implemented as
LLVM passes [80] processing the LLVM intermediate representation (IR) of the code [78].

The phases of Rec2Poly and their main constituents are depicted in Figure 4.1.
At the beginning, Rec2Poly performs static analysis. It deeply analyzes the target re-

cursive code in order to identify the recursive functions. It also identifies the functions
that may be invoked by or that may invoke, directly or indirectly, the recursive functions.
We call these identified functions impacting functions. Then, Rec2Poly builds the so-
called Backward Static Slice (BSS) corresponding to every memory store (write) instruc-
tion in the impacting functions, and collects the identifiers of all Basic Blocks that con-
tain at least one instruction involved in the computation of the target memory address or
the stored value, i.e., in the BSS. We call such basic blocks impacting basic blocks. Then,
Rec2Poly prepares the code for the next phases and performs local variable globalization.
It is achieved by inserting, at the beginning of an impacting function in the LLVM IR, an
invocation counter and by transforming each local data structure or a scalar variable into
a global data structure indexed using this counter. This helps keeping track of the initially
local variables in the functions of our concern and removing dependences among their
different invocations. Then, this expanded globalized code is re-analyzed to obtain the
necessary recursion-related information taking into consideration the modifications ap-
plied to the original recursive code.

Using the so-collected analysis information and the expanded version of the target re-
cursive code, Rec2Poly starts with the second phase, the run-time profiling phase, by gen-
erating an instrumented version of the target code. The instrumented code is obtained by
augmenting every impacting function with instructions for generating the output trace.

4.1. OVERVIEW OF THE REC2POLY FRAMEWORK 67

The generated trace describes the control and memory behavior of the program execu-
tion; it is composed of impacting basic blocks identifiers, invocation counters values and
the memory addresses referenced, in the impacting basic blocks, through load (memory
read) and store (write) instructions.

After the instrumented code is executed, the generated trace is given as an input to an
extended version of the Nested Loop Recognition software tool NLR [65]. NLR generates,
whenever possible, a representation of the whole trace made of loops, even affine loops
computing affine expressions.

The code analysis information and the profiling result obtained, i.e., the so-generated
loop model, can then be used by Rec2Poly to perform the code generation and optimiza-

Recursive Code Code Analysis Analysis
Information

Code Preparation &
Variable Globalization

Expanded
Recursive Code

Code Analysis Analysis
Information

Instrumentation Instrumented
Recursive Code Trace

Nested Loop RecognitionAffine Loop
Model

Generation of
Affine Loops Affine Loops

Generation of the
Inspector Inspector Code

Polyhedral Optimization
/ Parallelization

Optimized
Affine Loops

Final Code Generation
& LLVMOptimization

Executable Code

Static Analysis & Preparation Phase

Offline Profiling Phase

Code Generation Phase

Figure 4.1 – Rec2Poly

68 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

tion phase and build an optimized version given the expanded recursive code. For that
purpose, Rec2Poly generates an iterative code composed of sequences of optimizable
loop nests replacing the impacting functions existing in the original recursive code.

Since the replacing loops can be fully affine loops, they can benefit from polyhedral
optimizing and parallelizing transformations. For this sake, Rec2Poly uses the polyhedral
compiler Pluto [101] mentioned in Chapter 2. Otherwise, a dedicated dependence anal-
ysis can still be performed and the generated loops can still be powerfully parallelized
using OpenMP.

The affine loop model, obtained from the offline profiling based on one execution of
the target recursive code, can also be useful for later code optimizations and executions
even for different inputs of the same size, i.e., same problem size. Yet, since the further
executions are speculative, their validity must still be ensured at run-time.

The generated optimized program is customizable and verifiable at run-time. This is
thanks to the fast parallel inspector code generated by Rec2Poly whose role is to collect
lacking information and verify, at run-time, that the generated affine loops executing in
parallel are still behaving in compliance with the original recursive code.

Finally, the final code is generated based on the inspector-executor scheme made of:

• the inspector code

• the executor code containing the optimized loops

• the original recursive code

This code can be additionally optimized using the available LLVM/Clang optimizations.
During the generated program execution, the original recursive code is executed si-

multaneously with the inspector using POSIX Threads. This is because, in case a misspec-
ulation is detected at run-time, the whole inspector-executor code must be cancelled and
a correct state of the program’s execution must be recovered at the lowest time-overhead.
The thread executing the recursive code proceeds its execution as long as the inspector is
still in the verification process; when a correct execution is ensured, the thread is aborted
and the executor launches its parallel optimized loops.

The main phases of the Rec2Poly framework are presented and discussed in details
in the following sections.

4.2 Code Static Analysis and Preparation Phase
This is the very first phase of Rec2Poly. The Clang/LLVM part of the Rec2Poly tool, takes as
input the target source code and transforms it into its LLVM intermediate representation
(IR). Rec2Poly performs static analysis, at the level of this generated IR, to detect the ex-
istence of recursions and collect all the necessary information required for the dynamic
analysis and code transformations in the later phases. Also, at this phase, Rec2Poly mod-
ifies and prepares the code for these later phases. Note that code preparation requires
information about the existing recursions and their involved functions. So, a static anal-
ysis must be performed to get this information before applying any slight modification
on the original code. Afterwards, the modified expanded recursive code is deeply re-
analyzed to get all the recursion-related information (impacting functions, basic blocks,

4.2. CODE STATIC ANALYSIS AND PREPARATION PHASE 69

etc.), as explained later in this section, required for profiling and code generation taking
into consideration the modifications made.

It would be possible to activate some available LLVM optimization passes that refine
the code for the analysis, e.g., dead code elimination, promote memory to register, etc.
Also, as mentioned in the previous chapter (Chapter 3), LLVM provides an optimization
pass that eliminates tail recursive calls and transforms them into loops and another pass
that performs an automatic recursion inlining. However, we do not enable any of these
optimizations at the beginning, especially the tail call elimination LLVM pass for two
reasons:

1. the way the target recursive function is transformed with tail recursion elimination
may not result in an affine optimizable loop, and

2. if there are several nested recursive calls in the target code, only one tail call may
be eliminated.

Accordingly, keeping recursions at this level as they are means that they will be taken into
account in the analyses and then aggressively transformed and optimized using Rec2Poly
whenever possible. Yet, LLVM optimizations, including recursion-related optimizations,
can still be applied later after the target code is analyzed and processed as it is first.

In what follows, we describe in details how Rec2Poly performs static analysis and
code preparation.

4.2.1 Static Analysis
Rec2Poly’s general analysis dedicated to code preparation, run-time profiling and the
generation of the inspector-executor code involves the following steps. Note that the
inspector-executor generation phase requires further specific analyses than what is men-
tioned in this section; they will be presented later and discussed in the corresponding
sections, Sections 4.4 and 4.5.

Recursion Detection
As an entry step in the analysis, Rec2Poly checks if the code is recursive and, if so, iden-
tifies the recursions and the participating recursive functions.

In order to detect recursions, Rec2Poly uses the call graph extracted from the LLVM
IR of the program. The call graph is a directed graph that represents the relationships
between functions in a program, where a node represents a function and an edge from
one node to another represents a call such that the source node constitutes the caller
function and the destination is the callee.

Figure 4.2 shows an example of a call graph of an arbitrary program composed of the
following functions: main, A, B, C , D, E, F , G and H . In this program we have:

• function main calls A

• then, A invokes B from within a loop

• B calls C

70 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

• C calls itself, E and D

• E calls back C in addition to F and G;

• finally, G calls H

This program is recursive since function C exhibits a direct recursion with itself and an
indirect recursion involving function E.

Each of the function calls is represented in the corresponding call graph figure as a
directed path from the caller node towards the callee. Accordingly, the recursions can be
visualized in the call graph through a cycle or a loop.

main

A

...
FOR I IN LB TO UB

DO Call B(...);
ENDFOR;
...

B

C

E

D

G H

F

Figure 4.2 – Example of a Call Graph of an Arbitrary Recursive Program

From the call graph, in order to discover recursions, Rec2Poly seeks strongly con-
nected components (SCC), that are sub-graphs in which every node is reachable from
every other node. In this context, a cycle in a SCC indicates that there is a recursion
among the functions associated to the nodes involved in this cycle. If the cycle involves
only one node, i.e., it is a loop, then it refers to a direct recursion. Otherwise, it is indi-
rect. As we know, a recursion can be categorized into more different types, e.g., linear,
tail or multiple. However, Rec2Poly does not distinguish between the different types of
recursions; all detected recursions, whatever their types are, are similarly taken into con-
sideration for further analysis.

For the example in Figure 4.2, there is only one SCC: The nodes ofC andE are reach-
able from each other. Yet, there are two recursions observed in this SCC as there are:

• one loop over C showing a direct recursion, and

• a cycle fromC toE andE back toC , showing an indirect/mutual recursion involv-
ing C and E.

Accordingly, Rec2Poly can identify, for instance, functions C and E as recursive func-
tions.

4.2. CODE STATIC ANALYSIS AND PREPARATION PHASE 71

Recursion Reachability Recognition

We are interested in tracking impacting basic blocks and memory accesses, whether they
are executed directly or indirectly by the recursive functions.

This is necessary because recursive functions may or may not include significant ex-
pensive computations or memory access instructions in their own bodies, yet they still
call or reach functions that do so. Some of these reachable functions may even include
costly sequences of affine loop nests that intensively access memory; such loops would
be interesting for (polyhedral) optimization. But, the following scenarios and recursion-
iteration interactions may occur:

• the invoking recursion may act as a loop and can be replaced by a one;

• these functions with the beautiful loop nests may be called within a loop in the
recursive functions;

• the existing recursion and function calls may distort the existence of a bigger or
deeper affine loop nest and scatter its parts and iterations over different functions
and invocations.

Such code parts can be neither detected nor optimized using classical or even advanced
polyhedral optimizers. It would be interesting to see the whole picture and investigate
the possibility of compressing such code parts and reconstructing them as a whole loop
nest (without recursions) compliant for aggressive loop-dedicated optimizations and par-
allelization.

For this reason, besides identifying the recursive functions themselves, Rec2Poly needs
to determine their reachability in the program; this constitutes its second analysis step.
By reachability we mean, the set of all the functions that can be reached by a sequence
of calls initiated by the recursive functions themselves.

In the call graph example in Figure 4.2, the reachability of the recursive functions C
and E is the set consisting of: function D which is directly called by C , both functions F
andGwhich are directly called byE and, finally,H that is indirectly called byE through
G.

Recursion Source Recognition

Not only do we track a recursion, its involved functions and its reachability in a program,
but also the source of this recursion. There may be a situation where there is a func-
tion calling from within a loop, one of the recursive functions either directly or indirectly
through a sequence of function calls. Then, the source of the invoked recursion is a set of
functions composed of:

• The first non-recursive function to initiate this sequence of calls from the looping
structure a.k.a. the initial source function.

• All the other non-recursive functions participating in this sequence of calls reach-
ing the recursion.

72 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

For example, the set of source functions of the recursions found in the program whose
call graph is in Figure 4.2 includes functions A and B; as illustrated in the figure, A calls
B from the body of a for-loop, and B, in its turn, calls the recursive function C .

We assume that, in the recursive program, the existing recursion is launched by in-
voking only one of its recursive functions, a.k.a. the recursive source function. Also, we
assume that a recursive source function is reachable at most from only one unique ini-
tiating source function. These assumptions serve implementation purposes without in-
validating the general approach.

Taking source functions into account in Rec2poly’s analysis is necessary to ensure
that the profiling phase is complete and its result is correct. For instance, if we ignore the
existing source functions and do not track their behavior during the run-time analysis,
then a detected looping behavior will be associated to the recursion itself which would
be wrong. The detected loop behavior might correspond to an actual loop existing in
the program and reaching this recursion somehow. Depending on such results and pro-
ceeding with code generation might lead to semantically wrong optimized iterative code.
Accordingly, recursion source analysis helps understanding how a recursion behaves rel-
atively to its encompassing structures and, obviously, building loop structures which are
semantically equivalent to the whole target code part in the original program.

Furthermore, in general, loop structures calling any function and, especially, reach-
ing recursive functions (e.g., the one in function A in Figure 4.2) cannot benefit from
sophisticated loop-dedicated polyhedral optimizations since they are not considered as
valid SCoPs as we know from Chapter 2. It is interesting to discover a chance and a way
to blend and integrate recursive code parts with a polyhedral compliant environment.
Then, if it is possible to reconstruct such loops as valid affine loop structures without
recursions distorting them anymore, they may eventually be able to take advantage of
advanced optimizations.

In this study, all of the recursive functions and the corresponding source and reacha-
bility functions are known as impacting functions in a recursive code.

Impacting Basic Blocks Identification

Rec2Poly needs to discover the control and memory execution behaviors of the target
recursive code later in the profiling phase that will guide the code transformation and
generation. The control behavior is defined by the execution order of the impacting basic
blocks of the impacting functions.

The impacting basic blocks are the basic blocks that are crucial to trace in the pro-
filing phase and to re-use and re-construct in the code generation phase. Within their
parent functions, they contain all the necessary instructions required to access the cor-
rect memory addresses and save in them the correct values. The impacting basic blocks
are identified in the following way.

Firstly, at the level of the LLVM IR of the program, Rec2Poly marks all the memory
write, a.k.a. store, instructions to the main data structures. The main data structures are
defined as being the final output data structures of the recursions and their correspond-
ing impacting functions. A read or a load from the memory is not as significant as the
write in the analysis; loads are only taken into account if they are used to perform mem-
ory writes.

4.2. CODE STATIC ANALYSIS AND PREPARATION PHASE 73

Secondly, for every one of these store instructions, Rec2Poly also collects all the other
instructions and computations leading and contributing to it, i.e., all the instructions that
form its backward static slice. A backward static slice (BSS) is the set of instructions ex-
isting in the code of a program that may affect a value. In our case, the BSS of a store
instruction corresponds to both the value that the instruction stores in a data structure
and the memory address that it accesses.

The so-collected instructions, i.e., all the significant stores and their BSS, are referred
to as the impacting instructions.

Thirdly, the parent basic blocks which contain at least one of the impacting instruc-
tions are identified. Then, these basic blocks constitute the set of the impacting basic
blocks.

Intra-Function and Inter-FunctionMemory Access Analysis
As previously mentioned, Rec2Poly needs to analyze the memory execution behavior of
the target recursive code in addition to the control behavior; we look for a potential affine
looping memory and control behavior of the recursion. The memory behavior is defined
by the sequence of the memory addresses touched by the memory instructions (load or
store) inside the impacting basic blocks of the impacting functions.

However, Rec2Poly should not perform the run-time analysis (profiling) based on the
actual addresses touched. It cannot proceed with a valid code transformation and gen-
eration relying on a model, obtained from an offline profiling, consisting of the actual
memory addresses accessed in a previous execution. The reason is that among differ-
ent execution instances of the same target recursive program, even if given exactly the
same input data and the same hardware platform, the memory addresses accessed do
not obviously remain the same. This is due to the fact that data structures are not always
allocated at the same place in the memory. However, the memory behavior relative to
the base addresses of the data structures remains unchanged among the different execu-
tion instances. Therefore, we are interested in obtaining loop models where the relative
memory behavior can be expressed as affine functions of surrounding loop indices.

Accordingly, Rec2poly needs to instrument the memory offsets that are relative to
the base addresses accessed instead of the actual addresses. For this purpose, Rec2Poly
performs the following memory analysis to map every memory address to be accessed to
its base address.

When handling data structures that are local to the impacting functions, this analysis
phase can be carried out in the two steps described below:

Intra-Function Analysis Each memory access is associated to its corresponding base
address accessible in the scope of the current function, i.e., the parameters of the function
are the farthest analysis point reached.

Inter-Function Analysis In the case where the accessed data structures are function
parameters, intra-function analysis would not be enough. Memory analysis propagates
further outside the function to trace the corresponding arguments fed to this function in
its invocation. Inter-function analysis associates each access to its actual base address in
the whole program.

74 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

Yet, this memory analysis is much simpler when handling global data structures; the
accessed memory addresses can be directly associated to their base addresses.

4.2.2 Code Preparation
Rec2Poly prepares the target code as required for the later phases. Code preparation
mainly involves preserving a temporarily idle copy of the original functions in the mod-
ule to be reused whenever needed and performing local variables globalization. These
steps are presented as follows.

Original Code Preservation
Before Rec2Poly applies modifications to the code, it is preferable to preserve an un-
touched original copy of the code, i.e., all the existing functions in the module except
for the main function. So, Rec2Poly must clone these functions and, then, in each of the
new clones, it must replace all the referenced functions in the call instructions by their
proper clones. Besides, it substitutes the global variables and their uses for new similar
copies of these global variables. Also, the functions called in the main function must be
replaced by their corresponding clones. This way, the cloned recursive code is the one
actually launched by the main, and the original recursive code is preserved yet not in-
voked. Then, this dead code part will be utilized, in the code generation phase, to create
the backup thread invoking the original recursive code.

For now, we suppose that the main function does not perform a memory alloca-
tion and does not pass, as parameters, pointer values. Otherwise, if the original code
is launched in a parallel thread until halted due to a successful verification process, it
may write to a memory address that is supposed to be accessed later by the optimized
loops. Accordingly, the final generated loops may lead to a wrong output because they
accessed a corrupted memory address even if the speculation has been proved to be valid.
So, memory allocation at the level of the thread, besides automatic creation of global vari-
ables copies, is helpful to avoid such memory inconsistencies.

Correspondingly, any analysis performed and other modifications applied to the code,
presented in this chapter, are considered to be applied to the cloned recursive code un-
less otherwise explicitly stated. Therefore, by default, an impacting function refers to the
impacting function clone.

Local Variables Globalization
As we know and as previously mentioned in Chapter 3, when a function calls another
or itself, its information and its local variables are allocated on the program/call stack
until the call returns. Then, in the case of recursive calls and function calls within loop
structures, accesses to the data structures local to the functions can never exhibit any
affine memory accesses across all the invocations of the function. Moreover, the false
data dependences that may arise due to accesses to such variables among different func-
tions invocations must be removed if we intend to replace the impacting functions calls
with affine loop structures. Besides, obviously, the local data structures must still be ref-
erenced in the constructed loops. For these reasons, the program stack role in this re-
gard must be preserved and represented using an explicit data structure that also serves

4.2. CODE STATIC ANALYSIS AND PREPARATION PHASE 75

Rec2Poly’s purpose, i.e., finding an affine loop behavior among impacting functions and
replacing them with equivalent loops whenever possible.

Accordingly, Rec2Poly must do the following steps after getting the required analysis
information about the code concerning the recursions, the impacting “cloned” functions
and their impacting basic blocks.

Function InvocationCounter Insertion Rec2Poly creates, for every significant impact-
ing function, a function invocation counter as a global variable of an integer type that is
initialized to value−1 in the LLVM module. The function invocation counter associated to
a function must be incremented with every activation/call of this function. So, Rec2Poly
inserts, at the first/entry basic block of the impacting functions, the instructions that en-
able incrementing the corresponding function invocation counters. Also, the invocation
counter variables get specific metadata that helps distinguishing them from other vari-
ables which is required for later stages.

Local VariablesGlobalization The data structures that are local to the impacting func-
tions are transformed into global arrays of their initial type. Then, their uses are replaced
by their corresponding new global data structures which are indexed by the parent func-
tion invocation counter.

Rec2Poly must exclude all the local scalar variables that are used either as indexes
of some data structures or as induction variables; the references (data structures offsets)
will actually be instrumented at run-time and the values of the induction variables will
be detected and presented anyway in the affine loop model in the profiling phase in case
an interesting loop behavior is discovered. For now, we assume that integer scalars are
always used as induction variables or arrays indexes in the target recursive code, so only
non-integer local scalar variables are globalized.

This way, references to these globalized data will finally exhibit affine behaviors if the
related functions are invoked following an affine control flow.

float A[N];

void foo () {

int i;
float x = 0.5;

for (i=0 ; i<N ; i++)
{

A[i] = x;
...

}
...

}

Listing 4.1 – Impacting Function

float A[N];
int foo_invocation_counter=-1;
float x_glob[10000];

void foo () {
foo_invocation_counter++;
int i;
x_glob[foo_invocation_counter] = 0.5;

for (i=0 ; i<N ; i++)
{

A[i] = x_glob[foo_invocation_counter];
...

}
...
}

Listing 4.2 – Impacting Function after Globalization

76 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

Using Listings 4.1 and 4.2, we illustrate an example about local variables globaliza-
tion at the level of the C source code instead of the LLVM IR for simplicity. In List-
ing 4.1, we show an impacting function called foo in some recursive code. In this func-
tion, we have two local variables i and x such that i is an induction variable. In List-
ing 4.2, we show the code part of the program including function foo after inserting
its invocation counter foo_invocation_counter and performing local variables glob-
alization. As we see, only x is globalized as the float array x_glob. The invocation
counter is incremented at the beginning of the function and all uses of x are replaced
by x_glob[foo_invocation_counter].

Note that, only impacting functions that include impacting basic blocks get invoca-
tion counters and have their local variables globalized. However, there may exist other
impacting functions that do not include significant memory instructions, and will not be
instrumented anyway; they usually perform some light computations. Light computa-
tions are instructions, probably binary operations, involving integer scalars, that can be
performed without touching the memory, e.g., induction variables modification or prob-
lem decomposition. Functions, with such light computations, may call the significant
memory-touching impacting functions passing new arguments computed or modified in
their own bodies. Such functions do neither get invocation counters nor have their lo-
cal variables globalized. Even though information about such functions may not appear
in the model resulting from profiling, their computed parameters are taken care of and
extracted in the inspector-executor part; this aspect in explained later in Section 4.4.

After the code is modified and expanded to include the invocation counters and has
its local variables of interest globalized, Rec2Poly enables the LLVM optimization pass
mem2reg; it promotes memory references to be register references promoting allocation
instructions which only have loads and stores as uses. This helps refining the code and
omitting unnecessary expensive memory accesses.

Finally, the resulting code is the one to be used for profiling and code generation. It
must be re-analyzed and the information about the existing recursions must be obtained
again taking into consideration the modifications and the optimization applied.

4.3 Offline Profiling Phase
The first goal of Rec2Poly is to detect an affine looping behavior of the recursions that
may allow transforming recursions to optimizable loops. The behavior of the recursions
to discover corresponds to both the memory and control behaviors of the impacting func-
tions involved.

In the speculative loop optimizer, Apollo (presented in Chapter 2), analyzing the
memory run-time behavior of the loops of concern is enough to guide code transforma-
tions. Apollo intends to transform loops to other loops that are affine. So, it converts a
control structure to a similar one. On the other hand, Rec2Poly transforms recursive calls
to totally different control structures, loops. Accordingly, such a transformation requires
understanding the recursive control behavior in addition to the memory behavior.

For this sake, Rec2Poly performs a dedicated run-time analysis using an offline pro-
filing technique. This technique is composed of two steps: instrumentation and nested

4.3. OFFLINE PROFILING PHASE 77

loop recognition. These steps are presented in what follows.

4.3.1 Instrumentation
Rec2Poly generates, given the globalized version of the target recursive code, an instru-
mented version of the code to produce the control and memory execution trace of the
impacting functions.

On the one hand, the control behavior is described by the impacting basic blocks
executed at run-time. Rec2Poly needs to instrument the identifiers of these basic blocks.
Their textual identifiers representation consists of the parent impacting function name
concatenated to that of the corresponding basic block executed.

On the other hand, the memory behavior is described by the relative memory ad-
dresses accessed or the memory offsets. The offsets are computed for all the existing
memory instructions given their associated/mapped base addresses obtained from the
memory behavior analysis (presented in Section 4.2). A pointer difference instruction is
inserted, to the LLVM IR, for every load or store instruction subtracting the corresponding
base address from the actual memory address touched.

Then, Rec2Poly removes all the existing printing instructions from the LLVM IR and
appends to it the instructions required for printing the output trace. For each impacting
basic block, an instruction is added to print the basic block identifier when visited and
the offsets of all the memory addresses accessed in it during the execution of the program.

However, although incrementing the functions invocations counters requires accesses
to the memory, rec2Poly handles them differently. Instead of instrumenting their mem-
ory offset (obviously zero), it adds instructions to print their actual values at run-time
in the entry basic blocks of the impacting functions. Moreover, the values of induction
variables of existing loops must also be printed. This is significant to the code generation
phase.

4.3.2 Nested Loop Recognition
Rec2Poly instruments the target recursive program in order to generate an execution
trace which is composed of tuples. Each tuple is made of:

1. the impacting basic block ID,

2. the relative offsets of the memory addresses accessed by all the memory instruc-
tions in the current basic block, and

3. the values of the function invocation counters and the existing loop indices.

After running the instrumented recursive program and the execution trace is gener-
ated, this trace is analyzed by the Nested Loop Recognition (NLR) algorithm. The NLR
software tool [65] and its applications have already been presented in Chapter 2. One
of the main original/standard goals of NLR is to model the behavior of a program for
any measured quantity such as memory addresses. In this regard, NLR, as part of the

78 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

Rec2Poly framework, is used to model the memory behavior of recursive programs. Be-
sides, in Rec2Poly, the role of NLR is further extended to model the control behavior, i.e.,
the sequences of basic blocks IDs executed, which is more singular.

Also, in Rec2Poly, we need to model the loops induction variables values by NLR as
affine functions of the NLR loop indices. This is because induction variables of existing
loops may induce dependences that prevent the polyhedral optimizer used later in the
code generation phase to apply some optimizations. Accordingly, their values need to be
computed differently to remove the data dependences by using the affine expressions by
NLR.

When NLR is given the output trace of the target instrumented recursive program,
as an input, it may build, as an output, sequences of affine loop nests including the im-
pacting basic blocks IDs and the memory addresses represented as affine expressions or
functions of the surrounding constructed loop indices. Based on such an output, we infer
that the recursive program exhibits an affine behavior when fed with this specific input
and this input size.

An illustrative example of a possible NLR output modeling the execution of the re-
cursive program (Figure 4.2) is displayed in Figure 4.3.

val A::BB1
for i0 = 0 to 99
val A::BB2
for i1 = 0 to 49

val D::BB1, 1*i1, 1*i1
val E::BB1, 1*i1
val E::BB2
val F::BB1, 1*i1, 0
val H::BB1, 1*i0
for i2 = 0 to 24

val H::BB2
, 4*i0 + 2*i1 + 1*i2
, 1 + 6*i0 + 2*i1 + 1*i2
, ...
val H::BB3

val E:BB4
val A::BB3

Figure 4.3 – NLR Model for Affine Control and Memory Behavior

As we have implied earlier, the program’s impacting functions are all of:
A, B, C , D, E, F , G and H

In order to enrich this example, we choose to make the following assumptions:

• Functions B, C and G execute only light instructions that do not touch the mem-
ory; so none of their basic blocks are impacting, and none of them appear neither
in the trace nor in the loop models. The impacting basic blocks are:

– BB1, BB2 and BB3 inside function A

4.3. OFFLINE PROFILING PHASE 79

– BB1 inside D

– BB1, BB2, BB4 and BB5 inside E

– BB1 inside F

– BB1, BB2 and BB3 inside H

• There is a conditional branch from BB3 to BB4 or BB5 in function E.

• In this execution for instance, the condition holds only to branch to BB4 the whole
time. Accordingly, the basic block BB5 in function E is not visited at all when the
program is run for profiling.

• The entry/first basic blocks of the functions are referred to asBB1. So, the first affine
function that may appear after the entry basic block is the value of the invocation
function counter.

Such generated loops show how the basic blocks are invoked by following an affine
or a linear looping behavior, and how memory is referenced through relative addresses
that can be modeled as affine functions of the encompassing loop indices.

Also, NLR has been extended with an advanced feature taking into consideration that
the affine modeling of a trace may depend on some unknown parameters. NLR discovers
these values at run-time and exhibits a memory behavior which is actually not fully affine.
Such a behavior is known as a parametrically-affine behavior in which some coefficients
in the affine functions representing the memory addresses may be lists of parameters
values.

This is useful for Rec2Poly as it helps detecting a linearly looping control behavior of
recursions regardless of their memory behavior. Also, it allows recording and capturing
the memory-related parameters at run-time and representing them in a way that com-
pletes the final model that will guide the final code generation. Moreover, it enables
Rec2Poly to perform a useful and precise dependence analysis for the generated loops,
that are equivalent to a recursive code with such a behavior, which helps applying valid
transformations and parallelizations.

As an example, Figure 4.4 shows an NLR loop model in which the memory behavior
is parametrically-affine.

80 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

val A::BB1
for i0 = 0 to 99
val A::BB2
for i1 = 0 to 49

val D::BB1, 1*i1, 1*i1
val E::BB1, 1*i1
val E::BB2
val F::BB1, 1*i1, 0
val H::BB1, 1*i0
for i2 = 0 to 24

val H::BB2
, 1*i0
, [25:3,5,...,1][i0] + 2*i1 + 1*i2
, [25:7,1,...,6][i0] + 1*i1 + 1*i2
, ...
val H::BB3

val E:BB4
val A::BB3

Figure 4.4 – NLR Model for Linear Control and Parametrically-Affine Memory Behavior
We observe that instead of having constants as coefficients in some expressions, we

have lists of coefficients; each list contains 25 integer values which are successively used
to compute the referenced memory address. Let us consider the list[25:3,5,...,1][i0];
it means that:

[25 : 3, 5, ..., 1][i0] =

3 if i0 = 0
5 if i0 = 1
...
1 if i0 = 24

Based on Rec2Poly’s run-time analysis information and the “beautiful” loop model
resulting from NLR in case successful, Rec2Poly is capable of optimizing the next pro-
gram executions by generating equivalent affine loop nests that are meant to replace the
recursive code parts.

One may think that analyzing the code statically will be sufficient to model recursive
codes as loops. This is true, however statically recursion-equivalent loops are not guar-
anteed to be polyhedral model-compliant and most probably they are too complex. The
recursive and impacting functions often envelop various branches including conditional
branches which will remain in the code after applying recursion elimination at compile-
time. Accordingly, such loops cannot be aggressively optimized.

Yet, it is possible that the recursive calls and the branches in the impacting functions
may be executed in a uniform manner during the whole execution; i.e., the same basic
blocks may be visited again and again for all or a significant number of activations/calls
of the impacting functions at run-time.

4.4. CODE GENERATION PHASE: PART INSPECTOR 81

In such a code, if we forsaw its execution behavior, we would be able to rewrite the
code even without if-statements in the first place for instance. However, such recursive
program behaviors are not taken into account in earlier studies, and they may only be
found out at run-time. In comparison, our work considers the actual dynamic control and
data flow. Thanks to Rec2Poly’s profiling technique and NLR, we are potentially capable
of discovering interesting behaviors of recursive codes; this allows rewriting recursions
as actual affine loops apposite for sophisticated optimizations.

4.4 Code Generation Phase: Part Inspector
Given a refined expanded and globalized version of the target recursive code and its static
analysis information, and based on the affine loop model generated by NLR in the offline
profiling phase, Rec2Poly can now proceed with code transformation and generation.

Since the code generation is based on offline profiling of a previous program execu-
tion, the correctness of the final code generated is expected to be verified during the next
program executions. For this purpose, Rec2Poly generates the final code based on an
inspector-executor mechanism. This mechanism has already been presented in Chap-
ter 2 in Section 2.2. Although it has exclusively been utilized in the realm of iterative
codes and for verifying their memory accesses, as it is the case in Apollo, Rec2Poly extends
this mechanism and brings it to the realm of recursive codes and control verification.

This section is devoted to the inspector code generation part of the last phase of
Rec2Poly, the code generation phase. As follows, we thoroughly present the inspector
and its constituting components one by one. We explain their functionalities and discuss
in details the transformations that Rec2Poly needs to apply to the LLVM IR of the given
recursive program for building the suitable inspector. The executor part is discussed af-
terwards.

4.4.1 Fast Parallel Inspector
Normally, the inspector is a lighter version of a code that proves the execution correct-
ness and collects necessary information required by the executor which corresponds to a
speculatively transformed optimized version of the initial code. Uniquely, the inspector
that is generated by Rec2Poly involves light recursive code parts; accordingly, its role is
to achieve these two tasks:

1. proving that the affine loops, which are ought to replace the recursive code parts,
are still congruent with the current dynamic control and data flow, i.e., when the
recursive program is run given a different input; this requires verifying both of the
memory accesses and the flow control of these structures;

2. instantiating the necessary specific and basic run-time parameters.
In order for Rec2Poly’s inspector to fulfill its role, it is constructed from three major

types of components which are:
1. Trace generator: it is a minimal version of the original impacting functions, com-

mitted to producing the same control and memory execution trace as the one that
was generated by the instrumented code at the profiling phase;

82 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

2. Verifier: it is a function constructed from the NLR affine loop model whose task is
to check if a trace generated by a trace generator is still compliant with the loop
model;

3. parameter saver: it is a minimal version of the original impacting functions whose
mission is to record their basic run-time parameter values used by the impacting
instructions.

Obviously, trace generators along with verifier components are utilized to carry out
the first task of inspectors whereas parameter savers accomplishes the second one.

The inspector must be significantly faster than the original recursive program, so
that the final inspector-executor couple provides interesting speed-ups. Generating one
whole trace of complete tuples of values, similar to the one generated at the profiling
phase, would be generally too costly. We must also not neglect the cost of verifying the
whole trace at once too.

Hence, in order to guarantee a fast trace generation process, Rec2Poly must construct
an inspector made of multiple trace generators and verifiers that will be executed in par-
allel each by a distinct parallel thread. Each of the generators is responsible for generating
one sub-part of the trace. For each trace generator, there is a devoted verifier verifying
the generated trace. Accordingly, Rec2poly is expected to tackle a load balancing issue
among threads by deciding how many and which basic blocks or memory accesses a sin-
gle trace generator must handle.

Also, Rec2Poly must reserve a thread for the parameter saver. In addition, it must
dedicate another one for executing the original recursive code part, preserved since the
code preparation step, that should run simultaneously with the trace generators and veri-
fiers. This is important to halt the inspector and proceed with a correct execution without
extra time-overhead in case a misspeculation is discovered at run-time.

Note that, all the functions within the inspector are not supposed to write to a shared
memory location, so a parallel execution will not cause any conflict or race condition
among threads.

In what follows, we present the components of the inspector and how they are gen-
erated by Rec2Poly.

4.4.2 Trace Generators
A trace generator is made up of a set of light minimal copies of the impacting functions,
i.e., source, recursive and reachable functions. Its role is to produce a trace representing
either the actual control flow or the memory behavior of the current execution. For every
trace generator to create, Rec2Poly must clone the impacting functions and their basic
blocks and associate a new invocation counter for every cloned function. It may also
create in case needed, for every trace generator, different copies of the existing global
variables and use these copies instead, in the trace generator functions. The (initially
local) globalized variables copies in the cloned functions must be referenced using the
invocation counter corresponding to that clone.

Besides, a trace generator is expected to output a trace, so the latter can be verified
against the NLR affine loop model. For this sake, Rec2Poly creates, in the IR module,

4.4. CODE GENERATION PHASE: PART INSPECTOR 83

global memory buffers or arrays and global indices to be used by the trace generators for
referencing their dedicated buffers.

Inside the cloned functions, the call instructions still call the initial impacting func-
tions; so, Rec2Poly must replace these referenced functions in the call instructions by
their proper clones.

Then, Rec2Poly creates a thread function that invokes the trace generator through
the initial source function clone. In case the recursive code is not invoked within a loop,
i.e., the source is empty, the thread function must initiate its associated trace generator by
calling the clone of the initiating recursive function, i.e., the recursive function called by a
non-recursive one in the program. As we mentioned earlier, we assume that the recursion
handled is only initiated through one specific recursive function or through a unique set
of source functions all participating in a sequence of calls reaching the recursion.

For every trace generator, Rec2Poly creates a thread launching the corresponding
thread function replacing the initial call to the initial source function or the recursive
function. Similarly, all of threads must be joined at the end. Also, Rec2Poly dedicates
two semaphores for every trace generator-verifier couple used to control their access to
their shared buffers of traces. Semaphores functionality in the inspector is presented later
in this section in more details.

Afterwards, Rec2Poly must make the clones, constituting the trace generators, the
lightest possible, i.e., by removing expensive instructions that involve touching the mem-
ory such as stores and loads that do not affect the execution flow. Then, Rec2Poly mod-
ifies these clones further and adds the instructions that permit a trace generator to gen-
erate and save its own part of the trace to be verified later. Note that the verification
process is interleaved with the trace generation; this is discussed later in this section. Be-
fore modifying the code, Rec2Poly needs more analysis information regarding the newly
cloned functions.

Extended Code Clone Analysis
When Rec2Poly performs a function clone corresponding to a trace generator, it only
knows that this cloned function corresponds to an impacting function. Yet, it does not
have any information about the contents of this new function. Does it have impacting ba-
sic blocks that must be traced? What are the necessary instructions that must be kept?
What is the relative memory address accessed by a store/load? Rec2Poly must know the
answers to such questions before deleting/adding any instruction from/to the clone. This
is achieved by performing an extended analysis which is described in the following.

ImpactingBasicBlocksClonesDetermination As Rec2Poly previously determines the
impacting basic blocks of the original impacting functions, it, similarly, identifies the im-
pacting basic blocks clones corresponding to every trace generator.

Control-Conserving Instructions Identification Rec2Poly needs to determine all the
instructions that are crucial to preserve a correct control flow. The obvious primary
control instructions can be branches and function calls. Yet, these instructions may de-
pend on other instructions that must also be considered, e.g., conditions for conditional
branches and arguments computations for function calls, and loops-related instructions,

84 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

e.g., loops iterators increment instructions. In order to identify all such instructions,
Rec2Poly finds the BSS of the branch instructions. Note that, in this study, we make the
assumption that conditional branches do not depend on any memory accesses.

Memory-Address-Maintaining Instructions Identification In trace generators, the mem-
ory trace will be produced; so, all the instructions that are required to compute a memory
address touched by a load or a store, i.e., its BSS, must be identified.

Clones Memory Behavior Analysis As Rec2Poly performs the memory behavior anal-
ysis as described in Section 4.2, it performs this analysis again, for the trace generator
functions, to associate every memory address with its corresponding base address. As
the relative memory offsets are the values instrumented, they must be the values which
are verified.

Based on this analysis, Rec2Poly refines the functions clones, at the LLVM-IR level at
compile time, to construct the desired and customized trace generators.

Trace Generators: from Copies to Originals

Trace generators are customized based on their dedicated task, i.e., which part of the
trace they are intended to generate. In this regard, we distinguish between the two types
below of trace generators:

Control Trace Generator (CTG) It is a trace generator which is dedicated to generate
the dynamic control flow of the impacting functions, which is mainly described as a se-
quence of basic blocks IDs executed at run-time. There exists only one CTG in the inspec-
tor. The CTG functions must mimic the original functions execution flow. So, Rec2Poly
only keeps the control-conserving instructions and the invocation counter increment in-
structions and removes the rest. In every impacting basic block, it adds instructions that
save the ID of that basic block, when executed at run-time, in the trace buffer dedicated
to the CTG.

MemoryTraceGenerator (MTG) It is tailored for generating the touched relative mem-
ory addresses at run-time. The inspector usually includes multiple MTGs. Yet, every MTG
still generates a different part of the memory trace. The workload assigned to an MTG
must be almost the same as that of the CTG. Accordingly, as the CTG accesses the buffer
once per basic block to generate its ID, an MTG obviously should generate one mem-
ory access per basic block at most. In MTGs, all the control-conserving instructions and
the memory-address-maintaining instructions for the memory accesses of interests are
preserved. The memory accesses themselves are deleted. Then, in each MTG function,
the necessary instructions, needed to save its share of computed addresses into its ded-
icated buffer, must be inserted by Rec2Poly. Nevertheless, there is an exception for the
globalized data structures: they are ignored. This is because their memory offsets equal
the values of the invocation counters. So, it is enough to trace the functions invocation
counters values at run-time. Accordingly, MTGs need to save the values of the function

4.4. CODE GENERATION PHASE: PART INSPECTOR 85

invocation counters. In addition, MTGs handle the existing loops induction variables val-
ues; they save for each loop, the value of its induction variable per iteration. It is possible
to assign a separate trace generator to produce the function counter and loop induction
variables values instead of taking care of them along with the memory addresses; such a
trace generator is constructed similarly as any other memory trace generator.

Accordingly, each set of the functions clones, i.e., each trace generator, is differently
handled and modified.

4.4.3 Verifiers
For every trace generator, Rec2Poly creates a corresponding trace verifier based on the
NLR affine loop model in the LLVM IR of the program. As it is the case for trace generators,
we similarly differentiate between the following verifier kinds:

• Control Verifier (CV) It is a verifier responsible for verifying the control trace gen-
erated by the CTG; Rec2Poly generates one CV.

• Memory Verifier (MV) It is a verifier associated with an MTG, responsible for veri-
fying the particular memory addresses and values traced by the MTG; there is one
MV created for every MTG.

Each verifier is generated as a new thread function that implements the NLR loops
using minimal versions of the constituting basic blocks. The basic blocks are created with
only the branch instructions and the constructed affine loop increment and condition
instructions. Then, in every verifier, Rec2Poly must add the necessary instructions to
access and verify the values stored in the buffers that this particular verifier shares with
its associated trace generator. The CV verifies the basic block IDs generated by the CTG,
and the MVs verify the corresponding memory offsets and the invocation counter and
induction variable values saved to the buffers against the associated values captured by
NLR.

Then, the trace verifiers are launched in parallel threads with the trace generators
during the execution.

However, although the original recursive code is supposed to involve expensive mem-
ory accesses, the supposedly light trace generators and verifiers, as described here, may
not allow the inspector to be sufficiently fast. In case of having a lot of memory accesses
in the program, there may be too many threads, MTGs and MVs, to create; this may in-
duce a significant overhead to the program. Conversely, in case the original recursive
program includes only one access at most per basic block in its impacting functions, the
memory accesses performed by the inspector to verify the traces will not be any cheaper.
Yet, further inspector optimizations are possible and the options that we depend on in
Rec2Poly are discussed later in this section.

4.4.4 Parameter Saver
As mentioned earlier, all memory accesses, global variables and local variables that are
globalized are instrumented at the profiling phase. The local variables that are not global-
ized are those that are used to compute the memory addresses, so they are tracked along

86 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

with memory accesses. The NLR loop model obtained, whenever successful, includes all
this information which guides the recursion-to-loops transformation. Yet, there is still a
missing piece for the loops to be successfully generated. The function parameters that
are not of a pointer type may not be taken into consideration in the profiling phase. Such
parameters may be passed as arguments to the impacting functions and used directly by
their instructions through sequences of calls by non-impacting functions in which they
are local variables and out of the scope of globalization. Accordingly, Rec2Poly can nei-
ther get a prediction or prior information about these parameters nor extract their values
at compile time to complete the code generation phase. Thus, in order to fill the blanks
in the loops generated, Rec2Poly needs to record the values of such parameters during
the program’s execution within the inspector before initiating the actual loops.

For this purpose, Rec2Poly creates, in the LLVM IR of the program, the parameter
saver which is composed of a minimal version of the impacting functions clones. The
parameter saver functions, like those of the trace generators, require having only the
control-conserving instructions and the instructions incrementing their corresponding
copies of the invocation counters; all the other instructions are deleted. Also, Rec2Poly
creates a global buffer for every important function parameter in the parameter saver.
Then, Rec2Poly adds the instructions, at the entry basic block of every function in the
parameter saver, needed to collect the function’s input values and store them in the cor-
responding buffers/arrays indexed by the particular function’s invocation counter.

The parameter saver is also supposed to be executed simultaneously with trace gen-
erators and verifiers. So, Rec2Poly, in the LLVM IR, initiates the parameter saver through
a thread as it does for the trace generators and the verifiers.

Figure 4.5 shows the call graph of the inspector corresponding to the arbitrary exam-
ple of the recursive program of Figure 4.2.

The impacting functions for which Rec2Poly creates the light clones to build the in-
spector are: A, B, C , D, E, F , G and H .

This figure shows that the main function launchesM +1 parallel threads. TheM +1
threads needed by the inspector belong to one parameter saver, M/2 trace generators,
such that one is a CTG and the rest are MTGS, and M/2 verifiers. Note that, for every
thread that initiates a trace generator, there is a thread that initiates a verifier function.

The parameter saver and theM/2 trace generators requireM/2+1different minimal
light clones of the impacting functions. The ith functions clones are referred to as : Ai

l ,
Bi

l , Ci
l , Di

l , Ei
l , F i

l , Gi
l and H i

l .
TheM/2 verifiers require creatingM/2 light functions, each of which is constructed

using light basic blocks based on the NLR model. The ith verifier function is called vi;
vi is assumed to be constructed from L + 1 light impacting basic blocks: BBi

0, BBi
1,...,

BBi
L. In the verifier functions, the control flow graph composed of nodes representing

the basic blocks is visualized; in this graph, the constructed loops appear as cycles.
Each trace generator and its associated verifier have their own set of N + 1 buffers

to process on, and their accesses to the buffers are managed using two semaphores. Ac-
cordingly, the inspector requires M semaphores. For instance, Thread 1 and Thread 2
communicate using Semaphores sem 0 and sem 1. Each trace generator produces and
saves its own trace part using its dedicated buffers which are verified by the associated
verifier.

4.4. CODE GENERATION PHASE: PART INSPECTOR 87

A1
l

B1
l

C1
l

E1
l

D1
l

G1
l H1

l

F1
l

V1

BB1
L

BB1
L−1

BB1
1

BB1
0

..
.

Buffer10 ...

Buffer11 ...
...

Buffer1N ...

Trace Generator 1 Verifier 1

sem 1

sem 0

.

A
M
2
l

B
M
2
l

C
M
2
l

E
M
2
l

D
M
2
l

G
M
2
l H

M
2
l

F
M
2
l

VM
2

BB
M
2
L

BB1
L−1

BB
M
2
1

BB
M
2
0

..
.

Buffer
M
2
0

...

Buffer
M
2
1

...
...

Buffer
M
2
N

...

Trace Generator M
2 Verifier M

2

sem M-1

sem M-2

main

Thread 1 Thread 2 Thread M-1 Thread M

A0
l

B0
l

C0
l

E0
l

D0
l

G0
l H0

l

F0
l

Buffer00 ...

Buffer01 ...
...

Buffer0P ...

Parameter Saver
Thread 0

.

.

Figure 4.5 – Detailed Inspector Call Graph Example

88 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

On the other hand, the parameter saver has its own set ofP+1 buffers used for saving
the parameters values of the impacting functions clones.

4.4.5 Inspector Optimizations
The inspector, especially its constituting trace generators and verifiers, may remain in-
sufficiently fast.

Yet, there are still several interesting optimization opportunities that can be exploited
and applied to Rec2Poly. They involve limiting insignificant predictable repetitions of
certain control structures and basic blocks and eliminating memory addresses that do
not need to be verified besides the globalized-initially local-data structures.

Control Flow Optimizations in the Control Trace Generator and Verifier
The control-related optimizations must reduce the size of the traces corresponding to ba-
sic blocks. Since, we are highly interested in optimizing recursive codes that also involve
expensive loops, such optimizations are exclusively dedicated to the already existing loop
structures, for-loops in particular. In LLVM IR, the exit condition, body and increment of
a for-loop are expressed as distinct basic blocks: for.cond, for.body and for.inc re-
spectively as shown in Listing 4.3. Every time a loop iterates, all of its three corresponding
basic blocks execute. When the upper bound is met, as checked in for.cond, the loop
exits to execute the for.end basic block. Also, as we know, the precise number of iter-
ations of a for-loop can be pre-computed without the need to actually execute the loop
in case the loop bounds and index are not modified inside the loop body. This requires
knowing values of the lower and upper bounds and the increment. In this case, even if
the loop information and parameters are not all known at compile-time, as soon as they
are discovered at run-time, the loop’s number of iterations can be computed.

...
for.cond: ; preds = %for.inc, %entry

%i.0 = phi i32 [0, %entry], [%inc1, %for.inc]
...
%cmp = icmp slt i32 %i.0, 10
br i1 %cmp, label %for.body, label %for.end

for.body: ; preds = %for.cond
...
br label %for.inc

for.inc: ; preds = %for.body
%inc = add nsw i32 %i.0, 1
br label %for.cond

for.end: ; preds = %for.cond
...

...

Listing 4.3 – For Loop at the Level of the LLVM IR

Rec2Poly achieves its first trivial optimization, in this context, by dismissing impacting

4.4. CODE GENERATION PHASE: PART INSPECTOR 89

void foo() {
for (int i=0; i<N; i++)

printf("foo::BB1\n");
}

(a) Loop Example

val foo::BB1
val foo::BB2

(b) NLR Output for N = 2

for i0 = 0 to 2
val foo::BB1

(c) NLR Output for N = 3

Figure 4.6 – For-Loop and its NLR Trace

basic blocks that are always executed with other blocks, the same blocks all the time,
and that are almost totally modified or reconstructed for the executor, e.g., the condition
basic blocks of a loop in case they are impacting.

Another optimization by Rec2Poly is dedicated to affine for-loops that do not involve
any conditional statements or function calls, and whose execution within an active func-
tion is predictable, and body instructions do not have any impact on the control flow
outside the loops.

As we have presented, the verification of the control flow is managed by the CTG and
the corresponding verifier; in the CTG, the ID of the impacting basic blocks must be saved
into buffers that must be verified by the verifier. However, some of these basic blocks may
be for-loop-related basic blocks. Knowing that such basic blocks are going to execute, as
they are, again and again, it seems unnecessary to verify the same basic block ID over and
over again within an activated function. However, such basic blocks must be re-verified
if the function is called again with different parameters.

Accordingly, executing such loop-related basic blocks at least once, computing the
number of loop iterations and verifying this information against the NLR-equivalent loop
information, should be ample to ensure that the control flow of this structure is correct.
Yet, NLR does not form loops for values that are repeated less than three times; if a loop
happens to execute two times at run-time during the offline profiling phase, its basic
blocks will appear two times consecutively without a loop in the NLR model (see Fig-
ure 4.6). So, if the CTG saves the loop basic blocks IDs once and the number of iterations
as two, and, in the verifier, the basic block ID is expected to exist twice; this will signal a
misspeculation which is a false positive.

For this purpose, Rec2Poly constructs such loops in the CTG and the corresponding
verifier to iterate three times at most; this saves much time-overhead. Instead of verify-
ing the blocks IDs only, the CTG and the verifier are expected to handle the number of
loop iterations too. However, a dedicated extended static analysis must be performed by
Rec2Poly before changing the upper bounds of the corresponding loops. It must make
sure that this modification does not affect the overall control flow; no values changed or
instructions executed within these loops are needed by the succeeding branch instruc-
tions outside the loops. Whenever such optimizations succeed, the control trace gener-
ator will become much lighter and faster.

For example, in the recursive program example in Figure 4.2, the loop existing in func-
tion A from which the recursion is indirectly initiated, cannot be optimized. However, if
there exists another for-loop in function H (see NLR loops in Figure 4.3), which satisfies
all the conditions for this optimization, it will be built in the verifier and the original loop
copy will be modified in the CTG to iterate three times instead of twenty five times.

90 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

Memory Access Optimizations in theMemory Trace Generators and Verifiers
The correctness of the memory addresses accessed in the final optimized code must be
ensured; for this reason, Rec2Poly generates the memory trace generators and verifiers as
we have presented. It would have been ideal to verify every single memory access; but,
this can be a huge burden on the inspector to achieve robustly and quickly enough to
leave time for the executor later to perform its sophisticated optimized loops and shine.

In codes where there are interesting multin-dimensional arrays that are manipulated
through a recursion, every single access to these array elements may yield n memory ac-
cesses at the level of the LLVM IR of such codes; each of thesen accesses must be handled
and verified by memory trace generators and verifiers. This may require creating many
more trace generators, verifiers and threads which induces overhead. Yet, if an array is
statically allocated, an access to it requires only one memory instruction and the address
of its elements can be directly computed at once even if it is n-dimensional. However, if
the array is dynamically allocated, and so an access to it yieldsnLLVM IR memory instruc-
tions, although we can assume and hypothesize that the address can be correctly directly
computed at once too, this remains an assumption that may lead to false positives and
negatives in the run-time verification which should be avoided.

A more reliable optimization is to ignore redundant memory accesses in an impacting
basic block and verify only the principal accesses only. If a certain array is touched sev-
eral times through indices based on the same induction variable, then only one of these
accesses is worth the cost of the verification. This may also work among different data
structures if they are multi-dimensional in particular. However, in such situations, their
first relative addresses, w.r.t. the initial base addresses of the data structures themselves,
must be verified even if accessed using identical indices. For example, consider an array
A accessed three times in this statement A[i]=A[i-1]+A[i-2] within a loop. A clas-
sic inspector would generate memory traces (offsets) for the three memory accesses, and
save each of the offsets: i, i-1, and i-2 per iteration. But, verifying them all is pointless
and costly; it is adequate to save and verify only the offset of A[i]. Another example in-
cludes accesses to array elements A[i][j], B[k][j] and C[i][j]. Instead of verifying
both of i and j for A, k and j for B and i and j for C, it would be enough to verify i for A,
k for B, i for C and j only once, taking into consideration the types of the different data
structures.

Another optimization can be activated for the MTGs and the memory verifiers which
is similar to that applied to the CTG and its verifier. That is, whenever there is an affine
for-loop accessing multidimensional arrays that does not involve instructions that affect
the control flow and the computation of other memory addresses outside the loop, the
loop can be modified to iterate thrice at most with every new activation of the parent
function. As we mentioned earlier, the conditional statements are not supposed to de-
pend on a memory access. Therefore, in the MTGs and their verifiers, within such loops,
every access to a data structure indexed by an affine expression of its induction variable,
is verified three times at most. If the verification of the first relative memory address ac-
cessed in the loop is successful, the predicted address remains correct for the next two
iterations, and the loop induction variable is expected to change linearly within a specific
verified range. This should be sufficient to ensure that the rest of the memory accesses
will still be respected in the transformed code. For a loop nest of depth n, the memory
addresses touched in the innermost loop will be verified at most 3n times. The MTGs and

4.4. CODE GENERATION PHASE: PART INSPECTOR 91

the verifiers may become much faster and more performant. The number of iterations is
handled by the CTG and its verifier.

An example of optimizable loops is shown in Listing 4.4. Modifying the upper bound
of the first loop will surely affect the values saved in array A in function foo, but not the
control flow of the second loop and the rest of the function. Also, the second access to
array A in the second loop does not depend on anything executed within the first loop.
Hence, it is possible to optimize the first loop in the trace generator and its equivalent-
loops in the verifier. Similarly, the second loop can be optimized too. Other examples
are shown in Listings 4.5 and 4.6. In Listing 4.5, the first loop changes the value of j
on which depend the memory access to A in the second loop. So, the first loop cannot
be optimized, but the second loop can be. In Listing 4.6, the existing loop must not be
optimized because it includes an instruction that affects the if-condition after the loop
exits.
void foo() {

...
for (int i = 0 ; i < N ; i++)

A[i] = x;
for (int i = 0 ; i < M ; i++)

A[i] = x;
}

Listing 4.4 – Example of For-Loops Optimizable in the Inspector

void foo() {
...
int j = 0;
for (int i = 0 ; i < n ; i++) {

A[i] = x;
j += 2;

}
for (int i = 0 ; i < m ; i++)

A[i+j] = x;
}

Listing 4.5 – Non-Optimizable Loop

void foo() {
...
int j = 0;
for (int i = 0 ; i < n ; i++)
{ A[i] = x;

j += 2;
}
if (j > x)

...
}

Listing 4.6 – Non-Optimizable Loop

4.4.6 Inspector In Action: Verification Process
After exhibiting how an inspector code is generated at compile time, we present now how
it works at run-time, for its verification technique in particular. As mentioned before,
all trace generators, verifiers and the parameter saver are run in parallel such that every
trace generator interacts with its corresponding verifier to handle a particular part of the
trace. In order to understand the whole verification process, one must understand how
the verification is performed at the level of every generator-verifier couple.

The run-time interaction between a trace generator and its associated verifier is illus-
trated in Figure 4.7, and it is explained in what follows.

The verification process within the inspector is performed in a pipelined fashion be-

92 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

tween a trace generator and its corresponding parallel verifier. A trace generator fills se-
quentially several buffer arrays with the values to be verified. A verifier verifies the buffers
contents in parallel with the generator.

Trace Generator in the Lead
Although both a particular trace generator and its verifier are launched simultaneously,
the prior must fill at least a buffer, so the latter can take action and start verifying the
saved values in the buffer.

The generator must not generate the whole trace before the verifier performs its task.
Such a scenario does not allow parallel execution between the generator and the veri-
fier. For that reason, the trace generator must only generate a partial trace that is, then,
handled by the verifier while the generator is working, in parallel, on generating the fol-
lowing part of the trace. The size of these partial traces can be adjusted to get the best
trace-generator verifier performance.

We note that there are principal points or basic blocks in both the generator and the
verifier in which their interaction and synchronization are controlled. They are known
as trace initiating or trace terminating basic blocks which are identified according to the
NLR loop model. There may be more than one of each kind of such basic blocks in each of
the trace generator and the verifier on condition that they are in corresponding positions
in both of them. The basic blocks with which the NLR model begins are considered first
trace initiating, the ones with which the model is supposed to end are trace terminating.
At least one of the initiating and the terminating basic blocks must determine the scope
of the major loop in the NLR model. For instance, if the NLR model shows a loop nest such
that the outer loop already exists in the code, then the first basic block of this loop clone in
the corresponding trace generator function and that of the constructed equivalent loop in
the verifier function are initiating basic blocks. If the NLR outer loop nest does not exist
in the code, so it may correspond to a repetitive function call; then, the basic block in
which the corresponding function, i.e., the looping code part, is invoked is the initiating
basic block. On the contrary, the last basic block in the loop and that with which the NLR
model ends are terminating basic blocks. For example, if we reconsider the NLR model
of Figure 4.3, the initiating basic blocks are, BB1 and BB2 of A, and the terminating basic
block is BB3 of A too.

The generated trace part cannot be verified until a terminating basic block is reached
by the trace generator. The verifier waits in the initiating basic block for the dedicated
shared trace buffer to be filled before it performs any verification.

Also, note that the trace generator includes all the basic blocks clones of the initial
recursive code, so it has both impacting and non-impacting basic blocks. However, the
generators must only trace the impacting ones. As for the verifier function, it mainly
includes the set of the impacting basic blocks.

Accordingly, at the beginning, when the trace generator and verifier are launched,
the first basic blocks visited in both are the very first initiating basic blocks. At this point,
the generator accesses the first buffer dedicated to it to start its trace production. On the
other hand, although the verifier knows that it needs to process on the first buffer shared
with the generator, it must wait to make sure that the latter finishes saving the first part of
the trace. As we already mentioned, the couple threads communicate using semaphores,
so the verifier waits for a semaphore to be posted by the generator when saving the trace

4.4. CODE GENERATION PHASE: PART INSPECTOR 93

Basic Block

Access
First Buffer

Save Trace
to Buffer

Save Trace
to Buffer

Post
Semaphore

EXIT

Access
Next Buffer

Wait
Semaphore

EXIT

Access
First Buffer

Trace terminating BB?

Proceed
Execution

YES

First trace initiating BB?

NO

YES

YES YES

YES

NO

All Buffers used?

NO

NO

YES

Impacting BB?

Impacting BB?

Exec. terminating BB?

Exec. terminating BB?

NO
YES

NO

NO

NO

YES

Sem. received?

Active verifier?

NO YES

Basic Block

Access
First Buffer

Verify
Trace

EXIT

Wait
Semaphore

EXIT

Access
Next Buffer

Proceed
Execution

Post
Semaphore

Access
First Buffer

First trace initiating BB?

YES

NO

Trace initiating?

YES

NO

NO

YES

NO

YES

YESNO

All Buffers Verified?

Sem. received?

YES

NO

Exec. terminating BB?

NO

YES

Active trace generator?

Correct?

Trace generator Verifier

Figure 4.7 – Trace Generator-Verifier in Action

94 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

part into the current buffer is successfully done. With every initiating basic block visited,
the verifier must wait a semaphore from the generator. In the meantime, in the trace
generator, as long as its execution does not terminate, if the basic block visited is not
trace terminating but impacting, then the desired trace corresponding to this basic block
(ID or memory address) is saved to the current buffer. If the basic block is not impacting,
then it is simply ignored, and the trace generator proceeds to execute the next basic block.
If the basic block is trace terminating, and if it is impacting, then the generator must also
save it into the buffer; if it is not, it is ignored. Then, the generator posts the semaphore
to the verifier so the latter can start verifying the saved trace values.

Trace Generator-Verifier Embracing Parallelism
When the verifier receives its first semaphore, it starts verifying the generated values in
the first buffer one by one with every basic block visited in it. As long as the trace is
correct, the verifier proceeds its execution as long as its execution is not supposed to
normally terminate.

In parallel, the trace generator continues its work and fills more buffers as long as
there are available dedicated buffers, and it notifies the verifier again and again with every
terminating basic block, i.e., when a buffer is filled with trace values. When all buffers are
full, the generator must wait for a semaphore back from the verifier. This is just to prevent
the trace generator from corrupting the buffers by refilling them again with new values
before the old ones are completely verified.

The verifier keeps receiving the semaphore at the level of every initiating basic block
executed as long as the trace generator is active, and verifying the values in the next
buffers until there are no more buffers left to be verified. Then, the verifier needs to post
a semaphore back to the trace generator, so the latter can continue its work.

NoMisspeculationMissed
If the trace generator finishes its work and terminates its execution in a normal state, and
the verifier does not detect any wrong trace and terminates right after the trace generator,
then, this particular part of the trace handled by this couple is proved to be valid. When
all trace generators and verifiers exit normally, then the whole speculation is approved,
the original recursive code running in parallel is stopped and the reliable executor can
be launched. However, if at least one couple terminates abnormally due to a defect de-
tected in the predictive model w.r.t. the current execution by the verifier, thus there is a
misspeculation.

A misspeculation at the generator-verifier couple level is detected and handled as
follows.

It is possible that the trace generator finishes its execution naturally while the verifier
remains active even after it finishes verifying all the filled buffers. This means that the
predictive NLR model, on which the verifier is based, involves more iterations which must
be faulty w.r.t. the actual execution. Consequently, the verifier may be blocked waiting
forever for a semaphore that will never be posted by a terminated generator. In such a
situation, the verifier must be stopped flagging a misspeculation.

On the other hand, such a situation may occur in the opposite direction. The verifier
may detect a wrong trace value and eventually exit, or it may terminate because it must

4.5. CODE GENERATION PHASE: PART EXECUTOR 95

terminate according to the prediction model. Yet, even if the trace generated till then is
valid, if the trace generator is still active, this implies a misspeculation. When the verifier
terminates, the generator must exit instead of waiting infinitely for a semaphore from the
terminated verifier.

When the inspector disproves the predictive model, the executor is prevented from
executing; instead, the original recursive code carries on with its execution on which the
final output of the program will depend.

Beyond the Verification Process: a Race toWin

Even if the inspector does not detect a misspeculation, if the original code terminates its
execution before the inspector-executor, then the latter must be aborted. In some con-
texts, the inspector, in particular, may induce much overhead and remain slow in com-
parison to the original recursive code; this may yield a costly inspector-executor code.
For this reason, as the inspector-executor and the original code backup are launched in
parallel during the optimized program execution, they are in a race. The first one to ter-
minate, is the one whose output must be taken into account; the other one is ignored and
aborted.

4.5 Code Generation Phase: Part Executor
Whenever, at run-time, the inspection is successfully completed and all the inspector
threads safely terminate, the original recursive code that has been running simultane-
ously in the background is halted and the execution of the parallel optimized loop, a.k.a.
the executor, is launched.

In this section, we explain how this executor code can be generated by Rec2Poly at
compile-time. We first show how the loops are constructed and then how possible opti-
mizations can be applied.

4.5.1 Loops: fromDesign to Construction
Rec2Poly modifies the globalized and expanded LLVM IR of the recursive program and
builds into it the executor. The executor is first built as a function made up of sequences
of loop nests and their basic blocks. The NLR affine loop model is the design that guides
automatically, or even manually, the construction of this iterative code part. The resulting
code is considered semantically equivalent to its initial recursive counterpart.

LoopModel Information Extraction

Rec2Poly must take the NLR loop model as an input and extract all the information about
all NLR loops, traces and the affine memory functions. For every loop, it must obtain the
following necessary information:

• the loop ID within the model

• the depth

96 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

• the upper bound; the lower bound and the increment step of the NLR loops are
always zero and one respectively

• the parent loop ID

• the loops and traces IDs enclosed within this loop in order of occurrence

As for the control traces, it gets the information below:

• the trace ID within this model

• the ID/name of the impacting function that initially produced this particular trace
in the offline profiling

• the ID of the impacting basic block corresponding to this trace

• the invocation counter expression if the trace corresponds to a function’s entry

• the list of all relative memory addresses affine expressions accessed, in order of
occurrence, within the original basic block

• the affine expressions corresponding to the values of the inductions variables of
the loops already existing in the original code.

As for the affine functions of the memory offsets, Rec2Poly must parse these functions
and identify the loops whose induction variables are part of this expression in addition
to the associated coefficients. If the loop model is parametrically affine, then Rec2Poly
needs to extract all the list of the possible coefficient values associated with a variable.

When all this information is extracted, code rewriting begins.

Create, Clone andMake a Difference
Rec2Poly creates an executor function and inserts a call instruction to it right after the
inspector threads are all joined in the LLVM IR.

Then, the control flow graph of this function is constructed; each node, each con-
structed basic block corresponds to either a NLR for-loop or a NLR trace line; a trace line
is the NLR tuple including the basic block ID and the list of affine expressions correspond-
ing to memory accesses. First of all, a function entry basic block must be constructed.

A loop is represented as a sub-graph composed of a maximal subset of the control
flow graph nodes, corresponding to basic blocks, forming a strongly connected compo-
nent (SCC). Within such a SCC, there exists an entry node dominating all the other loop-
related nodes [79]. If the NLR model starts with a loop, then the function entry block is
assigned to be the loop preheader. In case the loop is preceded by a trace line, then the
basic block corresponding to this trace is the loop preheader. The loop preheader must
always branch to the loop entry node. Also, a loop iterator variable is allocated dedicated
to this loop. In the loop entry, the loop iterator is checked if it is still less than or equal
to the NLR upper bound. If so, it branches to a basic block representing the loop body.
Else, it branches to a loop exit basic block which, in turn, branches to the succeeding NLR
loops or traces corresponding basic blocks.

4.5. CODE GENERATION PHASE: PART EXECUTOR 97

The loop body basic block either branches to inner NLR sequences of loops or traces
basic blocks; the last of these inner basic blocks must branch to a basic block in which the
loop iterator is incremented by one. The basic block responsible for the loop increment
must perform a jump back (backedge) towards the entry loop block.

As for the traces basic blocks, Rec2Poly maps every NLR control trace value/ID to
its corresponding basic block in the LLVM IR. Rec2poly creates a corresponding basic
block in which it clones all the corresponding enveloped impacting instructions. For
every occurrence of a basic block ID appearing in the NLR trace, a basic block must be
constructed. Accordingly, the impacting instructions must be cloned again as many as
required. However, the branch instructions must not be cloned. New branch instruc-
tions are created and added to the basic blocks in the executor functions to branch to the
succeeding newly constructed basic blocks according to the NLR model. The operands
of the instructions must be modified in order to fit in the new function.

In case we arrive as far in code generation, this means that the recursive code is
affine behaving; thus, the values of the inserted functions invocation counters are also
expressed as affine functions of the surrounding loops. These affine expressions must
be translated as instructions using the created loops iterator variables in the executor
function. Accordingly, the uses of the non-pointer parameters in the function must be
replaced by the values recorded by the parameter saver in the dedicated buffers indexed
using the counters affine expressions. Similarly, Rec2Poly manages the accesses to the
globalized variables.

As for the memory access instructions per created basic block, they must be replaced
by accesses to the original associated base addresses using the NLR affine expression in
terms of the surrounding loops iterators. In addition, the uses of the induction variables
of initially existing loops must be replaced by the corresponding NLR affine expressions
in terms of the NLR loops.

The control flow graph of the executor function generated for the recursive program
whose behavior is modelled by NLR as shown in Figure 4.3 (or 4.4) is illustrated in Fig-
ure 4.8.

The executor must be optimized by the classical LLVM passes that, for example, sim-
plify the control flow, perform dead code elimination and promote memory to register
references. Finally, further powerful loop optimizations can be applied to the beautifully
constructed loops in the executor function.

As mentioned in Section 4.3.2, when successful, NLR may produce two types of inter-
esting loop models:

1. a model exhibiting a fully affine control and memory behavior
2. a model that is parametrically affine

Rec2Poly has to handle and optimize each of these models differently. A different op-
timization approach must be adopted and applied depending on the type of loops ob-
tained. This is discussed in what follows.

4.5.2 Fully Affine LoopModel Optimization
This is the most favorable case in which Rec2Poly generates perfect affine loop nests.
The resulting loops are ready to be optimized using an automatic polyhedral optimizer.

98 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

A::BB1

loop.0.for.cond

True False

loop.0.for.body loop.0.for.end

A::BB2

loop.1.for.cond

True False

loop.1.for.body loop.1.for.end

D::BB1

E::BB1

E::BB2

F::BB1

H::BB1

loop.2.for.cond

True False

loop.2.for.body loop.2.for.end

H::BB2

H::BB3

loop.2.for.inc

E::BB4

loop.1.for.inc

A::BB3

loop.0.for.inc

Figure 4.8 – Executor Control Flow Graph Example

4.5. CODE GENERATION PHASE: PART EXECUTOR 99

However, although the Polly optimizer would have been an obvious pick in this regard,
the loops generated by Rec2Poly may encounter the same challenges as those encoun-
tered by Apollo’s loops with Polly [83]. Our choice in this regard is Pluto. However, since
we generate and transform codes at the level of the LLVM IR, and Pluto is not capable of
processing at that low level, Rec2Poly needs to feed Pluto with an OpenScop represen-
tation [12] of the generated affine loops. Data dependences can automatically be taken
care of by Pluto.

An interesting option would be to integrate Rec2Poly functionalities in Apollo which
is also based on Pluto. Yet, the run-time verification performed by Apollo at run-time
would be costly for the so-generated loops since they do not need to be verified any fur-
ther.

4.5.3 Loops with Parametrically-Affine Memory Behavior

In this case, unfortunately, polyhedral automatic optimizers cannot be applied because
the memory accesses do not fit the polyhedral model.

Nevertheless, efficient loop parallelization can be still achieved which requires a ded-
icated dependence analysis process. This process consists of computing the ranges of
touched memory addresses by store and load instructions at each iteration. This can be
easily resolved at compile time, because thanks to NLR, Rec2Poly can pre-compute all the
memory addresses for all iterations using the list of coefficients obtained. These ranges
are then used to build independent sets/lists of iterations.

Accordingly, this helps breaking the outer loop into two nested loops such that:

• the outer loop iterates over the lists of loop indices values

• the inner one iterates over the indices values inside each list

Finally, the outer loop can be parallelized into parallel threads using OpenMP.

As an illustrative example, consider the parametrically-affine NLR model in Figure 4.9
of the behavior of some instrumented recursive program. The NLR model shows a loop
nest in which the outermost loop corresponds to a recursion and not a loop already exist-
ing in the code. All the inner loops and the basic blocks, whose IDs appear in the model,
correspond to an impacting function that is called “foo” whose code is shown in List-
ing 4.7. We assume that Function “foo” already has its invocation counter inserted to the
code, which is foo_invocation_counter, and has its initially local variable c global-
ized to c_glob. Based on the NLR model, we can rewrite the corresponding recursive
code as an optimized iterative code using the impacting basic blocks and instructions of
Function “foo” only.

100 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

for i0 = 0 to 7
val foo::entry , 1*i0
for i1 = 0 to 31
val foo::for.cond
for i2 = 0 to 31

val foo::for.cond1
val foo::for.body3 , 1*i0
for i3 = 0 to 31
val foo::for.cond4
val foo::for.body6

, [8:64,96,2112,2144,64,96,2112,2144][i0] + 64*i2 + 1*i3
, 1*i0
, 1*i0

val foo::for.inc , 1*i3
val foo::for.cond4
val foo::for.end
, 1*i0
, [8:0,0,32,32,2048,2048,2080,2080][i0] + 64*i1 + 1*i2
, [8:0,0,32,32,2048,2048,2080,2080][i0] + 64*i1 + 1*i2

val foo::for.inc84 , 1*i2
val foo::for.cond1
val foo::for.cond87
val foo::for.inc120 , 1*i1

val foo::for.cond

Figure 4.9 – Parametrically Affine NLR Model

int foo_invocation_counter=-1;

void foo(double * A, double * B)
{

foo_invocation_counter++;
for (int i = 0 ; i < p ; i++)
for (int j = 0 ; j < p ; j++) {

c_glob[foo_invocation_counter] = 0;

for (int k = 0 ; k < p ; k++)
c_glob[foo_invocation_counter] += A[s*j+k];

B[s*i+j] = c_glob[foo_invocation_counter]*B[s*i+j];
}

}

Listing 4.7 – Impacting Function of a Recursive Code After Code Preparation

The equivalent iterative code, at the level of the C source code, is shown in Listing 4.8.
The parameters values appearing in the NLR model, are defined in Arrays/Lists A_param
and B_param in the iterative code. In order to access the elements of Arrays A and B

4.5. CODE GENERATION PHASE: PART EXECUTOR 101

void executor_non_opt () {
int A_param [8]={64,96,2112,2144,64,96,2112,2144};
int B_param [8]={0,0,32,32,2048,2048,2080,2080};

for (int i0 =0 ; i0 <= 7 ; i0++)
for (int i1 =0 ; i1 <= 31 ; i1++)

for (int i2 = 0 ; i2 <= 31 ; i2++) {
c_glob[i0]=0;//S1

for (int i3 =0 ; i3 <= 31 ; i3++)
c_glob[i0]+=A_base[A_param[i0]+64*i2+i3];//S2

B_base[B_param[i0]+64*i1+i2]=
c_glob[i0]*B_base[B_param[i0]+64*i1+i2];//S3

}
}

Listing 4.8 – Recursion-Equivalent Iterative Code

in the iterative version, we need to use their original base addresses in which they are
initially allocated, i.e., A_base and B_base respectively, and the parametrically-affine
expressions in terms of the surrounding loops indices as array indices.

Since polyhedral optimizations cannot be applied to such loops, one would think of
parallelizing the outermost loop, but the existing data dependences must be analyzed
and removed first. Since we already know all parameters values and all loops information
thanks to the NLR model, we can perform a precise data dependence analysis and find
dependence-free parallel regions in this loop nest.

Initially, disregarding read-after-read dependences, Statement S2 is dependent on it-
self and S1, but these dependences are not carried by the outer loop that we would like
to parallelize. However, Statement S3 is dependent on S1, S2 and itself. There is a risk
to corrupt the memory location to which S3 writes to in case the outermost loop with
index i0 is parallelized. This is because, for instance, in the loop iterations where i0=0
and i0=1, the parameter value obtained from B_param is 0, and so the same memory
location is accessed by S3, i.e., B_base[64*i1+i2]; accordingly, these iterations can-
not be run in parallel. Making use of the NLR model information, we can create lists of
iterations that can be run safely in parallel. In this example, we need to be careful about
the accesses and writes to Array B_base by S3, so for every iteration of the outermost
loop, we compute the range of addresses that are supposed to be accessed by S1. In
case two iterations happen to have mutual exclusive ranges, then they can run in parallel
safely such that their iterations belong to distinct parallel lists. Here, for the first iteration
where i0=0, the offset of Array B_base accessed by S3 ranges from 0 for i1=0 and i2=0
to 2, 015 for i1=31 and i2=31 (31 is the NLR loops upper bound); same for the second
iteration where i0=1. As for the third and fourth iterations, i.e., i2=2 and i2=3 respec-
tively, the range of array offsets is between 32 and 2047 which overlaps with those of the
previous iterations. This means that the iterations between i0=0 and i0=3 must be ex-
ecuted serially. Similarly, the iterations between i0=4 and i0=7 cannot be executed in
parallel w.r.t. each other. Yet, we can still execute the iterations 0− 3 in parallel with the
iterations 4− 7, i.e., we have two parallel lists of iterations in this example.

102 CHAPTER 4. DYNAMIC SPECULATIVE REWRITING

void executor_opt_parallel () {
//parallel lists
int B_p_lists[2][4]={{0,0,32,32},{2048,2048,2080,2080}};
int A_p_lists[2][4]={{64,96,2112,2144},{64,96,2112,2144}};
int idx_lists[2][4]={{0,1,2,3},{4,5,6,7}};

int i_p, i0, i1, i2, i3;
#pragma omp parallel
#pragma omp for private(i0,i1,i2,i3)
for (i_p = 0 ; i_p < 2 ; i_p++)
for (i0 = 0 ; i0 < 4 ; i0++)

for (i1 = 0 ; i1 <= 31 ; i1++)
for (i2 = 0 ; i2 <= 31 ; i2++) {
c_glob[idx_p_lists[i_p][i0]]=0;

for (int i3 =0 ; i3 <= 31 ; i3++)
c_glob[idx_p_lists[i_p][i0]]+= A_base[A_p_lists[i_p][i0]+64*i2+i3];

B_base[B_lists[i_p][i0]+64*i1+i2]=
c_glob[idx_p_lists[i_p][i0]]*B_base[B_p_lists[i_p][i0]+64*i1+i2];

}
}

Listing 4.9 – Parallelized Iterative Code

Finally, the outermost loop is broken into two loops, such that the outer one iterates
over the parallel lists which are only two in this example and it can be parallelized. The
inner one iterates over the elements of each list. The corresponding parallelized C code
is shown in Listing 4.9.

At the end of this chapter, we have thoroughly presented the Rec2Poly framework,
its phases, and the optimizations which it is capable of applying. In the next chapter,
we present some interesting experiments performed and the interesting results obtained
using Rec2Poly.

103

Chapter 5

Benchmarks

“There are three principal means of acquiring knowledge… observation of nature,
reflection, and experimentation. Observation collects facts; reflection combines them;

experimentation verifies the result of that combination.”
—Denis Diderot

After having introduced the Rec2Poly framework and described its phases in depth, we
dedicate this chapter to show some benchmark experiments performed to assess the per-
formance of Rec2Poly. Also, we discuss, based on these experiments, some aspects of
Rec2Poly that must be optimized further in addition to interesting functionalities that
can be embedded in Rec2Poly to broaden its scope.

The chapter is organized as follows. In the first section, Section 5.1, we present recur-
sive programs with polyhedral dynamic behavior. Also, we display the analysis results
and the polyhedral models generated by Rec2Poly for these programs. In the second sec-
tion, Section 5.2, we describe the inspectors that Rec2Poly generates when different in-
spector optimizations are activated and evaluate the inspector-executor codes and the
optimizations that Rec2Poly applies for the presented programs. Then, in the the third
section, Section 5.3, we point out challenges that may be faced while trying to analyze
and optimize some recursive programs, and we discuss how Rec2Poly can be extended
in the future to handle them.

5.1 Recursive Programs with Polyhedral Behaviors
In this section, we show Rec2Poly’s polyhedral modeling of interesting recursive imple-
mentations of Matrix Multiplication and Heat.

5.1.1 Matrix Multiplication
We present two different recursive algorithms for the matrix multiplication problem. We
show and discuss the run-time analysis results obtained by Rec2Poly for each one sepa-
rately as follows.

104 CHAPTER 5. BENCHMARKS

Recursive Implementation: One Dimension Down per Call
We have already shown, in chapter 3, a recursive implementation of matrix-vector mul-
tiplication, which can be considered as a simplified version or a special case of matrix
multiplication, in which the matrix/vector dimension diminishes by one with every re-
cursive call. Here, we tackle a similarly designed recursive algorithm and implementation
for the general recursive matrix multiplication problem.

The experimented matrix multiplication program includes the recursive Function
“MatrixMultiplication” that computes the product of the matrices passed to it as param-
eters. The C code of this function is displayed in Listing 5.1. The function involves three
recursive calls and one terminating condition. It accesses the memory multiple times in
a unique basic block to perform the computation C[i][j]+=A[i][k]*B[k][j] when
the second if-condition in the function is valid. It does not include any loops; there is no
evidence for a loop behavior.

void MatrixMultiplication(double **A , double **B , double **C , int i ,
int j , int k){

if (i>=ROW1) //all rows of A are handled
return;

if(k<COLUMN1 && j<COLUMN2) //not all columns of A & rows of B handled
{

C[i][j] += A[i][k]*B[k][j];
MatrixMultiplication(A , B , C , i , j , k+1);

}

else if (j<COLUMN2) //not all columns of B are handled
MatrixMultiplication(A , B , C , i , j+1 , 0);

else //not all rows of A are handled
MatrixMultiplication(A , B , C , i+1 , 0 , 0);

}

Listing 5.1 – Matrix Multiplication Recursive Function C Code

We use Rec2Poly to analyze this program at run-time. Rec2Poly generates for it an
instrumented version to produce the run-time control and memory trace of the recursive
function. After the instrumented matrix multiplication program runs for matrices of size
1000 × 1000 and generates the trace, the trace is then fed to NLR. The profiling output
shows a perfect affine loop nest composed of three loops with iterators i0, i1 and i2. The
model is displayed in Figure 5.1.

for i0 = 0 to 999
for i1 = 0 to 999
for i2 = 0 to 999
val MatrixMultiplication::if.then3
, 1*i0 , 1*i2 , 1*i2 , 1*i1 , 1*i0 , 1*i1 , 1*i1

Figure 5.1 – Matrix Multiplication Control and Memory Behavior NLR Model

5.1. RECURSIVE PROGRAMS WITH POLYHEDRAL BEHAVIORS 105

As we can see, the loops encompass the only one existing impacting basic block in-
cluding seven affine expressions. Every affine expression corresponds to an LLVM IR
memory instruction in the basic block with ID “if.then3”, i.e., a read/load or a write/s-
tore instruction required for performing the computationC[i][j]+=A[i][k]*B[k][j].
In Listing 5.2, we show the content of the corresponding basic block at the level of the
LLVM IR. This basic block includes seven stores and loads which are highlighted in the
listing.

So, the seven affine expressions, in the NLR model, define, in terms of the surrounding
NLR loops indices, the relative memory addresses accessed by these LLVM IR memory in-
structions, which in this example happen to be equivalent to the accessed arrays indices:
i and k for the load/read from A[i][k], k and j for the read from B[k][j], i and j for
the read from C[i][j] and j for the store/write to C[i][j].

if.then3: ; preds = %land.lhs.true
%idxprom = sext i32 %i to i64
%arrayidx = getelementptr inbounds double*, double** %A, i64 %idxprom
%0 = load double*, double** %arrayidx, align 8
%idxprom4 = sext i32 %k to i64
%arrayidx5 = getelementptr inbounds double, double* %0, i64 %idxprom4
%1 = load double, double* %arrayidx5, align 8
%idxprom6 = sext i32 %k to i64
%arrayidx7 = getelementptr inbounds double*, double** %B, i64 %idxprom6
%2 = load double*, double** %arrayidx7, align 8
%idxprom8 = sext i32 %j to i64
%arrayidx9 = getelementptr inbounds double, double* %2, i64 %idxprom8
%3 = load double, double* %arrayidx9, align 8
%mul = fmul double %1, %3
%idxprom10 = sext i32 %i to i64
%arrayidx11 = getelementptr inbounds double*, double** %C, i64 %idxprom10
%4 = load double*, double** %arrayidx11, align 8
%idxprom12 = sext i32 %j to i64
%arrayidx13 = getelementptr inbounds double, double* %4, i64 %idxprom12
%5 = load double, double* %arrayidx13, align 8
%add = fadd double %5, %mul
store double %add, double* %arrayidx13, align 8
%add14 = add nsw i32 %k, 1
call void @MatrixMultiplication(double** %A, double** %B, double** %C,
i32 %i, i32 $j, i32 %add14)

br label %if.end24

Listing 5.2 – LLVM Basic Block “if.then3” Content

Therefore, this recursion behaves as an affine loop nest and the code can be remodeled
and rewritten as affine loops compliant with the polyhedral model. The control flow
graph of the iterative code equivalent to the MatrixMultiplication function that can be
generated based on this profiling result is illustrated in Figure 5.2.

General Matrix Multiplication: High Performance Recursive Linear Algebra Library

We also conducted other experiments on another matrix multiplication implementation,
a recursive C implementation of the general matrix-matrix multiplication (GEMM) from

106 CHAPTER 5. BENCHMARKS

entry

loop.0.for.cond

True False

loop.0.for.body loop.0.for.end

loop.1.for.cond

True False

loop.1.for.body loop.1.for.end

loop.2.for.cond

True False

loop.2.for.body loop.2.for.end

if.then3

loop.2.for.inc

loop.1.for.inc

loop.0.for.inc

Figure 5.2 – Control Flow Graph Example

the High Performance Recursive Linear Algebra Library [124]. This version handles sub-
matrices by successive dichotomy and bipartitioning (division of the matrices dimen-
sions by two) until a specific threshold.

This program involves mainly seven functions: Functions main, gemm, sgemm_trans_r,
sgemm_i_trans, sgemm_j_trans, sgemm_k_trans and sgemm_trans2.
There is an indirect recursion among the four functions: sgemm_trans_r, sgemm_i_trans,
sgemm_j_trans and sgemm_k_trans.

A simplified call graph of GEMM is depicted in Figure 5.3. It clearly shows the indirect
recursions and the interactions among the functions. Each arrow in this graph from one
node to another represents a call to the function of the latter by that of the prior.

Function main calls Function “gemm” that creates the matrices as arrays, fills them
and then initiates a recursion by calling the recursive Function “sgemm_trans_r” passing
to it as parameters the arrays pointers, etc. Function “sgemm_trans_r” is the initial recur-
sive function; it may call “sgemm_i_trans”, “sgemm_j_trans” and “sgemm_k_trans”, each
of which calls it back through two calls. The recursion among them proceeds to decom-
pose the matrices until the threshold is reached. Then, Function “sgemm_trans_r” calls a
non-recursive function which is “sgemm_trans2” to perform the multiplication iteratively
between the final sub-matrices.

5.1. RECURSIVE PROGRAMS WITH POLYHEDRAL BEHAVIORS 107

main

gemm

sgemm_trans_r

sgemm_j_transsgemm_i_trans sgemm_k_trans

sgemm_trans2

Figure 5.3 – GEMM Program Call Graph

void sgemm_trans2(float *a,float *b,float *c,long i,long j,long k,long
s_a,long s_b,long s_c,const float alpha,const float beta)

{
float s1,s2,s3,s4,s,x;
long i2,j2,k2;
for (i2 = 0 ; i2 < i ; i2 ++) {
for (j2 = 0 ; j2 < (j - 3) ; j2 += 4) {

s1 = s2 = s3 = s4 = 0.0;
for (k2 = 0 ; k2 < k ; k2 ++) {

x = a[i2 * s_a + k2];
s1 += x * b[k2 + j2 * s_b];
s2 += x * b[k2 + (j2 + 1) * s_b];
s3 += x * b[k2 + (j2 + 2) * s_b];
s4 += x * b[k2 + (j2 + 3) * s_b];

}
c[i2 * s_c + j2] = alpha * s1 + beta * c[i2 * s_c + j2];
c[i2 * s_c + j2 + 1] = alpha * s2 + beta * c[i2 * s_c + j2 + 1];
c[i2 * s_c + j2 + 2] = alpha * s3 + beta * c[i2 * s_c + j2 + 2];
c[i2 * s_c + j2 + 3] = alpha * s4 + beta * c[i2 * s_c + j2 + 3];

}

for (; j2 < j ; j2 ++) {
s = 0.0;
for (k2 = 0 ; k2 < k ; k2 ++) {

s += a[i2 * s_a +k2] * b[k2 + j2 * s_b];
}
c[i2 * s_c + j2] = alpha * s + beta * c[i2 * s_c + j2];

}
}

}

Listing 5.3 – GEMM sgemm_trans2 Function C Code

108 CHAPTER 5. BENCHMARKS

for i0 = 0 to 63
val sgemm_trans2::entry , 1*i0
for i1 = 0 to 49
val sgemm_trans2::for.cond
for i2 = 0 to 11
val sgemm_trans2::for.cond1
val sgemm_trans2::for.body3 , 1*i0 , 1*i0 , 1*i0 , 1*i0
for i3 = 0 to 49
val sgemm_trans2::for.cond4
val sgemm_trans2::for.body6
, [64:0,50,0,...][i0] + 200*i1 + 1*i3
, 1*i0 , 1*i0
, [64:0,50,10000,...][i0] + 800*i2 + 1*i3
, 1*i0 , 1*i0 , 1*i0
, [64:200,250,10200,...][i0] + 800*i2 + 1*i3
, 1*i0 , 1*i0 , 1*i0
, [64:400,450,10400,...][i0] + 800*i2 + 1*i3
, 1*i0 , 1*i0 , 1*i0
, [64:600,650,10600,...][i0] + 800*i2 + 1*i3
, 1*i0 , 1*i0

val sgemm_trans2::for.inc , 1*i3
val sgemm_trans2::for.cond4
val sgemm_trans2::for.end , 1*i0 , [64:0,...][i0] + 200*i1 + 4*i2 , ...
val sgemm_trans2::for.inc72 , 4*i2

val sgemm_trans2::for.cond1
val sgemm_trans2::for.cond75
val sgemm_trans2::for.body77 , 1*i0
for i2 = 0 to 49
val sgemm_trans2::for.cond78
val sgemm_trans2::for.body80 , [64:0,...][i0] + 200*i1 + 1*i2 , ...
val sgemm_trans2::for.inc89 , 1*i2

val sgemm_trans2::for.cond78
val sgemm_trans2::for.end91 , 1*i0 , [64:48,...][i0] + 200*i1 , ...
val sgemm_trans2::for.inc101 , 48
val sgemm_trans2::for.cond75
val sgemm_trans2::for.body77 , 1*i0
for i2 = 0 to 49
val sgemm_trans2::for.cond78
val sgemm_trans2::for.body80 , [64:0,...][i0] + 200*i1 + 1*i2 , ...
val sgemm_trans2::for.inc89 , 1*i2

val sgemm_trans2::for.cond78
val sgemm_trans2::for.end91 , 1*i0 , [64:49,...][i0] + 200*i1 , ...
val sgemm_trans2::for.inc101 , 49
val sgemm_trans2::for.cond75
val sgemm_trans2::for.inc104 , 1*i1

val sgemm_trans2::for.cond

Figure 5.4 – NLR Model for the Control and Memory Behavior of GEMM

5.1. RECURSIVE PROGRAMS WITH POLYHEDRAL BEHAVIORS 109

The recursive functions do not involve significant computations; they are only re-
sponsible for the matrices decomposition. Yet, “sgemm_trans2” envelops expensive mem-
ory accesses. In addition, the memory instructions in “sgemm_trans2” are executed within
interesting loop nests. The C code of this function is shown in Listing 5.3.

So, not only may the existing recursion hide an optimizable loop behavior, but also
it already disturbs existing loop structures which makes this program interesting for our
study. Eliminating the recursion and rewriting the code and the loops as sequences of
affine loop nests will open the opportunity for interesting optimizations.

When Rec2Poly analyzes and prepares this program for the offline profiling, it will
take into account and clone the recursive functions and their only reachable function
“sgemm_trans2”. Since “sgemm_trans2” and its clone include non-induction local vari-
ables (e.g., s1, s2, etc.), Rec2Poly globalizes them besides injecting an invocation counter
dedicated to this function’s clone. Then, Rec2Poly generates the instrumented version of
the code by adding the printing instructions exclusively to the reachable function since it
is the only one performing impacting memory accesses. When the instrumented code for
matrices of sizes 200×200 and threshold 80 is executed, and the corresponding run-time
control and memory trace is generated, the trace is then fed to NLR to discover potential
loops in it. As a result, NLR produces the model displayed in Figure 5.4.

As we can see, the NLR model is a parametrically-affine loop nest made of six loops.
So, the control flow of the recursive part of the GEMM program can be fitted within a
loop nest. Besides, the relative memory addresses touched at run-time can be expressed
as semi-affine expressions such that some coefficients are not constant throughout all
loops iterations, yet their values can be predicted and known given the NLR model infor-
mation. Hence, the recursive code part of this program can be rewritten accordingly as
an iterative code, and, although it may not fit in the polyhedral model, the data depen-
dences can be unveiled and a dedicated transformation and significant optimization can
still be applied.

Note that, in general, the NLR loops bounded by the basic blocks with IDs “for.cond”
and “for.end” correspond to loops that already exist in the code. In this model, there is
only the outermost NLR loop that does not exist in the source code; this loop is resulting
from the recursion itself. The rest of the NLR loops correspond to the loops existing in
Function “sgemm_trans2”.

5.1.2 Heat
Another experiment was conducted on a recursive C implementation of Heat from the
REAPAR benchmark suite [114]. Heat is a program that performs stencil computations.
The Heat program involves mainly six functions: the main function, heat, divide, allcgrid,
initgrid and compstripe. Its call graph is depicted in Figure 5.5. The main function initi-
ates the computation by calling the heat function. The “heat” function calls the function
divide three times. Function “divide” is a recursive function that involves two non-tail di-
rect recursive calls. Then, divide may call “allcgrid”, “initgrid” or “compstripe”. Note that
there are two invocations of “compstripe” in Function “divide”.

First, Function “heat”, when activated, allocates memory for two arrays of pointers.
When heat executes its first call to “divide”, and after “divide” has completed with the di-
vision and decomposition, “divide” calls “allcgrid” to allocate memory for the array point-

110 CHAPTER 5. BENCHMARKS

main

heat

divide

initgridallcgrid compstripe

Figure 5.5 – Heat Program Call Graph

ers. When “heat” calls “divide” for the second time, “divide” will eventually call “initgrid”
responsible for initializing the arrays values. Then, through the third “divide” call inside
“heat”, “compstripe” is reached to perform the arrays computations in a recursive fashion
too. Yet, the third call to Function “divide” inside “heat” is placed within a for-loop which
invokes “divide” several more times. In Figure 5.6, the control flow graph of Function
“heat” is illustrated. The first basic block is the entry block in which the two calls to “di-
vide” are executed. The third call exists in the basic block called “for.body”, involved in a
cycle with the Basic Blocks “for.cond” and “for.inc” reachable from “entry”, corresponding
to the for-loop existing in the code.

Accordingly, Function “divide” must be analyzed by Rec2Poly since it is recursive.
Functions “allcgrid”, “initgrid” and “compstripe” are reachable from “divide”, so they must
also be analyzed. Since “heat” initiates the recursion from a loop body at least once, it is
also analyzed for being the source of the recursion.

Also, we shall mention that Function “divide” performs mainly the decomposition of
the program without accessing memory or performing any significant computation. So,
it neither gets to have an invocation counter nor appears in the loop model generated by
the offline profiling. The arguments it passes to its reachable functions will be saved by
the parameter saver, part of the inspector generated by Rec2Poly, and used to build the
executor in case needed.

On the other hand, the reachable functions, especially “compstripe”, involve several
expensive interesting loops. The C code of the “compstripe” function is shown in List-
ing 5.4.

5.1. RECURSIVE PROGRAMS WITH POLYHEDRAL BEHAVIORS 111

entry:
...
%6 = load i32, i32* @nx, align 4
%7 = load double**, double*** %new, align 8
%8 = load double**, double***
call void @divide(i32* %l, i32 0, i32 %6,

double** %7, double** %8, i32 0,... i32 0)
%9 = load i32, i32* @nx, align 4
%10 = load double**, double*** %new, align 8
%11 = load double**, double*** %old, align 8
call void @divide(i32* %l, i32 0, i32 %9,

double** %10, double** %11, i32 1,... i32 0)
store i32 1, i32* %c, align 4
br label %for.cond

for.cond:
%12 = load i32, i32* %c, align 4
%13 = load i32, i32* @nt, align 4
%cmp = icmp sle i32 %12, %13
br i1 %cmp, label %for.body, label %for.end

True False

for.body:
...
%17 = load i32, i32* @nx, align 4
%18 = load double**, double*** %new, align 8
%19 = load double**, double*** %old, align 8
%20 = load i32, i32* %c, align 4
call void @divide(i32* %l, i32 0, i32 %17,

double** %18, double** %19, i32 ... 2, i32 %20)
br label %for.inc

for.inc:
%21 = load i32, i32* %c, align 4
%inc = add nsw i32 %21, 1
store i32 %inc, i32* %c, align 4
br label %for.cond

for.end:
ret i32 0

Figure 5.6 – Heat Function Control Flow Graph

112 CHAPTER 5. BENCHMARKS

void compstripe(double **new, double **old, int lb, int ub)
{

int a, b, llb, lub;
llb = (lb == 0) ? 1 : lb;
lub = (ub == nx) ? nx - 1 : ub;

for (a=llb; a < lub; a++) {
for (b=1; b < ny-1; b++) {

new[a][b] = dtdxsq * (old[a+1][b] - 2 * old[a][b] + old[a-1][b]) +
dtdysq * (old[a][b+1] - 2 * old[a][b] + old[a][b-1]) + old[a][b];

}
}

for (a=llb, b=ny-1; a < lub; a++)
new[a][b] = randb(xu + a * dx, t);

for (a=llb, b=0; a < lub; a++)
new[a][b] = randa(xu + a * dx, t);

if (lb == 0) {
for (a=0, b=0; b < ny; b++)

new[a][b] = randc(yu + b * dy, t);
}

if (ub == nx) {
for (a=nx-1, b=0; b < ny; b++)

new[a][b] = randd(yu + b * dy, t);
}

}

Listing 5.4 – Heat’s Compstripe Function C Code

This recursive program is highly interesting for our study because it includes many
loops that are probably optimizable besides the target recursive function. In Heat, there
is a loop initiating a recursion numerously such that the recursion tends to execute indi-
rectly several affine loop nests each time. In other words, the existing recursion distorts
the existence of these loops. The existence of the recursion among loops may deprive
them of advanced optimization and parallelization opportunities.

Therefore, it is intriguing to investigate the possibility of rewriting the code as an
equivalent sequence of affine loop nests without the recursion. Whenever possible, the
time performance gain obtained from such code reconstruction and optimization may
be considerable.

The Rec2Poly framework succeeds in modeling the control and memory behavior of
the Heat program as a sequence of fully-affine loop-nests. Part of the NLR model gener-
ated, as the whole is too long to fit on one page, is shown in Figure 5.7.

The model corresponds to the trace produced at run-time by the instrumented ver-
sion of the Heat program, generated by Rec2Poly, when processing two dimensional ar-
rays of size 1024 × 512 such that the third call to Function “divide” in function heat is
executed 200, 000 times.

5.1. RECURSIVE PROGRAMS WITH POLYHEDRAL BEHAVIORS 113

...
for i0 = 0 to 99999
val heat::for.cond
val heat::for.body , 0 , 0 , 0
val compstripe::entry , 128*i0
for i1 = 0 to 14

val compstripe::for.cond
for i2 = 0 to 509
val compstripe::for.cond7
val compstripe::for.body10

, 0 , 2 + 1*i1 , 1 + 1*i2 , 1 + 1*i1 , 1 + 1*i2 , 1*i1 , 1 + 1*i2
, 0 , 1 + 1*i1 , 2 + 1*i2 , 1 + 1*i1 , 1 + 1*i2 , 1 + 1*i1 , 1*i2
, 1 + 1*i1 , 1 + 1*i2 , 1 + 1*i1 , 1 + 1*i2

val compstripe::for.cond7
val compstripe::for.inc53 , 1 + 1*i1

val compstripe::for.cond
val compstripe::for.end55 , 0
for i1 = 0 to 14

val compstripe::for.cond57
val compstripe::for.body59 , 0 , 0 , 0 , 1 + 1*i1 , 511

val compstripe::for.cond57
for i1 = 0 to 14

val compstripe::for.cond72
val compstripe::for.body75 , 1 + 1*i1 , 0

val compstripe::for.cond72
for i1 = 0 to 511

val compstripe::for.cond85
val compstripe::for.body88 , 0 , 1*i1

val compstripe::for.cond85
for i1 = 0 to 61

val compstripe::entry , 1 + 128*i0 + 1*i1
for i2 = 0 to 15
val compstripe::for.cond
for i3 = 0 to 509
val compstripe::for.cond7
val compstripe::for.body10
, 0 , 17 + 16*i1 + 1*i2 , 1 + 1*i3 , ...

val compstripe::for.cond7
val compstripe::for.inc53 , 16 + 16*i1 + 1*i2

val compstripe::for.cond
val compstripe::for.end55 , 0
for i2 = 0 to 15
val compstripe::for.cond57
val compstripe::for.body59 , 0 , 0 , 0 , 16 + 16*i1 + 1*i2 , 511

val compstripe::for.cond57
...

...

Figure 5.7 – NLR Model for the Control and Memory Behavior of Heat

114 CHAPTER 5. BENCHMARKS

The shown part of the model is the one that is exclusively produced by the for-loop
structure in Function “heat” in which the third call to the recursive Function “divide”
is executed, thus reaching “compstripe”. This part is the most interesting one for code
rewriting because it involves the largest, deepest and most expensive loop nest, and it is
responsible for the major time overhead of the whole program. Note that the first skipped
part of the model involves sequences of lighter loops involving Functions “allcgrid” and
“initgrid”. Furthermore, the remaining part of the outer NLR loop body includes repe-
titions of the same displayed control behavior but with different memory offsets; this
is caused by reaching the terminating condition, in which “compstripe” is called, many
times by the recursion.

Given this NLR model, we conclude that the control behavior is linear/affine as the
IDs of the functions’ basic blocks visited at run-time are encompassed by the loops. In
addition, we notice that the memory relative offsets are represented as affine functions
of the surrounding loops indices which also indicates that the memory behavior is affine.
Hence, the whole behavior is affine and the code can be substituted by equivalent poly-
hedral loop structures.

5.2 Inspector-Executor
In this section, we discuss the inspector-executor codes generated by Rec2Poly for each
of the presented programs. As mentioned in the previous chapter, there are many opti-
mizations available for the inspector part. So, we also describe the generated inspector
code when enabling different optimizations and the required number of POSIX threads.
Furthermore, we show the execution speedup and compare the performance of the dif-
ferent inspectors and the inspector-executor codes corresponding to each of the recursive
programs.

The programs and the generated codes were compiled with Clang version 6.0 and the
optimization flags -O3 -march=native, and run on two Intel Xeon CPU E5-2650 v3 @
2.30GHz of ten cores each. The optimizations and parallelizations for the executors with
affine loops were simulated with Pluto and those for the executor with the parametrically-
affine loops were simulated based on the approach introduced in the previous chapter
and parallelized using OpenMP. The Parallel executor codes were executed using forty
threads on the twenty hyperthreaded cores of the hardware platform.

Note that the default inspector codes are already subject to default optimizations,
the execution of obvious basic blocks like the loop-condition basic blocks do not need
to be verified by the control trace generator-verifier couple. Also, in case there are affine
loop nests, they are optimized as explained in the previous chapter exclusively in the
control trace generators and verifiers. Optimizing the control-related threads by default
is crucial because they are initially the costliest of all in the inspectors as verifying the
control must be carried out serially, and so the corresponding thread workload cannot
be distributed over multiple threads. Another optimization is also activated by default
which is assigning the verification of the induction variables values and the functions
counters values, if they exist, to separate trace generator-verifier couple threads instead of
handling them along with the memory offsets. This helps balance the load better among
the threads.

5.2. INSPECTOR-EXECUTOR 115

5.2.1 Matrix Multiplication
Matrix Implementation: One Dimension Down per Call
Given the perfect affine NLR loop model, Rec2Poly can generate, for the first recursive im-
plementation presented of the matrix multiplication problem, equivalent iterative codes
that can be optimized, tiled and parallelized by Pluto for later executions. The control
flow graph of the executor is already shown in Figure 5.2. In addition, Rec2Poly gener-
ates the inspector codes responsible for verifying the correctness of the executor since it
is generated based on offline profiling.

Note that there are no local variables in the impacting function, and so no globaliza-
tion needs to be performed and no invocation counter variable is injected. Also, there
are no loops and so no induction variables must be verified. Furthermore, a parameter
saver is not needed.

...
if.then3: ; preds = %land.lhs.true

%idxprom = sext i32 %i to i64
%arrayidx = getelementptr inbounds double*, double** %a, i64 %idxprom
%0 = load double*, double** %arrayidx, align 8
%idxprom4 = sext i32 %k to i64
%arrayidx5 = getelementptr inbounds double, double* %0, i64 %idxprom4
%1 = load double, double* %arrayidx5, align 8
%idxprom6 = sext i32 %k to i64
%arrayidx7 = getelementptr inbounds double*, double** %b, i64 %idxprom6
%2 = load double*, double** %arrayidx7, align 8
%idxprom8 = sext i32 %j to i64
%arrayidx9 = getelementptr inbounds double, double* %2, i64 %idxprom8
%3 = load double, double* %arrayidx9, align 8
%mul = fmul double %1, %3
%idxprom10 = sext i32 %i to i64
%arrayidx11 = getelementptr inbounds double*, double** %c, i64 %
idxprom10

%4 = load double*, double** %arrayidx11, align 8
%idxprom12 = sext i32 %j to i64
%arrayidx13 = getelementptr inbounds double, double* %4, i64 %idxprom12
%5 = load double, double* %arrayidx13, align 8
%add = fadd double %5, %mul
store double %add, double* %arrayidx13, align 8
%add14 = add nsw i32 %k, 1
call void @MatrixMultiplication(double** %a, double** %b, double** %c,
i32 %i, i32 %j, i32 %add14)

br label %if.end24
...

Listing 5.5 – Matrix Multiplication Function if.then3 Basic Block LLVM IR

The default inspector generated by Rec2Poly for this program consists of:

• one control trace generator,

116 CHAPTER 5. BENCHMARKS

• seven memory trace generators since the only existing computation in the only im-
pacting function in this program, C[i][j]+=A[i][k]*B[k][j], requires seven
memory access instructions, six loads and one store (check out Listing 5.5), whose
relative addresses must be re-generated and verified at run-time for every opti-
mized execution.

• one control verifier, and

• seven memory verifiers.

This inspector requires sixteen threads, eight for the trace generators and eight for ver-
ifiers. Also, Rec2Poly dedicates another thread for the backup recursive code in case a
misspeculation is detected during the execution. Accordingly, during the inspection,
seventeen threads must execute and if the verification holds, then the backup thread
is cancelled and the optimized executor runs using the forty threads available.

Yet, the inspector can be optimized further. As we can see in Basic Block “if.then3” in
Listing 5.5, there are redundant memory accesses that can be removed, e.g., the touched
memory location C[i][j] into which the result of the multiplication must be written, is
also read to perform the increment. Accordingly, Rec2Poly can generate an optimized
version of the inspector involving five memory trace generators and five verifiers instead
of seven memory trace generators and seven verifiers. In total, this inspector requires
twelve threads, six for the trace generators and six for the verifiers. Besides, there is the
thread dedicated for the backup original code.

4000 6000 8000 10000
0

10

20

30

40

Matrix A Row Size

Sp
ee

du
p(

%
)

Inspector - Executor
Optimized Inspector - Executor

Figure 5.8 – Matrix Multiplication Experimental Results - Rec2Poly Speedup

In Figure 5.8, we show the experimental results, the speedups obtained when execut-
ing the inspector-executor code and the optimized inspector with the executor code with
respect to the original recursive matrix multiplication code. The speedup percentage is
computed as follows: (To−Ti/e)

To
×100 whereTo is the execution time of the original code

and Ti/e is the execution time of the code generated by Rec2Poly.
As we notice, the default inspector-executor performed better than the original code for

5.2. INSPECTOR-EXECUTOR 117

about 15.5%, and the optimized inspector-executor version performed even faster; the
performance gain was about 30.5% for matrices A of size 10000 × 900 and B of size
900× 1000.

Recursive General Matrix Multiplication (GEMM)

The offline profiling of this recursive program yields a parametrically affine loop nest
which can be used to generate, for later program executions, iterative codes for which
a precise data dependence analysis can be performed and the outer loop nest can be bro-
ken into independent iterations to be parallelized accordingly. Rec2Poly as usual gener-
ates an inspector to verify the executor code at run-time. The default inspector generated
is composed of a parameter saver, seven trace generators and seven verifiers. It has:

• one trace generator-verifier couple that handles the control flow of this program;

• one trace generator-verifier couple that handles the verification of the existing loops
induction variables values and the function invocation counter values, that helps
verifying the globalized variables accessed;

• five memory trace generator-verifier couples; it is preferable for every memory-
related couple to handle, for load balancing purposes, only one memory access per
basic block. Since the maximal number of memory instructions in a basic block
in this program is five (in “for.body6” of function sgemm_trans2), we need five of
them.

Then, this inspector (Inspector I) requires fifteen threads, one for the parameter saver,
seven for the trace generators and seven for the verifiers. As always, we have the backup
original code running on the sixteenth thread. When the inspector terminates correctly,
the optimized executor is launched and parallelized using OpenMP on forty threads.

There is a possibility to optimize this inspector and remove the redundant memory
accesses as arrays b and c for instance are referenced using functions of the same indices
multiple times; it is enough to verify one of the four accesses to array b in “for.body6” of
Function “sgemm_trans2” per basic block visit to make sure that the rest are correct (same
for c accesses). As a result, Rec2Poly can generate Inspector II, an optimized version of
the inspector consisting of only four trace generator-verifier couples of which only two
are dedicated to the inspection of the memory flow of the recursive code part against the
NLR loop model. This inspector only requires nine threads, one for the parameter saver,
four for the trace generators and four for the verifiers; the backup recursive code runs on
a separate thread.

Furthermore, in Listing 5.3, we show an impacting function, in this program, includ-
ing an interesting loop nest. Light copies of this function and its constituting loops will
be generated in the control trace generators and their corresponding NLR loops will be
generated in the verifiers by Rec2Poly as described in Chapter 4 in Section 4.4. Rec2Poly
can modify the outermost and the innermost loops of the corresponding loop nests in
the trace generators and the verifiers to terminate after three iterations as described in
Subsection 4.4.5. Accordingly, Rec2Poly generates Inspector III as an optimized version
of Inspector II.

118 CHAPTER 5. BENCHMARKS

1600 3200 6400
0

20

40

60

80

100

120

Matrix Sizes

Sp
ee

du
p(

%
)

Inspector I - Executor
Inspector II - Executor
Inspector III - Executor

Figure 5.9 – Program GEMM Experimental Results - Rec2Poly Speedup

In Figure 5.9 we show the experimental results obtained for multiple executions of the
recursive GEMM program and the corresponding inspector-executor codes for different
matrices sizes. All of our optimized codes outperformed the original recursive code. The
inspector-executor code, with the default inspector (I), performed better than the original
code by about 20%. Yet, the inspector-executor code with the optimized inspector (II)
and the redundant memory accesses removal performed even better; it was faster than
the original code by about 28.9%. Finally, the inspector-executor code with the most
aggressively optimized inspector (III) performed faster by 83%.

5.2.2 Heat
Similarly, the Heat program can be rewritten as an inspector-executor code based on a
previously generated NLR model corresponding to the memory and control execution
behavior of the Heat recursive code part for the same input size.

The default inspector of this program that can be generated by Rec2Poly is expected to
be hefty. As we can see from Listing 5.4, the first loop nest in the “compstripe” function
body envelops a costly computation that requires numerous memory accesses. In the
NLR model in Figure 5.7, we can count up to sixteen affine expressions besides the zeros
corresponding to the global scalars accessed in the Basic Block “for.body10” in “comp-
stripe”. So, we have at least sixteen memory accesses repeating again and again within
an expensive loop nest that must be tracked and verified, in new execution contexts of
Heat against the supposedly equivalent NLR model, by the inspector. This basic block
contains the largest number of memory accesses in the whole program.

In general, Rec2Poly creates a trace generator and a verifier for every memory access
per basic block in the inspector which means that Rec2Poly needs to generate sixteen
memory trace generators and sixteen verifiers for Heat to handle the heaviest block. In
addition, Rec2Poly creates a control trace generator and a verifier and dedicate a trace
generator and verifier to take care of the function invocation counters and loop induc-
tion variables values. In total, Rec2Poly generates for the Heat inspector, eighteen trace

5.2. INSPECTOR-EXECUTOR 119

generator-verifier couples besides the parameter saver which requires thirty-seven threads
plus the backup code thread.

Hence, it was highly interesting to investigate how powerful the inspector optimiza-
tions can be in such case. For this reason, we conducted experiments on the inspector
part only activating multiple optimization levels and we show the experimental results
in Figure 5.10. Note that, in the experiments, we executed the codes for different upper
bounds of the loop in Function “heat” that initiates the third recursive call to Function
“divide”.

40000 60000 80000 100000 200000
0

50

100

Upper bound of the Loop Initiating the Recursion

Sp
ee

du
p(

%
)

Opt. Inspector II - Redundant Mem. Accesses Removal
Opt. Inspector III - Mem. Accesses Prioritized

Opt. Inspector IV - Broken Affine Loops

Figure 5.10 – Heat - Optimized Inspectors Speedup w.r.t. Inspector I

40000 60000 80000 100000 200000
0

20

40

60

80

100

120

Upper bound of the Loop Initiating the Recursion

Sp
ee

du
p(

%
)

Inspector II - Executor
Inspector III - Executor
Inspector IV - Executor

Figure 5.11 – Heat Inspector-Executor Experimental Results - Rec2Poly Speedup

The default inspector is called Inspector I. The first optimized inspector generated
by Rec2Poly is Inspector II in which redundant memory accesses were removed. In this

120 CHAPTER 5. BENCHMARKS

inspector version, there is no need to verify all the sixteen accesses in “for.body10”; it is
sufficient to verify only three of them since there were many redundant accesses to array
old. This inspector requires only five trace generator-inspector couples instead of eigh-
teen besides the parameter saver; it launches eleven threads besides the backup thread.
Inspector II outperformed Inspector I by about 48.7% for heat loop upperbound equal
to 200, 000 which was a significant percentage in comparison to what we got activating
the same optimization for the previous examples.

We also embedded another manual optimization feature for the inspector in Rec2Poly.
This optimization option allows the users to select costly basic blocks that Rec2Poly must
consider a priority while generating the memory trace generators and verifiers. Accord-
ingly, Rec2Poly creates a trace generator-verifier couple dedicated to only one memory
access in the whole recursive code part, one of those existing in one of the costly basic
blocks. The rest of the memory accesses in the whole model are tackled by a single trace
generator-verifier couple.

In the case of Heat, we selected “for.body10” and “for.inc53” since they exist within
the most expensive loop nest in the whole model. Consequently, Rec2Poly created four
memory trace generators and verifiers for each of the accesses inside these basic blocks
and one generator and verifier for the rest of the accesses, invocation counters and in-
duction variables. There was no need for this optimization to be enabled for the previous
experiments as there were no as obvious costly basic blocks. This optimized inspector,
Inspector III, required five memory trace generators and five verifiers, one control trace
generator and one verifier, and a parameter saver which meant thirteen threads besides
the backup thread. This inspector ran faster than inspectors II and I by about 11.5% and
54.6% respectively.

Then, we tested the optimized Inspector IV generated by Rec2Poly by limiting the
existing non-flow-impacting affine loops to three iterations at most. This inspector ag-
gressively outperformed Inspector I by 93.7%.

Finally, we present the inspector-executor experimental results, carried out using the
optimized versions of the inspector. Note that, as for the executor part, we only optimized
the most expensive code part whose corresponding NLR loop nest is shown in Figure 5.7.

The performance speedup of the inspector-executor codes with respect to the original
recursive code is shown in Figure 5.11. Inspector II - executor ran faster than the original
code by about 26.4%, Inspector III performed faster than the original code by 33.7%, and,
finally, Inspector IV performed way better by 76.7%.

5.3 Challenges: Limitations and Proposed Solutions
As we have observed, Rec2Poly already optimizes some recursive programs. Yet, there are
still opportunities to optimize it more, so it generates more optimized codes. While the
executor codes are generally powerfully optimized, the inspectors generated by Rec2Poly
may be costly and induce much overhead for some recursive codes. This can be investi-
gated and ameliorated further.

In addition, not every recursive code behaves in an affine manner, thus not every re-
cursive code can benefit from Rec2Poly. For now, Rec2Poly can handle recursive codes
whose memory and control behavior is affine or parametrically-affine where the mem-

5.3. CHALLENGES: LIMITATIONS AND PROPOSED SOLUTIONS 121

for i0 = 0 to 3555575
for i1 = 0 to 2

val walksub::BB1
for i1 = 0 to 2

val walksub::BB2

(a) NLR Model I

for i0 = 0 to 1507265
for i1 = 0 to 2

val gravsub::BB1
for i1 = 0 to 2

val gravsub::BB2
for i1 = 0 to 2

val gravsub::BB3
for i1 = 0 to 2

val gravsub::BB4

(b) NLR Model II

for i0 = 0 to 3555575
val walksub::BB5

(c) NLR Model III

for i0 = 0 to 39
for i1 = 0 to 2

val walksub::BB1
for i1 = 0 to 2

val walksub::BB2
for i0 = 0 to 4
for i1 = 0 to 2

val gravsub::BB1
for i1 = 0 to 2

val gravsub::BB2
for i1 = 0 to 2

val gravsub::BB3
for i1 = 0 to 2

val gravsub::BB4
for i0 = 0 to 15
for i1 = 0 to 2

val walksub::BB1
for i1 = 0 to 2

val walksub::BB2
for i0 = 0 to 2
for i1 = 0 to 2

val gravsub::BB1
for i1 = 0 to 2

val gravsub::BB2
for i1 = 0 to 2

val gravsub::BB3
for i1 = 0 to 2

val gravsub::BB4
for i0 = 0 to 39
for i1 = 0 to 2

val walksub::BB1
for i1 = 0 to 2

val walksub::BB2
...

(d) NLR Model IV

for i0 = 0 to 7
for i1 = 0 to 2

val walksub::BB1
for i1 = 0 to 2

val walksub::BB2
for i0 = 0 to 4
val walksub::BB3

for i0 = 0 to 7
for i1 = 0 to 2

val walksub::BB1
for i1 = 0 to 2

val walksub::BB2
for i0 = 0 to 3
val walksub::BB3

for i0 = 0 to 2
for i1 = 0 to 7

for i2 = 0 to 2
val walksub::BB1

for i2 = 0 to 2
val walksub::BB2

val walksub::BB3
val walksub::BB3

for i0 = 0 to 3
val walksub::BB3

for i0 = 0 to 2
val gravsub::BB1

for i0 = 0 to 2
val gravsub::BB2

for i0 = 0 to 2
val gravsub::BB3

for i0 = 0 to 2
val gravsub::BB4

for i0 = 0 to 5
val walksub::BB3

for i0 = 0 to 2
val gravsub::BB1

for i0 = 0 to 2
val gravsub::BB2

for i0 = 0 to 2
val gravsub::BB3

for i0 = 0 to 2
val gravsub::BB4

...

(e) NLR Model V

Figure 5.12 – Barnes Control Behavior NLR Modeling Experiments

122 CHAPTER 5. BENCHMARKS

ory addresses touched are partially affine. Nevertheless, Rec2Poly cannot handle codes
whose control behavior cannot be modeled as loops; such codes have a control trace in
which interleaved basic blocks yield a complicated NLR model. As an example for such
a case, we study the recursive program Barnes from the REAPAR benchmark suite [114].
This program is very complex: it involves seven different recursions, i.e., there are seven
strongly connected components (SCCs) in its call graph. When this program is profiled
by Rec2Poly as any other recursive program, we get a complex NLR model showing inter-
leaved executions of the impacting basic blocks.

For the sake of this illustrative example, we choose to analyze and profile only the con-
trol behavior of one recursive function in Barnes that is called “walksub” and its reachable
function called “gravsub”. We instrument these functions five different times to get differ-
ent traces. The NLR modeling of these traces are displayed in Figure 5.12. The first NLR
model shown, in Subfigure 5.12a, corresponds to the trace generated by instrumenting
only two impacting basic blocks in Function “walksup”. As we can see, this NLR model is
made up of a “beautiful” loop nest. Note that, even if the memory addresses accessed in
these impacting basic blocks are not shown in the NLR model here, they are actually de-
fined as affine expressions of the surrounding loop indices. In Subfigure 5.12b, we show
the NLR model of the execution trace of four impacting basic blocks in Function “grav-
sub” which is also an interesting affine loop nest. In Subfigure 5.12c, we show the NLR
model of the execution trace of one basic block in Function “walksup” which is “BB3”.

In Subfigure 5.12d, we have the NLR model of the trace including the basic blocks
previously considered in Function “walksup” and those in Function “gravsub”. This NLR
model is much more complex than the first two models in which the basic blocks IDs of
every function were modeled separately; it also includes a significantly longer sequence
of affine loop nests. Furthermore, when the execution of the Basic Block “BB5” in Func-
tion “walksub” is also traced besides the other basic blocks, the corresponding NLR model
obtained, in Subfigure 5.12e, becomes even more complex and larger than the previously
shown models. It shows that the execution of this basic block interleaves with that of the
others.

Therefore, if we consider profiling the control and memory behavior of the whole
recursive code part by Rec2Poly, we surely do not get a neat loop model that helps per-
forming any code transformation and generation.

Yet, as we can observe, when fewer basic blocks IDs and memory addresses are traced
separately, it becomes possible to model them as “beautiful” loop nests. Accordingly, it is
interesting to perform polyhedral modeling of recursive codes incrementally which may
lead to a valid re-scheduling of the basic blocks based on dependence analysis. Such an
approach may eventually yields an affine control behavior of a recursive code’s execution;
it can be referred to as affinization or polyhedralization

Another interesting modeling approach that can be also adopted by Rec2Poly is to
consider modeling the behavior of recursive programs as loops having, as an upper bound,
a variable or a list of parameters. As we can see, in Figure 5.12, in SubFigure 5.12b, the re-
peating loop nests in the NLR model are similar and include the same basic blocks IDs.
The only difference among these loops is their different upper bound. This behavior is
probably caused by the multiple invocation and activation of the same functions with dif-
ferent parameters each time, which affects the execution flow of their basic blocks and
the memory access patterns. The model corresponding to the trace initially modeled as

5.3. CHALLENGES: LIMITATIONS AND PROPOSED SOLUTIONS 123

shown in SubFigure 5.12d, would be similar to what is presented in figure 5.13. Instead
of having, as an upper bound, a constant or an affine expression by NLR, we have a list
of values. However, such an approach cannot be considered as polyhedral modeling of
recursive functions, but adopting it to model, and transform recursive codes accordingly,
may enable some interesting optimizations to recursions.

for i0 = 0 to P
for i1 = 0 to [39,15,39,...]

for i2 = 0 to 2
val walksub::BB1

for i1 = 0 to 2
val walksub::BB2

for i1 = 0 to [4,2,5,...]
for i2 = 0 to 2
val gravsub::BB1

for i1 = 0 to 2
val gravsub::BB2

for i1 = 0 to 2
val gravsub::BB3

for i1 = 0 to 2
val gravsub::BB4

Figure 5.13 – Recursion Behavior Loop Model with Variable Upper Bounds

Finally, in this chapter, through some experiments, we show that Rec2Poly succeeds
already to optimize recursive programs and that it still has a great potential to perform
even better and handle more complex recursive behaviors.

In the next chapter, we conclude and sum up what has been presented in this thesis.

124 CHAPTER 5. BENCHMARKS

125

Chapter 6

Conclusion and Perspectives

“Computer science is the operating system for all innovation.” — Steve Ballmer

A lot of domains have thrived on computer science. Computers have conquered al-
most every innovation environment introducing considerably more efficiency. More ef-
ficiency is obviously better; the faster and better computers perform, the more efficiency
we get and more.

To sum up, computer hardware has been the main target for amelioration and speedup
for a long time now. Inventing multi-cores and multi-processors architectures has been
a major milestone in computers lifetime. Yet, taking care of the hardware alone has not
been enough to attain an optimal computer speedup. In this context, there have been
dedicated many studies and works to optimize the software, adapt it to the underlying
hardware and employ parallelism. Implementing parallel programs, for instance, has be-
come possible through some languages and libraries, but implementing a reliable parallel
code manually has remained a challenging mission for programmers. Accordingly, au-
tomating software optimization and parallelization has always been favored. Advanced
compilers and static optimizers have become capable of automatically applying inter-
esting software optimizations, e.g., tail recursive call elimination or even agressive poly-
hedral optimizations/parallelizations for statically-affine loops. Furthermore, through
progressive research, it has become possible to unveil optimization opportunities, that
are initially hidden at compile time, as soon as the run-time behavior is discovered. Such
opportunities have permitted to automatically and speculatively transform, aggressively
optimize and parallelize certain expensive control structures, exclusively loops. Existing
static and dynamic loop structures optimization techniques have been thoroughly pre-
sented in this thesis in Chapter 2. On the other hand, as we have discussed in Chapter 3,
although recursions and recursive functions are considered time-expensive structures as
loops and can be transformed to loops, unlike loops, they have not benefited from similar
advanced and dynamically-discovered optimizations opportunities.

In conclusion, this thesis has been devoted to diverge from the existing recursions
optimization approaches that are static and probably classic, and create the opportunity
to find out when recursive codes behave as “affine” loops in particular, and correspond-
ingly allow a speculative rewriting of the recursive code parts to affine loops which are
the best fitting candidates for efficient data locality and powerful optimization and par-
allelization.

126 CHAPTER 6. CONCLUSION AND PERSPECTIVES

6.1 Summary of Contributions
The main contribution of this thesis has been the framework Rec2Poly. To our knowledge,
Rec2Poly is the first attempt of speculative program optimization involving the rewriting
of the target code.

We have rigorously explained all about Rec2Poly in Chapter 4. In summary, it is a
speculative polyhedral recursion optimizer based on Clang/LLVM that allows transform-
ing recursive code parts to optimizable affine loop nests whenever possible. It involves a
static analysis and code preparation phase, offline profiling phase and inspector-executor
code generation phase.

Rec2Poly is pioneering because it is the first to seek a polyhedral-compliant run-time
behavior in recursions. After it statically analyses the target source code for existing re-
cursions, obtains the corresponding significant compile-time information, and prepares
the code for the later phases, Rec2Poly performs its offline profiling phase. In this phase,
Rec2Poly generates the control and memory trace of the recursive code part and feeds it
to the NLR algorithm. The NLR algorithm was mostly used to model memory accesses,
yet Rec2Poly uses it to model the control behavior of a program too. If NLR succeeds to
produce an affine loop model, this model can then be used to guide the rewriting of the
target recursive code for following executions.

Moreover, what distinguishes Rec2Poly is that it extends the use of the inspector-
executor paradigm. Since the code generation phase of Rec2Poly is dependent on of-
fline profiling, the validity of the NLR loops must be proved in every new execution con-
text. Accordingly, Rec2Poly generates a code that implements an inspector-executor ded-
icated strategy.

Before Rec2Poly, this methodology has been exclusively adopted to speculatively op-
timize and monitor loop transformations and verify memory access patterns. However,
Rec2Poly uses this paradigm in the realm of recursions as the inspector part involves re-
cursive code parts. Also, Rec2Poly generates a fast parallel inspector that verifies the con-
trol flow against that of the affine loops in the NLR model corresponding to a previous
execution besides the memory access patterns.

If the predictive loop model is proved to hold in the current execution context by the
inspector, then the executor containing the affine loops equivalent to the recursion is
launched.

Since the loops generated by Rec2Poly in the executor are affine or parametrically-
affine, they can benefit from aggressive polyhedral optimizations and parallelization by
a polyhedral optimizer (Pluto) or be parallelized after a possible accurate dependence
analysis is performed.

Finally, we have shown, through the experiments presented in Chapter 5 on the recur-
sive Matrix Multiplication and Heat programs, that with such an approach, some recur-
sive programs may benefit from efficient affine loops optimization and parallelization,
and even advanced transformations of the polyhedral model.

6.2 Future Perspectives
Rec2Poly is a promising framework for speculative rewriting of recursive programs as
loop candidates for efficient parallelization and optimization using an inspector-executor

6.2. FUTURE PERSPECTIVES 127

mechanism. However, there is still some work to be done to complete this framework es-
pecially at the executor level, add more features and further improve the performance of
the generated inspector-executor code especially the inspector code.

While the inspector-executor mechanism is adapted to such speculative optimiza-
tions, the final performance of the generated code is mostly relying on the performance
of the inspector. This issue is solvable in case we have recursive code parts involving flow-
non-impacting loops; this is because we have added to Rec2Poly an inspector optimiza-
tion option that, when activated, allows breaking such loops in the generated inspector
components (trace generators and verifiers). These loops may be responsible for a great
part of the inspector execution, so terminating them after a small number of iterations,
that is enough to guarantee the execution flow correctness, may significantly reduce the
time overhead in the inspector. Yet, this case is not the general case; there are recursive
codes parts accessing memory without containing any loops, e.g., the first matrix multi-
plication program experimented in Chapter 5. The inspectors of such codes cannot be
aggressively optimized and the performance of the final inspector-executor codes gener-
ated remain dependent on the inspectors, while the executors are probably much faster.
Also, some recursive codes, like the first recursive matrix multiplication implementation
we presented, may exhibit a similar loop behavior for all input; the produced NLR loop
models for all the executions consist of similar loop nests with same depths embedding
the same trace generating affine functions, but only having different upper bounds ac-
cording to the program input sizes. The inspector should be smarter when handling such
codes. Therefore, in the future, more inspector optimization strategies should be inves-
tigated to lower further the inspector time-overhead.

Moreover, it would be interesting to implement an online profiling technique, based
on sampling and on a prediction, and transform the codes on-the-fly as Apollo does when
optimizing loops.

Furthermore, not all recursive codes may exhibit a linear control behavior like some
may not exhibit a linear memory behavior. In this thesis, we handled the situation where
the memory accesses are not fully affine. However, as for the codes with non-affine con-
trol behavior, there are interesting proposals that can be studied in the future. For in-
stance, it would be interesting to handle sequences of recursion traces in which there are
repetitive trace parts that repeat sometimes for a different number of times than the oth-
ers, or traces of loops, already existing in the code in impacting functions, whose upper
bounds differ every time the functions are activated again. Such traces may fit into loop
nests with variable upper bounds; they are obviously not affine, but there may still be a
clever way to parallelize them.

Also, the possibility to reschedule some instructions, in the target recursive code, that
are initially yielding a non-affine control trace should be investigated; we may conse-
quently get an affine control behavior of the code’s execution. Such an approach could
be calledaffinizationorpolyhedralization, i.e., code rewriting for affine or polyhedral run-
time behavior.

In the end of this thesis, Rec2Poly is just a beginning. Rec2Poly is a revolution that
has just begun in the realm of recursions; and more generally and more ambitiously, in
the realm of dynamic code rewriting for efficient optimizations.

128 CHAPTER 6. CONCLUSION AND PERSPECTIVES

129

Bibliography

Personal Bibliography
[66] Salwa Kobeissi and Philippe Clauss. “The Polyhedral Model Beyond Loops Re-

cursion Optimization and Parallelization Through Polyhedral Modeling”. In: IM-
PACT2019 - 9th InternationalWorkshop on Polyhedral Compilation Techniques, In
conjunction with HiPEAC 2019. Valencia, Spain, Jan. 2019. url: https://hal.
inria.fr/hal-02059558.

[67] Salwa Kobeissi, Alain Ketterlin, and Philippe Clauss. “Rec2Poly: Converting Re-
cursions to Polyhedral Optimized Loops Using an Inspector-Executor Strategy”.
In: SAMOS2020: EmbeddedComputer Systems: Architectures,Modeling, and Sim-
ulation. Oct. 2020, pp. 96–109. doi: 10.1007/978-3-030-60939-9_7. url:
https://hal.inria.fr/hal-02971434.

General Bibliography
[1] Samer Abdallah.Memoisation:Purely, Left-recursively, andwith (ContinuationPass-

ing) Style. 2017. arXiv: 1707.04724 [cs.LO].
[2] Aravind Acharya and Uday Bondhugula. “PLUTO+: Near-Complete Modeling of

Affine Transformations for Parallelism and Locality”. In: SIGPLAN Not. 50.8 (Jan.
2015), pp. 54–64. issn: 0362-1340. doi: 10 . 1145 / 2858788 . 2688512. url:
https://doi.org/10.1145/2858788.2688512.

[3] Gagan Agrawal, Joel Saltz, and Raja Das. “Interprocedural Partial Redundancy
Elimination and Its Application to Distributed Memory Compilation”. In: Pro-
ceedings of theACMSIGPLAN1995Conference onProgrammingLanguageDesign
and Implementation. PLDI ’95. La Jolla, California, USA: Association for Comput-
ing Machinery, 1995, pp. 258–269. isbn: 0897916972. doi: 10.1145/207110.
207157. url: https://doi.org/10.1145/207110.207157.

[4] Pierre Amiranoff, Albert Cohen, and Paul Feautrier. “Beyond Iteration Vectors:
Instancewise Relational Abstract Domains”. In: StaticAnalysis. Ed. by Kwangkeun
Yi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 161–180. isbn: 978-3-
540-37758-0.

[5] J. Arsac and Y. Kodratoff. “Some Techniques for Recursion Removal from Recur-
sive Functions”. In: ACMTrans. Program. Lang. Syst. 4.2 (Apr. 1982), pp. 295–322.
issn: 0164-0925.

https://hal.inria.fr/hal-02059558
https://hal.inria.fr/hal-02059558
https://doi.org/10.1007/978-3-030-60939-9_7
https://hal.inria.fr/hal-02971434
https://arxiv.org/abs/1707.04724
https://doi.org/10.1145/2858788.2688512
https://doi.org/10.1145/2858788.2688512
https://doi.org/10.1145/207110.207157
https://doi.org/10.1145/207110.207157
https://doi.org/10.1145/207110.207157

130 BIBLIOGRAPHY

[6] J. Arsac and Y. Kodratoff. “Some Techniques for Recursion Removal from Recur-
sive Functions”. In: ACMTrans. Program. Lang. Syst. 4.2 (Apr. 1982), pp. 295–322.
issn: 0164-0925. doi: 10.1145/357162.357171. url: https://doi.org/
10.1145/357162.357171.

[7] Utpal K. Banerjee. Loop Transformations for Restructuring Compilers: The Foun-
dations. USA: Kluwer Academic Publishers, 1993. isbn: 079239318X.

[8] Pablo Barrio, Chandler Carruth, and James Molloy. Recursion Inlining In LLVM.
https://llvm.org/devmtg/2015-04/slides/recursion-inlining-
2015.pdf. 2015.

[9] Cédric Bastoul.Generating loops for scanningpolyhedra:CLooGuser’s guide. Tech.
rep. 2002.

[10] Cédric Bastoul. “Code Generation in the Polyhedral Model Is Easier Than You
Think”. In: PACT’13 IEEE International Conference on Parallel Architecture and
Compilation Techniques. Juan-les-Pins, France, Sept. 2004, pp. 7–16.

[11] Cédric Bastoul. Improving Data Locality in Static Control Programs. 2004.
[12] Cédric Bastoul. OpenScop: A Specification and a Library for Data Exchange in

PolyhedralCompilationTools. Tech. rep. University of Paris-Sud, France, Sept. 2011.
[13] Cédric Bastoul. Contributions to High-Level Program Optimization. Habilitation

Thesis. Paris-Sud University, France. Dec. 2012.
[14] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and Olivier Temam.

“Putting Polyhedral Loop Transformations to Work”. In:LCPC’16 InternationalWork-
shoponLanguages andCompilers for Parallel Computers, LNCS2958. College Sta-
tion, Texas, Oct. 2003, pp. 209–225.

[15] D. Baxter, R. Mirchandaney, and J. H. Saltz. “Run-Time Parallelization and Schedul-
ing of Loops”. In: Proceedings of the First Annual ACM Symposium on Parallel Al-
gorithms and Architectures. SPAA ’89. Santa Fe, New Mexico, USA: Association
for Computing Machinery, 1989, pp. 303–312. isbn: 089791323X. doi: 10.1145/
72935.72967. url: https://doi.org/10.1145/72935.72967.

[16] Richard Bellman. Dynamic Programming. USA: Princeton University Press, 2010.
isbn: 0691146683.

[17] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cé-
dric Bastoul. “The Polyhedral Model Is More Widely Applicable Than You Think”.
In: Compiler Construction. Ed. by Rajiv Gupta. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 283–303.

[18] A. J. Bernstein. “Analysis of Programs for Parallel Processing”. In: IEEE Transac-
tions on Electronic Computers EC-15.5 (1966), pp. 757–763. doi: 10.1109/PGEC.
1966.264565.

[19] R. S. Bird. “Tabulation Techniques for Recursive Programs”. In:ACMComput. Surv.
12.4 (Dec. 1980), pp. 403–417. issn: 0360-0300. doi: 10.1145/356827.356831.
url: https://doi.org/10.1145/356827.356831.

https://doi.org/10.1145/357162.357171
https://doi.org/10.1145/357162.357171
https://doi.org/10.1145/357162.357171
https://llvm.org/devmtg/2015-04/slides/recursion-inlining-2015.pdf
https://llvm.org/devmtg/2015-04/slides/recursion-inlining-2015.pdf
https://doi.org/10.1145/72935.72967
https://doi.org/10.1145/72935.72967
https://doi.org/10.1145/72935.72967
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1145/356827.356831
https://doi.org/10.1145/356827.356831

GENERAL BIBLIOGRAPHY 131

[20] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam, Atanas
Rountev, and P. Sadayappan. “Automatic Transformations for Communication-
Minimized Parallelization and Locality Optimization in the Polyhedral Model”.
In: Compiler Construction. Ed. by Laurie Hendren. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 132–146.

[21] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. “A practical
automatic polyhedral parallelizer and locality optimizer”. In: PLDI ’08. Tucson,
AZ, USA: ACM, 2008, pp. 101–113. isbn: 978-1-59593-860-2.

[22] Pierre Boulet, Alain Darte, Georges-André Silber, and Frédéric Vivien. “Loop Par-
allelization Algorithms: From Parallelism Extraction to Code Generation”. In: Par-
allel Comput. 24.3–4 (May 1998), pp. 421–444. issn: 0167-8191. doi: 10.1016/
S0167-8191(98)00020-9. url: https://doi.org/10.1016/S0167-
8191(98)00020-9.

[23] Derek Bruening, Srikrishna Devabhaktuni, and Saman Amarasinghe. “Softspec:
Software-based Speculative Parallelism”. In: In 3rd ACM Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-3. 1998.

[24] R. M. Burstall and John Darlington. “A Transformation System for Developing Re-
cursive Programs”. In: J. ACM 24.1 (Jan. 1977), pp. 44–67. issn: 0004-5411. doi: 10.
1145/321992.321996. url: https://doi.org/10.1145/321992.321996.

[25] C-Memo. url: https://sourceforge.net/projects/c-memo/.
[26] Pierre-Yves Calland, Alain Darte, Yves Robert, and Frédéric Vivien. “Plugging anti

and output dependence removal techniques into loop parallelization algorithm”.
In: Parallel Computing 23.1 (1997). Environment and tools for parallel scientific
computing, pp. 251–266. issn: 0167-8191. doi: https://doi.org/10.1016/
S0167 - 8191(96) 00108 - 1. url: http : / / www . sciencedirect . com /
science/article/pii/S0167819196001081.

[27] J. W. Cannon, W. J. Floyd, and W. R. Parry. “Finite Subdivision Rules”. In: Conform.
Geom. Dyn 5 (2001), pp. 153–196.

[28] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer, and
M. Tremblay. “Rock: A High-Performance Sparc CMT Processor”. In: IEEE Micro
29.2 (2009), pp. 6–16. doi: 10.1109/MM.2009.34.

[29] Chun Chen, Jacqueline Chame, and Mary Hall. “A Framework for Composing
High-Level Loop Transformations”. In: (July 2008).

[30] Clang: a C language family frontend for LLVM. https://clang.llvm.org/.
[31] Albert Cohen and Jean-François Collard. “Instance-wise Reaching Definition Anal-

ysis for Recursive Programs using Context-free Transductions”. In: Parallel Ar-
chitectures and Compilation Techniques (PACT). Best student paper award. Paris,
France, 1998, pp. 332–340. url: https://hal.archives-ouvertes.fr/
hal-01257320.

[32] Albert Cohen, Sylvain Girbal, and Olivier Temam. “A Polyhedral Approach to Ease
the Composition of Program Transformations”. In:Euro-Par2004Parallel Process-
ing. Ed. by Marco Danelutto, Marco Vanneschi, and Domenico Laforenza. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 292–303.

https://doi.org/10.1016/S0167-8191(98)00020-9
https://doi.org/10.1016/S0167-8191(98)00020-9
https://doi.org/10.1016/S0167-8191(98)00020-9
https://doi.org/10.1016/S0167-8191(98)00020-9
https://doi.org/10.1145/321992.321996
https://doi.org/10.1145/321992.321996
https://doi.org/10.1145/321992.321996
https://sourceforge.net/projects/c-memo/
https://doi.org/https://doi.org/10.1016/S0167-8191(96)00108-1
https://doi.org/https://doi.org/10.1016/S0167-8191(96)00108-1
http://www.sciencedirect.com/science/article/pii/S0167819196001081
http://www.sciencedirect.com/science/article/pii/S0167819196001081
https://doi.org/10.1109/MM.2009.34
https://clang.llvm.org/
https://hal.archives-ouvertes.fr/hal-01257320
https://hal.archives-ouvertes.fr/hal-01257320

132 BIBLIOGRAPHY

[33] Albert Cohen, Marc Sigler, David Parello, Sylvain Girbal, Olivier Temam, and Nico-
las Vasilache. “Facilitating the Search for Compositions of Program Transforma-
tions”. In: In ACM Int. Conf. on Supercomputing (ICS’05. 2005, pp. 151–160.

[34] Rebecca L. Collins, Bharadwaj Vellore, and Luca P. Carloni. “Recursion-driven
Parallel Code Generation for Multi-core Platforms”. In: Proceedings of the Con-
ference on Design, Automation and Test in Europe. DATE ’10. Dresden, Germany:
European Design and Automation Association, 2010, pp. 190–195. isbn: 978-3-
9810801-6-2. url: http://dl.acm.org/citation.cfm?id=1870926.
1870972.

[35] L. Dagum and R. Menon. “OpenMP: an industry standard API for shared-memory
programming”. In: IEEEComputational ScienceandEngineering5.1 (1998), pp. 46–
55. doi: 10.1109/99.660313.

[36] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communication Opti-
mizations for Irregular Scientific Computations on Distributed Memory Architec-
tures. Tech. rep. USA, 1993.

[37] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc.
“Design of ion-implanted MOSFET’s with very small physical dimensions”. In: IEEE
Journal of Solid-State Circuits 9.5 (1974), pp. 256–268.

[38] Chen Ding and Ken Kennedy. “Improving Cache Performance in Dynamic Ap-
plications through Data and Computation Reorganization at Run Time”. In: SIG-
PLANNot.34.5 (May 1999), pp. 229–241. issn: 0362-1340. doi:10.1145/301631.
301670. url: https://doi.org/10.1145/301631.301670.

[39] Paul Feautrier. “Parametric Integer Programming”. In: RAIRO Recherche opéra-
tionnelle22.3 (1988), pp. 243–268. url:http://camlunity.ru/swap/Library/
Conflux/Techniques%20-%20Code%20Analysis%20and%20Transformations%
20%28Polyhedral%29/Integer%20Programming/parametric_integer_
programming.pdf.

[40] Paul Feautrier. “Dataflow Analysis of Array and Scalar References”. In: Interna-
tional Journal of Parallel Programming 20.1 (1991), pp. 23–53.

[41] Paul Feautrier. “Some efficient solutions to the affine scheduling problem Part
I One-dimensional Time”. In: International Journal of Parallel Programming 21
(Aug. 1996). doi: 10.1007/BF01407835.

[42] Paul Feautrier. “Some efficient solutions to the affine scheduling problem Part
II Multidimensional time”. In: International Journal of Parallel Programming 21
(Jan. 1997). doi: 10.1007/BF01379404.

[43] Paul Feautrier. “A Parallelization Framework for Recursive Tree Programs”. In:
Proceedings of the 4th International Euro-Par Conference on Parallel Processing.
Euro-Par ’98. Berlin, Heidelberg: Springer-Verlag, 1998, pp. 470–479. isbn: 3540649522.

[44] Paul Feautrier and Christian Lengauer. “Polyhedron Model”. In: Encyclopedia of
Parallel Computing. Ed. by David Padua. Springer US, 2011, pp. 1581–1592. isbn:
978-0-387-09765-7.

[45] Message P Forum. MPI: A Message-Passing Interface Standard. Tech. rep. USA,
1994.

http://dl.acm.org/citation.cfm?id=1870926.1870972
http://dl.acm.org/citation.cfm?id=1870926.1870972
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/301631.301670
https://doi.org/10.1145/301631.301670
https://doi.org/10.1145/301631.301670
http://camlunity.ru/swap/Library/Conflux/Techniques%20-%20Code%20Analysis%20and%20Transformations%20%28Polyhedral%29/Integer%20Programming/parametric_integer_programming.pdf
http://camlunity.ru/swap/Library/Conflux/Techniques%20-%20Code%20Analysis%20and%20Transformations%20%28Polyhedral%29/Integer%20Programming/parametric_integer_programming.pdf
http://camlunity.ru/swap/Library/Conflux/Techniques%20-%20Code%20Analysis%20and%20Transformations%20%28Polyhedral%29/Integer%20Programming/parametric_integer_programming.pdf
http://camlunity.ru/swap/Library/Conflux/Techniques%20-%20Code%20Analysis%20and%20Transformations%20%28Polyhedral%29/Integer%20Programming/parametric_integer_programming.pdf
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF01379404

GENERAL BIBLIOGRAPHY 133

[46] Richard A. Frost and Rahmatullah Hafiz. “A New Top-down Parsing Algorithm to
Accommodate Ambiguity and Left Recursion in Polynomial Time”. In: SIGPLAN
Not. 41.5 (May 2006), pp. 46–54. issn: 0362-1340. doi: 10 . 1145 / 1149982 .
1149988. url: https://doi.org/10.1145/1149982.1149988.

[47] functools — Higher-order functions and operations on callable objects. https:
//docs.python.org/3/library/functools.html.

[48] GCC, the GNU Compiler Collection. https://gcc.gnu.org/.
[49] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello,

Marc Sigler, and Olivier Temam. “Semi-Automatic Composition of Loop Transfor-
mations for Deep Parallelism and Memory Hierarchies”. In: International Journal
of Parallel Programming 34 (June 2006), pp. 261–317. doi: 10.1007/s10766-
006-0012-3.

[50] Samuel Greengard. “Can Nanosheet Transistors Keep Moore’s Law Alive?” In:Com-
mun. ACM 63.3 (Feb. 2020), pp. 10–12. issn: 0001-0782. doi: 10.1145/3379493.
url: https://doi.org/10.1145/3379493.

[51] Martin Griebl. Automatic Parallelization of Loop Programs for Distributed Mem-
ory Architectures. 2004.

[52] Tobias Grosser, Armin Größlinger, and Christian Lengauer. “Polly – Performing
polyhedral optimizations on a low-level intermediate representation”. In: Parallel
Processing Letters 22.04 (2012).

[53] Manish Gupta, Sayak Mukhopadhyay, and Navin Sinha. “Automatic Paralleliza-
tion of Recursive Procedures”. In: International Journal of Parallel Programming
28.6 (Dec. 2000), pp. 537–562.

[54] Suyash Gupta, Rahul Shrivastava, and V Krishna Nandivada. “Optimizing Recur-
sive Task Parallel Programs”. In: Proceedings of the International Conference on
Supercomputing. ICS ’17. Chicago, Illinois: ACM, 2017, 11:1–11:11. isbn: 978-1-4503-
5020-4. doi: 10.1145/3079079.3079102. url: http://doi.acm.org/10.
1145/3079079.3079102.

[55] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam, P. Co-
teus, P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara, G. Chiu, P. Boyle, N.
Chist, and C. Kim. “The IBM Blue Gene/Q Compute Chip”. In: IEEE Micro 32.2
(2012), pp. 48–60. doi: 10.1109/MM.2011.108.

[56] Peter G. Harrison and Hessam Khoshnevisan. “A new approach to recursion re-
moval”. In: Theoretical Computer Science 93.1 (1992), pp. 91–113. issn: 0304-3975.
doi: https://doi.org/10.1016/0304-3975(92)90213-Y. url: http://
www.sciencedirect.com/science/article/pii/030439759290213Y.

[57] Alexandra Jimborean. “Adapting the polytope model for dynamic and speculative
parallelization”. In: (Sept. 2012).

[58] Alexandra Jimborean, Luis Mastrangelo, Vincent Loechner, and Philippe Clauss.
“VMAD: an Advanced Dynamic Program Analysis & Instrumentation Framework”.
In:CC - 21st InternationalConference onCompilerConstruction. Ed. by M. O’Boyle.
Vol. 7210. Lecture Notes in Computer Science. Tallinn, Estonia: Springer, Mar.
2012, pp. 220–237. url: https://hal.inria.fr/hal-00664345.

https://doi.org/10.1145/1149982.1149988
https://doi.org/10.1145/1149982.1149988
https://doi.org/10.1145/1149982.1149988
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://gcc.gnu.org/
https://doi.org/10.1007/s10766-006-0012-3
https://doi.org/10.1007/s10766-006-0012-3
https://doi.org/10.1145/3379493
https://doi.org/10.1145/3379493
https://doi.org/10.1145/3079079.3079102
http://doi.acm.org/10.1145/3079079.3079102
http://doi.acm.org/10.1145/3079079.3079102
https://doi.org/10.1109/MM.2011.108
https://doi.org/https://doi.org/10.1016/0304-3975(92)90213-Y
http://www.sciencedirect.com/science/article/pii/030439759290213Y
http://www.sciencedirect.com/science/article/pii/030439759290213Y
https://hal.inria.fr/hal-00664345

134 BIBLIOGRAPHY

[59] Youngjoon Jo and Milind Kulkarni. “Enhancing Locality for Recursive Traversals
of Recursive Structures”. In: Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications. OOPSLA
’11. Portland, Oregon, USA: Association for Computing Machinery, 2011, pp. 463–
482. isbn: 9781450309400. doi: 10.1145/2048066.2048104. url: https:
//doi.org/10.1145/2048066.2048104.

[60] Youngjoon Jo and Milind Kulkarni. “Automatically Enhancing Locality for Tree
Traversals with Traversal Splicing”. In: Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages and Applications.
OOPSLA ’12. Tucson, Arizona, USA: Association for Computing Machinery, 2012,
pp. 355–374. isbn: 9781450315616. doi: 10 . 1145 / 2384616 . 2384643. url:
https://doi.org/10.1145/2384616.2384643.

[61] Richard M Karp, Raymond E Miller, and Shmuel Winograd. “The Organization
of Computations for Uniform Recurrence Equations”. In: Journal of the ACM 14.3
(1967), pp. 563–590. url: http://dl.acm.org/citation.cfm?id=321418.

[62] W. Kelly and W. Pugh. “A unifying framework for iteration reordering transfor-
mations”. In: Proceedings 1st International Conference on Algorithms and Archi-
tectures for Parallel Processing. Vol. 1. 1995, 153–162 vol.1. doi: 10.1109/ICAPP.
1995.472180.

[63] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and
Dave Wonnacott. “The Omega Calculator and Library, Version 1.1.0”. In: (1996).
url: http://www.cs.utah.edu/~mhall/cs6963s09/lectures/omega.
ps.

[64] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures:
ADependence-Based Approach. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2001. isbn: 1558602860.

[65] Alain Ketterlin and Philippe Clauss. “Prediction and Trace Compression of Data
Access Addresses Through Nested Loop Recognition”. In: Proceedings of the 6th
IEEE/ACMInternational SymposiumonCodeGenerationandOptimization. CGO’08.
Boston, MA, USA: ACM, 2008, pp. 94–103.

[66] Salwa Kobeissi and Philippe Clauss. “The Polyhedral Model Beyond Loops Re-
cursion Optimization and Parallelization Through Polyhedral Modeling”. In: IM-
PACT2019 - 9th InternationalWorkshop on Polyhedral Compilation Techniques, In
conjunction with HiPEAC 2019. Valencia, Spain, Jan. 2019. url: https://hal.
inria.fr/hal-02059558.

[67] Salwa Kobeissi, Alain Ketterlin, and Philippe Clauss. “Rec2Poly: Converting Re-
cursions to Polyhedral Optimized Loops Using an Inspector-Executor Strategy”.
In: SAMOS2020: EmbeddedComputer Systems: Architectures,Modeling, and Sim-
ulation. Oct. 2020, pp. 96–109. doi: 10.1007/978-3-030-60939-9_7. url:
https://hal.inria.fr/hal-02971434.

https://doi.org/10.1145/2048066.2048104
https://doi.org/10.1145/2048066.2048104
https://doi.org/10.1145/2048066.2048104
https://doi.org/10.1145/2384616.2384643
https://doi.org/10.1145/2384616.2384643
http://dl.acm.org/citation.cfm?id=321418
https://doi.org/10.1109/ICAPP.1995.472180
https://doi.org/10.1109/ICAPP.1995.472180
http://www.cs.utah.edu/~mhall/cs6963s09/lectures/omega.ps
http://www.cs.utah.edu/~mhall/cs6963s09/lectures/omega.ps
https://hal.inria.fr/hal-02059558
https://hal.inria.fr/hal-02059558
https://doi.org/10.1007/978-3-030-60939-9_7
https://hal.inria.fr/hal-02971434

GENERAL BIBLIOGRAPHY 135

[68] C. Koelbel, P. Mehrotra, and J. Van Rosendale. “Supporting Shared Data Structures
on Distributed Memory Architectures”. In: Proceedings of the Second ACM SIG-
PLAN Symposium on Principles & Practice of Parallel Programming. PPOPP ’90.
Seattle, Washington, USA: Association for Computing Machinery, 1990, pp. 177–
186. isbn: 0897913507. doi: 10.1145/99163.99183. url: https://doi.org/
10.1145/99163.99183.

[69] Christian Lengauer. “Polly—Performing Polyhedral Optimizations on a Low-Level
Intermediate Representation”. In: Parallel Processing Letters 22 (Dec. 2012). doi:
10.1142/S0129626412500107.

[70] Shun-Tak Leung and John Zahorjan. “Improving the Performance of Runtime Par-
allelization”. In: SIGPLAN Not. 28.7 (July 1993), pp. 83–91. issn: 0362-1340. doi:
10.1145/173284.155341. url: https://doi.org/10.1145/173284.
155341.

[71] Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. “An Affine Partitioning Algo-
rithm to Maximize Parallelism and Minimize Communication”. In: Proceedings
of the 13th International Conference on Supercomputing. ICS ’99. Rhodes, Greece:
Association for Computing Machinery, 1999, pp. 228–237. isbn: 158113164X. doi:
10.1145/305138.305197. url: https://doi.org/10.1145/305138.
305197.

[72] Amy W. Lim and Monica S. Lam. “Maximizing Parallelism and Minimizing Syn-
chronization with Affine Transforms”. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’97. Paris,
France: Association for Computing Machinery, 1997, pp. 201–214. isbn: 0897918533.
doi: 10.1145/263699.263719. url: https://doi.org/10.1145/263699.
263719.

[73] Amy Wingmui Lim. “Improving Parallelism and Data Locality with Affine Parti-
tioning”. AAI3028136. PhD thesis. 2001. isbn: 0493404236.

[74] Wei Liu, James Tuck, Luís Ceze, Wonsun Ahn, Karin Strauss, José Renau, and Josep
Torrellas. “POSH: A TLS Compiler that Exploits Program Structure”. In: PPoPP
2006 (Principles and Practice of Parallel Programming). Association for Comput-
ing Machinery, Inc., Mar. 2006. url: https://www.microsoft.com/en-
us/research/publication/posh-a-tls-compiler-that-exploits-
program-structure/.

[75] Y. A. Liu. “CACHET: an interactive, incremental-attribution-based program trans-
formation system for deriving incremental programs”. In: Proceedings 1995 10th
Knowledge-BasedSoftwareEngineeringConference. 1995, pp. 19–26. doi:10.1109/
KBSE.1995.490115.

[76] Yanhong A. Liu and Scott D. Stoller. “Dynamic programming via static incremen-
talization”. In: In Proceedings of the 8th European Symposium on Programming.
Springer-Verlag, 1999, pp. 288–305.

[77] Yanhong A. Liu and Scott D. Stoller. “From Recursion to Iteration: What Are the
Optimizations?” In: SIGPLAN Not. 34.11 (Nov. 1999), pp. 73–82. issn: 0362-1340.
doi: 10.1145/328691.328700. url: https://doi.org/10.1145/328691.
328700.

https://doi.org/10.1145/99163.99183
https://doi.org/10.1145/99163.99183
https://doi.org/10.1145/99163.99183
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1145/173284.155341
https://doi.org/10.1145/173284.155341
https://doi.org/10.1145/173284.155341
https://doi.org/10.1145/305138.305197
https://doi.org/10.1145/305138.305197
https://doi.org/10.1145/305138.305197
https://doi.org/10.1145/263699.263719
https://doi.org/10.1145/263699.263719
https://doi.org/10.1145/263699.263719
https://www.microsoft.com/en-us/research/publication/posh-a-tls-compiler-that-exploits-program-structure/
https://www.microsoft.com/en-us/research/publication/posh-a-tls-compiler-that-exploits-program-structure/
https://www.microsoft.com/en-us/research/publication/posh-a-tls-compiler-that-exploits-program-structure/
https://doi.org/10.1109/KBSE.1995.490115
https://doi.org/10.1109/KBSE.1995.490115
https://doi.org/10.1145/328691.328700
https://doi.org/10.1145/328691.328700
https://doi.org/10.1145/328691.328700

136 BIBLIOGRAPHY

[78] LLVM Language Reference Manual. https://llvm.org/docs/LangRef.
html.

[79] LLVM Loop Terminology (and Canonical Forms). https://llvm.org/docs/
LoopTerminology.html.

[80] LLVM’s Analysis and Transform Passes. https://llvm.org/docs/Passes.
html.

[81] Vincent Loechner. PolyLib: A library for manipulating parameterized polyhedra.
1999. url: https://repo.or.cz/polylib.git/blob_plain/HEAD:
/doc/parampoly-doc.ps.gz.

[82] Benoit B Mandelbrot.The fractal geometry of nature. San Francisco, CA: Freeman,
1982. url: https://cds.cern.ch/record/98509.

[83] Juan Manuel Martinez Caamaño. “Fast and Flexible Compilation Techniques for
Effective Speculative Polyhedral Parallelization”. Theses. Université de Strasbourg,
Sept. 2016. url: https://hal.inria.fr/tel-01377758.

[84] Juan Manuel Martinez Caamano, Manuel Selva, Philippe Clauss, Artiom Baloian,
and Willy Wolff. “Full runtime polyhedral optimizing loop transformations with
the generation, instantiation, and scheduling of code-bones”. In:Concurrencyand
Computation: Practice and Experience 29.15 (June 2017).

[85] Aristeidis Mastoras and George Manis. “Ariadne - Directive-based Parallelism Ex-
traction from Recursive Functions”. In: J. ParallelDistrib.Comput.86.C (Dec. 2015),
pp. 16–28. issn: 0743-7315.

[86] MatrixMultiplication |Recursive.https://www.geeksforgeeks.org/matrix-
multiplication-recursive/.

[87] J. Mayfield, T. Finin, and M. Hall. “Using Automatic Memoization as a Software
Engineering Tool in Real-World AI Systems”. In: CAIA ’95. USA: IEEE Computer
Society, 1995, p. 87. isbn: 0818670703.

[88] D. MICHIE. ““Memo” Functions and Machine Learning”. In: (1968). doi: https:
//doi.org/10.1038/218306c0.

[89] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, and K. Crowley. “Principles of
Runtime Support for Parallel Processors”. In: Proceedings of the 2nd International
Conference on Supercomputing. ICS ’88. St. Malo, France: Association for Com-
puting Machinery, 1988, pp. 140–152. isbn: 0897912721. doi: 10.1145/55364.
55378. url: https://doi.org/10.1145/55364.55378.

[90] N. Mitchell, L. Carter, and J. Ferrante. “Localizing non-affine array references”.
In: 1999 International Conference on Parallel Architectures andCompilation Tech-
niques (Cat.No.PR00425). 1999, pp. 192–202. doi:10.1109/PACT.1999.807526.

[91] Yasuharu Mizutani, Daisuke Nakajima, Noriyuki Fujimoto, and Kenichi Hagihara.
“Evaluation of a compiler with user-selectable execution strategies for parallel
recursion”. In: SystemsandComputers in Japan35.9 (), pp. 92–103. doi:10.1002/
scj.10009. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/scj.10009. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/scj.10009.

https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LoopTerminology.html
https://llvm.org/docs/LoopTerminology.html
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html
https://repo.or.cz/polylib.git/blob_plain/HEAD:/doc/parampoly-doc.ps.gz
https://repo.or.cz/polylib.git/blob_plain/HEAD:/doc/parampoly-doc.ps.gz
https://cds.cern.ch/record/98509
https://hal.inria.fr/tel-01377758
https://www.geeksforgeeks.org/matrix-multiplication-recursive/
https://www.geeksforgeeks.org/matrix-multiplication-recursive/
https://doi.org/https://doi.org/10.1038/218306c0
https://doi.org/https://doi.org/10.1038/218306c0
https://doi.org/10.1145/55364.55378
https://doi.org/10.1145/55364.55378
https://doi.org/10.1145/55364.55378
https://doi.org/10.1109/PACT.1999.807526
https://doi.org/10.1002/scj.10009
https://doi.org/10.1002/scj.10009
https://onlinelibrary.wiley.com/doi/pdf/10.1002/scj.10009
https://onlinelibrary.wiley.com/doi/pdf/10.1002/scj.10009
https://onlinelibrary.wiley.com/doi/abs/10.1002/scj.10009
https://onlinelibrary.wiley.com/doi/abs/10.1002/scj.10009

GENERAL BIBLIOGRAPHY 137

[92] G. E. Moore. “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE Solid-
State Circuits Society Newsletter 11.3 (2006), pp. 33–35.

[93] Gordon Moore. “Progress In Digital Integrated Electronics [Technical literaiture,
Copyright 1975 IEEE. Reprinted, with permission. Technical Digest. International
Electron Devices Meeting, IEEE, 1975, pp. 11-13.]” In: Solid-State Circuits Newslet-
ter, IEEE 20 (Oct. 2006), pp. 36–37. doi: 10.1109/N-SSC.2006.4804410.

[94] Akimasa Morihata and Kiminori Matsuzaki. “Automatic Parallelization of Recur-
sive Functions Using Quantifier Elimination”. In: Proceedings of the 10th Inter-
national Conference on Functional and Logic Programming. FLOPS’10. Sendai,
Japan: Springer-Verlag, 2010, pp. 321–336. isbn: 3-642-12250-7, 978-3-642-12250-
7. doi: 10.1007/978-3-642-12251-4_23. url: http://dx.doi.org/10.
1007/978-3-642-12251-4_23.

[95] Peter Norvig. “Techniques for Automatic Memoization with Applications to Context-
Free Parsing”. In: Comput. Linguist. 17.1 (Mar. 1991), pp. 91–98. issn: 0891-2017.

[96] onlinefractaltools.https://onlinefractaltools.com/draw-levy-fractal.
[97] Over 50 years of Moore’s Law - Intel. https://www.intel.com/content/

www/us/en/silicon-innovations/moores-law-technology.html.
[98] David Padua. “POSIX Threads (Pthreads)”. In: Encyclopedia of Parallel Computing.

Ed. by David Padua. Boston, MA: Springer US, 2011, pp. 1592–1593. isbn: 978-0-
387-09766-4. doi: 10.1007/978-0-387-09766-4_447. url: https://doi.
org/10.1007/978-0-387-09766-4_447.

[99] Eunjung Park, Louis-Noel Pouche, John Cavazos, Albert Cohen, and P. Sadayap-
pan. “Predictive Modeling in a Polyhedral Optimization Space”. In: Proceedings of
the 9th Annual IEEE/ACM International Symposium on Code Generation and Op-
timization. CGO ’11. USA: IEEE Computer Society, 2011, pp. 119–129. isbn: 9781612843568.

[100] Dmitry Petrashko, Ondřej Lhoták, and Martin Odersky. “Miniphases: Compila-
tion Using Modular and Efficient Tree Transformations”. In: Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI 2017. Barcelona, Spain: Association for Computing Machinery,
2017, pp. 201–216. isbn: 9781450349888. doi: 10.1145/3062341.3062346.
url: https://doi.org/10.1145/3062341.3062346.

[101] PLUTO - An automatic parallelizer and locality optimizer for multicores. http:
//pluto-compiler.sourceforge.net.

[102] Polly - LLVMFramework forHigh-Level LoopandData-LocalityOptimizations.https:
//polly.llvm.org/index.html.

[103] R. Ponnusamy, J. Saltz, and A. Choudhary. “Runtime Compilation Techniques for
Data Partitioning and Communication Schedule Reuse”. In: Proceedings of the
1993 ACM/IEEE Conference on Supercomputing. Supercomputing ’93. Portland,
Oregon, USA: Association for Computing Machinery, 1993, pp. 361–370. isbn: 0818643404.
doi: 10.1145/169627.169752. url: https://doi.org/10.1145/169627.
169752.

https://doi.org/10.1109/N-SSC.2006.4804410
https://doi.org/10.1007/978-3-642-12251-4_23
http://dx.doi.org/10.1007/978-3-642-12251-4_23
http://dx.doi.org/10.1007/978-3-642-12251-4_23
https://onlinefractaltools.com/draw-levy-fractal
https://www.intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html
https://www.intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html
https://doi.org/10.1007/978-0-387-09766-4_447
https://doi.org/10.1007/978-0-387-09766-4_447
https://doi.org/10.1007/978-0-387-09766-4_447
https://doi.org/10.1145/3062341.3062346
https://doi.org/10.1145/3062341.3062346
http://pluto-compiler.sourceforge.net
http://pluto-compiler.sourceforge.net
https://polly.llvm.org/index.html
https://polly.llvm.org/index.html
https://doi.org/10.1145/169627.169752
https://doi.org/10.1145/169627.169752
https://doi.org/10.1145/169627.169752

138 BIBLIOGRAPHY

[104] S. Pop, A. Cohen, C. Bastoul, Sylvain Girbal, G. Silber, and Nicolas Vasilache. “GRAPHITE:
Loop Optimizations Based on the Polyhedral Model for GCC”. In: 2006.

[105] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and Nicolas Vasilache. “Iter-
ative Optimization in the Polyhedral Model: Part I, One-Dimensional Time”. In:
Fifth International SymposiumonCodeGenerationandOptimization (CGO2007),
11-14March2007, San Jose,California,USA. IEEE Computer Society, 2007, pp. 144–
156. doi: 10.1109/CGO.2007.21. url: https://doi.org/10.1109/CGO.
2007.21.

[106] William Pugh. “The Omega Test: A Fast and Practical Integer Programming Al-
gorithm for Dependence Analysis”. In: Proceedings of the 1991 ACM/IEEE Confer-
ence on Supercomputing. Supercomputing ’91. Albuquerque, New Mexico, USA:
Association for Computing Machinery, 1991, pp. 4–13. isbn: 0897914597. doi: 10.
1145/125826.125848. url: https://doi.org/10.1145/125826.125848.

[107] William Pugh. “Uniform Techniques for Loop Optimization”. In: 5th International
Conference on Supercomputing (ICS’91). ACM. 1991, pp. 341–352.

[108] Samyam Rajbhandari, Jinsung Kim, Sriram Krishnamoorthy, Louis-Noël Pouchet,
Fabrice Rastello, Robert J. Harrison, and P. Sadayappan. “On Fusing Recursive
Traversals of K-d Trees”. In: Proceedings of the 25th International Conference on
Compiler Construction. CC 2016. Barcelona, Spain: Association for Computing
Machinery, 2016, pp. 152–162. isbn: 9781450342414. doi: 10.1145/2892208.
2892228. url: https://doi.org/10.1145/2892208.2892228.

[109] Lawrence Rauchwerger. “Run-time parallelization: Its time has come”. In: Parallel
Computing 24.3 (1998), pp. 527–556. issn: 0167-8191. doi: https://doi.org/
10.1016/S0167-8191(98)00024-6. url: https://www.sciencedirect.
com/science/article/pii/S0167819198000246.

[110] Lawrence Rauchwerger, Nancy Amato, and David Padua. “A Scalable Method for
Run-Time Loop Parallelization”. In: International Journal of Parallel Programming
23 (Feb. 2003). doi: 10.1007/BF02577866.

[111] Lawrence Rauchwerger and David Padua. “The LRPD Test: Speculative Run-Time
Parallelization of Loops with Privatization and Reduction Parallelization”. In: 1995,
pp. 218–232.

[112] Lawrence Rauchwerger and David A Padua. “The LRPD test: Speculative run-time
parallelization of loops with privatization and reduction parallelization”. In: IEEE
Transactions on Parallel and Distributed Systems 10.2 (1999), pp. 160–180.

[113] Mahesh Ravishankar, Roshan Dathathri, Venmugil Elango, Louis-Noël Pouchet,
J. Ramanujam, Atanas Rountev, and P. Sadayappan. “Distributed Memory Code
Generation for Mixed Irregular/Regular Computations”. In: SIGPLAN Not. 50.8
(Jan. 2015), pp. 65–75. issn: 0362-1340. doi: 10.1145/2858788.2688515. url:
https://doi.org/10.1145/2858788.2688515.

[114] REAPAR, Automatic Parallelization of Irregular Recursive Programs. http : / /
www.haenssgen.de/uni/reapar.

[115] Eric S. Roberts, ed. Thinking Recursively. USA: John Wiley & Sons, Inc., 1986. isbn:
0471816523.

https://doi.org/10.1109/CGO.2007.21
https://doi.org/10.1109/CGO.2007.21
https://doi.org/10.1109/CGO.2007.21
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/2892208.2892228
https://doi.org/10.1145/2892208.2892228
https://doi.org/10.1145/2892208.2892228
https://doi.org/https://doi.org/10.1016/S0167-8191(98)00024-6
https://doi.org/https://doi.org/10.1016/S0167-8191(98)00024-6
https://www.sciencedirect.com/science/article/pii/S0167819198000246
https://www.sciencedirect.com/science/article/pii/S0167819198000246
https://doi.org/10.1007/BF02577866
https://doi.org/10.1145/2858788.2688515
https://doi.org/10.1145/2858788.2688515
http://www.haenssgen.de/uni/reapar
http://www.haenssgen.de/uni/reapar

GENERAL BIBLIOGRAPHY 139

[116] Manuel Rubio-Sanchez. Introduction to Recursive Programming. 1st. USA: CRC
Press, Inc., 2017. isbn: 1498735282.

[117] Radu Rugina and Martin Rinard. “Automatic Parallelization of Divide and Con-
quer Algorithms”. In: SIGPLAN Not. 34.8 (May 1999), pp. 72–83. issn: 0362-1340.
doi: 10.1145/329366.301111. url: http://doi.acm.org/10.1145/
329366.301111.

[118] Laith Sakka, Kirshanthan Sundararajah, and Milind Kulkarni. “TreeFuser: A Frame-
work for Analyzing and Fusing General Recursive Tree Traversals”. In: Proc. ACM
Program. Lang. 1.OOPSLA (Oct. 2017). doi: 10.1145/3133900. url: https:
//doi.org/10.1145/3133900.

[119] J. H. Saltz, R. Mirchandaney, and K. Crowley. “Run-time parallelization and schedul-
ing of loops”. In: IEEE Transactions on Computers 40.5 (1991), pp. 603–612.

[120] J. Saltz and R. Mirchandaney. “The Preprocessed Doacross Loop”. In: ICPP. 1991.
[121] Joel Saltz, Chialin Chang, Guy Edjlali, Yuan-Shin Hwang, Bongki Moon, Ravi Pon-

nusamy, Shamik Sharma, Alan Sussman, Mustafa Uysal, Gagan Agrawal, Raja Das,
and Paul Havlak. “Programming Irregular Applications: Runtime Support, Com-
pilation and Tools”. In:EmphasizingParallel ProgrammingTechniques. Ed. by Mar-
vin V. Zelkowitz. Vol. 45. Advances in Computers. Elsevier, 1997, pp. 105–153. doi:
https://doi.org/10.1016/S0065-2458(08)60707-X. url: https://
www.sciencedirect.com/science/article/pii/S006524580860707X.

[122] Dimitris Saougkos, Aristeidis Mastoras, and George Manis. “Fine Grained Paral-
lelism in Recursive Function Calls”. In:Parallel ProcessingandAppliedMathemat-
ics. Ed. by Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy
Waśniewski. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 121–130.
isbn: 978-3-642-31500-8.

[123] Alexander Schrijver. Theory of Linear and Integer Programming. USA: John Wiley
& Sons, Inc., 1986. isbn: 0471908541.

[124] I. Šimeček and P. Tvrdıḱ. “High Performance Recursive Linear Algebra Library”.
English. In: Seminar onNumerical Analysis. Ostrava: Ústav geonomy AV ČR, 2007,
pp. 116–119. isbn: 80-86407-12-8.

[125] J. G. Steffan and T. C. Mowry. “The potential for using thread-level data speculation
to facilitate automatic parallelization”. In: Proceedings 1998 Fourth International
SymposiumonHigh-PerformanceComputerArchitecture. 1998, pp. 2–13. doi: 10.
1109/HPCA.1998.650541.

[126] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry.
“A Scalable Approach to Thread-Level Speculation”. In: Proceedings of the 27th
Annual International SymposiumonComputerArchitecture. ISCA ’00. Vancouver,
British Columbia, Canada: Association for Computing Machinery, 2000, pp. 1–12.
isbn: 1581132328. doi: 10.1145/339647.339650. url: https://doi.org/
10.1145/339647.339650.

https://doi.org/10.1145/329366.301111
http://doi.acm.org/10.1145/329366.301111
http://doi.acm.org/10.1145/329366.301111
https://doi.org/10.1145/3133900
https://doi.org/10.1145/3133900
https://doi.org/10.1145/3133900
https://doi.org/https://doi.org/10.1016/S0065-2458(08)60707-X
https://www.sciencedirect.com/science/article/pii/S006524580860707X
https://www.sciencedirect.com/science/article/pii/S006524580860707X
https://doi.org/10.1109/HPCA.1998.650541
https://doi.org/10.1109/HPCA.1998.650541
https://doi.org/10.1145/339647.339650
https://doi.org/10.1145/339647.339650
https://doi.org/10.1145/339647.339650

140 BIBLIOGRAPHY

[127] Greg Stitt and Jason Villarreal. “Recursion Flattening”. In: Proceedings of the 18th
ACMGreat Lakes Symposium on VLSI. GLSVLSI ’08. Orlando, Florida, USA: Asso-
ciation for Computing Machinery, 2008, pp. 131–134. isbn: 9781595939999. doi:
10.1145/1366110.1366143. url: https://doi.org/10.1145/1366110.
1366143.

[128] Gilbert Strang. Introduction to Linear Algebra. Fourth. Wellesley, MA: Wellesley-
Cambridge Press, 2009. isbn: 9780980232714 0980232716 9780980232721 0980232724
9788175968110 8175968117.

[129] Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. “The Sparse Poly-
hedral Framework: Composing Compiler-Generated Inspector-Executor Code”.
In: Proceedings of the IEEE 106.11 (2018), pp. 1921–1934. doi: 10.1109/JPROC.
2018.2857721.

[130] Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara Kreaseck,
and Catherine Olschanowsky. “An approach for code generation in the Sparse
Polyhedral Framework”. In: Parallel Computing 53 (2016), pp. 32–57. issn: 0167-
8191. doi: https://doi.org/10.1016/j.parco.2016.02.004. url:
https://www.sciencedirect.com/science/article/pii/S0167819116000557.

[131] Aravind Sukumaran-Rajam. “Beyond the Realm of the Polyhedral Model: Com-
bining Speculative Program Parallelization with Polyhedral Compilation”. The-
ses. Université de Strasbourg, Nov. 2015. url: https://hal.inria.fr/tel-
01251748.

[132] Aravind Sukumaran-Rajam and Philippe Clauss. “The Polyhedral Model of Non-
linear Loops”. In: ACM Trans. Archit. Code Optim. 12.4 (Dec. 2015), 48:1–48:27.
issn: 1544-3566.

[133] Kirshanthan Sundararajah and Milind Kulkarni. SchedulingTransformations and
Dependence Tests for Recursive Programs. Nov. 2018.

[134] Kirshanthan Sundararajah and Milind Kulkarni. “Composable, Sound Transfor-
mations of Nested Recursion and Loops”. In: PLDI 2019. Phoenix, AZ, USA: Asso-
ciation for Computing Machinery, 2019, pp. 902–917. isbn: 9781450367127. doi:
10.1145/3314221.3314592. url: https://doi.org/10.1145/3314221.
3314592.

[135] Kirshanthan Sundararajah, Laith Sakka, and Milind Kulkarni. “Locality Transfor-
mations for Nested Recursive Iteration Spaces”. In: Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Lan-
guages andOperating Systems. ASPLOS ’17. Xi’an, China: ACM, 2017, pp. 281–295.
isbn: 978-1-4503-4465-4. doi: 10.1145/3037697.3037720. url: http://
doi.acm.org/10.1145/3037697.3037720.

[136] Peiyi Tang. “Complete Inlining of Recursive Calls: Beyond Tail-Recursion Elimina-
tion”. In: Proceedings of the 44th Annual Southeast Regional Conference. ACM-SE
44. Melbourne, Florida: Association for Computing Machinery, 2006, pp. 579–
584. isbn: 1595933158. doi: 10.1145/1185448.1185574. url: https://doi.
org/10.1145/1185448.1185574.

[137] The LLVM Compiler Infrastructure. http://www.llvm.org.

https://doi.org/10.1145/1366110.1366143
https://doi.org/10.1145/1366110.1366143
https://doi.org/10.1145/1366110.1366143
https://doi.org/10.1109/JPROC.2018.2857721
https://doi.org/10.1109/JPROC.2018.2857721
https://doi.org/https://doi.org/10.1016/j.parco.2016.02.004
https://www.sciencedirect.com/science/article/pii/S0167819116000557
https://hal.inria.fr/tel-01251748
https://hal.inria.fr/tel-01251748
https://doi.org/10.1145/3314221.3314592
https://doi.org/10.1145/3314221.3314592
https://doi.org/10.1145/3314221.3314592
https://doi.org/10.1145/3037697.3037720
http://doi.acm.org/10.1145/3037697.3037720
http://doi.acm.org/10.1145/3037697.3037720
https://doi.org/10.1145/1185448.1185574
https://doi.org/10.1145/1185448.1185574
https://doi.org/10.1145/1185448.1185574
http://www.llvm.org

GENERAL BIBLIOGRAPHY 141

[138] Konrad Trifunovic. “Efficient search-based strategies for polyhedral compilation
: algorithms and experience in a production compiler. (Stratégies exploratoires
efficaces pour la compilation polyédrique : algorithmes et expérience dans un
compilateur de production)”. PhD thesis. University of Paris-Sud, Orsay, France,
2011. url: https://tel.archives-ouvertes.fr/tel-00661334.

[139] N. Vasilache, A. Cohen, and L. Pouchet. “Automatic Correction of Loop Transfor-
mations”. In: 16th International Conference on Parallel Architecture and Compila-
tion Techniques (PACT 2007). 2007, pp. 292–304. doi: 10.1109/PACT.2007.
4336220.

[140] Nicolas Vasilache, Cedric Bastoul, Albert Cohen, and Sylvain Girbal. “Violated
Dependence Analysis”. In: Proceedings of the 20th Annual International Confer-
ence on Supercomputing. ICS ’06. Cairns, Queensland, Australia: Association for
Computing Machinery, 2006, pp. 335–344. isbn: 1595932828. doi: 10.1145/
1183401.1183448. url: https://doi.org/10.1145/1183401.1183448.

[141] Anand Venkat, Mahdi Soltan Mohammadi, Jongsoo Park, Hongbo Rong, Rajk-
ishore Barik, Michelle Mills Strout, and Mary Hall. “Automating Wavefront Par-
allelization for Sparse Matrix Computations”. In: SC ’16: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 2016, pp. 480–491. doi: 10.1109/SC.2016.40.

[142] Sven Verdoolaege. “isl: An Integer Set Library for the Polyhedral Model”. In:Math-
ematical Software– ICMS2010. Ed. by Komei Fukuda, Joris van der Hoeven, Michael
Joswig, and Nobuki Takayama. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 299–302.

[143] Mitchell Wand. “Continuation-Based Program Transformation Strategies”. In: J.
ACM 27.1 (Jan. 1980), pp. 164–180. issn: 0004-5411. doi: 10 . 1145 / 322169 .
322183. url: https://doi.org/10.1145/322169.322183.

[144] Yusheng Weijiang, Shruthi Balakrishna, Jianqiao Liu, and Milind Kulkarni. “Tree
Dependence Analysis”. In: Proceedings of the 36th ACM SIGPLAN Conference on
ProgrammingLanguageDesignand Implementation. PLDI ’15. Portland, OR, USA:
Association for Computing Machinery, 2015, pp. 314–325. isbn: 9781450334686.
doi: 10.1145/2737924.2737972. url: https://doi.org/10.1145/
2737924.2737972.

[145] Doran K. Wilde. A Library for Doing Polyhedral Operations. Tech. rep. 785. IRISA,
Dec. 1993.

[146] P.G. Wodehouse, ed. Thank You, Jeeves. 1934.
[147] Janet Wu, J. Saltz, S. Hiranandani, and H. Berryman. “Runtime Compilation Meth-

ods for Multicomputers”. In: ICPP. 1991.
[148] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. “Performance

Evaluation of Intel® Transactional Synchronization Extensions for High-Performance
Computing”. In: Proceedings of the International Conference onHigh Performance
Computing, Networking, Storage and Analysis. SC ’13. Denver, Colorado: Asso-
ciation for Computing Machinery, 2013. isbn: 9781450323789. doi: 10.1145/
2503210.2503232. url: https://doi.org/10.1145/2503210.2503232.

https://tel.archives-ouvertes.fr/tel-00661334
https://doi.org/10.1109/PACT.2007.4336220
https://doi.org/10.1109/PACT.2007.4336220
https://doi.org/10.1145/1183401.1183448
https://doi.org/10.1145/1183401.1183448
https://doi.org/10.1145/1183401.1183448
https://doi.org/10.1109/SC.2016.40
https://doi.org/10.1145/322169.322183
https://doi.org/10.1145/322169.322183
https://doi.org/10.1145/322169.322183
https://doi.org/10.1145/2737924.2737972
https://doi.org/10.1145/2737924.2737972
https://doi.org/10.1145/2737924.2737972
https://doi.org/10.1145/2503210.2503232
https://doi.org/10.1145/2503210.2503232
https://doi.org/10.1145/2503210.2503232

142 BIBLIOGRAPHY

143

Annexe A

Résumé en Français

A.1 Introduction et Contexte
Du développement du code à l’exécution finale sur une plate-forme matérielle, un logi-
ciel passe par de nombreuses phases de transformation, ce qui rend les codes exécutables
finaux significativement différents du code source initial. Le but final est évidemment de
générer un exécutable sémantiquement équivalent au code source d’entrée, mais dont
le comportement d’exécution est satisfaisant en ce qui concerne le temps d’exécution,
la taille du code, la consommation d’énergie ou la sécurité. Les compilateurs appliquent
de nombreuses passes d’optimisation sur le code source d’entrée qui modifient souvent,
voire suppriment des instructions, des structures de contrôle ou des structures de don-
nées. De telles transformations de code peuvent s’appliquer du niveau instruction jusqu’à
la structure de code globale.

Certains compilateurs et optimiseurs avancés peuvent paralléliser automatiquement
des codes séquentiels en détectant des régions parallèles dans ces codes et en appliquant
automatiquement sur ceux-ci les transformations correspondantes.

A.1.1 Optimiseurs polyédriques
D’une part, un bon nombre de ces optimiseurs sont basés sur le modèle polyédrique
(par exemple Polly [52], Pluto [21], etc.). Le modèle polyédrique est un cadriciel ma-
thématique au niveau source (statique) qui apporte une abstraction et une représenta-
tion substantielles pour les programmes, en particulier les nids de boucles affines accé-
dant à des tableaux multidimensionnels via des références de tableaux affines, c’est-à-
dire des programmes avec des parties de contrôle statiques (SCoP). Ce cadriciel fournit
de puissantes analyses et des transformations d’optimisation et de parallélisation agres-
sives et automatiques de boucles (par exemple, pavage de boucles, torsion de boucles,
l’échange de boucles, etc.). Dans le domaine de la compilation de programmes et de l’op-
timisation des codes impératifs, les boucles sont des cibles importantes d’optimisation
parce qu’elles sont utilisées couramment dans les programmes et généralement respon-
sables de grandes parties intensives en calcul. Pourtant, de nombreux programmes ne
profitent toujours pas des optimisations polyédriques en raison soit des idiosyncrasies
superficielles des langages (par exemple, les boucles de type “while”), soit des différences
de structure radicales (par exemple les fonctions récursives). Parfois, il s’avère que les

144 ANNEXE A. RÉSUMÉ EN FRANÇAIS

boucles, qui n’ont pas de structure affine au moment de la compilation et ne rentrent
pas dans le modèle polyédrique, peuvent en fait présenter un comportement conforme
au modèle polyédrique au moment de l’exécution pour au moins de grandes parties de
l’exécution de programme. Par conséquent, il peut encore y avoir des opportunités d’op-
timisation cachées au moment de la compilation qui peuvent être découvertes et saisies
dès que le comportement d’exécution est découvert.

A.1.2 Systèmes de spéculation au niveau thread
D’autre part, il existe la technique de spéculation au niveau thread [111, 125, 126] qui exé-
cute de manière spéculative des régions parallèles du code avant de connaître toutes les
valeurs d’entrée et les dépendances. Simultanément, le code séquentiel est exécuté en
parallèle dans un thread séparé. Au moment de l’exécution, les accès à la mémoire sont
suivis et la vérification est effectuée, et dans le cas où une spéculation invalide est prou-
vée (par exemple, violation de dépendance), un mécanisme de récupération est exécuté.
La récupération implique l’abandon des threads spéculatifs non valides et la relance du
code séquentiel à partir du dernier point cohérent. Cette technique a été principalement
dédiée à l’optimisation des structures en boucle. Cependant, son succès n’est pas garanti
et le gain de performance offert peut ne pas être excellent en raison d’une charge déséqui-
librée, de spéculations invalides, des optimisations de boucle simples qu’il offre contrai-
rement à celles des optimiseurs polyédriques et des communications inter-thread dans
le processus de détection des violations de dépendance.

Inspecteur-exécuteur

Le mécanisme inspecteur-exécuteur est une technique bien connue dans le domaine de
la compilation et de l’optimisation des programmes utilisé pour guider et valider les trans-
formations de code. Il a été vu et utilisé dans des travaux antérieurs exclusivement dédiés
à la parallélisation spéculative de boucles [110, 36]. Cette technique implique deux pro-
cessus principaux : (1) Inspecteur et (2) Exécuteur. L’inspecteur et l’exécuteur peuvent
être automatiquement construits à partir des boucles d’origine à optimiser. Chaque fois
que cela est possible, la boucle d’origine est divisée en deux boucles où :

• La première est exécutée par le processus inspecteur : il s’agit d’une version allégée
de la boucle qui permet de surveiller l’exécution et d’effectuer des calculs légers
pour guider les transformations de la boucle et les vérifier. Il calcule les adresses
mémoire qui sont censées être accédées, afin de pouvoir calculer avec précision
les dépendances de données, obtenir les bornes supérieures de la boucle et d’autres
informations liées à la boucle. Ces informations sont nécessaires pour garantir une
transformation valide.

• La deuxième boucle est exécutée par le processus exécuteur : c’est une boucle qui
effectue en fait les accès mémoire et les calculs existants. Cette boucle est optimi-
sée et parallélisée de manière fiable en fonction des informations collectées par
l’inspecteur.

A.2. ÉTAT DE L’ART 145

Optimiseur de boucles Polyédrique spéculatif automatique (APOLLO)
À cet égard, Apollo, un optimiseur polyédrique spéculatif [132, 84, 131, 83], combine les
deux approches présentées ci-dessus. Il a été mis en œuvre pour capturer les comporte-
ments polyédriques transitoires de boucles statiquement non affines à l’aide du profilage
dynamique et exploiter les puissants outils polyédriques pour les optimiser de manière
agressive au moment de l’exécution.

Mais qu’en est-il des structures non-boucles comme les fonctions récursives, qui sont
des fonctions qui participent à un cycle d’appels, qui ne peuvent pas bénéficier de ces
techniques d’optimisation et de parallélisation automatiques? Existe-t-il des alternatives
dans ces cas qui offrent un gain de performance satisfaisant?

A.2 État de l’Art
Dans une exécution de programme, les fonctions récursives, comme les boucles, sont
également parmi les structures coûteuses en temps les plus remarquables, responsables
d’une grande partie de l’ensemble de l’exécution. En général, les fonctions récursives im-
plémentent des algorithmes complexes, notamment pour le calcul haute performance,
l’analyse et le traitement d’énormes structures de données, par ex. les matrices, les gra-
phiques et les arbres. Une approche récursive est généralement adoptée lors de la ré-
solution de tout problème dont la solution repose sur des instances plus petites et plus
simples, selon une stratégie “diviser pour régner”. Cela facilite également l’expression de
calculs génériques pour des paramètres tels que des profondeurs de recherche ou des
dimensions de problème. Bien que les fonctions récursives soient des candidats intéres-
sants pour l’optimisation et la parallélisation, elles ne bénéficient pas, contrairement aux
boucles, de techniques avancées de parallélisation et d’optimisation automatiques puis-
santes. Dans la littérature traitant de l’optimisation de la récursivité, les fonctions récur-
sives peuvent être soit gérées directement “telles quelles” [53, 85, 117, 34, 94, 91, 122, 54]
ou transformées en boucles d’abord [75, 85].

Manipulées Directement Telles Quelles
Les fonctions récursives sont principalement parallélisées selon une stratégie paralléli-
sation de tâche de sorte que plusieurs appels sont exécutés simultanément si les dépen-
dances de données entre les appels le permettent. Comme travaux récents, nous men-
tionnons les travaux de Gupta et al., proposant DECAF [54], qui est une technique pour
optimiser les programmes parallèles de tâches récursives en réduisant les coûts de créa-
tion de tâches et de terminaison. Il y a aussi Adriadne [85] qui est un compilateur qui
extrait le parallélisme basé sur les directives des appels des fonctions récursives. Ce tra-
vail est de portée plus large que les travaux présentés dans cette section, car il extrait trois
formes de parallélisme et une transformation pour chacune d’elles : (1) réduction paral-
lèle : élimination de la récursivité et répartition de la charge de travail en tâches indé-
pendantes, (2) parallélisation thread-safe des fonctions récursives contenant des appels
récursifs indépendants et (3) élimination de la récursivité : conversion de la récursivité
en itération qui fait qu’Adriadne rentre également dans la deuxième catégorie présen-
tée dans la section suivante. Par ailleurs, il existe des techniques récentes qui permettent

146 ANNEXE A. RÉSUMÉ EN FRANÇAIS

la modélisation polyédrique des invocations récursives. PolyRec [135, 133, 134] optimise
les programmes récursifs imbriqués par des transformations d’ordonnancement poly-
édriques. Pour permettre de telles optimisations, PolyRec représente les instances de
fonctions récursives et leurs dépendances sous forme de polyèdres, et applique des trans-
formations d’ordonnancement. Néanmoins, leur approche est exclusivement consacrée
à des formes particulières de récursivité telles que les invocations récursives sont imbri-
quées et les données sont organisées en deux arbres, les arbres intérieur et extérieur.

Transformées d’abord en Boucles
Il est bien connu qu’il est toujours possible de remplacer une fonction récursive par une
boucle imbriquée équivalente et vice versa [5]. En général, à chaque appel de fonction,
des informations sur la fonction activée / invoquée (par exemple, paramètres de fonc-
tion, informations de variables locales, adresse de retour, etc.) sont empilées sur la pile
d’appels, c’est aussi le cas pour les fonctions récursives. En conséquence, une récursivité
peut être remplacée par une boucle et une structure de données qui imite la pile de pro-
grammes. Dans des cas particuliers, comme le cas d’une fin de récurrence dans laquelle
l’appel récursif est la dernière instruction de la fonction récursive, les données sauvegar-
dées dans la pile ne sont pas nécessaires car il n’y a plus de calculs à faire après le retour
des fonctions récursives. Cela a inspiré les compilateurs avancés comme Clang [30] et
GCC [48] pour éliminer les appels récursifs de queue et les transformer en boucles. De
plus, de nombreuses études ont été menées sur l’élimination de la récursivité [75, 85].
Cependant, en général, la transformation statique de récursivité en boucles génère des
boucles dont les structures sont complexes et non affines et, par conséquent, ne peuvent
pas bénéficier d’autres optimisations avancées.

A.3 Problématique et motivation
Les fonctions récursives, comme les boucles, sont des structures coûteuses qui doivent
être ciblées et optimisées de manière agressive. Bien qu’il existe de nombreuses études
sur l’optimisation des structures récursives et de nombreux optimiseurs de récursivité au-
tomatiques disponibles, ils sont tous activés et appliqués au moment de la compilation
sur la base d’une analyse statique. Ils conduisent évidemment à des exécutions plus effi-
caces ; mais ces optimisations sont relativement limitées par rapport aux options d’opti-
misation qui existent réellement pour les structures de boucle. Les techniques existantes
ne capturent pas le moment où les codes récursifs peuvent être réécrits sous forme de
boucles affines qui sont les candidats les plus appropriés pour une localisation de don-
nées efficace et de puissantes transformations polyédriques d’optimisation et de parallé-
lisation. En conséquence, la motivation de cette thèse est d’aller au-delà des limites clas-
siques fixées pour les techniques de suppression de récursivité et de saisir cette chance
et de découvrir les opportunités d’optimisation que le modèle polyédrique peut offrir
aux fonctions récursives dont le comportement à l’exécution est affine. Notre travail n’est
pas uniquement dédié aux fonctions récursives avec une structure particulière, il est plu-
tôt dédié aux fonctions récursives à comportement particulier, polyédrique. En consé-
quence, non seulement nous nous appuyons sur une analyse statique, mais également
sur une analyse dynamique pour guider notre transformation de récursivité en itération.

A.4. REC2POLY 147

C’est pour cela, nous présentons comme contribution principale de notre thèse le cadri-
ciel Rec2Poly.

A.4 Rec2Poly
Le cadriciel Rec2Poly est un optimiseur dynamique et spéculatif des fonctions récur-
sives basé sur le compilateur LLVM / Clang [137]. Il découvre, grâce à une technique de
profilage hors ligne, un comportement d’exécution affine de codes récursifs qui mani-
pulent des structures de données coûteuses, par exemple des tableaux. En cas de suc-
cès, il construit un code sémantiquement équivalent où tous les flux d’exécution liés aux
fonctions récursives sont remplacés par des boucles affines et permet d’appliquer des op-
timisations et des parallélisations de boucles polyédriques puissantes. Rec2poly génère
également un mécanisme de vérification à l’exécution suivant un schéma inspecteur-
exécuteur, pour garantir la validité du code itératif généré pour les différentes données
d’entrée. En conséquence, pour y parvenir, Rec2Poly est composé de trois phases princi-
pales :

1. Analyse statique du code et phase de préparation

2. Phase de profilage hors ligne

3. Phase de génération de code Inspecteur-Exécuteur

Les analyses, transformations et optimisations dans ces phases sont principalement
mises en œuvre au fur et à mesure de passes LLVM [80], en traitant la représentation
intermédiaire LLVM (IR) du code [78].

Les phases de Rec2Poly et leurs principaux constituants sont illustrées à la figure A.1.
Au début, Rec2Poly effectue une analyse statique. Il analyse en profondeur le code

récursif cible afin d’identifier les fonctions récursives. Il identifie également les fonctions
qui peuvent être appelées par des fonctions récursives, ou qui peuvent invoquer eux
même, directement ou indirectement, des fonctions récursives. Nous appelons ces fonc-
tions identifiées, des fonctions impactantes. Ensuite, Rec2Poly construit la tranche arrière
statique (Backward Static Slice (BSS)) correspondant à chaque instruction de stockage
mémoire (écriture) dans les fonctions impactantes, et collecte les identifiants de tous
les blocs de base qui contiennent au moins une instruction impliquée dans le calcul de
l’adresse de la mémoire cible ou de la valeur stockée, c’est-à-dire dans le BSS. Nous appe-
lons ces blocs de base, des blocs de base impactants. Ensuite, Rec2Poly prépare le code
pour les phases suivantes et effectue la globalisation des variables locales. Ceci est réalisé
en insérant, au début d’une fonction impactante en LLVM IR, un compteur d’invocation
et en transformant chaque structure de données locale ou une variable scalaire en une
structure de données globale indexée à l’aide de ce compteur. Cela permet de garder une
trace des variables initialement locales dans les fonctions qui nous intéressent et de ré-
soudre les dépendances entre leurs différentes invocations. Ensuite, ce code globalisé
étendu est ré-analysé pour obtenir les informations nécessaires liées à la récursivité en
tenant compte des modifications appliquées au code récursif d’origine.

En utilisant les informations d’analyse ainsi collectées et la version étendue du code
récursif cible, Rec2Poly commence par la deuxième phase, la phase de profilage lors de

148 ANNEXE A. RÉSUMÉ EN FRANÇAIS

l’exécution, en générant une version instrumentée du code cible. Le code instrumenté est
obtenu en ajoutant à chaque fonction impactante, les instructions pour générer la trace
de sortie. La trace générée décrit le contrôle et le comportement mémoire à l’exécution
du programme; elle est composée des identifiants de blocs de base impactant, des valeurs
de compteurs d’invocation et des adresses mémoire référencées, dans les blocs de base
impactants, via des instructions de chargement (lecture mémoire) et de stockage (écri-
ture). Une fois le code instrumenté exécuté, la trace générée est donnée comme entrée à
une version étendue de l’outil logiciel de reconnaissance de boucle imbriquée NLR [65].
NLR génère, dans la mesure du possible, une représentation de l’ensemble de la trace en
boucles, voire en boucles affines calculant des expressions affines.

Code Récursif Analyse Statique Informations
d’analyse

Préparation du CodeCode récursif
étendu

Analyse Statique Informations
d’analyse

Instrumentation Code récursif
instrumenté Trace

Reconnaissance de
Boucles Imbriquées

Modèle de
Boucles affines

Génération des
Boucles Affines Boucles affines

Génération
d’Inspecteur Inspecteur

Optimisation Polyédrique
/ Parallelisation

Boucles affines
optimisées

Génération de Code Final
& Optimisation LLVM

Code exécutable

Phase d’Analyse Statique et de
Préparation du Code

Phase de Profilage Hors Ligne

Phase de Génération de Code

Figure A.1 – Rec2Poly

A.4. REC2POLY 149

Les informations d’analyse de code et le résultat de profilage obtenus, c’est-à-dire le
modèle de boucle ainsi généré, peuvent ensuite être utilisés par Rec2Poly pour effectuer
la phase de génération et d’optimisation de code, et construire une version optimisée
compte tenu du code récursif étendu. Pour cela, Rec2Poly génère un code itératif com-
posé de séquences de nids de boucles optimisables remplaçant les fonctions impactantes
existant dans le code récursif d’origine. Étant donné que les boucles de remplacement
peuvent être des boucles entièrement affines, elles peuvent bénéficier de transformations
d’optimisation et de parallélisation polyédriques. Pour cela, Rec2Poly utilise le compila-
teur polyédrique Pluto [101]. Sinon, une analyse de dépendance dédiée peut encore être
effectuée et les boucles générées peuvent être encore puissamment parallélisées en uti-
lisant OpenMP. Le modèle de boucle affine, obtenu à partir du profilage hors ligne basé
sur une exécution du code récursif cible, peut également être utile pour les optimisations
et exécutions de code ultérieures, même pour différentes entrées de même taille, c’est-à-
dire la même taille du problème.

Cependant, étant donné que les exécutions seront spéculatives, leur validité doit tou-
jours être garantie au moment de l’exécution. Le programme optimisé généré est véri-
fiable au moment de l’exécution. C’est le code d’inspecteur parallèle rapide généré par
Rec2Poly qui collecte les informations manquantes et vérifie, au moment de l’exécution,
que les boucles affines générées s’exécutant en parallèle se comportent toujours en confor-
mité avec le code récursif d’origine.

Enfin, le code final est généré sur la base du schéma inspecteur-exécuteur composé
du : code inspecteur, code exécuteur contenant les boucles optimisées et le code récursif
d’origine. Ce code peut être en outre optimisé à l’aide des optimisations LLVM / Clang
disponibles.

Lors de l’exécution du programme généré, le code récursif d’origine est exécuté simul-
tanément avec l’inspecteur en utilisant les threads POSIX. En effet, au cas où une erreur
de spécification serait détectée au moment de l’exécution, le code entier de l’inspecteur-
exécuteur doit être annulé et un état correct de l’exécution du programme doit être récu-
péré avec la plus faible surcharge de temps. Le thread exécutant le code récursif poursuit
son exécution tant que l’inspecteur est toujours dans le processus de vérification; lors-
qu’une exécution correcte est assurée, le thread est abandonné et l’exécuteur lance ses
boucles optimisées parallèles.

Notre approche, Rec2Poly, est considérée comme une réécriture de code dynamique.
Elle a été inspirée par l’approche Apollo, mais au lieu de gérer statiquement les boucles
non affines, elle gère des structures sans boucles, des fonctions récursives. L’originalité du
cadriciel Rec2Poly est double :

1. il recherche un comportement d’exécution conforme au modèle polyédrique dans
les fonctions récursives, et

2. il utilise un schéma inspecteur-exécuteur pour vérifier non seulement les modèles
d’accès à la mémoire comme d’habitude pour cette stratégie, mais aussi le flot de
contrôle par rapport à celui des boucles affines.

Nous avons précédemment introduit la preuve de concept des phases d’analyse, de
profilage et de transformation de récursivité en boucles optimisées de Rec2Poly dans
notre travail [66]. Ensuite, dans un travail ultérieur [67], nous avons présenté l’exten-
sion de ces phases et l’introduction de la fonction de vérification basée sur le paradigme

150 ANNEXE A. RÉSUMÉ EN FRANÇAIS

inspecteur-exécuteur. Dans cette thèse, nous revisitons ces études, discutons et appro-
fondissons les parties liées aux inspecteurs. Les principales phases de Rec2Poly sont pré-
sentées et discutées en détail dans les sections suivantes.

A.5 Phase d’Analyse Statique et de Préparation du Code
A.5.1 Analyse statique
Tout d’abord, Rec2Poly, notre outil basé sur LLVM-Clang, prend en entrée un code source
récursif cible et le transforme en sa représentation intermédiaire (IR) qui sera analysée et
transformée dans les étapes suivantes. Nous n’activons pas la passe LLVM d’élimination
des appels terminaux qui transforme les appels récursifs terminaux en boucles et ceci
pour deux raisons : (1) la façon dont la fonction récursive cible est transformée peut ne
pas donner lieu à une boucle affine et (2) s’il y a plusieurs appels récursifs imbriqués dans
le code cible, un seul appel terminal peut être éliminé. Rec2Poly vérifie si le programme
comporte des fonctions récursives et, si tel est le cas, identifie celles-ci et les fonctions qui
y participent. Afin de détecter les fonctions récursives, il utilise le graphe d’appel extrait
de la représentation intermédiaire du programme.

main

A

...
FOR I IN LB TO UB

DO Call B(...) ;
ENDFOR;
...

B

C

E

D

G H

F

Figure A.2 – Exemple de graphe d’appel d’un programme récursif arbitraire

La figure A.2 montre un exemple de graphe d’appel d’un programme composé de neuf
fonctions : main, A, B, C, D, E, F, G et H où : la fonction main appelle A qui appelle B qui
appelle C; C appelle elle-même, E et D; E rappelle C et appelle F et G; G appelle H. Dans
cet exemple, notez que la fonction C montre une récursivité directe avec elle-même et
une récursivité indirecte via la fonction E. À partir du graphe d’appel, Rec2Poly recherche
des composants fortement connectés (SCC), qui sont des sous-graphes où chaque nœud
est accessible à partir de tous les autres nœuds. Dans ce contexte, un cycle dans un SCC
signifie qu’une récursivité se produit parmi les fonctions associées aux nœuds impliqués
dans ce cycle. Si le cycle est constitué d’un seul nœud, c’est-à-dire une boucle, alors il s’agit

A.5. PHASE D’ANALYSE STATIQUE ET DE PRÉPARATION DU CODE 151

d’une récursivité directe. Sinon, c’est indirect. Pour l’exemple de la figure A.2, il y a un SCC
avec une boucle sur C montrant une récursivité directe, et un cycle de C vers E et E vers
C, montrant une récursivité indirecte entre C et E.

Reconnaissance d’accessibilité de la récursivité

Nous nous intéressons au suivi des blocs de base impactants, qu’ils soient exécutés di-
rectement ou indirectement par les fonctions récursives. Pour cette raison, en plus des
fonctions récursives elles-mêmes, notre système détermine également leur accessibilité
dans le programme. L’accessibilité désigne toutes les fonctions qui peuvent être atteintes
par une séquence d’appels initiée par les fonctions récursives elles-mêmes. Sur la figure
2, l’accessibilité des fonctions récursives C et E comprend : D (directement appelée par
C), F et G (directement appelée par E) et H (indirectement appelée par E à G).

Reconnaissance de source de récursivité

Non seulement nous suivons les fonctions constituant une récursivité et leur accessibi-
lité dans un programme, mais aussi la source de ces fonctions. La fonction source initiale
peut être une fonction invoquant, à partir d’une boucle, une fonction récursive, directe-
ment ou indirectement, à travers une chaîne de fonctions invoquées. De plus, en cas d’in-
vocation indirecte de la fonction récursive à partir d’une boucle, toutes les autres fonc-
tions participant à la séquence d’appels à partir de la fonction source initiale jusqu’à la
fonction récursive sont considérées comme faisant partie de cette source. L’analyse des
fonctions sources est nécessaire car sinon, la phase de profilage serait incomplète. Un
comportement de boucle détecté par la suite et associé à la récursivité elle-même serait
incorrect lorsque la fonction récursive est invoquée à partir d’une boucle. De plus, cela
aide à comprendre comment une fonction récursive se comporte par rapport à ses invo-
cations itératives, et évidemment à construire des boucles affines qui sont équivalentes
à toute cette partie du programme original.

Par exemple, l’ensemble des fonctions sources de la récursivité de la figure A.2 com-
prend A et B car A appelle B à partir du corps d’une boucle for, et B à son tour appelle la
fonction récursive C. La boucle en A ne peut pas bénéficier d’optimisations polyédriques
efficaces de boucle, du fait de l’existence de l’appel récursif imbriqué. S’il est possible de la
remplacer par des boucles affines équivalentes, la boucle pourra éventuellement profiter
d’optimisations sophistiquées.

Identification des blocs de base impactants

Ces blocs de base sont identifiés de la manière suivante. Dans la représentation intermé-
diaire LLVM du programme, notre système marque les instructions de stockage signifi-
catives en mémoire. Ensuite, pour chaque instruction de stockage de ce type, il marque
également chaque instruction qui la mène et y contribue, c’est-à-dire sa tranche arrière
statique (BSS). Une BSS est l’ensemble des instructions existant dans le code d’un pro-
gramme qui peuvent affecter une certaine valeur, c’est-à-dire, dans notre cas, une valeur
stockée et une adresse mémoire liées à la fonction impactante.

152 ANNEXE A. RÉSUMÉ EN FRANÇAIS

Analyse du comportement mémoire intra-fonction et inter-fonctions
En plus de l’identification d’un comportement en boucle de la récursivité ciblée, la sé-
quence d’adresses mémoire touchées par chaque instruction mémoire, à l’intérieur des
blocs de base impactants, doit être modélisée avec succès par des fonctions affines des
indices de boucles les entourant. Cependant, parmi différentes instances d’exécution du
même code récursif cible, avec exactement les mêmes données d’entrée et la même plate-
forme matérielle, les adresses mémoire touchées ne sont évidemment pas les mêmes, car
les structures de données ne sont pas toujours allouées aux mêmes adresses mémoire.
Néanmoins, le comportement de la mémoire par rapport aux adresses de base des struc-
tures de données peut encore être identique parmi les instances d’exécution. De plus,
nous nous intéressons aux cas où le comportement mémoire relatif peut être modélisé
par des fonctions affines d’indices de boucles les entourant. Ainsi, les décalages de mé-
moire relatifs aux adresses de base sont collectés à partir de l’instrumentation. Lors de la
manipulation de structures de données locales à des fonctions, la phase d’analyse néces-
site deux étapes :

• Analyse intra-fonction : chaque accès mémoire est associé à son adresse de base
correspondante visible dans le périmètre de la fonction courante, c’est-à-dire que
les paramètres de la fonction sont le point d’analyse le plus éloigné de la fonction.

• Analyse inter-fonctions : si les structures de données accédées sont des paramètres
de fonction, l’analyse intra-fonction ne suffit pas. L’analyse de la mémoire se pro-
longe plus loin en dehors de la fonction pour suivre les arguments fournis à la fonc-
tion. L’analyse inter-fonctions associe chaque accès à son adresse de base réelle
dans le programme.

Par contre, lors de la gestion de structures de données globales, les adresses mémoire
accédées peuvent être directement associées à leurs adresses de base.

A.5.2 Préparation du Code
Conservation du Code d’Origine
Avant que Rec2Poly n’applique des modifications au code, il est préférable de conserver
une copie originale intacte du code, donc Rec2Poly clone toutes les fonctions à l’excep-
tion de la fonction principale. Toutes les allocations mémoire et les variables doivent être
créées dans des fonctions qui ne sont pas des fonctions main du code d’origine. La fonc-
tion main lance alors la partie de code des clones au lieu du code d’origine. Ensuite, cette
partie de code mort sera utilisée, dans la phase de génération de code, pour créer le thread
de sauvegarde invoquant le code récursif d’origine.

En conséquence, toute analyse effectuée et autres modifications appliquées au code
sont considérées comme étant appliquées au code récursif cloné, sauf indication contraire
explicite. Par conséquent, par défaut, une fonction impactante fait référence à son clone.

Insertion de compteur d’appel de fonction et globalisation des variables locales
Le premier objectif de Rec2Poly est de détecter un comportement affine des fonctions
impactantes, vis-à-vis de leur flot de contrôle, ainsi que de leurs accès mémoire : pour

A.6. PHASE DE PROFILAGE HORS LIGNE 153

chaque instruction mémoire, la séquence d’adresses mémoire touchées doit potentiel-
lement être représentée comme des expressions affines des indices de boucles les en-
tourant. Cependant, à chaque invocation d’une fonction impactante, ses structures de
données locales sont évidemment allouées sur la pile d’exécution. Ainsi, les accès à ces
structures locales ne peuvent jamais présenter d’accès mémoire affine à travers toutes
les invocations de la fonction. De plus, dans les boucles affines censées remplacer les
fonctions impactantes, ces structures de données doivent évidemment être référencées
encore. C’est pourquoi Rec2Poly ajoute un compteur d’invocation à certaines fonctions
impactantes et transforme toutes les structures de données importantes qui sont locales
à ces fonctions en tableaux globaux, qui sont indexés par le compteur d’invocation de
fonction. De cette manière, les références à ces données globalisées peuvent présenter
des comportements affines, que les fonctions associées soient appelées à la suite d’un flot
de contrôle affine. Ceci n’est effectué que pour les fonctions impactantes avec des accès
mémoire initiaux, car il peut y avoir des fonctions impactantes qui n’effectuent qu’une
décomposition de problème, par exemple avec des calculs légers et des variables locales
qui n’ont pas besoin d’être globalisées.

A.6 Phase de Profilage Hors Ligne
Rec2Poly doit détecter un comportement de boucle affine des fonctions récursives qui
peut permettre de transformer les récursivités en boucles optimisables. Le comporte-
ment des récursivités à découvrir correspond à la fois aux comportements mémoire et
contrôle des fonctions impactantes impliquées. Dans l’optimiseur de boucle spéculatif,
Apollo, notre inspiration dans un domaine différent, l’analyse du comportement mé-
moire des boucles concernées suffit à guider les transformations de code. Cependant,
Apollo a l’intention de transformer les boucles en d’autres boucles affines. Ainsi, il conver-
tit une structure de contrôle en une structure similaire. D’autre part, Rec2Poly transforme
les appels récursifs en des structures de contrôle totalement différentes, des boucles. En
conséquence, une telle transformation nécessite de comprendre le comportement du
contrôle récursif en plus du comportement mémoire.

Pour cela, Rec2Poly effectue une analyse d’exécution dédiée via une technique de pro-
filage hors ligne. Cette technique se compose des deux étapes suivantes :

A.6.1 Instrumentation
Rec2Poly génère, à partir de la version globalisée du code récursif cible, une version ins-
trumentée du code pour produire la trace d’exécution de contrôle et d’accès mémoire des
fonctions impactantes.

Le comportement du contrôle est décrit par les blocs de base impactants exécutés au
moment de l’exécution. Rec2Poly doit générer les identifiants de ces blocs de base. D’autre
part, le comportement de la mémoire est décrit par les adresses mémoire accédées rela-
tives (offsets). Les offsets sont calculés pour toutes les instructions mémoire existantes
en fonction de leurs adresses de base associées obtenues à partir de l’analyse du compor-
tement mémoire. Une instruction de différence de pointeur est insérée, dans la représen-
tation LLVM IR, pour chaque instruction de chargement ou de stockage, en soustrayant
l’adresse de base correspondante de l’adresse mémoire réelle touchée.

154 ANNEXE A. RÉSUMÉ EN FRANÇAIS

Ensuite, Rec2Poly supprime toutes les instructions d’affichage existantes de LLVM IR
et y ajoute les instructions nécessaires à l’écriture de la trace de sortie. Pour chaque bloc
de base impactant, une instruction est ajoutée pour générer l’identifiant de bloc de base
et les offsets de toutes les adresses mémoire qui y sont accédées lors de l’exécution du
programme.

Cependant, bien que l’incrémentation des compteurs d’appels de fonctions, en tant
que variables globales, nécessite des accès à la mémoire, Rec2Poly les gère différemment.
Au lieu d’instrumenter leur offset mémoire (évidemment zéro), il ajoute des instructions
pour afficher leurs valeurs réelles au moment de l’exécution dans les blocs de base d’en-
trée des fonctions impactantes. Aussi, Rec2Poly instrumente les valeurs des variables d’in-
duction des boucles existant dans le code. Ceci est important pour la phase de génération
de code.

A.6.2 Reconnaissance de boucles imbriquées (NLR)
Lorsque la version instrumentée est exécutée, elle produit une trace d’exécution qui est
composée de tuples. Chaque tuple est principalement composé de l’ID de bloc de base
impactant, et les offsets relatifs des adresses mémoire accédées par toutes les instructions
mémoire du bloc de base courant.

Il est possible d’avoir des valeurs du compteur d’invocation de fonction ou des indices
de boucle.

Après avoir été générée en exécutant le programme récursif instrumenté, la trace est
analysée par une version étendue de NLR.

L’algorithme NLR prend en entrée une trace de l’exécution d’un programme et construit
une séquence de nids de boucles qui produisent la même trace d’origine lors de leur exé-
cution. Les applications de cet algorithme comprennent :

1. la modélisation du comportement du programme pour toute quantité mesurée
telle que les accès à la mémoire

2. la compression de trace d’exécution, et

3. la prédiction de valeur, c’est-à-dire l’extrapolation de boucles en construction (lors
de la lecture de l’entrée) pour prédire les valeurs à venir.

Dans notre outil, non seulement nous utilisons NLR pour modéliser les accès mé-
moire, ce qui est l’un de ses objectifs d’origine, mais aussi pour modéliser des séquences
d’identifiants de blocs de base, ce qui est plus singulier. Compte tenu de notre trace d’un
programme récursif cible, si NLR construit des nids de boucles affines comprenant les
ID de blocs de base intéressants et les adresses mémoire interpolées par les indices de
boucle construits, alors la génération de boucles affines équivalentes peut être effectuée.

Deux exemples de sorties NLR sont représentés sur les figures A.3 et A.4. Les boucles
générées montrent la façon dont les blocs de base (BB1, BB2, BB3, BB4) à l’intérieur des
fonctions (F1, F2) sont appelés en suivant un comportement de boucle affine, et comment
la mémoire est référencée par des adresses relatives qui peuvent être modélisées comme
des fonctions affines d’indices de boucle. Notez que sur la figure A.4, NLR utilise l’une de
ses fonctionnalités les plus avancées qui détecte que la modélisation affine d’une trace
peut dépendre de certains paramètres inconnus. NLR découvre ces valeurs et présente

A.7. PHASE DE GÉNÉRATION DE CODE 155

for i0 = 0 to 99
val F1::BB1
for i1 = 0 to 9
val F2::BB1
, 0
for i2 = 0 to 9

val F2::BB2
, 1*i0
, 4*i0 + 2*i1 + 1*i2
, 4*i0 + 1*i1 + 1*i2

val F2:BB3
val F2::BB4

Figure A.3 – Modèle de boucles
affines NLR du contrôle et du
comportement mémoire

for i0 = 0 to 99
val F1::BB1
for i1 = 0 to 9
val F2::BB1
, 0
for i2 = 0 to 9

val F2::BB2
, 1*i0
, [10:3,5,...,1][i0] + 2*i1 + 1*i2
, [10:7,1,...,6][i0] + 1*i1 + 1*i2

val F2:BB3
val F2::BB4

Figure A.4 – Modèle de boucle paramé-
triquement affines NLR du contrôle et
du comportement mémoire

un comportement mémoire qui n’est en fait pas totalement affine, que nous appelons
paramétriquement affine de telle sorte que certains coefficients dans les fonctions affines
peuvent être des listes de valeurs. Dans l’exemple montré, chaque liste contient 10 valeurs
entières qui sont successivement utilisées pour calculer l’adresse mémoire référencée.
Par exemple, [10 : 3,5, ..., 1] [i0] signifie que :

[10 : 3, 5, ..., 1][i0] =

3 si i0 = 0
5 si i0 = 1
...
1 si i0 = 9

A.7 Phase de Génération de Code
Etant donné que la génération de code est basée sur le profilage hors ligne d’une exécu-
tion de programme précédente, l’exactitude du code final généré doit être vérifiée pen-
dant les nouvelles exécutions de programme. Pour cela, Rec2Poly génère le code final
basé sur le mécanisme d’un Inspecteur-Exécuteur.

Bien qu’il ait été exclusivement utilisé dans le domaine des codes itératifs, et pour vé-
rifier leurs accès mémoire, comme c’est le cas dans Apollo, Rec2Poly étend ce mécanisme
et l’amène au domaine des codes récursifs et la vérification du contrôle.

A.7.1 Génération d’Inspecteur Parallèle Rapide
Le modèle de boucles affines généré par NLR est ensuite utilisé par Rec2Poly pour générer
l’inspecteur. Son rôle sera de vérifier que les boucles affines optimisées et parallélisées, qui
remplacent le programme récursif, sont toujours correctes dans le contexte d’exécution
courant. Il est composé de trois principaux types de composants :

1. Les générateurs de trace, qui sont des versions minimales du programme récursif
original, consacrés à la production du même type de traces d’exécution que ce-

156 ANNEXE A. RÉSUMÉ EN FRANÇAIS

lui qui a été généré lors de la phase de profilage, c’est-à-dire des tuples constitués
de fonctions et d’identifiants de blocs de base, d’adresses mémoire référencées et
les valeurs des compteurs d’appels de fonctions et des variables d’induction des
boucles ;

2. Les vérificateurs, dont le rôle est de vérifier si les traces générées sont toujours
conformes au modèle de boucles affines NLR;

3. Un enregistreur de paramètres, dont le rôle est de collecter les valeurs d’entrée de
fonction qui sont utilisées par les instructions des blocs de base impactants.

Nous illustrons leurs fonctionnalités et comment Rec2Poly modifie l’IR d’un code ré-
cursif donné pour construire son inspecteur approprié.

Générateurs de Traces

Un générateur de traces est composé de clones minimaux légers des fonctions impac-
tantes, c’est-à-dire des fonctions source, récursives et accessibles. Son rôle est de géné-
rer une trace représentant le flot de contrôle réel ou la séquence d’adresses mémoire
touchées et les valeurs des compteurs d’appels de fonctions et des variables d’induction
des boucles. Après le clonage des fonctions impactantes et leurs blocs de base, Rec2Poly
supprime les instructions qui impliquent l’accès à la mémoire telles que les stockages et
les chargements. Les instructions qui sont fondamentales pour préserver un comporte-
ment de contrôle correct de ces fonctions doivent être préservées telles que les branches,
les conditions, les instructions et les appels liés aux boucles. Nous supposons pour cette
étude que les branches conditionnelles ne dépendent d’aucun accès mémoire. De plus,
dans les clones, les fonctions impactantes référencées dans les instructions d’appel doivent
être remplacées par leurs propres clones. On s’attend à ce qu’un générateur de trace pro-
duise une trace afin que cette dernière puisse être vérifiée par rapport au modèle de
boucles affines NLR. Pour cela, des buffers ou des tableaux de mémoire globaux sont ajou-
tés à l’IR.

L’Inspecteur doit être nettement plus rapide que le programme récursif d’origine, de
sorte que le couple final Inspecteur-Exécuteur offre des accélérations significatives. La
génération d’une trace complète de tuples complets de valeurs, similaire à la trace géné-
rée lors de la phase de profilage, serait trop coûteuse. Ainsi, afin de garantir un processus
de génération de trace rapide, un inspecteur, créé par Rec2Poly, est composé de plusieurs
générateurs de trace, c’est-à-dire de multiples clones de fonctions impactantes, qui sont
exécutés en parallèle chacun par un thread parallèle distinct. Chacun de ces générateurs
est responsable de la génération d’une sous-partie de la trace, par exemple, l’un génère
l’ensemble des ID de flot de contrôle, et les autres génèrent des séquences d’adresses mé-
moire touchées, des valeurs d’index de boucle, etc. En conséquence, Rec2poly doit s’at-
taquer à un problème d’équilibrage de charge entre les threads en décidant du nombre
d’accès à la mémoire un seul générateur de trace doit gérer et lesquels. Par défaut, chaque
générateur de trace mémoire ou thread de vérification gère un accès à la mémoire par
bloc de base, vu que le couple générateur de trace de contrôle-vérificateur gère un seul
bloc de base ID par visite.

A.7. PHASE DE GÉNÉRATION DE CODE 157

Vérificateurs
Pour chaque générateur de trace, Rec2Poly crée un vérificateur de trace correspondant
basé sur le modèle de boucles affines NLR. Chaque vérificateur est généré comme une
nouvelle fonction qui implémente les boucles NLR et les versions minimales de leurs
blocs de base inclus. Lors de l’exécution, les vérificateurs de trace sont également lancés
dans des threads parallèles.

Enregistreur de paramètre
Certains arguments d’entrée des fonctions impactantes peuvent être des valeurs trans-
mises par la fonction appelante et utilisées directement par les instructions. Ces para-
mètres doivent être collectés spécifiquement afin d’instancier les boucles de remplace-
ment. Comme les générateurs de trace, un enregistreur de paramètres est constitué d’une
version légère minimale de la partie de code impliquant des fonctions impactantes. Il
enregistre les valeurs d’entrée de fonction dans un tableau de buffers global à l’entrée de
chaque fonction impactante. Les enregistreurs de paramètres sont également exécutés
simultanément avec les générateurs de traces et les vérificateurs.

Optimisations Supplémentaires de l’Inspecteur
Dans certains cas, l’inspecteur n’a pas besoin de gérer tous les accès mémoire à l’intérieur
d’un bloc de base impactant. Par exemple, dans les cas d’accès à des tableaux, si le même
tableau est accédé plusieurs fois via des indices calculés à l’aide de la même variable d’in-
duction, alors un seul de ces accès nécessite d’être manipulé et vérifié par l’inspecteur.
En outre, il existe des blocs de base qui se répètent toujours ensemble, par exemple les
blocs de base d’une boucle ; un seul doit être tracé et vérifié au moment de l’exécution
car le reste peut être pris en compte avec lui. De plus, dans le cas où le code comprend
des boucles qui affectent le résultat final mais pas le contrôle ou les accès mémoire du
programme, elles peuvent être interrompues dans les générateurs de trace ainsi que leurs
équivalences dans les vérificateurs, après au maximum trois itérations ; nous avons besoin
de trois itérations maximum pour être conforme à NLR puisque NLR détecte des boucles
dans les traces se répétant trois fois ou plus.

La figure A.5 montre le graphe d’appel de l’inspecteur correspondant à l’exemple arbi-
traire du programme récursif de la figure A.2. Les fonctions impactantes pour lesquelles
Rec2Poly crée des clones légers pour construire l’inspecteur sont : A, B, C, D, E, F, G et H.
Cette figure montre que la fonction principale lanceM +1 threads parallèles. LesM +1
threads nécessaires à l’inspecteur appartiennent à un enregistreur de paramètres, M/2
générateurs de trace etM/2 vérificateurs. Notez que, pour chaque thread qui lance un gé-
nérateur de trace, il existe un thread qui lance une fonction de vérification. L’enregistreur
de paramètres et les M/2 générateurs de traces nécessitent au minimum M/2+ 1 diffé-
rents clones légers des fonctions impactantes. Les clones de ime fonctions sont appelés :
Ai

l , Bi
l , Ci

l , Di
l , Ei

l , F i
l , Gi

l and H i
l .

LesM/2 vérificateurs nécessitent la création deM/2 fonctions légères, chacune étant
construite en utilisant des blocs de base légers basés sur le modèle NLR. La ime fonction
de vérification est appelée vi ; vi est supposé être construite à partir de L + 1 blocs de
base impactants légers : BBi

0, BBi
1,..., BBi

L. Dans les fonctions de vérification, le graphe

158 ANNEXE A. RÉSUMÉ EN FRANÇAIS

A1
l

B1
l

C1
l

E1
l

D1
l

G1
l H1

l

F1
l

V1

BB1
L

BB1
L−1

BB1
1

BB1
0

..
.

Buffer10 ...

Buffer11 ...
...

Buffer1N ...

Générateur de Trace 1 Vérificateur 1

sem 1

sem 0

.

A
M
2
l

B
M
2
l

C
M
2
l

E
M
2
l

D
M
2
l

G
M
2
l H

M
2
l

F
M
2
l

VM
2

BB
M
2
L

BB1
L−1

BB
M
2
1

BB
M
2
0

..
.

Buffer
M
2
0

...

Buffer
M
2
1

...
...

Buffer
M
2
N

...

Générateur de Trace M
2 Vérificateur M

2

sem M-1

sem M-2

main

Thread 1 Thread 2 Thread M-1 Thread M

A0
l

B0
l

C0
l

E0
l

D0
l

G0
l H0

l

F0
l

Buffer00 ...

Buffer01 ...
...

Buffer0P ...

Enregistreur de paramètre
Thread 0

.

.

Figure A.5 – Exemple de graphe d’appels détaillé pour un inspecteur

A.7. PHASE DE GÉNÉRATION DE CODE 159

de flot de contrôle composé de nœuds représentant les blocs de base est visualisé ; dans
ce graphique, les boucles construites apparaissent comme des cycles. Chaque générateur
de trace et son vérificateur associé ont leur propre ensemble deN +1 buffers à traiter, et
ils se synchronisent, communiquent pour contrôler leurs accès aux buffers en utilisant
deux sémaphores. En conséquence, l’inspecteur a besoin deM sémaphores. Par exemple,
Thread 1 et Thread 2 communiquent en utilisant les sémaphores sem 0 et sem 1. Chaque
générateur de trace produit et enregistre sa propre partie de trace à l’aide de ses buffers
dédiés qui sont vérifiés par le vérificateur associé. D’autre part, l’enregistreur de para-
mètres a son propre ensemble de P + 1 buffers utilisés pour sauvegarder les valeurs de
paramètres des clones de fonctions impactantes.

A.7.2 Génération de l’Exécuteur
Cette dernière partie de la phase de génération de code prend en entrée le programme
récursif après la globalisation des variables, et le modèle de boucle affine NLR corres-
pondant obtenu lors de la phase de profilage. Rec2Poly peut construire le programme de
boucles affines de remplacement en :

• clonant les instructions impactantes dans les blocs de base impactants ;

• remplaçant les adresses mémoire référencées par les fonctions affines NLR corres-
pondantes ajoutées aux adresses de base associées collectées au moment de l’exé-
cution ;

• remplaçant les indices de boucles existants par leur expression affine en termes
des nouveaux indices de boucles.

• remplaçant le compteur d’invocation utilisé par son expression affine en termes
des boucles NLR construites.

• remplaçant l’utilisation des valeurs d’entrée de fonctions manquantes par les va-
leurs collectées au moment de l’exécution par l’inspecteur.

Enfin, la fonction appelée dans le programme d’origine pour initier la récursivité est
remplacée par la nouvelle fonction créée constituée du code itératif construit à partir du
modèle de boucles affines NLR. Comme mentionné précédemment, NLR peut produire
deux types de modèles de boucles pour un contrôle et un comportement de la mémoire
entièrement ou paramétriquement affines. Nous utilisons différentes approches pour op-
timiser chacun de ces types de boucles affines, comme expliqué ci-dessous.

Boucles avec Contrôle et Comportement Mémoire Affines

Le cas le plus favorable correspond à des boucles affines pures qui sont prêtes à être
optimisées à l’aide d’un optimiseur polyédrique automatique comme Pluto. Cependant,
puisque nous générons et transformons du code en représentation intermédiaire LLVM,
nous devons alimenter Pluto avec une représentation OpenScop des boucles affines comme
c’est le cas dans Apollo.

160 ANNEXE A. RÉSUMÉ EN FRANÇAIS

Boucles Parametriquement Affines

Dans ce cas, les optimiseurs automatiques polyédriques ne peuvent pas être utilisés. Ce-
pendant, une parallélisation de boucle peut être obtenue, ce qui nécessite un proces-
sus d’analyse des dépendances dédié. Il consiste à calculer les plages d’adresses mémoire
touchées par les instructions de stockage et de chargement à chaque itération, afin de
construire des ensembles d’itérations indépendants. Enfin, la boucle externe est divisée
en deux boucles imbriquées : la boucle externe itérant sur des listes de valeurs d’indices
de boucle et la boucle interne sur les valeurs d’indices à l’intérieur de chaque liste. La
boucle externe est parallélisé en threads parallèles.

A.8 Expériences
Les programmes suivants ont été compilés avec Clang version 6.0 et les options “-O3
-march = native”, et fonctionnent sur deux processeurs Intel Xeon E5-2650 v3 à 2,30
GHz de dix cœurs chacun. Les programmes parallèles ont été exécutés en utilisant vingt
threads sur les vingt cœurs de la plate-forme matérielle. Les optimisations de l’exécuteur
avec les boucles affines sont appliquées grâce à Pluto.

Quant à celles de l’exécuteur avec les boucles paramétriquement affines, elles sont
appliquées sur la base de l’approche correspondante décrite dans la section précédente.
Par défaut, quelques optimisations sont activées pour les inspecteurs. Par exemple, les
boucles sont interrompues après au maximum trois itérations dans le générateur et le
vérificateur de trace de contrôle dans un inspecteur. En plus, il y a un couple générateur-
vérificateur de trace séparé dédié pour gérer les variables d’induction de boucles et les
valeurs du compteur d’invocation des fonctions. En ce qui concerne les générateurs et
vérificateurs de traces mémoire, nous avons expérimenté différentes options d’optimisa-
tion disponibles dans Rec2Poly.

A.8.1 Multiplication récursive de matrices
Notre première expérience est pédagogique, menée sur une implémentation en C de la
multiplication récursive de matrices. Ce programme n’implique qu’une seule fonction
récursive avec trois appels récursifs. Le code C de la fonction récursive est donné en fi-
gure A.1. Le modèle NLR généré par Rec2Poly pour ce programme (pour des matrices de
taille 1000× 1000) est présenté à la figure A.6.

L’inspecteur par défaut généré par Rec2Poly est composé de huit couples générateur-
vérificateur de trace, un couple qui gère le contrôle, sept couples qui gèrent les généra-
teurs de trace mémoire car il y a sept accès requis pour effectuer le seul calcul existant
dans la boucle C [i] [j] + = A [i] [k] * B [k] [j]. Cette version de l’inspec-
teur nécessite seize threads. La version de sauvegarde s’exécute sur un thread supplé-
mentaire. Cependant, Rec2Poly peut optimiser encore plus cet inspecteur et supprimer
les accès mémoire redondants. L’inspecteur optimisé comprend six couples générateur-
vérificateur de traces dont cinq au lieu de sept sont dédiés à la vérification du flot mé-
moire de cette récursivité. Cet inspecteur nécessite douze threads en plus du thread de
sauvegarde exécutant le code récursif d’origine. L’exécuteur implique des nids de boucles

A.8. EXPÉRIENCES 161

affine parfaits composés de trois boucles pouvant être pavées et parallélisées par Pluto
pour être exécutées par une quarantaine de threads.

void MatrixMultiplication(double **A , double **B , double **C , int i ,
int j , int k){

if (i>=ROW1) //all rows of A are handled
return;

if(k<COLUMN1 && j<COLUMN2) //not all columns of A & rows of B handled
{

C[i][j] += A[i][k]*B[k][j];
MatrixMultiplication(A , B , C , i , j , k+1);

}

else if (j<COLUMN2) //not all columns of B are handled
MatrixMultiplication(A , B , C , i , j+1 , 0);

else //not all rows of A are handled
MatrixMultiplication(A , B , C , i+1 , 0 , 0);

}

Listing A.1 – Fonction récursive en C du produit de matrices

for i0 = 0 to 999
for i1 = 0 to 999

for i2 = 0 to 999
val MatrixMultiplication::if.then3

, 1*i0 , 1*i2 , 1*i2 , 1*i1 , 1*i0 , 1*i1 , 1*i1

Figure A.6 – Modèle NLR du contrôle et du comportement mémoire du produit de ma-
trice récursif

Dans la figure A.7, nous montrons le pourcentage d’accélération du temps d’exécu-
tion, par rapport au code de multiplication matricielle récursif d’origine, lorsqu’on exe-
cute le code inspecteur-exécuteur et l’inspecteur optimisé avec le code exécuteur. Comme
nous l’avons remarqué, l’inspecteur-exécuteur par défaut fonctionne mieux que le code
d’origine avec une amélioration d’environ 15, 5%, et la version optimisée de l’inspecteur-
exécuteur est encore plus rapide ; l’accélération est d’environ 30, 5% pour les matrices A
de taille 10000× 900 et B de taille 900× 1000.

A.8.2 Multiplication récursive de matrices GEMM
Notre deuxième expérience a été menée sur une autre implémentation en C de la mul-
tiplication matricielle récursive (GEMM) manipulant des sous-matrices par dichotomie
successive jusqu’à un seuil donné. Il s’agit d’une récursivité indirecte entre quatre fonc-
tions. Il existe une fonction accessible à partir de cette récursivité qui comprend une sé-
quence de boucles affines accédant à la mémoire. La récursivité dans ce programme a

162 ANNEXE A. RÉSUMÉ EN FRANÇAIS

4000 6000 8000 10000
0

10

20

30

40

Nombre de lignes de la matrice A

Ac
cé

lér
at

io
n(

%
)

Inspecteur - Exécuteur
Inspecteur Optimisé - Exécuteur

Figure A.7 – Résultats expérimentaux du programme Multiplication récursive de ma-
trices - Accélération de Rec2Poly

un contrôle linéaire, mais un comportement mémoire paramétriquement affine. Ainsi,
le code itératif gère des listes indépendantes d’itérations exécutées en parallèle.

L’inspecteur par défaut (inspecteur I) généré par Rec2Poly comprend un enregistreur
de paramètres et sept couples générateur-vérificateur de traces, dont cinq sont liés à la
mémoire. Ainsi, l’inspecteur I nécessite le lancement de quinze threads autres que le
thread du code récursif de sauvegarde. Cependant, il existe également de nombreux accès
mémoire redondants dans les fonctions impactantes de ce programme, ce qui signifie que
l’inspecteur peut être optimisé davantage. Rec2Poly peut générer l’Inspecteur II qui ne
nécessite que deux couples générateur-vérificateur de trace mémoire, c’est-à-dire quatre
au total. Inspecteur II est lancé sur neuf threads au lieu de quinze. De plus, étant donné
que les fonctions impactantes impliquent des boucles sans impact sur le flot, Rec2Poly
peut générer une version d’inspecteur très optimisée de l’inspecteur II, qui est l’inspec-
teur III. Les boucles dans les générateurs de trace et les vérificateurs sont interrompues
après au plus trois itérations.

Dans la figure A.8, nous montrons le pourcentage d’accélération du temps d’exécu-
tion, par rapport au programme GEMM récursif d’origine et pour des exécutions mul-
tiples des codes inspecteur-exécuteur pour différentes tailles de matrices. Tous nos codes
optimisés ont surpassé en performance le code récursif d’origine. Le code de l’inspecteur-
exécuteur, avec l’inspecteur par défaut (I), est plus rapide que le code d’origine d’environ
20%. Pourtant, le code de l’inspecteur-exécuteur avec l’inspecteur optimisé II et la sup-
pression des accès redondants à la mémoire est encore plus efficace ; il est plus rapide
que le code original d’environ 28, 9%. Enfin, le code de l’inspecteur-exécuteur avec l’ins-
pecteur (III) le plus agressivement optimisé est plus rapide de 83%.

A.8. EXPÉRIENCES 163

1600 3200 6400
0

20

40

60

80

100

120

Tailles des Matrices

Ac
cé

lér
at

io
n(

%
)

Inspecteur I - Exécuteur
Inspecteur II - Exécuteur
Inspecteur III - Exécuteur

Figure A.8 – Résultats expérimentaux du programme GEMM - Accélération de Rec2Poly

A.8.3 Heat
Notre troisième expérience a été menée sur le programme Heat qui est une implémenta-
tion récursive en C d’un calcul de type stencil. Il comporte une récursivité directe à partir
d’une boucle. Ses fonctions accessibles incluent également des boucles «for» accédant
à la mémoire de nombreuses fois. Dans cet exemple, la récursivité perturbe l’existence
de boucles, et il est intéressant de voir combien nous pourrons gagner en performance
en terme de temps en supprimant la récursivité et en appliquant des optimisations po-
lyédriques à l’imbrication de boucles sans récursivité. Le contrôle et le comportement
de la mémoire sont tous les deux linéaires. Par conséquent, un code de boucles affines
peut être construit automatiquement à partir du modèle de boucles affines NLR. Le code
itératif affine équivalent à ce programme récursif peut ensuite être parallélisé à l’aide de
Pluto.

L’inspecteur par défaut généré par Rec2Poly est lourd puisqu’il doit gérer beaucoup
d’accès mémoire. Il existe un bloc de base avec au moins seize accès à la mémoire, ce
qui nécessite la création de seize couples de vérificateurs / générateur de traces mémoire
pour la vérification, ce qui induit une surcharge. En conséquence, pour transformer ce
programme à l’aide de Rec2Poly, nous considérons les versions optimisées de cet inspec-
teur car Rec2Poly peut permettre trois optimisations différentes pour celui-ci.

Le bloc de base impactant avec les seize accès mémoire dans le programme initial
comprend de nombreux accès mémoire redondants. Le tableau B est indexé plusieurs
fois en utilisant une fonction affine des indices des boucles les entourant. Il suffit de vé-
rifier seulement trois de ces accès. Ainsi, Rec2Poly génère l’inspecteur I qui nécessite un
enregistreur de paramètres et cinq couples générateur-vérificateur de trace, un pour le
contrôle, un pour les valeurs d’indices de compteur et de boucles et trois pour les accès
mémoire. L’inspecteur I nécessite onze threads en plus du thread du code de sauvegarde
fonctionnant en parallèle.

Nous avons également mis en œuvre une fonction d’optimisation qui permet aux uti-
lisateurs de sélectionner en fonction du modèle NLR, des blocs de base lourds ou des

164 ANNEXE A. RÉSUMÉ EN FRANÇAIS

blocs de base accédant à la mémoire dans des boucles relativement coûteuses. Cette op-
tion d’optimisation n’était pas intéressante pour les autres expériences, mais elle peut
être utile pour Heat. Elle attribue chaque accès mémoire à tout un couple générateur-
vérificateur de trace mémoire qui lui est dédié. Le reste des accès est géré par un couple
générateur-vérificateur séparé. Dans le modèle NLR pour Heat, il existe des blocs de base
(dont l’un comprend les seize accès mémoire), exécutés à partir d’une boucle, correspon-
dant à une boucle réelle dans le code source de Heat, avec une borne supérieure élevée
par rapport aux autres boucles du modèle. En spécifiant ces blocs de base et le nombre
d’accès à la mémoire (après la suppression des accès mémoire redondants), Rec2Poly
peut générer automatiquement un inspecteur qui comprend un enregistreur de para-
mètres, un couple générateur-vérificateur de trace de contrôle et cinq couples générateur-
vérificateur de trace mémoire. Ainsi il existe un couple générateur-vérificateur de trace
mémoire pour chaque accès dans les blocs lourds, et un pour les accès restants dans l’en-
semble de la partie récursive impactante. Cet inspecteur, l’inspecteur II, nécessite treize
threads.

Enfin, comme il existe de nombreuses boucles sans impact sur le flot mémoire, Rec2Poly
peut générer l’inspecteur III, similaire à l’inspecteur I mais avec des boucles s’exécutant
trois fois au maximum.

40000 60000 80000 100000 200000
0

20

40

60

80

100

120

Borne supérieure de la boucle où la récursivité est lancée

Ac
cé

lér
at

io
n(

%
)

Inspecteur I - Exécuteur
Inspecteur II - Exécuteur
Inspecteur III - Exécuteur

Figure A.9 – Résultats expérimentaux du programme Heat - Accélération de Rec2Poly

Les pourcentages d’accélération du temps d’execution, par rapport au code d’origine,
pour des exécutions des codes inspecteur-exécuteur (pour des matrices de taille 1024×
512) sont représentées à la figure A.9. Inspecteur I - exécuteur fonctionne plus rapide-
ment que le code original d’environ 26, 4%, Inspecteur II est plus rapide que le code ori-
ginal de 33, 7% et, enfin, Inspecteurr III est bien meilleur de 76, 7%.

A.9 Conclusion
A notre connaissance, Rec2Poly est la première solution d’optimisation de programme
spéculative impliquant la réécriture du code cible. Nous avons montré qu’en utilisant

A.9. CONCLUSION 165

une telle approche, certains programmes récursifs peuvent profiter d’optimisations effi-
caces des boucles affines, et même profiter de transformations avancées du modèle po-
lyédrique.

Cependant, alors que le mécanisme inspecteur-exécuteur est adapté à de telles op-
timisations spéculatives, la performance finale est liée probablement principalement à
la performance de l’inspecteur. Nous avons montré que l’inspecteur doit également être
efficacement optimisé et parallélisé pour réduire sa surcharge en temps. Dans un proche
avenir, nous étudierons encore des stratégies pour réduire encore plus la surcharge en
temps des inspecteurs. Aussi, il serait intéressant de mettre en œuvre une technique de
profilage en ligne comme c’est le cas dans Apollo. De plus, il serait intéressant d’essayer
de gérer les fonctions récursives ayant un comportement de contrôle non linéaire. Par
exemple, Rec2Poly peut être étendu pour capturer et gérer les fonctions récursives se
comportant comme des boucles mais avec des bornes supérieures variables ; bien que
de telles boucles ne soient pas affines, elles peuvent toutefois être intelligemment opti-
misées. En outre, des stratégies de ré-ordonnancement d’instructions, ou “d’affinisation”,
afin d’obtenir un comportement de contrôle et d’accès mémoire affines, peuvent égale-
ment être envisagées.

Salwa Kobeissi

Speculative Rewriting of Recursive Programs as Loop
Candidates for Efficient Parallelization and Optimization Using

an Inspector-Executor Mechanism

Abstract
In this thesis, we introduce Rec2Poly, a framework for speculative rewriting of recursive
programs as affine loops that are candidates for efficient optimization and paralleliza-
tion. Rec2Poly seeks a polyhedral-compliant run-time control and memory behavior in
recursions making use of an offline profiling technique. When it succeeds to model the
behavior of a recursive program as affine loops, it can use the affine loop model to auto-
matically generate an optimized and parallelized code based on the inspector-executor
strategy for the next executions of the program. The inspector involves a light version of
the original recursive program whose role is to collect, generate and verify run-time in-
formation that is crucial to ensure the correctness of the equivalent affine iterative code.
The executor is composed of the affine loops that can be parallelized or even optimized
using the polyhedral model.

Résumé
Dans cette thèse, nous proposons Rec2Poly, un cadriciel pour la réécriture spéculative
des programmes récursifs sous forme de boucles affines qui sont candidates à une pa-
rallélisation et une optimisation efficaces. Rec2Poly cherche un flot de contrôle dyna-
mique et un comportement mémoire conformes au modèle polyédrique dans les récur-
sions, en utilisant une technique de profilage hors ligne. Lorsqu’il réussit à modéliser le
comportement d’un programme récursif sous forme de boucles affines, il peut utiliser le
modèle de boucle affine pour générer automatiquement un code optimisé et parallélisé
basé sur la stratégie inspecteur-exécuteur pour les prochaines exécutions du programme.
L’inspecteur implique une version allégée du programme récursif d’origine dont le rôle est
de collecter, générer et vérifier les informations d’exécution qui sont essentielles pour ga-
rantir l’exactitude du code itératif affine équivalent. L’exécuteur est composé des boucles
affines qui peuvent être parallélisées voire optimisées à l’aide du modèle polyédrique.

	List of Figures
	List of Listings
	Abstract
	Introduction
	Computing Performance: Growth and Challenges
	Hardware Perspective
	Software Perspective: Parallel Computing

	Motivation: Recursion Optimization
	Contributions
	Thesis Organization

	Background
	The Polyhedral Model
	Mathematical Background and Notations
	Polyhedral Representation of Programs
	Dependence Analysis
	Legal Polyhedral Optimizing Transformations and Parallelization
	Polyhedral Tools
	Limitations

	Speculative Loop Optimization
	Inspector-Executor Mechanism
	Speculative Polyhedral Optimization with Apollo

	Trace Modeling as Polyhedral Loops with NLR

	State of the Art
	Generality on Recursions
	Recursive Algorithms Design
	Recursive Codes: Implementation and Execution
	Types of Recursion
	Runtime Analysis

	Optimizing Recursive Programs ``as They Are''
	Task Parallelism
	Polyhedral Modeling of Recursive Invocations

	Transforming Recursive Programs as Loops
	Recursion and Iteration: Two Sides of the Same Coin
	Recursion Versus Iteration: Elegance/Efficiency Trade-off
	Recursion Optimization: Loop at the End of the Tunnel
	Limitations
	Beyond the Limits

	Dynamic Speculative Rewriting
	Overview of the Rec2Poly Framework
	Code Static Analysis and Preparation Phase
	Static Analysis
	Code Preparation

	Offline Profiling Phase
	Instrumentation
	Nested Loop Recognition

	Code Generation Phase: Part Inspector
	Fast Parallel Inspector
	Trace Generators
	Verifiers
	Parameter Saver
	Inspector Optimizations
	Inspector In Action: Verification Process

	Code Generation Phase: Part Executor
	Loops: from Design to Construction
	Fully Affine Loop Model Optimization
	Loops with Parametrically-Affine Memory Behavior

	Benchmarks
	Recursive Programs with Polyhedral Behaviors
	Matrix Multiplication
	Heat

	Inspector-Executor
	Matrix Multiplication
	Heat

	Challenges: Limitations and Proposed Solutions

	Conclusion and Perspectives
	Summary of Contributions
	Future Perspectives

	Bibliography
	Résumé en Français
	Introduction et Contexte
	Optimiseurs polyédriques
	Systèmes de spéculation au niveau thread

	État de l’Art
	Problématique et motivation
	Rec2Poly
	Phase d’Analyse Statique et de Préparation du Code
	Analyse statique
	Préparation du Code

	Phase de Profilage Hors Ligne
	Instrumentation
	Reconnaissance de boucles imbriquées (NLR)

	Phase de Génération de Code
	Génération d'Inspecteur Parallèle Rapide
	Génération de l'Exécuteur

	Expériences
	Multiplication récursive de matrices
	Multiplication récursive de matrices GEMM
	Heat

	Conclusion

	Page vierge

