
HAL Id: tel-03692893
https://theses.hal.science/tel-03692893

Submitted on 10 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Circular representations of infinite proofs for
fixed-points logics : expressiveness and complexity

Rémi Nollet

To cite this version:
Rémi Nollet. Circular representations of infinite proofs for fixed-points logics : expressiveness
and complexity. General Mathematics [math.GM]. Université Paris Cité, 2021. English. �NNT :
2021UNIP7100�. �tel-03692893�

https://theses.hal.science/tel-03692893
https://hal.archives-ouvertes.fr

1

Université de Paris2

École doctorale de sciences mathématiques de Paris centre — ED 3863

Institut de recherche en informatique fondamentale4

Too complicated to have simple labels5

Circular representations of infinite proofs for fixed-points logics: expressiveness and6

complexity7

Par Rémi Nollet8

Thèse de doctorat d’informatique fondamentale9

Dirigée par Christine Tasson10

Et par Alexis Saurin11

Présentée et soutenue publiquement le 29 juin 202112

Devant un jury composé de :13

Laurent Regnier, professeur des Universités, Université d’Aix-Marseille, rapporteur14

Damien Pous, directeur de recherche, C.N.R. S. et É.N. S. de Lyon, rapporteur15

Delia Kesner, professeure des Universités, Université de Paris, examinatrice16

Bahareh Afshari, associate professor, University of Amsterdam et Göteborgs Universitet,17

examinatrice18

Christine Tasson, professeure des Universités, Sorbonne Université, directrice1

Alexis Saurin, chargé de recherche, C.N.R. S. et Université de Paris, directeur2

This work is licensed under CC BY 4.0. To view a copy of this license, visit3

http://creativecommons.org/licenses/by/4.0/4

2

http://creativecommons.org/licenses/by/4.0/

Titre : Représentations circulaires de preuves infinies pour les logiques à points fixes :1

expressivité et complexité.2

Résumé : Dans le cadre des logiques adaptées aux plus petits et plus grands points fixes3

de formules, les preuves circulaires ont été proposées comme alternative aux principes4

d’induction et coinduction à invariants explicites. Ces preuves circulaires ont reçu un5

intérêt grandissant ces dernières années avec le développement simultané de leurs appli-6

cations et de leur méta-théorie. Les preuves infinies sont maintenant bien implantées7

dans plusieurs sujets de la théorie de la démonstration tels que les prédicats inductifs à8

la Martin-Löf, la logique linéaire étendue avec des points fixes, etc.9

Dans le cadre des preuves circulaires ou infinies, non bien-fondées, un critère de validité10

est nécessaire pour rétablir la cohérence logique. Ce critère sert à distinguer, parmi11

l’ensemble des prépreuves infinies ou circulaires, celles qui sont des preuves valides. Une12

approche maintenant standard est de considérer qu’une prépreuve est valide si chacune13

de ses branches infinies est justifiée par un thread qui progresse infiniment souvent.14

Cette thèse étudie ces problèmes dans le cadre plus spécifique de MALL étendue avec des15

points fixes. On sait que, étant donnée une représentation circulaire finie d’une prépreuve16

non bien-fondée, il est possible de décider en espace polynomial si cette prépreuve est17

valide vis-à-vis du critère de threads. La première contribution de cette thèse est de18

démontrer que ce problème de décider le critère de threads pour µMALLω est en fait19

PSPACE-complet. Notre démonstration est fondée sur une étude approfondie des liens20

entre le critère de threads et le principe de size-change termination, habituellement utilisé21

pour garantir la terminaison de programmes.22

La deuxième contribution de cette thèse est de décrire un nouveau fragment de l’ensemble23

des représentations circulaires valides de prépreuves, fondé sur un critère de validité plus24

contraignant. Ce nouveau critère s’appuie sur un étiquetage des formules et des preuves, et25

sa validité est purement locale. Il permet à ce fragment d’être plus simple à manipuler, tout26

en restant suffisamment expressif pour contenir l’image des preuves finitaires du système27

µMALL de David Baelde, qui fonctionnent avec des invariants explicites d’induction28

et de coinduction. En particulier, il est possible de décider efficacement la validité29

d’une prépreuve circulaire vis-à-vis de ce nouveau critère, et de calculer efficacement un30

étiquetage qui certifie cette validité.31

De plus, et ceci constitue la troisième contribution de cette thèse, la conjecture de32

Brotherston-Simpson est vraie pour ce fragment : nous décrivons une méthode qui permet33

de transformer toute preuve circulaire étiquetée de notre fragment en une preuve finitaire,34

avec des invariants d’induction et de coinduction explicites. Finalement, nous explorons35

des manières d’étendre ces résultats de validité et de finitisation à un plus grand fragment,36

en relâchant les contraintes de l’étiquetage tout en conservant (1) la possibilité de certifier37

localement la validité des preuves et (2) dans une certaine mesure, la possibilité de38

finitiser les preuves circulaires ainsi étiquetées.39

3

Mots clefs : Size-change, PSPACE-complet, complexité, calcul des séquents, preuves1

non bien-fondées, preuves circulaires, induction, coinduction, points fixes, recherche de2

preuves, logique linéaire, muMALL, finitisation.3

Title: Circular representations of infinite proofs for fixed-points logics: expressiveness and4

complexity.5

Abstract: In the context of logics with least and greatest fixed points, circular, i./,e.6

non wellfounded but regular proofs have been proposed as an alternative to induction7

and coinduction with explicit invariants. Those circular proofs have received increasing8

interest in recent years with the simultaneous development of their applications and9

metatheory: infinitary proof theory is now well-established in several proof-theoretical10

frameworks such as Martin-Löf’s inductive predicates, linear logic with fixed points,11

etc.12

In the setting of non wellfounded proofs, in order to recover logical consistency, it is13

necessary to consider a validity criterion which differentiates, among all infinite or circular14

derivation trees, a. k. a. preproofs, those which are logically valid proofs. A standard15

approach is to consider a preproof to be valid if every infinite branch is supported by an16

infinitely progressing thread.17

This thesis focuses on circular proofs for MALL with fixed points. It is known that given18

a finite circular representation of a non-wellfounded preproof, one can decide in PSPACE19

whether this preproof is valid with respect to the thread criterion. The first contribution20

of this thesis is to prove that the problem of deciding thread-validity for µMALLω is in21

fact PSPACE-complete. Our proof is based on a deeper exploration of the connection22

between thread-validity and the size-change termination principle, which is usually used23

to ensure program termination.24

The second contribution of this thesis is to describe a new fragment of all valid circular25

representations of preproofs, based on a stronger validity criterion. This new criterion is26

based on a labeling of formulas and proofs, whose validity is purely local. This allows27

this fragment to be easily handled, while being expressive enough to still contain all28

circular embeddings of Baelde’s µMALL finite proofs with inductive and coinductive29

invariants. In particular, deciding validity and computing a certifying labelling can be30

done efficiently.31

Moreover, and this is the third contribution of this thesis, the Brotherston-Simpson32

conjecture holds for this fragment: every labeled representation of a circular proof in the33

fragment is translated into a standard finitary proof. Finally, we explore how to extend34

these results to a bigger fragment, by relaxing the labeling discipline while retaining (1)35

the ability to locally certify the validity and (2) to some extent, the ability to finitize36

circular proofs.37

4

Keywords: Size-change, PSPACE-complete, Complexity, sequent calculus, non-wellfounded1

proofs, circular proofs, induction, coinduction, fixed points, proof-search, linear logic,2

muMALL, finitization.3

5

Contents1

1 Introduction 92

1.1 Generalities on least and greatest fixed points 93

1.1.1 Basic definitions . 94

1.1.2 Proving their existence . 95

1.1.3 Expressivity in logic . 116

1.1.4 Expressivity in programs . 137

1.1.5 Usage in logic . 148

1.2 Least and greatest fixed points in proof theory 149

1.2.1 Proof theory . 1510

1.2.2 Usage of fixed points in proof theory 1511

1.2.3 Finite proof systems for least and greatest fixed points 1612

1.2.4 Infinite proof systems for least and greatest fixed points 1713

1.2.5 Finite representations and circular proof systems for least and14

greatest fixed points . 1815

1.3 In this thesis . 2016

1.3.1 Fixed points in linear logic . 2017

1.3.2 Addressed questions, proposed answers 2118

1.3.3 Outline of this thesis . 2319

2 Technical background 2720

2.1 Proof theory for least and greatest fixed points 2721

2.1.1 Usual proof theory and MALL . 2722

2.1.2 Finite proof trees: µMALL . 3423

2.1.3 Infinite proof trees: µMALL∞ . 3724

2.1.4 Finite proof trees with back edges: µMALLω 3925

2.2 Complexity theory . 4926

2.2.1 Generalities on complexity and PSPACE 4927

2.2.2 Some PSPACE-complete problems 5228

2.3 Parity automata . 5229

3 PSPACE-completeness of the thread criterion 5530

3.1 Deciding thread validity in PSPACE . 5631

3.2 PSPACE-completeness . 6032

3.2.1 Outline of the PSPACE-completeness proof 6033

3.2.2 Definition of the reduction . 6034

7

Contents

3.2.3 Main theorem . 621

3.2.4 Generalisation to other systems 692

3.3 Comments on our approach and discussion of related works 713

3.4 Conclusion . 724

4 A polynomial sub-criterion 815

4.1 L-proofs: labelling as validity . 836

4.2 Finite representations of circular L-proofs. 857

4.3 Two alternative characterizations of µMALL

y

. 898

4.4 Conclusion . 969

5 Finitization 9910

5.1 On Brotherston-Simpson’s conjecture: finitizing circular proofs 10011

5.2 Relaxing the labelling of proofs . 10312

5.3 Extending finitization . 10813

5.4 An ad hoc finitization of π∞ . 10914

5.5 Related works on Chapters 4 and 5 . 11815

5.6 Conclusion . 11816

6 Conclusion 12117

6.1 General conclusion . 12118

6.2 Future works . 12219

8

1 Introduction1

1.1 Generalities on least and greatest fixed points2

1.1.1 Basic definitions3

The general subject of this thesis is the study of least and greatest fixed points in logic.4

The basic notions of least and greatest fixed points are easily described in the setting of5

ordered sets.6

If (E,6) is an order and f : E → E is a non-decreasing endofunction, an element x ∈ E7

is a fixed point of f when f(x) = x.8

More than general fixed points, what interests us are pre- and post-fixed points. An9

element x ∈ E is a pre-fixed point of f when f(x) 6 x, and it is a post-fixed point of f10

when x 6 f(x).11

Even more precisely, what we want to talk about are least pre-fixed points and greatest12

post-fixed points. An element x ∈ E is a least pre-fixed point of f when f(x) 6 x and13

∀y ∈ E, f(y) 6 y ⇒ x 6 y. And x is a greatest post-fixed point of f when x 6 f(x) and14

∀y ∈ E, y 6 f(x)⇒ y 6 x. There are usual notations for that: the least pre-fixed point15

of a non-decreasing function f is denoted, when it exists, by µxf(x), and similarly its16

greatest post-fixed point is denoted by νxf(x).17

Note that the least pre-fixed point of a non-decreasing function is always a fixed point,18

and therefore it is its least fixed point.19

1.1.2 Proving their existence20

The main theorems on the existence of least and greatest fixed points are the following:21

9

1 Introduction

Theorem 1. Let (E,6) be an ordered set.1

1. If2

every well-ordered subset of E has a least upper bound (1.1)3

then4

every non-decreasing endofunction on E has a least pre-fixed point (1.2)5

2. Conversely, if6

every non-decreasing endofunction on E has a least fixed point (1.3)7

then8

E has a minimun and every directed subset of E has a least upper bound (1.4)9

in which we recall that a subset A of E is said to be directed when every finite subset of10

A has an upper bound in A.11

Proof elements and references.12

• First remark that, as already mentionned above, a least pre-fixed point is always a13

fixed point and, therefore, (1.2) is stronger than (1.3). Similarly, every well-ordered14

subset of an order is either empty or directed. Hence (1.4) is stronger than (1.1).15

That is why the two parts 1 and 2 of that theorem are indeed converse to each16

other.17

• The direction 1 seems to be a folklore theorem which is difficult to trace back to a18

unique original author. Yet the first version of it seems to be that of Abian and19

Brown [1961], although it is very close to a similar theorem by Bourbaki [1949].20

See [Lassez, Nguyen, and Sonenberg, 1982, Section 4] for a bibliographic study of21

its origins. See Davey and Priestley [2002, Exercise 8.19, p. 198] for a quick proof22

using ordinal induction.23

• The direction 2 is more recent and has been proved by Markowsky [1976].24

To the reader interested by those questions, we recommend the book by Davey and25

Priestley [2002, in particular ch. 8, p. 175, and the bibliographic discussion p. 285], which26

contains more details and references about fixed-point theorems.27

That theorem characterizes, in a sense, the preorders on which it makes sense to study28

the least fixed points of non-decreasing endofunctions. And it says that in these preorders,29

10

1.1 Generalities on least and greatest fixed points

those least fixed points are in fact least pre-fixed points. Those orders are called complete1

partial orders, or CPO.2

Because of that theorem, we will commonly say “least fixed point” when talking about3

least pre-fixed points, and similarly for greatest fixed points.4

1.1.3 Expressivity in logic5

We will now motivate the will to add a connective to logic that has the behavior of6

forming a least fixed point by a first example, coming from temporal logic. We will see7

that least pre-fixed points and greatest post-fixed points give the possibility to define8

new formulas, and therefore add expressivity to the language. Such ideas are the basis of9

modal µ-calculus [Kozen, 1983].10

Let us consider a logic like LTL [Pnueli, 1977], in which the truth of a proposition A may11

depend on an instant t ∈ N. The boolean denotation of a formula A is a JAK : N→ {0, 1}12

and if t ∈ N, we denote by JAKt ∈ {0, 1} the truth value of A at t. As an alternative,13

we may write t � A for JAKt = 1. We use one logical connective and two temporal14

connectives. For each of them, we give two equivalent definitions:15

“or” JA ∨BKt = max
{
JAKt, JBKt

}
t � A ∨B ⇔ t � A or t � B

“next” J©AKt = JAKt+1 t �©A ⇔ t+ 1 � A
“eventually” J♦AKt = max

{
JAKs | s > t

}
t � ♦A ⇔ ∃s > t, s � A

We abuse the notation � by using A � B to denote the fact that ∀t ∈ N, JAKt 6 JBKt,16

that is, equivalently: ∀t ∈ N, if t � A then t � B. Now we say that17

Proposition 1. For every formulas A and B, the following are true:18

A ∨©♦A � ♦A (1.5) A ∨©B � B
♦A � B

(1.6)19

Proof.20

1. Proof of (1.5)21

11

1 Introduction

Assume that t ∈ N and t � A ∨©♦A. There are two cases:1

1.1. t � A2

In that case t � ♦A.3

1.2. t �©♦A4

In that case t+ 1 � ♦A, that is ∃s > t+ 1, s � A, so t � ♦A.5

Hence, in any case, t � ♦A.6

2. Proof of (1.6)7

Let us assume that8

A ∨©B � B (1.7)9

and show that ♦A � B.10

2.1. We first prove the following lemma: ∀u ∈ N,∀t ∈ N, t+ u � A ⇒ t � B.11

Proof: By induction on u.12

2.1.1. Case u = 0:13

In that case we know that t � A, hence t � A ∨©B. By assumption (1.7)14

we get t � B.15

2.1.2. Case u = v + 1:16

In that case we know that t + 1 + v � A. By induction hypothesis on v,17

we get ∀t′ ∈ N, t′ + v � A ⇒ t′ � B, which we apply to t′ = t+ 1 to get18

t + 1 � B, that is t � ©B. Hence t � A ∨©B. By assumption (1.7) we19

deduce t � B.20

2.2. From this, we immediately deduce the following:21

∀s ∈ N, s � A ⇒ ∀t 6 s, t � B (1.8)22

2.3. We now prove that ♦A � B.23

Assume a t ∈ N and t � ♦A, that is assume a s ∈ N, s > t and s � A. It remains24

to show that t � B. This is exactly given by (1.8) above.25

26

This relates to our previous description of least/greatest pre-/post-fixed points in the27

following way. If we consider � as our order, we just proved that ♦A is a least pre-fixed28

point of F : X 7→ A∨©X, because we proved that F (♦A) 6 ♦A and ∀B,F (B) 6 B ⇒29

♦A 6 B, with 6 being �.30

That means that if we are allowed to use least pre-fixed points in the construction31

of the formulas, we do not need ♦ to be given as a primitive connective of the logic;32

we could define it as ♦A := µX(A ∨ ©X). Dually, you can check that the “always”33

operator, denoted by �A and defined equivalently by J�AKt = min
{
JAKs | s > t

}
or34

t � �A ⇔ ∀s > t, s � A could alternatively be defined as the greatest post-fixed point35

�A := νX(A ∧©A).36

12

1.1 Generalities on least and greatest fixed points

1.1.4 Expressivity in programs1

Least pre-fixed points and greatest post-fixed points can also be used to model inductive2

and coinductive datatypes in programming languages. We will try to show that on a3

second example.4

In this example, we will use an OCaml-like syntax, although we are not writing strictly5

legit OCaml. We are trying to convey a general intuition, which probably apply mutatis6

mutandis to any programming language in which one can define inductive algebraic7

datatypes.8

Let us consider the type of integer lists, which can be described as:9

type int list = [] | (::) of int * int list

And let us consider the following type t, parameterized over a type 'a:10

type 'a t = Nil | Cons of int * 'a

Remark that the type t is conceptually simpler than int list, because it is not a11

recursive type. If you are familiar with algebraic datatypes, you may see that this type12

could be written as13

'a t = 1 + int * 'a

where we use 1 to denote the singleton type:14

type 1 = ()

Now we can define two functions15

inj : int list t -> int list
fold : ('a t -> 'a) -> int list -> 'a

as follows:16

let inj = function
| Nil -> []
| Cons (x, xs) -> x :: xs

let rec fold f = function
| [] -> f Nil
| x :: xs -> f (Cons (x, fold f xs))

13

1 Introduction

h1

In this example, for every two types α and β, let us say that α 6 β when the type α -> β2

is inhabited. Then if we take F (α) to be the type α t, we have F (int list) 6 int list3

because of inj. And each time we have a type α such that F (α) 6 α, we also have4

int list 6 α thanks to fold. So it makes sense to say that int list is a least pre-fixed5

point of t.6

Another way of saying it is that int list = µα(1 + int * α). And the general idea is7

that inductive datatypes correspond to least pre-fixed points of functors. And, dually,8

coinductive datatypes correspond to greatest post-fixed points of functors. For instance,9

we could define a type of integer streams as int stream = να(int * α).10

Remark 1. Actually the previous example is not totally complete. That example charac-11

terises int list as the least pre-fixed point of t, but it happens that the singleton type12

1 could fit this description as well. In fact, the description of least and greatest fixed13

points in terms of orders or preorders does not give enough precision. To have a complete14

characterisation of int list as a least fixed point, we would need to talk about the15

computational behaviour of the functions, and we would need to shift from the setting16

of orders and preorders to the setting of categories, which is out of the scope of this17

introduction.18

1.1.5 Usage in logic19

There has been a lot of logics allowing the use of least and greatest fixed-point con-20

structions in their formulas. Let us simply mention here some of the most noticeable.21

de Bakker and de Roever [1972] define a logic with least fixed points to prove properties22

of recursively defined programs. Aczel [1977] study the extension of recursion theory with23

inductive definitions. Aho and Ullman [1979] study the relational calculus, which may be24

understood as first-order logic, and suggest extending it by adding a least fixed-point25

operator, in order to make it more expressive. Gurevich and Shelah [1986] study the26

expressive power of different extensions of first-order logic with fixed point induction.27

Dawar and Gurevich [2002] study the expressive power of fixed point logics.28

1.2 Least and greatest fixed points in proof theory29

Least and greatest fixed point of formulas may be seen as a way to formulate definitions by30

induction, or by coinduction. We will study those least and greatest fixed points from the31

14

1.2 Least and greatest fixed points in proof theory

point of view of proof theory. We believe that, through the proof-program correspondence,1

the analysis we make on proofs could also be applied to programs. The advantage of2

proofs over programs for our study is that they provide a system which makes things3

visible, decomposing things in simple elements: subformula property, cut-elimination,4

formulas occurrences, . . .5

1.2.1 Proof theory6

We do here a short recall of a few elements that made the success of modern proof theory7

and sequent calculus.8

In usual sequent calculus, a proof is defined to be a finite proof tree.9

The subformula property says that if you can prove a given conclusion then you can do10

it by using only subformulas of this conclusion. This is a fundamental property, saying,11

intuitively, that if I ask you a question (“Is this formula true ?”), you can answer it using12

only the concepts that are already present in the question, you do not need to introduce13

any new concept. You may still do it, because it may ease the task, but you do not need14

it.15

The cut rule is the rule that allows you to do some deductive reasoning. It is a generali-16

sation of two logical principles, modus ponens, which says that from a proof of A and a17

proof of A⇒ B, you can build a proof of B, and the transitivity of implication, which18

says that from a proof of A⇒ B and a proof of B ⇒ C you can build a proof of A⇒ C.19

One of the ideas that made sequent calculus so successful is that all inferences preserve20

the subformula property, except for the cut rule. When following this discipline, the21

subformula property amounts to saying that we can eliminate cuts from any proof.22

1.2.2 Usage of fixed points in proof theory23

Various logical settings have been introduced to reason about inductive and coinductive24

statements, both at the level of the logical languages modelling (co)induction (Martin25

Löf’s inductive predicates vs. fixed-point logics, that is µ-calculi) and at the level of the26

proof-theoretical framework considered (finite proofs with (co)induction à la Park [1969]27

vs. infinite proofs with fixed-point/inductive predicate unfoldings) [Brotherston, 2006,28

Brotherston and Simpson, 2007, 2011, Baelde and Miller, 2007, Baelde, 2009, 2012].29

Moreover, such proof systems have been considered over classical logic [Brotherston, 2006,30

Brotherston and Simpson, 2011], intuitionistic logic [Clairambault, 2009], linear-time or31

branching-time temporal logic [Kozen, 1983, Kaivola, 1995b, Walukiewicz, 1993, 1995,32

15

1 Introduction

Dax, Hofmann, and Lange, 2006, Doumane, 2017b, Doumane, Baelde, Hirschi, and Saurin,1

2016] or linear logic [Santocanale, 2002, Fortier and Santocanale, 2013, Baelde and Miller,2

2007, Baelde, Doumane, and Saurin, 2016, Doumane, 2017b].3

In all those proof systems, the treatment of inductive and coinductive reasoning brings4

some highly complex proof objects.5

1.2.3 Finite proof systems for least and greatest fixed points6

The first systems designed to reason about fixed points of formulas were systems with7

finite proofs, in which induction and coinduction principles are used in order to provide8

a finite proof theory for reasoning on formulas with least or greatest fixed points [Kozen,9

1981, 1983, Baelde, 2012].10

But finite proof systems for least and greatest fixed points have some drawbacks.11

• To introduce a greatest fixed point formula or to eliminate a least fixed point12

formula, you have to use a rule of induction or coinduction, and you have to provide13

an explicit invariant, which has to be a formula of the same system. This is a14

restriction because the language of formulas may not be expressive enough to15

express all the invariants you may need to prove formulas that should intuitively16

be true, as was shown, for instance, by Berardi and Tatsuta [2017b, 2019] in the17

context of first-order classical logic with inductive definitions.18

• It breaks the subformula property.19

• Here, in the finitary setting for least and greatest fixed points of formulas, the20

failure of the subformula property can therefore be restated by saying that we21

cannot eliminate all cuts. Nevertheless, it makes sense to define a procedure of “cut22

elimination” for this setting. This procedure will not eliminate all cuts, but it will23

simplify them and eliminate some of them and it is still a terminating procedure,24

which leaves the proof in a normal form in which the only remaining cuts are of25

a very specific form, and are cuts that cannot be reduced anymore. The point is26

that in this setting, besides the fact that we cannot completely eliminate cuts, this27

procedure of cut elimination turns out to be quite complex.28

For instance, in proof systems using (co)induction rules à la Park, the rules allowing to29

derive a coinductive property (or dually to use an inductive hypothesis) have a complex30

inference of the form of Figure 1.1 (when presented in the setting of fixed-point logic –31

here we follow the one-sided sequent tradition of MALL that we will adopt in the rest of32

the thesis).33

16

1.2 Least and greatest fixed points in proof theory

` Γ, S ` S⊥, F [S/X]
(νinv)

` Γ, νXF

Figure 1.1. Coinduction rule à la Park

It is not only difficult to figure out intuitively what is the meaning of this inference,1

but it is also problematic for at least two additional and more technical reasons: (i) it2

is hiding a cut rule that cannot be eliminated, which is problematic for extending the3

proof-program correspondence to fixed-points logics, and (ii) it breaks the subformula4

property, which is problematic for proof search: at each coinduction rule, one has to guess5

an invariant (in the same way as one has to guess an appropriate induction hypothesis in6

usual mathematical proofs).7

1.2.4 Infinite proof systems for least and greatest fixed points8

Infinite proofs have been introduced to reason on (least and greatest) fixed points of9

formulas.10

For all these reasons, infinite (non-wellfounded) proofs, which are infinite proofs satisfying11

a validity criterion, have been proposed, in recent years, as an alternative to induction and12

coinduction with explicit invariants [Brotherston, 2006, Brotherston and Simpson, 2007,13

2011]. By replacing the coinduction rule with simple fixed-point unfoldings and allowing14

for non-wellfounded branches, those proof systems address the problem of the subformula15

property for the cut-free systems. The cut-elimination dynamics for inductive-coinductive16

rules is also much simpler. In particular, Baelde, Doumane, and Saurin [2016], inspired17

notably by Dax, Hofmann, and Lange [2006], proposed a very successful system of infinite18

proofs, called µMALL∞, to reason on least and greatest fixed points of formulas. Actually,19

this is for the propositional setting, but such ideas already existed to reason on inductive20

and coinductive predicates.21

Infinite, non well-founded, proofs present the advantage over explicit induction or coinduc-22

tion to offer a framework in which it is possible to recover the good structural properties23

of sequent calculus, such as cut-elimination, subformula property and focusing, making24

them a more suitable tool to automated proof search. Indeed, cut-elimination and focusing25

have recently been extended to non well-founded proofs for µMALL by Baelde, Doumane,26

and Saurin [2016], Doumane [2017b].27

Now the problem is that if we take this approach too naively, by simply allowing proof28

trees to be infinite, then two bad things happen:29

1. the system becomes inconsistent, meaning that every formula becomes provable;30

17

1 Introduction

...
(µ)

` µXX,Γ
(µ)

` µXX,Γ

...
(ν)

` νXX,Γ
(ν)

` νXX,Γ
(cut)

` Γ

Figure 1.2

2. the cut-elimination procedure becomes a non-terminating, non-converging one.1

The price to pay is that the consistency of the logical system is broken and that a validity2

criterion has to be added in order to ensure consistency.3

More precisely, in those proof systems when considering all possible infinite, non-4

wellfounded derivations, or preproofs, it is straightforward to derive any sequent Γ5

(see Figure 1.2).6

Such preproofs are therefore unsound and one needs to impose a validity criterion to7

distinguish, among all preproofs, those which are logically valid proofs from the unsound8

ones.9

A solution to that is to say that all these infinite proof trees are only preproofs, and10

that only some of these preproofs are valid proofs. This means that we need a criterion11

to distinguish valid (pre)proofs from invalid preproofs, and to reflect the inductive and12

coinductive nature of our fixed-point connectives.13

A standard approach [Brotherston, 2006, Brotherston and Simpson, 2007, 2011, Santo-14

canale, 2002, Baelde, Doumane, and Saurin, 2016] considers a preproof to be valid if15

every infinite branch is supported by an infinitely progressing thread. This is called the16

thread criterion.17

However, doing so, the logical correctness of circular proofs becomes a non-local property,18

much in the spirit of proof nets correctness criteria [Girard, 1987, Danos and Regnier,19

1989].20

1.2.5 Finite representations and circular proof systems for least and21

greatest fixed points22

The problem with infinite proofs, on the other hand, is mainly that they are infinite,23

which has two major drawbacks:24

18

1.2 Least and greatest fixed points in proof theory

1. The first one is epistemic: we would like a proof to be a finite object, which I can1

communicate to you in finite time, and which you can check in finite time. The2

fact that a proof may be an infinite object means that I may not be able to give3

you a proof, but I will in fact give you the finite description of an infinite proof,4

formulated in the meta-theory.5

2. The second one is practical: if we want our system to be used in an automated6

prover or in a proof assistant, we need those proofs to be finitely representable.7

It means that whatever system of representation you chose, you will not be able8

to represent all infinite proofs, because there is an uncountable number of infinite9

proofs and your system of finite representations will only be able to represent a10

countable number of them.11

From that it may seem that going from finite to infinite proofs was a mistake. But infinite12

proofs give great insights on least and greatest fixed points of formulas, on their different13

proof systems and on the dynamic of cut-elimination in those systems, including the14

finitary ones. In particular they provide us with a new way to understand the finitary15

systems. Each finitary proof can be translated into an infinitary one. This means that16

finitary proofs may be seen as one particular way to represent some of those infinitary17

proofs. So now we may transform the question of designing a finitary proof system18

for least and greatest fixed points of formulas into the question of identifying suitable19

fragments of the infinitary system, which have some nice-behaved representations.20

Among those non-wellfounded proofs, circular proofs, that have infinite but regular21

derivation trees, have attracted a lot of attention for retaining the simplicity of the22

inferences of non-wellfounded proof systems but being amenable to a simple finite23

representation making it possible to have an algorithmic treatment of those proof24

objects.25

In this context, a very natural way of representing some infinite proofs is to use finite26

proof trees with back edges. This means that instead of constructing explicitely an infinite27

branch, we are allowed to stop at some point and point out some previous step of the28

construction and say: from there, we start again at that point. Such a cyclic representation29

has a canonical unfolding into an infinite proof tree. This system of representations allows30

us to represent some of the infinite preproofs. Those preproofs that can be represented31

by such a proof tree with back edges are called circular preproofs. Those representations32

are called circular representations.33

Despite the need for a validity condition, circular, i. e. non-wellfounded but regular proofs34

have received increasing interest in recent years with the simultaneous development of35

their applications and meta-theory: infinitary proof theory is now well-established in36

several proof-theoretical frameworks such as Martin Löf’s inductive predicates, linear37

logic with fixed points, etc.38

19

1 Introduction

1.3 In this thesis1

Statement of the contribution On the question of how much time and space it takes2

to check the thread criterion on a circular representation of an infinite preproof, it3

was known how to do it in PSPACE, and we prove in this thesis that this problem is4

PSPACE-complete, which means that we cannot do substantially better.5

As we would like to be able to ckeck our proofs in polynomial time, we provide a new6

validity criterion, which is stronger than the thread criterion while accepting at least the7

translations of finitary proofs, and which can be checked in quadratic time.8

We also would like a proof system in which there is no global criterion to check, in9

which a proof is correct as soon as each inference used in it is correct. This is made10

possible. We provide such a proof system, obtained by adding some labelling to the11

circular representations accepted by my new quadratic criterion.12

Finally, this new proof system proves at least as much propositions than the finitary13

setting and it is legit to ask how much more it does prove exactly. The answer is: No more.14

This result may look disappointing but what it says is that every circular representation15

of an infinite preproof that is valid for my quadratic criterion and every proof in my16

labelled system can be turned into a finitary proof with the same conclusion. And we17

provide an effective method to do it. In other words, we provide a method to synthetize18

some induction and coinduction invariants, finitize some circular proofs and partially19

answer the Brotherston-Simpson conjecture.20

1.3.1 Fixed points in linear logic21

This thesis focuses on circular proofs for MALL with fixed points. Least and greatest22

fixed point were already well-established in linear logic [Baelde and Miller, 2007, Baelde,23

2012, Baelde, Doumane, and Saurin, 2016, Doumane, 2017b] and we build on this basis24

to contribute to several directions in the field of circular proofs:25

1. the relationship between finite and circular proofs (at the level of provability and26

at the level of proofs themselves) and27

2. the certification of circular proofs, that is the production of fast and/or small pieces28

of evidence to support validity of a circular preproof.29

20

1.3 In this thesis

1.3.2 Addressed questions, proposed answers1

Proof-checking Among all circular preproofs, some are valid proofs and some are not.2

The thread criterion gives a non-ambiguous mathematical definition of whether a circular3

representation represents a valid (pre)proof or an invalid preproof. The first interesting4

question is whether there exist a method to tell whether the circular representation of5

a preproof is valid or not. In other words: is the thread criterion on circular preproofs6

decidable? Given a finite circular representation of a non-wellfounded preproof, can one7

decide whether this preproof is valid with respect to the thread criterion?8

The answer to that is yes: there is an algorithm which is able to tell the difference between9

a valid circular representation of a preproof and an invalid one. In fact several such10

algorithms are known.11

The next question would be: how difficult is this problem? What is its computational12

complexity? When we started to look at this problem, the state of the art was the13

following: all known algorithms for this problem ran in exponential time and ran or14

could be made to run un polynomial space. But no subexponential algorithm was known,15

there was no lower bound on its complexity and the exact complexity of checking the16

thread criterion was still unknown. Recall that P ⊆ NP ⊆ PSPACE ⊆ EXP. The first17

contribution of this thesis is to prove that this problem is in fact PSPACE-complete.18

This implies in particular that this problem is probably not in NP and that there is19

probably no subexponential algorithm to solve it.20

Our proof is based on a deeper exploration of the connection between thread-validity21

and the size-change termination principle [Lee, Jones, and Ben-Amram, 2001], which is22

usually used to ensure program termination.23

Circular proofs have already proved useful in implementing efficient automatic provers,24

e. g. the Cyclist prover [Gorogiannis and Rowe, 2014]. The complexity avoided in the25

search, thanks to the fact that we need not to guess invariants, is counterbalanced by26

the complexity of the validity criterion at the time of proof checking. It seems however27

that this approach gives good performances in practice.28

A new validity criterion Among all representations of valid circular proofs, a new29

fragment is described in Chapter 4, based on a stronger validity criterion. This new30

criterion is based on a labelling of formulas and proofs, whose validity is purely local.31

This allows this fragment to be easily handled, while being expressive enough to still32

contain all circular embeddings of Baelde’s µMALL finite proofs with (co)inductive33

invariants: in particular deciding validity and computing a certifying labelling can be34

done efficiently.35

21

1 Introduction

Finitization Comparing finite and infinite proofs is very natural. Informally, it amounts1

to considering the relative strength of inductive reasoning versus infinite descent: while2

infinite descent is a very old form of mathematical reasoning which appeared already3

in Euclid’s Elements and was systematically investigated by Fermat, making precise4

its relationship with mathematical induction is still an open question for many proof5

formalisms. Their equivalence is known as the Brotherston–Simpson conjecture. While it6

is fairly straightforward to check that infinite descent (circular proofs) proves at least as7

many statements as inductive reasoning, the converse is complex and remains largely8

open. A few years ago, Simpson [2017], on the one hand, and Berardi and Tatsuta9

[2017b,a], on the other hand, made progress on this question but only in the framework10

of Martin Löf’s inductive definitions, not in the setting of µ-calculi circular proofs in11

which invariant extraction is highly complex and known only for some fragments.12

We will show that the Brotherston-Simpson conjecture holds for the fragment we present:13

every labelled representation of a circular proof in the fragment is translated into a14

standard finitary proof.15

Propositions of extensions Finally we explore how to extend these results to a bigger16

fragment, by relaxing the labelling discipline while retaining (i) the ability to locally17

certify the validity and (ii) to some extent, the ability to finitize circular proofs.18

A complex example We conclude this introduction by considering a typical example
of a circular proof with a complex validating thread structure: while this infinite proof
has a regular derivation tree, its branches and threads have a complex geometry. The
circular proof of Figure 1.3 derives the sequent ` F,G,H, I, J where

F = µX((X `G) & (X `H)) G = νX(X ⊕⊥) H = νX(⊥⊕X)

I = µZ((Z`J)⊕⊥) J = µX((K`X)⊕⊥) K = νY µZ((Z`µX(Y `X)⊕⊥)⊕⊥)

This example of a circular derivation happens to be valid (it is a µMALLω proof) but the19

description of its validating threads is quite complex. Indeed, each infinite branch β is20

validated by exactly one thread (see next section for detailed definitions) going through21

either G, H or K depending on the shape of the branch at the limit (infinite branches of22

this derivations can be described as ω-words on A = {l, r} depending on whether the left23

or right back edge is taken):24

(i) if β ultimately follows always the left cycle (A? · lω), the unfolding of H validates β;25

(ii) if β ultimately follows always the right cycle (A? · rω), the unfolding of G validates β;26

(iii) if β endlessly switches between left and right cycles (A? · (r+ · l+)ω), K validates β.27

The description of the thread validating this proof is thus complex. This is reflected in28

the difficulty to provide a local way to validate this proof and in the lack of a general29

22

1.3 In this thesis

`F,G,H, I, J
(ν)(⊕1)

` F,G,H, I, J
(µ)(⊕0)(`)

` F,G,H, I
(µ)(⊕1)(⊥)

` F,G,H, I, J
(`)

` F `G,H, I, J
(ν)(⊕1),(⊥)

` F `G,G,H, I, J

` F,G,H, I, J
(ν),(⊕0)

` F,G,H, I, J
(ν)

` F,G,H,K, J
(µ),(⊕0),(`)

` F,G,H, J
(µ),(⊕1),(⊥)

` F,G,H, I, J
(exc)

` F,H,G, I, J
(`)

` F `H,G, I, J
(ν)(⊕0),(⊥)

` F `H,G,H, I, J
(&)

` (F `G) & (F `H), G,H, I, J
(µ)

` F ,G,H, I, J

Figure 1.3. Proof π∞

method for finitizing this into a µMALL proof: to our knowledge, the usual finitization1

methods (working only for fragments of µMALLω circular proofs) do not apply here.2

1.3.3 Outline of this thesis3

The subject of this thesis is the study of finite circular representations of infinite proofs4

and preproofs.5

It consists of 6 chapters:6

• Chapter 1, this chapter, is an informal introduction to the subject of the thesis.7

• Chapter 2 covers the technical background needed to develop the results of the8

thesis.9

• Chapters 3, 4 and 5 are the technical chapters, presenting the main results and10

contributions of this thesis.11

• Chapter 6 is a conclusion chapter.12

In Chapter 2, we provide the necessary technical background to our work. Section 2.113

covers infinitary and circular proof theory of multiplicative additive linear logic with least14

and greatest fixed points. We recall the formulas and rules of MALL (Section 2.1.1), how15

they can and have been extended with least and greatest fixed point to obtain µMALL16

(Section 2.1.2), how infinite µMALL∞ proofs have been proposed as an alternative, in17

which a global validity criterion is needed (Section 2.1.3, and the standard fragment18

µMALLω of regular infinite proofs, representables by proof trees with back-edges, and19

23

1 Introduction

Finitary Circular Infinitary Proofs

µMALL
Fig. 1.1

µMALL

y

Def. 60
µMALLω

Def. 35
µMALL∞

Def. 35
Standard

µMALL

y

lab
Def. 60

L-proofs
Def. 58

Labelled

Prop. 14 ⊆
Prop. 13

Th. 5

⊆

Def. 60 d•e

Figure 1.4. Relations between the different systems used in this thesis.

which are the true subject of this thesis (Section 2.1.4). We also recall some basic elements1

of the theories of algorithmic complexity (Section 2.2) and of ω-automata (Section 2.3).2

Chapter 3 is concerned with the algorithmic complexity of the thread criterion. We start3

by recalling in Section 3.1 that the thread criterion is effectively decidable in PSPACE.4

The main section of the first technical chapter is Section 3.2, in which we show the5

PSPACE-completeness of the thread criterion for µMALLω, in Theorem 4. Section 3.36

is devoted to a discussion of our approach and a comparison with related works. We7

conclude this chapter in Section 3.4.8

Chapter 4 studies an approach to circular proofs based on labellings of greatest fixed9

points. We first motivate in Section 4.1 such labellings as an alternative way to express the10

validating threads. Then, in Section 4.2 we introduce finite representations of preproofs11

and use such labellings in order to locally certify their validity. Finally, in Section 4.3, we12

turn to alternative characterizations of those circular proofs which can be labelled. The13

fragment of labellable proofs, while quite constrained (for instance, it does not include14

the example of Figure 1.3), is already enough to capture the circular proofs obtained by15

translation of µMALL proofs.16

In Chapter 5 and Section 5.1, we address the converse: for any labelled derivation tree17

with back edges, we provide a corresponding µMALL proof by generating a (co)inductive18

invariant based on an inspection of the labelling structure. Therefore, we answer the19

Brotherston–Simpson conjecture in a restricted fragment. In Section 5.2, we introduce20

a more permissive labelling strategy that allows to label more proofs (in particular by21

allowing to loop not only on (ν) rules but on any rule) and that still ensures validity of22

the labellable derivations. For this relaxed labelling, we label the example of Figure 1.323

and show how to finitize it by adapting the method of Section 5.1. Nevertheless, there is24

not yet a general method applicable to the complete extended labelling fragment. We end25

this chapter by a discussion, in Section 5.5, of related works to both Chapters 4 and 5.26

Relations between the various systems considered in these two chapters are summarized27

in Figure 1.4.28

24

1.3 In this thesis

h1

25

2 Technical background1

2.1 Proof theory for least and greatest fixed points2

2.1.1 Usual proof theory and MALL3

Logic is generally built around two main concepts: formulas and proofs.4

Formulas or propositions, model some statements that you may say, and which may,5

intuitively, be true or false such as “The cat is black” or “Earth is flat”. But logic and6

proof theory are more interested in understanding the nature of the logical connectives7

and their dynamic than in what happens to be true in our world. That is why a formal8

language of formulas is generally built out of some propositional variables and some9

connectives. For instance a language of formulas for the classical logic LK may be defined10

by the following grammar:11

A,B ::= X | X | A ∧B | A ∨B | > | ⊥

whereX ranges over a given set of propositional variables, which we denote byX, Y, Z, . . .12

∧ denotes conjunction, “and”, while ∨ denotes disjunction, “or”. The constants > and13

⊥ represent their respective neutral elements, that is respectively a true statement and14

a false statement. The variables X, Y, Z, . . . represent some undetermined statements.15

That means that, for instance, (X ∨ Y) ∧ (Y ∨ Z) is a formula of LK, which you may16

read as “not X or Y , and not Y or Z”.17

The main logic we will use to apply our methods in this thesis is the logic MALL,18

composed of the Multiplicative and Additive fragments of Linear Logic. Linear logic19

was designed by Girard [1987] in a successful attempt to decompose the well-known20

connectives of classical and intuitionistic logics into more elementary components. For21

a detailed introduction to linear logic, see [Girard, 1987], [Girard, Taylor, and Lafont,22

1989] or [Girard, 2011].23

27

2 Technical background

The formulas of MALL are defined by the following grammar:1

Definition 1 (MALL formulas).

A,B ::= X | X | A⊗B | A`B | 1 | ⊥ | A⊕B | A&B | 0 | >

where X ranges over a given set of propositional variables.2

The set of all MALL formulas is denoted by FmlMALL.3

⊗ and & are conjunctions of different natures and 1 and > are their respective neutral4

elements. ` and ⊕ are disjunctions of different natures and ⊥ and 0 are their respective5

neutral elements.6

Remark 2 (Precedence rules). The usage is that ⊗ and `, the “multiplicative” connectives,7

have a higher precedence than ⊕ and &, the “additive” connectives. For instance X `8

Y &X ` Y should be read as (X ` Y) & (X ` Y).9

With such a syntax of formulas come a syntax for the positions of subformulas inside10

formulas. To that effect we use the following alphabet11

Let AFml be the following alphabet:12

PMALL = {⊗0,⊗1,`0,`1,⊕0,⊕1,&0,&1}

We denote by P∗MALL the free monoid of finite words on PMALL. Those words are used to13

denote the position of a subformula in a formula.14

Definition 2 (Positions of subformulas in a formula). The set of positions of subformulas15

of a given formula A is defined by induction on A:16

SubPos(X) = {ε} SubPos(X) = {ε} SubPos(1) = {ε} SubPos(0) = {ε}

SubPos(⊥) = {ε} SubPos(>) = {ε}

SubPos(A⊗B) = {ε} ∪ ⊗0 · SubPos(A) ∪ ⊗1 · SubPos(B)

SubPos(A`B) = {ε} ∪ `0 · SubPos(A) ∪ `1 · SubPos(B)

SubPos(A⊕B) = {ε} ∪ ⊕0 · SubPos(A) ∪ ⊕1 · SubPos(B)

SubPos(A&B) = {ε} ∪ &0 · SubPos(A) ∪ &1 · SubPos(B)

28

2.1 Proof theory for least and greatest fixed points

Example 1. The set of positions of subformulas of X ⊗ (⊥⊕ Y) is {ε,⊗0,⊗1⊕0,⊗1⊕1}.1

Those formulas are equipped with an involutive negation, denoted by · ⊥ and defined2

inductively as follows:3

Definition 3.

X⊥ = X X
⊥ = X (A⊗B)⊥ = A⊥ `B⊥ (A`B)⊥ = A⊥ ⊗B⊥ 1⊥ = ⊥

⊥⊥ = 1 (A⊕B)⊥ = A⊥ &B⊥ (A&B)⊥ = A⊥ ⊕B⊥ 0⊥ = > >⊥ = 0

Proofs are certificates used to attest the truth of a formula. In this thesis, proofs are4

built in sequent calculus, following the usage of modern proof theory, initiated by Gentzen5

[1935a,b, 1969].6

In sequent calculus, a proof is a finite tree built out of some given deduction rules. We7

recall the basics of that setting. We will exemplify it first on the particular case of MALL,8

then on MALL extended with least and greatest fixed point in the system µMALL. For9

a more detailed introduction to sequent calculus, you may look at [Girard, Taylor, and10

Lafont, 1989] or [Girard, 1991].11

Definition 4 (Sequent). Given a set of formulas Fml, a sequent is defined to be a finite12

list of formulas. If Γ is a sequent of size n, we use the notation |Γ| to denote either n, the13

size of the list, or the set {0, . . . , n− 1}, the set of indices of this list. 1
14

A sequent is denoted by the symbol ` followed by its formulas. A sequent should be15

understood, intuitively, as the disjunction, in the ` sense, of its formulas.16

A proof is a tree made out of some logical inferences.17

Definition 5 (Inference). An inference consists of :18

• A finite number of sequents, Γ0, . . . ,Γn−1, which are called the premises of the19

inference20

• A sequent Γ, which is called the conclusion of the inference21

1This small abuse of notation is nothing more than the usual set-theoretic convention of identifying an
integer (or an ordinal) with the set of integers (or ordinals) that are smaller than it: n = {m | m < n}

29

2 Technical background

(id)
` A,A⊥

` Γ, A ` ∆, A⊥
(cut)

` Γ,∆

` Γ, A ` ∆, B
(⊗)

` Γ,∆, A⊗B
` Γ, A,B

(`)
` Γ, A`B

(1)
` 1

` Γ
(⊥)

` Γ,⊥

` Γ, A
(⊕0)

` Γ, A⊕B
` Γ, B

(⊕1)
` Γ, A⊕B

` Γ, A ` Γ, B
(&)

` Γ, A&B
(>)

` Γ,>

Figure 2.1. MALL inference rules

• A partial function
σ : |Γ0|+ · · ·+ |Γn−1|⇀ |Γ| × P∗

where |Γ0|+ · · ·+ |Γn−1| denotes the usual set-theoretic sum

{0} × |Γ0| ∪ · · · ∪ {n− 1} × |Γn−1|.

This function is called the threading function. It can equivalently be described by n
partial functions

σ0 : |Γ0|⇀ |Γ| × P∗ . . . σn−1 : |Γn−1|⇀ |Γ| × P∗

This inference is written
Γ0 . . . Γn−1

Γ

with the threading function σ generally left implicit.1

The inference rules of MALL are given on Figure 2.1.2

For instance, the rule3

` Γ, A ` ∆, B
(⊗)

` Γ,∆, A⊗B

should be understood, intuitively, as saying that for every lists of formulas Γ,∆ and4

for every formulas A,B, whenever the sequents ` Γ, A and ` ∆, B are true, so is5

` Γ,∆, A⊗B.6

30

2.1 Proof theory for least and greatest fixed points

Formally, it should also be understood by this rule that in a (⊗) inference, the function σ
sends any position of formula in Γ or ∆ in the premises to the corresponding position in
the conclusion and the empty path, sends the position of A in the first premise on the
position of A⊗B in the conclusion and the path ⊗0 and sends the position of B in the
second premise on the position of A⊗B in the conclusion and the path ⊗1. Meanwhile,
the order of the formulas in the sequents is not imposed by the rule. For instance, this is
a correct (⊗) inference:

` X `X,X ` X, Y, Z
(⊗)

` X ⊗ Y,X `X,X,Z

with the implicit function

σ : {0} × {0, 1} ∪ {1} × {0, 1, 2}⇀ {0, 1, 2, 3} × A∗Fml

(0, 0) 7→ (1, ε)
(0, 1) 7→ (0,⊗0)
(1, 0) 7→ (2, ε)
(1, 1) 7→ (0,⊗1)
(1, 2) 7→ (3, ε)

Here this function happens to be total. The possibility to be partial is used in the (cut)1

rule.2

Definition 6 (Proof tree). A proof for MALL is any finite proof tree built with these3

inference rules.4

Here is an example:5

Example 2.

(id)
` X,X

(id)
` Y , Y

(⊕0)
` Y , Y ⊕ Z

(⊗)
` X,Y ,X ⊗ (Y ⊕ Z)

(`)
` X ` Y ,X ⊗ (Y ⊕ Z)

(id)
` X,X

(id)
` Z,Z

(⊕1)
` Z, Y ⊕ Z

(⊗)
` X,Z,X ⊗ (Y ⊕ Z)

(`)
` X ` Z,X ⊗ (Y ⊕ Z)

(&)
` X ` Y &X ` Z,X ⊗ (Y ⊕ Z)

One of the interests of the threading functions is that they can be composed.6

31

2 Technical background

Definition 7 (composition of threading functions). If A,B,C are three sets and σ : A ⇀
B × A∗Fml and ρ : B ⇀ C × A∗Fml are two partial functions, we define their composite

ρ ◦σ : A ⇀ C × A∗Fml

a 7→ (c, v · u) where (b, u) = σ(a) and (c, v) = ρ(b)

Remark 3. The interested reader may recognize the Kleisli category of the monad _×A∗Fml1

on Set, whose multiplication and unit are induced by the monoidal structure of A∗Fml.2

This fact allows us to extend this definition in order to relate any two sequents which are3

connected by a chain of successive inferences:4

Definition 8 (Threading function associated to a path in a proof tree). Suppose a proof
tree π. Suppose a sequence u = s0, s1, . . . , sn) of positions of sequents in π and a sequence
r0, r1, . . . , rn−1 of inferences in π such that ∀i ∈ J0, n− 1K, si is the conclusion of ri and
si+1 is a premise of ri. ∀i, let Γi be the sequent at position si in π. Then, by composing
the threading functions of r0, r1, . . . , rn−1, we get a function

σ(u) : |Γn|⇀ |Γ0| × P∗

Example 3. For instance, if we denote by u the following sequence of sequents and
inferences, taken from the right of Example 2:

. . .

. . .

` Z, Y
(⊕1)

` Z, Y ⊕ Z
(⊗)

` X,Z,X ⊗ (Y ⊕ Z)
(`)

` X ` Z,X ⊗ (Y ⊕ Z)
(&)

` X ` Y &X ` Z,X ⊗ (Y ⊕ Z)

Then we have

σ(u) : |Z, Y |⇀ |X ` Y &X ` Z,X ⊗ (Y ⊕ Z)|
0 7→ (0,&1`1)
1 7→ (1,⊗1⊕1)

Definition 9 (Image of a subformula in an inference). Suppose a proof tree π and an

inference r =
Γ0 . . . Γn−1

Γ
in π. Let us denote by σ(r) the threading function of r. If

Γi is one of its premises, if A is a formula in Γi, at position f ∈ |Γi|, if p ∈ SubPos(A) is

32

2.1 Proof theory for least and greatest fixed points

a position of subformula in A, then to this position f · p of subformula in Γi is associated,
when possible, a position of subformula in Γ, denoted by t(r)(f · p) and defined as

t(r)(f · p) := g · q · p where (g, q) := σ(r)

This makes t(r) a partial function from positions of subformulas in the premises of r to1

positions of subformulas in the conclusion of r.2

Similarly to what we did for threading functions in Definition 8, we can extend this3

definition of t from rules to paths in a proof tree:4

Definition 10 (Image of a subformula through a path in a proof tree). Suppose a5

proof tree π. Suppose a sequence u = (s0, s1, . . . , sn) of positions of sequents in π and a6

sequence r0, r1, . . . , rn−1 of inferences in π such that ∀i ∈ J0, n− 1K, si is the conclusion7

of ri and si+1 is a premise of ri. ∀i, let Γi be the sequent at position si in π. Then, by8

composing the t(ri), we get a partial function from the position of subformulas in Γn to9

the positions of subformulas in Γ0, which we denote by t(u).10

Proposition 2. With the notations of the previous definition, for every formula A in11

Γn, at position f ∈ |Γn| and every position of of subformula p ∈ SubPos(A), if t(u)(f · p)12

is defined, then the subformula at position t(u)(f · p) in Γ0 is identical to the subformula13

at position f · p in Γn.14

Proof. Immediate by induction on the length of u and examination of each possible15

rule. The threading functions have been chosen precisely to witness the subformula16

property.17

Definition 11 (Path of subformula images). Suppose a proof tree π. Suppose a sequence
u = s0, s1, . . . , sn) of positions of sequents in π and a sequence r0, r1, . . . , rn−1 of inferences
in π such that ∀i ∈ J0, n− 1K, si is the conclusion of ri and si+1 is a premise of ri. ∀i, let
Γi be the sequent at position si in π and let p be a subformula in one of the formulas of
Γn. We define a sequence of positions of subformulas pi0 , . . . , pn, such that ∀i > i0, pi is
a subformula of a formula of Γi. This sequence is defined as follows:

pn := p

∀i, pi−1 := t(ri−1)(pi)

or, equivalently:

∀i, pi := t(si, . . . , sn)(p)

The last defined index of this sequence, i0, is either 0 or the first i such that t(ri−1)(pi) is
not defined, which happens if ri−1 is a cut and pi is in a cut formula. This sequence is
denoted by

T(u)(p) := pi0 , . . . , pn

33

2 Technical background

2.1.2 Finite proof trees: µMALL1

In this section, we introduce the logic µMALL [Baelde, 2012], its formulas and proofs,2

which are finite sequent calculus proofs.3

µMALL formulas The grammar of formulas is obtained by extending the formulas of4

MALL with two fixed-point connectives, µ and ν, denoting respectively least and greatest5

fixed points of formulas.6

Formulas of µMALL are selected among a set of preformulas. Preformulas of µMALL7

are obtained by taking the usual formulas of MALL and adding two monadic second8

order binders, µ and ν:9

Definition 12 (µMALL preformulas).

A,B ::= X | A⊗B | A`B | 1 | ⊥ | A⊕B | A&B | 0 | > | µXA | νXA

where X ranges over an infinite set of propositional variables.10

The connectives µ and ν are binders and, as usual, preformulas are considered modulo11

renaming of bound variables. For instance, νX(X ⊗X) and νY (Y ⊗ Y) denote the same12

preformula.13

Definition 13 (µMALL formulas). A formula is a closed preformula. We denote by14

Fml the set of all formulas and we denote by 6 the usual subformula ordering between15

formulas and preformulas.16

Definition 14 (µMALL negation). An involutive negation ·⊥ is defined on every µMALL17

preformula, inductively specified by:18

(A⊗B)⊥ = A⊥ `B⊥ 1⊥ = ⊥ X⊥ = X

(A⊕B)⊥ = A⊥ &B⊥ 0⊥ = > (µXA)⊥ = νXA⊥

Example 4. If A is any formula and F = νX(µY ((A⊗X)`Y)) then F⊥ = µX(νY ((A⊥`19

X)⊗ Y)).20

Remark 4. It may be counterintuitive that X⊥ = X. Yet, in practice negation will only21

be applied to formulas, which are closed preformulas. This simple hack allows us to avoid22

34

2.1 Proof theory for least and greatest fixed points

` Γ, A[µXA[X]]
(µ)

` Γ, µXA[X]
` Γ, B ` B⊥, A[B]

(νinv)
` Γ, νXA[X]

Figure 2.2. µMALL rules for µ and ν

` Γ, A[µXA[X]]
(µ)

` Γ, µXA[X]
` Γ, B ` B⊥, A[B]

(νinv)
` Γ, νXA[X]

Figure 2.3. Threading functions for the (µ) and (νinv) rules of µMALL

the use of negative atoms X,Y , . . . The fact that we have only positive atoms garantees1

in turn that bound variables can only appear in covariant position, thus avoiding the2

need for a positivity condition when forming a fixed point formula.3

In the presence of negative atoms, negation should be defined by:4

X⊥ = X X
⊥ = X

(µXA[X])⊥ = νXA[X]⊥ (νXA[X])⊥ = µXA[X]⊥

which does not change its definition on closed formulas. For instance, in Example 4 we5

would still have:6

F⊥ = (νX(µY ((A⊗X) ` Y)))⊥

= µX(µY ((A⊗X) ` Y))⊥

= µX(νY ((A⊗X) ` Y)⊥)
= µX(νY ((A⊥ `X)⊗ Y))
= µX(νY ((A⊥ `X)⊗ Y))

µMALL inferences and proofs The proofs for µMALL are standard sequent calculus7

proofs, as described in Section 2.1.1. They are obtained by extending the inference8

system for MALL, in Figure 2.1 with two rules. Those rules reflect the definitions of9

least and greatest fixed points of non-decreasing function on ordered sets that we gave in10

Section 1.1.1.11

Definition 15. The set of rules of the sequent calculus µMALL is the union of the rules12

for MALL, given in Figure 2.1 and of the two rules given in Figures 2.2 and 2.3.13

35

2 Technical background

Remark 5. As it was mentionned in the informal introduction, in Section 1.2.3, the (νinv)1

rule of µMALL sequent calculus breaks the subformula property. Indeed, the B and B⊥2

that appears in the premises of the rule, on Figure 2.2, do not appear in its conclusion.3

This means that anyone wanting to prove a ν formula by applying that rule has to find4

an appropriate B, which will act as an induction or coinduction invariant.5

We recall two properties of µMALL, that will be used in Chapter 5. The first one is6

called functoriality:7

Proposition 3. For every variable X and every formulas A[X], B, C of µMALL, the
following rule is derivable in µMALL:

` B,C
[A]

` A⊥[B], A[C]

Proof. By induction on A. See [Baelde, 2012, Section 2.4] for a full proof.8

The second one asserts the two following equivalences:9

νXA[B[X]] ˛ A[νXB[A[X]]] µXA[B[X]] ˛ A[µXB[A[X]]]

Proposition 4. For every two formulas A[X], B[X] of µMALL, the following sequents10

are derivable in µMALL:11

` νXA⊥[B⊥[X]], A[µXB[A[X]]] ` µXA⊥[B⊥[X]], A[νXB[A[X]]]

Proof.

Π0(A,B) =

(id)
` B⊥[A⊥[νXB⊥[A⊥[X]]]], B[A[µXB[A[X]]]]

(µ)
` B⊥[A⊥[νXB⊥[A⊥[X]]]], µXB[A[X]]

[A]
` A⊥[B⊥[A⊥[νXB⊥[A⊥[X]]]]], A[µXB[A[X]]]

(ν0
inv)

` νXA⊥[B⊥[X]], A[µXB[A[X]]]

36

2.1 Proof theory for least and greatest fixed points

` Γ, A[µXA[X]]
(µ)

` Γ, µXA[X]
` Γ, A[νXA[X]]

(ν)
` Γ, νXA[X]

Figure 2.4. µMALL∞ rules for µ and ν

` Γ, A[µXA[X]]
(µ)

` Γ, µXA[X]
` Γ, A[νXA[X]]

(ν)
` Γ, νXA[X]

Figure 2.5. Threading functions for the (µ) and (ν) rules of µMALL∞

Π1(A,B) =

···· Π0(B⊥, A⊥)
` B⊥[µXA⊥[B⊥[X]]], νXB[A[X]]

[A]
` A⊥[B⊥[µXA⊥[B⊥[X]]]], A[νXB[A[X]]]

(µ)
` µXA⊥[B⊥[X]], A[νXB[A[X]]]

1

2.1.3 Infinite proof trees: µMALL∞2

µMALL∞ [Baelde, Doumane, and Saurin, 2016, Doumane, 2017b] is a non well-founded3

proof system for an extension of MALL with least and greatest fixed points operators. It4

was designed to fix the defects of the (νinv) rule of µMALL.5

Definition 16. The formulas of µMALL∞ are the same as the formulas of µMALL, in6

the previous section.7

Inference rules for µMALL∞. The proofs for µMALL∞ will be defined as infinite, non8

well-founded proof trees. They are built out of a set of inference rules, which is given in9

the following definition.10

Definition 17 (µMALL∞ inference rules). The set of inference rules for µMALL∞ is the11

union of the rules for MALL, given in Figure 2.1 and of the two rules given in Figures 2.412

and 2.5.13

37

2 Technical background

Preproofs for µMALL∞. Proofs for µMALL∞ are selected among a set of preproofs,1

which are potentially infinite objects, defined by allowing ordinary proof trees (Definition 6)2

to be infinite.3

Definition 18 (µMALL∞ preproofs). A preproof for µMALL∞ is any proof tree, finite4

or infinite, built with the inferences for µMALL∞ given in Definition 17.5

Example 5. Let F = µXνY (X ` Y) et G = νY µX(X ` Y). The following are two6

µMALL∞ preproofs.7

π1 =

π1

` νXX, µX(X `G), µXX
(ν)

` νXX, µX(X `G), µXX

π1

` νXX, µX(X `G), µXX
(ν)

` νXX,G, µXX
(cut)

` νXX, µX(X `G), G, µXX
(`)

` νXX, µX(X `G) `G, µXX
(µ)

` νXX, µX(X `G), µXX (2.1)8

π2 =

π2

` νXX, νY (F ` Y), µXX
(µ)

` νXX,F, µXX
(ν)

` νXX,F, µXX
π2

` νXX, νY (F ` Y), µXX
(cut)

` νXX,F, νY (F ` Y), µXX
(`)

` νXX,F ` νY (F ` Y), µXX
(ν)

` νXX, νY (F ` Y), µXX (2.2)9

Remark 6 (Inconsistency of preproofs). Any µMALL sequent is the conclusion of a10

µMALL∞ preproof. More precisely, for any sequent Γ, the following is a µMALL∞11

preproof:12

...
(ν)

` Γ, νXX
(ν)

` Γ, νXX

...
(µ)

` µXX
(µ)

` µXX
(cut)

` Γ

38

2.1 Proof theory for least and greatest fixed points

Proofs and validity for µMALL∞ The validity criterion used to distinguish proofs1

among preproofs will be given in Definition 35 and can be stated as: “every infinite2

branch must contain a valid thread”. To make this formal, we will first define how a3

preproof induces two graphs and then define the “branches” and “threads” of a preproof4

as infinite paths in these graphs.5

Definition 19 (thread of an infinite branch of a preproof). Given an infinite branch β6

of a preproof π, we define the set of threads of β as follows. A thread in β is a sequence7

(sn)n∈N of positions of formulas in π such that:8

• each sn belongs to a sequent of β9

• ∀n ∈ N, sn is the immediate descendant of sn+1 in β, according to the threading10

functions of β.11

The following lemma is the key to the notion of a valid thread, which is defined right12

after it. If s is a position of formula in a proof tree, we denote by fml(s) ∈ Fml the13

associated formula.14

Definition 20. If t = (sn)n∈N is an infinite thread in a preproof, we define inf(t) =15

{A ∈ Fml | ∀n0 ∈ N,∃n > n0, sn is principal and fml(sn) = A} i. e. the set of formulas16

that are infinitely often principal in t.17

Definition 21 (Valid thread). An infinite thread t is valid if inf(t) has a minimum, with18

respect to the subformula ordering, and this minimum is a ν-formula.19

Definition 22 (proofs). We say that an infinite branch b of a preproof $ is valid if there20

is a valid infinite thread t on b.21

A µMALL∞ preproof $ is a proof if all its infinite branches are valid.22

2.1.4 Finite proof trees with back edges: µMALLω23

The aim of µMALLω is to have a system of finite proofs, as in µMALL, with only the rules24

of fixed point unfolding instead of a rule with an explicit invariant, as in µMALL∞.25

As well as in µMALL∞, proofs of µMALLω are selected among a set of preproofs.26

Preproofs of µMALLω are circular objects, defined by adding back edges to ordinary27

proof trees.28

39

2 Technical background

Definition 23 (µMALLω formulas). The formulas of µMALLω are the same as the1

formulas of µMALL and µMALL∞ (Definition 13).2

Definition 24 (Proof tree with open sequents). A proof tree with open sequents is a3

proof tree in which it is not mandatory for a sequent to be the conclusion of a logical4

inference. Those positions of sequents that are not the conclusion of a logical inference5

are called positions of open sequents. The other positions are called positions of closed6

sequents.7

Definition 25 (lower, closer to the root). Whenever v, v′ are two vertices of a tree, we8

say that v is lower than v′, or that v is below v′, or that v is closer to the root than v′9

when v appears on the path from v′ to the root.10

The following definition aims at defining some representation for the fragment of all11

µMALL∞ preproofs that are regular, that is those that have only a finite number of12

subtrees up to isomorphism.13

Definition 26 (Π0(µMALLω): µMALLω b.e.-tree preproofs). A µMALLω b.e.-tree pre-14

proof consists of a finite proof tree with open sequents π (Def. 24), composed using the15

rules of µMALL∞ given above in Def. 17, together with a function back, which associates16

to each position s of an open sequent in π, a position back(s) of the same sequent in π,17

such that back(s) is strictly below s in π, i. e. between s and the root. We denote by18

Π0(µMALLω) the set of all µMALLω b.e.-tree preproofs.19

We will sometimes say simply preproof instead of b.e.-tree preproof, or circular preproof20

representation.21

Example 6. Let π be the following proof tree, with three open sequents, and let us22

denote by s0, . . . , s8 the positions of its sequents, as indicated:23

s4 : ` νX(X `X), µXX
s6 : ` νXX, νX(X `X), µXX

(ν)
s5 : ` νXX, νX(X `X), µXX

(cut)
s3 : ` νX(X `X), νX(X `X), µXX

(`)
s2 : ` νX(X `X) ` νX(X `X), µXX

(ν)
s1 : ` νX(X `X), µXX

s8 : ` νXX
(ν)

s7 : ` νXX
(cut)

s0 : ` νX(X `X)

then (π, {s4 7→ s1, s6 7→ s5, s8 7→ s7}) is a µMALLω b.e.-tree preproof, that we will more24

40

2.1 Proof theory for least and greatest fixed points

simply denote by:1

` νX(X `X), µXX
` νXX, νX(X `X), µXX

(ν)
` νXX, νX(X `X), µXX

(cut)
` νX(X `X), νX(X `X), µXX

(`)
` νX(X `X) ` νX(X `X), µXX

(ν)
` νX(X `X), µXX

` νXX
(ν)

` νXX
(cut)

` νX(X `X)

The validity criterion that will be used to distinguish µMALLω proofs among preproofs2

is the same as in µMALL∞. We simply have to adapt the formalism to be able to talk3

about infinite branches and infinite threads of a finite circular representation. We will first4

define how a preproof induces two graphs and then define the “branches” and “threads”5

of a preproof as infinite paths in these graphs.6

Definition 27 (Graph). In the following definitions, a “graph” always means a directed7

pseudograph, i. e. a directed graph which may have loops and in which there may be8

several edges between any pair of vertices.9

Definition 28 (Gbranch, branch graph of a preproof). Let (π,back) be a µMALLω10

b.e.-tree preproof. Its branch graph is the graph Gbranch defined as follows. The vertices of11

Gbranch are the positions of closed sequents in π. For each inference I with conclusion s12

in π and for each premise s′ of I, there is an edge in Gbranch, from s to s′ if s′ is a closed13

position of sequent in π, and from s to back(s′) if s′ is an open position of sequent in π.14

Definition 29 (Infinite branch). If (π,back) is a b.e.-tree preproof and Gbranch is its15

branch graph, we call an infinite branch of this preproof any infinite path in Gbranch16

starting from the root of π.17

To clarify the following definitions, remember that in every proof tree π, for every inference18

I in π, every position of formula α in a premise of I has a unique immediate descendent19

in the conclusion of I, except if I is a cut and α is a cut formula, in which case α has no20

immediate descendent.21

Example 7. The infinite branches of the preproof of Example 6 are s0(s7)ω, s0(s1s2s3)ω22

and all elements of {s0(s1s2s3)k(s5)ω | k ∈ N}.23

41

2 Technical background

Note that, in order to be totally rigorous, we should not only give the vertices of the1

paths but also the edges, i. e. when an inference has several premises, indicate explicitly2

which one was chosen. These details are omitted here for concision; they will cause no3

ambiguity on the validity of the preproof of Example 6.4

Definition 30 (Gout
thread, thread graph of a preproof). Let (π,back) be a µMALLω b.e.-5

tree preproof. Its thread graph is the graph Gout
thread defined as follows. The vertices of6

Gout
thread are the positions of formulas in the closed sequents of π. For each inference I with7

conclusion s in π, for each premise s′ of I and for each position of formula β in s′ which8

has an immediate descendent α in s, there is an edge in Gout
thread, from α to β if s′ is a9

closed position of sequent in π, and from α to the position of the formula corresponding10

to β in back(s′) if s′ is an open position of sequent in π.11

Definition 31 (thread). A thread in a b.e.-tree preproof is simply a path (finite or12

infinite) in Gout
thread.13

Example 8. Let us denote by {α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, ξ} the vertices of Gout
thread for the14

preproof shown on Example 6, as indicated here:15

` νX(X `X), µXX
` νXX, νX(X `X), µXX

(ν)
` νXXι, νX(X `X)κ, µXXλ

(cut)
` νX(X `X)ζ , νX(X `X)η, µXXθ

(`)
` νX(X `X) ` νX(X `X)δ, µXXε

(ν)
` νX(X `X)β, µXXγ

` νXX
(ν)

` νXXξ
(cut)

` νX(X `X)α

The maximal threads of this preproof, that is those that cannot be extended in any16

direction, are (ξ)ω, γεθ(λ)ω, (ι)ω, α(βδζ)ω and the elements of {α(βδζ)kβδη(κ)ω | k ∈ N}.17

Once again, in order to be totally rigorous, we should explicitly include the explicit choice18

of a descendent relation, in cases where a position has several immediate ancestors.19

Definition 32 (U : Gout
thread → Gbranch). For any b.e.-tree preproof, there is an obvious20

graph morphism from Gout
thread to Gbranch, associating to every position of a formula the21

sequent position it belongs to. We denote this graph morphism by U. If t is a path in22

Gout
thread (i. e. an outer thread), we will also denote by U(t) the corresponding path in23

Gbranch.24

42

2.1 Proof theory for least and greatest fixed points

Example 9. The images, by the morphism of Definition 32, of the threads of Example 81

are, with the notations of Example 6:2

U((ξ)ω) = (s7)ω U(γεθ(λ)ω) = s1s2s3(s5)ω U((ι)ω) = (s5)ω

U(α(βδζ)ω) = s0(s1s2s3)ω ∀k ∈ N,U(α(βδζ)kβδη(κ)ω) = s0(s1s2s3)k+1(s5)ω

The definition of a valid thread is then the same as in µMALL∞:3

Definition 33. If t = (sn)n∈N is an infinite thread in a b.e.-tree preproof, we define4

inf(t) = {A ∈ Fml | ∀n0 ∈ N,∃n > n0, sn is principal and fml(sn) = A} i. e. the set of5

formulas that are infinitely often principal in t.6

Definition 34 (Valid thread). An infinite thread t is valid if inf(t) has a minimum, with7

respect to the subformula ordering, and this minimum is a ν-formula.8

Example 10. Among the threads of Example 8:9

• (ξ)ω is valid: its smallest infinitely principal formula is νXX, which is principal at10

ξ;11

• (ι)ω is valid: its smallest infinitely principal formula is νXX, which is principal at12

ι;13

• α(βδζ)ω is valid: its smallest infinitely principal formula is νX(X `X), which is14

principal at β;15

• γεθ(λ)ω is not valid: it has no principal formula;16

• ∀k ∈ N, α(βδζ)kβδη(κ)ω is not valid: it has no principal formula after the last17

position of β.18

Definition 35 (proofs). We say that an infinite branch b of a b.e.-tree preproof $ is19

valid if there is a valid infinite thread t of $ such that U(t) is a suffix of b.20

A µMALLω b.e.-tree preproof $ is a proof if all its infinite branches are valid.21

We denote by Π(µMALLω) the set of all µMALLω b.e.-tree proofs and we denote by22

Π(µMALLω) its complement in Π0(µMALLω), i. e. the set of all invalid b.e.-tree preproofs.23

Example 11. The preproof of Example 6 is a proof:24

43

2 Technical background

• the branch s0(s7)ω contains the valid thread (ξ)ω;1

• the branch s0(s1s2s3)ω contains the valid thread (βδζ)ω;2

• ∀k ∈ N, the branch s0(s1s2s3)k(s5)ω contains the valid thread (ι)ω.3

Link between circular representations and infinite preproofs4

To every µMALLω b.e.-tree preproof $ is associated a canonical µMALL∞ preproof5

J$K∞. The finite circular preproof $ may then be seen as a finite representation of the6

infinite preproof J$K∞.7

Without going into too much details, we give an explanation of how to define the8

transformation J · K∞. We first define a process F of expansion of a circular preproof.9

Let $ be a circular preproof. We construct F ($) as follows. We say that a back edge b10

is minimal in $ if the position of its target is minimal, meaning that no other back edge11

has a target strictly closer to the root of $. For every minimal back edge b of $, we12

substitute, in place of the source of b, the whole subtree of $ rooted at the target of b,13

including its back edges. This gives us F ($). Remark that the proof tree of $ is a strict14

prefix of the proof tree of F ($) and that the greatest prefix of $ without any target of15

back edge is, again, strictly smaller than the greatest prefix of F ($) without any target16

of back edge. Said differently: the lowest target of back edges in F ($) are strictly higher17

than in $. By iterating F on $ we then obtain a strictly increasing sequence of circular18

preproofs, in which back edges targets are higher and higher and in which the prefix of19

the proof tree which is free of all back edge targets is increasing. J$K∞ is defined as the20

limit of those prefixes: J$K∞ = limn→∞ F
n($), in a sense that can be made formal.21

Example 12. Let us denote A = µXνY (X ⊗ Y) and consider the following circular22

preproof:23

$ =

` A ` νY (A⊗ Y)
(⊗)

` A⊗ νY (A⊗ Y)
(ν)

` νY (A⊗ Y)
(µ)

` A

then its first step of unfolding is24

44

2.1 Proof theory for least and greatest fixed points

F ($) =

` A ` νY (A⊗ Y)
(⊗)

` A⊗ νY (A⊗ Y)
(ν)

` νY (A⊗ Y)
(µ)

` A ` νY (A⊗ Y)
(⊗)

` A⊗ νY (A⊗ Y)
(ν)

` νY (A⊗ Y)
(µ)

` A

A second unfolding gives1

F 2($) =

` A ` νY (A⊗ Y)
(⊗)

` A⊗ νY (A⊗ Y)
(ν)

` νY (A⊗ Y)
(µ)

` A

` A ` νY (A⊗ Y)
(⊗)

` A⊗ νY (A⊗ Y)
(ν)

` νY (A⊗ Y)
(µ)

` A ` νY (A⊗ Y)
(⊗)

` A⊗ νY (A⊗ Y)
(ν)

` νY (A⊗ Y)
(⊗)

` A⊗ νY (A⊗ Y)
(ν)

` νY (A⊗ Y)
(µ)

` A

and, at the limit, we get the infinite preproof J$K∞ which is such that2

J$K∞ =

···· π
` νY (A⊗ Y)

(µ)
` A with π =

···· J$K∞
` A

···· π
` νY (A⊗ Y)

(⊗)
` A⊗ νY (A⊗ Y)

(ν)
` νY (A⊗ Y)

The principal remark that can be made about this unfolding is that F ($), as a µMALL∞3

preproof, has the same branches as $ as a µMALLω preproof. And each branch of F ($)4

has the same threads as the corresponding branch of $. Hence, F ($) is valid as a5

45

2 Technical background

µMALL∞ preproof iff. $ is valid as a µMALLω preproof. Or: F ($) is a µMALL∞ proof1

iff. $ is a µMALLω proof. This is no coincidence and that remark is the origin of our2

formulation of the thread criterion for finite, circular representations.3

The second natural remark is that this induces an equivalence on circular preproofs: $4

and $′ can be seen as representing the same infinite preproof when F ($) = F ($′). By5

the previous remark, this equivalence relation is compatible with thread-validity.6

Inner threads7

Definition 36 (Gin
thread, inner thread graph of a preproof). Let (π,back) be a µMALLω8

b.e.-tree preproof. Its inner thread graph is the graph Gin
thread defined as follows. The9

vertices of Gin
thread are the positions of ν-subformulas in the closed sequents of π. For10

each inference I with conclusion s in π, for each premise s′ of I, for each position of11

formula β0 in s′ which has an immediate descendent α0 in s and for each position of12

ν-subformula β in β0, whose image in α0 is denoted α, there is an edge in Gin
thread, from α13

to β if s′ is a closed position of sequent in π, and from α to the position of the subformula14

corresponding to β in back(s′) if s′ is an open position of sequent in π.15

Definition 37 (Inner thread). An inner thread in a b.e.-tree preproof is simply a path16

(finite or infinite) in Gin
thread.17

Example 13. Let us denote by {o, π, ρ, σ, τ, υ, φ, χ, ψ} the vertices of Gin
thread for the18

preproof shown on Example 6, as indicated here:19

` νX(X `X), µXX
` νXX, νX(X `X), µXX

(ν)
` νXXψ, νX(X `X)χ, µXX

(cut)
` νX(X `X)τ , νX(X `X)υ, µXX

(`)
` νX(X `X)ρ ` νX(X `X)σ, µXX

(ν)
` νX(X `X)π, µXX

` νXX
(ν)

` νXXψ
(cut)

` νX(X `X)o

The maximal inner threads of this preproof are (ψ)ω, (ψ)ω, o(πρτ)ω and the elements of20

{o(πρτ)kπσυ(χ)ω | k ∈ N}.21

Definition 38 (out : Gin
thread → Gout

thread). For any b.e.-tree preproof, there is an obvious22

graph morphism from Gin
thread to Gout

thread, associating to every position of subformula the23

46

2.1 Proof theory for least and greatest fixed points

position of formula it belongs to. We denote this graph morphism by out. If t is a path1

in Gin
thread (i. e. an inner thread), we will also denote by out(t) the corresponding path in2

Gout
thread (i. e. the correponding thread).3

Example 14. The images, by the morphism of Definition 38, of the inner threads of
Example 13 are, with the notations of Example 8:

out((ψ)ω) = (µ)ω out((ψ)ω) = (ι)ω out(o(πρτ)ω) = α(βδζ)ω

∀k ∈ N,out(o(πρτ)kπσυ(χ)ω) = α(βδζ)kβδη(κ)ω

Definition 39 (Valid inner thread). An infinite inner thread t = (sn)n∈N is valid if4

∀n0 ∈ N,∃n > n0, sn is principal.5

Example 15. Among the inner threads of Example 13:6

• (ψ)ω is valid: ψ is principal;7

• (ψ)ω is valid: ψ is principal;8

• o(πρτ)ω is valid: π is principal;9

• ∀k ∈ N, o(πρτ)kπσυ(χ)ω is not valid: χ is not principal and it has no principal10

vertex after the last π.11

Proposition 5 (Equivalence between the two definitions of valid infinite threads).12

1. If t is a valid infinite inner thread then out(t) is a valid infinite thread.13

2. If u is a valid infinite thread then there is a unique valid infinite inner thread t14

such that u = out(t).15

Proof.16

t valid ⇒ out(t) valid First remark that if A is a formula (i. e. closed) then the images17

or preimages of any of its positions along any descendent relation are still positions18

of A. Now, if t = (sn)n∈N is an inner thread, let us denote by fml(t) = fml(s0).19

Then ∀n ∈ N, fml(sn) = fml(t). Because t is valid, this fml(t) is a ν-formula.20

Each sequent position at which t is principal is also a position at which fml(t) is21

principal in out(t), fml(t), hence fml(t) is infinitely principal in out(t). Finally,22

fml(t) is the smallest formula of out(t) because it is a subformula of every formula23

of out(t). Conclusion: out(t) is a valid infinite thread.24

47

2 Technical background

Converse if t ∈ Gout
thread is valid, let νXA be its validating formula, let t = t0t1t2 . . ., let in1

be the sequence of all i such that ti is a principal position of νXA. If in < i < in+1,2

we define ui as the image of tin+1 in ti. Then u = (ui)i is a valid inner thread such3

that out(u) = t. It is easy to see that it is the only one, thanks to the following4

lemma.5

6

Lemma 1. The positions of σXA[X] in A[σXA[X]] are exactly the positions of X in7

A[X].8

Proof. Otherwise, σXA[X] would be a subformula of A[X], which is impossible.9

Example 16. The preproof of Example 6 is a proof:10

• the branch s0(s7)ω contains the valid inner thread (ψ)ω;11

• the branch s0(s1s2s3)ω contains the valid inner thread (πρτ)ω;12

• ∀k ∈ N, the branch s0(s1s2s3)k(s5)ω contains the valid inner thread (ψ)ω.13

Much in the spirit of these inner threads, we can generalize Definitions 10 and 11 to the14

case of b.e.-tree-preproofs.15

Definition 40 (Generalization of t and T). The definitions of t (Definition 10) and16

T (Definition 11) are extended in the obvious way to the setting of µMALLω b.e.-tree17

preproof: if (π,back) is a µMALLω b.e.-tree preproof, if u = (s0, . . . , sn) is a path in its18

Gbranch and p is a position of subformula in the sequent at position sn, then:19

• T(u)(p) is the unique path pi0 , . . . , pn such that20

– ∀i, pi is a position of subformula in the sequent at position si,21

– pn = p,22

– ∀i, i0 6 i < n ⇒ the formula containing pi in the sequent at position si is23

the immediate descendant of the formula containing pi+1 in the sequent at24

position si+1, and pi is the image of pi+1 in that formula,25

– either i0 = 0 or pi0 is in a cut formula,26

48

2.2 Complexity theory

• t(u)(p) =
p0 if i0 = 0
undefined if i0 > 0

1

In this last case, pi0 is in a cut formula.2

Remark 7. If, in the previous definition, the subformula at position p is a ν-formula, then3

T(u)(p) is a path in Gin
thread.4

2.2 Complexity theory5

2.2.1 Generalities on complexity and PSPACE6

We give here a brief and somewhat informal recall of the essential notions of algorithmic7

complexity that we will need in the thesis. For an in-depth perspective on that subject,8

see, for instance, [Arora and Barak, 2009]. If you understand French, you may also read9

the excellent book by Perifel [2014].10

In particular we do not go here into the choice and definition of a precise model of11

computation. All programs are considered deterministic. We assume that the inputs and12

outputs of programs contain at least {0, 1}∗, the finite words on {0, 1}, and that there13

is a pairing operation which allows to combine two entries x and y into a single one14

(x, y).15

Definition 41 (Notations). If f is a program and x an entry for this program, we denote16

by ‖x‖ the size of the entry x, we denote by time(f, x) the execution time of f on x,17

which may be an integer or +∞, and we denote by space(f, x) the memory space used18

by the execution of f on x, which may be an integer or +∞.19

Definition 42 (Problem, language). A problem or language is any subset of all possible20

program entries.21

Definition 43.22

• if t : N→ N is a function, a language L is in DTIME(t(n)) if there is a program f23

such that24

– ∀x ∈ L, f(x) = 125

49

2 Technical background

– ∀x /∈ L, f(x) = 01

– ∃α > 0,∀x, time(f, x) 6 α · t(‖x‖)2

• if t : N→ N is a function, a language L is in DSPACE(t(n)) if there is a program3

f such that4

– ∀x ∈ L, f(x) = 15

– ∀x /∈ L, f(x) = 06

– ∃α > 0,∀x, space(f, x) 6 α · t(‖x‖)7

Definition 44.8

• P :=
⋃
k∈N

DTIME
(
nk
)

9

• EXP :=
⋃
k∈N

DTIME
(
2nk

)
10

• PSPACE :=
⋃
k∈N

DSPACE
(
nk
)

11

• NP := {A | ∃p polynomial,∃B ∈ P, ∀x, (x ∈ A⇔ ∃y ∈ {0, 1}p(‖x‖), (x, y) ∈ B)}12

Proposition 6.
P ⊆ NP ⊆ PSPACE ⊆ EXP

The strictness of each one of these inclusions is an open problem. Experts of the domain13

seem to believe that all these inclusions are in fact strict. We still know for sure that not14

all of them can be equalities, as a consequence of Corollary 1 to Theorem 2 below.15

Definition 45. A function t : N→ N is time-constructible if there is a program f such16

that17

• ∀n ∈ N, f(1n) = 1t(n) (where 1n is the word of length n made only of 1)18

• ∃α > 0, ∀n ∈ N, time(f, 1n) 6 α · t(n)19

Theorem 2 (Deterministic time hierarchy). If f, g : N→ N are two functions such that20

50

2.2 Complexity theory

• ∀n ∈ N, f(n) > 01

• g is time-constructible2

• g(n)� f(n) · log(f(n))3

then DTIME(f(n)) (DTIME(g(n)).4

Corollary 1.
P (EXP

Definition 46 (Polynomial-time many-one reduction). A polynomial-time many-one5

reduction from a language B to a language A is a program f which runs in polynomial6

time and such that ∀x, x ∈ B ⇔ f(x) ∈ A. If such a program exist, we say that B reduces7

to A and we denote it by B 6 A.8

Definition 47. A problem A is PSPACE-complete if A is in PSPACE and every PSPACE
problem reduces to A. Equivalently, A is PSPACE-complete iff.

∀B,B ∈ PSPACE⇔ B 6 A

Proposition 7.9

• A problem A is in PSPACE iff. its complement A is in PSPACE.10

• A problem A is PSPACE-complete iff. its complement A is PSPACE-complete.11

Proof.12

• Every DSPACE(nk) is closed under complement: if f recognizes A, A is recognized13

by g(x) = 1− f(x). Hence PSPACE is closed under complement.14

• Suppose A is PSPACE-complete and B is PSPACE. We then show that B reduces to15

A. As B is PSPACE, so is B. Hence there is a polynomial-time many-one reduction16

f from B to A. Then we show that f is also a reduction from B to A. Indeed,17

∀x, x /∈ B ⇔ x ∈ B ⇔ f(x) ∈ A, and then ∀x, x ∈ B ⇔ f(x) /∈ A⇔ f(x) ∈ A.18

19

Remark 8. Although this will not be used in this thesis, we recall to the interested reader20

that we also have PSPACE = NPSPACE = coNPSPACE because of Savitch theorem.21

51

2 Technical background

2.2.2 Some PSPACE-complete problems1

Definition 48 (BOOLEfalse and Bfalse). A program in BOOLEfalse is a sequence of instructions
b = 1:I1 2:I2 . . . m:Im where an instruction can have one of the two following forms:

I ::= X := ¬X | if X then goto `′ else goto `′′

where X ranges over a finite set of variable names. The semantic is as expected, with all2

variables being equal to false at the beginning of the program, and the program halting3

when reaching instruction m+ 1. Finally it is required of every program b ∈ BOOLEfalse4

that if b terminates then all variables have value false at the end of its execution.5

We also denote the set of terminating programs as:

Bfalse := {b ∈ BOOLEfalse | b terminates}

Remark 9. The constraint on the values of the variables at the end of the program6

will be useful when reducing it, in Chapter 3, to the problem of validity of a µMALLω7

b.e.-tree preproof. This preproof will encode the fact that the program b is terminating8

by connecting the final state to the initial one, hence the necessity that its initial and9

terminal states are the same.10

Lemma 2. Bfalse is PSPACE-hard under LOGSPACE-reductions:11

PSPACE 6L Bfalse12

Proof. We reduce from the problem of termination for a more expressive language, which13

has been defined and proved PSPACE-complete by Jones in [Jones, 1997], under the14

name of BOOLE.15

2.3 Parity automata16

We recall here the basic definitions and property of parity automata. There are several17

definitions of parity automata, all of which are equivalent. We chose a definition that18

best suits our needs. For more informations on the subject of automata for infinite words,19

see, for instance, [Grädel, Thomas, and Wilke, 2002] or [Perrin and Pin, 2004].20

We denote by ω the set of natural integers, and we also denote by ω the first infinite21

ordinal. We denote by ω + 1 the set ω ∪ {ω}, ordered by setting ω to be its maximum.22

52

2.3 Parity automata

The ordinal ω is considered even. All of that is consistent with usual set-theoretic1

conventions.2

Given an alphabet A, we denote by Aω the set of infinite words on A, that is the set of3

sequences of elements of A, indexed by the integers.4

Definition 49 (Parity automaton). Given an alphabet A, a parity automaton on A5

consists of6

• a set Q of states;7

• a subset I ⊆ Q of initial states;8

• a set T ⊆ Q× A× (ω + 1)×Q.9

Such a parity automaton is finite if A, Q and T are finite. In T , elements of ω + 1 are10

called priorities.11

Definition 50. A run, or path, in a parity automaton A is any infinite sequence

q0 q1 q2 q3 . . .
a0
p0

a1
p1

a2
p2

such that12

• q0 ∈ I13

• ∀n ∈ ω, (qn, an, pn, qn+1) ∈ T14

If r is such a run, we denote by label(r) the infinite word a0a1a3 · · · ∈ Aω.15

Definition 51. Such a run r is successful in the parity automaton if there is a p ∈ ω + 116

such that17

• p is odd (which implies p 6= ω)18

• there are only finitely many n ∈ ω such that pn < p19

• there are infinitely many n ∈ ω such that pn = p20

Equivalently : p is an odd priority and it is the smallest priority appering infinitely often21

in the run r.22

53

2 Technical background

Definition 52 (Language of a parity automaton). The language of a parity automaton1

A is the set L(A) := {label(p) | p is a successful run in A}.2

And the main theorem that we will use is the following.3

Theorem 3. The problem of equality of languages for finite parity automata is decidable4

in polynomial space.5

Proof. We do not go into the details of this complex result. It relies on the fact that6

every parity automaton can be translated into an equivalent Bűchi automaton with a7

polynomial increase of size, which is folklore, and on the the fact that the problem of8

equality of languages for Bűchi automata is decidable in polynomial space, which was9

proven by Sistla, Vardi, and Wolper [1987].10

54

3 PSPACE-completeness of the thread1

criterion2

As we explained in the introduction, the subject of this thesis is the study of finite3

circular representations of infinite proofs and preproofs. In this context, the first question4

arising is to distinguish, among circular representations of preproofs, those denoting valid5

preproofs, i. e. proofs, from those denoting invalid preproofs.6

It has already been shown by Doumane [2017b] that this problem is decidable in PSPACE.7

In the first section of this chapter, we recall a proof of this result.8

The second section of this chapter is devoted to its main result: that the problem9

of deciding the validity of a circular representation of a µMALLω preproof is in fact10

PSPACE-complete. This result is established by a reduction from the problem of deciding11

the termination of a boolean program.12

Our proof takes a lot of inspiration from the proof of PSPACE-completeness of size-change
termination by Lee, Jones and Ben Amram [Lee, Jones, and Ben-Amram, 2001]: in order
to prove that deciding size-change termination is PSPACE-complete, they define a notion
of boolean program and use the fact that the following set is complete in PSPACE:

B = {b | b is a boolean program and b terminates.}

then they reduce B to the problem of size-change termination. We adapt their method13

by reducing B to the problem of thread-validity in circular µMALLω preproof.14

It would be very interesting to get a more precise understanding of the relation between15

threads in circular proofs and size-change termination.16

We show in Section 3.2.4 how our method adapts to other systems such as µLJ and17

µLK.18

55

3 PSPACE-completeness of the thread criterion

3.1 Deciding thread validity in PSPACE1

In this section, we recall that the problem of deciding whether the circular representation2

of a preproof is a valid proof is in PSPACE. Several algorithms can be used for deciding3

this problem in PSPACE. Here we reduce this problem to the problem of deciding equality4

of languages for parity ω-automata, which is known to be in PSPACE. See Section 2.3 of5

the technical background for more details on that. More precisely, given a preproof $,6

we define two parity automata: the language of the first one is the set of infinite branches7

of $ and the language of the second one is the set of valid infinite branches of $.8

We will immediately give two examples to show how the algorithm works.9

Let G := νY µX(X ` Y). The following preproof (3.1) is valid. The branches that10

ultimately always take the left back edge are valid because of a thread going through11

νXX and the branches that take infinitely often the right back edge are valid because of12

a thread going through µX(X `G) and G.13

` νXX, µX(X `G), µXX
(ν)

` νXX, µX(X `G), µXX
` νXX, µX(X `G), µXX

(ν)
` νXX,G, µXX

(cut)
` νXX, µX(X `G), G, µXX

(`)
` νXX, µX(X `G) `G, µXX

(µ)
` νXX, µX(X `G), µXX (3.1)14

From this preproof, we build a first automaton, represented on Figure 3.1 p. 74, which15

recognizes the language of infinite branches of the preproof. It has one initial state and16

all paths are accepted. It recognizes the language (abcd+ abef)ω.17

And from the same preproof (3.1) we build a second automaton, represented on Figure 3.2,
p. 75, which recognizes the language of valid infinite branches of the preproof (3.1). No
priority indicated on an edge implicitely means ω, which is the highest non-accepting
priority. There are four initial states, at the bottom of the automaton. Three edges have
a priority < ω

νXX νXXd

1 G µX(X `G)f

1 µX(X `G) µX(X `G) `Ga

2

56

3.1 Deciding thread validity in PSPACE

It recognizes the language
(abcd+ abef)∗(abcd)ω + ((abcd)∗abef)ω

= (abcd+ abef)ω

Now let F := µXνY (X ` Y). The following preproof (3.2), unlike the preproof (3.1), is1

not valid. The branches taking ultimately only the left back edge are valid because of2

a thread going through νXX, the branches taking ultimately only the right back edge3

are valid because of a thread going through νY (F ` Y) but the branches which takes4

infinitely often the left back edge and infinitely often the right back edge are not valid.5

` νXX, νY (F ` Y), µXX
(µ)

` νXX,F, µXX
(ν)

` νXX,F, µXX ` νXX, νY (F ` Y), µXX
(cut)

` νXX,F, νY (F ` Y), µXX
(`)

` νXX,F ` νY (F ` Y), µXX
(ν)

` νXX, νY (F ` Y), µXX (3.2)6

The deduced automaton recognizing all infinite branches of preproof (3.2), is represented7

on Figure 3.3, p. 76. It has one initial state. All paths are accepted. It recognizes the8

language (abcde+ abf)ω.9

And the automaton of valid infinite branches of preproof (3.2) is represented on Figure 3.4,
p. 77. It has 4 initial states. The only three transitions with priorities < ω are

νY (F ` Y) F ` νY (F ` Y)a

3 νXX νXXd

1 F νY (F ` Y)e

2

It recognizes the language
(abcde+ abf)∗(abcde)ω + (abcde+ abf)∗(abf)ω

= (abcde+ abf)ω \ ((abf)∗abcde(abcde)∗abf)ω

We will now explain the procedure by which, in each case, those two automata were10

obtained.11

Let $ be a b.e.-tree preproof. Let Gbranch be its branch graph, as defined in Definition 28.12

Let A := Ebranch be the set of its edges. This will be the input alphabet of our automata.13

The first ω-automaton is Abranch := (Qbranch, Ibranch, Tbranch), where:14

57

3 PSPACE-completeness of the thread criterion

• The set of states is Qbranch := Vbranch, the set of vertices of Gbranch, that is the set1

of closed positions of sequents in π.2

• The set of initial states is the singleton Ibranch := {ibranch}, where ibranch is the3

position of the root of $, that is the position of the conclusion sequent of $.4

• The set of transitions is5

Tbranch := { s s′e

1 | e is an edge from s to s′ in Gbranch}

This amounts to saying that the accepted paths in Abranch are exactly the paths in Gbranch6

which start at the root of the proof tree. With that definition, the following lemma is7

immediate:8

Lemma 3. The language L(Abranch) is the set of infinite branches of $.9

For our second automaton, we need a priority assignment Ω: Fml→ ω. It will be used10

to reflect the condition of validity of threads in the parity condition of our automata. We11

need this priority assignment to have two main properties:12

1. if A is a subformula of B then Ω(A) 6 Ω(B);13

2. ∀A, Ω(µXA) is even and Ω(νXA) is odd.14

Remember that even priorities are rejecting and odd priorites are accepting (Definition 51).15

Thus, those two properties reflect the condition of Definition 34.16

Definition 53 (Ω: Fml→ ω). A function Ω is defined by induction, which associate a
priority to every preformula:

Ω(νXA) :=
Ω(A) if Ω(A) is odd

Ω(A) + 1 if Ω(A) is even

Ω(µXA) :=
Ω(A) if Ω(A) is even

Ω(A) + 1 if Ω(A) is odd
Ω(A�B) := max{Ω(A),Ω(B)} for any binary connective �

Ω(c) := 0 for any propositional constant c
Ω(X) := 0

The following remarks are immediate:17

58

3.1 Deciding thread validity in PSPACE

Lemma 4. For all formulas A and B:1

• Ω(νXA) is odd and Ω(µXA) is even.2

• If A is a subformula of B then Ω(A) 6 Ω(B).3

Our second automaton is a parity ω-automaton, with priorities in ω + 1 = ω ∪ {ω},4

ω being even.1 This second automaton is defined as Athread = (Qthread, Ithread, Tthread),5

where:6

• the set of states is Qthread := Vthread + {⊥s | s ∈ Vbranch}, i. e. the vertices of Gout
thread7

plus one extra vertex for each vertex of Gbranch8

• If we keep the notation ibranch to denote the position of the endsequent of $, the9

set of initial states Ithread is the set of all positions of formulas in ibranch, plus the10

extra vertex ⊥ibranch .11

• the set of transitions is12

Tthread := {⊥s e−→
ω
⊥s′ | e is an edge from s to s′ in Gbranch}

∪ { α β
U(e)
Ω(α)

| e is an edge from α to β in Gout
thread and α is principal}

∪ { α β
U(e)
ω

| e is an edge from α to β in Gout
thread and α is not principal}

∪ {⊥s
e−→
ω

α

| I is a (cut) inference in $,
s is the position of the conclusion sequent of I,
s′ is the position of a premise of I,
e is an edge induced by I in Gbranch from s to s′

and α is the position of the corresponding cut-formula in s′}

where q e−→
i
q′ denote a transition from state q ∈ Qthread to state q′ ∈ Qthread with13

label e ∈ A and priority i ∈ ω + 1.14

The acceptance condition is the one given in our definition of parity automata in15

Definition 49: a run is accepted if the smallest priority appearing infinitely often is odd16

(ω being even).17

Once again, it should be clear from Definitions 21 and 22 that:18

1We use the usual set-theoretic convention that an ordinal is equal to the set of ordinals strictly below
it: α = {β ∈ Ord | β < α}

59

3 PSPACE-completeness of the thread criterion

Lemma 5. The language L(Athread) is the set of valid infinite branches of $.1

From these two lemmas it is immediate that2

Proposition 8. We have the inclusion L(Athread) ⊆ L(Abranch) and the preproof $ is3

valid iff. this inclusion is an equality.4

Deciding this equality can be done in PSPACE (c. f. Theorem 3), and the constructions5

of these automata are obviously PSPACE, so:6

Proposition 9. The problem of deciding whether a µMALLω b.e.-tree preproof is valid7

is in PSPACE.8

3.2 PSPACE-completeness9

3.2.1 Outline of the PSPACE-completeness proof10

We now aim at proving that the problem of deciding the validity of a µMALLω b.e.-tree11

preproof is PSPACE-complete. As it is already known that this problem is in PSPACE,12

it remains to prove that it is PSPACE-hard.13

We follow the same methodology as Lee, Jones, and Ben-Amram [2001]: in order to
prove that deciding size-change termination is PSPACE-complete, they define a notion
of boolean program (see Definition 48) and use the fact that the following problem is
PSPACE-complete:

B = {b | b is a boolean program and b terminates.}

then they reduce B to the decidability of size-change termination.14

We try to adapt their method by reducing B to Π(µMALLω).15

3.2.2 Definition of the reduction16

We use the boolean programs that were defined in Definition 48. The following definition17

will be used in the proof of Proposition 10:18

60

3.2 PSPACE-completeness

Definition 54 (Call graph of a program). Assume a boolean program b with variables1

X1, . . . , Xk and instructions 1 : I1, . . . , m : Im. Define the call graph of b to be G = (V,E)2

with3

• V = {0, 1, . . . ,m}4

• E = {0 0→ 1}

∪ {` `→ ((`+ 1) mod (m+ 1)) | I` = “X := not X”}

∪ {` `+→ `′, `
`−→ `′′ | I` = “if X goto `′ else `′′”}

5

The following definition is the main object of this chapter. It describes a transformation6

that turns every boolean program b into a µMALLω b.e.-tree-preproof, with the property7

that this preproof is thread-valid iff. the source program is non-terminating.8

Definition 55 (J·K : BOOLEfalse → Π0(µMALLω)). For every boolean program b ∈
BOOLEfalse, we define a preproof JbK ∈ Π0(µMALLω). Let X1, . . . , Xk be the variables of
b and 1 : I1, . . . , m : Im its instructions. We first give names to the formulas that will
appear in JbK: we define a unary operation ¿, three formulas A,B,C, a family of unary
operations (¿n) and two families of formulas (Dn), (En):
A = ¿(νX¿X) B = νX(⊥⊕X) C = µX(B `X) En = ¿n(νX¿nX)

¿F = µX(F ⊕ (⊥⊕ (X `X))) ¿nF = µX(⊥⊕ (X ` (F ` · · ·` F︸ ︷︷ ︸
n−1

)))

Dn = µX(X & · · ·&X︸ ︷︷ ︸
n

)

We now define JbK to be the preproof9

···· J0:K

` A2k, B, C,D2, Dm, E
m
m

···· J1 : I1K

` A2k, B, C,D2, Dm, E
m
m

. . .
···· Jm : ImK

` A2k, B, C,D2, Dm, E
m
m

(µ), (&)m−1

(Root) ` A2k, B, C,D2, Dm, E
m
m

(3.3)10

where A2k is an abbreviation for A, . . . , A︸ ︷︷ ︸
2k

and Em
m is an abbreviation for Em, . . . , Em︸ ︷︷ ︸

m

11

and the subtrees J0:K, J1 : I1K, . . . , Jm : ImK will be defined below.12

Remark 10 (Short notation for long sequents). You just saw on Eq. (3.3) that, for any13

formula A, we use An as an abbreviation for A, . . . , A︸ ︷︷ ︸
n formulas

. Similarly, for any formulas A and14

B, we may use (A,B)n as an abbreviation for A,B, . . . , A,B︸ ︷︷ ︸
2n formulas

. We do so, for instance, on15

Figure 3.6.16

61

3 PSPACE-completeness of the thread criterion

The root of the preproof JbK is constructed by translating each pair `:I` of a label and an1

instruction into a finite segment of branch of preproof, as defined in Eq. (3.3), with each2

subderivation J`:I`K defined in Fig. 3.6 and each subderivation J`:goto `′K in Fig. 3.5.3

Remark 11 (Implicit threading functions). Notice that in our description of the translation4

in the previous definition, the threading functions were left implicit. The only exception5

is in the definition of J`:Xi := not XiK, on Figure 3.6, in which we use arrows to express6

the exchange of the positions of two occurrences of A.7

Remark 12 (Infinite branches of JbK ' Eω). The preproof JbK constructed from b by the8

reduction J·K of Definition 55 is a finite tree with back edges in which every finite branch9

ends with a back edge to the root. This finite tree has exactly as many branches and10

consequently as many back edges to the root, as the number CardE of edges in the11

call-graph of b (Definition 54). This in turn entails that the set of infinite branches of12

the preproof JbK is in one-to-one correspondence with the set Eω of infinite words on E.13

Note however that an infinite word u ∈ Eω has no reason a priori to be a path in G.14

From now on, we will refer directly to infinite branches of the preproof by15

words u ∈ Eω.16

3.2.3 Main theorem17

We now prove that Π(µMALLω) is PSPACE-complete.18

Remark 13 (Thread groups). We need to be more precise about the occurrences of
formulas in the conclusion sequent of preproof JbK:

A, . . . , A︸ ︷︷ ︸
2k

, B, C,D2, Dm, Em, . . . , Em︸ ︷︷ ︸
m

Let us label the occurrences of A in this sequent as follows:

A+
1 , A

−
1 , . . . , A

+
k , A

−
k , B, C,D2, Dm, Em, . . . , Em︸ ︷︷ ︸

m

so that we can talk precisely about them. It can be seen by examining the definition of
J·K (def. 55) that a valid thread in the preproof cannot pass through D2 or Dm, which
contain no ν, and that the remaining formulas are divided into k + 2 groups

A+
1 , A

−
1︸ ︷︷ ︸, . . . , A+

k , A
−
k︸ ︷︷ ︸, B, C︸ ︷︷ ︸, Em, . . . , Em︸ ︷︷ ︸

which cannot thread-interact with each other, in the sense that, for instance, no thread19

can contain a B and a Em, or a Aε` and a Aε′`′ if ` 6= `′.20

62

3.2 PSPACE-completeness

Lemma 6. An infinite branch u ∈ Eω in the preproof contains a validating thread1

• in the Em group iff. no suffix of u is a valid path in G.2

• in the B,C group iff. 0 occurs only finitely in u.3

Proof. The proof goes by case on the instructions involved.4

In order to prove the first part of the statement, that is that an infinite branch u ∈ Eω in5

the preproof contains a validating thread in the Em group iff. no suffix of u is a valid path6

in G, we reason by case on the instructions involved and remark that the Em formulas7

are touched only in the J`:goto `′K parts of the preproof.8

The Em formulas are touched only in the J`:goto `′K parts of the preproof. Observe that
in J`:goto `′K all Em but one are erased, after which the remaining Em recreates all of
them. As a consequence, every infinite branch u ∈ Eω in the preproof has exactly one
thread in the Em group. Suppose a factor e1e2 ∈ E2 of u and suppose their respective
sources and targets in G to be named `1

e1−→ `′1 and `2
e2−→ `′2. The crucial observation is

that the piece of the Em thread delimited by e1 has minimal formula equal toEm (which is a µ-formula) if `′1 = `2

νX¿mX if `′1 6= `2

the formula νX¿mX being a subformula of Em able to recreate Em. As a result:9

• if u has a suffix which is a valid path in G then the principal formula of the Em10

thread is Em, hence this thread is a µ-thread, and there is no valid thread in the11

Em group.12

• otherwise, the principal formula of the Em thread is νX¿mX, and this thread is a13

ν-thread, infinitely progressing, hence a validating thread.14

This diagram sums up the behavior of the threads of the Em group in J`:goto `′K:

E(1)
m · · · E(`′−1)

m E(`′)
m E(`′+1)

m · · · E(m)
m

E(1)
m · · · E(`−1)

m E(`)
m E(`+1)

m · · · E(m)
m

νX¿mX νX¿mX Em νX¿mX
νX¿mX

In order to prove the second part of the statement, that is that an infinite branch u ∈ Eω
15

in the preproof contains a validating thread in the B,C group iff. 0 occurs only finitely16

in u, we reason by case on the instructions involved.17

63

3 PSPACE-completeness of the thread criterion

First note that B is a ν-formula and that it is a subformula of C, which is a µ-formula.1

Observe also that B can recreate B, but B cannot recreate C. Therefore a {B,C}-thread,2

in order to be validating, must end with an infinite alternation B (ν)−→ (⊥⊕B) (⊕1)−→ B
(ν)−→3

· · · Let us now take a closer look at what happens to B and C in the different branches4

of the tree with back edges p. Formulas B and C are touched only at the bottom of the5

J`:I`K parts of the preproof JbK, in the following way:6

• when going through branch 0, B is erased and C forks into a new copy of B and a7

recreated C.8

• When going through any other branch, two threads are maintained: one at B and9

one at C, and the thread at B progresses.10

Therefore: if an infinite branch u goes infinitely through 0, u contains no infinite thread11

at B, only an infinite thread at C, which is a µ-thread, hence u has no validating thread12

in the B/C part of the root sequent. If, on the contrary, u goes only finitely many13

times through 0, it has then a thread at B, which is a ν-thread, and which is infinitely14

progressing, hence a validating thread.15

These two diagrams sum up the behavior of the threads in the {B,C} group in J0:K and
in all other J`: I′`K respectively:

B C

B C

C C

B C

B C

B

16

Remark 14. Because of lemma 6, the only infinite branches of JbK whose validity is not17

known in advance are the u ∈ Eω which are valid paths in G going infinitely many18

times through edge 0, and we know that these infinite branches may have validating19

threads only in one of the k groups {A+
i , A

−
i }16i6k. Such an infinite branch can always20

be factorized into u00u10u20 · · · where the un do not contain 0. As the edge 0 ∈ E has21

source and target 0 0−→ 1, and because of the hypothesis that u is a path in G, for n > 122

every un has source and target 1 un−→+ 0.23

Lemma 7. Assume 1 u−→+ `, which does not contain the edge 0. If u is a prefix of the
execution of b then the threads of {A+

i , A
−
i } in 0 0u−→+ ` are

A+
i A−i

A+
i A−i

νX¿X A

64

3.2 PSPACE-completeness

if Xi = false at the end of u and

A+
i A−i

A+
i A−i

A νX¿X

if Xi = true at the end of u; and if u is not a prefix of the execution of b then there is an
i ∈ J1,mK such that the threads of {A+

i , A
−
i } in 0 0u−→+ ` are

A+
i A−i

A+
i A−i

νX¿X νX¿X

Proof. The proof goes by induction on the length of u.1

If u has length 0, 0u = 0. It corresponds to having done 0 step of the execution of b,
which implies that all variables have value false, and the threads of {A+

i , A
−
i } in p0 are

indeed
A+
i A−i

A+
i A−i

νX¿X A

for all i. If u has length > 0, it decomposes as u = ve with e ∈ E \ {0}. There are then
three cases : either ve is the beginning of the execution of b, or v is but ve is not, or v is
already not the beginning of the execution of b. In the third case, by induction hypothesis,
there is an i such that the threads of {A+

i , A
−
i } in 0v are

A+
i A−i

A+
i A−i

νX¿X νX¿X

and, because e 6= 0, the threads of {A+
i , A

−
i } in e are of one of the four following forms:

A+
i A−i

A+
i A−i

A+
i A−i

A+
i A−i

A+
i A−i

A+
i A−i

νX¿X

A+
i A−i

A+
i A−i

νX¿X

65

3 PSPACE-completeness of the thread criterion

hence, by composition, the threads of {A+
i , A

−
i } in 0ve = 0u are still

A+
i A−i

A+
i A−i

νX¿X νX¿X

Otherwise v is a beginning of the execution of b. Then, by induction hypothesis, the
threads of {A+

i , A
−
i } in 0 0v−→+ ` are

A+
i A−i

A+
i A−i

νX¿X A

if Xi = false at the end of v and

A+
i A−i

A+
i A−i

A νX¿X

if Xi = true at the end of v. The next instruction executed by b is either I`:Xi := not
Xi or I`:if Xi goto `′ else `′′. If the next instruction is I`:Xi := not Xi then e has
to be ` `→ ((`+ 1) mod (m+ 1)), so 0u = 0ve is still a beginning of the execution of b,
and then: for every j 6= i, the threads of {A+

j , A
−
j } in e are

A+
i A−i

A+
i A−i

so the threads of {A+
j , A

−
j } in 0u have the same form as those in 0v, while the value of

Xj has not changed, hence the invariant is still respected for j. As for the threads in
{A+

i , A
−
i }, in e they are

A+
i A−i

A+
i A−i

so if the threads of {A+
i , A

−
i } in 0v are

A+
i A−i

A+
i A−i

νX¿X A

66

3.2 PSPACE-completeness

those in 0u are
A+
i A−i

A+
i A−i

A νX¿X

and vice versa. As the value of Xi is changed by this instruction, the invariant is still
respected also for i. The last case we have to treat is when the next instruction executed
by b after v is I`:if Xi goto `′ else `′′. That means that v ends in vertex `, from
which there are two edges: ` `+→ `′ and ` `−→ `′′. There are four cases, depending on the
value of the variable Xi after v, and the choice of e ∈ {`+, `−}. If Xi = false and e = l−

then 0u = 0ve is still a prefix of the execution of b. The threads of {A+
i , A

−
i } in 0v where,

by induction hypothesis:
A+
i A−i

A+
i A−i

νX¿X A

and those in e = l− are
A+
i A−i

A+
i A−i

νX¿X

hence, by composition, the threads of {A+
i , A

−
i } in 0u are still

A+
i A−i

A+
i A−i

νX¿X A

and the invariant is still respected. The situation is symmetric when Xi = true and e = l+.
If Xi = true and e = l− then 0u = 0ve is not a prefix of the execution of b. The threads
of {A+

i , A
−
i } in 0v where, by induction hypothesis:

A+
i A−i

A+
i A−i

A νX¿X

and those in e = l− are
A+
i A−i

A+
i A−i

νX¿X

67

3 PSPACE-completeness of the thread criterion

hence, by composition, the threads of {A+
i , A

−
i } in 0u are

A+
i A−i

A+
i A−i

νX¿X νX¿X

(recall that νX¿X is a subformula of A). The situation is symmetric when Xi = false and1

e = l+. So in all of these four cases the invariant is respected.2

3

Proposition 10. J·K is a LOGSPACE reduction from Π(µMALLω) to Bfalse.4

Proof. For the LOGSPACE character: the only data that need to be remembered while5

constructing the preproof are integers like k, m, `, `′. Because `, `′ 6 m and the entry6

has size Ω(k +m), this takes a space at most logarithmic in the size of the entry.7

As for the fact that it is indeed a reduction: let us assume a b ∈ BOOLEfalse and prove8

that JbK /∈ Π(µMALLω)⇔ b ∈ Bfalse. Let G = (V,E) be the call-graph of b, as defined in9

Definition 54. Following remark 12, we denote by elements of Eω the infinite branches of10

JbK. There are two cases: either b ∈ Bfalse and we have to prove that p /∈ Π(µMALLω),11

or b /∈ Bfalse and we have to prove that p ∈ Π(µMALLω). First case: if b ∈ Bfalse:12

the execution of b induces a finite path u = 1 →∗ 0 in G. This finite path can be13

completed into v = 0 0→ 1 u−→∗ 0. Then vω is an invalid branch of JpKω. Here we use14

the fact that when b terminates, every variable has value false. Second case: if b /∈ Bfalse:15

let P1 = {vw∞ | v ∈ E∗, w∞ ∈ Eω and w∞ is a path in G} and P2 = {v∞ ∈ P1 |16

0 occurs infinitely in v∞}. By construction, P2 ⊆ P1 ⊆ Eω. We will prove three facts:17

that every branch v∞ ∈ Eω \ P1 is thread-valid, that every branch v∞ ∈ P1 \ P2 is18

thread-valid and that every branch v∞ ∈ P2 is thread-valid. These three facts, together19

with the fact that (Eω \ P1) ∪ (P1 \ P2) ∪ P2 = Eω, are enough to conclude that every20

branch v∞ ∈ Eω is thread-valid. The first fact, that every branch v∞ ∈ Eω \ P1 is21

thread-valid, is due to the thread going through the Em. The second fact, that every22

branch v∞ ∈ P1 \P2 is thread-valid, is due to the thread going through B. The third fact,23

that every branch v∞ ∈ P2 is thread-valid, is due to the fact that b is non-terminating24

and that, because of that, one of the 2k threads going through the A is valid.25

Theorem 4. The problem Π(µMALLω) is PSPACE-hard:

PSPACE 6 Π(µMALLω)

Proof. We reduce from Bfalse, which is PSPACE-complete by Lemma 2. More precisely,26

we reduce Bfalse to Π(µMALLω), the complement of Π(µMALLω). This is enough because27

68

3.2 PSPACE-completeness

PSPACE is closed under complements, in the same way as all deterministic classes. The1

reduction J·K : BOOLEfalse → Π0(µMALLω) is defined in Definition 55. It is a LOGSPACE2

reduction, by Proposition 10, hence it is also a polynomial-time reduction.3

Remark 15. In fact, since our construction do not use the (cut) rule, the cut-free fragment4

of Π(µMALLω) is already PSPACE-hard.5

3.2.4 Generalisation to other systems6

Systems of circular proofs with least and greatest fixed points can and have been built for7

other logics, either with different connectives (LK, LJ) or with added modalities (LK©,8

LK�♦). Such systems, which can also be seen as variants of µ-calculus, are described in9

[Vardi, 1988, Kaivola, 1995a, Dax, Hofmann, and Lange, 2006, Doumane, Baelde, Hirschi,10

and Saurin, 2016, Doumane, 2017a,b]. They all share the fact that MALL can be seen as11

a fragment of them, and therefore it is easy to translate µMALLω proofs into them and12

transfer to them our result of PSPACE-completeness:13

Remark 16. There is a µLJ defined by Clairambault [2009, 2010], which is a finitary14

calculus in the spirit of µMALL, with explicit invariants of induction and coinduction.15

The µLJω we are considering here is an infinitary one, in which proofs are distinguished16

from invalid preproofs by a thread criterion, in the spirit of µMALLω.17

Corollary 2 (to Theorem 4). The decidability of the thread criterion is also PSPACE-18

complete in µLJω, µLKω, µLK©ω and µLK�♦ω.19

Proof. It is true for µLJω because every preproof π in µMALLω can be translated to a20

preproof π∗ in µLJω, such that π∗ is thread-valid iff. π is, by translating MALL connectives21

into LJ connectives and translating ` Γ into |Γ⊥| ` ⊥.22

It is true for the other mentionned systems because µLJω is a fragment of them, therefore23

every µLJω preproof is already a preproof in each of them.24

Details of how the constructions adapt to LK and LJ are given below.25

Remark 17. Note that the following adaptations from MALL to LK and LJ might be26

simplified by replacing F ∨ F by F , X ∧X by X, ⊥ ∨X by X and so on. A lot of the27

complexity of these formulas is there to simulate structural rules in the linear world. When28

we are in the classical world, these workaround may not be needed anymore. Anyway,29

the translation we present here is simply to show that even without thinking about that,30

69

3 PSPACE-completeness of the thread criterion

a straightforward translation is possible, which gives the same PSPACE-completeness1

result with LK and LJ and their extensions.2

Generalisation to µLK, µLK© and µLK�♦3

A = ¿(νX¿X) B = νX(⊥ ∨X) C = µX(B ∨X) En = ¿n(νX¿nX)

¿F = µX(F ∨ (⊥ ∨ (X ∨X))) ¿nF = µX(⊥ ∨ (X ∨ (F ∨ · · · ∨ F︸ ︷︷ ︸
n−1

)))

Dn = µX(X ∧ · · · ∧X︸ ︷︷ ︸
n

)

We define JbK to be the preproof4

···· J0:K

` A2k, B, C,D2, Dm, E
m
m

···· J1 : I1K

` A2k, B, C,D2, Dm, E
m
m

. . .
···· Jm : ImK

` A2k, B, C,D2, Dm, E
m
m

(µ), (∧)m−1

(Root) ` A2k, B, C,D2, Dm, E
m
m

(3.4)5

See the details of all branches on Figures 3.7 and 3.8.6

Generalisation to µLJ7

A = ¡(µX¡X) B = µX(> ∧X) C = νX(B ∧X) En = ¡n(µX¡nX)

¡F = νX(F ∧ (> ∧ (X ∧X))) ¡nF = νX(> ∧ (X ∧ (F ∧ · · · ∧ F︸ ︷︷ ︸
n−1

)))

Dn = νX(X ∨ · · · ∨X︸ ︷︷ ︸
n

)

We define JbK to be the preproof8

···· J0:K

A2k, B, C,D2, Dm, E
m
m `

···· J1 : I1K

A2k, B, C,D2, Dm, E
m
m `

. . .
···· Jm : ImK

A2k, B, C,D2, Dm, E
m
m `

(νL), (∨L)m−1

(Root)A2k, B, C,D2, Dm, E
m
m `

(3.5)9

See the details of all branches on Figures 3.9 and 3.10.10

70

3.3 Comments on our approach and discussion of related works

Remark 18. The interested open question is: does the result still stand in the guarded1

fragments of µLK©ω and µLK�♦ω? We conjecture that it does and that the method2

we illustrate here on µMALL can apply as well to the guarded cases of µ-calculi with3

modalities.4

3.3 Comments on our approach and discussion of related5

works6

Our proof for the PSPACE-completeness of the thread criterion is an encoding and an7

adaptation to our setting of the proof used by Lee, Jones and Ben Amram to prove8

that size-change termination is PSPACE-complete [Lee, Jones, and Ben-Amram, 2001].9

We reduce, as they do, from the problem of termination of boolean programs and the10

thread diagrams that we have used to describe the preproof generated by the reduction11

are very similar to the size-change graphs generated by their reduction; this is in fact12

what has guided the design of this preproof: formula A mimicks the Xi, Xi part of their13

graphs and formulas B and C adapt the Z part of their graphs. We had to add the14

formulas D2 and Dm in order to have branching rules in the preproof. One of the main15

novelties of our reduction, compared to the reduction of Lee, Jones and Ben Amram for16

size-change termination, lies in the Em and J`:goto `′K part of the constructed preproof,17

which has no equivalent in the size-change graphs obtained by their reduction. This part18

of our construction allows us to construct a preproof which is a tree with back edges,19

hence proving that the thread criterion is PSPACE-complete even when preproofs are20

represented by trees with back edges. We could in fact drop the Em and J`:goto `′K21

part of the construction by constructing JbK as a rooted graph instead of a tree with22

back edges. The constructions proofs are still correct — and shorter. The caveat is that23

it only proves the thread-criterion to be PSPACE-hard in graph-shaped preproofs and24

not in b.e.-tree-shaped preproofs. Furthermore, we could not have filled this gap by25

simply unfolding the graph into a tree with back edges, for it could lead, as shown in the26

following example, to an exponential blow-up in size, which would prevent the reduction27

to be LOGSPACE, or even P. The following boolean program:28

1:if X then goto 2 else goto 2
2:if X then goto 3 else goto 3

...
n:if X then goto n+ 1 else goto n+ 1

will be translated to a graph-shaped preproof of size Θ(n) but the unfolding of this29

preproof into a b.e.-tree-shaped preproof will have size Θ(2n). Therefore we had to be30

71

3 PSPACE-completeness of the thread criterion

clever in order to target trees with back edges by simulating several vertices with a single1

one; this is accomplished by the Em and J`:goto `′K.2

This improvement of the reduction of Lee, Jones and Ben Amram could in fact be adapted3

in the other direction, to show that size-change termination is already PSPACE-complete4

even when restricted to programs with only one function (in the terminology of [Lee,5

Jones, and Ben-Amram, 2001]), that is when the corresponding call graph / control flow6

graph has only one vertex.7

If, as it is commonly believed, NP 6= PSPACE, our result implies that there is no way to8

add a polynomial quantity of information to a preproof so that its thread-validity can9

be checked in polynomial time. This can be seen as a problem, both for the complexity10

of proof search and proof verification. It suggests trying to find restrictions of the11

thread criterion which will be either decidable or certifiable in polynomial time, while12

keeping enough expressivity to validate interesting proofs. This will be the subject of the13

Chapters 4 and 5 of this thesis.14

We recalled in section 3.1 that thread validity is decidable in PSPACE, and we did so by15

reducing to the problem of language inclusion for ω-parity-automata. The original size-16

change article [Lee, Jones, and Ben-Amram, 2001] gives two different methods to check17

size-change termination, the first one is based on reducing to inclusions of ω-languages18

defined by finite automata while the second one is a direct, graph-based approach. It is in19

fact possible to use this more direct method to decide the thread criterion, and this has20

already been done by Dax, Hofmann, and Lange [2006], who remark furthermore that21

this method leads to a more efficient implementation than the automata-based one.22

3.4 Conclusion23

In the present chapter, we analyzed the complexity of deciding the validity of circular24

proofs in µMALL logic: while the problem was already known to be in PSPACE, we25

established here its PSPACE-completeness. In doing so, we drew inspiration from the26

PSPACE-completeness proof of SCT even though we defer at some crucial points on27

order to build our reduction and carry our proof taking into account the specific forms of28

circular proofs.29

Our proof adapt straightforwardly to a number of other circular proof systems based on30

sequent calculus such as intutionnistic or classical proof systems in addition to the linear31

case on which we focused here.32

While our result can be seen as negative one for circular proofs, it does not prevent33

actual implementations to be tractable and usable on many situations as examplified by34

72

3.4 Conclusion

the Cyclist prover for instance. In such systems, validity checking does not seem to be1

the bottleneck in circular proof construction as compared with the complexity that is2

inherent to exploring and backtracking in the search tree [Brotherston, Gorogiannis, and3

Petersen, 2012, Rowe and Brotherston, 2017, Tellez and Brotherston, 2017].4

Our work suggests deep connections between thread-validity and SCT that we only5

touched upon in the previous section. This confirms connections previously hinted by6

other authors [Dax, Hofmann, and Lange, 2006, Hyvernat, 2014, 2019, Lepigre and7

Raffalli, 2019] that we plan to investigate further in the future.8

73

3 PSPACE-completeness of the thread criterion

` νXX, µX(X `G), µXX ` νXX,G, µXX

` νXX, µX(X `G), G, µXX

` νXX, µX(X `G) `G, µXX

` νXX, µX(X `G), µXX

a

b

ec

fd

Figure 3.1. Automaton recognizing the branches of the preproof (3.1).

74

3.4 Conclusion

νXX µX(X `G) ⊥ µXX νXX ⊥ G µXX

νXX µX(X `G) ⊥ G µXX

νXX µX(X `G) `G ⊥ µXX

νXX µX(X `G) ⊥ µXX

a

b

c

a 2

b

b

e
c

a

b

e

a

b

e
c c

e

d 1
d

d
d

f
f

f 1

f

Figure 3.2. Automaton recognizing the valid branches of the preproof (3.1).

75

3 PSPACE-completeness of the thread criterion

` νXX,F, µXX

` νXX,F, µXX

` νXX,F, νY (F ` Y), µXX

` νXX,F ` νY (F ` Y), µXX

` νXX, νY (F ` Y), µXX

a

b

c

d

f

e

Figure 3.3. Automaton recognizing the branches of the preproof (3.2).

76

3.4 Conclusion

νXX F ⊥ µXX

νXX F ⊥ µXX

νXX F ⊥ νY (F ` Y) µXX

νXX ⊥ F ` νY (F ` Y) µXX

νXX ⊥ νY (F ` Y) µXX

a

b

c

d 1

a 3

b
b

c

d

a

b

d

a

b

cc

d

e
ee 2

e

f
f

f
f

Figure 3.4. Automaton recognizing the valid branches of the preproof (3.2).

77

3 PSPACE-completeness of the thread criterion

J`:goto `′K :=
Back edge to (Root)

` A, . . . , A,B,C,D2, Dm, Em, . . . , Em
(ν)m−1

` A, . . . , A,B,C,D2, Dm, νX¿mX, . . . , νX¿mX︸ ︷︷ ︸
`′−1

, Em, νX¿mX, . . . , νX¿mX︸ ︷︷ ︸
m−`′

(µ), (⊕1), (`)m−1
` A, . . . , A,B,C,D2, Dm, Em ((µ), (⊕0), (⊥))m−1

` A, . . . , A︸ ︷︷ ︸
2k

, B, C,D2, Dm, Em, . . . , Em︸ ︷︷ ︸
`−1

, Em, Em, . . . , Em︸ ︷︷ ︸
m−`

Figure 3.5. Back edges of the preproof

J0:K :=

···· J0:goto 1K

` (A,A)k, B, C,D2, Dm, E
m
m

(ν)k

` (νX¿X,A)k, B, C,D2, Dm, E
m
m ((µ), (⊕0))k

` (A,A)k, B, C,D2, Dm, E
m
m ((µ), (⊕1), (⊕1), (`))k

` Ak, B, C,D2, Dm, E
m
m ((µ), (⊕1), (⊕0), (⊥))k

` (A,A)k, B, C,D2, Dm, E
m
m

(µ), (`)
` A2k, C,D2, Dm, E

m
m

(ν), (⊕0), (⊥)
` A2k, B, C,D2, Dm, E

m
m

J`:Xi := not XiK :=

···· J`:goto (`+ 1 mod m+ 1)K
` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E

m
m

(ν), (⊕1)
` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E

m
m

J`:if Xi then goto `′ else `′′K :=

···· J`:goto `′K

` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E
m
m

(ν)
` A2(i−1), A, νX¿X,A2(k−i), B, C,D2, Dm, E

m
m

(µ), (⊕0)
` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E

m
m

···· J`:goto `′′K

` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E
m
m

(ν)
` A2(i−1), νX¿X,A,A2(k−i), B, C,D2, Dm, E

m
m

(µ), (⊕0)
` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E

m
m

(µ), (&)
` A2k, B, C,D2, Dm, E

m
m

(ν), (⊕1)
` A2k, B, C,D2, Dm, E

m
m

Figure 3.6. Premises p` of the preproof

78

3.4 Conclusion

J0:K :=

···· J0:goto 1K

` (A,A)k, B, C,D2, Dm, E
m
m

(ν)k

` (νX¿X,A)k, B, C,D2, Dm, E
m
m ((µ), (∨0))k

` (A,A)k, B, C,D2, Dm, E
m
m ((µ), (∨1), (∨1), (∨))k

` Ak, B, C,D2, Dm, E
m
m ((µ), (∨1), (∨0), (⊥))k

` (A,A)k, B, C,D2, Dm, E
m
m

(µ), (∨)
` A2k, C,D2, Dm, E

m
m

(ν), (∨0), (⊥)
` A2k, B, C,D2, Dm, E

m
m

J`:Xi := not XiK :=

···· J`:goto (`+ 1 mod m+ 1)K
` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E

m
m

(ν), (∨1)
` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E

m
m

J`:if Xi then goto `′ else `′′K :=

···· J`:goto `′K

` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E
m
m

(ν)
` A2(i−1), A, νX(¿X), A2(k−i), B, C,D2, Dm, E

m
m

(µ), (∨0)
` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E

m
m

···· J`:goto `′′K

` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E
m
m

(ν)
` A2(i−1), νX(¿X), A,A2(k−i), B, C,D2, Dm, E

m
m

(µ), (∨0)
` A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E

m
m

(µ), (∧)
` A2k, B, C,D2, Dm, E

m
m

(ν), (∨1)
` A2k, B, C,D2, Dm, E

m
m

Figure 3.7. Premises p` of the preproof for µLKω

J`:goto `′K :=
Back edge to (Root)

` A, . . . , A,B,C,D2, Dm, Em, . . . , Em
(ν)m−1

` A, . . . , A,B,C,D2, Dm, νX¿mX, . . . , νX¿mX︸ ︷︷ ︸
`′−1

, Em, νX¿mX, . . . , νX¿mX︸ ︷︷ ︸
m−`′

(µ), (∨1), (∨)m−1
` A, . . . , A,B,C,D2, Dm, Em ((µ), (∨0), (⊥))m−1

` A, . . . , A︸ ︷︷ ︸
2k

, B, C,D2, Dm, Em, . . . , Em︸ ︷︷ ︸
`−1

, Em, Em, . . . , Em︸ ︷︷ ︸
m−`

Figure 3.8. Back edges of the preproof for µLKω

79

3 PSPACE-completeness of the thread criterion

J0:K :=

···· J0:goto 1K

(A,A)k, B, C,D2, Dm, E
m
m `

(µL)k

(µX¡X,A)k, B, C,D2, Dm, E
m
m ` ((νL), (∧L

0))k
(A,A)k, B, C,D2, Dm, E

m
m ` ((νL), (∧L

1), (∧L
1), (∧L))k

Ak, B, C,D2, Dm, E
m
m ` ((νL), (∧L

1), (∧L
0), (>L))k

(A,A)k, B, C,D2, Dm, E
m
m `

(νL), (∧L)
A2k, C,D2, Dm, E

m
m `

(µL), (∧L
0), (>L)

A2k, B, C,D2, Dm, E
m
m `

J`:Xi := not XiK :=

···· J`:goto (`+ 1 mod m+ 1)K
A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E

m
m `

(µL), (∧L
1)

A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E
m
m `

J`:if Xi then goto `′ else `′′K :=

···· J`:goto `′K

A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E
m
m `

(µL)
A2(i−1), A, µX(¡X), A2(k−i), B, C,D2, Dm, E

m
m `

(νL), (∧L
0)

A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E
m
m `

···· J`:goto `′′K

A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E
m
m `

(µL)
A2(i−1), µX(¡X), A,A2(k−i), B, C,D2, Dm, E

m
m `

(νL), (∧L
0)

A2(i−1), A,A,A2(k−i), B, C,D2, Dm, E
m
m `

(νL), (∨L)
A2k, B, C,D2, Dm, E

m
m `

(µL), (∧L
1)

A2k, B, C,D2, Dm, E
m
m `

Figure 3.9. Premises p` of the preproof for µLJω

J`:goto `′K :=
Back edge to (Root)

A, . . . , A,B,C,D2, Dm, Em, . . . , Em `
(µL)m−1

A, . . . , A,B,C,D2, Dm, µX¡mX, . . . , µX¡mX︸ ︷︷ ︸
`′−1

, Em, µX¡mX, . . . , µX¡mX︸ ︷︷ ︸
m−`′

`

(νL), (∧L
1), (∧L)m−1

A, . . . , A,B,C,D2, Dm, Em ` ((νL), (∧L
0), (>L))m−1

A, . . . , A︸ ︷︷ ︸
2k

, B, C,D2, Dm, Em, . . . , Em︸ ︷︷ ︸
`−1

, Em, Em, . . . , Em︸ ︷︷ ︸
m−`

`

Figure 3.10. Back edges of the preproof for µLJω

80

4 A polynomial sub-criterion1

We have shown in the previous chapter that deciding the validity of the circular rep-2

resentation of a preproof, with respect to the thread criterion, is a PSPACE-complete3

problem.4

This implies in particular that there is probably no subexponential algorithm to check5

the validity of a circular representation. This also implies that there is probably no way6

to certify the validity of a circular preproof, so that it can be checked in polynomial time,7

without adding to it an exponential quantity of information.8

We tackle both these problems by taking a different approach. Instead of trying to handle9

the existing criterion, we will look for a new criterion.10

The thread criterion has very good properties. In particular, Baelde, Doumane, and11

Saurin [2016] proved that it guarantees soundness with respect to boolean interpretation12

and full cut elimination. Therefore, we would like our new criterion to have the following13

properties:14

• that any preproof valid for the new criterion is also valid for the thread criterion,15

so that it inherits its soundness properties,16

• that this new criterion is decidable in reasonable time,17

• that it is possible to add a reasonable amount of information to the circular18

representation of a preproof so that the validity of this certified preproof may be19

checked in linear time,20

• that this new criterion is expressive enough.21

In this chapter, we provide such a criterion, which we called the loop criterion.22

There is an essential difference between the thread criterion and our loop criterion. In23

usual proof theory, a proof is a finite tree, made of logical inferences, and a proof is24

correct as soon as each one of its inferences is correct. This is not true anymore with25

logics such as µMALLω, in which the soundness of each inference only ensure that the26

tree is a preproof, and a proof also has to pass the thread criterion, which is a global27

81

4 A polynomial sub-criterion

criterion. The PSPACE-complete nature of the thread criterion forbids that it could have1

a local definition. It is, and has to be, a global criterion, which cannot be turned into2

a local criterion. In contrast, our loop criterion gives rise to a proof system in which3

the validity of a proof is a purely local property. More precisely, with our loop criterion4

comes an enriched proof system, made of labelled proof trees, with two properties:5

1. if the circular representation of a preproof is valid for our loop criterion, it is6

possible to label it so as to obtain a proof in our labelled proof system,7

2. in this labelled proof system, a proof is correct if and only if each one of its8

individual inferences is correct.9

This would not be possible with the thread criterion, or the labeling would probably10

need to be at least exponential in the size of the proof.11

There is another important difference between the usual thread criterion and our new12

loop criterion. The thread criterion is really a criterion on the infinite preproof, not on13

its representation. This means that if you have two different circular representations of14

the same infinite preproof, either they are both valid or both invalid. In contrast, our15

criterion really depends on the finite, circular representation, and not only on the infinite16

preproof which is represented. This means that among the circular representations of a17

given infinite preproof, it may happen that some of them are valid for our loop criterion18

and some other are not.19

In this chapter we prove that:20

• If a circular representation of an infinite preproof is valid for our loop criterion21

then this preproof is valid for the thread criterion.22

• Our loop criterion can be decided in quadratic time.23

• Every circular representation which is valid for our loop criterion can be labelled so24

as to be turned into a proof in our labelled proof system, in which the validity of25

the proof only depends on the validity of each individual inference, and is therefore26

checkable in linear time.27

• There is a canonical translation of the finitary proofs in the style of Baelde [2012]28

into circular representations of infinite proofs, which are valid for the thread criterion.29

Those representations are also valid for our more restricted loop criterion. In other30

words, our labelling method capture the image of all finitary µMALL proofs.31

82

4.1 L-proofs: labelling as validity

4.1 L-proofs: labelling as validity1

In this subsection, we briefly mention an alternative approach to ensure validity of2

µMALL∞ preproofs, aiming at motivating the tools used in the remainder of this chapter.3

The idea is to witness thread progress by adding labels on some formulas, much in the4

spirit of Stirling [2014], Afshari and Leigh [2017].5

Definition 56 (Labelled formulas). Let L be an infinite countable set of atoms and call6

labels any finite list of atoms. Let FL :=
{
σL | σ ∈ {µ, ν}, L ∈ list(L)

}
. Labelled formulas,7

or L-formulas, are defined as µMALL formulas, by replacing F = {µ, ν} with FL in8

the grammar of formulas, in Definition 12. Negation is lifted to labelled formulas, as9

(µLXA)⊥ = νLXA⊥. We write σXA for σ∅XA, and standard, unlabelled formulas can10

thus be seen as labelled formulas where every label is empty. We define a label-erasing11

function d•e that associates to every L-formula A the µMALL-formula dAe obtained by12

erasing every label and satisfying dσLXBe = σXdBe.13

The standard µMALL∞ proof system is adapted, to handle labels, by updating the (id)14

and (ν) rules of Figures 2.1 and 2.4 as15

dAe = dBe⊥
(id′)

` A,B
` A[νL,aXA[X]],Γ

(νb(a))
` νLXA[X],Γ

where, in (νb(a)), a must be a fresh label name, meaning that a does not appear free in16

the conclusion sequent of (νb(a)) (in particular, a /∈ L).17

Since we are in a one-sided framework, only labels on ν operators are relevant. Therefore,18

from now on, formulas have non-empty labels only on ν and we require, for the cut19

inference, that all labels of cut formulas are empty.20

Definition 57. L-preproofs are, as in Definition 18, possibly infinite derivations using21

L-formulas, with the constraint that for every two inferences (νb(a)) and (νb(b)), if one is22

above the other, then a 6= b.23

And the validity condition is expressed in terms of labels in the following definition:24

Definition 58 (L-proof). An L-proof is an L-preproof such that for every infinite25

branch γ = (si)i∈ω (seen as a sequence of sequent occurrences), there exists a sequence26

(νLiXGi)i∈ω and a strictly increasing function ε on natural numbers such that for every27

i ∈ ω,28

83

4 A polynomial sub-criterion

1. the formula νLiXGi is principal in sε(i)1

2. dνLiXGie = dνLi+1XGi+1e and2

3. ∀i > 1, Li = (Li−1, ai) for some ai ∈ L.3

The label-erasing function d•e is easily lifted to sequents and to L-preproofs. We then4

have the following property:5

Proposition 11. If π is an L-proof, then dπe is a µMALL∞ proof.6

Proof. First, dπe is a µMALL∞ preproof because, as we explained, if we remove the7

labels, every rule in a L-proof is a µMALL∞ proof. Then, as we will show now, the8

definition of L-proofs precisely reflects the thread criterion.9

Suppose an infinite branch γ = (si)i∈ω; we will show that dπe has a valid infinite inner10

thread in γ (Definition 39). There exists a sequence (νLiXGi)i∈ω and a strictly increasing11

function ε on natural numbers as in Definition 58. ∀i, let pi be the position of the νLiXGi12

which is principal in sε(i).13

Remark that any sequent contains only a finite number of atoms a ∈ L and therefore14

{i ∈ ω | ai appears in the endsequent of π} is a finite set. Let i0 := 1 + max{i ∈ ω |15

ai appears in the endsequent of π}, so that ∀i > i0, the symbol ai, contained by Li, does16

not appear in the endsequent of π.17

First consider any i > i0, any j ∈ ω and any position p of a subformula equal to νLiXGi18

in sj. The extremity t(s0, . . . , sj)(p) of T(s0, . . . , sj)(p) is either in a cut formula or in19

the endsequent of π. In both cases, it does not contain ai, which is present in Li. Let20

us denote by g(p) the lowest point of T(s0, . . . , sj)(p) which contains ai, it has to be a21

subformula of the active formula of the premise of a (νb(ai)) inference. Similarly, let us22

denote by f(p) the highest point of T(s0, . . . , sj)(p) which does not contain ai, it has to23

be the principal formula of this same inference (νb(ai)). And, of course, there is an edge24

f(p)→ g(p) in T(s0, . . . , sj)(p), induced by this inference.25

From the last paragraph, we deduce that ∀i > i0, there is a (νb(ai)) inference in γ. We also26

deduce that the principal formula of this inference is νLi−1XGi−1. Remark that this is27

the only (νb(ai)) inference in γbecause of the constraint of Definition 57. Let sφ(i) be the28

position of the conclusion of this inference, and let us denote by qi the position of the29

νLi−1XGi−1 which is the principal formula of this inference.30

The union of the T(sφ(i−1), . . . , sφ(i))(qi), for i > i0 + 1, is an infinite path in Gin
thread,31

which contains an infinity of principal formulas. This is a valid inner thread in dπe.32

84

4.2 Finite representations of circular L-proofs.

4.2 Finite representations of circular L-proofs.1

We now turn our attention to finite representations of (circular) L-proofs. Immediately a2

difficulty occurs in comparison to non-labelled proofs: whereas an infinite non-labelled3

proof may happen to be regular, a valid L-proof cannot be circular, because along every4

infinite branch, the sets of labels will grow endlessly. To form circular proofs with labels,5

some atoms must be forgotten when going bottom-up.6

We introduce two more rules: (

y

(a)) and (LWk). The first one allows to forget one atom,7

just before recreating it by means of a back edge to an already encountered ν-rule. The8

other one allows to forget any atom that will not be used to validate the proof. It is used9

to synchronise the different labels in a sequent before travelling through a back edge.10

• labelled back edge:
(

y

(a))
` νL,aXA[X],Γ with the constraint that it must be the11

source of a back edge to the conclusion of a
` A[νL,aXA[X]],Γ

(νb(a))
` νLXA[X],Γ

below (

y

(a)).12

• labelled weakening:
` Γ, B[νLXA],∆

(LWk)
` Γ, B[νL,aXA],∆

13

Definition 59 (µMALL
y

lab). µMALL

y

lab denotes the finite derivations of L-sequents built14

from the rules in Definition 17 by replacing (ν) with (νb(a)), (

y

(a)), (LWk), such that15

1. the endsequent of the proof has empty labels and16

2. for every two (νb(a)) and (νb(b)) occurring in the derivation, a 6= b.17

Since µMALL

y

lab proofs are finite, label-erasing gives rise to µMALLω b.e.-tree preproofs:18

Proposition 12. The label-erasing function d•e lifts to a translation from µMALL

y

lab to19

µMALLω b.e.-tree preproofs.20

Proof. Every rule of the labelled µMALL

y

lab proof is sent by d•e to a valid rule of21

unlabelled µMALLω, except for the (LWk) rule, which can safely be removed:22

` Γ, B[νLXA],∆
(LWk)

` Γ, B[νL,aXA],∆
becomes

` dΓe, dBe[νXdAe], d∆e
` dΓe, dBe[νXdAe], d∆e

85

4 A polynomial sub-criterion

1

Definition 60 (µMALL

y

). We denote by µMALL

y

the set of b.e.-tree preproofs that2

are obtained from µMALL

y

lab by label-erasing. This is a subset of all µMALLω b.e.-tree3

preproofs.4

Proposition 13 (µMALL

y

⊆ µMALLω). Every preproof of µMALLω that is the image5

of a proof in µMALL

y

lab by label-erasing satisfies thread validity.6

We immediately give a proof sketch of this proposition; we then prove the two Lemmas 87

and 9 before giving a full proof of Proposition 13.8

Proof sketch of Proposition 13. Consider a preproof dπe in µMALL

y

which is the image9

of an L-proof π in µMALL
y

lab and an infinite branch b in dπe. We want to prove that b10

contains a valid thread (see Definition 21). Let b0 be the corresponding infinite L-branch11

in π. We remark (Lemma 8) that there is a sequent S0 which is the lowest target of back12

edge crossed infinitely often by b0. Besides, S0 is the conclusion of a (νb(a)) rule, which13

unfolds some νLXA.14

We decompose b0, with root r; S0 conclusion of (νb(a)) and νLXA at position p0 in S0; for15

any i ≥ 1, Si conclusion of a back edge (

y

(a)) with νL,aXA at position pi in Si. Then we16

notice that T(ui)(p0) (Definition 40) is a thread (S0, p0) ∗−→(Si, pi) which is progressing,17

as its source is the principal conclusion of the rule (νb(a)). By concatenating the T(ui)(p0)18

and then erasing labels, we get a valid thread of b in dπe.19

Si
(

y

(a))

S0
(νb(a))

r

ui

u0

20

Lemma 8. Let b be an infinite branch in a b.e.-tree preproof, i.e. an infinite ascending21

path in its branch graph, starting from the root.22

86

4.2 Finite representations of circular L-proofs.

Then there is an occurrence of sequent in this b.e.-tree preproof, i. e. a vertex s in its1

branch graph, which is the lowest one infinitely appearing on b.2

Moreover, this occurrence of sequent (this vertex) is the target of a back edge.3

Proof. This is essentially a graph-theoretic property, which does not rely on the logical4

content of the proof.5

The crucial fact to notice is that, in general, in a tree, if S is a non empty, finite set6

of vertices that is connected for the relation of comparability, that is if ∀v, v′ ∈ S, v 67

v′ or v′ 6 v, then S has a minimum. This is proved by induction on the cardinal of S.8

Take then for S the set of vertices occurring infinitely often on the branch b. It is a9

connected subgraph of Gbranch. Because of that, it is connected for comparability in the10

tree: if s0 → s1 in an edge in S then either it is induced by a logical inference, in which11

case s0 is below s1, or it is induced by a back edge, in which case s1 is below s0.12

We can then apply the previous remark to S, and we obtain a vertex s, which is the13

lowest position of sequent infinitely appearing on b.14

In particular, because s appears infinitely often on b, there must be another position15

s0 in S and an edge s0 → s. Because s is the lowest position in S, this edge must be16

induced by a back edge. Hence s is a target of back edge.17

Lemma 9 (Follow-up of labels). If u is a path in the branch graph of a µMALL

y

lab proof,18

if u does not cross the rule (νb(a)), and if p is a position in the target sequent of u (its top19

sequent) that is labelled with a, then t(u)(p) (Definition 40) is defined and is a position20

labelled with a in the source sequent of u (its bottom sequent).21

Proof. This is quite straightforward, by induction on the length of u, and by looking at22

the first (or the last) rule crossed by u. We use notably the fact that, when the induced23

thread T(u)(p) is followed top-down, the label a cannot be erased because we do not24

cross (Rec(a)) and the thread cannot reach a cut-formula because cut-formulas do not25

contain labels.26

Proof of Proposition 13. Suppose π is a µMALL

y

lab proof.27

• Let dπe be its erasure. dπe is thus a µMALLω b.e.-tree preproof.28

• Suppose b an infinite branch of dπe, that is an infinite ascending path in the b.e.-tree29

dπe, starting from the root.30

87

4 A polynomial sub-criterion

• Let b0 be the corresponding infinite branch in π.1

• By Lemma 8, let S0 be the occurrence of sequent in π which is the lowest back2

edge target infinitely often crossed by b0. Being the target of some back edge(s), S03

is the conclusion of a (νb(a)) rule, which unfolds some νXA[X].4

• Let us decompose b0 by making apparent each occurrence of S0:

b0 = r
∗−→
u0

S0
∗−→
u1

S1 →be
S0

∗−→
u2

S2 →be
S0 · · ·

where r is the root of π, “be” denotes a back edge, the Si (i > 1) are the sources of5

the back edges to S0 and ∀i, ui does not cross S0 except at its source.6

• Let p0 be the position in S0 of the νXA[X] which is its principal formula.7

• Remark that, because of the existence of back edges from every Si+1 to S0, all Si8

are identical sequents, except for the fact that a does not appear in S0 while it9

appears at the only position p0 in Si+1. In particular, p0 is also the position of a10

νXA[X] in Si+1.11

• For i > 1, T(ui)(p0) is a ν-thread in ui. Its target is the position p0 in Si, which is12

the position of a νXA[X] labelled with a. Its source is a position of νXA[X] in S0.13

We show that this source position is the same position p0 of the νXA[X] that is14

principal in S0.15

Let us decompose ui as
ui = S0 −→

e0
S ′0

∗−→
u′i

where S ′0 is the position of sequent immediately above S0, that is the premise of16

the (νb(a)), and e0 is the edge induced by the (νb(a)) rule.17

By definition of ui, the path u′i does not cross (νb(a)). By Lemma 9, the source18

of T(u′i)(p0) is a position labelled with a, in S ′0. Hence, this is a position p′0 of a19

νXA[X] in the unfolding A[νXA[X]] caused by (νb(a)). The source of T(ui)(p0) is20

then the image in S0 of this νXA[X] at p′0, that is the principal formula νXA[X]21

at position p0 in S0.22

• T(ui)(p0) is then a thread (S0, p0) ∗−→
T(u1)(p1)

(S1, p0). It is progressing, because its23

source is the principal conclusion of the rule (νb(a)).24

• By glueing the T(ui)(p0) together, we get an infinite inner thread

(S0, p0) ∗−→
T(u1)(p0)

(S1, p0)→
be

(S0, p0) ∗−→
T(u2)(p0)

(S2, p0)→
be

(S0, p0) · · ·

88

4.3 Two alternative characterizations of µMALL

y

This thread is valid because every T(ui)(p0) is progressing. And it is indeed a thread
of

b0 = r
∗→
u0
S0

∗→
u1
S1 →be

S0
∗→
u2
S2 →be

S0 · · ·

• Hence b0 is valid, which concludes this demonstration.1

2

Proposition 14. µMALL proofs can be translated to µMALL
y

.3

Proof. The target of the usual translation µMALL → µMALLω [Doumane, 2017b] is4

included in µMALL

y

. See key case of the translation on Figure 4.1.

` A[B], B⊥ ` B,Γ
(ν0

inv)
` νXA[X],Γ

≡

(

y

(a))
` νaXA[X], B⊥

[A]
` A[νaXA[X]], A[B]⊥ ` A[B], B⊥

(cut)
` A[νaXA[X]], B⊥

(νb(a))
` νXA[X], B⊥ ` B,Γ

(cut)
` νXA[X],Γ

Figure 4.1. translation µMALL→ µMALL

y

lab
5

Remark 19. Observe that a proof in µMALL

y

is not, in general, the translation of a6

µMALL proof.7

4.3 Two alternative characterizations of µMALL

y

8

In the two following sections, we give two characterizations of µMALL

y

, through validating9

sets in Definition 64, and through a threading criterion over back edges in Definition 66.10

This allows us to give effective algorithms to decide whether a µMALLω b.e.-tree preproof11

is in µMALL

y

and, in case it is, to produce a labelling witnessing that fact.12

Definition 61. Given a directed graph G = (V,E) and a set S ⊆ V , the set of vertices13

accessibles from S is denoted as S↑ := {v ∈ V | ∃s ∈ S, s→∗ v}. Similarly S↓ is the set14

of vertices from which S is accessible.15

89

4 A polynomial sub-criterion

Given a µMALLω b.e.-tree preproof, we will define a graph Gπ very similar to Gin
thread. In1

Gin
thread, we consider only positions of subformulas in closed sequents, and the positions2

of subformulas in a source of back edge, which is an open sequent, are identified to those3

in the target of that back edge. In contrast, in Gπ, we consider the positions in sources4

of back edges as distinct from the corresponding positions in their targets. The aim of5

Gπ is precisely to see how we can connect those positions through paths in the graph.6

Definition 62 (Gπ). Given a µMALLω b.e.-tree preproof π, we define Gπ to be the7

following graph:8

• its vertices are all positions of ν-formulas in all occurrences of sequents in π, plus
the vertex ⊥:

Vπ :=

(v, i, p) such that
(i) v position of a sequent Γ in π
(ii) i position of a formula A in Γ
(iii) p position of a ν-subformula in A

] {⊥};

• for its edges: for every position p of a ν-subformula, if q is its image in the sequent9

just below, as defined by the threading structure of the preproof, then there is10

an edge q −→ p in Gπ. Moreover, for every position p of a ν-subformula of a cut11

formula, there is an edge ⊥ −→ p.12

We illustrate the construction of the edges of the graph defined in definition 62 with13

the following examples in which we have indexed the apparent ν-formulas by numbers14

representing vertices of the graph:15

` ν1XX, ν2XX ` 1⊕ ν3XX
(⊗)

` ν4XX ⊗ (1⊕ ν5XX), ν6XX

induces edges 4→ 1, 6→ 2 and 5→ 3,16

` ν1XX, (1⊕ ν2XX), ν3XX
(`)

` ν4XX ` (1⊕ ν5XX), ν6XX

induces edges 4→ 1, 5→ 2 and 6→ 3, and17

` ν4Y ν5X(ν6Y X ⊗X)⊗ ν7X(ν8Y X ⊗X), ν9XX
(ν)

` ν1X(ν2Y X ⊗X), ν3XX

90

4.3 Two alternative characterizations of µMALL

y

induces edges 2→ 4, 2→ 6, 2→ 8, 1→ 5, 1→ 7 and 3→ 9. Moreover, if the conclusion1

of this last rule is the target of a back edge whose source is ` ν10X(ν11Y X ⊗X), ν12XX2

then this back edge also induces edges 10→ 1, 11→ 2, 12→ 3.3

In the case of a cut formula, the formula has no corresponding formula in the conclusion4

sequent and in this case it induces an ingoing edge from the extra vertex ⊥:5

` ν2XX ` µXX, ν3XX
(cut)

` ν1XX

induces edges ⊥ → 2 and 1→ 3.6

Remark 20. Note that a vertex of the above graph may therefore have7

• many ingoing edges: in case it in a sequent which is the target of some back edges;8

• no ingoing edges: essentially the extra vertex ⊥ and the ν-formulas in the conclusion9

of the proof if it is not a target of back edge;10

• many outgoing edges: see a ν-rule with νX(X ⊗X) or νX(X `X) as principal11

conclusion;12

• no outgoing edges: see the νXX in the 1⊕νXX principal conclusion of a (⊕1)-rule.13

In the following definition, we define, for each (ν) rule (r) of a b.e.-tree preproof π, a14

subgraph of Gπ (Definition 62) called Gr. The aim of this subgraph is to contain all paths15

in Gπ that uses only sequents and back edges above (r). We also define two subsets of the16

vertices of Gr, called Sr and Tr. As we will show in Proposition 16, π is not in µMALL

y

17

iff. there is a (ν) rule (r) such that there is a path in Gr with source in Sr and target in18

Tr. This gives us an effective way to check membership in µMALL

y

(Proposition 17).19

Definition 63 (Gr, Sr, Tr). Let π be a µMALLω b.e.-tree preproof and (r) an occurrence20

of a (ν)-rule. We define a subgraph of Gπ, denoted by Gr = (Vr, Er), and two subsets of21

Vr, denoted by Tr and Sr:22

• the vertices v ∈ Vr are the extra vertex ⊥ plus all positions that are in the conclusion23

of (r) and in all above sequents, that is all sequents accessibles from the conclusion24

of (r), in the sense of Definition 61;25

• the edges e ∈ Er are all edges of Gπ between those vertices, minus the edges of Gπ26

that are induced by the back edges of π targetting the conclusion of (r), if there27

91

4 A polynomial sub-criterion

are some.1

• Tr ⊆ Vr is the set of all positions of the principal formulas of the sources sequents2

of the back edges targetting the conclusion of (r);3

• Sr ⊆ Vr is the set of all positions of all subformulas of the conclusion of (r) except4

for the position of its principal formula, plus the extra vertex ⊥.5

Definition 64. Let (r) be an occurrence of a (ν) rule in a µMALLω b.e.-tree preproof π.6

A validating set for (r) is a set L ⊆ Vr such that L = L↓ and Tr ⊆ L ⊆ (Vr \ Sr).7

Proposition 15. Let (r) be an occurrence of a (ν) rule of a µMALLω b.e.-tree preproof8

π. The following are equivalent:9

1. There exists a validating set for (r)10

2. Tr is not accessible from Sr in Gr11

3. Tr↓ ⊆ Vr \ (Sr↑).12

And if they are true, Tr↓ is the smallest validating set of (r) and Vr \ (Sr↑) is the biggest13

one.14

Proof. We first prove that15

If L is a validating set, then Tr↓ ⊆ L ⊆ V \ (Sr↑) (4.1)16

If L is a validating set, then on the one hand we have

Tr ⊆ L

hence

Tr↓ ⊆ L↓ = L.

And on the other hand

L ⊆ V \ Sr

hence

V \ L ⊇ Sr

92

4.3 Two alternative characterizations of µMALL

y

and, because the complement of a downward-closed set is upward-closed,

V \ L = (V \ L)↑ ⊇ Sr↑

hence

L ⊆ V \ (Sr↑).

Now the implication (1)⇒ (3) is an immediate consequence of (4.1).1

For (3)⇒ (2): if

Tr↓ ⊆ V \ (Sr↑)

then

Tr ⊆ Tr↓ ⊆ V \ (Sr↑)

hence

Sr↑ ∩ Tr ⊆ ∅

hence Tr is not accessible from Sr.2

Finally (2)⇒ (1): if Tr is not accessible from Sr then

Sr ∩ Tr↓ ⊆ ∅

hence

Tr ⊆ Tr↓ ⊆ V \ Sr

hence Tr↓ is a validating set.3

Regarding the second part of the proposition:4

• if (3) is true then
Tr ⊆ Tr↓ ⊆ Vr \ (Sr↑) ⊆ Vr \ Sr

hence Tr↓ and Vr \ (Sr↑) are validating sets5

• if L is any other validating set, then by (4.1), Tr↓ ⊆ L ⊆ V \ (Sr↑).6

7

93

4 A polynomial sub-criterion

The following proposition gives an alternative criterion for µMALL

y

.1

Proposition 16. A finite representation π of a µMALLω preproof is the erasing of a2

µMALL

y

lab proof iff. every occurrence of a (ν) rule of π has a validating set.3

Proof. (⇐=) Let us assume that every (ν) rule of π has a validating set. There is a finite
number of (ν) rules in π; we label them with distinct variables a1, . . . , an, in such a way
that if the (ν) rule labelled by ai is below the rule labelled by aj in the representation
then i 6 j. We denote by Li a validating set for (νb(ai)). We then do the following for
each i, going from 1 to n: for each occurrence of ν-formula νVXA that is at a position
belonging to Li, add the variable ai to V , that is replace this occurrence of νVXA with
νV,aiXA. By doing this it may happen that we break the validity of some rules of the
representation: because Li, although downward closed, is in general not upward closed,
so we may end with a situation in which this

` A,C[νVXD] ` A,C[νVXD]
&

` A&B,C[νVXD]

becomes
` A,C[νV,aXD] ` B,C[νVXD]

&
` A&B,C[νV,aXD]

which is not anymore a valid rule. We then patch this by adding as many (LWk) rules as
needed on the premises:

` A,C[νV,aXD]
` B,C[νVXD]

(LWk)
` B,C[νV,aXD]

&
` A&B,C[νV,aXD]

Similarly it may happen that the source of a back edge gets a bigger labelling than the4

target of this back edge; we patch this by adding (LWk) rules under the source sequent of5

the back edge. When this operation has been done for every i, from 1 to n, we obtain a6

validly labelled proof of µMALL

y

lab.7

(=⇒) Conversely, let π0 be a µMALL

y

lab representation such that π = dπ0e. Up to8

renaming, we can assume that all (νb) rules of π0 are labelled with distinct variables. For9

every occurrence of a (ν) rule in π, consider the corresponding (νb(a)) rule in π0 and let10

La be the set of all occurrences of ν-formulas in π0 that carry the variable a in their11

labelling. The constraints on the labelling of µMALL

y

lab proof precisely say that La is a12

validating set for the considered occurrence of (νb) in π.13

Proposition 17.14

94

4.3 Two alternative characterizations of µMALL

y
• Checking validity of a µMALL

y

lab preproof is decidable.1

• Membership in µMALL

y

can be decided in a time quadratic in the size of the2

(circular) preproof.3

Proof.4

• For the first point, it is enough to check the validity of each inference of the proof.5

• For the second point, first check that each back edge targets a (ν) rule, then use the6

characterization of µMALL

y

by validating sets (Proposition 16): for each (ν) rule7

(r), build graph Gr and sets Sr and Tr and checks whether Tr is accessible from8

Sr in Gr. Such a test of accessibility in a graph can be done in linear time. As we9

have to do that for each (ν) rule, in total it may take a time quadratic in the size of10

the preproof, but no more than that.11

12

Definition 65. Let π be a µMALLω b.e.-tree preproof and e a back edge in π, from a13

position of sequent s1 to a position of sequent s0. Let S be the set of all positions of14

sequents that are strictly above s0. We say that this back edge is strongly valid under15

two conditions:16

1. Its target s0 has to be the conclusion of a (ν) rule.17

2. Let us denote by p the position in s0 of the νXA which is the principal formula of18

that (ν) rule. This is also a position of the same formula in s1. The second condition19

is that for every path u in Gbranch, going from s0 to s1, using only positions of20

sequents in S, t(u)(p) is, again, the position p in s0.21

Definition 66. A µMALLω b.e.-tree preproof is strongly valid if all its back edges are22

strongly valid.23

Proposition 18. A µMALLω b.e.-tree preproof π is strongly valid iff. it is the erasing24

of a µMALL

y

lab proof.25

Proof. We will use our first characterization by validating sets (Proposition 16) and26

prove that a µMALLω b.e.-tree preproof π is strongly valid iff. every ν-rule of π has a27

validating set.28

95

4 A polynomial sub-criterion

(⇐=) Let us assume that π has a validating set. Let us consider one occurrence1

` A[νXA[X]],Γ
(ν)

` νXA[X],Γ
of a ν-rule in π and a path u in the subgraph above this ν-rule,2

going down, from the source of a back edge targetting this ν-rule, to the ν-rule itself,3

ending by this ν-rule. u has then premise and conclusion equal to ` νXA[X],Γ.4

Let us denote by L a validating set of this (ν) rule occurrence, and let us denote by t5

the maximal thread going down in u starting from the main νXA[X] in its premise.6

This occurrence of νXA[X] is in L, because L is a validating set. Then, because L is7

downward closed, all vertices of t are in L. Therefore the lowest vertex of t, which is8

a position in the ` νXA[X],Γ conclusion of the considered ν-rule, or ⊥, is also in L.9

But in this last sequent occurrence, the only position that is in L is the one of the main10

νXA[X], which is consequently the end point of t.11

(=⇒) Conversely, let us consider an occurrence (r) of a (ν) rule in π, whose conclusion has12

the form ` νXA[X],Γ, and let us assume that it has no validating set. By Proposition 15,13

there is a path v in Gr with source s ∈ Sr and target t ∈ Tr. Let u be the corresponding14

path in Gbranch. By definition of Tr (Definition 63), t is in the source of a back edge e15

targetting the conclusion of (r). More precisely, the position of t in the sequent at s is16

the same as the position of the principal formula of (r) in the conclusion of (r). Because17

the definition of Gr follows the threading structure of the preproof, the source s of v is18

t(u)(t). By definition of Sr, this position s = t(u)(t) is either in a cut formula or in the19

conclusion of (r), at a position different from the position of its principal formula. This20

shows that (r) is not strongly valid.21

Corollary 3. The fragments defined in Definitions 60 and 66 coincide.22

4.4 Conclusion23

As this chapter and the next one share a lot of ideas, discussion of related works for this24

chapter has been placed in Section 5.5.25

This chapter introduced the loop criterion for circular representations of infinite preproofs26

of µMALLω. This defines a fragment of the circular representations of µMALLω which27

we called µMALL

y

.28

We also defined a new proof system called µMALL

y

lab. The proofs of µMALL

y

lab are29

labelings of circular representations of preproofs, valid for the loop criterion. While30

circular representation of preproofs make use of a global validity criterion such as the31

96

4.4 Conclusion

thread criterion or the loop criterion, the validity of a proof in µMALL

y

lab is a purely1

local property, which can be checked in linear time.2

We proved in Propositions 16 and 18 that the b.e.-tree preproof obtained by erasing3

the labels of a µMALL

y

lab proof is valid for the loop criterion and, conversely, that any4

circular representation that is valid for the loop criterion can be turned into a proof of5

µMALL

y

lab by labelling some of its formulas.6

We made that last property explicit by providing a procedure to check a circular represen-7

tation with respect to the loop criterion and to turn it into a labelled proof of µMALL

y

lab8

when it is valid. This algorithm runs in quadratic time.9

Now that we have identified a fragment of µMALLω which proves at least all sequents10

provables in µMALL, it is natural to wonder whether it proves strictly more than µMALL.11

This question is the subject of the next and final chapter of this thesis.12

97

5 Finitization1

The first systems designed to handle least and greatest fixed points connectives were2

finitary systems. Infinitary and circular systems were then proposed as an alternative.3

In each of these circular extensions of finitary systems, there is a canonical translation4

from finitary proofs to circular proofs. This implies in particular that any sequent that5

is provable in the finitary system is also provable in the circular system. The converse6

is known as the Brotherston-Simpson conjecture and was first stated by Brotherston7

and Simpson [2007, 2011] in the context of Martin-Löf’s system of inductive definitions8

for first-ordre classical logic. It is also called the problem of finitization: can we turn9

an infinitary proof into a finitary one, and how? In the context of first-order classical10

logic with inductive definitions, it was proved by Berardi and Tatsuta [2017b, 2019]11

that the conjecture is false in general, but it was shown by Simpson [2017], Berardi and12

Tatsuta [2017a, 2018] that it becomes true as soon as you add Peano (or even Heyting)13

arithmetic to the circular and finitary systems. But the question is still open in the case of14

µMALL and µMALLω, which is a quite different system, more in the family of µ-calculi.15

In that setting, on one hand we do not have first-order predicates and the possibility16

to encode Peano arithmetic, on the other hand we have access to all possible inductive17

and coinductive definitions of formulas, including interleaving of least and greatest fixed18

points.19

Here the question of finitization is: if a conclusion is provable by a circular proof, valid20

for the thread criterion, that is a proof in µMALLω, is it already provable in the finitary21

system µMALL?22

This question is, as of today, an open problem.23

Now, in the previous chapter, we provided a new criterion, the loop criterion, which24

defines a new logic µMALL

y

, which has two properties:25

• the canonical translation of any finitary proof is a circular representation which is26

valid for the loop criterion, so any conclusion which is provable in µMALL is also27

provable in µMALL

y

28

• if the circular representation of a preproof is valid for the loop criterion, then it is29

also valid for the thread criterion, so any conclusion that is provable in µMALL

y

is30

99

5 Finitization

also provable in µMALLω.1

This allows us to split the problem of finitization into two subproblems:2

• If a conclusion is provable in µMALLω, is it already provable in µMALL

y

?3

• If a conclusion is provable in µMALL

y

, is it already provable in µMALL?4

A positive answer to both questions would mean that finitization is possible and the5

Brotherston-Simpson conjecture is true for µMALL and µMALLω.6

In this chapter, we answer positively the second question: we prove that any conclusion7

provable in µMALL

y

is already provable in µMALL. We do so by providing an explicit8

method which takes as input a circular representation of preproof, valid for the loop9

criterion, and output a standard, finitary µMALL proof.10

5.1 On Brotherston-Simpson’s conjecture: finitizing11

circular proofs12

The aim of this section is to prove a converse of Proposition 14: Every provable sequent13

of µMALL
y

is provable in µMALL.14

This will be proved by defining a translation from every µMALL

y

proof of a sequent ` Γ15

containing no label variable into a µMALL proof of the same sequent.16

Let us consider a µMALL

y

proof π. Up to renaming of bound variables, we can assume17

that all (νb) rules are labelled by distinct labels. For every two labels a and b occurring in18

π, we say that a 6 b whenever (νb(a)) is under (νb(b)). This order is well-founded because19

finite.20

Definition 67 (Context associated to a labelling atom). For every rule
` A[νV,aX.A],Γ

(νb(a))
` νVX.A,Γ

21

we define Γ(a) to be Γ.22

We now define23

1. for each atom a a sequent Γa formed of non-labelled formulas;24

100

5.1 On Brotherston-Simpson’s conjecture: finitizing circular proofs

2. for each formula A (with labels) occurring in the proof, a formula JAK without1

labels:2

Definition 68 (Translation of labelled formulas to unlabelled formulas). We define by3

mutual induction:4

1. Γa := JΓ((a))K.5

2. H∅[F] := F and HV,a[F] := ⊗Γ⊥a ⊕HV [F]. In other words,

HV [F] '
(⊕
a∈V
⊗Γ⊥a

)
⊕ F

3. By induction on formula A, JAK is:6

• JνVX.AK := νXHV [JAK]7

• it is homomorphic on other connectives: JXK := X, J1K := 1, JµXAK := µXJAK,8

JA⊗BK := JAK⊗ JBK, etc.9

4. J·K is lifted from formulas to sequences of formulas, pointwise.10

This is well-founded because, since any two distinct νb rules wear distinct variables,11

the only Γb that are needed in the computation of Γa are those with b < a. Note that12

JAK = A as soon as A has no label variable. We can now state and prove the finitization13

theorem:14

Theorem 5. Every provable sequent of µMALL

y

is provable in µMALL.15

Proof. Let π be a µMALL

y

lab proof and replace, everywhere, each formula A by JAK. All16

rules in this (almost) new derivation are now valid instances of µMALL rules, except17

for (νb), (LWk) and (

y

) rules. Actually, images of these rules by sequent translation J·K are18

derivable in µMALL as shown in fig. 5.1 (a), (b) and (c) for (

y

), (LWk) and (νb), respectively.19

Replacing each instance of a (νb), (LWk) or (

y

) rule in π by its derived version, we get a20

fully valid proof of µMALL. If the conclusion of the original µMALL

y

proof was ` Γ then21

what we get is a proof in µMALL of ` JΓK, i. e. the conclusion of the original µMALL

y

22

proof, if Γ contains no label variable.23

101

5 Finitization

(a)

` JA[νVX.A]K,Γ
(⊕1)|V |

` HV

[
JA[νVX.A]K

]
,Γ

(ν)
` JνVX.AK,Γ (b)

(⊗), (id)
` ⊗Γ⊥a ,Γa

(⊕0)
` HV,a

[
JA[νV,aX.A]K

]
,Γa

(ν)
` JνV,aX.AK,Γa

(c)

` JB[νVX.A]K,Γ

` JB[νV,aX.A]K,Γ :=
(id)

` HV

[
JA[νVX.A]K

]
, HV

[
JA[νVX.A]K

]
(⊕1)

` HV,a

[
JA[νVX.A]K

]
, HV

[
JA[νVX.A]K

]
(µ)

` HV,a

[
JA[νVX.A]K

]
, JνVX.AK⊥

(ν0
inv)

` JνV,aX.AK, JνVX.AK⊥
[JBK]

` JB[νV,aX.A]K, JB[νVX.A]K⊥ ` JB[νVX.A]K,Γ
(cut)

` JB[νV,aX.A]K,Γ

(d)

` JA[νV,aX.A]K,Γa
Jνb(a)K

` JνVX.AK,Γa :=
` JA[νV,aX.A]K,Γa

(⊕1)|V |

` HV

[
JA[νV,aX.A]K

]
,Γa

(`)
` HV

[
JA[νV,aX.A]K

]
,`Γa

(id)
` HV

[
JA[νV,aX.A]K

]
, HV

[
JA[νV,aX.A]K

]
(&)

` HV

[
JA[νV,aX.A]K

]
, HV,a

[
JA[νV,aX.A]K

]
(µ)

` HV

[
JA[νV,aX.A]K

]
, JνV,aX.AK⊥

(⊗), (id)
` ⊗Γ⊥a ,Γa

(⊕0)
` HV,a

[
JA[νV,aX.A]K

]
,Γa

(ν)
` JνV,aX.AK,Γa

(νinv)
` JνVX.AK,Γa

Figure 5.1. Derivability of (a) J(νf)K rule ; (b) J(

y

)K rule ; (c) J(LWk)K rule and (d) J(νb)K
rule .

102

5.2 Relaxing the labelling of proofs

`F,G,H, I, J
(ν)(⊕1)

` F,G,H, I, J
(µ)(⊕0)(`)

` F,G,H, I
(µ)(⊕1)(⊥)

` F,G,H, I, J
(`)

` F `G,H, I, J
(ν)(⊕1),(⊥)

` F `G,G,H, I, J

` F,G,H, I, J
(ν),(⊕0)

` F,G,H, I, J
(ν)

` F,G,H,K, J
(µ),(⊕0),(`)

` F,G,H, J
(µ),(⊕1),(⊥)

` F,G,H, I, J
(exc)

` F,H,G, I, J
(`)

` F `H,G, I, J
(ν)(⊕0),(⊥)

` F `H,G,H, I, J
(&)

` (F `G) & (F `H), G,H, I, J
(µ)

` F ,G,H, I, J

Figure 5.2. Proof π∞.
F = µX((X `G) & (X `H)) G = νX(X ⊕⊥)
H = νX(⊥⊕X) I = µZ((Z ` J)⊕⊥)
J = µX((K `X)⊕⊥) K = νY µZ((Z ` µX(Y `X)⊕⊥)⊕⊥)

5.2 Relaxing the labelling of proofs1

In this section, we define an extension of the labelling defined in Section 4.2, with the2

following properties:3

• it allows to label more µMALLω b.e.-tree-preproofs than the labelling of Section 4.2,4

• it still ensures thread-validity,5

• the validity of a labelled proof amounts to the local validity of each inference,6

• to some extent, it preserves the ability to finitize circular proofs.7

In order to motivate this extension, we shall consider two examples. The first one is the8

proof π∞, which is on Figure 5.2, and on which we will come back later. The second one,9

that we will present now, has been chosen to be simpler than π∞.10

Example 17. Let D be an arbitrary formula. Lists of D can be represented as proofs of11

L0 := µX(1⊕D ⊗X) and it is possible to encode in µMALLω the function taking two12

lists and computing the tree of all their possible interleavings, as a proof with conclusion1
13

L0, L0 ` T0, where T0 := µX(L0 ⊕ ((D ⊗X) & (D ⊗X))).14

1In the following, we write A(B for A⊥ `B, and Γ ` ∆ for ` Γ⊥,∆.

103

5 Finitization

(a)

(id)
D ` D

(1)
(

y

)
L,L ` T

(`)(⊗)
D ⊗ L,L ` D ⊗ T

(ν)
L,L ` D ⊗ T

(id)
D ` D

(1)
(

y

)
L,L ` T

(`)(⊗)
L,D ⊗ L ` D ⊗ T

(ν)
L,L ` D ⊗ T

(µ), (&)
L,L ` T (1)

(b)

(id)
D ` D

(1)
(

y

(a))
La+, L ` T

(`)(⊗)
D ⊗ La+, L ` D ⊗ T

(ν)[a]
La−, L ` D ⊗ T

(LWk(b−))
La−, Lb− ` D ⊗ T

(id)
D ` D

(2)
(

y

(b))
La−, Lb+ ` T

(`)(⊗)
La−, D ⊗ Lb+ ` D ⊗ T

(ν)[b]
La−, Lb− ` D ⊗ T

(µ)(&)
La−, Lb− ` T (2)

(Rec(b))
La−, L ` T (1)

(Rec(a))
L,L ` T

Figure 5.3. (a) Interleaving example; (b) Interleaving example labelled.
Corresponding sources and targets of back edges are denoted by parenthesized
numbers.

By replacing L0 and T0 with L := µX(D ⊗X) and T := µX((D ⊗X) & (D ⊗X)), we1

get an example equally interesting and more readable, which we present in Figure 5.3. In2

this example, remember that a formula on the left on the sequent means its negation on3

the right and note that the labels we write on L are meant to be put on its fixed-point4

connective. That is, a La on the left on the sequent means a νaX(D⊥ `X) on the right5

of the sequent. In this interleaving function, every recursive call leaves one of the two6

arguments untouched and makes the other one decrease. This guarantees that the tree7

of recursive calls is well-founded. Difficulties, however, arise from the fact that it is not8

necessarily always the same argument that will decrease.9

More formally: every infinite branch in the preproof above has two interesting threads,10

going through the L formulas. In every branch going infinitely often to the left (resp. to11

the right), the thread going through the first L of the sequent (resp. the second L of the12

sequent) will be validating. That preproof is thus a valid µMALLω proof. However, our13

previous labelling method cannot be applied here for two reasons:14

1. in our previous setting, labelled pre-proof have the property that one can know15

which thread will validate a branch, just by knowing the lowest target of back edge16

that is visited infinitely often by the branch. This is not the case here, because the17

two back edges, while inducing different validating threads, have the same target;18

104

5.2 Relaxing the labelling of proofs

2. in our previous setting, back edges must target (ν) rules, which is not the case here.1

Both difficulties have, in fact, the same origin, namely that in our previous setting the2

(ν) rule has two roles: being the target of a back edge and ensuring thread progression.3

Both difficulties also have the same solution: dissociating these two roles. We therefore4

introduce, in Definition 69, a new rule (Rec), whose only effect is to allow its premise to5

be the target of a back edge, and to introduce a new label. Since (Rec) is disentangled6

from greatest fixed point unfolding, the labelling must account for the progression of a7

thread. That is why every atomic label is now given in one of two modes: a passive mode8

(a−) and an active one (a+). Only an unfolding by a (ν) can turn a − into a +.9

Let us now turn back to our introductory example: π∞ (Figure 5.2). For that example,10

separating the introduction of back edges and the coinductive progress is not enough11

to be able to label π∞ in a way that certify its thread validity. Indeed, since targets of12

back edges do not require to unfold a ν, there is a priori no reason to require that the13

sequents contain some ν-formula. While this is slightly hidden in the interleaving example14

of Figure 5.3, π∞ gives a clear example of this phenomenon and suggests that the (Rec)15

inference should have the ability to add labels deeply in the sequent, that is not only on16

the topmost ν fixed-points, but also to greatest fixed points occurring under some other17

connectives. The same remark applies to the back edge rule since its conclusion sequents18

have the same structure as those of (Rec).19

Driven by these observations, we now define a new labelling of circular preproofs and20

prove its correctness with respect to thread-validity.21

Definition 69 (Extended labelling). Labelled formulas are built on the same grammar
as in Definition 56, except that labels are lists of signed variables, that is of pairs of a
variable and a symbol in {+,−}. Derivations are built with µMALL inferences plus the
following rules:

` νLXA,Γ
(LWk(a−))

` νL,a−XA,Γ
` νL,a−,L′XA,Γ

(LWk(a+))
` νL,a+,L′XA,Γ

` A[νa1+,...,an+XA],Γ
(ν)

` νa1−,...,an−XA,Γ

` Γ[νL,a−XA]
(Rec(a))

` Γ[νLXA]
(

y

(a))
` Γ[νL,a+XA]

and the constraints that:22

• a cut-formula cannot contain a non-empty label;23

• all (Rec) rules must wear distinct variables;24

• every (Rec(a)) rule must have at least one occurrence of “a−” in its premise;25

105

5 Finitization

• each
(

y

(a))
` Γ[νL,a+XA] rule is connected to the premise of a

` Γ[νL,a−XA]
(Rec(a))

` Γ[νLXA]
1

via a back edge. This implies in particular that this (

y

(a)) must be above this (Rec(a))2

and that the premise of this (Rec(a)) must be the same sequent as the conclusion3

of this (

y

(a)) except for the change of sign of a, at every of its occurrences in the4

sequent.5

With the extended labelling of Definition 69, we have the following.6

Proposition 19 (Soundness of extended labelling). If π is an extended labelled circular7

representation then dπe is a valid µMALLω b.e.-tree proof.8

Proof. First remark that Lemma 9, as it is stated on p. 87, still holds for this extended9

labelling. The proof is the same, keeping in mind to replace every mention of (νb(a)) with10

(Rec(a)). As for Proposition 13, the proof of this proposition crucially relies on it.11

Suppose π is a labelled circular representation. Let dπe be its erasure. dπe is thus a12

circular representation of a µMALLω preproof. Suppose b an infinite branch of dπe, that13

is an infinite ascending path in the b.e.-tree dπe, starting from the root. Let b0 be the14

corresponding infinite branch in π. Le S0 be the occurrence of the sequent in π which is15

the lowest back edge target infinitely often crossed by b0. Being the target of some back16

edge(s), S0 is the premise of a (Rec(a)) rule, for some variable a.17

This implies that b0 is of the form b0 = r
∗→
u0
S0

∗→
u1
S1 →be

S0
∗→
u2
S2 →be

S0 · · · where r is the18

root of π and where the ui do not cross S0 except at their sources.19

Remark that the positions labelled by a are the same in all Si, as there are back edges20

from every Si+1 to S0. The difference, however, is that these positions are labelled with21

a− in S0 and with a+ in every Si+1. Let P0 be the set of those positions. P0 is finite and22

non empty. Now we would like, as in the proof of Proposition 13, to construct an infinite23

thread along b0. However, because P0 may contain more than one element, we cannot24

know by advance, for each Si, which p ∈ P0 will support an infinite thread. Thus, we25

will use Kőnig’s lemma to show the existence of such a thread. Let T0 be the tree whose26

vertices are the pairs (i, p) where 1 6 i < ω and p ∈ P0, whose roots are the vertices of27

the form (1, p) and where, for i > 1, the father of (i, p) is2 (i− 1, t(ui)(p)). Here we have28

to prove that t(ui)(p) is defined and that it belongs to P0 for every i and p ∈ P0. This is29

ensured by Lemma 9 thanks to the labels.30

Remark that every edge in T0 induces a progressing thread. Indeed, for i > 1 and p ∈ P0:31

2Recall that t(u) and T(u) are defined in Definition 40, p. 48.

106

5.2 Relaxing the labelling of proofs

• T(ui)(p) is a ν-thread in ui,1

• its target is p in Si, which is labelled with a+,2

• and its source is p in S0, which is labelled with a−.3

An examination of the rules that may compose ui shows that the only way for that to be4

true is that T(ui)(p) is progressing. Now T0 is an infinite tree with a finite number of5

roots and an arity bounded by Card(P0), hence, by Kőnig’s lemma, it has an infinite6

branch (1, p1)← (2, p2)← (3, p3) · · · .7

This infinite branch induces in turn an infinite thread8

(S0, p0) ∗−→
T(u1)(p1)

(S1, p1)→
be

(S0, p1) ∗−→
T(u2)(p2)

(S2, p2)→
be

(S0, p2) · · ·9

This thread is valid because every T(ui)(pi) is progressing. And it is indeed a thread10

of b0 = r
∗→
u0

S0
∗→
u1

S1 →be
S0

∗→
u2

S2 →be
S0 · · · Hence b0 is valid, which concludes this11

demonstration.12

We now label our two examples with this new system. We will show that, while it is quite13

straightforward to label the interleaving example (Figure 5.3) with this new system, it14

requires, for π∞ (Figure 5.2), to unfold one back edge.15

π∞ is presented, on Figure 5.5, labelled according to the extended labelling of Figure 5.5.16

To be able to label π∞, two preliminary steps were necessary:17

• To make K apparent as a subformula of I and J respectively by decomposing I
and J as:

I = I ′[K] J = J ′[K]

where

J ′[Y] := µX((Y `X)⊕⊥) I ′[Y] := µZ((Z ` J ′[Y])⊕⊥).

• To do one step of unfolding on the rightmost back edge.18

After that, we can take advantage of the two new facilites of the extended labelling:19

1. to add three (Rec) rules, corresponding to the three ways for a branch of π∞ to be20

valid, as summarized in the following array.21

107

5 Finitization

Shape of the branch A? · lω A? · rω l? · (r+ · l+)ω
Lowest (Rec) visited ∞ly b a c
Validating ν-formula H G K

1

2. to label the three formulas H, G and K at each corresponding (Rec), using for K the2

ability to label several occurrences at a time, and to label deeply ν-subformulas.3

This indeed forms a correct labelling of π∞ according to the extended labelling, hence4

ensuring its thread-validity.5

5.3 Extending finitization6

As we did in Section 5.1 for the labelling defined in Chapter 4, we will rely on the labelled7

presentation of the proofs in order to finitize them. More precisely, we will consider a8

fragment of the extended labelling of Definition 69, for which we will be able to finitize9

proofs.10

Definition 70 (Core fragment of the extended labelling). A µMALLω b.e.-tree preproof11

labelled with the extended labelling of Definition 69 is in the core fragment of this12

extended labelling if:13

1. no ν-formula wears more than one variable14

2. (Rec) is used only in the particular form
` νa−XA,Γ

(Rec′(a))
` νXA,Γ

in which only one15

occurrence of νXA is labelled, and this occurrence is a formula of the sequent and16

not a strict subformula.17

Observe already that both the interleaving example (Figure 5.3) and π∞ (Figure 5.2)18

respect the two constraints of Definition 70, except for the labelling of K in π∞.19

We show now how to finitize any labelled representation which verify those two restrictions.20

As the interleaving example of Figure 5.3 is labelled in this core fragment, it gives a21

finitization for the preproof of Figure 5.3. We will then show how to extend this method22

in an ad hoc way to finitize entirely π∞ (Figure 5.2) from the labelling of Figure 5.5.23

Definition 71. For any formula νXA and any unlabelled context Γ, we define the
following formula translation:

JνΓ−XA[X]Ke := νXJAKe[⊗Γ⊥ ⊕X] JνΓ+XA[X]Ke := ⊗Γ⊥ ⊕ JνΓ−XA[X]Ke

108

5.4 An ad hoc finitization of π∞

Remark 21. With these definitions, we have

JνΓ−XA[X]Ke ' JAKe[JνΓ+XA[X]Ke]

through a simple ν-unfolding.1

Proposition 20. With the notations of Definition 71, the following rules are derivable:

` JνXAKe,∆ J(LWk(Γ−))Ke
` JνΓ−XAKe,∆

` JνΓ−XAKe,∆ J(LWk(Γ+))Ke
` JνΓ+XAKe,∆

` JνΓ−XAKe,Γ J(Rec′(Γ))Ke` JνXAKe,Γ
J(

y

(Γ))Ke
` JνΓ+XAKe,Γ

Proof. See derivations on Figure 5.4.2

Proposition 21. If π is a µMALLω preproof with endsequent Γ, if π is labelled with3

the core fragment of the extended labelling of Definition 70, then π can be turned into a4

µMALL proof of Γ.5

Proof. As for Theorem 5, it is enough, in order to turn a labelled formula into an6

unlabelled one, to translate the ν connectives, leaving all other connectives untouched.7

The translation of Definition 68 is adapted using Definition 71 and picking, for Γ(a), the8

context of the rule (Rec(a)).9

By Proposition 20, the rules of the core fragment of the extended labelling are translated10

to usual µMALLω rules involving no label.11

Remark moreover that
` JA[νΓ+XA[X]]Ke,∆

(ν)
` JνΓ−XA[X]Ke,∆

is the usual (ν) rule.12

These allow to translate any labelled proof verifying the two constraints of Definition 7013

into a µMALL finitary proof.14

5.4 An ad hoc finitization of π∞15

The method of the previous section works almost as well for finitizing π∞ based on the16

labelling of Figure 5.5: it allows to expand everything concerning the variables a and b.17

109

5 Finitization

` JνXAKe,∆ J(LWk(Γ−))Ke
` JνΓ−XAKe,∆

=

(id)
` νXJAKe[X], µXJAK⊥e [X]

(⊕1)
` Γ⊥ ⊕ νXJAKe[X], µXJAK⊥e [X]

[JAKe]
` JAKe[Γ⊥ ⊕ νXJAKe[X]], JAK⊥e [µXJAK⊥e [X]]

(µ)
` JAKe[Γ⊥ ⊕ νXJAKe[X]], µXJAK⊥e [X] ` νXJAKe[X],∆

(νinv)
` νXJAKe[Γ⊥ ⊕X],∆

J(

y

(Γ))Ke
` JνΓ+XAKe,Γ =

(⊗)∗(id)
` ⊗Γ⊥,Γ

(⊕0)
` ⊗Γ⊥ ⊕ JνΓ−XAKe,Γ

` JνΓ−XAKe,∆ J(LWk(Γ+))Ke
` JνΓ+XAKe,∆

=
` JνΓ−XAKe,∆

(⊕1)
` ⊗Γ⊥ ⊕ JνΓ−XAKe,∆

` JνΓ−XAKe,Γ J(Rec′(Γ))Ke` JνXAKe,Γ
=

(id)
` JAKe[JνΓ+XAKe], JAKe[JνΓ+XAKe]⊥

(µ)
` JAKe[JνΓ+XAKe], JνΓ−XAK⊥e

` JνΓ−XAKe,Γ
(`)∗

` JνΓ−XAKe,`Γ
(id)

` JνΓ−XAKe, JνΓ−XAK⊥e
(&)

` JνΓ−XAKe, JνΓ+XAK⊥e
(cut)

` JAKe[JνΓ+XAKe], JνΓ+XAK⊥e

(⊗)∗(id)
` ⊗Γ⊥,Γ

(⊕0)
` JνΓ+XAKe,Γ

(νinv)
` νXJAKe,Γ

Figure 5.4. Derivability of J(LWk(Γ+))Ke, J(

y

(Γ))Ke, J(LWk(Γ−))Ke and J(Rec′(Γ))Ke

However, as it is, it cannot be applied directly to expand the variable c, for which the1

second conditions of Definition 70 is not verified. We can anyway finitize π∞, but at the2

cost of a somewhat ad hoc translation:3

Remark 22. In the following formulas, the notation µ_A is used to denote the formula4

µZA where Z is a variable which does not appear in A.5

110

5.4 An ad hoc finitization of π∞

Γc := F,G,H JKc−Ke := νY µ_((⊗Γ⊥c ⊕ (I ′[Y] ` J ′[Y]))⊕⊥)

Ic+ := JI+Ke = JI ′[Kc+]Ke := µ_((⊗Γ⊥c ⊕ (I ′[JKc−Ke] ` J ′[JKc−Ke]))⊕⊥)

Lc+ := JI ′[Kc+] ` J ′[Kc+]Ke := ⊗Γ⊥c ⊕ (I ′[JKc−Ke] ` J ′[JKc−Ke])

These definitions allow to make finitary the derivation of Figure 5.5, by expanding1

every formula as explained above, and by replacing every rule dealing with labels with2

an appropriate derivation, while leaving untouched the structure of rules not dealing3

with labels. The result is presented on Figure 5.6a, in an abbreviated form, showing4

the similarity with the original proof. The left premise of the bottommost (&) of the5

finitization of π∞ is fully expanded on Figure 5.7, the two premises of the topmost (&)6

are fully expanded, respectively, on Figures 5.8 and 5.9.7

We now detail the analysis leading to this choice of formulas. To finitize π∞ we try to8

apply the same method as for the interleaving example of Figure 5.3 p. 104, by expanding9

every labelled formula to a non-labelled one and expanding the rules that need it to10

match these transforms. This works perfectly for H and G, which appear respectively as11

formulas of the premises (Rec(b)) and (Rec(a)). But the situation is more delicate for K for12

which we have to face a double difficulty: in the premise of (Rec(c)), K is not a formula of13

the sequent but a subformula, and it appears in two different formulas.14

Let us try to transform this situation into one that would fit our method. First we would15

like to have only one formula containing K instead of the two I and J . Unfortunately,16

none of them can be unlabelled without breaking the labelling. Fortunately the solution17

to that is easy: I, J is simply equivalent to I ` J .18

Now we would like I ` J to be a ν-formula that we could label. We already made use,19

for the interleaving example of Figure 5.3, of the isomorphism20

A[νXB[A[X]]] ' νXA[B[X]] (5.1)21

to turn an almost-ν-formula into a real one. Let us apply that again.22

The formula I ` J is equal to L′[K] where L′[Y] := I ′[Y] ` J ′[Y], that is: I ` J =23

L′[νY I ′[Y]]. In order to apply an isomorphism of the form (5.1) we would like I ′[Y] to24

be of the form M ′[L′[Y]] for a given M ′. This is unfortunately not the case as I ′[Y] is a25

subformula of L′[Y]. However, a careful examination of the flow of I, J and K along the26

loops of π∞ makes apparent the fact that27

I ′[Y] = µZ((Z ` J ′[Y])⊕⊥) ' µ_((I ′[Y] ` J ′[Y])⊕⊥) = M ′[L′[Y]]28

111

5 Finitization

(

y

(b))
` F,G,Hb+, I−, J−

(ν)(⊕1)
` F,G,Hb−, I−, J−

(µ)(⊕0)(`)
` F,G,Hb−, I−

(µ)(⊕1)(⊥)
` F,G,Hb−, I−, J−

(`)
` F `G,Hb−, I−, J−

(ν)(⊕1)(⊥)
` F `G,G,Hb−, I−, J−

(

y

(c))
` F,G,H, I ′[Kc+], J ′[Kc+]

(ν)(⊕1)
` F,G,H, I+, J+

(µ)(⊕0)(`)
` F,G,H, I+

(µ)(⊕1)(⊥)
` F,G,H, I+, J−

(`)
` F `G,H, I+, J−

(ν)(⊕1)(⊥)
` F `G,G,H, I+, J−

(LWk(a−))
` F `G,Ga−, H, I+, J−

(

y

(a))
` F,Ga+, H, I+, J−

(ν)(⊕0)
` F,Ga−, H, I+, J−

(ν)
` F,Ga−, H,Kc−, J−

(µ)(⊕0)(`)
` F,Ga−, H, J−

(µ)(⊕1)(⊥)
` F,Ga−, H, I+, J−

(exc)
` F,H,Ga−, I+, J−

(`)
` F `H,Ga−, I+, J−

(ν)(⊕0)(⊥)
` F `H,Ga−, H, I+, J−

(&)
` (F `G) & (F `H), Ga−, H, I+, J−

(µ)
` F ,Ga−, H, I+, J−

(Rec(a))
` F,G,H, I+, J−

(ν)(⊕0)
` F,G,H, I+, J−

(ν)
` F,G,H,Kc−, J−

(µ)(⊕0)(`)
` F,G,H, J−

(µ)(⊕1)(⊥)
` F,G,H, I−, J−

(exc)
` F,H,G, I−, J−

(`)
` F `H,G, I−, J−

(ν)(⊕0)(⊥)
` F `H,G,H, I−, J−

(LWk(b−))
` F `H,G,Hb−, I−, J−

(&)
` (F `G) & (F `H), G,Hb−, I−, J−

(µ)
` F ,G,Hb−, I−, J−

(Rec(b))
` F,G,H, I−, J−

(Rec(c))
` F,G,H, I ′[K], J ′[K]

Figure 5.5. Labelling of π∞. We use the following abbreviations: I− = I ′[Kc−], I+ =
I ′[Kc+], J− = J ′[Kc−] and J+ = J ′[Kc+].

112

5.4 An ad hoc finitization of π∞

(

y

(b))
` F,G,Hb+, I−, J−

(ν)(⊕1)
` F,G,Hb−, I−, J−

(µ)(⊕0)(`)
` F,G,Hb−, I−

(µ)(⊕1)(⊥)
` F,G,Hb−, I−, J−

(`)
` F `G,Hb−, I−, J−

(ν)(⊕1)(⊥)
` F `G,G,Hb−, I−, J−

(

y

(c))
` F,G,H,Lc+

(ν)(⊕1)
` F,G,H,Lc+

(µ)(⊕0)
` F,G,H, Ic+

(µ)(⊕1)(⊥)
` F,G,H, Ic+, J−

(`)
` F `G,H, Ic+, J−

(ν)(⊕1)(⊥)
` F `G,G,H, Ic+, J−

(LWk(a−))
` F `G,Ga−, H, Ic+, J−

(

y

(a))
` F,Ga+, H, Ic+, J−

(ν)(⊕0)
` F,Ga−, H, Ic+, J−

(ν)
` F,Ga−, H,Kc−, J−

(µ)(⊕0)(`)
` F,Ga−, H, J−

(µ)(⊕1)(⊥)
` F,Ga−, H, Ic+, J−

(exc)
` F,H,Ga−, Ic+, J−

(`)
` F `H,Ga−, Ic+, J−

(ν)(⊕0)(⊥)
` F `H,Ga−, H, Ic+, J−

(&)
` (F `G) & (F `H), Ga−, H, Ic+, J−

(µ)
` F ,Ga−, H, Ic+, J−

(Rec(a))
` F,G,H, Ic+, J−

(ν)(⊕0)
` F,G,H, Ic+, J−

(ν)
` F,G,H,Kc−, J−

(µ)(⊕0)(`)
` F,G,H, J−

(µ)(⊕1)(⊥)
` F,G,H, I−, J−

(exc)
` F,H,G, I−, J−

(`)
` F `H,G, I−, J−

(ν)(⊕0)(⊥)
` F `H,G,H, I−, J−

(LWk(b−))
` F `H,G,Hb−, I−, J−

(&)
` (F `G) & (F `H), G,Hb−, I−, J−

(µ)
` F ,G,Hb−, I−, J−

(Rec(b))
` F,G,H, I−, J−

(Rec(c))
` F,G,H, I ′[K], J ′[K]

(a) Finitization of π∞. Brackets J•Ke shoud be put around every formula and rule name. They
were omitted only for the sake of readability.

113

5 Finitization

(id)
` F, F⊥

(id)
` G,G⊥

(id)
` JI−K⊥e , JI−Ke

(id)
` JJ−K⊥e , JJ−Ke

(⊗)3

` F,G, F⊥ ⊗G⊥ ⊗ JI−K⊥e ⊗ JJ−K⊥e , JI−Ke, JJ−Ke
(⊕0)

` F,G, F⊥ ⊗G⊥ ⊗ JI−K⊥e ⊗ JJ−K⊥e ⊕ JHb−Ke, JI−Ke, JJ−Ke
(⊕1)

` F,G,⊥⊕ (F⊥ ⊗G⊥ ⊗ JI−K⊥e ⊗ JJ−K⊥e ⊕ JHb−Ke), JI−Ke, JJ−Ke
(ν)

` F,G, JHb−Ke, JI−Ke, JJ−Ke
(`)

` F,G, JHb−Ke, JI−Ke ` JJ−Ke
(⊕0)

` F,G, JHb−Ke, (JI−Ke ` JJ−Ke)⊕⊥
(µ)

` F,G, JHb−Ke, JI−Ke
(⊥)

` F,G, JHb−Ke, JI−Ke,⊥
(⊕1)

` F,G, JHb−Ke, JI−Ke, (JKc−Ke ` JJ−Ke)⊕⊥
(µ)

` F,G, JHb−Ke, JI−Ke, JJ−Ke
(`)

` F `G, JHb−Ke, JI−Ke, JJ−Ke
(⊥)

` F `G,⊥, JHb−Ke, JI−Ke, JJ−Ke
(⊕1)

` F `G,G⊕⊥, JHb−Ke, JI−Ke, JJ−Ke
(ν)

` F `G,G, JHb−Ke, JI−Ke, JJ−Ke

Figure 5.7. Left premise of the bottommost (&) of the finitization of π∞

114

5.4 An ad hoc finitization of π∞

(id)
` G,G⊥

(⊕1)
` ⊗Γ⊥a ⊕G,G⊥

(⊕0)
` (⊗Γ⊥a ⊕G)⊕⊥, G⊥

(id)
` ⊥,1

(⊕1)
` (⊗Γ⊥a ⊕G)⊕⊥,1

(&)
` (⊗Γ⊥a ⊕G)⊕⊥, G⊥ & 1

(µ)
` (⊗Γ⊥a ⊕G)⊕⊥, G⊥

(id)
` F, F⊥

(id)
` G,G⊥

(id)
` H,H⊥

(⊗)2

` F,G,H, F⊥ ⊗G⊥ ⊗H⊥
(⊕0)

` F,G,H,Lc+
⊕1` F,G,⊥⊕H,Lc+
(ν)

` F,G,H,Lc+
⊕0` F,G,H,Lc+ ⊕⊥
(µ)

` F,G,H, Ic+
(⊥)

` F,G,H, Ic+,⊥
(⊕1)

` F,G,H, Ic+, (JKc−Ke ` JJ−Ke)⊕⊥
(µ)

` F,G,H, Ic+, JJ−Ke
(`)

` F `G,H, Ic+, JJ−Ke
(⊥)

` F `G,⊥, H, Ic+, JJ−Ke ⊕1` F `G,G⊕⊥, H, Ic+, JJ−Ke
(ν)

` F `G,G,H, Ic+, JJ−Ke
(νinv)

` F `G, JGa−Ke, H, I
c+, JJ−Ke

Figure 5.8. Left premise of the topmost (&) of the finitization of π∞

115

5 Finitization

(id)
` F, F⊥

(id)
` H⊥, H

(id)
` (Ic+)⊥, Ic+

(id)
` JJ−K⊥e , JJ−Ke

(⊗)3

` F, F⊥ ⊗H⊥ ⊗ (Ic+)⊥ ⊗ JJ−K⊥e , H, I
c+, JJ−Ke

(⊕0)
` F, F⊥ ⊗H⊥ ⊗ (Ic+)⊥ ⊗ JJ−K⊥e ⊕ JGa−Ke, H, I

c+, JJ−Ke
(⊕0)

` F, (F⊥ ⊗H⊥ ⊗ (Ic+)⊥ ⊗ JJ−K⊥e ⊕ JGa−Ke)⊕⊥, H, Ic+, JJ−Ke
(ν)

` F, JGa−Ke, H, I
c+, JJ−Ke

(`)
` F, JGa−Ke, H, JKc−Ke ` JJ−Ke

⊕0` F, JGa−Ke, H, (JKc−Ke ` JJ−Ke)⊕⊥
(µ)

` F, JGa−Ke, H, JJ−Ke
(⊥)

` F, JGa−Ke, H,⊥, JJ−Ke
(⊕1)

` F, JGa−Ke, H, L
c+ ⊕⊥, JJ−Ke

(µ)
` F, JGa−Ke, H, I

c+, JJ−Ke
(`)

` F `H, JGa−Ke, I
c+, JJ−Ke

(⊥)
` F `H, JGa−Ke,⊥, Ic+, JJ−Ke

(⊕0)
` F `H, JGa−Ke,⊥⊕H, Ic+, JJ−Ke

(ν)
` F `H, JGa−Ke, H, I

c+, JJ−Ke

Figure 5.9. Right premise of the topmost (&) of the finitization of π∞

116

5.4 An ad hoc finitization of π∞

where1

M ′[Y] := µ_(Y ⊕⊥)

in which we use the notation µ_A to denote a µXA with X not appearing free in A.2

This degenerate µ binder could be removed to simplify the formulas involved in the3

finitization, but we keep it to stay as close as possible to the original structure of I,4

trying to preserve its head connective.5

When we stick all that together we get6

I ` J ' L′[νYM ′[L′[Y]]] ' νY L′[M ′[Y]]

which is a ν-formula that we know, when labelled, how to expand into an unlabelled7

formula. If we stopped here our analysis, we would then define:8

Γc := F,G,H Lc− := νY L′[M ′[⊗Γ⊥c ⊕ Y]] Lc+ := ⊗Γ⊥c ⊕ Lc−.

However we will do yet a bit more work in order to get the structure of Lc− closer to9

that of I ` J .10

Indeed the isomorphism (5.1) can be used in the other direction:11

νY L′[M ′[⊗Γ⊥c ⊕ Y]] ' L′[νYM ′[⊗Γ⊥c ⊕ L′[Y]]]
= I ′[νYM ′[⊗Γ⊥c ⊕ L′[Y]]] ` J ′[νY.M ′[⊗Γ⊥c ⊕ L′[Y]]].

This, finally, leads us to define:12

Γc := F,G,H and Kc− := νYM ′[⊗Γ⊥c ⊕ L′[Y]]

which allows to expand I ′[Kc−] and J ′[Kc−]. On the other hand, this is not sufficient to
define an expansion of Kc+, and we still need an ad hoc treatment for formulas containing
it:

“I ′[Kc+]” := Ic+ := M ′[⊗Γ⊥c ⊕L′[Kc−]] “I ′[Kc+] ` J ′[Kc+]” := Lc+ := ⊗Γ⊥c ⊕L′[Kc−]

117

5 Finitization

With these expansions of labelled formulas into unlabelled formulas, we can finitize the1

derivation of Figure 5.5 into the very close derivation of Figure 5.6a, on which the rules2

dealing with labelling can be expanded into µMALL derivations.3

5.5 Related works on Chapters 4 and 54

Labelling and local certification is the basis of our approach. The idea of labelling µ-5

formulas to gather information on fixed-points unfoldings is naturally not new, already to6

be found in fixed-point approximation methods (see [Dax, Hofmann, and Lange, 2006] for7

instance). The closest work in this direction is Stirling [2014]’s annotated proofs and the8

application Afshari and Leigh [2017] made of such proofs in obtaining completeness for9

the modal µ-calculus. Our labelling system works quite differently since only fixed-point10

operators are labelled while, in Stirling’s annotated proofs, every formula is labelled11

and labels are transmitted to immediate subformulas with a label extension on greatest12

fixed-points.13

Finitization of circular proofs has been recently a very active topic with much research14

effort on solving Brotherston-Simpson’s conjecture. The following recent contributions15

were made in the setting of Martin-Löf’s inductive definitions: firstly, Berardi and Tatsuta16

[2017b] proved that, in general, the equivalence is false by providing a counter-example17

inspired by the Hydra paradox. Secondly, Simpson [2017] on the one hand and Berardi18

and Tatsuta [2017a] on the other hand provided a positive answer in the restricted19

frameworks when the proof system contains arithmetics. While Simpson used tools from20

reverse mathematics and internalized circular proofs in ACA0, a fragment of second-order21

arithmetic with a comprehension axiom on arithmetical statements, Tatsuta and Berardi22

proved an equivalent result by a direct proof translation relying on an arithmetical version23

of the Ramsey and Podelsky-Rybalchenko theorems.24

Circular proof search triggered interest compared to proof system with explicit inductive25

invariants (lacking subformula property). As we already mentionned, this has actually26

been turned to practice by Brotherston, Gorogiannis, and Petersen [2012].27

5.6 Conclusion28

In this chapter, we contributed to the theory of circular proofs for µMALL in two29

directions: (i) expanding the results of Chapter 4 by identifying larger fragments of30

circular proofs for which local conditions account for the validity of circular proof objects31

(in contrast to the global nature of thread conditions) and (ii) designing methods for32

118

5.6 Conclusion

translating circular proofs to finitary proofs (with explicit (co)induction rules). To do so,1

we introduced and studied several labelling systems, for circular proofs, and made the2

following contributions:3

(i) First, we investigated how such labellings ensure validity of a labellable proof, turning4

a global and complex problem into a local and simpler one. Indeed, validity-checking5

is far from trivial in circular proof-theory for fixed-point logics: the best known6

bound for this problem is generally PSPACE and, in the case of µMALL and similar7

µ-calculi, we proved in Chapter 3 that checking thread-validity is in fact a PSPACE-8

complete problem. We extended the results of Chapter 4 by defining a second, more9

liberal labelling, which does not force back edges to target (ν) inferences. We proved10

that this extended labelling still ensure thread-validity, and we were able to finitize11

a fragment of it.12

(ii) Second, we provided evidence on the usability of such labellings as a helpful guide in13

the generation of (co)inductive invariants which are necessary to translate a circular14

proof in a finitary proof system with (co)induction rules à la Park. We provided15

a full finitization method for the fairly restricted labelling system of Chapter 4,16

which contains at least all the translations of µMALL proofs as well as for a core17

fragment of the extented labelling of this chapter, which subsumes the labelling of18

Chapter 4. However, this fragment is too constrained to treat standard examples19

that we discuss in the chapter, and which contain most of the difficulties in finitizing20

circular proofs, namely: (i) interleaving of fixed-points and (ii) interleaving of back21

edges resulting in various choices of a valid thread to support a branch.22

119

6 Conclusion1

6.1 General conclusion2

We started this journey by explaining that the already existing finitary systems for least3

and greatest fixed points of formulas, with induction and coinduction rules [Baelde, 2012],4

needing explicit invariants were not satisfactory. We explained that the infinitary setting5

designed by [Baelde, Doumane, and Saurin, 2016] was proposed as a solution to these6

issues. We then complained about the fact that these infinite proof trees are infinite and7

explained that this thesis is only concerned with the circular representations of infinite8

proofs. After proving that the thread criterion is PSPACE-complete on these circular9

representations, we argued for the search of a smaller, easier to check criterion, which10

would still be expressive enough for practical use. We provided such a criterion, the loop11

criterion, and we finally showed how any circular preproof valid for our loop criterion12

can be turned into a finitary proof à la Baelde with explicit induction and coinduction13

invariants.14

It may seem that after all this work we finally reached our starting point.15

But, as one may expect, we learned some valuable things through this journey.16

• The result of PSPACE-completeness of the thread criterion (Theorem 4), which is17

the main contribution of Chapter 3, is, as far as we know, the first of its kind. Not18

only does it give a precise characterization of the complexity of the thread criterion,19

but its proof also made apparent the deep link that seems to exist between this20

global validity condition and program termination techniques such as size-change21

termination [Lee, Jones, and Ben-Amram, 2001].22

• The fragments of µMALLω defined in Chapter 4 and in Section 5.2 combine23

advantages of both µMALL and µMALLω. One one side, when they are viewed as24

unlabelled systems, they are circular systems, in it is not necessary to find and25

write explicit invariants when introducing a ν or eliminating a µ. On the other26

side, when they are viewed as circular systems, they do not necessitate a global27

validity criterion which may be subtle to understand, but they work with basic28

sequent calculus constructions in which the validity of the proof, which is finite,29

121

6 Conclusion

comes directly from the validity of each rule. Over all that, going from a labelled1

proof to an unlabelled one is immediate, and checking and labelling an unlabelled2

preproof is doable in quadratic time.3

• The finitization results of Chapter 5 do not only tell that the different fragments of4

µMALLω studied in Chapter 4 and in Section 5.2 do not have more expressivity5

than µMALL. These are constructive results, providing an explicite method to6

synthetize induction and coinduction invariants and to turn a circular proof into a7

finitary, well-founded one.8

6.2 Future works9

Our work in Chapter 3 suggests deep connections between thread-validity and size-change10

termination (SCT) [Lee, Jones, and Ben-Amram, 2001], which was already hinted by other11

authors [Dax, Hofmann, and Lange, 2006, Hyvernat, 2014, 2019, Lepigre and Raffalli,12

2019]. More generally, the connection between SCT and thread validity in µ-calculi is not13

yet well understood despite those early investigations. More than a connection, this looks14

like an interplay: size-change termination is originally shown decidable by using Büchi15

automata and size-change graphs can be used to show validity of circular proofs [Dax,16

Hofmann, and Lange, 2006]. There seems to be connections with our labelling system17

too, that we plan to investigate further in the future.18

We already underlined in Section 5.5 the similarities between our system and the systems19

by Dax, Hofmann, and Lange [2006], Stirling [2014], Afshari and Leigh [2017]. Despite20

their differences, the relationships of those systems should be investigated further (in21

particular the role of the annotation restriction rule of Stirling [2014, Definition 4]).22

In addition to investigating more closely those connections, we have several directions23

for improving our labelled proof system. The first task is to lift the results of Chapter 424

and Section 5.1 to the extended labelling system of Section 5.2. Indeed, for the more25

restricted fragment and given a circular proof presented as a graph with back edges, we26

provided a method to effectively check that one can assign labels. It is therefore natural27

to expect extending these results to the relaxed framework. Another point we plan to28

investigate is whether every circular µMALL proof can be labelled. Even though this29

can look paradoxical given the complexity of checking validity of circular proofs, one30

should keep in mind that it might well be the case that, in order to label a circular proof31

presented as a tree with back edges, one has to unfold some of the back edges, or possibly32

pick a different finite representation of the proof which may result in a space blow up.33

Related to this question is the connection of our labelling methods with size-change34

termination methods. Indeed, in designing the extended labelling, one gets closer to the35

kind of constructions one finds in SCT-based approaches: this should be investigated36

122

6.2 Future works

further since it may also be a key for our finitization objective. Note that the previous1

two directions would lead to a solution to the Brotherston-Simpson conjecture.2

Our work in Chapter 5 helped closing the gap between µMALLω and µMALL by proposing3

a rich fragment of µMALLω that is equivalent µMALL. A very natural question for future4

work is to extend the still ad hoc finitization method presented in the last section to the5

whole fragment of relaxed labelled proofs, and maybe to all µMALLω.6

We also wish to investigate the potential use of labellings in circular proof-search. Indeed,7

there are several different labellings for a given finite derivation with back edges where the8

labels are weakened. Proposition 15 characterizes least and greatest validating sets: those9

extremal validating sets correspond to different strategies in placing the labels, which10

have different properties with respect to the ability to form back edges or to validate the11

proof that one may exploit in proof-search.12

123

Bibliography1

Smbat Abian and Arthur B Brown. A theorem on partially ordered sets, with applications2

to fixed point theorems. Canadian Journal of Mathematics, 13:78–82, 1961.3

Peter Aczel. An introduction to inductive definitions. In Studies in Logic and the4

Foundations of Mathematics, volume 90, pages 739–782. Elsevier, 1977.5

Bahareh Afshari and Graham E. Leigh. Cut-free completeness for modal mu-calculus.6

In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,7

Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:8

10.1109/LICS.2017.8005088. URL https://doi.org/10.1109/LICS.2017.8005088.9

Alfred V. Aho and Jeffrey D. Ullman. The universality of data retrieval languages. In10

Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen, editors, Conference Record11

of the Sixth Annual ACM Symposium on Principles of Programming Languages, San12

Antonio, Texas, USA, January 1979, pages 110–120. ACM Press, 1979. doi: 10.1145/13

567752.567763. URL https://doi.org/10.1145/567752.567763.14

Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-15

bridge University Press, 2009. ISBN 978-0-521-42426-4. URL http://www.cambridge.16

org/catalogue/catalogue.asp?isbn=9780521424264.17

David Baelde. On the proof theory of regular fixed points. In Martin Giese and18

Arild Waaler, editors, Automated Reasoning with Analytic Tableaux and Related Meth-19

ods, 18th International Conference, TABLEAUX 2009, Oslo, Norway, July 6-10,20

2009. Proceedings, volume 5607 of Lecture Notes in Computer Science, pages 93–107.21

Springer, 2009. doi: 10.1007/978-3-642-02716-1_8. URL https://doi.org/10.1007/22

978-3-642-02716-1_8.23

David Baelde. Least and greatest fixed points in linear logic. ACM Trans. Comput.24

Log., 13(1):2:1–2:44, 2012. doi: 10.1145/2071368.2071370. URL https://doi.org/10.25

1145/2071368.2071370.26

David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In27

Nachum Dershowitz and Andrei Voronkov, editors, Logic for Programming, Artificial28

Intelligence, and Reasoning, 14th International Conference, LPAR 2007, Yerevan,29

125

https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1145/567752.567763
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1007/978-3-642-02716-1_8
https://doi.org/10.1007/978-3-642-02716-1_8
https://doi.org/10.1007/978-3-642-02716-1_8
https://doi.org/10.1145/2071368.2071370
https://doi.org/10.1145/2071368.2071370
https://doi.org/10.1145/2071368.2071370

Bibliography

Armenia, October 15-19, 2007, Proceedings, volume 4790 of Lecture Notes in Computer1

Science, pages 92–106. Springer, 2007. doi: 10.1007/978-3-540-75560-9_9. URL2

https://doi.org/10.1007/978-3-540-75560-9_9.3

David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multi-4

plicative additive case. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL5

Annual Conference on Computer Science Logic, CSL 2016, August 29 - September6

1, 2016, Marseille, France, volume 62 of LIPIcs, pages 42:1–42:17. Schloss Dagstuhl7

- Leibniz-Zentrum fuer Informatik, 2016. doi: 10.4230/LIPIcs.CSL.2016.42. URL8

https://doi.org/10.4230/LIPIcs.CSL.2016.42.9

Stefano Berardi and Makoto Tatsuta. Equivalence of inductive definitions and cyclic10

proofs under arithmetic. In 32nd Annual ACM/IEEE Symposium on Logic in Computer11

Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer12

Society, 2017a. doi: 10.1109/LICS.2017.8005114. URL https://doi.org/10.1109/13

LICS.2017.8005114.14

Stefano Berardi and Makoto Tatsuta. Classical system of martin-löf’s inductive defi-15

nitions is not equivalent to cyclic proof system. In Javier Esparza and Andrzej S.16

Murawski, editors, Foundations of Software Science and Computation Structures17

- 20th International Conference, FOSSACS 2017, Held as Part of the European18

Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,19

Sweden, April 22-29, 2017, Proceedings, volume 10203 of Lecture Notes in Com-20

puter Science, pages 301–317, 2017b. doi: 10.1007/978-3-662-54458-7_18. URL21

https://doi.org/10.1007/978-3-662-54458-7_18.22

Stefano Berardi and Makoto Tatsuta. Intuitionistic podelski-rybalchenko theorem and23

equivalence between inductive definitions and cyclic proofs. In Corina Cîrstea, editor,24

Coalgebraic Methods in Computer Science - 14th IFIP WG 1.3 International Workshop,25

CMCS 2018, Colocated with ETAPS 2018, Thessaloniki, Greece, April 14-15, 2018,26

Revised Selected Papers, volume 11202 of Lecture Notes in Computer Science, pages27

13–33. Springer, 2018. doi: 10.1007/978-3-030-00389-0_3. URL https://doi.org/28

10.1007/978-3-030-00389-0_3.29

Stefano Berardi and Makoto Tatsuta. Classical system of martin-lof’s inductive definitions30

is not equivalent to cyclic proofs. Log. Methods Comput. Sci., 15(3), 2019. doi: 10.31

23638/LMCS-15(3:10)2019. URL https://doi.org/10.23638/LMCS-15(3:10)2019.32

Nicolas Bourbaki. Sur le theoreme de zorn. Archiv der Mathematik, 2(6):434–437, 1949.33

James Brotherston. Sequent calculus proof systems for inductive definitions. PhD thesis,34

University of Edinburgh. College of Science and Engineering. School of . . . , 2006.35

James Brotherston and Alex Simpson. Complete sequent calculi for induction and infinite36

126

https://doi.org/10.1007/978-3-540-75560-9_9
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1007/978-3-662-54458-7_18
https://doi.org/10.1007/978-3-030-00389-0_3
https://doi.org/10.1007/978-3-030-00389-0_3
https://doi.org/10.1007/978-3-030-00389-0_3
https://doi.org/10.23638/LMCS-15(3:10)2019

Bibliography

descent. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-121

July 2007, Wroclaw, Poland, Proceedings, pages 51–62. IEEE Computer Society, 2007.2

doi: 10.1109/LICS.2007.16. URL https://doi.org/10.1109/LICS.2007.16.3

James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.4

J. Log. Comput., 21(6):1177–1216, 2011. doi: 10.1093/logcom/exq052. URL https:5

//doi.org/10.1093/logcom/exq052.6

James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. A generic cyclic7

theorem prover. In Ranjit Jhala and Atsushi Igarashi, editors, Programming Languages8

and Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, December 11-13,9

2012. Proceedings, volume 7705 of Lecture Notes in Computer Science, pages 350–10

367. Springer, 2012. doi: 10.1007/978-3-642-35182-2_25. URL https://doi.org/10.11

1007/978-3-642-35182-2_25.12

Pierre Clairambault. Least and greatest fixpoints in game semantics. In Luca13

de Alfaro, editor, Foundations of Software Science and Computational Structures,14

12th International Conference, FOSSACS 2009, Held as Part of the Joint Euro-15

pean Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,16

March 22-29, 2009. Proceedings, volume 5504 of Lecture Notes in Computer Sci-17

ence, pages 16–31. Springer, 2009. doi: 10.1007/978-3-642-00596-1_3. URL https:18

//doi.org/10.1007/978-3-642-00596-1_3.19

Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. (Logic20

and Interaction : a Semantic Study of Totality). PhD thesis, Paris Diderot University,21

France, 2010. URL https://tel.archives-ouvertes.fr/tel-00459307.22

Vincent Danos and Laurent Regnier. The structure of multiplicatives. Arch. Math. Log.,23

28(3):181–203, 1989. doi: 10.1007/BF01622878. URL https://doi.org/10.1007/24

BF01622878.25

Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order (2. ed.).26

Cambridge University Press, 2002. ISBN 978-0-521-78451-1.27

Anuj Dawar and Yuri Gurevich. Fixed point logics. Bull. Symb. Log., 8(1):65–88, 2002.28

doi: 10.2178/bsl/1182353853. URL https://doi.org/10.2178/bsl/1182353853.29

Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the linear time µ-30

calculus. In S. Arun-Kumar and Naveen Garg, editors, FSTTCS 2006: Foundations of31

Software Technology and Theoretical Computer Science, 26th International Conference,32

Kolkata, India, December 13-15, 2006, Proceedings, volume 4337 of Lecture Notes in33

Computer Science, pages 273–284. Springer, 2006. doi: 10.1007/11944836_26. URL34

https://doi.org/10.1007/11944836_26.35

127

https://doi.org/10.1109/LICS.2007.16
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-642-00596-1_3
https://doi.org/10.1007/978-3-642-00596-1_3
https://doi.org/10.1007/978-3-642-00596-1_3
https://tel.archives-ouvertes.fr/tel-00459307
https://doi.org/10.1007/BF01622878
https://doi.org/10.1007/BF01622878
https://doi.org/10.1007/BF01622878
https://doi.org/10.2178/bsl/1182353853
https://doi.org/10.1007/11944836_26

Bibliography

J. W. de Bakker and Willem P. de Roever. A calculus for recursive program schemes. In1

Maurice Nivat, editor, Automata, Languages and Programming, Colloquium, Paris,2

France, July 3-7, 1972, pages 167–196. North-Holland, Amsterdam, 1972.3

Amina Doumane. Constructive completeness for the linear-time µ-calculus. In 32nd4

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,5

Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017a. doi: 10.1109/6

LICS.2017.8005075. URL https://doi.org/10.1109/LICS.2017.8005075.7

Amina Doumane. On the infinitary proof theory of logics with fixed points. (Théorie de la8

démonstration infinitaire pour les logiques à points fixes). PhD thesis, Paris Diderot Uni-9

versity, France, 2017b. URL https://tel.archives-ouvertes.fr/tel-01676953.10

Amina Doumane, David Baelde, Lucca Hirschi, and Alexis Saurin. Towards completeness11

via proof search in the linear time µ-calculus: The case of büchi inclusions. In Martin12

Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual13

ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY,14

USA, July 5-8, 2016, pages 377–386. ACM, 2016. doi: 10.1145/2933575.2933598. URL15

https://doi.org/10.1145/2933575.2933598.16

Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-17

elimination. In Simona Ronchi Della Rocca, editor, Computer Science Logic 201318

(CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages19

248–262. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. doi: 10.4230/20

LIPIcs.CSL.2013.248. URL https://doi.org/10.4230/LIPIcs.CSL.2013.248.21

Gerhard Gentzen. Untersuchungen über das logische schließen. i. Mathematische22

zeitschrift, 39(1):176–210, 1935a.23

Gerhard Gentzen. Untersuchungen über das logische schließen. ii. Mathematische24

Zeitschrift, 39(1):405–431, 1935b.25

Gerhard Gentzen. Investigations into logical deduction. The Collected Papers of Gerhard26

Gentzen, pages 68–131, 1969. URL https://ci.nii.ac.jp/naid/10007157703/en/.27

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi: 10.1016/28

0304-3975(87)90045-4. URL https://doi.org/10.1016/0304-3975(87)90045-4.29

Jean-Yves Girard. Proof theory and logical complexity. Annals of Pure and Applied30

Logic, 53(4):197, 1991.31

Jean-Yves Girard. The Blind Spot: lectures on logic. European Mathematical Society,32

2011.33

128

https://doi.org/10.1109/LICS.2017.8005075
https://tel.archives-ouvertes.fr/tel-01676953
https://doi.org/10.1145/2933575.2933598
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://ci.nii.ac.jp/naid/10007157703/en/
https://doi.org/10.1016/0304-3975(87)90045-4

Bibliography

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University1

Press, New York, NY, USA, 1989. ISBN 0-521-37181-3.2

Nikos Gorogiannis and Reuben Rowe. The cyclist theorem prover, 2014. URL http:3

//www.cyclist-prover.org/.4

Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and5

Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar,6

February 2001], volume 2500 of Lecture Notes in Computer Science, 2002. Springer.7

ISBN 3-540-00388-6. doi: 10.1007/3-540-36387-4. URL https://doi.org/10.1007/8

3-540-36387-4.9

Yuri Gurevich and Saharon Shelah. Fixed-point extensions of first-order logic. Ann.10

Pure Appl. Log., 32:265–280, 1986. doi: 10.1016/0168-0072(86)90055-2. URL https:11

//doi.org/10.1016/0168-0072(86)90055-2.12

Pierre Hyvernat. The size-change termination principle for constructor based languages.13

Logical Methods in Computer Science, 10(1), 2014. doi: 10.2168/LMCS-10(1:11)2014.14

URL https://doi.org/10.2168/LMCS-10(1:11)2014.15

Pierre Hyvernat. The size-change principle for mixed inductive and coinductive types.16

CoRR, abs/1901.07820, 2019. URL http://arxiv.org/abs/1901.07820.17

Neil D. Jones. Computability and complexity - from a programming perspective. Founda-18

tions of computing series. MIT Press, 1997. ISBN 978-0-262-10064-9.19

Roope Kaivola. Axiomatising linear time mu-calculus. In Insup Lee and Scott A.20

Smolka, editors, CONCUR ’95: Concurrency Theory, 6th International Conference,21

Philadelphia, PA, USA, August 21-24, 1995, Proceedings, volume 962 of Lecture Notes22

in Computer Science, pages 423–437. Springer, 1995a. doi: 10.1007/3-540-60218-6_32.23

URL https://doi.org/10.1007/3-540-60218-6_32.24

Roope Kaivola. A simple decision method for the linear time mu-calculus. In Structures25

in Concurrency Theory, pages 190–204. Springer, 1995b.26

Dexter Kozen. On induction vs. *-continuity. In Dexter Kozen, editor, Logics of Programs,27

Workshop, Yorktown Heights, New York, USA, May 1981, volume 131 of Lecture Notes28

in Computer Science, pages 167–176. Springer, 1981. doi: 10.1007/BFb0025782. URL29

https://doi.org/10.1007/BFb0025782.30

Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:31

333–354, 1983. doi: 10.1016/0304-3975(82)90125-6. URL https://doi.org/10.1016/32

0304-3975(82)90125-6.33

129

http://www.cyclist-prover.org/
http://www.cyclist-prover.org/
http://www.cyclist-prover.org/
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1016/0168-0072(86)90055-2
https://doi.org/10.1016/0168-0072(86)90055-2
https://doi.org/10.1016/0168-0072(86)90055-2
https://doi.org/10.2168/LMCS-10(1:11)2014
http://arxiv.org/abs/1901.07820
https://doi.org/10.1007/3-540-60218-6_32
https://doi.org/10.1007/BFb0025782
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6

Bibliography

Jean-Louis Lassez, V. L. Nguyen, and Liz Sonenberg. Fixed point theorems and semantics:1

A folk tale. Inf. Process. Lett., 14(3):112–116, 1982. doi: 10.1016/0020-0190(82)90065-5.2

URL https://doi.org/10.1016/0020-0190(82)90065-5.3

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle4

for program termination. In Chris Hankin and Dave Schmidt, editors, Conference5

Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of6

Programming Languages, London, UK, January 17-19, 2001, pages 81–92. ACM, 2001.7

doi: 10.1145/360204.360210. URL http://doi.acm.org/10.1145/360204.360210.8

Rodolphe Lepigre and Christophe Raffalli. Practical subtyping for curry-style languages.9

ACM Trans. Program. Lang. Syst., 41(1):5:1–5:58, 2019. doi: 10.1145/3285955. URL10

https://doi.org/10.1145/3285955.11

George Markowsky. Chain-complete posets and directed sets with applications. Algebra12

universalis, 6(1):53–68, 1976.13

David Park. Fixpoint induction and proofs of program properties. Machine intelligence,14

5(59-78):5–3, 1969.15

Sylvain Perifel. Complexité algorithmique. Ellipses, 2014.16

Dominique Perrin and Jean-Éric Pin. Infinite words: automata, semigroups, logic and17

games, volume 141. Academic Press, 2004.18

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations19

of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November20

1977, pages 46–57. IEEE Computer Society, 1977. doi: 10.1109/SFCS.1977.32. URL21

https://doi.org/10.1109/SFCS.1977.32.22

Reuben N. S. Rowe and James Brotherston. Automatic cyclic termination proofs23

for recursive procedures in separation logic. In Yves Bertot and Viktor Vafeiadis,24

editors, Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and25

Proofs, CPP 2017, Paris, France, January 16-17, 2017, pages 53–65. ACM, 2017. doi:26

10.1145/3018610.3018623. URL https://doi.org/10.1145/3018610.3018623.27

Luigi Santocanale. A calculus of circular proofs and its categorical semantics. In28

Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and29

Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part30

of the Joint European Conferences on Theory and Practice of Software, ETAPS 200231

Grenoble, France, April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes in32

Computer Science, pages 357–371. Springer, 2002. doi: 10.1007/3-540-45931-6_25.33

URL https://doi.org/10.1007/3-540-45931-6_25.34

130

https://doi.org/10.1016/0020-0190(82)90065-5
http://doi.acm.org/10.1145/360204.360210
https://doi.org/10.1145/3285955
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1007/3-540-45931-6_25

Bibliography

Alex Simpson. Cyclic arithmetic is equivalent to peano arithmetic. In Javier Esparza1

and Andrzej S. Murawski, editors, Foundations of Software Science and Computation2

Structures - 20th International Conference, FOSSACS 2017, Held as Part of the3

European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,4

Sweden, April 22-29, 2017, Proceedings, volume 10203 of Lecture Notes in Computer5

Science, pages 283–300, 2017. doi: 10.1007/978-3-662-54458-7_17. URL https:6

//doi.org/10.1007/978-3-662-54458-7_17.7

A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem8

for büchi automata with appplications to temporal logic. Theor. Comput. Sci., 49:9

217–237, 1987. doi: 10.1016/0304-3975(87)90008-9. URL https://doi.org/10.1016/10

0304-3975(87)90008-9.11

Colin Stirling. A tableau proof system with names for modal mu-calculus. In Andrei12

Voronkov and Margarita V. Korovina, editors, HOWARD-60: A Festschrift on the13

Occasion of Howard Barringer’s 60th Birthday, volume 42 of EPiC Series in Computing,14

pages 306–318. EasyChair, 2014. URL http://www.easychair.org/publications/15

?page=1932281032.16

Gadi Tellez and James Brotherston. Automatically verifying temporal properties of17

pointer programs with cyclic proof. In Leonardo de Moura, editor, Automated Deduction18

- CADE 26 - 26th International Conference on Automated Deduction, Gothenburg,19

Sweden, August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer20

Science, pages 491–508. Springer, 2017. doi: 10.1007/978-3-319-63046-5_30. URL21

https://doi.org/10.1007/978-3-319-63046-5_30.22

Moshe Y. Vardi. A temporal fixpoint calculus. In Jeanne Ferrante and P. Mager,23

editors, Conference Record of the Fifteenth Annual ACM Symposium on Principles24

of Programming Languages, San Diego, California, USA, January 10-13, 1988, pages25

250–259. ACM Press, 1988. doi: 10.1145/73560.73582. URL https://doi.org/10.26

1145/73560.73582.27

Igor Walukiewicz. On completeness of the mu-calculus. In Proceedings of the Eighth28

Annual Symposium on Logic in Computer Science (LICS ’93), Montreal, Canada, June29

19-23, 1993, pages 136–146. IEEE Computer Society, 1993. doi: 10.1109/LICS.1993.30

287593. URL https://doi.org/10.1109/LICS.1993.287593.31

Igor Walukiewicz. Completeness of kozen’s axiomatisation of the propositional mu-32

calculus. In Proceedings, 10th Annual IEEE Symposium on Logic in Computer Science,33

San Diego, California, USA, June 26-29, 1995, pages 14–24. IEEE Computer Society,34

1995. doi: 10.1109/LICS.1995.523240. URL https://doi.org/10.1109/LICS.1995.35

523240.36

131

https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1016/0304-3975(87)90008-9
https://doi.org/10.1016/0304-3975(87)90008-9
https://doi.org/10.1016/0304-3975(87)90008-9
http://www.easychair.org/publications/?page=1932281032
http://www.easychair.org/publications/?page=1932281032
http://www.easychair.org/publications/?page=1932281032
https://doi.org/10.1007/978-3-319-63046-5_30
https://doi.org/10.1145/73560.73582
https://doi.org/10.1145/73560.73582
https://doi.org/10.1145/73560.73582
https://doi.org/10.1109/LICS.1993.287593
https://doi.org/10.1109/LICS.1995.523240
https://doi.org/10.1109/LICS.1995.523240
https://doi.org/10.1109/LICS.1995.523240

	Introduction
	Generalities on least and greatest fixed points
	Basic definitions
	Proving their existence
	Expressivity in logic
	Expressivity in programs
	Usage in logic

	Least and greatest fixed points in proof theory
	Proof theory
	Usage of fixed points in proof theory
	Finite proof systems for least and greatest fixed points
	Infinite proof systems for least and greatest fixed points
	Finite representations and circular proof systems for least and greatest fixed points

	In this thesis
	Fixed points in linear logic
	Addressed questions, proposed answers
	Outline of this thesis

	Technical background
	Proof theory for least and greatest fixed points
	Usual proof theory and MALL
	Finite proof trees:
	Infinite proof trees:
	Finite proof trees with back edges:

	Complexity theory
	Generalities on complexity and
	Some -complete problems

	Parity automata

	PSPACE-completeness of the thread criterion
	Deciding thread validity in
	PSPACE-completeness
	Outline of the PSPACE-completeness proof
	Definition of the reduction
	Main theorem
	Generalisation to other systems

	Comments on our approach and discussion of related works
	Conclusion

	A polynomial sub-criterion
	proofs: labelling as validity
	Finite representations of circular proofs.
	Two alternative characterizations of
	Conclusion

	Finitization
	On Brotherston-Simpson's conjecture: finitizing circular proofs
	Relaxing the labelling of proofs
	Extending finitization
	An ad hoc finitization of
	Related works on Chapters 4 and 5
	Conclusion

	Conclusion
	General conclusion
	Future works

