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Résumé
La corrélation n’implique pas la causalité, une distinction importante à rappeler alors
que les associations statistiques génèrent de plus en plus de discussions dans un monde
toujours plus mesuré et documenté. C’est pourtant le but, avoué ou non, de la plupart des
domaines scientifiques : définir les mécanismes de notre environnement qui ont produit ces
observations. La nouvelle science de la causalité cherche à nous réconcilier avec ce concept
en répondant à ces questions : comment formaliser les relations causales, comment nous
les représenter, et quand peut-on les découvrir ? Les travaux de cette thèse s’inscrivent
dans la théorie principalement développée par Judea Pearl sur les diagrammes causaux; des
modèles graphiques qui permettent de dériver toutes les quantités causales d’intérêt (effet
du traitement, contrefactuelles...) formellement et intuitivement. Nous traitons le problème
de l’inférence de réseau causal à partir uniquement de données d’observation c’est-à-dire
sans aucune intervention de la part de l’expérimentateur. En particulier, nous proposons
d’améliorer les méthodes existantes pour les rendre plus aptes à analyser des données issues
du monde réel, en nous affranchissant le plus possible des contraintes sur les distributions
des données, et en les rendant plus interprétables.

Nous proposons une extension de MIIC, une approche basée sur les contraintes et la
théorie de l’information pour retrouver la classe d’équivalence du graphe causal à par-
tir d’observations. Notre contribution est un algorithme de discrétisation optimale pour
simultanément estimer la valeur de l’information mutuelle (et multivariée) et évaluer sa
significativité entre des échantillons de variables de n’importe quelle nature : continue,
catégorique ou mixte. Cette discrétisation optimale est elle-même ancrée dans le principe de
longueur de description minimale pour trouver les meilleures représentations des distributions
jointes grâce à une estimation du maximum de vraisemblance normalisé. L’évaluation de la
significativité de l’information au sens de la complexité stochastique est un dérivé de cette
approche, et nous permet de reconstruire des graphes causaux de manière robuste sur des
échantillons de taille finie. Nous proposons également des améliorations des algorithmes
par contraintes pour s’assurer que le graphe final est plus cohérent avec les données, en
modifiant les règles pour choisir les variables de conditionnements. Les outils d’inférence
et de visualisation sont mis à disposition de la communauté pour permettre au plus grand
nombre d’analyser leurs jeux de données.

Enfin, nous mettons à profit ces développements pour analyser des jeux de données
mixtes, toujours en étroite collaboration avec les équipes responsables de la collecte des
données. La première application majeure est l’analyse de dossiers médicaux de patients
âgés atteints de troubles cognitifs en collaboration avec l’hôpital La Pitié-Salpêtrière. La
seconde concerne les dossiers médicaux de patientes ayant entrepris une chimiothérapie
néo-adjuvante contre le cancer du sein, avec le département de chirurgie oncologique de
l’hôpital Curie. Enfin, nous présentons des résultats sur l’analyse de gènes métaboliques
moteurs de la différentiation hématopoïétique sur des données de profil transcriptomiques de
cellules précurseurs.
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Abstract
Correlation does not imply causation, an important distinction to remember as statistical
associations generate more and more discussion in an increasingly measured and documented
world. It is, however, the goal of most of science, whether or not it is acknowledged: to
define the mechanisms in our environment that produced these observations. The new science
of causality seeks to reconcile us with this concept by answering these questions: how can
we formalize causal relationships, how can we represent them, and when can we discover
them? This thesis is grounded in the theory primarily developed by Judea Pearl on causal
diagrams; graphical models that allow us to derive all causal quantities of interest (treatment
effect, counterfactuals...) formally and intuitively. We address the problem of causal network
inference from observational data only, i.e. without any intervention from the practitioner. In
particular, we propose to improve existing methods to make them more suitable for analyzing
real-world data, by dropping as much as possible any assumption about data distribution, and
by making them more interpretable.

We propose an extension of MIIC, a constraint-based information-theoretic approach
to recover the equivalence class of the causal graph from observations. Our contribution
is an optimal discretization algorithm to simultaneously estimate the value of mutual (and
multivariate) information and evaluate its significance between samples of variables of any
nature: continuous, categorical or mixed. This optimal discretization is itself based on
the principle of minimum description length to find the best representations of the joint
distributions through a normalized maximum likelihood estimation. This discretization
comes with an assessment of the significance of information in the sense of data complexity,
which allows us to reconstruct causal graphs in a robust manner on finite sample sizes. We
also propose improvements to constraint-based algorithms to ensure that the final graph is
more consistent with the data, by modifying the rules for choosing the conditioning variables.
Inference and visualization tools are also made available to the community.

Finally, we make use of these developments to analyze mixed datasets, always in close
collaboration with the teams that were responsible for data collection. The first major
application is the analysis of medical records of elderly patients with cognitive disorders in
collaboration with La Pitié-Salpêtrière Hospital. The second concerns the medical records
of patients undergoing neoadjuvant chemotherapy for breast cancer, in collaboration with
the surgical oncology department of the Curie Hospital. Finally, we present results on the
analysis of metabolic genes driving hematopoietic differentiation on transcriptomic profiles
of precursor cells.



Chapter 1

Introduction

1.1 Scientific context

If correlation does not imply causation, then what does ? It is a good thing that this distinction
has permeated modern scientific culture, but discovering the causal mechanisms remains the
goal of most studies, and correlation their main tool to do so. The new science of causality is
trying to reconcile us with this goal, formally defining how to represent causal relations, how
to measure them, and most importantly, giving the necessary conditions to discover them.

The first question on how to represent causal relationships has perhaps found its best
answer in the theory of causal diagrams mainly developed by Judea Pearl [1, 2, 3]. A
causal diagram is a Bayesian network: a directed acyclic graph that encodes the conditional
independences between random variables represented by the nodes; with an added causal
dimension transcribed by the direction of the edges. From these graphs, one can derive
answers to fundamentally causal questions like "what is the effect of this treatment on this
population?", or even "what if this population had received this treatment?".

This thesis contributes to the field of causal graph discovery, which aims to reconstruct
these graphical models from observational data only. The challenge of causal discovery lies in
retaining the direct links that reflect some understanding of nature, the data generating process,
and rejecting the spurious interactions that are indirect consequences of the meaningful
relationships. In the right conditions, it is known that we can learn the causal graph up to an
equivalence graph from only the pattern of dependencies and independencies found in the
data, without any intervention.

In this work, we focus on constraint-based algorithms in general and MIIC specifically, an
information-theoretic approach combining elements of both constraint-based and score-based
methods. Where classical methods rely on frequentist tests of independence and a parameter
α for the p-value threshold, MIIC estimates independence from data with the minimum
description length principle and the normalized maximum likelihood distribution.

1



2 Chapter 1. Introduction

1.2 Contributions

The main objective of this thesis is to make MIIC and constraint-based methods more
capable of handling real-world data. This class of algorithms relies entirely on conditional
independence patterns on sampled data, which is notoriously hard to estimate without making
assumption on the distributions.

We want to be able to use the data that is available to us under any form and making as
little assumption as possible on its distribution. Concretely, we want to be able to estimate
the conditional independence between two variables X ,Y with a conditioning set Z regardless
of the nature of the marginal distributions (p(X), p(Y ), p(Z)) and of the joint distributions
(p(X ,Y )...). This estimate must also be robust to small sample sizes while remaining
computable when N is large, and ideally not favor any type of variable or interaction.

The method presented here is based on the master definition of mutual information:

I(X ;Y ) = sup
P,Q

I([X ]P; [Y ]Q)

where the supremum is on all finite partitions P and Q [4]. The developed approach consists
in maximizing the value I′([X ]∆; [Y ]∆) corrected by the stochastic complexity associated
with the discretization [X ]∆; [Y ]∆ to take into account the effects of the finite number of
samples. Introducing the complexity also allows us to conclude on the independence on finite
samples (for which the information estimate is always positive): I′([X ]∆; [Y ]∆)≤ 0 implies
independence between X and Y in the sense of the data complexity [5].

The other contributions of this thesis concern the operation of constraint-based methods.
First, we propose an information theoretic test to perform test-wise omission in the case of
missing data, avoiding as much as possible the spurious independencies brought by selection
bias. In the same idea, we introduce a variant of constraint-based algorithms that guarantees
that the conditioning sets used to remove edges are more consistent with the final graph Gin f

and the data D [6].

We also propose a method to distinguish "genuine" from "putative" causal links returned
by MIIC, by excluding the effect of an unobserved common cause for each predicted genuine
causal link. It is achieved by evaluating the separate probabilities of the "head" and "tail" of
directed links for all directed edges.

In addition to an open source library on R, we have also developed an online graphical
interface to facilitate the exploration of MIIC results, available at https://miic.curie.
fr/.

Finally, we show different applications of MIIC on real-life mixed datasets.

The first network is reconstructed from clinical data of the hospital La Pitié-Salpêtrière

https://miic.curie.fr/
https://miic.curie.fr/
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of 1628 elderly patients with cognitive disorders. After processing the dataset, it contains
107 variables of different types (i.e. 19 continuous variables and 88 categorical variables)
and of heterogeneous nature (i.e. variables related to medical history, comorbidities and
comedications, results of cognitive tests, clinical, biological or radiological examinations,
diagnoses and treatments).

The second application focuses on medical data from 1199 breast cancer patients who
received neoadjuvant chemotherapy at the Curie Hospital over the last 20 years. The network
approach allows for all variables to be considered together, distinguishing between indirect
and direct relationships, and helps practitioners understand the mechanisms behind the
creation of data, whether it is the way they are collected or the progression of the disease
itself.

The third application of MIIC on mixed data concerns the discovery of driver genes
that influence the differentiation of hematopoietic precursor cells, and the inference of the
regulatory network of these genes.

1.3 Research articles

This thesis is a cumulative dissertation based on the research articles written during the PhD.
After a general introduction on causal inference and information theory, the articles are either
included verbatim or modified so as to give more context on related works and details on the
implementations. Section 3.2 in particular gives a more detailed description of the methods
introduced in [7], with the publication itself being more centered around benchmarks and an
application on real data introduced in Section 5.1.
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Chapter 2

Causal inference from observational data

2.1 Causal inference and causal structures

In this section we clarify the concept of using graphs to represent causality. We start by
giving an intuitive example of a causal diagram, and we show that such graphs can describe
quite naturally common ways of inferring causality, either through experiments or from
observation data. Finally, we give the formal notations and definitions of the causal graph
framework.

2.1.1 Intuition of causal graphs

Let us consider a familiar situation in which our intuition can be represented by a causal
diagram (Fig 2.1). Assume that there are two causes that could be at the origin of a car
breakdown, which we try to diagnose before intervening on the car. We consider the factors
that could help us make the diagnosis, and decide to draw a diagram to see their relations
visually. The two causes considered, low engine oil level or a flat battery, are represented
as parents of the "Breakdown" node. There is no reason to think that the two are linked,
which we represent by not drawing an edge between them. We include a fourth node that
corresponds to another observation : the headlights do not turn on. We know that the
headlights do not depend on the oil level but they need battery to run, and the "Lights" node
is therefore linked to the "Battery" node only. We also know that usually, it is somehow
related to a car breaking down : if the headlights do not turn on, the car will probably not start
either. We represent this association with a dotted link. This link reflects a correlation, not a

causation : the indirect interaction exists only because of the common ancestor "Battery" but
does not inform us about a functional relationship (therefore it would not be included in the
causal diagram). It can help us guess the origin of the failure (Battery or Oil), but fixing the
headlights will not help to start the car.

Representing complex systems with a causal graph has two main advantages. First,

5



6 Chapter 2. Causal inference

Breakdown

Battery Oil

Lights

Figure 2.1: Car breakdown diagnosis with a causal diagram.

only the direct links, that correspond to functional relationships, are represented. Spurious
correlations between two variables that are not causally linked can always be explained from
a path of direct links in the graph. Secondly, the causal order can be read off the graph, via
the direction of the edge X → Y . If X is a parent of Y , then intervening on the distribution of
X to give it an arbitrary value x will affect the distribution of Y , but the inverse is not true :
intervening on Y will not affect its parent X . Such intervention is noted p(Y |do(X = x) and
is the basis of do calculus. Remark that p(Y |X) and p(Y |do(X = x)) are not the same : the
first is observational while the second is interventional. For example, let X be the reading
on a barometer and Y the weather represented in a single variable. If we observe both every
day and take note of their values, p(Y |X) would show a strong relationship between the two
: if the barometer measures low air pressure the weather is often bad, while if it measures
high pressure the weather is better. The distribution p(Y |do(X = x)) however won’t actually
depend on the value x : we cannot change the weather by setting the reading on a barometer.
Even though p(Y |X) can be used for predicting the value of a variable by measuring the other
one, it does not inform on the functional relationship between the two. For this, we need to
go up a rung on the ladder of causation, by using do-calculus [3].

In the example of Fig 2.1, we draw the graph from pre-existing knowledge, but what can
we do when such knowledge is not available ? This is the domain of causal inference, which
aims to uncover causal effects either through experimentation or passive observation of the
system.

2.1.2 Causal inference approaches as seen with causal graphs

The gold standard of causal inference is the randomized controlled trial, where an homoge-
neous population is randomly attributed either a treatment or a placebo. Let Y be the outcome
of the trial for each patient, which can be positive or negative. We want to know the extent to
which the outcome depends on the treatment, noted X , as opposed to other external factors
which are all grouped in the node Z. Formally, we can answer this question by comparing
p(Y |do(X = treatment)) and p(Y |do(X = placebo)). The causal graph of a truly random
trial is shown in Figure 2.2.

We can see from the causal diagram that the causal effect of X on Y is direct, it is
not affected by the rest of the graph. In this setting, random attribution of X is a kind of
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X Y

Z

Figure 2.2: Randomized control trial where X is the treatment, Y the outcome and Z external
factors.

intervention, and p(Y |do(X)) can be directly observed from the data as p(Y |X). This type
of experiment is generally reliable provided the treatment is assigned truly at random, but
is has disadvantages. First, it needs to be conducted for each X for which we want to know
the effect, and it may be too long or too difficult to enroll enough participants. Secondly, it
is unethical when we suspect that the interaction is harmful, think for example of forcing
test subjects to be exposed to carcinogens. Finally, it may be simply impossible to intervene
on the potential cause, for example we can not randomize the genetic makeup of patients to
study the prevalence of certain diseases.

For those cases, we can still perform causal inference by simply observing the potential
cause, the outcome, and all of the confounding factors which affect both the cause and the
effect (Fig 2.3). This graph summarizes the principle behind several approaches, even those
that have not adopted the language of causal graphs and do-calculus. Matching procedures
for example make exactly the same assumptions to estimate the effect of X on Y by taking
the effect of Z into account. Their goal is to reduce the assignment bias for the "treatment"
X and mimic a randomized controlled trial by creating samples that were matched on Z,
essentially removing the edge Z→ X [8, 9]. Fig 2.3 is also the typical setting where one can
simply model Y from X while adjusting for Z. This is the approach taken by genome-wide
association studies, which try to measure the effect of thousands of genes X on the apparition
of a disease Y adjusting for some principal components Z to model ancestry differences
between cases and controls [10].

X Y

Z

Figure 2.3: Observational studies require to adjust for the confounding variables Z.

All of these methods are theoretically sound but are often criticized for their predisposition
to give biased results. According to Pearl, these shortcomings come mainly from the attitude
that Z should contain as many covariates as possible, to adjust with all the information that
is available [1, p. 350]. By doing so and ignoring the "strong ignorability conditions" for a
variable to be included in Z, we will inevitably end up including variable that are not parents
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but children of X and Y : X → Z← Y , violating the assumptions and the graph of Fig 2.3.
Still according to Pearl, this kind of mistake is much less likely to occur when using the
causal graph framework, as practitioners are forced to model the interactions first, thinking
about the causal relationships between the treatment, the outcome, and the covariates.

As the last example, we will look at the case where we still cannot intervene on the
potential cause X , and we know it is affected by common confounders of Y , but we cannot
measure them, nor adjust for them. This was famously the defense of prominent statisticians
employed by tobacco companies at the time of the first reports linking cigarettes with lung
cancer. The association could not be denied, but they claimed it could be explained by a
hidden common cause, some genetic factor for example, which caused a certain population
to both want to smoke and develop more cancers than the general population. In 1964 we did
not have access to sequencing technology, and since randomized controlled trials were out
of the question, this argument was hard to disprove and supposedly delayed anti-smoking
legislation [1, p. 83]. In this setting, we can still measure the effect of X on Y if we measure
another "instrumental" variable I that we know to have an effect on X and to be independent
of the latent confounders L (Fig 2.4).

X Y

I L

Figure 2.4: When the confounding variables are not observed, the effect for X on Y can be
estimated from an instrumental variable I.

Indeed, we can see from the graph that any association measured between I and Y

necessarily goes through X , proving the existence of the directed edge X → Y . In the
cigarettes cause lung cancer example, we can take I as the price of cigarette packs. Intuitively,
if I is correlated with the number of lung cancers Y we can deduce the existence of a causal
link between tobacco consummation and cancer [11]. Just as with the adjusting variables of
the previous example, modelling the interactions in a causal graph is a way of making sure
that I corresponds to an instrumental variable.

This brief discussion highlights the remarkable adaptability of causal graphs. These
intuitive models are able to summarize most if not all approaches that aim to infer causality,
federating all causal thinking into a single framework. Once the causal graph is known,
one can then derive formal quantities of causal effect and counterfactual thinking using
do-calculus.
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2.1.3 Notations and definitions

The causal graph framework treats causality as a statistical property, it utilizes the languages
of both graph theory and probability. We now take the time to review the definitions that are
necessary to define a causal graph.

• Let D be a dataset comprised of V variables X1, ...,Xv. For pairwise and conditional
cases, we may use X , Y and Z as variables of D instead.

• Each variable has a distribution p(Xi), and the joint distribution of D is p(V ).

• We note two variables that are independent as X ⊥⊥ Y , conditionally independent on Z

as X ⊥⊥ Y | Z.

• D is represented by a graph G where each variable is a node. We note the true causal
graph Gc and the graph inferred from the data GIn f .

• If variables X and Y of D are adjacent in G, the edge between the two is either
unoriented X−Y , oriented X → Y , X ← Y or bi-directed X ↔ Y .

• The variables that have an edge pointing towards Xi are its parents and are noted Pai.
The variables that Xi points to are its children, noted Chi.

• The skeleton of G is the graph with same adjacencies and no oriented edges.

• A V-structure is a sub-graph of three nodes where X → Z← Y where X 6 Y .

• The complete graph on V variables is the skeleton where all Xi, X j are adjacent.

The true causal graph is, in short, the graph that describes the causal mechanisms that
produce the data D, as well as all possible randomized studies on the V variables.

Definition 2.1. The true causal graph Gc of given variables X1, ...,Xv with distribution
p(V ) satisfies :

• Gc is a directed acyclic graph.

• p(V ) is Markov with respect to Gc, i.e. if X and Y are d-separated by Z, then X ⊥⊥Y |Z
in p(V ) (see Def 2.3).

• p(V ) satisfies causal minimality with respect to Gc (see Def 2.2).

• The distribution of the node Xi is a function of its parents Pai and some unique noise εi:

p(Xi) = f (p(Pai),εi)

and Gc is compatible [1] with the set of P∗ of all possible interventional distributions
P(V |do(X = x)) for all variable X and value x.
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With the definition of causal minimality :

Definition 2.2. A distribution satisfies causal minimality with respect to G if it is Markov
with respect to G, but not to any sub-graph of G.

Note that since G satisfies causal minimality, it is also unique.

The d-separation is the way to cut the flow of causality from one node to another :

Definition 2.3. Two nodes X and Y of a DAG G are d-separated by a set of nodes Z (which
can be empty) if and only if :

• The path between X and Y contains a chain i→ m→ j or i← m→ j with m ∈ Z, or

• The path between X and Y contains a V-structure i→ m← j such that m 6∈ Z and no
descendent of m is in Z.

The set Z d-separates X and Y if and only if Z blocks every path between X and Y in this way.

If X and Y are d-separated by Z in G, then X ⊥⊥Y | Z in any distribution compatible with
G.

Observe that d-separations concern just one part of the true causal graph Gc, they describe
conditional independences but not the interventional distributions. Crucially, different DAGs
may share the same d-separations. The class of graphs that are observationally equivalent is
called the equivalence class of G [12] :

Definition 2.4. Two DAGs are in the same equivalence class if and only if they have the
same skeletons and the same sets of V-structures.

As we will see in the next section, this is the limit that we can infer from dependencies
and independences in p(V ) alone, without additional assumptions.

2.2 Causal structure learning

This thesis contributes to the field of causal structure learning from observational data, which
aims to recover Gc from D. Most of the methods that have been developed are divided in two
groups : Bayesian scoring methods that assume p(V ) was generated from a Bayesian network
and find the best fitting graph with likelihood scores, and constraint based approaches that try
to reconstruct the graph from the data with iterative statistical tests.
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2.2.1 Score-based approaches

The principle behind score-based approaches is fairly intuitive, but difficult to implement.
Although there may be preliminary work pre-dating it, in this section we refer here the formal
idea introduced by Geiger and Heckerman [13, 14], and Chickering [15]. Given the data D

from a vector of V variables, find the graph Ĝ that maximizes a likelihood score S(D,G) :

Ĝ= argmaxGS(D,G) (2.2.1)

where G is searched over the space of DAGs.

We can think of several definitions for the scoring function. If the distribution p(V ) can
be described with a parametric model (e.g. discrete multinomial distributions, linear Gaussian
relationships), then we can define a set of parameters θ ∈ Θ. The Bayesian definition of
S(D,G) is the log posterior with prior beliefs ppr(G) and ppr(θ) over DAGs and parameters
respectively:

S(D,G) = log pprG+ log p(D|G) (2.2.2)

with p(D|G) the marginal likelihood

p(D|G) =
∫

θ∈Θ

p(D|G,θ)ppr(θ)

In this view, Ĝ which maximizes the score is the maximum a posteriori estimator. In [16],
Heckerman and Geiger discuss how to choose the priors accordingly.

Another way to define the scoring function is using the maximum likelihood estimator θ̂

from N observed samples, for each graph. We can then define the score function using the
Bayesian Information Criterion (BIC) [17] :

S(D,G) = log p(D|θ̂ ,G)− d
2

logN (2.2.3)

which prevents overfitting by favoring models with fewer parameters d.

The space of all DAGs grows super-exponentially with V [15], so heuristics are needed
to search it in practice. Greedy algorithms iterate over the set neighboring graphs, selecting
the best candidate at each step and using it as a new reference point. Neighbors are usually
defined as all DAGs that differ with at most one missing or extra edge from the reference
graph. The greedy equivalence search (GES) [15] improves on this process by performing
two phases : first adding edges up to a local maximum, then simplifying the model by
removing edges, returning the pruned graph when a maximum is reached.

From our perspective, score-based methods suffer from the following drawbacks : (1)
The score function requires simple modeling and parameters, which may destroy subtle
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causality signals in real data. (2) The search space is limited to DAGs or their equivalence
class, excluding bi-directed edges X ↔ Y . (3) The methods do not scale well with V and
typically do not produce good results when V > 50.

2.2.2 Constraint-based approaches

Compared to the score-based methods, constraint-based algorithms have more of a local
approach to graph reconstruction. They make two assumptions : d-separation in Gc implies
conditional independence in p(V ) (the Markov condition), and all conditional independences
in p(V ) correspond to d-separation in Gc (the faithfulness assumption). They will be discussed
in more details in Sec 3.1.3, for now we simply assume that they hold for p(V ) and Gc. Given
both assumptions, constraint-based approaches are able to recover up to the equivalence class
of Gc from the set of dependencies and conditional dependencies of p(V ).

We now describe the staple constraint-based approach, the PC algorithm named after
Peter Spirtes and Clark Glymour [18], which is itself a refinement of the IC algorigthm [12].
It consists of three phases, as shown in Alg 1.

Algorithm 1 The PC Algorithm
Require: D

Step 1: Find the graph skeleton and separating sets of removed edges
Step 2: Orient V-structures based on separating sets
Step 3: Propagate orientations of V-structures to as many remaining undirected edges as
possible
return Output graph GIn f

It was proven to be consistent, returning the correct equivalence class of Gc if enough
samples are observed. The skeleton reconstruction phase is an iterative process : starting
from the complete graph, remove all edges X −Y if X ⊥⊥ Y or if X ⊥⊥ Y |Z with Z a set of
variables in the neighbors of X ,Y . Colombo and Maathuis improved the original algorithm
by making it order-independent, calling this version "PC-stable" [19]. This is the version
detailed in Alg 2.

In the second step, we start orienting the edges of the resulting skeleton, V-structure by
V-structure. For each triplet X−Z−Y where X 6 Z, orient the edges X → Z← Y if Z was
not in the separating set to remove the edge X−Z. This orientation step also has two other
variants, the conservative rule [20] and the majority rule [19]. Using the conservative rule,
the V-structure is oriented only if Z is in none of the separating sets that satisfy X ⊥⊥Y |{Ui }
(and accordingly, with majority rule orient if Z is less than 50 percent of those). Both give
generally better results than the original scheme, although they require many more conditional
independence tests.

Finally, these orientations are propagated to the rest of the graph following Meek’s
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Algorithm 2 Find skeleton and separating sets (Step 1 of PC-stable algorithm)
Require: Conditional independence test between all V variables

GIn f ← the complete graph on V
`←−1
repeat

`← `+1
for all vertices Xi ∈ G do

a(Xi) = adj(G,Xi)
end for
repeat

select a new pair of vertices (Xi,X j) adjacent in G and satisfying |a(Xi)\{X j}| ≥ `
repeat

choose new CCC⊆a(Xi)\{X j}, |CCC|=`
if (Xi ⊥⊥ X j|CCC) then

Delete edge Xi X j from G

Sepset(Xi,X j | G) = Sepset(X j,Xi | G)←CCC
end if

until Xi and X j are no longer adjacent in G or all CCC ⊆ a(Xi)\{X j} with |CCC| = `
have been considered

until all pairs of adjacent vertices (Xi,X j) in G with |a(Xi)\{X j}| ≥ ` have been
considered
until all pairs of adjacent vertices (Xi,X j) in G satisfy |a(Xi)\{X j}| ≤ `
return G, sepsets

rules [21]. This step does not rely on independencies observed in the data, it is more of
a convention to make the result GIn f into a graph that is maximally oriented within the
equivalence class [1]. As such, propagated orientations may be considered weaker causality
signals than V-structures.

As opposed to score-based methods, constraint-based methods present many advantages.
They can be used to infer larger networks provided the conditional independence test has
a good time complexity. They also do not rely on a modeling of p(V ), only a conditional
independence test, and are thus applicable to a much wider range of data. Additionally,
modifications like the Fast Causal Inference (FCI) Algorithm [22] (and RFCI [23]) can make
it tolerate and even discover unknown confounding variables.

2.2.3 (Conditional) independence tests

In Section 2.2.2, we purposefully introduced constraint-based methods with an "Oracle"
independence test, i.e. able to infer X ⊥⊥ Y or X 6⊥⊥ Y from D with no error. In practice,
they also need a parameter α which sets the threshold for significance of a given dependence
estimator. Few measures are able to reliably detect dependence between two random variables
without being restricted to some type of interaction (see Fig 2.5 for examples of dependencies).
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Figure 2.5: Various forms of dependencies, X 6⊥⊥⇔ p(x,y) 6=p(x)p(y)

In the context of network inference, it is worth reviewing our options as the resulting graph
will only contain the interactions in the class of models that are supported by the chosen
dependence measure. I now give a brief overview of various dependence measures that can
be used in constraint-based methods, going from the simplest to the most general.

Discrete independence tests

The problem of estimating (conditional) independence on discrete data has been studied for a
long time. The χ2 test was developed by Pearson to compare the observed joint frequencies
of X and Y with those under the null hypothesis, where X ⊥⊥ Y :

χ
2 =

k

∑
i=1

x2
i

mi
−N (2.2.4)

where xi is the observed count, mi the expected count and N the number of samples.

To assess the significance of χ2, one can then compare it to the distribution under the
null hypothesis, and accept the evidence for dependence if the cumulative density at the
estimation (p-value) is lower than the specified al pha.

One can also compute the closely related G-statistic, of which the χ2 is an approximation.
Since it is related to information theoretic measures, the G-test will be discussed in Section
3.1.1.
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Linear and nonlinear correlations

The most commonly used dependence measure is probably the linear correlation coefficient
ρ , or the Pearson correlation coefficient (PCC). It is bounded in [−1,1], it gives an estimation
of both the strength and the direction of the covariance between two variables. As with
covariance itself, it is only able to detect linear relationships and ignores many other types of
dependencies. For the bivariate normal case, it implies X ⊥⊥ Y if and only if ρX ,Y = 0 (with
sample size N→ ∞). In practice, ρX ,Y is never null and its significance is also assessed by
comparing the estimated value to the distribution under the null hypothesis, for which we
know the exact form.

It is generalized to non-linear relationships with Spearman’s rank correlation coefficient,
which measures the strength and direction of any monotonic function between X and Y .
It is more general than the PCC, although still far from the strict equivalence that defines
statistical independence : X ⊥⊥ Y ⇔ p(x,y) = p(x)p(y).

Distance correlation

Distance correlation or distance covariance is a relatively new measure of dependence
between two paired random vectors that is meant to be more universal that the product-
moment covariance and correlation [24, 25].

The distance correlation R is obtained by normalizing the distance covariance, it behaves
like the PCC but generalizes the idea of correlation in at least two fundamental ways. For
all distributions with finite first moments, (1) R(X ,Y ) is defined for X and Y of arbitrary
dimensions (may not be equal) and (2) R(X ,Y ) = 0⇔ X ⊥⊥ Y .

It is much more powerful than linear and non-linear correlations, for example it is typically
able to detect all dependencies of Fig 2.5 except for the checkerboard pattern. In practice, it
is however difficult to judge its significance as no closed form of the distribution under the
null hypothesis is known. Instead, the null distribution is estimated by resampling the data
many times and significance is assessed by comparing the empirical p-value to α .

Although they are unrelated, it has comparable power to Hoeffding’s much older test of
independence [26], based on the joint distribution’s deviation from independence [27].

Kernel-based tests

Another popular approach to measure statistical dependence in the non-parametric case is to
use kernel transformations of the data, and then measure the covariance in the kernel space
[28, 29]. It was also adapted to independence testing in [30], giving the Hilbert-Schmidt
independence criterion (HSIC). Significance is assessed by estimating the null distribution,
either via Monte Carlo resampling or with a gamma distribution approximation.
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[31] first proposed to adapt the HSIC to the conditional case, and infer causal structures
with permutation-based significance testing via constraint-based algorithms. [32] also im-
plemented kernel-based independence testing with the "Kernel PC" algorithm, although it
also suffers from high complexity for independence testing. [33] improved on this idea and
derived the null distribution for the conditional case, making the test less prone to type 1 and
type 2 errors, and much more computationally efficient.

Kernel independence tests are very powerful to detect independencies in the non-parametric
case, but they typically do not scale well with the number of samples.

Feature selection

Finally, we can mention feature selection as a whole, as it is strictly equivalent to finding the
Markov blanket of the response variable (Fig 2.6). The statistical definition of the Markov
blanket is the set of nodes B which can separate a variable Y from the rest of the dataset,
Y ⊥⊥D\Y |B. In this sense, it is the optimal set that feature selection techniques try to recover.
From the point of view of Bayesian networks, B is the set of all parents, children and spouses
(other parents of its children) of Y .

Y

Figure 2.6: All nodes in the light blue shade are in the Markov blanket of the node Y .

Conceptually, this implies that any feature selection technique will in fact learn some
local structure of the skeleton of Gc, and we can learn the full skeleton by aggregating the
results of feature selection for each node in the network. Such a method exists with GENIE
3 [34], which treats network reconstruction as several prediction problems, and combines
random forests feature importance scores to recreate the graph.

However, one must pay particular attention to the process by which feature importance
scores are computed. Typically, tree-based models subsample the feature space to avoid
overfitting, but this implies that G may be different for each tree. As the simplest example, if
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the true Gc is X1→ X2→Y , the Markov blanket of Y consists of only {X2 }. By subsampling
the feature space for each tree, we potentially remove X2 and make the interaction X1→ Y

direct, which is not representative of Gc.

2.2.4 Other graph reconstruction methods

The original PC algorithm is now more than thirty years old, and although it is consistent
and theoretically sound, it has limitations (for example, it is not particularly robust to noise
with finite sample size [5, 35]). In this section we give a very brief overview of other recent
Bayesian structure learning and causal inference approaches that are neither score-based nor
constraint-based.

A very different approach to causal graph reconstruction was introduced with the linear,
non-Gaussian and acyclic model (LiNGAM) of Shimizu et al. [36]. Instead of examining
only the dependencies between variables, in this framework the relationship between two
variables X and Y is modeled with a structural equation :

Y = bX + ε (2.2.5)

with b a factor, ε some noise such that ε ⊥⊥X . The breakthrough of Shimizu et al. is the proof
that Gc can be recovered from D, in its entirety, whenever at most one ε is Gaussian. The
intuition behind LiNGAM is that for non-Gaussian distributions, there is more information in
the joint distribution than in the covariance matrix, which can be detected using independent
component analysis. The key assumption here is the additive and independent noise model,
which can be interpreted as the residual after predicting Y from its parents. DirectLiNGAM
introduced another way to find the causal ordering by recursively performing regression and
independence test between the predictor and residual [37].

In a similar idea, the Causal Additive Models (CAM) method aims to recover the under-
lying DAG by modeling the distribution p(V ) with additive structural equation models with
Gaussian noise and non-parametric, non-linear relationships [38].

Another different strategy was introduced with NOTEARS, which formulates structure
learning as a continuous optimization problem with a smooth function over real matrices
[39], in opposition to the classical combinatorial score-based learning. The first version
of this approach relied heavily on the linear parametrization in the weighted adjacency
matrix, and was recently generalized to a larger class of models, that works without assuming
any particular form of parametrization [40]. This general framework essentially makes the
score-based method solvable using any of the existing generic solvers, such as multilayer
perceptrons.

In a inspired paper, Wang and Blei proposed to take advantage of the multiplicity of
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causes for a variable of interest by using unsupervised machine learning to estimate a latent
confounding variable [41]. Having multiple causes is a blessing in this case : it gives more
information to estimate a "substitute confounder" which in turn can prove or disprove causal
relationships between causes and effect, with weaker assumptions than classical causal
inference.

Finally, it was shown by [42] that causal structure can be learned by exploiting the
invariance of functional relationships under a change of environments. First developed for
linear models, [43] expands the framework of invariant causal prediction to the nonlinear and
nonparametric case. This approach in particular will be discussed in Section 3.1.3 in relation
with the "stability" or faithfulness assumption.

2.2.5 MIIC

MIIC (Multivariate Information-based Inductive Causation), combines constraint-based
and information-theoretic frameworks to learn more robust causal graphical models. It
was developed on the basis of the 3off2 algorithm by Affeldt and Isambert [5, 35], which
takes advantages of multivariate information to reconstruct the skeleton and orient the
edges. Corrected mutual information is described in more details in Section 3.1.1, for
now we can simply treat it as a proxy for (conditional) independence between variables :
X ⊥⊥ Y ⇔ I′(X ;Y )< 0 and X ⊥⊥ Y |Z ⇔ I′(X ;Y |Z)< 0.

Just like the PC algorithm it starts from a complete graph and prunes the edges to find the
skeleton, then orients it (Alg 1) but there is a crucial difference in the way it chooses separating
sets to remove edges. Where PC iterates over all the combinations of the neighbors of X and
Y in order of increasing cardinality {Ui } (until it can conclude conditional independence or
it runs out of combinations), MIIC takes off the contributors one by one, using the chain rule
of conditional information :

I(X ;Y |{Ui},Z) = I(X ;Y )− I(X ;Y ;U1)− I(X ;Y ;U2|U1)−·· ·− I(X ;Y ;Z|{Ui}) (2.2.6)

This allows to both speed up the process, removing the combinatorial search, and make
it more robust to spurious independencies by removing the contributors in order of their
information. The full algorithm is given in Alg 3.

Formally, the score R(X ,Y ;Z|{Ui }) is the minimum between the two conditions that Z

indeed contributes to I(X ;Y |{Ui }) :

R(X ,Y ;Z|{Ui }) = min(Pnv(XY Z|{Ui }),Pb(XY |Z,{ui })) (2.2.7)
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Algorithm 3 MIIC network reconstruction
Require: D

- Skeleton reconstruction
G← the complete graph on V
for all edges X−Y ∈ G do

if I′(X ;Y )< 0 then
Delete edge X Y from G

Sepset{X ,Y }← /0
else

Find most contributing node Z ∈ {adj(X) ∪ adj(Y )}which maximizes R(X ,Y ;Z| /0)
end if

end for
while There is a link X−Y with R(X ,Y ;Z|{Ui })> 1/2 do

for Top link X−Y with highest rank R(X ,Y ;Z|{Ui }) do
Expand contributing set {Ui }← {Ui }+Z
if I′(X ;Y |{Ui })< 0 then

Delete edge X Y from G

Sepset{X ,Y }← {Ui }
else

Find next most contributing node Z ∈ {adj(X) ∪ adj(Y )} and compute
R(X ,Y ;Z|{Ui })

end if
Sort the rank list R(X ,Y ;Z|{Ui })

end for
end while

- Skeleton orientation
Sort list of unshielded triples Lc = {(X ,Z,Y )X 6 Y } in decreasing order of
| I′(X ;Y ;Z|{Ui })|
repeat

Take (X ,Z,Y )X 6 Y ∈ Lc with highest | I′(X ;Y ;Z|{Ui })| on which R0 or R1 orientation
rules can be applied

if I′(X ;Y ;Z|{Ui })< 0 then
if (X ,Z,Y )X 6 Y has no diverging orientation, apply R0 and orient X → Z← Y

else
if (X ,Z,Y )X 6 Y has one converging orientation, apply R1 and orient X → Z→ Y

end if
Update all orientations of (X ,Z,Y )X 6 Y ∈ Lc

until No additional orientation can be obtained

return G

Where Pnv(XY Z|{Ui }) is the probability that X−Z−Y is not a V-structure :

Pnv(XY Z|{Ui }) =
1

1+ e−N I′(X ;Y ;Z|{Ui })
(2.2.8)
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and Pb(XY |Z,{Ui }) the probability that the base is X−Y

Pb(XY |Z,{Ui }) =
1

1+ e−N I′(X ;Z|{Ui })

e−N I′(X ;Y |{Ui })
+ e−N I′(Y ;Z|{Ui })

e−N I′(X ;Y |{Ui })

(2.2.9)

The orientation rules are also based on information theoretic measures, and can even be
expressed with probabilities (we refer the reader to [35] for the full derivations). This also
makes it more robust than PC, even with majority or conservative rules.

Much like FCI, MIIC is also able to take into account and discover latent variables [44],
making it more apt to analyze real-life datasets. It was however limited to discrete data, for
which estimating I′ is rather straightforward.

One of the main objectives of this thesis was to adapt MIIC to any distribution p(V ),
which means developing a mutual information estimator for any type of variable : discrete,
continuous or a mixture of both. In the next chapter, we formally define the mutual infor-
mation and its connection to causal graphs, before introducing our general case estimator
developed for general constraint-based reconstruction.



Chapter 3

Mutual information for general constraint-
based causal inference

3.1 Mutual information and Conditional mutual infor-
mation

The mutual information is a measure of the dependency between two random variables in
the most general sense. It is agnostic to the nature of the random variables and of their
relationship : noted I(X ;Y ), it simply defines the quantity of information one knows about X

by knowing Y , and vice-versa. It was introduced by Claude Shannon in 1948 to characterize
communication channels [45] but it has found success in a wide range of applications since.
It is still seen by many as the ideal dependency measure, although it is difficult to use in
practice as we will see in this chapter.

In this chapter, I review previous work and present how we developed a new general case
(conditional) mutual information estimator for constraint-based causal discovery on mixed
variables, introduced in [7]. The section is organized a follows : I first give the necessary def-
initions of information theoretic concepts, review the existing estimators for both the discrete
and continuous case on finite data, and I introduce the concept of optimal discretization in
terms of maximizing a penalized mutual information and detail our implementation. Then, I
show qualitative and quantitative results on our discretization scheme to estimate the mutual
and conditional information and assess its significance.

3.1.1 Definitions

Entropy and mutual information

Before giving the definition of the mutual information between two random variables, it is a
good idea to start with the self-information contained in a single variable, called the entropy.

21
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Let X be a discrete random variable with possible values in X and a probability mass function
p(x) = Pr{X = x},x ∈ X. The entropy H(X) of X is defined by :

H(X) =−∑
x∈X

p(x) log p(x) (3.1.1)

It is expressed in bits with a logarithm to the base 2, or nats with the base e, and it
denotes the average information or "surprise" that is carried by a random variable. To get a
better understanding of this concept, consider a game of chance where you try to predict the
result of a coin flip. If the coin is balanced, each realisation has the same "surprise" as both
outcomes, heads or tails, are equiprobable. When the coin is biased towards one outcome
with probability p, the average surprise decreases as p approaches 0 or 1 at which point it
becomes null and your willingness to bet on the outcome increases. Note that the entropy
characterises the distribution of a random variable and not the surprise of one realisation.

This definition can be naturally extended to a pair of random variables X and Y (which
can be thought of a single two-dimensional variable), giving the joint entropy :

H(X ,Y ) =−∑
x∈X

∑
y∈Y

p(x,y) log p(x,y) (3.1.2)

We can also define the conditional entropy, i.e. the expected "surprise" of the conditional
distribution of a variable Y given X :

H(Y |X) =−∑
x∈X

∑
y∈Y

p(x,y)log
p(x,y)
p(x)

(3.1.3)

One desirable property of these information-theoretic values is that they can be combined
in an intuitive manner with the "chain rule" :

H(X ,Y ) = H(X)+H(Y |X) (3.1.4)

H(Y |X) = H(X ,Y )−H(X) (3.1.5)

Indeed, it comes easily to think of the joint entropy of X and Y as the sum of the
information carried by X plus the residual information of Y after "removing" the knowledge
of X , as some information may be redundant between the two.

So far we have only defined the entropy of discrete variables, but our ideal dependency
measure should also include continuous or mixed (part discrete, part continuous) distributions
which are present in real-life datasets. Continuous variables are defined by a probability
density function f (x) instead of a mass function, which was naturally considered by Shannon
to be equivalent in the definition for their entropy. There are however subtle differences with



3.1. Mutual information and Conditional mutual information 23

the discrete counterpart, which is why this value is called the differential entropy and is noted
h(X) :

h(X) =−
∫

S
f (x) log f (x)dx, (3.1.6)

with S as the support set of X where f (x)> 0.

The source of the differences between differential and discrete entropies becomes evident
with our previous example of predicting the value of a random variable : what is the surprise
of a realisation of X given that there is an infinite number of possible values in any continuous
interval, each with a probability that tends to 0 ?

It is better to think of the differential entropy as an estimate of the effective volume that a
random variable occupies : a very focused distribution will have a low entropy as opposed to
a more dispersed distribution with more room for randomness hence higher entropy. Formally,
the differential entropy is the logarithm of the length of the smallest interval that contains
most of the probability [4] : for example, the differential entropy of a uniform distribution on
the interval [0,a] is log(a).

Although the differences between entropy and differential entropy go beyond the scope
of this thesis, it is still interesting to mention them to understand why discretization has been
so popular for so long to estimate the entropy or mutual information between samples of
continuous variables. Even though, as we will see in sections 3.1.4 and 3.2, one must be
careful to discretize a continuous variable without introducing bias.

Entropy and differential entropy behave similarly and are interchangeable in the settings
that interest us, namely for the joint and conditional differential entropy, the chain rule and
especially the relationship to mutual information. For the rest of section 3.1.1, the probability
mass function p(x) can be replaced by the density function f (x), and H(X) by h(X) to switch
from discrete to continuous random variables. The special case of mixed variables with both
continuous and discrete parts will be reviewed at a the end of this section.

We have established that information theory gives us the necessary tools to define the
entropy of a random variable (which can be multidimensional or conditional), i.e. the amount
of information needed on average to describe it. Next we show how we can also formalize
how much information two variables have in common, giving a measure of how (in)dependent
they are. For this we need to introduce the Kullback-Leibler divergence, also called the
relative entropy. The relative entropy DKL(p ‖ q) is a measure of the difference between two
distributions p and q defined on the same space X:

DKL(p ‖ q) = ∑
x∈X

p(x) log
p(x)
q(x)

(3.1.7)

Also called the Kullback-Leibler distance (although not a distance in the usual sense as it
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H(X |Y ) H(Y |X)

H(X)
H(Y )

I(X ;Y )

H(X ,Y )

Figure 3.1: Relationship between the entropy, conditional entropy, joint entropy and mutual
information between two variables

is not symmetric), it can thought of as the cost of describing the distribution p when using q

as a reference model. As such, it is null if and only if p = q and it is always non-negative.

Now we get back to our original goal which is to define the dependency between two
random variables X and Y . In the most general sense, X and Y are independent if the
realization of one does not affect the probability distribution of the other. Formally put, two
random variables X and Y with marginal distributions p(x), p(y) and a joint distribution
p(x,y) are independent if and only if p(x,y) = p(x)p(y). If these two quantities differ, some
information is being shared between X and Y : knowing about X tells us something about Y

and vice versa.

Using the measure of divergence we just introduced, it becomes natural to think of the
divergence between the joint distribution and the product of marginals as a direct measure of
the dependency. It is in fact the definition of the mutual information I(X ;Y ) :

I(X ;Y ) = DKL (p(x,y) ‖ p(x)p(y)) (3.1.8)

= ∑
y∈Y

∑
x∈X

p(x,y) log
(

p(x,y)
p(x) p(y)

)
(3.1.9)

In agreement with our interpretation of the relative entropy, assuming the independence
model where p(x,y) = p(x)p(y) the mutual information is literally the extra bits that are
required to encode the interaction between X and Y . It is always positive, or null if and only
if X and Y are independent.

Just like the other measures, it fits naturally in the "chain rule" and can be expressed
intuitively in terms of entropies (Fig 3.1):
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I(X ;Y ) = H(X)−H(X |Y ) (3.1.10)

= H(Y )−H(Y |X) (3.1.11)

= H(X)+H(Y )−H(X ,Y ) (3.1.12)

What makes the mutual information a particularly interesting measure is its unique blend
of desirable properties.

First, it satisfies the Data Processing Inequality (DPI) which states that one cannot
increase the information content of a signal by processing it. Formally, if n variables form a
Markov chain X0→ X1→ ·· · → Xn, then I(Xi;X j)≥ I(Xi;Xk) with i < j < k.

In relation to the first point, mutual information is also widely considered to be equally
sensitive to all types of relationships. This concept was termed "equitablity" by Reshef et
al. [46] (although in a flawed form) and was then formally investigated by Kinney et Atwal
[27]. Kinney et Atwal’s "Self-Equitability" is defined to characterize a dependence measure
D[X ;Y ] if and only if it is symmetric between X and Y , and :

D[X ;Y ] = D[ f (X);Y ] (3.1.13)

with f any deterministic function, X ↔ f (X)↔ Y forming a Markov chain. Put roughly, an
equitable measure means that one can measure the strength of the signal (as compared to the
noise) between Y and f (X) without having to know the underlying function f .

Not only is it invariant to invertible transformations of X and Y , it is also invariant under
any monotonic (i.e. rank preserving) transformations.

Put together, these three properties make the mutual information particularly interesting
for general case causal discovery. True causal discovery should make no assumption of the
natural mechanisms that produced the observed data, whether on the scale of the unit or
shape of the joint distributions. As a simple example, a case can be made to measure the
human weight in a logarithmic scale instead of a linear one : for most health related aspects,
a difference of 30 kilograms is much more significant between 60 and 90kgs than between
120 and 150kgs. In an experimental context, we can think of the causal diagram as the natural
laws that have produced the observations, which are themselves a function of the "observing"
process. The self-equitability property and invariance under transformation go some way
towards freeing ourselves from this observation process and our own biases.

Finally, as will be discussed later, these properties hold for any type of variable X and Y ,
be it continuous, discrete (ordinal or not), or a mixture of discrete and continuous parts.

A notable disadvantage of mutual information compared to other measures is that the bit,
unit of information, is not commonly understood, and the fact that it is unbounded upwards.
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One usually cannot easily derive a p-value from a mutual information estimation on sampled
data, which makes it harder to communicate (although the benefits of standardising the
p-value have been called into question [47, 48]). Different ideas to evaluate significativity
will be presented in Section 3.1.4, but for now we are only interested in the "oracle" value,
when the sample size N tends to infinity and the strict equivalence X ⊥⊥ Y ↔ I(X ;Y ) holds.

In the discrete case, its value is actually familiar as it is in fact the G-statistic multiplied
by a factor of N. With Oi the number of observations in a contingency table between two
categorical variables X and Y , with i joint levels, and Ei the expected counts under the null
hypothesis X ⊥⊥ Y , the G-statistic is defined as :

G = 2∑
i

Oi log
(

Oi

Ei

)
(3.1.14)

Recall the definition of the KL divergence (Eq 3.1.7), the same formula as above except
for the frequencies (noted oi and ei) instead of the counts Oi, Ei. Using the frequencies, the
G-statistic becomes :

G = 2N ∑
i

oi log
(

oi

ei

)

= 2N ·DKL(o ‖ e)

= 2N · I(X ;Y )

(3.1.15)

It also follows that the mutual information is related to the χ2 test, as it is itself a second-order
Taylor approximation of the G-statistic.

For two continuous variables, it may be harder to get a good intuition of what the mutual
information measures. A first property that may seem odd is that if X is continuous and
Y = X , then I(X ;Y ) = ∞. This looks as though it contradicts the chain rule (Eq 3.1.10), since
it implies that H(X)−H(X |X) = ∞. It is in fact one of the differences between entropy H
and differential entropy h which is unbounded in the case of a singularity h(X |X) = −∞,
unlike H which is always finite. Thankfully, this theoretical property does not bleed into
the real world for several reasons : first, even continuous distributions have always finite
differential entropies since we actually treat real numbers up to a finite number of significant
digits. Second, much like a correlation coefficient on observed data never reaches 1, we
should not ever need to estimate I(X ;Y ) where X = Y . The analytical value of the mutual
information on a bivariate Gaussian with correlation coefficient ρ is actually known :

I(X ;Y ) =−1
2

log(1−ρ
2) (3.1.16)

This equivalence is useful for practitioners who are unfamiliar with mutual information
and wish to translate it to the better known dependence measure : thanks the self-equitability
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property if one could transform two variables to a bivariate Gaussian distribution preserving
the signal-to-noise ratio, using Eq 3.1.16 one could then get the corresponding correlation
coefficient (see Fig 3.2).

0.2 0.4 0.6 0.8 1

1

2

3

ρ

I (bits)

Figure 3.2: Value of the mutual information of a bivariate gaussian with correlation coefficient
ρ

Conditional information and interaction information

Information theory also allows us to measure the conditional dependence between two
variables X and Y given a third, Z. The conditional mutual information is defined as the
expected value of the mutual information between X and Y given a third variable Z:

I(X ;Y |Z) = Ez [DKL (p((x,y)|z) ‖ p(x|z)p(y|z))] (3.1.17)

It is symmetrically decomposable into two-points mutual informations :

I(X ;Y |Z) = I(X ;Y,Z)− I(X ;Z)

= I(Y ;X ,Z)− I(Y ;Z)
(3.1.18)

where X ,Z and Y,Z are joint variables. The conditional mutual information can only be
positive, or null if and only if X ⊥⊥ Y |Z.

Finally, the information between more than two variables is called the interaction infor-
mation. We define it for three variables X ,Y,Z and a conditioning set Ui :

I(X ;Y ;Z|{Ui}) = I(X ;Y |{Ui})− I(X ;Y |{Ui},Z)
= I(X ;Z|{Ui})− I(X ;Z|{Ui},Y )
= I(Y ;Z|{Ui})− I(Y ;Z|{Ui},X)

(3.1.19)
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H(X |Y,Z) H(Y |X ,Z)

H(Z|X ,Y )

H(X) H(Y )

H(Z)

I(X ;Y |Z)

I(X ;Z|Y ) I(Y ;Z|X)

I(X ;Y ;Z)

Figure 3.3: Relationship conditional mutual information and three-point information with
three variables. Note that the three-point information can be negative when two variables are
pairwise-independent but become dependent when conditioning on the third.

Unlike the other measures introduced so far, it can be both positive and negative. A
positive interaction information indicates that the three variables share some common in-
formation. It is negative when there is more information when taking the three variables
together than independently. To illustrate this property, we borrow the concept of V-structure
from causal diagrams. Consider the 4 possible DAGs with 3 nodes and two edges, shown in
Fig 3.4.

X

Z

Y

X

Z

Y

X Y

Z

X Y

Z

Figure 3.4: DAGs with 3 nodes and 2 edges.

As Bayesian networks, the first three graphs encode the same conditional dependencies
: X 6⊥⊥ Y , and X ⊥⊥ Y |Z. In terms of informations, I(X ;Y ) > 0 and I(X ;Y |Z) = 0. They
all share some information, either due to a common cause or having a continuous "flow"
of information, so I(X ;Y ;Z) is also positive. Only the fourth graph on the right shows a
different pattern : X and Y are marginally independent (I(X ;Y ) = 0), but become dependent
when conditioning on Z (I(X ;Y |Z)> 0). This is the situation where we "create" information
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by looking at the interaction of the three variable, and the three-point information I(X ;Y ;Z)

is negative.

3.1.2 Mixed variables

In many real-life datasets, particularly in medical records of patients, we might encounter both
discrete and continuous variables and want to measure their interactions, without favoring

one type of variable or the other. In other words, the dependency measure should scale
with the signal-to-noise ratio the same way for continuous-continuous, discrete-discrete or
discrete-continuous combinations. In the context of constraint-based approaches, another
layer of difficulty is added as the same applies for the variables of the conditioning set.

There also exists yet another type of variables that has the characteristics of both continu-
ous and categorical variables, and fits neither definition. For example, think of the height
measured in centimeters without decimals : it is not defined on a truly continuous interval
as it has non-zero probability to take certain values, but it also has too many unique values,
which are potentially infinite (but countable), to be considered discrete. Many estimators
depend on one or the other of these properties (continuous density or finite number of levels)
to measure the dependency between observations, and will likely struggle to give an unbiased
estimation on this type of variable [49, 50, 51, 52]. Another problematic distribution is the
mixture random variable, which is itself a mixture of discrete and continuous parts. A promi-
nent example of this would be a distribution bounded by a minimum value before a certain
threshold, and a continuous function of x after it. In such a case the "minimum value" xmin

can be seen as the discrete part of the distribution as p(xmin)> 0, with the rest behaving like a
continuous variable. Real-life examples include the values produced by real-time quantitative
polymerase chain reaction (RT-qPCR), used to measure the levels of of messenger RNAs in
a cell. One can view the data produced by RT-qPCR as (A(x) if x > threshold, else 0) with
x the level of mRNA in the cell and A the amplification process. Another straightforward
example is the ReLU activation function f (x) = max(0,x) widely used as an activation
function in artificial neural networks (Fig 3.5).

The ReLU function was actually discussed recently in the context of mutual information,
and the problems that classical estimators face with such zero-inflated distribution. Naftali
Tishby was a prominent computer scientist and physicist, who also contributed to signal
processing and tried to apply information-theoretic concepts to gain intuition on deep learning
algorithms. With Pereira and Bialek, he proposed the Information Bottleneck framework,
a self-described surprisingly rich framework for discussing a variety of problems in signal

processing and learning with information theory [53]. Put simply, the idea of the Information
Bottleneck is to "squeeze" a signal X to a compressed representation T while minimizing the
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Figure 3.5: The ReLU activation function is mixed: it has p(0) > 0 and is continuous for
x > 0.

loss of information with another relevant variable Y :

min
p(t|x)
{I(X ;T )−β I(T ;Y )}

With the Lagrange multiplier β for controlling how much loss we can tolerate when predicting
Y from T as opposed to X (recall the DPI principle, since Y → X → T is a Markov chain,
I(X ;Y )≥ I(T ;Y )). By minimizing this difference, we want to reduce X to the only part that
is relevant to Y , discarding the rest. This very general framework provides an elegant, if
unpractical, solution to the majority of modern machine learning which has to learn which
aspects of the input X is useful for predicting Y , and which are noise.

As deep learning models gathered success faster than a comprehensive theory could
definitely explain why they work and how they can be further improved, Shwartz-Ziv and
Tishby published new evidence that they claimed could explain the process of training a
deep neural network [54]. In their experiments, they equated the noisy encoding T of the
information bottleneck to the hidden layers of a deep neural network (DNN) and measured
I(X ;T ) and I(T ;Y ) during the training process. Their results showed that the training process
acts in two separate phases : first, the fitting phase in which the network maximizes I(T ;Y ),
and then a compression phase that minimizes I(X ;T ). This was an unprecedented window
inside the "black box" of deep learning and could potentially explain how they train, and most
importantly how they are able to generalize. Later however, more studies were published and
seemed to show that the two phases observed in the original experiment were not in fact an
information-theoretic phenomena, but more of an artefact of how the mutual information is
estimated between the hidden layers and Y . Saxe et al. could not replicate the two phases
in other network architectures from the ones tested in the original study, and in particular
no compression phase was observed when training with linear activation functions or ReLU



3.1. Mutual information and Conditional mutual information 31

[55]. In response, Shwartz-Ziv and Tishby claimed that Saxe et al. had used a weak estimator
of mutual information, and defended their general claim saying that "when properly done,
there are essentially the same fitting and compression phases" on any network. There are
however other reasons to believe the compression phase observed in the original study was
more a result of geometric operations as the weights of the network are trained, and does
not hold so much ground in information theory [56, 57]. Moreover, the simple DNNs are
no longer used in practice, they are being replaced by extremely scaled up versions (with
too many parameters in hidden layers for mutual information to ever be estimated) or more
sophisticated architecture involving different training mechanisms like transfer learning,
attention mechanisms etc... diverging from the simple picture of training that was examined.

We may not know the final word on the information bottleneck for deep learning, but
it serves as a cautionary tale when we want to rely on mutual information estimates on big
data (as the dimension of X gets large) and the distributions are unfamiliar. It is fortunately
not the case for constraint based causal discovery approaches, where X and Y are usually
one-dimensional, and the conditioning set Z few-dimensional. Moreover, recent advances
were made to better understand mutual information estimators, including on such mixed
distributions, as will be discussed in the next section.

It is not obvious if we are still allowed to swap differential entropy for entropy when
considering the mixed case. Crucially, it is not well defined for mixture distribution which
are defined neither by a probability density function nor a mass function alone.

Recent efforts to estimate the mutual information in this general setting have relied on
the Radon–Nikodym theorem. With PXY a probability measure on the space X×Y, X and Y

being Euclidean spaces. If PXY is absolutely continuous with relation to PX PY :

I(X ;Y ) =
∫

X×Y
log

dPXY

dPX PY
dPXY , (3.1.20)

where dPXY
dPX PY

is the Radon-Nikodym derivative. Note the only condition this definition is
absolute continuity of PXY , and if true it applies for all cases mentioned so far : X and Y are
the same type of variable, X or Y is discrete and the other is continuous, or X , Y or the joint
distribution is a mixture itself. Moreover, the Radon-Nikodym derivative is computable in
practice [51].

Another way to deal with mixtures is to refer to the master definition of mutual information
[4]. For two random variables X and Y discretized with partitions P and Q :

I(X ;Y ) = sup
P,Q

I([X ]P; [Y ]Q) (3.1.21)

where the supremum is over all finite partitions P and Q. It is called the master definition as
it always applies, regardless of the nature of the marginal and joint distributions. For discrete
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variables it is simply equivalent to the definition of mutual information (Eq 3.1.9), i.e. the
partitions are fixed. For continuous variables, the supremum is obtained by refining P and
Q into finer and finer bins, monotonically increasing I([X ]P; [Y ]Q)↗. When N → ∞, this
quantity tends to the real value of the mutual information (just as the entropy of a discretized
variable is approached as the numbers of bins tends to infinity). On a finite sample size
however, adding bins to P and Q will inevitably end up overestimating the mutual information,
to the limit of having one unique value per bin for which (which results in I(X ;Y ) = log(N)).
In section 3.1.4, we review previous work on choosing the appropriate number of bins to
estimate I on continuous data and in section 3.2 we introduce our solution based on the
master definition.

As a general rule, methods that assume a continuous probability density function p(x,y)

over the domain of X and Y tend to not work well in the mixed case. Any dependence measure
having this assumption will need to be adapted (with more or less difficulty), which may also
affect the way we can evaluate its significativity for independence testing. On the other hand,
one can still rely on the cumulative distribution function, which is well behaved even for
mixture variables (although may not be smooth). For example, decision-tree-based algorithms
like random forests and gradient boosting work well with such mixtures (although they are
not adapted to all cases, for example they do not deal well with non-ordinal categorical
variables with many levels).

Mutual information is one of the rare measures fit to deal with such distributions, all
while keeping its desirable properties. Particularly, its strict equivalence with variable
independence (and conditional independence), and its self-equitability property make it ideal
for a general case constraint-based algorithm for causal inference. In the next subsection
we show the equivalences between information theoretic measures and "constraints" in the
causal diagrams.

3.1.3 Mutual information and causal graphs

In this part, we make the usual assumptions to bridge the gap between distributions and
causal diagrams, namely the Faithfulness and the causal Markov condition. We now take
the time to review and discuss these conditions as they are quite relevant to the topic of
general-purpose conditional dependence measures.

The first is the causal Markov condition, defined as follows :

Definition 3.1. The causal Markov condition states that, given a set of variables V with joint
probability P(V ) governed by the true causal graph Gc, any given node X is conditionally
independent from any other non-descendant node Y given its parents PaX : X ⊥⊥ Y | PaX .

Put roughly, this is equivalent to the Markov condition of Bayesian graphs with extra
precautions on ancestor vs descendant nodes to avoid collider bias, which "opens up"
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information flows by conditioning on a child (see Fig 3.4). Additionally, it means that a
node is separated from the rest of the network, i.e. statistically independent from every other
node, conditionally on its Markov blanket (Fig 2.6). This first assumption may seem specific
to causal diagrams but it actually reflects common scientific reasoning : we assume that
two variables that are correlated are involved at some point in the same causal mechanism,
whether it be due to a common ancestor or one causing the other [1].

The converse to the Markov condition is the faithfulness assumption :

Definition 3.2. Given a set of variables V whose true causal graph is Gc, their joint probability
P(V ) is faithful to Gc if all conditional independences in P(V ) correspond to d-separation in
Gc.

It is also called the "stability" property by Pearl [1], referring to the process by which
P(V ) results from Gc. Indeed, in general we can think of two ways independencies are created
in the data (recall that with a causal diagram, p(X) = f (p(PaX),UX)). The first, intuitive
way is to think that two variables are independent only if they can be separated in the causal
diagram, either by removing the influence of a common cause or of the intermediate steps.
These independencies are called "stable", they hold true under almost any parameterization
of the causal mechanisms f (p(PaX),UX). But there is another way to create independencies
in P(V ), by carefully choosing mechanisms that either cancel each other statistically, or
are undetectable marginally and appear only when looking at interactions between nodes.
For example, an XOR gate X → Y ← Z produces an unfaithful distribution as X and Z are
marginally independent from Y , but are clearly implicated in the generation function for Y .
This type of relation is considered "unstable" as it is strictly dependent on its parameterization,
any deviation from this equilibrium would create a different pattern of dependencies. As
explained by Pearl, the faithfulness or stability assumption can be thought of as a filter on the
type of causal relations that we are considering [1]:

Any story that convincingly exemplifies a given pattern of dependencies must

sustain that pattern regardless of the numerical values of the story parameters –

a requirement we called “stability.”

This discussion on stable distributions prompts us to make another aside in deep learning,
as an interesting parallel can be made with the recent theory of Causal Invariance advocated
by Léon Bottou and Jonas Peters [58, 59, 42]. As we know, machine learning in its current
form is entirely dependent on statistical dependencies in the training data and while it has
found success with many applications it does not generate real knowledge on how the world
functions. Invariant causal prediction aims to discover causal knowledge by observing
correlations in many different environments (different interventions in a causal context, or
different training datasets for machine learning) and positing that the true causal relationships



34 Chapter 3. Mutual information for constraint-based inference

are the ones that hold true across the different conditions. It reflects the human thought
process of observing our environment and detecting the patterns that stay true even in different
situations.

We can see that this actually echoes the faithfulness assumption in the sense of stable
distributions. Indeed, causal mechanisms produce stable distributions because the true
relationships between two variables are invariant to external influence on other parts of the
system, i.e. to changes in the environment. The main difference is that causal invariance is
only interested in discovering the causes of Y as a set of variables, and not the full structure of
the causal graph. This matters for example for the XOR relationship, where causal invariance
would be able to detect both parents X and Y as causes of Z (provided they are always both
included in the varying environments), whereas causal discovery would struggle to find the
corresponding graph as the corresponding P(V ) is unfaithful in relation to the graph.

In other words, with the faithfulness assumption, we restrict our modelling of causal
mechanisms to relationships X−Y that stay invariant when modifying any other part of the
causal graph. Crucially, this excludes interactions terms (like the XOR gate) and cancelling
paths. Causal invariance aims for a larger class of mechanisms by looking for laws that stay
invariant when changing the environment of the entire set {PaY ,Y}. This difference points to
the inherent difficulty to represent interaction terms between nodes in Bayesian networks, as
opposed to the multidimensional input in mainstream machine learning.

The Markov condition is generally considered as the less problematic assumption of the
two. It is more of a convention, to limit the task of causal discovery to complete models,
including latent variables (when would we want to discover incomplete models?). The
faithfulness assumption on the other hand has generated discussion ever since the first
constraint based method was published and an extensive body of work has aimed to remove
or relax it [1, 20, 60, 61, 62]. With the previous discussion, we hope to have given enough
reasons to consider it a fair assumption as we assume both are true going forward.

These assumptions are actually one step removed from the way constraint-based ap-
proaches work, as they have to estimate (conditional) independences from the data. As we
have shown in Section 2.2.3, independence testing comes with a set of assumptions of its
own, which narrows further the definition of causal mechanisms that most constraint-based
approaches actually discover. This is not the case with mutual information, thanks to its strict
equivalence with statistical independence and its self-equitability property. In the rest of this
section, we show the direct equivalence between causal diagrams and information measures,
and in the next section we discuss how they are estimated from finite data.

For a collection of variables which we note X , Y , Z..., in a causal graph Gc :

• If X and Y are adjacent in Gc, then I(X ;Y )> 0, and I(X ;Y |Z)> 0 for any set Z. This
follows from the direct equivalence X ⊥⊥ Y ⇔ I(X ;Y ) = 0
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• Similarly, if X and Y are d-separated by Z in Gc, then I(X ;Y |Z) = 0.

• If Y is a direct parent of X and Y2 an ancestor of X only through Y , then I(X ;Y ) ≥
I(X ;Y2) (according to the DPI).

• If X→Z←Y forms a V-structure and X and Y are d-separated by Ui, then I(X ;Y ;Z|Ui)<

0. [35, 5]

• And the inverse, if X−Y −Z does not form a V-structure and X and Y are d-separated
by Ui, then I(X ;Y ;Z|Ui)> 0

For constraint-based causal discovery, we can also exploit three-point informations to
iteratively take off the best contributors, as was shown in [5, 35] to develop MIIC.

I(X ;Y |{Ui},Z) = I(X ;Y )− I(X ;Y ;U1)− I(X ;Y ;U2|U1)−·· ·− I(X ;Y ;Z|{Ui}) (3.1.22)

Another contribution of Affeldt et al. is the definition of orientation probability from
three point information. Arrow head probabilities stem from v-structures like X → Z← Y ,
corresponding to a negative conditional 3-point information (Fig 3.4), I(X ;Y ;Z | {Ui })< 0,
where {Ui } separates X and Y , i.e. X ⊥⊥ Y |{Ui } [5]. The head orientation probabilities can
then be obtained through the probability decomposition formula as,

P(x→ z) = P(x→ z|z← y)P(z← y)+P(x→ z|z−− y)P(z−− y) (3.1.23)

or equivalently, writing the probability of a v-structure as

P(x→ z,z← y) = P(x→ z|z← y)P(z← y) (3.1.24)
P→←

P→←+P→−−+P−−←+P−−−−
=

P→|←
P→|←+P−−|←

P(z← y) (3.1.25)

1
1+3eN I(X ;Y ;Z | {Ui }) =

1
1+ eN I(X ;Y ;Z | {Ui })P(z← y) (3.1.26)

which leads (by x/y symmetry) to

P(x→ z) = P(z← y) =
1+ eN I(X ;Y ;Z | {Ui })

1+3eN I(X ;Y ;Z | {Ui }) (3.1.27)

By default, we orient V-structures if the probability is larger than 0.5, but we can also be
more or less strict and choose any arbitrary threshold. In Section 4.1.2, we introduce new
probabilities that behave better numerically for large N.

Going beyond the problem of graph inference, Wieczorek et al. also showed how to
derive causal effect quantities using only information theoretic terms [63]. The causal graph
alone informs us of the presence or absence of interactions, but we have no way of comparing
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them or even knowing if a given edge is a strong or a weak effect. These questions are
answered by causal effect quantification, which has been studied in various forms. In the
framework provided by Pearl’s diagrams, the the causal effect of X on Y is simply described
by the interventional distribution P(Y |do(X)). Other measures of causal strength (notably
in Rubin’s potential outcome framework) are the average treatment effect and the specific
causal effect. The average treatment effect for binary variables is the expected value of the
difference between Y |do(X = 1) and Y |do(X = 0) :

ACE(X ,Y ) = E[Y |do(X = 1)−Y |do(X = 0)] (3.1.28)

And the specific causal effect is the average treatment effect conditional on a particular value
of other variables Z (provided that Z are non-descendant of X in G)c). The contribution of [63]
is to prove that the combination of conditional mutual information and conditional directed
information also give a rigorous framework for causal effect quantification from causal
diagrams. The directed information is typically used in time-series analysis, it measures the
amount of information that flows from one process to the other. In the context of interventions,
Wieczorek et al. define it as :

I(X → Y ) = DKL (P(X |Y ) ‖ P(X |do(Y ))|P(Y )) (3.1.29)

This line of work ties up the relationship between mutual information and causal diagrams.
From graph inference with MIIC to the quantification of causal effects, all of the necessary
concepts in causality can be expressed with information theoretic measures.

But can it be used in practice ? Earlier, we hinted at potential issues and shortcomings
when estimating mutual information on sampled data. In the next section we present previous
work on existing estimators before introducing our new method that can estimate mutual and
conditional mutual information on any type of data and also assess its significance.

3.1.4 Existing estimators on finite data

The previous section has established why we would want to estimate information-theoretic
quantities from data, and now we will study how and how well it can be done. Several
decades of research later, and almost as many different estimators as there were applications,
it may come as a surprise that many basic questions remain unanswered (although recent
progress has been made, especially in the continuous case). To understand why, recall that
mutual information I(X ;Y ) is defined for X and Y of any dimensions. For many applications
in neuroscience, X may be the activation of hundreds or thousands or neurons, and Y a
single-dimensional stimulus or response. Estimating I(X ;Y ) from sampled data in this setting
is a very different problem than estimating it between two single-dimensional signal! In
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this section we focus on the use of (conditional) mutual information for constraint-based
algorithms, where X and Y are single-dimensional variables and Z may be multidimensional
(but rarely very large).

Discrete estimators

Estimating I(X ;Y ) on discrete data is the most straightforward case. We can simply estimate
the probability mass functions p̂(x), p̂(y) and p̂(x,y) from independently and identically
distributed (i.i.d) data by counting how many times we observe each level. Using the chain
rule (Eq 3.1.10), we actually only need an entropy estimator Ĥ to get an estimation Î. Using
the observed frequencies p̂i with i ∈ [1,m], we get what is called the "plug-in" or "naive"
estimator :

ĤNaive =−
m

∑
i=1

pi log pi (3.1.30)

Note that it is also the maximum likelihood estimator from the observed data. It is however
suboptimal, it has long been known that it is negatively biased everywhere [64]. The short
explanation is that while p̂i is estimated with symmetric variance on either side of the true
frequency pi, the log transformation amplifies more variance towards 0 than towards 1,
and the contribution of each p̂i ends up being underestimated on average. To correct this
shortcoming, a common fix is to add the Miller-Madow correction [65]:

ĤMM = ĤNaive +
m̂−1

2N
(3.1.31)

with m̂ the number of categories with nonzero probability as estimated from the p̂i. This
correction effectively reduces the bias of ĤNaive without adding any complexity, and is
preferred in many contexts.

Another popular idea is to use a jacknife resampling procedure, which trades lower bias
for a slightly higher complexity [66] :

ĤJK = NĤNaive−
N−1

N

N

∑
j=1

ĤNaive− j (3.1.32)

where ĤNaive− j is the naive estimator without the jth sample.

Finally, another way to correct the negative bias of the naive estimator is to act directly
on the estimates p̂i instead of applying a correction a posteriori. The Schurmann-Grassberger
estimator does exactly that, by applying prior Bayesian belief that the samples follow
a Dirichlet distribution (the multivariate generalization of the Beta distribution) [67]. It
essentially "tricks" the estimator to think that more counts have been observed to compensate
for the negative bias of the naive estimator, such that mN becomes the a priori sample size.
The result is a less biased estimator, but the choice of the prior end up dominating the
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estimation [68].

All of these improved estimators have been designed for the setting where I(X ;Y )>> 0,
as opposed to constraint-based discovery where we are more interested in the independence
regime. Importantly, they all share another kind of bias : they overestimate dependencies on
finite data. Without knowing the true distributions, any of these estimators will be positive
Î(X ;Y )> 0 (resp. Î(X ;Y |Z)> 0) almost surely, even when X ⊥⊥Y (resp. X ⊥⊥Y |Z). Several
suggestions have been made, mostly based on fixed thresholds as a function of the sample
size. A more inspired approach is to also take into account the distributions of the variables :
indeed, we do not expect the same bias from sampling simple binary variables with balanced
levels, versus more complicated variables with many unbalanced categories.

This is the route taken by MIIC, which corrects the naive estimate by subtracting a
complexity cost that depends on X , Y and Z. It frames each test of independence in the context
of graph reconstruction, favoring simpler models with fewer edges. Namely, it introduces a
complexity cost for the edge X−Y potentially separated by separating set Ui, noted kX ;Y |{Ui}.
Then, the condition I(X ;Y |Ui)< kX ;Y |{Ui}(N)/N to remove the edge X−Y favors the simpler
model compatible with the independencies in the sense of the model complexity, given the
observed data. This replaces the strict equivalence I(X ;Y |Ui) = 0⇔ X ⊥⊥Y |Ui which is only
valid in the limit N→∞. The challenge now is to choose the form of kX ;Y |{Ui}(N). A common
complexity cost used in model selection would be the Bayesian Information Criterion :

kBIC
X ;Y |{Ui}(N) =

1
2
(rX −1)(rY −1)∏

i
rUi log(N) (3.1.33)

with rX , rY , rUi the number of categories of each variable (Ui being a joint variable). This
complexity cost can be improved by also taking into account the distributions of the variables,
not only their number of levels [35]. Such a score will be discussed in Section 3.2.1 when
introducing the new MDL-optimal discretization scheme.

Continuous estimators

Compared to the discrete case, estimating Î on continuous data is notoriously difficult.
Historically, one of the most common way to deal with continuous data was to discretize
them into bins, the same way we construct histograms. We note [X ] and [Y ] the quantized
version of X and Y on finite data. This approach is conceptually straightforward, we can
simply compute Î([X ]; [Y ]) with any discrete estimator and take it as an approximation of
I(X ;Y ).

Perhaps because we are used to seeing histograms and picking the correct number of bins
visually, surprisingly many applications perform this kind of naive discretization without
much justification. In practice however, both the number of bins and their locations dominate
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the estimation. Even for large N, Î([X ], [Y ]) converges on some value that depends on the
discretization parameters rather than I(X ;Y ), namely the number of bins |∆X | and |∆Y |, as
well as their size [69]. This bias was already documented as early as 1989, but was considered
manageable if one chose a "reasonable number of cells" [70]. But the question of what is
"reasonable" is more complicated than it appears. For example, Ross et al. note that there
is no optimal value of |∆| that works for all distributions : N0.5 works well for the square
wave distribution but N0.7 is better for a Gaussian distribution [71]. Similarly, Seok et al.
show that even for Gaussian bivariate distributions with the same marginals, the "correct"
number of bins that gives the best approximation of I(X ;Y ) varies depending on the strength
of the correlation ρ [49]. Note that the same applies for any estimator that takes a number of
bins as parameter, regardless of how clever the discretization scheme is (for example, using
B-splines [72]). Instead, it is essential to deduce the number of bins from the observations
[73, 74]. Darbellay et al’s recursive partitioning scheme [73] is conceptually one of the
closest approach to the novel estimator introduced in Section 3.2, but it is limited in the
placement of the bins.

Another common approach is to compute the mutual information using analytical for-
mulas, having estimated p(X), p(Y ) and p(X ,Y ). It is only feasible for few applications
with strong a priori on the data distribution, and even if we know the distributions the data is
sampled from, only few analytical formulas for the information are known [75]. Instead of
being imposed some priors, the density functions can also be estimated via the usual methods
using e.g. kernel functions [76]. But, related to the problem of choosing the number of bins,
one has to choose the type of kernel and its width, which has shown similar bias [70]. It is
also exponentially more complex as the support’s dimensions increase, limiting its use for
conditional independence testing even with few variable Zs in the conditioning set.

Undoubtedly, the best results on continuous data are obtained with the "KSG" estimator
from Kraskov, Stögbaueur and Grassberger [77]. We will also refer to this approach as the
k-nn approach, as it employs a k-nearest neighbor estimation of the local entropy. It is based
on earlier work by Kozachenko and Leonenko, who first derived an estimate of the entropy
based on nearest-neighbor distances [78] :

ĤKL(X) =
1
N

N

∑
i=1

log
(

Ncd,pρk,i

k

)
+ log(k)−ψ(k) (3.1.34)

with ρk,i the distance from the jth sample to its kth nearest neighbor, cd the volume of the
unit ball in d dimensions and ψ(.) the digamma function. The original authors introduced
this formula for a fixed k = 1, proving its consistency as N increases, and [79] proved it later
for all k. Additionally, Jiao et al. derived an uniform upper bound on its performance proving
its near optimality [80], a first for such estimators.
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Given this strong estimator, a natural way to get to Î is to use the chain rule :

Î3KL = ĤKL(X)+ ĤKL(Y )− ĤKL(X ,Y ) (3.1.35)

This estimator is also consistent and performs fairly well in practice, but was shown to be
uniformly inferior to the KSG estimator in many empirical settings. The KSG estimator is
defined as :

ÎKSG(X ;Y ) = ψ(k)+ψ(N)−
〈
ψ(nx,i +1)+ψ(ny,i +1)

〉
(3.1.36)

with nx,i the number of points within an ρk,i distance on the X dimension, and
〈
ψ(nx +1)+ψ(ny +1)

〉

the average taken on all samples. The ρki distance is usually taken with `∞ or `2 norm, see Fig
3.6. Since its introduction, no other estimator seems to be as performant in most settings and
it has become the go-to solution to estimate Î on continuous data. The particularity behind
the KSG estimator is to compare H(X), H(Y ) and H(X ,Y ) locally to estimate the mutual
information directly, instead of having to estimate each of the three terms. Recently, Gao et
al. revealed why this choice leads to uniformly better results than the Î3KL estimator. They
have shown that the better performance stems from a correlation boosting effect, the bias
of the joint entropy is positively correlated to the biases of the marginal entropies, which
partly cancel each other when subtracting via the chain rule [81]. It makes no assumption on
either the marginal or joint distributions, and seems to be equitable to all relationships [27].
Somewhat surprisingly, rank-ordering the variables still gives correct estimates (as it should),
although it is not clear whether it should be preferred or not.

Figure 3.6: Choice of the ρk,i distance with `∞ norm (left) or `2 norm (righ) for the KSG
estimator. Figure taken from [81].

It was conveniently adapted to the conditional case, also using a direct formula instead of
the chain rule [69, 82] :

ÎKSG(X ;Y |Z) = ψ(k)+
〈
ψ(nz,i +1)−ψ(nxz,i +1)−ψ(nyz,i +1)

〉
(3.1.37)

Still, we note a few disadvantages that discourage its use for general constraint-based
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algorithms. First, the variance and bias of the estimation are tied to the choice of the parameter
k [83]. The original authors themselves suggest a low k (2−4) for good a estimation ÎKSG, and
much larger for independence testing (up to ' N/2). In general, the trade-off is high variance
and low bias for small values of k, and less variance but increased bias for large k [27, 84].
Secondly, as is the case with discrete estimators, the equivalence Î(X ;Y ) = 0⇔ X ⊥⊥ Y is
not respected, as variance still exists at independence. Crucially, there are currently no results
on the distribution of the estimator, either exact nor asymptotically, and there is no easy
way to test for independence [64, 83]. Runge proposed to test for conditional independence
using a local permutations scheme, which reliably estimates the null distribution but requires
significantly more computation [85]. Berrett and Samworth improved slightly on this idea,
introducing an independence test based on either simulations when marginal distributions are
known, or resampling when they are not [86].

Many other estimators exist, involving ensemble methods [87], copula transformations
[88], dependence graphs [89], and even deep neural networks [90]. Overall, the KSG
estimator has shown the best performance in the settings that interest us, and is the best
understood. It has even been adapted to the mixed case and mixture variables, as we shall see
now.

Mixed estimators

Compared to the discrete and the continuous case, relatively little work has been done on
estimating mutual information in the mixed case, where X is discrete and Y is continuous,
and even less in the case of mixture variables.

Ross et al. extended the KSG estimator to the mixed case, by counting the number of
nearest neighbors in the continuous space Y on the subset of samples that share the same
discrete value of X . More specifically, for each sample i, the method first finds the distance
to the kth nearest neighbor which also share the same discrete value, and counts the number
of neighbors within this distance in the full data, noted m. This estimator is given by :

ÎRoss(X ;Y ) = ψ(N)+ψ(k)−〈ψ(NX)−ψ(m+1))〉 (3.1.38)

with NX the total number of data points that share the same discrete value on X .

It was then expanded by Gao et al. to mixture distributions by taking the average of
the Radon-Nikodym derivative over all samples [51]. The way to estimate this derivative
depends on each sample : plug-in estimator when the point is discrete (i.e. more than k point
share the same value, so ρi,k = 0), and KSG estimator when there is a locally continuous
joint density. The intuition behind this procedure is that the Radon-Nikodym derivative is
well defined for all cases, and that it recovers either the plug-in estimator, the KSG estimator,
or Ross’s estimator depending on the local subspace. By then taking the average of all the
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derivatives, this gives the value Î(X ;Y ) for any distributions X and Y . It was proven to be
consistent, and has shown better results than binning procedures or noisy KSG on mixture
variables. It shares however the same lack of significance test as the other k-nn estimators,
which makes it less adapted to constraint-based algorithms.

Marx et al. also proposed a mixed estimator based on the Radon-Nikodym derivative
and adaptive histogram models for the continuous parts of the mixture variables [91]. Just as
our approach introduced in [7], they devised an heuristic to find the optimal discretization
according to the Minimum Description Length (MDL) principle [92]. It also comes with easy
independence testing with Normalised Maximum Likelihood (NML) correction on discrete
data, as introduced in [35] using the factorized NML criteria [93] (which was later redefined
by Marx et al., proving asymptotic behavior and consistency [94]). It is well adapted to
constraint-based algorithms, however it considers mixture variable in a slightly different way
from Gao et al (and [7]).

This difference is best explained through an example. Let (X ,Y ) be a mixture of one
continuous and one discrete distribution. The continuous distribution is a bivariate Gaussian,
with mean µ = 0, marginal variance σ = 1 and correlation ρ . The discrete distribution is
two binary variables, with probabilities p(X = 1,Y = 1) = p(X = −1,Y = −1) = β and
p(X = 1,Y = −1) = p(X = −1,Y = 1) = β . These two distributions are then mixed with
probability pcon and pdis respectively. The ground truth as derived by Gao et al. is given by :

I(X ;Y ) =
−pcon

2
× log(1−ρ

2)+
β

2
× log

β/2
p2

dis
+

(1−β )

2
× log

(1−β )/2
p2

dis

−pcon× log pcon− pdis× log pdis

(3.1.39)

Marx et al. used a different ground truth for this distribution, without the last two terms
of the sum, −pcon× log pcon− pdis× log pdis. In their framework, X ⊥⊥ Y and I(X ;Y ) = 0
if and only if ρ = 0 and β = 0.5. It is justified if one considers that the continuous and
discrete parts do not share the same space, acting more like separate dimensions of the joint
distribution. On the other hand, if we consider that all parts of X and Y share the same
euclidean space, some information is "created" from the structure of the joint distribution,
given by −pcon× log pcon− pdis× log pdis (which equals to log2 when pcon = pdis = 0.5).
Indeed, even when ρ = 0 and β = 0.5, the distribution p(x,y) is far from p(x)p(y) due to the
constraints imposed by sharing the same space (Fig 3.7).

The second view is closer to the master definition of mutual information (Eq 3.1.21)
which implies that we can use any partitioning to discretize X and Y , potentially combining
discrete and continuous parts in a single bin. This also corresponds to the approach taken to
develop our own estimator based on optimal binning of X ,Y , introduced in the next section.
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Figure 3.7: Two null hypotheses (X ⊥⊥ Y ) of the mixture variable given as example, with
ρ = 0, β = 0.5, pcon = pdis = 0.5. Left : discrete and continuous parts are kept separated,
as if in different dimensions. Right : all data points are on the same euclidean space, and
the null hypothesis is p(x,y) = p(x)p(y). The joint histogram corresponds to the optimal
discretization of [7] for both cases.

3.2 Developing a new general case estimator

So far, we have rationalized the advantages of using information theoretic measures for causal
inference, but our review of available methods showed a lack of a good estimator that would
work on any type of data and provide a fair assessment of its significativity. In this section, I
first give a brief review of the MDL and NML frameworks, and I introduce the method that
was published in [7] to adapt MIIC to the general case, showing qualitative and quantitative
results as a discretization scheme, an estimator of (conditional) mutual information and a test
of (conditional) independence.

3.2.1 MDL-optimal histograms

The Minimum description length (MDL) principle is rooted in information theory, it was
developed by Jorma Rissanen at the end of the 20th century [92, 95]. The fundamental
idea behind it is that there exists a code that describes the data in a more succinct way than
copying the data itself, and that the smaller the code, the more we have learned about the
data. It provides a general and powerful framework for performing model selection given
the available data by separating the signal from the noise. Specifically, the best model is
the model with the smallest stochastic complexity, which is the shortest description length
of a given data relative to a model class M. This very abstract concept of minimizing the
description length actually found an elegant solution via the normalized maximum likelihood

(NML) distribution [96, 95], and found success in various applications, from data clustering
[97] to image denoising [98]. We now define the NML density and show how it can be used
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to find optimal discretizations on finite data, as developed in [99].

Let xn =(x1, ...,xn) be a data sample of n outcomes in the space X, and θ̂(xn) its maximum
likelihood estimate. The normalized maximum likelihood density is defined as :

fNML(xn|M) =
f (xn | θ̂(xn),M)

Cn
M

(3.2.1)

where Cn
M is the universal normalizing constant, and is given by :

Cn
M = ∑

xn∈Xn
f (xn | θ̂(xn),M) (3.2.2)

The stochastic complexity of the data xn, the quantity to be minimized, is defined via the
NML density :

SC(xn |M) =− log fNML(xn|M) (3.2.3)

=− log f (xn|θ̂(xn),M)+ logCn
M (3.2.4)

and logCn
M is the parametric complexity. It acts as a normalizing constant, as it is related to

the number of essentially different distributions in the model class with regards to xn [99].

The NML distribution has several important properties. It is the unique solution to the
minimax problem of [96], which essentially means that is is the optimal encoding of any
observed xn in the model class. Not only that, but it is also the optimal encoding for any
data generating density, even outside the model class [100]. It automatically prevents any
overfitting by learning both the model and the number of parameters of the model, using only
the data at hand (as opposed to Bayesian priors). In most applications however, computing
the NML density is intractable due to the sum (or integral for continuous data) in Eq 3.2.2.

Fortunately it not the case for choosing the cutpoints of a discretization where the model
class is equivalent to that of multinomial distributions, for which the normalizing constant
has a closed form and can actually be computed in linear time via recursion :

Cr
n = ∑

l1+l2+···+lr=n

n!
l1!l2! · · · lr!

r

∏
k=1

(
lk
n

)lk
(3.2.5)

= Cr−1
n +

n
r−2

Cr−2
n (3.2.6)

From this result, [99] developed a dynamic programming scheme to find the MDL-
optimal discretization of a sample, giving the best description possible without overfitting
(Fig 3.8). This method essentially gives a solution to the problem of choosing a discretization
for the naive estimator ĤNaive which best describes the features of the sampled distribution,
using the most complexity it can justify within the MDL framework. In the next section,



3.2. Developing a new general case estimator 45

0

1

2

0.00 0.25 0.50 0.75 1.00

X

de
ns

ity

N=300

0

1

2

0.00 0.25 0.50 0.75 1.00

X
de

ns
ity

N=3000

Figure 3.8: MDL-optimal histograms on a multimodal Gaussian distribution, with N = 300
samples (left) and N = 3000 (right) according to [99].

we will see how it is adapted to find the two-dimensional discretization, which is needed to
estimate the interaction between two variables.

3.2.2 Pairwise mutual information estimation through optimal joint
discretization

The proposed method starts from the master definition of the mutual information (Eq 3.1.21),
which we redefine here for convenience. It consists in taking the supremum over all finite
partitions, P and Q, of variables, X and Y [4],

I(X ;Y ) = sup
P,Q

I([X ]P; [Y ]Q)

which can be applied to continuous, discrete or mixture variables.

By continuing to refine some initial partitions through the addition of further cut points
for continuous variable(s), one finds a monotonically increasing sequence [4], I([X ]P; [Y ]Q),
as shown in Fig. 3.9. In practice, however, Eq. 3.1.21 cannot be used to estimate Î(X ;Y )
from sampled distributions, as the refinement of partitions eventually assigns each of the N

different samples into N different bins. This leads to a shift of convergence towards logN

instead of the theoretical limit, I(X ;Y ), which requires an infinite amount of data (dotted line
in Fig. 3.9).

In [7], we proposed to adapt Eq. 3.1.21 to account for the finite number of samples in
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Figure 3.9: Outline of mutual information computation between continuous or mixed-type
variables for a finite dataset of N samples. Theoretically, one approaches the true value
I(X ;Y ) (dotted horizontal line) refining the discretization by adding more bins ∆ (dotted
curve). On finite sampling however, one inevitably overestimates I(X ;Y ) by adding too many
bins for the sample size N, up to a maximum logN (dashed curve). Mutual information
is estimated through an optimum partitioning of continuous variable(s) (solid red line and
arrow) after introducing a complexity term to account for the finite size of the dataset.

actual datasets,
I′N(X ;Y ) = sup

P,Q
I′N([X ]P; [Y ]Q) (3.2.7)

by introducing a finite size correction to mutual information :

I′N([X ]P; [Y ]Q) = IN([X ]P; [Y ]Q)− k′P;Q(N)
1
N

(3.2.8)

where k′P;Q(N) corresponds to a complexity term introduced in [5, 35] to discriminate between
variable dependence (for I′N([X ]P; [Y ]Q)> 0) and variable independence (for I′N([X ]P; [Y ]Q)6
0) given N samples. In the present context of finding an optimum discretization for continuous
variables, this complexity term introduces a penalty which grows faster than the spurious
information gained in refining bin partitions further, when there is not enough data to support
such a refined model (Fig. 3.9). Conceptually, we can also think of this penalty as the
uncertainty associated with estimating the frequency p̂ of small bins compared to large bins
when N is limited. But how do we choose k′P;Q(N) ?

For discrete variables, typical complexity terms correspond to the Bayesian Information
Criterion (BIC), kBIC

P;Q(N) = 1/2(rx−1)(ry−1) logN, where rx and ry are the number of bins
for X and Y . Within the MDL framework, Roos et al. defined the X- and Y -Normalized
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Maximum Likelihood (NML) criteria [93, 35] :

kX−NML
P;Q (N) =

ry

∑
y

logCrx
ny
− logCrx

N (3.2.9)

kY−NML
P;Q (N) =

rx

∑
x

logCry
nx− logCry

N (3.2.10)

where Crx
ny

is the parametric complexity associated with the yth bin of variable Y containing
ny samples, and similarly for Cry

nx with the nx-size bin of variable X in Eq. 3.2.10.

As mentioned, the parametric complexity or normalizing constant Cr
n is known for the

domain of multinomial distributions. It is defined by summing a multinomial likelihood
function over all possible partitions of n data points into a maximum of r bins :

Cr
n =

`k>0

∑
`1+`2+···+`r=n

n!
`1!`2! · · ·`r!

r

∏
k=1

(
`k

n

)`k

(3.2.11)

which can in fact be computed recursively in linear-time [101]. For large n and r, inherent to
large datasets with continuous or mixed-type variables, we found that Cr

n computation can
be made numerically stable by implementing the recursion on parametric complexity ratios
Dr

n = Cr
n/C

r−1
n rather than the parametric complexities themselves :

Dr
n = 1+

n
(r−2)Dr−1

n
(3.2.12)

logCr
n =

r

∑
k=2

logDk
n (3.2.13)

for r > 3, with C1
n = 1 and C2

n =D2
n, which can be computed directly with the general

formula, Eq. 3.2.11, for r = 2,

C2
n =

n

∑
h=0

(
n
h

)(
h
n

)h(n−h
n

)n−h

(3.2.14)

or its Szpankowski approximation for large n (needed for n > 1000 in practice) [102, 103,
104],

C2
n =

√
nπ

2

(
1+

2
3

√
2

nπ
+

1
12n

+O

(
1

n3/2

))
(3.2.15)

'
√

nπ

2
exp

(√
8

9nπ
+

3π−16
36nπ

)
(3.2.16)
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For continuous variables, however, the variable categories are not given a priori and need
to be specified and thus encoded in the model complexity within the frame of the Minimum
Description Length (MDL) principle [99]. In absence of priors for any specific partition with
r bins, the model index should be encoded with a uniform distribution over all partitions
with the same number of bins [99]. As there are

(N−1
rx−1

)
ways to choose rx−1 out of N−1

possible cut points, corresponding to a codelength of log
(N−1

rx−1

)
for a continuous variable X

(and similarly for Y if it is continuous), the model complexity associated with the partitioning
of continuous or mixed-type variables becomes,

k′P;Q(N) = kP;Q(N)+ log
(

N−1
rx−1

)
+ log

(
N−1
ry−1

)
(3.2.17)

with log
(N−1

r−1

)
= (r−1)CN,r, where CN,r corresponds to the encoding cost associated to each

of the r−1 cut points with r = rx or ry.

While finding the supremum of I′N([X ]P; [Y ]Q) over all possible partitions P and Q

according to Eq. 3.2.7 seems intractable, it can be computed rather efficiently in practice.

The proposed approach is inspired by the computation of the MDL-optimal histogram
for a single continuous variable of [99], which can be done exactly in O(N2× k) steps (with
k the maximum number of bins). As the approach cannot be generalized to more than one
variable, we implemented a local optimization heuristics, which finds the optimum cut points
for a continuous variable X , maximizing its corrected information with a discrete variable
I′(X ; [Y ]). When both X and Y are continuous, we iteratively fix X and Y and compute
I′([X ]; [Y ]) until a convergence is reached in the limit cycle, as will be detailed below.

In practice, for two variables variables we start from an initial (or optimized) [Y ] partition
with ry bins of various sizes and an estimate of the number of [X ] bins, r̂x (before discretizing
X). The sample-scaled mutual information with finite size correction, i.e., n I′n(X ;Y ), is then
optimized iteratively for n = 1, · · · ,N samples, over all X partitions, through the following
O(N2) dynamic programming scheme, using Eq. 3.2.9 as parametric complexity,

n I′n(X ; [Y ]) = max
06 j<n

[
j I′j(X ; [Y ])+

ry

∑
y

nxy lognxy−nx lognx

− logCry
nx−CN,r̂x

] (3.2.18)

where the last added bin on X , including the jth to nth samples distributed over the ry

bins of [Y ] (with ∑
ry
y nxy = nx), comes with an independent mutual information contribution,

∑
ry
y nxy lognxy− nx lognx, a parametric complexity, logCry

nx , and encoding cost, CN,r̂x . The
initial condition for j = 0 in (3.2.18) is set by convention to include all terms invariant under
X-partitioning, i.e., −∑

ry
y ny log(ny/N)+ logCry

N − (ry−1)CN,ry +CN,r̂x . Equation 3.2.18 is
illustrated by the pseudocode of Alg 4.
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Algorithm 4 Opt(I(X ; [Y ]) : MDL-Optimal discretization of X maximizing I(X ; [Y ])
Require: Ranks of X , [Y ], coarse level c, r̂x

Define possible cutpoints C from N and c

for j = 1 to N in C do
I′[ j] ← I′[0, j]
for k = 1 to j in C do

I′new bin ← I′[k]+ I′[k, j]
if I′new bin > I′[ j] then

I′[ j] ← I′new bin
Save Cuts[ j] ← k

end if
end for

end for

Reconstruct [X ] from trace of best cutpoints, starting from Cuts[N]
return [X ]

In this notation, the array I′[] saves the values of I′j(X ; [Y ]), the partial information taking
first j samples corrected the full complexity term k including the combinatorial approximation
(Eq 3.2.17). We can significantly speed up the computation at little cost by doing a coarse
search of the partitions on C possible cutpoints, instead of all N samples. This allows the
algorithm to run in O(C2) instead of O(n2), with C being typically a factor of N1/3. Finally,
Cuts[ j] corresponds to the location of the last cutpoint giving the best I′[ j]. The optimal
partition of X can be retraced by following each cutpoint starting from Cuts[N]. Note the
special case of independence, when X ⊥⊥ [Y ] no multi-bin partitioning creates a positive I′,
i.e. no information greater than its associated complexity cost can be found. In this case, the
output is a single bin from 0 to N (Cuts[N] = 0).

Then, adopting this optimized partition for X , one can apply the same dynamic program-
ming scheme for Y using Eq. 3.2.10 as parametric complexity and iterate the optimization
of X and Y partitions until a stable two-state limit circle is reached. In practice, we set the
initial partitioning over X and Y by testing equal-freq discretizations with k = 2 to dN1/3e
bins and choosing the one which gives the highest I′N([X ]ke f ;Y k

e f ). We found that while the
convergence speed of the iterative dynamic programming is largely independent of these
initial conditions, this scheme does improve it slightly. This leads after only a few iterations
to a good estimate of mutual information (averaged over limit circle). The iterative process
to compute I(X ;Y ) is shown in Alg 5.

Where rx and ry are the number of levels of [X ] and [Y ]. Note that [X ] and [Y ] are not
updated straight after the call of Opt(), to make the process symmetrical between X and Y

(Î′(X ;Y ) = Î′(Y ;X)).

We will now analyze this estimator in empirical situations, first qualitatively and then by
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Algorithm 5 Î′(X ;Y ) heuristic
Require: Ranks of X , Y , coarse level c

I′init = 0
for k = 2 to dN1/3e do

if I′([X ]ke f ; [Y ]ke f ) > I′init then
I′init ← I′([X ]ke f ; [Y ]ke f )

[X ] ← [X ]ke f , [Y ] ← [Y ]ke f
end if

end for

repeat
[X ]new ← Opt(I(X ; [Y ]),c,rx)
[Y ]new ← Opt(I(Y ; [X ]),c,ry)

Update [X ] ← [X ]new, [Y ] ← [Y ]new
I′ ← I′([X ], [Y ])

until Max iteration reached or limit cycle convergence

return I′, [X ], [Y ]

quantitatively comparing Î′(Y ;X) to other estimators in the discrete and in the mixed case.
Perhaps the most noticeable result of this approach is that the optimal discretization [X ] of
any variable depends on the joint distribution X ,Y , no [X ] can be MDL-optimal with regards
to all joint distributions (Fig 3.10). This implies that we need to run Alg 5 for each pair
of variable to estimate Î′(X ;Y ) correctly, we cannot reuse the same cutpoints. Importantly,
even if all variables are jointly Gaussian, the number of bins still depends on the amount of
information, scaling monotonically with the strength of the interaction (Fig 3.9).

Figure 3.10: Optimal discretization of three joint distributions with the same marginal X , as
found by maximizing Î′(X ;Y ).

This concept of context-dependent discretization perhaps seems fundamentally incom-
patible with Bayesian networks, for which each node must have a marginal probability
distribution defined independently of the rest of the network. In our case, the optimal dis-
cretizations [X ] and [Y ] must be considered in pairs, they inform us of the edge between X
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Figure 3.11: Adaptive information-maximizing partitions depending on interaction strength.
10,000 Gaussian bivairate distributions with N = 1,000 samples were generated with uni-
formly distributed correlation coefficients ρ in [−1,1], and discretized using Alg 5. The real
mutual information (RI, shades of blue) of Gaussian bivariate distributions can be computed
directly with Eq 3.1.16.

and Y , and not of the nodes X and Y . Alternatively, one can think of the optimal discretization
scheme only as a proxy to measure Î′(X ;Y ) (of which [X ] and [Y ] are by-products), which is
indeed linked to the edge X−Y .

There are other discretization schemes for mixed Bayesian networks, for example the
work done by Neil et al. on dynamic discretization [105, 106]. In this setting, continuous
nodes are discretized so as to give the best inference, i.e. the best distribution P(v) as
reconstructed from the Bayesian network parameters. From the inference point of view, one
needs to find [X ] not only in relation to a single variable Y , but to all of its neighbors (as well
as all of the other parents of its children, to take into account interaction effects). To re-use
the Information Bottleneck terminology, if one is looking for the best inference, one wants
to find an encoding [X ] of a continuous variable X that maximizes the information between
X and all of its neighbors : I([X ];Ad j(X)). On the other hand, for constraint-based graph
discovery we want to perform (conditional) independence testing for each edge X−Y , which
only requires to look at the (conditional) interaction between two nodes (the conditional
estimator is introduced in the next section).

Next, we assess how good is the estimation of Î′(Y ;X) on known distributions. On
bivariate Gaussian distributions with correlation ρ ranging from 0.01 to 0.9, our estimator is
competitive with the KSG estimator (as implemented in JIDT [107]). We note a particularly
desirable property of the miic estimation : its error and variance tend to zero as the signal



52 Chapter 3. Mutual information for constraint-based inference

disappears (ρ → 0) and as the complexity cost is greater than any information coming from
the joint discretization of the data. This results in few false positives when doing the graph
reconstruction while still having decent power.
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Figure 3.12: Mutual information estimation for 100 Gaussian bivariate distributions. The
mean squared error (center graphs) was calculated thanks to the analytical result of the mutual
information of the bivariate Gaussian (Eq 3.1.16). The standard deviation of each estimator
over the 100 replications was also plotted against the correlation coefficient (right).

We also assessed its performance on the mixed case, by conducting the numerical
experiments proposed in [51]. Our approach fared similarly or better compared to a naive
equal-frequency discretization with N1/3 bins, a kernel estimator and a noisy KSG estimator,
as well ÎRoss [71] and ÎGao [51]. Particularly, our estimator gives the best estimation for the
mixture distribution of Fig 3.7. It converges at the ground truth value given by Eq 3.1.39,
in accordance with the master definition of mutual information. For details on benchmark
settings and other results, see Supplementary materials of [7].
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Figure 3.13: Mutual information estimation of mixed variables. Experiment set-ups and
analytical values for the mutual information were taken fom [51] and 50 runs were performed
for each sample size N. From left to right, top to bottom, the simulations are devised after
experiment I, experiment II, experiment IV with p = 0 and experiment IV with p = 0.15,
from [51]. The top left experiment corresponds to the distribution of Fig 3.7 with ρ = 0.9
and β = 0.9 and pcon = pdis = 0.5



54 Chapter 3. Mutual information for constraint-based inference

3.2.3 Conditional case

This optimization scheme, Alg 4, and its iterative dynamic programming computation, Alg
5, can also be adapted to compute mutual information involving joined variables, such
as I′N(X ;{Ui}), with corresponding finite size corrections and cut point encoding costs
extended from Eqs. 3.2.8−3.2.17. Similarly, the approach can compute the conditional mutual
information I′N(X ;Y |{Ui}), involving continuous, discrete or mixture variables. Remark that
we do not want to maximize I′(X ;Y |{Ui }) directly, as two dependent variable X 6⊥⊥ Y that
are conditionally independent X ⊥⊥Y |{Ui } can always have positive conditional information
I(X ;Y |[Ui]) if the [Ui] encoding is chosen so that I(X ; [Ui]) or I(Y ; [Ui]) is null (e.g. imposing
one single bin for all U). Instead, we want an estimation that converges towards 0 for
conditional independence, and a positive value otherwise.

To this end, we can define Î′N(X ;Y |{Ui}) using the chain rule 3.1.19, as the difference be-
tween maximized mutual information terms involving either {Y,{Ai}} and {Ai} (Eq. 3.2.19)
or {X ,{Ai}} and {Ai} (Eq. 3.2.20) as joined variables,

Î′N(X ;Y |{Ui}) = Î′N(X ;Y,{Ui})− Î′N(X ;{Ui}) (3.2.19)

= Î′N(Y ;X ,{Ui})− Î′N(Y ;{Ui}) (3.2.20)

Starting from an initial (or optimized) partition [Y ], each term of Eq. 3.2.19 is optimized
with respect to X and {Ui} partitions using Eq. 3.2.9 as parametric complexity extended to
multivariate categories, nx,{ui} and n{ui}. Then, in turn, each term of Eq. 3.2.20 is optimized
with respect to Y and {Ui} partitions using Eq. 3.2.10 as parametric complexity extended to
multivariate categories, ny,{ui} and n{ui}. Note, in particular, that {Ui} partitions are optimized
separately for each of the four terms in Eqs. 3.2.19 & 3.2.20, before taking their differences,
as these optimized {Ui} partitions might be different in general. This process is detailed by
Alg 6.

The [U ] optimization routine is a small loop of 3 iterations maximizing the relevant
information, where one Ui is discretized while the rest are fixed. As [91] remarked in their
own benchmarks, treating each Ui independently gives MIIC a unique advantage compared
to other methods as it discards non-informative Uis by discretizing them in a single bin,
effectively removing one dimension. This is particularly interesting for constraint-based
learning, as it implies that adding irrelevant Uis to the conditioning set does not change
the result of the conditional test. In practice, it can sometimes lead to situations where
I′1 or I′2 is negative because the [U ] optimization gets stuck in a local optimum. This can
be fixed by re-using the corresponding [U ] cutpoints for the next iteration, ensuring that
the differences I′([X ], [Y,U ])− I′([X ], [U ]) and I′([Y ], [X ,U ])− I′([Y ], [U ]) are positive. This
recycling scheme is described in Alg 7.
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Algorithm 6 Î′(X ;Y |U) heuristic
Require: Ranks of X , Y , U , coarse level c

I′init = 0
for k = 2 to init_binsmax do

if I′([X ]ke f ; [Y,U ]ke f ) > I′init then
I′init ← I′([X ]ke f ; [Y,U ]ke f )+ I′([Y ]ke f ; [X ,U ]ke f )

[X ] ← [X ]ke f , [Y ] ← [Y ]ke f
end if

end for

repeat
[U ] optimization on I′([Y ]; [X ],U)
Compute and save I′([Y ]; [X ,U ])
[X ]new← Opt(I′([Y ],X [U ]),c)

[U ] optimization on I([X ]; [Y ],U)
Compute and save I′([X ]; [Y,U ])
[X ]new← Opt(I′([X ],Y [U ]),c)

[U ] optimization on I′([X ];U)
Compute and save I′([X ]; [U ])

[U ] optimization on I′([Y ];U)
Compute and save I′([Y ]; [U ])

Update [X ] ← [X ]new, [Y ] ← [Y ]new
I′1 ← I′([X ], [Y,U ])− I′([X ], [U ])
I′2 ← I′([Y ], [X ,U ])− I′([Y ], [U ])
I′ ← 0.5(I′1+ I′2)

until Max iteration reached or limit cycle convergence on I′

return I′, [X ], [Y ]

To benchmark the conditional estimator, four-dimensional normal distributions P(X ,Y,Z1,Z2)

were sampled for N = 100 and 10,000 samples 100 times for each correlation coefficient
ρ = ρXY between 0.05 and 0.95. The other pairwise correlation coefficients are fixed as
ρXZ1 = ρXZ2 = ρY Z1 = ρY Z2 = λ = 0.7 and ρZ1Z2 = 0.9. The conditional mutual information
I(X ;Y |Z1,Z2) was then estimated using the proposed optimum partitioning scheme as well as
with k-nn conditional information estimates as in Fig 3.12. In this experiment, ρ values closed
to zero, mimick “V-structures” as they correspond to pairwise independence but conditional
dependence; by constrast ρ = 2λ 2/(1+ρZ1Z2)' 0.5158 corresponds to conditional indepen-
dence, while ρ > 0.5158 implies that X and Y share more information than the indirect flow
through Z1 and Z2. The analytical value of the conditional mutual information is derived as
follows : given the 4×4 covariance matrix ΣΣΣ and its four 2×2 partitions ΣΣΣi j, we first compute
the conditional covariance matrix ΣΣΣ = ΣΣΣ11−ΣΣΣ12ΣΣΣ

−1
22 ΣΣΣ21 where ΣΣΣ

−1
22 is the generalized inverse

of ΣΣΣ22. The partial correlation between X and Y is obtained as ρXY ·Z1Z2 = ΣΣΣ12/
√

ΣΣΣ11 ∗ΣΣΣ22,
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Algorithm 7 Î′(X ;Y |U) heuristic, re-using cutpoints
Require: Ranks of X , Y , U , coarse level c

Initialize [X ], [Y ] with best equal freq, as Alg 6

Reuse_X_cuts ← false
Reuse_Y _cuts ← false
repeat

if Reuse_Y _cuts then
[U ] ← [U ]Y

else
[U ] optimization on I′([Y ]; [X ],U)

end if
Compute and save I′([Y ]; [X ,U ])
[X ]new← Opt(I′([Y ],X [U ]),c)

if Reuse_X_cuts then
[U ] ← [U ]X

else
[U ] optimization on I′([X ]; [Y ],U)

end if
Compute and save I′([X ]; [Y,U ])
[Y ]new← Opt(I′([X ],Y [U ]),c)

if Reuse_X_cuts then
[U ] ← [U ]X

else
[U ] optimization on I′([X ];U)
Save [U ]X cutpoints← [U ]

end if
Compute and save I′([X ]; [U ])

if Reuse_Y _cuts then
[U ] ← [U ]Y

else
[U ] optimization on I′([Y ];U)
Save [U ]Y cutpoints← [U ]

end if
Compute and save I′([Y ]; [U ])
Update [X ] ← [X ]new, [Y ] ← [Y ]new
I′1 ← I′([X ], [Y,U ])− I′([X ], [U ])
I′2 ← I′([Y ], [X ,U ])− I′([Y ], [U ])
Assign Reuse_X_cuts ← (I′1 < 0), Reuse_Y _cuts ← (I′2 < 0)
I′ ← 0.5(I′1+ I′2)

until Max iteration reached or limit cycle convergence on I′

return I′, [X ], [Y ]

and the analytical conditional mutual information for a multivariate normal distribution is
given by I(X ;Y |Z1,Z2) =− log(1−ρ2

XY ·Z1Z2
)/2. The results, shown in Figure 3.14, suggest
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Figure 3.14: Conditional mutual information estimation for multivariate Gaussian distribu-
tions Four-dimensional normal distributions P(X ,Y,Z1,Z2) were sampled for N = 100 and
10,000 samples 100 times for each correlation coefficient ρ = ρXY , chosen between 0.05
and 0.95.

that our estimator is also adequate to measure Î(X ;Y |{Ui }, even though it is a significantly
harder problem (even for the KSG estimator). As is the case for the pairwise information,
it also seems to converge towards zero at the independence regime, contrary to the k-nn
approaches that always give noisy estimates.

Finally, we tested the sensitivity and power of our estimator to detect (conditional)
independence. We reproduced the tests for mixed conditional independence test by [50] based
around the "Local Causal Discovery" algorithm [108]. In the original article, independences
tests are either frequentist or bayesian, and are compared using different detection thresholds
to compute the ROC curves and AUCs. Our estimator I′N(X ;Y ) cannot be readily compared in
this way since it is unbounded and it behaves the opposite way of these other tests (dependence
implies a large positive value, independence gives a null estimation). For many estimators one
can always get an "empirical p-value" without knowing the standard asymptotic distribution
by running permutations on the observed data. In our case however, it would not be efficient
as the optimal discretization for shuffled data without information is one single bin, and
I′N(X ;Y ) is strictly 0. Instead, to obtain a value between ]0,1] that behaves the same way as
the other tests, we computed the following :

I′pval(X ;Y ) = 1− I′N(X ;Y )
min(I′N(X ;X), I′N(Y ;Y ))

(3.2.21)

I′pval(X ;Y |Z) = 1− I′N(X ;Y |Z)
min(I′N(X ;X), I′N(Y ;Y ))

(3.2.22)
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Where min(I′N(X ;X), I′N(Y ;Y )) can be thought of as the maximum value I′N(X ;Y ) or
I′N(X ;Y |Z) can have in this setting. We can then compare I′pval with different marginals X , Y

and Z, and compute ROC curves and the area under them by setting different thresholds in
]0,1]. The results show that our proposed estimator has the best overall AUC when combining
the three independence tests C 6⊥⊥ X , X 6⊥⊥ Y and C ⊥⊥ Y |X on mixed data (Fig 3.15). It
means that even though the estimator essentially filters out the very weak interactions by
setting 1-bin discretization, we are able to compare and rank the estimates Î better than any
other test in these settings. This is the closest experiment to causal graph inference, which
essentially consists of serial (conditional) independence tests for the skeleton discovery. For
details of the different simulations used to benchmark independence testing, I refer the reader
to the original study [50].
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Figure 3.15: Conditional independence tests on mixed variables. Mean Area Under the Curve
of ROC curves from 200 rounds of simulation at each sample size n for the LCD triple [50].
The triple is scored according to a combination of three p-values for three independence tests
: C 6⊥⊥ X , X 6⊥⊥ Y and C ⊥⊥ Y |X , and is given a true ’positive’ label if the data is simulated
according to the relationship C→ X → Y , ’negative’ otherwise.
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3.3 Publication in PLoS Computation Biology
Our publication in the Public Library of Science Computational Biology journal [7] intro-
duced this joint optimal discretization algorithm, showing more examples of discretizations
and comparisons with other methods.

Importantly, it evaluated the performance of MIIC using this estimator on continuous
and mixed data against other state of the art causal discovery approaches. It was shown to
have the best overall performance even when testing over the full range of parameters of
the other methods (whereas MIIC stays parameter free). Maybe surprisingly, it was even
shown to outperform CAM [38], which makes explicit assumptions that give it an edge in a
simulations setting, and kPC [33] based on the HSIC, which is known to be one of the most
powerful methods for non-parametric conditional independence testing. On mixed datasets,
it fared better than either CausalMGM [109] and MXM [110] (also on their full range of
parameters), the only two known methods that deal with mixed data at the time of writing the
article.

It also presented and analyzed the network inferred by MIIC on a mixed dataset of
medical records of elderly patients, which will be introduced in Section 5.1.
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Abstract

The precise diagnostics of complex diseases require to integrate a large amount of informa-

tion from heterogeneous clinical and biomedical data, whose direct and indirect interdepen-

dences are notoriously difficult to assess. To this end, we propose an efficient

computational approach to simultaneously compute and assess the significance of multivar-

iate information between any combination of mixed-type (continuous/categorical) variables.

The method is then used to uncover direct, indirect and possibly causal relationships

between mixed-type data from medical records, by extending a recent machine learning

method to reconstruct graphical models beyond simple categorical datasets. The method is

shown to outperform existing tools on benchmark mixed-type datasets, before being applied

to analyze the medical records of eldery patients with cognitive disorders from La Pitié-Sal-

pêtrière Hospital, Paris. The resulting clinical network visually captures the global interde-

pendences in these medical records and some facets of clinical diagnosis practice, without

specific hypothesis nor prior knowledge on any clinically relevant information. In particular, it

provides some physiological insights linking the consequence of cerebrovascular accidents

to the atrophy of important brain structures associated to cognitive impairment.

Author summary

We developed a machine learning approach to analyze medical records and help clinicians

visualize the direct and indirect interrelations between clinical examinations and the vari-

ety of syndromes implicated in complex diseases. The reconstruction of such clinical net-

works is illustrated on the spectrum of cognitive disorders, originating from either

neurodegenerative, cerebrovascular or psychiatric dementias. This global network analysis

is also shown to uncover novel direct associations and possible cause-effect relationships

between clinically relevant information, such as medical examinations, diagnoses, treat-

ments and personal data from patients’ medical records.
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Introduction

The precise diagnostics of neurological disorders require to integrate a large amount of infor-

mation from a variety of biomedical tests and clinical examinations. These diagnostics must

also take into account age-related comorbid medical conditions, such as diabetes and cardio-

vascular diseases, which concern a large fraction of patients, as the incidence of neurodegener-

ative diseases increases with age. Such comorbid medical conditions influence neuropathology

treatment decisions as well as short- and long-term survival of patients but are often over-

looked in clinical trials. This situation underlines the need to directly analyze real life medical

records to learn clinical networks, that are graphical models highlighting direct, indirect and

possibly causal associations between clinically relevant information in patients’ medical

records.

Medical records contain, however, mixed types of data from simple binary or nominal vari-

ables (i.e., with multiple unordered categories) to ordinal (e.g. neuropsychological test scales)

or continuous (e.g. age, body mass index) variables, whose interdependences are not readily

assessed within a unified information-theoretic framework. As mutual information is primar-

ily defined between nominal variables, its estimation for continuous or mixed-type variables is

notoriously difficult beyond the gaussian approximation of continuous distributions, for

which a simple relation exists with correlation coefficients [1]. In particular, arbitrary discreti-

zation of continuous variables tends to underestimate mutual information for small number of

bins, while overestimating it for large number of bins due to finite numbers of patients, as

sketched in Fig 1. Moreover, so far, no rationale provides optimum bin partitions to estimate

mutual information, for typical cohort size of patients. Alternatively, local metric approaches

have been proposed to estimate mutual information [2] and conditional information [3–5],

including between mixed-type variables [6–8], based on k-nearest neighbor (kNN) statistics.

However, the statistical significance of kNN information estimates remains difficult to assess

in practice [2, 9], thereby limiting their use to uncover (conditional) independences between

continuous or mixed-type variables from real-life datasets.

In this paper, we first develop and implement an optimum binning method to simulta-

neously compute and assess the significance of mutual information, as well as conditional mul-

tivariate information, between any combination of continuous or mixed-type variables. The

method is based on minimum description length principles [10, 11] and finds optimum bin

Fig 1. Mutual information computation between continuous or mixed-type variables. Outline of mutual

information computation between continuous or mixed-type variables for a finite dataset of N samples. Mutual

information is estimated through an optimum partitioning of continuous variable(s) (solid red line and arrow) after

introducing a complexity term to account for the finite size of the dataset, see main text.

https://doi.org/10.1371/journal.pcbi.1007866.g001
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partitions, iteratively for each continuous variable, through an efficient dynamic programming

scheme with quadratic complexity, OðN2Þ, where N is the number of patients in the dataset.

This efficient approach is then used to assess direct versus indirectcause-effect relationships

between mixed-type data from medical records, by extending a recent network learning

method [12, 13] to recontruct graphical models beyond simple categorical datasets.

The method is shown to outperform existing tools on benchmark mixed-type datasets,

before being applied to analyze the medical records of eldery patients with cognitive disorders

from La Pitié-Salpêtrière Hospital, Paris. The resulting clinical network visually captures the

global interdependences in these medical records and some facets of clinical diagnosis practice,

without specific hypothesis nor prior knowledge on any clinically relevant information. The

reconstructed clinical network recovers well known as well as novel direct and indirect rela-

tions between medically relevant variables. In particular, it provides some physiological

insights linking the consequence of cerebrovascular accidents to the atrophy of important

brain structures associated to cognitive impairment.

Methods

Assessing information in continuous or mixed-type data

Information-maximizing discretization of continous data. While mutual information is

usually defined as a discrete summation over nominal variables, i.e., I(X;Y) = ∑x,y px,y log(px,y/px
py), its most general definition consists in taking the supremum over all finite partitions, P and

Q, of variables, X and Y [1],

IðX;YÞ ¼ sup
P;Q

Ið½X�P; ½Y�QÞ ð1Þ

which can be applied to continuous or mixed-type variables. Moreover, by continuing to refine

some initial partitions through the addition of further cut points for continuous variable(s), one

finds a monotonically increasing sequence [1], Ið½X�P; ½Y�QÞ, as depicted on Fig 1. In practice,

however, Eq 1 cannot be used to estimate I(X; Y) from an actual dataset with finite sample size,

as the refinement of partitions eventually assigns each of the N different samples into N differ-

ent bins. This leads to a shift of convergence towards logN instead of the theoretical limit, I
(X; Y), which requires an infinite amount of data (dotted line in Fig 1).

In this paper, we propose to adapt Eq 1 to account for the finite number of samples in actual

datasets,

I0NðX;YÞ ¼ sup
P;Q

I0Nð½X�P; ½Y�QÞ ð2Þ

by introducing a finite size correction to mutual information,

I0Nð½X�P; ½Y�QÞ ¼ INð½X�P; ½Y�QÞ � k0P;QðNÞ
1

N
ð3Þ

where k0P;QðNÞ corresponds to a complexity term introduced in [14, 15] to discriminate

between variable dependence (for I0Nð½X�P; ½Y�QÞ > 0) and variable independence (for

I0Nð½X�P; ½Y�QÞ⩽0) given a finite dataset of size N. In the present context of finding an optimum

discretization for continuous variables, this complexity term introduces a penalty which even-

tually outweights the information gain in refining bin partitions further, when there is not

enough data to support such a refined model, as depicted on Fig 1.

For discrete variables, typical complexity terms correspond to the Bayesian Information

Criterion (BIC), kBICP;QðNÞ ¼ 1=2ðrx � 1Þðry � 1Þ logN, where rx and ry are the number of bins
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for X and Y, or the X- and Y-Normalized Maximum Likelihood (NML) criteria [14–16],

defined as,

kX� NML
P;Q ðNÞ ¼

Xry

y

log Crx
ny
� log Crx

N ð4Þ

kY� NML
P;Q ðNÞ ¼

Xrx

x

log Cry
nx
� log C

ry
N ð5Þ

where Crx
ny

is the parametric complexity associated with the yth bin of variable Y containing ny
samples, and similarly for Cry

nx
with the nx-size bin of variable X in Eq 5.

Parametric complexities Cr
n are defined by summing a multinomial likelihood function over

all possible partitions of n data points into a maximum of r bins as,

Cr
n ¼

X‘k⩾0

‘1þ‘2þ���þ‘r¼n

n!

‘1!‘2! � � � ‘r!

Yr

k¼1

‘k
n

� �‘k

ð6Þ

which can in fact be computed recursively in linear-time [17]. For large n and r, inherent to

large datasets with continuous or mixed-type variables, we found that Cr
n computation can be

made numerically stable by implementing the recursion on parametric complexity ratios Dr
n ¼

Cr
n=C

r� 1

n rather than parametric complexities themselves as,

Dr
n ¼ 1þ

n
ðr � 2ÞDr� 1

n

ð7Þ

log Cr
n ¼

Xr

k¼2

log Dk
n ð8Þ

for r ⩾ 3, with C1

n ¼ 1 and C2

n ¼ D2

n, which can be computed directly with the general formula,

Eq 6, for r = 2,

C2

n ¼
Xn

h¼0

n

h

 !
h
n

� �h n � h
n

� �n� h

ð9Þ

or its Szpankowski approximation for large n (needed for n> 1000 in practice) [18–20],

C2

n ¼

ffiffiffiffiffiffi
np
2

r

1þ
2

3

ffiffiffiffiffiffi
2

np

r

þ
1

12n
þO

1

n3=2

� � !

ð10Þ

’

ffiffiffiffiffiffi
np
2

r

exp
ffiffiffiffiffiffiffiffi

8

9np

r

þ
3p � 16

36np

 !

ð11Þ

For continuous variables, however, the variable categories are not given a priori and need to

be specified and thus encoded in the model complexity within the frame of the Minimum

Description Length (MDL) principle [11]. In absence of priors for any specific partition with r
bins, the model index should be encoded with a uniform distribution over all partitions with

the same number of bins [11]. As there are ð
N� 1

rx � 1
Þ ways to choose rx − 1 out of N − 1 possible

cut points, corresponding to a codelength of log ðN� 1

rx � 1
Þ for a continuous variable X (and
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similarly for Y if it is continuous), the model complexity associated with the partitioning of

continuous or mixed-type variablesbecomes,

k0P;QðNÞ ¼ kP;QðNÞ þ log
N � 1

rx � 1

 !

þ log
N � 1

ry � 1

0

@

1

A ð12Þ

with log ðN� 1

r� 1
Þ ¼ ðr � 1ÞCN;r, where CN,r corresponds to theencoding cost associated to each of

the r − 1 cut points with r = rx or ry.
While finding the supremum of I0Nð½X�P; ½Y�QÞ over all possible partitions P and Q accord-

ing to Eq 2 seems intractable, it can be computed rather efficiently in practice.

The approach is inspired by the computation of an MDL-optimal histogram for a single

continuous variable [11], which can be done exactly in OðN3Þ steps. As the approach cannot

be generalized to more than one variable, we implemented a local optimization heuristics,

which finds the optimum cut points for each continuous variable, iteratively, keeping the parti-

tions of the other continuous variable(s) fixed. This enables to gain an order of magnitude in

the optimization running time at each iteration, which scales as OðN2Þ, as detailed below.

In practice for two variables, we start from an initial (or optimized) X partition with rx bins

of various sizes and an estimate of the number of Y bins, r�y . The sample-scaled mutual infor-

mation with finite size correction, i.e., nI0nðX;YÞ, is then optimized iteratively for n = 1, � � �, N
samples, over all Y partitions, through the following OðN2Þ dynamic programming scheme,

using Eq 4 as parametric complexity,

nI0nðX;YÞ ¼ max
0⩽j<n
½jI0jðX;YÞ þ

Xrx

x

nxy lognxy � ny logny � logCrx
ny
� CN;r�y

� ð13Þ

where the last added Y bin, including ny = n − j samples distributed over the rx bins of X
(with

Prx
x nxy ¼ ny), comes with an independent mutual information contribution,

Prx
x nxy lognxy � ny log ny, a parametric complexity, logCrx

ny
, and encoding cost, CN;r�y

. The ini-

tial condition for j = 0 in (13) is set by convention to include all terms invariant under Y-parti-

tioning, i.e., �
Prx

x nx log ðnx=NÞ þ logCrx
N � ðrx � 1ÞCN;rx

þ CN;r�y
.

Then, adopting this optimized partition for Y, one can apply the same dynamic program-

ming scheme for X using Eq 5 as parametric complexity and iterate the optimization of X and

Y partitions until a stable two-state limit circle is reached. In practice, we set the initial parti-

tioning over X and Y by testing equal-freq discretizations with 2 to dN1/3e bins and choosing

the one which gives thehighest I0NðX;YÞ. We found that while the convergence speed of the

iterative dynamic programming is largely independent of these initial conditions, this scheme

does improve it slightly. This leads after only a few iterations to a good estimate of mutual

information (averaged over limit circle) that is comparable to the existing state of the art, for

both continuous and mixed-type variables, as shown below.

This optimization scheme, Eq 2, and its iterative dynamic programming computation, Eq

13, can also be adapted to compute mutual information involving joined variables, such as

I0NðX; fAigÞ, with corresponding finite size correctionsand cut point encoding costs extended

from Eqs 3–12. Similarly, the approach can compute conditional mutual information, such as

I0NðX;YjfAigÞ, involving continuous or mixed-type variables. To this end, I0NðX;YjfAigÞ needs

to be defined, using the chain rule [1], as the difference between maximized mutual informa-

tion terms involving either {Y, {Ai}} and {Ai} (Eq 14) or {X, {Ai}} and {Ai} (Eq 15) as joined
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variables,

I0NðX;YjfAigÞ ¼ I0NðX;Y; fAigÞ � I0NðX; fAigÞ ð14Þ

¼ I0NðY;X; fAigÞ � I0NðY; fAigÞ ð15Þ

Thus, starting from an initial (or optimized) partition for X, each term of Eq 14 is optimized

with respect to Y and {Ai} partitions using Eq 4 as parametric complexity extended to multivar-

iate categories, ny,{ai} and n{ai}. Then, in turn, each term of Eq 15 is optimized with respect to X
and {Ai} partitions using Eq 5 as parametric complexity extended to multivariate categories,

nx,{ai} and n{ai}. Note, in particular, that {Ai} partitions are optimized separately for each of the

four terms in Eqs 14 & 15, before taking their differences, as these optimized {Ai} partitions

might be different in general.

Learning networks from continuous or mixed-type data

The above information maximization scheme to estimate (conditional) mutual information

between continuous or mixed-type variables can then be used to extend our recent network

learning algorithm MIIC [12] beyond simple categorical datasets.

Outline of MIIC algorithm. MIIC combines constraint-based approach and informa-

tion-theoretic framework to robustly learn a broad class of causal or non-causal networks

including possible latent variables [12, 13]. MIIC proceeds in three steps:

i). Edge pruning. Starting from a fully connected network, MIIC first removes dispensable

edges by iteratively subtracting the most significant information contributions from indi-

rect paths between each pair of variables. Significant contributors are collected based on

the 3off2 score [14, 15] maximizing conditional three-point information while minimiz-

ing conditional two-point (mutual) information, which reliably assesses conditional

independence, even in the presence of strongly linked variables [21]. The residual (condi-

tional) mutual information including finite size corrections, I0NðX;YjfAigÞ (i.e. after indi-

rect effects of significant contributors, {Ai}, have been subtracted from I0NðX;YÞ), is

related to the removal probability of each edge, PXY¼ expð� NI0NðX;YjfAigÞÞ, where

NI0NðX;YjfAigÞ > 0 corresponds to the strength of the retained edge, as visualized by its

width in MIIC graphical models [12].

ii). Edge filtering (optional). The remaining edges can be further filtered based on confidence

ratio assessment [12],CXY ¼ PXY=hPrand
XY i, where Prand

XY is the average of the probability to

remove the XY edge after randomly permutating the dataset for each variable. Hence, the

lower CXY, the higher the confidence on the XY edge. In practice, filtering edges with CXY

> 0.1 or 0.01 limits the false discovery rates with small datasets, while maintaining satis-

factory true positive rates [12].

iii). Edge orientation. Retained edges are then oriented based on the signature of causality in

observational data given by the sign of (conditional) three-point information [14, 15].

The final network contains up to three types of edges [12]: undirected, directed, as well

as, bidirected edges, which originate from a latent variable, L, unobserved in the dataset

but predicted to be a common cause of X and Y, i.e. X⤎ (L) ⤏ Y. For clarity, bidirected

edges are represented with dashed lines in MIIC networks.

An important aspect of MIIC algorithm is its ability to take into account datasets with miss-

ing values, which are frequent in heterogeneous clinical datasets. In practice, MIIC computes

multivariate information estimates (such as I0NðX;YjfAigÞ) on sub-datasets for which X, Y and
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{Ai} do not have missing values. While including iteratively additional conditioning variables Ai

might further restrict the size of the sub-dataset without missing value, we only consider variables

Ai if their missing values are missing at random (checking Kullback Leibler divergence between

distributions of decreasing supports). If some data is not missing at random, the 3off2 scheme

[14, 15], I(X; Y|{Ai}n) = I(X; Y) − I(X; Y; A1) − I(X; Y; A2|A1)−� � �−I(X; Y; An|{Ai}n−1), might end

without finding conditional independence, ie I(X;Y|{Ai}n)>0, and MIIC edge pruning step is

conservative by retaining the corresponding edge X-Y due to possible bias in the dataset.

MIIC’s extension to continuous or mixed-type data has been implemented in MIIC online

server and R package, see SI.

Results

Application to benchmark synthetic data

Optimum discretization and mutual information estimates for continuous or mixed-

type data. The multivariate discretization scheme and resulting estimates of (conditional)

mutual information were first benchmarked using synthetic data from known mixed or con-

tinuous probability distributions for which (conditional) mutual information can be obtained

either analytically or through numerical integration. Examples of bivariate information-maxi-

mizing discretizations are shown in Fig 2 and S1 Fig for increasing sample size. The number of

bins increases both with the number of samples, S1 Fig, and the magnitude of mutual informa-

tion, IN(X; Y), S2A Fig. These tendencies have intuitive explanations: first, more samples

means that we can assign smaller bins (width-wise) with more certainty; and second, more

information means that more bins are needed to describe the interaction between the variales.

We note that no single discretization of a variable X can be optimal with regards to every joint

distribution, see S3 Fig. While the precise cut points of variable X actually depend on the

Fig 2. Optimum bivariate discretization for mutual information estimate. The proposed information-maximizing discretization

scheme is illustrated for a joint distribution defined as a Gumbel bivariate copula with parameter θ = 5 and marginal distributions

chosen as Gaussian mixtures with three equiprobable peaks and respective means and variances, μX = {0, 4, 6}, σX = {1, 2, 0.7} and μY =

{−3, 6, 9}, σY = {2, 0.5, 0.5}. The information-maximizing partition yields (A) IN(X; Y) = 1.04 for N = 500 samples and (B) IN(X; Y) =

1.142 for N = 10, 000 samples, as compared to the exact expected value I(X; Y) = 1.205 computed with numerical integration. See S1 Fig

for additional results. Codes are provided at https://github.com/vcabeli/miic_PLoS.

https://doi.org/10.1371/journal.pcbi.1007866.g002
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variable Y of interest, the number of X and Y bins are roughly similar(for the chosen test set-

tings), S2A Fig, unlike found with information-maximization discretization methods lacking

complexity terms [22], S2B Fig.

Next, we compared our estimation of IN(X; Y) by optimal discretization to the state of the

art Kraskov–Stögbauer–Grassberger (KSG) estimator [2] for continuous distributions, specifi-

cally bivariate Gaussian distributions S4 Fig. Like otherinformation estimators based on kNN

statistics, the KSG approach has a tunable parameter k which will typically scale with the sam-

ple size N, and has to be chosen depending on the objective: the original authors recommend

k = 2 to 4 for the best estimation, and up to N/2 if one is more interested in independence test-

ing. We found that our optimal discretization with the NML complexity does indeed give a

correct estimation of IN(X; Y) for all sample sizes and correlation strengths. Our approach also

natively deals with categorical and mixed (i.e. part categorical and part continuous) variables,

as the master definition of the mutual information, Eq 1, can be applied to variables of any

type. Recent efforts were made to extend the KSG estimator to such cases [6–8] which are fre-

quently encountered in real-life data, and specifically in clinical datasets. We compared the

mixed-type information estimates of our method to other existing methods for varying sample

sizes and found its performance to be similar or superior, S5 Fig. In addition, our information-

maximizing discretization approach facilitates the interpretation of the dependences

between continuous or mixed-type variables by returning their most informative categories.

Information-maximizing discretization and corresponding (conditional) mutual informa-

tion estimates can be computed for any continuous or mixed-type dataset using the

discretizeMutual function from the MIIC R package.

Optimum discretization as an independence test between continuous or mixed-type

variables. Most importantly,our optimum discretization scheme also acts as an indepen-

dence test by allowing for single bin partitions whenever no multiple-bin partitioning can

glean information that is greater than its associated complexity cost. In such cases, our estima-

tor implies variable independence, i.e. IN (X; Y) = 0, with drastically reduced sampling error

and variance, S4 Fig, as compared to other direct estimators such as KSG, which always give

noisy information estimates even for vanishing mutual information between nearly indepen-

dent variables and need additional hypothesis testing to be used as independence test.

Similarly, our approach robustly learns conditional independence,given a set of separating

variables, {Zi}, i.e., IN (X; Y |{Zi}) = 0, S6 Fig, as in the case of a single common ancestor Z of X
and Y, i.e., X Z! Y, with concomitant changes in optimum X and Y partitionings from

multiple to single bins under conditioning over a continuous (S7 Fig) or categorical (S8 Fig)

variable Z. By contrast, spurious dependency between independent variables, X and Y, can be

induced, as expected [23], by conditioning over a common descendent Z, as in the case of a “v-

structure”, X! Z Y, S9 Fig.

Hence, the intrinsic robustness of the present optimum discretization scheme in inferring

(conditional) independence and dependency is an important feature of the method as com-

pared to kNN (conditional) information estimates, whose statistical significance remains diffi-

cult to assess in practice [2, 9].

Reconstruction of benchmark graphical models. We first tested the mixed-type data

extension of MIIC network reconstruction method on benchmark mixed-type data. Datasets

were generated based on non-linear bayesian rules using the R script provided as Supplemen-

tary code; an example of non-Gaussian mixed-type distribution dataset is shown in S10 Fig.

The resulting reconstructed network F-scores are shown in Fig 3 for an increasing proportion

of continuous variables over discrete variables and compared to the recent alternative meth-

ods, CausalMGM [24] and MXM [25], also designed to analyze mixed-type data. Precision,

Recall and F-scores are shown for both skeleton and CPDAG in S11 and S12 Figs, respectively.
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Comparisons with fully continuous datasets, S13 Fig, were also performed with additional

methods, CAM [26], kPC, rank-PC and rank-FCI [27] algorithms, S14 and S15 Figs, and con-

firm the better performance of MIIC over alternative continuous or mixed-type network learn-

ing methods.

Application to medical records of eldery patients with cognitive disorders

We applied this information maximization analysis for mixed-type data to reconstruct a clini-

cal network from the medical records of 1,628 eldery patients consulting for cognitive disor-

ders at La Pitié-Salpêtrière hospital, Paris. The dataset,provided as S1 Table, contains 107

variables of different types (namely, 19 continuous and 88 categorical variables) and heteroge-

neous nature (i.e., variables related to previous medical history, comorbidities and

Fig 3. Reconstruction of benchmark networks for mixed-type, non-linear, non-Gaussian datasets. CPDAG F-scores

obtained for benchmark random networks with 100 nodes and average degree 3 reconstructed from N = 100–5,000 samples

(see histogram example S10 Fig). F-scores obtained with our parameter-free information-theoretic approach MIIC (magenta,

upper surface) are compared to the best results obtained with alternative mixed-type data methods, CausalMGM [24] (blue,

middle surface) and MXM [25] (green, lower surface), by optimizing CausalMGM regularization parameters (λ) and MXM

significance parameter (α), for each sample size N. See additional results in S11–S15 Figs. Codes are provided at https://

github.com/vcabeli/miic_PLoS.

https://doi.org/10.1371/journal.pcbi.1007866.g003
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comedications, scores from cognitive tests, clinical, biological or radiological examinations,

diagnostics and treatments). Beyond the different types and heterogeneous nature of the

recorded data, nodes of the clinical network, Fig 4, can be partitioned into groups associated to

specific dementia disorders and patient clinical context, including comorbidities (diabetes,

hypertension, etc) and related comedications.

Parkisonian syndromes. The first group of nodes contains variables classically linked to

primary degenerative dementias associated to parkinsonian syndromes (Park_Sd), notably the

rarity and slowness of movements, tremor at rest and muscle stiffness, caused either by a par-

kinsonian dementia (PARK_DEM, 80% of cases) or a dementia with Lewy bodies (LEWY,

15% of cases). Park_Sd are identified with the Unified Parkinson Disease Rating Scale

(UPDRS) which distinguishes them from Parkinson plus syndromes such as Progressive

Supranuclear Palsy (PSP), Cortico Basal Degeneration (CBD) or Multiple System Atrophy

(MSA). Parkinsonian syndromes are also linked to more frequent falls, idiopathic Parkinson’s

disease (IPD) and associated to orthostatic hypotension (OHT), in agreement with previous

studies [28]. By contrast, dementia with Lewy bodies (LEWY) is found to be directly associated

to cognitive fluctuations, halluciations and Rapid eye movement sleep Behavior Disorder

(RBD) as well as indirectly connected (2nd neighbor) to confusions and behavioural changes

assessed through the Neuro Psychiatric Inventory (NPI) score and with a deficit of self-aware-

ness (Anosognosia). LEWY diagnoses are also correctly associated with dopamine transporter

imaging (DAT-scan) examination [29].

Alzheimer’s versus dysexecutive syndromes. The second and largest group of nodes

mostly consists of the results from neuropsychologic tests used to assess the cognitive

Fig 4. Network reconstructed from medical records of 1,628 eldery patients with cognitive disorders. Square (resp. circle) nodes

correspond to discrete (resp. continuous) variables. Red (resp. blue) edges correspond to correlation (resp. anticorrelation) between

variables. Dotted edges reflect latent variables, see Discussion.

https://doi.org/10.1371/journal.pcbi.1007866.g004
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functions of patients and diagnose Alzheimer’s disease versus dysexecutive syndromes. Two

types of tests can be distinguished: simple tests probing a precise cerebral function and com-

posite tests combining the results of multiple simple tests to explore more global cognitive pro-

cesses. The Trail Making Test part A (TMTA) is a simple test primarily used to examine

cognitive processing speed (continuous score) by recording the time needed by the patient to

connect ordered nodes (from 1 to 25) randomly placed on a sheet of paper. Our network anal-

ysis shows that TMTA is directly connected to a number of other simple tests, such as forward

memory spans probing attentional capacity, backward memory spans probing immediate

working memory, immediate recall of Taylor or Rey complex figures, verbal semantic fluency

(Issacs set test) and the clock-drawing test. This highlights the rationale of neuropsychology in

combining simple tests into more informative composite tests. Three composite tests are

included in the clinical network, the Mini Mental State (MMS), the Frontal Assessment Battery

(FAB) and the Montreal Cognitive Association (MoCA) tests.

• The Mini Mental State (MMS) test assesses cognitive functions related to memory, spacial

and temporal orientations but not to executive functions, which require to integrate multiple

information sources. MMS is found to be the main hub (with 15 neighbors) of the recon-

structed network, as it is directly connected, as expected, to most of the memory test results

(forward/backward verbal and visuospatial memory spans, biographic memory and delayed

recalls of Taylor or Rey–Osterrieth complex figures). By constrast, MMS is found to be nega-

tively correlated to the Alzheimer’s diagnostic, through the MMS 3 word memory test,

which is known to be one of the most specific tests for Alzheimer’s disease, together with the

Free and Cued Selective Reminding (FCSR) test. Interestingly, our network analysis shows

that the Alzheimer’s disease diagnostic is directly connected to the FCSR test through the

low percent reactivity to cueing, which identifies genuine storage deficits (not facilitated by

cueing) due to amnesic syndrome of the hippocampal type known to be characteristic of Alz-

heimer’s disease [30].

• The Frontal Assessment Battery (FAB) test is complementary to MMS, as it is entirely

focussed on executive functions, centralized in the frontal cortex; it is thus very consistent

that FAB is found to be directly connected and negatively correlated to dysexecutive syn-

drome. Note, however, that patients suffering from dysexecutive syndrome do not typically

show poor FCSR scores unlike Alzheimer patients. This confirms the specificity and sensibil-

ity of the FCSR test to Alzheimer’s disease [31].

• Finally, the Montreal Cognitive Association (MoCA) composite test integrates a variety of

other tests such as the clock-drawing test, the phonetic fluency test as well as semantic flu-

ency test (Isaacs Set Test), which is consistent with the direct connections recovered between

MoCA and these three individual tests in the inferred network.

Psychiatric conditions. The third group of nodes concerns variables associated with the

psychiatric conditions of patients. It includes their past psychiatric history (Psy_Hist) and

present psychiatric conditions, i.e., anxio-depressive or bipolar (BIPO) syndromes, associated

treatments (antidepressants, psychotropes, benzodiazepine BZD and neuroleptics NLP) and

finally scores used to diagnose depression (GDS_15) and a deterioration in the quality of life

(QoL). The analysis of all the links between these variables confirms the overall consistency of

this psychiatric cluster: a good quality of life is closely associated with a low GDS_15 score

(corresponding to a low probability of depression). Note, however, that psychiatric pathologies

are all linked to each other, underlying the difficulty to distinguish them accurately. Yet, our

PLOS COMPUTATIONAL BIOLOGY Learning clinical networks based on information estimates in mixed-type data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007866 May 18, 2020 11 / 19

70 Chapter 3. Mutual information for constraint-based inference



network analysis shows that patients with bipolar syndrome (BIPO) tend to show better scores

at the FCSR recall test.

Vascular versus mixed forms of dementias. The fourth group of nodes of the clinical

network is associated with variables implicated in vascular dementias (VASC_DEM) originat-

ing from cerebral vascular accidents (CVA) which damage brain regions essential for cognitive

processes. Different types and sizes of vascular accidents are distinguished from microbleeds

to ischemic stroke (clot) and lacunae (empty spaces in the deep brain structures). These more

severe vascular accidents may also lead to degenerative dementia syndromes, corresponding to

a mixed form of dementia (MIXED_FORMS), which is inferred to be directly associated to

low MMS scores and poor scores at the FCSR Recall test (i.e., negative direct links). VASC_-

DEM and MIXED_FORMS are also found to be connected to the Fazekas scale [32], which

detects and quantifies white matter hyperintensities in the brain that are the consequence of

cerebral small vessel disease including demyelination and axonal loss of neuronal cells. The

Fazekas scale is found to be directly associated to low cognitive processing speed (TMTA) and

also strongly correlated to the Scheltens scale [33] quantifying the severity of hippocampal

atrophy, in agreement with a recent independent report [34]. The hippocampus is a brain

structure involved in memory and space navigation, which is consistent with our finding of a

direct negative association between Scheltens scale and MMS score. Interestingly, this pre-

dicted association between the Fazekas and the Scheltens scales, inferred from our unsuper-

vised global network analysis, provides some physiological insights linking the consequence of

vascular accidents (Fazekas scale) to the atrophy of important brain structures (Scheltens

scale) and, thereby, to cognitive and functional impairments, as reported in clinical studies

linking white matter hyperintensities (Fazekas scale) to cognitive impairment [35].

Patient clinical context. The last important group of nodes of the clinical network includes

variables associated with the patient clinical context including comorbidities, related examina-

tions and treatments. These are different anterior chronic diseases, such as arterial hypertension

(AHT), diabetes, chronic obstructive pulmonary disease (COPD), atrial fibrillation (AFib), that

might have an impact on the patient’s vital prognosis. All the links within this comorbidity clus-

ter are very consistent, each pathology being directly associated with its known risk and predis-

position factors, biological markers, specific examinations and treatments. In particular,

diabetes is associated with a high body mass index (BMI), glycated hemoglobin blood test

(HbA1c), treatment by oral antidiabetic (OAD) drugs and statin; COPD is associated with sleep

apnea syndrome (SAS) and the risk of respiratory failure, the use of bronchiodilator drugs and

the necessity to quit smoking; AHT is associated with an increase risk of mixed form dementia

and treatments by angiotensin receptor blockers (ARBs), beta-blockers and other anti-hyper-

tension (Anti HT) drugs; Finally, AFib, detected by electrocardiogram (ECG), is associated

with an increased risk of heart failure and high levels of thyroid-stimulating hormone (TSH)

and treated with vitamine K antagonist (VKA) and direct oral anticoagulants (DOAC).

Discussion

We report in this paper a novel optimal discretization method to simultaneously compute and

assess the significance of mutual information, as well as conditional multivariate information,

between any combination of continuous or mixed-type variables. The approach is used to

reconstruct graphical models from mixed-type datasets by uncovering direct, indirect and pos-

sibly causal relationships in complex heterogenous data. The method is shown to outperform

state-of-the-art approaches on benchmark mixed-type datasets, before being applied to analyze

the medical records of eldery patients with cognitive disorders from La Pitié-Salpêtrière Hospi-

tal, Paris.
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From a methodological perspective, this information-maximizing discretization approach

facilitates the interpretation of either the dependences or the independencies between continu-

ous or mixed-type variables. First, obtaining optimal discretization helps explain the depen-

dences in terms of the most informative categories of continuous variables. Second, and most

importantly, optimal discretization also acts as an independence test by allowing for single bin

partitions whenever multiple-bin partitioning provides less information than its associated

complexity cost.

From the perspective of clinical applications, the method is able to globally uncover interde-

pendences within complex heterogeneous data from medical records without specific hypothe-

sis nor prior knowledge on any clinically relevant information. The reconstructed clinical

network from cognitive disorder patients (Fig 4) recovers well known as well as novel direct

and indirect relations between medically relevant variables.

In addition, we found that this reconstructed clinical network captures also some facets of

the neurologist’s reasoning behind the diagnoses of distinct dementias. In particular, diagnosis

nodes can be interpreted as “explanatory” variables associated to a number of “explaining-

away effects” [23] in the form of “v-structures”, i.e., D1! S/E D2, whenever alternative

diagnoses, D1 or D2, can independently explain a given syndrome, S, or the result of a specific

examination, E. Examples discussed in more details above are PARK_DEM! PARK_Sd 

LEWY, VASC_DEM! Fazekas MIXED_FORMS and VASC_DEM! Ischemic_Stroke

 MIXED_FORMS. In addition, anticorrelations between different diagnostic nodes reflect

the alternative choices of diagnosis by the neurologist, either in the form of “differential diag-

noses” through a reasoning by elimination, in particular, to diagnose Alzheimer’s disease, i.e.,
VASC_DEM a ALZHEIMER, or in the form of a latent variable, visualized as bidirected

dotted edges and corresponding to alternative diagnoses by the neurologist, i.e., ALZHEI-

MER⤎diagnosis⤏MIXED_FORMS or ALZHEIMER⤎diagnosis⤏BIPO. Latent variables may

also represent the clinician’s decisions between alternative treatments, e.g., APD⤎clinician_de-
cision⤏VKA or a nonrecorded or implicite information in the patient personal or medical his-

tory, e.g., active_smoker⤎ever_smoked⤏quit_smoking, Fig 4.

The main strengths of our clinical network reconstruction method are three-fold. First, it

performs an unbiased check on the database content (expected, yet missing direct links in the

reconstructed network hint to likely problems in the database e.g., erroneous or missing data).

Second, it does not need any expert-informed hypothesis and provides, without prior knowl-

edge in the field, graphical models complementing analyses by experts. Finally, it can discover

novel unexpected direct interdependencies between clinically relevant information, such as

the direct connection between Fazekas and Scheltens scales, Fig 4, which may provide some

physiological insights and suggest new research directions for further investigation.

Hence, beyond the challenge of learning clinical networks from mixed-type data, our

method offers a user-friendly global visualisation tool of complex, heterogeneous clinical data

which could help other practitioners visualize and analyze direct, indirect and possibly causal

effects from patient medical records.

Supporting information

S1 File. Supplementary Materials and Methods. Benchmark data generation (continuous

and discrete variables). Performance measures. Benchmark parameter tuning. Resource avail-

ability.

(PDF)

S1 Table. Dataset from 1,628 eldery patients with cognitive disorders from La Pitié-Salpê-
trière hospital, Paris. The dataset, fully deidentified, contains 107 variables of different types
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(namely, 19 continuous and 88 categorical variables) and heterogeneous nature (i.e., variables

related to previous medical history, comorbidities and comedications, scores from cognitive

tests, clinical, biological or radiological examinations, diagnostics and treatments).

(XLSX)

S1 Fig. Optimum bivariate discretization for mutual information estimation. The pro-

posed information-maximizing discretization scheme is illustrated for a joint distribution

defined as a Gumbel bivariate copula with parameter θ = 5 and univariate marginal-distribu-

tion functions chosen as Gaussian mixtures with three equiprobable peaks and respective

means and variances, μX = {0, 4, 6}, σX = {1, 2, 0.7} and μY = {−3, 6, 9}, σY = {2, 0.5, 0.5}. Infor-

mation-maximizing partitions are displayed for different sample sizes with corresponding

mutual information estimates: (A) N = 100 samples, IN(X; Y) = 0.928 (and I0NðX;YÞ ¼ 0:649);

(B) N = 500 samples, IN(X; Y) = 1.040 (and I0NðX;YÞ ¼ 0:866); (C) N = 1, 000 samples,

IN(X; Y) = 1.096 (and I0NðX;YÞ ¼ 0:977); (D) N = 10, 000 samples, IN(X; Y) = 1.142 (and

I0NðX;YÞ ¼ 1:075). The actual mutual information value was computed through numerical

integrationof the marginals and the joint probability distribution and yields, I(X; Y) = 1.205, in

good agreement with the obtained estimates for large N.

(EPS)

S2 Fig. Adaptive information-maximizing partitions depending on interaction strength.

To assess the range in bin numbers depending on the strength of interaction between vari-

ables, we generated N = 1, 000 independent samples for 10,000 Gaussian bivariate distributions

with a uniformly distributed correlation coefficient ρ in [−1, 1]. The real mutual information

(RI) of Gaussian bivariate distributions can be computed directly [1], as RI(X; Y) = −log(1 −
ρ2)/2. For each pair (X, Y), we estimated the mutual information with the proposed optimum

bivariate discretization as well as the Maximal Information Coefficient [22] using the minepy
package [36] (A) The information-maximizing partition proposed in the present paper

behaves as expected: the number of bins on each variable is roughly similar and scales mono-

tonically with the strength of the interaction between variables. This implies that additional

bins are only introduced when their associated complexity cost is justified by a larger gain in

mutual information. Conversely, when the information between X and Y approaches zero,

both variables are partitioned into fewer and fewer bins until a single bin is selected for each

variable, when they are inferred to be independent, given the available data. (B) The partition

chosen to estimate the Maximal Information Coefficient is very different, regardless of the

interaction strength, as it systematically corresponds to an unbalanced distribution of bins

between the two variables, with one variable usually partitioned into the maximum number of

bins(set by default to floor(N0.6/2) = 31) while the other is discretized into two levels only. This

result is not unexpected, however, as the Maximal Information Coefficient [22] is defined by

maximizing the mutual information of the discretized variables over the grid, Ið½X�
Dx

; ½Y�
Dy
Þ,

normalized by the minimum of log Δx and log Δy. Indeed, maximizing the normalized mutual

information is done by partitioning as few samples as possible into the maximum number of

bins in one dimension (as sketched in Fig 1), while simultaneously minimizing the number of

bins, and thus log Δi, in the other dimension. See further discussion in [37].

(EPS)

S3 Fig. Interaction-dependent optimum discretization. Optimum bivariate partitions

obtained from N = 1, 000 samples of two different joint distributions P(X, Y) sharing the same

sampling of X taken from a uniform distribution on [0, 0.3], but with different dependences

for Y. (A) Y is defined as log(X) + �1, and (B) Y is defined as X5 + �2, where �1 and �2 are

Gaussian noise terms chosen so that the mutual informations of both examples are
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comparable,I(X;Y)’ 0.75. This example shows that the optimum partition for X depends on

its specific relation with Y and needs to be discretized with finer partitions in (A) at low X val-

ues for which Y’ logX varies the most and in (B) at higher X values for Y’ X5.

(EPS)

S4 Fig. Mutual information estimation for Gaussian bivariate distributions. 100 bivariate

normal distributions were sampled for varying sample sizes, increasing from top to bottom,

and correlation coefficients ρ ranging from 0.01 to 0.9. The mutual information was estimated

with the proposed optimum discretization scheme and the KSG estimator with different

parameters k. The mean squared error (center graphs) was calculated thanks to the analytical

result of the mutual information of the bivariate Gaussian: I(X; Y) = −log(1 − ρ2)/2. The stan-

dard deviation of each estimator over the 100 replications was also plotted against the correla-

tion coefficient (right).

(EPS)

S5 Fig. Mutual information estimation of mixed variables. Experiment set-ups and analyti-

cal values for the mutual information were taken fom [7] and 50 runs were performed for each

sample size N. Our proposed approach is compared to a naive equal-frequency discretization

with N1/3 bins, a kernel and a noisy KSG estimator as implemented in JIDT [38], as well as the

recent KSG extensions for estimating the mutual informmation between a categorical and a

continuous variable (mixed KSG Ross [6]), and between mixed-type variables (mixed KSG

Gao [7]). For all nearest-neighbour based approaches, the number of nearest neighbours was

set to k = 5. From left to right, top to bottom, the simulations are devised after experiment I,

experiment II, experiment IV with p = 0 and experiment IV with p = 0.15, from [7].

(EPS)

S6 Fig. Conditional mutual information estimation for multivariate Gaussian distribu-

tions. Four-dimensional normal distributions P(X, Y, Z1, Z2) were sampled for N = 100 to 5,

000 samples 100 times for each correlation coefficient ρ = ρXY, chosen between 0.05 and 0.95.

The other pairwise correlation coefficients were fixed as rXZ1
¼ rXZ2

¼ rYZ1
¼ rYZ2

¼ l ¼ 0:7

and rZ1Z2
¼ 0:9. The conditional mutual information I(X; Y |Z1, Z2) was then estimated using

the proposed optimum partitioning scheme as well aswith kNN conditional information esti-

mates as in S4 Fig. ρ values closed to zero, mimick “V-structures” as they correspond to pair-

wise independence but conditional dependence; by constrast r ¼ 2l
2
=ð1þ rZ1Z2

Þ ’ 0:5158

corresponds to conditional independence, while ρ> 0.5158 impliesthat X and Y share more

information than the indirect flow through Z1 and Z2. The analytical value of the conditional

mutual information is derived as follows; given the 4 × 4 covariance matrix S and its four 2 × 2

partitions Sij, we first compute the conditional covariance matrix �S ¼ S11 � S12S
� 1

22
S21 where

S� 1

22
is the generalized inverse of S22. The partial correlation between X and Y is obtained as

rXY�Z1Z2
¼ �S12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S11 �

�S22

p
, and the analytical conditional mutual information for a multivari-

ate normal distribution is given by IðX;YjZ1;Z2Þ ¼ � logð1 � r2
XY�Z1Z2

Þ=2.

(EPS)

S7 Fig. Pairwise dependence and conditional independence between X and Y sharing a

common cause Z. This example illustrates the (conditional) correlation patterns emerging

from the presence of a confounding variable, as depicted by the causal diagram X Z! Y. Z
is generated with a uniform law U(0, 1) for N = 1, 000 observations and X, Y are both defined

as 2Z + � with independent normal noise � � N ð0; 0:2Þ. (A) optimum discretization maximiz-

ing I0NðX;YÞ with a strong pairwise correlation, and (B) optimum discretization which maxi-

mizes the conditional mutual information with finite size correction, I0NðX;YjZÞ. In the latter

PLOS COMPUTATIONAL BIOLOGY Learning clinical networks based on information estimates in mixed-type data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007866 May 18, 2020 15 / 19

74 Chapter 3. Mutual information for constraint-based inference



case, the optimum discretization scheme results in a single bin on both variables as the flow

information between X and Y is blocked by conditioning on the common cause Z.

(EPS)

S8 Fig. Pairwise dependence and conditional independence between non Gaussian X and Y
sharing a common categorical cause. Another confounding example, X Z! Y, taken

from [25] with a uniform categorical Z with three levels, X and Y being continuous, for N = 1,

000 observations. With Zi the binary variable corresponding to the i-th dummy variable of Z,

we defined X = −Z1+ Z2+ 0.2�X which is centered around either −1 if Z = 1, 0 if Z = 3 or 1 if

Z = 2; and Y = Z1 + Z2 + 0.2�Y, � � N ð0; 1Þ which is centered around either 0 if Z = 3 or 1 if

Z = 1 or Z = 2. As for continuous common cause in S7 Fig, there is (A) some non-zero mutual

information between X and Y corresponding to an optimum discretization, while (B) condi-

tional mutual information vanishes when conditioning on the categorial common cause, Z,

with the partitions of both X and Y variables consisting in a single bin.

(EPS)

S9 Fig. Pairwise independence and conditional dependence with a v-structure. Example of

two independent variables X, Y both causing a third variable Z as: X! Z Y. N = 1, 000

observations are drawn for X;Y � N ð0; 1Þ and Z = X + Y. (A) The two variables X and Y
being independent, no multi-bin discretization can be found to yield an information estimate

that is greater than the corresponding complexity cost. However, (B) conditioning on the

common effect Z ‘activates’ the v-structure path generating a spurious relationship between X
and Y. This is reflected in the fact that the induced interaction between X and Y requires a mul-

tiple bin optimum discretization to estimate IN(X; Y|Z) = 1.188 (with I0NðX;YjZÞ ¼ 0:745).

(EPS)

S10 Fig. Example of dataset generated for mixed-type, non-linear, non-Gaussian bench-

marking with 69 continuous and 31 categorical variables. Each plot represents the observed

density or histogram (N = 1, 000) of the continuous or categorical variable Xi, constructed by

structural equation models given its parents’ distributions (see Supporting Information).

(EPS)

S11 Fig. Skeleton assessment of benchmark networks for mixed-type, non-linear, non-

Gaussian datasets. Skeleton Precision, Recall and F-scores obtained for benchmark random

networks with 100 nodes and average degree 3 reconstructed from N = 100–5,000 samples (see

histogram example Fig. S11). Performances obtained with our parameter-free information-

theoretic approach MIIC (magenta) are compared to the results obtained with the best param-

eterization (maximizing the skeleton F-score) of CausalMGM [24] (blue) and MXM [25]

(green). See Supporting Information.

(EPS)

S12 Fig. CPDAG assessment of benchmark networks for mixed-type, non-linear, non-

Gaussian datasets. CPDAG Precision, Recall and F-scores obtained for benchmark random

networks with 100 nodes and average degree 3 reconstructed from N = 100–5,000 samples (see

histogram example S11 Fig). Performances obtained with our parameter-free information-the-

oretic approach MIIC (magenta) are compared to the results obtained with the best parameter-

ization (maximizing the CPDAG F-score) of CausalMGM [24] (blue) and MXM [25] (green).

See Supporting Information.

(EPS)

PLOS COMPUTATIONAL BIOLOGY Learning clinical networks based on information estimates in mixed-type data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007866 May 18, 2020 16 / 19

3.3. Publication in PLoS Computation Biology 75



S13 Fig. Example of dataset used for continuous, non-linear, non-Gaussian benchmarking

with 100 continuous variables.

(EPS)

S14 Fig. Skeleton assessment of benchmark networks for continuous, non-linear, non-

Gaussian datasets. Skeleton Precision, Recall and F-scores obtained for benchmark random

networks with 100 nodes and average degree 3 reconstructed from N = 100 − 10, 000 samples

(see histogram example Fig. S14). Results obtained with our parameter-free information-theo-

retic approach MIIC are compared for optimum non-uniform bin sizes and for equal fre-

quency bin sizes (with N1/3 bins) as well as to the best results obtained with alternative

continuous data methods: PC with Gaussian conditional independence test, rankPC and

rankFCI from the pcalg package [27], kPC with theHelbert-Schmidt Independence Crite-

rion [39, 40] and CAM [26] algorithms, after optimizing their respective parameter (α) for

each sample size N. See Supporting Information.

(EPS)

S15 Fig. CPDAG assessment of benchmark networks for continuous, non-linear, non-

Gaussian datasets. CPDAG Precision, Recall and F-scores obtained for benchmark random

networks with 100 nodes and average degree 3 reconstructed from N = 100 − 10, 000 samples

(same simulation settings as in Fig. S15).

(EPS)
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Validation: Vincent Cabeli, Louis Verny, Guido Uguzzoni, Marc Verny.

Visualization: Vincent Cabeli, Nadir Sella.

Writing – original draft: Vincent Cabeli, Louis Verny, Hervé Isambert.
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Supplementary Materials and Methods

Benchmark data generation

In this section we describe the generation of datasets used for the mixed-type (Fig. 3,
Figs. S11 and S12) and continuous (Figs. S14 and S15) benchmarks, and implemented
in the R script provided as supplementary material. First, the underlying DAG models
were randomly drawn from the space of all possible DAGs [1], allowing for a maximum
degree of 4 neighbours. Datasets were generated following the causal order of the
generated DAG using non-linear structural equations models (SEMs), as outlined below.

The first nodes in the causal order have no parents, their distributions are sampled
either from Gaussian mixtures of 1 to 5 modes (with equal σ) for continuous nodes or
with a uniform random sampling of 2 to 4 categorical levels. The distribution of every
other node X was generated as a function of its parents Pa(X) plus some Gaussian
noise as, X = f(Pa(X)) + ε. Depending on whether X and its parents are continuous or
categorical, different models were used:

• Continuous variable X

The causal relationship between a continuous node X and its continuous parents
Pac(X) plus their pairwise interaction products I(Pac(X)) was modeled using
polynomials: X = R(

∑
Yi∈{Pac(X)∪I(Pac(X))}R(Yi,−1, 1)ci + ε, 0, 1) with ci

chosen in [1, 3], ε some Gaussian noise with variance depending on the number of
parents and ci, and R(X,min,max) a re-scaling function so that the distribution
X is in the range [min,max]. In the case of mixed-type parents, i.e. with some
continuous and some discrete parent variables, sets of ci were drawn for each
combination of the discrete parents Pad(X). If all its parents are categorical, a
child node is categorical as well. Finally, the distribution of a continuous node has
an equal probability to be transformed with a non-linear function, eX , sin(X) or
cos(X), or to be retained as is.

• Discrete variable X

The continuous parents of a discrete node are first discretized by attributing
categorical levels to the distinct peaks if there are any (see Fig. S13), or using
equal frequency binning with log(N) bins otherwise. The discrete distribution of
the node X is then drawn from random sampling with probability wi for the ith
level of X, where each combination of the levels of Pad(X) are associated to a
different set of probabilities {wi}.

Performance measures

For the evaluation, the network reconstruction was treated as a binary classification
task and classical performance measures, precision, recall and F-score, were used, based
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on the numbers of true versus false positive (TP vs FP ) edges and true versus false
negative (TN vs FN) edges. The precision Prec = TP/(TP + FP ) indicates how
reliable the edges of the reconstructed network are. This measure does not indicate,
however, which fraction of the true edges are detected, which corresponds to the
sensitivity or recall of the reconstruction, Rec = TP/(TP +FN). Finally, the F-score is
a global performance measure, which is defined as the harmonic mean of precision and
recall measures: Fscore = 2Prec×Rec/(Prec+Rec). In particular, a Fscore of 1
implies a perfect reconstruction without FP nor FN edges.

In order to measure how well the orientations of the edges match those of the true
DAG, we also define the orientation-dependent counts TP ′ = TP − TPmisorient and
FP ′ = FP + TPmisorient with TPmisorient corresponding to all true positive edges of
the skeleton with different orientation/non-orientation status as in the true Complete
Partially Directed Acyclic Graph (CPDAG). Here, CPDAG refers to the equivalence
class of the true DAG, which is taken as the benchmark reference since different DAGs
might be equivalent from the data point of view (i.e. if and only if they have the same
skeleton and the same v-structures). The CPDAG precision, recall and F-score were
then computed with the orientation-dependent TP ′ and FP ′.

Benchmark parameter tuning

The performances of some methods rely on tunable parameters which typically
determine the sparsity of the inferred graph. In contrast, miic uses a complexity term
derived from the normalised maximum likelihood and is essentially parameter-free.
Although in real world applications the best settings cannot be known for certain,
meaningful comparisons can only be done after each method has been properly
parameterized. Here we detail the steps taken to find the best parameters for each
benchmark setting.

For the mixed-type benchmarks, ranges of parameters for both CausalMGM [2] and
MXM [3] methods were tested, and their best results (i.e. best F-scores) obtained for a
given sample size (N) and percentage of continuous node (pc) were compared to miic
results. For CausalMGM, the λ sparsity parameter for all edge types (discrete-discrete,
continuous-continuous, discrete-continuous) was tested in
{0.050, 0.073, 0.108, 0.158, 0.232, 0.341, 0.500}. For MXM, the significance threshold α
used for the various independence tests was tested in {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}.

For the continuous benchmarks, we first optimized each method on separate
simulations to find a good approximating function for the best parameter α̂ = fp(N).
The best values for the αN parameter of PC gaussian, PC rank, CAM for sample sizes
N spaced evenly on a log scale between 100 and 10, 000 were first found using a zeroth
order parameter optimization implemented in dlib [4, 5]. Then, the function fp was
fitted as a second order polynomial over all values of N and αN . kPC (using the
Hilbert-Schmidt independence criterion with gamma approximation [6, 7]) was not
optimized so extensively, due to its much longer execution time, and was only tested for
the conservative values of α: 0.05 and 0.15.

Resource availability

• MIIC R package for mixed-type data is available at this URL:
https://miic.curie.fr/download/miic mixed.tar.gz

• MIIC online server for mixed-type data is accessible here:
https://miic.curie.fr/workbench mixed.php
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Chapter 4

Improvements to constraint-based al-
gorithms and MIIC

In this chapter, we will discuss other contributions to both constraint-based methods and
MIIC specifically to be able to deal with imperfect real-life situations.

In the first section, we briefly discuss the presence of missing data and its implications in
causal graph reconstruction with constraint-based methods. We then propose our solution
to deal with missing data, based on test-wise deletion and an information-theoretic test to
accept or reject potential conditioning nodes. Next, we introduce improved orientation scores
for MIIC, adapted for larger sample sizes, and the concept of "putative" versus "genuine"
causal orientations, based on the orientation probabilities of both the head and the tail of the
edge X → Y . We also mention the advantages of interactive visualisation of the results, by
presenting the updated MIIC webserver.

Finally, we introduce two papers, [6] published at NeurIPS 2019 in which we aim to make
constraint-based methods more interpretable with regard to the choice of separating nodes,
making them more consistent with the final graph. Another paper accepted for publication at
the Why-21 conference introduces conservative MIIC, which infers more reliable orientations
thanks to modifications to the mutual information estimation.

4.1 Improvements

4.1.1 Handling missing data

One dimension of observational data that has not been discussed yet is the problem of missing
data. Because the data collection was unreliable, or because the variable we are interested is
note defined for all cases, some samples may have undefined values. There are typically two
ways to deal with those missing values in a dataset. First, one can omit all data affected by
missingness and perform the analysis on the subset of complete samples. Using this approach
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we lose a lot of partial but valuable information, it is not ideal on e.g. bio-medical datasets,
often small or medium size, and for which having a reliable and systematic observation of all
variables is difficult.

The second way to deal with missing data is to impute them using the rest of the
observations. If the missing values can be estimated correctly, then one can analyse the data
with the same power as the full data analysis would have had. This is the preferred way
in many applications, but must make assumptions on the distribution of the missing data
P(XMis). We can distinguish 3 mechanisms by which the data is missing, identified by Rubin
in his seminal work [111] :

• Missing Completely at Random (MCAR) : the missingness mechanism is completely
random, it does not depend on any other value : P(XObs) = P(XMis) and P(XMis)⊥⊥
P(V ).

• Missing at Random (MAR) : unlike the name suggests, the missing mechanism can be
biased (p(XMis) 6=p(XObs)) on the condition that it can be explained by the observed
data.

• Missing Not at Random (MNAR) : the probability of the missing data cannot be
deduced from observations.

As Little and Rubin observe in [112], essentially all work on multivariate incomplete data,
including imputation, makes at least the MAR assumption. It is however often problematic
as there is no recognizable criterion for MAR from a dataset alone [113]. Another issue
with data imputation is the prediction of the values itself, which depends on the amount
of information I(X ;V\X) and is a difficult problem of its own, especially for continuous
distributions. As is often the case when analyzing real data, there is no free lunch when
dealing with missing samples. Rubin himself concluded his article [111] saying that the
only correct solution is to act on a case-by-case basis, preferably modeling explicitly the
missingness mechanism.

Interesting work has been done in this direction by Mohan and Pearl [114] using graph-
ical models called missingness graphs. As suggested by Rubin, the idea is to model the
missingness processes explicitly, using Pearl’s causal graphs, from which one can easily
deduce whether the data is MCAR, MAR or MNAR. Later, the authors also showed that
certain properties of the distribution may be recoverable when data is partially observed,
including conditional independence relations [113].

But how can we apply those findings to improve graph reconstruction with incomplete
data ? This topic has been investigated for some time, for example [115] introduced a variant
of PC using a pseudo-Bayesian test of independence which relies on the local graph and
its parameters. However, it needs to represent the data with contingency tables, making
it unusable for the mixed case (generally, methods relying on data inference through the
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Bayesian graph are difficult to implement in the non-parametric setting). Similarly, [116]
uses the expectation maximisation principle to learn both the graph and its parameters with
incomplete data.

These solutions are much harder to implement for the general case, i.e. with as little
restriction as possible on the distribution P(V ). We will instead focus on test-wise omission
of missing samples, removing only what is necessary to have complete support for each
conditional independence test. Strobl et al. developed a scheme combining FCI and test-wise
deletion that is still able to recover the PAG from incomplete data, even when MNAR holds,
provided that no missingness mechanisms causally affect each other [117]. This last condition
is discussed in more details in [118], which focuses on rectifying erroneous edges produced
by test-wise deletion PC when MAR or MNAR holds. However, their method is not very well
suited to our setting as it needs either the residuals of a linear regression model or estimates
of the full data distribution via kernel density estimation.

What we propose here is a simple information-theoretic rule for rejecting or accepting
potential conditioning nodes during the skeleton phase of constraint-based algorithms. Specif-
ically, we want to avoid removing edges because of selection bias as opposed to "explaining
away" the direct correlation via other information flow in the causal graph. Our reasoning is
that as much as possible, conditional independencies should be read off the inferred graph
Gin f , i.e. X and Y are not adjacent if and only if X ⊥⊥ Y |Z (regardless of missingness). We
compare joint the distributions X ,Y before and after removing the samples that are missing
for a potential separating node Z, respectively noted (X ,Y ) and (X ,Y |ZObs). If (X ,Y |ZObs) is
too different from (X ,Y ), then we do not accept Z in the conditioning set of X −Y , as the
observed interaction on the reduced support is not representative of the full data. Note that in
contrast with [118], this scheme can only add back edges in Gin f . We argue that it makes the
result more interpretable in relation to the way constraint-based methods operate : starting
from the complete graph, we remove the edge X−Y only if there is evidence in the data that
the link is either non existent (X ⊥⊥Y ) or indirect (X ⊥⊥Y |Z). If there is no such evidence, or
if we cannot accept it due to potential selection bias, the edge X−Y stays in Gin f . Moreover,
it is a simple rule that does not require any assumption about the data distribution, using an
information-theoretic measure that fits well with the rest of the MIIC algorithm.

This problem is a version of the two-sample test, which aims to determine if two samples
come from the same population. It can be naturally approached using the KL divergence (Eq
3.1.7) [119], which we redefine here for the discrete and continuous cases :

DKL(P ‖ Q) = ∑
x∈X

p(x) log
p(x)
q(x)

(4.1.1)

=
∫

x∈X
p(x) log

p(x)
q(x)

dx (4.1.2)
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where P and Q are two distributions defined on the same space X.

We can then restate our goal using this divergence : during the skeleton phase, test for
conditional independence X ⊥⊥ Y |Z only if

DKL((X ,Y | ZObs) ‖ (X ,Y ))< tKL (4.1.3)

where tKL is the threshold for how much divergence we tolerate.

Unsurprisingly, the approaches to estimate this divergence from samples are similar to
the ones introduced for entropy and mutual information. On discrete data, one can simply use
the observed frequencies and use a plug-in estimator with Eq 3.1.7 [64]. It may be tempting
to re-use the optimal discretization found by optimizing Î′(X ;Y ), and simply use the plug-in
estimator for Eq 4.1.3. But optimizing Î′(X ;Y |Z) may give a very different discretization,
depending on the interaction with Z which is not represented by optimizing on (X ,Y ) alone.
Additionally, MIIC takes off the contributors one by one for each edge X−Y , so we do not
know the full set Ui in advance. For these reasons, Eq 4.1.3 should be computed with the
full data, not on reduced discretized versions, to be able to account for future discretizations.
However, much like for the mutual information, estimating DKL on continuous and mixture
variables is a challenge.

On continuous data, the best-behaved estimator seems to be a k-nn scheme introduced in
[120] : with P and Q two samples respectively defined on the spaces X and X′, of length n

and m samples on d dimensions :

D̂KL(P ‖ Q) = d
〈

log
rk(xi)

sk(xi)

〉

n
+ log

m
n−1

(4.1.4)

where rk(xi) and sk(xi) are respectively the distance to the kth nearest neighbor from the
point xi in X and X′, and

〈
log rk(xi)

sk(xi)

〉
n

is the average taken over all n samples i.

Our proposed estimator is inspired by mixed estimator of mutual information [71, 51]
and treats each case differently. When X and Y are discrete, the plug-in estimator is used
with the observed joint counts X ,Y . On two continuous samples, we use the k-nn estimator
D̂KL of Eq 4.1.4 with a fixed k = 5. When X is discrete and Y is continuous, the estimator
needs to be a bit more involved. Just like [71], we sum partial terms over all levels rx of the
discrete variable X :

D̂KL(X ,Y |ZObs ‖ X ,Y ) =
d
n ∑

rx∈X
nrx

〈
log

rk(xi)rx

sk(xi)rx

+ log
mrx

nrx−1

〉

nrx

+ D̂KL(X |ZObs ‖ X)

(4.1.5)
with rk(xi)rx and sk(xi)rx respectively the distance to the kth nearest neigbhor in the space of
Y in the subsample ZObs and in the full data, mrx and nrx the total number of points with the
same discrete value rx in the full data and in the subsample. Correspondingly, the average is
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taken over the samples nrx . D̂KL(Y |ZObs ‖ Y ) is the divergence between the frequencies of
the discrete levels X .

The implementation in MIIC uses an efficient k nearest neighbor scheme using KD-tree
index, implemented in nanoflann [121]. The complexity of finding the nearest neighbor using
KD-tree is O(logn) on average and O(n) in the worst case. Finally, to deal with mixture
variables, it adds random uniform noise to break up discrete points (just like the noisy KSG
estimator). The distances rk and sk are in the `2 norm, which was shown to improve k-nn
estimates [51].

Having defined an estimator for the general case, all that remains is to choose divergence
threshold tKL in Eq 4.1.3. Of course, the ideal threshold would be adapted to the data in
order to control for false-postive and false-negative rates, which can be done for information
theoretic values [122]. We propose a simple heuristic based on the MDL principle and the
BIC, and compare |ZObs| · D̂KL(X ,Y |ZObs ‖ X ,Y ) to tKL = log |ZObs|. Note that it does not
behave like a p-value : a smaller, noisier subsample will necessarily create more diverging
distributions even under the null hypothesis (MAR), and a fixed p-value will correspond
to higher values of DKL; whereas the threshold log |ZObs| becomes more stringent as the
subsample decreases in size. This reflects the fact that smaller samples are less representative
of the full data, and so contain less information to remove the edge X−Y . The choice of a
better threshold is left as a perspective for future research in the group, using this heuristic
the goal is to avoid the worst cases of selection bias.

4.1.2 Orientation probability for large N, putative versus genuine
orientations

While constraint-based methods can in principle learn the presence or absence of orientation
of individual edges from the available data, the orientation of a V-structure, X → Z← Y (and
X X−− Y ) corresponds in fact to the discovery of ‘putative causality’ as one cannot rule out a

priori that the edge between X (or Y ) and Z is not due to the effect of a latent common cause,
L, unobserved in the dataset, X L99 L 99K Z. In order to discover a genuine cause-effect
relations explaining at least part of the association between X and Z, X → Z, one needs
to exclude the possibility of such a latent variable, L, between X and Z. We can think of
"genuine" orientation in constraint-based methods as setting both the "head" of the edge
X → Y and its "tail", excluding latent common causes. Using the MIIC framework, genuine
causal edges are then predicted if the head and tail probabilities are statistically significant,
while causal edges remain "putative" if their tail probability is not statistically significant
or cannot be determined from purely observational data (i.e., undirected links in the Gc

equivalence class). This gives a better interpretation of constraint methods on real data, for
which it is difficult to ensure with certainty that all variables in the system are observed, and
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thus that the directed links of Gin f are "genuine".

We now outline the principles to uncover cause-effect relations and distinguish genuine
from putative causes through an intuitive toy example of an imaginary dataset of old cars (Fig
4.1). (A) The signature of causality in such observational datasets corresponds to 3-variable
V-structure motifs involving two independent and thus unconnected possible causes, “Broken
fuel pump?” and “Discharged battery?”, and a resulting effect, “Broken down car?”. The
converging orientations of this v-structure towards its middle variable, “Broken down car?”,
stem from the fact that these two edges cannot be undirected, nor can they point towards
either “Broken fuel pump?” or “Discharged battery?”, as these alternative graphical models
would imply correlations contradicting the independence between “Broken fuel pump?”
and “Discharged battery?”. In practice, such independences between possible causes might
in fact be conditional on other variable(s), not considered here. (B) Note, however, that
v-structures only identify, “putative” causes, which might not be “genuine” causes; for
instance, the variable “Clock stopped?”, which can be used as a proxy for the variable
“Discharged battery?”, also forms a v-structure with the other independent putative cause
“Broken fuel pump?”. Yet, we know that “Clock stopped?” cannot be a genuine cause of
“Broken down car?”, as tampering with a car’s clock cannot actually cause a car to break down.
(C) In absence of background knowledge, showing that ”Discharged battery?” is actually a
genuine cause of “Broken down car?” (displayed with a green arrowhead) requires to find
another v-structure upstream of ”Discharged battery?” (e.g. “Lights left on?”→”Discharged
battery?”←”Old battery?”) or to have prior knowledge about an upstream (putative) cause
and to show that the effect of these upstream variables on the downstream variable “Broken
down car?” is entirely indirect and mediated (at least in part) by the intermediary variable
“Discharged battery?”. This requires to find a conditional independence between upstream
and downstream variables conditioned on a separating set including the intermediary variable
“Discharged battery”. These conditions are needed to exclude the possibility of an unobserved
common cause between the intermediary variable (“Discharged battery”) and the downstream
variable (“Broken down car?”), as illustrated in (D). (D) Ruling out a putative cause as
genuine cause is done by finding a fourth variable (e.g. “Out-of-order clock?”) defining
another v-structure sharing the edge between “Broken down car?” and “Clock stopped?”
with the v-structure in (B). It implies that the relation between these two variables is actually
due to a latent common cause unobserved in the dataset (here “Discharged battery?”) and
represented with a bidirected edge.

Formally, we implement the idea of separate likelihood-based estimation of orientation
probability. For an edge X −− Z, each end point of which is either an arrow head or tail,
we denote by px (pz) the probability of the end point at X (Z) being an arrowhead X ← Z

(X → Z), and by 1− px (1− pz) the probability of the that end being a tail. Undecided
head or tail orientations thus correspond to p = 1− p = 0.5. With this notation, we predict
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Figure 4.1: Toy example of putative and genuine causal relations.

genuine causal edges, X → Z, highlighted with green arrow head in Fig 4.1, if pz > 1/2 and
px < 1/2, whereas putative causal edges are predicted for pz > 1/2 and px = 1/2, that is
when px cannot be decided with the available data. By contrast, undirected (or undecided
end) edges are expected for pz 6 1/2 and px 6 1/2, while bidirected edges, corresponding to
the presence of a latent common cause, are predicted for pz > 1/2 and px > 1/2. Orientation
probability estimates are computed below, together with the introduction of an orientation
confidence threshold, β , enhancing the precision on arrow head prediction. The present
probabilistic framework of edge orientation also allows for enforcing prior knowledge about
certain orientations, in particular, when a variable is not freely varying like other variables
of the dataset as it corresponds to a control parameter or experimental condition. Such
contextual variables will have all their edges without incoming arrow head, i.e., pin = 0,
by assumption. This expresses our prior knowledge that contextual variables cannot be the
consequence of other observed or non-observed variables as they actually correspond to
manually set external parameters or experimental conditions.

Using the orientation threshold 1 > β > 0.5, we can enhance the precision of arrowheads.
The condition for predicting genuine causal edges then becomes X → Z, if pz > β and px <

1−β . By contrast, putative causal edges are predicted for pz > β and β > px > 1−β , while
undirected edges are expected for pz 6 β and px 6 β , and bidirected edges, corresponding to
the presence of a latent common cause, for pz > β and px > β (Fig 4.2).

The way to compute the probabilities px, py and pz builds on the approach introduced in
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Figure 4.2: Orientation of putative, genuine or latent edges based on an orientation threshold
β .

[5], deducing tail / head orientation probabilities from an existing arrowhead z← y :

P(x−−∗z) = P(x−−∗z|z← y)P(z← y)+P(x−−∗z|z−− y)P(z−− y) (4.1.6)

where ∗ stands for a tail [resp. head] depending on the positivity [resp. negativity] of
I′(X ;Y ;Z|{Ai }) with X ⊥⊥ Y |{Ai }∪Z [resp. X ⊥⊥ Y |{Ai }].

However, using the full probability decomposition above can lead to a higher confidence
in tail or head induced probabilities than in the head probabilities they derive from, due to
the Markov equivalence of non-V-structures. In addition, induced tail / head probabilities can
be numerically difficult to compare for large N. To circumvent these issues and capture the
rationale that our confidence in induced tail / head orientations can only be lower than our
confidence in the arrowhead from which they derive, we propose to redefine the tail / head
induced probabilities by retaining only the first term in the probability decomposition above,
that is, by assuming that the arrowhead z← y exists,

P(x−−∗z) = P(x−−∗z|z← y)P(z← y)

=
1

1+ e−N| I′(X ;Y ;Z‖{Ai })|
P(z← y)

=
1

1+ e−N| I′(X ;Y ;Z‖{Ai })|
× 1

1+ e−scorev

=
1

1+ e−N| I′(X ;Y ;Z‖{Ai })|+ e−scorev + e−N| I′(X ;Y ;Z‖{Ai })|−scorev

=
1

1+ e−min + e−max + e−min−max

=
1

1+ e−min(1+ e−max+min + e−max)

=
1

1+ e−scorei

where we introduce scorei to enable numerical ordering of orientation probabilities for
large N,
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scorei = min− log
(

1+ e−max+min + e−max
)

(4.1.7)

min = min
(
N| I′(X ;Y ;Z|{Ai })|,scorev

)
(4.1.8)

max = max
(
N| I′(X ;Y ;Z|{Ai })|,scorev

)
(4.1.9)

Hence 0.5 6 p1 < p2 < 1 is equivalent to 0 6 score1 < score2 < ∞, where score1 and score2

can be numerically ordered even for very large N, unlike p1 and p2.

4.1.3 Webserver and interactive visualisation

In addition to an open-source R package, we have developed a web interface to analyze
visually the results of MIIC. Constraint-based approaches, and MIIC, being entirely non-
parametric, it can help to be able to visualize the joint distributions of the inferred direct
links. We implemented various plots for the continuous, discrete and mixed case using the
D3 JavaScript library and plotly (Fig A.6). When applicable, it also shows the result of the
optimal discretization for a given edge. More examples are shown with the application on
medical record of breast cancer patients in Section 5.2. Related to the next section, we made
it also intuitive to visually control the validity of separating sets found by MIIC. From the
inferred graph, one can easily see if they satisfy d-separation or if they violate consistency

with respect to GIn f .

Figure 4.3: Online network inteface. In this example, a violin plot describes the joint
distribution between the continuous variable "RCB", and "Death" which is discrete. The
horizontal bold lines inform on the optimal discretization found to infer the edge.
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4.2 Consistent separating sets
In the same idea as the missing data test, we worked on a variant of constraint-based
algorithms that guarantees that the conditioning sets used to remove links are more consistent
with the final graph Gin f and the data D [6]. In their original form, these methods rely only on
the conditional independences in D and offer no guarantee that the separating sets correspond
to d-separations sets in the final graph. In fact, they do not even guarantee that they are still
in the same connected component in Gin f after the iterative removal of edges.

This flaw not only makes the result less interpretable but also makes the performance
worse. These inconsistent conditioning sets tend to come from sampling noise rather than
from functional realities, and graphs reconstructed on complex data are typically very sparse.
The consistent version of constraint-based algorithms produces a Gin f graph that is less prone
to spurious independencies and from which it is easier to infer the sets of condensations used,
making the method more interpretable. This extension is particularly adapted to MIIC which
removes the contributors in order starting with the best score, compared to reference methods
which try all possible combinations until significance is found.

4.2.1 Publication at NeurIPS 2019
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Abstract

We consider constraint-based methods for causal structure learning, such as the PC
algorithm or any PC-derived algorithms whose first step consists in pruning a com-
plete graph to obtain an undirected graph skeleton, which is subsequently oriented.
All constraint-based methods perform this first step of removing dispensable edges,
iteratively, whenever a separating set and corresponding conditional independence
can be found. Yet, constraint-based methods lack robustness over sampling noise
and are prone to uncover spurious conditional independences in finite datasets. In
particular, there is no guarantee that the separating sets identified during the itera-
tive pruning step remain consistent with the final graph. In this paper, we propose
a simple modification of PC and PC-derived algorithms so as to ensure that all
separating sets identified to remove dispensable edges are consistent with the final
graph, thus enhancing the explainability of constraint-based methods. It is achieved
by repeating the constraint-based causal structure learning scheme, iteratively,
while searching for separating sets that are consistent with the graph obtained at
the previous iteration. Ensuring the consistency of separating sets can be done at a
limited complexity cost, through the use of block-cut tree decomposition of graph
skeletons, and is found to increase their validity in terms of actual d-separation.
It also significantly improves the sensitivity of constraint-based methods while
retaining good overall structure learning performance. Finally and foremost, ensur-
ing sepset consistency improves the interpretability of constraint-based models for
real-life applications.

1 Introduction

While the oracle versions of constraint-based methods have been demonstrated to be sound and
complete (Zhang, 2008; Spirtes, Glymour, and Scheines, 2000; Pearl, 2009), a major limitation of
these methods is their lack of robustness with respect to sampling noise for finite datasets. This
has largely limited their use to analyze real-life data so far, although important advances have been
made lately, in particular, to limit the order-dependency of constraint-based methods (Colombo
and Maathuis, 2014) or to improve their robustness to sampling noise by recasting them within a
maximum likelihood framework (Affeldt and Isambert, 2015; Affeldt, Verny, and Isambert, 2016).

However, it remains that constraint-based methods still lack graph consistency, in practice, as they do
not guarantee that the learnt structures belong to their presumed class of graphical models, such as a
completed partially directed acyclic graph (CPDAG) model for the PC (Spirtes and Glymour, 1991;
Kalisch and Bühlmann, 2008; Kalisch et al., 2012) or IC (Pearl and Verma, 1991) algorithms, or a
partial ancestral graph (PAG) for FCI or related constraint-based algorithms allowing for unobserved
latent variables (Spirtes, Meek, and Richardson, 1999; Richardson and Spirtes, 2002; Colombo et
al., 2012; Verny et al., 2017; Sella et al., 2018). By contrast, search-and-score structure learning
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methods (Koller and Friedman, 2009) inherently enforce graph consistency by searching structures
within the assumed class of graphs, e.g., within the class of directed acyclic graphs (DAG). Similarly,
hybrid methods such as MMHC (Tsamardinos, Brown, and Aliferis, 2006) can also ensure graph
class consistency by maximizing the likelihood of edge orientation within the class of DAGs.

This paper concerns, more specifically, the inconsistency of separating sets used to remove dis-
pensable edges, iteratively, based on conditional independence tests. This inconsistency arises as
some separating sets might no longer be compatible with the final graph, if they were not already
incompatible with the current skeleton, when testing for conditional independence during the pruning
process. It occurs, for instance, when a node in a separating set is not on any indirect path linking the
extremities of a removed edge, as noted in (Spirtes, Glymour, and Scheines, 2000). Such inconsis-
tencies can be seen as a major shortcoming of constraint-based methods, as the primary motivation
to learn and visualize graphical models is arguably to be able to read off conditional independences
directly from the graph structure (Spirtes, Glymour, and Scheines, 2000; Pearl, 2009).

In the following, we propose a simple modification of PC or PC-derived algorithms so as to ensure
that all conditional independences identified and used to remove dispensable edges are consistent
with the final graph. It is achieved by repeating the constraint-based causal structure learning scheme,
iteratively, while searching for separating sets that are consistent with the graph obtained at the
previous iteration, until a limit cycle of successive graphs is reached. The union of the graphs over this
limit cycle is then guaranteed to be consistent with the separating sets and corresponding conditional
independences used to remove all dispensable edges from the initial complete graph. Enforcing
sepset consistency of constraint-based methods is found to limit their tendency to uncover spurious
conditional independences early on in the pruning process when the combinatorial space of possible
separating sets is still large. As a result, enforcing sepset consistency reduces the large number
of false negative edges usually predicted by constraint-based methods (Colombo and Maathuis,
2014) and, thereby, achieve a better balance between their sensitivity and precision. Ensuring the
consistency of separating sets is also found to increase their validity in terms of actual d-separation
and, therefore, to improve the interpretability of constraint-based models for real-life applications.
Moreover, ensuring the consistency of separating sets can be done at a limited complexity cost,
through the use of block-cut tree decomposition of graph skeletons, which enables to learn causal
structures with consistent separating sets for a few hundred nodes. By contrast, earlier methods
aiming at reducing the number of d-separation conflicts or other structural inconsistencies through
SAT-based approaches, e.g. (Hyttinen et al., 2013), have a much larger complexity burden, which
limits their applications to very small networks in practice.

2 Result

2.1 Background

2.1.1 Terminology

A graph G(V , E) consists of a vertex set V = {X1, · · · , Xp} and an edge set E. All graphs
considered here have at most one edge between any pair of vertices. A walk is a sequence of edges
joining a sequence of vertices. A trail is a walk without repeated edge. A path is a trail without
repeated vertices. A cycle is a trail in which the only repeated vertices are the first and last vertices.
Vertices are said to be adjacent if there is an edge between them. If all pairs of vertices in a graph
are adjacent, it is called a complete graph and is denoted by Gc. By constrast, an empty graph,
denoted by G∅, consists of isolated vertices with no edges. The adjacency set of a vertex Xi in a
graph G, denoted by adj(G, Xi), is the set of all vertices in V that are adjacent to Xi in G. If an edge
is directed, as X → Y , X is a parent of Y and Y a child of X . A collider is a triple (Xi, Xj , Xk) in
a graph where the edges are oriented as Xi → Xk ← Xj . A v-structure is a collider for which Xi

and Xj are not adjacent. Given a statistical significance level α, the conditional independence of
a pair of variables (Xi, Xj) given a set of variables C, is denoted by (Xi ⊥⊥ Xj |C)α, where C is
called a separating set or “sepset” for (Xi, Xj).

2.1.2 The PC and PC-stable Algorithms

The PC algorithm (Spirtes and Glymour, 1991), outlined in algorithm 1, is the archetype of constraint-
based structure learning methods (Spirtes, Glymour, and Scheines, 2000; Pearl, 2009), as illustrated

2
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in Figure 1. Given a dataset over a set of variables (vertices), it starts from a complete graph G. By
a series of statistical tests on each pair of variables, all dispensable edges X Y are removed if
a (conditional) independence and separating set C can be found, i.e. (X ⊥⊥ Y | C) (step 1). The
resulting undirected graph is called the skeleton. V-structures are then identified, X → Z ← Y ,
if (X ⊥⊥ Y | C) and Z /∈ C (step 2). Additional assumptions (e.g., acyclicity) allow for the
propagation of v-structure orientations to some of the remaining undirected edges (Zhang, 2008)
(step 3).

Algorithm 1 The PC Algorithm
Require: V , D(V ), significance level α

Step 1: Find the graph skeleton and separating sets of removed edges
Step 2: Orient v-structures based on separating sets
Step 3: Propagate orientations of v-structures to as many remaining undirected edges as possible
return Output graph

1 1 1 12 2 2 2

3 3 3 3

4 4 4 45 5 5 5

6 6 6 6

Complete graph Skeleton Identify V-structures Propagation

Step 1 Step 2 Step 3

Figure 1: General procedure of constraint-based structure learning.

While the oracle version of the PC-algorithm has been shown to be sound and complete, its application
is known to be sensitive to the finite size of real life datasets. In particular, the PC-algorithm in its
original implementation (Spirtes, Glymour, and Scheines, 2000) is known to be order-dependent,
in the sense that the output depends on the lexicographic order of the variables. This issue can
be circumvented, however, for the first step of algorithm 1 with a simple modification given in
algorithm 2 and referred to as Step 1 of PC-stable algorithm (Colombo and Maathuis, 2014).

Algorithm 2 Find skeleton and separating sets (Step 1 of PC-stable algorithm)
Require: Conditional independence assessment between all variables V with significance level α

G ← Gc

�← −1
repeat

�← � + 1
for all vertices Xi ∈ G do
end for
a(Xi) = adj(G, Xi)
repeat

select a new pair of vertices (Xi, Xj) adjacent in G and satisfying |a(Xi)\{Xj}| ≥ �
repeat

choose new C⊆a(Xi)\{Xj}, |C|=�
if (Xi ⊥⊥ Xj |C)α then

Delete edge Xi Xj from G
Sepset(Xi, Xj | G) = Sepset(Xj , Xi | G)← C

end if
until Xi and Xj are no longer adjacent in G or all C ⊆ a(Xi)\{Xj} with |C| = � have

been considered
until all pairs of adjacent vertices (Xi, Xj) in G with |a(Xi)\{Xj}| ≥ � have been considered

until all pairs of adjacent vertices (Xi, Xj) in G satisfy |a(Xi)\{Xj}| ≤ �
return G, sepsets

3
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2.2 The Consistent PC Algorithm

2.2.1 Lack of Robustness and Consistency of Constraint-based Methods

Beyond the order-dependence of the PC Algorithm, the general lack of robustness of constraint-based
methods stems from their tendency to uncover spurious conditional independences (false negatives)
between variables. This trend originates from the fact that conditioning on other variables amounts to
“slicing” the available data into smaller and smaller subsets, corresponding to different combinations
of categories or discrete values of the conditioning variables, over which independence tests are
essentially “averaged” to assess conditional independence.

Hence, by making sure that all separating sets are actually consistent with the final graph, one expects
to reduce the number of false negative edges due to spurious conditional independences inferred
during the edge pruning process and, thereby, to improve the sensitivity (or recall) of the PC or
PC-stable algorithms.

The inconsistency of separating sets can be of different forms, regarding either the skeleton (type I)
or the final (partially) oriented graph (type II), as illustrated on Figure 1.

A type I inconsistency corresponds to a conditional independence relation such as (2 ⊥⊥ 6 | 3) in
Figure 1, for which there is no path between vertex 2 and 6 that passes through 3. This type of
inconsistency often involves edges evaluated early on in the pruning process when few edges have
been removed, and thus the combinatorial space of possible separating sets is still large. In particular,
edge 3 6, which is eventually removed in the final graph, may still exist when the edge 2 6 is
under consideration.

A type II inconsistency is a different kind of incompatibility originating from the orientation of the
skeleton. It occurs, in particular, when a conditional independence relation is conditioned on at least
one common descendant of the pair of interest in the final graph, e.g. (3 ⊥⊥ 6 | 1) in Figure 1. Since it
stems from the orientation of edges (steps 2&3), the origin of type II inconsistencies is generally more
complex and results from a cascade of errors in both conditional independence tests and orientation.

These two types of inconsistency help define the following consistent set for candidate nodes of
separating sets in absence of latent variables:

Definition 1 (Consistent set). Given a graph G(V , E) and a set of variables { X, Y, Z } ⊆ V ,

Consist(X, Y | G) = { Z ∈ adj(X) \ { Y } | 1. at least one path γZ
XY exists in G;

2. Z is not a child of X in G }
where γZ

XY is a path from X to Y passing through Z. Note that for an undirected graph, the second
condition is always satisfied.

2.2.2 Consistent PC Pseudocodes

Definition 2. NewStep1(G1|G2) is a modified version of PC-stable step 1 (algorithm 2) where,

1. Gc is replaced by G1, and

2. a(Xi) \ {Xj} is replaced by a(Xi) \ {Xj} ∩ Consist(Xi, Xj | G2)

Note that algorithm NewStep1(Gc|Gc) corresponds to the unmodified step 1 of original PC-stable
algorithm 2. By constrast, algorithm NewStep1(Gc|G∅) removes all edges corresponding to indepen-
dence without conditioning, as no separating set is involved. This unconditional independence search
will be noted step 1a, while the subsequent conditional independence search will be referred to as
step 1b, thereafter.

Definition 3. S(G1|G2) is a modified version of the PC-stable algorithm, where step 1 in algorithm 1
is replaced by NewStep1(G1|G2) from definition 2.

Then, definition 3 allows to define algorithm 3, which ensures a consistent constraint-based algorithm
through an iterative call of S algorithms, (Sk)k∈N� , following an initial step 1a, NewStep1(Gc|G∅).
As illustrated on Figure 2 and proved below, algorithm 3 achieves separating set consistency by
repeating step 1b and step 2&3, iteratively, while searching for separating sets that are consistent
with the graph obtained at the previous iteration, until a limit cycle of successive graphs is reached.

4
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1 1 1 12 2 2 2

3 3 3 3

4 4 4 45 5 5 5

6 6 6 6

Gc G0 = NewStep1(Gc|G∅) Gk = NewStep1(G0|Gk−1) Gk = Sk(G0|Gk−1)

Step 1a Step 1b Step 2&3

Algorithm 4

Algorithm 3

Figure 2: Illustration of the iterative procedure to learn graphical models with orientation-consistent
(algorithm 3) or skeleton-consistent (algorithm 4) separating sets. Dashed edges mark the difference
between two successive iterations. Proof of separating set consistency is given in theorem 4.

Algorithm 3 Sepset consistent PC algorithm (1st version, orientation consistency)
Require: V , D(V ), significance level α
Ensure: G with consistent separating sets

G0 ← NewStep1(Gc|G∅)
k ← 0
repeat

k ← k + 1
Gk ← Sk(G0|Gk−1)

until loop detected, i.e., ∃n > 0, Gk−n = Gk

G ← �
(Gj)

k
j=k−n, with discarded conflicting orientations

return G and consistent separating sets

Alternatively, one may require a separating set consistency at the level of the skeleton only, i.e., before
the orientation steps, which corresponds to algorithm 4, below. Indeed, early sepset inconsistencies at
the level of the skeleton might cause orientation errors, which in turn can lead to the rejection of valid
consistent separating sets in algorithm 3. As outlined in Figure 2, the modification of algorithm 4
only concerns step 1b, which is called iteratively until a limit cycle is reached. Then, the orientation
steps 2&3 are performed as for classical PC or PC-derived algorithms, but using consistent separating
sets with respect to the union of skeletons returned by the iterative call of step 1b in algorithm 4.
However, as the orientation steps 2&3 might induce additional type II inconsistencies, algorithm 4
requires a final consistency check for all separating sets with respect to the final graph G.

Algorithm 4 Sepset consistent PC algorithm (2nd version, skeleton consistency)
Require: V , D(V ), significance level α
Ensure: G with consistent separating sets

G0 ← NewStep1(Gc|G∅)
k ← 0
repeat

k ← k + 1
Gk ← NewStep1(G0|Gk−1)

until loop detected, i.e., ∃n > 0, Gk−n = Gk

G ← �
(Gj)

k
j=k−n and consistent separating sets with respect to the graph skeleton G

Step 2 (orientation of v-structures in G)
Step 3 (propagation of orientations in G)
for all removed edges (X, Y ) in G do

Sepset(X, Y | G)← Sepset(X, Y | Gk)
if Sepset(X, Y | G) � Consist(X, Y | G) and Sepset(X, Y | G) � Consist(Y, X | G) then

Add undirected edge (X, Y ) to G
end if

end for
return G and consistent separating sets

5
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Theorem 4. The separating sets returned by algorithms 3 and 4 are consistent with respect to the
final graph G.

Proof. Firstly, the limit cycles in algorithms 3 and 4 are warranted to be finite by the deterministic
nature of these algorithms and the finite set of graphs Gj .

In algorithm 3, as the union of graphs
�

(Gj)
k
j=k−n does not remove any edge from the last graph

Gk and discards all conflicting orientations with previous graphs Gj , j ∈ { k − n, k − 1 }, taking the
union of graphs does not create any new conditional independence relation, nor any inconsistency
regarding the final separating sets. More precisely, all removed edges in Gk have separating sets
consistent with respect to at least one graph in the union (Gk−1), which is thus also consistent with
respect to the union of graphs G.

In algorithm 4, the consistency of separating sets is guaranteed by similar arguments, but only with
respect to the skeleton. As the orientation and propagation steps 2&3 might induce additional type II
inconsistencies, algorithm 4 requires a final consistency check for all separating sets. Adding back
edges with inconsistent separating sets in the final graph G then guarantees that all the separating sets
are consistent with respect to definition 1.

2.2.3 Tests of Consistency

A unitary operation of algorithms 3 and 4 is to test, for a vertex Z ∈ adj(X) \ { Y } in G, if
Z ∈ Consist(X, Y | G), which requires that 1) at least one path from X to Y passing through Z
(i.e. γZ

XY ) exists in G and 2) Z is not a child of X in G (definition 1).

To test the first condition, it is conceptually simple to first get all paths between X and Y , then check
if Z lies in at least one of them, This is however unfeasible as the complexity of getting all paths
between two vertices can be large, depending on the edge density of the graph. Fortunately, it is
possible to get directly the set of all Z for which at least on path γZ

XY exists. This can be done very
efficiently with the help of biconnected component analysis based on block-cut tree decomposition,
as detailed in Supplementary Material.

The second condition assumes the absence of latent variables, which allows for condition indepen-
dence tests on adjacent nodes only in algorithm 2. It is thus straightforward to test without additional
complexity burden.

Hence, the overall complexity of the consistency tests of separating sets relies on the block-cut tree
decomposition, which can be done beforehand within a single depth first search with complexity
O(|V | + |E|). Thus for each pair (X, Y ), the complexity of finding all candidate Z depends on the
size of the block-cut tree, which is in the worst case (when the underlying skeleton is a forest) linear
in the size of the graph, O(|V | + |E|), see Supplementary Material.

2.3 Empirical Evaluation

We conducted a series of benchmark structure learning simulations to study the differences between
the original PC-stable algorithm and the proposed modifications ensuring consistent separating sets.

For each simulation setting, we first quantified the fraction of inconsistent separating sets predicted
by the original PC-stable algorithm, Figure 3. We then compared the performance of the original
PC-stable (algorithm 1 and algorithm 2), orientation-consistent PC-stable (algorithm 3) and skeleton-
consistent PC-stable (algorithm 4), for different significance levels α, in terms of the precision and
recall of the adjacencies found in the inferred graph with respect to the true skeleton, Figures 4 and 5.
Figure 4 highlights situations for which the original PC manages to recover a DAG that is already
closely related to the ground truth but produces inconsistent separating sets, as shown in Figure 3. By
constrast, Figure 5 highlights standard benchmarks from the BNlearn repository (Scutari, 2010) for
which the original PC show a poor Recall due to too many spurious conditional independences, and
ultimately outputs a graph with only a few obvious edges. Finally, we also measured the fraction
of the separating sets used for discarding edges by the three approaches that correspond to true
D-separation in the ground-truth DAG, Figure 6.

6
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2.3.1 Data generation and benchmarks

The data-sets used for the numerical experiments were generated with the following scheme. The
underlying DAGs were generated with TETRAD (Scheines et al., 1998) as scale-free DAGs with
50 nodes (α = 0.05, β = 0.4, average total degree d(G) = 1.6) using a preferential attachment
model and orienting its edges based on a random topological ordering of the vertices. Data-sets
were simulated with linear structural equation models for three settings : strong, medium and weak
interactions (with respective coefficient ranges [0.2, 0.7], [0.1, 0.5], and [0, 0.3] and covariance ranges
[0.5, 1.5], [0.5, 1], and [0.2, 0.7]). In addition, we also generated data-sets for the classical benchmarks
Insurance (27 nodes, 52 links, 984 paramaters), Hepar2 (70 nodes, 123 links, 1453 paramaters) and
Barley (48 nodes, 84 links, 114005 paramaters) networks from the Bayesian Network repository
(Scutari, 2010).

Reconstruction benchmarks were performed with pcalg’s (Kalisch et al., 2012) PC-stable imple-
mentation, modified for enforcing separating set consistency either taking into account orientations
(algorithm 3) or at the level of the skeleton (algorithm 4). The (conditional) independence test used
in all simulations is a linear (partial) correlation with Fisher’s z-transformation. Performances are
obtained with relation to the true skeleton by measuring the Precision (positive predictive value),
Prec = TP/(TP + FP ) and Recall or Sensitivity (true positive rate), Rec = TP/(TP + FN)
where TP is a correctly predicted adjacency, FP an incorrectly predicted adjacency and FN an
incorrectly discarded adjacency.

2.3.2 Benchmark Results

The fraction of inconsistent separating sets that were used to remove edges was first estimated for
increasing sample size and varying parent-child interaction strength, using the original PC-stable
algorithm for random and scale-free DAGs of 50 nodes, Figure 3. We note that in typical settings, a
significant fraction of the separating sets that were used to remove edges during Step 1 of the PC-stable
algorithm cannot be "read off" the returned graph, either because there is no path containing Z that
connects X and Y (skeleton inconsistency, green in Figure 3) or because there is a conditioning on an
invalid child node (orientation inconsistency, i.e., difference between blue and green inconsistencies
in Figure 3). Both increasing the sample size and increasing the interaction strength reduces the
number of inconsistent sepsets. We attribute this in part to the severity of the PC-stable algorithm
which tends to remove to many false negative edges because of spurious inconsistencies. With a
larger sample size N and stronger interactions, consistent separating sets are still not guaranteed
by the original algorithm but these settings decrease the number of spurious independencies and
leads to denser reconstructed graphs, thus making it more likely for potential separating sets to be
consistent. Orientation consistency is particularly difficult to obtain with respect to the returned
CPDAG, as orientation and propagation steps generally suffer even more from sampling noise and
previous mistakes than the skeleton reconstruction (Step 1). Notably, the orientation depends on
the order in which separating sets are tested in PC-stable (in pcalg it depends on the ordering of the
variables in the data-set).
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Figure 3: Sepset inconsistency of the original PC-stable algorithm. In each subplot the fraction of inconsis-
tent separating sets with respect to the skeleton (green) or CPDAG (blue) obtained with the original PC-stable
algorithm with a fixed α = 0.05 is displayed for increasing sample size N . Data-sets were generated from 100
scale-free graphs of 50 nodes and d(G) = 1.6 with different parent-child interaction strengths : strong (left),
medium (middle) and weak (right).
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We then compared the performance of the original PC-stable (algorithm 1 and algorithm 2),
orientation-consistent PC-stable (algorithm 3) and skeleton-consistent PC-stable (algorithm 4), for
different significance levels α, in terms of the precision and recall of the adjacencies found in the
inferred graph with respect to the true skeleton, Figures 4, 5 and S1. Enforcing the sepset consistency
is shown to significantly improve the sensitivity of constraint-based methods, for a given α, while
achieving equivalent or better overall structure learning performance.

It is particularly the case for standard benchmark networks from the BNlearn repository (Scutari,
2010), Figure 5, for which the original PC-stable algorithm shows good precision but poor recall
(Rec<0.15-0.35 and Prec>0.65 at maximum Fscore, see iso-Fscore dotted lines in Figure 5), while con-
sistent PC-stable achieves a better balance between precision and recall (Rec�0.5 and Prec�0.5-0.6
at maximum Fscore, Figure 5).
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Figure 4: Precision-recall curves for the original PC-stable (yellow), skeleton-consistent PC-stable
(green) and orientation-consistent PC-stable (blue). The mean performances and standard deviations (error
bars) obtained over 100 networks are shown for 7 values of the (conditional) independence significance threshold
α between 10−5 and 0.2 Data-sets with N=500 samples were generated from the same graphs as in Figure 3
with strong (left), medium (middle) and weak (right) interactions. See Figure S1 for N=100, 1000.
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Figure 5: Precision-recall curves for the original PC-stable (yellow), skeleton-consistent PC-stable
(green) and orientation-consistent PC-stable (blue). The mean performances and standard deviations (error
bars) obtained over 100 networks are shown for 12 values of the (conditional) independence significance
threshold α between 10−25 and 0.5 (1e-25 1e-20 1e-17 1.0e-15 1.0e-13 1.0e-10 8.7e-09 7.6e-07 6.6e-05 5.7e-03
5.0e-02 5.0e-01). Data-sets with N=1000 samples were generated for the standard benchmarks Hepar2 (left),
Insurance (middle) and Barley (right) networks from the BNlearn repository (Scutari, 2010).

Finally, we also compared the fraction of valid separating sets used for discarding edges, which entail
true d-separation in the ground-truth DAG, Figures 6 and S2. Ensuring the consistency of separating
sets tends to increase, although not guarantee, their validity in terms of actual d-separation. Consistent
sepsets with invalid d-separation are primarily caused by edge mis-orientations rather than skeleton
errors. In particular, skeleton-consistent separating sets yield better performance in terms of valid
d-separation than orientation-consistent separating sets with the setting of the PC-stable algorithm
used here. This is, however, expected to depend on the specific settings for conditional independence
test, orientation and propagation rules, used in different constraint-based methods.

3 Conclusion
In this paper, we propose and implement simple modifications of the PC algorithm also applicable to
any PC-derived constraint-based methods, in order to enforce the consistency of the separating sets
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Figure 6: Proportion of valid d-separation sepsets among edge-removing sepsets. Top row shows the
proportion of sepsets that correspond to a valid d-separation in the true DAG that were used for removing edges
during Step 1 of original, orientation-consistent and skeleton-consistent PC-stable algorithms for all tested α.
Bottom row shows the average proportion of valid d-separation for a given average recall over all tested values of
α. Data-sets with N=500 were generated from 100 DAGs with linear SEMs with strong (left), medium (middle)
and weak (right) interaction (see Figure S2 for N=100, 1000).

of discarded edges with respect to the final graph, which is an actual shortcoming of constraint-based
approaches, Figure 3. Enforcing sepset consistency is shown to significantly improve the sensitivity of
constraint-based methods, while achieving equivalent or better overall structure learning performance,
Figures 4, 5 and S1. In addition, ensuring the consistency of separating sets increases also their
validity in terms of actual d-separation, Figures 6 and S2.

The existence of sepset inconsistencies with constraint-based methods originates from their tendency
to uncover spurious conditional independences early on in the pruning process when the combinatorial
space of possible separating sets is still large, unlike in the final typically sparse skeleton. Such
spurious conditional independences are responsible, in particular, for the large number of false
negative edges and, therefore, frequently poor sensitivity of constraint-based methods (Colombo
and Maathuis, 2014). By contrast, enforcing sepset consistency enables to achieve a better balance
between sensitivity and precision.

To circumvent this inconsistency issue during the skeleton step, we have shown that one can either use
sepset consistency taking into account orientations to help reject inconsistent sepsets (algorithm 3)
or use sepset consistency of the skeleton to help determine the orientations (algorithm 4). The later
approach tends to yield slightly better performance with the setting of the PC-stable algorithm used
here but this is expected to be dependent on the specific settings used, for conditional independence
test, orientation and propagation rules, in different constraint-based methods.

Indeed, the methods and algorithmic implementations presented here are not primarily meant to out-
compete a specific PC or PC-derived algorithm but rather to improve the explainability of constraint-
based methods, by ensuring the consistency of all separating sets in the final causal graphs.

The approach is very general and applicable to the large variety of constraint-based methods, starting
with a complete graph and discarding dispensable edges iteratively based on conditional independence
search. Beyond the formal interest of guaranteeing sepset consistency, this is also especially important,
in practice, for the interpretability of constraint-based models for real-life applications.
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An R implementation of the methods in the case of the PC-stable algorithm is available with examples
at https://github.com/honghaoli42/consistent_pcalg.

A Test of Consistency

A.1 Terminology

A connected graph G is such that there is a path between each pair of vertices of G. A connected
component of a graph is a maximal connected subgraph. An articulation point (or cut point) is a
vertex in a connected graph whose removal would disconnect the graph and thus increase its number
of connected components. A biconnected graph is a connected graph without articulation point. A
biconnected component (or block) is a maximal biconnected subgraph.

A.2 Biconnected Component Analysis

For a pair (X, Y ) in a graph G, one of the necessary conditions for its separating set to be consistent,
as stated in definition 1, is that for each vertex Z in the separating set, Z lies on a path �Z

XY between
X and Y in the skeleton of G. For one pair of vertices, checking the existence of a path for all Z can
already be time consuming if the degrees of the vertices are large. In addition, the complexity will
be further multiplied by the number of pairs to be considered. Fortunately, it is possible to avoid
this high complexity with the help of the biconnected component analysis based on block-cut tree
decomposition, and thus to limit the search of consistent separating vertices within those that are
consistent with respect to the skeleton.
Definition 5 (Block-cut tree). G a connected (sub)graph. The block-cut tree decomposition of G is
denoted by T (B, C, Br) where B = { bi }m

i=1 is the set of biconnected components (or blocks) of
G, C = { cj }n

j=1 is the set of articulation points (or cut points) and Br = { (bi, cj) | bi 2 B, cj 2
C, bi and cj are adjacent in T } is the set of connections between B and C.

In the following we establish a relation between biconnected components and the path existence
problem.
Lemma 6 (Menger’s theorem for biconnected graph). Let G(V , E) be a biconnected graph,
{ X, Y } ✓ V a pair of vertices. There is a cycle in G that contains X and Y .
Theorem 7. Let G(V , E) be an undirected graph, H(VH, EH) ✓ G a biconnected component of
G, { X, Y } ✓ VH a pair of vertices, and Z 2 VG a third vertex. There is a path �Z

XY if and only if
Z 2 VH.

Proof. If there is a path �Z
XY , suppose that Z /2 VH, then the subgraph H0 of G over VH [ { Z } is

biconnected thanks to �Z
XY , and H ⇢ H0 is not a biconnected component of G as it is not maximal.

Therefore we must have Z 2 VH.

If { X, Y, Z } ✓ VH, then lemma 6 guarantees a cycle that contains Z and Y . Since VH contains at
least three vertices, such a cycle contains n � 1 vertices other than Z and Y , and can be represented
by two edge-distinct paths between Z and Y :

�
(1)
ZY = ZU1U2 · · · UkY, �

(2)
ZY = ZUk+1Uk+2 · · · UnY

where k 2 Z�0 (with k = 0 indicating a direct edge between Z and Y ), n 2 Z+, k < n and { Ui }n
i=1

are distinct vertices. Since Y is not an articulation point, there is a path �XZ that does not contain Y :

�XZ = XD1D2 · · · DmZ

1
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where m 2 Z�0 and { Dj }m
j=1 are distinct vertices. If { Ui }n

i=1 \ { Dj }m
j=1 = ;, then there is a

path
�Z

XY = �XZ�
(i)
ZY , i 2 { 1, 2 }.

Otherwise, suppose { Ui }n
i=1 \ { Dj }m

j=1 = { Dp1
, Dp2

, . . . , Dpt
} where t 2 Z+ and p1 < p2 <

· · · < pt, and suppose Dp1 = Ul. If l  k, then there is a path

�Z
XY = XD1D2 · · · Dp1

(Ul)Ul�1 · · · U1�
(2)
ZY ,

if l > k, then there is a path

�Z
XY = XD1D2 · · · Dp1

(Ul)Ul�1 · · · Uk+1�
(1)
ZY .

As a result, if { X, Y, Z } ✓ VH, then there is always a path �Z
XY .

Corollary 8. Let G(V , E) be a connected graph, T (B, C, Br) the block-cut tree decomposition
of G, { X, Y } ✓ V a pair of vertices, nX , nY the corresponding nodes of X and Y in T , and
S = { Z 2 V \ { X, Y } | at least one path �Z

XY exists. }

1. If nX = nY = bi 2 B, then S = V (bi) \ { X, Y }.

2. If nX 6= nY , let ⌫XY = w1w2 · · · wk, w1 = nX , wk = nY be the path between nX and
nY where each wi belongs to B or C, then S =

S
(V (wi))

k
i=1 \ { X, Y }.

The first case is a direct result of theorem 7. The second case is not difficult to prove once we notice
the fact that ⌫XY is the unique path between nX and nY in T , and that every �XY must contain all
the cut points in ⌫XY , and thus can be decomposed into segments of paths between these cut points.

Each undirected graph G(V , E) can be decomposed into a set of single vertices and a set of connected
subgraphs, where each subgraph can be represented by a block-cut tree. Based on this decomposition,
algorithm 5 gives the consistent candidate vertices for separating set for a pair of vertices as described
in definition 1.

Algorithm 5 Consistent candidates
Require: (Partially directed) graph G(V , E), its block-cut tree decomposition for each connected

component (with respect to its skeleton) { Ti(B, C, Br) }, two vertices { X, Y } ✓ V
Ensure: Set of all candidate vertices Consist(X, Y | G).

if X and Y do not belong to the same block-cut tree Ti then
return ;

end if
if X and Y belong to the same block bi 2 B then

return (Ne(X) \ Child(X)) \ (V (bi) \ { X, Y })
else

⌫XY  TreePath(nX , nY ) = w1w2 · · · wk

return (Ne(X) \ Child(X)) \ (
S

(V (wi))
k
i=1 \ { X, Y })

end if

The block-cut tree decomposition can be done beforehand within a single depth first search with
complexity O(|V | + |E|). Thus for each pair (X, Y ), the complexity of finding all candidate Z
depends on the size of the block-cut tree. In the worst case where G is a forest with only bridges
(edges, the removal of each bridge increases the number of connected components of G), the number
of nodes and branches in the block-cut tree T of G is of the same order of |V | and |E|, and for all
pair of vertices { X, Y } ✓ V we need to perform a path search in T of complexity O(|V | + |E|)
to get S. In the best scenario where G is biconnected, S = V \ { X, Y } for all pairs. Then, an
operation of set intersection (Ne(X) \ Child(X))\S with linear complexity O(|Ne(X)| + |S|) will
give the result.
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Figure S1: Precision-recall curves for the original PC-stable (yellow), orientation-consistent PC-stable
(blue) and skeleton-consistent PC-stable (green). Data-sets of N=100 samples (top row) or of N=1000
(bottom row), with strong (left), medium (middle) and weak (right) interactions. See Figure 4 for more
information.
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Figure S2: Proportion of valid d-separation sepsets among edge-removing sepsets found during recon-
struction. Data-sets of N=100 samples (top two rows) or of N=1000 (bottom two rows), with strong (left),
medium (middle) and weak (right) interactions. See Figure 6 for more information.
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4.3 Reliable orientations with mutual information supre-
mum

Finally, we propose the equivalent of conservative PC for MIIC, which improves the reliability
of inferred orientations at only a small cost to sensitivity. It does not rely on an orientation
cut β as introduced in Section 4.1.2, but rather on a formulation of information supremum,
for both the continuous and the discrete case.

The publication accepted at the Why21 workshop contextualizes MIIC, proposes the
simple change to the orientation rules enforcing non-negative regularized information terms,
and compares the performance between the old and the new rules on simulated networks.

4.3.1 Publication at Why21 workshop, NeurIPS 2021



Reliable causal discovery based on mutual
information supremum principle for finite datasets

Anonymous Author(s)
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Abstract

The recent method, MIIC (Multivariate Information-based Inductive Causation),1

combining constraint-based and information-theoretic frameworks, has been shown2

to significantly improve causal discovery from purely observational data. Yet, a3

substantial loss in precision has remained between skeleton and oriented graph4

predictions for small datasets. Here, we propose and implement a simple modifica-5

tion, named conservative MIIC, based on a general mutual information supremum6

principle regularized for finite datasets. In practice, conservative MIIC rectifies the7

negative values of regularized (conditional) mutual information used by MIIC to8

identify (conditional) independence between discrete, continuous or mixed-type9

variables. This modification is shown to greatly enhance the reliability of predicted10

orientations, for all sample sizes, with only a small sensitivity loss compared to11

MIIC original orientation rules. Conservative MIIC is especially interesting to12

improve the reliability of causal discovery for real-life observational data applica-13

tions.14

1 Background15

Constraint-based structure learning methods can, in principle, discover causal relations in purely16

observational data (Pearl, 2009; Spirtes, Glymour, and Scheines, 2000). This is theoretically feasible17

up to some independence equivalence classes, as the orientations of certain edges may only be18

uncovered through perturbative data and remain undetermined if only observational data is available.19

Yet, regardless of this theoretical limitation, it has long been recognized (Ramsey, Spirtes, and Zhang,20

2006; Colombo and Maathuis, 2014) that orientations predicted by constraint-based methods are21

often unreliable, which has largely limited, in practice, the application of constraint-based methods to22

uncover causal relations in real-life observational data.23

This causal uncertainty originates from the extensive number of steps and conditions that constraint-24

based methods, such as the original IC (Pearl and Verma, 1991) and PC (Spirtes and Glymour, 1991)25

algorithms, have to meet before they can infer edge orientation. Indeed, they must first learn an26

undirected skeleton, by uncovering (conditional) independences between all pairs of variables, before27

inferring the orientation of v-structures and finally propagating these orientations to other undirected28

edges. This long chain of uncertain computational decisions leads to the accumulation of errors29

which ultimately limit the accuracy of the final orientation and propagation steps of constraint-based30

methods. As a result, edge orientations significantly reduce the precision (or positive predicted value)31

of inferred causal graphs compared to their undirected skeleton. In addition, constraint-based methods32

are known to suffer from much lower sensitivity or recall (i.e., true positive rate) than precision33

scores, in general (Colombo and Maathuis, 2014; Li et al., 2019). This is related to the fact that34

separating sets used to remove edges in the (early) steps of constraint-based methods are frequently35

not consistent with the final skeleton and oriented graphs (Li et al., 2019). They correspond to36
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Figure 1: PC original, majority and conservative orientation rules on discrete datasets. Bench-
mark datasets are generated from random 100-node DAGs with average degree 2.7 and maximum
degree 4 (See Data generation and benchmarks section for details). PC structure learning performance
is measured in terms of Precision, Recall and F-scores (±σ) for skeleton (blue), CPDAG (red) and
oriented-edge-only subgraph (green).

spurious conditional independences responsible for the large number of false negative edges and,37

therefore, low sensitivity of constraint-based methods.38

While successive refinements of orientation rules, such as conservative rules (Ramsey, Spirtes, and39

Zhang, 2006) and majority rules (Colombo and Maathuis, 2014), have helped improve the average40

precision of orientations, they also lead to large precision variance and further aggravate the poor41

recall of edge orientations at small sample sizes. This is illustrated here for both discrete (Fig. 1) and42

continuous (Fig. 2) benchmark datasets generated by random Bayesian networks using the available43

codes from (Cabeli et al., 2020), see section on Data generation and benchmarks, below.44

The recently developed method, MIIC, combining constraint-based and maximum likelihood frame-45

works, has been shown to significantly improve the situation by greatly reducing the imbalance46

between precision and recall, for all sample sizes (Verny et al., 2017; Cabeli et al., 2020). Compared47

to traditional constraint-based methods, MIIC also significantly reduces the precision gap between48

skeleton and oriented graphs for large enough datasets, as discussed below. However, a substantial49

loss in precision remains between skeleton and oriented graphs for smaller datasets.50

2
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Figure 2: PC original, majority and conservative orientation rules on continuous datasets.
Benchmark datasets are generated from random 100-node DAGs with average degree 2.7 and
maximum degree 4 (See Data generation and benchmarks section for details). PC structure learning
performance is measured in terms of Precision, Recall and F-scores (±σ) for skeleton (blue), CPDAG
(red) and oriented-edge-only subgraph (green).

In this paper, we propose and implement a simple modification of MIIC algorithm, which is found51

to greatly improve the precision of predicted orientations even for relatively small datasets. It is52

achieved at the expense of a small loss of orientation recall but significantly enhances the reliability53

of predicted orientations for all sample sizes. This simple modification, referred to as conservative54

MIIC, is especially interesting, in practice, to improve the reliability of causal discovery for real-life55

observational data applications.56

2 Results57

2.1 MIIC outline58

MIIC (Multivariate Information-based Inductive Causation) is a novel structure learning method59

(Verny et al., 2017; Cabeli et al., 2020) and online server (Sella et al., 2018), combining constraint-60

based and information-theoretic frameworks. Starting from a fully connected graph, MIIC itera-61

tively removes dispensable edges, by uncovering significant information contributions from indirect62

paths based on the "3off2" scheme (Affeldt and Isambert, 2015; Affeldt, Verny, and Isambert,63

3
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2016). This amounts to progressively uncover the best supported conditional independencies, i.e.64

I(X;Y |{Ai}n) ' 0, by iteratively "taking off" the most significant indirect contributions of positive65

conditional 3-point information, I(X;Y ;Ak|{Ai}k−1) > 0, from every 2-point (mutual) informa-66

tion, I(X;Y ), as,67

I(X;Y |{Ai}n) = I(X;Y )− I(X;Y ;A1)− I(X;Y ;A2|A1)− · · · − I(X;Y ;An|{Ai}n−1) (1)

In practice, (conditional) independence is established by comparing mutual information (MI) or68

conditional mutual information (CMI) to a universal Normalized Maximum Likelihood (NML)69

complexity term, kNML
N (X;Y |{Ai})/N , computed over all datasets of the same size N and marginal70

distributions p(X, {Ai}) and p(Y, {Ai}) (Affeldt and Isambert, 2015). This can be seen as a NML-71

regularization of MI and CMI for datasets of finite sample size N as,72

I ′N (X;Y |{Ai}) = IN (X;Y |{Ai})−
1

N
kNML
N (X;Y |{Ai}) (2)

where kNML
N (X;Y |{Ai}) is computed iteratively in linear time (Kontkanen and Myllymäki, 2007;73

Roos et al., 2008) for increasing numbers of X and Y partitions, rx and ry, starting with74

kNML
N (X;Y |{Ai}) = 0 for rx = ry = 1 (Affeldt and Isambert, 2015; Cabeli et al., 2020).75

Hence, (conditional) independence is established for I ′N (X;Y |{Ai}) 6 0, whenever sufficient and76

significant indirect positive contributions could be iteratively collected in Eq. 1 to warrant the removal77

of the XY edge.78

This leads to an undirected skeleton, which MIIC then (partially) orients based on the sign and79

amplitude of the NML-regularized conditional 3-point information terms (Affeldt and Isambert, 2015;80

Verny et al., 2017), corresponding to the difference between NML-regularized (C)MI terms.81

I ′N (X;Y ;Z|{Ai}) = I ′N (X;Y |{Ai})− I ′N (X;Y |{Ai}, Z) (3)

In particular, negative NML-regularized conditional 3-point information terms, I ′N (X;Y ;Z|{Ai})<0,82

correspond to the signature of causality in observational data (Affeldt and Isambert, 2015) and lead to83

the prediction of a v-structure, X → Z ← Y , if X Z Y is an unshielded triple in the skeleton84

(with I ′N (X;Y |{Ai}) 6 0). By contrast, a positive NML-regularized conditional 3-point information85

term, I ′N (X;Y ;Z|{Ai}) > 0, suggests to propagate the orientation of a previously directed edge86

X → Z Y as X → Z → Y (with I ′N (X;Y |{Ai}, Z) 6 0), to fulfill the assumptions of the87

underlying graphical model class.88

2.2 MIIC performance on discrete data, allowing for negative NML-regularized MI & CMI89

MIIC was originally developed for discrete variables only, for which MI and CMI are straightforward90

to compute. Compared to traditional constraint-based methods on discrete data, MIIC greatly reduces91

the imbalance between precision and recall, for all sample sizes, Fig. 3. MIIC also significantly92

reduces the precision gap between skeleton and oriented graphs, for large enough datasets. However,93

a substantial loss in precision remains between skeleton and oriented graphs, for small datasets,94

irrespective of the CPDAG or oriented-edge-only subgraph scores used for the comparison, Fig. 3.95

These results illustrate the interest in integrating multivariate information criteria into constraint-based96

methods. However, for small datasets or datasets including variables with many discrete levels, NML97

complexities can easily out-weight MI and CMI terms for weakly dependent variables. As a result,98

MIIC tends to infer some v-structure orientations, X → Z ← Y , for which both NML-regularized99

(C)MI terms in Eq. 3 are negative, i.e. I ′N (X;Y |{Ai}) < I ′N (X;Y |{Ai}, Z) < 0, suggesting that100

Z could in fact be included in a separating set of the {X,Y } pair, in contradiction with the inferred101

v-structure, X → Z ← Y .102

Note that such a v-structure would be excluded from the final graph in the frame of traditional103

constraint-based methods implementing conservative orientation rules, which check that Z is not104

included in any separating set of the {X,Y } pair (Ramsey, Spirtes, and Zhang, 2006). Similarly,105

rectifying all negative NML-regularized (C)MI values into null values, as proposed and implemented106

in the present paper below, leads to a vanishing NML-regularized (conditional) 3-point information107

term in Eq. 3, i.e. I ′N (X;Y ;Z|{Ai}) = 0, which precludes the orientation of the unshielded triple,108

X Z Y .109
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Figure 3: Original MIIC with orientation rules allowing for negative NML-regularized MI &
CMI on discrete data (left) and negative NML-regularized CMI on continuous data (right).
Benchmark datasets are the same as in Figs. 1 & 2. MIIC structure learning performance is measured
in terms of Precision, Recall and F-scores (±σ) for skeleton (blue), CPDAG (red) and oriented-edge-
only subgraph (green). PC average scores for majority orientation rules are shown as dashed lines for
comparison.
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2.3 MIIC performance on continuous data, allowing for negative NML-regularized CMI110

More recently MIIC was extended to handle continuous as well as mixed-type variables (either111

combination of discrete and continous variables or variables with both continuous and discrete ranges112

of values), for which MI & CMI are notoriously more difficult to estimate (Cabeli et al., 2020).113

While distance-based k-nearest neighbor (kNN) estimates of MI and CMI are often used for continu-114

ous variables (Kraskov, Stögbauer, and Grassberger, 2004; Frenzel and Pompe, 2007), MIIC’s MI and115

CMI estimates are instead computed through an approximate optimum discretization scheme, based116

on a general MI supremum principle (Cover and Thomas, 2006) regularized for finite datasets and117

using an efficient O(N2) dynamic programming algorithm (Cabeli et al., 2020). This approach finds118

optimum partitions, P and Q, specifying the number and positions of cut-points of each continuous119

variable, X and Y , to maximize the NML-regularized MI between them,120

I ′N (X;Y ) = sup
P,Q

I ′N ([X]P ; [Y ]Q) (4)

The NML regularization term, introduced in I ′N ([X]P ; [Y ]Q), is necessary for finite datasets and121

amounts to a model complexity cost, which eventually out-weights the information gain in refining122

bin partitions further, when there is not enough data to support such a refined model (Cabeli et al.,123

2020).124

Such optimization-based estimates of MI are at par with alternative distance-based kNN approaches125

but have also the unique advantage of providing an effective independence test to identify independent126

continuous or mixed-type variables (Cabeli et al., 2020). This is achieved when partitioning X and Y127

into single bins maximizes the NML-regularized MI in Eq. 4, which vanishes exactly, in this case,128

with dramatic reductions in sampling error and variance (Cabeli et al., 2020). By contrast, kNN-MI129

estimates still need an actual independence test to decide whether some variables are effectively130

independent or not, as kNN MI estimates are never exactly null.131

MIIC Precision, Recall and F-score on continuous data are comparable to those on discrete data,132

Fig. 3, and typically much better than the results obtained with traditional constraint-based methods,133

which, unlike MIIC, need to rely on independence tests, that are notoriously difficult for continuous134

data.135

However, by contrast with discrete data, the remaining loss between skeleton and oriented graph136

precisions appears to differ between the CPDAG score and the oriented-edge-only subgraph score137

used for the comparison, Fig. 3. It indicates that the precision of the oriented-edge-only subgraph138

is slightly though significantly better than for the overall partially oriented graph, with a small139

concomitant loss of orientation recall, at small sample sizes, Fig. 3. This trend is due to the more140

stringent condition for v-structure orientation brought by the non-negative NML-regularized MI141

estimates obtained by MIIC for continuous variables. Yet, the optimum partitioning principle only142

applies to MI (Cover and Thomas, 2006), not CMI, which need to be estimated through the difference143

between optimum NML-regularized MI terms, as I ′N (X;Y |U) = I ′N (Y ; {X,U}) − I ′N (Y ;U) =144

I ′N (X; {Y,U}) − I ′N (X;U) (Cabeli et al., 2020). As a result, the approximate NML-regularized145

CMI estimates between conditionally independent variables can sometime be negative and lead to146

v-structure orientations contradicting conditional independence, as discussed for discrete data above.147

2.4 Improving MIIC causal discovery by rectifying negative NML-regularized MI & CMI148

The general MI supremum principle (Cover and Thomas, 2006), regularized in Eq. 4 for finite datasets,149

is theoretically valid for any type of variables, not just continuous variables. In particular, it could150

be applied to small size datasets with discrete or categorical variables with many levels. It would151

result in the merging of rare levels to better estimate MI and CMI between weakly dependent discrete152

variables. Ultimately, MI estimates between independent discrete variables should lead to the merging153

of each variable into a single bin, thereby, resulting in NML-regulatized MI estimates to vanish154

exactly in this case, as already observed for continuous variables (Cabeli et al., 2020). As a result,155

optimum NML-regulatized MI should be non-negative as well as, by extension, NML-regulatized156

CMI, as shown now.157

Theorem 1. Optimum NML-regulatized MI and NML-regulatized CMI are non-negative.158

Proof. We first address optimum NML-regularized MI, noting that I ′N (X;Y ) >I ′N ([X]1; [Y ]1) = 0,159

where [X]1 and [Y ]1 are theX and Y variables partitioned into single bins, which leads to a vanishing160
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NML-regularized MI, as both MI and NML complexity cost are null, in this case, as kNML
N (X;Y ) = 0161

for rx = ry = 1 (Affeldt and Isambert, 2015).162

Then, NML-regularized CMI is defined as the difference between optimum NML-regularized MI163

terms as, I ′N (X;Y |U) = I ′N (Y ; {X,U}) − I ′N (Y ;U) = I ′N (X; {Y, U}) − I ′N (X;U). However,164

partitioning X and Y into a single bin leads to I ′N (Y ; {X,U}) > I ′N (Y ; {[X]1, U}) = I ′N (Y ;U)165

and I ′N (X; {Y, U}) > I ′N (X; {[Y ]1, U}) = I ′N (X;U) thus implying I ′N (X;Y |U) > 0166

Following these considerations on the negativity of NML-regularized (C)MI with MIIC original167

orientation implementation, we propose a small modification, based on Theorem 1 and referred to as168

conservative MIIC, by analogy to the conservative orientation rules of traditional constraint-based169

methods (Ramsey, Spirtes, and Zhang, 2006), as noted above.170

Proposition 2. Conservative MIIC rectifies negative values of NML-regularized (C)MI, indicating171

(conditional) independence, to null values instead.172

The effects on this modification on discrete and continuous benchmark data are show in Fig. 4.173

While conservative MIIC hardly affects skeleton scores, it clearly has an impact on CPDAG and174

oriented-edge-only subgraph scores, which exhibit different trends relative to their original MIIC175

values.176

CPDAG Precision, Recall and, hence, F-scores appear to be slightly lower under conservative MIIC177

(Fig. 4) than with original MIIC (Fig. 3), for discrete data. This illustrates the overall "better"178

orientation/non-orientation scores of the original MIIC against the theoretical CPDAG objective.179

Indeed, allowing for negative NML-regularized MI enables to infer weakly supported v-structures at180

small sample sizes. Besides, no significant difference is observed for CPDAG scores on continuous181

data, as original MIIC already enforces non-negative NML-regularized MI through optimization for182

continuous data (Cabeli et al., 2020), suggesting that enforcing also non-negative NML-regularized183

CMI with conservative MIIC has little impact on the reliability of CPDAG scores for continuous data,184

at least for the benchmarks tested here.185

By contrast, conservative MIIC is found to greatly improve the precision of oriented-edge-only186

subgraphs, on discrete datasets, even for relatively small sample sizes, Fig. 4. This large increase in187

orientation precision is achieved at the expense of a relatively small loss of orientation recall. Hence,188

conservative MIIC significantly enhances the reliability and sensitivity of predicted orientations for all189

sample sizes, as compared to traditional constraint-based methods with conservative orientation rules,190

Fig. 4. For instance, conservative MIIC already reaches nearly 90% orientation precision with 25%191

orientation recall for N ' 250 (against about 80% orientation precision with only 5% orientation192

recall for conservative PC). While, by the time conservative PC reaches 90% orientation precision193

with 25% orientation recall for N ' 700, conservative MIIC achieves nearly 100% orientation194

precision with 50% orientation recall, Fig. 4. In addition, while original MIIC achieves a significantly195

better 65% orientation recall for N ' 700, Fig. 3, its orientation precision simultaneously drops to196

about 75%, which clearly impacts its reliability for causal discovery.197

On continuous data, conservative MIIC also achieves a large increase in orientation precision, which198

becomes at par with skeleton precision, even for small datasets, and clearly much better than the199

corresponding scores obtained with traditional constraint-based methods for large datasets, Fig. 4.200

For instance, conservative MIIC reaches nearly 75% orientation precision with 50% orientation recall201

for N ' 200 (against about 70% orientation precision with 35% orientation recall for conservative202

PC). While, by the time conservative PC reaches 75% orientation precision with 45% orientation203

recall for N ' 1, 000, conservative MIIC achieves more than 90% orientation precision with 80%204

orientation recall, Fig. 4.205

3 Data generation and benchmarks206

Datasets were simulated using structural equations models (SEMs) following the causal order of207

randomly generated DAGs. Continuous examples were constructed using linear and non-linear208

functions, and discrete datasets using unique state probabilities for each of the parents’ combinations.209

The DAGs themselves were randomly drawn from the space of all possible 100 node DAGs (Melancon210

and Philippe, 2004) allowing for a maximum degree of 4 neighbors, resulting in an average degree of211

2.7. Further details and dataset examples can be found in Cabeli et al. (2020).212
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Figure 4: Conservative MIIC with new orientation rules enforcing non-negative NML-
regularized MI & CMI on discrete data (left) as well as continuous data (right). Benchmark
datasets are the same as in Figs. 1 & 2. Conservative MIIC structure learning performance is
measured in terms of Precision, Recall and F-scores (±σ) for skeleton (blue), CPDAG (red) and
oriented-edge-only subgraph (green). PC average scores for conservative orientation rules are shown
as dashed lines for comparison.

8

4.3. Reliable orientations with mutual information supremum 115



For evaluation purposes, network reconstruction was treated as a binary classification task and213

classical performance measures, Precision, Recall and F-score, were first used to evaluate skeleton214

reconstruction, based on the numbers of true versus false positive (TP vs FP ) edges and true versus215

false negative (TN vs FN ) edges, irrespective of their orientation.216

Then, in order to evaluate edge orientations, we also define two orientation-dependent measures.217

The first measure, referred to as the "CPDAG" score, aims to score the overall reconstruction with218

regards to the equivalence class of the true DAG. Edge types are used to redefine the orientation-219

dependent counts as, TP ′ = TP − TPmisorient and FP ′ = FP + TPmisorient with TPmisorient220

corresponding to all true positive edges of the skeleton with a different orientation/non-orientation221

status as in the true CPDAG. The CPDAG precision, recall and F-score were then computed with222

the orientation-dependent TP ′ and FP ′. In particular, the CPDAG score equivalently rates as "false223

positive" the erroneous orientation of an non-oriented edge in the CPDAG and the erroneous non-224

orientation of an oriented edge in the CPDAG. However, these errors are not equivalent from a causal225

discovery perspective.226

The second measure, referred to as oriented-edge-only score, uses the same metrics but is restricted to227

the subgraphs of the CPDAG and the inferred graph containing oriented edges only. It is designed to228

specifically assess the method performance with regards to causal discovery, that is, on the oriented229

edges which can in principle be learnt from observational data versus those effectively predicted by230

the causal structure learning method.231

MIIC was run with default parameters for all settings on the latest version (available at https://232

github.com/miicTeam/miic_R_package), and PC with the pcalg package (Kalisch et al., 2012)233

using bnlearn’s (Scutari, 2010) mutual information test for discrete datasets and rank correlation234

for continuous ones. For PC, the α threshold for significance testing was tuned for each sample size235

N and network type to produce the best average between skeleton and "CPDAG" F-scores using a236

zeroth order optimization implemented in dlib (King, 2009).237

4 Conclusion238

Causal uncertainty and limited sensitivity of traditional constraint-based methods have so far ham-239

pered their dissemination for a wide range of possible causal discovery applications on real-life240

observational datasets. Hence, fulfilling the promise of causal discovery methods in the new data241

analysis area requires to improve their reliability as well as scalability.242

We propose and implement, in this paper, a simple modification of the recent causal discovery method,243

MIIC, which greatly enhances the reliability of predicted orientations, for all sample sizes, with only244

a small sensitivity loss compared to MIIC original orientation rules. This conservative MIIC approach245

is especially interesting, in practice, to improve the reliability of cause-effect discovery for real-life246

observational data applications.247
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Chapter 5

Applications

In this chapter, we take advantage of the various improvements to MIIC and infer causal
graphs from real-life data. In each case, we pre-processed the data in close collaboration with
the teams that were responsible for their collection, and benefited from their insight again
when analyzing the results.

5.1 Learning causal graphs from medical records of pa-
tients with cognitive disorders

The first application of MIIC with the mixed case estimator was on medical records of elderly
patients from La Pitié-Salpêtrière Hospital. In the final network, 107 variables of 1,628
patients admitted for cognitive disorder were used for the network reconstruction.

Graphical model reconstruction methods are not commonly used on clinical databases;
however, these techniques can be of great help in understanding the structure of the data.
Two main benefits emerged from this application on medical records. First, it helps in
understanding the relationship between variables : knowing which aspects of cognition are
correlated is fairly intuitive for experienced physicians, but it is much harder to conceptualize
mediating effects and discerning direct from indirect relations. Analyzing this kind of data
also performs quality control in a way : if a link is missing, we can easily understand why
by analyzing the detailed information of the network reconstruction, but also by directly
observing the dataset. Secondly, it is able to infer previously ignored associations, which
could also be a considerable advantage in the initial analysis of this type of varied and
complex data set. In this network for example, an unexpected direct edge was inferred
between the Fazekas (which measures the amount of hyperintensity in white matter attributed
to chronic small vessel ischemia) and Scheltens (medial temporal lobe atrophy) scales, which
was indepedently reported recently [123].

The full discussion of the network is published in [7], which is included in Section 3.3.
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5.2 NEOREP study on breast cancer patients
The second application, also on medical records of patients, concerns breast cancer pa-
tients that have undergone neoadjuvant (i.e. before the main treatment, usually surgery)
chemotherapy.

In this article, we emphasize the benefits of visually inspecting the dataset after having
removed the indirect relationships with MIIC. We note at least three ways in which we
benefit from the network approach. First, as it was highlighted in the previous application, it
performs an unbiased check of the dataset. For example, it was able to identify differences
in clinical practices between the two treatment centers of the cohort which may create
instances of Simpson’s paradox if not accounted for. By including the node in the dataset,
it is a potential contributing node to any relationship and we make sure we remove the
effect of the center for each remaining edge. Secondly, MIIC traces the natural course of
the disease by having access to patients that are both early in the diagnosis or long after
initial treatment. This allows to predict statistically the course of the disease, based on this
specific population of patients. Finally, MIIC identifies factors likely to improve prediction
or prognosis. Specifically, the direct neighbors of the node reporting the vital status of the
patient give some unique information about the outcome that could not be removed due to
indirect effects, and merit particular attention. Moreover, the optimal discretization scheme
informs us of the most informative cutpoints with regards to the outcome of the disease for
the observed population. In this application specifically, we observe that the discretized
version of a composite score, which is usually used for prognosis, is less informative of
the vital status than its continuous variable. This highlights the fact that many bio-medical
discrete variables are discretized using a priori bins and may not be adapted for all situations.

The manuscript was written in collaboration with the Residual Tumor and Response to
Treatment Laboratory and is yet to be submitted, it is included in the next subsection.

5.2.1 Manuscript
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Abstract  

With the rapid accumulation of information from medical records in health databases, there is an 

urgent need for innovative interactive tools specifically designed for the exploration of these data by 

medical practitioners.  Here, we report a novel interactive graphical interface for use as the front end 

of a machine learning causal inference server (MIIC), to facilitate the visualization and 

comprehension by clinicians of relationships between clinically relevant variables. We demonstrate 

the utility of the MIIC interactive interface, by exploring the clinical network of a large cohort of 

breast cancer patients treated with neoadjuvant chemotherapy (NAC). This example highlights, in 

particular, the direct and indirect links between post-NAC clinical responses and patient survival. The 

MIIC interactive graphical interface has the potential to help clinicians to identify actionable nodes 

and edges in clinical networks, thereby ultimately improving the patient care pathway. 

 

 

Significant statement:  

Despite unprecedented amount of information now available in medical records, health data remain 

underexploited due to their heterogeneity and complexity. Simple charts and hypothesis-driven 

statistics can no longer apprehend the content of information-rich clinical data. There is, therefore, a 

clear need for powerful interactive visualization tools enabling medical practitioners to perceive the 

patterns and insights gained by state-of-the-art machine learning algorithms. We report here an 

exploratory analysis of a global clinical network from a large breast cancer cohort, with a novel 

interactive graphical interface for the exploration of health data. The widespread use of such tools, 

facilitating the interactive exploration of datasets, is crucial both for data visualization and for the 

generation of research hypotheses. 
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INTRODUCTION 
 

 

The availability of health data from patient medical records is increasing, and these data 

constitute, in theory, a rich resource for research purposes. However, despite the unprecedented 

amount of information now available, health data remain underexploited due to their heterogeneity and 

complexity.  There is, therefore, an urgent need for innovative tools, based on intuitive and interactive 

graphical interfaces, specifically designed for the exploration of health data by medical practitioners. 

Data visualization is gradually emerging as a new field of research, and graphical representations are 

used for two main purposes: (i) explanatory illustration, to highlight novel scientific insights 

graphically and to ensure efficient communication between scientists 1–4;  and (ii) exploratory analysis, 

searching for relationships previously overlooked and leading to new discoveries, thereby maximizing 

the potential of information-rich databases. We present here an exploratory analysis of a global 

clinical network from a large breast cancer cohort, with a novel interactive graphical interface for the 

exploration of health data. 

 We previously developed an advanced computational method for graphical analyses, including 

causal relationships, from multivariate data5. The underlying MIIC (multivariate information inductive 

causation) algorithm, which was released as an online server6, uses a machine learning method 

combining constraint-based and information theory approaches to reconstruct causal, non-causal or 

mixed networks from large datasets. The MIIC algorithm was first developed to analyze categorical 

genomic data5, 6 and has recently been extended to the analysis of more challenging heterogeneous 

datasets, such as medical records, combining both categorical and continuous variables, in which 

interdependence is notoriously difficult to assess7. 

 Breast cancer (BC) clinical datasets are particularly suitable for the type of exploratory 

analysis presented here, as BC is a complex heterogeneous disease highly variable in its 

aggressiveness and prognosis. BC remains one of the leading causes of cancer-related death among 

women.  The BC patients included in the cohort analyzed here were treated with neoadjuvant (or 
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preoperative) chemotherapy (NAC). NAC was originally restricted to patients with inflammatory or 

locally advanced BC, but is now the standard care for aggressive early-stage breast cancers, i.e. triple-

negative (TNBC) and HER2-positive BCs8, 9. From the patient’s viewpoint, the benefits of the 

neoadjuvant strategy include a greater feasibility of breast-conserving surgery and the prognostic 

stratification of risk obtained after analyses of the residual tumor burden at surgery. From the research 

and development standpoint, the neoadjuvant setting makes it possible to monitor the chemosensitivity 

of the tumor in vivo, and provides an opportunity for the rapid validation of research hypotheses and 

the acceleration of drug approval.  

 The novel interactive graphical interface described here, designed as a front-end for the MIIC 

server, should enable clinicians to visualize and understand the relationships between clinically 

relevant variables, such as post-NAC clinical responses and survival. In addition, the MIIC interactive 

graphical interface should help practitioners to identify actionable nodes and edges in clinical 

networks, potentially leading to improvements in the patient care pathway. 

 

MATERIALS AND METHODS 

Patients and treatment 

We analyzed a cohort of 1197 patients with non-metastatic BC treated by NAC, with or 

without trastuzumab, followed by surgery, at either of the two Institut Curie sites (Paris and Saint 

Cloud) between 2002 and 2012 (NEOREP Cohort, CNIL declaration number 1547270). We included 

unilateral, non-recurrent, non-inflammatory, non-metastatic tumors, and excluded T4 tumors. This 

study was conducted in accordance with institutional and ethical rules regarding research on tissue 

specimens and patients. Information on family history, clinical characteristics (age; menopausal status; 

body mass index) and tumor characteristics (clinical tumor stage and grade; histology; clinical nodal 

status; ER, PR and HER2 status; BC subtype; mitotic index; Ki67; lymphovascular invasion) was 

retrieved from electronic medical records. All the patients of the cohort received NAC, and additional 

treatments were decided in accordance with national guidelines.  

 

124 Chapter 5. Applications



5 

 

 

 

Tumor samples and pathological review 

In accordance with the guidelines used in France (Group for Evaluation of Prognostic Factors 

using Immunohistochemistry in Breast Cancer10, cases were considered estrogen receptor (ER)-

positive or progesterone receptor (PR)-positive if at least 10% of the tumor cells expressed estrogen 

and/or progesterone receptors (ER/PR). Endocrine therapy was prescribed when this threshold was 

exceeded. HER2-negative status was defined as a score of 0 or 1+ for the tissue section stained by 

immunohistochemistry (IHC). Tissue sections with scores of IHC 2+ or  IHC 3+ were then analyzed 

by fluorescence in situ hybridization (FISH) to confirm HER2 positivity. BC tumors were classified 

into subtypes (TNBC, HER2-positive, and luminal HER2-negative [referred to hereafter as 

“luminal”]). BC subtypes were defined as follows: luminal, ER+ or PR+/ HER2-; TNBC, ER-/PR-

/HER2-; HER2-positive BC, HER2+. Pretreatment core needle biopsy specimens and/or the 

corresponding post-NAC surgical specimens were reviewed independently by breast disease experts 

for research purposes, to assess residual cancer burden index, and the levels of tumor-infiltrating 

lymphocytes. The pathological reviews of these specimens are described in detail elsewhere11–13. 

Pathological complete response (pCR) was defined as the absence of residual invasive cancer cells in 

the breast and axillary lymph nodes (ypT0/is þ/ypN0). 

Survival endpoints 

Relapse-free survival (RFS) was defined as the time from surgery to death, locoregional 

recurrence or distant recurrence, whichever occurred first. Overall survival (OS) was defined as the 

time from surgery to death. The date of last known contact was retained for patients for whom none of 

these events were recorded. The cutoff date for survival analysis was March, 13
th
, 2019.  
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Variables of interest  

The care pathway of BC patients eligible for neoadjuvant chemotherapy can be summarized as 

follows: i) pretreatment biopsy for BC diagnosis; ii) administration of chemotherapy as the first-line 

treatment; iii) removal of the tumor by surgery; iv) histological analysis of the specimens obtained; v) 

prescription of adjuvant treatments, if indicated (radiotherapy, hormonotherapy, chemotherapy); (vi) 

patient follow-up to monitor for relapse or death. We identified 94 clinically relevant variables from 

clinical, radiological, pathological and outcome data, which we grouped into 14 categories (hospital, 

history, co-medication, comorbidities, clinical baseline, baseline histology, pre-NAC pathology, 

treatment response, surgery, treatment, changes during NAC, post-NAC pathology, delayed 

relapse/survival, metastasis). For composite variables derived from raw variables (e.g. BC subtype, 

constructed from a combination of ER status, PR status, HER2 status), both the derived and raw 

variables were represented on the network. 

 

MIIC algorithm 

The functioning of the algorithm has been described in detail elsewhere5, 7. Briefly, starting from a 

fully connected network, the MIIC algorithm first removes dispensable edges by iteratively 

subtracting the most significant information contributions from indirect paths between each pair of 

variables. The remaining edges, the underlying effect of which cannot be explained by indirect paths, 

are then oriented based on the causality signature in the data.  

 The original algorithm was restricted to categorical variables5, but MIIC has recently been 

extended to include continuous variables, the values of which are partitioned into optimal bins, 

maximizing mutual information with another (continuous or categorical) variable of interest, while 

preventing the overfitting of datasets of finite size due to the use of too many bins7.  In particular, each 

continuous variable may have different information-maximizing partitions depending on the 

associated variable of interest. For instance, MIIC finds three maximally informative bins for the 

residual cancer burden (RCB) score in association with patient survival status (Fig. S1A), whereas 
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eight RCB bins are required to estimate its mutual information with post-NAC cellularity correctly 

(Fig. S1B). 

 

MIIC online server 

The MIIC online server is freely accessible at https://miic.curie.fr/index.php,  and can be used 

with the Google Chrome, Mozilla Firefox, Edge, and Safari browsers. The user guide summarizing the 

main steps for running the MIIC algorithm is accessible at https://miic.curie.fr/user_guide.php, and an 

online video tutorial is available from: https://miic.curie.fr/tutorial.php. The workbench is available 

from https://miic.curie.fr/workbench.php. As input data, the user can upload a dataset formatted as a 

table with commas, semicolons, tabs, pipes or colons, as eld separators, without sample ID. Each 

variable can be either categorical or quantitative (discrete or continuous). Variables can be grouped 

into families, identified with different colors on the network. Missing values are allowed in the dataset 

and their possible statistical biases are taken into account by MIIC7. They should be indicated as “NA” 

in the dataset table. Once the dataset has been prepared, the user runs the algorithm, and an e-mail is 

sent when the job is completed. 

 

MIIC output  

 

The MIIC online server generates a visualization of the global network of the dataset. An 

example based on the NEOREP dataset is displayed in Fig. 1, and is accessible as an interactive 

network at https://miic.curie.fr/job_results_showcase.php?id=NEOREP. 

Each node corresponds to a variable of the dataset, with continuous variables displayed as 

circles, and categorical variables displayed as squares. The color of the node indicates the group to 

which the variable belongs, as specified by the user. 

Each edge corresponds to a “direct” association between two variables, that is, a statistical 

association that cannot be entirely explained by indirect effects involving other variables. Red and blue 

edges correspond to positive and negative (i.e. anti-correlated) associations, respectively. Four types of 
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edge orientations are distinguished by the MIIC online server: i) directed edges with a gray arrowhead 

represent inferred causal relationships; ii) bidirected edges (drawn with dashed lines) reflect the 

presence of a latent common cause (L) unobserved in the available dataset, i.e. X←(L)→Y; iii) directed 

edges with a colored (red or blue) arrowhead consistent with either a causal or a latent common cause 

relationship;  and iv) undirected edges, the orientation of which, if indeed there is one, cannot be 

inferred from non-perturbative data. 

 

Interactive exploration of the network 

The distributions and neighborhoods of each node and edge of the inferred network can be explored 

through an interactive interface, through the mouse-over right- or left-click buttons on the browser 

page, as detailed in the online tutorials. Briefly, any variable can be highlighted by clicking on the 

network or through the “Search” toolbox (Fig. S2A). The corresponding plots can be downloaded as 

.png or .svg images. Each node can be explored individually in terms of counts (categorical variables, 

Fig. S2B-C) or distribution (continuous variables Fig. S2D-E).  Each edge can be explored by a right 

click and the choice of “plot join distribution” or “plot discretization”. The resulting plots are (i) 

proportion plots, with the edge representing the association between two categorical variables (Fig. 

S2F); (ii) distribution histograms (Fig. S2G) or boxplots (Fig. S2H), in which the edge represents the 

association between a categorical and a continuous variable or (iii) scatter plots (Fig. S2I), in which 

the edge represents the association between two continuous variables. All the plots can be customized 

by zooming in and out. Additional options include inverting the x and y axes, the choice of frequency 

or absolute counts, or NA removal (proportion plots), and faceting or superimposing the variables 

(distribution histograms). All the figures presented here were generated with the MIIC online 

interactive visualization tool.   

 

RESULTS 

The global network displayed in Fig. 1 is accessible at 

https://miic.curie.fr/job_results_showcase.php?id=NEOREP. 
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We discuss below some of the links inferred in the NEOREP network after grouping according to 

several clinically relevant concepts identified from published studies on BC. 

 

MIIC performs quality control 

MIIC identifies inherent associations between variables 

The duration of neoadjuvant treatment is directly linked to the type of NAC regimen delivered (Fig. 

2A) reflecting the fact that anthracycline-based (AC) regimens usually include four cycles (median of 

106 days, Fig. 2B), whereas sequential regimens in which anthracyclines are followed by taxanes are 

generally administered over six or eight cycles (median of 147 days, Fig. 2B). The number of nodes 

retrieved is associated with the type of axillary surgery (Fig. 2C), consistent with the fact that sentinel 

node (SLN) biopsy procedures were developed to reduce the number of lymph nodes removed during 

dissection (LND) (Fig. 2D)14. MIIC correctly represents the direct links between residual cancer 

burden (RCB) (Fig.2E) and the patterns making up this score, derived from measurements on the 

primary tumor bed (size, fraction of invasive cancer, cellularity) and the regional lymph nodes 

(number of positive lymph nodes). 

 

MIIC first identifies relationships between a disease and the corresponding treatment. ER 

positivity — which is predictive of efficacy for anti-hormonal treatment15— is associated with the use 

of endocrine therapy (Fig. S3A), and a similar association is observed for HER2-positivity and 

trastuzumab use (Fig. S3B)16. Beyond cancer, significant associations are also found between 

depression and the use of psycholeptics (Fig. S3C), between thyroid disorders and thyroid hormone 

use (Fig. S3D), and between hypertension and drugs for the treatment of cardiovascular diseases (Fig. 

S3E).  More generally, comedication use is associated with the type of NAC (Fig. S3F), reflecting the 

greater likelihood of less toxic regimens being prescribed to fragile patients (patients on other types of 

medication) than to patients without comedication17–19. 
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MIIC then identifies clinical factors known to be epidemiologically related (Fig. S4A). 

Menopause, a process occurring in older women, is directly linked to age (Fig. S4B) (median age: 43 

years for premenopausal, versus 58 years for postmenopausal women). Postmenopausal status is 

associated with dyslipidemia (Fig. S4C)20. Consistent with these associations, body mass index (BMI) 

increases with age (Fig. S4A, S4D) and both factors, which have been reported to increase 

cardiovascular risks, are linked to hypertension (Fig. S4A, S4E). The number of drugs taken by a 

patient (comedication) increases with the number of comorbidities (Fig. S4A, S4F).  

 

MIIC identifies intra- and inter-modality associations 

 

For the variables derived from pathology records, MIIC found associations between tumor 

grade, Ki67, and mitotic index (Fig. S5A-B-C), all of which are markers of tumor proliferation21. 

MIIC can also visualize links between patterns assessed in different ways. Measurements of pre-NAC 

tumor size evaluated clinically, by mammography and by MRI, were found to be closely related (Fig. 

S5C-E) as previously reported22, 23. Similarly, the response to treatment assessed clinically at NAC 

completion was found to be associated with histological size based on the surgical specimen (Fig. 

S5F). 

 

MIIC provides insight into tumor biology and response to treatment  

The presence of lymphovascular invasion (LVI) in the post-NAC specimen is associated with 

a higher RCB index, consistent with the strong resistance to chemotherapy of these tumors12 (Fig. 

S6A). TNBCs and HER2-positive tumors have a higher pre-NAC mitotic index and more stromal TIL 

infiltration (Fig. S6B-C) than luminal BCs24, 25. Consistently, high TIL levels are significantly 

associated with histological grade 3 tumors (Fig. S6D). 

 

MIIC reflects clinical practice  
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Several associations highlighted in the network reflect clinical practice decisions applied 

throughout BC centers. For example, the likelihood of performing conservative breast surgery depends 

on tumor histology (higher rates of mastectomy have been reported for patients with lobular or other 

histological types of tumor less likely to respond to NAC) 26, 27 (Fig. S7A) and is positively associated 

with the practice of oncoplastic surgery28 (Fig. S7B). Similarly, lumpectomy is more frequently 

associated with radiation therapy than with mastectomy (Fig. S7C)29–32. After surgery, the addition of a 

second line of treatment by adjuvant chemotherapy, to decrease the risk of relapse, is driven by the 

identification of factors associated with a poor prognosis33, such as high levels of lymph node 

involvement (Fig. S7D). 

 

 

Beyond these well-established practices, MIIC also identified differences in clinical practices 

between the two centers of the cohort (Fig. 3A). For example, oncoplastic surgery and adjuvant 

chemotherapy were performed at only one of the two centers (Fig.3B-C); the NAC regimen also 

differed between centers, with the Curie St Cloud center using more AC regimens than AC-taxane 

combinations, resulting in a shorter duration of NAC treatment (Fig. 3D-E). 

 

MIIC traces the natural course of the disease  

 

The natural course of BC may include local relapse, possibly followed by distant metastases, 

the trigger events leading to death34–38 (Fig. 4A-C). Contralateral BC is often used in composite 

survival endpoints, such as distant relapse-free survival39, but MIIC clearly identifies contralateral BC 

as an event being independent of other oncologic events and almost totally isolated from the rest of the 

network (Fig.1). 

Luminal BC is known to recur and develop metastases later than HER2-positive BC and 

TNBC (Fig. 4D)24, 25, 40, 41. The link between has also been found between PR negativity and a higher 

risk of brain metastasis42–46 (Fig. 4E). 
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MIIC identifies factors likely to improve prediction or prognosis  

MIIC identifies unexpected associations, leading to new discoveries  

With more than 15 associations involving treatment center (Fig. 3A), MIIC unmasked an 

unexpected “batch” effect relating to the site of BC treatment in this cohort. The observed differences 

reflect not only differences in therapeutic practice, but also differences in the characteristics of the 

population (differences in the proportion of women with psychological disorders, difference in 

incomes), differences in tumor presentation (tumor size), differences in pathological variable scoring 

(grade, presence of pre-NAC LVI, tumor cellularity, TILs), and differences in time to treatment within 

the care pathway. 

MIIC also favors new discoveries. For example, comedication appears to protect against local 

relapse (Fig. 5A). Several retrospective studies have reported this association, with the use of statins47, 

NSAIDs48, or beta-blockers49 found to have indirect anticarcinogenic effects. It has recently been 

suggested that these non-oncological treatments may have immunomodulatory and chemosensitizing 

effects50.  

 

MIIC suggests relevant combinations of predictive of prognostic biomarkers  

MIIC may provide clues to combinations of new prognostic biomarkers likely to improve the 

prediction of response to chemotherapy, or post-NAC prognosis. Pre-NAC lymphovascular invasion 

(LVI) was found to be associated with both lower rates of clinical response (Fig. 5B) and shorter 

relapse-free survival (Fig. 5C). Both RCB (Fig. 5D-E) and post-NAC mitotic index (Fig.5D-F), a 

parameter rarely used in practice but nevertheless reported to be a predictor of BC recurrence51, 52, 

appear to be strongly associated with the risk of death. MIIC may, therefore, be an efficient tool for 

identifying features likely to improve prognosis, by combining gold standard indicators with other 

parameters, such as post-NAC mitotic index, and post-NAC LVI, for example. Finally, MIIC also 

makes it possible to optimize the binning of residual cancer burden (RCB). RCB is a post-NAC 

histological score calculated as an increasing continuous index, and then subdivided into four classes 
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(0, I, II, and III)53. Our analysis based on information maximization principles suggested a new 

unsupervised classification of RCB scores into three categories (Fig. 5E), with RCB=0 with low RCB 

values merged, in particular, into a single class associated with a good prognosis.  

 

DISCUSSION 

 

When applied to a large cohort of BC patients, the MIIC algorithm successfully (i) performed 

quality controls; (ii) identified intra- and inter-modality correlations; (iii) highlighted differences in 

clinical practice, including center specificities; (iv) traced the natural course of the disease; (v) 

highlighted unsuspected and hidden associations, leading to new discoveries. The interactive 

visualization and causal analyses provided by this algorithm make it a promising tool for fast and 

effective explorations of the increasing amount of available health data. 

The amount of exploitable health data is increasing exponentially. The best known health data 

resource for cancer studies remains the SEER (Surveillance, Epidemiology, and End Results) 

database, which collects data from population-based cancer registries covering approximately 34.6% 

of the US population54, 55. By 2016, the National Cancer Database (NCDB) had amassed more than 34 

million hospital records from cancer patients (almost four times the size of the SEER database), to 

become the largest clinical cancer registry in the world56. In France, the French administrative health 

care database, the SNDS (Système National des Données de Santé), is one of the largest administrative 

databases in the domain of medicine, providing many opportunities for medical research57, 58, as it 

covers 99% of the French population (about 66 million people). The French government is planning to 

ease access to this almost exhaustive population research resource, through release as part of the 

“Health data hub” project. Finally, beyond these structured databases, the largest mine of untapped 

data worldwide remains the content of electronic health records (EHRs), encompassing a full range of 

data (clinical notes, laboratory results, imaging, genetic data, etc.) relating to patient care. Recent 

advances in information technology have made it easier for both hospitals and healthcare institutions 

to collect large amounts of healthcare data.  
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Biomedical scientists are now facing new challenges in the management and analysis of 

massive, heterogeneous datasets59. These challenges include the development of tools for exploration 

and visualization, analytical methods, integration into a comprehensive overview, and translation of 

the findings into public health impact. The visualization of information makes it possible for users to 

find profound patterns in clinical data, through visual recognition. Simple charts cannot represent the 

complexity of big data analyses and fail to support multifaceted tasks effectively3, 4. There is, 

therefore, a need for sophisticated visualization tools dealing with many elements simultaneously and 

enabling users to perceive the patterns and insight generated by the algorithm60. Supplementary Table 

1 shows the main data visualization tools used to present medical data. Many of the visual methods 

have been adopted directly from the field of data mining, but others, specific to the healthcare domain, 

have also been designed (Supplementary Table 2). For example, Happe and Drezen built the ePEPs 

toolbox, which displays relevant patterns extracted by eye from patient reimbursement data in the 

SNDS database, and supporting interactive exploration by researchers61. CARRE provides web-based 

components for interactive health data (fitness and biomarkers) visualization and risk analysis for the 

management of cardiorenal diseases62. The MITRE Corporation has also developed a web-based 

solution that provides an overview of an individual’s health through graphical representations of EHR 

data, highlighting abnormal values63. None of these visualization programs has yet managed to bridge 

the gap between of the large amounts of clinical data available and the discovery of clinical knowledge 

or paths for scientific research. By processing large heterogeneous sets of variables inherent to clinical 

records, MIIC provides physicians with a full picture of BC disease. 

In addition to this use for visualization, the MIIC algorithm presents several other advantages 

for analyses, including its unsupervised nature, overcoming the need for training or human 

involvement. This feature makes it possible to obtain new knowledge through the automatic 

identification of patterns and dependences in the data, highlighting new interactions, and it may be of 

use for feature selection in machine learning models. 
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In conclusion, MIIC, an open-access, interactive, multitask tool, is designed to visualize datasets to 

help clinicians and researchers to understand the relationships between the variables within them. It 

opens up promising perspectives for guiding the generation of new hypotheses, helping clinicians to 

identify actionable nodes and edges in clinical networks, and revealing new clues to relationships of 

interest for research purposes. Its widespread use in the field of health data could increase the accuracy 

of prediction for treatment responses and prognosis. This tool has the potential to improve the care 

pathway and, ultimately, patient survival.  

 

  

5.2. NEOREP study on breast cancer patients 135



16 

 

 

 

References 

1. Bärtschi M: Health Data Visualization-A review ∗ Seminar Collaborative Data Visualization, in 2015 

2. Luo J, Wu M, Gopukumar D, et al: Big Data Application in Biomedical Research and Health Care: A Literature Review. Biomed Inform 

Insights 8:1–10, 2016 

3. Ola O, Sedig K: Beyond simple charts: Design of visualizations for big health data [Internet]. Online J Public Health Inform 8, 2016[cited 

2019 Aug 14] Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302463/ 

4. Shneiderman B, Plaisant C, Hesse BW: Improving Healthcare with Interactive Visualization. Computer 46:58–66, 2013 

5. Verny L, Sella N, Affeldt S, et al: Learning causal networks with latent variables from multivariate information in genomic data. PLoS 

Comput Biol 13:e1005662, 2017 

6. Sella N, Verny L, Uguzzoni G, et al: MIIC online: a web server to reconstruct causal or non-causal networks from non-perturbative data. 

Bioinformatics 34:2311–2313, 2018 

7. Cabeli V, Verny L, Sella N, et al: Learning clinical networks from medical records based on information estimates in mixed-type data 

[Internet]. PLoS Comput Biol 16, 2020[cited 2021 Feb 4] Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259796/ 

8. Brandão M, Reyal F, Hamy A-S, et al: Neoadjuvant treatment for intermediate/high-risk HER2-positive and triple-negative breast cancers: 

no longer an “option” but an ethical obligation. ESMO Open 4:e000515, 2019 

9. Reyal F, Hamy AS, Piccart MJ: Neoadjuvant treatment: the future of patients with breast cancer. ESMO Open 3:e000371, 2018 

10. [Recommendations for the immunohistochemistry of the hormonal receptors on paraffin sections in breast cancer. Update 1999. Group 

for Evaluation of Prognostic Factors using Immunohistochemistry in Breast Cancer (GEFPICS-FNCLCC)]. Ann Pathol 19:336–343, 1999 

11. Hamy A-S, Pierga J-Y, Sabaila A, et al: Stromal lymphocyte infiltration after neoadjuvant chemotherapy is associated with aggressive 

residual disease and lower disease-free survival in HER2-positive breast cancer. Ann Oncol 28:2233–2240, 2017 

12. Hamy A-S, Lam G-T, Laas E, et al: Lymphovascular invasion after neoadjuvant chemotherapy is strongly associated with poor prognosis 

in breast carcinoma. Breast Cancer Res Treat 169:295–304, 2018 

13. Hamy-Petit A-S, Belin L, Bonsang-Kitzis H, et al: Pathological complete response and prognosis after neoadjuvant chemotherapy for 

HER2-positive breast cancers before and after trastuzumab era: results from a real-life cohort. Br J Cancer 114:44–52, 2016 

14. Veronesi U, Paganelli G, Viale G, et al: Sentinel-lymph-node biopsy as a staging procedure in breast cancer: update of a randomised 

controlled study. Lancet Oncol 7:983–990, 2006 

15. Burstein HJ, Temin S, Anderson H, et al: Adjuvant Endocrine Therapy for Women With Hormone Receptor–Positive Breast Cancer: 

American Society of Clinical Oncology Clinical Practice Guideline Focused Update. J Clin Oncol 32:2255–2269, 2014 

16. Wilson FR, Coombes ME, Wylie Q, et al: Herceptin® (trastuzumab) in HER2-positive early breast cancer: protocol for a systematic 

review and cumulative network meta-analysis. Syst Rev 6:196, 2017 

17. Aaldriks AA, Maartense E, Nortier HJWR, et al: Prognostic factors for the feasibility of chemotherapy and the Geriatric Prognostic Index 

(GPI) as risk profile for mortality before chemotherapy in the elderly. Acta Oncol 55:15–23, 2016 

18. van Leeuwen RWF, Swart EL, Boven E, et al: Potential drug interactions in cancer therapy: a prevalence study using an advanced 

screening method. Ann Oncol 22:2334–2341, 2011 

19. Popa MA, Wallace KJ, Brunello A, et al: Potential drug interactions and chemotoxicity in older patients with cancer receiving 

chemotherapy. J Geriatr Oncol 5:307–314, 2014 

20. Wang N, Qin MZ, Cui J: [Lipid profile comparison between pre- and post-menopausal women]. Zhonghua Xin Xue Guan Bing Za Zhi 

44:799–804, 2016 

21. Weidner N, Moore DH, Vartanian R: Correlation of Ki-67 antigen expression with mitotic figure index and tumor grade in breast 

carcinomas using the novel “paraffin”-reactive MIB1 antibody. Hum Pathol 25:337–342, 1994 

22. Cortadellas T, Argacha P, Acosta J, et al: Estimation of tumor size in breast cancer comparing clinical examination, mammography, 

ultrasound and MRI—correlation with the pathological analysis of the surgical specimen. Gland Surg 6:330–335, 2017 

136 Chapter 5. Applications



17 

 

 

 

23. Berg WA, Gutierrez L, NessAiver MS, et al: Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in 

preoperative assessment of breast cancer. Radiology 233:830–849, 2004 

24. Meyers MO, Klauber-Demore N, Ollila DW, et al: Impact of breast cancer molecular subtypes on locoregional recurrence in patients 

treated with neoadjuvant chemotherapy for locally advanced breast cancer. Ann Surg Oncol 18:2851–2857, 2011 

25. Lowery AJ, Kell MR, Glynn RW, et al: Locoregional recurrence after breast cancer surgery: a systematic review by receptor phenotype. 

Breast Cancer Res Treat 133:831–841, 2012 

26. Waljee JF, Hu ES, Newman LA, et al: Predictors of re-excision among women undergoing breast-conserving surgery for cancer. Ann 

Surg Oncol 15:1297–1303, 2008 

27. Truin W, Vugts G, Roumen RMH, et al: Differences in Response and Surgical Management with Neoadjuvant Chemotherapy in Invasive 

Lobular Versus Ductal Breast Cancer. Ann Surg Oncol 23:51–57, 2016 

28. Munhoz AM, Montag E, Gemperli R: Oncoplastic breast surgery: indications, techniques and perspectives. Gland Surg 2:143–157, 2013 

29. Buchholz TA: Radiation Therapy for Early-Stage Breast Cancer after Breast-Conserving Surgery. New England Journal of Medicine 

360:63–70, 2009 

30. Carlson RW, Allred DC, Anderson BO, et al: Invasive breast cancer. J Natl Compr Canc Netw 9:136–222, 2011 

31. Eifel P, Axelson JA, Costa J, et al: National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for 

breast cancer, November 1-3, 2000. J Natl Cancer Inst 93:979–989, 2001 

32. Halberg FE, Shank BM, Haffty BG, et al: Conservative surgery and radiation in the treatment of stage I and II carcinoma of the breast. 

American College of Radiology. ACR Appropriateness Criteria. Radiology 215 Suppl:1193–1205, 2000 

33. Masuda N, Lee S-J, Ohtani S, et al: Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N Engl J Med 376:2147–

2159, 2017 

34. Dent R, Valentini A, Hanna W, et al: Factors associated with breast cancer mortality after local recurrence. Curr Oncol 21:e418–e425, 

2014 

35. Whelan T, Clark R, Roberts R, et al: Ipsilateral breast tumor recurrence postlumpectomy is predictive of subsequent mortality: results 

from a randomized trial. Investigators of the Ontario Clinical Oncology Group. Int J Radiat Oncol Biol Phys 30:11–16, 1994 

36. Kurtz JM, Spitalier JM, Amalric R, et al: The prognostic significance of late local recurrence after breast-conserving therapy. Int J Radiat 

Oncol Biol Phys 18:87–93, 1990 

37. Sopik V, Nofech-Mozes S, Sun P, et al: The relationship between local recurrence and death in early-stage breast cancer. Breast Cancer 

Res Treat 155:175–185, 2016 

38. Witteveen A, Kwast ABG, Sonke GS, et al: Survival after Locoregional Recurrence or Second Primary Breast Cancer: Impact of the 

Disease-Free Interval. PLOS ONE 10:e0120832, 2015 

39. Hudis CA, Barlow WE, Costantino JP, et al: Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: 

the STEEP system. J Clin Oncol 25:2127–2132, 2007 

40. Voduc KD, Cheang MCU, Tyldesley S, et al: Breast Cancer Subtypes and the Risk of Local and Regional Relapse. JCO 28:1684–1691, 

2010 

41. Wu X, Baig A, Kasymjanova G, et al: Pattern of Local Recurrence and Distant Metastasis in Breast Cancer By Molecular Subtype 

[Internet]. Cureus 8, 2016[cited 2021 Feb 4] Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5222631/ 

42. Snell CE, Gough M, Middleton K, et al: Absent progesterone receptor expression in the lymph node metastases of ER-positive, HER2-

negative breast cancer is associated with relapse on tamoxifen. J Clin Pathol 70:954–960, 2017 

43. Nishimura R, Osako T, Okumura Y, et al: Changes in the ER, PgR, HER2, p53 and Ki-67 biological markers between primary and 

recurrent breast cancer: discordance rates and prognosis. World J Surg Oncol 9:131, 2011 

44. Nishimura R, Osako T, Nishiyama Y, et al: Evaluation of factors related to late recurrence--later than 10 years after the initial treatment--

in primary breast cancer. Oncology 85:100–110, 2013 

45. Darlix A, Griguolo G, Thezenas S, et al: Hormone receptors status: a strong determinant of the kinetics of brain metastases occurrence 

compared with HER2 status in breast cancer. J Neurooncol 138:369–382, 2018 

5.2. NEOREP study on breast cancer patients 137



18 

 

 

 

46. Zhou L, Zhou W, Zhang H, et al: Progesterone suppresses triple-negative breast cancer growth and metastasis to the brain via membrane 

progesterone receptor α. Int J Mol Med 40:755–761, 2017 

47. Ahern TP, Pedersen L, Tarp M, et al: Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort 

study. J Natl Cancer Inst 103:1461–1468, 2011 

48. Kwan ML, Habel LA, Slattery ML, et al: NSAIDs and Breast Cancer Recurrence in a Prospective Cohort Study. Cancer Causes Control 

18:613–620, 2007 

49. Powe DG, Voss MJ, Zänker KS, et al: Beta-Blocker Drug Therapy Reduces Secondary Cancer Formation in Breast Cancer and Improves 

Cancer Specific Survival. Oncotarget 1:628–638, 2010 

50. Hamy A-S, Derosa L, Valdelièvre C, et al: Comedications influence immune infiltration and pathological response to neoadjuvant 

chemotherapy in breast cancer. OncoImmunology 9:1677427, 2020 

51. Farrugia DJ, Landmann A, Diego E, et al: Mitotic index to predict breast cancer recurrence after neoadjuvant systemic therapy. JCO 

34:e23265–e23265, 2016 

52. Pattali S, Harding N, Visotcky A, et al: Value of mitotic index in residual tumors following neoadjuvant therapy for breast cancer: Single 

institution experience. JCO 34:548–548, 2016 

53. Symmans WF, Peintinger F, Hatzis C, et al: Measurement of Residual Breast Cancer Burden to Predict Survival After Neoadjuvant 

Chemotherapy. Journal of Clinical Oncology 25:4414–4422, 2007 

54. Duggan MA, Anderson WF, Altekruse S, et al: The Surveillance, Epidemiology and End Results (SEER) Program and Pathology: 

Towards Strengthening the Critical Relationship. Am J Surg Pathol 40:e94–e102, 2016 

55. James B. Yu MD: NCI SEER Public-Use Data: Applications and Limitations in Oncology Research [Internet]. Cancer Network , 

2009[cited 2019 Aug 27] Available from: https://www.cancernetwork.com/oncology-journal/nci-seer-public-use-data-applications-and-

limitations-oncology-research 

56. Boffa DJ, Rosen JE, Mallin K, et al: Using the National Cancer Database for Outcomes Research: A Review. JAMA Oncol 3:1722–1728, 

2017 

57. Bezin J, Duong M, Lassalle R, et al: The national healthcare system claims databases in France, SNIIRAM and EGB: Powerful tools for 

pharmacoepidemiology. Pharmacoepidemiol Drug Saf 26:954–962, 2017 

58. Tuppin P, Rudant J, Constantinou P, et al: Value of a national administrative database to guide public decisions: From the système 

national d’information interrégimes de l’Assurance Maladie (SNIIRAM) to the système national des données de santé (SNDS) in France 

[Internet]. /data/revues/03987620/v65sS4/S0398762017304315/ , 2017[cited 2019 Aug 13] Available from: https://www.em-

consulte.com/en/article/1140905 

59. Margolis R, Derr L, Dunn M, et al: The National Institutes of Health’s Big Data to Knowledge (BD2K) initiative: capitalizing on 

biomedical big data. J Am Med Inform Assoc 21:957–958, 2014 

60. Keim D, Andrienko G, Fekete J-D, et al: Visual Analytics: Definition, Process, and Challenges [Internet], in Kerren A, Stasko JT, Fekete 

J-D, et al (eds): Information Visualization. Berlin, Heidelberg, Springer Berlin Heidelberg, 2008, pp 154–175[cited 2019 Aug 14] Available 

from: http://link.springer.com/10.1007/978-3-540-70956-5_7 

61. Happe A, Drezen E: A visual approach of care pathways from the French nationwide SNDS database - from population to individual 

records: the ePEPS toolbox [Internet], 2018[cited 2019 Aug 18] Available from: https://hal-univ-rennes1.archives-ouvertes.fr/hal-01697626 

62. Zhao Y, Parvinzamir F, Wei H, et al: Visual Analytics for Health Monitoring and Risk Management in CARRE. E-Learning and Games; 

10th International Conference, Edutainment 2016, Hangzhou, China, April 14-16, 2016, Revised Selected Papers 9654:380–391, 2016 

63. Ledesma A, Al-Musawi M, Nieminen H: Health figures: an open source JavaScript library for health data visualization [Internet]. BMC 

Med Inform Decis Mak 16, 2016[cited 2019 Aug 14] Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802654/ 

  

138 Chapter 5. Applications



19 

 

 

 

Figures and Tables 

 

 
 
Figure 1: MIIC global network for the NEOREP breast cancer cohort. Each node corresponds to a variable 

of the dataset, with circles indicating continuous variables and squares indicating categorical variables. The 

colors define a category of variables, as detailed under the figure. Each edge corresponds to a “direct” 

association between two variables. BC= breast cancer, BMI= body mass index, DCIS=ductal carcinoma in situ, 

ER= estrogen receptor status, LVI= lymphovascular invasion, NAC= neoadjuvant chemotherapy, CNS= central 

nervous system, pCR= pathological complete response, PR=progesterone receptor status, RCB= residual 

cancer burden, TILs= tumor-infiltrating lymphocytes. Blue edges indicate negative partial correlations, red edges 

indicate positive partial correlations. Squares represent categorical variables, circles represent continuous 

variables. 
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Figure 2. The MIIC interactive online interface identifies inherent associations between variables.  

A) NAC type is directly correlated with NAC duration. NAC=neoadjuvant chemotherapy B) Distribution of 

neoadjuvant chemotherapy (NAC) duration (in days) according to the NAC regimen administered: 

anthracyclines (AC), taxanes or sequential AC-taxanes C) The number of axillary nodes in the histological 

specimen depends on the type of axillary surgery performed D) Boxplot showing the number of axillary nodes 

removed according to the type of surgery performed: lymph node dissection (LND), sentinel lymph node biopsy 

(SLN) or both E) Network interactions of the RCB node with the five patterns making up the RCB score. 
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Figure 3. MIIC identifies differences in clinical practices between the two centers of the cohort  

A) Network interactions around the node “center” of treatment. B) Proportion of patients undergoing oncoplastic 

surgery, according to treatment center: Paris or St Cloud C) Proportion of patients receiving adjuvant 

chemotherapy according to treatment center: Paris or St Cloud. D) Proportion of the various NAC regimens 

according to treatment center. E) Distribution plot for NAC duration in days, according to treatment center. 
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Figure 4. MIIC traces the natural course of the disease  
A) Network interactions showing links between relapses, metastases and death in breast cancer.   B) Proportion 

of distant metastases according to the occurrence or absence of local relapses. C) Proportion of deaths according 

to distant metastasis status. D) Distribution plot for relapse-free survival (in months) according to breast cancer 

subtype. E) Proportion plot displaying the relationship between central nervous system (CNS) metastasis and 

progesterone receptor (PR) status. 
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Figure 5 MIIC identifies factors likely to improve prediction or prognosis.  

A) Network interaction displaying the link between local relapse occurrence and the number of drugs taken 

(comedication). B) Proportion plot showing the percentage of different clinical responses according to the 

presence or absence of pre-NAC lymphovascular invasion. C) Boxplot of relapse-free survival according to the 

presence or absence of pre-NAC lymphovascular invasion. D) Network interaction displaying the link between 

death, RCB and post-NAC mitotic index. E) Boxplot of RCB values according to vital status. F) Boxplot of post-

NAC mitotic index according to vital status. 
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5.3 Metabolic drivers of hematopoietic differentiation

Figure 5.1: Haematopoietic stem cells differentiation.

Recent advances in -omics technologies have provided many valuable insights into com-
plex biological systems. However, the analysis of -omics data is still a challenging frontier,
with datasets characterised by high variability, sparsity and technical noise. These complex
features make it difficult to discern causal relationships from spurious associations, limiting
our ability to obtain novel mechanistic insights, and to optimise the design of resource-
intensive downstream experiments. In this application in collaboration with the Perié team,
we combine causal network reconstruction, machine learning, and experimental approaches
to identify molecular drivers of fate decisions in hematopoietic stem and progenitor cells
(HSPCs) which differentiate into all blood cells.

We focus on HSPC differentiation towards the erythroid, myeloid, and lymphoid lineages.
Recent scRNAseq studies show that HSPCs do not form distinct subgroups but rather a
transcriptomic continuum (Fig 5.1). This complex feature of the data makes it difficult to
predict whether an individual progenitor will give rise to a specialised blood cell subset, and
consequently, the molecular drivers of fate decisions in HSPCs are poorly understood.

Additionally, recently developed metabolomics technologies and small molecule in-
hibitors have permitted bulk-level analyses of hematopoietic cell-types, showing that metabolism
actively regulates hematopoiesis. These studies show that metabolism influences a range of
HSC behaviours, modulating not only bioenergetics, but also epigenetic state and signalling
pathways [124, 125, 126]. Despite this progress, the role of metabolism in other progenitor
subsets is poorly understood. To assess metabolic heterogeneity across the hematopoietic
system, we first analysed published bulk and single cell transcriptomic datasets of all major
hematopoietic cell types. Using a supervised learning approach we first constructed a classi-
fier model capable of accurately predicting mature lineage identity using the expression of
metabolic genes that are variably expressed within HSPCs. This result shows that a subset of
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variably expressed genes in the HSPC compartment are predictive of lineage fate, but this
classifier model cannot assess whether they are functionally linked or are merely associated
with the differentiation.

After having established that HSPCs are metabolically heterogeneous, and differences in
metabolism can influence cell fate, we wanted to know if targeting HSPC metabolism can be
used to regulate myelopoiesis. To predict putative molecular drivers of differentiation we
construct a causal gene regulatory network in mature cells from the haemopedia database
[127], using genes that are variably expressed within the progenitor continuum and including
the cell-lineage annotation as an additional variable. There are too many differentially
expressed genes for them to be all included in MIIC, so we first select the 200 genes with the
highest feature importance when predicting lineage from the full transcriptomic profile, using
SHAP scores [128, 129]. We infer the network from the dependencies and independencies
between those genes, including the categorical node "lineage" with three values : erythroid,
myeloid or neutrophil. We use the resulting network for feature selection, selecting the first
order neighborhood of the lineage node as these genes are inferred to have direct relationship
to cell differentiation, and paying particular attention to the ancestors of lineage (Fig 5.2).

This analysis predicted genes relating to glycolysis (Pkm) and the Pentose Phosphate
Pathway (G6pdx) as key drivers of the myeloid metabolic program, while mitochondrial
metabolism (Atpif1, Uqcr11) membrane transporters (Slc14a1, Abcb10) were key drivers of
the erythroid program. Interestingly, different genes relating to glutathione metabolism were
found as high causality markers of both the myeloid (Gsr), and erythroid lineages (Gpx1,
Gstm5). Both Slc14a1 and Gsr have been independently reported in the literature as early
fate markers, as determined through RNA state-fate analyses of hematopoiesis [130, 131],
supporting the validity of our causal inference predictions.

We propose that network reconstruction approaches are particularly suited to tackle
feature selection problems in the context of -omics analysis. In particular, by modeling genes
that drive biological processes rather than simply accompany them, these methods can guide
downstream experimental efforts more efficiently.
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Figure 5.2: MIIC network inferred from candidate driver genes, centered on the lineage node.
Highlighted nodes are directed neighbors of lineage.
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Chapter 6

Conclusion

The ability to infer causality from observation is extremely powerful in the right conditions.
The formalism introduced by causal inference theory is a way to tap into the vast, ever
increasing amount of data and gain knowledge about our world without the need for additional
costly experiments. It also opens the way to more avenues of research, bringing back causality
into the domain of what is attainable when interventions are impossible.

In this thesis, we contributed to make constraint based methods, and MIIC in particular,
more apt to deal with real-life datasets. We devised a general case (conditional) independence
test based on the mutual information and the stochastic complexity of the data, binning
continuous distributions into MDL-optimal discretizations. Using this estimator, MIIC is
able to infer causal graphs from any type of data, which means that there is no restriction on
the type of "causality" it is able to discover, besides the faithfulness and Markov condition.
We also proposed some modifications to make the inference process more consistent with the
resulting graph, ensuring that the separating sets can be read off the graph. This includes
both modifications to the skeleton inference algorithm and a rule for test-wise omission of
missing data. Other contributions include more reliable orientation of the edges, and the
ability to tell apart putative from genuine causes.

Applications on real data showed the advantages of using this network-oriented approach,
with uses ranging from data quality control to decision making for future experiments.

Perspectives and future research

As future research directions, I would like to adapt MIIC to temporal data, which carry
intrinsically the causality signature but are harder to analyze using traditional methods. On
one hand, information theory is already deeply linked with time-series data, with methods
such as Granger causality [132] and the transfer entropy [133]. On the other, recent work has
shown that the temporal information can be formally included in the theory of causal graphs
[134, 135]. A MIIC extension to temporal series would benefit from previous work in both
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domains, bridging the gap between information theory and causal graph theory for temporal
data.

I would also like to investigate whether the optimal discretization found for a single edge
can be used for Bayesian inference, where one tries to reconstruct p(V ) from GIn f . The
discretization is only optimal in relation to each edge, but there may be a way to combine
those results to get an MDL-optimal encoding of the variable in relation to either all of its
neighbors or its parents, making it usable for Bayesian inference.

As mentioned in the introduction, feature selection and the causal structure are closely
related. I would want to investigate how we can infer causal structure from the knockoffs
framework, which perform feature selection while rigorously controlling the expected frac-
tion of false positives [136, 137]. The biggest drawback of this method is the generation
of knockoffs, which could perhaps be simplified using the MDL principle and the NML
distribution.



Chapter A

Résumé long en français

Contexte scientifique

La corrélation n’implique pas la causalité, une distinction importante à se rappeler alors
que les associations statistiques génèrent de plus en plus de discussions dans un monde
toujours plus mesuré et documenté. C’est pourtant le but, avoué ou non, de la plupart des
domaines scientifiques : définir les mécanismes de notre environnement qui ont produit
ces observations. La nouvelle science de la causalité cherche à nous réconcilier avec ce
concept en répondant à ces questions : comment formaliser les relations causales, comment
nous les représenter, et quand peut-on les découvrir ? En particulier, les travaux de cette
thèse contribuent aux méthodes d’inférence de causalité à partir uniquement de données
d’observation. Si la corrélation seule ne suffit pas à inférer une causalité il est en effet possible
d’arriver à ce genre de conclusion sans aucune intervention de la part de l’expérimentateur,
en observant les bonnes données dans les bonnes conditions.

Les travaux de cette thèse s’inscrivent dans la théorie principalement développée par
Judea Pearl sur les diagrammes causaux; des modèles graphiques qui permettent de dériver
toutes les quantités causales d’intérêt (effet du traitement, contrefactuelles...) formellement
et intuitivement [1, 2, 3]. Un diagramme causal est un réseau bayésien : un graphe dirigé et
acyclique qui encode les indépendances conditionnelles entre les distributions de variables
aléatoires représentées par les noeuds; avec une dimension causale retranscrite par la direction
des arêtes. Ainsi, si X est un parent de Y , alors nous savons qu’une intervention sur la
variable X pour lui donner une distribution arbitraire p̃(x), notée do(X = p̃(x)), changera la
distribution p(Y |(do(X = p̃(x))), mais intervenir sur Y ne changera pas la distribution de son
parent.

Considérons une situation familière dans laquelle notre intuition peut être assez naturelle-
ment représentée par un diagramme causal (Fig A.1). Admettons qu’il y ait deux causes
qui puissent être à l’origine d’une panne de voiture, que nous essayons de diagnostiquer
avant d’intervenir sur la voiture. Les deux causes considérées, un niveau d’huile trop bas ou
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une batterie vide, seraient donc représentées comme des parents du noeud "Panne". Après
observation, nous disposons d’une autre information : les phares ne s’allument pas. Nous
savons que les phares ne dépendent pas du niveau d’huile mais ont besoin de batterie, et sont
donc reliés au noeud "Batterie" uniquement. Notez la présence du lien en pointillés entre
"Phares" et "Panne", qui traduit l’idée que si les phares ne s’allument pas, la voiture ne va
probablement pas démarrer. Ce lien retranscrit une corrélation, et pas une causalité : cette
interaction indirecte existe seulement à cause de l’ancêtre commun "Batterie" mais ne nous
informe pas sur une relation fonctionnelle. Il peut nous renseigner sur l’origine de la panne
(Batterie ou Huile), mais réparer les phares n’aidera pas à faire démarrer la voiture.

Panne

Batterie Huile

Phares

Figure A.1: Diagnostique d’une panne de voiture par diagramme causal.

Dans cet exemple le diagramme nous est déjà connu, mais comment faire quand nous
n’avons aucun modèle pré-établi, par exemple est-ce qu’un nouveau traitement est effi-
cace pour soigner une maladie ? Dans ce cas, la manière préférée pour établir un lien
est de procéder à une essai cas-contrôle où deux groupes sont attribués au hasard soit un
traitement soit un placebo. Si le traitement est réellement attribué au hasard, cela revient
à intervenir sur sa distribution et son effet causal peut être simplement mesuré en com-
parant les distributions p(Rétablissement|do(Traitement = placebo) et p(Rétablissement
|do(Traitement = traitement). Ce protocole n’est pas toujours fiable, peut être trop long et
difficile à mettre en place, voire il peut être immoral ou impossible d’intervenir sur certaines
variables. Par ailleurs, nous avons à disposition toujours plus de données d’observation.
Nous traitons ici le problème d’inférence de diagrammes causaux à partir de ces données
collectées passivement en analysant les dépendances et indépendances statistiques. Le but de
cette méthode est double : retenir seulement les interactions directes qui reflètent une relation
fonctionnelle (Batterie−Panne) en rejetant les corrélations indirectes (Phares−Panne); et
pouvoir inférer la direction de la causalité.

Soit D une collection de v variables X1, · · · ,Xv avec une distribution jointe P(v) et N

échantillons indépendants.

Definition A.1. Le vrai graphe causal Gc qui correspond aux données D satisfait :

1. Gc est un réseau dirigé et acyclique.

2. La distribution de chaque noeud Xi peut être exprimé en fonction de celle de ses parents
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pai, plus un terme de bruit Ui :

P(Xi) = f (P(pai),Ui)

et Gc est compatible [1] avec le set P∗ de toutes des distributions interventionnelles
P(v|do(X = x)), X ⊆V .

3. Les indépendances conditionnelles observées dans D correspondent à des d-séparation

dans Gc.
4. Les d-séparation observées dans Gc correspondent à des indépendances conditionnelles

dans D.

Definition A.2. Deux noeuds X et Y d’un graphe acyclique dirigé G sont d-séparés par un
ensemble de noeuds Z si et seulement si :

• Le chemin entre X et Y contient une chaîne i→ m→ j ou i← m→ j avec m ∈ Z, ou

• Le chemin entre X et Y contient une V-structure i→ m← j telle que m 6∈ Z et aucun
descendant de m n’est dans Z.

Le set Z d-sépare X et Y si et seulement si Z bloque tous les chemins de X vers Y de cette
façon.

Sans la possibilité d’intervenir sur P(v), seuls les points 1, 3 et 4 de la définition A.1 sont
exploitables. En se reposant uniquement sur les observations, on peut identifier jusqu’à la
classe d’équivalence de Gc : tous les graphes qui partagent la même structure non orientée
ainsi que ses V-structures [1, 18]. Une V-structure est un sous-graphe composée de trois
noeuds X → Z ← Y avec X et Y non-adjacent. Cette structure locale porte le signe de
causalité, c’est le seul graphe causal à trois noeuds et deux liens qui encode une indépendance
X ⊥⊥ Y et une dépendance conditionnelle X 6⊥⊥ Y |Z.

Definition A.3. La classe d’équivalence du graphe Gc est l’ensemble des graphes qui parta-
gent le même squelette (Gc non dirigé) et les même V-structures, X → Z← Y avec X et Y

non-adjacent.

Theorem A.1. Si toutes les variables de D sont observées, alors la classe d’équivalence de

Gc est identifiable à partir des indépendances conditionnelles dans D.

Parmi les méthodes pour inférer un graphe Gin f à partir de D, les plus plus utilisées
sont appelées méthodes basées sur les contraintes. En faisant l’hypothèse que toutes les in-
dépendances conditionnelles correspondent à d-séparations (et inversement), les "contraintes"
font référence aux équivalences entre les indépendances dans D et la structure de Gin f . Par
exemple, si deux variables sont toujours dépendantes peu importe le set de conditionnement
X 6⊥⊥ Y | Z, Z ⊆ V \ {X ,Y} alors elles doivent être adjacentes dans Gin f . A l’inverse, on
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Figure A.2: Inférence de graphe causal par méthode basée sur les contraintes

s’attend à ce qu’une variable soit indépendante de tous ses ancêtres après avoir conditionné
sur ses parents directs dans Gc; ou encore que deux variables qui n’ont pas de lien direct
soient indépendantes en conditionnant sur leurs ancêtres communs. La première étape des
méthodes par contraintes consiste à déterminer quelles variables sont adjacentes dans Gin f

en partant du graphe complet et en testant une à une les indépendances conditionnelle de D

(Fig A.2). Le lien X−Y est retiré si on peut conclure X ⊥⊥ Y | Z, avec Z un sous-ensemble
des voisins de X et Y . Une fois le squelette obtenu, il est possible d’orienter les liens inférés
jusqu’à la classe d’équivalence du graphe Gc en orientant les V-structures et en appliquant les
règles de propagation [18].

L’algorithme MIIC (multivariate information-based inductive causation) partage le fonc-
tionnement général des algorithmes basés sur les contraintes, avec des modifications qui le
rendent plus robustes au bruit et plus efficace [35, 44] :

• L’indépendance (conditionnelle) est inférée à partir de l’estimation de l’information
mutuelle (conditionnelle) corrigée avec la complexité stochastique, qui présente cer-
tains avantages par rapport aux test fréquentistes habituels en particulier pour une taille
d’échantillon N réduite [5, 138].

• La recherche des indépendances conditionnelles se fait itérativement en enlevant
les meilleurs contributeurs grâce à la règle de la chaîne de l’information mutuelle
conditionelle :

I(X ;Y |{Ui},Z) = I(X ;Y )− I(X ;Y ;u1)− I(X ;Y ;u2|u1)−·· ·− I(X ;Y ;z|{Ui})

Dans la méthode de référence, tous les sets de séparation {Ui} sont essayés jusqu’à ce
qu’une indépendance soit trouvée X ⊥⊥ Y | {Ui}, et les liens X −Y sont testés dans
un ordre arbitraire. En commençant par les meilleurs contributeurs, MIIC est moins
sensible aux fausses indépendances dues au bruit d’échantillonage.

• L’orientation des V-structures et leur propagation se basent sur des probabilités cal-
culées avec les informations mutuelles multivariées et ressemble davantage à de
l’inférence Bayésienne, donnant en général une meilleure orientation du squelette
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[44].

Les références [44, 139] montrent des cas d’utilisation à échelles variées : de trajectoires
de différentiation à partir de données single-cell à l’étude de la valeur adaptative de différentes
caractéristiques de gènes dans un jeu de données phylogénétique. MIIC est cependant limité
aux valeurs discrètes pour lesquelles l’information mutuelle et la complexité stochastique
peuvent être facilement estimées.

Contributions
L’objectif de cette thèse est d’améliorer MIIC pour le rendre plus apte à traiter des données
issues du monde réel. Premièrement, s’affranchir le plus possible des conditions imposées sur
la distribution P(v) permettrait d’inclure toutes les données à disposition pour reconstruire
Gin f . Concrètement, nous voulons pouvoir estimer l’indépendance conditionnelle entre deux
variables X ,Y avec un set de conditionnement Z peu importe la nature des distributions
marginales (p(X), p(Y ), p(Z)) et des distributions jointes (p(X ,Y ) etc...). Cette estimation
doit aussi être robuste à des petite taille d’échantillon tout en restant calculable quand N est
grand, et idéalement ne favorise aucun type de variable ou d’interaction.

L’information mutuelle est une quantité idéale pour accomplir ces objectifs : elle mesure
la dépendance entre deux variables aléatoires au sens le plus général. Elle est définie pour tout
type de variables et tout type de relation : notée I(X ;Y ), elle donne simplement la quantité
d’information que l’on a sur X en connaissant Y , et vice-versa. Introduite par Claude Shannon
en 1948 pour caractériser les canaux de communication [45], elle a trouvé son succès dans de
nombreux domaines grâce à une unique combinaison de propriétés désirables. Premièrement,
elle est strictement équivalente à l’indépendance statistique : I(X ;Y )↔ X ⊥⊥ Y , peu importe
les distributions p(X), p(Y ) et p(X ,Y ). Elle est aussi décomposable grâce à la chain rule,
statisfait le principe de data processing inequality, et est invariable aux transformations sur X

et Y qui conservent les rangs [4]. Elle est aussi considérée comme équitable : elle détecte
avec la même puissance tout type d’interaction du moment qu’elles ont le même rapport
signal sur bruit [27].

La mesure de dépendance idéale en théorie, son estimation sur des échantillons finis est
notoirement difficile si X ,Y a des composantes continues. Les approches par estimation locale
de l’entropie en regardant les k plus proches voisins donnent de bons résultats empiriques
[77, 140], mais leur significativité est difficile à évaluer quand X ⊥⊥ Y ou que le signal est
très faible [77, 85, 51], ce qui complique leur usage pour les méthodes par contraintes. Une
autre façon d’estimer l’information mutuelle sur des variables continues est de les discrétiser
dans des partitions, à la manière d’un histogramme. Cependant, le résultat est alors dépendant
de la discrétisation de chaque variable Xv : l’estimation à partir des versions discrétisées
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I([X1]∆; [X2]∆) ne converge pas vers la vraie valeur I(X1;X2) mais vers une valeur qui dépend
du nombre et de la taille des partitions [69, 49].

La méthode présentée ici repose sur la définition maître de l’information mutuelle :

I(X ;Y ) = sup
P,Q

I([X ]P; [Y ]Q) (A.0.1)

où le supremum est sur toutes les partitions finies P et Q [4]. Cette définition est correcte
sur les populations X et Y , mais quand la taille de l’échantillon N est finie, augmenter le
nombre de partitions dans la discrétisation [X ]∆ ou [Y ]∆ finit inévitablement par surestimer
l’information mutuelle I([X ]∆; [Y ]∆) (jusqu’au maximum log(N) avec une partition pour
chaque valeur unique observée).

L’approche développée consiste à maximiser la valeur I′([X ]∆; [Y ]∆) corrigée par la
complexité stochastique associée à la discrétisation [X ]∆; [Y ]∆ pour prendre en compte les
effets du nombre fini d’échantillons (Fig A.3) :

I′([X ]∆; [Y ]∆) = I([X ]∆; [Y ]∆)− kX∆;Y∆
(N)

1
N

(A.0.2)

où kX∆;Y∆
(N) est le terme de complexité, par exemple kBIC

X∆;Y∆
(N) = 1

2(∆X −1)(∆Y −1) log(N)

pour le Bayesian Information Criterion. Introduire la complexité permet aussi de conclure
sur l’indépendance sur des échantillons finis (pour lesquels l’estimation de l’information est
toujours positive) : I′([X ]∆; [Y ]∆) ≤ 0 implique l’indépendance entre X et Y au sens de la
complexité des données [5].

La maximisation de l’information mutuelle est calculée par programmation dynamique et
est inspirée de Kontkanen et al. [99]. Dans cette étude, les auteurs proposent un algorithme
pour trouver la discrétisation optimale d’un échantillon de variable aléatoire en maximisant
un score de vraisemblance normalisé dérivé selon le principe de longueur de description
minimale. La méthode est adaptée à deux dimensions pour trouver la discrétisation d’une
variable X qui maximise l’information corrigée I′([X ]∆;Y ) avec une variable discrète Y . Le
résultat est un algorithme qui permet simultanément d’estimer la valeur de l’information
mutuelle et d’évaluer sa significativité au sens de la complexité stochastique, peu importe
la nature des variables étudiées qui peuvent être continues, discrètes ou une mixture des
deux. Les partitions trouvées de cette manière satisfont le principe de description minimale,
et encodent les données non pas pour décrire les distributions marginales comme dans [99]
mais la distribution jointe (Fig A.4). En pratique, il faut donc discrétiser chaque distribution
jointe pour conclure sur la dépendance (conditionnelle) entre deux variables : on ne peut
pas discrétiser chaque variable une à une et espérer une estimation non biaisée de leurs
informations mutuelles. Nous améliorons la complexité de l’approche originale de Kontkanen
et al. en limitant le nombre de cutpoints possibles à une valeur c << N (typiquement, un
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Figure A.3: Estimation de l’information mutuelle par discrétisation. La vraie valeur I(X ;Y )
(pointillés horizontaux) est théoriquement obtenue en raffinant la discrétisation ∆ (courbe
pointillée) mais est inévitablement surestimée quand la taille de l’échantillon N est finie
(courbe en tirets) jusqu’à un maximum log(N). L’information corrigée (courbe rouge)
approche la vraie valeur à son maximum.

facteur de N1/3), de O(N2× k) à O(c2). Cette approche est également utilisée pour tester
les indépendances conditionnelles grâce à la chain rule : I(X ;Y |Z) = I(X ;Y Z)− I(X ;Z) =

I(Y ;XZ)− I(Y ;Z), et les informations mutuelles multivariées.

Figure A.4: Discrétisation optimale de trois distributions jointes X ,Yi avec la même variable
X et trois Yi différents. La même distribution marginale p(X) a des partitions optimales
différentes selon la distribution jointe.

La discrétisation optimale est évaluée d’abord comme estimateur de l’information
mutuelle (conditionelle) sur variables continues, et se compare favorablement à l’état de l’art
en particulier quand le signal se rapproche de l’indépendance X ⊥⊥ Y et X ⊥⊥ Y | Z [7]. Elle
a également de bon résultats sur les variables mixtes, en accord avec la définition maître de
l’information mutuelle, comparée aux autres approches conçues spécialement pour ce cas
[71, 51, 91]. Nous notons plusieurs avantages par rapport aux autres méthodes : le résultat ne
dépend pas du choix d’un paramètre (par exemple le nombre de plus proches voisins k, le type
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de kernel etc...), et la significativité est évaluée de manière strictement identique pour tous
les cas de figures : continu-continu, discret-discret ou mixte. L’intégration de cet estimateur
à MIIC permet de reconstruire le squelette du graphe en estimant les informations mutuelles
conditionnelles, puis d’orienter les liens grâce aux informations mutuelles multivariées; pour
tout type de variable. Nous comparons aussi ses performances pour reconstruire des graphes
causaux à partir de données simulées, et trouvons des résultats similaires ou supérieurs aux
méthodes existantes [109, 110] (Fig A.5). En particulier, notre approche est la seule qui
semble être non biaisée envers certains types de variable ou d’interaction.
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Figure A.5: Benchmarks de reconstruction de réseaux causaux. Résultat sur 50 simulation de
100 noeuds et un pourcentage de noeuds continus entre 10 et 90%. Le F score est calculé
comme F = 2 · precision·recall

precision+recall

Les autres contributions de cette thèse portent sur le fonctionnement méthodes basées
sur les contraintes. Nous traitons la gestion des données manquantes, qui peuvent fausser
le résultat des test d’indépendance conditionnelle par biais de sélection. Dans certains cas
de figure, une interaction entre X et Y peut disparaître en conditionnant sur Z non pas parce
que Z permet d’expliquer l’interaction indirecte comme cause commune par exemple, mais
parce que X et Y deviennent indépendants, même sans conditionner, après avoir filtré sur les
échantillons définis (sans valeur manquante) sur X ,Y,Z. Par exemple, les jeux de données
bio-médicales peuvent contenir des valeurs qui dépendent d’autres pour être définies : la
taille d’une tumeur post-exérèse ne peut être mesurée que si le ou la patient(e) a subi une
chirurgie. Dans ce cas, inclure la taille de la tumeur dans un set de conditionnement filtre
automatiquement les échantillons sur les patients ayant eu une chirurgie ce qui peut créer des
biais de sélection. Pour détecter cette situation, nous calculons la divergence de Kullback-
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Leibler sur la distribution jointe X ,Y entre le support avec des données complètes sur X ,Y et
celui avec les données complètes sur X ,Y,Z :

DKL((XY | ZnotNA) || (XY ))

Et nous acceptons Z seulement si cette divergence ne dépasse pas un certain seuil, dérivé de
la théorie de l’information.

Dans la même idée, nous avons travaillé sur une variante des algorithmes par contraintes
qui garantit que les sets de conditionnement utilisés pour retirer les liens soient plus cohérents

avec le graphe final Gin f et les données D [6]. En effet, ces méthodes se basent uniquement
sur les indépendances conditionnelles dans D mais n’offrent aucune garantie que les sets de
conditionnement utilisés pour retirer les liens correspondent à des sets de d-séparation dans
le graphe final. En fait, leur fonctionnement ne garantit même pas qu’elles soient toujours
dans la même composante connexe dans Gin f . Ce défaut rend non seulement le résultat peu
interprétable mais cause aussi des problèmes de performance. Ces sets de conditionnement
incohérents ont tendance à venir du bruit d’échantillonage plutôt que de réalités fonctionnelles,
et les graphes reconstruits sur des données complexes sont typiquement très peu connectés.
La version cohérente des algorithmes par contraintes produit un graphe Gin f moins sujet
aux indépendances bruitées et duquel il est plus facile de déduire les sets de condionnement
utilisés, ce qui rend la méthode plus interprétable. Cette variante est particulièrement adaptée
à MIIC qui retire les contributeurs dans l’ordre en commençant par le meilleur score, par
rapport aux méthodes de référence qui essayent toutes les combinaisons possibles jusqu’à
trouver une significativité.

Les méthodes traditionnelles basées sur les contraintes (MIIC compris), ne font que
découvrir des relations causales "putatives", en découvrant les orientations des V-structures,
qui sont en fait compatibles à la fois avec une relation cause-effet réelle et avec un lien
bi-directionnel provenant d’une cause commune non observée. Nous contribuons aussi aux
méthodes par contraintes en montrant comment distinguer les liens de causalité "authentiques"
des liens "putatifs" en excluant l’effet d’une cause commune non observée pour chaque lien
de causalité authentique prédit. Nous y parvenons en évaluant les probabilités séparées de la
"tête" et de la "queue" des liens dirigés pour toutes les arêtes orientées. Les arêtes causales
authentiques sont alors prédites si les probabilités de la tête et de la queue sont statistiquement
significatives, tandis que les arêtes causales restent "putatives" si leur probabilité de queue
n’est pas statistiquement significative ou ne peut être déterminée à partir de données purement
observationnelles (c’est à dire, liens non dirigés dans la classe d’équivalence de Gc). Cela
donne une meilleure interprétation des méthodes par contraintes sur des données réelles, pour
lesquelles il est difficile d’assurer avec certitude que toutes les variables du système sont
observées, et donc que les liens dirigés de Gin f soient "authentiques".
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En plus d’une librairie open source sur R, avons aussi développé une interface graphique
en ligne pour faciliter l’exploration des résultats de MIIC, notamment en proposant de voir
directement les distributions jointes des relations prédites comme étant des relations directes
(Fig A.6).

Figure A.6: Nouvelle interface de visualisation avec plot de distribution jointe entre une
variable continue, "RCB", et la variable discrète "Death". Les lignes noires horizontales
correspondent à la discrétisation optimale trouvée pour "RCB".

Applications
Enfin, nous montrons différentes applications de MIIC sur des données mixtes, en collabora-
tion avec les différentes équipes responsables de la collecte des données.

Le premier réseau est reconstruit à partir de données cliniques de l’hôpital La Pitié-
Salpêtrière de 1628 patients âgés atteints de troubles cognitifs. Après traitement du jeu
de données, il contient 107 variables de différents types (à savoir 19 variables continues
et 88 variables catégorielles) et de nature hétérogène (c’est-à-dire des variables liées aux
antécédents médicaux, aux comorbidités et comédications, aux résultats des tests cognitifs,
aux examens cliniques, biologiques ou radiologiques, aux diagnostics et aux traitements).
Au-delà des différents types et de la nature hétérogène des données enregistrées, les noeuds du
réseau clinique (Fig A.7) peuvent être divisés en groupes associés à des troubles spécifiques
de la démence et au contexte clinique du patient, y compris les comorbidités (diabète,
hypertension, etc.) et les médicaments associés. Le résultat est un réseau créé sans aucune
connaissance préalable sur le domaine, que ce soit sur la distinction entre relations directes
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et indirectes, ou la direction de la causalité. Il permet de vérifier le contenu du jeu de
données, en mettant en évidence des liens inattendus ou au contraire des indépendances qui
pourraient indiquer des biais dans la collecte des données. Le réseau capture également
certaines facettes du raisonnement du neurologue derrière les diagnostics de différentes
formes de démences. En particulier, les nœuds de diagnostic peuvent être interprétés comme
des variables "explicatives" associées à un certain nombre d’effets "explaining-away" [1]
sous la forme de V-structure. Nous notons aussi des liens directs inattendus entre des
informations cliniquement pertinentes, telles que la connexion directe entre les échelles
de Fazekas (qui mesure la quantité d’hyperintensité dans la substance blanche, attribuées à
l’ischémie chronique des petits vaisseaux) et de Scheltens (atrophie du lobe temporal médian),
qui peuvent fournir des informations physiologiques et suggérer de nouvelles directions de
recherche [123].

ALZHEIMER
PARKINSON

CLINICAL CONTEXT

VASCULAR

PSYCHIATRIC

Figure A.7: Réseau reconstruit de dossiers médicaux de patients atteints de troubles cognitifs.
Les nœuds carrés (respectivement cercles) correspondent à des variables discrètes (respective-
ment continues). Les arêtes rouges (bleues) correspondent à la corrélation (anticorrélation)
entre les variables. Les liens en pointillés reflètent les variables latentes.

La deuxième application porte sur des données médicales de 1199 patientes atteintes du
cancer du sein et ayant reçu une chimiothérapie néo-adjuvante à l’hôpital Curie sur les vingt
dernières années (Fig A.8). L’approche systémique permet de mettre en relation toutes les
variables en faisant la distinction entre relations indirectes et directes, et aide les praticiens
à comprendre les mécanismes derrière la création des données, que ce soit la manière dont
elles sont collectées ou la progression de la maladie elle même. Par exemple, notre approche



162 Appendix A. Résumé long en français

Figure A.8: Reconstruction causale sur les données cliniques de patients atteins du cancer du
sein.

a mis en évidence la centralité du noeud "centre de recherche" qui correspond au lieu de prise
en charge des patients, Paris ou Saint-Cloud. Il y a au moins deux explications à la présence
des liens directes avec le noeud "centre" : les populations de patients traités aux deux lieux
sont différentes, ce qui peut causer des biais de sélection ailleurs si ce n’est pas correctement
pris en compte; et les deux équipes médicales ont des pratiques et du matériel disponible
différents ce qui ne donne pas les mêmes options thérapeutiques. Un autre résultat qui mérite
une mention est le voisinage du noeud "Death" qui indique l’état vital de la patiente à l’issue
de sa prise en charge. Toutes les variables qui y sont directement liées n’ont pas pu être
expliquée par d’autres conditionnements, donc en théorie elles donnent une information
unique sur le pronostic final des patients. L’équipe de cliniciens du département de chirurgie
est particulièrement intéressée par le lien "Death" - "RCB", Residual Cancer Bruden un indice
composite généralement binairisé pour donner la variable "pCR", Pathological Complete

Response, qui est utilisé comme facteur de risque pour prédire la mortalité [141]. Or le
résultat de MIIC met en évidence un lien direct avec "RCB" et non "pCR", ce qui indique
qu’une partie de l’information est perdue en passant par la dichotomisation.

Notre collaboration avec l’équipe Périé nous a permis de valider en partie les prédictions
de MIIC avec des expériences in vitro. La troisième application de MIIC sur données mixtes
porte sur la découverte de gènes qui influencent la différentiation de cellules précurseur
hématopoïétiques, et l’inférence du réseau de régulation de ces gènes. L’équipe est partic-
ulièrement intéressée par les gènes impliqués dans le métabolisme qui sont moins étudiés
que les facteurs de transcription, et a produit des jeux de données d’expression single-cell et
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bulk pour étudier la différenciation de cellules précurseurs vers les branches myéloïde ou
érytroïde. MIIC est utilisé pour trouver les gènes dont l’expression est directement liée avec la
lignée cellulaire dans le graphe final, en complément avec d’autres méthodes de sélection de
variables. Une attention particulière est aussi donnée aux gènes dont l’orientation les place en
amont de la lignée dans l’ordre causal, puisque le but est de trouver les gènes non seulement
prédictifs mais qui causent la différenciation. En partant du jeu de données complet, des
expériences in vitro ont confirmé le rôle de certaines familles de gènes identifiées par MIIC
comme jouant un rôle dans la différenciation : en particulier, des gènes impliqués dans la
glycolyse et la voie des pentoses phosphates semblent impliqués dans la spécialisation en
cellules myéloïdes, alors que l’expression des gènes du métabolisme mitochondrien dirigent
vers le programme érythroïde.
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