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General introduction 

In the past decades, molecular materials have been increasingly considered for 

technological applications because the miniaturization of conventional silicon based devices is 

approaching various technological and physical limits. In this context, molecular science can 

bring novel solutions with the synthesis and integration of functional molecules into devices. 

Among these functional molecules, spin crossover (SCO) complexes of certain third-row 

transition metal ions exhibit reversible switching between their low spin (LS) and high spin 

(HS) electronic configurations. The switching between these two states can be triggered by 

various external stimuli such as temperature, pressure, light, intense magnetic fields, or the 

inclusion of solvent/guest molecules. SCO compounds in the two spin states display different 

physical properties, including magnetic, dielectric, optical, mechanical, thermal properties. 

Some of the SCO materials even present room temperature (above room temperature) switching, 

which is obviously a key asset for any application. Another important characteristic of SCO 

complexes is that the molecular spin state can be switched by light irradiation on a sub-ps time 

scale, which denotes possible fast operation. These attractive properties of SCO compounds 

generated interest to study their electrical properties in the context of electronic and spintronic 

devices. Indeed, the molecular nature of these materials offers unprecedented functions, which 

remain to be explored. The general idea is to investigate the various possibilities offered by 

SCO molecules in modulating the properties of electronic devices. Notably, the SCO leads to a 

considerable variation of the HOMO-LUMO gap, the magnetic moment, the mass density, 

complex dielectric permittivity (in a broad frequency range, from quasi-static to optical 

frequencies), and so forth. Hence, one can expect a substantial effect of the SCO on various 

device properties (resistance, magnetoresistance, capacitance and optical characteristics). The 

challenge is, however, to find a way to get use of these remarkable assets in a technologically 

relevant electronic device. 

In this context, this thesis work takes benefit from the recent development in our team of 

high quality, crystalline thin films of the SCO complex [Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl), 

displaying robust, above room temperature SCO 0. This molecular complex can be deposited 

by vacuum thermal evaporation, which allowed us to integrate it into different fundamental 

device configurations, including two-terminal, multilayer resistance switching junctions and 

three-terminal field-effect transistors. In the course of this work, we fabricated various 

multilayer metal/SCO/metal structures and we recognized that these structures exhibit also 



2 

 

remarkable photonic functionalities, besides their electrical properties. This has led to an 

unforeseen outcome, which consists in the development of tunable optical resonators, based on 

the SCO phenomenon. The thesis is organized in four chapters: 

Chapter 1 begins with a brief, general introduction to the SCO phenomenon, including 

ligand-field considerations and the description of different stimuli to trigger the SCO as well as 

techniques to characterize it. Then, we review the state-of-the-art of evaporable SCO thin films 

as well as SCO thin film based electronic devices, classified as two- or three-terminal devices. 

Chapter 2 focuses on the integration of [Fe(HB(tz)3)2] thin films in two-terminal, large-

area, multilayer electronic devices, aimed for resistance switching functionality. Purity of the 

starting bulk, thin film qualities, fabrication and device operation conditions were taken into 

account to explore and optimize the device performance (ON/OFF switching ratios, cycling 

endurance, …). The charge transport mechanism associated with the resistance switching is 

also discussed. Finally, we present the fabrication and characterization of the first multilayer 

SCO junctions with magnetic electrodes.  

Chapter 3 is devoted to the integration of [Fe(HB(tz)3)2] thin films into three-terminal, 

organic field-effect transistors (OFETs). Different device configurations are compared (bottom 

gate – bottom contact, bottom gate – top contact, …), aiming for the use of the SCO 

phenomenon to modulate the transfer/output characteristics of the transistors. 

Chapter 4 is built on the expertise gained during the development of multilayer 

metal/[Fe(HB(tz)3)2]/metal stacks. Contrary to the previous chapters, here the focus is on the 

optical properties of these multilayer structures. In particular, the design and properties of Fabry 

Perot cavities are presented and the modulation of the cavity resonance due to the SCO 

phenomenon is demonstrated. 

The thesis end with some general conclusions and perspectives.  
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Chapter 1    Introduction 

In this chapter, we will first briefly discuss the basic aspects of molecular spin crossover 

(SCO) phenomenon, including the electronic and thermodynamical aspects as well as the 

different stimuli, which can induce the SCO. The second part of the chapter summarizes the 

state of the art of the fabrication and characterization of SCO films made by vacuum thermal 

evaporation, which will be the privileged fabrication technique we use all along this thesis. The 

chapter ends by a review about the state of the art of SCO-based electronic devices, including 

both 2- and 3-terminal devices. This review serves as the starting point for our work on SCO-

based electronic junctions and SCO-based transistors, which will be discussed in Chapters 2 

and 3, respectively. 

1.1 Introduction to the spin crossover phenomenon 

1.1.1 Molecular aspects of the spin crossover phenomenon 

According to the crystal field theory, in an octahedral ligand field, the five degenerate d 

orbitals (in the case of the free metal ion) undergo energy splitting into two energy levels: a low 

energy level t2g and a higher energy level eg. For an octahedral complex with a 3d4—3d7 

transition metal ion, according to the strength of the ligand field around the metal ion, its spin 

state can either be high spin (HS) or low spin (LS). In a weak ligand field, the crystal field 

splitting energy 10Dq is less than the electron pairing energy P, which is beneficial to the d 

electrons to occupy both the t2g and eg energy levels, i.e. a high-spin state with maximum spin 

multiplicity. Conversely, in a strong ligand field, the crystal field splitting energy 10Dq is 

greater than the electron pairing energy P, and the d electrons occupy fully the t2g energy level 

before occupying the high energy eg orbitals, i.e. a low-spin state with minimum spin 

multiplicity [2].  

Among transition metal complexes with 3d4—3d7 electronic configurations, Fe(II) has 

been mostly investigated, although the SCO phenomenon has been also reported for Fe(III), 

Co(II), Co(III), Cr(II), Mn(II) and Mn(III) complexes [3-6]. In this thesis, we have worked 

exclusively with spin crossover complexes, which have an Fe(II) central ion (3d6). Figure 1.1 

shows the HS and LS electronic configurations of an octahedral ferrous complex. In the low 

spin state the complex is diamagnetic (S=0), whereas in the high spin state it is paramagnetic 

(S=2). 
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Figure 1.1: Energy splitting of the 3d orbitals of an Fe(II) ion in an octahedral environment 

induced by the ligand field (10Dq) – showing both the weak and strong field cases.  

 

When the energy gap (∆E0
HL) between the high-spin and low-spin potential wells is small 

enough (comparable to the thermal energy), different external stimuli (temperature, light, 

pressure, etc.) could induce a change of spin state (Fig. 1.2).  

 

Figure 1.2. Simplified configurational diagram of the two molecular spin states (HS and LS) for 

an octahedral Fe(II) complex [2]. 

We call this phenomenon as spin transition or spin crossover. As a consequence of spin 

crossover, physical properties (magnetic, optical, electric, mechanical, etc.) of the complex thus 

change. It is important to notice that the SCO phenomenon is associated with a significant 
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change of the molecular structure. In particular, the metal-ligand distance increases 

substantially when going from the LS to the HS state. For example, in the case of Fe(II) 

complexes with 6 nitrogen donor atoms the mean Fe-N distance typically increases by 10% 

from ca. 2 to 2.2 Å [2]. 

1.1.2 Spin crossover induced by different stimuli 

The spin crossover between the two spin states can be triggered by various external 

stimuli, such as temperature, light irradiation, pressure, an intense magnetic field, etc. Among 

these factors, the most usual way to change the spin state is to change the temperature, which 

is also the method applied in this thesis to detect the spin transition. From a thermodynamic 

point of view, the SCO originates from a competition between enthalpy, which tends to favor 

the lower energy fundamental state (LS) at low temperatures, and the entropy, which favors the 

most disordered thermodynamic phase (HS) at high temperatures [3, 7]. 

A spin transition curve, drawn as the high spin (HS) fraction versus temperature, can 

provide a lot of information based on its shape. The typically observed behaviors are shown in 

Figure 1.3 [7]. The gradual spin crossover (Fig. 1.3a), which spans over several tens or hundreds 

degrees range is typically observed in diluted systems (e.g. in a solution), although we can also 

observe sometimes this behavior in certain bulk solids, in which the SCO molecules do not (or 

weakly) interact with each other. The main reason that causes different spin crossover behavior 

is the degree of interactions (cooperativity) between molecules, which is determined by the 

characteristics of the crystal lattice. As such, the behaviors shown in Figures 1.3b-1.3e are 

encountered mostly in bulk crystalline SCO materials. The cooperativity of the SCO arises 

primarily from elastic interactions between the molecules and, in a first approximation, it can 

be traced back to the volume change associated with the spin transition (typically 1-10%). If 

the degree of coordination in the system increases, the spin transition curve becomes more and 

more abrupt (Figure 1.3b). When there is a high degree of cooperativity in the system, the spin 

transition may be associated with a hysteresis, as shown in Figure 1.3c. In such a system, the 

hysteresis may have two origins: either the interactions between the SCO molecules are very 

strong or it may be also related to a coupled structural phase change in the crystal lattice. (N.B. 

In the latter case, the HS and LS phases are not isostructural and the origin of the cooperativity 

becomes less clear.) In any case, the hysteresis loop confers a memory effect to the system, 

which can be used in different applications such as information storage devices, molecular 

switches, sensors or displays. This is the reason why SCO systems with hysteresis (especially 

around room temperature) are sought for by synthetic chemists [8]. 
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For a small class of materials, the spin crossover that occurs in two or even more steps 

can be detected (Figure 1.3d). This behavior may occur for several reasons: either simply 

because the metal ions occupy two (or more) different lattice sites in the material, or a 

preferential formation of LS-HS pairs happens due to a competition between different 

interactions [11]. 

Finally, the incomplete spin transition, shown in Figure 1.3e, can be explained by the 

presence of some heterogeneities (defects, surfaces/interfaces, etc.) in the lattice sites capable 

of preventing the formation of LS and/or HS species. Another cause may be due to some kinetic 

effect found at low temperatures, when the conversion rate from one state to another is 

extremely low [7]. 

 

Figure 1.3: Representation of (a) gradual, (b) abrupt, (c) hysteresis, (d) two-step and (e) 

incomplete thermal spin transition curves [9]. 

Another stimulus that can trigger spin transition is pressure [12, 13]. From a 

thermodynamical point of view, higher pressure is favorable for the LS state, which has smaller 

volume. As a result, increasing pressure leads to a higher spin transition temperature, as shown 

in Figure 1.4. In addition, pressure could also modify the width of hysteresis. Whereas the width 

of hysteresis usually decreases when applying higher pressure on a SCO system, there are also 
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exceptions to this rule, indicating that the effect of pressure is more complex. (For example, it 

can induce also additional structural changes, etc.) 

 

Figure 1.4: Pressure effect on spin transition behavior of the SCO complex [CrI2(depe)2] [17]. 

Light (x-ray, UV, visible or near IR) is also an important tool to induce the spin transition. 

The two most famous light-induced phenomena are the LIESST (Light Induced Excited Spin 

State Trapping) and the LD-LISC (Ligand-Driven Light Induced Spin Crossover) effects. The 

former is a direct effect on the metal ion and it occurs at low temperatures [14, 15]. The latter 

is an indirect effect through a photo-isomertizable coordinated ligand [16].  

Besides the most common stimuli we mentioned above, it is worth to mention that many 

other physico-chemical stimuli/parameters, such as intense magnetic fields, electrons, guest 

molecules, pH, etc. could also influence the spin crossover process [18].  

1.1.3 Experimental techniques to characterize the SCO phenomenon 

The SCO is accompanied by a spectacular change of both the molecular structure and 

electronic properties. As a result, nearly all material properties (magnetic, optical, mechanical, 

electrical, etc.) are altered, which creates opportunities for using a broad variety of experimental 

techniques for the detection and investigation of the SCO phenomenon. The most common 

techniques to characterize spin crossover are magnetic susceptibility measurements, X-ray 

diffraction, electronic spectroscopy (UV-VIS), vibrational spectroscopy (Raman, FTIR), 

Mössbauer spectroscopy and calorimetry. With the development of technology, these 
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measurements can be conducted under different external stimuli, allowing for the study of 

temperature, pressure or light induced spin-crossover behavior. In our work, we used mostly 

variable temperature UV-VIS detection, combined in certain cases with magnetometry, Raman 

spectroscopy and grazing incidence x-ray diffraction. 

 

Figure 1.5: Optical absorption spectra of [Zn1-xFex(pic)3]Cl2·EtOH at 30 K in the LS (before 

irradiation) and HS (after irradiation) states [19]. 

The change of electronic configuration can be directly probed by variable temperature 

magnetic susceptibility measurements, which is the most common and direct means of 

characterization, as well as by optical absorption measurements in the UV-VIS spectral range. 

Nevertheless, it is worth to note that magnetic susceptibility can only provide the average value 

of the magnetic moment, whereas UV-VIS spectroscopy can clearly witness changes of spectral 

features associated with the two spin states (see for example Fig. 1.5). (N.B. The relevant 

spectral features can be either metal-centered ligand-field transitions or metal – ligand charge 

transfer transitions [2].) Since the thermally induced spin crossover usually leads to an obvious 

color change, variable temperature optical reflectivity provides also a simple, cheap and fast 

method for the detection of SCO. However, it is important to notice that contrary to the optical 

absorption, the quantitative analysis of reflectivity data is significantly more difficult. 

Because the d electrons in the HS and LS states are distributed in different ways between 

the non-bonding t2g and anti-bonding eg orbitals (Fig. 1.1), an important change of metal-ligand 

bond lengths occurs at the SCO. These (and other) changes of the molecular (and crystal) 

structure can be conveniently investigated by x-ray diffraction methods on single crystals, 

microcrystalline powders and thin films as well [20]. Obviously, these structural changes also 
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affect the vibrational spectra (Raman scattering and IR absorption), which are often used as 

“fingerprints” to follow the spin state changes [21]. 

1.2. From bulk to thin film applications: vacuum thermal evaporation 

The recent progress in developing SCO materials inspired several teams around the 

world to exploit the impressive physical/chemical property changes associated with SCO in 

functional devices, such as switches, memories, sensors, displays and more recently in 

mechanical actuators [22, 23]. To apply SCO materials in a ‘real-world’ applications, it is 

necessary to process them in thin-film form. However, the fragility of the SCO phenomenon 

and the relatively poor processability of SCO materials have limited their development for 

technological applications. The fragility of the SCO phenomenon depends on the fact that SCO 

properties critically depend on the molecular environment (e.g. packing, crystallinity, solvent 

molecules, anions, etc.), which, in order to preserve the SCO phenomenon, must be carefully 

controlled during the processing. In addition, it is important to underline that the SCO behavior 

usually varies from the bulk powder to thin film state, due to different factors. First of all, the 

mere fact that the film is obtained in different conditions than the bulk can lead to different 

SCO properties. In particular, when using vacuum thermal evaporation the as-deposited SCO 

films are often amorphous (vide infra). Furthermore, when reducing the film thickness, the 

impact of the surfaces/interfaces on the film properties will be more and more important [23]. 

For very thin films (e.g. a few monolayers) one may wonder if a comparison with the bulk 

makes sense. On the other hand, in this regime, the interactions with the substrate become 

predominant [24]. 

Recently a great progress has been made towards the growth of SCO thin films and the 

fabrication of SCO nanostructures [25]. The synthesis of new more stable and processable 

compounds and the development of new specifically dedicated procedures for processing have 

permitted this important progress, opening new technological perspectives for SCO compounds, 

and renewing the interest in the field. Among the most popular techniques, we can mention the 

Langmuir–Blodgett (LB) deposition [26], layer-by-layer assembly [27], drop casting [28], spin-

coating [29], spray-coating  [30], electrochemical deposition [31], blade casting [32] and 

vacuum thermal evaporation [49] techniques for the fabrication of SCO thin films [24, 33]. 

Among these techniques, vacuum thermal evaporation turns out to be a preferred method to 

deposit large-area, high quality, continuous and smooth SCO thin films with sub-micrometer 

thickness. The schematic diagram for a vacuum thermal evaporator is shown in Figure 1.6. The 
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technique of thermal evaporation involves heating evaporable materials (either by Joule effect, 

either by an electron gun) under high vacuum (typically ranging from 10−5 to 10−9 mbar). A 

homogeneous thickness can be achieved on relatively large areas (e.g. 4 inches) by rotating the 

substrate. In some instruments, it is also possible to heat or cool the substrate, which can be 

used to adjust the properties of the deposited films in-situ (e.g. crystallinity, morphology, etc.). 

The evaporation rate and film thickness are monitored in-situ by a quartz crystal microbalance.  

 

Figure 1.6: Schematic diagram of a vacuum thermal evaporation system [45]. 

A list (aimed to be exhaustive) and some basic characteristics of the reported thermally 

evaporable SCO molecules is provided in Table 1.1. Despite many efforts from different 

research teams, the list is rather short, because of the general requirements on the complexes to 

be evaporated (charge-neutral, small molecular weight, thermally stable, solvent free, etc.). In 

most cases, the thermally evaporable SCO complexes are Fe(II) complexes from the family of 

scorpionate complexes, i.e. pyrazolyl and triazolyl-borate derivatives [46]. In the following 

sections, we will provide some more details only on those evaporable SCO complexes, which 

have been integrated into an electronic device (cf. Section 1.3). Further information on the other 

sublimable SCO complexes can be found in recent reviews [24, 46]. 

Table 1.1: List of the sublimable SCO complexes reported in the literature. The SCO 

temperatures (T1/2) and hysteresis widths (∆T) in the bulk and thin film forms as well as the 

sublimation temperature (Tsub), and sublimation pressure (Psub) are also shown. 

Molecule T1/2/∆T (K, bulk) Thickness of 

thin film (nm) 

T1/2/∆T (K, 

thin film) 

Tsub (K) 

/Psub (mbar) 

Ref 

[Fe(phen)2(NCS)2] 176/ ≈ 1 280 175 453/10-8 [47] 
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[Fe(H2B(pz)2)2(phen)] 163.7/ ≈ 4 355 151/6 435/10-2 [48] 

[Fe(H2B(pz)2)2(bipy)] 160 564 153/4 433/10-2 [48] 

[Fe(H2B(pz)2)2L1] 141 >100 148 448/3×10-8 [50] 

[Fe(H2B(pz)2)2L2] 140 5  425/1×10-10 [51] 

[Fe(H2B(pz)2)2L3] 154 230 ≈ 150 /4.3 × 10−8 [52] 

[Fe(H2B(pz)2)2L4] 197 10 176.5 423/ [53] 

[Fe(dpepd)(NCS)2] ≈ 251 0.8 monolayer 235(6) 510/5×10-9  [54] 

[Fe(HB(pz)3)2] 393   463/ ≈ 10-5 [56] 

[Fe(HB(tz)3)2] 333/ ≈ 1 100 336 523/ ≈ 2×10-7 [58] 

[Fe(HB(3,5-

(CH3)2(pz)3)2] 

190/31 130 152/17 393-413/10-8  [59] 

[Fe(qnal)2]·xCH2Cl2 220 (x=1) and 

260 (x=0) 

50 210 490/10-7 [60] 

[Fe(pypyr(CF3)2)2(phen)] 390 40 monolayer 330 433/5×10-9 [61] 

[Fe(pap)2]ClO4·H2O 172.5/15   ~363/ 1×10-9 [62] 

(phen =1, 10-phenanthroline, NCS = N-Chlorosuccinimide, pz = pyrazol-1-yl, tz = 1,2,4-triazol-1-yl, bipy = 2,2’-

bipyridine, dpepd = 1-{6-[1,1-di(pyridin-2-yl)ethyl]-pyridin-2-yl}-N,N-dimethylmethanamine, qnal = quinoline-

naphthaldehyde, pypyr = 2-(2'- pyridyl)pyrrolide, pap = N-2-pyridylmethylidene-2-hydroxyphenylaminato, qsal-

I = 4-iodo-2-[(8-quinolylimino) methyl]phenolate, bapbpy = N,N′ -di(pyrid-2-yl)-2,2′ -bipyridine-6,6′ -

diamineL1 = 3,4,7,8-tetramethyl-1,10-phenanthroline, L2 = 5,6-bis(2,5-dimethyl-3-thienyl)-1,10-phenanthroline, 

L3 = 5-amino1,10-phenanthroline, L4 = dodecyl[2,2’-bipyridine]-5-carboxylate) 

1.2.1 [Fe(phen)2(NCS)2] thin films 

 The first studied example of a thermal evaporable SCO complex in a thin film form is 

the compound [Fe(phen)2(NCS)2]. Figure 1.7a depicts the molecular structure. As described by 

Shi et al. [47], [Fe(phen)2(NCS)2] thin films with different thickness (from a few nanometers 

to hundreds of nanometers) were deposited on silicon or glass substrates by thermal evaporation 

at 180 °C from a molybdenum boat in a chamber with a base pressure of 10−8 mbar. The 

deposition rate was 0.1 nm/s. SQUID measurements were carried out to compare the spin 

transition of the bulk and thin film forms. As shown in Figure 1.7b, the [Fe(phen)2(NCS)2] 

complex in its bulk form exhibits an abrupt SCO with T1/2 ≈ 176 K. On the other hand, a 280 

nm thick [Fe(phen)2(NCS)2] film exhibits gradual SCO with T1/2 ≈ 175 K [47]. It is worth to 

note that a LIESST effect was observed in the bulk material at low temperatures, but to our best 

knowledge, no light-induced switching was reported for thin films. The reported RMS 

roughness is 0.33 nm for the 280-nm-thick film on silicon and 0.29 nm for the 240- nm-thick 

film on glass. For both silicon and glass substrates, the films are smooth with no visible grains. 

However, the film morphology is sensitive to the environment and becomes coarse when 

exposed to air. Unfortunately, there were no reports on the structure/crystallinity of the films. 

It may be worth to note that by playing with the ligand, a similar complex, [Fe(dpepd)(NCS)2] 

was obtained, which showed a gradual SCO with T1/2 ≈ 251 K in a ca. one monolayer thick film 

[54].  
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Figure 1.7: (a) Molecular structure of [Fe(phen)2(NCS)2]. (b) Temperature dependence of ꭓmT 

for the powder and the 280-nm-thick film on silicon substrate. (c) AFM images of thin films 

deposited by high vacuum evaporation: Left: 280 nm on silicon substrate and right: 240 nm on 

glass substrate [47]. 

1.2.2 [Fe(H2B(pz)2)2(phen)] thin films 

Figure 1.8a depicts the molecular structure of the complex [Fe(H2B(pz)2)2(phen)]. The 

evaporation was carried out under a vacuum of 5×10−7 mbar with a nominal rate of 0.07 nm/s 

at 160 °C on glass, quartz, copper and Kapton substrates. AFM images show the thin film on 

Au substrate is homogeneous, smooth and pinhole free (Fig. 1.8) [48, 49]. Alternatively the 

spin transition behavior in thick films (several hundreds of nanometers on a Kapton tape) was 

investigated by magnetic susceptibility measurements. UV-VIS measurements were also 

conducted on films deposited on glass substrates [49]. Compared to its bulk counterpart, which 

exhibits an abrupt SCO with T1/2 ≈ 160 K as well as a hysteresis of 4 K, [Fe(H2B(pz)2)2(phen)] 

films exhibit a rather gradual SCO with T1/2  155 K (Fig. 1.8b). This difference is most 

probably related to the fact that the evaporated films of [Fe(H2B(pz)2)2(phen)] are amorphous 

[48]. This can also explain the observation that the SCO curves in these films appears very 

similar both in thick and thin films [48]. It is important to note that the LIESST effect was 

observed both in the bulk and thin film forms of this complex.     
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Figure 1.8: (a) Molecular structure of [Fe(H2B(pz)2)2(phen)]. (b) UV/Vis spectra of thin films 

between 300 and 90 K. Insets: High-spin fraction γHS determined by UV/Vis spectroscopy and 

magnetic susceptibility. (c) AFM image of a thin film on gold substrate. (d) X-ray diffraction 

of a thin film on Cu substrate [48, 49]. 

1.2.3 [Fe(H2B(pz)2)2(bipy)] thin films 

 In parallel to [Fe(H2B(pz)2)2(phen)], the related complex [Fe(H2B(pz)2)2(bipy)] was also 

investigated in its thin film form, in the same publications [48, 49]. The vacuum thermal 

evaporation was carried out using similar equipment, but the deposition temperature for the 

bipy derivative was significantly lower (130 °C). Figure 1.9a depicts the molecular structure of 

[Fe(H2B(pz)2)2(bipy)]. The thermally-induced SCO in the films of [Fe(H2B(pz)2)2(bipy)] is 

centered around 165 K and it becomes more gradual with respect to the bulk material (Fig. 

1.9b). Surface topography investigation with AFM shows clearly the formation of 

microcrystallites with micrometer lateral sizes and heights up to ca. 160 nm, as shown in Figure 

1.9c. The X-ray diffractogram of the thin film on glass substrate indicates a high crystallinity, 

which was also observed for the thin film on Cu substrate [48]. 
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Figure 1.9: (a) Molecular structure of [Fe(H2B(pz)2)2(bipy)]. (b) UV/Vis spectra of thin films 

between 300 and 90 K. Insets: High-spin fraction γHS determined by UV/Vis spectroscopy and 

magnetic susceptibility.  (c) AFM image of a thin film on quartz substrate. (d) X-ray diffraction 

of a thin film on glass substrate [48, 49]. 

1.2.4 [Fe(HB(pz)3)2] thin films 

 Figure 1.10a depicts the molecular structure of the [Fe(HB(pz)3)2] complex. The SCO 

properties of this compound are rather peculiar. Indeed, when the bulk solid is thermally cycled 

for the first time an apparent hysteresis is observed (Figure 1.10b). However, for all subsequent 

cooling and heating treatments, the magnetic properties retrace the initial cooling curve and not 

the initial heating curve. One can thus conclude that the as-synthesized sample is 

thermodynamically metastable (due to structural reasons [55]). This irreversible behavior upon 

the first cycle is also seen in the temperature dependence of the conductivity of this complex 

(Figure 1.10c) [55]. This property was then exploited with thin films deposited by vacuum 

thermal evaporation on gold interdigitated microelectrodes, which afforded for a read-only 
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memory (ROM) device [56]. Unfortunately, no detailed study on the SCO properties and crystal 

structure were reported. 

 

Figure 1.10: (a) Molecular structure of [Fe(HB(pz)3)2]. Temperature dependence of the 

magnetic susceptibility (b) and ac conductivity (c) of the bulk. (d) Optical image of the thin 

film on interdigitated electrodes [55, 56]. 

1.2.5 [Fe(H2B(pz)2)2L3] thin films 

 The molecular structure of [Fe(H2B(pz)2)2L
3] (L3 = 5-amino1,10-phenanthroline) is 

shown in the insert of Figure 1.11a). The complex was deposited on patterned Au electrodes 

under a high vacuum of 4.3×10−8 mbar. The temperature dependence of the magnetic 

susceptibility of the bulk indicates that the transition temperature is ca. 154 K. X-ray absorption 

spectroscopy (XAS) confirmed the spin state change in the film samples (Fig. 1.11b), but the 

SCO in the films appeared rather incomplete (see also Section 1.3.1.2). Unfortunately, no 

information on the morphology and crystallinity of the films was provided [52]. 
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Figure 1.11: (a) ꭓmT vs T plot of the [Fe(H2B(pz)2)2L
3] bulk powder, insert : molecular structure. 

(b) X-ray absorption spectra at the Fe L3 edge of the powder reference in the HS state (at 300 

K, black) and LS state (at 70 K, red) and of the Au/[Fe(H2B(pz)2)2L
3]/Au trilayer at 300 K 

(green line) [52]. 

1.2.6 [Fe(HB(3,5-(CH3)2(pz)3)2] thin films 

 Figure 1.12(a) depicts the molecular structure of the [Fe(HB(3,5-(CH3)2(pz)3)2] complex. 

Films with various thicknesses from 130 to 8500 nm were thermally evaporated at 125 °C under 

an ultra-high vacuum [61]. The AFM topographic images show extended, dense coverages of 

the substrates formed by grains of matter. For example, the 130 nm thick films consist of two 

populations of nanograins whose sizes average around 110(30) and 230(60) nm. Temperature 

dependent of UV-vis absorption of a 130 nm thick film clearly reveals the spin transition of the 

thin film, as depicted in Figure 1.12b. However, the SCO in the films becomes complete only 

after thermal annealing. Indeed, the films show clear crystallinity and preferential orientation, 

as it can be deduced from the x-ray diffraction patterns (Figure 1.12d). However, the diffraction 

pattern changes upon annealing and the complicated polymorphism in the sample gives rise to 

unusual features, such as incomplete and strongly asymmetric hysteresis loops – both in the 

bulk and thin films samples. 
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Figure 1.12: (a) Molecular structure of [Fe(HB(3,5-(CH3)2(pz)3)2]. (b) UV absorption spectra 

recorded upon cooling the as-sublimed 130 nm-thick film. (c) AFM topography image of the 

as-sublimed 130 nm-thick film. (d) X-ray diffraction patterns of as-sublimed films between 90 

and 8500 nm thickness [59]. 

1.2.7 [Fe(qnal)2] thin films 

 Figure 1.13 depicts the molecular structure of the [Fe(qnal)2] complex. The thin film 

was obtained by thermal sublimation in a high vacuum chamber (10-7 mbar) at a temperature 

of ca. 590 K on a muscovite surface coated with 200 nm Au(111). Actually, the as synthesized 

bulk complex exists as a solvated crystalline form [Fe(qnal)2]·CH2Cl2, but it can be turned into 

the unsolvated [Fe(qnal)2] form, through a thermal treatment at 460 K under ambient pressure. 

The thin films showed thermally-induced SCO (T1/2 = 210 K) as well as light and X-ray induced 

spin state switching phenomena. As shown in Figure 1.13b, the SCO in the [Fe(qnal)2] thin-

film is very gradual and it is shifted to lower temperature in comparison to its solvated bulk 

counterpart. Using grazing-incidence XRD, the as-deposited films were shown to be crystalline 

with preferential orientation [60]. 
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Figure 1.13: (a) Molecular structure of [Fe(qnal)2]. (b) Temperature dependence of the HS 

fraction obtained from X-ray absorption spectra for a [Fe(qnal)2] thin film (red circles) and the 

bulk [Fe(qnal)2]·CH2Cl2 sample (blue squares). The light-induced SCO is shown by green 

arrows. (c) GIXRD pattern at different incident angles. The insets show the principal diffraction 

peak (left), the higher-order peaks (middle), and the peak of the gold surface (right) in detail. 

Arrows indicate the intensity change upon incident angle increase [60]. 

1.2.8 [Fe(HB(tz)3)2] thin films 

Finally, we discuss our ‘benchmark’ evaporable SCO complex, [Fe(HB(tz)3)2]. The 

molecular structure of [Fe(HB(tz)3)2] is shown in Figure 1.14a. According to the SQUID data, 

the microcrystalline bulk powder shows an abrupt SCO above room temperature (T1/2 ≈ 333 K) 

with a small hysteresis loop (∆T ≈ 1 K) [57]. Films of [Fe(HB(tz)3)2] with various thicknesses 

(20-200 nm) were deposited on different substrates (fused silica, Si(100) and polycrystalline 

Au). Thin films were grown by thermal evaporation at a base pressure of ca. 2 × 10-7 mbar. The 

bulk powder was heated until 250 °C in a quartz crucible and evaporated at a rate of 0.03 Å s-

1. The as-deposited thin film is amorphous and exhibits unstable and ill-reproducible SCO 

behavior. However, it was discovered that a simple solvent vapor annealing (in water, diethyl-

ether, acetone or ethanol) could allow for the recrystallization of the films [63]. AFM analysis 
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showed that the films are dense, continuous and smooth. GIXRD measurements on the solvent-

annealed films revealed not only good crystallinity, but also a preferential orientation of the 

films along the c-axis of the orthorhombic unit cell. A detailed investigation of the solvent-

annealed films with thicknesses in the range between 45 and 200 nm showed that all films 

exhibit a complete and fairly abrupt SCO (T1/2 = 335-338 K) with a tiny hysteresis loop (< 1 K). 

Figure 1.14b shows an example for the temperature dependence of the UV absorbance of a 90 

nm thick film [58]. Taking into account the very robust and well reproducible SCO properties 

of these films as well as the fact that the SCO occurs above room temperature, we selected this 

compound to explore its SCO properties in functional devices in the frame of the present thesis 

work (vide infra). 

 

Figure 1.14: (a) Molecular structure of [Fe(HB(tz)3)2]. (b) Temperature dependence of the 

absorbance at 317 nm in a 90 nm thin film along four heating–cooling cycles recorded at 1 K 

min-1 scan rate. The inset shows the derivatives of the transition curves. (c) AFM image (10 

×10 µm2) of the solvent vapor annealed film. (d) XRD patterns of crystalline thin films for 

various thicknesses revealing preferential orientation 0. 
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1.3 State of art in SCO-based electronic devices 

Thanks to spin state dependent physical properties (frontier molecular orbital energies, 

dielectric permittivity, etc.), SCO complexes (thin films, nanoparticles, nanorods, etc.) have 

been integrated into electronic devices aiming for the creation of new functional devices 

(switches, memories, etc.) [23, 73]. Both two-terminal devices, such as resistors, capacitors, 

generators, etc. and three-terminal devices, such as transistors, which act as fundamental, but 

significant elements in electronic circuits (Fig. 1.15) have been already considered in relation 

with SCO complexes. In this chapter, we will begin with a review of SCO-based electronic 

devices in two-terminal configuration, which will be further divided into horizontal (i.e. current 

in plane) and vertical (i.e. current out-of-plane) SCO devices for the discussion. More recently, 

SCO-based electronic devices with three-terminal configuration have been successfully 

fabricated and investigated, which we will introduce in the last section. (N.B. We must mention 

here that charge transport properties of SCO complexes have been also studied in 1D cavities 

of single-walled carbon nanotubes [34] and, using Scanning Tunneling Microscope, in 2D thin 

films - from sub-monolayer to bilayer coverage [35-43], but  this exciting field is out of the 

scope of the present thesis.) 

 

Figure 1.15: Representative schematic configurations of SCO-based (a) two-terminal CIP 

(current-in-plane) devices, (b) two-terminal CPP (current-perpendicular-to-plane) devices and 

(c) three-terminal transistors. 

1.3.1 Two-terminal SCO-based electronic devices 

1.3.1.1 Two-terminal SCO-based current-in-plane devices 

The first two-terminal SCO-based horizontal electronic device was published in 2011 by 

Prins et al. [64]. Before the device fabrication, the gold electrodes were patterned with a 

nanogap (i.e. electrode distance) of 5 or 10 nm, and a width of 100 nm or 1 μm, as shown in 

Figure 1.16a. SCO nanoparticles with a [Fe(tz)3](BF4)2 core (tz = 1,2,4-triazol-1-yl) were 

synthesized with a surfactant shell and were then deposited in between the two Au electrodes, 
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as shown schematically in Figure 1.16b. Current-voltage characteristics were assessed before 

and after deposition to make sure the nanoparticles were successfully placed in between the 

electrodes. A temperature dependent conductance investigation on this kind of device was 

carried out for both types of devices (with 1-μm and 100-nm wide electrodes). As shown in 

Figure 1.16c, an electric conductance switching ratio of ca. 2 was observed in both devices, 

which has been assigned by the authors to switching between the LS and HS states, the latter 

being more conductive. The apparent hysteretic behavior of the temperature dependent 

conductance characteristics is indeed similar to the SCO curve of the particles.  

 

Figure 1.16: (a) Top: Schematic drawing of the device before Cr wet etching showing the 

different layers in the fabrication and the Cr2O3 shadow mask. Bottom: Scanning electron 

microscopy image of a device illustrating the different dimensions (electrode distance, d = 5–

10 nm, width, W = 100 nm or 1 μm). (b) Schematic side view of the device geometry with the 

nanoparticle placed on top of the electrodes. The spin-crossover core is represented in purple, 

the surfactant shell in blue. (c) Conductance (I/V) as a function of temperature. Each point 

represents the average of the conductance at 0.4 V of 30 individual current–voltage 

characteristics. Left and Right: Device with 1-μm and 100-nm-wide electrodes, respectively 

[64]. 
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In order to increase the current intensity, Rotaru et al. [65] successfully deposited 

[Fe(Htz)2(tz)](BF4) nanorods from ethanol solution in between interdigitated gold electrodes 

with a gap of 4 μm. By applying an ac voltage, the electric field gradient allowed to 

preferentially align the SCO nanorods in the gaps between electrodes (Figures 1.13a-b). As 

shown in Figure 1.17c, temperature dependent current (I-T) measurements were carried out on 

this device and an unambiguous signature of the spin transition could be observed. When going 

from the LS to the HS (resp. HS to LS) states a decrease (resp. increase) of the current intensity 

can be depicted. As shown in the insert of Fig. 1.17c, this difference of device resistance 

between the two spin states was also evidenced by I-V measurements conducted at the same 

temperature (373 K) in the middle of the I-T hysteresis loop on heating (LS state) and cooling 

(HS state).  

 

Figure 1.17: (a) Schematic representation of the dielectrophoresis process used to align 

[Fe(Htz)2(tz)](BF4) particles between electrodes. (b) SEM images of a device showing the 

particle alignment. (c) Temperature dependence of the measured current in the device over a 

heating-cooling cycle under 10 V bias. Inset: I-V characteristic recorded at 373 K in the LS and 

HS states [65]. 

Following this first observation, several follow up papers have been published by 

different groups on different aspects of the charge transport in the same type of 

[Fe(Htz)2(tz)](BF4) nanoparticles in a similar interdigitated device configuration, revealing 
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notably higher switching ratios, light irradiation effects, device reproducibility and so forth [66, 

73]. 

Another interesting effect has been observed by Etrillard et al. [67] on the 

photoconduction in [Fe(Htz)2(tz)](BF4) H2O nanocrystals, which have been positioned in sub-

100 nm gaps between gold electrodes. The particles were randomly dispersed on the substrate 

from an ethanol solution and effectively bridged the gaps between electrodes. A first experiment 

has been performed on the as-prepared device and no photocurrent has been measured. Then 

the electrodes were subjected to voltage poling. The current of the poled device increased 

considerably upon light irradiation and dropped to the same level when the light excitation was 

removed (Figure 1.18). Even though the experimental results are intriguing, it is not clear if the 

effect is characteristic of the SCO material. 

 

Figure 1.18: (a) Thermal hysteresis loop recorded using magnetic susceptibility measurements 

of the [Fe(Htz)2(tz)](BF4)·H2O complex. The insets show the schematic representation of the 

molecular structure and the TEM micrograph of the obtained nanocrystals. (b) SEM picture of 

a SCO crystal bridging the electrode gap and the initial experiment showing the absence of 

photocurrent. In the bottom part of the panel, there are two examples of photoconductance after 

electrode poling [67]. 

More recently, Torres-Cavanillas et al. [68] reported an SCO-based horizontal electronic 

junction that exhibits a large current switching ratio due to the spin state switching. Since SCO 

materials are usually rather insulating, the authors synthesized a core-shell nanoparticle system 

with [Fe(Htz)2(tz)](BF4) as core and gold as shell, to achieve high conductance. The 

nanoparticles were then deposited in between Au electrodes with a gap of 10 μm, as shown in 

Figure 1.19a-d. The temperature dependent current characteristic of this device showed that the 
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current switching ratio due to spin state switching reaches 4 orders of magnitude, the HS state 

being more insulating.  

Besides nanoparticles, vacuum thermal evaporated SCO films have been also deposited 

on current-in-plane devices. The first device was reported by Mahfoud et al. [56] by using 

thermally evaporated [Fe(HB(pz)3)2] on interdigitated electrodes. SCO properties of the bulk 

material were preserved in the thin films. A ca. 1–2 orders of magnitude change of the 

conductivity of the thin films were observed under applied voltage bias. This property together 

with the fact that this compound is stable to exposure to light, electromagnetic fields, air, and 

water can be exploited in ROM type devices where the writing process can be performed by 

Joule-heating the cell and the read out can be achieved at room temperature by simply 

measuring the resistivity of the device [56].  

 

Figure 1.19: Left: Au finger-like electrode device used to measure the transport properties of 

an assembly of Au@SCO core-shell NPs. (a) Scheme and dimensions of the electrodes (top); 

STEM transversal cross-section of the device (bottom). A zoom of this image to show the 

packing of the NPs is displayed in (c). (b) SEM image of the device (top view). A zoom of this 

image is shown in (d). Right: (e) I–V curves of the high-conductive (purple) and low-conductive 

(orange) behaviours associated to the LS and HS states, respectively. Inset: Thermal variation 

of the electrical current for an applied voltage of 2 V in the heating and cooling modes at 1 K 

min−1 scan rate [68]. 

In addition to the above described thermal switching devices, recently, a nonvolatile 

voltage-switching SCO device aimed for memory application had been reported [69]. As shown 

in Figure 1.20a-b, a thermally evaporated thin film of the SCO complex [Fe(H2B(pz)2)2(bipy)] 

was deposited on top of a ferroelectric croconic acid (C5O5H2) thin film to realize a two-terminal 
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Au/C5O5H2/[Fe(H2B(pz)2)2(bipy)]/Au electronic device. The nonvolatility comes from the 

adjacent ferroelectric layer and this property was observed as shown in Figure 1.19c. A similar 

idea was also achieved in a three-terminal device in the same article, which will be discussed 

in the Section 1.3.2. 

 

Figure 1.20: (a) Scanning electron microscopy image of the substrate, with Au electrodes. (b) 

Schematic structure of junctions in the device of 20 nm [Fe(H2B(pz)2)2(bipy)] deposited on top 

of 200 nm thick croconic acid on the Au electrodes shown in (a). (c) Resistance of the device 

measured at 1 V (less than the coercive voltage for ferroelectric switching of this croconic acid 

film at room temperature), after applying a poling voltage (Vpol) displayed as the horizontal 

voltage at room temperature. Two successive loops are shown, first red and then blue, indicating 

reproducibility [69]. 

1.3.1.2 Two-terminal current out-of-plane SCO-based devices 

The first two-terminal vertical (current out-of-plane) SCO-based electronic devices 

containing SCO molecules were reported by Matsuda and co-workers as early as in 2008 [70-

72]. These devices consisted of the multilayer stack ITO/[Fe(dpp)2](BF4)2:L/Al (ITO = indium 

tin oxide, dpp = 2,6-di(pyrazol-1-yl)pyridine), L = chlorophyll a or nile red) and alternatively a 

hole transport layer (poly(N-vinylcarbazole)) was also deposited between the ITO electrode 

and the active layer. These devices were investigated for the interplay between their SCO and 

electroluminescence properties, but to our best knowledge, the charge transport properties have 

not been reported. It is worth to note also that the SCO layer was made by spin coating. 
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Figure 1.21: Scheme of the OLED device ITO/[Fe(dpp)2](BF4)2:Chl-a/Al and its 

electroluminescence intensity in the HS (300 K) and LS (200 K) states [70-72]. 

In 2016, thin films of the SCO compound [Fe(H2B(pz)2)2(phen)] (pz = pyrazol-1-yl and 

phen = 1,10- phenanthroline) were successfully embedded in large-area crossbar devices with 

the tri-layer structure of ITO/SCO/Al [73]. This work provided a well-reproducible protocol to 

investigate the switching property of SCO layers of various thickness. The thinnest junctions 

(ca. 10 nm) showed tunneling behavior between 5 – 300 K, while the thicker SCO layers (ca. 

30 – 200 nm) gave rise to a diode-like rectifying behavior and thermal activation of the 

conductance. Whereas the thermal SCO could not be unambiguously distinguished from the 

thermal activation of the conductance, a clear evidence for the LIESST effect was observed in 

this type of devices. When shining visible light on the junction at cryogenic temperatures (5 K) 

the switching from the LS to the HS state led to a reversible drop of the resistance by ca. 10 - 

50 % (i.e. ON/OFF ratio < 2). Mechanistic studies have revealed that in this type of devices the 

charge transport was limited by the ‘bulk conductance’ of the films, even for the thinnest 

junctions. 
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Figure 1.22: Electrical characteristics of a 30 nm ITO/[Fe(H2B(pz)2)2(phen)]/Al junction. (a) I–

V curves registered at room temperature, 100 and 5 K at a rate of 100 mV s–1. The inset is a 

zoom on the 100 and 5 K data. (b) Temperature dependence of the conductivity of the junction 

registered at a rate of 5 K min–1. (c,d) Visible light irradiation effect on the current flowing in 

the junction through three successive ON/OFF cycles at 5 K (c) and 100 K (d). Current 

intensities in the HS and LS states are indicated by dashed lines both in dark and in 

photostationary conditions. The applied bias in (b–d) was 5 V [73]. 

The same device structure was later also achieved with thin films of the SCO complex 

[Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl) [74]. The charge transport mechanism in junctions with 

different thicknesses (10 nm, 30 nm, 100 nm and 200 nm) was studied and an ON/OFF current 

ratio of ca. 8 was found when switching the molecules from the LS to the HS state near 330 K. 

The above-room-temperature switching behavior of these junctions provides scope for real-

world applications. In Chapter 2 of the present thesis we will discuss further results we could 

obtain on this type of devices, including the study of ON-OFF ratios, the transport mechanism, 

device reproducibility and cycle life.  
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Figure 1.23: Typical electrical characteristics of 100 and 200 nm ITO/[Fe(HB(tz)3)2]/Al 

junctions [74]. I-V curves of 100 nm (a) and 200 nm (c) thick junctions recorded at 298 and 383 

K and then back to 298/303 K at a scan rate of 100 mV s-1. logI vs. 1/T curves of 100 nm (b) 

and 200 nm (d) thick junctions recorded with an applied bias of 12 V and 15 V, respectively, at 

a scan rate of 5 Kmin-1. The dashed line shows the spin transition temperature. 

The same compounds, [Fe(H2B(pz)2)2(phen)] and [Fe(HB(tz)3)2], were also used to 

construct multilayer junctions with the structure of Au/SCO/Ga2O3/EGaIn (EGaIn = eutectic 

alloy of Ga and In) [75, 76]. The main advantage of using this type of liquid droplet electrodes 

(with respect to thermally evaporated or sputtered metallic electrodes) is that the electrode 

deposition is usually less invasive and allows to achieve junctions even for extremely thin SCO 

layers (6.7 nm in ref. [76]). Remarkably, the [Fe(HB(tz)3)2]-based junctions exhibited ON/OFF 

current ratios up to 100 upon the SCO, as shown in Figure 1.24b. Due to the very gradual SCO, 

in the [Fe(H2B(pz)2)2(phen)]-based device it is less obvious to depict the effect of the SCO on 

the device resistance, which may be merged with the ordinary thermal activation of the current. 

Interestingly, the HS state appeared more conducting in these devices, which the authors 

rationalized in the frame of the Simmons’ tunneling model by taking into account the variation 

of frontier molecular orbital energies upon the SCO. This finding indicates that the influence 
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of SCO on the device resistance can strongly differ depending on the charge transport 

mechanism. 

 

Figure 1.24: Current density as a function of temperature for the junctions (a) 

Au/[Fe(H2B(pz)2)2(phen)]/Ga2O3/EGaIn [75] and (b) Au/[Fe(HB(tz)3)2]/Ga2O3 /EGaIn [76]. 

The same group also succeeded in constructing crossbar devices using the evaporable 

SCO complex [Fe(qnal)2] (qnal = quinoline-naphthaldehyde) in the Ag/SCO/LiF/Au multilayer 

device [77]. Variable temperature I-V characteristics were recorded, as shown in Figure 1.25. 

A correlation between the LS to HS spin conversion and the decrease of the device resistance 

was pointed out, although the gradual nature of the SCO makes an unambiguous assignment 

difficult. 

 

Figure 1.25: log−log plots of J−V characteristics at different temperatures (temperature color 

scaled as per the legend) for a Ag/[Fe(qnal)2]/LiF/Au device. Low-voltage ohmic and high-

voltage SCLC regimes voltage ranges are highlighted [77]. 
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Thin films (ca. 40 nm) of the complex [Fe(H2B(pz)2)2(NH2-phen)], were also 

investigated in a Au/SCO/Au crossbar configuration. Interestingly, a relatively small change of 

the HS/LS fractions could be correlated with a significant change of the device resistance - 

although the gradual nature of the SCO makes an unambiguous assignment difficult. In addition, 

the role of sample heterogeneity in the charge transport was highlighted using an operando x-

ray absorption spectroscopy method. 

 

Figure 1.26: (a) Temperature dependence of the HS proportion ρHS in a Au/[Fe(H2B(pz)2)2 

(NH2-phen)]/Au stack (green), in the [Fe(H2B-(pz)2)2(NH2-phen)] reference powder (filled 

black), and in a 230 nm thick film deposited onto Au (open black). (b) Temperature dependence 

of the resistance of a Au/[Fe(H2B(pz)2)2(NH2-phen)]/Au device [52]. 

More recently, Karuppannan et al. [78] reported the first room temperature switchable 

Fe(III) molecular spin crossover (SCO) tunnel junction. They physisorbed [FeIII(qsal-I)2]NTf2 

(qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate) onto the SLG (single layer of graphene) 

by immersing the Cu/SLG substrate in a 1.0 mM solution of [FeIII(qsal-I)2]NTf2 in CH2Cl2. 

Then, they fabricated the tunnel junction with the structure Cu//SLG//[FeIII(qsal-I)2]NTf2 (1.4 

nm)//GaOx/EGaIn. SLG was inserted in between the Cu and SCO layers to decouple the SCO 

molecules from the Cu electrodes. A reversible SCO of the thin film was evidenced by 

temperature dependent XAS and XMCD studies. Temperature dependent current data revealed 

increasing conductance of the junction above 300 K, which could be associated with the SCO. 

This paper shows an example of the importance to decouple SCO molecules from the metallic 

substrates in order to preserve their SCO properties. 
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Figure 1.27: (a) Current density as a function of temperature at ±1.0 V applied bias. (b) 

Normalized differential conductance for a Cu/SLG/[FeIII(qsalI)2]NTf2 /GaOx/EGaIn junction 

at different temperatures [78]. 

 

1.3.2 Three-terminal SCO-based electronic devices 

Recently, more and more research efforts have been focused on the fabrication of three-

terminal SCO-based electronic devices, i.e. on the integration of SCO molecules into electronic 

devices with ‘transistor-like’ configuration.  

Dugay et al. [79] reported in 2017 a graphene based device with a thin film of 

[Fe(Htz2)(tz)](BF4) spin-crossover nanoparticles deposited on the top of the graphene layer. 

The ambipolar field effect of graphene was confirmed by gate voltage dependence of the 

graphene resistance, before and after SCO deposition. Resistance at the Dirac point as a function 

of temperature for heating and cooling modes was recorded for both devices (before/after SCO 

deposition), as shown in Figure 1.28. It can be clearly witnessed that after SCO deposition, the 

graphene resistance shows jumps near the spin transition temperatures. This study showed for 

the first time that the transport properties (e.g. carrier mobility) of a thin film could be 

modulated by an SCO thin film, which is adjacent to it, via interface coupling. Using model 

calculations, the authors suggested that the coupling could be attributed to the spin-state 

dependence of the dielectric constant. Yet, other mechanisms (e.g. mechanical coupling to the 

SCO layer) might be (also) at work. We shall also note that the authors have operated the device 

solely in a two-terminal mode and have not mentioned about experiments in three terminal 

configuration using the SCO property.  
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Figure 1.28: Modulation of graphene conductance by interface coupling to an SCO layer. (a) 

Temperature dependence of the resistance in heating and cooling modes (full and empty blue 

dots, respectively) at zero gate voltage recorded after the graphene was cleaned. The inset shows 

the representative behavior of the voltage (V) as a function of the injected current (I) indicating 

an ohmic contact for the electrodes on graphene. (b) Graphene resistance per square at the Dirac 

point as a function of temperature on heating and cooling after the deposition of SCO 

nanoparticles [79]. 

Van Geest et al. [80] have also used graphene to fabricate a three-terminal SCO device. 

A poly(methyl methacrylate) (PMMA) spacer (e.g. spacer thickness = 0.5 µm) was deposited 

on the top of graphene before SCO ([Fe(bapbpy)(NCS)2] microcrystals) deposition. The thick 

spacer in between graphene and SCO was used to remove (or at least reduce) mechanical effects 

on graphene arising from spin state switching. When operated in a 2-terminal configuration 

their device displayed very clear resistance changes around the spin transition temperatures. 

Since the graphene layer was (à priori) mechanically decoupled from the SCO crystal, they 

suggested that the observed resistance change is a purely electrostatic effect due to the change 

of the electrostatic potential associated with the SCO. Then, they have carried out gating 

experiments using an ionic liquid (Fig. 1.28a) and demonstrated a shift of the Dirac point as a 

function of temperature, which they have correlated with the SCO phenomenon (Fig. 1.28b). 

Using computational modeling, the authors argued that the Dirac point shift observed in this 

device comes from electrostatic effect of the SCO layer. This effect is, however, less obvious 

in the reported data and further experimental work will be needed to confirm the cause of the 

Diract point shift.  
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Figure 1.29: Dirac point shift induced by the spin transition in a top-gated GFET [ref]. (a) Side-

view schematic illustration of a top-gated GFET. (b) Dirac point (left axis, blue squares and red 

triangles for the cooling and heating modes, respectively) and fraction xHS of HS molecules in 

the SCO crystal (black squares, as determined by SQUID magnetic susceptibility measurements) 

versus temperature [80]. 

 

More recently, Konstantinov et al. [82] reported a graphene-based device wherein the 

[Fe(HB(3,5-(CH3)2Pz)3)2] complex was evaporated directly on the graphene layer. (The latter 

was lying on a Si/SiO2 substrate.) As shown in Figure 1.30a, the thermally induced spin 

transition with hysteresis was clearly observed in the temperature dependent conductance 

characteristic of this device. In addition, the light induced spin crossover phenomenon was also 

investigated (Figure 1.30b) and both the LIESST and the reverse LIESST effects could be 

demonstrated using red and near-infrared light sources, respectively. Soon after this work, the 

same group reported a room temperature optoelectronic device with a similar device 

configuration, but using nanoparticles [Fe(Htz)2(tz)](PF6) of the SCO complex, deposited on 

the graphene surface [83]. They observed a similar resistance switching upon the SCO, but in 

this case near room temperature. Gating experiments were also conducted by the authors, but 

the magnitude of the SCO-induced resistance switching appears to be independent of the gate 

voltage. 

 



34 

 

 

Figure 1.30: (a) Temperature dependence of the conductance of a [Fe(HB(3,5-

(CH3)2Pz)3)2]/graphene thin film heterostructure-based device. (b) Conductance vs. time plots 

of the SCO/graphene heterostructure device under continuous red light excitation (λ1 = 647 nm, 

550 μW mm-2) during 10 hours demonstrating the LIESST effect, followed by excitation under 

near-IR light (λ2 = 820 nm, 100 μW mm-2) showing the reverse-LIESST effect. Inset: Energy 

band diagram describing the photoswitching mechanisms. In green (respectively, in brown), 

the LIESST effect (respectively, reverse-LIESST effect) results from photoexcitation of the 

SCO molecule from the diamagnetic LS state (respectively, paramagnetic HS state) to excited 

states under red light (respectively, Near-IR) excitation of wavelength λ1 (respectively, λ2), 

before relaxing towards the HS state (respectively, LS state) [82]. 

Hao et al. [69] reported a non-volatile three-terminal device, where a PVDF-HFP 

ferroelectric layer, adjacent to the SCO thin film ([Fe(H2B(pz)2)2(bipy)]) appears to lock the 

spin state, depending on the ferroelectric polarization direction. The spin-state switching was 

inferred from X-ray absorption spectra (Fig. 1.31a). In this way, a voltage-triggered, isothermal 

SCO switching three-terminal device was successfully fabricated, as shown in Figure 1.31. In 

brief, the gate voltage controls the polarization of PVDF-HFP and thus the spin state of SCO. 

Since the measured drain-source current exhibits a difference between the two (locked) spin 

states, the device can be used as a nonvolatile resistance switch. Soon after this publication, a 

more detailed investigation of the same SCO complex with the same device configuration was 

carried out by Mosey et al. [84]. An ON/OFF current switching ratio of ca. 5 was observed in 

this device due to the spin state switching. Compared with the previous report, non-linear I-V 

characteristics with far better signal to noise ratio were presented [84].  
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Figure 1.31: (a) Conductance switching of [Fe(H2B(pz)2)2(bipy)] on PVDF-HFP in a three-

terminal device, whose structure is shown in (b). [Fe(H2B(pz)2)2(bipy)]  is pinned mostly in the 

LS state when the ferroelectric polarization of PVDF-HFP is directed away from 

[Fe(H2B(pz)2)2(bipy)], as evident in the X-ray absorption (see insert), leading to low 

conductance (black cruves). On the contrary, [Fe(H2B(pz)2)2(bipy)] is pinned in the HS state 

when the PVDF-HFP ferroelectric polarization is directed towards the SCO film, leading to 

higher conductance (red curves). (c) Hysteresis loop for the PVDF-HFP layer [69].  

1.4 Conclusions and perspectives for further work 

As a conclusion for this Chapter 1, we can note that since the first report in 2011 about 

charge transport in SCO-based electronic devices, the field has made a tremendous progress. 

Notably, besides SCO nanoparticles, high quality SCO thin films could be obtained by vacuum 

thermal evaporation. Of particular interest for us, thin films of the [Fe(HB(tz)3)2] complex 

revealed exceptional resilience of the SCO, tight reproducibility of the film deposition and 

above room temperature spin transition. These properties will be further explored and exploited 

used in this thesis. Nevertheless, it is important to stress that the number of evaporable SCO 

complexes remains low and it will be necessary to enlarge the portfolio of this type of 

compounds. Yet, some of the existing films could be successfully integrated into electronic 

devices with different configurations: either 2- or 3-terminal, planar or vertical.  

An important breakthrough was the development of well-defined, large-area, multilayer 

junctions incorporating nanometric SCO films. Indeed, planar (current-in-plane) SCO devices 

with sub-micrometer electrode gaps are difficult to characterize due to the very insulating nature 

of SCO compounds. In contrast, multilayer (current out-of-plane) devices allow today for 
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systematic investigations of the charge transport mechanism with electrode separations from 

several hundreds of nm down to a few nm – while keeping current intensities reasonably high.  

The most important results with SCO based two-terminal electronic junctions are 

summarized in Table 1.2. Basically, these junctions operate as ON-OFF resistance-switches, 

owing to the modification of the charge transport between the HS and LS states. One can remark, 

however, that the ON/OFF current ratios appear in general rather low, even if it is fair to say 

that the number of investigated SCO compounds and devices remains also rather restricted. In 

a few cases, more promising 2-3 orders of magnitude changes of the device resistance could be 

detected. A tangible correlation between the SCO and the current switching phenomena remains, 

however, problematic in several cases as it relies on the ex-situ evaluation of the spin-crossover 

properties. It is interesting to observe also that the same SCO compound may give rise to very 

different characteristics, depending on the device structure. This observation relates to the fact 

that the transport mechanism(s) may be different in different devices. However, very few 

mechanistic studies have been reported up to now. We shall note also that, in general, there is 

only few (or no) mention about ‘statistics’ in the publications, i.e. the reproducibility of the 

fabrication process, the reversibility of the current switching (cycle numbers) and the lifetime 

of the devices. This aspect certainly deserves to be considered more seriously in future reports. 

Table 1.2: Current switching properties reported for various SCO junctions 

SCO compound Device structure Current LS 

(A) 

Current HS 

(A) 

 ON/OFF 

ratio 

Ref. 

[Fe(H2B(pz)2)2(phen)] film ITO/SCO/Al 2.0×10-9 1.0×10-9 ↓ 2 [73] 

[Fe(HB(tz)3)2] film ITO/SCO/Al 5.0×10-6 5.0×10-7 ↓ 8 [74] 

[Fe(H2B(pz)2)2(phen)] film TSAu/SCO/EGaIn 3×10-10 3×10-9 ↑ 10 [75] 

[Fe(HB(tz)3)2] film TSAu/SCO/EGaIn 3×10-8 3×10-6 ↑ 100 [76] 

[Fe(H2B(pz)2)2(NH2-phen)] film Au/ SCO/Au 8×10-8 8×10-6 ↑ 100 [52] 

[Fe(Htz)2(tz)](BF4) nanorods Au/ SCO/Au 2.6×10-8 1.5×10-8 ↓ 1.7 [65] 

[Fe(Htz)2(tz)](BF4) 

nanoparticles 

Au/ SCO/Au 1×10-9 3×10-12 ↓ 300 [66] 

Au@[Fe(Htz)2(tz)](BF4) 

nanoparticles 

Au/ SCO/Au 6×10-9 4×10-12 ↓ 1500 [68] 

[Fe(tz)3](BF4)2 NPs Au/ SCO/Au 0.26 0.88 ↑ 3 [64] 

[Fe(tz)3](BF4)2 NPs G/SCO/G    2 [79] 

[Fe(tz)3](BF4)2 NPs Au/G+SCO/Au 3×10-10 3×10-11 ↓ 10 [81] 

[FeIII(qsal-I)2]NTf2 thin film Cu/SLG/SCO/Ga

Ox/EGaIn 

-3.6 (Log J) -2.6 (Log J) ↑ 10 [78] 

* ↑ and ↓ refer to increasing or decreasing current in the HS state with respect to the LS state. 

Another important development was the construction of graphene-based SCO devices. 

On one hand side, these devices allowed for a novel switching mechanism wherein the current 

is not flowing through the SCO layer. Instead, the latter is used to modulate the charge transport 
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in the graphene layer via some physical interaction(s) between the layers (electrostatic, 

mechanical, etc.). On the other hand, the SCO-graphene devices can be relatively easily 

fabricated in a 3-teminal configuration, providing a tangible opportunity for the development 

of SCO-based transistors. In this context, two- and three-terminal devices wherein the SCO 

molecules are coupled to a ferroelectric substrate represent also a very promising platform for 

future developments [85]. 

Based on these recent advances, this thesis work aimed for progress in two directions. 

First, we continued to work on multilayer SCO junctions in order to (i) achieve a high ON-OFF 

ratio, (ii) to analyze the charge transport mechanism and (iii) to explore and optimize the device 

stability and reproducibility (Chapter 2). Second, we initiated a new line of research wherein 

SCO layers are used as dielectric layers in OFET (organic field effect transistor) devices 

(Chapter 3). In these devices, the SCO layer may be used either to modulate the capacitance of 

the gate dielectrics and/or to alter the charge transport due to interfacial coupling between the 

organic semiconductor and SCO layers. 
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Chapter 2    Integration of the spin crossover complex [Fe(HB(tz)3)2] 

into two-terminal resistance switching devices 

As discussed in Chapter 1, the [Fe(HB(tz)3)2] complex attracts our attention because of 

its well reproducible, abrupt and above room temperature SCO behavior. Importantly, previous 

investigations in our team revealed that this complex could be deposited by vacuum thermal 

evaporation to obtain thin films. A simple solvent vapor annealing technique allows turning the 

as-deposited films into high quality smooth, continuous, pinhole free crystalline films 0. In this 

chapter, we describe first the synthesis and characterization of the bulk powder and the thin 

films of this complex. Then, we discuss the fabrication and properties of large-area, multilayer 

junctions, based on these films. In particular, we have investigated the ‘benchmark’ 

ITO/[Fe(HB(tz)3)2]/Al junctions with the aim to explore the attainable ON-OFF switching 

ratios, device-to-device reproducibility and switching endurance. We have also investigated the 

mechanism of the resistance switching upon the SCO. Notably, ITO/[Fe(HB(tz)3)2]/Ca 

junctions provided interesting information in this context. Finally, we worked towards the 

fabrication of NiFe/[Fe(HB(tz)3)2]/Co junctions with magnetic electrodes, which open up new 

perspectives for SCO-based spintronic devices. The work described in this chapter was 

conducted jointly between the LCC-CNRS and the local micro/nanotechnology platform, 

LAAS-CNRS, in strong collaboration with Dr. Isabelle Séguy. 

2.1 Resistance switching devices 

 Resistive switching phenomenon is a reproducible process, which differs from the 

dielectric breakdown phenomenon that induces an irreversible change in resistance. Crossbar 

architecture is universally used in resistance switching applications, in which each crossing 

point has a capacitor-like two-terminal configuration, as shown in Figure 2.1a. Basically, an 

active thin film is sandwiched between top and bottom electrodes. Resistive switching can be 

divided into two basic forms: volatile and non-volatile. In the former case, the sudden change 

of the resistance will spontaneously return to the initial state when the external stimuli disappear 

[87]. On the contrary, the non-volatile resistive switching phenomenon is semi-permanent: it 

does not return to the initial state immediately after the external stimuli disappear. These non-

volatile resistive switching behaviors may be further classified in two sub-categories: unipolar 

(also called non-polar) and bi-polar [88]. The former refers to systems where the resistive 

change induced by a first pulse (SET) can be reversed by the application of a second electric 
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pulse (RESET) of either the same or opposite polarity. In contrast, the bi-polar systems require 

a second pulse with opposite polarity (vs. the first pulse). Figure 2.1b depicts some 

representative I-V characteristics of the different types of resistive switching phenomena [89]. 

 

Figure 2.1: (a) Typical crossbar architecture used in resistive switching applications and (b) 

representative I-V characteristics of the different types of resistive switching phenomena. [89] 

Until now, a large number of insulating materials (oxides, nitrides, chalcogenides, 

polymers, organic materials, etc.) have been reported in resistive switching applications [90]. 

Resistance switching random access memory (RRAM) is one of the most important systems, 

which is developed among these applications. Table 2.1 lists resistive switching performance 

reported on some well-studied RRAM devices [91]. Indeed, some of the RRAM devices 

exhibited very appealing properties with high ON/OFF resistive switching ratio (107) and high 

cycling endurance (>1011).  

As discussed in Chapter 1, recently, SCO materials have been be integrated into similar 

crossbar-type devices. Due to the bistable physical properties of the SCO compounds, these 

devices can potentially afford for resistance switching behavior. Similar as RRAM systems, the 

key performance parameters of the SCO-based resistance switching devices will be resistive 

switching ratio, cycling endurance, switching time and retention time (if non-volatile). 

 Table 2.1: Resistive switching performance reported on selected RRAM devices [91]. 
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2.2 Synthesis and characterization of the bulk [Fe(HB(tz)3)2] complex 

The synthesis of the microcrystalline powder of [Fe(HB(tz)3)2] followed previous work 

[86]. The scheme of the synthesis route is shown in Figure 2.2. All solvents and reagents were 

purchased from Sigma Aldrich and used without further purification. KHB(tz)3 (0.372 g, 1.46 

mmol) was mixed in a 2 : 1 ratio with Fe(SO4)2·7H2O (0.201 g, 0.73 mmol) in water and kept 

under magnetic stirring for 30 minutes until the reaction is finished. The resulting suspension 

was purified by centrifugation (3 times with water, twice with ethanol and once with ethyl-ether) 

and left in a hood during 12 hours for drying in ambient conditions. This was followed by an 

annealing at 100 °C for 15 minutes to remove the residual solvents. The final microcrystalline 

powder [Fe(HB(tz)3)2] was obtained with 58% yield (0.206 g). Mass spectroscopy and IR 

spectroscopy were used to verify the structure of the complex (see Annex). This recipe affords 

for a good purity powder, which can be directly used for vacuum thermal evaporation. However, 

we must mention that for a better reproducibility the purity of the powder can be further 

improved. On one hand side, it can be purified by sublimation, but this requires an equipment, 

which can reach high temperatures (~250 °C) under secondary vacuum. On the other hand, 

some improvement was obtained also by conducting the synthesis in slightly non-stoichiometric 

conditions (>2:1). The likely reason here is that the as-received ligand salt contains some 

impurities. 

 

Figure 2.2: Scheme of the synthesis of [Fe(HB(tz)3)2]. 
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As mentioned before, a color change due to the SCO is usually observed in the iron(II) 

complexes. In the case of Fe-triazole complexes, the HS state is usually white (colorless), 

whereas the LS state is purple due to a weak ligand-field absorption in the visible spectral range 

(centered near 540-550 nm). Therefore, we used optical reflectance measurement to 

characterize the SCO property of the [Fe(HB(tz)3)2] complex in the solid state. Variable-

temperature optical reflectivity data were acquired with a MOTIC SMZ-168 stereomicroscope 

equipped with a MOTICAM 1000 color CMOS camera and with a THMS-600 heating-cooling 

stage (Linkam Scientific). A 2 K/min rate was used for both heating and cooling in the 20 -

100 °C range. As shown in Figure 2.3, the first and second thermal cycles recorded on the 

powder sample reveal an abrupt spin transition around 62 °C upon heating and cooling with a 

very small hysteresis loop. The SCO property of [Fe(HB(tz)3)2] inferred from our optical 

reflectance measurements shows good agreement with magnetic measurements previously 

reported for this compound [57]. One can remark that the hysteresis width slightly decreases 

between the first and second thermal cycles. This kind of ‘run-in’ phenomenon is typical for 

SCO complexes. Further variable-temperature optical reflectivity curves of the [Fe(HB(tz)3)2] 

complex from different synthesis batches can be found in Annex 2.3. It shows that the spin 

transition behavior of the samples (i.e. the shape of the curve) is slightly different from batch 

to batch – this might be an indication of different purity. Nevertheless, the SCO phenomenon 

was clearly observed in each batch - all of them displaying an abrupt transition around 62 °C.  

 

Figure 2.3: Variable-temperature optical reflectivity curves of the as-synthesized powder of 

[Fe(HB(tz)3)2] for (a) the first and (b) second thermal cycles. The insert shows photographs of 

the powder in the LS (purple) and HS (white) states. 
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Figure 2.4 shows the thermogravimetry analysis (TGA) of the powder of [Fe(HB(tz)3)2], 

which was performed with a PERKIN ELMER DIAMOND TG/TDA thermobalance, under a 

nitrogen atmosphere at a heating rate of 10 °C/min under inert atmosphere. A high 

decomposition temperature (Td) of ca. 330 °C was observed, which indicates good thermal 

stability of this complex, i.e. the complex shows good endurance to high temperature, which 

guarantee the structural integrity of the molecules deposited on the substrates by vacuum 

thermal evaporation. 

 

Figure 2.4: Thermogravimetry analysis of the bulk powder of[Fe(HB(tz)3)2]. 

2.3 Fabrication and characterization of [Fe(HB(tz)3)2] thin films 

In this section, we describe the details of vacuum thermal evaporation and solvent vapor 

annealing of [Fe(HB(tz)3)2] thin films. The characterization of the films is based on X-ray 

diffraction, variable temperature UV-vis spectroscopy, AFM and optical microscopy.  

2.3.1 Deposition of [Fe(HB(tz)3)2] thin films by vacuum thermal evaporation  

Before the thin film deposition, the silicon and fused silica substrates were rinsed 

successively by acetone (VLSI, 99.5%) and ethanol (VLSI, 99.9%) for 5 min under sonication 

to remove the contaminants. The substrates were dried by an argon or nitrogen gas flow. Then, 

[Fe(HB(tz)3)2] thin films were deposited by thermal evaporation either in a PREVAC thermal 

deposition system at the LCC-CNRS or in a PLASSYS thermal evaporation system in the clean-

room of LAAS-CNRS, both equipped with several organic material effusion cells  (Figure 2.5). 

With the PLASSYS system, which was used for device fabrication, a rotating substrate holder 
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was used for both organic and metallic deposition to improve film thickness uniformity. In 

addition, to avoid any organic layer damage during the top electrode fabrication, the sample 

temperature was maintained below 30 °C by a water-cooled substrate holder. An evaporation 

rate of ca. 0.05 Å s−1 is achieved at 250 °C in a vacuum of 2.7 × 10−7 mbar. The evaporation 

rate and film thickness were monitored in situ using a quartz crystal microbalance. The final 

control of the film thickness was carried out using a combination of stylus profilometry (Tencor 

P17), AFM (SmartSPM, Horiba) and optical reflectivity (Filmetrics model F-20). The Annex 

2 …. gives selected examples for the thickness measurement protocol.  

 

Figure 2.5: (a) Photo of the PREVAC thermal deposition system. (b) Scheme of the organic 

material effusion cell. 

We have confirmed that the as-deposited thin films of [Fe(HB(tz)3)2] are amorphous and 

the SCO property in this kind of thin films is not stable and reproducible. To overcome these 

problems, water vapor annealing has been used to convert the amorphous as-deposited thin 

films to a preferentially-oriented crystalline form (see Section 1.2.8 for more details) 0. This 

treatment consists in simply placing the sample in a sealed box with ca. 75 % relative humidity 

at room temperature for 10 minutes.  

Whereas preferential orientation of films can be an advantage for some applications, it 

can be also detrimental in others. For example, [Fe(HB(tz)3)2] thin films have been used to 

actuate MEMS cantilevers [92], but it turned out that most of the mechanical strain generated 

by the oriented SCO film is orthogonal to the cantilever axis and does not produce any useful 

mechanical work. On the other hand, a randomly oriented film of [Fe(HB(tz)3)2] (or a film with 

different orientation) would have produced a more substantial effect. This example highlights 
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the interest for growing films of [Fe(HB(tz)3)2] with different texture and even with no texture 

at all. As it was shown by Bas et al. [93], besides water, other polar solvents (diethyl ether, 

acetone, ethanol, …) can be also used for solvent vapor annealing (SVA) of [Fe(HB(tz)3)2] 

films and they provide similar results. However, it was also observed that dichloromethane 

vapor treatment leads to less crystalline films with reduced preferential orientation. It was 

suggested that the reduced ability of CH2Cl2 to form hydrogen bonds (vs. the other solvents) 

led to a different crystallization mechanism. This result encouraged us to explore also the effect 

of non-polar solvents (octane, pentane, etc.) to treat the thin films. Interestingly, we have found 

that non-polar solvents allow us to obtain a metastable crystalline form of Fe(HB(tz)3)2] thin 

films. In the following, we will compare in more detail water-vapor and octane-vapor treated 

films. For the octane vapor annealing, similar as the water treatment, we put the as-deposited 

sample in a sealed box at room temperature for half an hour under a saturated octane atmosphere. 

All thin films described in the following sections had a thickness of ca. 100 nm and they were 

thermally evaporated on both fused silica and Si substrates in the same conditions. The films 

were then characterized using (1) GI-XRD to determine their crystallographic structure, (2) 

variable-temperature UV-vis spectroscopy to assess their SCO properties and (3) optical 

microscopy (OM) and AFM to investigate their surface morphology. Finally, we have also 

deposited analogous [Zn(HB(tz)3)2] thin films. Obviously, these films do not display SCO and 

our objective with these films was to use them as reference, ‘SCO-inactive’ samples for device 

fabrication. Water vapor annealing was also applied on [Zn(HB(tz)3)2] thin films. 

2.3.2 Crystallinity of the films 

GIXRD experiments were carried out by means of a PANalytical X’Pert PRO MPD 

system using Cu-Ka radiation (45 kV and 40 mA) with a parallel-beam configuration. The 

incident beam optics consisted of a mirror with a 1/32° divergence slit. A parallel plate 

collimator (0.18°) and Soller slits (0.04°) were mounted on the path of the diffracted beam. An 

X’Celerator detector in receiving slit mode was used for X-ray collection.  

As shown in Figure 2.6a, the diffraction pattern of the water vapor annealed [Fe(HB(tz)3)2] 

thin film shows an intense and single peak at 2θ = 10.02° indicating a highly preferential 

crystallographic orientation. In previous works, this peak has been clearly assigned to the 002 

reflection, which means that the films are oriented with the c-axis of their orthorhombic unit 

cell normal to the substrate plane 0. (N.B. The as-deposited [Fe(HB(tz)3)2] thin film is 

amorphous and its GIXRD picture is shown in Annex 2.x) 
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Figure 2.6: GIXRD spectrum of (a) [Fe(HB(tz)3)2] treated in water vapor, (b) [Fe(HB(tz)3)2] 

treated in octane vapor and (c) [Zn(HB(tz)3)2] treated in water vapor. (d) X-ray powder 

diffractogram of the microcrystalline bulk powder of [Fe(HB(tz)3)2] compared to the 

diffractogram of the octane-treated film shown in (b).  

Remarkably, the diffraction pattern of the octane vapor annealed [Fe(HB(tz)3)2] thin film 

shows several smaller intensity diffraction peaks besides the 002 reflection (Fig. 2.6b). These 

peaks can be readily compared with the diffraction pattern of [Fe(HB(tz)3)2] in its bulk powder 

form in the LS state (Fig. 2.6d). We can thus conclude that octane (and non-polar solvents) lead 

also to a crystalline film, but with reduced preferential orientation. 

Finally, we can observe that the [Zn(HB(tz)3)2] thin film is amorphous (Fig. 2.6c). We 

can infer from this result that the water vapor annealing does not allow the recrystallization of 

this type of films. 

2.3.3 SCO properties of the [Fe(HB(tz)3)2] thin films 

The temperature dependent absorbance spectra of the thin films were collected at 

wavelengths between 200 and 600 nm using a Cary 50 (Agilent Technologies) 
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spectrophotometer and a Linkam FTIR-600 liquid nitrogen cryostat (equipped with UV-

transparent fused silica windows). The sample chamber was purged with dry nitrogen and 

spectra were acquired in the 30–100 °C range with 1 °C / min rate. The variable-temperature 

UV-vis absorbance spectra and temperature dependence of the absorbance at 317 nm along two 

heating–cooling cycles of water vapor annealed [Fe(HB(tz)3)2] thin film are shown in Figure 

2.7a-2.7c. The sample is fully transparent in the visible-NIR spectral regions over the whole 

temperature range. On the other hand, three intense absorption bands can be seen at ca. 272, 

305 and 318 nm at 30 °C (LS state), which vanish upon heating to 100 °C (HS state). When 

plotting the absorbance at 318 nm as a function of temperature (Figure 2.7c) one can depict an 

abrupt drop around 65 °C with nearly no hysteresis due to the SCO phenomenon. The shape of 

the SCO curves as well as the magnitude of absorbance changes are quantitatively comparable 

with previous results from the team 0, confirming once more the robustness of this film 

fabrication process.  

The variable temperature UV-vis absorbance spectra of an octane vapor annealed film are 

shown in Figure 2.7d-2.7f. The octane treated film shows a similar absorbance spectrum and a 

similar spin transition curve as the water vapor annealed [Fe(HB(tz)3)2] film. The absorbance 

change (at 318 nm) between the LS and HS states is comparable in the two samples (ca. 0.3 – 

0.33). This means that the spin transition is closely complete in both samples. The spin 

transition temperatures are also similar (ca. 65 °C). Meanwhile, the SCO in the octane treated 

sample displays a small hysteresis of ca. 2 °C (with a T1/2↑ = 67 °C and T1/2↓ = 65 °C). Actually, 

we have found that the hysteresis width is systematically larger in octane treated samples. In 

addition, one can notice also that this hysteresis is not the “usual” hysteresis, associated with 

the SCO, because it occurs also far from the spin transition temperature (Figure 2.7f). We 

believe therefore that the origin of this hysteresis is not linked to the SCO, but rather to some 

other irreversible phenomena in the films. 

Finally, let us note that the absorption spectrum of the [Zn(HB(tz)3)2] thin films 

(obviously) did not reveal any temperature dependence and showed no absorbance above ca. 

270 nm (see Annex). 
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Figure 2.7: (a-b) Absorbance spectra of a 100 nm thick, water vapor annealed [Fe(HB(tz)3)2] 

film acquired between 30 and 100 °C in the heating mode. (c) Temperature dependence of the 

absorbance at 318 nm along two heating–cooling cycles recorded at 1 °C / min scan rate. (d-e) 

Absorbance spectra of a 100 nm thick, octane vapor annealed [Fe(HB(tz)3)2] film acquired 

between 30 and 100 °C in the heating mode. (f) Temperature dependence of the absorbance at 

318 nm along two heating–cooling cycles recorded at 1 °C / min scan rate. 

 

2.3.4 Surface morphology of [Fe(HB(tz)3)2] thin films 

In many cases, film morphology plays an important role in the final electronic property 

of thin film based devices. For the analysis of the surface topography of our films, we used an 

atomic force microscope (SmartSPM, Horiba) in tapping mode in ambient conditions. Figure 

2.8 shows typical AFM images for the different samples. Overall, we can say the films at the 

micrometric scale are continuous and smooth with an RMS roughness typically of a few 

nanometers. Whereas this level of roughness is certainly interesting for the construction of 

devices, we must be aware that in some cases (e.g. organic field effect transistors) the 

requirements for the film quality can be even more stringent.  

Since we are interested in constructing large-area devices, it is important to have a larger 

scale view of the surface quality, which can be achieved by optical microscopy. As we can see 

from the OM images in Figure 2.9, compared with the smooth, continuous pristine thin film, 

water vapor annealing may induce a ‘branch-like’, dendritic structure in the thin film, which 
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can reach hundreds of µm in size. Note that except the area with ‘branch- like’ structures, the 

remaining surface area appears smooth and homogeneous, just as the pristine thin film. We 

believe that during the solvent-induced recrystallization of the film a large amount of nucleation 

events lead to a homogeneous film formation. However, due to various reasons (impurities, 

imperfection of the substrate, etc.) heterogeneous nucleation and growth inevitably occurs to 

some extent. This difference of roughness from area to area of the water vapor annealed 

[Fe(HB(tz)3)2] thin film suggests there might be a distribution of defect sites and domain 

boundaries (i.e. potential charge carrier traps) in the thin film, which can significantly influence 

the electronic behavior of the SCO-based electronic devices. 

 

Figure 2.8: Representative AFM images (5 µm × 5 µm) of water (a) and octane (b) vapor 

annealed [Fe(HB(tz)3)2] thin films and (c) typical ‘branch-like’ structures on both treated films. 

 

Figure 2.9: Optical microscopy (OM) images of (a) water vapor annealed and (b) pristine 

[Fe(HB(tz)3)2] thin films. 

 

2.4 SCO-based resistance switching devices 

As discussed in Section 1.2.8, the [Fe(HB(tz)3)2] complex exhibiting an abrupt and robust 

spin transition slightly above room temperature represents an attractive platform for device 

development. The first report on an electrical junction using [Fe(HB(tz)3)2] thin films as the 
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active layer was published in 2018 [74]. The resistance switching property in 

ITO/[Fe(HB(tz)3)2]/SCO junctions with different SCO layer thicknesses (10, 30, 100 and 200 

nm) was studied and an ON/OFF current ratio of ca. 8 was found when switching the molecules 

from the LS to the HS state (see also Section 1.3.2 and Fig. 1.23). These first results provided 

the starting point for this thesis work, which aimed for a more comprehensive investigation of 

these junctions with the following objectives. (1) First, for any real-world application of a 

resistance switching device, it is necessary to reach a high resistance difference between the 

conducting and resistive states. We have therefore payed a particular attention on the ON/OFF 

switching ratio of the devices, which can be simply defined in our case as the ratio between the 

current intensities in the two spin states. (2) Device fabrication reproducibility and switching 

fatigue are also important considerations, which have not much been investigated before on 

SCO devices. (3) Last, but not least, it is crucial to analyze the mechanistic aspects of the 

resistance switching property in terms of modification of charge transport upon the SCO. 

 

2.4.1 Fabrication and characterization of ITO/[Fe(HB(tz)3)2]/Al junctions 

 

Figure 2.10: Fabrication procedure of ITO/[Fe(HB(tz)3)2]/Al junctions.  

Figure 2.10 demonstrates the procedure to fabricate the ITO/SCO/Metal crossbar 

junctions, here specifically, SCO and Metal corresponding to [Fe(HB(tz)3)2] and Al, 

respectively. Before the fabrication, the ITO substrates (CEC010S from Praezisions Glas & 

Optic GmbH) were rinsed successively by acetone (VLSI, 99.5%) and ethanol (VLSI, 99.9%) 

for 5 min under sonication. The substrates were dried by a nitrogen gas flow. Then, a 100 nm 

thick film of [Fe(HB(tz)3)2] was deposited by thermal evaporation at 180 °C under high vacuum 

(2.7 × 10−7 mbar) at a rate of ca. 0.3 Å s−1, followed by water-vapor annealing in ca. 80% 

relative humidity air at room temperature for 10 min. Finally, a 100 nm thick Al film was 

deposited through an evaporation mask under a vacuum pressure of about 3.0 × 10−6 mbar at a 

rate of 10 Å s−1 to form the upper electrodes of the ITO/[Fe(HB(tz)3)2]/Al junction. A rotating 

substrate holder was used for both SCO and metallic deposition to improve film thickness 



50 

 

uniformity. In addition, to avoid any SCO layer damage during the top electrode fabrication, 

the sample temperature was maintained below 50 °C by a water-cooled substrate holder. The 

obtained effective junction area is ca. 3 mm2. 

The ITO/[Fe(HB(tz)3)2]/Al junctions were first characterized for their room temperature 

resistance. Current–voltage and current–temperature characteristics of the junctions were 

investigated using a Keithley-6430 source-meter and a heating-cooling probe station (Linkam 

Scientific HFS350EV-PB4) equipped with gold-tipped tungsten probes (Figure 2.11). 

 

Figure 2.11: Photos of (a) a chip with six ITO/[Fe(HB(tz)3)2]/Al junctions placed on the 

variable-temperature probe station and (b) a zoom on the junctions.  

Table 2.2 reports the resistance data obtained as the average of three measurements under 

1 μA current bias for 24 junctions (on 4 chips). None of the junctions were short-circuited and 

the global mean resistance value of 3.0 ± 0.4 MΩ is well reproduced device-to-device. The 

room temperature I–V characteristics averaged for 12 as prepared devices are shown in figure 

2.12. The device-to-device reproducibility of the current value for 5 V applied bias was found 

ca. 15%. 

Table 2.2: Comparison of the room temperature electrical resistance of a batch of ITO/100 nm 

[Fe(HB(tz)3)2]/Al junctions 

Device n° 1 2 3 4 5 6 7 8 9 10 11 12 
Resistance (MΩ) 3.7 2.7 2.5 3.4 3 2.7 3.5 2.8 2.5 3 3.1 2.8 
Device n° 13 14 15 16 17 18 19 20 21 22 23 24 
Resistance (MΩ) 3.4  2.9  2.7 3.4  3.1  2.8  3.2  2.7  2.3  3.3  3  2.6  

 

Similar to our previous report, we found that the I–V curves of the junctions are strongly 

nonlinear – as one can expect for a metal-insulator-metal junction. Importantly, the junctions 
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behave in a reproducible manner only under forward bias, i.e. when the Al electrode is the 

cathode. Under reverse bias, not only the measurements become less reversible, but also the 

devices were more promptly degraded. The origin of the instability of the junctions under 

reverse bias remains unclear.  

 

Figure 2.12: Averaged I–V characteristics of twelve as-prepared ITO/100 nm [Fe(HB(tz)3)2]/Al 

junctions recorded in ambient conditions at rates of ±100 mV s−1. The error bars show the 

standard deviation of the measured current intensity. 

 

2.4.2 Resistance switching properties of ITO/[Fe(HB(tz)3)2]/Al junctions 

Figure 2.13 depicts the temperature dependent I–V and I–T characteristics of a 

ITO/[Fe(HB(tz)3)2]/Al junction. Figures 2.12(a)–(d) refer to the first, second, third and fourth 

successive thermal cycle, respectively, acquired for the same junction. The I–T curves show a 

weak thermal activation and, in perfect agreement with our previous report [74], a substantial 

change from a high conductance state to a low conductance state occurs at around 65 °C while 

heating. Since this resistance-switching phenomenon is opposed to the thermal activation of the 

conductance, we can unambiguously distinguish the two processes and extract properly the 

ON/OFF switching ratio arising solely from the SCO.  
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Figure 2.13: Electrical characteristics of an ITO/100 nm [Fe(HB(tz)3)2]/Al junction. The results 

of four successive thermal cycles are showed in (a), (b), (c) and (d). Left: I-V curves recorded 

at 20 °C and 100 °C and then again at 20 °C at rates of ±100 mV/s. Right: log I- T curves 

recorded with an applied bias of 5 V for first three thermal cycles (a, b and c, respectively) and 

10 V for the forth thermal cycle (d), at scan rates of ±10 °C/min. 

In figures 2.13a–d, one can note that upon successive thermal cycles the junction 

properties are modified. In particular, the first heating leads always to an anomalous response, 
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but starting from the first cooling curve the device resistance becomes sensibly less affected by 

the heating-cooling cycle. (N.B. In order to reduce the noise at high temperatures, in the 4th 

thermal cycle we applied higher voltage, leading obviously to higher current intensities.) This 

‘run-in’ effect may be linked to stress relaxation phenomena in the devices. It is important to 

note that reasonably reproducible device characteristics upon heating-cooling could be 

achieved by optimizing the experimental conditions. In particular, the measurement 

reproducibility is increased by applying only low bias (5 V) and by reducing the exposure of 

the junctions to high temperatures. This latter condition was achieved by limiting the 

temperature span to 100 °C and increasing the scan rate to 10 K min−1. However, it is fair to 

say that despite all our efforts each investigated junction showed continuous ageing, which was 

accelerated by thermal/voltage cycling. (See further details on the question of cycling fatigue 

in Section 2.3.3.) 

The data in figure 2.13 reveal another important finding. In contrast to the previously 

reported ON/OFF ratio of 8 (i.e. ca. one order of magnitude switching), in the present 

experiments the resistance changes reach 2–3 orders of magnitude in several devices, with ON 

/OFF ratios up to 400. We believe that this spectacular improvement of ON/OFF switching 

ratios, with respect to the devices reported in, is likely related to the more careful handling of 

the devices in terms of exposure to air, high voltages and high temperatures. 

Another important issue here is the strong nonlinearity of the I–V curves. As shown in 

figure 2.14, when switching from the LS to the HS state, the current intensity drops by the same 

factor (ON/OFF ≈ 100) in the high voltage regime (>ca. 6.5 V), wherein both the HS and LS 

conductions are effectively voltage activated. On the other hand, at low bias (<ca. 4 V) the 

conduction vanishes in both spin states. There exists however, an intermediate voltage range 

between ca. 4–6.5 V wherein the LS conduction is activated, whereas the HS state remains 

strongly resistive. In this voltage window, we observe a peak ON/OFF = 400 switching ratio, 

which arises clearly from the decrease of the turn-on voltage (VON) when going from the HS to 

the LS state. (N.B. The peak ON/OFF ratio we observe here is limited by the dark current as 

well as by the noise floor of our electrometer.)  

In order to examine the possible role of the preferential orientation of the SCO film on 

the junction behavior, we also integrated octane vapor annealed [Fe(HB(tz)3)2] thin films (with 

reduced preferential orientation) in a few junctions. Non-linear I-V characteristic and SCO-

induced resistance-switching with a ratio of ca. 2 can be depicted in Figure 2.6. Unfortunately, 

the low device-to-device reproducibility of the ON/OFF switching ratios make it difficult to 
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draw a clear conclusion, but this result indicates that the crystalline orientation is likely not a 

major factor in determining the device properties. At this point, it is worth to mention that 

devices were also fabricated using SCO inactive [Zn(HB(tz)3)2] films, which quite expectedly, 

did not show any switching property (Annex).  

 

Fig 2.14: Log I-V representation of a ITO/100 nm [Fe(HB(tz)3)2]/Al device characteristics at 

different temperatures evidencing a shift of the turn-on voltage (VON) between the LS and HS 

states. 

 

Figure 2.15: Electrical characteristics of an ITO/100 nm [Fe(HB(tz)3)2] (octane vapor 

annealed)/Al junction. Left: I-V curve recorded at 20 °C at a rate of 100 mV/s. Right: I-T curves 

recorded under 8 V applied bias for the first three thermal cycles at scan rates of ±2 °C/min. 
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2.4.3 Stability of ITO/[Fe(HB(tz)3)2]/Al junctions 

Improving both the long-term stability and switching endurance of SCO-based electronic 

devices is critical to the deployment of this technology. Despite many different SCO materials 

with different device configurations were investigated and reported, there are very few 

publications, which have addressed the stability issue of those SCO-based electronic devices. 

The degradation of SCO-based electronic devices is affected by multiple parameters 

whose impact on device stability remains to be understood. With regard to experience with 

other types of molecule-based electronic devices, the main factors that influence the stability of 

the devices are oxygen, humidity, temperature, voltage/current bias and mechanical stress. For 

instance, oxygen is a well-acknowledged factor that reduce the stability of organic electronic 

devices. First, the metal electrodes (e.g. Al and Ca) can be oxidized due to oxygen permeation. 

The metal oxide layer, which exhibits an insulating property, will induce a barrier between the 

electrode and the active layer, thus influencing the electron injection and degrade the 

performance of the device [94]. Second, oxygen molecules may react with the molecules in the 

active layer and then the change of structure of the complex will result in the change of MO 

energy levels and charge carrier mobility of the active layer [95]. This concern is particularly 

important for Fe(II) SCO molecules, which can be oxidized to Fe(III). Last but not least, oxygen 

in the active layer will enhance hole concentration and thereby increase the density of deeper 

traps for electrons [96]. Besides, heating (working temperature, Joule effect) also plays a vital 

role in device degradation. Normally, the working temperature is still far below the 

decomposition temperature of active layer, but it can be a co-factor, which accelerates device 

degradation [97]. 

We conducted a series of experiments to investigate the stability of the benchmark 

ITO/[Fe(HB(tz)3)2]/Al junctions, which aimed to have an insight in how the factors above 

would influence the stability of these devices and potentially other SCO-based electronic 

devices. In order to check the long-term stability of two-terminal devices, we left a non-

encapsulated ITO/SCO/Al junction in the ambient laboratory environment (ca. 20-25°C and 

50-80 % relative humidity). Figure 2.16 displays the I-V characteristics of the fresh and “1 year 

aged” junctions. As we can see from this figure, the non-encapsulated ITO/100 nm 

[Fe(HB(tz)3)2]/Al preserves reasonably well the initial electrical characteristic of the device 

after 1 year.  
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Figure 2.16: Room temperature I-V characteristics of a non-encapsulated ITO/100 nm 

[Fe(HB(tz)3)2]/Al junction just after fabrication and following 1 year storage in ambient 

conditions. Both linear (a) and  logarithmic (b) representations are shown. 

In a next step, we compared the I-T characteristics of the non-encapsulated ITO/100 nm 

[Fe(HB(tz)3)2]/Al junction, as shown in Figure 2.17. These measurements were conducted in 

ambient atmosphere without additional protection. Figure 2.17(a) and (b) refers to the I-T 

characteristics of the fresh and “1-year aged” aged junction, respectively. In agreement with the 

I-V characteristics, the I-T curves confirm the increased resistance of the junction after 1-year 

storage. More importantly, they reveal that the resistance switching property is maintained in 

the junction. The ON/OFF current ratio reaches a value around 3, both the fresh junction and 

the “1-year aged” junction. Note that we observed a ‘run-in’ phenomenon in this junction, 

which can be clearly seen from Figure 2.17b (black curve): the I-T characteristics of the first 

heating is different from all the successive thermal cycles. It is interesting to underline here that 

this sample was previously heated several times, but after one-year storage, we can see again 

the run-in phenomenon. 

We further examined if such run-in phenomenon can be observed in other experimental 

situations. As shown in Figure 2.18, a series of bias voltage of 3, 4, 5, 6, 7 and 8 V was applied 

to the junction for I-T measurements, with the same temperature ramping rate of ±1 °C/min. It 

can be clearly seen that a ‘run in’ phenomenon took place in all of the cases, the I-T 

characteristics of the first heating is always different – just after changing the bias voltage. For 

further thermal cycles, the I-T characteristics are well reproducible. One shall note that this 

good reproducibility is obtained by working in a reduced temperature range between 45-85 °C. 

It is interesting to remark also that in most cases the current through the junction at the 
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beginning of the measurement is always lower than the current after the first thermal cycle. We 

tentatively attribute this observation to a device relaxation phenomenon [98]. 

 

Figure 2.17: I-T characteristics of a non-encapsulated ITO/100 nm [Fe(HB(tz)3)2]/Al junction: 

(a) fresh (in the 2nd thermal cycle) and (b) 1-year aged. The I- T curves were recorded with an 

applied bias of 5 V at scan rates of ±1 °C/min. 

 

Figure 2.18: I-T characteristics of a “1-year aged” non-encapsulated ITO/100 nm 

[Fe(HB(tz)3)2]/ Al junction. I- T curves were recorded with different applied bias between 3 

and 8 V at scan rates of ±1 °C/min. For each bias, two successive heating-cooling cycles were 

carried out. 
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Figure 2.19 shows the ON/OFF current switching ratio for different applied bias voltages. 

When the applied bias voltage is above 4 V, the ON/OFF current switching ratio keeps 

increasing with the voltage. However, when the applied bias voltage is under 4 V, the ON/OFF 

current switching ratio seems to change in an opposite direction. We tried to measure the I-T 

characteristics of the “1-year aged” non-encapsulated ITO/100 nm [Fe(HB(tz)3)2]/ Al junction 

in a lower applied bias than 3 V. However, due to the detection limit of our setup, we failed to 

obtain clear I-T curves (Annex). 

 

Figure 2.19: ON/OFF current switching ratio as a function of the applied bias voltage of a 1-

year aged non-encapsulated ITO/100 nm [Fe(HB(tz)3)2]/Al junction. 

We also investigated the cycling endurance of the 1-year aged non-encapsulated ITO/100 

nm [Fe(HB(tz)3)2]/Al junction upon thermal cycles under a constant bias voltage of 3 V with a 

temperature ramping rate of ±20 °C/min range between 50 and 80 °C. During a non-stop, 2-

weeks long electrical measurement in ambient conditions (without any protection of the 

environment), we recorded >10.000 resistance switching cycles between the high spin (low 

current intensity) and low spin (high current intensity) molecular spin states in our 

ITO/[Fe(HB(tz)3)2]/Al junction (Fig. 2.20). Astonishingly, the junction retained the resistance 

switching property after such a large number of switches. These findings provide a direct proof 

that SCO-based electronic devices could have an unprecedented long-term stability, with 

careful device integration and measurement condition controls. Even if the ON/OFF ratio (ca. 

3) is remarkably stable all along these switching cycles, it is fair to mention that at the beginning 

of the experiment, the current intensity was switched between ca. 12 and 4 nA, which has been 

reduced by a factor of two towards the end of the cycling (i.e. 6 and 2 nA).  
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Figure 2.20: (a) Current switching cycles between the HS (low current intensity) and LS (high 

current intensity) states in a ITO/[Fe(HB(tz)3)2]/Al large-area vertical junction during >10.000 

switches under a constant bias voltage of 3 V with a temperature ramping rate of ±20 °C/min 

range between 50 and 80 °C. Zooms are also shown on the 95th – 105th (b), the 995th – 1005th 

(c) and the 9995th – 10005th (d) switching events. 

In Figure 2.20, one can note some noise of the current intensity towards the end of the 

long-time measurement. This phenomenon is related most likely to a slight movement of the 

measurement tips during the experiment. To remove the doubt that this noise comes from the 

junction itself, we repositioned properly the probes and we carried out another successive I-T 

characterization. These resistance switching cycles are shown in Figure 2.21. As we can see, 

the junction retained the current switching property for more than 800 switches and there is no 

more spurious ‘noise’ during this measurement. Note that we observed that the degradation of 

the current seems to be irreversible during the long-time measurement, no ‘relaxation/recovery’ 

phenomenon happened in the junction during this kind of measurement. This indicates that heat 

together with electric stress (electric measurement) may induce a degradation to the electronic 

device. As we shall see later, this phenomenon is strongly dependent on the device architecture. 

Notably, we found similar, but much faster degradation in 3-terminal devices (SCO-OFET 

transistors), which we will discuss more in chapter 3. 
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Figure 2.21: a) Current switching cycles between the HS and LS states in a 

ITO/[Fe(HB(tz)3)2]/Al large-area vertical junction during >800 switches under a constant bias 

voltage of 3 V with a temperature ramping rate of ± 5 °C/min range between 45 and 85 °C. (b) 

A zoom on the 101th – 104th switching events. 

2.4.4 Charge transport mechanism underlying the resistance-switching phenomenon 

2.4.4.1 General considerations 

In bulk SCO materials, the dominant transport mechanism is charge carrier hopping via 

localized electronic states. This process is also termed polaron hopping and corresponds, in 

essence, to redox phenomena between neighboring molecules. Hopping through “thick” films 

(>ca. 50 nm) takes place thus in numerous steps and involves a substantial nuclear motion 

(relaxation) at each hopping event. This type of conduction is therefore generally associated 

with low mobility and pronounced voltage and thermal activation [99]. Such charge transport 

by polaron hopping is customary in organic electronics and has been investigated also for many 

SCO systems, including bulk materials, nanoparticles and films [100, 101, 56]. The general 

picture, which emerges from these experiments, is a moderate effect of the spin state of the 

molecule on the conductivity (less than 1-2 orders of magnitude change), due to the relatively 

small, and sometimes opposed, variation of hopping parameters upon the SCO 

(interatomic/intermolecular distances, vibrational frequencies and reorganization energies). In 

all reported cases, the LS state appears more conducting, which was ascribed to the higher 

phonon (i.e. hopping) frequencies of the LS molecules [102], but it was predicted that there 

might be exceptions to this general trend [101, 103]. 
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In the opposite size limit, charge transport is governed by direct tunneling from one 

electrode to the other. This mechanism is limited by the localization of the electron wave 

function to junctions below approx. five nm thickness [99]. This type of charge transport 

concerns essentially single molecule SCO junctions, which have been extensively investigated 

by scanning tunneling microscopy (STM) and quantum chemical calculations in the past decade 

[104-112]. The general picture, which emerges from these studies, is a very significant spin-

state dependence of the tunneling current, which arises from the concomitant changes of barrier 

height and barrier length upon the SCO event. In general, the HS state appears more conducting. 

This was attributed to the sizeable decrease of the HOMO-LUMO gap when the ligand field 

decreases [110]. We shall note, however, that SCO in molecular junctions was achieved in 

general when strong electronic interactions between the electrode(s) and the molecule(s) were 

prevented [107, 112]. In this weak coupling limit, a simple orbital-alignment scheme becomes 

questionable as the junction exhibits Coulomb blockade behavior (i.e. charging). 

Besides these opposite (bulk and molecular) size limits, there have been also reports on 

SCO devices operating in the “intermediate” range of charge transport (between ca. 5 and 50 

nm) [64, 73-[], 104]. The transport mechanism in these cases is usually unclear and may include 

resonant tunneling (via one or more localized sites), field emission, directed inelastic hopping, 

etc. 

In the previous investigation of the charge transport in ITO/[Fe(HB(tz)3)2]/Al junctions 

(with ca. 100-200 nm thickness) two working hypothesis have been proposed [58], according 

to which the transport may be either injection-limited or bulk transport-limited. The transport 

mechanism in devices made of such low mobility materials is often discussed through the 

analysis of the thickness dependence of current density vs. electric field plots: the lack of 

thickness dependence indicates an injection-limited transport, whereas a pronounced thickness 

dependence hints for bulk-limited transport. Indeed, in the ITO/[Fe(HB(tz)3)2]/Al devices a 

thickness dependence can be readily observed (Fig. 2.22). Hence, one can infer a mostly bulk-

limited mechanism. In support of this idea, the conductivity of the bulk powder was also 

measured (Fig. 2.23) and the material displayed extremely low conductivity in the low-

frequency DC limit (ca. 10-14 S/cm at 313 K). In agreement with the observations made with 

the junctions, the conductivity of the powder is also higher in the LS state, although the ON/OFF 

ratio in the powder is extremely low (< 2). 
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Figure 2.22: Current density vs. the average electric field (E – Ebi, where Ebi is the estimated 

built-in potential of ~0.3 V) for two ITO/[Fe(HB(tz)3)2]/Al junctions with 100 and 200 nm SCO 

thickness, respectively [58]. 

 

Figure 2.23: AC conductivity vs applied frequency for the bulk powder [Fe(HB(tz)3)2]. (a) 

Frequency dependence of the AC conductivity at various temperatures. (b) Temperature 

dependence of the AC complex conductivity at 1 Hz [58].  

Despite these general considerations and experimental findings, which point toward a 

bulk-limited transport in our junctions, we cannot discard the role played by the electrode-

molecule interfaces. Indeed, the key point here is that we seek for the dominant transport 

mechanism underpinning the resistance-switching behavior, which may not be the same as the 

transport mechanism, which governs the absolute value of the current intensity. In particular, 



63 

 

recent DFT calculations showed that the frontier molecular orbital energies change drastically 

upon the SCO in [Fe(HB(tz)3)2] [117]. As shown in Figure 2.24, the HOMO−LUMO gap 

significantly decreases when going from the LS (4.4 eV) to the HS (2.8 eV) state, which results 

obviously also in a change of the injection barriers. This result, which is basically a consequence 

of the drastically different ligand-field values in the LS and HS states, is in agreement with 

previous experimental and theoretical data on various SCO molecules. (N.B. As discussed in 

[117], strictly speaking, the key quantity here is not the MO energy of the neutral molecules, 

but the free energy change associated with their reduction/oxidation. Nevertheless, a simple 

reasoning in terms of frontier molecular orbital energies provides here a useful qualitative 

picture.) 

 

Figure 2.24: Simplified scheme showing the HOMO−LUMO gap for [Fe(HB(tz)3)2] in the HS 

and LS states vs. the electrode work functions (adapted from [117]). 

In order to get deeper insight into the role of molecule-electrode interfaces in the 

resistance switching property of the junctions, we designed different devices aiming for the 

modulation of the injection barrier(s) between the SCO layer and the electrode(s). There are 

several experimental possibilities to modulate electron/hole injection properties of our devices. 

In a first attempt, we tried to introduce interlayers between the electrodes and the SCO layer – 

both for the ITO/SCO and SCO/Al interfaces. To achieve this goal, different hole-injection 

materials (PEDOT:PSS, poly(3,4-ethyllenedioxythiophene) polystyrene sulfonate and HAT-

CN, hexaazatriphenylenehexacarbonitrile) had been inserted in the ITO/SCO interface. On the 

other hand, we also tried to insert a Liq (8-hydroxyquinolinato lithium) interlayer at the SCO/Al 

interface. Besides, systematically the ‘standard device’ (ITO/SCO/Al) was also fabricated in 

the same batch for comparison. However, these multilayer junctions, including even the 
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‘standard device’ did not show the expected characteristics in terms of the I-V and I-T 

characteristics and, unfortunately, we could not make a clear conclusion on these series of 

devices. (The results are shown in the Annex2.X.) The reasons for this failure are still not clear, 

but we believe that it can be linked to the fact that a different batch of SCO powder was used 

in this series of experiments, which apparently contained an unexpectedly high amount of 

impurities. On the other hand, we have also tried to play with the nature of the metal electrode 

(and therefore its work function), which will be described in the next section. 

2.4.4.2 Fabrication and characterization of ITO/SCO/Ca junctions 

Aluminum and calcium are frequently used as electrodes in organic electronics. These 

two metals are characterized by very different work functions (WFAl = 4.3 eV, WFCa = 2.9 eV) 

and allow thus for largely different device characteristics in terms of electron injection 

properties. Al is reasonably stable in air, but Ca would be quickly oxidized in ambient 

environment and encapsulation, isolating the device completely from the external environment, 

becomes mandatory. Based on the established junction structure, we have put in place a simple 

encapsulation protocol (Figure 2.25). 

 

Figure 2.25: (a) Fabrication procedure of ITO/[Fe(HB(tz)3)2]/Ca junctions. (b) Schematic 

drawing of the junction side section (left) and photograph of the encapsulated device (right). 
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Substrate cleaning, SCO deposition and SVA treatment are the same as we introduced 

before in section 2.3.1. For the top electrode, Ca was evaporated at a vacuum pressure of 2.6 × 

10−7 mbar at a rate of 2.7 Å s−1. Contrary to the Al devices, the Ca devices were encapsulated 

by an epoxy resist to protect them from oxidation. After the Ca electrodes were deposited, the 

junctions were transferred from the evaporator to a glove box (O2/H2O < 5 ppm) and a thin 

layer of epoxy resist was coated carefully around the junctions, taking care to not contaminate 

the SCO layer. A clean glass slide was placed on top of the epoxy layer, which was then cured 

under UV irradiation for 20 min. Finally, silver paste was attached to the ITO electrodes to 

establish good electrical connection. 

The ITO/[Fe(HB(tz)3)2]/Ca junctions were first characterized for their room temperature 

resistance. Table 2.3 reports the resistance data obtained as the average of three measurements 

under 1 μA current bias for 6 junctions (on 1 chip). None of the junctions were short-circuited 

and the mean resistance value was 5.8 ± 4.6 kΩ for these 6 devices. The resistance data shows 

a much higher standard deviation than Al-electrode junctions, perhaps due to high penetration 

of active metal Ca and/or a certain degree of oxidation of the electrode (despite the protection).  

Table 2.3: Comparison of the room temperature electrical resistance of a batch of ITO/100 nm 

[Fe(HB(tz)3)2]/Ca junctions 

Device n° 1 2 3 4 5 6 
Resistance (kΩ) 2.3 3.8 12.5 1.9 3.5 10.6 

    

Figure 2.26 depicts representative I-V and I-T characteristics of an encapsulated ITO/100 

nm [Fe(HB(tz)3)2]/Ca junction. These measurements were conducted in ambient atmosphere 

without additional protection. Figures 2.26a and b refer to the first and second successive 

thermal cycles, respectively. The ON/OFF current ratio reaches a value of 50, which is 

comparable in magnitude with the devices made with Al cathode. The I–V curves are also 

similar for the two types of devices, but the current intensity is higher in the Ca-based devices. 

We can thus conclude that decreasing the electron injection energy barrier between the cathode 

(from Al to Ca) and the SCO material, as expected, electron injection is facilitated. However, 

this does not affect considerably the resistance switching properties. This finding seems to 

corroborate our hypothesis that the resistance switching phenomenon is related to the hopping-

type charge transport in the SCO film. Different explanations, such as Fermi-level pinning at 

the molecule–electrode interface [118] and/or the pinning of the spin states of molecules 

adsorbed on the electrodes  [23] may account for the lack of influence of the electrode–molecule 
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interface on the resistance switching properties. In addition, one cannot exclude that the 

conduction of the junction might be dominated by hole transport. 

Quite predictably, the device stability was significantly improved (Figure 2.26) when 

compared to the non-encapsulated devices (Figure 2.13), even though Ca is much more reactive 

than Al. This indicates that reaction with the atmosphere, presumably from exposure to oxygen 

and water, is a non-negligible co-factor leading to device degradation and failure. More 

surprisingly, the spin transition in the Ca-based devices is associated with a much wider 

hysteresis loop than for the Al-based devices or for the neat SCO films of [Fe(HB(tz)3)2]. We 

speculate that this phenomenon may be linked to the less effective dehydration of the SCO film 

in the encapsulated device following the water vapor annealing step. 

 

Figure 2.26: Electrical characteristics of an ITO/100 nm [Fe(HB(tz)3)2]/Ca junction. The results 

of two successive thermal cycles are showed in (a) and (b). Left: I-V curves recorded at 20 °C 

and 100 °C and then again at 20 °C at rates of ± 100 mV/s. Right: the log I- T curves recorded 

with an applied bias of 5 V at scan rates of ± 10 °C/min (a) and ± 5 °C/min (b). 
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2.5 Fabrication and characterization of NiFe/SCO/Co junctions 

The interest in the use of the spin degree of freedom of electrons in electronic devices 

(spintronics) has continuously increased since the discovery of the tunneling magnetoresistance  

and giant magnetoresistance phenomena. These (and related) effects have been explored in 

various material combinations and led to a revolution in the information storage technologies 

(e.g. MRAM) and hold promises for further revolutions in logic devices [120]. The interest in 

organic materials (organic spintronics) was mainly initiated by the expected longer spin lifetime 

of spin polarized carriers and higher working temperatures [121, 122]. On the other hand, it has 

been recently unveiled that new spintronics tailoring opportunities, unachievable with inorganic 

materials, could arise from the chemical versatility brought by molecular engineering [123, 

124]. In particular, it was shown that the molecular structure, the local geometry at the 

molecule-electrode interface and more importantly the magnetic metal/molecule hybridization 

could strongly influence the interfacial spin properties [125]. 

In this context, the multifunctionality of SCO materials represent a particular interest as 

the spin-state switching is associated with the change of the HOMO-LUMO gap, the local 

magnetic moment, the dielectric permittivity as well as the molecular volume, which can all 

provide powerful means to tune the spin polarization at the metal-insulator interface and thus 

to tune the overall device properties. This kind of use of SCO molecules remains up to now 

completely unexplored in macroscopic devices – albeit many efforts from different teams 

working in the SCO field. To our best knowledge the only report on spin-dependent transport 

in a molecular-scale SCO junction was published by Aragones et al. [108, 109]. The authors 

have demonstrated this phenomenon both experimentally and computationally for molecular 

wires made of SCO Fe(II) complexes bridging an Au electrode and a ferromagnetic Ni electrode.  

In order to explore possible magnetoresistance phenomena and to work towards SCO 

junctions displaying spin polarized currents, we decided to transform the ITO/[Fe(HB(tz)3)2]/Al 

structure into a NiFe/[Fe(HB(tz)3)2]/Co junction with magnetic electrodes (Figure 2.27a) and 

characterize its (magneto)transport properties. This work was carried out in a collaboration with 

Aurelian Rotaru (University Stefan cel Mare of Suceava, Romania). 
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Figure 2.27: (a) Schematic structure, (b) fabrication procedure and (c) photo and optical 

microscopy image of a NiFe/[Fe(HB(tz)3)2]/Co junction. 

Figure 2.27b depicts the fabrication procedure of the large-area multilayer device 

NiFe/[Fe(HB(tz)3)2]/Co. Substrate cleaning, SCO deposition and SVA treatment is the same as 

we introduced before in chapter 2.3.1. [Fe(HB(tz)3)2] films with various thickness (30, 50, 75 

and 100 nm) had been used. NiFe was deposited by electron-beam evaporation technique 

whereas Co was deposited by thermal evaporation. We used an evaporation mask to form a 

patterned crossbar junction with side length of ca. 260 µm and 350 µm (see Fig. 2.27c). A first 

series of devices fabricated either with NiFe and Co top electrodes were systematically short-

circuited, even for the thickest SCO layers. Nevertheless, after careful optimization of the 

deposition conditions, we were finally able to fabricate junctions without short-circuits using 

Co top electrodes.  

The magnetic properties of the junctions were investigated at 10 K and 300 K (Figure 

2.28). The magnetic hysteresis of DC magnetization vs. applied magnetic field curves reveal 

the expected magnetic behavior of a spin valve comprising a non-magnetic layer between two 

ferromagnetic layers. For the positive field values, the two magnetizations are parallel (the 

saturation region). When the field is reversed, due to the different coercive behavior of the two 

electrodes, one will switch first and as the field increased further, the magnetization of the other 

electrode will follow to align along the magnetic field. As it can be expected, the coercive field 

of the multilayer at 300 K is less than that at 10 K.  
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Figure 2.28: Magnetization curves (major hysteresis loops) recorded on plain layer (NiFe/10 

nm SCO/Co) at various temperatures at 300K and 10K. 

After confirmation of their magnetic properties, the NiFe/[Fe(HB(tz)3)2]/Co junctions 

were characterized for their room temperature electrical resistance. The properties of a 

representative batch of spintronic junctions are summarized in Table 2.4. The resistance data 

were obtained as the average of three measurements under 1 μA current bias for 8 junctions (2 

junctions in each thickness). As we can see from the table, unlike the ITO/SCO/Al junctions, 

when the thickness of SCO layer in this type of junctions is relatively low (30-75 nm), the 

electrical resistance equals the electrical resistance of the electrodes (~0.2 kΩ), i.e. they are 

short-circuited due to the high penetration of Co in the SCO thin film. On the other hand, 

junctions with 100 nm [Fe(HB(tz)3)2] as the active layer, afforded for higher electrical 

resistance, but the resistance was rather different from device-to-device. It is important to 

underline that these measurements were carried out in the absence of an applied magnetic field. 

We have also tried to establish the magnetoresistive properties of these junctions, but we could 

not observe any magnetic field effect on the device resistance (for the 100 nm thick junctions). 

Table 2.4: Comparison of the room temperature electrical resistance of a batch of NiFe/ 

[Fe(HB(tz)3)2]/Co junctions with different thickness of SCO layer. 

Thickness of SCO (nm) 30 30 50 50 75 75 100 100 

Junction N° 1 2 3 4 5 6 7 8 

Resistance (kΩ) 0.2 0.2 0.2 0.2 0.2 1.2 900 100 
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The I-V characteristics of the two working junctions (N°7 and N°8) with 100 nm 

[Fe(HB(tz)3)2] layer are shown in Figure 2.29. Junction N°7 exhibits a hysteresis of current 

between voltage sweeps up and down. An interesting finding is that for sweep rates below ca. 

20 mV/s, the I-V characteristic becomes reproducible and rate-independent. The large hysteresis 

of current vs. voltage indicates likely the existence a large amount of charge carrier traps in this 

junction. Compared to junction N°7, junction N°8 exhibits a reduced hysteresis and more 

reproducible I-V characteristics, no matter what the voltage sweep rate is. Since the junctions 

N°7 and N°8 belong to the same chip, the very different I-V characteristic indicate 

heterogeneities in the deposits (e.g. SCO film morphology, Co penetration, etc.). Here it is 

worth to notice that the crossbar area of these junctions is considerably smaller than that of the 

ITO/SCO/Al junctions (0.09 mm2 vs. 3 mm2), which may become an important factor for the 

device-to-device reproducibility.  

 

Figure 2.29: Room temperature I-V characteristics of NiFe/100 nm [Fe(HB(tz)3)2]/Co junctions 

for different voltage sweep rates: (a) junction N°7 and (b) junction N°8. 

We finally tried to clarify the interplay between the SCO phenomenon and the electrical 

properties of the junctions via their I-T characteristics. Figure 2.30 depicts some representative 

results. In most cases, the current keeps increasing during the whole temperature range of the 

thermal cycles, which can be mostly attributed to ordinary thermal activation of the conductance. 

Despite many efforts, we could unfortunately not see any I-T characteristics, which could be 

clearly assigned to the SCO. This behavior of the NiFe/SCO/Co junctions in comparison with 

the ITO/SCO/Al and ITO/SCO/Ca devices is not yet understood. We believe it may be linked 

to the higher work function of the magnetic electrodes (ca. 5 eV), but this issue will require 

further investigations. 
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Figure 2.30: Representative I-T characteristics of NiFe/100 nm [Fe(HB(tz)3)2]/Co junctions 

(measured at 2 V applied bias with temperature scan rates of ±2°C/min). 

2.6 Conclusions and perspectives 

High quality thin films of the spin crossover complex [Fe(HB(tz)3)2] have been 

successfully deposited by high-vacuum thermal evaporation  with an accurate control of the 

film thickness. The as-deposited amorphous films could be crystallized using solvent-vapor 

annealing. From a combination of GI-XRD, variable-temperature UV-vis spectroscopy, optical 

microscopy and AFM measurements we concluded that water vapor allows for a highly oriented 

crystalline structure, whereas octane vapor annealed thin films showed texture that is more 

random and SCO that is less reproducible, when compared to water vapor treated films. Few 

hundreds micrometers size, two-dimensional ‘branch-like’ structures were observed regularly 

in both water/octane vapor annealed thin films. Despite this, the thin films still exhibit high 

quality with relatively low roughness (RMS 1-2 nm), they are pinhole free and continuous.  

The [Fe(HB(tz)3)2] thin films had been integrated in two-terminal, large-area, multilayer 

electronic devices, aimed for resistance switching functionality. Robust, high resistance 

switching ON/OFF ratios, up to three orders of magnitude, had been observed in 

ITO/[Fe(HB(tz)3)2]/Al structures. Because of the non-linearity of the I-V curves, the switching 

ratios depend, however, on the applied voltage bias. A detailed stability investigation of the 

devices upon temperature cycling as well as electric stress (voltage bias) had been carried out. 
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First, we found a good device-to-device reproducibility of the junction resistances (and I-V 

curves). On the other hand, the resistance switching amplitude (i.e. the I-T curves) are less 

reproducible form junction to junction, with ON/OFF ratios spanning from (less than) 1 to (at 

most) 3 orders of magnitude. In this context, we must note that some uncertainty persists as for 

the quality of the starting SCO powder and other possible sources of impurities, which may 

arise from the device fabrication. It would be important to establish a robust protocol in this 

regard as well. Second, it turned out that the devices preserve their electrical properties in 

ambient storage conditions over extended periods (1 year). Third, we demonstrated a 

remarkable endurance to a large number of resistance switching events (> 10,000) in ambient 

conditions, which is a crucial milestone, towards the ‘real-world’ applications. Key to this 

switching stability is a reduced working temperature range (< ~80°C) and constant voltage bias. 

As for the origin of the resistance switching in these junctions, we have investigated more in 

detail the possible role played by the electrode injection barriers. In particular, we could 

compare devices with Al and Ca cathodes. Despite the very different work function of these 

two metals, we found comparable device characteristics. This indicates that the resistance 

switching in these devices is most likely governed by the intrinsic switching of bulk 

conductivity of the SCO material. One interesting perspective of this work would be to correlate 

the charge transport properties with crystalline orientation of the films. One possibility here 

would be to use current-in-plane junctions where the film of [Fe(HB(tz)3)2] is evaporated on 

planar “nanogaps”. Opposite to the multilayer junctions, the current would flow in this case 

perpendicular to the main crystallographic axis of the SCO compound. Another important 

perspective would be the investigation of multilayer junctions with different film thicknesses, 

down to a few nanometers in order to reach a charge transport regime, which is not dominated 

by the bulk transport properties of the SCO film.  

Finally, we have made the first steps towards the fabrication of a spin valve device 

wherein the SCO layer is sandwiched between two magnetic electrodes. We were able to 

fabricate NiFe/[Fe(HB(tz)3)2]/Co junctions with ca. 100 nm SCO layer thickness, which 

displayed the expected I-V and magnetic characteristics. At this stage, however, we could not 

yet evidence any magnetoresistance property neither a clear effect of the SCO on the device 

electrical properties. Nevertheless, we believe these devices represent a promising platform for 

further work enabling us to come up with new spintronic material combinations and 

functionalities. 
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Chapter 3    Integration of the spin crossover complex [Fe(HB(tz)3)2] 

into three-terminal electronic devices 

 This chapter is devoted to the investigation of the possibility to integrate the SCO 

molecules into organic field-effect transistor (OFET) devices in order to modulate the device 

characteristics via the SCO phenomenon. To this aim we used the benchmark SCO film 

[Fe(HB(tz)3)2] already introduced in Chapter 2 in the context of resistance switching devices. 

It is important, however, to remark the fundamental conceptual difference of these SCO-OFET 

devices in comparison with the resistance-switching junctions. Indeed, whereas the SCO 

compound was the active layer in the junctions, here we designed different three-terminal 

geometries wherein the SCO layer is a complementary element aimed to interact with the active 

organic semiconductor layer. The work described below was conducted in close collaboration 

with Dr. Isabelle Séguy in LAAS-CNRS. 

3.1 General considerations 

 In such an era that information technologies develops rapidly, microelectronics have 

provided great convenience to human's daily life. Field-effect transistors (FETs) are one of the 

basic, but important components of various electronic products, such as computers, mobile 

phones, televisions and cameras. Traditional FETs are built on the basis of inorganic 

semiconductors, in most cases using silicon. However, several other material platforms have 

been also developed. In particular, the fast development of novel organic semiconductors 

opened the era of organic electronics, including organic light emitting diodes (OLEDs), organic 

photovoltaics (OPV) and organic field-effect transistors (OFETs) among others. The main 

advantages of OFETs are as follows [126]: (1) A wide range of materials is available through 

synthetic chemistry. Various types of compounds can be synthesized according to the end-user 

requirements to achieve different performance. (2) Various thin film deposition technologies 

can be used including both conventional (e.g. vacuum evaporation) and non-conventional (e.g. 

printing, spraying) methods. (3) The materials are lightweight and can be used in flexible 

devices. (4) The size of the device can be adjusted from large area to the nanoscale - potentially 

reaching the single molecule level [127]. (5) Perhaps most importantly, OFETs exhibit more 

versatile application possibilities than the traditional FETs. For example, they have been used 

in solar cells, biochemical sensors, electronic paper and flexible flat panel displays, etc [128]. 



74 

 

As such, developing new functions and using various functional materials in OFETs is an 

increasingly important research line [129].  

 Among these materials, the integration of photochromic molecular switches (e.g. 

azobenzene, spiropyran) is already in an advanced stage and provides therefore strong 

inspiration for our work with SCO compounds. As shown in Table 3.1 (adapted from [130]), 

various photochromic molecules had been integrated in different location in organic transistors 

with the aim to use light irradiation either to modulate/tune the transistor properties, or to 

achieve novel functionalities (e.g. non-volatile memory). The two isomers of such 

photochromic molecules differ in various physical properties including their steric 

conformation, dipole moment and HOMO-LUMO energy levels. These different properties 

have been then considered to modulate the injection, transport, trapping, scattering of charge 

carriers in the conducting channel as well as to switch the capacitance of the dielectric layer in 

the OFET. 

Table 3.1: Selected examples of photochromic molecules used in OFETs [130]. 

 

 This research about functional OFETs with photochromism can be extended to other 

functional molecules, such as SCO molecules, which are known to exhibit bistable physical 

properties, including huge variations of frontier orbital energies, dielectric permittivity, 

mechanical properties, dipole moment, and so forth. It is important to note that, at present, due 

to the low conductivity of SCO compounds [131, 132], they cannot be directly used as 

conducting channel in transistors. However, as we shall see later, the performance of OFETs is 

strongly related to various physical phenomena taking place at interfaces (metal/semiconductor, 

dielectric/semiconductor), which provide numerous possibilities for the effective integration of 
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SCO molecules. Indeed, as already discussed in Chapter 1, the dielectric and mechanical 

properties as well as dipole moment changes due to the SCO have already been considered in 

the context of three-terminal devices based on either graphene [133-136] or ferroelectric 

materials [137, 138], but not in OFETs yet. In this Chapter, following a brief general 

introduction on OFETs, we devise different fabrication strategies to introduce our SCO film 

[Fe(HB(tz)3)2] in between the oxide dielectric and the organic semiconductor layer aiming to 

act both on the capacitance of the dielectric layer and the transport of charge carriers in the 

channel. We shall remark that the first effect is quite predictable on the basis of the dielectric 

properties of the SCO material. On the other hand, the interfacial properties modulating the 

charge transport are much less obvious to foresee as they can affect the carrier mobility via 

numerous mechanisms (trapping, scattering, etc.), whose disentanglement is not 

straightforward. 

3.2 Introduction to OFETs 

3.2.1 Basic structure of OFETs 

An organic field-effect transistor (OFET) or organic thin-film transistor (OTFT), is made 

of a source electrode (S), a drain electrode (D), an organic semiconductor (OSC), a dielectric 

and a gate electrode (G). The source and drain electrodes allow the injection of charge carriers 

into or from the semiconductor. The potential difference between source and drain will allow a 

current to flow in the semiconductor at the OSC/dielectric interface, which is called the 

conduction channel. The gate electrode makes it possible to modulate the quantity of charge 

carriers injected into the OSC and therefore the current between source and drain. The dielectric 

acts as an insulator by preventing charges in the conduction channel at the OSC/dielectric 

interface from migrating to the gate electrode. 

 The different layers of the organic thin film transistors can be arranged in four basic 

configurations as shown in Figure 3.1. The position of the source and drain electrodes with 

respect to the semiconductor makes it possible to distinguish whether it is a top contact (TC) 

(Figures 3.1a and c), or, vice versa, bottom contact (BC) (Figures 3.1b and d) configuration. 

Likewise, the relative positions of the gate electrode and the dielectric with respect to the 

semiconductor make it possible to differentiate the bottom gate (BG) configurations (Figures 

3.1a and b) from the top gate (TG) configurations (Figures 3.1c and d). 
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Figure 3.1: The different configurations of organic transistors (a) bottom gate/top contacts (BG/ 

TC); (b) bottom gate/bottom contacts (BG/BC); (c) top gate/top contacts (TG/TC); (d) top gate/ 

bottom contacts (TG/BC). 

        Depending on the application, the materials and manufacturing processes, one or the other 

of the geometries will be preferred. Notably, the deposition of a dielectric on a semiconductor 

can be complicated since the solvent and the annealing process used must not damage the active 

layer below. Hence, the BG configuration is generally preferred from a manufacturing point of 

view because the OSC is deposited in the last step(s). The position of the source/drain contacts 

with respect to the semiconductor can also play a role in the performance of the transistors. The 

BC configuration generally allows better channel resolution compared to a top contact geometry. 

In fact, because of the high sensitivity of the active semiconductor layer, it is complicated to 

use high-resolution photolithography to deposit the contacts after deposition of OSC, due to the 

compatibility of solvents. Hence, printing or evaporation techniques must be used, which do 

not usually allow a resolution of less than 1 μm [139].  

        The transistors studied during this thesis have a bottom gate (BG) configuration with either 

bottom contact (BC) or top contact (TC). The OSC in this geometry is in the top layer thus an 

encapsulation will be needed to avoid the degradation of the semiconductor, which is very 

sensitive to the environment. 
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3.2.2 Operation mechanism of OFETs  

        The OFET is a device that can achieve controllable off/on states. The gate 

electrode/dielectric/OSC part of the device is considered as a capacitor. The operation of OFETs 

involves two voltages: one between the gate and the source VG and another between the drain 

and the source VDS. When the gate voltage (noted as VG or VGS in the literature) is zero, no 

charge is induced in the active layer and the device is off. The corresponding source-drain 

current (IDS) is the OFF state current. Then, by applying a voltage VG, a charge builds up in the 

electrode/dielectric and dielectric/OSC interfaces (see Fig. 3.2 for the charge accumulation 

scheme in a p-type OFET). The additional positive charges accumulated at the dielectric/OSC 

interface are supplied by the source and drain electrodes. A conducting channel forms at the 

dielectric/OSC interface and charges can move from source to drain by applying a second 

voltage VDS (the transistor is in its ON state). This channel is defined by two quantities, the 

length L between the source and the drain as well as its width W. The source-drain voltage (VDS) 

controls the value of the source-drain current (IDS). The control of the charge carrier density of 

the conductive channel is achieved by applying an appropriate gate voltage (Figure 3.2). One 

can see it as a “valve” of the conductive channel. Hence, if a certain voltage (VG) is applied to 

the gate, the induced electric charges can participate to the conduction under the appropriate 

VDS. Therefore, IDS can be modified by adjusting VG. 

 

Figure 3.2: Scheme of a typical bottom-gate top-contact p-type OFET. 

3.2.3 Basic parameters of OFETs 

        The performance of OFETs is evaluated through several parameters, including threshold 

voltage, current switching ratio, subthreshold slope and so forth. These parameters can be 

calculated from the so-called “transfer curve” (IDS-VG) and “output curve” (IDS-VDS). In this 



78 

 

section, we will first introduce the definition of these two characteristic curves of OFETs, 

followed by basic performance parameters. 

        The electrical characteristics of the transistor refer to the measurement of the drain current 

as a function of the gate or drain-source voltage for a fixed drain-source or gate voltage, 

respectively. These two types of curves are shown in Figure 3.3. Generally, the transfer 

characteristics (Figure 3.3a) are measured at low and high VDS corresponding, respectively, to 

the linear and saturated regime of the transistor. These curves allow the extraction of important 

parameters of the transistor such as the threshold voltage VT, subthreshold slope SS, the ratio 

ION/IOFF and so forth. The output characteristics (Figure 3.3b) are used to determine the contact 

resistances between the source/drain electrodes and the semiconductor and therefore to quantify 

the charge injection problems that may result. 

 

Figure 3.3: Electrical characteristics of an OFET: (a) Transfer curves IDS = f(VG) for a constant 

VDS value. (b) Output curves IDS = f(VDS) for four different constant VG values [142]. 

 The general equation of organic transistors has been adapted from the classical MOSFET 

theory and will notably allow the extraction of several parameters of the transistor in strong 

accumulation regime (i.e. when VG> VT) [140]: 

𝐼DS = 𝑊/𝐿 ∙ μeff ∙ 𝐶 [(𝑉𝐺 − 𝑉𝑇) 𝑉𝐷𝑆 – 1/2 ∙ 𝑉𝐷𝑆
2]                         Eq.3.1 

where L and W are the length and width of the conductive channel, μeff the effective mobility, 

C is the capacitance of the dielectric layer and VT is the threshold voltage.  

 The effective mobility (µeff) is one of the most important parameters to measure the 

performance of organic semiconductors in field effect transistors. It is defined as the drift rate 

of charge carriers (holes and electrons) under a certain electric field, which determines the 
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switching speed of the device. The mobility is affected by many factors, such as the type, 

crystallinity and purity of organic semiconductor materials, grain size, conductive channel L/W 

ratio, contact between semiconductor layer and source/drain electrodes, the interface between 

the dielectric layer and the active layer, the nature of the dielectric layer and the device 

configuration. Normally, if the intrinsic mobility of the semiconductor material is greater, the 

effective mobility of the corresponding device will also be greater. The value of mobility can 

be calculated for the linear and the saturated regimes as: 

µlin =
𝐿

𝑊𝐶𝑉𝐷𝑆
· (

∂𝐼DS

∂𝑉G
), applicable at (VDS<VG-VT)                             Eq. 3.2 

𝜇𝑠𝑎𝑡 =
2𝐿

𝑊

1

𝐶
(

𝜕√|𝐼𝑆𝐷|

𝜕𝑉𝐺𝑆
)

2

, applicable at (VDS>VG-VT)                           Eq. 3.3 

if the following assumptions are verified: (1) the transverse gate electric field is much greater 

than the source-drain electrical field and (2) the field mobility is carrier density independent. 

The threshold voltage VT is generally defined by the minimum gate voltage to be applied 

to observe a “significant” source-drain current. In reality, the notion of VT has been introduced 

by analogy with MOSFET transistors where it corresponds to the voltage VG necessary to go 

from the low inversion regime to the strong inversion regime. However, OFETs only work in 

accumulation and not in inversion [141]. Actually, the notion of VT for organic transistors being 

questionable, some people prefer to use the term “starting voltage” VON. This voltage is defined 

as the value of VG from which the drain current IDS begins to increase when observing a 

logarithmic scale transfer curve (Figure 3.4). Ideally, VON = 0 V, corresponding to an 

accumulation of charges as soon as the gate bias changes sign and becomes, for example, 

negative for a p-type OTFT. However, in reality, the presence of impurities in the OSC or at 

the OSC/dielectric interface can induce a shift in the starting voltage [142]. 

 The current switching ratio, ION/IOFF is defined by the ratio of the drain-source current IDS 

in the “on state” vs. the “off state” for selected values of VG and VDS. Devices with higher 

switching current ratios have better stability and anti-interference ability. The off state current 

is essentially a leakage current. If its value is large, it will make the device difficult to turn off, 

and at the same time, ION/IOFF will decrease. The level of the off state current is primarily related 

to the nature of the active layer. 

The subthreshold slope (SS) refers to how fast the current changes when the device 

switches from the off state to the on state. It is defined as: 
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SS = dVG/d(log(IDS))                                                 Eq. 3.4 

The unit is mV/decades. The subthreshold slope (SS) can reflect the quality of the 

interface between the insulating layer and the active layer in the device. The smaller the SS 

value, the faster the device switching speed and the smaller the gate voltage change required. 

 

Figure 3.4: Extraction of VT and VON from transfer curves in linear and semi-logarithmic scales 

[142].  

3.2.4 Stability of OFETs 

 In general, organic materials can be rather sensitive to various environmental (light, 

temperature, humidity, oxygen, etc.) and operational (voltage stress, etc.) parameters. This 

sensitivity can cause a change, sometimes premature, in the characteristics of the transistor. 

Obviously, it is important to have robust and reliable OFETs for the various possible 

applications such as active matrices and addressing circuits of sensors. A study of the stability 

of OFETs is therefore necessary for the future development of these technologies. As we shall 

see later, actually, this issue appears as the main bottleneck in our work as well. 

 The stability under voltage stress (or "bias stress") is an important aspect in accounting 

for the reliability of the transistor in the electronic circuit, which will be subjected to repeated 

and/or prolonged applied voltages. In order to observe the evolution of the characteristics of the 

transistor over time, an electrical stress consists of the application of a gate and / or drain voltage 

in a continuous or pulsed manner. Aging of OFETs is a ubiquitous problem, especially during 

prolonged operation of gate bias. It can result in a variation of the threshold voltage, a decrease 

in mobility, a degradation of the subthreshold slope and/or a decrease in the drain current in the 

on state (ION). Figure 3.5 shows an illustration of this point from the literature [143]. Note that 

temperature may also play a vital role for accelerating device degradation in this case. 
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Figure 3.5: (a) Transfer curves of PTAA transistors studied under repeated bias stress over a 

two weeks period. The gate bias during stress was -20 V and the temperature 140 °C. (b) The 

threshold voltages obtained from (a) presented as a function of time on a logarithmic scale. The 

fully drawn curve is a fit with a stretched-exponential time dependence [143]. 

 In the following, we will briefly introduce several factors that may induce degradation in 

OFETs. For most transistors, the most noticeable degradation observed following the prolonged 

operation of a voltage stress is a shift in the transfer curves, which comes from the shift of the 

threshold voltage. This degradation is generally attributed to trapping of charge carriers (i.e. 

holes for p-type OSCs) [145]. Indeed, the trapped charges, by electrostatic effect, will 

compensate the gate electric field. It is then necessary to use a higher gate voltage to obtain a 

similar current, which implies an increase in the threshold voltage and therefore a shift of the 

curves. Charge carriers can be trapped in the semiconductor, in the gate dielectric or at the 

OSC/dielectric interface. The origin of these traps is usually not well established, whether they 

are intrinsic structural defects or extrinsic impurities, or even a combination of the two. A 

decrease in mobility under voltage stress may also occur. This is usually attributed to the 

presence of polar dielectrics [146]. This is because when an electric field is applied, the dipoles 

present in the dielectric will align with this external field. The charge carriers in the channel 

will be attracted by these oriented dipoles. This results in an accentuated self-trapping of the 

channel charges. The situation becomes worse when the dielectric layer has a large dielectric 

constant.  

 In addition to electrical stress, the environment can also have an effect on change of the 

characteristics of OFETs. For example, several studies have shown that visible light can 

accelerate transistor relaxation after electrical stress [147]. Indeed, if a previously stressed 

transistor is illuminated at a wavelength corresponding to an energy greater than the exciton 
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energy of the OSC, then the electron-hole pairs generated will be able to recombine with the 

trapped charges and help the relaxation. Likewise, the energy generated by an increase in 

temperature can help the trapped charges relax [148]. On the other hand, temperature can also 

accelerate the degradation of transistors under voltage stress. This is illustrated in Figure 3.6, 

which shows the results of Pannemann et al., who exposed OFETs for up to 200 min at a 

constant temperature of 65 °C. They used a BG/BC structure with pentacene as a semiconductor, 

which is therefore directly in contact with the environment. Already after 20 min of exposure, 

they observed a degradation of both mobility and the ION/IOFF ratio by an order of magnitude. 

Besides temperature, humidity also plays an important role, in particular under electrical stress. 

It had been reported that the presence of humidity can lead to reduced mobility, but hydrophobic 

treatments can reduce its impact [149]. This degradation can be explained by the effect of the 

polar water molecules on charge carriers. As for exposure to air (and therefore oxygen), 

according to Häusermann and Batlogg [150], it may initially boost OSC performance, leading 

to increased mobility. However, trap states are then created in the semiconductor upon exposure 

to oxygen. This results in a degradation of the OSC, which can be further accelerated by 

exposure to UV light (e.g. sunlight), which can generate radicals and ozone. In general, the top 

gate configurations are preferred to protect the OSC from moisture and/or oxygen. For 

transistors in bottom gate configuration, another solution is to encapsulate the device. 

 

Figure 3.6: Diagrams of (a) µ–t and (b) on/off-ratio–t for an OTFT of W = 1000 µm and L = 

1.5 µm, exposed to a thermal treatment at 65 °C for 0, 2, 20, and 200 min. The BG/BC device 

comprised a 60-nm-thick pentacene layer and Ni-contacts. VDS = −20 V and VG = −10 V for all 

diagrams [149]. 
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3.3 Fabrication of SCO-based OFETs 

3.3.1 Device designs 

 In this section, we describe the fabrication of SCO-based transistor devices. For device 

fabrication, we used [Fe(HB(tz)3)2] thin films, which were introduced in Chapter 2. Three 

different OFET devices were designed and fabricated in either bottom gate – bottom contact or 

bottom gate – top contact configurations. The fabrication process is slightly different from one 

configuration to another. 

Device A is a BG/BC OFET, whose fabrication is shown in Figure 3.7a. It is made on a 

highly n-doped Si substrate (𝜌 ~ 10−3 𝛺.𝑚), which was then insulated by a thermally grown 

dielectric SiO2 layer (225 nm), on top of which the drain and source electrodes (10 nm Cr and 

50 nm Au) were patterned by lift-off using a 5 μm negative resist. In the next step a 

[Fe(HB(tz)3)2] film was deposited (with variable thicknesses between 5 and 30 nm), followed 

by the deposition of the OSC layer (with variable thicknesses between 20 and 100 nm). The 

OSC material was tetracene, synthesized and graciously provided for our experiments by Dr. 

André Gourdon and Dr. Andrej Jankaric in CEMES-CNRS. Finally, the device was 

encapsulated by an epoxy glue. In this Device A, the SCO layer acts as a dielectric together 

with the SiO2 layer. In order to verify its insulating nature as well as the capacitance switching 

at the SCO phenomenon, impedance spectroscopy measurements were conducted on a 

ITO/[Fe(HB(tz)3)2]/Al junction as a function of temperature. As shown by Figure 3.8a, the 

conductivity of the SCO film appears indeed extremely low, in good agreement with our 

previous observations on the powder sample (see Fig. 2.23 in Chapter 2). Equally important for 

our work, is the fact that the capacitance of the junction shows a drop at the spin transition 

temperature (Fig. 3.8b). The change is relatively small in contrast to some other SCO 

compounds [Lefter 2014, Bousseksou 2003], but very clear and reversible. As discussed above, 

this capacitance change provides scope for the modulation of the transistor characteristics via 

the SCO phenomenon. Nevertheless, in this configuration, one might also expect the SCO 

phenomenon alter the semiconductor – dielectric interfacial properties as well (e.g. charge 

trapping).  

Device B is also a BG/BC device, which was fabricated in a similar manner, but in this 

case, the SCO layer was deposited on top of the OSC layer (Fig. 3.7b). This configuration was 

inspired by the report of van Geest et al. [134] on SCO-graphene three terminal devices. 

According to these authors, the electrostatic effect of the SCO layer may have a substantial 
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impact on the active layer of the transistor even through a relatively thick spacer layer, which 

we tried therefore to explore through this device configuration. 

 

Figure 3.7: (a) The process scheme of bottom gate (BG) bottom contact (BC) OFETs with SCO 

as a dielectric (Device A). (b) The process scheme of bottom gate (BG)/bottom contact (BC) 

OFETs with SCO to investigate its electrostatic effect (Device B). (c) The process scheme of 

bottom gate (BG)/top contact (TC) OFETs with SCO as a dielectric (Device C). 

 Finally, we designed also a BG/TC configuration (Device C), which is shown in Figure 

3.7c. In this case, the SCO film takes part of the gate dielectrics (similar to Device A), but the 

source and drain electrodes are deposited on top of the OSC layer in the last step of fabrication. 

It is important to note that for this Device C we used benzohexacene as OSC, instead of 

tetracene. The reason for this change is that we did not succeeded in depositing top contact 

electrodes on tetracene. (This issue is still under investigation, but we believe at this stage that 

it is most likely linked to the different surface roughness of the OSCs.) 
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Figure 3.8: (a) Variable temperature conductivity spectra and (b) capacitance (10 kHz) of a 

ITO/[Fe(HB(tz)3)2]/Al junction extracted from impedance measurements. 

3.3.2 Experimental protocols 

Oxidized silicon wafers need to be cleaned before use. The main purpose is to remove 

organic contaminants (such as photoresist, organic solvents, grease, etc.), inorganic 

contaminants and particulate contaminants adsorbed on the substrate surface (Fig. 3.9). These 

contaminants will induce defects and roughness on the surface of the dielectric layer, which 

will affect not only the interface contact between the dielectric layer and the OSC layer, but 

also the surface conductivity, resulting in large leakage current, which will weaken the 

performance of the device. The main steps of cleaning are as follows: first, we place the Si/SiO2 

substrates (with source and drain already patterned for Device A and B) in a Teflon rack and 

sonicate it with acetone (VLSI, 99.5%) and ethanol (VLSI, 99.9%) for 10 min, respectively. 

After the sonication, the substrates were dried by a nitrogen gas flow, followed by a 10 min 

UV-ozone treatment to remove the residual solution. 

 

Figure 3.9: Optical microscope image of the surface of drain-source electrodes in a transistor: 

(a) pristine surface and (b) surface after cleaning. 
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 The first dielectric layer used in our devices is silicon dioxide (SiO2), which is an 

inorganic insulating material with appropriate dielectric properties. However, it is characterized 

by strong surface hydrophilicity and high surface free energy, which are not favorable to the 

adsorption of the organic layer on the substrate. In addition, the surface roughness of the 

dielectric layer has also a very important influence on the growth of the organic layer of the 

OFETs and its carrier transport performance. Modification of the dielectric layer can effectively 

reduce the free energy of the surface, improve the hydrophobicity of the surface, reduce the 

interface roughness and surface defects, etc., which are all beneficial to the transport of carriers 

in the conductive channel. Self-assembled monolayers (SAMs) can be formed on 

(semi-)conductor and dielectric surfaces using silanes. In our case, a SAM, consisting of 

octadecyltrichlorosilane (OTS), was systematically deposited (from solution) on the SiO2 

surface in Device A and Device B to improve their performance. (N.B. It may be worth to 

mention that the energy barrier between the metal and the semiconductor can sometimes turn 

out to be too large for the injection of charge carriers. In this case, self-assembly can be also an 

effective strategy to lower the injection barrier by creating a dipole at the 

electrode/semiconductor interface.) 

The preparation of source and drain electrodes include either conventional 

photolithography (for Devices A and B), or the evaporation mask method (for Device C). In the 

former case, we used a 5 μm negative NLOF 2035 resist purchased from MicroChemicals, 

whereas in the latter case a high-resolution nickel mask was prepared by the TEAM service 

(David Bourrier) in LAAS-CNRS. In both cases, gold was deposited through the mask openings 

by thermal evaporation. In order to ensure the good adhesion of gold, a thin layer of Cr was 

intercalated between the SiO2 substrate and the electrodes. Both approaches allowed us to 

obtain devices with channel lengths (L) of 10, 30, 50, 70 and 110 µm and channel widths (W) 

of 0.5, 1 and 1.5 mm. 

Organic semiconductors and the SCO layer were deposited by vacuum thermal 

evaporation. After depositing the SCO film, a water vapor annealing treatment was carried out 

(see Chapter 2). Finally, the device was encapsulated.  

A representative photo of Device C is shown in Fig. 3.10. Each chip contains five 

transistors. For electrical measurements, three gold-coated tungsten tips were placed in contact 

with the extension of drain/source/gate electrodes with the chip placed on a heating-cooling 

stage (Linkam Scientific, HFS600EV-PB4). The measurements were conducted either in an 
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ambient environment or under primary vacuum (10-2 mbar). We used two measurement setups: 

either an Agilent 4142B source-meter unit (SMU) associated with a probe station (Karl Suss 

PA200 or Cascade Summit 12000) or a combination of two Keithley SMUs (6430 and 2420). 

The data acquisition consisted in acquiring output and transfer curves at fixed temperatures. 

 

Figure 3.10: Photos of (a) a chip with five transistors on the heating-cooling stage and (b) a 

zoom on the chip. One can depict also the probes used for the measurements.  

3.4 Characterization of Devices A and B 

        Different thicknesses (2, 10 and 30 nm) of [Fe(HB(tz)3)2] were integrated in Device A. 

Figure 3.11 depicts a representative output characteristic (a) and transfer characteristic (b) of a 

Device A with SCO thickness of 30 nm. From the output curve we can see that the source-drain 

current is very low (< 10-10 A) indicating that the channel is not conducting. In addition, when 

increasing the gate voltage from -10 V to -50 V, no significant increase of IDS occurs. Overall, 

this device does not show any expected characteristics of a working transistor. 

We believe the failure of Device A is linked to the presence of an SCO ‘interlayer’ 

between the source/drain electrodes and the organic semiconductor. Indeed, as shown in Figure 

3.7a, in this fabrication protocol, when the SCO layer is deposited on the substrates, it covers 

inevitably the ‘wall’ of the source/drain electrodes due to an angle between the effusion cell 

(used for the evaporation of the SCO material) and the substrate. Hence, during the thermal 

evaporation, SCO molecules will be deposited in every corner on the ‘wall’ of the gold 

electrodes due to the rotation substrate when operating (Fig. 3.12). Unfortunately, this SCO 

layer appears to be an efficient injection barrier to impede current flowing in the OSC channel. 
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(N.B. We have fabricated the same device without SCO layer, which showed appropriate 

transistor characteristics – see Annex 3.X.) 

 

Figure 3.11: Representative (a) output characteristic (VG = -10, -20, -30, -40 and -50 V) and (b) 

transfer characteristic (VDS = -30 V) of Device A. W = 50 µm, L = 1500 µm. 

 

Figure 3.12: A scheme of SCO deposition on the ‘wall’ of Au electrodes. 

 We also examined the electrical characteristics of Device B. In this configuration, a 75 

nm thick tetracene film was first deposited on the clean, SAM-functionalized substrate, which 

was followed by the deposition of a 150 nm thick [Fe(HB(tz)3)2] film in the last step of the 

device fabrication. Figure 3.13 depicts a representative output characteristic (a) and transfer 

characteristic (b) of a Device B. It can be seen from the output characteristic curve that the 

drain-source current (IDS) is in the order of 10-6 A with a significant field effect, indicating that 

the transistor is working. In other words, the drain-source current (IDS) can be tuned by changing 

the gate voltage. As shown in Figure 3.13a, the drain-source current (IDS) keeps increasing when 

changing the gate voltage from 0 to -50 V, in line with the p-type characteristics. Both the linear 
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and saturated zones can be clearly depicted in this figure. From Figure 3.13b, we can infer a 

threshold voltage of ca. -12 V and an ON/OFF ratio of 2-3 orders of magnitude for this transistor. 

We also notice that there is some noise in these two characteristics, which we attribute to traps 

in between the dielectric and OSC layers.  

 

Figure 3.13: Representative (a) output characteristic (VG = 0, -10, -20, -30, -40 and -50 V) and 

(b) transfer characteristic (VDS = -30 V) of Device B. W = 50 µm, L = 1000 µm. 

In the next step, we have examined the temperature dependent behavior of Device B in 

order to assess the effect of the SCO on the device properties. As discussed by van Geest et al. 

[134], we shall consider here the electrostatic effects occurring when the top layer of the 

transistor undergoes spin crossover. DFT calculations showed [144] that due to the swelling of 

the coordination sphere, the SCO is always associated with a change of the molecular dipole 

moment, which can change by a factor of two or three upon the SCO. Since the molecules are 

preferentially oriented in the films of [Fe(HB(tz)3)2], the dipole moments of individual 

molecules sum up, creating an electrostatic potential that interacts with the OSC layer to a 

different extent in the LS and HS states. To explore this effect a constant gate voltage of -10 V 

and drain-source voltage of -30 V was applied on this transistor, and the drain-source current 

was recorded during successive thermal cycles between 45-85 °C (ramping rate of 5 °C/min). 

A representative result (from several thermal cycles) is shown in Figure 3.14. The variation of 

the current intensity was often noisy and ill reproducible. More importantly, no clear sign for 

changes related to the SCO phenomenon could be inferred. For this reason, our attention has 

turned to the optimization of Device C both in terms of fabrication process and characterization 

protocols, enabling better device stability. 
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Figure 3.14: Representative temperature dependent current measurement for Device B. 

Measurement condition: VG = -10 V, VDS = -30 V, dT/dt = 5 °C/min. W = 50 µm, L = 1000 µm. 

3.5 Analysis of the thermal stability of ‘standard’ bottom gate/top contact 

devices 

 As we discussed in Section 3.2.4, several factors may influence the stability of the OFETs, 

among which one has to consider in particular temperature, voltage stress and environmental 

effects. The transistor we investigate here has a bottom gate/top contact configuration (without 

SCO layer), with 50 nm thickness of benzohexacene as OSC layer. For convenience, we will 

cite this transistor as the ‘standard device’. Because our key interest is the temperature-

dependent characteristics of the transistor, experiments was carried out through several in many 

thermal cycles with different conditions. Table 3.2 shows the main parameters for six 

successive thermal cycles on a standard device characterized in ambient air. The temperature 

range is the same in the first five thermal cycles, which aim to compare the influence of different 

electric measurement conditions (electric stress). Compared with the second and the third 

thermal cycles, the first thermal cycle represents more measurements, including not only 

transfer, but also rather time-consuming output characteristics in every measurement point. The 

4th-6th thermal cycles were conducted using the same gate voltage and drain-source voltage, but 

with different temperature intervals or different temperature ranges. The I-T curves extracted 

from these experiments are shown in Figure 3.15. Nearly all the curves show a positive slope 

during the thermal cycles, which is consistent with an ordinary thermal activation process of 

the conduction. However, we can observe a systematic decrease of the current intensity during 

the first five heating ramps above ca. 70-75 °C, which indicates that the device underwent 
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degradation in these conditions. Most importantly, it turns out that the degradation occurs as a 

combined effect of high temperature and applied voltage and by decreasing the effective 

measurement time (Cycles 2 & 3) it is possible to reach a reasonably good reversibility with a 

current drop (Ifinal-Iinitial)/Iinitial of ca. -10-20 %. What is more, cycles 2 and 3 were obtained from 

transfer characteristics, which contain potentially more information as simple I-T curves 

measured at fixed gate and drain-source voltages. To better understand the stability of our 

OFET devices, we carried out further temperature dependent current characterizations on a 

standard device, investigated under a vacuum of 10-3 mbar to remove doubts of potential effects 

of water and oxygen of the ambient environment, even though the devices were all encapsulated. 

The details of these and some other tests are given in Annex 3.X. Most importantly, the device 

degradation does not seem to be affected by the environmental effects to any significant extent, 

hence, all further measurements were conducted in ambient air. Overall, these tests confirmed 

that, unfortunately, the devices are rather sensitive to combined voltage/temperature stress, but 

with some care, temperature-dependent transfer characteristics can be acquired with an 

acceptable reproducibility.  

 

Figure 3.15: Current-temperature (I-T) characteristics of a standard device for six successive 

thermal cycles under different measurement conditions – shown in Table 3.2. (The data for the 

first three cycles were extracted from the transfer characteristics.) W = 70 µm, L = 1000 µm.
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Table 3.2: Parameters of the temperature cycles shown in Fig. 3.15. 

 

3.6 Characterization of Device C 

As mentioned before, Device C is a bottom gate/top contact device, wherein a 50 nm 

thick layer of [Fe(HB(tz)3)2] is deposited between the SiO2 and OSC layers. Similar to Device 

A, the SCO layer may act here by modulating the effective capacitance of the dielectric and/or 

by altering the charge transport in the conducting channel. The obvious advantage with respect 

to Device A, however, is that the SCO layer is not in contact with the drain/source electrodes, 

avoiding thus potential pitfalls in charge injection. For comparison, device characterization was 

done simultaneously on Device C as well as on the ‘standard device’, the only difference 

between the two devices being the presence or absence of the SCO layer, respectively. 

Figure 3.16 depicts the output and transfer characteristics of a ‘standard device’ acquired 

at 45 °C. (More data of the electric characteristics at different temperatures are shown in the 

Annex 3.X.) The output curves in Figure 3.16a are smooth indicating good quality interfaces 

and materials. The field effect is clear as the drain-source current can be tuned in a broad range 

by changing the gate voltage. When the applied drain-source voltage (VDS) is small, the source-

drain current (IDS) changes linearly with increasing VDS and gradually tends to be saturated 

when VDS is high enough. From the transfer characteristics in Figure 3.16b, we can infer a 

threshold voltage of ca. -9 V and an ON/OFF ratio of 103 for this transistor at VDS = -10 V. One 

can notice the small hysteresis of the transfer curves between increasing and decreasing values 

of VG indicating presumably the presence of charge traps at the OSC/dielectric interface. 

Output and transfer characteristics of Device C at 45 °C are shown in Figure 3.17. As we 

can see from Figure 3.17a, the current intensity in Device C with respect to the ‘standard device’ 

is reduced by ca. 3 orders of magnitude – most likely due to the reduced quality of the SCO/OSC 

interface in comparison with the SiO2/OSC interface. This reduced quality may come from the 

relatively rough surface of the [Fe(HB(tz)3)2] thin film (see Chapter 2) or the SCO thin film 
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may unfavorably influence the growth of the OSC film in terms of crystallinity and morphology. 

Still, the output characteristic curve of Device C shows a clear field effect: the drain-source 

current can be tuned by the gate voltage and the linear/saturation regions can be clearly 

distinguished. To our best knowledge, this is the first working OFET incorporating a spin 

crossover material in the dielectric layer. The leakage current (i.e. OFF state current) is several 

tens of pA, whereas the ON-state current can reach several nA. One can also note a hysteresis 

in the transfer characteristics denoting the presence of charge traps.  

 

Figure 3.16: (a) Output characteristic (VG = 0, -10, -20, -30, -40 and -50 V) and (b) transfer 

characteristic (VDS = -2, -5, -10 and -50 V) of a ‘standard device’ measured at 45 °C. W = 70 

µm, L = 1000 µm. 

 

Figure 3.17: (a) Output characteristic (VG = 0, -10, -20, -30, -40 and -50 V) and (b) transfer 

characteristic (VDS = -2, -5, -10 and -50 V) of a Device C measured at 45 °C. W = 110 µm, L = 

1000 µm. 

 Using UV-vis spectrophotometry we have also assessed the SCO properties of the 

[Fe(HB(tz)3)2] films integrated into Device C (Figure 3.18). The spin transition in these films 

occurs, as usual, near 60-65 °C, but it is somewhat less abrupt and accompanied by a broad 

hysteresis. We remark that such unusual hysteresis was observed in a few other cases as well 

(see Figure 2.7f and 2.26) and we can attribute this phenomenon most likely to an incomplete 

crystallization of the film. Nevertheless, we note that the magnitude of the absorbance change 

(ca. 0.15) corresponds to the value expected for a 50 nm thick film. 
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Figure 3.18. Temperature dependence of the UV absorbance (318 nm) during three successive 

heating-cooling cycles for the [Fe(HB(tz)3)2] film integrated into Device C. 

 In the next step, temperature dependent measurements were carried out both on the 

‘standard device’ and Device C. As discussed above, in order to minimize device degradation, 

we recorded only the transfer characteristics at a few temperatures (see Figure 3.19 and Annex 

3.X) from which we extracted then the temperature dependence of the drain-source current and 

that of the threshold voltage. As shown in Figure 3.19, increasing temperature leads to 

significant changes in the transfer characteristics, which are reversible to a reasonable extent 

upon cooling, confirming thus the pertinence of our measurement protocol. These temperature-

induced changes arise obviously from a combination of different phenomena, including 

ordinary thermal activation of the conduction, charge trapping, thermally induced spin 

crossover and so forth. In order to try to disentangle the effect of the SCO on the behavior of 

the transistor we have extracted from the transfer curves of both Device C and a ‘standard 

device’ the temperature dependence of the drain-source current at fixed values of VDS and VG 

as well as that of the threshold voltage for a fixed VDS value. These results are summarized in 

Figures 3.20 and 3.21, respectively. (See also Annexes 3.x for further data.) 
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Figure 3.19: Transfer characteristics of a Device C recorded at selected temperatures. W = 50 

µm, L = 1000 µm. 

 

Figure 3.20: Representative temperature dependent drain-source current characteristics of a 

‘standard device’ (top panel) and Device C (bottom panel). W = 50 µm, L = 1000 µm. 
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Figure 3.21: Temperature dependence of the threshold voltage for a ‘standard device’ (a) and 

for a Device C (b) extracted from transfer curves at VDS = -10 V. W = 50 µm, L = 1000 µm. 

 The temperature dependence of the drain-source current extracted from the transfer 

characteristics are shown in Figure 3.20 both for a ‘standard device’ and for Device C. All 

temperature dependent data exhibit thermal activation. For the ‘standard device’ this 

dependence is nearly linear in the investigated temperature range (30-70 °C) and for all 

combinations of VDS-VG, although some deviation is observed near 70 °C on heating. On the 

other hand, the IDS vs. T curves for Device C deviate from a linear behavior and the slope in the 

low- and high-temperature ranges are systematically different. In a similar manner, we can 

compare the temperature dependence of the threshold voltage for the two devices in Figure 3.21. 

The ‘standard device’ exhibits again a quasi-linear behavior, whereas the Device C 

incorporating the SCO layer shows again a different tendency with a marked difference at high 

and low temperatures. It would be tempting to correlate these curves with the SCO behavior of 

the [Fe(HB(tz)3)2] film shown in Figure 3.18. However, we must stress that we have no direct 

proof for such correlation and more experiments should be done to confirm the spin crossover 

effect on the OFETs.  

 Even if the physical origin of the different behaviors of these transistors with and without 

SCO layer remains to be explored, it is important to underline that these differences are real 

and not related to device degradation. This robustness of the devices (and of the measurement 

protocol) is clearly illustrated in Figure 3.22, which shows the output characteristics of a Device 

C recorded near ambient temperature (35°C) before the thermal cycles and after the first and 

second heating-cooling cycles (involving the acquisition of the transfer characteristics shown 

in Figures 3.20 and 3.21). One can observe that the first cycle leads to a small increase of the 



97 

 

output current, which might be related to thermally activated charge detrapping. However, the 

output characteristics recorded after the first and second cycles are closely comparable. 

 

Figure 3.22: Output characteristics of the Device C before/after thermal cycles. W = 50 µm, L 

= 1000 µm. 

3.7 Conclusions and perspectives 

 In summary, we successfully integrated [Fe(HB(tz)3)2] thin films into two different 

configurations of three-terminal OFET devices.  

 The first device is a bottom gate/bottom contact type. When the SCO layer was inserted 

between the OSC and dielectric layer in this device, it failed to form a proper conductive 

channel. We suggested this failure may come from the insulating SCO layer deposited on the 

drain and source electrodes obstructing charge injection. Nevertheless, when the SCO layer was 

deposited on the top of OSC layer these devices showed proper transistor output and transfer 

characteristics. Unfortunately, the temperature dependence of the transistor characteristics did 

not show any remarkable feature – most probably due to the inappropriate experimental 

protocol. Further work on this type of device could involve the use of a mask before the 

deposition of the SCO layer to avoid any interlayer between the electrodes and the OSC film. 

Alternatively, we can also deposit the electrodes after the SCO deposition. Independently from 

the fact if the SCO deposited before or after the OSC, a more careful characterization should 

be conducted avoiding long exposures to high temperatures under voltage stress. 

 The second device is bottom gate/top contact type. Having learnt from the first 

experiences on the BG/BC type devices, in this case, we conducted a more in depth 

investigation and we were able to establish measurement protocols, which minimize the device 

degradation. The SCO film was then successfully inserted in between the SiO2 and OSC layers 
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and the devices exhibited clear field-effect characteristics. From the variable temperature 

transfer characteristics, we could extract the temperature dependence of the drain-source current 

and of the threshold voltage. The comparison of these data obtained either in the presence or in 

the absence of the SCO film revealed small, but significant differences. Further work should 

confirm to what extent these differences could be linked to the SCO phenomenon. To do this, 

we can envision three main axis for future work: (i) One of the priorities would be to use a more 

robust organic semiconductor, which can sustain reasonably high temperature. (ii) We should 

also find a solution to preserve the OSC/dielectric interface quality, for example by embedding 

the SCO compound within a dielectric polymer matrix. (iii) It would be also preferable to use 

another SCO material, which displays a spin transition with hysteresis close to room 

temperature as well as an important change of the dielectric permittivity. These properties could 

give rise not only to better device stability, but also to a very useful applicative possibility, 

which is a non-volatile memory effect. 
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Chapter 4    Integration of the spin crossover complex [Fe(HB(tz)3)2] 

into optical cavities 

In this chapter, we describe the design, fabrication and optical properties of multilayer 

Ag/[Fe(HB(tz)3)2]/Ag Fabry-Perot cavities. These devices use the remarkable refractive index 

switching (n = 0.04 - 0.2) between the low-spin and high-spin states in the [Fe(HB(tz)3)2] film 

to achieve modulation of the cavity resonance. We show that this wavelength tuneability is 

coupled with low absorption losses in the visible and near infrared spectral ranges, providing 

scope for reconfigurable and self-adaptive photonic applications. This work was conducted in 

a strong collaboration with Dr. Stéphane Calvez and Dr. Isabelle Séguy from LAAS-CNRS. 

4.1 Motivation and state of the art for using SCO materials in photonic 

devices      

Materials that undergo electronic and/or structural phase change associated with a 

reversible switching of their optical properties have recently received increased attention for 

the development of active photonic devices [151, 152]. These phase-change materials (PCMs) 

exhibit changes of their refractive index in response to external stimuli (e.g. heat, voltage bias 

or light irradiation), and have been exploited for a variety of applications, such as smart 

windows, optical memories, spatial light modulators and photonic integrated circuits. The most 

widely studied PCMs are chalcogenide alloys (e.g. Ge2Sb2Te5) showing amorphous-crystalline 

phase change [153-155], transition metal oxides (e.g. VO2) exhibiting metal–insulator 

transitions [156, 157], and liquid crystals (e.g. 5CB) displaying order–disorder type transitions 

[158](Fig. 4.1). Among these materials, however, mostly liquid crystals have been employed 

in practical applications requiring transparency in the visible spectral range. Yet, the intrinsic 

limitations of liquid crystals (slow speed, high scattering losses, intricate processing and need 

for encapsulation) call for new material developments. In this context, emerging nanomaterials 

of molecular spincrossover (SCO) compounds represent a promising novel class of PCMs with 

high potential for active photonics applications.  

The first switch-type optical device using SCO compounds was developed by Kahn et al. 

[159, 160] for data storage and display applications. These pioneering devices were based on 

absorbance readout and thermal addressing, which are conceptually contradictory principles in 

terms of device size. Indeed, slow heat dissipation becomes a limiting factor at macroscopic 
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scales, while the low optical density becomes quickly a shortcoming at reduced sizes. Indeed, 

in the VIS-NIR spectral range mostly weak ligand-field absorption bands appear, with 

extinction coefficients between 1 - 100 cm-1, while substantially more intense charge transfer 

bands ( = 104 – 105 cm-1) arise usually in the ultraviolet range [161]. On the other hand, the 

real part of the complex refractive index (n* = n + ik) of SCO compounds exhibits remarkable 

changes in different spectral regions. This refractive index modulation finds its origin in 

combined electronic (polarizability change) and structural (density change) effects [162]. 

Nevertheless, the available experimental data suggests that the key parameter is the substantial 

mass density change (ca. 1 - 15 %). Density can be linked to the refractive index through the 

empirical Gladstone-Dale relationship, which predicts an increase of the refractive index of ca. 

0.01 – 0.1 for each SCO compound in the whole VIS-NIR range when going from the HS to 

the LS state [163]. This was indeed observed by a variety of photonic methods for different 

compounds and in different spectral ranges [23]. The possibility to modulate the refractive 

index via the SCO opens up interesting prospects for manipulating light propagation in photonic 

devices. On the other hand, the small value of the absorption coefficient is actually a desirable 

property in this context. To integrate photonic devices, however, it is necessary to work with 

very high quality, low absorption loss SCO films, which should be also patterned in order to 

enlarge the scope of their integration into different types of devices (waveguides, resonators, 

gratings, etc.).  

 

Figure 4.1: PCM materials (clockwise): VO2 in the metallic (M) and insulator (R) phases with 

only V atoms shown in blue. Ge2Sb2Te5 (GST) in the amorphous (A) and crystalline (C) phases 

with Te and Sb/Ge atoms shown in blue and gold, respectively. 4-pentyl-4’-cyanobiphenyl 

(5CB) molecules in the nematic (N) and smectic (S) phases. [Fe(HB(tz)3)2] molecule in the LS 

and HS states. Only the FeN6 coordination octahedron is shown.  
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Overall, SCO complexes appear as a very promising novel class of PCMs for applications 

as active materials in photonic devices (see Fig. 4.2) for the following: 

(1) Most SCO films exhibit a substantial change of their refractive index (n = 10-2 – 10-1) in 

the visible-near infrared spectral ranges, while absorption losses remain small. [163] 

(2) The SCO can occur in ambient conditions and can be triggered by a variety of stimuli, such 

as temperature, mechanical strain and light irradiation. [164] 

(3) In case of pulsed optical excitation, the SCO has been shown to occur on 100s fs time scales 

[165], while relaxation can occur on 100 ps scale [166].  

(4) SCO complexes have been successfully processed recently as thin films and nanopatterns 

[23].  

(5) The all-solid nature of SCO materials should afford for an easier processing, a better 

reliability and a simpler integration into systems than LC based PCMs.  

 

Figure 4.2: Comparison of key material characteristics of different classes of phase change 

materials (chalcogenide alloys, metal-insulator transition materials, liquid crystals) with those 

of spin crossover materials for photonic applications in the visible spectral range (500 nm). The 

lower modulation depth in SCO materials is balanced by several key advantages, such as low 

insertion losses, low switching power and high modulation frequency (adapted from [167]).      

In the past, the refractive index change in SCO materials has been investigated from the 

UV to the THz spectral ranges either as a means for detecting the spin transition in nanoscale 

objects [168-172] or with the aim to develop switchable optical materials/devices. The latter 

comprise transient phase gratings [166], tunable Bragg filters for the sub-millimeter wavelength 

range [168], diffractive gas sensors [169] and active plasmonic switches based on 

lithographically patterned [171] or on chemically synthesized [172] gold nano-rods. However, 

the SCO materials used in these studies suffered from certain limitations, such as poor 
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processability (e.g. powders), low environmental stability, weak cycling endurance and SCO 

far from room temperature [23]. In the present work, we make use of the refractive index change 

associated with the SCO to render wavelength-tunable a Fabry–Perot resonator, using our high-

quality [Fe(HB(tz)3)2] films, which effectively overcome all these pitfalls, marking an 

important leap towards SCO-based photonics. 

4.2 Introduction to Fabry-Perot cavities 

4.2.1 Principle of a Fabry-Perot interferometer  

Fabry–Perot interferometers are widely used in optical instruments, such as spectrometers, 

lasers, filters and so forth. They are constituted of a material (of arbitrary thickness) sandwiched 

in between two semi-transparent mirrors. Impinging light is bounced back and forth between 

the two mirrors and, at the resonance wavelength(s), effectively passes multiple times through 

the central material. As a result, the wavelength-selective constructive interaction with this layer 

occurs over an artificially increased length, which equivalently means that energy is stored in 

the device, which behaves as a resonator. As the simplest case, we can consider a Fabry-Perot 

interferometer with flat, parallel mirrors as an example (Figure 4.3), whose properties can be 

adjusted by changing the distance L between the mirrors or the refractive index n of the cavity 

medium. 

 

Figure 4.3: Scheme of a parallel mirror (M) Fabry-Perot resonator with a cavity medium 

characterized by a refractive index n and a thickness L. Light entering one mirror undergoes 

multiple reflections, leading to partial transmission from the other mirror. 
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Free spectral range (FSR) and finesse (F) are the most important factors to determine the 

property of a Fabry-Perot interferometer. The free spectral range (FSR) is a measure of the 

frequency separation () between two adjacent resonance peaks in the transmission (or 

reflection) spectrum of a Fabry-Perot interferometer (see Fig. 4.4), which can be calculated by 

[173]: 

𝐹𝑆𝑅 =  
C

2𝑛𝐿𝑐𝑜𝑠𝜃
                                                       Eq.4.1 

where c is the speed of light in vacuum, n is the index of refraction of the cavity medium, 

θ is the angle of incidence and L is the thickness of the cavity. 

Dividing the free spectral range by the full-width half-maximum (𝑣𝑚) of a resonance peak, 

the value obtained is called the finesse (see Fig. 4.4) [174]: 

𝐹 =
𝐹𝑆𝑅

𝑣𝑚
                                                           Eq.4.2 

The finesse represents the average number of round-trips made by a resonant photon 

before it leaves the cavity. Cavities with high finesse show sharper transmission peaks and 

lower transmission. Alternatively, the quality factor Q is also used to quantify the frequency 

selectivity of a Fabry-Perot cavity. Q is defined as the energy stored in the cavity divided by 

the energy lost during an oscillation cycle and multiplied by 2. In most cases, Q is calculated 

(to a good approximation) as the ratio of the resonance frequency and the full width at half 

maximum (𝑄 =  𝑣𝑟/ 𝑣𝑚). We can see thus that the finesse is proportional to the quality factor 

Q, which means that the finesse represents also the dissipation of the resonant cavity: the higher 

the finesse, the lower the dissipation. 

 

Figure 4.4: Schematic diagram illustrating the free spectral range (FSR) and full width at half 

maximum of a resonance peak (vm) of a Fabry-Perot interferometer. 
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4.2.2 Tunable Fabry-Perot cavities 

Tunable Fabry-Perot filters are amongst the key components in fiber grating sensing and 

fiber communication systems [175]. In fiber grating sensing, the tunable Fabry-Perot filter is 

used as the demodulator, and its performance directly determines the performance of the entire 

measurement system. In optical communication systems, tunable Fabry-Perot filters are used 

for wavelength division multiplexing (WDM), demultiplexing, signal demodulation, etc., 

playing an extremely important role. In addition, it can also be used as a signal filter in fiber 

amplifiers, and has important applications in fiber lasers and spectrum analysis. 

In a Fabry-Perot cavity, each transmitted wavefront undergoes obviously an even number 

of reflections (0, 2, 4, . .). Whenever there is no phase difference between emerging wavefronts, 

interference between these wavefronts produces a transmission maximum. This occurs when 

the optical path difference is an integral number of whole wavelengths, i.e., when [176]: 

mλ = 2nLcosθ                                                    Eq.4.3 

where n is the refractive index of the cavity, L is the thickness of the cavity, θ is the angle 

of incidence, λ is the center wavelength of the transmitted light and m = 1,2,3….is an integer 

representing the mode order. We can thus deduce that the peak wavelength transmitted by the 

filter can be tuned in three ways: (1) one is to tune by changing the thickness L of the cavity, 

(2) the other is to tune by changing the refractive index n of the resonant cavity material and (3) 

finally one can also change the angle of incidence of the impinging light beam.  

In this thesis, we used thin films of the SCO material [Fe(HB(tz)3)2] as the cavity material 

in order to take advantage of the refractive index and thickness changes associated with the 

SCO and thus to tune the resonance wavelength of the Fabry-Perot cavity. In a first step, we 

have thus characterized in detail the temperature-dependent changes of the thickness and 

refractive index in these SCO films. 

4.3 Optical properties of [Fe(HB(tz)3)2] thin films 

Nano-crystalline thin films of [Fe(HB(tz)3)2] were obtained by thermal evaporation and 

treated by water vapor annealing after deposition, as discussed in Chapter 2. Films of 

[Fe(HB(tz)3)2] with different thicknesses between 100 – 1000 nm were prepared on silicon 

substrates for the optical properties investigation. The optical constants (refractive index n and 

extinction coefficient k) of these films were determined by using a Filmetrics F20 film analyzer 

and a Horiba UVISEL ellipsometer. The former is based on the measurement of spectrum 
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intensity changes of normal incidence light reflected back from the surface, whereas the latter 

measures the change of polarization of the reflected light at various angles of incidence. In both 

cases, we used a Peltier stage (Linkam Scientific) to vary the sample temperature step-by-step 

in the range between 25 and 95 °C. 

It is important to mention that neither spectral reflectance, nor spectroscopic ellipsometry 

are direct techniques. A dispersion model must be used to obtain thickness/optical properties of 

the thin films. The F20 instrument uses the Cauchy dispersion formula, which is a simple 

empirical dispersion law. When the material has no light absorption in the visible spectrum, it 

usually has “normal dispersion”, which means that the refractive index decreases monotonously 

with the increase of wavelength. The following equation relates the refractive index to the 

wavelength (in units of nm):  

{
𝑛(𝜆) = 𝐴 +  

104𝐵

𝜆2 +  
109𝐶

𝜆4

𝑘(𝜆) = 0
                                             Eq.4.4 

where A is a dimensionless parameter: when λ → ∞ then n(λ) → A. B (in units of nm2) 

affects the curvature and the amplitude of the refractive index for medium wavelengths in the 

visible. C (in units of nm4) affects the curvature and amplitude for smaller wavelengths in the 

UV. Since nanometric films of [Fe(HB(tz)3)2] exhibit very low absorption in visible light range, 

we used the Cauchy dispersion model to fit the visible-NIR spectral range in the reflectance 

spectra. 

The software of the UVISEL instrument implements various dispersion models. After a 

few trials, we decided to use the so-called “new amorphous dispersion” formula, which takes 

into account also the extinction and therefore the data analysis was extended to the UV spectral 

range. In this model, the refractive index and the extinction coefficient are given by: 

𝑛(𝜔) = 𝑛∞ +  
𝐵(𝜔−𝜔𝑗)+𝐶

(𝜔−𝜔𝑗)2+⎾𝑗
2                                         Eq.4.5 

 𝑘(𝜔) = {

𝑓𝑗(𝜔−𝜔𝑔)
2

(𝜔−𝜔𝑗)
2

+𝛤𝑗
2

; for 𝜔 > 𝜔𝑔

0                    ; for 𝜔 ≤  𝜔𝑔

                                Eq.4.6 

where 𝐵𝑗 =
𝑓𝑗

𝛤𝑗
(𝛤𝑗

2 − (𝜔𝑗 − 𝜔𝑔)2)  and 𝐶𝑗 = 2𝑓𝑗𝛤𝑗(𝜔𝑗 − 𝜔𝑔).  𝑛∞  is an additional 

parameter, equal to the value of the refractive index when 𝜔 → ∞. 𝑓𝑗 (j = 1, 2, 3) (in eV) is 

related to the strength (amplitude) of the extinction peak. 𝛤𝑗 (j = 1, 2, 3) (in eV) is the broadening 



106 

 

term of the absorption peak. 𝜔𝑗 (in eV) is approximately the energy at which the extinction 

coefficient is maximum (peak of absorption). 𝜔𝑔 (in eV) is the energy band gap. 

Figure 4.5a shows a typical spectral reflectance curve of a thick film of [Fe(HB(tz)3)2] 

displaying the undulating interference pattern. The film thickness and refractive index as a 

function of the temperature for a nominally 800 nm film is shown in Figures 4.5b and 4.5c, 

respectively. One can see an impressive change of the film thickness from ca. 765 nm in the 

LS state to ca. 825 nm in the HS state, denoting a ca. 7.8 % increase, which is fully reversible 

on cooling. In the same time, the refractive index drops from ca. 1.60 (LS) to 1.51 (HS) in an 

abrupt fashion around the spin transition temperature (~65°C). 

 

Figure 4.5: (a) Typical spectral reflectance of a nominally 720 nm film of [Fe(HB(tz)3)2]. 

Variation of the thickness (b) and refractive index at  = 500 nm (c) of a nominally 800 nm 

thick film of [Fe(HB(tz)3)2] upon heating and cooling. 
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Whereas the spectral reflectance method worked well for thick films, it failed to provide 

reliable data for thin films, which are more relevant in the context of the Fabry-Perot devices 

we fabricated. Ellipsometric data were therefore acquired on a 100 nm thick film of 

[Fe(HB(tz)3)2] for wavelengths between 250 and 1000 nm at various angles of incidence (AOI 

= 56–60°) and selected temperatures (25–95 °C).  

Figure 4.6 a and b depict the obtained refractive index n and the extinction coefficient k, 

respectively, as a function of the wavelength. In the visible and near-infrared spectral regions, 

the extinction coefficient k remains negligibly low (below ca. 10-4) through the whole 

temperature range. On the other hand, n exhibits ‘classical’ dispersion behavior – decreasing 

monotonously with increasing wavelength. Indeed, in the Vis-NIR region, only a few very weak 

ligand-field transitions occur in [Fe(HB(tz)3)2] with absorption coefficients in the order of 100 

and 10 cm-1 in the LS and HS states, respectively. These weak absorption bands are hardly 

detectable even in micrometer thick films [177]. Below 350 nm, the extinction coefficient 

steeply increases and peaks at a value of 0.23 around 315 nm. Since k and n are interlinked, n 

exhibits ‘anomalous dispersion’. As we have already seen in Chapter 2, the associated strong 

UV absorption is assigned to charge-transfer transitions in the LS state and it can be 

conveniently used to probe the SCO phenomenon in the thin films. 

 

Figure 4.6: Ellipsometric characterization of a nominally 100 nm-thick film of [Fe(HB(tz)3)2]: 

Refractive index (a) and extinction coefficient (b) acquired between 250–1000 nm at selected 

temperatures between 25 and 95 °C. 

The temperature dependences of the refractive index n and film thickness L are depicted 

in Fig. 4.7a and b, respectively. These curves show a compelling correlation. Far from the spin 

transition, both n and t are weakly temperature dependent, in agreement with the nearly zero 
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thermal expansion coefficient of [Fe(HB(tz)3)2] [28]. Around the spin-transition temperature 

(65 °C), the film thickness abruptly increases by 4.6(4) %, from 91.2(3) in the LS state to 95.4(2) 

nm in the HS state. This variation is in reasonable agreement with the 5.4(8) % expansion of 

the orthorhombic c-axis of the unit cell upon the SCO revealed by single crystal X-ray 

diffraction [Rat2017]. (N.B. Remind that the film is oriented with the c-axis normal to the 

substrate.) On the other hand, the value of n concomitantly drops by ca. 0.2–0.04 (depending 

on the wavelength) at the LS-to-HS transition. In particular, at 500 nm we extracted a change 

from n=1.62 to 1.56 when going from the LS to the HS state.  

       We notice that the two approaches (spectral reflectance and ellipsometry) has revealed 

similar trends, but there are also some notable differences. In particular, the film thickness 

change is estimated more accurately from ellipsometry and in the further work, we used these 

data with preference. Nevertheless, it is fair to say that further comparative measurements 

would be necessary to better understand the observed differences: whether they are linked to 

measurement/analysis uncertainties and/or to differences in sample properties. 

 

Figure 4.7: Ellipsometric characterization of a nominally 100 nm-thick film of [Fe(HB(tz)3)2]. 

(a) Temperature dependence of the refractive index n at selected wavelengths (heating mode). 

(b) Variation of the film thickness L as a function of the temperature (heating mode). 

4.4 SCO based Fabry–Perot cavities 

4.4.1 Structure and design of SCO based Fabry–Perot cavities 

To translate the impressive change of refractive index of [Fe(HB(tz)3)2] into a functional 

property, we fabricated metal-based, multilayer Fabry–Perot structures on glass substrates (Fig. 

4.8).  
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Figure 4.8: Schematic diagram of the SCO based Fabry–Perot cavity in the LS and HS states 

showing the change of optical thickness of the cavity due to the SCO phenomenon. 

This thin-film Fabry-Perot filter is actually a multilayer structure, so the theory of optical 

properties of multilayer stacks is the basis for the design of this filter. As long as the thickness 

and refractive index of each layer of the system are known, assuming that the layers are smooth, 

planar and uniform, the transmittance and reflection at each specific incident angle and 

wavelength can be calculated by the repeated use of the Fresnel equations [178]. This so-called 

transfer matrix method is the most popular approach for investigating the optical properties of 

multilayer structures. A numerical algorithm of this method is implemented in the software of 

the Filmetrics F20 instrument, allowing us the simulation of the expected optical characteristics 

of the multilayer stacks. The design of the Fabry-Perot filter is the inverse problem, wherein 

we seek to find the optimal thickness of each film in the stack to achieve the highest possible 

change of the filter transmittance (or reflectance) due to the spin crossover phenomenon – 

taking into account also the polarization and angle of incidence (AOI) of the incoming light 

beam.   

The design of the Fabry–Perot cavity was carried out by Stephane Calvez (LAAS-CNRS). 

The simulations took into account the optical properties of SCO thin film determined by 

ellipsometry. However, to simplify the calculations the refractive index of the SCO film was 

set to be 1.62 and 1.57 in the LS and HS states, respectively, for the whole wavelength range 

(i.e. neglecting the dispersion, which has only marginal effect). Due to our experimental 

constraints, we considered only the visible wavelength range between 400 and 700 nm as the 

operational range of the Fabry-Perot filter. Since we had extensive experience with the 

deposition of aluminum on our SCO film (see Chapter 2) we started the simulations using this 

metal, but we quickly turned to silver for its superior optical properties in the visible spectrum. 
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Figure 4.9 depicts the calculated reflection/transmission intensities, resonance 

wavelength and Q-factor of the Fabry-Perot device as a function of the thickness of the metal 

mirrors for both silver and aluminum. The thickness of the SCO layer was fixed to 115 nm. 

From these calculations it can be clearly seen that within the selected metal thickness range (10-

100 nm), the transmission of the Ag-based cavity is always higher than that of the Al-based 

cavity. In particular, the transmission intensity of Al-cavity does not exceed 0.2 even for very 

low thicknesses (which become difficult to fabricate by conventional techniques) and it 

decreases to nearly zero above ca. 20 nm. Of course, the superior optical properties of silver 

are well known, but these simulations highlight that the operational window for Al mirror based 

resonators is extremely small. On the other hand, the Ag mirrors exhibit a significant 

transmittance: at a metal thickness of 50 nm, the transmission still has a value of ca. 0.2. 

However, it is important to notice that the Q-factor displays an opposite behavior: when the 

metal thickness increases, the Q-factor of the device increases. This means that one has to find 

a compromise between the transmission and the Q-factor of the cavity. From the data in Fig. 

4.9, we can see that the optimal Ag thickness is approximately in the 40-60 nm range. 

 

Figure 4.9: Calculated optical properties of M/SCO/M multilayer stacks (M = Al or Ag) for an 

SCO thickness of 115 nm: (a) transmittance, (b) reflectance (c) resonance wavelength and (d) 

Q-factor as a function of the metal mirror thickness. 
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Figure 4.10 depicts the reflection/transmission intensities and the Q-factor of a 

Ag/SCO/Ag cavity as a function of the thickness of the SCO layer. The thickness of the metal 

mirrors was fixed to 50 nm. In these figures, we select systematically the resonance peak, which 

falls in the 350-700 nm wavelength range, which is compatible with our experimental setup. 

These calculations reveal that we can adjust the SCO film thickness in a fairly broad range 

without much deteriorating the performance. This is an important property because the cavity 

resonance is adjusted primarily by changing the cavity thickness (see Eq. 4.3). One can also 

note in Figure 4.10 that the cavity transmittance shows an opposite trend to the Q-factor as a 

function of the thickness of the SCO film. Again, we can identify an optimal range between ca. 

100-130 nm allowing for a compromise between these two parameters. 

 

Figure 4.10: Theoretical calculations of a SCO based Fabry–Perot cavity with 50 nm thick silver 

layers. (a) transmittance/reflectance and (b) Q-factor as a function of SCO thickness. 

Overall, since SCO based Fabry–Perot cavity with Ag reflectors seems to have a better 

performance in the selected wavelength range (reflection, transmission, Q-factor, etc.) and 

taking all numerical results into consideration, we chose for the experimental work a 

configuration of 50 nm Ag/115 nm SCO/50 nm Ag on a glass (AF32) substrate. 

4.4.2 Effect of SCO on the cavity resonance: simulation results 

        Figure 4.11 shows the modulation depth induced by the switching between LS and HS 

states (defined in reflection asRHS-RLS) for an Ag/115 nm SCO/Ag stack at normal incidence. 

These types of plots can be used to search for the optimum conditions where the SCO allows 

for the highest possible change of reflectance (or transmittance) of the cavity. For example, in 
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the particular case shown in this figure, one can expect the highest modulation depth around 

530 nm achieved with a mirror thickness between 50-60 nm. 

 

Figure 4.11: Modulation depthRHS-RLSfor an Ag/115 nm SCO/Ag stack at AOI=0°. 

The simulated reflectance and transmittance spectra of the 50nm Ag/115 nm SCO/50 

nm Ag Fabry–Perot cavity is shown in Figure 4.12 for two ‘extreme’ angles of incidence (0° 

and 85°). In the simulations, we considered unpolarized light impinging on the device. The 

refractive index of the SCO film was set to 1.62 and 1.57 in the LS and HS states, respectively, 

and we considered an expansion of the cavity thickness by 4.6% in the HS state. Due to the 

variation of the optical thickness of the SCO material between the HS and LS states, the 

reflection and transmission properties of the cavity change. However, these changes strongly 

depend on the experimental conditions. 

 

Figure 4.12: Simulated reflectance and transmittance spectra (unpolarized light) of a 50 nm 

Ag/115 nm SCO/50 nm Ag stack in the LS and HS states for (a) AOI=0° and (b) AOI = 85°. 
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        At normal incidence (AOI = 0°), a single resonant peak is observed around ca. 537 nm. 

Neither the spin state of the cavity nor the polarization of the light beam appear to have any 

considerable effect. However, for higher angles of incidence (AOI= 85°) one can observe two 

resonance peaks, which can be attributed to the two different light polarizations: transverse 

electric (TE) and transverse magnetic (TM). For TM polarization, the resonance appears 

respectively around 498 and 494 nm in the LS and HS states, denoting an SCO-induced 

wavelength modulation of ca. 4 nm. For TE polarization, the effects are even more spectacular, 

the resonance wavelength downshifts by 8 nm from 433 to 425 nm when going from the LS to 

the HS state. 

4.4.3 Effect of SCO on the cavity resonance: experimental results 

We used vacuum thermal evaporation to deposit successively Ag, [Fe(HB(tz)3)2] and Ag 

layers under a base pressure of ca. 5×10-7 Torr. Before the deposition of the second silver layer, 

the SCO film was water vapor annealed to render it more crystalline (see Chapter 2 for details). 

The target configuration of the device was 50 nm Ag/115 nm SCO/50 nm Ag on a glass 

substrate. A photo of a device is shown in Figure 4.13. 

 

Figure 4.13: Photo of an Ag/SCO/Ag stack. 

The normal incidence (angle of incidence, AOI = 0°) transmittance of the cavities was 

first assessed as a function of the temperature using a Cary50 UV-VIS spectrophotometer and 

a Linkam THM600 variable temperature stage. Then, the variable-incidence (AOI = 8-60°) 

reflectance spectrum of the cavity was subsequently qualified, for both transverse electric (TE) 

and transverse magnetic (TM) polarizations, using a PerkinElmer Lambda 950 

spectrophotometer equipped with an universal reflectance accessory (URA). This accessory has 

its own kinematic detector module and path length compensator, maintaining identical path 

lengths and angles of incidence between the background and the sample measurement. URA-

based measurements include a sample measurement, which involves another reflection at the 

sample, and a baseline measurement. This is illustrated in the case of measurement at 70° 
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incidence, as shown in Figure 4.14. Even if the URA can provide absolute reflectance values, 

we have systematically recorded also a reference reflectance spectrum of a broadband dielectric 

mirror (Thorlabs BB2-E02) displaying ca. 99% reflectance between 400-800 nm with minor 

dependence on wavelength, polarization and AOI of the incident light (Fig. 4.15a).  

 

Figure 4.14: URA sample (a) and baseline (b) measurement configurations at AOI = 70°. 

The sample compartment region of the Lambda 950 is also equipped with a polarization 

drive accessory, fitted with a film polarizer (Perkin Elmer B2205022), allowing for automated 

switching between 0° and 90° polarization angles. This polarizer displays reasonably flat 

transmission between ca. 420 - 700 nm with a polarization efficiency superior to 99%. Due to 

the particular geometry of the sample holder of the URA, we could not use the usual Linkam 

heating-cooling stage for these experiments. Instead, we have mounted the samples ‘upside 

down’ using a thermally-conductive double-sided adhesive tape (Thorlabs, TCDT-1) on a 

Peltier module (Radiospares) powered by a stabilized current source. The temperature of the 

sample was measured by a K-type thermocouple. 

 

Figure 4.15. Spectral characteristics of (a) the reference mirror and (b) the polarizer used in the 

reflectance measurements. 
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Figure 4.16a shows the normal incidence transmittance spectra of an Ag/SCO/Ag stack 

recorded at various temperatures between 30-100 °C. One can clearly depict two transmittance 

peaks, one near 529 nm, which can be unambiguously associated with the cavity resonance and 

another peak near 329 nm, which is associated with the silver plasma frequency [179]. 

Fortuitously, this second, intrinsic transmittance window of the Ag films closely coincides with 

the LS absorption peak of [Fe(HB(tz)3)2] centered at 318 nm. This allowed us to observe the 

optical absorbance change in the Fabry-Perot cavity upon the spin transition (see Fig. 4.16b) – 

similar as we have seen for the neat films in Chapter 2.  

  

Figure 4.16: Normal incidence transmittance spectra of Ag (50 nm)/SCO (115 nm)/Ag (50 nm) 

stacks acquired between 30 and 100 °C. (a) Full spectrum and zoom on the peaks near (b) 329 

nm and (c) 529 nm. (d) Temperature dependence of the optical density change of the cavity (λ 

= 318 nm, normal incidence, non-polarized light) along two heating–cooling cycles at 2 °C min-

1 scan rate. (The dashed line in 4.16b shows the corresponding transmittance data.) 

As shown in Figure 4.16d, the spin transition in the cavity occurs in a reproducible and 

abrupt fashion near 65 °C. The total absorbance change (∆OD = 0.29 at 318 nm) indicates that 
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the spin transition is nearly complete in the 115 nm-thick film. These results unambiguously 

confirm that the presence of the Ag films – below and on top of the SCO layer – does not 

substantially affect the spin-transition properties. (N.B. This observation was confirmed for 

four Fabry–Perot devices.) Intriguingly, a zoom on the visible resonance peak (Fig. 4.16c) 

reveals that the peak transmittance varies also with the temperature (i.e. with the spin state). 

This phenomenon has not been predicted in the design simulations, as they did not include the 

thermo-optic dependence apart from the index switching. Furthermore, the weak ligand-field 

absorption of [Fe(HB(tz)3)2] near 540 nm, characteristic of the LS state, had not been considered 

in the simulations either. Indeed, taking into account the thickness of the SCO film (115 nm) 

and the coefficient of absorption associated with this band (ca. 100 cm-1) no detectable 

absorbance change is expected at this wavelength (A = 0.0011). Yet, one should take into 

account the quality factor of the cavity (Q = 36), which shows that the resonant photon is 

reflected forth and back many times within the SCO layer, increasing thus the ‘effective 

thickness’ of the SCO film. We therefore suggest that the detected absorbance change at 529 

nm (A = 0.045) corresponds to a cavity-induced enhancement of the absorber thickness. This 

observation provides thus an interesting scope for probing the SCO in ultrathin films, which is 

a current challenge in this research field. 

In the next step, we examined the variable angle reflectance spectra of the Ag/SCO/Ag 

stacks. Figure 4.17a shows representative reflectance spectra of the cavities recorded in the LS 

(25 °C) and HS (80 °C) states at selected angles of incidence under TE polarized illumination. 

On the other hand, Figure 4.17b compares the cavity reflectance for TE and TM polarizations 

at a fixed AOI (60°). As predicted in the simulations (Fig. 4.12), the Ag/SCO/Ag multilayer 

structure exhibits pronounced resonances with a significant dependence on both the AOI and 

the polarization state of the impinging light wave. This combined effect of AOI and polarization 

is more clearly depicted in the dispersion curve of the cavity shown in Figure 4.17c. Again, we 

note the good correspondence with the simulation results. Importantly, the resonance peaks 

display a blue shift when going from the LS to the HS state. This shift can be better appreciated 

in Figure 4.17d, which shows a detailed temperature scan (for AOI=45° and TE polarization). 

The largest shift we could observe at the SCO was ca. 8 nm for AOI 60° at TE polarization. As 

shown by Fig. 4.17b, this wavelength shift translates into a cavity reflectance modulation by ca. 

30 %.  
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Figure 4.17: Optical properties of Ag (50 nm)/SCO (115 nm)/Ag (50 nm) multilayer Fabry–

Perot cavities. (a) Reflectance spectra at selected AOI values in the two spin states for TE 

polarization. (b) Reflectance spectra at a fixed AOI of 60° in the two spin states for TE and TM 

polarizations. (c) Dispersion curves in the two spin states for TE and TM polarizations. (d) 

Cavity resonance (TE polarization, AOI = 45°) as a function of temperature for a complete 

heating – cooling cycle. 

We shall note that in the first experiments the temperature dependence of the resonance 

was not fully reversible along a complete heating-cooling cycle (Fig. 4.17d). This observation 

is not related to the SCO itself, which is fully reproducible (see Fig. 4.16d). Instead, we believe 

it is an experimental artifact linked to the rather rudimentary heating-cooling setup – involving 

an adhesive tape in between the sample and the heater. For this reason, and also with the aim to 

extend our experimental capabilities, we have constructed a new optical setup (Figure 4.18a), 

comprising a fibered halogen lamp (400-1000 nm), a collimator, a film polarizer, a heating-

cooling stage (Linkam Scientific PE120) mounted on a rotating stage, a collector lens and a 

fiber coupled spectrograph (BWTek BTC112E). The latter has a detection wavelength range 
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between 400 - 750 nm. The first advantage of this setup (vs. the previous experimental bench) 

is that it allows us to collect not only reflectance, but also transmittance data as a function of 

the angle and polarization state of the incident light beam. Furthermore, it allows running 

automated and detailed temperature scans between 20 and 120 °C. In order to assess the 

reproducibility of the fabrication process we have prepared a new batch of Ag/SCO/Ag cavities, 

aimed to display the same characteristics as the first batch. Figure 4.18b show the room 

temperature dispersion curve of a new cavity acquired in reflection mode. The comparison with 

the data shown in Figure 4.17c is compelling: the dispersion curves are closely matching each 

other (with 3-4 nm deviation). With the new setup, the dispersion was also recorded in 

transmission mode as shown by Figure 4.18c. Last but not least, Figure 4.18d depicts two 

successive heating – cooling cycles recorded at temperature scan rates of ±2 °C/min at a high 

sampling rate (1 spectrum/°C) for AOI=55° and TM polarization. One can observe a sharp drop 

of the resonance wavelength at the spin transition (by ca. 3 nm), which is perfectly reproducible 

between the two thermal cycles. 

 

Figure 4.18: (a) Photo of the custom-built optical characterization bench. (b-c) Room 

temperature dispersion curves of the cavity (2nd fabrication batch) for TE and TM polarizations 
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recorded in reflectance (b) and transmittance (c) modes. (d) Cavity resonance (TM polarization, 

AOI = 55°) as a function of temperature for two successive heating – cooling cycles. 

4.5 Conclusions and perspectives 

In summary, we have shown that thin films of the molecular SCO complex [Fe(HB(tz)3)2] 

exhibit a substantial change of their refractive index (∆n = 0.04 - 0.2) in the UV-Vis-NIR 

spectral ranges upon the spin transition, whereas absorption losses remain negligible (k ≤ 10-4) 

for wavelengths above ca. 350 nm. Using transfer matrix calculations, we simulated the 

expected optical characteristics of metal/SCO/metal multilayer stacks with different layer 

thicknesses, which has led us to suggesting an optimal device configuration consisting of 50 

nm thick silver mirrors in between a 115 nm SCO layer is embedded. The overall aim was to 

achieve a Fabry-Perot cavity with a resonance located in visible light range associated with 

reasonably high transmittance and Q-factor. High-quality films of [Fe(HB(tz)3)2] were then 

incorporated in between silver layers by vacuum thermal evaporation. The resulting Fabry–

Perot cavities were characterized for their reflectance and transmittance properties through the 

visible spectral range at variable temperatures and for different polarizations and angles of 

incidence. Most importantly, the cavities displayed spectrally tunable resonances (up to 8 nm 

shift) allowing for ca. 30% transmittance modulation (at a fixed wavelength). These changes 

were traced back – using simulations – to the refractive index and film thickness changes upon 

the spin transition. The present results, together with the previously demonstrated fast switching 

speed [177] and high cycling endurance [180] of the films (under ambient conditions), 

demonstrate that the quality of spin crossover nanomaterials has reached today performance 

thresholds, which qualify them as viable technological solutions for demanding photonic 

applications. As such, this work opens up prospects for a wealth of reconfigurable and self-

adaptive applications, including spatial light modulators, photonic integrated circuits and 

tunable optical components – with particular relevance for the visible wavelength range wherein 

other families of phase change materials fall short. 

An immediate perspective of this work would be to design and fabricate resonators with 

higher Q factors allowing for large transmittance/reflectance modulation amplitudes at the SCO. 

Of particular interest would be for us the fabrication of gratings and other micro/nano-patterned 

structures incorporating the SCO complex [Fe(HB(tz)3)2]. To this aim, we have already 

launched a collaboration with the service TEAM of LAAS-CNRS (David Bourrier) with whom 

we designed, fabricated and tested Ni-based shadow masks. As shown in Annex 4…, we 
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successfully deposited patterned Al and SCO films by vacuum thermal evaporation through the 

openings of the masks with a spatial resolution as high as 1 µm. These preliminary results open 

notably the way to construct optical waveguides, guided-mode resonance gratings and other 

devices incorporating a thin layer of evaporable SCO compounds. This work is ongoing in 

collaboration between the LCC and LAAS CNRS.  
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General conclusions and perspectives 

There have been several decades, since Olivier Kahn proposed and foreseen the potential 

integration of spin crossover molecules into electronic devices. Indeed, spin crossover materials 

exhibit interesting assets for technological applications due to their bistable physical properties 

(optical, magnetic, electric, …) and because of the fact that the spin state switching can be 

triggered by various external stimuli, such as temperature, pressure, light and X-ray irradiation, 

intense magnetic fields, or the inclusion of solvent/guest molecules (i.e. chemical stimuli). 

These properties along with fast switching speed and the versatility of these materials (several 

hundreds SCO compounds known), make them appealing for different applications, including 

switches, memories, displays, sensors, actuators and so forth. Notably, several research teams 

have been working in the past decades to incorporate SCO materials in electronic devices and 

there are several remarkable outcomes. However, it is fair to admit that, we are still at an initial 

stage in transferring the SCO properties into different device forms as well as in understanding 

the relevant physical mechanisms. In addition, device lifetime/fatigability is increasingly 

considered as an important issue from the point of view of ‘real-world’ applications. Starting 

from these motivations, the thesis was constructed aiming for integrating SCO materials as thin 

films into different devices (configurations), building the connection between the SCO 

phenomenon and device characteristics, investigating the factors that influence SCO-based 

electronic device lifetime and digging out the protocols with a comprehensive understanding of 

above points to improve the general performance.  

Thanks to the recent progress in our team with high quality, crystalline thin films of the 

SCO complex [Fe(HB(tz)3)2], displaying robust, above room temperature SCO, we have 

successfully integrated these thin films via vacuum thermal evaporation into different 

fundamental device configurations, which were implemented in collaboration with the 

microtechnology platform of the LAAS-CNRS.  

For the first experimental step, we built two-terminal, large-area, multilayer ITO/SCO/Al 

electronic junctions to investigate their resistance switching functionality. We examined 

various details, including the synthesis route, purification methods, preparation of substrates, 

thin film deposition, post-deposition treatments, device encapsulation, characterization 

protocols, etc., in order to obtain the best device performance. As a result, we could observe a 

resistance switching due to the SCO phenomenon, up to three orders of magnitude, in devices 

with a 100 nm thick SCO layer. Remarkably, the junctions are rather robust and we have shown 
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that the resistance switching property can be preserved even after storage in the ambient 

environment for one year without encapsulation. These junctions exhibited a high resistance to 

fatigability (high endurance towards temperature cycling), with a considerable and stable 

ON/OFF resistance switching ratio during more than 10,000 switching events. We found that 

the key parameters to attain this switching stability are the reduced working temperature range 

(< ~80°C) and constant voltage bias. We also gave an insight into the transport mechanism of 

the devices by replacing the cathode material. Despite the fact that the work functions of Al and 

Ca are very different (providing thus very different electron injection barriers), the junction 

performance appears quite similar with comparable ON/OFF resistance switching ratios, which 

indicates that bulk limited transport is the dominating mechanism in our devices. One 

interesting perspective of this work would be to correlate the charge transport properties with 

crystalline orientation of the films. Another important perspective would be the investigation 

of multilayer junctions with different film thicknesses, down to a few nanometers in order to 

reach a charge transport regime, which is not dominated by the bulk transport properties of the 

SCO film.  

We also integrated [Fe(HB(tz)3)2] thin films into a spin valve device configuration with 

two magnetic electrodes. At the present stage of our work, we could not yet evidence any 

magnetoresistance property, neither a clear effect of the SCO on the device electrical properties. 

Nevertheless, we believe these devices represent a promising platform for further work towards 

new spintronic material combinations and functionalities. 

In the next step of our experiments, SCO materials have been integrated into functional 

OFETs. This type of the three-terminal devices represent an inspiring topic with an increase of 

design freedom in comparison with simple two-terminal diode configurations. Indeed, in our 

experiments, we could investigated different OFET configurations. For the bottom-gate 

bottom-contact OFETs, we came across a technical problem to insert the SCO film in between 

the OSC and the dielectric layers without depositing the SCO molecules on the drain/source 

electrodes, leaving the resulting device rather insulating. Nevertheless, we devised that this 

issue could be solved later by depositing the drain/source electrodes after SCO deposition or by 

using a shadow mask. In our work, to avoid this problem, we have chosen to work with bottom-

gate top-contact OFETs. We performed an in depth investigation of device stability and we 

were able to establish measurement protocols, which allowed us to minimize the device 

degradation to an acceptable level. The comparison of the temperature dependence of the drain-

source current and of the threshold voltage either in the presence or in the absence of the SCO 
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film revealed small, but significant differences. Further work should confirm to what extent 

these differences could be linked to the SCO phenomenon. Future prospects include the use of 

more robust organic semiconductors in conjunction with the use of SCO materials, which 

display a room temperature spin transition with hysteresis as well as an important change of its 

dielectric permittivity. These properties could give rise not only to better device stability, but 

also to a very useful applicative possibility, which is a non-volatile memory effect. 

Capitalizing on the expertise gained during the development of multilayer 

metal/[Fe(HB(tz)3)2]/metal stacks, we have also developed SCO-based optical cavities that 

exhibit switchable optical properties. First, we have shown that the [Fe(HB(tz)3)2] films exhibit 

a substantial change of their refractive index upon the spin transition, whereas they preserve 

their good transparency for VIS-NIR wavelengths. Using the measured optical constants, we 

performed calculations to simulate and predict the characteristics of metal/[Fe(HB(tz)3)2]/metal 

Fabry-Perot cavities. Based on these calculations, the device configuration was set to 50 nm 

Ag/115 nm SCO/50 nm Ag with a resonance located in the visible spectral range and associated 

with reasonably high transmittance and Q-factor. The fabricated cavities displayed spectrally 

tunable resonances (up to 8 nm shift) upon the spin transition, which could be traced back to 

the refractive index and film thickness changes associated with the SCO. This work opens up 

prospects for a wealth of reconfigurable and self-adaptive applications, including spatial light 

modulators, photonic integrated circuits and tunable optical components – with particular 

relevance for the visible wavelength range wherein other families of active optical materials are 

less performant. In future work, we seek to construct optical waveguides, guided-mode 

resonance gratings and other photonic devices incorporating a thin layer of evaporable SCO 

compounds. 

To conclude, we have successfully incorporated SCO materials into two-/three-terminal 

electronic devices and photonic devices. As such, this work provides a small brick to the 

different efforts towards the transformation of SCO compounds from a scientific curiosity to 

engineering materials. Although there remains myriad of unknowns worth to explore in these 

topics, we can prophesy a broad window for SCO-based technologies. In particular, our results 

revealed that some of the SCO-based devices exhibit fully predictable device performance (e.g. 

Fabry Perot cavities) as well as quite considerable cycling endurance in operational mode (e.g. 

resistance switching junctions), which are undoubtedly quite significant issues for any ‘real-

world’ application. We believe in a not far future, with the continuous efforts and deep 
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investigations from physicists, chemists and engineers, SCO molecules will make their way out 

of academia. 
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A2.1 Characterizations of as-synthesized [Fe(HB(tz)3)2] complex. 

A2.1.1 Mass spectrum of [Fe(HB(tz)3)2] complex. 
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A2.1.2 IR spectrum of [Fe(HB(tz)3)2] complex. 
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A2.1.3 Synthesis and purification of [Fe(HB(tz)3)2] complex. 

The synthesis of [Fe(HB(tz)3)2] complex follow the equation as below: 

2KHB(tz)3 + FeSO4             [Fe(HB(tz)3)2] + K2SO4 

Usually, as-received [Fe(HB(tz)3)2] powder synthesized in ethanol contained some ‘white’ 

powder, and according to the synthesis route and post-synthesis treatment, we thought it was 

K2SO4, however, the fact is more complicated. The reasons are listed as below: 

(i) Purification (thermal evaporation) of as-synthesized powder (synthesized in ethanol). 

Similar as the mechanism of the tube furnace to purify the compounds, for our sublimator, we 

set several temperatures (150 °C, 200 °C and 250 °C) and collected powder at the fixed 

temperatures. Figure below is the photo of the sublimator after operated in 250 °C. Obviously, 

there are some white powder sublimated together with the purple powder, and they are not 

ligand or salt (because of the sublimation temperature range and IR spectrum). 
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(ii) Follow the normal stoichiometric condition (ligand:salt = 2:1), but change the solvent from 

ethanol to water, and do 3 times of centrifugation (in water) after synthesis. According to the 

solubility of the compounds, ligand and salt should be removed after this kind of post-synthesis 

treatment (centrifugation by water).  

[Solubility data: Iron salt FeSO4    25.6 g/100 ml (20 °C)  

Potassium salt K2SO4     11.1 g/100 ml (20 °C) 

Ligand KHB(tz)3 > 20 g/100 ml (20 °C)] 

Nevertheless, we still observed the mixture of white and purple powder. This indicates that 

unlike the ligand and salt, the white powder has bad solubility in water.  

 

Based on these results above, we propose a hypothesis about the origin of the white powder: 

Maybe because what we synthesised of ligand, is not that pure. Another possibility is the minor 

mistake in weighing the compounds (KHB(tz)3 + FeSO4).  

[Fe(HB(tz)3)2x(SO4)y]  (2X+y=2), when x took the majority, it would be very similar to triazolyl 

complex. 

[Fe(HB(tz)3)2x(SO4)y]  (2X+y=2), when y took the majority, it is more different from the 

triazolyl complex, from pink to white/grey, but still low solubility in water. 

 

To verify this hypothesis, I did several synthesis with different stoichiometric conditions. (note 

that the synthesis was done in water and the product was washed by water by centrifugation 

several times). 

1 eq KHB(tz)3 and 1 eq FeSO4 gave a total grey product. 

1.5 eq KHB(tz)3 and 1 eq FeSO4 gave a mixture of purple/white product. 

2.1 eq KHB(tz)3 and 1 eq FeSO4 gave a purple product.  

The photo of the result of different stoichiometric conditions is shown as below: 
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Therefore, in my opinion, using non-stoichiometric condition (ligand:salt >2:1) and washed by 

water would be one of the solutions to increase the purity of [Fe(HB(tz)3)2], which had been 

verified by mass spectrum and IR spectrum. 
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A2.1.4 Variable-temperature optical reflectivity spectrum of [Fe(HB(tz)3)2] complex of 

different batch of samples. 
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A2.2 Characterizations of thin films. 

A2.2.1 Thickness characterizations by AFM, representative results of [Fe(HB(tz)3)2] thin 

film (ca. 99 nm) and thick film (ca. 667 nm). 
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A2.2.2 Thickness characterizations by Filmetrics, representative results of thin film (ca. 

100 nm) and thick film (ca. 900 nm). 
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A2.2.3 GIXRD (with the glazing incident of 0°, 5° and 7°) of as-deposited [Fe(HB(tz)3)2] 

thin films on the fused silica substrates. 

 

A2.2.4 UV-Vis absorption spectrum of the [Zn(HB(tz)3)2] thin films. 
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A2.2.5 Surface morphologies (AFM graphs) of annealed [Fe(HB(tz)3)2] thin films. 

Samples prepared by PREVAC thermal evaporation system: 

(Note that the samples were deposited in different batches, the substrates were washed by 

acetone and ethanol for 5 minutes, respectively) 
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Samples prepared by PLASSYS thermal evaporation system: 

(Note that the samples were deposited in different batches, the substrates were rinsed 

successively by acetone (VLSI, 99.5%) and ethanol (VLSI, 99.9%) for 5 minutes under 

sonication. The substrates were dried by a nitrogen gas flow and followed by UV/O3 treatment 

for 10 minutes.) 
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A2.2.6 Surface morphologies (optical microscope graphs) of annealed [Fe(HB(tz)3)2] thin 

films. 

(Note that the samples were deposited in different batches, the substrates were rinsed 

successively by acetone and ethanol for 5 minutes under sonication. The substrates were dried 

by a nitrogen gas flow and followed by UV/O3 treatment for 10 minutes.) 
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A2.2.7 UV-vis spectra of annealed [Fe(HB(tz)3)2] thin films by different batch. 

 

 

 

 



153 
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A2.2.8 Characterizations of other thin films. 

A2.2.8.1 Raman spectra of [Zn(HB(tz)3)2] thin films (water annealed and without water 

annealed). 

 

A2.2.8.2 Thickness and morphology of thermal evaporated spiropyran thin films. 

Ca. 252 nm thick film: 
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Ca. 130 nm thick film: 
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Ca. 296 nm thick film: 
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A2.3 Characterizations of multilayer two-terminal devices. 

A2.3.1 Characterizations of [Zn(HB(tz)3)2]-based two-terminal devices. (5V, 5°C/min) 

 

A2.3.2 Characterizations of “1-year aged” non-encapsulated ITO/100 nm [Fe(HB(tz)3)2]/ 

Al junction at 2V. 
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A2.3.3 Characterizations of other [Fe(HB(tz)3)2]-based two-terminal devices. 

 

Representative I-T characteristics (even the ‘standard device’ did not show the expected 

characteristics): 
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A3.1 Output characteristics of Device A (without SCO) 

 

A3.2 OFETs degradation tests under vacuum. 

 To better understand temperature’s effect on the OFETs, we carried out another four 

successive temperature dependent current characterization on a standard device. These data was 

recorded under a vacuum of 1×10-3 mbar to remove doubts of water / oxygen of the ambient 

environment that may influence the aging test, even though the device had been encapsulated. 

The details of another four successive temperature dependent current characterization is listed 

in Table 3.1. 

Table 3.1: Parameters of another four successive temperature dependent current 

characterization on a standard device. 
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 I-T characteristics of these four thermal cycles is shown in Figure 3.2. 

 

Figure 3.2: (a) Current-temperature (I-T) characteristics. 

A3.3 Output and transfer characteristics in different temperatures of different OFETs. 
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A3.4 Temperature accelerated degradation of OFETs. 
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A4.1 Representative SEM graphs of a high-resolution shadow mask. 
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A4.2 Representative OM graphs of a high-resolution shadow mask. 
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A4.3 Representative SEM graphs of patterned 100 nm thick Al deposited on glass 

substrate. 

 

A4.4 Representative OM graphs of patterned 100 nm thick Al deposited on glass 

substrate. 
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A4.5 Representative AFM graphs of patterned 100 nm thick Al deposited on glass 

substrate. 
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A4.6 Representative OM graphs of 100 nm thick Al deposited on the top of 100 nm thick 

SCO layer. 
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Introduction générale 

Au cours des dernières décennies, les matériaux moléculaires ont été de plus en plus envisagés 

pour des applications technologiques car la miniaturisation des dispositifs conventionnels à 

base de silicium s'approche de diverses limites technologiques et physiques. Dans ce contexte, 

les sciences moléculaires peuvent apporter de nouvelles solutions avec la synthèse et 

l'intégration de molécules fonctionnelles dans des dispositifs. Parmi ces molécules 

fonctionnelles, les complexes à transition de spin (SCO) de certains ions de métaux de transition 

de troisième rang présentent une commutation réversible entre leurs configurations 

électroniques de bas spin (LS) et de haut spin (HS). La commutation entre ces deux états peut 

être déclenchée par divers stimuli externes tels que la température, la pression, la lumière, les 

champs magnétiques intenses ou l'inclusion de molécules « invitées ». Les composés SCO dans 

les deux états de spin présentent des propriétés physiques différentes, notamment des propriétés 

magnétiques, diélectriques, optiques, mécaniques et thermiques. Certains des matériaux SCO 

présentent même une commutation à température ambiante (ou au-dessus de la température 

ambiante), ce qui est évidemment un atout essentiel pour toute application. Une autre 

caractéristique importante des complexes SCO est que l'état de spin moléculaire peut être 

commuté par irradiation lumineuse sur une échelle de temps sub-ps, ce qui rend possible un 

fonctionnement rapide. Ces propriétés attrayantes des composés SCO ont suscité un intérêt pour 

l'étude de leurs propriétés électriques dans le contexte des dispositifs électroniques et 

spintroniques. En effet, la nature moléculaire de ces matériaux offre des fonctions inédites, qui 

restent à explorer. L'idée générale est d'étudier les différentes possibilités offertes par les 

molécules SCO pour moduler les caractéristiques des dispositifs électroniques. Notamment, les 

matériaux SCO entraînent une variation considérable du gap électronique HOMO-LUMO, du 

moment magnétique, de la densité massique, de la permittivité diélectrique complexe (dans une 

large gamme de fréquences, allant des fréquences quasi-statiques aux fréquences optiques), etc. 

On peut donc s'attendre à un effet substantiel de la transition de spin sur diverses propriétés du 

dispositif (résistance, magnétorésistance, capacité et caractéristiques optiques). Le défi est, 

cependant, de trouver un moyen d'utiliser ces atouts remarquables dans un dispositif 

électronique technologiquement pertinent. 

Dans ce contexte, ce travail de thèse tire profit du développement récent dans notre équipe de 

films minces cristallins de grande qualité du complexe SCO [Fe(HB(tz)3)2] (tz = 1,2,4-triazol-

1-yl), présentant une transition de spin robuste (sans fatigue), au-dessus de la température 

ambiante 0. Ce complexe moléculaire peut être déposé par évaporation thermique sous vide, ce 
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qui a permis de l'intégrer dans différentes configurations de dispositifs fondamentaux, 

notamment des jonctions de commutation par résistance multicouches à deux bornes et des 

transistors à effet de champ à trois bornes.  

Au cours de ce travail, nous avons fabriqué diverses structures multicouches métal/SCO/métal 

et nous avons constaté que ces structures présentent également des fonctionnalités photoniques 

remarquables, en plus de leurs propriétés électriques. 

Ceci a conduit à un résultat inattendu, qui consiste à développer des résonateurs optiques 

accordables, basés sur le phénomène de la transition de spin. La thèse est organisée en quatre 

chapitres : 

Le chapitre 1 commence par une brève introduction générale au phénomène de la transition de 

spin (SCO), incluant des considérations sur le champ de ligands et la description de différents 

stimuli pour déclencher le phénomène ainsi que les techniques expérimentales pour le 

caractériser. Ensuite, nous passons en revue l'état de l'art des films minces SCO évaporables 

ainsi que des dispositifs électroniques basés sur des films minces SCO, classés en dispositifs à 

deux ou trois bornes. 

Le chapitre 2 est focalisé sur l'intégration de films minces de [Fe(HB(tz)3)2] dans des 

dispositifs électroniques multicouches à deux terminaux et de grande surface, destinés à la 

commutation de résistance. La pureté du produit de départ, les qualités des films minces, les 

conditions de fabrication et de fonctionnement du dispositif ont été prises en compte pour 

explorer et optimiser les performances du dispositif (rapports de commutation ON/OFF, 

endurance du cycle, ...). Le mécanisme de transport de charge associé à la commutation par 

résistance est également discuté. Enfin, nous présentons la fabrication et la caractérisation des 

premières jonctions SCO multicouches à électrodes magnétiques.  

Le chapitre 3 est consacré à l'intégration de couches minces de [Fe(HB(tz)3)2] dans des 

transistors à effet de champ organiques (OFET) à trois bornes. Différentes configurations de 

dispositifs sont comparées (grille inférieure - contact inférieur, grille inférieure - contact 

supérieur, ...), visant l'utilisation du phénomène SCO pour moduler les caractéristiques de 

transfert/sortie des transistors. 

Le chapitre 4 s'appuie sur l'expertise acquise lors du développement d'empilements 

multicouches métal/[Fe(HB(tz)3)2]/métal. Contrairement aux chapitres précédents, l'accent est 

mis ici sur les propriétés optiques de ces structures multicouches. En particulier, la conception 
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et les propriétés des cavités Fabry Pérot sont présentées et la modulation de la résonance de la 

cavité due au phénomène SCO est démontré. 

La thèse se termine par des conclusions générales et des perspectives.  

 

Chapitre 1   Introduction 

Selon la théorie du champ cristallin, dans un champ de ligand octaédrique, les cinq orbitales d 

dégénérées (dans le cas de l'ion métallique libre) subissent une séparation énergétique en deux 

niveaux : un niveau de faible énergie t2g et un niveau d'énergie plus élevé eg. Pour un complexe 

octaédrique avec un ion de métal de transition 3d4-3d7, selon l'intensité du champ de ligands 

autour de l'ion métallique, son état de spin peut être soit de haut spin (HS), soit de bas spin (LS). 

Dans un champ ligand faible, l'énergie de division du champ cristallin 10Dq est inférieure à 

l'énergie d'appariement des électrons P, ce qui permet aux électrons d d'occuper à la fois les 

niveaux d'énergie t2g et eg, c'est-à-dire un état de spin élevé avec une multiplicité de spin 

maximale. Inversement, dans un champ de ligand fort, l'énergie de division du champ cristallin 

10Dq est supérieure à l'énergie d'appariement des électrons P, et les électrons d occupent 

entièrement le niveau d'énergie t2g avant d'occuper les orbitales eg de haute énergie, c'est-à-

dire un état à faible spin avec une multiplicité de spin minimale. Parmi les complexes de métaux 

de transition avec des configurations électroniques 3d4-3d7, le Fe(II) a été le plus étudié, bien 

que le phénomène SCO ait également été rapporté pour les complexes de Fe(III), Co(II), Co(III), 

Cr(II), Mn(II) et Mn(III).  

Dans cette thèse, nous avons travaillé exclusivement avec des complexes à transition de spin, 

qui ont un ion central Fe(II) (3d6). La figure 1.1 montre les configurations électroniques HS et 

LS d'un complexe ferreux octaédrique. Dans l'état de spin faible, le complexe est diamagnétique 

(S=0), alors que dans l'état de spin élevé, il est paramagnétique (S=2). 

Lorsque l'écart d'énergie (∆E0HL) entre les puits de potentiel à haut et bas spin est suffisamment 

faible (comparable à l'énergie thermique), différents stimuli externes (température, lumière, 

pression, etc.) peuvent induire un changement d'état de spin (Fig. 1.1).  
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Figure 1.1 : Diagramme de configuration simplifié des deux états de spin moléculaires (HS et 

LS) pour un complexe Fe(II) octaédrique. 

 

Nous appelons ce phénomène transition de spin de l’anglais "Spin Crossover". En raison de ce 

phénomène, les propriétés physiques (magnétiques, optiques, électriques, mécaniques, etc.) du 

complexe à l’état solide changent donc. Le passage d'un état de spin à l'autre peut être déclenché 

par divers stimuli externes, tels que la température, l'irradiation lumineuse, la pression, un 

champ magnétique intense, etc. Parmi ces facteurs, la façon la plus habituelle de changer l'état 

de spin est de changer la température, qui est également la méthode appliquée dans cette thèse 

pour détecter la transition de spin. 
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Figure 1.2 : Représentation des courbes de transition thermique de spin (a) graduelle, (b) 

abrupte, (c) à hystérésis, (d) en deux étapes et (e) incomplète. 

 

Pour utiliser les matériaux SCO dans des applications "réelles", il est nécessaire de les utiliser 

sous forme de film mince. Cependant, la fragilité du phénomène SCO et la possibilité de 

traitement relativement faible des matériaux SCO ont limité leur développement pour des 

applications technologiques. Récemment, de grands progrès ont été réalisés dans la croissance 

de films minces de SCO et la fabrication de nanostructures de SCO. Parmi ces techniques, 

l'évaporation thermique sous vide s'avère être une méthode privilégiée pour déposer des films 

minces de SCO de grande surface, de haute qualité, continus et peu rugeux avec une épaisseur 

inférieure au micromètre. 

Le tableau 1.1 présente une liste (qui se veut exhaustive) et quelques caractéristiques de base 

des molécules de SCO thermo-évaporables rapportées. Malgré les nombreux efforts de 

différentes équipes de recherche, la liste est plutôt courte, en raison des exigences générales 

imposées aux complexes à évaporer (charge neutre, faible poids moléculaire, thermiquement 

stable, sans solvant, etc.) Dans la plupart des cas, les complexes SCO thermiquement 
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évaporables sont des complexes de Fe(II) de la famille des complexes de « scorpionate », c'est-

à-dire des dérivés de pyrazolyl et triazolyl-borate. 

 

 

 

Tableau 1.1 : Liste des complexes SCO sublimables rapportés dans la littérature. 

Molecule T1/2/∆T 

(K, 

bulk) 

Thickness 

of thin 

film (nm) 

T1/2/∆T 

(K, thin 

film) 

Tsub (K) 

/Psub 

(mbar) 

Ref 

[Fe(phen)2(NCS)2] 176/ ≈ 1 280 175 453/10-8 Shi 2009 

[Fe(H2B(pz)2)2(phen)] 163.7/ ≈ 

4 

355 151/6 435/10-2 Rosa 2012 

[Fe(H2B(pz)2)2(bipy)] 160 564 153/4 433/10-2 Rosa 2012 

[Fe(H2B(pz)2)2L
1] 141 >100 148 448/3×10-8 Ossinger 2016 

[Fe(H2B(pz)2)2L
2] 140 5  425/1×10-

10 

Poggini 2018  

[Fe(H2B(pz)2)2L
3] 154 230 ≈ 150 /4.3 × 10−8 Bowen2019 

[Fe(H2B(pz)2)2L
4] 197 10 176.5 423/ Kumar2018 

[Fe(dpepd)(NCS)2] ≈ 251 0.8 

monolayer 

235(6) 510/5×10-9  Bernien 2012 

[Fe(HB(pz)3)2] 393   463/ ≈ 10-5 Mahfoud2011 

[Fe(HB(tz)3)2] 333/ ≈ 1 100 336 523/ ≈ 

2×10-7 

Shalabaieva2017 

[Fe(HB(3,5-

(CH3)2(pz)3)2] 

190/31 130 152/17 393-

413/10-8  

Iasco 2017 
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[Fe(qnal)2]·xCH2Cl2 220 

(x=1) 

and 260 

(x=0) 

50 210 490/10-7 Atzori 2018 

[Fe(pypyr(CF3)2)2(phen)] 390 40 

monolayer 

330 433/5×10-9 Rohlf 2018 

[Fe(pap)2]ClO4·H2O 172.5/15   ~363/ 

1×10-9 

Tönnies 2017 

 

Certains des films existants ont pu être intégrés avec succès dans des dispositifs électroniques 

présentant différentes configurations : à 2 ou 3 bornes, planaires ou verticales. Les 

configurations et les principales propriétés des dispositifs électroniques à base de SCO sont 

résumées dans le tableau 1.2 ci-dessous : 

Tableau 1.2 : Propriétés de commutation de courant rapportées pour diverses jonctions SCO 

SCO compound Device 

structure 

Current LS 

(A) 

Current 

HS (A) 

 ON/

OFF 

rati

o 

Ref. 

[Fe(H2B(pz)2)2(phe

n)] film 

ITO/SCO/Al 2.0×10-9 1.0×10-9 ↓ 2 Lefter2016 

[Fe(HB(tz)3)2] film ITO/SCO/Al 5.0×10-6 5.0×10-7 ↓ 8 Shalabaeva

2018 

[Fe(H2B(pz)2)2(phe

n)] film 

TSAu/SCO/EGa

In 

3×10-10 3×10-9 ↑ 10 Poggiini201

9 

[Fe(HB(tz)3)2] film TSAu/SCO/EGa

In 

3×10-8 3×10-6 ↑ 100 Poggiini201

8 

[Fe(H2B(pz)2)2(NH2

-phen)] film 

Au/ SCO/Au 8×10-8 8×10-6 ↑ 100 Bowen2018 
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[Fe(Htz)2(tz)](BF4) 

nanorods 

Au/ SCO/Au 2.6×10-8 1.5×10-8 ↓ 1.7 Rotaru2013 

[Fe(Htz)2(tz)](BF4) 

nanoparticles 

Au/ SCO/Au 1×10-9 3×10-12 ↓ 300 Dugay2015 

Au@[Fe(Htz)2(tz)](

BF4) nanoparticles 

Au/ SCO/Au 6×10-9 4×10-12 ↓ 1500 Torres2019 

[Fe(tz)3](BF4)2 NPs Au/ SCO/Au 0.26 0.88 ↑ 3 Prins2011 

[Fe(tz)3](BF4)2 NPs G/SCO/G    2 Dugay2016 

[Fe(tz)3](BF4)2 NPs Au/G+SCO/Au 3×10-10 3×10-11 ↓ 10 Holovchenk

o2016 

[FeIII(qsal-

I)2]NTf2 thin film 

Cu/SLG/SCO/

GaOx/EGaIn 

-3.6 (Log J) -2.6 (Log 

J) 

↑ 10 Nijhuis2020 

 

 

Chapitre 2 Intégration du complexe [Fe(HB(tz)3)2] à transition de spin dans des 

dispositifs de commutation par résistance à deux bornes 

Dans ce chapitre, nous décrivons d'abord la synthèse et la caractérisation du complexe sous 

forme de poudre et de films minces. Après avoir décrit les propriétés des films minces, nous 

discutons de la fabrication et des propriétés des jonctions à deux terminaux, multicouches et de 

grande surface, basées sur ces films.  

L'architecture ‘‘crossbar’’ est universellement utilisée dans les applications de commutation 

par résistance, dans lesquelles chaque point de croisement présente une configuration de type 

condensateur, comme le montre la figure 2.1.  Jusqu'à présent, un grand nombre de matériaux 

isolants (oxydes, nitrures, chalcogénures, polymères, matériaux organiques, etc.) ont été 

rapportés dans les applications de commutation par résistance. Récemment, les matériaux SCO 

ont également été intégrés dans des dispositifs similaires de type ‘‘crossbar’’. 

En raison des propriétés physiques bistables des composés SCO, ces dispositifs peuvent 

potentiellement permettre un comportement de commutation par résistance. 
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Figure 2.1 : Architecture ‘‘crossbar’’ typique utilisée dans les applications de commutation 

résistive. 

La synthèse du complexe [Fe(HB(tz)3)2] a été réalisée selon le mode opératoire de nos 

précédents travaux. Les films minces de [Fe(HB(tz)3)2] ont ensuite été fabriqués par 

évaporation thermique sous vide. Grâce à un traitement facile, appelé recuit à la vapeur de 

solvant, les films minces deviennent cristallins avec une orientation préférentielle. Les films 

minces recuits ont été caractérisés par GIXRD, UV-Vis, AFM et Mesures optiques. Comme le 

montre la figure 2.2a, le diagramme de diffraction du film mince de [Fe(HB(tz)3)2] recuit à la 

vapeur d'eau présente un pic unique et intense à 2θ = 10,02° indiquant une orientation 

cristallographique hautement préférentielle. La dépendance en température de l'absorbance à 

318 nm le long de deux cycles de chauffage-refroidissement du film mince de [Fe(HB(tz)3)2] 

recuit à la vapeur d'eau est présentée dans la Figure 2.2b. On peut y voir une chute abrupte 

autour de 65 °C avec presque aucune hystérésis due au phénomène SCO. Comme nous pouvons 

le voir sur les images de la Mesure Optique des figures 2.2c-d, le recuit à la vapeur d'eau peut 

induire une structure dendritique " ramifiée " dans le film mince, qui peut atteindre des centaines 

de µm. A Noter qu'à l'exception de la zone présentant des structures de type " branche ", le reste 
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de la surface semble lisse et homogène, tout comme le film mince vierge (sans recuit à la vapeur 

de solvant). 

 

 

 

 

 

 

 

 

Figure 

2.2 : (a) Spectre GIXRD du film mince de [Fe(HB(tz)3)2] recuit à la vapeur d'eau. (b) 

Dépendance en température de l'absorbance à 318 nm d'un film mince recuit à la vapeur d'eau 

(ca. 100 nm) le long de deux cycles de chauffage-refroidissement. Images de microscopie 

optique (MO) de (c) films minces recuits à la vapeur d'eau (insert : image AFM) et (d) films 

minces vierges. 

Les films minces de [Fe(HB(tz)3)2] recuits ont ensuite été intégrés dans des dispositifs à deux 

bornes. Les jonctions ITO/[Fe(HB(tz)3)2]/Al ont d'abord été fabriquées et caractérisées. La 

procédure de fabrication des jonctions transversales ITO/SCO/Al est illustrée sur la figure 2.3 

ci-dessous : 
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Figure 2.3 : Procédure de fabrication des jonctions ITO/[Fe(HB(tz)3)2]/Al. 

 

Les résistances des jonctions ITO/[Fe(HB(tz)3)2]/Al ont d'abord été caractérisées à température 

ambiante. Aucune des jonctions n'a été court-circuitée et la valeur moyenne globale de 

résistance de 3,0 ± 0,4 MΩ est bien reproduite d'un dispositif à l'autre. 

 

Tableau 2.1 : Comparaison de la résistance électrique à température ambiante d'un lot de 

jonctions ITO/100 nm [Fe(HB(tz)3)2]/Al. 

 

La figure 2.4 illustre les caractéristiques I-V et I-T en fonction de la température d'une jonction 

ITO/[Fe(HB(tz)3)2]/Al. Les courbes I-T montrent une faible activation thermique et un 

changement substantiel d'un état de haute conductance à un état de basse conductance se produit 

à environ 65 °C pendant le chauffage. Contrairement au rapport ON/OFF de 8 rapporté 

précédemment (c'est-à-dire une commutation d'un ordre de grandeur), dans les expériences 

actuelles, les changements de résistance atteignent 2 à 3 ordres de grandeur dans plusieurs 

dispositifs, avec des rapports ON/OFF allant jusqu'à 400. Nous pensons que cette amélioration 

spectaculaire des rapports de commutation ON/OFF, par rapport aux dispositifs rapportés 

précédemment, est probablement liée à une manipulation plus prudente des dispositifs en 

termes d'exposition à l'air, aux hautes tensions et aux hautes températures. 
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Figure 2.4 : Caractéristiques électriques d'une jonction ITO/100 nm [Fe(HB(tz)3)2]/Al. À 

gauche : courbes I-V enregistrées à 20 °C et 100 °C, puis à nouveau à 20 °C à des vitesses de 

±100 mV/s. À droite : courbes log I- T enregistrées avec une polarisation appliquée de 5 V. 

 

L'amélioration de la stabilité à long terme et de l'endurance de commutation des dispositifs 

électroniques à base de SCO est essentielle au déploiement de cette technologie. Nous avons 

étudié la résistance aux cycles de la jonction ITO/100 nm [Fe(HB(tz)3)2]/Al non encapsulée, 

âgée d'un an, lors de cycles thermiques sous une tension de polarisation constante de 3 V.  

Étonnamment, nous avons enregistré plus de 10 000 cycles de commutation de résistance entre 

les états de spin moléculaire élevé (faible intensité de courant) et faible (forte intensité de 

courant) dans la jonction (figure 2.5). 

 

 

 

Figure 2.5 : (a) Cycles de commutation actuels entre le HS et le LS dans la jonction 

pendant >10.000 commutations. Des zooms sont également montrés sur les 9995ème - 

10005ème (b) événements de commutation. 

 

Afin de mieux comprendre le rôle des interfaces molécule-électrode dans la propriété de 

commutation de résistance des jonctions, nous avons conçu et caractérisé des jonctions ITO/100 

nm [Fe(HB(tz)3)2]/Ca. Le rapport de courant ON/OFF atteint une valeur de 50 (Fig. 2.6), ce 

qui est comparable en magnitude aux dispositifs fabriqués avec une cathode en Al.  

Ce résultat semble corroborer notre hypothèse selon laquelle le phénomène de commutation de 

résistance est lié au transport de saut de charges dans le film de SCO. 
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Figure 2.6: Electrical characteristics of an ITO/100 nm [Fe(HB(tz)3)2]/Ca junction. Left: I-V 

curves. Right: log I- T curves recorded with an applied bias of 5 V. 

De plus, nous avons fabriqué un dispositif à valve de spin dans lequel la couche SCO est prise 

en sandwich entre deux électrodes magnétiques. Nous avons réussi à fabriquer des jonctions 

NiFe/[Fe(HB(tz)3)2]/Co avec une épaisseur de couche de SCO d'environ 100 nm, qui 

présentaient les caractéristiques I-V et magnétiques attendues. Cependant, à ce stade, nous 

n'avons pas encore pu mettre en évidence une quelconque propriété de magnétorésistance ni un 

effet clair de la SCO sur les propriétés électriques du dispositif. 

 

 

 

Figure 2.7 : Caractéristiques I-V (a) et magnétiques (b) de jonctions NiFe/[Fe(HB(tz)3)2]/Co. 



195 

 

 

 

Chapitre 3 Intégration du complexe à transition de spin  [Fe(HB(tz)3)2] dans des 

dispositifs électroniques à trois bornes 

Ce chapitre est consacré à l'étude de la possibilité d'intégrer les molécules SCO dans des 

dispositifs de transistors à effet de champ organiques (OFET) afin de moduler les 

caractéristiques du dispositif via le phénomène SCO. Trois dispositifs OFET différents ont été 

conçus et fabriqués dans des configurations grille inférieure - contact inférieur ou grille 

inférieure - contact supérieur. Les structures de ces dispositifs sont présentées à la figure 3.1 ci-

dessous : 

 

 

 

Figure 3.1 : Configurations du dispositif A, du dispositif B et du dispositif C. 

 

En particulier, une photo représentative du dispositif C est présentée à la figure 3.2. Chaque 

puce contient cinq transistors. Pour les mesures électriques, trois pointes de tungstène 

recouvertes d'or ont été placées en contact avec le prolongement des électrodes de 

drain/source/grille, la puce étant placée sur un étage de chauffage-refroidissement. 
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Figure 3.2 : Photos de (a) une puce avec cinq transistors sur l'étage de chauffage-

refroidissement et (b) un zoom sur la puce. On peut également y voir les sondes utilisées pour 

les mesures. 

 

Les caractéristiques de sortie ou les caractéristiques de transfert ont été aussi mesurées pour 

évaluer les performances des OFET. La figure 3.3 illustre une caractéristique de sortie 

représentative (a) et une caractéristique de transfert (b) d'un dispositif A avec une épaisseur de 

SCO de 30 nm. À partir de la courbe de sortie, nous pouvons voir que le courant source-drain 

est très faible (<10-10 A), ce qui indique que le canal n'est pas conducteur. Nous pensons que 

l'échec du dispositif A est lié à la présence d'une " intercouche " de SCO entre les électrodes 

source/drain et le semi-conducteur organique. 
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Figure 3.3 : Caractéristiques représentatives (a) de sortie et (b) de transfert du dispositif A. W 

= 50 µm, L = 1500 µm. 

 

Nous avons également examiné les caractéristiques électriques du dispositif B. Dans cette 

configuration, un film de tétracène de 75 nm d'épaisseur a d'abord été déposé sur le substrat 

propre fonctionnalisé par SAM, puis un film de [Fe(HB(tz)3)2] de 150 nm d'épaisseur a été 

déposé lors de la dernière étape de la fabrication du dispositif. La figure 3.4 illustre une 

caractéristique de sortie représentative (a) et une caractéristique de transfert (b) d'un dispositif 

B. On peut voir sur la courbe caractéristique de sortie que le courant drain-source (IDS) est de 

l'ordre de 10-6 A avec un effet de champ significatif, ce qui indique que le transistor fonctionne. 

 

 

 

 

Figure 3.4 : Caractéristiques représentatives (a) de sortie et (b) de transfert du dispositif B. W 

= 50 µm, L = 1000 µm. 

 

La variation de l'intensité du courant était souvent bruyante et peu reproductible. Plus important 

encore, aucun signe clair pour les changements liés au phénomène SCO n'a pu être déduit. Pour 

cette raison, notre attention s'est portée sur l'optimisation du dispositif C à la fois en termes de 

processus de fabrication et de protocoles de caractérisation, permettant une meilleure stabilité 

du dispositif. Les caractéristiques de sortie et de transfert du dispositif C à 45 °C sont présentées 

à la figure 3.5. La courbe caractéristique de sortie du dispositif C montre un effet de champ 

clair : le courant drain-source peut être réglé par la tension de grille et les régions 

linéaires/saturation peuvent être clairement distinguées. À notre connaissance, il s'agit du 

premier OFET fonctionnel incorporant un matériau à transition spin dans la couche diélectrique. 

Le courant de fuite (c'est-à-dire le courant à l'état OFF) est de plusieurs dizaines de pA, alors 
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que le courant à l'état ON peut atteindre plusieurs nA. On peut également noter une hystérésis 

dans les caractéristiques de transfert dénotant la présence de pièges à charge. 

 

 

Figure 3.5 : (a) Caractéristiques de sortie et (b) caractéristiques de transfert d'un dispositif C 

mesurées à 45 °C. W = 110 µm, L = 1000 µm. 

 

Des mesures dépendantes de la température ont été effectuées à la fois sur le 'dispositif standard' 

(dispositif à grille inférieure/contact supérieur sans SCO) et sur le dispositif C. Nous avons 

extrait des courbes de transfert du dispositif C et d'un 'dispositif standard' la dépendance en 

température du courant drain-source à des valeurs fixes de VDS et VG. Ces résultats sont 

résumés dans la Fig. 3.6. La comparaison de ces données obtenues en présence ou en l'absence 

du film SCO a révélé des différences faibles, mais significatives. Des travaux ultérieurs 

devraient confirmer dans quelle mesure ces différences pourraient être liées au phénomène SCO. 
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Figure 3.6 : Caractéristiques représentatives du courant drain-source dépendant de la 

température d'un " dispositif standard " (panneau supérieur) et du dispositif C (panneau 

inférieur). W = 50 µm, L = 1000 µm. 

 

Chapitre 4    Intégration du complexe à transition de Spin [Fe(HB(tz)3)2] dans des cavités 

optiques 

Dans ce chapitre, nous décrivons la conception, la fabrication et les propriétés optiques de 

cavités Fabry-Perot multicouches Ag/[Fe(HB(tz)3)2]/Ag. Ces dispositifs utilisent la 

remarquable commutation de l'indice de réfraction (n = 0,04 - 0,2) entre les états à bas et haut  

spin dans le film [Fe(HB(tz)3)2] pour réaliser la modulation de la résonance de la cavité. 

La dépendance en température de l'indice de réfraction n et de l'épaisseur du film L est 

représentée sur les figures 4.1(a) et (b), respectivement. Ces courbes montrent une corrélation 

convaincante. Loin de la transition de spin, n et t sont faiblement dépendants de la température, 

en accord avec le coefficient de dilatation thermique presque nul de [Fe(HB(tz)3)2]. Autour de 
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la température de transition de spin (65 °C), l'épaisseur du film augmente brusquement de 

4,6(4) %, de 91,2(3) dans l'état LS à 95,4(2) nm dans l'état HS.  

Cette variation est en accord raisonnable avec l'expansion de 5,4(8) % de l'axe c 

orthorhombique de la cellule unitaire lors de la SCO révélé par la diffraction des rayons X sur 

monocristal. (N.B. Rappelons que le film est orienté avec l'axe c normal au substrat). D'autre 

part, la valeur de n diminue concomitamment d'environ 0,2-0,04 (selon la longueur d'onde) à la 

transition LS vers SH. En particulier, à 500 nm, nous avons extrait un changement de n=1,62 à 

1,56 lors du passage de l'état LS à l'état HS. 

 

Figure 4.1 : Caractérisation ellipsométrique d'un film de [Fe(HB(tz)3)2] d'une épaisseur 

nominale de 100 nm. (a) Dépendance en température de l'indice de réfraction n à certaines 

longueurs d'onde (mode chauffage). (b) Variation de l'épaisseur du film L en fonction de la 

température (mode chauffage). 

 

La figure 4.2 montre la profondeur de modulation induite par la commutation entre les états LS 

et HS (définis en réflexion comme |RHS-RLS| pour un empilement Ag/115 nm SCO/Ag à 

incidence normale. Ces types de tracés peuvent être utilisés pour rechercher les conditions 

optimales où le SCO permet la plus grande variation possible de la réflectance (ou de la 

transmittance) de la cavité. 
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Figure 4.2 : Profondeur de modulation |RHS-RLS| pour un empilement Ag/115 nm SCO/Ag à 

AOI=0°. 

 D'après les simulations, le premier dispositif Fabry-Perot à base de SCO a été conçu 

pour être 50 nm Ag/115 nm SCO/50 nm Ag. La figure 4.3a montre des spectres de réflectance 

représentatifs des cavités enregistrés dans les états LS (25 °C) et HS (80 °C) à des angles 

d'incidence sélectionnés sous un éclairage polarisé TE. D'autre part, la figure 4.3b compare la 

réflectance des cavités pour les polarisations TE et TM à un AOI fixe (60°). Comme prévu dans 

les simulations, la structure multicouche Ag/SCO/Ag présente des résonances prononcées avec 

une dépendance significative à la fois de l'AOI et de l'état de polarisation de l'onde lumineuse 

incidente. Cet effet combiné de l'AOI et de la polarisation est plus clairement illustré dans la 

courbe de dispersion de la cavité présentée à la figure 4.3c. Là encore, nous notons la bonne 

correspondance avec les résultats de la simulation. Il est important de noter que les pics de 

résonance présentent un décalage vers le bleu lors du passage de l'état LS à l'état HS. Ce 

décalage peut être mieux apprécié sur la figure 4.3d, qui montre un balayage détaillé de la 

température (pour AOI=45° et une polarisation TE). Le plus grand décalage que nous avons pu 

observer à l'OCS était d'environ 8 nm pour AOI 60° à la polarisation TE. Comme le montre la 

figure 4.3b, ce décalage de longueur d'onde se traduit par une modulation de la réflectance de 

la cavité d'environ 30 %. 
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Figure 4.3 : Propriétés optiques des cavités Fabry-Perot multicouches Ag (50 nm)/SCO (115 

nm)/Ag (50 nm). (a) Spectres de réflectance à des valeurs AOI sélectionnées dans les deux états 

de spin pour la polarisation TE. (b) Spectres de réflectance à une AOI fixe de 60° dans les deux 

états de spin pour les polarisations TE et TM. (c) Courbes de dispersion dans les deux états de 

spin pour les polarisations TE et TM. (d) Résonance de la cavité (polarisation TE, AOI = 45°) 

en fonction de la température pour un cycle complet de chauffage - refroidissement. 

 

Conclusions générales et perspectives 

Plusieurs décennies se sont écoulées depuis qu'Olivier Kahn a proposé et prévu l'intégration 

potentielle des molécules à transition de spin dans les dispositifs électroniques. En effet, les 

matériaux à transition de spin présentent des atouts intéressants pour les applications 

technologiques en raison de leurs propriétés physiques bistables (optiques, magnétiques, 

électriques, ...) et du fait que le changement d'état de spin peut être déclenché par divers stimuli 

externes, tels que la température, la pression, l'irradiation par la lumière et les rayons X, les 
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champs magnétiques intenses, ou l'inclusion de molécules solvantées ou invitées (c'est-à-dire 

des stimuli chimiques). Ces propriétés, ainsi que la vitesse de commutation rapide et la 

polyvalence de ces matériaux (plusieurs centaines de composés SCO connus), les rendent 

attrayants pour différentes applications, notamment les commutateurs, les mémoires, les écrans, 

les capteurs, les actionneurs, etc. Notamment, plusieurs équipes de recherche ont travaillé au 

cours des dernières décennies à l'incorporation de matériaux SCO dans des dispositifs 

électroniques et plusieurs résultats remarquables ont été obtenus. Cependant, il est juste 

d'admettre que nous n'en sommes encore qu'au stade initial du transfert des propriétés des SCO 

dans différentes formes de dispositifs ainsi que de la compréhension des mécanismes physiques 

pertinents. De plus, la durée de vie des dispositifs est de plus en plus considérée comme une 

question importante du point de vue des applications du " monde réel". Partant de ces 

motivations, la thèse a été construite dans le but d'intégrer des matériaux SCO sous forme de 

films minces dans différents dispositifs (configurations), d'établir la corrélation entre le 

phénomène SCO et les caractéristiques du dispositif, d'étudier les facteurs qui influencent la 

durée de vie des dispositifs électroniques basés sur SCO et de creuser les protocoles avec une 

compréhension globale des points ci-dessus pour améliorer la performance générale des 

dispositifs. 

 

Grâce aux progrès récents de notre équipe en matière de films minces cristallins de haute qualité 

du complexe SCO [Fe(HB(tz)3)2], présentant une SCO robuste, au-dessus de la température 

ambiante, nous avons intégré avec succès ces films minces par évaporation thermique sous vide 

dans différentes configurations de dispositifs fondamentaux, qui ont été mis en œuvre en 

collaboration avec la plateforme microélectronique du LAAS-CNRS-Toulouse.  

Pour la première étape expérimentale, nous avons construit des jonctions électroniques 

multicouches ITO/SCO/Al à deux bornes, de grande surface, pour étudier leur fonctionnalité 

de commutation de résistance. Nous avons examiné divers détails, notamment la voie de 

synthèse, les méthodes de purification, la préparation des substrats, le dépôt de la couche mince, 

les traitements post-dépôt, l'encapsulation du dispositif, les protocoles de caractérisation, etc. 

afin d'obtenir les meilleures performances du dispositif.  

En conséquence, nous avons pu observer une commutation de résistance due au phénomène 

SCO, jusqu'à trois ordres de grandeur, dans les dispositifs avec une couche SCO de 100 nm 

d'épaisseur.  
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De façon remarquable, les jonctions sont assez robustes et nous avons montré que la propriété 

de commutation de résistance peut être préservée même après un stockage dans l'environnement 

ambiant pendant un an sans encapsulation. Ces jonctions ont montré une grande résistance à la 

fatigue (grande endurance aux cycles de température), avec un rapport de commutation par 

résistance ON/OFF considérable et stable pendant plus de 10 000 événements de commutation. 

Nous avons découvert que les paramètres clés pour atteindre cette stabilité de commutation sont 

la plage de température de travail réduite (< ~80°C) et une tension de polarisation constante.  

Nous avons également donné un aperçu du mécanisme de transport des dispositifs en 

remplaçant le matériau de la cathode. Malgré le fait que les fonctions de travail de l'Al et du Ca 

sont très différentes (fournissant ainsi des barrières d'injection d'électrons très différentes), la 

performance de la jonction semble assez similaire avec des rapports de commutation de 

résistance ON/OFF comparables, ce qui indique que le transport limité par le volume est le 

mécanisme dominant dans nos dispositifs.  

Une perspective intéressante de ce travail serait de corréler les propriétés de transport de charge 

avec l'orientation cristalline des films. Une autre perspective importante serait l'étude de 

jonctions multicouches avec différentes épaisseurs de film, jusqu'à quelques nanomètres, afin 

d'atteindre un régime de transport de charge qui ne soit pas dominé par les propriétés de 

transport de masse du film SCO. 

Nous avons également intégré des films minces de [Fe(HB(tz)3)2] dans une configuration de 

dispositif à valve de spin avec deux électrodes magnétiques. Au stade actuel de nos travaux, 

nous n'avons pas encore pu mettre en évidence une quelconque propriété de magnétorésistance, 

ni un effet clair du SCO sur les propriétés électriques du dispositif.  

Néanmoins, nous pensons que ces dispositifs représentent une plateforme prometteuse pour des 

travaux ultérieurs sur de nouvelles combinaisons de matériaux et de fonctionnalités 

spintroniques. 

Dans l'étape suivante de nos expériences, les matériaux SCO ont été intégrés dans des OFETs 

fonctionnels. Ce type de dispositifs à trois terminaux représente un sujet d'inspiration avec une 

augmentation de la liberté de conception par rapport aux simples configurations de diodes à 

deux terminaux. En effet, dans nos expériences, nous avons pu étudier différentes 

configurations d'OFET. Pour les OFETs à contact inférieur, nous avons rencontré un problème 

technique pour insérer le film de SCO entre l'OSC et les couches diélectriques sans déposer les 

molécules de SCO sur les électrodes de drain/source, laissant le dispositif résultant plutôt isolant.  
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Néanmoins, nous avons imaginé que ce problème pourrait être résolu ultérieurement en 

déposant les électrodes de drain/source après le dépôt de SCO ou en utilisant un masque 

d'ombre. Dans notre travail, pour éviter ce problème, nous avons choisi de travailler avec des 

OFETs à contact supérieur et à grille inférieure. Nous avons effectué une étude approfondie de 

la stabilité du dispositif et nous avons pu établir des protocoles de mesure, qui nous ont permis 

de minimiser la dégradation du dispositif à un niveau acceptable. La comparaison de la 

dépendance en température du courant drain-source et de la tension de seuil en présence ou en 

l'absence du film SCO a révélé des différences faibles, mais significatives. Des travaux 

supplémentaires devraient confirmer dans quelle mesure ces différences pourraient être liées au 

phénomène SCO. Les perspectives d'avenir incluent l'utilisation de semi-conducteurs 

organiques plus robustes en conjonction avec l'utilisation de matériaux SCO, qui présentent une 

transition de spin à température ambiante avec hystérésis ainsi qu'un changement important de 

sa permittivité diélectrique. Ces propriétés pourraient donner lieu non seulement à une 

meilleure stabilité des dispositifs, mais aussi à une possibilité d'application très utile, à savoir 

un effet de mémoire non volatile. 

En capitalisant sur l'expertise acquise lors du développement des empilements multicouches 

métal/[Fe(HB(tz)3)2]/métal, nous avons également développé des cavités optiques à base de 

SCO qui présentent des propriétés optiques commutables. Premièrement, nous avons montré 

que les films de [Fe(HB(tz)3)2] présentent un changement substantiel de leur indice de 

réfraction lors de la transition de spin, alors qu'ils conservent leur bonne transparence pour les 

longueurs d'onde VIS-NIR. En utilisant les constantes optiques mesurées, nous avons effectué 

des calculs pour simuler et prédire les caractéristiques des cavités Fabry-Perot 

métal/[Fe(HB(tz)3)2]/métal. Sur la base de ces calculs, la configuration du dispositif a été fixée 

à 50 nm Ag/115 nm SCO/50 nm Ag avec une résonance située dans le domaine spectral visible 

et associée à une transmittance et un facteur Q raisonnablement élevés. Les cavités fabriquées 

présentaient des résonances spectralement accordables (jusqu'à 8 nm de décalage) lors de la 

transition de spin, qui pouvaient être attribuées à l'indice de réfraction et aux changements 

d'épaisseur du film associés au SCO. Ce travail ouvre des perspectives pour une multitude 

d'applications reconfigurables et auto-adaptatives, y compris des modulateurs de lumière 

spatiaux, des circuits intégrés photoniques et des composants optiques accordables - avec une 

pertinence particulière pour la gamme de longueurs d'onde visibles où d'autres familles de 

matériaux optiques actifs sont moins performants. Dans nos futurs travaux, nous cherchons à 
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construire des guides d'ondes optiques, des réseaux de résonance à mode guidé et d'autres 

dispositifs photoniques incorporant une fine couche de composés SCO évaporables. 

Pour conclure, nous avons réussi à incorporer des matériaux à transition de spin (SCO) dans 

des dispositifs électroniques et photoniques à deux/trois bornes. En tant que tel, ce travail 

fournit une petite brique aux différents efforts visant à transformer les composés SCO d'une 

curiosité scientifique en de vrais matériaux pour l’ingénierie. 

Bien qu'il reste une myriade d'inconnues à explorer dans ces domaines, nous pouvons prédire 

une large fenêtre pour les technologies basées sur les SCO. En particulier, nos résultats ont 

révélé que certains des dispositifs à base de SCO présentent des performances entièrement 

prévisibles (par exemple, les cavités Fabry-Perot) ainsi qu'une endurance considérable en mode 

opérationnel (par exemple, les jonctions à commutation de résistance), ce qui constitue sans 

aucun doute des problèmes importants pour toute application dans le monde réel.  

Nous pensons que dans un avenir proche, grâce aux efforts continus et aux recherches 

approfondies des physiciens, des chimistes et des ingénieurs, les molécules SCO sortiront du 

monde académique vers de réelles innovation technologiques. 

 

  



207 

 

Titre: Dispositifs électroniques et optiques à base de complexe à transition de spin [Fe(HB(1,2,4-

triazol-1-yl)3)2] 

Mots-clés: transition de spin, couches minces, dispositifs électroniques, cavités optiques. 

Résumé: L'objectif central de cette thèse est l'exploration des applications potentielles des complexes 

moléculaires à transition de spin dans les dispositifs électroniques et photoniques. Dans ce but, des films 

minces cristallins de haute qualité, déposés thermiquement sous vide, du complexe [Fe(HB(tz)3)2] (tz = 

(1,2,4-triazol-1-yl), présentant une bistabilité robuste à température ambiante, ont été incorporés dans 

des dispositifs à deux et trois bornes. Des jonctions verticales de grande surface ont été formées par des 

empilements ITO/[Fe(HB(tz)3)2]/Al. Ces jonctions ont présenté une chute de résistance allant jusqu'à 

trois ordres de grandeur lors du passage de l'état bas spin à l’état haut spin. Elles ont également révélé 

une grande résistance à la fatigue lors du stockage (> 1 an) et lors de commutations répétées (>10 000) 

à l'air ambiant. Le mécanisme de commutation de résistance pourrait être lié au transport de charge 

intrinsèque au film de complexe à transition de spin. Des jonctions multicouches similaires avec des 

électrodes magnétiques ont également été fabriquées pour la première fois. Des films de [Fe(HB(tz)3)2] 

ont été par la suite incorporés dans des transistors organiques à effet de champ. Différentes 

configurations ont été réalisées (grille inférieure/contact inférieur, grille inférieure/contact supérieur) - 

dans le but d'utiliser le phénomène de transition de spin pour moduler les propriétés des transistors. 

Malgré des difficultés considérables pour obtenir des caractérisations reproductibles en fonction de la 

température, nous avons pu mettre en évidence de modifications de différentes caractéristiques en 

fonction de la température, qui pourraient être liées à la transition de spin. En parallèle, des cavités 

multicouches Ag/[Fe(HB(tz)3)2]/Ag de type Fabry-Perot ont également été fabriquées. Ces dispositifs 

utilisent la commutation remarquable de l'indice de réfraction (n = 0,04 - 0,2) entre les états bas spin et 

haut spin dans le film [Fe(HB(tz)3)2] pour réaliser la modulation de la résonance de la cavité. Cette 

possibilité d’ajustement de la longueur d'onde centrale est associée à de faibles pertes d'absorption dans 

les domaines spectraux du visible et du proche infrarouge, ce qui ouvre la voie au développement des 

dispositifs photoniques reconfigurables et auto-adaptatives. 

 

Title: Electronic and optical devices integrating thin films of the spin crossover complex 

[Fe(HB(1,2,4-triazol-1-yl)3)2] 

Keywords: spin crossover, thin films, electronic devices, optical cavities. 

Abstract: The central aim of this thesis is the exploration of potential applications of molecular spin 

crossover complexes in electronic and photonic devices. To this aim vacuum thermal deposited, high 

quality, crystalline thin films of the complex [Fe(HB(tz)3)2] (tz = (1,2,4-triazol-1-yl), displaying robust, 

above-room-temperature spin crossover, were incorporated into two- and three-terminal device 

configurations. Large-area, vertical junctions were formed by ITO/[Fe(HB(tz)3)2]/Al stacks. The 

junctions exhibited up to three orders of magnitude resistance drop when switching from the low-spin 

to the high-spin state. They revealed also high resistance to fatigue both on storage (> 1 year) and on 

repeated switching (>10,000) in ambient air. The resistance switching mechanism could be linked to the 

intrinsic charge transport in the spin crossover film. Similar multilayer junctions with magnetic 

electrodes were also fabricated for the first time. [Fe(HB(tz)3)2] films were then incorporated into 

organic field-effect transistors. Different device configurations were created (bottom gate/bottom 

contact, bottom gate/top contact) - aiming for the use of the spin crossover phenomenon to modulate the 

transfer/output characteristics of the transistors. Despite considerable difficulties in achieving 

reproducible temperature-dependent characterizations, we could evidence changes of the device 

characteristics, which may be related to the spin crossover phenomenon. In parallel, multilayer 

Ag/[Fe(HB(tz)3)2]/Ag Fabry-Perot cavities were also fabricated. These devices use the remarkable 

refractive index switching (n = 0.04 - 0.2) between the low-spin and high-spin states in the 

[Fe(HB(tz)3)2] film to achieve modulation of the cavity resonance. This wavelength tuneability is 

coupled with low absorption losses in the visible and near infrared spectral ranges, providing scope for 

reconfigurable and self-adaptive photonics applications. 

 


