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Résumé en francais

Nous résumons ici, en francais, le contenu de la présente thése. Ce résumé est une traduction de
I’introduction, ainsi que des préambules de chacune des quatre parties qui constituent cette thése.

Cette thése a pour but d’évaluer la taille de la triangulation de Delaunay de points aléatoirement
distribués sur une surface. Dans cette introduction, nous donnons une explication des concepts en jeu
dans ce probléme, et présentons comment cette thése est organisée pour le résoudre.

La triangulation de Delaunay, et son dual, le diagramme de Voronoi, sont des objets géométriques qui
sont apparus de maniére récurrente dans 'histoire des sciences [LP12]. En dimension 2, le diagramme
de Voronoi d’un ensemble de points X est une partition du plan en polygones convexes, aussi appelés
cellules, une pour chaque point de X, tel que la cellule de p € X est ’ensemble des points plus proches de
p que de tout autre point de X. D’autre part, la triangulation de Delaunay est I’ensemble des triangles
pour lesquels le cercle circonscrit ne contient pas d’autres points de X [Del34]. Le diagramme de Voronoi
et la triangulation de Delaunay partagent une propriété de dualité : les centres des cercles cireconscrits
aux triangles de Delaunay sont les sommets des cellules des diagrammes de Voronoi. Ces définitions sont
généralisables dans des dimensions supérieures.

La premiére apparition de la triangulation de Delaunay semble étre due & Johannes Kepler en 1611
dans son article "On the Six-Cornered Snowflake", dans lequel Kepler étudiait le célébre probléme de
I’emballage des sphéres. Plus tard, ils réapparaissent en astronomie avec René Descartes, et en épidémi-
ologie au 19™¢ siécle lorsque John Snow utilise un diagramme de Voronoi pour identifier les sources
géographiques d’une épidémie de choléra. C’est au cours du 20™° siécle que le mathématicien russe
Georges Voronol a formalisé le diagramme dit de Voronoi en dimension quelconque [Vor08]. Son éleéve,
Boris Delaunay, a ensuite formalisé la triangulation de Delaunay dans son article “Sur la sphére vide”
[Del34].

Entre-temps, la triangulation de Delaunay et le diagramme de Voronoi ont été impliqués dans des dis-
ciplines aussi diverses que la cristallographie, la métallurgie, la météorologie [OBS92], ou plus récemment,
la gravité quantique [BCW09]. Aujourd’hui, la triangulation de Delaunay est I'une des structures les plus
étudiées en géométrie algorithmique. En raison de ses propriétés, la triangulation de Delaunay peut étre
utilisée pour créer un maillage efficace pour la résolution d’équations différentielles. En algorithmique,
elle peut étre utilisée pour obtenir, par exemple, ’arbre couvrant minimal d’un ensemble de points. Un
domaine dans lequel les résultats de cette thése peuvent étre significatifs, est la modélisation géométrique
[FP09, BDTY00]. En effet, pour le probléme de reconstruction de surface [ACKO01], [AB99], la triangula-
tion de Delaunay peut jouer un roéle intermédiaire mais nécessaire. Le probléme est le suivant : calculer
une approximation linéaire par morceaux d’une surface a partir d’un ensemble de points échantillons.
Puisque certains algorithmes utilisent la triangulation de Delaunay tridimensionnelle comme étape pour
la reconstruction de la surface, il est important de connaitre la complexité combinatoire (plus simplement
appelée taille) de la triangulation de Delaunay de ces points. Cette taille peut avoir un impact sur les
complexités en temps et en mémoire de ’algorithme de reconstruction.

Pour le cas en 2 dimensions, comme il sera expliqué dans la partie [, nous savons que la taille de la
triangulation de Delaunay reste linéaire avec le nombre de points. En 3 dimensions, ce n’est plus le cas.
La taille de la triangulation de Delaunay en 3D peut varier de linéaire a quadratique. Cette taille dépend
de la facon dont les points sont distribués dans R3. En ce qui concerne le probléme de reconstruction de
surface, les points sont supposés étre distribués sur la surface que ’on veut reconstruire. Ainsi, la taille
de la triangulation de Delaunay dépendra a la fois de la surface sur laquelle les points sont répartis, et
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de la fagon dont ils sont répartis sur cette surface.

Pour modéliser mathématiquement les points, nous devons choisir un type d’échantillon. Il peut étre
déterministe, avec de bonnes propriétés comme "tout disque d’un rayon donné contient au moins un point
de I’échantillon". Nous appellerons un tel échantillon déterministe un bon échantillon. Mais 1’échantillon
peut aussi étre aléatoire, comme un échantillon uniforme ou un processus ponctuel de Poisson. Dans les
deux cas, nous considérons que le nombre de points tend vers l'infini, et calculons une approximation
asymptotique de la taille de la triangulation de Delaunay. Comme nous lexpliquerons dans la partie [l
Chapitre [4 Erickson a trouvé un bon échantillon de n points distribués sur un cylindre de révolution
pour lequel la triangulation de Delaunay est O(ny/n) [Eri05]. La construction d’un tel échantillon est trés
spécifique, et le fait que le cylindre soit une surface de révolution, induit un comportement pathologique
pour la triangulation de Delaunay. A D’inverse, lorsqu’un bon échantillon est distribué sur une surface
générique, Erickson [Eri01b] et parallélement, Attali et al. [ABLO3| ont prouvé que la triangulation de
Delaunay est O(nlogn), ou la constante cachée dans le grand O dépend des caractéristiques de la surface,
comme son diameétre, sa courbure maximale, etc... La définition d’une surface générique sera donnée plus
tard, pour l'instant, on gardera & l’esprit qu’une surface générique est une surface qui a des propriétés
"typiques", par exemple elle ne présente aucune symétrie particuliere. Plus tard, Devillers et al. [DEGOS)]
ont montré que lorsqu’un échantillon aléatoire uniforme est distribué sur un cylindre, la triangulation de
Delaunay a une taille moyenne ©(nlogn), prouvant au passage que certaines constructions déterministes
sont assez pathologiques.

Ces travaux ouvrent une porte a une question naturelle :

Quelle est la taille moyenne de la triangulation 3D-Delaunay
d’un échantillon aléatoirement distribué sur une surface ?

C’est le probléme que nous essayons de résoudre dans cette thése. Notons que le résultat peut dépendre de
la surface, en particulier nous nous intéressons au cas des surfaces génériques, pour lesquelles les résultats
expérimentaux semblent montrer une limite linéaire.

Pour modéliser les points, nous choisissons d’utiliser un processus ponctuel de Poisson car il vérifie
des propriétés d’homogénéité et d’indépendance qui sont pratiques pour les calculs. Nous désignons le
processus ponctuel de Poisson par X. Un tel processus s’accompagne d’un parameétre appelé intensité,
dénoté par A, qui correspond au nombre moyen de points que nous pouvons trouver dans une région
d’aire 1. Ainsi, sans perdre en généralité, nous pourrons considérer que la surface sur laquelle les points
sont distribués a une aire de 1, de sorte que le nombre moyen de points distribués sur la surface est .

Dans la partie [[j Chapitre [5] nous présentons une premiére solution du probléme en appliquant di-
rectement le résultat d’Attali et al. décrit ci-dessus pour un bon échantillon déterministe, au processus
ponctuel de Poisson. Néanmoins, la limite résultante pour le processus de Poisson ne peut pas étre
meilleure que la limite originale pour un bon échantillon, et nous montrons seulement que la triangula-
tion de Delaunay a une taille moyenne de O(\log? A). L’un des principaux problémes de cette méthode
est qu’elle n’utilise pas du tout le fait que ’échantillon de pints est un processus de Poisson, mais simple-
ment le fait qu’il s’agit d’un bon échantillon avec forte probabilité, et donc nous n’excluons pas les cas
pathologiques.

Pour utiliser efficacement les propriétés d’un processus de Poisson, nous devons adopter une approche
différente. Afin de prouver la borne moyenne de O(nlogn) pour I’échantillon uniforme sur un cylindre,
Devillers et al. ont remarqué que l'intersection du cylindre avec une sphére passant par deux points p et
q sur le cylindre contient toujours un triangle spécifique dessiné sur le cylindre. Cela les conduit & étudier
un graphe & 2 dimensions dans lequel deux points sont voisins s’il existe un tel triangle qui ne contient
pas d’autres points. Un tel graphe a une taille moyenne ©(nlogn), et c’est ainsi qu’ils obtiennent la
limite O(nlogn). Ce graphe de "triangle vide" est un cas particulier des graphes de régions vides. Dans
la partie [[T, nous définissons un type de graphes de régions vides, nous formalisons une méthode pour
calculer des bornes inférieures et supérieures sur leur taille moyenne, et nous donnons des résultats fins
pour de tels graphes.

Comme Attali et al. I’a souligné, I'intersection d’une sphére avec une surface générique a approxima-
tivement une forme elliptique, alignée avec les directions de courbure de la surface. Ceci nous améne a
étudier un graphe particulier de régions vides pour lequel les régions sont des ellipses alignées sur 1’axe.
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Nous prouvons, dans la partie[[l, Chapitre[8] que si les ellipses concernées ont un rapport d’aspect compris
entre et 1, avec 0 < 8 < 1, alors le nombre moyen de voisins de tout point du graphe est © (In %)

Afin d’illustrer la méthode développée dans la partie [T, nous calculons, dans la partie [[TT} des bornes
asymptotiques fines sur la taille moyenne de la triangulation 3D-Delaunay dans deux cas spécifiques. Dans
la partie Chapitre nous considérons un cylindre de révolution, comme dans [DEGOS], et prouvons
la borne © (AlnA) mais pour un processus ponctuel de Poisson. Compte tenu de la similarité entre
I’échantillon uniforme et 1’échantillon de Poisson, le but de ce chapitre est principalement de présenter
concrétement la méthode dans un cas simple en 3 dimensions. Ensuite, dans le Chapitre nous calculons
la taille de la triangulation 3D-Delaunay d’un processus de Poisson distribué sur une sphére aplatie. Cette
surface posséde suffisamment de propriétés génériques pour que la triangulation de Delaunay se comporte
bien. En particulier, a I'inverse du cylindre, son axe médian est bi-dimensionnel. En utilisant des ellipses
vides alignées aux axe, et avec un rapport d’aspect borné, nous montrons que la taille moyenne de la
triangulation est ©(A). Ceci fournit une surface lisse sur laquelle un processus ponctuel de Poisson a une
triangulation 3D-Delaunay de taille linéaire. Dans le chapitre nous simulons un processus de Poisson
sur une sphére aplatie et une sphére allongée pour montrer que nos résultats sont expérimentalement
corrects.

Enfin, dans la partie [[V] nous traitons le cas des surfaces génériques. Méme si une sphére aplatie
est une surface spécifique, nous pourrons réutiliser certains calculs de cette partie moyennant quelques
adaptations. En effet, la sphére aplatie est la surface d’un objet convexe, ce qui n’est généralement pas
le cas. Il posséde beaucoup de symétries, ce qui n’est pas non plus le cas en général. Dans cette partie,
nous nous concentrons plus sur la facon de gérer ces adaptations que sur les calculs qui étaient déja assez
fastidieux dans le cas du sphéroide.

La suite du résumé décrit plus précisément chaque partie de la thése.

Dans cette thése, nous fournissons une méthode pour calculer la taille moyenne de certains graphes
de régions vides, et en particulier, de la triangulation de Delaunay de points sur une surface, pour
un ensemble de points qui est un processus ponctuel de Poisson. La compréhension du sujet nécessite
des connaissances dans au moins trois grands domaines des mathématiques et de 'informatique : La
géométrie, la combinatoire et les probabilités. Nous les décrivons dans la partie 1.

Pour étre bref, un processus ponctuel de Poisson est un ensemble aléatoire de points, pour lequel les
calculs sont pratiques. Un graphe de régions vides est un type spécifique de graphe géométrique dont
la triangulation de Delaunay est un exemple. La taille d’un graphe correspond approximativement au
nombre de ses arétes. Comme les sommets des graphes étudiés sont tirés d’un processus ponctuel de
Poisson, le nombre d’arétes des graphes est une valeur aléatoire. Nous calculons I'espérance de cette
valeur, qui correspond, en quelque sorte, & une valeur moyenne probabiliste.

Pour expliquer en détail ces notions, nous décomposons cette partie en trois chapitres. Le chapitre [I]
sera consacré a la géométrie. Nous 1'utiliserons pour rappeler quelques notions mathématiques de base, et
présenterons certaines notations que nous utiliserons. Puis nous consacrerons une section & la géométrie
des courbes planes, en particulier pour décrire la notion de courbure. Enfin, dans la derniére section du
chapitre, nous expliquons le concept de surface générique, et présentons les caractéristiques spécifiques
que possédent les surfaces génériques.

Le chapitre [2] est consacré a la combinatoire. Nous présentons la notion de graphe, et quelques outils
comme la formule d’Euler que nous utilisons pour calculer leur taille. Nous définissons ensuite ce qu’est
la triangulation de Delaunay d’un ensemble de points, et expliquons comment sa taille varie en dimension
2 et 3.

Dans le chapitre [3| nous présentons les outils probabilistes que nous utiliserons. Nous commengons
par expliquer ce qu’est un processus ponctuel de Poisson, et quelles sont ses propriétés. Ensuite, nous
présentons I'une des formules les plus utilisées dans cette thése : la formule de Slivnyak-Mecke, qui sert a
calculer une espérance. Nous illustrons 'utilisation de cette formule & travers ’exemple de la triangulation
2D de Delaunay.

Dans le chapitre [d] nous présentons 1'état de Part du probléme de la détermination de la taille de
la triangulation 3D de Delaunay de points sur une surface. Nous présentons I’évolution de ce calcul en
fonction du sous-ensemble de R3 ot sont distribués les points, et de la maniére dont ils sont distribués.
En effet, nous commengons par présenter le cas de points distribués aléatoirement dans le cube unitaire,
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qui a une taille linéaire en espérance. Ensuite, nous considérons que les points sont distribués sur une
surface de R3. Dans ce cas, nous présentons d’abord le cas d’une surface polyédrique. Pour un échantillon
déterministe ou aléatoire, il a été montré que la triangulation est linéaire. Ensuite, nous présentons un
résultat basé sur un paramétre de la distribution des points appelé la dispersion. Enfin, nous considérons
que les points sont distribués sur une surface lisse. Quel que soit le type d’échantillon, nous présentons
que si les points sont distribués sur un cylindre, la triangulation n’est plus linéaire. Nous présentons
ensuite les études qui ont été faites sur des surfaces génériques, qui excluent le cylindre. Les surfaces
génériques n’avaient été étudiées qu’avec un échantillon déterministe.

Enfin, dans le chapitre[5] nous introduisons la premiére contribution de cette these, le calcul de la taille
de la triangulation 3D-Delaunay de points aléatoires distribués sur une surface générique, en montrant
qu’un échantillon aléatoire vérifie les propriétés d’'une bonne déterministe avec une forte probabilité

Dans la partie II, nous introduisons la notion de graphe de régions vides. Etant donné un ensemble
de points X, un graphe de régions vides est un graphe dans lequel deux points p et ¢ de X sont voisins
si une région définie pour (p, ¢) ne contient aucun autre point de X. Cette notion unifie la triangulation
classique de Delaunay [Del34], le graphe de Gabriel [GS69], le squelette 8 [KR85, [ABE9S|, le graphe des
ellipses vides [DEGO0S], le graphe des plus proches voisins, les graphes ©, et les graphes de Yao [Yao82|.

L’objectif principal de cette partie est de présenter et d’illustrer une méthode qui fournit une borne
supérieure et une borne inférieure sur le degré d’un point dans un graphe de régions vides donné, lorsque
I'échantillon de points X est un processus ponctuel de Poisson. La partie[[]|se compose de cinq chapitres.

Dans le chapitre[6] a titre d’exemple pédagogique, nous montrons comment nous pouvons trouver des
bornes asymptotiquement fines sur le calcul du degré moyen d’un point dans la triangulation de Delaunay
a 2 dimension en utilisant la méthode décrite par Devroye, Lemaire et Moreau [DLMO04].

Dans le chapitre [7] nous formalisons la méthode citée ci-dessus, afin de la généraliser. Nous donnons
une définition formelle des graphes a région vide, et fournissons deux lemmes : Les lemmes de combinaison
et de partition qui seront réutilisés tout au long de la thése. Enfin, nous illustrons la formalisation sur
I’exemple de Delaunay.

Dans le chapitre [8] nous considérons un graphe de région vide spécifique : le graphe des ellipses vides
alignés aux axes. Nous faisons une distinction entre le cas ot nous considérons toutes les ellipses alignées
aux axes et le cas ou les ellipses ont un rapport d’aspect borné. Nous montrons que dans le premier cas,
le degré moyen d’un point est © (In\) dans un processus ponctuel de Poisson avec une intensité A, et

dans le second cas, le degré moyen est © (ln %) pour les ellipses avec un rapport d’aspect borné entre (8

et 1, pour 0 < 8 < 1. Ce chapitre a un intérét particulier pour la thése. En effet, dans les parties [[T]]
et [[V] nous calculons la triangulation de Delaunay de points sur une surface, et nous montrerons que
les intersections des sphéres de Delaunay avec la surface approchent des ellipses alignées aux axes de
courbure. Nous pourrons donc réutiliser les résultats de ce chapitre.

Dans le chapitre [} nous estimons la probabilité qu’un point ait des voisins plus éloignés qu'un certain
seuil, dans la triangulation de Delaunay et dans le graphe d’ellipses vides alignées aux axes avec un rapport
d’aspect borné. Nous montrons que dans les deux cas, cette probabilité décroit exponentiellement avec
la distance.

Enfin, dans les chapitres[10|et nous présentons quelques graphes de régions vides supplémentaires :
le graphe d’ellipses vides avec un rapport d’aspect borné, qui différe par le fait que les ellipses ne sont plus
alignées aux axes, un graphe de régions vides ou les régions sont définies par des équations du quatriéme
ordre, et quelques caractéristiques sur les graphes de type plus proche voisin.

Dans la partie III, nous illustrons notre méthode de calcul pour le cas de la triangulation 3D de
Delaunay de points distribués sur deux surfaces spécifiques.

Nous rappelons briévement ce qu’est une triangulation de Delaunay tridimensionnelle. Considérons
un ensemble X de points dans R® dans une position générique. La triangulation de Delaunay tridimen-
sionnelle de X est la triangulation 3D dans laquelle aucun point de X n’est & lintérieur d’une sphére
circonscrite un tétraédre de la triangulation 3D. Nous utiliserons souvent le mot "triangulation" seul (sans
"3D") méme si elle est en fait constituée de tétraédres. Pour simplifier notre étude, nous ne prenons en
compte que la propriété selon laquelle une aréte (p, q) est dans la triangulation s’il existe une sphére vide
passant par p et q.

Cette propriété suggére une approche du graphe des régions vides de la triangulation de Delaunay ou



les régions sont des sphéres. Dans le cas oil les points sont distribués sur une surface de R?, ’étude des
sphéres de Delaunay n’a d’intérét que sur une partie négligeable de la sphére, & savoir son intersection avec
la surface. Nous pouvons alors proposer une définition légérement différente qui s’adapte aux surfaces.

Pour chaque paire (p,q) de I’échantillon de points X, nous considérons 'ensemble R(p, q) des inter-
sections de la surface avec les sphéres passant par p et ¢. On dit alors qu'une aréte (p, q) est une aréte
de Delaunay, s'il existe une région dans R(p, ¢) qui ne contient pas d’autres points de X.

Cette définition permet d’éclairer le comportement de la triangulation de Delaunay de points sur une
surface. En effet, tout d’abord, elle raméne le probléme & un graphe de régions vides bidimensionnel qui
permet une comparaison avec la triangulation de Delaunay classique bidimensionnelle et les graphes de
régions vides étudiés dans la partie précédente. Deuxiémement, la comparaison rend plus compréhensible
la complexité de la triangulation. Comme nous allons le voir, de telles régions peuvent étre approchées
par des ellipses alignées aux axes. Selon les propriétés du point de la surface sur laquelle le graphe est
étudié, le comportement ressemblera plus ou moins & un graphe d’ellipses alignées aux axes avec un
rapport d’aspect borné.

Nous divisons cette partie en trois chapitres. Le chapitre [I2] est dédié au cas du cylindre, qui avait
déja été étudié dans la littérature. Ici, il est surtout utilisé comme exemple pédagogique et pour montrer
lefficacité de notre méthode. Le chapitre [I3]est consacré a une surface spécifique, suffisamment générale
pour représenter efficacement le cas des surfaces génériques. Cette surface est un ellipsoide aplati de
révolution. Ce chapitre donne un premier exemple de surface sur laquelle une triangulation 3D-Delaunay
de points aléatoires est linéaire en moyenne. Il permet également d’introduire la méthode et quelques
lemmes qui seront réutilisés dans la derniére partie de la thése. Enfin, dans le chapitre [I4] nous illustrons
nos résultats sur deux ellipsoides de révolution. Un qui est aplati, comme dans le chapitre [[3] et un
qui est allongé, pour lequel la triangulation de Delaunay est supposée avoir un comportement similaire a
celui que l'on retrouve sur un cylindre.

Comme nous il sera vu dans la partie [[TI} lorsqu’un processus ponctuel de Poisson d’intensité A est
distribué sur une surface, sa triangulation de Delaunay a une taille moyenne qui peut varier, au moins
de linéaire a quasi-linéaire.

Dans la partie IV, nous considérons une surface générique S. Sa généricité lui fait partager des
propriétés avec la sphére aplatie, qui sont significatives pour la triangulation de Delaunay. Nous décrivons
ces propriétés dans le chapitre conjointement avec les différences que nous observons. Cela donne lieu
4 un schéma de preuve que nous expliquons & la fin du chapitre. De maniére générale, nous adaptons le
schéma de preuve utilisé pour le sphéroide. Une des propriétés génériques importantes est que ’ensemble
Z de S, des points p tels que r*(p) = #(M’ est une réunion finie de courbes finies. Dans le cas de la
sphére aplatie, nous avons montré que le degré d’un point dépend fortement fortement de sa distance a
Z. Nous désignons alors par hy, la distance de p a Z.

Chaque chapitre suivant décrit une analyse partielle du degré attendu d’un point p dansS dans la
triangulation de Delaunay en fonction de la position de p sur S et de son éventuel voisin q. Dans le
chapitre[I6] nous calculons le degré local d'un point. Par "local", nous entendons que les voisins que nous
comptons sont géodésiquement proches de p. Nous désignons par Loc(p) le voisinage local de p. Dans le
voisinage local de p, nous pouvons approcher S par une quadrique, et ainsi nous pourrons réutiliser ou
adapter la plupart des calculs déja effectués dans le chapitre Dans le voisinage local, nous pouvons
ainsi trouver un super-graphe de la triangulation de Delaunay pour lequel le degré de p est pertinent.
Nous montrerons que Loc(p) est un voisinage local circulaire de rayon ©(1) lorsque p est loin de Z, ou
de rayon G(hi) lorsque p est proche de Z. Nous distinguons dans ce chapitre, le calcul pour les points
qui se trouvent sur, ou prés de la partie convexe de la surface, ou les deux courbures principales sont de
méme signe, et les points qui sont loin de la partie convexe, ou le rayon médian est fini.

Dans le chapitre nous calculons le degré distant d’un point, c’est-a-dire le nombre moyen de voisins
qui sont proches des points symétriques de p. Nous désignerons par Rem(p) ce voisinage. Ici encore, nous
devons différencier le comptage en fonction de la position de p. En effet, si p est proche de S’, le ’ensemble
des points ayant deux points symétriques, alors p peut avoir des voisins distants en plusieurs endroits de
S. Dans ce chapitre, nous introduisons la notion de points symétriques supplémentaires, afin de compter
les voisins distants d’un point p dont la sphére médiane est proche d’une sphére médiale avec plusieurs
points de contact.



vi Résumé en francais

Enfin, dans le chapitre nous comptons les arétes restantes. Pour les arétes (p, q) telles que p est
loin de Z, un argument de recouvrement montrera que leur nombre est o(\). A linverse, si p est proche
de Z, son voisinage local et distant sont trop petits pour utiliser I’argument de recouvrement. Nous
allons donc considérer un plus grand voisinage local, appelé voisinage de moyenne distance comme dans
la partie III. Nous prouvons que p a O(log A\) tels voisins mais avec une probabilité exponentiellement
décroissante avec la distance & Z. Comme pour le cas du sphéroide, cela nous permet d’intégrer le degré
moyen autour de Z, afin d’obtenir un nombre linéaire moyen d’arétes dont ’extrémité est proche de Z.

L’ensemble de ces calculs fournit la borne linéaire recherchée.

La thése se conclut par une conjecture qui permettrait de faire abstraction de la notion de généricité.
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Introduction

This thesis aims at evaluating the size of the Delaunay triangulation of points drawn on a surface with
a random distribution. In this introduction, we give an explanation of the concepts involved in this
problem, and present how this thesis is organized to solve it.

The Delaunay triangulation, and its dual, the Voronoi diagram, are geometrical objects that appeared
recurrently in the scientific history [LP12]. In dimension 2, the Voronoi diagram of a set of points X is
a decomposition of the plane into convex polygons (also called cells), one for each point of X, such that
the cell of p € X is the set of points closer to p than to any other point of X. On the other hand, the
Delaunay triangulation is the set of triangles for which the circumscribing circle does not contain other
points of X [Del34]. The Voronoi diagram and the Delaunay triangulation share a duality property:
the circumcenters of the Delaunay triangles are the vertices of the cells of the Voronoi diagrams. These
definitions are generalizable in higher dimensions.

The first appearance of the Delaunay triangulation seems to be due to Johannes Kepler in 1611 in his
paper “On the Six-Cornered Snowflake”, in which Kepler studied the famous problem of sphere packing.
Later, they reappeared in astronomy with René Descartes, and in epidemiology in the 19*" century when
John Snow used a Voronoi diagram to identify geographic sources of a cholera epidemic. It is during the
20" century that the Russian mathematician Georges Voronoi formalized the now-called Voronoi diagram
in any dimension [Vor(8]. Its student, Boris Delaunay, then formalized the Delaunay triangulation in his
paper “Sur la spheére vide” [Del34].

In the meantime, the Delaunay triangulation and Voronoi diagram were involved in disciplines as
various as crystallography, metallurgy, meteorology [OBS92], or more recently, quantum gravity [BCW09].
Today, the Delaunay triangulation is one the most studied structures in computational geometry. Because
of its properties, the Delaunay triangulation can be used to create efficient meshing for solving differential
equations. In algorithmics, it can be used to obtain, for instance, the minimal covering tree of a set of
points. A field in which the results of this thesis may be significant, is geometric modeling [FP09,
BDTY00]. Indeed, for the problem of surface reconstruction [ACKO1l [AB99], the Delaunay triangulation
can play an intermediate but necessary role. The problem is the following: compute a piecewise linear
approximation of a surface from a set of sample points. Since some algorithms use the 3-dimensional
Delaunay triangulation as a step for the surface reconstruction, we can be interested in knowing the
combinatorial complexity (more simply called size) of the Delaunay triangulation of such points. This
size may impact both the time and memory complexities of the reconstruction algorithm.

For the 2 dimensional case, as it will be explained in Part [[, we know that the size of the Delaunay
triangulation remains linear with the number of points. In 3 dimension, it is not anymore the case. The
size of the 3D-Delaunay triangulation can range from linear to quadratic. This size depends on how the
points are distributed in R3. Concerning the surface reconstruction problem, the points are supposed to
be distributed on the surface we want to reconstruct. Thus the size of the Delaunay triangulation will
depend both on the surface on which the points are distributed, and on how they are distributed on this
surface.

To mathematically model the points, we need to choose a sample type. It can be a deterministic
sample, with good properties like “any disk of a given radius contains at least one sample point”. We
will call such a deterministic sample a good sample. But the sample also can be random, like a uniform
sample or a Poisson point process. In both cases, we consider that the number of points goes to infinity,
and compute an asymptotic approximation of the size of the Delaunay triangulation. As we will explain
in Part [, Chapter [ Erickson found a good sample of n points distributed on a cylinder of revolution for
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2 Introduction

which the Delaunay triangulation is O(ny/n) [Eri05]. The construction of such a sample is very specific,
and the fact that the cylinder is a surface of revolution, induces a pathological behavior for the Delaunay
triangulation. Conversely, when a good sample is distributed on a generic surface, Erickson [Eri01b]
and conjointly, Attali et al. [ABLO3| proved that the Delaunay triangulation is O(nlogn), where the
hidden constant in the big O depends on characteristics of the surface, like its diameter, its maximal
curvature, etc... The definition of a generic surface will be given later, for now, keep in mind that a
generic surface is a surface that has “typical” properties, like no particular symmetries. Later Devillers
et al. [DEGO8] showed that when a uniform random sample is distributed on a cylinder, the Delaunay
triangulation has an expected size ©(nlogn), proving by the way that some deterministic constructions
are quite pathological.
These works open a door to a natural question:

What is the expected size of the 8D-Delaunay triangulation
of a random sample distributed on a surface?

It is the problem we try to solve in this thesis. Note that the result may depend on the surface, in
particular we are interested in the case of generic surfaces, for which experimental results seem to show
a linear bound.

To model points, we choose to use a Poisson point process since it verifies properties of homogeneity
and independence that are convenient for the computations. We denoted the Poisson point process by
X. Such a process goes along with a parameter called intensity, denoted by A, that corresponds to the
expected number of points we may find in a region of area 1. Thus without loss of generality we may
consider that the surface on which the points are distributed has area 1, so that the expected number of
points distributed on the surface is .

In Part [, Chapter [} we present a first solution of the problem by applying directly the result of
Attali et al. described above for good deterministic sample to Poisson point process. Nevertheless, the
resulting bound for Poisson process cannot be better than the original one for good sample, and we only
show that the Delaunay triangulation has expected size O(Xlog? \). One the main issue of this method,
is that it does not use at all the fact that the data sample is a Poisson process but just that it is a good
sample with high probability, and thus we actually don’t exclude pathological cases.

To efficiently use the properties of a Poisson process, we have to take a different approach. In order
to prove the expected O(nlogn) bound for the uniform sample distributed on a cylinder, Devillers et
al. remarked that the intersection of the cylinder with a sphere passing though two points p and ¢ on
the cylinder always contains a specific triangle drawn on the cylinder. That leads them to study a 2-
dimensional graph in which two points are neighbors if there exists such a triangle that does not contain
other data points. Such a graph has expected size ©(nlogn), and this is how they obtain the O(nlogn)
bound. This “empty triangle” graph is a particular case of empty region graphs. In Part [[I, we define
a kind of empty region graphs, we formalize a method to compute lower and upper bounds on their
expected size, and give tight results for such graphs.

As Attali et al. pointed out, the intersection of a sphere with a generic surface has almost an elliptic
shape, aligned with the curvature directions of the surface. This leads us to study a particular empty
region graph for which the regions are axis-aligned ellipses. We prove, in Part [[I, Chapter [§] that if the
involved ellipses have an aspect ratio ranging from (§ to 1, with 0 < 8 < 1, then the expected number of
neighbors of any point in the graph is © (ln %)

In order to illustrate the method developed in Part[[I} we compute, in Part[[TI} tight asymptotic bounds
on the expected size of the 3D-Delaunay triangulation in two specific cases. In Part [T} Chapter [[2] we
consider a cylinder of revolution, as in [DEGOS]|, and reprove the © (AlnA) bound but for a Poisson
point process. Considering the similarity between uniform and Poisson sample, the goal of this chapter
is mainly to present concretely the method in a 3-dimensional simple case. Then, in Chapter we
compute the size of the 3D-Delaunay triangulation of a Poisson process distributed on an oblate spheroid
(a flattened sphere). This surface has enough generic properties for the Delaunay triangulation to behave
well. In particular, conversely to the cylinder, its medial axis is bi-dimensional. Using empty axis-aligned
ellipses with bounded aspect ratio, we show that the expected size of the triangulation is ©(\). This
provides a smooth surface on which a Poisson point process has a 3D-Delaunay triangulation that is



linear. In Chapter we simulate a Poisson process on both an oblate and a prolate spheroid to show
that our results are experimentally correct.

Finally in Part [[V] we treat the case of generic surfaces. Even if an oblate spheroid is a specific
surface, we will be able to reuse some computations in this part up to some adaptations. Indeed the
oblate spheroid is the surface of a convex body, that is not generally the case. It has a lot of symmetries,
that is not generally the case either. In this part, we focus more on how to deal with these adaptations
than on the computations that were already quite tedious in the spheroid case.
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Preamble of Part [II

In this thesis, we provide a method to compute the expected size of some empty region graphs, and in
particular, of the Delaunay triangulation of points on a surface, for a set of points that is a Poisson point
process. The understanding of the subject requires knowledge in at least three main fields of mathematics
and computer sciences: Geometry, Combinatorics and Probabilities.

To be brief, a Poisson point process is a random set of points, quite practical for computations.
An empty region graph is a specific kind of geometric graph of which the Delaunay triangulation is an
example. The size of a graph corresponds roughly to the number of its edges. Since the vertices of the
graphs studied are drawn from a Poisson point process, the number of edges of the graphs is a random
value. We compute the expectation of this value, that corresponds, in some sense, to a probabilistic
average value.

To explain in detail such notions, we decompose this part into three chapters. Chapter [1| will be
dedicated to geometry. We will use it to recall some basic mathematical notions, and present some
notations we will use. Then we dedicate a section to the geometry of plane curves, in particular to
describe the notion of curvature. Finally, in the last section of the chapter, we explain the concept of
generic surface, and present specific features that generic surfaces have.

Chapter [2]is dedicated to combinatorics. We present the notion of graphs, and some tools like Euler’s
formula that we use to compute their size. Then we define what is the Delaunay triangulation of a set of
points, and explain how its size vary in dimension 2 and 3.

In Chapter [3, we present the probabilistic tools that we will use. We start by explaining what is
Poisson point process, and what are its properties. Then we present one of the most used formula of the
thesis: the Slivnyak-Mecke formula, that serves in computing some expected value. We illustrate the use
of this formula through the example of the 2D-Delaunay triangulation.

In Chapter[d we present the state of the art of the problem of determining the size of the 3D-Delaunay
triangulation of points on a surface. We present how evolved this computation depending on the subset of
R3 where the points are distributed, and how they are distributed. Indeed we start by presenting the case
of points randomly distributed in the unit cube, which has linear size in expectation. Then we consider
that the points are distributed on a surface of R3. In that case, we first present the case of a polyhedral
surface. For both a deterministic or a random sample, it has been shown that the triangulation is linear.
Then we present a result based on a parameter of the distribution of point called the spread. Finally we
consider that points are distributed on a smooth surface. Whatever is the kind of sample, we present
that if points are distributed on a cylinder, the triangulation is not anymore linear. Then we present
the study that have been made on generic surfaces, that exclude the cylinder. Generic surfaces had only
been studied with deterministic sample.

Finally, in Chapter [f] we introduce the first contribution of this thesis, computing the size of the
3D-Delaunay triangulation of random points distributed on a generic surface, by showing that a random
sample verifies the properties of a good deterministic with high probability.






Chapter 1

(Geometry

In this first chapter, we present the basics on geometry that we will use all along the thesis. Geometry is
omnipresent in this thesis since we study the combinatorial complexity of Delaunay triangulation (that
is a geometric graph), of a Poisson point process (whose formulas involve the geometric size of region),
distributed on surfaces.

The fact that the points are distributed on surfaces, commits us to study the notion of curvature.
We introduce this notion on curves in Section [1.1} in which we also present what is the medial axis of a
curve.

In Section we extend those notions to surfaces, and show how we can parameterize a surface at
any point.

Finally in Section we present the notion of genericity and what it induces on surfaces.

1.1 Geometry of plane curves

Before talking about surfaces, we recall some classical notions about the geometry of plane curves. These
notions will be extended to the case of surfaces.

1.1.1 The notion of curvature

We consider the definition of a smooth planar curve from Porteus [Por01]:

Definition 1.1. A smooth parametric curve in R? is a smooth map

7:R—R?
t= (1),

with domain an open connected subset of R. It is said regular at t if its first derivative 4/(¢) is non-zero.

(1)

When it is necessary, we will write v(t) = (y ( t)) At a regular point ¢, we can define the tangent of

a curve 7. Its expression is given by:
To(t)  ue y(t) +uy' (1),

where 7/(t) is the director vector of the line. Conversely, the orthogonal line to 7, (t) passing through

/!
~(t) is called the normal of v at ¢t. It is directed by the vector n, () := (_i{,((:))) When there are no
ambiguity on the curve, we will usually say “the tangent of v(¢)” instead of the tangent of v at t.
In a sense, the tangent corresponds to the “closest” line to the curve. The one that approximates the

curve at the first order derivative. This notion of closeness can be extended, not only to lines, but also to
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Figure 1.1: The regular curve t — (t, t3)

circles. We search, at any point ¢, a notion of closest circle to the curve at t. Consider a circle centered
on ¢ and passing through p, and let 7¢ be a parameterization of this circle. For any ¢, v¢(t) verifies:
2 2
lle =@l = lle=pll".

We can derivate successively this equation to obtain new equations that involve the derivatives of ~¢.
Note that [jc — p||? is constant.

(c=7e(t)) - ve(t) =0,
2
(c=7c(®)) @) = lve®l” =0,
and so on, but it is not necessary to go further. For a given 7¢(t), the equations above define the center

c. The circle we search is the one centered on ¢ that is defined by those equations in which we have
substituted ¢ and its derivatives, by v and its derivatives,

Definition 1.2. The osculating circle of v at a regular point ¢ is the circle passing through ~(¢) and
centered on c¢(t) where c(t) verifies:

{ (c(t)—v(t))-v’(tg =0 (1.1)
(c(t) = () - 7" @) — IV (@)l 0. '

The radius of curvature of v at t is then the radius of the osculating circle at ¢, and the curvature x(t)
of v at ¢ is the inverse of the radius of curvature.

Figure 1.2: The circle osculating y at ¢.
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We can obtain a parametric expression of the curvature x(t) of v at any regular point ¢ by isolating
the vector ¢(t) — v(t) in Equation as it is done in [GAS17]. Indeed the radius of curvature of « at ¢
is defined by the radius of the osculating circle, that is ||c(t) — v (t)||. So we rewrite (c(t) — (t)) - v (t).
Since ¢(t) — v(t) and n,(t) are in the same direction, we have:

(c(t) =7(1) 7" (1) = IV O

CWOP
“mm-m T

and then,

O
w @

(c(t) =~(t) =

/
Since n~ (t) = y/ (*) , we have ||n,(®)|| = ||/ (#)|], it follows that:
gt —2/(t) gt v
3
I @l
ly' ()" (t) — 2/ ()y" ()]
ly' ()" (t) — ' (t)y" (1)]
3 .
I @l
This non-signed curvature is called the geometric curvature. Its oriented version, also called algebraic
curvature, is given by:

and

[le(®) =@l =

K(t) =

ny(t) - 7" (t)
3
@1
Roughly, it is positive when the curve “turns” in the direction of the normal.
We state this result in the case of curves parameterized as graphs of functions:

Proposition 1.3. Let f : R — R be a smooth function. The geometric curvature of the curve y = f(x)
s given at x by:
/" ()]

k(r) = —————.

(1+ (@)

At some point in the thesis, we have to consider the points of maximum of curvature of a surface. We
present here a theorem that states that such points exists even on quite simple cases. The theorem can
be found in [Por01].

Theorem 1 (Four-Vertex theorem). Let v be a closed connected regular smooth plane curve with no self
intersection. Then ~ has at least two local minima and two local mazima of curvature.

The theorem is not that easy to extend on surfaces, but it gives a good intuition that such maxima
also exist.

The set of centers of curvature of a curve « is called the evolute of . Except if v is a circle, the
evolute of « is a curve that has cusps (non regular point) at the local minima and maxima of curvature
of 7. We illustrate the Four-vertex theorem in Figure [I.3| where the evolute has indeed four cusps.

1.1.2 The medial axis of a curve

In this paragraph, rather than the parameterization of curve v, we focus our interest on its image in R?.
More precisely, we consider that:
V= {V(t)v te R}
We study the notion of contact of a curve with a tangent circle at a given point (See [Rut18, [BGGSE,
Eri01b]). Consider a point p, and a circle tangent to the curve at p. If the circle is not the osculating
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Figure 1.3: The evolute (in yellow) of an ellipse 7 (in blue).

circle at p, then we say that it has an A; contact with the curve. In other words, the circle is tangent
to the curve, and so shares the first derivative of the curve at p, but it does not share the second order
derivative. Conversely the osculating circle may have an As contact with the surface, since it shares with
the surface the first and second order derivative. But it is possible that an osculating circle shares its
third order derivative with the curve at p. Since a circle can be seen as the graph of a even function,
the third order derivative at p must be 0. For the third order derivative of the curve to be also 0 at p,
p must be generically an extrema of curvature. In this case, we say that the contact is an Ag contact.
We assume that for almost all curves, there are no higher possible contact type (this will be discussed in
Section for surfaces). The As contacts correspond to cusps on the evolute (see Figure .

Figure 1.4: Three different contact types. Left: an A; contact type, only tangent. Middle: an Ay contact
type, osculating. Right: an As contact type, osculating at a maximum of curvature.

In the latter paragraph, we assumed that there was only one contact between the curve and the circle.
But there can be more. Consider that, from a point p that is not an extrema of curvature, we make grow
a tangent circle until it touches another point of the curve at p. We call such a circle a medial circle of
at p, or a medial circle of p if there is no ambiguity on . The other contact point of the circle is called a
symmetrical point of p. At p, the contact was an A; contact since the circle is tangent to the curve. At
the symmetrical point, generically, it is also an A; contact. Since such a circle shares two Ay contacts,
we say that the contact is A?. The set of medial centers forms a one-dimensional curve, that we call the
medial azis [Lee82]. The extremities of the medial axis corresponds to cusps of the evolute, at maxima
of curvature. This happens when two symmetrical points converge. At some points, the medial axis may
be divided into three branches, where the medial circle has 3 contacts points. We write such contact A3

(see Figure [LF)).
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Figure 1.5: The inner medial axis (in red) of the black curve. Its extremities are centers of As contact
circles (in green). It has some intersection points at the center of A3 circles, (in blue).

1.2 Geometry of surfaces

In this section, we extend the notions developed for the curves, to surfaces.

1.2.1 Basic notions on surfaces

In this thesis, we study the behavior of the Delaunay triangulation of point distributed on a surface. We
formalize the notion of surfaces that we consider. We define what is a regular surface, using the definition
from Do Carmo [DC16].

Definition 1.4. A subset S C R? is a regular surface if, for each p € S there exists a neighborhood V in
R3 and amap f: U — V NS of an open set U C R? onto VNS C R3 such that:

1. f is smooth (f is infinitely differentiable),
2. f is a homeomorphism (f has a continuous inverse f~!: VNS — U),
3. f is an immersion (for each u € U, the differential df, is injective).

The first condition is necessary since we expect to do some differential calculus on §. The second
condition implies that the surface has no self-intersection, for the bijective part of the homeomorphism,
while the continuity of the inverse guarantees us to be able to consider differentiable functions from S
to R. Finally the third condition, also called regular condition, implies that at any p € S, S admits a
tangent plane.

Rather than parametric regular surfaces, we consider their image in R, i.e. the set of points they
define, and the properties of the surface that are independent of the parameterization. Thus we will
consider a smooth surface S as the image of a parametric regular surface, knowing that, at any p € S we
can find a parameterization.

Later, the surface will be considered not only smooth but also analyic.

The Monge form of surfaces As we said, a smooth surface S admits a tangent plane at any point.
So consider the point p € S, and its tangent plane 7s(p). A unit vector orthogonal to S at p is called a
normal vector. Only two directions are possible. A surface is said orientable if we can choose, for any
point, a normal vector 7i(p), that varies continuously on S. A choice of orientation makes the surface an
oriented surface.

Assume that S is an oriented smooth surface, and consider p € S and its tangent plane 7s(p). Then
consider a plane P passing through p and orthogonal to Ts(p). Locally, P NS is a planar curve. We
can then consider the algebraic curvature of this curve. By rotating P around the normal, the curvature
obtained varies continuously in R. We denote by k1(p) the maximal curvature, obtained in the plane
Py, and by k2(p) the minimal curvature obtained in Ps. They are called the principal curvatures of S
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Figure 1.6: The principal curvatures of S at p are the curvatures of the red curves at p.

at p, and their associated directions in 7s(p) are called principal directions (see Figure . Note that
changing the orientation inverts ki and k.

Let kg(p) be the curvature of the curve S N Py where Py makes an angle § with P;. In the 18th
century, Euler [Eul67] stated a theorem that asserts that:

ko(p) = k1(p) cos? 0 + ka(p) sin? 6,

which implies, by the same time, that the principal directions are orthogonal. If the principal curvatures
are equal, we say that p is an umbilical point.

This orthogonality induces a natural choice of coordinate system for not umbilical point. Consider
the z-axis in the maximal principal direction, the z-axis in the normal direction 7i(p), and the y-axis in
the minimal principal direction such that (x,y, z) is direct. It remains then to make an arbitrary choice
for z-axis orientation. Such a coordinates system at p is called a Monge coordinates system m
In such a coordinate system, at p, S is locally parameterized by z = f,(z,y) where:

fo(@,y) = 5r1(p)2* + 3R2(p)y” + Oz + |y[*). (1.2)

We call such an expression of S the Monge form of S at p.

We extend the notion of osculating circle. At p, the curvatures vary from rs(p) to x1(p) depending
on the direction of cutting plane. We could consider as many osculating sphere, but we will only consider
the extreme ones. Thus for a given orientation, we call first osculating sphere, the sphere passing through
p and centered at (0,0, 1711) in the Monge coordinate system. Similarly we call second osculating sphere
the sphere passing through p and centered at (0,0, %2)

Highly related with principal direction is the notion of line of curvature. A line of curvature is a curve
on S whose tangent at every point is aligned with a principal direction. Since at not umbilical point, the
principal directions are orthogonal, they generically form an orthogonal net on the surface.

Closed surface
A surface S is said closed if it is compact without boundary. The closeness of a surface implies two
important properties:

e by compactness, any continuous function admits a maximum. For instance, if the surface is C?, we
can consider the maximal absolute curvature, denoted Kgyp, on the surface. It is defined by

fisup 1= max (|1 (p)], [12(p)])
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Such a value is a constant depending on the particular surface considered. At a later stage, we will
give other constants that we can define on a closed surface.

e we can distinguish inner and outer orientations, where the inner orientation points inward S, and
the outer orientation points outward.

1.2.2 Analytic description of a surface

We enumerate here the different approximations we will use in the thesis, depending on the order of
precision we need. We consider a closed surface S. We assume that S is at least C? so that we can
consider its tangent plane and its Monge form z = f,,(z,y) at any point, as in Equation .

Around p, the surface can be locally caught between two spheres tangent to S, with radius ﬁ,
and centered on both sides of S. Thus S can also be caught between two parabolas of revolution with
curvature 2kq,p, at their summit (see Figure . That provides lower and upper bounds for f, and we

can claim that, if \/x2 + y? < %ﬁ then:

up

|fp(z,y)| < Ksup(z® +47). (1.3)

The neighborhood /22 + y2? < V2 around p is then chosen to be the usual neighborhood, i.e. the

2Ksu
neighborhood in which we can consider the Monge form of S.
If S is C™ with n > 2, we can extend its Monge form this way:

k=n

1 1 1 k P n

Jolesy) = grue+ gra + 3 g 3 () mia'y’ +O(lal ™ + ™).
k=3 " itj=k

Note that, to lighten the notations, we deleted the “(p)” behind each coefficient, since it is clear from the
context.

Figure 1.7: A 2D view of two tangent spheres (in red) with maximal curvature on both sides of the
surface S, and two parabolas (in green).

We won’t go further the fourth order, where the Monge form is then:

folz,y) = %/@1:1:2 + %mng + é (mg,oxg + 3m271x2y + 3m172my2 + m073y3)

+ o (maz? + dms 12y + 6mo 22y + 4my s2y° + moay®) + O(|z° + [y°).

If S is three-times differentiable at p, we can have a bound on the remaining term using the Taylor’s
formula with Lagrange’s remainder [Col12):

1 1
fp(xvy) = 5”11’2 + 5”2:’/2 + R3(x,y)7 (14)
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with Rs(z,y) = Z R;;(z, y)x'y’, where each remaining term verifies:
itj=3

1
R" Z, S — Su
| 1]( y)| Z!]!OStgl

33fp(t9:, ty)
Oxiyl ’

If S is C3, there exists Mz > 0 depending on p such that all the terms SUPg<t<1 ‘%t;ty)’ are
bounded in /22 + 32 < ﬁ by M3 from above, it follows that:
1 it 3
|Rs(a,y)] < Mg Y Z.,T.,(I,y)\xl lyl = A Ma(ja] + [y))* < P Ms\/22 + ¢ (1.5)

i+j=3"

For most parts of the surface, this approximation will be enough. However, some points of the surface
have their third order derivative with respect to  that is 0, more formally:

9% £,(0,0)
ox3

This happens at extrema of curvature as explained in Section [I.I] At such points, we will need a more
precise approximation, since the bound M3 over the four derivatives of order 3 might be a bit rough.

For this case, we will assume that S is C* and consider the remaining term Rs, denoted with a + in
index to express that we extend partially the order 3. Then we can say that there exists My > 0 that is
a bound over all fourth order derivatives for y/z2 + y2 < %, and then we have:

=0.

folz,y) = %me + %ﬂzyZ + %m370x3 + Rz (z,y), (1.6)

with
Ry (z,y) = O (" + 2|yl + |2ly* + y[*) ,
or more precisely, for \/m < %, we have:
Ry (2, y)| < My (32°|y| + 3laly® + §lyl®) + 55 Maz?
= Msly| (52° + glayl + §°) + g5 Mz
< Malyl| (a2 + %) + gy Ma(a* + 2%y?)
= (x2 + yz) (Msly| + iMZ;xQ) .

1.3 Generic surface

The main result of the thesis concerns orientable closed analytic generic surfaces. In a common definition,
generic means that we consider “almost all” the orientable closed regular surfaces. More precisely, the
set of surfaces in R® we consider must be a dense set in the set of orientable closed regular surfaces. On
a generic object, we can quantify the dimension of a subset of points defined by a so called transversality
constraint. Basically, each (independent) transversality constraint on the points makes the dimension of
the subset lower by 1. For a formalized approach, see [Tho54, Dem13]. We list below some properties
that are shared by generic surfaces. Those properties are important in the context of the Delaunay
triangulation. In particular, those properties are related with the contact types that the surface has with
a tangent sphere.

1.3.1 Maxima of curvature

By the Four-Vertex theorem, we saw that a planar regular closed curve admits maxima of curvature.
This property can be extended on an oriented regular surface S. Consider a line of curvature on S, p
on this curve and the principal curvature x1(p). On this curve the function k; may admit a maximum.
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Figure 1.8: The sets Z and Y in red. At an extremity Z’ of Z, the other contact point with the first
osculating sphere (in grey) is a point of Y.

As maximum of curvature along the maximal principal direction, they are solutions of the equation
ms,0(p) = 0. Thus by transversality, such points form one-dimensional curves on S with finite total
length.

Among such points p maxima of curvature, for a given orientation, we consider the first osculating
sphere, and have a look on its intersection with S. Since p is a maximum of curvature, the intersection
locally contains only p. The question is on what happens far from p. Two cases can arise depending on
the position of p:

e Either the intersection contains only p,
e or the intersection contains p and another subset of the surface.

The set of points p verifying the first case is denoted by Z, as in [ABL03|. As we will see, a point
close to Z is subject to have an expected logarithmic degree in the Delaunay triangulation of random
points on S. As a subset of the maxima of curvature, Z is also a finite reunion of finite curves on S.
Such curves are either topological circles on S or topological segment. In that second case, we need to
clarify what happens at the extremities of Z that we denote by Z’. This case arises when the intersection
of the first osculating sphere with surface has exactly two points. One of this points is p, the other one
generically does not belong to Z. The set of such other points is a finite set of isolated points denoted
Y, also as denoted in [ABL0O3|. In other words, a point of Z’ has only one symmetrical point and it is a
point of Y, and conversely (see Figure [1.§)).

As pointed out by Porteus in [Por01], the umbilical points on a generic smooth surface are isolated
points. Moreover they don’t lie on Z generically [ABLO3].

1.3.2 Medial axis and contact types

In this paragraph, we extend the notion of contact points and medial axis, aforementioned for planar
curves. We assume that S is a generic smooth surface and show the properties that the genericity induces
on the medial axis of S§. By smooth we actually mean that S is not only C* but also analytic, otherwise
the surface could have a very complex medial axis [CCM97].

Medial sphere and symmetrical points

We call a medial sphere of S at p, or medial sphere of p, the boundary of a maximal open ball B with
p on its boundary such that BNS = (). We recall that for a point p on a planar curve, a symmetrical
point p of p is a point of the curve such that there exists a medial circle passing through p and p. This
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notion can be extended to surfaces. We say that two different points are symmetrical on S if their exists
a medial sphere passing through those two points.

For a given orientation, we can talk about the medial sphere o*(p) of a point p, that is the one centered
in the direction 7i(p) . We denote by ¢*(p) its center, and by r*(p) its radius, respectively called medial
center and medial radius of p. When it is clear that they depend on p, we will simple write ¢*, ¢* or r*.
We say that p € S is a symmetrical point of p only if the medial sphere of p passes also through p. In
other words, the symmetrical points of p depends on the chosen orientation.

Taking into account the notion of medial radius, we can give another definition of Z: Z is the set
of points p such that x1(p) = r*(p). Indeed, when two symmetrical points approach each other, their
medial sphere tends to be osculating. If the surface is closed, then we can consider the minimal medial
radius, also called reach in [BLW19], and denoted rch:

h := min (r*
)

Since 7*(p) < %(m for any p, we have rch < ?11,;, A ball centered on p and with radius rch has an
intersection with the surface that is a topological disk, so it provides a relevant upper bound for the size
of some neighborhood.

In order to remain homogeneous in the counting of symmetrical points, we make some precision for

two kinds of points:

e If, for a given orientation, the medial sphere of p degenerates into a plane, we consider that p has
a symmetrical point at infinity.

e If p belongs to Z U Z’, we say that p is its own symmetrical point.
Thus we claim the following generic properties:

Proposition 1.5. Let S be an orientable generic smooth surface. For each orientation of S, we have:
1. Any point of S has, at least, one symmetrical point.

2. The set of points of S that have at least two symmetrical points is a finite reunion of finite curves

on S.

3. The set of points of S that have at least three symmetrical points is a finite reunion of isolated
points on S.

4. No point of S has four symmetrical points.

We explain this property using the dimension of the medial axis (see Figure . Let p be a point
on S, and choose an orientation of S. By definition of a medial sphere, p has at least a symmetrical
point, possibly at infinity. We explain separately the case, for a given orientation, where p has an infinite
symmetrical point, from the case where all of its symmetrical points are finite. At the same time we will
name the different parts of S according to their medial sphere.

If all symmetrical points of p are finite

Suppose first that p has exactly one symmetrical point that is finite and different from p, we denoted
it by p, and consider the medial center ¢*(p) of p. By moving a little bit p in any direction on S, the
condition of having a single symmetrical point remain true, and we might assume that ¢*(p) forms a
bi-dimensional sheet, close to the bisector plane of p and p. Now consider the set of centers of such
points. It is exactly the center of A? contact sphere, where an A? contact sphere, is a sphere that shares
with the surface exactly two tangent contacts and no more (in the derivative sense). The set of such
contact points, i.e. of an A% medial sphere, is denoted by S (for “simple” and because it corresponds to
the most representative part of the surface S).

At the boundary of the medial centers of S points (the points of S), two things can happen:
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Figure 1.9: The five possible contact centers on the medial axis of a generic surface, as they are presented
in |[Eri0Ib]. From left to right: A%, A3, Az, A}, and A;As. On the green edges lie centers of medial
sphere at Z.

e Either two sheets of medial centers meet each other. In that case their intersection is made of
centers of A$ contact spheres. As intersection of two bi-dimensional objects, such an intersection is
generically one-dimensional object. The set of points of S whose medial sphere has an A$ contact
with the surface is denoted S’. The points of S’ form curves on the surface.

e Or a sheet of medial center meets an end. In other words, when ¢*(p) moves toward such an end, p
and p are actually converging toward a limit that we will call pz. Moreover, their first osculating
sphere also converges, toward the first osculating sphere of pz. In other word, the first osculating
sphere and the medial sphere correspond, so that the osculating sphere is a maximal sphere at
pz, and we can say that pz belongs to Z. Thus, the external boundary of the medial centers
corresponds to medial center of points of Z. As extrema of curvature, such contact points are not
only osculating but shares also the third derivative, so that they are Az contact. It is important to
keep in mind that each of the subsets described refers to a given orientation. So, the Z curve of a
given orientation can cross the Z curve of the other orientation, but it is not possible that the Z
curve of a given orientation intersects itself.

As we said, the sets of A3 and A3 medial centers are one-dimensional objects. Generically they can
meet another A2 sheet of medial centers. This happens on a finite reunion of isolated points. We can
again distinguish two cases:

e Either a line of A? medial centers meets an A? sheet into an A} medial center. The set of points on
S whose medial sphere has an A} contact with the surface is denoted by S”. A point S’ is a point
of concurrency of three S’ curves that symmetrical each other.

e Or a line of A3 medial centers meets an A? sheet into an A3A; medial center. The A3 contact lies
at an extremity of Z, it is called a Z’ point. The A; contact is called a Y point. Since a A3 medial
center is the limit of a A; medial center, an A3A; contact is also the limit an A% medial curve.
Thus a point of Y is an extremity of the set S’, and two others S’ curves are converge to a Z’ point.

Roughly speaking, two S’ curves meet into an S” point, while a Z curve meets an S’ into a Z’ point.

If p has an infinite symmetrical point

Similarly, we can consider the points of S that have a symmetrical point at infinity: those whose medial
sphere degenerates into a plane. Those points constitute what we call the convex part of S. Among them
are the points with no finite symmetrical points, i.e. with only the infinite symmetrical point. The set
of such points is denoted H (as in hull). The set H constitutes the interior of the convex part.

The set of points of the convex part with exactly one finite symmetrical point forms the set denoted
H’, made of curves on the boundary of H. The extremities of H' is a finite set of isolated points. We
denote it by H”. The points of H" have exactly 2 finite symmetrical points and one at infinity. In other
words, their medial sphere is a plane that touches the surface at three points. Note that H” points lie at
two extremities of H' curves and an extremity of an S’ curve. In some sense H' is like a frontier between
H and S points where the medial centers go to infinity.

We could ask ourselves if a point in the interior of the convex part could be its own symmetrical point,
in other words if a point p of Z can be in H U H' U H”. Since the medial sphere of a point of H is a
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plane, this would imply that x;(p) = 0. To respect the convex properties, the first (maximal) principal
curvature must be non positive. But genericity implies that a maximum of non positive function cannot
be 0. So on the convex hull of a generic surface, k1 < 0, and there is no Z point, neither Y points.

If the surface is closed, the sets H, H' and H" exist only for the outer orientation.

1.3.3 Summary of the cases

We summarize the different possible types of points on a generic closed orientable surface, and recall
some notations.

Consider an orientation of S and a point p € S. In the given orientation, the point p has a single
medial sphere o*(p), which is the one centered in the direction of the normal. The ball for which o*(p)
is the boundary is denoted by B(c*(p)). If o*(p) degenerates into the tangent plane of p, B (c*(p))
corresponds to half-space directed by the normal. The set of points p for which o*(p) degenerates into
the tangent plane of p is called the convex part of the surface.

Figure 1.10: An illustration of the decomposition with H and S sets. Here S is the reunion of four
disjoint spheres centered on the vertices of a regular tetrahedron. H’ delineates the convex part. The S’
curves meet at an S” point on each sphere.

We list now the different kinds of points of the convex part. Those points have no medial axis, and
we consider that r*(p) = 4+00. For the expression of the sets, we use E;“é to denote the set of tuples of k
distinct elements of E.

e H={pecS, r*(p) = +oo, B(c*(p)) NS = {p}} is the set of points whose tangent plane has a
single contact with the surface. H is inside the convex part. It forms an open subset of S.

e H ={peS, r(p) =+oc0, IJp € S\ {p}, B(c*(p))NS = {p,p}} is the set of points whose tangent
plane has two contacts with the surface. H’ lies on the boundary of H. It forms a curve.

e H'={peS, r*(p) =+o0, I(Dy,D;1) € (S\{p})jé , B(c*(p))NS = {p,Py, Py }} is the set of points
whose tangent plane has three contacts with the surface. H” lies on the boundary of H' (and H).
It is made of isolated points.

Note that a closed surface has H, H' and H” sets only for the outer orientation. See Figure for an
illustration of H, H' and H" sets.
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Figure also illustrates S, S’ and S” sets, that we summarize now. If a point p is not on the
convex part H U H' U H", its medial sphere is an actual sphere (not a plane), and p has a finite medial
radius. Among those points, we have to differentiate the points p such that x1(p)r*(p) = 1 from the
others. All points such that k1(p)r*(p) < 1 have at least one symmetrical point. When it is single, we
denote it by p. We must also differentiate the cases when k1 (p)r*(p) = 1. The points p that are not on
the convex part, that verify x1(p)r*(p) < 1 and whose symmetrical points D verify x1(p)r*(p) < 1, are
called simple points.

e S={pes, r(p) <oo, ki(p)r*(p) <1, 3p € S\ {p}, B(o*(p)) NS = {p,p} A k1 (P)r*(p) < 1}
is the set of simple points with one symmetrical points. S forms an open subset of S. Even if, in
some sense, the S points are the most common points of S, the reader may pay attention not to
confuse the notations S and S.

o S'={peS, r*(p) < oo, ki(p)r*(p) <1, 3(Bo:P1) € (S\{pHZ%: B(0*(p)) NS = {p, D, P1}} is the
set of simple points with two symmetrical points. S’ forms a curve at the boundary of S. Some S’
curves meet an end at H" points.

i S” = {p S S: T*(p) < 00, Kl(p)r*(p) < 1a H(ﬁOaﬁlaﬁZ) € (S\{p})i, B(U*(p))ﬂS = {paﬁmﬁlafb}}
is the set of simple points with three symmetrical points. S” lies where three S’ curves meet. It is
made of isolated points.

Figure 1.11: A point of Z’ is a concurrency point of two S’ curves and one Z curve. The points of Y’ are
endpoints of S’ curves.

Finally it remains to consider the points such k1 (p)r*(p) = 1 and with a single symmetrical point p
such that x1(p)r*(p) = 1.

e Z={pesS, r(p) <oo, kilp)r*(p) =1, B(c*(p))NS = {p}}. Z is a subset of the maximum of

curvature. It forms curves on S also called ridges.

e 7' ={pes, rp) < oo, ki(p)r*(p) =1, Ip € (S\ {p}), B(c*(p)) NS = {p,p}}. Z’ lies at
extremities of Z curves and is a set of isolated points.

e V={peS§, r(p) <oo, k(p)r*(p) <1, € (S\{p}), B(o"(p)) NS ={p, P} A1 (p)r”(p) = 1}.
Y lies at extremities of S” curves. The points of Y are symmetrical with some points of Z’.

See Figure for an illustration of Z, Z’ and Y points.
Generically there exists no other kind of contact points.
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Chapter 2

Combinatorics

In this chapter, we present basic notions of combinatorics. The first section is dedicated to fundamental
notions in graph theory while the second section focuses on the Delaunay triangulation. In particular, we
introduce the notion of size of a graph, and present some bounds on the size of the Delaunay triangulation.

2.1 Graph theory

In mathematics and computer science, graphs are widely studied structures. We present in this section
some fundamental notions that we will use through this thesis.

2.1.1 Generalities on graphs

Usually [Eri99], a graph G is defined as an ordered pair (V, E) where V is a non-empty set, and F is a
set of pairs of V. An element of V is called a vertez, an element of F is called an edge. If the edges of E
are unordered pairs, we say that the graph is undirected, otherwise we say that it is directed. A directed
graph will be denoted with an arrow: G. In an undirected graph, two vertices that share an edge are
called neighbors. In a directed graph, the neighborness relation is not anymore symmetrical and we say
that a vertex ¢ is a successor of a vertex p, if the set of directed edges V' contains (p, q).

d d

a a

Figure 2.1: Two representations of the graph G = (V,E) with V = {a,b,c,d,e}, and E =
{(a,b), (a,c), (b,c), (b,d), (b,e),(c,d),(d,e)}. The right representation shows that G is planar, this repre-
sentation is a plane graph.

It can be helpful to visualize graphs. They can be represented in the plane, by considering the vertices
as usual points and the edges as curves that link the points. With such a representation, we must pay
attention to the fact that an intersection between edges is not necessary a vertex. If a graph can be
represented in the plane in such a way that its edges intersect only at the vertices, we say that the graph
is planar and that the representation is a plane graph (See Figure . By Fary’s theorem [Ist4§], we
can always find a plane graph with straight lines, so will consider that its always the case. In a plane
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Figure 2.2: A plane graph in which the vertex p has degree fV — 1. Nevertheless the average degree
remains smaller than 6 since the graph is planar.

graph, we call face a region bounded by edges, and outerface the unbounded external face. We denote
by F' the set of faces of a plane graph, including the outerface.

A planar graph is said mazimal if no edge can be added without losing the planar property. The faces
of a maximal planar graph are triangles, i.e. have 3 edges on their boundary.

Consider now two graphs G = (V, E) and G’ = (V, E’) whose set of vertices is the same. If B/ CV
we say that G’ is a sub-graph of G, and conversely that G is a super-graph of G'.

2.1.2 Counting the edges of a planar graph

The main purpose of the thesis is to compute the number of edges of a given graph according to its number
of vertices. For a set A, we will denote by #A4 the number of elements in A. For a graph G = (V, E),
#G is also called size, or combinatorial complexity, of the graph. G corresponds to §F + §V, so we are
interested in computing §F with respect to V. The Euler’s formula [Eul58| gives a relation between the
numbers V', §F, and #§F in a connected plane graph:

Theorem 2.1 (Euler’s formula). Let V, E, and F be respectively the set of vertices, edges and faces
of a connected plane graph, then:
fV —gE+1F = 2.

If a plane graph is maximal, then all of its faces are triangles, and even the outer face has 3 edges.
Thus we can claim that each edge is the boundary of two distinct faces, and that each face is bounded
by exactly 3 edges. Knowing that, we can proceed to the counting of incidences (e, f) where e is an edge
of the face f. Since for each edge, there are 2 faces, the number of such incidences is 2§F. On the other
hand, since all faces are triangles we can say that the number of incidences is 3§F". Thus in a maximal
planar graph, we have the following relation:

24F = 34F.
We can use those two formulas to obtain:

tF — fF = 4V — 2 then subsitute F by %ﬁE,
%ﬁE = {V — 2, to finally obtain:
tF =34V — 6, and
fF =24V — 4,

proving that any maximal planar graph, and by extension any connected planar graph, has asymptotically
a linear number of edges with respect to its number of vertices.

A data that will have a strong importance all along the thesis is, for a given vertex p, the number
of neighbors of p. We call it the degree of p and denote it by deg(p) or deg(p, G) if we need to precise
that we count the edges of G. If the graph is directed, we can be interested the number of successors of
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p, we call this number the outer degree of p and denote it by c@(p). Even in a planar graph, a vertex
can be neighbor of all other vertices of E, thus we cannot generally find a better bound than V" — 1 on
the degree of a vertex (see Figure . Nevertheless we can bound the average degree of a vertex in a
planar graph. Indeed, if the graph is undirected, each edge has two endpoints and the sum of degrees
corresponds to 24F, thus:

> deg(p) = 24E

peV
< 68V — 12 and then,
1 12
— d <6-——.
W > deg(p) < e
peV

Conversely, having an information on the degree of each vertex of a graph is a great help to bound
the number of edges.

2.2 The Delaunay triangulation

The Delaunay triangulation is the central object of this thesis. We describe it in this section, and give
some properties on its size depending on the dimension considered.

2.2.1 The 2D-Delaunay triangulation

If the vertices are actually geometric points in RY, for any d > 1, we can consider graphs that depend
on the relative position of the points. One example of such graphs in R? is the graph induced by the
Delaunay triangulation [Del34].

Formally, a Delaunay triangulation of a set of points is a simplicial complex, i.e. a set of vertices,
edges, triangles, and simplices of higher dimension if necessary, such that any sub-simplex of a simplex
(any edge of a triangle for instance) is in the simplicial complex, and the non-empty intersection of two
simplices is a sub-simplex of both.

In dimension 2, for a set of vertices V' in general position (no three vertices aligned, no four vertices
cocyclic), the Delaunay triangulation, denoted Del(V), of V' is the unique simplicial complex (V, E, F) in
which (p, ¢, r) is a triangle of F' if and only if the circle C circumscribing p, ¢ and r has no points of V' in
its interior. In that case, we say that C is empty. It is equivalent to say that (p,q) is an edge of F if and
only if there exists an empty circle C passing through p and g. Note that one of the definitions involves
three points and one circle, while the other involves two points and a whole pencil of circles. This will
make an important difference later.

The Delaunay triangulation of V' induces the graph (V, E) that is a plane graph whose all faces are
triangles except for the outer face (see Figure . We will often refers to the Delaunay triangulation or
to its induced graph without distinction.

To have a complete information on the Delaunay triangulation, it requires then to know not only the
set of points and edges, but also the set of faces. Thus the combinatorial complexity of a 2D-triangulation
is then given by the sum {V +4E + §F. We denote it by # Del(V'), and call it more simply the size of the
triangulation.

In 2D, since the Delaunay triangulation is planar, the Euler formula is enough to evaluate §Del(V)
for any set of points V', indeed we have:

¢Del(V) = O(3V).

When we consider the Delaunay simplicial complex in 3 dimensions, this linear relation does not hold
anymore.
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Figure 2.3: The Delaunay triangulation of 35 points in the plane. We can remark that most of the
triangles are not so flat.

2.2.2 In three dimensions (and higher)

The Delaunay triangulation can be generalized to any dimension d. We recall that a d-simplex is the
generalization of triangle in higher dimension, i.e. the simplest polytope in dimension d. Consider a set
of vertices V in R?, a d-simplex is an element of Del(V) if the d-sphere passing through its d + 1 vertices
is empty.

In dimension 3, the Delaunay triangulation of a set of points V' is the simplicial complex in which a
tetrahedron belongs to Del(V') if and only if the sphere circumscribing its four vertices is empty. Even if
the simplex with highest dimension is now a tetrahedron, we still say that it is a triangulation, specifying
that it is a 3D-Delaunay triangulation. We denote by C' the set of cells of the triangulation, including
the outercell.

Euler’s formula on 3D-triangulations is:

8V — 4E +tF — §C = 0.

However, it is not anymore sufficient to compute precisely the size of such a triangulation in terms of
its number of vertices. Indeed, an edge can be in as many triangles as possible and we cannot use the
same counting as before. We can construct explicit examples with a quadratic number of edges.

For instance, consider two lines [ and I’ not parallel neither intersecting. Consider a set V' of points,
and distribute the points such that half of them are on each line. Let p be a point of V' NI, and ¢ a point
of VNI, Since we can find a sphere tangent to [ at p and to I’ at ¢, (p, ¢) is an edge of Del(V'). Therefore,
each point on [ shares an edge with all points of I’. In other words, there are at least % X % = @(ﬁVZ)
edges in Del(V). We can even find a set of points where all pairs of points are neighbors in the Delaunay
triangulation. For instance by distributing V' on the moment curve t — (,t2 ¢3).

Nevertheless, we can apply the counting of incidences “face-cells”. This quantity is equal to 2§F and
greater than 44C (since the outercell is not a tetrahedra), and so we have {F > 24C. We could have
considered a notion equivalent to maximal planar graph for triangulation but we will be satisfied with an
inequality. By substituting this in Euler’s formula, we obtain:

ﬁV—ﬁE+ﬁF—%ﬁF§0.
So that we can deduce:

gF = 24F — 24V and so,

fF < 24F and,

$C < #E.
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Figure 2.4: A quadratic case for the 3D-Delaunay triangulation: two lines are not coplanar, and half of
the point set is on each line.

Since a triangulation contains a covering tree in which the number of edges is the number of vertices
minus one, we can state the following property:

Proposition 2.2. The size of the 3D-Delaunay triangulation Del(V) of a set of points V verifies:
i Del(V) = O(1E),
where E is the set of edges of Del(V).

Finally, we make the remark that both of Euler’s formulas and the counting of incidences are particular
cases of the Dehn-Sommerville equations in higher dimensions. Those equations provide also an upper
bound on size of the Delaunay triangulation in dimension d:

tDel(V) = O(¢VI21),

and this bound is reached for points on the moment curve ¢ + (¢,t2,... %),
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Chapter 3

Probabilities

In this chapter, we present the random point process we use to model data points, namely the Poisson
point process. We define it and present some of its properties, including the Slivnyak-Mecke formula,
which will often be used.

For an event A, we denote by 1;4) and P [A], respectively the indicator function and the probability
of A, for a random value V', we denote by E [V] its expected value, and for a region R we denote by |R)|
its length, area, volume, etc..., depending on its dimension.

3.1 Poisson point process

In order to model the data points, we use a Poisson point process. A Poisson point process is a set of points
randomly distributed in a chosen space. We use such a sample because it has convenient mathematical
properties. There exist homogeneous and nonhomogeneous processes, but in the whole thesis, we will
only use homogeneous processes, without mentioning it. A (homogeneous) Poisson process is associated
with a parameter, usually denoted by A, and called intensity of the Poisson process. As

When it is distributed on & € R, a Poisson point process X with intensity X is characterized by the
two following properties [CSKM13|:

e For any region RC S, P (X NR)=m] = WG*MR', for m € N.
e The number of points of k disjoint regions form k independent random variables.

Note that to be completely accurate, we might consider that the regions are Borel sets. In the whole
thesis, the only regions we consider are intersections of balls of dimension d with subsets of R? for d = 2
or d = 3, so it is clear that they are Borel sets.

The first property indicates that, in a given region, the number of points of a Poisson process behave
like a Poisson distribution. The second property gives an independence property between two disjoint
regions. It is an important property that does not have, for instance, a uniform process. Indeed, in a
uniform process of n points, knowing that & points are in given region implies that n — k points are in
its complementary.

The counting property implies two formulas:

e PH(XNR)=0] =e MBI and
e E[ (X NR)] = \R|

We will make a heavy use of the first formula. Indeed it reflects the fact that a region is empty of
data points, that is what characterizes that an edge belongs to the Delaunay triangulation. The second
property allows to see A as an expected number of points in a region of measure 1. Thus the combinatorial
complexity of graphs will be expressed as a function of .
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3.2 Slivnyak-Mecke’s theorem

In stochastic geometry, we can be interested in counting the expected value of some quantities. For
instance, the expected length of a path in a given graph [CD16, BM11l [BDCD19], or the expected size of
the Delaunay triangulation in a given manifold [CCE21]. In our case, we will mainly count the expected
size of empty region graphs.

As a pedagogical example, we propose to describe the computation of the expected degree of a point
in the 2D-Delaunay triangulation of a Poisson point process X. As mentioned in Chapter [2] the average
degree in a triangulation of n points, and therefore in the Delaunay triangulation, is 6 — % We prove
here a well known [Mgl94] and quite close result for Poisson process:

Theorem 3.1. Let X be a Poisson point process in R? and p a point of R2. The expected degree
E [deg(p, Del)] of p in the Delaunay triangulation Del (X U {p}) is 6.

The result differs in the fact that the average value 6 — ? is for all points while the expected value 6
is for all Poisson point processes.

We distribute the Poisson process X in R? and without loss of generality, assume that p is the origin.
Let D(p, q,r) denote the open disk with p, ¢, and 7 on its boundary. The number of neighbors of p in
Del(X U {p}) is the number of distinct pairs (¢,7) in X? with ¢ # r such that D(p,q,r) is empty. It is
given by the random value:

deg (p, Del) = b) Z Z 1D(p,q, nxX=0]

geX reX\{q}

where the factor % corrects the double counting of each set {¢,r} in the sum. Note that, to lighten the
notations, we write only deg (p, Del) where we should write deg (p, Del(X U {p}). What we are interested
in is the expectation of this value:

E [deg (p, Del)] Z Z Lip(p,q,rnx=0)
le reX\{q}

Z Z 1['qurr‘|X 0]

qeX reX\{q}

l\')\)—l

To switch from a sum on a Poisson process to an integral R?, we introduce the Slyvniak-Mecke formula
[SW08, p 68, Corollary 3.2.3], adapted to our notations and context:

Theorem 3.2 (Slivnyak-Mecke formula). Let X be a Poisson process distributed on E with intensity
A, let m €N, and let f: 2F x E™ — R be a nonnegative measurable function. Then

E Z f(X, 21, 2m) :)\m/---/ E[f(XU{x1,...,2m}, 21, .., Tm] dzp, ... day,
E E

where X denotes the set of tuples of X™ with distinct elements, and 2F denotes the power set of F
(including any set of points of E).
We apply Slivnyak-Mecke formula on E [deg (p,Del)] for E = R?, m = 2, (z1,72) = (g,7), and
f(X, q, r) = 1[D(p,q,r)ﬁ(XU{q,r}):®] to obtain:
E [deg (p’ Del)} = %)‘2/ / E [1['D(p,q,r)ﬁ(XU{q,r}):@]} drdg,
Rz JR2

but since ¢ and r lie on the boundary of D(p,q,r), we can write:

1
E [deg (p, Del)] = 42 /R ] / E [11p(p,q,r)nx—g] drdg

7A2/RQ/R2 D(p,¢,r) N X = 0] drdg,
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Figure 3.1: The Blaschke-Petkantchin variables substitution converts the Cartesian coordinates of ¢ and
r into polar coordinates related to the circle circumscribing p, ¢ and 7.

and by definition of a Poisson process,

:1)\2/ / Q*AID(p,q,T)Idrdq.
2 R2 R2

In order to express in a simpler way the area of D(p, ¢, 7), we use a Blaschke-Petkantschin like variables
substitution [SW0S8, Theorem 7.2.7] from R* to R x [0,27)3 that expresses the parameterization of p and
g into (p, @, 0p,0,) where (p, @) denotes the polar coordinates of the center c of the circle circumscribing
p, ¢, and r, and 6, and 6, denote the angles from c of the points ¢ and r to the horizontal line (see Figure

5.1).

The coordinates are then rewritten:

xq = p(cosp + cosby), y, = p(sing +sinb,),

xr = p(cos @ + cosb,), y, =r(sing +sinb,).
And the Jacobian matrix J of the Blaschke-Petkantschin variables substitution is:
cosp+cosfl; —psing —psinf, 0
sinp+sinf, pcosp pcost, 0

cosp+-cosf, —psing 0 —psind,
sinp+sind,  pcosy 0 p cost,

J(p, 41079qa er):

In Appendix we show that

det (J(p, ¢, 04,0,)) = 4p” sin (”_(eg_er)) sin (9q2—<ﬂ) sin (¢;0r> _

So that we get:

2w 27 p27
Eldeg (p.Del)] = 3 [ [ [ [T et ((p.0,6,.6,)] 46,00,
R+J0O 0 0

27 p2m p27
= )\2/ 2p367)‘””2dp ></ / / sin (ﬂf(egfarv sin (eq;@) sin (‘/’_29*)
R+ o Jo Jo

. 3 _Amo? . Ampl41l  arp? 3 —Amp? _ _ 1 .
Since a primitive of p = 2p°e ™" is p > — S5 e M, we have St 20°e7 NPT = Oury? s SO

E [deg (p, Del)] = % x / 277/%/ 7lsin (’T‘(";“”)) sin (eq;‘P) sin (%0—2&)
0 0 0

d6,d6,dep.

d6,d6,dep,
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simplified by the translatlon (04, (g —m —,0, — 7 — @) applied in the (27, 27)-periodic function

(0(1,0)'—>sm( )Sln( )sm( 2‘9 ),
E[deg(p,Del)]f—x/ de X/Qﬂ/%

:f/ / 4sin (8, — 6,)| sin 0, sin 0,.d6,.d6,,
m™Jo Jo

sin 9; sin 2= d0rd0q

Sln

and after linearisation of the sinus:

X 3w

NN

As expected the result is a constant. As we will explain it in Part[[T] this is due to the fact that a disk
with p on its boundary has an area quadratic with the distance of its center from p. To get an intuition on
that, consider two Poisson processes on R, X7 with intensity 1, and X5 with intensity 2. Then “zoom” on
X5 by a factor 2, until it appears as spread as X;. Since disks remain unchanged by zooming we cannot
make anymore any difference between the two cases, and understand why the intensity is not involved in
the degree of a point.

We might accept that, even if this computation is feasible and provides an exact value, it remains a
bit tedious, and we may suppose that, with more complex regions than disks, a simplification would help.
A large part of the thesis is dedicated in finding a simpler way to approximate such computations.

Finally, if we distribute a Poisson process X on a compact body S in R?, the number of edges E of
the dD-Delaunay triangulation of X can be expressed as £ = % > deg(p, Del), and its expected value
is:

peX
(5] =} | Eldeg(p.Del) .
peS

by Slivnyak-Mecke formula. It is the quantity E [deg(p, Del)] that we will try to evaluate in almost all
cases.



Chapter 4

State of the art

In this chapter, we present the state of the art in the problem of approximating the combinatorial com-
plexity of the 3D-Delaunay triangulation depending on where and how the sample points are distributed.

In dimension 2, the complexity of the Delaunay triangulation of n points is ©(n), as we explained in
Chapter 2] To be more precise, the number of triangles is between n and 2n triangles, depending on the
size of the convex hull. In dimension 3, the gap between the lower and upper bound ranges from linear to
quadratic. In that case, the size of the Delaunay triangulation depends both of the subset of R? in which
the points are distributed and on the way they are distributed on this subset. We present, through the
following sections, how different authors studied the size of the Delaunay triangulation depending on the
distribution they chose.

4.1 Expected size of the dD-Delaunay triangulation of a uniform
set of points

In his paper “Higher-dimensional Voronoi diagrams in linear expected time” [Dwy91], Dwyer proved,
in 1991, that when n points are uniformly distributed in a unit d-ball in R?, the expected size of the
Delaunay triangulation is O(n):

Theorem 4.1 (Dwyer, 1991). Let X be a set of n sites drawn independently from the uniform distribution
on the interior of the unit d-ball. Then the expected number of simplices of the dual of the Voronoi diagram
of X, is O(n) for fized d as n — oo.

Actually, the result in the paper is more precise since the hidden constant in the O(n) is given.

Even if we did not mention it in the background, the Voronoi diagram is a fundamental object of
computational geometry. It is the dual of the Delaunay triangulation, defined for a set X of points, as
the set of convex regions {z € R?, dist(x,p) < dist(x,q) Vg € X \{p}} for all p € X. Thus, the number of
edges issue from p in the Delaunay triangulation is the number of faces of the region of p in the Voronoi
diagram (see Figure .

In the first section of the paper, Dwyer establishes a general formula that expresses the probability
P, that a d-simplex is in the triangulation. Thus, if S,, expresses the number of simplices of Del(X),

then
n

since there are ( dil) possible d-simplices.
The expression of P, is of the kind of the one we used in Chapter [3] and to simplify it, Dwyer uses
a Blaschke-Petkantschin like variables substitution also. Computing the integral in the expression of P,
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Figure 4.1: The Voronoi diagram (in red) and the Delaunay triangulation of 10 points uniformly dis-
tributed in the unit disk.

reduces the expression to:

P, = d!/{d/ / I(q,r)drdq, and
o Jo

d+1 [e’e] %)
Rqn
E n| ™ I ) s
Sul~ S [ [ Haryarag

where kKq = (27rd/ T (d/2)), and I(g,r) expresses the probability (up to a constant) that a sphere of
radius r at distance ¢ from (0,0) is empty.

Then, in the second section of his paper, Dwyer applies his method on n points distributed uniformly
on the unit disk. He decomposes fooo fooo 1(g,r)drdq in various cases depending on r and ¢, for which the
only dominating case, with respect to n, is ¢ < 1 and 0 < r <1 — q. It corresponds to the case where
the possible empty sphere is inside the unit ball, and where:

1 1—q
/ / I(q,r)drdq ~ d*2dlvgn=¢,
0o Jo

where:

I ((d>+1)/2)T (d/2)""
R (2/2)T (d+1)/2)"

denotes the expected volume of a d-simplex with random vertices on the unit d-sphere.
This gives:

d\d?—2
E[S.] ~ Kavg T n.
This provides:
E[Sn] ~ 2n for d = 2,
2472
E[S,] ~ 3F for d = 3,
E[Sn] ~ @n for d = 4.
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This work has been completed by Calka in his “Habilitation a diriger des recherches” [Cal09], in which
he studied the distribution of various features (number of faces, circumradius, global shape, etc..) of a
cell of the Voronoi diagram of a Poisson process.

In a more recent paper, Bienkowski et al. [BDadHS05] also proved the average linearity of the
Delaunay triangulation of points uniformly distributed in the unit cube. Actually it is conjectured that
this holds for any convex body.

4.2 Analysis of the 3D-Delaunay triangulation of points on a
polyhedral surface

In [Dwy91], the points were distributed randomly. The choice of using a random distribution has various
reasons, such as being easier to simulate. Indeed, it corresponds to a sample naturally homogeneous (the
expected number of points in a region depends directly on the volume of the region), the expressions used
for computation are derived from probabilistic theories, we can obtain exact values and not only results
up to a constant. But we could have consider other samples, not necessarily random.

For practical problems, like surface reconstruction, we can be interested in distributing the points on
a subset of the ambient space with a smaller dimension. The next papers that we present deal with the
case where points are distributed on surfaces.

There are various way to distribute such points. As in [Dwy91], we can use a random sample, either
uniform or Poisson. Among the advantages of random process, we can note that they almost surely
exclude pathological position of points. We can also use a deterministic sample. In this case, we have to
specify conditions so the sample is sufficiently good. To study the size of the Delaunay triangulation, we
want the number of points distributed in a region to be directly related with the area of such a region.
A natural idea for a deterministic sample can be to distribute the points on a grid, but this is not a very
good idea with the Delaunay triangulation since some points may be co-spherical. Another condition
can be: any ball of a given radius contains at least one point of the sample, for instance. There can be
different kinds of such deterministic samples. We all gather them under the name nice samples.

4.2.1 Probabilistic analysis

In 2001, Golin and Na wondered about how the size of the Delaunay triangulation behave when the
sample points are distributed on a polyhedral surface.

When the surface is a convex polytope, they proved, in “On the average complexity of 3D-Voronoi
diagrams of random points on convex polytopes” [GN03|, that the expected size of the 3D-Delaunay
triangulation was linear:

Theorem 4.2 (Golin and Na, 2001). Let P be the boundary of a convex polytope in R®. Let X be
a set of points drawn from the standard 2-dimensional Poisson distribution on P with rate A\. Then

E[§Del(X)] = O()).

The global idea of the paper is to count the number of what they call Voronoi combinatorial spheres.
For two points p and ¢ of R?, the combinatorial sphere of (p, q) corresponds to the set of spheres passing
through p and ¢. If p and ¢ belong to the sample point, they say that o(p, ¢) is a Voronoi combinatorial
sphere if there exists an empty sphere passing through p and gq.

Then they proceed to two decomposition among the spheres. First they introduce the notion of good
and bad spheres. A bad sphere is a sphere whose interior has an intersection with P that has an area
greater than logf )‘, and so has low chance to be a Voronoi sphere. And secondly, they consider spheres
of Type-I, whose interior has an intersection with P that is a complete disk; spheres of Type-II, whose

interior has an intersection with P that is a section of disk that contains their center; and spheres of
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Type-III for the remaining spheres. They show that:

E [# (Bad Voronoi spheres)] = o(1),

E [ (Type-I Voronoi spheres)] = O(A),
E [ (Type-II Voronoi spheres)] = O()\),
E [# (Good Type-III spheres)] = o()),

proving their linear bound.

In 2002, in “The probabilistic complexity of the Voronoi diagram of points on a polyhedron” [GN02],
Golin and Na weakened their hypothesis on the subset of R? where the Poisson sample is distributed, to
consider a set of triangles, and showed that with high probability, the size of the Delaunay triangulation
was O(AIn® \):

Theorem 4.3 (Golin and Na, 2002). Let F be a collection of k triangles in R®. Let X be a set of points
drawn from 2-dimensional Poisson distribution on F with rate . Then P [§Del(X) = O(X In® N =
1— A—Q(log n)

In this paper, Golin and Na reduced their analysis to the case with two triangles. They decompose
the set of possible spheres depending on the closest point on each triangle from the center of the sphere.
This creates six categories of spheres “face/face”, “face/edge”, “face/vertex”, etc.. and for all of them, they
proved that the total number of pairs (p,q), with p on a triangle and ¢ on the other, is smaller than
O (AIn®\) with high probability.

4.2.2 Deterministic analysis

At almost the same time, Attali and Boissonnat prefered to use a deterministic approach, to compute
the size of the Delaunay triangulation of points on a polyhedral surface.

They consider a so-called e-sample that is sample of points such that, any ball centered on the surface
and with radius e contains at least one point of sample. This sample condition bring the guarantee that
there is no too large region on the surface that does not contain any point.

In a first paper: “Complexity of the Delaunay triangulation of points on polyhedral surfaces” [AB03],
they obtained the bound O(n?/®) for any polyhedral surface, and O(n+/n) when the surface is the bound-
ary of a convex polytpe.

A few years later, in 2004, Attali and Boissonnat improved their bound by considering an (e, x)-
sample that is an e-sample for which any disk on the surface contains at most x points. Thus, in a given
region of the surface, we can have an upper bound on the number of points depending on the area of the
region. This sampling is considered almost uniform. In their paper: “A linear bound on the complexity of
the Delaunay triangulation of points on polyhedral surfaces” [AB04], they showed we can reach a linear
bound, for which the hidden constant contains a factor x2, and properties of the surface like its number
of faces, its area, etc...

The idea is the following, as it was done in [ABQ3], the polyhedral surface is decomposed into a regular
part that corresponds to the faces reduced from their boundary by strip of width ¢, and a singular part,
that is the complementary of the regular part, that corresponds to the parts of the faces at a distance

smaller that e from their edges.
|R*e/2|
62

Using packing arguments, like the fact that a region R of the surface contains O (H ) sample

points, they proved that the number of edges with:
e both endpoints in the regular part is O(kn),
e both endpoints in the singular part is O(x?n),
e an endpoint in each part is O(k?n) also.

Since « is used as a constant, they proved:
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Theorem 4.4 (Attali and Boissonnat, 2004). let S be a polyhedral surface and P be an (e, k)-sample of
S of size {P = n. The number of edges in the Delaunay triangulation of P is O(n).

Thus, for a polyhedral surface, this shows that probabilistic and deterministic approaches yield similar
results.

4.2.3 On polyhedral surfaces of any dimension

In 2008, in their paper: “A tight bound for the Delaunay triangulation of points on a surface” [AADI2],
Amenta et al. generalized Theorem [4.4] to the case of a nice sample distributed on a p-dimensional

polyhedron in R?. They proved that the complexity of the triangulation is then O (ndilz;+1 ) for k = (%1 .

Nevertheless, the sampling has to be distributed on each face of any dimension, from all vertices to all
faces of dimension p. The hypotheses are stronger than those of Theorem [£.4] for which it is not necessary
to sample the edges of the polyhedral surface.

Note that the bound obtained is tight. Indeed, for each d and p, they can find a p-dimensional
polyhedron P such that, if a nice sample is distributed on each face of P then its Delaunay triangulation

is Q (n St ) .

4.3 Evaluating the size of the Delaunay triangulation with re-
spect to the spread of the points

The spread, denoted A, of a set of points is defined by Erickson as the ratio between the longest and
shortest pairwise distances.

In his paper “Nice point sets can have nasty Delaunay triangulation” [Eri0la], Erickson makes the
remark that, in R?, the spread is minimized when n points are distributed on a lattice. In that case we
have A = © (nl/ 3) and the 3D-Delaunay triangulation is linear. On the other hand, when the points
are regularly distributed on two skew lines; as we explained in Chapter [2| the spread is 2 (n), and the
triangulation is quadratic.

For some nice samples, like e-nets [BDDG20], of n points distributed on a surface, the spread is
O(y/n). Erickson shows a construction in which a nice set of points with spread /n has a ©(n./n)
Delaunay triangulation. Consider a right circular cylinder, and draw an helix around the cylinder such
that the helix makes \/n turns around the cylinder. Then distributed uniformly \/n points on each turn
of the helix. Erickson showed that any point p is neighbor with all other points of the same turn of p,
giving /n neighbors to p (see Figure . Since such points are almost uniform, this illustrates that
going from polyhedral surfaces to smooth surfaces is not that trivial.

In the latter paper: “Dense point set have sparse Delaunay triangulation” [Eri05], Erickson proved
the following theorem:

Theorem 4.5 (Erickson 2005). The Delaunay triangulation of any finite set of points in R® with spread
A has complezity O(A3).

This implies that n points uniformly distributed on a surface have an O(n+/n) Delaunay triangulation.

4.4 Another probabilistic approach

In 2004, Devroye et al. used, in their paper “Expected time analysis for Delaunay point location” [DLMO04],
a method to analyze efficiently the Delaunay triangulation of random points in the plane. Roughly
speaking, the method consists in taking strictly smaller regions than the Delaunay disks to obtain various
upper bounds.

First they notice the following property (see Figure :

Lemma 4.6 (Devroye et al., 2004). Let x1,...,x, be points in the plane. If (x;,x;) is a Delaunay edge,
then one of two half-circles with diameter [z;x;] cannot contain any other data point.
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Figure 4.2: n points are distributed on an helix on the cylinder, each point, for instance the red one, is
neighbor with y/n other points.

They then considered the half-moon graph, in which two points p and ¢ are neighbors if at least one
the two half-circles for which [pg] is a diameter (also called half-moons of (p,q)) does not contain other
points of data sample.

Figure 4.3: If (p,q) is a Delaunay edge, then there exists an empty disk with p and ¢ on its boundary
(say the grey one). This disk contains one of the two half-moons of (p, q).

By Lemma [4.6] the half-moon graph is a super graph of the Delaunay triangulation. This step can
be seen as the starting point of the method we develop in Part [[T, and that we use all along the thesis.
Indeed the half-moon graph is far easier to study than the Delaunay triangulation since instead of all
the circles passing through two points, we just consider two half-circles. This induces some loose in the
precision of the result, but we can show that, when we count the number of edges, we lose only a constant
factor.

Devroye et al. also used this method to bound the length of the edges emanating from a given point
with high probability.

We make the remark that in their paper, they considered a uniform point process distributed in a
unit square, forcing them to study what happens close to its boundary. In this thesis, we use Poisson
point processes, and we can distribute such a process, in the whole plane, avoiding boundary problems.

In 2007, Devillers et al. studied the 3D-Delaunay triangulation of random points distributed on the
cylinder. In their paper: “Empty-ellipse graphs” [DEGO0S|, they show that when n points are randomly
uniformly distributed on a cylinder, their Delaunay triangulation is actually ©(nlogn) in expectation.
This shows, at the same time, that the configuration in helix of complexity © (n\/n) proposed by Erickson
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is pathological.

To obtain this bound, they considered the so called empty azis-aligned ellipse graphs, that is the plane
graph in which two points p and ¢ are neighbors if there exists an empty axis-aligned ellipse with p and
q on its boundary. The “axis-aligned” condition means that, given a frame with two orthogonal axis, the
great and small axis of the ellipses are parallel to the axis of frame. They figured out that any ellipse
passing through p and ¢ contains an axis-aligned right triangle with [pg] as hypotenuse (see Figure .

Figure 4.4: Any axis-aligned ellipse passing through p and ¢ contains one of the two axis-aligned right
triangle with [pg] as hypotenuse.

This provides a super-graph of the empty axis-aligned ellipse graph, namely the empty axis-aligned
right triangle graph, in the same manner that the half-moon graph was a super graph of the Delaunay
triangulation. And then they showed that the empty axis-aligned right triangle graph has size ©(nlogn).

Then they consider n random points on a cylinder, and a sphere passing through p and ¢q. Then they
unroll the cylinder into a plane and show that the intersection of the sphere with the cylinder contains,
once unrolled, an axis aligned right triangle. In some sense, we could say that the empty right triangle
graph is a super-graph of the 3D-Delaunay triangulation of points on the cylinder.

This proves, up to the lower bound that can be obtained similarly, the following theorem:

Theorem 4.7 (Devillers et al., 2007). The Delaunay triangulation of n points chosen independently and
uniformly at random from a right circular cylinder has expected complexity ©(nlogn).

This is roughly the method we will use to compute the expected size of the 3D-Delaunay triangulation
of points distributed on a surface. Showing that, in some sense, it corresponds to a plane graph that we
can study.

4.5 Deterministic nice sample on generic surfaces

Devillers et al. showed that the worst case ©(ny/n) cylinder case was quite pathological because of the
way the points were distributed. Experimental results seem to show that for more general surfaces, like
“generic” surfaces, the size of the Delaunay triangulation seems to be far better than O(n\/n), rather close
to O(nlnn) or even O(n), and we might think that the geometry of the cylinder itself is pathological for
the Delaunay triangulation.

Indeed, consider two points p and ¢ on the cylinder such that they belong to the perpendicular (to
the cylinder axis) section C of the cylinder. Then p and ¢ are necessarily neighbors in the 3D-Delaunay
triangulation since the sphere whose C is a great circle is obviously empty. The problem is that on the
cylinder, for any point p, the medial radius r*(p) and the osculating radius #(m are equal.

Thus in 2004, Attali et al. in their paper “Complexity of the Delaunay triangulation of points on
surfaces: the smooth case” [ABLO03|, and Erickson [Eri01b| paralelly in a another paper, showed that
the Delaunay triangulation of a nice sample distributed on a generic smooth surface has complexity
O(nlogn), that is better than the ©(n\/n) bound obtained on the cylinder with the same sample, i.e.
an (e, k)-sample, that we prefer to rename here an (¢, n)-sample because the letter £ is commonly used to

denote the curvatures on surfaces. As it was the case for polyhedral surfaces, any region R of a smooth
|[R*</2]

sample points.

surface contains O <I€ =

By generic surface, as we explained in Chapter [T} they roughly mean that the set of points of the
surface that verify r* = ;%1 is 1-dimensional. We denote by Z such a set. Since Z is 1-dimensional, they

can mimic, in a first step, the approach in the paper [AB04] on polyhedral surfaces, where Z plays the
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role of the edges. Thus they consider a strip of width § around Z, and start to count the number of
edges whose both endpoints are not in the strip. They show that this number is linear with the number
of points. To prove this, they show that a Delaunay sphere passing through two points p and ¢ has an
intersection with the surface, that is contained in one or two bounded regions on the surface. One region
is in a neighborhood of p, the other is possibly around the symmetrical point of p, denoted by p. We
briefly recall that p is the other contact point on the surface of the medial sphere of p. Those regions have

respectively a diameter © ( %e) and © ( %e). Thus they contain a finite number

of points (depending on n). As long as p is far from Z, both 1 — k1 (p)r*(p) and 1 — k1 (p)r*(p) are strictly
positive, and the result holds. When p approaches Z, they need to refine their analysis, since Z is also
defined as the set of points where 1 — x1(p)r*(p) = 0.

Thus they divide the strip around Z into points very close to Z, at distance smaller than /e and
points at distance between /e and § from Z, i.e. between the very close points to Z and the boundary
of the strip. If p is among the very close points, they showed that a Delaunay sphere passing though
p has an intersection with the surface contained in a rectangle with sides © (y/€) x © (¢) axis aligned
with principal directions and centered on the closest point on Z from p. Such a point p has a number of

neighbors that is O (778_%). Since there are at most O(ns_%) sample points very close to Z, the total

number of edges with an endpoint very close to Z is O (775_% X ns_%) =0 (7725_2) = O(n).

In the other case, they showed that the intersection of a Delaunay sphere with the surface is comprised
inside two rectangles centered on p and p, axis-aligned with the principal directions, and with sides
S) (ﬁe) x © (¢e), where h, denotes the distance from p to Z.

By integrating the degree for h, from /e and J, they obtain the total number of edges with an
endpoint at distance between /¢ to § from Z. Since § is a constant,

s
1 1
—dh, = O | log —
/\/E hy P ( o8 5) ’
and then there are O (I€2€72 log %) = O(x®nlogn) such edges. This last bound is the worst one. This

is not that surprising, since around Z, the intersection surface/sphere approaches an intersection cylin-
der/sphere. They deduced the following theorem:

Theorem 4.8. Let S be a C° surface satisfying genericity properties, and let X be an (g,n)-sample of S
of size n. The combinatorial complezity of the Delaunay triangulation is O(nlogn).

Since using a random sample, instead of a nice sample, on the cylinder, improved the bound of the
Delaunay triangulation, we have good chance to think that the bound on the degree of a point close to
Z might also be improved. Indeed we will show in Part [[V] that, when a Poisson process is distributed

on a surface, the expected degree of point p at distance h, > 0 from Z is O (ln hi), and since this is
P

integrable around 0, the total number of edges remains linear.



Chapter 5

A first approach of the problem: A
Poisson sample on a surface is a good
sample

As we said in Chapter [2] the complexity of the 3D-Delaunay triangulation of n points distributed in R?
ranges from linear to quadratic. When the points are a deterministic good sample of a smooth compact
generic surface, Attali, Boissonnat and Lieutier|[ABL03], and Erickson|[Eri01b] proved that the size of the
Delaunay triangulation is O(nlnn).

When the points are a Poisson process with parameter A distributed on a surface, experimental results
seem to show that the bound is linear or quasi-linear. An approach to obtain a bound on the 3D-Delaunay
triangulation of a Poisson process is to show that a Poisson process is likely to be a good sample, and
then to apply the result of Attali et al..

In this chapter, we prove that a Poisson point process with intensity A on a closed smooth surface is an

(e,m)-sample for ¢ = 3 % and 77 = 10001In A with high probability. This yields that the complexity of

the Delaunay triangulation of a Poisson sample of an oriented closed smooth generic surface is O(A In? A)
losing an extra logarithmic factor with respect to the case of good sampling (see Section [5.2)).
This chapter is the first of the contributions.

5.1 Notation, definitions, previous results

We consider an oriented closed smooth generic surface S embedded in R3, as Attali, Boissonnat and
Lieutier do in [ABLO3|. Without loss of generality, we assume that the area |S| of S is 1, and we
consider a Poisson point process X with parameter A > 0 distributed on S. By definition of a Poisson
process, E[tX] = A. Then we consider the 3D-Delaunay triangulation of X. Since it is a 3-dimensional
triangulation, § Del(X) is the sum of the number of tetrahedrons, triangles, edges and vertices that belong
to the Delaunay triangulation. By Proposition fDel(X) = O(4F), so it is enough to count only the
edges.

For a point p € § and positive number R, we denote by Ds(p, R) the intersection of S with a ball
centered on p and with radius R. Since for R small enough, it is a topological disk, we call Ds(p, R) a
disk. Then we define what is a good-sampling of a surface and precise the result by Attali, Boissonnat
and Lieutier.

Definition 5.1 (Good sample). A point-set on a surface is an (e, n)-sample if any ball of radius ¢ centered
on the surface contains at least one and at most 7 points of the sample.

A good sample is usually called an “epsilon-kappa”’ sample, but the notation x was already used for
the curvature so we preferred to use the denomination good sample, with a parameter 7.

41
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Figure 5.1: Illustration of the proof of Lemma [5.3 for the 2D case.

Theorem 5.2 (JABLO03|, Prop 19). The 3D-Delaunay triangulation of an (¢,n)-sample of a closed ori-

ented smooth generic surface has complexity O (Z—j In é)

While the result of Attali et al. provides a bound O(nlnn) on the complexity of the Delaunay
triangulation of an (e, n)-sample of n points when 7 is a constant, by looking more carefully at the result
[ABLO3, Eq.(14)], we notice that the actual complexity can be expressed by C(2)?In(e~!) for C' being a
constant of the surface.

5.2 1Is a Poisson sample a good sample?

In a Poisson sample with intensity A on the surface, a disk of radius ¢ = % is expected to contain m
points, but with constant probability it can be empty or contains more than any constant number of
points. Thus with high probability there will be such disks even if their number is limited, and such a
sample is likely not to be a good sample with £2 = % and 7n constant. Nevertheless, it is possible to not
consider 7 as a constant, namely, we take n = ©(In(\)). In a first Lemma, we bound the area of Ds(p, R),
for any p € S and R > 0 sufficiently small.

Lemma 5.3. Let S be a C? closed surface with curvature bounded by ksup, and consider p € S and R > 0
smaller than ——. The area of Ds(p, R) is greater than 3T R?.

Ksup

Proof. The bound is obtained by considering the fact that the surface must stay in between the two
tangent spheres of curvature kg,p tangent to the surface at p. In the tangent plane 7s(p) at p, the disk

centered on p and with radius @R is included in the projection of Dgs(p, R) on the tangent plane. Its
area is %WRQ. We deduce that Dgs(p, R) has an area greater than %sz (see Figure . O

Lemma 5.4. Let S be a C® surface of curvature bounded by ksup. For R small enough, the area of
Ds(p, R) is smaller than 2w R%.

Proof. We consider the Monge form of S at p:

= f(aj?y) where fp(w7y) = %511‘2 + %szQ + O(x,y)S
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We denote by da an element of surface, and by 7, the orthogonal projection on 7s(p). Since on Ds(p, R),
the slope of the normal to S is bounded, we have:

T )
D R)| = da = 1 = e dxd
Dsp Rl = [ da= /TFP(DS(W\/ () + (G2 oy
of 2 (of ?
<[ \/1+ (S26n) + (Frwn)

Since f, is C* and M(m y) ~ K1z, we can say that there exists a neighborhood around p on

which |af| < V2[k1||2| € V2ksup|x|, and then (8—f> < 2(Ksupz)?. Applying the same for y, and turning
to polar coordinates, we get:

2(Rksu N2 -1
|Ds(p, R |</ / ry/ 1+ 2(rksup) 2drd9—f Faup)® +1)2
6= r=0 K2

sup

Noticing that, for 0 < u < 1, (u + 1)% —-1= u“‘f/ri Vfﬁﬁf < %u , we can conclude that for any R

small enough,

O

Lemma 5.5. Let S be a C? closed surface with area 1. Let Mg be a mazimal set of kr disjoint disks
Ds(pi, R) on S. If R is small enough then kr < 55

Proof. By Lemma for R small enough, we have Dgs(p, R) > %ﬂ'RQ. Thus:

i=kp

knyrR? < Y [Ds(pi R)| <181 =1,

=1

and we can deduce the following bound: kg < ﬁ. O

Lemma 5.6. Let X be a Poisson point process of parameter \ distributed on a C® smooth closed surface
S of area 1. If X is large enough, the probability that there exists p € S such that Dg (p, 3 h“) does

not contain any point of X is O(A71).

Proof. We prove that a Poisson sample has no empty disk of radius 3,/ %~ i with probability O(A™1).
In a first part we use a packing argument. On the one hand, for any € > 0 small enough, given a
maximal set M. 3 and any point p € S, the disk Ds(p,e) contains entirely one of the disks Ds(ps, §)
that belong to M, /3, say its center is ¢, and so Ds(c, §) C Ds(p, ). Indeed, by maximality of M, 3, the
disk Ds(p,e/3) intersects a disk of M. /3 whose diameter is 25 so Ds(p,€) contains it entirely On the
other hand, remember from Lemma that if £ is small enough then [Dg(p,e)| > 2me?. Then we can
bound the probability of existence of an empty disk for € small enough:

PlEpe S, XNDs(p,e)=0] <P [3i<kes, XNDs(pi,e/3)=10]
< kes3P[X N D(c,e/3) =]

4 -A3m(5)?
< st
12 Azl

= =5e 17,
me?
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Figure 5.2: A disk of radius ¢ always contains a disk of a maximal set of disks of radius £,

P [ap €S, XN Ds(p,3y/12) @} < SR T — oA,

O

We have proved that when a Poisson sample is distributed on a surface, the points sufficiently cover
the surface, i.e., there is no large empty disk on the surface with high probability. Now we have to verify
the other property of a good sample, namely, a Poisson sample does not create any concentration of

points in a small area.

Lemma 5.7. Let X be a Poisson point process of parameter X distributed on a C? closed surface of area

1. If X is large enough, the probability that there exists p € S such that Ds(p,3 %) contains more than

10001n X points of X is O(A72).

Proof. Consider an M, maximal set, we can notice that for any p € S, the disk Ds(p,e) with p € S is
entirely contained in one disk Dg(p;, 3¢), say that p; = ¢. Indeed, by maximality of M, the disk Ds(p, €)

intersects a disk from M. say Ds(c, ) so Ds(c,3¢e) contains entirely Dg(p, €).
Then we can bound the probability of existence of a disk containing more than 7 points:

P[EpesS, 1(XNDs(p,e)) >nl <P[Fi <ke, §(XNDs(pi,3e)) >
< ke P [#(X N Ds(c,3¢)) > n]

< 5 PE(XNDs(e32) >,

We use a Chernoff inequality [MUOQ5] to bound P [ (X N D(e, 3€)) > n: if V follows a Poisson law of

mean vy, then Yv > vy,

PV >v) <e'"% (%)U .

From Lemmas and we have that: 2fre? < [Dg(c,3¢g)| < 427e? for € small enough. Conse-

quently we can say that the expected number of points vy in Dg(c, 3¢) verifies %/\71’82 < < %/\Trsz.

Then we apply the above Chernoff bound with v = %eﬂ)\sz (chosen for the convenience of the

calculus)



5.2. Is a Poisson sample a good sample? 45

45

45 emAe?
P |:ﬁ (X N D(c7 3;5)) > Zeﬂ—/\g :| e 25 e de? —vg (%) by €

emAe?

45 2
2emAe
45 erae? — 27 )e? *70\5 4
< e4 4 45
emAe?

27 2
_ e—TTr/\a .

So fore =3 1“>‘ and n = —eﬂ)\e 425 emA, we have:

4
P |:E|p c S7 ﬁ(XﬂD (p,:)) ln)\>) > 2567’(11’1)\:| < 27:?11)\67#77111)\ _ O(}\7189)'

405

Since =em < 1000, it is sufficient for our purpose to say:

P [3])68, n(XmD <p,3 1“)) > 10001n)\} =0\
O

Theorem 5.8. On aC? closed surface, a Poisson sample of parameter X large enough is a (3 %, 10001n \)-
sample with probability 1 — O(A™1).

Proof. From Lemmas and we have that a Poisson sample is not a (3 %, 1000 In A)-sample with
probability O(A71). O

Theorem 5.9. For X\ large enough, the Delaunay triangulation of a point set Poisson distributed with
parameter X on a closed smooth generic surface of area 1 has O()\lm2 A) expected size.

Proof. Given a Poisson sample X we distinguish two cases:

e If X is a good sample, i.e., an (g,n)-sample with ¢ = 3,/% and n = 10001n A\, we apply the
O ((2)?In(s~*)) bound from the paper by Attali et al., that is O(AIn* \).

e If X is not a good sample, which arises with small probability by Lemma [5.8] we bound the
triangulation size by the quadratic bound:

S EPPEX =k = Z/ﬁk’* AN +1) =0(\?)

keN keN

Combining the two results, we get

E [t Del(X)] = E[t Del(X)|X is a good sample] P [X is agood sample]
+ E [ Del(X)|X is not a good sample] P [X is not a good sample]
<O (AIn*A) x 1+ 0\ x O (A1) =0(AIn® \).
O

This first approach gives a bound quasi-linear on the size of the 3D-Delaunay triangulation of points
on a surface. Nevertheless, the experimental observations seem to show that we can reach a linear bound.
Indeed with this computation, we did not us the properties of a Poisson point process, and since the
bound found in [ABL03]| gives a worst case bound that lies in a small part of the surface, we might expect
that it should vanish in average with a Poisson point process.

In Parts[[TT] and [[V] we compute the expected size of the 3D-Delaunay triangulation of a Poisson point
process on surface, using a method based on empty-region graphs, and developed in Part [[I]
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Part 11

Stochastic analysis
of empty region graphs
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Preamble of Part [1

Given a set of points X, an empty region graph is a graph in which two points p and ¢ of X are neighbors
if some region defined for (p, ¢) does not contain any other point of X. This notion unifies the classical
Delaunay triangulation [Del34], the Gabriel graph [GS69], the S-skeleton [KR85, [ABE9S|, the empty
ellipse graph [DEGO0S]|, the nearest-neighbor graph, the ©-graphs, and the Yao graphs [Yao82].

The main goal of this part is to present and illustrate a method that provides an upper and a lower
bound on the degree of a point in a given empty region graph, when the data sample X is a Poisson point
process. Part [[]] consists of five chapters.

In Chapter [ as a pedagogical example, we show how we can find asymptotically tight bounds on
the computation of the expected degree of a point in the 2-dimensional Delaunay triangulation using the
method described by Devroye, Lemaire and Moreau [DLMO04].

In Chapter [7} we formalize the method cited above, in order to generalize it. We give a formal
definition of empty region graphs, and provide two lemmas: Combination and Partition lemmas that will
be reused all along the thesis. Finally we illustrate the formalization on the Delaunay example.

In Chapter [8] we consider a specific empty region graph: the empty axis-aligned ellipse graph. We
make a distinction between the case where we consider all the axis-aligned ellipses and the case where
the ellipses have a bounded aspect ratio. We show that in the first case, the expected degree of point
is © (In ) in a Poisson point process with intensity A, and in the second case, the expected degree is

] (ln %) for ellipses with an aspect ratio bounded between 5 and 1, for 0 < 5 < 1. This chapter has a

particular relevance for the thesis. Indeed in Parts [[T]] and [V} we compute the Delaunay triangulation
of points on a surface, and we will show that the intersections of Delaunay spheres with the surface
approaches axis-aligned ellipses. So we will be able to reuse the results of this chapter.

In Chapter [9 we estimate that probability that a point has neighbors farther than some threshold, in
the Delaunay triangulation and in the empty axis-aligned ellipse graph with bounded aspect ratio. We
show that in both cases, this probability decreases exponentially with the threshold.

Finally, in Chapters [I0] and we present some additional empty region graphs: The empty ellipse
graph with bounded aspect ratio, which differs by the fact that the ellipses are not anymore axis-aligned,
an empty region graph where regions are defined by fourth order equations, and some features on nearest-
neighbor-like graphs.
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Chapter 6

A sub-graph and a super-graph
of the 2D-Delaunay triangulation

In Part[I} Section[3.2] we have shown that the expected degree of a point in the 2D-Delaunay triangulation
is 6 (Theorem [3.1). Even if this case was simple, some of the involved computations were quite tedious.
In this chapter, we show that a lower or an upper bound can be obtained with far much less effort.

6.1 The Gabriel and half-moon graphs

A way to obtain a lower and an upper bound on the expected degree of a point in the Delaunay triangu-
lation, is to consider a sub-graph and a super-graph. In order to find such graphs, we prefer to consider a
different definition of the Delaunay triangulation. Instead of considering the neighborliness in Delaunay
defined by three points and their circumscribed circle, we could use the equivalent property that two
points are neighbors if there exists a disk with those two points on its boundary that is empty. Derived
from this definition of the Delaunay triangulation, we suggest a method that provides a sub-graph and
a super-graph of the Delaunay graph and so, allows to calculate a lower and an upper bound on the
expected degree within a constant factor.

To obtain a sub-graph, we can simply restrict the set of possible disks. More precisely, for any pair
(p, q), we consider the disk for which the segment [p, q] is a diameter. It is called the Gabriel disk of p and
q and denoted gab(p, q) [GS69]. Then we consider the Gabriel graph, denoted Gab in which to points p
and ¢ are neighbors if gab(p, ¢) is empty.

To obtain a super-graph, we consider the half-moon method [DLM04]. We define the half-moons
hm,(p, ¢) and hmy(p, ¢) of p and ¢ as being the two halves of the Gabriel disk gab(p, ¢) separated by the
line (pq). As suggested by their names, hm,(p, q) is to the right of p¢ and hmy (p,q) to the left. Then,
we consider the, so called, half-moon graph HM, in which two points p and ¢ are neighbors if hm,(p, q)
or hmy(p, ¢) is empty.

We formalize through lemmas, that those graphs are super-graph and sub-graph. This is illustrated
in Figure 6.1

Lemma 6.1. The Delaunay graph is included in the half-moon graph.

Proof. Consider a set X of points in the plane and, p and ¢ in X that are neighbors in Del(X). By
definition of the Delaunay triangulation, there exists a disk with p and ¢ on its boundary that is empty.
The center of that disk lies on the bisector line of [p, q] and, depending if it is to the right or the left of
pd, the disk will contain, respectively, either hm, (p,q) or hmy(p, q), that will in turn be also empty, by
inclusion. So that p and ¢ are also neighbors in HM(X). O

Lemma 6.2. The Gabriel graph is included in the Delaunay graph.

Proof. This is clear by noticing that we reduce the set of possibly disks with two given points on its
boundary. ]

o1
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Figure 6.1: The Gabriel graph, on the left, is included in the Delaunay triangulation, in the middle,
itself included in the half-moon graph, on the right.

Then we compute the expected degree of a point in Gab(X) and HM(X) for a Poisson point process
X.

Lemma 6.3. Let X be a Poisson point process with intensity A in R? and p a point of R2. The expected
degree E [deg (p, Gab)] of the origin p in the Gabriel graph Gab(X U {p}) is 4.

Proof.

E [deg (p. Gab)] =E | Y Ljgan(p.qinx—0)
qeX

:/ AP [gab(p.q) N X = 0] dg
q€ER?

oo 27 2
= / e T rdodr
0 0

=4.

Lemma 6.4. Let X be a Poisson point process with intensity A in R% and p a point of R%. The expected
degree E [deg (p, HM)] of p in HM(X U {p}) is 12.

Proof. We can express the counting of neighbors of a point p in HM by the following way: ¢ is neighbor
of p, if hm,(p,q) or hmy(p,q) is empty, but it should not be counted twice if both are empty, i.e. if
gab(p, q) is empty. Thus:

deg (p, HM) = Y (Lpnm, (p.g)x=0] + Litm, (p.9)nx=0] — Ligab(p.g)nx=0)) and so,
qeX

E(deg (p. HM)] =E | Y (L, (noynx=0) + Lihme(pig)nx=0) — Ligab(p.aynx—0)) | »
qeX

then we can apply Slivnyak-Mecke theorem and the result of the previous lemma:

E deg (p. HM)] = | (P, (.q) 01X = 0+ P [hms(p,) 01X = 0]) dg — 4,
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and since |hm,(p, ¢)| = |hm(p, q)],

E [deg (p, HM)] :2/RQ)\P[hmr(p,q)ﬁX:®]dq—4

=2 [ Ne AMmr®algg — 4

R2
o) 27 2
= 2/ / Ae M F rdodr — 4
o Jo

=16—-4

And we finally bound the expected degree of the point p in the Delaunay triangulation:

Corollary 6.5. Let X be a Poisson point process with intensity X in R? and p a point of R?. The expected
degree E [deg (p, Del)] of p in Del(X U {p}) is ©(1) .

Proof. We apply the five lemmas above to obtain the inequality:
4 = E [deg (p, Gab)] < E [deg (p, Del)] < E [deg (p, HM)] = 12.
O

This result is weaker than the exact bound of Theorem but the computations are much simpler. It
also illustrates that, given similar regions, the degree remains equal in order of magnitude. In that case,
for two points p and ¢, gab(p, ¢) and hm,.(p, ) or hmy(p, ¢) have both an area quadratic in the distance
between p and ¢, and this induces a constant expected degree.
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Chapter 7

General method

We propose a general method that both formalizes and generalizes the half-moon method to link the
degree in general empty-region graphs to the degree in empty-region graphs defined by singletons. We
formalize the following facts: (i) the Delaunay disks can be parameterized by their center on the bisector
line of [p, q], (%) this bisector line can be partitioned in two half-lines from the middle of [p, q], and (%)
each half-moon is contained in all disks centered on one of the half-lines.

In a more general setting, the general idea is (i) to identify a parameter space in R* defining the
regions, (ii) to partition this space in convex domains, and (74) have inclusion relations for regions at
the vertices of the partition.

In this Chapter, we introduce the three main tools that will be use to formalize this method, namely
the notion of empty region graph, the Combination lemma, and the Partition lemma. At the end of the
chapter, we prove again Corollary in this formalized context.

7.1 Empty region graphs
We start by defining the notion of empty region graph [CCL09]:

Definition 7.1. For each pair (p,q) € R? x R%, let R(p, q) be a family of regions. Consider a locally

finite point set X C RZ. We denote by 3%(X) the directed graph on X in which ¢ is a successor of p if
there exists an empty region in R(p, q).

This notion unifies the classical Delaunay triangulation [Del34] where R(p, q) is the set of disks whose
boundaries contains p and ¢, the Gabriel graph [GS69] where R(p, q) is reduced to the disk of diameter
pq, the S-skeleton [ABE9S| [KR85| where R(p, q) is either the intersection or the reunion of two disks
whose boundary contains p and ¢, the empty ellipse graph [DEGOS|, the nearest-neighbor graph where
R(p, q) is reduced to the disk centered on p and passing through ¢, the ©-graphs where R(p, q) is reduced
to a truncated cone emanating from p, and passing though ¢, and the Yao graphs [Yao82] where R(p, q)
is reduced to an angular sector emanating from p, and passing though g¢.

We chose to consider the directed version of empty region graph, because it fits better with the
computations we do. Indeed, we might pay attention to the symmetry of R(p,q). If R(p,q) = R(q,p),
then 8%(X) is actually a symmetric directed graph: if (p,q) is in %(X) then so is (q,p). It is
the case for the Delaunay triangulation and the Gabriel graph, among others. In that case, we will
write simply Q%(X ) without an arrow, its directness is not involved in the counting. Conversely, if

R(p,q) # R(q,p) then it may exist an edge in 6%(X) that goes in a single direction. In such a graph, we
will consider the outer degree of p. For instance, with our definition, 3?hm,.} #* ??hme} =+ a?hm“hmé},
but if we would have considered undirected graphs, those three graphs would have been the same, since

hm, (p, q) = hmy(q, p).
In the previous section, we have computed the expected degree of a point in the half-moon graph
and the Gabriel graph. The main reason why they have an easier computation than the Delaunay

95
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triangulation is because their family of empty regions is finite. That is something we will try to reproduce
in the following. If an empty region graph is too difficult to study, we show that we can find a super-graph
and a sub-graph whose families of regions are finite. If we can, we choose two bounding graphs whose
expected degree have the same order of magnitude.

In order to obtain a sub-graph of a given empty region graph 6%, we can either restrict the set of
regions or consider larger regions. We formalize this in the following lemma:

Lemma 7.2. For all pairs (p,q), let R(p,q) and R'(p,q) be two families of regions. If, for any r' €
R'(p,q), there exists v € R(p,q) such that v C1’, then %, is a sub-graph of 92

Proof. If (p, q) is an edge of 8%,()() according to Deﬁnition then it exists rg € R'(p, q) that is empty.
If for all v/ € R'(p, q), there exists r € R such that r C 1/, then it exists r; € R that is included in rg and

consequently that is also empty by inclusion, and then (p, q) is an edge of ?%(X ). O

Thus, in order to find a super-graph of a given empty region graph Q%, it would be enough to find a
family of regions R’ such that for all r € R(p, q), there exists 1’ € R’ such that r’ C r. But this is not
that easy, to help us in this objective, we introduce two lemmas in the next section.

7.2 Combination and Partition lemmas

The following lemmas are instrumental for proving that if a set of regions depends on k parameters and
if the k-tuple of parameters belongs to a convex polyhedron P of R* then, if we want to prove that all
regions parameterized by P contain a given region, it is enough to prove this inclusion for the regions
parameterized by the vertices of P. If P is not bounded, we can extend the lemma to limit points at
infinity: for a point ¢ going to infinity along some ray of R the region r. has a limit. The result also
holds using this limit regions. We will show below as a didactic example how this lemma can be applied
on Delaunay disks.

Before introducing the lemmas, we need hypotheses on the possible family of regions. Thus we
introduce the notion of good pencil of regions:

Definition 7.3. A family of regions R is called a k-dimensional good pencil in RY, if
e for any r € R, there exists ¢ € R*¥ and E, : R — R such that r = {x €RY E.(z) < 0}, and

e for any x € R, either the sign of ¢ — F.(x) is constant, or there exists one hyper-plane of dimension
k—1 in R* that cuts R¥ into a part on which ¢ — FE.(x) is negative and a part on which ¢+ E.(z)
is positive.

In practice, for any ¢, we consider an equation E.(z) < 0. For a given ¢, it defines a region, that
we denote r., for which c is called the parameter. In some cases, we will not be interested in all regions
defined by ¢ € R¥, but only on a restricted domain of R¥. This restricted domain will be called the space
of parameters of the pencil.

An example of (d-1)-dimensional good pencil in R, is the set of d-balls whose boundary contains 2
given points. They define the regions used for the dD-Delaunay triangulation. In this case, E.(z) is an
equation quadratic in x and linear in ¢, the linearity in ¢ ensures the good pencil property.

Lemma 7.4 (Combination Lemma). Let R be a k-dimensional good pencil of regions in R?, and

consider a region . € R parameterized by c. If c € P C R¥, then r, contains (1, , where X(P) denotes
vEX(P)
the extreme points of the convex hull of P.

Proof. Consider a polytope P C R* and two vertices a and b of P. Let z € R? be a point of r, N1y, and
c € R* be a parameter on the segment [a,b]. Since z € r, N1y, both of E,(z) and E,(z) are negative.
And since R is a good pencil, ¢ — E.(z) is then negative on [a,b]. Thus r. contains z. The extension
from a segment [a, b] to the convex hull of P in the case k > 1 follows directly from its convexity. O



7.3. Alternative proof of the linear complexity of the Delaunay triangulation 57

This is a first step in finding a super-graph. Indeed, consider an empty region graph 893 where R is a
good pencil of regions. For any polytope P, we can consider the region ro(p, ¢) that is the intersection of
the regions r,(p, ¢) parameterized by the vertices of P, and claim that (*Z{)To} is a super-graph of ?% If
c lies in a space that can be partitioned into such polytopes, then we can apply the Combination lemma
on all the polytopes to ensure that the graph that is the reunion of the empty singleton-region graphs
defined for each polytopes is a super-graph of % This is stated in the next lemma:

Lemma 7.5 (Partition Lemma). Let 3% be an empty region graph with R(p,q) = {r., c € P C R*}
a set of regions parameterized by c. Let (P;)1<i<n be a convex subdivision of P, the parameter space. Let

Ri(p,q) = {rF(p,q)} be n singletons. If Ve € P;, rf(p,q) C r. then 3% is a sub-graph of U1gi§n6%¢

and dog (p.9%) < Y dek (1. G%:).

1<i<n

Proof. Consider the pair (p,q) and the region r.(p,q). Using the convex subdivision, there is some ¢
such that ¢ € P; and rf(p,q) C r.(p,q) by the hypothesis in the lemma. Then 3% is a sub-graph of
U1§igna%* as a corollary of Lemma O

Note that the lemma holds for undirected graphs that can be seen as directed graphs with the two
orientations for each edge.

7.3 Alternative proof of the linear complexity of the Delaunay
triangulation

We show, as an example, that any Delaunay triangulation is a sub-graph of the half-moon graph using
Combination and Partition Lemma:

Alternative proof of Lemmal[6.1 Consider two points p and ¢ in the plane. Let R(p,q) be the family
of disk with p and ¢ on their boundary. We show that any disk of R(p,q) contains either hm,(p, q) or
hm@ (pa Q)
Consider a coordinate system in which p is the origin. We assume without loss of generality that
yy > 0. A disk of R(p,q) can be parameterized by the inequality E.(z,y) : 2% — 2zx, + y? — 2yy. < 0
a:§72:rqzc+y§

where c verifies y. = - Note that E.(x,y) depends on p and ¢, but we hide it in the notations.
q

2 2

Since y. = xg_2§++yq is actually the equation of the bisector line of [p, ¢, the centers ¢ = (z.,y.) are
the actual geometric centers of the disks. That provides a 1-dimensional family of disks parameterized
by z.. In that parameterization, z. — E.(z,y) is an affine function and so R(p, q) is a good pencil

Then we can consider the center cgap = (Zgab, Ygab) Of the Gabriel disk and the center ¢, at infinity
on the bisector line to the right of m, note that the z coordinate z, of ¢, is +oo since y, > 0; their
associated regions are the Gabriel disk gab(p, q) and the half-plane HP,.(p,¢) to the right of p§. Since
the ray [gan, z,) is convex, we can apply the Combination lemma with (k,d) = (1,2) to ensure that any
disk whose center belongs to [cgap, ¢r) contains hm,(p, ¢), indeed hm,(p, q¢) = gab(p,q) " HP,(p,q) (see
Figure . We apply the same reasoning for hm(p,q), and disk centered on [cgap,c¢). Finally, since
[gab, ) and [xgab, x¢) partition the whole set R of parameters, we can apply the Partition lemma to
conclude that any disk with p and ¢ on its boundary, contains either hm,(p, ¢) or hmy(p, ¢) depending on
the position of its center on the bisector line, and that proves that for any data sample X, that Del(X)
is a sub-graph of HM(X). O

7.4 Formalized method

On the basis of this example, we describe the general idea of the method we will apply to compute an
upper bound on the expected degree of a point in a given empty region graph applied on a Poisson point
process.



58 Chapter 7. General method

Figure 7.1: Any disk with p and ¢ on its boundary contains either hm,.(p, ¢) or hmy(p, q).

We consider the origin p € R? and, for any ¢ € R?%, a good pencil R(p, q) of regions of RY. We find a
parameterization for each region of R(p, ¢) in the form of a family of inequalities F.(x) < 0. We say that
c is the parameter of the region r.(p,q) = {x € R% E.(z) < 0}. Remind that ¢ depends also on g, but we
hide it to lighten the notations.

Still for a given g € R?, we partition this space of parameters into disjoint convex polytopes that we
call tiles. The tiles are chosen such that their vertices are parameter of specific regions that characterizes
the degree of the graph 8% (e.g. in the same sense that the Gabriel disk characterizes the degree of
the Delaunay triangulation). Then we apply Combination lemma to obtain a fundamental region as the
intersection of the regions parameterized by the vertices of the tile. Of course, if a tile is not well chosen,
the computed degree may not be tight.

The reunion of the fundamental regions constitute the finite family F(p, ¢), in bijection with a family
of tiles that pave the space of parameters ¢ by the following relation: for each region r(p,q) € F(p,q),
there exists a unique tile T (p, ¢) such that for all ¢ € T(p,q), rc(p, q) contains r(p,q) (e.g. for the half-
moons, F = {hm,,hm,}). This family F(p, q) defines in turn the super graph 9- that is a super-graph
of ?% by Partition lemma.

To obtain an upper bound on the expected degree of p in 6%()( U {p}), it remains to compute
the expected degree of p in 69_-()( U {p}) (or an upper bound), that is supposed to be easier. The
computations will involve Poisson formulas that are functions of the area of regions. For some regions,
this can lead to quite complicated integrals. In order to simplify this computation we may use smaller
regions with easier expressions. Here again, it is essential to preserve the order of magnitude of the area.

To complete the analysis, we get a lower bound by selecting, for each ¢, a single region ro(p, ¢) from

— —
the original regions of R(p, q), chosen if possible such that E {deg (p, a?ro})] =0 (E {deg (p, 50})}),
to guarantee the tightness of both bounds.
For the sake of clarity, we usually get rid of some parts of the notations, like the pair (p, q).

7.5 Expected degree in some empty singleton-region graphs

Consider an empty region graph defined in R? by a single region r(p, q) for each pair (p, ¢). The formula
of the expected degree of a point p in ?r} (X U{p}) is given by:

R (B 2 [ o

geR4
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If the volume of the regions r(p, q) varies homogeneously with the distance |pg|, i.e. if there exists a
positive constant V; such that |r(p, ¢)| = Vi|pq|?, then we can apply a spherical variables substitution to
obtain the following lemma:

Lemma 7.6. For each pair (p,q) € R? x R?, let r(p,q) be a region of R. Let X a Poisson process
distributed in R, If there exists V; such that |r(p,q)| = Vi|pq|?, then

[ 7)) =

where Vg denotes the volume of the unit d-ball.

Proof. We recall that:

E [(@ (p, a?r})] = )\/qERd e APl gy

)\/ e~ MVelpal® qq.
g€eR?

since the regions are homogeneous. Applying a spherical variable substitution, we obtain:

[k (r F0)] =2 [ )

where S9! denotes the unit sphere,

— 1 a1
E [deg( ’a?f})} - )\/seswl ds {_ )\dVre e }o
B |Sd71|
=
=7

O

This case has actually already been studied by Devroye in [Dev8§| in a more general configuration,
but we presented here a far simpler proof for Poisson processes.

We illustrate this lemma for some 2-dimensional empty region graphs that we already computed
before. In 2D, the unit ball is the unit disk, and V; = 7. Consider the nearest neighbor graph. It is the
empty singleton-region graph g?r} for which r(p,q) = D(p, q), the disk centered on p passing through gq.

It is clear that |r(p, ¢)| = 7|pq|?. Thus, by Lemma if X denotes a Poisson process in R2, the expected
outer degree of any point of X is = = 1. Actually, this is obvious since, in general position, a point has
only one nearest neighbor.

As an other example, we can consider the Gabriel graph. Since |gab(p, q)| = 7|pg|?, by LemmaF

the expected outer degree of any point of X in the Gabriel graph is 7 = 4, proving again Lemma
4
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Chapter 8
Empty axis-aligned ellipse graphs

In that section, we analyze empty region graphs where the regions are axis-aligned ellipses. By “axis-
aligned”, we mean that their axes of symmetry are parallel to the x and y axes. We then call aspect ratio,
the ratio of the lengths of the vertical axis to the horizontal axis of the ellipse.

8.1 Some features with axis-aligned ellipses

We give some explanations on the expression of ellipses we consider, and some properties that will be
used thereafter. In R?, we consider an axis-aligned ellipse with the origin p on its boundary. We denote
the ellipse r since it is seen as a region. Such an ellipse has three degrees of freedom, that can be set by
considering a positive number « and a point ¢ = (2, y.), so that r can be defined by the inequality:

r:o’z? — 2zx, +y? — 2yy. < 0.

In that parameterization, c is the parameter of r, and « its aspect ratio. To ensure that the boundary
of the ellipse passes through a second point ¢, we have to set one of the three parameters z., y. or a, so
that we add the equation:

a2x3 —2zqw. + yZ - 2yqy. = 0.

Expressing « in terms of ¢ and ¢, we define

2T e —Y2+2YqYe
wg )

2

Eo(z,y) =a’z? — 2zz. + 9% — 2yy., with o? =

and name r.(p, ¢) the only axis-aligned ellipse passing through p and ¢ with ¢ for parameter. A parame-
terization of r.(p, q) is then:

r.(p,q) : Ec(z,y) <O0. (8.1)

2
In most of the proofs, we bring the expression back to a more common one, namely 2—2 +4% —-1=0,in
which the ellipse has aspect ratio g and area mab.

Proposition 8.1. For a given q € R%, the parameters c of the ellipses r.(p, q) with same aspect ratio lie
on a line perpendicular to (pq).

Proof. Set a in the equation: a®z2 — 224z + y7 — 2ygyc = 0. The set of points ¢ = (2,¥.) that verify
the equation defines a line parallel to £ : zz, + yy, = 0, by omitting the constant terms 0423:3 + yg. But
the expression of £ defines clearly a line perpendicular to (pq), and adding back the constant term don’t

affect the direction of the line. O
Proposition 8.2. For a given ¢ € R? and for a € RY, consider the ellipse r.(p,q) parameterized by
c= (2%, %).

2
The geometric center of r.(p, q) is the middle of [p,q], and its area is 7 (ozaci + %)
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_2 X
Proof. We note E.(z,y) = o?2? — 221, + y* — 2yy. with o? = M

2 _
q

If y. = %yq, then

q

2zqr. = 0, and so z. = lazmq. We rewrite the expression of E.(z,y) to obtain a canonical from:

2
a“x 2

Ee(x,y) = o®a® = 2zx. + v — 2yy.
=o?2? — a2qu + y2 — YYq
=a?(2® —xxy) + 7 — vy,

= 0o’ ((z— 329)% — (329)%) + (V= 390)* — (319)°

=a*(z — %iq)z +(y - %yq)Q - ioﬂzg - iy?
= e +d) (e b+ A= b 1)
1 2,2 1 42 2%q 2,2 1 42 2Yq
€ a?x? +y? a?z? +y?
So that another equation of r.(p, q) is:
o? 1

(z— 1zq)* +4 (y—3y,)? —1<0.

T R
We identify, with that expression, that r.(p,q) is the translation, by the vector %]ﬁ, of the ellipse

defined by:
2

«a 2 2
=44 y°—1<0,
iy gy
2
whose center is p, and area is 7 (axg + %) O

Such an ellipse r.(p, q), with ¢ = (%oﬂxq, %yq), i.e. centered on the middle of [p,q] and with aspect
ratio a, will be denoted Ell*(p, q). As an example, we have EIlI' = gab.

In Parts [[TT] and [[V] ellipses may be parameterized by inequalities of the form:

a3r? — 2zx. + ady? — 2yy. <0,

that induces an aspect ratio Z—; With that parameterization, the parameter that makes the ellipse

centered on the middle of [p, ] is ¢ = (224, 3a2y,)-

8.2 Empty axis-aligned ellipse graph

In this section, we prove, using our framework, a logarithmic bound for the empty axis-aligned ellipse
graph of a Poisson point process in a bounded domain. A similar result was proven for a uniform
distribution instead of a Poisson distribution [DEGOS].

For two points p and ¢ in R?, we consider the family &(p, q) of all axis-aligned ellipses with p and g on
their boundaries. Assuming that p is the origin, we show that the expected degree of p in the associated
empty-region graph Qg(X ) is ©(In \) when X is a Poisson process of intensity A.

8.2.1 Upper bound on the expected degree

In order to identify an upper bound, we consider the graph Q?Ar A,y Where Ar(p,q) (resp. Ay(p,q))
denotes the axis-aligned right triangle with hypotenuse [p, ¢] on the right (resp. left) side of pa.

Lemma 8.3. Q?AT At is a super-graph of Qg.

Proof. Consider two point p and ¢ in R?. All regions involved depend on the pair (p, q), since it is clear,

we omit to write it. For each region r. € €, we consider the parameterization given by Equation [81]
The inequality E.(z,y) < 0 is an affine parameterization of the ellipse r.(p, q¢) by ¢ = (z¢,y.). Thus

¢ is a good pencil. We may pay attention to the fact that ¢ is not the usual geometric center of the
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E1

Tc

HP, p
HP,

Figure 8.1: Left: The partition of space of parameters in R? into {P,, P,}. Right: The corresponding
family of ellipses. Any region whose parameter is in Py, like r., contains A,., and conversely for Py.

ellipses. The space P C R? where ¢ lives is delimited by the inequality: 2,2 — yz +2y4y. > 0 that is the
half-plane whose boundary is the line perpendicular to (pg) passing through co = (0, %) and that does
not contain p, otherwise the equation has no real solutions. We study briefly the behavior of the regions
according to the position of their parameter: as seen in section [8.1] each line parallel to the boundary of
the half-plane preserves the value of «, in that sense, we name L, the line {(z, y), azxi = 2qu—y§—|—2yqy}
of parameters of ellipses with aspect ratio o (Proposition .

On the boundary Ly of P, the ellipses degenerate into parabolas, more precisely, at the infinite
parameters c,., on the right of ﬁ and ¢y, on its left, the parabolas degenerate them-selves into, respectively,
the half-planes HP, and HP, whose boundary is (pq). At co, 1, degenerates into the horizontal strip
re, = {ly — 4| < %} that can be seen as an ellipse with aspect ratio 0 so that we note it EI1°.

Then, we consider the horizontal ray Lyiq : y = %“ N P, emanating from ¢y, and named after the
fact that any ellipse parameterized on Lyiq is centered on the middle of [p, ¢]. Let ¢o, be the point at
infinity on this ray, When the parameter c is equal to ¢, its region degenerates into the vertical strip:
re. ={lz— %< |$2q‘ }, seen as a vertical ellipse with infinite aspect ratio and so corresponding to EII*°.
On Lia, ellipses warp continuously from the horizontal strip ElIY to the vertical one EI1*°.

Finally we define P. = (¢, co,¢o0) and Py = (oo, Co, ¢¢), where (a,b,c) denotes the angular sector
between [b,a) and [b, ¢).

By the Combination lemma, if ¢ € P, then

A, =EI° NHP, NEI*® C 1,
and if ¢ € P then
Ay = ElI° NHP, NEI™® C r..

And since P, and P, partition the space of parameters P, by the Partition lemma, we have
0 0 _ 9 0
Ge CY9a,.a = 91a) Y9an
O

Now, we bound from above the expected degree of p in Q?A A(}(X U {p}) when X is a Poisson

|qyql
2

point process with intensity A. The area of both the triangles A, and A, is . Unfortunately, for
any positive A, fR fR e M#¥ldyda does not converge. In that case, we assume that X is distributed in a

rectangle R = [—L, L] x [—1,{] for positive L and I.

Lemma 8.4. Let X be a Poisson point process with intensity \ in R = [—L, L] x [=1,1]. The expected
degree E [deg (p, Q({DAT Ae})] of the origin p in Q?AT Az}(X U{p}) is ®(ln A+ 1In L+ Inl).
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Proof. Before computing the expected degree, we introduce a utility lemma proven in Appendix
that bounds the integral I, ;(t) = fOL fol e~ t®¥dydz for a positive ¢:

Lemma 8.5. Let L, [, and t be 3 positive numbers. If tLl > 1 then:

In(tLI
% < It <

In(tL1)
t

S

+

As in Section we can express the counting of neighbors of a point p in Q?AT A/_7}()( U {p}) by the
following way: ¢ 1s neighbor of p, if A, or Ay is empty, but it should not be counted twice if both are
empty, i.e. if A, UAy is empty. Thus:

deg (P, Q?ANA(}) = Z (Lia.nx=0 + Lia.manx=0 — Lia,uannx=0) »
qgeX

for which we compute the expected value:

E [deg (p, g?m,m}ﬂ =E Z Lia,nx=0) + Lianx=0 — 1ja,uan)nx=0
qgeX

:/)\(P[ATﬂXz(Z)]—FP[Ang:(Z)}—P[(ATUAK)OXz(Z)])dq
R

= / A (2@_)“AT| — e_QMAT‘) dg

R
L gl

= / A (267M%| — ef)“f”yl) dydz
—rJ-

Lo L gl
=4\ 2/ / e ?dydx—/ / e M dydx
o Jo o Jo

= AN (2114(3) — ILa(V))
=4\ (f\ (14 In(2£)) —

= 4(3(In()) + In(L1)) + 4(1 — In(2))) + O(1)
= 12In(ALl) + O(1).

In(AL
n();\ l)> + O(1) by Lemma 3.5

O

Remind that, for the Delaunay triangulation, the constant expected degree is derived from the fact
that the Gabriel disk of two points has an area quadratic in their distance. For that new case, with
ellipses, it is the “xy” area that provides a logarithmic degree.

This result provides an upper bound on the empty axis-aligned ellipse graph. For the sake of comple-
tion, we might also be interested in a lower bound.

8.2.2 Lower bound on the expected degree

We find one by considering an empty region graph where the set of regions is strictly included in the
original one. Still using the example of the Delaunay triangulation we try to identify, for a point ¢, a
special ellipse that plays the role of Gabriel disk. In order to get a tight bound, the area of the chosen
ellipse must be O(zqy,).

To find such an ellipse, we use Proposition [8.2] in which it is stated that an ellipse r. parameter-
ized by Equation and centered on the middle of [p,g] has parameter ¢ with y. = %‘1 and area
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Figure 8.2: Left: Some zy-Ell ellipses whose color depends on g and so, on the aspect ratio. Since the
1

points lie on the hyperbola y = -, the ellipses have the same area. Right: An instance of Q?xy_EH}

restricted to the red point p. A far point keeps chance to be a neighbor of p as long as it is close to an
axis.

2 2
(a(q)xg + %) We determine a(q) such that |r.| = F (a(q)xg + a?t??) by solving the equation
2
a?qq)z) where a(q) is the unknown variable:

N
Il
N
/N
=}
~
Q
S~—
QN
+

if A> Zwgy,.

o0 <a(q)2A—,/A2—(§quq)2> (a(q)2A+\/A2—(§quq)2>

2
7T.7,‘q

According to the equation, the wanted area must be greater than Jz,y,. This quantity appears to be
7%93;1:%&

That corresponds to the ellipse with equation:

a good candidate. We obtain a(q) = = i’—q by substituting A by Fz,y, in the previous equation.
q

2
i) (1) o e+ o b < o

with the expression type we used in the beginning of the chapter, or

rep.a) g (= 3q)” + 2 (v — ) < §g},

in a more symmetrical version.
2

Thus, for any pair (p, q), we choose the ellipse r.(p, q¢) parameterized by ¢ = 2?/7‘2, %‘1) and denoted

by xy-Ell(p, q) to fulfill the required conditions for a good sub-graph (see Figure [8.2))

Lemma 8.6. Q?my_E”} s a sub-graph of gg.
Proof. Clearly because xy-Ell € €. O
Lemma 8.7. Let X be a Poisson point process with intensity \ in R = [—L, L] x [=1,1]. The expected

degree E [deg (p, Q({axy_E”})] of the origin p in Q?xy_E”} (XU{p}) isQInA+1InL +1Inl).
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Proof. As said above, for any ¢ € R?, the area of xy-Ell(p, q) is 5TqYq-

Then we can express the expected degree:

E [deg (p, Q?my_Eu})] =E Z 1ay Ennx=0}

qeX

:/ AP [zy-ElN X = (] dp
R

:/)\e—Mwy—ElHdp
R

L gl oy
:/ / )\e_/\|”7|dyda:
_4)\/ / AT dydx

_4>\ILZ )\Tr

= 4)\)\i In(22L1) + (1) by Lemma [85]
7r

- S(ln(ALl) +1n(5)) +Q(1)

- Sm(m) + (1),

So that we can finally conclude:

Theorem 8.8. Let X be a Poisson point process with intensity X\ in R = [—L, L] x [=1,1]. The expected
degree E [deg (p, gg)] of the origin p in gg(X U{p}) is ®(InA+InL +Inl) .

Proof. We apply Lemmas [8:3] to B.7
Qtn +n L+1nl) = E [deg (p, G, gy ) | < E [deg (p,G2)] < E [deg (p. Gl 4, )| = O A+I0 Lt1nD).

O

8.3 Ellipses with bounded aspect ratio, the rhombus graph

In the previous part, we proved that when the aspect ratio is not bounded, neither is the expected degree.
One can wonder what happens when the aspect ratio ranges between two finite numbers. For two points
p and ¢ in R? and a number B € (0,1), we consider the family ¢%(p, ¢) of horizontal elliptic regions
with p and ¢ on their boundary and whose aspect ratio ranges between 8 and 1. An important fact to be
considered is that, when the aspect ratio is not bounded, a point ¢ far from p could be a neighbor of p as
long as it is close enough to the axis, since in that case, ellipses passing through p and ¢ may have a small
area, and that leads to a logarithmic bound. When the aspect ratio is bounded, all ellipses preserve an
area Q(acg + yg)7 so that we expect a constant bound on the expected degree. We show that the expected
degree of p in the empty region graph ggw (XU{p}) is O(In %) when X is a Poisson process of intensity
A
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8.3.1 An upper bound on the expected degree
In order to apply the same method as above, we 1
search for simple geometrical regions that fit inside the El
whole family &l%1(p, ¢). A good choice is the following: q p
as before, we consider the intersection of ellipses that 11

are centered on the midpoint of [p,¢], and we cut the
intersection along the line (pg). The remaining regions

thﬁ’l] (p,q) and hmgﬁ’l] (p, q) look like two axis-aligned p
right triangles with rounded sides for almost all ¢ (see
side figure).

Lemma 8.9. g?hm[f‘”, bl 1)) is a super-graph of ggw.

Proof. The proof is very similar to the one of Lemma [8.3| so we just spell the important points out. For
each r.(p, q) € €¥(p,q), we consider the parameterization by Equation where:

2r4xe — yg + 2yqYe

2
Ly

2

Ee(z,y) = o®2? — 2x2, +y* — 2yy., with o =

and S < a <.

2zqe —y§+2yq Ye
g

The space P C R? where c lives is delimited by the inequality: (% < < 1 that is

the strip perpendicular to (pg) whose boundary are the lines £5 and £q, where £, = {(m,y),oﬂm?} =
2z — y2 + 2y4y}. We consider the segment defined by y = %t inside P and its extremities ¢z on Lg and
c1 on L1. We partition P into P, and P, where P, is the part of P on the right of [cg,¢1), and Py the
part on its left (see Figure .

cg and c; have for regions the ellipses r., = Ell” and Tey, = Ell' with respectively 3 and 1 for aspect
ratio. Furthermore, any parameter ¢, in P at infinity on the right of ﬁ has its region that degenerates
into the half-plane HP,. bounded by (pgq) on the right side of P4 (and the same holds for ¢, and the left
side, and the half-plane HPy).

By Combination lemma, if ¢ € P, then thB’l] .= Ell' NEl® N HP, C r, and if ¢ € P, then
hmgﬁ»l] = El'NEI’NnHP, C r.(see Figure . Then, by Partition lemma, an edge of Qg[m] is an edge
of G

Ll i1}
O

Figure 8.3: Left: The partition of space of parameters in R? into { P, P;}. Right: The two half-rhombuses
Rhf and Rh? . In green, an ellipse whose parameter is in P,, the ellipse contains Rhf .
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The problem now is that it may be complicated to com-
pute an integral involving the area of hmw A or hmg’g A
To solve this issue, we consider a strictly smaller region.
We could have used the axis-aligned right triangles A,
and A, but their areas do not respect the order of magni-
tude (see side figure). A more suitable region is Vghat we ‘ Ay q
call the half-rhombus. We define the rhombus Rh” as the . f/
one whose vertices are the horizontal extreme points of r, P\ —
and the vertical extreme points of r.,. Then we separate it

into two halves Rhf and Rhf , delimited by (pq). By con-
vexity, it is clear that Rhf C thB 1 and Rhf - hmgﬁ 4

(see Figure

Finally, we can say that Q{ h%) is a super-graph of g?hm[rﬁ‘l]} and that g{ W) is a super-graph of Q?

hmgﬂ‘ll}.
Before proceeding to the computation of the expected degree, we introduce a lemma that provides
properties on the involved integral. It is proven in Appendix

Lemma 8.10. Lett > 0, 8 €]0,1[, and I(t) = [, [~V @V H07) qydy,

1
I5(t) = $15(1) < £ (1+1n(})).
And we can proceed to the computation of the expected degree in the half-rhombus graph:
Lemma 8.11. Let X be a Poisson point process with intensity A in R%, and B € (0,1). The expected

degree E [deg (p,g )} of the origin p in G° (X U{p}) is O(In %) .

{Rh? Rn?} {Rh? ,Rn?}

Proof. We first compute the area of the rhombus Rb# (p,q). We identify its width and height as being

respectively /22 + y2 and /8222 + y2 so that the value of its area i given by 3 \/(x2 + yq) ([329:2 + yq)

Then we can compute the expected degree of p in G?

{Rhﬁ Rhﬁ } (X)

0 —
E {deg ( ’g{RhE,Rhf}ﬂ =E Z l[Rhf.nX:(Z) vV Rhnx=0]
lgeX

=E Z l[RhEnX:@] + l[Rhan:q)] — Lrnenx=0)
geX

=/RQA(P[RhfﬂX=®} +P[Rhan:@] —P[Rh%X:@qu
= /R2)\ (26_)‘%|Rhﬁ| — e‘MRhBl) dg
= [ [ (2o VTR ) ayar

R JR

=X (20 (3) — 15 (2))
=AS -3 ()
<6r(1—1np) by Lemma [8:10]

o).
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8.3.2 A lower bound on the expected degree

We obtain a tight lower bound, when g goes to 0, by identifying, for each ¢, a particular region, named
B-Ell(p, q), such that 5-Ell(p, q) is or contains an element of %1 (p, ). To achieve this, we partition the
plane into two parts (see Figure :

o if g € Sp:={(z,y),B|z| < |y| < |z|}, then, as in Lemma we define 5-Ell(p, q) := zy-Ell(p, q),
e otherwise 5-Ell(p, q) := R?, that is another way to say that ¢ is not a neighbor of p.

Lemma 8.12. Q?B_E”} is a sub-graph of ggm.

Proof. We prove the inclusion part-wise.

If ¢ € R? such that Blz,| < |y,| < |z4], we have to prove that S-Ell(p,q), i.e. xy-Ell(p,q), is in
¢lB(p,q). This is true because the aspect ratio of S-Ell(p,q) is |¥2|, and verifies § < 2] < 1 if

Blzg| < lyq| < |z4l-
Otherwise, it is clear that 8-Ell, i.e. R?, is larger than any other ellipse from ¢[%:1], O

Figure 8.4: Left: Some B-Ell ellipses for points in Sz. Right: An instance of Q?B_EH} where p is the red
point. A far point reduces strongly its probability to be a neighbor of p because it cannot anymore be
close to the axes.

Lemma 8.13. Let X be a Poisson point process with intensity A in R%. The expected degree E [deg (p, g?ﬁ_E”})}
of the origin p in Q?B_E”}(X U{p}) is Q (ln %)

Proof. B-Ell(p, q) is actually chosen to simplify the computation. Remind that Sz is the domain {(z,y), 8|z| <
lyl < |z},
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E [deg (1. G5 iy )| =B | Lismngrorx=n
qeX

= / AP [B-Ell(p,q) N X = 0] dp
R2

:/ AP[ﬁ-En(p,q)mxzmder/ AP[RZNX = 0] dp
Sp R2\Ss

= [ e EFENRDIg), because P [R*NX = (] =0,

Sp
= 4/ / )\e_’\”%dydx
0 T

kS oo . r2cos(6) sin(6)
4 / / Are A2 drdd
tan—1(8) J0O

1 1
=4 /tanl(ﬁ) )\)\7r cos () sin(6) a0
= 2 (in(tan(3)) - (8)) snce T ta(tan(0) = — ot
%ln(%).

So that we can finally conclude:

Theorem 8.14. Let X be a Poisson point process with intensity X in R%. The expected degree E [deg (p7 gg[m )]
of the origin p in ggw (XU{p}) is© (ln %) .

Proof. We apply Lemmas [8.9] to

i) =€ 1 1 G < € o 5 0200)] <€ s (0 R ey ) | = 0 0n1)
O
Since for any pair (p,q), and any positive number «, Elli(p7 q) corresponds to Ell%(p,q) up to a
rotation of 90°, if we had choose a 3 greater than 1, then we would have:

E [deg (p, ggm)} —E [deg <p, o ])] —0(np).

1
B

8.4 On empty axis-aligned ellipse graphs with a single aspect
ratio

To complete the analysis, we might wonder what happens in the case of an empty axis-aligned ellipse
graph with a single aspect ratio, like the Delaunay triangulation but instead of disks we have ellipses
with another aspect ratio than 1.

Suppose that we consider a positive 3, and the empty region graph Q% where for any pair (p, q) of
points in R, R(p, q) is the set of ellipses with aspect ratio 3 passing through p and gq.

By considering the transformation ¢ : (z,y) — (8z,y), the ellipses are transformed into circles, and
we fall back in the Delaunay triangulation, but the sample points X have been changed also, and if X
was a homogeneous Poisson point process, it is not any more the case for ¢(X).
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Actually this is not a problem, since the empty region graph remains a triangulation, and since all
points of X are equivalent, it is clear that their expected degree is 6.

We show why this has no impact in the computation: in the expression of the expected degree, we
just have to replace the \ by %, and since

1 /A 2 —2|D(p,q,r)| 1 2 —X|D(p,q,r)|
= e BT drdg = = A e P27l drdg,
2\ p Rz JR2 2 Rz JR2

the result is indeed the same. We can conclude:

Lemma 8.15. Let X be a Poisson point process in R? and p a point of R%. Let 8 be a positive number,
and for any pair (p,q) of points in R%, let €°(p,q) the family of ellipses with aspect ratio 3 with p and q
on their boundary. The graph Qgﬁ s a triangulation and the expected degree E [deg (p, Qgﬁ)} of the origin
pin ggg (X U{p}) is 6.

This provides a way to construct a triangulation where the triangles are stretched in a given direction.
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Chapter 9

On the probability of the existence of
far neighbors

In this chapter, we compute, for the 2D-Delaunay triangulation and some empty axis-aligned ellipse
graph, the probability that there exists a neighbor of p at a given distance. We show that this probability
decreases exponentially with the distance.

9.1 In the Delaunay triangulation

At some point, for a given graph G and a positive number ¢, we may be interested in computing the
probability for p to have a neighbor in G at a distance greater than ¢.
As before, for illustration on a simple case, we start by the Delaunay triangulation:

Lemma 9.1. Let X be a Poisson point process with intensity X in R?, p a point of R?, and t a positive

number. The probability that p has some Delaunay neighbor at a distance greater than t is smaller than
V2,2
e AE L,

Proof. If q is a Delaunay neighbor of p, Let o be an empty disk whose boundary passes through p and
q. If ¢ is at distance greater than ¢ from p, then the diameter of o is obviously also greater than ¢, so its
homothet ¢’ toward p that has exactly diameter ¢ is included in o and by consequence empty.

Consider the triangle with vertices p, ( ?1?,0)7 and (3¢, 3t) and its seven adjacent copies around p
(see Figure . We name them tr; for ¢ € {1,...,8}. Their area is |tr1| = %tz.

One can notice that, at least one triangle is included in ¢’: the one whose angular sector from p
contains the center of ¢’.

So we get:

P[Eg€ X, (p,q) € Del(X U{p}) | Ipgl >t] <P[Fie[L,...,8tr; N X =]

1=1,...,8
=8P[trlﬁX:®]
= 867>\%t2.

O

9.2 In the empty axis-aligned graph with bounded aspect ratio.

We establish in the next lemma a similar bound for the empty axis-aligned ellipse graph with bounded
aspect ratio in [3,1]. We are mainly interested in the behavior of the probability when § is small, thus
we assume [ < %
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Figure 9.1: If |pgq| > t, any disk passing through p and ¢ contains one of the 8 triangles.

Lemma 9.2. Let X be a Poisson point process with intensity A in R2, p a point of R?, t and B two
positive numbers with f < % The probability that p has some neighbor in ngyl] (X) at a distance greater

3
than t is smaller than 4 (e_)‘ligﬁt(z + e_/\T\/GEth).

Proof. The idea of the proof is similar to the previous one, except that we apply a homothety on the
empty ellipse o until its image o fits inside the axis-aligned square inscribed in the circle of radius ¢ (see
Figure .

We consider eight triangles (tr;)1<;<s, that have the property that for any ellipse o, ¢’ contains one
of them.

To this aim we define the four points:

v =(3t,0), vy =(L2t, Y2 Bt),
U3 :(@ta %ﬂt)a V4 :(07 %/Bt)

The triangles tr; and tre are respectively [pvive] and [pvsvs]. Their respective areas are %BtQ and

\1/—65 B3¢2. We will show that any ellipse tangent to the square in the first quadrant (z,y > 0) contains tr;
or tro. We complete the set of triangles by their symmetrical copies with respect to the z-axis, to the
y-axis and to the point p, and name them according to the trigonometric order from tr; to trg to cover
the ellipses tangent to other parts of the square.

Without loss of generality, we assume that the center ¢’ of ¢’ is in the upper right quadrant. In such a
case, the right most point of ¢’ has abscissa ?t, its left most point has negative abscissa, and its center
verifies 0 < z» < gt.

As long as xo > it, using the symmetry of the ellipse with respect to its vertical axis, v; is between
p and the symmetric of p, and thus is inside /. We prove that such ellipses, with z. > %t, also contain

vy. Actually vs is chosen as the highest point of the thinnest ellipse of center ¢’ = ( %t, 0) (in yellow
on Figure , with aspect ratio 8. Since the abscissa of vs is between p and vy, moving the center ¢’
upward or to the left or increasing 8 imply that vy remains inside ¢’. So as long as z. > %t, the triangle
try is inside o”.

Suppose now that z. < %t. An equation of ¢”, if its aspect ratio is a, is

a?2? — 20220 4+ y% — 2yye < 0.

For a fixed a, the lowest possible center is reached when x. = %t and since ¢’ is tangent to the right side
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Figure 9.2: If |pg| > t, any ellipse passing through p and ¢ contains one of the 8 triangles.

of the square at (Qt, Ye ), by substitution we have:
%a2t2 — \/iagtit — % =0.

Thus y. is minimized for o = 3, and so:

1
v =5V2- V2 Bt ~ 0.383t.

We can deduce, by symmetry with respect to the horizontal axis of ¢’, that all those ellipses contain the
segment between p and (0,2 — V2 St), including vy.

To prove that v3 € ¢/, we make a distinction between the side of tangency of o’/. We call contact
point of an ellipse, the point of the ellipse in which it is tangent to the square, for ¢’ we name it ¢'.
Suppose first that ¢’ is tangent to the right side of the square. We consider the two extreme ellipses ohigh
and 010w, With highest and lowest contact points gnigh and giow, at respectively %t and %\/ 2 — /20t for
ordinate. They both contain wvs:

® U3 € Ol Since

® U3 € Opign Since

:ﬁt2<§+§—%>§0 since 8 <1
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We call bottom part of the ellipse, the counterclockwise arc from p to the contact point, and top part
the following arc from the contact point to the intersection with the y-axis.

We show that the bottom part of ¢’ is below the bottom part of onign. We apply a vertical affine
transformation that flatten on;gn until its contact point becomes ¢’. The new ellipse clearly has its bottom
part lower since the transformation lowered every point. Then we shift horizontally the center into ¢/,
maintaining the points p and ¢’. Since that makes the aspect ratio grow, here again we lowered the
bottom part. So the bottom part of ¢’ is below the bottom part of opigh-

Y

Ghigh

On the other hand we apply a homothetic transformation on oo, centered on its contact point such
that the length of the horizontal axis is the same as the length as o', followed by a vertical translation
until the contact point coincides with ¢/, finally completed by a vertical affine transformation that makes
it reach the correct aspect ratio, that is greater. All those transformations make the upper part of the
ellipse goes upward. We deduce that any ellipse tangent to the right side of the square and whose center
has abscissa smaller than it contain trs.

Qlow

V2
5ot

Then we can go to ellipses tangent to the top side of the square. The proof is quite identical so we do
not develop it but keep in mind that the important point is that vs belongs to circle centered at (0, %t)
because v3 lies on the parabola y = Qtﬁ:ﬁ, that is above the circle for y < %t.

Above arguments proved that any ellipse whose center is in the upper right corner of the triangle

contains either tr; or tro. By extension, we deduce that any ellipse contains at least one of the 8 triangles
tI‘i.
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So we get:
PBaex, (» )egw<xu{p}>|\pq|>t}<P[aze[ 8N X =)
4(PtriNX =0]+PltraN X = 0])
=4 (e)‘fﬁt )‘\1/555“2>

Oe? 2)

(s
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Chapter 10

Analysis of two additional empty region
graphs

The empty region graphs we studied were all defined by axis-aligned ellipses, especially because they
correspond to what we observe on surfaces. They will be useful in Parts [[T]| and [V} But more generally,
we might also be interested in the cases where either the ellipses are not axis-aligned, either the regions
are not ellipses. We present two such examples.

10.1 Empty ellipse graph with bounded aspect ratio

We consider the graph in which two points p and g are neighbors if there exists an empty ellipse passing
through p and ¢ whose aspect ratio is between 8 and 1, for 8 € [0,1]. For two points p and ¢, we define

the family @Lﬁ’l] (p, q) of all ellipses passing through p and ¢, and ngy”, the corresponding empty region
graph.

Figure 10.1: An ellipse Ell, and the triangles [pgs;] and [pgs¢]. At least of them is included inside EIlL

The case where § = 1 corresponds to the Delaunay triangulation, and the case where § = 0 corre-
sponds to the complete graph, as long as there are no three points aligned, since we can consider that a
segment between two points is an ellipse with aspect ratio 0. Thus we assume that 8 € (0, 1).

Consider two points in R?, p at the origin, and ¢, and an ellipse ell passing through p and ¢. Since ell

is not anymore axis-aligned but has its great axis in some direction 6, we can consider the regions hm[rfa (;1]
and hm%’l] as in the previous sections but parameterized by direction 6. Clearly the circle Cg centered

r

at the midpoint of [p, ¢] and of diameter S|pq| is inside hm[%l] U hm%” (see Figure |10.1]). Consider the

79



80 Chapter 10. Analysis of two additional empty region graphs

isosceles triangles [pgs,] and [pgs,] such that sy, s, € Cg with s, on the right of P4 and s, on its left. Then
[pgsr] C hmm Y and [pgse] C hm%”.

Since thls is true for any ellipse, we can assume that any ellipse whose aspect ratio is between 5 and 1
and passing through p and ¢ contains either [pgs,] or [pgse]. Notice that these triangles are independent of
the direction 6. So we can apply the Partition lemma to yield that 92[371] is a sub-graph of g({D[pqu] pase]}

Now we consider a Poisson point process X of intensity A, and we compute an upper bound on the
expected degree of p in ggw (X U{p}).

E |:d€g <p7 g?[pqsﬁ,[pqsg]})} =E ;{ 1[[pqu]ﬂX:@ Vv [pase]NX=0]
K

|
m

> Lpgsinx=0] + Lpasdnx=0] — Lipgs, 1ulpgseinx=0]
qEX

I
T,

2>‘<P [[pgs,] N X = 0] + P [[pgs] N X = 0

— Plpgs,] U [pgse] N X = 0] )dq

A (ze—xupqu _ e—zxupqsru) dq

2

A (2 $Blpal* _ o 4ﬁ\pq|2) dg
2

T~

27 ] \ o2
= / A — e 3hr )rdrdG
0 0
1
=21—(8—2)
5(
_ 127r
B

On the other hand, among ellipses passing through p and ¢, we can choose the ellipse Ellf whose great
axis is the segment [p, q] and aspect ratio § to obtain a sub-graph of Qg[m].

The expected degree of p in this graph is

E [deg (p, Q{Euﬁ )} =E Z LiEntnx—0

qeX

:/Rz/\<P[EllfﬂX:(D dg

_ 8
:/ e AELS |dq
27
/ / Ae 258 rdrdd

We deduce the following theorem:

Theorem 10.1. Let X be a Poisson point process in R?. The expected degree of the origin p in
G0y (X U{p}) is 0 (4).
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10.2 Empty 4/2-ball graph

Additionally, we propose a computation for the expected degree of a point in an empty region graph
whose regions are not defined by second order equations. We call 4/2-ball in R? any region of equation

(x —xz)* + (y — ye)? <k, for a positive k and a center (z., y.).

The more k is small, the more the 4/2-ball flattens along the z-axis. This kind of region appears as
intersection of sphere and surface, at Z points for a sphere close to the medial sphere.

We consider the graph in which two points p and ¢ are neighbors if there exists an empty 4/2-ball
passing through p and ¢. For two points p and ¢, we define the family B*/2(p, q) of all 4/2-balls passing
through p and ¢ (see Figure , and the corresponding empty region graph 924 2 -

As usual we consider a point p at the origin and a point ¢. A 4/2-ball passing through the origin p
has equation:

($ _xc>4 + (y_yc)2 = l’é +y3

For such a curve to pass also through ¢, ¢ must verify:

(xq - xc)4 + (yq - yc)2 = 51721 + yf

Figure 10.2: The family of regions B*2(p,q). In yellow, the region bé/ 2 (p, q) centered on the middle of

[p, ql.

We define the curve of possible pairs (z.,y.) by isolating y. in the above equation:

1'3 + yg = (:L'q - mc)4 =+ (yq - yc)2
~ yf —(yq — yc)2 = (zq— 170)4 - 373
& 2Yelq — yg = (zg—az)t—al
o Ye (wq—wc)4_xﬁ+y3 )

2yq
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In other words, a 4/2-ball centered on ¢ has equation E.(z,y) < 0 where:

Ec(l“»y) = (.%' - mc)4 + (y - yc)2 - ‘Tf:l - yz
47w3+y272yyc
(mq - xc)4 - xé + yg

2y,

=(z—=x.)

=(r—x)* =2 +y* -2y

Lemma 10.2. The family 84/2(]), q) of 4/2-balls passing through p and q is a 1-dimensional good pencil
of R2.

Proof. To be a 1-dimensional good pencil in R?, the family B*?(p,q) must verify the two following
conditions:

e for any b € BY2(p, q), there exists ¢ € R! and E. : R? — R such that b = {r € R?, E.(r) < 0}, and
e for any r € R?, there exists at most one point ¢, for which ¢ — E.(r) changes of sign when ¢ varies.

The first condition is true since the 4/2-balls are already defined by such an equation. The second is
more difficult. In other words, it corresponds to: for any r different than p and ¢, there exists a single
4/2-ball whose boundary passes p, ¢ and r. Since the expression of F.(x,y) is a bi-variate expression of
degree 4, a direct algebraic approach is not trivial.

This seems obvious graphically, but to get rid of any doubt, we chose to prove it analytically. This is

done in Appendix [A23] O

We denote by bé/Q (p, q) the 4/2-ball centered on the middle m of p and ¢, and compute its area. This
region has equation:

4/2
bo'*(p.0) ¢ (& = §20)" + (y — 53)° — (570)" — (3w)* < 0.
We express the upper part of its boundary i.e. for y > %yq, as the graph of a function of x:

(z — %xq)4 +(y — %yq)2 - (%qul - (%yq)2 =0and y > %yqv
& (y- %yq)2 = (%qul + (%yq)z —(z— %xq)4 and y > %yq’

&y bug= /(G + () — (@ — )",

& y=tue /(G + () — (@ — byt

From what we deduce the area:

4/2 B
‘bo (p, q)’ = /RQ Lt/ g 4
=2 /R2 1[“€b272(M)/\{yu>ym}]du

\/(%xq)4 + (399)% — (z — $24)*dx

2

‘/(méwq)4<(é$q)4+(éyq)2

—2 | Bzt + (by)? — 2*da
w4<(%wq)4+(%yq)2

— 2011, (L2) (Lay)* + (Lug)?)

(Maple),

where Ellg (k) is the complete elliptic integral of the first kind:

Ellg

! 1
(k) = /0 V1I—12/1 - (kt)th
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On the other hand, we can observe that the extreme regions are still half-planes, since the leading
coefficient with respect to x. in the expression of the region is —4(y,x — z,y). Thus we can consider the

regions b, 42 b4/ N HP,. and b4/ 2 b4/ N HP,, and claim by Combination lemma, that any 4/2-ball
passing through p and ¢ contains either b, 42 or b4/ 2

From what we deduce the expected degree of a point in Q?b4/2 (X U{p}):

4/2
by %}

E{deg<p,90 )}/\/ PIb¥2nX =0|+P[bY’nX =0 —P|bi’nX =0|dgq
e | |+ v |- b; |
)\/ 26_)‘|b$’/2‘ —e‘Mszldq

q€eR?

1 4/2 _ 4/2
Z/\/ 22 P g AP g,
qeR?

@
N‘Q

First we compare the integrals of both terms:
%
) dz,dy,
3

/ —>\|b4/2\dq_// 7>\2\[E11K(*ﬁ)( (Z2)44(
qeR2

:4/ / e (Chreer)
R+ JR+ V224

by posing (3z,)" = (4a;)”,

and

/ —5A %1 g ’// NG CE) () ) )%dquyq
q€R2

:4/ / e-AQEuK(§)< oy (e )2> .
R+ JR+ V22

by posing (Lz,)" = (3a)°,

3 rN 2
then we do a variables substition such that 2 ((%)2 + (%)2) t = ((x;) + (142‘1)2> , 1.e. 25X = m; and
23y = Yq'

/ —f/\|b4/2ldq / / “AZYZEIR () ((X)? (%)2)%Ld)(dy
g€ER2 R+ JRT \/m

4 1 2f f X2, (X2 %
_4 5,5 “ABZEILCR) () +(3)°)* _L_qxqy
VL. 7

4/2
:2/ e bl dg,
qeR?
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We deduce that:

E |deg { p, g@ 4/2 L 4/2 = /\/ 26_%)\‘b3/2‘dq—/\/ €_>\|b3/2‘dq
{br/? by/?} JER? JeR?

A 2@*%>\\b§/2\dq _ )\/ 1, /\\b4/2|dq
q€eR? q€eR?

_1ypt/2
)\/ e 2P0 g
€R2

_ —A¥ZEl zqy2, vay2)§ 1
cor [ [ Rt L,

l\)

N

3
=5 e s 5Bl (5 ?ridr dd, by posin, r _ac -|-
V2 /[o,g] /[o ool Vroeoty ¥ posing Y
1 -A% V2 T . 2
= \%)\/[0 . \/Cosi% o ]e AEEllk (%2) gmdrquQ by posing rg = x; _|_y§
'y ,+oo

- LA/ L 1 a0
V2" Jl0,21 /€080 AElL, (2)

2

24 V2
= —— VOElg(~—=) (Maple)
V2Elk () 2
=24.
A direct lower bound is given by the sub-graph g{b4 /2}
0 _ —)\\b4/2\
€ |deg (0. G),0)) | = | dg

—1a|pi/2
:%)\/ e 3AIbg |dq
q€EeR?

% E [deg <p7 g?bi/27bzk/2}>:|

I
*®

We deduce the following theorem:

Theorem 10.3. Let X be a Poisson point process with intensity X in R?. The expected degree E [deg (p, 984/2)]
of the origin p in 984/2 (X U{p}) is between 8 and 24.

Proof.
o o ()] < s 18] < s (150 -2
O

By analogy with the Delaunay triangulation where the bounds are half of these one, and where the
lower bound given by the Gabriel graph is also one third of the upper bound given by the half-moon
graph, we might conjecture that:

Conjecture 10.4. Let X be a Poisson point process with intensity A in R2. The expected degree
E [deg ( ,Qg4/2)] of the origin p in 924/2 (X U{p}) is 12.



Chapter 11

On nearest-neighbor-like graphs, a way
to compute some integrals

In this chapter, we present some features on what we call nearest-neighbor-like graphs. As the usual
nearest-neighbor graph, they are empty region graph, where, for any pair (p,q) the family R(p,q) of
regions is a singleton region. For the nearest-neighbor graph, this region is the disk centered on p and
with radius |pg|. For nearest-neighbor-like graphs, the region is not a disk, but the graph still has similar
properties.

11.1 The nearest-neighbor graph

As mentioned in Section the nearest-neighbor graph is an empty region graphs, where for a pair (p, q)
the family of regions is reduced to the singleton containing the disk D,(q) centered on p and with ¢ on
its boundary, except for p (otherwise any such region would at least contain p). Since the region for the
pair (p,q) is not the same than for the pair (g,p), we consider the directed graph in which there is the

edge (p,q) if and only if the punctured disk D,(q) \ {p} is empty. We denote this graph by NNG. A
property of such a graph is that, if X is a data sample in general position, then for any p € X, we have

—
the outer degree deg (p, NNEE) of p is 1. Consequently, we also have that if X is a Poisson point process,

—
then E [deg (p, NNEE)} =1, since a Poisson point process is in general position almost surely.
On the other hand, it might be interesting to proceed anyway in the computation of the expected

degree in the same way as we did in the previous chapter. As we said ¢ is a neighbor of p in NNEE if
D,(q) is empty, so we express the expected degree in the following way:

€ [det (5. NNC)| =2 [ PID@)NX = 0dg

gER?

)\/ e—)\|7-7p((1)\dq
qEeR2
)\/ e~ Alpal® gq
g€eR?
= )\/ / e_)‘”(xz"'yz)dydx.
reR2 JyeR?

From what we said above, we can deduce without any computation, that

/ / 67)‘”("”2+y2)dydx = 1
z€R? JyeR? A
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Of course, we know how to compute the integral, but suppose that in the exponential, there were
the expression of the area of a more complex region, it might be interesting to see the integral as the
expression of an expected degree in some empty region graph. We describe a class of graphs, called
nearest-neighbor-like graphs, that are good candidate to help in such computations, and can also be
used as graphs in which we know that their expected degree is constant. For instance we use one in

Section [[3.5.4]

11.2 Formalization

Basically, one can search the nearest neighbor of a point p by consider concentric disks growing around
p until they touch another point, this point is the nearest neighbor of p. Suppose that the regions are
no longer disks but still “increasing” regions as it goes along. Then the expected degree of a point in an
empty region graph defined by such regions cannot be greater than 1. We define the notion of monotonic
pencil of regions and nearest-neighbor-like graphs:

Definition 11.1. Let S be a subset of R? for d € N*, we call monotonic pencil of regions on S, an
ordered (by inclusion) set M of closed regions such that:

e the Lebesgues measure of Om is 0,
e for m; and my in M, m; # my = dm; N dms = ), and

¢ Unep0m=5.

For instance, the family of disks centered on the origin is a monotonic pencil on R?.

Proposition 11.2. The smallest region of monotonic pencil of regions on S has Lebesgues measure 0.
Its greatest region is S.

The definition suggests an empty region graph notion similar to the nearest-neighbor graph:

Definition 11.3. Let S be a function which associates to any p € R? a domain S(p) € R?. A S-nearest-
neighbor-like graph in R?, is an empty region graph ??m} where for any p € R, M(p) := {m(p,q), q €
S(p)} is a monotonic pencil of regions on S(p).

We may pay attention that the pencil used here has not the same role than in previous empty region
graphs. For previous empty region graph, for a pair (p,q), it was the family R(p,q) of possible empty
regions that formed a pencil. Here, for each pair (p,q) there is only one possible region. For a point p,
the pencil “appears” when we make vary gq.

In such graphs, the expected degree is obviously bounded by 1 as stated by the following lemma:

Lemma 11.4. Consider an empty region graph a?m}, and a Poisson point process X. If ??m} s a

S-nearest-neighbor-like graph, then the outer degree of any point in a?m}(X) 15 0 or 1 almost surely.
Letp e X, if P[S(p) N X = 0] = 0 then the outer degree of p in 6?m}(X) 1s 1 almost surely.

Proof. We count the number of neighbors of p by developing the monotonic pencil M(p) = {m(p,q), q €

S(p)} from the empty set ) to S(p). Two cases arise: either S(p) N X = (), in which case the degree of

p is 0, either S(p) N X > 1, and there exists a first region ry with a point of X on its boundary. With

probability 1, no other points lie on the boundary of that region and the point, that we denote qq is

unique. By definition, gq is a neighbor of p, and there does not exist other neighbor since all other region
of the pencils contain at least qo. In that case, the degree of p is then 1. O

Additionally, we consider this utility lemma:

Lemma 11.5. Let 6% and 3%/ be two directed empty region graphs where for any pair (p,q), R(p,q) =
{r(p,q)} and R'(p,q) = {r'(p,q)}, i.e. they are singleton region. Consider a Poisson process X. If

lr(p, @) = [t'(p, q)| for any pair (p,q), then E [(@ (p, 3%)] =E [c?g ( 3%)}
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—
Proof. We consider that X is distributed with intensity A on .S. We go from the expression of E {deg (p7 a?z)}
—
to the expression of E [deg ( ,892,)} by rewriting them:

E [Eé (p, 3%)} =E [ lppanx=o

qeX

:/ESP[r(p,q)ﬂsz)\dq

- / P ()N X = 0] dg, since 1'(5,0)] = f(p.)l.
qe

=E Z 1p(p,q)nx=0]
geX

—E [ch (p, ?%/)].

11.3 Application of nearest-neighbor-like graphs

Example 1:
As a first application, we show that we could have computed the expected degree of a point in the
Gabriel graph without any computation:

Alternative proof of Lemma[6.3 Consider the directed Yao graph Y-Gz divided into 4 sectors [Yao82l
KB96]. Except on the boundary, the degree of any point p in Y-Gz (X U {p}) is 4 since Y-Gz is actually
the reunion of 4 nearest-neighbor-like graphs where the monotonic pencil of regions on each sector is the
set of disjoint quarter of disks centered on p. Consider a point ¢ € R?, and a quarter of disk with ¢ on

its boundary. Its area is iw(xi + yg). On the other hand the area of gab(p,q) is 7 ((%xq)z + (%yqf) =

1m(224y2). Consequently, by Lemma Gab and Y-Gz have the same expected degree, namely 4. [

Example 2:

As a second application, we consider the S-nearest-neighbor-like graph, with S(p) = R?\ {p} for any p,
such that the monotonic pencil is a pencil of lemniscates. More precisely, if p is the origin, we denote by
M(p) the pencil {m, : 2* — a?2? + y? < 0, for a € [0, +00)} (see Figure [11.1)). It is clearly a monotonic
pencil of lemniscates. Basically, if 0 < a < b, then z* — a?2? 4+ 3% > 2% — v?y? + »? and m, C my,.
Consequently, if we consider a Poisson process on R?, then the degree of p in the graph would be 1 almost

surely by Lemma [TT.4]
On the other hand, we can see this S-nearest-neighbor-like graph as the empty region graph Q?m} where

for any pair (p,q), {m(p,q)} is the singleton region that contains only the lemniscate m,,(p) = m(p, q)
of M(p) passing through ¢. Since m,, (p) passes through ¢, we must have, 333 — a?]m% + yg =0, i.e.
2
ag = xg + (gf“) . We compute the area of m(p, q) by isolating the y coordinate in its equation. We will
q

compute the size of only the upper right quarter of the lemniscate and so, assume that x > 0 and y > 0.

t—aZe?+y* = 0,
& y? = azxz —z4
& T 1/agxz —at,
_ 2 _ .2
& y = wx/a—az%
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Figure 11.1: A monotonic pencil of lemniscates issue from p. In yellow, the lemniscate m(p,q) passing
through q.

Thus the area of m(p, q) is given by:

:4/ m,/a%—:ﬂdm
[0,a4]

aq

4[ a—x%

3
q

0
Qa

()

And the expected degree E {(Eg) <p, a?m})} of pin a?m} (X N{p}) is

E [deg (p. Gy :/ e "Ixdg

geR?
_4h 12_;'_ Yq 2
z)\/R2e : <q (5) > dzydy,.
—
But we already know that E [deg <p, 3?m}>] =1, so that we can conclude:

3
/ e‘%*(f-ﬁ-(%f) : dady = 1
- y

Of course, this example is custom-made, furthermore, the integral is actually directly computable.
But we might consider that in some cases, more complex, it can be useful.

(LC)I»J>

e
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Part 111

3D-Delaunay triangulation for two
specific surfaces: the right cylinder and
the oblate spheroid
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Preamble of Part [11

We briefly recall what a 3-dimensional Delaunay triangulation is. Consider a set X of points in R® in
a generic position. The 3-dimensional Delaunay triangulation of X is the 3D-triangulation in which no
point of X is inside a sphere circumscribing a tetrahedron of the 3D-triangulation. We will often use the
word “triangulation” alone (without “3D”) even if it is actually made of tetrahedrons. To simplify our
study, we only take into account the property that an edge (p, q) is in the triangulation if there exists an
empty sphere passing through p and gq.

This property suggests an empty region graph approach of the Delaunay triangulation where the
regions are spheres. In the case where the data points are distributed on surface embedded in R3, the
study of Delaunay spheres has interest only on a negligible part of the sphere, namely, its intersection
with the surface. Then we can propose a slightly different definition that fits with surfaces.

For each pair (p,q) of the data sample X, we consider the set R(p, q) of intersections of the surface
with spheres passing through p and ¢q. Then we say that an edge (p, ¢) is a Delaunay edge, if there exists
a region in R(p, q) that does not contain other points of X.

That definition enlightens the behavior of the Delaunay triangulation of points on surface. Indeed,
firstly, it brings back the problem to a 2-dimensional empty region graph that enables a comparison with
the classic 2-dimensional Delaunay triangulation and the empty region graphs studied in the previous
part. Secondly, the comparison makes more understandable the complexity of the triangulation. As we
will see, such regions may be approximated by axis-aligned ellipses. Depending on properties of the point
on the surface on which the graph is studied, the behavior will resemble more like an empty axis-aligned
ellipses graph with bounded aspect ratio or not.

We divide this part into three chapters. Chapter [12]is dedicated to the cylinder case, that had already
been studied in the literature. Here, it is here mostly used as a pedagogical example and to show the
efficiency of our method. Chapter [13]is dedicated to a specific surface, that is general enough to represent
efficiently the case of generic surfaces. This surface is a flattened ellipsoid of revolution, also called oblate
spheroid. This chapter gives a first example of surface on which a 3D-Delaunay triangulation of random
points is linear in expectation. It permits also to introduce the method and some lemmas that will be
reused in the last part of the thesis. Finally, in Chapter we illustrate our results on two ellipsoid
of revolution. One that is flattened, as in Chapter and one that is elongated, for which Delaunay
triangulation is suppose to have a behavior similar than on a cylinder.
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Chapter 12

Expected size of the Delaunay
triangulation of a Poisson point process
on a right circular cylinder

In this chapter, we compute an upper bound on the expected number of edges of the Delaunay triangu-
lation of a Poisson point process distributed on a right cylinder and show that the size of the Delaunay
triangulation is O(AInA) where X is the intensity of Poisson process. This problem has already been
solved for random uniform sample in [DEGO0S]. In this chapter, we propose a proof that uses the method
described in Chapter [[Il The case of the cylinder being a relatively simple case, this chapter can serve as
a groundwork for the next chapters.

Figure 12.1: A right circular circular cylinder embedded in R®. The axis of the cylinder is the v-axis, its
radius is 7 and length .

12.1 The right circular cylinder

We analyze the expected size of the Delaunay triangulation of random points distributed on a right
circular cylinder C embedded in R3. What we call a right circular cylinder is a truncated cylinder of
revolution whose boundaries are circles perpendicular to the axis of the cylinder. We consider that the
cylinder has length [ and radius . We use a global system of Cartesian coordinates (u,v,w) to describe
the cylinder: without loss of generality, we can assume that C = {u? + (w —1)> = r2,|v| < L} (see
Figure , in which the cylinder is tangent the uv-plane at the origin.

At any point p on the cylinder, we consider the inner orientation. We are interested in three geometric
values: the two principal curvatures k1(p) and x2(p), and the inner medial radius r*(p). For the specific
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case of the cylinder, those three values are actually constants and so independent of p, so can denote
them without the “(p)”. Additionally, it is clear that r* = r.

Since k1 corresponds to the curvature of the first inner sphere osculating at p, and since such a sphere
has obviously r for radius, we have k1 = % and the inner medial sphere o*(p) and the osculating sphere
coincide. Since the cylinder is a surface of revolution, they do not coincide only for a single point p, but
for the set Symy,,(p), called symmetrical set of p, and defined as follows: Sym;,, (p) := CNo*(p). This
set contains an infinity of points that forms a circle on the cylinder.

On the other hand, the outer medial sphere is the tangent plane 7Tc(p) at p, that can be seen as a
sphere with infinite radius. The curvature ko is given by the curvature of a generator line, that is 0. In
other words, ko = 0 and the outer medial sphere and the osculating sphere coincide again. By analogy,
we consider the line Sym_,,(p) = C N Te(p).

The property k1 = r* is characteristic of the points on Z, it is actually its definition. This property
happens to be true on the whole surface in the cylinder case, that is why we say that the cylinder is not
a generic surface. This is the reason why the Delaunay triangulation of homogeneous random points on
the cylinder has quasi-linear expected size.

When homogeneous points are distributed in R?, the probability that two points are Delaunay neigh-
bors decreases highly with their distance, see Section [0.1} Because of the property described above, this
probability does not decrease that fast on the cylinder. As a brief illustration, consider a random sample
X and the two points p and ¢ of X that minimizes |v, — v4| among points of X (we name |v, — v,| the
v-distance). Then, consider the sphere centered on the medial axis of the cylinder and, passing through p
and ¢. Its intersection with the cylinder, is the parallel strip around the cylinder between p and ¢. That
strip is obviously empty since g has minimal v-distance with p. Thus those two points are almost surely
Delaunay neighbors. By extension one may admit that the point with second smallest v-distance with p
has still great chances to be neighbor of p, and so on. And that is also the case for the external part of
cylinder, considering points that have a small u-distance.

Thus we prove the following theorem:

Theorem 12.1. The 3-dimensional Delaunay triangulation of a homogeneous Poisson point process
distributed, with intensity A, on a right circular cylinder, has expected size ©(Aln ).

The proof consists, for each point p on the cylinder, in computing an upper and a lower bound on
the expected degree of p in the Delaunay triangulation. We obtain the upper bound by considering a
super-graph of the Delaunay triangulation, that is an empty region graph defined for each pair (p, q) by
a family F¢(p, q) of fundamental regions on the cylinder that have the property that there always exists
a sphere passing through p and ¢ that contains a region of F(p,q). We obtain the lower bound by
considering a sub-graph of the Delaunay triangulation, that is also an empty region graph in which, for
each pair (p,q), we select one sphere, denoted o¢(p, ¢), among all the spheres passing through p and ¢,
and say that (p,q) is an edge if o¢(p, ¢q) is empty. Then we obtain the upper and lower bounds on the
expected size of triangulation by integrating, on the cylinder, the bounds on the expected degree.

Because of its geometry, we can study the cylinder in its entirety, while for generic surface, we will
have to deal with approximation of the surface, projected in the tangent plane of the point whom we
compute the expected degree. The approach we take will be slightly different for the cylinder than for a
generic surface in the next chapters.

12.2 Description of the fundamental regions on the cylinder

We start by providing a super-graph of the Delaunay triangulation of points on C. That super-graph is
an empty region graph defined by four regions for each pair of points.

Let p be a point on C and consider the Monge coordinate system (x, y, z) of p for the inner orientation.
Then we consider a second point g € C. We start by defining a notion of interval on the cylinder, for
pairs of points that are on a common symmetrical set. For a point ¢ that lies on Sym, ,(p), we denote

by [p, q]c, the smallest section of Sym;, (p) that has p and ¢ for endpoints. By analogy, and to maintain

mn

a coherence in the notations, if ¢ € Sym,_(p), we denote [p, g]c the segment [p, q].



12.3. Proof of the graph inclusion 95

Figure 12.2: Left: The cylinder and its intersections with specific spheres. Right: Their images under
the unroll map ¢. In red, the intersection with the sphere ogym(p, ¢), in yellow and blue the intersections
with the planes parallel to Pyed(p, ¢), and in green with the plane Ppiag(p, ¢). Those curves delimit the
regions of F¢(p).

To explain the constructions of fundamental regions, we define two points, ¢; and gs that depends on
p and ¢:

® g1 = Syminn(p) N Symout (Q)7 and
® G2 = Symout (p) N Syminn(q)'

The four curves [p, ¢i]e, [p,a2]c, 9, ¢1]c, and [q, g2]c define a region on C whose vertices are p, ¢, ¢1
and ¢o, that we call a cylindrical rectangle and denote R(p, ¢). Note that, if the cylinder is unrolled, the
cylindrical rectangles become exactly 2-dimensional rectangles.

Then we consider the plane Pyeqa(p, q) parallel to the plane passing through p, ¢, ¢1, and g2, and
containing the medial axis of the cylinder. For any point u € C, the reflection of v with respect to Ppjeq
lies on C, we note it . Consequently we denote by R(p, q) the reflection of R(p, q) with respect to Pyjeq-

Finally we consider the plane Ppiag(p, ¢) passing through p, ¢, P, and g. Its intersection with C is
denoted dg(p, q) for diagonal. The curve dg(p,q) divides R(p,q) into the cylindrical triangle A;(p, q)
delimited by [p,q¢1]e, [q,q1]c, and dg(p,q), and the cylindrical triangle Ay(p,q) delimited by [p, g2]c,
[4, g2]c, and dg(p, q). Note that, once unrolled, the cylindrical triangles are not 2-dimensional triangles.
By symmetry dg(p,q) divides R(p,q) into Ai(p,q) and As(p,q) that are the respective reflection of
A1(p, q) and Ay(p, q) with respect to Pnied (D, q)-

The four cylindrical triangles define the family of regions:

F(p,q) = {A1(p, q), Az(p. q), A1(p. q), D2 (p, q)},

and the graph Q?_.C (X) in which two points p and ¢ of X are neighbors if at least one of the regions
of F€(p,q) does not contain any point of X. Since F¢(p,q) = F(q,p), this empty region graph is
undirected.

12.3 Proof of the graph inclusion

We now prove that g?rc is actually a super-graph of the Delaunay triangulation when points are distributed
on a cylinder.

Lemma 12.2. Consider a right circular cylinder C embedded in R® and a data sample X distributed on

C. gﬁ’fc (X) is a super graph of Del(X).

Proof. Let p and ¢ be two points on C. We have to show that if a sphere passes through p and ¢, it
contains at least one the four regions of F¢(p, q).
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Without loss of generality, we consider the oriented orthogonal direct frame where p is the origin, the
zy plane is the tangent plane of C at p the = axis is orthogonal to the axis of the cylinder and where the
y axis is chosen such that the normal axis z points toward the interior of C.

In order to apply the Combination lemma, we have to prove that the set of spheres passing through
p and ¢ is a good pencil of regions. But this is clear since the centers of such spheres lie in a plane, the
bisector plane Pgis(p, q) of (p,q).

Among all the spheres passing through p and ¢, including those that are degenerate, we select five of
them that we parameterize by their center. Actually four of the fives selected spheres are half-spaces.

The first center is csym (p, ¢), at the intersection of the medial axis of the cylinder and the bisector plane
of [p, g]. Tt also corresponds to the center of the sphere passing through p, g, q1, g2 and their symmetrical
points with respect to Puyed(p, q). We denote by ogym(p,q) this sphere. It has for intersection with C a
circular strip between Sym;,  (p) and Sym;,,(q).

Then we consider the centers ¢ (p, q) and ¢ (p, ¢) at infinity in the direction orthogonal to the plane
passing through p, ¢, ¢1 and gz. Those centers define respectively the half-spaces Hr and Hgz(p, q) whose
intersection with C are cylindrical rectangles delimited by Sym, . (p) and Sym,(¢). We distinguish Hg
and Hg(p, ¢) by assuming that Hg(p, ¢) is the half-space containing p.

Finally, we consider the half-spaces Hi(p,q) and Ha(p,q) that are spheres such that the centers
c°(p,q) and ¢3°(p,q) are at infinity in the direction orthogonal to Ppiag(p,q) and such that Hi(p, q)
contains ¢; and Ha(p, q) contains go.

For a sphere o, we denote by B(o) the ball for which o, is the boundary. To lighten the notations,
we assume that all centers, spheres and regions refer to the pair (p, ¢), and then we hide “(p, ¢)” in their
expressions.

We can observe that:

R =CnNB(osym) N Hr,
Rccn B(asym) N Hy,

and then:

A =C QB(USym) NHr N Hi,
NAs=CnN B(O’sym) NHr NHa,
(0sym)

(osym)

A, CCNB NHzg N Hi,
Ay CCNB OSym ﬁ?‘[ﬁﬁ%g.

OSym

Finally the four rays from cgyn, following the four infinite directions, partition the bisector plane of
[p, ¢] into the four tiles (see Figure [12.3)):

( y CSym) CR )7
(C )y CSym, CR )7
= (cf” » CSym R)7
= (c5° ®)

02 ) cSVma )

where (a, b, ¢) denotes the convex angular sector delimited by the rays [b, a) and [bc).

So that we can apply the Combination lemma to claim that: For any region r € F€(p, q), if ¢ belongs
to 7Ty then the ball centered in ¢ contains r.

And since the bisector plane is partitioned by the set of tiles {Ta,, 7a,, Tx,, Tx, }, We can apply the

Partition lemma to claim that Qgc (X) is a super graph of Del(X). O

12.4 Computation of an upper bound on E [ Del(X)]

Now we know that Q?TC (X) is a super graph of Del(X), we can compute the expected degree of a point
p in g“jﬂ (X U{p}) to get an upper bound on the expected degree of p in Del(X U {p}).
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- Cﬂ?-[ﬁ

Figure 12.3: Partition of the bisector plane Pg;is(p,q) of p and ¢ into four tiles. In black the vertices,
their corresponding intersection with the cylinder is framed next to them. In red the fundamental regions
corresponding to each tile.

Lemma 12.3. Let C be a right circular cylinder with length | and radius r. Let p be a point of C, and X
a Poisson point process distributed on C with intensity A. The expected degree of p in gﬁ’ta (X) is smaller
than 32 In(Alr) + O(1).

Proof. We consider the isometry i from C to the rectangle [fé, %] X [—7r,7r] that consists of unrolling
the cylinder into its tangent plane at p. Let ¢ be a point on C. To simplify the notations, we omit again
to write (p,¢) in most expressions. We compute the area of the regions of €. For any point u € C, we
denote by (z7,,%,) the image of u by i. By construction and isometry, it is clear that [R| = |z y,|. We
can observe, by symmetry that

T e
Al = 8] = [A1] = [Ag] = —.

Then we can compute the expected degree of p in gﬁ’fc (X):

E {deg (p, gﬁc)} =E Z lzere, inx=0
qeX

= / AP [3re F€, rn X = ] dg by Slivnyak-Mecke therorem.
qeC

We use the formula below to expand the expression of the probability. Assume that Fy, Fo, F3 and
FE, are independent events with equal probability:

4
P(E,VEyVEsVE)]=1-][1-P[E)) by independence of the E;,
i=1
=1-(1-P[E))*

—4P[E)] —6P[E))> +4P[E)’ —P[Ey]".

Since all r in F€ have same area, the probabilities P [r N X = ()] are equal, and since the regions r are
disjoint, the events “r N X = 0” are independent. We can therefore apply the formula,
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E[deg (p,gﬁ’fc)} :/ CA(4P[A1mX=(2)}—6P[A1mX=(2)}2
qe
+AP[ANX =0 ~P[A; N X = 0] )dg

_ )\/ e N8 _ G2 4 go=3NA _ —4AIAi] g,
qeC

+f

% o zy zy
4)\/ / 4e™ A3 — 6e MY 4 4e7T — 72 qyda
0o Jo

(S

mr
_ )\ 1zl _ _3) 12yl _
/ 430 — e MUl 447N T — o2yl qydy
—7r

L
2

=40 (404 1, (3) = 61y, (V) + 41y, (33) — Iy, (2V))
where 17, ,(t) = fOL fol e~ ¥dydx (see proof of Lemma ,

8 . 6.
<o (F+ ) - Sy
:@IH

i 3mAlry) _ i
+ 3/\(1 + In(75)) ) ln(w)\lr)>

(Air) + O(1).
O

Now we have an upper bound on the expected degree of a point in gﬁc. We can integrate this bound
on the whole cylinder to get an upper bound on the expected size of both gﬁ’Tc and Del(X).

Lemma 12.4. Let C be a right circular cylinder with length | and radius r and let X be a Poisson point
process distributed on C with intensity X\. The expected number of edges in Qg.c (X) is O(AlrIn(Xr)).

Proof. Let N be the number of edges in g?_.c (X).

N = % > deg (.G )

peX

E % > deg (p, Q?TC)

peX

E[N]

1
3 / E [deg (p, gﬁ’ﬂ)] Adp by Slivnyak-Mecke Theorem,
peC

< é/ 50 In(Alr) +O(1) | dp by Lemma [12:3]
2 Jpec \ 3

A
7/ @ln()\lr)dvdquO()\)
2 Ji—i Lix—

[—3:3]x[-7r7r]

= %/\TFZT In(Alr) + O(X)
= O(AlrIn(Ar)).
O

And we can prove the upper bound part of the main theorem of the chapter. Remember that, by
Property £ Del(X) = O(§F) where F is the set of edges of Del(X).
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Lemma 12.5. The 3-dimensional Delaunay triangulation of a homogeneous Poisson point process dis-
tributed, with intensity X, on a right circular cylinder, has expected size O(Aln \).

Proof. We apply Lemmas [12.2) and [12:4] to get an upper bound on the number of edges in the Delaunay
triangulation, and deduce:

E[tDel(X)] <E [ﬁ gl (X)} — O(r In(\lr)).

12.5 A lower bound on E [ Del(X)]

In order to complete the proof of Theorem [I2.1] we have to show that the bound is actually tight. To
this end, we propose to show off a sub-graph of the Delaunay triangulation of points distributed on a
cylinder. A way to consider a sub-graph is to restrict the set of possible empty sphere. Thus we will
consider an empty region graph in which, for all pairs of points (p, q), is associated a single sphere, that
we name oo(p,q), and we will say that p and ¢ are neighbors if oo(p,q) is empty. We have to choose
oo(p, q) carefully enough so that the expected degree of p is still Q (A1ln A) when the graph is applied on
a Poisson point process with parameter A\ distributed on a cylinder.

As the previous section suggests, the 3D-Delaunay triangulation of points on a cylinder is highly
related with the empty axis-aligned ellipse graph with unbounded aspect ratio. In Section [8:2] we had
found a tight lower bound on the empty axis-aligned ellipse graph by identifying an axis-aligned ellipse
for each pair (p,q). More precisely, for p at the origin and a point ¢ = (z4,y,), we selected the ellipse
passing through ¢ with equation:

also rewritable as:

Y2 2
—g;v2—x—q+y2—yyq:0.
xg q

This ellipse has an area that is ©(x4y,), and that induced the logarithmic degree of p. The parameter ¢

corresponding to this ellipse was ¢ = (;Tq, %‘7)
q

Let’s go back to the 3-dimensional case, in the Monge coordinate system of p, and consider that ¢ is a
point on the cylinder with coordinates (x4, yq, 24). We have to find, for each ¢, a sphere whose intersection
with C has area ©(z,y,). An idea could be to reuse the parameter used in Section a bit adapted to

Ya
2

such that ¢y € Ppis(p, q), and expect that the sphere o( centered on ¢y has an intersection with C with
the required area.

the 3D case. Following this idea, we consider the center ¢ = (zo, yo, 20) with zo = Qqu’ Yo = 2 and zg
q

We recall that the cylinder is parameterized by the equation:
C:a?+(z—r)2=r2

We start by identifying the coordinate zy. The equation of Ppis is:

T Y z
- (=) - e (- )
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so ¢o must verify:
x Y z
0= (ro=3) et (w=F)wr (- 3) =

Y xz Y Y z
:<zx‘§>xq+(§‘§)yq+(m‘§)%
z

— 102 _ _Za
_2(yq xq)+(20 Q)Zq
_1(,2 .2 1.2
=3 (yq xq) + 2420 — 574, and so
2 _ .2 2
1% ~Yq T %
20—5
Zq
2 2 2 2
T —(zg—1) — Yy + 25
=3
Zq
_ 2.2 2
1 2zqT Zg —Yg T 25
=3
Zq
2
_ 1% Y
2 2
2
_ 1Yq
_T—if
z
q

The equation of the ball B (oy) is given by: By(z,y,z) < 0, where:
Bo(z,y, 2) = 2% — 2220 + ¥* — 2yy0 + 22 — 2229

2
=22 — 2zxo + y? — 2yyo + 2% — 22 (T—yq>
2z4

2
= —2xx0 + % — 2yyo + 22 + 22 — 221 + zy—q
Zq
Y2
= zz—q — 2w +y® — 2yyo + 2 + (2 — )% —r?.
q

Since any point on C verifies 22 + (2 — r)? — 72 = 0, then any point of B (o) N C verifies:

2
zy—q — 2xx0 4 3% — 2yy0 < 0.
Zq

We consider now the projection onto 7¢(p) of the intersection B (og) NC. We can ask ourselves if we

should better consider the intersection with the lower part or the upper part of the cylinder. But since

2
the center of o verifies zp = r — %z—z, that is smaller than r, we have good chance to think that the

intersection with the lower part of the cylinder is more significant. Thus we substitute z by:

fo(z,y) =7 —Vr? — a2,

that is the graph of the lower part. The projection of the intersection is given by Fy(z,y) < 0 where

2
Y
Eo(z,y) = qu (7" —Vr?— wQ) —2z0 + ¥ — 2yYo
q
2 2
:y—q(r— r2—x2>—y—qx+y2—yqy
Zq Lq
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We search for an upper bound on the region defined by the above equation. Finding the extreme
z and y coordinates of the region is enough. For now we bound from below the expression using the
2 2
inequalities: 57 <r—r2—t2< t? for |t| < r:

Y2 2
%@w%=f(%—7a—ﬁ)—fw+f—yw

q q
2 92 2
Yg x Y
> %Z—q7 - x—qzﬁ—yz —ygy for |z <7
q q
2 2
Y Y
> %%1‘2 — Xt %yz — yqy for |z4| <.
2 x4

We rewrite this expression to make appear the corresponding ellipse:

2 2
Y Y Y Y z
3o = w3yt —yey = (575" —yer 3y — agy
q T T Yq

- . Tq q
Y Y + s -
x«qz (;JCZ (352 N QIqI) %yz (y2 2yqy)> ’

2 2
so that we can deduce that %z—%xQ — z—‘;x + %yz —yqy = 0 is the equation of an axis-aligned ellipse passing

through p, centered on the orthogonal projection m,(q) of ¢ on Tc(p). Its extreme x coordinates are
reached for y = y, and verify:

1 yq 2 1 xq 2
q Yq
_ %yi (x2 — 2qu) — %quq, rewritten
Lq

0=ua2— 2zqx — x? by multiplying by 2ﬁ,
Yq

0= ($ - (1 - \/5)) a:q> (Jc - (1 + \/5) xq) , after factorization.

By analogy, its extreme y coordinates verify:
0= (= (1-v2)u) (v (1+v2)w).

In other words, the projection of the intersection is contained in the rectangle [z, v/27,] X [y, £ v/2y,].
To ensure that the intersection stay inside the lower part of the cylinder, we only take into account the
points ¢ such that [z, + v2z,] x [y, £ V2y,] is inside [—r*,7*] x [~%, £]. Thus, we consider a point ¢
only if it verifies |z4] < ERVoT lyq| < m, and z, < r. We call N(p) this neighborhood.

Then, for a pair (p,q), we consider the fundamental singleton of region F§(p, q) defined as follow:

c _ [ {B(oo)NC}, if g € N(p)
Fo(p,a) = { {C}, otherwise.
Since C contains the data sample, it is never empty, and this is another way to say that ¢ is not
a neighbor of p if ¢ does not belong to N(p). Note that, in general, since oo(p,q) # 00(g,p) then
F§ (p,q) # FG (a,p)-
Finally, for a data sample X, we consider the directed graph ?@fc (X) in which the directed edge
0

(p, q) exists if ¢ belongs to N(p) and the sphere o(p, q) is empty.
We prove the following lemma:

Lemma 12.6. Let C be a right circular cylinder with length | and radius r. Let p be a point of C, and X
a Poisson point process distributed on C with intensity A\. The expected degree of p in gm

Fe(X) is greater
0
In(Xlr)
than ———.
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Proof. We consider again the isometry i from C to the rectangle [—%, %] x [—mr,7r] that consists of

unrolling the cylinder into its tangent plane at p. Recall that for a point u € C, we denoted by (7, vy.,)
the image of u by .

We consider a point ¢ € N(p) and compute an upper bound on the area of the region B (op(p,q)) NC.
Since its projection 7, (B (¢o(p, ¢)) NC) is included in the rectangle [z, + v/2x,] X [y, £ V2y,], We can
roughly obtain an upper bound since the rectangle does not go beyond the lower part of the cylinder,
indeed we can say that:

1B (00(p, @) 1€l < 7" ([ % V2a,)  [yg + V2,))
= 2\/§|y/q|7T;1 ([xq + \/5%]) since Y, = ¥y,

uls

< 2\/§|y'| X g2x/§|x;| since for any w in the lower part of C, |x,| < J|x;
- 47T|J,‘qu|
Then we can compute an upper bound on expected degree of p in EQ}.C (X):
0

E [ch (p, 5%)} =E Z L1B(00(p.g))nx=0]

gEXNN(p)

= / AP [B(oo(p,q)) N X = 0] dg by Slivnyak-Mecke therorem,
q€N(p)

_ / Ae—MBaanelq,
q€N(p)

= / /\ “AlBeoP.a)Clqg/ since i is an isometry,
q’'€i(N(p

—A B(oo(p,
// [B(oo(p q))ﬂCldxgdy;
1yl €Ei( N(p))

> // )\6_4”’\|“;y;|dx;dy,’1
(z4,y4)ELN(P))

>/
[y

! !’
/ Ae ™ ATavaldz dylsince |z4] < |2 |
l
Yol<smos Y ITis 5

vz
1
_ 4)\/2+2¢§ /1+\/§ 6*4”>‘I;y;d$;dy;.
0 0
Where we recognize the already computed integral I, () = [ f e~ dydz for a = o é 7 b=17
and t = 47 \. Since we had shown that:
In(abt
Ia,b(t) > n(a ),
t
we can conclude that :
z 4 /\>
3t (. 9%)] = (2 ey
E [deg (p G )| = 4A A
> In(Alr)
T
O]

Since we have an lower bound on the expected degree of a point in 6 we can integrate this bound

]:C)
on the whole cylinder to get a lower bound on the expected number of directed edges of 6 We
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consider the undirected version QQ c of this graph. It has more than half of the directed edges of a

Note that the degree of a point in the undirected graph is necessarily greater, since we also count the
edges that were in the opposite direction. Then we deduce

Lemma 12.7. Let C be a right circular cylinder with length | and radius v and let X be a Poisson point
process distributed on C with intensity X\. The expected number of edges in (]2_6 (X) is Q(NrIln(Alr)).
0

Proof. Let Ny be the number of edges in gg__c (X).
0

Mo =5 3 deg (165

peX
1 —
> 3 Z deg (p, Egc) for which we compute the expected value:
peX
1 —
E[Nol 2 E |5 deg( ,3%)
peX
1
=3 A / E [d_eg> ( 78911)] dp by Slivnyak-Mecke Theorem,
peC
> %/ —In(Alr)dp by Lemma
peC ™
A
=2 ln()\lr)dv dus,
2 [7% %]X[ ) ™
= ANrIn(Alr)

And we can prove the lower bound part of the main theorem of the chapter:

Lemma 12.8. The 3-dimensional Delaunay triangulation of a homogeneous Poisson point process dis-
tributed, with intensity A, on a right circular cylinder, has expected size Q(Aln \).

Proof. 1t is clear that Q?TC is a sub-graph of the Delaunay triangulation since we restricted both of the

possible neighbors and the possible empty spheres. So we apply Lemma[I2.7] to get a lower bound on the
number of edges in the Delaunay triangulation:

E [t Del(X)] > E {ﬁ gl (X)} = Q (ArIn(\lr)).

The main theorem follows directly as a corollary of Lemma and Lemma

Theorem 12.1. The 3-dimensional Delaunay triangulation of a homogeneous Poisson point process
distributed, with intensity A, on a right circular cylinder, has expected size ©(Aln ).

12.6 Conjecture on two classes of surface

We finish the chapter dedicated to the triangulation of random points on a cylinder, by conjecturing
a generalization of the obtained result. A cylinder of revolution has an important property for the
Delaunay triangulation: whatever is the chosen orientation, the maximal principal curvature corresponds
everywhere to the curvature of the osculating sphere (degenerate into a plane for the outer orientation).
Thus we can consider two classes of surfaces: the first class contains surfaces for which any inner medial
sphere is osculating: the canal surfaces; and the second class contains surfaces whose outer osculating
spheres are planes: cylinder whose basis is not necessary a circle. The cylinder of revolution enters in
both of these categories.
We deduce the following conjecture:
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Conjecture 12.9. Let S be a piece-wise C? closed surface embedded in R?, and X a Poisson point
process distributed on & with intensity A. If S is a canal surface with no spherical part or a cylinder not

degenerated into a plane, then
E [t Del(X)] = ©(Aln\).

For classical examples, such class of surfaces includes the torus, the prolate spheroid, and the right
circular cones. The idea is again to prove that a point has expected degree ©(In\). We can do that by
considering the fact that a medial sphere whose radius is slightly increased, has an intersection with S
that is almost a strip on the surface, so that we fall back into the case of the right cylinder of revolution.

In the conclusion of the thesis, we propose a conjecture that gives the expected size of the Delaunay
triangulation with respect to the medial axis of the surface.



Chapter 13

Expected size of the Delaunay
triangulation of a Poisson point process
on an oblate spheroid

In R3, we consider an ellipsoid of revolution, also called spheroid. We distribute on this spheroid a homo-
geneous Poisson point process and try to evaluate the size of the Delaunay triangulation of the distributed
points. If the spheroid is a flattened sphere, it seems experimentally that the size of triangulation is lin-
ear. A flattened sphere is not really a generic surface, but it shares properties with generic surfaces. We
demonstrate in that chapter that the 3-dimensional Delaunay triangulation has indeed a linear expected
size. The proof goes through an analytic study of intersection of sphere with the spheroid of revolution.
Since it is a very specific surface, namely a quadric of revolution, we could have used algebraic methods
to compute the exact intersections between Delaunay spheres and the spheroid. But this would not have
helped us to introduce the generic cases of surfaces, that are not necessary quadrics. Thus we preferred
to use an analytic approach, easier to generalize. The proof reuses the notion of empty axis-aligned
region graph and the Combination and Partition lemmas. The proof may be a bit complicated for such
a specific surface, but most parts will be reused in Part to lighten the proof for the general case. It
is decomposed into 3 sections, each corresponds to a different neighborhood in which we compute the
expected degree of a given point on the spheroid. The proof is preceded by a section in which we provide
details on spheroids.

13.1 The oblate spheroid

13.1.1 Some generalities on the oblate spheroid

General description
A spheroid can be seen as a sphere that has been stretched in a given direction with a factor k > 0.
This direction corresponds to the axis of revolution of the spheroid. This axis passes through through the
two poles of the spheroid. On a spheroid, two symmetries naturally arise: an axial symmetry around the
axis of the spheroid, and a reflection with respect to the bisector plane of the two poles of the spheroid.
We denote by Pyreq this plane. If £ < 1, we say that the spheroid is oblate, if k& > 1, we say that it
is prolate. They have fundamentally different properties. Perhaps the most important of them is the
nature of their medial axis. On the prolate spheroid, the medial axis is segment, included in the axis of
revolution, and whose endpoints are the centers of the two spheres osculating at the poles. On the oblate
spheroid, it is a disk included in Pyeq- This plane has a large importance in the following analysis, we
named it Pyreq, as another plane present in Chapter since they play a similar role.
Highly related with the medial axis, is the set Z of points with a principal curvature that is locally
maximal along a line of curvature. If £ is prolate, Z is the whole spheroid, for the reason that the circles

105
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w

Figure 13.1: An oblate spheroid with some parallels and meridians, Z is the red parallel, it lies in Ppjeq.-

that compose the spheroid are curvature lines, and then the curvature is constant along them, and thus
in particular, local maxima. We expect that the Delaunay triangulation of points on such a surface
will behave as if the points were on a cylinder, but this was already discussed in Section In this
section we assume that the surface, that we name &, is an oblate spheroid (we keep the letter “£” for
spheroid because this word is more common). In that case, the set Z is the circle £ N Ppjeq. Since Z is
a 1-dimensional object, we can consider that £ enters in what we characterize as a generic surface. The
1-dimensional property of Z is essentially the reason why the Delaunay triangulation has an expected
linear size.

Different parameterizations of £
Without loss of generality, and up to a similarity, we consider that the spheroid &£, with stretch factor
k < 1, is the surface of R? defined by:

2

u
5:{p€R3, k—’2’+v§+(wp—1)2:1}.

To describe globally the spheroid, we use the Cartesian coordinates (u,v,w). We call this coordinates
system, the global coordinate system. As for the cylinder case, we use it to make a difference with the
Monge coordinate systems that we will use later. In the global coordinate system, the spheroid is tangent
to the plane with equation w = 0 at (0,0,0), that is both the lowest point of the spheroid and a point
of Z. The maximal curvature kg,p is equal to k—12 and correspond to the maximal curvature of any point

on Z. The minimal curvature is equal to k, i.e. to \/ﬁlsip is reached at the two poles of the spheroid.

The coordinates of theses poles are (%,07 1) and (—%70, 1). The line passing through them is the axis
of revolution the spheroid. The global frame representation will be helpful to study the behavior of the
Delaunay triangulation of the points distributed close to Z.

Let p be a point on €. We denote by Tg(p) the plane tangent to £ at p and by 7ig(p) its normal,
that we choose to orient inward £. If p is not a pole of £, then it is crossed by two perpendicular lines
of curvature, better known as meridian and parallels. Meridians lie in the planes that pass through the
poles while parallels lie in the planes parallel to Pyeq. They define the principal directions and curvatures
of p: the principal directions are the directions of the tangent directions at p of the meridian and the
parallel in T¢(p), and principal curvatures are the curvatures of the intersection of £ with the two planes
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perpendicular to Tg(p) and directed by the principal directions. Note that the maximal curvature at p is
the curvature of the meridian at p, since its supporting plane is perpendicular to 7¢(p), but its minimal
curvature is not the curvature of the parallel, since the plane of the parallel at p is not perpendicular
Te(p). We denote respectively by x1(p) and k2(p) the maximal and minimal curvatures. When it is clear
that we consider the curvatures at p, we will only write k1 and ko to lighten the notations.

The principal directions define the Monge coordinates system at p. For the Monge coordinates system,
we use the Cartesian coordinates (z,y, z) where the z-axis is the maximal principal direction, the y-axis
is the minimal principal direction, and the z-axis is the normal at p. We choose, for any p, to orient
the z-axis in the direction of the closest pole to p. Since the z axis is already chosen inward, this
determines uniquely the y-axis direction, except for points on Z or at the poles. Since Z and the poles
have measure 0, a point from a Poisson process will not be distributed on them almost surely, so it is not
necessary to treat such point. Note that in the Monge coordinates system of p, p is the origin and then
(2p, Yp» 2p) = (0,0,0).

In the Monge coordinates system of p, the spheroid can be locally described by the equation z =
fp(z,y) where:

folz,y) = f€1$ + :‘izy + Rs(zx,y), from

where |R3(z,y)| < O (|z> + |y[*)). This local description holds for \/z2 +y? < % Such a neigh-
borhood guarantees that f, is locally a smooth homeomorphism. When it is not necessary to have the

second order coefficients, we can use the approximation:

|fp(x7y)| S "isup(m2 + yZ), from "
that is also true for /22 + y2 < 2»; -

Medial radius

On &, each point p has an inward symmetrical point p that is the reflection of p with respect to Pyjeq-
We assume that a point on Z is its own inward symmetrical point. We note 7*(p) the medial radius,
remember that in fact, it is the radius of the largest ball inside £, tangent to £ at p and such that its
interior has an empty intersection with £. More generally this sphere defines p, has the only other contact
point of the sphere with £. Here again we will just write r* instead of r*(p) when it is clear from the
context. We recall we have r* < 1 for all p € € and r* K% on Z and only on Z.

Since a spheroid is a convex surface no point has outward symmetrical point. By symmetry, p and p

have the same principal curvatures. At p, the medial plane Pyreq has equation:

Pred : 2 =1+ xtan(d,),

where 0, is the angle in [0, T] between T¢(p) and Pyreq. The equation does not involve the y coordinate
since, for this surface, 3 = 0 in the Monge coordinates system of p.

At some stage of the chapter, we will be interested in some geometric quantities on £ at p with respect
to the distance of p with Z. To simplify, since £ is a surface of revolution, we assume without loss of
generality that p = (up,0,w,) with u, > 0, and w, < 1. Thus, the geometric quantities will be expressed
with respect to up.

13.2 Overview of the proof

We present, in this section, the lemmas that lead to our result: The 3D-Delaunay triangulation of a
Poisson point process distributed on a prolate spheroid has a linear expected size. The lemmas are
proven in the following sections.

Reminder of the general idea
We recall briefly the general idea of the proof: to obtain an upper bound on the expected size of
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the 3D-Delaunay triangulation, we consider a super-graph of the Delaunay graph, simpler to study, and
compute an upper bound on the degree in this super-graph. As explained in Chapter [2] the number of
Delaunay edges also bounds the number of triangles and tetrahedra. Since the number is the half-sum of
the degrees of the vertices of the graph, we actually compute an upper bound on the expected degree of
the vertices. In the Delaunay triangulation, two points p and ¢ are neighbors if and only if there exists
an empty sphere passing through those points. Like in the previous examples, we will reduce our study
to a finite number of spheres passing through p and q. We will choose those spheres such that their
intersection with the surface has an area large enough to obtain the required expected degree. The choice
of spheres will provide a partition of the bisector plane Pgis(p, ¢q) of p and ¢, defined by the centers of
the spheres. Each tile of the partition is associated with a region of the surface depending on p and gq.
By the Combination and Partition lemmas, we then claim that the empty region graph based upon the
regions is a super-graph of the Delaunay graph. Depending on the precision of the bound on the degree
of p in Del({p} U X) we want to obtain, we will consider different partitions. To simplify the notation, we
will denote by deg(p), the degree of in the Delaunay triangulation. If the graph G in which we express
the degree is not the Delaunay triangulation, we will mention it like this: deg(p, G).

We present now the main lines of the proof. First we consider a point p € £ for which we will
compute an upper bound on the degree. In a first section, we bound the number of expected neighbors
in a close neighborhood of p. Unfortunately, the size of this neighborhood goes to 0 when p goes to Z.
Consequently we bound again the number of expected neighbors in a greater neighborhood of p, that we
call middle-range neighborhood, the bound we obtain is less precise but still sufficiently small. Then we
will divide the spheroid into a part far enough from Z where the degree of a point is O(1), and a part
around Z, where the degree of a point depends on its distance with Z. Finally we sum up all results to
obtain the expected number of edges.

Main lemmas
We recall that k1, ko and r* depend on p. We define 3, =

1—kyr*
1—kKor*

that also depends on p. It can be

seen as the aspect ratio of the elliptic-like region defined by the intersection of £ with a sphere passing
through p and close to its medial sphere. Note that we will prove in Lemma that B+ = O(up).

We start in Section [I3.3] to prove that a point ¢ that is far enough from the medial sphere o* of p
has low chance of being a Delaunay neighbor of p. This is proven in Lemma [I3.7] That induces that the
neighbors of p are close to £ N B(c*), and so are close either to p or to p.

The next lemma provides an upper bound on the expected number of what we call the close neighbors
of p. We denote by CN(p) the set of close neighbors of p. The points in CN(p) are either close to p or
close to p. We do not describe CN(p) here, it is precisely defined in Section m For now, keep in mind
that it is the union of two axis-aligned rectangles on &, centered on p or p, and with sides Q(5,+) and
Q(B2.) along the principal directions of p and p. This lemma is proven in Section

Lemma 13.1. Let £ be an oblate spheroid and X a Poisson point process distributed on £ with intensity
A. For any p € £\ Z, the expected number of close neighbors of p in Del(X U {p}) is:

0] (ln ﬂi*) .

That being said, some points that are not in the close neighborhood of p may be neighbors of p
nevertheless. We prove, as a corollary of Lemma applied to points outside CN(p) that such neighbors
exist with low probability.

Lemma 13.2. Let £ be an oblate spheroid, p a point of £, and X a point set on € whose restriction
to the close neighborhood of p is a Poisson point process with intensity X. The probability that p has a
neighbor in Del(X U {p}) outside the close neighborhood of p is:

10
—uy, Q(N) 1
{e P ()qupSQNsup’

e N otherwise.
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The expected numbers E [deg (p)] of neighbors of p could then be counted this way:

Eldeg ()] =E| Y Lipgevaxumn| TE| D Liwpaene (xuim)
gEXNCN(p) g€X\CN(p)

0 (ln ﬂl*) +A P[(p,q) € Del (X U{p,q})]dg
" q€E\CN(p)

<0 <1n Bl*) + )\/ P [p has a neighbor outside CN(p)] dgq.
" q€E\CN(p)

Thus, as long as p is far enough from Z, we can bound ,+ from below by a constant and the expected
degree of p in Del(X U {p}), given by

E [deg ()] = O (In

1

7, ) + e OO,

is bounded by a constant and the total number of edge with an endpoint far from Z is linear.
When p approaches Z, the expected degree of p in Del(X U {p}) is given by

E[deg (p)] = O <ln ﬁi) + de U 2,

and, to obtain the total number of edges, we may be tempted to integrate this value with w,. Close to Z,
remind that .« = Q(u,). The global number of edges with an endpoint close to Z is given by a half of
the sum of the degree of such points. Suppose that we only count the number of edges with an endpoint
p such that |uy| < ﬁ The expected number of such edges is given, up to a constant factor, by:

1
2Ksup 10
/\/O (n & + 2e "2 ) du,

1
If the term A [, (ln ui) du, remains linear with A, it is unfortunately not the case for the term
P

1
/\foks“" )\e_"zlﬂoﬂ()‘)dup that is © (A%> This is not so surprising since, as p approaches Z, the second
order of f, is not sufficient to make a significant difference between the oblate spheroid £ and the prolate
spheroid with same curvatures, and for which we expect a super linear triangulation. Actually the
behavior of the Delaunay triangulation should be similar than its behavior on a cylinder, where r* = ,«%
In other words, we may be able to find a logarithmic bound on their number of neighbors. On the other
hand, the farther a point is from Z, the less the spheroid locally resembles to a cylinder, and we may
be able to use the previous bound to measure the closeness of the degree with the logarithmic bound,
with respect to the distance to Z. As a consequence, we need to consider differently the analysis of

the expected degree for points close to Z. Since this bound makes sense close to Z, we decompose the
1 1
spheroid into two parts: Z 17w = {p € €, lup| < 52—}, and &\ AR
sup
1
By Lemmas and we can already claim that a point p in £\ Zt 7w has expected degree
O(1). The following lemma provides an upper bound on the expected number of neighbors of a point p in

77 We consider a second specific neighborhood for p, made of what we call middle-range neighbors.

We note it MRN(p), it will be precisely defined in Section for now, keep in mind that it consists

only on points that are not in CN(p), are farther than p from Z, and at a distance O(1) from p or p.
The following lemma states a bound on the expected number of middle-range Delaunay neighbors of

. 41
a point p € Z ' 2rsup .

Lemma 13.3. Let £ be an oblate spheroid, p a point onJr T , and X a Poisson point process distributed
on & with intensity . The expected number of middle-range neighbors q of p in Del(X U {p}) is:

O(In N)e™ " @)
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A noticeable difference with the bound from Lemma is that the middle-range neighborhood
remains large enough around Z. It is proven in Section [I3.5]

We finish the part-wise analysis by bounding the number of the remaining neighbors of p for p close
to Z, those that are not in CN(p), neither in MRN(p). We call them the far neighbors and note the
neighborhood FN(p).

Lemma 13.4. Let £ be an oblate spheroid, p a point of z" T , and X a Poisson point process distributed
on € with intensity A. The expected number of far neighbors of p in Del(X U {p}) is:

eV,

Finally we obtain an upper bound on the expected number of edges by integrating those bounds on
the spheroid €. Following those lemmas, we have the decomposition:

E[Del(X)] = 5 ) E[deg ()]

peX
=3A E [deg (p)] dp
pe&
:%)\/ L E[deg(p)]dp+%k/ .1 E[deg(p)]dp.
pEEN\Z  2Fsup pez” ZRsup

1
For all p € £\ z" Zrsup - we decompose between the neighbors that are in CN(p) and those who are
not:

E[deg (p)] = E[#{(p, q) € Del(X)}, q € CN(p)] + E[#{(p,q) € Del(X)}, g ¢ CN(p)]
=0 (ln %) + Xe M by Lemmas [[3.1] and [[3.2]

1
= O(1) since min  (f,) is strictly positive by compacity of £\ A=Y

+
pEE\Z 2Ksup

1
Forallp e Z t o , we only count edges from p to g such that p is closer than g to Z. That corresponds
to an orientation of the Delaunay triangulation, that we denote by Del. Note that > gl deg(p) <
pEZ Zrsup
—
2% 1 deg (p, D—ei>
JUS

Z+ 2Kksup

E [deg(p. Del)| < E[{(p.a) € Del(X)}, ¢ € CN(p)) +E [£{(p,0) € Del(X)}, q € MNR(p)

+E[#{(p,q) € Del(X)}, ¢ € FN(p)]
-0 (1n ui) FO(InA) e 2N 4 22N by Lemmas [[31] [[3:3) and [34 .

Finally we can get an upper bound on the expected size of Del(X) by integrating the expected degree

1
over £. Note that to integrate on p € Z 7" e , we parameterize p by u, that we integrate on [0, %],
sup



13.3.  On the probability of existence of neighbors far from the medial sphere. 111

and multiply the integral by the length |Z| of Z that only produces a constant factor.

EEDACOl < 2 [ Eldestlp A [ € [Tl D] ap

peE\Z+2*‘"5up peZ " Zrsup

<A L OoMdp+A | (0 (m 7}) FO(InA) e w2 +)\e’Q(A)> dp
VAR pez’ T v

< €l + O(1Z)A (o (m 7) +O(In)) —“5’9(”) du, + AQ/ e Mg

+ 5=
up€[0 ] peZ  Zesup

’ 2Fv<up

In 2du, + O (Aln ) / e YN dy, + N\2e=2)
p up €[0 ]

<o) + O(A)/

up €[0

’ 2"‘sup ]

=0\ +0(\)+0 (m In )\) FAZe 20
0

) Zhgup

that proves the following theorem:

Theorem 13.5. The 3-dimensional Delaunay triangulation of a homogeneous Poisson point process
distributed, with intensity A, on any oblate spheroid, has expected complexity ©(\).

The proofs of the lemmas stated above are given in the following three sections: the first one computes
the probability that a point p has a Delaunay neighbor far from its medial sphere, this computation will
permit to bound the number of neighbors that are not in the neighborhood CN(p). In a second section, we
prove Lemma that bounds the number of neighbors of p in CN(p) and Lemma that bounds the
probability of existence of Delaunay neighbors of p outside CN(p). This section is quite long and tedious
in computation. Fmally in the third section, we prove Lemma [13.3| and Lemma [13.4] that respectively

bound, for p € Z7 o , the number of neighbors of p in MRN(p) and in FN(p).

13.3 On the probability of existence of neighbors far from the
medial sphere.

We prove in this section that a point p has a low probability to have a Delaunay neighbor far from its
medial sphere.

On regions included in sphere passing through a point ¢ far from o*.

We use the Monge coordinates system of p. We call ¢* the inner medial ball of p. We consider a
positive number 4, and ¢ € £ a point at distance greater than ¢ from ¢*. We compute an upper bound on
the probability with respect to § that ¢ is a Delaunay neighbor of p in a Poisson point process distributed
on £.

Still denoting by B(c) the ball for which o is the boundary, we prove the following lemma:

Lemma 13.6. Let 0 < § < 2;/5 and q € &€ at distance greater than 6 from o*. If a sphere o passes
oup

through p and q then B(o) N E contains either a region whose projection on Te(p) is a disk with radius

min (\fé Linf 8, 4 cos (0,

Ksup

)) and with p on its boundary, or a region whose projection on Te(P) is a disk
with radius min (16, 2 cos (6,)) and with p on its boundary.

Proof. We divide the proof into two parts, the first one for z. > 0 and the second one for z. < 0. Since ¢
is at distance greater than § from o*, we consider the ball B¥(c*), centered at ¢* and with radius r* + 6,
outside of which lies q.

In both cases, we prove that the center of the sphere o is significantly shifted with respect to the lines

(pe) or (pe”).
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B+5(O_*)

Figure 13.2: The center ¢’ of the shrunken sphere ¢’ from p lies on the spheroid Prs. Indeed, the sum of
distances |pc’| + |¢/c¢*| is constant equal to r* + §, and that defines a spheroid.

If z. > 0.
We show, in that case, that ¢ can be shrank toward p into a smaller sphere that remains both great
enough and shifted enough from the normal, either at p or at p.

The first thing to note is that, since ¢ is outside B+%(c*), and since o passes through ¢, then o
intersects the boundary of BT%(s*). Thus we can shrink ¢ toward p, until it is tangent to the boundary
of BT®(c*). We call ¢’ this new sphere and ¢’ = (., Y, 2¢) its center. This sphere passes through p,
and is included in o but does not pass through ¢ anymore. As explained in Figure the center of o’
lies on the prolate spheroid Prs with focuses p and ¢*, and great axis r* + 4.

The projection of the intersection of B(c’) with £ is locally given by E. (z,y) < 0 where:

Ec/(x’y) = x2 - 2£L’ZC/ + y2 - 2yyc/ + (fp(x,y))2 - QfP(xay)Zc’

< x2 - 2371‘01 + y2 - nyC' + (fp(xay))Q since — 2fp(q"7y)zc’ < 07
< a? = 2zze +y? = 2yye + (Keup(2? +37))°
< 22% — 2rwe + 2y° — 2yyer for 22 4+ 9% < K%,

sup

where the equation:
22% — 2x20 + 2y* — 2yye <0,

is the equation of a disk passing through p and centered on (%ach, %yc/), i.e. with radius %\/xg, +y2.
We show that, either this quantity is bounded from below with d, or B(¢’) N € has a large enough area
around p.

We consider the following two cases:

e The first case is when p is in the cone C*% with vertex ¢*, growing upward in the direction pc*,
and with angle . In that case, p is roughly above p. It actually corresponds to the case 0, < %.
Consider the cylinder Cyls around (pc*) with radius 8. If ¢ is outside Cyl s, then /a3 +y2 > g,

and 7, (B(o’) N &) contains a disk of radius % according to is said above.

Conversely, if ¢’ is inside the cylinder Cyl 35 then it lies on the roof top of Prs, more precisely, inside
the cone Cx . The distance Ipc’| is greater than r* + §. But since ¢* € Cx N Prs, we have [pe*| < r*,

because of the angle of the cone. And consequently, ¢’ contains a sphere centered on p with radius
%, that it-self contains a sphere centered on the tangent plane of 7¢(p), with radius g, and whose
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intersection with the surface around P, has a projection on 7¢(p) that contains a disk of radius 1675
passing through 7 as long as § < —1—.

Ksup

ﬁeC%

Note that in the figures we made, everything lies in the same plane, but it is not the case in general.

e The second case is when p is not in C%. We consider two cylinders Cyl; and Cyl, of radius t,
respectively around (pc*) and (pc*). We show that we can choose ¢ small enough such that their
intersection lies inside Prs. Recall that we named 6, the angle between the tangent plane of p and
the medial plane of p. By construction, the furthest point of the intersection of the two cylinders

from ¢* is at distance 0057(59 5. S0 we choose t = ¢ cos (0)), and then if o’ is centered on Prg, its
p

center is either outside C'yl;, or it lies above the medial plane, and then is also outside C'yl,. Thus
we have:

— either ¢’ is outside Cyl;, then the projection of B(c) N E on Te(p) contains a disk passing
through p with radius $ cos (6,),

— or ¢ is inside Cyl; and then above the medial plane so o’ can be shrank from ¢’ until it passes
through p, while its center is still outside Cyl,. Then the projection of B(c) N E on T¢(p)
contains a disk passing through p with radius % cos (6,).

PECsy P#Cy
c ¢ Cyl,

If z. < 0.
Consider a point ¢ € € outside B*(c*) and consider a sphere passing through p and ¢, and centered
below T¢(p). Consider the set of points on £ at distance § from p. Since § < 2&@, they form a topological
sup

circle around p on £. By convexity of £ and because z. < 0, the sphere ¢ intersects the set of points at
distance §. So we can shrink o toward p into ¢’ until all points of o’/ N £ are inside the set of points at

distance smaller than ¢ from p and, in particular, until they verify 1/x2 + 32 < gnsup. So at least one
point of 0 N & verifies y/22 + y2 = %ﬁ
sup
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The expression of the projection of the intersection B(c’) N € around p is given by Eu(z,y) < 0
for B (z,y) = 2% — 2zx0 + y* — 2yye + (fp(2,9))? — 2fp(2,y) 2. We search for a region that contains
E.(z,y) <0. So we show a lower bound on E. (z,y), for this purpose, we introduce the absolute minimal
curvature kin¢ of £ and a lower bound on any Monge patch: f,(z,y) > %ﬁ;inf(mQ +y?):

Ec’ (.T, y) = :L'2 - 2(E.Tc/ + y2 - 2yyc’ + (fp(xay))2 - 2fp($7y)zc/
> 2% = 2wxe + Y7 — 2y — 2fp(7,y) 2
> 2% — a0 4+ y? — 2yye — /{inf(xz + y2)zcr7 since zo <0
> (1 = Kingze ) 2% = 2020 + (1 — King2e )Y? — 2yyer,

where (1 — Kint2ze )% — 2$£L'C/ + (1 — Kintze )y? — 2yye = 0 is the expression of a Circle passing through
p and with radius {—==—< K' fj <. Since ¢’ N & contains a points such that /22 + y? ,
VT Yo VT /+y N > \f

1=FintZes = 2aup

On the other hand, we compute an inner region of the intersection B(c') N E:

Ecr(l‘,y) =z’ - 2zxe + y2 = 2yye + (fp(xay))Q - pr(xay)zd
< 2% —2zx. +y* — 2yye + (nsup(xQ +9%))?% - 2/<esup(x2 + 9?) 2 since zo <0,

<z? —2xxy +y* — 2yye + 27 + y? — 2keup (2% + )20 for 2% 4+ 47 <

R&up

=2(1 — Fgupze )22 — 2220 + 2(1 — Kgup2e )Y — 2YYer,

where
2(1 — Ksupze )1% — 2020 4+ 2(1 — Ksupzer )y? — 2yyer < 0,

Ve /"l‘y ’

1—Ksupzer *
So if a sphere o with z. < 0 passes through a point ¢ at distance greater than J from ¢*, it contains

2 2
a sphere ¢’ centered on ¢’ and verifying Voo %5 , and the projection of B(c) N E contains a disk

1—Kinfzor —
VYo C’+y’ but:
—Kg

pZet ]

is the equation of a disk passing through p and with radius 1 5

of radius 2 57

1 \/J}?, + ?J?/ _ 1 \/xg/ + ygf 1- RinfZc! >

2 2 =
1- RsupZe¢! 1- Rinf Z¢! 1- RsupZe¢! 1- RinfZ¢! Ksup

2 2
vV Lo + Yer Kinf \[5 Rinf

8
"isup
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On the probability of existence of far neighbors.

We use Lemma[I3.6] and adapt the proof of Lemma [0.1] from Part [[I, Chapter [J] to prove that a point p
has neighbors at distance from o* greater than 6 with a probability that decreases exponentially quickly
with 4.

Before introducing the new lemma, we consider the number v := min (ﬁ Rint § 0

8 Feup 07 167
a lower bound on all possible sizes of radius of the disks used in Lemma [13.6] Then we consider the
isosceles triangle in 7g(p) with vertices p, (v/27,0) and (v,7), its seven copies around p such that they
cover an octagon, and their symmetrical triangles on T¢(p) with respect to Pyeq. That makes a total
of 16 triangles around p or p. We call F{ (p) the family of fundamental regions made of their reciprocal
projection on & by ! for the triangles on T¢(p), and by T ! for the triangles on Tz () (see Figure EI)

Note that the area of each region is greater than g'yQ.

g cos Hp), that is

Lemma 13.7. Let 0 <6 < V2 Tet X be a data sample distributed on € and, p and q in X. If q is at

2Ksup
distance greater than § from o*(p) and if (p,q) is an edge of Del(X), then (p,q) is an edge of 6%@ (X).
0
If X is a Poisson point process distributed on € with intensity X\, the probability that the point p € X has

some Delaunay neighbors at a distance greater than § from o*(p) is smaller than 16~ 257",

NSl

&
N
)

Figure 13.3: On the right, the 8 triangles around p in T¢(p). On the left the 8 triangles around P in
Te(p). Their reciprocal projections on € compose the family F{ (p).

Proof. Let g be at distance greater than ¢ from o*(p) and let o passing through p and ¢. Consider the
intersection r = B(o)NE, and its local projections 7, (r) and 7 (r). By Lemma either m, (r) contains
a disk of radius v with p on its boundary, or 75 (r) contains a disk of radius v with 7 on its boundary.
Then we can adapt the proof of Lemma with 27 in place of ¢ and the 16 regions of F; (p) such that
one them is contained in B(o) NE.

We deduce that:

P3¢ € X, (p,q) € Del(X U {p}) | dist(q,0*) > ] <P[Iq € X, (p,q) € Del(X U {p}) | dist(q, {p,P}) > ]
<P[3tr e FJ(p),trNn X = 0]
< 16eNET,
O

At the end of Section we will use this lemma to quantify the probability a point ¢ ¢ CN(p) is a
neighbor of p. To use it, we need a relation between the fact that ¢ ¢ CN(p) and the distance of ¢ from

*

ag.

On the dimension of the intersection B1(c*) N E.
It remains to know that, if ¢ ¢ CN(p), then what is its minimal distance from o*.
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Thus, we consider the slightly augmented medial sphere B+9 (¢*) and compute its intersection with
. The equation of the projection of £ N BT (¢*) is given by:

Ej(z,y) <0,

where Ef(z,y) = 22 +y® + (fo(x,y) — r*)* — (r* + 6)°. We bound from below the expression E} (x,y) to
obtain an including neighborhood:

Ei(z,y) = 2 + 9* + (S, 9))? = 2" fy(w,y) + 172 — 172 = 25 — 57
> 2% +y* — 2r* fp(,y) — 361" since (fp(x’y))2 >0 and § <7

we use the form f,(z,y) = 3122 + Lroy? + tms2® + Ry (z,y):

Ej(x,y) > 2” +9° + (fo(2,9)® = 2" (3r12° + Sray” + &ms 0a® + Ry (w,y)) — 307"
= (1 —k1r*)a? — 3r*mg02® + (1 — kor*)y? — 2r* Ry (z,y) — 367"
for |z < iz —Lptmgg|ad] > — (1 — k1)2? — $(1 — ka)y? so:

* )
T"ms.o

Ej(z,y) > 2(1 — kir*)a® 4+ 2(1 — kor™)y® + —2r* Ry (z,y) — 367"

and, since | Ry (2, y)| < (22 +y?) (Maly| + 51 Maa?), we can say that for [y| < i;fl&d and 2% < 271;'”;\}[’: ,
—|2r*Rsy (z,y)| > —%(1 — Kyr*)a? — %(1 — Kar*)y?, and so:

Ej(z,y) > 2(1 — kir*)a® 4+ 3(1 — kor™)y® — 361",

But we can recognize, in %(1 — K)o + %(1 — kar*)y? — 36r* = 0, the equation of the axis-aligned

and great axis 6 1_‘5,:;,* (and then small axis: 6 1_52;* ). To be able

ellipse with aspect ratio %*"1’“*
—R2T

to consider the full ellipse we need to take d small enough so that it fits inside the rectangle:

. V2 1—kir* 1—kyr” ; V2 lomyrt
{|1‘| < min <2Hsup’ r*m3o’ 2 * My ’ |y| < min 2fsup 121" M3 ’

that is inside all neighborhoods used above. What is important to note here, is that the rectangle and
the ellipse have the same aspect ratio when p approaches Z, namely Q(y/1 — k17*) as we will show in
Section Consequently, for any ¢ small enough, £ N B*? (¢*) is inside CN(p). In other words, we
can say that if ¢ ¢ CN(p), then we can find a J such that ¢ is not in the ellipse:

(1 = kr)a? 4 3(1 — kor™)y® < 3617,

proving that ¢ is at distance greater than ¢ from o*.

13.4 Expected number of close neighbors (Proof of Lemma [13.1)

In this section, we give an upper bound on the expected number of Delaunay neighbors of p that lie in
CN(p). We study the intersection of £ with specific spheres passing through p and a second point ¢ on
&. These intersections can have various shapes that depends obviously on the center of the spheres but
also on p and more specifically on its principal curvatures k1 and ko, and its medial radius r*. We briefly
recall that, in this section, we use the Monge coordinates system of p, in which the x and y axis lie in
the tangent plane of £ at p, and the normal is oriented inward &.
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13.4.1 General scheme

To compute an upper bound on the expected degree of p, we consider an empty region graph that is a
super-graph of the Delaunay triangulation restricted to points close enough to p. For each pair (p, ¢) with
g € CN(p), we denote by Fi(p, q) the set of associated fundamental regions. In Section we define
those regions, in Section [13.4.3] we identify which spheres are sufficient to apply the Combination lemma,
in Section we spell out the partition of the bisector plane of p and ¢ that allows us to prove that
g}’;l is indeed a super-graph of the Delaunay triangulation, and in Section we compute the upper
bound on the expected degree (Lemma . Finally, in Section we complete Section to
give an upper bound on the probability of existence of neighbors of p that are not close to p, proving
(Lemma [13.2)).

In order to use the Partition lemma to prove that the Delaunay triangulation is indeed a sub-graph of
the empty region graph associated to F7, we have to define Fi, a finite subset of intersections of £ with
spheres passing through p and ¢. By analogy, in 2D we used the Gabriel sphere and the two half-planes
to define the half-moons, here the situation is a bit more complicated so when we will have defined the
specific spheres, the regions of F; will be conservative approximations of the intersection of these spheres
with &.

More precisely, the ball B(o.) inside a sphere o, of center ¢ = (2, Y., 2.) passing through p = (0,0, 0)
has equation:

% — 2xx. + y2 — 2yy. + 22— 222, <0,

and, in a neighborhood of p, £ is the graph of a function f,(x,y). Then it is convenient to work in the
tangent plane T¢(p) where the projection of the intersection B(o.) N E has equation

Eo(w,y) =2 — 2z + > — 2yyc + f7(2,y) — 2fp(2, )2 < 0.

Using a Taylor expansion of fy(z,y):

Fol,9) = gmia® + Sroy + 0@ +°),
it is possible to rewrite E. and split it in three terms, one linear in z, y, one quadratic in x, y and a rest of
higher degree. The linear and quadratic terms give the equation of an ellipse approximating m, (B(c) N &)
but without any certainty of inclusion. So the rough idea is to identify a neighborhood in which we can
bound the remaining higher degree term by a fraction of the quadratic term to obtain an expression
greater than E, that defines a smaller ellipse, tangent in p that is certainly inside m, (B(o.) N E).

13.4.2 Description of the regions of F; on the spheroid

Before giving clearly the regions of F;, we show a rough approximation of the behavior of the intersection
of a sphere passing through p and the surface €. If we substitute f, in E.(z,y) and gather the quadratic
terms, we obtain:

Eo(z,y) = (1 — k120)2® = 222 + (1 — Koze)y® — 2yy. + O(2® + y°).

The equation E.(z,y) < 0 describes a region that approaches an axis-aligned ellipse with aspect ratio

1=rmize gnd center Lo W ),
1—kKoze 1—kK12c? 1—Koze

We deduce some specific regions on T¢(p) or T¢ (D)

o If z. goes to —oo, the projection my(r.) of r. = B(o.) N & resembles to an ellipse axis-aligned with
aspect ratio f.o, = ’;—; Conversely if z. goes to +00, m,(r.) will approximate the complementary

of the above mentioned ellipse.

o If z. is close to 0, m,(r.) resembles to a disk.
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e If c is on Pyreq, then the sphere passes also through p and has one connected component close to p
and one close to p. If in addition (x.,y.) is close to (0,0) then z. must be close to r*, and m,(r.)

1—kir*
1—kor*

will resemble to an axis aligned ellipses with aspect ratio B« = passing through p, while

mp(re) will be the symmetrical region of mp(r.) with respect to Pued.

e If 2. is finite but z. or y. are not, that means that the sphere degenerates into a plane orthogonal
to the tangent plane 7¢(p) and that the boundary of m,(r.) is the line (pg).

Regions included in the projection of the intersection of £ with a sphere.

We consider now a point g € £ close enough to p, in the sense that ¢ € CN(p) and closer from p than
from p. We recall CN(p) will be precisely described in the next section. Assume that o. passes also
through g. We need to have a quantification of the area of B(o.) N & according to the position of ¢ with
respect to p. More precisely we obtain a lower bound on the area of those regions by showing that their
projection on Tz (p) or T¢(P) contains a specific ellipse.

We list here those specific ellipses with respect to p and ¢, and other regions that will be used as inner
regions. The regions that are projections on 7¢(p) are denoted with bar above them.

e cll*(p, q) is the axis-aligned ellipse on T¢(p) passing through p and H%(Q), centered on H%(Q),

and with aspect ratio a > 0. It is parameterized by the equation:

ell*(p, q) : 2a*2? — a*xx, + 2b%y* — b?yy, < 0, with )%‘ =a.
As examples, below are the ellipses ellz (p,q), ell! (p,q) and ell? (p,q):

™(q)

(q) m(q)

1 2
ellz(p, q) ell'(p, q) ell*(p, q)
p
p p

e cll%(p,q) is the axis-aligned ellipse on T¢(p) passing through 7 and ﬂ%i@, centered on m%@

)
and with aspect ratio a. It is the symmetrical ellipse of ell®(p, q) with respect to Ppyeq. On the

figure below are illustrated ellz (p,q) and ell%(p7 q), each on their plane separated by Ppfeq, in red.

7(q) 7(q)

- 1
el (p, @) S ell>(p, q)

e th”(p,q) is the rhombus whose vertices are 2 and y extreme points of ell! (p,q) Nell*(p,q). Using
notation from Section E we have th®(p, ¢) := Rh® (p, %@).

To give an upper bound on the size of the 2D-Delaunay triangulation, we cut the Gabriel disk of
two points into two half-moons that have the property to be included in any disk with p and ¢ on its
boundary. We mimic this splitting and consider the following half-regions:

e Theline (p, m,(q)) separates T¢(p) into two half-planes: HP,(p, ¢) that contains 7, (p), and HP,(p, q).
They are denoted with ¢ and r for left and right because we assumed that u, > 0 in the global
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frame, and thus, m,(P) is on the left. Note that left and right are not related with a side of pm,(q),
unlike in the 2-dimensional cases that we saw in Part [[Il

We consider the halves of ell®(p, ¢) and rh®(p, q):

— elly(p,q) = ell*(p, ¢) NHP¢(p, q) and ell(p, q) = ell*(p,q) "HP,.(p, q),
— thy'(p, q) = th*(p,q) NHP(p, ¢) and rhX(p, q) = rh(p, q) N HP..(p, q).

e We also consider the same separations for ell®(p, ¢) where ellf (p, q) is the symmetrical of ell§ (p, q)
with respect to Pyeq and ell(p, g) is the symmetrical of elly (p, q).

At some point we will need to consider the degenerate ball whose boundary is the plane passing
through p, ¢, p, and consequently g, and that verifies z. > 0 in the Monge coordinates system of p. We
will denote this sphere agyolfl. Its intersection rgyﬁ with £ is the complementary of an elliptic shape and
its projection on Tg¢(p) is not convex. In order to apply the Combination lemma, we will need to consider
the intersection of ﬂp(rgyori) with rh¥(p, q).

. r~hf (p, q) is defined as ﬂp(rs’yﬁ) Nrhy (p, q). We will show that the part of rhy(p, q) cut by ﬂp(rs‘yﬁ)
is actually negligible.

e Finally we consider E(p7 q) defined as Wp(rgyo;) Nell%(p,q).

For u € &, we denote by 7, ! the reciprocal function of the projection m, in a neighborhood of u on
E. Then we consider the family Fi(p, q) of regions on &:

ot (rhf"” (», q)) L (rhf‘“’(n q)) ! (rhf"* (p, (I)> L (fth (p, q)) :

1 (1B -1 (P
Lo (ellfr (p, q)) 5! (ellr (p, Q)>

Fi(p.q) =

For points ¢ close to p, this defines the directed graph 6]91 The goal is now to prove that, ]@1 is
a super graph of the Delaunay triangulation for pairs (p,q) close enough, and to compute the expected
degree of a point p in this graph. When ¢ is close to p, we will use an argument to show that a sphere
passing through p and ¢ contains a region of Fi(p,q) or Fi(p,q). This closeness relation between p
and ¢ will be expressed by ¢ € CN(p) where CN(p) denotes a neighborhood on £ around p or p. This
neighborhood will be constructed all along the proof.

13.4.3 Choice of specific spheres for ¢ on the side of p with respect to Pyeq

We have to prove, using Combination lemma that any sphere passing through p and ¢ contains at
least one of the regions of Fi(p,q), making le a super-graph of the Delaunay triangulation by the
Partition Lemma. In order to apply those lemmas, we choose specific spheres whose centers will guide
the partitioning of the bisector plane Pg;s of p and q.

Some of the centers we consider are finite, and their sphere are usual sphere, but some others have
to be seen as directions at infinity, and their sphere are actually half-space whose boundary is the plane
passing through p and ¢ and that is orthogonal to the direction of the center. A finite center can be
defined as intersection of three planes, one of them being obviously Pgis. Among the two others, one
is chosen to determine the value of z., while the other is chosen to determine the direction of tangency
of the intersection at p. That last plane will be determined by its equation in the Monge coordinates
system . An infinite center can be seen as one of the two infinite extremities of the intersection of Pgis
and a second plane that is not parallel. Since all centers are at least in Ppg;s, reference is only made to
the other plane(s).

We list below the spheres and, through a claim, show up the fundamental region on £ that is inside.
A sphere o, its center ¢, and its intersection r with £ are denoted with the same indices and exponents if
there are any. We consider eight specific spheres (or half-space), and their associated claims. Most of the
claims are proved following the same scheme: we compute the exact coordinate of the center of the sphere,
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and we substitute the coordinates in the inequality. The exact coordinates usually have a complicated
coefficient named C,; that we put in factor of the equation. We bound by below this coefficient. Then we
bound the remaining terms by the quadratic terms.

Sphere o1,y

The center croy is in the tangent plane T¢(p) whose equation is z = 0, and in the vertical plane Ppoy
with equation yz, — 2y, = 0. The equation of the second plane guarantees that the projection of the
intersection region m, (rLew) = B(o7) N € is tangent with elll(p, q). The more q is close to p, the closer
is the sphere oy, to the Gabriel sphere of p and gq.

The surface £ and two points p and ¢, and the The 3 three planes whose intersection is cyow:
tangent plane Tg(p) at p in yellow. Te(p), Pris in blue, and Prow : 2yq — yzqa = 0
in green.

The sphere ooy centered at cpow and passing The projection of the intersection in green, and
through p and gq. ell' in blue.

We consider the neighborhood Viow(p) = {max (|z|, |y|) < 3ksup}, and the following claim:

Claim a. If g € 1, (Viow(p)), then m, (rLow) contains ell*(p, q).
Proof. The center cyo of the sphere oy, is at the intersection of the three following planes:

e The bisector plane of p and ¢, with equation:

T Y z
0= (2 —w)zg+ (2 —yyy + (2 - 2),

e The plane tangent to £ at p, with equation:
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e The plane with equation:
0 =2y, — yxq.

The center cpow = (Z¢, Ye, 2c) verifies then z. = 0 and y. = i—“xc. We compute z. using the equation
q
of the bisector plane:

0= (5 —wrg + (5 — oy + (3 — )2,
and then:
_ Tty tzia,
S a2y 2
:< +x2z+‘? 2) 2,
a7 Yq
and:

We consider the points (z,y, z) of £ close enough to p to be parameterized by (z,y, fp(x,v)), i.e. at
V2

a distance smaller than 5
sup

from p. 7,(rLow) can then be described by the inequality Er(z,y) < 0
obtained by substituting f,(z,y) to z in the equation of opow:

Erow(z,y) = 2% — 2220 + 4> — 2yye + (fp(2,9)) — 2fp(2,y) 2

2 Zg 2 23 2
=z —z|l1+——"— xq+y ) 1+ 2 yq+(fp(x7y)) ’
q

2 .2 2
Tg T Yg Ty 1Y,

since z. = 0.

2
We note Cy =1+ xzziﬁyz and rewrite Epow(2,y):
q q

1
ELow(xvy) = Cq <

1 1
c) 2 —zxg + a}?f “ut e (fp(:c7y))2) :

Since 0 < 1 < (4, it is clear that:
Erow(z,y) < Cy <x2 —xxg + 4y — gy + (fo(z, y))Q) .

As seen in Section for 22 +y? < -}, we have |f,(x,y)| < Ksup(2? +y?) and then we can bound

2 9
Ksup

the remaining term (fp(z, y))2 this way:
2
(fp(xvy)) S H/gup(xQ + y2)2
< z? 492

and finally we have:

ELOW(x?y) < OCI (2‘1:2 — Txq + 2y2 - ny> ’

but since Cy > 0, Cy (22% — zz4 + 2y — yy,) < 0 is the inequality of a a disk passing through p and

centered on H%(Q).

This proves that the projection of rpq, on Te(p) contains ell*(p, ¢) for points that verify /22 + y2 <
$7 but if 7,(¢) € Viow(p), it is the case of all points of ell' (p, ¢) and thus 7 (rLoy) contains ell' (p,q). O
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Sphere opjeq-

We named this sphere oyeq since it tends to the medial sphere of p when ¢ goes to p. The center cpreq
is in the plane Pyeq and the plane Pg . with equation y(1 — k17*)zqy — (1 — Kkor*)y, = 0. The center
cMed = (Ze¢, Ye, zc) verifies that z. is close to r* when ¢ is close to p. Since cpeq belongs to the plane
Prted, the intersection is symmetrical with respect to Pyeq. Moreover, since cyeq also belongs to Pg .,
the projection of the intersection region ryeq = B(oned) N E is tangent with ell®* (p, q) at p.

Two parts of £ around p and P, and their medial The 3 three planes whose intersection is cpfed,
plane Pyreq in red. Ps,. : (1—k1r*)zys — (1 — kor*)yzy = 0 in green,
Pgis in blue, and Pyreq-

T(p)
The sphere opeq centered at cpeq and passing The projection on Tg(p) of the intersection in
through p and gq. green, and the ellipse el that is included in-

side, in blue.

The computations to find inner regions are quite tedious. To simplify the computations, we give here
a lemma that can be seen as a pre-computation for the spheres centered on Pyreq. The lemma provides
an upper bound on the expression of projection of the intersection. In the provided upper bound, one
will notice that we let a remaining term, this is because this term depends on x., whose behavior varies
with ¢, and we might wait to consider the bisector plane of p and ¢ to bound it, that is not the case in

Lemma [T[3.8
We recall the Monge form of the surface at p, with the remainder R34 (z,y), from Equation

fo(2,y) = $K12° + $h2y® + tmaoa® + Ray(z,y),

with
|Rst(z,y)| < (2° +y?) (Ms|y| + 55 Maz?).
Lemma 13.8. Let p be a point on € and z = f,(z,y) be the Monge form of & at p. Let o be a sphere

passing through p and centered on a point ¢ = (X, Ye, 2c) in the medial azis Pyea of €. Let Eq(x,y) <0
be an expression of the projection of B(c) N E on the tangent plane Te(p), and Vyii.q(p) be the rectangle
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around p in Te(p):

: 1 VI=rir* 6 1—kqr”* 1—kqr : 1 Vi—kir* 1—kir*
{|m|§mln(2nsup’\/§ Sy ? 2\ 2 Mare ’316|m30|r* » [yl < min (52 ‘[ Srsup * 32Msr™ ) (-

If (z,y) € Wioa(p) then
Eo(z,y) < 3(1 — k1r*)a? — 2zwe + 2(1 — kor*)y® — 2yye — 2f,(2, y)zc tan(b,).
Proof. An equation of the ball B(o) is:
22— 2xx. 4+ 9% —yye + 22 — 22, < 0.

By substituting z by f,(z,y) for points (z,y) such that /a2 + y2? < 2,{@, we obtain an expression of
sup
the projection of the intersection B(o) N E given by E.(x,y) < 0 where:

Ec(xvy) = (E2 - 2.’££L’C + y2 —YYc + (fp(may))Q - fp(xvy)zc

Then we substitute z. by r* + z. tan(6,) since ¢ € Pued, and fp(z,y) by %me + %Hgyz + %mg’oxi” +
Rsy(x,y), but only in the term —2f,(x,y)r*

Eel(w,y) = 0% — 2030 + % — 2y + (fy(@,1))? — 2y(2,9) (" + 2. tan(6)))
=2 = 222, +y* — 2yy. + (f,(, y))2 - 2fp( )r* - 2fp(a: y)x tan(6,)
=22 — 2z, + —2yyc—2( K1z + Ii 2% + mgox 3 + R, (, y))
+ (fpla,9))? — 2fp(117 y)z. tan(6y)

=(1—ryr)a? —

r ma, 01 = 2zw, + (1 — kor™)y? — 2yy. — 2r* Ry, (z,y)
+ (fp(, ) - 2fp($ y)z. tan(6y)
< (1= kar)a® + 2 ma ol 2] — 2220 + (1 — kor™)y® — 2yye + 20| Ray (2, )]

+ (fo(2,9))* = 2fp (2, y)zc tan(f,).

We bound from above the term £7*|ms o| |22 +2r* | Rs1.(x,y)|+ (fp(2, y))? using the bounds on f,(z,y)

and R3(z,y) for /a?2 +y2 < 2;?:;)’ see Section

Ry (z,9)| < (Msly| + 5 Myz?) (2* + y°) and |fp(z, y)| < Keup(® + 7).

1—ryr™ 2 31—rir™,
For |y| < ST and % < 3 Mo

20 | Ry ()| < 20 (Mydgiae + J MG IR ) (6% +07)
20 (g5 + 1550 (a7 + )

(1= rar*)(a? +37?)

(1 — kyr)z? + %(1 — Ko ) Y2,

IA
| ool

l—kyir™* .

since k1 > ko. For 22 + 42 < o
Ksup

(fp(.r,y))2 < (ESUp z? +y )
(1= rar*)(2® + °)

1
16
%(1 — KT )332 + %(1 — ﬁgr*)yQ.

I/\ I/\
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And for |z| < gl=mr’ .

16|7TL3,0|T*

3(1—ky7r*) 2

3rimaolal® < §r¥lmgl 16mg, o7~

< %(1 — mlr*)(xQ + %)
< 11—6(1 — KlT*)ZQ + %6(1 — KoT )y2

It follows that, if  and y verify the above bounds, then:
srma oz + 27 Ray (2, 9) | + (fp(2,9))* < (1 — kar*)a® + (1 — rar™)y?.

Note that, for any positive a, the condition, |z| < %a and |y| < %a implies 22 + 32 < a2, so that

we can deduce that, in the rectangle V}; 4(p) defined by:

: 1 Vi—kir* 6 1—rkyr™ 1—rkyr* : 1 V1i—kir* 1—gir*
{|x| §m1n<2ﬁsup,\[2 S 2570,3 s ly| < min 2Ksup,\/§ =),

167*|ms,o| 8Ksup  32Ms3r
we have:
E.(z,y) < 2(1 — kir*)z® — 2zw. + 3(1 — kor™)y® — 2yye — 2f, (2, y)z. tan(d,).
O

The important point here is that, as long as p is far enough from Z (by a constant distance), the
rectangle Vy.4(p) has a size (1) x Q(1), but when p approaches Z, its size goes to 0.

We use directly this lemma for the proof of the following claim. In this claim, we consider the
neighborhood Vyf4(p) around p in Ts(p), in which m,(¢) needs to be, for our equations to be valid:

: V2 3 1—ryr* 1—rir™* 1 1—r17r”
VMCd( ) {|£Eq < min <2f~cmp’ 14 r*|mg 0|’ r*My O 7 Ksup tan9 ’ |y‘1| < min 2/<g|,p7 28 r*M;3 .

And we define Vyreq(p) as the greatest axis-aligned ellipse in Vyj.q(p) N Vyfeq(p) that is centered on p and
has aspect ratio SB,«.

Claim b. If g € 7' (Vatea(p)), then mp(raea) contains ell’r™ (p, q) and Tp(rrea) contains ell’™ (p,q).
Proof. We consider the points (x,y, z) of £ close enough to p to be parameterized by (z,y, f,(z,y)), i.e.

at a distance smaller than 2;/5 from p. Since cyped € Pued, Dy Lemma Tp(rMed) can then be
sup
described by the inequality Fyea(x,y) < 0 where:

EMed<x7y) < %(1 - le*)wQ - 2$$c + g(l - 527"*)?}2 - nyc - 2fp(x7 y)xc tan<9p)a

for points (x,y) € Vy1q(D)-
Then we compute the coordinates of cyeq. Since it belongs to Paeq and to the plane Pg ., whose
equation is:
0=(1—ror")yge — (1 — K1)y,

1—kor™ Yq
1—rkir* 24 C"
We compute x. using the equation of the bisector plane:

we have z. = r* + z.tan(d,) and y. =

Y, zZ
0= (5‘1 ze)tq + (5 —yelva + (5 — %)
2 yp (1= rar™)y; 2y
= Tty T T g, e T T etz

then we factorize the terms with z.:

(1 — ror*)yg 1 )
Te <xq + m +tan(0,)zq | = 3 (z2 4+ y2 + 22 — 2r*2,) .
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and finally we isolate x. to obtain,

2., .2, 2 x (1 = Firt)zg
-2
(xq + yq + Zq T Zq) (1 _ le*)x?l + (1 — ”5:27‘*);1/3 —+ (1 — /ﬁr*)xq tan(op)zq

e =

N =

2 2 2 9%
xy +yg + 25 2r¥z, Zq
27

— 1 — *
(1= s )(1 — k1) z2 + (1 — kar*)y2 + (1 — k17*)zg tan(0)) 2,

we note C,; the central factor so that:

x.=(1- mr*)Cq%,
ye = (1— KQT*)Cq% and,
ze=1"+(1—r1r")Cy tan(ep)%.
By substituting the expressions of the coordinates in the upper bound of Fyeq(,y) we have:
(1= kir*)a® = 2zze + 3(1 — kor*)y? — 2yye — 2/, (2, )z tan(f,)
(1= rir*)z® — (1 — k1r*)Coamg + (1 — kor™)y® — (1 — k2r™) Cyyy,y
— fp(@,y)(1 = K1r")Cy tan(0p) 4

Enea(z,y) <

FNIS NI

=0, <450q(1 — kr*)2? — (1 — kyr*)ow, + ﬁ(l — k¥ )y? — (1 — Kar*)yy,

— fplz,y)(1 — k1r™) tan(Op)xq)

To lighten the expressions that become quite long, we choose the following notations: K := 1— kqr*,
Ky :=1—kor*, and T := tan(6).
And so we rewrite:

BEyea(z,y) < Cy (fcquﬁ — Kyzx, + ﬁszz — Koyy, — fo(x, y)Klqu>
At this stage, we need to study the behavior of C; when ¢ approaches p. A lower bound is enough.

o ngrngng —2rfz,
T Kya? + Kay? 4 Ki3gTz

-~ w§ + y§ + (fplz,y))? — 20 f(24, yq)
- le?} + Kng + K12qT fp (24, Yq)
B xg + yg —2r* fp(2q, Yq)
K22 + Koy? + KiagT fp(ag,yq)

a2 +y2 — 2" (§r122 4 $Roy2 + $msa® + Ray (24, Yq))

K122 + Koy? + K12y T fy(24,yq)
(1= kar*)a2 + (1 — kor*)y2 — %T*m&oﬂfg — 2r* Ry (g, Yq)
K22 4 Koy? + K1z T fp(24,y4)
K1x3 + Kgyg - %7‘*|m3,0x2| — 2r*|Rs+ (24, Yq)|
- leg+K2yg+K1\mq|Tfp(xq,yq)

by substituting z, by fp(z4,vq),

since (fp(z, y))? is positive and negligible,

We recall that [Rsi (24, yq)| < (Mslygl + 53 Maz2) (z2 +y2), so

3 K 1% 3] o 1 2 1 2 2
o for |zg| < 73 Imsol’ 3" Imsory| < K13y < 15 (leq +K2yq)7 and
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o for [y, < &K and 22 < $ B 20| Ry (2, 90)| < 1 (Kia2 + Kiy?) < 1 (K122 + Kay?),

o> K22 4+ Koy2 — 1 (K122 4+ Kyy?)
= Kiz2 + Koy2 + Kl‘xq|Tfp(xquq)

_ gleq + gKng
Kyag + Koyg + Ki|wg|T fp(%4, yq)

then we bound from above the denominator: for |z,| < 3 7 T’i , we have
Ki|zg| Thsup (22 +y2) < 7(% +y2) < %xq + Igz ya, and then.

G + 2Ky

Cyp>4+— 75—t
T K+ Ky

q

=~ w

Now we substitute this lower on Cy in Epyeq:

Enea(z,y) < Cy (45(:(1[(1332 — Kizag + ﬁKﬂ/Q — Kayyy — fp(z, y)Klqu>

IN

C, (gleQ — Kizzg + gKng — Koyy, — fp(m7y)K1qu)
5 2 5 2 2 2
<Cy (3K1x — Kyzwg + 5 Koy™ — Kayyg + Fsup (2™ +y )K1T|xq|).

Then it is enough to assume that |z4| < ﬁ to provides the following inequality:
sup
Enea(z,y) < Cy (2K1x2 — Kizxg + 2K5y% — Kgyyq) )

But Cy > 0 so:
2K 22 — Kizxg + 2K,y% — Koyys < 0= Enealz,y) <0,

and since
2K 2% — Kizag + 2Koy? — Kaoyy, <0

is an equation for el (p,q), this proves that Eppeq(z,y) < 0 is the equation of a region containing
ell’” (p, ¢) N Vjea (p)-
So we can consider the rectangular bound Vyj.4(p) on (z4,y,) made of all involved bounds:

: V2 il k1" 1—rkyr™* : V2 1 1—kyr”
Vitea(p) = {|517q < min (2mp 14 7% [ms.o]’ ™ My vwmptane +|Yq| < min Dkisup’ 28 1 M3 )

and claim that, if ¢ € 7, " (V{{.q(p)) then m, (rpeq) contains e’ (p, q) N Vieq(p). In order to ensure
that the ellipses considered are fully contained in Vyj.q(p), we also need that ¢ is inside 7, ' (Vyi.q(p))
but not too close to its boundary. Precisely, we chose Vjreda(p) as the greatest axis- ahgned ellipse in
Wiea(®) N Vi1oq(p) centered on p and with aspect ratio 5,-. If m,(q) is inside Viea(p) then mp(rmed)

contains ell’r (p,q). And by symmetry, m5(rmMed) contains ell’r (p,q)- O

The spheres o1,0w and opeq are used to handle spheres whose centers are between the tangent plane
Te(p) at p and the medial plane Pyjeq. In order to handle spheres whose center is below 7¢(p), we consider
the degenerate sphere o3y, :
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Degenerate sphere o3y, .

The center ci5, is at the infinity of the direction in Ppgis given by the plane Pgy with equation
K1YTq — KoxYq = 0 in the half-space z < 0. The direction of the center tends to the normal at p when ¢
approaches p. The belonging to the plane Pgyy guarantees that the projection of the intersection region
1355, = B(ows,) N € is tangent with ell®>(p, ¢) at p.

We recall that an equation of ell’ (p,q) is given by:

2/%1.’13‘2 — K1TTq + 252y2 — Koyyq < 0.

We consider the rectangle Vg = {|x| <R vl < an }, and the following claim:

The sphere centered at crow and passing through The projection of the intersection in black, and
p and q. ell' in blue.

Claim c. If g € m, ' (Vixi(p)), then m (rg%,) contains ell’=<(p,q).

Proof. The center c%, of the sphere 1%, is centered at the negative extremity, in z coordinate, of the
intersection of the following planes:

e The bisector plane of p and ¢, with equation:

x Y z
0= (?q —x)Tq + (Eq —Y)yq + (?q — 2)zg-

e The plane with equation:
0 = K1Yyzy — KoTYq-

We search for a direction vector ¢ for the intersection line of the two planes, one is given by the cross
product of the vectors normal to the planes:

Tq —K2Yq —ZqK1%q
V= |Yq X R1Zq = —gqlﬂlqu )
Zq 0 Hlmq + K’qu

The half-space parameterized by cio5, is then:

-00
EExt S 07
- K122 +Koy?
where E5S (2, y) = —K1Z4T — Kaygy + _qzq zZ.

We substitute f,(z,y) in z to obtain an expression of the projection in the tangent plane:

~ 2+ 2
Erxi(r,y) = —K174% — KoYy + %fp(%y)
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and fp(zq,yq) in 24

+
= i — oy + S )

lequszq 1
T b Rl (2918 + 30y + Ra(@,0))

= —R1Z¢% — K2Yqy +

Then we start to bound from above the expression:

K1To+RaYn (1

3
B (x < —KiZgZ — K + Lz + Lioy® + Ms(2? + 25)
et (T, ) < 1 2YqY 1H1I3+%K2y3_M3(13+y3)% k1 5 R2y 3( y~)

K1T +m2yq
1 24 1 2 2
FRITZ+ 5 R2Y2— (,3'€1T +% K2y2)

r a2 +y? < 6%3 and 1/332—|—yq < 6M3

(3r12” + Lkoy® + 2r12% + 2Roy?)

< —R1ZgT — KoYqy +

o K1T +nzyq 2
= —K1T¢X — RaYqy + m (3/“€1I + /‘izy )

= 2k12% — K1ZTqT + 2k2y® — K2YqY,

that is the equation of ell*= (p, q) when the expression equals 0.
B—oo . . . . ﬁ»oo te
We recall that ell”=(p,q) is an ellipse with aspect ratio , /Z—;. To ensure that ell”(p, q) is fully

contained in the neighborhood considered, we can take Vi (p) = {\x| <VZe vl < ain } O

Degenerate spheres o, and o,.

Their centers ¢, and ¢, are at the infinity of the line that is the intersection of Pg;s and the tangent
plane T¢(p), with equation z = 0. The sphere oy (or 0,) degenerates into the plane Ppjaq, passing through
p and ¢, and containing the normal at p.

For the next claim, we introduce the new neighborhood:

VZ(p) = {|xq| < dlSt(py ‘yql < 1 — 1 T*dlst(p, }

that guarantees that if ¢ € 7= (Vz(p)) then ellPr (p, q) is fully inside Vz(p) and consequently
—1 (ell’BT* (», q)) nZ=0.

Claim d. If ¢ € 7T;1 (Veow(p)) then m, (re(p,q)) and m, (r,(p,q)) contain respectively ell}(p, q) and
ell’(p,q). If additionally q € 7'(';1 (Vz(p)), then mp (re(p, q)) contains ellf” (p,q).

Proof. Since Ppiag is orthogonal to T¢(p), the proof is actually trivial for m, (r¢(p,q)) and m, (r,(p,q)).
The surface needs just to parameterizable, that is the case in 7, (Viow(p)). To prove that w5 (re(p, q))

contains ellfr* (p, q), one can remark that ry(p, q) contains p, that is how we defined left and right. To be

sure that ﬂ'ﬁ_l (ellf"‘*) is fully contained in r¢(p, q), we just need that ¢ is not so close to Z with respect

to p, so roughly, we can take q € 7r;1 (Vz(p))- O

Those claims, associated with the Combination lemma, are enough to prove that if ¢ is close enough
to p, then a sphere whose center is below (smaller in z coordinate) the center of oyed (p, ¢) contains either:

1 (rhf” (p, q)) , w}jl (rhf“ (p, q)) , 7751 (rhf"’o (p, q)) or m, ( hﬁ > (p, q)) .

When a sphere gets higher two possibilities arise, the sphere can contain p or not. When its center
get higher while not containing p, the center get farther from p, and we might be tempted to think that
such a sphere should still contain 71 (rhf““* (p, q)), but it is not true. This can be explained by the fact
that the sphere at upper infinity of Pyreq has for intersection with the surface the complementary of an
ellipse, which is not Convex. Before explaining how we deal with this problem, we describe the degenerate
spheres Usym and UEXt
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“+o0
Sym*

is at the infinity of the line in Ppis and Pyred, With a positive z coordinate. The

Degenerate sphere o

The center ¢gy
degenerate ball B (aérycfl) is actually a half-space whose boundary is the plane Psy., passing through p, g,

+oo
Sym

on the tangent plan, the intersection of B (aé’y‘ﬁ) with £ is the exterior of an ellipse. As it is shown in the
following claim, at p that ellipse has the line with equation:

P, and g. The interior of B(og. =) is directed by the normal with positive z coordinate. Once projected

—ygl’ + (Yo Lo (s yg) tan(0p) + x4y4) y = 0,

for tangent. We name H~Pr(p, q) the half-plane delimited by the tangent, and that does not contain p.

By symmetry we name HP,.(p,q) the symmetrical of HP,.(p, q) with respect to Pyfeq.

The intersection of £ with Psyy, in black, and with
Pbiag in gray. As we can see, the two curves are close
between p and q.

Claim e. If g € 7" (Viow(p) N Vz(p)) then m, (rgy‘ﬁ) contains HP,(p, q) N el (p,q), and 75 (rgy";)

contains H~Pr(p, q)N ell’r (p,q).

Proof. The center Cs+;§1 of the degenerate sphere ogy‘ﬁ is at the positive extremity, in z coordinate, of the
intersection of the following planes:

e The bisector plane of p and ¢, with equation:

V4
—Yyg + (F — 2)zg-

0= (5~ + (% ;

2 2

e The plane with equation:
z=r"+4 xtan(6,).

We search for a direction vector ¢ for the intersection line of the two planes, one is given by the cross
product of the vectors normal to the planes:

Zq tan(6p) —Yq
Yq | X 0 = [ z, tan(6,) + z,
Zq -1 —Yq tan(fp)

We choose ¥ colinear to the vector above such that the z coordinate is positive by multiplying it by

—yy:
07
U= | —ygzq tan(6,) — x4y,

yg tan(0,)
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The half-space parameterized by cgyoron is then:

Ega(,y) <0,

where Eg % (z,y) = —y2x + (ygzq tan(by) + xqyq) y — yi tan(6,)z.
We substitute fy,(z,y) in z to obtain an expression of the projection in the tangent plane:

Egom(@,9) = —yz2 + (ygzq tan(8y) + z4y4) y — y3 tan(6,) f(x, y)
and fp(zq,yq) in 24
—?Jgf + (yqu(xqv yq) tan<9p) + quq) Yy— y§ tan(9p)fp(x, )

that we can bound by the following expression:

< _ygx + (yqu(xq, yq) tan(ep) + quq) Y,

The expression 0 = fygx + (yqfp(zq, yq) tan(d,) + xz4y4) y, that we can rewrite
0= —ygz + (fp(2q,yq) tan(fp) + z4) y

is the expression of the tangent to the projection of rgﬁi (p,q) in T¢(p) at p. Thus 7, ( 4o

rsym) contains

HP,(p,q) where £ is parameterizable. Since it is the case in Viw(p) N Vz(p), we can say that for

7,1 (q) € Viow(p) NVz(p), (rgyion) contains HP,.(p, ¢) N ell’ (p, q).

By symmetry if 7, (q) € Viow(p) N Vz(p), 75 (rg}i’;) contains HP,.(p, q) N ell® (p, q).

One can notice that, when ¢ tend to p, f,(z4,y,) tends quadratically to 0, and so the tangent tends
to the line (p, m,(q)). O

Degenerate sphere o °>°

Ext *
The center cg)fto is at the infinity of the direction in Ppgjs given by the plane Pgyt with equation
nlya:q Kkoxy, = 0 (the same as in Claim [c) in the half-space z > 0. B(042F) is the complementary of
B(o42?). We show that if g is close enough to p, then B(op2) contains actually the whole spheroid £

expect for a small region around p and gq.
Claim f. If g € m;' (Viow(p) N VExt(p) N Vz(p)) then np(ries) contains ellPr (p,q)-
Proof. The equation of B(opor) is

2 2
K1Zy + K2y
R1ZqT + KalYqy — %z <0.
q

We substitute f,(x,y) in z to obtain an expression of the projection in the tangent plane, Eg;to (z,y) <
0 where:

K 12+n y2
B2 (w,y) = mquroyqy — 2 £ (0 ).

Then we substitute fp(zq,y,) in z4:

K1T +I<, Yy
Ep (w,y) = k122 + Koygy — Wfp(x v)

qu-&-myq
P (e + 3 4 Ba(ap).

= K1ZgX + KaYqy —
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Then we start to bound from above the expression for ¢ € 7 Y (Viow (D) N Vs (p)):

2 2

R1Zg+h2y 1 2,1 2 2 23

Bl (2,y) < K1Zq + Koyqy — — e e (§H19C + 5hoy” — Mz(z” +y°)2
sh1Te+5R2y2+ Mz (22 +y2) 2

K1xl+roy,

1 2 1 2 1 2 1 2
SR1ZG 5 R2Yg g R1ZE T g R2Yg

< R1TqT + KoYy — (3r12° + gh2y” — (graa® + Gray?))

; 2 2 K2 2 2 K2
and since /22 4+ y? < o and Ty +y; < G we have,

K1zl + Koy, ( 1

ngf(a:,y) < R1ZgT + K2YqY — 2 §l-€1$2 + %KQZUQ)

_ 1 2 1 2
= —5R1Z" + K1ZqT — 5R2Y + KoYqy-

But

2 2
—%mx + K1TqT — %chy + KoYy <0

is the inequality of the exterior of the axis-aligned ellipse passing through p, centered on m,(q) and with

aspect ratio |/{L. So we know that one connected component of the intersection B(og?) N E has a

projection that is strictly included in that ellipse. But since the surface is a spheroid, i.e. the boundary
of a convex volume, and since ag)ff is a actually a plane, there exists only one connected component in
the intersection. So we just need to take a neighborhood around p for ¢ such that the ellipse is far enough
from P, more precisely we want the outer ellipse not to intersect Z. But this property is achieved in V.
We deduce that, if ¢ € 7, (Viow(p) N Vaxe(p) N Vz(p)) then mp(rf3y) contains, at least, ll® (p, q).

O

At the end of these claims, for any p € £ and any ¢ € £ close enough to p or ¢, we have identified
seven specific spheres. We showed that each of these spheres contains a region on the surface whose area
is controlled by p and q. We can now partition the bisector plane on the basis of the centers of these
spheres.

We end the section by defining V7 (p) as the intersection of all involved neighborhoods:

Vl (P) = VLOW (p) N VSym(p) n VExt (P) N VZ(p)'

In Section [13.4.7, we will show that Vi (p) has size Q(hy,) x Q(h2).

13.4.4 Proof of the graph inclusion

We use Combination and Partition lemmas to prove that for any pair (p,q) such that ¢ € = ' (Vi(p)),

if (p,q) € Del (X) then (p,q) € 3% (X). Note that the condition ¢ € m, ' (Vi(p)) implies that ¢ is on
the side of p with respect Pgis(p, D). In Section we will explain how we count the neighbors of p
that are on the side of p with respect Pgis(p, D). As in the cylinder case, we use Combination lemma to
identify the tiles that pave the bisector plane of p and ¢, and the Partition lemma to show the super-graph

property:

Lemma 13.9. Consider an oblate spheroid £ embedded in R® and a data sample X distributed on €. Let
p and q two points of X such that q € 7rp’1 (Vi(p)).

If (p,q) is an edge of Del(X), then it is an edge of 8}01 (X).

Proof. Let p and ¢ be two points of £ such that ¢ € 7, (Vi(p)). We consider the Monge coordinates
system at p as used in the claims. We have to show that if a sphere passes through p and ¢, it contains
at least one of the six regions of Fi(p, q).

So we assume that g € 7r;1 (Vi(p)) and dist(p, q) < dist(p,q). We counsider a sphere o passing though
p and g, and call ¢, its center, that lies in Pp;js. We prove the lemma by partitioning Pp;is. The partition
chosen is the following: (see Figure . Phis is separated into two half-planes by the tangent plane
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Te(p) with equation z = 0 and on which are crew, by definition, and ¢, and ¢, since they are at the
infinity of an horizontal direction in Pgis. The part of Ppis below z = 0 is made of center of outer
spheres, centered below the tangent plane of p. This part is separated by the ray [crow, cig). This
partition divides the outer spheres into two categories, those who are rather in the direction of p, so
rather on the left in the global frame and denoted with a “¢” in index, and those who are rather in the
opposite direction denoted with a “r”.

We start with the spheres centered below the tangent plane at p. By the Combination lemma we
have:

o if ¢ € (¢, CLow, (5% ), then 7r;1 (rhf“"’) € B(o.), by Claims H andE|7 since
rhy> C ell' Nell®= Nell;.
And,

o if c € (5% CLow, Cr), then 7rp’1 (rhf“”) € B(o.), by the same claims, and since

rhf= c ell' Nell”> nelll.

Then we consider the centers cyreq and ngoxfl and the polyline on Pg;s made of (¢¢, cped] and [ened s C;ﬁ)
The polygon below the polyline and above z = 0 contains centers of medium-height spheres. We divide
this polygon by the segment [cLow, CMed], that divides the medium-height spheres similarly than for the
low spheres into left and right spheres.

By the Combination lemma we have:
e if ¢ € (¢, CMed; CLow, Cr), then 7r;1 (rhf”) € B(o.), by Claims HH and@ since

rhy)™ el nell® nell}.
And,

e if ¢ € (¢, CLow, CMed, cgy‘ﬁl), then szl <r~hfr*> € B(o.), by the same claims and since

™ celll nell' nell® A, (xem) -

Note that we do not use yet Claim [¢] we will use it later to get a lower bound on the area of
w;l (rhfr*) and Wﬁ_l (rhfr*).

Finally we consider the additional center ¢, and the ray [eyed, choy ). The convex polygon (cg, Creds cgy‘ﬁl)
contains the centers of high spheres. They all pass through p or contain it, since there centers are above
Pred on Pgis. This polygon can be seen as the symmetrical tile of the one described previously. The ray
[eMed, CE;’S ) divides the polygon into two tiles in the same way as before.

By the Combination lemma we have:

e if ¢ € (¢, Cred, Chioy ), then ﬂ'ﬁ_l (rh?”) € B(o.), by Claims H@ and H since

rhf™ C ell’ ell}.

And,

o if ¢ € (c27, CMed, cg}?;), then 7r1;1 <r~hfr*> € B(o.), by Claims HH andH and since

r~th cell® N @ Nmp <r§;§1> .
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This decomposition partitions the bisector plane of p and ¢ into six tiles and associates to each tile
P of the partition, a region f € F; on & such that, if ¢ € P, then B(c) contains f. In other words, it
ensures, by the Partition lemma, that

Dl G% = |J G,

feF

for pairs (p, q) such that g € 77;1 (Vi(p)).

) )

rh, ™ r

2 /

Figure 13.4: Partition of the bisector plane when ¢ € 77;1 (Vi(p)). The red ray is included in Pyed-

13.4.5 When ¢ is on the side of p with respect to Pyeq

A point ¢ that is not close to p may still have a good probability to be a Delaunay neighbor of p, but its
only chance is to be close to p. We show that we can reduce the analysis to the previous case.

Intuitively, g is close to p if and only if g is close to p. In the case of the oblate spheroid, it is clear by
symmetry. Remind that the four points p, ¢, p and g are coplanar and even cocyclic. In the plane that
contains the four points, the edge (p, ¢) is now a diagonal of the convex quadrilateral formed by the four
points. That implies that any sphere o, passing through p and ¢ contains either p or g (see Figure .

Suppose that o. contains g, in other words, that its center ¢ is on the side § with respect to the
bisector plane Pyreq of p and p. Then we can consider the sphere o included in o¢ that passes through
p and . og is then the image of o, by a homothety of a factor smaller than 1 and centered at p. Since p
and c are on the side of p, it is clear that it is also the case for the center ¢ of og.

On the other hand, if 0. contains p, then o. can be shrunk toward ¢ into oy that touches p. The
center cg of o lies now on the side of p with respect to Pyied-

Then we can consider the following lemma:

Lemma 13.10. Let q be on the side of D with respect to the bisector plane of p and p, o a sphere passing
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Figure 13.5: In the plane (pgp), the points p and ¢ are opposite in the quadrilateral (p,q,q,p), so the
sphere o passing p and ¢ contains g. By a homothety, it can be reduced to the included sphere oy that
passes though ¢g. The center ¢y of og is on the side of p with respect to the bisector plane of p and p.

through p and q. If q € wgl (Vi(p)), then B(o) contains at least one region of:

o mr(re). 5t (0 e0), 5t (), mt (e 00).
Fi(p,q) == 7::;1 (T‘hf” @, q)) ’ 7:;?1 (;hf,,.* @, q)> 7 7:_3;1 (rhf'“’ (7, q)) , 7::;1 (Thf’m @, q)>

Proof. Consider that a sphere o passes through p and ¢, and contains g. By the homothety described
above, consider the sphere oy, included in o, and passing through p and g. If ¢ € V4(p), we can apply
Lemma to p and g to show that o contains one the 8 regions of F7(p,q). But as we said, the center
co of og is on the side of p with respect to the bisector plane of p and p. In other words, in the partition of
bisector plane Pgis(p,q), co lies below the intersection line with Pyjed, so we can exclude the two regions
whose parameter lies strictly above. It remains that oo, and then o, contain at least one region among
the 4 following regions:

{m (), &' (W @), o (b=e0), &' (W=ea)}

If we consider now that o contains p, we can apply a similar argument to show that o contains at
least one region among the 4 following regions:

{7%1 (rhfr* @, q)) , (fhfr* (B, q)) , ot (rhf’“ (P, q)) , ot (rhf‘m(ﬁ, Q))}
O

Then we can define CN(p) as the union of 7, ' (V1(p)) and 7 L(V1(p)), and the family of fundamental
regions F (p, q) for ¢ € CN(p):

Fi(p,q) if g € m,* (Vi(p)) , or
Filp,q) =< = . P -
i(p.9) { Fi(p,q) if g € m' (Vi(B),
and we can say that for any p € £, the Delaunay neighbors of p that are in CN(p) are also neighbors
of pin J(,D_-f. Thus we compute an upper bound on the expected degree of a point in that super-graph.

13.4.6 Computation of an upper bound on the expected number of close
neighbors.
The degree computed here takes only into account the neighbors that are in CN(p). The remaining

neighbors are treated in the next section. Before getting into the substance of the computation, it
remains to evaluate the area of all the involved regions, in particular the regions denoted with a “™”.
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Figure 13.6: The disk sector Sec tiled in blue. In red is the projection on Tg(p) of the intersection
EN 0']—5;:: . When q is close enough to p, the disk sector is being slightly reduced.

On the size of the fundamental regions rNhfr* (p,q) and eilfr* (p,q).
We start, using some computations from Claim [¢] by bounding from below the area of the regions

r~hfr* (p,q) and eNHfT* (p,q) that appears in F;(p,q). The area of all other regions are well known and
already studied in Part [[I}

We recall that r~hfr* (p,q) = th? (p,q) "HP,(p, q), where HP,.(p, q) is a half-plane close to HP,.(p, q).
We show that the cut part is small enough, so that we still have:

rh]™* (p, q) D :

" (p, Q)‘ =0 (

First we recall the area of rh? is:

thfr = /(2 +42) (8,202 + 2).

_ 1 By
=1 ‘Rh

We show that the cut part has an area smaller than 3—12\/(333 + yg) (ﬁr*zxf} + yg)
We consider the following two lines in T¢(p):

e (pq) with equation y = ny, and

T,
. 7:&:? (p), the tangent line of ;> at p with equation y = 77

T yTa, @, Where T' = tan(6,), as seen
qa>Jq q
in Claim [el

The cut part is included between the two lines and is inside the disk centered on p with radius |pm,(q)|.
So what we compute is actually an upper bound on the area of this disk sector Sec (see Figure [13.6)).
The area of Sec is given by:

) - iy
arctan [ = | —arctan | ————— || |pmp(q)|*.
(xq T fp(wq:yq) + 24 o7

We bound the quantity of QQ = ‘arctan (Z—“) — arctan (
q

formulas:

|Sec| = 1

yq . . . .
e using classical trigonometric
Tfp(zquq)+mq) ’ & &

Q=

) - weon ()
arctan (| — | —arctan (| —
(xq Tfp(q,yq) + 24

arctan (yq— Ya ) 7a 1 7a
vq  Thp(@eye) + 20 ) 1+ G rr e, T,
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using arctan (a) — arctan (b) = arctan(%),

IA

since |arctan(z)| < |z|,

O ——
zg  Tfp(®gyq) + 24 1"‘%%
Yo Tfp(zq:Yq) 2q (T fp(Tq,Yq) + Tq)
2q(Tfp(q:Yq) + xq) Tq (T fp(2q,Yq) + 24) + 3
Yol fp(zq,Yq)
g (T fp(2q:Yq) + 2q) +yg
T'fp(2q, Yq)|Yql
T2z +yg — zg|T (g, Yg)
Thisup (22 4 52) I
T 22+ y2 — |2y Thsup (I(QI + yﬁ)

Tk x2 + 92 1
< Lo Gy t) ol gy oy L
E(xq + yq) QTK‘SUP
= 2T Ksup|yq|
/Br*
<™ fo
> r |yq| = 32T koanp

And then |Sec| < B?)TQ Ipm,(q)]2, but since 0 < S« < 1, we have well

[Sec| < S lpmy(@)® = dpo/ (a2 +92) (Br-202 + Br-242) < /(22 +92) (B2 +42),

32

and so
[Sec| < £ |eb"" (p.q)]
Finally we can say that:

5 Brx 3 B . x
e, (p,q>’ > | (py )| = [ (b )| = [Sec| = & i (p.q)]

Upper bound on the expected number of close neighbors of p
Consider a Poisson point process X distributed on £ with intensity \. We have shown that aw . (X)
is a super-graph of Del(X) for pairs (p,q) such that ¢ € CN(p). So we can use the expected degree of a
point in ?:f (X) to have an upper bound on the expected degree of the same point in Del(X).
We recall that 8(p) = %. The lemma that we are going to prove is:

Lemma 13.1. Let £ be an oblate spheroid and X a Poisson point process distributed on £ with intensity
A. For any p € £\ Z, the expected number of close neighbors of p in Del(X U {p}) is:

O (lnﬁ).

Proof. Consider the Monge coordinates system at p. We bound the expected number of close neighbors
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of p in Del(X U {p}), noted E {deg|CN (p, Del)}:
degien (P Del) = >~ Ly g)epel(xUip))]

g€ XNCN(p)

0 .
< Z 1[(1)7(1)6??__* X)) because Frisa super-graph of Del,
qeCN(p)NX 1

E[deg\CN (p’Del)}SE > 1[(p7q>e6£f<xu{p}n

geCN(p)NX

<A / ,q) € ?_-1* (Xu {p})} dg by Slivnyak-Mecke Theorem,
quN(p

:)\/ P[Fre Fi(p,q), rN X =0]dg
g€CN(p)

< )\/ PrnX =0]d
9€CN(p) reFy (p,Q)

~) / =Ml dg
quN(p re]:* (p,q)

= A/ e A"ldg + A/ > e g
aemy " (Vi(p)) rEf*(p q) a€my " (Vi(P) re 7y (p,q)

= / e AMrldg + )\/ Z e Mrldg.
a€my H (Vi(p)) r€F, (p @) gem ' (Vi(P)) €T 1 (pa)

We recall here the two families of regions:

! (rhf-ﬂp,q)),w—l (102 =wa)) 7 (0 (.0) 7t (10 (1))
Fip.q) = (ellﬁr (p q)) ,71'1;1 (ehfr(pv (I)) ’

and

Fia < | 7 @ 0D) w5 (S 00). 5 (1), ~ 1<rh.x 2).

_ . B ~(p ,
o (9 .0)) 7 (A 3r0) 7t (), 7 (0.0

where it is clear that all regions with exponent “5...” have same size, i.e. |7r 1 ( h’8 > (p,q ) |, and all

regions with exponent “3,«” have an area greater than the area of 7 (rh,. (p,q )) Then we obtain a
£

lower bound on those area by considering the size of their projection on Tg(p) or Tz(P). So we have:

€ [degjon (. DeD)] <A [ (2677 )] - g 0T g
qem; L (Vi(p))

+ )\-/ (4@7)““1?—00 (p,9)] + 467>\|{th* (p7q)|) dq
(V1 (P))

oo 7 Bk
<A (Qe—klrhf (P.0)| 4 ge—Alrh, (nq)l) dz,dy,
(2q,9¢)EV1(P)

hB-c0 NS
i / (46—A|Ihf ()| | g (mﬂ) daydy,.
(%q,9q)EV1L(D)
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Then we can roughly go from Vi (p) to T¢(p), and from Vi (p) to Te(P).
(267)\‘rh5-oo(p1q)‘ _|_467)\|r~hff'* (IMI)|> dz,dy,
(zq,yq)ETe ()

oy (4 “ARE ()] | g A (p0) )dquyq
(zq,yq)ETe (P)

oo 7B
<A (66—A|rh‘2 (p.a)] 4 ge—Alrh; <p,q>|)dquyq
(zq,yq)ER?

E |degjcn (p, Del)} <A

o 3 By
SG)\/ e—Alrhf (p7Q)|dquyq+8)\/ e~ Alrhy (107!1)|dquyq
(zq,yq)ER?

(zq,y4)ER?

<6x / AR ()] g Jdyq + 8 / e A 00l 4z 4y,
(zq,yq) ER? (zq,yq) ER?

1
since [th?=(p, q)| = |rh/= (p,q)|, because it is the same region up to a rotation of 7, and we reuse
Lemma [8:10] in which we need to have an aspect ratio smaller than 1, so:

i () )

E {deg|cN (P, Del)} < 6A / e
(L;:yq)eRz
18X / e~ V@D (G Pai i) g gy
(wq,yq)€R2

We recall it:
Lemma 8.10. Let t >0, 3 €]0,1[, and I5(t) = [5 [ye™*V (@2 +y2) (B2 +y) qyd e,
1 T
I(t) = $15(1) < 5 (1+m(b)).
So that we can finish the computation of the degree:
E [degjox (b Del)| < 6M__ (35) +8Ms,. (35)
< 967 (1 + In foo) + 2567 (1 ﬁi) .

But . = ©(1), so we can say that:

E [degICN (p, Del)} ~0 (m ;) .

13.4.7 On some geometric quantities close to Z.

Among the various bounds that define CN(p), three values regularly return. Up to a constant factor, those
three values are /1 — k17, 1;”"”;15 , and tan%ep)' We show that they actually have the same asymptotic
behavior when p approaches Z. To help us in those computation, we use the global frame, and recall
that we assume that u, > 0, v, = 0 and w, < 1. Thus the origin (0,0,0) of the global frame, is the
closest point on Z from p. We write w = fz(u,v) the graph of £ at the origin. From the expression

£ Zé + 02+ (w— 1)2 =1, we obtain:

fz(u,v) =1 —4/1 — Kgypu? — v2.

In this section, since we study the behavior of values when p varies on &, we explicitly write “(p)” in
the notations and evaluate x1(p) and 7*(p) when p is close to Z. We recall the different geometric values
on Z, that we note with a Z in parenthesis: x1(Z) = Ksup, 7°(Z) = ——, and k2(Z) = 1. We start to

Ksup

quantify lower and upper bounds on 1 — k1 (p)r*(p):
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Lemma 13.11. If |u,| < \/% then /1 — k1(p)r*(p) < \/Esup (Ksup — 1)Up.

If additionally |u,| < ——L _ then /1 — ri(p)r*(p) > §\/5511p(14511p — 1)uy,.

Fsup (Ksup—1)

Proof. We use basic geometry to compute the behavior of r*(p). We call ¢*(p) = (tex, vex, w)) the center
of the medial sphere at p.

On the side figure, we consider the section of spheroid
by the plane v = 0. In that plane, the section of
the spheroid can be parameterized by w = f(u) for

f(x) = fz(u,0) =1 — W. In the chosen

Monge coordinates system, we have:

r*(p)Q = ug + (we= — wp)2'
The line (pc*) has equation:

(pc*) s u+ f'(up)w = up + [ (up)wp.

The w coordinate w.« of ¢* is given by substituting
0 in the place of u in the previous equation:

U

Wex = ,uip + wp.
f'(up)

We substitute we- in the expression of 7*(p):

u
7 (p)? = up + (= wp — wy)?

f'(up)

but f'(u,) = ——2X2_ 50

— 2
RV 1 Ksup Uy,

1 Ksup — 1 o
T k2 D’
Hsup Ksup

and,

Kgup — 1
1 sup
(p) = e+
K‘sup /qup

1
\/1 + Ksup (Fsup — 1)uf,

Rsup

Then we compute an upper bound on x1(p). Since the line of curvature lies in the plane y = 0, we
can use the curvature formula for curves to deduce x1(p) (see Part [I, Chapter . In the plane y = 0, the
maximal principal curvature at p is given by the formula:

o [y
W)= T P E

So we compute the second derivative:

P () = ——2—
(1 = Feuptd)

e
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From what we can deduce:

Ksup 1
m(p) = 3 N
(1 - HsuPup) 1+ Ksup Up
‘/l—msupug
_ Rsup
- 3 (1Rt | (reupup)? ) ?
_ 2)2 (1 "fsup¥p RsupUp 2
(1 HSUPUP) (lfnsupug + lfnsupug)
Rsup
= 3
2) 2
(1 /—ﬁsupu + Hsupup)
. Rsup

3
2

(1 + Ksup (Fsup — l)uz%)

And then 1 — k1(p)r*(p) verifies:

* s
L= m)r(p) =1~ ST Ry — 1
(1 + Ksup (Ksup — 1)u127) 3 Ksup
1
=1—
1+ Kgup(Ksup — 1)u123

. K/Sup(’isup - 1)“2

1+ Fsup(Ksup — 1)u%'

From where we deduce two bounds:

%"fsup("fsup - 1)“;2) <1—-£k1(p)r"(p) < Ksup(Fsup — 1)u12n

where the lower bound holds for u < m, while the upper bound is always true. O

Then we find a lower bound on m:

Lemma 13.12. Ifu, < f , then

2Ks tan( p) 2 KsuptUp-

Proof. On the figure in the previous lemma, 0, is the oriented angle from the tangent line of f at p, in
green, to the vertical axis, so

1 /
= f'(u
tan(6,) F(uy)
= sl o, < 1
N — Vi
2 Ksuplp

O

Note that in a further section, it is cos (6,) that appeared, but around Z, 6, is close to 7, and then
1
cos (6) =~ TSR

Finally we find a lower bound on m We recall that 1 5M3,0(p) is the coefficient in front of the

term 22 in the Monge form of the surface at p.

Lemma 13.13. There exists M7 > 0 such that, if u, < then |ms,o(p)| < MZu,.

V2
2Ksup
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Proof. We recall that ms o(p) = %(O, 0) in the Monge coordinate system of p.

The set Z is defined as the set of points whose medial sphere is the osculating sphere. As seen in
Part [, Chapter [T} all points of Z are maxima of curvature in the maximal direction, and this induces
that ms o(Z) = 0 (where ms ¢(Z) corresponds to mso(p) for p € Z).

We consider now the function 73 ¢ defined as follows:

’ﬁlg,o : R— R,
up — m3,0(p).

Since £ is at least a C* surface, we can see 3,0 as a continuous function whose derivative is bounded on
[0, 22]. We denote by MZ the value:

? 2Ksup
z Omg,0
My =  sup (up)| -
ou
[0.522-]

That is enough to write that, if u, < f then:

2 sup
Ims,0(p)| = [M3,0(up) — M3,0(0)] < M u,p.
O

We finish the section by evaluating the size of CN(p). As long as p is far enough from Z, 1 — k1 (p)r*(p)
is strictly positive, and it is clear that CN(p) corresponds to two rectangles on &£ of size (1) x ©(1). But
if p is close to Z, we can apply the results above to evaluate the size of CN(p). We consider all quantities
involved in CN(p), and evaluate them around Z:

o V1—kir*> %\/nsup(msup — 1Dup = Qup).

l—ryr® ~ 1 Fsup(Fsup—Dud Q(u,)
Ims,0] = 4 M4Zup - P/

[ ]
o T > Kauplpy = Quy).
So we deduce that close to Z, CN(p) corresponds to two rectangles on & of size Q(uy) x Q(u2).

13.4.8 On the probability of existence Delaunay neighbors outside CN(p).
We prove now Lemma using Lemma applied to the size of CN(p). We recall the value of the

quantity ~:
. \/§ Rinf )
~:=min [ — 0, —,—cosb, | .

8 Ksup 3274
The value v/27 corresponds to the length of the diameter of the isosceles triangles of Fi (p).

Lemma 13.7. Let 0 <4 < % Let X be a data sample distributed on € and, p and q in X. If q is at

distance greater than § from o*(p) and if (p,q) is an edge of Del(X), then (p,q) is an edge of 8@@ (X).
0

If X is a Poisson point process distributed on € with intensity X\, the probability that the point p € X has

some Delaunay neighbors at a distance greater than § from o*(p) is smaller than 16e— 257",

We consider the intermediate lemma.

Lemma 13.14. Let X be a data sample distributed on € and, p and q in X. If ¢ € CN(p), and if (p,q)
is an edge of Del(X), then:

e ifu, < s2—, (p,q) is an edge of 80 e(us)(X),

2Ksup ’
}—0
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o if u, > ﬁ, (p,q) is an edge of 6&?(1)()().

Proof. We consider that p is a point in Z ™" e . We recall that Vi(p) is a rectangle with size Q(uy) x Q(u2).
5 1up . In Section , we proved that , (B*?(c*)NE) is

included in the ellipse:
(1= kr)z? 4 3(1 — kor*)y® < 361

u

For § = © (u}), the ellipse has great axis 6,/ 22— = O —p) = O(up), and small axis 6,/ =

1—kryr* u 1—kor

el

O(u?). Since it corresponds to the order of magnitude of Vi (p), if ¢ ¢ CN(p) then ¢ is at distance greater
then O (uy) from o*. It follows, by Lemma m that if ¢ ¢ CN(p) and if (p,q) is an edge of Del(X),
then (p,q) is an edge of 8‘0  (X).

#o(u3)

0

If p is not close to Z, the quantities u,, /1 — k17, and v are ©(1), so if ¢ outside CN(p) and if (p, q)
is an edge of Del(X), then (p, ¢) is an edge of ?fr@m (X). O
0

We prove the following lemma that quantity the probability that p has a neighbor outside CN(p):

Lemma 13.2. Let £ be an oblate spheroid, p a point of £, and X a point set on £ whose restriction
to the close neighborhood of p is a Poisson point process with intensity A. The probability that p has a
neighbor in Del(X U {p}) outside the close neighborhood of p is:

10
—u, QA 1
{ e ) if up < Sre

QN otherwise.

Proof. The lemma is then a direct consequence of Lemma [13.14] since, for any +, the regions of F; have
area © (72). O

13.5 Expected degree of a point close to Z (Proof of Lemma|13.3)).

1
In that section, we compute an upper bound on the expected degree of points p close to Z, i.e. in VARETS ,
but we recall that we assume that in the global frame, p has coordinate (u,,0,w,) with 0 < u, <

and w, < L.
We say that ¢ is a middle-range point of p, if

e g ¢ CN(p),

o fug| > [upl,

2Ksup

o |u,l < \2?;1, and
o cither |u, — up| < \fbup or [ug — up| < \2/3:1;1

We denote this neighborhood by MNR(p). It corresponds to the reunion of two axis-aligned rectangles
1

of constant size, with p and p on their boundary. For any p € Z +2“SUP, a point ¢ in MNR(p) verifies

lug| < 2

2Ksup

We prove that the expected number of middle-range neighbors of p in Del ({p} U X) is ln()\)e_“:’OQ(’\)

for a Poisson point process X with intensity A. This neighborhood is enough for the global enumeration
of the edges since instead of counting an edge twice, one can charge it on a chosen endpoint. In that
case, the edges are charged on the closest point to Z. Note that the case of an edge whose endpoints are
equidistant from Z happens with probability 0 in a Poisson point process, so we do not develop it.
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13.5.1 Description of fundamental regions on the spheroid

In that section, any point ¢ we consider verifies w, < 1, in other words, ¢ is in the lower part of the
spheroid. This is a largely necessary condition for ¢ being a middle-range point of p. We denote by £,<1
the part of the spheroid such that w < 1. Note that if we relax the hypotheses u, > 0, v, =0, w, < 1,
the condition q € £,<1 becomes: p and ¢ lie in a common quarter of the spheroid.

We call parallel an intersection curve of £ with a vertical plane of equation u = upq, for —% < Upgr < %,
and meridian an intersection curve of £ with a plane passing through the axis of revolution of £. To
clarify any misunderstanding, “horizontal” and “vertical” refer to w axis, to which a horizontal line is or
orthogonal and a vertical line is parallel. In &, <1, meridians and parallels intersect exactly in one point.

We describe now a graph which we will be proven to be a super-graph of the Delaunay triangulation.
This super-graph is defined for each pair (p,q) such that ¢ € &,<1, by a family Fa(p, q) of regions on £.
We make a distinction between the case where p and ¢ lie in the same side with respect to Z and the
other. We describe then six regions that will provide a super-graph to the Delaunay triangulation.

First, we assume that p and ¢ are in the same side of Z. We consider Tr(p,q), the trapezoid-like
shape on & delimited in £,,-1 by the parallels and meridians of p and q. We name ¢; and ¢» the two other
vertices of Tr(p, q), q1 at the intersection of the meridian of p and the parallel of ¢, i.e. in the direction
of k1, and ¢o at the intersection of the parallel of p and the meridian of ¢, in the direction of k3. Then we
search for a curve inside T'r(p, ¢) that divides it into two regions of almost same area. A good candidate
for this curve is the section of £ with the plane Pp;., passing through p and ¢ and perpendicular to the
plane of equation w = 0. We call dg(p, ¢) the part of the curve that is inside Tr(p,q). We call T1(p, q)
the part with ¢; for third vertex, in addition to p and ¢, and Ty (p, ¢) the part with ¢o for third vertex.
To be clear with the notations, we have T'r = T1; UT,. We also consider their symmetrical regions with
respect to Pyed, on the other side of Z: Ti(p, q) := T1(p,q) and Ta(p,q) := T>(P,q). Finally, we define
the two last regions A(p, q) and A(p,q). To explain them, we consider the sphere passing through p, p ,
q, q and centered in the plane © = 0. We name this sphere onorm and consequently ryorm the intersection
of B(oNorm) With €. A is the intersection of ryoym with the half-space delimited by Pyreqa containing g
and with the half-space delimited by {u = 0} that does not contain ¢, it corresponds to a half of an
ovoid shape, the one that does not pass through ¢g. A is the symmetrical of A with respect to Pued. See
Figure [[3.7Heft for a summary of the six regions.

That dealt with the case where p and ¢ are on the same side of Z. We consider now the other
case, where p and ¢ are on both sides of Z. Remember that it is not necessary to consider the case
uq < |up| because we can assume that an edge between p and ¢ is charged on the closest point from Z.
Thanks to the symmetries, we can reuse the exact same regions, i.e. if p and ¢ are on both sides of Z,
r(p,q) := r(P, q) for each region r among the six described above. See Figure right.

In the end, we therefore count exactly six regions on &, four in Ry = {T1,T%,T1, T2} and two in
R4 = {A, A}. They define the family Fy:

Fo=RprURy,.

13.5.2 Choice of specific spheres

In order to show that the graph based upon those regions is a super graph of the Delaunay triangulation
for pairs of points in a common quarter, we have to show that for any sphere o passing through two
points p and ¢, the intersection B(c) N € contains at least one of the six regions of Fa(p,q). Such a
sphere can be parameterized by its center in Ppis. We start by introducing, for a pair (p,q) of points,
the specific lines and centers we will use to partition Pgis. We name L1, the axis of the circumscribing
circle of the cocyclic vertices of Tr(p, q), we label this line with “Tr” because all spheres centered on Ly
passes through the vertices of Tr(p, ¢). We name Lgyr, the line of centers of spheres passing through p,
q, p and g, named after the fact that all of the intersections of such spheres with surface are symmetrical
with respect to Pyed. Note that Lsym = Pris N PhMed-

Remember that for a center named cjape) 0n Pgis, we denote by olane; the sphere centered on c¢apel
passing through p (and ¢) and rppe the intersection B(ojape) N E. We describe those centers, their
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Figure 13.7: The six fundamental regions of /3, they are delimited by the meridians and parallels of p,
q, p and g, by the diagonals dg and dg and by the sphere onorm-. Left: when p and g are on same side of
Z. Right: when p and ¢ are on both sides of Z.

associated spheres, and, through claims, the fundamental regions of F5 the sphere contains. Most claims
call on convexity-like properties on the spheroid stated here:

Proposition 13.15. Let a and b be two distinct points on E,<1 and o a sphere centered on ¢ € Ppjeq
such that w. <1 and {a,b} C B(o).

1. If a and b are on the same parallel, let [a,b]pqr be the part of the parallel between a and b inside
Ew<1. Then B(o) contains [a,b]par-

2. If a and b are on the same meridian and on the same side of Pured, let [a,blmer be the part of the

meridian between a and b inside Ey<1. Then B(o) contains [a, b]mer and [@, b]mer-

Proof.

1. We have a look in the plane P containing the parallel passing through wo
a and b in which the cut of ¢ is a circle. Since {a,b} € B(c) NP, then
either ENP C B(o) NP and it is done, either the two circles o NP and
£ NP have at most two intersections points. Since w, < 1, the closest
point h on £ NP to ¢ also verifies wy, < 1. Note that the figure in P is \ —
symmetrical with respect to the line (ch). Because £ NP is a circle, for
a point p on £ N P, the distance dist(c,p) is continuously growing when
p goes from h to its opposite on £ NP. Thus, since a € B(o), [k, alpar
lies completely inside B(o) NP, and so inside B(o). The same holds for ¢
[h, blpar, and consequently for [a, b]q, since both a and b verify w < 1.
w
§
ay
u
O

2. We have a look in the plane P containing the meridian passing through
a and b in which the cut of ¢ is still a circle. The section by P contains
the ellipse £ NP, the circle c NP and the line Pyjeq NP, passing through
their centers. By symmetry, we know that B(o) contains four points of
£, namely, a, b, @ and b. In view of the only possible configurations (see
side figure), we can deduce that the whole part of the meridian between
two points included in B(o) on the same side of £ with respect to Pyred
remains included in B(o). In other words B(c) contains [a,b]mer and

[aa }mew

We list here seven centers of spheres and as many claims that state which regions of F, are inside the
associated sphere. We provide two figures for each, on the left, the case where p and ¢, the red points are
on the same side of Pgyr,, and on the right, where p and g on both sides. Note that the regions depends
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on the positions of p and ¢ that we chose quite generically on £. Without loss of generality, we assume
that v, > 0. (We preferred to show figures, projected in the w direction viewed from below.)

e The center cgym is the intersection of L1, with Lgym, the sphere ogym passes through p and ¢, and
also through ¢1, g2, P, and §.

Claim a. B(osym) contains Tr and T r

Note that depending on the position of ¢ with respect to p, the intersection rgym, can have one or
two connected components.

Proof of Claim[d. First we prove that csym has w coordinate wgyy, smaller than 1. Consider the
center ¢ = (0,0, 1) of the spheroid, and the sphere centered at ¢ passing through g. Note that it also
passes through § by symmetry, and through ¢; and g; by revolution. It does not contain p, because
the spheroid is oblate and |u,| < |uy|. Then we move c in the w direction and maintaining contact
with ¢ and ¢; until the sphere touches p. By symmetry with the bisector plane of ¢ and ¢; (one
of the two bisector planes of the meridians of p and of ¢), o also passes through g,. This sphere is
Osym-. Since w, < wq, ¢ moves downward. Thus wsy, < 1. We consider the case where p and ¢
are on same side. By Proposition since [p, q1]par and [g, g2]par are inside B (0sym). And by
the same proposition any meridian part from [p, ¢1]par t0 [¢, ¢2]par is also in pthogym. Therefore,
B(0sym) contains Tr(p, q). By symmetry it contains also T7(p, q).

And by symmetry again, the claim holds when p and ¢ are on both sides of Z. O

e The center cnorm is the center of the sphere onorm, that passes through p and ¢ and also passes
through p and g, and is symmetric with respect to u = 0 and v = 0. It lies on Lgym.

Claim b. B(oxorm) contains Ty, T, A and A.

Proof of Claim[ll We consider the case where p and ¢ are on same side. We first prove that dg(p, ¢)
is inside B(oNorm)-
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We can define onorm in another way: consider the sphere passing through p and p and that is
tangent to &, it is the medial sphere of p, then send up its center upward (along the w coordinate)
while maintaining the contact with p and p. That generates a pencil of spheres. Since |u,| < |u,],
at some point the sphere touches ¢ (and g at the same time), this sphere is onoym. The spheres of
the pencil just described contain a common circle C.

Consider the section with the plane Ppiag. The intersection Epjag with €
is an ellipse whose great axis is parallel to the w axis, the intersection with
C is {p,p'} where p' is inside Epiag since the medial sphere is inside £, and
the intersection with oNomm 18 a circle Cnorm passing through p, ¢, p’. Since
the axis of the pencil is directed by w, p and p’ have the same z coordinate,
and since p’ is inside Epiag, the center ¢’ of Cnorm, that is the orthogonal
projection of cNxorm On Ppiag, is on the same side of p with respect to the
great axis of Epiag. Now consider the bisector line of [p,q]. Its intersection
with the great axis of Epjag is the center of a sphere that contains dg(p, ¢) by
Proposition [[3:15}2. Consider the pencil of circles passing though p and g,
from the one described above and whose center progresses along the bisector
line toward ¢’. By the self-intersecting structure of such a pencil, and by
convexity of Epiag, it is clear that Cnorm contains dg(p, ¢) (in red on the side
figure.) (It can also be seen in the context of the Partition lemma.)

The whole region Tj is then completely included in B(oNorm) by Proposition [13.15| since ¢; €
B(UNorm)~

From its side, the region A is included in B(oNorm) by definition.

Here again, the conclusion holds when ¢ is on the other side, by symmetry. O

We complete this set of spheres with centers at infinite directions. We denote them with a oo
(possibly signed) at the exponent. Keep in mind that such spheres are then degenerated into planes
and thus the intersection with £ are ellipses.

¢}y, at the infinite extremity of Lgym, such that B(o$y) does not contain g. The plane bounding
B(03) passes through p and ¢ and also passes through ¢; and go.

Claim c. B(o$y) contains Tr.

Proof of Claim[d Remind that o3} is centered at the infinite extremity of L1, toward the external
part of £.

As said above, o is the plane passing through p, g, ¢1, and g2. So B(o3y) N & is the interior of the
ellipse passing through those four points. By convexity of the ellipse, B(c:39) N € contains Tr. O

cs_yo; and cé";rfl, at the infinite extremity of respectively [cNorm,CSym) and [¢sym, CNorm), the plane

bounding B(og;) and B(og'yc’]fl) passes through p and ¢ and also passes through p and §.
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Claim d. B(ogyolfl) contains A and A.

Proof of Claim[d. For this claim, it is enough to notice that B (0‘;;;) contains the whole part defined

by {yy, < 0 and |z| > |z,|}. This region clearly contains A and A. O

Claim e. B(ogy,) contains T> and Ty.

Proof of Claim[d Whether p and g are on the same side or not, it is clear that dg and dg are inside
B(og,) by convexity of the ellipse once projected on the plane w = 0. O

e ¢, at the infinite extremity of PpisN{u = 0} such that § € B(o$,,). The plane bounding B(c%3,,)
passes through p and ¢ and is symmetrical with respect to the plane v = 0.

Claim f. B(0%2,) contains Tr and A.

Proof of Claim[f. This one is clear considering that B(c3;,,) contains the whole part of £ delimited
by the parallel of p and containing g. O

® ., at the infinite extremity of the normal direction of Ppiag, such that B(og;,,) contains ;.
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Claim g. B(og;,,) contains Ty and A.

Proof of Claim[q ODiag 18 the plane Ppiag, and B(al%?ag) the half-space containing ¢;, so, if p and
q are on the same side of Pyjeq it is clear that B(ag‘;ag) contains T} and A. If p and ¢ are on both
sides of Pyreq, it is even better, since P is then contained in B(afﬁag). O

13.5.3 Proof of the graphs inclusion

Now we prove, using the Partition lemma, that the empty region graph Gz, based upon the regions of
Fo is indeed a super graph of the Delaunay triangulation, for all pairs of points that lie in a common
quarter of & where we call a quarter an angular sector of measure 7 from the axis of revolution of £.

Lemma 13.16. Consider an oblate spheroid £ embedded in R® and a data sample X distributed on &.
Let p and q two points of X in a common quarter, and such that p is closer to Z than q. If (p,q) is an

edge of Del(X), then it is an edge of 39_-2 (X).

Proof. Let p and ¢ be two points on a common quarter £. Without loss of generality, assume that p is
the closest to Z, and consider the frame used in the claims. We have to show that if a sphere passes
through p and ¢, it contains at least one the six regions of Fa(p, q).

00
CTan

Figure 13.8: The bisector plane of p and ¢ partitioned for Fs. For example, any sphere passing through
p and ¢ and whose center is in the tile with vertices ¢y, csym, cNorm and CDiag CONtains 7.

We prove this by partitioning Pg;s. The partition chosen is the following: (see Figure [13.8)). Pp;s is
separated into two half-planes by Lsy, on which are cgym and cnorm. This line separates the centers into
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those whose sphere contains either T}, T» or A and those whose center contains either Ty, T, or A. We
complete the partition by the rays from cgym to ¢37, and from cnorm to c%oiag, in the side of ¢, and by the
rays from cgym and cnorm to cf,. This partition provides six tiles, each of them is associated with one
of the six regions of F5 by the following relation: Let o be a sphere centered on ¢ and passing through p
and ¢:

o if ¢ € (cgm: Csym, €Ty, then T3 € B(o),

o if ¢ € (¢33, csym. cNorm,chag) then Ty € B(o),

(c
(
e ifce (chag, CNorm, csym) then A € B(o),
o ifce (Csym,CNorm, c$%.), then A € B(o),
(

o if c € (¢, CNorms CSym s CToy)» then T, € B(o), and
o if ¢ € (¢, Csym, Cgym)s then Ta € B(o).

This is a direct consequence of the Claims a-g and of the Partition lemma. Finally, suppose that (p, q) is
an edge of Del(X), then it exists an empty sphere passing through p and ¢, but this sphere is centered
in one of the six tiles so the sphere contains one the six regions of Fs, and that region is, in turn, also
empty, which makes (p,q) and edge of 89:2 (X). This proves that Del(X) is a sub-graph of a% (X) for
pairs of points that lie in the same quarter. O

13.5.4 Computation of an upper bound on the expected degree

Since 69_-2 (X) is therefore a super-graph of Del(X) for pairs in a same quarter, we can get an upper
bound on the expected degree of middle-range neighbors of points close to Z. We recall that we place
the spheroid in the global coordinate system, and without loss of generality, assume that u, > 0, v, =0
and w, < 1. We recall that a middle-range neighbor ¢ verifies

e q ¢ CN(p),

L4 |Uq‘ > lup|a

o |vg| < \2/3;:, and

o cither |u, — up| < \Cup or [ug — up| < 5/3:3

At this stage we can go to the proof of Lemma [13.3

Lemma 13.3. Let £ be an oblate spheroid, p a point of z* Toeur , and X a Poisson point process distributed
on € with intensity A. The expected number of middle-range neighbors q of p in Del(X U {p}) is:

O(In \)e™ 4 ).

Proof. Consider X a Poisson point process on £, we bound the expected number of middle-range neighbors
of p in Del(X U {p}), noted E [deg|MRN (p, Del)}.

To be a middle-range Delaunay neighbor of p, a point ¢ must be a neighbor of p in 6%-2 (X) and a
Delaunay neighbor of p among points that are not in CN(p). By Lemma [13.14] if a point ¢ is outside
CN(p), then if (p,q) is an edge of Del(X), then it is an edge of G? (X).

O(u° )

With this in mind, we can compute an upper bound on the expected degree:

deg|nrN (p, Del) = Z Li(p.g)eDel(xU{p})]
g€ XNMRN(p)

< D 1[<p,q>e?%<xmﬁw@(ug><X>]’
o

g€ XNMRN(p)
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since both are super-graph of Del in MRN(p), and then by Slivnyak-Mecke:

E [deglMRN (», Del)} <A P [(p, 9 e GL(X)n EN’F @(u;,)(X)] dg,

g€MRN(p)

since both are super-graph of Del in MRN(p),

€ [acepas (D)) <2 [ Pi0) € T30 |0) € T (00| P00 € T ()] g

qEMRN(p)

< /\/ P [(p, g) € G% (X) ’(p, geg’ @<us)(X)] e~ ®Ndg by Lemma [[3:2
gEMRN(p) Fo 7

We now have to find an upper bound of P [(p, q) € 69_—2 (X) ‘(p, q) € 80 e<u5)(X)} The knowledge
Fy P

5
of an empty region in .}’-'06 () unfortunately makes this probability greater than P [(p, q) € ?9_—2 (X )} . To

cope with this difficulty we introduce a new family of regions:
‘F;( aQ) = RT(ma(I) U RZ(pa Q)
where

e m is the point on E,<1 such that (wm,vy) = (3(up + ug), 3v4). Rr(m,q) is then a set of smaller
triangles on &.

o Ri(p0) = {AW.0)\ Fy "7 (0), Alp, ) \ Fy "7 ().

5
The regions of F3(p,q) and FO9 (u”)(p) are now disjoint (see Figure b and then the event “(p,q) €
gﬁ’% I(p,q) € G° @(ug)” is less likely to occur than the event “(p, q) € Q%”.
]:0

(u})
(

Figure 13.9: The new family of regions F (p, ¢), in orange. FOG) p) is the set of 8 triangles around p (in

u5
green), since they have radius O(u5), and since ¢ is outside CN(p), the point m is well outside F(? ( ")(p).

5
Thus F5(p,q) and Foe (e )(p) are well disjoint. On this figure, we only represent the part u > 0, but the
same occurs for u < 0.
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Then we obtain:

10
E [degjam (p, Del)| < 75" / . [(0.0) € G2 x| da
q

— efu;OQ()\))\ P [31‘ c f; (p’ q)7 rnX = m d
9EMRN(p)
< oo / Y PENX =0]dg
EMRN(P) e 75 (p,q)

_ —u’Q(N) / _ _
=e U A PrnX =0]+ PrNnX =0]|dg
qEMRN (p) Z Z

r€RY (p,q) reRr(m,q)
— eulem) A/ S P[rﬂX:OJ]Jr)\/ > PEnX=0]|dg
9EMRN(D) ¢ o, o) 9EMRN(P) v Ry (m,q)

— oo [ E [deglMRN ( ,3?{2)} + A/ > PrnX=0]dg

9EMEND) e 5 (m.q)

By Lemma [IT.4} since R is the reunion of two growing regions, we have:

E {deglMRN (p, Del)} <emw N [ 242 / Y PEnX=0]dg
4€MRN(p) r€Rr(m,q)

__—ul’a) / —\r|
—e Up 2+ A e dq
gEMRN(p) Z

P)yeRr(m,q)

Then we use the graph of the lower part of the spheroid:

fz(u,v) =1— \/1 — (Ksupu? + v?2),

as a variable substitution. With that parameterization, a surface element is given by:

35 (- (T

1
Since p € AR , any ¢ € MRN(p) verifies |u,| < 2;/5 and then it is clear that
sup

) <1 and \/( fz (uq,vq)) + (af (uq,vq))2 +1 < /3. So:

max (‘ 92 (u,,v,)|

o
g{vz (ug;vq)

E [deg|MRN(p) (p, Del)} <e N |24 V3 Z e dv,du,
qEMRN(p) reRT(mJI)
Now we compute a lower bound on |r(p, q)| for r € Rr(m,q). We consider the orthogonal projection
o on the plane w = 0. Since any region has a greater area than its orthogonal projection, it is clear

that |r(p, q)| > |mo(r(p,q))|- Since mo(T1(m,q)) is an axis-aligned right rectangle whose hypotenuse has
vertices p and q, we get:

1 1
|T1(m, )| = |mo(T1(m,q))| = §|(uq —up)(vg — vp)| = §|uq — up||vgl.
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Because the region Th(p,q) is delimited by a two dimensional ellipse embedded in R?, its projection
remains convex and we can assume that |mo(T1(m, q))| < |mo(T2(m, q))|, and so:

1
|T2(m, q)| > g‘uq - up||vq|~

The same inequalities hold for Ty (m, ¢) and To(m, q).

We recall ¢ € MNR(p) implies to |ug| > |upl, [vg] < \ZC and either |u, —u,| < Eg
sup —

V2-1
2Ksup

or Jug — up] <
. Thus we finally obtain:

E [deg‘MRN <p’ Del) S e—u}oOQ()\) 2 + 2\/§)\ / 46—)\|T1(7VL7(1)| dquuq

|uq|>ﬁp|
2-1
vl <oy

V2—1
[ug—up|< 2ksup

where we went from the condition “either |u, — u,| < V2=l o lug — ugp| < V2=l g, “lug

r — U ‘
2Ksup 2Ksup P
by adding a factor 2 in front of the interal,

E {deg‘MRN (p,Del)| < et AN | 2 4 8v/3) / e Aslua—usllvgl dvgdug

[ug|>|up|
V2-—1

|U<1|§ 2hsup

V21

2){sup

[ug—up|<

< e w2 | 24 830 / e~ Mg lugvql dvgduy, | by posing ug = ug — up,

1~ V/2-1
0<ug<onp
V2—1

2"isup

V-1 V2-1
2Ksu 2Ksu 1,/
_ 7u 00(N) <2+16\/§)\/ p/ P oA g lugugl dquu;>
0 0

lvg|<

— e % 2N (24 16VBA  y5 1 vs s (§)>’

2ksup ' 2Ksup

where I7, fo f e""dydx < 1 (1+In(tLl)) (by Lemma,

E [deg\MRN (p, Del)} < et N (2 + 16\/§A§ (1 + ln( (3— 2W>A)>>

32kK2
< w2 (2 +128v/3 + 128v/31n (<3322?f) ))
=0 (In)) e 2N, -

13.5.5 On the probability of existence Delaunay neighbors outside MRN(p).

1
We finish this chapter by proving that, for a point p € AR , a far Delaunay neighbor of p has little
chance of existing. The lemma is the following:
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1
Lemma 13.4. Let £ be an oblate spheroid, p a point of Z " e , and X a Poisson point process distributed
on € with intensity \. The expected number of far neighbors of p in Del(X U {p}) is:

e O,

Proof. Consider a point ¢ in FN(p). The point here is that, since MRN(p) has a size bounded from below
by a constant, then there exists 6 > 0 such that min (dist(p, q), dist(p,q)) > ¢ and any sphere passing
through p and ¢ has a not empty intersection with the surface.

We call disk of radius ¢ on &, the intersection of £ with a ball or radius ¢ centered on £ for a ¢ small
enough such that the disks are actual topological disk. Let call rs the radius such that any sphere o
passing through and p and ¢ contains a disk on £ of radius r5. Because of what we just said, rs is strictly
positive.

As seen in Chapter [5] we can consider a maximal disjoint set Ms on € of a finite number m; of disks

rs

of radius % such that any disk of radius rs contains a disk of Ms. Then we can compute the expected

number of far neighbors of p in Del(X U {p}):

E [deg|FN (p, Del)} = /\/ ” P[(p,q) € Del(X U{p})] dg by Slivnyak-Mecke theorem,
q€FN(p

/\/ P [3 o passing through p and ¢ such that B(c) N X = ()] dq
g€FN(p)

IN

A / P [There exists a disk D on & of radius rs such that DN X = ()] dgq
q€FN(p)

<A P [There exists a disk D" of Ms such thatD' N X = ()] dq
q€FN(p)

< )\/ mgef)‘”(%&)qu
g€FN(p)

= Xe W since my is finite and rs stricly positive.
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Chapter 14

Experimental results

We confirm our results with experimental observations. We simulate a homogeneous Poisson point process
X on both kinds of surface, one verifying generic properties and one that does not.

The chosen surfaces are spheroids of revolution with vertical flattening factor &, they can be described
in R3, by the equation:

S+ P+ k%22 =1

&y &

2

Figure 14.1: The two spheroids £ and 5% with respective flattening factors: 2 and % Only &; has generic
surface properties.

What is interesting with those surfaces, is that depending on the value of k, they may verify or not
genericity properties so that we can observe both of the linear and quasi-linear behaviors of the Delaunay
triangulation of X.

For k < 1, the spheroid & is elongated along the z axis. Then it can be seen as a canal surface
with a vertical 1-dimensional medial axis. According to Chapter[12] E [ Del(X)] must have a quasi-linear
behavior.

For k = 1, the equation describes a sphere that is a too much degenerated surface to be classically
triangulated, and would require symbolic perturbations as described in [DT11].

For k > 1, the spheroid & is flattened along the z axis. In that case, & is a generic surface, probably
the simplest. Z is on the equator of &, its medial axis is a disk. According to Chapter E [ Del(X)]
must have a linear behavior.
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v

Figure 14.2: Left: Cartesian, spherical and cylindrical coordinates. Right: Differential area element on
the sphere of radius 1.

14.1 Simulation

We simulate incrementally a homogeneous Poisson point process X on &, for any k& > 0.

We divide the simulation of a point p into two steps, first we distribute p uniformly on the sphere
&1, then we apply a rejection algorithm on p such that, once &; is vertically stretched into &, p is
homogeneously distributed on &.

This simulation generates N points where N follow a Poisson distribution with intensity A.

Simulation on the sphere &;
We start by simulate a uniform distribution on the sphere &; of radius 1 defined in R® by the equation
22 +y? + 22 =1 or p = 1 using spherical coordinates (Figure left):

T = psinpcosb,
y = psinpsind,

zZ = pcos ¢,

with p € [0,400], 8 € [0,27] and ¢ € [0, 7].

A differential area element in those coordinates is dA(¢, dd, d¢) = sin(¢)dodd (see Figure right),
and since the total area of &; is 47, we can deduce that the random couple (0, ®) on &; parameterizes a
uniformly distributed point on & under the joint distribution:

fo.0(0,p) = ﬁsin(g&).

The marginal distributions are then:

‘/"9(9):/O fe,@(f),sﬁ)dsa:/o 7 Sinlp)de = ——,
2 27 1 ' 1 .
fule) = [ Fonl.0)a0 = [ Lsin(o)an = Ssinfe).

The distribution of © is then uniform on [0, 27], so that we can simulate it :

O = 27TU1
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where U; is a uniform distribution on [0, 1].
We simulate the distribution of ® by using the inverse transform sampling [Dev06]. The cumulative
distribution function of ® is:

Fal) = [ foledo = [ Ssin(@)ds = 51~ cos(o)).

thus we deduce that:
® = F~1(Uy) = arccos(1 — 2U>),

where Uj is a uniform distribution on [0, 1].
We separately simulate the variables © and ®, thus a point parameterized by (©,®) is uniformly
distributed on &;.

Simulation on the spheroid &

We go from the sphere & to the spheroid & by applying the flattening transformation z — %z This
transformation does not keep the distribution uniform, and thus we use a rejection algorithm to restore
the uniformity. Note that we preferred to use a rejection algorithm because a direct approach would have
led to elliptic integrals.

We switch to cylinder coordinates (Figure left):

x =rcosb,
y =rsind,
z =z,

with r € [0, +o0], 6 € [0, 27].

On &, we consider the differential ring element dRy(r,dr) (see Figure left), and compare
dRy(r,dr) with dR;(r,dr). For any « € [0,27], we consider the intersections of £ and & by the plane
Pao: o = 0. They respectively are a circle and an ellipse for which we denote ds; (r,dr) and dsg(r, dr) the
differential length elements (see Figure right).

It is clear that dRg(r,dr) = 2wrds(r,dr) so that gz’;g::g:g = ji’;g:ﬁ:g, and we only compute

dsg(r,dr). For any a, in P,, the circle can be described by z = £ f1(r) and the ellipse by z = +fx(r)

where fi(r) = V1 —r2.

Figure 14.3: Left: The differential ring elements dRy, darker, on sections of £ (in green) and & (in
blue). Right: The differential length elements dsj, for k € {%, 1,3}.
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Since fi(r) = —+ 7= the differential length element is:
dsp(r,dr) = /14 fi(r)%dr

- \/1 + <—]1\/1T7T2>2dr

2

1+ — 2o dr
1 [k2— (k2 —1)r2
=TT dr.

In other words, the flattening transformation multiply the differential length element by the factor:

1 [R=R2-D?
dsg(r,dr) & 1—r2 "1 22— 1)

dsy(r,dr) dr k

1r2

If £ > 1, the expected proportion of points per differential length element ds; that we keep is 32’;5:37;; .

That quantity has 1 for upper bound. We reach that proportion by, for each point p, simulate a number
T

If £ < 1, the differential length element grows from ds; to ds;. The growth factor ranges from 1 to
k. To preserve uniformity while being able to perform the rejection method, we switch from dsj to kdsy
and keep a point with probability /<:ds’c

Consequently, we apply the followmg rejection algorithm to all points on the sphere, assuming they

are parameterized by (r, 0, z).

w uniform on [0, 1] and keep p if u <

Rejection algorithm:
input:
a point p = (1,6, z),
a number k > 0, k # 1.

m < min(1, k)
(With probability miz’;gg:; , we project p on &, otherwise we delete it)

let u be a random number uniformly chosen in [0, 1]
dsg(r.dr),
dsq (r,dr) -
p.z + p.z/k
else:
delete p

if u<m

14.2 Experimental results

We simulate a homogeneous Poisson process X with intensity A on & and on £ 1 We vary the parameter
) in a geometric progression from 23 to 2!? and realize 20 experiments for each.

In first step, we distribute X on & since the oblate spheroid Veriﬁes generic properties. The size of
the triangulation (in number of edges) is illustrated in Flgure Since we expect to obtain a linear
size, we show the average number of edges up to a factor + X

The simulations seem to show (see Figure that the number of edges tends to a value around
6. This is quite small relatively to our expectations. Indeed, a 6A number of edges provides an average
degree (over the vertices) that is around 12. We know that the convex hull bring a contribution of 6 edges
per vertices. Note that the convex hull is given by the empty region graph for which the regions defined
by (p,q) are half-spaces whose boundary passes through p and ¢, i.e. degenerate spheres. Considering
lower spheres might bring a constant contribution. Thus the number of remote Delaunay neighbors of
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10

Average number of edges / A

4 6 8 10 12 14 16 18
log(A)

Figure 14.4: Average number of edges in the 3D-Delaunay triangulation of points on &, with respect to
the logarithm (base 2) of the intensity A. The number of edges seems to tends to 6A.

a point p (those which are close to P) is necessarily smaller than 6. We can actually consider that the
Delaunay remote spheres passing through p and ¢ have an intersection with the surface that are ellipses

1—r1(p)r*(p)
1—r1(p)r*(p)

with the only aspect ratio

. By Lemma [8.15] this would also bring a contribution of 6 in

the expected degree.

2.00

1.75 4
1.50 -
1.25
1.00 4 N
0.75 -

0.50 4

Average number of edges / A log (A)

0.25

0.00 T T T T T T T T

log(A)

Figure 14.5: Average number of edges in the 3D-Delaunay triangulation of points on 5%. The number of
edges seems to remain just below Alog .

In a second step, we distribute X on & 1 that is definitely not a generic surface since its medial axis
is a segment. We observe that the expected number of edges is, as expected, close to Alog A.
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Part IV

Expected size of the 3D-Delaunay
triangulation of a Poisson point process
distributed on a generic surface
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Preamble of Part [V

As we have seen in Part [T, when a Poisson point process of intensity A is distributed on a surface,
its Delaunay triangulation has an expected size that can range, at least, from linear to quasi-linear.
We illustrated this by showing that, on a cylinder, the expected size of the Delaunay triangulation is
© (A1n \), while on an oblate spheroid, the expected size is O ().

In this part, we consider a generic surface S. Its genericity makes it share properties with the oblate
spheroid, that are significant with for the Delaunay triangulation of points distributed on the surface.
We describe those properties in Chapter conjointly with the differences we observe. This gives rise to
a scheme of proof that we explain in the end of the chapter. Broadly speaking, we adapt the scheme of
proof used for the spheroid. One of the important generic properties is that the set Z of S, of points p
such that r*(p) = #(p), is a finite reunion of finite curves. On the spheroid case, we illustrated that the
degree of a point depends highly on its distance to Z. Then we denote by h, the distance from p to Z.

Then, each following chapter describes a partial analysis of the expected degree of a point p € S in the
Delaunay triangulation depending on the position of p on S and of its possible neighbor ¢. In chapter [16]
we compute the local degree of a point. By “local”’, we mean that the neighbors we count are geodesically
close to p. We denote by Loc(p) the local neighborhood of p. In the local neighborhood of p, we can fit a
quadric approximating S, and so will be able to reuse or adapt most of the computations already done
in Chapter In the local neighborhood, we can find a super-graph of the Delaunay triangulation for
which the degree of p is relevant. We will show that Loc(p) is a circular local neighborhood of radius
©(1) when p is far from Z, or of radius ©(h3) when p is close to Z. We distinguish in this chapter, the
computation for points that are on, or close to the convex part of the surface, where the two principal
curvature have same sign, and points that are far from the convex hull, whose medial radius is finite.

In Chapter [I7, we compute the remote expected degree of a point, i.e. the expected number of
neighbors that are close to the symmetrical points of p. We will denote by Rem(p) this neighborhood.
Here again we have to differentiate the counting depending on the position of p. Indeed, if p is close to
S’, the set of points with two symmetrical points, then p may have remote neighbors in multiple places
on S. For this chapter we introduce the notion of supplementary symmetrical points, in order to count
the remote neighbors of a point p whose medial sphere is close to a medial sphere with a greater contact
type.

Finally, in Chapter we count the remaining edges. For edges (p,q) such that p is far from Z, a
packing argument will show that their number is o(\). Conversely, if p is close to Z, its local and remote
neighborhood are too small to use the packing argument. So we will consider a greater local neighborhood,
called middle-range neighborhood as in the previous part. We prove that p have O(log \) such neighbors
but with a probability exponentially decreasing with the distance to Z. As for the spheroid case, this
allows us to integrate the expected degree around Z, to obtain a linear expected number of edges with
an endpoint close to Z.



164



Chapter 15

(zeneric surfaces

Through this chapter, we explain how we can reuse the proof of the computation of the expected size of
the Delaunay triangulation of a Poisson point process distributed on an oblate spheroid for the case of
more general surfaces.

15.1 What is generic or not in an oblate spheroid

We start by listing the set of common points and differences we might encounter between a generic surface
S and an oblate spheroid £, and we explain how we will deal with those differences. The reader may refer
to Part [, Chapter [I] for generic notions, and in particular to Section for a summary of the different
contact points and how we denote them.

15.1.1 Common points between an oblate spheroid and a generic surface

Even if an oblate spheroid can hardly be considered as a generic surface, it shares sufficient properties
with a generic surface to be used as a generic example. In a sense, we could say that an oblate spheroid
is the simplest generic closed smooth surface. We start by pointing out the properties that an oblate
spheroid shares with a generic surface. Those common points will allow us to reuse as much as possible
what we have demonstrated in Chapter For instance the general method used in the proof will be
reused.

On an oblate spheroid, almost all points have exactly one symmetrical point. We recall that a
symmetrical point p of a point p is another contact point of the medial sphere of p with the surface.
In other words, almost all medial spheres of an oblate spheroid have A% contact type. That is also the
case for any generic surface. For all of such points, we were able to give a neighborhood, in which their
expected degree in the Delaunay triangulation of a Poisson point process were finite. We computed an
upper bound on their expected degree, using an empty rhombus. Since for such points, we limit our
analysis to the order two of the equations, and since the rhombuses of the rhombus graph are defined by
ellipses, i.e. curves of degree 2, we will be able to reuse such graphs for generic surfaces.

Unfortunately, the size of this neighborhood tends to 0 at the approach of Z, and we needed to consider
a second analysis for points close to Z. On an oblate spheroid, the set Z of points where the medial
radius equals the first osculating radius, is a curve, i.e. a one-dimensional object. So we considered the
set we called &, that is a strip around Z, and computed another upper bound on the expected degree of a
point in this strip. On a generic surface, we explained in Part [[|that Z remains a one dimensional object.
Thus we will again consider a strip around Z and use similar argument to bound the global expected
number of edge with an endpoint close to Z. The expected degree of such points was calculated using
empty right-triangle graph that we will be able to reuse up to some deformation. For the points close to
7, we will still be able to quantify the behavior of some geometric value, like the curvatures.

For these reasons, the general scheme of the proof will be the same. We detail, in the next section,
how we deal with the generic properties that an oblate spheroid does not have.
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15.1.2 Differences between an oblate spheroid and a generic surface

We said that we could see an oblate spheroid as “the simplest” generic surface, but actually such a surface
is too specific to be generic, and lots of its properties are not verified generically. In this section we state
all such properties that are involved in the computation of the expected size of the Delaunay triangulation.

First, an oblate spheroid is the boundary of a convex volume. Generically a surface is not convex, but
we will show that this does not really change the problem. As a consequence of this non-convexity, some
points have their principal curvatures with opposite signs. A different approach we use is to consider
that each p € S can be seen as a point with inside features: pin, and with outside features: pout. Among
those features, there is the so called oriented expected degrees deg(pinn, Del) and deg(pout, Del), where
deg(pinn, Del) is the number of neighbors of p for which there exists an empty sphere centered in the
positive side (with respect to an orientation of S) of the tangent plane at p, and where deg(pout, Del) is
defined similarly for the negative side. They verify deg(p, Del) < deg(pinn, Del)+deg(pout, Del). With such
notation, we can make a difference orientation-wise in the study of the degree of a point. In particular,
even if p € Z it is not necessary that pjn, € Zinn but only pout € Zous, and we can still consider that pi,,
has a local neighborhood not reduced to 0.

Still related with the orientation, a point on an oblate spheroid has no symmetrical point in the
outer direction. On a generic surface, a point can have symmetrical points on both sides of its tangent
plane, and even on its tangent plane. Considering the oriented points allow to enumerate how many
symmetrical points are on each side. For instance, suppose that p has four neighbors, that is generically
possible. With the oriented points, we can distinguish the cases: either piy, and poyut have two neighbors,
either pinn has one neighbor and p,ut has three, either the contrary. In the sequel, once an orientation is
chosen, p will systematically refer to one of the two oriented points. As a consequence, a point p with
three symmetrical points, has its three symmetrical points on the same side of its tangent plane.

As well as points with multiple symmetrical points, we recall that a generic surface has also Y points
(symmetrical points of extremities of Z). Such points don’t exist on oblate spheroids because Z is a
closed curve. A special section will be dedicated to compute their remote expected degree.

Finally, we can consider that almost all symmetries that we found on the spheroid do not anymore
exist on a generic surface. This will have a significant consequence in two cases. First, for the position of
symmetrical points, that were in the z-direction in the Monge coordinate system, and as a consequence
we had equation for their bisector plane that did not involve the y coordinate. Actually, since the spheroid
was symmetrical with respect to its medial plane, some properties that were related with this plane were
simple, like the fact that a circle passing through p, ¢ and P, passes also through g. This is not anymore
the case, and we will have to make some adjustments. Secondly to find a good super-graph for points close
to Z (in & for the oblate spheroid case), we used very specific spheres, that depended on the parallels and
meridians. Obviously we cannot define sphere in the same way anymore. Nevertheless, we will show that
we can find a super-graph using similar spheres. Another difference lies in the neighborhood where we
can apply this super-graph, the middle-range neighborhood, that covered the lower half of the spheroid.
For a generic surface, this neighborhood will be related with the coefficients of fourth order of the Taylor
expansion of the surface at point of Z.

15.2 Sketch of proof

We consider a generic regular orientable closed surface S. Taking into account what we pointed out in
the previous section, we adapt the proof used for the oblate spheroid. We start, in the coming section,
by explaining how we decompose the surface, first with respect to an orientation, secondly with respect
to the nature of the contact type of the medial sphere. Since some computations can only be made for
point under a given distance from specific subsets of the surface S, we will consider strips around Z, S’
and H’'. We denote by ZT, ST and H'" the respective strips around Z, S’ and H’. Their width is not
necessary the same, they will be specified all along the proof until it reaches a minimal value that satisfies
all necessary conditions.

Once the decomposition is clear, we show out the important lemmas of the proof as we did for the
spheroid. This gives rise to a plan for the remaining chapters, each one being dedicated to a group of
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@@ |

Figure 15.1: A 2D view of the choice of orientation on self-including surface. Left: The outer orientation,
defined by the most outer connected component. Right: The inner orientation.

lemmas.

15.2.1 Decomposition of the generic surface

We have to decompose this surface according to the way we will compute the degree of a point. A first
step is to consider the two orientations of the surface. Since it is closed, we name outer the orientation
that points outward the surface, and inner the other. One might remark that a surface may have multiple
connected components self-including, but in that case the “most outer” connected component defines the
outer orientation, and the others follow by alternating successively (see Figure .

Then we choose an orientation, and decompose the surface according to this orientation. We recall
what we explained in Part [[} once an orientation chosen, a point p belongs to Z if and only if the medial
sphere in chosen orientation is osculating and its intersection with S is reduced to p. The same holds
for the other subsets of the surface: the set Z’ of extremities of Z, the set Y of symmetrical points
of Z' points, the set S of points with an A? contact medial sphere, the set S’ of points with an A3}
contact medial sphere, the S” of points with an A} contact medial sphere. And specifically for the outer
orientation, the sets H, H' and H" of points one the convex part of S with respectively exactly 0, 1 and
2 symmetrical (finite) points. We denote by Ks the set of the specific subsets described above:

Ks:={S',S" H H" Z 7 Y}

We consider strips around S’, H' and Z, and disks around S”, H”, Z' and Y whose width or radius
is small enough for us to be able to use some properties of the surface. For a positive number ¢, and a
subset U C S of the surface, we denote by UT? the sets on the surface:

Ut =8n{B(p,d), pe U}

Thus, for any U € Kg, we associate a positive number &y, and define Ut := U, We choose this
notation to simplify the expressions. The different Jy can be related to each other but we may pay
attention not to define them circularly.

By default, we consider that all 6y for U € Ks are smaller than the half-reach %rch of the surface.
We recall that rch is the smallest medial radius of S, that is strictly positive for any C? non intersecting
surface. All the 6y must also be small enough so that, SUS"UH'UH"UZUZ' UY’ and S'TUS"*T U
H*TUH"™ UZ"UZ"UY'" have the same topology. In the end of the proof, we will have an upper
bound on each §y that are constants of the surface. In particular, they are independent of the intensity
of the Poisson point process.

15.2.2 Approach of the proof

As we said, we keep almost the same approach than for the oblate spheroid.

We consider a Poisson point process distributed on X on S with intensity A. Without loss of generality,
we assume that the area of S is 1. Thus A corresponds to the expected number of points in X. Tacitly,
A is supposed to be great. For each point p € S, we compute an upper bound on the expected degree
E [deg(p, Del)] of p in Del(X U {p}). As we said, we compute separately the degree according to each
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Figure 15.2: A 2D view of the decomposition of surface depending on the orientation. In black, blue and
yellow far enough from S’ U H' U Z. The blue points are specifically on the convex part. In yellow are
the strips ST and H'*". In red are the strips Z+.

orientation. So we choose an orientation, and a point p € S. We divide the computation of the expected
degree of p in Del(X U {p}) into three degrees: the local degree, the remote degree, and the far degree.
The expected local degree of p is the expected number of Delaunay neighbors of p that are close to
p, i.e. in a geodesic neighborhood of p on S called Loc(p). It will be defined in Chapter As long as
pis not in Z*, we will show that the expected local degree of p is O(1) and that the local neighborhood
Loc(p) correspond to a disk around p with radius Q(1). We will decompose the proof depending on the
position of p. If p € H, the two curvatures of p are negative, and we can obtain a constant expected
local degree quite efficiently. By smoothness of S, we extend this bound to p € H*. Then all remaining
points p have a finite medial radius, and at least one symmetrical point on S. We treat them as we did
in the ellipsoid case, taking into account that the size Loc(p) depends not only on the geometric value of
S at p, but also at p. In the end of Chapter we treat the cases of points p € Z*. For such a point p,
we denote by h,, its distance to Z. The local neighborhood of p corresponds to a disk with radius @(hf;)7

and its expected local degree is O (ln h%,) For the case of Y+, that have a symmetrical point close to Z,

we show that their expected local degree is O(1).

In Chapter we evaluate the expected number of remote neighbors of p. We count the expected
remote degree of a point by using a symmetry relation: if a sphere passes through p and g, it contains
either a sphere that has been treated for the local neighborhood of p, or a sphere that has been treated for
the local neighborhood of p. For this chapter, we can exclude the cases of points in H \ H'". Since they
don’t have symmetrical points, they don’t have remote neighbors. The difficult cases are those close to S’
and H', for which we will consider supplementary symmetrical points. For any point p in S\ (S’t U H™),
p has a single symmetrical point p. We will show that their expected remote degree has the same order
of magnitude than their expected local degree. For points in H'", we have to take into account that
a point in H N H'" can have Delaunay neighbors on an other connected component of H. For them,
we consider a supplementary symmetrical point or two if they are close to H”. We treat the points of
S\ (Z'TUYT) similarly, and show that they have an expected remote degree that is O(1). For the
case of points in Z’T UY T, since we count the remote neighbors, we choose to orient the Delaunay edges
and count only edges issue from Z’T. We show that the expected number of remote neighbors of p in
Z'"is O(In h%,)

In chapter [I8] we count the remaining neighbors, called far neighbors. For all points of p far from
Z7T, both the local and remote neighborhood have size Q(1), and using a packing argument, we show
that their remaining Delaunay neighbors, the far neighbors, are O()\). For a point p in ZT, we show
that the probability that p has a Delaunay neighbor outside Loc(p) and Rem(p) is e *21°) | Then we
consider an intermediate neighborhood, the middle-range neighborhood MRN(p) of size Q(1), and show

that the number of neighbors in MRN(p) is e_’\Q(hie))O(ln A). By integrating this bound, we obtain that
the global expected number of such edges isO()\), and so is the size of the Delaunay triangulation.
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Expected local degree of a point

In this chapter, we count what we call the expected local degree of a point p in the Delaunay triangulation
of a Poisson point process X on S. The local degree correspond to the number of Delaunay neighbors
that lie in a given neighborhood, called local neighborhood, that is a small topological disk around p. Its
size depends on the position of p on S, in particular to the distance h, from p to Z.

As we saw in Part Chapter the distance h, from p to Z is © (\/1 - ml(p)y«*(p)). Since r* is

infinite on the convex part of the surface, we decompose the chapter into two sections: a first section for
the convex part and a little beyond, and a second section for bounded medial radius.

16.1 Local degree of a point on the convex hull and a little beyond

In this section, we consider the outer orientation of S and we treat the points of H U HT i.e. the set
of points of S that are in H or that are in S but close to the boundary H' of H. We recall that p is
considered as an oriented point, and that deg(p, Del) takes only into account the spheres whose center
has a positive z coordinate in the Monge coordinate system of p.

We call local degree of p, the set of points ¢ such that (p, q) is an edge of the Delaunay triangulation,
and |pq| is small enough. We will show that the expected local degree of a point p € H is bounded by
a constant.

Consider a point p on the convex part H of S, and the Monge coordinate system at p. By genericity, at
p, the two principal curvatures are negative. We denote by kg, the maximum of first principal curvature
on H:

Kg = sup (K1) .
peH
It is a strictly negative constant. By smoothness of S, k1(p) remains negative a little beyond H. This
give an upper bound on §z: it must be small enough so that all points of H'" have two negative principal
curvatures. This defines the condition (Cg)

For any p € H'", k1(p) < %/@H. (Cy)

A point p in H'" \ H, i.e. beyond the convex part, has a symmetrical point p. That induces that it
has remote neighbors around p, but that also reduces the probability that a high sphere passing through
p is empty, since the sphere may touch S around p. We can count the number of local neighbors of such
a point p as if there were no symmetrical points, similarly than what happens on the convex hull. That
provides an upper bound on the number of local neighbors.

Since we reuse the method used in Part[[TI] we will consider a point ¢ € S, close to p, and partition the
bisector plane Pgis(p, ¢) to obtain a super-graph. We start by defining the set of spheres whose centers
help in the partitioning of Pgis(p, q). To be exact, since we have oriented the surface, we only partition
Pgis(p, )" := Ppis(p,q) N {z > 0}. In order to lighten the notations, we keep the notation Pp;s, since
it is clear from the context.

169
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16.1.1 Choice of the specific spheres

At any point of H U H'" the surface is locally convex. So we can more or less see it as the external part
of a spheroid, and we can reuse exactly some spheres that were already used in Section [I3.4] For the
spheroid, we partitioned completely Pg;s(p, ¢) and considered the inner orientation. So, what we need to
partition here corresponds, in the spheroid case, to the part of Pgis(p, ¢) where z < 0.

We partition this part with four centers, one with z. = 0, close to the middle of p and ¢, its cor-
responding sphere has an intersection with S that resembles to a disk with diameter [pg]. One at the
infinity, such that the corresponding sphere is a plane that has an intersection with S that resembles to

an axis-aligned ellipse centered on the middle of [pg] and with aspect ratio , /- And the two last centers

at the extremities of Ppgis(p,¢) N {z = 0}. Their spheres are degenerate planes directed by the line (pq)
and 7i(p). They cut in half the surface into a left and a right side. Since the claims are exactly the same
than those from Section we don’t reprove them.

Sphere o1,0w
The center cpoy is in the tangent plane T¢(p) whose equation is z = 0, and in the vertical plane Ppoy
with equation yr, — 2y, = 0. The equation of the second plane guarantees that the projection of the
intersection region m, (rLow) = B(Low) N E is tangent with ell' (p, ¢). The more ¢ is close to p, the closer
is the sphere oy, to the Gabriel sphere of p and gq.
We consider the neighborhood of p in Ts(P): View(p) = {max (|z|, |y|) < Lkeup}, and recall that

ell* (p, q) is the disk in 7s(p), with diameter p and pr((;). We state the following claim:

Claim a. If g € 7, ' (Viow(p)), then m, (rLow) contains ell*(p, q).

Degenerate sphere opigh-

The center cpign is at the infinity in the direction, in Pgis, given by the plane Prign with equation
K1YTq — Koxyy = 0 in the half-space z > 0. It corresponds to o3 from Claim [¢] Section [13.4 in the
opposite orientation. The direction of the center tends to the normal at p when ¢ approaches p. We

K1

consider [, =: _~. The fact that chign € Phignh guarantees that the projection of the intersection

region rpigh = B(0High) N € is tangent with ellP= (p,q) at p.
We recall that the surface at p can be seen as the graph of:

fp = %Hle + %K‘ng + R3(‘T7y)7
where there exists a positive M such that |Rs(z,y)| < Ms(z2+4?)3, and consider the rectangle Vigign =
{|x| < %, ly| < %%}, and the following claim:

Claim b. If g € 7" (Viaign(p)), then mp (rmign) contains ell’= (p, q).

Degenerate spheres o, and o,.

Their centers ¢, and ¢, are at the infinity of the line that is the intersection of Pp;s and the tangent
plane 75(p), with equation z = 0. The spheres degenerate into the vertical plane Ppiag passing through
p and ¢, and containing the normal at p. If we look at the tangent plane from an outer point of view

(with respect to S) then ¢, is defined on the left of pﬂp(q; and ¢, on its right.
Claim c. Ifq € 7r;1 (Viow(p)) then m, (re(p, q)) contains ell; (p,q) and m, (rr(p,q)) contains ell,{ (p,q).

Finally, for any point of H*, we denote by Vi (p) := Viow(p) N Viign(p) and define Loc(p) as:

Loc(p) :=m, " (Va(p)).

The local neighborhood Loc(p) constitutes a strictly positive neighborhood for all points in H™. Those
claims are enough to consider a super-graph of the Delaunay triangulation restricted to spheres centered
above Ts(p) and neighbors in Loc(p).
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16.1.2 Proof of the graph inclusion

We consider the two regions in the tangent plane:

. 1"hf‘>o =ellln ell’>= and
o thi> = el Nell~.

And we can apply Combination lemma to prove that if ¢ € Loc(p), then any sphere o passing through
p and ¢ and centered on ¢ verifies:

o Ifce (CHigh7 CLow C’!‘)a then B (U) NS contains 7'[';1 (rhf‘”>7 and

o if ¢ € (cHigh, CLow, C¢), then B (o) NS contains 77;1 (rhfc"’).

Then we consider the family Fpqc(p, ¢) of fundamental regions on S for p € H™ and ¢ € Loc(p):
FLoc(p, q) = {7?;1 (rhf“’ (p, q)) S (rhfx (p, q))},

and the empty region graph ?f@m in which there is an edge (p,q) if and only if ¢ € Loc(p) and there
exists r € Froc(p, q) such that r N X = (). We can partition the part of Pgis(p, q) such that z > 0, into
(CHighs CLows ¢r) U (CHigh; CLow, ¢¢) to deduce by Partition lemma:

Lemma 16.1. Let p € HU H'" and q € Loc(p).
If (p,q) is an edge of Del(X N {p}) then it is an edge of ]?LOC (X n{p}).

16.1.3 Computation of the expected local degree

We use the super-graph provided by the previous section, to compute an upper bound on the expected
local degree of a point of H U H'*" in the Delaunay triangulation Del(X U {p}).

Lemma 16.2. Letp € HUH'", the expected number E [degumc (p,Del)| of neighbors of p in Del(XU{p})
that are in Loc(p) is:

E {deglLoc (p, Del)} = 0(1).

Proof. The important point here is that —rgup < k2 < k1 < kg < 0 since p is in HT and the curvature

is bounded. Thus the super-graph E;@LOC is an empty half-rhombus graph with finite aspect ratio for any
p, for which we know that the expected degree is finite. O

Note that, in this counting we did not take into account the symmetrical part of H'* \ H, thus the
points in H't \ H have actually a lesser expected local degree, but it is important that we counted the
local neighbors of such points in the same way than points of H, because their medial radius tends to
+o0o when they approach H’, and that would have been a problem.

For the points of HU H'T, it remains to count the remote neighbors (close to the symmetrical points)
and the far neighbors (neither close to p nor to p). We will count such neighbors in a farther section.
For now, we just make the remark that, points of H \ H’"T don’t have remote neighbors, but only far
neighbors. Points of H'* \ H have a natural symmetrical point, so it has remote and far neighbors. For
the remaining points, in H'* N H, it is a bit more complicated: they don’t have a symmetrical point, but
since they are close to the boundary of the convex part, they can have neighbors on another connected
component of H'™. So we will have to count them.
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16.2 Local degree of a point far from the convex hull, and far
from Z and Y

In this section, we consider a point p in S but not in H U H'T since we dealt with them in the previous
section, and not in ZT, where 1 — k17* approaches 0, and not in Y+, where 1 — K;r* approach 0. Thus,
for a given orientation, the medial sphere of p is finite and not osculating at p or p. It is important that
1 — Kk1r* > 0 since, as in the spheroid case, a sphere passing through such a point p has an intersection

1—kryir*
1—rRor* "

with the surface that is almost elliptic, with an aspect ratio that does not exceed

We count the expected number of Delaunay neighbors of p that are in a local neighborhood of p on
S. This neighborhood will be refined as we go along the proof. For now we can assume that we consider
points of S at a distance smaller than %rch from p. This provides a guarantee that they lie geodesically
close to p, and in a part of the surface that can be represented as the graph of a function in the Monge
coordinate system of p.

Since p ¢ H*°, p has at least one symmetrical point. For this section, it is not important how many
they are. If there is only one, we call it p. If there are more, one of them is closer to p than the others.
We name this one p. Since p ¢ H U H™, we can consider its medial sphere o*, with medial center c¢* and
medial radius 7*.

We count the expected number of local neighbors of p. As usual, we start by defining the specific
spheres used to partition Pgis(p, ¢), then we provide a super-graph of which we compute the expected
degree. For this section, we cannot reuse as directly as in the previous section the claims and the partition
we had in Chapter [L3] because S does not have all the symmetries of an oblate spheroid.

16.2.1 Choice of the specific spheres

For a point ¢ close to p, we have to define some specific spheres whose center are vertices of the partition
of Pgis(p, ¢) that we use to find a super-graph of the Delaunay triangulation. We try to reuse, as much as
possible, the spheres we chose in Section[I3.4] but we will have to adapt some of them since, by definition,
S has less symmetries than a spheroid. At least two noticeable differences arise: p is not anymore above
the z-axis of Monge coordinate system at p, and the principal curvatures at p are different from those at
P and moreover, the principal directions are not anymore symmetrical with respect to Pgis(p, D).

Low spheres 01,0y, 0y and o,
We still consider the same spheres as usual, o1ow, 0¢ and o, centered on Ppis N {z =0}

Claim a. If g € 7, (Viow(p)), then mp (rLow) contains elll(p, q) orell(p,q).

Before introducing the next sphere, we make some remarks concerning the point p. We denote by k1
and Ry its principal curvatures. To be more precise, K1(p) = k1(P), and Rz(p) = k2(p). In the Monge
coordinate system of p, the bisector plane of p and p, renamed Pyreq has equation:

Ped : 0= x(Ep-f— yyﬁ—’_ (Z - T*) 2p)
since ¢* € Pyed and Ppyed L (pp). We can rewrite its equation this way to isolate z:

Txp + YYp
ZT’ ’

Pued : 2 =15 —

Sphere o)eq
The center cpeq is in the plane Pyreq and the plane Pg , with equation y(1—r1r*)zg—z(1—ror*)y, = 0.
The center cppeq is close to the medial center ¢* of p when ¢ is close to p. We consider the neighborhood

Vitea(p) = {max(|xq|, lyql) < 716,;@ min <4\/2 (1= K1), 7(17';17;\41'{5“’7 :;?P tz;; I‘%‘I) } The values in-
volved in the definition of Vjeq appear in the proof of the following claim.

Claim b. If g € 7' (Vatea(p)), then mp(rned) contains ell’ (p, q).
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Proof. The proof is very similar than the proof of Claim [b] Chapter [I3] except than y5 # 0. We start by
identifying the coordinates of cned = (Ze, Ye, 2¢)- 1t verifies:

0 = (z4 —ﬁxc) g+ (Yg — 2Ye) Yq + (2 — 22¢) 24, (1)
CMed * Ze = 17— ézc - 7;9w (2)
0 = (1—rir)zeye — (1 — Kar*)y, .. (3)

In (1), we substitute z. by its expression given by (2):

Telp ycyp> s
q

()—(xq—Qxc)xq+(yq—2yc)yq+'z§_2<T*_ P P
79 P

wv%)
q

= x?l — 2z, + yg — 2ycyq + 23 -2 (r* — —
P P

. _
= xi -2 <xq - pzq> Te +y§ -2 (yq - ypzq> Yo + zg —2r*z,.
Zp Zp

Then we rewrite (3) into y, = %xc and substitute y.:
d q

2 Tp 2 Yp (1 — kar*)y 2
0=z, —2 <:cq - Z;)zq> TetYg —2 (yq — Z:zq> mxc + 25 — 2rz,

and isolate x.:

2 2 2 oo
o1 Ty +y, +25 — 27z
.=

_ zp _Yp (1—r2r*)yq
Tqg— %+ (yq ZFZ‘I> (I—r1r )z,

2 2 2 oo
Ty tyg +25—2r'z

(Tq2p — Tp2q) (1 — K1) g + (Yg2p — YpZq) (1 — KaT™)yq

= %(1 — Kk1r’)z, 25,

and deduce y.:
:rg + yg + zg — 2%z

z
Tqzp — Tpzg) (1 — K17%)2q + (Yg2p — Yp2zq) (1 — Kar™*)yy ?

Yo = 3(1— nzr*)yq(

We denote by C, the right factor in both z. and y.:
ch + yg + 23 — 2%z,

(25 — Tp2q) (1 — k1r*)zg + (Yg2p — Yp2q) (1 — K2r*)yy

Zp-

C, =

We obtain the coordinate of cpreq in function of ¢ and p:
ze = 3(1 — K1)z, Cy,

Ye = %(1 - “2T*)yq0qa
Cq

ze = 1" = 5 (1= sr)azgzp + (1 — Kar™)yqyp) P
P

We analyze C,, we only need a lower bound. We obtain it by using the Taylor development of
Zq = fp(xmyq) = %leg + %KZyg + R3(q):
xi + yg + zg —2r*z, .
(w25 — 2p2g) (1 — £17%)2q + (Yg25 — Yp2q) (1 — kor*)yg "
_ zg +yg 2 = 2" (5mag + 5ray; + Ra(q)) .
((1 — mr*)mg +(1- fcgr*)yg) 25 — (1 = k1r*)apzg + (1 — Kar*)ypyq) 24
(1= kar*)a2 4+ (1 — kor*)y2 + 22 — 2r* Rs(q)

= zf,
(1= mur)ad + (1= mar)yZ) 25 — (1= kor*)aprg + (1= w21 )ypyq) 29

C, =
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to lighten the expression, we replace 1 — k17" by Ki, and 1 —kor* by K>, and we name NV, the numerator
(up to zp) and D, the denominator:

. Kzl + Koy + 22 — 2r* R3(q)
T (K + Kauf) 25 — (Kawpag + Kaypyg) 2

Then we provide a neighborhood around p for ¢ in which this quantity is greater than g. We bound

1 K .

from above the numerator Ny for ||m,(q)ll, < 15755

Ny = K122 4+ Kay? + 27 — 2r* Rs(q)
> K1zl + Koy — 2r| Rs(q)|
> Kia2 + Kay? — 2r* Ms ||my(q) |
> Kx2 + Koyl — 3K (22 + y2)
> Klscg + szg -3 (le?] + szﬁ)
= % (le?] + Kgyg) .

1 Ky _ |zl
16 K2 Ksup|ypl

1 =l
16 fsup|zp]

And we bound from below the denominator D, for |z,| < and |y,| <
Dy = (K1x + Kay2) 25 — (Kiaprg + Koypyg) 2

< (leg + Kng) 25+ (Kilzpze| + Kalypyql) fsup HW)(Q)H?
) 2 + K125 | (9) 15

< (K1x2 + K2y2) 25+ é (lei + szﬁ) 25

=9 (K12} + Kayl) 2.

Thus, in such a neighborhood,

5
v
NeJIEN|

Let o be a sphere passing through p and ¢g. An equation of the ball B(o) is:
2? — 22z +y® — Yye + 2° — 22. <0,

where ¢ = (Z¢,Ye, 2c) is the center of o. By substituting z by f,(x,y) for points (z,y) such that
VrZ+y? < 2‘/5 , we obtain an expression of the projection of the intersection B(c) N & given by

Ksup

E.(x,y) < 0 where:

Eo(z,y) = 2 = 2z2. + y* — yye + (fo(2,9))” = fo(@,y) 2.
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Finally we substitute the coordinate of ¢ in the equation:

Ec(xay) = Z2 - 2x$c + y2 - nyc + (fp(xvy))z - 2fp(x7y)zc

) C
2? — K240y + v — yKaoyaCy + (fo(2,9))* — 2fp(x,y) (r — 3 (Kyagwp + Kayqyp) Zq)
P

. C
=72 - Ki2,Cqx + Y2 — Koy, Copy + (fp(xvy)>2 = 2fp(z,y)r" — fp(z,y) (Kizqrp + Kayqeyp) ?:1
7
= lez - lechx + K2y2 — Koy Cuy

() = 20" Roe,) — (o) (K + Koygu) 2

1 1
=C, <K1:172 — Kizqx + —Kng — Koy,y
q Cq q Cq q
1 9 1, 1
+a (@ 9)” = 251" Ra(w,y) = fi(@,y) (Kazgrp + Koyqyp) —
q q P
<G (?leQ — Kizqr + %K2y2 — Kayqy

3 1
+ %Iigup(xz + y2)2 + 1787"*M3 ((EQ + y2) 2 + ﬁsup(.’r2 + y2) |K1xqwﬁ + K2yqyﬁ‘ Z)
P

<, <2K1x2 — Kizqr + %KQ@/Q — Koyqey

3
2

+ 262, (@ + %) + Bt M (2% + 7)) 2 + F(Kia? + K2y2)>,

as we saw in the bounding of D,

3
Ec(x,y) S Cq (ggleQ _ leqx + %KQQQ _ K2yqy —+ %Iisup(x2 + y2)2 + 1787'*M3 (1;2 + y2) 2 )

vl

We find a neighborhood in which the remainder term %mfup(m? +y?)2+ B Ms (22 + y?)

in than 22K 2% + 2 Kyy?. We choose /22 + y? < min (ﬁ‘/ﬂ(h %Jﬁ&g), to obtain:

, is smaller

(e 5 B (0 7)< (962 (VIR 0 (355 ) ) (07 4 )
= (56501 + 2K1) (2% +97)
= U1K (27 +¢7)
= 5K (2" +7)
< B (K2 + Koy?).
And we can deduce that:

E.(z,y) < C, <2K1x2 — Kizqx + 2K5y% — Kquy) )

But 2K22% — Kizgx + 2Ky — Koy,y <0 is the equation of ell?r (p,q).
The neighborhood in which the equation holds for (x,y) is:

vVaz+y?<wn ::min( \/2K1,1 us) >7

1
4Ksup 3r*Ms

1 . K1 |Z*| Kl |Z*|
,/x2+y2§v2:m1n< LA P
¢ 16 r* M3 Ksuplzp|” K2 Ksup|yp]

and for ¢ is:
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Figure 16.1: The point wy(g) is defined as the fourth intersection point of the circle passing through p,
q, and p with S.

Thus, we choose vyeq = min (vl,v2), and deduce that if |[7,(q)|l, < vmed then 7, (B (0Med) N S)

contains ell’r* (p,q) N D(p, vMeq) that itself contains ell’ (p,q) Nell*(p, q). O

As on the oblate spheroid, the quantities that define the neighborhood tend to 0 when p goes to Z,
since we still have 1 — k17" = © (h%) (recall that h, denote the distance from p to Z). Despite this, one
might notice that this analysis was not that fine, and instead of having a rectangular neighborhood with
sides © (v/I — k17*) x © (1 — k17*), we have a square neighborhood with radius © (1 — k;7*). A more
subtle approach, in which we would have considered the third order coefficient of f,, could have given a
rectangular neighborhood, but the spheroid example showed that it was not necessary to be tight on this
quantity.

The problem now is to define a notion of symmetrical point of q. Naturally we could have taken g,
but we might have problems in finding good regions for the super-graph. Instead we prefer to consider
the point denoted w,(q) defined as follows: consider the circle passing through p, ¢, and p. If ¢ is close
enough to p then this circle has a single forth intersection with S around p. This intersection is w,(q)
(see Figure [16.1).

Note that w,(q) depends both on p and ¢. For the spheroid case, w,(g) corresponds to § by symmetry.

In the following lemma, we evaluate the distance |pw,(q)| with respect to |pg] :

Lemma 16.3. For any 0 smaller than %rch, there exists two positive constants € and Kgym such that if

pg (HUS ' UZUY)* and if [pq| < e then |pwy(q)| < Ksym|pq|-

Proof. Consider a positive § and p ¢ (H U S’ U Z UY)*°. Consider the plane Psym(p,q) := (pgp), and ¢
the center of the circle passing through p, ¢, and p. We consider the orthogonal projections 7, and 75 on
the tangent planes of p and P in Psym. We denote by Kgym, Rsym, and TSym> respectively the curvatures
of the curve Pgym, NS at p, P, and the radius of Pgym No*. They are defined as long as Psym(p, ¢) is not
tangent with S at p or p.

Butp¢ (HUZU Y)'Hs so the plane Psy, (p, ¢) is always far from being tangent, and since o* is not
osculating, it remains true that (1 — Ksym7g,,,) and (1 —Ksymrg,,,) are greater than a positive constant.

There exists ¢ such that, if |pg| < ¢, in the plane Psym(p, q), we have (see Figure :

{ pmp(c)] =

[prp(c)] =~

(]- - HSymrgym”pﬂp(q)L and
(1 = BsymT§ym ) [PTp(wp ()]

N[ =D | =

This is just the 2D version of almost all computations of intersection surface/sphere we did previously.
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1s(p) F Wpf?) m(q)

Figure 16. 2 A view of S and o* in the plane Pgym, (p, g). On the figure, we have more or less,
"y = Bresn = ~ e Thus [pwp(q)] = [pmy(e)| = [prp(c)] = §lpal.

And by projection of the center c:
[pmp(c)| = [prp(c)l.

In other words: y
1-— KSymTSym

[Prp(wp(@))] = pp(q)], and

1-— ESymrSym

*
1-— KSymTSym

[pwp(q)] ~ Ipql,

1-— RSymTSym
since the projection affects the distance in a negligible way. And if we denote by Kgym the maximal value
of M, forall pin (H'UZU Y)+6 and all possible planes Psym (p, ¢), we have:

1 755ym7‘5ym

|pwp (Q) ‘ < KSym |pQ| .
O

By construction, the sphere oneq passes through wy(g). Unfortunately, the principal directions at p,
are not symmetrical to the principal directions at p with respect to the reflection by Pgis(p, D), as it is
the case on a spheroid. Indeed, as long as p is far from Z, the principal directions at p are not related
with those at . As a consequence, the intersection B (opeq) NS around P may not contain the expected

1—Rir*
1—FKar*

ellipse, i.e. the ellipse with aspect ratio and centered on 3w, (q), but a shifted ellipse. To correct

that shift, we consider the sphere &yjeq.

Sphere Gyjeq _
We define oned (P, ¢) as the sphere oned (B, wp(q)), and the neighborhood around p: Ved(p) as the set
of ¢ such that wy(q) € Vaea(D).

1—kKyr*
1—kKor*"

Then we consider the number E =
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Claim c. Ifgem,! (Vmed(p)), then T5(Thmea) contains ellﬁ’i(p, wp(q)).

Proof. Direct by Lemma [16.3] and the previous claim. O

Degenerate spheres o, and ;> .

The degenerate balls B (0, ) and B (o, *) are actually the half-spaces on both sides of the plane Pgym,
passing through p, ¢, p. Once projected on the tangent plane, the intersection of Pgym with S between
p and ¢ is very close to the segment [pm,(¢)]. In the spheroid case, we knew that the intersection was an
ellipse, and in particular a convex body. Now, it is not anymore the case, and we just show that, locally,
the boundary of the projection of the intersection 7, (S NPsym) is caught between two lines parallel with
the line (pm,(q)).

Thus we consider the neighborhood for ¢: V*°(p) := {|z4| < ﬁipyﬁﬁr*, lyq| < u&iﬁﬂr*}, and
show that the boundary of the intersection does not overcome the strip defined by:

1
St(p, q) := |yqz - qu‘ < ﬁﬁr* (372 + yg)a

in the disk D(p, 7,(q)), see Figure [16.3} This strip has width & 3,+ /22 + y2.

Figure 16.3: The projection of the intersection S N Pgym (in blue) is locally contained in a strip St(p, q)
with width %&* \/x2 +y2 for g close enough to p.

Claimd. Ifq € 7, (V>°(p)), thenm, (r/°°) contains el (p, q)\St(p, q), and 7, (r;>°) contains ell}(p, q)\
St(p, q)-

Proof. We search for an equation of Psym(p, ¢). Its normal vector is given by the cross product of the
vectors normal to the planes Pg;s and Pyjeq:

Lq Ip Yq7p — 2qYp
Yo | X | Yp | = | #2¢%p — T¢%p
Zq 2p Lq¥p — YqTp,

An equation of Pgym(p, q) is then:
Psym(P:q) : 0= (Y25 — 2qYp) T + (24T5 — 2524) Y + (Te¥Yp — YqT5) 2-

We show that, if ¢ is close enough to p, then projection of the portion of the intersection of the surface
with the plane is close to the line (p,m,(¢)). The projection of the intersection S N Psym(p, ¢) is given by
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substituting z by f,(z,y):
0= (Yg2p — 2q¥p) © + (2475 — 25%¢) Y + (Tq¥p — Yg7p) fp(,Y)
= (yq7 — 2qy) 25 + (Tpy — Yp)zq + (Tq¥p — Yg25) fp(2,Y)

Thus (x,y) verifies:

1
Yo~ TqlY = ((zpy — ypz)2q + (Tq¥p — Yqxp) fp(2,y)) and,

D
1
lyg — 2yl = —|(a5y — ype)7g + (@a¥p — Yap) ol )]
P
Ks Ks

IN

L |20yp — ygrp| (22 +°)

ey = ypel (@ + vg) +
P

then we consider the neighborhood z? + 2 < xﬁ + ygz

K,
< = (|lopy — ype| + 2qys — yarpl) (2 +v3)
P
I{A
< B (g + Iy + qupl + azpl) (22 + 42)
P

< ;Tlgﬂr* (363 +y2) ’

for max (|2, [24]) < Br- mamry and max ([yl, [yal) < Byt -

Then we denote by v (p) the neighborhood around p defined as the set of ¢ such that wy,(q) €
V°°(p), and St(p, wp(q)) as the strip with width 1B« [pr5(wy(g))| around the line (p, 75(wp(q))) in Ts(p).
Similarly, we obtain:

Claim e. Ifge m; ' (V™ (p)), then mp (15°) contains elly (P, w,(q)) \ St(B,wp(q)), and 5 (r°) contains
el (B, wy(9)) \ St(B, wy ().

Then we can choose Loc(p) = 7r;1 (VLow (P) N Vatea(p) N Virea(p) N V() N v (p))

Degenerate sphere U;I'i‘;i.

For this lasts sphere, we can choose any infinite center cﬂg’h in Ppjs such that its corresponding half-
space contains ell' (7, w,(q)).
Claim f. If g € Loc(p) then mp(rgS°) contains ell' (p,w,(q)).

Now that every sphere has been chosen, we can use the Combination and Partition lemmas to show
the graph inclusion.

16.2.2 Proof of the graph inclusion

We consider the two regions in the tangent plane Ts(p):
5 Brx *
o th,”" (p,q) :=ell}(p,q) Nell® (p,q) \ St(p, q), and

By .
o th," (p,q) := ellj (p,q) Nell’ (p,q) \ St(p,q),

and the two regions in the tangent plane 7s(p):

..,ﬁ'*

o th,” (B, wp(q)) := el (B, wp(q)) Nell” (B,w,(q)) \ St(p, q), and
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i ﬂl?r* (177 WP(Q)) = ell% (ﬁv wP(Q)) N 61157-* (ﬁ7 wp(q)) \ St(§> wP(Q))'

All of those four regions are half-rhombuses that have been truncated by St(p, q) or St(p,w,(q)).
And we apply Combination lemma to prove that if ¢ € Loc(p), then any sphere o passing through p
and ¢ and centered on ¢ verifies (remind that we assume z. > 0):

o If ¢ € (¢, EMed, CLow, Cr), then B (o) NS contains ! (r~hfr* (p, q)),

e if ¢ € (¢§°, cMed; CLow; €¢), then B () NS contains 7, * (rNhfr* (p, q)),

o if c € (¢°, cypeq, Chign), then B (o) NS contains 71%1 <r~hfr* (P, wp(q))>, and

o if c € (¢§°, cypeq, CHign), then B (o) NS contains 71'%1 <r~th (P, wp(q))).

Note that, one of these regions may be a triangle even if gave four vertices, but what is important is
that the triangle is included in the region defined by the four vertices (see Figure [16.4)

+oo
“High

ell'(p, wy(q))

ell, (p, wy () \ St(p, wy(9))

=3

elly (5, w,(9) \ St(B, w,())

Figure 16.4: Partition of the upper part of Pp;s for p € S\ HU H't and g € Loc(p). It is decomposed
into four parts. A sphere passing through p and ¢ centered in any part contains a region of S whose
projection on 7s(p) or Ts(p) is one of the four “reduced” half-rhombuses.

Then for p € S\ (H U H'") and ¢ € Loc(p), we consider the family Fio.(p,q) of fundamental regions

on S:
! (W ) (fhf:(p, 0))

]:Loc(pa q) = 1

w5 (A (@) ) oy (s @)

and the empty region graph ?]@LOC in which there is an edge (p, ¢) if and only if there exists r € Froc(p, q)
such that rN X = 0.
Since the four regions partition Ppis(p, q¢) N {z > 0}, we deduce by Partition lemma:
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Lemma 16.4. Let p € S\ (H U H'*°) and q € Loc(p).
If (p,q) is an edge of Del(X N {p}) then it is an edge of 5]%% (X n{p}).

16.2.3 Computation of the expected degree

Then we compute an upper bound on the local expected degree E {deg‘Loc(p, Del)} of a point p € §'\
(HUHTUZTUY™). We use QQ-LOC as a super-graph. Since the regions of F1,,. are half-rhombuses and
since |pwy(q)| = O(|pg|), the degree behaves as expected. Keep in mind that |r~hfr* (p,q)| = \r~hfr* (p,q)|.

Since I‘~h7ﬁ.r* (p, q) corresponds to a half rhombus for with deleted a strip, we have to compute the new
area:

Recall that rh? (p, ¢) has area %\/(x?l + yq2) (ﬁ,.*ng + yg) Since the width of St(p, q) is 75 By [x2 +y2
and it diameter is 2, /22 + y2, St(p, q) has an area smaller than éﬁr* (m3 + yg) The part of St(p, q) that

we delete from rth* (p, q) is only one quarter of St(p, q).
Since 0 < §,« < 1, we have well:

LSt )| < 12 (02 + 42) < g/ (a3 +92) (B3 +43) < L im (pig)|.

Thus we have:

- By .
rh,” (p, q)’ > rh? (p, q)‘,

i (p. )| — H1St(p. )| > 3

and we can compute the expected local degree:

€ [degaclp.Del)] =X [ Pl(p.q) € Del(X U {p))]dg

g€Loc

<3 [ Plogedh, (Xowh]a

g)\/ > PrNX]dg

€Loc r€FLoc

< 2) /QELOC P [wp‘l (fhfr* (p, q)) N X} +P [Wpl (rhfr*(p, wp(q))> a X} dg

o[ @ o) o (B Gea)|
g€Lloc

_ T B —A TIH"T D, ’
e )\|rhr (p,q)‘ +e rh, ™ (p,wp (q)) dq

<2\
g€Loc

~ 2
e A O | B
§2)\/ oM (p,q) +e Sym
g€Loc

_2A
< 2)\/ e 2
g€Lloc

rhf?(m) ’ dg

A 2
—5K3ym

rhir* (p,q)‘

B
rh. (p,q)‘+e dq

In L + ! In !
1 — k1(p)r*(p) Kgym 1L—Fi(p)r=(p) |

Lemma 16.5. Letp e S\ (HUH'T UZTUY™), the expected number E {degmoc (p, Del)} of neighbors
of p in Del(X U{p}) that are in Loc(p) is:

E [deg)poc (p, Del)| = O(1).
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Proof. We apply the result above for p a distance greater than a constant from H U Z UY. Since the
value minyes\(gun+uz+tuy+) (1 — k1(p)r*(p), 1 — R1r*(p)) reaches a strictly positive minimum. O

At this stage, we know that the expected local degree of a point far from § from Z or Y is O(1). The
only part of the surface that remains undone with the local degree is Z+ UY ™. We treat it in the next
section.

16.3 Local degree of a point close to Z or Y

In this section, we compute the expected local degree of point close to Z or Y. In a first part, we recall
geometric results already present in [ABLO03]. It will allow to express the expected degree of p with
respect to its distance to Z. Then we divide the remaining into 2 parts, depending on if p is close to Z
or close to Y.

16.3.1 On the position of 7 and the value 1 — x1(p)r*(p)

Consider a point pz € Z, and the medial sphere at p. Recall that on Z the medial sphere corresponds
to the first osculating sphere. We place the surface in Monge coordinate system of pz, thus we use the
notations (u, v, w) for the coordinates, as we did in Chapter to make a difference with the coordinate
systems at p in which p is the origin.

The Taylor approximation of a sphere o tangent to pz and with radius r is z = f,(u,v) where:

fo(u,v) = %(u2 + 112) + ﬁ (u2 + v2)2 +0 ((u2 + 02)3) ,
and that the Taylor approximation of the graph z = f,(u, v) of the surface is:

foz (u,0) = Le1u? + Trov? + L (mgou® + 3ma u®v) + gymaou’ + O (Ju®] + [uv] + fufv® + |v]?) .

Consider the Taylor approximation the difference fa between the two surfaces (the medial sphere o*
and S) at pz:

fA(u"U) = ftf* (U,U) - fpz(ua v)
= %m(uQ + 02) + éf@‘?(uQ + v2)2 + O ((u2 + v2)3>
— (Ar1v® + Lrov? + £ (maou® 4 3mau®o) + Hmaout) + O ([u°] + [uv| + Julv® + [v]?)
= %(ﬂl — Kp)v? — %mg,oug — %m271u21) + i (3/{? — m470) w40 (|u5| + |udv| + Juv? + |v|3) .

By definition of the medial sphere, this quantity is 0 at (0,0), and positive around (0, 0).
Along the line u = 0, we have:

fa(0,v) = %(/{1 — ko)v? + O(03).

As we said in Part [[} Chapter [I] generically no umbilical points lie on Z. Thus the quantity x; — k2 is
strictly positive on Z. We denote by pz the minimum of k; — ko on Z:

pz = wmin {x1(p)— ra(p)}-

We consider the new condition on §z:
For any p € Z7T, k1(p) — ka(p) > 34z (Cv)

Thus, no umbilical points lie in ZT neither.
Along the line v = 0, we have

fa(u,0) = —émg’ou3 + O(u4).
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It is therefore necessary that ms3 ¢ = 0. That condition reflects that at Z, the surface reaches an extremum
of curvature along the maximal direction.
We can go further by considering the curve v = ¢(u) for ¢(u) =

m2.1

mﬁ, that approximates the

curvature line at p:

falu, d(u)) = 5(r1 — K2)d(u)® — gma,up(u) + 51 (3k7 —map) u' +O(u”)

2
_1 ma1 2 1 ma1 4, 1 3 4 5
= §(K’1 — K}Q) (MU ) — 5Ma21 mu + 54 (3:‘411 — m4,0) U+ O(u )
. 3m3
= i <3I{f — m470 — K1 _27;2> U4 + O(US)

2
3m.2,1

That proves that the quantity 3x7 —my o — =
denote this quantity by a(p):

—" is non negative on Z. As it is done in [ABL03], we

3maa(p)®

a(p) = 3r1(p)* —mao(p) — K1(p) — ka(p)

Since a non negative function does not reach 0 generically, then we can say that there exists g > 0

e 2
such that 3r1(p)® — mao(p) — &1);%%

We can add a new condition on dz:

> aq for any p € Z.

For any p € Z*, a(p) > 3. (Cz)

The new quantity ag will play the role of 1 — k17* in the previous chapter, i.e. it will give, up to a
constant factor, a bound on the neighborhood in which we apply the next super-graph. The difference is
that o is a constant of the surface, like kg,p, and does not depend on p.

When p is close to Z, the points p and p are locally related. We reuse here the geometric results
presented by Attali et al. [ABL03]. We consider now that pz is the closest point on Z from p, and consider
the Monge coordinate system at pz. In this frame the coordinates of p are denoted by (uy, vy, w,) and
the coordinate P by (up, vp, wp).

They computed the position of p.

Proposition 16.6 (Attali et al.).

up = —up—i—O(uf,)7
v = O(ud).

and the curvatures and medial radius of p:

Proposition 16.7 (Attali et al.).

2
1 1 (1 myq
r*(p) = hi1—3 (gO& + n;jrw) u1127 + O(ug)’
k1(p) hy — 1 (a + KT};Z) 2+ O(ud),
ka(p) = K2+ O(up).

where the constants k1, K2, ma,1, and «, depends on pz.
Since the distance h), of p from Z corresponds asymptotically to u,, we obtain:

1—r1(p)r(p) = r*(p) (1 - mp))

*(p)
=r"(p (%ahi + O(hg))
ha + O(h3),

and 1 — %1 (p)r*(p) = 1 — k1 (p)r* (p) + O(h3).
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16.3.2 Local degree of a point at distance h, from Z

We apply the approximations described above, in the computations already done at Section[16.2.3] Recall
that we had:

1 1 1
E |degoc(p, Del)] = 0 (ln —mer () | KE,, 1w <p>r*<p>> |

By adapting the values to the case of a point p close to Z, and assuming that d is small enough so
that:

For any p € Z*, 5 (1 — k1(p)r*(p)) < 1= s1(D)r*(p) < 2(1 — w1 (p)r*(p))- (Cp)
We deduce the local expected degree of a point p close to Z:

Lemma 16.8. Let p in Z™", at distance h,, from Z, the expected number E [deg‘LOC (p, Del)} of neighbors
of p in Del(X U{p}) that are in Loc(p) is:

E [deg‘LOC (p, Del)} =0 <1n h1> .
P

Proof. We start by adapting Lemma that bounds the distance |pw,,(q)| with respect to |pg|. Far from
Z, we had [pwp(q)| ~ Kgym|pg|. When p is close to Z, the surface gets back to an almost symmetrical
structure and we actually have |pwy(q)| =~ |pg|. This provides an expected degree that is:

E |:deg|Loc(p? Del)} =0 (ln 1— ,ﬂ(lp)r*(p) in 1-% (1p)7“*(p)> '

By the approximations we also have that x1(p) =~ x1(P), so we deduce:

1
And finally, since: 1 — &1 (p)r*(p) ~ %%hi, we have:
1
E {deglLoc(p, Del)} =0 (m h) .
P

O

An important difference between points in Z+ and the others, is the size of their local neighborhood
Loc(p): it decreases to 0 when p tends to Z. Indeed, close to Z the size of Loc(p) is determined by the
size of those two neighborhoods:

o Virea(p) = {max(fz], yg]) < roe min (4y/2 (1= yr?), Sl el Lomrs o) 4 ang

o Vo (p) i= {Jag] < Gtz |y, | < Gl
The other neighborhoods remain bounded from below.

If we analyze those quantities around Z, we obtain that they contain a disk around p with radius
Q(hﬁ). Since it goes to zero, we need to know what is the probability, for such a point p to have a neighbor
at distance Q(hf,). We will do the computation in Chapter and show that, as for the spheroid case,
we cannot count them directly, and we need to consider a middle-range neighborhood.
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16.3.3 Local degree of a point close to Y

Let p € Y. We could have used a method related with the symmetrical p of p, but the value 1 —&;7r* is
close to 0, and we might have problem. Nevertheless, the medial sphere at p is not osculating at all, and
for ¢ close to p, we can consider a slightly different partition of Pg;s(p, ¢) than usual.

Let g be close p and consider the five spheres passing through p and ¢, that we already used: orow(p, q),
oe(p,q), 0r(p,q), 05°(p, @), 02°(p, q). We recall briefly which spheres are these spheres. opow(p, ¢) is not
so far from the sphere centered on the middle of [pq]. o¢(p,q) and o,(p,q) correspond to both sides of
the plane passing through p and ¢ and that is orthogonal to 7s(p). o7°(p,q) and o°(p, ¢) correspond to
both sides of the plane passing through p and ¢ and p.

Usually, we considered also the sphere opeq(p, ¢) whose intersection with S contained an ellipse on
the side of p and another ellipse on the side of p. The problem is that, on the side of p, the aspect ratio of
the region oped (p, ¢) NS can be small, and we need an alternative sphere that plays the role of oneq(p, q)-
We use the sphere oy (p, q) instead. It is defined as follows:

Sphere oy:
The sphere oy is the sphere passing through p and ¢, whose center ¢ = (z, y., z.) verifies also:

0 = (1—rize) Zgye — (1 — Kaze) Yges
Ze = % H% +7r*).

We denote by By the ratio:

1—,"61 (% (%1 +T‘*>) B 1—/4317“*
o (3 (F ) V2w

The idea is that this sphere is slightly higher than the medial sphere, and for ¢ close enough to p, it
contains a non negligible part of the surface that we denote Ay (p,q) on the side of p. On the other hand,
it is slightly lower than the osculating sphere, and then it contains an ellipse on the side of p for which
we can compute the ratio.

Using similar computations than before, we can show:

Claim y. There exists a neighborhood Vy (p) of p in Ts(p) with radius Q(1), such that if g € w,; " (Vy (p)),
then m, (ry) contains ell’ (p,q) and A(p, q).

Then we define Loc(p, q) as the intersection of the neighborhoods associated with each spheres. We
denote by A, (p,q) := A(p,q) N B(o,), and by Ay(p,q) :== A(p,q) N B(os). Those two regions have both
an area greater than a positive constant, since when g = p, the sphere is higher oy (p, ¢) is bigger than
the medial sphere.

Thus we deduce can deduce that:

Lemma 16.9. Let p in YT, the expected number E [deglLOC (p, Del)} of neighbors of p in Del(X U {p})
that are in Loc(p) is:
E [deg|LOC (p, Del)} =0(1).
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Chapter 17

Expected remote degree of a point

In this section, we count the remote Delaunay neighbors of the points of S. The remote Delaunay
neighbors of p are the points ¢ such that (p, q) is a Delaunay edge joining two sample points on distant
part of the surface, but necessarily, ¢ is close to a symmetrical point of p.

We will consider a second neighborhood, the remote neighborhood denoted by Rem(p) of possible
Delaunay neighbors around the symmetrical points of p. We will show that the sizes of Rem(p) and
Loc(p) are linked.

We briefly recall that:

e S’ is aset of curves on S. A point on S” has two symmetrical points.

e An S” point is at the concurrency of three S’ curves.

An H” point is at the concurrency of two H’ curves and an S’ curve.

A Z' point is at the concurrency of two S’ curves and a Z curve.

A'Y point is at the end of an S’ curve, and is the symmetrical point of a Z’ point.

17.1 Far from the convex hull and with one symmetrical point

We start by counting the number of remote neighbors of a point p € S\ (H U HT U S’"). Thus p has
exactly 1 symmetrical point p, the medial radius r* of p is finite, the quantities 1 — k17* and 1 —&1r™* are
bounded from below by a positive constant, and p and p are far from a point with multiple symmetrical
points. We recall that Z’ and Y are included in S'*.

When there is a single symmetrical point, we denote by Rem(p) := Loc(D), i.e. the local neighborhood
of the symmetrical point p, defined in the previous chapter. We consider a point ¢ in Rem(p). Consider
the circle passing through p, p and q. It passes through another point of S close to p, we denote this
point by wz(q). Now (p,wp(q), ¢, p) forms a quadrilateral for which [pq] is a diagonal (see Figure .
Thus any sphere passing through p and ¢, contains either a sphere passing though p and wz(g) or a sphere
passing through p and ¢, and we can decompose the cases.

Let o be sphere passing through p and ¢, three cases arise:

Case (A): o contains wy(q)
In this case, o contains one of the two regions of Fioc(p,wp(q)) that are centered below Pujeqd.

Case (B): o contains p and the center ¢ of ¢ has a positive 2 coordinate in the Monge
coordinate system of p

In this case, o contains one of the two regions of Fioc(p,q) that are centered below Pyreq in the
coordinate system of p.

187
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Figure 17.1: View in the plane Psym of wy(g). Any sphere passing through p and ¢ contain either p or
wp(q)-

Case (C): o contains p and the center ¢ of ¢ has a negative z coordinate in the Monge
coordinate system of p

Finally, in this case, the spheres are actually quite large and it is almost impossible that they are
Delaunay spheres. We denote by T¢ the set of centers of such spheres in Pgis(p, ¢). This case corresponds
to spheres that are centered beyond the tangent plane of p. To illustrate that such spheres are large,
consider the example where p is exactly above p. In that case 7s(p) is parallel to Ts(p), and the case
does not even arise. Thus we treat this case only for the points of Z* that have their symmetrical point
locally close. In that case, the sector T of Ppis(p, ¢) in which ¢ lies, is a thin cone whose vertex is at the
intersection ¢ := Ppis(p, ¢) N Ts(p) N Ts(p). We denote by o¢ its corresponding sphere. We denote by
c;° and ¢ the infinite center in the respective directions Ppis(p, ) N 7s(p) and Pris(p, ¢) N Ts(p). Since

P

p € Z* the normals at p and of p have a close direction. Thus the degenerate spheres o,° and o, centered

on ¢;° and ¢ are close together. If cc was centered in the same global direction than ¢;° and g, we
could have said that a sphere centered in T almost contains one half of 0. But it is not necessary the
case.

Instead, we consider two intermediate spheres. The first one, o, that is centered on ¢, := Pgis(p, ¢) N
Ts(p) N {y = 0}. And its twin sphere op that is centered on ¢z := Pgis(p, ¢) N Ts(p) N {7 = 0}, where
(Z,7,Z) denotes the Monge coordinates of p. Thus the part T¢ can be partitioned into the triangle
(cc,cp, cp) and the unbounded polygon (cgo,cwcﬁ, c%o). By Combination and Partition lemmas, any
sphere centered in T, contains one of this intersections:

o [ :==8NB(cc)NB(op) NB(0p), or
o Iy:=8NB(05°) NB(op) NB(op) N B (02°).

For a point p from which p is far, and for a point ¢ € Rem(p), these intersection are clearly (1) in
area. If p and P are close, in particluar if p € Z*, and if ¢ € Rem(p) then ¢ is at distance O(hf’)) from p,
while p and p are at distance ©(h,). Since all the spheres involved are centered in a tangent plane (either
Ts(p) or Ts(p)), their global shape is circular on S (as the sphere op,oy for instance). Since p and p are
close, the y-axis and y-axis are almost parallel. Thus, S N B(o¢) approaches a circle passing through p,
q and p. Both the spheres 0, and o5 approaches the Gabriel sphere of p and p. And both the planes o,°

and o5° contains the same half of the Gabriel sphere of p and p. Consequently, the intersection I; and

I, have area Q(h2). But since [pq| is O(h3), then I; and I, have area Q(|pg|?). Thus the contribution,
in the expected degree of p, of the spheres centered in T¢ is negligible , since it is roughly:

2 2\%
A e dady = 0 (§).
R2

We deduce, for points p € S\ (Ht US™"), and for points ¢ € Rem(p), a super graph of the 3D-
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Delaunay triangulation: Let Frem(p, ¢) be the family of regions on S:

ot ({hf’"* (p, oJp(q))) L ({hf’"* (p, wp(Q)))

FRem (P, q) := a-t (rNhf ®,q) |, 7" r~hfr* (P, q)) ’

p p

Il(pa Q)712(p7 q)
and consider the associated empty region graph ]@Rem.
Then we can bound the expected remote degree of a point p € S\ (H'T U S'T).

Lemma 17.1. Letp e S\ (H'" U ST UZT), the expected number E {degmem (p,Del)| of neighbors of p
in Del(X U {p}) that are in Rem(p) is:

E [deglRem (», Del)} - 0(1).

Proof. For spheres passing through p and ws(g), we apply Lemma Since [pwp(q)| < Ksym|Pg| the
expected degree remains constant. For spheres passing through p and ¢, since p € S\ (H'T U ST U Z7T),
then dist(Z) is greater than constant and we can apply Lemma to p.

O

We finish this section by counting the remote Delaunay neighbors of a point close to Z. Since ZTNS'+
is not empty, some points of Z* have multiple symmetrical points: they are close to Z’. Thus we choose
dz consequently:

Z't contains S’ N ZT. (Cz)

We can see the condition (Cz/) as a refinement on the bounds on §z and Jg:.
The points around Z’ will be treated in m

Lemma 17.2. Letp € ZT\Z'", the expected number E {deglRem (p, Del)} of meighbors of p in Del(XU{p})
that are in Rem(p) is:

E [deglRem (p, Del)] ~0 (m h1> .
P

Proof. We apply Lemma for p and p. If p is beyond Z19, its contribution to the degree is O(1). [

Note that we might have been tempted to extend this counting in SN H™*, where points p approaches
the convex part, but the size of Rem(p) would have been close to 0 when p goes to H', and we need to find
another solution to bound efficiently the number of remote neighbors. We will do this in Section [17.3
For now we deal with the points of ST\ Z*, points close to those that have 2 or 3 symmetrical points
but far from Z.

17.2 Close to points with multiple symmetrical points

We count in this section the number of remote neighbors of points that have multiple symmetrical points,
and of points that are close to points with multiple symmetrical points. It corresponds to the points of
S’*. If a point p has only one symmetrical point p, it is likely to have Delaunay neighbors close p and p
but not only: if p is close to a point p’ € S’, then p can have neighbors close to the symmetrical point p’
of p’ (see Figure[17.2)).

To take this into account, we consider the notion of supplementary symmetrical point.
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Figure 17.2: A point p can have Delaunay neighbors far from {p,p}. The big points are the data sample,
including p. They are triangulated. p and p are in green. p is close to a point (in red) with two
symmetrical point. It has two Delaunay neighbors in its neighborhood, one in the neighborhood of p that
is close to a red point, and one in the neighborhood of the third red point.

17.2.1 Supplementary symmetrical points

In this section, we assume that p € S, the set of points with a finite symmetrical point. We say that p
is a supplementary symmetrical point of p if there exists a sphere, called supplementary medial sphere
whose intersection with S contains only p, p, and a topological disk around the other symmetrical points.
Such a sphere is then bitangent to S at p and p (see Figure .

We can order the symmetrical points (supplementary or not). For two symmetrical points on the
same medial sphere, we order the points according to their distance with p. For two points on different
medial spheres, we order the points according to the inclusion-order of the medial spheres on which they
lie. Thus, ifpe S¢S US"UH UH"UZ', we will denote them by o7, p;, and r¥ the respective i-th
supplementary medial sphere, symmetrical point, and medial radius. We this notation, we assume that
oy is 0, Py is P, and 1§ is r*, the natural medial sphere, symmetrical point, and medial radius.

If pe SUS”"UH' UH"UZ, the initial medial sphere has multiple symmetrical points on it, in that
case we consider that of = 0§, 7 = r§ and so on, if necessary.

These supplementary symmetrical points must keep a good behavior. Indeed, the supplementary
medial radius 7 of p must not be larger than %(p). In other words, for points in S"*\ Z*, 1 — k1 (p)ri(p)
must be positive.

We refine the bounds on dss and dg». We denote by b(dz), the minimum of 1 — k1 (p)r*(p) for points
of S\ Z*:

b(dz) = pglzﬁ{l — r1(p)r*(p)}-

Then we want the strip S'* to verify:

For any p € 7\ Z¥, 1 — 1 (p)ri (p) > $b(32).

For any p € 8\ Z*, 1 — k() (p) > bb(62). (Cs)

A convenient value for §g/ can be found since for p € S' r*(p) = ri(p) and 7*(p) < ﬁm. One may
pay attention that this bound depends on §.
We denote by bg~ the minimum of 2=%17" of the point of S"':

1—kKor*

= min M
bsi 1= peS“{ 1 — ka(p)r*(p) b

Then we want S”T to verify:
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Lk (p)rs(p) o 1
For any p € SN+, W > §b5//.

For any p € "%, for i € {1, 2}, % > Lbgn.

(Csr)

A convenient value for ds~ can be found since S” and Z are at a positive distance form each other by
genericity.

Thus we can consider that any point close to S’ has at least two symmetrical points (supplementary
or not) and any point close to S” has three symmetrical points.

Figure 17.3: The blue part is the surface. A point p close enough to S’ (in red) has a supplementary
symmetrical point p; close to S’.

For a point p in S$'T, we will count the remote neighbors close to supplementary symmetrical point
as if they were not supplementary, i.e. without taking into account the intersection part close to other
symmetrical points. Thus we clearly obtain an upper bound on the expected number.

17.2.2 Counting of the remote Delaunay neighbors

For each p in SN ST\ (8"t UZTUY™), we define Rem(p) as the reunion of the local neighborhoods
of the first and second symmetrical points (supplementary or not) as they are defined in the previous
section. For each p in S”*, we add also the local neighborhood of the third symmetrical point to Rem(p).
Note that we don’t need to precise S N .S”*, since S” is included in S by genericity and by the choice of
58// .

We deduce:

Lemma 17.3. Let p € (S'T\ (H'TUZTUY™")) U S"", the expected number E [deg‘Rem (p, Del)} of
neighbors of p in Del(X U {p}) that are in Rem(p) is:

E [degmem (p, Del)} =0(1).

Proof. This is clear since the number of symmetrical points of p (supplementary or not) we consider is
smaller than 4, since the quantities 1 — k1 (p)r;(p) and 1 — k1 (p;)r;(p) are greater than $b(8) by condition
(Cgs) and (Cg), and since the medial radii are r}(p) are finite. O

We consider now the case of points close to the boundary of the convex part in the next section.
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17.3 Close to the boundary of the convex hull

For points around the boundary H’ of the convex part, we have to consider two cases depending on if
they are in H or in S. Points in S N H’T have a natural symmetrical point in or close to S N H'*, and
sometimes two, when they lie on S’. Conversely, points in H N H'" have no finite symmetrical points
and we will have to consider a supplementary one, since, if they are very close to H'", they may have
remote Delaunay neighbors.

17.3.1 Points close to the boundary of the convex hull, and inside S

Let pe SNH'". If p ¢ H"", it has one natural symmetrical point p, and two otherwise (the second one
is the supplementary symmetrical point P, ). By smoothness of the surface, p is close to H’. Since we are
going to apply our previous results on p, we have to consider that dg verifies:

For any p € SNH'", k1(p) < Lkp. (Cyr)

We recall that xy denotes the supremum of the principal curvature of points of H. It is a negative
constant.
We also consider that dg verifies:

For any p € SNH"", k1(p) < tky and k1 (py) < 2kp. (Cyr)

Then we count the number of possible Delaunay neighbors g of p close to p. As usual, we consider
the point wg(g), close to p as the fourth intersection of the circle passing through p, p and ¢ with S. We
define Rem(p) as being Loc(p). Whether p belongs to H or to S\ HT?, its local neighborhood is never
reduced to p. Thus Rem(p) is a neighborhood of size strictly positive around P, in which we can apply
an empty rhombus graph to obtain:

Lemma 17.4. Let p € SN (H'T U H"T), the expected number E [degmem (p, Del)] of neighbors of p in
Del(X U {p}) that are in Rem(p) is:

E [degmem (p, Del)} =0(1).

Proof. For symmetrical points in S\ H'", we apply Lemma that counts the expected local degree of
a point with a finite medial radius. Otherwise, for symmetrical points in S N H ™, we apply Lemma m
that counts the expected local degree of a point in H'T. O

17.3.2 Points close to the convex hull, inside H

Ifpe HN(H'T U H"T), it is more complicated. Indeed consider p’ the closest point of p on H' U H”. Tt
is clear that p can have Delaunay neighbors close to p/, but this happens with a probability decreasing
with its distance to H’. Instead of computing this probability, if p € H N H'T, we consider again a
supplementary symmetrical point, still denoted p; and count the number of neighbors of p around p;
as if it was a real symmetrical point, i.e. as if their was an empty sphere passing through p and p;.
This provides clearly an upper bound on the degree since we count more neighbors while neglecting some
important intersections of spheres with S. If p € H N H"*, we consider a second supplementary point.

We define the points p;. By definition, the tangent plane at p touches S only at p. By analogy
with the previous examples, we would like to make the medial sphere growing but it is already an plane
(corresponding to the tangent plane). What we do instead, is that we turn out the medial plane so it
becomes a big sphere tangent at p and containing the surface. Then we reduce it, maintaining the tangent
contact until it touches the surface in another point. This point is p;. If p € H N H”T, we can continue
the procedure, neglecting the place where the supplementary medial sphere already touches S, to obtain
a second supplementary symmetrical point. The points p; belong to H.

We consider the neighborhood Rem(p) around p defined by the reunion of the neighborhoods Loc(p).

We deduce the following theorem:
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Lemma 17.5. Let p € HN (H'T U H"Y), the expected number E {degmem (p, Del)] of neighbors of p in
Del(X U {p}) that are in Rem(p) is:

E [degmem (p, Del)} =0(1).

Proof. By Lemma [I6.2) which counts the expected local degree of a point in H. O

17.4 Remote neighbors of points close to Z’ or to Y

The points in Y and Z’ are natural symmetrical points, thus if there is a Delaunay edge (p, q) with p in
Z't and ¢ in Y, we can choose to count an edge only as it is issue either from p or from ¢, depending
on which one is the more convenient to compute. We choose to compute edges issue from Z'*. In other
words, we do not count the remote Delaunay neighbors of a point p in Y.

We recall the generic configuration of the sets Z, Z’, " and §”. A Z’ point is the endpoint of a curve
in Z and two curves in S’. At a Z’ point, the medial sphere has another contact point, it is a Y point.
A Y point is the endpoint of a third S’ curve.

We bring some more information about the geometry of S around Z’*: we can also see a Z’ point as
the intersection of an S’ curve and a curve of maximum of curvature. With that point of view, we have
more information for the surface for any point of Z’*. In the continuation of Z, beyond Z’, the surface
is still a maximum of curvature, and has this ridge geometry, but unlike on Z, the radius of curvature is
greater then the medial radius. We denote by W such curves.

Consider p € Z'F. Depending on its position, p has either a symmetrical point close to Z and a
supplementary symmetrical point close to Y, or the opposite. This depends on where p is placed with
respect to the curve S’. Topologically, S/, Z and W meet into Z’ to form a cross shape in Z'% (see
Figure . We distinguish two parts in Z*. the part of Z't delimited by S’ and that contain W, that
we denote by Z{;, and the part delimited by S’ and that contain Z, that we denote by Z’Z+.

Figure 17.4: The curves S’, Z and W in Z'F. On this figure, Z is the pink part of Z'*, and Zj; is the
blue part.

If a point p belongs to ZI’/?,' , its initial symmetrical point P, is close to YT and its first supplementary
symmetrical point p; is in Zj;; but on the other side of W. In that case, the value 1 — k1 (p)ri(p) is
strictly positive, and whether a point ¢ is close to p, or p;, we can apply the usual method.

If p belongs to Z'Z+, the initial symmetrical point p of p is also in Z/Z+7 but on the other side of Z, and
the first supplementary symmetrical point p; is close to Y ™. In that case, we can no longer ensure that p
verifies 1 — k1 (p)ri(p) > 0. Indeed, if p belongs to Z, its first supplementary medial radius grows linearly
with the its distance to Z’T, thus the quantity 1 — x1(p)rF(p) goes below 0. Nevertheless, as we saw in
Section @ the supplementary medial sphere of p is far from being osculating at ;. Thus their exists
a constant ary such that 1 — &1 (p)ri(p) > %ay by smoothness from Y. This suggests a condition for dy.
We define ay as the minimum of 1 — k1 (p)ri(p) for p € Y

ay = Ir)réig{l — r1(p)r*(p)}-
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For any p € Y, 1 — r1(py)ri(p) > %ay. (Cy)

Thus, if g is close to P, we can apply Lemma to bound the expected of such neighbors. And if ¢
is close to Py, i.e. close to Y’, we use the partition of Pgis(p, ¢) similar to the one used in Section [16.3.3
We deduce that:

Lemma 17.6. Let p € Z't at distance h,, from Z U W, the expected number E deg|rem (p, Del)] of
neighbors of p in Del(X U {p}) that are in Rem(p) is:

1
E deg|Rem (pa Del):| =0 (ln h) .
P
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Remaining neighbors

In this chapter, we count the remaining Delaunay neighbors of p: those that are not in Loc(p) neither in
Rem(p), also called far neighbors. For the points p € S\ Z*, we will use a simple packing argument to
show that they are all in a negligible quantity. This is possible since for such points, Loc(p) and Rem(p)
are large enough.

For points p € ZT, we cannot do this because the size of the neighborhood Loc(p) tends to 0. Thus
we will decompose the far neighbors of p into, as in Chapter Section [I3:5] middle-range and very
far neighbors, to apply an additional analysis. For very far neighbors, we will reuse the same packing
argument. For middle-range neighbors, we will use an empty region graph similar to the empty axis-
aligned right triangle graph. Such a graph will be used to prove that the number of middle-range edges
(linking a point to a middle-range neighbor) is o(\).

18.1 On the probability that p has a Delaunay neighbor outside
Loc(p) U Rem(p)

We consider a point p € ZF, and denote by p the symmetrical point of p that is in Z72%, and by 6, the
angle between Ts(p) and Ppis(p, D). We show that, if a point ¢ is at distance 7 from ¢*(p), then any
sphere passing through p and ¢ contains a region either around p or p whose area depends on both 7 and
the distance h, from p to Z. This region is not precise enough to obtain directly a bound on the degree,
but it will be used to show that there are not so much middle-range neighbors.

We prove the following lemma:

Lemma 18.1. Letp € Z%1, let 0 < 7 < rch and let ¢ € S at distance greater than T from o*. If a sphere
o passes through p and q then B(o) NS contains either a region whose projection on Te(p) is a disk with
radius im cos (0p) and with p on its boundary, or a region whose projection on T¢(D) is a disk

with radius im cos (0,) and with p on its boundary.

It corresponds to Lemma from Chapter [I3] adapted to the generic case, and points p only close
to Z.

Proof. The proof is similar to the proof Lemma [I3.6] but we consider cones instead of cylinders. Indeed
for the spheroid case, both the principal curvatures were positive, but in the general case, if k1 (p) remains
positive around Z, it is not anymore the case for x2(p) in general. On the other hand, while Lemma m
considered various cases, in this lemma, we assume that z. is positive and p is close to p.

We consider a point g at distance 7 from ¢*. We denote by ¢* the center of o*. We consider a sphere
o passing through p and ¢, and such that its center ¢ = (., y., 2.) verifies z. > 0 in the Monge coordinate
system of p. We denote by BT7(c*) the ball centered on ¢* and with radius r* + 7. Then we shrink o
toward p, until it is tangent to the boundary of B¥7(c*). We call ¢’ this new sphere and ¢’ = (T, Yo, 2¢7)
its center. This sphere still passes through p, and is included in ¢ but does not pass through ¢ anymore.

195
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As explained in Lemma, the center of ¢’/ lies on the prolate spheroid Pr, with focuses p and c¢*, and
great axis r* + 7.
The projection of the intersection B(c’) NS on Ts(p) is given by:

EC' (ﬂ?, y) S 07
where

Ee(x,y) = 2* = 2220 + 3 = 2yye + (£(2,9))* = 2f,(x,y)2e
<2 —2zxo + 9y —2yye + 22 +1y% + 2Ksup (x2 + y2) Ze
< 2(1 + "isupzd)ac2 —2zzo +2(1+ Ksupzc’)yQ — 2yye
< 2(1 4 2k5upr™)2? — 2220 + 2(1 + 26507 )Y? — 2yyer, since 7 < rch < 7*, and 2o < 7F 4T
But
0= (1 + 2ksupr™)2? — 220 + (1 + 2K5upT )Y — YYer,

Z./ Ye!
2 1+2n§upr* ? 2 14+2KgupT™

is the equation of a circle passing through p and centered on ( ), i.e. of radius

1V :L’i, +yz/
2 14+2Kgupr* *

Then we adapt the second case of Lemma to this radius. We consider two cylinders C'yl; and
Cyl, of radius t, respectively around (pc*) and (pc*). We show that we can choose ¢ small enough such
that their intersection lies inside the prolate ellipsoid Pr,. We recall that 6, denotes the angle between
the tangent plane of p and the bisector plane of p and p. By construction, the furthest point of the
intersection of the two cylinders from c¢* is at distance ﬁm' Since we want ¢ small enough so that

Cyl, N Cyl, lies inside Pr,, we need to have m < 7, so we choose t = F cos (,). Then since o’ is
centered on Prs, its center is either outside C'yl;, or outside C'yl,. Thus we have:

e cither ¢ is outslde Cyly, then the projection of B(¢) N € on T¢(p) contains a disk passing through

t _ T
p with radius 3 Fon = 1 TFanr CO8 (0p),

e or ¢ is inside Cyl;, or more precisely in Cyl; N Pr, that is above the medial plane so ¢’ can be
shrank from ¢’ until it passes through p, while its center is still outsido C’yl Then the projection

of B(c) N E on T¢(P) contains a disk passing through p with radius 1 1 T7mor €08 (6p).

O

Then we consider a point ¢ € S outside Loc(p) U Rem(p). We recall, from Section [16.3.1] that on Z,

the quantity ms o is 0, and the quantity a(p) := 31 (p)® —mao(p) — m‘n’g?il(p)() reaches a strictly posmve

minimum «g. By condition (Cy), for any p € ZT9, we have a(p) > . But as we saw in Section
ia(p)hﬁ corresponds to a lower bound on the vertical distance between the surface around pz € Z and
the medial sphere of pz. So 4—18040 Ipg|* corresponds to a lower bound on the distance form g to the medial
sphere of p for p close to Z and ¢ not farther than O(ay), from p. In order words we can say that for any

p € Z1° and for any q € S\ Loc(p) URem(p), we have

. . 1
dist(q,a*(p)) > faolpq\“

Since Loc(p) and Rem(p) contain disk of radius 2 (hg) around p or P, we can say that if ¢ is not in
Loc(p) and Rem(p), then it is at distance € (h}?) from the medial sphere. We reintroduce the empty
region graph from Part [T, Chapter [0} that we used to quantify the probability that there exist some
neighbors at a given distance: For a given ¢t > 0, we consider the isosceles triangle in Tg(p) with vertices
p, (v/2t,0) and (t,t), its seven copies around p such that they cover an octagon, and their symmetrical
triangles on Tg(P) with respect to Pyea. That makes a total of 16 triangles around p or p. We denote by
Ft(p) the family of fundamental regions made of their reciprocal projections on &€ by T, ! for the triangles

on Te(p), and by m ! for the triangles on T¢(p). Note that the area of each region is greater than gt?
We can deduce the following lemma:
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Lemma 18.2. Let p be a point of Z™, at distance h, > 0 from Z. There exists v > 0 such that, If g € S
is not in Loc(p) U Rem(p), and if (p,q) is a Delaunay edge then it is an edge of 33_7%3. Consequently,

0
the probability that p has some Delaunay neighbors outside Loc(p) and Rem(p) is 16e=22(1°)
Proof. We apply Lemma with 7 = Q(h,?) that corresponds to the distance from a point ¢ outside
Loc(p) and Rem(p), to o (p). We obtain that if a sphere passes through p and ¢, the projection of
its intersection with S contains a disk of radius {2 (hzl,zcos 9,,) passing through p or p. But around Z,

tp is close to 3, so cosf), ~ cotf), that is ;F in the Monge coordinate of p. And as we saw in

p P
Section [16.3.1} yp is negligible compared to =z, and then cos 8, ~ \%l that is ©(h,). In other words, any

sphere passing through p and ¢ contains a disk of radius Q(h}ﬁ ). We denote by v the constant such that,
any sphere passing through p and ¢ contains a disk of radius vhzl;o’. Consequently, any sphere contains

13
one the 16 triangles of ]-'ghp (p). O

Note that the bound obtained is far from being tight, but it will be sufficient for our needs.

18.2 Middle-range neighbors of a point in Z+

Our goal in this section, is to show that, for any point p € Z*, we can find a neighborhood, that we
call MRN(p), of radius (1) around p such that for any ¢ € MRN(p), any sphere passing through p and
q has an intersection with S that contains an axis-aligned right rectangle depending on p and ¢. That
will induces that any point in p € ZT has an expected degree O(In \). Used conjointly with the previous
section, we will show that we can obtain a sub-linear number of edges with an endpoint in Z7.

Rather than delving into a very analytic approach, we show how we can go from the expression of the
intersection sphere/surface to an approximation that is convenient for us, while making approximations
that all involve a constant factor. For instance, the coefficient 1 — k17* will not be involved anymore.

We consider two points p and ¢ in Z+. We denote by pz the closest point on Z to p, we place
the surface in the Monge coordinate system of pyz. We use (u,v,w) to denote these coordinates (to
differentiate from the Monge coordinates in p). By construction we have v, = 0.

We use a partition of Pgis(p, ¢) very similar than the one used in the last section of the oblate spheroid
case, Part [T, Chapter [13] Section[13.5] up to some adaptations, mostly because k2(pz) is not necessarily
positive.

18.2.1 Choice of the specific spheres when ¢ is on the side of p

We present the specific chosen spheres whose center will partition the bisector plane Pgis(p, ¢) when ¢
is on the side of p with respect to Pgis(p,P). Those sphere are chosen to obtain a super-graph of the
Delaunay triangulation in which a point has a logarithmic expected degree.

Spheres 01,0, 01, and oo
We still use the same sphere o7y, that is centered in the tangent plane of p and is close to the Gabriel

sphere of (p, q). As we already saw, its intersection with S approximates a disk with [pg| for diameter. The
sphere contains two axis-aligned right triangles A; and As on S. By “axis-aligned right triangles on §”,
we mean that their projection on 7s(p) are right triangles whose sides are aligned with the perpendicular
lines on Ts(p) formed by the planes Pp;s(p, ) and the plane passing through p and p that is orthogonal
to Ts(p).

The triangle A; is the one whose side parallel to 7s(p) N Ppis(p,p) is the closest to p. Simply put,
its the triangle close to Z. A is the other triangle (see Figure .

We also reuse the degenerate spheres oy, and o,, that correspond to the plane passing through p and
q, and that is orthogonal to 7s(p). We rename them o7 and oo where o4 is the sphere containing A; and
o9 the sphere containing As.



198 Chapter 18. Remaining neighbors

Figure 18.1: The intersection of oy is almost a Gabriel circle.

Sphere oogc

While the sphere opeq was defined to identify an ellipse inside the intersection, the new sphere oosc
is defined to contain a rectangle. As a consequence, we don’t limit the intersection with S to an order 2
region.

Instead of describing precisely the center of this sphere, we describe how we choose it, through some
rewriting of the expression of its intersection with §. For now, we just assume that the center of ooy is
on the bisector plane Ppgis(p, ¢) of p and ¢, and on the bisector plane Pgis(p, D) of p and p.

In the Monge system coordinates (u,v,w) of pz, p has coordinates (uy,0,w,) and ¢ has coordinates
(ug,vq, wq). Note that Pgis(p, D) is close to the plane defined by u = 0.

Any sphere centered on ¢ and passing through p has equation:

00sc (U — Uc)2 + (v — Uc)2 + (w — w0)2 = (up - u0)2 + (Up - UC)2 + (wp — we)

that we can rewrite:

00sc (U —ue)? — (up — ue)? + (v — )% = (vp —ve)* + (w —we)? — (wp —w.)* =0 or,
00sc (U —up)(u+ up — 2uc) + (v —vp) (v + vy — 20.) + (W — wp) (W + wp — 2w,) = 0.

Then we substitute v, = 0 and approximate u. by 0:

00sc : (U —up)(u+up) +v(v —2v:) + (w — wp)(w + wp — 2w,) ~ 0 or,

OOse : U — uf) +v(v — 2v.) + (w — wp) (w + wp — 2w,) ~ 0.

We have then to identify a convenient value for v.. Since q belongs to oosc, we have:

2

uy — uf, + v4(vg — 20¢) + (wg — wp) (Wg + wp — 2w,) ~ 0.

We can substitute in this expression the second order approximations of w, and wy:

1, .2 _
wp ~ SK1U, since v, = 0, and

2

~ 1 2,1
Wq = FR1Uy, + 3 K2Ug.

2

We obtain:

2

Ug — U;Z) + ’Uq(?]q - 2Uc> + %(:‘iluz + H2U§ — /ﬂlui)(wq + Wy — 2wc) ~ 0.
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2

5 is a factor of the expression.

In that expression, we want to choose v. so that mlug + ﬁgvg — KU

Thus we choose v, ~ % ( - z—f) v, to obtain:

ug —uf,—i—vq(vq - 2u,) f:ug —ug—i—vq (vq - (1 - 52> vq>

K1
K2
:u2—u2+—vz
q Pl 4
*i(n u2+n vz—n u2)
Tk 1%q 2% 1%p) -

And finally w, verifies:

1
— (mug + KZQ’U(? — mui) + %(mug + /121)3 — mui)(wq + wp, — 2w,) ~ 0,
1

in which we can factorize and simplify by f{lui + /@21}3 — ﬁluf, to obtain:
1 1
— + 3 (wg +wp — 2w,) ~ 0, and then:
K1

1
We 2 — + +(wg + wp).
K1

We go back to the expression of the sphere s, and substitute the coordinates of c:

2
UOSC:UQ_uf)—l-v(v— (1—@>vq> + (w — wp) (w—l—wp—ﬂ—(wq%—wp)) ~ 0,
1

simplified into:

aosczuz—ui—l—v(v— <1—zj)vq)+(w—wp)(w—wq)—(w—wp)f:O.

We obtain an approximation of the projection of the intersection ros. := B (0osc) NS, by substituting
w by r1u? + $kov? in the term K%(w — wp) or simply by 1riu® in (w — wy)(w — w,) where it has a
higher multiplicity. This intersection is then expressed by Eosc(u,v) < 0 with:

2
Eosc(u,v) ~ u? — uf) 4+ v (v — ( — Z—f) vq) + (%muQ — wp) (%muQ — wq) - (%H1u2 + %KQU
1

2 —w,).

2 (1, .2 1, .2 ~ 2 K22 22 .
But o (2/$1u + 5kov wp)_u + 2o Uy, SO

2

K
Bow(u) = (207 40 (0= (1= 22) ) + (hoae® = ) (b = )
1

( — :—i) v(v—v) + (%m1u2 — wp) (%m1u2 — wq) .

Finally we substitute in this expression, the approximations wj, ~ %muf, and wy o~ %mug (here again,

we can the term in v, since it appears in a multiplication of terms). We obtain:

Eosc(u,v) ~ (1 - %) v(v—ug) + (%mu2 - %fﬁui) (%muQ — %/ﬁlug)

2
= (1—:—?>v(v—vq)+%(u2—u§) (u® —u?).

This approximation of curve is valid for a point ¢ on the same side of p with respect to Pgis(p, D),
since the position of p needs all the terms of the surface to be determined. In some sense, since up ~ —up,
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Figure 18.2: When ¢ is on the side of p with respect to Pgis(p,P), the intersection of opg. with S has
globally one of those two shapes. Both of them contain 4 axis-aligned right triangles.

we can see u’ — uf, as a good approximation of (v —wu,)(u — up). In practice, the choice that cos. belongs

to Ppis(p, p) makes cpg. passing exactly through p.

The curve defined by 0 = < - :—j) v(v—vg) + %ﬁ (u2 - uf)) (u2 - ug) can have various shapes but

essentially two different topologies (see Figure[18.2). In both cases, it contains the two axis-aligned right

2
triangles A; and As. This is clear, given the expression of the curve in which 1 — % and % are strictly

positive by genericity on Z.

By symmetry, this intersection contains similar triangles on the side . We denote them by A; and
Ay.

The missing terms in the approximation make the real curve to be slightly curved. Actually the
rectangles follow the parabola v = %uz which approximates the curvature line. But this curvature
does not impact the global area of the rectangles. Note that the curve obtained is an approximation of
the projection on Ts(pz), but since p is close to pz, the area of curve projected on 7s(p) only differs by
a constant factor.

Then we consider the remaining spheres.

Sphere 3,
The sphere agym is the sphere centered on Ts(p) and passing through p, ¢, and p. As a sphere centered
in 7s(p), its intersection with S approximate a disk, the one passing though p, ¢, and p.
This sphere has the role 0§y°r§ had in the spheroid case, but adapted to the case where we only take
into account the spheres centered above the tangent plane of p. This sphere contains A; and A;.

Sphere onorm
This sphere is chosen depending on the relative position of p and ¢. In the spheroid case, the choice to
orient the edges toward the closest point to Z, allowed to avoid this choice.

We describe how to obtain it: Consider the sphere oo, and makes its center moves upward (in the z
coordinate, so farther from Ts(p)), but maintaining contact with p, ¢ and p. At some point, the sphere
has an intersection with S whose tangent at p or ¢ is parallel with Pgis(p,p). This is the sphere onorm-

This sphere is a particular case of a sphere cosc(p, ¢') for a ¢’ such that vy = 0. Thus it contains the
triangles Ay and Ay. But by symmetry with v = 0, it contains two other triangles, that we denote As
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Figure 18.3: Intersection of agym with S.

and Az (see Figure [18.4)). Note that Az and Az depends on the relative position of p and gq.

A

Pz| v P

K s

Figure 18.4: The intersection of onorm With S is almost symmetrical with respect to u = 0 and v = 0.

Degenerate sphere ogj,,

This degenerate sphere corresponds to the plane Psym(p,q) passing through p, ¢ and p. What is
important here, is Psym(p, q) cuts S in a shape of order 2 symmetrical with respect to u = 0. It is an
ellipse if ko > 0, a parabola if ko > 0, or an hyperbola if k3 < 0. In both cases, since the half-plane
associated with ogy, is directed upward, we have to consider the external part of the curve, and then it

is clear the sphere contains Az and Az (see Figure [18.5).

Finally it remains to find a degenerate sphere that contains both A, and Ag, and another one that
contains both A, Ay and Az. But this is achieved by both o9 and o (see Figure .

On all figures above, we illustrated the intersection by triangles whose diameter have size |pg|. In
order to fit with approximations, the actual triangles we consider are reductions of the triangles of the
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*q

Figure 18.6: The sphere oo contains As and Ag. The sphere o; contains the 3 triangles close to p.

figures by a factor that depends on the surface. In any case, we assume that the reduction is at least
2. Such approximations can be made in a neighborhood of size Q(1) around p, since all coefficients (k1,
K2

-2, «) involved in the expressions of the curves are strictly greater than a positive constant in Z7.

Finally, for a point ¢ on the side of p, we denote by Fz(p,q), the family on S of 6 projected reduced
triangles:

Fz(p,q) == {A1(p,q), A1(p, q), Ao (p. q), Aa(p, q), As(p, q), As(p, q)}-

All of them have area O(|u, — uql||vy, — v4l)-
Let o be a sphere passing by p and ¢, and centered on ¢. By Combination lemma, we have (see

Figure :
e Ifce (c(SJym7 COsc, CLow ), then o contains Ay,
e if ¢ € (2, CLow, COsc, CNorm, C2), then then o contains Ag,
o if ¢ € (co, cNorm,cg‘;m), then o contains Ags,

o if c € (cy, cgym, COsc; C1), then then o contains Ay,

e if ¢ € (1, COsey CNorm, €1), then o contains Ag, and

o if c € (cy, cNorm,cg‘;m), then o contains As.

18.2.2 If ¢ is on the side of p with respect to Pgis(p,p)

For points ¢ that is on the p with respect to Pgis(p,p), We define A;(p,q) as Ai(P,q), and A(y
A (P, q). Note that A;(p, q) and A;(p, q) are well defined since ¢ that is on the p (see Figure |18.9
Then we consider a sphere ¢ passing through p and ¢, and consider that:

q) as

=
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3.4, LA,

=0 .
C%ym Low €2

Figure 18.7: The partition of Pgis(p,q) for p € ZT and ¢ € MRN(p). A sphere centered in a given
polygon of the partition contains the corresponding triangle.

Ag Ay

Figure 18.8: And the corresponding regions. A regions is linked to its corresponding parameter by their
color.

e If o does not contains p, then o contains one of the 3 triangles A;(p, ), Aa(p,q), or As(p, q).

e If o contains p and the center c of o has a positive z coordinate in the Monge coordinate system of
D, then o contains one of the 3 triangles Aq(p, q), Aa(p, q), or As(p,q).

e Otherwise o contains p and the center ¢ of ¢ has a negative z coordinate in the Monge coordinate
system of p. But in that case, the sphere o contains either Aq(p, q) or Aa(p, q).

Thus we can extend the definition of Fz(p,q) for points ¢ on the side of p. That provides the
neighborhood MRN(p) around p and p.
Finally, by Partition lemma, this proves that:

Lemma 18.3. Let p € ZT and ¢ € MRN(p).
If (p,q) is an edge of Del(X N {p}) then it is an edge of ng (X n{p}).

18.2.3 Computation of the expected degree

We compute the expected middle-range degree of a point p € Z+.
We will reuse the computation made in Part [[TI, Chapter Section and combine the results
of the previous sections. We recall that, for this computation, we use the fact that we found two super-
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Figure 18.9: When ¢ is on the side of p we can consider the symmetrical triangles.

13
graphs of the Delaunay triangulation. One is given by F, "o (p), since g ¢ Loc(p) U Rem(p). The other
is given by Fz(p, q)

hlS
To apply our computation, we need that both family of regions are disjoint. All regions of .7-'3 * (q)
are inside a disk of radius 'yhzl,?’ around p. Concerning the triangles of F(p, q), since they are reduces

triangles, they are at distance greater than i|pq| from p, that is itself Q(hg). So we can find a maximal
distance before which both families of regions are distinct. This gives a last condition on dz:

13
For any p and ¢ in ZT, }"gh" (¢) and Fz(p,q) are disjoint. (Ch)
Thus we can prove the following lemma:

Lemma 18.4. Let p be a point of Z+, and X a Poisson point process distributed on S with intensity \.
The expected number of middle-range neighbors of p in Del(X U {p}) is:

E |:deg‘MRN(p7 Del):| = O(h’l )\)e_hifsﬂ()\).
Proof. Without entering into the details, we have:

E |de p,Del)| < A
g MRN
g€MRN(p)

P {(p, q) € 3% (X)n 3;%3 (X )} dq,
0]
since both are super-graph of Del in MRN(p),

E |deg p,Del)| < A
[MRN
gEMRN(p)

< A/ P [(p, 9)€ G%,(X) ’(p, )ed’ (X)} e~ ¥ dg by Lemma [[82
gEMRN(p) Fo”

P00 € 00|00 e 0[P [ € T 00 ag
]-_0 ‘7:0

13
Since the regions of Fz(p, q) and fgh” (p) are disjoint, the event “(p, q) € ng I(p,q) € G° nis’ 1S less
Fo P

likely to occur than the event “(p,q) € gr,”
Then we obtain:

E [deg\MRN (p,Del)| < e—hZGQ()\)/\/
gEMRN(p)

=O(In /\)e_h?’ﬁQ(A)7

P [(p, q) € G% (X )} dg

since all regions of Fz are axis-aligned right triangles. O
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18.2.4 Unlikely neighbors

In order to take into account all possible pairs of points (p,q), it remains to consider to count the far
neighbors of the points p outside Z*, and of very far neighbors of the points p in Z*. But as we saw,
in both cases, those neighbors are points ¢ such that dist(c(p),q) is greater than a positive constant
(depending on the surface). Thus, a packing argument similar to the one used in Part Chapter
Section [13.5.5| implies directly the following lemma:

Lemma 18.5. Let p € S\ Z™*, the expected number of far neighbors of p in Del(X U {p}) is:
E [deg|FN(P, Del)] =o(1).
Let p € Z™, the expected number of very far neighbors of p in Del(X U {p}) is:

E {dengN(Pv Del)} =o(1).

18.2.5 Expected size of the Delaunay triangulation
We finish this part by wrapping up all results above to prove the theorem:

Theorem 18.6. The expected combinatorial complezity of the 3D-Delaunay triangulation of a Poisson
process distributed with intensity X on a smooth generic closed oriented surface is ©(N).

Proof. An upper bound on the expected degree of a point in the Delaunay triangulation is given by the
sum of its different restricted expected degrees by neighborhood.
As we saw, a point p € S\ ZT has expected degree O(1). On the other hand, a point p € ZT has

expected degree O (1n hi) + O(In )\)e*hiﬁg(A)_
Thus, an upper bound on the total number of edges E of the Delaunay triangulation is given by:

E[N]=3E | deg(p)
peX

= % / i E [deg(p)] dp by Slivnyak-Mecke Theorem,
pe

N[>

[ Eleswlap+d [ Eldeslap
peES\Z+ peZt

O\ + g/ 0 <ln 1) dp + g/ O(In \)e 2" 2N dp,
peEZ+ hp pEZ+

With a variable substitution, we can switch from the integral on p € Z* to an integral on h,, € [0, 0]
multiplied by the length of Z (that is finite by genericity). Since dz is small enough, this variable
substitution has a bounded Jacobian.

Finally, since fol In +dh = 1 and since f0+oo e M*dh = O(A~2), we have:

E[N] =0 (A+A% ln)\)
= 0(\).

Since the number of edges is an asymptotic upper bound on the combinatorial complexity of the
Delaunay triangulation, we deduce that the latter is also O(\). O
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Conclusion

In this thesis, we have shown that the expected size of the Delaunay triangulation of a Poisson point
process distributed on a generic surface is linear with the number of points. To this aim, we have
developed a method to compute the expected size of some empty region graphs, including the 3D-
Delaunay triangulation. Through this method, we explained, maybe a little bit more, how behaves
the Delaunay triangulation of points on a surface. In this conclusion, we briefly present other similar
problems where we could use our method, then we point out the weaknesses and possible improvements
of our approach.

As it is usually done, we can have a look on the same problem for different dimensions. For instance,
in R3, we can find a curve on which points have a quadratic Delaunay triangulation, the moment curve.
But this curve is chosen to make the triangulation quadratic, and a natural question arises: What is the
size of the Delaunay triangulation of a Poisson point process on a generic curve? Is it asymptotically
unique? Can we find a class of curves for which it is linear?

We can also extend the problem to higher dimensions, and question what is the size of the Delaunay
triangulation of random points distributed on a variety of dimension 1, 2 or 3 in R*. One can possibly
find a pathological hyper-surface for the 4D-Delaunay triangulation, like the cylinder is in R3.

Rather than applying the empty region graph method to extended dimensions, it could be interesting,
first and foremost, to improve our approach of the problem. For instance, it seems very doable to
reformulate and extend a little our main result. Indeed, the notion of genericity was convenient for us
to find good properties on a surface, but it is a strong condition: for example, we cannot really say that
an oblate spheroid is a generic surface, nevertheless if points are distributed on this surface, they have
a linear Delaunay triangulation. We can only say that an oblate spheroid has some generic properties,
good for the Delaunay triangulation. But it is not necessary to have such properties: consider that the
surface is a sphere, and thus that there is no unicity of the Delaunay triangulation. It is not a generic
surface neither but, if a random sample is distributed on a sphere, one can find almost surely a linear
triangulation [Yvi88], that is therefore a Delaunay triangulation. Thus if the surface on which the points
are distributed contains a part of a sphere, we can still find a linear Delaunay triangulation. Furthermore,
if a surface contains cylindrical parts, the Delaunay triangulation can remain linear, as long as the medial
spheres are not osculating. The problem is not so much on surfaces but rather on their medial axis.

A more precise distinction than generic or not, can be the following: we distinct the centers of the
medial axis between good and bad centers. The good centers are those for which the medial sphere has
an intersection with the surface that is made of isolated points. Conversely the bad centers have a medial
sphere whose intersection with the surface is 1 or 2 dimensional. In the medial axis of the surface, the bad
centers are either 0 or 1 dimensional. If they are one dimensional, like on canal surface, our conjecture is
that the triangulation has an expected size that is ©(AIn A). But if they are 0 dimensional, i.e. isolated
points on the medial axis, their contribution to the total expected size should either be negligible, or
linear in the case of a spherical part. This distinction suggests a more precise conjecture: the expected
size of the Delaunay triangulation of points on a surface is O (A(1 4 lpaq In X)) where lpq denotes the
length of the medial axis part that is made of bad centers. This formulation has also the advantage to
exclude from the conditions the notions of smoothness, closeness and orientability.

We finish that conclusion by pointing out why we think that our method has relevant properties.
On some specific surfaces, like cylinders, we explained why the Delaunay triangulation has a O(Aln \)
expected complexity. Our computation proposes an explanation on how the Delaunay triangulation
switches from super-linear to linear after perturbation of a specific surface. We refer to the proof of

207
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Theorem [18.6l In the computation of the degree of points in Z 7, it appears a complexity O ()\% In )\)

that is sub-linear. We know that this quantity is not tight, but nonetheless, it witnesses something.
The value in the exponent comes from the approximation of the surface. Around Z we extended the
approximation to its fourth order, for our surface to be “far enough from its first osculating sphere”. In
the case where the surface is closer, in term of order of approximation, to its first osculating sphere at Z,
we would need to extend our approximation of the surface to an even higher degree. This would give a

complexity O ()\k%l In )\), for an higher k. This quantity remains sub-linear for any k, but is O (Aln\)

for £ = co. This can explain how even a very subtle perturbation on the surface can radically change the
size of the Delaunay triangulation. Moreover, the fact that we linked empty axis-aligned ellipse graph
and Delaunay triangulation of points on a surface made it possible to find the integrable upper bound

O (ln ﬁ) on the expected degree of a point p. A question that remains open is: what is the expected

degree of a point on Z? We showed that it was O(In A), but we did not show that it was Q(In ), so it is
not excluded that it is O(1), or something in between.

Concerning more specific details, it might be possible to get a better constant in the big O we obtained.
Indeed, we considered “reduced shapes” to fit with approximations, but when the intensity of the Poisson
point process grows, this reduction is to be less and less necessary. As an illustration, consider the convex
hull of a 3 dimensional set of points. It is known that the expected degree of a point on the convex hull is
6. The convex hull can be seen as the empty region graph where the region are half-spaces. Consider now
that the set of points is distributed on a surface. Our approach of the problem would led us to analyze
the intersections plane/surface. As a first approximation, they correspond approximately to axis-aligned
ellipses with a single aspect ratio given by the local curvatures. In other words, around a given point of
the surface, the convex hull corresponds to an empty axis-aligned graph with a single aspect ratio. But
we proved that the degree of a point in an empty axis-aligned graph with a single aspect ratio was also
6. In other words, this example illustrates that the approach has good chance to be practically tight and
shows that the approximations we made, were much too brutal, and increased too much the upper bound
on the expected degree. Probably, a more elegant and less calculative approach, could have given better
results.



Appendix A

A.1 Jacobian of the Blaschke-Petkantschin variables substitution

The Jacobian matrix J of the Blaschke-Petkantschin variables substitution is:

cosp+cosfl; —psing —psinf, 0

| sinp+sinf, pcosp pcost, 0
(:9,0q,0r) = cosp+cosf, —psing 0 —p sind,
sinp+sind,  pcosy 0 p cost,

We describe here the computation of its determinant:

cosp +cosfy, —psing —psind, 0
__|sing+sinf, pcosep  pcost, 0
det (J(p, ¢,0q,0r)) = cosp + cosf, —psinp 0 —psiné,
sing +sinf,. pcosyp 0 pcos 0,
pcosy  pcosty 0
= (cosp+cosby)|—psine 0 —psin b,
P COS Y 0 pcosb,
—psing —psinb, 0
— (sinyp +sinéy,) [—psinp 0 —psiné,
pCOs Y 0 pcos b,
—psing —psinb, 0
+ (cosp +cosb,) | pcosp  pcosb, 0
pCOS 0 pcos 6,
—psing —psinb, 0
— (singp+sinf,) | pcosp  pcosb, 0
—psing 0 —psind,

We develop from the coefficient that is the only not zero in a column,

(cosp + cosbly) (—pcosby) (—p2 sing cosb,. + p* cosp sind,)
— (sing + sinf,) (psind,) (—p? sing cosb, + p* cospsind, )
+ (cosp + cosb,.) (pcosb,.) (—p2 sing cosf, + p* cosp sinf, )
— (sing + sind,.) (—psinb,.) (fp2 sing cosf, + p? cosp sinf,)

?((— cosg cosfly — cos®f,) (— sing cosh, + cosysinb,)

det (J(p, p,0q.6r)) =

=p
— (singsing, + sin?6,) (— sing cosh,. 4 cosy sind,.
q q

+ (cosyp cosf,. + cos?0,.) (— sing cosf, + cospsind,)
— (— singpsing, — sin®6,.) (— sing cosf, + cospsing,) ).

209
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We factorize by the right factor,
=p? (( cos pcos B, — cos® 0, — sin psin 6§, — sin? 04) (—sin g cos 6, + cos psiné,)
+(
=

det (J(p, ¢, 04, 0;)
cos ¢ cos 0, + cos® 6, + sin @ sin 6, + sin” 6,.) (— sin ¢ cos 6, + cos sin 6, )
(—cosyp cos, —sing sinf, — 1) (—sing cosd, +cosyp sind,,)
+ (cosy cos, +sing sinf, +1) (—sing cosf, +cosg sindy)).

We distribute the 1,

det (J(p, ¢, 04,0:)) = p*((— cos p cos §, — sin psin ) (— sin ¢ cos b, + cos psin b,
+ (cos pcos b, + sinsinb,.) (— sin ¢ cos §, + cos psin by)
+ (sin ¢ cos B, — cos psinb,) + (— sin g cos b, + cos psinby) ),

then we develop. Many terms cancel each other to obtain:

det (J(p, ¢, 04,0:)) = p?’(sin 6, cos B, — cos b, sin 6, + sin ¢ cos b,

— cos psinf, — sincos f, + cos psin Gq) .
Finally we apply the formulae: cosasinb—cosbsina = sin(a —b), on the three well-chosen pairs of terms,

det (J(p, 2,0, 0,)) = p(sin(6, — 6,) + sin(0, — ) + sin( — 6,))
= p’ (sin(m — (8, — 0,)) + sin(8, — ) + sin(p — 6,))

= 4p3sin (777—(9;—&)) sin (7042—¢) sin (—”§9T> )
b

where the last line derives from the formula: sina + sinb + sin¢ = 4 sin % sin 3 sin % when a +b+c=.

A.2 Some integrals

We recall that, for the positive numbers L, [, and ¢, we defined:
It / / e "V dyda.

Lemma 8.5. Let L, I, and t be 3 positive numbers. If tLl > 1 then:

In(¢tLl)
t

We prove the following lemma:

In(tLI 1
(LD |

< IL,l(t) <

|

Proof. Let t be a positive number such that tLl > 1, we start to rewrite the integral: by bounding from
above the following integral:

It ( / / Y dyda
lx —tu
/ / dudz with v = zy,
7tl;v
- / 1o,
0 tr

L
= E/ € dv with v = tix.
0
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Then we bound Iy, ;(t) from above:

1 [t —ev
I (t) = —/ ” dv but 1 — e™¥ < min(1,v) so
0

t
< 1/tu min(1,v) d
t 0 v

1 tLl
= 1 </ 7)d —|—/ 1dv> since tLl > 1,
t 0o U v
/ dv +/ fdv

(1+1In(tLl)).

H-\»—A OF\H

And we bound Iy, ;(t) from below:

1 [HEL ] v
I (t) = / dv

v
1 1—e™? 1
- / since ¢ > for v > 0,
t 0 v+1 v v+1
1
E(lntLl—i—l))
ln(t )
t

We also prove here the lemma involving the area of the rhombuses.
Lemma 8.10. Let t >0, 8 €]0,1[, and I3(t) = [z [z~ tV (@) (B2 42) 4y d
1
I5(t) = $15(1) < © (1+1n(3)).
y) =

Proof. We apply, in the integral, the variables substitution: (z, (1 X, 1Y) with Jacobian determi-

ViV
nant %

R JR
R JR

= %IB(1)~

Then we compute an upper bound:

/ / V@) (202 +y%) qyq
/ / V@2 ) gy dy
_ 4/ / 7,67’1"2\/ﬁ2 cos? f+sin? edrdﬁ
o Jo

2 /E (B cos® 0 + sin® 0)7% dé.
0
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1

On [0, 7], (ﬁQ cos? 0 + sin® 19)_E is smaller than both and 75; on the one hand, because (62 cos? 6 + sin 9) 2

1
decreases from % to 1, on the other hand, because (62 cos? 0 + sin? 0) 2 >sinf > %0, so that:

us

I5(1) g2/02 min (1, %) df

Bz . 3
2 / Bd9+/ Zdo
0 RS

=7 (1~ In(8)).

O

A.3 The set of 4/2-balls passing through two points is a good
pencil

In order to prove Lemma we must prove that, for any 3 points p, ¢ and r of R?, there exists a
single 4/2-ball whose boundary passes through p, ¢ and r. If the existence of such a sphere is trivial, its
uniqueness is more complicated to prove. We prove the equivalent property that claims that two different
4/2-balls intersect in at most two points.

Thus we actually prove the stronger property: the boundaries of any two different 4/2-balls (not only
in B2 (p,q)) intersect in at most 2 points.

First, note that any two different concentric 4/2-balls have disjoint boundary. Thus we can order
the concentric 4/2-balls by inclusion. Subsequently, we can order any two 4/2-balls, up to a concentric
translation. We show that, if two 4/2-balls are tangent at (0,0), then the smaller has a larger curvature
at (0,0).

The equation of a 4/2-ball b, passing through (0,0) and centered on c¢ is given by :

be: (v — xc>4 +(y — yc)2 < 3321 + 937 that we can rewrite:
be : at — a3z, + 62222 — 4w + y? — 2yy. < 0.

The equation of the tangent at (0,0) is thus:
202 +yy. =0

In other words, all spheres centered on (2., y.) such that ¥ is constant are tangent at (0,0). We compute

the curvature of b, at (0,0). Without loss of generality we assume that z. and y. are positive, and write
the lower part of the 4/2-ball as the graph y = f.(x), where:

) =ye — Vit — (. —z)* + 2.
We compute the first and second derivative of f.:
4(56’ - xc)?’
2\/w4 (x — x)* + y2
12(z — x.)? ><2\/:c4 (x —x)* +y2 +4(z — 20)3 x 2

4(z—x.)®
2¢/xd—(x—x.)*+y?2

42— (z—z)* +92)
12(x — x0)? x4 (22 — (# — o) + y2) + 4z — 2)3 X 8(x — x¢)?
8 (ad = (¢ —ao) +y2)?
6(z —x)? (22 — (x —wo)* + 42) +4(z — 2.)8

(¢f — (z — 2)* +92)°

1
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The curvature is given by (ﬁ% We want to know how it evolves when z. grows. Since they are
1+(£2(0))) 2

tangent, it is clear that f/(0) is constant with z., and so, we are only interested in the variation of f(0)

with z..

_ 6x2y? + 48
a ye

B Gosgyf 4:5(2
Y Y2
_ 62 428

C

Ye Y2

2 6 x3 >4

Ye Te Ye Te
xd

Since o~ Is constant for tangent 4/2-balls, the curvature is clearly decreasing with z.. In other words, a
smaller 4/2-ball has larger curvature, whatever is the tangency point. As a consequence, if two different
4/2-balls are tangent, then the tangent point is their unique intersection.

Consider now two 4/2-balls by < by, and assume by the absurd that they intersect at 3 points (or
more). Consider the translation of by from the center of by to the center of by. During the translation,
two of the intersection points move until they meet in a tangent contact. But by the curvature property
described above, there cannot be a tangent contact and another intersecting point. So it not possible
that there was three intersection points initially.

This proves that the boundary of two different 4/2-balls intersect in at most 2 points, and so, that
the pencil of 4/2-balls whose boundary passes through two given points is a good pencil.
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